* elf.c (assign_file_positions_except_relocs): Assign relocs
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static char *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 char *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 char *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return 0;
263
264 shstrtab = (char *) i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 (*_bfd_error_handler)
295 (_("%B: invalid string offset %u >= %lu for section `%s'"),
296 abfd, strindex, (unsigned long) hdr->sh_size,
297 ((shindex == elf_elfheader(abfd)->e_shstrndx
298 && strindex == hdr->sh_name)
299 ? ".shstrtab"
300 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_local_sym_name (bfd *abfd, Elf_Internal_Sym *isym)
409 {
410 unsigned int iname = isym->st_name;
411 unsigned int shindex = elf_tdata (abfd)->symtab_hdr.sh_link;
412 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION)
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 }
420
421 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
422 sections. The first element is the flags, the rest are section
423 pointers. */
424
425 typedef union elf_internal_group {
426 Elf_Internal_Shdr *shdr;
427 unsigned int flags;
428 } Elf_Internal_Group;
429
430 /* Return the name of the group signature symbol. Why isn't the
431 signature just a string? */
432
433 static const char *
434 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
435 {
436 Elf_Internal_Shdr *hdr;
437 unsigned char esym[sizeof (Elf64_External_Sym)];
438 Elf_External_Sym_Shndx eshndx;
439 Elf_Internal_Sym isym;
440
441 /* First we need to ensure the symbol table is available. */
442 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
443 return NULL;
444
445 /* Go read the symbol. */
446 hdr = &elf_tdata (abfd)->symtab_hdr;
447 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
448 &isym, esym, &eshndx) == NULL)
449 return NULL;
450
451 return bfd_elf_local_sym_name (abfd, &isym);
452 }
453
454 /* Set next_in_group list pointer, and group name for NEWSECT. */
455
456 static bfd_boolean
457 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
458 {
459 unsigned int num_group = elf_tdata (abfd)->num_group;
460
461 /* If num_group is zero, read in all SHT_GROUP sections. The count
462 is set to -1 if there are no SHT_GROUP sections. */
463 if (num_group == 0)
464 {
465 unsigned int i, shnum;
466
467 /* First count the number of groups. If we have a SHT_GROUP
468 section with just a flag word (ie. sh_size is 4), ignore it. */
469 shnum = elf_numsections (abfd);
470 num_group = 0;
471 for (i = 0; i < shnum; i++)
472 {
473 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
474 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
475 num_group += 1;
476 }
477
478 if (num_group == 0)
479 num_group = (unsigned) -1;
480 elf_tdata (abfd)->num_group = num_group;
481
482 if (num_group > 0)
483 {
484 /* We keep a list of elf section headers for group sections,
485 so we can find them quickly. */
486 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
487 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
488 if (elf_tdata (abfd)->group_sect_ptr == NULL)
489 return FALSE;
490
491 num_group = 0;
492 for (i = 0; i < shnum; i++)
493 {
494 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
495 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
496 {
497 unsigned char *src;
498 Elf_Internal_Group *dest;
499
500 /* Add to list of sections. */
501 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
502 num_group += 1;
503
504 /* Read the raw contents. */
505 BFD_ASSERT (sizeof (*dest) >= 4);
506 amt = shdr->sh_size * sizeof (*dest) / 4;
507 shdr->contents = bfd_alloc (abfd, amt);
508 if (shdr->contents == NULL
509 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
510 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
511 != shdr->sh_size))
512 return FALSE;
513
514 /* Translate raw contents, a flag word followed by an
515 array of elf section indices all in target byte order,
516 to the flag word followed by an array of elf section
517 pointers. */
518 src = shdr->contents + shdr->sh_size;
519 dest = (Elf_Internal_Group *) (shdr->contents + amt);
520 while (1)
521 {
522 unsigned int idx;
523
524 src -= 4;
525 --dest;
526 idx = H_GET_32 (abfd, src);
527 if (src == shdr->contents)
528 {
529 dest->flags = idx;
530 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
531 shdr->bfd_section->flags
532 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
533 break;
534 }
535 if (idx >= shnum)
536 {
537 ((*_bfd_error_handler)
538 (_("%B: invalid SHT_GROUP entry"), abfd));
539 idx = 0;
540 }
541 dest->shdr = elf_elfsections (abfd)[idx];
542 }
543 }
544 }
545 }
546 }
547
548 if (num_group != (unsigned) -1)
549 {
550 unsigned int i;
551
552 for (i = 0; i < num_group; i++)
553 {
554 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
555 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
556 unsigned int n_elt = shdr->sh_size / 4;
557
558 /* Look through this group's sections to see if current
559 section is a member. */
560 while (--n_elt != 0)
561 if ((++idx)->shdr == hdr)
562 {
563 asection *s = NULL;
564
565 /* We are a member of this group. Go looking through
566 other members to see if any others are linked via
567 next_in_group. */
568 idx = (Elf_Internal_Group *) shdr->contents;
569 n_elt = shdr->sh_size / 4;
570 while (--n_elt != 0)
571 if ((s = (++idx)->shdr->bfd_section) != NULL
572 && elf_next_in_group (s) != NULL)
573 break;
574 if (n_elt != 0)
575 {
576 /* Snarf the group name from other member, and
577 insert current section in circular list. */
578 elf_group_name (newsect) = elf_group_name (s);
579 elf_next_in_group (newsect) = elf_next_in_group (s);
580 elf_next_in_group (s) = newsect;
581 }
582 else
583 {
584 const char *gname;
585
586 gname = group_signature (abfd, shdr);
587 if (gname == NULL)
588 return FALSE;
589 elf_group_name (newsect) = gname;
590
591 /* Start a circular list with one element. */
592 elf_next_in_group (newsect) = newsect;
593 }
594
595 /* If the group section has been created, point to the
596 new member. */
597 if (shdr->bfd_section != NULL)
598 elf_next_in_group (shdr->bfd_section) = newsect;
599
600 i = num_group - 1;
601 break;
602 }
603 }
604 }
605
606 if (elf_group_name (newsect) == NULL)
607 {
608 (*_bfd_error_handler) (_("%B: no group info for section %A"),
609 abfd, newsect);
610 }
611 return TRUE;
612 }
613
614 bfd_boolean
615 _bfd_elf_setup_group_pointers (bfd *abfd)
616 {
617 unsigned int i;
618 unsigned int num_group = elf_tdata (abfd)->num_group;
619 bfd_boolean result = TRUE;
620
621 if (num_group == (unsigned) -1)
622 return result;
623
624 for (i = 0; i < num_group; i++)
625 {
626 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
627 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
628 unsigned int n_elt = shdr->sh_size / 4;
629
630 while (--n_elt != 0)
631 if ((++idx)->shdr->bfd_section)
632 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
633 else if (idx->shdr->sh_type == SHT_RELA
634 || idx->shdr->sh_type == SHT_REL)
635 /* We won't include relocation sections in section groups in
636 output object files. We adjust the group section size here
637 so that relocatable link will work correctly when
638 relocation sections are in section group in input object
639 files. */
640 shdr->bfd_section->size -= 4;
641 else
642 {
643 /* There are some unknown sections in the group. */
644 (*_bfd_error_handler)
645 (_("%B: unknown [%d] section `%s' in group [%s]"),
646 abfd,
647 (unsigned int) idx->shdr->sh_type,
648 elf_string_from_elf_strtab (abfd, idx->shdr->sh_name),
649 shdr->bfd_section->name);
650 result = FALSE;
651 }
652 }
653 return result;
654 }
655
656 bfd_boolean
657 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
658 {
659 return elf_next_in_group (sec) != NULL;
660 }
661
662 bfd_boolean
663 bfd_elf_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
664 asection *group ATTRIBUTE_UNUSED)
665 {
666 #if 0
667 asection *first = elf_next_in_group (group);
668 asection *s = first;
669
670 while (s != NULL)
671 {
672 s->output_section = bfd_abs_section_ptr;
673 s = elf_next_in_group (s);
674 /* These lists are circular. */
675 if (s == first)
676 break;
677 }
678 #else
679 /* FIXME: Never used. Remove it! */
680 abort ();
681 #endif
682 return TRUE;
683 }
684
685 /* Make a BFD section from an ELF section. We store a pointer to the
686 BFD section in the bfd_section field of the header. */
687
688 bfd_boolean
689 _bfd_elf_make_section_from_shdr (bfd *abfd,
690 Elf_Internal_Shdr *hdr,
691 const char *name)
692 {
693 asection *newsect;
694 flagword flags;
695 const struct elf_backend_data *bed;
696
697 if (hdr->bfd_section != NULL)
698 {
699 BFD_ASSERT (strcmp (name,
700 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
701 return TRUE;
702 }
703
704 newsect = bfd_make_section_anyway (abfd, name);
705 if (newsect == NULL)
706 return FALSE;
707
708 hdr->bfd_section = newsect;
709 elf_section_data (newsect)->this_hdr = *hdr;
710
711 /* Always use the real type/flags. */
712 elf_section_type (newsect) = hdr->sh_type;
713 elf_section_flags (newsect) = hdr->sh_flags;
714
715 newsect->filepos = hdr->sh_offset;
716
717 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
718 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
719 || ! bfd_set_section_alignment (abfd, newsect,
720 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
721 return FALSE;
722
723 flags = SEC_NO_FLAGS;
724 if (hdr->sh_type != SHT_NOBITS)
725 flags |= SEC_HAS_CONTENTS;
726 if (hdr->sh_type == SHT_GROUP)
727 flags |= SEC_GROUP | SEC_EXCLUDE;
728 if ((hdr->sh_flags & SHF_ALLOC) != 0)
729 {
730 flags |= SEC_ALLOC;
731 if (hdr->sh_type != SHT_NOBITS)
732 flags |= SEC_LOAD;
733 }
734 if ((hdr->sh_flags & SHF_WRITE) == 0)
735 flags |= SEC_READONLY;
736 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
737 flags |= SEC_CODE;
738 else if ((flags & SEC_LOAD) != 0)
739 flags |= SEC_DATA;
740 if ((hdr->sh_flags & SHF_MERGE) != 0)
741 {
742 flags |= SEC_MERGE;
743 newsect->entsize = hdr->sh_entsize;
744 if ((hdr->sh_flags & SHF_STRINGS) != 0)
745 flags |= SEC_STRINGS;
746 }
747 if (hdr->sh_flags & SHF_GROUP)
748 if (!setup_group (abfd, hdr, newsect))
749 return FALSE;
750 if ((hdr->sh_flags & SHF_TLS) != 0)
751 flags |= SEC_THREAD_LOCAL;
752
753 /* The debugging sections appear to be recognized only by name, not
754 any sort of flag. */
755 {
756 static const char *debug_sec_names [] =
757 {
758 ".debug",
759 ".gnu.linkonce.wi.",
760 ".line",
761 ".stab"
762 };
763 int i;
764
765 for (i = ARRAY_SIZE (debug_sec_names); i--;)
766 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
767 break;
768
769 if (i >= 0)
770 flags |= SEC_DEBUGGING;
771 }
772
773 /* As a GNU extension, if the name begins with .gnu.linkonce, we
774 only link a single copy of the section. This is used to support
775 g++. g++ will emit each template expansion in its own section.
776 The symbols will be defined as weak, so that multiple definitions
777 are permitted. The GNU linker extension is to actually discard
778 all but one of the sections. */
779 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
780 && elf_next_in_group (newsect) == NULL)
781 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
782
783 bed = get_elf_backend_data (abfd);
784 if (bed->elf_backend_section_flags)
785 if (! bed->elf_backend_section_flags (&flags, hdr))
786 return FALSE;
787
788 if (! bfd_set_section_flags (abfd, newsect, flags))
789 return FALSE;
790
791 if ((flags & SEC_ALLOC) != 0)
792 {
793 Elf_Internal_Phdr *phdr;
794 unsigned int i;
795
796 /* Look through the phdrs to see if we need to adjust the lma.
797 If all the p_paddr fields are zero, we ignore them, since
798 some ELF linkers produce such output. */
799 phdr = elf_tdata (abfd)->phdr;
800 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
801 {
802 if (phdr->p_paddr != 0)
803 break;
804 }
805 if (i < elf_elfheader (abfd)->e_phnum)
806 {
807 phdr = elf_tdata (abfd)->phdr;
808 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
809 {
810 /* This section is part of this segment if its file
811 offset plus size lies within the segment's memory
812 span and, if the section is loaded, the extent of the
813 loaded data lies within the extent of the segment.
814
815 Note - we used to check the p_paddr field as well, and
816 refuse to set the LMA if it was 0. This is wrong
817 though, as a perfectly valid initialised segment can
818 have a p_paddr of zero. Some architectures, eg ARM,
819 place special significance on the address 0 and
820 executables need to be able to have a segment which
821 covers this address. */
822 if (phdr->p_type == PT_LOAD
823 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
824 && (hdr->sh_offset + hdr->sh_size
825 <= phdr->p_offset + phdr->p_memsz)
826 && ((flags & SEC_LOAD) == 0
827 || (hdr->sh_offset + hdr->sh_size
828 <= phdr->p_offset + phdr->p_filesz)))
829 {
830 if ((flags & SEC_LOAD) == 0)
831 newsect->lma = (phdr->p_paddr
832 + hdr->sh_addr - phdr->p_vaddr);
833 else
834 /* We used to use the same adjustment for SEC_LOAD
835 sections, but that doesn't work if the segment
836 is packed with code from multiple VMAs.
837 Instead we calculate the section LMA based on
838 the segment LMA. It is assumed that the
839 segment will contain sections with contiguous
840 LMAs, even if the VMAs are not. */
841 newsect->lma = (phdr->p_paddr
842 + hdr->sh_offset - phdr->p_offset);
843
844 /* With contiguous segments, we can't tell from file
845 offsets whether a section with zero size should
846 be placed at the end of one segment or the
847 beginning of the next. Decide based on vaddr. */
848 if (hdr->sh_addr >= phdr->p_vaddr
849 && (hdr->sh_addr + hdr->sh_size
850 <= phdr->p_vaddr + phdr->p_memsz))
851 break;
852 }
853 }
854 }
855 }
856
857 return TRUE;
858 }
859
860 /*
861 INTERNAL_FUNCTION
862 bfd_elf_find_section
863
864 SYNOPSIS
865 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
866
867 DESCRIPTION
868 Helper functions for GDB to locate the string tables.
869 Since BFD hides string tables from callers, GDB needs to use an
870 internal hook to find them. Sun's .stabstr, in particular,
871 isn't even pointed to by the .stab section, so ordinary
872 mechanisms wouldn't work to find it, even if we had some.
873 */
874
875 struct elf_internal_shdr *
876 bfd_elf_find_section (bfd *abfd, char *name)
877 {
878 Elf_Internal_Shdr **i_shdrp;
879 char *shstrtab;
880 unsigned int max;
881 unsigned int i;
882
883 i_shdrp = elf_elfsections (abfd);
884 if (i_shdrp != NULL)
885 {
886 shstrtab = bfd_elf_get_str_section (abfd,
887 elf_elfheader (abfd)->e_shstrndx);
888 if (shstrtab != NULL)
889 {
890 max = elf_numsections (abfd);
891 for (i = 1; i < max; i++)
892 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
893 return i_shdrp[i];
894 }
895 }
896 return 0;
897 }
898
899 const char *const bfd_elf_section_type_names[] = {
900 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
901 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
902 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
903 };
904
905 /* ELF relocs are against symbols. If we are producing relocatable
906 output, and the reloc is against an external symbol, and nothing
907 has given us any additional addend, the resulting reloc will also
908 be against the same symbol. In such a case, we don't want to
909 change anything about the way the reloc is handled, since it will
910 all be done at final link time. Rather than put special case code
911 into bfd_perform_relocation, all the reloc types use this howto
912 function. It just short circuits the reloc if producing
913 relocatable output against an external symbol. */
914
915 bfd_reloc_status_type
916 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
917 arelent *reloc_entry,
918 asymbol *symbol,
919 void *data ATTRIBUTE_UNUSED,
920 asection *input_section,
921 bfd *output_bfd,
922 char **error_message ATTRIBUTE_UNUSED)
923 {
924 if (output_bfd != NULL
925 && (symbol->flags & BSF_SECTION_SYM) == 0
926 && (! reloc_entry->howto->partial_inplace
927 || reloc_entry->addend == 0))
928 {
929 reloc_entry->address += input_section->output_offset;
930 return bfd_reloc_ok;
931 }
932
933 return bfd_reloc_continue;
934 }
935 \f
936 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
937
938 static void
939 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
940 asection *sec)
941 {
942 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
943 sec->sec_info_type = ELF_INFO_TYPE_NONE;
944 }
945
946 /* Finish SHF_MERGE section merging. */
947
948 bfd_boolean
949 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
950 {
951 bfd *ibfd;
952 asection *sec;
953
954 if (!is_elf_hash_table (info->hash))
955 return FALSE;
956
957 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
958 if ((ibfd->flags & DYNAMIC) == 0)
959 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
960 if ((sec->flags & SEC_MERGE) != 0
961 && !bfd_is_abs_section (sec->output_section))
962 {
963 struct bfd_elf_section_data *secdata;
964
965 secdata = elf_section_data (sec);
966 if (! _bfd_add_merge_section (abfd,
967 &elf_hash_table (info)->merge_info,
968 sec, &secdata->sec_info))
969 return FALSE;
970 else if (secdata->sec_info)
971 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
972 }
973
974 if (elf_hash_table (info)->merge_info != NULL)
975 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
976 merge_sections_remove_hook);
977 return TRUE;
978 }
979
980 void
981 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
982 {
983 sec->output_section = bfd_abs_section_ptr;
984 sec->output_offset = sec->vma;
985 if (!is_elf_hash_table (info->hash))
986 return;
987
988 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
989 }
990 \f
991 /* Copy the program header and other data from one object module to
992 another. */
993
994 bfd_boolean
995 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
996 {
997 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
998 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
999 return TRUE;
1000
1001 BFD_ASSERT (!elf_flags_init (obfd)
1002 || (elf_elfheader (obfd)->e_flags
1003 == elf_elfheader (ibfd)->e_flags));
1004
1005 elf_gp (obfd) = elf_gp (ibfd);
1006 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1007 elf_flags_init (obfd) = TRUE;
1008 return TRUE;
1009 }
1010
1011 /* Print out the program headers. */
1012
1013 bfd_boolean
1014 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1015 {
1016 FILE *f = farg;
1017 Elf_Internal_Phdr *p;
1018 asection *s;
1019 bfd_byte *dynbuf = NULL;
1020
1021 p = elf_tdata (abfd)->phdr;
1022 if (p != NULL)
1023 {
1024 unsigned int i, c;
1025
1026 fprintf (f, _("\nProgram Header:\n"));
1027 c = elf_elfheader (abfd)->e_phnum;
1028 for (i = 0; i < c; i++, p++)
1029 {
1030 const char *pt;
1031 char buf[20];
1032
1033 switch (p->p_type)
1034 {
1035 case PT_NULL: pt = "NULL"; break;
1036 case PT_LOAD: pt = "LOAD"; break;
1037 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1038 case PT_INTERP: pt = "INTERP"; break;
1039 case PT_NOTE: pt = "NOTE"; break;
1040 case PT_SHLIB: pt = "SHLIB"; break;
1041 case PT_PHDR: pt = "PHDR"; break;
1042 case PT_TLS: pt = "TLS"; break;
1043 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1044 case PT_GNU_STACK: pt = "STACK"; break;
1045 case PT_GNU_RELRO: pt = "RELRO"; break;
1046 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1047 }
1048 fprintf (f, "%8s off 0x", pt);
1049 bfd_fprintf_vma (abfd, f, p->p_offset);
1050 fprintf (f, " vaddr 0x");
1051 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1052 fprintf (f, " paddr 0x");
1053 bfd_fprintf_vma (abfd, f, p->p_paddr);
1054 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1055 fprintf (f, " filesz 0x");
1056 bfd_fprintf_vma (abfd, f, p->p_filesz);
1057 fprintf (f, " memsz 0x");
1058 bfd_fprintf_vma (abfd, f, p->p_memsz);
1059 fprintf (f, " flags %c%c%c",
1060 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1061 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1062 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1063 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1064 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1065 fprintf (f, "\n");
1066 }
1067 }
1068
1069 s = bfd_get_section_by_name (abfd, ".dynamic");
1070 if (s != NULL)
1071 {
1072 int elfsec;
1073 unsigned long shlink;
1074 bfd_byte *extdyn, *extdynend;
1075 size_t extdynsize;
1076 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1077
1078 fprintf (f, _("\nDynamic Section:\n"));
1079
1080 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1081 goto error_return;
1082
1083 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1084 if (elfsec == -1)
1085 goto error_return;
1086 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1087
1088 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1089 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1090
1091 extdyn = dynbuf;
1092 extdynend = extdyn + s->size;
1093 for (; extdyn < extdynend; extdyn += extdynsize)
1094 {
1095 Elf_Internal_Dyn dyn;
1096 const char *name;
1097 char ab[20];
1098 bfd_boolean stringp;
1099
1100 (*swap_dyn_in) (abfd, extdyn, &dyn);
1101
1102 if (dyn.d_tag == DT_NULL)
1103 break;
1104
1105 stringp = FALSE;
1106 switch (dyn.d_tag)
1107 {
1108 default:
1109 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1110 name = ab;
1111 break;
1112
1113 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1114 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1115 case DT_PLTGOT: name = "PLTGOT"; break;
1116 case DT_HASH: name = "HASH"; break;
1117 case DT_STRTAB: name = "STRTAB"; break;
1118 case DT_SYMTAB: name = "SYMTAB"; break;
1119 case DT_RELA: name = "RELA"; break;
1120 case DT_RELASZ: name = "RELASZ"; break;
1121 case DT_RELAENT: name = "RELAENT"; break;
1122 case DT_STRSZ: name = "STRSZ"; break;
1123 case DT_SYMENT: name = "SYMENT"; break;
1124 case DT_INIT: name = "INIT"; break;
1125 case DT_FINI: name = "FINI"; break;
1126 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1127 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1128 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1129 case DT_REL: name = "REL"; break;
1130 case DT_RELSZ: name = "RELSZ"; break;
1131 case DT_RELENT: name = "RELENT"; break;
1132 case DT_PLTREL: name = "PLTREL"; break;
1133 case DT_DEBUG: name = "DEBUG"; break;
1134 case DT_TEXTREL: name = "TEXTREL"; break;
1135 case DT_JMPREL: name = "JMPREL"; break;
1136 case DT_BIND_NOW: name = "BIND_NOW"; break;
1137 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1138 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1139 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1140 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1141 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1142 case DT_FLAGS: name = "FLAGS"; break;
1143 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1144 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1145 case DT_CHECKSUM: name = "CHECKSUM"; break;
1146 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1147 case DT_MOVEENT: name = "MOVEENT"; break;
1148 case DT_MOVESZ: name = "MOVESZ"; break;
1149 case DT_FEATURE: name = "FEATURE"; break;
1150 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1151 case DT_SYMINSZ: name = "SYMINSZ"; break;
1152 case DT_SYMINENT: name = "SYMINENT"; break;
1153 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1154 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1155 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1156 case DT_PLTPAD: name = "PLTPAD"; break;
1157 case DT_MOVETAB: name = "MOVETAB"; break;
1158 case DT_SYMINFO: name = "SYMINFO"; break;
1159 case DT_RELACOUNT: name = "RELACOUNT"; break;
1160 case DT_RELCOUNT: name = "RELCOUNT"; break;
1161 case DT_FLAGS_1: name = "FLAGS_1"; break;
1162 case DT_VERSYM: name = "VERSYM"; break;
1163 case DT_VERDEF: name = "VERDEF"; break;
1164 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1165 case DT_VERNEED: name = "VERNEED"; break;
1166 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1167 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1168 case DT_USED: name = "USED"; break;
1169 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1170 }
1171
1172 fprintf (f, " %-11s ", name);
1173 if (! stringp)
1174 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1175 else
1176 {
1177 const char *string;
1178 unsigned int tagv = dyn.d_un.d_val;
1179
1180 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1181 if (string == NULL)
1182 goto error_return;
1183 fprintf (f, "%s", string);
1184 }
1185 fprintf (f, "\n");
1186 }
1187
1188 free (dynbuf);
1189 dynbuf = NULL;
1190 }
1191
1192 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1193 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1194 {
1195 if (! _bfd_elf_slurp_version_tables (abfd))
1196 return FALSE;
1197 }
1198
1199 if (elf_dynverdef (abfd) != 0)
1200 {
1201 Elf_Internal_Verdef *t;
1202
1203 fprintf (f, _("\nVersion definitions:\n"));
1204 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1205 {
1206 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1207 t->vd_flags, t->vd_hash, t->vd_nodename);
1208 if (t->vd_auxptr->vda_nextptr != NULL)
1209 {
1210 Elf_Internal_Verdaux *a;
1211
1212 fprintf (f, "\t");
1213 for (a = t->vd_auxptr->vda_nextptr;
1214 a != NULL;
1215 a = a->vda_nextptr)
1216 fprintf (f, "%s ", a->vda_nodename);
1217 fprintf (f, "\n");
1218 }
1219 }
1220 }
1221
1222 if (elf_dynverref (abfd) != 0)
1223 {
1224 Elf_Internal_Verneed *t;
1225
1226 fprintf (f, _("\nVersion References:\n"));
1227 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1228 {
1229 Elf_Internal_Vernaux *a;
1230
1231 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1232 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1233 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1234 a->vna_flags, a->vna_other, a->vna_nodename);
1235 }
1236 }
1237
1238 return TRUE;
1239
1240 error_return:
1241 if (dynbuf != NULL)
1242 free (dynbuf);
1243 return FALSE;
1244 }
1245
1246 /* Display ELF-specific fields of a symbol. */
1247
1248 void
1249 bfd_elf_print_symbol (bfd *abfd,
1250 void *filep,
1251 asymbol *symbol,
1252 bfd_print_symbol_type how)
1253 {
1254 FILE *file = filep;
1255 switch (how)
1256 {
1257 case bfd_print_symbol_name:
1258 fprintf (file, "%s", symbol->name);
1259 break;
1260 case bfd_print_symbol_more:
1261 fprintf (file, "elf ");
1262 bfd_fprintf_vma (abfd, file, symbol->value);
1263 fprintf (file, " %lx", (long) symbol->flags);
1264 break;
1265 case bfd_print_symbol_all:
1266 {
1267 const char *section_name;
1268 const char *name = NULL;
1269 const struct elf_backend_data *bed;
1270 unsigned char st_other;
1271 bfd_vma val;
1272
1273 section_name = symbol->section ? symbol->section->name : "(*none*)";
1274
1275 bed = get_elf_backend_data (abfd);
1276 if (bed->elf_backend_print_symbol_all)
1277 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1278
1279 if (name == NULL)
1280 {
1281 name = symbol->name;
1282 bfd_print_symbol_vandf (abfd, file, symbol);
1283 }
1284
1285 fprintf (file, " %s\t", section_name);
1286 /* Print the "other" value for a symbol. For common symbols,
1287 we've already printed the size; now print the alignment.
