bfd/
[deliverable/binutils-gdb.git] / bfd / elf.c
1 /* ELF executable support for BFD.
2
3 Copyright 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004 Free Software Foundation, Inc.
5
6 This file is part of BFD, the Binary File Descriptor library.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 /* SECTION
23
24 ELF backends
25
26 BFD support for ELF formats is being worked on.
27 Currently, the best supported back ends are for sparc and i386
28 (running svr4 or Solaris 2).
29
30 Documentation of the internals of the support code still needs
31 to be written. The code is changing quickly enough that we
32 haven't bothered yet. */
33
34 /* For sparc64-cross-sparc32. */
35 #define _SYSCALL32
36 #include "bfd.h"
37 #include "sysdep.h"
38 #include "bfdlink.h"
39 #include "libbfd.h"
40 #define ARCH_SIZE 0
41 #include "elf-bfd.h"
42 #include "libiberty.h"
43
44 static int elf_sort_sections (const void *, const void *);
45 static bfd_boolean assign_file_positions_except_relocs (bfd *, struct bfd_link_info *);
46 static bfd_boolean prep_headers (bfd *);
47 static bfd_boolean swap_out_syms (bfd *, struct bfd_strtab_hash **, int) ;
48 static bfd_boolean elfcore_read_notes (bfd *, file_ptr, bfd_size_type) ;
49
50 /* Swap version information in and out. The version information is
51 currently size independent. If that ever changes, this code will
52 need to move into elfcode.h. */
53
54 /* Swap in a Verdef structure. */
55
56 void
57 _bfd_elf_swap_verdef_in (bfd *abfd,
58 const Elf_External_Verdef *src,
59 Elf_Internal_Verdef *dst)
60 {
61 dst->vd_version = H_GET_16 (abfd, src->vd_version);
62 dst->vd_flags = H_GET_16 (abfd, src->vd_flags);
63 dst->vd_ndx = H_GET_16 (abfd, src->vd_ndx);
64 dst->vd_cnt = H_GET_16 (abfd, src->vd_cnt);
65 dst->vd_hash = H_GET_32 (abfd, src->vd_hash);
66 dst->vd_aux = H_GET_32 (abfd, src->vd_aux);
67 dst->vd_next = H_GET_32 (abfd, src->vd_next);
68 }
69
70 /* Swap out a Verdef structure. */
71
72 void
73 _bfd_elf_swap_verdef_out (bfd *abfd,
74 const Elf_Internal_Verdef *src,
75 Elf_External_Verdef *dst)
76 {
77 H_PUT_16 (abfd, src->vd_version, dst->vd_version);
78 H_PUT_16 (abfd, src->vd_flags, dst->vd_flags);
79 H_PUT_16 (abfd, src->vd_ndx, dst->vd_ndx);
80 H_PUT_16 (abfd, src->vd_cnt, dst->vd_cnt);
81 H_PUT_32 (abfd, src->vd_hash, dst->vd_hash);
82 H_PUT_32 (abfd, src->vd_aux, dst->vd_aux);
83 H_PUT_32 (abfd, src->vd_next, dst->vd_next);
84 }
85
86 /* Swap in a Verdaux structure. */
87
88 void
89 _bfd_elf_swap_verdaux_in (bfd *abfd,
90 const Elf_External_Verdaux *src,
91 Elf_Internal_Verdaux *dst)
92 {
93 dst->vda_name = H_GET_32 (abfd, src->vda_name);
94 dst->vda_next = H_GET_32 (abfd, src->vda_next);
95 }
96
97 /* Swap out a Verdaux structure. */
98
99 void
100 _bfd_elf_swap_verdaux_out (bfd *abfd,
101 const Elf_Internal_Verdaux *src,
102 Elf_External_Verdaux *dst)
103 {
104 H_PUT_32 (abfd, src->vda_name, dst->vda_name);
105 H_PUT_32 (abfd, src->vda_next, dst->vda_next);
106 }
107
108 /* Swap in a Verneed structure. */
109
110 void
111 _bfd_elf_swap_verneed_in (bfd *abfd,
112 const Elf_External_Verneed *src,
113 Elf_Internal_Verneed *dst)
114 {
115 dst->vn_version = H_GET_16 (abfd, src->vn_version);
116 dst->vn_cnt = H_GET_16 (abfd, src->vn_cnt);
117 dst->vn_file = H_GET_32 (abfd, src->vn_file);
118 dst->vn_aux = H_GET_32 (abfd, src->vn_aux);
119 dst->vn_next = H_GET_32 (abfd, src->vn_next);
120 }
121
122 /* Swap out a Verneed structure. */
123
124 void
125 _bfd_elf_swap_verneed_out (bfd *abfd,
126 const Elf_Internal_Verneed *src,
127 Elf_External_Verneed *dst)
128 {
129 H_PUT_16 (abfd, src->vn_version, dst->vn_version);
130 H_PUT_16 (abfd, src->vn_cnt, dst->vn_cnt);
131 H_PUT_32 (abfd, src->vn_file, dst->vn_file);
132 H_PUT_32 (abfd, src->vn_aux, dst->vn_aux);
133 H_PUT_32 (abfd, src->vn_next, dst->vn_next);
134 }
135
136 /* Swap in a Vernaux structure. */
137
138 void
139 _bfd_elf_swap_vernaux_in (bfd *abfd,
140 const Elf_External_Vernaux *src,
141 Elf_Internal_Vernaux *dst)
142 {
143 dst->vna_hash = H_GET_32 (abfd, src->vna_hash);
144 dst->vna_flags = H_GET_16 (abfd, src->vna_flags);
145 dst->vna_other = H_GET_16 (abfd, src->vna_other);
146 dst->vna_name = H_GET_32 (abfd, src->vna_name);
147 dst->vna_next = H_GET_32 (abfd, src->vna_next);
148 }
149
150 /* Swap out a Vernaux structure. */
151
152 void
153 _bfd_elf_swap_vernaux_out (bfd *abfd,
154 const Elf_Internal_Vernaux *src,
155 Elf_External_Vernaux *dst)
156 {
157 H_PUT_32 (abfd, src->vna_hash, dst->vna_hash);
158 H_PUT_16 (abfd, src->vna_flags, dst->vna_flags);
159 H_PUT_16 (abfd, src->vna_other, dst->vna_other);
160 H_PUT_32 (abfd, src->vna_name, dst->vna_name);
161 H_PUT_32 (abfd, src->vna_next, dst->vna_next);
162 }
163
164 /* Swap in a Versym structure. */
165
166 void
167 _bfd_elf_swap_versym_in (bfd *abfd,
168 const Elf_External_Versym *src,
169 Elf_Internal_Versym *dst)
170 {
171 dst->vs_vers = H_GET_16 (abfd, src->vs_vers);
172 }
173
174 /* Swap out a Versym structure. */
175
176 void
177 _bfd_elf_swap_versym_out (bfd *abfd,
178 const Elf_Internal_Versym *src,
179 Elf_External_Versym *dst)
180 {
181 H_PUT_16 (abfd, src->vs_vers, dst->vs_vers);
182 }
183
184 /* Standard ELF hash function. Do not change this function; you will
185 cause invalid hash tables to be generated. */
186
187 unsigned long
188 bfd_elf_hash (const char *namearg)
189 {
190 const unsigned char *name = (const unsigned char *) namearg;
191 unsigned long h = 0;
192 unsigned long g;
193 int ch;
194
195 while ((ch = *name++) != '\0')
196 {
197 h = (h << 4) + ch;
198 if ((g = (h & 0xf0000000)) != 0)
199 {
200 h ^= g >> 24;
201 /* The ELF ABI says `h &= ~g', but this is equivalent in
202 this case and on some machines one insn instead of two. */
203 h ^= g;
204 }
205 }
206 return h & 0xffffffff;
207 }
208
209 /* Read a specified number of bytes at a specified offset in an ELF
210 file, into a newly allocated buffer, and return a pointer to the
211 buffer. */
212
213 static char *
214 elf_read (bfd *abfd, file_ptr offset, bfd_size_type size)
215 {
216 char *buf;
217
218 if ((buf = bfd_alloc (abfd, size)) == NULL)
219 return NULL;
220 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
221 return NULL;
222 if (bfd_bread (buf, size, abfd) != size)
223 {
224 if (bfd_get_error () != bfd_error_system_call)
225 bfd_set_error (bfd_error_file_truncated);
226 return NULL;
227 }
228 return buf;
229 }
230
231 bfd_boolean
232 bfd_elf_mkobject (bfd *abfd)
233 {
234 /* This just does initialization. */
235 /* coff_mkobject zalloc's space for tdata.coff_obj_data ... */
236 elf_tdata (abfd) = bfd_zalloc (abfd, sizeof (struct elf_obj_tdata));
237 if (elf_tdata (abfd) == 0)
238 return FALSE;
239 /* Since everything is done at close time, do we need any
240 initialization? */
241
242 return TRUE;
243 }
244
245 bfd_boolean
246 bfd_elf_mkcorefile (bfd *abfd)
247 {
248 /* I think this can be done just like an object file. */
249 return bfd_elf_mkobject (abfd);
250 }
251
252 char *
253 bfd_elf_get_str_section (bfd *abfd, unsigned int shindex)
254 {
255 Elf_Internal_Shdr **i_shdrp;
256 char *shstrtab = NULL;
257 file_ptr offset;
258 bfd_size_type shstrtabsize;
259
260 i_shdrp = elf_elfsections (abfd);
261 if (i_shdrp == 0 || i_shdrp[shindex] == 0)
262 return 0;
263
264 shstrtab = (char *) i_shdrp[shindex]->contents;
265 if (shstrtab == NULL)
266 {
267 /* No cached one, attempt to read, and cache what we read. */
268 offset = i_shdrp[shindex]->sh_offset;
269 shstrtabsize = i_shdrp[shindex]->sh_size;
270 shstrtab = elf_read (abfd, offset, shstrtabsize);
271 i_shdrp[shindex]->contents = shstrtab;
272 }
273 return shstrtab;
274 }
275
276 char *
277 bfd_elf_string_from_elf_section (bfd *abfd,
278 unsigned int shindex,
279 unsigned int strindex)
280 {
281 Elf_Internal_Shdr *hdr;
282
283 if (strindex == 0)
284 return "";
285
286 hdr = elf_elfsections (abfd)[shindex];
287
288 if (hdr->contents == NULL
289 && bfd_elf_get_str_section (abfd, shindex) == NULL)
290 return NULL;
291
292 if (strindex >= hdr->sh_size)
293 {
294 (*_bfd_error_handler)
295 (_("%B: invalid string offset %u >= %lu for section `%s'"),
296 abfd, strindex, (unsigned long) hdr->sh_size,
297 ((shindex == elf_elfheader(abfd)->e_shstrndx
298 && strindex == hdr->sh_name)
299 ? ".shstrtab"
300 : elf_string_from_elf_strtab (abfd, hdr->sh_name)));
301 return "";
302 }
303
304 return ((char *) hdr->contents) + strindex;
305 }
306
307 /* Read and convert symbols to internal format.
308 SYMCOUNT specifies the number of symbols to read, starting from
309 symbol SYMOFFSET. If any of INTSYM_BUF, EXTSYM_BUF or EXTSHNDX_BUF
310 are non-NULL, they are used to store the internal symbols, external
311 symbols, and symbol section index extensions, respectively. */
312
313 Elf_Internal_Sym *
314 bfd_elf_get_elf_syms (bfd *ibfd,
315 Elf_Internal_Shdr *symtab_hdr,
316 size_t symcount,
317 size_t symoffset,
318 Elf_Internal_Sym *intsym_buf,
319 void *extsym_buf,
320 Elf_External_Sym_Shndx *extshndx_buf)
321 {
322 Elf_Internal_Shdr *shndx_hdr;
323 void *alloc_ext;
324 const bfd_byte *esym;
325 Elf_External_Sym_Shndx *alloc_extshndx;
326 Elf_External_Sym_Shndx *shndx;
327 Elf_Internal_Sym *isym;
328 Elf_Internal_Sym *isymend;
329 const struct elf_backend_data *bed;
330 size_t extsym_size;
331 bfd_size_type amt;
332 file_ptr pos;
333
334 if (symcount == 0)
335 return intsym_buf;
336
337 /* Normal syms might have section extension entries. */
338 shndx_hdr = NULL;
339 if (symtab_hdr == &elf_tdata (ibfd)->symtab_hdr)
340 shndx_hdr = &elf_tdata (ibfd)->symtab_shndx_hdr;
341
342 /* Read the symbols. */
343 alloc_ext = NULL;
344 alloc_extshndx = NULL;
345 bed = get_elf_backend_data (ibfd);
346 extsym_size = bed->s->sizeof_sym;
347 amt = symcount * extsym_size;
348 pos = symtab_hdr->sh_offset + symoffset * extsym_size;
349 if (extsym_buf == NULL)
350 {
351 alloc_ext = bfd_malloc (amt);
352 extsym_buf = alloc_ext;
353 }
354 if (extsym_buf == NULL
355 || bfd_seek (ibfd, pos, SEEK_SET) != 0
356 || bfd_bread (extsym_buf, amt, ibfd) != amt)
357 {
358 intsym_buf = NULL;
359 goto out;
360 }
361
362 if (shndx_hdr == NULL || shndx_hdr->sh_size == 0)
363 extshndx_buf = NULL;
364 else
365 {
366 amt = symcount * sizeof (Elf_External_Sym_Shndx);
367 pos = shndx_hdr->sh_offset + symoffset * sizeof (Elf_External_Sym_Shndx);
368 if (extshndx_buf == NULL)
369 {
370 alloc_extshndx = bfd_malloc (amt);
371 extshndx_buf = alloc_extshndx;
372 }
373 if (extshndx_buf == NULL
374 || bfd_seek (ibfd, pos, SEEK_SET) != 0
375 || bfd_bread (extshndx_buf, amt, ibfd) != amt)
376 {
377 intsym_buf = NULL;
378 goto out;
379 }
380 }
381
382 if (intsym_buf == NULL)
383 {
384 bfd_size_type amt = symcount * sizeof (Elf_Internal_Sym);
385 intsym_buf = bfd_malloc (amt);
386 if (intsym_buf == NULL)
387 goto out;
388 }
389
390 /* Convert the symbols to internal form. */
391 isymend = intsym_buf + symcount;
392 for (esym = extsym_buf, isym = intsym_buf, shndx = extshndx_buf;
393 isym < isymend;
394 esym += extsym_size, isym++, shndx = shndx != NULL ? shndx + 1 : NULL)
395 (*bed->s->swap_symbol_in) (ibfd, esym, shndx, isym);
396
397 out:
398 if (alloc_ext != NULL)
399 free (alloc_ext);
400 if (alloc_extshndx != NULL)
401 free (alloc_extshndx);
402
403 return intsym_buf;
404 }
405
406 /* Look up a symbol name. */
407 const char *
408 bfd_elf_local_sym_name (bfd *abfd, Elf_Internal_Sym *isym)
409 {
410 unsigned int iname = isym->st_name;
411 unsigned int shindex = elf_tdata (abfd)->symtab_hdr.sh_link;
412 if (iname == 0 && ELF_ST_TYPE (isym->st_info) == STT_SECTION)
413 {
414 iname = elf_elfsections (abfd)[isym->st_shndx]->sh_name;
415 shindex = elf_elfheader (abfd)->e_shstrndx;
416 }
417
418 return bfd_elf_string_from_elf_section (abfd, shindex, iname);
419 }
420
421 /* Elf_Internal_Shdr->contents is an array of these for SHT_GROUP
422 sections. The first element is the flags, the rest are section
423 pointers. */
424
425 typedef union elf_internal_group {
426 Elf_Internal_Shdr *shdr;
427 unsigned int flags;
428 } Elf_Internal_Group;
429
430 /* Return the name of the group signature symbol. Why isn't the
431 signature just a string? */
432
433 static const char *
434 group_signature (bfd *abfd, Elf_Internal_Shdr *ghdr)
435 {
436 Elf_Internal_Shdr *hdr;
437 unsigned char esym[sizeof (Elf64_External_Sym)];
438 Elf_External_Sym_Shndx eshndx;
439 Elf_Internal_Sym isym;
440
441 /* First we need to ensure the symbol table is available. */
442 if (! bfd_section_from_shdr (abfd, ghdr->sh_link))
443 return NULL;
444
445 /* Go read the symbol. */
446 hdr = &elf_tdata (abfd)->symtab_hdr;
447 if (bfd_elf_get_elf_syms (abfd, hdr, 1, ghdr->sh_info,
448 &isym, esym, &eshndx) == NULL)
449 return NULL;
450
451 return bfd_elf_local_sym_name (abfd, &isym);
452 }
453
454 /* Set next_in_group list pointer, and group name for NEWSECT. */
455
456 static bfd_boolean
457 setup_group (bfd *abfd, Elf_Internal_Shdr *hdr, asection *newsect)
458 {
459 unsigned int num_group = elf_tdata (abfd)->num_group;
460
461 /* If num_group is zero, read in all SHT_GROUP sections. The count
462 is set to -1 if there are no SHT_GROUP sections. */
463 if (num_group == 0)
464 {
465 unsigned int i, shnum;
466
467 /* First count the number of groups. If we have a SHT_GROUP
468 section with just a flag word (ie. sh_size is 4), ignore it. */
469 shnum = elf_numsections (abfd);
470 num_group = 0;
471 for (i = 0; i < shnum; i++)
472 {
473 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
474 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
475 num_group += 1;
476 }
477
478 if (num_group == 0)
479 num_group = (unsigned) -1;
480 elf_tdata (abfd)->num_group = num_group;
481
482 if (num_group > 0)
483 {
484 /* We keep a list of elf section headers for group sections,
485 so we can find them quickly. */
486 bfd_size_type amt = num_group * sizeof (Elf_Internal_Shdr *);
487 elf_tdata (abfd)->group_sect_ptr = bfd_alloc (abfd, amt);
488 if (elf_tdata (abfd)->group_sect_ptr == NULL)
489 return FALSE;
490
491 num_group = 0;
492 for (i = 0; i < shnum; i++)
493 {
494 Elf_Internal_Shdr *shdr = elf_elfsections (abfd)[i];
495 if (shdr->sh_type == SHT_GROUP && shdr->sh_size >= 8)
496 {
497 unsigned char *src;
498 Elf_Internal_Group *dest;
499
500 /* Add to list of sections. */
501 elf_tdata (abfd)->group_sect_ptr[num_group] = shdr;
502 num_group += 1;
503
504 /* Read the raw contents. */
505 BFD_ASSERT (sizeof (*dest) >= 4);
506 amt = shdr->sh_size * sizeof (*dest) / 4;
507 shdr->contents = bfd_alloc (abfd, amt);
508 if (shdr->contents == NULL
509 || bfd_seek (abfd, shdr->sh_offset, SEEK_SET) != 0
510 || (bfd_bread (shdr->contents, shdr->sh_size, abfd)
511 != shdr->sh_size))
512 return FALSE;
513
514 /* Translate raw contents, a flag word followed by an
515 array of elf section indices all in target byte order,
516 to the flag word followed by an array of elf section
517 pointers. */
518 src = shdr->contents + shdr->sh_size;
519 dest = (Elf_Internal_Group *) (shdr->contents + amt);
520 while (1)
521 {
522 unsigned int idx;
523
524 src -= 4;
525 --dest;
526 idx = H_GET_32 (abfd, src);
527 if (src == shdr->contents)
528 {
529 dest->flags = idx;
530 if (shdr->bfd_section != NULL && (idx & GRP_COMDAT))
531 shdr->bfd_section->flags
532 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
533 break;
534 }
535 if (idx >= shnum)
536 {
537 ((*_bfd_error_handler)
538 (_("%B: invalid SHT_GROUP entry"), abfd));
539 idx = 0;
540 }
541 dest->shdr = elf_elfsections (abfd)[idx];
542 }
543 }
544 }
545 }
546 }
547
548 if (num_group != (unsigned) -1)
549 {
550 unsigned int i;
551
552 for (i = 0; i < num_group; i++)
553 {
554 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
555 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
556 unsigned int n_elt = shdr->sh_size / 4;
557
558 /* Look through this group's sections to see if current
559 section is a member. */
560 while (--n_elt != 0)
561 if ((++idx)->shdr == hdr)
562 {
563 asection *s = NULL;
564
565 /* We are a member of this group. Go looking through
566 other members to see if any others are linked via
567 next_in_group. */
568 idx = (Elf_Internal_Group *) shdr->contents;
569 n_elt = shdr->sh_size / 4;
570 while (--n_elt != 0)
571 if ((s = (++idx)->shdr->bfd_section) != NULL
572 && elf_next_in_group (s) != NULL)
573 break;
574 if (n_elt != 0)
575 {
576 /* Snarf the group name from other member, and
577 insert current section in circular list. */
578 elf_group_name (newsect) = elf_group_name (s);
579 elf_next_in_group (newsect) = elf_next_in_group (s);
580 elf_next_in_group (s) = newsect;
581 }
582 else
583 {
584 const char *gname;
585
586 gname = group_signature (abfd, shdr);
587 if (gname == NULL)
588 return FALSE;
589 elf_group_name (newsect) = gname;
590
591 /* Start a circular list with one element. */
592 elf_next_in_group (newsect) = newsect;
593 }
594
595 /* If the group section has been created, point to the
596 new member. */
597 if (shdr->bfd_section != NULL)
598 elf_next_in_group (shdr->bfd_section) = newsect;
599
600 i = num_group - 1;
601 break;
602 }
603 }
604 }
605
606 if (elf_group_name (newsect) == NULL)
607 {
608 (*_bfd_error_handler) (_("%B: no group info for section %A"),
609 abfd, newsect);
610 }
611 return TRUE;
612 }
613
614 bfd_boolean
615 _bfd_elf_setup_group_pointers (bfd *abfd)
616 {
617 unsigned int i;
618 unsigned int num_group = elf_tdata (abfd)->num_group;
619 bfd_boolean result = TRUE;
620
621 if (num_group == (unsigned) -1)
622 return result;
623
624 for (i = 0; i < num_group; i++)
625 {
626 Elf_Internal_Shdr *shdr = elf_tdata (abfd)->group_sect_ptr[i];
627 Elf_Internal_Group *idx = (Elf_Internal_Group *) shdr->contents;
628 unsigned int n_elt = shdr->sh_size / 4;
629
630 while (--n_elt != 0)
631 if ((++idx)->shdr->bfd_section)
632 elf_sec_group (idx->shdr->bfd_section) = shdr->bfd_section;
633 else if (idx->shdr->sh_type == SHT_RELA
634 || idx->shdr->sh_type == SHT_REL)
635 /* We won't include relocation sections in section groups in
636 output object files. We adjust the group section size here
637 so that relocatable link will work correctly when
638 relocation sections are in section group in input object
639 files. */
640 shdr->bfd_section->size -= 4;
641 else
642 {
643 /* There are some unknown sections in the group. */
644 (*_bfd_error_handler)
645 (_("%B: unknown [%d] section `%s' in group [%s]"),
646 abfd,
647 (unsigned int) idx->shdr->sh_type,
648 elf_string_from_elf_strtab (abfd, idx->shdr->sh_name),
649 shdr->bfd_section->name);
650 result = FALSE;
651 }
652 }
653 return result;
654 }
655
656 bfd_boolean
657 bfd_elf_is_group_section (bfd *abfd ATTRIBUTE_UNUSED, const asection *sec)
658 {
659 return elf_next_in_group (sec) != NULL;
660 }
661
662 bfd_boolean
663 bfd_elf_discard_group (bfd *abfd ATTRIBUTE_UNUSED,
664 asection *group ATTRIBUTE_UNUSED)
665 {
666 #if 0
667 asection *first = elf_next_in_group (group);
668 asection *s = first;
669
670 while (s != NULL)
671 {
672 s->output_section = bfd_abs_section_ptr;
673 s = elf_next_in_group (s);
674 /* These lists are circular. */
675 if (s == first)
676 break;
677 }
678 #else
679 /* FIXME: Never used. Remove it! */
680 abort ();
681 #endif
682 return TRUE;
683 }
684
685 /* Make a BFD section from an ELF section. We store a pointer to the
686 BFD section in the bfd_section field of the header. */
687
688 bfd_boolean
689 _bfd_elf_make_section_from_shdr (bfd *abfd,
690 Elf_Internal_Shdr *hdr,
691 const char *name)
692 {
693 asection *newsect;
694 flagword flags;
695 const struct elf_backend_data *bed;
696
697 if (hdr->bfd_section != NULL)
698 {
699 BFD_ASSERT (strcmp (name,
700 bfd_get_section_name (abfd, hdr->bfd_section)) == 0);
701 return TRUE;
702 }
703
704 newsect = bfd_make_section_anyway (abfd, name);
705 if (newsect == NULL)
706 return FALSE;
707
708 hdr->bfd_section = newsect;
709 elf_section_data (newsect)->this_hdr = *hdr;
710
711 /* Always use the real type/flags. */
712 elf_section_type (newsect) = hdr->sh_type;
713 elf_section_flags (newsect) = hdr->sh_flags;
714
715 newsect->filepos = hdr->sh_offset;
716
717 if (! bfd_set_section_vma (abfd, newsect, hdr->sh_addr)
718 || ! bfd_set_section_size (abfd, newsect, hdr->sh_size)
719 || ! bfd_set_section_alignment (abfd, newsect,
720 bfd_log2 ((bfd_vma) hdr->sh_addralign)))
721 return FALSE;
722
723 flags = SEC_NO_FLAGS;
724 if (hdr->sh_type != SHT_NOBITS)
725 flags |= SEC_HAS_CONTENTS;
726 if (hdr->sh_type == SHT_GROUP)
727 flags |= SEC_GROUP | SEC_EXCLUDE;
728 if ((hdr->sh_flags & SHF_ALLOC) != 0)
729 {
730 flags |= SEC_ALLOC;
731 if (hdr->sh_type != SHT_NOBITS)
732 flags |= SEC_LOAD;
733 }
734 if ((hdr->sh_flags & SHF_WRITE) == 0)
735 flags |= SEC_READONLY;
736 if ((hdr->sh_flags & SHF_EXECINSTR) != 0)
737 flags |= SEC_CODE;
738 else if ((flags & SEC_LOAD) != 0)
739 flags |= SEC_DATA;
740 if ((hdr->sh_flags & SHF_MERGE) != 0)
741 {
742 flags |= SEC_MERGE;
743 newsect->entsize = hdr->sh_entsize;
744 if ((hdr->sh_flags & SHF_STRINGS) != 0)
745 flags |= SEC_STRINGS;
746 }
747 if (hdr->sh_flags & SHF_GROUP)
748 if (!setup_group (abfd, hdr, newsect))
749 return FALSE;
750 if ((hdr->sh_flags & SHF_TLS) != 0)
751 flags |= SEC_THREAD_LOCAL;
752
753 /* The debugging sections appear to be recognized only by name, not
754 any sort of flag. */
755 {
756 static const char *debug_sec_names [] =
757 {
758 ".debug",
759 ".gnu.linkonce.wi.",
760 ".line",
761 ".stab"
762 };
763 int i;
764
765 for (i = ARRAY_SIZE (debug_sec_names); i--;)
766 if (strncmp (name, debug_sec_names[i], strlen (debug_sec_names[i])) == 0)
767 break;
768
769 if (i >= 0)
770 flags |= SEC_DEBUGGING;
771 }
772
773 /* As a GNU extension, if the name begins with .gnu.linkonce, we
774 only link a single copy of the section. This is used to support
775 g++. g++ will emit each template expansion in its own section.
776 The symbols will be defined as weak, so that multiple definitions
777 are permitted. The GNU linker extension is to actually discard
778 all but one of the sections. */
779 if (strncmp (name, ".gnu.linkonce", sizeof ".gnu.linkonce" - 1) == 0
780 && elf_next_in_group (newsect) == NULL)
781 flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
782
783 bed = get_elf_backend_data (abfd);
784 if (bed->elf_backend_section_flags)
785 if (! bed->elf_backend_section_flags (&flags, hdr))
786 return FALSE;
787
788 if (! bfd_set_section_flags (abfd, newsect, flags))
789 return FALSE;
790
791 if ((flags & SEC_ALLOC) != 0)
792 {
793 Elf_Internal_Phdr *phdr;
794 unsigned int i;
795
796 /* Look through the phdrs to see if we need to adjust the lma.
797 If all the p_paddr fields are zero, we ignore them, since
798 some ELF linkers produce such output. */
799 phdr = elf_tdata (abfd)->phdr;
800 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
801 {
802 if (phdr->p_paddr != 0)
803 break;
804 }
805 if (i < elf_elfheader (abfd)->e_phnum)
806 {
807 phdr = elf_tdata (abfd)->phdr;
808 for (i = 0; i < elf_elfheader (abfd)->e_phnum; i++, phdr++)
809 {
810 /* This section is part of this segment if its file
811 offset plus size lies within the segment's memory
812 span and, if the section is loaded, the extent of the
813 loaded data lies within the extent of the segment.
814
815 Note - we used to check the p_paddr field as well, and
816 refuse to set the LMA if it was 0. This is wrong
817 though, as a perfectly valid initialised segment can
818 have a p_paddr of zero. Some architectures, eg ARM,
819 place special significance on the address 0 and
820 executables need to be able to have a segment which
821 covers this address. */
822 if (phdr->p_type == PT_LOAD
823 && (bfd_vma) hdr->sh_offset >= phdr->p_offset
824 && (hdr->sh_offset + hdr->sh_size
825 <= phdr->p_offset + phdr->p_memsz)
826 && ((flags & SEC_LOAD) == 0
827 || (hdr->sh_offset + hdr->sh_size
828 <= phdr->p_offset + phdr->p_filesz)))
829 {
830 if ((flags & SEC_LOAD) == 0)
831 newsect->lma = (phdr->p_paddr
832 + hdr->sh_addr - phdr->p_vaddr);
833 else
834 /* We used to use the same adjustment for SEC_LOAD
835 sections, but that doesn't work if the segment
836 is packed with code from multiple VMAs.
837 Instead we calculate the section LMA based on
838 the segment LMA. It is assumed that the
839 segment will contain sections with contiguous
840 LMAs, even if the VMAs are not. */
841 newsect->lma = (phdr->p_paddr
842 + hdr->sh_offset - phdr->p_offset);
843
844 /* With contiguous segments, we can't tell from file
845 offsets whether a section with zero size should
846 be placed at the end of one segment or the
847 beginning of the next. Decide based on vaddr. */
848 if (hdr->sh_addr >= phdr->p_vaddr
849 && (hdr->sh_addr + hdr->sh_size
850 <= phdr->p_vaddr + phdr->p_memsz))
851 break;
852 }
853 }
854 }
855 }
856
857 return TRUE;
858 }
859
860 /*
861 INTERNAL_FUNCTION
862 bfd_elf_find_section
863
864 SYNOPSIS
865 struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
866
867 DESCRIPTION
868 Helper functions for GDB to locate the string tables.
869 Since BFD hides string tables from callers, GDB needs to use an
870 internal hook to find them. Sun's .stabstr, in particular,
871 isn't even pointed to by the .stab section, so ordinary
872 mechanisms wouldn't work to find it, even if we had some.
