Remove unused local variable
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2014 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "elf-vxworks.h"
31 #include "elf/arm.h"
32
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
67
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
77 static reloc_howto_type elf32_arm_howto_table_1[] =
78 {
79 /* No relocation. */
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 0, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
142 32, /* bitsize */
143 TRUE, /* pc_relative */
144 0, /* bitpos */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
226 HOWTO (R_ARM_THM_CALL, /* type */
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 24, /* bitsize */
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
254 HOWTO (R_ARM_BREL_ADJ, /* type */
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 FALSE, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
267
268 HOWTO (R_ARM_TLS_DESC, /* type */
269 0, /* rightshift */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
300 24, /* bitsize */
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 24, /* bitsize */
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
325
326 /* Dynamic TLS relocations. */
327
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
341
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
413
414 HOWTO (R_ARM_RELATIVE, /* type */
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
427
428 HOWTO (R_ARM_GOTOFF32, /* type */
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
441
442 HOWTO (R_ARM_GOTPC, /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 HOWTO (R_ARM_GOT32, /* type */
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 HOWTO (R_ARM_PLT32, /* type */
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
525
526 HOWTO (R_ARM_BASE_ABS, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
892
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
1274
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1544
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 bfd_elf_generic_reloc, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 /* 112-127 private relocations. */
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
1675
1676 /* R_ARM_ME_TOO, obsolete. */
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692 };
1693
1694 /* 160 onwards: */
1695 static reloc_howto_type elf32_arm_howto_table_2[1] =
1696 {
1697 HOWTO (R_ARM_IRELATIVE, /* type */
1698 0, /* rightshift */
1699 2, /* size (0 = byte, 1 = short, 2 = long) */
1700 32, /* bitsize */
1701 FALSE, /* pc_relative */
1702 0, /* bitpos */
1703 complain_overflow_bitfield,/* complain_on_overflow */
1704 bfd_elf_generic_reloc, /* special_function */
1705 "R_ARM_IRELATIVE", /* name */
1706 TRUE, /* partial_inplace */
1707 0xffffffff, /* src_mask */
1708 0xffffffff, /* dst_mask */
1709 FALSE) /* pcrel_offset */
1710 };
1711
1712 /* 249-255 extended, currently unused, relocations: */
1713 static reloc_howto_type elf32_arm_howto_table_3[4] =
1714 {
1715 HOWTO (R_ARM_RREL32, /* type */
1716 0, /* rightshift */
1717 0, /* size (0 = byte, 1 = short, 2 = long) */
1718 0, /* bitsize */
1719 FALSE, /* pc_relative */
1720 0, /* bitpos */
1721 complain_overflow_dont,/* complain_on_overflow */
1722 bfd_elf_generic_reloc, /* special_function */
1723 "R_ARM_RREL32", /* name */
1724 FALSE, /* partial_inplace */
1725 0, /* src_mask */
1726 0, /* dst_mask */
1727 FALSE), /* pcrel_offset */
1728
1729 HOWTO (R_ARM_RABS32, /* type */
1730 0, /* rightshift */
1731 0, /* size (0 = byte, 1 = short, 2 = long) */
1732 0, /* bitsize */
1733 FALSE, /* pc_relative */
1734 0, /* bitpos */
1735 complain_overflow_dont,/* complain_on_overflow */
1736 bfd_elf_generic_reloc, /* special_function */
1737 "R_ARM_RABS32", /* name */
1738 FALSE, /* partial_inplace */
1739 0, /* src_mask */
1740 0, /* dst_mask */
1741 FALSE), /* pcrel_offset */
1742
1743 HOWTO (R_ARM_RPC24, /* type */
1744 0, /* rightshift */
1745 0, /* size (0 = byte, 1 = short, 2 = long) */
1746 0, /* bitsize */
1747 FALSE, /* pc_relative */
1748 0, /* bitpos */
1749 complain_overflow_dont,/* complain_on_overflow */
1750 bfd_elf_generic_reloc, /* special_function */
1751 "R_ARM_RPC24", /* name */
1752 FALSE, /* partial_inplace */
1753 0, /* src_mask */
1754 0, /* dst_mask */
1755 FALSE), /* pcrel_offset */
1756
1757 HOWTO (R_ARM_RBASE, /* type */
1758 0, /* rightshift */
1759 0, /* size (0 = byte, 1 = short, 2 = long) */
1760 0, /* bitsize */
1761 FALSE, /* pc_relative */
1762 0, /* bitpos */
1763 complain_overflow_dont,/* complain_on_overflow */
1764 bfd_elf_generic_reloc, /* special_function */
1765 "R_ARM_RBASE", /* name */
1766 FALSE, /* partial_inplace */
1767 0, /* src_mask */
1768 0, /* dst_mask */
1769 FALSE) /* pcrel_offset */
1770 };
1771
1772 static reloc_howto_type *
1773 elf32_arm_howto_from_type (unsigned int r_type)
1774 {
1775 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1776 return &elf32_arm_howto_table_1[r_type];
1777
1778 if (r_type == R_ARM_IRELATIVE)
1779 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1780
1781 if (r_type >= R_ARM_RREL32
1782 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1783 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1784
1785 return NULL;
1786 }
1787
1788 static void
1789 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1790 Elf_Internal_Rela * elf_reloc)
1791 {
1792 unsigned int r_type;
1793
1794 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1795 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1796 }
1797
1798 struct elf32_arm_reloc_map
1799 {
1800 bfd_reloc_code_real_type bfd_reloc_val;
1801 unsigned char elf_reloc_val;
1802 };
1803
1804 /* All entries in this list must also be present in elf32_arm_howto_table. */
1805 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1806 {
1807 {BFD_RELOC_NONE, R_ARM_NONE},
1808 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1809 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1810 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1811 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1812 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1813 {BFD_RELOC_32, R_ARM_ABS32},
1814 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1815 {BFD_RELOC_8, R_ARM_ABS8},
1816 {BFD_RELOC_16, R_ARM_ABS16},
1817 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1818 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1819 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1821 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1822 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1823 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1824 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1825 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1826 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1827 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1828 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1829 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1830 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1831 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1832 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1833 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1834 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1835 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1836 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1837 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1838 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1839 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1840 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1841 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1842 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1843 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1844 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1845 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1846 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1847 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1848 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1849 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1850 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1851 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1852 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1853 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1854 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1855 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1856 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1857 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1858 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1859 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1860 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1861 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1862 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1863 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1864 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1865 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1866 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1867 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1868 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1869 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1870 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1871 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1872 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1873 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1874 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1875 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1876 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1877 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1878 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1879 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1880 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1881 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1882 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1883 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1884 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1885 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1886 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1887 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1888 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1889 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1890 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1891 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1892 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1893 };
1894
1895 static reloc_howto_type *
1896 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1897 bfd_reloc_code_real_type code)
1898 {
1899 unsigned int i;
1900
1901 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1902 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1903 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1904
1905 return NULL;
1906 }
1907
1908 static reloc_howto_type *
1909 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1910 const char *r_name)
1911 {
1912 unsigned int i;
1913
1914 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1915 if (elf32_arm_howto_table_1[i].name != NULL
1916 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1917 return &elf32_arm_howto_table_1[i];
1918
1919 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1920 if (elf32_arm_howto_table_2[i].name != NULL
1921 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1922 return &elf32_arm_howto_table_2[i];
1923
1924 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1925 if (elf32_arm_howto_table_3[i].name != NULL
1926 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1927 return &elf32_arm_howto_table_3[i];
1928
1929 return NULL;
1930 }
1931
1932 /* Support for core dump NOTE sections. */
1933
1934 static bfd_boolean
1935 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1936 {
1937 int offset;
1938 size_t size;
1939
1940 switch (note->descsz)
1941 {
1942 default:
1943 return FALSE;
1944
1945 case 148: /* Linux/ARM 32-bit. */
1946 /* pr_cursig */
1947 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1948
1949 /* pr_pid */
1950 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1951
1952 /* pr_reg */
1953 offset = 72;
1954 size = 72;
1955
1956 break;
1957 }
1958
1959 /* Make a ".reg/999" section. */
1960 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1961 size, note->descpos + offset);
1962 }
1963
1964 static bfd_boolean
1965 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1966 {
1967 switch (note->descsz)
1968 {
1969 default:
1970 return FALSE;
1971
1972 case 124: /* Linux/ARM elf_prpsinfo. */
1973 elf_tdata (abfd)->core->pid
1974 = bfd_get_32 (abfd, note->descdata + 12);
1975 elf_tdata (abfd)->core->program
1976 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1977 elf_tdata (abfd)->core->command
1978 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1979 }
1980
1981 /* Note that for some reason, a spurious space is tacked
1982 onto the end of the args in some (at least one anyway)
1983 implementations, so strip it off if it exists. */
1984 {
1985 char *command = elf_tdata (abfd)->core->command;
1986 int n = strlen (command);
1987
1988 if (0 < n && command[n - 1] == ' ')
1989 command[n - 1] = '\0';
1990 }
1991
1992 return TRUE;
1993 }
1994
1995 static char *
1996 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
1997 int note_type, ...)
1998 {
1999 switch (note_type)
2000 {
2001 default:
2002 return NULL;
2003
2004 case NT_PRPSINFO:
2005 {
2006 char data[124];
2007 va_list ap;
2008
2009 va_start (ap, note_type);
2010 memset (data, 0, sizeof (data));
2011 strncpy (data + 28, va_arg (ap, const char *), 16);
2012 strncpy (data + 44, va_arg (ap, const char *), 80);
2013 va_end (ap);
2014
2015 return elfcore_write_note (abfd, buf, bufsiz,
2016 "CORE", note_type, data, sizeof (data));
2017 }
2018
2019 case NT_PRSTATUS:
2020 {
2021 char data[148];
2022 va_list ap;
2023 long pid;
2024 int cursig;
2025 const void *greg;
2026
2027 va_start (ap, note_type);
2028 memset (data, 0, sizeof (data));
2029 pid = va_arg (ap, long);
2030 bfd_put_32 (abfd, pid, data + 24);
2031 cursig = va_arg (ap, int);
2032 bfd_put_16 (abfd, cursig, data + 12);
2033 greg = va_arg (ap, const void *);
2034 memcpy (data + 72, greg, 72);
2035 va_end (ap);
2036
2037 return elfcore_write_note (abfd, buf, bufsiz,
2038 "CORE", note_type, data, sizeof (data));
2039 }
2040 }
2041 }
2042
2043 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2044 #define TARGET_LITTLE_NAME "elf32-littlearm"
2045 #define TARGET_BIG_SYM arm_elf32_be_vec
2046 #define TARGET_BIG_NAME "elf32-bigarm"
2047
2048 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2049 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2050 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2051
2052 typedef unsigned long int insn32;
2053 typedef unsigned short int insn16;
2054
2055 /* In lieu of proper flags, assume all EABIv4 or later objects are
2056 interworkable. */
2057 #define INTERWORK_FLAG(abfd) \
2058 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2059 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2060 || ((abfd)->flags & BFD_LINKER_CREATED))
2061
2062 /* The linker script knows the section names for placement.
2063 The entry_names are used to do simple name mangling on the stubs.
2064 Given a function name, and its type, the stub can be found. The
2065 name can be changed. The only requirement is the %s be present. */
2066 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2067 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2068
2069 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2070 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2071
2072 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2073 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2074
2075 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2076 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2077
2078 #define STUB_ENTRY_NAME "__%s_veneer"
2079
2080 /* The name of the dynamic interpreter. This is put in the .interp
2081 section. */
2082 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2083
2084 static const unsigned long tls_trampoline [] =
2085 {
2086 0xe08e0000, /* add r0, lr, r0 */
2087 0xe5901004, /* ldr r1, [r0,#4] */
2088 0xe12fff11, /* bx r1 */
2089 };
2090
2091 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2092 {
2093 0xe52d2004, /* push {r2} */
2094 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2095 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2096 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2097 0xe081100f, /* 2: add r1, pc */
2098 0xe12fff12, /* bx r2 */
2099 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2100 + dl_tlsdesc_lazy_resolver(GOT) */
2101 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2102 };
2103
2104 #ifdef FOUR_WORD_PLT
2105
2106 /* The first entry in a procedure linkage table looks like
2107 this. It is set up so that any shared library function that is
2108 called before the relocation has been set up calls the dynamic
2109 linker first. */
2110 static const bfd_vma elf32_arm_plt0_entry [] =
2111 {
2112 0xe52de004, /* str lr, [sp, #-4]! */
2113 0xe59fe010, /* ldr lr, [pc, #16] */
2114 0xe08fe00e, /* add lr, pc, lr */
2115 0xe5bef008, /* ldr pc, [lr, #8]! */
2116 };
2117
2118 /* Subsequent entries in a procedure linkage table look like
2119 this. */
2120 static const bfd_vma elf32_arm_plt_entry [] =
2121 {
2122 0xe28fc600, /* add ip, pc, #NN */
2123 0xe28cca00, /* add ip, ip, #NN */
2124 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2125 0x00000000, /* unused */
2126 };
2127
2128 #else /* not FOUR_WORD_PLT */
2129
2130 /* The first entry in a procedure linkage table looks like
2131 this. It is set up so that any shared library function that is
2132 called before the relocation has been set up calls the dynamic
2133 linker first. */
2134 static const bfd_vma elf32_arm_plt0_entry [] =
2135 {
2136 0xe52de004, /* str lr, [sp, #-4]! */
2137 0xe59fe004, /* ldr lr, [pc, #4] */
2138 0xe08fe00e, /* add lr, pc, lr */
2139 0xe5bef008, /* ldr pc, [lr, #8]! */
2140 0x00000000, /* &GOT[0] - . */
2141 };
2142
2143 /* By default subsequent entries in a procedure linkage table look like
2144 this. Offsets that don't fit into 28 bits will cause link error. */
2145 static const bfd_vma elf32_arm_plt_entry_short [] =
2146 {
2147 0xe28fc600, /* add ip, pc, #0xNN00000 */
2148 0xe28cca00, /* add ip, ip, #0xNN000 */
2149 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2150 };
2151
2152 /* When explicitly asked, we'll use this "long" entry format
2153 which can cope with arbitrary displacements. */
2154 static const bfd_vma elf32_arm_plt_entry_long [] =
2155 {
2156 0xe28fc200, /* add ip, pc, #0xN0000000 */
2157 0xe28cc600, /* add ip, ip, #0xNN00000 */
2158 0xe28cca00, /* add ip, ip, #0xNN000 */
2159 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2160 };
2161
2162 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2163
2164 #endif /* not FOUR_WORD_PLT */
2165
2166 /* The first entry in a procedure linkage table looks like this.
