Fix a seg-fault in the ELF note parser when a note with an excessively large alignmen...
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright (C) 1993-2018 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22
23 /*
24 SECTION
25 ELF backends
26
27 BFD support for ELF formats is being worked on.
28 Currently, the best supported back ends are for sparc and i386
29 (running svr4 or Solaris 2).
30
31 Documentation of the internals of the support code still needs
32 to be written. The code is changing quickly enough that we
33 haven't bothered yet. */
34
35 /* For sparc64-cross-sparc32. */
36 #define _SYSCALL32
37 #include "sysdep.h"
38 #include "bfd.h"
39 #include "bfdlink.h"
40 #include "libbfd.h"
41 #define ARCH_SIZE 0
42 #include "elf-bfd.h"
43 #include "libiberty.h"
44 #include "safe-ctype.h"
45 #include "elf-linux-core.h"
46
47 #ifdef CORE_HEADER
48 #include CORE_HEADER
49 #endif
50
51 static int elf_sort_sections (const void *, const void *);
52 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
53 static bfd_boolean prep_headers (bfd *);
54 static bfd_boolean swap_out_syms (bfd *, struct elf_strtab_hash **, int) ;
55 static bfd_boolean elf_read_notes (bfd *, file_ptr, bfd_size_type,
56 size_t align) ;
57 static bfd_boolean elf_parse_notes (bfd *abfd, char *buf, size_t size,
58 file_ptr offset, size_t align);
59
60 /* Swap version information in and out. The version information is
61 currently size independent. If that ever changes, this code will
62 need to move into elfcode.h. */
63
64 /* Swap in a Verdef structure. */
65
66 void
67 _bfd_elf_swap_verdef_in (bfd *abfd,
68 const Elf_External_Verdef *src,
69 Elf_Internal_Verdef *dst)
70 {
71 dst->vd_version = H_GET_16 (abfd, src->vd_version);
72 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
73 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
74 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
75 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
76 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
77 dst->vd_next = H_GET_32 (abfd, src->vd_next);
78 }
79
80 /* Swap out a Verdef structure. */
81
82 void
83 _bfd_elf_swap_verdef_out (bfd *abfd,
84 const Elf_Internal_Verdef *src,
85 Elf_External_Verdef *dst)
86 {
87 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
88 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
89 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
90 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
91 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
92 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
93 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
94 }
95
96 /* Swap in a Verdaux structure. */
97
98 void
99 _bfd_elf_swap_verdaux_in (bfd *abfd,
100 const Elf_External_Verdaux *src,
101 Elf_Internal_Verdaux *dst)
102 {
103 dst->vda_name = H_GET_32 (abfd, src->vda_name);
104 dst->vda_next = H_GET_32 (abfd, src->vda_next);
105 }
106
107 /* Swap out a Verdaux structure. */
108
109 void
110 _bfd_elf_swap_verdaux_out (bfd *abfd,
111 const Elf_Internal_Verdaux *src,
112 Elf_External_Verdaux *dst)
113 {
114 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
115 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
116 }
117
118 /* Swap in a Verneed structure. */
119
120 void
121 _bfd_elf_swap_verneed_in (bfd *abfd,
122 const Elf_External_Verneed *src,
123 Elf_Internal_Verneed *dst)
124 {
125 dst->vn_version = H_GET_16 (abfd, src->vn_version);
126 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
127 dst->vn_file = H_GET_32 (abfd, src->vn_file);
128 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
129 dst->vn_next = H_GET_32 (abfd, src->vn_next);
130 }
131
132 /* Swap out a Verneed structure. */
133
134 void
135 _bfd_elf_swap_verneed_out (bfd *abfd,
136 const Elf_Internal_Verneed *src,
137 Elf_External_Verneed *dst)
138 {
139 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
140 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
141 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
142 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
143 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
144 }
145
146 /* Swap in a Vernaux structure. */
147
148 void
149 _bfd_elf_swap_vernaux_in (bfd *abfd,
150 const Elf_External_Vernaux *src,
151 Elf_Internal_Vernaux *dst)
152 {
153 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
154 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
155 dst->vna_other = H_GET_16 (abfd, src->vna_other);
156 dst->vna_name = H_GET_32 (abfd, src->vna_name);
157 dst->vna_next = H_GET_32 (abfd, src->vna_next);
158 }
159
160 /* Swap out a Vernaux structure. */
161
162 void
163 _bfd_elf_swap_vernaux_out (bfd *abfd,
164 const Elf_Internal_Vernaux *src,
165 Elf_External_Vernaux *dst)
166 {
167 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
168 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
169 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
170 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
171 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
172 }
173
174 /* Swap in a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_in (bfd *abfd,
178 const Elf_External_Versym *src,
179 Elf_Internal_Versym *dst)
180 {
181 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
182 }
183
184 /* Swap out a Versym structure. */
185
186 void
187 _bfd_elf_swap_versym_out (bfd *abfd,
188 const Elf_Internal_Versym *src,
189 Elf_External_Versym *dst)
190 {
191 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
192 }
193
194 /* Standard ELF hash function. Do not change this function; you will
195 cause invalid hash tables to be generated. */
196
197 unsigned long
198 bfd_elf_hash (const char *namearg)
199 {
200 const unsigned char *name = (const unsigned char *) namearg;
201 unsigned long h = 0;
202 unsigned long g;
203 int ch;
204
205 while ((ch = *name++) != '\0')
206 {
207 h = (h << 4) + ch;
208 if ((g = (h & 0xf0000000)) != 0)
209 {
210 h ^= g >> 24;
211 /* The ELF ABI says `h &= ~g', but this is equivalent in
212 this case and on some machines one insn instead of two. */
213 h ^= g;
214 }
215 }
216 return h & 0xffffffff;
217 }
218
219 /* DT_GNU_HASH hash function. Do not change this function; you will
220 cause invalid hash tables to be generated. */
221
222 unsigned long
223 bfd_elf_gnu_hash (const char *namearg)
224 {
225 const unsigned char *name = (const unsigned char *) namearg;
226 unsigned long h = 5381;
227 unsigned char ch;
228
229 while ((ch = *name++) != '\0')
230 h = (h << 5) + h + ch;
231 return h & 0xffffffff;
232 }
233
234 /* Create a tdata field OBJECT_SIZE bytes in length, zeroed out and with
235 the object_id field of an elf_obj_tdata field set to OBJECT_ID. */
236 bfd_boolean
237 bfd_elf_allocate_object (bfd *abfd,
238 size_t object_size,
239 enum elf_target_id object_id)
240 {
241 BFD_ASSERT (object_size >= sizeof (struct elf_obj_tdata));
242 abfd->tdata.any = bfd_zalloc (abfd, object_size);
243 if (abfd->tdata.any == NULL)
244 return FALSE;
245
246 elf_object_id (abfd) = object_id;
247 if (abfd->direction != read_direction)
248 {
249 struct output_elf_obj_tdata *o = bfd_zalloc (abfd, sizeof *o);
250 if (o == NULL)
251 return FALSE;
252 elf_tdata (abfd)->o = o;
253 elf_program_header_size (abfd) = (bfd_size_type) -1;
254 }
255 return TRUE;
256 }
257
258
259 bfd_boolean
260 bfd_elf_make_object (bfd *abfd)
261 {
262 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
263 return bfd_elf_allocate_object (abfd, sizeof (struct elf_obj_tdata),
264 bed->target_id);
265 }
266
267 bfd_boolean
268 bfd_elf_mkcorefile (bfd *abfd)
269 {
270 /* I think this can be done just like an object file. */
271 if (!abfd->xvec->_bfd_set_format[(int) bfd_object] (abfd))
272 return FALSE;
273 elf_tdata (abfd)->core = bfd_zalloc (abfd, sizeof (*elf_tdata (abfd)->core));
274 return elf_tdata (abfd)->core != NULL;
275 }
276
277 static char *
278 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
279 {
280 Elf_Internal_Shdr **i_shdrp;
281 bfd_byte *shstrtab = NULL;
282 file_ptr offset;
283 bfd_size_type shstrtabsize;
284
285 i_shdrp = elf_elfsections (abfd);
286 if (i_shdrp == 0
287 || shindex >= elf_numsections (abfd)
288 || i_shdrp[shindex] == 0)
289 return NULL;
290
291 shstrtab = i_shdrp[shindex]->contents;
292 if (shstrtab == NULL)
293 {
294 /* No cached one, attempt to read, and cache what we read. */
295 offset = i_shdrp[shindex]->sh_offset;
296 shstrtabsize = i_shdrp[shindex]->sh_size;
297
298 /* Allocate and clear an extra byte at the end, to prevent crashes
299 in case the string table is not terminated. */
300 if (shstrtabsize + 1 <= 1
301 || bfd_seek (abfd, offset, SEEK_SET) != 0
302 || (shstrtab = (bfd_byte *) bfd_alloc (abfd, shstrtabsize + 1)) == NULL)
303 shstrtab = NULL;
304 else if (bfd_bread (shstrtab, shstrtabsize, abfd) != shstrtabsize)
305 {
306 if (bfd_get_error () != bfd_error_system_call)
307 bfd_set_error (bfd_error_file_truncated);
308 bfd_release (abfd, shstrtab);
309 shstrtab = NULL;
310 /* Once we've failed to read it, make sure we don't keep
311 trying. Otherwise, we'll keep allocating space for
312 the string table over and over. */
313 i_shdrp[shindex]->sh_size = 0;
314 }
315 else
316 shstrtab[shstrtabsize] = '\0';
317 i_shdrp[shindex]->contents = shstrtab;
318 }
319 return (char *) shstrtab;
320 }
321
322 char *
323 bfd_elf_string_from_elf_section (bfd *abfd,
324 unsigned int shindex,
325 unsigned int strindex)
326 {
327 Elf_Internal_Shdr *hdr;
328
329 if (strindex == 0)
330 return "";
331
332 if (elf_elfsections (abfd) == NULL || shindex >= elf_numsections (abfd))
333 return NULL;
334
335 hdr = elf_elfsections (abfd)[shindex];
336
337 if (hdr->contents == NULL)
338 {
339 if (hdr->sh_type != SHT_STRTAB && hdr->sh_type < SHT_LOOS)
340 {
341 /* PR 17512: file: f057ec89. */
342 /* xgettext:c-format */
343 _bfd_error_handler (_("%B: attempt to load strings from"
344 " a non-string section (number %d)"),
345 abfd, shindex);
346 return NULL;
347 }
348
349 if (bfd_elf_get_str_section (abfd, shindex) == NULL)
350 return NULL;
351 }
352
353 if (strindex >= hdr->sh_size)
354 {
355 unsigned int shstrndx = elf_elfheader(abfd)->e_shstrndx;
356 _bfd_error_handler
357 /* xgettext:c-format */
358 (_("%B: invalid string offset %u >= %Lu for section `%s'"),
359 abfd, strindex, hdr->sh_size,
360 (shindex == shstrndx && strindex == hdr->sh_name
361 ? ".shstrtab"
362 : bfd_elf_string_from_elf_section (abfd, shstrndx, hdr->sh_name)));
363 return NULL;
364 }
365
366 return ((char *) hdr->contents) + strindex;
367 }
368
369 /* Read and convert symbols to internal format.
370 SYMCOUNT specifies the number of symbols to read, starting from
371 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
372 are non-NULL, they are used to store the internal symbols, external
373 symbols, and symbol section index extensions, respectively.
374 Returns a pointer to the internal symbol buffer (malloced if necessary)
375 or NULL if there were no symbols or some kind of problem. */
376
377 Elf_Internal_Sym *
378 bfd_elf_get_elf_syms (bfd *ibfd,
379 Elf_Internal_Shdr *symtab_hdr,
380 size_t symcount,
381 size_t symoffset,
382 Elf_Internal_Sym *intsym_buf,
383 void *extsym_buf,
384 Elf_External_Sym_Shndx *extshndx_buf)
385 {
386 Elf_Internal_Shdr *shndx_hdr;
387 void *alloc_ext;
388 const bfd_byte *esym;
389 Elf_External_Sym_Shndx *alloc_extshndx;
390 Elf_External_Sym_Shndx *shndx;
391 Elf_Internal_Sym *alloc_intsym;
392 Elf_Internal_Sym *isym;
393 Elf_Internal_Sym *isymend;
394 const struct elf_backend_data *bed;
395 size_t extsym_size;
396 bfd_size_type amt;
397 file_ptr pos;
398
399 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
400 abort ();
401
402 if (symcount == 0)
403 return intsym_buf;
404
405 /* Normal syms might have section extension entries. */
406 shndx_hdr = NULL;
407 if (elf_symtab_shndx_list (ibfd) != NULL)
408 {
409 elf_section_list * entry;
410 Elf_Internal_Shdr **sections = elf_elfsections (ibfd);
411
412 /* Find an index section that is linked to this symtab section. */
413 for (entry = elf_symtab_shndx_list (ibfd); entry != NULL; entry = entry->next)
414 {
415 /* PR 20063. */
416 if (entry->hdr.sh_link >= elf_numsections (ibfd))
417 continue;
418
419 if (sections[entry->hdr.sh_link] == symtab_hdr)
420 {
421 shndx_hdr = & entry->hdr;
422 break;
423 };
424 }
425
426 if (shndx_hdr == NULL)
427 {
428 if (symtab_hdr == & elf_symtab_hdr (ibfd))
429 /* Not really accurate, but this was how the old code used to work. */
430 shndx_hdr = & elf_symtab_shndx_list (ibfd)->hdr;
431 /* Otherwise we do nothing. The assumption is that
432 the index table will not be needed. */
433 }
434 }
435
436 /* Read the symbols. */
437 alloc_ext = NULL;
438 alloc_extshndx = NULL;
439 alloc_intsym = NULL;
440 bed = get_elf_backend_data (ibfd);
441 extsym_size = bed->s->sizeof_sym;
442 amt = (bfd_size_type) symcount * extsym_size;
443 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
444 if (extsym_buf == NULL)
445 {
446 alloc_ext = bfd_malloc2 (symcount, extsym_size);
447 extsym_buf = alloc_ext;
448 }
449 if (extsym_buf == NULL
450 || bfd_seek (ibfd, pos, SEEK_SET) != 0
451 || bfd_bread (extsym_buf, amt, ibfd) != amt)
452 {
453 intsym_buf = NULL;
454 goto out;
455 }
456
457 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
458 extshndx_buf = NULL;
459 else
460 {
461 amt = (bfd_size_type) symcount * sizeof (Elf_External_Sym_Shndx);
462 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
463 if (extshndx_buf == NULL)
464 {
465 alloc_extshndx = (Elf_External_Sym_Shndx *)
466 bfd_malloc2 (symcount, sizeof (Elf_External_Sym_Shndx));
467 extshndx_buf = alloc_extshndx;
468 }
469 if (extshndx_buf == NULL
470 || bfd_seek (ibfd, pos, SEEK_SET) != 0
471 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
472 {
473 intsym_buf = NULL;
474 goto out;
475 }
476 }
477
478 if (intsym_buf == NULL)
479 {
480 alloc_intsym = (Elf_Internal_Sym *)
481 bfd_malloc2 (symcount, sizeof (Elf_Internal_Sym));
482 intsym_buf = alloc_intsym;
483 if (intsym_buf == NULL)
484 goto out;
485 }
486
487 /* Convert the symbols to internal form. */
488 isymend = intsym_buf + symcount;
489 for (esym = (const bfd_byte *) extsym_buf, isym = intsym_buf,
490 shndx = extshndx_buf;
491 isym < isymend;
492 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
493 if (!(*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym))
494 {
495 symoffset += (esym - (bfd_byte *) extsym_buf) / extsym_size;
496 /* xgettext:c-format */
497 _bfd_error_handler (_("%B symbol number %lu references"
498 " nonexistent SHT_SYMTAB_SHNDX section"),
499 ibfd, (unsigned long) symoffset);
500 if (alloc_intsym != NULL)
501 free (alloc_intsym);
502 intsym_buf = NULL;
503 goto out;
504 }
505
506 out:
507 if (alloc_ext != NULL)
508 free (alloc_ext);
509 if (alloc_extshndx != NULL)
510 free (alloc_extshndx);
511
512 return intsym_buf;
513 }
514
515 /* Look up a symbol name. */
516 const char *
517 bfd_elf_sym_name (bfd *abfd,
518 Elf_Internal_Shdr *symtab_hdr,
519 Elf_Internal_Sym *isym,
520 asection *sym_sec)
521 {
522 const char *name;
523 unsigned int iname = isym->st_name;
524 unsigned int shindex = symtab_hdr->sh_link;
525
526 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION
527 /* Check for a bogus st_shndx to avoid crashing. */
528 && isym->st_shndx < elf_numsections (abfd))
529 {
530 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
531 shindex = elf_elfheader (abfd)->e_shstrndx;
532 }
533
534 name = bfd_elf_string_from_elf_section (abfd, shindex, iname);
535 if (name == NULL)
536 name = "(null)";
537 else if (sym_sec && *name == '\0')
538 name = bfd_section_name (abfd, sym_sec);
539
540 return name;
541 }
542
543 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
544 sections. The first element is the flags, the rest are section
545 pointers. */
546
547 typedef union elf_internal_group {
548 Elf_Internal_Shdr *shdr;
549 unsigned int flags;
550 } Elf_Internal_Group;
551
552 /* Return the name of the group signature symbol. Why isn't the
553 signature just a string? */
554
555 static const char *
556 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
557 {
558 Elf_Internal_Shdr *hdr;
559 unsigned char esym[sizeof (Elf64_External_Sym)];
560 Elf_External_Sym_Shndx eshndx;
561 Elf_Internal_Sym isym;
562
563 /* First we need to ensure the symbol table is available. Make sure
564 that it is a symbol table section. */
565 if (ghdr->sh_link >= elf_numsections (abfd))
566 return NULL;
567 hdr = elf_elfsections (abfd) [ghdr->sh_link];
568 if (hdr->sh_type != SHT_SYMTAB
569 || ! bfd_section_from_shdr (abfd, ghdr->sh_link))
570 return NULL;
571
572 /* Go read the symbol. */
573 hdr = &elf_tdata (abfd)->symtab_hdr;
574 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
575 &isym, esym, &eshndx) == NULL)
576 return NULL;
577
578 return bfd_elf_sym_name (abfd, hdr, &isym, NULL);
579 }
580
581 /* Set next_in_group list pointer, and group name for NEWSECT. */
582
583 static bfd_boolean
584 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
585 {
586 unsigned int num_group = elf_tdata (abfd)->num_group;
587
588 /* If num_group is zero, read in all SHT_GROUP sections. The count
589 is set to -1 if there are no SHT_GROUP sections. */
590 if (num_group == 0)
591 {
592 unsigned int i, shnum;
593
594 /* First count the number of groups. If we have a SHT_GROUP
595 section with just a flag word (ie. sh_size is 4), ignore it. */
596 shnum = elf_numsections (abfd);
597 num_group = 0;
598
599 #define IS_VALID_GROUP_SECTION_HEADER(shdr, minsize) \
600 ( (shdr)->sh_type == SHT_GROUP \
601 && (shdr)->sh_size >= minsize \
602 && (shdr)->sh_entsize == GRP_ENTRY_SIZE \
603 && ((shdr)->sh_size % GRP_ENTRY_SIZE) == 0)
604
605 for (i = 0; i < shnum; i++)
606 {
607 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
608
609 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
610 num_group += 1;
611 }
612
613 if (num_group == 0)
614 {
615 num_group = (unsigned) -1;
616 elf_tdata (abfd)->num_group = num_group;
617 elf_tdata (abfd)->group_sect_ptr = NULL;
618 }
619 else
620 {
621 /* We keep a list of elf section headers for group sections,
622 so we can find them quickly. */
623 bfd_size_type amt;
624
625 elf_tdata (abfd)->num_group = num_group;
626 elf_tdata (abfd)->group_sect_ptr = (Elf_Internal_Shdr **)
627 bfd_alloc2 (abfd, num_group, sizeof (Elf_Internal_Shdr *));
628 if (elf_tdata (abfd)->group_sect_ptr == NULL)
629 return FALSE;
630 memset (elf_tdata (abfd)->group_sect_ptr, 0, num_group * sizeof (Elf_Internal_Shdr *));
631 num_group = 0;
632
633 for (i = 0; i < shnum; i++)
634 {
635 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
636
637 if (IS_VALID_GROUP_SECTION_HEADER (shdr, 2 * GRP_ENTRY_SIZE))
638 {
639 unsigned char *src;
640 Elf_Internal_Group *dest;
641
642 /* Make sure the group section has a BFD section
643 attached to it. */
644 if (!bfd_section_from_shdr (abfd, i))
645 return FALSE;
646
647 /* Add to list of sections. */
648 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
649 num_group += 1;
650
651 /* Read the raw contents. */
652 BFD_ASSERT (sizeof (*dest) >= 4);
653 amt = shdr->sh_size * sizeof (*dest) / 4;
654 shdr->contents = (unsigned char *)
655 bfd_alloc2 (abfd, shdr->sh_size, sizeof (*dest) / 4);
656 /* PR binutils/4110: Handle corrupt group headers. */
657 if (shdr->contents == NULL)
658 {
659 _bfd_error_handler
660 /* xgettext:c-format */
661 (_("%B: corrupt size field in group section"
662 " header: %#Lx"), abfd, shdr->sh_size);
663 bfd_set_error (bfd_error_bad_value);
664 -- num_group;
665 continue;
666 }
667
668 memset (shdr->contents, 0, amt);
669
670 if (bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
671 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
672 != shdr->sh_size))
673 {
674 _bfd_error_handler
675 /* xgettext:c-format */
676 (_("%B: invalid size field in group section"
677 " header: %#Lx"), abfd, shdr->sh_size);
678 bfd_set_error (bfd_error_bad_value);
679 -- num_group;
680 /* PR 17510: If the group contents are even
681 partially corrupt, do not allow any of the
682 contents to be used. */
683 memset (shdr->contents, 0, amt);
684 continue;
685 }
686
687 /* Translate raw contents, a flag word followed by an
688 array of elf section indices all in target byte order,
689 to the flag word followed by an array of elf section
690 pointers. */
691 src = shdr->contents + shdr->sh_size;
692 dest = (Elf_Internal_Group *) (shdr->contents + amt);
693
694 while (1)
695 {
696 unsigned int idx;
697
698 src -= 4;
699 --dest;
700 idx = H_GET_32 (abfd, src);
701 if (src == shdr->contents)
702 {
703 dest->flags = idx;
704 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
705 shdr->bfd_section->flags
706 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
707 break;
708 }
709 if (idx >= shnum)
710 {
711 _bfd_error_handler
712 (_("%B: invalid SHT_GROUP entry"), abfd);
713 idx = 0;
714 }
715 dest->shdr = elf_elfsections (abfd)[idx];
716 }
717 }
718 }
719
720 /* PR 17510: Corrupt binaries might contain invalid groups. */
721 if (num_group != (unsigned) elf_tdata (abfd)->num_group)
722 {
723 elf_tdata (abfd)->num_group = num_group;
724
725 /* If all groups are invalid then fail. */
726 if (num_group == 0)
727 {
728 elf_tdata (abfd)->group_sect_ptr = NULL;
729 elf_tdata (abfd)->num_group = num_group = -1;
730 _bfd_error_handler
731 (_("%B: no valid group sections found"), abfd);
732 bfd_set_error (bfd_error_bad_value);
733 }
734 }
735 }
736 }
737
738 if (num_group != (unsigned) -1)
739 {
740 unsigned int search_offset = elf_tdata (abfd)->group_search_offset;
741 unsigned int j;
742
743 for (j = 0; j < num_group; j++)
744 {
745 /* Begin search from previous found group. */
746 unsigned i = (j + search_offset) % num_group;
747
748 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
749 Elf_Internal_Group *idx;
750 bfd_size_type n_elt;
751
752 if (shdr == NULL)
753 continue;
754
755 idx = (Elf_Internal_Group *) shdr->contents;
756 if (idx == NULL || shdr->sh_size < 4)
757 {
758 /* See PR 21957 for a reproducer. */
759 /* xgettext:c-format */
760 _bfd_error_handler (_("%B: group section '%A' has no contents"),
761 abfd, shdr->bfd_section);
762 elf_tdata (abfd)->group_sect_ptr[i] = NULL;
763 bfd_set_error (bfd_error_bad_value);
764 return FALSE;
765 }
766 n_elt = shdr->sh_size / 4;
767
768 /* Look through this group's sections to see if current
769 section is a member. */
770 while (--n_elt != 0)
771 if ((++idx)->shdr == hdr)
772 {
773 asection *s = NULL;
774
775 /* We are a member of this group. Go looking through
776 other members to see if any others are linked via
777 next_in_group. */
778 idx = (Elf_Internal_Group *) shdr->contents;
779 n_elt = shdr->sh_size / 4;
780 while (--n_elt != 0)
781 if ((s = (++idx)->shdr->bfd_section) != NULL
782 && elf_next_in_group (s) != NULL)
783 break;
784 if (n_elt != 0)
785 {
786 /* Snarf the group name from other member, and
787 insert current section in circular list. */
788 elf_group_name (newsect) = elf_group_name (s);
789 elf_next_in_group (newsect) = elf_next_in_group (s);
790 elf_next_in_group (s) = newsect;
791 }
792 else
793 {
794 const char *gname;
795
796 gname = group_signature (abfd, shdr);
797 if (gname == NULL)
798 return FALSE;
799 elf_group_name (newsect) = gname;
800
801 /* Start a circular list with one element. */
802 elf_next_in_group (newsect) = newsect;
803 }
804
805 /* If the group section has been created, point to the
806 new member. */
807 if (shdr->bfd_section != NULL)
808 elf_next_in_group (shdr->bfd_section) = newsect;
809
810 elf_tdata (abfd)->group_search_offset = i;
811 j = num_group - 1;
812 break;
813 }
814 }
815 }
816
817 if (elf_group_name (newsect) == NULL)
818 {
819 /* xgettext:c-format */
820 _bfd_error_handler (_("%B: no group info for section '%A'"),
821 abfd, newsect);
822 return FALSE;
823 }
824 return TRUE;
825 }
826
827 bfd_boolean
828 _bfd_elf_setup_sections (bfd *abfd)
829 {
830 unsigned int i;
831 unsigned int num_group = elf_tdata (abfd)->num_group;
832 bfd_boolean result = TRUE;
833 asection *s;
834
835 /* Process SHF_LINK_ORDER. */
836 for (s = abfd->sections; s != NULL; s = s->next)
837 {
838 Elf_Internal_Shdr *this_hdr = &elf_section_data (s)->this_hdr;
839 if ((this_hdr->sh_flags & SHF_LINK_ORDER) != 0)
840 {
841 unsigned int elfsec = this_hdr->sh_link;
842 /* FIXME: The old Intel compiler and old strip/objcopy may
843 not set the sh_link or sh_info fields. Hence we could
844 get the situation where elfsec is 0. */
845 if (elfsec == 0)
846 {
847 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
848 if (bed->link_order_error_handler)
849 bed->link_order_error_handler
850 /* xgettext:c-format */
851 (_("%B: warning: sh_link not set for section `%A'"),
852 abfd, s);
853 }
854 else
855 {
856 asection *linksec = NULL;
857
858 if (elfsec < elf_numsections (abfd))
859 {
860 this_hdr = elf_elfsections (abfd)[elfsec];
861 linksec = this_hdr->bfd_section;
862 }
863
864 /* PR 1991, 2008:
865 Some strip/objcopy may leave an incorrect value in
866 sh_link. We don't want to proceed. */
867 if (linksec == NULL)
868 {
869 _bfd_error_handler
870 /* xgettext:c-format */
871 (_("%B: sh_link [%d] in section `%A' is incorrect"),
872 s->owner, elfsec, s);
873 result = FALSE;
874 }
875
876 elf_linked_to_section (s) = linksec;
877 }
878 }
879 else if (this_hdr->sh_type == SHT_GROUP
880 && elf_next_in_group (s) == NULL)
881 {
882 _bfd_error_handler
883 /* xgettext:c-format */
884 (_("%B: SHT_GROUP section [index %d] has no SHF_GROUP sections"),
885 abfd, elf_section_data (s)->this_idx);
886 result = FALSE;
887 }
888 }
889
890 /* Process section groups. */
891 if (num_group == (unsigned) -1)
892 return result;
893
894 for (i = 0; i < num_group; i++)
895 {
896 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
897 Elf_Internal_Group *idx;
898 unsigned int n_elt;
899
900 /* PR binutils/18758: Beware of corrupt binaries with invalid group data. */
901 if (shdr == NULL || shdr->bfd_section == NULL || shdr->contents == NULL)
902 {
903 _bfd_error_handler
904 /* xgettext:c-format */
905 (_("%B: section group entry number %u is corrupt"),
906 abfd, i);
907 result = FALSE;
908 continue;
909 }
910
911 idx = (Elf_Internal_Group *) shdr->contents;
912 n_elt = shdr->sh_size / 4;
913
914 while (--n_elt != 0)
915 {
916 ++ idx;
917
918 if (idx->shdr == NULL)
919 continue;
920 else if (idx->shdr->bfd_section)
921 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
922 else if (idx->shdr->sh_type != SHT_RELA
923 && idx->shdr->sh_type != SHT_REL)
924 {
925 /* There are some unknown sections in the group. */
926 _bfd_error_handler
927 /* xgettext:c-format */
928 (_("%B: unknown type [%#x] section `%s' in group [%A]"),
929 abfd,
930 idx->shdr->sh_type,
931 bfd_elf_string_from_elf_section (abfd,
932 (elf_elfheader (abfd)
933 ->e_shstrndx),
934 idx->shdr->sh_name),
935 shdr->bfd_section);
936 result = FALSE;
937 }
938 }
939 }
940
941 return result;
942 }
943
944 bfd_boolean
945 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
946 {
947 return elf_next_in_group (sec) != NULL;
948 }
949
950 static char *
951 convert_debug_to_zdebug (bfd *abfd, const char *name)
952 {
953 unsigned int len = strlen (name);
954 char *new_name = bfd_alloc (abfd, len + 2);
955 if (new_name == NULL)
956 return NULL;
957 new_name[0] = '.';
958 new_name[1] = 'z';
959 memcpy (new_name + 2, name + 1, len);
960 return new_name;
961 }
962
963 static char *
964 convert_zdebug_to_debug (bfd *abfd, const char *name)
965 {
966 unsigned int len = strlen (name);
967 char *new_name = bfd_alloc (abfd, len);
968 if (new_name == NULL)
969 return NULL;
970 new_name[0] = '.';
971 memcpy (new_name + 1, name + 2, len - 1);
972 return new_name;
973 }
974
975 /* Make a BFD section from an ELF section. We store a pointer to the
976 BFD section in the bfd_section field of the header. */
977
978 bfd_boolean
979 _bfd_elf_make_section_from_shdr (bfd *abfd,
980 Elf_Internal_Shdr *hdr,
981 const char *name,
982 int shindex)
983 {
984 asection *newsect;
985 flagword flags;
986 const struct elf_backend_data *bed;
987
988 if (hdr->bfd_section != NULL)
989 return TRUE;
990
991 newsect = bfd_make_section_anyway (abfd, name);
992 if (newsect == NULL)
993 return FALSE;
994
995 hdr->bfd_section = newsect;
996 elf_section_data (newsect)->this_hdr = *hdr;
997 elf_section_data (newsect)->this_idx = shindex;
998
999 /* Always use the real type/flags. */
1000 elf_section_type (newsect) = hdr->sh_type;
1001 elf_section_flags (newsect) = hdr->sh_flags;
1002
1003 newsect->filepos = hdr->sh_offset;
1004
1005 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
1006 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
1007 || ! bfd_set_section_alignment (abfd, newsect,
1008 bfd_log2 (hdr->sh_addralign)))
1009 return FALSE;
1010
1011 flags = SEC_NO_FLAGS;
1012 if (hdr->sh_type != SHT_NOBITS)
1013 flags |= SEC_HAS_CONTENTS;
1014 if (hdr->sh_type == SHT_GROUP)
1015 flags |= SEC_GROUP;
1016 if ((hdr->sh_flags & SHF_ALLOC) != 0)
1017 {
1018 flags |= SEC_ALLOC;
1019 if (hdr->sh_type != SHT_NOBITS)
1020 flags |= SEC_LOAD;
1021 }
1022 if ((hdr->sh_flags & SHF_WRITE) == 0)
1023 flags |= SEC_READONLY;
1024 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
1025 flags |= SEC_CODE;
1026 else if ((flags & SEC_LOAD) != 0)
1027 flags |= SEC_DATA;
1028 if ((hdr->sh_flags & SHF_MERGE) != 0)
1029 {
1030 flags |= SEC_MERGE;
1031 newsect->entsize = hdr->sh_entsize;
1032 }
1033 if ((hdr->sh_flags & SHF_STRINGS) != 0)
1034 flags |= SEC_STRINGS;
1035 if (hdr->sh_flags & SHF_GROUP)
1036 if (!setup_group (abfd, hdr, newsect))
1037 return FALSE;
1038 if ((hdr->sh_flags & SHF_TLS) != 0)
1039 flags |= SEC_THREAD_LOCAL;
1040 if ((hdr->sh_flags & SHF_EXCLUDE) != 0)
1041 flags |= SEC_EXCLUDE;
1042
1043 if ((flags & SEC_ALLOC) == 0)
1044 {
1045 /* The debugging sections appear to be recognized only by name,
1046 not any sort of flag. Their SEC_ALLOC bits are cleared. */
1047 if (name [0] == '.')
1048 {
1049 const char *p;
1050 int n;
1051 if (name[1] == 'd')
1052 p = ".debug", n = 6;
1053 else if (name[1] == 'g' && name[2] == 'n')
1054 p = ".gnu.linkonce.wi.", n = 17;
1055 else if (name[1] == 'g' && name[2] == 'd')
1056 p = ".gdb_index", n = 11; /* yes we really do mean 11. */
1057 else if (name[1] == 'l')
1058 p = ".line", n = 5;
1059 else if (name[1] == 's')
1060 p = ".stab", n = 5;
1061 else if (name[1] == 'z')
1062 p = ".zdebug", n = 7;
1063 else
1064 p = NULL, n = 0;
1065 if (p != NULL && strncmp (name, p, n) == 0)
1066 flags |= SEC_DEBUGGING;
1067 }
1068 }
1069
1070 /* As a GNU extension, if the name begins with .gnu.linkonce, we
1071 only link a single copy of the section. This is used to support
1072 g++. g++ will emit each template expansion in its own section.
1073 The symbols will be defined as weak, so that multiple definitions
1074 are permitted. The GNU linker extension is to actually discard
1075 all but one of the sections. */
1076 if (CONST_STRNEQ (name, ".gnu.linkonce")
1077 && elf_next_in_group (newsect) == NULL)
1078 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
1079
1080 bed = get_elf_backend_data (abfd);
1081 if (bed->elf_backend_section_flags)
1082 if (! bed->elf_backend_section_flags (&flags, hdr))
1083 return FALSE;
1084
1085 if (! bfd_set_section_flags (abfd, newsect, flags))
1086 return FALSE;
1087
1088 /* We do not parse the PT_NOTE segments as we are interested even in the
1089 separate debug info files which may have the segments offsets corrupted.
1090 PT_NOTEs from the core files are currently not parsed using BFD. */
1091 if (hdr->sh_type == SHT_NOTE)
1092 {
1093 bfd_byte *contents;
1094
1095 if (!bfd_malloc_and_get_section (abfd, newsect, &contents))
1096 return FALSE;
1097
1098 elf_parse_notes (abfd, (char *) contents, hdr->sh_size,
1099 hdr->sh_offset, hdr->sh_addralign);
1100 free (contents);
1101 }
1102
1103 if ((flags & SEC_ALLOC) != 0)
1104 {
1105 Elf_Internal_Phdr *phdr;
1106 unsigned int i, nload;
1107
1108 /* Some ELF linkers produce binaries with all the program header
1109 p_paddr fields zero. If we have such a binary with more than
1110 one PT_LOAD header, then leave the section lma equal to vma
1111 so that we don't create sections with overlapping lma. */
1112 phdr = elf_tdata (abfd)->phdr;
1113 for (nload = 0, i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1114 if (phdr->p_paddr != 0)
1115 break;
1116 else if (phdr->p_type == PT_LOAD && phdr->p_memsz != 0)
1117 ++nload;
1118 if (i >= elf_elfheader (abfd)->e_phnum && nload > 1)
1119 return TRUE;
1120
1121 phdr = elf_tdata (abfd)->phdr;
1122 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
1123 {
1124 if (((phdr->p_type == PT_LOAD
1125 && (hdr->sh_flags & SHF_TLS) == 0)
1126 || phdr->p_type == PT_TLS)
1127 && ELF_SECTION_IN_SEGMENT (hdr, phdr))
1128 {
1129 if ((flags & SEC_LOAD) == 0)
1130 newsect->lma = (phdr->p_paddr
1131 + hdr->sh_addr - phdr->p_vaddr);
1132 else
1133 /* We used to use the same adjustment for SEC_LOAD
1134 sections, but that doesn't work if the segment
1135 is packed with code from multiple VMAs.
1136 Instead we calculate the section LMA based on
1137 the segment LMA. It is assumed that the
1138 segment will contain sections with contiguous
1139 LMAs, even if the VMAs are not. */
1140 newsect->lma = (phdr->p_paddr
1141 + hdr->sh_offset - phdr->p_offset);
1142
1143 /* With contiguous segments, we can't tell from file
1144 offsets whether a section with zero size should
1145 be placed at the end of one segment or the
1146 beginning of the next. Decide based on vaddr. */
1147 if (hdr->sh_addr >= phdr->p_vaddr
1148 && (hdr->sh_addr + hdr->sh_size
1149 <= phdr->p_vaddr + phdr->p_memsz))
1150 break;
1151 }
1152 }
1153 }
1154
1155 /* Compress/decompress DWARF debug sections with names: .debug_* and
1156 .zdebug_*, after the section flags is set. */
1157 if ((flags & SEC_DEBUGGING)
1158 && ((name[1] == 'd' && name[6] == '_')
1159 || (name[1] == 'z' && name[7] == '_')))
1160 {
1161 enum { nothing, compress, decompress } action = nothing;
1162 int compression_header_size;
1163 bfd_size_type uncompressed_size;
1164 bfd_boolean compressed
1165 = bfd_is_section_compressed_with_header (abfd, newsect,
1166 &compression_header_size,
1167 &uncompressed_size);
1168
1169 if (compressed)
1170 {
1171 /* Compressed section. Check if we should decompress. */
1172 if ((abfd->flags & BFD_DECOMPRESS))
1173 action = decompress;
1174 }
1175
1176 /* Compress the uncompressed section or convert from/to .zdebug*
1177 section. Check if we should compress. */
1178 if (action == nothing)
1179 {
1180 if (newsect->size != 0
1181 && (abfd->flags & BFD_COMPRESS)
1182 && compression_header_size >= 0
1183 && uncompressed_size > 0
1184 && (!compressed
1185 || ((compression_header_size > 0)
1186 != ((abfd->flags & BFD_COMPRESS_GABI) != 0))))
1187 action = compress;
1188 else
1189 return TRUE;
1190 }
1191
1192 if (action == compress)
1193 {
1194 if (!bfd_init_section_compress_status (abfd, newsect))
1195 {
1196 _bfd_error_handler
1197 /* xgettext:c-format */
1198 (_("%B: unable to initialize compress status for section %s"),
1199 abfd, name);
1200 return FALSE;
1201 }
1202 }
1203 else
1204 {
1205 if (!bfd_init_section_decompress_status (abfd, newsect))
1206 {
1207 _bfd_error_handler
1208 /* xgettext:c-format */
1209 (_("%B: unable to initialize decompress status for section %s"),
1210 abfd, name);
1211 return FALSE;
1212 }
1213 }
1214
1215 if (abfd->is_linker_input)
1216 {
1217 if (name[1] == 'z'
1218 && (action == decompress
1219 || (action == compress
1220 && (abfd->flags & BFD_COMPRESS_GABI) != 0)))
1221 {
1222 /* Convert section name from .zdebug_* to .debug_* so
1223 that linker will consider this section as a debug
1224 section. */
1225 char *new_name = convert_zdebug_to_debug (abfd, name);
1226 if (new_name == NULL)
1227 return FALSE;
1228 bfd_rename_section (abfd, newsect, new_name);
1229 }
1230 }
1231 else
1232 /* For objdump, don't rename the section. For objcopy, delay
1233 section rename to elf_fake_sections. */
1234 newsect->flags |= SEC_ELF_RENAME;
1235 }
1236
1237 return TRUE;
1238 }
1239
1240 const char *const bfd_elf_section_type_names[] =
1241 {
1242 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
1243 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
1244 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
1245 };
1246
1247 /* ELF relocs are against symbols. If we are producing relocatable
1248 output, and the reloc is against an external symbol, and nothing
1249 has given us any additional addend, the resulting reloc will also
1250 be against the same symbol. In such a case, we don't want to
1251 change anything about the way the reloc is handled, since it will
1252 all be done at final link time. Rather than put special case code
1253 into bfd_perform_relocation, all the reloc types use this howto
1254 function. It just short circuits the reloc if producing
1255 relocatable output against an external symbol. */
1256
1257 bfd_reloc_status_type
1258 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
1259 arelent *reloc_entry,
1260 asymbol *symbol,
1261 void *data ATTRIBUTE_UNUSED,
1262 asection *input_section,
1263 bfd *output_bfd,
1264 char **error_message ATTRIBUTE_UNUSED)
1265 {
1266 if (output_bfd != NULL
1267 && (symbol->flags & BSF_SECTION_SYM) == 0
1268 && (! reloc_entry->howto->partial_inplace
1269 || reloc_entry->addend == 0))
1270 {
1271 reloc_entry->address += input_section->output_offset;
1272 return bfd_reloc_ok;
1273 }
1274
1275 return bfd_reloc_continue;
1276 }
1277 \f
1278 /* Returns TRUE if section A matches section B.
1279 Names, addresses and links may be different, but everything else
1280 should be the same. */
1281
1282 static bfd_boolean
1283 section_match (const Elf_Internal_Shdr * a,
1284 const Elf_Internal_Shdr * b)
1285 {
1286 return
1287 a->sh_type == b->sh_type
1288 && (a->sh_flags & ~ SHF_INFO_LINK)
1289 == (b->sh_flags & ~ SHF_INFO_LINK)
1290 && a->sh_addralign == b->sh_addralign
1291 && a->sh_size == b->sh_size
1292 && a->sh_entsize == b->sh_entsize
1293 /* FIXME: Check sh_addr ? */
1294 ;
1295 }
1296
1297 /* Find a section in OBFD that has the same characteristics
1298 as IHEADER. Return the index of this section or SHN_UNDEF if
1299 none can be found. Check's section HINT first, as this is likely
1300 to be the correct section. */
1301
1302 static unsigned int
1303 find_link (const bfd *obfd, const Elf_Internal_Shdr *iheader,
1304 const unsigned int hint)
1305 {
1306 Elf_Internal_Shdr ** oheaders = elf_elfsections (obfd);
1307 unsigned int i;
1308
1309 BFD_ASSERT (iheader != NULL);
1310
1311 /* See PR 20922 for a reproducer of the NULL test. */
1312 if (hint < elf_numsections (obfd)
1313 && oheaders[hint] != NULL
1314 && section_match (oheaders[hint], iheader))
1315 return hint;
1316
1317 for (i = 1; i < elf_numsections (obfd); i++)
1318 {
1319 Elf_Internal_Shdr * oheader = oheaders[i];
1320
1321 if (oheader == NULL)
1322 continue;
1323 if (section_match (oheader, iheader))
1324 /* FIXME: Do we care if there is a potential for
1325 multiple matches ? */
1326 return i;
1327 }
1328
1329 return SHN_UNDEF;
1330 }
1331
1332 /* PR 19938: Attempt to set the ELF section header fields of an OS or
1333 Processor specific section, based upon a matching input section.
1334 Returns TRUE upon success, FALSE otherwise. */
1335
1336 static bfd_boolean
1337 copy_special_section_fields (const bfd *ibfd,
1338 bfd *obfd,
1339 const Elf_Internal_Shdr *iheader,
1340 Elf_Internal_Shdr *oheader,
1341 const unsigned int secnum)
1342 {
1343 const struct elf_backend_data *bed = get_elf_backend_data (obfd);
1344 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1345 bfd_boolean changed = FALSE;
1346 unsigned int sh_link;
1347
1348 if (oheader->sh_type == SHT_NOBITS)
1349 {
1350 /* This is a feature for objcopy --only-keep-debug:
1351 When a section's type is changed to NOBITS, we preserve
1352 the sh_link and sh_info fields so that they can be
1353 matched up with the original.
1354
1355 Note: Strictly speaking these assignments are wrong.
1356 The sh_link and sh_info fields should point to the
1357 relevent sections in the output BFD, which may not be in
1358 the same location as they were in the input BFD. But
1359 the whole point of this action is to preserve the
1360 original values of the sh_link and sh_info fields, so
1361 that they can be matched up with the section headers in
1362 the original file. So strictly speaking we may be
1363 creating an invalid ELF file, but it is only for a file
1364 that just contains debug info and only for sections
1365 without any contents. */
1366 if (oheader->sh_link == 0)
1367 oheader->sh_link = iheader->sh_link;
1368 if (oheader->sh_info == 0)
1369 oheader->sh_info = iheader->sh_info;
1370 return TRUE;
1371 }
1372
1373 /* Allow the target a chance to decide how these fields should be set. */
1374 if (bed->elf_backend_copy_special_section_fields != NULL
1375 && bed->elf_backend_copy_special_section_fields
1376 (ibfd, obfd, iheader, oheader))
1377 return TRUE;
1378
1379 /* We have an iheader which might match oheader, and which has non-zero
1380 sh_info and/or sh_link fields. Attempt to follow those links and find
1381 the section in the output bfd which corresponds to the linked section
1382 in the input bfd. */
1383 if (iheader->sh_link != SHN_UNDEF)
1384 {
1385 /* See PR 20931 for a reproducer. */
1386 if (iheader->sh_link >= elf_numsections (ibfd))
1387 {
1388 _bfd_error_handler
1389 /* xgettext:c-format */
1390 (_("%B: Invalid sh_link field (%d) in section number %d"),
1391 ibfd, iheader->sh_link, secnum);
1392 return FALSE;
1393 }
1394
1395 sh_link = find_link (obfd, iheaders[iheader->sh_link], iheader->sh_link);
1396 if (sh_link != SHN_UNDEF)
1397 {
1398 oheader->sh_link = sh_link;
1399 changed = TRUE;
1400 }
1401 else
1402 /* FIXME: Should we install iheader->sh_link
1403 if we could not find a match ? */
1404 _bfd_error_handler
1405 /* xgettext:c-format */
1406 (_("%B: Failed to find link section for section %d"), obfd, secnum);
1407 }
1408
1409 if (iheader->sh_info)
1410 {
1411 /* The sh_info field can hold arbitrary information, but if the
1412 SHF_LINK_INFO flag is set then it should be interpreted as a
1413 section index. */
1414 if (iheader->sh_flags & SHF_INFO_LINK)
1415 {
1416 sh_link = find_link (obfd, iheaders[iheader->sh_info],
1417 iheader->sh_info);
1418 if (sh_link != SHN_UNDEF)
1419 oheader->sh_flags |= SHF_INFO_LINK;
1420 }
1421 else
1422 /* No idea what it means - just copy it. */
1423 sh_link = iheader->sh_info;
1424
1425 if (sh_link != SHN_UNDEF)
1426 {
1427 oheader->sh_info = sh_link;
1428 changed = TRUE;
1429 }
1430 else
1431 _bfd_error_handler
1432 /* xgettext:c-format */
1433 (_("%B: Failed to find info section for section %d"), obfd, secnum);
1434 }
1435
1436 return changed;
1437 }
1438
1439 /* Copy the program header and other data from one object module to
1440 another. */
1441
1442 bfd_boolean
1443 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
1444 {
1445 const Elf_Internal_Shdr **iheaders = (const Elf_Internal_Shdr **) elf_elfsections (ibfd);
1446 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
1447 const struct elf_backend_data *bed;
1448 unsigned int i;
1449
1450 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
1451 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
1452 return TRUE;
1453
1454 if (!elf_flags_init (obfd))
1455 {
1456 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1457 elf_flags_init (obfd) = TRUE;
1458 }
1459
1460 elf_gp (obfd) = elf_gp (ibfd);
1461
1462 /* Also copy the EI_OSABI field. */
1463 elf_elfheader (obfd)->e_ident[EI_OSABI] =
1464 elf_elfheader (ibfd)->e_ident[EI_OSABI];
1465
1466 /* If set, copy the EI_ABIVERSION field. */
1467 if (elf_elfheader (ibfd)->e_ident[EI_ABIVERSION])
1468 elf_elfheader (obfd)->e_ident[EI_ABIVERSION]
1469 = elf_elfheader (ibfd)->e_ident[EI_ABIVERSION];
1470
1471 /* Copy object attributes. */
1472 _bfd_elf_copy_obj_attributes (ibfd, obfd);
1473
1474 if (iheaders == NULL || oheaders == NULL)
1475 return TRUE;
1476
1477 bed = get_elf_backend_data (obfd);
1478
1479 /* Possibly copy other fields in the section header. */
1480 for (i = 1; i < elf_numsections (obfd); i++)
1481 {
1482 unsigned int j;
1483 Elf_Internal_Shdr * oheader = oheaders[i];
1484
1485 /* Ignore ordinary sections. SHT_NOBITS sections are considered however
1486 because of a special case need for generating separate debug info
1487 files. See below for more details. */
1488 if (oheader == NULL
1489 || (oheader->sh_type != SHT_NOBITS
1490 && oheader->sh_type < SHT_LOOS))
1491 continue;
1492
1493 /* Ignore empty sections, and sections whose
1494 fields have already been initialised. */
1495 if (oheader->sh_size == 0
1496 || (oheader->sh_info != 0 && oheader->sh_link != 0))
1497 continue;
1498
1499 /* Scan for the matching section in the input bfd.