1288 For other symbols, we have no specified alignment, and
1289 we've printed the address; now print the size. */
1290 if (bfd_is_com_section (symbol->section))
1291 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1292 else
1293 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1294 bfd_fprintf_vma (abfd, file, val);
1295
1296 /* If we have version information, print it. */
1297 if (elf_tdata (abfd)->dynversym_section != 0
1298 && (elf_tdata (abfd)->dynverdef_section != 0
1299 || elf_tdata (abfd)->dynverref_section != 0))
1300 {
1301 unsigned int vernum;
1302 const char *version_string;
1303
1304 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1305
1306 if (vernum == 0)
1307 version_string = "";
1308 else if (vernum == 1)
1309 version_string = "Base";
1310 else if (vernum <= elf_tdata (abfd)->cverdefs)
1311 version_string =
1312 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1313 else
1314 {
1315 Elf_Internal_Verneed *t;
1316
1317 version_string = "";
1318 for (t = elf_tdata (abfd)->verref;
1319 t != NULL;
1320 t = t->vn_nextref)
1321 {
1322 Elf_Internal_Vernaux *a;
1323
1324 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1325 {
1326 if (a->vna_other == vernum)
1327 {
1328 version_string = a->vna_nodename;
1329 break;
1330 }
1331 }
1332 }
1333 }
1334
1335 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1336 fprintf (file, " %-11s", version_string);
1337 else
1338 {
1339 int i;
1340
1341 fprintf (file, " (%s)", version_string);
1342 for (i = 10 - strlen (version_string); i > 0; --i)
1343 putc (' ', file);
1344 }
1345 }
1346
1347 /* If the st_other field is not zero, print it. */
1348 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1349
1350 switch (st_other)
1351 {
1352 case 0: break;
1353 case STV_INTERNAL: fprintf (file, " .internal"); break;
1354 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1355 case STV_PROTECTED: fprintf (file, " .protected"); break;
1356 default:
1357 /* Some other non-defined flags are also present, so print
1358 everything hex. */
1359 fprintf (file, " 0x%02x", (unsigned int) st_other);
1360 }
1361
1362 fprintf (file, " %s", name);
1363 }
1364 break;
1365 }
1366 }
1367 \f
1368 /* Create an entry in an ELF linker hash table. */
1369
1370 struct bfd_hash_entry *
1371 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1372 struct bfd_hash_table *table,
1373 const char *string)
1374 {
1375 /* Allocate the structure if it has not already been allocated by a
1376 subclass. */
1377 if (entry == NULL)
1378 {
1379 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1380 if (entry == NULL)
1381 return entry;
1382 }
1383
1384 /* Call the allocation method of the superclass. */
1385 entry = _bfd_link_hash_newfunc (entry, table, string);
1386 if (entry != NULL)
1387 {
1388 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1389 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1390
1391 /* Set local fields. */
1392 ret->indx = -1;
1393 ret->dynindx = -1;
1394 ret->dynstr_index = 0;
1395 ret->elf_hash_value = 0;
1396 ret->weakdef = NULL;
1397 ret->verinfo.verdef = NULL;
1398 ret->vtable_entries_size = 0;
1399 ret->vtable_entries_used = NULL;
1400 ret->vtable_parent = NULL;
1401 ret->got = htab->init_refcount;
1402 ret->plt = htab->init_refcount;
1403 ret->size = 0;
1404 ret->type = STT_NOTYPE;
1405 ret->other = 0;
1406 /* Assume that we have been called by a non-ELF symbol reader.
1407 This flag is then reset by the code which reads an ELF input
1408 file. This ensures that a symbol created by a non-ELF symbol
1409 reader will have the flag set correctly. */
1410 ret->elf_link_hash_flags = ELF_LINK_NON_ELF;
1411 }
1412
1413 return entry;
1414 }
1415
1416 /* Copy data from an indirect symbol to its direct symbol, hiding the
1417 old indirect symbol. Also used for copying flags to a weakdef. */
1418
1419 void
1420 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1421 struct elf_link_hash_entry *dir,
1422 struct elf_link_hash_entry *ind)
1423 {
1424 bfd_signed_vma tmp;
1425 bfd_signed_vma lowest_valid = bed->can_refcount;
1426
1427 /* Copy down any references that we may have already seen to the
1428 symbol which just became indirect. */
1429
1430 dir->elf_link_hash_flags
1431 |= ind->elf_link_hash_flags & (ELF_LINK_HASH_REF_DYNAMIC
1432 | ELF_LINK_HASH_REF_REGULAR
1433 | ELF_LINK_HASH_REF_REGULAR_NONWEAK
1434 | ELF_LINK_NON_GOT_REF
1435 | ELF_LINK_HASH_NEEDS_PLT
1436 | ELF_LINK_POINTER_EQUALITY_NEEDED);
1437
1438 if (ind->root.type != bfd_link_hash_indirect)
1439 return;
1440
1441 /* Copy over the global and procedure linkage table refcount entries.
1442 These may have been already set up by a check_relocs routine. */
1443 tmp = dir->got.refcount;
1444 if (tmp < lowest_valid)
1445 {
1446 dir->got.refcount = ind->got.refcount;
1447 ind->got.refcount = tmp;
1448 }
1449 else
1450 BFD_ASSERT (ind->got.refcount < lowest_valid);
1451
1452 tmp = dir->plt.refcount;
1453 if (tmp < lowest_valid)
1454 {
1455 dir->plt.refcount = ind->plt.refcount;
1456 ind->plt.refcount = tmp;
1457 }
1458 else
1459 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1460
1461 if (dir->dynindx == -1)
1462 {
1463 dir->dynindx = ind->dynindx;
1464 dir->dynstr_index = ind->dynstr_index;
1465 ind->dynindx = -1;
1466 ind->dynstr_index = 0;
1467 }
1468 else
1469 BFD_ASSERT (ind->dynindx == -1);
1470 }
1471
1472 void
1473 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1474 struct elf_link_hash_entry *h,
1475 bfd_boolean force_local)
1476 {
1477 h->plt = elf_hash_table (info)->init_offset;
1478 h->elf_link_hash_flags &= ~ELF_LINK_HASH_NEEDS_PLT;
1479 if (force_local)
1480 {
1481 h->elf_link_hash_flags |= ELF_LINK_FORCED_LOCAL;
1482 if (h->dynindx != -1)
1483 {
1484 h->dynindx = -1;
1485 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1486 h->dynstr_index);
1487 }
1488 }
1489 }
1490
1491 /* Initialize an ELF linker hash table. */
1492
1493 bfd_boolean
1494 _bfd_elf_link_hash_table_init
1495 (struct elf_link_hash_table *table,
1496 bfd *abfd,
1497 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1498 struct bfd_hash_table *,
1499 const char *))
1500 {
1501 bfd_boolean ret;
1502
1503 table->dynamic_sections_created = FALSE;
1504 table->dynobj = NULL;
1505 /* Make sure can_refcount is extended to the width and signedness of
1506 init_refcount before we subtract one from it. */
1507 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1508 table->init_refcount.refcount -= 1;
1509 table->init_offset.offset = -(bfd_vma) 1;
1510 /* The first dynamic symbol is a dummy. */
1511 table->dynsymcount = 1;
1512 table->dynstr = NULL;
1513 table->bucketcount = 0;
1514 table->needed = NULL;
1515 table->hgot = NULL;
1516 table->merge_info = NULL;
1517 memset (&table->stab_info, 0, sizeof (table->stab_info));
1518 memset (&table->eh_info, 0, sizeof (table->eh_info));
1519 table->dynlocal = NULL;
1520 table->runpath = NULL;
1521 table->tls_sec = NULL;
1522 table->tls_size = 0;
1523 table->loaded = NULL;
1524
1525 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1526 table->root.type = bfd_link_elf_hash_table;
1527
1528 return ret;
1529 }
1530
1531 /* Create an ELF linker hash table. */
1532
1533 struct bfd_link_hash_table *
1534 _bfd_elf_link_hash_table_create (bfd *abfd)
1535 {
1536 struct elf_link_hash_table *ret;
1537 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1538
1539 ret = bfd_malloc (amt);
1540 if (ret == NULL)
1541 return NULL;
1542
1543 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1544 {
1545 free (ret);
1546 return NULL;
1547 }
1548
1549 return &ret->root;
1550 }
1551
1552 /* This is a hook for the ELF emulation code in the generic linker to
1553 tell the backend linker what file name to use for the DT_NEEDED
1554 entry for a dynamic object. */
1555
1556 void
1557 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1558 {
1559 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1560 && bfd_get_format (abfd) == bfd_object)
1561 elf_dt_name (abfd) = name;
1562 }
1563
1564 int
1565 bfd_elf_get_dyn_lib_class (bfd *abfd)
1566 {
1567 int lib_class;
1568 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1569 && bfd_get_format (abfd) == bfd_object)
1570 lib_class = elf_dyn_lib_class (abfd);
1571 else
1572 lib_class = 0;
1573 return lib_class;
1574 }
1575
1576 void
1577 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1578 {
1579 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1580 && bfd_get_format (abfd) == bfd_object)
1581 elf_dyn_lib_class (abfd) = lib_class;
1582 }
1583
1584 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1585 the linker ELF emulation code. */
1586
1587 struct bfd_link_needed_list *
1588 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1589 struct bfd_link_info *info)
1590 {
1591 if (! is_elf_hash_table (info->hash))
1592 return NULL;
1593 return elf_hash_table (info)->needed;
1594 }
1595
1596 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1597 hook for the linker ELF emulation code. */
1598
1599 struct bfd_link_needed_list *
1600 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1601 struct bfd_link_info *info)
1602 {
1603 if (! is_elf_hash_table (info->hash))
1604 return NULL;
1605 return elf_hash_table (info)->runpath;
1606 }
1607
1608 /* Get the name actually used for a dynamic object for a link. This
1609 is the SONAME entry if there is one. Otherwise, it is the string
1610 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1611
1612 const char *
1613 bfd_elf_get_dt_soname (bfd *abfd)
1614 {
1615 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1616 && bfd_get_format (abfd) == bfd_object)
1617 return elf_dt_name (abfd);
1618 return NULL;
1619 }
1620
1621 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1622 the ELF linker emulation code. */
1623
1624 bfd_boolean
1625 bfd_elf_get_bfd_needed_list (bfd *abfd,
1626 struct bfd_link_needed_list **pneeded)
1627 {
1628 asection *s;
1629 bfd_byte *dynbuf = NULL;
1630 int elfsec;
1631 unsigned long shlink;
1632 bfd_byte *extdyn, *extdynend;
1633 size_t extdynsize;
1634 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1635
1636 *pneeded = NULL;
1637
1638 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1639 || bfd_get_format (abfd) != bfd_object)
1640 return TRUE;
1641
1642 s = bfd_get_section_by_name (abfd, ".dynamic");
1643 if (s == NULL || s->size == 0)
1644 return TRUE;
1645
1646 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1647 goto error_return;
1648
1649 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1650 if (elfsec == -1)
1651 goto error_return;
1652
1653 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1654
1655 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1656 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1657
1658 extdyn = dynbuf;
1659 extdynend = extdyn + s->size;
1660 for (; extdyn < extdynend; extdyn += extdynsize)
1661 {
1662 Elf_Internal_Dyn dyn;
1663
1664 (*swap_dyn_in) (abfd, extdyn, &dyn);
1665
1666 if (dyn.d_tag == DT_NULL)
1667 break;
1668
1669 if (dyn.d_tag == DT_NEEDED)
1670 {
1671 const char *string;
1672 struct bfd_link_needed_list *l;
1673 unsigned int tagv = dyn.d_un.d_val;
1674 bfd_size_type amt;
1675
1676 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1677 if (string == NULL)
1678 goto error_return;
1679
1680 amt = sizeof *l;
1681 l = bfd_alloc (abfd, amt);
1682 if (l == NULL)
1683 goto error_return;
1684
1685 l->by = abfd;
1686 l->name = string;
1687 l->next = *pneeded;
1688 *pneeded = l;
1689 }
1690 }
1691
1692 free (dynbuf);
1693
1694 return TRUE;
1695
1696 error_return:
1697 if (dynbuf != NULL)
1698 free (dynbuf);
1699 return FALSE;
1700 }
1701 \f
1702 /* Allocate an ELF string table--force the first byte to be zero. */
1703
1704 struct bfd_strtab_hash *
1705 _bfd_elf_stringtab_init (void)
1706 {
1707 struct bfd_strtab_hash *ret;
1708
1709 ret = _bfd_stringtab_init ();
1710 if (ret != NULL)
1711 {
1712 bfd_size_type loc;
1713
1714 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1715 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1716 if (loc == (bfd_size_type) -1)
1717 {
1718 _bfd_stringtab_free (ret);
1719 ret = NULL;
1720 }
1721 }
1722 return ret;
1723 }
1724 \f
1725 /* ELF .o/exec file reading */
1726
1727 /* Create a new bfd section from an ELF section header. */
1728
1729 bfd_boolean
1730 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1731 {
1732 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1733 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1734 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1735 const char *name;
1736
1737 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1738
1739 switch (hdr->sh_type)
1740 {
1741 case SHT_NULL:
1742 /* Inactive section. Throw it away. */
1743 return TRUE;
1744
1745 case SHT_PROGBITS: /* Normal section with contents. */
1746 case SHT_NOBITS: /* .bss section. */
1747 case SHT_HASH: /* .hash section. */
1748 case SHT_NOTE: /* .note section. */
1749 case SHT_INIT_ARRAY: /* .init_array section. */
1750 case SHT_FINI_ARRAY: /* .fini_array section. */
1751 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1752 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1753
1754 case SHT_DYNAMIC: /* Dynamic linking information. */
1755 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1756 return FALSE;
1757 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1758 {
1759 Elf_Internal_Shdr *dynsymhdr;
1760
1761 /* The shared libraries distributed with hpux11 have a bogus
1762 sh_link field for the ".dynamic" section. Find the
1763 string table for the ".dynsym" section instead. */
1764 if (elf_dynsymtab (abfd) != 0)
1765 {
1766 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1767 hdr->sh_link = dynsymhdr->sh_link;
1768 }
1769 else
1770 {
1771 unsigned int i, num_sec;
1772
1773 num_sec = elf_numsections (abfd);
1774 for (i = 1; i < num_sec; i++)
1775 {
1776 dynsymhdr = elf_elfsections (abfd)[i];
1777 if (dynsymhdr->sh_type == SHT_DYNSYM)
1778 {
1779 hdr->sh_link = dynsymhdr->sh_link;
1780 break;
1781 }
1782 }
1783 }
1784 }
1785 break;
1786
1787 case SHT_SYMTAB: /* A symbol table */
1788 if (elf_onesymtab (abfd) == shindex)
1789 return TRUE;
1790
1791 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1792 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1793 elf_onesymtab (abfd) = shindex;
1794 elf_tdata (abfd)->symtab_hdr = *hdr;
1795 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1796 abfd->flags |= HAS_SYMS;
1797
1798 /* Sometimes a shared object will map in the symbol table. If
1799 SHF_ALLOC is set, and this is a shared object, then we also
1800 treat this section as a BFD section. We can not base the
1801 decision purely on SHF_ALLOC, because that flag is sometimes
1802 set in a relocatable object file, which would confuse the
1803 linker. */
1804 if ((hdr->sh_flags & SHF_ALLOC) != 0
1805 && (abfd->flags & DYNAMIC) != 0
1806 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1807 return FALSE;
1808
1809 return TRUE;
1810
1811 case SHT_DYNSYM: /* A dynamic symbol table */
1812 if (elf_dynsymtab (abfd) == shindex)
1813 return TRUE;
1814
1815 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1816 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1817 elf_dynsymtab (abfd) = shindex;
1818 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1819 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1820 abfd->flags |= HAS_SYMS;
1821
1822 /* Besides being a symbol table, we also treat this as a regular
1823 section, so that objcopy can handle it. */
1824 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1825
1826 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1827 if (elf_symtab_shndx (abfd) == shindex)
1828 return TRUE;
1829
1830 /* Get the associated symbol table. */
1831 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1832 || hdr->sh_link != elf_onesymtab (abfd))
1833 return FALSE;
1834
1835 elf_symtab_shndx (abfd) = shindex;
1836 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1837 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1838 return TRUE;
1839
1840 case SHT_STRTAB: /* A string table */
1841 if (hdr->bfd_section != NULL)
1842 return TRUE;
1843 if (ehdr->e_shstrndx == shindex)
1844 {
1845 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1846 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1847 return TRUE;
1848 }
1849 {
1850 unsigned int i, num_sec;
1851
1852 num_sec = elf_numsections (abfd);
1853 for (i = 1; i < num_sec; i++)
1854 {
1855 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1856 if (hdr2->sh_link == shindex)
1857 {
1858 if (! bfd_section_from_shdr (abfd, i))
1859 return FALSE;
1860 if (elf_onesymtab (abfd) == i)
1861 {
1862 elf_tdata (abfd)->strtab_hdr = *hdr;
1863 elf_elfsections (abfd)[shindex] =
1864 &elf_tdata (abfd)->strtab_hdr;
1865 return TRUE;
1866 }
1867 if (elf_dynsymtab (abfd) == i)
1868 {
1869 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1870 elf_elfsections (abfd)[shindex] = hdr =
1871 &elf_tdata (abfd)->dynstrtab_hdr;
1872 /* We also treat this as a regular section, so
1873 that objcopy can handle it. */
1874 break;
1875 }
1876 #if 0 /* Not handling other string tables specially right now. */
1877 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1878 /* We have a strtab for some random other section. */
1879 newsect = (asection *) hdr2->bfd_section;
1880 if (!newsect)
1881 break;
1882 hdr->bfd_section = newsect;
1883 hdr2 = &elf_section_data (newsect)->str_hdr;
1884 *hdr2 = *hdr;
1885 elf_elfsections (abfd)[shindex] = hdr2;
1886 #endif
1887 }
1888 }
1889 }
1890
1891 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1892
1893 case SHT_REL:
1894 case SHT_RELA:
1895 /* *These* do a lot of work -- but build no sections! */
1896 {
1897 asection *target_sect;
1898 Elf_Internal_Shdr *hdr2;
1899 unsigned int num_sec = elf_numsections (abfd);
1900
1901 /* Check for a bogus link to avoid crashing. */
1902 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1903 || hdr->sh_link >= num_sec)
1904 {
1905 ((*_bfd_error_handler)
1906 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1907 abfd, hdr->sh_link, name, shindex));
1908 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1909 }
1910
1911 /* For some incomprehensible reason Oracle distributes
1912 libraries for Solaris in which some of the objects have
1913 bogus sh_link fields. It would be nice if we could just
1914 reject them, but, unfortunately, some people need to use
1915 them. We scan through the section headers; if we find only
1916 one suitable symbol table, we clobber the sh_link to point
1917 to it. I hope this doesn't break anything. */
1918 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1919 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1920 {
1921 unsigned int scan;
1922 int found;
1923
1924 found = 0;
1925 for (scan = 1; scan < num_sec; scan++)
1926 {
1927 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1928 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1929 {
1930 if (found != 0)
1931 {
1932 found = 0;
1933 break;
1934 }
1935 found = scan;
1936 }
1937 }
1938 if (found != 0)
1939 hdr->sh_link = found;
1940 }
1941
1942 /* Get the symbol table. */
1943 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1944 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1945 return FALSE;
1946
1947 /* If this reloc section does not use the main symbol table we
1948 don't treat it as a reloc section. BFD can't adequately
1949 represent such a section, so at least for now, we don't
1950 try. We just present it as a normal section. We also
1951 can't use it as a reloc section if it points to the null
1952 section. */
1953 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1954 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1955
1956 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1957 return FALSE;
1958 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1959 if (target_sect == NULL)
1960 return FALSE;
1961
1962 if ((target_sect->flags & SEC_RELOC) == 0
1963 || target_sect->reloc_count == 0)
1964 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1965 else
1966 {
1967 bfd_size_type amt;
1968 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1969 amt = sizeof (*hdr2);
1970 hdr2 = bfd_alloc (abfd, amt);
1971 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1972 }
1973 *hdr2 = *hdr;
1974 elf_elfsections (abfd)[shindex] = hdr2;
1975 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1976 target_sect->flags |= SEC_RELOC;
1977 target_sect->relocation = NULL;
1978 target_sect->rel_filepos = hdr->sh_offset;
1979 /* In the section to which the relocations apply, mark whether
1980 its relocations are of the REL or RELA variety. */
1981 if (hdr->sh_size != 0)
1982 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1983 abfd->flags |= HAS_RELOC;
1984 return TRUE;
1985 }
1986 break;
1987
1988 case SHT_GNU_verdef:
1989 elf_dynverdef (abfd) = shindex;
1990 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1991 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1992 break;
1993
1994 case SHT_GNU_versym:
1995 elf_dynversym (abfd) = shindex;
1996 elf_tdata (abfd)->dynversym_hdr = *hdr;
1997 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1998 break;
1999
2000 case SHT_GNU_verneed:
2001 elf_dynverref (abfd) = shindex;
2002 elf_tdata (abfd)->dynverref_hdr = *hdr;
2003 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
2004 break;
2005
2006 case SHT_SHLIB:
2007 return TRUE;
2008
2009 case SHT_GROUP:
2010 /* We need a BFD section for objcopy and relocatable linking,
2011 and it's handy to have the signature available as the section
2012 name. */
2013 name = group_signature (abfd, hdr);
2014 if (name == NULL)
2015 return FALSE;
2016 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
2017 return FALSE;
2018 if (hdr->contents != NULL)
2019 {
2020 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2021 unsigned int n_elt = hdr->sh_size / 4;
2022 asection *s;
2023
2024 if (idx->flags & GRP_COMDAT)
2025 hdr->bfd_section->flags
2026 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2027
2028 /* We try to keep the same section order as it comes in. */
2029 idx += n_elt;
2030 while (--n_elt != 0)
2031 if ((s = (--idx)->shdr->bfd_section) != NULL
2032 && elf_next_in_group (s) != NULL)
2033 {
2034 elf_next_in_group (hdr->bfd_section) = s;
2035 break;
2036 }
2037 }
2038 break;
2039
2040 default:
2041 /* Check for any processor-specific section types. */
2042 {
2043 if (bed->elf_backend_section_from_shdr)
2044 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
2045 }
2046 break;
2047 }
2048
2049 return TRUE;
2050 }
2051
2052 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2053 Return SEC for sections that have no elf section, and NULL on error. */
2054
2055 asection *
2056 bfd_section_from_r_symndx (bfd *abfd,
2057 struct sym_sec_cache *cache,
2058 asection *sec,
2059 unsigned long r_symndx)
2060 {
2061 Elf_Internal_Shdr *symtab_hdr;
2062 unsigned char esym[sizeof (Elf64_External_Sym)];
2063 Elf_External_Sym_Shndx eshndx;
2064 Elf_Internal_Sym isym;
2065 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2066
2067 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2068 return cache->sec[ent];
2069
2070 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2071 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2072 &isym, esym, &eshndx) == NULL)
2073 return NULL;
2074
2075 if (cache->abfd != abfd)
2076 {
2077 memset (cache->indx, -1, sizeof (cache->indx));
2078 cache->abfd = abfd;
2079 }
2080 cache->indx[ent] = r_symndx;
2081 cache->sec[ent] = sec;
2082 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2083 || isym.st_shndx > SHN_HIRESERVE)
2084 {
2085 asection *s;
2086 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2087 if (s != NULL)
2088 cache->sec[ent] = s;
2089 }
2090 return cache->sec[ent];
2091 }
2092
2093 /* Given an ELF section number, retrieve the corresponding BFD
2094 section. */
2095
2096 asection *
2097 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2098 {
2099 if (index >= elf_numsections (abfd))
2100 return NULL;
2101 return elf_elfsections (abfd)[index]->bfd_section;
2102 }
2103
2104 static struct bfd_elf_special_section const special_sections[] =
2105 {
2106 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2107 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2108 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2109 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2110 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2111 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2112 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2113 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2114 { ".line", 5, 0, SHT_PROGBITS, 0 },
2115 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2116 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2117 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2118 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2119 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2120 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2121 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2122 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2123 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2124 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2125 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2126 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2127 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2128 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2129 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2130 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2131 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2132 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2133 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2134 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2135 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2136 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2137 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2138 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2139 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2140 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2141 { ".note", 5, -1, SHT_NOTE, 0 },
2142 { ".rela", 5, -1, SHT_RELA, 0 },
2143 { ".rel", 4, -1, SHT_REL, 0 },
2144 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2145 { NULL, 0, 0, 0, 0 }
2146 };
2147
2148 static const struct bfd_elf_special_section *
2149 get_special_section (const char *name,
2150 const struct bfd_elf_special_section *special_sections,
2151 unsigned int rela)
2152 {
2153 int i;
2154 int len = strlen (name);
2155
2156 for (i = 0; special_sections[i].prefix != NULL; i++)
2157 {
2158 int suffix_len;
2159 int prefix_len = special_sections[i].prefix_length;
2160
2161 if (len < prefix_len)
2162 continue;
2163 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2164 continue;
2165
2166 suffix_len = special_sections[i].suffix_length;
2167 if (suffix_len <= 0)
2168 {
2169 if (name[prefix_len] != 0)
2170 {
2171 if (suffix_len == 0)
2172 continue;
2173 if (name[prefix_len] != '.'
2174 && (suffix_len == -2
2175 || (rela && special_sections[i].type == SHT_REL)))
2176 continue;
2177 }
2178 }
2179 else
2180 {
2181 if (len < prefix_len + suffix_len)
2182 continue;
2183 if (memcmp (name + len - suffix_len,
2184 special_sections[i].prefix + prefix_len,
2185 suffix_len) != 0)
2186 continue;
2187 }
2188 return &special_sections[i];
2189 }
2190
2191 return NULL;
2192 }
2193
2194 const struct bfd_elf_special_section *
2195 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2196 {
2197 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2198 const struct bfd_elf_special_section *ssect = NULL;
2199
2200 /* See if this is one of the special sections. */
2201 if (name)
2202 {
2203 unsigned int rela = bed->default_use_rela_p;
2204
2205 if (bed->special_sections)
2206 ssect = get_special_section (name, bed->special_sections, rela);
2207
2208 if (! ssect)
2209 ssect = get_special_section (name, special_sections, rela);
2210 }
2211
2212 return ssect;
2213 }
2214
2215 bfd_boolean
2216 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2217 {
2218 struct bfd_elf_section_data *sdata;
2219 const struct bfd_elf_special_section *ssect;
2220
2221 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2222 if (sdata == NULL)
2223 {
2224 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2225 if (sdata == NULL)
2226 return FALSE;
2227 sec->used_by_bfd = sdata;
2228 }
2229
2230 elf_section_type (sec) = SHT_NULL;
2231 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2232 if (ssect != NULL)
2233 {
2234 elf_section_type (sec) = ssect->type;
2235 elf_section_flags (sec) = ssect->attr;
2236 }
2237
2238 /* Indicate whether or not this section should use RELA relocations. */
2239 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2240
2241 return TRUE;
2242 }
2243
2244 /* Create a new bfd section from an ELF program header.
2245
2246 Since program segments have no names, we generate a synthetic name
2247 of the form segment<NUM>, where NUM is generally the index in the
2248 program header table. For segments that are split (see below) we
2249 generate the names segment<NUM>a and segment<NUM>b.
2250
2251 Note that some program segments may have a file size that is different than
2252 (less than) the memory size. All this means is that at execution the
2253 system must allocate the amount of memory specified by the memory size,
2254 but only initialize it with the first "file size" bytes read from the
2255 file. This would occur for example, with program segments consisting
2256 of combined data+bss.
2257
2258 To handle the above situation, this routine generates TWO bfd sections
2259 for the single program segment. The first has the length specified by
2260 the file size of the segment, and the second has the length specified
2261 by the difference between the two sizes. In effect, the segment is split
2262 into it's initialized and uninitialized parts.
2263
2264 */
2265
2266 bfd_boolean
2267 _bfd_elf_make_section_from_phdr (bfd *abfd,
2268 Elf_Internal_Phdr *hdr,
2269 int index,
2270 const char *typename)
2271 {
2272 asection *newsect;
2273 char *name;
2274 char namebuf[64];
2275 size_t len;
2276 int split;
2277
2278 split = ((hdr->p_memsz > 0)
2279 && (hdr->p_filesz > 0)
2280 && (hdr->p_memsz > hdr->p_filesz));
2281 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2282 len = strlen (namebuf) + 1;
2283 name = bfd_alloc (abfd, len);
2284 if (!name)
2285 return FALSE;
2286 memcpy (name, namebuf, len);
2287 newsect = bfd_make_section (abfd, name);
2288 if (newsect == NULL)
2289 return FALSE;
2290 newsect->vma = hdr->p_vaddr;
2291 newsect->lma = hdr->p_paddr;
2292 newsect->size = hdr->p_filesz;
2293 newsect->filepos = hdr->p_offset;
2294 newsect->flags |= SEC_HAS_CONTENTS;
2295 newsect->alignment_power = bfd_log2 (hdr->p_align);
2296 if (hdr->p_type == PT_LOAD)
2297 {
2298 newsect->flags |= SEC_ALLOC;
2299 newsect->flags |= SEC_LOAD;
2300 if (hdr->p_flags & PF_X)
2301 {
2302 /* FIXME: all we known is that it has execute PERMISSION,
2303 may be data. */
2304 newsect->flags |= SEC_CODE;
2305 }
2306 }
2307 if (!(hdr->p_flags & PF_W))
2308 {
2309 newsect->flags |= SEC_READONLY;
2310 }
2311
2312 if (split)
2313 {
2314 sprintf (namebuf, "%s%db", typename, index);
2315 len = strlen (namebuf) + 1;
2316 name = bfd_alloc (abfd, len);
2317 if (!name)
2318 return FALSE;
2319 memcpy (name, namebuf, len);
2320 newsect = bfd_make_section (abfd, name);
2321 if (newsect == NULL)
2322 return FALSE;
2323 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2324 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2325 newsect->size = hdr->p_memsz - hdr->p_filesz;
2326 if (hdr->p_type == PT_LOAD)
2327 {
2328 newsect->flags |= SEC_ALLOC;
2329 if (hdr->p_flags & PF_X)
2330 newsect->flags |= SEC_CODE;
2331 }
2332 if (!(hdr->p_flags & PF_W))
2333 newsect->flags |= SEC_READONLY;
2334 }
2335
2336 return TRUE;
2337 }
2338
2339 bfd_boolean
2340 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2341 {
2342 const struct elf_backend_data *bed;
2343
2344 switch (hdr->p_type)
2345 {
2346 case PT_NULL:
2347 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2348
2349 case PT_LOAD:
2350 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2351
2352 case PT_DYNAMIC:
2353 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2354
2355 case PT_INTERP:
2356 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2357
2358 case PT_NOTE:
2359 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2360 return FALSE;
2361 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2362 return FALSE;
2363 return TRUE;
2364
2365 case PT_SHLIB:
2366 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2367
2368 case PT_PHDR:
2369 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2370
2371 case PT_GNU_EH_FRAME:
2372 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2373 "eh_frame_hdr");
2374
2375 case PT_GNU_STACK:
2376 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2377
2378 case PT_GNU_RELRO:
2379 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2380
2381 default:
2382 /* Check for any processor-specific program segment types.