873 */
874
875 struct elf_internal_shdr *
876 bfd_elf_find_section (bfd *abfd, char *name)
877 {
878 Elf_Internal_Shdr **i_shdrp;
879 char *shstrtab;
880 unsigned int max;
881 unsigned int i;
882
883 i_shdrp = elf_elfsections (abfd);
884 if (i_shdrp != NULL)
885 {
886 shstrtab = bfd_elf_get_str_section (abfd,
887 elf_elfheader (abfd)->e_shstrndx);
888 if (shstrtab != NULL)
889 {
890 max = elf_numsections (abfd);
891 for (i = 1; i < max; i++)
892 if (!strcmp (&shstrtab[i_shdrp[i]->sh_name], name))
893 return i_shdrp[i];
894 }
895 }
896 return 0;
897 }
898
899 const char *const bfd_elf_section_type_names[] = {
900 "SHT_NULL", "SHT_PROGBITS", "SHT_SYMTAB", "SHT_STRTAB",
901 "SHT_RELA", "SHT_HASH", "SHT_DYNAMIC", "SHT_NOTE",
902 "SHT_NOBITS", "SHT_REL", "SHT_SHLIB", "SHT_DYNSYM",
903 };
904
905 /* ELF relocs are against symbols. If we are producing relocatable
906 output, and the reloc is against an external symbol, and nothing
907 has given us any additional addend, the resulting reloc will also
908 be against the same symbol. In such a case, we don't want to
909 change anything about the way the reloc is handled, since it will
910 all be done at final link time. Rather than put special case code
911 into bfd_perform_relocation, all the reloc types use this howto
912 function. It just short circuits the reloc if producing
913 relocatable output against an external symbol. */
914
915 bfd_reloc_status_type
916 bfd_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED,
917 arelent *reloc_entry,
918 asymbol *symbol,
919 void *data ATTRIBUTE_UNUSED,
920 asection *input_section,
921 bfd *output_bfd,
922 char **error_message ATTRIBUTE_UNUSED)
923 {
924 if (output_bfd != NULL
925 && (symbol->flags & BSF_SECTION_SYM) == 0
926 && (! reloc_entry->howto->partial_inplace
927 || reloc_entry->addend == 0))
928 {
929 reloc_entry->address += input_section->output_offset;
930 return bfd_reloc_ok;
931 }
932
933 return bfd_reloc_continue;
934 }
935 \f
936 /* Make sure sec_info_type is cleared if sec_info is cleared too. */
937
938 static void
939 merge_sections_remove_hook (bfd *abfd ATTRIBUTE_UNUSED,
940 asection *sec)
941 {
942 BFD_ASSERT (sec->sec_info_type == ELF_INFO_TYPE_MERGE);
943 sec->sec_info_type = ELF_INFO_TYPE_NONE;
944 }
945
946 /* Finish SHF_MERGE section merging. */
947
948 bfd_boolean
949 _bfd_elf_merge_sections (bfd *abfd, struct bfd_link_info *info)
950 {
951 bfd *ibfd;
952 asection *sec;
953
954 if (!is_elf_hash_table (info->hash))
955 return FALSE;
956
957 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
958 if ((ibfd->flags & DYNAMIC) == 0)
959 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
960 if ((sec->flags & SEC_MERGE) != 0
961 && !bfd_is_abs_section (sec->output_section))
962 {
963 struct bfd_elf_section_data *secdata;
964
965 secdata = elf_section_data (sec);
966 if (! _bfd_add_merge_section (abfd,
967 &elf_hash_table (info)->merge_info,
968 sec, &secdata->sec_info))
969 return FALSE;
970 else if (secdata->sec_info)
971 sec->sec_info_type = ELF_INFO_TYPE_MERGE;
972 }
973
974 if (elf_hash_table (info)->merge_info != NULL)
975 _bfd_merge_sections (abfd, info, elf_hash_table (info)->merge_info,
976 merge_sections_remove_hook);
977 return TRUE;
978 }
979
980 void
981 _bfd_elf_link_just_syms (asection *sec, struct bfd_link_info *info)
982 {
983 sec->output_section = bfd_abs_section_ptr;
984 sec->output_offset = sec->vma;
985 if (!is_elf_hash_table (info->hash))
986 return;
987
988 sec->sec_info_type = ELF_INFO_TYPE_JUST_SYMS;
989 }
990 \f
991 /* Copy the program header and other data from one object module to
992 another. */
993
994 bfd_boolean
995 _bfd_elf_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
996 {
997 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
998 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
999 return TRUE;
1000
1001 BFD_ASSERT (!elf_flags_init (obfd)
1002 || (elf_elfheader (obfd)->e_flags
1003 == elf_elfheader (ibfd)->e_flags));
1004
1005 elf_gp (obfd) = elf_gp (ibfd);
1006 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
1007 elf_flags_init (obfd) = TRUE;
1008 return TRUE;
1009 }
1010
1011 /* Print out the program headers. */
1012
1013 bfd_boolean
1014 _bfd_elf_print_private_bfd_data (bfd *abfd, void *farg)
1015 {
1016 FILE *f = farg;
1017 Elf_Internal_Phdr *p;
1018 asection *s;
1019 bfd_byte *dynbuf = NULL;
1020
1021 p = elf_tdata (abfd)->phdr;
1022 if (p != NULL)
1023 {
1024 unsigned int i, c;
1025
1026 fprintf (f, _("\nProgram Header:\n"));
1027 c = elf_elfheader (abfd)->e_phnum;
1028 for (i = 0; i < c; i++, p++)
1029 {
1030 const char *pt;
1031 char buf[20];
1032
1033 switch (p->p_type)
1034 {
1035 case PT_NULL: pt = "NULL"; break;
1036 case PT_LOAD: pt = "LOAD"; break;
1037 case PT_DYNAMIC: pt = "DYNAMIC"; break;
1038 case PT_INTERP: pt = "INTERP"; break;
1039 case PT_NOTE: pt = "NOTE"; break;
1040 case PT_SHLIB: pt = "SHLIB"; break;
1041 case PT_PHDR: pt = "PHDR"; break;
1042 case PT_TLS: pt = "TLS"; break;
1043 case PT_GNU_EH_FRAME: pt = "EH_FRAME"; break;
1044 case PT_GNU_STACK: pt = "STACK"; break;
1045 case PT_GNU_RELRO: pt = "RELRO"; break;
1046 default: sprintf (buf, "0x%lx", p->p_type); pt = buf; break;
1047 }
1048 fprintf (f, "%8s off 0x", pt);
1049 bfd_fprintf_vma (abfd, f, p->p_offset);
1050 fprintf (f, " vaddr 0x");
1051 bfd_fprintf_vma (abfd, f, p->p_vaddr);
1052 fprintf (f, " paddr 0x");
1053 bfd_fprintf_vma (abfd, f, p->p_paddr);
1054 fprintf (f, " align 2**%u\n", bfd_log2 (p->p_align));
1055 fprintf (f, " filesz 0x");
1056 bfd_fprintf_vma (abfd, f, p->p_filesz);
1057 fprintf (f, " memsz 0x");
1058 bfd_fprintf_vma (abfd, f, p->p_memsz);
1059 fprintf (f, " flags %c%c%c",
1060 (p->p_flags & PF_R) != 0 ? 'r' : '-',
1061 (p->p_flags & PF_W) != 0 ? 'w' : '-',
1062 (p->p_flags & PF_X) != 0 ? 'x' : '-');
1063 if ((p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X)) != 0)
1064 fprintf (f, " %lx", p->p_flags &~ (unsigned) (PF_R | PF_W | PF_X));
1065 fprintf (f, "\n");
1066 }
1067 }
1068
1069 s = bfd_get_section_by_name (abfd, ".dynamic");
1070 if (s != NULL)
1071 {
1072 int elfsec;
1073 unsigned long shlink;
1074 bfd_byte *extdyn, *extdynend;
1075 size_t extdynsize;
1076 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1077
1078 fprintf (f, _("\nDynamic Section:\n"));
1079
1080 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1081 goto error_return;
1082
1083 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1084 if (elfsec == -1)
1085 goto error_return;
1086 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1087
1088 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1089 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1090
1091 extdyn = dynbuf;
1092 extdynend = extdyn + s->size;
1093 for (; extdyn < extdynend; extdyn += extdynsize)
1094 {
1095 Elf_Internal_Dyn dyn;
1096 const char *name;
1097 char ab[20];
1098 bfd_boolean stringp;
1099
1100 (*swap_dyn_in) (abfd, extdyn, &dyn);
1101
1102 if (dyn.d_tag == DT_NULL)
1103 break;
1104
1105 stringp = FALSE;
1106 switch (dyn.d_tag)
1107 {
1108 default:
1109 sprintf (ab, "0x%lx", (unsigned long) dyn.d_tag);
1110 name = ab;
1111 break;
1112
1113 case DT_NEEDED: name = "NEEDED"; stringp = TRUE; break;
1114 case DT_PLTRELSZ: name = "PLTRELSZ"; break;
1115 case DT_PLTGOT: name = "PLTGOT"; break;
1116 case DT_HASH: name = "HASH"; break;
1117 case DT_STRTAB: name = "STRTAB"; break;
1118 case DT_SYMTAB: name = "SYMTAB"; break;
1119 case DT_RELA: name = "RELA"; break;
1120 case DT_RELASZ: name = "RELASZ"; break;
1121 case DT_RELAENT: name = "RELAENT"; break;
1122 case DT_STRSZ: name = "STRSZ"; break;
1123 case DT_SYMENT: name = "SYMENT"; break;
1124 case DT_INIT: name = "INIT"; break;
1125 case DT_FINI: name = "FINI"; break;
1126 case DT_SONAME: name = "SONAME"; stringp = TRUE; break;
1127 case DT_RPATH: name = "RPATH"; stringp = TRUE; break;
1128 case DT_SYMBOLIC: name = "SYMBOLIC"; break;
1129 case DT_REL: name = "REL"; break;
1130 case DT_RELSZ: name = "RELSZ"; break;
1131 case DT_RELENT: name = "RELENT"; break;
1132 case DT_PLTREL: name = "PLTREL"; break;
1133 case DT_DEBUG: name = "DEBUG"; break;
1134 case DT_TEXTREL: name = "TEXTREL"; break;
1135 case DT_JMPREL: name = "JMPREL"; break;
1136 case DT_BIND_NOW: name = "BIND_NOW"; break;
1137 case DT_INIT_ARRAY: name = "INIT_ARRAY"; break;
1138 case DT_FINI_ARRAY: name = "FINI_ARRAY"; break;
1139 case DT_INIT_ARRAYSZ: name = "INIT_ARRAYSZ"; break;
1140 case DT_FINI_ARRAYSZ: name = "FINI_ARRAYSZ"; break;
1141 case DT_RUNPATH: name = "RUNPATH"; stringp = TRUE; break;
1142 case DT_FLAGS: name = "FLAGS"; break;
1143 case DT_PREINIT_ARRAY: name = "PREINIT_ARRAY"; break;
1144 case DT_PREINIT_ARRAYSZ: name = "PREINIT_ARRAYSZ"; break;
1145 case DT_CHECKSUM: name = "CHECKSUM"; break;
1146 case DT_PLTPADSZ: name = "PLTPADSZ"; break;
1147 case DT_MOVEENT: name = "MOVEENT"; break;
1148 case DT_MOVESZ: name = "MOVESZ"; break;
1149 case DT_FEATURE: name = "FEATURE"; break;
1150 case DT_POSFLAG_1: name = "POSFLAG_1"; break;
1151 case DT_SYMINSZ: name = "SYMINSZ"; break;
1152 case DT_SYMINENT: name = "SYMINENT"; break;
1153 case DT_CONFIG: name = "CONFIG"; stringp = TRUE; break;
1154 case DT_DEPAUDIT: name = "DEPAUDIT"; stringp = TRUE; break;
1155 case DT_AUDIT: name = "AUDIT"; stringp = TRUE; break;
1156 case DT_PLTPAD: name = "PLTPAD"; break;
1157 case DT_MOVETAB: name = "MOVETAB"; break;
1158 case DT_SYMINFO: name = "SYMINFO"; break;
1159 case DT_RELACOUNT: name = "RELACOUNT"; break;
1160 case DT_RELCOUNT: name = "RELCOUNT"; break;
1161 case DT_FLAGS_1: name = "FLAGS_1"; break;
1162 case DT_VERSYM: name = "VERSYM"; break;
1163 case DT_VERDEF: name = "VERDEF"; break;
1164 case DT_VERDEFNUM: name = "VERDEFNUM"; break;
1165 case DT_VERNEED: name = "VERNEED"; break;
1166 case DT_VERNEEDNUM: name = "VERNEEDNUM"; break;
1167 case DT_AUXILIARY: name = "AUXILIARY"; stringp = TRUE; break;
1168 case DT_USED: name = "USED"; break;
1169 case DT_FILTER: name = "FILTER"; stringp = TRUE; break;
1170 }
1171
1172 fprintf (f, " %-11s ", name);
1173 if (! stringp)
1174 fprintf (f, "0x%lx", (unsigned long) dyn.d_un.d_val);
1175 else
1176 {
1177 const char *string;
1178 unsigned int tagv = dyn.d_un.d_val;
1179
1180 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1181 if (string == NULL)
1182 goto error_return;
1183 fprintf (f, "%s", string);
1184 }
1185 fprintf (f, "\n");
1186 }
1187
1188 free (dynbuf);
1189 dynbuf = NULL;
1190 }
1191
1192 if ((elf_dynverdef (abfd) != 0 && elf_tdata (abfd)->verdef == NULL)
1193 || (elf_dynverref (abfd) != 0 && elf_tdata (abfd)->verref == NULL))
1194 {
1195 if (! _bfd_elf_slurp_version_tables (abfd, FALSE))
1196 return FALSE;
1197 }
1198
1199 if (elf_dynverdef (abfd) != 0)
1200 {
1201 Elf_Internal_Verdef *t;
1202
1203 fprintf (f, _("\nVersion definitions:\n"));
1204 for (t = elf_tdata (abfd)->verdef; t != NULL; t = t->vd_nextdef)
1205 {
1206 fprintf (f, "%d 0x%2.2x 0x%8.8lx %s\n", t->vd_ndx,
1207 t->vd_flags, t->vd_hash, t->vd_nodename);
1208 if (t->vd_auxptr->vda_nextptr != NULL)
1209 {
1210 Elf_Internal_Verdaux *a;
1211
1212 fprintf (f, "\t");
1213 for (a = t->vd_auxptr->vda_nextptr;
1214 a != NULL;
1215 a = a->vda_nextptr)
1216 fprintf (f, "%s ", a->vda_nodename);
1217 fprintf (f, "\n");
1218 }
1219 }
1220 }
1221
1222 if (elf_dynverref (abfd) != 0)
1223 {
1224 Elf_Internal_Verneed *t;
1225
1226 fprintf (f, _("\nVersion References:\n"));
1227 for (t = elf_tdata (abfd)->verref; t != NULL; t = t->vn_nextref)
1228 {
1229 Elf_Internal_Vernaux *a;
1230
1231 fprintf (f, _(" required from %s:\n"), t->vn_filename);
1232 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1233 fprintf (f, " 0x%8.8lx 0x%2.2x %2.2d %s\n", a->vna_hash,
1234 a->vna_flags, a->vna_other, a->vna_nodename);
1235 }
1236 }
1237
1238 return TRUE;
1239
1240 error_return:
1241 if (dynbuf != NULL)
1242 free (dynbuf);
1243 return FALSE;
1244 }
1245
1246 /* Display ELF-specific fields of a symbol. */
1247
1248 void
1249 bfd_elf_print_symbol (bfd *abfd,
1250 void *filep,
1251 asymbol *symbol,
1252 bfd_print_symbol_type how)
1253 {
1254 FILE *file = filep;
1255 switch (how)
1256 {
1257 case bfd_print_symbol_name:
1258 fprintf (file, "%s", symbol->name);
1259 break;
1260 case bfd_print_symbol_more:
1261 fprintf (file, "elf ");
1262 bfd_fprintf_vma (abfd, file, symbol->value);
1263 fprintf (file, " %lx", (long) symbol->flags);
1264 break;
1265 case bfd_print_symbol_all:
1266 {
1267 const char *section_name;
1268 const char *name = NULL;
1269 const struct elf_backend_data *bed;
1270 unsigned char st_other;
1271 bfd_vma val;
1272
1273 section_name = symbol->section ? symbol->section->name : "(*none*)";
1274
1275 bed = get_elf_backend_data (abfd);
1276 if (bed->elf_backend_print_symbol_all)
1277 name = (*bed->elf_backend_print_symbol_all) (abfd, filep, symbol);
1278
1279 if (name == NULL)
1280 {
1281 name = symbol->name;
1282 bfd_print_symbol_vandf (abfd, file, symbol);
1283 }
1284
1285 fprintf (file, " %s\t", section_name);
1286 /* Print the "other" value for a symbol. For common symbols,
1287 we've already printed the size; now print the alignment.
1288 For other symbols, we have no specified alignment, and
1289 we've printed the address; now print the size. */
1290 if (bfd_is_com_section (symbol->section))
1291 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_value;
1292 else
1293 val = ((elf_symbol_type *) symbol)->internal_elf_sym.st_size;
1294 bfd_fprintf_vma (abfd, file, val);
1295
1296 /* If we have version information, print it. */
1297 if (elf_tdata (abfd)->dynversym_section != 0
1298 && (elf_tdata (abfd)->dynverdef_section != 0
1299 || elf_tdata (abfd)->dynverref_section != 0))
1300 {
1301 unsigned int vernum;
1302 const char *version_string;
1303
1304 vernum = ((elf_symbol_type *) symbol)->version & VERSYM_VERSION;
1305
1306 if (vernum == 0)
1307 version_string = "";
1308 else if (vernum == 1)
1309 version_string = "Base";
1310 else if (vernum <= elf_tdata (abfd)->cverdefs)
1311 version_string =
1312 elf_tdata (abfd)->verdef[vernum - 1].vd_nodename;
1313 else
1314 {
1315 Elf_Internal_Verneed *t;
1316
1317 version_string = "";
1318 for (t = elf_tdata (abfd)->verref;
1319 t != NULL;
1320 t = t->vn_nextref)
1321 {
1322 Elf_Internal_Vernaux *a;
1323
1324 for (a = t->vn_auxptr; a != NULL; a = a->vna_nextptr)
1325 {
1326 if (a->vna_other == vernum)
1327 {
1328 version_string = a->vna_nodename;
1329 break;
1330 }
1331 }
1332 }
1333 }
1334
1335 if ((((elf_symbol_type *) symbol)->version & VERSYM_HIDDEN) == 0)
1336 fprintf (file, " %-11s", version_string);
1337 else
1338 {
1339 int i;
1340
1341 fprintf (file, " (%s)", version_string);
1342 for (i = 10 - strlen (version_string); i > 0; --i)
1343 putc (' ', file);
1344 }
1345 }
1346
1347 /* If the st_other field is not zero, print it. */
1348 st_other = ((elf_symbol_type *) symbol)->internal_elf_sym.st_other;
1349
1350 switch (st_other)
1351 {
1352 case 0: break;
1353 case STV_INTERNAL: fprintf (file, " .internal"); break;
1354 case STV_HIDDEN: fprintf (file, " .hidden"); break;
1355 case STV_PROTECTED: fprintf (file, " .protected"); break;
1356 default:
1357 /* Some other non-defined flags are also present, so print
1358 everything hex. */
1359 fprintf (file, " 0x%02x", (unsigned int) st_other);
1360 }
1361
1362 fprintf (file, " %s", name);
1363 }
1364 break;
1365 }
1366 }
1367 \f
1368 /* Create an entry in an ELF linker hash table. */
1369
1370 struct bfd_hash_entry *
1371 _bfd_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1372 struct bfd_hash_table *table,
1373 const char *string)
1374 {
1375 /* Allocate the structure if it has not already been allocated by a
1376 subclass. */
1377 if (entry == NULL)
1378 {
1379 entry = bfd_hash_allocate (table, sizeof (struct elf_link_hash_entry));
1380 if (entry == NULL)
1381 return entry;
1382 }
1383
1384 /* Call the allocation method of the superclass. */
1385 entry = _bfd_link_hash_newfunc (entry, table, string);
1386 if (entry != NULL)
1387 {
1388 struct elf_link_hash_entry *ret = (struct elf_link_hash_entry *) entry;
1389 struct elf_link_hash_table *htab = (struct elf_link_hash_table *) table;
1390
1391 /* Set local fields. */
1392 ret->indx = -1;
1393 ret->dynindx = -1;
1394 ret->got = ret->plt = htab->init_refcount;
1395 memset (&ret->size, 0, (sizeof (struct elf_link_hash_entry)
1396 - offsetof (struct elf_link_hash_entry, size)));
1397 /* Assume that we have been called by a non-ELF symbol reader.
1398 This flag is then reset by the code which reads an ELF input
1399 file. This ensures that a symbol created by a non-ELF symbol
1400 reader will have the flag set correctly. */
1401 ret->non_elf = 1;
1402 }
1403
1404 return entry;
1405 }
1406
1407 /* Copy data from an indirect symbol to its direct symbol, hiding the
1408 old indirect symbol. Also used for copying flags to a weakdef. */
1409
1410 void
1411 _bfd_elf_link_hash_copy_indirect (const struct elf_backend_data *bed,
1412 struct elf_link_hash_entry *dir,
1413 struct elf_link_hash_entry *ind)
1414 {
1415 bfd_signed_vma tmp;
1416 bfd_signed_vma lowest_valid = bed->can_refcount;
1417
1418 /* Copy down any references that we may have already seen to the
1419 symbol which just became indirect. */
1420
1421 dir->ref_dynamic |= ind->ref_dynamic;
1422 dir->ref_regular |= ind->ref_regular;
1423 dir->ref_regular_nonweak |= ind->ref_regular_nonweak;
1424 dir->non_got_ref |= ind->non_got_ref;
1425 dir->needs_plt |= ind->needs_plt;
1426 dir->pointer_equality_needed |= ind->pointer_equality_needed;
1427
1428 if (ind->root.type != bfd_link_hash_indirect)
1429 return;
1430
1431 /* Copy over the global and procedure linkage table refcount entries.
1432 These may have been already set up by a check_relocs routine. */
1433 tmp = dir->got.refcount;
1434 if (tmp < lowest_valid)
1435 {
1436 dir->got.refcount = ind->got.refcount;
1437 ind->got.refcount = tmp;
1438 }
1439 else
1440 BFD_ASSERT (ind->got.refcount < lowest_valid);
1441
1442 tmp = dir->plt.refcount;
1443 if (tmp < lowest_valid)
1444 {
1445 dir->plt.refcount = ind->plt.refcount;
1446 ind->plt.refcount = tmp;
1447 }
1448 else
1449 BFD_ASSERT (ind->plt.refcount < lowest_valid);
1450
1451 if (dir->dynindx == -1)
1452 {
1453 dir->dynindx = ind->dynindx;
1454 dir->dynstr_index = ind->dynstr_index;
1455 ind->dynindx = -1;
1456 ind->dynstr_index = 0;
1457 }
1458 else
1459 BFD_ASSERT (ind->dynindx == -1);
1460 }
1461
1462 void
1463 _bfd_elf_link_hash_hide_symbol (struct bfd_link_info *info,
1464 struct elf_link_hash_entry *h,
1465 bfd_boolean force_local)
1466 {
1467 h->plt = elf_hash_table (info)->init_offset;
1468 h->needs_plt = 0;
1469 if (force_local)
1470 {
1471 h->forced_local = 1;
1472 if (h->dynindx != -1)
1473 {
1474 h->dynindx = -1;
1475 _bfd_elf_strtab_delref (elf_hash_table (info)->dynstr,
1476 h->dynstr_index);
1477 }
1478 }
1479 }
1480
1481 /* Initialize an ELF linker hash table. */
1482
1483 bfd_boolean
1484 _bfd_elf_link_hash_table_init
1485 (struct elf_link_hash_table *table,
1486 bfd *abfd,
1487 struct bfd_hash_entry *(*newfunc) (struct bfd_hash_entry *,
1488 struct bfd_hash_table *,
1489 const char *))
1490 {
1491 bfd_boolean ret;
1492
1493 table->dynamic_sections_created = FALSE;
1494 table->dynobj = NULL;
1495 /* Make sure can_refcount is extended to the width and signedness of
1496 init_refcount before we subtract one from it. */
1497 table->init_refcount.refcount = get_elf_backend_data (abfd)->can_refcount;
1498 table->init_refcount.refcount -= 1;
1499 table->init_offset.offset = -(bfd_vma) 1;
1500 /* The first dynamic symbol is a dummy. */
1501 table->dynsymcount = 1;
1502 table->dynstr = NULL;
1503 table->bucketcount = 0;
1504 table->needed = NULL;
1505 table->hgot = NULL;
1506 table->merge_info = NULL;
1507 memset (&table->stab_info, 0, sizeof (table->stab_info));
1508 memset (&table->eh_info, 0, sizeof (table->eh_info));
1509 table->dynlocal = NULL;
1510 table->runpath = NULL;
1511 table->tls_sec = NULL;
1512 table->tls_size = 0;
1513 table->loaded = NULL;
1514
1515 ret = _bfd_link_hash_table_init (&table->root, abfd, newfunc);
1516 table->root.type = bfd_link_elf_hash_table;
1517
1518 return ret;
1519 }
1520
1521 /* Create an ELF linker hash table. */
1522
1523 struct bfd_link_hash_table *
1524 _bfd_elf_link_hash_table_create (bfd *abfd)
1525 {
1526 struct elf_link_hash_table *ret;
1527 bfd_size_type amt = sizeof (struct elf_link_hash_table);
1528
1529 ret = bfd_malloc (amt);
1530 if (ret == NULL)
1531 return NULL;
1532
1533 if (! _bfd_elf_link_hash_table_init (ret, abfd, _bfd_elf_link_hash_newfunc))
1534 {
1535 free (ret);
1536 return NULL;
1537 }
1538
1539 return &ret->root;
1540 }
1541
1542 /* This is a hook for the ELF emulation code in the generic linker to
1543 tell the backend linker what file name to use for the DT_NEEDED
1544 entry for a dynamic object. */
1545
1546 void
1547 bfd_elf_set_dt_needed_name (bfd *abfd, const char *name)
1548 {
1549 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1550 && bfd_get_format (abfd) == bfd_object)
1551 elf_dt_name (abfd) = name;
1552 }
1553
1554 int
1555 bfd_elf_get_dyn_lib_class (bfd *abfd)
1556 {
1557 int lib_class;
1558 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1559 && bfd_get_format (abfd) == bfd_object)
1560 lib_class = elf_dyn_lib_class (abfd);
1561 else
1562 lib_class = 0;
1563 return lib_class;
1564 }
1565
1566 void
1567 bfd_elf_set_dyn_lib_class (bfd *abfd, int lib_class)
1568 {
1569 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1570 && bfd_get_format (abfd) == bfd_object)
1571 elf_dyn_lib_class (abfd) = lib_class;
1572 }
1573
1574 /* Get the list of DT_NEEDED entries for a link. This is a hook for
1575 the linker ELF emulation code. */
1576
1577 struct bfd_link_needed_list *
1578 bfd_elf_get_needed_list (bfd *abfd ATTRIBUTE_UNUSED,
1579 struct bfd_link_info *info)
1580 {
1581 if (! is_elf_hash_table (info->hash))
1582 return NULL;
1583 return elf_hash_table (info)->needed;
1584 }
1585
1586 /* Get the list of DT_RPATH/DT_RUNPATH entries for a link. This is a
1587 hook for the linker ELF emulation code. */
1588
1589 struct bfd_link_needed_list *
1590 bfd_elf_get_runpath_list (bfd *abfd ATTRIBUTE_UNUSED,
1591 struct bfd_link_info *info)
1592 {
1593 if (! is_elf_hash_table (info->hash))
1594 return NULL;
1595 return elf_hash_table (info)->runpath;
1596 }
1597
1598 /* Get the name actually used for a dynamic object for a link. This
1599 is the SONAME entry if there is one. Otherwise, it is the string
1600 passed to bfd_elf_set_dt_needed_name, or it is the filename. */
1601
1602 const char *
1603 bfd_elf_get_dt_soname (bfd *abfd)
1604 {
1605 if (bfd_get_flavour (abfd) == bfd_target_elf_flavour
1606 && bfd_get_format (abfd) == bfd_object)
1607 return elf_dt_name (abfd);
1608 return NULL;
1609 }
1610
1611 /* Get the list of DT_NEEDED entries from a BFD. This is a hook for
1612 the ELF linker emulation code. */
1613
1614 bfd_boolean
1615 bfd_elf_get_bfd_needed_list (bfd *abfd,
1616 struct bfd_link_needed_list **pneeded)
1617 {
1618 asection *s;
1619 bfd_byte *dynbuf = NULL;
1620 int elfsec;
1621 unsigned long shlink;
1622 bfd_byte *extdyn, *extdynend;
1623 size_t extdynsize;
1624 void (*swap_dyn_in) (bfd *, const void *, Elf_Internal_Dyn *);
1625
1626 *pneeded = NULL;
1627
1628 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour
1629 || bfd_get_format (abfd) != bfd_object)
1630 return TRUE;
1631
1632 s = bfd_get_section_by_name (abfd, ".dynamic");
1633 if (s == NULL || s->size == 0)
1634 return TRUE;
1635
1636 if (!bfd_malloc_and_get_section (abfd, s, &dynbuf))
1637 goto error_return;
1638
1639 elfsec = _bfd_elf_section_from_bfd_section (abfd, s);
1640 if (elfsec == -1)
1641 goto error_return;
1642
1643 shlink = elf_elfsections (abfd)[elfsec]->sh_link;
1644
1645 extdynsize = get_elf_backend_data (abfd)->s->sizeof_dyn;
1646 swap_dyn_in = get_elf_backend_data (abfd)->s->swap_dyn_in;
1647
1648 extdyn = dynbuf;
1649 extdynend = extdyn + s->size;
1650 for (; extdyn < extdynend; extdyn += extdynsize)
1651 {
1652 Elf_Internal_Dyn dyn;
1653
1654 (*swap_dyn_in) (abfd, extdyn, &dyn);
1655
1656 if (dyn.d_tag == DT_NULL)
1657 break;
1658
1659 if (dyn.d_tag == DT_NEEDED)
1660 {
1661 const char *string;
1662 struct bfd_link_needed_list *l;
1663 unsigned int tagv = dyn.d_un.d_val;
1664 bfd_size_type amt;
1665
1666 string = bfd_elf_string_from_elf_section (abfd, shlink, tagv);
1667 if (string == NULL)
1668 goto error_return;
1669
1670 amt = sizeof *l;
1671 l = bfd_alloc (abfd, amt);
1672 if (l == NULL)
1673 goto error_return;
1674
1675 l->by = abfd;
1676 l->name = string;
1677 l->next = *pneeded;
1678 *pneeded = l;
1679 }
1680 }
1681
1682 free (dynbuf);
1683
1684 return TRUE;
1685
1686 error_return:
1687 if (dynbuf != NULL)
1688 free (dynbuf);
1689 return FALSE;
1690 }
1691 \f
1692 /* Allocate an ELF string table--force the first byte to be zero. */
1693
1694 struct bfd_strtab_hash *
1695 _bfd_elf_stringtab_init (void)
1696 {
1697 struct bfd_strtab_hash *ret;
1698
1699 ret = _bfd_stringtab_init ();
1700 if (ret != NULL)
1701 {
1702 bfd_size_type loc;
1703
1704 loc = _bfd_stringtab_add (ret, "", TRUE, FALSE);
1705 BFD_ASSERT (loc == 0 || loc == (bfd_size_type) -1);
1706 if (loc == (bfd_size_type) -1)
1707 {
1708 _bfd_stringtab_free (ret);
1709 ret = NULL;
1710 }
1711 }
1712 return ret;
1713 }
1714 \f
1715 /* ELF .o/exec file reading */
1716
1717 /* Create a new bfd section from an ELF section header. */
1718
1719 bfd_boolean
1720 bfd_section_from_shdr (bfd *abfd, unsigned int shindex)
1721 {
1722 Elf_Internal_Shdr *hdr = elf_elfsections (abfd)[shindex];
1723 Elf_Internal_Ehdr *ehdr = elf_elfheader (abfd);
1724 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
1725 const char *name;
1726
1727 name = elf_string_from_elf_strtab (abfd, hdr->sh_name);
1728
1729 switch (hdr->sh_type)
1730 {
1731 case SHT_NULL:
1732 /* Inactive section. Throw it away. */
1733 return TRUE;
1734
1735 case SHT_PROGBITS: /* Normal section with contents. */
1736 case SHT_NOBITS: /* .bss section. */
1737 case SHT_HASH: /* .hash section. */
1738 case SHT_NOTE: /* .note section. */
1739 case SHT_INIT_ARRAY: /* .init_array section. */
1740 case SHT_FINI_ARRAY: /* .fini_array section. */
1741 case SHT_PREINIT_ARRAY: /* .preinit_array section. */
1742 case SHT_GNU_LIBLIST: /* .gnu.liblist section. */
1743 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1744
1745 case SHT_DYNAMIC: /* Dynamic linking information. */
1746 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1747 return FALSE;
1748 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_STRTAB)
1749 {
1750 Elf_Internal_Shdr *dynsymhdr;
1751
1752 /* The shared libraries distributed with hpux11 have a bogus
1753 sh_link field for the ".dynamic" section. Find the
1754 string table for the ".dynsym" section instead. */
1755 if (elf_dynsymtab (abfd) != 0)
1756 {
1757 dynsymhdr = elf_elfsections (abfd)[elf_dynsymtab (abfd)];
1758 hdr->sh_link = dynsymhdr->sh_link;
1759 }
1760 else
1761 {
1762 unsigned int i, num_sec;
1763
1764 num_sec = elf_numsections (abfd);
1765 for (i = 1; i < num_sec; i++)
1766 {
1767 dynsymhdr = elf_elfsections (abfd)[i];
1768 if (dynsymhdr->sh_type == SHT_DYNSYM)
1769 {
1770 hdr->sh_link = dynsymhdr->sh_link;
1771 break;
1772 }
1773 }
1774 }
1775 }
1776 break;
1777
1778 case SHT_SYMTAB: /* A symbol table */
1779 if (elf_onesymtab (abfd) == shindex)
1780 return TRUE;
1781
1782 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1783 BFD_ASSERT (elf_onesymtab (abfd) == 0);
1784 elf_onesymtab (abfd) = shindex;
1785 elf_tdata (abfd)->symtab_hdr = *hdr;
1786 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->symtab_hdr;
1787 abfd->flags |= HAS_SYMS;
1788
1789 /* Sometimes a shared object will map in the symbol table. If
1790 SHF_ALLOC is set, and this is a shared object, then we also
1791 treat this section as a BFD section. We can not base the
1792 decision purely on SHF_ALLOC, because that flag is sometimes
1793 set in a relocatable object file, which would confuse the
1794 linker. */
1795 if ((hdr->sh_flags & SHF_ALLOC) != 0
1796 && (abfd->flags & DYNAMIC) != 0
1797 && ! _bfd_elf_make_section_from_shdr (abfd, hdr, name))
1798 return FALSE;
1799
1800 return TRUE;
1801
1802 case SHT_DYNSYM: /* A dynamic symbol table */
1803 if (elf_dynsymtab (abfd) == shindex)
1804 return TRUE;
1805
1806 BFD_ASSERT (hdr->sh_entsize == bed->s->sizeof_sym);
1807 BFD_ASSERT (elf_dynsymtab (abfd) == 0);
1808 elf_dynsymtab (abfd) = shindex;
1809 elf_tdata (abfd)->dynsymtab_hdr = *hdr;
1810 elf_elfsections (abfd)[shindex] = hdr = &elf_tdata (abfd)->dynsymtab_hdr;
1811 abfd->flags |= HAS_SYMS;
1812
1813 /* Besides being a symbol table, we also treat this as a regular
1814 section, so that objcopy can handle it. */
1815 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1816
1817 case SHT_SYMTAB_SHNDX: /* Symbol section indices when >64k sections */
1818 if (elf_symtab_shndx (abfd) == shindex)
1819 return TRUE;
1820
1821 /* Get the associated symbol table. */
1822 if (! bfd_section_from_shdr (abfd, hdr->sh_link)
1823 || hdr->sh_link != elf_onesymtab (abfd))
1824 return FALSE;
1825
1826 elf_symtab_shndx (abfd) = shindex;
1827 elf_tdata (abfd)->symtab_shndx_hdr = *hdr;
1828 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->symtab_shndx_hdr;
1829 return TRUE;
1830
1831 case SHT_STRTAB: /* A string table */
1832 if (hdr->bfd_section != NULL)
1833 return TRUE;
1834 if (ehdr->e_shstrndx == shindex)
1835 {
1836 elf_tdata (abfd)->shstrtab_hdr = *hdr;
1837 elf_elfsections (abfd)[shindex] = &elf_tdata (abfd)->shstrtab_hdr;
1838 return TRUE;
1839 }
1840 {
1841 unsigned int i, num_sec;
1842
1843 num_sec = elf_numsections (abfd);
1844 for (i = 1; i < num_sec; i++)
1845 {
1846 Elf_Internal_Shdr *hdr2 = elf_elfsections (abfd)[i];
1847 if (hdr2->sh_link == shindex)
1848 {
1849 if (! bfd_section_from_shdr (abfd, i))
1850 return FALSE;
1851 if (elf_onesymtab (abfd) == i)
1852 {
1853 elf_tdata (abfd)->strtab_hdr = *hdr;
1854 elf_elfsections (abfd)[shindex] =
1855 &elf_tdata (abfd)->strtab_hdr;
1856 return TRUE;
1857 }
1858 if (elf_dynsymtab (abfd) == i)
1859 {
1860 elf_tdata (abfd)->dynstrtab_hdr = *hdr;
1861 elf_elfsections (abfd)[shindex] = hdr =
1862 &elf_tdata (abfd)->dynstrtab_hdr;
1863 /* We also treat this as a regular section, so
1864 that objcopy can handle it. */
1865 break;
1866 }
1867 #if 0 /* Not handling other string tables specially right now. */
1868 hdr2 = elf_elfsections (abfd)[i]; /* in case it moved */
1869 /* We have a strtab for some random other section. */
1870 newsect = (asection *) hdr2->bfd_section;
1871 if (!newsect)
1872 break;
1873 hdr->bfd_section = newsect;
1874 hdr2 = &elf_section_data (newsect)->str_hdr;
1875 *hdr2 = *hdr;
1876 elf_elfsections (abfd)[shindex] = hdr2;
1877 #endif
1878 }
1879 }
1880 }
1881
1882 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1883
1884 case SHT_REL:
1885 case SHT_RELA:
1886 /* *These* do a lot of work -- but build no sections! */
1887 {
1888 asection *target_sect;
1889 Elf_Internal_Shdr *hdr2;
1890 unsigned int num_sec = elf_numsections (abfd);
1891
1892 /* Check for a bogus link to avoid crashing. */
1893 if ((hdr->sh_link >= SHN_LORESERVE && hdr->sh_link <= SHN_HIRESERVE)
1894 || hdr->sh_link >= num_sec)
1895 {
1896 ((*_bfd_error_handler)
1897 (_("%B: invalid link %lu for reloc section %s (index %u)"),
1898 abfd, hdr->sh_link, name, shindex));
1899 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1900 }
1901
1902 /* For some incomprehensible reason Oracle distributes
1903 libraries for Solaris in which some of the objects have
1904 bogus sh_link fields. It would be nice if we could just
1905 reject them, but, unfortunately, some people need to use
1906 them. We scan through the section headers; if we find only
1907 one suitable symbol table, we clobber the sh_link to point
1908 to it. I hope this doesn't break anything. */
1909 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_SYMTAB
1910 && elf_elfsections (abfd)[hdr->sh_link]->sh_type != SHT_DYNSYM)
1911 {
1912 unsigned int scan;
1913 int found;
1914
1915 found = 0;
1916 for (scan = 1; scan < num_sec; scan++)
1917 {
1918 if (elf_elfsections (abfd)[scan]->sh_type == SHT_SYMTAB
1919 || elf_elfsections (abfd)[scan]->sh_type == SHT_DYNSYM)
1920 {
1921 if (found != 0)
1922 {
1923 found = 0;
1924 break;
1925 }
1926 found = scan;
1927 }
1928 }
1929 if (found != 0)
1930 hdr->sh_link = found;
1931 }
1932
1933 /* Get the symbol table. */
1934 if (elf_elfsections (abfd)[hdr->sh_link]->sh_type == SHT_SYMTAB
1935 && ! bfd_section_from_shdr (abfd, hdr->sh_link))
1936 return FALSE;
1937
1938 /* If this reloc section does not use the main symbol table we
1939 don't treat it as a reloc section. BFD can't adequately
1940 represent such a section, so at least for now, we don't
1941 try. We just present it as a normal section. We also
1942 can't use it as a reloc section if it points to the null
1943 section. */
1944 if (hdr->sh_link != elf_onesymtab (abfd) || hdr->sh_info == SHN_UNDEF)
1945 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1946
1947 if (! bfd_section_from_shdr (abfd, hdr->sh_info))
1948 return FALSE;
1949 target_sect = bfd_section_from_elf_index (abfd, hdr->sh_info);
1950 if (target_sect == NULL)
1951 return FALSE;
1952
1953 if ((target_sect->flags & SEC_RELOC) == 0
1954 || target_sect->reloc_count == 0)
1955 hdr2 = &elf_section_data (target_sect)->rel_hdr;
1956 else
1957 {
1958 bfd_size_type amt;
1959 BFD_ASSERT (elf_section_data (target_sect)->rel_hdr2 == NULL);
1960 amt = sizeof (*hdr2);
1961 hdr2 = bfd_alloc (abfd, amt);
1962 elf_section_data (target_sect)->rel_hdr2 = hdr2;
1963 }
1964 *hdr2 = *hdr;
1965 elf_elfsections (abfd)[shindex] = hdr2;
1966 target_sect->reloc_count += NUM_SHDR_ENTRIES (hdr);
1967 target_sect->flags |= SEC_RELOC;
1968 target_sect->relocation = NULL;
1969 target_sect->rel_filepos = hdr->sh_offset;
1970 /* In the section to which the relocations apply, mark whether
1971 its relocations are of the REL or RELA variety. */
1972 if (hdr->sh_size != 0)
1973 target_sect->use_rela_p = hdr->sh_type == SHT_RELA;
1974 abfd->flags |= HAS_RELOC;
1975 return TRUE;
1976 }
1977 break;
1978
1979 case SHT_GNU_verdef:
1980 elf_dynverdef (abfd) = shindex;
1981 elf_tdata (abfd)->dynverdef_hdr = *hdr;
1982 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1983 break;
1984
1985 case SHT_GNU_versym:
1986 elf_dynversym (abfd) = shindex;
1987 elf_tdata (abfd)->dynversym_hdr = *hdr;
1988 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1989 break;
1990
1991 case SHT_GNU_verneed:
1992 elf_dynverref (abfd) = shindex;
1993 elf_tdata (abfd)->dynverref_hdr = *hdr;
1994 return _bfd_elf_make_section_from_shdr (abfd, hdr, name);
1995 break;
1996
1997 case SHT_SHLIB:
1998 return TRUE;
1999
2000 case SHT_GROUP:
2001 /* We need a BFD section for objcopy and relocatable linking,
2002 and it's handy to have the signature available as the section
2003 name. */
2004 name = group_signature (abfd, hdr);
2005 if (name == NULL)
2006 return FALSE;
2007 if (!_bfd_elf_make_section_from_shdr (abfd, hdr, name))
2008 return FALSE;
2009 if (hdr->contents != NULL)
2010 {
2011 Elf_Internal_Group *idx = (Elf_Internal_Group *) hdr->contents;
2012 unsigned int n_elt = hdr->sh_size / 4;
2013 asection *s;
2014
2015 if (idx->flags & GRP_COMDAT)
2016 hdr->bfd_section->flags
2017 |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_DISCARD;
2018
2019 /* We try to keep the same section order as it comes in. */
2020 idx += n_elt;
2021 while (--n_elt != 0)
2022 if ((s = (--idx)->shdr->bfd_section) != NULL
2023 && elf_next_in_group (s) != NULL)
2024 {
2025 elf_next_in_group (hdr->bfd_section) = s;
2026 break;
2027 }
2028 }
2029 break;
2030
2031 default:
2032 /* Check for any processor-specific section types. */
2033 {
2034 if (bed->elf_backend_section_from_shdr)
2035 (*bed->elf_backend_section_from_shdr) (abfd, hdr, name);
2036 }
2037 break;
2038 }
2039
2040 return TRUE;
2041 }
2042
2043 /* Return the section for the local symbol specified by ABFD, R_SYMNDX.