1500 First we try for a direct mapping between the input and output sections. */
1501 for (j = 1; j < elf_numsections (ibfd); j++)
1502 {
1503 const Elf_Internal_Shdr * iheader = iheaders[j];
1504
1505 if (iheader == NULL)
1506 continue;
1507
1508 if (oheader->bfd_section != NULL
1509 && iheader->bfd_section != NULL
1510 && iheader->bfd_section->output_section != NULL
1511 && iheader->bfd_section->output_section == oheader->bfd_section)
1512 {
1513 /* We have found a connection from the input section to the
1514 output section. Attempt to copy the header fields. If
1515 this fails then do not try any further sections - there
1516 should only be a one-to-one mapping between input and output. */
1517 if (! copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1518 j = elf_numsections (ibfd);
1519 break;
1520 }
1521 }
1522
1523 if (j < elf_numsections (ibfd))
1524 continue;
1525
1526 /* That failed. So try to deduce the corresponding input section.
1527 Unfortunately we cannot compare names as the output string table
1528 is empty, so instead we check size, address and type. */
1529 for (j = 1; j < elf_numsections (ibfd); j++)
1530 {
1531 const Elf_Internal_Shdr * iheader = iheaders[j];
1532
1533 if (iheader == NULL)
1534 continue;
1535
1536 /* Try matching fields in the input section's header.
1537 Since --only-keep-debug turns all non-debug sections into
1538 SHT_NOBITS sections, the output SHT_NOBITS type matches any
1539 input type. */
1540 if ((oheader->sh_type == SHT_NOBITS
1541 || iheader->sh_type == oheader->sh_type)
1542 && (iheader->sh_flags & ~ SHF_INFO_LINK)
1543 == (oheader->sh_flags & ~ SHF_INFO_LINK)
1544 && iheader->sh_addralign == oheader->sh_addralign
1545 && iheader->sh_entsize == oheader->sh_entsize
1546 && iheader->sh_size == oheader->sh_size
1547 && iheader->sh_addr == oheader->sh_addr
1548 && (iheader->sh_info != oheader->sh_info
1549 || iheader->sh_link != oheader->sh_link))
1550 {
1551 if (copy_special_section_fields (ibfd, obfd, iheader, oheader, i))
1552 break;
1553 }
1554 }
1555
1556 if (j == elf_numsections (ibfd) && oheader->sh_type >= SHT_LOOS)
1557 {
1558 /* Final attempt. Call the backend copy function
1559 with a NULL input section. */
1560 if (bed->elf_backend_copy_special_section_fields != NULL)
1561 bed->elf_backend_copy_special_section_fields (ibfd, obfd, NULL, oheader);
1562 }
1563 }
1564
1565 return TRUE;
1566 }
1567
1568 static const char *
1569 get_segment_type (unsigned int p_type)
1570 {
1571 const char *pt;
1572 switch (p_type)
1573 {
1574 case PT_NULL: pt = "NULL"; break;
1575 case PT_LOAD: pt = "LOAD"; break;
1576 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1577 case PT_INTERP: pt = "INTERP"; break;
1578 case PT_NOTE: pt = "NOTE"; break;
1579 case PT_SHLIB: pt = "SHLIB"; break;
1580 case PT_PHDR: pt = "PHDR"; break;
1581 case PT_TLS: pt = "TLS"; break;
1582 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1583 case PT_GNU_STACK: pt = "STACK"; break;
1584 case PT_GNU_RELRO: pt = "RELRO"; break;
1585 default: pt = NULL; break;
1586 }
1587 return pt;
1588 }
1589
1590 /* Print out the program headers. */
1591
1592 bfd_boolean
1593 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1594 {
1595 FILE *f = (FILE *) farg;
1596 Elf_Internal_Phdr *p;
1597 asection *s;
1598 bfd_byte *dynbuf = NULL;
1599
1600 p = elf_tdata (abfd)->phdr;
1601 if (p != NULL)
1602 {
1603 unsigned int i, c;
1604
1605 fprintf (f, _("\nProgram Header:\n"));
1606 c = elf_elfheader (abfd)->e_phnum;
1607 for (i = 0; i < c; i++, p++)
1608 {
1609 const char *pt = get_segment_type (p->p_type);
1610 char buf[20];
1611
1612 if (pt == NULL)
1613 {
1614 sprintf (buf, "0x%lx", p->p_type);
1615 pt = buf;
1616 }
1617 fprintf (f, "%8s off 0x", pt);
1618 bfd_fprintf_vma (abfd, f, p->p_offset);
1619 fprintf (f, " vaddr 0x");
1620 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1621 fprintf (f, " paddr 0x");
1622 bfd_fprintf_vma (abfd, f, p->p_paddr);
1623 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1624 fprintf (f, " filesz 0x");
1625 bfd_fprintf_vma (abfd, f, p->p_filesz);
1626 fprintf (f, " memsz 0x");
1627 bfd_fprintf_vma (abfd, f, p->p_memsz);
1628 fprintf (f, " flags %c%c%c",
1629 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1630 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1631 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1632 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1633 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1634 fprintf (f, "\n");
1635 }
1636 }
1637
1638 s = bfd_get_section_by_name (abfd, ".dynamic");
1639 if (s != NULL)
1640 {
1641 unsigned int elfsec;
1642 unsigned long shlink;
1643 bfd_byte *extdyn, *extdynend;
1644 size_t extdynsize;
1645 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1646
1647 fprintf (f, _("\nDynamic Section:\n"));
1648
1649 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1650 goto error_return;
1651
1652 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1653 if (elfsec == SHN_BAD)
1654 goto error_return;
1655 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1656
1657 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1658 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1659
1660 extdyn = dynbuf;
1661 /* PR 17512: file: 6f427532. */
1662 if (s->size < extdynsize)
1663 goto error_return;
1664 extdynend = extdyn + s->size;
1665 /* PR 17512: file: id:000006,sig:06,src:000000,op:flip4,pos:5664.
1666 Fix range check. */
1667 for (; extdyn <= (extdynend - extdynsize); extdyn += extdynsize)
1668 {
1669 Elf_Internal_Dyn dyn;
1670 const char *name = "";
1671 char ab[20];
1672 bfd_boolean stringp;
1673 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1674
1675 (*swap_dyn_in) (abfd, extdyn, &dyn);
1676
1677 if (dyn.d_tag == DT_NULL)
1678 break;
1679
1680 stringp = FALSE;
1681 switch (dyn.d_tag)
1682 {
1683 default:
1684 if (bed->elf_backend_get_target_dtag)
1685 name = (*bed->elf_backend_get_target_dtag) (dyn.d_tag);
1686
1687 if (!strcmp (name, ""))
1688 {
1689 sprintf (ab, "%#" BFD_VMA_FMT "x", dyn.d_tag);
1690 name = ab;
1691 }
1692 break;
1693
1694 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1695 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1696 case DT_PLTGOT: name = "PLTGOT"; break;
1697 case DT_HASH: name = "HASH"; break;
1698 case DT_STRTAB: name = "STRTAB"; break;
1699 case DT_SYMTAB: name = "SYMTAB"; break;
1700 case DT_RELA: name = "RELA"; break;
1701 case DT_RELASZ: name = "RELASZ"; break;
1702 case DT_RELAENT: name = "RELAENT"; break;
1703 case DT_STRSZ: name = "STRSZ"; break;
1704 case DT_SYMENT: name = "SYMENT"; break;
1705 case DT_INIT: name = "INIT"; break;
1706 case DT_FINI: name = "FINI"; break;
1707 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1708 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1709 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1710 case DT_REL: name = "REL"; break;
1711 case DT_RELSZ: name = "RELSZ"; break;
1712 case DT_RELENT: name = "RELENT"; break;
1713 case DT_PLTREL: name = "PLTREL"; break;
1714 case DT_DEBUG: name = "DEBUG"; break;
1715 case DT_TEXTREL: name = "TEXTREL"; break;
1716 case DT_JMPREL: name = "JMPREL"; break;
1717 case DT_BIND_NOW: name = "BIND_NOW"; break;
1718 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1719 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1720 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1721 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1722 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1723 case DT_FLAGS: name = "FLAGS"; break;
1724 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1725 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1726 case DT_CHECKSUM: name = "CHECKSUM"; break;
1727 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1728 case DT_MOVEENT: name = "MOVEENT"; break;
1729 case DT_MOVESZ: name = "MOVESZ"; break;
1730 case DT_FEATURE: name = "FEATURE"; break;
1731 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1732 case DT_SYMINSZ: name = "SYMINSZ"; break;
1733 case DT_SYMINENT: name = "SYMINENT"; break;
1734 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1735 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1736 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1737 case DT_PLTPAD: name = "PLTPAD"; break;
1738 case DT_MOVETAB: name = "MOVETAB"; break;
1739 case DT_SYMINFO: name = "SYMINFO"; break;
1740 case DT_RELACOUNT: name = "RELACOUNT"; break;
1741 case DT_RELCOUNT: name = "RELCOUNT"; break;
1742 case DT_FLAGS_1: name = "FLAGS_1"; break;
1743 case DT_VERSYM: name = "VERSYM"; break;
1744 case DT_VERDEF: name = "VERDEF"; break;
1745 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1746 case DT_VERNEED: name = "VERNEED"; break;
1747 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1748 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1749 case DT_USED: name = "USED"; break;
1750 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1751 case DT_GNU_HASH: name = "GNU_HASH"; break;
1752 }
1753
1754 fprintf (f, " %-20s ", name);
1755 if (! stringp)
1756 {
1757 fprintf (f, "0x");
1758 bfd_fprintf_vma (abfd, f, dyn.d_un.d_val);
1759 }
1760 else
1761 {
1762 const char *string;
1763 unsigned int tagv = dyn.d_un.d_val;
1764
1765 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1766 if (string == NULL)
1767 goto error_return;
1768 fprintf (f, "%s", string);
1769 }
1770 fprintf (f, "\n");
1771 }
1772
1773 free (dynbuf);
1774 dynbuf = NULL;
1775 }
1776
1777 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1778 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1779 {
1780 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1781 return FALSE;
1782 }
1783
1784 if (elf_dynverdef (abfd) != 0)
1785 {
1786 Elf_Internal_Verdef *t;
1787
1788 fprintf (f, _("\nVersion definitions:\n"));
1789 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1790 {
1791 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1792 t->vd_flags, t->vd_hash,
1793 t->vd_nodename ? t->vd_nodename : "<corrupt>");
1794 if (t->vd_auxptr != NULL && t->vd_auxptr->vda_nextptr != NULL)
1795 {
1796 Elf_Internal_Verdaux *a;
1797
1798 fprintf (f, "\t");
1799 for (a = t->vd_auxptr->vda_nextptr;
1800 a != NULL;
1801 a = a->vda_nextptr)
1802 fprintf (f, "%s ",
1803 a->vda_nodename ? a->vda_nodename : "<corrupt>");
1804 fprintf (f, "\n");
1805 }
1806 }
1807 }
1808
1809 if (elf_dynverref (abfd) != 0)
1810 {
1811 Elf_Internal_Verneed *t;
1812
1813 fprintf (f, _("\nVersion References:\n"));
1814 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1815 {
1816 Elf_Internal_Vernaux *a;
1817
1818 fprintf (f, _(" required from %s:\n"),
1819 t->vn_filename ? t->vn_filename : "<corrupt>");
1820 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1821 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1822 a->vna_flags, a->vna_other,
1823 a->vna_nodename ? a->vna_nodename : "<corrupt>");
1824 }
1825 }
1826
1827 return TRUE;
1828
1829 error_return:
1830 if (dynbuf != NULL)
1831 free (dynbuf);
1832 return FALSE;
1833 }
1834
1835 /* Get version string. */
1836
1837 const char *
1838 _bfd_elf_get_symbol_version_string (bfd *abfd, asymbol *symbol,
1839 bfd_boolean *hidden)
1840 {
1841 const char *version_string = NULL;
1842 if (elf_dynversym (abfd) != 0
1843 && (elf_dynverdef (abfd) != 0 || elf_dynverref (abfd) != 0))
1844 {
1845 unsigned int vernum = ((elf_symbol_type *) symbol)->version;
1846
1847 *hidden = (vernum & VERSYM_HIDDEN) != 0;
1848 vernum &= VERSYM_VERSION;
1849
1850 if (vernum == 0)
1851 version_string = "";
1852 else if (vernum == 1)
1853 version_string = "Base";
1854 else if (vernum <= elf_tdata (abfd)->cverdefs)
1855 version_string =
1856 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1857 else
1858 {
1859 Elf_Internal_Verneed *t;
1860
1861 version_string = "";
1862 for (t = elf_tdata (abfd)->verref;
1863 t != NULL;
1864 t = t->vn_nextref)
1865 {
1866 Elf_Internal_Vernaux *a;
1867
1868 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1869 {
1870 if (a->vna_other == vernum)
1871 {
1872 version_string = a->vna_nodename;
1873 break;
1874 }
1875 }
1876 }
1877 }
1878 }
1879 return version_string;
1880 }
1881
1882 /* Display ELF-specific fields of a symbol. */
1883
1884 void
1885 bfd_elf_print_symbol (bfd *abfd,
1886 void *filep,
1887 asymbol *symbol,
1888 bfd_print_symbol_type how)
1889 {
1890 FILE *file = (FILE *) filep;
1891 switch (how)
1892 {
1893 case bfd_print_symbol_name:
1894 fprintf (file, "%s", symbol->name);
1895 break;
1896 case bfd_print_symbol_more:
1897 fprintf (file, "elf ");
1898 bfd_fprintf_vma (abfd, file, symbol->value);
1899 fprintf (file, " %x", symbol->flags);
1900 break;
1901 case bfd_print_symbol_all:
1902 {
1903 const char *section_name;
1904 const char *name = NULL;
1905 const struct elf_backend_data *bed;
1906 unsigned char st_other;
1907 bfd_vma val;
1908 const char *version_string;
1909 bfd_boolean hidden;
1910
1911 section_name = symbol->section ? symbol->section->name : "(*none*)";
1912
1913 bed = get_elf_backend_data (abfd);
1914 if (bed->elf_backend_print_symbol_all)
1915 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1916
1917 if (name == NULL)
1918 {
1919 name = symbol->name;
1920 bfd_print_symbol_vandf (abfd, file, symbol);
1921 }
1922
1923 fprintf (file, " %s\t", section_name);
1924 /* Print the "other" value for a symbol. For common symbols,
1925 we've already printed the size; now print the alignment.
1926 For other symbols, we have no specified alignment, and
1927 we've printed the address; now print the size. */
1928 if (symbol->section && bfd_is_com_section (symbol->section))
1929 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1930 else
1931 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1932 bfd_fprintf_vma (abfd, file, val);
1933
1934 /* If we have version information, print it. */
1935 version_string = _bfd_elf_get_symbol_version_string (abfd,
1936 symbol,
1937 &hidden);
1938 if (version_string)
1939 {
1940 if (!hidden)
1941 fprintf (file, " %-11s", version_string);
1942 else
1943 {
1944 int i;
1945
1946 fprintf (file, " (%s)", version_string);
1947 for (i = 10 - strlen (version_string); i > 0; --i)
1948 putc (' ', file);
1949 }
1950 }
1951
1952 /* If the st_other field is not zero, print it. */
1953 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1954
1955 switch (st_other)
1956 {
1957 case 0: break;
1958 case STV_INTERNAL: fprintf (file, " .internal"); break;
1959 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1960 case STV_PROTECTED: fprintf (file, " .protected"); break;
1961 default:
1962 /* Some other non-defined flags are also present, so print
1963 everything hex. */
1964 fprintf (file, " 0x%02x", (unsigned int) st_other);
1965 }
1966
1967 fprintf (file, " %s", name);
1968 }
1969 break;
1970 }
1971 }
1972 \f
1973 /* ELF .o/exec file reading */
1974
1975 /* Create a new bfd section from an ELF section header. */
1976
1977 bfd_boolean
1978 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1979 {
1980 Elf_Internal_Shdr *hdr;
1981 Elf_Internal_Ehdr *ehdr;
1982 const struct elf_backend_data *bed;
1983 const char *name;
1984 bfd_boolean ret = TRUE;
1985 static bfd_boolean * sections_being_created = NULL;
1986 static bfd * sections_being_created_abfd = NULL;
1987 static unsigned int nesting = 0;
1988
1989 if (shindex >= elf_numsections (abfd))
1990 return FALSE;
1991
1992 if (++ nesting > 3)
1993 {
1994 /* PR17512: A corrupt ELF binary might contain a recursive group of
1995 sections, with each the string indicies pointing to the next in the
1996 loop. Detect this here, by refusing to load a section that we are
1997 already in the process of loading. We only trigger this test if
1998 we have nested at least three sections deep as normal ELF binaries
1999 can expect to recurse at least once.
2000
2001 FIXME: It would be better if this array was attached to the bfd,
2002 rather than being held in a static pointer. */
2003
2004 if (sections_being_created_abfd != abfd)
2005 sections_being_created = NULL;
2006 if (sections_being_created == NULL)
2007 {
2008 /* FIXME: It would be more efficient to attach this array to the bfd somehow. */
2009 sections_being_created = (bfd_boolean *)
2010 bfd_zalloc (abfd, elf_numsections (abfd) * sizeof (bfd_boolean));
2011 sections_being_created_abfd = abfd;
2012 }
2013 if (sections_being_created [shindex])
2014 {
2015 _bfd_error_handler
2016 (_("%B: warning: loop in section dependencies detected"), abfd);
2017 return FALSE;
2018 }
2019 sections_being_created [shindex] = TRUE;
2020 }
2021
2022 hdr = elf_elfsections (abfd)[shindex];
2023 ehdr = elf_elfheader (abfd);
2024 name = bfd_elf_string_from_elf_section (abfd, ehdr->e_shstrndx,
2025 hdr->sh_name);
2026 if (name == NULL)
2027 goto fail;
2028
2029 bed = get_elf_backend_data (abfd);
2030 switch (hdr->sh_type)
2031 {
2032 case SHT_NULL:
2033 /* Inactive section. Throw it away. */
2034 goto success;
2035
2036 case SHT_PROGBITS: /* Normal section with contents. */
2037 case SHT_NOBITS: /* .bss section. */
2038 case SHT_HASH: /* .hash section. */
2039 case SHT_NOTE: /* .note section. */
2040 case SHT_INIT_ARRAY: /* .init_array section. */
2041 case SHT_FINI_ARRAY: /* .fini_array section. */
2042 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
2043 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
2044 case SHT_GNU_HASH: /* .gnu.hash section. */
2045 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2046 goto success;
2047
2048 case SHT_DYNAMIC: /* Dynamic linking information. */
2049 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2050 goto fail;
2051
2052 if (hdr->sh_link > elf_numsections (abfd))
2053 {
2054 /* PR 10478: Accept Solaris binaries with a sh_link
2055 field set to SHN_BEFORE or SHN_AFTER. */
2056 switch (bfd_get_arch (abfd))
2057 {
2058 case bfd_arch_i386:
2059 case bfd_arch_sparc:
2060 if (hdr->sh_link == (SHN_LORESERVE & 0xffff) /* SHN_BEFORE */
2061 || hdr->sh_link == ((SHN_LORESERVE + 1) & 0xffff) /* SHN_AFTER */)
2062 break;
2063 /* Otherwise fall through. */
2064 default:
2065 goto fail;
2066 }
2067 }
2068 else if (elf_elfsections (abfd)[hdr->sh_link] == NULL)
2069 goto fail;
2070 else if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
2071 {
2072 Elf_Internal_Shdr *dynsymhdr;
2073
2074 /* The shared libraries distributed with hpux11 have a bogus
2075 sh_link field for the ".dynamic" section. Find the
2076 string table for the ".dynsym" section instead. */
2077 if (elf_dynsymtab (abfd) != 0)
2078 {
2079 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
2080 hdr->sh_link = dynsymhdr->sh_link;
2081 }
2082 else
2083 {
2084 unsigned int i, num_sec;
2085
2086 num_sec = elf_numsections (abfd);
2087 for (i = 1; i < num_sec; i++)
2088 {
2089 dynsymhdr = elf_elfsections (abfd)[i];
2090 if (dynsymhdr->sh_type == SHT_DYNSYM)
2091 {
2092 hdr->sh_link = dynsymhdr->sh_link;
2093 break;
2094 }
2095 }
2096 }
2097 }
2098 goto success;
2099
2100 case SHT_SYMTAB: /* A symbol table. */
2101 if (elf_onesymtab (abfd) == shindex)
2102 goto success;
2103
2104 if (hdr->sh_entsize != bed->s->sizeof_sym)
2105 goto fail;
2106
2107 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2108 {
2109 if (hdr->sh_size != 0)
2110 goto fail;
2111 /* Some assemblers erroneously set sh_info to one with a
2112 zero sh_size. ld sees this as a global symbol count
2113 of (unsigned) -1. Fix it here. */
2114 hdr->sh_info = 0;
2115 goto success;
2116 }
2117
2118 /* PR 18854: A binary might contain more than one symbol table.
2119 Unusual, but possible. Warn, but continue. */
2120 if (elf_onesymtab (abfd) != 0)
2121 {
2122 _bfd_error_handler
2123 /* xgettext:c-format */
2124 (_("%B: warning: multiple symbol tables detected"
2125 " - ignoring the table in section %u"),
2126 abfd, shindex);
2127 goto success;
2128 }
2129 elf_onesymtab (abfd) = shindex;
2130 elf_symtab_hdr (abfd) = *hdr;
2131 elf_elfsections (abfd)[shindex] = hdr = & elf_symtab_hdr (abfd);
2132 abfd->flags |= HAS_SYMS;
2133
2134 /* Sometimes a shared object will map in the symbol table. If
2135 SHF_ALLOC is set, and this is a shared object, then we also
2136 treat this section as a BFD section. We can not base the
2137 decision purely on SHF_ALLOC, because that flag is sometimes
2138 set in a relocatable object file, which would confuse the
2139 linker. */
2140 if ((hdr->sh_flags & SHF_ALLOC) != 0
2141 && (abfd->flags & DYNAMIC) != 0
2142 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2143 shindex))
2144 goto fail;
2145
2146 /* Go looking for SHT_SYMTAB_SHNDX too, since if there is one we
2147 can't read symbols without that section loaded as well. It
2148 is most likely specified by the next section header. */
2149 {
2150 elf_section_list * entry;
2151 unsigned int i, num_sec;
2152
2153 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2154 if (entry->hdr.sh_link == shindex)
2155 goto success;
2156
2157 num_sec = elf_numsections (abfd);
2158 for (i = shindex + 1; i < num_sec; i++)
2159 {
2160 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2161
2162 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2163 && hdr2->sh_link == shindex)
2164 break;
2165 }
2166
2167 if (i == num_sec)
2168 for (i = 1; i < shindex; i++)
2169 {
2170 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2171
2172 if (hdr2->sh_type == SHT_SYMTAB_SHNDX
2173 && hdr2->sh_link == shindex)
2174 break;
2175 }
2176
2177 if (i != shindex)
2178 ret = bfd_section_from_shdr (abfd, i);
2179 /* else FIXME: we have failed to find the symbol table - should we issue an error ? */
2180 goto success;
2181 }
2182
2183 case SHT_DYNSYM: /* A dynamic symbol table. */
2184 if (elf_dynsymtab (abfd) == shindex)
2185 goto success;
2186
2187 if (hdr->sh_entsize != bed->s->sizeof_sym)
2188 goto fail;
2189
2190 if (hdr->sh_info * hdr->sh_entsize > hdr->sh_size)
2191 {
2192 if (hdr->sh_size != 0)
2193 goto fail;
2194
2195 /* Some linkers erroneously set sh_info to one with a
2196 zero sh_size. ld sees this as a global symbol count
2197 of (unsigned) -1. Fix it here. */
2198 hdr->sh_info = 0;
2199 goto success;
2200 }
2201
2202 /* PR 18854: A binary might contain more than one dynamic symbol table.
2203 Unusual, but possible. Warn, but continue. */
2204 if (elf_dynsymtab (abfd) != 0)
2205 {
2206 _bfd_error_handler
2207 /* xgettext:c-format */
2208 (_("%B: warning: multiple dynamic symbol tables detected"
2209 " - ignoring the table in section %u"),
2210 abfd, shindex);
2211 goto success;
2212 }
2213 elf_dynsymtab (abfd) = shindex;
2214 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
2215 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
2216 abfd->flags |= HAS_SYMS;
2217
2218 /* Besides being a symbol table, we also treat this as a regular
2219 section, so that objcopy can handle it. */
2220 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2221 goto success;
2222
2223 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections. */
2224 {
2225 elf_section_list * entry;
2226
2227 for (entry = elf_symtab_shndx_list (abfd); entry != NULL; entry = entry->next)
2228 if (entry->ndx == shindex)
2229 goto success;
2230
2231 entry = bfd_alloc (abfd, sizeof * entry);
2232 if (entry == NULL)
2233 goto fail;
2234 entry->ndx = shindex;
2235 entry->hdr = * hdr;
2236 entry->next = elf_symtab_shndx_list (abfd);
2237 elf_symtab_shndx_list (abfd) = entry;
2238 elf_elfsections (abfd)[shindex] = & entry->hdr;
2239 goto success;
2240 }
2241
2242 case SHT_STRTAB: /* A string table. */
2243 if (hdr->bfd_section != NULL)
2244 goto success;
2245
2246 if (ehdr->e_shstrndx == shindex)
2247 {
2248 elf_tdata (abfd)->shstrtab_hdr = *hdr;
2249 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
2250 goto success;
2251 }
2252
2253 if (elf_elfsections (abfd)[elf_onesymtab (abfd)]->sh_link == shindex)
2254 {
2255 symtab_strtab:
2256 elf_tdata (abfd)->strtab_hdr = *hdr;
2257 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->strtab_hdr;
2258 goto success;
2259 }
2260
2261 if (elf_elfsections (abfd)[elf_dynsymtab (abfd)]->sh_link == shindex)
2262 {
2263 dynsymtab_strtab:
2264 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
2265 hdr = &elf_tdata (abfd)->dynstrtab_hdr;
2266 elf_elfsections (abfd)[shindex] = hdr;
2267 /* We also treat this as a regular section, so that objcopy
2268 can handle it. */
2269 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2270 shindex);
2271 goto success;
2272 }
2273
2274 /* If the string table isn't one of the above, then treat it as a
2275 regular section. We need to scan all the headers to be sure,
2276 just in case this strtab section appeared before the above. */
2277 if (elf_onesymtab (abfd) == 0 || elf_dynsymtab (abfd) == 0)
2278 {
2279 unsigned int i, num_sec;
2280
2281 num_sec = elf_numsections (abfd);
2282 for (i = 1; i < num_sec; i++)
2283 {
2284 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
2285 if (hdr2->sh_link == shindex)
2286 {
2287 /* Prevent endless recursion on broken objects. */
2288 if (i == shindex)
2289 goto fail;
2290 if (! bfd_section_from_shdr (abfd, i))
2291 goto fail;
2292 if (elf_onesymtab (abfd) == i)
2293 goto symtab_strtab;
2294 if (elf_dynsymtab (abfd) == i)
2295 goto dynsymtab_strtab;
2296 }
2297 }
2298 }
2299 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2300 goto success;
2301
2302 case SHT_REL:
2303 case SHT_RELA:
2304 /* *These* do a lot of work -- but build no sections! */
2305 {
2306 asection *target_sect;
2307 Elf_Internal_Shdr *hdr2, **p_hdr;
2308 unsigned int num_sec = elf_numsections (abfd);
2309 struct bfd_elf_section_data *esdt;
2310
2311 if (hdr->sh_entsize
2312 != (bfd_size_type) (hdr->sh_type == SHT_REL
2313 ? bed->s->sizeof_rel : bed->s->sizeof_rela))
2314 goto fail;
2315
2316 /* Check for a bogus link to avoid crashing. */
2317 if (hdr->sh_link >= num_sec)
2318 {
2319 _bfd_error_handler
2320 /* xgettext:c-format */
2321 (_("%B: invalid link %u for reloc section %s (index %u)"),
2322 abfd, hdr->sh_link, name, shindex);
2323 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2324 shindex);
2325 goto success;
2326 }
2327
2328 /* For some incomprehensible reason Oracle distributes
2329 libraries for Solaris in which some of the objects have
2330 bogus sh_link fields. It would be nice if we could just
2331 reject them, but, unfortunately, some people need to use
2332 them. We scan through the section headers; if we find only
2333 one suitable symbol table, we clobber the sh_link to point
2334 to it. I hope this doesn't break anything.
2335
2336 Don't do it on executable nor shared library. */
2337 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0
2338 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
2339 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
2340 {
2341 unsigned int scan;
2342 int found;
2343
2344 found = 0;
2345 for (scan = 1; scan < num_sec; scan++)
2346 {
2347 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
2348 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
2349 {
2350 if (found != 0)
2351 {
2352 found = 0;
2353 break;
2354 }
2355 found = scan;
2356 }
2357 }
2358 if (found != 0)
2359 hdr->sh_link = found;
2360 }
2361
2362 /* Get the symbol table. */
2363 if ((elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
2364 || elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_DYNSYM)
2365 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
2366 goto fail;
2367
2368 /* If this reloc section does not use the main symbol table we
2369 don't treat it as a reloc section. BFD can't adequately
2370 represent such a section, so at least for now, we don't
2371 try. We just present it as a normal section. We also
2372 can't use it as a reloc section if it points to the null
2373 section, an invalid section, another reloc section, or its
2374 sh_link points to the null section. */
2375 if (hdr->sh_link != elf_onesymtab (abfd)
2376 || hdr->sh_link == SHN_UNDEF
2377 || hdr->sh_info == SHN_UNDEF
2378 || hdr->sh_info >= num_sec
2379 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_REL
2380 || elf_elfsections (abfd)[hdr->sh_info]->sh_type == SHT_RELA)
2381 {
2382 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2383 shindex);
2384 goto success;
2385 }
2386
2387 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
2388 goto fail;
2389
2390 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
2391 if (target_sect == NULL)
2392 goto fail;
2393
2394 esdt = elf_section_data (target_sect);
2395 if (hdr->sh_type == SHT_RELA)
2396 p_hdr = &esdt->rela.hdr;
2397 else
2398 p_hdr = &esdt->rel.hdr;
2399
2400 /* PR 17512: file: 0b4f81b7. */
2401 if (*p_hdr != NULL)
2402 goto fail;
2403 hdr2 = (Elf_Internal_Shdr *) bfd_alloc (abfd, sizeof (*hdr2));
2404 if (hdr2 == NULL)
2405 goto fail;
2406 *hdr2 = *hdr;
2407 *p_hdr = hdr2;
2408 elf_elfsections (abfd)[shindex] = hdr2;
2409 target_sect->reloc_count += (NUM_SHDR_ENTRIES (hdr)
2410 * bed->s->int_rels_per_ext_rel);
2411 target_sect->flags |= SEC_RELOC;
2412 target_sect->relocation = NULL;
2413 target_sect->rel_filepos = hdr->sh_offset;
2414 /* In the section to which the relocations apply, mark whether
2415 its relocations are of the REL or RELA variety. */
2416 if (hdr->sh_size != 0)
2417 {
2418 if (hdr->sh_type == SHT_RELA)
2419 target_sect->use_rela_p = 1;
2420 }
2421 abfd->flags |= HAS_RELOC;
2422 goto success;
2423 }
2424
2425 case SHT_GNU_verdef:
2426 elf_dynverdef (abfd) = shindex;
2427 elf_tdata (abfd)->dynverdef_hdr = *hdr;
2428 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2429 goto success;
2430
2431 case SHT_GNU_versym:
2432 if (hdr->sh_entsize != sizeof (Elf_External_Versym))
2433 goto fail;
2434
2435 elf_dynversym (abfd) = shindex;
2436 elf_tdata (abfd)->dynversym_hdr = *hdr;
2437 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2438 goto success;
2439
2440 case SHT_GNU_verneed:
2441 elf_dynverref (abfd) = shindex;
2442 elf_tdata (abfd)->dynverref_hdr = *hdr;
2443 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2444 goto success;
2445
2446 case SHT_SHLIB:
2447 goto success;
2448
2449 case SHT_GROUP:
2450 if (! IS_VALID_GROUP_SECTION_HEADER (hdr, GRP_ENTRY_SIZE))
2451 goto fail;
2452
2453 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2454 goto fail;
2455
2456 goto success;
2457
2458 default:
2459 /* Possibly an attributes section. */
2460 if (hdr->sh_type == SHT_GNU_ATTRIBUTES
2461 || hdr->sh_type == bed->obj_attrs_section_type)
2462 {
2463 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
2464 goto fail;
2465 _bfd_elf_parse_attributes (abfd, hdr);
2466 goto success;
2467 }
2468
2469 /* Check for any processor-specific section types. */
2470 if (bed->elf_backend_section_from_shdr (abfd, hdr, name, shindex))
2471 goto success;
2472
2473 if (hdr->sh_type >= SHT_LOUSER && hdr->sh_type <= SHT_HIUSER)
2474 {
2475 if ((hdr->sh_flags & SHF_ALLOC) != 0)
2476 /* FIXME: How to properly handle allocated section reserved
2477 for applications? */
2478 _bfd_error_handler
2479 /* xgettext:c-format */
2480 (_("%B: unknown type [%#x] section `%s'"),
2481 abfd, hdr->sh_type, name);
2482 else
2483 {
2484 /* Allow sections reserved for applications. */
2485 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name,
2486 shindex);
2487 goto success;
2488 }
2489 }
2490 else if (hdr->sh_type >= SHT_LOPROC
2491 && hdr->sh_type <= SHT_HIPROC)
2492 /* FIXME: We should handle this section. */
2493 _bfd_error_handler
2494 /* xgettext:c-format */
2495 (_("%B: unknown type [%#x] section `%s'"),
2496 abfd, hdr->sh_type, name);
2497 else if (hdr->sh_type >= SHT_LOOS && hdr->sh_type <= SHT_HIOS)
2498 {
2499 /* Unrecognised OS-specific sections. */
2500 if ((hdr->sh_flags & SHF_OS_NONCONFORMING) != 0)
2501 /* SHF_OS_NONCONFORMING indicates that special knowledge is
2502 required to correctly process the section and the file should
2503 be rejected with an error message. */
2504 _bfd_error_handler
2505 /* xgettext:c-format */
2506 (_("%B: unknown type [%#x] section `%s'"),
2507 abfd, hdr->sh_type, name);
2508 else
2509 {
2510 /* Otherwise it should be processed. */
2511 ret = _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex);
2512 goto success;
2513 }
2514 }
2515 else
2516 /* FIXME: We should handle this section. */
2517 _bfd_error_handler
2518 /* xgettext:c-format */
2519 (_("%B: unknown type [%#x] section `%s'"),
2520 abfd, hdr->sh_type, name);
2521
2522 goto fail;
2523 }
2524
2525 fail:
2526 ret = FALSE;
2527 success:
2528 if (sections_being_created && sections_being_created_abfd == abfd)
2529 sections_being_created [shindex] = FALSE;
2530 if (-- nesting == 0)
2531 {
2532 sections_being_created = NULL;
2533 sections_being_created_abfd = abfd;
2534 }
2535 return ret;
2536 }
2537
2538 /* Return the local symbol specified by ABFD, R_SYMNDX. */
2539
2540 Elf_Internal_Sym *
2541 bfd_sym_from_r_symndx (struct sym_cache *cache,
2542 bfd *abfd,
2543 unsigned long r_symndx)
2544 {
2545 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2546
2547 if (cache->abfd != abfd || cache->indx[ent] != r_symndx)
2548 {
2549 Elf_Internal_Shdr *symtab_hdr;
2550 unsigned char esym[sizeof (Elf64_External_Sym)];
2551 Elf_External_Sym_Shndx eshndx;
2552
2553 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2554 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2555 &cache->sym[ent], esym, &eshndx) == NULL)
2556 return NULL;
2557
2558 if (cache->abfd != abfd)
2559 {
2560 memset (cache->indx, -1, sizeof (cache->indx));
2561 cache->abfd = abfd;
2562 }
2563 cache->indx[ent] = r_symndx;
2564 }
2565
2566 return &cache->sym[ent];
2567 }
2568
2569 /* Given an ELF section number, retrieve the corresponding BFD
2570 section. */
2571
2572 asection *
2573 bfd_section_from_elf_index (bfd *abfd, unsigned int sec_index)
2574 {
2575 if (sec_index >= elf_numsections (abfd))
2576 return NULL;
2577 return elf_elfsections (abfd)[sec_index]->bfd_section;
2578 }
2579
2580 static const struct bfd_elf_special_section special_sections_b[] =
2581 {
2582 { STRING_COMMA_LEN (".bss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2583 { NULL, 0, 0, 0, 0 }
2584 };
2585
2586 static const struct bfd_elf_special_section special_sections_c[] =
2587 {
2588 { STRING_COMMA_LEN (".comment"), 0, SHT_PROGBITS, 0 },
2589 { NULL, 0, 0, 0, 0 }
2590 };
2591
2592 static const struct bfd_elf_special_section special_sections_d[] =
2593 {
2594 { STRING_COMMA_LEN (".data"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2595 { STRING_COMMA_LEN (".data1"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2596 /* There are more DWARF sections than these, but they needn't be added here
2597 unless you have to cope with broken compilers that don't emit section
2598 attributes or you want to help the user writing assembler. */
2599 { STRING_COMMA_LEN (".debug"), 0, SHT_PROGBITS, 0 },
2600 { STRING_COMMA_LEN (".debug_line"), 0, SHT_PROGBITS, 0 },
2601 { STRING_COMMA_LEN (".debug_info"), 0, SHT_PROGBITS, 0 },
2602 { STRING_COMMA_LEN (".debug_abbrev"), 0, SHT_PROGBITS, 0 },
2603 { STRING_COMMA_LEN (".debug_aranges"), 0, SHT_PROGBITS, 0 },
2604 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, SHF_ALLOC },
2605 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, SHF_ALLOC },
2606 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, SHF_ALLOC },
2607 { NULL, 0, 0, 0, 0 }
2608 };
2609
2610 static const struct bfd_elf_special_section special_sections_f[] =
2611 {
2612 { STRING_COMMA_LEN (".fini"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2613 { STRING_COMMA_LEN (".fini_array"), -2, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2614 { NULL, 0 , 0, 0, 0 }
2615 };
2616
2617 static const struct bfd_elf_special_section special_sections_g[] =
2618 {
2619 { STRING_COMMA_LEN (".gnu.linkonce.b"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2620 { STRING_COMMA_LEN (".gnu.lto_"), -1, SHT_PROGBITS, SHF_EXCLUDE },
2621 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2622 { STRING_COMMA_LEN (".gnu.version"), 0, SHT_GNU_versym, 0 },
2623 { STRING_COMMA_LEN (".gnu.version_d"), 0, SHT_GNU_verdef, 0 },
2624 { STRING_COMMA_LEN (".gnu.version_r"), 0, SHT_GNU_verneed, 0 },
2625 { STRING_COMMA_LEN (".gnu.liblist"), 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2626 { STRING_COMMA_LEN (".gnu.conflict"), 0, SHT_RELA, SHF_ALLOC },
2627 { STRING_COMMA_LEN (".gnu.hash"), 0, SHT_GNU_HASH, SHF_ALLOC },
2628 { NULL, 0, 0, 0, 0 }
2629 };
2630
2631 static const struct bfd_elf_special_section special_sections_h[] =
2632 {
2633 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, SHF_ALLOC },
2634 { NULL, 0, 0, 0, 0 }
2635 };
2636
2637 static const struct bfd_elf_special_section special_sections_i[] =
2638 {
2639 { STRING_COMMA_LEN (".init"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2640 { STRING_COMMA_LEN (".init_array"), -2, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2641 { STRING_COMMA_LEN (".interp"), 0, SHT_PROGBITS, 0 },
2642 { NULL, 0, 0, 0, 0 }
2643 };
2644
2645 static const struct bfd_elf_special_section special_sections_l[] =
2646 {
2647 { STRING_COMMA_LEN (".line"), 0, SHT_PROGBITS, 0 },
2648 { NULL, 0, 0, 0, 0 }
2649 };
2650
2651 static const struct bfd_elf_special_section special_sections_n[] =
2652 {
2653 { STRING_COMMA_LEN (".note.GNU-stack"), 0, SHT_PROGBITS, 0 },
2654 { STRING_COMMA_LEN (".note"), -1, SHT_NOTE, 0 },
2655 { NULL, 0, 0, 0, 0 }
2656 };
2657
2658 static const struct bfd_elf_special_section special_sections_p[] =
2659 {
2660 { STRING_COMMA_LEN (".preinit_array"), -2, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2661 { STRING_COMMA_LEN (".plt"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2662 { NULL, 0, 0, 0, 0 }
2663 };
2664
2665 static const struct bfd_elf_special_section special_sections_r[] =
2666 {
2667 { STRING_COMMA_LEN (".rodata"), -2, SHT_PROGBITS, SHF_ALLOC },
2668 { STRING_COMMA_LEN (".rodata1"), 0, SHT_PROGBITS, SHF_ALLOC },
2669 { STRING_COMMA_LEN (".rela"), -1, SHT_RELA, 0 },
2670 { STRING_COMMA_LEN (".rel"), -1, SHT_REL, 0 },
2671 { NULL, 0, 0, 0, 0 }
2672 };
2673
2674 static const struct bfd_elf_special_section special_sections_s[] =
2675 {
2676 { STRING_COMMA_LEN (".shstrtab"), 0, SHT_STRTAB, 0 },
2677 { STRING_COMMA_LEN (".strtab"), 0, SHT_STRTAB, 0 },
2678 { STRING_COMMA_LEN (".symtab"), 0, SHT_SYMTAB, 0 },
2679 /* See struct bfd_elf_special_section declaration for the semantics of
2680 this special case where .prefix_length != strlen (.prefix). */
2681 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2682 { NULL, 0, 0, 0, 0 }
2683 };
2684
2685 static const struct bfd_elf_special_section special_sections_t[] =
2686 {
2687 { STRING_COMMA_LEN (".text"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2688 { STRING_COMMA_LEN (".tbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2689 { STRING_COMMA_LEN (".tdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2690 { NULL, 0, 0, 0, 0 }
2691 };
2692
2693 static const struct bfd_elf_special_section special_sections_z[] =
2694 {
2695 { STRING_COMMA_LEN (".zdebug_line"), 0, SHT_PROGBITS, 0 },
2696 { STRING_COMMA_LEN (".zdebug_info"), 0, SHT_PROGBITS, 0 },
2697 { STRING_COMMA_LEN (".zdebug_abbrev"), 0, SHT_PROGBITS, 0 },
2698 { STRING_COMMA_LEN (".zdebug_aranges"), 0, SHT_PROGBITS, 0 },
2699 { NULL, 0, 0, 0, 0 }
2700 };
2701
2702 static const struct bfd_elf_special_section * const special_sections[] =
2703 {
2704 special_sections_b, /* 'b' */
2705 special_sections_c, /* 'c' */
2706 special_sections_d, /* 'd' */
2707 NULL, /* 'e' */
2708 special_sections_f, /* 'f' */
2709 special_sections_g, /* 'g' */
2710 special_sections_h, /* 'h' */
2711 special_sections_i, /* 'i' */
2712 NULL, /* 'j' */
2713 NULL, /* 'k' */
2714 special_sections_l, /* 'l' */
2715 NULL, /* 'm' */
2716 special_sections_n, /* 'n' */
2717 NULL, /* 'o' */
2718 special_sections_p, /* 'p' */
2719 NULL, /* 'q' */
2720 special_sections_r, /* 'r' */
2721 special_sections_s, /* 's' */
2722 special_sections_t, /* 't' */
2723 NULL, /* 'u' */
2724 NULL, /* 'v' */
2725 NULL, /* 'w' */
2726 NULL, /* 'x' */
2727 NULL, /* 'y' */
2728 special_sections_z /* 'z' */
2729 };
2730
2731 const struct bfd_elf_special_section *
2732 _bfd_elf_get_special_section (const char *name,
2733 const struct bfd_elf_special_section *spec,
2734 unsigned int rela)
2735 {
2736 int i;
2737 int len;
2738
2739 len = strlen (name);
2740
2741 for (i = 0; spec[i].prefix != NULL; i++)
2742 {
2743 int suffix_len;
2744 int prefix_len = spec[i].prefix_length;
2745
2746 if (len < prefix_len)
2747 continue;
2748 if (memcmp (name, spec[i].prefix, prefix_len) != 0)
2749 continue;
2750
2751 suffix_len = spec[i].suffix_length;
2752 if (suffix_len <= 0)
2753 {
2754 if (name[prefix_len] != 0)
2755 {
2756 if (suffix_len == 0)
2757 continue;
2758 if (name[prefix_len] != '.'
2759 && (suffix_len == -2
2760 || (rela && spec[i].type == SHT_REL)))
2761 continue;
2762 }
2763 }
2764 else
2765 {
2766 if (len < prefix_len + suffix_len)
2767 continue;
2768 if (memcmp (name + len - suffix_len,
2769 spec[i].prefix + prefix_len,
2770 suffix_len) != 0)
2771 continue;
2772 }
2773 return &spec[i];
2774 }
2775
2776 return NULL;
2777 }
2778
2779 const struct bfd_elf_special_section *
2780 _bfd_elf_get_sec_type_attr (bfd *abfd, asection *sec)
2781 {
2782 int i;
2783 const struct bfd_elf_special_section *spec;
2784 const struct elf_backend_data *bed;
2785
2786 /* See if this is one of the special sections. */
2787 if (sec->name == NULL)
2788 return NULL;
2789
2790 bed = get_elf_backend_data (abfd);
2791 spec = bed->special_sections;
2792 if (spec)
2793 {
2794 spec = _bfd_elf_get_special_section (sec->name,
2795 bed->special_sections,
2796 sec->use_rela_p);
2797 if (spec != NULL)
2798 return spec;
2799 }
2800
2801 if (sec->name[0] != '.')
2802 return NULL;
2803
2804 i = sec->name[1] - 'b';
2805 if (i < 0 || i > 'z' - 'b')
2806 return NULL;
2807
2808 spec = special_sections[i];
2809
2810 if (spec == NULL)
2811 return NULL;
2812
2813 return _bfd_elf_get_special_section (sec->name, spec, sec->use_rela_p);
2814 }
2815
2816 bfd_boolean
2817 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2818 {
2819 struct bfd_elf_section_data *sdata;
2820 const struct elf_backend_data *bed;
2821 const struct bfd_elf_special_section *ssect;
2822
2823 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2824 if (sdata == NULL)
2825 {
2826 sdata = (struct bfd_elf_section_data *) bfd_zalloc (abfd,
2827 sizeof (*sdata));
2828 if (sdata == NULL)
2829 return FALSE;
2830 sec->used_by_bfd = sdata;
2831 }
2832
2833 /* Indicate whether or not this section should use RELA relocations. */
2834 bed = get_elf_backend_data (abfd);
2835 sec->use_rela_p = bed->default_use_rela_p;
2836
2837 /* When we read a file, we don't need to set ELF section type and
2838 flags. They will be overridden in _bfd_elf_make_section_from_shdr
2839 anyway. We will set ELF section type and flags for all linker
2840 created sections. If user specifies BFD section flags, we will
2841 set ELF section type and flags based on BFD section flags in
2842 elf_fake_sections. Special handling for .init_array/.fini_array
2843 output sections since they may contain .ctors/.dtors input
2844 sections. We don't want _bfd_elf_init_private_section_data to
2845 copy ELF section type from .ctors/.dtors input sections. */
2846 if (abfd->direction != read_direction
2847 || (sec->flags & SEC_LINKER_CREATED) != 0)
2848 {
2849 ssect = (*bed->get_sec_type_attr) (abfd, sec);
2850 if (ssect != NULL
2851 && (!sec->flags
2852 || (sec->flags & SEC_LINKER_CREATED) != 0
2853 || ssect->type == SHT_INIT_ARRAY
2854 || ssect->type == SHT_FINI_ARRAY))
2855 {
2856 elf_section_type (sec) = ssect->type;
2857 elf_section_flags (sec) = ssect->attr;
2858 }
2859 }
2860
2861 return _bfd_generic_new_section_hook (abfd, sec);
2862 }
2863
2864 /* Create a new bfd section from an ELF program header.
