Indent labels
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2020 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include <limits.h>
39 #include "bfd.h"
40 #include "bfdlink.h"
41 #include "libbfd.h"
42 #define ARCH_SIZE 0
43 #include "elf-bfd.h"
44 #include "libiberty.h"
45 #include "safe-ctype.h"
46 #include "elf-linux-core.h"
47
48 #ifdef CORE_HEADER
49 #include CORE_HEADER
50 #endif
51
52 static int elf_sort_sections (const void *, const void *);
53 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
56 file_ptr offset, size_t align);
57
58 /* Swap version information in and out. The version information is
59 currently size independent. If that ever changes, this code will
60 need to move into elfcode.h. */
61
62 /* Swap in a Verdef structure. */
63
64 void
65 _bfd_elf_swap_verdef_in (bfd *abfd,
66 const Elf_External_Verdef *src,
67 Elf_Internal_Verdef *dst)
68 {
69 dst->vd_version = H_GET_16 (abfd, src->vd_version);
70 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
71 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
72 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
73 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
74 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
75 dst->vd_next = H_GET_32 (abfd, src->vd_next);
76 }
77
78 /* Swap out a Verdef structure. */
79
80 void
81 _bfd_elf_swap_verdef_out (bfd *abfd,
82 const Elf_Internal_Verdef *src,
83 Elf_External_Verdef *dst)
84 {
85 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
86 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
87 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
88 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
89 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
90 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
91 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
92 }
93
94 /* Swap in a Verdaux structure. */
95
96 void
97 _bfd_elf_swap_verdaux_in (bfd *abfd,
98 const Elf_External_Verdaux *src,
99 Elf_Internal_Verdaux *dst)
100 {
101 dst->vda_name = H_GET_32 (abfd, src->vda_name);
102 dst->vda_next = H_GET_32 (abfd, src->vda_next);
103 }
104
105 /* Swap out a Verdaux structure. */
106
107 void
108 _bfd_elf_swap_verdaux_out (bfd *abfd,
109 const Elf_Internal_Verdaux *src,
110 Elf_External_Verdaux *dst)
111 {
112 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
113 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
114 }
115
116 /* Swap in a Verneed structure. */
117
118 void
119 _bfd_elf_swap_verneed_in (bfd *abfd,
120 const Elf_External_Verneed *src,
121 Elf_Internal_Verneed *dst)
122 {
123 dst->vn_version = H_GET_16 (abfd, src->vn_version);
124 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
125 dst->vn_file = H_GET_32 (abfd, src->vn_file);
126 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
127 dst->vn_next = H_GET_32 (abfd, src->vn_next);
128 }
129
130 /* Swap out a Verneed structure. */
131
132 void
133 _bfd_elf_swap_verneed_out (bfd *abfd,
134 const Elf_Internal_Verneed *src,
135 Elf_External_Verneed *dst)
136 {
137 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
138 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
139 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
140 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
141 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
142 }
143
144 /* Swap in a Vernaux structure. */
145
146 void
147 _bfd_elf_swap_vernaux_in (bfd *abfd,
148 const Elf_External_Vernaux *src,
149 Elf_Internal_Vernaux *dst)
150 {
151 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
152 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
153 dst->vna_other = H_GET_16 (abfd, src->vna_other);
154 dst->vna_name = H_GET_32 (abfd, src->vna_name);
155 dst->vna_next = H_GET_32 (abfd, src->vna_next);
156 }
157
158 /* Swap out a Vernaux structure. */
159
160 void
161 _bfd_elf_swap_vernaux_out (bfd *abfd,
162 const Elf_Internal_Vernaux *src,
163 Elf_External_Vernaux *dst)
164 {
165 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
166 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
167 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
168 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
169 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
170 }
171
172 /* Swap in a Versym structure. */
173
174 void
175 _bfd_elf_swap_versym_in (bfd *abfd,
176 const Elf_External_Versym *src,
177 Elf_Internal_Versym *dst)
178 {
179 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
180 }
181
182 /* Swap out a Versym structure. */
183
184 void
185 _bfd_elf_swap_versym_out (bfd *abfd,
186 const Elf_Internal_Versym *src,
187 Elf_External_Versym *dst)
188 {
189 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
190 }
191
192 /* Standard ELF hash function. Do not change this function; you will
193 cause invalid hash tables to be generated. */
194
195 unsigned long
196 bfd_elf_hash (const char *namearg)
197 {
198 const unsigned char *name = (const unsigned char *) namearg;
199 unsigned long h = 0;
200 unsigned long g;
201 int ch;
202
203 while ((ch = *name++) != '\0')
204 {
205 h = (h << 4) + ch;
206 if ((g = (h & 0xf0000000)) != 0)
207 {
208 h ^= g >> 24;
209 /* The ELF ABI says `h &= ~g', but this is equivalent in
210 this case and on some machines one insn instead of two. */
211 h ^= g;
212 }
213 }
214 return h & 0xffffffff;
215 }
216
217 /* DT_GNU_HASH hash function. Do not change this function; you will
218 cause invalid hash tables to be generated. */
219
220 unsigned long
221 bfd_elf_gnu_hash (const char *namearg)
222 {
223 const unsigned char *name = (const unsigned char *) namearg;
224 unsigned long h = 5381;
225 unsigned char ch;
226
227 while ((ch = *name++) != '\0')
228 h = (h << 5) + h + ch;
229 return h & 0xffffffff;
230 }
231
232 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
233 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
234 bfd_boolean
235 bfd_elf_allocate_object (bfd *abfd,
236 size_t object_size,
237 enum elf_target_id object_id)
238 {
239 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
240 abfd->tdata.any = bfd_zalloc (abfd, object_size);
241 if (abfd->tdata.any == NULL)
242 return FALSE;
243
244 elf_object_id (abfd) = object_id;
245 if (abfd->direction != read_direction)
246 {
247 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
248 if (o == NULL)
249 return FALSE;
250 elf_tdata (abfd)->o = o;
251 elf_program_header_size (abfd) = (bfd_size_type) -1;
252 }
253 return TRUE;
254 }
255
256
257 bfd_boolean
258 bfd_elf_make_object (bfd *abfd)
259 {
260 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
261 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
262 bed->target_id);
263 }
264
265 bfd_boolean
266 bfd_elf_mkcorefile (bfd *abfd)
267 {
268 /* I think this can be done just like an object file. */
269 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
270 return FALSE;
271 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
272 return elf_tdata (abfd)->core != NULL;
273 }
274
275 char *
276 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
277 {
278 Elf_Internal_Shdr **i_shdrp;
279 bfd_byte *shstrtab = NULL;
280 file_ptr offset;
281 bfd_size_type shstrtabsize;
282
283 i_shdrp = elf_elfsections (abfd);
284 if (i_shdrp == 0
285 || shindex >= elf_numsections (abfd)
286 || i_shdrp[shindex] == 0)
287 return NULL;
288
289 shstrtab = i_shdrp[shindex]->contents;
290 if (shstrtab == NULL)
291 {
292 /* No cached one, attempt to read, and cache what we read. */
293 offset = i_shdrp[shindex]->sh_offset;
294 shstrtabsize = i_shdrp[shindex]->sh_size;
295
296 /* Allocate and clear an extra byte at the end, to prevent crashes
297 in case the string table is not terminated. */
298 if (shstrtabsize + 1 <= 1
299 || bfd_seek (abfd, offset, SEEK_SET) != 0
300 || (shstrtab = _bfd_alloc_and_read (abfd, shstrtabsize + 1,
301 shstrtabsize)) == NULL)
302 {
303 /* Once we've failed to read it, make sure we don't keep
304 trying. Otherwise, we'll keep allocating space for
305 the string table over and over. */
306 i_shdrp[shindex]->sh_size = 0;
307 }
308 else
309 shstrtab[shstrtabsize] = '\0';
310 i_shdrp[shindex]->contents = shstrtab;
311 }
312 return (char *) shstrtab;
313 }
314
315 char *
316 bfd_elf_string_from_elf_section (bfd *abfd,
317 unsigned int shindex,
318 unsigned int strindex)
319 {
320 Elf_Internal_Shdr *hdr;
321
322 if (strindex == 0)
323 return "";
324
325 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
326 return NULL;
327
328 hdr = elf_elfsections (abfd)[shindex];
329
330 if (hdr->contents == NULL)
331 {
332 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
333 {
334 /* PR 17512: file: f057ec89. */
335 /* xgettext:c-format */
336 _bfd_error_handler (_("%pB: attempt to load strings from"
337 " a non-string section (number %d)"),
338 abfd, shindex);
339 return NULL;
340 }
341
342 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
343 return NULL;
344 }
345 else
346 {
347 /* PR 24273: The string section's contents may have already
348 been loaded elsewhere, eg because a corrupt file has the
349 string section index in the ELF header pointing at a group
350 section. So be paranoid, and test that the last byte of
351 the section is zero. */
352 if (hdr->sh_size == 0 || hdr->contents[hdr->sh_size - 1] != 0)
353 return NULL;
354 }
355
356 if (strindex >= hdr->sh_size)
357 {
358 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
359 _bfd_error_handler
360 /* xgettext:c-format */
361 (_("%pB: invalid string offset %u >= %" PRIu64 " for section `%s'"),
362 abfd, strindex, (uint64_t) hdr->sh_size,
363 (shindex == shstrndx && strindex == hdr->sh_name
364 ? ".shstrtab"
365 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
366 return NULL;
367 }
368
369 return ((char *) hdr->contents) + strindex;
370 }
371
372 /* Read and convert symbols to internal format.
373 SYMCOUNT specifies the number of symbols to read, starting from
374 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
375 are non-NULL, they are used to store the internal symbols, external
376 symbols, and symbol section index extensions, respectively.
377 Returns a pointer to the internal symbol buffer (malloced if necessary)
378 or NULL if there were no symbols or some kind of problem. */
379
380 Elf_Internal_Sym *
381 bfd_elf_get_elf_syms (bfd *ibfd,
382 Elf_Internal_Shdr *symtab_hdr,
383 size_t symcount,
384 size_t symoffset,
385 Elf_Internal_Sym *intsym_buf,
386 void *extsym_buf,
387 Elf_External_Sym_Shndx *extshndx_buf)
388 {
389 Elf_Internal_Shdr *shndx_hdr;
390 void *alloc_ext;
391 const bfd_byte *esym;
392 Elf_External_Sym_Shndx *alloc_extshndx;
393 Elf_External_Sym_Shndx *shndx;
394 Elf_Internal_Sym *alloc_intsym;
395 Elf_Internal_Sym *isym;
396 Elf_Internal_Sym *isymend;
397 const struct elf_backend_data *bed;
398 size_t extsym_size;
399 size_t amt;
400 file_ptr pos;
401
402 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
403 abort ();
404
405 if (symcount == 0)
406 return intsym_buf;
407
408 /* Normal syms might have section extension entries. */
409 shndx_hdr = NULL;
410 if (elf_symtab_shndx_list (ibfd) != NULL)
411 {
412 elf_section_list * entry;
413 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
414
415 /* Find an index section that is linked to this symtab section. */
416 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
417 {
418 /* PR 20063. */
419 if (entry->hdr.sh_link >= elf_numsections (ibfd))
420 continue;
421
422 if (sections[entry->hdr.sh_link] == symtab_hdr)
423 {
424 shndx_hdr = & entry->hdr;
425 break;
426 };
427 }
428
429 if (shndx_hdr == NULL)
430 {
431 if (symtab_hdr == & elf_symtab_hdr (ibfd))
432 /* Not really accurate, but this was how the old code used to work. */
433 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
434 /* Otherwise we do nothing. The assumption is that
435 the index table will not be needed. */
436 }
437 }
438
439 /* Read the symbols. */
440 alloc_ext = NULL;
441 alloc_extshndx = NULL;
442 alloc_intsym = NULL;
443 bed = get_elf_backend_data (ibfd);
444 extsym_size = bed->s->sizeof_sym;
445 if (_bfd_mul_overflow (symcount, extsym_size, &amt))
446 {
447 bfd_set_error (bfd_error_file_too_big);
448 intsym_buf = NULL;
449 goto out;
450 }
451 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
452 if (extsym_buf == NULL)
453 {
454 alloc_ext = bfd_malloc (amt);
455 extsym_buf = alloc_ext;
456 }
457 if (extsym_buf == NULL
458 || bfd_seek (ibfd, pos, SEEK_SET) != 0
459 || bfd_bread (extsym_buf, amt, ibfd) != amt)
460 {
461 intsym_buf = NULL;
462 goto out;
463 }
464
465 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
466 extshndx_buf = NULL;
467 else
468 {
469 if (_bfd_mul_overflow (symcount, sizeof (Elf_External_Sym_Shndx), &amt))
470 {
471 bfd_set_error (bfd_error_file_too_big);
472 intsym_buf = NULL;
473 goto out;
474 }
475 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
476 if (extshndx_buf == NULL)
477 {
478 alloc_extshndx = (Elf_External_Sym_Shndx *) bfd_malloc (amt);
479 extshndx_buf = alloc_extshndx;
480 }
481 if (extshndx_buf == NULL
482 || bfd_seek (ibfd, pos, SEEK_SET) != 0
483 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
484 {
485 intsym_buf = NULL;
486 goto out;
487 }
488 }
489
490 if (intsym_buf == NULL)
491 {
492 if (_bfd_mul_overflow (symcount, sizeof (Elf_Internal_Sym), &amt))
493 {
494 bfd_set_error (bfd_error_file_too_big);
495 goto out;
496 }
497 alloc_intsym = (Elf_Internal_Sym *) bfd_malloc (amt);
498 intsym_buf = alloc_intsym;
499 if (intsym_buf == NULL)
500 goto out;
501 }
502
503 /* Convert the symbols to internal form. */
504 isymend = intsym_buf + symcount;
505 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
506 shndx = extshndx_buf;
507 isym < isymend;
508 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
509 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
510 {
511 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
512 /* xgettext:c-format */
513 _bfd_error_handler (_("%pB symbol number %lu references"
514 " nonexistent SHT_SYMTAB_SHNDX section"),
515 ibfd, (unsigned long) symoffset);
516 if (alloc_intsym != NULL)
517 free (alloc_intsym);
518 intsym_buf = NULL;
519 goto out;
520 }
521
522 out:
523 if (alloc_ext != NULL)
524 free (alloc_ext);
525 if (alloc_extshndx != NULL)
526 free (alloc_extshndx);
527
528 return intsym_buf;
529 }
530
531 /* Look up a symbol name. */
532 const char *
533 bfd_elf_sym_name (bfd *abfd,
534 Elf_Internal_Shdr *symtab_hdr,
535 Elf_Internal_Sym *isym,
536 asection *sym_sec)
537 {
538 const char *name;
539 unsigned int iname = isym->st_name;
540 unsigned int shindex = symtab_hdr->sh_link;
541
542 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
543 /* Check for a bogus st_shndx to avoid crashing. */
544 && isym->st_shndx < elf_numsections (abfd))
545 {
546 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
547 shindex = elf_elfheader (abfd)->e_shstrndx;
548 }
549
550 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
551 if (name == NULL)
552 name = "(null)";
553 else if (sym_sec && *name == '\0')
554 name = bfd_section_name (sym_sec);
555
556 return name;
557 }
558
559 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
560 sections. The first element is the flags, the rest are section
561 pointers. */
562
563 typedef union elf_internal_group {
564 Elf_Internal_Shdr *shdr;
565 unsigned int flags;
566 } Elf_Internal_Group;
567
568 /* Return the name of the group signature symbol. Why isn't the
569 signature just a string? */
570
571 static const char *
572 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
573 {
574 Elf_Internal_Shdr *hdr;
575 unsigned char esym[sizeof (Elf64_External_Sym)];
576 Elf_External_Sym_Shndx eshndx;
577 Elf_Internal_Sym isym;
578
579 /* First we need to ensure the symbol table is available. Make sure
580 that it is a symbol table section. */
581 if (ghdr->sh_link >= elf_numsections (abfd))
582 return NULL;
583 hdr = elf_elfsections (abfd) [ghdr->sh_link];
584 if (hdr->sh_type != SHT_SYMTAB
585 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
586 return NULL;
587
588 /* Go read the symbol. */
589 hdr = &elf_tdata (abfd)->symtab_hdr;
590 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
591 &isym, esym, &eshndx) == NULL)
592 return NULL;
593
594 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
595 }
596
597 /* Set next_in_group list pointer, and group name for NEWSECT. */
598
599 static bfd_boolean
600 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
601 {
602 unsigned int num_group = elf_tdata (abfd)->num_group;
603
604 /* If num_group is zero, read in all SHT_GROUP sections. The count
605 is set to -1 if there are no SHT_GROUP sections. */
606 if (num_group == 0)
607 {
608 unsigned int i, shnum;
609
610 /* First count the number of groups. If we have a SHT_GROUP
611 section with just a flag word (ie. sh_size is 4), ignore it. */
612 shnum = elf_numsections (abfd);
613 num_group = 0;
614
615 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
616 ( (shdr)->sh_type == SHT_GROUP \
617 && (shdr)->sh_size >= minsize \
618 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
619 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
620
621 for (i = 0; i < shnum; i++)
622 {
623 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
624
625 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
626 num_group += 1;
627 }
628
629 if (num_group == 0)
630 {
631 num_group = (unsigned) -1;
632 elf_tdata (abfd)->num_group = num_group;
633 elf_tdata (abfd)->group_sect_ptr = NULL;
634 }
635 else
636 {
637 /* We keep a list of elf section headers for group sections,
638 so we can find them quickly. */
639 size_t amt;
640
641 elf_tdata (abfd)->num_group = num_group;
642 amt = num_group * sizeof (Elf_Internal_Shdr *);
643 elf_tdata (abfd)->group_sect_ptr
644 = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
645 if (elf_tdata (abfd)->group_sect_ptr == NULL)
646 return FALSE;
647 num_group = 0;
648
649 for (i = 0; i < shnum; i++)
650 {
651 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
652
653 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
654 {
655 unsigned char *src;
656 Elf_Internal_Group *dest;
657
658 /* Make sure the group section has a BFD section
659 attached to it. */
660 if (!bfd_section_from_shdr (abfd, i))
661 return FALSE;
662
663 /* Add to list of sections. */
664 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
665 num_group += 1;
666
667 /* Read the raw contents. */
668 BFD_ASSERT (sizeof (*dest) >= 4 && sizeof (*dest) % 4 == 0);
669 shdr->contents = NULL;
670 if (_bfd_mul_overflow (shdr->sh_size,
671 sizeof (*dest) / 4, &amt)
672 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
673 || !(shdr->contents
674 = _bfd_alloc_and_read (abfd, amt, shdr->sh_size)))
675 {
676 _bfd_error_handler
677 /* xgettext:c-format */
678 (_("%pB: invalid size field in group section"
679 " header: %#" PRIx64 ""),
680 abfd, (uint64_t) shdr->sh_size);
681 bfd_set_error (bfd_error_bad_value);
682 -- num_group;
683 continue;
684 }
685
686 /* Translate raw contents, a flag word followed by an
687 array of elf section indices all in target byte order,
688 to the flag word followed by an array of elf section
689 pointers. */
690 src = shdr->contents + shdr->sh_size;
691 dest = (Elf_Internal_Group *) (shdr->contents + amt);
692
693 while (1)
694 {
695 unsigned int idx;
696
697 src -= 4;
698 --dest;
699 idx = H_GET_32 (abfd, src);
700 if (src == shdr->contents)
701 {
702 dest->shdr = NULL;
703 dest->flags = idx;
704 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
705 shdr->bfd_section->flags
706 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
707 break;
708 }
709 if (idx < shnum)
710 {
711 dest->shdr = elf_elfsections (abfd)[idx];
712 /* PR binutils/23199: All sections in a
713 section group should be marked with
714 SHF_GROUP. But some tools generate
715 broken objects without SHF_GROUP. Fix
716 them up here. */
717 dest->shdr->sh_flags |= SHF_GROUP;
718 }
719 if (idx >= shnum
720 || dest->shdr->sh_type == SHT_GROUP)
721 {
722 _bfd_error_handler
723 (_("%pB: invalid entry in SHT_GROUP section [%u]"),
724 abfd, i);
725 dest->shdr = NULL;
726 }
727 }
728 }
729 }
730
731 /* PR 17510: Corrupt binaries might contain invalid groups. */
732 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
733 {
734 elf_tdata (abfd)->num_group = num_group;
735
736 /* If all groups are invalid then fail. */
737 if (num_group == 0)
738 {
739 elf_tdata (abfd)->group_sect_ptr = NULL;
740 elf_tdata (abfd)->num_group = num_group = -1;
741 _bfd_error_handler
742 (_("%pB: no valid group sections found"), abfd);
743 bfd_set_error (bfd_error_bad_value);
744 }
745 }
746 }
747 }
748
749 if (num_group != (unsigned) -1)
750 {
751 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
752 unsigned int j;
753
754 for (j = 0; j < num_group; j++)
755 {
756 /* Begin search from previous found group. */
757 unsigned i = (j + search_offset) % num_group;
758
759 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
760 Elf_Internal_Group *idx;
761 bfd_size_type n_elt;
762
763 if (shdr == NULL)
764 continue;
765
766 idx = (Elf_Internal_Group *) shdr->contents;
767 if (idx == NULL || shdr->sh_size < 4)
768 {
769 /* See PR 21957 for a reproducer. */
770 /* xgettext:c-format */
771 _bfd_error_handler (_("%pB: group section '%pA' has no contents"),
772 abfd, shdr->bfd_section);
773 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
774 bfd_set_error (bfd_error_bad_value);
775 return FALSE;
776 }
777 n_elt = shdr->sh_size / 4;
778
779 /* Look through this group's sections to see if current
780 section is a member. */
781 while (--n_elt != 0)
782 if ((++idx)->shdr == hdr)
783 {
784 asection *s = NULL;
785
786 /* We are a member of this group. Go looking through
787 other members to see if any others are linked via
788 next_in_group. */
789 idx = (Elf_Internal_Group *) shdr->contents;
790 n_elt = shdr->sh_size / 4;
791 while (--n_elt != 0)
792 if ((++idx)->shdr != NULL
793 && (s = idx->shdr->bfd_section) != NULL
794 && elf_next_in_group (s) != NULL)
795 break;
796 if (n_elt != 0)
797 {
798 /* Snarf the group name from other member, and
799 insert current section in circular list. */
800 elf_group_name (newsect) = elf_group_name (s);
801 elf_next_in_group (newsect) = elf_next_in_group (s);
802 elf_next_in_group (s) = newsect;
803 }
804 else
805 {
806 const char *gname;
807
808 gname = group_signature (abfd, shdr);
809 if (gname == NULL)
810 return FALSE;
811 elf_group_name (newsect) = gname;
812
813 /* Start a circular list with one element. */
814 elf_next_in_group (newsect) = newsect;
815 }
816
817 /* If the group section has been created, point to the
818 new member. */
819 if (shdr->bfd_section != NULL)
820 elf_next_in_group (shdr->bfd_section) = newsect;
821
822 elf_tdata (abfd)->group_search_offset = i;
823 j = num_group - 1;
824 break;
825 }
826 }
827 }
828
829 if (elf_group_name (newsect) == NULL)
830 {
831 /* xgettext:c-format */
832 _bfd_error_handler (_("%pB: no group info for section '%pA'"),
833 abfd, newsect);
834 return FALSE;
835 }
836 return TRUE;
837 }
838
839 bfd_boolean
840 _bfd_elf_setup_sections (bfd *abfd)
841 {
842 unsigned int i;
843 unsigned int num_group = elf_tdata (abfd)->num_group;
844 bfd_boolean result = TRUE;
845 asection *s;
846
847 /* Process SHF_LINK_ORDER. */
848 for (s = abfd->sections; s != NULL; s = s->next)
849 {
850 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
851 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
852 {
853 unsigned int elfsec = this_hdr->sh_link;
854 /* FIXME: The old Intel compiler and old strip/objcopy may
855 not set the sh_link or sh_info fields. Hence we could
856 get the situation where elfsec is 0. */
857 if (elfsec == 0)
858 {
859 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
860 if (bed->link_order_error_handler)
861 bed->link_order_error_handler
862 /* xgettext:c-format */
863 (_("%pB: warning: sh_link not set for section `%pA'"),
864 abfd, s);
865 }
866 else
867 {
868 asection *linksec = NULL;
869
870 if (elfsec < elf_numsections (abfd))
871 {
872 this_hdr = elf_elfsections (abfd)[elfsec];
873 linksec = this_hdr->bfd_section;
874 }
875
876 /* PR 1991, 2008:
877 Some strip/objcopy may leave an incorrect value in
878 sh_link. We don't want to proceed. */
879 if (linksec == NULL)
880 {
881 _bfd_error_handler
882 /* xgettext:c-format */
883 (_("%pB: sh_link [%d] in section `%pA' is incorrect"),
884 s->owner, elfsec, s);
885 result = FALSE;
886 }
887
888 elf_linked_to_section (s) = linksec;
889 }
890 }
891 else if (this_hdr->sh_type == SHT_GROUP
892 && elf_next_in_group (s) == NULL)
893 {
894 _bfd_error_handler
895 /* xgettext:c-format */
896 (_("%pB: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
897 abfd, elf_section_data (s)->this_idx);
898 result = FALSE;
899 }
900 }
901
902 /* Process section groups. */
903 if (num_group == (unsigned) -1)
904 return result;
905
906 for (i = 0; i < num_group; i++)
907 {
908 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
909 Elf_Internal_Group *idx;
910 unsigned int n_elt;
911
912 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
913 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
914 {
915 _bfd_error_handler
916 /* xgettext:c-format */
917 (_("%pB: section group entry number %u is corrupt"),
918 abfd, i);
919 result = FALSE;
920 continue;
921 }
922
923 idx = (Elf_Internal_Group *) shdr->contents;
924 n_elt = shdr->sh_size / 4;
925
926 while (--n_elt != 0)
927 {
928 ++ idx;
929
930 if (idx->shdr == NULL)
931 continue;
932 else if (idx->shdr->bfd_section)
933 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
934 else if (idx->shdr->sh_type != SHT_RELA
935 && idx->shdr->sh_type != SHT_REL)
936 {
937 /* There are some unknown sections in the group. */
938 _bfd_error_handler
939 /* xgettext:c-format */
940 (_("%pB: unknown type [%#x] section `%s' in group [%pA]"),
941 abfd,
942 idx->shdr->sh_type,
943 bfd_elf_string_from_elf_section (abfd,
944 (elf_elfheader (abfd)
945 ->e_shstrndx),
946 idx->shdr->sh_name),
947 shdr->bfd_section);
948 result = FALSE;
949 }
950 }
951 }
952
953 return result;
954 }
955
956 bfd_boolean
957 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
958 {
959 return elf_next_in_group (sec) != NULL;
960 }
961
962 const char *
963 bfd_elf_group_name (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
964 {
965 if (elf_sec_group (sec) != NULL)
966 return elf_group_name (sec);
967 return NULL;
968 }
969
970 static char *
971 convert_debug_to_zdebug (bfd *abfd, const char *name)
972 {
973 unsigned int len = strlen (name);
974 char *new_name = bfd_alloc (abfd, len + 2);
975 if (new_name == NULL)
976 return NULL;
977 new_name[0] = '.';
978 new_name[1] = 'z';
979 memcpy (new_name + 2, name + 1, len);
980 return new_name;
981 }
982
983 static char *
984 convert_zdebug_to_debug (bfd *abfd, const char *name)
985 {
986 unsigned int len = strlen (name);
987 char *new_name = bfd_alloc (abfd, len);
988 if (new_name == NULL)
989 return NULL;
990 new_name[0] = '.';
991 memcpy (new_name + 1, name + 2, len - 1);
992 return new_name;
993 }
994
995 /* This a copy of lto_section defined in GCC (lto-streamer.h). */
996
997 struct lto_section
998 {
999 int16_t major_version;
1000 int16_t minor_version;
1001 unsigned char slim_object;
1002
1003 /* Flags is a private field that is not defined publicly. */
1004 uint16_t flags;
1005 };
1006
1007 /* Make a BFD section from an ELF section. We store a pointer to the
1008 BFD section in the bfd_section field of the header. */
1009
1010 bfd_boolean
1011 _bfd_elf_make_section_from_shdr (bfd *abfd,
1012 Elf_Internal_Shdr *hdr,
1013 const char *name,
1014 int shindex)
1015 {
1016 asection *newsect;
1017 flagword flags;
1018 const struct elf_backend_data *bed;
1019
1020 if (hdr->bfd_section != NULL)
1021 return TRUE;
1022
1023 newsect = bfd_make_section_anyway (abfd, name);
1024 if (newsect == NULL)
1025 return FALSE;
1026
1027 hdr->bfd_section = newsect;
1028 elf_section_data (newsect)->this_hdr = *hdr;
1029 elf_section_data (newsect)->this_idx = shindex;
1030
1031 /* Always use the real type/flags. */
1032 elf_section_type (newsect) = hdr->sh_type;
1033 elf_section_flags (newsect) = hdr->sh_flags;
1034
1035 newsect->filepos = hdr->sh_offset;
1036
1037 if (!bfd_set_section_vma (newsect, hdr->sh_addr)
1038 || !bfd_set_section_size (newsect, hdr->sh_size)
1039 || !bfd_set_section_alignment (newsect, bfd_log2 (hdr->sh_addralign)))
1040 return FALSE;
1041
1042 flags = SEC_NO_FLAGS;
1043 if (hdr->sh_type != SHT_NOBITS)
1044 flags |= SEC_HAS_CONTENTS;
1045 if (hdr->sh_type == SHT_GROUP)
1046 flags |= SEC_GROUP;
1047 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1048 {
1049 flags |= SEC_ALLOC;
1050 if (hdr->sh_type != SHT_NOBITS)
1051 flags |= SEC_LOAD;
1052 }
1053 if ((hdr->sh_flags & SHF_WRITE) == 0)
1054 flags |= SEC_READONLY;
1055 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1056 flags |= SEC_CODE;
1057 else if ((flags & SEC_LOAD) != 0)
1058 flags |= SEC_DATA;
1059 if ((hdr->sh_flags & SHF_MERGE) != 0)
1060 {
1061 flags |= SEC_MERGE;
1062 newsect->entsize = hdr->sh_entsize;
1063 }
1064 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1065 flags |= SEC_STRINGS;
1066 if (hdr->sh_flags & SHF_GROUP)
1067 if (!setup_group (abfd, hdr, newsect))
1068 return FALSE;
1069 if ((hdr->sh_flags & SHF_TLS) != 0)
1070 flags |= SEC_THREAD_LOCAL;
1071 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1072 flags |= SEC_EXCLUDE;
1073
1074 switch (elf_elfheader (abfd)->e_ident[EI_OSABI])
1075 {
1076 /* FIXME: We should not recognize SHF_GNU_MBIND for ELFOSABI_NONE,
1077 but binutils as of 2019-07-23 did not set the EI_OSABI header
1078 byte. */
1079 case ELFOSABI_NONE:
1080 case ELFOSABI_GNU:
1081 case ELFOSABI_FREEBSD:
1082 if ((hdr->sh_flags & SHF_GNU_MBIND) != 0)
1083 elf_tdata (abfd)->has_gnu_osabi |= elf_gnu_osabi_mbind;
1084 break;
1085 }
1086
1087 if ((flags & SEC_ALLOC) == 0)
1088 {
1089 /* The debugging sections appear to be recognized only by name,
1090 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1091 if (name [0] == '.')
1092 {
1093 if (strncmp (name, ".debug", 6) == 0
1094 || strncmp (name, ".gnu.linkonce.wi.", 17) == 0
1095 || strncmp (name, ".zdebug", 7) == 0)
1096 flags |= SEC_DEBUGGING | SEC_ELF_OCTETS;
1097 else if (strncmp (name, GNU_BUILD_ATTRS_SECTION_NAME, 21) == 0
1098 || strncmp (name, ".note.gnu", 9) == 0)
1099 flags |= SEC_ELF_OCTETS;
1100 else if (strncmp (name, ".line", 5) == 0
1101 || strncmp (name, ".stab", 5) == 0
1102 || strcmp (name, ".gdb_index") == 0)
1103 flags |= SEC_DEBUGGING;
1104 }
1105 }
1106
1107 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1108 only link a single copy of the section. This is used to support
1109 g++. g++ will emit each template expansion in its own section.
1110 The symbols will be defined as weak, so that multiple definitions
1111 are permitted. The GNU linker extension is to actually discard
1112 all but one of the sections. */
1113 if (CONST_STRNEQ (name, ".gnu.linkonce")
1114 && elf_next_in_group (newsect) == NULL)
1115 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1116
1117 bed = get_elf_backend_data (abfd);
1118 if (bed->elf_backend_section_flags)
1119 if (! bed->elf_backend_section_flags (&flags, hdr))
1120 return FALSE;
1121
1122 if (!bfd_set_section_flags (newsect, flags))
1123 return FALSE;
1124
1125 /* We do not parse the PT_NOTE segments as we are interested even in the
1126 separate debug info files which may have the segments offsets corrupted.
1127 PT_NOTEs from the core files are currently not parsed using BFD. */
1128 if (hdr->sh_type == SHT_NOTE)
1129 {
1130 bfd_byte *contents;
1131
1132 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1133 return FALSE;
1134
1135 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1136 hdr->sh_offset, hdr->sh_addralign);
1137 free (contents);
1138 }
1139
1140 if ((flags & SEC_ALLOC) != 0)
1141 {
1142 Elf_Internal_Phdr *phdr;
1143 unsigned int i, nload;
1144
1145 /* Some ELF linkers produce binaries with all the program header
1146 p_paddr fields zero. If we have such a binary with more than
1147 one PT_LOAD header, then leave the section lma equal to vma
1148 so that we don't create sections with overlapping lma. */
1149 phdr = elf_tdata (abfd)->phdr;
1150 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1151 if (phdr->p_paddr != 0)
1152 break;
1153 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1154 ++nload;
1155 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1156 return TRUE;
1157
1158 phdr = elf_tdata (abfd)->phdr;
1159 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1160 {
1161 if (((phdr->p_type == PT_LOAD
1162 && (hdr->sh_flags & SHF_TLS) == 0)
1163 || phdr->p_type == PT_TLS)
1164 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1165 {
1166 if ((flags & SEC_LOAD) == 0)
1167 newsect->lma = (phdr->p_paddr
1168 + hdr->sh_addr - phdr->p_vaddr);
1169 else
1170 /* We used to use the same adjustment for SEC_LOAD
1171 sections, but that doesn't work if the segment
1172 is packed with code from multiple VMAs.
1173 Instead we calculate the section LMA based on
1174 the segment LMA. It is assumed that the
1175 segment will contain sections with contiguous
1176 LMAs, even if the VMAs are not. */
1177 newsect->lma = (phdr->p_paddr
1178 + hdr->sh_offset - phdr->p_offset);
1179
1180 /* With contiguous segments, we can't tell from file
1181 offsets whether a section with zero size should
1182 be placed at the end of one segment or the
1183 beginning of the next. Decide based on vaddr. */
1184 if (hdr->sh_addr >= phdr->p_vaddr
1185 && (hdr->sh_addr + hdr->sh_size
1186 <= phdr->p_vaddr + phdr->p_memsz))
1187 break;
1188 }
1189 }
1190 }
1191
1192 /* Compress/decompress DWARF debug sections with names: .debug_* and
1193 .zdebug_*, after the section flags is set. */
1194 if ((flags & SEC_DEBUGGING)
1195 && ((name[1] == 'd' && name[6] == '_')
1196 || (name[1] == 'z' && name[7] == '_')))
1197 {
1198 enum { nothing, compress, decompress } action = nothing;
1199 int compression_header_size;
1200 bfd_size_type uncompressed_size;
1201 unsigned int uncompressed_align_power;
1202 bfd_boolean compressed
1203 = bfd_is_section_compressed_with_header (abfd, newsect,
1204 &compression_header_size,
1205 &uncompressed_size,
1206 &uncompressed_align_power);
1207 if (compressed)
1208 {
1209 /* Compressed section. Check if we should decompress. */
1210 if ((abfd->flags & BFD_DECOMPRESS))
1211 action = decompress;
1212 }
1213
1214 /* Compress the uncompressed section or convert from/to .zdebug*
1215 section. Check if we should compress. */
1216 if (action == nothing)
1217 {
1218 if (newsect->size != 0
1219 && (abfd->flags & BFD_COMPRESS)
1220 && compression_header_size >= 0
1221 && uncompressed_size > 0
1222 && (!compressed
1223 || ((compression_header_size > 0)
1224 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1225 action = compress;
1226 else
1227 return TRUE;
1228 }
1229
1230 if (action == compress)
1231 {
1232 if (!bfd_init_section_compress_status (abfd, newsect))
1233 {
1234 _bfd_error_handler
1235 /* xgettext:c-format */
1236 (_("%pB: unable to initialize compress status for section %s"),
1237 abfd, name);
1238 return FALSE;
1239 }
1240 }
1241 else
1242 {
1243 if (!bfd_init_section_decompress_status (abfd, newsect))
1244 {
1245 _bfd_error_handler
1246 /* xgettext:c-format */
1247 (_("%pB: unable to initialize decompress status for section %s"),
1248 abfd, name);
1249 return FALSE;
1250 }
1251 }
1252
1253 if (abfd->is_linker_input)
1254 {
1255 if (name[1] == 'z'
1256 && (action == decompress
1257 || (action == compress
1258 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1259 {
1260 /* Convert section name from .zdebug_* to .debug_* so
1261 that linker will consider this section as a debug
1262 section. */
1263 char *new_name = convert_zdebug_to_debug (abfd, name);
1264 if (new_name == NULL)
1265 return FALSE;
1266 bfd_rename_section (newsect, new_name);
1267 }
1268 }
1269 else
1270 /* For objdump, don't rename the section. For objcopy, delay
1271 section rename to elf_fake_sections. */
1272 newsect->flags |= SEC_ELF_RENAME;
1273 }
1274
1275 /* GCC uses .gnu.lto_.lto.<some_hash> as a LTO bytecode information
1276 section. */
1277 const char *lto_section_name = ".gnu.lto_.lto.";
1278 if (strncmp (name, lto_section_name, strlen (lto_section_name)) == 0)
1279 {
1280 struct lto_section lsection;
1281 if (bfd_get_section_contents (abfd, newsect, &lsection, 0,
1282 sizeof (struct lto_section)))
1283 abfd->lto_slim_object = lsection.slim_object;
1284 }
1285
1286 return TRUE;
1287 }
1288
1289 const char *const bfd_elf_section_type_names[] =
1290 {
1291 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1292 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1293 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1294 };
1295
1296 /* ELF relocs are against symbols. If we are producing relocatable
1297 output, and the reloc is against an external symbol, and nothing
1298 has given us any additional addend, the resulting reloc will also
1299 be against the same symbol. In such a case, we don't want to
1300 change anything about the way the reloc is handled, since it will
1301 all be done at final link time. Rather than put special case code
1302 into bfd_perform_relocation, all the reloc types use this howto
1303 function. It just short circuits the reloc if producing
1304 relocatable output against an external symbol. */
1305
1306 bfd_reloc_status_type
1307 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1308 arelent *reloc_entry,
1309 asymbol *symbol,
1310 void *data ATTRIBUTE_UNUSED,
1311 asection *input_section,
1312 bfd *output_bfd,
1313 char **error_message ATTRIBUTE_UNUSED)
1314 {
1315 if (output_bfd != NULL
1316 && (symbol->flags & BSF_SECTION_SYM) == 0
1317 && (! reloc_entry->howto->partial_inplace
1318 || reloc_entry->addend == 0))
1319 {
1320 reloc_entry->address += input_section->output_offset;
1321 return bfd_reloc_ok;
1322 }
1323
1324 return bfd_reloc_continue;
1325 }
1326 \f
1327 /* Returns TRUE if section A matches section B.
1328 Names, addresses and links may be different, but everything else
1329 should be the same. */
1330
1331 static bfd_boolean
1332 section_match (const Elf_Internal_Shdr * a,
1333 const Elf_Internal_Shdr * b)
1334 {
1335 if (a->sh_type != b->sh_type
1336 || ((a->sh_flags ^ b->sh_flags) & ~SHF_INFO_LINK) != 0
1337 || a->sh_addralign != b->sh_addralign
1338 || a->sh_entsize != b->sh_entsize)
1339 return FALSE;
1340 if (a->sh_type == SHT_SYMTAB
1341 || a->sh_type == SHT_STRTAB)
1342 return TRUE;
1343 return a->sh_size == b->sh_size;
1344 }
1345
1346 /* Find a section in OBFD that has the same characteristics
1347 as IHEADER. Return the index of this section or SHN_UNDEF if
1348 none can be found. Check's section HINT first, as this is likely
1349 to be the correct section. */
1350
1351 static unsigned int
1352 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1353 const unsigned int hint)
1354 {
1355 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1356 unsigned int i;
1357
1358 BFD_ASSERT (iheader != NULL);
1359
1360 /* See PR 20922 for a reproducer of the NULL test. */
1361 if (hint < elf_numsections (obfd)
1362 && oheaders[hint] != NULL
1363 && section_match (oheaders[hint], iheader))
1364 return hint;
1365
1366 for (i = 1; i < elf_numsections (obfd); i++)
1367 {
1368 Elf_Internal_Shdr * oheader = oheaders[i];
1369
1370 if (oheader == NULL)
1371 continue;
1372 if (section_match (oheader, iheader))
1373 /* FIXME: Do we care if there is a potential for
1374 multiple matches ? */
1375 return i;
1376 }
1377
1378 return SHN_UNDEF;
1379 }
1380
1381 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1382 Processor specific section, based upon a matching input section.
1383 Returns TRUE upon success, FALSE otherwise. */
1384
1385 static bfd_boolean
1386 copy_special_section_fields (const bfd *ibfd,
1387 bfd *obfd,
1388 const Elf_Internal_Shdr *iheader,
1389 Elf_Internal_Shdr *oheader,
1390 const unsigned int secnum)
1391 {
1392 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1393 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1394 bfd_boolean changed = FALSE;
1395 unsigned int sh_link;
1396
1397 if (oheader->sh_type == SHT_NOBITS)
1398 {
1399 /* This is a feature for objcopy --only-keep-debug:
1400 When a section's type is changed to NOBITS, we preserve
1401 the sh_link and sh_info fields so that they can be
1402 matched up with the original.
1403
1404 Note: Strictly speaking these assignments are wrong.
1405 The sh_link and sh_info fields should point to the
1406 relevent sections in the output BFD, which may not be in
1407 the same location as they were in the input BFD. But
1408 the whole point of this action is to preserve the
1409 original values of the sh_link and sh_info fields, so
1410 that they can be matched up with the section headers in
1411 the original file. So strictly speaking we may be
1412 creating an invalid ELF file, but it is only for a file
1413 that just contains debug info and only for sections
1414 without any contents. */
1415 if (oheader->sh_link == 0)
1416 oheader->sh_link = iheader->sh_link;
1417 if (oheader->sh_info == 0)
1418 oheader->sh_info = iheader->sh_info;
1419 return TRUE;
1420 }
1421
1422 /* Allow the target a chance to decide how these fields should be set. */
1423 if (bed->elf_backend_copy_special_section_fields != NULL
1424 && bed->elf_backend_copy_special_section_fields
1425 (ibfd, obfd, iheader, oheader))
1426 return TRUE;
1427
1428 /* We have an iheader which might match oheader, and which has non-zero
1429 sh_info and/or sh_link fields. Attempt to follow those links and find
1430 the section in the output bfd which corresponds to the linked section
1431 in the input bfd. */
1432 if (iheader->sh_link != SHN_UNDEF)
1433 {
1434 /* See PR 20931 for a reproducer. */
1435 if (iheader->sh_link >= elf_numsections (ibfd))
1436 {
1437 _bfd_error_handler
1438 /* xgettext:c-format */
1439 (_("%pB: invalid sh_link field (%d) in section number %d"),
1440 ibfd, iheader->sh_link, secnum);
1441 return FALSE;
1442 }
1443
1444 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1445 if (sh_link != SHN_UNDEF)
1446 {
1447 oheader->sh_link = sh_link;
1448 changed = TRUE;
1449 }
1450 else
1451 /* FIXME: Should we install iheader->sh_link
1452 if we could not find a match ? */
1453 _bfd_error_handler
1454 /* xgettext:c-format */
1455 (_("%pB: failed to find link section for section %d"), obfd, secnum);
1456 }
1457
1458 if (iheader->sh_info)
1459 {
1460 /* The sh_info field can hold arbitrary information, but if the
1461 SHF_LINK_INFO flag is set then it should be interpreted as a
1462 section index. */
1463 if (iheader->sh_flags & SHF_INFO_LINK)
1464 {
1465 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1466 iheader->sh_info);
1467 if (sh_link != SHN_UNDEF)
1468 oheader->sh_flags |= SHF_INFO_LINK;
1469 }
1470 else
1471 /* No idea what it means - just copy it. */
1472 sh_link = iheader->sh_info;
1473
1474 if (sh_link != SHN_UNDEF)
1475 {
1476 oheader->sh_info = sh_link;
1477 changed = TRUE;
1478 }
1479 else
1480 _bfd_error_handler
1481 /* xgettext:c-format */
1482 (_("%pB: failed to find info section for section %d"), obfd, secnum);
1483 }
1484
1485 return changed;
1486 }
1487
1488 /* Copy the program header and other data from one object module to
1489 another. */
1490
1491 bfd_boolean
1492 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1493 {
1494 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1495 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1496 const struct elf_backend_data *bed;
1497 unsigned int i;
1498
1499 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1500 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1501 return TRUE;
1502
1503 if (!elf_flags_init (obfd))
1504 {
1505 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1506 elf_flags_init (obfd) = TRUE;
1507 }
1508
1509 elf_gp (obfd) = elf_gp (ibfd);
1510
1511 /* Also copy the EI_OSABI field. */
1512 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1513 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1514
1515 /* If set, copy the EI_ABIVERSION field. */
1516 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1517 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1518 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1519
1520 /* Copy object attributes. */
1521 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1522
1523 if (iheaders == NULL || oheaders == NULL)
1524 return TRUE;
1525
1526 bed = get_elf_backend_data (obfd);
1527
1528 /* Possibly copy other fields in the section header. */
1529 for (i = 1; i < elf_numsections (obfd); i++)
1530 {
1531 unsigned int j;
1532 Elf_Internal_Shdr * oheader = oheaders[i];
1533
1534 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1535 because of a special case need for generating separate debug info
1536 files. See below for more details. */
1537 if (oheader == NULL
1538 || (oheader->sh_type != SHT_NOBITS
1539 && oheader->sh_type < SHT_LOOS))
1540 continue;
1541
1542 /* Ignore empty sections, and sections whose
1543 fields have already been initialised. */
1544 if (oheader->sh_size == 0
1545 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1546 continue;
1547
1548 /* Scan for the matching section in the input bfd.
1549 First we try for a direct mapping between the input and output sections. */
1550 for (j = 1; j < elf_numsections (ibfd); j++)
1551 {
1552 const Elf_Internal_Shdr * iheader = iheaders[j];
1553
1554 if (iheader == NULL)
1555 continue;
1556
1557 if (oheader->bfd_section != NULL
1558 && iheader->bfd_section != NULL
1559 && iheader->bfd_section->output_section != NULL
1560 && iheader->bfd_section->output_section == oheader->bfd_section)
1561 {
1562 /* We have found a connection from the input section to the
1563 output section. Attempt to copy the header fields. If
1564 this fails then do not try any further sections - there
1565 should only be a one-to-one mapping between input and output. */
1566 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1567 j = elf_numsections (ibfd);
1568 break;
1569 }
1570 }
1571
1572 if (j < elf_numsections (ibfd))
1573 continue;
1574
1575 /* That failed. So try to deduce the corresponding input section.