2044 Return SEC for sections that have no elf section, and NULL on error. */
2045
2046 asection *
2047 bfd_section_from_r_symndx (bfd *abfd,
2048 struct sym_sec_cache *cache,
2049 asection *sec,
2050 unsigned long r_symndx)
2051 {
2052 Elf_Internal_Shdr *symtab_hdr;
2053 unsigned char esym[sizeof (Elf64_External_Sym)];
2054 Elf_External_Sym_Shndx eshndx;
2055 Elf_Internal_Sym isym;
2056 unsigned int ent = r_symndx % LOCAL_SYM_CACHE_SIZE;
2057
2058 if (cache->abfd == abfd && cache->indx[ent] == r_symndx)
2059 return cache->sec[ent];
2060
2061 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
2062 if (bfd_elf_get_elf_syms (abfd, symtab_hdr, 1, r_symndx,
2063 &isym, esym, &eshndx) == NULL)
2064 return NULL;
2065
2066 if (cache->abfd != abfd)
2067 {
2068 memset (cache->indx, -1, sizeof (cache->indx));
2069 cache->abfd = abfd;
2070 }
2071 cache->indx[ent] = r_symndx;
2072 cache->sec[ent] = sec;
2073 if ((isym.st_shndx != SHN_UNDEF && isym.st_shndx < SHN_LORESERVE)
2074 || isym.st_shndx > SHN_HIRESERVE)
2075 {
2076 asection *s;
2077 s = bfd_section_from_elf_index (abfd, isym.st_shndx);
2078 if (s != NULL)
2079 cache->sec[ent] = s;
2080 }
2081 return cache->sec[ent];
2082 }
2083
2084 /* Given an ELF section number, retrieve the corresponding BFD
2085 section. */
2086
2087 asection *
2088 bfd_section_from_elf_index (bfd *abfd, unsigned int index)
2089 {
2090 if (index >= elf_numsections (abfd))
2091 return NULL;
2092 return elf_elfsections (abfd)[index]->bfd_section;
2093 }
2094
2095 static struct bfd_elf_special_section const special_sections[] =
2096 {
2097 { ".bss", 4, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2098 { ".gnu.linkonce.b",15, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE },
2099 { ".comment", 8, 0, SHT_PROGBITS, 0 },
2100 { ".data", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2101 { ".data1", 6, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2102 { ".debug", 6, 0, SHT_PROGBITS, 0 },
2103 { ".fini", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2104 { ".init", 5, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2105 { ".line", 5, 0, SHT_PROGBITS, 0 },
2106 { ".rodata", 7, -2, SHT_PROGBITS, SHF_ALLOC },
2107 { ".rodata1", 8, 0, SHT_PROGBITS, SHF_ALLOC },
2108 { ".tbss", 5, -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2109 { ".tdata", 6, -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_TLS },
2110 { ".text", 5, -2, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2111 { ".init_array", 11, 0, SHT_INIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2112 { ".fini_array", 11, 0, SHT_FINI_ARRAY, SHF_ALLOC + SHF_WRITE },
2113 { ".preinit_array", 14, 0, SHT_PREINIT_ARRAY, SHF_ALLOC + SHF_WRITE },
2114 { ".debug_line", 11, 0, SHT_PROGBITS, 0 },
2115 { ".debug_info", 11, 0, SHT_PROGBITS, 0 },
2116 { ".debug_abbrev", 13, 0, SHT_PROGBITS, 0 },
2117 { ".debug_aranges", 14, 0, SHT_PROGBITS, 0 },
2118 { ".dynamic", 8, 0, SHT_DYNAMIC, SHF_ALLOC },
2119 { ".dynstr", 7, 0, SHT_STRTAB, SHF_ALLOC },
2120 { ".dynsym", 7, 0, SHT_DYNSYM, SHF_ALLOC },
2121 { ".got", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE },
2122 { ".hash", 5, 0, SHT_HASH, SHF_ALLOC },
2123 { ".interp", 7, 0, SHT_PROGBITS, 0 },
2124 { ".plt", 4, 0, SHT_PROGBITS, SHF_ALLOC + SHF_EXECINSTR },
2125 { ".shstrtab", 9, 0, SHT_STRTAB, 0 },
2126 { ".strtab", 7, 0, SHT_STRTAB, 0 },
2127 { ".symtab", 7, 0, SHT_SYMTAB, 0 },
2128 { ".gnu.version", 12, 0, SHT_GNU_versym, 0 },
2129 { ".gnu.version_d", 14, 0, SHT_GNU_verdef, 0 },
2130 { ".gnu.version_r", 14, 0, SHT_GNU_verneed, 0 },
2131 { ".note.GNU-stack",15, 0, SHT_PROGBITS, 0 },
2132 { ".note", 5, -1, SHT_NOTE, 0 },
2133 { ".rela", 5, -1, SHT_RELA, 0 },
2134 { ".rel", 4, -1, SHT_REL, 0 },
2135 { ".stabstr", 5, 3, SHT_STRTAB, 0 },
2136 { ".gnu.liblist", 12, 0, SHT_GNU_LIBLIST, SHF_ALLOC },
2137 { ".gnu.conflict", 13, 0, SHT_RELA, SHF_ALLOC },
2138 { NULL, 0, 0, 0, 0 }
2139 };
2140
2141 static const struct bfd_elf_special_section *
2142 get_special_section (const char *name,
2143 const struct bfd_elf_special_section *special_sections,
2144 unsigned int rela)
2145 {
2146 int i;
2147 int len = strlen (name);
2148
2149 for (i = 0; special_sections[i].prefix != NULL; i++)
2150 {
2151 int suffix_len;
2152 int prefix_len = special_sections[i].prefix_length;
2153
2154 if (len < prefix_len)
2155 continue;
2156 if (memcmp (name, special_sections[i].prefix, prefix_len) != 0)
2157 continue;
2158
2159 suffix_len = special_sections[i].suffix_length;
2160 if (suffix_len <= 0)
2161 {
2162 if (name[prefix_len] != 0)
2163 {
2164 if (suffix_len == 0)
2165 continue;
2166 if (name[prefix_len] != '.'
2167 && (suffix_len == -2
2168 || (rela && special_sections[i].type == SHT_REL)))
2169 continue;
2170 }
2171 }
2172 else
2173 {
2174 if (len < prefix_len + suffix_len)
2175 continue;
2176 if (memcmp (name + len - suffix_len,
2177 special_sections[i].prefix + prefix_len,
2178 suffix_len) != 0)
2179 continue;
2180 }
2181 return &special_sections[i];
2182 }
2183
2184 return NULL;
2185 }
2186
2187 const struct bfd_elf_special_section *
2188 _bfd_elf_get_sec_type_attr (bfd *abfd, const char *name)
2189 {
2190 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2191 const struct bfd_elf_special_section *ssect = NULL;
2192
2193 /* See if this is one of the special sections. */
2194 if (name)
2195 {
2196 unsigned int rela = bed->default_use_rela_p;
2197
2198 if (bed->special_sections)
2199 ssect = get_special_section (name, bed->special_sections, rela);
2200
2201 if (! ssect)
2202 ssect = get_special_section (name, special_sections, rela);
2203 }
2204
2205 return ssect;
2206 }
2207
2208 bfd_boolean
2209 _bfd_elf_new_section_hook (bfd *abfd, asection *sec)
2210 {
2211 struct bfd_elf_section_data *sdata;
2212 const struct bfd_elf_special_section *ssect;
2213
2214 sdata = (struct bfd_elf_section_data *) sec->used_by_bfd;
2215 if (sdata == NULL)
2216 {
2217 sdata = bfd_zalloc (abfd, sizeof (*sdata));
2218 if (sdata == NULL)
2219 return FALSE;
2220 sec->used_by_bfd = sdata;
2221 }
2222
2223 elf_section_type (sec) = SHT_NULL;
2224 ssect = _bfd_elf_get_sec_type_attr (abfd, sec->name);
2225 if (ssect != NULL)
2226 {
2227 elf_section_type (sec) = ssect->type;
2228 elf_section_flags (sec) = ssect->attr;
2229 }
2230
2231 /* Indicate whether or not this section should use RELA relocations. */
2232 sec->use_rela_p = get_elf_backend_data (abfd)->default_use_rela_p;
2233
2234 return TRUE;
2235 }
2236
2237 /* Create a new bfd section from an ELF program header.
2238
2239 Since program segments have no names, we generate a synthetic name
2240 of the form segment<NUM>, where NUM is generally the index in the
2241 program header table. For segments that are split (see below) we
2242 generate the names segment<NUM>a and segment<NUM>b.
2243
2244 Note that some program segments may have a file size that is different than
2245 (less than) the memory size. All this means is that at execution the
2246 system must allocate the amount of memory specified by the memory size,
2247 but only initialize it with the first "file size" bytes read from the
2248 file. This would occur for example, with program segments consisting
2249 of combined data+bss.
2250
2251 To handle the above situation, this routine generates TWO bfd sections
2252 for the single program segment. The first has the length specified by
2253 the file size of the segment, and the second has the length specified
2254 by the difference between the two sizes. In effect, the segment is split
2255 into it's initialized and uninitialized parts.
2256
2257 */
2258
2259 bfd_boolean
2260 _bfd_elf_make_section_from_phdr (bfd *abfd,
2261 Elf_Internal_Phdr *hdr,
2262 int index,
2263 const char *typename)
2264 {
2265 asection *newsect;
2266 char *name;
2267 char namebuf[64];
2268 size_t len;
2269 int split;
2270
2271 split = ((hdr->p_memsz > 0)
2272 && (hdr->p_filesz > 0)
2273 && (hdr->p_memsz > hdr->p_filesz));
2274 sprintf (namebuf, "%s%d%s", typename, index, split ? "a" : "");
2275 len = strlen (namebuf) + 1;
2276 name = bfd_alloc (abfd, len);
2277 if (!name)
2278 return FALSE;
2279 memcpy (name, namebuf, len);
2280 newsect = bfd_make_section (abfd, name);
2281 if (newsect == NULL)
2282 return FALSE;
2283 newsect->vma = hdr->p_vaddr;
2284 newsect->lma = hdr->p_paddr;
2285 newsect->size = hdr->p_filesz;
2286 newsect->filepos = hdr->p_offset;
2287 newsect->flags |= SEC_HAS_CONTENTS;
2288 newsect->alignment_power = bfd_log2 (hdr->p_align);
2289 if (hdr->p_type == PT_LOAD)
2290 {
2291 newsect->flags |= SEC_ALLOC;
2292 newsect->flags |= SEC_LOAD;
2293 if (hdr->p_flags & PF_X)
2294 {
2295 /* FIXME: all we known is that it has execute PERMISSION,
2296 may be data. */
2297 newsect->flags |= SEC_CODE;
2298 }
2299 }
2300 if (!(hdr->p_flags & PF_W))
2301 {
2302 newsect->flags |= SEC_READONLY;
2303 }
2304
2305 if (split)
2306 {
2307 sprintf (namebuf, "%s%db", typename, index);
2308 len = strlen (namebuf) + 1;
2309 name = bfd_alloc (abfd, len);
2310 if (!name)
2311 return FALSE;
2312 memcpy (name, namebuf, len);
2313 newsect = bfd_make_section (abfd, name);
2314 if (newsect == NULL)
2315 return FALSE;
2316 newsect->vma = hdr->p_vaddr + hdr->p_filesz;
2317 newsect->lma = hdr->p_paddr + hdr->p_filesz;
2318 newsect->size = hdr->p_memsz - hdr->p_filesz;
2319 if (hdr->p_type == PT_LOAD)
2320 {
2321 newsect->flags |= SEC_ALLOC;
2322 if (hdr->p_flags & PF_X)
2323 newsect->flags |= SEC_CODE;
2324 }
2325 if (!(hdr->p_flags & PF_W))
2326 newsect->flags |= SEC_READONLY;
2327 }
2328
2329 return TRUE;
2330 }
2331
2332 bfd_boolean
2333 bfd_section_from_phdr (bfd *abfd, Elf_Internal_Phdr *hdr, int index)
2334 {
2335 const struct elf_backend_data *bed;
2336
2337 switch (hdr->p_type)
2338 {
2339 case PT_NULL:
2340 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "null");
2341
2342 case PT_LOAD:
2343 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "load");
2344
2345 case PT_DYNAMIC:
2346 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "dynamic");
2347
2348 case PT_INTERP:
2349 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "interp");
2350
2351 case PT_NOTE:
2352 if (! _bfd_elf_make_section_from_phdr (abfd, hdr, index, "note"))
2353 return FALSE;
2354 if (! elfcore_read_notes (abfd, hdr->p_offset, hdr->p_filesz))
2355 return FALSE;
2356 return TRUE;
2357
2358 case PT_SHLIB:
2359 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "shlib");
2360
2361 case PT_PHDR:
2362 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "phdr");
2363
2364 case PT_GNU_EH_FRAME:
2365 return _bfd_elf_make_section_from_phdr (abfd, hdr, index,
2366 "eh_frame_hdr");
2367
2368 case PT_GNU_STACK:
2369 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "stack");
2370
2371 case PT_GNU_RELRO:
2372 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "relro");
2373
2374 default:
2375 /* Check for any processor-specific program segment types.
2376 If no handler for them, default to making "segment" sections. */
2377 bed = get_elf_backend_data (abfd);
2378 if (bed->elf_backend_section_from_phdr)
2379 return (*bed->elf_backend_section_from_phdr) (abfd, hdr, index);
2380 else
2381 return _bfd_elf_make_section_from_phdr (abfd, hdr, index, "segment");
2382 }
2383 }
2384
2385 /* Initialize REL_HDR, the section-header for new section, containing
2386 relocations against ASECT. If USE_RELA_P is TRUE, we use RELA
2387 relocations; otherwise, we use REL relocations. */
2388
2389 bfd_boolean
2390 _bfd_elf_init_reloc_shdr (bfd *abfd,
2391 Elf_Internal_Shdr *rel_hdr,
2392 asection *asect,
2393 bfd_boolean use_rela_p)
2394 {
2395 char *name;
2396 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2397 bfd_size_type amt = sizeof ".rela" + strlen (asect->name);
2398
2399 name = bfd_alloc (abfd, amt);
2400 if (name == NULL)
2401 return FALSE;
2402 sprintf (name, "%s%s", use_rela_p ? ".rela" : ".rel", asect->name);
2403 rel_hdr->sh_name =
2404 (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd), name,
2405 FALSE);
2406 if (rel_hdr->sh_name == (unsigned int) -1)
2407 return FALSE;
2408 rel_hdr->sh_type = use_rela_p ? SHT_RELA : SHT_REL;
2409 rel_hdr->sh_entsize = (use_rela_p
2410 ? bed->s->sizeof_rela
2411 : bed->s->sizeof_rel);
2412 rel_hdr->sh_addralign = 1 << bed->s->log_file_align;
2413 rel_hdr->sh_flags = 0;
2414 rel_hdr->sh_addr = 0;
2415 rel_hdr->sh_size = 0;
2416 rel_hdr->sh_offset = 0;
2417
2418 return TRUE;
2419 }
2420
2421 /* Set up an ELF internal section header for a section. */
2422
2423 static void
2424 elf_fake_sections (bfd *abfd, asection *asect, void *failedptrarg)
2425 {
2426 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
2427 bfd_boolean *failedptr = failedptrarg;
2428 Elf_Internal_Shdr *this_hdr;
2429
2430 if (*failedptr)
2431 {
2432 /* We already failed; just get out of the bfd_map_over_sections
2433 loop. */
2434 return;
2435 }
2436
2437 this_hdr = &elf_section_data (asect)->this_hdr;
2438
2439 this_hdr->sh_name = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2440 asect->name, FALSE);
2441 if (this_hdr->sh_name == (unsigned int) -1)
2442 {
2443 *failedptr = TRUE;
2444 return;
2445 }
2446
2447 this_hdr->sh_flags = 0;
2448
2449 if ((asect->flags & SEC_ALLOC) != 0
2450 || asect->user_set_vma)
2451 this_hdr->sh_addr = asect->vma;
2452 else
2453 this_hdr->sh_addr = 0;
2454
2455 this_hdr->sh_offset = 0;
2456 this_hdr->sh_size = asect->size;
2457 this_hdr->sh_link = 0;
2458 this_hdr->sh_addralign = 1 << asect->alignment_power;
2459 /* The sh_entsize and sh_info fields may have been set already by
2460 copy_private_section_data. */
2461
2462 this_hdr->bfd_section = asect;
2463 this_hdr->contents = NULL;
2464
2465 /* If the section type is unspecified, we set it based on
2466 asect->flags. */
2467 if (this_hdr->sh_type == SHT_NULL)
2468 {
2469 if ((asect->flags & SEC_GROUP) != 0)
2470 {
2471 /* We also need to mark SHF_GROUP here for relocatable
2472 link. */
2473 struct bfd_link_order *l;
2474 asection *elt;
2475
2476 for (l = asect->link_order_head; l != NULL; l = l->next)
2477 if (l->type == bfd_indirect_link_order
2478 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2479 do
2480 {
2481 /* The name is not important. Anything will do. */
2482 elf_group_name (elt->output_section) = "G";
2483 elf_section_flags (elt->output_section) |= SHF_GROUP;
2484
2485 elt = elf_next_in_group (elt);
2486 /* During a relocatable link, the lists are
2487 circular. */
2488 }
2489 while (elt != elf_next_in_group (l->u.indirect.section));
2490
2491 this_hdr->sh_type = SHT_GROUP;
2492 }
2493 else if ((asect->flags & SEC_ALLOC) != 0
2494 && (((asect->flags & (SEC_LOAD | SEC_HAS_CONTENTS)) == 0)
2495 || (asect->flags & SEC_NEVER_LOAD) != 0))
2496 this_hdr->sh_type = SHT_NOBITS;
2497 else
2498 this_hdr->sh_type = SHT_PROGBITS;
2499 }
2500
2501 switch (this_hdr->sh_type)
2502 {
2503 default:
2504 break;
2505
2506 case SHT_STRTAB:
2507 case SHT_INIT_ARRAY:
2508 case SHT_FINI_ARRAY:
2509 case SHT_PREINIT_ARRAY:
2510 case SHT_NOTE:
2511 case SHT_NOBITS:
2512 case SHT_PROGBITS:
2513 break;
2514
2515 case SHT_HASH:
2516 this_hdr->sh_entsize = bed->s->sizeof_hash_entry;
2517 break;
2518
2519 case SHT_DYNSYM:
2520 this_hdr->sh_entsize = bed->s->sizeof_sym;
2521 break;
2522
2523 case SHT_DYNAMIC:
2524 this_hdr->sh_entsize = bed->s->sizeof_dyn;
2525 break;
2526
2527 case SHT_RELA:
2528 if (get_elf_backend_data (abfd)->may_use_rela_p)
2529 this_hdr->sh_entsize = bed->s->sizeof_rela;
2530 break;
2531
2532 case SHT_REL:
2533 if (get_elf_backend_data (abfd)->may_use_rel_p)
2534 this_hdr->sh_entsize = bed->s->sizeof_rel;
2535 break;
2536
2537 case SHT_GNU_versym:
2538 this_hdr->sh_entsize = sizeof (Elf_External_Versym);
2539 break;
2540
2541 case SHT_GNU_verdef:
2542 this_hdr->sh_entsize = 0;
2543 /* objcopy or strip will copy over sh_info, but may not set
2544 cverdefs. The linker will set cverdefs, but sh_info will be
2545 zero. */
2546 if (this_hdr->sh_info == 0)
2547 this_hdr->sh_info = elf_tdata (abfd)->cverdefs;
2548 else
2549 BFD_ASSERT (elf_tdata (abfd)->cverdefs == 0
2550 || this_hdr->sh_info == elf_tdata (abfd)->cverdefs);
2551 break;
2552
2553 case SHT_GNU_verneed:
2554 this_hdr->sh_entsize = 0;
2555 /* objcopy or strip will copy over sh_info, but may not set
2556 cverrefs. The linker will set cverrefs, but sh_info will be
2557 zero. */
2558 if (this_hdr->sh_info == 0)
2559 this_hdr->sh_info = elf_tdata (abfd)->cverrefs;
2560 else
2561 BFD_ASSERT (elf_tdata (abfd)->cverrefs == 0
2562 || this_hdr->sh_info == elf_tdata (abfd)->cverrefs);
2563 break;
2564
2565 case SHT_GROUP:
2566 this_hdr->sh_entsize = 4;
2567 break;
2568 }
2569
2570 if ((asect->flags & SEC_ALLOC) != 0)
2571 this_hdr->sh_flags |= SHF_ALLOC;
2572 if ((asect->flags & SEC_READONLY) == 0)
2573 this_hdr->sh_flags |= SHF_WRITE;
2574 if ((asect->flags & SEC_CODE) != 0)
2575 this_hdr->sh_flags |= SHF_EXECINSTR;
2576 if ((asect->flags & SEC_MERGE) != 0)
2577 {
2578 this_hdr->sh_flags |= SHF_MERGE;
2579 this_hdr->sh_entsize = asect->entsize;
2580 if ((asect->flags & SEC_STRINGS) != 0)
2581 this_hdr->sh_flags |= SHF_STRINGS;
2582 }
2583 if ((asect->flags & SEC_GROUP) == 0 && elf_group_name (asect) != NULL)
2584 this_hdr->sh_flags |= SHF_GROUP;
2585 if ((asect->flags & SEC_THREAD_LOCAL) != 0)
2586 {
2587 this_hdr->sh_flags |= SHF_TLS;
2588 if (asect->size == 0 && (asect->flags & SEC_HAS_CONTENTS) == 0)
2589 {
2590 struct bfd_link_order *o;
2591
2592 this_hdr->sh_size = 0;
2593 for (o = asect->link_order_head; o != NULL; o = o->next)
2594 if (this_hdr->sh_size < o->offset + o->size)
2595 this_hdr->sh_size = o->offset + o->size;
2596 if (this_hdr->sh_size)
2597 this_hdr->sh_type = SHT_NOBITS;
2598 }
2599 }
2600
2601 /* Check for processor-specific section types. */
2602 if (bed->elf_backend_fake_sections
2603 && !(*bed->elf_backend_fake_sections) (abfd, this_hdr, asect))
2604 *failedptr = TRUE;
2605
2606 /* If the section has relocs, set up a section header for the
2607 SHT_REL[A] section. If two relocation sections are required for
2608 this section, it is up to the processor-specific back-end to
2609 create the other. */
2610 if ((asect->flags & SEC_RELOC) != 0
2611 && !_bfd_elf_init_reloc_shdr (abfd,
2612 &elf_section_data (asect)->rel_hdr,
2613 asect,
2614 asect->use_rela_p))
2615 *failedptr = TRUE;
2616 }
2617
2618 /* Fill in the contents of a SHT_GROUP section. */
2619
2620 void
2621 bfd_elf_set_group_contents (bfd *abfd, asection *sec, void *failedptrarg)
2622 {
2623 bfd_boolean *failedptr = failedptrarg;
2624 unsigned long symindx;
2625 asection *elt, *first;
2626 unsigned char *loc;
2627 struct bfd_link_order *l;
2628 bfd_boolean gas;
2629
2630 if (elf_section_data (sec)->this_hdr.sh_type != SHT_GROUP
2631 || *failedptr)
2632 return;
2633
2634 symindx = 0;
2635 if (elf_group_id (sec) != NULL)
2636 symindx = elf_group_id (sec)->udata.i;
2637
2638 if (symindx == 0)
2639 {
2640 /* If called from the assembler, swap_out_syms will have set up
2641 elf_section_syms; If called for "ld -r", use target_index. */
2642 if (elf_section_syms (abfd) != NULL)
2643 symindx = elf_section_syms (abfd)[sec->index]->udata.i;
2644 else
2645 symindx = sec->target_index;
2646 }
2647 elf_section_data (sec)->this_hdr.sh_info = symindx;
2648
2649 /* The contents won't be allocated for "ld -r" or objcopy. */
2650 gas = TRUE;
2651 if (sec->contents == NULL)
2652 {
2653 gas = FALSE;
2654 sec->contents = bfd_alloc (abfd, sec->size);
2655
2656 /* Arrange for the section to be written out. */
2657 elf_section_data (sec)->this_hdr.contents = sec->contents;
2658 if (sec->contents == NULL)
2659 {
2660 *failedptr = TRUE;
2661 return;
2662 }
2663 }
2664
2665 loc = sec->contents + sec->size;
2666
2667 /* Get the pointer to the first section in the group that gas
2668 squirreled away here. objcopy arranges for this to be set to the
2669 start of the input section group. */
2670 first = elt = elf_next_in_group (sec);
2671
2672 /* First element is a flag word. Rest of section is elf section
2673 indices for all the sections of the group. Write them backwards
2674 just to keep the group in the same order as given in .section
2675 directives, not that it matters. */
2676 while (elt != NULL)
2677 {
2678 asection *s;
2679 unsigned int idx;
2680
2681 loc -= 4;
2682 s = elt;
2683 if (!gas)
2684 s = s->output_section;
2685 idx = 0;
2686 if (s != NULL)
2687 idx = elf_section_data (s)->this_idx;
2688 H_PUT_32 (abfd, idx, loc);
2689 elt = elf_next_in_group (elt);
2690 if (elt == first)
2691 break;
2692 }
2693
2694 /* If this is a relocatable link, then the above did nothing because
2695 SEC is the output section. Look through the input sections
2696 instead. */
2697 for (l = sec->link_order_head; l != NULL; l = l->next)
2698 if (l->type == bfd_indirect_link_order
2699 && (elt = elf_next_in_group (l->u.indirect.section)) != NULL)
2700 do
2701 {
2702 loc -= 4;
2703 H_PUT_32 (abfd,
2704 elf_section_data (elt->output_section)->this_idx, loc);
2705 elt = elf_next_in_group (elt);
2706 /* During a relocatable link, the lists are circular. */
2707 }
2708 while (elt != elf_next_in_group (l->u.indirect.section));
2709
2710 if ((loc -= 4) != sec->contents)
2711 abort ();
2712
2713 H_PUT_32 (abfd, sec->flags & SEC_LINK_ONCE ? GRP_COMDAT : 0, loc);
2714 }
2715
2716 /* Assign all ELF section numbers. The dummy first section is handled here
2717 too. The link/info pointers for the standard section types are filled
2718 in here too, while we're at it. */
2719
2720 static bfd_boolean
2721 assign_section_numbers (bfd *abfd)
2722 {
2723 struct elf_obj_tdata *t = elf_tdata (abfd);
2724 asection *sec;
2725 unsigned int section_number, secn;
2726 Elf_Internal_Shdr **i_shdrp;
2727 bfd_size_type amt;
2728
2729 section_number = 1;
2730
2731 _bfd_elf_strtab_clear_all_refs (elf_shstrtab (abfd));
2732
2733 for (sec = abfd->sections; sec; sec = sec->next)
2734 {
2735 struct bfd_elf_section_data *d = elf_section_data (sec);
2736
2737 if (section_number == SHN_LORESERVE)
2738 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2739 d->this_idx = section_number++;
2740 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->this_hdr.sh_name);
2741 if ((sec->flags & SEC_RELOC) == 0)
2742 d->rel_idx = 0;
2743 else
2744 {
2745 if (section_number == SHN_LORESERVE)
2746 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2747 d->rel_idx = section_number++;
2748 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr.sh_name);
2749 }
2750
2751 if (d->rel_hdr2)
2752 {
2753 if (section_number == SHN_LORESERVE)
2754 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2755 d->rel_idx2 = section_number++;
2756 _bfd_elf_strtab_addref (elf_shstrtab (abfd), d->rel_hdr2->sh_name);
2757 }
2758 else
2759 d->rel_idx2 = 0;
2760 }
2761
2762 if (section_number == SHN_LORESERVE)
2763 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2764 t->shstrtab_section = section_number++;
2765 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->shstrtab_hdr.sh_name);
2766 elf_elfheader (abfd)->e_shstrndx = t->shstrtab_section;
2767
2768 if (bfd_get_symcount (abfd) > 0)
2769 {
2770 if (section_number == SHN_LORESERVE)
2771 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2772 t->symtab_section = section_number++;
2773 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->symtab_hdr.sh_name);
2774 if (section_number > SHN_LORESERVE - 2)
2775 {
2776 if (section_number == SHN_LORESERVE)
2777 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2778 t->symtab_shndx_section = section_number++;
2779 t->symtab_shndx_hdr.sh_name
2780 = (unsigned int) _bfd_elf_strtab_add (elf_shstrtab (abfd),
2781 ".symtab_shndx", FALSE);
2782 if (t->symtab_shndx_hdr.sh_name == (unsigned int) -1)
2783 return FALSE;
2784 }
2785 if (section_number == SHN_LORESERVE)
2786 section_number += SHN_HIRESERVE + 1 - SHN_LORESERVE;
2787 t->strtab_section = section_number++;
2788 _bfd_elf_strtab_addref (elf_shstrtab (abfd), t->strtab_hdr.sh_name);
2789 }
2790
2791 _bfd_elf_strtab_finalize (elf_shstrtab (abfd));
2792 t->shstrtab_hdr.sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
2793
2794 elf_numsections (abfd) = section_number;
2795 elf_elfheader (abfd)->e_shnum = section_number;
2796 if (section_number > SHN_LORESERVE)
2797 elf_elfheader (abfd)->e_shnum -= SHN_HIRESERVE + 1 - SHN_LORESERVE;
2798
2799 /* Set up the list of section header pointers, in agreement with the
2800 indices. */
2801 amt = section_number * sizeof (Elf_Internal_Shdr *);
2802 i_shdrp = bfd_zalloc (abfd, amt);
2803 if (i_shdrp == NULL)
2804 return FALSE;
2805
2806 amt = sizeof (Elf_Internal_Shdr);
2807 i_shdrp[0] = bfd_zalloc (abfd, amt);
2808 if (i_shdrp[0] == NULL)
2809 {
2810 bfd_release (abfd, i_shdrp);
2811 return FALSE;
2812 }
2813
2814 elf_elfsections (abfd) = i_shdrp;
2815
2816 i_shdrp[t->shstrtab_section] = &t->shstrtab_hdr;
2817 if (bfd_get_symcount (abfd) > 0)
2818 {
2819 i_shdrp[t->symtab_section] = &t->symtab_hdr;
2820 if (elf_numsections (abfd) > SHN_LORESERVE)
2821 {
2822 i_shdrp[t->symtab_shndx_section] = &t->symtab_shndx_hdr;
2823 t->symtab_shndx_hdr.sh_link = t->symtab_section;
2824 }
2825 i_shdrp[t->strtab_section] = &t->strtab_hdr;
2826 t->symtab_hdr.sh_link = t->strtab_section;
2827 }
2828
2829 for (sec = abfd->sections; sec; sec = sec->next)
2830 {
2831 struct bfd_elf_section_data *d = elf_section_data (sec);
2832 asection *s;
2833 const char *name;
2834
2835 i_shdrp[d->this_idx] = &d->this_hdr;
2836 if (d->rel_idx != 0)
2837 i_shdrp[d->rel_idx] = &d->rel_hdr;
2838 if (d->rel_idx2 != 0)
2839 i_shdrp[d->rel_idx2] = d->rel_hdr2;
2840
2841 /* Fill in the sh_link and sh_info fields while we're at it. */
2842
2843 /* sh_link of a reloc section is the section index of the symbol
2844 table. sh_info is the section index of the section to which
2845 the relocation entries apply. */
2846 if (d->rel_idx != 0)
2847 {
2848 d->rel_hdr.sh_link = t->symtab_section;
2849 d->rel_hdr.sh_info = d->this_idx;
2850 }
2851 if (d->rel_idx2 != 0)
2852 {
2853 d->rel_hdr2->sh_link = t->symtab_section;
2854 d->rel_hdr2->sh_info = d->this_idx;
2855 }
2856
2857 /* We need to set up sh_link for SHF_LINK_ORDER. */
2858 if ((d->this_hdr.sh_flags & SHF_LINK_ORDER) != 0)
2859 {
2860 s = elf_linked_to_section (sec);
2861 if (s)
2862 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2863 else
2864 {
2865 struct bfd_link_order *p;
2866
2867 /* Find out what the corresponding section in output
2868 is. */
2869 for (p = sec->link_order_head; p != NULL; p = p->next)
2870 {
2871 s = p->u.indirect.section;
2872 if (p->type == bfd_indirect_link_order
2873 && (bfd_get_flavour (s->owner)
2874 == bfd_target_elf_flavour))
2875 {
2876 Elf_Internal_Shdr ** const elf_shdrp
2877 = elf_elfsections (s->owner);
2878 int elfsec
2879 = _bfd_elf_section_from_bfd_section (s->owner, s);
2880 elfsec = elf_shdrp[elfsec]->sh_link;
2881 /* PR 290:
2882 The Intel C compiler generates SHT_IA_64_UNWIND with
2883 SHF_LINK_ORDER. But it doesn't set theh sh_link or
2884 sh_info fields. Hence we could get the situation
2885 where elfsec is 0. */
2886 if (elfsec == 0)
2887 {
2888 const struct elf_backend_data *bed
2889 = get_elf_backend_data (abfd);
2890 if (bed->link_order_error_handler)
2891 bed->link_order_error_handler
2892 (_("%B: warning: sh_link not set for section `%S'"),
2893 abfd, s);
2894 }
2895 else
2896 {
2897 s = elf_shdrp[elfsec]->bfd_section->output_section;
2898 BFD_ASSERT (s != NULL);
2899 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2900 }
2901 break;
2902 }
2903 }
2904 }
2905 }
2906
2907 switch (d->this_hdr.sh_type)
2908 {
2909 case SHT_REL:
2910 case SHT_RELA:
2911 /* A reloc section which we are treating as a normal BFD
2912 section. sh_link is the section index of the symbol
2913 table. sh_info is the section index of the section to
2914 which the relocation entries apply. We assume that an
2915 allocated reloc section uses the dynamic symbol table.