2383 If no handler for them, default to making "segment" sections. */
2384 bed = get_elf_backend_data (abfd);
2385 if (bed->elf_backend_section_from_phdr)
2386 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2387 else
2388 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2389 }
2390 }
2391
2392 /* Initialize REL_HDR, the section-header for new section, containing
2393 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2394 relocations; otherwise, we use REL relocations. */
2395
2396 bfd_boolean
2397 _bfd_elf_init_reloc_shdr (bfd *abfd,
2398 Elf_Internal_Shdr *rel_hdr,
2399 asection *asect,
2400 bfd_boolean use_rela_p)
2401 {
2402 char *name;
2403 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2404 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2405
2406 name = bfd_alloc (abfd, amt);
2407 if (name == NULL)
2408 return FALSE;
2409 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2410 rel_hdr->sh_name =
2411 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2412 FALSE);
2413 if (rel_hdr->sh_name == (unsigned int) -1)
2414 return FALSE;
2415 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2416 rel_hdr->sh_entsize = (use_rela_p
2417 ? bed->s->sizeof_rela
2418 : bed->s->sizeof_rel);
2419 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2420 rel_hdr->sh_flags = 0;
2421 rel_hdr->sh_addr = 0;
2422 rel_hdr->sh_size = 0;
2423 rel_hdr->sh_offset = 0;
2424
2425 return TRUE;
2426 }
2427
2428 /* Set up an ELF internal section header for a section. */
2429
2430 static void
2431 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2432 {
2433 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2434 bfd_boolean *failedptr = failedptrarg;
2435 Elf_Internal_Shdr *this_hdr;
2436
2437 if (*failedptr)
2438 {
2439 /* We already failed; just get out of the bfd_map_over_sections
2440 loop. */
2441 return;
2442 }
2443
2444 this_hdr = &elf_section_data (asect)->this_hdr;
2445
2446 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2447 asect->name, FALSE);
2448 if (this_hdr->sh_name == (unsigned int) -1)
2449 {
2450 *failedptr = TRUE;
2451 return;
2452 }
2453
2454 this_hdr->sh_flags = 0;
2455
2456 if ((asect->flags & SEC_ALLOC) != 0
2457 || asect->user_set_vma)
2458 this_hdr->sh_addr = asect->vma;
2459 else
2460 this_hdr->sh_addr = 0;
2461
2462 this_hdr->sh_offset = 0;
2463 this_hdr->sh_size = asect->size;
2464 this_hdr->sh_link = 0;
2465 this_hdr->sh_addralign = 1 << asect->alignment_power;
2466 /* The sh_entsize and sh_info fields may have been set already by
2467 copy_private_section_data. */
2468
2469 this_hdr->bfd_section = asect;
2470 this_hdr->contents = NULL;
2471
2472 /* If the section type is unspecified, we set it based on
2473 asect->flags. */
2474 if (this_hdr->sh_type == SHT_NULL)
2475 {
2476 if ((asect->flags & SEC_GROUP) != 0)
2477 {
2478 /* We also need to mark SHF_GROUP here for relocatable
2479 link. */
2480 struct bfd_link_order *l;
2481 asection *elt;
2482
2483 for (l = asect->link_order_head; l != NULL; l = l->next)
2484 if (l->type == bfd_indirect_link_order
2485 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2486 do
2487 {
2488 /* The name is not important. Anything will do. */
2489 elf_group_name (elt->output_section) = "G";
2490 elf_section_flags (elt->output_section) |= SHF_GROUP;
2491
2492 elt = elf_next_in_group (elt);
2493 /* During a relocatable link, the lists are
2494 circular. */
2495 }
2496 while (elt != elf_next_in_group (l->u.indirect.section));
2497
2498 this_hdr->sh_type = SHT_GROUP;
2499 }
2500 else if ((asect->flags & SEC_ALLOC) != 0
2501 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2502 || (asect->flags & SEC_NEVER_LOAD) != 0))
2503 this_hdr->sh_type = SHT_NOBITS;
2504 else
2505 this_hdr->sh_type = SHT_PROGBITS;
2506 }
2507
2508 switch (this_hdr->sh_type)
2509 {
2510 default:
2511 break;
2512
2513 case SHT_STRTAB:
2514 case SHT_INIT_ARRAY:
2515 case SHT_FINI_ARRAY:
2516 case SHT_PREINIT_ARRAY:
2517 case SHT_NOTE:
2518 case SHT_NOBITS:
2519 case SHT_PROGBITS:
2520 break;
2521
2522 case SHT_HASH:
2523 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2524 break;
2525
2526 case SHT_DYNSYM:
2527 this_hdr->sh_entsize = bed->s->sizeof_sym;
2528 break;
2529
2530 case SHT_DYNAMIC:
2531 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2532 break;
2533
2534 case SHT_RELA:
2535 if (get_elf_backend_data (abfd)->may_use_rela_p)
2536 this_hdr->sh_entsize = bed->s->sizeof_rela;
2537 break;
2538
2539 case SHT_REL:
2540 if (get_elf_backend_data (abfd)->may_use_rel_p)
2541 this_hdr->sh_entsize = bed->s->sizeof_rel;
2542 break;
2543
2544 case SHT_GNU_versym:
2545 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2546 break;
2547
2548 case SHT_GNU_verdef:
2549 this_hdr->sh_entsize = 0;
2550 /* objcopy or strip will copy over sh_info, but may not set
2551 cverdefs. The linker will set cverdefs, but sh_info will be
2552 zero. */
2553 if (this_hdr->sh_info == 0)
2554 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2555 else
2556 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2557 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2558 break;
2559
2560 case SHT_GNU_verneed:
2561 this_hdr->sh_entsize = 0;
2562 /* objcopy or strip will copy over sh_info, but may not set
2563 cverrefs. The linker will set cverrefs, but sh_info will be
2564 zero. */
2565 if (this_hdr->sh_info == 0)
2566 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2567 else
2568 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2569 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2570 break;
2571
2572 case SHT_GROUP:
2573 this_hdr->sh_entsize = 4;
2574 break;
2575 }
2576
2577 if ((asect->flags & SEC_ALLOC) != 0)
2578 this_hdr->sh_flags |= SHF_ALLOC;
2579 if ((asect->flags & SEC_READONLY) == 0)
2580 this_hdr->sh_flags |= SHF_WRITE;
2581 if ((asect->flags & SEC_CODE) != 0)
2582 this_hdr->sh_flags |= SHF_EXECINSTR;
2583 if ((asect->flags & SEC_MERGE) != 0)
2584 {
2585 this_hdr->sh_flags |= SHF_MERGE;
2586 this_hdr->sh_entsize = asect->entsize;
2587 if ((asect->flags & SEC_STRINGS) != 0)
2588 this_hdr->sh_flags |= SHF_STRINGS;
2589 }
2590 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2591 this_hdr->sh_flags |= SHF_GROUP;
2592 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2593 {
2594 this_hdr->sh_flags |= SHF_TLS;
2595 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2596 {
2597 struct bfd_link_order *o;
2598
2599 this_hdr->sh_size = 0;
2600 for (o = asect->link_order_head; o != NULL; o = o->next)
2601 if (this_hdr->sh_size < o->offset + o->size)
2602 this_hdr->sh_size = o->offset + o->size;
2603 if (this_hdr->sh_size)
2604 this_hdr->sh_type = SHT_NOBITS;
2605 }
2606 }
2607
2608 /* Check for processor-specific section types. */
2609 if (bed->elf_backend_fake_sections
2610 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2611 *failedptr = TRUE;
2612
2613 /* If the section has relocs, set up a section header for the
2614 SHT_REL[A] section. If two relocation sections are required for
2615 this section, it is up to the processor-specific back-end to
2616 create the other. */
2617 if ((asect->flags & SEC_RELOC) != 0
2618 && !_bfd_elf_init_reloc_shdr (abfd,
2619 &elf_section_data (asect)->rel_hdr,
2620 asect,
2621 asect->use_rela_p))
2622 *failedptr = TRUE;
2623 }
2624
2625 /* Fill in the contents of a SHT_GROUP section. */
2626
2627 void
2628 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2629 {
2630 bfd_boolean *failedptr = failedptrarg;
2631 unsigned long symindx;
2632 asection *elt, *first;
2633 unsigned char *loc;
2634 struct bfd_link_order *l;
2635 bfd_boolean gas;
2636
2637 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2638 || *failedptr)
2639 return;
2640
2641 symindx = 0;
2642 if (elf_group_id (sec) != NULL)
2643 symindx = elf_group_id (sec)->udata.i;
2644
2645 if (symindx == 0)
2646 {
2647 /* If called from the assembler, swap_out_syms will have set up
2648 elf_section_syms; If called for "ld -r", use target_index. */
2649 if (elf_section_syms (abfd) != NULL)
2650 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2651 else
2652 symindx = sec->target_index;
2653 }
2654 elf_section_data (sec)->this_hdr.sh_info = symindx;
2655
2656 /* The contents won't be allocated for "ld -r" or objcopy. */
2657 gas = TRUE;
2658 if (sec->contents == NULL)
2659 {
2660 gas = FALSE;
2661 sec->contents = bfd_alloc (abfd, sec->size);
2662
2663 /* Arrange for the section to be written out. */
2664 elf_section_data (sec)->this_hdr.contents = sec->contents;
2665 if (sec->contents == NULL)
2666 {
2667 *failedptr = TRUE;
2668 return;
2669 }
2670 }
2671
2672 loc = sec->contents + sec->size;
2673
2674 /* Get the pointer to the first section in the group that gas
2675 squirreled away here. objcopy arranges for this to be set to the
2676 start of the input section group. */
2677 first = elt = elf_next_in_group (sec);
2678
2679 /* First element is a flag word. Rest of section is elf section
2680 indices for all the sections of the group. Write them backwards
2681 just to keep the group in the same order as given in .section
2682 directives, not that it matters. */
2683 while (elt != NULL)
2684 {
2685 asection *s;
2686 unsigned int idx;
2687
2688 loc -= 4;
2689 s = elt;
2690 if (!gas)
2691 s = s->output_section;
2692 idx = 0;
2693 if (s != NULL)
2694 idx = elf_section_data (s)->this_idx;
2695 H_PUT_32 (abfd, idx, loc);
2696 elt = elf_next_in_group (elt);
2697 if (elt == first)
2698 break;
2699 }
2700
2701 /* If this is a relocatable link, then the above did nothing because
2702 SEC is the output section. Look through the input sections
2703 instead. */
2704 for (l = sec->link_order_head; l != NULL; l = l->next)
2705 if (l->type == bfd_indirect_link_order
2706 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2707 do
2708 {
2709 loc -= 4;
2710 H_PUT_32 (abfd,
2711 elf_section_data (elt->output_section)->this_idx, loc);
2712 elt = elf_next_in_group (elt);
2713 /* During a relocatable link, the lists are circular. */
2714 }
2715 while (elt != elf_next_in_group (l->u.indirect.section));
2716
2717 if ((loc -= 4) != sec->contents)
2718 abort ();
2719
2720 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2721 }
2722
2723 /* Assign all ELF section numbers. The dummy first section is handled here
2724 too. The link/info pointers for the standard section types are filled
2725 in here too, while we're at it. */
2726
2727 static bfd_boolean
2728 assign_section_numbers (bfd *abfd)
2729 {
2730 struct elf_obj_tdata *t = elf_tdata (abfd);
2731 asection *sec;
2732 unsigned int section_number, secn;
2733 Elf_Internal_Shdr **i_shdrp;
2734 bfd_size_type amt;
2735
2736 section_number = 1;
2737
2738 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2739
2740 for (sec = abfd->sections; sec; sec = sec->next)
2741 {
2742 struct bfd_elf_section_data *d = elf_section_data (sec);
2743
2744 if (section_number == SHN_LORESERVE)
2745 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2746 d->this_idx = section_number++;
2747 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2748 if ((sec->flags & SEC_RELOC) == 0)
2749 d->rel_idx = 0;
2750 else
2751 {
2752 if (section_number == SHN_LORESERVE)
2753 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2754 d->rel_idx = section_number++;
2755 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2756 }
2757
2758 if (d->rel_hdr2)
2759 {
2760 if (section_number == SHN_LORESERVE)
2761 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2762 d->rel_idx2 = section_number++;
2763 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2764 }
2765 else
2766 d->rel_idx2 = 0;
2767 }
2768
2769 if (section_number == SHN_LORESERVE)
2770 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2771 t->shstrtab_section = section_number++;
2772 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2773 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2774
2775 if (bfd_get_symcount (abfd) > 0)
2776 {
2777 if (section_number == SHN_LORESERVE)
2778 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2779 t->symtab_section = section_number++;
2780 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2781 if (section_number > SHN_LORESERVE - 2)
2782 {
2783 if (section_number == SHN_LORESERVE)
2784 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2785 t->symtab_shndx_section = section_number++;
2786 t->symtab_shndx_hdr.sh_name
2787 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2788 ".symtab_shndx", FALSE);
2789 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2790 return FALSE;
2791 }
2792 if (section_number == SHN_LORESERVE)
2793 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2794 t->strtab_section = section_number++;
2795 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2796 }
2797
2798 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2799 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2800
2801 elf_numsections (abfd) = section_number;
2802 elf_elfheader (abfd)->e_shnum = section_number;
2803 if (section_number > SHN_LORESERVE)
2804 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2805
2806 /* Set up the list of section header pointers, in agreement with the
2807 indices. */
2808 amt = section_number * sizeof (Elf_Internal_Shdr *);
2809 i_shdrp = bfd_zalloc (abfd, amt);
2810 if (i_shdrp == NULL)
2811 return FALSE;
2812
2813 amt = sizeof (Elf_Internal_Shdr);
2814 i_shdrp[0] = bfd_zalloc (abfd, amt);
2815 if (i_shdrp[0] == NULL)
2816 {
2817 bfd_release (abfd, i_shdrp);
2818 return FALSE;
2819 }
2820
2821 elf_elfsections (abfd) = i_shdrp;
2822
2823 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2824 if (bfd_get_symcount (abfd) > 0)
2825 {
2826 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2827 if (elf_numsections (abfd) > SHN_LORESERVE)
2828 {
2829 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2830 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2831 }
2832 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2833 t->symtab_hdr.sh_link = t->strtab_section;
2834 }
2835
2836 for (sec = abfd->sections; sec; sec = sec->next)
2837 {
2838 struct bfd_elf_section_data *d = elf_section_data (sec);
2839 asection *s;
2840 const char *name;
2841
2842 i_shdrp[d->this_idx] = &d->this_hdr;
2843 if (d->rel_idx != 0)
2844 i_shdrp[d->rel_idx] = &d->rel_hdr;
2845 if (d->rel_idx2 != 0)
2846 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2847
2848 /* Fill in the sh_link and sh_info fields while we're at it. */
2849
2850 /* sh_link of a reloc section is the section index of the symbol
2851 table. sh_info is the section index of the section to which
2852 the relocation entries apply. */
2853 if (d->rel_idx != 0)
2854 {
2855 d->rel_hdr.sh_link = t->symtab_section;
2856 d->rel_hdr.sh_info = d->this_idx;
2857 }
2858 if (d->rel_idx2 != 0)
2859 {
2860 d->rel_hdr2->sh_link = t->symtab_section;
2861 d->rel_hdr2->sh_info = d->this_idx;
2862 }
2863
2864 /* We need to set up sh_link for SHF_LINK_ORDER. */
2865 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2866 {
2867 s = elf_linked_to_section (sec);
2868 if (s)
2869 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2870 else
2871 {
2872 struct bfd_link_order *p;
2873
2874 /* Find out what the corresponding section in output
2875 is. */
2876 for (p = sec->link_order_head; p != NULL; p = p->next)
2877 {
2878 s = p->u.indirect.section;
2879 if (p->type == bfd_indirect_link_order
2880 && (bfd_get_flavour (s->owner)
2881 == bfd_target_elf_flavour))
2882 {
2883 Elf_Internal_Shdr ** const elf_shdrp
2884 = elf_elfsections (s->owner);
2885 int elfsec
2886 = _bfd_elf_section_from_bfd_section (s->owner, s);
2887 elfsec = elf_shdrp[elfsec]->sh_link;
2888 /* PR 290:
2889 The Intel C compiler generates SHT_IA_64_UNWIND with
2890 SHF_LINK_ORDER. But it doesn't set theh sh_link or
2891 sh_info fields. Hence we could get the situation
2892 where elfsec is 0. */
2893 if (elfsec == 0)
2894 {
2895 const struct elf_backend_data *bed
2896 = get_elf_backend_data (abfd);
2897 if (bed->link_order_error_handler)
2898 bed->link_order_error_handler
2899 (_("%B: warning: sh_link not set for section `%S'"),
2900 abfd, s);
2901 }
2902 else
2903 {
2904 s = elf_shdrp[elfsec]->bfd_section->output_section;
2905 BFD_ASSERT (s != NULL);
2906 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2907 }
2908 break;
2909 }
2910 }
2911 }
2912 }
2913
2914 switch (d->this_hdr.sh_type)
2915 {
2916 case SHT_REL:
2917 case SHT_RELA:
2918 /* A reloc section which we are treating as a normal BFD
2919 section. sh_link is the section index of the symbol
2920 table. sh_info is the section index of the section to
2921 which the relocation entries apply. We assume that an
2922 allocated reloc section uses the dynamic symbol table.
2923 FIXME: How can we be sure? */
2924 s = bfd_get_section_by_name (abfd, ".dynsym");
2925 if (s != NULL)
2926 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2927
2928 /* We look up the section the relocs apply to by name. */
2929 name = sec->name;
2930 if (d->this_hdr.sh_type == SHT_REL)
2931 name += 4;
2932 else
2933 name += 5;
2934 s = bfd_get_section_by_name (abfd, name);
2935 if (s != NULL)
2936 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2937 break;
2938
2939 case SHT_STRTAB:
2940 /* We assume that a section named .stab*str is a stabs
2941 string section. We look for a section with the same name
2942 but without the trailing ``str'', and set its sh_link
2943 field to point to this section. */
2944 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2945 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2946 {
2947 size_t len;
2948 char *alc;
2949
2950 len = strlen (sec->name);
2951 alc = bfd_malloc (len - 2);
2952 if (alc == NULL)
2953 return FALSE;
2954 memcpy (alc, sec->name, len - 3);
2955 alc[len - 3] = '\0';
2956 s = bfd_get_section_by_name (abfd, alc);
2957 free (alc);
2958 if (s != NULL)
2959 {
2960 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2961
2962 /* This is a .stab section. */
2963 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2964 elf_section_data (s)->this_hdr.sh_entsize
2965 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2966 }
2967 }
2968 break;
2969
2970 case SHT_DYNAMIC:
2971 case SHT_DYNSYM:
2972 case SHT_GNU_verneed:
2973 case SHT_GNU_verdef:
2974 /* sh_link is the section header index of the string table
2975 used for the dynamic entries, or the symbol table, or the
2976 version strings. */
2977 s = bfd_get_section_by_name (abfd, ".dynstr");
2978 if (s != NULL)
2979 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2980 break;
2981
2982 case SHT_HASH:
2983 case SHT_GNU_versym:
2984 /* sh_link is the section header index of the symbol table
2985 this hash table or version table is for. */
2986 s = bfd_get_section_by_name (abfd, ".dynsym");
2987 if (s != NULL)
2988 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2989 break;
2990
2991 case SHT_GROUP:
2992 d->this_hdr.sh_link = t->symtab_section;
2993 }
2994 }
2995
2996 for (secn = 1; secn < section_number; ++secn)
2997 if (i_shdrp[secn] == NULL)
2998 i_shdrp[secn] = i_shdrp[0];
2999 else
3000 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3001 i_shdrp[secn]->sh_name);
3002 return TRUE;
3003 }
3004
3005 /* Map symbol from it's internal number to the external number, moving
3006 all local symbols to be at the head of the list. */
3007
3008 static int
3009 sym_is_global (bfd *abfd, asymbol *sym)
3010 {
3011 /* If the backend has a special mapping, use it. */
3012 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3013 if (bed->elf_backend_sym_is_global)
3014 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3015
3016 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3017 || bfd_is_und_section (bfd_get_section (sym))
3018 || bfd_is_com_section (bfd_get_section (sym)));
3019 }
3020
3021 static bfd_boolean
3022 elf_map_symbols (bfd *abfd)
3023 {
3024 unsigned int symcount = bfd_get_symcount (abfd);
3025 asymbol **syms = bfd_get_outsymbols (abfd);
3026 asymbol **sect_syms;
3027 unsigned int num_locals = 0;
3028 unsigned int num_globals = 0;
3029 unsigned int num_locals2 = 0;
3030 unsigned int num_globals2 = 0;
3031 int max_index = 0;
3032 unsigned int idx;
3033 asection *asect;
3034 asymbol **new_syms;
3035 bfd_size_type amt;
3036
3037 #ifdef DEBUG
3038 fprintf (stderr, "elf_map_symbols\n");
3039 fflush (stderr);
3040 #endif
3041
3042 for (asect = abfd->sections; asect; asect = asect->next)
3043 {
3044 if (max_index < asect->index)
3045 max_index = asect->index;
3046 }
3047
3048 max_index++;
3049 amt = max_index * sizeof (asymbol *);
3050 sect_syms = bfd_zalloc (abfd, amt);
3051 if (sect_syms == NULL)
3052 return FALSE;
3053 elf_section_syms (abfd) = sect_syms;
3054 elf_num_section_syms (abfd) = max_index;
3055
3056 /* Init sect_syms entries for any section symbols we have already
3057 decided to output. */
3058 for (idx = 0; idx < symcount; idx++)
3059 {
3060 asymbol *sym = syms[idx];
3061
3062 if ((sym->flags & BSF_SECTION_SYM) != 0
3063 && sym->value == 0)
3064 {
3065 asection *sec;
3066
3067 sec = sym->section;
3068
3069 if (sec->owner != NULL)
3070 {
3071 if (sec->owner != abfd)
3072 {
3073 if (sec->output_offset != 0)
3074 continue;
3075
3076 sec = sec->output_section;
3077
3078 /* Empty sections in the input files may have had a
3079 section symbol created for them. (See the comment
3080 near the end of _bfd_generic_link_output_symbols in
3081 linker.c). If the linker script discards such
3082 sections then we will reach this point. Since we know
3083 that we cannot avoid this case, we detect it and skip
3084 the abort and the assignment to the sect_syms array.