1576 Unfortunately we cannot compare names as the output string table
1577 is empty, so instead we check size, address and type. */
1578 for (j = 1; j < elf_numsections (ibfd); j++)
1579 {
1580 const Elf_Internal_Shdr * iheader = iheaders[j];
1581
1582 if (iheader == NULL)
1583 continue;
1584
1585 /* Try matching fields in the input section's header.
1586 Since --only-keep-debug turns all non-debug sections into
1587 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1588 input type. */
1589 if ((oheader->sh_type == SHT_NOBITS
1590 || iheader->sh_type == oheader->sh_type)
1591 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1592 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1593 && iheader->sh_addralign == oheader->sh_addralign
1594 && iheader->sh_entsize == oheader->sh_entsize
1595 && iheader->sh_size == oheader->sh_size
1596 && iheader->sh_addr == oheader->sh_addr
1597 && (iheader->sh_info != oheader->sh_info
1598 || iheader->sh_link != oheader->sh_link))
1599 {
1600 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1601 break;
1602 }
1603 }
1604
1605 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1606 {
1607 /* Final attempt. Call the backend copy function
1608 with a NULL input section. */
1609 if (bed->elf_backend_copy_special_section_fields != NULL)
1610 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1611 }
1612 }
1613
1614 return TRUE;
1615 }
1616
1617 static const char *
1618 get_segment_type (unsigned int p_type)
1619 {
1620 const char *pt;
1621 switch (p_type)
1622 {
1623 case PT_NULL: pt = "NULL"; break;
1624 case PT_LOAD: pt = "LOAD"; break;
1625 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1626 case PT_INTERP: pt = "INTERP"; break;
1627 case PT_NOTE: pt = "NOTE"; break;
1628 case PT_SHLIB: pt = "SHLIB"; break;
1629 case PT_PHDR: pt = "PHDR"; break;
1630 case PT_TLS: pt = "TLS"; break;
1631 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1632 case PT_GNU_STACK: pt = "STACK"; break;
1633 case PT_GNU_RELRO: pt = "RELRO"; break;
1634 default: pt = NULL; break;
1635 }
1636 return pt;
1637 }
1638
1639 /* Print out the program headers. */
1640
1641 bfd_boolean
1642 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1643 {
1644 FILE *f = (FILE *) farg;
1645 Elf_Internal_Phdr *p;
1646 asection *s;
1647 bfd_byte *dynbuf = NULL;
1648
1649 p = elf_tdata (abfd)->phdr;
1650 if (p != NULL)
1651 {
1652 unsigned int i, c;
1653
1654 fprintf (f, _("\nProgram Header:\n"));
1655 c = elf_elfheader (abfd)->e_phnum;
1656 for (i = 0; i < c; i++, p++)
1657 {
1658 const char *pt = get_segment_type (p->p_type);
1659 char buf[20];
1660
1661 if (pt == NULL)
1662 {
1663 sprintf (buf, "0x%lx", p->p_type);
1664 pt = buf;
1665 }
1666 fprintf (f, "%8s off 0x", pt);
1667 bfd_fprintf_vma (abfd, f, p->p_offset);
1668 fprintf (f, " vaddr 0x");
1669 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1670 fprintf (f, " paddr 0x");
1671 bfd_fprintf_vma (abfd, f, p->p_paddr);
1672 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1673 fprintf (f, " filesz 0x");
1674 bfd_fprintf_vma (abfd, f, p->p_filesz);
1675 fprintf (f, " memsz 0x");
1676 bfd_fprintf_vma (abfd, f, p->p_memsz);
1677 fprintf (f, " flags %c%c%c",
1678 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1679 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1680 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1681 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1682 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1683 fprintf (f, "\n");
1684 }
1685 }
1686
1687 s = bfd_get_section_by_name (abfd, ".dynamic");
1688 if (s != NULL)
1689 {
1690 unsigned int elfsec;
1691 unsigned long shlink;
1692 bfd_byte *extdyn, *extdynend;
1693 size_t extdynsize;
1694 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1695
1696 fprintf (f, _("\nDynamic Section:\n"));
1697
1698 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1699 goto error_return;
1700
1701 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1702 if (elfsec == SHN_BAD)
1703 goto error_return;
1704 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1705
1706 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1707 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1708
1709 extdyn = dynbuf;
1710 /* PR 17512: file: 6f427532. */
1711 if (s->size < extdynsize)
1712 goto error_return;
1713 extdynend = extdyn + s->size;
1714 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1715 Fix range check. */
1716 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1717 {
1718 Elf_Internal_Dyn dyn;
1719 const char *name = "";
1720 char ab[20];
1721 bfd_boolean stringp;
1722 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1723
1724 (*swap_dyn_in) (abfd, extdyn, &dyn);
1725
1726 if (dyn.d_tag == DT_NULL)
1727 break;
1728
1729 stringp = FALSE;
1730 switch (dyn.d_tag)
1731 {
1732 default:
1733 if (bed->elf_backend_get_target_dtag)
1734 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1735
1736 if (!strcmp (name, ""))
1737 {
1738 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1739 name = ab;
1740 }
1741 break;
1742
1743 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1744 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1745 case DT_PLTGOT: name = "PLTGOT"; break;
1746 case DT_HASH: name = "HASH"; break;
1747 case DT_STRTAB: name = "STRTAB"; break;
1748 case DT_SYMTAB: name = "SYMTAB"; break;
1749 case DT_RELA: name = "RELA"; break;
1750 case DT_RELASZ: name = "RELASZ"; break;
1751 case DT_RELAENT: name = "RELAENT"; break;
1752 case DT_STRSZ: name = "STRSZ"; break;
1753 case DT_SYMENT: name = "SYMENT"; break;
1754 case DT_INIT: name = "INIT"; break;
1755 case DT_FINI: name = "FINI"; break;
1756 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1757 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1758 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1759 case DT_REL: name = "REL"; break;
1760 case DT_RELSZ: name = "RELSZ"; break;
1761 case DT_RELENT: name = "RELENT"; break;
1762 case DT_PLTREL: name = "PLTREL"; break;
1763 case DT_DEBUG: name = "DEBUG"; break;
1764 case DT_TEXTREL: name = "TEXTREL"; break;
1765 case DT_JMPREL: name = "JMPREL"; break;
1766 case DT_BIND_NOW: name = "BIND_NOW"; break;
1767 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1768 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1769 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1770 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1771 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1772 case DT_FLAGS: name = "FLAGS"; break;
1773 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1774 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1775 case DT_CHECKSUM: name = "CHECKSUM"; break;
1776 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1777 case DT_MOVEENT: name = "MOVEENT"; break;
1778 case DT_MOVESZ: name = "MOVESZ"; break;
1779 case DT_FEATURE: name = "FEATURE"; break;
1780 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1781 case DT_SYMINSZ: name = "SYMINSZ"; break;
1782 case DT_SYMINENT: name = "SYMINENT"; break;
1783 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1784 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1785 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1786 case DT_PLTPAD: name = "PLTPAD"; break;
1787 case DT_MOVETAB: name = "MOVETAB"; break;
1788 case DT_SYMINFO: name = "SYMINFO"; break;
1789 case DT_RELACOUNT: name = "RELACOUNT"; break;
1790 case DT_RELCOUNT: name = "RELCOUNT"; break;
1791 case DT_FLAGS_1: name = "FLAGS_1"; break;
1792 case DT_VERSYM: name = "VERSYM"; break;
1793 case DT_VERDEF: name = "VERDEF"; break;
1794 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1795 case DT_VERNEED: name = "VERNEED"; break;
1796 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1797 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1798 case DT_USED: name = "USED"; break;
1799 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1800 case DT_GNU_HASH: name = "GNU_HASH"; break;
1801 }
1802
1803 fprintf (f, " %-20s ", name);
1804 if (! stringp)
1805 {
1806 fprintf (f, "0x");
1807 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1808 }
1809 else
1810 {
1811 const char *string;
1812 unsigned int tagv = dyn.d_un.d_val;
1813
1814 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1815 if (string == NULL)
1816 goto error_return;
1817 fprintf (f, "%s", string);
1818 }
1819 fprintf (f, "\n");
1820 }
1821
1822 free (dynbuf);
1823 dynbuf = NULL;
1824 }
1825
1826 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1827 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1828 {
1829 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1830 return FALSE;
1831 }
1832
1833 if (elf_dynverdef (abfd) != 0)
1834 {
1835 Elf_Internal_Verdef *t;
1836
1837 fprintf (f, _("\nVersion definitions:\n"));
1838 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1839 {
1840 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1841 t->vd_flags, t->vd_hash,
1842 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1843 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1844 {
1845 Elf_Internal_Verdaux *a;
1846
1847 fprintf (f, "\t");
1848 for (a = t->vd_auxptr->vda_nextptr;
1849 a != NULL;
1850 a = a->vda_nextptr)
1851 fprintf (f, "%s ",
1852 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1853 fprintf (f, "\n");
1854 }
1855 }
1856 }
1857
1858 if (elf_dynverref (abfd) != 0)
1859 {
1860 Elf_Internal_Verneed *t;
1861
1862 fprintf (f, _("\nVersion References:\n"));
1863 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1864 {
1865 Elf_Internal_Vernaux *a;
1866
1867 fprintf (f, _(" required from %s:\n"),
1868 t->vn_filename ? t->vn_filename : "<corrupt>");
1869 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1870 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1871 a->vna_flags, a->vna_other,
1872 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1873 }
1874 }
1875
1876 return TRUE;
1877
1878 error_return:
1879 if (dynbuf != NULL)
1880 free (dynbuf);
1881 return FALSE;
1882 }
1883
1884 /* Get version string. */
1885
1886 const char *
1887 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1888 bfd_boolean *hidden)
1889 {
1890 const char *version_string = NULL;
1891 if (elf_dynversym (abfd) != 0
1892 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1893 {
1894 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1895
1896 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1897 vernum &= VERSYM_VERSION;
1898
1899 if (vernum == 0)
1900 version_string = "";
1901 else if (vernum == 1
1902 && (vernum > elf_tdata (abfd)->cverdefs
1903 || (elf_tdata (abfd)->verdef[0].vd_flags
1904 == VER_FLG_BASE)))
1905 version_string = "Base";
1906 else if (vernum <= elf_tdata (abfd)->cverdefs)
1907 version_string =
1908 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1909 else
1910 {
1911 Elf_Internal_Verneed *t;
1912
1913 version_string = _("<corrupt>");
1914 for (t = elf_tdata (abfd)->verref;
1915 t != NULL;
1916 t = t->vn_nextref)
1917 {
1918 Elf_Internal_Vernaux *a;
1919
1920 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1921 {
1922 if (a->vna_other == vernum)
1923 {
1924 version_string = a->vna_nodename;
1925 break;
1926 }
1927 }
1928 }
1929 }
1930 }
1931 return version_string;
1932 }
1933
1934 /* Display ELF-specific fields of a symbol. */
1935
1936 void
1937 bfd_elf_print_symbol (bfd *abfd,
1938 void *filep,
1939 asymbol *symbol,
1940 bfd_print_symbol_type how)
1941 {
1942 FILE *file = (FILE *) filep;
1943 switch (how)
1944 {
1945 case bfd_print_symbol_name:
1946 fprintf (file, "%s", symbol->name);
1947 break;
1948 case bfd_print_symbol_more:
1949 fprintf (file, "elf ");
1950 bfd_fprintf_vma (abfd, file, symbol->value);
1951 fprintf (file, " %x", symbol->flags);
1952 break;
1953 case bfd_print_symbol_all:
1954 {
1955 const char *section_name;
1956 const char *name = NULL;
1957 const struct elf_backend_data *bed;
1958 unsigned char st_other;
1959 bfd_vma val;
1960 const char *version_string;
1961 bfd_boolean hidden;
1962
1963 section_name = symbol->section ? symbol->section->name : "(*none*)";
1964
1965 bed = get_elf_backend_data (abfd);
1966 if (bed->elf_backend_print_symbol_all)
1967 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1968
1969 if (name == NULL)
1970 {
1971 name = symbol->name;
1972 bfd_print_symbol_vandf (abfd, file, symbol);
1973 }
1974
1975 fprintf (file, " %s\t", section_name);
1976 /* Print the "other" value for a symbol. For common symbols,
1977 we've already printed the size; now print the alignment.
1978 For other symbols, we have no specified alignment, and
1979 we've printed the address; now print the size. */
1980 if (symbol->section && bfd_is_com_section (symbol->section))
1981 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1982 else
1983 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1984 bfd_fprintf_vma (abfd, file, val);
1985
1986 /* If we have version information, print it. */
1987 version_string = _bfd_elf_get_symbol_version_string (abfd,
1988 symbol,
1989 &hidden);
1990 if (version_string)
1991 {
1992 if (!hidden)
1993 fprintf (file, " %-11s", version_string);
1994 else
1995 {
1996 int i;
1997
1998 fprintf (file, " (%s)", version_string);
1999 for (i = 10 - strlen (version_string); i > 0; --i)
2000 putc (' ', file);
2001 }
2002 }
2003
2004 /* If the st_other field is not zero, print it. */
2005 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
2006
2007 switch (st_other)
2008 {
2009 case 0: break;
2010 case STV_INTERNAL: fprintf (file, " .internal"); break;
2011 case STV_HIDDEN: fprintf (file, " .hidden"); break;
2012 case STV_PROTECTED: fprintf (file, " .protected"); break;
2013 default:
2014 /* Some other non-defined flags are also present, so print
2015 everything hex. */
2016 fprintf (file, " 0x%02x", (unsigned int) st_other);
2017 }
2018
2019 fprintf (file, " %s", name);
2020 }
2021 break;
2022 }
2023 }
2024 \f
2025 /* ELF .o/exec file reading */
2026
2027 /* Create a new bfd section from an ELF section header. */
2028
2029 bfd_boolean
2030 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
2031 {
2032 Elf_Internal_Shdr *hdr;
2033 Elf_Internal_Ehdr *ehdr;
2034 const struct elf_backend_data *bed;
2035 const char *name;
2036 bfd_boolean ret = TRUE;
2037 static bfd_boolean * sections_being_created = NULL;
2038 static bfd * sections_being_created_abfd = NULL;
2039 static unsigned int nesting = 0;
2040
2041 if (shindex >= elf_numsections (abfd))
2042 return FALSE;
2043
2044 if (++ nesting > 3)
2045 {
2046 /* PR17512: A corrupt ELF binary might contain a recursive group of
2047 sections, with each the string indices pointing to the next in the
2048 loop. Detect this here, by refusing to load a section that we are
2049 already in the process of loading. We only trigger this test if
2050 we have nested at least three sections deep as normal ELF binaries
2051 can expect to recurse at least once.
2052
2053 FIXME: It would be better if this array was attached to the bfd,
2054 rather than being held in a static pointer. */
2055
2056 if (sections_being_created_abfd != abfd)
2057 sections_being_created = NULL;
2058 if (sections_being_created == NULL)
2059 {
2060 size_t amt = elf_numsections (abfd) * sizeof (bfd_boolean);
2061 sections_being_created = (bfd_boolean *) bfd_zalloc (abfd, amt);
2062 if (sections_being_created == NULL)
2063 return FALSE;
2064 sections_being_created_abfd = abfd;
2065 }
2066 if (sections_being_created [shindex])
2067 {
2068 _bfd_error_handler
2069 (_("%pB: warning: loop in section dependencies detected"), abfd);
2070 return FALSE;
2071 }
2072 sections_being_created [shindex] = TRUE;
2073 }
2074
2075 hdr = elf_elfsections (abfd)[shindex];
2076 ehdr = elf_elfheader (abfd);
2077 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2078 hdr->sh_name);
2079 if (name == NULL)
2080 goto fail;
2081
2082 bed = get_elf_backend_data (abfd);
2083 switch (hdr->sh_type)
2084 {
2085 case SHT_NULL:
2086 /* Inactive section. Throw it away. */
2087 goto success;
2088
2089 case SHT_PROGBITS: /* Normal section with contents. */
2090 case SHT_NOBITS: /* .bss section. */
2091 case SHT_HASH: /* .hash section. */
2092 case SHT_NOTE: /* .note section. */
2093 case SHT_INIT_ARRAY: /* .init_array section. */
2094 case SHT_FINI_ARRAY: /* .fini_array section. */
2095 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2096 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2097 case SHT_GNU_HASH: /* .gnu.hash section. */
2098 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2099 goto success;
2100
2101 case SHT_DYNAMIC: /* Dynamic linking information. */
2102 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2103 goto fail;
2104
2105 if (hdr->sh_link > elf_numsections (abfd))
2106 {
2107 /* PR 10478: Accept Solaris binaries with a sh_link
2108 field set to SHN_BEFORE or SHN_AFTER. */
2109 switch (bfd_get_arch (abfd))
2110 {
2111 case bfd_arch_i386:
2112 case bfd_arch_sparc:
2113 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2114 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2115 break;
2116 /* Otherwise fall through. */
2117 default:
2118 goto fail;
2119 }
2120 }
2121 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2122 goto fail;
2123 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2124 {
2125 Elf_Internal_Shdr *dynsymhdr;
2126
2127 /* The shared libraries distributed with hpux11 have a bogus
2128 sh_link field for the ".dynamic" section. Find the
2129 string table for the ".dynsym" section instead. */
2130 if (elf_dynsymtab (abfd) != 0)
2131 {
2132 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2133 hdr->sh_link = dynsymhdr->sh_link;
2134 }
2135 else
2136 {
2137 unsigned int i, num_sec;
2138
2139 num_sec = elf_numsections (abfd);
2140 for (i = 1; i < num_sec; i++)
2141 {
2142 dynsymhdr = elf_elfsections (abfd)[i];
2143 if (dynsymhdr->sh_type == SHT_DYNSYM)
2144 {
2145 hdr->sh_link = dynsymhdr->sh_link;
2146 break;
2147 }
2148 }
2149 }
2150 }
2151 goto success;
2152
2153 case SHT_SYMTAB: /* A symbol table. */
2154 if (elf_onesymtab (abfd) == shindex)
2155 goto success;
2156
2157 if (hdr->sh_entsize != bed->s->sizeof_sym)
2158 goto fail;
2159
2160 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2161 {
2162 if (hdr->sh_size != 0)
2163 goto fail;
2164 /* Some assemblers erroneously set sh_info to one with a
2165 zero sh_size. ld sees this as a global symbol count
2166 of (unsigned) -1. Fix it here. */
2167 hdr->sh_info = 0;
2168 goto success;
2169 }
2170
2171 /* PR 18854: A binary might contain more than one symbol table.
2172 Unusual, but possible. Warn, but continue. */
2173 if (elf_onesymtab (abfd) != 0)
2174 {
2175 _bfd_error_handler
2176 /* xgettext:c-format */
2177 (_("%pB: warning: multiple symbol tables detected"
2178 " - ignoring the table in section %u"),
2179 abfd, shindex);
2180 goto success;
2181 }
2182 elf_onesymtab (abfd) = shindex;
2183 elf_symtab_hdr (abfd) = *hdr;
2184 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2185 abfd->flags |= HAS_SYMS;
2186
2187 /* Sometimes a shared object will map in the symbol table. If
2188 SHF_ALLOC is set, and this is a shared object, then we also
2189 treat this section as a BFD section. We can not base the
2190 decision purely on SHF_ALLOC, because that flag is sometimes
2191 set in a relocatable object file, which would confuse the
2192 linker. */
2193 if ((hdr->sh_flags & SHF_ALLOC) != 0
2194 && (abfd->flags & DYNAMIC) != 0
2195 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2196 shindex))
2197 goto fail;
2198
2199 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2200 can't read symbols without that section loaded as well. It
2201 is most likely specified by the next section header. */
2202 {
2203 elf_section_list * entry;
2204 unsigned int i, num_sec;
2205
2206 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2207 if (entry->hdr.sh_link == shindex)
2208 goto success;
2209
2210 num_sec = elf_numsections (abfd);
2211 for (i = shindex + 1; i < num_sec; i++)
2212 {
2213 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2214
2215 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2216 && hdr2->sh_link == shindex)
2217 break;
2218 }
2219
2220 if (i == num_sec)
2221 for (i = 1; i < shindex; i++)
2222 {
2223 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2224
2225 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2226 && hdr2->sh_link == shindex)
2227 break;
2228 }
2229
2230 if (i != shindex)
2231 ret = bfd_section_from_shdr (abfd, i);
2232 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2233 goto success;
2234 }
2235
2236 case SHT_DYNSYM: /* A dynamic symbol table. */
2237 if (elf_dynsymtab (abfd) == shindex)
2238 goto success;
2239
2240 if (hdr->sh_entsize != bed->s->sizeof_sym)
2241 goto fail;
2242
2243 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2244 {
2245 if (hdr->sh_size != 0)
2246 goto fail;
2247
2248 /* Some linkers erroneously set sh_info to one with a
2249 zero sh_size. ld sees this as a global symbol count
2250 of (unsigned) -1. Fix it here. */
2251 hdr->sh_info = 0;
2252 goto success;
2253 }
2254
2255 /* PR 18854: A binary might contain more than one dynamic symbol table.
2256 Unusual, but possible. Warn, but continue. */
2257 if (elf_dynsymtab (abfd) != 0)
2258 {
2259 _bfd_error_handler
2260 /* xgettext:c-format */
2261 (_("%pB: warning: multiple dynamic symbol tables detected"
2262 " - ignoring the table in section %u"),
2263 abfd, shindex);
2264 goto success;
2265 }
2266 elf_dynsymtab (abfd) = shindex;
2267 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2268 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2269 abfd->flags |= HAS_SYMS;
2270
2271 /* Besides being a symbol table, we also treat this as a regular
2272 section, so that objcopy can handle it. */
2273 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2274 goto success;
2275
2276 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2277 {
2278 elf_section_list * entry;
2279
2280 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2281 if (entry->ndx == shindex)
2282 goto success;
2283
2284 entry = bfd_alloc (abfd, sizeof (*entry));
2285 if (entry == NULL)
2286 goto fail;
2287 entry->ndx = shindex;
2288 entry->hdr = * hdr;
2289 entry->next = elf_symtab_shndx_list (abfd);
2290 elf_symtab_shndx_list (abfd) = entry;
2291 elf_elfsections (abfd)[shindex] = & entry->hdr;
2292 goto success;
2293 }
2294
2295 case SHT_STRTAB: /* A string table. */
2296 if (hdr->bfd_section != NULL)
2297 goto success;
2298
2299 if (ehdr->e_shstrndx == shindex)
2300 {
2301 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2302 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2303 goto success;
2304 }
2305
2306 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2307 {
2308 symtab_strtab:
2309 elf_tdata (abfd)->strtab_hdr = *hdr;
2310 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2311 goto success;
2312 }
2313
2314 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2315 {
2316 dynsymtab_strtab:
2317 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2318 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2319 elf_elfsections (abfd)[shindex] = hdr;
2320 /* We also treat this as a regular section, so that objcopy
2321 can handle it. */
2322 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2323 shindex);
2324 goto success;
2325 }
2326
2327 /* If the string table isn't one of the above, then treat it as a
2328 regular section. We need to scan all the headers to be sure,
2329 just in case this strtab section appeared before the above. */
2330 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2331 {
2332 unsigned int i, num_sec;
2333
2334 num_sec = elf_numsections (abfd);
2335 for (i = 1; i < num_sec; i++)
2336 {
2337 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2338 if (hdr2->sh_link == shindex)
2339 {
2340 /* Prevent endless recursion on broken objects. */
2341 if (i == shindex)
2342 goto fail;
2343 if (! bfd_section_from_shdr (abfd, i))
2344 goto fail;
2345 if (elf_onesymtab (abfd) == i)
2346 goto symtab_strtab;
2347 if (elf_dynsymtab (abfd) == i)
2348 goto dynsymtab_strtab;
2349 }
2350 }
2351 }
2352 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2353 goto success;
2354
2355 case SHT_REL:
2356 case SHT_RELA:
2357 /* *These* do a lot of work -- but build no sections! */
2358 {
2359 asection *target_sect;
2360 Elf_Internal_Shdr *hdr2, **p_hdr;
2361 unsigned int num_sec = elf_numsections (abfd);
2362 struct bfd_elf_section_data *esdt;
2363
2364 if (hdr->sh_entsize
2365 != (bfd_size_type) (hdr->sh_type == SHT_REL
2366 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2367 goto fail;
2368
2369 /* Check for a bogus link to avoid crashing. */
2370 if (hdr->sh_link >= num_sec)
2371 {
2372 _bfd_error_handler
2373 /* xgettext:c-format */
2374 (_("%pB: invalid link %u for reloc section %s (index %u)"),
2375 abfd, hdr->sh_link, name, shindex);
2376 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2377 shindex);
2378 goto success;
2379 }
2380
2381 /* For some incomprehensible reason Oracle distributes
2382 libraries for Solaris in which some of the objects have
2383 bogus sh_link fields. It would be nice if we could just
2384 reject them, but, unfortunately, some people need to use
2385 them. We scan through the section headers; if we find only
2386 one suitable symbol table, we clobber the sh_link to point
2387 to it. I hope this doesn't break anything.
2388
2389 Don't do it on executable nor shared library. */
2390 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2391 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2392 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2393 {
2394 unsigned int scan;
2395 int found;
2396
2397 found = 0;
2398 for (scan = 1; scan < num_sec; scan++)
2399 {
2400 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2401 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2402 {
2403 if (found != 0)
2404 {
2405 found = 0;
2406 break;
2407 }
2408 found = scan;
2409 }
2410 }
2411 if (found != 0)
2412 hdr->sh_link = found;
2413 }
2414
2415 /* Get the symbol table. */
2416 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2417 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2418 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2419 goto fail;
2420
2421 /* If this is an alloc section in an executable or shared
2422 library, or the reloc section does not use the main symbol
2423 table we don't treat it as a reloc section. BFD can't
2424 adequately represent such a section, so at least for now,
2425 we don't try. We just present it as a normal section. We
2426 also can't use it as a reloc section if it points to the
2427 null section, an invalid section, another reloc section, or
2428 its sh_link points to the null section. */
2429 if (((abfd->flags & (DYNAMIC | EXEC_P)) != 0
2430 && (hdr->sh_flags & SHF_ALLOC) != 0)
2431 || hdr->sh_link == SHN_UNDEF
2432 || hdr->sh_link != elf_onesymtab (abfd)
2433 || hdr->sh_info == SHN_UNDEF
2434 || hdr->sh_info >= num_sec
2435 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2436 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2437 {
2438 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2439 shindex);
2440 goto success;
2441 }
2442
2443 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2444 goto fail;
2445
2446 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2447 if (target_sect == NULL)
2448 goto fail;
2449
2450 esdt = elf_section_data (target_sect);
2451 if (hdr->sh_type == SHT_RELA)
2452 p_hdr = &esdt->rela.hdr;
2453 else
2454 p_hdr = &esdt->rel.hdr;
2455
2456 /* PR 17512: file: 0b4f81b7.
2457 Also see PR 24456, for a file which deliberately has two reloc
2458 sections. */
2459 if (*p_hdr != NULL)
2460 {
2461 _bfd_error_handler
2462 /* xgettext:c-format */
2463 (_("%pB: warning: multiple relocation sections for section %pA \
2464 found - ignoring all but the first"),
2465 abfd, target_sect);
2466 goto success;
2467 }
2468 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2469 if (hdr2 == NULL)
2470 goto fail;
2471 *hdr2 = *hdr;
2472 *p_hdr = hdr2;
2473 elf_elfsections (abfd)[shindex] = hdr2;
2474 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2475 * bed->s->int_rels_per_ext_rel);
2476 target_sect->flags |= SEC_RELOC;
2477 target_sect->relocation = NULL;
2478 target_sect->rel_filepos = hdr->sh_offset;
2479 /* In the section to which the relocations apply, mark whether
2480 its relocations are of the REL or RELA variety. */
2481 if (hdr->sh_size != 0)
2482 {
2483 if (hdr->sh_type == SHT_RELA)
2484 target_sect->use_rela_p = 1;
2485 }
2486 abfd->flags |= HAS_RELOC;
2487 goto success;
2488 }
2489
2490 case SHT_GNU_verdef:
2491 elf_dynverdef (abfd) = shindex;
2492 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2493 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2494 goto success;
2495
2496 case SHT_GNU_versym:
2497 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2498 goto fail;
2499
2500 elf_dynversym (abfd) = shindex;
2501 elf_tdata (abfd)->dynversym_hdr = *hdr;
2502 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2503 goto success;
2504
2505 case SHT_GNU_verneed:
2506 elf_dynverref (abfd) = shindex;
2507 elf_tdata (abfd)->dynverref_hdr = *hdr;
2508 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2509 goto success;
2510
2511 case SHT_SHLIB:
2512 goto success;
2513
2514 case SHT_GROUP:
2515 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2516 goto fail;
2517
2518 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2519 goto fail;
2520
2521 goto success;
2522
2523 default:
2524 /* Possibly an attributes section. */
2525 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2526 || hdr->sh_type == bed->obj_attrs_section_type)
2527 {
2528 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2529 goto fail;
2530 _bfd_elf_parse_attributes (abfd, hdr);
2531 goto success;
2532 }
2533
2534 /* Check for any processor-specific section types. */
2535 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2536 goto success;
2537
2538 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2539 {
2540 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2541 /* FIXME: How to properly handle allocated section reserved
2542 for applications? */
2543 _bfd_error_handler
2544 /* xgettext:c-format */
2545 (_("%pB: unknown type [%#x] section `%s'"),
2546 abfd, hdr->sh_type, name);
2547 else
2548 {
2549 /* Allow sections reserved for applications. */
2550 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2551 shindex);
2552 goto success;
2553 }
2554 }
2555 else if (hdr->sh_type >= SHT_LOPROC
2556 && hdr->sh_type <= SHT_HIPROC)
2557 /* FIXME: We should handle this section. */
2558 _bfd_error_handler
2559 /* xgettext:c-format */
2560 (_("%pB: unknown type [%#x] section `%s'"),
2561 abfd, hdr->sh_type, name);
2562 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2563 {
2564 /* Unrecognised OS-specific sections. */
2565 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2566 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2567 required to correctly process the section and the file should
2568 be rejected with an error message. */
2569 _bfd_error_handler
2570 /* xgettext:c-format */
2571 (_("%pB: unknown type [%#x] section `%s'"),
2572 abfd, hdr->sh_type, name);
2573 else
2574 {
2575 /* Otherwise it should be processed. */
2576 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2577 goto success;
2578 }
2579 }
2580 else
2581 /* FIXME: We should handle this section. */
2582 _bfd_error_handler
2583 /* xgettext:c-format */
2584 (_("%pB: unknown type [%#x] section `%s'"),
2585 abfd, hdr->sh_type, name);
2586
2587 goto fail;
2588 }
2589
2590 fail:
2591 ret = FALSE;
2592 success:
2593 if (sections_being_created && sections_being_created_abfd == abfd)
2594 sections_being_created [shindex] = FALSE;
2595 if (-- nesting == 0)
2596 {
2597 sections_being_created = NULL;
2598 sections_being_created_abfd = abfd;
2599 }
2600 return ret;
2601 }
2602
2603 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2604
2605 Elf_Internal_Sym *
2606 bfd_sym_from_r_symndx (struct sym_cache *cache,
2607 bfd *abfd,
2608 unsigned long r_symndx)
2609 {
2610 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2611
2612 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2613 {
2614 Elf_Internal_Shdr *symtab_hdr;
2615 unsigned char esym[sizeof (Elf64_External_Sym)];
2616 Elf_External_Sym_Shndx eshndx;
2617
2618 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2619 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2620 &cache->sym[ent], esym, &eshndx) == NULL)
2621 return NULL;
2622
2623 if (cache->abfd != abfd)
2624 {
2625 memset (cache->indx, -1, sizeof (cache->indx));
2626 cache->abfd = abfd;
2627 }
2628 cache->indx[ent] = r_symndx;
2629 }
2630
2631 return &cache->sym[ent];
2632 }
2633
2634 /* Given an ELF section number, retrieve the corresponding BFD
2635 section. */
2636
2637 asection *
2638 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2639 {
2640 if (sec_index >= elf_numsections (abfd))
2641 return NULL;
2642 return elf_elfsections (abfd)[sec_index]->bfd_section;
2643 }
2644
2645 static const struct bfd_elf_special_section special_sections_b[] =
2646 {
2647 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2648 { NULL, 0, 0, 0, 0 }
2649 };
2650
2651 static const struct bfd_elf_special_section special_sections_c[] =
2652 {
2653 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2654 { STRING_COMMA_LEN (".ctf"), 0, SHT_PROGBITS, 0 },
2655 { NULL, 0, 0, 0, 0 }
2656 };
2657
2658 static const struct bfd_elf_special_section special_sections_d[] =
2659 {
2660 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2661 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2662 /* There are more DWARF sections than these, but they needn't be added here
2663 unless you have to cope with broken compilers that don't emit section
2664 attributes or you want to help the user writing assembler. */
2665 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2666 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2667 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2668 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2669 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2670 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2671 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2672 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2673 { NULL, 0, 0, 0, 0 }
2674 };
2675
2676 static const struct bfd_elf_special_section special_sections_f[] =
2677 {
2678 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2679 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2680 { NULL, 0 , 0, 0, 0 }
2681 };
2682
2683 static const struct bfd_elf_special_section special_sections_g[] =
2684 {
2685 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2686 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2687 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2688 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2689 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2690 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2691 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2692 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2693 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2694 { NULL, 0, 0, 0, 0 }
2695 };
2696
2697 static const struct bfd_elf_special_section special_sections_h[] =
2698 {
2699 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2700 { NULL, 0, 0, 0, 0 }
2701 };
2702
2703 static const struct bfd_elf_special_section special_sections_i[] =
2704 {
2705 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2706 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2707 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2708 { NULL, 0, 0, 0, 0 }
2709 };
2710
2711 static const struct bfd_elf_special_section special_sections_l[] =
2712 {
2713 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2714 { NULL, 0, 0, 0, 0 }
2715 };
2716
2717 static const struct bfd_elf_special_section special_sections_n[] =
2718 {
2719 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2720 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2721 { NULL, 0, 0, 0, 0 }
2722 };
2723
2724 static const struct bfd_elf_special_section special_sections_p[] =
2725 {
2726 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2727 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2728 { NULL, 0, 0, 0, 0 }
2729 };
2730
2731 static const struct bfd_elf_special_section special_sections_r[] =
2732 {
2733 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2734 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2735 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2736 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2737 { NULL, 0, 0, 0, 0 }
2738 };
2739
2740 static const struct bfd_elf_special_section special_sections_s[] =
2741 {
2742 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2743 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2744 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2745 /* See struct bfd_elf_special_section declaration for the semantics of
2746 this special case where .prefix_length != strlen (.prefix). */
2747 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2748 { NULL, 0, 0, 0, 0 }
2749 };
2750
2751 static const struct bfd_elf_special_section special_sections_t[] =
2752 {
2753 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2754 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2755 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2756 { NULL, 0, 0, 0, 0 }
2757 };
2758
2759 static const struct bfd_elf_special_section special_sections_z[] =
2760 {
2761 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2762 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2763 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2764 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2765 { NULL, 0, 0, 0, 0 }
2766 };
2767
2768 static const struct bfd_elf_special_section * const special_sections[] =
2769 {
2770 special_sections_b, /* 'b' */
2771 special_sections_c, /* 'c' */
2772 special_sections_d, /* 'd' */
2773 NULL, /* 'e' */
2774 special_sections_f, /* 'f' */
2775 special_sections_g, /* 'g' */
2776 special_sections_h, /* 'h' */
2777 special_sections_i, /* 'i' */
2778 NULL, /* 'j' */
2779 NULL, /* 'k' */
2780 special_sections_l, /* 'l' */
2781 NULL, /* 'm' */
2782 special_sections_n, /* 'n' */
2783 NULL, /* 'o' */
2784 special_sections_p, /* 'p' */
2785 NULL, /* 'q' */
2786 special_sections_r, /* 'r' */
2787 special_sections_s, /* 's' */
2788 special_sections_t, /* 't' */
2789 NULL, /* 'u' */
2790 NULL, /* 'v' */
2791 NULL, /* 'w' */
2792 NULL, /* 'x' */
2793 NULL, /* 'y' */
2794 special_sections_z /* 'z' */
2795 };
2796
2797 const struct bfd_elf_special_section *
2798 _bfd_elf_get_special_section (const char *name,
2799 const struct bfd_elf_special_section *spec,
2800 unsigned int rela)
2801 {
2802 int i;
2803 int len;
2804
2805 len = strlen (name);
2806
2807 for (i = 0; spec[i].prefix != NULL; i++)
2808 {
2809 int suffix_len;
2810 int prefix_len = spec[i].prefix_length;
2811
2812 if (len < prefix_len)
2813 continue;
2814 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2815 continue;
2816
2817 suffix_len = spec[i].suffix_length;
2818 if (suffix_len <= 0)
2819 {
2820 if (name[prefix_len] != 0)
2821 {
2822 if (suffix_len == 0)
2823 continue;
2824 if (name[prefix_len] != '.'
2825 && (suffix_len == -2
2826 || (rela && spec[i].type == SHT_REL)))
2827 continue;
2828 }
2829 }
2830 else
2831 {
2832 if (len < prefix_len + suffix_len)
2833 continue;
2834 if (memcmp (name + len - suffix_len,
2835 spec[i].prefix + prefix_len,
2836 suffix_len) != 0)
2837 continue;
2838 }
2839 return &spec[i];
2840 }
2841
2842 return NULL;
2843 }
2844
2845 const struct bfd_elf_special_section *
2846 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2847 {
2848 int i;
2849 const struct bfd_elf_special_section *spec;
2850 const struct elf_backend_data *bed;
2851
2852 /* See if this is one of the special sections. */
2853 if (sec->name == NULL)
2854 return NULL;
2855
2856 bed = get_elf_backend_data (abfd);
2857 spec = bed->special_sections;
2858 if (spec)
2859 {
2860 spec = _bfd_elf_get_special_section (sec->name,
2861 bed->special_sections,
2862 sec->use_rela_p);
2863 if (spec != NULL)
2864 return spec;
2865 }
2866
2867 if (sec->name[0] != '.')
2868 return NULL;
2869
2870 i = sec->name[1] - 'b';
2871 if (i < 0 || i > 'z' - 'b')
2872 return NULL;
2873
2874 spec = special_sections[i];
2875
2876 if (spec == NULL)
2877 return NULL;
2878
2879 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2880 }
2881
2882 bfd_boolean
2883 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2884 {
2885 struct bfd_elf_section_data *sdata;
2886 const struct elf_backend_data *bed;
2887 const struct bfd_elf_special_section *ssect;
2888
2889 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2890 if (sdata == NULL)
2891 {
2892 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2893 sizeof (*sdata));
2894 if (sdata == NULL)
2895 return FALSE;
2896 sec->used_by_bfd = sdata;
2897 }
2898
2899 /* Indicate whether or not this section should use RELA relocations. */
2900 bed = get_elf_backend_data (abfd);
2901 sec->use_rela_p = bed->default_use_rela_p;
2902
2903 /* When we read a file, we don't need to set ELF section type and
2904 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2905 anyway. We will set ELF section type and flags for all linker
2906 created sections. If user specifies BFD section flags, we will
2907 set ELF section type and flags based on BFD section flags in
2908 elf_fake_sections. Special handling for .init_array/.fini_array
2909 output sections since they may contain .ctors/.dtors input
2910 sections. We don't want _bfd_elf_init_private_section_data to
2911 copy ELF section type from .ctors/.dtors input sections. */
2912 if (abfd->direction != read_direction
2913 || (sec->flags & SEC_LINKER_CREATED) != 0)
2914 {
2915 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2916 if (ssect != NULL
2917 && (!sec->flags
2918 || (sec->flags & SEC_LINKER_CREATED) != 0
2919 || ssect->type == SHT_INIT_ARRAY
2920 || ssect->type == SHT_FINI_ARRAY))
2921 {
2922 elf_section_type (sec) = ssect->type;
2923 elf_section_flags (sec) = ssect->attr;
2924 }
2925 }
2926
2927 return _bfd_generic_new_section_hook (abfd, sec);
2928 }
2929
2930 /* Create a new bfd section from an ELF program header.
2931
2932 Since program segments have no names, we generate a synthetic name
2933 of the form segment<NUM>, where NUM is generally the index in the
2934 program header table. For segments that are split (see below) we
2935 generate the names segment<NUM>a and segment<NUM>b.
2936
2937 Note that some program segments may have a file size that is different than
2938 (less than) the memory size. All this means is that at execution the
2939 system must allocate the amount of memory specified by the memory size,
2940 but only initialize it with the first "file size" bytes read from the
2941 file. This would occur for example, with program segments consisting
2942 of combined data+bss.
2943
2944 To handle the above situation, this routine generates TWO bfd sections
2945 for the single program segment. The first has the length specified by
2946 the file size of the segment, and the second has the length specified
2947 by the difference between the two sizes. In effect, the segment is split
2948 into its initialized and uninitialized parts.