2167 It is set up so that any shared library function that is called before the
2168 relocation has been set up calls the dynamic linker first. */
2169 static const bfd_vma elf32_thumb2_plt0_entry [] =
2170 {
2171 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2172 an instruction maybe encoded to one or two array elements. */
2173 0xf8dfb500, /* push {lr} */
2174 0x44fee008, /* ldr.w lr, [pc, #8] */
2175 /* add lr, pc */
2176 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2177 0x00000000, /* &GOT[0] - . */
2178 };
2179
2180 /* Subsequent entries in a procedure linkage table for thumb only target
2181 look like this. */
2182 static const bfd_vma elf32_thumb2_plt_entry [] =
2183 {
2184 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2185 an instruction maybe encoded to one or two array elements. */
2186 0x0c00f240, /* movw ip, #0xNNNN */
2187 0x0c00f2c0, /* movt ip, #0xNNNN */
2188 0xf8dc44fc, /* add ip, pc */
2189 0xbf00f000 /* ldr.w pc, [ip] */
2190 /* nop */
2191 };
2192
2193 /* The format of the first entry in the procedure linkage table
2194 for a VxWorks executable. */
2195 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2196 {
2197 0xe52dc008, /* str ip,[sp,#-8]! */
2198 0xe59fc000, /* ldr ip,[pc] */
2199 0xe59cf008, /* ldr pc,[ip,#8] */
2200 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2201 };
2202
2203 /* The format of subsequent entries in a VxWorks executable. */
2204 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2205 {
2206 0xe59fc000, /* ldr ip,[pc] */
2207 0xe59cf000, /* ldr pc,[ip] */
2208 0x00000000, /* .long @got */
2209 0xe59fc000, /* ldr ip,[pc] */
2210 0xea000000, /* b _PLT */
2211 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2212 };
2213
2214 /* The format of entries in a VxWorks shared library. */
2215 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2216 {
2217 0xe59fc000, /* ldr ip,[pc] */
2218 0xe79cf009, /* ldr pc,[ip,r9] */
2219 0x00000000, /* .long @got */
2220 0xe59fc000, /* ldr ip,[pc] */
2221 0xe599f008, /* ldr pc,[r9,#8] */
2222 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2223 };
2224
2225 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2226 #define PLT_THUMB_STUB_SIZE 4
2227 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2228 {
2229 0x4778, /* bx pc */
2230 0x46c0 /* nop */
2231 };
2232
2233 /* The entries in a PLT when using a DLL-based target with multiple
2234 address spaces. */
2235 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2236 {
2237 0xe51ff004, /* ldr pc, [pc, #-4] */
2238 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2239 };
2240
2241 /* The first entry in a procedure linkage table looks like
2242 this. It is set up so that any shared library function that is
2243 called before the relocation has been set up calls the dynamic
2244 linker first. */
2245 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2246 {
2247 /* First bundle: */
2248 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2249 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2250 0xe08cc00f, /* add ip, ip, pc */
2251 0xe52dc008, /* str ip, [sp, #-8]! */
2252 /* Second bundle: */
2253 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2254 0xe59cc000, /* ldr ip, [ip] */
2255 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2256 0xe12fff1c, /* bx ip */
2257 /* Third bundle: */
2258 0xe320f000, /* nop */
2259 0xe320f000, /* nop */
2260 0xe320f000, /* nop */
2261 /* .Lplt_tail: */
2262 0xe50dc004, /* str ip, [sp, #-4] */
2263 /* Fourth bundle: */
2264 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2265 0xe59cc000, /* ldr ip, [ip] */
2266 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2267 0xe12fff1c, /* bx ip */
2268 };
2269 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2270
2271 /* Subsequent entries in a procedure linkage table look like this. */
2272 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2273 {
2274 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2275 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2276 0xe08cc00f, /* add ip, ip, pc */
2277 0xea000000, /* b .Lplt_tail */
2278 };
2279
2280 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2281 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2282 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2283 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2284 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2285 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2286 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2287 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2288
2289 enum stub_insn_type
2290 {
2291 THUMB16_TYPE = 1,
2292 THUMB32_TYPE,
2293 ARM_TYPE,
2294 DATA_TYPE
2295 };
2296
2297 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2298 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2299 is inserted in arm_build_one_stub(). */
2300 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2301 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2302 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2303 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2304 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2305 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2306
2307 typedef struct
2308 {
2309 bfd_vma data;
2310 enum stub_insn_type type;
2311 unsigned int r_type;
2312 int reloc_addend;
2313 } insn_sequence;
2314
2315 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2316 to reach the stub if necessary. */
2317 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2318 {
2319 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2320 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2321 };
2322
2323 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2324 available. */
2325 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2326 {
2327 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2328 ARM_INSN (0xe12fff1c), /* bx ip */
2329 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2330 };
2331
2332 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2333 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2334 {
2335 THUMB16_INSN (0xb401), /* push {r0} */
2336 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2337 THUMB16_INSN (0x4684), /* mov ip, r0 */
2338 THUMB16_INSN (0xbc01), /* pop {r0} */
2339 THUMB16_INSN (0x4760), /* bx ip */
2340 THUMB16_INSN (0xbf00), /* nop */
2341 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2342 };
2343
2344 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2345 allowed. */
2346 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2347 {
2348 THUMB16_INSN (0x4778), /* bx pc */
2349 THUMB16_INSN (0x46c0), /* nop */
2350 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2351 ARM_INSN (0xe12fff1c), /* bx ip */
2352 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2353 };
2354
2355 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2356 available. */
2357 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2358 {
2359 THUMB16_INSN (0x4778), /* bx pc */
2360 THUMB16_INSN (0x46c0), /* nop */
2361 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2362 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2363 };
2364
2365 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2366 one, when the destination is close enough. */
2367 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2368 {
2369 THUMB16_INSN (0x4778), /* bx pc */
2370 THUMB16_INSN (0x46c0), /* nop */
2371 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2372 };
2373
2374 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2375 blx to reach the stub if necessary. */
2376 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2377 {
2378 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2379 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2380 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2381 };
2382
2383 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2384 blx to reach the stub if necessary. We can not add into pc;
2385 it is not guaranteed to mode switch (different in ARMv6 and
2386 ARMv7). */
2387 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2388 {
2389 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2390 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2391 ARM_INSN (0xe12fff1c), /* bx ip */
2392 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2393 };
2394
2395 /* V4T ARM -> ARM long branch stub, PIC. */
2396 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2397 {
2398 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2399 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2400 ARM_INSN (0xe12fff1c), /* bx ip */
2401 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2402 };
2403
2404 /* V4T Thumb -> ARM long branch stub, PIC. */
2405 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2406 {
2407 THUMB16_INSN (0x4778), /* bx pc */
2408 THUMB16_INSN (0x46c0), /* nop */
2409 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2410 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2411 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2412 };
2413
2414 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2415 architectures. */
2416 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2417 {
2418 THUMB16_INSN (0xb401), /* push {r0} */
2419 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2420 THUMB16_INSN (0x46fc), /* mov ip, pc */
2421 THUMB16_INSN (0x4484), /* add ip, r0 */
2422 THUMB16_INSN (0xbc01), /* pop {r0} */
2423 THUMB16_INSN (0x4760), /* bx ip */
2424 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2425 };
2426
2427 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2428 allowed. */
2429 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2430 {
2431 THUMB16_INSN (0x4778), /* bx pc */
2432 THUMB16_INSN (0x46c0), /* nop */
2433 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2434 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2435 ARM_INSN (0xe12fff1c), /* bx ip */
2436 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2437 };
2438
2439 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2440 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2441 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2442 {
2443 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2444 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2445 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2446 };
2447
2448 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2449 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2450 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2451 {
2452 THUMB16_INSN (0x4778), /* bx pc */
2453 THUMB16_INSN (0x46c0), /* nop */
2454 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2455 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2456 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2457 };
2458
2459 /* NaCl ARM -> ARM long branch stub. */
2460 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2461 {
2462 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2463 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2464 ARM_INSN (0xe12fff1c), /* bx ip */
2465 ARM_INSN (0xe320f000), /* nop */
2466 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2467 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2468 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2469 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2470 };
2471
2472 /* NaCl ARM -> ARM long branch stub, PIC. */
2473 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2474 {
2475 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2476 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2477 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2478 ARM_INSN (0xe12fff1c), /* bx ip */
2479 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2480 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2481 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2482 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2483 };
2484
2485
2486 /* Cortex-A8 erratum-workaround stubs. */
2487
2488 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2489 can't use a conditional branch to reach this stub). */
2490
2491 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2492 {
2493 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2494 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2495 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2496 };
2497
2498 /* Stub used for b.w and bl.w instructions. */
2499
2500 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2501 {
2502 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2503 };
2504
2505 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2506 {
2507 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2508 };
2509
2510 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2511 instruction (which switches to ARM mode) to point to this stub. Jump to the
2512 real destination using an ARM-mode branch. */
2513
2514 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2515 {
2516 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2517 };
2518
2519 /* For each section group there can be a specially created linker section
2520 to hold the stubs for that group. The name of the stub section is based
2521 upon the name of another section within that group with the suffix below
2522 applied.
2523
2524 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2525 create what appeared to be a linker stub section when it actually
2526 contained user code/data. For example, consider this fragment:
2527
2528 const char * stubborn_problems[] = { "np" };
2529
2530 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2531 section called:
2532
2533 .data.rel.local.stubborn_problems
2534
2535 This then causes problems in arm32_arm_build_stubs() as it triggers:
2536
2537 // Ignore non-stub sections.
2538 if (!strstr (stub_sec->name, STUB_SUFFIX))
2539 continue;
2540
2541 And so the section would be ignored instead of being processed. Hence
2542 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2543 C identifier. */
2544 #define STUB_SUFFIX ".__stub"
2545
2546 /* One entry per long/short branch stub defined above. */
2547 #define DEF_STUBS \
2548 DEF_STUB(long_branch_any_any) \
2549 DEF_STUB(long_branch_v4t_arm_thumb) \
2550 DEF_STUB(long_branch_thumb_only) \
2551 DEF_STUB(long_branch_v4t_thumb_thumb) \
2552 DEF_STUB(long_branch_v4t_thumb_arm) \
2553 DEF_STUB(short_branch_v4t_thumb_arm) \
2554 DEF_STUB(long_branch_any_arm_pic) \
2555 DEF_STUB(long_branch_any_thumb_pic) \
2556 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2557 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2558 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2559 DEF_STUB(long_branch_thumb_only_pic) \
2560 DEF_STUB(long_branch_any_tls_pic) \
2561 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2562 DEF_STUB(long_branch_arm_nacl) \
2563 DEF_STUB(long_branch_arm_nacl_pic) \
2564 DEF_STUB(a8_veneer_b_cond) \
2565 DEF_STUB(a8_veneer_b) \
2566 DEF_STUB(a8_veneer_bl) \
2567 DEF_STUB(a8_veneer_blx)
2568
2569 #define DEF_STUB(x) arm_stub_##x,
2570 enum elf32_arm_stub_type
2571 {
2572 arm_stub_none,
2573 DEF_STUBS
2574 /* Note the first a8_veneer type. */
2575 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2576 };
2577 #undef DEF_STUB
2578
2579 typedef struct
2580 {
2581 const insn_sequence* template_sequence;
2582 int template_size;
2583 } stub_def;
2584
2585 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2586 static const stub_def stub_definitions[] =
2587 {
2588 {NULL, 0},
2589 DEF_STUBS
2590 };
2591
2592 struct elf32_arm_stub_hash_entry
2593 {
2594 /* Base hash table entry structure. */
2595 struct bfd_hash_entry root;
2596
2597 /* The stub section. */
2598 asection *stub_sec;
2599
2600 /* Offset within stub_sec of the beginning of this stub. */
2601 bfd_vma stub_offset;
2602
2603 /* Given the symbol's value and its section we can determine its final
2604 value when building the stubs (so the stub knows where to jump). */
2605 bfd_vma target_value;
2606 asection *target_section;
2607
2608 /* Offset to apply to relocation referencing target_value. */
2609 bfd_vma target_addend;
2610
2611 /* The instruction which caused this stub to be generated (only valid for
2612 Cortex-A8 erratum workaround stubs at present). */
2613 unsigned long orig_insn;
2614
2615 /* The stub type. */
2616 enum elf32_arm_stub_type stub_type;
2617 /* Its encoding size in bytes. */
2618 int stub_size;
2619 /* Its template. */
2620 const insn_sequence *stub_template;
2621 /* The size of the template (number of entries). */
2622 int stub_template_size;
2623
2624 /* The symbol table entry, if any, that this was derived from. */
2625 struct elf32_arm_link_hash_entry *h;
2626
2627 /* Type of branch. */
2628 enum arm_st_branch_type branch_type;
2629
2630 /* Where this stub is being called from, or, in the case of combined
2631 stub sections, the first input section in the group. */
2632 asection *id_sec;
2633
2634 /* The name for the local symbol at the start of this stub. The
2635 stub name in the hash table has to be unique; this does not, so
2636 it can be friendlier. */
2637 char *output_name;
2638 };
2639
2640 /* Used to build a map of a section. This is required for mixed-endian
2641 code/data. */
2642
2643 typedef struct elf32_elf_section_map
2644 {
2645 bfd_vma vma;
2646 char type;
2647 }
2648 elf32_arm_section_map;
2649
2650 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2651
2652 typedef enum
2653 {
2654 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2655 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2656 VFP11_ERRATUM_ARM_VENEER,
2657 VFP11_ERRATUM_THUMB_VENEER
2658 }
2659 elf32_vfp11_erratum_type;
2660
2661 typedef struct elf32_vfp11_erratum_list
2662 {
2663 struct elf32_vfp11_erratum_list *next;
2664 bfd_vma vma;
2665 union
2666 {
2667 struct
2668 {
2669 struct elf32_vfp11_erratum_list *veneer;
2670 unsigned int vfp_insn;
2671 } b;
2672 struct
2673 {
2674 struct elf32_vfp11_erratum_list *branch;
2675 unsigned int id;
2676 } v;
2677 } u;
2678 elf32_vfp11_erratum_type type;
2679 }
2680 elf32_vfp11_erratum_list;
2681
2682 typedef enum
2683 {
2684 DELETE_EXIDX_ENTRY,
2685 INSERT_EXIDX_CANTUNWIND_AT_END
2686 }
2687 arm_unwind_edit_type;
2688
2689 /* A (sorted) list of edits to apply to an unwind table. */
2690 typedef struct arm_unwind_table_edit
2691 {
2692 arm_unwind_edit_type type;
2693 /* Note: we sometimes want to insert an unwind entry corresponding to a
2694 section different from the one we're currently writing out, so record the
2695 (text) section this edit relates to here. */
2696 asection *linked_section;
2697 unsigned int index;
2698 struct arm_unwind_table_edit *next;
2699 }
2700 arm_unwind_table_edit;
2701
2702 typedef struct _arm_elf_section_data
2703 {
2704 /* Information about mapping symbols. */
2705 struct bfd_elf_section_data elf;
2706 unsigned int mapcount;
2707 unsigned int mapsize;
2708 elf32_arm_section_map *map;
2709 /* Information about CPU errata. */
2710 unsigned int erratumcount;
2711 elf32_vfp11_erratum_list *erratumlist;
2712 /* Information about unwind tables. */
2713 union
2714 {
2715 /* Unwind info attached to a text section. */
2716 struct
2717 {
2718 asection *arm_exidx_sec;
2719 } text;
2720
2721 /* Unwind info attached to an .ARM.exidx section. */
2722 struct
2723 {
2724 arm_unwind_table_edit *unwind_edit_list;
2725 arm_unwind_table_edit *unwind_edit_tail;
2726 } exidx;
2727 } u;
2728 }
2729 _arm_elf_section_data;
2730
2731 #define elf32_arm_section_data(sec) \
2732 ((_arm_elf_section_data *) elf_section_data (sec))
2733
2734 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2735 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2736 so may be created multiple times: we use an array of these entries whilst
2737 relaxing which we can refresh easily, then create stubs for each potentially
2738 erratum-triggering instruction once we've settled on a solution. */
2739
2740 struct a8_erratum_fix
2741 {
2742 bfd *input_bfd;
2743 asection *section;
2744 bfd_vma offset;
2745 bfd_vma addend;
2746 unsigned long orig_insn;
2747 char *stub_name;
2748 enum elf32_arm_stub_type stub_type;
2749 enum arm_st_branch_type branch_type;
2750 };
2751
2752 /* A table of relocs applied to branches which might trigger Cortex-A8
2753 erratum. */
2754
2755 struct a8_erratum_reloc
2756 {
2757 bfd_vma from;
2758 bfd_vma destination;
2759 struct elf32_arm_link_hash_entry *hash;
2760 const char *sym_name;
2761 unsigned int r_type;
2762 enum arm_st_branch_type branch_type;
2763 bfd_boolean non_a8_stub;
2764 };
2765
2766 /* The size of the thread control block. */
2767 #define TCB_SIZE 8
2768
2769 /* ARM-specific information about a PLT entry, over and above the usual
2770 gotplt_union. */
2771 struct arm_plt_info
2772 {
2773 /* We reference count Thumb references to a PLT entry separately,
2774 so that we can emit the Thumb trampoline only if needed. */
2775 bfd_signed_vma thumb_refcount;
2776
2777 /* Some references from Thumb code may be eliminated by BL->BLX
2778 conversion, so record them separately. */
2779 bfd_signed_vma maybe_thumb_refcount;
2780
2781 /* How many of the recorded PLT accesses were from non-call relocations.