2916 FIXME: How can we be sure? */
2917 s = bfd_get_section_by_name (abfd, ".dynsym");
2918 if (s != NULL)
2919 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2920
2921 /* We look up the section the relocs apply to by name. */
2922 name = sec->name;
2923 if (d->this_hdr.sh_type == SHT_REL)
2924 name += 4;
2925 else
2926 name += 5;
2927 s = bfd_get_section_by_name (abfd, name);
2928 if (s != NULL)
2929 d->this_hdr.sh_info = elf_section_data (s)->this_idx;
2930 break;
2931
2932 case SHT_STRTAB:
2933 /* We assume that a section named .stab*str is a stabs
2934 string section. We look for a section with the same name
2935 but without the trailing ``str'', and set its sh_link
2936 field to point to this section. */
2937 if (strncmp (sec->name, ".stab", sizeof ".stab" - 1) == 0
2938 && strcmp (sec->name + strlen (sec->name) - 3, "str") == 0)
2939 {
2940 size_t len;
2941 char *alc;
2942
2943 len = strlen (sec->name);
2944 alc = bfd_malloc (len - 2);
2945 if (alc == NULL)
2946 return FALSE;
2947 memcpy (alc, sec->name, len - 3);
2948 alc[len - 3] = '\0';
2949 s = bfd_get_section_by_name (abfd, alc);
2950 free (alc);
2951 if (s != NULL)
2952 {
2953 elf_section_data (s)->this_hdr.sh_link = d->this_idx;
2954
2955 /* This is a .stab section. */
2956 if (elf_section_data (s)->this_hdr.sh_entsize == 0)
2957 elf_section_data (s)->this_hdr.sh_entsize
2958 = 4 + 2 * bfd_get_arch_size (abfd) / 8;
2959 }
2960 }
2961 break;
2962
2963 case SHT_DYNAMIC:
2964 case SHT_DYNSYM:
2965 case SHT_GNU_verneed:
2966 case SHT_GNU_verdef:
2967 /* sh_link is the section header index of the string table
2968 used for the dynamic entries, or the symbol table, or the
2969 version strings. */
2970 s = bfd_get_section_by_name (abfd, ".dynstr");
2971 if (s != NULL)
2972 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2973 break;
2974
2975 case SHT_GNU_LIBLIST:
2976 /* sh_link is the section header index of the prelink library
2977 list
2978 used for the dynamic entries, or the symbol table, or the
2979 version strings. */
2980 s = bfd_get_section_by_name (abfd, (sec->flags & SEC_ALLOC)
2981 ? ".dynstr" : ".gnu.libstr");
2982 if (s != NULL)
2983 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2984 break;
2985
2986 case SHT_HASH:
2987 case SHT_GNU_versym:
2988 /* sh_link is the section header index of the symbol table
2989 this hash table or version table is for. */
2990 s = bfd_get_section_by_name (abfd, ".dynsym");
2991 if (s != NULL)
2992 d->this_hdr.sh_link = elf_section_data (s)->this_idx;
2993 break;
2994
2995 case SHT_GROUP:
2996 d->this_hdr.sh_link = t->symtab_section;
2997 }
2998 }
2999
3000 for (secn = 1; secn < section_number; ++secn)
3001 if (i_shdrp[secn] == NULL)
3002 i_shdrp[secn] = i_shdrp[0];
3003 else
3004 i_shdrp[secn]->sh_name = _bfd_elf_strtab_offset (elf_shstrtab (abfd),
3005 i_shdrp[secn]->sh_name);
3006 return TRUE;
3007 }
3008
3009 /* Map symbol from it's internal number to the external number, moving
3010 all local symbols to be at the head of the list. */
3011
3012 static int
3013 sym_is_global (bfd *abfd, asymbol *sym)
3014 {
3015 /* If the backend has a special mapping, use it. */
3016 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3017 if (bed->elf_backend_sym_is_global)
3018 return (*bed->elf_backend_sym_is_global) (abfd, sym);
3019
3020 return ((sym->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
3021 || bfd_is_und_section (bfd_get_section (sym))
3022 || bfd_is_com_section (bfd_get_section (sym)));
3023 }
3024
3025 static bfd_boolean
3026 elf_map_symbols (bfd *abfd)
3027 {
3028 unsigned int symcount = bfd_get_symcount (abfd);
3029 asymbol **syms = bfd_get_outsymbols (abfd);
3030 asymbol **sect_syms;
3031 unsigned int num_locals = 0;
3032 unsigned int num_globals = 0;
3033 unsigned int num_locals2 = 0;
3034 unsigned int num_globals2 = 0;
3035 int max_index = 0;
3036 unsigned int idx;
3037 asection *asect;
3038 asymbol **new_syms;
3039 bfd_size_type amt;
3040
3041 #ifdef DEBUG
3042 fprintf (stderr, "elf_map_symbols\n");
3043 fflush (stderr);
3044 #endif
3045
3046 for (asect = abfd->sections; asect; asect = asect->next)
3047 {
3048 if (max_index < asect->index)
3049 max_index = asect->index;
3050 }
3051
3052 max_index++;
3053 amt = max_index * sizeof (asymbol *);
3054 sect_syms = bfd_zalloc (abfd, amt);
3055 if (sect_syms == NULL)
3056 return FALSE;
3057 elf_section_syms (abfd) = sect_syms;
3058 elf_num_section_syms (abfd) = max_index;
3059
3060 /* Init sect_syms entries for any section symbols we have already
3061 decided to output. */
3062 for (idx = 0; idx < symcount; idx++)
3063 {
3064 asymbol *sym = syms[idx];
3065
3066 if ((sym->flags & BSF_SECTION_SYM) != 0
3067 && sym->value == 0)
3068 {
3069 asection *sec;
3070
3071 sec = sym->section;
3072
3073 if (sec->owner != NULL)
3074 {
3075 if (sec->owner != abfd)
3076 {
3077 if (sec->output_offset != 0)
3078 continue;
3079
3080 sec = sec->output_section;
3081
3082 /* Empty sections in the input files may have had a
3083 section symbol created for them. (See the comment
3084 near the end of _bfd_generic_link_output_symbols in
3085 linker.c). If the linker script discards such
3086 sections then we will reach this point. Since we know
3087 that we cannot avoid this case, we detect it and skip
3088 the abort and the assignment to the sect_syms array.
3089 To reproduce this particular case try running the
3090 linker testsuite test ld-scripts/weak.exp for an ELF
3091 port that uses the generic linker. */
3092 if (sec->owner == NULL)
3093 continue;
3094
3095 BFD_ASSERT (sec->owner == abfd);
3096 }
3097 sect_syms[sec->index] = syms[idx];
3098 }
3099 }
3100 }
3101
3102 /* Classify all of the symbols. */
3103 for (idx = 0; idx < symcount; idx++)
3104 {
3105 if (!sym_is_global (abfd, syms[idx]))
3106 num_locals++;
3107 else
3108 num_globals++;
3109 }
3110
3111 /* We will be adding a section symbol for each BFD section. Most normal
3112 sections will already have a section symbol in outsymbols, but
3113 eg. SHT_GROUP sections will not, and we need the section symbol mapped
3114 at least in that case. */
3115 for (asect = abfd->sections; asect; asect = asect->next)
3116 {
3117 if (sect_syms[asect->index] == NULL)
3118 {
3119 if (!sym_is_global (abfd, asect->symbol))
3120 num_locals++;
3121 else
3122 num_globals++;
3123 }
3124 }
3125
3126 /* Now sort the symbols so the local symbols are first. */
3127 amt = (num_locals + num_globals) * sizeof (asymbol *);
3128 new_syms = bfd_alloc (abfd, amt);
3129
3130 if (new_syms == NULL)
3131 return FALSE;
3132
3133 for (idx = 0; idx < symcount; idx++)
3134 {
3135 asymbol *sym = syms[idx];
3136 unsigned int i;
3137
3138 if (!sym_is_global (abfd, sym))
3139 i = num_locals2++;
3140 else
3141 i = num_locals + num_globals2++;
3142 new_syms[i] = sym;
3143 sym->udata.i = i + 1;
3144 }
3145 for (asect = abfd->sections; asect; asect = asect->next)
3146 {
3147 if (sect_syms[asect->index] == NULL)
3148 {
3149 asymbol *sym = asect->symbol;
3150 unsigned int i;
3151
3152 sect_syms[asect->index] = sym;
3153 if (!sym_is_global (abfd, sym))
3154 i = num_locals2++;
3155 else
3156 i = num_locals + num_globals2++;
3157 new_syms[i] = sym;
3158 sym->udata.i = i + 1;
3159 }
3160 }
3161
3162 bfd_set_symtab (abfd, new_syms, num_locals + num_globals);
3163
3164 elf_num_locals (abfd) = num_locals;
3165 elf_num_globals (abfd) = num_globals;
3166 return TRUE;
3167 }
3168
3169 /* Align to the maximum file alignment that could be required for any
3170 ELF data structure. */
3171
3172 static inline file_ptr
3173 align_file_position (file_ptr off, int align)
3174 {
3175 return (off + align - 1) & ~(align - 1);
3176 }
3177
3178 /* Assign a file position to a section, optionally aligning to the
3179 required section alignment. */
3180
3181 file_ptr
3182 _bfd_elf_assign_file_position_for_section (Elf_Internal_Shdr *i_shdrp,
3183 file_ptr offset,
3184 bfd_boolean align)
3185 {
3186 if (align)
3187 {
3188 unsigned int al;
3189
3190 al = i_shdrp->sh_addralign;
3191 if (al > 1)
3192 offset = BFD_ALIGN (offset, al);
3193 }
3194 i_shdrp->sh_offset = offset;
3195 if (i_shdrp->bfd_section != NULL)
3196 i_shdrp->bfd_section->filepos = offset;
3197 if (i_shdrp->sh_type != SHT_NOBITS)
3198 offset += i_shdrp->sh_size;
3199 return offset;
3200 }
3201
3202 /* Compute the file positions we are going to put the sections at, and
3203 otherwise prepare to begin writing out the ELF file. If LINK_INFO
3204 is not NULL, this is being called by the ELF backend linker. */
3205
3206 bfd_boolean
3207 _bfd_elf_compute_section_file_positions (bfd *abfd,
3208 struct bfd_link_info *link_info)
3209 {
3210 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3211 bfd_boolean failed;
3212 struct bfd_strtab_hash *strtab;
3213 Elf_Internal_Shdr *shstrtab_hdr;
3214
3215 if (abfd->output_has_begun)
3216 return TRUE;
3217
3218 /* Do any elf backend specific processing first. */
3219 if (bed->elf_backend_begin_write_processing)
3220 (*bed->elf_backend_begin_write_processing) (abfd, link_info);
3221
3222 if (! prep_headers (abfd))
3223 return FALSE;
3224
3225 /* Post process the headers if necessary. */
3226 if (bed->elf_backend_post_process_headers)
3227 (*bed->elf_backend_post_process_headers) (abfd, link_info);
3228
3229 failed = FALSE;
3230 bfd_map_over_sections (abfd, elf_fake_sections, &failed);
3231 if (failed)
3232 return FALSE;
3233
3234 if (!assign_section_numbers (abfd))
3235 return FALSE;
3236
3237 /* The backend linker builds symbol table information itself. */
3238 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3239 {
3240 /* Non-zero if doing a relocatable link. */
3241 int relocatable_p = ! (abfd->flags & (EXEC_P | DYNAMIC));
3242
3243 if (! swap_out_syms (abfd, &strtab, relocatable_p))
3244 return FALSE;
3245 }
3246
3247 if (link_info == NULL)
3248 {
3249 bfd_map_over_sections (abfd, bfd_elf_set_group_contents, &failed);
3250 if (failed)
3251 return FALSE;
3252 }
3253
3254 shstrtab_hdr = &elf_tdata (abfd)->shstrtab_hdr;
3255 /* sh_name was set in prep_headers. */
3256 shstrtab_hdr->sh_type = SHT_STRTAB;
3257 shstrtab_hdr->sh_flags = 0;
3258 shstrtab_hdr->sh_addr = 0;
3259 shstrtab_hdr->sh_size = _bfd_elf_strtab_size (elf_shstrtab (abfd));
3260 shstrtab_hdr->sh_entsize = 0;
3261 shstrtab_hdr->sh_link = 0;
3262 shstrtab_hdr->sh_info = 0;
3263 /* sh_offset is set in assign_file_positions_except_relocs. */
3264 shstrtab_hdr->sh_addralign = 1;
3265
3266 if (!assign_file_positions_except_relocs (abfd, link_info))
3267 return FALSE;
3268
3269 if (link_info == NULL && bfd_get_symcount (abfd) > 0)
3270 {
3271 file_ptr off;
3272 Elf_Internal_Shdr *hdr;
3273
3274 off = elf_tdata (abfd)->next_file_pos;
3275
3276 hdr = &elf_tdata (abfd)->symtab_hdr;
3277 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3278
3279 hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
3280 if (hdr->sh_size != 0)
3281 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3282
3283 hdr = &elf_tdata (abfd)->strtab_hdr;
3284 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
3285
3286 elf_tdata (abfd)->next_file_pos = off;
3287
3288 /* Now that we know where the .strtab section goes, write it
3289 out. */
3290 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
3291 || ! _bfd_stringtab_emit (abfd, strtab))
3292 return FALSE;
3293 _bfd_stringtab_free (strtab);
3294 }
3295
3296 abfd->output_has_begun = TRUE;
3297
3298 return TRUE;
3299 }
3300
3301 /* Create a mapping from a set of sections to a program segment. */
3302
3303 static struct elf_segment_map *
3304 make_mapping (bfd *abfd,
3305 asection **sections,
3306 unsigned int from,
3307 unsigned int to,
3308 bfd_boolean phdr)
3309 {
3310 struct elf_segment_map *m;
3311 unsigned int i;
3312 asection **hdrpp;
3313 bfd_size_type amt;
3314
3315 amt = sizeof (struct elf_segment_map);
3316 amt += (to - from - 1) * sizeof (asection *);
3317 m = bfd_zalloc (abfd, amt);
3318 if (m == NULL)
3319 return NULL;
3320 m->next = NULL;
3321 m->p_type = PT_LOAD;
3322 for (i = from, hdrpp = sections + from; i < to; i++, hdrpp++)
3323 m->sections[i - from] = *hdrpp;
3324 m->count = to - from;
3325
3326 if (from == 0 && phdr)
3327 {
3328 /* Include the headers in the first PT_LOAD segment. */
3329 m->includes_filehdr = 1;
3330 m->includes_phdrs = 1;
3331 }
3332
3333 return m;
3334 }
3335
3336 /* Create the PT_DYNAMIC segment, which includes DYNSEC. Returns NULL
3337 on failure. */
3338
3339 struct elf_segment_map *
3340 _bfd_elf_make_dynamic_segment (bfd *abfd, asection *dynsec)
3341 {
3342 struct elf_segment_map *m;
3343
3344 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
3345 if (m == NULL)
3346 return NULL;
3347 m->next = NULL;
3348 m->p_type = PT_DYNAMIC;
3349 m->count = 1;
3350 m->sections[0] = dynsec;
3351
3352 return m;
3353 }
3354
3355 /* Set up a mapping from BFD sections to program segments. */
3356
3357 static bfd_boolean
3358 map_sections_to_segments (bfd *abfd)
3359 {
3360 asection **sections = NULL;
3361 asection *s;
3362 unsigned int i;
3363 unsigned int count;
3364 struct elf_segment_map *mfirst;
3365 struct elf_segment_map **pm;
3366 struct elf_segment_map *m;
3367 asection *last_hdr;
3368 bfd_vma last_size;
3369 unsigned int phdr_index;
3370 bfd_vma maxpagesize;
3371 asection **hdrpp;
3372 bfd_boolean phdr_in_segment = TRUE;
3373 bfd_boolean writable;
3374 int tls_count = 0;
3375 asection *first_tls = NULL;
3376 asection *dynsec, *eh_frame_hdr;
3377 bfd_size_type amt;
3378
3379 if (elf_tdata (abfd)->segment_map != NULL)
3380 return TRUE;
3381
3382 if (bfd_count_sections (abfd) == 0)
3383 return TRUE;
3384
3385 /* Select the allocated sections, and sort them. */
3386
3387 amt = bfd_count_sections (abfd) * sizeof (asection *);
3388 sections = bfd_malloc (amt);
3389 if (sections == NULL)
3390 goto error_return;
3391
3392 i = 0;
3393 for (s = abfd->sections; s != NULL; s = s->next)
3394 {
3395 if ((s->flags & SEC_ALLOC) != 0)
3396 {
3397 sections[i] = s;
3398 ++i;
3399 }
3400 }
3401 BFD_ASSERT (i <= bfd_count_sections (abfd));
3402 count = i;
3403
3404 qsort (sections, (size_t) count, sizeof (asection *), elf_sort_sections);
3405
3406 /* Build the mapping. */
3407
3408 mfirst = NULL;
3409 pm = &mfirst;
3410
3411 /* If we have a .interp section, then create a PT_PHDR segment for
3412 the program headers and a PT_INTERP segment for the .interp
3413 section. */
3414 s = bfd_get_section_by_name (abfd, ".interp");
3415 if (s != NULL && (s->flags & SEC_LOAD) != 0)
3416 {
3417 amt = sizeof (struct elf_segment_map);
3418 m = bfd_zalloc (abfd, amt);
3419 if (m == NULL)
3420 goto error_return;
3421 m->next = NULL;
3422 m->p_type = PT_PHDR;
3423 /* FIXME: UnixWare and Solaris set PF_X, Irix 5 does not. */
3424 m->p_flags = PF_R | PF_X;
3425 m->p_flags_valid = 1;
3426 m->includes_phdrs = 1;
3427
3428 *pm = m;
3429 pm = &m->next;
3430
3431 amt = sizeof (struct elf_segment_map);
3432 m = bfd_zalloc (abfd, amt);
3433 if (m == NULL)
3434 goto error_return;
3435 m->next = NULL;
3436 m->p_type = PT_INTERP;
3437 m->count = 1;
3438 m->sections[0] = s;
3439
3440 *pm = m;
3441 pm = &m->next;
3442 }
3443
3444 /* Look through the sections. We put sections in the same program
3445 segment when the start of the second section can be placed within
3446 a few bytes of the end of the first section. */
3447 last_hdr = NULL;
3448 last_size = 0;
3449 phdr_index = 0;
3450 maxpagesize = get_elf_backend_data (abfd)->maxpagesize;
3451 writable = FALSE;
3452 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
3453 if (dynsec != NULL
3454 && (dynsec->flags & SEC_LOAD) == 0)
3455 dynsec = NULL;
3456
3457 /* Deal with -Ttext or something similar such that the first section
3458 is not adjacent to the program headers. This is an
3459 approximation, since at this point we don't know exactly how many
3460 program headers we will need. */
3461 if (count > 0)
3462 {
3463 bfd_size_type phdr_size;
3464
3465 phdr_size = elf_tdata (abfd)->program_header_size;
3466 if (phdr_size == 0)
3467 phdr_size = get_elf_backend_data (abfd)->s->sizeof_phdr;
3468 if ((abfd->flags & D_PAGED) == 0
3469 || sections[0]->lma < phdr_size
3470 || sections[0]->lma % maxpagesize < phdr_size % maxpagesize)
3471 phdr_in_segment = FALSE;
3472 }
3473
3474 for (i = 0, hdrpp = sections; i < count; i++, hdrpp++)
3475 {
3476 asection *hdr;
3477 bfd_boolean new_segment;
3478
3479 hdr = *hdrpp;
3480
3481 /* See if this section and the last one will fit in the same
3482 segment. */
3483
3484 if (last_hdr == NULL)
3485 {
3486 /* If we don't have a segment yet, then we don't need a new
3487 one (we build the last one after this loop). */
3488 new_segment = FALSE;
3489 }
3490 else if (last_hdr->lma - last_hdr->vma != hdr->lma - hdr->vma)
3491 {
3492 /* If this section has a different relation between the
3493 virtual address and the load address, then we need a new
3494 segment. */
3495 new_segment = TRUE;
3496 }
3497 else if (BFD_ALIGN (last_hdr->lma + last_size, maxpagesize)
3498 < BFD_ALIGN (hdr->lma, maxpagesize))
3499 {
3500 /* If putting this section in this segment would force us to
3501 skip a page in the segment, then we need a new segment. */
3502 new_segment = TRUE;
3503 }
3504 else if ((last_hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0
3505 && (hdr->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) != 0)
3506 {
3507 /* We don't want to put a loadable section after a
3508 nonloadable section in the same segment.
3509 Consider .tbss sections as loadable for this purpose. */
3510 new_segment = TRUE;
3511 }
3512 else if ((abfd->flags & D_PAGED) == 0)
3513 {
3514 /* If the file is not demand paged, which means that we
3515 don't require the sections to be correctly aligned in the
3516 file, then there is no other reason for a new segment. */
3517 new_segment = FALSE;
3518 }
3519 else if (! writable
3520 && (hdr->flags & SEC_READONLY) == 0
3521 && (((last_hdr->lma + last_size - 1)
3522 & ~(maxpagesize - 1))
3523 != (hdr->lma & ~(maxpagesize - 1))))
3524 {
3525 /* We don't want to put a writable section in a read only
3526 segment, unless they are on the same page in memory
3527 anyhow. We already know that the last section does not
3528 bring us past the current section on the page, so the
3529 only case in which the new section is not on the same
3530 page as the previous section is when the previous section
3531 ends precisely on a page boundary. */
3532 new_segment = TRUE;
3533 }
3534 else
3535 {
3536 /* Otherwise, we can use the same segment. */
3537 new_segment = FALSE;
3538 }
3539
3540 if (! new_segment)
3541 {
3542 if ((hdr->flags & SEC_READONLY) == 0)
3543 writable = TRUE;
3544 last_hdr = hdr;
3545 /* .tbss sections effectively have zero size. */
3546 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3547 last_size = hdr->size;
3548 else
3549 last_size = 0;
3550 continue;
3551 }
3552
3553 /* We need a new program segment. We must create a new program
3554 header holding all the sections from phdr_index until hdr. */
3555
3556 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3557 if (m == NULL)
3558 goto error_return;
3559
3560 *pm = m;
3561 pm = &m->next;
3562
3563 if ((hdr->flags & SEC_READONLY) == 0)
3564 writable = TRUE;
3565 else
3566 writable = FALSE;
3567
3568 last_hdr = hdr;
3569 /* .tbss sections effectively have zero size. */
3570 if ((hdr->flags & (SEC_THREAD_LOCAL | SEC_LOAD)) != SEC_THREAD_LOCAL)
3571 last_size = hdr->size;
3572 else
3573 last_size = 0;
3574 phdr_index = i;
3575 phdr_in_segment = FALSE;
3576 }
3577
3578 /* Create a final PT_LOAD program segment. */
3579 if (last_hdr != NULL)
3580 {
3581 m = make_mapping (abfd, sections, phdr_index, i, phdr_in_segment);
3582 if (m == NULL)
3583 goto error_return;
3584
3585 *pm = m;
3586 pm = &m->next;
3587 }
3588
3589 /* If there is a .dynamic section, throw in a PT_DYNAMIC segment. */
3590 if (dynsec != NULL)
3591 {
3592 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
3593 if (m == NULL)
3594 goto error_return;
3595 *pm = m;
3596 pm = &m->next;
3597 }
3598
3599 /* For each loadable .note section, add a PT_NOTE segment. We don't
3600 use bfd_get_section_by_name, because if we link together
3601 nonloadable .note sections and loadable .note sections, we will
3602 generate two .note sections in the output file. FIXME: Using
3603 names for section types is bogus anyhow. */
3604 for (s = abfd->sections; s != NULL; s = s->next)
3605 {
3606 if ((s->flags & SEC_LOAD) != 0
3607 && strncmp (s->name, ".note", 5) == 0)
3608 {
3609 amt = sizeof (struct elf_segment_map);
3610 m = bfd_zalloc (abfd, amt);
3611 if (m == NULL)
3612 goto error_return;
3613 m->next = NULL;
3614 m->p_type = PT_NOTE;
3615 m->count = 1;
3616 m->sections[0] = s;
3617
3618 *pm = m;
3619 pm = &m->next;
3620 }
3621 if (s->flags & SEC_THREAD_LOCAL)
3622 {
3623 if (! tls_count)
3624 first_tls = s;
3625 tls_count++;
3626 }
3627 }
3628
3629 /* If there are any SHF_TLS output sections, add PT_TLS segment. */
3630 if (tls_count > 0)
3631 {
3632 int i;
3633
3634 amt = sizeof (struct elf_segment_map);
3635 amt += (tls_count - 1) * sizeof (asection *);
3636 m = bfd_zalloc (abfd, amt);
3637 if (m == NULL)
3638 goto error_return;
3639 m->next = NULL;
3640 m->p_type = PT_TLS;
3641 m->count = tls_count;
3642 /* Mandated PF_R. */
3643 m->p_flags = PF_R;
3644 m->p_flags_valid = 1;
3645 for (i = 0; i < tls_count; ++i)
3646 {
3647 BFD_ASSERT (first_tls->flags & SEC_THREAD_LOCAL);
3648 m->sections[i] = first_tls;
3649 first_tls = first_tls->next;
3650 }
3651
3652 *pm = m;
3653 pm = &m->next;
3654 }
3655
3656 /* If there is a .eh_frame_hdr section, throw in a PT_GNU_EH_FRAME
3657 segment. */
3658 eh_frame_hdr = elf_tdata (abfd)->eh_frame_hdr;
3659 if (eh_frame_hdr != NULL
3660 && (eh_frame_hdr->output_section->flags & SEC_LOAD) != 0)
3661 {
3662 amt = sizeof (struct elf_segment_map);
3663 m = bfd_zalloc (abfd, amt);
3664 if (m == NULL)
3665 goto error_return;
3666 m->next = NULL;
3667 m->p_type = PT_GNU_EH_FRAME;
3668 m->count = 1;
3669 m->sections[0] = eh_frame_hdr->output_section;
3670
3671 *pm = m;
3672 pm = &m->next;
3673 }
3674
3675 if (elf_tdata (abfd)->stack_flags)
3676 {
3677 amt = sizeof (struct elf_segment_map);
3678 m = bfd_zalloc (abfd, amt);
3679 if (m == NULL)
3680 goto error_return;
3681 m->next = NULL;
3682 m->p_type = PT_GNU_STACK;
3683 m->p_flags = elf_tdata (abfd)->stack_flags;
3684 m->p_flags_valid = 1;
3685
3686 *pm = m;
3687 pm = &m->next;
3688 }
3689
3690 if (elf_tdata (abfd)->relro)
3691 {
3692 amt = sizeof (struct elf_segment_map);
3693 m = bfd_zalloc (abfd, amt);
3694 if (m == NULL)
3695 goto error_return;
3696 m->next = NULL;
3697 m->p_type = PT_GNU_RELRO;
3698 m->p_flags = PF_R;
3699 m->p_flags_valid = 1;
3700
3701 *pm = m;
3702 pm = &m->next;
3703 }
3704
3705 free (sections);
3706 sections = NULL;
3707
3708 elf_tdata (abfd)->segment_map = mfirst;
3709 return TRUE;
3710
3711 error_return:
3712 if (sections != NULL)
3713 free (sections);
3714 return FALSE;
3715 }
3716
3717 /* Sort sections by address. */
3718
3719 static int
3720 elf_sort_sections (const void *arg1, const void *arg2)
3721 {
3722 const asection *sec1 = *(const asection **) arg1;
3723 const asection *sec2 = *(const asection **) arg2;
3724 bfd_size_type size1, size2;
3725
3726 /* Sort by LMA first, since this is the address used to
3727 place the section into a segment. */
3728 if (sec1->lma < sec2->lma)
3729 return -1;
3730 else if (sec1->lma > sec2->lma)
3731 return 1;
3732
3733 /* Then sort by VMA. Normally the LMA and the VMA will be
3734 the same, and this will do nothing. */
3735 if (sec1->vma < sec2->vma)
3736 return -1;
3737 else if (sec1->vma > sec2->vma)
3738 return 1;
3739
3740 /* Put !SEC_LOAD sections after SEC_LOAD ones. */
3741
3742 #define TOEND(x) (((x)->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == 0)
3743
3744 if (TOEND (sec1))
3745 {
3746 if (TOEND (sec2))
3747 {
3748 /* If the indicies are the same, do not return 0
3749 here, but continue to try the next comparison. */
3750 if (sec1->target_index - sec2->target_index != 0)
3751 return sec1->target_index - sec2->target_index;
3752 }
3753 else
3754 return 1;
3755 }
3756 else if (TOEND (sec2))
3757 return -1;
3758
3759 #undef TOEND
3760
3761 /* Sort by size, to put zero sized sections
3762 before others at the same address. */
3763
3764 size1 = (sec1->flags & SEC_LOAD) ? sec1->size : 0;
3765 size2 = (sec2->flags & SEC_LOAD) ? sec2->size : 0;
3766
3767 if (size1 < size2)
3768 return -1;
3769 if (size1 > size2)
3770 return 1;
3771
3772 return sec1->target_index - sec2->target_index;
3773 }
3774
3775 /* Ian Lance Taylor writes:
3776
3777 We shouldn't be using % with a negative signed number. That's just
3778 not good. We have to make sure either that the number is not
3779 negative, or that the number has an unsigned type. When the types
3780 are all the same size they wind up as unsigned. When file_ptr is a
3781 larger signed type, the arithmetic winds up as signed long long,
3782 which is wrong.
3783
3784 What we're trying to say here is something like ``increase OFF by
3785 the least amount that will cause it to be equal to the VMA modulo
3786 the page size.'' */
3787 /* In other words, something like:
3788
3789 vma_offset = m->sections[0]->vma % bed->maxpagesize;
3790 off_offset = off % bed->maxpagesize;
3791 if (vma_offset < off_offset)
3792 adjustment = vma_offset + bed->maxpagesize - off_offset;
3793 else
3794 adjustment = vma_offset - off_offset;
3795
3796 which can can be collapsed into the expression below. */
3797
3798 static file_ptr
3799 vma_page_aligned_bias (bfd_vma vma, ufile_ptr off, bfd_vma maxpagesize)
3800 {
3801 return ((vma - off) % maxpagesize);
3802 }
3803
3804 /* Assign file positions to the sections based on the mapping from
3805 sections to segments. This function also sets up some fields in
3806 the file header, and writes out the program headers. */
3807
3808 static bfd_boolean
3809 assign_file_positions_for_segments (bfd *abfd, struct bfd_link_info *link_info)
3810 {
3811 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
3812 unsigned int count;
3813 struct elf_segment_map *m;
3814 unsigned int alloc;
3815 Elf_Internal_Phdr *phdrs;
3816 file_ptr off, voff;
3817 bfd_vma filehdr_vaddr, filehdr_paddr;
3818 bfd_vma phdrs_vaddr, phdrs_paddr;
3819 Elf_Internal_Phdr *p;
3820 bfd_size_type amt;
3821
3822 if (elf_tdata (abfd)->segment_map == NULL)
3823 {
3824 if (! map_sections_to_segments (abfd))
3825 return FALSE;
3826 }
3827 else
3828 {
3829 /* The placement algorithm assumes that non allocated sections are
3830 not in PT_LOAD segments. We ensure this here by removing such
3831 sections from the segment map. */
3832 for (m = elf_tdata (abfd)->segment_map;
3833 m != NULL;
3834 m = m->next)
3835 {
3836 unsigned int new_count;
3837 unsigned int i;
3838
3839 if (m->p_type != PT_LOAD)
3840 continue;
3841
3842 new_count = 0;
3843 for (i = 0; i < m->count; i ++)
3844 {
3845 if ((m->sections[i]->flags & SEC_ALLOC) != 0)
3846 {
3847 if (i != new_count)
3848 m->sections[new_count] = m->sections[i];
3849
3850 new_count ++;
3851 }
3852 }
3853
3854 if (new_count != m->count)
3855 m->count = new_count;
3856 }
3857 }
3858
3859 if (bed->elf_backend_modify_segment_map)
3860 {
3861 if (! (*bed->elf_backend_modify_segment_map) (abfd, link_info))
3862 return FALSE;
3863 }
3864
3865 count = 0;
3866 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
3867 ++count;
3868
3869 elf_elfheader (abfd)->e_phoff = bed->s->sizeof_ehdr;
3870 elf_elfheader (abfd)->e_phentsize = bed->s->sizeof_phdr;
3871 elf_elfheader (abfd)->e_phnum = count;
3872
3873 if (count == 0)
3874 {
3875 elf_tdata (abfd)->next_file_pos = bed->s->sizeof_ehdr;
3876 return TRUE;
3877 }
3878
3879 /* If we already counted the number of program segments, make sure
3880 that we allocated enough space. This happens when SIZEOF_HEADERS
3881 is used in a linker script. */
3882 alloc = elf_tdata (abfd)->program_header_size / bed->s->sizeof_phdr;
3883 if (alloc != 0 && count > alloc)
3884 {
3885 ((*_bfd_error_handler)
3886 (_("%B: Not enough room for program headers (allocated %u, need %u)"),
3887 abfd, alloc, count));
3888 bfd_set_error (bfd_error_bad_value);
3889 return FALSE;
3890 }
3891
3892 if (alloc == 0)
3893 alloc = count;
3894
3895 amt = alloc * sizeof (Elf_Internal_Phdr);
3896 phdrs = bfd_alloc (abfd, amt);
3897 if (phdrs == NULL)
3898 return FALSE;
3899
3900 off = bed->s->sizeof_ehdr;
3901 off += alloc * bed->s->sizeof_phdr;
3902
3903 filehdr_vaddr = 0;
3904 filehdr_paddr = 0;
3905 phdrs_vaddr = 0;
3906 phdrs_paddr = 0;
3907
3908 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
3909 m != NULL;
3910 m = m->next, p++)
3911 {
3912 unsigned int i;
3913 asection **secpp;
3914
3915 /* If elf_segment_map is not from map_sections_to_segments, the
3916 sections may not be correctly ordered. NOTE: sorting should
3917 not be done to the PT_NOTE section of a corefile, which may
3918 contain several pseudo-sections artificially created by bfd.
3919 Sorting these pseudo-sections breaks things badly. */
3920 if (m->count > 1
3921 && !(elf_elfheader (abfd)->e_type == ET_CORE
3922 && m->p_type == PT_NOTE))
3923 qsort (m->sections, (size_t) m->count, sizeof (asection *),
3924 elf_sort_sections);
3925
3926 /* An ELF segment (described by Elf_Internal_Phdr) may contain a
3927 number of sections with contents contributing to both p_filesz
3928 and p_memsz, followed by a number of sections with no contents
3929 that just contribute to p_memsz. In this loop, OFF tracks next
3930 available file offset for PT_LOAD and PT_NOTE segments. VOFF is
3931 an adjustment we use for segments that have no file contents
3932 but need zero filled memory allocation. */
3933 voff = 0;
3934 p->p_type = m->p_type;
3935 p->p_flags = m->p_flags;
3936
3937 if (p->p_type == PT_LOAD
3938 && m->count > 0)
3939 {
3940 bfd_size_type align;
3941 bfd_vma adjust;
3942
3943 if ((abfd->flags & D_PAGED) != 0)
3944 align = bed->maxpagesize;
3945 else
3946 {
3947 unsigned int align_power = 0;
3948 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
3949 {
3950 unsigned int secalign;
3951
3952 secalign = bfd_get_section_alignment (abfd, *secpp);
3953 if (secalign > align_power)
3954 align_power = secalign;
3955 }
3956 align = (bfd_size_type) 1 << align_power;
3957 }
3958
3959 adjust = vma_page_aligned_bias (m->sections[0]->vma, off, align);
3960 off += adjust;
3961 if (adjust != 0
3962 && !m->includes_filehdr
3963 && !m->includes_phdrs
3964 && (ufile_ptr) off >= align)
3965 {
3966 /* If the first section isn't loadable, the same holds for
3967 any other sections. Since the segment won't need file
3968 space, we can make p_offset overlap some prior segment.