2949
2950 */
2951
2952 bfd_boolean
2953 _bfd_elf_make_section_from_phdr (bfd *abfd,
2954 Elf_Internal_Phdr *hdr,
2955 int hdr_index,
2956 const char *type_name)
2957 {
2958 asection *newsect;
2959 char *name;
2960 char namebuf[64];
2961 size_t len;
2962 int split;
2963
2964 split = ((hdr->p_memsz > 0)
2965 && (hdr->p_filesz > 0)
2966 && (hdr->p_memsz > hdr->p_filesz));
2967
2968 if (hdr->p_filesz > 0)
2969 {
2970 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2971 len = strlen (namebuf) + 1;
2972 name = (char *) bfd_alloc (abfd, len);
2973 if (!name)
2974 return FALSE;
2975 memcpy (name, namebuf, len);
2976 newsect = bfd_make_section (abfd, name);
2977 if (newsect == NULL)
2978 return FALSE;
2979 newsect->vma = hdr->p_vaddr;
2980 newsect->lma = hdr->p_paddr;
2981 newsect->size = hdr->p_filesz;
2982 newsect->filepos = hdr->p_offset;
2983 newsect->flags |= SEC_HAS_CONTENTS;
2984 newsect->alignment_power = bfd_log2 (hdr->p_align);
2985 if (hdr->p_type == PT_LOAD)
2986 {
2987 newsect->flags |= SEC_ALLOC;
2988 newsect->flags |= SEC_LOAD;
2989 if (hdr->p_flags & PF_X)
2990 {
2991 /* FIXME: all we known is that it has execute PERMISSION,
2992 may be data. */
2993 newsect->flags |= SEC_CODE;
2994 }
2995 }
2996 if (!(hdr->p_flags & PF_W))
2997 {
2998 newsect->flags |= SEC_READONLY;
2999 }
3000 }
3001
3002 if (hdr->p_memsz > hdr->p_filesz)
3003 {
3004 bfd_vma align;
3005
3006 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
3007 len = strlen (namebuf) + 1;
3008 name = (char *) bfd_alloc (abfd, len);
3009 if (!name)
3010 return FALSE;
3011 memcpy (name, namebuf, len);
3012 newsect = bfd_make_section (abfd, name);
3013 if (newsect == NULL)
3014 return FALSE;
3015 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
3016 newsect->lma = hdr->p_paddr + hdr->p_filesz;
3017 newsect->size = hdr->p_memsz - hdr->p_filesz;
3018 newsect->filepos = hdr->p_offset + hdr->p_filesz;
3019 align = newsect->vma & -newsect->vma;
3020 if (align == 0 || align > hdr->p_align)
3021 align = hdr->p_align;
3022 newsect->alignment_power = bfd_log2 (align);
3023 if (hdr->p_type == PT_LOAD)
3024 {
3025 /* Hack for gdb. Segments that have not been modified do
3026 not have their contents written to a core file, on the
3027 assumption that a debugger can find the contents in the
3028 executable. We flag this case by setting the fake
3029 section size to zero. Note that "real" bss sections will
3030 always have their contents dumped to the core file. */
3031 if (bfd_get_format (abfd) == bfd_core)
3032 newsect->size = 0;
3033 newsect->flags |= SEC_ALLOC;
3034 if (hdr->p_flags & PF_X)
3035 newsect->flags |= SEC_CODE;
3036 }
3037 if (!(hdr->p_flags & PF_W))
3038 newsect->flags |= SEC_READONLY;
3039 }
3040
3041 return TRUE;
3042 }
3043
3044 static bfd_boolean
3045 _bfd_elf_core_find_build_id (bfd *templ, bfd_vma offset)
3046 {
3047 /* The return value is ignored. Build-ids are considered optional. */
3048 if (templ->xvec->flavour == bfd_target_elf_flavour)
3049 return (*get_elf_backend_data (templ)->elf_backend_core_find_build_id)
3050 (templ, offset);
3051 return FALSE;
3052 }
3053
3054 bfd_boolean
3055 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
3056 {
3057 const struct elf_backend_data *bed;
3058
3059 switch (hdr->p_type)
3060 {
3061 case PT_NULL:
3062 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
3063
3064 case PT_LOAD:
3065 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load"))
3066 return FALSE;
3067 if (bfd_get_format (abfd) == bfd_core && abfd->build_id == NULL)
3068 _bfd_elf_core_find_build_id (abfd, hdr->p_offset);
3069 return TRUE;
3070
3071 case PT_DYNAMIC:
3072 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
3073
3074 case PT_INTERP:
3075 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
3076
3077 case PT_NOTE:
3078 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
3079 return FALSE;
3080 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3081 hdr->p_align))
3082 return FALSE;
3083 return TRUE;
3084
3085 case PT_SHLIB:
3086 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3087
3088 case PT_PHDR:
3089 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3090
3091 case PT_GNU_EH_FRAME:
3092 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3093 "eh_frame_hdr");
3094
3095 case PT_GNU_STACK:
3096 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3097
3098 case PT_GNU_RELRO:
3099 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3100
3101 default:
3102 /* Check for any processor-specific program segment types. */
3103 bed = get_elf_backend_data (abfd);
3104 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3105 }
3106 }
3107
3108 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3109 REL or RELA. */
3110
3111 Elf_Internal_Shdr *
3112 _bfd_elf_single_rel_hdr (asection *sec)
3113 {
3114 if (elf_section_data (sec)->rel.hdr)
3115 {
3116 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3117 return elf_section_data (sec)->rel.hdr;
3118 }
3119 else
3120 return elf_section_data (sec)->rela.hdr;
3121 }
3122
3123 static bfd_boolean
3124 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3125 Elf_Internal_Shdr *rel_hdr,
3126 const char *sec_name,
3127 bfd_boolean use_rela_p)
3128 {
3129 char *name = (char *) bfd_alloc (abfd,
3130 sizeof ".rela" + strlen (sec_name));
3131 if (name == NULL)
3132 return FALSE;
3133
3134 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3135 rel_hdr->sh_name =
3136 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3137 FALSE);
3138 if (rel_hdr->sh_name == (unsigned int) -1)
3139 return FALSE;
3140
3141 return TRUE;
3142 }
3143
3144 /* Allocate and initialize a section-header for a new reloc section,
3145 containing relocations against ASECT. It is stored in RELDATA. If
3146 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3147 relocations. */
3148
3149 static bfd_boolean
3150 _bfd_elf_init_reloc_shdr (bfd *abfd,
3151 struct bfd_elf_section_reloc_data *reldata,
3152 const char *sec_name,
3153 bfd_boolean use_rela_p,
3154 bfd_boolean delay_st_name_p)
3155 {
3156 Elf_Internal_Shdr *rel_hdr;
3157 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3158
3159 BFD_ASSERT (reldata->hdr == NULL);
3160 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3161 reldata->hdr = rel_hdr;
3162
3163 if (delay_st_name_p)
3164 rel_hdr->sh_name = (unsigned int) -1;
3165 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3166 use_rela_p))
3167 return FALSE;
3168 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3169 rel_hdr->sh_entsize = (use_rela_p
3170 ? bed->s->sizeof_rela
3171 : bed->s->sizeof_rel);
3172 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3173 rel_hdr->sh_flags = 0;
3174 rel_hdr->sh_addr = 0;
3175 rel_hdr->sh_size = 0;
3176 rel_hdr->sh_offset = 0;
3177
3178 return TRUE;
3179 }
3180
3181 /* Return the default section type based on the passed in section flags. */
3182
3183 int
3184 bfd_elf_get_default_section_type (flagword flags)
3185 {
3186 if ((flags & (SEC_ALLOC | SEC_IS_COMMON)) != 0
3187 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3188 return SHT_NOBITS;
3189 return SHT_PROGBITS;
3190 }
3191
3192 struct fake_section_arg
3193 {
3194 struct bfd_link_info *link_info;
3195 bfd_boolean failed;
3196 };
3197
3198 /* Set up an ELF internal section header for a section. */
3199
3200 static void
3201 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3202 {
3203 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3204 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3205 struct bfd_elf_section_data *esd = elf_section_data (asect);
3206 Elf_Internal_Shdr *this_hdr;
3207 unsigned int sh_type;
3208 const char *name = asect->name;
3209 bfd_boolean delay_st_name_p = FALSE;
3210
3211 if (arg->failed)
3212 {
3213 /* We already failed; just get out of the bfd_map_over_sections
3214 loop. */
3215 return;
3216 }
3217
3218 this_hdr = &esd->this_hdr;
3219
3220 if (arg->link_info)
3221 {
3222 /* ld: compress DWARF debug sections with names: .debug_*. */
3223 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3224 && (asect->flags & SEC_DEBUGGING)
3225 && name[1] == 'd'
3226 && name[6] == '_')
3227 {
3228 /* Set SEC_ELF_COMPRESS to indicate this section should be
3229 compressed. */
3230 asect->flags |= SEC_ELF_COMPRESS;
3231
3232 /* If this section will be compressed, delay adding section
3233 name to section name section after it is compressed in
3234 _bfd_elf_assign_file_positions_for_non_load. */
3235 delay_st_name_p = TRUE;
3236 }
3237 }
3238 else if ((asect->flags & SEC_ELF_RENAME))
3239 {
3240 /* objcopy: rename output DWARF debug section. */
3241 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3242 {
3243 /* When we decompress or compress with SHF_COMPRESSED,
3244 convert section name from .zdebug_* to .debug_* if
3245 needed. */
3246 if (name[1] == 'z')
3247 {
3248 char *new_name = convert_zdebug_to_debug (abfd, name);
3249 if (new_name == NULL)
3250 {
3251 arg->failed = TRUE;
3252 return;
3253 }
3254 name = new_name;
3255 }
3256 }
3257 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3258 {
3259 /* PR binutils/18087: Compression does not always make a
3260 section smaller. So only rename the section when
3261 compression has actually taken place. If input section
3262 name is .zdebug_*, we should never compress it again. */
3263 char *new_name = convert_debug_to_zdebug (abfd, name);
3264 if (new_name == NULL)
3265 {
3266 arg->failed = TRUE;
3267 return;
3268 }
3269 BFD_ASSERT (name[1] != 'z');
3270 name = new_name;
3271 }
3272 }
3273
3274 if (delay_st_name_p)
3275 this_hdr->sh_name = (unsigned int) -1;
3276 else
3277 {
3278 this_hdr->sh_name
3279 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3280 name, FALSE);
3281 if (this_hdr->sh_name == (unsigned int) -1)
3282 {
3283 arg->failed = TRUE;
3284 return;
3285 }
3286 }
3287
3288 /* Don't clear sh_flags. Assembler may set additional bits. */
3289
3290 if ((asect->flags & SEC_ALLOC) != 0
3291 || asect->user_set_vma)
3292 this_hdr->sh_addr = asect->vma;
3293 else
3294 this_hdr->sh_addr = 0;
3295
3296 this_hdr->sh_offset = 0;
3297 this_hdr->sh_size = asect->size;
3298 this_hdr->sh_link = 0;
3299 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3300 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3301 {
3302 _bfd_error_handler
3303 /* xgettext:c-format */
3304 (_("%pB: error: alignment power %d of section `%pA' is too big"),
3305 abfd, asect->alignment_power, asect);
3306 arg->failed = TRUE;
3307 return;
3308 }
3309 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3310 /* The sh_entsize and sh_info fields may have been set already by
3311 copy_private_section_data. */
3312
3313 this_hdr->bfd_section = asect;
3314 this_hdr->contents = NULL;
3315
3316 /* If the section type is unspecified, we set it based on
3317 asect->flags. */
3318 if ((asect->flags & SEC_GROUP) != 0)
3319 sh_type = SHT_GROUP;
3320 else
3321 sh_type = bfd_elf_get_default_section_type (asect->flags);
3322
3323 if (this_hdr->sh_type == SHT_NULL)
3324 this_hdr->sh_type = sh_type;
3325 else if (this_hdr->sh_type == SHT_NOBITS
3326 && sh_type == SHT_PROGBITS
3327 && (asect->flags & SEC_ALLOC) != 0)
3328 {
3329 /* Warn if we are changing a NOBITS section to PROGBITS, but
3330 allow the link to proceed. This can happen when users link
3331 non-bss input sections to bss output sections, or emit data
3332 to a bss output section via a linker script. */
3333 _bfd_error_handler
3334 (_("warning: section `%pA' type changed to PROGBITS"), asect);
3335 this_hdr->sh_type = sh_type;
3336 }
3337
3338 switch (this_hdr->sh_type)
3339 {
3340 default:
3341 break;
3342
3343 case SHT_STRTAB:
3344 case SHT_NOTE:
3345 case SHT_NOBITS:
3346 case SHT_PROGBITS:
3347 break;
3348
3349 case SHT_INIT_ARRAY:
3350 case SHT_FINI_ARRAY:
3351 case SHT_PREINIT_ARRAY:
3352 this_hdr->sh_entsize = bed->s->arch_size / 8;
3353 break;
3354
3355 case SHT_HASH:
3356 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3357 break;
3358
3359 case SHT_DYNSYM:
3360 this_hdr->sh_entsize = bed->s->sizeof_sym;
3361 break;
3362
3363 case SHT_DYNAMIC:
3364 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3365 break;
3366
3367 case SHT_RELA:
3368 if (get_elf_backend_data (abfd)->may_use_rela_p)
3369 this_hdr->sh_entsize = bed->s->sizeof_rela;
3370 break;
3371
3372 case SHT_REL:
3373 if (get_elf_backend_data (abfd)->may_use_rel_p)
3374 this_hdr->sh_entsize = bed->s->sizeof_rel;
3375 break;
3376
3377 case SHT_GNU_versym:
3378 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3379 break;
3380
3381 case SHT_GNU_verdef:
3382 this_hdr->sh_entsize = 0;
3383 /* objcopy or strip will copy over sh_info, but may not set
3384 cverdefs. The linker will set cverdefs, but sh_info will be
3385 zero. */
3386 if (this_hdr->sh_info == 0)
3387 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3388 else
3389 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3390 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3391 break;
3392
3393 case SHT_GNU_verneed:
3394 this_hdr->sh_entsize = 0;
3395 /* objcopy or strip will copy over sh_info, but may not set
3396 cverrefs. The linker will set cverrefs, but sh_info will be
3397 zero. */
3398 if (this_hdr->sh_info == 0)
3399 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3400 else
3401 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3402 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3403 break;
3404
3405 case SHT_GROUP:
3406 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3407 break;
3408
3409 case SHT_GNU_HASH:
3410 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3411 break;
3412 }
3413
3414 if ((asect->flags & SEC_ALLOC) != 0)
3415 this_hdr->sh_flags |= SHF_ALLOC;
3416 if ((asect->flags & SEC_READONLY) == 0)
3417 this_hdr->sh_flags |= SHF_WRITE;
3418 if ((asect->flags & SEC_CODE) != 0)
3419 this_hdr->sh_flags |= SHF_EXECINSTR;
3420 if ((asect->flags & SEC_MERGE) != 0)
3421 {
3422 this_hdr->sh_flags |= SHF_MERGE;
3423 this_hdr->sh_entsize = asect->entsize;
3424 }
3425 if ((asect->flags & SEC_STRINGS) != 0)
3426 this_hdr->sh_flags |= SHF_STRINGS;
3427 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3428 this_hdr->sh_flags |= SHF_GROUP;
3429 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3430 {
3431 this_hdr->sh_flags |= SHF_TLS;
3432 if (asect->size == 0
3433 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3434 {
3435 struct bfd_link_order *o = asect->map_tail.link_order;
3436
3437 this_hdr->sh_size = 0;
3438 if (o != NULL)
3439 {
3440 this_hdr->sh_size = o->offset + o->size;
3441 if (this_hdr->sh_size != 0)
3442 this_hdr->sh_type = SHT_NOBITS;
3443 }
3444 }
3445 }
3446 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3447 this_hdr->sh_flags |= SHF_EXCLUDE;
3448
3449 /* If the section has relocs, set up a section header for the
3450 SHT_REL[A] section. If two relocation sections are required for
3451 this section, it is up to the processor-specific back-end to
3452 create the other. */
3453 if ((asect->flags & SEC_RELOC) != 0)
3454 {
3455 /* When doing a relocatable link, create both REL and RELA sections if
3456 needed. */
3457 if (arg->link_info
3458 /* Do the normal setup if we wouldn't create any sections here. */
3459 && esd->rel.count + esd->rela.count > 0
3460 && (bfd_link_relocatable (arg->link_info)
3461 || arg->link_info->emitrelocations))
3462 {
3463 if (esd->rel.count && esd->rel.hdr == NULL
3464 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3465 FALSE, delay_st_name_p))
3466 {
3467 arg->failed = TRUE;
3468 return;
3469 }
3470 if (esd->rela.count && esd->rela.hdr == NULL
3471 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3472 TRUE, delay_st_name_p))
3473 {
3474 arg->failed = TRUE;
3475 return;
3476 }
3477 }
3478 else if (!_bfd_elf_init_reloc_shdr (abfd,
3479 (asect->use_rela_p
3480 ? &esd->rela : &esd->rel),
3481 name,
3482 asect->use_rela_p,
3483 delay_st_name_p))
3484 {
3485 arg->failed = TRUE;
3486 return;
3487 }
3488 }
3489
3490 /* Check for processor-specific section types. */
3491 sh_type = this_hdr->sh_type;
3492 if (bed->elf_backend_fake_sections
3493 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3494 {
3495 arg->failed = TRUE;
3496 return;
3497 }
3498
3499 if (sh_type == SHT_NOBITS && asect->size != 0)
3500 {
3501 /* Don't change the header type from NOBITS if we are being
3502 called for objcopy --only-keep-debug. */
3503 this_hdr->sh_type = sh_type;
3504 }
3505 }
3506
3507 /* Fill in the contents of a SHT_GROUP section. Called from
3508 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3509 when ELF targets use the generic linker, ld. Called for ld -r
3510 from bfd_elf_final_link. */
3511
3512 void
3513 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3514 {
3515 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3516 asection *elt, *first;
3517 unsigned char *loc;
3518 bfd_boolean gas;
3519
3520 /* Ignore linker created group section. See elfNN_ia64_object_p in
3521 elfxx-ia64.c. */
3522 if ((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP
3523 || sec->size == 0
3524 || *failedptr)
3525 return;
3526
3527 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3528 {
3529 unsigned long symindx = 0;
3530
3531 /* elf_group_id will have been set up by objcopy and the
3532 generic linker. */
3533 if (elf_group_id (sec) != NULL)
3534 symindx = elf_group_id (sec)->udata.i;
3535
3536 if (symindx == 0)
3537 {
3538 /* If called from the assembler, swap_out_syms will have set up
3539 elf_section_syms. */
3540 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3541 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3542 }
3543 elf_section_data (sec)->this_hdr.sh_info = symindx;
3544 }
3545 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3546 {
3547 /* The ELF backend linker sets sh_info to -2 when the group
3548 signature symbol is global, and thus the index can't be
3549 set until all local symbols are output. */
3550 asection *igroup;
3551 struct bfd_elf_section_data *sec_data;
3552 unsigned long symndx;
3553 unsigned long extsymoff;
3554 struct elf_link_hash_entry *h;
3555
3556 /* The point of this little dance to the first SHF_GROUP section
3557 then back to the SHT_GROUP section is that this gets us to
3558 the SHT_GROUP in the input object. */
3559 igroup = elf_sec_group (elf_next_in_group (sec));
3560 sec_data = elf_section_data (igroup);
3561 symndx = sec_data->this_hdr.sh_info;
3562 extsymoff = 0;
3563 if (!elf_bad_symtab (igroup->owner))
3564 {
3565 Elf_Internal_Shdr *symtab_hdr;
3566
3567 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3568 extsymoff = symtab_hdr->sh_info;
3569 }
3570 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3571 while (h->root.type == bfd_link_hash_indirect
3572 || h->root.type == bfd_link_hash_warning)
3573 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3574
3575 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3576 }
3577
3578 /* The contents won't be allocated for "ld -r" or objcopy. */
3579 gas = TRUE;
3580 if (sec->contents == NULL)
3581 {
3582 gas = FALSE;
3583 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3584
3585 /* Arrange for the section to be written out. */
3586 elf_section_data (sec)->this_hdr.contents = sec->contents;
3587 if (sec->contents == NULL)
3588 {
3589 *failedptr = TRUE;
3590 return;
3591 }
3592 }
3593
3594 loc = sec->contents + sec->size;
3595
3596 /* Get the pointer to the first section in the group that gas
3597 squirreled away here. objcopy arranges for this to be set to the
3598 start of the input section group. */
3599 first = elt = elf_next_in_group (sec);
3600
3601 /* First element is a flag word. Rest of section is elf section
3602 indices for all the sections of the group. Write them backwards
3603 just to keep the group in the same order as given in .section
3604 directives, not that it matters. */
3605 while (elt != NULL)
3606 {
3607 asection *s;
3608
3609 s = elt;
3610 if (!gas)
3611 s = s->output_section;
3612 if (s != NULL
3613 && !bfd_is_abs_section (s))
3614 {
3615 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3616 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3617
3618 if (elf_sec->rel.hdr != NULL
3619 && (gas
3620 || (input_elf_sec->rel.hdr != NULL
3621 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3622 {
3623 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3624 loc -= 4;
3625 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3626 }
3627 if (elf_sec->rela.hdr != NULL
3628 && (gas
3629 || (input_elf_sec->rela.hdr != NULL
3630 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3631 {
3632 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3633 loc -= 4;
3634 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3635 }
3636 loc -= 4;
3637 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3638 }
3639 elt = elf_next_in_group (elt);
3640 if (elt == first)
3641 break;
3642 }
3643
3644 loc -= 4;
3645 BFD_ASSERT (loc == sec->contents);
3646
3647 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3648 }
3649
3650 /* Given NAME, the name of a relocation section stripped of its
3651 .rel/.rela prefix, return the section in ABFD to which the
3652 relocations apply. */
3653
3654 asection *
3655 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3656 {
3657 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3658 section likely apply to .got.plt or .got section. */
3659 if (get_elf_backend_data (abfd)->want_got_plt
3660 && strcmp (name, ".plt") == 0)
3661 {
3662 asection *sec;
3663
3664 name = ".got.plt";
3665 sec = bfd_get_section_by_name (abfd, name);
3666 if (sec != NULL)
3667 return sec;
3668 name = ".got";
3669 }
3670
3671 return bfd_get_section_by_name (abfd, name);
3672 }
3673
3674 /* Return the section to which RELOC_SEC applies. */
3675
3676 static asection *
3677 elf_get_reloc_section (asection *reloc_sec)
3678 {
3679 const char *name;
3680 unsigned int type;
3681 bfd *abfd;
3682 const struct elf_backend_data *bed;
3683
3684 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3685 if (type != SHT_REL && type != SHT_RELA)
3686 return NULL;
3687
3688 /* We look up the section the relocs apply to by name. */
3689 name = reloc_sec->name;
3690 if (strncmp (name, ".rel", 4) != 0)
3691 return NULL;
3692 name += 4;
3693 if (type == SHT_RELA && *name++ != 'a')
3694 return NULL;
3695
3696 abfd = reloc_sec->owner;
3697 bed = get_elf_backend_data (abfd);
3698 return bed->get_reloc_section (abfd, name);
3699 }
3700
3701 /* Assign all ELF section numbers. The dummy first section is handled here
3702 too. The link/info pointers for the standard section types are filled
3703 in here too, while we're at it. */
3704
3705 static bfd_boolean
3706 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3707 {
3708 struct elf_obj_tdata *t = elf_tdata (abfd);
3709 asection *sec;
3710 unsigned int section_number;
3711 Elf_Internal_Shdr **i_shdrp;
3712 struct bfd_elf_section_data *d;
3713 bfd_boolean need_symtab;
3714 size_t amt;
3715
3716 section_number = 1;
3717
3718 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3719
3720 /* SHT_GROUP sections are in relocatable files only. */
3721 if (link_info == NULL || !link_info->resolve_section_groups)
3722 {
3723 size_t reloc_count = 0;
3724
3725 /* Put SHT_GROUP sections first. */
3726 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3727 {
3728 d = elf_section_data (sec);
3729
3730 if (d->this_hdr.sh_type == SHT_GROUP)
3731 {
3732 if (sec->flags & SEC_LINKER_CREATED)
3733 {
3734 /* Remove the linker created SHT_GROUP sections. */
3735 bfd_section_list_remove (abfd, sec);
3736 abfd->section_count--;
3737 }
3738 else
3739 d->this_idx = section_number++;
3740 }
3741
3742 /* Count relocations. */
3743 reloc_count += sec->reloc_count;
3744 }
3745
3746 /* Clear HAS_RELOC if there are no relocations. */
3747 if (reloc_count == 0)
3748 abfd->flags &= ~HAS_RELOC;
3749 }
3750
3751 for (sec = abfd->sections; sec; sec = sec->next)
3752 {
3753 d = elf_section_data (sec);
3754
3755 if (d->this_hdr.sh_type != SHT_GROUP)
3756 d->this_idx = section_number++;
3757 if (d->this_hdr.sh_name != (unsigned int) -1)
3758 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3759 if (d->rel.hdr)
3760 {
3761 d->rel.idx = section_number++;
3762 if (d->rel.hdr->sh_name != (unsigned int) -1)
3763 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3764 }
3765 else
3766 d->rel.idx = 0;
3767
3768 if (d->rela.hdr)
3769 {
3770 d->rela.idx = section_number++;
3771 if (d->rela.hdr->sh_name != (unsigned int) -1)
3772 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3773 }
3774 else
3775 d->rela.idx = 0;
3776 }
3777
3778 need_symtab = (bfd_get_symcount (abfd) > 0
3779 || (link_info == NULL
3780 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3781 == HAS_RELOC)));
3782 if (need_symtab)
3783 {
3784 elf_onesymtab (abfd) = section_number++;
3785 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3786 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3787 {
3788 elf_section_list *entry;
3789
3790 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3791
3792 entry = bfd_zalloc (abfd, sizeof (*entry));
3793 entry->ndx = section_number++;
3794 elf_symtab_shndx_list (abfd) = entry;
3795 entry->hdr.sh_name
3796 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3797 ".symtab_shndx", FALSE);
3798 if (entry->hdr.sh_name == (unsigned int) -1)
3799 return FALSE;
3800 }
3801 elf_strtab_sec (abfd) = section_number++;
3802 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3803 }
3804
3805 elf_shstrtab_sec (abfd) = section_number++;
3806 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3807 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3808
3809 if (section_number >= SHN_LORESERVE)
3810 {
3811 /* xgettext:c-format */
3812 _bfd_error_handler (_("%pB: too many sections: %u"),
3813 abfd, section_number);
3814 return FALSE;
3815 }
3816
3817 elf_numsections (abfd) = section_number;
3818 elf_elfheader (abfd)->e_shnum = section_number;
3819
3820 /* Set up the list of section header pointers, in agreement with the
3821 indices. */
3822 amt = section_number * sizeof (Elf_Internal_Shdr *);
3823 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc (abfd, amt);
3824 if (i_shdrp == NULL)
3825 return FALSE;
3826
3827 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3828 sizeof (Elf_Internal_Shdr));
3829 if (i_shdrp[0] == NULL)
3830 {
3831 bfd_release (abfd, i_shdrp);
3832 return FALSE;
3833 }
3834
3835 elf_elfsections (abfd) = i_shdrp;
3836
3837 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3838 if (need_symtab)
3839 {
3840 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3841 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3842 {
3843 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3844 BFD_ASSERT (entry != NULL);
3845 i_shdrp[entry->ndx] = & entry->hdr;
3846 entry->hdr.sh_link = elf_onesymtab (abfd);
3847 }
3848 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3849 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3850 }
3851
3852 for (sec = abfd->sections; sec; sec = sec->next)
3853 {
3854 asection *s;
3855
3856 d = elf_section_data (sec);
3857
3858 i_shdrp[d->this_idx] = &d->this_hdr;
3859 if (d->rel.idx != 0)
3860 i_shdrp[d->rel.idx] = d->rel.hdr;
3861 if (d->rela.idx != 0)
3862 i_shdrp[d->rela.idx] = d->rela.hdr;
3863
3864 /* Fill in the sh_link and sh_info fields while we're at it. */
3865
3866 /* sh_link of a reloc section is the section index of the symbol
3867 table. sh_info is the section index of the section to which
3868 the relocation entries apply. */
3869 if (d->rel.idx != 0)
3870 {
3871 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3872 d->rel.hdr->sh_info = d->this_idx;
3873 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3874 }
3875 if (d->rela.idx != 0)
3876 {
3877 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3878 d->rela.hdr->sh_info = d->this_idx;
3879 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3880 }
3881
3882 /* We need to set up sh_link for SHF_LINK_ORDER. */
3883 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3884 {
3885 s = elf_linked_to_section (sec);
3886 if (s)
3887 {
3888 /* elf_linked_to_section points to the input section. */
3889 if (link_info != NULL)
3890 {
3891 /* Check discarded linkonce section. */
3892 if (discarded_section (s))
3893 {
3894 asection *kept;
3895 _bfd_error_handler
3896 /* xgettext:c-format */
3897 (_("%pB: sh_link of section `%pA' points to"
3898 " discarded section `%pA' of `%pB'"),
3899 abfd, d->this_hdr.bfd_section,
3900 s, s->owner);
3901 /* Point to the kept section if it has the same
3902 size as the discarded one. */
3903 kept = _bfd_elf_check_kept_section (s, link_info);
3904 if (kept == NULL)
3905 {
3906 bfd_set_error (bfd_error_bad_value);
3907 return FALSE;
3908 }
3909 s = kept;
3910 }
3911
3912 s = s->output_section;
3913 BFD_ASSERT (s != NULL);
3914 }
3915 else
3916 {
3917 /* Handle objcopy. */
3918 if (s->output_section == NULL)
3919 {
3920 _bfd_error_handler
3921 /* xgettext:c-format */
3922 (_("%pB: sh_link of section `%pA' points to"
3923 " removed section `%pA' of `%pB'"),
3924 abfd, d->this_hdr.bfd_section, s, s->owner);
3925 bfd_set_error (bfd_error_bad_value);
3926 return FALSE;
3927 }
3928 s = s->output_section;
3929 }
3930 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3931 }
3932 else
3933 {
3934 /* PR 290:
3935 The Intel C compiler generates SHT_IA_64_UNWIND with
3936 SHF_LINK_ORDER. But it doesn't set the sh_link or
3937 sh_info fields. Hence we could get the situation
3938 where s is NULL. */
3939 const struct elf_backend_data *bed
3940 = get_elf_backend_data (abfd);
3941 if (bed->link_order_error_handler)
3942 bed->link_order_error_handler
3943 /* xgettext:c-format */
3944 (_("%pB: warning: sh_link not set for section `%pA'"),
3945 abfd, sec);
3946 }
3947 }
3948
3949 switch (d->this_hdr.sh_type)
3950 {
3951 case SHT_REL:
3952 case SHT_RELA:
3953 /* A reloc section which we are treating as a normal BFD
3954 section. sh_link is the section index of the symbol
3955 table. sh_info is the section index of the section to
3956 which the relocation entries apply. We assume that an
3957 allocated reloc section uses the dynamic symbol table.
3958 FIXME: How can we be sure? */
3959 s = bfd_get_section_by_name (abfd, ".dynsym");
3960 if (s != NULL)
3961 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3962
3963 s = elf_get_reloc_section (sec);
3964 if (s != NULL)
3965 {
3966 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3967 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3968 }
3969 break;
3970
3971 case SHT_STRTAB:
3972 /* We assume that a section named .stab*str is a stabs
3973 string section. We look for a section with the same name
3974 but without the trailing ``str'', and set its sh_link
3975 field to point to this section. */
3976 if (CONST_STRNEQ (sec->name, ".stab")
3977 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3978 {
3979 size_t len;
3980 char *alc;
3981
3982 len = strlen (sec->name);
3983 alc = (char *) bfd_malloc (len - 2);
3984 if (alc == NULL)
3985 return FALSE;
3986 memcpy (alc, sec->name, len - 3);
3987 alc[len - 3] = '\0';
3988 s = bfd_get_section_by_name (abfd, alc);
3989 free (alc);
3990 if (s != NULL)
3991 {
3992 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3993
3994 /* This is a .stab section. */
3995 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3996 elf_section_data (s)->this_hdr.sh_entsize
3997 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3998 }
3999 }
4000 break;
4001
4002 case SHT_DYNAMIC:
4003 case SHT_DYNSYM:
4004 case SHT_GNU_verneed:
4005 case SHT_GNU_verdef:
4006 /* sh_link is the section header index of the string table
4007 used for the dynamic entries, or the symbol table, or the
4008 version strings. */
4009 s = bfd_get_section_by_name (abfd, ".dynstr");
4010 if (s != NULL)
4011 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4012 break;
4013
4014 case SHT_GNU_LIBLIST:
4015 /* sh_link is the section header index of the prelink library
4016 list used for the dynamic entries, or the symbol table, or
4017 the version strings. */
4018 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
4019 ? ".dynstr" : ".gnu.libstr");
4020 if (s != NULL)
4021 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4022 break;
4023
4024 case SHT_HASH:
4025 case SHT_GNU_HASH:
4026 case SHT_GNU_versym:
4027 /* sh_link is the section header index of the symbol table
4028 this hash table or version table is for. */
4029 s = bfd_get_section_by_name (abfd, ".dynsym");
4030 if (s != NULL)
4031 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
4032 break;
4033
4034 case SHT_GROUP:
4035 d->this_hdr.sh_link = elf_onesymtab (abfd);
4036 }
4037 }
4038
4039 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
4040 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
4041 debug section name from .debug_* to .zdebug_* if needed. */
4042
4043 return TRUE;
4044 }
4045
4046 static bfd_boolean
4047 sym_is_global (bfd *abfd, asymbol *sym)
4048 {
4049 /* If the backend has a special mapping, use it. */
4050 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4051 if (bed->elf_backend_sym_is_global)
4052 return (*bed->elf_backend_sym_is_global) (abfd, sym);
4053
4054 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
4055 || bfd_is_und_section (bfd_asymbol_section (sym))
4056 || bfd_is_com_section (bfd_asymbol_section (sym)));
4057 }
4058
4059 /* Filter global symbols of ABFD to include in the import library. All
4060 SYMCOUNT symbols of ABFD can be examined from their pointers in
4061 SYMS. Pointers of symbols to keep should be stored contiguously at
4062 the beginning of that array.
4063
4064 Returns the number of symbols to keep. */
4065
4066 unsigned int
4067 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
4068 asymbol **syms, long symcount)
4069 {
4070 long src_count, dst_count = 0;
4071
4072 for (src_count = 0; src_count < symcount; src_count++)
4073 {
4074 asymbol *sym = syms[src_count];
4075 char *name = (char *) bfd_asymbol_name (sym);
4076 struct bfd_link_hash_entry *h;
4077
4078 if (!sym_is_global (abfd, sym))
4079 continue;
4080
4081 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4082 if (h == NULL)
4083 continue;
4084 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4085 continue;
4086 if (h->linker_def || h->ldscript_def)
4087 continue;
4088
4089 syms[dst_count++] = sym;
4090 }
4091
4092 syms[dst_count] = NULL;
4093
4094 return dst_count;
4095 }
4096
4097 /* Don't output section symbols for sections that are not going to be
4098 output, that are duplicates or there is no BFD section. */
4099
4100 static bfd_boolean
4101 ignore_section_sym (bfd *abfd, asymbol *sym)
4102 {
4103 elf_symbol_type *type_ptr;
4104
4105 if (sym == NULL)
4106 return FALSE;
4107
4108 if ((sym->flags & BSF_SECTION_SYM) == 0)
4109 return FALSE;
4110
4111 if (sym->section == NULL)
4112 return TRUE;
4113
4114 type_ptr = elf_symbol_from (abfd, sym);
4115 return ((type_ptr != NULL
4116 && type_ptr->internal_elf_sym.st_shndx != 0
4117 && bfd_is_abs_section (sym->section))
4118 || !(sym->section->owner == abfd
4119 || (sym->section->output_section != NULL
4120 && sym->section->output_section->owner == abfd
4121 && sym->section->output_offset == 0)
4122 || bfd_is_abs_section (sym->section)));
4123 }
4124
4125 /* Map symbol from it's internal number to the external number, moving
4126 all local symbols to be at the head of the list. */
4127
4128 static bfd_boolean
4129 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4130 {
4131 unsigned int symcount = bfd_get_symcount (abfd);
4132 asymbol **syms = bfd_get_outsymbols (abfd);
4133 asymbol **sect_syms;
4134 unsigned int num_locals = 0;
4135 unsigned int num_globals = 0;
4136 unsigned int num_locals2 = 0;
4137 unsigned int num_globals2 = 0;
4138 unsigned int max_index = 0;
4139 unsigned int idx;
4140 asection *asect;
4141 asymbol **new_syms;
4142 size_t amt;
4143
4144 #ifdef DEBUG
4145 fprintf (stderr, "elf_map_symbols\n");
4146 fflush (stderr);
4147 #endif
4148
4149 for (asect = abfd->sections; asect; asect = asect->next)
4150 {
4151 if (max_index < asect->index)
4152 max_index = asect->index;
4153 }
4154
4155 max_index++;
4156 amt = max_index * sizeof (asymbol *);
4157 sect_syms = (asymbol **) bfd_zalloc (abfd, amt);
4158 if (sect_syms == NULL)
4159 return FALSE;
4160 elf_section_syms (abfd) = sect_syms;
4161 elf_num_section_syms (abfd) = max_index;
4162
4163 /* Init sect_syms entries for any section symbols we have already
4164 decided to output. */
4165 for (idx = 0; idx < symcount; idx++)
4166 {
4167 asymbol *sym = syms[idx];
4168
4169 if ((sym->flags & BSF_SECTION_SYM) != 0
4170 && sym->value == 0
4171 && !ignore_section_sym (abfd, sym)
4172 && !bfd_is_abs_section (sym->section))
4173 {
4174 asection *sec = sym->section;
4175
4176 if (sec->owner != abfd)
4177 sec = sec->output_section;
4178
4179 sect_syms[sec->index] = syms[idx];
4180 }
4181 }
4182
4183 /* Classify all of the symbols. */
4184 for (idx = 0; idx < symcount; idx++)
4185 {
4186 if (sym_is_global (abfd, syms[idx]))
4187 num_globals++;
4188 else if (!ignore_section_sym (abfd, syms[idx]))
4189 num_locals++;
4190 }
4191
4192 /* We will be adding a section symbol for each normal BFD section. Most
4193 sections will already have a section symbol in outsymbols, but
4194 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4195 at least in that case. */
4196 for (asect = abfd->sections; asect; asect = asect->next)
4197 {
4198 if (sect_syms[asect->index] == NULL)
4199 {
4200 if (!sym_is_global (abfd, asect->symbol))
4201 num_locals++;
4202 else
4203 num_globals++;
4204 }
4205 }
4206
4207 /* Now sort the symbols so the local symbols are first. */
4208 amt = (num_locals + num_globals) * sizeof (asymbol *);
4209 new_syms = (asymbol **) bfd_alloc (abfd, amt);
4210 if (new_syms == NULL)
4211 return FALSE;
4212
4213 for (idx = 0; idx < symcount; idx++)
4214 {
4215 asymbol *sym = syms[idx];
4216 unsigned int i;
4217
4218 if (sym_is_global (abfd, sym))
4219 i = num_locals + num_globals2++;
4220 else if (!ignore_section_sym (abfd, sym))
4221 i = num_locals2++;
4222 else
4223 continue;
4224 new_syms[i] = sym;
4225 sym->udata.i = i + 1;
4226 }
4227 for (asect = abfd->sections; asect; asect = asect->next)
4228 {
4229 if (sect_syms[asect->index] == NULL)
4230 {
4231 asymbol *sym = asect->symbol;
4232 unsigned int i;
4233
4234 sect_syms[asect->index] = sym;
4235 if (!sym_is_global (abfd, sym))
4236 i = num_locals2++;
4237 else
4238 i = num_locals + num_globals2++;
4239 new_syms[i] = sym;
4240 sym->udata.i = i + 1;
4241 }
4242 }
4243
4244 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4245
4246 *pnum_locals = num_locals;
4247 return TRUE;
4248 }
4249
4250 /* Align to the maximum file alignment that could be required for any
4251 ELF data structure. */
4252
4253 static inline file_ptr
4254 align_file_position (file_ptr off, int align)
4255 {
4256 return (off + align - 1) & ~(align - 1);
4257 }
4258
4259 /* Assign a file position to a section, optionally aligning to the
4260 required section alignment. */
4261
4262 file_ptr
4263 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4264 file_ptr offset,
4265 bfd_boolean align)
4266 {
4267 if (align && i_shdrp->sh_addralign > 1)
4268 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4269 i_shdrp->sh_offset = offset;
4270 if (i_shdrp->bfd_section != NULL)
4271 i_shdrp->bfd_section->filepos = offset;
4272 if (i_shdrp->sh_type != SHT_NOBITS)
4273 offset += i_shdrp->sh_size;
4274 return offset;
4275 }
4276
4277 /* Compute the file positions we are going to put the sections at, and
4278 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4279 is not NULL, this is being called by the ELF backend linker. */
4280
4281 bfd_boolean
4282 _bfd_elf_compute_section_file_positions (bfd *abfd,
4283 struct bfd_link_info *link_info)
4284 {
4285 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4286 struct fake_section_arg fsargs;
4287 bfd_boolean failed;
4288 struct elf_strtab_hash *strtab = NULL;
4289 Elf_Internal_Shdr *shstrtab_hdr;
4290 bfd_boolean need_symtab;
4291
4292 if (abfd->output_has_begun)
4293 return TRUE;
4294
4295 /* Do any elf backend specific processing first. */
4296 if (bed->elf_backend_begin_write_processing)
4297 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4298
4299 if (!(*bed->elf_backend_init_file_header) (abfd, link_info))
4300 return FALSE;
4301
4302 fsargs.failed = FALSE;
4303 fsargs.link_info = link_info;
4304 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4305 if (fsargs.failed)
4306 return FALSE;
4307
4308 if (!assign_section_numbers (abfd, link_info))
4309 return FALSE;
4310
4311 /* The backend linker builds symbol table information itself. */
4312 need_symtab = (link_info == NULL
4313 && (bfd_get_symcount (abfd) > 0
4314 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4315 == HAS_RELOC)));
4316 if (need_symtab)
4317 {
4318 /* Non-zero if doing a relocatable link. */
4319 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4320
4321 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4322 return FALSE;
4323 }
4324
4325 failed = FALSE;
4326 if (link_info == NULL)
4327 {
4328 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4329 if (failed)
4330 return FALSE;
4331 }
4332
4333 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4334 /* sh_name was set in init_file_header. */
4335 shstrtab_hdr->sh_type = SHT_STRTAB;
4336 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4337 shstrtab_hdr->sh_addr = 0;
4338 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4339 shstrtab_hdr->sh_entsize = 0;
4340 shstrtab_hdr->sh_link = 0;
4341 shstrtab_hdr->sh_info = 0;
4342 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4343 shstrtab_hdr->sh_addralign = 1;
4344
4345 if (!assign_file_positions_except_relocs (abfd, link_info))
4346 return FALSE;
4347
4348 if (need_symtab)
4349 {
4350 file_ptr off;
4351 Elf_Internal_Shdr *hdr;
4352
4353 off = elf_next_file_pos (abfd);
4354
4355 hdr = & elf_symtab_hdr (abfd);
4356 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4357
4358 if (elf_symtab_shndx_list (abfd) != NULL)
4359 {
4360 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4361 if (hdr->sh_size != 0)
4362 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4363 /* FIXME: What about other symtab_shndx sections in the list ? */
4364 }
4365
4366 hdr = &elf_tdata (abfd)->strtab_hdr;
4367 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4368
4369 elf_next_file_pos (abfd) = off;
4370
4371 /* Now that we know where the .strtab section goes, write it
4372 out. */
4373 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4374 || ! _bfd_elf_strtab_emit (abfd, strtab))
4375 return FALSE;
4376 _bfd_elf_strtab_free (strtab);
4377 }
4378
4379 abfd->output_has_begun = TRUE;
4380
4381 return TRUE;
4382 }
4383
4384 /* Make an initial estimate of the size of the program header. If we
4385 get the number wrong here, we'll redo section placement. */
4386
4387 static bfd_size_type
4388 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4389 {
4390 size_t segs;
4391 asection *s;
4392 const struct elf_backend_data *bed;
4393
4394 /* Assume we will need exactly two PT_LOAD segments: one for text
4395 and one for data. */
4396 segs = 2;
4397
4398 s = bfd_get_section_by_name (abfd, ".interp");
4399 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4400 {
4401 /* If we have a loadable interpreter section, we need a
4402 PT_INTERP segment. In this case, assume we also need a
4403 PT_PHDR segment, although that may not be true for all
4404 targets. */
4405 segs += 2;
4406 }
4407
4408 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4409 {
4410 /* We need a PT_DYNAMIC segment. */
4411 ++segs;
4412 }
4413
4414 if (info != NULL && info->relro)
4415 {
4416 /* We need a PT_GNU_RELRO segment. */
4417 ++segs;
4418 }
4419
4420 if (elf_eh_frame_hdr (abfd))
4421 {
4422 /* We need a PT_GNU_EH_FRAME segment. */
4423 ++segs;
4424 }
4425
4426 if (elf_stack_flags (abfd))
4427 {
4428 /* We need a PT_GNU_STACK segment. */
4429 ++segs;
4430 }
4431
4432 s = bfd_get_section_by_name (abfd,
4433 NOTE_GNU_PROPERTY_SECTION_NAME);
4434 if (s != NULL && s->size != 0)
4435 {
4436 /* We need a PT_GNU_PROPERTY segment. */
4437 ++segs;
4438 }
4439
4440 for (s = abfd->sections; s != NULL; s = s->next)
4441 {
4442 if ((s->flags & SEC_LOAD) != 0
4443 && elf_section_type (s) == SHT_NOTE)
4444 {
4445 unsigned int alignment_power;
4446 /* We need a PT_NOTE segment. */
4447 ++segs;
4448 /* Try to create just one PT_NOTE segment for all adjacent
4449 loadable SHT_NOTE sections. gABI requires that within a
4450 PT_NOTE segment (and also inside of each SHT_NOTE section)
4451 each note should have the same alignment. So we check
4452 whether the sections are correctly aligned. */
4453 alignment_power = s->alignment_power;
4454 while (s->next != NULL
4455 && s->next->alignment_power == alignment_power
4456 && (s->next->flags & SEC_LOAD) != 0
4457 && elf_section_type (s->next) == SHT_NOTE)
4458 s = s->next;
4459 }
4460 }
4461
4462 for (s = abfd->sections; s != NULL; s = s->next)
4463 {
4464 if (s->flags & SEC_THREAD_LOCAL)
4465 {
4466 /* We need a PT_TLS segment. */
4467 ++segs;
4468 break;
4469 }
4470 }
4471
4472 bed = get_elf_backend_data (abfd);
4473
4474 if ((abfd->flags & D_PAGED) != 0
4475 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
4476 {
4477 /* Add a PT_GNU_MBIND segment for each mbind section. */
4478 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4479 for (s = abfd->sections; s != NULL; s = s->next)
4480 if (elf_section_flags (s) & SHF_GNU_MBIND)
4481 {
4482 if (elf_section_data (s)->this_hdr.sh_info > PT_GNU_MBIND_NUM)
4483 {
4484 _bfd_error_handler
4485 /* xgettext:c-format */
4486 (_("%pB: GNU_MBIND section `%pA' has invalid "
4487 "sh_info field: %d"),
4488 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4489 continue;
4490 }
4491 /* Align mbind section to page size. */
4492 if (s->alignment_power < page_align_power)
4493 s->alignment_power = page_align_power;
4494 segs ++;
4495 }
4496 }
4497
4498 /* Let the backend count up any program headers it might need. */
4499 if (bed->elf_backend_additional_program_headers)
4500 {
4501 int a;
4502
4503 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4504 if (a == -1)
4505 abort ();
4506 segs += a;
4507 }
4508
4509 return segs * bed->s->sizeof_phdr;
4510 }
4511
4512 /* Find the segment that contains the output_section of section. */
4513
4514 Elf_Internal_Phdr *
4515 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4516 {
4517 struct elf_segment_map *m;
4518 Elf_Internal_Phdr *p;
4519
4520 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4521 m != NULL;
4522 m = m->next, p++)
4523 {
4524 int i;
4525
4526 for (i = m->count - 1; i >= 0; i--)
4527 if (m->sections[i] == section)
4528 return p;
4529 }
4530
4531 return NULL;
4532 }
4533
4534 /* Create a mapping from a set of sections to a program segment. */
4535
4536 static struct elf_segment_map *
4537 make_mapping (bfd *abfd,
4538 asection **sections,
4539 unsigned int from,
4540 unsigned int to,
4541 bfd_boolean phdr)
4542 {
4543 struct elf_segment_map *m;
4544 unsigned int i;
4545 asection **hdrpp;
4546 size_t amt;
4547
4548 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
4549 amt += (to - from) * sizeof (asection *);
4550 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4551 if (m == NULL)
4552 return NULL;
4553 m->next = NULL;
4554 m->p_type = PT_LOAD;
4555 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4556 m->sections[i - from] = *hdrpp;
4557 m->count = to - from;
4558
4559 if (from == 0 && phdr)
4560 {
4561 /* Include the headers in the first PT_LOAD segment. */
4562 m->includes_filehdr = 1;
4563 m->includes_phdrs = 1;
4564 }
4565
4566 return m;
4567 }
4568
4569 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4570 on failure. */
4571
4572 struct elf_segment_map *
4573 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4574 {
4575 struct elf_segment_map *m;
4576
4577 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4578 sizeof (struct elf_segment_map));
4579 if (m == NULL)
4580 return NULL;
4581 m->next = NULL;
4582 m->p_type = PT_DYNAMIC;
4583 m->count = 1;
4584 m->sections[0] = dynsec;
4585
4586 return m;
4587 }
4588
4589 /* Possibly add or remove segments from the segment map. */
4590
4591 static bfd_boolean
4592 elf_modify_segment_map (bfd *abfd,
4593 struct bfd_link_info *info,
4594 bfd_boolean remove_empty_load)
4595 {
4596 struct elf_segment_map **m;
4597 const struct elf_backend_data *bed;
4598
4599 /* The placement algorithm assumes that non allocated sections are
4600 not in PT_LOAD segments. We ensure this here by removing such
4601 sections from the segment map. We also remove excluded
4602 sections. Finally, any PT_LOAD segment without sections is
4603 removed. */
4604 m = &elf_seg_map (abfd);
4605 while (*m)
4606 {
4607 unsigned int i, new_count;
4608
4609 for (new_count = 0, i = 0; i < (*m)->count; i++)
4610 {
4611 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4612 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4613 || (*m)->p_type != PT_LOAD))
4614 {
4615 (*m)->sections[new_count] = (*m)->sections[i];
4616 new_count++;
4617 }
4618 }
4619 (*m)->count = new_count;
4620
4621 if (remove_empty_load
4622 && (*m)->p_type == PT_LOAD
4623 && (*m)->count == 0
4624 && !(*m)->includes_phdrs)
4625 *m = (*m)->next;
4626 else
4627 m = &(*m)->next;
4628 }
4629
4630 bed = get_elf_backend_data (abfd);
4631 if (bed->elf_backend_modify_segment_map != NULL)
4632 {
4633 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4634 return FALSE;
4635 }
4636
4637 return TRUE;
4638 }
4639
4640 #define IS_TBSS(s) \
4641 ((s->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) == SEC_THREAD_LOCAL)
4642
4643 /* Set up a mapping from BFD sections to program segments. */
4644
4645 bfd_boolean
4646 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4647 {
4648 unsigned int count;
4649 struct elf_segment_map *m;
4650 asection **sections = NULL;
4651 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4652 bfd_boolean no_user_phdrs;
4653
4654 no_user_phdrs = elf_seg_map (abfd) == NULL;
4655
4656 if (info != NULL)
4657 info->user_phdrs = !no_user_phdrs;
4658
4659 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4660 {
4661 asection *s;
4662 unsigned int i;
4663 struct elf_segment_map *mfirst;
4664 struct elf_segment_map **pm;
4665 asection *last_hdr;
4666 bfd_vma last_size;
4667 unsigned int hdr_index;
4668 bfd_vma maxpagesize;
4669 asection **hdrpp;
4670 bfd_boolean phdr_in_segment;
4671 bfd_boolean writable;
4672 bfd_boolean executable;
4673 unsigned int tls_count = 0;
4674 asection *first_tls = NULL;
4675 asection *first_mbind = NULL;
4676 asection *dynsec, *eh_frame_hdr;
4677 size_t amt;
4678 bfd_vma addr_mask, wrap_to = 0;
4679 bfd_size_type phdr_size;
4680
4681 /* Select the allocated sections, and sort them. */
4682
4683 amt = bfd_count_sections (abfd) * sizeof (asection *);
4684 sections = (asection **) bfd_malloc (amt);
4685 if (sections == NULL)
4686 goto error_return;
4687
4688 /* Calculate top address, avoiding undefined behaviour of shift
4689 left operator when shift count is equal to size of type
4690 being shifted. */
4691 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4692 addr_mask = (addr_mask << 1) + 1;
4693
4694 i = 0;
4695 for (s = abfd->sections; s != NULL; s = s->next)
4696 {
4697 if ((s->flags & SEC_ALLOC) != 0)
4698 {
4699 /* target_index is unused until bfd_elf_final_link
4700 starts output of section symbols. Use it to make
4701 qsort stable. */
4702 s->target_index = i;
4703 sections[i] = s;
4704 ++i;
4705 /* A wrapping section potentially clashes with header. */
4706 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4707 wrap_to = (s->lma + s->size) & addr_mask;
4708 }
4709 }
4710 BFD_ASSERT (i <= bfd_count_sections (abfd));
4711 count = i;
4712
4713 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4714
4715 phdr_size = elf_program_header_size (abfd);
4716 if (phdr_size == (bfd_size_type) -1)
4717 phdr_size = get_program_header_size (abfd, info);
4718 phdr_size += bed->s->sizeof_ehdr;
4719 maxpagesize = bed->maxpagesize;
4720 if (maxpagesize == 0)
4721 maxpagesize = 1;
4722 phdr_in_segment = info != NULL && info->load_phdrs;
4723 if (count != 0
4724 && (((sections[0]->lma & addr_mask) & (maxpagesize - 1))
4725 >= (phdr_size & (maxpagesize - 1))))
4726 /* For compatibility with old scripts that may not be using
4727 SIZEOF_HEADERS, add headers when it looks like space has
4728 been left for them. */
4729 phdr_in_segment = TRUE;
4730
4731 /* Build the mapping. */
4732 mfirst = NULL;
4733 pm = &mfirst;
4734
4735 /* If we have a .interp section, then create a PT_PHDR segment for
4736 the program headers and a PT_INTERP segment for the .interp
4737 section. */
4738 s = bfd_get_section_by_name (abfd, ".interp");
4739 if (s != NULL && (s->flags & SEC_LOAD) != 0 && s->size != 0)
4740 {
4741 amt = sizeof (struct elf_segment_map);
4742 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4743 if (m == NULL)
4744 goto error_return;
4745 m->next = NULL;
4746 m->p_type = PT_PHDR;
4747 m->p_flags = PF_R;
4748 m->p_flags_valid = 1;
4749 m->includes_phdrs = 1;
4750 phdr_in_segment = TRUE;
4751 *pm = m;
4752 pm = &m->next;
4753
4754 amt = sizeof (struct elf_segment_map);
4755 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4756 if (m == NULL)
4757 goto error_return;
4758 m->next = NULL;
4759 m->p_type = PT_INTERP;
4760 m->count = 1;
4761 m->sections[0] = s;
4762
4763 *pm = m;
4764 pm = &m->next;
4765 }
4766
4767 /* Look through the sections. We put sections in the same program
4768 segment when the start of the second section can be placed within
4769 a few bytes of the end of the first section. */
4770 last_hdr = NULL;
4771 last_size = 0;
4772 hdr_index = 0;
4773 writable = FALSE;
4774 executable = FALSE;
4775 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4776 if (dynsec != NULL
4777 && (dynsec->flags & SEC_LOAD) == 0)
4778 dynsec = NULL;
4779
4780 if ((abfd->flags & D_PAGED) == 0)
4781 phdr_in_segment = FALSE;
4782
4783 /* Deal with -Ttext or something similar such that the first section
4784 is not adjacent to the program headers. This is an
4785 approximation, since at this point we don't know exactly how many
4786 program headers we will need. */
4787 if (phdr_in_segment && count > 0)
4788 {
4789 bfd_vma phdr_lma;
4790 bfd_boolean separate_phdr = FALSE;
4791
4792 phdr_lma = (sections[0]->lma - phdr_size) & addr_mask & -maxpagesize;
4793 if (info != NULL
4794 && info->separate_code
4795 && (sections[0]->flags & SEC_CODE) != 0)
4796 {
4797 /* If data sections should be separate from code and
4798 thus not executable, and the first section is
4799 executable then put the file and program headers in
4800 their own PT_LOAD. */
4801 separate_phdr = TRUE;
4802 if ((((phdr_lma + phdr_size - 1) & addr_mask & -maxpagesize)
4803 == (sections[0]->lma & addr_mask & -maxpagesize)))
4804 {
4805 /* The file and program headers are currently on the
4806 same page as the first section. Put them on the
4807 previous page if we can. */
4808 if (phdr_lma >= maxpagesize)
4809 phdr_lma -= maxpagesize;
4810 else
4811 separate_phdr = FALSE;
4812 }
4813 }
4814 if ((sections[0]->lma & addr_mask) < phdr_lma
4815 || (sections[0]->lma & addr_mask) < phdr_size)
4816 /* If file and program headers would be placed at the end
4817 of memory then it's probably better to omit them. */
4818 phdr_in_segment = FALSE;
4819 else if (phdr_lma < wrap_to)
4820 /* If a section wraps around to where we'll be placing
4821 file and program headers, then the headers will be
4822 overwritten. */
4823 phdr_in_segment = FALSE;
4824 else if (separate_phdr)
4825 {
4826 m = make_mapping (abfd, sections, 0, 0, phdr_in_segment);
4827 if (m == NULL)
4828 goto error_return;
4829 m->p_paddr = phdr_lma;
4830 m->p_vaddr_offset
4831 = (sections[0]->vma - phdr_size) & addr_mask & -maxpagesize;
4832 m->p_paddr_valid = 1;
4833 *pm = m;
4834 pm = &m->next;
4835 phdr_in_segment = FALSE;
4836 }
4837 }
4838
4839 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4840 {
4841 asection *hdr;
4842 bfd_boolean new_segment;
4843
4844 hdr = *hdrpp;
4845
4846 /* See if this section and the last one will fit in the same
4847 segment. */
4848
4849 if (last_hdr == NULL)
4850 {
4851 /* If we don't have a segment yet, then we don't need a new
4852 one (we build the last one after this loop). */
4853 new_segment = FALSE;
4854 }
4855 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4856 {
4857 /* If this section has a different relation between the
4858 virtual address and the load address, then we need a new
4859 segment. */
4860 new_segment = TRUE;
4861 }
4862 else if (hdr->lma < last_hdr->lma + last_size
4863 || last_hdr->lma + last_size < last_hdr->lma)
4864 {
4865 /* If this section has a load address that makes it overlap
4866 the previous section, then we need a new segment. */
4867 new_segment = TRUE;
4868 }
4869 else if ((abfd->flags & D_PAGED) != 0
4870 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4871 == (hdr->lma & -maxpagesize)))
4872 {
4873 /* If we are demand paged then we can't map two disk
4874 pages onto the same memory page. */
4875 new_segment = FALSE;
4876 }
4877 /* In the next test we have to be careful when last_hdr->lma is close
4878 to the end of the address space. If the aligned address wraps
4879 around to the start of the address space, then there are no more
4880 pages left in memory and it is OK to assume that the current
4881 section can be included in the current segment. */
4882 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4883 + maxpagesize > last_hdr->lma)
4884 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4885 + maxpagesize <= hdr->lma))
4886 {
4887 /* If putting this section in this segment would force us to
4888 skip a page in the segment, then we need a new segment. */
4889 new_segment = TRUE;
4890 }
4891 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4892 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4893 {
4894 /* We don't want to put a loaded section after a
4895 nonloaded (ie. bss style) section in the same segment
4896 as that will force the non-loaded section to be loaded.