2782 This information is useful when deciding whether anything takes the
2783 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2784 non-call references to the function should resolve directly to the
2785 real runtime target. */
2786 unsigned int noncall_refcount;
2787
2788 /* Since PLT entries have variable size if the Thumb prologue is
2789 used, we need to record the index into .got.plt instead of
2790 recomputing it from the PLT offset. */
2791 bfd_signed_vma got_offset;
2792 };
2793
2794 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2795 struct arm_local_iplt_info
2796 {
2797 /* The information that is usually found in the generic ELF part of
2798 the hash table entry. */
2799 union gotplt_union root;
2800
2801 /* The information that is usually found in the ARM-specific part of
2802 the hash table entry. */
2803 struct arm_plt_info arm;
2804
2805 /* A list of all potential dynamic relocations against this symbol. */
2806 struct elf_dyn_relocs *dyn_relocs;
2807 };
2808
2809 struct elf_arm_obj_tdata
2810 {
2811 struct elf_obj_tdata root;
2812
2813 /* tls_type for each local got entry. */
2814 char *local_got_tls_type;
2815
2816 /* GOTPLT entries for TLS descriptors. */
2817 bfd_vma *local_tlsdesc_gotent;
2818
2819 /* Information for local symbols that need entries in .iplt. */
2820 struct arm_local_iplt_info **local_iplt;
2821
2822 /* Zero to warn when linking objects with incompatible enum sizes. */
2823 int no_enum_size_warning;
2824
2825 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2826 int no_wchar_size_warning;
2827 };
2828
2829 #define elf_arm_tdata(bfd) \
2830 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2831
2832 #define elf32_arm_local_got_tls_type(bfd) \
2833 (elf_arm_tdata (bfd)->local_got_tls_type)
2834
2835 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2836 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2837
2838 #define elf32_arm_local_iplt(bfd) \
2839 (elf_arm_tdata (bfd)->local_iplt)
2840
2841 #define is_arm_elf(bfd) \
2842 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2843 && elf_tdata (bfd) != NULL \
2844 && elf_object_id (bfd) == ARM_ELF_DATA)
2845
2846 static bfd_boolean
2847 elf32_arm_mkobject (bfd *abfd)
2848 {
2849 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2850 ARM_ELF_DATA);
2851 }
2852
2853 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2854
2855 /* Arm ELF linker hash entry. */
2856 struct elf32_arm_link_hash_entry
2857 {
2858 struct elf_link_hash_entry root;
2859
2860 /* Track dynamic relocs copied for this symbol. */
2861 struct elf_dyn_relocs *dyn_relocs;
2862
2863 /* ARM-specific PLT information. */
2864 struct arm_plt_info plt;
2865
2866 #define GOT_UNKNOWN 0
2867 #define GOT_NORMAL 1
2868 #define GOT_TLS_GD 2
2869 #define GOT_TLS_IE 4
2870 #define GOT_TLS_GDESC 8
2871 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2872 unsigned int tls_type : 8;
2873
2874 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2875 unsigned int is_iplt : 1;
2876
2877 unsigned int unused : 23;
2878
2879 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2880 starting at the end of the jump table. */
2881 bfd_vma tlsdesc_got;
2882
2883 /* The symbol marking the real symbol location for exported thumb
2884 symbols with Arm stubs. */
2885 struct elf_link_hash_entry *export_glue;
2886
2887 /* A pointer to the most recently used stub hash entry against this
2888 symbol. */
2889 struct elf32_arm_stub_hash_entry *stub_cache;
2890 };
2891
2892 /* Traverse an arm ELF linker hash table. */
2893 #define elf32_arm_link_hash_traverse(table, func, info) \
2894 (elf_link_hash_traverse \
2895 (&(table)->root, \
2896 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2897 (info)))
2898
2899 /* Get the ARM elf linker hash table from a link_info structure. */
2900 #define elf32_arm_hash_table(info) \
2901 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2902 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2903
2904 #define arm_stub_hash_lookup(table, string, create, copy) \
2905 ((struct elf32_arm_stub_hash_entry *) \
2906 bfd_hash_lookup ((table), (string), (create), (copy)))
2907
2908 /* Array to keep track of which stub sections have been created, and
2909 information on stub grouping. */
2910 struct map_stub
2911 {
2912 /* This is the section to which stubs in the group will be
2913 attached. */
2914 asection *link_sec;
2915 /* The stub section. */
2916 asection *stub_sec;
2917 };
2918
2919 #define elf32_arm_compute_jump_table_size(htab) \
2920 ((htab)->next_tls_desc_index * 4)
2921
2922 /* ARM ELF linker hash table. */
2923 struct elf32_arm_link_hash_table
2924 {
2925 /* The main hash table. */
2926 struct elf_link_hash_table root;
2927
2928 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2929 bfd_size_type thumb_glue_size;
2930
2931 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2932 bfd_size_type arm_glue_size;
2933
2934 /* The size in bytes of section containing the ARMv4 BX veneers. */
2935 bfd_size_type bx_glue_size;
2936
2937 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2938 veneer has been populated. */
2939 bfd_vma bx_glue_offset[15];
2940
2941 /* The size in bytes of the section containing glue for VFP11 erratum
2942 veneers. */
2943 bfd_size_type vfp11_erratum_glue_size;
2944
2945 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2946 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2947 elf32_arm_write_section(). */
2948 struct a8_erratum_fix *a8_erratum_fixes;
2949 unsigned int num_a8_erratum_fixes;
2950
2951 /* An arbitrary input BFD chosen to hold the glue sections. */
2952 bfd * bfd_of_glue_owner;
2953
2954 /* Nonzero to output a BE8 image. */
2955 int byteswap_code;
2956
2957 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2958 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2959 int target1_is_rel;
2960
2961 /* The relocation to use for R_ARM_TARGET2 relocations. */
2962 int target2_reloc;
2963
2964 /* 0 = Ignore R_ARM_V4BX.
2965 1 = Convert BX to MOV PC.
2966 2 = Generate v4 interworing stubs. */
2967 int fix_v4bx;
2968
2969 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2970 int fix_cortex_a8;
2971
2972 /* Whether we should fix the ARM1176 BLX immediate issue. */
2973 int fix_arm1176;
2974
2975 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2976 int use_blx;
2977
2978 /* What sort of code sequences we should look for which may trigger the
2979 VFP11 denorm erratum. */
2980 bfd_arm_vfp11_fix vfp11_fix;
2981
2982 /* Global counter for the number of fixes we have emitted. */
2983 int num_vfp11_fixes;
2984
2985 /* Nonzero to force PIC branch veneers. */
2986 int pic_veneer;
2987
2988 /* The number of bytes in the initial entry in the PLT. */
2989 bfd_size_type plt_header_size;
2990
2991 /* The number of bytes in the subsequent PLT etries. */
2992 bfd_size_type plt_entry_size;
2993
2994 /* True if the target system is VxWorks. */
2995 int vxworks_p;
2996
2997 /* True if the target system is Symbian OS. */
2998 int symbian_p;
2999
3000 /* True if the target system is Native Client. */
3001 int nacl_p;
3002
3003 /* True if the target uses REL relocations. */
3004 int use_rel;
3005
3006 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3007 bfd_vma next_tls_desc_index;
3008
3009 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3010 bfd_vma num_tls_desc;
3011
3012 /* Short-cuts to get to dynamic linker sections. */
3013 asection *sdynbss;
3014 asection *srelbss;
3015
3016 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3017 asection *srelplt2;
3018
3019 /* The offset into splt of the PLT entry for the TLS descriptor
3020 resolver. Special values are 0, if not necessary (or not found
3021 to be necessary yet), and -1 if needed but not determined
3022 yet. */
3023 bfd_vma dt_tlsdesc_plt;
3024
3025 /* The offset into sgot of the GOT entry used by the PLT entry
3026 above. */
3027 bfd_vma dt_tlsdesc_got;
3028
3029 /* Offset in .plt section of tls_arm_trampoline. */
3030 bfd_vma tls_trampoline;
3031
3032 /* Data for R_ARM_TLS_LDM32 relocations. */
3033 union
3034 {
3035 bfd_signed_vma refcount;
3036 bfd_vma offset;
3037 } tls_ldm_got;
3038
3039 /* Small local sym cache. */
3040 struct sym_cache sym_cache;
3041
3042 /* For convenience in allocate_dynrelocs. */
3043 bfd * obfd;
3044
3045 /* The amount of space used by the reserved portion of the sgotplt
3046 section, plus whatever space is used by the jump slots. */
3047 bfd_vma sgotplt_jump_table_size;
3048
3049 /* The stub hash table. */
3050 struct bfd_hash_table stub_hash_table;
3051
3052 /* Linker stub bfd. */
3053 bfd *stub_bfd;
3054
3055 /* Linker call-backs. */
3056 asection * (*add_stub_section) (const char *, asection *, unsigned int);
3057 void (*layout_sections_again) (void);
3058
3059 /* Array to keep track of which stub sections have been created, and
3060 information on stub grouping. */
3061 struct map_stub *stub_group;
3062
3063 /* Number of elements in stub_group. */
3064 int top_id;
3065
3066 /* Assorted information used by elf32_arm_size_stubs. */
3067 unsigned int bfd_count;
3068 int top_index;
3069 asection **input_list;
3070 };
3071
3072 /* Create an entry in an ARM ELF linker hash table. */
3073
3074 static struct bfd_hash_entry *
3075 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3076 struct bfd_hash_table * table,
3077 const char * string)
3078 {
3079 struct elf32_arm_link_hash_entry * ret =
3080 (struct elf32_arm_link_hash_entry *) entry;
3081
3082 /* Allocate the structure if it has not already been allocated by a
3083 subclass. */
3084 if (ret == NULL)
3085 ret = (struct elf32_arm_link_hash_entry *)
3086 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3087 if (ret == NULL)
3088 return (struct bfd_hash_entry *) ret;
3089
3090 /* Call the allocation method of the superclass. */
3091 ret = ((struct elf32_arm_link_hash_entry *)
3092 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3093 table, string));
3094 if (ret != NULL)
3095 {
3096 ret->dyn_relocs = NULL;
3097 ret->tls_type = GOT_UNKNOWN;
3098 ret->tlsdesc_got = (bfd_vma) -1;
3099 ret->plt.thumb_refcount = 0;
3100 ret->plt.maybe_thumb_refcount = 0;
3101 ret->plt.noncall_refcount = 0;
3102 ret->plt.got_offset = -1;
3103 ret->is_iplt = FALSE;
3104 ret->export_glue = NULL;
3105
3106 ret->stub_cache = NULL;
3107 }
3108
3109 return (struct bfd_hash_entry *) ret;
3110 }
3111
3112 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3113 symbols. */
3114
3115 static bfd_boolean
3116 elf32_arm_allocate_local_sym_info (bfd *abfd)
3117 {
3118 if (elf_local_got_refcounts (abfd) == NULL)
3119 {
3120 bfd_size_type num_syms;
3121 bfd_size_type size;
3122 char *data;
3123
3124 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3125 size = num_syms * (sizeof (bfd_signed_vma)
3126 + sizeof (struct arm_local_iplt_info *)
3127 + sizeof (bfd_vma)
3128 + sizeof (char));
3129 data = bfd_zalloc (abfd, size);
3130 if (data == NULL)
3131 return FALSE;
3132
3133 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3134 data += num_syms * sizeof (bfd_signed_vma);
3135
3136 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3137 data += num_syms * sizeof (struct arm_local_iplt_info *);
3138
3139 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3140 data += num_syms * sizeof (bfd_vma);
3141
3142 elf32_arm_local_got_tls_type (abfd) = data;
3143 }
3144 return TRUE;
3145 }
3146
3147 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3148 to input bfd ABFD. Create the information if it doesn't already exist.
3149 Return null if an allocation fails. */
3150
3151 static struct arm_local_iplt_info *
3152 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3153 {
3154 struct arm_local_iplt_info **ptr;
3155
3156 if (!elf32_arm_allocate_local_sym_info (abfd))
3157 return NULL;
3158
3159 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3160 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3161 if (*ptr == NULL)
3162 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3163 return *ptr;
3164 }
3165
3166 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3167 in ABFD's symbol table. If the symbol is global, H points to its
3168 hash table entry, otherwise H is null.