3085 To reproduce this particular case try running the
3086 linker testsuite test ld-scripts/weak.exp for an ELF
3087 port that uses the generic linker. */
3088 if (sec->owner == NULL)
3089 continue;
3090
3091 BFD_ASSERT (sec->owner == abfd);
3092 }
3093 sect_syms[sec->index] = syms[idx];
3094 }
3095 }
3096 }
3097
3098 /* Classify all of the symbols. */
3099 for (idx = 0; idx < symcount; idx++)
3100 {
3101 if (!sym_is_global (abfd, syms[idx]))
3102 num_locals++;
3103 else
3104 num_globals++;
3105 }
3106
3107 /* We will be adding a section symbol for each BFD section. Most normal
3108 sections will already have a section symbol in outsymbols, but
3109 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3110 at least in that case. */
3111 for (asect = abfd->sections; asect; asect = asect->next)
3112 {
3113 if (sect_syms[asect->index] == NULL)
3114 {
3115 if (!sym_is_global (abfd, asect->symbol))
3116 num_locals++;
3117 else
3118 num_globals++;
3119 }
3120 }
3121
3122 /* Now sort the symbols so the local symbols are first. */
3123 amt = (num_locals + num_globals) * sizeof (asymbol *);
3124 new_syms = bfd_alloc (abfd, amt);
3125
3126 if (new_syms == NULL)
3127 return FALSE;
3128
3129 for (idx = 0; idx < symcount; idx++)
3130 {
3131 asymbol *sym = syms[idx];
3132 unsigned int i;
3133
3134 if (!sym_is_global (abfd, sym))
3135 i = num_locals2++;
3136 else
3137 i = num_locals + num_globals2++;
3138 new_syms[i] = sym;
3139 sym->udata.i = i + 1;
3140 }
3141 for (asect = abfd->sections; asect; asect = asect->next)
3142 {
3143 if (sect_syms[asect->index] == NULL)
3144 {
3145 asymbol *sym = asect->symbol;
3146 unsigned int i;
3147
3148 sect_syms[asect->index] = sym;
3149 if (!sym_is_global (abfd, sym))
3150 i = num_locals2++;
3151 else
3152 i = num_locals + num_globals2++;
3153 new_syms[i] = sym;
3154 sym->udata.i = i + 1;
3155 }
3156 }
3157
3158 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3159
3160 elf_num_locals (abfd) = num_locals;
3161 elf_num_globals (abfd) = num_globals;
3162 return TRUE;
3163 }
3164
3165 /* Align to the maximum file alignment that could be required for any
3166 ELF data structure. */
3167
3168 static inline file_ptr
3169 align_file_position (file_ptr off, int align)
3170 {
3171 return (off + align - 1) & ~(align - 1);
3172 }
3173
3174 /* Assign a file position to a section, optionally aligning to the
3175 required section alignment. */
3176
3177 file_ptr
3178 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3179 file_ptr offset,
3180 bfd_boolean align)
3181 {
3182 if (align)
3183 {
3184 unsigned int al;
3185
3186 al = i_shdrp->sh_addralign;
3187 if (al > 1)
3188 offset = BFD_ALIGN (offset, al);
3189 }
3190 i_shdrp->sh_offset = offset;
3191 if (i_shdrp->bfd_section != NULL)
3192 i_shdrp->bfd_section->filepos = offset;
3193 if (i_shdrp->sh_type != SHT_NOBITS)
3194 offset += i_shdrp->sh_size;
3195 return offset;
3196 }
3197
3198 /* Compute the file positions we are going to put the sections at, and
3199 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3200 is not NULL, this is being called by the ELF backend linker. */
3201
3202 bfd_boolean
3203 _bfd_elf_compute_section_file_positions (bfd *abfd,
3204 struct bfd_link_info *link_info)
3205 {
3206 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3207 bfd_boolean failed;
3208 struct bfd_strtab_hash *strtab;
3209 Elf_Internal_Shdr *shstrtab_hdr;
3210
3211 if (abfd->output_has_begun)
3212 return TRUE;
3213
3214 /* Do any elf backend specific processing first. */
3215 if (bed->elf_backend_begin_write_processing)
3216 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3217
3218 if (! prep_headers (abfd))
3219 return FALSE;
3220
3221 /* Post process the headers if necessary. */
3222 if (bed->elf_backend_post_process_headers)
3223 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3224
3225 failed = FALSE;
3226 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3227 if (failed)
3228 return FALSE;
3229
3230 if (!assign_section_numbers (abfd))
3231 return FALSE;
3232
3233 /* The backend linker builds symbol table information itself. */
3234 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3235 {
3236 /* Non-zero if doing a relocatable link. */
3237 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3238
3239 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3240 return FALSE;
3241 }
3242
3243 if (link_info == NULL)
3244 {
3245 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3246 if (failed)
3247 return FALSE;
3248 }
3249
3250 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3251 /* sh_name was set in prep_headers. */
3252 shstrtab_hdr->sh_type = SHT_STRTAB;
3253 shstrtab_hdr->sh_flags = 0;
3254 shstrtab_hdr->sh_addr = 0;
3255 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3256 shstrtab_hdr->sh_entsize = 0;
3257 shstrtab_hdr->sh_link = 0;
3258 shstrtab_hdr->sh_info = 0;
3259 /* sh_offset is set in assign_file_positions_except_relocs. */
3260 shstrtab_hdr->sh_addralign = 1;
3261
3262 if (!assign_file_positions_except_relocs (abfd, link_info))
3263 return FALSE;
3264
3265 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3266 {
3267 file_ptr off;
3268 Elf_Internal_Shdr *hdr;
3269
3270 off = elf_tdata (abfd)->next_file_pos;
3271
3272 hdr = &elf_tdata (abfd)->symtab_hdr;
3273 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3274
3275 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3276 if (hdr->sh_size != 0)
3277 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3278
3279 hdr = &elf_tdata (abfd)->strtab_hdr;
3280 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3281
3282 elf_tdata (abfd)->next_file_pos = off;
3283
3284 /* Now that we know where the .strtab section goes, write it
3285 out. */
3286 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3287 || ! _bfd_stringtab_emit (abfd, strtab))
3288 return FALSE;
3289 _bfd_stringtab_free (strtab);
3290 }
3291
3292 abfd->output_has_begun = TRUE;
3293
3294 return TRUE;
3295 }
3296
3297 /* Create a mapping from a set of sections to a program segment. */
3298
3299 static struct elf_segment_map *
3300 make_mapping (bfd *abfd,
3301 asection **sections,
3302 unsigned int from,
3303 unsigned int to,
3304 bfd_boolean phdr)
3305 {
3306 struct elf_segment_map *m;
3307 unsigned int i;
3308 asection **hdrpp;
3309 bfd_size_type amt;
3310
3311 amt = sizeof (struct elf_segment_map);
3312 amt += (to - from - 1) * sizeof (asection *);
3313 m = bfd_zalloc (abfd, amt);
3314 if (m == NULL)
3315 return NULL;
3316 m->next = NULL;
3317 m->p_type = PT_LOAD;
3318 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3319 m->sections[i - from] = *hdrpp;
3320 m->count = to - from;
3321
3322 if (from == 0 && phdr)
3323 {
3324 /* Include the headers in the first PT_LOAD segment. */
3325 m->includes_filehdr = 1;
3326 m->includes_phdrs = 1;
3327 }
3328
3329 return m;
3330 }
3331
3332 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3333 on failure. */
3334
3335 struct elf_segment_map *
3336 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3337 {
3338 struct elf_segment_map *m;
3339
3340 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3341 if (m == NULL)
3342 return NULL;
3343 m->next = NULL;
3344 m->p_type = PT_DYNAMIC;
3345 m->count = 1;
3346 m->sections[0] = dynsec;
3347
3348 return m;
3349 }
3350
3351 /* Set up a mapping from BFD sections to program segments. */
3352
3353 static bfd_boolean
3354 map_sections_to_segments (bfd *abfd)
3355 {
3356 asection **sections = NULL;
3357 asection *s;
3358 unsigned int i;
3359 unsigned int count;
3360 struct elf_segment_map *mfirst;
3361 struct elf_segment_map **pm;
3362 struct elf_segment_map *m;
3363 asection *last_hdr;
3364 bfd_vma last_size;
3365 unsigned int phdr_index;
3366 bfd_vma maxpagesize;
3367 asection **hdrpp;
3368 bfd_boolean phdr_in_segment = TRUE;
3369 bfd_boolean writable;
3370 int tls_count = 0;
3371 asection *first_tls = NULL;
3372 asection *dynsec, *eh_frame_hdr;
3373 bfd_size_type amt;
3374
3375 if (elf_tdata (abfd)->segment_map != NULL)
3376 return TRUE;
3377
3378 if (bfd_count_sections (abfd) == 0)
3379 return TRUE;
3380
3381 /* Select the allocated sections, and sort them. */
3382
3383 amt = bfd_count_sections (abfd) * sizeof (asection *);
3384 sections = bfd_malloc (amt);
3385 if (sections == NULL)
3386 goto error_return;
3387
3388 i = 0;
3389 for (s = abfd->sections; s != NULL; s = s->next)
3390 {
3391 if ((s->flags & SEC_ALLOC) != 0)
3392 {
3393 sections[i] = s;
3394 ++i;
3395 }
3396 }
3397 BFD_ASSERT (i <= bfd_count_sections (abfd));
3398 count = i;
3399
3400 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3401
3402 /* Build the mapping. */
3403
3404 mfirst = NULL;
3405 pm = &mfirst;
3406
3407 /* If we have a .interp section, then create a PT_PHDR segment for
3408 the program headers and a PT_INTERP segment for the .interp
3409 section. */
3410 s = bfd_get_section_by_name (abfd, ".interp");
3411 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3412 {
3413 amt = sizeof (struct elf_segment_map);
3414 m = bfd_zalloc (abfd, amt);
3415 if (m == NULL)
3416 goto error_return;
3417 m->next = NULL;
3418 m->p_type = PT_PHDR;
3419 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3420 m->p_flags = PF_R | PF_X;
3421 m->p_flags_valid = 1;
3422 m->includes_phdrs = 1;
3423
3424 *pm = m;
3425 pm = &m->next;
3426
3427 amt = sizeof (struct elf_segment_map);
3428 m = bfd_zalloc (abfd, amt);
3429 if (m == NULL)
3430 goto error_return;
3431 m->next = NULL;
3432 m->p_type = PT_INTERP;
3433 m->count = 1;
3434 m->sections[0] = s;
3435
3436 *pm = m;
3437 pm = &m->next;
3438 }
3439
3440 /* Look through the sections. We put sections in the same program
3441 segment when the start of the second section can be placed within
3442 a few bytes of the end of the first section. */
3443 last_hdr = NULL;
3444 last_size = 0;
3445 phdr_index = 0;
3446 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3447 writable = FALSE;
3448 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3449 if (dynsec != NULL
3450 && (dynsec->flags & SEC_LOAD) == 0)
3451 dynsec = NULL;
3452
3453 /* Deal with -Ttext or something similar such that the first section
3454 is not adjacent to the program headers. This is an
3455 approximation, since at this point we don't know exactly how many
3456 program headers we will need. */
3457 if (count > 0)
3458 {
3459 bfd_size_type phdr_size;
3460
3461 phdr_size = elf_tdata (abfd)->program_header_size;
3462 if (phdr_size == 0)
3463 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3464 if ((abfd->flags & D_PAGED) == 0
3465 || sections[0]->lma < phdr_size
3466 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3467 phdr_in_segment = FALSE;
3468 }
3469
3470 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3471 {
3472 asection *hdr;
3473 bfd_boolean new_segment;
3474
3475 hdr = *hdrpp;
3476
3477 /* See if this section and the last one will fit in the same
3478 segment. */
3479
3480 if (last_hdr == NULL)
3481 {
3482 /* If we don't have a segment yet, then we don't need a new
3483 one (we build the last one after this loop). */
3484 new_segment = FALSE;
3485 }
3486 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3487 {
3488 /* If this section has a different relation between the
3489 virtual address and the load address, then we need a new
3490 segment. */
3491 new_segment = TRUE;
3492 }
3493 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3494 < BFD_ALIGN (hdr->lma, maxpagesize))
3495 {
3496 /* If putting this section in this segment would force us to
3497 skip a page in the segment, then we need a new segment. */
3498 new_segment = TRUE;
3499 }
3500 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3501 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3502 {
3503 /* We don't want to put a loadable section after a
3504 nonloadable section in the same segment.
3505 Consider .tbss sections as loadable for this purpose. */
3506 new_segment = TRUE;
3507 }
3508 else if ((abfd->flags & D_PAGED) == 0)
3509 {
3510 /* If the file is not demand paged, which means that we
3511 don't require the sections to be correctly aligned in the
3512 file, then there is no other reason for a new segment. */
3513 new_segment = FALSE;
3514 }
3515 else if (! writable
3516 && (hdr->flags & SEC_READONLY) == 0
3517 && (((last_hdr->lma + last_size - 1)
3518 & ~(maxpagesize - 1))
3519 != (hdr->lma & ~(maxpagesize - 1))))
3520 {
3521 /* We don't want to put a writable section in a read only
3522 segment, unless they are on the same page in memory
3523 anyhow. We already know that the last section does not
3524 bring us past the current section on the page, so the
3525 only case in which the new section is not on the same
3526 page as the previous section is when the previous section
3527 ends precisely on a page boundary. */
3528 new_segment = TRUE;
3529 }
3530 else
3531 {
3532 /* Otherwise, we can use the same segment. */
3533 new_segment = FALSE;
3534 }
3535
3536 if (! new_segment)
3537 {
3538 if ((hdr->flags & SEC_READONLY) == 0)
3539 writable = TRUE;
3540 last_hdr = hdr;
3541 /* .tbss sections effectively have zero size. */
3542 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3543 last_size = hdr->size;
3544 else
3545 last_size = 0;
3546 continue;
3547 }
3548
3549 /* We need a new program segment. We must create a new program
3550 header holding all the sections from phdr_index until hdr. */
3551
3552 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3553 if (m == NULL)
3554 goto error_return;
3555
3556 *pm = m;
3557 pm = &m->next;
3558
3559 if ((hdr->flags & SEC_READONLY) == 0)
3560 writable = TRUE;
3561 else
3562 writable = FALSE;
3563
3564 last_hdr = hdr;
3565 /* .tbss sections effectively have zero size. */
3566 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3567 last_size = hdr->size;
3568 else
3569 last_size = 0;
3570 phdr_index = i;
3571 phdr_in_segment = FALSE;
3572 }
3573
3574 /* Create a final PT_LOAD program segment. */
3575 if (last_hdr != NULL)
3576 {
3577 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3578 if (m == NULL)
3579 goto error_return;
3580
3581 *pm = m;
3582 pm = &m->next;
3583 }
3584
3585 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3586 if (dynsec != NULL)
3587 {
3588 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3589 if (m == NULL)
3590 goto error_return;
3591 *pm = m;
3592 pm = &m->next;
3593 }
3594
3595 /* For each loadable .note section, add a PT_NOTE segment. We don't
3596 use bfd_get_section_by_name, because if we link together
3597 nonloadable .note sections and loadable .note sections, we will
3598 generate two .note sections in the output file. FIXME: Using
3599 names for section types is bogus anyhow. */
3600 for (s = abfd->sections; s != NULL; s = s->next)
3601 {
3602 if ((s->flags & SEC_LOAD) != 0
3603 && strncmp (s->name, ".note", 5) == 0)
3604 {
3605 amt = sizeof (struct elf_segment_map);
3606 m = bfd_zalloc (abfd, amt);
3607 if (m == NULL)
3608 goto error_return;
3609 m->next = NULL;
3610 m->p_type = PT_NOTE;
3611 m->count = 1;
3612 m->sections[0] = s;
3613
3614 *pm = m;
3615 pm = &m->next;
3616 }
3617 if (s->flags & SEC_THREAD_LOCAL)
3618 {
3619 if (! tls_count)
3620 first_tls = s;
3621 tls_count++;
3622 }
3623 }
3624
3625 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3626 if (tls_count > 0)
3627 {
3628 int i;
3629
3630 amt = sizeof (struct elf_segment_map);
3631 amt += (tls_count - 1) * sizeof (asection *);
3632 m = bfd_zalloc (abfd, amt);
3633 if (m == NULL)
3634 goto error_return;
3635 m->next = NULL;
3636 m->p_type = PT_TLS;
3637 m->count = tls_count;
3638 /* Mandated PF_R. */
3639 m->p_flags = PF_R;
3640 m->p_flags_valid = 1;
3641 for (i = 0; i < tls_count; ++i)
3642 {
3643 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3644 m->sections[i] = first_tls;
3645 first_tls = first_tls->next;
3646 }
3647
3648 *pm = m;
3649 pm = &m->next;
3650 }
3651
3652 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3653 segment. */
3654 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3655 if (eh_frame_hdr != NULL
3656 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3657 {
3658 amt = sizeof (struct elf_segment_map);
3659 m = bfd_zalloc (abfd, amt);
3660 if (m == NULL)
3661 goto error_return;
3662 m->next = NULL;
3663 m->p_type = PT_GNU_EH_FRAME;
3664 m->count = 1;
3665 m->sections[0] = eh_frame_hdr->output_section;
3666
3667 *pm = m;
3668 pm = &m->next;
3669 }
3670
3671 if (elf_tdata (abfd)->stack_flags)
3672 {
3673 amt = sizeof (struct elf_segment_map);
3674 m = bfd_zalloc (abfd, amt);
3675 if (m == NULL)
3676 goto error_return;
3677 m->next = NULL;
3678 m->p_type = PT_GNU_STACK;
3679 m->p_flags = elf_tdata (abfd)->stack_flags;
3680 m->p_flags_valid = 1;
3681
3682 *pm = m;
3683 pm = &m->next;
3684 }
3685
3686 if (elf_tdata (abfd)->relro)
3687 {
3688 amt = sizeof (struct elf_segment_map);
3689 m = bfd_zalloc (abfd, amt);
3690 if (m == NULL)
3691 goto error_return;
3692 m->next = NULL;
3693 m->p_type = PT_GNU_RELRO;
3694 m->p_flags = PF_R;
3695 m->p_flags_valid = 1;
3696
3697 *pm = m;
3698 pm = &m->next;
3699 }
3700
3701 free (sections);
3702 sections = NULL;
3703
3704 elf_tdata (abfd)->segment_map = mfirst;
3705 return TRUE;
3706
3707 error_return:
3708 if (sections != NULL)
3709 free (sections);
3710 return FALSE;
3711 }
3712
3713 /* Sort sections by address. */
3714
3715 static int
3716 elf_sort_sections (const void *arg1, const void *arg2)
3717 {
3718 const asection *sec1 = *(const asection **) arg1;
3719 const asection *sec2 = *(const asection **) arg2;
3720 bfd_size_type size1, size2;
3721
3722 /* Sort by LMA first, since this is the address used to
3723 place the section into a segment. */
3724 if (sec1->lma < sec2->lma)
3725 return -1;
3726 else if (sec1->lma > sec2->lma)
3727 return 1;
3728
3729 /* Then sort by VMA. Normally the LMA and the VMA will be
3730 the same, and this will do nothing. */
3731 if (sec1->vma < sec2->vma)
3732 return -1;
3733 else if (sec1->vma > sec2->vma)
3734 return 1;
3735
3736 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3737
3738 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3739
3740 if (TOEND (sec1))
3741 {
3742 if (TOEND (sec2))
3743 {
3744 /* If the indicies are the same, do not return 0
3745 here, but continue to try the next comparison. */
3746 if (sec1->target_index - sec2->target_index != 0)
3747 return sec1->target_index - sec2->target_index;
3748 }
3749 else
3750 return 1;
3751 }
3752 else if (TOEND (sec2))
3753 return -1;
3754
3755 #undef TOEND
3756
3757 /* Sort by size, to put zero sized sections
3758 before others at the same address. */
3759
3760 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3761 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3762
3763 if (size1 < size2)
3764 return -1;
3765 if (size1 > size2)
3766 return 1;
3767
3768 return sec1->target_index - sec2->target_index;
3769 }
3770
3771 /* Ian Lance Taylor writes:
3772
3773 We shouldn't be using % with a negative signed number. That's just
3774 not good. We have to make sure either that the number is not
3775 negative, or that the number has an unsigned type. When the types
3776 are all the same size they wind up as unsigned. When file_ptr is a
3777 larger signed type, the arithmetic winds up as signed long long,
3778 which is wrong.
3779
3780 What we're trying to say here is something like ``increase OFF by
3781 the least amount that will cause it to be equal to the VMA modulo
3782 the page size.'' */
3783 /* In other words, something like:
3784
3785 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3786 off_offset = off % bed->maxpagesize;
3787 if (vma_offset < off_offset)
3788 adjustment = vma_offset + bed->maxpagesize - off_offset;
3789 else
3790 adjustment = vma_offset - off_offset;
3791
3792 which can can be collapsed into the expression below. */
3793
3794 static file_ptr
3795 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3796 {
3797 return ((vma - off) % maxpagesize);
3798 }
3799
3800 /* Assign file positions to the sections based on the mapping from
3801 sections to segments. This function also sets up some fields in
3802 the file header, and writes out the program headers. */
3803
3804 static bfd_boolean
3805 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3806 {
3807 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3808 unsigned int count;
3809 struct elf_segment_map *m;
3810 unsigned int alloc;
3811 Elf_Internal_Phdr *phdrs;
3812 file_ptr off, voff;
3813 bfd_vma filehdr_vaddr, filehdr_paddr;
3814 bfd_vma phdrs_vaddr, phdrs_paddr;
3815 Elf_Internal_Phdr *p;
3816 bfd_size_type amt;
3817
3818 if (elf_tdata (abfd)->segment_map == NULL)
3819 {
3820 if (! map_sections_to_segments (abfd))
3821 return FALSE;
3822 }
3823 else
3824 {
3825 /* The placement algorithm assumes that non allocated sections are
3826 not in PT_LOAD segments. We ensure this here by removing such
3827 sections from the segment map. */
3828 for (m = elf_tdata (abfd)->segment_map;
3829 m != NULL;
3830 m = m->next)
3831 {
3832 unsigned int new_count;
3833 unsigned int i;
3834
3835 if (m->p_type != PT_LOAD)
3836 continue;
3837
3838 new_count = 0;
3839 for (i = 0; i < m->count; i ++)
3840 {
3841 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3842 {
3843 if (i != new_count)
3844 m->sections[new_count] = m->sections[i];
3845
3846 new_count ++;
3847 }
3848 }
3849
3850 if (new_count != m->count)
3851 m->count = new_count;
3852 }
3853 }
3854
3855 if (bed->elf_backend_modify_segment_map)
3856 {
3857 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3858 return FALSE;
3859 }
3860
3861 count = 0;
3862 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3863 ++count;
3864
3865 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3866 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3867 elf_elfheader (abfd)->e_phnum = count;
3868
3869 if (count == 0)
3870 return TRUE;
3871
3872 /* If we already counted the number of program segments, make sure
3873 that we allocated enough space. This happens when SIZEOF_HEADERS
3874 is used in a linker script. */
3875 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3876 if (alloc != 0 && count > alloc)
3877 {
3878 ((*_bfd_error_handler)
3879 (_("%s: Not enough room for program headers (allocated %u, need %u)"),
3880 bfd_get_filename (abfd), alloc, count));
3881 bfd_set_error (bfd_error_bad_value);
3882 return FALSE;
3883 }
3884
3885 if (alloc == 0)
3886 alloc = count;
3887
3888 amt = alloc * sizeof (Elf_Internal_Phdr);
3889 phdrs = bfd_alloc (abfd, amt);
3890 if (phdrs == NULL)
3891 return FALSE;
3892
3893 off = bed->s->sizeof_ehdr;
3894 off += alloc * bed->s->sizeof_phdr;
3895
3896 filehdr_vaddr = 0;
3897 filehdr_paddr = 0;
3898 phdrs_vaddr = 0;
3899 phdrs_paddr = 0;
3900
3901 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3902 m != NULL;
3903 m = m->next, p++)
3904 {
3905 unsigned int i;
3906 asection **secpp;
3907
3908 /* If elf_segment_map is not from map_sections_to_segments, the
3909 sections may not be correctly ordered. NOTE: sorting should
3910 not be done to the PT_NOTE section of a corefile, which may
3911 contain several pseudo-sections artificially created by bfd.
3912 Sorting these pseudo-sections breaks things badly. */
3913 if (m->count > 1
3914 && !(elf_elfheader (abfd)->e_type == ET_CORE
3915 && m->p_type == PT_NOTE))
3916 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3917 elf_sort_sections);
3918
3919 p->p_type = m->p_type;
3920 p->p_flags = m->p_flags;
3921
3922 if (p->p_type == PT_LOAD
3923 && m->count > 0
3924 && (m->sections[0]->flags & SEC_ALLOC) != 0)
3925 {
3926 if ((abfd->flags & D_PAGED) != 0)
3927 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3928 bed->maxpagesize);
3929 else
3930 {
3931 bfd_size_type align;
3932
3933 align = 0;
3934 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3935 {
3936 bfd_size_type secalign;
3937
3938 secalign = bfd_get_section_alignment (abfd, *secpp);
3939 if (secalign > align)
3940 align = secalign;
3941 }
3942
3943 off += vma_page_aligned_bias (m->sections[0]->vma, off,
3944 1 << align);
3945 }
3946 }
3947 /* Make sure the .dynamic section is the first section in the
3948 PT_DYNAMIC segment. */
3949 else if (p->p_type == PT_DYNAMIC
3950 && m->count > 1
3951 && strcmp (m->sections[0]->name, ".dynamic") != 0)
3952 {
3953 _bfd_error_handler
3954 (_("%s: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
3955 bfd_get_filename (abfd));
3956 bfd_set_error (bfd_error_bad_value);
3957 return FALSE;
3958 }
3959
3960 if (m->count == 0)
3961 p->p_vaddr = 0;
3962 else
3963 p->p_vaddr = m->sections[0]->vma;
3964
3965 if (m->p_paddr_valid)
3966 p->p_paddr = m->p_paddr;
3967 else if (m->count == 0)
3968 p->p_paddr = 0;
3969 else
3970 p->p_paddr = m->sections[0]->lma;
3971
3972 if (p->p_type == PT_LOAD
3973 && (abfd->flags & D_PAGED) != 0)
3974 p->p_align = bed->maxpagesize;
3975 else if (m->count == 0)
3976 p->p_align = 1 << bed->s->log_file_align;
3977 else
3978 p->p_align = 0;
3979
3980 p->p_offset = 0;
3981 p->p_filesz = 0;
3982 p->p_memsz = 0;
3983
3984 if (m->includes_filehdr)
3985 {
3986 if (! m->p_flags_valid)
3987 p->p_flags |= PF_R;
3988 p->p_offset = 0;
3989 p->p_filesz = bed->s->sizeof_ehdr;
3990 p->p_memsz = bed->s->sizeof_ehdr;
3991 if (m->count > 0)
3992 {
3993 BFD_ASSERT (p->p_type == PT_LOAD);
3994
3995 if (p->p_vaddr < (bfd_vma) off)
3996 {
3997 (*_bfd_error_handler)
3998 (_("%s: Not enough room for program headers, try linking with -N"),
3999 bfd_get_filename (abfd));
4000 bfd_set_error (bfd_error_bad_value);
4001 return FALSE;
4002 }
4003
4004 p->p_vaddr -= off;
4005 if (! m->p_paddr_valid)
4006 p->p_paddr -= off;
4007 }
4008 if (p->p_type == PT_LOAD)
4009 {
4010 filehdr_vaddr = p->p_vaddr;
4011 filehdr_paddr = p->p_paddr;
4012 }
4013 }
4014
4015 if (m->includes_phdrs)
4016 {
4017 if (! m->p_flags_valid)
4018 p->p_flags |= PF_R;
4019
4020 if (m->includes_filehdr)
4021 {
4022 if (p->p_type == PT_LOAD)
4023 {
4024 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4025 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4026 }
4027 }
4028 else
4029 {
4030 p->p_offset = bed->s->sizeof_ehdr;
4031
4032 if (m->count > 0)
4033 {
4034 BFD_ASSERT (p->p_type == PT_LOAD);
4035 p->p_vaddr -= off - p->p_offset;
4036 if (! m->p_paddr_valid)
4037 p->p_paddr -= off - p->p_offset;
4038 }
4039
4040 if (p->p_type == PT_LOAD)
4041 {
4042 phdrs_vaddr = p->p_vaddr;
4043 phdrs_paddr = p->p_paddr;
4044 }
4045 else
4046 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4047 }
4048
4049 p->p_filesz += alloc * bed->s->sizeof_phdr;
4050 p->p_memsz += alloc * bed->s->sizeof_phdr;
4051 }
4052
4053 if (p->p_type == PT_LOAD
4054 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4055 {
4056 if (! m->includes_filehdr && ! m->includes_phdrs)
4057 p->p_offset = off;
4058 else
4059 {
4060 file_ptr adjust;
4061
4062 adjust = off - (p->p_offset + p->p_filesz);
4063 p->p_filesz += adjust;
4064 p->p_memsz += adjust;
4065 }
4066 }
4067
4068 voff = off;
4069
4070 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4071 {
4072 asection *sec;
4073 flagword flags;
4074 bfd_size_type align;
4075
4076 sec = *secpp;
4077 flags = sec->flags;
4078 align = 1 << bfd_get_section_alignment (abfd, sec);
4079
4080 /* The section may have artificial alignment forced by a
4081 link script. Notice this case by the gap between the
4082 cumulative phdr lma and the section's lma. */
4083 if (p->p_paddr + p->p_memsz < sec->lma)
4084 {
4085 bfd_vma adjust = sec->lma - (p->p_paddr + p->p_memsz);
4086
4087 p->p_memsz += adjust;
4088 if (p->p_type == PT_LOAD
4089 || (p->p_type == PT_NOTE
4090 && bfd_get_format (abfd) == bfd_core))
4091 {
4092 off += adjust;
4093 voff += adjust;
4094 }
4095 if ((flags & SEC_LOAD) != 0
4096 || (flags & SEC_THREAD_LOCAL) != 0)
4097 p->p_filesz += adjust;
4098 }
4099
4100 if (p->p_type == PT_LOAD)
4101 {
4102 bfd_signed_vma adjust;
4103
4104 if ((flags & SEC_LOAD) != 0)
4105 {
4106 adjust = sec->lma - (p->p_paddr + p->p_memsz);
4107 if (adjust < 0)
4108 adjust = 0;
4109 }
4110 else if ((flags & SEC_ALLOC) != 0)
4111 {
4112 /* The section VMA must equal the file position
4113 modulo the page size. FIXME: I'm not sure if
4114 this adjustment is really necessary. We used to
4115 not have the SEC_LOAD case just above, and then
4116 this was necessary, but now I'm not sure. */
4117 if ((abfd->flags & D_PAGED) != 0)
4118 adjust = vma_page_aligned_bias (sec->vma, voff,
4119 bed->maxpagesize);
4120 else
4121 adjust = vma_page_aligned_bias (sec->vma, voff,
4122 align);
4123 }
4124 else
4125 adjust = 0;
4126
4127 if (adjust != 0)
4128 {
4129 if (i == 0)
4130 {
4131 (* _bfd_error_handler) (_("\
4132 Error: First section in segment (%s) starts at 0x%x whereas the segment starts at 0x%x"),
4133 bfd_section_name (abfd, sec),
4134 sec->lma,
4135 p->p_paddr);
4136 return FALSE;
4137 }
4138 p->p_memsz += adjust;
4139 off += adjust;
4140 voff += adjust;
4141 if ((flags & SEC_LOAD) != 0)
4142 p->p_filesz += adjust;
4143 }
4144
4145 sec->filepos = off;
4146
4147 /* We check SEC_HAS_CONTENTS here because if NOLOAD is
4148 used in a linker script we may have a section with
4149 SEC_LOAD clear but which is supposed to have
4150 contents. */
4151 if ((flags & SEC_LOAD) != 0
4152 || (flags & SEC_HAS_CONTENTS) != 0)
4153 off += sec->size;
4154
4155 if ((flags & SEC_ALLOC) != 0
4156 && ((flags & SEC_LOAD) != 0
4157 || (flags & SEC_THREAD_LOCAL) == 0))
4158 voff += sec->size;
4159 }
4160
4161 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4162 {
4163 /* The actual "note" segment has i == 0.