4897 Consider .tbss sections as loaded for this purpose. */
4898 new_segment = TRUE;
4899 }
4900 else if ((abfd->flags & D_PAGED) == 0)
4901 {
4902 /* If the file is not demand paged, which means that we
4903 don't require the sections to be correctly aligned in the
4904 file, then there is no other reason for a new segment. */
4905 new_segment = FALSE;
4906 }
4907 else if (info != NULL
4908 && info->separate_code
4909 && executable != ((hdr->flags & SEC_CODE) != 0))
4910 {
4911 new_segment = TRUE;
4912 }
4913 else if (! writable
4914 && (hdr->flags & SEC_READONLY) == 0)
4915 {
4916 /* We don't want to put a writable section in a read only
4917 segment. */
4918 new_segment = TRUE;
4919 }
4920 else
4921 {
4922 /* Otherwise, we can use the same segment. */
4923 new_segment = FALSE;
4924 }
4925
4926 /* Allow interested parties a chance to override our decision. */
4927 if (last_hdr != NULL
4928 && info != NULL
4929 && info->callbacks->override_segment_assignment != NULL)
4930 new_segment
4931 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4932 last_hdr,
4933 new_segment);
4934
4935 if (! new_segment)
4936 {
4937 if ((hdr->flags & SEC_READONLY) == 0)
4938 writable = TRUE;
4939 if ((hdr->flags & SEC_CODE) != 0)
4940 executable = TRUE;
4941 last_hdr = hdr;
4942 /* .tbss sections effectively have zero size. */
4943 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4944 continue;
4945 }
4946
4947 /* We need a new program segment. We must create a new program
4948 header holding all the sections from hdr_index until hdr. */
4949
4950 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4951 if (m == NULL)
4952 goto error_return;
4953
4954 *pm = m;
4955 pm = &m->next;
4956
4957 if ((hdr->flags & SEC_READONLY) == 0)
4958 writable = TRUE;
4959 else
4960 writable = FALSE;
4961
4962 if ((hdr->flags & SEC_CODE) == 0)
4963 executable = FALSE;
4964 else
4965 executable = TRUE;
4966
4967 last_hdr = hdr;
4968 /* .tbss sections effectively have zero size. */
4969 last_size = !IS_TBSS (hdr) ? hdr->size : 0;
4970 hdr_index = i;
4971 phdr_in_segment = FALSE;
4972 }
4973
4974 /* Create a final PT_LOAD program segment, but not if it's just
4975 for .tbss. */
4976 if (last_hdr != NULL
4977 && (i - hdr_index != 1
4978 || !IS_TBSS (last_hdr)))
4979 {
4980 m = make_mapping (abfd, sections, hdr_index, i, phdr_in_segment);
4981 if (m == NULL)
4982 goto error_return;
4983
4984 *pm = m;
4985 pm = &m->next;
4986 }
4987
4988 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4989 if (dynsec != NULL)
4990 {
4991 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4992 if (m == NULL)
4993 goto error_return;
4994 *pm = m;
4995 pm = &m->next;
4996 }
4997
4998 /* For each batch of consecutive loadable SHT_NOTE sections,
4999 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
5000 because if we link together nonloadable .note sections and
5001 loadable .note sections, we will generate two .note sections
5002 in the output file. */
5003 for (s = abfd->sections; s != NULL; s = s->next)
5004 {
5005 if ((s->flags & SEC_LOAD) != 0
5006 && elf_section_type (s) == SHT_NOTE)
5007 {
5008 asection *s2;
5009 unsigned int alignment_power = s->alignment_power;
5010
5011 count = 1;
5012 for (s2 = s; s2->next != NULL; s2 = s2->next)
5013 {
5014 if (s2->next->alignment_power == alignment_power
5015 && (s2->next->flags & SEC_LOAD) != 0
5016 && elf_section_type (s2->next) == SHT_NOTE
5017 && align_power (s2->lma + s2->size,
5018 alignment_power)
5019 == s2->next->lma)
5020 count++;
5021 else
5022 break;
5023 }
5024 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5025 amt += count * sizeof (asection *);
5026 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5027 if (m == NULL)
5028 goto error_return;
5029 m->next = NULL;
5030 m->p_type = PT_NOTE;
5031 m->count = count;
5032 while (count > 1)
5033 {
5034 m->sections[m->count - count--] = s;
5035 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5036 s = s->next;
5037 }
5038 m->sections[m->count - 1] = s;
5039 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
5040 *pm = m;
5041 pm = &m->next;
5042 }
5043 if (s->flags & SEC_THREAD_LOCAL)
5044 {
5045 if (! tls_count)
5046 first_tls = s;
5047 tls_count++;
5048 }
5049 if (first_mbind == NULL
5050 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
5051 first_mbind = s;
5052 }
5053
5054 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
5055 if (tls_count > 0)
5056 {
5057 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
5058 amt += tls_count * sizeof (asection *);
5059 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5060 if (m == NULL)
5061 goto error_return;
5062 m->next = NULL;
5063 m->p_type = PT_TLS;
5064 m->count = tls_count;
5065 /* Mandated PF_R. */
5066 m->p_flags = PF_R;
5067 m->p_flags_valid = 1;
5068 s = first_tls;
5069 for (i = 0; i < tls_count; ++i)
5070 {
5071 if ((s->flags & SEC_THREAD_LOCAL) == 0)
5072 {
5073 _bfd_error_handler
5074 (_("%pB: TLS sections are not adjacent:"), abfd);
5075 s = first_tls;
5076 i = 0;
5077 while (i < tls_count)
5078 {
5079 if ((s->flags & SEC_THREAD_LOCAL) != 0)
5080 {
5081 _bfd_error_handler (_(" TLS: %pA"), s);
5082 i++;
5083 }
5084 else
5085 _bfd_error_handler (_(" non-TLS: %pA"), s);
5086 s = s->next;
5087 }
5088 bfd_set_error (bfd_error_bad_value);
5089 goto error_return;
5090 }
5091 m->sections[i] = s;
5092 s = s->next;
5093 }
5094
5095 *pm = m;
5096 pm = &m->next;
5097 }
5098
5099 if (first_mbind
5100 && (abfd->flags & D_PAGED) != 0
5101 && (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0)
5102 for (s = first_mbind; s != NULL; s = s->next)
5103 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
5104 && elf_section_data (s)->this_hdr.sh_info <= PT_GNU_MBIND_NUM)
5105 {
5106 /* Mandated PF_R. */
5107 unsigned long p_flags = PF_R;
5108 if ((s->flags & SEC_READONLY) == 0)
5109 p_flags |= PF_W;
5110 if ((s->flags & SEC_CODE) != 0)
5111 p_flags |= PF_X;
5112
5113 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5114 m = bfd_zalloc (abfd, amt);
5115 if (m == NULL)
5116 goto error_return;
5117 m->next = NULL;
5118 m->p_type = (PT_GNU_MBIND_LO
5119 + elf_section_data (s)->this_hdr.sh_info);
5120 m->count = 1;
5121 m->p_flags_valid = 1;
5122 m->sections[0] = s;
5123 m->p_flags = p_flags;
5124
5125 *pm = m;
5126 pm = &m->next;
5127 }
5128
5129 s = bfd_get_section_by_name (abfd,
5130 NOTE_GNU_PROPERTY_SECTION_NAME);
5131 if (s != NULL && s->size != 0)
5132 {
5133 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
5134 m = bfd_zalloc (abfd, amt);
5135 if (m == NULL)
5136 goto error_return;
5137 m->next = NULL;
5138 m->p_type = PT_GNU_PROPERTY;
5139 m->count = 1;
5140 m->p_flags_valid = 1;
5141 m->sections[0] = s;
5142 m->p_flags = PF_R;
5143 *pm = m;
5144 pm = &m->next;
5145 }
5146
5147 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
5148 segment. */
5149 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5150 if (eh_frame_hdr != NULL
5151 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5152 {
5153 amt = sizeof (struct elf_segment_map);
5154 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5155 if (m == NULL)
5156 goto error_return;
5157 m->next = NULL;
5158 m->p_type = PT_GNU_EH_FRAME;
5159 m->count = 1;
5160 m->sections[0] = eh_frame_hdr->output_section;
5161
5162 *pm = m;
5163 pm = &m->next;
5164 }
5165
5166 if (elf_stack_flags (abfd))
5167 {
5168 amt = sizeof (struct elf_segment_map);
5169 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5170 if (m == NULL)
5171 goto error_return;
5172 m->next = NULL;
5173 m->p_type = PT_GNU_STACK;
5174 m->p_flags = elf_stack_flags (abfd);
5175 m->p_align = bed->stack_align;
5176 m->p_flags_valid = 1;
5177 m->p_align_valid = m->p_align != 0;
5178 if (info->stacksize > 0)
5179 {
5180 m->p_size = info->stacksize;
5181 m->p_size_valid = 1;
5182 }
5183
5184 *pm = m;
5185 pm = &m->next;
5186 }
5187
5188 if (info != NULL && info->relro)
5189 {
5190 for (m = mfirst; m != NULL; m = m->next)
5191 {
5192 if (m->p_type == PT_LOAD
5193 && m->count != 0
5194 && m->sections[0]->vma >= info->relro_start
5195 && m->sections[0]->vma < info->relro_end)
5196 {
5197 i = m->count;
5198 while (--i != (unsigned) -1)
5199 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5200 == (SEC_LOAD | SEC_HAS_CONTENTS))
5201 break;
5202
5203 if (i != (unsigned) -1)
5204 break;
5205 }
5206 }
5207
5208 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5209 if (m != NULL)
5210 {
5211 amt = sizeof (struct elf_segment_map);
5212 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5213 if (m == NULL)
5214 goto error_return;
5215 m->next = NULL;
5216 m->p_type = PT_GNU_RELRO;
5217 *pm = m;
5218 pm = &m->next;
5219 }
5220 }
5221
5222 free (sections);
5223 elf_seg_map (abfd) = mfirst;
5224 }
5225
5226 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5227 return FALSE;
5228
5229 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5230 ++count;
5231 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5232
5233 return TRUE;
5234
5235 error_return:
5236 if (sections != NULL)
5237 free (sections);
5238 return FALSE;
5239 }
5240
5241 /* Sort sections by address. */
5242
5243 static int
5244 elf_sort_sections (const void *arg1, const void *arg2)
5245 {
5246 const asection *sec1 = *(const asection **) arg1;
5247 const asection *sec2 = *(const asection **) arg2;
5248 bfd_size_type size1, size2;
5249
5250 /* Sort by LMA first, since this is the address used to
5251 place the section into a segment. */
5252 if (sec1->lma < sec2->lma)
5253 return -1;
5254 else if (sec1->lma > sec2->lma)
5255 return 1;
5256
5257 /* Then sort by VMA. Normally the LMA and the VMA will be
5258 the same, and this will do nothing. */
5259 if (sec1->vma < sec2->vma)
5260 return -1;
5261 else if (sec1->vma > sec2->vma)
5262 return 1;
5263
5264 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5265
5266 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5267
5268 if (TOEND (sec1))
5269 {
5270 if (!TOEND (sec2))
5271 return 1;
5272 }
5273 else if (TOEND (sec2))
5274 return -1;
5275
5276 #undef TOEND
5277
5278 /* Sort by size, to put zero sized sections
5279 before others at the same address. */
5280
5281 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5282 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5283
5284 if (size1 < size2)
5285 return -1;
5286 if (size1 > size2)
5287 return 1;
5288
5289 return sec1->target_index - sec2->target_index;
5290 }
5291
5292 /* This qsort comparison functions sorts PT_LOAD segments first and
5293 by p_paddr, for assign_file_positions_for_load_sections. */
5294
5295 static int
5296 elf_sort_segments (const void *arg1, const void *arg2)
5297 {
5298 const struct elf_segment_map *m1 = *(const struct elf_segment_map **) arg1;
5299 const struct elf_segment_map *m2 = *(const struct elf_segment_map **) arg2;
5300
5301 if (m1->p_type != m2->p_type)
5302 {
5303 if (m1->p_type == PT_NULL)
5304 return 1;
5305 if (m2->p_type == PT_NULL)
5306 return -1;
5307 return m1->p_type < m2->p_type ? -1 : 1;
5308 }
5309 if (m1->includes_filehdr != m2->includes_filehdr)
5310 return m1->includes_filehdr ? -1 : 1;
5311 if (m1->no_sort_lma != m2->no_sort_lma)
5312 return m1->no_sort_lma ? -1 : 1;
5313 if (m1->p_type == PT_LOAD && !m1->no_sort_lma)
5314 {
5315 bfd_vma lma1, lma2;
5316 lma1 = 0;
5317 if (m1->p_paddr_valid)
5318 lma1 = m1->p_paddr;
5319 else if (m1->count != 0)
5320 lma1 = m1->sections[0]->lma + m1->p_vaddr_offset;
5321 lma2 = 0;
5322 if (m2->p_paddr_valid)
5323 lma2 = m2->p_paddr;
5324 else if (m2->count != 0)
5325 lma2 = m2->sections[0]->lma + m2->p_vaddr_offset;
5326 if (lma1 != lma2)
5327 return lma1 < lma2 ? -1 : 1;
5328 }
5329 if (m1->idx != m2->idx)
5330 return m1->idx < m2->idx ? -1 : 1;
5331 return 0;
5332 }
5333
5334 /* Ian Lance Taylor writes:
5335
5336 We shouldn't be using % with a negative signed number. That's just
5337 not good. We have to make sure either that the number is not
5338 negative, or that the number has an unsigned type. When the types
5339 are all the same size they wind up as unsigned. When file_ptr is a
5340 larger signed type, the arithmetic winds up as signed long long,
5341 which is wrong.
5342
5343 What we're trying to say here is something like ``increase OFF by
5344 the least amount that will cause it to be equal to the VMA modulo
5345 the page size.'' */
5346 /* In other words, something like:
5347
5348 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5349 off_offset = off % bed->maxpagesize;
5350 if (vma_offset < off_offset)
5351 adjustment = vma_offset + bed->maxpagesize - off_offset;
5352 else
5353 adjustment = vma_offset - off_offset;
5354
5355 which can be collapsed into the expression below. */
5356
5357 static file_ptr
5358 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5359 {
5360 /* PR binutils/16199: Handle an alignment of zero. */
5361 if (maxpagesize == 0)
5362 maxpagesize = 1;
5363 return ((vma - off) % maxpagesize);
5364 }
5365
5366 static void
5367 print_segment_map (const struct elf_segment_map *m)
5368 {
5369 unsigned int j;
5370 const char *pt = get_segment_type (m->p_type);
5371 char buf[32];
5372
5373 if (pt == NULL)
5374 {
5375 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5376 sprintf (buf, "LOPROC+%7.7x",
5377 (unsigned int) (m->p_type - PT_LOPROC));
5378 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5379 sprintf (buf, "LOOS+%7.7x",
5380 (unsigned int) (m->p_type - PT_LOOS));
5381 else
5382 snprintf (buf, sizeof (buf), "%8.8x",
5383 (unsigned int) m->p_type);
5384 pt = buf;
5385 }
5386 fflush (stdout);
5387 fprintf (stderr, "%s:", pt);
5388 for (j = 0; j < m->count; j++)
5389 fprintf (stderr, " %s", m->sections [j]->name);
5390 putc ('\n',stderr);
5391 fflush (stderr);
5392 }
5393
5394 static bfd_boolean
5395 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5396 {
5397 void *buf;
5398 bfd_boolean ret;
5399
5400 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5401 return FALSE;
5402 buf = bfd_zmalloc (len);
5403 if (buf == NULL)
5404 return FALSE;
5405 ret = bfd_bwrite (buf, len, abfd) == len;
5406 free (buf);
5407 return ret;
5408 }
5409
5410 /* Assign file positions to the sections based on the mapping from
5411 sections to segments. This function also sets up some fields in
5412 the file header. */
5413
5414 static bfd_boolean
5415 assign_file_positions_for_load_sections (bfd *abfd,
5416 struct bfd_link_info *link_info)
5417 {
5418 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5419 struct elf_segment_map *m;
5420 struct elf_segment_map *phdr_load_seg;
5421 Elf_Internal_Phdr *phdrs;
5422 Elf_Internal_Phdr *p;
5423 file_ptr off;
5424 bfd_size_type maxpagesize;
5425 unsigned int alloc, actual;
5426 unsigned int i, j;
5427 struct elf_segment_map **sorted_seg_map;
5428
5429 if (link_info == NULL
5430 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5431 return FALSE;
5432
5433 alloc = 0;
5434 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5435 m->idx = alloc++;
5436
5437 if (alloc)
5438 {
5439 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5440 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5441 }
5442 else
5443 {
5444 /* PR binutils/12467. */
5445 elf_elfheader (abfd)->e_phoff = 0;
5446 elf_elfheader (abfd)->e_phentsize = 0;
5447 }
5448
5449 elf_elfheader (abfd)->e_phnum = alloc;
5450
5451 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5452 {
5453 actual = alloc;
5454 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5455 }
5456 else
5457 {
5458 actual = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
5459 BFD_ASSERT (elf_program_header_size (abfd)
5460 == actual * bed->s->sizeof_phdr);
5461 BFD_ASSERT (actual >= alloc);
5462 }
5463
5464 if (alloc == 0)
5465 {
5466 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5467 return TRUE;
5468 }
5469
5470 /* We're writing the size in elf_program_header_size (abfd),
5471 see assign_file_positions_except_relocs, so make sure we have
5472 that amount allocated, with trailing space cleared.
5473 The variable alloc contains the computed need, while
5474 elf_program_header_size (abfd) contains the size used for the
5475 layout.
5476 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5477 where the layout is forced to according to a larger size in the
5478 last iterations for the testcase ld-elf/header. */
5479 phdrs = bfd_zalloc (abfd, (actual * sizeof (*phdrs)
5480 + alloc * sizeof (*sorted_seg_map)));
5481 sorted_seg_map = (struct elf_segment_map **) (phdrs + actual);
5482 elf_tdata (abfd)->phdr = phdrs;
5483 if (phdrs == NULL)
5484 return FALSE;
5485
5486 for (m = elf_seg_map (abfd), j = 0; m != NULL; m = m->next, j++)
5487 {
5488 sorted_seg_map[j] = m;
5489 /* If elf_segment_map is not from map_sections_to_segments, the
5490 sections may not be correctly ordered. NOTE: sorting should
5491 not be done to the PT_NOTE section of a corefile, which may
5492 contain several pseudo-sections artificially created by bfd.
5493 Sorting these pseudo-sections breaks things badly. */
5494 if (m->count > 1
5495 && !(elf_elfheader (abfd)->e_type == ET_CORE
5496 && m->p_type == PT_NOTE))
5497 {
5498 for (i = 0; i < m->count; i++)
5499 m->sections[i]->target_index = i;
5500 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5501 elf_sort_sections);
5502 }
5503 }
5504 if (alloc > 1)
5505 qsort (sorted_seg_map, alloc, sizeof (*sorted_seg_map),
5506 elf_sort_segments);
5507
5508 maxpagesize = 1;
5509 if ((abfd->flags & D_PAGED) != 0)
5510 maxpagesize = bed->maxpagesize;
5511
5512 /* Sections must map to file offsets past the ELF file header. */
5513 off = bed->s->sizeof_ehdr;
5514 /* And if one of the PT_LOAD headers doesn't include the program
5515 headers then we'll be mapping program headers in the usual
5516 position after the ELF file header. */
5517 phdr_load_seg = NULL;
5518 for (j = 0; j < alloc; j++)
5519 {
5520 m = sorted_seg_map[j];
5521 if (m->p_type != PT_LOAD)
5522 break;
5523 if (m->includes_phdrs)
5524 {
5525 phdr_load_seg = m;
5526 break;
5527 }
5528 }
5529 if (phdr_load_seg == NULL)
5530 off += actual * bed->s->sizeof_phdr;
5531
5532 for (j = 0; j < alloc; j++)
5533 {
5534 asection **secpp;
5535 bfd_vma off_adjust;
5536 bfd_boolean no_contents;
5537
5538 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5539 number of sections with contents contributing to both p_filesz
5540 and p_memsz, followed by a number of sections with no contents
5541 that just contribute to p_memsz. In this loop, OFF tracks next
5542 available file offset for PT_LOAD and PT_NOTE segments. */
5543 m = sorted_seg_map[j];
5544 p = phdrs + m->idx;
5545 p->p_type = m->p_type;
5546 p->p_flags = m->p_flags;
5547
5548 if (m->count == 0)
5549 p->p_vaddr = m->p_vaddr_offset;
5550 else
5551 p->p_vaddr = m->sections[0]->vma + m->p_vaddr_offset;
5552
5553 if (m->p_paddr_valid)
5554 p->p_paddr = m->p_paddr;
5555 else if (m->count == 0)
5556 p->p_paddr = 0;
5557 else
5558 p->p_paddr = m->sections[0]->lma + m->p_vaddr_offset;
5559
5560 if (p->p_type == PT_LOAD
5561 && (abfd->flags & D_PAGED) != 0)
5562 {
5563 /* p_align in demand paged PT_LOAD segments effectively stores
5564 the maximum page size. When copying an executable with
5565 objcopy, we set m->p_align from the input file. Use this
5566 value for maxpagesize rather than bed->maxpagesize, which
5567 may be different. Note that we use maxpagesize for PT_TLS
5568 segment alignment later in this function, so we are relying
5569 on at least one PT_LOAD segment appearing before a PT_TLS
5570 segment. */
5571 if (m->p_align_valid)
5572 maxpagesize = m->p_align;
5573
5574 p->p_align = maxpagesize;
5575 }
5576 else if (m->p_align_valid)
5577 p->p_align = m->p_align;
5578 else if (m->count == 0)
5579 p->p_align = 1 << bed->s->log_file_align;
5580
5581 if (m == phdr_load_seg)
5582 {
5583 if (!m->includes_filehdr)
5584 p->p_offset = off;
5585 off += actual * bed->s->sizeof_phdr;
5586 }
5587
5588 no_contents = FALSE;
5589 off_adjust = 0;
5590 if (p->p_type == PT_LOAD
5591 && m->count > 0)
5592 {
5593 bfd_size_type align;
5594 unsigned int align_power = 0;
5595
5596 if (m->p_align_valid)
5597 align = p->p_align;
5598 else
5599 {
5600 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5601 {
5602 unsigned int secalign;
5603
5604 secalign = bfd_section_alignment (*secpp);
5605 if (secalign > align_power)
5606 align_power = secalign;
5607 }
5608 align = (bfd_size_type) 1 << align_power;
5609 if (align < maxpagesize)
5610 align = maxpagesize;
5611 }
5612
5613 for (i = 0; i < m->count; i++)
5614 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5615 /* If we aren't making room for this section, then
5616 it must be SHT_NOBITS regardless of what we've
5617 set via struct bfd_elf_special_section. */
5618 elf_section_type (m->sections[i]) = SHT_NOBITS;
5619
5620 /* Find out whether this segment contains any loadable
5621 sections. */
5622 no_contents = TRUE;
5623 for (i = 0; i < m->count; i++)
5624 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5625 {
5626 no_contents = FALSE;
5627 break;
5628 }
5629
5630 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5631
5632 /* Broken hardware and/or kernel require that files do not
5633 map the same page with different permissions on some hppa
5634 processors. */
5635 if (j != 0
5636 && (abfd->flags & D_PAGED) != 0
5637 && bed->no_page_alias
5638 && (off & (maxpagesize - 1)) != 0
5639 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5640 off_adjust += maxpagesize;
5641 off += off_adjust;
5642 if (no_contents)
5643 {
5644 /* We shouldn't need to align the segment on disk since
5645 the segment doesn't need file space, but the gABI
5646 arguably requires the alignment and glibc ld.so
5647 checks it. So to comply with the alignment
5648 requirement but not waste file space, we adjust
5649 p_offset for just this segment. (OFF_ADJUST is
5650 subtracted from OFF later.) This may put p_offset
5651 past the end of file, but that shouldn't matter. */
5652 }
5653 else
5654 off_adjust = 0;
5655 }
5656 /* Make sure the .dynamic section is the first section in the
5657 PT_DYNAMIC segment. */
5658 else if (p->p_type == PT_DYNAMIC
5659 && m->count > 1
5660 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5661 {
5662 _bfd_error_handler
5663 (_("%pB: The first section in the PT_DYNAMIC segment"
5664 " is not the .dynamic section"),
5665 abfd);
5666 bfd_set_error (bfd_error_bad_value);
5667 return FALSE;
5668 }
5669 /* Set the note section type to SHT_NOTE. */
5670 else if (p->p_type == PT_NOTE)
5671 for (i = 0; i < m->count; i++)
5672 elf_section_type (m->sections[i]) = SHT_NOTE;
5673
5674 if (m->includes_filehdr)
5675 {
5676 if (!m->p_flags_valid)
5677 p->p_flags |= PF_R;
5678 p->p_filesz = bed->s->sizeof_ehdr;
5679 p->p_memsz = bed->s->sizeof_ehdr;
5680 if (p->p_type == PT_LOAD)
5681 {
5682 if (m->count > 0)
5683 {
5684 if (p->p_vaddr < (bfd_vma) off
5685 || (!m->p_paddr_valid
5686 && p->p_paddr < (bfd_vma) off))
5687 {
5688 _bfd_error_handler
5689 (_("%pB: not enough room for program headers,"
5690 " try linking with -N"),
5691 abfd);
5692 bfd_set_error (bfd_error_bad_value);
5693 return FALSE;
5694 }
5695 p->p_vaddr -= off;
5696 if (!m->p_paddr_valid)
5697 p->p_paddr -= off;
5698 }
5699 }
5700 else if (sorted_seg_map[0]->includes_filehdr)
5701 {
5702 Elf_Internal_Phdr *filehdr = phdrs + sorted_seg_map[0]->idx;
5703 p->p_vaddr = filehdr->p_vaddr;
5704 if (!m->p_paddr_valid)
5705 p->p_paddr = filehdr->p_paddr;
5706 }
5707 }
5708
5709 if (m->includes_phdrs)
5710 {
5711 if (!m->p_flags_valid)
5712 p->p_flags |= PF_R;
5713 p->p_filesz += actual * bed->s->sizeof_phdr;
5714 p->p_memsz += actual * bed->s->sizeof_phdr;
5715 if (!m->includes_filehdr)
5716 {
5717 if (p->p_type == PT_LOAD)
5718 {
5719 elf_elfheader (abfd)->e_phoff = p->p_offset;
5720 if (m->count > 0)
5721 {
5722 p->p_vaddr -= off - p->p_offset;
5723 if (!m->p_paddr_valid)
5724 p->p_paddr -= off - p->p_offset;
5725 }
5726 }
5727 else if (phdr_load_seg != NULL)
5728 {
5729 Elf_Internal_Phdr *phdr = phdrs + phdr_load_seg->idx;
5730 bfd_vma phdr_off = 0;
5731 if (phdr_load_seg->includes_filehdr)
5732 phdr_off = bed->s->sizeof_ehdr;
5733 p->p_vaddr = phdr->p_vaddr + phdr_off;
5734 if (!m->p_paddr_valid)
5735 p->p_paddr = phdr->p_paddr + phdr_off;
5736 p->p_offset = phdr->p_offset + phdr_off;
5737 }
5738 else
5739 p->p_offset = bed->s->sizeof_ehdr;
5740 }
5741 }
5742
5743 if (p->p_type == PT_LOAD
5744 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5745 {
5746 if (!m->includes_filehdr && !m->includes_phdrs)
5747 {
5748 p->p_offset = off;
5749 if (no_contents)
5750 {
5751 /* Put meaningless p_offset for PT_LOAD segments
5752 without file contents somewhere within the first
5753 page, in an attempt to not point past EOF. */
5754 bfd_size_type align = maxpagesize;
5755 if (align < p->p_align)
5756 align = p->p_align;
5757 if (align < 1)
5758 align = 1;
5759 p->p_offset = off % align;
5760 }
5761 }
5762 else
5763 {
5764 file_ptr adjust;
5765
5766 adjust = off - (p->p_offset + p->p_filesz);
5767 if (!no_contents)
5768 p->p_filesz += adjust;
5769 p->p_memsz += adjust;
5770 }
5771 }
5772
5773 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5774 maps. Set filepos for sections in PT_LOAD segments, and in
5775 core files, for sections in PT_NOTE segments.
5776 assign_file_positions_for_non_load_sections will set filepos
5777 for other sections and update p_filesz for other segments. */
5778 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5779 {
5780 asection *sec;
5781 bfd_size_type align;
5782 Elf_Internal_Shdr *this_hdr;
5783
5784 sec = *secpp;
5785 this_hdr = &elf_section_data (sec)->this_hdr;
5786 align = (bfd_size_type) 1 << bfd_section_alignment (sec);
5787
5788 if ((p->p_type == PT_LOAD
5789 || p->p_type == PT_TLS)
5790 && (this_hdr->sh_type != SHT_NOBITS
5791 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5792 && ((this_hdr->sh_flags & SHF_TLS) == 0
5793 || p->p_type == PT_TLS))))
5794 {
5795 bfd_vma p_start = p->p_paddr;
5796 bfd_vma p_end = p_start + p->p_memsz;
5797 bfd_vma s_start = sec->lma;
5798 bfd_vma adjust = s_start - p_end;
5799
5800 if (adjust != 0
5801 && (s_start < p_end
5802 || p_end < p_start))
5803 {
5804 _bfd_error_handler
5805 /* xgettext:c-format */
5806 (_("%pB: section %pA lma %#" PRIx64 " adjusted to %#" PRIx64),
5807 abfd, sec, (uint64_t) s_start, (uint64_t) p_end);
5808 adjust = 0;
5809 sec->lma = p_end;
5810 }
5811 p->p_memsz += adjust;
5812
5813 if (this_hdr->sh_type != SHT_NOBITS)
5814 {
5815 if (p->p_type == PT_LOAD)
5816 {
5817 if (p->p_filesz + adjust < p->p_memsz)
5818 {
5819 /* We have a PROGBITS section following NOBITS ones.
5820 Allocate file space for the NOBITS section(s) and
5821 zero it. */
5822 adjust = p->p_memsz - p->p_filesz;
5823 if (!write_zeros (abfd, off, adjust))
5824 return FALSE;
5825 }
5826 off += adjust;
5827 }
5828 p->p_filesz += adjust;
5829 }
5830 }
5831
5832 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5833 {
5834 /* The section at i == 0 is the one that actually contains
5835 everything. */
5836 if (i == 0)
5837 {
5838 this_hdr->sh_offset = sec->filepos = off;
5839 off += this_hdr->sh_size;
5840 p->p_filesz = this_hdr->sh_size;
5841 p->p_memsz = 0;
5842 p->p_align = 1;
5843 }
5844 else
5845 {
5846 /* The rest are fake sections that shouldn't be written. */
5847 sec->filepos = 0;
5848 sec->size = 0;
5849 sec->flags = 0;
5850 continue;
5851 }
5852 }
5853 else
5854 {
5855 if (p->p_type == PT_LOAD)
5856 {
5857 this_hdr->sh_offset = sec->filepos = off;
5858 if (this_hdr->sh_type != SHT_NOBITS)
5859 off += this_hdr->sh_size;
5860 }
5861 else if (this_hdr->sh_type == SHT_NOBITS
5862 && (this_hdr->sh_flags & SHF_TLS) != 0
5863 && this_hdr->sh_offset == 0)
5864 {
5865 /* This is a .tbss section that didn't get a PT_LOAD.
5866 (See _bfd_elf_map_sections_to_segments "Create a
5867 final PT_LOAD".) Set sh_offset to the value it
5868 would have if we had created a zero p_filesz and
5869 p_memsz PT_LOAD header for the section. This
5870 also makes the PT_TLS header have the same
5871 p_offset value. */
5872 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5873 off, align);
5874 this_hdr->sh_offset = sec->filepos = off + adjust;
5875 }
5876
5877 if (this_hdr->sh_type != SHT_NOBITS)
5878 {
5879 p->p_filesz += this_hdr->sh_size;
5880 /* A load section without SHF_ALLOC is something like
5881 a note section in a PT_NOTE segment. These take
5882 file space but are not loaded into memory. */
5883 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5884 p->p_memsz += this_hdr->sh_size;
5885 }
5886 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5887 {
5888 if (p->p_type == PT_TLS)
5889 p->p_memsz += this_hdr->sh_size;
5890
5891 /* .tbss is special. It doesn't contribute to p_memsz of
5892 normal segments. */
5893 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5894 p->p_memsz += this_hdr->sh_size;
5895 }
5896
5897 if (align > p->p_align
5898 && !m->p_align_valid
5899 && (p->p_type != PT_LOAD
5900 || (abfd->flags & D_PAGED) == 0))
5901 p->p_align = align;
5902 }
5903
5904 if (!m->p_flags_valid)
5905 {
5906 p->p_flags |= PF_R;
5907 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5908 p->p_flags |= PF_X;
5909 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5910 p->p_flags |= PF_W;
5911 }
5912 }
5913
5914 off -= off_adjust;
5915
5916 /* PR ld/20815 - Check that the program header segment, if
5917 present, will be loaded into memory. */
5918 if (p->p_type == PT_PHDR
5919 && phdr_load_seg == NULL
5920 && !(bed->elf_backend_allow_non_load_phdr != NULL
5921 && bed->elf_backend_allow_non_load_phdr (abfd, phdrs, alloc)))
5922 {
5923 /* The fix for this error is usually to edit the linker script being
5924 used and set up the program headers manually. Either that or
5925 leave room for the headers at the start of the SECTIONS. */
5926 _bfd_error_handler (_("%pB: error: PHDR segment not covered"
5927 " by LOAD segment"),
5928 abfd);
5929 if (link_info == NULL)
5930 return FALSE;
5931 /* Arrange for the linker to exit with an error, deleting
5932 the output file unless --noinhibit-exec is given. */
5933 link_info->callbacks->info ("%X");
5934 }
5935
5936 /* Check that all sections are in a PT_LOAD segment.
5937 Don't check funky gdb generated core files. */
5938 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5939 {
5940 bfd_boolean check_vma = TRUE;
5941
5942 for (i = 1; i < m->count; i++)
5943 if (m->sections[i]->vma == m->sections[i - 1]->vma
5944 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5945 ->this_hdr), p) != 0
5946 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5947 ->this_hdr), p) != 0)
5948 {
5949 /* Looks like we have overlays packed into the segment. */
5950 check_vma = FALSE;
5951 break;
5952 }
5953
5954 for (i = 0; i < m->count; i++)
5955 {
5956 Elf_Internal_Shdr *this_hdr;
5957 asection *sec;
5958
5959 sec = m->sections[i];
5960 this_hdr = &(elf_section_data(sec)->this_hdr);
5961 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5962 && !ELF_TBSS_SPECIAL (this_hdr, p))
5963 {
5964 _bfd_error_handler
5965 /* xgettext:c-format */
5966 (_("%pB: section `%pA' can't be allocated in segment %d"),
5967 abfd, sec, j);
5968 print_segment_map (m);
5969 }
5970 }
5971 }
5972 }
5973
5974 elf_next_file_pos (abfd) = off;
5975
5976 if (link_info != NULL
5977 && phdr_load_seg != NULL
5978 && phdr_load_seg->includes_filehdr)
5979 {
5980 /* There is a segment that contains both the file headers and the
5981 program headers, so provide a symbol __ehdr_start pointing there.
5982 A program can use this to examine itself robustly. */
5983
5984 struct elf_link_hash_entry *hash
5985 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5986 FALSE, FALSE, TRUE);
5987 /* If the symbol was referenced and not defined, define it. */
5988 if (hash != NULL
5989 && (hash->root.type == bfd_link_hash_new
5990 || hash->root.type == bfd_link_hash_undefined
5991 || hash->root.type == bfd_link_hash_undefweak
5992 || hash->root.type == bfd_link_hash_common))
5993 {
5994 asection *s = NULL;
5995 bfd_vma filehdr_vaddr = phdrs[phdr_load_seg->idx].p_vaddr;
5996
5997 if (phdr_load_seg->count != 0)
5998 /* The segment contains sections, so use the first one. */
5999 s = phdr_load_seg->sections[0];
6000 else
6001 /* Use the first (i.e. lowest-addressed) section in any segment. */
6002 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
6003 if (m->p_type == PT_LOAD && m->count != 0)
6004 {
6005 s = m->sections[0];
6006 break;
6007 }
6008
6009 if (s != NULL)
6010 {
6011 hash->root.u.def.value = filehdr_vaddr - s->vma;
6012 hash->root.u.def.section = s;
6013 }
6014 else
6015 {
6016 hash->root.u.def.value = filehdr_vaddr;
6017 hash->root.u.def.section = bfd_abs_section_ptr;
6018 }
6019
6020 hash->root.type = bfd_link_hash_defined;
6021 hash->def_regular = 1;
6022 hash->non_elf = 0;
6023 }
6024 }
6025
6026 return TRUE;
6027 }
6028
6029 /* Determine if a bfd is a debuginfo file. Unfortunately there
6030 is no defined method for detecting such files, so we have to
6031 use heuristics instead. */
6032
6033 bfd_boolean
6034 is_debuginfo_file (bfd *abfd)
6035 {
6036 if (abfd == NULL || bfd_get_flavour (abfd) != bfd_target_elf_flavour)
6037 return FALSE;
6038
6039 Elf_Internal_Shdr **start_headers = elf_elfsections (abfd);
6040 Elf_Internal_Shdr **end_headers = start_headers + elf_numsections (abfd);
6041 Elf_Internal_Shdr **headerp;
6042
6043 for (headerp = start_headers; headerp < end_headers; headerp ++)
6044 {
6045 Elf_Internal_Shdr *header = * headerp;
6046
6047 /* Debuginfo files do not have any allocated SHT_PROGBITS sections.
6048 The only allocated sections are SHT_NOBITS or SHT_NOTES. */
6049 if ((header->sh_flags & SHF_ALLOC) == SHF_ALLOC
6050 && header->sh_type != SHT_NOBITS
6051 && header->sh_type != SHT_NOTE)
6052 return FALSE;
6053 }
6054
6055 return TRUE;
6056 }
6057
6058 /* Assign file positions for the other sections, except for compressed debugging
6059 and other sections assigned in _bfd_elf_assign_file_positions_for_non_load(). */
6060
6061 static bfd_boolean
6062 assign_file_positions_for_non_load_sections (bfd *abfd,
6063 struct bfd_link_info *link_info)
6064 {
6065 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6066 Elf_Internal_Shdr **i_shdrpp;
6067 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
6068 Elf_Internal_Phdr *phdrs;
6069 Elf_Internal_Phdr *p;
6070 struct elf_segment_map *m;
6071 file_ptr off;
6072
6073 i_shdrpp = elf_elfsections (abfd);
6074 end_hdrpp = i_shdrpp + elf_numsections (abfd);
6075 off = elf_next_file_pos (abfd);
6076 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
6077 {
6078 Elf_Internal_Shdr *hdr;
6079
6080 hdr = *hdrpp;
6081 if (hdr->bfd_section != NULL
6082 && (hdr->bfd_section->filepos != 0
6083 || (hdr->sh_type == SHT_NOBITS
6084 && hdr->contents == NULL)))
6085 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
6086 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
6087 {
6088 if (hdr->sh_size != 0
6089 /* PR 24717 - debuginfo files are known to be not strictly
6090 compliant with the ELF standard. In particular they often
6091 have .note.gnu.property sections that are outside of any
6092 loadable segment. This is not a problem for such files,
6093 so do not warn about them. */
6094 && ! is_debuginfo_file (abfd))
6095 _bfd_error_handler
6096 /* xgettext:c-format */
6097 (_("%pB: warning: allocated section `%s' not in segment"),
6098 abfd,
6099 (hdr->bfd_section == NULL
6100 ? "*unknown*"
6101 : hdr->bfd_section->name));
6102 /* We don't need to page align empty sections. */
6103 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
6104 off += vma_page_aligned_bias (hdr->sh_addr, off,
6105 bed->maxpagesize);
6106 else
6107 off += vma_page_aligned_bias (hdr->sh_addr, off,
6108 hdr->sh_addralign);
6109 off = _bfd_elf_assign_file_position_for_section (hdr, off,
6110 FALSE);
6111 }
6112 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6113 && hdr->bfd_section == NULL)
6114 /* We don't know the offset of these sections yet: their size has
6115 not been decided. */
6116 || (hdr->bfd_section != NULL
6117 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6118 || (bfd_section_is_ctf (hdr->bfd_section)
6119 && abfd->is_linker_output)))
6120 || hdr == i_shdrpp[elf_onesymtab (abfd)]
6121 || (elf_symtab_shndx_list (abfd) != NULL
6122 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6123 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
6124 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
6125 hdr->sh_offset = -1;
6126 else
6127 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6128 }
6129 elf_next_file_pos (abfd) = off;
6130
6131 /* Now that we have set the section file positions, we can set up
6132 the file positions for the non PT_LOAD segments. */
6133 phdrs = elf_tdata (abfd)->phdr;
6134 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
6135 {
6136 if (p->p_type == PT_GNU_RELRO)
6137 {
6138 bfd_vma start, end;
6139 bfd_boolean ok;
6140
6141 if (link_info != NULL)
6142 {
6143 /* During linking the range of the RELRO segment is passed
6144 in link_info. Note that there may be padding between
6145 relro_start and the first RELRO section. */
6146 start = link_info->relro_start;
6147 end = link_info->relro_end;
6148 }
6149 else if (m->count != 0)
6150 {
6151 if (!m->p_size_valid)
6152 abort ();
6153 start = m->sections[0]->vma;
6154 end = start + m->p_size;
6155 }
6156 else
6157 {
6158 start = 0;
6159 end = 0;
6160 }
6161
6162 ok = FALSE;
6163 if (start < end)
6164 {
6165 struct elf_segment_map *lm;
6166 const Elf_Internal_Phdr *lp;
6167 unsigned int i;
6168
6169 /* Find a LOAD segment containing a section in the RELRO
6170 segment. */
6171 for (lm = elf_seg_map (abfd), lp = phdrs;
6172 lm != NULL;
6173 lm = lm->next, lp++)
6174 {
6175 if (lp->p_type == PT_LOAD
6176 && lm->count != 0
6177 && (lm->sections[lm->count - 1]->vma
6178 + (!IS_TBSS (lm->sections[lm->count - 1])
6179 ? lm->sections[lm->count - 1]->size
6180 : 0)) > start
6181 && lm->sections[0]->vma < end)
6182 break;
6183 }
6184
6185 if (lm != NULL)
6186 {
6187 /* Find the section starting the RELRO segment. */
6188 for (i = 0; i < lm->count; i++)
6189 {
6190 asection *s = lm->sections[i];
6191 if (s->vma >= start
6192 && s->vma < end
6193 && s->size != 0)
6194 break;
6195 }
6196
6197 if (i < lm->count)
6198 {
6199 p->p_vaddr = lm->sections[i]->vma;
6200 p->p_paddr = lm->sections[i]->lma;
6201 p->p_offset = lm->sections[i]->filepos;
6202 p->p_memsz = end - p->p_vaddr;
6203 p->p_filesz = p->p_memsz;
6204
6205 /* The RELRO segment typically ends a few bytes
6206 into .got.plt but other layouts are possible.