3169
3170 Return true if the symbol does have PLT information. When returning
3171 true, point *ROOT_PLT at the target-independent reference count/offset
3172 union and *ARM_PLT at the ARM-specific information. */
3173
3174 static bfd_boolean
3175 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
3176 unsigned long r_symndx, union gotplt_union **root_plt,
3177 struct arm_plt_info **arm_plt)
3178 {
3179 struct arm_local_iplt_info *local_iplt;
3180
3181 if (h != NULL)
3182 {
3183 *root_plt = &h->root.plt;
3184 *arm_plt = &h->plt;
3185 return TRUE;
3186 }
3187
3188 if (elf32_arm_local_iplt (abfd) == NULL)
3189 return FALSE;
3190
3191 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3192 if (local_iplt == NULL)
3193 return FALSE;
3194
3195 *root_plt = &local_iplt->root;
3196 *arm_plt = &local_iplt->arm;
3197 return TRUE;
3198 }
3199
3200 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3201 before it. */
3202
3203 static bfd_boolean
3204 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3205 struct arm_plt_info *arm_plt)
3206 {
3207 struct elf32_arm_link_hash_table *htab;
3208
3209 htab = elf32_arm_hash_table (info);
3210 return (arm_plt->thumb_refcount != 0
3211 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3212 }
3213
3214 /* Return a pointer to the head of the dynamic reloc list that should
3215 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3216 ABFD's symbol table. Return null if an error occurs. */
3217
3218 static struct elf_dyn_relocs **
3219 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3220 Elf_Internal_Sym *isym)
3221 {
3222 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3223 {
3224 struct arm_local_iplt_info *local_iplt;
3225
3226 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3227 if (local_iplt == NULL)
3228 return NULL;
3229 return &local_iplt->dyn_relocs;
3230 }
3231 else
3232 {
3233 /* Track dynamic relocs needed for local syms too.
3234 We really need local syms available to do this
3235 easily. Oh well. */
3236 asection *s;
3237 void *vpp;
3238
3239 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3240 if (s == NULL)
3241 abort ();
3242
3243 vpp = &elf_section_data (s)->local_dynrel;
3244 return (struct elf_dyn_relocs **) vpp;
3245 }
3246 }
3247
3248 /* Initialize an entry in the stub hash table. */
3249
3250 static struct bfd_hash_entry *
3251 stub_hash_newfunc (struct bfd_hash_entry *entry,
3252 struct bfd_hash_table *table,
3253 const char *string)
3254 {
3255 /* Allocate the structure if it has not already been allocated by a
3256 subclass. */
3257 if (entry == NULL)
3258 {
3259 entry = (struct bfd_hash_entry *)
3260 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3261 if (entry == NULL)
3262 return entry;
3263 }
3264
3265 /* Call the allocation method of the superclass. */
3266 entry = bfd_hash_newfunc (entry, table, string);
3267 if (entry != NULL)
3268 {
3269 struct elf32_arm_stub_hash_entry *eh;
3270
3271 /* Initialize the local fields. */
3272 eh = (struct elf32_arm_stub_hash_entry *) entry;
3273 eh->stub_sec = NULL;
3274 eh->stub_offset = 0;
3275 eh->target_value = 0;
3276 eh->target_section = NULL;
3277 eh->target_addend = 0;
3278 eh->orig_insn = 0;
3279 eh->stub_type = arm_stub_none;
3280 eh->stub_size = 0;
3281 eh->stub_template = NULL;
3282 eh->stub_template_size = 0;
3283 eh->h = NULL;
3284 eh->id_sec = NULL;
3285 eh->output_name = NULL;
3286 }
3287
3288 return entry;
3289 }
3290
3291 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3292 shortcuts to them in our hash table. */
3293
3294 static bfd_boolean
3295 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3296 {
3297 struct elf32_arm_link_hash_table *htab;
3298
3299 htab = elf32_arm_hash_table (info);
3300 if (htab == NULL)
3301 return FALSE;
3302
3303 /* BPABI objects never have a GOT, or associated sections. */
3304 if (htab->symbian_p)
3305 return TRUE;
3306
3307 if (! _bfd_elf_create_got_section (dynobj, info))
3308 return FALSE;
3309
3310 return TRUE;
3311 }
3312
3313 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3314
3315 static bfd_boolean
3316 create_ifunc_sections (struct bfd_link_info *info)
3317 {
3318 struct elf32_arm_link_hash_table *htab;
3319 const struct elf_backend_data *bed;
3320 bfd *dynobj;
3321 asection *s;
3322 flagword flags;
3323
3324 htab = elf32_arm_hash_table (info);
3325 dynobj = htab->root.dynobj;
3326 bed = get_elf_backend_data (dynobj);
3327 flags = bed->dynamic_sec_flags;
3328
3329 if (htab->root.iplt == NULL)
3330 {
3331 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3332 flags | SEC_READONLY | SEC_CODE);
3333 if (s == NULL
3334 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3335 return FALSE;
3336 htab->root.iplt = s;
3337 }
3338
3339 if (htab->root.irelplt == NULL)
3340 {
3341 s = bfd_make_section_anyway_with_flags (dynobj,
3342 RELOC_SECTION (htab, ".iplt"),
3343 flags | SEC_READONLY);
3344 if (s == NULL
3345 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3346 return FALSE;
3347 htab->root.irelplt = s;
3348 }
3349
3350 if (htab->root.igotplt == NULL)
3351 {
3352 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3353 if (s == NULL
3354 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3355 return FALSE;
3356 htab->root.igotplt = s;
3357 }
3358 return TRUE;
3359 }
3360
3361 /* Determine if we're dealing with a Thumb only architecture. */
3362
3363 static bfd_boolean
3364 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3365 {
3366 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3367 Tag_CPU_arch);
3368 int profile;
3369
3370 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3371 return TRUE;
3372
3373 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
3374 return FALSE;
3375
3376 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3377 Tag_CPU_arch_profile);
3378
3379 return profile == 'M';
3380 }
3381
3382 /* Determine if we're dealing with a Thumb-2 object. */
3383
3384 static bfd_boolean
3385 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3386 {
3387 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3388 Tag_CPU_arch);
3389 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3390 }
3391
3392 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3393 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3394 hash table. */
3395
3396 static bfd_boolean
3397 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3398 {
3399 struct elf32_arm_link_hash_table *htab;
3400
3401 htab = elf32_arm_hash_table (info);
3402 if (htab == NULL)
3403 return FALSE;
3404
3405 if (!htab->root.sgot && !create_got_section (dynobj, info))
3406 return FALSE;
3407
3408 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3409 return FALSE;
3410
3411 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3412 if (!info->shared)
3413 htab->srelbss = bfd_get_linker_section (dynobj,
3414 RELOC_SECTION (htab, ".bss"));
3415
3416 if (htab->vxworks_p)
3417 {
3418 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3419 return FALSE;
3420
3421 if (info->shared)
3422 {
3423 htab->plt_header_size = 0;
3424 htab->plt_entry_size
3425 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3426 }
3427 else
3428 {
3429 htab->plt_header_size
3430 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3431 htab->plt_entry_size
3432 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3433 }
3434 }
3435 else
3436 {
3437 /* PR ld/16017
3438 Test for thumb only architectures. Note - we cannot just call
3439 using_thumb_only() as the attributes in the output bfd have not been
3440 initialised at this point, so instead we use the input bfd. */
3441 bfd * saved_obfd = htab->obfd;
3442
3443 htab->obfd = dynobj;
3444 if (using_thumb_only (htab))
3445 {
3446 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3447 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3448 }
3449 htab->obfd = saved_obfd;
3450 }
3451
3452 if (!htab->root.splt
3453 || !htab->root.srelplt
3454 || !htab->sdynbss
3455 || (!info->shared && !htab->srelbss))
3456 abort ();
3457
3458 return TRUE;
3459 }
3460
3461 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3462
3463 static void
3464 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3465 struct elf_link_hash_entry *dir,
3466 struct elf_link_hash_entry *ind)
3467 {
3468 struct elf32_arm_link_hash_entry *edir, *eind;
3469
3470 edir = (struct elf32_arm_link_hash_entry *) dir;
3471 eind = (struct elf32_arm_link_hash_entry *) ind;
3472
3473 if (eind->dyn_relocs != NULL)
3474 {
3475 if (edir->dyn_relocs != NULL)
3476 {
3477 struct elf_dyn_relocs **pp;
3478 struct elf_dyn_relocs *p;
3479
3480 /* Add reloc counts against the indirect sym to the direct sym
3481 list. Merge any entries against the same section. */
3482 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3483 {
3484 struct elf_dyn_relocs *q;
3485
3486 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3487 if (q->sec == p->sec)
3488 {
3489 q->pc_count += p->pc_count;
3490 q->count += p->count;
3491 *pp = p->next;
3492 break;
3493 }
3494 if (q == NULL)
3495 pp = &p->next;
3496 }
3497 *pp = edir->dyn_relocs;
3498 }
3499
3500 edir->dyn_relocs = eind->dyn_relocs;
3501 eind->dyn_relocs = NULL;
3502 }
3503
3504 if (ind->root.type == bfd_link_hash_indirect)
3505 {
3506 /* Copy over PLT info. */
3507 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3508 eind->plt.thumb_refcount = 0;
3509 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3510 eind->plt.maybe_thumb_refcount = 0;
3511 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3512 eind->plt.noncall_refcount = 0;
3513
3514 /* We should only allocate a function to .iplt once the final
3515 symbol information is known. */
3516 BFD_ASSERT (!eind->is_iplt);
3517
3518 if (dir->got.refcount <= 0)
3519 {
3520 edir->tls_type = eind->tls_type;
3521 eind->tls_type = GOT_UNKNOWN;
3522 }
3523 }
3524
3525 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3526 }
3527
3528 /* Destroy an ARM elf linker hash table. */
3529
3530 static void
3531 elf32_arm_link_hash_table_free (bfd *obfd)
3532 {
3533 struct elf32_arm_link_hash_table *ret
3534 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
3535
3536 bfd_hash_table_free (&ret->stub_hash_table);
3537 _bfd_elf_link_hash_table_free (obfd);
3538 }
3539
3540 /* Create an ARM elf linker hash table. */
3541
3542 static struct bfd_link_hash_table *
3543 elf32_arm_link_hash_table_create (bfd *abfd)
3544 {
3545 struct elf32_arm_link_hash_table *ret;
3546 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3547
3548 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3549 if (ret == NULL)
3550 return NULL;
3551
3552 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3553 elf32_arm_link_hash_newfunc,
3554 sizeof (struct elf32_arm_link_hash_entry),
3555 ARM_ELF_DATA))
3556 {
3557 free (ret);
3558 return NULL;
3559 }
3560
3561 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3562 #ifdef FOUR_WORD_PLT
3563 ret->plt_header_size = 16;
3564 ret->plt_entry_size = 16;
3565 #else
3566 ret->plt_header_size = 20;
3567 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
3568 #endif
3569 ret->use_rel = 1;
3570 ret->obfd = abfd;
3571
3572 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3573 sizeof (struct elf32_arm_stub_hash_entry)))
3574 {
3575 _bfd_elf_link_hash_table_free (abfd);
3576 return NULL;
3577 }
3578 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
3579
3580 return &ret->root.root;
3581 }
3582
3583 /* Determine what kind of NOPs are available. */
3584
3585 static bfd_boolean
3586 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3587 {
3588 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3589 Tag_CPU_arch);
3590 return arch == TAG_CPU_ARCH_V6T2
3591 || arch == TAG_CPU_ARCH_V6K
3592 || arch == TAG_CPU_ARCH_V7
3593 || arch == TAG_CPU_ARCH_V7E_M;
3594 }
3595
3596 static bfd_boolean
3597 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3598 {
3599 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3600 Tag_CPU_arch);
3601 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3602 || arch == TAG_CPU_ARCH_V7E_M);
3603 }
3604
3605 static bfd_boolean
3606 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3607 {
3608 switch (stub_type)
3609 {
3610 case arm_stub_long_branch_thumb_only:
3611 case arm_stub_long_branch_v4t_thumb_arm:
3612 case arm_stub_short_branch_v4t_thumb_arm:
3613 case arm_stub_long_branch_v4t_thumb_arm_pic:
3614 case arm_stub_long_branch_v4t_thumb_tls_pic:
3615 case arm_stub_long_branch_thumb_only_pic:
3616 return TRUE;
3617 case arm_stub_none:
3618 BFD_FAIL ();
3619 return FALSE;
3620 break;
3621 default:
3622 return FALSE;
3623 }
3624 }
3625
3626 /* Determine the type of stub needed, if any, for a call. */
3627
3628 static enum elf32_arm_stub_type
3629 arm_type_of_stub (struct bfd_link_info *info,
3630 asection *input_sec,
3631 const Elf_Internal_Rela *rel,
3632 unsigned char st_type,
3633 enum arm_st_branch_type *actual_branch_type,
3634 struct elf32_arm_link_hash_entry *hash,
3635 bfd_vma destination,
3636 asection *sym_sec,
3637 bfd *input_bfd,
3638 const char *name)
3639 {
3640 bfd_vma location;
3641 bfd_signed_vma branch_offset;
3642 unsigned int r_type;
3643 struct elf32_arm_link_hash_table * globals;
3644 int thumb2;
3645 int thumb_only;
3646 enum elf32_arm_stub_type stub_type = arm_stub_none;
3647 int use_plt = 0;
3648 enum arm_st_branch_type branch_type = *actual_branch_type;
3649 union gotplt_union *root_plt;
3650 struct arm_plt_info *arm_plt;
3651
3652 if (branch_type == ST_BRANCH_LONG)
3653 return stub_type;
3654
3655 globals = elf32_arm_hash_table (info);
3656 if (globals == NULL)
3657 return stub_type;
3658
3659 thumb_only = using_thumb_only (globals);
3660
3661 thumb2 = using_thumb2 (globals);
3662
3663 /* Determine where the call point is. */
3664 location = (input_sec->output_offset
3665 + input_sec->output_section->vma
3666 + rel->r_offset);
3667
3668 r_type = ELF32_R_TYPE (rel->r_info);
3669
3670 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3671 are considering a function call relocation. */
3672 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3673 || r_type == R_ARM_THM_JUMP19)
3674 && branch_type == ST_BRANCH_TO_ARM)
3675 branch_type = ST_BRANCH_TO_THUMB;
3676
3677 /* For TLS call relocs, it is the caller's responsibility to provide
3678 the address of the appropriate trampoline. */
3679 if (r_type != R_ARM_TLS_CALL
3680 && r_type != R_ARM_THM_TLS_CALL
3681 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3682 &root_plt, &arm_plt)
3683 && root_plt->offset != (bfd_vma) -1)
3684 {
3685 asection *splt;
3686
3687 if (hash == NULL || hash->is_iplt)
3688 splt = globals->root.iplt;
3689 else
3690 splt = globals->root.splt;
3691 if (splt != NULL)
3692 {
3693 use_plt = 1;
3694
3695 /* Note when dealing with PLT entries: the main PLT stub is in
3696 ARM mode, so if the branch is in Thumb mode, another
3697 Thumb->ARM stub will be inserted later just before the ARM
3698 PLT stub. We don't take this extra distance into account
3699 here, because if a long branch stub is needed, we'll add a
3700 Thumb->Arm one and branch directly to the ARM PLT entry
3701 because it avoids spreading offset corrections in several
3702 places. */
3703
3704 destination = (splt->output_section->vma
3705 + splt->output_offset
3706 + root_plt->offset);
3707 st_type = STT_FUNC;
3708 branch_type = ST_BRANCH_TO_ARM;
3709 }
3710 }
3711 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3712 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3713
3714 branch_offset = (bfd_signed_vma)(destination - location);
3715
3716 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3717 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
3718 {
3719 /* Handle cases where:
3720 - this call goes too far (different Thumb/Thumb2 max
3721 distance)