4164 This is the one that actually contains everything. */
4165 if (i == 0)
4166 {
4167 sec->filepos = off;
4168 p->p_filesz = sec->size;
4169 off += sec->size;
4170 voff = off;
4171 }
4172 else
4173 {
4174 /* Fake sections -- don't need to be written. */
4175 sec->filepos = 0;
4176 sec->size = 0;
4177 flags = sec->flags = 0;
4178 }
4179 p->p_memsz = 0;
4180 p->p_align = 1;
4181 }
4182 else
4183 {
4184 if ((sec->flags & SEC_LOAD) != 0
4185 || (sec->flags & SEC_THREAD_LOCAL) == 0
4186 || p->p_type == PT_TLS)
4187 p->p_memsz += sec->size;
4188
4189 if ((flags & SEC_LOAD) != 0)
4190 p->p_filesz += sec->size;
4191
4192 if (p->p_type == PT_TLS
4193 && sec->size == 0
4194 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4195 {
4196 struct bfd_link_order *o;
4197 bfd_vma tbss_size = 0;
4198
4199 for (o = sec->link_order_head; o != NULL; o = o->next)
4200 if (tbss_size < o->offset + o->size)
4201 tbss_size = o->offset + o->size;
4202
4203 p->p_memsz += tbss_size;
4204 }
4205
4206 if (align > p->p_align
4207 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4208 p->p_align = align;
4209 }
4210
4211 if (! m->p_flags_valid)
4212 {
4213 p->p_flags |= PF_R;
4214 if ((flags & SEC_CODE) != 0)
4215 p->p_flags |= PF_X;
4216 if ((flags & SEC_READONLY) == 0)
4217 p->p_flags |= PF_W;
4218 }
4219 }
4220 }
4221
4222 /* Now that we have set the section file positions, we can set up
4223 the file positions for the non PT_LOAD segments. */
4224 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4225 m != NULL;
4226 m = m->next, p++)
4227 {
4228 if (p->p_type != PT_LOAD && m->count > 0)
4229 {
4230 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4231 /* If the section has not yet been assigned a file position,
4232 do so now. The ARM BPABI requires that .dynamic section
4233 not be marked SEC_ALLOC because it is not part of any
4234 PT_LOAD segment, so it will not be processed above. */
4235 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4236 {
4237 unsigned int i;
4238 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4239
4240 i = 1;
4241 while (i_shdrpp[i]->bfd_section != m->sections[0])
4242 ++i;
4243 off = (_bfd_elf_assign_file_position_for_section
4244 (i_shdrpp[i], off, TRUE));
4245 p->p_filesz = m->sections[0]->size;
4246 }
4247 p->p_offset = m->sections[0]->filepos;
4248 }
4249 if (m->count == 0)
4250 {
4251 if (m->includes_filehdr)
4252 {
4253 p->p_vaddr = filehdr_vaddr;
4254 if (! m->p_paddr_valid)
4255 p->p_paddr = filehdr_paddr;
4256 }
4257 else if (m->includes_phdrs)
4258 {
4259 p->p_vaddr = phdrs_vaddr;
4260 if (! m->p_paddr_valid)
4261 p->p_paddr = phdrs_paddr;
4262 }
4263 else if (p->p_type == PT_GNU_RELRO)
4264 {
4265 Elf_Internal_Phdr *lp;
4266
4267 for (lp = phdrs; lp < phdrs + count; ++lp)
4268 {
4269 if (lp->p_type == PT_LOAD
4270 && lp->p_vaddr <= link_info->relro_end
4271 && lp->p_vaddr >= link_info->relro_start
4272 && lp->p_vaddr + lp->p_filesz
4273 >= link_info->relro_end)
4274 break;
4275 }
4276
4277 if (lp < phdrs + count
4278 && link_info->relro_end > lp->p_vaddr)
4279 {
4280 p->p_vaddr = lp->p_vaddr;
4281 p->p_paddr = lp->p_paddr;
4282 p->p_offset = lp->p_offset;
4283 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4284 p->p_memsz = p->p_filesz;
4285 p->p_align = 1;
4286 p->p_flags = (lp->p_flags & ~PF_W);
4287 }
4288 else
4289 {
4290 memset (p, 0, sizeof *p);
4291 p->p_type = PT_NULL;
4292 }
4293 }
4294 }
4295 }
4296
4297 /* Clear out any program headers we allocated but did not use. */
4298 for (; count < alloc; count++, p++)
4299 {
4300 memset (p, 0, sizeof *p);
4301 p->p_type = PT_NULL;
4302 }
4303
4304 elf_tdata (abfd)->phdr = phdrs;
4305
4306 elf_tdata (abfd)->next_file_pos = off;
4307
4308 /* Write out the program headers. */
4309 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4310 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4311 return FALSE;
4312
4313 return TRUE;
4314 }
4315
4316 /* Get the size of the program header.
4317
4318 If this is called by the linker before any of the section VMA's are set, it
4319 can't calculate the correct value for a strange memory layout. This only
4320 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4321 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4322 data segment (exclusive of .interp and .dynamic).
4323
4324 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4325 will be two segments. */
4326
4327 static bfd_size_type
4328 get_program_header_size (bfd *abfd)
4329 {
4330 size_t segs;
4331 asection *s;
4332 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4333
4334 /* We can't return a different result each time we're called. */
4335 if (elf_tdata (abfd)->program_header_size != 0)
4336 return elf_tdata (abfd)->program_header_size;
4337
4338 if (elf_tdata (abfd)->segment_map != NULL)
4339 {
4340 struct elf_segment_map *m;
4341
4342 segs = 0;
4343 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4344 ++segs;
4345 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4346 return elf_tdata (abfd)->program_header_size;
4347 }
4348
4349 /* Assume we will need exactly two PT_LOAD segments: one for text
4350 and one for data. */
4351 segs = 2;
4352
4353 s = bfd_get_section_by_name (abfd, ".interp");
4354 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4355 {
4356 /* If we have a loadable interpreter section, we need a
4357 PT_INTERP segment. In this case, assume we also need a
4358 PT_PHDR segment, although that may not be true for all
4359 targets. */
4360 segs += 2;
4361 }
4362
4363 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4364 {
4365 /* We need a PT_DYNAMIC segment. */
4366 ++segs;
4367 }
4368
4369 if (elf_tdata (abfd)->eh_frame_hdr)
4370 {
4371 /* We need a PT_GNU_EH_FRAME segment. */
4372 ++segs;
4373 }
4374
4375 if (elf_tdata (abfd)->stack_flags)
4376 {
4377 /* We need a PT_GNU_STACK segment. */
4378 ++segs;
4379 }
4380
4381 if (elf_tdata (abfd)->relro)
4382 {
4383 /* We need a PT_GNU_RELRO segment. */
4384 ++segs;
4385 }
4386
4387 for (s = abfd->sections; s != NULL; s = s->next)
4388 {
4389 if ((s->flags & SEC_LOAD) != 0
4390 && strncmp (s->name, ".note", 5) == 0)
4391 {
4392 /* We need a PT_NOTE segment. */
4393 ++segs;
4394 }
4395 }
4396
4397 for (s = abfd->sections; s != NULL; s = s->next)
4398 {
4399 if (s->flags & SEC_THREAD_LOCAL)
4400 {
4401 /* We need a PT_TLS segment. */
4402 ++segs;
4403 break;
4404 }
4405 }
4406
4407 /* Let the backend count up any program headers it might need. */
4408 if (bed->elf_backend_additional_program_headers)
4409 {
4410 int a;
4411
4412 a = (*bed->elf_backend_additional_program_headers) (abfd);
4413 if (a == -1)
4414 abort ();
4415 segs += a;
4416 }
4417
4418 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4419 return elf_tdata (abfd)->program_header_size;
4420 }
4421
4422 /* Work out the file positions of all the sections. This is called by
4423 _bfd_elf_compute_section_file_positions. All the section sizes and
4424 VMAs must be known before this is called.
4425
4426 Reloc sections come in two flavours: Those processed specially as
4427 "side-channel" data attached to a section to which they apply, and
4428 those that bfd doesn't process as relocations. The latter sort are
4429 stored in a normal bfd section by bfd_section_from_shdr. We don't
4430 consider the former sort here, unless they form part of the loadable
4431 image. Reloc sections not assigned here will be handled later by
4432 assign_file_positions_for_relocs.
4433
4434 We also don't set the positions of the .symtab and .strtab here. */
4435
4436 static bfd_boolean
4437 assign_file_positions_except_relocs (bfd *abfd,
4438 struct bfd_link_info *link_info)
4439 {
4440 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4441 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4442 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4443 unsigned int num_sec = elf_numsections (abfd);
4444 file_ptr off;
4445 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4446
4447 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4448 && bfd_get_format (abfd) != bfd_core)
4449 {
4450 Elf_Internal_Shdr **hdrpp;
4451 unsigned int i;
4452
4453 /* Start after the ELF header. */
4454 off = i_ehdrp->e_ehsize;
4455
4456 /* We are not creating an executable, which means that we are
4457 not creating a program header, and that the actual order of
4458 the sections in the file is unimportant. */
4459 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4460 {
4461 Elf_Internal_Shdr *hdr;
4462
4463 hdr = *hdrpp;
4464 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4465 && hdr->bfd_section == NULL)
4466 || i == tdata->symtab_section
4467 || i == tdata->symtab_shndx_section
4468 || i == tdata->strtab_section)
4469 {
4470 hdr->sh_offset = -1;
4471 }
4472 else
4473 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4474
4475 if (i == SHN_LORESERVE - 1)
4476 {
4477 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4478 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4479 }
4480 }
4481 }
4482 else
4483 {
4484 unsigned int i;
4485 Elf_Internal_Shdr **hdrpp;
4486
4487 /* Assign file positions for the loaded sections based on the
4488 assignment of sections to segments. */
4489 if (! assign_file_positions_for_segments (abfd, link_info))
4490 return FALSE;
4491
4492 /* Assign file positions for the other sections. */
4493
4494 off = elf_tdata (abfd)->next_file_pos;
4495 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4496 {
4497 Elf_Internal_Shdr *hdr;
4498
4499 hdr = *hdrpp;
4500 if (hdr->bfd_section != NULL
4501 && hdr->bfd_section->filepos != 0)
4502 hdr->sh_offset = hdr->bfd_section->filepos;
4503 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4504 {
4505 ((*_bfd_error_handler)
4506 (_("%s: warning: allocated section `%s' not in segment"),
4507 bfd_get_filename (abfd),
4508 (hdr->bfd_section == NULL
4509 ? "*unknown*"
4510 : hdr->bfd_section->name)));
4511 if ((abfd->flags & D_PAGED) != 0)
4512 off += vma_page_aligned_bias (hdr->sh_addr, off,
4513 bed->maxpagesize);
4514 else
4515 off += vma_page_aligned_bias (hdr->sh_addr, off,
4516 hdr->sh_addralign);
4517 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4518 FALSE);
4519 }
4520 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4521 && hdr->bfd_section == NULL)
4522 || hdr == i_shdrpp[tdata->symtab_section]
4523 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4524 || hdr == i_shdrpp[tdata->strtab_section])
4525 hdr->sh_offset = -1;
4526 else
4527 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4528
4529 if (i == SHN_LORESERVE - 1)
4530 {
4531 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4532 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4533 }
4534 }
4535 }
4536
4537 /* Place the section headers. */
4538 off = align_file_position (off, 1 << bed->s->log_file_align);
4539 i_ehdrp->e_shoff = off;
4540 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4541
4542 elf_tdata (abfd)->next_file_pos = off;
4543
4544 return TRUE;
4545 }
4546
4547 static bfd_boolean
4548 prep_headers (bfd *abfd)
4549 {
4550 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4551 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4552 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4553 struct elf_strtab_hash *shstrtab;
4554 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4555
4556 i_ehdrp = elf_elfheader (abfd);
4557 i_shdrp = elf_elfsections (abfd);
4558
4559 shstrtab = _bfd_elf_strtab_init ();
4560 if (shstrtab == NULL)
4561 return FALSE;
4562
4563 elf_shstrtab (abfd) = shstrtab;
4564
4565 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4566 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4567 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4568 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4569
4570 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4571 i_ehdrp->e_ident[EI_DATA] =
4572 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4573 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4574
4575 if ((abfd->flags & DYNAMIC) != 0)
4576 i_ehdrp->e_type = ET_DYN;
4577 else if ((abfd->flags & EXEC_P) != 0)
4578 i_ehdrp->e_type = ET_EXEC;
4579 else if (bfd_get_format (abfd) == bfd_core)
4580 i_ehdrp->e_type = ET_CORE;
4581 else
4582 i_ehdrp->e_type = ET_REL;
4583
4584 switch (bfd_get_arch (abfd))
4585 {
4586 case bfd_arch_unknown:
4587 i_ehdrp->e_machine = EM_NONE;
4588 break;
4589
4590 /* There used to be a long list of cases here, each one setting
4591 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4592 in the corresponding bfd definition. To avoid duplication,
4593 the switch was removed. Machines that need special handling
4594 can generally do it in elf_backend_final_write_processing(),
4595 unless they need the information earlier than the final write.
4596 Such need can generally be supplied by replacing the tests for
4597 e_machine with the conditions used to determine it. */
4598 default:
4599 i_ehdrp->e_machine = bed->elf_machine_code;
4600 }
4601
4602 i_ehdrp->e_version = bed->s->ev_current;
4603 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4604
4605 /* No program header, for now. */
4606 i_ehdrp->e_phoff = 0;
4607 i_ehdrp->e_phentsize = 0;
4608 i_ehdrp->e_phnum = 0;
4609
4610 /* Each bfd section is section header entry. */
4611 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4612 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4613
4614 /* If we're building an executable, we'll need a program header table. */
4615 if (abfd->flags & EXEC_P)
4616 {
4617 /* It all happens later. */
4618 #if 0
4619 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4620
4621 /* elf_build_phdrs() returns a (NULL-terminated) array of
4622 Elf_Internal_Phdrs. */
4623 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4624 i_ehdrp->e_phoff = outbase;
4625 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4626 #endif
4627 }
4628 else
4629 {
4630 i_ehdrp->e_phentsize = 0;
4631 i_phdrp = 0;
4632 i_ehdrp->e_phoff = 0;
4633 }
4634
4635 elf_tdata (abfd)->symtab_hdr.sh_name =
4636 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4637 elf_tdata (abfd)->strtab_hdr.sh_name =
4638 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4639 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4640 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4641 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4642 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4643 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4644 return FALSE;
4645
4646 return TRUE;
4647 }
4648
4649 /* Assign file positions for all the reloc sections which are not part
4650 of the loadable file image. */
4651
4652 void
4653 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4654 {
4655 file_ptr off;
4656 unsigned int i, num_sec;
4657 Elf_Internal_Shdr **shdrpp;
4658
4659 off = elf_tdata (abfd)->next_file_pos;
4660
4661 num_sec = elf_numsections (abfd);
4662 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4663 {
4664 Elf_Internal_Shdr *shdrp;
4665
4666 shdrp = *shdrpp;
4667 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4668 && shdrp->sh_offset == -1)
4669 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4670 }
4671
4672 elf_tdata (abfd)->next_file_pos = off;
4673 }
4674
4675 bfd_boolean
4676 _bfd_elf_write_object_contents (bfd *abfd)
4677 {
4678 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4679 Elf_Internal_Ehdr *i_ehdrp;
4680 Elf_Internal_Shdr **i_shdrp;
4681 bfd_boolean failed;
4682 unsigned int count, num_sec;
4683
4684 if (! abfd->output_has_begun
4685 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4686 return FALSE;
4687
4688 i_shdrp = elf_elfsections (abfd);
4689 i_ehdrp = elf_elfheader (abfd);
4690
4691 failed = FALSE;
4692 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4693 if (failed)
4694 return FALSE;
4695
4696 _bfd_elf_assign_file_positions_for_relocs (abfd);
4697
4698 /* After writing the headers, we need to write the sections too... */
4699 num_sec = elf_numsections (abfd);
4700 for (count = 1; count < num_sec; count++)
4701 {
4702 if (bed->elf_backend_section_processing)
4703 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4704 if (i_shdrp[count]->contents)
4705 {
4706 bfd_size_type amt = i_shdrp[count]->sh_size;
4707
4708 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4709 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4710 return FALSE;
4711 }
4712 if (count == SHN_LORESERVE - 1)
4713 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4714 }
4715
4716 /* Write out the section header names. */
4717 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4718 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4719 return FALSE;
4720
4721 if (bed->elf_backend_final_write_processing)
4722 (*bed->elf_backend_final_write_processing) (abfd,
4723 elf_tdata (abfd)->linker);
4724
4725 return bed->s->write_shdrs_and_ehdr (abfd);
4726 }
4727
4728 bfd_boolean
4729 _bfd_elf_write_corefile_contents (bfd *abfd)
4730 {
4731 /* Hopefully this can be done just like an object file. */
4732 return _bfd_elf_write_object_contents (abfd);
4733 }
4734
4735 /* Given a section, search the header to find them. */
4736
4737 int
4738 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4739 {
4740 const struct elf_backend_data *bed;
4741 int index;
4742
4743 if (elf_section_data (asect) != NULL
4744 && elf_section_data (asect)->this_idx != 0)
4745 return elf_section_data (asect)->this_idx;
4746
4747 if (bfd_is_abs_section (asect))
4748 index = SHN_ABS;
4749 else if (bfd_is_com_section (asect))
4750 index = SHN_COMMON;
4751 else if (bfd_is_und_section (asect))
4752 index = SHN_UNDEF;
4753 else
4754 {
4755 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4756 int maxindex = elf_numsections (abfd);
4757
4758 for (index = 1; index < maxindex; index++)
4759 {
4760 Elf_Internal_Shdr *hdr = i_shdrp[index];
4761
4762 if (hdr != NULL && hdr->bfd_section == asect)
4763 return index;
4764 }
4765 index = -1;
4766 }
4767
4768 bed = get_elf_backend_data (abfd);
4769 if (bed->elf_backend_section_from_bfd_section)
4770 {
4771 int retval = index;
4772
4773 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4774 return retval;
4775 }
4776
4777 if (index == -1)
4778 bfd_set_error (bfd_error_nonrepresentable_section);
4779
4780 return index;
4781 }
4782
4783 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4784 on error. */
4785
4786 int
4787 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4788 {
4789 asymbol *asym_ptr = *asym_ptr_ptr;
4790 int idx;
4791 flagword flags = asym_ptr->flags;
4792
4793 /* When gas creates relocations against local labels, it creates its
4794 own symbol for the section, but does put the symbol into the
4795 symbol chain, so udata is 0. When the linker is generating
4796 relocatable output, this section symbol may be for one of the
4797 input sections rather than the output section. */
4798 if (asym_ptr->udata.i == 0
4799 && (flags & BSF_SECTION_SYM)
4800 && asym_ptr->section)
4801 {
4802 int indx;
4803
4804 if (asym_ptr->section->output_section != NULL)
4805 indx = asym_ptr->section->output_section->index;
4806 else
4807 indx = asym_ptr->section->index;
4808 if (indx < elf_num_section_syms (abfd)
4809 && elf_section_syms (abfd)[indx] != NULL)
4810 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4811 }
4812
4813 idx = asym_ptr->udata.i;
4814
4815 if (idx == 0)
4816 {
4817 /* This case can occur when using --strip-symbol on a symbol
4818 which is used in a relocation entry. */
4819 (*_bfd_error_handler)
4820 (_("%B: symbol `%s' required but not present"),
4821 abfd, bfd_asymbol_name (asym_ptr));
4822 bfd_set_error (bfd_error_no_symbols);
4823 return -1;
4824 }
4825
4826 #if DEBUG & 4
4827 {
4828 fprintf (stderr,
4829 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4830 (long) asym_ptr, asym_ptr->name, idx, flags,
4831 elf_symbol_flags (flags));
4832 fflush (stderr);
4833 }
4834 #endif
4835
4836 return idx;
4837 }
4838
4839 /* Copy private BFD data. This copies any program header information. */
4840
4841 static bfd_boolean
4842 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4843 {
4844 Elf_Internal_Ehdr *iehdr;
4845 struct elf_segment_map *map;
4846 struct elf_segment_map *map_first;
4847 struct elf_segment_map **pointer_to_map;
4848 Elf_Internal_Phdr *segment;
4849 asection *section;
4850 unsigned int i;
4851 unsigned int num_segments;
4852 bfd_boolean phdr_included = FALSE;
4853 bfd_vma maxpagesize;
4854 struct elf_segment_map *phdr_adjust_seg = NULL;
4855 unsigned int phdr_adjust_num = 0;
4856 const struct elf_backend_data *bed;
4857
4858 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4859 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4860 return TRUE;
4861
4862 if (elf_tdata (ibfd)->phdr == NULL)
4863 return TRUE;
4864
4865 bed = get_elf_backend_data (ibfd);
4866 iehdr = elf_elfheader (ibfd);
4867
4868 map_first = NULL;
4869 pointer_to_map = &map_first;
4870
4871 num_segments = elf_elfheader (ibfd)->e_phnum;
4872 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4873
4874 /* Returns the end address of the segment + 1. */
4875 #define SEGMENT_END(segment, start) \
4876 (start + (segment->p_memsz > segment->p_filesz \
4877 ? segment->p_memsz : segment->p_filesz))
4878
4879 #define SECTION_SIZE(section, segment) \
4880 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4881 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4882 ? section->size : 0)
4883
4884 /* Returns TRUE if the given section is contained within
4885 the given segment. VMA addresses are compared. */
4886 #define IS_CONTAINED_BY_VMA(section, segment) \
4887 (section->vma >= segment->p_vaddr \
4888 && (section->vma + SECTION_SIZE (section, segment) \
4889 <= (SEGMENT_END (segment, segment->p_vaddr))))
4890
4891 /* Returns TRUE if the given section is contained within
4892 the given segment. LMA addresses are compared. */
4893 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4894 (section->lma >= base \
4895 && (section->lma + SECTION_SIZE (section, segment) \
4896 <= SEGMENT_END (segment, base)))
4897
4898 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4899 #define IS_COREFILE_NOTE(p, s) \
4900 (p->p_type == PT_NOTE \
4901 && bfd_get_format (ibfd) == bfd_core \
4902 && s->vma == 0 && s->lma == 0 \
4903 && (bfd_vma) s->filepos >= p->p_offset \
4904 && ((bfd_vma) s->filepos + s->size \
4905 <= p->p_offset + p->p_filesz))
4906
4907 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4908 linker, which generates a PT_INTERP section with p_vaddr and
4909 p_memsz set to 0. */
4910 #define IS_SOLARIS_PT_INTERP(p, s) \
4911 (p->p_vaddr == 0 \
4912 && p->p_paddr == 0 \
4913 && p->p_memsz == 0 \
4914 && p->p_filesz > 0 \
4915 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4916 && s->size > 0 \
4917 && (bfd_vma) s->filepos >= p->p_offset \
4918 && ((bfd_vma) s->filepos + s->size \
4919 <= p->p_offset + p->p_filesz))
4920
4921 /* Decide if the given section should be included in the given segment.
4922 A section will be included if:
4923 1. It is within the address space of the segment -- we use the LMA
4924 if that is set for the segment and the VMA otherwise,
4925 2. It is an allocated segment,
4926 3. There is an output section associated with it,
4927 4. The section has not already been allocated to a previous segment.
4928 5. PT_GNU_STACK segments do not include any sections.
4929 6. PT_TLS segment includes only SHF_TLS sections.
4930 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4931 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4932 ((((segment->p_paddr \
4933 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4934 : IS_CONTAINED_BY_VMA (section, segment)) \
4935 && (section->flags & SEC_ALLOC) != 0) \
4936 || IS_COREFILE_NOTE (segment, section)) \
4937 && section->output_section != NULL \
4938 && segment->p_type != PT_GNU_STACK \
4939 && (segment->p_type != PT_TLS \
4940 || (section->flags & SEC_THREAD_LOCAL)) \
4941 && (segment->p_type == PT_LOAD \
4942 || segment->p_type == PT_TLS \
4943 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4944 && ! section->segment_mark)
4945
4946 /* Returns TRUE iff seg1 starts after the end of seg2. */
4947 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4948 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4949
4950 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4951 their VMA address ranges and their LMA address ranges overlap.
4952 It is possible to have overlapping VMA ranges without overlapping LMA
4953 ranges. RedBoot images for example can have both .data and .bss mapped
4954 to the same VMA range, but with the .data section mapped to a different
4955 LMA. */
4956 #define SEGMENT_OVERLAPS(seg1, seg2) \
4957 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4958 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4959 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4960 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4961
4962 /* Initialise the segment mark field. */
4963 for (section = ibfd->sections; section != NULL; section = section->next)
4964 section->segment_mark = FALSE;
4965
4966 /* Scan through the segments specified in the program header
4967 of the input BFD. For this first scan we look for overlaps
4968 in the loadable segments. These can be created by weird
4969 parameters to objcopy. Also, fix some solaris weirdness. */
4970 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4971 i < num_segments;
4972 i++, segment++)
4973 {
4974 unsigned int j;
4975 Elf_Internal_Phdr *segment2;
4976
4977 if (segment->p_type == PT_INTERP)
4978 for (section = ibfd->sections; section; section = section->next)
4979 if (IS_SOLARIS_PT_INTERP (segment, section))
4980 {
4981 /* Mininal change so that the normal section to segment
4982 assignment code will work. */
4983 segment->p_vaddr = section->vma;
4984 break;
4985 }
4986
4987 if (segment->p_type != PT_LOAD)
4988 continue;
4989
4990 /* Determine if this segment overlaps any previous segments. */
4991 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
4992 {
4993 bfd_signed_vma extra_length;
4994
4995 if (segment2->p_type != PT_LOAD
4996 || ! SEGMENT_OVERLAPS (segment, segment2))
4997 continue;
4998
4999 /* Merge the two segments together. */
5000 if (segment2->p_vaddr < segment->p_vaddr)
5001 {
5002 /* Extend SEGMENT2 to include SEGMENT and then delete
5003 SEGMENT. */
5004 extra_length =
5005 SEGMENT_END (segment, segment->p_vaddr)
5006 - SEGMENT_END (segment2, segment2->p_vaddr);
5007
5008 if (extra_length > 0)
5009 {
5010 segment2->p_memsz += extra_length;
5011 segment2->p_filesz += extra_length;
5012 }
5013
5014 segment->p_type = PT_NULL;
5015
5016 /* Since we have deleted P we must restart the outer loop. */
5017 i = 0;
5018 segment = elf_tdata (ibfd)->phdr;
5019 break;
5020 }
5021 else
5022 {
5023 /* Extend SEGMENT to include SEGMENT2 and then delete
5024 SEGMENT2. */
5025 extra_length =
5026 SEGMENT_END (segment2, segment2->p_vaddr)
5027 - SEGMENT_END (segment, segment->p_vaddr);
5028
5029 if (extra_length > 0)
5030 {
5031 segment->p_memsz += extra_length;
5032 segment->p_filesz += extra_length;
5033 }
5034
5035 segment2->p_type = PT_NULL;
5036 }
5037 }
5038 }
5039
5040 /* The second scan attempts to assign sections to segments. */
5041 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5042 i < num_segments;
5043 i ++, segment ++)
5044 {
5045 unsigned int section_count;
5046 asection ** sections;
5047 asection * output_section;
5048 unsigned int isec;
5049 bfd_vma matching_lma;
5050 bfd_vma suggested_lma;
5051 unsigned int j;
5052 bfd_size_type amt;
5053
5054 if (segment->p_type == PT_NULL)
5055 continue;
5056
5057 /* Compute how many sections might be placed into this segment. */
5058 for (section = ibfd->sections, section_count = 0;
5059 section != NULL;
5060 section = section->next)
5061 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5062 ++section_count;
5063
5064 /* Allocate a segment map big enough to contain
5065 all of the sections we have selected. */
5066 amt = sizeof (struct elf_segment_map);
5067 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5068 map = bfd_alloc (obfd, amt);
5069 if (map == NULL)
5070 return FALSE;
5071
5072 /* Initialise the fields of the segment map. Default to
5073 using the physical address of the segment in the input BFD. */
5074 map->next = NULL;
5075 map->p_type = segment->p_type;
5076 map->p_flags = segment->p_flags;
5077 map->p_flags_valid = 1;
5078 map->p_paddr = segment->p_paddr;
5079 map->p_paddr_valid = 1;
5080
5081 /* Determine if this segment contains the ELF file header
5082 and if it contains the program headers themselves. */
5083 map->includes_filehdr = (segment->p_offset == 0
5084 && segment->p_filesz >= iehdr->e_ehsize);
5085
5086 map->includes_phdrs = 0;
5087
5088 if (! phdr_included || segment->p_type != PT_LOAD)
5089 {
5090 map->includes_phdrs =
5091 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5092 && (segment->p_offset + segment->p_filesz
5093 >= ((bfd_vma) iehdr->e_phoff
5094 + iehdr->e_phnum * iehdr->e_phentsize)));
5095
5096 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5097 phdr_included = TRUE;
5098 }
5099
5100 if (section_count == 0)
5101 {
5102 /* Special segments, such as the PT_PHDR segment, may contain
5103 no sections, but ordinary, loadable segments should contain
5104 something. They are allowed by the ELF spec however, so only
5105 a warning is produced. */
5106 if (segment->p_type == PT_LOAD)
5107 (*_bfd_error_handler)
5108 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5109 ibfd);
5110
5111 map->count = 0;
5112 *pointer_to_map = map;
5113 pointer_to_map = &map->next;
5114
5115 continue;
5116 }
5117
5118 /* Now scan the sections in the input BFD again and attempt
5119 to add their corresponding output sections to the segment map.