2865
2866 Since program segments have no names, we generate a synthetic name
2867 of the form segment<NUM>, where NUM is generally the index in the
2868 program header table. For segments that are split (see below) we
2869 generate the names segment<NUM>a and segment<NUM>b.
2870
2871 Note that some program segments may have a file size that is different than
2872 (less than) the memory size. All this means is that at execution the
2873 system must allocate the amount of memory specified by the memory size,
2874 but only initialize it with the first "file size" bytes read from the
2875 file. This would occur for example, with program segments consisting
2876 of combined data+bss.
2877
2878 To handle the above situation, this routine generates TWO bfd sections
2879 for the single program segment. The first has the length specified by
2880 the file size of the segment, and the second has the length specified
2881 by the difference between the two sizes. In effect, the segment is split
2882 into its initialized and uninitialized parts.
2883
2884 */
2885
2886 bfd_boolean
2887 _bfd_elf_make_section_from_phdr (bfd *abfd,
2888 Elf_Internal_Phdr *hdr,
2889 int hdr_index,
2890 const char *type_name)
2891 {
2892 asection *newsect;
2893 char *name;
2894 char namebuf[64];
2895 size_t len;
2896 int split;
2897
2898 split = ((hdr->p_memsz > 0)
2899 && (hdr->p_filesz > 0)
2900 && (hdr->p_memsz > hdr->p_filesz));
2901
2902 if (hdr->p_filesz > 0)
2903 {
2904 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "a" : "");
2905 len = strlen (namebuf) + 1;
2906 name = (char *) bfd_alloc (abfd, len);
2907 if (!name)
2908 return FALSE;
2909 memcpy (name, namebuf, len);
2910 newsect = bfd_make_section (abfd, name);
2911 if (newsect == NULL)
2912 return FALSE;
2913 newsect->vma = hdr->p_vaddr;
2914 newsect->lma = hdr->p_paddr;
2915 newsect->size = hdr->p_filesz;
2916 newsect->filepos = hdr->p_offset;
2917 newsect->flags |= SEC_HAS_CONTENTS;
2918 newsect->alignment_power = bfd_log2 (hdr->p_align);
2919 if (hdr->p_type == PT_LOAD)
2920 {
2921 newsect->flags |= SEC_ALLOC;
2922 newsect->flags |= SEC_LOAD;
2923 if (hdr->p_flags & PF_X)
2924 {
2925 /* FIXME: all we known is that it has execute PERMISSION,
2926 may be data. */
2927 newsect->flags |= SEC_CODE;
2928 }
2929 }
2930 if (!(hdr->p_flags & PF_W))
2931 {
2932 newsect->flags |= SEC_READONLY;
2933 }
2934 }
2935
2936 if (hdr->p_memsz > hdr->p_filesz)
2937 {
2938 bfd_vma align;
2939
2940 sprintf (namebuf, "%s%d%s", type_name, hdr_index, split ? "b" : "");
2941 len = strlen (namebuf) + 1;
2942 name = (char *) bfd_alloc (abfd, len);
2943 if (!name)
2944 return FALSE;
2945 memcpy (name, namebuf, len);
2946 newsect = bfd_make_section (abfd, name);
2947 if (newsect == NULL)
2948 return FALSE;
2949 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2950 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2951 newsect->size = hdr->p_memsz - hdr->p_filesz;
2952 newsect->filepos = hdr->p_offset + hdr->p_filesz;
2953 align = newsect->vma & -newsect->vma;
2954 if (align == 0 || align > hdr->p_align)
2955 align = hdr->p_align;
2956 newsect->alignment_power = bfd_log2 (align);
2957 if (hdr->p_type == PT_LOAD)
2958 {
2959 /* Hack for gdb. Segments that have not been modified do
2960 not have their contents written to a core file, on the
2961 assumption that a debugger can find the contents in the
2962 executable. We flag this case by setting the fake
2963 section size to zero. Note that "real" bss sections will
2964 always have their contents dumped to the core file. */
2965 if (bfd_get_format (abfd) == bfd_core)
2966 newsect->size = 0;
2967 newsect->flags |= SEC_ALLOC;
2968 if (hdr->p_flags & PF_X)
2969 newsect->flags |= SEC_CODE;
2970 }
2971 if (!(hdr->p_flags & PF_W))
2972 newsect->flags |= SEC_READONLY;
2973 }
2974
2975 return TRUE;
2976 }
2977
2978 bfd_boolean
2979 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int hdr_index)
2980 {
2981 const struct elf_backend_data *bed;
2982
2983 switch (hdr->p_type)
2984 {
2985 case PT_NULL:
2986 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "null");
2987
2988 case PT_LOAD:
2989 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "load");
2990
2991 case PT_DYNAMIC:
2992 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "dynamic");
2993
2994 case PT_INTERP:
2995 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "interp");
2996
2997 case PT_NOTE:
2998 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "note"))
2999 return FALSE;
3000 if (! elf_read_notes (abfd, hdr->p_offset, hdr->p_filesz,
3001 hdr->p_align))
3002 return FALSE;
3003 return TRUE;
3004
3005 case PT_SHLIB:
3006 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "shlib");
3007
3008 case PT_PHDR:
3009 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "phdr");
3010
3011 case PT_GNU_EH_FRAME:
3012 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index,
3013 "eh_frame_hdr");
3014
3015 case PT_GNU_STACK:
3016 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "stack");
3017
3018 case PT_GNU_RELRO:
3019 return _bfd_elf_make_section_from_phdr (abfd, hdr, hdr_index, "relro");
3020
3021 default:
3022 /* Check for any processor-specific program segment types. */
3023 bed = get_elf_backend_data (abfd);
3024 return bed->elf_backend_section_from_phdr (abfd, hdr, hdr_index, "proc");
3025 }
3026 }
3027
3028 /* Return the REL_HDR for SEC, assuming there is only a single one, either
3029 REL or RELA. */
3030
3031 Elf_Internal_Shdr *
3032 _bfd_elf_single_rel_hdr (asection *sec)
3033 {
3034 if (elf_section_data (sec)->rel.hdr)
3035 {
3036 BFD_ASSERT (elf_section_data (sec)->rela.hdr == NULL);
3037 return elf_section_data (sec)->rel.hdr;
3038 }
3039 else
3040 return elf_section_data (sec)->rela.hdr;
3041 }
3042
3043 static bfd_boolean
3044 _bfd_elf_set_reloc_sh_name (bfd *abfd,
3045 Elf_Internal_Shdr *rel_hdr,
3046 const char *sec_name,
3047 bfd_boolean use_rela_p)
3048 {
3049 char *name = (char *) bfd_alloc (abfd,
3050 sizeof ".rela" + strlen (sec_name));
3051 if (name == NULL)
3052 return FALSE;
3053
3054 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", sec_name);
3055 rel_hdr->sh_name =
3056 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
3057 FALSE);
3058 if (rel_hdr->sh_name == (unsigned int) -1)
3059 return FALSE;
3060
3061 return TRUE;
3062 }
3063
3064 /* Allocate and initialize a section-header for a new reloc section,
3065 containing relocations against ASECT. It is stored in RELDATA. If
3066 USE_RELA_P is TRUE, we use RELA relocations; otherwise, we use REL
3067 relocations. */
3068
3069 static bfd_boolean
3070 _bfd_elf_init_reloc_shdr (bfd *abfd,
3071 struct bfd_elf_section_reloc_data *reldata,
3072 const char *sec_name,
3073 bfd_boolean use_rela_p,
3074 bfd_boolean delay_st_name_p)
3075 {
3076 Elf_Internal_Shdr *rel_hdr;
3077 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3078
3079 BFD_ASSERT (reldata->hdr == NULL);
3080 rel_hdr = bfd_zalloc (abfd, sizeof (*rel_hdr));
3081 reldata->hdr = rel_hdr;
3082
3083 if (delay_st_name_p)
3084 rel_hdr->sh_name = (unsigned int) -1;
3085 else if (!_bfd_elf_set_reloc_sh_name (abfd, rel_hdr, sec_name,
3086 use_rela_p))
3087 return FALSE;
3088 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
3089 rel_hdr->sh_entsize = (use_rela_p
3090 ? bed->s->sizeof_rela
3091 : bed->s->sizeof_rel);
3092 rel_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
3093 rel_hdr->sh_flags = 0;
3094 rel_hdr->sh_addr = 0;
3095 rel_hdr->sh_size = 0;
3096 rel_hdr->sh_offset = 0;
3097
3098 return TRUE;
3099 }
3100
3101 /* Return the default section type based on the passed in section flags. */
3102
3103 int
3104 bfd_elf_get_default_section_type (flagword flags)
3105 {
3106 if ((flags & SEC_ALLOC) != 0
3107 && (flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
3108 return SHT_NOBITS;
3109 return SHT_PROGBITS;
3110 }
3111
3112 struct fake_section_arg
3113 {
3114 struct bfd_link_info *link_info;
3115 bfd_boolean failed;
3116 };
3117
3118 /* Set up an ELF internal section header for a section. */
3119
3120 static void
3121 elf_fake_sections (bfd *abfd, asection *asect, void *fsarg)
3122 {
3123 struct fake_section_arg *arg = (struct fake_section_arg *)fsarg;
3124 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3125 struct bfd_elf_section_data *esd = elf_section_data (asect);
3126 Elf_Internal_Shdr *this_hdr;
3127 unsigned int sh_type;
3128 const char *name = asect->name;
3129 bfd_boolean delay_st_name_p = FALSE;
3130
3131 if (arg->failed)
3132 {
3133 /* We already failed; just get out of the bfd_map_over_sections
3134 loop. */
3135 return;
3136 }
3137
3138 this_hdr = &esd->this_hdr;
3139
3140 if (arg->link_info)
3141 {
3142 /* ld: compress DWARF debug sections with names: .debug_*. */
3143 if ((arg->link_info->compress_debug & COMPRESS_DEBUG)
3144 && (asect->flags & SEC_DEBUGGING)
3145 && name[1] == 'd'
3146 && name[6] == '_')
3147 {
3148 /* Set SEC_ELF_COMPRESS to indicate this section should be
3149 compressed. */
3150 asect->flags |= SEC_ELF_COMPRESS;
3151
3152 /* If this section will be compressed, delay adding section
3153 name to section name section after it is compressed in
3154 _bfd_elf_assign_file_positions_for_non_load. */
3155 delay_st_name_p = TRUE;
3156 }
3157 }
3158 else if ((asect->flags & SEC_ELF_RENAME))
3159 {
3160 /* objcopy: rename output DWARF debug section. */
3161 if ((abfd->flags & (BFD_DECOMPRESS | BFD_COMPRESS_GABI)))
3162 {
3163 /* When we decompress or compress with SHF_COMPRESSED,
3164 convert section name from .zdebug_* to .debug_* if
3165 needed. */
3166 if (name[1] == 'z')
3167 {
3168 char *new_name = convert_zdebug_to_debug (abfd, name);
3169 if (new_name == NULL)
3170 {
3171 arg->failed = TRUE;
3172 return;
3173 }
3174 name = new_name;
3175 }
3176 }
3177 else if (asect->compress_status == COMPRESS_SECTION_DONE)
3178 {
3179 /* PR binutils/18087: Compression does not always make a
3180 section smaller. So only rename the section when
3181 compression has actually taken place. If input section
3182 name is .zdebug_*, we should never compress it again. */
3183 char *new_name = convert_debug_to_zdebug (abfd, name);
3184 if (new_name == NULL)
3185 {
3186 arg->failed = TRUE;
3187 return;
3188 }
3189 BFD_ASSERT (name[1] != 'z');
3190 name = new_name;
3191 }
3192 }
3193
3194 if (delay_st_name_p)
3195 this_hdr->sh_name = (unsigned int) -1;
3196 else
3197 {
3198 this_hdr->sh_name
3199 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3200 name, FALSE);
3201 if (this_hdr->sh_name == (unsigned int) -1)
3202 {
3203 arg->failed = TRUE;
3204 return;
3205 }
3206 }
3207
3208 /* Don't clear sh_flags. Assembler may set additional bits. */
3209
3210 if ((asect->flags & SEC_ALLOC) != 0
3211 || asect->user_set_vma)
3212 this_hdr->sh_addr = asect->vma;
3213 else
3214 this_hdr->sh_addr = 0;
3215
3216 this_hdr->sh_offset = 0;
3217 this_hdr->sh_size = asect->size;
3218 this_hdr->sh_link = 0;
3219 /* PR 17512: file: 0eb809fe, 8b0535ee. */
3220 if (asect->alignment_power >= (sizeof (bfd_vma) * 8) - 1)
3221 {
3222 _bfd_error_handler
3223 /* xgettext:c-format */
3224 (_("%B: error: Alignment power %d of section `%A' is too big"),
3225 abfd, asect->alignment_power, asect);
3226 arg->failed = TRUE;
3227 return;
3228 }
3229 this_hdr->sh_addralign = (bfd_vma) 1 << asect->alignment_power;
3230 /* The sh_entsize and sh_info fields may have been set already by
3231 copy_private_section_data. */
3232
3233 this_hdr->bfd_section = asect;
3234 this_hdr->contents = NULL;
3235
3236 /* If the section type is unspecified, we set it based on
3237 asect->flags. */
3238 if ((asect->flags & SEC_GROUP) != 0)
3239 sh_type = SHT_GROUP;
3240 else
3241 sh_type = bfd_elf_get_default_section_type (asect->flags);
3242
3243 if (this_hdr->sh_type == SHT_NULL)
3244 this_hdr->sh_type = sh_type;
3245 else if (this_hdr->sh_type == SHT_NOBITS
3246 && sh_type == SHT_PROGBITS
3247 && (asect->flags & SEC_ALLOC) != 0)
3248 {
3249 /* Warn if we are changing a NOBITS section to PROGBITS, but
3250 allow the link to proceed. This can happen when users link
3251 non-bss input sections to bss output sections, or emit data
3252 to a bss output section via a linker script. */
3253 _bfd_error_handler
3254 (_("warning: section `%A' type changed to PROGBITS"), asect);
3255 this_hdr->sh_type = sh_type;
3256 }
3257
3258 switch (this_hdr->sh_type)
3259 {
3260 default:
3261 break;
3262
3263 case SHT_STRTAB:
3264 case SHT_NOTE:
3265 case SHT_NOBITS:
3266 case SHT_PROGBITS:
3267 break;
3268
3269 case SHT_INIT_ARRAY:
3270 case SHT_FINI_ARRAY:
3271 case SHT_PREINIT_ARRAY:
3272 this_hdr->sh_entsize = bed->s->arch_size / 8;
3273 break;
3274
3275 case SHT_HASH:
3276 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
3277 break;
3278
3279 case SHT_DYNSYM:
3280 this_hdr->sh_entsize = bed->s->sizeof_sym;
3281 break;
3282
3283 case SHT_DYNAMIC:
3284 this_hdr->sh_entsize = bed->s->sizeof_dyn;
3285 break;
3286
3287 case SHT_RELA:
3288 if (get_elf_backend_data (abfd)->may_use_rela_p)
3289 this_hdr->sh_entsize = bed->s->sizeof_rela;
3290 break;
3291
3292 case SHT_REL:
3293 if (get_elf_backend_data (abfd)->may_use_rel_p)
3294 this_hdr->sh_entsize = bed->s->sizeof_rel;
3295 break;
3296
3297 case SHT_GNU_versym:
3298 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
3299 break;
3300
3301 case SHT_GNU_verdef:
3302 this_hdr->sh_entsize = 0;
3303 /* objcopy or strip will copy over sh_info, but may not set
3304 cverdefs. The linker will set cverdefs, but sh_info will be
3305 zero. */
3306 if (this_hdr->sh_info == 0)
3307 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
3308 else
3309 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
3310 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
3311 break;
3312
3313 case SHT_GNU_verneed:
3314 this_hdr->sh_entsize = 0;
3315 /* objcopy or strip will copy over sh_info, but may not set
3316 cverrefs. The linker will set cverrefs, but sh_info will be
3317 zero. */
3318 if (this_hdr->sh_info == 0)
3319 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
3320 else
3321 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
3322 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
3323 break;
3324
3325 case SHT_GROUP:
3326 this_hdr->sh_entsize = GRP_ENTRY_SIZE;
3327 break;
3328
3329 case SHT_GNU_HASH:
3330 this_hdr->sh_entsize = bed->s->arch_size == 64 ? 0 : 4;
3331 break;
3332 }
3333
3334 if ((asect->flags & SEC_ALLOC) != 0)
3335 this_hdr->sh_flags |= SHF_ALLOC;
3336 if ((asect->flags & SEC_READONLY) == 0)
3337 this_hdr->sh_flags |= SHF_WRITE;
3338 if ((asect->flags & SEC_CODE) != 0)
3339 this_hdr->sh_flags |= SHF_EXECINSTR;
3340 if ((asect->flags & SEC_MERGE) != 0)
3341 {
3342 this_hdr->sh_flags |= SHF_MERGE;
3343 this_hdr->sh_entsize = asect->entsize;
3344 }
3345 if ((asect->flags & SEC_STRINGS) != 0)
3346 this_hdr->sh_flags |= SHF_STRINGS;
3347 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
3348 this_hdr->sh_flags |= SHF_GROUP;
3349 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
3350 {
3351 this_hdr->sh_flags |= SHF_TLS;
3352 if (asect->size == 0
3353 && (asect->flags & SEC_HAS_CONTENTS) == 0)
3354 {
3355 struct bfd_link_order *o = asect->map_tail.link_order;
3356
3357 this_hdr->sh_size = 0;
3358 if (o != NULL)
3359 {
3360 this_hdr->sh_size = o->offset + o->size;
3361 if (this_hdr->sh_size != 0)
3362 this_hdr->sh_type = SHT_NOBITS;
3363 }
3364 }
3365 }
3366 if ((asect->flags & (SEC_GROUP | SEC_EXCLUDE)) == SEC_EXCLUDE)
3367 this_hdr->sh_flags |= SHF_EXCLUDE;
3368
3369 /* If the section has relocs, set up a section header for the
3370 SHT_REL[A] section. If two relocation sections are required for
3371 this section, it is up to the processor-specific back-end to
3372 create the other. */
3373 if ((asect->flags & SEC_RELOC) != 0)
3374 {
3375 /* When doing a relocatable link, create both REL and RELA sections if
3376 needed. */
3377 if (arg->link_info
3378 /* Do the normal setup if we wouldn't create any sections here. */
3379 && esd->rel.count + esd->rela.count > 0
3380 && (bfd_link_relocatable (arg->link_info)
3381 || arg->link_info->emitrelocations))
3382 {
3383 if (esd->rel.count && esd->rel.hdr == NULL
3384 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rel, name,
3385 FALSE, delay_st_name_p))
3386 {
3387 arg->failed = TRUE;
3388 return;
3389 }
3390 if (esd->rela.count && esd->rela.hdr == NULL
3391 && !_bfd_elf_init_reloc_shdr (abfd, &esd->rela, name,
3392 TRUE, delay_st_name_p))
3393 {
3394 arg->failed = TRUE;
3395 return;
3396 }
3397 }
3398 else if (!_bfd_elf_init_reloc_shdr (abfd,
3399 (asect->use_rela_p
3400 ? &esd->rela : &esd->rel),
3401 name,
3402 asect->use_rela_p,
3403 delay_st_name_p))
3404 {
3405 arg->failed = TRUE;
3406 return;
3407 }
3408 }
3409
3410 /* Check for processor-specific section types. */
3411 sh_type = this_hdr->sh_type;
3412 if (bed->elf_backend_fake_sections
3413 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
3414 {
3415 arg->failed = TRUE;
3416 return;
3417 }
3418
3419 if (sh_type == SHT_NOBITS && asect->size != 0)
3420 {
3421 /* Don't change the header type from NOBITS if we are being
3422 called for objcopy --only-keep-debug. */
3423 this_hdr->sh_type = sh_type;
3424 }
3425 }
3426
3427 /* Fill in the contents of a SHT_GROUP section. Called from
3428 _bfd_elf_compute_section_file_positions for gas, objcopy, and
3429 when ELF targets use the generic linker, ld. Called for ld -r
3430 from bfd_elf_final_link. */
3431
3432 void
3433 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
3434 {
3435 bfd_boolean *failedptr = (bfd_boolean *) failedptrarg;
3436 asection *elt, *first;
3437 unsigned char *loc;
3438 bfd_boolean gas;
3439
3440 /* Ignore linker created group section. See elfNN_ia64_object_p in
3441 elfxx-ia64.c. */
3442 if (((sec->flags & (SEC_GROUP | SEC_LINKER_CREATED)) != SEC_GROUP)
3443 || *failedptr)
3444 return;
3445
3446 if (elf_section_data (sec)->this_hdr.sh_info == 0)
3447 {
3448 unsigned long symindx = 0;
3449
3450 /* elf_group_id will have been set up by objcopy and the
3451 generic linker. */
3452 if (elf_group_id (sec) != NULL)
3453 symindx = elf_group_id (sec)->udata.i;
3454
3455 if (symindx == 0)
3456 {
3457 /* If called from the assembler, swap_out_syms will have set up
3458 elf_section_syms. */
3459 BFD_ASSERT (elf_section_syms (abfd) != NULL);
3460 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
3461 }
3462 elf_section_data (sec)->this_hdr.sh_info = symindx;
3463 }
3464 else if (elf_section_data (sec)->this_hdr.sh_info == (unsigned int) -2)
3465 {
3466 /* The ELF backend linker sets sh_info to -2 when the group
3467 signature symbol is global, and thus the index can't be
3468 set until all local symbols are output. */
3469 asection *igroup;
3470 struct bfd_elf_section_data *sec_data;
3471 unsigned long symndx;
3472 unsigned long extsymoff;
3473 struct elf_link_hash_entry *h;
3474
3475 /* The point of this little dance to the first SHF_GROUP section
3476 then back to the SHT_GROUP section is that this gets us to
3477 the SHT_GROUP in the input object. */
3478 igroup = elf_sec_group (elf_next_in_group (sec));
3479 sec_data = elf_section_data (igroup);
3480 symndx = sec_data->this_hdr.sh_info;
3481 extsymoff = 0;
3482 if (!elf_bad_symtab (igroup->owner))
3483 {
3484 Elf_Internal_Shdr *symtab_hdr;
3485
3486 symtab_hdr = &elf_tdata (igroup->owner)->symtab_hdr;
3487 extsymoff = symtab_hdr->sh_info;
3488 }
3489 h = elf_sym_hashes (igroup->owner)[symndx - extsymoff];
3490 while (h->root.type == bfd_link_hash_indirect
3491 || h->root.type == bfd_link_hash_warning)
3492 h = (struct elf_link_hash_entry *) h->root.u.i.link;
3493
3494 elf_section_data (sec)->this_hdr.sh_info = h->indx;
3495 }
3496
3497 /* The contents won't be allocated for "ld -r" or objcopy. */
3498 gas = TRUE;
3499 if (sec->contents == NULL)
3500 {
3501 gas = FALSE;
3502 sec->contents = (unsigned char *) bfd_alloc (abfd, sec->size);
3503
3504 /* Arrange for the section to be written out. */
3505 elf_section_data (sec)->this_hdr.contents = sec->contents;
3506 if (sec->contents == NULL)
3507 {
3508 *failedptr = TRUE;
3509 return;
3510 }
3511 }
3512
3513 loc = sec->contents + sec->size;
3514
3515 /* Get the pointer to the first section in the group that gas
3516 squirreled away here. objcopy arranges for this to be set to the
3517 start of the input section group. */
3518 first = elt = elf_next_in_group (sec);
3519
3520 /* First element is a flag word. Rest of section is elf section
3521 indices for all the sections of the group. Write them backwards
3522 just to keep the group in the same order as given in .section
3523 directives, not that it matters. */
3524 while (elt != NULL)
3525 {
3526 asection *s;
3527
3528 s = elt;
3529 if (!gas)
3530 s = s->output_section;
3531 if (s != NULL
3532 && !bfd_is_abs_section (s))
3533 {
3534 struct bfd_elf_section_data *elf_sec = elf_section_data (s);
3535 struct bfd_elf_section_data *input_elf_sec = elf_section_data (elt);
3536
3537 if (elf_sec->rel.hdr != NULL
3538 && (gas
3539 || (input_elf_sec->rel.hdr != NULL
3540 && input_elf_sec->rel.hdr->sh_flags & SHF_GROUP) != 0))
3541 {
3542 elf_sec->rel.hdr->sh_flags |= SHF_GROUP;
3543 loc -= 4;
3544 H_PUT_32 (abfd, elf_sec->rel.idx, loc);
3545 }
3546 if (elf_sec->rela.hdr != NULL
3547 && (gas
3548 || (input_elf_sec->rela.hdr != NULL
3549 && input_elf_sec->rela.hdr->sh_flags & SHF_GROUP) != 0))
3550 {
3551 elf_sec->rela.hdr->sh_flags |= SHF_GROUP;
3552 loc -= 4;
3553 H_PUT_32 (abfd, elf_sec->rela.idx, loc);
3554 }
3555 loc -= 4;
3556 H_PUT_32 (abfd, elf_sec->this_idx, loc);
3557 }
3558 elt = elf_next_in_group (elt);
3559 if (elt == first)
3560 break;
3561 }
3562
3563 loc -= 4;
3564 BFD_ASSERT (loc == sec->contents);
3565
3566 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
3567 }
3568
3569 /* Given NAME, the name of a relocation section stripped of its
3570 .rel/.rela prefix, return the section in ABFD to which the
3571 relocations apply. */
3572
3573 asection *
3574 _bfd_elf_plt_get_reloc_section (bfd *abfd, const char *name)
3575 {
3576 /* If a target needs .got.plt section, relocations in rela.plt/rel.plt
3577 section likely apply to .got.plt or .got section. */
3578 if (get_elf_backend_data (abfd)->want_got_plt
3579 && strcmp (name, ".plt") == 0)
3580 {
3581 asection *sec;
3582
3583 name = ".got.plt";
3584 sec = bfd_get_section_by_name (abfd, name);
3585 if (sec != NULL)
3586 return sec;
3587 name = ".got";
3588 }
3589
3590 return bfd_get_section_by_name (abfd, name);
3591 }
3592
3593 /* Return the section to which RELOC_SEC applies. */
3594
3595 static asection *
3596 elf_get_reloc_section (asection *reloc_sec)
3597 {
3598 const char *name;
3599 unsigned int type;
3600 bfd *abfd;
3601 const struct elf_backend_data *bed;
3602
3603 type = elf_section_data (reloc_sec)->this_hdr.sh_type;
3604 if (type != SHT_REL && type != SHT_RELA)
3605 return NULL;
3606
3607 /* We look up the section the relocs apply to by name. */
3608 name = reloc_sec->name;
3609 if (strncmp (name, ".rel", 4) != 0)
3610 return NULL;
3611 name += 4;
3612 if (type == SHT_RELA && *name++ != 'a')
3613 return NULL;
3614
3615 abfd = reloc_sec->owner;
3616 bed = get_elf_backend_data (abfd);
3617 return bed->get_reloc_section (abfd, name);
3618 }
3619
3620 /* Assign all ELF section numbers. The dummy first section is handled here
3621 too. The link/info pointers for the standard section types are filled
3622 in here too, while we're at it. */
3623
3624 static bfd_boolean
3625 assign_section_numbers (bfd *abfd, struct bfd_link_info *link_info)
3626 {
3627 struct elf_obj_tdata *t = elf_tdata (abfd);
3628 asection *sec;
3629 unsigned int section_number;
3630 Elf_Internal_Shdr **i_shdrp;
3631 struct bfd_elf_section_data *d;
3632 bfd_boolean need_symtab;
3633
3634 section_number = 1;
3635
3636 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
3637
3638 /* SHT_GROUP sections are in relocatable files only. */
3639 if (link_info == NULL || !link_info->resolve_section_groups)
3640 {
3641 size_t reloc_count = 0;
3642
3643 /* Put SHT_GROUP sections first. */
3644 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3645 {
3646 d = elf_section_data (sec);
3647
3648 if (d->this_hdr.sh_type == SHT_GROUP)
3649 {
3650 if (sec->flags & SEC_LINKER_CREATED)
3651 {
3652 /* Remove the linker created SHT_GROUP sections. */
3653 bfd_section_list_remove (abfd, sec);
3654 abfd->section_count--;
3655 }
3656 else
3657 d->this_idx = section_number++;
3658 }
3659
3660 /* Count relocations. */
3661 reloc_count += sec->reloc_count;
3662 }
3663
3664 /* Clear HAS_RELOC if there are no relocations. */
3665 if (reloc_count == 0)
3666 abfd->flags &= ~HAS_RELOC;
3667 }
3668
3669 for (sec = abfd->sections; sec; sec = sec->next)
3670 {
3671 d = elf_section_data (sec);
3672
3673 if (d->this_hdr.sh_type != SHT_GROUP)
3674 d->this_idx = section_number++;
3675 if (d->this_hdr.sh_name != (unsigned int) -1)
3676 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
3677 if (d->rel.hdr)
3678 {
3679 d->rel.idx = section_number++;
3680 if (d->rel.hdr->sh_name != (unsigned int) -1)
3681 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel.hdr->sh_name);
3682 }
3683 else
3684 d->rel.idx = 0;
3685
3686 if (d->rela.hdr)
3687 {
3688 d->rela.idx = section_number++;
3689 if (d->rela.hdr->sh_name != (unsigned int) -1)
3690 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rela.hdr->sh_name);
3691 }
3692 else
3693 d->rela.idx = 0;
3694 }
3695
3696 need_symtab = (bfd_get_symcount (abfd) > 0
3697 || (link_info == NULL
3698 && ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
3699 == HAS_RELOC)));
3700 if (need_symtab)
3701 {
3702 elf_onesymtab (abfd) = section_number++;
3703 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
3704 if (section_number > ((SHN_LORESERVE - 2) & 0xFFFF))
3705 {
3706 elf_section_list * entry;
3707
3708 BFD_ASSERT (elf_symtab_shndx_list (abfd) == NULL);
3709
3710 entry = bfd_zalloc (abfd, sizeof * entry);
3711 entry->ndx = section_number++;
3712 elf_symtab_shndx_list (abfd) = entry;
3713 entry->hdr.sh_name
3714 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
3715 ".symtab_shndx", FALSE);
3716 if (entry->hdr.sh_name == (unsigned int) -1)
3717 return FALSE;
3718 }
3719 elf_strtab_sec (abfd) = section_number++;
3720 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
3721 }
3722
3723 elf_shstrtab_sec (abfd) = section_number++;
3724 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
3725 elf_elfheader (abfd)->e_shstrndx = elf_shstrtab_sec (abfd);
3726
3727 if (section_number >= SHN_LORESERVE)
3728 {
3729 /* xgettext:c-format */
3730 _bfd_error_handler (_("%B: too many sections: %u"),
3731 abfd, section_number);
3732 return FALSE;
3733 }
3734
3735 elf_numsections (abfd) = section_number;
3736 elf_elfheader (abfd)->e_shnum = section_number;
3737
3738 /* Set up the list of section header pointers, in agreement with the
3739 indices. */
3740 i_shdrp = (Elf_Internal_Shdr **) bfd_zalloc2 (abfd, section_number,
3741 sizeof (Elf_Internal_Shdr *));
3742 if (i_shdrp == NULL)
3743 return FALSE;
3744
3745 i_shdrp[0] = (Elf_Internal_Shdr *) bfd_zalloc (abfd,
3746 sizeof (Elf_Internal_Shdr));
3747 if (i_shdrp[0] == NULL)
3748 {
3749 bfd_release (abfd, i_shdrp);
3750 return FALSE;
3751 }
3752
3753 elf_elfsections (abfd) = i_shdrp;
3754
3755 i_shdrp[elf_shstrtab_sec (abfd)] = &t->shstrtab_hdr;
3756 if (need_symtab)
3757 {
3758 i_shdrp[elf_onesymtab (abfd)] = &t->symtab_hdr;
3759 if (elf_numsections (abfd) > (SHN_LORESERVE & 0xFFFF))
3760 {
3761 elf_section_list * entry = elf_symtab_shndx_list (abfd);
3762 BFD_ASSERT (entry != NULL);
3763 i_shdrp[entry->ndx] = & entry->hdr;
3764 entry->hdr.sh_link = elf_onesymtab (abfd);
3765 }
3766 i_shdrp[elf_strtab_sec (abfd)] = &t->strtab_hdr;
3767 t->symtab_hdr.sh_link = elf_strtab_sec (abfd);
3768 }
3769
3770 for (sec = abfd->sections; sec; sec = sec->next)
3771 {
3772 asection *s;
3773
3774 d = elf_section_data (sec);
3775
3776 i_shdrp[d->this_idx] = &d->this_hdr;
3777 if (d->rel.idx != 0)
3778 i_shdrp[d->rel.idx] = d->rel.hdr;
3779 if (d->rela.idx != 0)
3780 i_shdrp[d->rela.idx] = d->rela.hdr;
3781
3782 /* Fill in the sh_link and sh_info fields while we're at it. */
3783
3784 /* sh_link of a reloc section is the section index of the symbol
3785 table. sh_info is the section index of the section to which
3786 the relocation entries apply. */
3787 if (d->rel.idx != 0)
3788 {
3789 d->rel.hdr->sh_link = elf_onesymtab (abfd);
3790 d->rel.hdr->sh_info = d->this_idx;
3791 d->rel.hdr->sh_flags |= SHF_INFO_LINK;
3792 }
3793 if (d->rela.idx != 0)
3794 {
3795 d->rela.hdr->sh_link = elf_onesymtab (abfd);
3796 d->rela.hdr->sh_info = d->this_idx;
3797 d->rela.hdr->sh_flags |= SHF_INFO_LINK;
3798 }
3799
3800 /* We need to set up sh_link for SHF_LINK_ORDER. */
3801 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
3802 {
3803 s = elf_linked_to_section (sec);
3804 if (s)
3805 {
3806 /* elf_linked_to_section points to the input section. */
3807 if (link_info != NULL)
3808 {
3809 /* Check discarded linkonce section. */
3810 if (discarded_section (s))
3811 {
3812 asection *kept;
3813 _bfd_error_handler
3814 /* xgettext:c-format */
3815 (_("%B: sh_link of section `%A' points to"
3816 " discarded section `%A' of `%B'"),
3817 abfd, d->this_hdr.bfd_section,
3818 s, s->owner);
3819 /* Point to the kept section if it has the same
3820 size as the discarded one. */
3821 kept = _bfd_elf_check_kept_section (s, link_info);
3822 if (kept == NULL)
3823 {
3824 bfd_set_error (bfd_error_bad_value);
3825 return FALSE;
3826 }
3827 s = kept;
3828 }
3829
3830 s = s->output_section;
3831 BFD_ASSERT (s != NULL);
3832 }
3833 else
3834 {
3835 /* Handle objcopy. */
3836 if (s->output_section == NULL)
3837 {
3838 _bfd_error_handler
3839 /* xgettext:c-format */
3840 (_("%B: sh_link of section `%A' points to"
3841 " removed section `%A' of `%B'"),
3842 abfd, d->this_hdr.bfd_section, s, s->owner);
3843 bfd_set_error (bfd_error_bad_value);
3844 return FALSE;
3845 }
3846 s = s->output_section;
3847 }
3848 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3849 }
3850 else
3851 {
3852 /* PR 290:
3853 The Intel C compiler generates SHT_IA_64_UNWIND with
3854 SHF_LINK_ORDER. But it doesn't set the sh_link or
3855 sh_info fields. Hence we could get the situation
3856 where s is NULL. */
3857 const struct elf_backend_data *bed
3858 = get_elf_backend_data (abfd);
3859 if (bed->link_order_error_handler)
3860 bed->link_order_error_handler
3861 /* xgettext:c-format */
3862 (_("%B: warning: sh_link not set for section `%A'"),
3863 abfd, sec);
3864 }
3865 }
3866
3867 switch (d->this_hdr.sh_type)
3868 {
3869 case SHT_REL:
3870 case SHT_RELA:
3871 /* A reloc section which we are treating as a normal BFD
3872 section. sh_link is the section index of the symbol
3873 table. sh_info is the section index of the section to
3874 which the relocation entries apply. We assume that an
3875 allocated reloc section uses the dynamic symbol table.
3876 FIXME: How can we be sure? */
3877 s = bfd_get_section_by_name (abfd, ".dynsym");
3878 if (s != NULL)
3879 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3880
3881 s = elf_get_reloc_section (sec);
3882 if (s != NULL)
3883 {
3884 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
3885 d->this_hdr.sh_flags |= SHF_INFO_LINK;
3886 }
3887 break;
3888
3889 case SHT_STRTAB:
3890 /* We assume that a section named .stab*str is a stabs
3891 string section. We look for a section with the same name
3892 but without the trailing ``str'', and set its sh_link
3893 field to point to this section. */
3894 if (CONST_STRNEQ (sec->name, ".stab")
3895 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
3896 {
3897 size_t len;
3898 char *alc;
3899
3900 len = strlen (sec->name);
3901 alc = (char *) bfd_malloc (len - 2);
3902 if (alc == NULL)
3903 return FALSE;
3904 memcpy (alc, sec->name, len - 3);
3905 alc[len - 3] = '\0';
3906 s = bfd_get_section_by_name (abfd, alc);
3907 free (alc);
3908 if (s != NULL)
3909 {
3910 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
3911
3912 /* This is a .stab section. */
3913 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
3914 elf_section_data (s)->this_hdr.sh_entsize
3915 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
3916 }
3917 }
3918 break;
3919
3920 case SHT_DYNAMIC:
3921 case SHT_DYNSYM:
3922 case SHT_GNU_verneed:
3923 case SHT_GNU_verdef:
3924 /* sh_link is the section header index of the string table
3925 used for the dynamic entries, or the symbol table, or the
3926 version strings. */
3927 s = bfd_get_section_by_name (abfd, ".dynstr");
3928 if (s != NULL)
3929 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3930 break;
3931
3932 case SHT_GNU_LIBLIST:
3933 /* sh_link is the section header index of the prelink library
3934 list used for the dynamic entries, or the symbol table, or
3935 the version strings. */
3936 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
3937 ? ".dynstr" : ".gnu.libstr");
3938 if (s != NULL)
3939 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3940 break;
3941
3942 case SHT_HASH:
3943 case SHT_GNU_HASH:
3944 case SHT_GNU_versym:
3945 /* sh_link is the section header index of the symbol table
3946 this hash table or version table is for. */
3947 s = bfd_get_section_by_name (abfd, ".dynsym");
3948 if (s != NULL)
3949 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
3950 break;
3951
3952 case SHT_GROUP:
3953 d->this_hdr.sh_link = elf_onesymtab (abfd);
3954 }
3955 }
3956
3957 /* Delay setting sh_name to _bfd_elf_write_object_contents so that
3958 _bfd_elf_assign_file_positions_for_non_load can convert DWARF
3959 debug section name from .debug_* to .zdebug_* if needed. */
3960
3961 return TRUE;
3962 }
3963
3964 static bfd_boolean
3965 sym_is_global (bfd *abfd, asymbol *sym)
3966 {
3967 /* If the backend has a special mapping, use it. */
3968 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3969 if (bed->elf_backend_sym_is_global)
3970 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3971
3972 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK | BSF_GNU_UNIQUE)) != 0
3973 || bfd_is_und_section (bfd_get_section (sym))
3974 || bfd_is_com_section (bfd_get_section (sym)));
3975 }
3976
3977 /* Filter global symbols of ABFD to include in the import library. All
3978 SYMCOUNT symbols of ABFD can be examined from their pointers in
3979 SYMS. Pointers of symbols to keep should be stored contiguously at
3980 the beginning of that array.
3981
3982 Returns the number of symbols to keep. */
3983
3984 unsigned int
3985 _bfd_elf_filter_global_symbols (bfd *abfd, struct bfd_link_info *info,
3986 asymbol **syms, long symcount)
3987 {
3988 long src_count, dst_count = 0;
3989
3990 for (src_count = 0; src_count < symcount; src_count++)
3991 {
3992 asymbol *sym = syms[src_count];
3993 char *name = (char *) bfd_asymbol_name (sym);
3994 struct bfd_link_hash_entry *h;
3995
3996 if (!sym_is_global (abfd, sym))
3997 continue;
3998
3999 h = bfd_link_hash_lookup (info->hash, name, FALSE, FALSE, FALSE);
4000 if (h == NULL)
4001 continue;
4002 if (h->type != bfd_link_hash_defined && h->type != bfd_link_hash_defweak)
4003 continue;
4004 if (h->linker_def || h->ldscript_def)
4005 continue;
4006
4007 syms[dst_count++] = sym;
4008 }
4009
4010 syms[dst_count] = NULL;
4011
4012 return dst_count;
4013 }
4014
4015 /* Don't output section symbols for sections that are not going to be
4016 output, that are duplicates or there is no BFD section. */
4017
4018 static bfd_boolean
4019 ignore_section_sym (bfd *abfd, asymbol *sym)
4020 {
4021 elf_symbol_type *type_ptr;
4022
4023 if ((sym->flags & BSF_SECTION_SYM) == 0)
4024 return FALSE;
4025
4026 type_ptr = elf_symbol_from (abfd, sym);
4027 return ((type_ptr != NULL
4028 && type_ptr->internal_elf_sym.st_shndx != 0
4029 && bfd_is_abs_section (sym->section))
4030 || !(sym->section->owner == abfd
4031 || (sym->section->output_section->owner == abfd
4032 && sym->section->output_offset == 0)
4033 || bfd_is_abs_section (sym->section)));
4034 }
4035
4036 /* Map symbol from it's internal number to the external number, moving
4037 all local symbols to be at the head of the list. */
4038
4039 static bfd_boolean
4040 elf_map_symbols (bfd *abfd, unsigned int *pnum_locals)
4041 {
4042 unsigned int symcount = bfd_get_symcount (abfd);
4043 asymbol **syms = bfd_get_outsymbols (abfd);
4044 asymbol **sect_syms;
4045 unsigned int num_locals = 0;
4046 unsigned int num_globals = 0;
4047 unsigned int num_locals2 = 0;
4048 unsigned int num_globals2 = 0;
4049 unsigned int max_index = 0;
4050 unsigned int idx;
4051 asection *asect;
4052 asymbol **new_syms;
4053
4054 #ifdef DEBUG
4055 fprintf (stderr, "elf_map_symbols\n");
4056 fflush (stderr);
4057 #endif
4058
4059 for (asect = abfd->sections; asect; asect = asect->next)
4060 {
4061 if (max_index < asect->index)
4062 max_index = asect->index;
4063 }
4064
4065 max_index++;
4066 sect_syms = (asymbol **) bfd_zalloc2 (abfd, max_index, sizeof (asymbol *));
4067 if (sect_syms == NULL)
4068 return FALSE;
4069 elf_section_syms (abfd) = sect_syms;
4070 elf_num_section_syms (abfd) = max_index;
4071
4072 /* Init sect_syms entries for any section symbols we have already
4073 decided to output. */
4074 for (idx = 0; idx < symcount; idx++)
4075 {
4076 asymbol *sym = syms[idx];
4077
4078 if ((sym->flags & BSF_SECTION_SYM) != 0
4079 && sym->value == 0
4080 && !ignore_section_sym (abfd, sym)
4081 && !bfd_is_abs_section (sym->section))
4082 {
4083 asection *sec = sym->section;
4084
4085 if (sec->owner != abfd)
4086 sec = sec->output_section;
4087
4088 sect_syms[sec->index] = syms[idx];
4089 }
4090 }
4091
4092 /* Classify all of the symbols. */
4093 for (idx = 0; idx < symcount; idx++)
4094 {
4095 if (sym_is_global (abfd, syms[idx]))
4096 num_globals++;
4097 else if (!ignore_section_sym (abfd, syms[idx]))
4098 num_locals++;
4099 }
4100
4101 /* We will be adding a section symbol for each normal BFD section. Most
4102 sections will already have a section symbol in outsymbols, but
4103 eg. SHT_GROUP sections will not, and we need the section symbol mapped
4104 at least in that case. */
4105 for (asect = abfd->sections; asect; asect = asect->next)
4106 {
4107 if (sect_syms[asect->index] == NULL)
4108 {
4109 if (!sym_is_global (abfd, asect->symbol))
4110 num_locals++;
4111 else
4112 num_globals++;
4113 }
4114 }
4115
4116 /* Now sort the symbols so the local symbols are first. */
4117 new_syms = (asymbol **) bfd_alloc2 (abfd, num_locals + num_globals,
4118 sizeof (asymbol *));
4119
4120 if (new_syms == NULL)
4121 return FALSE;
4122
4123 for (idx = 0; idx < symcount; idx++)
4124 {
4125 asymbol *sym = syms[idx];
4126 unsigned int i;
4127
4128 if (sym_is_global (abfd, sym))
4129 i = num_locals + num_globals2++;
4130 else if (!ignore_section_sym (abfd, sym))
4131 i = num_locals2++;
4132 else
4133 continue;
4134 new_syms[i] = sym;
4135 sym->udata.i = i + 1;
4136 }
4137 for (asect = abfd->sections; asect; asect = asect->next)
4138 {
4139 if (sect_syms[asect->index] == NULL)
4140 {
4141 asymbol *sym = asect->symbol;
4142 unsigned int i;
4143
4144 sect_syms[asect->index] = sym;
4145 if (!sym_is_global (abfd, sym))
4146 i = num_locals2++;
4147 else
4148 i = num_locals + num_globals2++;
4149 new_syms[i] = sym;
4150 sym->udata.i = i + 1;
4151 }
4152 }
4153
4154 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
4155
4156 *pnum_locals = num_locals;
4157 return TRUE;
4158 }
4159
4160 /* Align to the maximum file alignment that could be required for any
4161 ELF data structure. */
4162
4163 static inline file_ptr
4164 align_file_position (file_ptr off, int align)
4165 {
4166 return (off + align - 1) & ~(align - 1);
4167 }
4168
4169 /* Assign a file position to a section, optionally aligning to the
4170 required section alignment. */
4171
4172 file_ptr
4173 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
4174 file_ptr offset,
4175 bfd_boolean align)
4176 {
4177 if (align && i_shdrp->sh_addralign > 1)
4178 offset = BFD_ALIGN (offset, i_shdrp->sh_addralign);
4179 i_shdrp->sh_offset = offset;
4180 if (i_shdrp->bfd_section != NULL)
4181 i_shdrp->bfd_section->filepos = offset;
4182 if (i_shdrp->sh_type != SHT_NOBITS)
4183 offset += i_shdrp->sh_size;
4184 return offset;
4185 }
4186
4187 /* Compute the file positions we are going to put the sections at, and
4188 otherwise prepare to begin writing out the ELF file. If LINK_INFO
4189 is not NULL, this is being called by the ELF backend linker. */
4190
4191 bfd_boolean
4192 _bfd_elf_compute_section_file_positions (bfd *abfd,
4193 struct bfd_link_info *link_info)
4194 {
4195 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4196 struct fake_section_arg fsargs;
4197 bfd_boolean failed;
4198 struct elf_strtab_hash *strtab = NULL;
4199 Elf_Internal_Shdr *shstrtab_hdr;
4200 bfd_boolean need_symtab;
4201
4202 if (abfd->output_has_begun)
4203 return TRUE;
4204
4205 /* Do any elf backend specific processing first. */
4206 if (bed->elf_backend_begin_write_processing)
4207 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
4208
4209 if (! prep_headers (abfd))
4210 return FALSE;
4211
4212 /* Post process the headers if necessary. */
4213 (*bed->elf_backend_post_process_headers) (abfd, link_info);
4214
4215 fsargs.failed = FALSE;
4216 fsargs.link_info = link_info;
4217 bfd_map_over_sections (abfd, elf_fake_sections, &fsargs);
4218 if (fsargs.failed)
4219 return FALSE;
4220
4221 if (!assign_section_numbers (abfd, link_info))
4222 return FALSE;
4223
4224 /* The backend linker builds symbol table information itself. */
4225 need_symtab = (link_info == NULL
4226 && (bfd_get_symcount (abfd) > 0
4227 || ((abfd->flags & (EXEC_P | DYNAMIC | HAS_RELOC))
4228 == HAS_RELOC)));
4229 if (need_symtab)
4230 {
4231 /* Non-zero if doing a relocatable link. */
4232 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
4233
4234 if (! swap_out_syms (abfd, &strtab, relocatable_p))
4235 return FALSE;
4236 }
4237
4238 failed = FALSE;
4239 if (link_info == NULL)
4240 {
4241 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
4242 if (failed)
4243 return FALSE;
4244 }
4245
4246 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
4247 /* sh_name was set in prep_headers. */
4248 shstrtab_hdr->sh_type = SHT_STRTAB;
4249 shstrtab_hdr->sh_flags = bed->elf_strtab_flags;
4250 shstrtab_hdr->sh_addr = 0;
4251 /* sh_size is set in _bfd_elf_assign_file_positions_for_non_load. */
4252 shstrtab_hdr->sh_entsize = 0;
4253 shstrtab_hdr->sh_link = 0;
4254 shstrtab_hdr->sh_info = 0;
4255 /* sh_offset is set in _bfd_elf_assign_file_positions_for_non_load. */
4256 shstrtab_hdr->sh_addralign = 1;
4257
4258 if (!assign_file_positions_except_relocs (abfd, link_info))
4259 return FALSE;
4260
4261 if (need_symtab)
4262 {
4263 file_ptr off;
4264 Elf_Internal_Shdr *hdr;
4265
4266 off = elf_next_file_pos (abfd);
4267
4268 hdr = & elf_symtab_hdr (abfd);
4269 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4270
4271 if (elf_symtab_shndx_list (abfd) != NULL)
4272 {
4273 hdr = & elf_symtab_shndx_list (abfd)->hdr;
4274 if (hdr->sh_size != 0)
4275 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4276 /* FIXME: What about other symtab_shndx sections in the list ? */
4277 }
4278
4279 hdr = &elf_tdata (abfd)->strtab_hdr;
4280 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4281
4282 elf_next_file_pos (abfd) = off;
4283
4284 /* Now that we know where the .strtab section goes, write it
4285 out. */
4286 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
4287 || ! _bfd_elf_strtab_emit (abfd, strtab))
4288 return FALSE;
4289 _bfd_elf_strtab_free (strtab);
4290 }
4291
4292 abfd->output_has_begun = TRUE;
4293
4294 return TRUE;
4295 }
4296
4297 /* Make an initial estimate of the size of the program header. If we
4298 get the number wrong here, we'll redo section placement. */
4299
4300 static bfd_size_type
4301 get_program_header_size (bfd *abfd, struct bfd_link_info *info)
4302 {
4303 size_t segs;
4304 asection *s;
4305 const struct elf_backend_data *bed;
4306
4307 /* Assume we will need exactly two PT_LOAD segments: one for text
4308 and one for data. */
4309 segs = 2;
4310
4311 s = bfd_get_section_by_name (abfd, ".interp");
4312 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4313 {
4314 /* If we have a loadable interpreter section, we need a
4315 PT_INTERP segment. In this case, assume we also need a
4316 PT_PHDR segment, although that may not be true for all
4317 targets. */
4318 segs += 2;
4319 }
4320
4321 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4322 {
4323 /* We need a PT_DYNAMIC segment. */
4324 ++segs;
4325 }
4326
4327 if (info != NULL && info->relro)
4328 {
4329 /* We need a PT_GNU_RELRO segment. */
4330 ++segs;
4331 }
4332
4333 if (elf_eh_frame_hdr (abfd))
4334 {
4335 /* We need a PT_GNU_EH_FRAME segment. */
4336 ++segs;
4337 }
4338
4339 if (elf_stack_flags (abfd))
4340 {
4341 /* We need a PT_GNU_STACK segment. */
4342 ++segs;
4343 }
4344
4345 for (s = abfd->sections; s != NULL; s = s->next)
4346 {
4347 if ((s->flags & SEC_LOAD) != 0
4348 && CONST_STRNEQ (s->name, ".note"))
4349 {
4350 /* We need a PT_NOTE segment. */
4351 ++segs;
4352 /* Try to create just one PT_NOTE segment
4353 for all adjacent loadable .note* sections.