3722 - it's a Thumb->Arm call and blx is not available, or it's a
3723 Thumb->Arm branch (not bl). A stub is needed in this case,
3724 but only if this call is not through a PLT entry. Indeed,
3725 PLT stubs handle mode switching already.
3726 */
3727 if ((!thumb2
3728 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3729 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3730 || (thumb2
3731 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3732 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3733 || (thumb2
3734 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
3735 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
3736 && (r_type == R_ARM_THM_JUMP19))
3737 || (branch_type == ST_BRANCH_TO_ARM
3738 && (((r_type == R_ARM_THM_CALL
3739 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3740 || (r_type == R_ARM_THM_JUMP24)
3741 || (r_type == R_ARM_THM_JUMP19))
3742 && !use_plt))
3743 {
3744 if (branch_type == ST_BRANCH_TO_THUMB)
3745 {
3746 /* Thumb to thumb. */
3747 if (!thumb_only)
3748 {
3749 stub_type = (info->shared | globals->pic_veneer)
3750 /* PIC stubs. */
3751 ? ((globals->use_blx
3752 && (r_type == R_ARM_THM_CALL))
3753 /* V5T and above. Stub starts with ARM code, so
3754 we must be able to switch mode before
3755 reaching it, which is only possible for 'bl'
3756 (ie R_ARM_THM_CALL relocation). */
3757 ? arm_stub_long_branch_any_thumb_pic
3758 /* On V4T, use Thumb code only. */
3759 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3760
3761 /* non-PIC stubs. */
3762 : ((globals->use_blx
3763 && (r_type == R_ARM_THM_CALL))
3764 /* V5T and above. */
3765 ? arm_stub_long_branch_any_any
3766 /* V4T. */
3767 : arm_stub_long_branch_v4t_thumb_thumb);
3768 }
3769 else
3770 {
3771 stub_type = (info->shared | globals->pic_veneer)
3772 /* PIC stub. */
3773 ? arm_stub_long_branch_thumb_only_pic
3774 /* non-PIC stub. */
3775 : arm_stub_long_branch_thumb_only;
3776 }
3777 }
3778 else
3779 {
3780 /* Thumb to arm. */
3781 if (sym_sec != NULL
3782 && sym_sec->owner != NULL
3783 && !INTERWORK_FLAG (sym_sec->owner))
3784 {
3785 (*_bfd_error_handler)
3786 (_("%B(%s): warning: interworking not enabled.\n"
3787 " first occurrence: %B: Thumb call to ARM"),
3788 sym_sec->owner, input_bfd, name);
3789 }
3790
3791 stub_type =
3792 (info->shared | globals->pic_veneer)
3793 /* PIC stubs. */
3794 ? (r_type == R_ARM_THM_TLS_CALL
3795 /* TLS PIC stubs. */
3796 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3797 : arm_stub_long_branch_v4t_thumb_tls_pic)
3798 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3799 /* V5T PIC and above. */
3800 ? arm_stub_long_branch_any_arm_pic
3801 /* V4T PIC stub. */
3802 : arm_stub_long_branch_v4t_thumb_arm_pic))
3803
3804 /* non-PIC stubs. */
3805 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3806 /* V5T and above. */
3807 ? arm_stub_long_branch_any_any
3808 /* V4T. */
3809 : arm_stub_long_branch_v4t_thumb_arm);
3810
3811 /* Handle v4t short branches. */
3812 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3813 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3814 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3815 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3816 }
3817 }
3818 }
3819 else if (r_type == R_ARM_CALL
3820 || r_type == R_ARM_JUMP24
3821 || r_type == R_ARM_PLT32
3822 || r_type == R_ARM_TLS_CALL)
3823 {
3824 if (branch_type == ST_BRANCH_TO_THUMB)
3825 {
3826 /* Arm to thumb. */
3827
3828 if (sym_sec != NULL
3829 && sym_sec->owner != NULL
3830 && !INTERWORK_FLAG (sym_sec->owner))
3831 {
3832 (*_bfd_error_handler)
3833 (_("%B(%s): warning: interworking not enabled.\n"
3834 " first occurrence: %B: ARM call to Thumb"),
3835 sym_sec->owner, input_bfd, name);
3836 }
3837
3838 /* We have an extra 2-bytes reach because of
3839 the mode change (bit 24 (H) of BLX encoding). */
3840 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3841 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3842 || (r_type == R_ARM_CALL && !globals->use_blx)
3843 || (r_type == R_ARM_JUMP24)
3844 || (r_type == R_ARM_PLT32))
3845 {
3846 stub_type = (info->shared | globals->pic_veneer)
3847 /* PIC stubs. */
3848 ? ((globals->use_blx)
3849 /* V5T and above. */
3850 ? arm_stub_long_branch_any_thumb_pic
3851 /* V4T stub. */
3852 : arm_stub_long_branch_v4t_arm_thumb_pic)
3853
3854 /* non-PIC stubs. */
3855 : ((globals->use_blx)
3856 /* V5T and above. */
3857 ? arm_stub_long_branch_any_any
3858 /* V4T. */
3859 : arm_stub_long_branch_v4t_arm_thumb);
3860 }
3861 }
3862 else
3863 {
3864 /* Arm to arm. */
3865 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3866 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3867 {
3868 stub_type =
3869 (info->shared | globals->pic_veneer)
3870 /* PIC stubs. */
3871 ? (r_type == R_ARM_TLS_CALL
3872 /* TLS PIC Stub. */
3873 ? arm_stub_long_branch_any_tls_pic
3874 : (globals->nacl_p
3875 ? arm_stub_long_branch_arm_nacl_pic
3876 : arm_stub_long_branch_any_arm_pic))
3877 /* non-PIC stubs. */
3878 : (globals->nacl_p
3879 ? arm_stub_long_branch_arm_nacl
3880 : arm_stub_long_branch_any_any);
3881 }
3882 }
3883 }
3884
3885 /* If a stub is needed, record the actual destination type. */
3886 if (stub_type != arm_stub_none)
3887 *actual_branch_type = branch_type;
3888
3889 return stub_type;
3890 }
3891
3892 /* Build a name for an entry in the stub hash table. */
3893
3894 static char *
3895 elf32_arm_stub_name (const asection *input_section,
3896 const asection *sym_sec,
3897 const struct elf32_arm_link_hash_entry *hash,
3898 const Elf_Internal_Rela *rel,
3899 enum elf32_arm_stub_type stub_type)
3900 {
3901 char *stub_name;
3902 bfd_size_type len;
3903
3904 if (hash)
3905 {
3906 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3907 stub_name = (char *) bfd_malloc (len);
3908 if (stub_name != NULL)
3909 sprintf (stub_name, "%08x_%s+%x_%d",
3910 input_section->id & 0xffffffff,
3911 hash->root.root.root.string,
3912 (int) rel->r_addend & 0xffffffff,
3913 (int) stub_type);
3914 }
3915 else
3916 {
3917 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3918 stub_name = (char *) bfd_malloc (len);
3919 if (stub_name != NULL)
3920 sprintf (stub_name, "%08x_%x:%x+%x_%d",
3921 input_section->id & 0xffffffff,
3922 sym_sec->id & 0xffffffff,
3923 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3924 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3925 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3926 (int) rel->r_addend & 0xffffffff,
3927 (int) stub_type);
3928 }
3929
3930 return stub_name;
3931 }
3932
3933 /* Look up an entry in the stub hash. Stub entries are cached because
3934 creating the stub name takes a bit of time. */
3935
3936 static struct elf32_arm_stub_hash_entry *
3937 elf32_arm_get_stub_entry (const asection *input_section,
3938 const asection *sym_sec,
3939 struct elf_link_hash_entry *hash,
3940 const Elf_Internal_Rela *rel,
3941 struct elf32_arm_link_hash_table *htab,
3942 enum elf32_arm_stub_type stub_type)
3943 {
3944 struct elf32_arm_stub_hash_entry *stub_entry;
3945 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3946 const asection *id_sec;
3947
3948 if ((input_section->flags & SEC_CODE) == 0)
3949 return NULL;
3950
3951 /* If this input section is part of a group of sections sharing one
3952 stub section, then use the id of the first section in the group.
3953 Stub names need to include a section id, as there may well be
3954 more than one stub used to reach say, printf, and we need to
3955 distinguish between them. */
3956 id_sec = htab->stub_group[input_section->id].link_sec;
3957
3958 if (h != NULL && h->stub_cache != NULL
3959 && h->stub_cache->h == h
3960 && h->stub_cache->id_sec == id_sec
3961 && h->stub_cache->stub_type == stub_type)
3962 {
3963 stub_entry = h->stub_cache;
3964 }
3965 else
3966 {
3967 char *stub_name;
3968
3969 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3970 if (stub_name == NULL)
3971 return NULL;
3972
3973 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3974 stub_name, FALSE, FALSE);
3975 if (h != NULL)
3976 h->stub_cache = stub_entry;
3977
3978 free (stub_name);
3979 }
3980
3981 return stub_entry;
3982 }
3983
3984 /* Find or create a stub section. Returns a pointer to the stub section, and
3985 the section to which the stub section will be attached (in *LINK_SEC_P).
3986 LINK_SEC_P may be NULL. */
3987
3988 static asection *
3989 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3990 struct elf32_arm_link_hash_table *htab)
3991 {
3992 asection *link_sec;
3993 asection *stub_sec;
3994
3995 link_sec = htab->stub_group[section->id].link_sec;
3996 BFD_ASSERT (link_sec != NULL);
3997 stub_sec = htab->stub_group[section->id].stub_sec;
3998
3999 if (stub_sec == NULL)
4000 {
4001 stub_sec = htab->stub_group[link_sec->id].stub_sec;
4002 if (stub_sec == NULL)
4003 {
4004 size_t namelen;
4005 bfd_size_type len;
4006 char *s_name;
4007
4008 namelen = strlen (link_sec->name);
4009 len = namelen + sizeof (STUB_SUFFIX);
4010 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4011 if (s_name == NULL)
4012 return NULL;
4013
4014 memcpy (s_name, link_sec->name, namelen);
4015 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4016 stub_sec = (*htab->add_stub_section) (s_name, link_sec,
4017 htab->nacl_p ? 4 : 3);
4018 if (stub_sec == NULL)
4019 return NULL;
4020 htab->stub_group[link_sec->id].stub_sec = stub_sec;
4021 }
4022 htab->stub_group[section->id].stub_sec = stub_sec;
4023 }
4024
4025 if (link_sec_p)
4026 *link_sec_p = link_sec;
4027
4028 return stub_sec;
4029 }
4030
4031 /* Add a new stub entry to the stub hash. Not all fields of the new
4032 stub entry are initialised. */
4033
4034 static struct elf32_arm_stub_hash_entry *
4035 elf32_arm_add_stub (const char *stub_name,
4036 asection *section,
4037 struct elf32_arm_link_hash_table *htab)
4038 {
4039 asection *link_sec;
4040 asection *stub_sec;
4041 struct elf32_arm_stub_hash_entry *stub_entry;
4042
4043 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
4044 if (stub_sec == NULL)
4045 return NULL;
4046
4047 /* Enter this entry into the linker stub hash table. */
4048 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4049 TRUE, FALSE);
4050 if (stub_entry == NULL)
4051 {
4052 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4053 section->owner,
4054 stub_name);
4055 return NULL;
4056 }
4057
4058 stub_entry->stub_sec = stub_sec;
4059 stub_entry->stub_offset = 0;
4060 stub_entry->id_sec = link_sec;
4061
4062 return stub_entry;
4063 }
4064
4065 /* Store an Arm insn into an output section not processed by
4066 elf32_arm_write_section. */
4067
4068 static void
4069 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4070 bfd * output_bfd, bfd_vma val, void * ptr)
4071 {
4072 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4073 bfd_putl32 (val, ptr);
4074 else
4075 bfd_putb32 (val, ptr);
4076 }
4077
4078 /* Store a 16-bit Thumb insn into an output section not processed by
4079 elf32_arm_write_section. */
4080
4081 static void
4082 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4083 bfd * output_bfd, bfd_vma val, void * ptr)
4084 {
4085 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4086 bfd_putl16 (val, ptr);
4087 else
4088 bfd_putb16 (val, ptr);
4089 }
4090
4091 /* If it's possible to change R_TYPE to a more efficient access
4092 model, return the new reloc type. */
4093
4094 static unsigned
4095 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4096 struct elf_link_hash_entry *h)
4097 {
4098 int is_local = (h == NULL);
4099
4100 if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
4101 return r_type;
4102
4103 /* We do not support relaxations for Old TLS models. */
4104 switch (r_type)
4105 {
4106 case R_ARM_TLS_GOTDESC:
4107 case R_ARM_TLS_CALL:
4108 case R_ARM_THM_TLS_CALL:
4109 case R_ARM_TLS_DESCSEQ:
4110 case R_ARM_THM_TLS_DESCSEQ:
4111 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4112 }
4113
4114 return r_type;
4115 }
4116
4117 static bfd_reloc_status_type elf32_arm_final_link_relocate
4118 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4119 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4120 const char *, unsigned char, enum arm_st_branch_type,
4121 struct elf_link_hash_entry *, bfd_boolean *, char **);
4122
4123 static unsigned int
4124 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4125 {
4126 switch (stub_type)
4127 {
4128 case arm_stub_a8_veneer_b_cond:
4129 case arm_stub_a8_veneer_b:
4130 case arm_stub_a8_veneer_bl:
4131 return 2;
4132
4133 case arm_stub_long_branch_any_any:
4134 case arm_stub_long_branch_v4t_arm_thumb:
4135 case arm_stub_long_branch_thumb_only:
4136 case arm_stub_long_branch_v4t_thumb_thumb:
4137 case arm_stub_long_branch_v4t_thumb_arm:
4138 case arm_stub_short_branch_v4t_thumb_arm:
4139 case arm_stub_long_branch_any_arm_pic:
4140 case arm_stub_long_branch_any_thumb_pic:
4141 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4142 case arm_stub_long_branch_v4t_arm_thumb_pic:
4143 case arm_stub_long_branch_v4t_thumb_arm_pic:
4144 case arm_stub_long_branch_thumb_only_pic:
4145 case arm_stub_long_branch_any_tls_pic:
4146 case arm_stub_long_branch_v4t_thumb_tls_pic:
4147 case arm_stub_a8_veneer_blx:
4148 return 4;
4149
4150 case arm_stub_long_branch_arm_nacl:
4151 case arm_stub_long_branch_arm_nacl_pic:
4152 return 16;
4153
4154 default:
4155 abort (); /* Should be unreachable. */
4156 }
4157 }
4158
4159 static bfd_boolean
4160 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4161 void * in_arg)