3969 However, .tbss is special. If a segment starts with
3970 .tbss, we need to look at the next section to decide
3971 whether the segment has any loadable sections. */
3972 i = 0;
3973 while ((m->sections[i]->flags & SEC_LOAD) == 0)
3974 {
3975 if ((m->sections[i]->flags & SEC_THREAD_LOCAL) == 0
3976 || ++i >= m->count)
3977 {
3978 off -= adjust;
3979 voff = adjust - align;
3980 break;
3981 }
3982 }
3983 }
3984 }
3985 /* Make sure the .dynamic section is the first section in the
3986 PT_DYNAMIC segment. */
3987 else if (p->p_type == PT_DYNAMIC
3988 && m->count > 1
3989 && strcmp (m->sections[0]->name, ".dynamic") != 0)
3990 {
3991 _bfd_error_handler
3992 (_("%B: The first section in the PT_DYNAMIC segment is not the .dynamic section"),
3993 abfd);
3994 bfd_set_error (bfd_error_bad_value);
3995 return FALSE;
3996 }
3997
3998 if (m->count == 0)
3999 p->p_vaddr = 0;
4000 else
4001 p->p_vaddr = m->sections[0]->vma;
4002
4003 if (m->p_paddr_valid)
4004 p->p_paddr = m->p_paddr;
4005 else if (m->count == 0)
4006 p->p_paddr = 0;
4007 else
4008 p->p_paddr = m->sections[0]->lma;
4009
4010 if (p->p_type == PT_LOAD
4011 && (abfd->flags & D_PAGED) != 0)
4012 p->p_align = bed->maxpagesize;
4013 else if (m->count == 0)
4014 p->p_align = 1 << bed->s->log_file_align;
4015 else
4016 p->p_align = 0;
4017
4018 p->p_offset = 0;
4019 p->p_filesz = 0;
4020 p->p_memsz = 0;
4021
4022 if (m->includes_filehdr)
4023 {
4024 if (! m->p_flags_valid)
4025 p->p_flags |= PF_R;
4026 p->p_offset = 0;
4027 p->p_filesz = bed->s->sizeof_ehdr;
4028 p->p_memsz = bed->s->sizeof_ehdr;
4029 if (m->count > 0)
4030 {
4031 BFD_ASSERT (p->p_type == PT_LOAD);
4032
4033 if (p->p_vaddr < (bfd_vma) off)
4034 {
4035 (*_bfd_error_handler)
4036 (_("%B: Not enough room for program headers, try linking with -N"),
4037 abfd);
4038 bfd_set_error (bfd_error_bad_value);
4039 return FALSE;
4040 }
4041
4042 p->p_vaddr -= off;
4043 if (! m->p_paddr_valid)
4044 p->p_paddr -= off;
4045 }
4046 if (p->p_type == PT_LOAD)
4047 {
4048 filehdr_vaddr = p->p_vaddr;
4049 filehdr_paddr = p->p_paddr;
4050 }
4051 }
4052
4053 if (m->includes_phdrs)
4054 {
4055 if (! m->p_flags_valid)
4056 p->p_flags |= PF_R;
4057
4058 if (m->includes_filehdr)
4059 {
4060 if (p->p_type == PT_LOAD)
4061 {
4062 phdrs_vaddr = p->p_vaddr + bed->s->sizeof_ehdr;
4063 phdrs_paddr = p->p_paddr + bed->s->sizeof_ehdr;
4064 }
4065 }
4066 else
4067 {
4068 p->p_offset = bed->s->sizeof_ehdr;
4069
4070 if (m->count > 0)
4071 {
4072 BFD_ASSERT (p->p_type == PT_LOAD);
4073 p->p_vaddr -= off - p->p_offset;
4074 if (! m->p_paddr_valid)
4075 p->p_paddr -= off - p->p_offset;
4076 }
4077
4078 if (p->p_type == PT_LOAD)
4079 {
4080 phdrs_vaddr = p->p_vaddr;
4081 phdrs_paddr = p->p_paddr;
4082 }
4083 else
4084 phdrs_vaddr = bed->maxpagesize + bed->s->sizeof_ehdr;
4085 }
4086
4087 p->p_filesz += alloc * bed->s->sizeof_phdr;
4088 p->p_memsz += alloc * bed->s->sizeof_phdr;
4089 }
4090
4091 if (p->p_type == PT_LOAD
4092 || (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core))
4093 {
4094 if (! m->includes_filehdr && ! m->includes_phdrs)
4095 p->p_offset = off + voff;
4096 else
4097 {
4098 file_ptr adjust;
4099
4100 adjust = off - (p->p_offset + p->p_filesz);
4101 p->p_filesz += adjust;
4102 p->p_memsz += adjust;
4103 }
4104 }
4105
4106 for (i = 0, secpp = m->sections; i < m->count; i++, secpp++)
4107 {
4108 asection *sec;
4109 flagword flags;
4110 bfd_size_type align;
4111
4112 sec = *secpp;
4113 flags = sec->flags;
4114 align = 1 << bfd_get_section_alignment (abfd, sec);
4115
4116 if (p->p_type == PT_LOAD
4117 || p->p_type == PT_TLS)
4118 {
4119 bfd_signed_vma adjust;
4120
4121 if ((flags & SEC_LOAD) != 0)
4122 {
4123 adjust = sec->lma - (p->p_paddr + p->p_filesz);
4124 if (adjust < 0)
4125 {
4126 (*_bfd_error_handler)
4127 (_("%B: section %A lma 0x%lx overlaps previous sections"),
4128 abfd, sec, (unsigned long) sec->lma);
4129 adjust = 0;
4130 }
4131 off += adjust;
4132 p->p_filesz += adjust;
4133 p->p_memsz += adjust;
4134 }
4135 /* .tbss is special. It doesn't contribute to p_memsz of
4136 normal segments. */
4137 else if ((flags & SEC_THREAD_LOCAL) == 0
4138 || p->p_type == PT_TLS)
4139 {
4140 /* The section VMA must equal the file position
4141 modulo the page size. */
4142 bfd_size_type page = align;
4143 if ((abfd->flags & D_PAGED) != 0)
4144 page = bed->maxpagesize;
4145 adjust = vma_page_aligned_bias (sec->vma,
4146 p->p_vaddr + p->p_memsz,
4147 page);
4148 p->p_memsz += adjust;
4149 }
4150 }
4151
4152 if (p->p_type == PT_NOTE && bfd_get_format (abfd) == bfd_core)
4153 {
4154 /* The section at i == 0 is the one that actually contains
4155 everything. */
4156 if (i == 0)
4157 {
4158 sec->filepos = off;
4159 off += sec->size;
4160 p->p_filesz = sec->size;
4161 p->p_memsz = 0;
4162 p->p_align = 1;
4163 }
4164 else
4165 {
4166 /* The rest are fake sections that shouldn't be written. */
4167 sec->filepos = 0;
4168 sec->size = 0;
4169 sec->flags = 0;
4170 continue;
4171 }
4172 }
4173 else
4174 {
4175 if (p->p_type == PT_LOAD)
4176 {
4177 sec->filepos = off;
4178 /* FIXME: The SEC_HAS_CONTENTS test here dates back to
4179 1997, and the exact reason for it isn't clear. One
4180 plausible explanation is that it is to work around
4181 a problem we have with linker scripts using data
4182 statements in NOLOAD sections. I don't think it
4183 makes a great deal of sense to have such a section
4184 assigned to a PT_LOAD segment, but apparently
4185 people do this. The data statement results in a
4186 bfd_data_link_order being built, and these need
4187 section contents to write into. Eventually, we get
4188 to _bfd_elf_write_object_contents which writes any
4189 section with contents to the output. Make room
4190 here for the write, so that following segments are
4191 not trashed. */
4192 if ((flags & SEC_LOAD) != 0
4193 || (flags & SEC_HAS_CONTENTS) != 0)
4194 off += sec->size;
4195 }
4196
4197 if ((flags & SEC_LOAD) != 0)
4198 {
4199 p->p_filesz += sec->size;
4200 p->p_memsz += sec->size;
4201 }
4202 /* .tbss is special. It doesn't contribute to p_memsz of
4203 normal segments. */
4204 else if ((flags & SEC_THREAD_LOCAL) == 0
4205 || p->p_type == PT_TLS)
4206 p->p_memsz += sec->size;
4207
4208 if (p->p_type == PT_TLS
4209 && sec->size == 0
4210 && (sec->flags & SEC_HAS_CONTENTS) == 0)
4211 {
4212 struct bfd_link_order *o;
4213 bfd_vma tbss_size = 0;
4214
4215 for (o = sec->link_order_head; o != NULL; o = o->next)
4216 if (tbss_size < o->offset + o->size)
4217 tbss_size = o->offset + o->size;
4218
4219 p->p_memsz += tbss_size;
4220 }
4221
4222 if (align > p->p_align
4223 && (p->p_type != PT_LOAD || (abfd->flags & D_PAGED) == 0))
4224 p->p_align = align;
4225 }
4226
4227 if (! m->p_flags_valid)
4228 {
4229 p->p_flags |= PF_R;
4230 if ((flags & SEC_CODE) != 0)
4231 p->p_flags |= PF_X;
4232 if ((flags & SEC_READONLY) == 0)
4233 p->p_flags |= PF_W;
4234 }
4235 }
4236 }
4237
4238 /* Now that we have set the section file positions, we can set up
4239 the file positions for the non PT_LOAD segments. */
4240 for (m = elf_tdata (abfd)->segment_map, p = phdrs;
4241 m != NULL;
4242 m = m->next, p++)
4243 {
4244 if (p->p_type != PT_LOAD && m->count > 0)
4245 {
4246 BFD_ASSERT (! m->includes_filehdr && ! m->includes_phdrs);
4247 /* If the section has not yet been assigned a file position,
4248 do so now. The ARM BPABI requires that .dynamic section
4249 not be marked SEC_ALLOC because it is not part of any
4250 PT_LOAD segment, so it will not be processed above. */
4251 if (p->p_type == PT_DYNAMIC && m->sections[0]->filepos == 0)
4252 {
4253 unsigned int i;
4254 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4255
4256 i = 1;
4257 while (i_shdrpp[i]->bfd_section != m->sections[0])
4258 ++i;
4259 off = (_bfd_elf_assign_file_position_for_section
4260 (i_shdrpp[i], off, TRUE));
4261 p->p_filesz = m->sections[0]->size;
4262 }
4263 p->p_offset = m->sections[0]->filepos;
4264 }
4265 if (m->count == 0)
4266 {
4267 if (m->includes_filehdr)
4268 {
4269 p->p_vaddr = filehdr_vaddr;
4270 if (! m->p_paddr_valid)
4271 p->p_paddr = filehdr_paddr;
4272 }
4273 else if (m->includes_phdrs)
4274 {
4275 p->p_vaddr = phdrs_vaddr;
4276 if (! m->p_paddr_valid)
4277 p->p_paddr = phdrs_paddr;
4278 }
4279 else if (p->p_type == PT_GNU_RELRO)
4280 {
4281 Elf_Internal_Phdr *lp;
4282
4283 for (lp = phdrs; lp < phdrs + count; ++lp)
4284 {
4285 if (lp->p_type == PT_LOAD
4286 && lp->p_vaddr <= link_info->relro_end
4287 && lp->p_vaddr >= link_info->relro_start
4288 && lp->p_vaddr + lp->p_filesz
4289 >= link_info->relro_end)
4290 break;
4291 }
4292
4293 if (lp < phdrs + count
4294 && link_info->relro_end > lp->p_vaddr)
4295 {
4296 p->p_vaddr = lp->p_vaddr;
4297 p->p_paddr = lp->p_paddr;
4298 p->p_offset = lp->p_offset;
4299 p->p_filesz = link_info->relro_end - lp->p_vaddr;
4300 p->p_memsz = p->p_filesz;
4301 p->p_align = 1;
4302 p->p_flags = (lp->p_flags & ~PF_W);
4303 }
4304 else
4305 {
4306 memset (p, 0, sizeof *p);
4307 p->p_type = PT_NULL;
4308 }
4309 }
4310 }
4311 }
4312
4313 /* Clear out any program headers we allocated but did not use. */
4314 for (; count < alloc; count++, p++)
4315 {
4316 memset (p, 0, sizeof *p);
4317 p->p_type = PT_NULL;
4318 }
4319
4320 elf_tdata (abfd)->phdr = phdrs;
4321
4322 elf_tdata (abfd)->next_file_pos = off;
4323
4324 /* Write out the program headers. */
4325 if (bfd_seek (abfd, (bfd_signed_vma) bed->s->sizeof_ehdr, SEEK_SET) != 0
4326 || bed->s->write_out_phdrs (abfd, phdrs, alloc) != 0)
4327 return FALSE;
4328
4329 return TRUE;
4330 }
4331
4332 /* Get the size of the program header.
4333
4334 If this is called by the linker before any of the section VMA's are set, it
4335 can't calculate the correct value for a strange memory layout. This only
4336 happens when SIZEOF_HEADERS is used in a linker script. In this case,
4337 SORTED_HDRS is NULL and we assume the normal scenario of one text and one
4338 data segment (exclusive of .interp and .dynamic).
4339
4340 ??? User written scripts must either not use SIZEOF_HEADERS, or assume there
4341 will be two segments. */
4342
4343 static bfd_size_type
4344 get_program_header_size (bfd *abfd)
4345 {
4346 size_t segs;
4347 asection *s;
4348 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4349
4350 /* We can't return a different result each time we're called. */
4351 if (elf_tdata (abfd)->program_header_size != 0)
4352 return elf_tdata (abfd)->program_header_size;
4353
4354 if (elf_tdata (abfd)->segment_map != NULL)
4355 {
4356 struct elf_segment_map *m;
4357
4358 segs = 0;
4359 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
4360 ++segs;
4361 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4362 return elf_tdata (abfd)->program_header_size;
4363 }
4364
4365 /* Assume we will need exactly two PT_LOAD segments: one for text
4366 and one for data. */
4367 segs = 2;
4368
4369 s = bfd_get_section_by_name (abfd, ".interp");
4370 if (s != NULL && (s->flags & SEC_LOAD) != 0)
4371 {
4372 /* If we have a loadable interpreter section, we need a
4373 PT_INTERP segment. In this case, assume we also need a
4374 PT_PHDR segment, although that may not be true for all
4375 targets. */
4376 segs += 2;
4377 }
4378
4379 if (bfd_get_section_by_name (abfd, ".dynamic") != NULL)
4380 {
4381 /* We need a PT_DYNAMIC segment. */
4382 ++segs;
4383 }
4384
4385 if (elf_tdata (abfd)->eh_frame_hdr)
4386 {
4387 /* We need a PT_GNU_EH_FRAME segment. */
4388 ++segs;
4389 }
4390
4391 if (elf_tdata (abfd)->stack_flags)
4392 {
4393 /* We need a PT_GNU_STACK segment. */
4394 ++segs;
4395 }
4396
4397 if (elf_tdata (abfd)->relro)
4398 {
4399 /* We need a PT_GNU_RELRO segment. */
4400 ++segs;
4401 }
4402
4403 for (s = abfd->sections; s != NULL; s = s->next)
4404 {
4405 if ((s->flags & SEC_LOAD) != 0
4406 && strncmp (s->name, ".note", 5) == 0)
4407 {
4408 /* We need a PT_NOTE segment. */
4409 ++segs;
4410 }
4411 }
4412
4413 for (s = abfd->sections; s != NULL; s = s->next)
4414 {
4415 if (s->flags & SEC_THREAD_LOCAL)
4416 {
4417 /* We need a PT_TLS segment. */
4418 ++segs;
4419 break;
4420 }
4421 }
4422
4423 /* Let the backend count up any program headers it might need. */
4424 if (bed->elf_backend_additional_program_headers)
4425 {
4426 int a;
4427
4428 a = (*bed->elf_backend_additional_program_headers) (abfd);
4429 if (a == -1)
4430 abort ();
4431 segs += a;
4432 }
4433
4434 elf_tdata (abfd)->program_header_size = segs * bed->s->sizeof_phdr;
4435 return elf_tdata (abfd)->program_header_size;
4436 }
4437
4438 /* Work out the file positions of all the sections. This is called by
4439 _bfd_elf_compute_section_file_positions. All the section sizes and
4440 VMAs must be known before this is called.
4441
4442 Reloc sections come in two flavours: Those processed specially as
4443 "side-channel" data attached to a section to which they apply, and
4444 those that bfd doesn't process as relocations. The latter sort are
4445 stored in a normal bfd section by bfd_section_from_shdr. We don't
4446 consider the former sort here, unless they form part of the loadable
4447 image. Reloc sections not assigned here will be handled later by
4448 assign_file_positions_for_relocs.
4449
4450 We also don't set the positions of the .symtab and .strtab here. */
4451
4452 static bfd_boolean
4453 assign_file_positions_except_relocs (bfd *abfd,
4454 struct bfd_link_info *link_info)
4455 {
4456 struct elf_obj_tdata * const tdata = elf_tdata (abfd);
4457 Elf_Internal_Ehdr * const i_ehdrp = elf_elfheader (abfd);
4458 Elf_Internal_Shdr ** const i_shdrpp = elf_elfsections (abfd);
4459 unsigned int num_sec = elf_numsections (abfd);
4460 file_ptr off;
4461 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4462
4463 if ((abfd->flags & (EXEC_P | DYNAMIC)) == 0
4464 && bfd_get_format (abfd) != bfd_core)
4465 {
4466 Elf_Internal_Shdr **hdrpp;
4467 unsigned int i;
4468
4469 /* Start after the ELF header. */
4470 off = i_ehdrp->e_ehsize;
4471
4472 /* We are not creating an executable, which means that we are
4473 not creating a program header, and that the actual order of
4474 the sections in the file is unimportant. */
4475 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4476 {
4477 Elf_Internal_Shdr *hdr;
4478
4479 hdr = *hdrpp;
4480 if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4481 && hdr->bfd_section == NULL)
4482 || i == tdata->symtab_section
4483 || i == tdata->symtab_shndx_section
4484 || i == tdata->strtab_section)
4485 {
4486 hdr->sh_offset = -1;
4487 }
4488 else
4489 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4490
4491 if (i == SHN_LORESERVE - 1)
4492 {
4493 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4494 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4495 }
4496 }
4497 }
4498 else
4499 {
4500 unsigned int i;
4501 Elf_Internal_Shdr **hdrpp;
4502
4503 /* Assign file positions for the loaded sections based on the
4504 assignment of sections to segments. */
4505 if (! assign_file_positions_for_segments (abfd, link_info))
4506 return FALSE;
4507
4508 /* Assign file positions for the other sections. */
4509
4510 off = elf_tdata (abfd)->next_file_pos;
4511 for (i = 1, hdrpp = i_shdrpp + 1; i < num_sec; i++, hdrpp++)
4512 {
4513 Elf_Internal_Shdr *hdr;
4514
4515 hdr = *hdrpp;
4516 if (hdr->bfd_section != NULL
4517 && hdr->bfd_section->filepos != 0)
4518 hdr->sh_offset = hdr->bfd_section->filepos;
4519 else if ((hdr->sh_flags & SHF_ALLOC) != 0)
4520 {
4521 ((*_bfd_error_handler)
4522 (_("%B: warning: allocated section `%s' not in segment"),
4523 abfd,
4524 (hdr->bfd_section == NULL
4525 ? "*unknown*"
4526 : hdr->bfd_section->name)));
4527 if ((abfd->flags & D_PAGED) != 0)
4528 off += vma_page_aligned_bias (hdr->sh_addr, off,
4529 bed->maxpagesize);
4530 else
4531 off += vma_page_aligned_bias (hdr->sh_addr, off,
4532 hdr->sh_addralign);
4533 off = _bfd_elf_assign_file_position_for_section (hdr, off,
4534 FALSE);
4535 }
4536 else if (((hdr->sh_type == SHT_REL || hdr->sh_type == SHT_RELA)
4537 && hdr->bfd_section == NULL)
4538 || hdr == i_shdrpp[tdata->symtab_section]
4539 || hdr == i_shdrpp[tdata->symtab_shndx_section]
4540 || hdr == i_shdrpp[tdata->strtab_section])
4541 hdr->sh_offset = -1;
4542 else
4543 off = _bfd_elf_assign_file_position_for_section (hdr, off, TRUE);
4544
4545 if (i == SHN_LORESERVE - 1)
4546 {
4547 i += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4548 hdrpp += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4549 }
4550 }
4551 }
4552
4553 /* Place the section headers. */
4554 off = align_file_position (off, 1 << bed->s->log_file_align);
4555 i_ehdrp->e_shoff = off;
4556 off += i_ehdrp->e_shnum * i_ehdrp->e_shentsize;
4557
4558 elf_tdata (abfd)->next_file_pos = off;
4559
4560 return TRUE;
4561 }
4562
4563 static bfd_boolean
4564 prep_headers (bfd *abfd)
4565 {
4566 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
4567 Elf_Internal_Phdr *i_phdrp = 0; /* Program header table, internal form */
4568 Elf_Internal_Shdr **i_shdrp; /* Section header table, internal form */
4569 struct elf_strtab_hash *shstrtab;
4570 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4571
4572 i_ehdrp = elf_elfheader (abfd);
4573 i_shdrp = elf_elfsections (abfd);
4574
4575 shstrtab = _bfd_elf_strtab_init ();
4576 if (shstrtab == NULL)
4577 return FALSE;
4578
4579 elf_shstrtab (abfd) = shstrtab;
4580
4581 i_ehdrp->e_ident[EI_MAG0] = ELFMAG0;
4582 i_ehdrp->e_ident[EI_MAG1] = ELFMAG1;
4583 i_ehdrp->e_ident[EI_MAG2] = ELFMAG2;
4584 i_ehdrp->e_ident[EI_MAG3] = ELFMAG3;
4585
4586 i_ehdrp->e_ident[EI_CLASS] = bed->s->elfclass;
4587 i_ehdrp->e_ident[EI_DATA] =
4588 bfd_big_endian (abfd) ? ELFDATA2MSB : ELFDATA2LSB;
4589 i_ehdrp->e_ident[EI_VERSION] = bed->s->ev_current;
4590
4591 if ((abfd->flags & DYNAMIC) != 0)
4592 i_ehdrp->e_type = ET_DYN;
4593 else if ((abfd->flags & EXEC_P) != 0)
4594 i_ehdrp->e_type = ET_EXEC;
4595 else if (bfd_get_format (abfd) == bfd_core)
4596 i_ehdrp->e_type = ET_CORE;
4597 else
4598 i_ehdrp->e_type = ET_REL;
4599
4600 switch (bfd_get_arch (abfd))
4601 {
4602 case bfd_arch_unknown:
4603 i_ehdrp->e_machine = EM_NONE;
4604 break;
4605
4606 /* There used to be a long list of cases here, each one setting
4607 e_machine to the same EM_* macro #defined as ELF_MACHINE_CODE
4608 in the corresponding bfd definition. To avoid duplication,
4609 the switch was removed. Machines that need special handling
4610 can generally do it in elf_backend_final_write_processing(),
4611 unless they need the information earlier than the final write.
4612 Such need can generally be supplied by replacing the tests for
4613 e_machine with the conditions used to determine it. */
4614 default:
4615 i_ehdrp->e_machine = bed->elf_machine_code;
4616 }
4617
4618 i_ehdrp->e_version = bed->s->ev_current;
4619 i_ehdrp->e_ehsize = bed->s->sizeof_ehdr;
4620
4621 /* No program header, for now. */
4622 i_ehdrp->e_phoff = 0;
4623 i_ehdrp->e_phentsize = 0;
4624 i_ehdrp->e_phnum = 0;
4625
4626 /* Each bfd section is section header entry. */
4627 i_ehdrp->e_entry = bfd_get_start_address (abfd);
4628 i_ehdrp->e_shentsize = bed->s->sizeof_shdr;
4629
4630 /* If we're building an executable, we'll need a program header table. */
4631 if (abfd->flags & EXEC_P)
4632 {
4633 /* It all happens later. */
4634 #if 0
4635 i_ehdrp->e_phentsize = sizeof (Elf_External_Phdr);
4636
4637 /* elf_build_phdrs() returns a (NULL-terminated) array of
4638 Elf_Internal_Phdrs. */
4639 i_phdrp = elf_build_phdrs (abfd, i_ehdrp, i_shdrp, &i_ehdrp->e_phnum);
4640 i_ehdrp->e_phoff = outbase;
4641 outbase += i_ehdrp->e_phentsize * i_ehdrp->e_phnum;
4642 #endif
4643 }
4644 else
4645 {
4646 i_ehdrp->e_phentsize = 0;
4647 i_phdrp = 0;
4648 i_ehdrp->e_phoff = 0;
4649 }
4650
4651 elf_tdata (abfd)->symtab_hdr.sh_name =
4652 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".symtab", FALSE);
4653 elf_tdata (abfd)->strtab_hdr.sh_name =
4654 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".strtab", FALSE);
4655 elf_tdata (abfd)->shstrtab_hdr.sh_name =
4656 (unsigned int) _bfd_elf_strtab_add (shstrtab, ".shstrtab", FALSE);
4657 if (elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4658 || elf_tdata (abfd)->symtab_hdr.sh_name == (unsigned int) -1
4659 || elf_tdata (abfd)->shstrtab_hdr.sh_name == (unsigned int) -1)
4660 return FALSE;
4661
4662 return TRUE;
4663 }
4664
4665 /* Assign file positions for all the reloc sections which are not part
4666 of the loadable file image. */
4667
4668 void
4669 _bfd_elf_assign_file_positions_for_relocs (bfd *abfd)
4670 {
4671 file_ptr off;
4672 unsigned int i, num_sec;
4673 Elf_Internal_Shdr **shdrpp;
4674
4675 off = elf_tdata (abfd)->next_file_pos;
4676
4677 num_sec = elf_numsections (abfd);
4678 for (i = 1, shdrpp = elf_elfsections (abfd) + 1; i < num_sec; i++, shdrpp++)
4679 {
4680 Elf_Internal_Shdr *shdrp;
4681
4682 shdrp = *shdrpp;
4683 if ((shdrp->sh_type == SHT_REL || shdrp->sh_type == SHT_RELA)
4684 && shdrp->sh_offset == -1)
4685 off = _bfd_elf_assign_file_position_for_section (shdrp, off, TRUE);
4686 }
4687
4688 elf_tdata (abfd)->next_file_pos = off;
4689 }
4690
4691 bfd_boolean
4692 _bfd_elf_write_object_contents (bfd *abfd)
4693 {
4694 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
4695 Elf_Internal_Ehdr *i_ehdrp;
4696 Elf_Internal_Shdr **i_shdrp;
4697 bfd_boolean failed;
4698 unsigned int count, num_sec;
4699
4700 if (! abfd->output_has_begun
4701 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
4702 return FALSE;
4703
4704 i_shdrp = elf_elfsections (abfd);
4705 i_ehdrp = elf_elfheader (abfd);
4706
4707 failed = FALSE;
4708 bfd_map_over_sections (abfd, bed->s->write_relocs, &failed);
4709 if (failed)
4710 return FALSE;
4711
4712 _bfd_elf_assign_file_positions_for_relocs (abfd);
4713
4714 /* After writing the headers, we need to write the sections too... */
4715 num_sec = elf_numsections (abfd);
4716 for (count = 1; count < num_sec; count++)
4717 {
4718 if (bed->elf_backend_section_processing)
4719 (*bed->elf_backend_section_processing) (abfd, i_shdrp[count]);
4720 if (i_shdrp[count]->contents)
4721 {
4722 bfd_size_type amt = i_shdrp[count]->sh_size;
4723
4724 if (bfd_seek (abfd, i_shdrp[count]->sh_offset, SEEK_SET) != 0
4725 || bfd_bwrite (i_shdrp[count]->contents, amt, abfd) != amt)
4726 return FALSE;
4727 }
4728 if (count == SHN_LORESERVE - 1)
4729 count += SHN_HIRESERVE + 1 - SHN_LORESERVE;
4730 }
4731
4732 /* Write out the section header names. */
4733 if (bfd_seek (abfd, elf_tdata (abfd)->shstrtab_hdr.sh_offset, SEEK_SET) != 0
4734 || ! _bfd_elf_strtab_emit (abfd, elf_shstrtab (abfd)))
4735 return FALSE;
4736
4737 if (bed->elf_backend_final_write_processing)
4738 (*bed->elf_backend_final_write_processing) (abfd,
4739 elf_tdata (abfd)->linker);
4740
4741 return bed->s->write_shdrs_and_ehdr (abfd);
4742 }
4743
4744 bfd_boolean
4745 _bfd_elf_write_corefile_contents (bfd *abfd)
4746 {
4747 /* Hopefully this can be done just like an object file. */
4748 return _bfd_elf_write_object_contents (abfd);
4749 }
4750
4751 /* Given a section, search the header to find them. */
4752
4753 int
4754 _bfd_elf_section_from_bfd_section (bfd *abfd, struct bfd_section *asect)
4755 {
4756 const struct elf_backend_data *bed;
4757 int index;
4758
4759 if (elf_section_data (asect) != NULL
4760 && elf_section_data (asect)->this_idx != 0)
4761 return elf_section_data (asect)->this_idx;
4762
4763 if (bfd_is_abs_section (asect))
4764 index = SHN_ABS;
4765 else if (bfd_is_com_section (asect))
4766 index = SHN_COMMON;
4767 else if (bfd_is_und_section (asect))
4768 index = SHN_UNDEF;
4769 else
4770 {
4771 Elf_Internal_Shdr **i_shdrp = elf_elfsections (abfd);
4772 int maxindex = elf_numsections (abfd);
4773
4774 for (index = 1; index < maxindex; index++)
4775 {
4776 Elf_Internal_Shdr *hdr = i_shdrp[index];
4777
4778 if (hdr != NULL && hdr->bfd_section == asect)
4779 return index;
4780 }
4781 index = -1;
4782 }
4783
4784 bed = get_elf_backend_data (abfd);
4785 if (bed->elf_backend_section_from_bfd_section)
4786 {
4787 int retval = index;
4788
4789 if ((*bed->elf_backend_section_from_bfd_section) (abfd, asect, &retval))
4790 return retval;
4791 }
4792
4793 if (index == -1)
4794 bfd_set_error (bfd_error_nonrepresentable_section);
4795
4796 return index;
4797 }
4798
4799 /* Given a BFD symbol, return the index in the ELF symbol table, or -1
4800 on error. */
4801
4802 int
4803 _bfd_elf_symbol_from_bfd_symbol (bfd *abfd, asymbol **asym_ptr_ptr)
4804 {
4805 asymbol *asym_ptr = *asym_ptr_ptr;
4806 int idx;
4807 flagword flags = asym_ptr->flags;
4808
4809 /* When gas creates relocations against local labels, it creates its
4810 own symbol for the section, but does put the symbol into the
4811 symbol chain, so udata is 0. When the linker is generating
4812 relocatable output, this section symbol may be for one of the
4813 input sections rather than the output section. */
4814 if (asym_ptr->udata.i == 0
4815 && (flags & BSF_SECTION_SYM)
4816 && asym_ptr->section)
4817 {
4818 int indx;
4819
4820 if (asym_ptr->section->output_section != NULL)
4821 indx = asym_ptr->section->output_section->index;
4822 else
4823 indx = asym_ptr->section->index;
4824 if (indx < elf_num_section_syms (abfd)
4825 && elf_section_syms (abfd)[indx] != NULL)
4826 asym_ptr->udata.i = elf_section_syms (abfd)[indx]->udata.i;
4827 }
4828
4829 idx = asym_ptr->udata.i;
4830
4831 if (idx == 0)
4832 {
4833 /* This case can occur when using --strip-symbol on a symbol
4834 which is used in a relocation entry. */
4835 (*_bfd_error_handler)
4836 (_("%B: symbol `%s' required but not present"),
4837 abfd, bfd_asymbol_name (asym_ptr));
4838 bfd_set_error (bfd_error_no_symbols);
4839 return -1;
4840 }
4841
4842 #if DEBUG & 4
4843 {
4844 fprintf (stderr,
4845 "elf_symbol_from_bfd_symbol 0x%.8lx, name = %s, sym num = %d, flags = 0x%.8lx%s\n",
4846 (long) asym_ptr, asym_ptr->name, idx, flags,
4847 elf_symbol_flags (flags));
4848 fflush (stderr);
4849 }
4850 #endif
4851
4852 return idx;
4853 }
4854
4855 /* Copy private BFD data. This copies any program header information. */
4856
4857 static bfd_boolean
4858 copy_private_bfd_data (bfd *ibfd, bfd *obfd)
4859 {
4860 Elf_Internal_Ehdr *iehdr;
4861 struct elf_segment_map *map;
4862 struct elf_segment_map *map_first;
4863 struct elf_segment_map **pointer_to_map;
4864 Elf_Internal_Phdr *segment;
4865 asection *section;
4866 unsigned int i;
4867 unsigned int num_segments;
4868 bfd_boolean phdr_included = FALSE;
4869 bfd_vma maxpagesize;
4870 struct elf_segment_map *phdr_adjust_seg = NULL;
4871 unsigned int phdr_adjust_num = 0;
4872 const struct elf_backend_data *bed;
4873
4874 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
4875 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
4876 return TRUE;
4877
4878 if (elf_tdata (ibfd)->phdr == NULL)
4879 return TRUE;
4880
4881 bed = get_elf_backend_data (ibfd);
4882 iehdr = elf_elfheader (ibfd);
4883
4884 map_first = NULL;
4885 pointer_to_map = &map_first;
4886
4887 num_segments = elf_elfheader (ibfd)->e_phnum;
4888 maxpagesize = get_elf_backend_data (obfd)->maxpagesize;
4889
4890 /* Returns the end address of the segment + 1. */
4891 #define SEGMENT_END(segment, start) \
4892 (start + (segment->p_memsz > segment->p_filesz \
4893 ? segment->p_memsz : segment->p_filesz))
4894
4895 #define SECTION_SIZE(section, segment) \
4896 (((section->flags & (SEC_HAS_CONTENTS | SEC_THREAD_LOCAL)) \
4897 != SEC_THREAD_LOCAL || segment->p_type == PT_TLS) \
4898 ? section->size : 0)
4899
4900 /* Returns TRUE if the given section is contained within
4901 the given segment. VMA addresses are compared. */
4902 #define IS_CONTAINED_BY_VMA(section, segment) \
4903 (section->vma >= segment->p_vaddr \
4904 && (section->vma + SECTION_SIZE (section, segment) \
4905 <= (SEGMENT_END (segment, segment->p_vaddr))))
4906
4907 /* Returns TRUE if the given section is contained within
4908 the given segment. LMA addresses are compared. */
4909 #define IS_CONTAINED_BY_LMA(section, segment, base) \
4910 (section->lma >= base \
4911 && (section->lma + SECTION_SIZE (section, segment) \
4912 <= SEGMENT_END (segment, base)))
4913
4914 /* Special case: corefile "NOTE" section containing regs, prpsinfo etc. */
4915 #define IS_COREFILE_NOTE(p, s) \
4916 (p->p_type == PT_NOTE \
4917 && bfd_get_format (ibfd) == bfd_core \
4918 && s->vma == 0 && s->lma == 0 \
4919 && (bfd_vma) s->filepos >= p->p_offset \
4920 && ((bfd_vma) s->filepos + s->size \
4921 <= p->p_offset + p->p_filesz))
4922
4923 /* The complicated case when p_vaddr is 0 is to handle the Solaris
4924 linker, which generates a PT_INTERP section with p_vaddr and
4925 p_memsz set to 0. */
4926 #define IS_SOLARIS_PT_INTERP(p, s) \
4927 (p->p_vaddr == 0 \
4928 && p->p_paddr == 0 \
4929 && p->p_memsz == 0 \
4930 && p->p_filesz > 0 \
4931 && (s->flags & SEC_HAS_CONTENTS) != 0 \
4932 && s->size > 0 \
4933 && (bfd_vma) s->filepos >= p->p_offset \
4934 && ((bfd_vma) s->filepos + s->size \
4935 <= p->p_offset + p->p_filesz))
4936
4937 /* Decide if the given section should be included in the given segment.
4938 A section will be included if:
4939 1. It is within the address space of the segment -- we use the LMA
4940 if that is set for the segment and the VMA otherwise,
4941 2. It is an allocated segment,
4942 3. There is an output section associated with it,
4943 4. The section has not already been allocated to a previous segment.
4944 5. PT_GNU_STACK segments do not include any sections.
4945 6. PT_TLS segment includes only SHF_TLS sections.
4946 7. SHF_TLS sections are only in PT_TLS or PT_LOAD segments. */
4947 #define INCLUDE_SECTION_IN_SEGMENT(section, segment, bed) \
4948 ((((segment->p_paddr \
4949 ? IS_CONTAINED_BY_LMA (section, segment, segment->p_paddr) \
4950 : IS_CONTAINED_BY_VMA (section, segment)) \
4951 && (section->flags & SEC_ALLOC) != 0) \
4952 || IS_COREFILE_NOTE (segment, section)) \
4953 && section->output_section != NULL \
4954 && segment->p_type != PT_GNU_STACK \
4955 && (segment->p_type != PT_TLS \
4956 || (section->flags & SEC_THREAD_LOCAL)) \
4957 && (segment->p_type == PT_LOAD \
4958 || segment->p_type == PT_TLS \
4959 || (section->flags & SEC_THREAD_LOCAL) == 0) \
4960 && ! section->segment_mark)
4961
4962 /* Returns TRUE iff seg1 starts after the end of seg2. */
4963 #define SEGMENT_AFTER_SEGMENT(seg1, seg2, field) \
4964 (seg1->field >= SEGMENT_END (seg2, seg2->field))
4965
4966 /* Returns TRUE iff seg1 and seg2 overlap. Segments overlap iff both
4967 their VMA address ranges and their LMA address ranges overlap.