4354 gABI requires that within a PT_NOTE segment
4355 (and also inside of each SHT_NOTE section)
4356 each note is padded to a multiple of 4 size,
4357 so we check whether the sections are correctly
4358 aligned. */
4359 if (s->alignment_power == 2)
4360 while (s->next != NULL
4361 && s->next->alignment_power == 2
4362 && (s->next->flags & SEC_LOAD) != 0
4363 && CONST_STRNEQ (s->next->name, ".note"))
4364 s = s->next;
4365 }
4366 }
4367
4368 for (s = abfd->sections; s != NULL; s = s->next)
4369 {
4370 if (s->flags & SEC_THREAD_LOCAL)
4371 {
4372 /* We need a PT_TLS segment. */
4373 ++segs;
4374 break;
4375 }
4376 }
4377
4378 bed = get_elf_backend_data (abfd);
4379
4380 if ((abfd->flags & D_PAGED) != 0)
4381 {
4382 /* Add a PT_GNU_MBIND segment for each mbind section. */
4383 unsigned int page_align_power = bfd_log2 (bed->commonpagesize);
4384 for (s = abfd->sections; s != NULL; s = s->next)
4385 if (elf_section_flags (s) & SHF_GNU_MBIND)
4386 {
4387 if (elf_section_data (s)->this_hdr.sh_info
4388 > PT_GNU_MBIND_NUM)
4389 {
4390 _bfd_error_handler
4391 /* xgettext:c-format */
4392 (_("%B: GNU_MBIN section `%A' has invalid sh_info field: %d"),
4393 abfd, s, elf_section_data (s)->this_hdr.sh_info);
4394 continue;
4395 }
4396 /* Align mbind section to page size. */
4397 if (s->alignment_power < page_align_power)
4398 s->alignment_power = page_align_power;
4399 segs ++;
4400 }
4401 }
4402
4403 /* Let the backend count up any program headers it might need. */
4404 if (bed->elf_backend_additional_program_headers)
4405 {
4406 int a;
4407
4408 a = (*bed->elf_backend_additional_program_headers) (abfd, info);
4409 if (a == -1)
4410 abort ();
4411 segs += a;
4412 }
4413
4414 return segs * bed->s->sizeof_phdr;
4415 }
4416
4417 /* Find the segment that contains the output_section of section. */
4418
4419 Elf_Internal_Phdr *
4420 _bfd_elf_find_segment_containing_section (bfd * abfd, asection * section)
4421 {
4422 struct elf_segment_map *m;
4423 Elf_Internal_Phdr *p;
4424
4425 for (m = elf_seg_map (abfd), p = elf_tdata (abfd)->phdr;
4426 m != NULL;
4427 m = m->next, p++)
4428 {
4429 int i;
4430
4431 for (i = m->count - 1; i >= 0; i--)
4432 if (m->sections[i] == section)
4433 return p;
4434 }
4435
4436 return NULL;
4437 }
4438
4439 /* Create a mapping from a set of sections to a program segment. */
4440
4441 static struct elf_segment_map *
4442 make_mapping (bfd *abfd,
4443 asection **sections,
4444 unsigned int from,
4445 unsigned int to,
4446 bfd_boolean phdr)
4447 {
4448 struct elf_segment_map *m;
4449 unsigned int i;
4450 asection **hdrpp;
4451 bfd_size_type amt;
4452
4453 amt = sizeof (struct elf_segment_map);
4454 amt += (to - from - 1) * sizeof (asection *);
4455 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4456 if (m == NULL)
4457 return NULL;
4458 m->next = NULL;
4459 m->p_type = PT_LOAD;
4460 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
4461 m->sections[i - from] = *hdrpp;
4462 m->count = to - from;
4463
4464 if (from == 0 && phdr)
4465 {
4466 /* Include the headers in the first PT_LOAD segment. */
4467 m->includes_filehdr = 1;
4468 m->includes_phdrs = 1;
4469 }
4470
4471 return m;
4472 }
4473
4474 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
4475 on failure. */
4476
4477 struct elf_segment_map *
4478 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
4479 {
4480 struct elf_segment_map *m;
4481
4482 m = (struct elf_segment_map *) bfd_zalloc (abfd,
4483 sizeof (struct elf_segment_map));
4484 if (m == NULL)
4485 return NULL;
4486 m->next = NULL;
4487 m->p_type = PT_DYNAMIC;
4488 m->count = 1;
4489 m->sections[0] = dynsec;
4490
4491 return m;
4492 }
4493
4494 /* Possibly add or remove segments from the segment map. */
4495
4496 static bfd_boolean
4497 elf_modify_segment_map (bfd *abfd,
4498 struct bfd_link_info *info,
4499 bfd_boolean remove_empty_load)
4500 {
4501 struct elf_segment_map **m;
4502 const struct elf_backend_data *bed;
4503
4504 /* The placement algorithm assumes that non allocated sections are
4505 not in PT_LOAD segments. We ensure this here by removing such
4506 sections from the segment map. We also remove excluded
4507 sections. Finally, any PT_LOAD segment without sections is
4508 removed. */
4509 m = &elf_seg_map (abfd);
4510 while (*m)
4511 {
4512 unsigned int i, new_count;
4513
4514 for (new_count = 0, i = 0; i < (*m)->count; i++)
4515 {
4516 if (((*m)->sections[i]->flags & SEC_EXCLUDE) == 0
4517 && (((*m)->sections[i]->flags & SEC_ALLOC) != 0
4518 || (*m)->p_type != PT_LOAD))
4519 {
4520 (*m)->sections[new_count] = (*m)->sections[i];
4521 new_count++;
4522 }
4523 }
4524 (*m)->count = new_count;
4525
4526 if (remove_empty_load
4527 && (*m)->p_type == PT_LOAD
4528 && (*m)->count == 0
4529 && !(*m)->includes_phdrs)
4530 *m = (*m)->next;
4531 else
4532 m = &(*m)->next;
4533 }
4534
4535 bed = get_elf_backend_data (abfd);
4536 if (bed->elf_backend_modify_segment_map != NULL)
4537 {
4538 if (!(*bed->elf_backend_modify_segment_map) (abfd, info))
4539 return FALSE;
4540 }
4541
4542 return TRUE;
4543 }
4544
4545 /* Set up a mapping from BFD sections to program segments. */
4546
4547 bfd_boolean
4548 _bfd_elf_map_sections_to_segments (bfd *abfd, struct bfd_link_info *info)
4549 {
4550 unsigned int count;
4551 struct elf_segment_map *m;
4552 asection **sections = NULL;
4553 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4554 bfd_boolean no_user_phdrs;
4555
4556 no_user_phdrs = elf_seg_map (abfd) == NULL;
4557
4558 if (info != NULL)
4559 info->user_phdrs = !no_user_phdrs;
4560
4561 if (no_user_phdrs && bfd_count_sections (abfd) != 0)
4562 {
4563 asection *s;
4564 unsigned int i;
4565 struct elf_segment_map *mfirst;
4566 struct elf_segment_map **pm;
4567 asection *last_hdr;
4568 bfd_vma last_size;
4569 unsigned int phdr_index;
4570 bfd_vma maxpagesize;
4571 asection **hdrpp;
4572 bfd_boolean phdr_in_segment = TRUE;
4573 bfd_boolean writable;
4574 bfd_boolean executable;
4575 int tls_count = 0;
4576 asection *first_tls = NULL;
4577 asection *first_mbind = NULL;
4578 asection *dynsec, *eh_frame_hdr;
4579 bfd_size_type amt;
4580 bfd_vma addr_mask, wrap_to = 0;
4581 bfd_boolean linker_created_pt_phdr_segment = FALSE;
4582
4583 /* Select the allocated sections, and sort them. */
4584
4585 sections = (asection **) bfd_malloc2 (bfd_count_sections (abfd),
4586 sizeof (asection *));
4587 if (sections == NULL)
4588 goto error_return;
4589
4590 /* Calculate top address, avoiding undefined behaviour of shift
4591 left operator when shift count is equal to size of type
4592 being shifted. */
4593 addr_mask = ((bfd_vma) 1 << (bfd_arch_bits_per_address (abfd) - 1)) - 1;
4594 addr_mask = (addr_mask << 1) + 1;
4595
4596 i = 0;
4597 for (s = abfd->sections; s != NULL; s = s->next)
4598 {
4599 if ((s->flags & SEC_ALLOC) != 0)
4600 {
4601 sections[i] = s;
4602 ++i;
4603 /* A wrapping section potentially clashes with header. */
4604 if (((s->lma + s->size) & addr_mask) < (s->lma & addr_mask))
4605 wrap_to = (s->lma + s->size) & addr_mask;
4606 }
4607 }
4608 BFD_ASSERT (i <= bfd_count_sections (abfd));
4609 count = i;
4610
4611 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
4612
4613 /* Build the mapping. */
4614
4615 mfirst = NULL;
4616 pm = &mfirst;
4617
4618 /* If we have a .interp section, then create a PT_PHDR segment for
4619 the program headers and a PT_INTERP segment for the .interp
4620 section. */
4621 s = bfd_get_section_by_name (abfd, ".interp");
4622 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4623 {
4624 amt = sizeof (struct elf_segment_map);
4625 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4626 if (m == NULL)
4627 goto error_return;
4628 m->next = NULL;
4629 m->p_type = PT_PHDR;
4630 m->p_flags = PF_R;
4631 m->p_flags_valid = 1;
4632 m->includes_phdrs = 1;
4633 linker_created_pt_phdr_segment = TRUE;
4634 *pm = m;
4635 pm = &m->next;
4636
4637 amt = sizeof (struct elf_segment_map);
4638 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4639 if (m == NULL)
4640 goto error_return;
4641 m->next = NULL;
4642 m->p_type = PT_INTERP;
4643 m->count = 1;
4644 m->sections[0] = s;
4645
4646 *pm = m;
4647 pm = &m->next;
4648 }
4649
4650 /* Look through the sections. We put sections in the same program
4651 segment when the start of the second section can be placed within
4652 a few bytes of the end of the first section. */
4653 last_hdr = NULL;
4654 last_size = 0;
4655 phdr_index = 0;
4656 maxpagesize = bed->maxpagesize;
4657 /* PR 17512: file: c8455299.
4658 Avoid divide-by-zero errors later on.
4659 FIXME: Should we abort if the maxpagesize is zero ? */
4660 if (maxpagesize == 0)
4661 maxpagesize = 1;
4662 writable = FALSE;
4663 executable = FALSE;
4664 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
4665 if (dynsec != NULL
4666 && (dynsec->flags & SEC_LOAD) == 0)
4667 dynsec = NULL;
4668
4669 /* Deal with -Ttext or something similar such that the first section
4670 is not adjacent to the program headers. This is an
4671 approximation, since at this point we don't know exactly how many
4672 program headers we will need. */
4673 if (count > 0)
4674 {
4675 bfd_size_type phdr_size = elf_program_header_size (abfd);
4676
4677 if (phdr_size == (bfd_size_type) -1)
4678 phdr_size = get_program_header_size (abfd, info);
4679 phdr_size += bed->s->sizeof_ehdr;
4680 if ((abfd->flags & D_PAGED) == 0
4681 || (sections[0]->lma & addr_mask) < phdr_size
4682 || ((sections[0]->lma & addr_mask) % maxpagesize
4683 < phdr_size % maxpagesize)
4684 || (sections[0]->lma & addr_mask & -maxpagesize) < wrap_to)
4685 {
4686 /* PR 20815: The ELF standard says that a PT_PHDR segment, if
4687 present, must be included as part of the memory image of the
4688 program. Ie it must be part of a PT_LOAD segment as well.
4689 If we have had to create our own PT_PHDR segment, but it is
4690 not going to be covered by the first PT_LOAD segment, then
4691 force the inclusion if we can... */
4692 if ((abfd->flags & D_PAGED) != 0
4693 && linker_created_pt_phdr_segment)
4694 phdr_in_segment = TRUE;
4695 else
4696 phdr_in_segment = FALSE;
4697 }
4698 }
4699
4700 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
4701 {
4702 asection *hdr;
4703 bfd_boolean new_segment;
4704
4705 hdr = *hdrpp;
4706
4707 /* See if this section and the last one will fit in the same
4708 segment. */
4709
4710 if (last_hdr == NULL)
4711 {
4712 /* If we don't have a segment yet, then we don't need a new
4713 one (we build the last one after this loop). */
4714 new_segment = FALSE;
4715 }
4716 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
4717 {
4718 /* If this section has a different relation between the
4719 virtual address and the load address, then we need a new
4720 segment. */
4721 new_segment = TRUE;
4722 }
4723 else if (hdr->lma < last_hdr->lma + last_size
4724 || last_hdr->lma + last_size < last_hdr->lma)
4725 {
4726 /* If this section has a load address that makes it overlap
4727 the previous section, then we need a new segment. */
4728 new_segment = TRUE;
4729 }
4730 else if ((abfd->flags & D_PAGED) != 0
4731 && (((last_hdr->lma + last_size - 1) & -maxpagesize)
4732 == (hdr->lma & -maxpagesize)))
4733 {
4734 /* If we are demand paged then we can't map two disk
4735 pages onto the same memory page. */
4736 new_segment = FALSE;
4737 }
4738 /* In the next test we have to be careful when last_hdr->lma is close
4739 to the end of the address space. If the aligned address wraps
4740 around to the start of the address space, then there are no more
4741 pages left in memory and it is OK to assume that the current
4742 section can be included in the current segment. */
4743 else if ((BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4744 + maxpagesize > last_hdr->lma)
4745 && (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
4746 + maxpagesize <= hdr->lma))
4747 {
4748 /* If putting this section in this segment would force us to
4749 skip a page in the segment, then we need a new segment. */
4750 new_segment = TRUE;
4751 }
4752 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
4753 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
4754 {
4755 /* We don't want to put a loaded section after a
4756 nonloaded (ie. bss style) section in the same segment
4757 as that will force the non-loaded section to be loaded.
4758 Consider .tbss sections as loaded for this purpose. */
4759 new_segment = TRUE;
4760 }
4761 else if ((abfd->flags & D_PAGED) == 0)
4762 {
4763 /* If the file is not demand paged, which means that we
4764 don't require the sections to be correctly aligned in the
4765 file, then there is no other reason for a new segment. */
4766 new_segment = FALSE;
4767 }
4768 else if (info != NULL
4769 && info->separate_code
4770 && executable != ((hdr->flags & SEC_CODE) != 0))
4771 {
4772 new_segment = TRUE;
4773 }
4774 else if (! writable
4775 && (hdr->flags & SEC_READONLY) == 0)
4776 {
4777 /* We don't want to put a writable section in a read only
4778 segment. */
4779 new_segment = TRUE;
4780 }
4781 else
4782 {
4783 /* Otherwise, we can use the same segment. */
4784 new_segment = FALSE;
4785 }
4786
4787 /* Allow interested parties a chance to override our decision. */
4788 if (last_hdr != NULL
4789 && info != NULL
4790 && info->callbacks->override_segment_assignment != NULL)
4791 new_segment
4792 = info->callbacks->override_segment_assignment (info, abfd, hdr,
4793 last_hdr,
4794 new_segment);
4795
4796 if (! new_segment)
4797 {
4798 if ((hdr->flags & SEC_READONLY) == 0)
4799 writable = TRUE;
4800 if ((hdr->flags & SEC_CODE) != 0)
4801 executable = TRUE;
4802 last_hdr = hdr;
4803 /* .tbss sections effectively have zero size. */
4804 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4805 != SEC_THREAD_LOCAL)
4806 last_size = hdr->size;
4807 else
4808 last_size = 0;
4809 continue;
4810 }
4811
4812 /* We need a new program segment. We must create a new program
4813 header holding all the sections from phdr_index until hdr. */
4814
4815 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4816 if (m == NULL)
4817 goto error_return;
4818
4819 *pm = m;
4820 pm = &m->next;
4821
4822 if ((hdr->flags & SEC_READONLY) == 0)
4823 writable = TRUE;
4824 else
4825 writable = FALSE;
4826
4827 if ((hdr->flags & SEC_CODE) == 0)
4828 executable = FALSE;
4829 else
4830 executable = TRUE;
4831
4832 last_hdr = hdr;
4833 /* .tbss sections effectively have zero size. */
4834 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
4835 last_size = hdr->size;
4836 else
4837 last_size = 0;
4838 phdr_index = i;
4839 phdr_in_segment = FALSE;
4840 }
4841
4842 /* Create a final PT_LOAD program segment, but not if it's just
4843 for .tbss. */
4844 if (last_hdr != NULL
4845 && (i - phdr_index != 1
4846 || ((last_hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD))
4847 != SEC_THREAD_LOCAL)))
4848 {
4849 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
4850 if (m == NULL)
4851 goto error_return;
4852
4853 *pm = m;
4854 pm = &m->next;
4855 }
4856
4857 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
4858 if (dynsec != NULL)
4859 {
4860 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
4861 if (m == NULL)
4862 goto error_return;
4863 *pm = m;
4864 pm = &m->next;
4865 }
4866
4867 /* For each batch of consecutive loadable .note sections,
4868 add a PT_NOTE segment. We don't use bfd_get_section_by_name,
4869 because if we link together nonloadable .note sections and
4870 loadable .note sections, we will generate two .note sections
4871 in the output file. FIXME: Using names for section types is
4872 bogus anyhow. */
4873 for (s = abfd->sections; s != NULL; s = s->next)
4874 {
4875 if ((s->flags & SEC_LOAD) != 0
4876 && CONST_STRNEQ (s->name, ".note"))
4877 {
4878 asection *s2;
4879
4880 count = 1;
4881 amt = sizeof (struct elf_segment_map);
4882 if (s->alignment_power == 2)
4883 for (s2 = s; s2->next != NULL; s2 = s2->next)
4884 {
4885 if (s2->next->alignment_power == 2
4886 && (s2->next->flags & SEC_LOAD) != 0
4887 && CONST_STRNEQ (s2->next->name, ".note")
4888 && align_power (s2->lma + s2->size, 2)
4889 == s2->next->lma)
4890 count++;
4891 else
4892 break;
4893 }
4894 amt += (count - 1) * sizeof (asection *);
4895 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4896 if (m == NULL)
4897 goto error_return;
4898 m->next = NULL;
4899 m->p_type = PT_NOTE;
4900 m->count = count;
4901 while (count > 1)
4902 {
4903 m->sections[m->count - count--] = s;
4904 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4905 s = s->next;
4906 }
4907 m->sections[m->count - 1] = s;
4908 BFD_ASSERT ((s->flags & SEC_THREAD_LOCAL) == 0);
4909 *pm = m;
4910 pm = &m->next;
4911 }
4912 if (s->flags & SEC_THREAD_LOCAL)
4913 {
4914 if (! tls_count)
4915 first_tls = s;
4916 tls_count++;
4917 }
4918 if (first_mbind == NULL
4919 && (elf_section_flags (s) & SHF_GNU_MBIND) != 0)
4920 first_mbind = s;
4921 }
4922
4923 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
4924 if (tls_count > 0)
4925 {
4926 amt = sizeof (struct elf_segment_map);
4927 amt += (tls_count - 1) * sizeof (asection *);
4928 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
4929 if (m == NULL)
4930 goto error_return;
4931 m->next = NULL;
4932 m->p_type = PT_TLS;
4933 m->count = tls_count;
4934 /* Mandated PF_R. */
4935 m->p_flags = PF_R;
4936 m->p_flags_valid = 1;
4937 s = first_tls;
4938 for (i = 0; i < (unsigned int) tls_count; ++i)
4939 {
4940 if ((s->flags & SEC_THREAD_LOCAL) == 0)
4941 {
4942 _bfd_error_handler
4943 (_("%B: TLS sections are not adjacent:"), abfd);
4944 s = first_tls;
4945 i = 0;
4946 while (i < (unsigned int) tls_count)
4947 {
4948 if ((s->flags & SEC_THREAD_LOCAL) != 0)
4949 {
4950 _bfd_error_handler (_(" TLS: %A"), s);
4951 i++;
4952 }
4953 else
4954 _bfd_error_handler (_(" non-TLS: %A"), s);
4955 s = s->next;
4956 }
4957 bfd_set_error (bfd_error_bad_value);
4958 goto error_return;
4959 }
4960 m->sections[i] = s;
4961 s = s->next;
4962 }
4963
4964 *pm = m;
4965 pm = &m->next;
4966 }
4967
4968 if (first_mbind && (abfd->flags & D_PAGED) != 0)
4969 for (s = first_mbind; s != NULL; s = s->next)
4970 if ((elf_section_flags (s) & SHF_GNU_MBIND) != 0
4971 && (elf_section_data (s)->this_hdr.sh_info
4972 <= PT_GNU_MBIND_NUM))
4973 {
4974 /* Mandated PF_R. */
4975 unsigned long p_flags = PF_R;
4976 if ((s->flags & SEC_READONLY) == 0)
4977 p_flags |= PF_W;
4978 if ((s->flags & SEC_CODE) != 0)
4979 p_flags |= PF_X;
4980
4981 amt = sizeof (struct elf_segment_map) + sizeof (asection *);
4982 m = bfd_zalloc (abfd, amt);
4983 if (m == NULL)
4984 goto error_return;
4985 m->next = NULL;
4986 m->p_type = (PT_GNU_MBIND_LO
4987 + elf_section_data (s)->this_hdr.sh_info);
4988 m->count = 1;
4989 m->p_flags_valid = 1;
4990 m->sections[0] = s;
4991 m->p_flags = p_flags;
4992
4993 *pm = m;
4994 pm = &m->next;
4995 }
4996
4997 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
4998 segment. */
4999 eh_frame_hdr = elf_eh_frame_hdr (abfd);
5000 if (eh_frame_hdr != NULL
5001 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
5002 {
5003 amt = sizeof (struct elf_segment_map);
5004 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5005 if (m == NULL)
5006 goto error_return;
5007 m->next = NULL;
5008 m->p_type = PT_GNU_EH_FRAME;
5009 m->count = 1;
5010 m->sections[0] = eh_frame_hdr->output_section;
5011
5012 *pm = m;
5013 pm = &m->next;
5014 }
5015
5016 if (elf_stack_flags (abfd))
5017 {
5018 amt = sizeof (struct elf_segment_map);
5019 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5020 if (m == NULL)
5021 goto error_return;
5022 m->next = NULL;
5023 m->p_type = PT_GNU_STACK;
5024 m->p_flags = elf_stack_flags (abfd);
5025 m->p_align = bed->stack_align;
5026 m->p_flags_valid = 1;
5027 m->p_align_valid = m->p_align != 0;
5028 if (info->stacksize > 0)
5029 {
5030 m->p_size = info->stacksize;
5031 m->p_size_valid = 1;
5032 }
5033
5034 *pm = m;
5035 pm = &m->next;
5036 }
5037
5038 if (info != NULL && info->relro)
5039 {
5040 for (m = mfirst; m != NULL; m = m->next)
5041 {
5042 if (m->p_type == PT_LOAD
5043 && m->count != 0
5044 && m->sections[0]->vma >= info->relro_start
5045 && m->sections[0]->vma < info->relro_end)
5046 {
5047 i = m->count;
5048 while (--i != (unsigned) -1)
5049 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS))
5050 == (SEC_LOAD | SEC_HAS_CONTENTS))
5051 break;
5052
5053 if (i != (unsigned) -1)
5054 break;
5055 }
5056 }
5057
5058 /* Make a PT_GNU_RELRO segment only when it isn't empty. */
5059 if (m != NULL)
5060 {
5061 amt = sizeof (struct elf_segment_map);
5062 m = (struct elf_segment_map *) bfd_zalloc (abfd, amt);
5063 if (m == NULL)
5064 goto error_return;
5065 m->next = NULL;
5066 m->p_type = PT_GNU_RELRO;
5067 *pm = m;
5068 pm = &m->next;
5069 }
5070 }
5071
5072 free (sections);
5073 elf_seg_map (abfd) = mfirst;
5074 }
5075
5076 if (!elf_modify_segment_map (abfd, info, no_user_phdrs))
5077 return FALSE;
5078
5079 for (count = 0, m = elf_seg_map (abfd); m != NULL; m = m->next)
5080 ++count;
5081 elf_program_header_size (abfd) = count * bed->s->sizeof_phdr;
5082
5083 return TRUE;
5084
5085 error_return:
5086 if (sections != NULL)
5087 free (sections);
5088 return FALSE;
5089 }
5090
5091 /* Sort sections by address. */
5092
5093 static int
5094 elf_sort_sections (const void *arg1, const void *arg2)
5095 {
5096 const asection *sec1 = *(const asection **) arg1;
5097 const asection *sec2 = *(const asection **) arg2;
5098 bfd_size_type size1, size2;
5099
5100 /* Sort by LMA first, since this is the address used to
5101 place the section into a segment. */
5102 if (sec1->lma < sec2->lma)
5103 return -1;
5104 else if (sec1->lma > sec2->lma)
5105 return 1;
5106
5107 /* Then sort by VMA. Normally the LMA and the VMA will be
5108 the same, and this will do nothing. */
5109 if (sec1->vma < sec2->vma)
5110 return -1;
5111 else if (sec1->vma > sec2->vma)
5112 return 1;
5113
5114 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
5115
5116 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
5117
5118 if (TOEND (sec1))
5119 {
5120 if (TOEND (sec2))
5121 {
5122 /* If the indicies are the same, do not return 0
5123 here, but continue to try the next comparison. */
5124 if (sec1->target_index - sec2->target_index != 0)
5125 return sec1->target_index - sec2->target_index;
5126 }
5127 else
5128 return 1;
5129 }
5130 else if (TOEND (sec2))
5131 return -1;
5132
5133 #undef TOEND
5134
5135 /* Sort by size, to put zero sized sections
5136 before others at the same address. */
5137
5138 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
5139 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
5140
5141 if (size1 < size2)
5142 return -1;
5143 if (size1 > size2)
5144 return 1;
5145
5146 return sec1->target_index - sec2->target_index;
5147 }
5148
5149 /* Ian Lance Taylor writes:
5150
5151 We shouldn't be using % with a negative signed number. That's just
5152 not good. We have to make sure either that the number is not
5153 negative, or that the number has an unsigned type. When the types
5154 are all the same size they wind up as unsigned. When file_ptr is a
5155 larger signed type, the arithmetic winds up as signed long long,
5156 which is wrong.
5157
5158 What we're trying to say here is something like ``increase OFF by
5159 the least amount that will cause it to be equal to the VMA modulo
5160 the page size.'' */
5161 /* In other words, something like:
5162
5163 vma_offset = m->sections[0]->vma % bed->maxpagesize;
5164 off_offset = off % bed->maxpagesize;
5165 if (vma_offset < off_offset)
5166 adjustment = vma_offset + bed->maxpagesize - off_offset;
5167 else
5168 adjustment = vma_offset - off_offset;
5169
5170 which can be collapsed into the expression below. */
5171
5172 static file_ptr
5173 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
5174 {
5175 /* PR binutils/16199: Handle an alignment of zero. */
5176 if (maxpagesize == 0)
5177 maxpagesize = 1;
5178 return ((vma - off) % maxpagesize);
5179 }
5180
5181 static void
5182 print_segment_map (const struct elf_segment_map *m)
5183 {
5184 unsigned int j;
5185 const char *pt = get_segment_type (m->p_type);
5186 char buf[32];
5187
5188 if (pt == NULL)
5189 {
5190 if (m->p_type >= PT_LOPROC && m->p_type <= PT_HIPROC)
5191 sprintf (buf, "LOPROC+%7.7x",
5192 (unsigned int) (m->p_type - PT_LOPROC));
5193 else if (m->p_type >= PT_LOOS && m->p_type <= PT_HIOS)
5194 sprintf (buf, "LOOS+%7.7x",
5195 (unsigned int) (m->p_type - PT_LOOS));
5196 else
5197 snprintf (buf, sizeof (buf), "%8.8x",
5198 (unsigned int) m->p_type);
5199 pt = buf;
5200 }
5201 fflush (stdout);
5202 fprintf (stderr, "%s:", pt);
5203 for (j = 0; j < m->count; j++)
5204 fprintf (stderr, " %s", m->sections [j]->name);
5205 putc ('\n',stderr);
5206 fflush (stderr);
5207 }
5208
5209 static bfd_boolean
5210 write_zeros (bfd *abfd, file_ptr pos, bfd_size_type len)
5211 {
5212 void *buf;
5213 bfd_boolean ret;
5214
5215 if (bfd_seek (abfd, pos, SEEK_SET) != 0)
5216 return FALSE;
5217 buf = bfd_zmalloc (len);
5218 if (buf == NULL)
5219 return FALSE;
5220 ret = bfd_bwrite (buf, len, abfd) == len;
5221 free (buf);
5222 return ret;
5223 }
5224
5225 /* Assign file positions to the sections based on the mapping from
5226 sections to segments. This function also sets up some fields in
5227 the file header. */
5228
5229 static bfd_boolean
5230 assign_file_positions_for_load_sections (bfd *abfd,
5231 struct bfd_link_info *link_info)
5232 {
5233 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5234 struct elf_segment_map *m;
5235 Elf_Internal_Phdr *phdrs;
5236 Elf_Internal_Phdr *p;
5237 file_ptr off;
5238 bfd_size_type maxpagesize;
5239 unsigned int pt_load_count = 0;
5240 unsigned int alloc;
5241 unsigned int i, j;
5242 bfd_vma header_pad = 0;
5243
5244 if (link_info == NULL
5245 && !_bfd_elf_map_sections_to_segments (abfd, link_info))
5246 return FALSE;
5247
5248 alloc = 0;
5249 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5250 {
5251 ++alloc;
5252 if (m->header_size)
5253 header_pad = m->header_size;
5254 }
5255
5256 if (alloc)
5257 {
5258 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
5259 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
5260 }
5261 else
5262 {
5263 /* PR binutils/12467. */
5264 elf_elfheader (abfd)->e_phoff = 0;
5265 elf_elfheader (abfd)->e_phentsize = 0;
5266 }
5267
5268 elf_elfheader (abfd)->e_phnum = alloc;
5269
5270 if (elf_program_header_size (abfd) == (bfd_size_type) -1)
5271 elf_program_header_size (abfd) = alloc * bed->s->sizeof_phdr;
5272 else
5273 BFD_ASSERT (elf_program_header_size (abfd)
5274 >= alloc * bed->s->sizeof_phdr);
5275
5276 if (alloc == 0)
5277 {
5278 elf_next_file_pos (abfd) = bed->s->sizeof_ehdr;
5279 return TRUE;
5280 }
5281
5282 /* We're writing the size in elf_program_header_size (abfd),
5283 see assign_file_positions_except_relocs, so make sure we have
5284 that amount allocated, with trailing space cleared.
5285 The variable alloc contains the computed need, while
5286 elf_program_header_size (abfd) contains the size used for the
5287 layout.
5288 See ld/emultempl/elf-generic.em:gld${EMULATION_NAME}_map_segments
5289 where the layout is forced to according to a larger size in the
5290 last iterations for the testcase ld-elf/header. */
5291 BFD_ASSERT (elf_program_header_size (abfd) % bed->s->sizeof_phdr
5292 == 0);
5293 phdrs = (Elf_Internal_Phdr *)
5294 bfd_zalloc2 (abfd,
5295 (elf_program_header_size (abfd) / bed->s->sizeof_phdr),
5296 sizeof (Elf_Internal_Phdr));
5297 elf_tdata (abfd)->phdr = phdrs;
5298 if (phdrs == NULL)
5299 return FALSE;
5300
5301 maxpagesize = 1;
5302 if ((abfd->flags & D_PAGED) != 0)
5303 maxpagesize = bed->maxpagesize;
5304
5305 off = bed->s->sizeof_ehdr;
5306 off += alloc * bed->s->sizeof_phdr;
5307 if (header_pad < (bfd_vma) off)
5308 header_pad = 0;
5309 else
5310 header_pad -= off;
5311 off += header_pad;
5312
5313 for (m = elf_seg_map (abfd), p = phdrs, j = 0;
5314 m != NULL;
5315 m = m->next, p++, j++)
5316 {
5317 asection **secpp;
5318 bfd_vma off_adjust;
5319 bfd_boolean no_contents;
5320
5321 /* If elf_segment_map is not from map_sections_to_segments, the
5322 sections may not be correctly ordered. NOTE: sorting should
5323 not be done to the PT_NOTE section of a corefile, which may
5324 contain several pseudo-sections artificially created by bfd.
5325 Sorting these pseudo-sections breaks things badly. */
5326 if (m->count > 1
5327 && !(elf_elfheader (abfd)->e_type == ET_CORE
5328 && m->p_type == PT_NOTE))
5329 qsort (m->sections, (size_t) m->count, sizeof (asection *),
5330 elf_sort_sections);
5331
5332 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
5333 number of sections with contents contributing to both p_filesz
5334 and p_memsz, followed by a number of sections with no contents
5335 that just contribute to p_memsz. In this loop, OFF tracks next
5336 available file offset for PT_LOAD and PT_NOTE segments. */
5337 p->p_type = m->p_type;
5338 p->p_flags = m->p_flags;
5339
5340 if (m->count == 0)
5341 p->p_vaddr = 0;
5342 else
5343 p->p_vaddr = m->sections[0]->vma - m->p_vaddr_offset;
5344
5345 if (m->p_paddr_valid)
5346 p->p_paddr = m->p_paddr;
5347 else if (m->count == 0)
5348 p->p_paddr = 0;
5349 else
5350 p->p_paddr = m->sections[0]->lma - m->p_vaddr_offset;
5351
5352 if (p->p_type == PT_LOAD
5353 && (abfd->flags & D_PAGED) != 0)
5354 {
5355 /* p_align in demand paged PT_LOAD segments effectively stores
5356 the maximum page size. When copying an executable with
5357 objcopy, we set m->p_align from the input file. Use this
5358 value for maxpagesize rather than bed->maxpagesize, which
5359 may be different. Note that we use maxpagesize for PT_TLS
5360 segment alignment later in this function, so we are relying
5361 on at least one PT_LOAD segment appearing before a PT_TLS
5362 segment. */
5363 if (m->p_align_valid)
5364 maxpagesize = m->p_align;
5365
5366 p->p_align = maxpagesize;
5367 pt_load_count += 1;
5368 }
5369 else if (m->p_align_valid)
5370 p->p_align = m->p_align;
5371 else if (m->count == 0)
5372 p->p_align = 1 << bed->s->log_file_align;
5373 else
5374 p->p_align = 0;
5375
5376 no_contents = FALSE;
5377 off_adjust = 0;
5378 if (p->p_type == PT_LOAD
5379 && m->count > 0)
5380 {
5381 bfd_size_type align;
5382 unsigned int align_power = 0;
5383
5384 if (m->p_align_valid)
5385 align = p->p_align;
5386 else
5387 {
5388 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5389 {
5390 unsigned int secalign;
5391
5392 secalign = bfd_get_section_alignment (abfd, *secpp);
5393 if (secalign > align_power)
5394 align_power = secalign;
5395 }
5396 align = (bfd_size_type) 1 << align_power;
5397 if (align < maxpagesize)
5398 align = maxpagesize;
5399 }
5400
5401 for (i = 0; i < m->count; i++)
5402 if ((m->sections[i]->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
5403 /* If we aren't making room for this section, then
5404 it must be SHT_NOBITS regardless of what we've
5405 set via struct bfd_elf_special_section. */
5406 elf_section_type (m->sections[i]) = SHT_NOBITS;
5407
5408 /* Find out whether this segment contains any loadable
5409 sections. */
5410 no_contents = TRUE;
5411 for (i = 0; i < m->count; i++)
5412 if (elf_section_type (m->sections[i]) != SHT_NOBITS)
5413 {
5414 no_contents = FALSE;
5415 break;
5416 }
5417
5418 off_adjust = vma_page_aligned_bias (p->p_vaddr, off, align);
5419
5420 /* Broken hardware and/or kernel require that files do not
5421 map the same page with different permissions on some hppa
5422 processors. */
5423 if (pt_load_count > 1
5424 && bed->no_page_alias
5425 && (off & (maxpagesize - 1)) != 0
5426 && (off & -maxpagesize) == ((off + off_adjust) & -maxpagesize))
5427 off_adjust += maxpagesize;
5428 off += off_adjust;
5429 if (no_contents)
5430 {
5431 /* We shouldn't need to align the segment on disk since
5432 the segment doesn't need file space, but the gABI
5433 arguably requires the alignment and glibc ld.so
5434 checks it. So to comply with the alignment
5435 requirement but not waste file space, we adjust
5436 p_offset for just this segment. (OFF_ADJUST is
5437 subtracted from OFF later.) This may put p_offset
5438 past the end of file, but that shouldn't matter. */
5439 }
5440 else
5441 off_adjust = 0;
5442 }
5443 /* Make sure the .dynamic section is the first section in the
5444 PT_DYNAMIC segment. */
5445 else if (p->p_type == PT_DYNAMIC
5446 && m->count > 1
5447 && strcmp (m->sections[0]->name, ".dynamic") != 0)
5448 {
5449 _bfd_error_handler
5450 (_("%B: The first section in the PT_DYNAMIC segment"
5451 " is not the .dynamic section"),
5452 abfd);
5453 bfd_set_error (bfd_error_bad_value);
5454 return FALSE;
5455 }
5456 /* Set the note section type to SHT_NOTE. */
5457 else if (p->p_type == PT_NOTE)
5458 for (i = 0; i < m->count; i++)
5459 elf_section_type (m->sections[i]) = SHT_NOTE;
5460
5461 p->p_offset = 0;
5462 p->p_filesz = 0;
5463 p->p_memsz = 0;
5464
5465 if (m->includes_filehdr)
5466 {
5467 if (!m->p_flags_valid)
5468 p->p_flags |= PF_R;
5469 p->p_filesz = bed->s->sizeof_ehdr;
5470 p->p_memsz = bed->s->sizeof_ehdr;
5471 if (m->count > 0)
5472 {
5473 if (p->p_vaddr < (bfd_vma) off
5474 || (!m->p_paddr_valid
5475 && p->p_paddr < (bfd_vma) off))
5476 {
5477 _bfd_error_handler
5478 (_("%B: Not enough room for program headers,"
5479 " try linking with -N"),
5480 abfd);
5481 bfd_set_error (bfd_error_bad_value);
5482 return FALSE;
5483 }
5484
5485 p->p_vaddr -= off;
5486 if (!m->p_paddr_valid)
5487 p->p_paddr -= off;
5488 }
5489 }
5490
5491 if (m->includes_phdrs)
5492 {
5493 if (!m->p_flags_valid)
5494 p->p_flags |= PF_R;
5495
5496 if (!m->includes_filehdr)
5497 {
5498 p->p_offset = bed->s->sizeof_ehdr;
5499
5500 if (m->count > 0)
5501 {
5502 p->p_vaddr -= off - p->p_offset;
5503 if (!m->p_paddr_valid)
5504 p->p_paddr -= off - p->p_offset;
5505 }
5506 }
5507
5508 p->p_filesz += alloc * bed->s->sizeof_phdr;
5509 p->p_memsz += alloc * bed->s->sizeof_phdr;
5510 if (m->count)
5511 {
5512 p->p_filesz += header_pad;
5513 p->p_memsz += header_pad;
5514 }
5515 }
5516
5517 if (p->p_type == PT_LOAD
5518 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
5519 {
5520 if (!m->includes_filehdr && !m->includes_phdrs)
5521 p->p_offset = off;
5522 else
5523 {
5524 file_ptr adjust;
5525
5526 adjust = off - (p->p_offset + p->p_filesz);
5527 if (!no_contents)
5528 p->p_filesz += adjust;
5529 p->p_memsz += adjust;
5530 }
5531 }
5532
5533 /* Set up p_filesz, p_memsz, p_align and p_flags from the section
5534 maps. Set filepos for sections in PT_LOAD segments, and in
5535 core files, for sections in PT_NOTE segments.
5536 assign_file_positions_for_non_load_sections will set filepos
5537 for other sections and update p_filesz for other segments. */
5538 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
5539 {
5540 asection *sec;
5541 bfd_size_type align;
5542 Elf_Internal_Shdr *this_hdr;
5543
5544 sec = *secpp;
5545 this_hdr = &elf_section_data (sec)->this_hdr;
5546 align = (bfd_size_type) 1 << bfd_get_section_alignment (abfd, sec);
5547
5548 if ((p->p_type == PT_LOAD
5549 || p->p_type == PT_TLS)
5550 && (this_hdr->sh_type != SHT_NOBITS
5551 || ((this_hdr->sh_flags & SHF_ALLOC) != 0
5552 && ((this_hdr->sh_flags & SHF_TLS) == 0
5553 || p->p_type == PT_TLS))))
5554 {
5555 bfd_vma p_start = p->p_paddr;
5556 bfd_vma p_end = p_start + p->p_memsz;
5557 bfd_vma s_start = sec->lma;
5558 bfd_vma adjust = s_start - p_end;
5559
5560 if (adjust != 0
5561 && (s_start < p_end
5562 || p_end < p_start))
5563 {
5564 _bfd_error_handler
5565 /* xgettext:c-format */
5566 (_("%B: section %A lma %#Lx adjusted to %#Lx"),
5567 abfd, sec, s_start, p_end);
5568 adjust = 0;
5569 sec->lma = p_end;
5570 }
5571 p->p_memsz += adjust;
5572
5573 if (this_hdr->sh_type != SHT_NOBITS)
5574 {
5575 if (p->p_filesz + adjust < p->p_memsz)
5576 {
5577 /* We have a PROGBITS section following NOBITS ones.
5578 Allocate file space for the NOBITS section(s) and
5579 zero it. */
5580 adjust = p->p_memsz - p->p_filesz;
5581 if (!write_zeros (abfd, off, adjust))
5582 return FALSE;
5583 }
5584 off += adjust;
5585 p->p_filesz += adjust;
5586 }
5587 }
5588
5589 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
5590 {
5591 /* The section at i == 0 is the one that actually contains
5592 everything. */
5593 if (i == 0)
5594 {
5595 this_hdr->sh_offset = sec->filepos = off;
5596 off += this_hdr->sh_size;
5597 p->p_filesz = this_hdr->sh_size;
5598 p->p_memsz = 0;
5599 p->p_align = 1;
5600 }
5601 else
5602 {
5603 /* The rest are fake sections that shouldn't be written. */
5604 sec->filepos = 0;
5605 sec->size = 0;
5606 sec->flags = 0;
5607 continue;
5608 }
5609 }
5610 else
5611 {
5612 if (p->p_type == PT_LOAD)
5613 {
5614 this_hdr->sh_offset = sec->filepos = off;
5615 if (this_hdr->sh_type != SHT_NOBITS)
5616 off += this_hdr->sh_size;
5617 }
5618 else if (this_hdr->sh_type == SHT_NOBITS
5619 && (this_hdr->sh_flags & SHF_TLS) != 0
5620 && this_hdr->sh_offset == 0)
5621 {
5622 /* This is a .tbss section that didn't get a PT_LOAD.
5623 (See _bfd_elf_map_sections_to_segments "Create a
5624 final PT_LOAD".) Set sh_offset to the value it
5625 would have if we had created a zero p_filesz and
5626 p_memsz PT_LOAD header for the section. This
5627 also makes the PT_TLS header have the same
5628 p_offset value. */
5629 bfd_vma adjust = vma_page_aligned_bias (this_hdr->sh_addr,
5630 off, align);
5631 this_hdr->sh_offset = sec->filepos = off + adjust;
5632 }
5633
5634 if (this_hdr->sh_type != SHT_NOBITS)
5635 {
5636 p->p_filesz += this_hdr->sh_size;
5637 /* A load section without SHF_ALLOC is something like
5638 a note section in a PT_NOTE segment. These take
5639 file space but are not loaded into memory. */
5640 if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5641 p->p_memsz += this_hdr->sh_size;
5642 }
5643 else if ((this_hdr->sh_flags & SHF_ALLOC) != 0)
5644 {
5645 if (p->p_type == PT_TLS)
5646 p->p_memsz += this_hdr->sh_size;
5647
5648 /* .tbss is special. It doesn't contribute to p_memsz of
5649 normal segments. */
5650 else if ((this_hdr->sh_flags & SHF_TLS) == 0)
5651 p->p_memsz += this_hdr->sh_size;
5652 }
5653
5654 if (align > p->p_align
5655 && !m->p_align_valid
5656 && (p->p_type != PT_LOAD
5657 || (abfd->flags & D_PAGED) == 0))
5658 p->p_align = align;
5659 }
5660
5661 if (!m->p_flags_valid)
5662 {
5663 p->p_flags |= PF_R;
5664 if ((this_hdr->sh_flags & SHF_EXECINSTR) != 0)
5665 p->p_flags |= PF_X;
5666 if ((this_hdr->sh_flags & SHF_WRITE) != 0)
5667 p->p_flags |= PF_W;
5668 }
5669 }
5670
5671 off -= off_adjust;
5672
5673 /* Check that all sections are in a PT_LOAD segment.