6207 In cases where the end does not match any
6208 loaded section (for instance is in file
6209 padding), trim p_filesz back to correspond to
6210 the end of loaded section contents. */
6211 if (p->p_filesz > lp->p_vaddr + lp->p_filesz - p->p_vaddr)
6212 p->p_filesz = lp->p_vaddr + lp->p_filesz - p->p_vaddr;
6213
6214 /* Preserve the alignment and flags if they are
6215 valid. The gold linker generates RW/4 for
6216 the PT_GNU_RELRO section. It is better for
6217 objcopy/strip to honor these attributes
6218 otherwise gdb will choke when using separate
6219 debug files. */
6220 if (!m->p_align_valid)
6221 p->p_align = 1;
6222 if (!m->p_flags_valid)
6223 p->p_flags = PF_R;
6224 ok = TRUE;
6225 }
6226 }
6227 }
6228 if (link_info != NULL)
6229 BFD_ASSERT (ok);
6230 if (!ok)
6231 memset (p, 0, sizeof *p);
6232 }
6233 else if (p->p_type == PT_GNU_STACK)
6234 {
6235 if (m->p_size_valid)
6236 p->p_memsz = m->p_size;
6237 }
6238 else if (m->count != 0)
6239 {
6240 unsigned int i;
6241
6242 if (p->p_type != PT_LOAD
6243 && (p->p_type != PT_NOTE
6244 || bfd_get_format (abfd) != bfd_core))
6245 {
6246 /* A user specified segment layout may include a PHDR
6247 segment that overlaps with a LOAD segment... */
6248 if (p->p_type == PT_PHDR)
6249 {
6250 m->count = 0;
6251 continue;
6252 }
6253
6254 if (m->includes_filehdr || m->includes_phdrs)
6255 {
6256 /* PR 17512: file: 2195325e. */
6257 _bfd_error_handler
6258 (_("%pB: error: non-load segment %d includes file header "
6259 "and/or program header"),
6260 abfd, (int) (p - phdrs));
6261 return FALSE;
6262 }
6263
6264 p->p_filesz = 0;
6265 p->p_offset = m->sections[0]->filepos;
6266 for (i = m->count; i-- != 0;)
6267 {
6268 asection *sect = m->sections[i];
6269 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
6270 if (hdr->sh_type != SHT_NOBITS)
6271 {
6272 p->p_filesz = (sect->filepos - m->sections[0]->filepos
6273 + hdr->sh_size);
6274 break;
6275 }
6276 }
6277 }
6278 }
6279 }
6280
6281 return TRUE;
6282 }
6283
6284 static elf_section_list *
6285 find_section_in_list (unsigned int i, elf_section_list * list)
6286 {
6287 for (;list != NULL; list = list->next)
6288 if (list->ndx == i)
6289 break;
6290 return list;
6291 }
6292
6293 /* Work out the file positions of all the sections. This is called by
6294 _bfd_elf_compute_section_file_positions. All the section sizes and
6295 VMAs must be known before this is called.
6296
6297 Reloc sections come in two flavours: Those processed specially as
6298 "side-channel" data attached to a section to which they apply, and those that
6299 bfd doesn't process as relocations. The latter sort are stored in a normal
6300 bfd section by bfd_section_from_shdr. We don't consider the former sort
6301 here, unless they form part of the loadable image. Reloc sections not
6302 assigned here (and compressed debugging sections and CTF sections which
6303 nothing else in the file can rely upon) will be handled later by
6304 assign_file_positions_for_relocs.
6305
6306 We also don't set the positions of the .symtab and .strtab here. */
6307
6308 static bfd_boolean
6309 assign_file_positions_except_relocs (bfd *abfd,
6310 struct bfd_link_info *link_info)
6311 {
6312 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6313 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6314 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6315 unsigned int alloc;
6316
6317 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6318 && bfd_get_format (abfd) != bfd_core)
6319 {
6320 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6321 unsigned int num_sec = elf_numsections (abfd);
6322 Elf_Internal_Shdr **hdrpp;
6323 unsigned int i;
6324 file_ptr off;
6325
6326 /* Start after the ELF header. */
6327 off = i_ehdrp->e_ehsize;
6328
6329 /* We are not creating an executable, which means that we are
6330 not creating a program header, and that the actual order of
6331 the sections in the file is unimportant. */
6332 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6333 {
6334 Elf_Internal_Shdr *hdr;
6335
6336 hdr = *hdrpp;
6337 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6338 && hdr->bfd_section == NULL)
6339 /* Do not assign offsets for these sections yet: we don't know
6340 their sizes. */
6341 || (hdr->bfd_section != NULL
6342 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS
6343 || (bfd_section_is_ctf (hdr->bfd_section)
6344 && abfd->is_linker_output)))
6345 || i == elf_onesymtab (abfd)
6346 || (elf_symtab_shndx_list (abfd) != NULL
6347 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6348 || i == elf_strtab_sec (abfd)
6349 || i == elf_shstrtab_sec (abfd))
6350 {
6351 hdr->sh_offset = -1;
6352 }
6353 else
6354 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6355 }
6356
6357 elf_next_file_pos (abfd) = off;
6358 elf_program_header_size (abfd) = 0;
6359 }
6360 else
6361 {
6362 /* Assign file positions for the loaded sections based on the
6363 assignment of sections to segments. */
6364 if (!assign_file_positions_for_load_sections (abfd, link_info))
6365 return FALSE;
6366
6367 /* And for non-load sections. */
6368 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6369 return FALSE;
6370 }
6371
6372 if (!(*bed->elf_backend_modify_headers) (abfd, link_info))
6373 return FALSE;
6374
6375 /* Write out the program headers. */
6376 alloc = i_ehdrp->e_phnum;
6377 if (alloc != 0)
6378 {
6379 if (bfd_seek (abfd, i_ehdrp->e_phoff, SEEK_SET) != 0
6380 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6381 return FALSE;
6382 }
6383
6384 return TRUE;
6385 }
6386
6387 bfd_boolean
6388 _bfd_elf_init_file_header (bfd *abfd,
6389 struct bfd_link_info *info ATTRIBUTE_UNUSED)
6390 {
6391 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6392 struct elf_strtab_hash *shstrtab;
6393 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6394
6395 i_ehdrp = elf_elfheader (abfd);
6396
6397 shstrtab = _bfd_elf_strtab_init ();
6398 if (shstrtab == NULL)
6399 return FALSE;
6400
6401 elf_shstrtab (abfd) = shstrtab;
6402
6403 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6404 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6405 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6406 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6407
6408 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6409 i_ehdrp->e_ident[EI_DATA] =
6410 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6411 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6412
6413 if ((abfd->flags & DYNAMIC) != 0)
6414 i_ehdrp->e_type = ET_DYN;
6415 else if ((abfd->flags & EXEC_P) != 0)
6416 i_ehdrp->e_type = ET_EXEC;
6417 else if (bfd_get_format (abfd) == bfd_core)
6418 i_ehdrp->e_type = ET_CORE;
6419 else
6420 i_ehdrp->e_type = ET_REL;
6421
6422 switch (bfd_get_arch (abfd))
6423 {
6424 case bfd_arch_unknown:
6425 i_ehdrp->e_machine = EM_NONE;
6426 break;
6427
6428 /* There used to be a long list of cases here, each one setting
6429 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6430 in the corresponding bfd definition. To avoid duplication,
6431 the switch was removed. Machines that need special handling
6432 can generally do it in elf_backend_final_write_processing(),
6433 unless they need the information earlier than the final write.
6434 Such need can generally be supplied by replacing the tests for
6435 e_machine with the conditions used to determine it. */
6436 default:
6437 i_ehdrp->e_machine = bed->elf_machine_code;
6438 }
6439
6440 i_ehdrp->e_version = bed->s->ev_current;
6441 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6442
6443 /* No program header, for now. */
6444 i_ehdrp->e_phoff = 0;
6445 i_ehdrp->e_phentsize = 0;
6446 i_ehdrp->e_phnum = 0;
6447
6448 /* Each bfd section is section header entry. */
6449 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6450 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6451
6452 elf_tdata (abfd)->symtab_hdr.sh_name =
6453 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6454 elf_tdata (abfd)->strtab_hdr.sh_name =
6455 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6456 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6457 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6458 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6459 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6460 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6461 return FALSE;
6462
6463 return TRUE;
6464 }
6465
6466 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=.
6467
6468 FIXME: We used to have code here to sort the PT_LOAD segments into
6469 ascending order, as per the ELF spec. But this breaks some programs,
6470 including the Linux kernel. But really either the spec should be
6471 changed or the programs updated. */
6472
6473 bfd_boolean
6474 _bfd_elf_modify_headers (bfd *obfd, struct bfd_link_info *link_info)
6475 {
6476 if (link_info != NULL && bfd_link_pie (link_info))
6477 {
6478 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (obfd);
6479 unsigned int num_segments = i_ehdrp->e_phnum;
6480 struct elf_obj_tdata *tdata = elf_tdata (obfd);
6481 Elf_Internal_Phdr *segment = tdata->phdr;
6482 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6483
6484 /* Find the lowest p_vaddr in PT_LOAD segments. */
6485 bfd_vma p_vaddr = (bfd_vma) -1;
6486 for (; segment < end_segment; segment++)
6487 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6488 p_vaddr = segment->p_vaddr;
6489
6490 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6491 segments is non-zero. */
6492 if (p_vaddr)
6493 i_ehdrp->e_type = ET_EXEC;
6494 }
6495 return TRUE;
6496 }
6497
6498 /* Assign file positions for all the reloc sections which are not part
6499 of the loadable file image, and the file position of section headers. */
6500
6501 static bfd_boolean
6502 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6503 {
6504 file_ptr off;
6505 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6506 Elf_Internal_Shdr *shdrp;
6507 Elf_Internal_Ehdr *i_ehdrp;
6508 const struct elf_backend_data *bed;
6509
6510 off = elf_next_file_pos (abfd);
6511
6512 shdrpp = elf_elfsections (abfd);
6513 end_shdrpp = shdrpp + elf_numsections (abfd);
6514 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6515 {
6516 shdrp = *shdrpp;
6517 if (shdrp->sh_offset == -1)
6518 {
6519 asection *sec = shdrp->bfd_section;
6520 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6521 || shdrp->sh_type == SHT_RELA);
6522 bfd_boolean is_ctf = sec && bfd_section_is_ctf (sec);
6523 if (is_rel
6524 || is_ctf
6525 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6526 {
6527 if (!is_rel && !is_ctf)
6528 {
6529 const char *name = sec->name;
6530 struct bfd_elf_section_data *d;
6531
6532 /* Compress DWARF debug sections. */
6533 if (!bfd_compress_section (abfd, sec,
6534 shdrp->contents))
6535 return FALSE;
6536
6537 if (sec->compress_status == COMPRESS_SECTION_DONE
6538 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6539 {
6540 /* If section is compressed with zlib-gnu, convert
6541 section name from .debug_* to .zdebug_*. */
6542 char *new_name
6543 = convert_debug_to_zdebug (abfd, name);
6544 if (new_name == NULL)
6545 return FALSE;
6546 name = new_name;
6547 }
6548 /* Add section name to section name section. */
6549 if (shdrp->sh_name != (unsigned int) -1)
6550 abort ();
6551 shdrp->sh_name
6552 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6553 name, FALSE);
6554 d = elf_section_data (sec);
6555
6556 /* Add reloc section name to section name section. */
6557 if (d->rel.hdr
6558 && !_bfd_elf_set_reloc_sh_name (abfd,
6559 d->rel.hdr,
6560 name, FALSE))
6561 return FALSE;
6562 if (d->rela.hdr
6563 && !_bfd_elf_set_reloc_sh_name (abfd,
6564 d->rela.hdr,
6565 name, TRUE))
6566 return FALSE;
6567
6568 /* Update section size and contents. */
6569 shdrp->sh_size = sec->size;
6570 shdrp->contents = sec->contents;
6571 shdrp->bfd_section->contents = NULL;
6572 }
6573 else if (is_ctf)
6574 {
6575 /* Update section size and contents. */
6576 shdrp->sh_size = sec->size;
6577 shdrp->contents = sec->contents;
6578 }
6579
6580 off = _bfd_elf_assign_file_position_for_section (shdrp,
6581 off,
6582 TRUE);
6583 }
6584 }
6585 }
6586
6587 /* Place section name section after DWARF debug sections have been
6588 compressed. */
6589 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6590 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6591 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6592 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6593
6594 /* Place the section headers. */
6595 i_ehdrp = elf_elfheader (abfd);
6596 bed = get_elf_backend_data (abfd);
6597 off = align_file_position (off, 1 << bed->s->log_file_align);
6598 i_ehdrp->e_shoff = off;
6599 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6600 elf_next_file_pos (abfd) = off;
6601
6602 return TRUE;
6603 }
6604
6605 bfd_boolean
6606 _bfd_elf_write_object_contents (bfd *abfd)
6607 {
6608 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6609 Elf_Internal_Shdr **i_shdrp;
6610 bfd_boolean failed;
6611 unsigned int count, num_sec;
6612 struct elf_obj_tdata *t;
6613
6614 if (! abfd->output_has_begun
6615 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6616 return FALSE;
6617 /* Do not rewrite ELF data when the BFD has been opened for update.
6618 abfd->output_has_begun was set to TRUE on opening, so creation of new
6619 sections, and modification of existing section sizes was restricted.
6620 This means the ELF header, program headers and section headers can't have
6621 changed.
6622 If the contents of any sections has been modified, then those changes have
6623 already been written to the BFD. */
6624 else if (abfd->direction == both_direction)
6625 {
6626 BFD_ASSERT (abfd->output_has_begun);
6627 return TRUE;
6628 }
6629
6630 i_shdrp = elf_elfsections (abfd);
6631
6632 failed = FALSE;
6633 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6634 if (failed)
6635 return FALSE;
6636
6637 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6638 return FALSE;
6639
6640 /* After writing the headers, we need to write the sections too... */
6641 num_sec = elf_numsections (abfd);
6642 for (count = 1; count < num_sec; count++)
6643 {
6644 i_shdrp[count]->sh_name
6645 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6646 i_shdrp[count]->sh_name);
6647 if (bed->elf_backend_section_processing)
6648 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6649 return FALSE;
6650 if (i_shdrp[count]->contents)
6651 {
6652 bfd_size_type amt = i_shdrp[count]->sh_size;
6653
6654 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6655 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6656 return FALSE;
6657 }
6658 }
6659
6660 /* Write out the section header names. */
6661 t = elf_tdata (abfd);
6662 if (elf_shstrtab (abfd) != NULL
6663 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6664 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6665 return FALSE;
6666
6667 if (!(*bed->elf_backend_final_write_processing) (abfd))
6668 return FALSE;
6669
6670 if (!bed->s->write_shdrs_and_ehdr (abfd))
6671 return FALSE;
6672
6673 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6674 if (t->o->build_id.after_write_object_contents != NULL)
6675 return (*t->o->build_id.after_write_object_contents) (abfd);
6676
6677 return TRUE;
6678 }
6679
6680 bfd_boolean
6681 _bfd_elf_write_corefile_contents (bfd *abfd)
6682 {
6683 /* Hopefully this can be done just like an object file. */
6684 return _bfd_elf_write_object_contents (abfd);
6685 }
6686
6687 /* Given a section, search the header to find them. */
6688
6689 unsigned int
6690 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6691 {
6692 const struct elf_backend_data *bed;
6693 unsigned int sec_index;
6694
6695 if (elf_section_data (asect) != NULL
6696 && elf_section_data (asect)->this_idx != 0)
6697 return elf_section_data (asect)->this_idx;
6698
6699 if (bfd_is_abs_section (asect))
6700 sec_index = SHN_ABS;
6701 else if (bfd_is_com_section (asect))
6702 sec_index = SHN_COMMON;
6703 else if (bfd_is_und_section (asect))
6704 sec_index = SHN_UNDEF;
6705 else
6706 sec_index = SHN_BAD;
6707
6708 bed = get_elf_backend_data (abfd);
6709 if (bed->elf_backend_section_from_bfd_section)
6710 {
6711 int retval = sec_index;
6712
6713 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6714 return retval;
6715 }
6716
6717 if (sec_index == SHN_BAD)
6718 bfd_set_error (bfd_error_nonrepresentable_section);
6719
6720 return sec_index;
6721 }
6722
6723 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6724 on error. */
6725
6726 int
6727 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6728 {
6729 asymbol *asym_ptr = *asym_ptr_ptr;
6730 int idx;
6731 flagword flags = asym_ptr->flags;
6732
6733 /* When gas creates relocations against local labels, it creates its
6734 own symbol for the section, but does put the symbol into the
6735 symbol chain, so udata is 0. When the linker is generating
6736 relocatable output, this section symbol may be for one of the
6737 input sections rather than the output section. */
6738 if (asym_ptr->udata.i == 0
6739 && (flags & BSF_SECTION_SYM)
6740 && asym_ptr->section)
6741 {
6742 asection *sec;
6743 int indx;
6744
6745 sec = asym_ptr->section;
6746 if (sec->owner != abfd && sec->output_section != NULL)
6747 sec = sec->output_section;
6748 if (sec->owner == abfd
6749 && (indx = sec->index) < elf_num_section_syms (abfd)
6750 && elf_section_syms (abfd)[indx] != NULL)
6751 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6752 }
6753
6754 idx = asym_ptr->udata.i;
6755
6756 if (idx == 0)
6757 {
6758 /* This case can occur when using --strip-symbol on a symbol
6759 which is used in a relocation entry. */
6760 _bfd_error_handler
6761 /* xgettext:c-format */
6762 (_("%pB: symbol `%s' required but not present"),
6763 abfd, bfd_asymbol_name (asym_ptr));
6764 bfd_set_error (bfd_error_no_symbols);
6765 return -1;
6766 }
6767
6768 #if DEBUG & 4
6769 {
6770 fprintf (stderr,
6771 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6772 (long) asym_ptr, asym_ptr->name, idx, flags);
6773 fflush (stderr);
6774 }
6775 #endif
6776
6777 return idx;
6778 }
6779
6780 /* Rewrite program header information. */
6781
6782 static bfd_boolean
6783 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6784 {
6785 Elf_Internal_Ehdr *iehdr;
6786 struct elf_segment_map *map;
6787 struct elf_segment_map *map_first;
6788 struct elf_segment_map **pointer_to_map;
6789 Elf_Internal_Phdr *segment;
6790 asection *section;
6791 unsigned int i;
6792 unsigned int num_segments;
6793 bfd_boolean phdr_included = FALSE;
6794 bfd_boolean p_paddr_valid;
6795 bfd_vma maxpagesize;
6796 struct elf_segment_map *phdr_adjust_seg = NULL;
6797 unsigned int phdr_adjust_num = 0;
6798 const struct elf_backend_data *bed;
6799
6800 bed = get_elf_backend_data (ibfd);
6801 iehdr = elf_elfheader (ibfd);
6802
6803 map_first = NULL;
6804 pointer_to_map = &map_first;
6805
6806 num_segments = elf_elfheader (ibfd)->e_phnum;
6807 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6808
6809 /* Returns the end address of the segment + 1. */
6810 #define SEGMENT_END(segment, start) \
6811 (start + (segment->p_memsz > segment->p_filesz \
6812 ? segment->p_memsz : segment->p_filesz))
6813
6814 #define SECTION_SIZE(section, segment) \
6815 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6816 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6817 ? section->size : 0)
6818
6819 /* Returns TRUE if the given section is contained within
6820 the given segment. VMA addresses are compared. */
6821 #define IS_CONTAINED_BY_VMA(section, segment) \
6822 (section->vma >= segment->p_vaddr \
6823 && (section->vma + SECTION_SIZE (section, segment) \
6824 <= (SEGMENT_END (segment, segment->p_vaddr))))
6825
6826 /* Returns TRUE if the given section is contained within
6827 the given segment. LMA addresses are compared. */
6828 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6829 (section->lma >= base \
6830 && (section->lma + SECTION_SIZE (section, segment) >= section->lma) \
6831 && (section->lma + SECTION_SIZE (section, segment) \
6832 <= SEGMENT_END (segment, base)))
6833
6834 /* Handle PT_NOTE segment. */
6835 #define IS_NOTE(p, s) \
6836 (p->p_type == PT_NOTE \
6837 && elf_section_type (s) == SHT_NOTE \
6838 && (bfd_vma) s->filepos >= p->p_offset \
6839 && ((bfd_vma) s->filepos + s->size \
6840 <= p->p_offset + p->p_filesz))
6841
6842 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6843 etc. */
6844 #define IS_COREFILE_NOTE(p, s) \
6845 (IS_NOTE (p, s) \
6846 && bfd_get_format (ibfd) == bfd_core \
6847 && s->vma == 0 \
6848 && s->lma == 0)
6849
6850 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6851 linker, which generates a PT_INTERP section with p_vaddr and
6852 p_memsz set to 0. */
6853 #define IS_SOLARIS_PT_INTERP(p, s) \
6854 (p->p_vaddr == 0 \
6855 && p->p_paddr == 0 \
6856 && p->p_memsz == 0 \
6857 && p->p_filesz > 0 \
6858 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6859 && s->size > 0 \
6860 && (bfd_vma) s->filepos >= p->p_offset \
6861 && ((bfd_vma) s->filepos + s->size \
6862 <= p->p_offset + p->p_filesz))
6863
6864 /* Decide if the given section should be included in the given segment.
6865 A section will be included if:
6866 1. It is within the address space of the segment -- we use the LMA
6867 if that is set for the segment and the VMA otherwise,
6868 2. It is an allocated section or a NOTE section in a PT_NOTE
6869 segment.
6870 3. There is an output section associated with it,
6871 4. The section has not already been allocated to a previous segment.
6872 5. PT_GNU_STACK segments do not include any sections.
6873 6. PT_TLS segment includes only SHF_TLS sections.
6874 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6875 8. PT_DYNAMIC should not contain empty sections at the beginning
6876 (with the possible exception of .dynamic). */
6877 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6878 ((((segment->p_paddr \
6879 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6880 : IS_CONTAINED_BY_VMA (section, segment)) \
6881 && (section->flags & SEC_ALLOC) != 0) \
6882 || IS_NOTE (segment, section)) \
6883 && segment->p_type != PT_GNU_STACK \
6884 && (segment->p_type != PT_TLS \
6885 || (section->flags & SEC_THREAD_LOCAL)) \
6886 && (segment->p_type == PT_LOAD \
6887 || segment->p_type == PT_TLS \
6888 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6889 && (segment->p_type != PT_DYNAMIC \
6890 || SECTION_SIZE (section, segment) > 0 \
6891 || (segment->p_paddr \
6892 ? segment->p_paddr != section->lma \
6893 : segment->p_vaddr != section->vma) \
6894 || (strcmp (bfd_section_name (section), ".dynamic") == 0)) \
6895 && (segment->p_type != PT_LOAD || !section->segment_mark))
6896
6897 /* If the output section of a section in the input segment is NULL,
6898 it is removed from the corresponding output segment. */
6899 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6900 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6901 && section->output_section != NULL)
6902
6903 /* Returns TRUE iff seg1 starts after the end of seg2. */
6904 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6905 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6906
6907 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6908 their VMA address ranges and their LMA address ranges overlap.
6909 It is possible to have overlapping VMA ranges without overlapping LMA
6910 ranges. RedBoot images for example can have both .data and .bss mapped
6911 to the same VMA range, but with the .data section mapped to a different
6912 LMA. */
6913 #define SEGMENT_OVERLAPS(seg1, seg2) \
6914 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6915 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6916 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6917 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6918
6919 /* Initialise the segment mark field. */
6920 for (section = ibfd->sections; section != NULL; section = section->next)
6921 section->segment_mark = FALSE;
6922
6923 /* The Solaris linker creates program headers in which all the
6924 p_paddr fields are zero. When we try to objcopy or strip such a
6925 file, we get confused. Check for this case, and if we find it
6926 don't set the p_paddr_valid fields. */
6927 p_paddr_valid = FALSE;
6928 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6929 i < num_segments;
6930 i++, segment++)
6931 if (segment->p_paddr != 0)
6932 {
6933 p_paddr_valid = TRUE;
6934 break;
6935 }
6936
6937 /* Scan through the segments specified in the program header
6938 of the input BFD. For this first scan we look for overlaps
6939 in the loadable segments. These can be created by weird
6940 parameters to objcopy. Also, fix some solaris weirdness. */
6941 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6942 i < num_segments;
6943 i++, segment++)
6944 {
6945 unsigned int j;
6946 Elf_Internal_Phdr *segment2;
6947
6948 if (segment->p_type == PT_INTERP)
6949 for (section = ibfd->sections; section; section = section->next)
6950 if (IS_SOLARIS_PT_INTERP (segment, section))
6951 {
6952 /* Mininal change so that the normal section to segment
6953 assignment code will work. */
6954 segment->p_vaddr = section->vma;
6955 break;
6956 }
6957
6958 if (segment->p_type != PT_LOAD)
6959 {
6960 /* Remove PT_GNU_RELRO segment. */
6961 if (segment->p_type == PT_GNU_RELRO)
6962 segment->p_type = PT_NULL;
6963 continue;
6964 }
6965
6966 /* Determine if this segment overlaps any previous segments. */
6967 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6968 {
6969 bfd_signed_vma extra_length;
6970
6971 if (segment2->p_type != PT_LOAD
6972 || !SEGMENT_OVERLAPS (segment, segment2))
6973 continue;
6974
6975 /* Merge the two segments together. */
6976 if (segment2->p_vaddr < segment->p_vaddr)
6977 {
6978 /* Extend SEGMENT2 to include SEGMENT and then delete
6979 SEGMENT. */
6980 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6981 - SEGMENT_END (segment2, segment2->p_vaddr));
6982
6983 if (extra_length > 0)
6984 {
6985 segment2->p_memsz += extra_length;
6986 segment2->p_filesz += extra_length;
6987 }
6988
6989 segment->p_type = PT_NULL;
6990
6991 /* Since we have deleted P we must restart the outer loop. */
6992 i = 0;
6993 segment = elf_tdata (ibfd)->phdr;
6994 break;
6995 }
6996 else
6997 {
6998 /* Extend SEGMENT to include SEGMENT2 and then delete
6999 SEGMENT2. */
7000 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
7001 - SEGMENT_END (segment, segment->p_vaddr));
7002
7003 if (extra_length > 0)
7004 {
7005 segment->p_memsz += extra_length;
7006 segment->p_filesz += extra_length;
7007 }
7008
7009 segment2->p_type = PT_NULL;
7010 }
7011 }
7012 }
7013
7014 /* The second scan attempts to assign sections to segments. */
7015 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7016 i < num_segments;
7017 i++, segment++)
7018 {
7019 unsigned int section_count;
7020 asection **sections;
7021 asection *output_section;
7022 unsigned int isec;
7023 asection *matching_lma;
7024 asection *suggested_lma;
7025 unsigned int j;
7026 size_t amt;
7027 asection *first_section;
7028
7029 if (segment->p_type == PT_NULL)
7030 continue;
7031
7032 first_section = NULL;
7033 /* Compute how many sections might be placed into this segment. */
7034 for (section = ibfd->sections, section_count = 0;
7035 section != NULL;
7036 section = section->next)
7037 {
7038 /* Find the first section in the input segment, which may be
7039 removed from the corresponding output segment. */
7040 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
7041 {
7042 if (first_section == NULL)
7043 first_section = section;
7044 if (section->output_section != NULL)
7045 ++section_count;
7046 }
7047 }
7048
7049 /* Allocate a segment map big enough to contain
7050 all of the sections we have selected. */
7051 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7052 amt += section_count * sizeof (asection *);
7053 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7054 if (map == NULL)
7055 return FALSE;
7056
7057 /* Initialise the fields of the segment map. Default to
7058 using the physical address of the segment in the input BFD. */
7059 map->next = NULL;
7060 map->p_type = segment->p_type;
7061 map->p_flags = segment->p_flags;
7062 map->p_flags_valid = 1;
7063
7064 /* If the first section in the input segment is removed, there is
7065 no need to preserve segment physical address in the corresponding
7066 output segment. */
7067 if (!first_section || first_section->output_section != NULL)
7068 {
7069 map->p_paddr = segment->p_paddr;
7070 map->p_paddr_valid = p_paddr_valid;
7071 }
7072
7073 /* Determine if this segment contains the ELF file header
7074 and if it contains the program headers themselves. */
7075 map->includes_filehdr = (segment->p_offset == 0
7076 && segment->p_filesz >= iehdr->e_ehsize);
7077 map->includes_phdrs = 0;
7078
7079 if (!phdr_included || segment->p_type != PT_LOAD)
7080 {
7081 map->includes_phdrs =
7082 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7083 && (segment->p_offset + segment->p_filesz
7084 >= ((bfd_vma) iehdr->e_phoff
7085 + iehdr->e_phnum * iehdr->e_phentsize)));
7086
7087 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7088 phdr_included = TRUE;
7089 }
7090
7091 if (section_count == 0)
7092 {
7093 /* Special segments, such as the PT_PHDR segment, may contain
7094 no sections, but ordinary, loadable segments should contain
7095 something. They are allowed by the ELF spec however, so only
7096 a warning is produced.
7097 There is however the valid use case of embedded systems which
7098 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
7099 flash memory with zeros. No warning is shown for that case. */
7100 if (segment->p_type == PT_LOAD
7101 && (segment->p_filesz > 0 || segment->p_memsz == 0))
7102 /* xgettext:c-format */
7103 _bfd_error_handler
7104 (_("%pB: warning: empty loadable segment detected"
7105 " at vaddr=%#" PRIx64 ", is this intentional?"),
7106 ibfd, (uint64_t) segment->p_vaddr);
7107
7108 map->p_vaddr_offset = segment->p_vaddr;
7109 map->count = 0;
7110 *pointer_to_map = map;
7111 pointer_to_map = &map->next;
7112
7113 continue;
7114 }
7115
7116 /* Now scan the sections in the input BFD again and attempt
7117 to add their corresponding output sections to the segment map.
7118 The problem here is how to handle an output section which has
7119 been moved (ie had its LMA changed). There are four possibilities:
7120
7121 1. None of the sections have been moved.
7122 In this case we can continue to use the segment LMA from the
7123 input BFD.
7124
7125 2. All of the sections have been moved by the same amount.
7126 In this case we can change the segment's LMA to match the LMA
7127 of the first section.
7128
7129 3. Some of the sections have been moved, others have not.
7130 In this case those sections which have not been moved can be
7131 placed in the current segment which will have to have its size,
7132 and possibly its LMA changed, and a new segment or segments will
7133 have to be created to contain the other sections.
7134
7135 4. The sections have been moved, but not by the same amount.
7136 In this case we can change the segment's LMA to match the LMA
7137 of the first section and we will have to create a new segment
7138 or segments to contain the other sections.
7139
7140 In order to save time, we allocate an array to hold the section
7141 pointers that we are interested in. As these sections get assigned
7142 to a segment, they are removed from this array. */
7143
7144 amt = section_count * sizeof (asection *);
7145 sections = (asection **) bfd_malloc (amt);
7146 if (sections == NULL)
7147 return FALSE;
7148
7149 /* Step One: Scan for segment vs section LMA conflicts.
7150 Also add the sections to the section array allocated above.
7151 Also add the sections to the current segment. In the common
7152 case, where the sections have not been moved, this means that
7153 we have completely filled the segment, and there is nothing
7154 more to do. */
7155 isec = 0;
7156 matching_lma = NULL;
7157 suggested_lma = NULL;
7158
7159 for (section = first_section, j = 0;
7160 section != NULL;
7161 section = section->next)
7162 {
7163 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
7164 {
7165 output_section = section->output_section;
7166
7167 sections[j++] = section;
7168
7169 /* The Solaris native linker always sets p_paddr to 0.
7170 We try to catch that case here, and set it to the
7171 correct value. Note - some backends require that
7172 p_paddr be left as zero. */
7173 if (!p_paddr_valid
7174 && segment->p_vaddr != 0
7175 && !bed->want_p_paddr_set_to_zero
7176 && isec == 0
7177 && output_section->lma != 0
7178 && (align_power (segment->p_vaddr
7179 + (map->includes_filehdr
7180 ? iehdr->e_ehsize : 0)
7181 + (map->includes_phdrs
7182 ? iehdr->e_phnum * iehdr->e_phentsize
7183 : 0),
7184 output_section->alignment_power)
7185 == output_section->vma))
7186 map->p_paddr = segment->p_vaddr;
7187
7188 /* Match up the physical address of the segment with the
7189 LMA address of the output section. */
7190 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7191 || IS_COREFILE_NOTE (segment, section)
7192 || (bed->want_p_paddr_set_to_zero
7193 && IS_CONTAINED_BY_VMA (output_section, segment)))
7194 {
7195 if (matching_lma == NULL
7196 || output_section->lma < matching_lma->lma)
7197 matching_lma = output_section;
7198
7199 /* We assume that if the section fits within the segment
7200 then it does not overlap any other section within that
7201 segment. */
7202 map->sections[isec++] = output_section;
7203 }
7204 else if (suggested_lma == NULL)
7205 suggested_lma = output_section;
7206
7207 if (j == section_count)
7208 break;
7209 }
7210 }
7211
7212 BFD_ASSERT (j == section_count);
7213
7214 /* Step Two: Adjust the physical address of the current segment,
7215 if necessary. */
7216 if (isec == section_count)
7217 {
7218 /* All of the sections fitted within the segment as currently
7219 specified. This is the default case. Add the segment to
7220 the list of built segments and carry on to process the next
7221 program header in the input BFD. */
7222 map->count = section_count;
7223 *pointer_to_map = map;
7224 pointer_to_map = &map->next;
7225
7226 if (p_paddr_valid
7227 && !bed->want_p_paddr_set_to_zero)
7228 {
7229 bfd_vma hdr_size = 0;
7230 if (map->includes_filehdr)
7231 hdr_size = iehdr->e_ehsize;
7232 if (map->includes_phdrs)
7233 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7234
7235 /* Account for padding before the first section in the
7236 segment. */
7237 map->p_vaddr_offset = map->p_paddr + hdr_size - matching_lma->lma;
7238 }
7239
7240 free (sections);
7241 continue;
7242 }
7243 else
7244 {
7245 /* Change the current segment's physical address to match
7246 the LMA of the first section that fitted, or if no
7247 section fitted, the first section. */
7248 if (matching_lma == NULL)
7249 matching_lma = suggested_lma;
7250
7251 map->p_paddr = matching_lma->lma;
7252
7253 /* Offset the segment physical address from the lma
7254 to allow for space taken up by elf headers. */
7255 if (map->includes_phdrs)
7256 {
7257 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
7258
7259 /* iehdr->e_phnum is just an estimate of the number
7260 of program headers that we will need. Make a note
7261 here of the number we used and the segment we chose
7262 to hold these headers, so that we can adjust the
7263 offset when we know the correct value. */
7264 phdr_adjust_num = iehdr->e_phnum;
7265 phdr_adjust_seg = map;
7266 }
7267
7268 if (map->includes_filehdr)
7269 {
7270 bfd_vma align = (bfd_vma) 1 << matching_lma->alignment_power;
7271 map->p_paddr -= iehdr->e_ehsize;
7272 /* We've subtracted off the size of headers from the
7273 first section lma, but there may have been some
7274 alignment padding before that section too. Try to
7275 account for that by adjusting the segment lma down to
7276 the same alignment. */
7277 if (segment->p_align != 0 && segment->p_align < align)
7278 align = segment->p_align;
7279 map->p_paddr &= -align;
7280 }
7281 }
7282
7283 /* Step Three: Loop over the sections again, this time assigning
7284 those that fit to the current segment and removing them from the
7285 sections array; but making sure not to leave large gaps. Once all
7286 possible sections have been assigned to the current segment it is
7287 added to the list of built segments and if sections still remain
7288 to be assigned, a new segment is constructed before repeating
7289 the loop. */
7290 isec = 0;
7291 do
7292 {
7293 map->count = 0;
7294 suggested_lma = NULL;
7295
7296 /* Fill the current segment with sections that fit. */
7297 for (j = 0; j < section_count; j++)
7298 {
7299 section = sections[j];
7300
7301 if (section == NULL)
7302 continue;
7303
7304 output_section = section->output_section;
7305
7306 BFD_ASSERT (output_section != NULL);
7307
7308 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7309 || IS_COREFILE_NOTE (segment, section))
7310 {
7311 if (map->count == 0)
7312 {
7313 /* If the first section in a segment does not start at
7314 the beginning of the segment, then something is
7315 wrong. */
7316 if (align_power (map->p_paddr
7317 + (map->includes_filehdr
7318 ? iehdr->e_ehsize : 0)
7319 + (map->includes_phdrs
7320 ? iehdr->e_phnum * iehdr->e_phentsize
7321 : 0),
7322 output_section->alignment_power)
7323 != output_section->lma)
7324 goto sorry;
7325 }
7326 else
7327 {
7328 asection *prev_sec;
7329
7330 prev_sec = map->sections[map->count - 1];
7331
7332 /* If the gap between the end of the previous section
7333 and the start of this section is more than
7334 maxpagesize then we need to start a new segment. */
7335 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7336 maxpagesize)
7337 < BFD_ALIGN (output_section->lma, maxpagesize))
7338 || (prev_sec->lma + prev_sec->size
7339 > output_section->lma))
7340 {
7341 if (suggested_lma == NULL)
7342 suggested_lma = output_section;
7343
7344 continue;
7345 }
7346 }
7347
7348 map->sections[map->count++] = output_section;
7349 ++isec;
7350 sections[j] = NULL;
7351 if (segment->p_type == PT_LOAD)
7352 section->segment_mark = TRUE;
7353 }
7354 else if (suggested_lma == NULL)
7355 suggested_lma = output_section;
7356 }
7357
7358 /* PR 23932. A corrupt input file may contain sections that cannot
7359 be assigned to any segment - because for example they have a
7360 negative size - or segments that do not contain any sections.
7361 But there are also valid reasons why a segment can be empty.
7362 So allow a count of zero. */
7363
7364 /* Add the current segment to the list of built segments. */
7365 *pointer_to_map = map;
7366 pointer_to_map = &map->next;
7367
7368 if (isec < section_count)
7369 {
7370 /* We still have not allocated all of the sections to
7371 segments. Create a new segment here, initialise it
7372 and carry on looping. */
7373 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7374 amt += section_count * sizeof (asection *);
7375 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7376 if (map == NULL)
7377 {
7378 free (sections);
7379 return FALSE;
7380 }
7381
7382 /* Initialise the fields of the segment map. Set the physical
7383 physical address to the LMA of the first section that has
7384 not yet been assigned. */
7385 map->next = NULL;
7386 map->p_type = segment->p_type;
7387 map->p_flags = segment->p_flags;
7388 map->p_flags_valid = 1;
7389 map->p_paddr = suggested_lma->lma;
7390 map->p_paddr_valid = p_paddr_valid;
7391 map->includes_filehdr = 0;
7392 map->includes_phdrs = 0;
7393 }
7394
7395 continue;
7396 sorry:
7397 bfd_set_error (bfd_error_sorry);
7398 free (sections);
7399 return FALSE;
7400 }
7401 while (isec < section_count);
7402
7403 free (sections);
7404 }
7405
7406 elf_seg_map (obfd) = map_first;
7407
7408 /* If we had to estimate the number of program headers that were
7409 going to be needed, then check our estimate now and adjust
7410 the offset if necessary. */
7411 if (phdr_adjust_seg != NULL)
7412 {
7413 unsigned int count;
7414
7415 for (count = 0, map = map_first; map != NULL; map = map->next)
7416 count++;
7417
7418 if (count > phdr_adjust_num)
7419 phdr_adjust_seg->p_paddr
7420 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7421
7422 for (map = map_first; map != NULL; map = map->next)
7423 if (map->p_type == PT_PHDR)
7424 {
7425 bfd_vma adjust
7426 = phdr_adjust_seg->includes_filehdr ? iehdr->e_ehsize : 0;
7427 map->p_paddr = phdr_adjust_seg->p_paddr + adjust;
7428 break;
7429 }
7430 }
7431
7432 #undef SEGMENT_END
7433 #undef SECTION_SIZE
7434 #undef IS_CONTAINED_BY_VMA
7435 #undef IS_CONTAINED_BY_LMA
7436 #undef IS_NOTE
7437 #undef IS_COREFILE_NOTE
7438 #undef IS_SOLARIS_PT_INTERP
7439 #undef IS_SECTION_IN_INPUT_SEGMENT
7440 #undef INCLUDE_SECTION_IN_SEGMENT
7441 #undef SEGMENT_AFTER_SEGMENT
7442 #undef SEGMENT_OVERLAPS
7443 return TRUE;
7444 }
7445
7446 /* Copy ELF program header information. */
7447
7448 static bfd_boolean
7449 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7450 {
7451 Elf_Internal_Ehdr *iehdr;
7452 struct elf_segment_map *map;
7453 struct elf_segment_map *map_first;
7454 struct elf_segment_map **pointer_to_map;
7455 Elf_Internal_Phdr *segment;
7456 unsigned int i;
7457 unsigned int num_segments;
7458 bfd_boolean phdr_included = FALSE;
7459 bfd_boolean p_paddr_valid;
7460
7461 iehdr = elf_elfheader (ibfd);
7462
7463 map_first = NULL;
7464 pointer_to_map = &map_first;
7465
7466 /* If all the segment p_paddr fields are zero, don't set
7467 map->p_paddr_valid. */
7468 p_paddr_valid = FALSE;
7469 num_segments = elf_elfheader (ibfd)->e_phnum;
7470 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7471 i < num_segments;
7472 i++, segment++)
7473 if (segment->p_paddr != 0)
7474 {
7475 p_paddr_valid = TRUE;
7476 break;
7477 }
7478
7479 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7480 i < num_segments;
7481 i++, segment++)
7482 {
7483 asection *section;
7484 unsigned int section_count;
7485 size_t amt;
7486 Elf_Internal_Shdr *this_hdr;
7487 asection *first_section = NULL;
7488 asection *lowest_section;
7489
7490 /* Compute how many sections are in this segment. */
7491 for (section = ibfd->sections, section_count = 0;
7492 section != NULL;
7493 section = section->next)
7494 {
7495 this_hdr = &(elf_section_data(section)->this_hdr);
7496 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7497 {
7498 if (first_section == NULL)
7499 first_section = section;
7500 section_count++;
7501 }
7502 }
7503
7504 /* Allocate a segment map big enough to contain
7505 all of the sections we have selected. */
7506 amt = sizeof (struct elf_segment_map) - sizeof (asection *);
7507 amt += section_count * sizeof (asection *);
7508 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7509 if (map == NULL)
7510 return FALSE;
7511
7512 /* Initialize the fields of the output segment map with the
7513 input segment. */
7514 map->next = NULL;
7515 map->p_type = segment->p_type;
7516 map->p_flags = segment->p_flags;
7517 map->p_flags_valid = 1;
7518 map->p_paddr = segment->p_paddr;
7519 map->p_paddr_valid = p_paddr_valid;
7520 map->p_align = segment->p_align;
7521 map->p_align_valid = 1;
7522 map->p_vaddr_offset = 0;
7523
7524 if (map->p_type == PT_GNU_RELRO
7525 || map->p_type == PT_GNU_STACK)
7526 {
7527 /* The PT_GNU_RELRO segment may contain the first a few
7528 bytes in the .got.plt section even if the whole .got.plt
7529 section isn't in the PT_GNU_RELRO segment. We won't
7530 change the size of the PT_GNU_RELRO segment.
7531 Similarly, PT_GNU_STACK size is significant on uclinux
7532 systems. */
7533 map->p_size = segment->p_memsz;
7534 map->p_size_valid = 1;
7535 }
7536
7537 /* Determine if this segment contains the ELF file header
7538 and if it contains the program headers themselves. */
7539 map->includes_filehdr = (segment->p_offset == 0
7540 && segment->p_filesz >= iehdr->e_ehsize);
7541
7542 map->includes_phdrs = 0;
7543 if (! phdr_included || segment->p_type != PT_LOAD)
7544 {
7545 map->includes_phdrs =
7546 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7547 && (segment->p_offset + segment->p_filesz
7548 >= ((bfd_vma) iehdr->e_phoff
7549 + iehdr->e_phnum * iehdr->e_phentsize)));
7550
7551 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7552 phdr_included = TRUE;
7553 }
7554
7555 lowest_section = NULL;
7556 if (section_count != 0)
7557 {
7558 unsigned int isec = 0;
7559
7560 for (section = first_section;
7561 section != NULL;
7562 section = section->next)
7563 {
7564 this_hdr = &(elf_section_data(section)->this_hdr);
7565 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7566 {
7567 map->sections[isec++] = section->output_section;
7568 if ((section->flags & SEC_ALLOC) != 0)
7569 {
7570 bfd_vma seg_off;
7571
7572 if (lowest_section == NULL
7573 || section->lma < lowest_section->lma)
7574 lowest_section = section;
7575
7576 /* Section lmas are set up from PT_LOAD header
7577 p_paddr in _bfd_elf_make_section_from_shdr.