4968 It is possible to have overlapping VMA ranges without overlapping LMA
4969 ranges. RedBoot images for example can have both .data and .bss mapped
4970 to the same VMA range, but with the .data section mapped to a different
4971 LMA. */
4972 #define SEGMENT_OVERLAPS(seg1, seg2) \
4973 ( !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_vaddr) \
4974 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_vaddr)) \
4975 && !(SEGMENT_AFTER_SEGMENT (seg1, seg2, p_paddr) \
4976 || SEGMENT_AFTER_SEGMENT (seg2, seg1, p_paddr)))
4977
4978 /* Initialise the segment mark field. */
4979 for (section = ibfd->sections; section != NULL; section = section->next)
4980 section->segment_mark = FALSE;
4981
4982 /* Scan through the segments specified in the program header
4983 of the input BFD. For this first scan we look for overlaps
4984 in the loadable segments. These can be created by weird
4985 parameters to objcopy. Also, fix some solaris weirdness. */
4986 for (i = 0, segment = elf_tdata (ibfd)->phdr;
4987 i < num_segments;
4988 i++, segment++)
4989 {
4990 unsigned int j;
4991 Elf_Internal_Phdr *segment2;
4992
4993 if (segment->p_type == PT_INTERP)
4994 for (section = ibfd->sections; section; section = section->next)
4995 if (IS_SOLARIS_PT_INTERP (segment, section))
4996 {
4997 /* Mininal change so that the normal section to segment
4998 assignment code will work. */
4999 segment->p_vaddr = section->vma;
5000 break;
5001 }
5002
5003 if (segment->p_type != PT_LOAD)
5004 continue;
5005
5006 /* Determine if this segment overlaps any previous segments. */
5007 for (j = 0, segment2 = elf_tdata (ibfd)->phdr; j < i; j++, segment2 ++)
5008 {
5009 bfd_signed_vma extra_length;
5010
5011 if (segment2->p_type != PT_LOAD
5012 || ! SEGMENT_OVERLAPS (segment, segment2))
5013 continue;
5014
5015 /* Merge the two segments together. */
5016 if (segment2->p_vaddr < segment->p_vaddr)
5017 {
5018 /* Extend SEGMENT2 to include SEGMENT and then delete
5019 SEGMENT. */
5020 extra_length =
5021 SEGMENT_END (segment, segment->p_vaddr)
5022 - SEGMENT_END (segment2, segment2->p_vaddr);
5023
5024 if (extra_length > 0)
5025 {
5026 segment2->p_memsz += extra_length;
5027 segment2->p_filesz += extra_length;
5028 }
5029
5030 segment->p_type = PT_NULL;
5031
5032 /* Since we have deleted P we must restart the outer loop. */
5033 i = 0;
5034 segment = elf_tdata (ibfd)->phdr;
5035 break;
5036 }
5037 else
5038 {
5039 /* Extend SEGMENT to include SEGMENT2 and then delete
5040 SEGMENT2. */
5041 extra_length =
5042 SEGMENT_END (segment2, segment2->p_vaddr)
5043 - SEGMENT_END (segment, segment->p_vaddr);
5044
5045 if (extra_length > 0)
5046 {
5047 segment->p_memsz += extra_length;
5048 segment->p_filesz += extra_length;
5049 }
5050
5051 segment2->p_type = PT_NULL;
5052 }
5053 }
5054 }
5055
5056 /* The second scan attempts to assign sections to segments. */
5057 for (i = 0, segment = elf_tdata (ibfd)->phdr;
5058 i < num_segments;
5059 i ++, segment ++)
5060 {
5061 unsigned int section_count;
5062 asection ** sections;
5063 asection * output_section;
5064 unsigned int isec;
5065 bfd_vma matching_lma;
5066 bfd_vma suggested_lma;
5067 unsigned int j;
5068 bfd_size_type amt;
5069
5070 if (segment->p_type == PT_NULL)
5071 continue;
5072
5073 /* Compute how many sections might be placed into this segment. */
5074 for (section = ibfd->sections, section_count = 0;
5075 section != NULL;
5076 section = section->next)
5077 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5078 ++section_count;
5079
5080 /* Allocate a segment map big enough to contain
5081 all of the sections we have selected. */
5082 amt = sizeof (struct elf_segment_map);
5083 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5084 map = bfd_alloc (obfd, amt);
5085 if (map == NULL)
5086 return FALSE;
5087
5088 /* Initialise the fields of the segment map. Default to
5089 using the physical address of the segment in the input BFD. */
5090 map->next = NULL;
5091 map->p_type = segment->p_type;
5092 map->p_flags = segment->p_flags;
5093 map->p_flags_valid = 1;
5094 map->p_paddr = segment->p_paddr;
5095 map->p_paddr_valid = 1;
5096
5097 /* Determine if this segment contains the ELF file header
5098 and if it contains the program headers themselves. */
5099 map->includes_filehdr = (segment->p_offset == 0
5100 && segment->p_filesz >= iehdr->e_ehsize);
5101
5102 map->includes_phdrs = 0;
5103
5104 if (! phdr_included || segment->p_type != PT_LOAD)
5105 {
5106 map->includes_phdrs =
5107 (segment->p_offset <= (bfd_vma) iehdr->e_phoff
5108 && (segment->p_offset + segment->p_filesz
5109 >= ((bfd_vma) iehdr->e_phoff
5110 + iehdr->e_phnum * iehdr->e_phentsize)));
5111
5112 if (segment->p_type == PT_LOAD && map->includes_phdrs)
5113 phdr_included = TRUE;
5114 }
5115
5116 if (section_count == 0)
5117 {
5118 /* Special segments, such as the PT_PHDR segment, may contain
5119 no sections, but ordinary, loadable segments should contain
5120 something. They are allowed by the ELF spec however, so only
5121 a warning is produced. */
5122 if (segment->p_type == PT_LOAD)
5123 (*_bfd_error_handler)
5124 (_("%B: warning: Empty loadable segment detected, is this intentional ?\n"),
5125 ibfd);
5126
5127 map->count = 0;
5128 *pointer_to_map = map;
5129 pointer_to_map = &map->next;
5130
5131 continue;
5132 }
5133
5134 /* Now scan the sections in the input BFD again and attempt
5135 to add their corresponding output sections to the segment map.
5136 The problem here is how to handle an output section which has
5137 been moved (ie had its LMA changed). There are four possibilities:
5138
5139 1. None of the sections have been moved.
5140 In this case we can continue to use the segment LMA from the
5141 input BFD.
5142
5143 2. All of the sections have been moved by the same amount.
5144 In this case we can change the segment's LMA to match the LMA
5145 of the first section.
5146
5147 3. Some of the sections have been moved, others have not.
5148 In this case those sections which have not been moved can be
5149 placed in the current segment which will have to have its size,
5150 and possibly its LMA changed, and a new segment or segments will
5151 have to be created to contain the other sections.
5152
5153 4. The sections have been moved, but not by the same amount.
5154 In this case we can change the segment's LMA to match the LMA
5155 of the first section and we will have to create a new segment
5156 or segments to contain the other sections.
5157
5158 In order to save time, we allocate an array to hold the section
5159 pointers that we are interested in. As these sections get assigned
5160 to a segment, they are removed from this array. */
5161
5162 /* Gcc 2.96 miscompiles this code on mips. Don't do casting here
5163 to work around this long long bug. */
5164 amt = section_count * sizeof (asection *);
5165 sections = bfd_malloc (amt);
5166 if (sections == NULL)
5167 return FALSE;
5168
5169 /* Step One: Scan for segment vs section LMA conflicts.
5170 Also add the sections to the section array allocated above.
5171 Also add the sections to the current segment. In the common
5172 case, where the sections have not been moved, this means that
5173 we have completely filled the segment, and there is nothing
5174 more to do. */
5175 isec = 0;
5176 matching_lma = 0;
5177 suggested_lma = 0;
5178
5179 for (j = 0, section = ibfd->sections;
5180 section != NULL;
5181 section = section->next)
5182 {
5183 if (INCLUDE_SECTION_IN_SEGMENT (section, segment, bed))
5184 {
5185 output_section = section->output_section;
5186
5187 sections[j ++] = section;
5188
5189 /* The Solaris native linker always sets p_paddr to 0.
5190 We try to catch that case here, and set it to the
5191 correct value. Note - some backends require that
5192 p_paddr be left as zero. */
5193 if (segment->p_paddr == 0
5194 && segment->p_vaddr != 0
5195 && (! bed->want_p_paddr_set_to_zero)
5196 && isec == 0
5197 && output_section->lma != 0
5198 && (output_section->vma == (segment->p_vaddr
5199 + (map->includes_filehdr
5200 ? iehdr->e_ehsize
5201 : 0)
5202 + (map->includes_phdrs
5203 ? (iehdr->e_phnum
5204 * iehdr->e_phentsize)
5205 : 0))))
5206 map->p_paddr = segment->p_vaddr;
5207
5208 /* Match up the physical address of the segment with the
5209 LMA address of the output section. */
5210 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5211 || IS_COREFILE_NOTE (segment, section)
5212 || (bed->want_p_paddr_set_to_zero &&
5213 IS_CONTAINED_BY_VMA (output_section, segment))
5214 )
5215 {
5216 if (matching_lma == 0)
5217 matching_lma = output_section->lma;
5218
5219 /* We assume that if the section fits within the segment
5220 then it does not overlap any other section within that
5221 segment. */
5222 map->sections[isec ++] = output_section;
5223 }
5224 else if (suggested_lma == 0)
5225 suggested_lma = output_section->lma;
5226 }
5227 }
5228
5229 BFD_ASSERT (j == section_count);
5230
5231 /* Step Two: Adjust the physical address of the current segment,
5232 if necessary. */
5233 if (isec == section_count)
5234 {
5235 /* All of the sections fitted within the segment as currently
5236 specified. This is the default case. Add the segment to
5237 the list of built segments and carry on to process the next
5238 program header in the input BFD. */
5239 map->count = section_count;
5240 *pointer_to_map = map;
5241 pointer_to_map = &map->next;
5242
5243 free (sections);
5244 continue;
5245 }
5246 else
5247 {
5248 if (matching_lma != 0)
5249 {
5250 /* At least one section fits inside the current segment.
5251 Keep it, but modify its physical address to match the
5252 LMA of the first section that fitted. */
5253 map->p_paddr = matching_lma;
5254 }
5255 else
5256 {
5257 /* None of the sections fitted inside the current segment.
5258 Change the current segment's physical address to match
5259 the LMA of the first section. */
5260 map->p_paddr = suggested_lma;
5261 }
5262
5263 /* Offset the segment physical address from the lma
5264 to allow for space taken up by elf headers. */
5265 if (map->includes_filehdr)
5266 map->p_paddr -= iehdr->e_ehsize;
5267
5268 if (map->includes_phdrs)
5269 {
5270 map->p_paddr -= iehdr->e_phnum * iehdr->e_phentsize;
5271
5272 /* iehdr->e_phnum is just an estimate of the number
5273 of program headers that we will need. Make a note
5274 here of the number we used and the segment we chose
5275 to hold these headers, so that we can adjust the
5276 offset when we know the correct value. */
5277 phdr_adjust_num = iehdr->e_phnum;
5278 phdr_adjust_seg = map;
5279 }
5280 }
5281
5282 /* Step Three: Loop over the sections again, this time assigning
5283 those that fit to the current segment and removing them from the
5284 sections array; but making sure not to leave large gaps. Once all
5285 possible sections have been assigned to the current segment it is
5286 added to the list of built segments and if sections still remain
5287 to be assigned, a new segment is constructed before repeating
5288 the loop. */
5289 isec = 0;
5290 do
5291 {
5292 map->count = 0;
5293 suggested_lma = 0;
5294
5295 /* Fill the current segment with sections that fit. */
5296 for (j = 0; j < section_count; j++)
5297 {
5298 section = sections[j];
5299
5300 if (section == NULL)
5301 continue;
5302
5303 output_section = section->output_section;
5304
5305 BFD_ASSERT (output_section != NULL);
5306
5307 if (IS_CONTAINED_BY_LMA (output_section, segment, map->p_paddr)
5308 || IS_COREFILE_NOTE (segment, section))
5309 {
5310 if (map->count == 0)
5311 {
5312 /* If the first section in a segment does not start at
5313 the beginning of the segment, then something is
5314 wrong. */
5315 if (output_section->lma !=
5316 (map->p_paddr
5317 + (map->includes_filehdr ? iehdr->e_ehsize : 0)
5318 + (map->includes_phdrs
5319 ? iehdr->e_phnum * iehdr->e_phentsize
5320 : 0)))
5321 abort ();
5322 }
5323 else
5324 {
5325 asection * prev_sec;
5326
5327 prev_sec = map->sections[map->count - 1];
5328
5329 /* If the gap between the end of the previous section
5330 and the start of this section is more than
5331 maxpagesize then we need to start a new segment. */
5332 if ((BFD_ALIGN (prev_sec->lma + prev_sec->size,
5333 maxpagesize)
5334 < BFD_ALIGN (output_section->lma, maxpagesize))
5335 || ((prev_sec->lma + prev_sec->size)
5336 > output_section->lma))
5337 {
5338 if (suggested_lma == 0)
5339 suggested_lma = output_section->lma;
5340
5341 continue;
5342 }
5343 }
5344
5345 map->sections[map->count++] = output_section;
5346 ++isec;
5347 sections[j] = NULL;
5348 section->segment_mark = TRUE;
5349 }
5350 else if (suggested_lma == 0)
5351 suggested_lma = output_section->lma;
5352 }
5353
5354 BFD_ASSERT (map->count > 0);
5355
5356 /* Add the current segment to the list of built segments. */
5357 *pointer_to_map = map;
5358 pointer_to_map = &map->next;
5359
5360 if (isec < section_count)
5361 {
5362 /* We still have not allocated all of the sections to
5363 segments. Create a new segment here, initialise it
5364 and carry on looping. */
5365 amt = sizeof (struct elf_segment_map);
5366 amt += ((bfd_size_type) section_count - 1) * sizeof (asection *);
5367 map = bfd_alloc (obfd, amt);
5368 if (map == NULL)
5369 {
5370 free (sections);
5371 return FALSE;
5372 }
5373
5374 /* Initialise the fields of the segment map. Set the physical
5375 physical address to the LMA of the first section that has
5376 not yet been assigned. */
5377 map->next = NULL;
5378 map->p_type = segment->p_type;
5379 map->p_flags = segment->p_flags;
5380 map->p_flags_valid = 1;
5381 map->p_paddr = suggested_lma;
5382 map->p_paddr_valid = 1;
5383 map->includes_filehdr = 0;
5384 map->includes_phdrs = 0;
5385 }
5386 }
5387 while (isec < section_count);
5388
5389 free (sections);
5390 }
5391
5392 /* The Solaris linker creates program headers in which all the
5393 p_paddr fields are zero. When we try to objcopy or strip such a
5394 file, we get confused. Check for this case, and if we find it
5395 reset the p_paddr_valid fields. */
5396 for (map = map_first; map != NULL; map = map->next)
5397 if (map->p_paddr != 0)
5398 break;
5399 if (map == NULL)
5400 for (map = map_first; map != NULL; map = map->next)
5401 map->p_paddr_valid = 0;
5402
5403 elf_tdata (obfd)->segment_map = map_first;
5404
5405 /* If we had to estimate the number of program headers that were
5406 going to be needed, then check our estimate now and adjust
5407 the offset if necessary. */
5408 if (phdr_adjust_seg != NULL)
5409 {
5410 unsigned int count;
5411
5412 for (count = 0, map = map_first; map != NULL; map = map->next)
5413 count++;
5414
5415 if (count > phdr_adjust_num)
5416 phdr_adjust_seg->p_paddr
5417 -= (count - phdr_adjust_num) * iehdr->e_phentsize;
5418 }
5419
5420 #if 0
5421 /* Final Step: Sort the segments into ascending order of physical
5422 address. */
5423 if (map_first != NULL)
5424 {
5425 struct elf_segment_map *prev;
5426
5427 prev = map_first;
5428 for (map = map_first->next; map != NULL; prev = map, map = map->next)
5429 {
5430 /* Yes I know - its a bubble sort.... */
5431 if (map->next != NULL && (map->next->p_paddr < map->p_paddr))
5432 {
5433 /* Swap map and map->next. */
5434 prev->next = map->next;
5435 map->next = map->next->next;
5436 prev->next->next = map;
5437
5438 /* Restart loop. */
5439 map = map_first;
5440 }
5441 }
5442 }
5443 #endif
5444
5445 #undef SEGMENT_END
5446 #undef SECTION_SIZE
5447 #undef IS_CONTAINED_BY_VMA
5448 #undef IS_CONTAINED_BY_LMA
5449 #undef IS_COREFILE_NOTE
5450 #undef IS_SOLARIS_PT_INTERP
5451 #undef INCLUDE_SECTION_IN_SEGMENT
5452 #undef SEGMENT_AFTER_SEGMENT
5453 #undef SEGMENT_OVERLAPS
5454 return TRUE;
5455 }
5456
5457 /* Copy private section information. This copies over the entsize
5458 field, and sometimes the info field. */
5459
5460 bfd_boolean
5461 _bfd_elf_copy_private_section_data (bfd *ibfd,
5462 asection *isec,
5463 bfd *obfd,
5464 asection *osec)
5465 {
5466 Elf_Internal_Shdr *ihdr, *ohdr;
5467
5468 if (ibfd->xvec->flavour != bfd_target_elf_flavour
5469 || obfd->xvec->flavour != bfd_target_elf_flavour)
5470 return TRUE;
5471
5472 ihdr = &elf_section_data (isec)->this_hdr;
5473 ohdr = &elf_section_data (osec)->this_hdr;
5474
5475 ohdr->sh_entsize = ihdr->sh_entsize;
5476
5477 if (ihdr->sh_type == SHT_SYMTAB
5478 || ihdr->sh_type == SHT_DYNSYM
5479 || ihdr->sh_type == SHT_GNU_verneed
5480 || ihdr->sh_type == SHT_GNU_verdef)
5481 ohdr->sh_info = ihdr->sh_info;
5482
5483 /* Set things up for objcopy. The output SHT_GROUP section will
5484 have its elf_next_in_group pointing back to the input group
5485 members. */
5486 elf_next_in_group (osec) = elf_next_in_group (isec);
5487 elf_group_name (osec) = elf_group_name (isec);
5488
5489 osec->use_rela_p = isec->use_rela_p;
5490
5491 return TRUE;
5492 }
5493
5494 /* Copy private header information. */
5495
5496 bfd_boolean
5497 _bfd_elf_copy_private_header_data (bfd *ibfd, bfd *obfd)
5498 {
5499 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5500 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5501 return TRUE;
5502
5503 /* Copy over private BFD data if it has not already been copied.
5504 This must be done here, rather than in the copy_private_bfd_data
5505 entry point, because the latter is called after the section
5506 contents have been set, which means that the program headers have
5507 already been worked out. */
5508 if (elf_tdata (obfd)->segment_map == NULL && elf_tdata (ibfd)->phdr != NULL)
5509 {
5510 if (! copy_private_bfd_data (ibfd, obfd))
5511 return FALSE;
5512 }
5513
5514 return TRUE;
5515 }
5516
5517 /* Copy private symbol information. If this symbol is in a section
5518 which we did not map into a BFD section, try to map the section
5519 index correctly. We use special macro definitions for the mapped
5520 section indices; these definitions are interpreted by the
5521 swap_out_syms function. */
5522
5523 #define MAP_ONESYMTAB (SHN_HIOS + 1)
5524 #define MAP_DYNSYMTAB (SHN_HIOS + 2)
5525 #define MAP_STRTAB (SHN_HIOS + 3)
5526 #define MAP_SHSTRTAB (SHN_HIOS + 4)
5527 #define MAP_SYM_SHNDX (SHN_HIOS + 5)
5528
5529 bfd_boolean
5530 _bfd_elf_copy_private_symbol_data (bfd *ibfd,
5531 asymbol *isymarg,
5532 bfd *obfd,
5533 asymbol *osymarg)
5534 {
5535 elf_symbol_type *isym, *osym;
5536
5537 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour
5538 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
5539 return TRUE;
5540
5541 isym = elf_symbol_from (ibfd, isymarg);
5542 osym = elf_symbol_from (obfd, osymarg);
5543
5544 if (isym != NULL
5545 && osym != NULL
5546 && bfd_is_abs_section (isym->symbol.section))
5547 {
5548 unsigned int shndx;
5549
5550 shndx = isym->internal_elf_sym.st_shndx;
5551 if (shndx == elf_onesymtab (ibfd))
5552 shndx = MAP_ONESYMTAB;
5553 else if (shndx == elf_dynsymtab (ibfd))
5554 shndx = MAP_DYNSYMTAB;
5555 else if (shndx == elf_tdata (ibfd)->strtab_section)
5556 shndx = MAP_STRTAB;
5557 else if (shndx == elf_tdata (ibfd)->shstrtab_section)
5558 shndx = MAP_SHSTRTAB;
5559 else if (shndx == elf_tdata (ibfd)->symtab_shndx_section)
5560 shndx = MAP_SYM_SHNDX;
5561 osym->internal_elf_sym.st_shndx = shndx;
5562 }
5563
5564 return TRUE;
5565 }
5566
5567 /* Swap out the symbols. */
5568
5569 static bfd_boolean
5570 swap_out_syms (bfd *abfd,
5571 struct bfd_strtab_hash **sttp,
5572 int relocatable_p)
5573 {
5574 const struct elf_backend_data *bed;
5575 int symcount;
5576 asymbol **syms;
5577 struct bfd_strtab_hash *stt;
5578 Elf_Internal_Shdr *symtab_hdr;
5579 Elf_Internal_Shdr *symtab_shndx_hdr;
5580 Elf_Internal_Shdr *symstrtab_hdr;
5581 char *outbound_syms;
5582 char *outbound_shndx;
5583 int idx;
5584 bfd_size_type amt;
5585 bfd_boolean name_local_sections;
5586
5587 if (!elf_map_symbols (abfd))
5588 return FALSE;
5589
5590 /* Dump out the symtabs. */
5591 stt = _bfd_elf_stringtab_init ();
5592 if (stt == NULL)
5593 return FALSE;
5594
5595 bed = get_elf_backend_data (abfd);
5596 symcount = bfd_get_symcount (abfd);
5597 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
5598 symtab_hdr->sh_type = SHT_SYMTAB;
5599 symtab_hdr->sh_entsize = bed->s->sizeof_sym;
5600 symtab_hdr->sh_size = symtab_hdr->sh_entsize * (symcount + 1);
5601 symtab_hdr->sh_info = elf_num_locals (abfd) + 1;
5602 symtab_hdr->sh_addralign = 1 << bed->s->log_file_align;
5603
5604 symstrtab_hdr = &elf_tdata (abfd)->strtab_hdr;
5605 symstrtab_hdr->sh_type = SHT_STRTAB;
5606
5607 amt = (bfd_size_type) (1 + symcount) * bed->s->sizeof_sym;
5608 outbound_syms = bfd_alloc (abfd, amt);
5609 if (outbound_syms == NULL)
5610 {
5611 _bfd_stringtab_free (stt);
5612 return FALSE;
5613 }
5614 symtab_hdr->contents = outbound_syms;
5615
5616 outbound_shndx = NULL;
5617 symtab_shndx_hdr = &elf_tdata (abfd)->symtab_shndx_hdr;
5618 if (symtab_shndx_hdr->sh_name != 0)
5619 {
5620 amt = (bfd_size_type) (1 + symcount) * sizeof (Elf_External_Sym_Shndx);
5621 outbound_shndx = bfd_zalloc (abfd, amt);
5622 if (outbound_shndx == NULL)
5623 {
5624 _bfd_stringtab_free (stt);
5625 return FALSE;
5626 }
5627
5628 symtab_shndx_hdr->contents = outbound_shndx;
5629 symtab_shndx_hdr->sh_type = SHT_SYMTAB_SHNDX;
5630 symtab_shndx_hdr->sh_size = amt;
5631 symtab_shndx_hdr->sh_addralign = sizeof (Elf_External_Sym_Shndx);
5632 symtab_shndx_hdr->sh_entsize = sizeof (Elf_External_Sym_Shndx);
5633 }
5634
5635 /* Now generate the data (for "contents"). */
5636 {
5637 /* Fill in zeroth symbol and swap it out. */
5638 Elf_Internal_Sym sym;
5639 sym.st_name = 0;
5640 sym.st_value = 0;
5641 sym.st_size = 0;
5642 sym.st_info = 0;
5643 sym.st_other = 0;
5644 sym.st_shndx = SHN_UNDEF;
5645 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5646 outbound_syms += bed->s->sizeof_sym;
5647 if (outbound_shndx != NULL)
5648 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5649 }
5650
5651 name_local_sections
5652 = (bed->elf_backend_name_local_section_symbols
5653 && bed->elf_backend_name_local_section_symbols (abfd));
5654
5655 syms = bfd_get_outsymbols (abfd);
5656 for (idx = 0; idx < symcount; idx++)
5657 {
5658 Elf_Internal_Sym sym;
5659 bfd_vma value = syms[idx]->value;
5660 elf_symbol_type *type_ptr;
5661 flagword flags = syms[idx]->flags;
5662 int type;
5663
5664 if (!name_local_sections
5665 && (flags & (BSF_SECTION_SYM | BSF_GLOBAL)) == BSF_SECTION_SYM)
5666 {
5667 /* Local section symbols have no name. */
5668 sym.st_name = 0;
5669 }
5670 else
5671 {
5672 sym.st_name = (unsigned long) _bfd_stringtab_add (stt,
5673 syms[idx]->name,
5674 TRUE, FALSE);
5675 if (sym.st_name == (unsigned long) -1)
5676 {
5677 _bfd_stringtab_free (stt);
5678 return FALSE;
5679 }
5680 }
5681
5682 type_ptr = elf_symbol_from (abfd, syms[idx]);
5683
5684 if ((flags & BSF_SECTION_SYM) == 0
5685 && bfd_is_com_section (syms[idx]->section))
5686 {
5687 /* ELF common symbols put the alignment into the `value' field,
5688 and the size into the `size' field. This is backwards from
5689 how BFD handles it, so reverse it here. */
5690 sym.st_size = value;
5691 if (type_ptr == NULL
5692 || type_ptr->internal_elf_sym.st_value == 0)
5693 sym.st_value = value >= 16 ? 16 : (1 << bfd_log2 (value));
5694 else
5695 sym.st_value = type_ptr->internal_elf_sym.st_value;
5696 sym.st_shndx = _bfd_elf_section_from_bfd_section
5697 (abfd, syms[idx]->section);
5698 }
5699 else
5700 {
5701 asection *sec = syms[idx]->section;
5702 int shndx;
5703
5704 if (sec->output_section)
5705 {
5706 value += sec->output_offset;
5707 sec = sec->output_section;
5708 }
5709
5710 /* Don't add in the section vma for relocatable output. */
5711 if (! relocatable_p)
5712 value += sec->vma;
5713 sym.st_value = value;
5714 sym.st_size = type_ptr ? type_ptr->internal_elf_sym.st_size : 0;
5715
5716 if (bfd_is_abs_section (sec)
5717 && type_ptr != NULL
5718 && type_ptr->internal_elf_sym.st_shndx != 0)
5719 {
5720 /* This symbol is in a real ELF section which we did
5721 not create as a BFD section. Undo the mapping done
5722 by copy_private_symbol_data. */
5723 shndx = type_ptr->internal_elf_sym.st_shndx;
5724 switch (shndx)
5725 {
5726 case MAP_ONESYMTAB:
5727 shndx = elf_onesymtab (abfd);
5728 break;
5729 case MAP_DYNSYMTAB:
5730 shndx = elf_dynsymtab (abfd);
5731 break;
5732 case MAP_STRTAB:
5733 shndx = elf_tdata (abfd)->strtab_section;
5734 break;
5735 case MAP_SHSTRTAB:
5736 shndx = elf_tdata (abfd)->shstrtab_section;
5737 break;
5738 case MAP_SYM_SHNDX:
5739 shndx = elf_tdata (abfd)->symtab_shndx_section;
5740 break;
5741 default:
5742 break;
5743 }
5744 }
5745 else
5746 {
5747 shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
5748
5749 if (shndx == -1)
5750 {
5751 asection *sec2;
5752
5753 /* Writing this would be a hell of a lot easier if
5754 we had some decent documentation on bfd, and
5755 knew what to expect of the library, and what to
5756 demand of applications. For example, it
5757 appears that `objcopy' might not set the
5758 section of a symbol to be a section that is
5759 actually in the output file. */
5760 sec2 = bfd_get_section_by_name (abfd, sec->name);
5761 if (sec2 == NULL)
5762 {
5763 _bfd_error_handler (_("\
5764 Unable to find equivalent output section for symbol '%s' from section '%s'"),
5765 syms[idx]->name ? syms[idx]->name : "<Local sym>",
5766 sec->name);
5767 bfd_set_error (bfd_error_invalid_operation);
5768 _bfd_stringtab_free (stt);
5769 return FALSE;
5770 }
5771
5772 shndx = _bfd_elf_section_from_bfd_section (abfd, sec2);
5773 BFD_ASSERT (shndx != -1);
5774 }
5775 }
5776
5777 sym.st_shndx = shndx;
5778 }
5779
5780 if ((flags & BSF_THREAD_LOCAL) != 0)
5781 type = STT_TLS;
5782 else if ((flags & BSF_FUNCTION) != 0)
5783 type = STT_FUNC;
5784 else if ((flags & BSF_OBJECT) != 0)
5785 type = STT_OBJECT;
5786 else
5787 type = STT_NOTYPE;
5788
5789 if (syms[idx]->section->flags & SEC_THREAD_LOCAL)
5790 type = STT_TLS;
5791
5792 /* Processor-specific types. */
5793 if (type_ptr != NULL
5794 && bed->elf_backend_get_symbol_type)
5795 type = ((*bed->elf_backend_get_symbol_type)
5796 (&type_ptr->internal_elf_sym, type));
5797
5798 if (flags & BSF_SECTION_SYM)
5799 {
5800 if (flags & BSF_GLOBAL)
5801 sym.st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
5802 else
5803 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_SECTION);
5804 }
5805 else if (bfd_is_com_section (syms[idx]->section))
5806 sym.st_info = ELF_ST_INFO (STB_GLOBAL, type);
5807 else if (bfd_is_und_section (syms[idx]->section))
5808 sym.st_info = ELF_ST_INFO (((flags & BSF_WEAK)
5809 ? STB_WEAK
5810 : STB_GLOBAL),
5811 type);
5812 else if (flags & BSF_FILE)
5813 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FILE);
5814 else
5815 {
5816 int bind = STB_LOCAL;
5817
5818 if (flags & BSF_LOCAL)
5819 bind = STB_LOCAL;
5820 else if (flags & BSF_WEAK)
5821 bind = STB_WEAK;
5822 else if (flags & BSF_GLOBAL)
5823 bind = STB_GLOBAL;
5824
5825 sym.st_info = ELF_ST_INFO (bind, type);
5826 }
5827
5828 if (type_ptr != NULL)
5829 sym.st_other = type_ptr->internal_elf_sym.st_other;
5830 else
5831 sym.st_other = 0;
5832
5833 bed->s->swap_symbol_out (abfd, &sym, outbound_syms, outbound_shndx);
5834 outbound_syms += bed->s->sizeof_sym;
5835 if (outbound_shndx != NULL)
5836 outbound_shndx += sizeof (Elf_External_Sym_Shndx);
5837 }
5838
5839 *sttp = stt;
5840 symstrtab_hdr->sh_size = _bfd_stringtab_size (stt);
5841 symstrtab_hdr->sh_type = SHT_STRTAB;
5842
5843 symstrtab_hdr->sh_flags = 0;
5844 symstrtab_hdr->sh_addr = 0;
5845 symstrtab_hdr->sh_entsize = 0;
5846 symstrtab_hdr->sh_link = 0;
5847 symstrtab_hdr->sh_info = 0;
5848 symstrtab_hdr->sh_addralign = 1;
5849
5850 return TRUE;
5851 }
5852
5853 /* Return the number of bytes required to hold the symtab vector.