5674 Don't check funky gdb generated core files. */
5675 if (p->p_type == PT_LOAD && bfd_get_format (abfd) != bfd_core)
5676 {
5677 bfd_boolean check_vma = TRUE;
5678
5679 for (i = 1; i < m->count; i++)
5680 if (m->sections[i]->vma == m->sections[i - 1]->vma
5681 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i])
5682 ->this_hdr), p) != 0
5683 && ELF_SECTION_SIZE (&(elf_section_data (m->sections[i - 1])
5684 ->this_hdr), p) != 0)
5685 {
5686 /* Looks like we have overlays packed into the segment. */
5687 check_vma = FALSE;
5688 break;
5689 }
5690
5691 for (i = 0; i < m->count; i++)
5692 {
5693 Elf_Internal_Shdr *this_hdr;
5694 asection *sec;
5695
5696 sec = m->sections[i];
5697 this_hdr = &(elf_section_data(sec)->this_hdr);
5698 if (!ELF_SECTION_IN_SEGMENT_1 (this_hdr, p, check_vma, 0)
5699 && !ELF_TBSS_SPECIAL (this_hdr, p))
5700 {
5701 _bfd_error_handler
5702 /* xgettext:c-format */
5703 (_("%B: section `%A' can't be allocated in segment %d"),
5704 abfd, sec, j);
5705 print_segment_map (m);
5706 }
5707 }
5708 }
5709 }
5710
5711 elf_next_file_pos (abfd) = off;
5712 return TRUE;
5713 }
5714
5715 /* Assign file positions for the other sections. */
5716
5717 static bfd_boolean
5718 assign_file_positions_for_non_load_sections (bfd *abfd,
5719 struct bfd_link_info *link_info)
5720 {
5721 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5722 Elf_Internal_Shdr **i_shdrpp;
5723 Elf_Internal_Shdr **hdrpp, **end_hdrpp;
5724 Elf_Internal_Phdr *phdrs;
5725 Elf_Internal_Phdr *p;
5726 struct elf_segment_map *m;
5727 struct elf_segment_map *hdrs_segment;
5728 bfd_vma filehdr_vaddr, filehdr_paddr;
5729 bfd_vma phdrs_vaddr, phdrs_paddr;
5730 file_ptr off;
5731 unsigned int count;
5732
5733 i_shdrpp = elf_elfsections (abfd);
5734 end_hdrpp = i_shdrpp + elf_numsections (abfd);
5735 off = elf_next_file_pos (abfd);
5736 for (hdrpp = i_shdrpp + 1; hdrpp < end_hdrpp; hdrpp++)
5737 {
5738 Elf_Internal_Shdr *hdr;
5739
5740 hdr = *hdrpp;
5741 if (hdr->bfd_section != NULL
5742 && (hdr->bfd_section->filepos != 0
5743 || (hdr->sh_type == SHT_NOBITS
5744 && hdr->contents == NULL)))
5745 BFD_ASSERT (hdr->sh_offset == hdr->bfd_section->filepos);
5746 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
5747 {
5748 if (hdr->sh_size != 0)
5749 _bfd_error_handler
5750 /* xgettext:c-format */
5751 (_("%B: warning: allocated section `%s' not in segment"),
5752 abfd,
5753 (hdr->bfd_section == NULL
5754 ? "*unknown*"
5755 : hdr->bfd_section->name));
5756 /* We don't need to page align empty sections. */
5757 if ((abfd->flags & D_PAGED) != 0 && hdr->sh_size != 0)
5758 off += vma_page_aligned_bias (hdr->sh_addr, off,
5759 bed->maxpagesize);
5760 else
5761 off += vma_page_aligned_bias (hdr->sh_addr, off,
5762 hdr->sh_addralign);
5763 off = _bfd_elf_assign_file_position_for_section (hdr, off,
5764 FALSE);
5765 }
5766 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
5767 && hdr->bfd_section == NULL)
5768 || (hdr->bfd_section != NULL
5769 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
5770 /* Compress DWARF debug sections. */
5771 || hdr == i_shdrpp[elf_onesymtab (abfd)]
5772 || (elf_symtab_shndx_list (abfd) != NULL
5773 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
5774 || hdr == i_shdrpp[elf_strtab_sec (abfd)]
5775 || hdr == i_shdrpp[elf_shstrtab_sec (abfd)])
5776 hdr->sh_offset = -1;
5777 else
5778 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
5779 }
5780
5781 /* Now that we have set the section file positions, we can set up
5782 the file positions for the non PT_LOAD segments. */
5783 count = 0;
5784 filehdr_vaddr = 0;
5785 filehdr_paddr = 0;
5786 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
5787 phdrs_paddr = 0;
5788 hdrs_segment = NULL;
5789 phdrs = elf_tdata (abfd)->phdr;
5790 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5791 {
5792 ++count;
5793 if (p->p_type != PT_LOAD)
5794 continue;
5795
5796 if (m->includes_filehdr)
5797 {
5798 filehdr_vaddr = p->p_vaddr;
5799 filehdr_paddr = p->p_paddr;
5800 }
5801 if (m->includes_phdrs)
5802 {
5803 phdrs_vaddr = p->p_vaddr;
5804 phdrs_paddr = p->p_paddr;
5805 if (m->includes_filehdr)
5806 {
5807 hdrs_segment = m;
5808 phdrs_vaddr += bed->s->sizeof_ehdr;
5809 phdrs_paddr += bed->s->sizeof_ehdr;
5810 }
5811 }
5812 }
5813
5814 if (hdrs_segment != NULL && link_info != NULL)
5815 {
5816 /* There is a segment that contains both the file headers and the
5817 program headers, so provide a symbol __ehdr_start pointing there.
5818 A program can use this to examine itself robustly. */
5819
5820 struct elf_link_hash_entry *hash
5821 = elf_link_hash_lookup (elf_hash_table (link_info), "__ehdr_start",
5822 FALSE, FALSE, TRUE);
5823 /* If the symbol was referenced and not defined, define it. */
5824 if (hash != NULL
5825 && (hash->root.type == bfd_link_hash_new
5826 || hash->root.type == bfd_link_hash_undefined
5827 || hash->root.type == bfd_link_hash_undefweak
5828 || hash->root.type == bfd_link_hash_common))
5829 {
5830 asection *s = NULL;
5831 if (hdrs_segment->count != 0)
5832 /* The segment contains sections, so use the first one. */
5833 s = hdrs_segment->sections[0];
5834 else
5835 /* Use the first (i.e. lowest-addressed) section in any segment. */
5836 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
5837 if (m->count != 0)
5838 {
5839 s = m->sections[0];
5840 break;
5841 }
5842
5843 if (s != NULL)
5844 {
5845 hash->root.u.def.value = filehdr_vaddr - s->vma;
5846 hash->root.u.def.section = s;
5847 }
5848 else
5849 {
5850 hash->root.u.def.value = filehdr_vaddr;
5851 hash->root.u.def.section = bfd_abs_section_ptr;
5852 }
5853
5854 hash->root.type = bfd_link_hash_defined;
5855 hash->def_regular = 1;
5856 hash->non_elf = 0;
5857 }
5858 }
5859
5860 for (m = elf_seg_map (abfd), p = phdrs; m != NULL; m = m->next, p++)
5861 {
5862 if (p->p_type == PT_GNU_RELRO)
5863 {
5864 const Elf_Internal_Phdr *lp;
5865 struct elf_segment_map *lm;
5866
5867 if (link_info != NULL)
5868 {
5869 /* During linking the range of the RELRO segment is passed
5870 in link_info. */
5871 for (lm = elf_seg_map (abfd), lp = phdrs;
5872 lm != NULL;
5873 lm = lm->next, lp++)
5874 {
5875 if (lp->p_type == PT_LOAD
5876 && lp->p_vaddr < link_info->relro_end
5877 && lm->count != 0
5878 && lm->sections[0]->vma >= link_info->relro_start)
5879 break;
5880 }
5881
5882 BFD_ASSERT (lm != NULL);
5883 }
5884 else
5885 {
5886 /* Otherwise we are copying an executable or shared
5887 library, but we need to use the same linker logic. */
5888 for (lp = phdrs; lp < phdrs + count; ++lp)
5889 {
5890 if (lp->p_type == PT_LOAD
5891 && lp->p_paddr == p->p_paddr)
5892 break;
5893 }
5894 }
5895
5896 if (lp < phdrs + count)
5897 {
5898 p->p_vaddr = lp->p_vaddr;
5899 p->p_paddr = lp->p_paddr;
5900 p->p_offset = lp->p_offset;
5901 if (link_info != NULL)
5902 p->p_filesz = link_info->relro_end - lp->p_vaddr;
5903 else if (m->p_size_valid)
5904 p->p_filesz = m->p_size;
5905 else
5906 abort ();
5907 p->p_memsz = p->p_filesz;
5908 /* Preserve the alignment and flags if they are valid. The
5909 gold linker generates RW/4 for the PT_GNU_RELRO section.
5910 It is better for objcopy/strip to honor these attributes
5911 otherwise gdb will choke when using separate debug files.
5912 */
5913 if (!m->p_align_valid)
5914 p->p_align = 1;
5915 if (!m->p_flags_valid)
5916 p->p_flags = PF_R;
5917 }
5918 else
5919 {
5920 memset (p, 0, sizeof *p);
5921 p->p_type = PT_NULL;
5922 }
5923 }
5924 else if (p->p_type == PT_GNU_STACK)
5925 {
5926 if (m->p_size_valid)
5927 p->p_memsz = m->p_size;
5928 }
5929 else if (m->count != 0)
5930 {
5931 unsigned int i;
5932
5933 if (p->p_type != PT_LOAD
5934 && (p->p_type != PT_NOTE
5935 || bfd_get_format (abfd) != bfd_core))
5936 {
5937 /* A user specified segment layout may include a PHDR
5938 segment that overlaps with a LOAD segment... */
5939 if (p->p_type == PT_PHDR)
5940 {
5941 m->count = 0;
5942 continue;
5943 }
5944
5945 if (m->includes_filehdr || m->includes_phdrs)
5946 {
5947 /* PR 17512: file: 2195325e. */
5948 _bfd_error_handler
5949 (_("%B: error: non-load segment %d includes file header "
5950 "and/or program header"),
5951 abfd, (int) (p - phdrs));
5952 return FALSE;
5953 }
5954
5955 p->p_filesz = 0;
5956 p->p_offset = m->sections[0]->filepos;
5957 for (i = m->count; i-- != 0;)
5958 {
5959 asection *sect = m->sections[i];
5960 Elf_Internal_Shdr *hdr = &elf_section_data (sect)->this_hdr;
5961 if (hdr->sh_type != SHT_NOBITS)
5962 {
5963 p->p_filesz = (sect->filepos - m->sections[0]->filepos
5964 + hdr->sh_size);
5965 break;
5966 }
5967 }
5968 }
5969 }
5970 else if (m->includes_filehdr)
5971 {
5972 p->p_vaddr = filehdr_vaddr;
5973 if (! m->p_paddr_valid)
5974 p->p_paddr = filehdr_paddr;
5975 }
5976 else if (m->includes_phdrs)
5977 {
5978 p->p_vaddr = phdrs_vaddr;
5979 if (! m->p_paddr_valid)
5980 p->p_paddr = phdrs_paddr;
5981 }
5982 }
5983
5984 elf_next_file_pos (abfd) = off;
5985
5986 return TRUE;
5987 }
5988
5989 static elf_section_list *
5990 find_section_in_list (unsigned int i, elf_section_list * list)
5991 {
5992 for (;list != NULL; list = list->next)
5993 if (list->ndx == i)
5994 break;
5995 return list;
5996 }
5997
5998 /* Work out the file positions of all the sections. This is called by
5999 _bfd_elf_compute_section_file_positions. All the section sizes and
6000 VMAs must be known before this is called.
6001
6002 Reloc sections come in two flavours: Those processed specially as
6003 "side-channel" data attached to a section to which they apply, and
6004 those that bfd doesn't process as relocations. The latter sort are
6005 stored in a normal bfd section by bfd_section_from_shdr. We don't
6006 consider the former sort here, unless they form part of the loadable
6007 image. Reloc sections not assigned here will be handled later by
6008 assign_file_positions_for_relocs.
6009
6010 We also don't set the positions of the .symtab and .strtab here. */
6011
6012 static bfd_boolean
6013 assign_file_positions_except_relocs (bfd *abfd,
6014 struct bfd_link_info *link_info)
6015 {
6016 struct elf_obj_tdata *tdata = elf_tdata (abfd);
6017 Elf_Internal_Ehdr *i_ehdrp = elf_elfheader (abfd);
6018 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6019
6020 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
6021 && bfd_get_format (abfd) != bfd_core)
6022 {
6023 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
6024 unsigned int num_sec = elf_numsections (abfd);
6025 Elf_Internal_Shdr **hdrpp;
6026 unsigned int i;
6027 file_ptr off;
6028
6029 /* Start after the ELF header. */
6030 off = i_ehdrp->e_ehsize;
6031
6032 /* We are not creating an executable, which means that we are
6033 not creating a program header, and that the actual order of
6034 the sections in the file is unimportant. */
6035 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
6036 {
6037 Elf_Internal_Shdr *hdr;
6038
6039 hdr = *hdrpp;
6040 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
6041 && hdr->bfd_section == NULL)
6042 || (hdr->bfd_section != NULL
6043 && (hdr->bfd_section->flags & SEC_ELF_COMPRESS))
6044 /* Compress DWARF debug sections. */
6045 || i == elf_onesymtab (abfd)
6046 || (elf_symtab_shndx_list (abfd) != NULL
6047 && hdr == i_shdrpp[elf_symtab_shndx_list (abfd)->ndx])
6048 || i == elf_strtab_sec (abfd)
6049 || i == elf_shstrtab_sec (abfd))
6050 {
6051 hdr->sh_offset = -1;
6052 }
6053 else
6054 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
6055 }
6056
6057 elf_next_file_pos (abfd) = off;
6058 }
6059 else
6060 {
6061 unsigned int alloc;
6062
6063 /* Assign file positions for the loaded sections based on the
6064 assignment of sections to segments. */
6065 if (!assign_file_positions_for_load_sections (abfd, link_info))
6066 return FALSE;
6067
6068 /* And for non-load sections. */
6069 if (!assign_file_positions_for_non_load_sections (abfd, link_info))
6070 return FALSE;
6071
6072 if (bed->elf_backend_modify_program_headers != NULL)
6073 {
6074 if (!(*bed->elf_backend_modify_program_headers) (abfd, link_info))
6075 return FALSE;
6076 }
6077
6078 /* Set e_type in ELF header to ET_EXEC for -pie -Ttext-segment=. */
6079 if (link_info != NULL && bfd_link_pie (link_info))
6080 {
6081 unsigned int num_segments = elf_elfheader (abfd)->e_phnum;
6082 Elf_Internal_Phdr *segment = elf_tdata (abfd)->phdr;
6083 Elf_Internal_Phdr *end_segment = &segment[num_segments];
6084
6085 /* Find the lowest p_vaddr in PT_LOAD segments. */
6086 bfd_vma p_vaddr = (bfd_vma) -1;
6087 for (; segment < end_segment; segment++)
6088 if (segment->p_type == PT_LOAD && p_vaddr > segment->p_vaddr)
6089 p_vaddr = segment->p_vaddr;
6090
6091 /* Set e_type to ET_EXEC if the lowest p_vaddr in PT_LOAD
6092 segments is non-zero. */
6093 if (p_vaddr)
6094 i_ehdrp->e_type = ET_EXEC;
6095 }
6096
6097 /* Write out the program headers. */
6098 alloc = elf_program_header_size (abfd) / bed->s->sizeof_phdr;
6099
6100 /* Sort the program headers into the ordering required by the ELF standard. */
6101 if (alloc == 0)
6102 return TRUE;
6103
6104 /* PR ld/20815 - Check that the program header segment, if present, will
6105 be loaded into memory. FIXME: The check below is not sufficient as
6106 really all PT_LOAD segments should be checked before issuing an error
6107 message. Plus the PHDR segment does not have to be the first segment
6108 in the program header table. But this version of the check should
6109 catch all real world use cases.
6110
6111 FIXME: We used to have code here to sort the PT_LOAD segments into
6112 ascending order, as per the ELF spec. But this breaks some programs,
6113 including the Linux kernel. But really either the spec should be
6114 changed or the programs updated. */
6115 if (alloc > 1
6116 && tdata->phdr[0].p_type == PT_PHDR
6117 && ! bed->elf_backend_allow_non_load_phdr (abfd, tdata->phdr, alloc)
6118 && tdata->phdr[1].p_type == PT_LOAD
6119 && (tdata->phdr[1].p_vaddr > tdata->phdr[0].p_vaddr
6120 || (tdata->phdr[1].p_vaddr + tdata->phdr[1].p_memsz)
6121 < (tdata->phdr[0].p_vaddr + tdata->phdr[0].p_memsz)))
6122 {
6123 /* The fix for this error is usually to edit the linker script being
6124 used and set up the program headers manually. Either that or
6125 leave room for the headers at the start of the SECTIONS. */
6126 _bfd_error_handler (_("\
6127 %B: error: PHDR segment not covered by LOAD segment"),
6128 abfd);
6129 return FALSE;
6130 }
6131
6132 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
6133 || bed->s->write_out_phdrs (abfd, tdata->phdr, alloc) != 0)
6134 return FALSE;
6135 }
6136
6137 return TRUE;
6138 }
6139
6140 static bfd_boolean
6141 prep_headers (bfd *abfd)
6142 {
6143 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form. */
6144 struct elf_strtab_hash *shstrtab;
6145 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6146
6147 i_ehdrp = elf_elfheader (abfd);
6148
6149 shstrtab = _bfd_elf_strtab_init ();
6150 if (shstrtab == NULL)
6151 return FALSE;
6152
6153 elf_shstrtab (abfd) = shstrtab;
6154
6155 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
6156 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
6157 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
6158 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
6159
6160 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
6161 i_ehdrp->e_ident[EI_DATA] =
6162 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
6163 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
6164
6165 if ((abfd->flags & DYNAMIC) != 0)
6166 i_ehdrp->e_type = ET_DYN;
6167 else if ((abfd->flags & EXEC_P) != 0)
6168 i_ehdrp->e_type = ET_EXEC;
6169 else if (bfd_get_format (abfd) == bfd_core)
6170 i_ehdrp->e_type = ET_CORE;
6171 else
6172 i_ehdrp->e_type = ET_REL;
6173
6174 switch (bfd_get_arch (abfd))
6175 {
6176 case bfd_arch_unknown:
6177 i_ehdrp->e_machine = EM_NONE;
6178 break;
6179
6180 /* There used to be a long list of cases here, each one setting
6181 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
6182 in the corresponding bfd definition. To avoid duplication,
6183 the switch was removed. Machines that need special handling
6184 can generally do it in elf_backend_final_write_processing(),
6185 unless they need the information earlier than the final write.
6186 Such need can generally be supplied by replacing the tests for
6187 e_machine with the conditions used to determine it. */
6188 default:
6189 i_ehdrp->e_machine = bed->elf_machine_code;
6190 }
6191
6192 i_ehdrp->e_version = bed->s->ev_current;
6193 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
6194
6195 /* No program header, for now. */
6196 i_ehdrp->e_phoff = 0;
6197 i_ehdrp->e_phentsize = 0;
6198 i_ehdrp->e_phnum = 0;
6199
6200 /* Each bfd section is section header entry. */
6201 i_ehdrp->e_entry = bfd_get_start_address (abfd);
6202 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
6203
6204 /* If we're building an executable, we'll need a program header table. */
6205 if (abfd->flags & EXEC_P)
6206 /* It all happens later. */
6207 ;
6208 else
6209 {
6210 i_ehdrp->e_phentsize = 0;
6211 i_ehdrp->e_phoff = 0;
6212 }
6213
6214 elf_tdata (abfd)->symtab_hdr.sh_name =
6215 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
6216 elf_tdata (abfd)->strtab_hdr.sh_name =
6217 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
6218 elf_tdata (abfd)->shstrtab_hdr.sh_name =
6219 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
6220 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
6221 || elf_tdata (abfd)->strtab_hdr.sh_name == (unsigned int) -1
6222 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
6223 return FALSE;
6224
6225 return TRUE;
6226 }
6227
6228 /* Assign file positions for all the reloc sections which are not part
6229 of the loadable file image, and the file position of section headers. */
6230
6231 static bfd_boolean
6232 _bfd_elf_assign_file_positions_for_non_load (bfd *abfd)
6233 {
6234 file_ptr off;
6235 Elf_Internal_Shdr **shdrpp, **end_shdrpp;
6236 Elf_Internal_Shdr *shdrp;
6237 Elf_Internal_Ehdr *i_ehdrp;
6238 const struct elf_backend_data *bed;
6239
6240 off = elf_next_file_pos (abfd);
6241
6242 shdrpp = elf_elfsections (abfd);
6243 end_shdrpp = shdrpp + elf_numsections (abfd);
6244 for (shdrpp++; shdrpp < end_shdrpp; shdrpp++)
6245 {
6246 shdrp = *shdrpp;
6247 if (shdrp->sh_offset == -1)
6248 {
6249 asection *sec = shdrp->bfd_section;
6250 bfd_boolean is_rel = (shdrp->sh_type == SHT_REL
6251 || shdrp->sh_type == SHT_RELA);
6252 if (is_rel
6253 || (sec != NULL && (sec->flags & SEC_ELF_COMPRESS)))
6254 {
6255 if (!is_rel)
6256 {
6257 const char *name = sec->name;
6258 struct bfd_elf_section_data *d;
6259
6260 /* Compress DWARF debug sections. */
6261 if (!bfd_compress_section (abfd, sec,
6262 shdrp->contents))
6263 return FALSE;
6264
6265 if (sec->compress_status == COMPRESS_SECTION_DONE
6266 && (abfd->flags & BFD_COMPRESS_GABI) == 0)
6267 {
6268 /* If section is compressed with zlib-gnu, convert
6269 section name from .debug_* to .zdebug_*. */
6270 char *new_name
6271 = convert_debug_to_zdebug (abfd, name);
6272 if (new_name == NULL)
6273 return FALSE;
6274 name = new_name;
6275 }
6276 /* Add section name to section name section. */
6277 if (shdrp->sh_name != (unsigned int) -1)
6278 abort ();
6279 shdrp->sh_name
6280 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
6281 name, FALSE);
6282 d = elf_section_data (sec);
6283
6284 /* Add reloc section name to section name section. */
6285 if (d->rel.hdr
6286 && !_bfd_elf_set_reloc_sh_name (abfd,
6287 d->rel.hdr,
6288 name, FALSE))
6289 return FALSE;
6290 if (d->rela.hdr
6291 && !_bfd_elf_set_reloc_sh_name (abfd,
6292 d->rela.hdr,
6293 name, TRUE))
6294 return FALSE;
6295
6296 /* Update section size and contents. */
6297 shdrp->sh_size = sec->size;
6298 shdrp->contents = sec->contents;
6299 shdrp->bfd_section->contents = NULL;
6300 }
6301 off = _bfd_elf_assign_file_position_for_section (shdrp,
6302 off,
6303 TRUE);
6304 }
6305 }
6306 }
6307
6308 /* Place section name section after DWARF debug sections have been
6309 compressed. */
6310 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
6311 shdrp = &elf_tdata (abfd)->shstrtab_hdr;
6312 shdrp->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
6313 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
6314
6315 /* Place the section headers. */
6316 i_ehdrp = elf_elfheader (abfd);
6317 bed = get_elf_backend_data (abfd);
6318 off = align_file_position (off, 1 << bed->s->log_file_align);
6319 i_ehdrp->e_shoff = off;
6320 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
6321 elf_next_file_pos (abfd) = off;
6322
6323 return TRUE;
6324 }
6325
6326 bfd_boolean
6327 _bfd_elf_write_object_contents (bfd *abfd)
6328 {
6329 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
6330 Elf_Internal_Shdr **i_shdrp;
6331 bfd_boolean failed;
6332 unsigned int count, num_sec;
6333 struct elf_obj_tdata *t;
6334
6335 if (! abfd->output_has_begun
6336 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6337 return FALSE;
6338
6339 i_shdrp = elf_elfsections (abfd);
6340
6341 failed = FALSE;
6342 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
6343 if (failed)
6344 return FALSE;
6345
6346 if (!_bfd_elf_assign_file_positions_for_non_load (abfd))
6347 return FALSE;
6348
6349 /* After writing the headers, we need to write the sections too... */
6350 num_sec = elf_numsections (abfd);
6351 for (count = 1; count < num_sec; count++)
6352 {
6353 i_shdrp[count]->sh_name
6354 = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
6355 i_shdrp[count]->sh_name);
6356 if (bed->elf_backend_section_processing)
6357 if (!(*bed->elf_backend_section_processing) (abfd, i_shdrp[count]))
6358 return FALSE;
6359 if (i_shdrp[count]->contents)
6360 {
6361 bfd_size_type amt = i_shdrp[count]->sh_size;
6362
6363 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
6364 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
6365 return FALSE;
6366 }
6367 }
6368
6369 /* Write out the section header names. */
6370 t = elf_tdata (abfd);
6371 if (elf_shstrtab (abfd) != NULL
6372 && (bfd_seek (abfd, t->shstrtab_hdr.sh_offset, SEEK_SET) != 0
6373 || !_bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd))))
6374 return FALSE;
6375
6376 if (bed->elf_backend_final_write_processing)
6377 (*bed->elf_backend_final_write_processing) (abfd, elf_linker (abfd));
6378
6379 if (!bed->s->write_shdrs_and_ehdr (abfd))
6380 return FALSE;
6381
6382 /* This is last since write_shdrs_and_ehdr can touch i_shdrp[0]. */
6383 if (t->o->build_id.after_write_object_contents != NULL)
6384 return (*t->o->build_id.after_write_object_contents) (abfd);
6385
6386 return TRUE;
6387 }
6388
6389 bfd_boolean
6390 _bfd_elf_write_corefile_contents (bfd *abfd)
6391 {
6392 /* Hopefully this can be done just like an object file. */
6393 return _bfd_elf_write_object_contents (abfd);
6394 }
6395
6396 /* Given a section, search the header to find them. */
6397
6398 unsigned int
6399 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
6400 {
6401 const struct elf_backend_data *bed;
6402 unsigned int sec_index;
6403
6404 if (elf_section_data (asect) != NULL
6405 && elf_section_data (asect)->this_idx != 0)
6406 return elf_section_data (asect)->this_idx;
6407
6408 if (bfd_is_abs_section (asect))
6409 sec_index = SHN_ABS;
6410 else if (bfd_is_com_section (asect))
6411 sec_index = SHN_COMMON;
6412 else if (bfd_is_und_section (asect))
6413 sec_index = SHN_UNDEF;
6414 else
6415 sec_index = SHN_BAD;
6416
6417 bed = get_elf_backend_data (abfd);
6418 if (bed->elf_backend_section_from_bfd_section)
6419 {
6420 int retval = sec_index;
6421
6422 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
6423 return retval;
6424 }
6425
6426 if (sec_index == SHN_BAD)
6427 bfd_set_error (bfd_error_nonrepresentable_section);
6428
6429 return sec_index;
6430 }
6431
6432 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
6433 on error. */
6434
6435 int
6436 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
6437 {
6438 asymbol *asym_ptr = *asym_ptr_ptr;
6439 int idx;
6440 flagword flags = asym_ptr->flags;
6441
6442 /* When gas creates relocations against local labels, it creates its
6443 own symbol for the section, but does put the symbol into the
6444 symbol chain, so udata is 0. When the linker is generating
6445 relocatable output, this section symbol may be for one of the
6446 input sections rather than the output section. */
6447 if (asym_ptr->udata.i == 0
6448 && (flags & BSF_SECTION_SYM)
6449 && asym_ptr->section)
6450 {
6451 asection *sec;
6452 int indx;
6453
6454 sec = asym_ptr->section;
6455 if (sec->owner != abfd && sec->output_section != NULL)
6456 sec = sec->output_section;
6457 if (sec->owner == abfd
6458 && (indx = sec->index) < elf_num_section_syms (abfd)
6459 && elf_section_syms (abfd)[indx] != NULL)
6460 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
6461 }
6462
6463 idx = asym_ptr->udata.i;
6464
6465 if (idx == 0)
6466 {
6467 /* This case can occur when using --strip-symbol on a symbol
6468 which is used in a relocation entry. */
6469 _bfd_error_handler
6470 /* xgettext:c-format */
6471 (_("%B: symbol `%s' required but not present"),
6472 abfd, bfd_asymbol_name (asym_ptr));
6473 bfd_set_error (bfd_error_no_symbols);
6474 return -1;
6475 }
6476
6477 #if DEBUG & 4
6478 {
6479 fprintf (stderr,
6480 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8x\n",
6481 (long) asym_ptr, asym_ptr->name, idx, flags);
6482 fflush (stderr);
6483 }
6484 #endif
6485
6486 return idx;
6487 }
6488
6489 /* Rewrite program header information. */
6490
6491 static bfd_boolean
6492 rewrite_elf_program_header (bfd *ibfd, bfd *obfd)
6493 {
6494 Elf_Internal_Ehdr *iehdr;
6495 struct elf_segment_map *map;
6496 struct elf_segment_map *map_first;
6497 struct elf_segment_map **pointer_to_map;
6498 Elf_Internal_Phdr *segment;
6499 asection *section;
6500 unsigned int i;
6501 unsigned int num_segments;
6502 bfd_boolean phdr_included = FALSE;
6503 bfd_boolean p_paddr_valid;
6504 bfd_vma maxpagesize;
6505 struct elf_segment_map *phdr_adjust_seg = NULL;
6506 unsigned int phdr_adjust_num = 0;
6507 const struct elf_backend_data *bed;
6508
6509 bed = get_elf_backend_data (ibfd);
6510 iehdr = elf_elfheader (ibfd);
6511
6512 map_first = NULL;
6513 pointer_to_map = &map_first;
6514
6515 num_segments = elf_elfheader (ibfd)->e_phnum;
6516 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
6517
6518 /* Returns the end address of the segment + 1. */
6519 #define SEGMENT_END(segment, start) \
6520 (start + (segment->p_memsz > segment->p_filesz \
6521 ? segment->p_memsz : segment->p_filesz))
6522
6523 #define SECTION_SIZE(section, segment) \
6524 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
6525 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
6526 ? section->size : 0)
6527
6528 /* Returns TRUE if the given section is contained within
6529 the given segment. VMA addresses are compared. */
6530 #define IS_CONTAINED_BY_VMA(section, segment) \
6531 (section->vma >= segment->p_vaddr \
6532 && (section->vma + SECTION_SIZE (section, segment) \
6533 <= (SEGMENT_END (segment, segment->p_vaddr))))
6534
6535 /* Returns TRUE if the given section is contained within
6536 the given segment. LMA addresses are compared. */
6537 #define IS_CONTAINED_BY_LMA(section, segment, base) \
6538 (section->lma >= base \
6539 && (section->lma + SECTION_SIZE (section, segment) \
6540 <= SEGMENT_END (segment, base)))
6541
6542 /* Handle PT_NOTE segment. */
6543 #define IS_NOTE(p, s) \
6544 (p->p_type == PT_NOTE \
6545 && elf_section_type (s) == SHT_NOTE \
6546 && (bfd_vma) s->filepos >= p->p_offset \
6547 && ((bfd_vma) s->filepos + s->size \
6548 <= p->p_offset + p->p_filesz))
6549
6550 /* Special case: corefile "NOTE" section containing regs, prpsinfo
6551 etc. */
6552 #define IS_COREFILE_NOTE(p, s) \
6553 (IS_NOTE (p, s) \
6554 && bfd_get_format (ibfd) == bfd_core \
6555 && s->vma == 0 \
6556 && s->lma == 0)
6557
6558 /* The complicated case when p_vaddr is 0 is to handle the Solaris
6559 linker, which generates a PT_INTERP section with p_vaddr and
6560 p_memsz set to 0. */
6561 #define IS_SOLARIS_PT_INTERP(p, s) \
6562 (p->p_vaddr == 0 \
6563 && p->p_paddr == 0 \
6564 && p->p_memsz == 0 \
6565 && p->p_filesz > 0 \
6566 && (s->flags & SEC_HAS_CONTENTS) != 0 \
6567 && s->size > 0 \
6568 && (bfd_vma) s->filepos >= p->p_offset \
6569 && ((bfd_vma) s->filepos + s->size \
6570 <= p->p_offset + p->p_filesz))
6571
6572 /* Decide if the given section should be included in the given segment.
6573 A section will be included if:
6574 1. It is within the address space of the segment -- we use the LMA
6575 if that is set for the segment and the VMA otherwise,
6576 2. It is an allocated section or a NOTE section in a PT_NOTE
6577 segment.
6578 3. There is an output section associated with it,
6579 4. The section has not already been allocated to a previous segment.
6580 5. PT_GNU_STACK segments do not include any sections.
6581 6. PT_TLS segment includes only SHF_TLS sections.
6582 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments.
6583 8. PT_DYNAMIC should not contain empty sections at the beginning
6584 (with the possible exception of .dynamic). */
6585 #define IS_SECTION_IN_INPUT_SEGMENT(section, segment, bed) \
6586 ((((segment->p_paddr \
6587 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
6588 : IS_CONTAINED_BY_VMA (section, segment)) \
6589 && (section->flags & SEC_ALLOC) != 0) \
6590 || IS_NOTE (segment, section)) \
6591 && segment->p_type != PT_GNU_STACK \
6592 && (segment->p_type != PT_TLS \
6593 || (section->flags & SEC_THREAD_LOCAL)) \
6594 && (segment->p_type == PT_LOAD \
6595 || segment->p_type == PT_TLS \
6596 || (section->flags & SEC_THREAD_LOCAL) == 0) \
6597 && (segment->p_type != PT_DYNAMIC \
6598 || SECTION_SIZE (section, segment) > 0 \
6599 || (segment->p_paddr \
6600 ? segment->p_paddr != section->lma \
6601 : segment->p_vaddr != section->vma) \
6602 || (strcmp (bfd_get_section_name (ibfd, section), ".dynamic") \
6603 == 0)) \
6604 && !section->segment_mark)
6605
6606 /* If the output section of a section in the input segment is NULL,
6607 it is removed from the corresponding output segment. */
6608 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
6609 (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed) \
6610 && section->output_section != NULL)
6611
6612 /* Returns TRUE iff seg1 starts after the end of seg2. */
6613 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
6614 (seg1->field >= SEGMENT_END (seg2, seg2->field))
6615
6616 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
6617 their VMA address ranges and their LMA address ranges overlap.
6618 It is possible to have overlapping VMA ranges without overlapping LMA
6619 ranges. RedBoot images for example can have both .data and .bss mapped
6620 to the same VMA range, but with the .data section mapped to a different
6621 LMA. */
6622 #define SEGMENT_OVERLAPS(seg1, seg2) \
6623 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
6624 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
6625 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
6626 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
6627
6628 /* Initialise the segment mark field. */
6629 for (section = ibfd->sections; section != NULL; section = section->next)
6630 section->segment_mark = FALSE;
6631
6632 /* The Solaris linker creates program headers in which all the
6633 p_paddr fields are zero. When we try to objcopy or strip such a
6634 file, we get confused. Check for this case, and if we find it
6635 don't set the p_paddr_valid fields. */
6636 p_paddr_valid = FALSE;
6637 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6638 i < num_segments;
6639 i++, segment++)
6640 if (segment->p_paddr != 0)
6641 {
6642 p_paddr_valid = TRUE;
6643 break;
6644 }
6645
6646 /* Scan through the segments specified in the program header
6647 of the input BFD. For this first scan we look for overlaps
6648 in the loadable segments. These can be created by weird
6649 parameters to objcopy. Also, fix some solaris weirdness. */
6650 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6651 i < num_segments;
6652 i++, segment++)
6653 {
6654 unsigned int j;
6655 Elf_Internal_Phdr *segment2;
6656
6657 if (segment->p_type == PT_INTERP)
6658 for (section = ibfd->sections; section; section = section->next)
6659 if (IS_SOLARIS_PT_INTERP (segment, section))
6660 {
6661 /* Mininal change so that the normal section to segment
6662 assignment code will work. */
6663 segment->p_vaddr = section->vma;
6664 break;
6665 }
6666
6667 if (segment->p_type != PT_LOAD)
6668 {
6669 /* Remove PT_GNU_RELRO segment. */
6670 if (segment->p_type == PT_GNU_RELRO)
6671 segment->p_type = PT_NULL;
6672 continue;
6673 }
6674
6675 /* Determine if this segment overlaps any previous segments. */
6676 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2++)
6677 {
6678 bfd_signed_vma extra_length;
6679
6680 if (segment2->p_type != PT_LOAD
6681 || !SEGMENT_OVERLAPS (segment, segment2))
6682 continue;
6683
6684 /* Merge the two segments together. */
6685 if (segment2->p_vaddr < segment->p_vaddr)
6686 {
6687 /* Extend SEGMENT2 to include SEGMENT and then delete
6688 SEGMENT. */
6689 extra_length = (SEGMENT_END (segment, segment->p_vaddr)
6690 - SEGMENT_END (segment2, segment2->p_vaddr));
6691
6692 if (extra_length > 0)
6693 {
6694 segment2->p_memsz += extra_length;
6695 segment2->p_filesz += extra_length;
6696 }
6697
6698 segment->p_type = PT_NULL;
6699
6700 /* Since we have deleted P we must restart the outer loop. */
6701 i = 0;
6702 segment = elf_tdata (ibfd)->phdr;
6703 break;
6704 }
6705 else
6706 {
6707 /* Extend SEGMENT to include SEGMENT2 and then delete
6708 SEGMENT2. */
6709 extra_length = (SEGMENT_END (segment2, segment2->p_vaddr)
6710 - SEGMENT_END (segment, segment->p_vaddr));
6711
6712 if (extra_length > 0)
6713 {
6714 segment->p_memsz += extra_length;
6715 segment->p_filesz += extra_length;
6716 }
6717
6718 segment2->p_type = PT_NULL;
6719 }
6720 }
6721 }
6722
6723 /* The second scan attempts to assign sections to segments. */
6724 for (i = 0, segment = elf_tdata (ibfd)->phdr;
6725 i < num_segments;
6726 i++, segment++)
6727 {
6728 unsigned int section_count;
6729 asection **sections;
6730 asection *output_section;
6731 unsigned int isec;
6732 bfd_vma matching_lma;
6733 bfd_vma suggested_lma;
6734 unsigned int j;
6735 bfd_size_type amt;
6736 asection *first_section;
6737 bfd_boolean first_matching_lma;
6738 bfd_boolean first_suggested_lma;
6739
6740 if (segment->p_type == PT_NULL)
6741 continue;
6742
6743 first_section = NULL;
6744 /* Compute how many sections might be placed into this segment. */
6745 for (section = ibfd->sections, section_count = 0;
6746 section != NULL;
6747 section = section->next)
6748 {
6749 /* Find the first section in the input segment, which may be
6750 removed from the corresponding output segment. */
6751 if (IS_SECTION_IN_INPUT_SEGMENT (section, segment, bed))
6752 {
6753 if (first_section == NULL)
6754 first_section = section;
6755 if (section->output_section != NULL)
6756 ++section_count;
6757 }
6758 }
6759
6760 /* Allocate a segment map big enough to contain
6761 all of the sections we have selected. */
6762 amt = sizeof (struct elf_segment_map);
6763 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
6764 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
6765 if (map == NULL)
6766 return FALSE;
6767
6768 /* Initialise the fields of the segment map. Default to
6769 using the physical address of the segment in the input BFD. */
6770 map->next = NULL;
6771 map->p_type = segment->p_type;
6772 map->p_flags = segment->p_flags;
6773 map->p_flags_valid = 1;
6774
6775 /* If the first section in the input segment is removed, there is
6776 no need to preserve segment physical address in the corresponding
6777 output segment. */
6778 if (!first_section || first_section->output_section != NULL)
6779 {
6780 map->p_paddr = segment->p_paddr;
6781 map->p_paddr_valid = p_paddr_valid;
6782 }
6783
6784 /* Determine if this segment contains the ELF file header
6785 and if it contains the program headers themselves. */
6786 map->includes_filehdr = (segment->p_offset == 0
6787 && segment->p_filesz >= iehdr->e_ehsize);
6788 map->includes_phdrs = 0;
6789
6790 if (!phdr_included || segment->p_type != PT_LOAD)
6791 {
6792 map->includes_phdrs =
6793 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
6794 && (segment->p_offset + segment->p_filesz
6795 >= ((bfd_vma) iehdr->e_phoff
6796 + iehdr->e_phnum * iehdr->e_phentsize)));
6797
6798 if (segment->p_type == PT_LOAD && map->includes_phdrs)
6799 phdr_included = TRUE;
6800 }
6801
6802 if (section_count == 0)
6803 {
6804 /* Special segments, such as the PT_PHDR segment, may contain
6805 no sections, but ordinary, loadable segments should contain
6806 something. They are allowed by the ELF spec however, so only
6807 a warning is produced.
6808 There is however the valid use case of embedded systems which
6809 have segments with p_filesz of 0 and a p_memsz > 0 to initialize
6810 flash memory with zeros. No warning is shown for that case. */
6811 if (segment->p_type == PT_LOAD
6812 && (segment->p_filesz > 0 || segment->p_memsz == 0))
6813 /* xgettext:c-format */
6814 _bfd_error_handler (_("%B: warning: Empty loadable segment detected"
6815 " at vaddr=%#Lx, is this intentional?"),
6816 ibfd, segment->p_vaddr);
6817
6818 map->count = 0;
6819 *pointer_to_map = map;
6820 pointer_to_map = &map->next;
6821
6822 continue;
6823 }
6824
6825 /* Now scan the sections in the input BFD again and attempt
6826 to add their corresponding output sections to the segment map.
6827 The problem here is how to handle an output section which has
6828 been moved (ie had its LMA changed). There are four possibilities:
6829
6830 1. None of the sections have been moved.
6831 In this case we can continue to use the segment LMA from the
6832 input BFD.
6833
6834 2. All of the sections have been moved by the same amount.
6835 In this case we can change the segment's LMA to match the LMA
6836 of the first section.
6837
6838 3. Some of the sections have been moved, others have not.
6839 In this case those sections which have not been moved can be
6840 placed in the current segment which will have to have its size,
6841 and possibly its LMA changed, and a new segment or segments will
6842 have to be created to contain the other sections.
6843
6844 4. The sections have been moved, but not by the same amount.
6845 In this case we can change the segment's LMA to match the LMA
6846 of the first section and we will have to create a new segment
6847 or segments to contain the other sections.
6848
6849 In order to save time, we allocate an array to hold the section
6850 pointers that we are interested in. As these sections get assigned
6851 to a segment, they are removed from this array. */
6852
6853 sections = (asection **) bfd_malloc2 (section_count, sizeof (asection *));
6854 if (sections == NULL)
6855 return FALSE;
6856
6857 /* Step One: Scan for segment vs section LMA conflicts.
6858 Also add the sections to the section array allocated above.
6859 Also add the sections to the current segment. In the common
6860 case, where the sections have not been moved, this means that
6861 we have completely filled the segment, and there is nothing
6862 more to do. */
6863 isec = 0;
6864 matching_lma = 0;
6865 suggested_lma = 0;
6866 first_matching_lma = TRUE;
6867 first_suggested_lma = TRUE;
6868
6869 for (section = first_section, j = 0;
6870 section != NULL;
6871 section = section->next)
6872 {
6873 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
6874 {
6875 output_section = section->output_section;
6876
6877 sections[j++] = section;
6878
6879 /* The Solaris native linker always sets p_paddr to 0.
6880 We try to catch that case here, and set it to the
6881 correct value. Note - some backends require that
6882 p_paddr be left as zero. */
6883 if (!p_paddr_valid
6884 && segment->p_vaddr != 0
6885 && !bed->want_p_paddr_set_to_zero
6886 && isec == 0
6887 && output_section->lma != 0
6888 && output_section->vma == (segment->p_vaddr
6889 + (map->includes_filehdr
6890 ? iehdr->e_ehsize
6891 : 0)
6892 + (map->includes_phdrs
6893 ? (iehdr->e_phnum
6894 * iehdr->e_phentsize)
6895 : 0)))
6896 map->p_paddr = segment->p_vaddr;
6897
6898 /* Match up the physical address of the segment with the
6899 LMA address of the output section. */
6900 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
6901 || IS_COREFILE_NOTE (segment, section)
6902 || (bed->want_p_paddr_set_to_zero
6903 && IS_CONTAINED_BY_VMA (output_section, segment)))
6904 {
6905 if (first_matching_lma || output_section->lma < matching_lma)
6906 {
6907 matching_lma = output_section->lma;
6908 first_matching_lma = FALSE;
6909 }
6910
6911 /* We assume that if the section fits within the segment
6912 then it does not overlap any other section within that
6913 segment. */
6914 map->sections[isec++] = output_section;
6915 }
6916 else if (first_suggested_lma)
6917 {
6918 suggested_lma = output_section->lma;
6919 first_suggested_lma = FALSE;
6920 }
6921
6922 if (j == section_count)
6923 break;
6924 }
6925 }
6926
6927 BFD_ASSERT (j == section_count);
6928
6929 /* Step Two: Adjust the physical address of the current segment,
6930 if necessary. */
6931 if (isec == section_count)
6932 {
6933 /* All of the sections fitted within the segment as currently
6934 specified. This is the default case. Add the segment to
6935 the list of built segments and carry on to process the next
6936 program header in the input BFD. */
6937 map->count = section_count;
6938 *pointer_to_map = map;
6939 pointer_to_map = &map->next;
6940
6941 if (p_paddr_valid
6942 && !bed->want_p_paddr_set_to_zero
6943 && matching_lma != map->p_paddr
6944 && !map->includes_filehdr
6945 && !map->includes_phdrs)
6946 /* There is some padding before the first section in the
6947 segment. So, we must account for that in the output
6948 segment's vma. */
6949 map->p_vaddr_offset = matching_lma - map->p_paddr;
6950
6951 free (sections);
6952 continue;
6953 }
6954 else
6955 {
6956 if (!first_matching_lma)
6957 {
6958 /* At least one section fits inside the current segment.
6959 Keep it, but modify its physical address to match the
6960 LMA of the first section that fitted. */
6961 map->p_paddr = matching_lma;
6962 }
6963 else
6964 {
6965 /* None of the sections fitted inside the current segment.