4162 {
4163 #define MAXRELOCS 3
4164 struct elf32_arm_stub_hash_entry *stub_entry;
4165 struct elf32_arm_link_hash_table *globals;
4166 struct bfd_link_info *info;
4167 asection *stub_sec;
4168 bfd *stub_bfd;
4169 bfd_byte *loc;
4170 bfd_vma sym_value;
4171 int template_size;
4172 int size;
4173 const insn_sequence *template_sequence;
4174 int i;
4175 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4176 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4177 int nrelocs = 0;
4178
4179 /* Massage our args to the form they really have. */
4180 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4181 info = (struct bfd_link_info *) in_arg;
4182
4183 globals = elf32_arm_hash_table (info);
4184 if (globals == NULL)
4185 return FALSE;
4186
4187 stub_sec = stub_entry->stub_sec;
4188
4189 if ((globals->fix_cortex_a8 < 0)
4190 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4191 /* We have to do less-strictly-aligned fixes last. */
4192 return TRUE;
4193
4194 /* Make a note of the offset within the stubs for this entry. */
4195 stub_entry->stub_offset = stub_sec->size;
4196 loc = stub_sec->contents + stub_entry->stub_offset;
4197
4198 stub_bfd = stub_sec->owner;
4199
4200 /* This is the address of the stub destination. */
4201 sym_value = (stub_entry->target_value
4202 + stub_entry->target_section->output_offset
4203 + stub_entry->target_section->output_section->vma);
4204
4205 template_sequence = stub_entry->stub_template;
4206 template_size = stub_entry->stub_template_size;
4207
4208 size = 0;
4209 for (i = 0; i < template_size; i++)
4210 {
4211 switch (template_sequence[i].type)
4212 {
4213 case THUMB16_TYPE:
4214 {
4215 bfd_vma data = (bfd_vma) template_sequence[i].data;
4216 if (template_sequence[i].reloc_addend != 0)
4217 {
4218 /* We've borrowed the reloc_addend field to mean we should
4219 insert a condition code into this (Thumb-1 branch)
4220 instruction. See THUMB16_BCOND_INSN. */
4221 BFD_ASSERT ((data & 0xff00) == 0xd000);
4222 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4223 }
4224 bfd_put_16 (stub_bfd, data, loc + size);
4225 size += 2;
4226 }
4227 break;
4228
4229 case THUMB32_TYPE:
4230 bfd_put_16 (stub_bfd,
4231 (template_sequence[i].data >> 16) & 0xffff,
4232 loc + size);
4233 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4234 loc + size + 2);
4235 if (template_sequence[i].r_type != R_ARM_NONE)
4236 {
4237 stub_reloc_idx[nrelocs] = i;
4238 stub_reloc_offset[nrelocs++] = size;
4239 }
4240 size += 4;
4241 break;
4242
4243 case ARM_TYPE:
4244 bfd_put_32 (stub_bfd, template_sequence[i].data,
4245 loc + size);
4246 /* Handle cases where the target is encoded within the
4247 instruction. */
4248 if (template_sequence[i].r_type == R_ARM_JUMP24)
4249 {
4250 stub_reloc_idx[nrelocs] = i;
4251 stub_reloc_offset[nrelocs++] = size;
4252 }
4253 size += 4;
4254 break;
4255
4256 case DATA_TYPE:
4257 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4258 stub_reloc_idx[nrelocs] = i;
4259 stub_reloc_offset[nrelocs++] = size;
4260 size += 4;
4261 break;
4262
4263 default:
4264 BFD_FAIL ();
4265 return FALSE;
4266 }
4267 }
4268
4269 stub_sec->size += size;
4270
4271 /* Stub size has already been computed in arm_size_one_stub. Check
4272 consistency. */
4273 BFD_ASSERT (size == stub_entry->stub_size);
4274
4275 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4276 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4277 sym_value |= 1;
4278
4279 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4280 in each stub. */
4281 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4282
4283 for (i = 0; i < nrelocs; i++)
4284 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4285 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4286 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4287 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
4288 {
4289 Elf_Internal_Rela rel;
4290 bfd_boolean unresolved_reloc;
4291 char *error_message;
4292 enum arm_st_branch_type branch_type
4293 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4294 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
4295 bfd_vma points_to = sym_value + stub_entry->target_addend;
4296
4297 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4298 rel.r_info = ELF32_R_INFO (0,
4299 template_sequence[stub_reloc_idx[i]].r_type);
4300 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
4301
4302 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4303 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4304 template should refer back to the instruction after the original
4305 branch. */
4306 points_to = sym_value;
4307
4308 /* There may be unintended consequences if this is not true. */
4309 BFD_ASSERT (stub_entry->h == NULL);
4310
4311 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4312 properly. We should probably use this function unconditionally,
4313 rather than only for certain relocations listed in the enclosing
4314 conditional, for the sake of consistency. */
4315 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4316 (template_sequence[stub_reloc_idx[i]].r_type),
4317 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4318 points_to, info, stub_entry->target_section, "", STT_FUNC,
4319 branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4320 &unresolved_reloc, &error_message);
4321 }
4322 else
4323 {
4324 Elf_Internal_Rela rel;
4325 bfd_boolean unresolved_reloc;
4326 char *error_message;
4327 bfd_vma points_to = sym_value + stub_entry->target_addend
4328 + template_sequence[stub_reloc_idx[i]].reloc_addend;
4329
4330 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4331 rel.r_info = ELF32_R_INFO (0,
4332 template_sequence[stub_reloc_idx[i]].r_type);
4333 rel.r_addend = 0;
4334
4335 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4336 (template_sequence[stub_reloc_idx[i]].r_type),
4337 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4338 points_to, info, stub_entry->target_section, "", STT_FUNC,
4339 stub_entry->branch_type,
4340 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4341 &error_message);
4342 }
4343
4344 return TRUE;
4345 #undef MAXRELOCS
4346 }
4347
4348 /* Calculate the template, template size and instruction size for a stub.
4349 Return value is the instruction size. */
4350
4351 static unsigned int
4352 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4353 const insn_sequence **stub_template,
4354 int *stub_template_size)
4355 {
4356 const insn_sequence *template_sequence = NULL;
4357 int template_size = 0, i;
4358 unsigned int size;
4359
4360 template_sequence = stub_definitions[stub_type].template_sequence;
4361 if (stub_template)
4362 *stub_template = template_sequence;
4363
4364 template_size = stub_definitions[stub_type].template_size;
4365 if (stub_template_size)
4366 *stub_template_size = template_size;
4367
4368 size = 0;
4369 for (i = 0; i < template_size; i++)
4370 {
4371 switch (template_sequence[i].type)
4372 {
4373 case THUMB16_TYPE:
4374 size += 2;
4375 break;
4376
4377 case ARM_TYPE:
4378 case THUMB32_TYPE:
4379 case DATA_TYPE:
4380 size += 4;
4381 break;
4382
4383 default:
4384 BFD_FAIL ();
4385 return 0;
4386 }
4387 }
4388
4389 return size;
4390 }
4391
4392 /* As above, but don't actually build the stub. Just bump offset so
4393 we know stub section sizes. */
4394
4395 static bfd_boolean
4396 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4397 void *in_arg ATTRIBUTE_UNUSED)
4398 {
4399 struct elf32_arm_stub_hash_entry *stub_entry;
4400 const insn_sequence *template_sequence;
4401 int template_size, size;
4402
4403 /* Massage our args to the form they really have. */
4404 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4405
4406 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4407 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4408
4409 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4410 &template_size);
4411
4412 stub_entry->stub_size = size;
4413 stub_entry->stub_template = template_sequence;
4414 stub_entry->stub_template_size = template_size;
4415
4416 size = (size + 7) & ~7;
4417 stub_entry->stub_sec->size += size;
4418
4419 return TRUE;
4420 }
4421
4422 /* External entry points for sizing and building linker stubs. */
4423
4424 /* Set up various things so that we can make a list of input sections
4425 for each output section included in the link. Returns -1 on error,
4426 0 when no stubs will be needed, and 1 on success. */
4427
4428 int
4429 elf32_arm_setup_section_lists (bfd *output_bfd,
4430 struct bfd_link_info *info)
4431 {
4432 bfd *input_bfd;
4433 unsigned int bfd_count;
4434 int top_id, top_index;
4435 asection *section;
4436 asection **input_list, **list;
4437 bfd_size_type amt;
4438 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4439
4440 if (htab == NULL)
4441 return 0;
4442 if (! is_elf_hash_table (htab))
4443 return 0;
4444
4445 /* Count the number of input BFDs and find the top input section id. */
4446 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4447 input_bfd != NULL;
4448 input_bfd = input_bfd->link.next)
4449 {
4450 bfd_count += 1;
4451 for (section = input_bfd->sections;
4452 section != NULL;
4453 section = section->next)
4454 {
4455 if (top_id < section->id)
4456 top_id = section->id;
4457 }
4458 }
4459 htab->bfd_count = bfd_count;
4460
4461 amt = sizeof (struct map_stub) * (top_id + 1);
4462 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4463 if (htab->stub_group == NULL)
4464 return -1;
4465 htab->top_id = top_id;
4466
4467 /* We can't use output_bfd->section_count here to find the top output
4468 section index as some sections may have been removed, and
4469 _bfd_strip_section_from_output doesn't renumber the indices. */
4470 for (section = output_bfd->sections, top_index = 0;
4471 section != NULL;
4472 section = section->next)
4473 {
4474 if (top_index < section->index)
4475 top_index = section->index;
4476 }
4477
4478 htab->top_index = top_index;
4479 amt = sizeof (asection *) * (top_index + 1);
4480 input_list = (asection **) bfd_malloc (amt);
4481 htab->input_list = input_list;
4482 if (input_list == NULL)
4483 return -1;
4484
4485 /* For sections we aren't interested in, mark their entries with a
4486 value we can check later. */
4487 list = input_list + top_index;
4488 do
4489 *list = bfd_abs_section_ptr;
4490 while (list-- != input_list);
4491
4492 for (section = output_bfd->sections;
4493 section != NULL;
4494 section = section->next)
4495 {
4496 if ((section->flags & SEC_CODE) != 0)
4497 input_list[section->index] = NULL;
4498 }
4499
4500 return 1;
4501 }
4502
4503 /* The linker repeatedly calls this function for each input section,
4504 in the order that input sections are linked into output sections.
4505 Build lists of input sections to determine groupings between which
4506 we may insert linker stubs. */
4507
4508 void
4509 elf32_arm_next_input_section (struct bfd_link_info *info,
4510 asection *isec)
4511 {
4512 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4513
4514 if (htab == NULL)
4515 return;
4516
4517 if (isec->output_section->index <= htab->top_index)
4518 {
4519 asection **list = htab->input_list + isec->output_section->index;
4520
4521 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4522 {
4523 /* Steal the link_sec pointer for our list. */
4524 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4525 /* This happens to make the list in reverse order,
4526 which we reverse later. */
4527 PREV_SEC (isec) = *list;
4528 *list = isec;
4529 }
4530 }
4531 }
4532
4533 /* See whether we can group stub sections together. Grouping stub
4534 sections may result in fewer stubs. More importantly, we need to
4535 put all .init* and .fini* stubs at the end of the .init or
4536 .fini output sections respectively, because glibc splits the
4537 _init and _fini functions into multiple parts. Putting a stub in
4538 the middle of a function is not a good idea. */
4539
4540 static void
4541 group_sections (struct elf32_arm_link_hash_table *htab,
4542 bfd_size_type stub_group_size,
4543 bfd_boolean stubs_always_after_branch)
4544 {
4545 asection **list = htab->input_list;
4546
4547 do
4548 {
4549 asection *tail = *list;
4550 asection *head;
4551
4552 if (tail == bfd_abs_section_ptr)
4553 continue;
4554
4555 /* Reverse the list: we must avoid placing stubs at the
4556 beginning of the section because the beginning of the text
4557 section may be required for an interrupt vector in bare metal
4558 code. */
4559 #define NEXT_SEC PREV_SEC
4560 head = NULL;
4561 while (tail != NULL)
4562 {
4563 /* Pop from tail. */
4564 asection *item = tail;
4565 tail = PREV_SEC (item);
4566
4567 /* Push on head. */
4568 NEXT_SEC (item) = head;
4569 head = item;
4570 }
4571
4572 while (head != NULL)
4573 {
4574 asection *curr;
4575 asection *next;
4576 bfd_vma stub_group_start = head->output_offset;
4577 bfd_vma end_of_next;
4578
4579 curr = head;
4580 while (NEXT_SEC (curr) != NULL)
4581 {
4582 next = NEXT_SEC (curr);
4583 end_of_next = next->output_offset + next->size;
4584 if (end_of_next - stub_group_start >= stub_group_size)
4585 /* End of NEXT is too far from start, so stop. */
4586 break;
4587 /* Add NEXT to the group. */
4588 curr = next;
4589 }
4590
4591 /* OK, the size from the start to the start of CURR is less
4592 than stub_group_size and thus can be handled by one stub
4593 section. (Or the head section is itself larger than
4594 stub_group_size, in which case we may be toast.)