7578 If this header has a p_paddr that disagrees
7579 with the section lma, flag the p_paddr as
7580 invalid. */
7581 if ((section->flags & SEC_LOAD) != 0)
7582 seg_off = this_hdr->sh_offset - segment->p_offset;
7583 else
7584 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7585 if (section->lma - segment->p_paddr != seg_off)
7586 map->p_paddr_valid = FALSE;
7587 }
7588 if (isec == section_count)
7589 break;
7590 }
7591 }
7592 }
7593
7594 if (section_count == 0)
7595 map->p_vaddr_offset = segment->p_vaddr;
7596 else if (map->p_paddr_valid)
7597 {
7598 /* Account for padding before the first section in the segment. */
7599 bfd_vma hdr_size = 0;
7600 if (map->includes_filehdr)
7601 hdr_size = iehdr->e_ehsize;
7602 if (map->includes_phdrs)
7603 hdr_size += iehdr->e_phnum * iehdr->e_phentsize;
7604
7605 map->p_vaddr_offset = (map->p_paddr + hdr_size
7606 - (lowest_section ? lowest_section->lma : 0));
7607 }
7608
7609 map->count = section_count;
7610 *pointer_to_map = map;
7611 pointer_to_map = &map->next;
7612 }
7613
7614 elf_seg_map (obfd) = map_first;
7615 return TRUE;
7616 }
7617
7618 /* Copy private BFD data. This copies or rewrites ELF program header
7619 information. */
7620
7621 static bfd_boolean
7622 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7623 {
7624 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7625 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7626 return TRUE;
7627
7628 if (elf_tdata (ibfd)->phdr == NULL)
7629 return TRUE;
7630
7631 if (ibfd->xvec == obfd->xvec)
7632 {
7633 /* Check to see if any sections in the input BFD
7634 covered by ELF program header have changed. */
7635 Elf_Internal_Phdr *segment;
7636 asection *section, *osec;
7637 unsigned int i, num_segments;
7638 Elf_Internal_Shdr *this_hdr;
7639 const struct elf_backend_data *bed;
7640
7641 bed = get_elf_backend_data (ibfd);
7642
7643 /* Regenerate the segment map if p_paddr is set to 0. */
7644 if (bed->want_p_paddr_set_to_zero)
7645 goto rewrite;
7646
7647 /* Initialize the segment mark field. */
7648 for (section = obfd->sections; section != NULL;
7649 section = section->next)
7650 section->segment_mark = FALSE;
7651
7652 num_segments = elf_elfheader (ibfd)->e_phnum;
7653 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7654 i < num_segments;
7655 i++, segment++)
7656 {
7657 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7658 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7659 which severly confuses things, so always regenerate the segment
7660 map in this case. */
7661 if (segment->p_paddr == 0
7662 && segment->p_memsz == 0
7663 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7664 goto rewrite;
7665
7666 for (section = ibfd->sections;
7667 section != NULL; section = section->next)
7668 {
7669 /* We mark the output section so that we know it comes
7670 from the input BFD. */
7671 osec = section->output_section;
7672 if (osec)
7673 osec->segment_mark = TRUE;
7674
7675 /* Check if this section is covered by the segment. */
7676 this_hdr = &(elf_section_data(section)->this_hdr);
7677 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7678 {
7679 /* FIXME: Check if its output section is changed or
7680 removed. What else do we need to check? */
7681 if (osec == NULL
7682 || section->flags != osec->flags
7683 || section->lma != osec->lma
7684 || section->vma != osec->vma
7685 || section->size != osec->size
7686 || section->rawsize != osec->rawsize
7687 || section->alignment_power != osec->alignment_power)
7688 goto rewrite;
7689 }
7690 }
7691 }
7692
7693 /* Check to see if any output section do not come from the
7694 input BFD. */
7695 for (section = obfd->sections; section != NULL;
7696 section = section->next)
7697 {
7698 if (!section->segment_mark)
7699 goto rewrite;
7700 else
7701 section->segment_mark = FALSE;
7702 }
7703
7704 return copy_elf_program_header (ibfd, obfd);
7705 }
7706
7707 rewrite:
7708 if (ibfd->xvec == obfd->xvec)
7709 {
7710 /* When rewriting program header, set the output maxpagesize to
7711 the maximum alignment of input PT_LOAD segments. */
7712 Elf_Internal_Phdr *segment;
7713 unsigned int i;
7714 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7715 bfd_vma maxpagesize = 0;
7716
7717 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7718 i < num_segments;
7719 i++, segment++)
7720 if (segment->p_type == PT_LOAD
7721 && maxpagesize < segment->p_align)
7722 {
7723 /* PR 17512: file: f17299af. */
7724 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7725 /* xgettext:c-format */
7726 _bfd_error_handler (_("%pB: warning: segment alignment of %#"
7727 PRIx64 " is too large"),
7728 ibfd, (uint64_t) segment->p_align);
7729 else
7730 maxpagesize = segment->p_align;
7731 }
7732
7733 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7734 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7735 }
7736
7737 return rewrite_elf_program_header (ibfd, obfd);
7738 }
7739
7740 /* Initialize private output section information from input section. */
7741
7742 bfd_boolean
7743 _bfd_elf_init_private_section_data (bfd *ibfd,
7744 asection *isec,
7745 bfd *obfd,
7746 asection *osec,
7747 struct bfd_link_info *link_info)
7748
7749 {
7750 Elf_Internal_Shdr *ihdr, *ohdr;
7751 bfd_boolean final_link = (link_info != NULL
7752 && !bfd_link_relocatable (link_info));
7753
7754 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7755 || obfd->xvec->flavour != bfd_target_elf_flavour)
7756 return TRUE;
7757
7758 BFD_ASSERT (elf_section_data (osec) != NULL);
7759
7760 /* For objcopy and relocatable link, don't copy the output ELF
7761 section type from input if the output BFD section flags have been
7762 set to something different. For a final link allow some flags
7763 that the linker clears to differ. */
7764 if (elf_section_type (osec) == SHT_NULL
7765 && (osec->flags == isec->flags
7766 || (final_link
7767 && ((osec->flags ^ isec->flags)
7768 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7769 elf_section_type (osec) = elf_section_type (isec);
7770
7771 /* FIXME: Is this correct for all OS/PROC specific flags? */
7772 elf_section_flags (osec) |= (elf_section_flags (isec)
7773 & (SHF_MASKOS | SHF_MASKPROC));
7774
7775 /* Copy sh_info from input for mbind section. */
7776 if ((elf_tdata (ibfd)->has_gnu_osabi & elf_gnu_osabi_mbind) != 0
7777 && elf_section_flags (isec) & SHF_GNU_MBIND)
7778 elf_section_data (osec)->this_hdr.sh_info
7779 = elf_section_data (isec)->this_hdr.sh_info;
7780
7781 /* Set things up for objcopy and relocatable link. The output
7782 SHT_GROUP section will have its elf_next_in_group pointing back
7783 to the input group members. Ignore linker created group section.
7784 See elfNN_ia64_object_p in elfxx-ia64.c. */
7785 if ((link_info == NULL
7786 || !link_info->resolve_section_groups)
7787 && (elf_sec_group (isec) == NULL
7788 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7789 {
7790 if (elf_section_flags (isec) & SHF_GROUP)
7791 elf_section_flags (osec) |= SHF_GROUP;
7792 elf_next_in_group (osec) = elf_next_in_group (isec);
7793 elf_section_data (osec)->group = elf_section_data (isec)->group;
7794 }
7795
7796 /* If not decompress, preserve SHF_COMPRESSED. */
7797 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7798 elf_section_flags (osec) |= (elf_section_flags (isec)
7799 & SHF_COMPRESSED);
7800
7801 ihdr = &elf_section_data (isec)->this_hdr;
7802
7803 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7804 don't use the output section of the linked-to section since it
7805 may be NULL at this point. */
7806 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7807 {
7808 ohdr = &elf_section_data (osec)->this_hdr;
7809 ohdr->sh_flags |= SHF_LINK_ORDER;
7810 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7811 }
7812
7813 osec->use_rela_p = isec->use_rela_p;
7814
7815 return TRUE;
7816 }
7817
7818 /* Copy private section information. This copies over the entsize
7819 field, and sometimes the info field. */
7820
7821 bfd_boolean
7822 _bfd_elf_copy_private_section_data (bfd *ibfd,
7823 asection *isec,
7824 bfd *obfd,
7825 asection *osec)
7826 {
7827 Elf_Internal_Shdr *ihdr, *ohdr;
7828
7829 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7830 || obfd->xvec->flavour != bfd_target_elf_flavour)
7831 return TRUE;
7832
7833 ihdr = &elf_section_data (isec)->this_hdr;
7834 ohdr = &elf_section_data (osec)->this_hdr;
7835
7836 ohdr->sh_entsize = ihdr->sh_entsize;
7837
7838 if (ihdr->sh_type == SHT_SYMTAB
7839 || ihdr->sh_type == SHT_DYNSYM
7840 || ihdr->sh_type == SHT_GNU_verneed
7841 || ihdr->sh_type == SHT_GNU_verdef)
7842 ohdr->sh_info = ihdr->sh_info;
7843
7844 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7845 NULL);
7846 }
7847
7848 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7849 necessary if we are removing either the SHT_GROUP section or any of
7850 the group member sections. DISCARDED is the value that a section's
7851 output_section has if the section will be discarded, NULL when this
7852 function is called from objcopy, bfd_abs_section_ptr when called
7853 from the linker. */
7854
7855 bfd_boolean
7856 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7857 {
7858 asection *isec;
7859
7860 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7861 if (elf_section_type (isec) == SHT_GROUP)
7862 {
7863 asection *first = elf_next_in_group (isec);
7864 asection *s = first;
7865 bfd_size_type removed = 0;
7866
7867 while (s != NULL)
7868 {
7869 /* If this member section is being output but the
7870 SHT_GROUP section is not, then clear the group info
7871 set up by _bfd_elf_copy_private_section_data. */
7872 if (s->output_section != discarded
7873 && isec->output_section == discarded)
7874 {
7875 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7876 elf_group_name (s->output_section) = NULL;
7877 }
7878 /* Conversely, if the member section is not being output
7879 but the SHT_GROUP section is, then adjust its size. */
7880 else if (s->output_section == discarded
7881 && isec->output_section != discarded)
7882 {
7883 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
7884 removed += 4;
7885 if (elf_sec->rel.hdr != NULL
7886 && (elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0)
7887 removed += 4;
7888 if (elf_sec->rela.hdr != NULL
7889 && (elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0)
7890 removed += 4;
7891 }
7892 s = elf_next_in_group (s);
7893 if (s == first)
7894 break;
7895 }
7896 if (removed != 0)
7897 {
7898 if (discarded != NULL)
7899 {
7900 /* If we've been called for ld -r, then we need to
7901 adjust the input section size. */
7902 if (isec->rawsize == 0)
7903 isec->rawsize = isec->size;
7904 isec->size = isec->rawsize - removed;
7905 if (isec->size <= 4)
7906 {
7907 isec->size = 0;
7908 isec->flags |= SEC_EXCLUDE;
7909 }
7910 }
7911 else
7912 {
7913 /* Adjust the output section size when called from
7914 objcopy. */
7915 isec->output_section->size -= removed;
7916 if (isec->output_section->size <= 4)
7917 {
7918 isec->output_section->size = 0;
7919 isec->output_section->flags |= SEC_EXCLUDE;
7920 }
7921 }
7922 }
7923 }
7924
7925 return TRUE;
7926 }
7927
7928 /* Copy private header information. */
7929
7930 bfd_boolean
7931 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7932 {
7933 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7934 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7935 return TRUE;
7936
7937 /* Copy over private BFD data if it has not already been copied.
7938 This must be done here, rather than in the copy_private_bfd_data
7939 entry point, because the latter is called after the section
7940 contents have been set, which means that the program headers have
7941 already been worked out. */
7942 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7943 {
7944 if (! copy_private_bfd_data (ibfd, obfd))
7945 return FALSE;
7946 }
7947
7948 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7949 }
7950
7951 /* Copy private symbol information. If this symbol is in a section
7952 which we did not map into a BFD section, try to map the section
7953 index correctly. We use special macro definitions for the mapped
7954 section indices; these definitions are interpreted by the
7955 swap_out_syms function. */
7956
7957 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7958 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7959 #define MAP_STRTAB (SHN_HIOS + 3)
7960 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7961 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7962
7963 bfd_boolean
7964 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7965 asymbol *isymarg,
7966 bfd *obfd,
7967 asymbol *osymarg)
7968 {
7969 elf_symbol_type *isym, *osym;
7970
7971 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7972 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7973 return TRUE;
7974
7975 isym = elf_symbol_from (ibfd, isymarg);
7976 osym = elf_symbol_from (obfd, osymarg);
7977
7978 if (isym != NULL
7979 && isym->internal_elf_sym.st_shndx != 0
7980 && osym != NULL
7981 && bfd_is_abs_section (isym->symbol.section))
7982 {
7983 unsigned int shndx;
7984
7985 shndx = isym->internal_elf_sym.st_shndx;
7986 if (shndx == elf_onesymtab (ibfd))
7987 shndx = MAP_ONESYMTAB;
7988 else if (shndx == elf_dynsymtab (ibfd))
7989 shndx = MAP_DYNSYMTAB;
7990 else if (shndx == elf_strtab_sec (ibfd))
7991 shndx = MAP_STRTAB;
7992 else if (shndx == elf_shstrtab_sec (ibfd))
7993 shndx = MAP_SHSTRTAB;
7994 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7995 shndx = MAP_SYM_SHNDX;
7996 osym->internal_elf_sym.st_shndx = shndx;
7997 }
7998
7999 return TRUE;
8000 }
8001
8002 /* Swap out the symbols. */
8003
8004 static bfd_boolean
8005 swap_out_syms (bfd *abfd,
8006 struct elf_strtab_hash **sttp,
8007 int relocatable_p)
8008 {
8009 const struct elf_backend_data *bed;
8010 unsigned int symcount;
8011 asymbol **syms;
8012 struct elf_strtab_hash *stt;
8013 Elf_Internal_Shdr *symtab_hdr;
8014 Elf_Internal_Shdr *symtab_shndx_hdr;
8015 Elf_Internal_Shdr *symstrtab_hdr;
8016 struct elf_sym_strtab *symstrtab;
8017 bfd_byte *outbound_syms;
8018 bfd_byte *outbound_shndx;
8019 unsigned long outbound_syms_index;
8020 unsigned long outbound_shndx_index;
8021 unsigned int idx;
8022 unsigned int num_locals;
8023 size_t amt;
8024 bfd_boolean name_local_sections;
8025
8026 if (!elf_map_symbols (abfd, &num_locals))
8027 return FALSE;
8028
8029 /* Dump out the symtabs. */
8030 stt = _bfd_elf_strtab_init ();
8031 if (stt == NULL)
8032 return FALSE;
8033
8034 bed = get_elf_backend_data (abfd);
8035 symcount = bfd_get_symcount (abfd);
8036 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8037 symtab_hdr->sh_type = SHT_SYMTAB;
8038 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
8039 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
8040 symtab_hdr->sh_info = num_locals + 1;
8041 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
8042
8043 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
8044 symstrtab_hdr->sh_type = SHT_STRTAB;
8045
8046 /* Allocate buffer to swap out the .strtab section. */
8047 if (_bfd_mul_overflow (symcount + 1, sizeof (*symstrtab), &amt)
8048 || (symstrtab = (struct elf_sym_strtab *) bfd_malloc (amt)) == NULL)
8049 {
8050 bfd_set_error (bfd_error_no_memory);
8051 _bfd_elf_strtab_free (stt);
8052 return FALSE;
8053 }
8054
8055 if (_bfd_mul_overflow (symcount + 1, bed->s->sizeof_sym, &amt)
8056 || (outbound_syms = (bfd_byte *) bfd_alloc (abfd, amt)) == NULL)
8057 {
8058 error_no_mem:
8059 bfd_set_error (bfd_error_no_memory);
8060 error_return:
8061 free (symstrtab);
8062 _bfd_elf_strtab_free (stt);
8063 return FALSE;
8064 }
8065 symtab_hdr->contents = outbound_syms;
8066 outbound_syms_index = 0;
8067
8068 outbound_shndx = NULL;
8069 outbound_shndx_index = 0;
8070
8071 if (elf_symtab_shndx_list (abfd))
8072 {
8073 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
8074 if (symtab_shndx_hdr->sh_name != 0)
8075 {
8076 if (_bfd_mul_overflow (symcount + 1,
8077 sizeof (Elf_External_Sym_Shndx), &amt))
8078 goto error_no_mem;
8079 outbound_shndx = (bfd_byte *) bfd_zalloc (abfd, amt);
8080 if (outbound_shndx == NULL)
8081 goto error_return;
8082
8083 symtab_shndx_hdr->contents = outbound_shndx;
8084 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
8085 symtab_shndx_hdr->sh_size = amt;
8086 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
8087 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
8088 }
8089 /* FIXME: What about any other headers in the list ? */
8090 }
8091
8092 /* Now generate the data (for "contents"). */
8093 {
8094 /* Fill in zeroth symbol and swap it out. */
8095 Elf_Internal_Sym sym;
8096 sym.st_name = 0;
8097 sym.st_value = 0;
8098 sym.st_size = 0;
8099 sym.st_info = 0;
8100 sym.st_other = 0;
8101 sym.st_shndx = SHN_UNDEF;
8102 sym.st_target_internal = 0;
8103 symstrtab[0].sym = sym;
8104 symstrtab[0].dest_index = outbound_syms_index;
8105 symstrtab[0].destshndx_index = outbound_shndx_index;
8106 outbound_syms_index++;
8107 if (outbound_shndx != NULL)
8108 outbound_shndx_index++;
8109 }
8110
8111 name_local_sections
8112 = (bed->elf_backend_name_local_section_symbols
8113 && bed->elf_backend_name_local_section_symbols (abfd));
8114
8115 syms = bfd_get_outsymbols (abfd);
8116 for (idx = 0; idx < symcount;)
8117 {
8118 Elf_Internal_Sym sym;
8119 bfd_vma value = syms[idx]->value;
8120 elf_symbol_type *type_ptr;
8121 flagword flags = syms[idx]->flags;
8122 int type;
8123
8124 if (!name_local_sections
8125 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
8126 {
8127 /* Local section symbols have no name. */
8128 sym.st_name = (unsigned long) -1;
8129 }
8130 else
8131 {
8132 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
8133 to get the final offset for st_name. */
8134 sym.st_name
8135 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
8136 FALSE);
8137 if (sym.st_name == (unsigned long) -1)
8138 goto error_return;
8139 }
8140
8141 type_ptr = elf_symbol_from (abfd, syms[idx]);
8142
8143 if ((flags & BSF_SECTION_SYM) == 0
8144 && bfd_is_com_section (syms[idx]->section))
8145 {
8146 /* ELF common symbols put the alignment into the `value' field,
8147 and the size into the `size' field. This is backwards from
8148 how BFD handles it, so reverse it here. */
8149 sym.st_size = value;
8150 if (type_ptr == NULL
8151 || type_ptr->internal_elf_sym.st_value == 0)
8152 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
8153 else
8154 sym.st_value = type_ptr->internal_elf_sym.st_value;
8155 sym.st_shndx = _bfd_elf_section_from_bfd_section
8156 (abfd, syms[idx]->section);
8157 }
8158 else
8159 {
8160 asection *sec = syms[idx]->section;
8161 unsigned int shndx;
8162
8163 if (sec->output_section)
8164 {
8165 value += sec->output_offset;
8166 sec = sec->output_section;
8167 }
8168
8169 /* Don't add in the section vma for relocatable output. */
8170 if (! relocatable_p)
8171 value += sec->vma;
8172 sym.st_value = value;
8173 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
8174
8175 if (bfd_is_abs_section (sec)
8176 && type_ptr != NULL
8177 && type_ptr->internal_elf_sym.st_shndx != 0)
8178 {
8179 /* This symbol is in a real ELF section which we did
8180 not create as a BFD section. Undo the mapping done
8181 by copy_private_symbol_data. */
8182 shndx = type_ptr->internal_elf_sym.st_shndx;
8183 switch (shndx)
8184 {
8185 case MAP_ONESYMTAB:
8186 shndx = elf_onesymtab (abfd);
8187 break;
8188 case MAP_DYNSYMTAB:
8189 shndx = elf_dynsymtab (abfd);
8190 break;
8191 case MAP_STRTAB:
8192 shndx = elf_strtab_sec (abfd);
8193 break;
8194 case MAP_SHSTRTAB:
8195 shndx = elf_shstrtab_sec (abfd);
8196 break;
8197 case MAP_SYM_SHNDX:
8198 if (elf_symtab_shndx_list (abfd))
8199 shndx = elf_symtab_shndx_list (abfd)->ndx;
8200 break;
8201 case SHN_COMMON:
8202 case SHN_ABS:
8203 shndx = SHN_ABS;
8204 break;
8205 default:
8206 if (shndx >= SHN_LOPROC && shndx <= SHN_HIOS)
8207 {
8208 if (bed->symbol_section_index)
8209 shndx = bed->symbol_section_index (abfd, type_ptr);
8210 /* Otherwise just leave the index alone. */
8211 }
8212 else
8213 {
8214 if (shndx > SHN_HIOS && shndx < SHN_HIRESERVE)
8215 _bfd_error_handler (_("%pB: \
8216 Unable to handle section index %x in ELF symbol. Using ABS instead."),
8217 abfd, shndx);
8218 shndx = SHN_ABS;
8219 }
8220 break;
8221 }
8222 }
8223 else
8224 {
8225 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
8226
8227 if (shndx == SHN_BAD)
8228 {
8229 asection *sec2;
8230
8231 /* Writing this would be a hell of a lot easier if
8232 we had some decent documentation on bfd, and
8233 knew what to expect of the library, and what to
8234 demand of applications. For example, it
8235 appears that `objcopy' might not set the
8236 section of a symbol to be a section that is
8237 actually in the output file. */
8238 sec2 = bfd_get_section_by_name (abfd, sec->name);
8239 if (sec2 != NULL)
8240 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
8241 if (shndx == SHN_BAD)
8242 {
8243 /* xgettext:c-format */
8244 _bfd_error_handler
8245 (_("unable to find equivalent output section"
8246 " for symbol '%s' from section '%s'"),
8247 syms[idx]->name ? syms[idx]->name : "<Local sym>",
8248 sec->name);
8249 bfd_set_error (bfd_error_invalid_operation);
8250 goto error_return;
8251 }
8252 }
8253 }
8254
8255 sym.st_shndx = shndx;
8256 }
8257
8258 if ((flags & BSF_THREAD_LOCAL) != 0)
8259 type = STT_TLS;
8260 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
8261 type = STT_GNU_IFUNC;
8262 else if ((flags & BSF_FUNCTION) != 0)
8263 type = STT_FUNC;
8264 else if ((flags & BSF_OBJECT) != 0)
8265 type = STT_OBJECT;
8266 else if ((flags & BSF_RELC) != 0)
8267 type = STT_RELC;
8268 else if ((flags & BSF_SRELC) != 0)
8269 type = STT_SRELC;
8270 else
8271 type = STT_NOTYPE;
8272
8273 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
8274 type = STT_TLS;
8275
8276 /* Processor-specific types. */
8277 if (type_ptr != NULL
8278 && bed->elf_backend_get_symbol_type)
8279 type = ((*bed->elf_backend_get_symbol_type)
8280 (&type_ptr->internal_elf_sym, type));
8281
8282 if (flags & BSF_SECTION_SYM)
8283 {
8284 if (flags & BSF_GLOBAL)
8285 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
8286 else
8287 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
8288 }
8289 else if (bfd_is_com_section (syms[idx]->section))
8290 {
8291 if (type != STT_TLS)
8292 {
8293 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
8294 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
8295 ? STT_COMMON : STT_OBJECT);
8296 else
8297 type = ((flags & BSF_ELF_COMMON) != 0
8298 ? STT_COMMON : STT_OBJECT);
8299 }
8300 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
8301 }
8302 else if (bfd_is_und_section (syms[idx]->section))
8303 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
8304 ? STB_WEAK
8305 : STB_GLOBAL),
8306 type);
8307 else if (flags & BSF_FILE)
8308 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
8309 else
8310 {
8311 int bind = STB_LOCAL;
8312
8313 if (flags & BSF_LOCAL)
8314 bind = STB_LOCAL;
8315 else if (flags & BSF_GNU_UNIQUE)
8316 bind = STB_GNU_UNIQUE;
8317 else if (flags & BSF_WEAK)
8318 bind = STB_WEAK;
8319 else if (flags & BSF_GLOBAL)
8320 bind = STB_GLOBAL;
8321
8322 sym.st_info = ELF_ST_INFO (bind, type);
8323 }
8324
8325 if (type_ptr != NULL)
8326 {
8327 sym.st_other = type_ptr->internal_elf_sym.st_other;
8328 sym.st_target_internal
8329 = type_ptr->internal_elf_sym.st_target_internal;
8330 }
8331 else
8332 {
8333 sym.st_other = 0;
8334 sym.st_target_internal = 0;
8335 }
8336
8337 idx++;
8338 symstrtab[idx].sym = sym;
8339 symstrtab[idx].dest_index = outbound_syms_index;
8340 symstrtab[idx].destshndx_index = outbound_shndx_index;
8341
8342 outbound_syms_index++;
8343 if (outbound_shndx != NULL)
8344 outbound_shndx_index++;
8345 }
8346
8347 /* Finalize the .strtab section. */
8348 _bfd_elf_strtab_finalize (stt);
8349
8350 /* Swap out the .strtab section. */
8351 for (idx = 0; idx <= symcount; idx++)
8352 {
8353 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8354 if (elfsym->sym.st_name == (unsigned long) -1)
8355 elfsym->sym.st_name = 0;
8356 else
8357 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8358 elfsym->sym.st_name);
8359 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8360 (outbound_syms
8361 + (elfsym->dest_index
8362 * bed->s->sizeof_sym)),
8363 (outbound_shndx
8364 + (elfsym->destshndx_index
8365 * sizeof (Elf_External_Sym_Shndx))));
8366 }
8367 free (symstrtab);
8368
8369 *sttp = stt;
8370 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8371 symstrtab_hdr->sh_type = SHT_STRTAB;
8372 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8373 symstrtab_hdr->sh_addr = 0;
8374 symstrtab_hdr->sh_entsize = 0;
8375 symstrtab_hdr->sh_link = 0;
8376 symstrtab_hdr->sh_info = 0;
8377 symstrtab_hdr->sh_addralign = 1;
8378
8379 return TRUE;
8380 }
8381
8382 /* Return the number of bytes required to hold the symtab vector.
8383
8384 Note that we base it on the count plus 1, since we will null terminate
8385 the vector allocated based on this size. However, the ELF symbol table
8386 always has a dummy entry as symbol #0, so it ends up even. */
8387
8388 long
8389 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8390 {
8391 bfd_size_type symcount;
8392 long symtab_size;
8393 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8394
8395 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8396 if (symcount >= LONG_MAX / sizeof (asymbol *))
8397 {
8398 bfd_set_error (bfd_error_file_too_big);
8399 return -1;
8400 }
8401 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8402 if (symcount > 0)
8403 symtab_size -= sizeof (asymbol *);
8404
8405 return symtab_size;
8406 }
8407
8408 long
8409 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8410 {
8411 bfd_size_type symcount;
8412 long symtab_size;
8413 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8414
8415 if (elf_dynsymtab (abfd) == 0)
8416 {
8417 bfd_set_error (bfd_error_invalid_operation);
8418 return -1;
8419 }
8420
8421 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8422 if (symcount >= LONG_MAX / sizeof (asymbol *))
8423 {
8424 bfd_set_error (bfd_error_file_too_big);
8425 return -1;
8426 }
8427 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8428 if (symcount > 0)
8429 symtab_size -= sizeof (asymbol *);
8430
8431 return symtab_size;
8432 }
8433
8434 long
8435 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8436 sec_ptr asect)
8437 {
8438 #if SIZEOF_LONG == SIZEOF_INT
8439 if (asect->reloc_count >= LONG_MAX / sizeof (arelent *))
8440 {
8441 bfd_set_error (bfd_error_file_too_big);
8442 return -1;
8443 }
8444 #endif
8445 return (asect->reloc_count + 1) * sizeof (arelent *);
8446 }
8447
8448 /* Canonicalize the relocs. */
8449
8450 long
8451 _bfd_elf_canonicalize_reloc (bfd *abfd,
8452 sec_ptr section,
8453 arelent **relptr,
8454 asymbol **symbols)
8455 {
8456 arelent *tblptr;
8457 unsigned int i;
8458 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8459
8460 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8461 return -1;
8462
8463 tblptr = section->relocation;
8464 for (i = 0; i < section->reloc_count; i++)
8465 *relptr++ = tblptr++;
8466
8467 *relptr = NULL;
8468
8469 return section->reloc_count;
8470 }
8471
8472 long
8473 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8474 {
8475 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8476 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8477
8478 if (symcount >= 0)
8479 abfd->symcount = symcount;
8480 return symcount;
8481 }
8482
8483 long
8484 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8485 asymbol **allocation)
8486 {
8487 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8488 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8489
8490 if (symcount >= 0)
8491 abfd->dynsymcount = symcount;
8492 return symcount;
8493 }
8494
8495 /* Return the size required for the dynamic reloc entries. Any loadable
8496 section that was actually installed in the BFD, and has type SHT_REL
8497 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8498 dynamic reloc section. */
8499
8500 long
8501 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8502 {
8503 bfd_size_type count;
8504 asection *s;
8505
8506 if (elf_dynsymtab (abfd) == 0)
8507 {
8508 bfd_set_error (bfd_error_invalid_operation);
8509 return -1;
8510 }
8511
8512 count = 1;
8513 for (s = abfd->sections; s != NULL; s = s->next)
8514 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8515 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8516 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8517 {
8518 count += s->size / elf_section_data (s)->this_hdr.sh_entsize;
8519 if (count > LONG_MAX / sizeof (arelent *))
8520 {
8521 bfd_set_error (bfd_error_file_too_big);
8522 return -1;
8523 }
8524 }
8525 return count * sizeof (arelent *);
8526 }
8527
8528 /* Canonicalize the dynamic relocation entries. Note that we return the
8529 dynamic relocations as a single block, although they are actually
8530 associated with particular sections; the interface, which was
8531 designed for SunOS style shared libraries, expects that there is only
8532 one set of dynamic relocs. Any loadable section that was actually
8533 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8534 dynamic symbol table, is considered to be a dynamic reloc section. */
8535
8536 long
8537 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8538 arelent **storage,
8539 asymbol **syms)
8540 {
8541 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8542 asection *s;
8543 long ret;
8544
8545 if (elf_dynsymtab (abfd) == 0)
8546 {
8547 bfd_set_error (bfd_error_invalid_operation);
8548 return -1;
8549 }
8550
8551 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8552 ret = 0;
8553 for (s = abfd->sections; s != NULL; s = s->next)
8554 {
8555 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8556 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8557 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8558 {
8559 arelent *p;
8560 long count, i;
8561
8562 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8563 return -1;
8564 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8565 p = s->relocation;
8566 for (i = 0; i < count; i++)
8567 *storage++ = p++;
8568 ret += count;
8569 }
8570 }
8571
8572 *storage = NULL;
8573
8574 return ret;
8575 }
8576 \f
8577 /* Read in the version information. */
8578
8579 bfd_boolean
8580 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8581 {
8582 bfd_byte *contents = NULL;
8583 unsigned int freeidx = 0;
8584 size_t amt;
8585
8586 if (elf_dynverref (abfd) != 0)
8587 {
8588 Elf_Internal_Shdr *hdr;
8589 Elf_External_Verneed *everneed;
8590 Elf_Internal_Verneed *iverneed;
8591 unsigned int i;
8592 bfd_byte *contents_end;
8593
8594 hdr = &elf_tdata (abfd)->dynverref_hdr;
8595
8596 if (hdr->sh_info == 0
8597 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8598 {
8599 error_return_bad_verref:
8600 _bfd_error_handler
8601 (_("%pB: .gnu.version_r invalid entry"), abfd);
8602 bfd_set_error (bfd_error_bad_value);
8603 error_return_verref:
8604 elf_tdata (abfd)->verref = NULL;
8605 elf_tdata (abfd)->cverrefs = 0;
8606 goto error_return;
8607 }
8608
8609 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8610 goto error_return_verref;
8611 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8612 if (contents == NULL)
8613 goto error_return_verref;
8614
8615 if (_bfd_mul_overflow (hdr->sh_info, sizeof (Elf_Internal_Verneed), &amt))
8616 {
8617 bfd_set_error (bfd_error_file_too_big);
8618 goto error_return_verref;
8619 }
8620 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *) bfd_alloc (abfd, amt);
8621 if (elf_tdata (abfd)->verref == NULL)
8622 goto error_return_verref;
8623
8624 BFD_ASSERT (sizeof (Elf_External_Verneed)
8625 == sizeof (Elf_External_Vernaux));
8626 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8627 everneed = (Elf_External_Verneed *) contents;
8628 iverneed = elf_tdata (abfd)->verref;
8629 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8630 {
8631 Elf_External_Vernaux *evernaux;
8632 Elf_Internal_Vernaux *ivernaux;
8633 unsigned int j;
8634
8635 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8636
8637 iverneed->vn_bfd = abfd;
8638
8639 iverneed->vn_filename =
8640 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8641 iverneed->vn_file);
8642 if (iverneed->vn_filename == NULL)
8643 goto error_return_bad_verref;
8644
8645 if (iverneed->vn_cnt == 0)
8646 iverneed->vn_auxptr = NULL;
8647 else
8648 {
8649 if (_bfd_mul_overflow (iverneed->vn_cnt,
8650 sizeof (Elf_Internal_Vernaux), &amt))
8651 {
8652 bfd_set_error (bfd_error_file_too_big);
8653 goto error_return_verref;
8654 }
8655 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8656 bfd_alloc (abfd, amt);
8657 if (iverneed->vn_auxptr == NULL)
8658 goto error_return_verref;
8659 }
8660
8661 if (iverneed->vn_aux
8662 > (size_t) (contents_end - (bfd_byte *) everneed))
8663 goto error_return_bad_verref;
8664
8665 evernaux = ((Elf_External_Vernaux *)
8666 ((bfd_byte *) everneed + iverneed->vn_aux));
8667 ivernaux = iverneed->vn_auxptr;
8668 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8669 {
8670 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8671
8672 ivernaux->vna_nodename =
8673 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8674 ivernaux->vna_name);
8675 if (ivernaux->vna_nodename == NULL)
8676 goto error_return_bad_verref;
8677
8678 if (ivernaux->vna_other > freeidx)
8679 freeidx = ivernaux->vna_other;
8680
8681 ivernaux->vna_nextptr = NULL;
8682 if (ivernaux->vna_next == 0)
8683 {
8684 iverneed->vn_cnt = j + 1;
8685 break;
8686 }
8687 if (j + 1 < iverneed->vn_cnt)
8688 ivernaux->vna_nextptr = ivernaux + 1;
8689
8690 if (ivernaux->vna_next
8691 > (size_t) (contents_end - (bfd_byte *) evernaux))
8692 goto error_return_bad_verref;
8693
8694 evernaux = ((Elf_External_Vernaux *)
8695 ((bfd_byte *) evernaux + ivernaux->vna_next));
8696 }
8697
8698 iverneed->vn_nextref = NULL;
8699 if (iverneed->vn_next == 0)
8700 break;
8701 if (i + 1 < hdr->sh_info)
8702 iverneed->vn_nextref = iverneed + 1;
8703
8704 if (iverneed->vn_next
8705 > (size_t) (contents_end - (bfd_byte *) everneed))
8706 goto error_return_bad_verref;
8707
8708 everneed = ((Elf_External_Verneed *)
8709 ((bfd_byte *) everneed + iverneed->vn_next));
8710 }
8711 elf_tdata (abfd)->cverrefs = i;
8712
8713 free (contents);
8714 contents = NULL;
8715 }
8716
8717 if (elf_dynverdef (abfd) != 0)
8718 {
8719 Elf_Internal_Shdr *hdr;
8720 Elf_External_Verdef *everdef;
8721 Elf_Internal_Verdef *iverdef;
8722 Elf_Internal_Verdef *iverdefarr;
8723 Elf_Internal_Verdef iverdefmem;
8724 unsigned int i;
8725 unsigned int maxidx;
8726 bfd_byte *contents_end_def, *contents_end_aux;
8727
8728 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8729
8730 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8731 {
8732 error_return_bad_verdef:
8733 _bfd_error_handler
8734 (_("%pB: .gnu.version_d invalid entry"), abfd);
8735 bfd_set_error (bfd_error_bad_value);
8736 error_return_verdef:
8737 elf_tdata (abfd)->verdef = NULL;
8738 elf_tdata (abfd)->cverdefs = 0;
8739 goto error_return;
8740 }
8741
8742 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0)
8743 goto error_return_verdef;
8744 contents = _bfd_malloc_and_read (abfd, hdr->sh_size, hdr->sh_size);
8745 if (contents == NULL)
8746 goto error_return_verdef;
8747
8748 BFD_ASSERT (sizeof (Elf_External_Verdef)
8749 >= sizeof (Elf_External_Verdaux));
8750 contents_end_def = contents + hdr->sh_size
8751 - sizeof (Elf_External_Verdef);
8752 contents_end_aux = contents + hdr->sh_size
8753 - sizeof (Elf_External_Verdaux);
8754
8755 /* We know the number of entries in the section but not the maximum
8756 index. Therefore we have to run through all entries and find
8757 the maximum. */
8758 everdef = (Elf_External_Verdef *) contents;
8759 maxidx = 0;
8760 for (i = 0; i < hdr->sh_info; ++i)
8761 {
8762 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8763
8764 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8765 goto error_return_bad_verdef;
8766 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8767 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8768
8769 if (iverdefmem.vd_next == 0)
8770 break;
8771
8772 if (iverdefmem.vd_next
8773 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8774 goto error_return_bad_verdef;
8775
8776 everdef = ((Elf_External_Verdef *)
8777 ((bfd_byte *) everdef + iverdefmem.vd_next));
8778 }
8779
8780 if (default_imported_symver)
8781 {
8782 if (freeidx > maxidx)
8783 maxidx = ++freeidx;
8784 else
8785 freeidx = ++maxidx;
8786 }
8787 if (_bfd_mul_overflow (maxidx, sizeof (Elf_Internal_Verdef), &amt))
8788 {
8789 bfd_set_error (bfd_error_file_too_big);
8790 goto error_return_verdef;
8791 }
8792 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8793 if (elf_tdata (abfd)->verdef == NULL)
8794 goto error_return_verdef;
8795
8796 elf_tdata (abfd)->cverdefs = maxidx;
8797
8798 everdef = (Elf_External_Verdef *) contents;
8799 iverdefarr = elf_tdata (abfd)->verdef;
8800 for (i = 0; i < hdr->sh_info; i++)
8801 {
8802 Elf_External_Verdaux *everdaux;
8803 Elf_Internal_Verdaux *iverdaux;
8804 unsigned int j;
8805
8806 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8807
8808 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8809 goto error_return_bad_verdef;
8810
8811 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8812 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8813
8814 iverdef->vd_bfd = abfd;
8815
8816 if (iverdef->vd_cnt == 0)
8817 iverdef->vd_auxptr = NULL;
8818 else
8819 {
8820 if (_bfd_mul_overflow (iverdef->vd_cnt,
8821 sizeof (Elf_Internal_Verdaux), &amt))
8822 {
8823 bfd_set_error (bfd_error_file_too_big);
8824 goto error_return_verdef;
8825 }
8826 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8827 bfd_alloc (abfd, amt);
8828 if (iverdef->vd_auxptr == NULL)
8829 goto error_return_verdef;
8830 }
8831
8832 if (iverdef->vd_aux
8833 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8834 goto error_return_bad_verdef;
8835
8836 everdaux = ((Elf_External_Verdaux *)
8837 ((bfd_byte *) everdef + iverdef->vd_aux));
8838 iverdaux = iverdef->vd_auxptr;
8839 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8840 {
8841 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8842
8843 iverdaux->vda_nodename =
8844 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8845 iverdaux->vda_name);
8846 if (iverdaux->vda_nodename == NULL)
8847 goto error_return_bad_verdef;
8848
8849 iverdaux->vda_nextptr = NULL;
8850 if (iverdaux->vda_next == 0)
8851 {
8852 iverdef->vd_cnt = j + 1;
8853 break;
8854 }
8855 if (j + 1 < iverdef->vd_cnt)
8856 iverdaux->vda_nextptr = iverdaux + 1;
8857
8858 if (iverdaux->vda_next
8859 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8860 goto error_return_bad_verdef;
8861
8862 everdaux = ((Elf_External_Verdaux *)
8863 ((bfd_byte *) everdaux + iverdaux->vda_next));
8864 }
8865
8866 iverdef->vd_nodename = NULL;
8867 if (iverdef->vd_cnt)
8868 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8869
8870 iverdef->vd_nextdef = NULL;
8871 if (iverdef->vd_next == 0)
8872 break;
8873 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8874 iverdef->vd_nextdef = iverdef + 1;
8875
8876 everdef = ((Elf_External_Verdef *)
8877 ((bfd_byte *) everdef + iverdef->vd_next));
8878 }
8879
8880 free (contents);
8881 contents = NULL;
8882 }
8883 else if (default_imported_symver)
8884 {
8885 if (freeidx < 3)
8886 freeidx = 3;
8887 else
8888 freeidx++;
8889
8890 if (_bfd_mul_overflow (freeidx, sizeof (Elf_Internal_Verdef), &amt))
8891 {
8892 bfd_set_error (bfd_error_file_too_big);
8893 goto error_return;
8894 }
8895 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *) bfd_zalloc (abfd, amt);
8896 if (elf_tdata (abfd)->verdef == NULL)
8897 goto error_return;
8898
8899 elf_tdata (abfd)->cverdefs = freeidx;
8900 }
8901
8902 /* Create a default version based on the soname. */
8903 if (default_imported_symver)
8904 {
8905 Elf_Internal_Verdef *iverdef;
8906 Elf_Internal_Verdaux *iverdaux;
8907
8908 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8909
8910 iverdef->vd_version = VER_DEF_CURRENT;
8911 iverdef->vd_flags = 0;
8912 iverdef->vd_ndx = freeidx;
8913 iverdef->vd_cnt = 1;
8914
8915 iverdef->vd_bfd = abfd;
8916
8917 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8918 if (iverdef->vd_nodename == NULL)
8919 goto error_return_verdef;
8920 iverdef->vd_nextdef = NULL;
8921 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8922 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8923 if (iverdef->vd_auxptr == NULL)
8924 goto error_return_verdef;
8925
8926 iverdaux = iverdef->vd_auxptr;
8927 iverdaux->vda_nodename = iverdef->vd_nodename;
8928 }
8929
8930 return TRUE;
8931
8932 error_return:
8933 if (contents != NULL)
8934 free (contents);
8935 return FALSE;
8936 }
8937 \f
8938 asymbol *
8939 _bfd_elf_make_empty_symbol (bfd *abfd)
8940 {
8941 elf_symbol_type *newsym;
8942
8943 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof (*newsym));
8944 if (!newsym)
8945 return NULL;
8946 newsym->symbol.the_bfd = abfd;
8947 return &newsym->symbol;
8948 }
8949
8950 void
8951 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8952 asymbol *symbol,
8953 symbol_info *ret)
8954 {
8955 bfd_symbol_info (symbol, ret);
8956 }
8957
8958 /* Return whether a symbol name implies a local symbol. Most targets
8959 use this function for the is_local_label_name entry point, but some
8960 override it. */
8961
8962 bfd_boolean
8963 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8964 const char *name)
8965 {
8966 /* Normal local symbols start with ``.L''. */
8967 if (name[0] == '.' && name[1] == 'L')
8968 return TRUE;
8969
8970 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8971 DWARF debugging symbols starting with ``..''. */
8972 if (name[0] == '.' && name[1] == '.')
8973 return TRUE;
8974
8975 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8976 emitting DWARF debugging output. I suspect this is actually a
8977 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8978 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8979 underscore to be emitted on some ELF targets). For ease of use,
8980 we treat such symbols as local. */
8981 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8982 return TRUE;
8983
8984 /* Treat assembler generated fake symbols, dollar local labels and
8985 forward-backward labels (aka local labels) as locals.