6966 Change the current segment's physical address to match
6967 the LMA of the first section. */
6968 map->p_paddr = suggested_lma;
6969 }
6970
6971 /* Offset the segment physical address from the lma
6972 to allow for space taken up by elf headers. */
6973 if (map->includes_filehdr)
6974 {
6975 if (map->p_paddr >= iehdr->e_ehsize)
6976 map->p_paddr -= iehdr->e_ehsize;
6977 else
6978 {
6979 map->includes_filehdr = FALSE;
6980 map->includes_phdrs = FALSE;
6981 }
6982 }
6983
6984 if (map->includes_phdrs)
6985 {
6986 if (map->p_paddr >= iehdr->e_phnum * iehdr->e_phentsize)
6987 {
6988 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
6989
6990 /* iehdr->e_phnum is just an estimate of the number
6991 of program headers that we will need. Make a note
6992 here of the number we used and the segment we chose
6993 to hold these headers, so that we can adjust the
6994 offset when we know the correct value. */
6995 phdr_adjust_num = iehdr->e_phnum;
6996 phdr_adjust_seg = map;
6997 }
6998 else
6999 map->includes_phdrs = FALSE;
7000 }
7001 }
7002
7003 /* Step Three: Loop over the sections again, this time assigning
7004 those that fit to the current segment and removing them from the
7005 sections array; but making sure not to leave large gaps. Once all
7006 possible sections have been assigned to the current segment it is
7007 added to the list of built segments and if sections still remain
7008 to be assigned, a new segment is constructed before repeating
7009 the loop. */
7010 isec = 0;
7011 do
7012 {
7013 map->count = 0;
7014 suggested_lma = 0;
7015 first_suggested_lma = TRUE;
7016
7017 /* Fill the current segment with sections that fit. */
7018 for (j = 0; j < section_count; j++)
7019 {
7020 section = sections[j];
7021
7022 if (section == NULL)
7023 continue;
7024
7025 output_section = section->output_section;
7026
7027 BFD_ASSERT (output_section != NULL);
7028
7029 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
7030 || IS_COREFILE_NOTE (segment, section))
7031 {
7032 if (map->count == 0)
7033 {
7034 /* If the first section in a segment does not start at
7035 the beginning of the segment, then something is
7036 wrong. */
7037 if (output_section->lma
7038 != (map->p_paddr
7039 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
7040 + (map->includes_phdrs
7041 ? iehdr->e_phnum * iehdr->e_phentsize
7042 : 0)))
7043 abort ();
7044 }
7045 else
7046 {
7047 asection *prev_sec;
7048
7049 prev_sec = map->sections[map->count - 1];
7050
7051 /* If the gap between the end of the previous section
7052 and the start of this section is more than
7053 maxpagesize then we need to start a new segment. */
7054 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
7055 maxpagesize)
7056 < BFD_ALIGN (output_section->lma, maxpagesize))
7057 || (prev_sec->lma + prev_sec->size
7058 > output_section->lma))
7059 {
7060 if (first_suggested_lma)
7061 {
7062 suggested_lma = output_section->lma;
7063 first_suggested_lma = FALSE;
7064 }
7065
7066 continue;
7067 }
7068 }
7069
7070 map->sections[map->count++] = output_section;
7071 ++isec;
7072 sections[j] = NULL;
7073 section->segment_mark = TRUE;
7074 }
7075 else if (first_suggested_lma)
7076 {
7077 suggested_lma = output_section->lma;
7078 first_suggested_lma = FALSE;
7079 }
7080 }
7081
7082 BFD_ASSERT (map->count > 0);
7083
7084 /* Add the current segment to the list of built segments. */
7085 *pointer_to_map = map;
7086 pointer_to_map = &map->next;
7087
7088 if (isec < section_count)
7089 {
7090 /* We still have not allocated all of the sections to
7091 segments. Create a new segment here, initialise it
7092 and carry on looping. */
7093 amt = sizeof (struct elf_segment_map);
7094 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7095 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7096 if (map == NULL)
7097 {
7098 free (sections);
7099 return FALSE;
7100 }
7101
7102 /* Initialise the fields of the segment map. Set the physical
7103 physical address to the LMA of the first section that has
7104 not yet been assigned. */
7105 map->next = NULL;
7106 map->p_type = segment->p_type;
7107 map->p_flags = segment->p_flags;
7108 map->p_flags_valid = 1;
7109 map->p_paddr = suggested_lma;
7110 map->p_paddr_valid = p_paddr_valid;
7111 map->includes_filehdr = 0;
7112 map->includes_phdrs = 0;
7113 }
7114 }
7115 while (isec < section_count);
7116
7117 free (sections);
7118 }
7119
7120 elf_seg_map (obfd) = map_first;
7121
7122 /* If we had to estimate the number of program headers that were
7123 going to be needed, then check our estimate now and adjust
7124 the offset if necessary. */
7125 if (phdr_adjust_seg != NULL)
7126 {
7127 unsigned int count;
7128
7129 for (count = 0, map = map_first; map != NULL; map = map->next)
7130 count++;
7131
7132 if (count > phdr_adjust_num)
7133 phdr_adjust_seg->p_paddr
7134 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
7135 }
7136
7137 #undef SEGMENT_END
7138 #undef SECTION_SIZE
7139 #undef IS_CONTAINED_BY_VMA
7140 #undef IS_CONTAINED_BY_LMA
7141 #undef IS_NOTE
7142 #undef IS_COREFILE_NOTE
7143 #undef IS_SOLARIS_PT_INTERP
7144 #undef IS_SECTION_IN_INPUT_SEGMENT
7145 #undef INCLUDE_SECTION_IN_SEGMENT
7146 #undef SEGMENT_AFTER_SEGMENT
7147 #undef SEGMENT_OVERLAPS
7148 return TRUE;
7149 }
7150
7151 /* Copy ELF program header information. */
7152
7153 static bfd_boolean
7154 copy_elf_program_header (bfd *ibfd, bfd *obfd)
7155 {
7156 Elf_Internal_Ehdr *iehdr;
7157 struct elf_segment_map *map;
7158 struct elf_segment_map *map_first;
7159 struct elf_segment_map **pointer_to_map;
7160 Elf_Internal_Phdr *segment;
7161 unsigned int i;
7162 unsigned int num_segments;
7163 bfd_boolean phdr_included = FALSE;
7164 bfd_boolean p_paddr_valid;
7165
7166 iehdr = elf_elfheader (ibfd);
7167
7168 map_first = NULL;
7169 pointer_to_map = &map_first;
7170
7171 /* If all the segment p_paddr fields are zero, don't set
7172 map->p_paddr_valid. */
7173 p_paddr_valid = FALSE;
7174 num_segments = elf_elfheader (ibfd)->e_phnum;
7175 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7176 i < num_segments;
7177 i++, segment++)
7178 if (segment->p_paddr != 0)
7179 {
7180 p_paddr_valid = TRUE;
7181 break;
7182 }
7183
7184 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7185 i < num_segments;
7186 i++, segment++)
7187 {
7188 asection *section;
7189 unsigned int section_count;
7190 bfd_size_type amt;
7191 Elf_Internal_Shdr *this_hdr;
7192 asection *first_section = NULL;
7193 asection *lowest_section;
7194
7195 /* Compute how many sections are in this segment. */
7196 for (section = ibfd->sections, section_count = 0;
7197 section != NULL;
7198 section = section->next)
7199 {
7200 this_hdr = &(elf_section_data(section)->this_hdr);
7201 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7202 {
7203 if (first_section == NULL)
7204 first_section = section;
7205 section_count++;
7206 }
7207 }
7208
7209 /* Allocate a segment map big enough to contain
7210 all of the sections we have selected. */
7211 amt = sizeof (struct elf_segment_map);
7212 if (section_count != 0)
7213 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
7214 map = (struct elf_segment_map *) bfd_zalloc (obfd, amt);
7215 if (map == NULL)
7216 return FALSE;
7217
7218 /* Initialize the fields of the output segment map with the
7219 input segment. */
7220 map->next = NULL;
7221 map->p_type = segment->p_type;
7222 map->p_flags = segment->p_flags;
7223 map->p_flags_valid = 1;
7224 map->p_paddr = segment->p_paddr;
7225 map->p_paddr_valid = p_paddr_valid;
7226 map->p_align = segment->p_align;
7227 map->p_align_valid = 1;
7228 map->p_vaddr_offset = 0;
7229
7230 if (map->p_type == PT_GNU_RELRO
7231 || map->p_type == PT_GNU_STACK)
7232 {
7233 /* The PT_GNU_RELRO segment may contain the first a few
7234 bytes in the .got.plt section even if the whole .got.plt
7235 section isn't in the PT_GNU_RELRO segment. We won't
7236 change the size of the PT_GNU_RELRO segment.
7237 Similarly, PT_GNU_STACK size is significant on uclinux
7238 systems. */
7239 map->p_size = segment->p_memsz;
7240 map->p_size_valid = 1;
7241 }
7242
7243 /* Determine if this segment contains the ELF file header
7244 and if it contains the program headers themselves. */
7245 map->includes_filehdr = (segment->p_offset == 0
7246 && segment->p_filesz >= iehdr->e_ehsize);
7247
7248 map->includes_phdrs = 0;
7249 if (! phdr_included || segment->p_type != PT_LOAD)
7250 {
7251 map->includes_phdrs =
7252 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
7253 && (segment->p_offset + segment->p_filesz
7254 >= ((bfd_vma) iehdr->e_phoff
7255 + iehdr->e_phnum * iehdr->e_phentsize)));
7256
7257 if (segment->p_type == PT_LOAD && map->includes_phdrs)
7258 phdr_included = TRUE;
7259 }
7260
7261 lowest_section = NULL;
7262 if (section_count != 0)
7263 {
7264 unsigned int isec = 0;
7265
7266 for (section = first_section;
7267 section != NULL;
7268 section = section->next)
7269 {
7270 this_hdr = &(elf_section_data(section)->this_hdr);
7271 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7272 {
7273 map->sections[isec++] = section->output_section;
7274 if ((section->flags & SEC_ALLOC) != 0)
7275 {
7276 bfd_vma seg_off;
7277
7278 if (lowest_section == NULL
7279 || section->lma < lowest_section->lma)
7280 lowest_section = section;
7281
7282 /* Section lmas are set up from PT_LOAD header
7283 p_paddr in _bfd_elf_make_section_from_shdr.
7284 If this header has a p_paddr that disagrees
7285 with the section lma, flag the p_paddr as
7286 invalid. */
7287 if ((section->flags & SEC_LOAD) != 0)
7288 seg_off = this_hdr->sh_offset - segment->p_offset;
7289 else
7290 seg_off = this_hdr->sh_addr - segment->p_vaddr;
7291 if (section->lma - segment->p_paddr != seg_off)
7292 map->p_paddr_valid = FALSE;
7293 }
7294 if (isec == section_count)
7295 break;
7296 }
7297 }
7298 }
7299
7300 if (map->includes_filehdr && lowest_section != NULL)
7301 /* We need to keep the space used by the headers fixed. */
7302 map->header_size = lowest_section->vma - segment->p_vaddr;
7303
7304 if (!map->includes_phdrs
7305 && !map->includes_filehdr
7306 && map->p_paddr_valid)
7307 /* There is some other padding before the first section. */
7308 map->p_vaddr_offset = ((lowest_section ? lowest_section->lma : 0)
7309 - segment->p_paddr);
7310
7311 map->count = section_count;
7312 *pointer_to_map = map;
7313 pointer_to_map = &map->next;
7314 }
7315
7316 elf_seg_map (obfd) = map_first;
7317 return TRUE;
7318 }
7319
7320 /* Copy private BFD data. This copies or rewrites ELF program header
7321 information. */
7322
7323 static bfd_boolean
7324 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7325 {
7326 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7327 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7328 return TRUE;
7329
7330 if (elf_tdata (ibfd)->phdr == NULL)
7331 return TRUE;
7332
7333 if (ibfd->xvec == obfd->xvec)
7334 {
7335 /* Check to see if any sections in the input BFD
7336 covered by ELF program header have changed. */
7337 Elf_Internal_Phdr *segment;
7338 asection *section, *osec;
7339 unsigned int i, num_segments;
7340 Elf_Internal_Shdr *this_hdr;
7341 const struct elf_backend_data *bed;
7342
7343 bed = get_elf_backend_data (ibfd);
7344
7345 /* Regenerate the segment map if p_paddr is set to 0. */
7346 if (bed->want_p_paddr_set_to_zero)
7347 goto rewrite;
7348
7349 /* Initialize the segment mark field. */
7350 for (section = obfd->sections; section != NULL;
7351 section = section->next)
7352 section->segment_mark = FALSE;
7353
7354 num_segments = elf_elfheader (ibfd)->e_phnum;
7355 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7356 i < num_segments;
7357 i++, segment++)
7358 {
7359 /* PR binutils/3535. The Solaris linker always sets the p_paddr
7360 and p_memsz fields of special segments (DYNAMIC, INTERP) to 0
7361 which severly confuses things, so always regenerate the segment
7362 map in this case. */
7363 if (segment->p_paddr == 0
7364 && segment->p_memsz == 0
7365 && (segment->p_type == PT_INTERP || segment->p_type == PT_DYNAMIC))
7366 goto rewrite;
7367
7368 for (section = ibfd->sections;
7369 section != NULL; section = section->next)
7370 {
7371 /* We mark the output section so that we know it comes
7372 from the input BFD. */
7373 osec = section->output_section;
7374 if (osec)
7375 osec->segment_mark = TRUE;
7376
7377 /* Check if this section is covered by the segment. */
7378 this_hdr = &(elf_section_data(section)->this_hdr);
7379 if (ELF_SECTION_IN_SEGMENT (this_hdr, segment))
7380 {
7381 /* FIXME: Check if its output section is changed or
7382 removed. What else do we need to check? */
7383 if (osec == NULL
7384 || section->flags != osec->flags
7385 || section->lma != osec->lma
7386 || section->vma != osec->vma
7387 || section->size != osec->size
7388 || section->rawsize != osec->rawsize
7389 || section->alignment_power != osec->alignment_power)
7390 goto rewrite;
7391 }
7392 }
7393 }
7394
7395 /* Check to see if any output section do not come from the
7396 input BFD. */
7397 for (section = obfd->sections; section != NULL;
7398 section = section->next)
7399 {
7400 if (!section->segment_mark)
7401 goto rewrite;
7402 else
7403 section->segment_mark = FALSE;
7404 }
7405
7406 return copy_elf_program_header (ibfd, obfd);
7407 }
7408
7409 rewrite:
7410 if (ibfd->xvec == obfd->xvec)
7411 {
7412 /* When rewriting program header, set the output maxpagesize to
7413 the maximum alignment of input PT_LOAD segments. */
7414 Elf_Internal_Phdr *segment;
7415 unsigned int i;
7416 unsigned int num_segments = elf_elfheader (ibfd)->e_phnum;
7417 bfd_vma maxpagesize = 0;
7418
7419 for (i = 0, segment = elf_tdata (ibfd)->phdr;
7420 i < num_segments;
7421 i++, segment++)
7422 if (segment->p_type == PT_LOAD
7423 && maxpagesize < segment->p_align)
7424 {
7425 /* PR 17512: file: f17299af. */
7426 if (segment->p_align > (bfd_vma) 1 << ((sizeof (bfd_vma) * 8) - 2))
7427 /* xgettext:c-format */
7428 _bfd_error_handler (_("%B: warning: segment alignment of %#Lx"
7429 " is too large"),
7430 ibfd, segment->p_align);
7431 else
7432 maxpagesize = segment->p_align;
7433 }
7434
7435 if (maxpagesize != get_elf_backend_data (obfd)->maxpagesize)
7436 bfd_emul_set_maxpagesize (bfd_get_target (obfd), maxpagesize);
7437 }
7438
7439 return rewrite_elf_program_header (ibfd, obfd);
7440 }
7441
7442 /* Initialize private output section information from input section. */
7443
7444 bfd_boolean
7445 _bfd_elf_init_private_section_data (bfd *ibfd,
7446 asection *isec,
7447 bfd *obfd,
7448 asection *osec,
7449 struct bfd_link_info *link_info)
7450
7451 {
7452 Elf_Internal_Shdr *ihdr, *ohdr;
7453 bfd_boolean final_link = (link_info != NULL
7454 && !bfd_link_relocatable (link_info));
7455
7456 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7457 || obfd->xvec->flavour != bfd_target_elf_flavour)
7458 return TRUE;
7459
7460 BFD_ASSERT (elf_section_data (osec) != NULL);
7461
7462 /* For objcopy and relocatable link, don't copy the output ELF
7463 section type from input if the output BFD section flags have been
7464 set to something different. For a final link allow some flags
7465 that the linker clears to differ. */
7466 if (elf_section_type (osec) == SHT_NULL
7467 && (osec->flags == isec->flags
7468 || (final_link
7469 && ((osec->flags ^ isec->flags)
7470 & ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC)) == 0)))
7471 elf_section_type (osec) = elf_section_type (isec);
7472
7473 /* FIXME: Is this correct for all OS/PROC specific flags? */
7474 elf_section_flags (osec) |= (elf_section_flags (isec)
7475 & (SHF_MASKOS | SHF_MASKPROC));
7476
7477 /* Copy sh_info from input for mbind section. */
7478 if (elf_section_flags (isec) & SHF_GNU_MBIND)
7479 elf_section_data (osec)->this_hdr.sh_info
7480 = elf_section_data (isec)->this_hdr.sh_info;
7481
7482 /* Set things up for objcopy and relocatable link. The output
7483 SHT_GROUP section will have its elf_next_in_group pointing back
7484 to the input group members. Ignore linker created group section.
7485 See elfNN_ia64_object_p in elfxx-ia64.c. */
7486 if ((link_info == NULL
7487 || !link_info->resolve_section_groups)
7488 && (elf_sec_group (isec) == NULL
7489 || (elf_sec_group (isec)->flags & SEC_LINKER_CREATED) == 0))
7490 {
7491 if (elf_section_flags (isec) & SHF_GROUP)
7492 elf_section_flags (osec) |= SHF_GROUP;
7493 elf_next_in_group (osec) = elf_next_in_group (isec);
7494 elf_section_data (osec)->group = elf_section_data (isec)->group;
7495 }
7496
7497 /* If not decompress, preserve SHF_COMPRESSED. */
7498 if (!final_link && (ibfd->flags & BFD_DECOMPRESS) == 0)
7499 elf_section_flags (osec) |= (elf_section_flags (isec)
7500 & SHF_COMPRESSED);
7501
7502 ihdr = &elf_section_data (isec)->this_hdr;
7503
7504 /* We need to handle elf_linked_to_section for SHF_LINK_ORDER. We
7505 don't use the output section of the linked-to section since it
7506 may be NULL at this point. */
7507 if ((ihdr->sh_flags & SHF_LINK_ORDER) != 0)
7508 {
7509 ohdr = &elf_section_data (osec)->this_hdr;
7510 ohdr->sh_flags |= SHF_LINK_ORDER;
7511 elf_linked_to_section (osec) = elf_linked_to_section (isec);
7512 }
7513
7514 osec->use_rela_p = isec->use_rela_p;
7515
7516 return TRUE;
7517 }
7518
7519 /* Copy private section information. This copies over the entsize
7520 field, and sometimes the info field. */
7521
7522 bfd_boolean
7523 _bfd_elf_copy_private_section_data (bfd *ibfd,
7524 asection *isec,
7525 bfd *obfd,
7526 asection *osec)
7527 {
7528 Elf_Internal_Shdr *ihdr, *ohdr;
7529
7530 if (ibfd->xvec->flavour != bfd_target_elf_flavour
7531 || obfd->xvec->flavour != bfd_target_elf_flavour)
7532 return TRUE;
7533
7534 ihdr = &elf_section_data (isec)->this_hdr;
7535 ohdr = &elf_section_data (osec)->this_hdr;
7536
7537 ohdr->sh_entsize = ihdr->sh_entsize;
7538
7539 if (ihdr->sh_type == SHT_SYMTAB
7540 || ihdr->sh_type == SHT_DYNSYM
7541 || ihdr->sh_type == SHT_GNU_verneed
7542 || ihdr->sh_type == SHT_GNU_verdef)
7543 ohdr->sh_info = ihdr->sh_info;
7544
7545 return _bfd_elf_init_private_section_data (ibfd, isec, obfd, osec,
7546 NULL);
7547 }
7548
7549 /* Look at all the SHT_GROUP sections in IBFD, making any adjustments
7550 necessary if we are removing either the SHT_GROUP section or any of
7551 the group member sections. DISCARDED is the value that a section's
7552 output_section has if the section will be discarded, NULL when this
7553 function is called from objcopy, bfd_abs_section_ptr when called
7554 from the linker. */
7555
7556 bfd_boolean
7557 _bfd_elf_fixup_group_sections (bfd *ibfd, asection *discarded)
7558 {
7559 asection *isec;
7560
7561 for (isec = ibfd->sections; isec != NULL; isec = isec->next)
7562 if (elf_section_type (isec) == SHT_GROUP)
7563 {
7564 asection *first = elf_next_in_group (isec);
7565 asection *s = first;
7566 bfd_size_type removed = 0;
7567
7568 while (s != NULL)
7569 {
7570 /* If this member section is being output but the
7571 SHT_GROUP section is not, then clear the group info
7572 set up by _bfd_elf_copy_private_section_data. */
7573 if (s->output_section != discarded
7574 && isec->output_section == discarded)
7575 {
7576 elf_section_flags (s->output_section) &= ~SHF_GROUP;
7577 elf_group_name (s->output_section) = NULL;
7578 }
7579 /* Conversely, if the member section is not being output
7580 but the SHT_GROUP section is, then adjust its size. */
7581 else if (s->output_section == discarded
7582 && isec->output_section != discarded)
7583 removed += 4;
7584 s = elf_next_in_group (s);
7585 if (s == first)
7586 break;
7587 }
7588 if (removed != 0)
7589 {
7590 if (discarded != NULL)
7591 {
7592 /* If we've been called for ld -r, then we need to
7593 adjust the input section size. This function may
7594 be called multiple times, so save the original
7595 size. */
7596 if (isec->rawsize == 0)
7597 isec->rawsize = isec->size;
7598 isec->size = isec->rawsize - removed;
7599 }
7600 else
7601 {
7602 /* Adjust the output section size when called from
7603 objcopy. */
7604 isec->output_section->size -= removed;
7605 }
7606 }
7607 }
7608
7609 return TRUE;
7610 }
7611
7612 /* Copy private header information. */
7613
7614 bfd_boolean
7615 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
7616 {
7617 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7618 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7619 return TRUE;
7620
7621 /* Copy over private BFD data if it has not already been copied.
7622 This must be done here, rather than in the copy_private_bfd_data
7623 entry point, because the latter is called after the section
7624 contents have been set, which means that the program headers have
7625 already been worked out. */
7626 if (elf_seg_map (obfd) == NULL && elf_tdata (ibfd)->phdr != NULL)
7627 {
7628 if (! copy_private_bfd_data (ibfd, obfd))
7629 return FALSE;
7630 }
7631
7632 return _bfd_elf_fixup_group_sections (ibfd, NULL);
7633 }
7634
7635 /* Copy private symbol information. If this symbol is in a section
7636 which we did not map into a BFD section, try to map the section
7637 index correctly. We use special macro definitions for the mapped
7638 section indices; these definitions are interpreted by the
7639 swap_out_syms function. */
7640
7641 #define MAP_ONESYMTAB (SHN_HIOS + 1)
7642 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
7643 #define MAP_STRTAB (SHN_HIOS + 3)
7644 #define MAP_SHSTRTAB (SHN_HIOS + 4)
7645 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
7646
7647 bfd_boolean
7648 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
7649 asymbol *isymarg,
7650 bfd *obfd,
7651 asymbol *osymarg)
7652 {
7653 elf_symbol_type *isym, *osym;
7654
7655 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7656 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7657 return TRUE;
7658
7659 isym = elf_symbol_from (ibfd, isymarg);
7660 osym = elf_symbol_from (obfd, osymarg);
7661
7662 if (isym != NULL
7663 && isym->internal_elf_sym.st_shndx != 0
7664 && osym != NULL
7665 && bfd_is_abs_section (isym->symbol.section))
7666 {
7667 unsigned int shndx;
7668
7669 shndx = isym->internal_elf_sym.st_shndx;
7670 if (shndx == elf_onesymtab (ibfd))
7671 shndx = MAP_ONESYMTAB;
7672 else if (shndx == elf_dynsymtab (ibfd))
7673 shndx = MAP_DYNSYMTAB;
7674 else if (shndx == elf_strtab_sec (ibfd))
7675 shndx = MAP_STRTAB;
7676 else if (shndx == elf_shstrtab_sec (ibfd))
7677 shndx = MAP_SHSTRTAB;
7678 else if (find_section_in_list (shndx, elf_symtab_shndx_list (ibfd)))
7679 shndx = MAP_SYM_SHNDX;
7680 osym->internal_elf_sym.st_shndx = shndx;
7681 }
7682
7683 return TRUE;
7684 }
7685
7686 /* Swap out the symbols. */
7687
7688 static bfd_boolean
7689 swap_out_syms (bfd *abfd,
7690 struct elf_strtab_hash **sttp,
7691 int relocatable_p)
7692 {
7693 const struct elf_backend_data *bed;
7694 int symcount;
7695 asymbol **syms;
7696 struct elf_strtab_hash *stt;
7697 Elf_Internal_Shdr *symtab_hdr;
7698 Elf_Internal_Shdr *symtab_shndx_hdr;
7699 Elf_Internal_Shdr *symstrtab_hdr;
7700 struct elf_sym_strtab *symstrtab;
7701 bfd_byte *outbound_syms;
7702 bfd_byte *outbound_shndx;
7703 unsigned long outbound_syms_index;
7704 unsigned long outbound_shndx_index;
7705 int idx;
7706 unsigned int num_locals;
7707 bfd_size_type amt;
7708 bfd_boolean name_local_sections;
7709
7710 if (!elf_map_symbols (abfd, &num_locals))
7711 return FALSE;
7712
7713 /* Dump out the symtabs. */
7714 stt = _bfd_elf_strtab_init ();
7715 if (stt == NULL)
7716 return FALSE;
7717
7718 bed = get_elf_backend_data (abfd);
7719 symcount = bfd_get_symcount (abfd);
7720 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7721 symtab_hdr->sh_type = SHT_SYMTAB;
7722 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
7723 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
7724 symtab_hdr->sh_info = num_locals + 1;
7725 symtab_hdr->sh_addralign = (bfd_vma) 1 << bed->s->log_file_align;
7726
7727 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
7728 symstrtab_hdr->sh_type = SHT_STRTAB;
7729
7730 /* Allocate buffer to swap out the .strtab section. */
7731 symstrtab = (struct elf_sym_strtab *) bfd_malloc ((symcount + 1)
7732 * sizeof (*symstrtab));
7733 if (symstrtab == NULL)
7734 {
7735 _bfd_elf_strtab_free (stt);
7736 return FALSE;
7737 }
7738
7739 outbound_syms = (bfd_byte *) bfd_alloc2 (abfd, 1 + symcount,
7740 bed->s->sizeof_sym);
7741 if (outbound_syms == NULL)
7742 {
7743 error_return:
7744 _bfd_elf_strtab_free (stt);
7745 free (symstrtab);
7746 return FALSE;
7747 }
7748 symtab_hdr->contents = outbound_syms;
7749 outbound_syms_index = 0;
7750
7751 outbound_shndx = NULL;
7752 outbound_shndx_index = 0;
7753
7754 if (elf_symtab_shndx_list (abfd))
7755 {
7756 symtab_shndx_hdr = & elf_symtab_shndx_list (abfd)->hdr;
7757 if (symtab_shndx_hdr->sh_name != 0)
7758 {
7759 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
7760 outbound_shndx = (bfd_byte *)
7761 bfd_zalloc2 (abfd, 1 + symcount, sizeof (Elf_External_Sym_Shndx));
7762 if (outbound_shndx == NULL)
7763 goto error_return;
7764
7765 symtab_shndx_hdr->contents = outbound_shndx;
7766 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
7767 symtab_shndx_hdr->sh_size = amt;
7768 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
7769 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
7770 }
7771 /* FIXME: What about any other headers in the list ? */
7772 }
7773
7774 /* Now generate the data (for "contents"). */
7775 {
7776 /* Fill in zeroth symbol and swap it out. */
7777 Elf_Internal_Sym sym;
7778 sym.st_name = 0;
7779 sym.st_value = 0;
7780 sym.st_size = 0;
7781 sym.st_info = 0;
7782 sym.st_other = 0;
7783 sym.st_shndx = SHN_UNDEF;
7784 sym.st_target_internal = 0;
7785 symstrtab[0].sym = sym;
7786 symstrtab[0].dest_index = outbound_syms_index;
7787 symstrtab[0].destshndx_index = outbound_shndx_index;
7788 outbound_syms_index++;
7789 if (outbound_shndx != NULL)
7790 outbound_shndx_index++;
7791 }
7792
7793 name_local_sections
7794 = (bed->elf_backend_name_local_section_symbols
7795 && bed->elf_backend_name_local_section_symbols (abfd));
7796
7797 syms = bfd_get_outsymbols (abfd);
7798 for (idx = 0; idx < symcount;)
7799 {
7800 Elf_Internal_Sym sym;
7801 bfd_vma value = syms[idx]->value;
7802 elf_symbol_type *type_ptr;
7803 flagword flags = syms[idx]->flags;
7804 int type;
7805
7806 if (!name_local_sections
7807 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
7808 {
7809 /* Local section symbols have no name. */
7810 sym.st_name = (unsigned long) -1;
7811 }
7812 else
7813 {
7814 /* Call _bfd_elf_strtab_offset after _bfd_elf_strtab_finalize
7815 to get the final offset for st_name. */
7816 sym.st_name
7817 = (unsigned long) _bfd_elf_strtab_add (stt, syms[idx]->name,
7818 FALSE);
7819 if (sym.st_name == (unsigned long) -1)
7820 goto error_return;
7821 }
7822
7823 type_ptr = elf_symbol_from (abfd, syms[idx]);
7824
7825 if ((flags & BSF_SECTION_SYM) == 0
7826 && bfd_is_com_section (syms[idx]->section))
7827 {
7828 /* ELF common symbols put the alignment into the `value' field,
7829 and the size into the `size' field. This is backwards from
7830 how BFD handles it, so reverse it here. */
7831 sym.st_size = value;
7832 if (type_ptr == NULL
7833 || type_ptr->internal_elf_sym.st_value == 0)
7834 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
7835 else
7836 sym.st_value = type_ptr->internal_elf_sym.st_value;
7837 sym.st_shndx = _bfd_elf_section_from_bfd_section
7838 (abfd, syms[idx]->section);
7839 }
7840 else
7841 {
7842 asection *sec = syms[idx]->section;
7843 unsigned int shndx;
7844
7845 if (sec->output_section)
7846 {
7847 value += sec->output_offset;
7848 sec = sec->output_section;
7849 }
7850
7851 /* Don't add in the section vma for relocatable output. */
7852 if (! relocatable_p)
7853 value += sec->vma;
7854 sym.st_value = value;
7855 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
7856
7857 if (bfd_is_abs_section (sec)
7858 && type_ptr != NULL
7859 && type_ptr->internal_elf_sym.st_shndx != 0)
7860 {
7861 /* This symbol is in a real ELF section which we did
7862 not create as a BFD section. Undo the mapping done
7863 by copy_private_symbol_data. */
7864 shndx = type_ptr->internal_elf_sym.st_shndx;
7865 switch (shndx)
7866 {
7867 case MAP_ONESYMTAB:
7868 shndx = elf_onesymtab (abfd);
7869 break;
7870 case MAP_DYNSYMTAB:
7871 shndx = elf_dynsymtab (abfd);
7872 break;
7873 case MAP_STRTAB:
7874 shndx = elf_strtab_sec (abfd);
7875 break;
7876 case MAP_SHSTRTAB:
7877 shndx = elf_shstrtab_sec (abfd);
7878 break;
7879 case MAP_SYM_SHNDX:
7880 if (elf_symtab_shndx_list (abfd))
7881 shndx = elf_symtab_shndx_list (abfd)->ndx;
7882 break;
7883 default:
7884 shndx = SHN_ABS;
7885 break;
7886 }
7887 }
7888 else
7889 {
7890 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
7891
7892 if (shndx == SHN_BAD)
7893 {
7894 asection *sec2;
7895
7896 /* Writing this would be a hell of a lot easier if
7897 we had some decent documentation on bfd, and
7898 knew what to expect of the library, and what to
7899 demand of applications. For example, it
7900 appears that `objcopy' might not set the
7901 section of a symbol to be a section that is
7902 actually in the output file. */
7903 sec2 = bfd_get_section_by_name (abfd, sec->name);
7904 if (sec2 != NULL)
7905 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
7906 if (shndx == SHN_BAD)
7907 {
7908 /* xgettext:c-format */
7909 _bfd_error_handler (_("\
7910 Unable to find equivalent output section for symbol '%s' from section '%s'"),
7911 syms[idx]->name ? syms[idx]->name : "<Local sym>",
7912 sec->name);
7913 bfd_set_error (bfd_error_invalid_operation);
7914 goto error_return;
7915 }
7916 }
7917 }
7918
7919 sym.st_shndx = shndx;
7920 }
7921
7922 if ((flags & BSF_THREAD_LOCAL) != 0)
7923 type = STT_TLS;
7924 else if ((flags & BSF_GNU_INDIRECT_FUNCTION) != 0)
7925 type = STT_GNU_IFUNC;
7926 else if ((flags & BSF_FUNCTION) != 0)
7927 type = STT_FUNC;
7928 else if ((flags & BSF_OBJECT) != 0)
7929 type = STT_OBJECT;
7930 else if ((flags & BSF_RELC) != 0)
7931 type = STT_RELC;
7932 else if ((flags & BSF_SRELC) != 0)
7933 type = STT_SRELC;
7934 else
7935 type = STT_NOTYPE;
7936
7937 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
7938 type = STT_TLS;
7939
7940 /* Processor-specific types. */
7941 if (type_ptr != NULL
7942 && bed->elf_backend_get_symbol_type)
7943 type = ((*bed->elf_backend_get_symbol_type)
7944 (&type_ptr->internal_elf_sym, type));
7945
7946 if (flags & BSF_SECTION_SYM)
7947 {
7948 if (flags & BSF_GLOBAL)
7949 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
7950 else
7951 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
7952 }
7953 else if (bfd_is_com_section (syms[idx]->section))
7954 {
7955 if (type != STT_TLS)
7956 {
7957 if ((abfd->flags & BFD_CONVERT_ELF_COMMON))
7958 type = ((abfd->flags & BFD_USE_ELF_STT_COMMON)
7959 ? STT_COMMON : STT_OBJECT);
7960 else
7961 type = ((flags & BSF_ELF_COMMON) != 0
7962 ? STT_COMMON : STT_OBJECT);
7963 }
7964 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
7965 }
7966 else if (bfd_is_und_section (syms[idx]->section))
7967 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
7968 ? STB_WEAK
7969 : STB_GLOBAL),
7970 type);
7971 else if (flags & BSF_FILE)
7972 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
7973 else
7974 {
7975 int bind = STB_LOCAL;
7976
7977 if (flags & BSF_LOCAL)
7978 bind = STB_LOCAL;
7979 else if (flags & BSF_GNU_UNIQUE)
7980 bind = STB_GNU_UNIQUE;
7981 else if (flags & BSF_WEAK)
7982 bind = STB_WEAK;
7983 else if (flags & BSF_GLOBAL)
7984 bind = STB_GLOBAL;
7985
7986 sym.st_info = ELF_ST_INFO (bind, type);
7987 }
7988
7989 if (type_ptr != NULL)
7990 {
7991 sym.st_other = type_ptr->internal_elf_sym.st_other;
7992 sym.st_target_internal
7993 = type_ptr->internal_elf_sym.st_target_internal;
7994 }
7995 else
7996 {
7997 sym.st_other = 0;
7998 sym.st_target_internal = 0;
7999 }
8000
8001 idx++;
8002 symstrtab[idx].sym = sym;
8003 symstrtab[idx].dest_index = outbound_syms_index;
8004 symstrtab[idx].destshndx_index = outbound_shndx_index;
8005
8006 outbound_syms_index++;
8007 if (outbound_shndx != NULL)
8008 outbound_shndx_index++;
8009 }
8010
8011 /* Finalize the .strtab section. */
8012 _bfd_elf_strtab_finalize (stt);
8013
8014 /* Swap out the .strtab section. */
8015 for (idx = 0; idx <= symcount; idx++)
8016 {
8017 struct elf_sym_strtab *elfsym = &symstrtab[idx];
8018 if (elfsym->sym.st_name == (unsigned long) -1)
8019 elfsym->sym.st_name = 0;
8020 else
8021 elfsym->sym.st_name = _bfd_elf_strtab_offset (stt,
8022 elfsym->sym.st_name);
8023 bed->s->swap_symbol_out (abfd, &elfsym->sym,
8024 (outbound_syms
8025 + (elfsym->dest_index
8026 * bed->s->sizeof_sym)),
8027 (outbound_shndx
8028 + (elfsym->destshndx_index
8029 * sizeof (Elf_External_Sym_Shndx))));
8030 }
8031 free (symstrtab);
8032
8033 *sttp = stt;
8034 symstrtab_hdr->sh_size = _bfd_elf_strtab_size (stt);
8035 symstrtab_hdr->sh_type = SHT_STRTAB;
8036 symstrtab_hdr->sh_flags = bed->elf_strtab_flags;
8037 symstrtab_hdr->sh_addr = 0;
8038 symstrtab_hdr->sh_entsize = 0;
8039 symstrtab_hdr->sh_link = 0;
8040 symstrtab_hdr->sh_info = 0;
8041 symstrtab_hdr->sh_addralign = 1;
8042
8043 return TRUE;
8044 }
8045
8046 /* Return the number of bytes required to hold the symtab vector.
8047
8048 Note that we base it on the count plus 1, since we will null terminate
8049 the vector allocated based on this size. However, the ELF symbol table
8050 always has a dummy entry as symbol #0, so it ends up even. */
8051
8052 long
8053 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
8054 {
8055 long symcount;
8056 long symtab_size;
8057 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
8058
8059 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8060 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8061 if (symcount > 0)
8062 symtab_size -= sizeof (asymbol *);
8063
8064 return symtab_size;
8065 }
8066
8067 long
8068 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
8069 {
8070 long symcount;
8071 long symtab_size;
8072 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
8073
8074 if (elf_dynsymtab (abfd) == 0)
8075 {
8076 bfd_set_error (bfd_error_invalid_operation);
8077 return -1;
8078 }
8079
8080 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
8081 symtab_size = (symcount + 1) * (sizeof (asymbol *));
8082 if (symcount > 0)
8083 symtab_size -= sizeof (asymbol *);
8084
8085 return symtab_size;
8086 }
8087
8088 long
8089 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
8090 sec_ptr asect)
8091 {
8092 return (asect->reloc_count + 1) * sizeof (arelent *);
8093 }
8094
8095 /* Canonicalize the relocs. */
8096
8097 long
8098 _bfd_elf_canonicalize_reloc (bfd *abfd,
8099 sec_ptr section,
8100 arelent **relptr,
8101 asymbol **symbols)
8102 {
8103 arelent *tblptr;
8104 unsigned int i;
8105 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8106
8107 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
8108 return -1;
8109
8110 tblptr = section->relocation;
8111 for (i = 0; i < section->reloc_count; i++)
8112 *relptr++ = tblptr++;
8113
8114 *relptr = NULL;
8115
8116 return section->reloc_count;
8117 }
8118
8119 long
8120 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
8121 {
8122 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8123 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
8124
8125 if (symcount >= 0)
8126 bfd_get_symcount (abfd) = symcount;
8127 return symcount;
8128 }
8129
8130 long
8131 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
8132 asymbol **allocation)
8133 {
8134 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8135 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
8136
8137 if (symcount >= 0)
8138 bfd_get_dynamic_symcount (abfd) = symcount;
8139 return symcount;
8140 }
8141
8142 /* Return the size required for the dynamic reloc entries. Any loadable
8143 section that was actually installed in the BFD, and has type SHT_REL
8144 or SHT_RELA, and uses the dynamic symbol table, is considered to be a
8145 dynamic reloc section. */
8146
8147 long
8148 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
8149 {
8150 long ret;
8151 asection *s;
8152
8153 if (elf_dynsymtab (abfd) == 0)
8154 {
8155 bfd_set_error (bfd_error_invalid_operation);
8156 return -1;
8157 }
8158
8159 ret = sizeof (arelent *);
8160 for (s = abfd->sections; s != NULL; s = s->next)
8161 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8162 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8163 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8164 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
8165 * sizeof (arelent *));
8166
8167 return ret;
8168 }
8169
8170 /* Canonicalize the dynamic relocation entries. Note that we return the
8171 dynamic relocations as a single block, although they are actually
8172 associated with particular sections; the interface, which was
8173 designed for SunOS style shared libraries, expects that there is only
8174 one set of dynamic relocs. Any loadable section that was actually
8175 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses the
8176 dynamic symbol table, is considered to be a dynamic reloc section. */
8177
8178 long
8179 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
8180 arelent **storage,
8181 asymbol **syms)
8182 {
8183 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
8184 asection *s;
8185 long ret;
8186
8187 if (elf_dynsymtab (abfd) == 0)
8188 {
8189 bfd_set_error (bfd_error_invalid_operation);
8190 return -1;
8191 }
8192
8193 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
8194 ret = 0;
8195 for (s = abfd->sections; s != NULL; s = s->next)
8196 {
8197 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
8198 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
8199 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
8200 {
8201 arelent *p;
8202 long count, i;
8203
8204 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
8205 return -1;
8206 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
8207 p = s->relocation;
8208 for (i = 0; i < count; i++)
8209 *storage++ = p++;
8210 ret += count;
8211 }
8212 }
8213
8214 *storage = NULL;
8215
8216 return ret;
8217 }
8218 \f
8219 /* Read in the version information. */
8220
8221 bfd_boolean
8222 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
8223 {
8224 bfd_byte *contents = NULL;
8225 unsigned int freeidx = 0;
8226
8227 if (elf_dynverref (abfd) != 0)
8228 {
8229 Elf_Internal_Shdr *hdr;
8230 Elf_External_Verneed *everneed;
8231 Elf_Internal_Verneed *iverneed;
8232 unsigned int i;
8233 bfd_byte *contents_end;
8234
8235 hdr = &elf_tdata (abfd)->dynverref_hdr;
8236
8237 if (hdr->sh_info == 0
8238 || hdr->sh_info > hdr->sh_size / sizeof (Elf_External_Verneed))
8239 {
8240 error_return_bad_verref:
8241 _bfd_error_handler
8242 (_("%B: .gnu.version_r invalid entry"), abfd);
8243 bfd_set_error (bfd_error_bad_value);
8244 error_return_verref:
8245 elf_tdata (abfd)->verref = NULL;
8246 elf_tdata (abfd)->cverrefs = 0;
8247 goto error_return;
8248 }
8249
8250 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8251 if (contents == NULL)
8252 goto error_return_verref;
8253
8254 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8255 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8256 goto error_return_verref;
8257
8258 elf_tdata (abfd)->verref = (Elf_Internal_Verneed *)
8259 bfd_alloc2 (abfd, hdr->sh_info, sizeof (Elf_Internal_Verneed));
8260
8261 if (elf_tdata (abfd)->verref == NULL)
8262 goto error_return_verref;
8263
8264 BFD_ASSERT (sizeof (Elf_External_Verneed)
8265 == sizeof (Elf_External_Vernaux));
8266 contents_end = contents + hdr->sh_size - sizeof (Elf_External_Verneed);
8267 everneed = (Elf_External_Verneed *) contents;
8268 iverneed = elf_tdata (abfd)->verref;
8269 for (i = 0; i < hdr->sh_info; i++, iverneed++)
8270 {
8271 Elf_External_Vernaux *evernaux;
8272 Elf_Internal_Vernaux *ivernaux;
8273 unsigned int j;
8274
8275 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
8276
8277 iverneed->vn_bfd = abfd;
8278
8279 iverneed->vn_filename =
8280 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8281 iverneed->vn_file);
8282 if (iverneed->vn_filename == NULL)
8283 goto error_return_bad_verref;
8284
8285 if (iverneed->vn_cnt == 0)
8286 iverneed->vn_auxptr = NULL;
8287 else
8288 {
8289 iverneed->vn_auxptr = (struct elf_internal_vernaux *)
8290 bfd_alloc2 (abfd, iverneed->vn_cnt,
8291 sizeof (Elf_Internal_Vernaux));
8292 if (iverneed->vn_auxptr == NULL)
8293 goto error_return_verref;
8294 }
8295
8296 if (iverneed->vn_aux
8297 > (size_t) (contents_end - (bfd_byte *) everneed))
8298 goto error_return_bad_verref;
8299
8300 evernaux = ((Elf_External_Vernaux *)
8301 ((bfd_byte *) everneed + iverneed->vn_aux));
8302 ivernaux = iverneed->vn_auxptr;
8303 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
8304 {
8305 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
8306
8307 ivernaux->vna_nodename =
8308 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8309 ivernaux->vna_name);
8310 if (ivernaux->vna_nodename == NULL)
8311 goto error_return_bad_verref;
8312
8313 if (ivernaux->vna_other > freeidx)
8314 freeidx = ivernaux->vna_other;
8315
8316 ivernaux->vna_nextptr = NULL;
8317 if (ivernaux->vna_next == 0)
8318 {
8319 iverneed->vn_cnt = j + 1;
8320 break;
8321 }
8322 if (j + 1 < iverneed->vn_cnt)
8323 ivernaux->vna_nextptr = ivernaux + 1;
8324
8325 if (ivernaux->vna_next
8326 > (size_t) (contents_end - (bfd_byte *) evernaux))
8327 goto error_return_bad_verref;
8328
8329 evernaux = ((Elf_External_Vernaux *)
8330 ((bfd_byte *) evernaux + ivernaux->vna_next));
8331 }
8332
8333 iverneed->vn_nextref = NULL;
8334 if (iverneed->vn_next == 0)
8335 break;
8336 if (i + 1 < hdr->sh_info)
8337 iverneed->vn_nextref = iverneed + 1;
8338
8339 if (iverneed->vn_next
8340 > (size_t) (contents_end - (bfd_byte *) everneed))
8341 goto error_return_bad_verref;
8342
8343 everneed = ((Elf_External_Verneed *)
8344 ((bfd_byte *) everneed + iverneed->vn_next));
8345 }
8346 elf_tdata (abfd)->cverrefs = i;
8347
8348 free (contents);
8349 contents = NULL;
8350 }
8351
8352 if (elf_dynverdef (abfd) != 0)
8353 {
8354 Elf_Internal_Shdr *hdr;
8355 Elf_External_Verdef *everdef;
8356 Elf_Internal_Verdef *iverdef;
8357 Elf_Internal_Verdef *iverdefarr;
8358 Elf_Internal_Verdef iverdefmem;
8359 unsigned int i;
8360 unsigned int maxidx;
8361 bfd_byte *contents_end_def, *contents_end_aux;
8362
8363 hdr = &elf_tdata (abfd)->dynverdef_hdr;
8364
8365 if (hdr->sh_info == 0 || hdr->sh_size < sizeof (Elf_External_Verdef))
8366 {
8367 error_return_bad_verdef:
8368 _bfd_error_handler
8369 (_("%B: .gnu.version_d invalid entry"), abfd);
8370 bfd_set_error (bfd_error_bad_value);
8371 error_return_verdef:
8372 elf_tdata (abfd)->verdef = NULL;
8373 elf_tdata (abfd)->cverdefs = 0;
8374 goto error_return;
8375 }
8376
8377 contents = (bfd_byte *) bfd_malloc (hdr->sh_size);
8378 if (contents == NULL)
8379 goto error_return_verdef;
8380 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
8381 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
8382 goto error_return_verdef;
8383
8384 BFD_ASSERT (sizeof (Elf_External_Verdef)
8385 >= sizeof (Elf_External_Verdaux));
8386 contents_end_def = contents + hdr->sh_size
8387 - sizeof (Elf_External_Verdef);
8388 contents_end_aux = contents + hdr->sh_size
8389 - sizeof (Elf_External_Verdaux);
8390
8391 /* We know the number of entries in the section but not the maximum
8392 index. Therefore we have to run through all entries and find
8393 the maximum. */
8394 everdef = (Elf_External_Verdef *) contents;
8395 maxidx = 0;
8396 for (i = 0; i < hdr->sh_info; ++i)
8397 {
8398 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8399
8400 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) == 0)
8401 goto error_return_bad_verdef;
8402 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
8403 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
8404
8405 if (iverdefmem.vd_next == 0)
8406 break;
8407
8408 if (iverdefmem.vd_next
8409 > (size_t) (contents_end_def - (bfd_byte *) everdef))
8410 goto error_return_bad_verdef;
8411
8412 everdef = ((Elf_External_Verdef *)
8413 ((bfd_byte *) everdef + iverdefmem.vd_next));
8414 }
8415
8416 if (default_imported_symver)
8417 {
8418 if (freeidx > maxidx)
8419 maxidx = ++freeidx;
8420 else
8421 freeidx = ++maxidx;
8422 }
8423
8424 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8425 bfd_zalloc2 (abfd, maxidx, sizeof (Elf_Internal_Verdef));
8426 if (elf_tdata (abfd)->verdef == NULL)
8427 goto error_return_verdef;
8428
8429 elf_tdata (abfd)->cverdefs = maxidx;
8430
8431 everdef = (Elf_External_Verdef *) contents;
8432 iverdefarr = elf_tdata (abfd)->verdef;
8433 for (i = 0; i < hdr->sh_info; i++)
8434 {
8435 Elf_External_Verdaux *everdaux;
8436 Elf_Internal_Verdaux *iverdaux;
8437 unsigned int j;
8438
8439 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
8440
8441 if ((iverdefmem.vd_ndx & VERSYM_VERSION) == 0)
8442 goto error_return_bad_verdef;
8443
8444 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
8445 memcpy (iverdef, &iverdefmem, offsetof (Elf_Internal_Verdef, vd_bfd));
8446
8447 iverdef->vd_bfd = abfd;
8448
8449 if (iverdef->vd_cnt == 0)
8450 iverdef->vd_auxptr = NULL;
8451 else
8452 {
8453 iverdef->vd_auxptr = (struct elf_internal_verdaux *)
8454 bfd_alloc2 (abfd, iverdef->vd_cnt,
8455 sizeof (Elf_Internal_Verdaux));
8456 if (iverdef->vd_auxptr == NULL)
8457 goto error_return_verdef;
8458 }
8459
8460 if (iverdef->vd_aux
8461 > (size_t) (contents_end_aux - (bfd_byte *) everdef))
8462 goto error_return_bad_verdef;
8463
8464 everdaux = ((Elf_External_Verdaux *)
8465 ((bfd_byte *) everdef + iverdef->vd_aux));
8466 iverdaux = iverdef->vd_auxptr;
8467 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
8468 {
8469 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
8470
8471 iverdaux->vda_nodename =
8472 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
8473 iverdaux->vda_name);
8474 if (iverdaux->vda_nodename == NULL)
8475 goto error_return_bad_verdef;
8476
8477 iverdaux->vda_nextptr = NULL;
8478 if (iverdaux->vda_next == 0)
8479 {
8480 iverdef->vd_cnt = j + 1;
8481 break;
8482 }
8483 if (j + 1 < iverdef->vd_cnt)
8484 iverdaux->vda_nextptr = iverdaux + 1;
8485
8486 if (iverdaux->vda_next
8487 > (size_t) (contents_end_aux - (bfd_byte *) everdaux))
8488 goto error_return_bad_verdef;
8489
8490 everdaux = ((Elf_External_Verdaux *)
8491 ((bfd_byte *) everdaux + iverdaux->vda_next));
8492 }
8493
8494 iverdef->vd_nodename = NULL;
8495 if (iverdef->vd_cnt)
8496 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
8497
8498 iverdef->vd_nextdef = NULL;
8499 if (iverdef->vd_next == 0)
8500 break;
8501 if ((size_t) (iverdef - iverdefarr) + 1 < maxidx)
8502 iverdef->vd_nextdef = iverdef + 1;
8503
8504 everdef = ((Elf_External_Verdef *)
8505 ((bfd_byte *) everdef + iverdef->vd_next));
8506 }
8507
8508 free (contents);
8509 contents = NULL;
8510 }
8511 else if (default_imported_symver)
8512 {
8513 if (freeidx < 3)
8514 freeidx = 3;
8515 else
8516 freeidx++;
8517
8518 elf_tdata (abfd)->verdef = (Elf_Internal_Verdef *)
8519 bfd_zalloc2 (abfd, freeidx, sizeof (Elf_Internal_Verdef));
8520 if (elf_tdata (abfd)->verdef == NULL)
8521 goto error_return;
8522
8523 elf_tdata (abfd)->cverdefs = freeidx;
8524 }
8525
8526 /* Create a default version based on the soname. */
8527 if (default_imported_symver)
8528 {
8529 Elf_Internal_Verdef *iverdef;
8530 Elf_Internal_Verdaux *iverdaux;
8531
8532 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];
8533
8534 iverdef->vd_version = VER_DEF_CURRENT;
8535 iverdef->vd_flags = 0;
8536 iverdef->vd_ndx = freeidx;
8537 iverdef->vd_cnt = 1;
8538
8539 iverdef->vd_bfd = abfd;
8540
8541 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
8542 if (iverdef->vd_nodename == NULL)
8543 goto error_return_verdef;
8544 iverdef->vd_nextdef = NULL;
8545 iverdef->vd_auxptr = ((struct elf_internal_verdaux *)
8546 bfd_zalloc (abfd, sizeof (Elf_Internal_Verdaux)));
8547 if (iverdef->vd_auxptr == NULL)
8548 goto error_return_verdef;
8549
8550 iverdaux = iverdef->vd_auxptr;
8551 iverdaux->vda_nodename = iverdef->vd_nodename;
8552 }
8553
8554 return TRUE;
8555
8556 error_return:
8557 if (contents != NULL)
8558 free (contents);
8559 return FALSE;
8560 }
8561 \f
8562 asymbol *
8563 _bfd_elf_make_empty_symbol (bfd *abfd)
8564 {
8565 elf_symbol_type *newsym;
8566
8567 newsym = (elf_symbol_type *) bfd_zalloc (abfd, sizeof * newsym);
8568 if (!newsym)
8569 return NULL;
8570 newsym->symbol.the_bfd = abfd;
8571 return &newsym->symbol;
8572 }
8573
8574 void
8575 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
8576 asymbol *symbol,
8577 symbol_info *ret)
8578 {
8579 bfd_symbol_info (symbol, ret);
8580 }
8581
8582 /* Return whether a symbol name implies a local symbol. Most targets
8583 use this function for the is_local_label_name entry point, but some
8584 override it. */
8585
8586 bfd_boolean
8587 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
8588 const char *name)
8589 {
8590 /* Normal local symbols start with ``.L''. */
8591 if (name[0] == '.' && name[1] == 'L')
8592 return TRUE;
8593
8594 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
8595 DWARF debugging symbols starting with ``..''. */
8596 if (name[0] == '.' && name[1] == '.')