5854
5855 Note that we base it on the count plus 1, since we will null terminate
5856 the vector allocated based on this size. However, the ELF symbol table
5857 always has a dummy entry as symbol #0, so it ends up even. */
5858
5859 long
5860 _bfd_elf_get_symtab_upper_bound (bfd *abfd)
5861 {
5862 long symcount;
5863 long symtab_size;
5864 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->symtab_hdr;
5865
5866 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5867 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5868 if (symcount > 0)
5869 symtab_size -= sizeof (asymbol *);
5870
5871 return symtab_size;
5872 }
5873
5874 long
5875 _bfd_elf_get_dynamic_symtab_upper_bound (bfd *abfd)
5876 {
5877 long symcount;
5878 long symtab_size;
5879 Elf_Internal_Shdr *hdr = &elf_tdata (abfd)->dynsymtab_hdr;
5880
5881 if (elf_dynsymtab (abfd) == 0)
5882 {
5883 bfd_set_error (bfd_error_invalid_operation);
5884 return -1;
5885 }
5886
5887 symcount = hdr->sh_size / get_elf_backend_data (abfd)->s->sizeof_sym;
5888 symtab_size = (symcount + 1) * (sizeof (asymbol *));
5889 if (symcount > 0)
5890 symtab_size -= sizeof (asymbol *);
5891
5892 return symtab_size;
5893 }
5894
5895 long
5896 _bfd_elf_get_reloc_upper_bound (bfd *abfd ATTRIBUTE_UNUSED,
5897 sec_ptr asect)
5898 {
5899 return (asect->reloc_count + 1) * sizeof (arelent *);
5900 }
5901
5902 /* Canonicalize the relocs. */
5903
5904 long
5905 _bfd_elf_canonicalize_reloc (bfd *abfd,
5906 sec_ptr section,
5907 arelent **relptr,
5908 asymbol **symbols)
5909 {
5910 arelent *tblptr;
5911 unsigned int i;
5912 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5913
5914 if (! bed->s->slurp_reloc_table (abfd, section, symbols, FALSE))
5915 return -1;
5916
5917 tblptr = section->relocation;
5918 for (i = 0; i < section->reloc_count; i++)
5919 *relptr++ = tblptr++;
5920
5921 *relptr = NULL;
5922
5923 return section->reloc_count;
5924 }
5925
5926 long
5927 _bfd_elf_canonicalize_symtab (bfd *abfd, asymbol **allocation)
5928 {
5929 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5930 long symcount = bed->s->slurp_symbol_table (abfd, allocation, FALSE);
5931
5932 if (symcount >= 0)
5933 bfd_get_symcount (abfd) = symcount;
5934 return symcount;
5935 }
5936
5937 long
5938 _bfd_elf_canonicalize_dynamic_symtab (bfd *abfd,
5939 asymbol **allocation)
5940 {
5941 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
5942 long symcount = bed->s->slurp_symbol_table (abfd, allocation, TRUE);
5943
5944 if (symcount >= 0)
5945 bfd_get_dynamic_symcount (abfd) = symcount;
5946 return symcount;
5947 }
5948
5949 /* Return the size required for the dynamic reloc entries. Any
5950 section that was actually installed in the BFD, and has type
5951 SHT_REL or SHT_RELA, and uses the dynamic symbol table, is
5952 considered to be a dynamic reloc section. */
5953
5954 long
5955 _bfd_elf_get_dynamic_reloc_upper_bound (bfd *abfd)
5956 {
5957 long ret;
5958 asection *s;
5959
5960 if (elf_dynsymtab (abfd) == 0)
5961 {
5962 bfd_set_error (bfd_error_invalid_operation);
5963 return -1;
5964 }
5965
5966 ret = sizeof (arelent *);
5967 for (s = abfd->sections; s != NULL; s = s->next)
5968 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
5969 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
5970 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
5971 ret += ((s->size / elf_section_data (s)->this_hdr.sh_entsize)
5972 * sizeof (arelent *));
5973
5974 return ret;
5975 }
5976
5977 /* Canonicalize the dynamic relocation entries. Note that we return
5978 the dynamic relocations as a single block, although they are
5979 actually associated with particular sections; the interface, which
5980 was designed for SunOS style shared libraries, expects that there
5981 is only one set of dynamic relocs. Any section that was actually
5982 installed in the BFD, and has type SHT_REL or SHT_RELA, and uses
5983 the dynamic symbol table, is considered to be a dynamic reloc
5984 section. */
5985
5986 long
5987 _bfd_elf_canonicalize_dynamic_reloc (bfd *abfd,
5988 arelent **storage,
5989 asymbol **syms)
5990 {
5991 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
5992 asection *s;
5993 long ret;
5994
5995 if (elf_dynsymtab (abfd) == 0)
5996 {
5997 bfd_set_error (bfd_error_invalid_operation);
5998 return -1;
5999 }
6000
6001 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
6002 ret = 0;
6003 for (s = abfd->sections; s != NULL; s = s->next)
6004 {
6005 if (elf_section_data (s)->this_hdr.sh_link == elf_dynsymtab (abfd)
6006 && (elf_section_data (s)->this_hdr.sh_type == SHT_REL
6007 || elf_section_data (s)->this_hdr.sh_type == SHT_RELA))
6008 {
6009 arelent *p;
6010 long count, i;
6011
6012 if (! (*slurp_relocs) (abfd, s, syms, TRUE))
6013 return -1;
6014 count = s->size / elf_section_data (s)->this_hdr.sh_entsize;
6015 p = s->relocation;
6016 for (i = 0; i < count; i++)
6017 *storage++ = p++;
6018 ret += count;
6019 }
6020 }
6021
6022 *storage = NULL;
6023
6024 return ret;
6025 }
6026 \f
6027 /* Read in the version information. */
6028
6029 bfd_boolean
6030 _bfd_elf_slurp_version_tables (bfd *abfd, bfd_boolean default_imported_symver)
6031 {
6032 bfd_byte *contents = NULL;
6033 bfd_size_type amt;
6034 unsigned int freeidx = 0;
6035
6036 if (elf_dynverref (abfd) != 0)
6037 {
6038 Elf_Internal_Shdr *hdr;
6039 Elf_External_Verneed *everneed;
6040 Elf_Internal_Verneed *iverneed;
6041 unsigned int i;
6042
6043 hdr = &elf_tdata (abfd)->dynverref_hdr;
6044
6045 amt = (bfd_size_type) hdr->sh_info * sizeof (Elf_Internal_Verneed);
6046 elf_tdata (abfd)->verref = bfd_zalloc (abfd, amt);
6047 if (elf_tdata (abfd)->verref == NULL)
6048 goto error_return;
6049
6050 elf_tdata (abfd)->cverrefs = hdr->sh_info;
6051
6052 contents = bfd_malloc (hdr->sh_size);
6053 if (contents == NULL)
6054 goto error_return;
6055 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6056 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6057 goto error_return;
6058
6059 everneed = (Elf_External_Verneed *) contents;
6060 iverneed = elf_tdata (abfd)->verref;
6061 for (i = 0; i < hdr->sh_info; i++, iverneed++)
6062 {
6063 Elf_External_Vernaux *evernaux;
6064 Elf_Internal_Vernaux *ivernaux;
6065 unsigned int j;
6066
6067 _bfd_elf_swap_verneed_in (abfd, everneed, iverneed);
6068
6069 iverneed->vn_bfd = abfd;
6070
6071 iverneed->vn_filename =
6072 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6073 iverneed->vn_file);
6074 if (iverneed->vn_filename == NULL)
6075 goto error_return;
6076
6077 amt = iverneed->vn_cnt;
6078 amt *= sizeof (Elf_Internal_Vernaux);
6079 iverneed->vn_auxptr = bfd_alloc (abfd, amt);
6080
6081 evernaux = ((Elf_External_Vernaux *)
6082 ((bfd_byte *) everneed + iverneed->vn_aux));
6083 ivernaux = iverneed->vn_auxptr;
6084 for (j = 0; j < iverneed->vn_cnt; j++, ivernaux++)
6085 {
6086 _bfd_elf_swap_vernaux_in (abfd, evernaux, ivernaux);
6087
6088 ivernaux->vna_nodename =
6089 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6090 ivernaux->vna_name);
6091 if (ivernaux->vna_nodename == NULL)
6092 goto error_return;
6093
6094 if (j + 1 < iverneed->vn_cnt)
6095 ivernaux->vna_nextptr = ivernaux + 1;
6096 else
6097 ivernaux->vna_nextptr = NULL;
6098
6099 evernaux = ((Elf_External_Vernaux *)
6100 ((bfd_byte *) evernaux + ivernaux->vna_next));
6101
6102 if (ivernaux->vna_other > freeidx)
6103 freeidx = ivernaux->vna_other;
6104 }
6105
6106 if (i + 1 < hdr->sh_info)
6107 iverneed->vn_nextref = iverneed + 1;
6108 else
6109 iverneed->vn_nextref = NULL;
6110
6111 everneed = ((Elf_External_Verneed *)
6112 ((bfd_byte *) everneed + iverneed->vn_next));
6113 }
6114
6115 free (contents);
6116 contents = NULL;
6117 }
6118
6119 if (elf_dynverdef (abfd) != 0)
6120 {
6121 Elf_Internal_Shdr *hdr;
6122 Elf_External_Verdef *everdef;
6123 Elf_Internal_Verdef *iverdef;
6124 Elf_Internal_Verdef *iverdefarr;
6125 Elf_Internal_Verdef iverdefmem;
6126 unsigned int i;
6127 unsigned int maxidx;
6128
6129 hdr = &elf_tdata (abfd)->dynverdef_hdr;
6130
6131 contents = bfd_malloc (hdr->sh_size);
6132 if (contents == NULL)
6133 goto error_return;
6134 if (bfd_seek (abfd, hdr->sh_offset, SEEK_SET) != 0
6135 || bfd_bread (contents, hdr->sh_size, abfd) != hdr->sh_size)
6136 goto error_return;
6137
6138 /* We know the number of entries in the section but not the maximum
6139 index. Therefore we have to run through all entries and find
6140 the maximum. */
6141 everdef = (Elf_External_Verdef *) contents;
6142 maxidx = 0;
6143 for (i = 0; i < hdr->sh_info; ++i)
6144 {
6145 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6146
6147 if ((iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION)) > maxidx)
6148 maxidx = iverdefmem.vd_ndx & ((unsigned) VERSYM_VERSION);
6149
6150 everdef = ((Elf_External_Verdef *)
6151 ((bfd_byte *) everdef + iverdefmem.vd_next));
6152 }
6153
6154 if (default_imported_symver)
6155 {
6156 if (freeidx > maxidx)
6157 maxidx = ++freeidx;
6158 else
6159 freeidx = ++maxidx;
6160 }
6161 amt = (bfd_size_type) maxidx * sizeof (Elf_Internal_Verdef);
6162 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6163 if (elf_tdata (abfd)->verdef == NULL)
6164 goto error_return;
6165
6166 elf_tdata (abfd)->cverdefs = maxidx;
6167
6168 everdef = (Elf_External_Verdef *) contents;
6169 iverdefarr = elf_tdata (abfd)->verdef;
6170 for (i = 0; i < hdr->sh_info; i++)
6171 {
6172 Elf_External_Verdaux *everdaux;
6173 Elf_Internal_Verdaux *iverdaux;
6174 unsigned int j;
6175
6176 _bfd_elf_swap_verdef_in (abfd, everdef, &iverdefmem);
6177
6178 iverdef = &iverdefarr[(iverdefmem.vd_ndx & VERSYM_VERSION) - 1];
6179 memcpy (iverdef, &iverdefmem, sizeof (Elf_Internal_Verdef));
6180
6181 iverdef->vd_bfd = abfd;
6182
6183 amt = (bfd_size_type) iverdef->vd_cnt * sizeof (Elf_Internal_Verdaux);
6184 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6185 if (iverdef->vd_auxptr == NULL)
6186 goto error_return;
6187
6188 everdaux = ((Elf_External_Verdaux *)
6189 ((bfd_byte *) everdef + iverdef->vd_aux));
6190 iverdaux = iverdef->vd_auxptr;
6191 for (j = 0; j < iverdef->vd_cnt; j++, iverdaux++)
6192 {
6193 _bfd_elf_swap_verdaux_in (abfd, everdaux, iverdaux);
6194
6195 iverdaux->vda_nodename =
6196 bfd_elf_string_from_elf_section (abfd, hdr->sh_link,
6197 iverdaux->vda_name);
6198 if (iverdaux->vda_nodename == NULL)
6199 goto error_return;
6200
6201 if (j + 1 < iverdef->vd_cnt)
6202 iverdaux->vda_nextptr = iverdaux + 1;
6203 else
6204 iverdaux->vda_nextptr = NULL;
6205
6206 everdaux = ((Elf_External_Verdaux *)
6207 ((bfd_byte *) everdaux + iverdaux->vda_next));
6208 }
6209
6210 iverdef->vd_nodename = iverdef->vd_auxptr->vda_nodename;
6211
6212 if (i + 1 < hdr->sh_info)
6213 iverdef->vd_nextdef = iverdef + 1;
6214 else
6215 iverdef->vd_nextdef = NULL;
6216
6217 everdef = ((Elf_External_Verdef *)
6218 ((bfd_byte *) everdef + iverdef->vd_next));
6219 }
6220
6221 free (contents);
6222 contents = NULL;
6223 }
6224 else if (default_imported_symver)
6225 {
6226 if (freeidx < 3)
6227 freeidx = 3;
6228 else
6229 freeidx++;
6230
6231 amt = (bfd_size_type) freeidx * sizeof (Elf_Internal_Verdef);
6232 elf_tdata (abfd)->verdef = bfd_zalloc (abfd, amt);
6233 if (elf_tdata (abfd)->verdef == NULL)
6234 goto error_return;
6235
6236 elf_tdata (abfd)->cverdefs = freeidx;
6237 }
6238
6239 /* Create a default version based on the soname. */
6240 if (default_imported_symver)
6241 {
6242 Elf_Internal_Verdef *iverdef;
6243 Elf_Internal_Verdaux *iverdaux;
6244
6245 iverdef = &elf_tdata (abfd)->verdef[freeidx - 1];;
6246
6247 iverdef->vd_version = VER_DEF_CURRENT;
6248 iverdef->vd_flags = 0;
6249 iverdef->vd_ndx = freeidx;
6250 iverdef->vd_cnt = 1;
6251
6252 iverdef->vd_bfd = abfd;
6253
6254 iverdef->vd_nodename = bfd_elf_get_dt_soname (abfd);
6255 if (iverdef->vd_nodename == NULL)
6256 goto error_return;
6257 iverdef->vd_nextdef = NULL;
6258 amt = (bfd_size_type) sizeof (Elf_Internal_Verdaux);
6259 iverdef->vd_auxptr = bfd_alloc (abfd, amt);
6260
6261 iverdaux = iverdef->vd_auxptr;
6262 iverdaux->vda_nodename = iverdef->vd_nodename;
6263 iverdaux->vda_nextptr = NULL;
6264 }
6265
6266 return TRUE;
6267
6268 error_return:
6269 if (contents != NULL)
6270 free (contents);
6271 return FALSE;
6272 }
6273 \f
6274 asymbol *
6275 _bfd_elf_make_empty_symbol (bfd *abfd)
6276 {
6277 elf_symbol_type *newsym;
6278 bfd_size_type amt = sizeof (elf_symbol_type);
6279
6280 newsym = bfd_zalloc (abfd, amt);
6281 if (!newsym)
6282 return NULL;
6283 else
6284 {
6285 newsym->symbol.the_bfd = abfd;
6286 return &newsym->symbol;
6287 }
6288 }
6289
6290 void
6291 _bfd_elf_get_symbol_info (bfd *abfd ATTRIBUTE_UNUSED,
6292 asymbol *symbol,
6293 symbol_info *ret)
6294 {
6295 bfd_symbol_info (symbol, ret);
6296 }
6297
6298 /* Return whether a symbol name implies a local symbol. Most targets
6299 use this function for the is_local_label_name entry point, but some
6300 override it. */
6301
6302 bfd_boolean
6303 _bfd_elf_is_local_label_name (bfd *abfd ATTRIBUTE_UNUSED,
6304 const char *name)
6305 {
6306 /* Normal local symbols start with ``.L''. */
6307 if (name[0] == '.' && name[1] == 'L')
6308 return TRUE;
6309
6310 /* At least some SVR4 compilers (e.g., UnixWare 2.1 cc) generate
6311 DWARF debugging symbols starting with ``..''. */
6312 if (name[0] == '.' && name[1] == '.')
6313 return TRUE;
6314
6315 /* gcc will sometimes generate symbols beginning with ``_.L_'' when
6316 emitting DWARF debugging output. I suspect this is actually a
6317 small bug in gcc (it calls ASM_OUTPUT_LABEL when it should call
6318 ASM_GENERATE_INTERNAL_LABEL, and this causes the leading
6319 underscore to be emitted on some ELF targets). For ease of use,
6320 we treat such symbols as local. */
6321 if (name[0] == '_' && name[1] == '.' && name[2] == 'L' && name[3] == '_')
6322 return TRUE;
6323
6324 return FALSE;
6325 }
6326
6327 alent *
6328 _bfd_elf_get_lineno (bfd *abfd ATTRIBUTE_UNUSED,
6329 asymbol *symbol ATTRIBUTE_UNUSED)
6330 {
6331 abort ();
6332 return NULL;
6333 }
6334
6335 bfd_boolean
6336 _bfd_elf_set_arch_mach (bfd *abfd,
6337 enum bfd_architecture arch,
6338 unsigned long machine)
6339 {
6340 /* If this isn't the right architecture for this backend, and this
6341 isn't the generic backend, fail. */
6342 if (arch != get_elf_backend_data (abfd)->arch
6343 && arch != bfd_arch_unknown
6344 && get_elf_backend_data (abfd)->arch != bfd_arch_unknown)
6345 return FALSE;
6346
6347 return bfd_default_set_arch_mach (abfd, arch, machine);
6348 }
6349
6350 /* Find the function to a particular section and offset,
6351 for error reporting. */
6352
6353 static bfd_boolean
6354 elf_find_function (bfd *abfd ATTRIBUTE_UNUSED,
6355 asection *section,
6356 asymbol **symbols,
6357 bfd_vma offset,
6358 const char **filename_ptr,
6359 const char **functionname_ptr)
6360 {
6361 const char *filename;
6362 asymbol *func;
6363 bfd_vma low_func;
6364 asymbol **p;
6365
6366 filename = NULL;
6367 func = NULL;
6368 low_func = 0;
6369
6370 for (p = symbols; *p != NULL; p++)
6371 {
6372 elf_symbol_type *q;
6373
6374 q = (elf_symbol_type *) *p;
6375
6376 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
6377 {
6378 default:
6379 break;
6380 case STT_FILE:
6381 filename = bfd_asymbol_name (&q->symbol);
6382 break;
6383 case STT_NOTYPE:
6384 case STT_FUNC:
6385 if (bfd_get_section (&q->symbol) == section
6386 && q->symbol.value >= low_func
6387 && q->symbol.value <= offset)
6388 {
6389 func = (asymbol *) q;
6390 low_func = q->symbol.value;
6391 }
6392 break;
6393 }
6394 }
6395
6396 if (func == NULL)
6397 return FALSE;
6398
6399 if (filename_ptr)
6400 *filename_ptr = filename;
6401 if (functionname_ptr)
6402 *functionname_ptr = bfd_asymbol_name (func);
6403
6404 return TRUE;
6405 }
6406
6407 /* Find the nearest line to a particular section and offset,
6408 for error reporting. */
6409
6410 bfd_boolean
6411 _bfd_elf_find_nearest_line (bfd *abfd,
6412 asection *section,
6413 asymbol **symbols,
6414 bfd_vma offset,
6415 const char **filename_ptr,
6416 const char **functionname_ptr,
6417 unsigned int *line_ptr)
6418 {
6419 bfd_boolean found;
6420
6421 if (_bfd_dwarf1_find_nearest_line (abfd, section, symbols, offset,
6422 filename_ptr, functionname_ptr,
6423 line_ptr))
6424 {
6425 if (!*functionname_ptr)
6426 elf_find_function (abfd, section, symbols, offset,
6427 *filename_ptr ? NULL : filename_ptr,
6428 functionname_ptr);
6429
6430 return TRUE;
6431 }
6432
6433 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
6434 filename_ptr, functionname_ptr,
6435 line_ptr, 0,
6436 &elf_tdata (abfd)->dwarf2_find_line_info))
6437 {
6438 if (!*functionname_ptr)
6439 elf_find_function (abfd, section, symbols, offset,
6440 *filename_ptr ? NULL : filename_ptr,
6441 functionname_ptr);
6442
6443 return TRUE;
6444 }
6445
6446 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
6447 &found, filename_ptr,
6448 functionname_ptr, line_ptr,
6449 &elf_tdata (abfd)->line_info))
6450 return FALSE;
6451 if (found && (*functionname_ptr || *line_ptr))
6452 return TRUE;
6453
6454 if (symbols == NULL)
6455 return FALSE;
6456
6457 if (! elf_find_function (abfd, section, symbols, offset,
6458 filename_ptr, functionname_ptr))
6459 return FALSE;
6460
6461 *line_ptr = 0;
6462 return TRUE;
6463 }
6464
6465 int
6466 _bfd_elf_sizeof_headers (bfd *abfd, bfd_boolean reloc)
6467 {
6468 int ret;
6469
6470 ret = get_elf_backend_data (abfd)->s->sizeof_ehdr;
6471 if (! reloc)
6472 ret += get_program_header_size (abfd);
6473 return ret;
6474 }
6475
6476 bfd_boolean
6477 _bfd_elf_set_section_contents (bfd *abfd,
6478 sec_ptr section,
6479 const void *location,
6480 file_ptr offset,
6481 bfd_size_type count)
6482 {
6483 Elf_Internal_Shdr *hdr;
6484 bfd_signed_vma pos;
6485
6486 if (! abfd->output_has_begun
6487 && ! _bfd_elf_compute_section_file_positions (abfd, NULL))
6488 return FALSE;
6489
6490 hdr = &elf_section_data (section)->this_hdr;
6491 pos = hdr->sh_offset + offset;
6492 if (bfd_seek (abfd, pos, SEEK_SET) != 0
6493 || bfd_bwrite (location, count, abfd) != count)
6494 return FALSE;
6495
6496 return TRUE;
6497 }
6498
6499 void
6500 _bfd_elf_no_info_to_howto (bfd *abfd ATTRIBUTE_UNUSED,
6501 arelent *cache_ptr ATTRIBUTE_UNUSED,
6502 Elf_Internal_Rela *dst ATTRIBUTE_UNUSED)
6503 {
6504 abort ();
6505 }
6506
6507 /* Try to convert a non-ELF reloc into an ELF one. */
6508
6509 bfd_boolean
6510 _bfd_elf_validate_reloc (bfd *abfd, arelent *areloc)
6511 {
6512 /* Check whether we really have an ELF howto. */
6513
6514 if ((*areloc->sym_ptr_ptr)->the_bfd->xvec != abfd->xvec)
6515 {
6516 bfd_reloc_code_real_type code;
6517 reloc_howto_type *howto;
6518
6519 /* Alien reloc: Try to determine its type to replace it with an
6520 equivalent ELF reloc. */
6521
6522 if (areloc->howto->pc_relative)
6523 {
6524 switch (areloc->howto->bitsize)
6525 {
6526 case 8:
6527 code = BFD_RELOC_8_PCREL;
6528 break;
6529 case 12:
6530 code = BFD_RELOC_12_PCREL;
6531 break;
6532 case 16:
6533 code = BFD_RELOC_16_PCREL;
6534 break;
6535 case 24:
6536 code = BFD_RELOC_24_PCREL;
6537 break;
6538 case 32:
6539 code = BFD_RELOC_32_PCREL;
6540 break;
6541 case 64:
6542 code = BFD_RELOC_64_PCREL;
6543 break;
6544 default:
6545 goto fail;
6546 }
6547
6548 howto = bfd_reloc_type_lookup (abfd, code);
6549
6550 if (areloc->howto->pcrel_offset != howto->pcrel_offset)
6551 {
6552 if (howto->pcrel_offset)
6553 areloc->addend += areloc->address;
6554 else
6555 areloc->addend -= areloc->address; /* addend is unsigned!! */
6556 }
6557 }
6558 else
6559 {
6560 switch (areloc->howto->bitsize)
6561 {
6562 case 8:
6563 code = BFD_RELOC_8;
6564 break;
6565 case 14:
6566 code = BFD_RELOC_14;
6567 break;
6568 case 16:
6569 code = BFD_RELOC_16;
6570 break;
6571 case 26:
6572 code = BFD_RELOC_26;
6573 break;
6574 case 32:
6575 code = BFD_RELOC_32;
6576 break;
6577 case 64:
6578 code = BFD_RELOC_64;
6579 break;
6580 default:
6581 goto fail;
6582 }
6583
6584 howto = bfd_reloc_type_lookup (abfd, code);
6585 }
6586
6587 if (howto)
6588 areloc->howto = howto;
6589 else
6590 goto fail;
6591 }
6592
6593 return TRUE;
6594
6595 fail:
6596 (*_bfd_error_handler)
6597 (_("%B: unsupported relocation type %s"),
6598 abfd, areloc->howto->name);
6599 bfd_set_error (bfd_error_bad_value);
6600 return FALSE;
6601 }
6602
6603 bfd_boolean
6604 _bfd_elf_close_and_cleanup (bfd *abfd)
6605 {
6606 if (bfd_get_format (abfd) == bfd_object)
6607 {
6608 if (elf_shstrtab (abfd) != NULL)
6609 _bfd_elf_strtab_free (elf_shstrtab (abfd));
6610 }
6611
6612 return _bfd_generic_close_and_cleanup (abfd);
6613 }
6614
6615 /* For Rel targets, we encode meaningful data for BFD_RELOC_VTABLE_ENTRY
6616 in the relocation's offset. Thus we cannot allow any sort of sanity
6617 range-checking to interfere. There is nothing else to do in processing
6618 this reloc. */
6619
6620 bfd_reloc_status_type
6621 _bfd_elf_rel_vtable_reloc_fn
6622 (bfd *abfd ATTRIBUTE_UNUSED, arelent *re ATTRIBUTE_UNUSED,
6623 struct bfd_symbol *symbol ATTRIBUTE_UNUSED,
6624 void *data ATTRIBUTE_UNUSED, asection *is ATTRIBUTE_UNUSED,
6625 bfd *obfd ATTRIBUTE_UNUSED, char **errmsg ATTRIBUTE_UNUSED)
6626 {
6627 return bfd_reloc_ok;
6628 }
6629 \f
6630 /* Elf core file support. Much of this only works on native
6631 toolchains, since we rely on knowing the
6632 machine-dependent procfs structure in order to pick
6633 out details about the corefile. */
6634
6635 #ifdef HAVE_SYS_PROCFS_H
6636 # include <sys/procfs.h>
6637 #endif
6638
6639 /* FIXME: this is kinda wrong, but it's what gdb wants. */
6640
6641 static int
6642 elfcore_make_pid (bfd *abfd)
6643 {
6644 return ((elf_tdata (abfd)->core_lwpid << 16)
6645 + (elf_tdata (abfd)->core_pid));
6646 }
6647
6648 /* If there isn't a section called NAME, make one, using
6649 data from SECT. Note, this function will generate a
6650 reference to NAME, so you shouldn't deallocate or
6651 overwrite it. */
6652
6653 static bfd_boolean
6654 elfcore_maybe_make_sect (bfd *abfd, char *name, asection *sect)
6655 {
6656 asection *sect2;
6657
6658 if (bfd_get_section_by_name (abfd, name) != NULL)
6659 return TRUE;
6660
6661 sect2 = bfd_make_section (abfd, name);
6662 if (sect2 == NULL)
6663 return FALSE;
6664
6665 sect2->size = sect->size;
6666 sect2->filepos = sect->filepos;
6667 sect2->flags = sect->flags;
6668 sect2->alignment_power = sect->alignment_power;
6669 return TRUE;
6670 }
6671
6672 /* Create a pseudosection containing SIZE bytes at FILEPOS. This
6673 actually creates up to two pseudosections:
6674 - For the single-threaded case, a section named NAME, unless
6675 such a section already exists.
6676 - For the multi-threaded case, a section named "NAME/PID", where
6677 PID is elfcore_make_pid (abfd).
6678 Both pseudosections have identical contents. */
6679 bfd_boolean
6680 _bfd_elfcore_make_pseudosection (bfd *abfd,
6681 char *name,
6682 size_t size,
6683 ufile_ptr filepos)
6684 {
6685 char buf[100];
6686 char *threaded_name;
6687 size_t len;
6688 asection *sect;
6689
6690 /* Build the section name. */
6691
6692 sprintf (buf, "%s/%d", name, elfcore_make_pid (abfd));
6693 len = strlen (buf) + 1;
6694 threaded_name = bfd_alloc (abfd, len);
6695 if (threaded_name == NULL)
6696 return FALSE;
6697 memcpy (threaded_name, buf, len);
6698
6699 sect = bfd_make_section_anyway (abfd, threaded_name);
6700 if (sect == NULL)
6701 return FALSE;
6702 sect->size = size;
6703 sect->filepos = filepos;
6704 sect->flags = SEC_HAS_CONTENTS;
6705 sect->alignment_power = 2;
6706
6707 return elfcore_maybe_make_sect (abfd, name, sect);
6708 }
6709
6710 /* prstatus_t exists on:
6711 solaris 2.5+
6712 linux 2.[01] + glibc
6713 unixware 4.2
6714 */
6715
6716 #if defined (HAVE_PRSTATUS_T)
6717
6718 static bfd_boolean
6719 elfcore_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
6720 {
6721 size_t size;
6722 int offset;
6723
6724 if (note->descsz == sizeof (prstatus_t))
6725 {
6726 prstatus_t prstat;
6727
6728 size = sizeof (prstat.pr_reg);
6729 offset = offsetof (prstatus_t, pr_reg);
6730 memcpy (&prstat, note->descdata, sizeof (prstat));
6731
6732 /* Do not overwrite the core signal if it
6733 has already been set by another thread. */
6734 if (elf_tdata (abfd)->core_signal == 0)
6735 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6736 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6737
6738 /* pr_who exists on:
6739 solaris 2.5+
6740 unixware 4.2
6741 pr_who doesn't exist on:
6742 linux 2.[01]
6743 */
6744 #if defined (HAVE_PRSTATUS_T_PR_WHO)
6745 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6746 #endif
6747 }
6748 #if defined (HAVE_PRSTATUS32_T)
6749 else if (note->descsz == sizeof (prstatus32_t))
6750 {
6751 /* 64-bit host, 32-bit corefile */
6752 prstatus32_t prstat;
6753
6754 size = sizeof (prstat.pr_reg);
6755 offset = offsetof (prstatus32_t, pr_reg);
6756 memcpy (&prstat, note->descdata, sizeof (prstat));
6757
6758 /* Do not overwrite the core signal if it
6759 has already been set by another thread. */
6760 if (elf_tdata (abfd)->core_signal == 0)
6761 elf_tdata (abfd)->core_signal = prstat.pr_cursig;
6762 elf_tdata (abfd)->core_pid = prstat.pr_pid;
6763
6764 /* pr_who exists on:
6765 solaris 2.5+
6766 unixware 4.2
6767 pr_who doesn't exist on:
6768 linux 2.[01]
6769 */
6770 #if defined (HAVE_PRSTATUS32_T_PR_WHO)
6771 elf_tdata (abfd)->core_lwpid = prstat.pr_who;
6772 #endif
6773 }
6774 #endif /* HAVE_PRSTATUS32_T */
6775 else
6776 {
6777 /* Fail - we don't know how to handle any other
6778 note size (ie. data object type). */
6779 return TRUE;
6780 }
6781
6782 /* Make a ".reg/999" section and a ".reg" section. */
6783 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
6784 size, note->descpos + offset);
6785 }
6786 #endif /* defined (HAVE_PRSTATUS_T) */
6787
6788 /* Create a pseudosection containing the exact contents of NOTE. */
6789 static bfd_boolean
6790 elfcore_make_note_pseudosection (bfd *abfd,
6791 char *name,
6792 Elf_Internal_Note *note)
6793 {
6794 return _bfd_elfcore_make_pseudosection (abfd, name,
6795 note->descsz, note->descpos);
6796 }
6797
6798 /* There isn't a consistent prfpregset_t across platforms,
6799 but it doesn't matter, because we don't have to pick this
6800 data structure apart. */
6801
6802 static bfd_boolean
6803 elfcore_grok_prfpreg (bfd *abfd, Elf_Internal_Note *note)
6804 {
6805 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
6806 }
6807
6808 /* Linux dumps the Intel SSE regs in a note named "LINUX" with a note
6809 type of 5 (NT_PRXFPREG). Just include the whole note's contents
6810 literally. */
6811
6812 static bfd_boolean
6813 elfcore_grok_prxfpreg (bfd *abfd, Elf_Internal_Note *note)
6814 {
6815 return elfcore_make_note_pseudosection (abfd, ".reg-xfp", note);
6816 }
6817
6818 #if defined (HAVE_PRPSINFO_T)
6819 typedef prpsinfo_t elfcore_psinfo_t;
6820 #if defined (HAVE_PRPSINFO32_T) /* Sparc64 cross Sparc32 */
6821 typedef prpsinfo32_t elfcore_psinfo32_t;
6822 #endif
6823 #endif
6824
6825 #if defined (HAVE_PSINFO_T)
6826 typedef psinfo_t elfcore_psinfo_t;
6827 #if defined (HAVE_PSINFO32_T) /* Sparc64 cross Sparc32 */
6828 typedef psinfo32_t elfcore_psinfo32_t;
6829 #endif
6830 #endif
6831
6832 /* return a malloc'ed copy of a string at START which is at
6833 most MAX bytes long, possibly without a terminating '\0'.