8986 These labels have the form:
8987
8988 L0^A.* (fake symbols)
8989
8990 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8991
8992 Versions which start with .L will have already been matched above,
8993 so we only need to match the rest. */
8994 if (name[0] == 'L' && ISDIGIT (name[1]))
8995 {
8996 bfd_boolean ret = FALSE;
8997 const char * p;
8998 char c;
8999
9000 for (p = name + 2; (c = *p); p++)
9001 {
9002 if (c == 1 || c == 2)
9003 {
9004 if (c == 1 && p == name + 2)
9005 /* A fake symbol. */
9006 return TRUE;
9007
9008 /* FIXME: We are being paranoid here and treating symbols like
9009 L0^Bfoo as if there were non-local, on the grounds that the
9010 assembler will never generate them. But can any symbol
9011 containing an ASCII value in the range 1-31 ever be anything
9012 other than some kind of local ? */
9013 ret = TRUE;
9014 }
9015
9016 if (! ISDIGIT (c))
9017 {
9018 ret = FALSE;
9019 break;
9020 }
9021 }
9022 return ret;
9023 }
9024
9025 return FALSE;
9026 }
9027
9028 alent *
9029 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
9030 asymbol *symbol ATTRIBUTE_UNUSED)
9031 {
9032 abort ();
9033 return NULL;
9034 }
9035
9036 bfd_boolean
9037 _bfd_elf_set_arch_mach (bfd *abfd,
9038 enum bfd_architecture arch,
9039 unsigned long machine)
9040 {
9041 /* If this isn't the right architecture for this backend, and this
9042 isn't the generic backend, fail. */
9043 if (arch != get_elf_backend_data (abfd)->arch
9044 && arch != bfd_arch_unknown
9045 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
9046 return FALSE;
9047
9048 return bfd_default_set_arch_mach (abfd, arch, machine);
9049 }
9050
9051 /* Find the nearest line to a particular section and offset,
9052 for error reporting. */
9053
9054 bfd_boolean
9055 _bfd_elf_find_nearest_line (bfd *abfd,
9056 asymbol **symbols,
9057 asection *section,
9058 bfd_vma offset,
9059 const char **filename_ptr,
9060 const char **functionname_ptr,
9061 unsigned int *line_ptr,
9062 unsigned int *discriminator_ptr)
9063 {
9064 bfd_boolean found;
9065
9066 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
9067 filename_ptr, functionname_ptr,
9068 line_ptr, discriminator_ptr,
9069 dwarf_debug_sections,
9070 &elf_tdata (abfd)->dwarf2_find_line_info))
9071 return TRUE;
9072
9073 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
9074 filename_ptr, functionname_ptr, line_ptr))
9075 {
9076 if (!*functionname_ptr)
9077 _bfd_elf_find_function (abfd, symbols, section, offset,
9078 *filename_ptr ? NULL : filename_ptr,
9079 functionname_ptr);
9080 return TRUE;
9081 }
9082
9083 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9084 &found, filename_ptr,
9085 functionname_ptr, line_ptr,
9086 &elf_tdata (abfd)->line_info))
9087 return FALSE;
9088 if (found && (*functionname_ptr || *line_ptr))
9089 return TRUE;
9090
9091 if (symbols == NULL)
9092 return FALSE;
9093
9094 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
9095 filename_ptr, functionname_ptr))
9096 return FALSE;
9097
9098 *line_ptr = 0;
9099 return TRUE;
9100 }
9101
9102 /* Find the line for a symbol. */
9103
9104 bfd_boolean
9105 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
9106 const char **filename_ptr, unsigned int *line_ptr)
9107 {
9108 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
9109 filename_ptr, NULL, line_ptr, NULL,
9110 dwarf_debug_sections,
9111 &elf_tdata (abfd)->dwarf2_find_line_info);
9112 }
9113
9114 /* After a call to bfd_find_nearest_line, successive calls to
9115 bfd_find_inliner_info can be used to get source information about
9116 each level of function inlining that terminated at the address
9117 passed to bfd_find_nearest_line. Currently this is only supported
9118 for DWARF2 with appropriate DWARF3 extensions. */
9119
9120 bfd_boolean
9121 _bfd_elf_find_inliner_info (bfd *abfd,
9122 const char **filename_ptr,
9123 const char **functionname_ptr,
9124 unsigned int *line_ptr)
9125 {
9126 bfd_boolean found;
9127 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9128 functionname_ptr, line_ptr,
9129 & elf_tdata (abfd)->dwarf2_find_line_info);
9130 return found;
9131 }
9132
9133 int
9134 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
9135 {
9136 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9137 int ret = bed->s->sizeof_ehdr;
9138
9139 if (!bfd_link_relocatable (info))
9140 {
9141 bfd_size_type phdr_size = elf_program_header_size (abfd);
9142
9143 if (phdr_size == (bfd_size_type) -1)
9144 {
9145 struct elf_segment_map *m;
9146
9147 phdr_size = 0;
9148 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
9149 phdr_size += bed->s->sizeof_phdr;
9150
9151 if (phdr_size == 0)
9152 phdr_size = get_program_header_size (abfd, info);
9153 }
9154
9155 elf_program_header_size (abfd) = phdr_size;
9156 ret += phdr_size;
9157 }
9158
9159 return ret;
9160 }
9161
9162 bfd_boolean
9163 _bfd_elf_set_section_contents (bfd *abfd,
9164 sec_ptr section,
9165 const void *location,
9166 file_ptr offset,
9167 bfd_size_type count)
9168 {
9169 Elf_Internal_Shdr *hdr;
9170 file_ptr pos;
9171
9172 if (! abfd->output_has_begun
9173 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
9174 return FALSE;
9175
9176 if (!count)
9177 return TRUE;
9178
9179 hdr = &elf_section_data (section)->this_hdr;
9180 if (hdr->sh_offset == (file_ptr) -1)
9181 {
9182 if (bfd_section_is_ctf (section))
9183 /* Nothing to do with this section: the contents are generated
9184 later. */
9185 return TRUE;
9186
9187 /* We must compress this section. Write output to the buffer. */
9188 unsigned char *contents = hdr->contents;
9189 if ((offset + count) > hdr->sh_size
9190 || (section->flags & SEC_ELF_COMPRESS) == 0
9191 || contents == NULL)
9192 abort ();
9193 memcpy (contents + offset, location, count);
9194 return TRUE;
9195 }
9196 pos = hdr->sh_offset + offset;
9197 if (bfd_seek (abfd, pos, SEEK_SET) != 0
9198 || bfd_bwrite (location, count, abfd) != count)
9199 return FALSE;
9200
9201 return TRUE;
9202 }
9203
9204 bfd_boolean
9205 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
9206 arelent *cache_ptr ATTRIBUTE_UNUSED,
9207 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
9208 {
9209 abort ();
9210 return FALSE;
9211 }
9212
9213 /* Try to convert a non-ELF reloc into an ELF one. */
9214
9215 bfd_boolean
9216 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
9217 {
9218 /* Check whether we really have an ELF howto. */
9219
9220 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
9221 {
9222 bfd_reloc_code_real_type code;
9223 reloc_howto_type *howto;
9224
9225 /* Alien reloc: Try to determine its type to replace it with an
9226 equivalent ELF reloc. */
9227
9228 if (areloc->howto->pc_relative)
9229 {
9230 switch (areloc->howto->bitsize)
9231 {
9232 case 8:
9233 code = BFD_RELOC_8_PCREL;
9234 break;
9235 case 12:
9236 code = BFD_RELOC_12_PCREL;
9237 break;
9238 case 16:
9239 code = BFD_RELOC_16_PCREL;
9240 break;
9241 case 24:
9242 code = BFD_RELOC_24_PCREL;
9243 break;
9244 case 32:
9245 code = BFD_RELOC_32_PCREL;
9246 break;
9247 case 64:
9248 code = BFD_RELOC_64_PCREL;
9249 break;
9250 default:
9251 goto fail;
9252 }
9253
9254 howto = bfd_reloc_type_lookup (abfd, code);
9255
9256 if (howto && areloc->howto->pcrel_offset != howto->pcrel_offset)
9257 {
9258 if (howto->pcrel_offset)
9259 areloc->addend += areloc->address;
9260 else
9261 areloc->addend -= areloc->address; /* addend is unsigned!! */
9262 }
9263 }
9264 else
9265 {
9266 switch (areloc->howto->bitsize)
9267 {
9268 case 8:
9269 code = BFD_RELOC_8;
9270 break;
9271 case 14:
9272 code = BFD_RELOC_14;
9273 break;
9274 case 16:
9275 code = BFD_RELOC_16;
9276 break;
9277 case 26:
9278 code = BFD_RELOC_26;
9279 break;
9280 case 32:
9281 code = BFD_RELOC_32;
9282 break;
9283 case 64:
9284 code = BFD_RELOC_64;
9285 break;
9286 default:
9287 goto fail;
9288 }
9289
9290 howto = bfd_reloc_type_lookup (abfd, code);
9291 }
9292
9293 if (howto)
9294 areloc->howto = howto;
9295 else
9296 goto fail;
9297 }
9298
9299 return TRUE;
9300
9301 fail:
9302 /* xgettext:c-format */
9303 _bfd_error_handler (_("%pB: %s unsupported"),
9304 abfd, areloc->howto->name);
9305 bfd_set_error (bfd_error_sorry);
9306 return FALSE;
9307 }
9308
9309 bfd_boolean
9310 _bfd_elf_close_and_cleanup (bfd *abfd)
9311 {
9312 struct elf_obj_tdata *tdata = elf_tdata (abfd);
9313 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
9314 {
9315 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
9316 _bfd_elf_strtab_free (elf_shstrtab (abfd));
9317 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
9318 }
9319
9320 return _bfd_generic_close_and_cleanup (abfd);
9321 }
9322
9323 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
9324 in the relocation's offset. Thus we cannot allow any sort of sanity
9325 range-checking to interfere. There is nothing else to do in processing
9326 this reloc. */
9327
9328 bfd_reloc_status_type
9329 _bfd_elf_rel_vtable_reloc_fn
9330 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
9331 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
9332 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
9333 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
9334 {
9335 return bfd_reloc_ok;
9336 }
9337 \f
9338 /* Elf core file support. Much of this only works on native
9339 toolchains, since we rely on knowing the
9340 machine-dependent procfs structure in order to pick
9341 out details about the corefile. */
9342
9343 #ifdef HAVE_SYS_PROCFS_H
9344 /* Needed for new procfs interface on sparc-solaris. */
9345 # define _STRUCTURED_PROC 1
9346 # include <sys/procfs.h>
9347 #endif
9348
9349 /* Return a PID that identifies a "thread" for threaded cores, or the
9350 PID of the main process for non-threaded cores. */
9351
9352 static int
9353 elfcore_make_pid (bfd *abfd)
9354 {
9355 int pid;
9356
9357 pid = elf_tdata (abfd)->core->lwpid;
9358 if (pid == 0)
9359 pid = elf_tdata (abfd)->core->pid;
9360
9361 return pid;
9362 }
9363
9364 /* If there isn't a section called NAME, make one, using
9365 data from SECT. Note, this function will generate a
9366 reference to NAME, so you shouldn't deallocate or
9367 overwrite it. */
9368
9369 static bfd_boolean
9370 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
9371 {
9372 asection *sect2;
9373
9374 if (bfd_get_section_by_name (abfd, name) != NULL)
9375 return TRUE;
9376
9377 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
9378 if (sect2 == NULL)
9379 return FALSE;
9380
9381 sect2->size = sect->size;
9382 sect2->filepos = sect->filepos;
9383 sect2->alignment_power = sect->alignment_power;
9384 return TRUE;
9385 }
9386
9387 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9388 actually creates up to two pseudosections:
9389 - For the single-threaded case, a section named NAME, unless
9390 such a section already exists.
9391 - For the multi-threaded case, a section named "NAME/PID", where
9392 PID is elfcore_make_pid (abfd).
9393 Both pseudosections have identical contents. */
9394 bfd_boolean
9395 _bfd_elfcore_make_pseudosection (bfd *abfd,
9396 char *name,
9397 size_t size,
9398 ufile_ptr filepos)
9399 {
9400 char buf[100];
9401 char *threaded_name;
9402 size_t len;
9403 asection *sect;
9404
9405 /* Build the section name. */
9406
9407 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9408 len = strlen (buf) + 1;
9409 threaded_name = (char *) bfd_alloc (abfd, len);
9410 if (threaded_name == NULL)
9411 return FALSE;
9412 memcpy (threaded_name, buf, len);
9413
9414 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9415 SEC_HAS_CONTENTS);
9416 if (sect == NULL)
9417 return FALSE;
9418 sect->size = size;
9419 sect->filepos = filepos;
9420 sect->alignment_power = 2;
9421
9422 return elfcore_maybe_make_sect (abfd, name, sect);
9423 }
9424
9425 static bfd_boolean
9426 elfcore_make_auxv_note_section (bfd *abfd, Elf_Internal_Note *note,
9427 size_t offs)
9428 {
9429 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9430 SEC_HAS_CONTENTS);
9431
9432 if (sect == NULL)
9433 return FALSE;
9434
9435 sect->size = note->descsz - offs;
9436 sect->filepos = note->descpos + offs;
9437 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9438
9439 return TRUE;
9440 }
9441
9442 /* prstatus_t exists on:
9443 solaris 2.5+
9444 linux 2.[01] + glibc
9445 unixware 4.2
9446 */
9447
9448 #if defined (HAVE_PRSTATUS_T)
9449
9450 static bfd_boolean
9451 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9452 {
9453 size_t size;
9454 int offset;
9455
9456 if (note->descsz == sizeof (prstatus_t))
9457 {
9458 prstatus_t prstat;
9459
9460 size = sizeof (prstat.pr_reg);
9461 offset = offsetof (prstatus_t, pr_reg);
9462 memcpy (&prstat, note->descdata, sizeof (prstat));
9463
9464 /* Do not overwrite the core signal if it
9465 has already been set by another thread. */
9466 if (elf_tdata (abfd)->core->signal == 0)
9467 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9468 if (elf_tdata (abfd)->core->pid == 0)
9469 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9470
9471 /* pr_who exists on:
9472 solaris 2.5+
9473 unixware 4.2
9474 pr_who doesn't exist on:
9475 linux 2.[01]
9476 */
9477 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9478 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9479 #else
9480 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9481 #endif
9482 }
9483 #if defined (HAVE_PRSTATUS32_T)
9484 else if (note->descsz == sizeof (prstatus32_t))
9485 {
9486 /* 64-bit host, 32-bit corefile */
9487 prstatus32_t prstat;
9488
9489 size = sizeof (prstat.pr_reg);
9490 offset = offsetof (prstatus32_t, pr_reg);
9491 memcpy (&prstat, note->descdata, sizeof (prstat));
9492
9493 /* Do not overwrite the core signal if it
9494 has already been set by another thread. */
9495 if (elf_tdata (abfd)->core->signal == 0)
9496 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9497 if (elf_tdata (abfd)->core->pid == 0)
9498 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9499
9500 /* pr_who exists on:
9501 solaris 2.5+
9502 unixware 4.2
9503 pr_who doesn't exist on:
9504 linux 2.[01]
9505 */
9506 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9507 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9508 #else
9509 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9510 #endif
9511 }
9512 #endif /* HAVE_PRSTATUS32_T */
9513 else
9514 {
9515 /* Fail - we don't know how to handle any other
9516 note size (ie. data object type). */
9517 return TRUE;
9518 }
9519
9520 /* Make a ".reg/999" section and a ".reg" section. */
9521 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9522 size, note->descpos + offset);
9523 }
9524 #endif /* defined (HAVE_PRSTATUS_T) */
9525
9526 /* Create a pseudosection containing the exact contents of NOTE. */
9527 static bfd_boolean
9528 elfcore_make_note_pseudosection (bfd *abfd,
9529 char *name,
9530 Elf_Internal_Note *note)
9531 {
9532 return _bfd_elfcore_make_pseudosection (abfd, name,
9533 note->descsz, note->descpos);
9534 }
9535
9536 /* There isn't a consistent prfpregset_t across platforms,
9537 but it doesn't matter, because we don't have to pick this
9538 data structure apart. */
9539
9540 static bfd_boolean
9541 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9542 {
9543 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9544 }
9545
9546 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9547 type of NT_PRXFPREG. Just include the whole note's contents
9548 literally. */
9549
9550 static bfd_boolean
9551 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9552 {
9553 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9554 }
9555
9556 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9557 with a note type of NT_X86_XSTATE. Just include the whole note's
9558 contents literally. */
9559
9560 static bfd_boolean
9561 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9562 {
9563 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9564 }
9565
9566 static bfd_boolean
9567 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9568 {
9569 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9570 }
9571
9572 static bfd_boolean
9573 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9574 {
9575 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9576 }
9577
9578 static bfd_boolean
9579 elfcore_grok_ppc_tar (bfd *abfd, Elf_Internal_Note *note)
9580 {
9581 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tar", note);
9582 }
9583
9584 static bfd_boolean
9585 elfcore_grok_ppc_ppr (bfd *abfd, Elf_Internal_Note *note)
9586 {
9587 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ppr", note);
9588 }
9589
9590 static bfd_boolean
9591 elfcore_grok_ppc_dscr (bfd *abfd, Elf_Internal_Note *note)
9592 {
9593 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-dscr", note);
9594 }
9595
9596 static bfd_boolean
9597 elfcore_grok_ppc_ebb (bfd *abfd, Elf_Internal_Note *note)
9598 {
9599 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-ebb", note);
9600 }
9601
9602 static bfd_boolean
9603 elfcore_grok_ppc_pmu (bfd *abfd, Elf_Internal_Note *note)
9604 {
9605 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-pmu", note);
9606 }
9607
9608 static bfd_boolean
9609 elfcore_grok_ppc_tm_cgpr (bfd *abfd, Elf_Internal_Note *note)
9610 {
9611 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cgpr", note);
9612 }
9613
9614 static bfd_boolean
9615 elfcore_grok_ppc_tm_cfpr (bfd *abfd, Elf_Internal_Note *note)
9616 {
9617 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cfpr", note);
9618 }
9619
9620 static bfd_boolean
9621 elfcore_grok_ppc_tm_cvmx (bfd *abfd, Elf_Internal_Note *note)
9622 {
9623 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvmx", note);
9624 }
9625
9626 static bfd_boolean
9627 elfcore_grok_ppc_tm_cvsx (bfd *abfd, Elf_Internal_Note *note)
9628 {
9629 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cvsx", note);
9630 }
9631
9632 static bfd_boolean
9633 elfcore_grok_ppc_tm_spr (bfd *abfd, Elf_Internal_Note *note)
9634 {
9635 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-spr", note);
9636 }
9637
9638 static bfd_boolean
9639 elfcore_grok_ppc_tm_ctar (bfd *abfd, Elf_Internal_Note *note)
9640 {
9641 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-ctar", note);
9642 }
9643
9644 static bfd_boolean
9645 elfcore_grok_ppc_tm_cppr (bfd *abfd, Elf_Internal_Note *note)
9646 {
9647 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cppr", note);
9648 }
9649
9650 static bfd_boolean
9651 elfcore_grok_ppc_tm_cdscr (bfd *abfd, Elf_Internal_Note *note)
9652 {
9653 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-tm-cdscr", note);
9654 }
9655
9656 static bfd_boolean
9657 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9658 {
9659 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9660 }
9661
9662 static bfd_boolean
9663 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9664 {
9665 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9666 }
9667
9668 static bfd_boolean
9669 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9670 {
9671 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9672 }
9673
9674 static bfd_boolean
9675 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9676 {
9677 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9678 }
9679
9680 static bfd_boolean
9681 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9682 {
9683 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9684 }
9685
9686 static bfd_boolean
9687 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9688 {
9689 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9690 }
9691
9692 static bfd_boolean
9693 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9694 {
9695 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9696 }
9697
9698 static bfd_boolean
9699 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9700 {
9701 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9702 }
9703
9704 static bfd_boolean
9705 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9706 {
9707 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9708 }
9709
9710 static bfd_boolean
9711 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9712 {
9713 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9714 }
9715
9716 static bfd_boolean
9717 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9718 {
9719 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9720 }
9721
9722 static bfd_boolean
9723 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9724 {
9725 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9726 }
9727
9728 static bfd_boolean
9729 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9730 {
9731 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9732 }
9733
9734 static bfd_boolean
9735 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9736 {
9737 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9738 }
9739
9740 static bfd_boolean
9741 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9742 {
9743 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9744 }
9745
9746 static bfd_boolean
9747 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9748 {
9749 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9750 }
9751
9752 static bfd_boolean
9753 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9754 {
9755 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9756 }
9757
9758 static bfd_boolean
9759 elfcore_grok_aarch_sve (bfd *abfd, Elf_Internal_Note *note)
9760 {
9761 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-sve", note);
9762 }
9763
9764 static bfd_boolean
9765 elfcore_grok_aarch_pauth (bfd *abfd, Elf_Internal_Note *note)
9766 {
9767 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-pauth", note);
9768 }
9769
9770 #if defined (HAVE_PRPSINFO_T)
9771 typedef prpsinfo_t elfcore_psinfo_t;
9772 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9773 typedef prpsinfo32_t elfcore_psinfo32_t;
9774 #endif
9775 #endif
9776
9777 #if defined (HAVE_PSINFO_T)
9778 typedef psinfo_t elfcore_psinfo_t;
9779 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9780 typedef psinfo32_t elfcore_psinfo32_t;
9781 #endif
9782 #endif
9783
9784 /* return a malloc'ed copy of a string at START which is at
9785 most MAX bytes long, possibly without a terminating '\0'.
9786 the copy will always have a terminating '\0'. */
9787
9788 char *
9789 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9790 {
9791 char *dups;
9792 char *end = (char *) memchr (start, '\0', max);
9793 size_t len;
9794
9795 if (end == NULL)
9796 len = max;
9797 else
9798 len = end - start;
9799
9800 dups = (char *) bfd_alloc (abfd, len + 1);
9801 if (dups == NULL)
9802 return NULL;
9803
9804 memcpy (dups, start, len);
9805 dups[len] = '\0';
9806
9807 return dups;
9808 }
9809
9810 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9811 static bfd_boolean
9812 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9813 {
9814 if (note->descsz == sizeof (elfcore_psinfo_t))
9815 {
9816 elfcore_psinfo_t psinfo;
9817
9818 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9819
9820 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9821 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9822 #endif
9823 elf_tdata (abfd)->core->program
9824 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9825 sizeof (psinfo.pr_fname));
9826
9827 elf_tdata (abfd)->core->command
9828 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9829 sizeof (psinfo.pr_psargs));
9830 }
9831 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9832 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9833 {
9834 /* 64-bit host, 32-bit corefile */
9835 elfcore_psinfo32_t psinfo;
9836
9837 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9838
9839 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9840 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9841 #endif
9842 elf_tdata (abfd)->core->program
9843 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9844 sizeof (psinfo.pr_fname));
9845
9846 elf_tdata (abfd)->core->command
9847 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9848 sizeof (psinfo.pr_psargs));
9849 }
9850 #endif
9851
9852 else
9853 {
9854 /* Fail - we don't know how to handle any other
9855 note size (ie. data object type). */
9856 return TRUE;
9857 }
9858
9859 /* Note that for some reason, a spurious space is tacked
9860 onto the end of the args in some (at least one anyway)
9861 implementations, so strip it off if it exists. */
9862
9863 {
9864 char *command = elf_tdata (abfd)->core->command;
9865 int n = strlen (command);
9866
9867 if (0 < n && command[n - 1] == ' ')
9868 command[n - 1] = '\0';
9869 }
9870
9871 return TRUE;
9872 }
9873 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9874
9875 #if defined (HAVE_PSTATUS_T)
9876 static bfd_boolean
9877 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9878 {
9879 if (note->descsz == sizeof (pstatus_t)
9880 #if defined (HAVE_PXSTATUS_T)
9881 || note->descsz == sizeof (pxstatus_t)
9882 #endif
9883 )
9884 {
9885 pstatus_t pstat;
9886
9887 memcpy (&pstat, note->descdata, sizeof (pstat));
9888
9889 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9890 }
9891 #if defined (HAVE_PSTATUS32_T)
9892 else if (note->descsz == sizeof (pstatus32_t))
9893 {
9894 /* 64-bit host, 32-bit corefile */
9895 pstatus32_t pstat;
9896
9897 memcpy (&pstat, note->descdata, sizeof (pstat));
9898
9899 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9900 }
9901 #endif
9902 /* Could grab some more details from the "representative"
9903 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9904 NT_LWPSTATUS note, presumably. */
9905
9906 return TRUE;
9907 }
9908 #endif /* defined (HAVE_PSTATUS_T) */
9909
9910 #if defined (HAVE_LWPSTATUS_T)
9911 static bfd_boolean
9912 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9913 {
9914 lwpstatus_t lwpstat;
9915 char buf[100];
9916 char *name;
9917 size_t len;
9918 asection *sect;
9919
9920 if (note->descsz != sizeof (lwpstat)
9921 #if defined (HAVE_LWPXSTATUS_T)
9922 && note->descsz != sizeof (lwpxstatus_t)
9923 #endif
9924 )
9925 return TRUE;
9926
9927 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9928
9929 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9930 /* Do not overwrite the core signal if it has already been set by
9931 another thread. */
9932 if (elf_tdata (abfd)->core->signal == 0)
9933 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9934
9935 /* Make a ".reg/999" section. */
9936
9937 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9938 len = strlen (buf) + 1;
9939 name = bfd_alloc (abfd, len);
9940 if (name == NULL)
9941 return FALSE;
9942 memcpy (name, buf, len);
9943
9944 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9945 if (sect == NULL)
9946 return FALSE;
9947
9948 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9949 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9950 sect->filepos = note->descpos
9951 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9952 #endif
9953
9954 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9955 sect->size = sizeof (lwpstat.pr_reg);
9956 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9957 #endif
9958
9959 sect->alignment_power = 2;
9960
9961 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9962 return FALSE;
9963
9964 /* Make a ".reg2/999" section */
9965
9966 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9967 len = strlen (buf) + 1;
9968 name = bfd_alloc (abfd, len);
9969 if (name == NULL)
9970 return FALSE;
9971 memcpy (name, buf, len);
9972
9973 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9974 if (sect == NULL)
9975 return FALSE;
9976
9977 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9978 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9979 sect->filepos = note->descpos
9980 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9981 #endif
9982
9983 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9984 sect->size = sizeof (lwpstat.pr_fpreg);
9985 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9986 #endif
9987
9988 sect->alignment_power = 2;
9989
9990 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9991 }
9992 #endif /* defined (HAVE_LWPSTATUS_T) */
9993
9994 static bfd_boolean
9995 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9996 {
9997 char buf[30];
9998 char *name;
9999 size_t len;
10000 asection *sect;
10001 int type;
10002 int is_active_thread;
10003 bfd_vma base_addr;
10004
10005 if (note->descsz < 728)
10006 return TRUE;
10007
10008 if (! CONST_STRNEQ (note->namedata, "win32"))
10009 return TRUE;
10010
10011 type = bfd_get_32 (abfd, note->descdata);
10012
10013 switch (type)
10014 {
10015 case 1 /* NOTE_INFO_PROCESS */:
10016 /* FIXME: need to add ->core->command. */
10017 /* process_info.pid */
10018 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
10019 /* process_info.signal */
10020 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
10021 break;
10022
10023 case 2 /* NOTE_INFO_THREAD */:
10024 /* Make a ".reg/999" section. */
10025 /* thread_info.tid */
10026 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
10027
10028 len = strlen (buf) + 1;
10029 name = (char *) bfd_alloc (abfd, len);
10030 if (name == NULL)
10031 return FALSE;
10032
10033 memcpy (name, buf, len);
10034
10035 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10036 if (sect == NULL)
10037 return FALSE;
10038
10039 /* sizeof (thread_info.thread_context) */
10040 sect->size = 716;
10041 /* offsetof (thread_info.thread_context) */
10042 sect->filepos = note->descpos + 12;
10043 sect->alignment_power = 2;
10044
10045 /* thread_info.is_active_thread */
10046 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
10047
10048 if (is_active_thread)
10049 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
10050 return FALSE;
10051 break;
10052
10053 case 3 /* NOTE_INFO_MODULE */:
10054 /* Make a ".module/xxxxxxxx" section. */
10055 /* module_info.base_address */
10056 base_addr = bfd_get_32 (abfd, note->descdata + 4);
10057 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
10058
10059 len = strlen (buf) + 1;
10060 name = (char *) bfd_alloc (abfd, len);
10061 if (name == NULL)
10062 return FALSE;
10063
10064 memcpy (name, buf, len);
10065
10066 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10067
10068 if (sect == NULL)
10069 return FALSE;
10070
10071 sect->size = note->descsz;
10072 sect->filepos = note->descpos;
10073 sect->alignment_power = 2;
10074 break;
10075
10076 default:
10077 return TRUE;
10078 }
10079
10080 return TRUE;
10081 }
10082
10083 static bfd_boolean
10084 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
10085 {
10086 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10087
10088 switch (note->type)
10089 {
10090 default:
10091 return TRUE;
10092
10093 case NT_PRSTATUS:
10094 if (bed->elf_backend_grok_prstatus)
10095 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
10096 return TRUE;
10097 #if defined (HAVE_PRSTATUS_T)
10098 return elfcore_grok_prstatus (abfd, note);
10099 #else
10100 return TRUE;
10101 #endif
10102
10103 #if defined (HAVE_PSTATUS_T)
10104 case NT_PSTATUS:
10105 return elfcore_grok_pstatus (abfd, note);
10106 #endif
10107
10108 #if defined (HAVE_LWPSTATUS_T)
10109 case NT_LWPSTATUS:
10110 return elfcore_grok_lwpstatus (abfd, note);
10111 #endif
10112
10113 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
10114 return elfcore_grok_prfpreg (abfd, note);
10115
10116 case NT_WIN32PSTATUS:
10117 return elfcore_grok_win32pstatus (abfd, note);
10118
10119 case NT_PRXFPREG: /* Linux SSE extension */
10120 if (note->namesz == 6
10121 && strcmp (note->namedata, "LINUX") == 0)
10122 return elfcore_grok_prxfpreg (abfd, note);
10123 else
10124 return TRUE;
10125
10126 case NT_X86_XSTATE: /* Linux XSAVE extension */
10127 if (note->namesz == 6
10128 && strcmp (note->namedata, "LINUX") == 0)
10129 return elfcore_grok_xstatereg (abfd, note);
10130 else
10131 return TRUE;
10132
10133 case NT_PPC_VMX:
10134 if (note->namesz == 6
10135 && strcmp (note->namedata, "LINUX") == 0)
10136 return elfcore_grok_ppc_vmx (abfd, note);
10137 else
10138 return TRUE;
10139
10140 case NT_PPC_VSX:
10141 if (note->namesz == 6
10142 && strcmp (note->namedata, "LINUX") == 0)
10143 return elfcore_grok_ppc_vsx (abfd, note);
10144 else
10145 return TRUE;
10146
10147 case NT_PPC_TAR:
10148 if (note->namesz == 6
10149 && strcmp (note->namedata, "LINUX") == 0)
10150 return elfcore_grok_ppc_tar (abfd, note);
10151 else
10152 return TRUE;
10153
10154 case NT_PPC_PPR:
10155 if (note->namesz == 6
10156 && strcmp (note->namedata, "LINUX") == 0)
10157 return elfcore_grok_ppc_ppr (abfd, note);
10158 else
10159 return TRUE;
10160
10161 case NT_PPC_DSCR:
10162 if (note->namesz == 6
10163 && strcmp (note->namedata, "LINUX") == 0)
10164 return elfcore_grok_ppc_dscr (abfd, note);
10165 else
10166 return TRUE;
10167
10168 case NT_PPC_EBB:
10169 if (note->namesz == 6
10170 && strcmp (note->namedata, "LINUX") == 0)
10171 return elfcore_grok_ppc_ebb (abfd, note);
10172 else
10173 return TRUE;
10174
10175 case NT_PPC_PMU:
10176 if (note->namesz == 6
10177 && strcmp (note->namedata, "LINUX") == 0)
10178 return elfcore_grok_ppc_pmu (abfd, note);
10179 else
10180 return TRUE;
10181
10182 case NT_PPC_TM_CGPR:
10183 if (note->namesz == 6
10184 && strcmp (note->namedata, "LINUX") == 0)
10185 return elfcore_grok_ppc_tm_cgpr (abfd, note);
10186 else
10187 return TRUE;
10188
10189 case NT_PPC_TM_CFPR:
10190 if (note->namesz == 6
10191 && strcmp (note->namedata, "LINUX") == 0)
10192 return elfcore_grok_ppc_tm_cfpr (abfd, note);
10193 else
10194 return TRUE;
10195
10196 case NT_PPC_TM_CVMX:
10197 if (note->namesz == 6
10198 && strcmp (note->namedata, "LINUX") == 0)
10199 return elfcore_grok_ppc_tm_cvmx (abfd, note);
10200 else
10201 return TRUE;
10202
10203 case NT_PPC_TM_CVSX:
10204 if (note->namesz == 6
10205 && strcmp (note->namedata, "LINUX") == 0)
10206 return elfcore_grok_ppc_tm_cvsx (abfd, note);
10207 else
10208 return TRUE;
10209
10210 case NT_PPC_TM_SPR:
10211 if (note->namesz == 6
10212 && strcmp (note->namedata, "LINUX") == 0)
10213 return elfcore_grok_ppc_tm_spr (abfd, note);
10214 else
10215 return TRUE;
10216
10217 case NT_PPC_TM_CTAR:
10218 if (note->namesz == 6
10219 && strcmp (note->namedata, "LINUX") == 0)
10220 return elfcore_grok_ppc_tm_ctar (abfd, note);
10221 else
10222 return TRUE;
10223
10224 case NT_PPC_TM_CPPR:
10225 if (note->namesz == 6
10226 && strcmp (note->namedata, "LINUX") == 0)
10227 return elfcore_grok_ppc_tm_cppr (abfd, note);
10228 else
10229 return TRUE;
10230
10231 case NT_PPC_TM_CDSCR:
10232 if (note->namesz == 6
10233 && strcmp (note->namedata, "LINUX") == 0)
10234 return elfcore_grok_ppc_tm_cdscr (abfd, note);
10235 else
10236 return TRUE;
10237
10238 case NT_S390_HIGH_GPRS:
10239 if (note->namesz == 6
10240 && strcmp (note->namedata, "LINUX") == 0)
10241 return elfcore_grok_s390_high_gprs (abfd, note);
10242 else
10243 return TRUE;
10244
10245 case NT_S390_TIMER:
10246 if (note->namesz == 6
10247 && strcmp (note->namedata, "LINUX") == 0)
10248 return elfcore_grok_s390_timer (abfd, note);
10249 else
10250 return TRUE;
10251
10252 case NT_S390_TODCMP:
10253 if (note->namesz == 6
10254 && strcmp (note->namedata, "LINUX") == 0)
10255 return elfcore_grok_s390_todcmp (abfd, note);
10256 else
10257 return TRUE;
10258
10259 case NT_S390_TODPREG:
10260 if (note->namesz == 6
10261 && strcmp (note->namedata, "LINUX") == 0)
10262 return elfcore_grok_s390_todpreg (abfd, note);
10263 else
10264 return TRUE;
10265
10266 case NT_S390_CTRS:
10267 if (note->namesz == 6
10268 && strcmp (note->namedata, "LINUX") == 0)
10269 return elfcore_grok_s390_ctrs (abfd, note);
10270 else
10271 return TRUE;
10272
10273 case NT_S390_PREFIX:
10274 if (note->namesz == 6
10275 && strcmp (note->namedata, "LINUX") == 0)
10276 return elfcore_grok_s390_prefix (abfd, note);
10277 else
10278 return TRUE;
10279
10280 case NT_S390_LAST_BREAK:
10281 if (note->namesz == 6
10282 && strcmp (note->namedata, "LINUX") == 0)
10283 return elfcore_grok_s390_last_break (abfd, note);
10284 else
10285 return TRUE;
10286
10287 case NT_S390_SYSTEM_CALL:
10288 if (note->namesz == 6
10289 && strcmp (note->namedata, "LINUX") == 0)
10290 return elfcore_grok_s390_system_call (abfd, note);
10291 else
10292 return TRUE;
10293
10294 case NT_S390_TDB:
10295 if (note->namesz == 6
10296 && strcmp (note->namedata, "LINUX") == 0)
10297 return elfcore_grok_s390_tdb (abfd, note);
10298 else
10299 return TRUE;
10300
10301 case NT_S390_VXRS_LOW:
10302 if (note->namesz == 6
10303 && strcmp (note->namedata, "LINUX") == 0)
10304 return elfcore_grok_s390_vxrs_low (abfd, note);
10305 else
10306 return TRUE;
10307
10308 case NT_S390_VXRS_HIGH:
10309 if (note->namesz == 6
10310 && strcmp (note->namedata, "LINUX") == 0)
10311 return elfcore_grok_s390_vxrs_high (abfd, note);
10312 else
10313 return TRUE;
10314
10315 case NT_S390_GS_CB:
10316 if (note->namesz == 6
10317 && strcmp (note->namedata, "LINUX") == 0)
10318 return elfcore_grok_s390_gs_cb (abfd, note);
10319 else
10320 return TRUE;
10321
10322 case NT_S390_GS_BC:
10323 if (note->namesz == 6
10324 && strcmp (note->namedata, "LINUX") == 0)
10325 return elfcore_grok_s390_gs_bc (abfd, note);
10326 else
10327 return TRUE;
10328
10329 case NT_ARM_VFP:
10330 if (note->namesz == 6
10331 && strcmp (note->namedata, "LINUX") == 0)
10332 return elfcore_grok_arm_vfp (abfd, note);
10333 else
10334 return TRUE;
10335
10336 case NT_ARM_TLS:
10337 if (note->namesz == 6
10338 && strcmp (note->namedata, "LINUX") == 0)
10339 return elfcore_grok_aarch_tls (abfd, note);
10340 else
10341 return TRUE;
10342
10343 case NT_ARM_HW_BREAK:
10344 if (note->namesz == 6
10345 && strcmp (note->namedata, "LINUX") == 0)
10346 return elfcore_grok_aarch_hw_break (abfd, note);
10347 else
10348 return TRUE;
10349
10350 case NT_ARM_HW_WATCH:
10351 if (note->namesz == 6
10352 && strcmp (note->namedata, "LINUX") == 0)
10353 return elfcore_grok_aarch_hw_watch (abfd, note);
10354 else
10355 return TRUE;
10356
10357 case NT_ARM_SVE:
10358 if (note->namesz == 6
10359 && strcmp (note->namedata, "LINUX") == 0)
10360 return elfcore_grok_aarch_sve (abfd, note);
10361 else
10362 return TRUE;
10363
10364 case NT_ARM_PAC_MASK:
10365 if (note->namesz == 6
10366 && strcmp (note->namedata, "LINUX") == 0)
10367 return elfcore_grok_aarch_pauth (abfd, note);
10368 else
10369 return TRUE;
10370
10371 case NT_PRPSINFO:
10372 case NT_PSINFO:
10373 if (bed->elf_backend_grok_psinfo)
10374 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
10375 return TRUE;
10376 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10377 return elfcore_grok_psinfo (abfd, note);
10378 #else
10379 return TRUE;
10380 #endif
10381
10382 case NT_AUXV:
10383 return elfcore_make_auxv_note_section (abfd, note, 0);
10384
10385 case NT_FILE:
10386 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
10387 note);
10388
10389 case NT_SIGINFO:
10390 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
10391 note);
10392
10393 }
10394 }
10395
10396 static bfd_boolean
10397 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
10398 {
10399 struct bfd_build_id* build_id;
10400
10401 if (note->descsz == 0)
10402 return FALSE;
10403
10404 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
10405 if (build_id == NULL)
10406 return FALSE;
10407
10408 build_id->size = note->descsz;
10409 memcpy (build_id->data, note->descdata, note->descsz);
10410 abfd->build_id = build_id;
10411
10412 return TRUE;
10413 }
10414
10415 static bfd_boolean
10416 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
10417 {
10418 switch (note->type)
10419 {
10420 default:
10421 return TRUE;
10422
10423 case NT_GNU_PROPERTY_TYPE_0:
10424 return _bfd_elf_parse_gnu_properties (abfd, note);
10425
10426 case NT_GNU_BUILD_ID:
10427 return elfobj_grok_gnu_build_id (abfd, note);
10428 }
10429 }
10430
10431 static bfd_boolean
10432 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
10433 {
10434 struct sdt_note *cur =
10435 (struct sdt_note *) bfd_alloc (abfd,
10436 sizeof (struct sdt_note) + note->descsz);
10437
10438 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
10439 cur->size = (bfd_size_type) note->descsz;
10440 memcpy (cur->data, note->descdata, note->descsz);
10441
10442 elf_tdata (abfd)->sdt_note_head = cur;
10443
10444 return TRUE;
10445 }
10446
10447 static bfd_boolean
10448 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
10449 {
10450 switch (note->type)
10451 {
10452 case NT_STAPSDT:
10453 return elfobj_grok_stapsdt_note_1 (abfd, note);
10454
10455 default:
10456 return TRUE;
10457 }
10458 }
10459
10460 static bfd_boolean
10461 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
10462 {
10463 size_t offset;
10464
10465 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10466 {
10467 case ELFCLASS32:
10468 if (note->descsz < 108)
10469 return FALSE;
10470 break;
10471
10472 case ELFCLASS64:
10473 if (note->descsz < 120)
10474 return FALSE;
10475 break;
10476
10477 default:
10478 return FALSE;
10479 }
10480
10481 /* Check for version 1 in pr_version. */
10482 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10483 return FALSE;
10484
10485 offset = 4;
10486
10487 /* Skip over pr_psinfosz. */
10488 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10489 offset += 4;
10490 else
10491 {
10492 offset += 4; /* Padding before pr_psinfosz. */
10493 offset += 8;
10494 }
10495
10496 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
10497 elf_tdata (abfd)->core->program
10498 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
10499 offset += 17;
10500
10501 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
10502 elf_tdata (abfd)->core->command
10503 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
10504 offset += 81;
10505
10506 /* Padding before pr_pid. */
10507 offset += 2;
10508
10509 /* The pr_pid field was added in version "1a". */
10510 if (note->descsz < offset + 4)
10511 return TRUE;
10512
10513 elf_tdata (abfd)->core->pid
10514 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10515
10516 return TRUE;
10517 }
10518
10519 static bfd_boolean
10520 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
10521 {
10522 size_t offset;
10523 size_t size;
10524 size_t min_size;
10525
10526 /* Compute offset of pr_getregsz, skipping over pr_statussz.
10527 Also compute minimum size of this note. */
10528 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
10529 {
10530 case ELFCLASS32:
10531 offset = 4 + 4;
10532 min_size = offset + (4 * 2) + 4 + 4 + 4;
10533 break;
10534
10535 case ELFCLASS64:
10536 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
10537 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
10538 break;
10539
10540 default:
10541 return FALSE;
10542 }
10543
10544 if (note->descsz < min_size)
10545 return FALSE;
10546
10547 /* Check for version 1 in pr_version. */
10548 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
10549 return FALSE;
10550
10551 /* Extract size of pr_reg from pr_gregsetsz. */
10552 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
10553 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
10554 {
10555 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10556 offset += 4 * 2;
10557 }
10558 else
10559 {
10560 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
10561 offset += 8 * 2;
10562 }
10563
10564 /* Skip over pr_osreldate. */
10565 offset += 4;
10566
10567 /* Read signal from pr_cursig. */
10568 if (elf_tdata (abfd)->core->signal == 0)
10569 elf_tdata (abfd)->core->signal
10570 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10571 offset += 4;
10572
10573 /* Read TID from pr_pid. */
10574 elf_tdata (abfd)->core->lwpid
10575 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
10576 offset += 4;
10577
10578 /* Padding before pr_reg. */
10579 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
10580 offset += 4;
10581
10582 /* Make sure that there is enough data remaining in the note. */
10583 if ((note->descsz - offset) < size)
10584 return FALSE;
10585
10586 /* Make a ".reg/999" section and a ".reg" section. */
10587 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10588 size, note->descpos + offset);
10589 }
10590
10591 static bfd_boolean
10592 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10593 {
10594 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10595
10596 switch (note->type)
10597 {
10598 case NT_PRSTATUS:
10599 if (bed->elf_backend_grok_freebsd_prstatus)
10600 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10601 return TRUE;
10602 return elfcore_grok_freebsd_prstatus (abfd, note);
10603
10604 case NT_FPREGSET:
10605 return elfcore_grok_prfpreg (abfd, note);
10606
10607 case NT_PRPSINFO:
10608 return elfcore_grok_freebsd_psinfo (abfd, note);
10609
10610 case NT_FREEBSD_THRMISC:
10611 if (note->namesz == 8)
10612 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10613 else
10614 return TRUE;
10615
10616 case NT_FREEBSD_PROCSTAT_PROC:
10617 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10618 note);
10619
10620 case NT_FREEBSD_PROCSTAT_FILES:
10621 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10622 note);
10623
10624 case NT_FREEBSD_PROCSTAT_VMMAP:
10625 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10626 note);
10627
10628 case NT_FREEBSD_PROCSTAT_AUXV:
10629 return elfcore_make_auxv_note_section (abfd, note, 4);
10630
10631 case NT_X86_XSTATE:
10632 if (note->namesz == 8)
10633 return elfcore_grok_xstatereg (abfd, note);
10634 else
10635 return TRUE;
10636
10637 case NT_FREEBSD_PTLWPINFO:
10638 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10639 note);
10640
10641 case NT_ARM_VFP:
10642 return elfcore_grok_arm_vfp (abfd, note);
10643
10644 default:
10645 return TRUE;
10646 }
10647 }
10648
10649 static bfd_boolean
10650 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10651 {
10652 char *cp;
10653
10654 cp = strchr (note->namedata, '@');
10655 if (cp != NULL)
10656 {
10657 *lwpidp = atoi(cp + 1);
10658 return TRUE;
10659 }
10660 return FALSE;
10661 }
10662
10663 static bfd_boolean
10664 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10665 {
10666 if (note->descsz <= 0x7c + 31)
10667 return FALSE;
10668
10669 /* Signal number at offset 0x08. */
10670 elf_tdata (abfd)->core->signal
10671 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10672
10673 /* Process ID at offset 0x50. */
10674 elf_tdata (abfd)->core->pid
10675 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10676
10677 /* Command name at 0x7c (max 32 bytes, including nul). */
10678 elf_tdata (abfd)->core->command
10679 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10680
10681 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10682 note);
10683 }
10684
10685 static bfd_boolean
10686 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10687 {
10688 int lwp;
10689
10690 if (elfcore_netbsd_get_lwpid (note, &lwp))
10691 elf_tdata (abfd)->core->lwpid = lwp;
10692
10693 switch (note->type)
10694 {
10695 case NT_NETBSDCORE_PROCINFO:
10696 /* NetBSD-specific core "procinfo". Note that we expect to
10697 find this note before any of the others, which is fine,
10698 since the kernel writes this note out first when it
10699 creates a core file. */
10700 return elfcore_grok_netbsd_procinfo (abfd, note);
10701 #ifdef NT_NETBSDCORE_AUXV
10702 case NT_NETBSDCORE_AUXV:
10703 /* NetBSD-specific Elf Auxiliary Vector data. */
10704 return elfcore_make_auxv_note_section (abfd, note, 4);
10705 #endif
10706 default:
10707 break;
10708 }
10709
10710 /* As of March 2017 there are no other machine-independent notes
10711 defined for NetBSD core files. If the note type is less
10712 than the start of the machine-dependent note types, we don't
10713 understand it. */
10714
10715 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10716 return TRUE;
10717
10718
10719 switch (bfd_get_arch (abfd))
10720 {
10721 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10722 PT_GETFPREGS == mach+2. */
10723
10724 case bfd_arch_alpha:
10725 case bfd_arch_sparc:
10726 switch (note->type)
10727 {
10728 case NT_NETBSDCORE_FIRSTMACH+0:
10729 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10730
10731 case NT_NETBSDCORE_FIRSTMACH+2:
10732 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10733
10734 default:
10735 return TRUE;
10736 }
10737
10738 /* On SuperH, PT_GETREGS == mach+3 and PT_GETFPREGS == mach+5.