4595 We should really be keeping track of the total size of
4596 stubs added here, as stubs contribute to the final output
4597 section size. */
4598 do
4599 {
4600 next = NEXT_SEC (head);
4601 /* Set up this stub group. */
4602 htab->stub_group[head->id].link_sec = curr;
4603 }
4604 while (head != curr && (head = next) != NULL);
4605
4606 /* But wait, there's more! Input sections up to stub_group_size
4607 bytes after the stub section can be handled by it too. */
4608 if (!stubs_always_after_branch)
4609 {
4610 stub_group_start = curr->output_offset + curr->size;
4611
4612 while (next != NULL)
4613 {
4614 end_of_next = next->output_offset + next->size;
4615 if (end_of_next - stub_group_start >= stub_group_size)
4616 /* End of NEXT is too far from stubs, so stop. */
4617 break;
4618 /* Add NEXT to the stub group. */
4619 head = next;
4620 next = NEXT_SEC (head);
4621 htab->stub_group[head->id].link_sec = curr;
4622 }
4623 }
4624 head = next;
4625 }
4626 }
4627 while (list++ != htab->input_list + htab->top_index);
4628
4629 free (htab->input_list);
4630 #undef PREV_SEC
4631 #undef NEXT_SEC
4632 }
4633
4634 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4635 erratum fix. */
4636
4637 static int
4638 a8_reloc_compare (const void *a, const void *b)
4639 {
4640 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4641 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4642
4643 if (ra->from < rb->from)
4644 return -1;
4645 else if (ra->from > rb->from)
4646 return 1;
4647 else
4648 return 0;
4649 }
4650
4651 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4652 const char *, char **);
4653
4654 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4655 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4656 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4657 otherwise. */
4658
4659 static bfd_boolean
4660 cortex_a8_erratum_scan (bfd *input_bfd,
4661 struct bfd_link_info *info,
4662 struct a8_erratum_fix **a8_fixes_p,
4663 unsigned int *num_a8_fixes_p,
4664 unsigned int *a8_fix_table_size_p,
4665 struct a8_erratum_reloc *a8_relocs,
4666 unsigned int num_a8_relocs,
4667 unsigned prev_num_a8_fixes,
4668 bfd_boolean *stub_changed_p)
4669 {
4670 asection *section;
4671 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4672 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4673 unsigned int num_a8_fixes = *num_a8_fixes_p;
4674 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4675
4676 if (htab == NULL)
4677 return FALSE;
4678
4679 for (section = input_bfd->sections;
4680 section != NULL;
4681 section = section->next)
4682 {
4683 bfd_byte *contents = NULL;
4684 struct _arm_elf_section_data *sec_data;
4685 unsigned int span;
4686 bfd_vma base_vma;
4687
4688 if (elf_section_type (section) != SHT_PROGBITS
4689 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4690 || (section->flags & SEC_EXCLUDE) != 0
4691 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4692 || (section->output_section == bfd_abs_section_ptr))
4693 continue;
4694
4695 base_vma = section->output_section->vma + section->output_offset;
4696
4697 if (elf_section_data (section)->this_hdr.contents != NULL)
4698 contents = elf_section_data (section)->this_hdr.contents;
4699 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4700 return TRUE;
4701
4702 sec_data = elf32_arm_section_data (section);
4703
4704 for (span = 0; span < sec_data->mapcount; span++)
4705 {
4706 unsigned int span_start = sec_data->map[span].vma;
4707 unsigned int span_end = (span == sec_data->mapcount - 1)
4708 ? section->size : sec_data->map[span + 1].vma;
4709 unsigned int i;
4710 char span_type = sec_data->map[span].type;
4711 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4712
4713 if (span_type != 't')
4714 continue;
4715
4716 /* Span is entirely within a single 4KB region: skip scanning. */
4717 if (((base_vma + span_start) & ~0xfff)
4718 == ((base_vma + span_end) & ~0xfff))
4719 continue;
4720
4721 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4722
4723 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4724 * The branch target is in the same 4KB region as the
4725 first half of the branch.
4726 * The instruction before the branch is a 32-bit
4727 length non-branch instruction. */
4728 for (i = span_start; i < span_end;)
4729 {
4730 unsigned int insn = bfd_getl16 (&contents[i]);
4731 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4732 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4733
4734 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4735 insn_32bit = TRUE;
4736
4737 if (insn_32bit)
4738 {
4739 /* Load the rest of the insn (in manual-friendly order). */
4740 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4741
4742 /* Encoding T4: B<c>.W. */
4743 is_b = (insn & 0xf800d000) == 0xf0009000;
4744 /* Encoding T1: BL<c>.W. */
4745 is_bl = (insn & 0xf800d000) == 0xf000d000;
4746 /* Encoding T2: BLX<c>.W. */
4747 is_blx = (insn & 0xf800d000) == 0xf000c000;
4748 /* Encoding T3: B<c>.W (not permitted in IT block). */
4749 is_bcc = (insn & 0xf800d000) == 0xf0008000
4750 && (insn & 0x07f00000) != 0x03800000;
4751 }
4752
4753 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4754
4755 if (((base_vma + i) & 0xfff) == 0xffe
4756 && insn_32bit
4757 && is_32bit_branch
4758 && last_was_32bit
4759 && ! last_was_branch)
4760 {
4761 bfd_signed_vma offset = 0;
4762 bfd_boolean force_target_arm = FALSE;
4763 bfd_boolean force_target_thumb = FALSE;
4764 bfd_vma target;
4765 enum elf32_arm_stub_type stub_type = arm_stub_none;
4766 struct a8_erratum_reloc key, *found;
4767 bfd_boolean use_plt = FALSE;
4768
4769 key.from = base_vma + i;
4770 found = (struct a8_erratum_reloc *)
4771 bsearch (&key, a8_relocs, num_a8_relocs,
4772 sizeof (struct a8_erratum_reloc),
4773 &a8_reloc_compare);
4774
4775 if (found)
4776 {
4777 char *error_message = NULL;
4778 struct elf_link_hash_entry *entry;
4779
4780 /* We don't care about the error returned from this
4781 function, only if there is glue or not. */
4782 entry = find_thumb_glue (info, found->sym_name,
4783 &error_message);
4784
4785 if (entry)
4786 found->non_a8_stub = TRUE;
4787
4788 /* Keep a simpler condition, for the sake of clarity. */
4789 if (htab->root.splt != NULL && found->hash != NULL
4790 && found->hash->root.plt.offset != (bfd_vma) -1)
4791 use_plt = TRUE;
4792
4793 if (found->r_type == R_ARM_THM_CALL)
4794 {
4795 if (found->branch_type == ST_BRANCH_TO_ARM
4796 || use_plt)
4797 force_target_arm = TRUE;
4798 else
4799 force_target_thumb = TRUE;
4800 }
4801 }
4802
4803 /* Check if we have an offending branch instruction. */
4804
4805 if (found && found->non_a8_stub)
4806 /* We've already made a stub for this instruction, e.g.
4807 it's a long branch or a Thumb->ARM stub. Assume that
4808 stub will suffice to work around the A8 erratum (see
4809 setting of always_after_branch above). */
4810 ;
4811 else if (is_bcc)
4812 {
4813 offset = (insn & 0x7ff) << 1;
4814 offset |= (insn & 0x3f0000) >> 4;
4815 offset |= (insn & 0x2000) ? 0x40000 : 0;
4816 offset |= (insn & 0x800) ? 0x80000 : 0;
4817 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4818 if (offset & 0x100000)
4819 offset |= ~ ((bfd_signed_vma) 0xfffff);
4820 stub_type = arm_stub_a8_veneer_b_cond;
4821 }
4822 else if (is_b || is_bl || is_blx)
4823 {
4824 int s = (insn & 0x4000000) != 0;
4825 int j1 = (insn & 0x2000) != 0;
4826 int j2 = (insn & 0x800) != 0;
4827 int i1 = !(j1 ^ s);
4828 int i2 = !(j2 ^ s);
4829
4830 offset = (insn & 0x7ff) << 1;
4831 offset |= (insn & 0x3ff0000) >> 4;
4832 offset |= i2 << 22;
4833 offset |= i1 << 23;
4834 offset |= s << 24;
4835 if (offset & 0x1000000)
4836 offset |= ~ ((bfd_signed_vma) 0xffffff);
4837
4838 if (is_blx)
4839 offset &= ~ ((bfd_signed_vma) 3);
4840
4841 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4842 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4843 }
4844
4845 if (stub_type != arm_stub_none)
4846 {
4847 bfd_vma pc_for_insn = base_vma + i + 4;
4848
4849 /* The original instruction is a BL, but the target is
4850 an ARM instruction. If we were not making a stub,
4851 the BL would have been converted to a BLX. Use the
4852 BLX stub instead in that case. */
4853 if (htab->use_blx && force_target_arm
4854 && stub_type == arm_stub_a8_veneer_bl)
4855 {
4856 stub_type = arm_stub_a8_veneer_blx;
4857 is_blx = TRUE;
4858 is_bl = FALSE;
4859 }
4860 /* Conversely, if the original instruction was
4861 BLX but the target is Thumb mode, use the BL
4862 stub. */
4863 else if (force_target_thumb
4864 && stub_type == arm_stub_a8_veneer_blx)
4865 {
4866 stub_type = arm_stub_a8_veneer_bl;
4867 is_blx = FALSE;
4868 is_bl = TRUE;
4869 }
4870
4871 if (is_blx)
4872 pc_for_insn &= ~ ((bfd_vma) 3);
4873
4874 /* If we found a relocation, use the proper destination,
4875 not the offset in the (unrelocated) instruction.
4876 Note this is always done if we switched the stub type
4877 above. */
4878 if (found)
4879 offset =
4880 (bfd_signed_vma) (found->destination - pc_for_insn);
4881
4882 /* If the stub will use a Thumb-mode branch to a
4883 PLT target, redirect it to the preceding Thumb
4884 entry point. */
4885 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4886 offset -= PLT_THUMB_STUB_SIZE;
4887
4888 target = pc_for_insn + offset;
4889
4890 /* The BLX stub is ARM-mode code. Adjust the offset to
4891 take the different PC value (+8 instead of +4) into
4892 account. */
4893 if (stub_type == arm_stub_a8_veneer_blx)
4894 offset += 4;
4895
4896 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4897 {
4898 char *stub_name = NULL;
4899
4900 if (num_a8_fixes == a8_fix_table_size)
4901 {
4902 a8_fix_table_size *= 2;
4903 a8_fixes = (struct a8_erratum_fix *)
4904 bfd_realloc (a8_fixes,
4905 sizeof (struct a8_erratum_fix)
4906 * a8_fix_table_size);
4907 }
4908
4909 if (num_a8_fixes < prev_num_a8_fixes)
4910 {
4911 /* If we're doing a subsequent scan,
4912 check if we've found the same fix as
4913 before, and try and reuse the stub
4914 name. */
4915 stub_name = a8_fixes[num_a8_fixes].stub_name;
4916 if ((a8_fixes[num_a8_fixes].section != section)
4917 || (a8_fixes[num_a8_fixes].offset != i))
4918 {
4919 free (stub_name);
4920 stub_name = NULL;
4921 *stub_changed_p = TRUE;
4922 }
4923 }
4924
4925 if (!stub_name)
4926 {
4927 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4928 if (stub_name != NULL)
4929 sprintf (stub_name, "%x:%x", section->id, i);
4930 }
4931
4932 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4933 a8_fixes[num_a8_fixes].section = section;
4934 a8_fixes[num_a8_fixes].offset = i;
4935 a8_fixes[num_a8_fixes].addend = offset;
4936 a8_fixes[num_a8_fixes].orig_insn = insn;
4937 a8_fixes[num_a8_fixes].stub_name = stub_name;
4938 a8_fixes[num_a8_fixes].stub_type = stub_type;
4939 a8_fixes[num_a8_fixes].branch_type =
4940 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
4941
4942 num_a8_fixes++;
4943 }
4944 }
4945 }
4946
4947 i += insn_32bit ? 4 : 2;
4948 last_was_32bit = insn_32bit;
4949 last_was_branch = is_32bit_branch;
4950 }
4951 }
4952
4953 if (elf_section_data (section)->this_hdr.contents == NULL)
4954 free (contents);
4955 }
4956
4957 *a8_fixes_p = a8_fixes;
4958 *num_a8_fixes_p = num_a8_fixes;
4959 *a8_fix_table_size_p = a8_fix_table_size;
4960
4961 return FALSE;
4962 }
4963
4964 /* Determine and set the size of the stub section for a final link.
4965
4966 The basic idea here is to examine all the relocations looking for
4967 PC-relative calls to a target that is unreachable with a "bl"
4968 instruction. */
4969
4970 bfd_boolean
4971 elf32_arm_size_stubs (bfd *output_bfd,
4972 bfd *stub_bfd,
4973 struct bfd_link_info *info,
4974 bfd_signed_vma group_size,
4975 asection * (*add_stub_section) (const char *, asection *,
4976 unsigned int),
4977 void (*layout_sections_again) (void))
4978 {
4979 bfd_size_type stub_group_size;
4980 bfd_boolean stubs_always_after_branch;
4981 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4982 struct a8_erratum_fix *a8_fixes = NULL;
4983 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4984 struct a8_erratum_reloc *a8_relocs = NULL;
4985 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4986
4987 if (htab == NULL)
4988 return FALSE;
4989
4990 if (htab->fix_cortex_a8)
4991 {
4992 a8_fixes = (struct a8_erratum_fix *)
4993 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4994 a8_relocs = (struct a8_erratum_reloc *)
4995 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4996 }
4997
4998 /* Propagate mach to stub bfd, because it may not have been
4999 finalized when we created stub_bfd. */
5000 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
5001 bfd_get_mach (output_bfd));
5002
5003 /* Stash our params away. */
5004 htab->stub_bfd = stub_bfd;
5005 htab->add_stub_section = add_stub_section;
5006 htab->layout_sections_again = layout_sections_again;
5007 stubs_always_after_branch = group_size < 0;
5008
5009 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
5010 as the first half of a 32-bit branch straddling two 4K pages. This is a
5011 crude way of enforcing that. */
5012 if (htab->fix_cortex_a8)
5013 stubs_always_after_branch = 1;
5014
5015 if (group_size < 0)
5016 stub_group_size = -group_size;
5017 else
5018 stub_group_size = group_size;
5019
5020 if (stub_group_size == 1)
5021 {
5022 /* Default values. */
5023 /* Thumb branch range is +-4MB has to be used as the default
5024 maximum size (a given section can contain both ARM and Thumb
5025 code, so the worst case has to be taken into account).
5026
5027 This value is 24K less than that, which allows for 2025
5028 12-byte stubs. If we exceed that, then we will fail to link.