6834 the copy will always have a terminating '\0'. */
6835
6836 char *
6837 _bfd_elfcore_strndup (bfd *abfd, char *start, size_t max)
6838 {
6839 char *dups;
6840 char *end = memchr (start, '\0', max);
6841 size_t len;
6842
6843 if (end == NULL)
6844 len = max;
6845 else
6846 len = end - start;
6847
6848 dups = bfd_alloc (abfd, len + 1);
6849 if (dups == NULL)
6850 return NULL;
6851
6852 memcpy (dups, start, len);
6853 dups[len] = '\0';
6854
6855 return dups;
6856 }
6857
6858 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
6859 static bfd_boolean
6860 elfcore_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
6861 {
6862 if (note->descsz == sizeof (elfcore_psinfo_t))
6863 {
6864 elfcore_psinfo_t psinfo;
6865
6866 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6867
6868 elf_tdata (abfd)->core_program
6869 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6870 sizeof (psinfo.pr_fname));
6871
6872 elf_tdata (abfd)->core_command
6873 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6874 sizeof (psinfo.pr_psargs));
6875 }
6876 #if defined (HAVE_PRPSINFO32_T) || defined (HAVE_PSINFO32_T)
6877 else if (note->descsz == sizeof (elfcore_psinfo32_t))
6878 {
6879 /* 64-bit host, 32-bit corefile */
6880 elfcore_psinfo32_t psinfo;
6881
6882 memcpy (&psinfo, note->descdata, sizeof (psinfo));
6883
6884 elf_tdata (abfd)->core_program
6885 = _bfd_elfcore_strndup (abfd, psinfo.pr_fname,
6886 sizeof (psinfo.pr_fname));
6887
6888 elf_tdata (abfd)->core_command
6889 = _bfd_elfcore_strndup (abfd, psinfo.pr_psargs,
6890 sizeof (psinfo.pr_psargs));
6891 }
6892 #endif
6893
6894 else
6895 {
6896 /* Fail - we don't know how to handle any other
6897 note size (ie. data object type). */
6898 return TRUE;
6899 }
6900
6901 /* Note that for some reason, a spurious space is tacked
6902 onto the end of the args in some (at least one anyway)
6903 implementations, so strip it off if it exists. */
6904
6905 {
6906 char *command = elf_tdata (abfd)->core_command;
6907 int n = strlen (command);
6908
6909 if (0 < n && command[n - 1] == ' ')
6910 command[n - 1] = '\0';
6911 }
6912
6913 return TRUE;
6914 }
6915 #endif /* defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T) */
6916
6917 #if defined (HAVE_PSTATUS_T)
6918 static bfd_boolean
6919 elfcore_grok_pstatus (bfd *abfd, Elf_Internal_Note *note)
6920 {
6921 if (note->descsz == sizeof (pstatus_t)
6922 #if defined (HAVE_PXSTATUS_T)
6923 || note->descsz == sizeof (pxstatus_t)
6924 #endif
6925 )
6926 {
6927 pstatus_t pstat;
6928
6929 memcpy (&pstat, note->descdata, sizeof (pstat));
6930
6931 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6932 }
6933 #if defined (HAVE_PSTATUS32_T)
6934 else if (note->descsz == sizeof (pstatus32_t))
6935 {
6936 /* 64-bit host, 32-bit corefile */
6937 pstatus32_t pstat;
6938
6939 memcpy (&pstat, note->descdata, sizeof (pstat));
6940
6941 elf_tdata (abfd)->core_pid = pstat.pr_pid;
6942 }
6943 #endif
6944 /* Could grab some more details from the "representative"
6945 lwpstatus_t in pstat.pr_lwp, but we'll catch it all in an
6946 NT_LWPSTATUS note, presumably. */
6947
6948 return TRUE;
6949 }
6950 #endif /* defined (HAVE_PSTATUS_T) */
6951
6952 #if defined (HAVE_LWPSTATUS_T)
6953 static bfd_boolean
6954 elfcore_grok_lwpstatus (bfd *abfd, Elf_Internal_Note *note)
6955 {
6956 lwpstatus_t lwpstat;
6957 char buf[100];
6958 char *name;
6959 size_t len;
6960 asection *sect;
6961
6962 if (note->descsz != sizeof (lwpstat)
6963 #if defined (HAVE_LWPXSTATUS_T)
6964 && note->descsz != sizeof (lwpxstatus_t)
6965 #endif
6966 )
6967 return TRUE;
6968
6969 memcpy (&lwpstat, note->descdata, sizeof (lwpstat));
6970
6971 elf_tdata (abfd)->core_lwpid = lwpstat.pr_lwpid;
6972 elf_tdata (abfd)->core_signal = lwpstat.pr_cursig;
6973
6974 /* Make a ".reg/999" section. */
6975
6976 sprintf (buf, ".reg/%d", elfcore_make_pid (abfd));
6977 len = strlen (buf) + 1;
6978 name = bfd_alloc (abfd, len);
6979 if (name == NULL)
6980 return FALSE;
6981 memcpy (name, buf, len);
6982
6983 sect = bfd_make_section_anyway (abfd, name);
6984 if (sect == NULL)
6985 return FALSE;
6986
6987 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
6988 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.gregs);
6989 sect->filepos = note->descpos
6990 + offsetof (lwpstatus_t, pr_context.uc_mcontext.gregs);
6991 #endif
6992
6993 #if defined (HAVE_LWPSTATUS_T_PR_REG)
6994 sect->size = sizeof (lwpstat.pr_reg);
6995 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_reg);
6996 #endif
6997
6998 sect->flags = SEC_HAS_CONTENTS;
6999 sect->alignment_power = 2;
7000
7001 if (!elfcore_maybe_make_sect (abfd, ".reg", sect))
7002 return FALSE;
7003
7004 /* Make a ".reg2/999" section */
7005
7006 sprintf (buf, ".reg2/%d", elfcore_make_pid (abfd));
7007 len = strlen (buf) + 1;
7008 name = bfd_alloc (abfd, len);
7009 if (name == NULL)
7010 return FALSE;
7011 memcpy (name, buf, len);
7012
7013 sect = bfd_make_section_anyway (abfd, name);
7014 if (sect == NULL)
7015 return FALSE;
7016
7017 #if defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7018 sect->size = sizeof (lwpstat.pr_context.uc_mcontext.fpregs);
7019 sect->filepos = note->descpos
7020 + offsetof (lwpstatus_t, pr_context.uc_mcontext.fpregs);
7021 #endif
7022
7023 #if defined (HAVE_LWPSTATUS_T_PR_FPREG)
7024 sect->size = sizeof (lwpstat.pr_fpreg);
7025 sect->filepos = note->descpos + offsetof (lwpstatus_t, pr_fpreg);
7026 #endif
7027
7028 sect->flags = SEC_HAS_CONTENTS;
7029 sect->alignment_power = 2;
7030
7031 return elfcore_maybe_make_sect (abfd, ".reg2", sect);
7032 }
7033 #endif /* defined (HAVE_LWPSTATUS_T) */
7034
7035 #if defined (HAVE_WIN32_PSTATUS_T)
7036 static bfd_boolean
7037 elfcore_grok_win32pstatus (bfd *abfd, Elf_Internal_Note *note)
7038 {
7039 char buf[30];
7040 char *name;
7041 size_t len;
7042 asection *sect;
7043 win32_pstatus_t pstatus;
7044
7045 if (note->descsz < sizeof (pstatus))
7046 return TRUE;
7047
7048 memcpy (&pstatus, note->descdata, sizeof (pstatus));
7049
7050 switch (pstatus.data_type)
7051 {
7052 case NOTE_INFO_PROCESS:
7053 /* FIXME: need to add ->core_command. */
7054 elf_tdata (abfd)->core_signal = pstatus.data.process_info.signal;
7055 elf_tdata (abfd)->core_pid = pstatus.data.process_info.pid;
7056 break;
7057
7058 case NOTE_INFO_THREAD:
7059 /* Make a ".reg/999" section. */
7060 sprintf (buf, ".reg/%d", pstatus.data.thread_info.tid);
7061
7062 len = strlen (buf) + 1;
7063 name = bfd_alloc (abfd, len);
7064 if (name == NULL)
7065 return FALSE;
7066
7067 memcpy (name, buf, len);
7068
7069 sect = bfd_make_section_anyway (abfd, name);
7070 if (sect == NULL)
7071 return FALSE;
7072
7073 sect->size = sizeof (pstatus.data.thread_info.thread_context);
7074 sect->filepos = (note->descpos
7075 + offsetof (struct win32_pstatus,
7076 data.thread_info.thread_context));
7077 sect->flags = SEC_HAS_CONTENTS;
7078 sect->alignment_power = 2;
7079
7080 if (pstatus.data.thread_info.is_active_thread)
7081 if (! elfcore_maybe_make_sect (abfd, ".reg", sect))
7082 return FALSE;
7083 break;
7084
7085 case NOTE_INFO_MODULE:
7086 /* Make a ".module/xxxxxxxx" section. */
7087 sprintf (buf, ".module/%08x", pstatus.data.module_info.base_address);
7088
7089 len = strlen (buf) + 1;
7090 name = bfd_alloc (abfd, len);
7091 if (name == NULL)
7092 return FALSE;
7093
7094 memcpy (name, buf, len);
7095
7096 sect = bfd_make_section_anyway (abfd, name);
7097
7098 if (sect == NULL)
7099 return FALSE;
7100
7101 sect->size = note->descsz;
7102 sect->filepos = note->descpos;
7103 sect->flags = SEC_HAS_CONTENTS;
7104 sect->alignment_power = 2;
7105 break;
7106
7107 default:
7108 return TRUE;
7109 }
7110
7111 return TRUE;
7112 }
7113 #endif /* HAVE_WIN32_PSTATUS_T */
7114
7115 static bfd_boolean
7116 elfcore_grok_note (bfd *abfd, Elf_Internal_Note *note)
7117 {
7118 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7119
7120 switch (note->type)
7121 {
7122 default:
7123 return TRUE;
7124
7125 case NT_PRSTATUS:
7126 if (bed->elf_backend_grok_prstatus)
7127 if ((*bed->elf_backend_grok_prstatus) (abfd, note))
7128 return TRUE;
7129 #if defined (HAVE_PRSTATUS_T)
7130 return elfcore_grok_prstatus (abfd, note);
7131 #else
7132 return TRUE;
7133 #endif
7134
7135 #if defined (HAVE_PSTATUS_T)
7136 case NT_PSTATUS:
7137 return elfcore_grok_pstatus (abfd, note);
7138 #endif
7139
7140 #if defined (HAVE_LWPSTATUS_T)
7141 case NT_LWPSTATUS:
7142 return elfcore_grok_lwpstatus (abfd, note);
7143 #endif
7144
7145 case NT_FPREGSET: /* FIXME: rename to NT_PRFPREG */
7146 return elfcore_grok_prfpreg (abfd, note);
7147
7148 #if defined (HAVE_WIN32_PSTATUS_T)
7149 case NT_WIN32PSTATUS:
7150 return elfcore_grok_win32pstatus (abfd, note);
7151 #endif
7152
7153 case NT_PRXFPREG: /* Linux SSE extension */
7154 if (note->namesz == 6
7155 && strcmp (note->namedata, "LINUX") == 0)
7156 return elfcore_grok_prxfpreg (abfd, note);
7157 else
7158 return TRUE;
7159
7160 case NT_PRPSINFO:
7161 case NT_PSINFO:
7162 if (bed->elf_backend_grok_psinfo)
7163 if ((*bed->elf_backend_grok_psinfo) (abfd, note))
7164 return TRUE;
7165 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7166 return elfcore_grok_psinfo (abfd, note);
7167 #else
7168 return TRUE;
7169 #endif
7170
7171 case NT_AUXV:
7172 {
7173 asection *sect = bfd_make_section_anyway (abfd, ".auxv");
7174
7175 if (sect == NULL)
7176 return FALSE;
7177 sect->size = note->descsz;
7178 sect->filepos = note->descpos;
7179 sect->flags = SEC_HAS_CONTENTS;
7180 sect->alignment_power = 1 + bfd_get_arch_size (abfd) / 32;
7181
7182 return TRUE;
7183 }
7184 }
7185 }
7186
7187 static bfd_boolean
7188 elfcore_netbsd_get_lwpid (Elf_Internal_Note *note, int *lwpidp)
7189 {
7190 char *cp;
7191
7192 cp = strchr (note->namedata, '@');
7193 if (cp != NULL)
7194 {
7195 *lwpidp = atoi(cp + 1);
7196 return TRUE;
7197 }
7198 return FALSE;
7199 }
7200
7201 static bfd_boolean
7202 elfcore_grok_netbsd_procinfo (bfd *abfd, Elf_Internal_Note *note)
7203 {
7204
7205 /* Signal number at offset 0x08. */
7206 elf_tdata (abfd)->core_signal
7207 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x08);
7208
7209 /* Process ID at offset 0x50. */
7210 elf_tdata (abfd)->core_pid
7211 = bfd_h_get_32 (abfd, (bfd_byte *) note->descdata + 0x50);
7212
7213 /* Command name at 0x7c (max 32 bytes, including nul). */
7214 elf_tdata (abfd)->core_command
7215 = _bfd_elfcore_strndup (abfd, note->descdata + 0x7c, 31);
7216
7217 return elfcore_make_note_pseudosection (abfd, ".note.netbsdcore.procinfo",
7218 note);
7219 }
7220
7221 static bfd_boolean
7222 elfcore_grok_netbsd_note (bfd *abfd, Elf_Internal_Note *note)
7223 {
7224 int lwp;
7225
7226 if (elfcore_netbsd_get_lwpid (note, &lwp))
7227 elf_tdata (abfd)->core_lwpid = lwp;
7228
7229 if (note->type == NT_NETBSDCORE_PROCINFO)
7230 {
7231 /* NetBSD-specific core "procinfo". Note that we expect to
7232 find this note before any of the others, which is fine,
7233 since the kernel writes this note out first when it
7234 creates a core file. */
7235
7236 return elfcore_grok_netbsd_procinfo (abfd, note);
7237 }
7238
7239 /* As of Jan 2002 there are no other machine-independent notes
7240 defined for NetBSD core files. If the note type is less
7241 than the start of the machine-dependent note types, we don't
7242 understand it. */
7243
7244 if (note->type < NT_NETBSDCORE_FIRSTMACH)
7245 return TRUE;
7246
7247
7248 switch (bfd_get_arch (abfd))
7249 {
7250 /* On the Alpha, SPARC (32-bit and 64-bit), PT_GETREGS == mach+0 and
7251 PT_GETFPREGS == mach+2. */
7252
7253 case bfd_arch_alpha:
7254 case bfd_arch_sparc:
7255 switch (note->type)
7256 {
7257 case NT_NETBSDCORE_FIRSTMACH+0:
7258 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7259
7260 case NT_NETBSDCORE_FIRSTMACH+2:
7261 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7262
7263 default:
7264 return TRUE;
7265 }
7266
7267 /* On all other arch's, PT_GETREGS == mach+1 and
7268 PT_GETFPREGS == mach+3. */
7269
7270 default:
7271 switch (note->type)
7272 {
7273 case NT_NETBSDCORE_FIRSTMACH+1:
7274 return elfcore_make_note_pseudosection (abfd, ".reg", note);
7275
7276 case NT_NETBSDCORE_FIRSTMACH+3:
7277 return elfcore_make_note_pseudosection (abfd, ".reg2", note);
7278
7279 default:
7280 return TRUE;
7281 }
7282 }
7283 /* NOTREACHED */
7284 }
7285
7286 static bfd_boolean
7287 elfcore_grok_nto_status (bfd *abfd, Elf_Internal_Note *note, pid_t *tid)
7288 {
7289 void *ddata = note->descdata;
7290 char buf[100];
7291 char *name;
7292 asection *sect;
7293 short sig;
7294 unsigned flags;
7295
7296 /* nto_procfs_status 'pid' field is at offset 0. */
7297 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, (bfd_byte *) ddata);
7298
7299 /* nto_procfs_status 'tid' field is at offset 4. Pass it back. */
7300 *tid = bfd_get_32 (abfd, (bfd_byte *) ddata + 4);
7301
7302 /* nto_procfs_status 'flags' field is at offset 8. */
7303 flags = bfd_get_32 (abfd, (bfd_byte *) ddata + 8);
7304
7305 /* nto_procfs_status 'what' field is at offset 14. */
7306 if ((sig = bfd_get_16 (abfd, (bfd_byte *) ddata + 14)) > 0)
7307 {
7308 elf_tdata (abfd)->core_signal = sig;
7309 elf_tdata (abfd)->core_lwpid = *tid;
7310 }
7311
7312 /* _DEBUG_FLAG_CURTID (current thread) is 0x80. Some cores
7313 do not come from signals so we make sure we set the current
7314 thread just in case. */
7315 if (flags & 0x00000080)
7316 elf_tdata (abfd)->core_lwpid = *tid;
7317
7318 /* Make a ".qnx_core_status/%d" section. */
7319 sprintf (buf, ".qnx_core_status/%d", *tid);
7320
7321 name = bfd_alloc (abfd, strlen (buf) + 1);
7322 if (name == NULL)
7323 return FALSE;
7324 strcpy (name, buf);
7325
7326 sect = bfd_make_section_anyway (abfd, name);
7327 if (sect == NULL)
7328 return FALSE;
7329
7330 sect->size = note->descsz;
7331 sect->filepos = note->descpos;
7332 sect->flags = SEC_HAS_CONTENTS;
7333 sect->alignment_power = 2;
7334
7335 return (elfcore_maybe_make_sect (abfd, ".qnx_core_status", sect));
7336 }
7337
7338 static bfd_boolean
7339 elfcore_grok_nto_gregs (bfd *abfd, Elf_Internal_Note *note, pid_t tid)
7340 {
7341 char buf[100];
7342 char *name;
7343 asection *sect;
7344
7345 /* Make a ".reg/%d" section. */
7346 sprintf (buf, ".reg/%d", tid);
7347
7348 name = bfd_alloc (abfd, strlen (buf) + 1);
7349 if (name == NULL)
7350 return FALSE;
7351 strcpy (name, buf);
7352
7353 sect = bfd_make_section_anyway (abfd, name);
7354 if (sect == NULL)
7355 return FALSE;
7356
7357 sect->size = note->descsz;
7358 sect->filepos = note->descpos;
7359 sect->flags = SEC_HAS_CONTENTS;
7360 sect->alignment_power = 2;
7361
7362 /* This is the current thread. */
7363 if (elf_tdata (abfd)->core_lwpid == tid)
7364 return elfcore_maybe_make_sect (abfd, ".reg", sect);
7365
7366 return TRUE;
7367 }
7368
7369 #define BFD_QNT_CORE_INFO 7
7370 #define BFD_QNT_CORE_STATUS 8
7371 #define BFD_QNT_CORE_GREG 9
7372 #define BFD_QNT_CORE_FPREG 10
7373
7374 static bfd_boolean
7375 elfcore_grok_nto_note (bfd *abfd, Elf_Internal_Note *note)
7376 {
7377 /* Every GREG section has a STATUS section before it. Store the
7378 tid from the previous call to pass down to the next gregs
7379 function. */
7380 static pid_t tid = 1;
7381
7382 switch (note->type)
7383 {
7384 case BFD_QNT_CORE_INFO: return elfcore_make_note_pseudosection (abfd, ".qnx_core_info", note);
7385 case BFD_QNT_CORE_STATUS: return elfcore_grok_nto_status (abfd, note, &tid);
7386 case BFD_QNT_CORE_GREG: return elfcore_grok_nto_gregs (abfd, note, tid);
7387 case BFD_QNT_CORE_FPREG: return elfcore_grok_prfpreg (abfd, note);
7388 default: return TRUE;
7389 }
7390 }
7391
7392 /* Function: elfcore_write_note
7393
7394 Inputs:
7395 buffer to hold note
7396 name of note
7397 type of note
7398 data for note
7399 size of data for note
7400
7401 Return:
7402 End of buffer containing note. */
7403
7404 char *
7405 elfcore_write_note (bfd *abfd,
7406 char *buf,
7407 int *bufsiz,
7408 const char *name,
7409 int type,
7410 const void *input,
7411 int size)
7412 {
7413 Elf_External_Note *xnp;
7414 size_t namesz;
7415 size_t pad;
7416 size_t newspace;
7417 char *p, *dest;
7418
7419 namesz = 0;
7420 pad = 0;
7421 if (name != NULL)
7422 {
7423 const struct elf_backend_data *bed;
7424
7425 namesz = strlen (name) + 1;
7426 bed = get_elf_backend_data (abfd);
7427 pad = -namesz & ((1 << bed->s->log_file_align) - 1);
7428 }
7429
7430 newspace = 12 + namesz + pad + size;
7431
7432 p = realloc (buf, *bufsiz + newspace);
7433 dest = p + *bufsiz;
7434 *bufsiz += newspace;
7435 xnp = (Elf_External_Note *) dest;
7436 H_PUT_32 (abfd, namesz, xnp->namesz);
7437 H_PUT_32 (abfd, size, xnp->descsz);
7438 H_PUT_32 (abfd, type, xnp->type);
7439 dest = xnp->name;
7440 if (name != NULL)
7441 {
7442 memcpy (dest, name, namesz);
7443 dest += namesz;
7444 while (pad != 0)
7445 {
7446 *dest++ = '\0';
7447 --pad;
7448 }
7449 }
7450 memcpy (dest, input, size);
7451 return p;
7452 }
7453
7454 #if defined (HAVE_PRPSINFO_T) || defined (HAVE_PSINFO_T)
7455 char *
7456 elfcore_write_prpsinfo (bfd *abfd,
7457 char *buf,
7458 int *bufsiz,
7459 const char *fname,
7460 const char *psargs)
7461 {
7462 int note_type;
7463 char *note_name = "CORE";
7464
7465 #if defined (HAVE_PSINFO_T)
7466 psinfo_t data;
7467 note_type = NT_PSINFO;
7468 #else
7469 prpsinfo_t data;
7470 note_type = NT_PRPSINFO;
7471 #endif
7472
7473 memset (&data, 0, sizeof (data));
7474 strncpy (data.pr_fname, fname, sizeof (data.pr_fname));
7475 strncpy (data.pr_psargs, psargs, sizeof (data.pr_psargs));
7476 return elfcore_write_note (abfd, buf, bufsiz,
7477 note_name, note_type, &data, sizeof (data));
7478 }
7479 #endif /* PSINFO_T or PRPSINFO_T */
7480
7481 #if defined (HAVE_PRSTATUS_T)
7482 char *
7483 elfcore_write_prstatus (bfd *abfd,
7484 char *buf,
7485 int *bufsiz,
7486 long pid,
7487 int cursig,
7488 const void *gregs)
7489 {
7490 prstatus_t prstat;
7491 char *note_name = "CORE";
7492
7493 memset (&prstat, 0, sizeof (prstat));
7494 prstat.pr_pid = pid;
7495 prstat.pr_cursig = cursig;
7496 memcpy (&prstat.pr_reg, gregs, sizeof (prstat.pr_reg));
7497 return elfcore_write_note (abfd, buf, bufsiz,
7498 note_name, NT_PRSTATUS, &prstat, sizeof (prstat));
7499 }
7500 #endif /* HAVE_PRSTATUS_T */
7501
7502 #if defined (HAVE_LWPSTATUS_T)
7503 char *
7504 elfcore_write_lwpstatus (bfd *abfd,
7505 char *buf,
7506 int *bufsiz,
7507 long pid,
7508 int cursig,
7509 const void *gregs)
7510 {
7511 lwpstatus_t lwpstat;
7512 char *note_name = "CORE";
7513
7514 memset (&lwpstat, 0, sizeof (lwpstat));
7515 lwpstat.pr_lwpid = pid >> 16;
7516 lwpstat.pr_cursig = cursig;
7517 #if defined (HAVE_LWPSTATUS_T_PR_REG)
7518 memcpy (lwpstat.pr_reg, gregs, sizeof (lwpstat.pr_reg));
7519 #elif defined (HAVE_LWPSTATUS_T_PR_CONTEXT)
7520 #if !defined(gregs)
7521 memcpy (lwpstat.pr_context.uc_mcontext.gregs,
7522 gregs, sizeof (lwpstat.pr_context.uc_mcontext.gregs));
7523 #else
7524 memcpy (lwpstat.pr_context.uc_mcontext.__gregs,
7525 gregs, sizeof (lwpstat.pr_context.uc_mcontext.__gregs));
7526 #endif
7527 #endif
7528 return elfcore_write_note (abfd, buf, bufsiz, note_name,
7529 NT_LWPSTATUS, &lwpstat, sizeof (lwpstat));
7530 }
7531 #endif /* HAVE_LWPSTATUS_T */
7532
7533 #if defined (HAVE_PSTATUS_T)
7534 char *
7535 elfcore_write_pstatus (bfd *abfd,
7536 char *buf,
7537 int *bufsiz,
7538 long pid,
7539 int cursig,
7540 const void *gregs)
7541 {
7542 pstatus_t pstat;
7543 char *note_name = "CORE";
7544
7545 memset (&pstat, 0, sizeof (pstat));
7546 pstat.pr_pid = pid & 0xffff;
7547 buf = elfcore_write_note (abfd, buf, bufsiz, note_name,
7548 NT_PSTATUS, &pstat, sizeof (pstat));
7549 return buf;
7550 }
7551 #endif /* HAVE_PSTATUS_T */
7552
7553 char *
7554 elfcore_write_prfpreg (bfd *abfd,
7555 char *buf,
7556 int *bufsiz,
7557 const void *fpregs,
7558 int size)
7559 {
7560 char *note_name = "CORE";
7561 return elfcore_write_note (abfd, buf, bufsiz,
7562 note_name, NT_FPREGSET, fpregs, size);
7563 }
7564
7565 char *
7566 elfcore_write_prxfpreg (bfd *abfd,
7567 char *buf,
7568 int *bufsiz,
7569 const void *xfpregs,
7570 int size)
7571 {
7572 char *note_name = "LINUX";
7573 return elfcore_write_note (abfd, buf, bufsiz,
7574 note_name, NT_PRXFPREG, xfpregs, size);
7575 }
7576
7577 static bfd_boolean
7578 elfcore_read_notes (bfd *abfd, file_ptr offset, bfd_size_type size)
7579 {
7580 char *buf;
7581 char *p;
7582
7583 if (size <= 0)
7584 return TRUE;
7585
7586 if (bfd_seek (abfd, offset, SEEK_SET) != 0)
7587 return FALSE;
7588
7589 buf = bfd_malloc (size);
7590 if (buf == NULL)
7591 return FALSE;
7592
7593 if (bfd_bread (buf, size, abfd) != size)
7594 {
7595 error:
7596 free (buf);
7597 return FALSE;
7598 }
7599
7600 p = buf;
7601 while (p < buf + size)
7602 {
7603 /* FIXME: bad alignment assumption. */
7604 Elf_External_Note *xnp = (Elf_External_Note *) p;
7605 Elf_Internal_Note in;
7606
7607 in.type = H_GET_32 (abfd, xnp->type);
7608
7609 in.namesz = H_GET_32 (abfd, xnp->namesz);
7610 in.namedata = xnp->name;
7611
7612 in.descsz = H_GET_32 (abfd, xnp->descsz);
7613 in.descdata = in.namedata + BFD_ALIGN (in.namesz, 4);
7614 in.descpos = offset + (in.descdata - buf);
7615
7616 if (strncmp (in.namedata, "NetBSD-CORE", 11) == 0)
7617 {
7618 if (! elfcore_grok_netbsd_note (abfd, &in))
7619 goto error;
7620 }
7621 else if (strncmp (in.namedata, "QNX", 3) == 0)
7622 {
7623 if (! elfcore_grok_nto_note (abfd, &in))
7624 goto error;
7625 }
7626 else
7627 {
7628 if (! elfcore_grok_note (abfd, &in))
7629 goto error;
7630 }
7631
7632 p = in.descdata + BFD_ALIGN (in.descsz, 4);
7633 }
7634
7635 free (buf);
7636 return TRUE;
7637 }
7638 \f
7639 /* Providing external access to the ELF program header table. */
7640
7641 /* Return an upper bound on the number of bytes required to store a
7642 copy of ABFD's program header table entries. Return -1 if an error
7643 occurs; bfd_get_error will return an appropriate code. */
7644
7645 long
7646 bfd_get_elf_phdr_upper_bound (bfd *abfd)
7647 {
7648 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7649 {
7650 bfd_set_error (bfd_error_wrong_format);
7651 return -1;
7652 }
7653
7654 return elf_elfheader (abfd)->e_phnum * sizeof (Elf_Internal_Phdr);
7655 }
7656
7657 /* Copy ABFD's program header table entries to *PHDRS. The entries
7658 will be stored as an array of Elf_Internal_Phdr structures, as
7659 defined in include/elf/internal.h. To find out how large the
7660 buffer needs to be, call bfd_get_elf_phdr_upper_bound.
7661
7662 Return the number of program header table entries read, or -1 if an
7663 error occurs; bfd_get_error will return an appropriate code. */
7664
7665 int
7666 bfd_get_elf_phdrs (bfd *abfd, void *phdrs)
7667 {
7668 int num_phdrs;
7669
7670 if (abfd->xvec->flavour != bfd_target_elf_flavour)
7671 {
7672 bfd_set_error (bfd_error_wrong_format);
7673 return -1;
7674 }
7675
7676 num_phdrs = elf_elfheader (abfd)->e_phnum;
7677 memcpy (phdrs, elf_tdata (abfd)->phdr,
7678 num_phdrs * sizeof (Elf_Internal_Phdr));
7679
7680 return num_phdrs;
7681 }
7682
7683 void
7684 _bfd_elf_sprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, char *buf, bfd_vma value)
7685 {
7686 #ifdef BFD64
7687 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7688
7689 i_ehdrp = elf_elfheader (abfd);
7690 if (i_ehdrp == NULL)
7691 sprintf_vma (buf, value);
7692 else
7693 {
7694 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7695 {
7696 #if BFD_HOST_64BIT_LONG
7697 sprintf (buf, "%016lx", value);
7698 #else
7699 sprintf (buf, "%08lx%08lx", _bfd_int64_high (value),
7700 _bfd_int64_low (value));
7701 #endif
7702 }
7703 else
7704 sprintf (buf, "%08lx", (unsigned long) (value & 0xffffffff));
7705 }
7706 #else
7707 sprintf_vma (buf, value);
7708 #endif
7709 }
7710
7711 void
7712 _bfd_elf_fprintf_vma (bfd *abfd ATTRIBUTE_UNUSED, void *stream, bfd_vma value)
7713 {
7714 #ifdef BFD64
7715 Elf_Internal_Ehdr *i_ehdrp; /* Elf file header, internal form */
7716
7717 i_ehdrp = elf_elfheader (abfd);
7718 if (i_ehdrp == NULL)
7719 fprintf_vma ((FILE *) stream, value);
7720 else
7721 {
7722 if (i_ehdrp->e_ident[EI_CLASS] == ELFCLASS64)
7723 {
7724 #if BFD_HOST_64BIT_LONG
7725 fprintf ((FILE *) stream, "%016lx", value);
7726 #else
7727 fprintf ((FILE *) stream, "%08lx%08lx",
7728 _bfd_int64_high (value), _bfd_int64_low (value));
7729 #endif
7730 }
7731 else
7732 fprintf ((FILE *) stream, "%08lx",
7733 (unsigned long) (value & 0xffffffff));
7734 }
7735 #else
7736 fprintf_vma ((FILE *) stream, value);
7737 #endif
7738 }
7739
7740 enum elf_reloc_type_class
7741 _bfd_elf_reloc_type_class (const Elf_Internal_Rela *rela ATTRIBUTE_UNUSED)
7742 {
7743 return reloc_class_normal;
7744 }
7745
7746 /* For RELA architectures, return the relocation value for a
7747 relocation against a local symbol. */
7748
7749 bfd_vma
7750 _bfd_elf_rela_local_sym (bfd *abfd,
7751 Elf_Internal_Sym *sym,
7752 asection **psec,
7753 Elf_Internal_Rela *rel)
7754 {
7755 asection *sec = *psec;
7756 bfd_vma relocation;
7757
7758 relocation = (sec->output_section->vma
7759 + sec->output_offset
7760 + sym->st_value);
7761 if ((sec->flags & SEC_MERGE)
7762 && ELF_ST_TYPE (sym->st_info) == STT_SECTION
7763 && sec->sec_info_type == ELF_INFO_TYPE_MERGE)
7764 {
7765 rel->r_addend =
7766 _bfd_merged_section_offset (abfd, psec,
7767 elf_section_data (sec)->sec_info,
7768 sym->st_value + rel->r_addend);
7769 if (sec != *psec)
7770 {
7771 /* If we have changed the section, and our original section is
7772 marked with SEC_EXCLUDE, it means that the original
7773 SEC_MERGE section has been completely subsumed in some
7774 other SEC_MERGE section. In this case, we need to leave
7775 some info around for --emit-relocs. */
7776 if ((sec->flags & SEC_EXCLUDE) != 0)
7777 sec->kept_section = *psec;
7778 sec = *psec;
7779 }
7780 rel->r_addend -= relocation;
7781 rel->r_addend += sec->output_section->vma + sec->output_offset;
7782 }
7783 return relocation;
7784 }
7785
7786 bfd_vma
7787 _bfd_elf_rel_local_sym (bfd *abfd,
7788 Elf_Internal_Sym *sym,
7789 asection **psec,
7790 bfd_vma addend)
7791 {
7792 asection *sec = *psec;
7793
7794 if (sec->sec_info_type != ELF_INFO_TYPE_MERGE)
7795 return sym->st_value + addend;
7796
7797 return _bfd_merged_section_offset (abfd, psec,
7798 elf_section_data (sec)->sec_info,
7799 sym->st_value + addend);
7800 }
7801
7802 bfd_vma
7803 _bfd_elf_section_offset (bfd *abfd,
7804 struct bfd_link_info *info,
7805 asection *sec,
7806 bfd_vma offset)
7807 {
7808 switch (sec->sec_info_type)
7809 {
7810 case ELF_INFO_TYPE_STABS:
7811 return _bfd_stab_section_offset (sec, elf_section_data (sec)->sec_info,
7812 offset);
7813 case ELF_INFO_TYPE_EH_FRAME:
7814 return _bfd_elf_eh_frame_section_offset (abfd, info, sec, offset);
7815 default:
7816 return offset;
7817 }
7818 }
7819 \f
7820 /* Create a new BFD as if by bfd_openr. Rather than opening a file,
7821 reconstruct an ELF file by reading the segments out of remote memory
7822 based on the ELF file header at EHDR_VMA and the ELF program headers it
7823 points to. If not null, *LOADBASEP is filled in with the difference
7824 between the VMAs from which the segments were read, and the VMAs the
7825 file headers (and hence BFD's idea of each section's VMA) put them at.
7826
7827 The function TARGET_READ_MEMORY is called to copy LEN bytes from the
7828 remote memory at target address VMA into the local buffer at MYADDR; it
7829 should return zero on success or an `errno' code on failure. TEMPL must
7830 be a BFD for an ELF target with the word size and byte order found in
7831 the remote memory. */
7832
7833 bfd *
7834 bfd_elf_bfd_from_remote_memory
7835 (bfd *templ,
7836 bfd_vma ehdr_vma,
7837 bfd_vma *loadbasep,
7838 int (*target_read_memory) (bfd_vma, char *, int))
7839 {
7840 return (*get_elf_backend_data (templ)->elf_backend_bfd_from_remote_memory)
7841 (templ, ehdr_vma, loadbasep, target_read_memory);
7842 }
7843 \f
7844 long
7845 _bfd_elf_get_synthetic_symtab (bfd *abfd,
7846 long symcount ATTRIBUTE_UNUSED,
7847 asymbol **syms ATTRIBUTE_UNUSED,
7848 long dynsymcount ATTRIBUTE_UNUSED,
7849 asymbol **dynsyms,
7850 asymbol **ret)
7851 {
7852 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
7853 asection *relplt;
7854 asymbol *s;
7855 const char *relplt_name;
7856 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
7857 arelent *p;
7858 long count, i, n;
7859 size_t size;
7860 Elf_Internal_Shdr *hdr;
7861 char *names;
7862 asection *plt;
7863
7864 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
7865 return 0;
7866
7867 *ret = NULL;
7868 if (!bed->plt_sym_val)
7869 return 0;
7870
7871 relplt_name = bed->relplt_name;
7872 if (relplt_name == NULL)
7873 relplt_name = bed->default_use_rela_p ? ".rela.plt" : ".rel.plt";
7874 relplt = bfd_get_section_by_name (abfd, relplt_name);
7875 if (relplt == NULL)
7876 return 0;
7877
7878 hdr = &elf_section_data (relplt)->this_hdr;
7879 if (hdr->sh_link != elf_dynsymtab (abfd)
7880 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
7881 return 0;
7882
7883 plt = bfd_get_section_by_name (abfd, ".plt");
7884 if (plt == NULL)
7885 return 0;
7886
7887 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
7888 if (! (*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
7889 return -1;
7890
7891 count = relplt->size / hdr->sh_entsize;
7892 size = count * sizeof (asymbol);
7893 p = relplt->relocation;
7894 for (i = 0; i < count; i++, s++, p++)
7895 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
7896
7897 s = *ret = bfd_malloc (size);
7898 if (s == NULL)
7899 return -1;
7900
7901 names = (char *) (s + count);
7902 p = relplt->relocation;
7903 n = 0;
7904 for (i = 0; i < count; i++, s++, p++)
7905 {
7906 size_t len;
7907 bfd_vma addr;
7908
7909 addr = bed->plt_sym_val (i, plt, p);
7910 if (addr == (bfd_vma) -1)
7911 continue;
7912
7913 *s = **p->sym_ptr_ptr;
7914 s->section = plt;
7915 s->value = addr - plt->vma;
7916 s->name = names;
7917 len = strlen ((*p->sym_ptr_ptr)->name);
7918 memcpy (names, (*p->sym_ptr_ptr)->name, len);
7919 names += len;
7920 memcpy (names, "@plt", sizeof ("@plt"));
7921 names += sizeof ("@plt");
7922 ++n;
7923 }
7924
7925 return n;
7926 }
7927
7928 /* Sort symbol by binding and section. We want to put definitions
7929 sorted by section at the beginning. */
7930
7931 static int
7932 elf_sort_elf_symbol (const void *arg1, const void *arg2)
7933 {
7934 const Elf_Internal_Sym *s1;
7935 const Elf_Internal_Sym *s2;
7936 int shndx;
7937
7938 /* Make sure that undefined symbols are at the end. */
7939 s1 = (const Elf_Internal_Sym *) arg1;
7940 if (s1->st_shndx == SHN_UNDEF)
7941 return 1;
7942 s2 = (const Elf_Internal_Sym *) arg2;
7943 if (s2->st_shndx == SHN_UNDEF)
7944 return -1;
7945
7946 /* Sorted by section index. */
7947 shndx = s1->st_shndx - s2->st_shndx;
7948 if (shndx != 0)
7949 return shndx;
7950
7951 /* Sorted by binding. */
7952 return ELF_ST_BIND (s1->st_info) - ELF_ST_BIND (s2->st_info);
7953 }
7954
7955 struct elf_symbol
7956 {
7957 Elf_Internal_Sym *sym;
7958 const char *name;
7959 };
7960
7961 static int
7962 elf_sym_name_compare (const void *arg1, const void *arg2)
7963 {
7964 const struct elf_symbol *s1 = (const struct elf_symbol *) arg1;
7965 const struct elf_symbol *s2 = (const struct elf_symbol *) arg2;
7966 return strcmp (s1->name, s2->name);
7967 }
7968
7969 /* Check if 2 sections define the same set of local and global
7970 symbols. */
7971
7972 bfd_boolean
7973 bfd_elf_match_symbols_in_sections (asection *sec1, asection *sec2)
7974 {
7975 bfd *bfd1, *bfd2;
7976 const struct elf_backend_data *bed1, *bed2;
7977 Elf_Internal_Shdr *hdr1, *hdr2;
7978 bfd_size_type symcount1, symcount2;
7979 Elf_Internal_Sym *isymbuf1, *isymbuf2;
7980 Elf_Internal_Sym *isymstart1 = NULL, *isymstart2 = NULL, *isym;
7981 Elf_Internal_Sym *isymend;
7982 struct elf_symbol *symp, *symtable1 = NULL, *symtable2 = NULL;
7983 bfd_size_type count1, count2, i;
7984 int shndx1, shndx2;
7985 bfd_boolean result;
7986
7987 bfd1 = sec1->owner;
7988 bfd2 = sec2->owner;
7989
7990 /* If both are .gnu.linkonce sections, they have to have the same
7991 section name. */
7992 if (strncmp (sec1->name, ".gnu.linkonce",
7993 sizeof ".gnu.linkonce" - 1) == 0
7994 && strncmp (sec2->name, ".gnu.linkonce",
7995 sizeof ".gnu.linkonce" - 1) == 0)
7996 return strcmp (sec1->name + sizeof ".gnu.linkonce",
7997 sec2->name + sizeof ".gnu.linkonce") == 0;
7998
7999 /* Both sections have to be in ELF. */
8000 if (bfd_get_flavour (bfd1) != bfd_target_elf_flavour
8001 || bfd_get_flavour (bfd2) != bfd_target_elf_flavour)
8002 return FALSE;
8003
8004 if (elf_section_type (sec1) != elf_section_type (sec2))
8005 return FALSE;
8006
8007 if ((elf_section_flags (sec1) & SHF_GROUP) != 0
8008 && (elf_section_flags (sec2) & SHF_GROUP) != 0)
8009 {
8010 /* If both are members of section groups, they have to have the
8011 same group name. */
8012 if (strcmp (elf_group_name (sec1), elf_group_name (sec2)) != 0)
8013 return FALSE;
8014 }
8015
8016 shndx1 = _bfd_elf_section_from_bfd_section (bfd1, sec1);
8017 shndx2 = _bfd_elf_section_from_bfd_section (bfd2, sec2);
8018 if (shndx1 == -1 || shndx2 == -1)
8019 return FALSE;
8020
8021 bed1 = get_elf_backend_data (bfd1);
8022 bed2 = get_elf_backend_data (bfd2);
8023 hdr1 = &elf_tdata (bfd1)->symtab_hdr;
8024 symcount1 = hdr1->sh_size / bed1->s->sizeof_sym;
8025 hdr2 = &elf_tdata (bfd2)->symtab_hdr;
8026 symcount2 = hdr2->sh_size / bed2->s->sizeof_sym;
8027
8028 if (symcount1 == 0 || symcount2 == 0)
8029 return FALSE;
8030
8031 isymbuf1 = bfd_elf_get_elf_syms (bfd1, hdr1, symcount1, 0,
8032 NULL, NULL, NULL);
8033 isymbuf2 = bfd_elf_get_elf_syms (bfd2, hdr2, symcount2, 0,
8034 NULL, NULL, NULL);
8035
8036 result = FALSE;
8037 if (isymbuf1 == NULL || isymbuf2 == NULL)
8038 goto done;
8039
8040 /* Sort symbols by binding and section. Global definitions are at
8041 the beginning. */
8042 qsort (isymbuf1, symcount1, sizeof (Elf_Internal_Sym),
8043 elf_sort_elf_symbol);
8044 qsort (isymbuf2, symcount2, sizeof (Elf_Internal_Sym),
8045 elf_sort_elf_symbol);
8046
8047 /* Count definitions in the section. */
8048 count1 = 0;
8049 for (isym = isymbuf1, isymend = isym + symcount1;
8050 isym < isymend; isym++)
8051 {
8052 if (isym->st_shndx == (unsigned int) shndx1)
8053 {
8054 if (count1 == 0)
8055 isymstart1 = isym;
8056 count1++;
8057 }
8058
8059 if (count1 && isym->st_shndx != (unsigned int) shndx1)
8060 break;
8061 }
8062
8063 count2 = 0;
8064 for (isym = isymbuf2, isymend = isym + symcount2;
8065 isym < isymend; isym++)
8066 {
8067 if (isym->st_shndx == (unsigned int) shndx2)
8068 {
8069 if (count2 == 0)
8070 isymstart2 = isym;
8071 count2++;
8072 }
8073
8074 if (count2 && isym->st_shndx != (unsigned int) shndx2)
8075 break;
8076 }
8077
8078 if (count1 == 0 || count2 == 0 || count1 != count2)
8079 goto done;
8080
8081 symtable1 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8082 symtable2 = bfd_malloc (count1 * sizeof (struct elf_symbol));
8083
8084 if (symtable1 == NULL || symtable2 == NULL)
8085 goto done;
8086
8087 symp = symtable1;
8088 for (isym = isymstart1, isymend = isym + count1;
8089 isym < isymend; isym++)
8090 {
8091 symp->sym = isym;
8092 symp->name = bfd_elf_string_from_elf_section (bfd1,
8093 hdr1->sh_link,
8094 isym->st_name);
8095 symp++;
8096 }
8097
8098 symp = symtable2;
8099 for (isym = isymstart2, isymend = isym + count1;
8100 isym < isymend; isym++)
8101 {
8102 symp->sym = isym;
8103 symp->name = bfd_elf_string_from_elf_section (bfd2,
8104 hdr2->sh_link,
8105 isym->st_name);
8106 symp++;
8107 }
8108
8109 /* Sort symbol by name. */
8110 qsort (symtable1, count1, sizeof (struct elf_symbol),
8111 elf_sym_name_compare);
8112 qsort (symtable2, count1, sizeof (struct elf_symbol),
8113 elf_sym_name_compare);
8114
8115 for (i = 0; i < count1; i++)
8116 /* Two symbols must have the same binding, type and name. */
8117 if (symtable1 [i].sym->st_info != symtable2 [i].sym->st_info
8118 || symtable1 [i].sym->st_other != symtable2 [i].sym->st_other
8119 || strcmp (symtable1 [i].name, symtable2 [i].name) != 0)
8120 goto done;
8121
8122 result = TRUE;
8123
8124 done:
8125 if (symtable1)
8126 free (symtable1);
8127 if (symtable2)
8128 free (symtable2);
8129 if (isymbuf1)
8130 free (isymbuf1);
8131 if (isymbuf2)
8132 free (isymbuf2);
8133
8134 return result;
8135 }
This page took 0.213141 seconds and 5 git commands to generate.