10739 There's also old PT___GETREGS40 == mach + 1 for old reg
10740 structure which lacks GBR. */
10741
10742 case bfd_arch_sh:
10743 switch (note->type)
10744 {
10745 case NT_NETBSDCORE_FIRSTMACH+3:
10746 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10747
10748 case NT_NETBSDCORE_FIRSTMACH+5:
10749 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10750
10751 default:
10752 return TRUE;
10753 }
10754
10755 /* On all other arch's, PT_GETREGS == mach+1 and
10756 PT_GETFPREGS == mach+3. */
10757
10758 default:
10759 switch (note->type)
10760 {
10761 case NT_NETBSDCORE_FIRSTMACH+1:
10762 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10763
10764 case NT_NETBSDCORE_FIRSTMACH+3:
10765 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10766
10767 default:
10768 return TRUE;
10769 }
10770 }
10771 /* NOTREACHED */
10772 }
10773
10774 static bfd_boolean
10775 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10776 {
10777 if (note->descsz <= 0x48 + 31)
10778 return FALSE;
10779
10780 /* Signal number at offset 0x08. */
10781 elf_tdata (abfd)->core->signal
10782 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10783
10784 /* Process ID at offset 0x20. */
10785 elf_tdata (abfd)->core->pid
10786 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10787
10788 /* Command name at 0x48 (max 32 bytes, including nul). */
10789 elf_tdata (abfd)->core->command
10790 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10791
10792 return TRUE;
10793 }
10794
10795 static bfd_boolean
10796 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10797 {
10798 if (note->type == NT_OPENBSD_PROCINFO)
10799 return elfcore_grok_openbsd_procinfo (abfd, note);
10800
10801 if (note->type == NT_OPENBSD_REGS)
10802 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10803
10804 if (note->type == NT_OPENBSD_FPREGS)
10805 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10806
10807 if (note->type == NT_OPENBSD_XFPREGS)
10808 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10809
10810 if (note->type == NT_OPENBSD_AUXV)
10811 return elfcore_make_auxv_note_section (abfd, note, 0);
10812
10813 if (note->type == NT_OPENBSD_WCOOKIE)
10814 {
10815 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10816 SEC_HAS_CONTENTS);
10817
10818 if (sect == NULL)
10819 return FALSE;
10820 sect->size = note->descsz;
10821 sect->filepos = note->descpos;
10822 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10823
10824 return TRUE;
10825 }
10826
10827 return TRUE;
10828 }
10829
10830 static bfd_boolean
10831 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10832 {
10833 void *ddata = note->descdata;
10834 char buf[100];
10835 char *name;
10836 asection *sect;
10837 short sig;
10838 unsigned flags;
10839
10840 if (note->descsz < 16)
10841 return FALSE;
10842
10843 /* nto_procfs_status 'pid' field is at offset 0. */
10844 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10845
10846 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10847 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10848
10849 /* nto_procfs_status 'flags' field is at offset 8. */
10850 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10851
10852 /* nto_procfs_status 'what' field is at offset 14. */
10853 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10854 {
10855 elf_tdata (abfd)->core->signal = sig;
10856 elf_tdata (abfd)->core->lwpid = *tid;
10857 }
10858
10859 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10860 do not come from signals so we make sure we set the current
10861 thread just in case. */
10862 if (flags & 0x00000080)
10863 elf_tdata (abfd)->core->lwpid = *tid;
10864
10865 /* Make a ".qnx_core_status/%d" section. */
10866 sprintf (buf, ".qnx_core_status/%ld", *tid);
10867
10868 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10869 if (name == NULL)
10870 return FALSE;
10871 strcpy (name, buf);
10872
10873 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10874 if (sect == NULL)
10875 return FALSE;
10876
10877 sect->size = note->descsz;
10878 sect->filepos = note->descpos;
10879 sect->alignment_power = 2;
10880
10881 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10882 }
10883
10884 static bfd_boolean
10885 elfcore_grok_nto_regs (bfd *abfd,
10886 Elf_Internal_Note *note,
10887 long tid,
10888 char *base)
10889 {
10890 char buf[100];
10891 char *name;
10892 asection *sect;
10893
10894 /* Make a "(base)/%d" section. */
10895 sprintf (buf, "%s/%ld", base, tid);
10896
10897 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10898 if (name == NULL)
10899 return FALSE;
10900 strcpy (name, buf);
10901
10902 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10903 if (sect == NULL)
10904 return FALSE;
10905
10906 sect->size = note->descsz;
10907 sect->filepos = note->descpos;
10908 sect->alignment_power = 2;
10909
10910 /* This is the current thread. */
10911 if (elf_tdata (abfd)->core->lwpid == tid)
10912 return elfcore_maybe_make_sect (abfd, base, sect);
10913
10914 return TRUE;
10915 }
10916
10917 #define BFD_QNT_CORE_INFO 7
10918 #define BFD_QNT_CORE_STATUS 8
10919 #define BFD_QNT_CORE_GREG 9
10920 #define BFD_QNT_CORE_FPREG 10
10921
10922 static bfd_boolean
10923 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10924 {
10925 /* Every GREG section has a STATUS section before it. Store the
10926 tid from the previous call to pass down to the next gregs
10927 function. */
10928 static long tid = 1;
10929
10930 switch (note->type)
10931 {
10932 case BFD_QNT_CORE_INFO:
10933 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10934 case BFD_QNT_CORE_STATUS:
10935 return elfcore_grok_nto_status (abfd, note, &tid);
10936 case BFD_QNT_CORE_GREG:
10937 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10938 case BFD_QNT_CORE_FPREG:
10939 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10940 default:
10941 return TRUE;
10942 }
10943 }
10944
10945 static bfd_boolean
10946 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10947 {
10948 char *name;
10949 asection *sect;
10950 size_t len;
10951
10952 /* Use note name as section name. */
10953 len = note->namesz;
10954 name = (char *) bfd_alloc (abfd, len);
10955 if (name == NULL)
10956 return FALSE;
10957 memcpy (name, note->namedata, len);
10958 name[len - 1] = '\0';
10959
10960 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10961 if (sect == NULL)
10962 return FALSE;
10963
10964 sect->size = note->descsz;
10965 sect->filepos = note->descpos;
10966 sect->alignment_power = 1;
10967
10968 return TRUE;
10969 }
10970
10971 /* Function: elfcore_write_note
10972
10973 Inputs:
10974 buffer to hold note, and current size of buffer
10975 name of note
10976 type of note
10977 data for note
10978 size of data for note
10979
10980 Writes note to end of buffer. ELF64 notes are written exactly as
10981 for ELF32, despite the current (as of 2006) ELF gabi specifying
10982 that they ought to have 8-byte namesz and descsz field, and have
10983 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10984
10985 Return:
10986 Pointer to realloc'd buffer, *BUFSIZ updated. */
10987
10988 char *
10989 elfcore_write_note (bfd *abfd,
10990 char *buf,
10991 int *bufsiz,
10992 const char *name,
10993 int type,
10994 const void *input,
10995 int size)
10996 {
10997 Elf_External_Note *xnp;
10998 size_t namesz;
10999 size_t newspace;
11000 char *dest;
11001
11002 namesz = 0;
11003 if (name != NULL)
11004 namesz = strlen (name) + 1;
11005
11006 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
11007
11008 buf = (char *) realloc (buf, *bufsiz + newspace);
11009 if (buf == NULL)
11010 return buf;
11011 dest = buf + *bufsiz;
11012 *bufsiz += newspace;
11013 xnp = (Elf_External_Note *) dest;
11014 H_PUT_32 (abfd, namesz, xnp->namesz);
11015 H_PUT_32 (abfd, size, xnp->descsz);
11016 H_PUT_32 (abfd, type, xnp->type);
11017 dest = xnp->name;
11018 if (name != NULL)
11019 {
11020 memcpy (dest, name, namesz);
11021 dest += namesz;
11022 while (namesz & 3)
11023 {
11024 *dest++ = '\0';
11025 ++namesz;
11026 }
11027 }
11028 memcpy (dest, input, size);
11029 dest += size;
11030 while (size & 3)
11031 {
11032 *dest++ = '\0';
11033 ++size;
11034 }
11035 return buf;
11036 }
11037
11038 /* gcc-8 warns (*) on all the strncpy calls in this function about
11039 possible string truncation. The "truncation" is not a bug. We
11040 have an external representation of structs with fields that are not
11041 necessarily NULL terminated and corresponding internal
11042 representation fields that are one larger so that they can always
11043 be NULL terminated.
11044 gcc versions between 4.2 and 4.6 do not allow pragma control of
11045 diagnostics inside functions, giving a hard error if you try to use
11046 the finer control available with later versions.
11047 gcc prior to 4.2 warns about diagnostic push and pop.
11048 gcc-5, gcc-6 and gcc-7 warn that -Wstringop-truncation is unknown,
11049 unless you also add #pragma GCC diagnostic ignored "-Wpragma".
11050 (*) Depending on your system header files! */
11051 #if GCC_VERSION >= 8000
11052 # pragma GCC diagnostic push
11053 # pragma GCC diagnostic ignored "-Wstringop-truncation"
11054 #endif
11055 char *
11056 elfcore_write_prpsinfo (bfd *abfd,
11057 char *buf,
11058 int *bufsiz,
11059 const char *fname,
11060 const char *psargs)
11061 {
11062 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11063
11064 if (bed->elf_backend_write_core_note != NULL)
11065 {
11066 char *ret;
11067 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11068 NT_PRPSINFO, fname, psargs);
11069 if (ret != NULL)
11070 return ret;
11071 }
11072
11073 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
11074 # if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
11075 if (bed->s->elfclass == ELFCLASS32)
11076 {
11077 # if defined (HAVE_PSINFO32_T)
11078 psinfo32_t data;
11079 int note_type = NT_PSINFO;
11080 # else
11081 prpsinfo32_t data;
11082 int note_type = NT_PRPSINFO;
11083 # endif
11084
11085 memset (&data, 0, sizeof (data));
11086 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11087 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11088 return elfcore_write_note (abfd, buf, bufsiz,
11089 "CORE", note_type, &data, sizeof (data));
11090 }
11091 else
11092 # endif
11093 {
11094 # if defined (HAVE_PSINFO_T)
11095 psinfo_t data;
11096 int note_type = NT_PSINFO;
11097 # else
11098 prpsinfo_t data;
11099 int note_type = NT_PRPSINFO;
11100 # endif
11101
11102 memset (&data, 0, sizeof (data));
11103 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
11104 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
11105 return elfcore_write_note (abfd, buf, bufsiz,
11106 "CORE", note_type, &data, sizeof (data));
11107 }
11108 #endif /* PSINFO_T or PRPSINFO_T */
11109
11110 free (buf);
11111 return NULL;
11112 }
11113 #if GCC_VERSION >= 8000
11114 # pragma GCC diagnostic pop
11115 #endif
11116
11117 char *
11118 elfcore_write_linux_prpsinfo32
11119 (bfd *abfd, char *buf, int *bufsiz,
11120 const struct elf_internal_linux_prpsinfo *prpsinfo)
11121 {
11122 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
11123 {
11124 struct elf_external_linux_prpsinfo32_ugid16 data;
11125
11126 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
11127 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11128 &data, sizeof (data));
11129 }
11130 else
11131 {
11132 struct elf_external_linux_prpsinfo32_ugid32 data;
11133
11134 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
11135 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
11136 &data, sizeof (data));
11137 }
11138 }
11139
11140 char *
11141 elfcore_write_linux_prpsinfo64
11142 (bfd *abfd, char *buf, int *bufsiz,
11143 const struct elf_internal_linux_prpsinfo *prpsinfo)
11144 {
11145 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
11146 {
11147 struct elf_external_linux_prpsinfo64_ugid16 data;
11148
11149 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
11150 return elfcore_write_note (abfd, buf, bufsiz,
11151 "CORE", NT_PRPSINFO, &data, sizeof (data));
11152 }
11153 else
11154 {
11155 struct elf_external_linux_prpsinfo64_ugid32 data;
11156
11157 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
11158 return elfcore_write_note (abfd, buf, bufsiz,
11159 "CORE", NT_PRPSINFO, &data, sizeof (data));
11160 }
11161 }
11162
11163 char *
11164 elfcore_write_prstatus (bfd *abfd,
11165 char *buf,
11166 int *bufsiz,
11167 long pid,
11168 int cursig,
11169 const void *gregs)
11170 {
11171 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11172
11173 if (bed->elf_backend_write_core_note != NULL)
11174 {
11175 char *ret;
11176 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
11177 NT_PRSTATUS,
11178 pid, cursig, gregs);
11179 if (ret != NULL)
11180 return ret;
11181 }
11182
11183 #if defined (HAVE_PRSTATUS_T)
11184 #if defined (HAVE_PRSTATUS32_T)
11185 if (bed->s->elfclass == ELFCLASS32)
11186 {
11187 prstatus32_t prstat;
11188
11189 memset (&prstat, 0, sizeof (prstat));
11190 prstat.pr_pid = pid;
11191 prstat.pr_cursig = cursig;
11192 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11193 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11194 NT_PRSTATUS, &prstat, sizeof (prstat));
11195 }
11196 else
11197 #endif
11198 {
11199 prstatus_t prstat;
11200
11201 memset (&prstat, 0, sizeof (prstat));
11202 prstat.pr_pid = pid;
11203 prstat.pr_cursig = cursig;
11204 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
11205 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
11206 NT_PRSTATUS, &prstat, sizeof (prstat));
11207 }
11208 #endif /* HAVE_PRSTATUS_T */
11209
11210 free (buf);
11211 return NULL;
11212 }
11213
11214 #if defined (HAVE_LWPSTATUS_T)
11215 char *
11216 elfcore_write_lwpstatus (bfd *abfd,
11217 char *buf,
11218 int *bufsiz,
11219 long pid,
11220 int cursig,
11221 const void *gregs)
11222 {
11223 lwpstatus_t lwpstat;
11224 const char *note_name = "CORE";
11225
11226 memset (&lwpstat, 0, sizeof (lwpstat));
11227 lwpstat.pr_lwpid = pid >> 16;
11228 lwpstat.pr_cursig = cursig;
11229 #if defined (HAVE_LWPSTATUS_T_PR_REG)
11230 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
11231 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
11232 #if !defined(gregs)
11233 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
11234 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
11235 #else
11236 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
11237 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
11238 #endif
11239 #endif
11240 return elfcore_write_note (abfd, buf, bufsiz, note_name,
11241 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
11242 }
11243 #endif /* HAVE_LWPSTATUS_T */
11244
11245 #if defined (HAVE_PSTATUS_T)
11246 char *
11247 elfcore_write_pstatus (bfd *abfd,
11248 char *buf,
11249 int *bufsiz,
11250 long pid,
11251 int cursig ATTRIBUTE_UNUSED,
11252 const void *gregs ATTRIBUTE_UNUSED)
11253 {
11254 const char *note_name = "CORE";
11255 #if defined (HAVE_PSTATUS32_T)
11256 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11257
11258 if (bed->s->elfclass == ELFCLASS32)
11259 {
11260 pstatus32_t pstat;
11261
11262 memset (&pstat, 0, sizeof (pstat));
11263 pstat.pr_pid = pid & 0xffff;
11264 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11265 NT_PSTATUS, &pstat, sizeof (pstat));
11266 return buf;
11267 }
11268 else
11269 #endif
11270 {
11271 pstatus_t pstat;
11272
11273 memset (&pstat, 0, sizeof (pstat));
11274 pstat.pr_pid = pid & 0xffff;
11275 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
11276 NT_PSTATUS, &pstat, sizeof (pstat));
11277 return buf;
11278 }
11279 }
11280 #endif /* HAVE_PSTATUS_T */
11281
11282 char *
11283 elfcore_write_prfpreg (bfd *abfd,
11284 char *buf,
11285 int *bufsiz,
11286 const void *fpregs,
11287 int size)
11288 {
11289 const char *note_name = "CORE";
11290 return elfcore_write_note (abfd, buf, bufsiz,
11291 note_name, NT_FPREGSET, fpregs, size);
11292 }
11293
11294 char *
11295 elfcore_write_prxfpreg (bfd *abfd,
11296 char *buf,
11297 int *bufsiz,
11298 const void *xfpregs,
11299 int size)
11300 {
11301 char *note_name = "LINUX";
11302 return elfcore_write_note (abfd, buf, bufsiz,
11303 note_name, NT_PRXFPREG, xfpregs, size);
11304 }
11305
11306 char *
11307 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
11308 const void *xfpregs, int size)
11309 {
11310 char *note_name;
11311 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
11312 note_name = "FreeBSD";
11313 else
11314 note_name = "LINUX";
11315 return elfcore_write_note (abfd, buf, bufsiz,
11316 note_name, NT_X86_XSTATE, xfpregs, size);
11317 }
11318
11319 char *
11320 elfcore_write_ppc_vmx (bfd *abfd,
11321 char *buf,
11322 int *bufsiz,
11323 const void *ppc_vmx,
11324 int size)
11325 {
11326 char *note_name = "LINUX";
11327 return elfcore_write_note (abfd, buf, bufsiz,
11328 note_name, NT_PPC_VMX, ppc_vmx, size);
11329 }
11330
11331 char *
11332 elfcore_write_ppc_vsx (bfd *abfd,
11333 char *buf,
11334 int *bufsiz,
11335 const void *ppc_vsx,
11336 int size)
11337 {
11338 char *note_name = "LINUX";
11339 return elfcore_write_note (abfd, buf, bufsiz,
11340 note_name, NT_PPC_VSX, ppc_vsx, size);
11341 }
11342
11343 char *
11344 elfcore_write_ppc_tar (bfd *abfd,
11345 char *buf,
11346 int *bufsiz,
11347 const void *ppc_tar,
11348 int size)
11349 {
11350 char *note_name = "LINUX";
11351 return elfcore_write_note (abfd, buf, bufsiz,
11352 note_name, NT_PPC_TAR, ppc_tar, size);
11353 }
11354
11355 char *
11356 elfcore_write_ppc_ppr (bfd *abfd,
11357 char *buf,
11358 int *bufsiz,
11359 const void *ppc_ppr,
11360 int size)
11361 {
11362 char *note_name = "LINUX";
11363 return elfcore_write_note (abfd, buf, bufsiz,
11364 note_name, NT_PPC_PPR, ppc_ppr, size);
11365 }
11366
11367 char *
11368 elfcore_write_ppc_dscr (bfd *abfd,
11369 char *buf,
11370 int *bufsiz,
11371 const void *ppc_dscr,
11372 int size)
11373 {
11374 char *note_name = "LINUX";
11375 return elfcore_write_note (abfd, buf, bufsiz,
11376 note_name, NT_PPC_DSCR, ppc_dscr, size);
11377 }
11378
11379 char *
11380 elfcore_write_ppc_ebb (bfd *abfd,
11381 char *buf,
11382 int *bufsiz,
11383 const void *ppc_ebb,
11384 int size)
11385 {
11386 char *note_name = "LINUX";
11387 return elfcore_write_note (abfd, buf, bufsiz,
11388 note_name, NT_PPC_EBB, ppc_ebb, size);
11389 }
11390
11391 char *
11392 elfcore_write_ppc_pmu (bfd *abfd,
11393 char *buf,
11394 int *bufsiz,
11395 const void *ppc_pmu,
11396 int size)
11397 {
11398 char *note_name = "LINUX";
11399 return elfcore_write_note (abfd, buf, bufsiz,
11400 note_name, NT_PPC_PMU, ppc_pmu, size);
11401 }
11402
11403 char *
11404 elfcore_write_ppc_tm_cgpr (bfd *abfd,
11405 char *buf,
11406 int *bufsiz,
11407 const void *ppc_tm_cgpr,
11408 int size)
11409 {
11410 char *note_name = "LINUX";
11411 return elfcore_write_note (abfd, buf, bufsiz,
11412 note_name, NT_PPC_TM_CGPR, ppc_tm_cgpr, size);
11413 }
11414
11415 char *
11416 elfcore_write_ppc_tm_cfpr (bfd *abfd,
11417 char *buf,
11418 int *bufsiz,
11419 const void *ppc_tm_cfpr,
11420 int size)
11421 {
11422 char *note_name = "LINUX";
11423 return elfcore_write_note (abfd, buf, bufsiz,
11424 note_name, NT_PPC_TM_CFPR, ppc_tm_cfpr, size);
11425 }
11426
11427 char *
11428 elfcore_write_ppc_tm_cvmx (bfd *abfd,
11429 char *buf,
11430 int *bufsiz,
11431 const void *ppc_tm_cvmx,
11432 int size)
11433 {
11434 char *note_name = "LINUX";
11435 return elfcore_write_note (abfd, buf, bufsiz,
11436 note_name, NT_PPC_TM_CVMX, ppc_tm_cvmx, size);
11437 }
11438
11439 char *
11440 elfcore_write_ppc_tm_cvsx (bfd *abfd,
11441 char *buf,
11442 int *bufsiz,
11443 const void *ppc_tm_cvsx,
11444 int size)
11445 {
11446 char *note_name = "LINUX";
11447 return elfcore_write_note (abfd, buf, bufsiz,
11448 note_name, NT_PPC_TM_CVSX, ppc_tm_cvsx, size);
11449 }
11450
11451 char *
11452 elfcore_write_ppc_tm_spr (bfd *abfd,
11453 char *buf,
11454 int *bufsiz,
11455 const void *ppc_tm_spr,
11456 int size)
11457 {
11458 char *note_name = "LINUX";
11459 return elfcore_write_note (abfd, buf, bufsiz,
11460 note_name, NT_PPC_TM_SPR, ppc_tm_spr, size);
11461 }
11462
11463 char *
11464 elfcore_write_ppc_tm_ctar (bfd *abfd,
11465 char *buf,
11466 int *bufsiz,
11467 const void *ppc_tm_ctar,
11468 int size)
11469 {
11470 char *note_name = "LINUX";
11471 return elfcore_write_note (abfd, buf, bufsiz,
11472 note_name, NT_PPC_TM_CTAR, ppc_tm_ctar, size);
11473 }
11474
11475 char *
11476 elfcore_write_ppc_tm_cppr (bfd *abfd,
11477 char *buf,
11478 int *bufsiz,
11479 const void *ppc_tm_cppr,
11480 int size)
11481 {
11482 char *note_name = "LINUX";
11483 return elfcore_write_note (abfd, buf, bufsiz,
11484 note_name, NT_PPC_TM_CPPR, ppc_tm_cppr, size);
11485 }
11486
11487 char *
11488 elfcore_write_ppc_tm_cdscr (bfd *abfd,
11489 char *buf,
11490 int *bufsiz,
11491 const void *ppc_tm_cdscr,
11492 int size)
11493 {
11494 char *note_name = "LINUX";
11495 return elfcore_write_note (abfd, buf, bufsiz,
11496 note_name, NT_PPC_TM_CDSCR, ppc_tm_cdscr, size);
11497 }
11498
11499 static char *
11500 elfcore_write_s390_high_gprs (bfd *abfd,
11501 char *buf,
11502 int *bufsiz,
11503 const void *s390_high_gprs,
11504 int size)
11505 {
11506 char *note_name = "LINUX";
11507 return elfcore_write_note (abfd, buf, bufsiz,
11508 note_name, NT_S390_HIGH_GPRS,
11509 s390_high_gprs, size);
11510 }
11511
11512 char *
11513 elfcore_write_s390_timer (bfd *abfd,
11514 char *buf,
11515 int *bufsiz,
11516 const void *s390_timer,
11517 int size)
11518 {
11519 char *note_name = "LINUX";
11520 return elfcore_write_note (abfd, buf, bufsiz,
11521 note_name, NT_S390_TIMER, s390_timer, size);
11522 }
11523
11524 char *
11525 elfcore_write_s390_todcmp (bfd *abfd,
11526 char *buf,
11527 int *bufsiz,
11528 const void *s390_todcmp,
11529 int size)
11530 {
11531 char *note_name = "LINUX";
11532 return elfcore_write_note (abfd, buf, bufsiz,
11533 note_name, NT_S390_TODCMP, s390_todcmp, size);
11534 }
11535
11536 char *
11537 elfcore_write_s390_todpreg (bfd *abfd,
11538 char *buf,
11539 int *bufsiz,
11540 const void *s390_todpreg,
11541 int size)
11542 {
11543 char *note_name = "LINUX";
11544 return elfcore_write_note (abfd, buf, bufsiz,
11545 note_name, NT_S390_TODPREG, s390_todpreg, size);
11546 }
11547
11548 char *
11549 elfcore_write_s390_ctrs (bfd *abfd,
11550 char *buf,
11551 int *bufsiz,
11552 const void *s390_ctrs,
11553 int size)
11554 {
11555 char *note_name = "LINUX";
11556 return elfcore_write_note (abfd, buf, bufsiz,
11557 note_name, NT_S390_CTRS, s390_ctrs, size);
11558 }
11559
11560 char *
11561 elfcore_write_s390_prefix (bfd *abfd,
11562 char *buf,
11563 int *bufsiz,
11564 const void *s390_prefix,
11565 int size)
11566 {
11567 char *note_name = "LINUX";
11568 return elfcore_write_note (abfd, buf, bufsiz,
11569 note_name, NT_S390_PREFIX, s390_prefix, size);
11570 }
11571
11572 char *
11573 elfcore_write_s390_last_break (bfd *abfd,
11574 char *buf,
11575 int *bufsiz,
11576 const void *s390_last_break,
11577 int size)
11578 {
11579 char *note_name = "LINUX";
11580 return elfcore_write_note (abfd, buf, bufsiz,
11581 note_name, NT_S390_LAST_BREAK,
11582 s390_last_break, size);
11583 }
11584
11585 char *
11586 elfcore_write_s390_system_call (bfd *abfd,
11587 char *buf,
11588 int *bufsiz,
11589 const void *s390_system_call,
11590 int size)
11591 {
11592 char *note_name = "LINUX";
11593 return elfcore_write_note (abfd, buf, bufsiz,
11594 note_name, NT_S390_SYSTEM_CALL,
11595 s390_system_call, size);
11596 }
11597
11598 char *
11599 elfcore_write_s390_tdb (bfd *abfd,
11600 char *buf,
11601 int *bufsiz,
11602 const void *s390_tdb,
11603 int size)
11604 {
11605 char *note_name = "LINUX";
11606 return elfcore_write_note (abfd, buf, bufsiz,
11607 note_name, NT_S390_TDB, s390_tdb, size);
11608 }
11609
11610 char *
11611 elfcore_write_s390_vxrs_low (bfd *abfd,
11612 char *buf,
11613 int *bufsiz,
11614 const void *s390_vxrs_low,
11615 int size)
11616 {
11617 char *note_name = "LINUX";
11618 return elfcore_write_note (abfd, buf, bufsiz,
11619 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
11620 }
11621
11622 char *
11623 elfcore_write_s390_vxrs_high (bfd *abfd,
11624 char *buf,
11625 int *bufsiz,
11626 const void *s390_vxrs_high,
11627 int size)
11628 {
11629 char *note_name = "LINUX";
11630 return elfcore_write_note (abfd, buf, bufsiz,
11631 note_name, NT_S390_VXRS_HIGH,
11632 s390_vxrs_high, size);
11633 }
11634
11635 char *
11636 elfcore_write_s390_gs_cb (bfd *abfd,
11637 char *buf,
11638 int *bufsiz,
11639 const void *s390_gs_cb,
11640 int size)
11641 {
11642 char *note_name = "LINUX";
11643 return elfcore_write_note (abfd, buf, bufsiz,
11644 note_name, NT_S390_GS_CB,
11645 s390_gs_cb, size);
11646 }
11647
11648 char *
11649 elfcore_write_s390_gs_bc (bfd *abfd,
11650 char *buf,
11651 int *bufsiz,
11652 const void *s390_gs_bc,
11653 int size)
11654 {
11655 char *note_name = "LINUX";
11656 return elfcore_write_note (abfd, buf, bufsiz,
11657 note_name, NT_S390_GS_BC,
11658 s390_gs_bc, size);
11659 }
11660
11661 char *
11662 elfcore_write_arm_vfp (bfd *abfd,
11663 char *buf,
11664 int *bufsiz,
11665 const void *arm_vfp,
11666 int size)
11667 {
11668 char *note_name = "LINUX";
11669 return elfcore_write_note (abfd, buf, bufsiz,
11670 note_name, NT_ARM_VFP, arm_vfp, size);
11671 }
11672
11673 char *
11674 elfcore_write_aarch_tls (bfd *abfd,
11675 char *buf,
11676 int *bufsiz,
11677 const void *aarch_tls,
11678 int size)
11679 {
11680 char *note_name = "LINUX";
11681 return elfcore_write_note (abfd, buf, bufsiz,
11682 note_name, NT_ARM_TLS, aarch_tls, size);
11683 }
11684
11685 char *
11686 elfcore_write_aarch_hw_break (bfd *abfd,
11687 char *buf,
11688 int *bufsiz,
11689 const void *aarch_hw_break,
11690 int size)
11691 {
11692 char *note_name = "LINUX";
11693 return elfcore_write_note (abfd, buf, bufsiz,
11694 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
11695 }
11696
11697 char *
11698 elfcore_write_aarch_hw_watch (bfd *abfd,
11699 char *buf,
11700 int *bufsiz,
11701 const void *aarch_hw_watch,
11702 int size)
11703 {
11704 char *note_name = "LINUX";
11705 return elfcore_write_note (abfd, buf, bufsiz,
11706 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
11707 }
11708
11709 char *
11710 elfcore_write_aarch_sve (bfd *abfd,
11711 char *buf,
11712 int *bufsiz,
11713 const void *aarch_sve,
11714 int size)
11715 {
11716 char *note_name = "LINUX";
11717 return elfcore_write_note (abfd, buf, bufsiz,
11718 note_name, NT_ARM_SVE, aarch_sve, size);
11719 }
11720
11721 char *
11722 elfcore_write_aarch_pauth (bfd *abfd,
11723 char *buf,
11724 int *bufsiz,
11725 const void *aarch_pauth,
11726 int size)
11727 {
11728 char *note_name = "LINUX";
11729 return elfcore_write_note (abfd, buf, bufsiz,
11730 note_name, NT_ARM_PAC_MASK, aarch_pauth, size);
11731 }
11732
11733 char *
11734 elfcore_write_register_note (bfd *abfd,
11735 char *buf,
11736 int *bufsiz,
11737 const char *section,
11738 const void *data,
11739 int size)
11740 {
11741 if (strcmp (section, ".reg2") == 0)
11742 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
11743 if (strcmp (section, ".reg-xfp") == 0)
11744 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
11745 if (strcmp (section, ".reg-xstate") == 0)
11746 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
11747 if (strcmp (section, ".reg-ppc-vmx") == 0)
11748 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
11749 if (strcmp (section, ".reg-ppc-vsx") == 0)
11750 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
11751 if (strcmp (section, ".reg-ppc-tar") == 0)
11752 return elfcore_write_ppc_tar (abfd, buf, bufsiz, data, size);
11753 if (strcmp (section, ".reg-ppc-ppr") == 0)
11754 return elfcore_write_ppc_ppr (abfd, buf, bufsiz, data, size);
11755 if (strcmp (section, ".reg-ppc-dscr") == 0)
11756 return elfcore_write_ppc_dscr (abfd, buf, bufsiz, data, size);
11757 if (strcmp (section, ".reg-ppc-ebb") == 0)
11758 return elfcore_write_ppc_ebb (abfd, buf, bufsiz, data, size);
11759 if (strcmp (section, ".reg-ppc-pmu") == 0)
11760 return elfcore_write_ppc_pmu (abfd, buf, bufsiz, data, size);
11761 if (strcmp (section, ".reg-ppc-tm-cgpr") == 0)
11762 return elfcore_write_ppc_tm_cgpr (abfd, buf, bufsiz, data, size);
11763 if (strcmp (section, ".reg-ppc-tm-cfpr") == 0)
11764 return elfcore_write_ppc_tm_cfpr (abfd, buf, bufsiz, data, size);
11765 if (strcmp (section, ".reg-ppc-tm-cvmx") == 0)
11766 return elfcore_write_ppc_tm_cvmx (abfd, buf, bufsiz, data, size);
11767 if (strcmp (section, ".reg-ppc-tm-cvsx") == 0)
11768 return elfcore_write_ppc_tm_cvsx (abfd, buf, bufsiz, data, size);
11769 if (strcmp (section, ".reg-ppc-tm-spr") == 0)
11770 return elfcore_write_ppc_tm_spr (abfd, buf, bufsiz, data, size);
11771 if (strcmp (section, ".reg-ppc-tm-ctar") == 0)
11772 return elfcore_write_ppc_tm_ctar (abfd, buf, bufsiz, data, size);
11773 if (strcmp (section, ".reg-ppc-tm-cppr") == 0)
11774 return elfcore_write_ppc_tm_cppr (abfd, buf, bufsiz, data, size);
11775 if (strcmp (section, ".reg-ppc-tm-cdscr") == 0)
11776 return elfcore_write_ppc_tm_cdscr (abfd, buf, bufsiz, data, size);
11777 if (strcmp (section, ".reg-s390-high-gprs") == 0)
11778 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
11779 if (strcmp (section, ".reg-s390-timer") == 0)
11780 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
11781 if (strcmp (section, ".reg-s390-todcmp") == 0)
11782 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
11783 if (strcmp (section, ".reg-s390-todpreg") == 0)
11784 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
11785 if (strcmp (section, ".reg-s390-ctrs") == 0)
11786 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
11787 if (strcmp (section, ".reg-s390-prefix") == 0)
11788 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
11789 if (strcmp (section, ".reg-s390-last-break") == 0)
11790 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
11791 if (strcmp (section, ".reg-s390-system-call") == 0)
11792 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
11793 if (strcmp (section, ".reg-s390-tdb") == 0)
11794 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
11795 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
11796 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
11797 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
11798 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
11799 if (strcmp (section, ".reg-s390-gs-cb") == 0)
11800 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
11801 if (strcmp (section, ".reg-s390-gs-bc") == 0)
11802 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
11803 if (strcmp (section, ".reg-arm-vfp") == 0)
11804 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
11805 if (strcmp (section, ".reg-aarch-tls") == 0)
11806 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
11807 if (strcmp (section, ".reg-aarch-hw-break") == 0)
11808 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
11809 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
11810 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11811 if (strcmp (section, ".reg-aarch-sve") == 0)
11812 return elfcore_write_aarch_sve (abfd, buf, bufsiz, data, size);
11813 if (strcmp (section, ".reg-aarch-pauth") == 0)
11814 return elfcore_write_aarch_pauth (abfd, buf, bufsiz, data, size);
11815 return NULL;
11816 }
11817
11818 static bfd_boolean
11819 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11820 size_t align)
11821 {
11822 char *p;
11823
11824 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11825 gABI specifies that PT_NOTE alignment should be aligned to 4
11826 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11827 align is less than 4, we use 4 byte alignment. */
11828 if (align < 4)
11829 align = 4;
11830 if (align != 4 && align != 8)
11831 return FALSE;
11832
11833 p = buf;
11834 while (p < buf + size)
11835 {
11836 Elf_External_Note *xnp = (Elf_External_Note *) p;
11837 Elf_Internal_Note in;
11838
11839 if (offsetof (Elf_External_Note, name) > buf - p + size)
11840 return FALSE;
11841
11842 in.type = H_GET_32 (abfd, xnp->type);
11843
11844 in.namesz = H_GET_32 (abfd, xnp->namesz);
11845 in.namedata = xnp->name;
11846 if (in.namesz > buf - in.namedata + size)
11847 return FALSE;
11848
11849 in.descsz = H_GET_32 (abfd, xnp->descsz);
11850 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11851 in.descpos = offset + (in.descdata - buf);
11852 if (in.descsz != 0
11853 && (in.descdata >= buf + size
11854 || in.descsz > buf - in.descdata + size))
11855 return FALSE;
11856
11857 switch (bfd_get_format (abfd))
11858 {
11859 default:
11860 return TRUE;
11861
11862 case bfd_core:
11863 {
11864 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11865 struct
11866 {
11867 const char * string;
11868 size_t len;
11869 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11870 }
11871 grokers[] =
11872 {
11873 GROKER_ELEMENT ("", elfcore_grok_note),
11874 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11875 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11876 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11877 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11878 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note),
11879 GROKER_ELEMENT ("GNU", elfobj_grok_gnu_note)
11880 };
11881 #undef GROKER_ELEMENT
11882 int i;
11883
11884 for (i = ARRAY_SIZE (grokers); i--;)
11885 {
11886 if (in.namesz >= grokers[i].len
11887 && strncmp (in.namedata, grokers[i].string,
11888 grokers[i].len) == 0)
11889 {
11890 if (! grokers[i].func (abfd, & in))
11891 return FALSE;
11892 break;
11893 }
11894 }
11895 break;
11896 }
11897
11898 case bfd_object:
11899 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11900 {
11901 if (! elfobj_grok_gnu_note (abfd, &in))
11902 return FALSE;
11903 }
11904 else if (in.namesz == sizeof "stapsdt"
11905 && strcmp (in.namedata, "stapsdt") == 0)
11906 {
11907 if (! elfobj_grok_stapsdt_note (abfd, &in))
11908 return FALSE;
11909 }
11910 break;
11911 }
11912
11913 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11914 }
11915
11916 return TRUE;
11917 }
11918
11919 bfd_boolean
11920 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11921 size_t align)
11922 {
11923 char *buf;
11924
11925 if (size == 0 || (size + 1) == 0)
11926 return TRUE;
11927
11928 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11929 return FALSE;
11930
11931 buf = (char *) _bfd_malloc_and_read (abfd, size + 1, size);
11932 if (buf == NULL)
11933 return FALSE;
11934
11935 /* PR 17512: file: ec08f814
11936 0-termintate the buffer so that string searches will not overflow. */
11937 buf[size] = 0;
11938
11939 if (!elf_parse_notes (abfd, buf, size, offset, align))
11940 {
11941 free (buf);
11942 return FALSE;
11943 }
11944
11945 free (buf);
11946 return TRUE;
11947 }
11948 \f
11949 /* Providing external access to the ELF program header table. */
11950
11951 /* Return an upper bound on the number of bytes required to store a
11952 copy of ABFD's program header table entries. Return -1 if an error
11953 occurs; bfd_get_error will return an appropriate code. */
11954
11955 long
11956 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11957 {
11958 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11959 {
11960 bfd_set_error (bfd_error_wrong_format);
11961 return -1;
11962 }
11963
11964 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11965 }
11966
11967 /* Copy ABFD's program header table entries to *PHDRS. The entries
11968 will be stored as an array of Elf_Internal_Phdr structures, as
11969 defined in include/elf/internal.h. To find out how large the
11970 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11971
11972 Return the number of program header table entries read, or -1 if an
11973 error occurs; bfd_get_error will return an appropriate code. */
11974
11975 int
11976 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11977 {
11978 int num_phdrs;
11979
11980 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11981 {
11982 bfd_set_error (bfd_error_wrong_format);
11983 return -1;
11984 }
11985
11986 num_phdrs = elf_elfheader (abfd)->e_phnum;
11987 if (num_phdrs != 0)
11988 memcpy (phdrs, elf_tdata (abfd)->phdr,
11989 num_phdrs * sizeof (Elf_Internal_Phdr));
11990
11991 return num_phdrs;
11992 }
11993
11994 enum elf_reloc_type_class
11995 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11996 const asection *rel_sec ATTRIBUTE_UNUSED,
11997 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11998 {
11999 return reloc_class_normal;
12000 }
12001
12002 /* For RELA architectures, return the relocation value for a
12003 relocation against a local symbol. */
12004
12005 bfd_vma
12006 _bfd_elf_rela_local_sym (bfd *abfd,
12007 Elf_Internal_Sym *sym,
12008 asection **psec,
12009 Elf_Internal_Rela *rel)
12010 {
12011 asection *sec = *psec;
12012 bfd_vma relocation;
12013
12014 relocation = (sec->output_section->vma
12015 + sec->output_offset
12016 + sym->st_value);
12017 if ((sec->flags & SEC_MERGE)
12018 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
12019 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
12020 {
12021 rel->r_addend =
12022 _bfd_merged_section_offset (abfd, psec,
12023 elf_section_data (sec)->sec_info,
12024 sym->st_value + rel->r_addend);
12025 if (sec != *psec)
12026 {
12027 /* If we have changed the section, and our original section is
12028 marked with SEC_EXCLUDE, it means that the original
12029 SEC_MERGE section has been completely subsumed in some
12030 other SEC_MERGE section. In this case, we need to leave
12031 some info around for --emit-relocs. */
12032 if ((sec->flags & SEC_EXCLUDE) != 0)
12033 sec->kept_section = *psec;
12034 sec = *psec;
12035 }
12036 rel->r_addend -= relocation;
12037 rel->r_addend += sec->output_section->vma + sec->output_offset;
12038 }
12039 return relocation;
12040 }
12041
12042 bfd_vma
12043 _bfd_elf_rel_local_sym (bfd *abfd,
12044 Elf_Internal_Sym *sym,
12045 asection **psec,
12046 bfd_vma addend)
12047 {
12048 asection *sec = *psec;
12049
12050 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
12051 return sym->st_value + addend;
12052
12053 return _bfd_merged_section_offset (abfd, psec,
12054 elf_section_data (sec)->sec_info,
12055 sym->st_value + addend);
12056 }
12057
12058 /* Adjust an address within a section. Given OFFSET within SEC, return
12059 the new offset within the section, based upon changes made to the
12060 section. Returns -1 if the offset is now invalid.
12061 The offset (in abnd out) is in target sized bytes, however big a
12062 byte may be. */
12063
12064 bfd_vma
12065 _bfd_elf_section_offset (bfd *abfd,
12066 struct bfd_link_info *info,
12067 asection *sec,
12068 bfd_vma offset)
12069 {
12070 switch (sec->sec_info_type)
12071 {
12072 case SEC_INFO_TYPE_STABS:
12073 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
12074 offset);
12075 case SEC_INFO_TYPE_EH_FRAME:
12076 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
12077
12078 default:
12079 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
12080 {
12081 /* Reverse the offset. */
12082 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12083 bfd_size_type address_size = bed->s->arch_size / 8;
12084
12085 /* address_size and sec->size are in octets. Convert
12086 to bytes before subtracting the original offset. */
12087 offset = ((sec->size - address_size)
12088 / bfd_octets_per_byte (abfd, sec) - offset);
12089 }
12090 return offset;
12091 }
12092 }
12093 \f
12094 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
12095 reconstruct an ELF file by reading the segments out of remote memory
12096 based on the ELF file header at EHDR_VMA and the ELF program headers it
12097 points to. If not null, *LOADBASEP is filled in with the difference
12098 between the VMAs from which the segments were read, and the VMAs the
12099 file headers (and hence BFD's idea of each section's VMA) put them at.
12100
12101 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
12102 remote memory at target address VMA into the local buffer at MYADDR; it
12103 should return zero on success or an `errno' code on failure. TEMPL must
12104 be a BFD for an ELF target with the word size and byte order found in
12105 the remote memory. */
12106
12107 bfd *
12108 bfd_elf_bfd_from_remote_memory
12109 (bfd *templ,
12110 bfd_vma ehdr_vma,
12111 bfd_size_type size,
12112 bfd_vma *loadbasep,
12113 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
12114 {
12115 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
12116 (templ, ehdr_vma, size, loadbasep, target_read_memory);
12117 }
12118 \f
12119 long
12120 _bfd_elf_get_synthetic_symtab (bfd *abfd,
12121 long symcount ATTRIBUTE_UNUSED,
12122 asymbol **syms ATTRIBUTE_UNUSED,
12123 long dynsymcount,
12124 asymbol **dynsyms,
12125 asymbol **ret)
12126 {
12127 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
12128 asection *relplt;
12129 asymbol *s;
12130 const char *relplt_name;
12131 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
12132 arelent *p;
12133 long count, i, n;
12134 size_t size;
12135 Elf_Internal_Shdr *hdr;
12136 char *names;
12137 asection *plt;
12138
12139 *ret = NULL;
12140
12141 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
12142 return 0;
12143
12144 if (dynsymcount <= 0)
12145 return 0;
12146
12147 if (!bed->plt_sym_val)
12148 return 0;
12149
12150 relplt_name = bed->relplt_name;
12151 if (relplt_name == NULL)
12152 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
12153 relplt = bfd_get_section_by_name (abfd, relplt_name);
12154 if (relplt == NULL)
12155 return 0;
12156
12157 hdr = &elf_section_data (relplt)->this_hdr;
12158 if (hdr->sh_link != elf_dynsymtab (abfd)
12159 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
12160 return 0;
12161
12162 plt = bfd_get_section_by_name (abfd, ".plt");
12163 if (plt == NULL)
12164 return 0;
12165
12166 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
12167 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
12168 return -1;
12169
12170 count = relplt->size / hdr->sh_entsize;
12171 size = count * sizeof (asymbol);
12172 p = relplt->relocation;
12173 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12174 {
12175 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
12176 if (p->addend != 0)
12177 {
12178 #ifdef BFD64
12179 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
12180 #else
12181 size += sizeof ("+0x") - 1 + 8;
12182 #endif
12183 }
12184 }
12185
12186 s = *ret = (asymbol *) bfd_malloc (size);
12187 if (s == NULL)
12188 return -1;
12189
12190 names = (char *) (s + count);
12191 p = relplt->relocation;
12192 n = 0;
12193 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
12194 {
12195 size_t len;
12196 bfd_vma addr;
12197
12198 addr = bed->plt_sym_val (i, plt, p);
12199 if (addr == (bfd_vma) -1)
12200 continue;
12201
12202 *s = **p->sym_ptr_ptr;
12203 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
12204 we are defining a symbol, ensure one of them is set. */
12205 if ((s->flags & BSF_LOCAL) == 0)
12206 s->flags |= BSF_GLOBAL;
12207 s->flags |= BSF_SYNTHETIC;
12208 s->section = plt;
12209 s->value = addr - plt->vma;
12210 s->name = names;
12211 s->udata.p = NULL;
12212 len = strlen ((*p->sym_ptr_ptr)->name);
12213 memcpy (names, (*p->sym_ptr_ptr)->name, len);
12214 names += len;
12215 if (p->addend != 0)
12216 {
12217 char buf[30], *a;
12218
12219 memcpy (names, "+0x", sizeof ("+0x") - 1);
12220 names += sizeof ("+0x") - 1;
12221 bfd_sprintf_vma (abfd, buf, p->addend);
12222 for (a = buf; *a == '0'; ++a)
12223 ;
12224 len = strlen (a);
12225 memcpy (names, a, len);
12226 names += len;
12227 }
12228 memcpy (names, "@plt", sizeof ("@plt"));
12229 names += sizeof ("@plt");
12230 ++s, ++n;
12231 }
12232
12233 return n;
12234 }
12235
12236 /* It is only used by x86-64 so far.
12237 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
12238 but current usage would allow all of _bfd_std_section to be zero. */
12239 static const asymbol lcomm_sym
12240 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
12241 asection _bfd_elf_large_com_section
12242 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
12243 "LARGE_COMMON", 0, SEC_IS_COMMON);
12244
12245 bfd_boolean
12246 _bfd_elf_final_write_processing (bfd *abfd)
12247 {
12248 Elf_Internal_Ehdr *i_ehdrp; /* ELF file header, internal form. */
12249
12250 i_ehdrp = elf_elfheader (abfd);
12251
12252 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12253 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
12254
12255 /* Set the osabi field to ELFOSABI_GNU if the binary contains
12256 SHF_GNU_MBIND sections or symbols of STT_GNU_IFUNC type or
12257 STB_GNU_UNIQUE binding. */
12258 if (elf_tdata (abfd)->has_gnu_osabi != 0)
12259 {
12260 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE)
12261 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
12262 else if (i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_GNU
12263 && i_ehdrp->e_ident[EI_OSABI] != ELFOSABI_FREEBSD)
12264 {
12265 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_mbind)
12266 _bfd_error_handler (_("GNU_MBIND section is unsupported"));
12267 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_ifunc)
12268 _bfd_error_handler (_("symbol type STT_GNU_IFUNC is unsupported"));
12269 if (elf_tdata (abfd)->has_gnu_osabi & elf_gnu_osabi_unique)
12270 _bfd_error_handler (_("symbol binding STB_GNU_UNIQUE is unsupported"));
12271 bfd_set_error (bfd_error_sorry);
12272 return FALSE;
12273 }
12274 }
12275 return TRUE;
12276 }
12277
12278
12279 /* Return TRUE for ELF symbol types that represent functions.
12280 This is the default version of this function, which is sufficient for
12281 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
12282
12283 bfd_boolean
12284 _bfd_elf_is_function_type (unsigned int type)
12285 {
12286 return (type == STT_FUNC
12287 || type == STT_GNU_IFUNC);
12288 }
12289
12290 /* If the ELF symbol SYM might be a function in SEC, return the
12291 function size and set *CODE_OFF to the function's entry point,
12292 otherwise return zero. */
12293
12294 bfd_size_type
12295 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
12296 bfd_vma *code_off)
12297 {
12298 bfd_size_type size;
12299
12300 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
12301 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
12302 || sym->section != sec)
12303 return 0;
12304
12305 *code_off = sym->value;
12306 size = 0;
12307 if (!(sym->flags & BSF_SYNTHETIC))
12308 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
12309 if (size == 0)
12310 size = 1;
12311 return size;
12312 }
This page took 0.3947 seconds and 5 git commands to generate.