8597 return TRUE;
8598
8599 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
8600 emitting DWARF debugging output. I suspect this is actually a
8601 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
8602 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
8603 underscore to be emitted on some ELF targets). For ease of use,
8604 we treat such symbols as local. */
8605 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
8606 return TRUE;
8607
8608 /* Treat assembler generated fake symbols, dollar local labels and
8609 forward-backward labels (aka local labels) as locals.
8610 These labels have the form:
8611
8612 L0^A.* (fake symbols)
8613
8614 [.]?L[0123456789]+{^A|^B}[0123456789]* (local labels)
8615
8616 Versions which start with .L will have already been matched above,
8617 so we only need to match the rest. */
8618 if (name[0] == 'L' && ISDIGIT (name[1]))
8619 {
8620 bfd_boolean ret = FALSE;
8621 const char * p;
8622 char c;
8623
8624 for (p = name + 2; (c = *p); p++)
8625 {
8626 if (c == 1 || c == 2)
8627 {
8628 if (c == 1 && p == name + 2)
8629 /* A fake symbol. */
8630 return TRUE;
8631
8632 /* FIXME: We are being paranoid here and treating symbols like
8633 L0^Bfoo as if there were non-local, on the grounds that the
8634 assembler will never generate them. But can any symbol
8635 containing an ASCII value in the range 1-31 ever be anything
8636 other than some kind of local ? */
8637 ret = TRUE;
8638 }
8639
8640 if (! ISDIGIT (c))
8641 {
8642 ret = FALSE;
8643 break;
8644 }
8645 }
8646 return ret;
8647 }
8648
8649 return FALSE;
8650 }
8651
8652 alent *
8653 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
8654 asymbol *symbol ATTRIBUTE_UNUSED)
8655 {
8656 abort ();
8657 return NULL;
8658 }
8659
8660 bfd_boolean
8661 _bfd_elf_set_arch_mach (bfd *abfd,
8662 enum bfd_architecture arch,
8663 unsigned long machine)
8664 {
8665 /* If this isn't the right architecture for this backend, and this
8666 isn't the generic backend, fail. */
8667 if (arch != get_elf_backend_data (abfd)->arch
8668 && arch != bfd_arch_unknown
8669 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
8670 return FALSE;
8671
8672 return bfd_default_set_arch_mach (abfd, arch, machine);
8673 }
8674
8675 /* Find the nearest line to a particular section and offset,
8676 for error reporting. */
8677
8678 bfd_boolean
8679 _bfd_elf_find_nearest_line (bfd *abfd,
8680 asymbol **symbols,
8681 asection *section,
8682 bfd_vma offset,
8683 const char **filename_ptr,
8684 const char **functionname_ptr,
8685 unsigned int *line_ptr,
8686 unsigned int *discriminator_ptr)
8687 {
8688 bfd_boolean found;
8689
8690 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
8691 filename_ptr, functionname_ptr,
8692 line_ptr, discriminator_ptr,
8693 dwarf_debug_sections, 0,
8694 &elf_tdata (abfd)->dwarf2_find_line_info)
8695 || _bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
8696 filename_ptr, functionname_ptr,
8697 line_ptr))
8698 {
8699 if (!*functionname_ptr)
8700 _bfd_elf_find_function (abfd, symbols, section, offset,
8701 *filename_ptr ? NULL : filename_ptr,
8702 functionname_ptr);
8703 return TRUE;
8704 }
8705
8706 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8707 &found, filename_ptr,
8708 functionname_ptr, line_ptr,
8709 &elf_tdata (abfd)->line_info))
8710 return FALSE;
8711 if (found && (*functionname_ptr || *line_ptr))
8712 return TRUE;
8713
8714 if (symbols == NULL)
8715 return FALSE;
8716
8717 if (! _bfd_elf_find_function (abfd, symbols, section, offset,
8718 filename_ptr, functionname_ptr))
8719 return FALSE;
8720
8721 *line_ptr = 0;
8722 return TRUE;
8723 }
8724
8725 /* Find the line for a symbol. */
8726
8727 bfd_boolean
8728 _bfd_elf_find_line (bfd *abfd, asymbol **symbols, asymbol *symbol,
8729 const char **filename_ptr, unsigned int *line_ptr)
8730 {
8731 return _bfd_dwarf2_find_nearest_line (abfd, symbols, symbol, NULL, 0,
8732 filename_ptr, NULL, line_ptr, NULL,
8733 dwarf_debug_sections, 0,
8734 &elf_tdata (abfd)->dwarf2_find_line_info);
8735 }
8736
8737 /* After a call to bfd_find_nearest_line, successive calls to
8738 bfd_find_inliner_info can be used to get source information about
8739 each level of function inlining that terminated at the address
8740 passed to bfd_find_nearest_line. Currently this is only supported
8741 for DWARF2 with appropriate DWARF3 extensions. */
8742
8743 bfd_boolean
8744 _bfd_elf_find_inliner_info (bfd *abfd,
8745 const char **filename_ptr,
8746 const char **functionname_ptr,
8747 unsigned int *line_ptr)
8748 {
8749 bfd_boolean found;
8750 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8751 functionname_ptr, line_ptr,
8752 & elf_tdata (abfd)->dwarf2_find_line_info);
8753 return found;
8754 }
8755
8756 int
8757 _bfd_elf_sizeof_headers (bfd *abfd, struct bfd_link_info *info)
8758 {
8759 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
8760 int ret = bed->s->sizeof_ehdr;
8761
8762 if (!bfd_link_relocatable (info))
8763 {
8764 bfd_size_type phdr_size = elf_program_header_size (abfd);
8765
8766 if (phdr_size == (bfd_size_type) -1)
8767 {
8768 struct elf_segment_map *m;
8769
8770 phdr_size = 0;
8771 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
8772 phdr_size += bed->s->sizeof_phdr;
8773
8774 if (phdr_size == 0)
8775 phdr_size = get_program_header_size (abfd, info);
8776 }
8777
8778 elf_program_header_size (abfd) = phdr_size;
8779 ret += phdr_size;
8780 }
8781
8782 return ret;
8783 }
8784
8785 bfd_boolean
8786 _bfd_elf_set_section_contents (bfd *abfd,
8787 sec_ptr section,
8788 const void *location,
8789 file_ptr offset,
8790 bfd_size_type count)
8791 {
8792 Elf_Internal_Shdr *hdr;
8793 file_ptr pos;
8794
8795 if (! abfd->output_has_begun
8796 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
8797 return FALSE;
8798
8799 if (!count)
8800 return TRUE;
8801
8802 hdr = &elf_section_data (section)->this_hdr;
8803 if (hdr->sh_offset == (file_ptr) -1)
8804 {
8805 /* We must compress this section. Write output to the buffer. */
8806 unsigned char *contents = hdr->contents;
8807 if ((offset + count) > hdr->sh_size
8808 || (section->flags & SEC_ELF_COMPRESS) == 0
8809 || contents == NULL)
8810 abort ();
8811 memcpy (contents + offset, location, count);
8812 return TRUE;
8813 }
8814 pos = hdr->sh_offset + offset;
8815 if (bfd_seek (abfd, pos, SEEK_SET) != 0
8816 || bfd_bwrite (location, count, abfd) != count)
8817 return FALSE;
8818
8819 return TRUE;
8820 }
8821
8822 void
8823 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
8824 arelent *cache_ptr ATTRIBUTE_UNUSED,
8825 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
8826 {
8827 abort ();
8828 }
8829
8830 /* Try to convert a non-ELF reloc into an ELF one. */
8831
8832 bfd_boolean
8833 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
8834 {
8835 /* Check whether we really have an ELF howto. */
8836
8837 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
8838 {
8839 bfd_reloc_code_real_type code;
8840 reloc_howto_type *howto;
8841
8842 /* Alien reloc: Try to determine its type to replace it with an
8843 equivalent ELF reloc. */
8844
8845 if (areloc->howto->pc_relative)
8846 {
8847 switch (areloc->howto->bitsize)
8848 {
8849 case 8:
8850 code = BFD_RELOC_8_PCREL;
8851 break;
8852 case 12:
8853 code = BFD_RELOC_12_PCREL;
8854 break;
8855 case 16:
8856 code = BFD_RELOC_16_PCREL;
8857 break;
8858 case 24:
8859 code = BFD_RELOC_24_PCREL;
8860 break;
8861 case 32:
8862 code = BFD_RELOC_32_PCREL;
8863 break;
8864 case 64:
8865 code = BFD_RELOC_64_PCREL;
8866 break;
8867 default:
8868 goto fail;
8869 }
8870
8871 howto = bfd_reloc_type_lookup (abfd, code);
8872
8873 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
8874 {
8875 if (howto->pcrel_offset)
8876 areloc->addend += areloc->address;
8877 else
8878 areloc->addend -= areloc->address; /* addend is unsigned!! */
8879 }
8880 }
8881 else
8882 {
8883 switch (areloc->howto->bitsize)
8884 {
8885 case 8:
8886 code = BFD_RELOC_8;
8887 break;
8888 case 14:
8889 code = BFD_RELOC_14;
8890 break;
8891 case 16:
8892 code = BFD_RELOC_16;
8893 break;
8894 case 26:
8895 code = BFD_RELOC_26;
8896 break;
8897 case 32:
8898 code = BFD_RELOC_32;
8899 break;
8900 case 64:
8901 code = BFD_RELOC_64;
8902 break;
8903 default:
8904 goto fail;
8905 }
8906
8907 howto = bfd_reloc_type_lookup (abfd, code);
8908 }
8909
8910 if (howto)
8911 areloc->howto = howto;
8912 else
8913 goto fail;
8914 }
8915
8916 return TRUE;
8917
8918 fail:
8919 _bfd_error_handler
8920 /* xgettext:c-format */
8921 (_("%B: unsupported relocation type %s"),
8922 abfd, areloc->howto->name);
8923 bfd_set_error (bfd_error_bad_value);
8924 return FALSE;
8925 }
8926
8927 bfd_boolean
8928 _bfd_elf_close_and_cleanup (bfd *abfd)
8929 {
8930 struct elf_obj_tdata *tdata = elf_tdata (abfd);
8931 if (bfd_get_format (abfd) == bfd_object && tdata != NULL)
8932 {
8933 if (elf_tdata (abfd)->o != NULL && elf_shstrtab (abfd) != NULL)
8934 _bfd_elf_strtab_free (elf_shstrtab (abfd));
8935 _bfd_dwarf2_cleanup_debug_info (abfd, &tdata->dwarf2_find_line_info);
8936 }
8937
8938 return _bfd_generic_close_and_cleanup (abfd);
8939 }
8940
8941 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
8942 in the relocation's offset. Thus we cannot allow any sort of sanity
8943 range-checking to interfere. There is nothing else to do in processing
8944 this reloc. */
8945
8946 bfd_reloc_status_type
8947 _bfd_elf_rel_vtable_reloc_fn
8948 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
8949 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
8950 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
8951 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
8952 {
8953 return bfd_reloc_ok;
8954 }
8955 \f
8956 /* Elf core file support. Much of this only works on native
8957 toolchains, since we rely on knowing the
8958 machine-dependent procfs structure in order to pick
8959 out details about the corefile. */
8960
8961 #ifdef HAVE_SYS_PROCFS_H
8962 /* Needed for new procfs interface on sparc-solaris. */
8963 # define _STRUCTURED_PROC 1
8964 # include <sys/procfs.h>
8965 #endif
8966
8967 /* Return a PID that identifies a "thread" for threaded cores, or the
8968 PID of the main process for non-threaded cores. */
8969
8970 static int
8971 elfcore_make_pid (bfd *abfd)
8972 {
8973 int pid;
8974
8975 pid = elf_tdata (abfd)->core->lwpid;
8976 if (pid == 0)
8977 pid = elf_tdata (abfd)->core->pid;
8978
8979 return pid;
8980 }
8981
8982 /* If there isn't a section called NAME, make one, using
8983 data from SECT. Note, this function will generate a
8984 reference to NAME, so you shouldn't deallocate or
8985 overwrite it. */
8986
8987 static bfd_boolean
8988 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
8989 {
8990 asection *sect2;
8991
8992 if (bfd_get_section_by_name (abfd, name) != NULL)
8993 return TRUE;
8994
8995 sect2 = bfd_make_section_with_flags (abfd, name, sect->flags);
8996 if (sect2 == NULL)
8997 return FALSE;
8998
8999 sect2->size = sect->size;
9000 sect2->filepos = sect->filepos;
9001 sect2->alignment_power = sect->alignment_power;
9002 return TRUE;
9003 }
9004
9005 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
9006 actually creates up to two pseudosections:
9007 - For the single-threaded case, a section named NAME, unless
9008 such a section already exists.
9009 - For the multi-threaded case, a section named "NAME/PID", where
9010 PID is elfcore_make_pid (abfd).
9011 Both pseudosections have identical contents. */
9012 bfd_boolean
9013 _bfd_elfcore_make_pseudosection (bfd *abfd,
9014 char *name,
9015 size_t size,
9016 ufile_ptr filepos)
9017 {
9018 char buf[100];
9019 char *threaded_name;
9020 size_t len;
9021 asection *sect;
9022
9023 /* Build the section name. */
9024
9025 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
9026 len = strlen (buf) + 1;
9027 threaded_name = (char *) bfd_alloc (abfd, len);
9028 if (threaded_name == NULL)
9029 return FALSE;
9030 memcpy (threaded_name, buf, len);
9031
9032 sect = bfd_make_section_anyway_with_flags (abfd, threaded_name,
9033 SEC_HAS_CONTENTS);
9034 if (sect == NULL)
9035 return FALSE;
9036 sect->size = size;
9037 sect->filepos = filepos;
9038 sect->alignment_power = 2;
9039
9040 return elfcore_maybe_make_sect (abfd, name, sect);
9041 }
9042
9043 /* prstatus_t exists on:
9044 solaris 2.5+
9045 linux 2.[01] + glibc
9046 unixware 4.2
9047 */
9048
9049 #if defined (HAVE_PRSTATUS_T)
9050
9051 static bfd_boolean
9052 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
9053 {
9054 size_t size;
9055 int offset;
9056
9057 if (note->descsz == sizeof (prstatus_t))
9058 {
9059 prstatus_t prstat;
9060
9061 size = sizeof (prstat.pr_reg);
9062 offset = offsetof (prstatus_t, pr_reg);
9063 memcpy (&prstat, note->descdata, sizeof (prstat));
9064
9065 /* Do not overwrite the core signal if it
9066 has already been set by another thread. */
9067 if (elf_tdata (abfd)->core->signal == 0)
9068 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9069 if (elf_tdata (abfd)->core->pid == 0)
9070 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9071
9072 /* pr_who exists on:
9073 solaris 2.5+
9074 unixware 4.2
9075 pr_who doesn't exist on:
9076 linux 2.[01]
9077 */
9078 #if defined (HAVE_PRSTATUS_T_PR_WHO)
9079 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9080 #else
9081 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9082 #endif
9083 }
9084 #if defined (HAVE_PRSTATUS32_T)
9085 else if (note->descsz == sizeof (prstatus32_t))
9086 {
9087 /* 64-bit host, 32-bit corefile */
9088 prstatus32_t prstat;
9089
9090 size = sizeof (prstat.pr_reg);
9091 offset = offsetof (prstatus32_t, pr_reg);
9092 memcpy (&prstat, note->descdata, sizeof (prstat));
9093
9094 /* Do not overwrite the core signal if it
9095 has already been set by another thread. */
9096 if (elf_tdata (abfd)->core->signal == 0)
9097 elf_tdata (abfd)->core->signal = prstat.pr_cursig;
9098 if (elf_tdata (abfd)->core->pid == 0)
9099 elf_tdata (abfd)->core->pid = prstat.pr_pid;
9100
9101 /* pr_who exists on:
9102 solaris 2.5+
9103 unixware 4.2
9104 pr_who doesn't exist on:
9105 linux 2.[01]
9106 */
9107 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
9108 elf_tdata (abfd)->core->lwpid = prstat.pr_who;
9109 #else
9110 elf_tdata (abfd)->core->lwpid = prstat.pr_pid;
9111 #endif
9112 }
9113 #endif /* HAVE_PRSTATUS32_T */
9114 else
9115 {
9116 /* Fail - we don't know how to handle any other
9117 note size (ie. data object type). */
9118 return TRUE;
9119 }
9120
9121 /* Make a ".reg/999" section and a ".reg" section. */
9122 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
9123 size, note->descpos + offset);
9124 }
9125 #endif /* defined (HAVE_PRSTATUS_T) */
9126
9127 /* Create a pseudosection containing the exact contents of NOTE. */
9128 static bfd_boolean
9129 elfcore_make_note_pseudosection (bfd *abfd,
9130 char *name,
9131 Elf_Internal_Note *note)
9132 {
9133 return _bfd_elfcore_make_pseudosection (abfd, name,
9134 note->descsz, note->descpos);
9135 }
9136
9137 /* There isn't a consistent prfpregset_t across platforms,
9138 but it doesn't matter, because we don't have to pick this
9139 data structure apart. */
9140
9141 static bfd_boolean
9142 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
9143 {
9144 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
9145 }
9146
9147 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
9148 type of NT_PRXFPREG. Just include the whole note's contents
9149 literally. */
9150
9151 static bfd_boolean
9152 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
9153 {
9154 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
9155 }
9156
9157 /* Linux dumps the Intel XSAVE extended state in a note named "LINUX"
9158 with a note type of NT_X86_XSTATE. Just include the whole note's
9159 contents literally. */
9160
9161 static bfd_boolean
9162 elfcore_grok_xstatereg (bfd *abfd, Elf_Internal_Note *note)
9163 {
9164 return elfcore_make_note_pseudosection (abfd, ".reg-xstate", note);
9165 }
9166
9167 static bfd_boolean
9168 elfcore_grok_ppc_vmx (bfd *abfd, Elf_Internal_Note *note)
9169 {
9170 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vmx", note);
9171 }
9172
9173 static bfd_boolean
9174 elfcore_grok_ppc_vsx (bfd *abfd, Elf_Internal_Note *note)
9175 {
9176 return elfcore_make_note_pseudosection (abfd, ".reg-ppc-vsx", note);
9177 }
9178
9179 static bfd_boolean
9180 elfcore_grok_s390_high_gprs (bfd *abfd, Elf_Internal_Note *note)
9181 {
9182 return elfcore_make_note_pseudosection (abfd, ".reg-s390-high-gprs", note);
9183 }
9184
9185 static bfd_boolean
9186 elfcore_grok_s390_timer (bfd *abfd, Elf_Internal_Note *note)
9187 {
9188 return elfcore_make_note_pseudosection (abfd, ".reg-s390-timer", note);
9189 }
9190
9191 static bfd_boolean
9192 elfcore_grok_s390_todcmp (bfd *abfd, Elf_Internal_Note *note)
9193 {
9194 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todcmp", note);
9195 }
9196
9197 static bfd_boolean
9198 elfcore_grok_s390_todpreg (bfd *abfd, Elf_Internal_Note *note)
9199 {
9200 return elfcore_make_note_pseudosection (abfd, ".reg-s390-todpreg", note);
9201 }
9202
9203 static bfd_boolean
9204 elfcore_grok_s390_ctrs (bfd *abfd, Elf_Internal_Note *note)
9205 {
9206 return elfcore_make_note_pseudosection (abfd, ".reg-s390-ctrs", note);
9207 }
9208
9209 static bfd_boolean
9210 elfcore_grok_s390_prefix (bfd *abfd, Elf_Internal_Note *note)
9211 {
9212 return elfcore_make_note_pseudosection (abfd, ".reg-s390-prefix", note);
9213 }
9214
9215 static bfd_boolean
9216 elfcore_grok_s390_last_break (bfd *abfd, Elf_Internal_Note *note)
9217 {
9218 return elfcore_make_note_pseudosection (abfd, ".reg-s390-last-break", note);
9219 }
9220
9221 static bfd_boolean
9222 elfcore_grok_s390_system_call (bfd *abfd, Elf_Internal_Note *note)
9223 {
9224 return elfcore_make_note_pseudosection (abfd, ".reg-s390-system-call", note);
9225 }
9226
9227 static bfd_boolean
9228 elfcore_grok_s390_tdb (bfd *abfd, Elf_Internal_Note *note)
9229 {
9230 return elfcore_make_note_pseudosection (abfd, ".reg-s390-tdb", note);
9231 }
9232
9233 static bfd_boolean
9234 elfcore_grok_s390_vxrs_low (bfd *abfd, Elf_Internal_Note *note)
9235 {
9236 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-low", note);
9237 }
9238
9239 static bfd_boolean
9240 elfcore_grok_s390_vxrs_high (bfd *abfd, Elf_Internal_Note *note)
9241 {
9242 return elfcore_make_note_pseudosection (abfd, ".reg-s390-vxrs-high", note);
9243 }
9244
9245 static bfd_boolean
9246 elfcore_grok_s390_gs_cb (bfd *abfd, Elf_Internal_Note *note)
9247 {
9248 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-cb", note);
9249 }
9250
9251 static bfd_boolean
9252 elfcore_grok_s390_gs_bc (bfd *abfd, Elf_Internal_Note *note)
9253 {
9254 return elfcore_make_note_pseudosection (abfd, ".reg-s390-gs-bc", note);
9255 }
9256
9257 static bfd_boolean
9258 elfcore_grok_arm_vfp (bfd *abfd, Elf_Internal_Note *note)
9259 {
9260 return elfcore_make_note_pseudosection (abfd, ".reg-arm-vfp", note);
9261 }
9262
9263 static bfd_boolean
9264 elfcore_grok_aarch_tls (bfd *abfd, Elf_Internal_Note *note)
9265 {
9266 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-tls", note);
9267 }
9268
9269 static bfd_boolean
9270 elfcore_grok_aarch_hw_break (bfd *abfd, Elf_Internal_Note *note)
9271 {
9272 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-break", note);
9273 }
9274
9275 static bfd_boolean
9276 elfcore_grok_aarch_hw_watch (bfd *abfd, Elf_Internal_Note *note)
9277 {
9278 return elfcore_make_note_pseudosection (abfd, ".reg-aarch-hw-watch", note);
9279 }
9280
9281 #if defined (HAVE_PRPSINFO_T)
9282 typedef prpsinfo_t elfcore_psinfo_t;
9283 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
9284 typedef prpsinfo32_t elfcore_psinfo32_t;
9285 #endif
9286 #endif
9287
9288 #if defined (HAVE_PSINFO_T)
9289 typedef psinfo_t elfcore_psinfo_t;
9290 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
9291 typedef psinfo32_t elfcore_psinfo32_t;
9292 #endif
9293 #endif
9294
9295 /* return a malloc'ed copy of a string at START which is at
9296 most MAX bytes long, possibly without a terminating '\0'.
9297 the copy will always have a terminating '\0'. */
9298
9299 char *
9300 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
9301 {
9302 char *dups;
9303 char *end = (char *) memchr (start, '\0', max);
9304 size_t len;
9305
9306 if (end == NULL)
9307 len = max;
9308 else
9309 len = end - start;
9310
9311 dups = (char *) bfd_alloc (abfd, len + 1);
9312 if (dups == NULL)
9313 return NULL;
9314
9315 memcpy (dups, start, len);
9316 dups[len] = '\0';
9317
9318 return dups;
9319 }
9320
9321 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9322 static bfd_boolean
9323 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
9324 {
9325 if (note->descsz == sizeof (elfcore_psinfo_t))
9326 {
9327 elfcore_psinfo_t psinfo;
9328
9329 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9330
9331 #if defined (HAVE_PSINFO_T_PR_PID) || defined (HAVE_PRPSINFO_T_PR_PID)
9332 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9333 #endif
9334 elf_tdata (abfd)->core->program
9335 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9336 sizeof (psinfo.pr_fname));
9337
9338 elf_tdata (abfd)->core->command
9339 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9340 sizeof (psinfo.pr_psargs));
9341 }
9342 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
9343 else if (note->descsz == sizeof (elfcore_psinfo32_t))
9344 {
9345 /* 64-bit host, 32-bit corefile */
9346 elfcore_psinfo32_t psinfo;
9347
9348 memcpy (&psinfo, note->descdata, sizeof (psinfo));
9349
9350 #if defined (HAVE_PSINFO32_T_PR_PID) || defined (HAVE_PRPSINFO32_T_PR_PID)
9351 elf_tdata (abfd)->core->pid = psinfo.pr_pid;
9352 #endif
9353 elf_tdata (abfd)->core->program
9354 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
9355 sizeof (psinfo.pr_fname));
9356
9357 elf_tdata (abfd)->core->command
9358 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
9359 sizeof (psinfo.pr_psargs));
9360 }
9361 #endif
9362
9363 else
9364 {
9365 /* Fail - we don't know how to handle any other
9366 note size (ie. data object type). */
9367 return TRUE;
9368 }
9369
9370 /* Note that for some reason, a spurious space is tacked
9371 onto the end of the args in some (at least one anyway)
9372 implementations, so strip it off if it exists. */
9373
9374 {
9375 char *command = elf_tdata (abfd)->core->command;
9376 int n = strlen (command);
9377
9378 if (0 < n && command[n - 1] == ' ')
9379 command[n - 1] = '\0';
9380 }
9381
9382 return TRUE;
9383 }
9384 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
9385
9386 #if defined (HAVE_PSTATUS_T)
9387 static bfd_boolean
9388 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
9389 {
9390 if (note->descsz == sizeof (pstatus_t)
9391 #if defined (HAVE_PXSTATUS_T)
9392 || note->descsz == sizeof (pxstatus_t)
9393 #endif
9394 )
9395 {
9396 pstatus_t pstat;
9397
9398 memcpy (&pstat, note->descdata, sizeof (pstat));
9399
9400 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9401 }
9402 #if defined (HAVE_PSTATUS32_T)
9403 else if (note->descsz == sizeof (pstatus32_t))
9404 {
9405 /* 64-bit host, 32-bit corefile */
9406 pstatus32_t pstat;
9407
9408 memcpy (&pstat, note->descdata, sizeof (pstat));
9409
9410 elf_tdata (abfd)->core->pid = pstat.pr_pid;
9411 }
9412 #endif
9413 /* Could grab some more details from the "representative"
9414 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
9415 NT_LWPSTATUS note, presumably. */
9416
9417 return TRUE;
9418 }
9419 #endif /* defined (HAVE_PSTATUS_T) */
9420
9421 #if defined (HAVE_LWPSTATUS_T)
9422 static bfd_boolean
9423 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
9424 {
9425 lwpstatus_t lwpstat;
9426 char buf[100];
9427 char *name;
9428 size_t len;
9429 asection *sect;
9430
9431 if (note->descsz != sizeof (lwpstat)
9432 #if defined (HAVE_LWPXSTATUS_T)
9433 && note->descsz != sizeof (lwpxstatus_t)
9434 #endif
9435 )
9436 return TRUE;
9437
9438 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
9439
9440 elf_tdata (abfd)->core->lwpid = lwpstat.pr_lwpid;
9441 /* Do not overwrite the core signal if it has already been set by
9442 another thread. */
9443 if (elf_tdata (abfd)->core->signal == 0)
9444 elf_tdata (abfd)->core->signal = lwpstat.pr_cursig;
9445
9446 /* Make a ".reg/999" section. */
9447
9448 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
9449 len = strlen (buf) + 1;
9450 name = bfd_alloc (abfd, len);
9451 if (name == NULL)
9452 return FALSE;
9453 memcpy (name, buf, len);
9454
9455 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9456 if (sect == NULL)
9457 return FALSE;
9458
9459 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9460 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
9461 sect->filepos = note->descpos
9462 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
9463 #endif
9464
9465 #if defined (HAVE_LWPSTATUS_T_PR_REG)
9466 sect->size = sizeof (lwpstat.pr_reg);
9467 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
9468 #endif
9469
9470 sect->alignment_power = 2;
9471
9472 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
9473 return FALSE;
9474
9475 /* Make a ".reg2/999" section */
9476
9477 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
9478 len = strlen (buf) + 1;
9479 name = bfd_alloc (abfd, len);
9480 if (name == NULL)
9481 return FALSE;
9482 memcpy (name, buf, len);
9483
9484 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9485 if (sect == NULL)
9486 return FALSE;
9487
9488 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
9489 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
9490 sect->filepos = note->descpos
9491 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
9492 #endif
9493
9494 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
9495 sect->size = sizeof (lwpstat.pr_fpreg);
9496 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
9497 #endif
9498
9499 sect->alignment_power = 2;
9500
9501 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
9502 }
9503 #endif /* defined (HAVE_LWPSTATUS_T) */
9504
9505 static bfd_boolean
9506 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
9507 {
9508 char buf[30];
9509 char *name;
9510 size_t len;
9511 asection *sect;
9512 int type;
9513 int is_active_thread;
9514 bfd_vma base_addr;
9515
9516 if (note->descsz < 728)
9517 return TRUE;
9518
9519 if (! CONST_STRNEQ (note->namedata, "win32"))
9520 return TRUE;
9521
9522 type = bfd_get_32 (abfd, note->descdata);
9523
9524 switch (type)
9525 {
9526 case 1 /* NOTE_INFO_PROCESS */:
9527 /* FIXME: need to add ->core->command. */
9528 /* process_info.pid */
9529 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, note->descdata + 8);
9530 /* process_info.signal */
9531 elf_tdata (abfd)->core->signal = bfd_get_32 (abfd, note->descdata + 12);
9532 break;
9533
9534 case 2 /* NOTE_INFO_THREAD */:
9535 /* Make a ".reg/999" section. */
9536 /* thread_info.tid */
9537 sprintf (buf, ".reg/%ld", (long) bfd_get_32 (abfd, note->descdata + 8));
9538
9539 len = strlen (buf) + 1;
9540 name = (char *) bfd_alloc (abfd, len);
9541 if (name == NULL)
9542 return FALSE;
9543
9544 memcpy (name, buf, len);
9545
9546 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9547 if (sect == NULL)
9548 return FALSE;
9549
9550 /* sizeof (thread_info.thread_context) */
9551 sect->size = 716;
9552 /* offsetof (thread_info.thread_context) */
9553 sect->filepos = note->descpos + 12;
9554 sect->alignment_power = 2;
9555
9556 /* thread_info.is_active_thread */
9557 is_active_thread = bfd_get_32 (abfd, note->descdata + 8);
9558
9559 if (is_active_thread)
9560 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
9561 return FALSE;
9562 break;
9563
9564 case 3 /* NOTE_INFO_MODULE */:
9565 /* Make a ".module/xxxxxxxx" section. */
9566 /* module_info.base_address */
9567 base_addr = bfd_get_32 (abfd, note->descdata + 4);
9568 sprintf (buf, ".module/%08lx", (unsigned long) base_addr);
9569
9570 len = strlen (buf) + 1;
9571 name = (char *) bfd_alloc (abfd, len);
9572 if (name == NULL)
9573 return FALSE;
9574
9575 memcpy (name, buf, len);
9576
9577 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
9578
9579 if (sect == NULL)
9580 return FALSE;
9581
9582 sect->size = note->descsz;
9583 sect->filepos = note->descpos;
9584 sect->alignment_power = 2;
9585 break;
9586
9587 default:
9588 return TRUE;
9589 }
9590
9591 return TRUE;
9592 }
9593
9594 static bfd_boolean
9595 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
9596 {
9597 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
9598
9599 switch (note->type)
9600 {
9601 default:
9602 return TRUE;
9603
9604 case NT_PRSTATUS:
9605 if (bed->elf_backend_grok_prstatus)
9606 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
9607 return TRUE;
9608 #if defined (HAVE_PRSTATUS_T)
9609 return elfcore_grok_prstatus (abfd, note);
9610 #else
9611 return TRUE;
9612 #endif
9613
9614 #if defined (HAVE_PSTATUS_T)
9615 case NT_PSTATUS:
9616 return elfcore_grok_pstatus (abfd, note);
9617 #endif
9618
9619 #if defined (HAVE_LWPSTATUS_T)
9620 case NT_LWPSTATUS:
9621 return elfcore_grok_lwpstatus (abfd, note);
9622 #endif
9623
9624 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
9625 return elfcore_grok_prfpreg (abfd, note);
9626
9627 case NT_WIN32PSTATUS:
9628 return elfcore_grok_win32pstatus (abfd, note);
9629
9630 case NT_PRXFPREG: /* Linux SSE extension */
9631 if (note->namesz == 6
9632 && strcmp (note->namedata, "LINUX") == 0)
9633 return elfcore_grok_prxfpreg (abfd, note);
9634 else
9635 return TRUE;
9636
9637 case NT_X86_XSTATE: /* Linux XSAVE extension */
9638 if (note->namesz == 6
9639 && strcmp (note->namedata, "LINUX") == 0)
9640 return elfcore_grok_xstatereg (abfd, note);
9641 else
9642 return TRUE;
9643
9644 case NT_PPC_VMX:
9645 if (note->namesz == 6
9646 && strcmp (note->namedata, "LINUX") == 0)
9647 return elfcore_grok_ppc_vmx (abfd, note);
9648 else
9649 return TRUE;
9650
9651 case NT_PPC_VSX:
9652 if (note->namesz == 6
9653 && strcmp (note->namedata, "LINUX") == 0)
9654 return elfcore_grok_ppc_vsx (abfd, note);
9655 else
9656 return TRUE;
9657
9658 case NT_S390_HIGH_GPRS:
9659 if (note->namesz == 6
9660 && strcmp (note->namedata, "LINUX") == 0)
9661 return elfcore_grok_s390_high_gprs (abfd, note);
9662 else
9663 return TRUE;
9664
9665 case NT_S390_TIMER:
9666 if (note->namesz == 6
9667 && strcmp (note->namedata, "LINUX") == 0)
9668 return elfcore_grok_s390_timer (abfd, note);
9669 else
9670 return TRUE;
9671
9672 case NT_S390_TODCMP:
9673 if (note->namesz == 6
9674 && strcmp (note->namedata, "LINUX") == 0)
9675 return elfcore_grok_s390_todcmp (abfd, note);
9676 else
9677 return TRUE;
9678
9679 case NT_S390_TODPREG:
9680 if (note->namesz == 6
9681 && strcmp (note->namedata, "LINUX") == 0)
9682 return elfcore_grok_s390_todpreg (abfd, note);
9683 else
9684 return TRUE;
9685
9686 case NT_S390_CTRS:
9687 if (note->namesz == 6
9688 && strcmp (note->namedata, "LINUX") == 0)
9689 return elfcore_grok_s390_ctrs (abfd, note);
9690 else
9691 return TRUE;
9692
9693 case NT_S390_PREFIX:
9694 if (note->namesz == 6
9695 && strcmp (note->namedata, "LINUX") == 0)
9696 return elfcore_grok_s390_prefix (abfd, note);
9697 else
9698 return TRUE;
9699
9700 case NT_S390_LAST_BREAK:
9701 if (note->namesz == 6
9702 && strcmp (note->namedata, "LINUX") == 0)
9703 return elfcore_grok_s390_last_break (abfd, note);
9704 else
9705 return TRUE;
9706
9707 case NT_S390_SYSTEM_CALL:
9708 if (note->namesz == 6
9709 && strcmp (note->namedata, "LINUX") == 0)
9710 return elfcore_grok_s390_system_call (abfd, note);
9711 else
9712 return TRUE;
9713
9714 case NT_S390_TDB:
9715 if (note->namesz == 6
9716 && strcmp (note->namedata, "LINUX") == 0)
9717 return elfcore_grok_s390_tdb (abfd, note);
9718 else
9719 return TRUE;
9720
9721 case NT_S390_VXRS_LOW:
9722 if (note->namesz == 6
9723 && strcmp (note->namedata, "LINUX") == 0)
9724 return elfcore_grok_s390_vxrs_low (abfd, note);
9725 else
9726 return TRUE;
9727
9728 case NT_S390_VXRS_HIGH:
9729 if (note->namesz == 6
9730 && strcmp (note->namedata, "LINUX") == 0)
9731 return elfcore_grok_s390_vxrs_high (abfd, note);
9732 else
9733 return TRUE;
9734
9735 case NT_S390_GS_CB:
9736 if (note->namesz == 6
9737 && strcmp (note->namedata, "LINUX") == 0)
9738 return elfcore_grok_s390_gs_cb (abfd, note);
9739 else
9740 return TRUE;
9741
9742 case NT_S390_GS_BC:
9743 if (note->namesz == 6
9744 && strcmp (note->namedata, "LINUX") == 0)
9745 return elfcore_grok_s390_gs_bc (abfd, note);
9746 else
9747 return TRUE;
9748
9749 case NT_ARM_VFP:
9750 if (note->namesz == 6
9751 && strcmp (note->namedata, "LINUX") == 0)
9752 return elfcore_grok_arm_vfp (abfd, note);
9753 else
9754 return TRUE;
9755
9756 case NT_ARM_TLS:
9757 if (note->namesz == 6
9758 && strcmp (note->namedata, "LINUX") == 0)
9759 return elfcore_grok_aarch_tls (abfd, note);
9760 else
9761 return TRUE;
9762
9763 case NT_ARM_HW_BREAK:
9764 if (note->namesz == 6
9765 && strcmp (note->namedata, "LINUX") == 0)
9766 return elfcore_grok_aarch_hw_break (abfd, note);
9767 else
9768 return TRUE;
9769
9770 case NT_ARM_HW_WATCH:
9771 if (note->namesz == 6
9772 && strcmp (note->namedata, "LINUX") == 0)
9773 return elfcore_grok_aarch_hw_watch (abfd, note);
9774 else
9775 return TRUE;
9776
9777 case NT_PRPSINFO:
9778 case NT_PSINFO:
9779 if (bed->elf_backend_grok_psinfo)
9780 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
9781 return TRUE;
9782 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
9783 return elfcore_grok_psinfo (abfd, note);
9784 #else
9785 return TRUE;
9786 #endif
9787
9788 case NT_AUXV:
9789 {
9790 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
9791 SEC_HAS_CONTENTS);
9792
9793 if (sect == NULL)
9794 return FALSE;
9795 sect->size = note->descsz;
9796 sect->filepos = note->descpos;
9797 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
9798
9799 return TRUE;
9800 }
9801
9802 case NT_FILE:
9803 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.file",
9804 note);
9805
9806 case NT_SIGINFO:
9807 return elfcore_make_note_pseudosection (abfd, ".note.linuxcore.siginfo",
9808 note);
9809
9810 }
9811 }
9812
9813 static bfd_boolean
9814 elfobj_grok_gnu_build_id (bfd *abfd, Elf_Internal_Note *note)
9815 {
9816 struct bfd_build_id* build_id;
9817
9818 if (note->descsz == 0)
9819 return FALSE;
9820
9821 build_id = bfd_alloc (abfd, sizeof (struct bfd_build_id) - 1 + note->descsz);
9822 if (build_id == NULL)
9823 return FALSE;
9824
9825 build_id->size = note->descsz;
9826 memcpy (build_id->data, note->descdata, note->descsz);
9827 abfd->build_id = build_id;
9828
9829 return TRUE;
9830 }
9831
9832 static bfd_boolean
9833 elfobj_grok_gnu_note (bfd *abfd, Elf_Internal_Note *note)
9834 {
9835 switch (note->type)
9836 {
9837 default:
9838 return TRUE;
9839
9840 case NT_GNU_PROPERTY_TYPE_0:
9841 return _bfd_elf_parse_gnu_properties (abfd, note);
9842
9843 case NT_GNU_BUILD_ID:
9844 return elfobj_grok_gnu_build_id (abfd, note);
9845 }
9846 }
9847
9848 static bfd_boolean
9849 elfobj_grok_stapsdt_note_1 (bfd *abfd, Elf_Internal_Note *note)
9850 {
9851 struct sdt_note *cur =
9852 (struct sdt_note *) bfd_alloc (abfd, sizeof (struct sdt_note)
9853 + note->descsz);
9854
9855 cur->next = (struct sdt_note *) (elf_tdata (abfd))->sdt_note_head;
9856 cur->size = (bfd_size_type) note->descsz;
9857 memcpy (cur->data, note->descdata, note->descsz);
9858
9859 elf_tdata (abfd)->sdt_note_head = cur;
9860
9861 return TRUE;
9862 }
9863
9864 static bfd_boolean
9865 elfobj_grok_stapsdt_note (bfd *abfd, Elf_Internal_Note *note)
9866 {
9867 switch (note->type)
9868 {
9869 case NT_STAPSDT:
9870 return elfobj_grok_stapsdt_note_1 (abfd, note);
9871
9872 default:
9873 return TRUE;
9874 }
9875 }
9876
9877 static bfd_boolean
9878 elfcore_grok_freebsd_psinfo (bfd *abfd, Elf_Internal_Note *note)
9879 {
9880 size_t offset;
9881
9882 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9883 {
9884 case ELFCLASS32:
9885 if (note->descsz < 108)
9886 return FALSE;
9887 break;
9888
9889 case ELFCLASS64:
9890 if (note->descsz < 120)
9891 return FALSE;
9892 break;
9893
9894 default:
9895 return FALSE;
9896 }
9897
9898 /* Check for version 1 in pr_version. */
9899 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9900 return FALSE;
9901
9902 offset = 4;
9903
9904 /* Skip over pr_psinfosz. */
9905 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
9906 offset += 4;
9907 else
9908 {
9909 offset += 4; /* Padding before pr_psinfosz. */
9910 offset += 8;
9911 }
9912
9913 /* pr_fname is PRFNAMESZ (16) + 1 bytes in size. */
9914 elf_tdata (abfd)->core->program
9915 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 17);
9916 offset += 17;
9917
9918 /* pr_psargs is PRARGSZ (80) + 1 bytes in size. */
9919 elf_tdata (abfd)->core->command
9920 = _bfd_elfcore_strndup (abfd, note->descdata + offset, 81);
9921 offset += 81;
9922
9923 /* Padding before pr_pid. */
9924 offset += 2;
9925
9926 /* The pr_pid field was added in version "1a". */
9927 if (note->descsz < offset + 4)
9928 return TRUE;
9929
9930 elf_tdata (abfd)->core->pid
9931 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9932
9933 return TRUE;
9934 }
9935
9936 static bfd_boolean
9937 elfcore_grok_freebsd_prstatus (bfd *abfd, Elf_Internal_Note *note)
9938 {
9939 size_t offset;
9940 size_t size;
9941 size_t min_size;
9942
9943 /* Compute offset of pr_getregsz, skipping over pr_statussz.