5120 The problem here is how to handle an output section which has
5121 been moved (ie had its LMA changed). There are four possibilities:
5122
5123 1. None of the sections have been moved.
5124 In this case we can continue to use the segment LMA from the
5125 input BFD.
5126
5127 2. All of the sections have been moved by the same amount.
5128 In this case we can change the segment's LMA to match the LMA
5129 of the first section.
5130
5131 3. Some of the sections have been moved, others have not.
5132 In this case those sections which have not been moved can be
5133 placed in the current segment which will have to have its size,
5134 and possibly its LMA changed, and a new segment or segments will
5135 have to be created to contain the other sections.
5136
5137 4. The sections have been moved, but not by the same amount.
5138 In this case we can change the segment's LMA to match the LMA
5139 of the first section and we will have to create a new segment
5140 or segments to contain the other sections.
5141
5142 In order to save time, we allocate an array to hold the section
5143 pointers that we are interested in. As these sections get assigned
5144 to a segment, they are removed from this array. */
5145
5146 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5147 to work around this long long bug. */
5148 amt = section_count * sizeof (asection *);
5149 sections = bfd_malloc (amt);
5150 if (sections == NULL)
5151 return FALSE;
5152
5153 /* Step One: Scan for segment vs section LMA conflicts.
5154 Also add the sections to the section array allocated above.
5155 Also add the sections to the current segment. In the common
5156 case, where the sections have not been moved, this means that
5157 we have completely filled the segment, and there is nothing
5158 more to do. */
5159 isec = 0;
5160 matching_lma = 0;
5161 suggested_lma = 0;
5162
5163 for (j = 0, section = ibfd->sections;
5164 section != NULL;
5165 section = section->next)
5166 {
5167 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5168 {
5169 output_section = section->output_section;
5170
5171 sections[j ++] = section;
5172
5173 /* The Solaris native linker always sets p_paddr to 0.
5174 We try to catch that case here, and set it to the
5175 correct value. Note - some backends require that
5176 p_paddr be left as zero. */
5177 if (segment->p_paddr == 0
5178 && segment->p_vaddr != 0
5179 && (! bed->want_p_paddr_set_to_zero)
5180 && isec == 0
5181 && output_section->lma != 0
5182 && (output_section->vma == (segment->p_vaddr
5183 + (map->includes_filehdr
5184 ? iehdr->e_ehsize
5185 : 0)
5186 + (map->includes_phdrs
5187 ? (iehdr->e_phnum
5188 * iehdr->e_phentsize)
5189 : 0))))
5190 map->p_paddr = segment->p_vaddr;
5191
5192 /* Match up the physical address of the segment with the
5193 LMA address of the output section. */
5194 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5195 || IS_COREFILE_NOTE (segment, section)
5196 || (bed->want_p_paddr_set_to_zero &&
5197 IS_CONTAINED_BY_VMA (output_section, segment))
5198 )
5199 {
5200 if (matching_lma == 0)
5201 matching_lma = output_section->lma;
5202
5203 /* We assume that if the section fits within the segment
5204 then it does not overlap any other section within that
5205 segment. */
5206 map->sections[isec ++] = output_section;
5207 }
5208 else if (suggested_lma == 0)
5209 suggested_lma = output_section->lma;
5210 }
5211 }
5212
5213 BFD_ASSERT (j == section_count);
5214
5215 /* Step Two: Adjust the physical address of the current segment,
5216 if necessary. */
5217 if (isec == section_count)
5218 {
5219 /* All of the sections fitted within the segment as currently
5220 specified. This is the default case. Add the segment to
5221 the list of built segments and carry on to process the next
5222 program header in the input BFD. */
5223 map->count = section_count;
5224 *pointer_to_map = map;
5225 pointer_to_map = &map->next;
5226
5227 free (sections);
5228 continue;
5229 }
5230 else
5231 {
5232 if (matching_lma != 0)
5233 {
5234 /* At least one section fits inside the current segment.
5235 Keep it, but modify its physical address to match the
5236 LMA of the first section that fitted. */
5237 map->p_paddr = matching_lma;
5238 }
5239 else
5240 {
5241 /* None of the sections fitted inside the current segment.
5242 Change the current segment's physical address to match
5243 the LMA of the first section. */
5244 map->p_paddr = suggested_lma;
5245 }
5246
5247 /* Offset the segment physical address from the lma
5248 to allow for space taken up by elf headers. */
5249 if (map->includes_filehdr)
5250 map->p_paddr -= iehdr->e_ehsize;
5251
5252 if (map->includes_phdrs)
5253 {
5254 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5255
5256 /* iehdr->e_phnum is just an estimate of the number
5257 of program headers that we will need. Make a note
5258 here of the number we used and the segment we chose
5259 to hold these headers, so that we can adjust the
5260 offset when we know the correct value. */
5261 phdr_adjust_num = iehdr->e_phnum;
5262 phdr_adjust_seg = map;
5263 }
5264 }
5265
5266 /* Step Three: Loop over the sections again, this time assigning
5267 those that fit to the current segment and removing them from the
5268 sections array; but making sure not to leave large gaps. Once all
5269 possible sections have been assigned to the current segment it is
5270 added to the list of built segments and if sections still remain
5271 to be assigned, a new segment is constructed before repeating
5272 the loop. */
5273 isec = 0;
5274 do
5275 {
5276 map->count = 0;
5277 suggested_lma = 0;
5278
5279 /* Fill the current segment with sections that fit. */
5280 for (j = 0; j < section_count; j++)
5281 {
5282 section = sections[j];
5283
5284 if (section == NULL)
5285 continue;
5286
5287 output_section = section->output_section;
5288
5289 BFD_ASSERT (output_section != NULL);
5290
5291 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5292 || IS_COREFILE_NOTE (segment, section))
5293 {
5294 if (map->count == 0)
5295 {
5296 /* If the first section in a segment does not start at
5297 the beginning of the segment, then something is
5298 wrong. */
5299 if (output_section->lma !=
5300 (map->p_paddr
5301 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5302 + (map->includes_phdrs
5303 ? iehdr->e_phnum * iehdr->e_phentsize
5304 : 0)))
5305 abort ();
5306 }
5307 else
5308 {
5309 asection * prev_sec;
5310
5311 prev_sec = map->sections[map->count - 1];
5312
5313 /* If the gap between the end of the previous section
5314 and the start of this section is more than
5315 maxpagesize then we need to start a new segment. */
5316 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5317 maxpagesize)
5318 < BFD_ALIGN (output_section->lma, maxpagesize))
5319 || ((prev_sec->lma + prev_sec->size)
5320 > output_section->lma))
5321 {
5322 if (suggested_lma == 0)
5323 suggested_lma = output_section->lma;
5324
5325 continue;
5326 }
5327 }
5328
5329 map->sections[map->count++] = output_section;
5330 ++isec;
5331 sections[j] = NULL;
5332 section->segment_mark = TRUE;
5333 }
5334 else if (suggested_lma == 0)
5335 suggested_lma = output_section->lma;
5336 }
5337
5338 BFD_ASSERT (map->count > 0);
5339
5340 /* Add the current segment to the list of built segments. */
5341 *pointer_to_map = map;
5342 pointer_to_map = &map->next;
5343
5344 if (isec < section_count)
5345 {
5346 /* We still have not allocated all of the sections to
5347 segments. Create a new segment here, initialise it
5348 and carry on looping. */
5349 amt = sizeof (struct elf_segment_map);
5350 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5351 map = bfd_alloc (obfd, amt);
5352 if (map == NULL)
5353 {
5354 free (sections);
5355 return FALSE;
5356 }
5357
5358 /* Initialise the fields of the segment map. Set the physical
5359 physical address to the LMA of the first section that has
5360 not yet been assigned. */
5361 map->next = NULL;
5362 map->p_type = segment->p_type;
5363 map->p_flags = segment->p_flags;
5364 map->p_flags_valid = 1;
5365 map->p_paddr = suggested_lma;
5366 map->p_paddr_valid = 1;
5367 map->includes_filehdr = 0;
5368 map->includes_phdrs = 0;
5369 }
5370 }
5371 while (isec < section_count);
5372
5373 free (sections);
5374 }
5375
5376 /* The Solaris linker creates program headers in which all the
5377 p_paddr fields are zero. When we try to objcopy or strip such a
5378 file, we get confused. Check for this case, and if we find it
5379 reset the p_paddr_valid fields. */
5380 for (map = map_first; map != NULL; map = map->next)
5381 if (map->p_paddr != 0)
5382 break;
5383 if (map == NULL)
5384 for (map = map_first; map != NULL; map = map->next)
5385 map->p_paddr_valid = 0;
5386
5387 elf_tdata (obfd)->segment_map = map_first;
5388
5389 /* If we had to estimate the number of program headers that were
5390 going to be needed, then check our estimate now and adjust
5391 the offset if necessary. */
5392 if (phdr_adjust_seg != NULL)
5393 {
5394 unsigned int count;
5395
5396 for (count = 0, map = map_first; map != NULL; map = map->next)
5397 count++;
5398
5399 if (count > phdr_adjust_num)
5400 phdr_adjust_seg->p_paddr
5401 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5402 }
5403
5404 #if 0
5405 /* Final Step: Sort the segments into ascending order of physical
5406 address. */
5407 if (map_first != NULL)
5408 {
5409 struct elf_segment_map *prev;
5410
5411 prev = map_first;
5412 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5413 {
5414 /* Yes I know - its a bubble sort.... */
5415 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5416 {
5417 /* Swap map and map->next. */
5418 prev->next = map->next;
5419 map->next = map->next->next;
5420 prev->next->next = map;
5421
5422 /* Restart loop. */
5423 map = map_first;
5424 }
5425 }
5426 }
5427 #endif
5428
5429 #undef SEGMENT_END
5430 #undef SECTION_SIZE
5431 #undef IS_CONTAINED_BY_VMA
5432 #undef IS_CONTAINED_BY_LMA
5433 #undef IS_COREFILE_NOTE
5434 #undef IS_SOLARIS_PT_INTERP
5435 #undef INCLUDE_SECTION_IN_SEGMENT
5436 #undef SEGMENT_AFTER_SEGMENT
5437 #undef SEGMENT_OVERLAPS
5438 return TRUE;
5439 }
5440
5441 /* Copy private section information. This copies over the entsize
5442 field, and sometimes the info field. */
5443
5444 bfd_boolean
5445 _bfd_elf_copy_private_section_data (bfd *ibfd,
5446 asection *isec,
5447 bfd *obfd,
5448 asection *osec)
5449 {
5450 Elf_Internal_Shdr *ihdr, *ohdr;
5451
5452 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5453 || obfd->xvec->flavour != bfd_target_elf_flavour)
5454 return TRUE;
5455
5456 ihdr = &elf_section_data (isec)->this_hdr;
5457 ohdr = &elf_section_data (osec)->this_hdr;
5458
5459 ohdr->sh_entsize = ihdr->sh_entsize;
5460
5461 if (ihdr->sh_type == SHT_SYMTAB
5462 || ihdr->sh_type == SHT_DYNSYM
5463 || ihdr->sh_type == SHT_GNU_verneed
5464 || ihdr->sh_type == SHT_GNU_verdef)
5465 ohdr->sh_info = ihdr->sh_info;
5466
5467 /* Set things up for objcopy. The output SHT_GROUP section will
5468 have its elf_next_in_group pointing back to the input group
5469 members. */
5470 elf_next_in_group (osec) = elf_next_in_group (isec);
5471 elf_group_name (osec) = elf_group_name (isec);
5472
5473 osec->use_rela_p = isec->use_rela_p;
5474
5475 return TRUE;
5476 }
5477
5478 /* Copy private header information. */
5479
5480 bfd_boolean
5481 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5482 {
5483 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5484 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5485 return TRUE;
5486
5487 /* Copy over private BFD data if it has not already been copied.
5488 This must be done here, rather than in the copy_private_bfd_data
5489 entry point, because the latter is called after the section
5490 contents have been set, which means that the program headers have
5491 already been worked out. */
5492 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5493 {
5494 if (! copy_private_bfd_data (ibfd, obfd))
5495 return FALSE;
5496 }
5497
5498 return TRUE;
5499 }
5500
5501 /* Copy private symbol information. If this symbol is in a section
5502 which we did not map into a BFD section, try to map the section
5503 index correctly. We use special macro definitions for the mapped
5504 section indices; these definitions are interpreted by the
5505 swap_out_syms function. */
5506
5507 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5508 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5509 #define MAP_STRTAB (SHN_HIOS + 3)
5510 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5511 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5512
5513 bfd_boolean
5514 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5515 asymbol *isymarg,
5516 bfd *obfd,
5517 asymbol *osymarg)
5518 {
5519 elf_symbol_type *isym, *osym;
5520
5521 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5522 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5523 return TRUE;
5524
5525 isym = elf_symbol_from (ibfd, isymarg);
5526 osym = elf_symbol_from (obfd, osymarg);
5527
5528 if (isym != NULL
5529 && osym != NULL
5530 && bfd_is_abs_section (isym->symbol.section))
5531 {
5532 unsigned int shndx;
5533
5534 shndx = isym->internal_elf_sym.st_shndx;
5535 if (shndx == elf_onesymtab (ibfd))
5536 shndx = MAP_ONESYMTAB;
5537 else if (shndx == elf_dynsymtab (ibfd))
5538 shndx = MAP_DYNSYMTAB;
5539 else if (shndx == elf_tdata (ibfd)->strtab_section)
5540 shndx = MAP_STRTAB;
5541 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5542 shndx = MAP_SHSTRTAB;
5543 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5544 shndx = MAP_SYM_SHNDX;
5545 osym->internal_elf_sym.st_shndx = shndx;
5546 }
5547
5548 return TRUE;
5549 }
5550
5551 /* Swap out the symbols. */
5552
5553 static bfd_boolean
5554 swap_out_syms (bfd *abfd,
5555 struct bfd_strtab_hash **sttp,
5556 int relocatable_p)
5557 {
5558 const struct elf_backend_data *bed;
5559 int symcount;
5560 asymbol **syms;
5561 struct bfd_strtab_hash *stt;
5562 Elf_Internal_Shdr *symtab_hdr;
5563 Elf_Internal_Shdr *symtab_shndx_hdr;
5564 Elf_Internal_Shdr *symstrtab_hdr;
5565 char *outbound_syms;
5566 char *outbound_shndx;
5567 int idx;
5568 bfd_size_type amt;
5569 bfd_boolean name_local_sections;
5570
5571 if (!elf_map_symbols (abfd))
5572 return FALSE;
5573
5574 /* Dump out the symtabs. */
5575 stt = _bfd_elf_stringtab_init ();
5576 if (stt == NULL)
5577 return FALSE;
5578
5579 bed = get_elf_backend_data (abfd);
5580 symcount = bfd_get_symcount (abfd);
5581 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5582 symtab_hdr->sh_type = SHT_SYMTAB;
5583 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5584 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5585 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5586 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5587
5588 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5589 symstrtab_hdr->sh_type = SHT_STRTAB;
5590
5591 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5592 outbound_syms = bfd_alloc (abfd, amt);
5593 if (outbound_syms == NULL)
5594 {
5595 _bfd_stringtab_free (stt);
5596 return FALSE;
5597 }
5598 symtab_hdr->contents = outbound_syms;
5599
5600 outbound_shndx = NULL;
5601 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5602 if (symtab_shndx_hdr->sh_name != 0)
5603 {
5604 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5605 outbound_shndx = bfd_zalloc (abfd, amt);
5606 if (outbound_shndx == NULL)
5607 {
5608 _bfd_stringtab_free (stt);
5609 return FALSE;
5610 }
5611
5612 symtab_shndx_hdr->contents = outbound_shndx;
5613 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5614 symtab_shndx_hdr->sh_size = amt;
5615 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5616 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5617 }
5618
5619 /* Now generate the data (for "contents"). */
5620 {
5621 /* Fill in zeroth symbol and swap it out. */
5622 Elf_Internal_Sym sym;
5623 sym.st_name = 0;
5624 sym.st_value = 0;
5625 sym.st_size = 0;
5626 sym.st_info = 0;
5627 sym.st_other = 0;
5628 sym.st_shndx = SHN_UNDEF;
5629 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5630 outbound_syms += bed->s->sizeof_sym;
5631 if (outbound_shndx != NULL)
5632 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5633 }
5634
5635 name_local_sections
5636 = (bed->elf_backend_name_local_section_symbols
5637 && bed->elf_backend_name_local_section_symbols (abfd));
5638
5639 syms = bfd_get_outsymbols (abfd);
5640 for (idx = 0; idx < symcount; idx++)
5641 {
5642 Elf_Internal_Sym sym;
5643 bfd_vma value = syms[idx]->value;
5644 elf_symbol_type *type_ptr;
5645 flagword flags = syms[idx]->flags;
5646 int type;
5647
5648 if (!name_local_sections
5649 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5650 {
5651 /* Local section symbols have no name. */
5652 sym.st_name = 0;
5653 }
5654 else
5655 {
5656 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5657 syms[idx]->name,
5658 TRUE, FALSE);
5659 if (sym.st_name == (unsigned long) -1)
5660 {
5661 _bfd_stringtab_free (stt);
5662 return FALSE;
5663 }
5664 }
5665
5666 type_ptr = elf_symbol_from (abfd, syms[idx]);
5667
5668 if ((flags & BSF_SECTION_SYM) == 0
5669 && bfd_is_com_section (syms[idx]->section))
5670 {
5671 /* ELF common symbols put the alignment into the `value' field,
5672 and the size into the `size' field. This is backwards from
5673 how BFD handles it, so reverse it here. */
5674 sym.st_size = value;
5675 if (type_ptr == NULL
5676 || type_ptr->internal_elf_sym.st_value == 0)
5677 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5678 else
5679 sym.st_value = type_ptr->internal_elf_sym.st_value;
5680 sym.st_shndx = _bfd_elf_section_from_bfd_section
5681 (abfd, syms[idx]->section);
5682 }
5683 else
5684 {
5685 asection *sec = syms[idx]->section;
5686 int shndx;
5687
5688 if (sec->output_section)
5689 {
5690 value += sec->output_offset;
5691 sec = sec->output_section;
5692 }
5693
5694 /* Don't add in the section vma for relocatable output. */
5695 if (! relocatable_p)
5696 value += sec->vma;
5697 sym.st_value = value;
5698 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5699
5700 if (bfd_is_abs_section (sec)
5701 && type_ptr != NULL
5702 && type_ptr->internal_elf_sym.st_shndx != 0)
5703 {
5704 /* This symbol is in a real ELF section which we did
5705 not create as a BFD section. Undo the mapping done
5706 by copy_private_symbol_data. */
5707 shndx = type_ptr->internal_elf_sym.st_shndx;
5708 switch (shndx)
5709 {
5710 case MAP_ONESYMTAB:
5711 shndx = elf_onesymtab (abfd);
5712 break;
5713 case MAP_DYNSYMTAB:
5714 shndx = elf_dynsymtab (abfd);
5715 break;
5716 case MAP_STRTAB:
5717 shndx = elf_tdata (abfd)->strtab_section;
5718 break;
5719 case MAP_SHSTRTAB:
5720 shndx = elf_tdata (abfd)->shstrtab_section;
5721 break;
5722 case MAP_SYM_SHNDX:
5723 shndx = elf_tdata (abfd)->symtab_shndx_section;
5724 break;
5725 default:
5726 break;
5727 }
5728 }
5729 else
5730 {
5731 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5732
5733 if (shndx == -1)
5734 {
5735 asection *sec2;
5736
5737 /* Writing this would be a hell of a lot easier if
5738 we had some decent documentation on bfd, and
5739 knew what to expect of the library, and what to
5740 demand of applications. For example, it
5741 appears that `objcopy' might not set the
5742 section of a symbol to be a section that is
5743 actually in the output file. */
5744 sec2 = bfd_get_section_by_name (abfd, sec->name);
5745 if (sec2 == NULL)
5746 {
5747 _bfd_error_handler (_("\
5748 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5749 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5750 sec->name);
5751 bfd_set_error (bfd_error_invalid_operation);
5752 _bfd_stringtab_free (stt);
5753 return FALSE;
5754 }
5755
5756 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5757 BFD_ASSERT (shndx != -1);
5758 }
5759 }
5760
5761 sym.st_shndx = shndx;
5762 }
5763
5764 if ((flags & BSF_THREAD_LOCAL) != 0)
5765 type = STT_TLS;
5766 else if ((flags & BSF_FUNCTION) != 0)
5767 type = STT_FUNC;
5768 else if ((flags & BSF_OBJECT) != 0)
5769 type = STT_OBJECT;
5770 else
5771 type = STT_NOTYPE;
5772
5773 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5774 type = STT_TLS;
5775
5776 /* Processor-specific types. */
5777 if (type_ptr != NULL
5778 && bed->elf_backend_get_symbol_type)
5779 type = ((*bed->elf_backend_get_symbol_type)
5780 (&type_ptr->internal_elf_sym, type));
5781
5782 if (flags & BSF_SECTION_SYM)
5783 {
5784 if (flags & BSF_GLOBAL)
5785 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5786 else
5787 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5788 }
5789 else if (bfd_is_com_section (syms[idx]->section))
5790 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5791 else if (bfd_is_und_section (syms[idx]->section))
5792 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5793 ? STB_WEAK
5794 : STB_GLOBAL),
5795 type);
5796 else if (flags & BSF_FILE)
5797 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5798 else
5799 {
5800 int bind = STB_LOCAL;
5801
5802 if (flags & BSF_LOCAL)
5803 bind = STB_LOCAL;
5804 else if (flags & BSF_WEAK)
5805 bind = STB_WEAK;
5806 else if (flags & BSF_GLOBAL)
5807 bind = STB_GLOBAL;
5808
5809 sym.st_info = ELF_ST_INFO (bind, type);
5810 }
5811
5812 if (type_ptr != NULL)
5813 sym.st_other = type_ptr->internal_elf_sym.st_other;
5814 else
5815 sym.st_other = 0;
5816
5817 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5818 outbound_syms += bed->s->sizeof_sym;
5819 if (outbound_shndx != NULL)
5820 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5821 }
5822
5823 *sttp = stt;
5824 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5825 symstrtab_hdr->sh_type = SHT_STRTAB;
5826
5827 symstrtab_hdr->sh_flags = 0;
5828 symstrtab_hdr->sh_addr = 0;
5829 symstrtab_hdr->sh_entsize = 0;
5830 symstrtab_hdr->sh_link = 0;
5831 symstrtab_hdr->sh_info = 0;
5832 symstrtab_hdr->sh_addralign = 1;
5833
5834 return TRUE;
5835 }
5836
5837 /* Return the number of bytes required to hold the symtab vector.
5838
5839 Note that we base it on the count plus 1, since we will null terminate
5840 the vector allocated based on this size. However, the ELF symbol table
5841 always has a dummy entry as symbol #0, so it ends up even. */
5842
5843 long
5844 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5845 {
5846 long symcount;
5847 long symtab_size;
5848 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5849
5850 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5851 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5852 if (symcount > 0)
5853 symtab_size -= sizeof (asymbol *);
5854
5855 return symtab_size;
5856 }
5857
5858 long
5859 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5860 {
5861 long symcount;
5862 long symtab_size;
5863 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5864
5865 if (elf_dynsymtab (abfd) == 0)
5866 {
5867 bfd_set_error (bfd_error_invalid_operation);
5868 return -1;
5869 }
5870
5871 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5872 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5873 if (symcount > 0)
5874 symtab_size -= sizeof (asymbol *);
5875
5876 return symtab_size;
5877 }
5878
5879 long
5880 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5881 sec_ptr asect)
5882 {
5883 return (asect->reloc_count + 1) * sizeof (arelent *);
5884 }
5885
5886 /* Canonicalize the relocs. */
5887
5888 long
5889 _bfd_elf_canonicalize_reloc (bfd *abfd,
5890 sec_ptr section,
5891 arelent **relptr,
5892 asymbol **symbols)
5893 {
5894 arelent *tblptr;
5895 unsigned int i;
5896 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5897
5898 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5899 return -1;
5900
5901 tblptr = section->relocation;
5902 for (i = 0; i < section->reloc_count; i++)
5903 *relptr++ = tblptr++;
5904
5905 *relptr = NULL;
5906
5907 return section->reloc_count;
5908 }
5909
5910 long
5911 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5912 {
5913 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5914 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5915
5916 if (symcount >= 0)
5917 bfd_get_symcount (abfd) = symcount;
5918 return symcount;
5919 }
5920
5921 long
5922 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5923 asymbol **allocation)
5924 {
5925 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5926 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5927
5928 if (symcount >= 0)
5929 bfd_get_dynamic_symcount (abfd) = symcount;
5930 return symcount;
5931 }
5932
5933 /* Return the size required for the dynamic reloc entries. Any
5934 section that was actually installed in the BFD, and has type
5935 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5936 considered to be a dynamic reloc section. */
5937
5938 long
5939 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5940 {
5941 long ret;
5942 asection *s;
5943
5944 if (elf_dynsymtab (abfd) == 0)
5945 {
5946 bfd_set_error (bfd_error_invalid_operation);
5947 return -1;
5948 }
5949
5950 ret = sizeof (arelent *);
5951 for (s = abfd->sections; s != NULL; s = s->next)
5952 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5953 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5954 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5955 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
5956 * sizeof (arelent *));
5957
5958 return ret;
5959 }
5960
5961 /* Canonicalize the dynamic relocation entries. Note that we return
5962 the dynamic relocations as a single block, although they are
5963 actually associated with particular sections; the interface, which
5964 was designed for SunOS style shared libraries, expects that there
5965 is only one set of dynamic relocs. Any section that was actually
5966 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5967 the dynamic symbol table, is considered to be a dynamic reloc
5968 section. */
5969
5970 long
5971 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5972 arelent **storage,
5973 asymbol **syms)
5974 {
5975 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5976 asection *s;
5977 long ret;
5978
5979 if (elf_dynsymtab (abfd) == 0)
5980 {
5981 bfd_set_error (bfd_error_invalid_operation);
5982 return -1;
5983 }
5984
5985 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
5986 ret = 0;
5987 for (s = abfd->sections; s != NULL; s = s->next)
5988 {
5989 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5990 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5991 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5992 {
5993 arelent *p;
5994 long count, i;
5995
5996 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
5997 return -1;
5998 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
5999 p = s->relocation;
6000 for (i = 0; i < count; i++)
6001 *storage++ = p++;
6002 ret += count;
6003 }
6004 }
6005
6006 *storage = NULL;
6007
6008 return ret;
6009 }
6010 \f
6011 /* Read in the version information. */
6012
6013 bfd_boolean
6014 _bfd_elf_slurp_version_tables (bfd *abfd)
6015 {
6016 bfd_byte *contents = NULL;
6017 bfd_size_type amt;
6018
6019 if (elf_dynverdef (abfd) != 0)
6020 {
6021 Elf_Internal_Shdr *hdr;
6022 Elf_External_Verdef *everdef;
6023 Elf_Internal_Verdef *iverdef;
6024 Elf_Internal_Verdef *iverdefarr;
6025 Elf_Internal_Verdef iverdefmem;
6026 unsigned int i;
6027 unsigned int maxidx;
6028
6029 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6030
6031 contents = bfd_malloc (hdr->sh_size);
6032 if (contents == NULL)
6033 goto error_return;
6034 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6035 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6036 goto error_return;
6037
6038 /* We know the number of entries in the section but not the maximum
6039 index. Therefore we have to run through all entries and find
6040 the maximum. */
6041 everdef = (Elf_External_Verdef *) contents;
6042 maxidx = 0;
6043 for (i = 0; i < hdr->sh_info; ++i)
6044 {
6045 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6046
6047 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6048 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6049
6050 everdef = ((Elf_External_Verdef *)
6051 ((bfd_byte *) everdef + iverdefmem.vd_next));
6052 }
6053
6054 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6055 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6056 if (elf_tdata (abfd)->verdef == NULL)
6057 goto error_return;
6058
6059 elf_tdata (abfd)->cverdefs = maxidx;
6060
6061 everdef = (Elf_External_Verdef *) contents;
6062 iverdefarr = elf_tdata (abfd)->verdef;
6063 for (i = 0; i < hdr->sh_info; i++)
6064 {
6065 Elf_External_Verdaux *everdaux;
6066 Elf_Internal_Verdaux *iverdaux;
6067 unsigned int j;
6068
6069 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6070
6071 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6072 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6073
6074 iverdef->vd_bfd = abfd;
6075
6076 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6077 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6078 if (iverdef->vd_auxptr == NULL)
6079 goto error_return;
6080
6081 everdaux = ((Elf_External_Verdaux *)
6082 ((bfd_byte *) everdef + iverdef->vd_aux));
6083 iverdaux = iverdef->vd_auxptr;
6084 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6085 {
6086 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6087
6088 iverdaux->vda_nodename =
6089 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6090 iverdaux->vda_name);
6091 if (iverdaux->vda_nodename == NULL)
6092 goto error_return;
6093
6094 if (j + 1 < iverdef->vd_cnt)
6095 iverdaux->vda_nextptr = iverdaux + 1;
6096 else
6097 iverdaux->vda_nextptr = NULL;
6098
6099 everdaux = ((Elf_External_Verdaux *)
6100 ((bfd_byte *) everdaux + iverdaux->vda_next));
6101 }
6102
6103 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6104
6105 if (i + 1 < hdr->sh_info)
6106 iverdef->vd_nextdef = iverdef + 1;
6107 else
6108 iverdef->vd_nextdef = NULL;
6109
6110 everdef = ((Elf_External_Verdef *)
6111 ((bfd_byte *) everdef + iverdef->vd_next));
6112 }
6113
6114 free (contents);
6115 contents = NULL;
6116 }
6117
6118 if (elf_dynverref (abfd) != 0)
6119 {
6120 Elf_Internal_Shdr *hdr;
6121 Elf_External_Verneed *everneed;
6122 Elf_Internal_Verneed *iverneed;
6123 unsigned int i;
6124
6125 hdr = &elf_tdata (abfd)->dynverref_hdr;
6126
6127 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6128 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6129 if (elf_tdata (abfd)->verref == NULL)
6130 goto error_return;
6131
6132 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6133
6134 contents = bfd_malloc (hdr->sh_size);
6135 if (contents == NULL)
6136 goto error_return;
6137 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6138 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6139 goto error_return;
6140
6141 everneed = (Elf_External_Verneed *) contents;
6142 iverneed = elf_tdata (abfd)->verref;
6143 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6144 {
6145 Elf_External_Vernaux *evernaux;
6146 Elf_Internal_Vernaux *ivernaux;
6147 unsigned int j;
6148
6149 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6150
6151 iverneed->vn_bfd = abfd;
6152
6153 iverneed->vn_filename =
6154 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6155 iverneed->vn_file);
6156 if (iverneed->vn_filename == NULL)
6157 goto error_return;
6158
6159 amt = iverneed->vn_cnt;
6160 amt *= sizeof (Elf_Internal_Vernaux);
6161 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6162
6163 evernaux = ((Elf_External_Vernaux *)
6164 ((bfd_byte *) everneed + iverneed->vn_aux));
6165 ivernaux = iverneed->vn_auxptr;
6166 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6167 {
6168 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6169
6170 ivernaux->vna_nodename =
6171 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6172 ivernaux->vna_name);
6173 if (ivernaux->vna_nodename == NULL)
6174 goto error_return;
6175
6176 if (j + 1 < iverneed->vn_cnt)
6177 ivernaux->vna_nextptr = ivernaux + 1;
6178 else
6179 ivernaux->vna_nextptr = NULL;
6180
6181 evernaux = ((Elf_External_Vernaux *)
6182 ((bfd_byte *) evernaux + ivernaux->vna_next));
6183 }
6184
6185 if (i + 1 < hdr->sh_info)
6186 iverneed->vn_nextref = iverneed + 1;
6187 else
6188 iverneed->vn_nextref = NULL;
6189
6190 everneed = ((Elf_External_Verneed *)
6191 ((bfd_byte *) everneed + iverneed->vn_next));
6192 }
6193
6194 free (contents);
6195 contents = NULL;
6196 }
6197
6198 return TRUE;
6199
6200 error_return:
6201 if (contents != NULL)
6202 free (contents);
6203 return FALSE;
6204 }
6205 \f
6206 asymbol *
6207 _bfd_elf_make_empty_symbol (bfd *abfd)
6208 {
6209 elf_symbol_type *newsym;
6210 bfd_size_type amt = sizeof (elf_symbol_type);
6211
6212 newsym = bfd_zalloc (abfd, amt);
6213 if (!newsym)
6214 return NULL;
6215 else
6216 {
6217 newsym->symbol.the_bfd = abfd;
6218 return &newsym->symbol;
6219 }
6220 }
6221
6222 void
6223 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6224 asymbol *symbol,
6225 symbol_info *ret)
6226 {
6227 bfd_symbol_info (symbol, ret);
6228 }
6229
6230 /* Return whether a symbol name implies a local symbol. Most targets
6231 use this function for the is_local_label_name entry point, but some
6232 override it. */
6233
6234 bfd_boolean
6235 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6236 const char *name)
6237 {
6238 /* Normal local symbols start with ``.L''. */
6239 if (name[0] == '.' && name[1] == 'L')
6240 return TRUE;
6241
6242 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6243 DWARF debugging symbols starting with ``..''. */
6244 if (name[0] == '.' && name[1] == '.')
6245 return TRUE;
6246
6247 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6248 emitting DWARF debugging output. I suspect this is actually a
6249 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6250 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6251 underscore to be emitted on some ELF targets). For ease of use,
6252 we treat such symbols as local. */
6253 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6254 return TRUE;
6255
6256 return FALSE;
6257 }
6258
6259 alent *
6260 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6261 asymbol *symbol ATTRIBUTE_UNUSED)
6262 {
6263 abort ();
6264 return NULL;
6265 }
6266
6267 bfd_boolean
6268 _bfd_elf_set_arch_mach (bfd *abfd,
6269 enum bfd_architecture arch,
6270 unsigned long machine)
6271 {
6272 /* If this isn't the right architecture for this backend, and this
6273 isn't the generic backend, fail. */
6274 if (arch != get_elf_backend_data (abfd)->arch
6275 && arch != bfd_arch_unknown
6276 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6277 return FALSE;
6278
6279 return bfd_default_set_arch_mach (abfd, arch, machine);
6280 }
6281
6282 /* Find the function to a particular section and offset,
6283 for error reporting. */
6284
6285 static bfd_boolean
6286 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6287 asection *section,
6288 asymbol **symbols,
6289 bfd_vma offset,
6290 const char **filename_ptr,
6291 const char **functionname_ptr)
6292 {
6293 const char *filename;
6294 asymbol *func;
6295 bfd_vma low_func;
6296 asymbol **p;
6297
6298 filename = NULL;
6299 func = NULL;
6300 low_func = 0;
6301
6302 for (p = symbols; *p != NULL; p++)
6303 {
6304 elf_symbol_type *q;
6305
6306 q = (elf_symbol_type *) *p;
6307
6308 if (bfd_get_section (&q->symbol) != section)
6309 continue;
6310
6311 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6312 {
6313 default:
6314 break;
6315 case STT_FILE:
6316 filename = bfd_asymbol_name (&q->symbol);
6317 break;
6318 case STT_NOTYPE:
6319 case STT_FUNC:
6320 if (q->symbol.section == section
6321 && q->symbol.value >= low_func
6322 && q->symbol.value <= offset)
6323 {
6324 func = (asymbol *) q;
6325 low_func = q->symbol.value;
6326 }
6327 break;
6328 }
6329 }
6330
6331 if (func == NULL)
6332 return FALSE;
6333
6334 if (filename_ptr)
6335 *filename_ptr = filename;
6336 if (functionname_ptr)
6337 *functionname_ptr = bfd_asymbol_name (func);
6338
6339 return TRUE;
6340 }
6341
6342 /* Find the nearest line to a particular section and offset,
6343 for error reporting. */
6344
6345 bfd_boolean
6346 _bfd_elf_find_nearest_line (bfd *abfd,
6347 asection *section,
6348 asymbol **symbols,
6349 bfd_vma offset,
6350 const char **filename_ptr,
6351 const char **functionname_ptr,
6352 unsigned int *line_ptr)
6353 {
6354 bfd_boolean found;
6355
6356 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6357 filename_ptr, functionname_ptr,
6358 line_ptr))
6359 {
6360 if (!*functionname_ptr)
6361 elf_find_function (abfd, section, symbols, offset,
6362 *filename_ptr ? NULL : filename_ptr,
6363 functionname_ptr);
6364
6365 return TRUE;
6366 }
6367
6368 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6369 filename_ptr, functionname_ptr,
6370 line_ptr, 0,
6371 &elf_tdata (abfd)->dwarf2_find_line_info))
6372 {
6373 if (!*functionname_ptr)
6374 elf_find_function (abfd, section, symbols, offset,
6375 *filename_ptr ? NULL : filename_ptr,
6376 functionname_ptr);
6377
6378 return TRUE;
6379 }
6380
6381 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6382 &found, filename_ptr,
6383 functionname_ptr, line_ptr,
6384 &elf_tdata (abfd)->line_info))
6385 return FALSE;
6386 if (found && (*functionname_ptr || *line_ptr))
6387 return TRUE;
6388
6389 if (symbols == NULL)
6390 return FALSE;
6391
6392 if (! elf_find_function (abfd, section, symbols, offset,
6393 filename_ptr, functionname_ptr))
6394 return FALSE;
6395
6396 *line_ptr = 0;
6397 return TRUE;
6398 }
6399
6400 int
6401 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6402 {
6403 int ret;
6404
6405 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6406 if (! reloc)
6407 ret += get_program_header_size (abfd);
6408 return ret;
6409 }
6410
6411 bfd_boolean
6412 _bfd_elf_set_section_contents (bfd *abfd,
6413 sec_ptr section,
6414 const void *location,
6415 file_ptr offset,
6416 bfd_size_type count)
6417 {
6418 Elf_Internal_Shdr *hdr;
6419 bfd_signed_vma pos;
6420
6421 if (! abfd->output_has_begun
6422 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6423 return FALSE;
6424
6425 hdr = &elf_section_data (section)->this_hdr;
6426 pos = hdr->sh_offset + offset;
6427 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6428 || bfd_bwrite (location, count, abfd) != count)
6429 return FALSE;
6430
6431 return TRUE;
6432 }
6433
6434 void
6435 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6436 arelent *cache_ptr ATTRIBUTE_UNUSED,
6437 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6438 {
6439 abort ();
6440 }
6441
6442 /* Try to convert a non-ELF reloc into an ELF one. */
6443
6444 bfd_boolean
6445 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6446 {
6447 /* Check whether we really have an ELF howto. */
6448
6449 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6450 {
6451 bfd_reloc_code_real_type code;
6452 reloc_howto_type *howto;
6453
6454 /* Alien reloc: Try to determine its type to replace it with an
6455 equivalent ELF reloc. */
6456
6457 if (areloc->howto->pc_relative)
6458 {
6459 switch (areloc->howto->bitsize)
6460 {
6461 case 8:
6462 code = BFD_RELOC_8_PCREL;
6463 break;
6464 case 12:
6465 code = BFD_RELOC_12_PCREL;
6466 break;
6467 case 16:
6468 code = BFD_RELOC_16_PCREL;
6469 break;
6470 case 24:
6471 code = BFD_RELOC_24_PCREL;
6472 break;
6473 case 32:
6474 code = BFD_RELOC_32_PCREL;
6475 break;
6476 case 64:
6477 code = BFD_RELOC_64_PCREL;
6478 break;
6479 default:
6480 goto fail;
6481 }
6482
6483 howto = bfd_reloc_type_lookup (abfd, code);
6484
6485 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6486 {
6487 if (howto->pcrel_offset)
6488 areloc->addend += areloc->address;
6489 else
6490 areloc->addend -= areloc->address; /* addend is unsigned!! */
6491 }
6492 }
6493 else
6494 {
6495 switch (areloc->howto->bitsize)
6496 {
6497 case 8:
6498 code = BFD_RELOC_8;
6499 break;
6500 case 14:
6501 code = BFD_RELOC_14;
6502 break;
6503 case 16:
6504 code = BFD_RELOC_16;
6505 break;
6506 case 26:
6507 code = BFD_RELOC_26;
6508 break;
6509 case 32:
6510 code = BFD_RELOC_32;
6511 break;
6512 case 64:
6513 code = BFD_RELOC_64;
6514 break;
6515 default:
6516 goto fail;
6517 }
6518
6519 howto = bfd_reloc_type_lookup (abfd, code);
6520 }
6521
6522 if (howto)
6523 areloc->howto = howto;
6524 else
6525 goto fail;
6526 }
6527
6528 return TRUE;
6529
6530 fail:
6531 (*_bfd_error_handler)
6532 (_("%B: unsupported relocation type %s"),
6533 abfd, areloc->howto->name);
6534 bfd_set_error (bfd_error_bad_value);
6535 return FALSE;
6536 }
6537
6538 bfd_boolean
6539 _bfd_elf_close_and_cleanup (bfd *abfd)
6540 {
6541 if (bfd_get_format (abfd) == bfd_object)
6542 {
6543 if (elf_shstrtab (abfd) != NULL)
6544 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6545 }
6546
6547 return _bfd_generic_close_and_cleanup (abfd);
6548 }
6549
6550 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6551 in the relocation's offset. Thus we cannot allow any sort of sanity
6552 range-checking to interfere. There is nothing else to do in processing
6553 this reloc. */
6554
6555 bfd_reloc_status_type
6556 _bfd_elf_rel_vtable_reloc_fn
6557 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6558 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6559 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6560 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6561 {
6562 return bfd_reloc_ok;
6563 }
6564 \f
6565 /* Elf core file support. Much of this only works on native
6566 toolchains, since we rely on knowing the
6567 machine-dependent procfs structure in order to pick
6568 out details about the corefile. */
6569
6570 #ifdef HAVE_SYS_PROCFS_H
6571 # include <sys/procfs.h>
6572 #endif
6573
6574 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6575
6576 static int
6577 elfcore_make_pid (bfd *abfd)
6578 {
6579 return ((elf_tdata (abfd)->core_lwpid << 16)
6580 + (elf_tdata (abfd)->core_pid));
6581 }
6582
6583 /* If there isn't a section called NAME, make one, using
6584 data from SECT. Note, this function will generate a
6585 reference to NAME, so you shouldn't deallocate or
6586 overwrite it. */
6587
6588 static bfd_boolean
6589 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6590 {
6591 asection *sect2;
6592
6593 if (bfd_get_section_by_name (abfd, name) != NULL)
6594 return TRUE;
6595
6596 sect2 = bfd_make_section (abfd, name);
6597 if (sect2 == NULL)
6598 return FALSE;
6599
6600 sect2->size = sect->size;
6601 sect2->filepos = sect->filepos;
6602 sect2->flags = sect->flags;
6603 sect2->alignment_power = sect->alignment_power;
6604 return TRUE;
6605 }
6606
6607 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6608 actually creates up to two pseudosections:
6609 - For the single-threaded case, a section named NAME, unless
6610 such a section already exists.
6611 - For the multi-threaded case, a section named "NAME/PID", where
6612 PID is elfcore_make_pid (abfd).
6613 Both pseudosections have identical contents. */
6614 bfd_boolean
6615 _bfd_elfcore_make_pseudosection (bfd *abfd,
6616 char *name,
6617 size_t size,
6618 ufile_ptr filepos)
6619 {
6620 char buf[100];
6621 char *threaded_name;
6622 size_t len;
6623 asection *sect;
6624
6625 /* Build the section name. */
6626
6627 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6628 len = strlen (buf) + 1;
6629 threaded_name = bfd_alloc (abfd, len);
6630 if (threaded_name == NULL)
6631 return FALSE;
6632 memcpy (threaded_name, buf, len);
6633
6634 sect = bfd_make_section_anyway (abfd, threaded_name);
6635 if (sect == NULL)
6636 return FALSE;
6637 sect->size = size;
6638 sect->filepos = filepos;
6639 sect->flags = SEC_HAS_CONTENTS;
6640 sect->alignment_power = 2;
6641
6642 return elfcore_maybe_make_sect (abfd, name, sect);
6643 }
6644
6645 /* prstatus_t exists on:
6646 solaris 2.5+
6647 linux 2.[01] + glibc
6648 unixware 4.2
6649 */
6650
6651 #if defined (HAVE_PRSTATUS_T)
6652
6653 static bfd_boolean
6654 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6655 {
6656 size_t size;
6657 int offset;
6658
6659 if (note->descsz == sizeof (prstatus_t))
6660 {
6661 prstatus_t prstat;
6662
6663 size = sizeof (prstat.pr_reg);
6664 offset = offsetof (prstatus_t, pr_reg);
6665 memcpy (&prstat, note->descdata, sizeof (prstat));
6666
6667 /* Do not overwrite the core signal if it
6668 has already been set by another thread. */
6669 if (elf_tdata (abfd)->core_signal == 0)
6670 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6671 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6672
6673 /* pr_who exists on:
6674 solaris 2.5+
6675 unixware 4.2
6676 pr_who doesn't exist on:
6677 linux 2.[01]
6678 */
6679 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6680 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6681 #endif
6682 }
6683 #if defined (HAVE_PRSTATUS32_T)
6684 else if (note->descsz == sizeof (prstatus32_t))
6685 {
6686 /* 64-bit host, 32-bit corefile */
6687 prstatus32_t prstat;
6688
6689 size = sizeof (prstat.pr_reg);
6690 offset = offsetof (prstatus32_t, pr_reg);
6691 memcpy (&prstat, note->descdata, sizeof (prstat));
6692
6693 /* Do not overwrite the core signal if it
6694 has already been set by another thread. */
6695 if (elf_tdata (abfd)->core_signal == 0)
6696 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6697 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6698
6699 /* pr_who exists on:
6700 solaris 2.5+
6701 unixware 4.2
6702 pr_who doesn't exist on:
6703 linux 2.[01]
6704 */
6705 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6706 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6707 #endif
6708 }
6709 #endif /* HAVE_PRSTATUS32_T */
6710 else
6711 {
6712 /* Fail - we don't know how to handle any other
6713 note size (ie. data object type). */
6714 return TRUE;
6715 }
6716
6717 /* Make a ".reg/999" section and a ".reg" section. */
6718 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6719 size, note->descpos + offset);
6720 }
6721 #endif /* defined (HAVE_PRSTATUS_T) */
6722
6723 /* Create a pseudosection containing the exact contents of NOTE. */
6724 static bfd_boolean
6725 elfcore_make_note_pseudosection (bfd *abfd,
6726 char *name,
6727 Elf_Internal_Note *note)
6728 {
6729 return _bfd_elfcore_make_pseudosection (abfd, name,
6730 note->descsz, note->descpos);
6731 }
6732
6733 /* There isn't a consistent prfpregset_t across platforms,
6734 but it doesn't matter, because we don't have to pick this
6735 data structure apart. */
6736
6737 static bfd_boolean
6738 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6739 {
6740 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6741 }
6742
6743 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6744 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6745 literally. */
6746
6747 static bfd_boolean
6748 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6749 {
6750 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6751 }
6752
6753 #if defined (HAVE_PRPSINFO_T)
6754 typedef prpsinfo_t elfcore_psinfo_t;
6755 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6756 typedef prpsinfo32_t elfcore_psinfo32_t;
6757 #endif
6758 #endif
6759
6760 #if defined (HAVE_PSINFO_T)
6761 typedef psinfo_t elfcore_psinfo_t;
6762 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6763 typedef psinfo32_t elfcore_psinfo32_t;
6764 #endif
6765 #endif
6766
6767 /* return a malloc'ed copy of a string at START which is at
6768 most MAX bytes long, possibly without a terminating '\0'.