9944 Also compute minimum size of this note. */
9945 switch (elf_elfheader (abfd)->e_ident[EI_CLASS])
9946 {
9947 case ELFCLASS32:
9948 offset = 4 + 4;
9949 min_size = offset + (4 * 2) + 4 + 4 + 4;
9950 break;
9951
9952 case ELFCLASS64:
9953 offset = 4 + 4 + 8; /* Includes padding before pr_statussz. */
9954 min_size = offset + (8 * 2) + 4 + 4 + 4 + 4;
9955 break;
9956
9957 default:
9958 return FALSE;
9959 }
9960
9961 if (note->descsz < min_size)
9962 return FALSE;
9963
9964 /* Check for version 1 in pr_version. */
9965 if (bfd_h_get_32 (abfd, (bfd_byte *) note->descdata) != 1)
9966 return FALSE;
9967
9968 /* Extract size of pr_reg from pr_gregsetsz. */
9969 /* Skip over pr_gregsetsz and pr_fpregsetsz. */
9970 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS32)
9971 {
9972 size = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9973 offset += 4 * 2;
9974 }
9975 else
9976 {
9977 size = bfd_h_get_64 (abfd, (bfd_byte *) note->descdata + offset);
9978 offset += 8 * 2;
9979 }
9980
9981 /* Skip over pr_osreldate. */
9982 offset += 4;
9983
9984 /* Read signal from pr_cursig. */
9985 if (elf_tdata (abfd)->core->signal == 0)
9986 elf_tdata (abfd)->core->signal
9987 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9988 offset += 4;
9989
9990 /* Read TID from pr_pid. */
9991 elf_tdata (abfd)->core->lwpid
9992 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + offset);
9993 offset += 4;
9994
9995 /* Padding before pr_reg. */
9996 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
9997 offset += 4;
9998
9999 /* Make sure that there is enough data remaining in the note. */
10000 if ((note->descsz - offset) < size)
10001 return FALSE;
10002
10003 /* Make a ".reg/999" section and a ".reg" section. */
10004 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
10005 size, note->descpos + offset);
10006 }
10007
10008 static bfd_boolean
10009 elfcore_grok_freebsd_note (bfd *abfd, Elf_Internal_Note *note)
10010 {
10011 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10012
10013 switch (note->type)
10014 {
10015 case NT_PRSTATUS:
10016 if (bed->elf_backend_grok_freebsd_prstatus)
10017 if ((*bed->elf_backend_grok_freebsd_prstatus) (abfd, note))
10018 return TRUE;
10019 return elfcore_grok_freebsd_prstatus (abfd, note);
10020
10021 case NT_FPREGSET:
10022 return elfcore_grok_prfpreg (abfd, note);
10023
10024 case NT_PRPSINFO:
10025 return elfcore_grok_freebsd_psinfo (abfd, note);
10026
10027 case NT_FREEBSD_THRMISC:
10028 if (note->namesz == 8)
10029 return elfcore_make_note_pseudosection (abfd, ".thrmisc", note);
10030 else
10031 return TRUE;
10032
10033 case NT_FREEBSD_PROCSTAT_PROC:
10034 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.proc",
10035 note);
10036
10037 case NT_FREEBSD_PROCSTAT_FILES:
10038 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.files",
10039 note);
10040
10041 case NT_FREEBSD_PROCSTAT_VMMAP:
10042 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.vmmap",
10043 note);
10044
10045 case NT_FREEBSD_PROCSTAT_AUXV:
10046 {
10047 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10048 SEC_HAS_CONTENTS);
10049
10050 if (sect == NULL)
10051 return FALSE;
10052 sect->size = note->descsz - 4;
10053 sect->filepos = note->descpos + 4;
10054 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10055
10056 return TRUE;
10057 }
10058
10059 case NT_X86_XSTATE:
10060 if (note->namesz == 8)
10061 return elfcore_grok_xstatereg (abfd, note);
10062 else
10063 return TRUE;
10064
10065 case NT_FREEBSD_PTLWPINFO:
10066 return elfcore_make_note_pseudosection (abfd, ".note.freebsdcore.lwpinfo",
10067 note);
10068
10069 case NT_ARM_VFP:
10070 return elfcore_grok_arm_vfp (abfd, note);
10071
10072 default:
10073 return TRUE;
10074 }
10075 }
10076
10077 static bfd_boolean
10078 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
10079 {
10080 char *cp;
10081
10082 cp = strchr (note->namedata, '@');
10083 if (cp != NULL)
10084 {
10085 *lwpidp = atoi(cp + 1);
10086 return TRUE;
10087 }
10088 return FALSE;
10089 }
10090
10091 static bfd_boolean
10092 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10093 {
10094 if (note->descsz <= 0x7c + 31)
10095 return FALSE;
10096
10097 /* Signal number at offset 0x08. */
10098 elf_tdata (abfd)->core->signal
10099 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10100
10101 /* Process ID at offset 0x50. */
10102 elf_tdata (abfd)->core->pid
10103 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
10104
10105 /* Command name at 0x7c (max 32 bytes, including nul). */
10106 elf_tdata (abfd)->core->command
10107 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
10108
10109 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
10110 note);
10111 }
10112
10113 static bfd_boolean
10114 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
10115 {
10116 int lwp;
10117
10118 if (elfcore_netbsd_get_lwpid (note, &lwp))
10119 elf_tdata (abfd)->core->lwpid = lwp;
10120
10121 if (note->type == NT_NETBSDCORE_PROCINFO)
10122 {
10123 /* NetBSD-specific core "procinfo". Note that we expect to
10124 find this note before any of the others, which is fine,
10125 since the kernel writes this note out first when it
10126 creates a core file. */
10127
10128 return elfcore_grok_netbsd_procinfo (abfd, note);
10129 }
10130
10131 /* As of Jan 2002 there are no other machine-independent notes
10132 defined for NetBSD core files. If the note type is less
10133 than the start of the machine-dependent note types, we don't
10134 understand it. */
10135
10136 if (note->type < NT_NETBSDCORE_FIRSTMACH)
10137 return TRUE;
10138
10139
10140 switch (bfd_get_arch (abfd))
10141 {
10142 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
10143 PT_GETFPREGS == mach+2. */
10144
10145 case bfd_arch_alpha:
10146 case bfd_arch_sparc:
10147 switch (note->type)
10148 {
10149 case NT_NETBSDCORE_FIRSTMACH+0:
10150 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10151
10152 case NT_NETBSDCORE_FIRSTMACH+2:
10153 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10154
10155 default:
10156 return TRUE;
10157 }
10158
10159 /* On all other arch's, PT_GETREGS == mach+1 and
10160 PT_GETFPREGS == mach+3. */
10161
10162 default:
10163 switch (note->type)
10164 {
10165 case NT_NETBSDCORE_FIRSTMACH+1:
10166 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10167
10168 case NT_NETBSDCORE_FIRSTMACH+3:
10169 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10170
10171 default:
10172 return TRUE;
10173 }
10174 }
10175 /* NOTREACHED */
10176 }
10177
10178 static bfd_boolean
10179 elfcore_grok_openbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
10180 {
10181 if (note->descsz <= 0x48 + 31)
10182 return FALSE;
10183
10184 /* Signal number at offset 0x08. */
10185 elf_tdata (abfd)->core->signal
10186 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
10187
10188 /* Process ID at offset 0x20. */
10189 elf_tdata (abfd)->core->pid
10190 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x20);
10191
10192 /* Command name at 0x48 (max 32 bytes, including nul). */
10193 elf_tdata (abfd)->core->command
10194 = _bfd_elfcore_strndup (abfd, note->descdata + 0x48, 31);
10195
10196 return TRUE;
10197 }
10198
10199 static bfd_boolean
10200 elfcore_grok_openbsd_note (bfd *abfd, Elf_Internal_Note *note)
10201 {
10202 if (note->type == NT_OPENBSD_PROCINFO)
10203 return elfcore_grok_openbsd_procinfo (abfd, note);
10204
10205 if (note->type == NT_OPENBSD_REGS)
10206 return elfcore_make_note_pseudosection (abfd, ".reg", note);
10207
10208 if (note->type == NT_OPENBSD_FPREGS)
10209 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
10210
10211 if (note->type == NT_OPENBSD_XFPREGS)
10212 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
10213
10214 if (note->type == NT_OPENBSD_AUXV)
10215 {
10216 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".auxv",
10217 SEC_HAS_CONTENTS);
10218
10219 if (sect == NULL)
10220 return FALSE;
10221 sect->size = note->descsz;
10222 sect->filepos = note->descpos;
10223 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10224
10225 return TRUE;
10226 }
10227
10228 if (note->type == NT_OPENBSD_WCOOKIE)
10229 {
10230 asection *sect = bfd_make_section_anyway_with_flags (abfd, ".wcookie",
10231 SEC_HAS_CONTENTS);
10232
10233 if (sect == NULL)
10234 return FALSE;
10235 sect->size = note->descsz;
10236 sect->filepos = note->descpos;
10237 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
10238
10239 return TRUE;
10240 }
10241
10242 return TRUE;
10243 }
10244
10245 static bfd_boolean
10246 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, long *tid)
10247 {
10248 void *ddata = note->descdata;
10249 char buf[100];
10250 char *name;
10251 asection *sect;
10252 short sig;
10253 unsigned flags;
10254
10255 if (note->descsz < 16)
10256 return FALSE;
10257
10258 /* nto_procfs_status 'pid' field is at offset 0. */
10259 elf_tdata (abfd)->core->pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
10260
10261 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
10262 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
10263
10264 /* nto_procfs_status 'flags' field is at offset 8. */
10265 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
10266
10267 /* nto_procfs_status 'what' field is at offset 14. */
10268 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
10269 {
10270 elf_tdata (abfd)->core->signal = sig;
10271 elf_tdata (abfd)->core->lwpid = *tid;
10272 }
10273
10274 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
10275 do not come from signals so we make sure we set the current
10276 thread just in case. */
10277 if (flags & 0x00000080)
10278 elf_tdata (abfd)->core->lwpid = *tid;
10279
10280 /* Make a ".qnx_core_status/%d" section. */
10281 sprintf (buf, ".qnx_core_status/%ld", *tid);
10282
10283 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10284 if (name == NULL)
10285 return FALSE;
10286 strcpy (name, buf);
10287
10288 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10289 if (sect == NULL)
10290 return FALSE;
10291
10292 sect->size = note->descsz;
10293 sect->filepos = note->descpos;
10294 sect->alignment_power = 2;
10295
10296 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
10297 }
10298
10299 static bfd_boolean
10300 elfcore_grok_nto_regs (bfd *abfd,
10301 Elf_Internal_Note *note,
10302 long tid,
10303 char *base)
10304 {
10305 char buf[100];
10306 char *name;
10307 asection *sect;
10308
10309 /* Make a "(base)/%d" section. */
10310 sprintf (buf, "%s/%ld", base, tid);
10311
10312 name = (char *) bfd_alloc (abfd, strlen (buf) + 1);
10313 if (name == NULL)
10314 return FALSE;
10315 strcpy (name, buf);
10316
10317 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10318 if (sect == NULL)
10319 return FALSE;
10320
10321 sect->size = note->descsz;
10322 sect->filepos = note->descpos;
10323 sect->alignment_power = 2;
10324
10325 /* This is the current thread. */
10326 if (elf_tdata (abfd)->core->lwpid == tid)
10327 return elfcore_maybe_make_sect (abfd, base, sect);
10328
10329 return TRUE;
10330 }
10331
10332 #define BFD_QNT_CORE_INFO 7
10333 #define BFD_QNT_CORE_STATUS 8
10334 #define BFD_QNT_CORE_GREG 9
10335 #define BFD_QNT_CORE_FPREG 10
10336
10337 static bfd_boolean
10338 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
10339 {
10340 /* Every GREG section has a STATUS section before it. Store the
10341 tid from the previous call to pass down to the next gregs
10342 function. */
10343 static long tid = 1;
10344
10345 switch (note->type)
10346 {
10347 case BFD_QNT_CORE_INFO:
10348 return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
10349 case BFD_QNT_CORE_STATUS:
10350 return elfcore_grok_nto_status (abfd, note, &tid);
10351 case BFD_QNT_CORE_GREG:
10352 return elfcore_grok_nto_regs (abfd, note, tid, ".reg");
10353 case BFD_QNT_CORE_FPREG:
10354 return elfcore_grok_nto_regs (abfd, note, tid, ".reg2");
10355 default:
10356 return TRUE;
10357 }
10358 }
10359
10360 static bfd_boolean
10361 elfcore_grok_spu_note (bfd *abfd, Elf_Internal_Note *note)
10362 {
10363 char *name;
10364 asection *sect;
10365 size_t len;
10366
10367 /* Use note name as section name. */
10368 len = note->namesz;
10369 name = (char *) bfd_alloc (abfd, len);
10370 if (name == NULL)
10371 return FALSE;
10372 memcpy (name, note->namedata, len);
10373 name[len - 1] = '\0';
10374
10375 sect = bfd_make_section_anyway_with_flags (abfd, name, SEC_HAS_CONTENTS);
10376 if (sect == NULL)
10377 return FALSE;
10378
10379 sect->size = note->descsz;
10380 sect->filepos = note->descpos;
10381 sect->alignment_power = 1;
10382
10383 return TRUE;
10384 }
10385
10386 /* Function: elfcore_write_note
10387
10388 Inputs:
10389 buffer to hold note, and current size of buffer
10390 name of note
10391 type of note
10392 data for note
10393 size of data for note
10394
10395 Writes note to end of buffer. ELF64 notes are written exactly as
10396 for ELF32, despite the current (as of 2006) ELF gabi specifying
10397 that they ought to have 8-byte namesz and descsz field, and have
10398 8-byte alignment. Other writers, eg. Linux kernel, do the same.
10399
10400 Return:
10401 Pointer to realloc'd buffer, *BUFSIZ updated. */
10402
10403 char *
10404 elfcore_write_note (bfd *abfd,
10405 char *buf,
10406 int *bufsiz,
10407 const char *name,
10408 int type,
10409 const void *input,
10410 int size)
10411 {
10412 Elf_External_Note *xnp;
10413 size_t namesz;
10414 size_t newspace;
10415 char *dest;
10416
10417 namesz = 0;
10418 if (name != NULL)
10419 namesz = strlen (name) + 1;
10420
10421 newspace = 12 + ((namesz + 3) & -4) + ((size + 3) & -4);
10422
10423 buf = (char *) realloc (buf, *bufsiz + newspace);
10424 if (buf == NULL)
10425 return buf;
10426 dest = buf + *bufsiz;
10427 *bufsiz += newspace;
10428 xnp = (Elf_External_Note *) dest;
10429 H_PUT_32 (abfd, namesz, xnp->namesz);
10430 H_PUT_32 (abfd, size, xnp->descsz);
10431 H_PUT_32 (abfd, type, xnp->type);
10432 dest = xnp->name;
10433 if (name != NULL)
10434 {
10435 memcpy (dest, name, namesz);
10436 dest += namesz;
10437 while (namesz & 3)
10438 {
10439 *dest++ = '\0';
10440 ++namesz;
10441 }
10442 }
10443 memcpy (dest, input, size);
10444 dest += size;
10445 while (size & 3)
10446 {
10447 *dest++ = '\0';
10448 ++size;
10449 }
10450 return buf;
10451 }
10452
10453 char *
10454 elfcore_write_prpsinfo (bfd *abfd,
10455 char *buf,
10456 int *bufsiz,
10457 const char *fname,
10458 const char *psargs)
10459 {
10460 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10461
10462 if (bed->elf_backend_write_core_note != NULL)
10463 {
10464 char *ret;
10465 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10466 NT_PRPSINFO, fname, psargs);
10467 if (ret != NULL)
10468 return ret;
10469 }
10470
10471 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
10472 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
10473 if (bed->s->elfclass == ELFCLASS32)
10474 {
10475 #if defined (HAVE_PSINFO32_T)
10476 psinfo32_t data;
10477 int note_type = NT_PSINFO;
10478 #else
10479 prpsinfo32_t data;
10480 int note_type = NT_PRPSINFO;
10481 #endif
10482
10483 memset (&data, 0, sizeof (data));
10484 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10485 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10486 return elfcore_write_note (abfd, buf, bufsiz,
10487 "CORE", note_type, &data, sizeof (data));
10488 }
10489 else
10490 #endif
10491 {
10492 #if defined (HAVE_PSINFO_T)
10493 psinfo_t data;
10494 int note_type = NT_PSINFO;
10495 #else
10496 prpsinfo_t data;
10497 int note_type = NT_PRPSINFO;
10498 #endif
10499
10500 memset (&data, 0, sizeof (data));
10501 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
10502 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
10503 return elfcore_write_note (abfd, buf, bufsiz,
10504 "CORE", note_type, &data, sizeof (data));
10505 }
10506 #endif /* PSINFO_T or PRPSINFO_T */
10507
10508 free (buf);
10509 return NULL;
10510 }
10511
10512 char *
10513 elfcore_write_linux_prpsinfo32
10514 (bfd *abfd, char *buf, int *bufsiz,
10515 const struct elf_internal_linux_prpsinfo *prpsinfo)
10516 {
10517 if (get_elf_backend_data (abfd)->linux_prpsinfo32_ugid16)
10518 {
10519 struct elf_external_linux_prpsinfo32_ugid16 data;
10520
10521 swap_linux_prpsinfo32_ugid16_out (abfd, prpsinfo, &data);
10522 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10523 &data, sizeof (data));
10524 }
10525 else
10526 {
10527 struct elf_external_linux_prpsinfo32_ugid32 data;
10528
10529 swap_linux_prpsinfo32_ugid32_out (abfd, prpsinfo, &data);
10530 return elfcore_write_note (abfd, buf, bufsiz, "CORE", NT_PRPSINFO,
10531 &data, sizeof (data));
10532 }
10533 }
10534
10535 char *
10536 elfcore_write_linux_prpsinfo64
10537 (bfd *abfd, char *buf, int *bufsiz,
10538 const struct elf_internal_linux_prpsinfo *prpsinfo)
10539 {
10540 if (get_elf_backend_data (abfd)->linux_prpsinfo64_ugid16)
10541 {
10542 struct elf_external_linux_prpsinfo64_ugid16 data;
10543
10544 swap_linux_prpsinfo64_ugid16_out (abfd, prpsinfo, &data);
10545 return elfcore_write_note (abfd, buf, bufsiz,
10546 "CORE", NT_PRPSINFO, &data, sizeof (data));
10547 }
10548 else
10549 {
10550 struct elf_external_linux_prpsinfo64_ugid32 data;
10551
10552 swap_linux_prpsinfo64_ugid32_out (abfd, prpsinfo, &data);
10553 return elfcore_write_note (abfd, buf, bufsiz,
10554 "CORE", NT_PRPSINFO, &data, sizeof (data));
10555 }
10556 }
10557
10558 char *
10559 elfcore_write_prstatus (bfd *abfd,
10560 char *buf,
10561 int *bufsiz,
10562 long pid,
10563 int cursig,
10564 const void *gregs)
10565 {
10566 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10567
10568 if (bed->elf_backend_write_core_note != NULL)
10569 {
10570 char *ret;
10571 ret = (*bed->elf_backend_write_core_note) (abfd, buf, bufsiz,
10572 NT_PRSTATUS,
10573 pid, cursig, gregs);
10574 if (ret != NULL)
10575 return ret;
10576 }
10577
10578 #if defined (HAVE_PRSTATUS_T)
10579 #if defined (HAVE_PRSTATUS32_T)
10580 if (bed->s->elfclass == ELFCLASS32)
10581 {
10582 prstatus32_t prstat;
10583
10584 memset (&prstat, 0, sizeof (prstat));
10585 prstat.pr_pid = pid;
10586 prstat.pr_cursig = cursig;
10587 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10588 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10589 NT_PRSTATUS, &prstat, sizeof (prstat));
10590 }
10591 else
10592 #endif
10593 {
10594 prstatus_t prstat;
10595
10596 memset (&prstat, 0, sizeof (prstat));
10597 prstat.pr_pid = pid;
10598 prstat.pr_cursig = cursig;
10599 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
10600 return elfcore_write_note (abfd, buf, bufsiz, "CORE",
10601 NT_PRSTATUS, &prstat, sizeof (prstat));
10602 }
10603 #endif /* HAVE_PRSTATUS_T */
10604
10605 free (buf);
10606 return NULL;
10607 }
10608
10609 #if defined (HAVE_LWPSTATUS_T)
10610 char *
10611 elfcore_write_lwpstatus (bfd *abfd,
10612 char *buf,
10613 int *bufsiz,
10614 long pid,
10615 int cursig,
10616 const void *gregs)
10617 {
10618 lwpstatus_t lwpstat;
10619 const char *note_name = "CORE";
10620
10621 memset (&lwpstat, 0, sizeof (lwpstat));
10622 lwpstat.pr_lwpid = pid >> 16;
10623 lwpstat.pr_cursig = cursig;
10624 #if defined (HAVE_LWPSTATUS_T_PR_REG)
10625 memcpy (&lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
10626 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
10627 #if !defined(gregs)
10628 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
10629 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
10630 #else
10631 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
10632 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
10633 #endif
10634 #endif
10635 return elfcore_write_note (abfd, buf, bufsiz, note_name,
10636 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
10637 }
10638 #endif /* HAVE_LWPSTATUS_T */
10639
10640 #if defined (HAVE_PSTATUS_T)
10641 char *
10642 elfcore_write_pstatus (bfd *abfd,
10643 char *buf,
10644 int *bufsiz,
10645 long pid,
10646 int cursig ATTRIBUTE_UNUSED,
10647 const void *gregs ATTRIBUTE_UNUSED)
10648 {
10649 const char *note_name = "CORE";
10650 #if defined (HAVE_PSTATUS32_T)
10651 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
10652
10653 if (bed->s->elfclass == ELFCLASS32)
10654 {
10655 pstatus32_t pstat;
10656
10657 memset (&pstat, 0, sizeof (pstat));
10658 pstat.pr_pid = pid & 0xffff;
10659 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10660 NT_PSTATUS, &pstat, sizeof (pstat));
10661 return buf;
10662 }
10663 else
10664 #endif
10665 {
10666 pstatus_t pstat;
10667
10668 memset (&pstat, 0, sizeof (pstat));
10669 pstat.pr_pid = pid & 0xffff;
10670 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
10671 NT_PSTATUS, &pstat, sizeof (pstat));
10672 return buf;
10673 }
10674 }
10675 #endif /* HAVE_PSTATUS_T */
10676
10677 char *
10678 elfcore_write_prfpreg (bfd *abfd,
10679 char *buf,
10680 int *bufsiz,
10681 const void *fpregs,
10682 int size)
10683 {
10684 const char *note_name = "CORE";
10685 return elfcore_write_note (abfd, buf, bufsiz,
10686 note_name, NT_FPREGSET, fpregs, size);
10687 }
10688
10689 char *
10690 elfcore_write_prxfpreg (bfd *abfd,
10691 char *buf,
10692 int *bufsiz,
10693 const void *xfpregs,
10694 int size)
10695 {
10696 char *note_name = "LINUX";
10697 return elfcore_write_note (abfd, buf, bufsiz,
10698 note_name, NT_PRXFPREG, xfpregs, size);
10699 }
10700
10701 char *
10702 elfcore_write_xstatereg (bfd *abfd, char *buf, int *bufsiz,
10703 const void *xfpregs, int size)
10704 {
10705 char *note_name;
10706 if (get_elf_backend_data (abfd)->elf_osabi == ELFOSABI_FREEBSD)
10707 note_name = "FreeBSD";
10708 else
10709 note_name = "LINUX";
10710 return elfcore_write_note (abfd, buf, bufsiz,
10711 note_name, NT_X86_XSTATE, xfpregs, size);
10712 }
10713
10714 char *
10715 elfcore_write_ppc_vmx (bfd *abfd,
10716 char *buf,
10717 int *bufsiz,
10718 const void *ppc_vmx,
10719 int size)
10720 {
10721 char *note_name = "LINUX";
10722 return elfcore_write_note (abfd, buf, bufsiz,
10723 note_name, NT_PPC_VMX, ppc_vmx, size);
10724 }
10725
10726 char *
10727 elfcore_write_ppc_vsx (bfd *abfd,
10728 char *buf,
10729 int *bufsiz,
10730 const void *ppc_vsx,
10731 int size)
10732 {
10733 char *note_name = "LINUX";
10734 return elfcore_write_note (abfd, buf, bufsiz,
10735 note_name, NT_PPC_VSX, ppc_vsx, size);
10736 }
10737
10738 static char *
10739 elfcore_write_s390_high_gprs (bfd *abfd,
10740 char *buf,
10741 int *bufsiz,
10742 const void *s390_high_gprs,
10743 int size)
10744 {
10745 char *note_name = "LINUX";
10746 return elfcore_write_note (abfd, buf, bufsiz,
10747 note_name, NT_S390_HIGH_GPRS,
10748 s390_high_gprs, size);
10749 }
10750
10751 char *
10752 elfcore_write_s390_timer (bfd *abfd,
10753 char *buf,
10754 int *bufsiz,
10755 const void *s390_timer,
10756 int size)
10757 {
10758 char *note_name = "LINUX";
10759 return elfcore_write_note (abfd, buf, bufsiz,
10760 note_name, NT_S390_TIMER, s390_timer, size);
10761 }
10762
10763 char *
10764 elfcore_write_s390_todcmp (bfd *abfd,
10765 char *buf,
10766 int *bufsiz,
10767 const void *s390_todcmp,
10768 int size)
10769 {
10770 char *note_name = "LINUX";
10771 return elfcore_write_note (abfd, buf, bufsiz,
10772 note_name, NT_S390_TODCMP, s390_todcmp, size);
10773 }
10774
10775 char *
10776 elfcore_write_s390_todpreg (bfd *abfd,
10777 char *buf,
10778 int *bufsiz,
10779 const void *s390_todpreg,
10780 int size)
10781 {
10782 char *note_name = "LINUX";
10783 return elfcore_write_note (abfd, buf, bufsiz,
10784 note_name, NT_S390_TODPREG, s390_todpreg, size);
10785 }
10786
10787 char *
10788 elfcore_write_s390_ctrs (bfd *abfd,
10789 char *buf,
10790 int *bufsiz,
10791 const void *s390_ctrs,
10792 int size)
10793 {
10794 char *note_name = "LINUX";
10795 return elfcore_write_note (abfd, buf, bufsiz,
10796 note_name, NT_S390_CTRS, s390_ctrs, size);
10797 }
10798
10799 char *
10800 elfcore_write_s390_prefix (bfd *abfd,
10801 char *buf,
10802 int *bufsiz,
10803 const void *s390_prefix,
10804 int size)
10805 {
10806 char *note_name = "LINUX";
10807 return elfcore_write_note (abfd, buf, bufsiz,
10808 note_name, NT_S390_PREFIX, s390_prefix, size);
10809 }
10810
10811 char *
10812 elfcore_write_s390_last_break (bfd *abfd,
10813 char *buf,
10814 int *bufsiz,
10815 const void *s390_last_break,
10816 int size)
10817 {
10818 char *note_name = "LINUX";
10819 return elfcore_write_note (abfd, buf, bufsiz,
10820 note_name, NT_S390_LAST_BREAK,
10821 s390_last_break, size);
10822 }
10823
10824 char *
10825 elfcore_write_s390_system_call (bfd *abfd,
10826 char *buf,
10827 int *bufsiz,
10828 const void *s390_system_call,
10829 int size)
10830 {
10831 char *note_name = "LINUX";
10832 return elfcore_write_note (abfd, buf, bufsiz,
10833 note_name, NT_S390_SYSTEM_CALL,
10834 s390_system_call, size);
10835 }
10836
10837 char *
10838 elfcore_write_s390_tdb (bfd *abfd,
10839 char *buf,
10840 int *bufsiz,
10841 const void *s390_tdb,
10842 int size)
10843 {
10844 char *note_name = "LINUX";
10845 return elfcore_write_note (abfd, buf, bufsiz,
10846 note_name, NT_S390_TDB, s390_tdb, size);
10847 }
10848
10849 char *
10850 elfcore_write_s390_vxrs_low (bfd *abfd,
10851 char *buf,
10852 int *bufsiz,
10853 const void *s390_vxrs_low,
10854 int size)
10855 {
10856 char *note_name = "LINUX";
10857 return elfcore_write_note (abfd, buf, bufsiz,
10858 note_name, NT_S390_VXRS_LOW, s390_vxrs_low, size);
10859 }
10860
10861 char *
10862 elfcore_write_s390_vxrs_high (bfd *abfd,
10863 char *buf,
10864 int *bufsiz,
10865 const void *s390_vxrs_high,
10866 int size)
10867 {
10868 char *note_name = "LINUX";
10869 return elfcore_write_note (abfd, buf, bufsiz,
10870 note_name, NT_S390_VXRS_HIGH,
10871 s390_vxrs_high, size);
10872 }
10873
10874 char *
10875 elfcore_write_s390_gs_cb (bfd *abfd,
10876 char *buf,
10877 int *bufsiz,
10878 const void *s390_gs_cb,
10879 int size)
10880 {
10881 char *note_name = "LINUX";
10882 return elfcore_write_note (abfd, buf, bufsiz,
10883 note_name, NT_S390_GS_CB,
10884 s390_gs_cb, size);
10885 }
10886
10887 char *
10888 elfcore_write_s390_gs_bc (bfd *abfd,
10889 char *buf,
10890 int *bufsiz,
10891 const void *s390_gs_bc,
10892 int size)
10893 {
10894 char *note_name = "LINUX";
10895 return elfcore_write_note (abfd, buf, bufsiz,
10896 note_name, NT_S390_GS_BC,
10897 s390_gs_bc, size);
10898 }
10899
10900 char *
10901 elfcore_write_arm_vfp (bfd *abfd,
10902 char *buf,
10903 int *bufsiz,
10904 const void *arm_vfp,
10905 int size)
10906 {
10907 char *note_name = "LINUX";
10908 return elfcore_write_note (abfd, buf, bufsiz,
10909 note_name, NT_ARM_VFP, arm_vfp, size);
10910 }
10911
10912 char *
10913 elfcore_write_aarch_tls (bfd *abfd,
10914 char *buf,
10915 int *bufsiz,
10916 const void *aarch_tls,
10917 int size)
10918 {
10919 char *note_name = "LINUX";
10920 return elfcore_write_note (abfd, buf, bufsiz,
10921 note_name, NT_ARM_TLS, aarch_tls, size);
10922 }
10923
10924 char *
10925 elfcore_write_aarch_hw_break (bfd *abfd,
10926 char *buf,
10927 int *bufsiz,
10928 const void *aarch_hw_break,
10929 int size)
10930 {
10931 char *note_name = "LINUX";
10932 return elfcore_write_note (abfd, buf, bufsiz,
10933 note_name, NT_ARM_HW_BREAK, aarch_hw_break, size);
10934 }
10935
10936 char *
10937 elfcore_write_aarch_hw_watch (bfd *abfd,
10938 char *buf,
10939 int *bufsiz,
10940 const void *aarch_hw_watch,
10941 int size)
10942 {
10943 char *note_name = "LINUX";
10944 return elfcore_write_note (abfd, buf, bufsiz,
10945 note_name, NT_ARM_HW_WATCH, aarch_hw_watch, size);
10946 }
10947
10948 char *
10949 elfcore_write_register_note (bfd *abfd,
10950 char *buf,
10951 int *bufsiz,
10952 const char *section,
10953 const void *data,
10954 int size)
10955 {
10956 if (strcmp (section, ".reg2") == 0)
10957 return elfcore_write_prfpreg (abfd, buf, bufsiz, data, size);
10958 if (strcmp (section, ".reg-xfp") == 0)
10959 return elfcore_write_prxfpreg (abfd, buf, bufsiz, data, size);
10960 if (strcmp (section, ".reg-xstate") == 0)
10961 return elfcore_write_xstatereg (abfd, buf, bufsiz, data, size);
10962 if (strcmp (section, ".reg-ppc-vmx") == 0)
10963 return elfcore_write_ppc_vmx (abfd, buf, bufsiz, data, size);
10964 if (strcmp (section, ".reg-ppc-vsx") == 0)
10965 return elfcore_write_ppc_vsx (abfd, buf, bufsiz, data, size);
10966 if (strcmp (section, ".reg-s390-high-gprs") == 0)
10967 return elfcore_write_s390_high_gprs (abfd, buf, bufsiz, data, size);
10968 if (strcmp (section, ".reg-s390-timer") == 0)
10969 return elfcore_write_s390_timer (abfd, buf, bufsiz, data, size);
10970 if (strcmp (section, ".reg-s390-todcmp") == 0)
10971 return elfcore_write_s390_todcmp (abfd, buf, bufsiz, data, size);
10972 if (strcmp (section, ".reg-s390-todpreg") == 0)
10973 return elfcore_write_s390_todpreg (abfd, buf, bufsiz, data, size);
10974 if (strcmp (section, ".reg-s390-ctrs") == 0)
10975 return elfcore_write_s390_ctrs (abfd, buf, bufsiz, data, size);
10976 if (strcmp (section, ".reg-s390-prefix") == 0)
10977 return elfcore_write_s390_prefix (abfd, buf, bufsiz, data, size);
10978 if (strcmp (section, ".reg-s390-last-break") == 0)
10979 return elfcore_write_s390_last_break (abfd, buf, bufsiz, data, size);
10980 if (strcmp (section, ".reg-s390-system-call") == 0)
10981 return elfcore_write_s390_system_call (abfd, buf, bufsiz, data, size);
10982 if (strcmp (section, ".reg-s390-tdb") == 0)
10983 return elfcore_write_s390_tdb (abfd, buf, bufsiz, data, size);
10984 if (strcmp (section, ".reg-s390-vxrs-low") == 0)
10985 return elfcore_write_s390_vxrs_low (abfd, buf, bufsiz, data, size);
10986 if (strcmp (section, ".reg-s390-vxrs-high") == 0)
10987 return elfcore_write_s390_vxrs_high (abfd, buf, bufsiz, data, size);
10988 if (strcmp (section, ".reg-s390-gs-cb") == 0)
10989 return elfcore_write_s390_gs_cb (abfd, buf, bufsiz, data, size);
10990 if (strcmp (section, ".reg-s390-gs-bc") == 0)
10991 return elfcore_write_s390_gs_bc (abfd, buf, bufsiz, data, size);
10992 if (strcmp (section, ".reg-arm-vfp") == 0)
10993 return elfcore_write_arm_vfp (abfd, buf, bufsiz, data, size);
10994 if (strcmp (section, ".reg-aarch-tls") == 0)
10995 return elfcore_write_aarch_tls (abfd, buf, bufsiz, data, size);
10996 if (strcmp (section, ".reg-aarch-hw-break") == 0)
10997 return elfcore_write_aarch_hw_break (abfd, buf, bufsiz, data, size);
10998 if (strcmp (section, ".reg-aarch-hw-watch") == 0)
10999 return elfcore_write_aarch_hw_watch (abfd, buf, bufsiz, data, size);
11000 return NULL;
11001 }
11002
11003 static bfd_boolean
11004 elf_parse_notes (bfd *abfd, char *buf, size_t size, file_ptr offset,
11005 size_t align)
11006 {
11007 char *p;
11008
11009 /* NB: CORE PT_NOTE segments may have p_align values of 0 or 1.
11010 gABI specifies that PT_NOTE alignment should be aligned to 4
11011 bytes for 32-bit objects and to 8 bytes for 64-bit objects. If
11012 align is less than 4, we use 4 byte alignment. */
11013 if (align < 4)
11014 align = 4;
11015 if (align != 4 && align != 8)
11016 return FALSE;
11017
11018 p = buf;
11019 while (p < buf + size)
11020 {
11021 Elf_External_Note *xnp = (Elf_External_Note *) p;
11022 Elf_Internal_Note in;
11023
11024 if (offsetof (Elf_External_Note, name) > buf - p + size)
11025 return FALSE;
11026
11027 in.type = H_GET_32 (abfd, xnp->type);
11028
11029 in.namesz = H_GET_32 (abfd, xnp->namesz);
11030 in.namedata = xnp->name;
11031 if (in.namesz > buf - in.namedata + size)
11032 return FALSE;
11033
11034 in.descsz = H_GET_32 (abfd, xnp->descsz);
11035 in.descdata = p + ELF_NOTE_DESC_OFFSET (in.namesz, align);
11036 in.descpos = offset + (in.descdata - buf);
11037 if (in.descsz != 0
11038 && (in.descdata >= buf + size
11039 || in.descsz > buf - in.descdata + size))
11040 return FALSE;
11041
11042 switch (bfd_get_format (abfd))
11043 {
11044 default:
11045 return TRUE;
11046
11047 case bfd_core:
11048 {
11049 #define GROKER_ELEMENT(S,F) {S, sizeof (S) - 1, F}
11050 struct
11051 {
11052 const char * string;
11053 size_t len;
11054 bfd_boolean (* func)(bfd *, Elf_Internal_Note *);
11055 }
11056 grokers[] =
11057 {
11058 GROKER_ELEMENT ("", elfcore_grok_note),
11059 GROKER_ELEMENT ("FreeBSD", elfcore_grok_freebsd_note),
11060 GROKER_ELEMENT ("NetBSD-CORE", elfcore_grok_netbsd_note),
11061 GROKER_ELEMENT ( "OpenBSD", elfcore_grok_openbsd_note),
11062 GROKER_ELEMENT ("QNX", elfcore_grok_nto_note),
11063 GROKER_ELEMENT ("SPU/", elfcore_grok_spu_note)
11064 };
11065 #undef GROKER_ELEMENT
11066 int i;
11067
11068 for (i = ARRAY_SIZE (grokers); i--;)
11069 {
11070 if (in.namesz >= grokers[i].len
11071 && strncmp (in.namedata, grokers[i].string,
11072 grokers[i].len) == 0)
11073 {
11074 if (! grokers[i].func (abfd, & in))
11075 return FALSE;
11076 break;
11077 }
11078 }
11079 break;
11080 }
11081
11082 case bfd_object:
11083 if (in.namesz == sizeof "GNU" && strcmp (in.namedata, "GNU") == 0)
11084 {
11085 if (! elfobj_grok_gnu_note (abfd, &in))
11086 return FALSE;
11087 }
11088 else if (in.namesz == sizeof "stapsdt"
11089 && strcmp (in.namedata, "stapsdt") == 0)
11090 {
11091 if (! elfobj_grok_stapsdt_note (abfd, &in))
11092 return FALSE;
11093 }
11094 break;
11095 }
11096
11097 p += ELF_NOTE_NEXT_OFFSET (in.namesz, in.descsz, align);
11098 }
11099
11100 return TRUE;
11101 }
11102
11103 static bfd_boolean
11104 elf_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size,
11105 size_t align)
11106 {
11107 char *buf;
11108
11109 if (size == 0 || (size + 1) == 0)
11110 return TRUE;
11111
11112 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
11113 return FALSE;
11114
11115 buf = (char *) bfd_malloc (size + 1);
11116 if (buf == NULL)
11117 return FALSE;
11118
11119 /* PR 17512: file: ec08f814
11120 0-termintate the buffer so that string searches will not overflow. */
11121 buf[size] = 0;
11122
11123 if (bfd_bread (buf, size, abfd) != size
11124 || !elf_parse_notes (abfd, buf, size, offset, align))
11125 {
11126 free (buf);
11127 return FALSE;
11128 }
11129
11130 free (buf);
11131 return TRUE;
11132 }
11133 \f
11134 /* Providing external access to the ELF program header table. */
11135
11136 /* Return an upper bound on the number of bytes required to store a
11137 copy of ABFD's program header table entries. Return -1 if an error
11138 occurs; bfd_get_error will return an appropriate code. */
11139
11140 long
11141 bfd_get_elf_phdr_upper_bound (bfd *abfd)
11142 {
11143 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11144 {
11145 bfd_set_error (bfd_error_wrong_format);
11146 return -1;
11147 }
11148
11149 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
11150 }
11151
11152 /* Copy ABFD's program header table entries to *PHDRS. The entries
11153 will be stored as an array of Elf_Internal_Phdr structures, as
11154 defined in include/elf/internal.h. To find out how large the
11155 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
11156
11157 Return the number of program header table entries read, or -1 if an
11158 error occurs; bfd_get_error will return an appropriate code. */
11159
11160 int
11161 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
11162 {
11163 int num_phdrs;
11164
11165 if (abfd->xvec->flavour != bfd_target_elf_flavour)
11166 {
11167 bfd_set_error (bfd_error_wrong_format);
11168 return -1;
11169 }
11170
11171 num_phdrs = elf_elfheader (abfd)->e_phnum;
11172 memcpy (phdrs, elf_tdata (abfd)->phdr,
11173 num_phdrs * sizeof (Elf_Internal_Phdr));
11174
11175 return num_phdrs;
11176 }
11177
11178 enum elf_reloc_type_class
11179 _bfd_elf_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
11180 const asection *rel_sec ATTRIBUTE_UNUSED,
11181 const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
11182 {
11183 return reloc_class_normal;
11184 }
11185
11186 /* For RELA architectures, return the relocation value for a
11187 relocation against a local symbol. */
11188
11189 bfd_vma
11190 _bfd_elf_rela_local_sym (bfd *abfd,
11191 Elf_Internal_Sym *sym,
11192 asection **psec,
11193 Elf_Internal_Rela *rel)
11194 {
11195 asection *sec = *psec;
11196 bfd_vma relocation;
11197
11198 relocation = (sec->output_section->vma
11199 + sec->output_offset
11200 + sym->st_value);
11201 if ((sec->flags & SEC_MERGE)
11202 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
11203 && sec->sec_info_type == SEC_INFO_TYPE_MERGE)
11204 {
11205 rel->r_addend =
11206 _bfd_merged_section_offset (abfd, psec,
11207 elf_section_data (sec)->sec_info,
11208 sym->st_value + rel->r_addend);
11209 if (sec != *psec)
11210 {
11211 /* If we have changed the section, and our original section is
11212 marked with SEC_EXCLUDE, it means that the original
11213 SEC_MERGE section has been completely subsumed in some
11214 other SEC_MERGE section. In this case, we need to leave
11215 some info around for --emit-relocs. */
11216 if ((sec->flags & SEC_EXCLUDE) != 0)
11217 sec->kept_section = *psec;
11218 sec = *psec;
11219 }
11220 rel->r_addend -= relocation;
11221 rel->r_addend += sec->output_section->vma + sec->output_offset;
11222 }
11223 return relocation;
11224 }
11225
11226 bfd_vma
11227 _bfd_elf_rel_local_sym (bfd *abfd,
11228 Elf_Internal_Sym *sym,
11229 asection **psec,
11230 bfd_vma addend)
11231 {
11232 asection *sec = *psec;
11233
11234 if (sec->sec_info_type != SEC_INFO_TYPE_MERGE)
11235 return sym->st_value + addend;
11236
11237 return _bfd_merged_section_offset (abfd, psec,
11238 elf_section_data (sec)->sec_info,
11239 sym->st_value + addend);
11240 }
11241
11242 /* Adjust an address within a section. Given OFFSET within SEC, return
11243 the new offset within the section, based upon changes made to the
11244 section. Returns -1 if the offset is now invalid.
11245 The offset (in abnd out) is in target sized bytes, however big a
11246 byte may be. */
11247
11248 bfd_vma
11249 _bfd_elf_section_offset (bfd *abfd,
11250 struct bfd_link_info *info,
11251 asection *sec,
11252 bfd_vma offset)
11253 {
11254 switch (sec->sec_info_type)
11255 {
11256 case SEC_INFO_TYPE_STABS:
11257 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
11258 offset);
11259 case SEC_INFO_TYPE_EH_FRAME:
11260 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
11261
11262 default:
11263 if ((sec->flags & SEC_ELF_REVERSE_COPY) != 0)
11264 {
11265 /* Reverse the offset. */
11266 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11267 bfd_size_type address_size = bed->s->arch_size / 8;
11268
11269 /* address_size and sec->size are in octets. Convert
11270 to bytes before subtracting the original offset. */
11271 offset = (sec->size - address_size) / bfd_octets_per_byte (abfd) - offset;
11272 }
11273 return offset;
11274 }
11275 }
11276 \f
11277 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
11278 reconstruct an ELF file by reading the segments out of remote memory
11279 based on the ELF file header at EHDR_VMA and the ELF program headers it
11280 points to. If not null, *LOADBASEP is filled in with the difference
11281 between the VMAs from which the segments were read, and the VMAs the
11282 file headers (and hence BFD's idea of each section's VMA) put them at.
11283
11284 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
11285 remote memory at target address VMA into the local buffer at MYADDR; it
11286 should return zero on success or an `errno' code on failure. TEMPL must
11287 be a BFD for an ELF target with the word size and byte order found in
11288 the remote memory. */
11289
11290 bfd *
11291 bfd_elf_bfd_from_remote_memory
11292 (bfd *templ,
11293 bfd_vma ehdr_vma,
11294 bfd_size_type size,
11295 bfd_vma *loadbasep,
11296 int (*target_read_memory) (bfd_vma, bfd_byte *, bfd_size_type))
11297 {
11298 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
11299 (templ, ehdr_vma, size, loadbasep, target_read_memory);
11300 }
11301 \f
11302 long
11303 _bfd_elf_get_synthetic_symtab (bfd *abfd,
11304 long symcount ATTRIBUTE_UNUSED,
11305 asymbol **syms ATTRIBUTE_UNUSED,
11306 long dynsymcount,
11307 asymbol **dynsyms,
11308 asymbol **ret)
11309 {
11310 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
11311 asection *relplt;
11312 asymbol *s;
11313 const char *relplt_name;
11314 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
11315 arelent *p;
11316 long count, i, n;
11317 size_t size;
11318 Elf_Internal_Shdr *hdr;
11319 char *names;
11320 asection *plt;
11321
11322 *ret = NULL;
11323
11324 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
11325 return 0;
11326
11327 if (dynsymcount <= 0)
11328 return 0;
11329
11330 if (!bed->plt_sym_val)
11331 return 0;
11332
11333 relplt_name = bed->relplt_name;
11334 if (relplt_name == NULL)
11335 relplt_name = bed->rela_plts_and_copies_p ? ".rela.plt" : ".rel.plt";
11336 relplt = bfd_get_section_by_name (abfd, relplt_name);
11337 if (relplt == NULL)
11338 return 0;
11339
11340 hdr = &elf_section_data (relplt)->this_hdr;
11341 if (hdr->sh_link != elf_dynsymtab (abfd)
11342 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
11343 return 0;
11344
11345 plt = bfd_get_section_by_name (abfd, ".plt");
11346 if (plt == NULL)
11347 return 0;
11348
11349 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
11350 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
11351 return -1;
11352
11353 count = relplt->size / hdr->sh_entsize;
11354 size = count * sizeof (asymbol);
11355 p = relplt->relocation;
11356 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11357 {
11358 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
11359 if (p->addend != 0)
11360 {
11361 #ifdef BFD64
11362 size += sizeof ("+0x") - 1 + 8 + 8 * (bed->s->elfclass == ELFCLASS64);
11363 #else
11364 size += sizeof ("+0x") - 1 + 8;
11365 #endif
11366 }
11367 }
11368
11369 s = *ret = (asymbol *) bfd_malloc (size);
11370 if (s == NULL)
11371 return -1;
11372
11373 names = (char *) (s + count);
11374 p = relplt->relocation;
11375 n = 0;
11376 for (i = 0; i < count; i++, p += bed->s->int_rels_per_ext_rel)
11377 {
11378 size_t len;
11379 bfd_vma addr;
11380
11381 addr = bed->plt_sym_val (i, plt, p);
11382 if (addr == (bfd_vma) -1)
11383 continue;
11384
11385 *s = **p->sym_ptr_ptr;
11386 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
11387 we are defining a symbol, ensure one of them is set. */
11388 if ((s->flags & BSF_LOCAL) == 0)
11389 s->flags |= BSF_GLOBAL;
11390 s->flags |= BSF_SYNTHETIC;
11391 s->section = plt;
11392 s->value = addr - plt->vma;
11393 s->name = names;
11394 s->udata.p = NULL;
11395 len = strlen ((*p->sym_ptr_ptr)->name);
11396 memcpy (names, (*p->sym_ptr_ptr)->name, len);
11397 names += len;
11398 if (p->addend != 0)
11399 {
11400 char buf[30], *a;
11401
11402 memcpy (names, "+0x", sizeof ("+0x") - 1);
11403 names += sizeof ("+0x") - 1;
11404 bfd_sprintf_vma (abfd, buf, p->addend);
11405 for (a = buf; *a == '0'; ++a)
11406 ;
11407 len = strlen (a);
11408 memcpy (names, a, len);
11409 names += len;
11410 }
11411 memcpy (names, "@plt", sizeof ("@plt"));
11412 names += sizeof ("@plt");
11413 ++s, ++n;
11414 }
11415
11416 return n;
11417 }
11418
11419 /* It is only used by x86-64 so far.
11420 ??? This repeats *COM* id of zero. sec->id is supposed to be unique,
11421 but current usage would allow all of _bfd_std_section to be zero. */
11422 static const asymbol lcomm_sym
11423 = GLOBAL_SYM_INIT ("LARGE_COMMON", &_bfd_elf_large_com_section);
11424 asection _bfd_elf_large_com_section
11425 = BFD_FAKE_SECTION (_bfd_elf_large_com_section, &lcomm_sym,
11426 "LARGE_COMMON", 0, SEC_IS_COMMON);
11427
11428 void
11429 _bfd_elf_post_process_headers (bfd * abfd,
11430 struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11431 {
11432 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11433
11434 i_ehdrp = elf_elfheader (abfd);
11435
11436 i_ehdrp->e_ident[EI_OSABI] = get_elf_backend_data (abfd)->elf_osabi;
11437
11438 /* To make things simpler for the loader on Linux systems we set the
11439 osabi field to ELFOSABI_GNU if the binary contains symbols of
11440 the STT_GNU_IFUNC type or STB_GNU_UNIQUE binding. */
11441 if (i_ehdrp->e_ident[EI_OSABI] == ELFOSABI_NONE
11442 && elf_tdata (abfd)->has_gnu_symbols)
11443 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_GNU;
11444 }
11445
11446
11447 /* Return TRUE for ELF symbol types that represent functions.
11448 This is the default version of this function, which is sufficient for
11449 most targets. It returns true if TYPE is STT_FUNC or STT_GNU_IFUNC. */
11450
11451 bfd_boolean
11452 _bfd_elf_is_function_type (unsigned int type)
11453 {
11454 return (type == STT_FUNC
11455 || type == STT_GNU_IFUNC);
11456 }
11457
11458 /* If the ELF symbol SYM might be a function in SEC, return the
11459 function size and set *CODE_OFF to the function's entry point,
11460 otherwise return zero. */
11461
11462 bfd_size_type
11463 _bfd_elf_maybe_function_sym (const asymbol *sym, asection *sec,
11464 bfd_vma *code_off)
11465 {
11466 bfd_size_type size;
11467
11468 if ((sym->flags & (BSF_SECTION_SYM | BSF_FILE | BSF_OBJECT
11469 | BSF_THREAD_LOCAL | BSF_RELC | BSF_SRELC)) != 0
11470 || sym->section != sec)
11471 return 0;
11472
11473 *code_off = sym->value;
11474 size = 0;
11475 if (!(sym->flags & BSF_SYNTHETIC))
11476 size = ((elf_symbol_type *) sym)->internal_elf_sym.st_size;
11477 if (size == 0)
11478 size = 1;
11479 return size;
11480 }
This page took 0.319026 seconds and 5 git commands to generate.