6769 the copy will always have a terminating '\0'. */
6770
6771 char *
6772 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6773 {
6774 char *dups;
6775 char *end = memchr (start, '\0', max);
6776 size_t len;
6777
6778 if (end == NULL)
6779 len = max;
6780 else
6781 len = end - start;
6782
6783 dups = bfd_alloc (abfd, len + 1);
6784 if (dups == NULL)
6785 return NULL;
6786
6787 memcpy (dups, start, len);
6788 dups[len] = '\0';
6789
6790 return dups;
6791 }
6792
6793 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6794 static bfd_boolean
6795 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6796 {
6797 if (note->descsz == sizeof (elfcore_psinfo_t))
6798 {
6799 elfcore_psinfo_t psinfo;
6800
6801 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6802
6803 elf_tdata (abfd)->core_program
6804 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6805 sizeof (psinfo.pr_fname));
6806
6807 elf_tdata (abfd)->core_command
6808 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6809 sizeof (psinfo.pr_psargs));
6810 }
6811 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6812 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6813 {
6814 /* 64-bit host, 32-bit corefile */
6815 elfcore_psinfo32_t psinfo;
6816
6817 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6818
6819 elf_tdata (abfd)->core_program
6820 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6821 sizeof (psinfo.pr_fname));
6822
6823 elf_tdata (abfd)->core_command
6824 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6825 sizeof (psinfo.pr_psargs));
6826 }
6827 #endif
6828
6829 else
6830 {
6831 /* Fail - we don't know how to handle any other
6832 note size (ie. data object type). */
6833 return TRUE;
6834 }
6835
6836 /* Note that for some reason, a spurious space is tacked
6837 onto the end of the args in some (at least one anyway)
6838 implementations, so strip it off if it exists. */
6839
6840 {
6841 char *command = elf_tdata (abfd)->core_command;
6842 int n = strlen (command);
6843
6844 if (0 < n && command[n - 1] == ' ')
6845 command[n - 1] = '\0';
6846 }
6847
6848 return TRUE;
6849 }
6850 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6851
6852 #if defined (HAVE_PSTATUS_T)
6853 static bfd_boolean
6854 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6855 {
6856 if (note->descsz == sizeof (pstatus_t)
6857 #if defined (HAVE_PXSTATUS_T)
6858 || note->descsz == sizeof (pxstatus_t)
6859 #endif
6860 )
6861 {
6862 pstatus_t pstat;
6863
6864 memcpy (&pstat, note->descdata, sizeof (pstat));
6865
6866 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6867 }
6868 #if defined (HAVE_PSTATUS32_T)
6869 else if (note->descsz == sizeof (pstatus32_t))
6870 {
6871 /* 64-bit host, 32-bit corefile */
6872 pstatus32_t pstat;
6873
6874 memcpy (&pstat, note->descdata, sizeof (pstat));
6875
6876 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6877 }
6878 #endif
6879 /* Could grab some more details from the "representative"
6880 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6881 NT_LWPSTATUS note, presumably. */
6882
6883 return TRUE;
6884 }
6885 #endif /* defined (HAVE_PSTATUS_T) */
6886
6887 #if defined (HAVE_LWPSTATUS_T)
6888 static bfd_boolean
6889 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6890 {
6891 lwpstatus_t lwpstat;
6892 char buf[100];
6893 char *name;
6894 size_t len;
6895 asection *sect;
6896
6897 if (note->descsz != sizeof (lwpstat)
6898 #if defined (HAVE_LWPXSTATUS_T)
6899 && note->descsz != sizeof (lwpxstatus_t)
6900 #endif
6901 )
6902 return TRUE;
6903
6904 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6905
6906 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6907 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6908
6909 /* Make a ".reg/999" section. */
6910
6911 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6912 len = strlen (buf) + 1;
6913 name = bfd_alloc (abfd, len);
6914 if (name == NULL)
6915 return FALSE;
6916 memcpy (name, buf, len);
6917
6918 sect = bfd_make_section_anyway (abfd, name);
6919 if (sect == NULL)
6920 return FALSE;
6921
6922 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6923 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6924 sect->filepos = note->descpos
6925 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6926 #endif
6927
6928 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6929 sect->size = sizeof (lwpstat.pr_reg);
6930 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6931 #endif
6932
6933 sect->flags = SEC_HAS_CONTENTS;
6934 sect->alignment_power = 2;
6935
6936 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
6937 return FALSE;
6938
6939 /* Make a ".reg2/999" section */
6940
6941 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
6942 len = strlen (buf) + 1;
6943 name = bfd_alloc (abfd, len);
6944 if (name == NULL)
6945 return FALSE;
6946 memcpy (name, buf, len);
6947
6948 sect = bfd_make_section_anyway (abfd, name);
6949 if (sect == NULL)
6950 return FALSE;
6951
6952 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6953 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
6954 sect->filepos = note->descpos
6955 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
6956 #endif
6957
6958 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
6959 sect->size = sizeof (lwpstat.pr_fpreg);
6960 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
6961 #endif
6962
6963 sect->flags = SEC_HAS_CONTENTS;
6964 sect->alignment_power = 2;
6965
6966 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
6967 }
6968 #endif /* defined (HAVE_LWPSTATUS_T) */
6969
6970 #if defined (HAVE_WIN32_PSTATUS_T)
6971 static bfd_boolean
6972 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
6973 {
6974 char buf[30];
6975 char *name;
6976 size_t len;
6977 asection *sect;
6978 win32_pstatus_t pstatus;
6979
6980 if (note->descsz < sizeof (pstatus))
6981 return TRUE;
6982
6983 memcpy (&pstatus, note->descdata, sizeof (pstatus));
6984
6985 switch (pstatus.data_type)
6986 {
6987 case NOTE_INFO_PROCESS:
6988 /* FIXME: need to add ->core_command. */
6989 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
6990 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
6991 break;
6992
6993 case NOTE_INFO_THREAD:
6994 /* Make a ".reg/999" section. */
6995 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
6996
6997 len = strlen (buf) + 1;
6998 name = bfd_alloc (abfd, len);
6999 if (name == NULL)
7000 return FALSE;
7001
7002 memcpy (name, buf, len);
7003
7004 sect = bfd_make_section_anyway (abfd, name);
7005 if (sect == NULL)
7006 return FALSE;
7007
7008 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7009 sect->filepos = (note->descpos
7010 + offsetof (struct win32_pstatus,
7011 data.thread_info.thread_context));
7012 sect->flags = SEC_HAS_CONTENTS;
7013 sect->alignment_power = 2;
7014
7015 if (pstatus.data.thread_info.is_active_thread)
7016 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7017 return FALSE;
7018 break;
7019
7020 case NOTE_INFO_MODULE:
7021 /* Make a ".module/xxxxxxxx" section. */
7022 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
7023
7024 len = strlen (buf) + 1;
7025 name = bfd_alloc (abfd, len);
7026 if (name == NULL)
7027 return FALSE;
7028
7029 memcpy (name, buf, len);
7030
7031 sect = bfd_make_section_anyway (abfd, name);
7032
7033 if (sect == NULL)
7034 return FALSE;
7035
7036 sect->size = note->descsz;
7037 sect->filepos = note->descpos;
7038 sect->flags = SEC_HAS_CONTENTS;
7039 sect->alignment_power = 2;
7040 break;
7041
7042 default:
7043 return TRUE;
7044 }
7045
7046 return TRUE;
7047 }
7048 #endif /* HAVE_WIN32_PSTATUS_T */
7049
7050 static bfd_boolean
7051 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7052 {
7053 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7054
7055 switch (note->type)
7056 {
7057 default:
7058 return TRUE;
7059
7060 case NT_PRSTATUS:
7061 if (bed->elf_backend_grok_prstatus)
7062 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7063 return TRUE;
7064 #if defined (HAVE_PRSTATUS_T)
7065 return elfcore_grok_prstatus (abfd, note);
7066 #else
7067 return TRUE;
7068 #endif
7069
7070 #if defined (HAVE_PSTATUS_T)
7071 case NT_PSTATUS:
7072 return elfcore_grok_pstatus (abfd, note);
7073 #endif
7074
7075 #if defined (HAVE_LWPSTATUS_T)
7076 case NT_LWPSTATUS:
7077 return elfcore_grok_lwpstatus (abfd, note);
7078 #endif
7079
7080 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7081 return elfcore_grok_prfpreg (abfd, note);
7082
7083 #if defined (HAVE_WIN32_PSTATUS_T)
7084 case NT_WIN32PSTATUS:
7085 return elfcore_grok_win32pstatus (abfd, note);
7086 #endif
7087
7088 case NT_PRXFPREG: /* Linux SSE extension */
7089 if (note->namesz == 6
7090 && strcmp (note->namedata, "LINUX") == 0)
7091 return elfcore_grok_prxfpreg (abfd, note);
7092 else
7093 return TRUE;
7094
7095 case NT_PRPSINFO:
7096 case NT_PSINFO:
7097 if (bed->elf_backend_grok_psinfo)
7098 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7099 return TRUE;
7100 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7101 return elfcore_grok_psinfo (abfd, note);
7102 #else
7103 return TRUE;
7104 #endif
7105
7106 case NT_AUXV:
7107 {
7108 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7109
7110 if (sect == NULL)
7111 return FALSE;
7112 sect->size = note->descsz;
7113 sect->filepos = note->descpos;
7114 sect->flags = SEC_HAS_CONTENTS;
7115 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7116
7117 return TRUE;
7118 }
7119 }
7120 }
7121
7122 static bfd_boolean
7123 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7124 {
7125 char *cp;
7126
7127 cp = strchr (note->namedata, '@');
7128 if (cp != NULL)
7129 {
7130 *lwpidp = atoi(cp + 1);
7131 return TRUE;
7132 }
7133 return FALSE;
7134 }
7135
7136 static bfd_boolean
7137 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7138 {
7139
7140 /* Signal number at offset 0x08. */
7141 elf_tdata (abfd)->core_signal
7142 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7143
7144 /* Process ID at offset 0x50. */
7145 elf_tdata (abfd)->core_pid
7146 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7147
7148 /* Command name at 0x7c (max 32 bytes, including nul). */
7149 elf_tdata (abfd)->core_command
7150 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7151
7152 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7153 note);
7154 }
7155
7156 static bfd_boolean
7157 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7158 {
7159 int lwp;
7160
7161 if (elfcore_netbsd_get_lwpid (note, &lwp))
7162 elf_tdata (abfd)->core_lwpid = lwp;
7163
7164 if (note->type == NT_NETBSDCORE_PROCINFO)
7165 {
7166 /* NetBSD-specific core "procinfo". Note that we expect to
7167 find this note before any of the others, which is fine,
7168 since the kernel writes this note out first when it
7169 creates a core file. */
7170
7171 return elfcore_grok_netbsd_procinfo (abfd, note);
7172 }
7173
7174 /* As of Jan 2002 there are no other machine-independent notes
7175 defined for NetBSD core files. If the note type is less
7176 than the start of the machine-dependent note types, we don't
7177 understand it. */
7178
7179 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7180 return TRUE;
7181
7182
7183 switch (bfd_get_arch (abfd))
7184 {
7185 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7186 PT_GETFPREGS == mach+2. */
7187
7188 case bfd_arch_alpha:
7189 case bfd_arch_sparc:
7190 switch (note->type)
7191 {
7192 case NT_NETBSDCORE_FIRSTMACH+0:
7193 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7194
7195 case NT_NETBSDCORE_FIRSTMACH+2:
7196 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7197
7198 default:
7199 return TRUE;
7200 }
7201
7202 /* On all other arch's, PT_GETREGS == mach+1 and
7203 PT_GETFPREGS == mach+3. */
7204
7205 default:
7206 switch (note->type)
7207 {
7208 case NT_NETBSDCORE_FIRSTMACH+1:
7209 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7210
7211 case NT_NETBSDCORE_FIRSTMACH+3:
7212 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7213
7214 default:
7215 return TRUE;
7216 }
7217 }
7218 /* NOTREACHED */
7219 }
7220
7221 static bfd_boolean
7222 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7223 {
7224 void *ddata = note->descdata;
7225 char buf[100];
7226 char *name;
7227 asection *sect;
7228 short sig;
7229 unsigned flags;
7230
7231 /* nto_procfs_status 'pid' field is at offset 0. */
7232 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7233
7234 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7235 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7236
7237 /* nto_procfs_status 'flags' field is at offset 8. */
7238 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7239
7240 /* nto_procfs_status 'what' field is at offset 14. */
7241 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7242 {
7243 elf_tdata (abfd)->core_signal = sig;
7244 elf_tdata (abfd)->core_lwpid = *tid;
7245 }
7246
7247 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7248 do not come from signals so we make sure we set the current
7249 thread just in case. */
7250 if (flags & 0x00000080)
7251 elf_tdata (abfd)->core_lwpid = *tid;
7252
7253 /* Make a ".qnx_core_status/%d" section. */
7254 sprintf (buf, ".qnx_core_status/%d", *tid);
7255
7256 name = bfd_alloc (abfd, strlen (buf) + 1);
7257 if (name == NULL)
7258 return FALSE;
7259 strcpy (name, buf);
7260
7261 sect = bfd_make_section_anyway (abfd, name);
7262 if (sect == NULL)
7263 return FALSE;
7264
7265 sect->size = note->descsz;
7266 sect->filepos = note->descpos;
7267 sect->flags = SEC_HAS_CONTENTS;
7268 sect->alignment_power = 2;
7269
7270 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7271 }
7272
7273 static bfd_boolean
7274 elfcore_grok_nto_gregs (bfd *abfd, Elf_Internal_Note *note, pid_t tid)
7275 {
7276 char buf[100];
7277 char *name;
7278 asection *sect;
7279
7280 /* Make a ".reg/%d" section. */
7281 sprintf (buf, ".reg/%d", tid);
7282
7283 name = bfd_alloc (abfd, strlen (buf) + 1);
7284 if (name == NULL)
7285 return FALSE;
7286 strcpy (name, buf);
7287
7288 sect = bfd_make_section_anyway (abfd, name);
7289 if (sect == NULL)
7290 return FALSE;
7291
7292 sect->size = note->descsz;
7293 sect->filepos = note->descpos;
7294 sect->flags = SEC_HAS_CONTENTS;
7295 sect->alignment_power = 2;
7296
7297 /* This is the current thread. */
7298 if (elf_tdata (abfd)->core_lwpid == tid)
7299 return elfcore_maybe_make_sect (abfd, ".reg", sect);
7300
7301 return TRUE;
7302 }
7303
7304 #define BFD_QNT_CORE_INFO 7
7305 #define BFD_QNT_CORE_STATUS 8
7306 #define BFD_QNT_CORE_GREG 9
7307 #define BFD_QNT_CORE_FPREG 10
7308
7309 static bfd_boolean
7310 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7311 {
7312 /* Every GREG section has a STATUS section before it. Store the
7313 tid from the previous call to pass down to the next gregs
7314 function. */
7315 static pid_t tid = 1;
7316
7317 switch (note->type)
7318 {
7319 case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7320 case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid);
7321 case BFD_QNT_CORE_GREG: return elfcore_grok_nto_gregs (abfd, note, tid);
7322 case BFD_QNT_CORE_FPREG: return elfcore_grok_prfpreg (abfd, note);
7323 default: return TRUE;
7324 }
7325 }
7326
7327 /* Function: elfcore_write_note
7328
7329 Inputs:
7330 buffer to hold note
7331 name of note
7332 type of note
7333 data for note
7334 size of data for note
7335
7336 Return:
7337 End of buffer containing note. */
7338
7339 char *
7340 elfcore_write_note (bfd *abfd,
7341 char *buf,
7342 int *bufsiz,
7343 const char *name,
7344 int type,
7345 const void *input,
7346 int size)
7347 {
7348 Elf_External_Note *xnp;
7349 size_t namesz;
7350 size_t pad;
7351 size_t newspace;
7352 char *p, *dest;
7353
7354 namesz = 0;
7355 pad = 0;
7356 if (name != NULL)
7357 {
7358 const struct elf_backend_data *bed;
7359
7360 namesz = strlen (name) + 1;
7361 bed = get_elf_backend_data (abfd);
7362 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7363 }
7364
7365 newspace = 12 + namesz + pad + size;
7366
7367 p = realloc (buf, *bufsiz + newspace);
7368 dest = p + *bufsiz;
7369 *bufsiz += newspace;
7370 xnp = (Elf_External_Note *) dest;
7371 H_PUT_32 (abfd, namesz, xnp->namesz);
7372 H_PUT_32 (abfd, size, xnp->descsz);
7373 H_PUT_32 (abfd, type, xnp->type);
7374 dest = xnp->name;
7375 if (name != NULL)
7376 {
7377 memcpy (dest, name, namesz);
7378 dest += namesz;
7379 while (pad != 0)
7380 {
7381 *dest++ = '\0';
7382 --pad;
7383 }
7384 }
7385 memcpy (dest, input, size);
7386 return p;
7387 }
7388
7389 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7390 char *
7391 elfcore_write_prpsinfo (bfd *abfd,
7392 char *buf,
7393 int *bufsiz,
7394 const char *fname,
7395 const char *psargs)
7396 {
7397 int note_type;
7398 char *note_name = "CORE";
7399
7400 #if defined (HAVE_PSINFO_T)
7401 psinfo_t data;
7402 note_type = NT_PSINFO;
7403 #else
7404 prpsinfo_t data;
7405 note_type = NT_PRPSINFO;
7406 #endif
7407
7408 memset (&data, 0, sizeof (data));
7409 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7410 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7411 return elfcore_write_note (abfd, buf, bufsiz,
7412 note_name, note_type, &data, sizeof (data));
7413 }
7414 #endif /* PSINFO_T or PRPSINFO_T */
7415
7416 #if defined (HAVE_PRSTATUS_T)
7417 char *
7418 elfcore_write_prstatus (bfd *abfd,
7419 char *buf,
7420 int *bufsiz,
7421 long pid,
7422 int cursig,
7423 const void *gregs)
7424 {
7425 prstatus_t prstat;
7426 char *note_name = "CORE";
7427
7428 memset (&prstat, 0, sizeof (prstat));
7429 prstat.pr_pid = pid;
7430 prstat.pr_cursig = cursig;
7431 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7432 return elfcore_write_note (abfd, buf, bufsiz,
7433 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7434 }
7435 #endif /* HAVE_PRSTATUS_T */
7436
7437 #if defined (HAVE_LWPSTATUS_T)
7438 char *
7439 elfcore_write_lwpstatus (bfd *abfd,
7440 char *buf,
7441 int *bufsiz,
7442 long pid,
7443 int cursig,
7444 const void *gregs)
7445 {
7446 lwpstatus_t lwpstat;
7447 char *note_name = "CORE";
7448
7449 memset (&lwpstat, 0, sizeof (lwpstat));
7450 lwpstat.pr_lwpid = pid >> 16;
7451 lwpstat.pr_cursig = cursig;
7452 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7453 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7454 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7455 #if !defined(gregs)
7456 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7457 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7458 #else
7459 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7460 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7461 #endif
7462 #endif
7463 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7464 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7465 }
7466 #endif /* HAVE_LWPSTATUS_T */
7467
7468 #if defined (HAVE_PSTATUS_T)
7469 char *
7470 elfcore_write_pstatus (bfd *abfd,
7471 char *buf,
7472 int *bufsiz,
7473 long pid,
7474 int cursig,
7475 const void *gregs)
7476 {
7477 pstatus_t pstat;
7478 char *note_name = "CORE";
7479
7480 memset (&pstat, 0, sizeof (pstat));
7481 pstat.pr_pid = pid & 0xffff;
7482 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7483 NT_PSTATUS, &pstat, sizeof (pstat));
7484 return buf;
7485 }
7486 #endif /* HAVE_PSTATUS_T */
7487
7488 char *
7489 elfcore_write_prfpreg (bfd *abfd,
7490 char *buf,
7491 int *bufsiz,
7492 const void *fpregs,
7493 int size)
7494 {
7495 char *note_name = "CORE";
7496 return elfcore_write_note (abfd, buf, bufsiz,
7497 note_name, NT_FPREGSET, fpregs, size);
7498 }
7499
7500 char *
7501 elfcore_write_prxfpreg (bfd *abfd,
7502 char *buf,
7503 int *bufsiz,
7504 const void *xfpregs,
7505 int size)
7506 {
7507 char *note_name = "LINUX";
7508 return elfcore_write_note (abfd, buf, bufsiz,
7509 note_name, NT_PRXFPREG, xfpregs, size);
7510 }
7511
7512 static bfd_boolean
7513 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7514 {
7515 char *buf;
7516 char *p;
7517
7518 if (size <= 0)
7519 return TRUE;
7520
7521 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7522 return FALSE;
7523
7524 buf = bfd_malloc (size);
7525 if (buf == NULL)
7526 return FALSE;
7527
7528 if (bfd_bread (buf, size, abfd) != size)
7529 {
7530 error:
7531 free (buf);
7532 return FALSE;
7533 }
7534
7535 p = buf;
7536 while (p < buf + size)
7537 {
7538 /* FIXME: bad alignment assumption. */
7539 Elf_External_Note *xnp = (Elf_External_Note *) p;
7540 Elf_Internal_Note in;
7541
7542 in.type = H_GET_32 (abfd, xnp->type);
7543
7544 in.namesz = H_GET_32 (abfd, xnp->namesz);
7545 in.namedata = xnp->name;
7546
7547 in.descsz = H_GET_32 (abfd, xnp->descsz);
7548 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7549 in.descpos = offset + (in.descdata - buf);
7550
7551 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7552 {
7553 if (! elfcore_grok_netbsd_note (abfd, &in))
7554 goto error;
7555 }
7556 else if (strncmp (in.namedata, "QNX", 3) == 0)
7557 {
7558 if (! elfcore_grok_nto_note (abfd, &in))
7559 goto error;
7560 }
7561 else
7562 {
7563 if (! elfcore_grok_note (abfd, &in))
7564 goto error;
7565 }
7566
7567 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7568 }
7569
7570 free (buf);
7571 return TRUE;
7572 }
7573 \f
7574 /* Providing external access to the ELF program header table. */
7575
7576 /* Return an upper bound on the number of bytes required to store a
7577 copy of ABFD's program header table entries. Return -1 if an error
7578 occurs; bfd_get_error will return an appropriate code. */
7579
7580 long
7581 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7582 {
7583 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7584 {
7585 bfd_set_error (bfd_error_wrong_format);
7586 return -1;
7587 }
7588
7589 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7590 }
7591
7592 /* Copy ABFD's program header table entries to *PHDRS. The entries
7593 will be stored as an array of Elf_Internal_Phdr structures, as
7594 defined in include/elf/internal.h. To find out how large the
7595 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7596
7597 Return the number of program header table entries read, or -1 if an
7598 error occurs; bfd_get_error will return an appropriate code. */
7599
7600 int
7601 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7602 {
7603 int num_phdrs;
7604
7605 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7606 {
7607 bfd_set_error (bfd_error_wrong_format);
7608 return -1;
7609 }
7610
7611 num_phdrs = elf_elfheader (abfd)->e_phnum;
7612 memcpy (phdrs, elf_tdata (abfd)->phdr,
7613 num_phdrs * sizeof (Elf_Internal_Phdr));
7614
7615 return num_phdrs;
7616 }
7617
7618 void
7619 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7620 {
7621 #ifdef BFD64
7622 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7623
7624 i_ehdrp = elf_elfheader (abfd);
7625 if (i_ehdrp == NULL)
7626 sprintf_vma (buf, value);
7627 else
7628 {
7629 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7630 {
7631 #if BFD_HOST_64BIT_LONG
7632 sprintf (buf, "%016lx", value);
7633 #else
7634 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7635 _bfd_int64_low (value));
7636 #endif
7637 }
7638 else
7639 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7640 }
7641 #else
7642 sprintf_vma (buf, value);
7643 #endif
7644 }
7645
7646 void
7647 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7648 {
7649 #ifdef BFD64
7650 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7651
7652 i_ehdrp = elf_elfheader (abfd);
7653 if (i_ehdrp == NULL)
7654 fprintf_vma ((FILE *) stream, value);
7655 else
7656 {
7657 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7658 {
7659 #if BFD_HOST_64BIT_LONG
7660 fprintf ((FILE *) stream, "%016lx", value);
7661 #else
7662 fprintf ((FILE *) stream, "%08lx%08lx",
7663 _bfd_int64_high (value), _bfd_int64_low (value));
7664 #endif
7665 }
7666 else
7667 fprintf ((FILE *) stream, "%08lx",
7668 (unsigned long) (value & 0xffffffff));
7669 }
7670 #else
7671 fprintf_vma ((FILE *) stream, value);
7672 #endif
7673 }
7674
7675 enum elf_reloc_type_class
7676 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7677 {
7678 return reloc_class_normal;
7679 }
7680
7681 /* For RELA architectures, return the relocation value for a
7682 relocation against a local symbol. */
7683
7684 bfd_vma
7685 _bfd_elf_rela_local_sym (bfd *abfd,
7686 Elf_Internal_Sym *sym,
7687 asection **psec,
7688 Elf_Internal_Rela *rel)
7689 {
7690 asection *sec = *psec;
7691 bfd_vma relocation;
7692
7693 relocation = (sec->output_section->vma
7694 + sec->output_offset
7695 + sym->st_value);
7696 if ((sec->flags & SEC_MERGE)
7697 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7698 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7699 {
7700 rel->r_addend =
7701 _bfd_merged_section_offset (abfd, psec,
7702 elf_section_data (sec)->sec_info,
7703 sym->st_value + rel->r_addend);
7704 if (sec != *psec)
7705 {
7706 /* If we have changed the section, and our original section is
7707 marked with SEC_EXCLUDE, it means that the original
7708 SEC_MERGE section has been completely subsumed in some
7709 other SEC_MERGE section. In this case, we need to leave
7710 some info around for --emit-relocs. */
7711 if ((sec->flags & SEC_EXCLUDE) != 0)
7712 sec->kept_section = *psec;
7713 sec = *psec;
7714 }
7715 rel->r_addend -= relocation;
7716 rel->r_addend += sec->output_section->vma + sec->output_offset;
7717 }
7718 return relocation;
7719 }
7720
7721 bfd_vma
7722 _bfd_elf_rel_local_sym (bfd *abfd,
7723 Elf_Internal_Sym *sym,
7724 asection **psec,
7725 bfd_vma addend)
7726 {
7727 asection *sec = *psec;
7728
7729 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7730 return sym->st_value + addend;
7731
7732 return _bfd_merged_section_offset (abfd, psec,
7733 elf_section_data (sec)->sec_info,
7734 sym->st_value + addend);
7735 }
7736
7737 bfd_vma
7738 _bfd_elf_section_offset (bfd *abfd,
7739 struct bfd_link_info *info ATTRIBUTE_UNUSED,
7740 asection *sec,
7741 bfd_vma offset)
7742 {
7743 switch (sec->sec_info_type)
7744 {
7745 case ELF_INFO_TYPE_STABS:
7746 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
7747 offset);
7748 case ELF_INFO_TYPE_EH_FRAME:
7749 return _bfd_elf_eh_frame_section_offset (abfd, sec, offset);
7750 default:
7751 return offset;
7752 }
7753 }
7754 \f
7755 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7756 reconstruct an ELF file by reading the segments out of remote memory
7757 based on the ELF file header at EHDR_VMA and the ELF program headers it
7758 points to. If not null, *LOADBASEP is filled in with the difference
7759 between the VMAs from which the segments were read, and the VMAs the
7760 file headers (and hence BFD's idea of each section's VMA) put them at.
7761
7762 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7763 remote memory at target address VMA into the local buffer at MYADDR; it
7764 should return zero on success or an `errno' code on failure. TEMPL must
7765 be a BFD for an ELF target with the word size and byte order found in
7766 the remote memory. */
7767
7768 bfd *
7769 bfd_elf_bfd_from_remote_memory
7770 (bfd *templ,
7771 bfd_vma ehdr_vma,
7772 bfd_vma *loadbasep,
7773 int (*target_read_memory) (bfd_vma, char *, int))
7774 {
7775 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7776 (templ, ehdr_vma, loadbasep, target_read_memory);
7777 }
7778 \f
7779 long
7780 _bfd_elf_get_synthetic_symtab (bfd *abfd,
7781 long symcount ATTRIBUTE_UNUSED,
7782 asymbol **syms ATTRIBUTE_UNUSED,
7783 long dynsymcount ATTRIBUTE_UNUSED,
7784 asymbol **dynsyms,
7785 asymbol **ret)
7786 {
7787 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7788 asection *relplt;
7789 asymbol *s;
7790 const char *relplt_name;
7791 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7792 arelent *p;
7793 long count, i, n;
7794 size_t size;
7795 Elf_Internal_Shdr *hdr;
7796 char *names;
7797 asection *plt;
7798
7799 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
7800 return 0;
7801
7802 *ret = NULL;
7803 if (!bed->plt_sym_val)
7804 return 0;
7805
7806 relplt_name = bed->relplt_name;
7807 if (relplt_name == NULL)
7808 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
7809 relplt = bfd_get_section_by_name (abfd, relplt_name);
7810 if (relplt == NULL)
7811 return 0;
7812
7813 hdr = &elf_section_data (relplt)->this_hdr;
7814 if (hdr->sh_link != elf_dynsymtab (abfd)
7815 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
7816 return 0;
7817
7818 plt = bfd_get_section_by_name (abfd, ".plt");
7819 if (plt == NULL)
7820 return 0;
7821
7822 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7823 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
7824 return -1;
7825
7826 count = relplt->size / hdr->sh_entsize;
7827 size = count * sizeof (asymbol);
7828 p = relplt->relocation;
7829 for (i = 0; i < count; i++, s++, p++)
7830 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
7831
7832 s = *ret = bfd_malloc (size);
7833 if (s == NULL)
7834 return -1;
7835
7836 names = (char *) (s + count);
7837 p = relplt->relocation;
7838 n = 0;
7839 for (i = 0; i < count; i++, s++, p++)
7840 {
7841 size_t len;
7842 bfd_vma addr;
7843
7844 addr = bed->plt_sym_val (i, plt, p);
7845 if (addr == (bfd_vma) -1)
7846 continue;
7847
7848 *s = **p->sym_ptr_ptr;
7849 s->section = plt;
7850 s->value = addr - plt->vma;
7851 s->name = names;
7852 len = strlen ((*p->sym_ptr_ptr)->name);
7853 memcpy (names, (*p->sym_ptr_ptr)->name, len);
7854 names += len;
7855 memcpy (names, "@plt", sizeof ("@plt"));
7856 names += sizeof ("@plt");
7857 ++n;
7858 }
7859
7860 return n;
7861 }
7862
7863 /* Sort symbol by binding and section. We want to put definitions
7864 sorted by section at the beginning. */
7865
7866 static int
7867 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7868 {
7869 const Elf_Internal_Sym *s1;
7870 const Elf_Internal_Sym *s2;
7871 int shndx;
7872
7873 /* Make sure that undefined symbols are at the end. */
7874 s1 = (const Elf_Internal_Sym *) arg1;
7875 if (s1->st_shndx == SHN_UNDEF)
7876 return 1;
7877 s2 = (const Elf_Internal_Sym *) arg2;
7878 if (s2->st_shndx == SHN_UNDEF)
7879 return -1;
7880
7881 /* Sorted by section index. */
7882 shndx = s1->st_shndx - s2->st_shndx;
7883 if (shndx != 0)
7884 return shndx;
7885
7886 /* Sorted by binding. */
7887 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
7888 }
7889
7890 struct elf_symbol
7891 {
7892 Elf_Internal_Sym *sym;
7893 const char *name;
7894 };
7895
7896 static int
7897 elf_sym_name_compare (const void *arg1, const void *arg2)
7898 {
7899 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7900 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7901 return strcmp (s1->name, s2->name);
7902 }
7903
7904 /* Check if 2 sections define the same set of local and global
7905 symbols. */
7906
7907 bfd_boolean
7908 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
7909 {
7910 bfd *bfd1, *bfd2;
7911 const struct elf_backend_data *bed1, *bed2;
7912 Elf_Internal_Shdr *hdr1, *hdr2;
7913 bfd_size_type symcount1, symcount2;
7914 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7915 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
7916 Elf_Internal_Sym *isymend;
7917 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
7918 bfd_size_type count1, count2, i;
7919 int shndx1, shndx2;
7920 bfd_boolean result;
7921
7922 bfd1 = sec1->owner;
7923 bfd2 = sec2->owner;
7924
7925 /* If both are .gnu.linkonce sections, they have to have the same
7926 section name. */
7927 if (strncmp (sec1->name, ".gnu.linkonce",
7928 sizeof ".gnu.linkonce" - 1) == 0
7929 && strncmp (sec2->name, ".gnu.linkonce",
7930 sizeof ".gnu.linkonce" - 1) == 0)
7931 return strcmp (sec1->name + sizeof ".gnu.linkonce",
7932 sec2->name + sizeof ".gnu.linkonce") == 0;
7933
7934 /* Both sections have to be in ELF. */
7935 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
7936 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
7937 return FALSE;
7938
7939 if (elf_section_type (sec1) != elf_section_type (sec2))
7940 return FALSE;
7941
7942 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
7943 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
7944 {
7945 /* If both are members of section groups, they have to have the
7946 same group name. */
7947 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
7948 return FALSE;
7949 }
7950
7951 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
7952 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
7953 if (shndx1 == -1 || shndx2 == -1)
7954 return FALSE;
7955
7956 bed1 = get_elf_backend_data (bfd1);
7957 bed2 = get_elf_backend_data (bfd2);
7958 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
7959 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
7960 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
7961 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
7962
7963 if (symcount1 == 0 || symcount2 == 0)
7964 return FALSE;
7965
7966 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
7967 NULL, NULL, NULL);
7968 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
7969 NULL, NULL, NULL);
7970
7971 result = FALSE;
7972 if (isymbuf1 == NULL || isymbuf2 == NULL)
7973 goto done;
7974
7975 /* Sort symbols by binding and section. Global definitions are at
7976 the beginning. */
7977 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
7978 elf_sort_elf_symbol);
7979 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
7980 elf_sort_elf_symbol);
7981
7982 /* Count definitions in the section. */
7983 count1 = 0;
7984 for (isym = isymbuf1, isymend = isym + symcount1;
7985 isym < isymend; isym++)
7986 {
7987 if (isym->st_shndx == (unsigned int) shndx1)
7988 {
7989 if (count1 == 0)
7990 isymstart1 = isym;
7991 count1++;
7992 }
7993
7994 if (count1 && isym->st_shndx != (unsigned int) shndx1)
7995 break;
7996 }
7997
7998 count2 = 0;
7999 for (isym = isymbuf2, isymend = isym + symcount2;
8000 isym < isymend; isym++)
8001 {
8002 if (isym->st_shndx == (unsigned int) shndx2)
8003 {
8004 if (count2 == 0)
8005 isymstart2 = isym;
8006 count2++;
8007 }
8008
8009 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8010 break;
8011 }
8012
8013 if (count1 == 0 || count2 == 0 || count1 != count2)
8014 goto done;
8015
8016 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8017 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8018
8019 if (symtable1 == NULL || symtable2 == NULL)
8020 goto done;
8021
8022 symp = symtable1;
8023 for (isym = isymstart1, isymend = isym + count1;
8024 isym < isymend; isym++)
8025 {
8026 symp->sym = isym;
8027 symp->name = bfd_elf_string_from_elf_section (bfd1,
8028 hdr1->sh_link,
8029 isym->st_name);
8030 symp++;
8031 }
8032
8033 symp = symtable2;
8034 for (isym = isymstart2, isymend = isym + count1;
8035 isym < isymend; isym++)
8036 {
8037 symp->sym = isym;
8038 symp->name = bfd_elf_string_from_elf_section (bfd2,
8039 hdr2->sh_link,
8040 isym->st_name);
8041 symp++;
8042 }
8043
8044 /* Sort symbol by name. */
8045 qsort (symtable1, count1, sizeof (struct elf_symbol),
8046 elf_sym_name_compare);
8047 qsort (symtable2, count1, sizeof (struct elf_symbol),
8048 elf_sym_name_compare);
8049
8050 for (i = 0; i < count1; i++)
8051 /* Two symbols must have the same binding, type and name. */
8052 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8053 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8054 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8055 goto done;
8056
8057 result = TRUE;
8058
8059 done:
8060 if (symtable1)
8061 free (symtable1);
8062 if (symtable2)
8063 free (symtable2);
8064 if (isymbuf1)
8065 free (isymbuf1);
8066 if (isymbuf2)
8067 free (isymbuf2);
8068
8069 return result;
8070 }
This page took 0.182492 seconds and 5 git commands to generate.