5029 The user will have to relink with an explicit group size
5030 option. */
5031 stub_group_size = 4170000;
5032 }
5033
5034 group_sections (htab, stub_group_size, stubs_always_after_branch);
5035
5036 /* If we're applying the cortex A8 fix, we need to determine the
5037 program header size now, because we cannot change it later --
5038 that could alter section placements. Notice the A8 erratum fix
5039 ends up requiring the section addresses to remain unchanged
5040 modulo the page size. That's something we cannot represent
5041 inside BFD, and we don't want to force the section alignment to
5042 be the page size. */
5043 if (htab->fix_cortex_a8)
5044 (*htab->layout_sections_again) ();
5045
5046 while (1)
5047 {
5048 bfd *input_bfd;
5049 unsigned int bfd_indx;
5050 asection *stub_sec;
5051 bfd_boolean stub_changed = FALSE;
5052 unsigned prev_num_a8_fixes = num_a8_fixes;
5053
5054 num_a8_fixes = 0;
5055 for (input_bfd = info->input_bfds, bfd_indx = 0;
5056 input_bfd != NULL;
5057 input_bfd = input_bfd->link.next, bfd_indx++)
5058 {
5059 Elf_Internal_Shdr *symtab_hdr;
5060 asection *section;
5061 Elf_Internal_Sym *local_syms = NULL;
5062
5063 if (!is_arm_elf (input_bfd))
5064 continue;
5065
5066 num_a8_relocs = 0;
5067
5068 /* We'll need the symbol table in a second. */
5069 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5070 if (symtab_hdr->sh_info == 0)
5071 continue;
5072
5073 /* Walk over each section attached to the input bfd. */
5074 for (section = input_bfd->sections;
5075 section != NULL;
5076 section = section->next)
5077 {
5078 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
5079
5080 /* If there aren't any relocs, then there's nothing more
5081 to do. */
5082 if ((section->flags & SEC_RELOC) == 0
5083 || section->reloc_count == 0
5084 || (section->flags & SEC_CODE) == 0)
5085 continue;
5086
5087 /* If this section is a link-once section that will be
5088 discarded, then don't create any stubs. */
5089 if (section->output_section == NULL
5090 || section->output_section->owner != output_bfd)
5091 continue;
5092
5093 /* Get the relocs. */
5094 internal_relocs
5095 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
5096 NULL, info->keep_memory);
5097 if (internal_relocs == NULL)
5098 goto error_ret_free_local;
5099
5100 /* Now examine each relocation. */
5101 irela = internal_relocs;
5102 irelaend = irela + section->reloc_count;
5103 for (; irela < irelaend; irela++)
5104 {
5105 unsigned int r_type, r_indx;
5106 enum elf32_arm_stub_type stub_type;
5107 struct elf32_arm_stub_hash_entry *stub_entry;
5108 asection *sym_sec;
5109 bfd_vma sym_value;
5110 bfd_vma destination;
5111 struct elf32_arm_link_hash_entry *hash;
5112 const char *sym_name;
5113 char *stub_name;
5114 const asection *id_sec;
5115 unsigned char st_type;
5116 enum arm_st_branch_type branch_type;
5117 bfd_boolean created_stub = FALSE;
5118
5119 r_type = ELF32_R_TYPE (irela->r_info);
5120 r_indx = ELF32_R_SYM (irela->r_info);
5121
5122 if (r_type >= (unsigned int) R_ARM_max)
5123 {
5124 bfd_set_error (bfd_error_bad_value);
5125 error_ret_free_internal:
5126 if (elf_section_data (section)->relocs == NULL)
5127 free (internal_relocs);
5128 goto error_ret_free_local;
5129 }
5130
5131 hash = NULL;
5132 if (r_indx >= symtab_hdr->sh_info)
5133 hash = elf32_arm_hash_entry
5134 (elf_sym_hashes (input_bfd)
5135 [r_indx - symtab_hdr->sh_info]);
5136
5137 /* Only look for stubs on branch instructions, or
5138 non-relaxed TLSCALL */
5139 if ((r_type != (unsigned int) R_ARM_CALL)
5140 && (r_type != (unsigned int) R_ARM_THM_CALL)
5141 && (r_type != (unsigned int) R_ARM_JUMP24)
5142 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
5143 && (r_type != (unsigned int) R_ARM_THM_XPC22)
5144 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
5145 && (r_type != (unsigned int) R_ARM_PLT32)
5146 && !((r_type == (unsigned int) R_ARM_TLS_CALL
5147 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5148 && r_type == elf32_arm_tls_transition
5149 (info, r_type, &hash->root)
5150 && ((hash ? hash->tls_type
5151 : (elf32_arm_local_got_tls_type
5152 (input_bfd)[r_indx]))
5153 & GOT_TLS_GDESC) != 0))
5154 continue;
5155
5156 /* Now determine the call target, its name, value,
5157 section. */
5158 sym_sec = NULL;
5159 sym_value = 0;
5160 destination = 0;
5161 sym_name = NULL;
5162
5163 if (r_type == (unsigned int) R_ARM_TLS_CALL
5164 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5165 {
5166 /* A non-relaxed TLS call. The target is the
5167 plt-resident trampoline and nothing to do
5168 with the symbol. */
5169 BFD_ASSERT (htab->tls_trampoline > 0);
5170 sym_sec = htab->root.splt;
5171 sym_value = htab->tls_trampoline;
5172 hash = 0;
5173 st_type = STT_FUNC;
5174 branch_type = ST_BRANCH_TO_ARM;
5175 }
5176 else if (!hash)
5177 {
5178 /* It's a local symbol. */
5179 Elf_Internal_Sym *sym;
5180
5181 if (local_syms == NULL)
5182 {
5183 local_syms
5184 = (Elf_Internal_Sym *) symtab_hdr->contents;
5185 if (local_syms == NULL)
5186 local_syms
5187 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5188 symtab_hdr->sh_info, 0,
5189 NULL, NULL, NULL);
5190 if (local_syms == NULL)
5191 goto error_ret_free_internal;
5192 }
5193
5194 sym = local_syms + r_indx;
5195 if (sym->st_shndx == SHN_UNDEF)
5196 sym_sec = bfd_und_section_ptr;
5197 else if (sym->st_shndx == SHN_ABS)
5198 sym_sec = bfd_abs_section_ptr;
5199 else if (sym->st_shndx == SHN_COMMON)
5200 sym_sec = bfd_com_section_ptr;
5201 else
5202 sym_sec =
5203 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5204
5205 if (!sym_sec)
5206 /* This is an undefined symbol. It can never
5207 be resolved. */
5208 continue;
5209
5210 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5211 sym_value = sym->st_value;
5212 destination = (sym_value + irela->r_addend
5213 + sym_sec->output_offset
5214 + sym_sec->output_section->vma);
5215 st_type = ELF_ST_TYPE (sym->st_info);
5216 branch_type = ARM_SYM_BRANCH_TYPE (sym);
5217 sym_name
5218 = bfd_elf_string_from_elf_section (input_bfd,
5219 symtab_hdr->sh_link,
5220 sym->st_name);
5221 }
5222 else
5223 {
5224 /* It's an external symbol. */
5225 while (hash->root.root.type == bfd_link_hash_indirect
5226 || hash->root.root.type == bfd_link_hash_warning)
5227 hash = ((struct elf32_arm_link_hash_entry *)
5228 hash->root.root.u.i.link);
5229
5230 if (hash->root.root.type == bfd_link_hash_defined
5231 || hash->root.root.type == bfd_link_hash_defweak)
5232 {
5233 sym_sec = hash->root.root.u.def.section;
5234 sym_value = hash->root.root.u.def.value;
5235
5236 struct elf32_arm_link_hash_table *globals =
5237 elf32_arm_hash_table (info);
5238
5239 /* For a destination in a shared library,
5240 use the PLT stub as target address to
5241 decide whether a branch stub is
5242 needed. */
5243 if (globals != NULL
5244 && globals->root.splt != NULL
5245 && hash != NULL
5246 && hash->root.plt.offset != (bfd_vma) -1)
5247 {
5248 sym_sec = globals->root.splt;
5249 sym_value = hash->root.plt.offset;
5250 if (sym_sec->output_section != NULL)
5251 destination = (sym_value
5252 + sym_sec->output_offset
5253 + sym_sec->output_section->vma);
5254 }
5255 else if (sym_sec->output_section != NULL)
5256 destination = (sym_value + irela->r_addend
5257 + sym_sec->output_offset
5258 + sym_sec->output_section->vma);
5259 }
5260 else if ((hash->root.root.type == bfd_link_hash_undefined)
5261 || (hash->root.root.type == bfd_link_hash_undefweak))
5262 {
5263 /* For a shared library, use the PLT stub as
5264 target address to decide whether a long
5265 branch stub is needed.
5266 For absolute code, they cannot be handled. */
5267 struct elf32_arm_link_hash_table *globals =
5268 elf32_arm_hash_table (info);
5269
5270 if (globals != NULL
5271 && globals->root.splt != NULL
5272 && hash != NULL
5273 && hash->root.plt.offset != (bfd_vma) -1)
5274 {
5275 sym_sec = globals->root.splt;
5276 sym_value = hash->root.plt.offset;
5277 if (sym_sec->output_section != NULL)
5278 destination = (sym_value
5279 + sym_sec->output_offset
5280 + sym_sec->output_section->vma);
5281 }
5282 else
5283 continue;
5284 }
5285 else
5286 {
5287 bfd_set_error (bfd_error_bad_value);
5288 goto error_ret_free_internal;
5289 }
5290 st_type = hash->root.type;
5291 branch_type = hash->root.target_internal;
5292 sym_name = hash->root.root.root.string;
5293 }
5294
5295 do
5296 {
5297 /* Determine what (if any) linker stub is needed. */
5298 stub_type = arm_type_of_stub (info, section, irela,
5299 st_type, &branch_type,
5300 hash, destination, sym_sec,
5301 input_bfd, sym_name);
5302 if (stub_type == arm_stub_none)
5303 break;
5304
5305 /* Support for grouping stub sections. */
5306 id_sec = htab->stub_group[section->id].link_sec;
5307
5308 /* Get the name of this stub. */
5309 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
5310 irela, stub_type);
5311 if (!stub_name)
5312 goto error_ret_free_internal;
5313
5314 /* We've either created a stub for this reloc already,
5315 or we are about to. */
5316 created_stub = TRUE;
5317
5318 stub_entry = arm_stub_hash_lookup
5319 (&htab->stub_hash_table, stub_name,
5320 FALSE, FALSE);
5321 if (stub_entry != NULL)
5322 {
5323 /* The proper stub has already been created. */
5324 free (stub_name);
5325 stub_entry->target_value = sym_value;
5326 break;
5327 }
5328
5329 stub_entry = elf32_arm_add_stub (stub_name, section,
5330 htab);
5331 if (stub_entry == NULL)
5332 {
5333 free (stub_name);
5334 goto error_ret_free_internal;
5335 }
5336
5337 stub_entry->target_value = sym_value;
5338 stub_entry->target_section = sym_sec;
5339 stub_entry->stub_type = stub_type;
5340 stub_entry->h = hash;
5341 stub_entry->branch_type = branch_type;
5342
5343 if (sym_name == NULL)
5344 sym_name = "unnamed";
5345 stub_entry->output_name = (char *)
5346 bfd_alloc (htab->stub_bfd,
5347 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5348 + strlen (sym_name));
5349 if (stub_entry->output_name == NULL)
5350 {
5351 free (stub_name);
5352 goto error_ret_free_internal;
5353 }
5354
5355 /* For historical reasons, use the existing names for
5356 ARM-to-Thumb and Thumb-to-ARM stubs. */
5357 if ((r_type == (unsigned int) R_ARM_THM_CALL
5358 || r_type == (unsigned int) R_ARM_THM_JUMP24
5359 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5360 && branch_type == ST_BRANCH_TO_ARM)
5361 sprintf (stub_entry->output_name,
5362 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5363 else if ((r_type == (unsigned int) R_ARM_CALL
5364 || r_type == (unsigned int) R_ARM_JUMP24)
5365 && branch_type == ST_BRANCH_TO_THUMB)
5366 sprintf (stub_entry->output_name,
5367 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5368 else
5369 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5370 sym_name);
5371
5372 stub_changed = TRUE;
5373 }
5374 while (0);
5375
5376 /* Look for relocations which might trigger Cortex-A8
5377 erratum. */
5378 if (htab->fix_cortex_a8
5379 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5380 || r_type == (unsigned int) R_ARM_THM_JUMP19
5381 || r_type == (unsigned int) R_ARM_THM_CALL
5382 || r_type == (unsigned int) R_ARM_THM_XPC22))
5383 {
5384 bfd_vma from = section->output_section->vma
5385 + section->output_offset
5386 + irela->r_offset;
5387
5388 if ((from & 0xfff) == 0xffe)
5389 {
5390 /* Found a candidate. Note we haven't checked the
5391 destination is within 4K here: if we do so (and
5392 don't create an entry in a8_relocs) we can't tell
5393 that a branch should have been relocated when
5394 scanning later. */
5395 if (num_a8_relocs == a8_reloc_table_size)
5396 {
5397 a8_reloc_table_size *= 2;
5398 a8_relocs = (struct a8_erratum_reloc *)
5399 bfd_realloc (a8_relocs,
5400 sizeof (struct a8_erratum_reloc)
5401 * a8_reloc_table_size);
5402 }
5403
5404 a8_relocs[num_a8_relocs].from = from;
5405 a8_relocs[num_a8_relocs].destination = destination;
5406 a8_relocs[num_a8_relocs].r_type = r_type;
5407 a8_relocs[num_a8_relocs].branch_type = branch_type;
5408 a8_relocs[num_a8_relocs].sym_name = sym_name;
5409 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5410 a8_relocs[num_a8_relocs].hash = hash;
5411
5412 num_a8_relocs++;
5413 }
5414 }
5415 }
5416
5417 /* We're done with the internal relocs, free them. */
5418 if (elf_section_data (section)->relocs == NULL)
5419 free (internal_relocs);
5420 }
5421
5422 if (htab->fix_cortex_a8)
5423 {
5424 /* Sort relocs which might apply to Cortex-A8 erratum. */
5425 qsort (a8_relocs, num_a8_relocs,
5426 sizeof (struct a8_erratum_reloc),
5427 &a8_reloc_compare);
5428
5429 /* Scan for branches which might trigger Cortex-A8 erratum. */
5430 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5431 &num_a8_fixes, &a8_fix_table_size,
5432 a8_relocs, num_a8_relocs,
5433 prev_num_a8_fixes, &stub_changed)
5434 != 0)
5435 goto error_ret_free_local;
5436 }
5437 }
5438
5439 if (prev_num_a8_fixes != num_a8_fixes)
5440 stub_changed = TRUE;
5441
5442 if (!stub_changed)
5443 break;
5444
5445 /* OK, we've added some stubs. Find out the new size of the
5446 stub sections. */
5447 for (stub_sec = htab->stub_bfd->sections;
5448 stub_sec != NULL;
5449 stub_sec = stub_sec->next)
5450 {
5451 /* Ignore non-stub sections. */
5452 if (!strstr (stub_sec->name, STUB_SUFFIX))
5453 continue;
5454
5455 stub_sec->size = 0;
5456 }
5457
5458 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5459
5460 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5461 if (htab->fix_cortex_a8)
5462 for (i = 0; i < num_a8_fixes; i++)
5463 {
5464 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5465 a8_fixes[i].section, htab);
5466
5467 if (stub_sec == NULL)
5468 goto error_ret_free_local;
5469
5470 stub_sec->size
5471 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5472 NULL);
5473 }
5474
5475
5476 /* Ask the linker to do its stuff. */
5477 (*htab->layout_sections_again) ();
5478 }
5479
5480 /* Add stubs for Cortex-A8 erratum fixes now. */
5481 if (htab->fix_cortex_a8)
5482 {
5483 for (i = 0; i < num_a8_fixes; i++)
5484 {
5485 struct elf32_arm_stub_hash_entry *stub_entry;
5486 char *stub_name = a8_fixes[i].stub_name;
5487 asection *section = a8_fixes[i].section;
5488 unsigned int section_id = a8_fixes[i].section->id;
5489 asection *link_sec = htab->stub_group[section_id].link_sec;
5490 asection *stub_sec = htab->stub_group[section_id].stub_sec;
5491 const insn_sequence *template_sequence;
5492 int template_size, size = 0;
5493
5494 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5495 TRUE, FALSE);
5496 if (stub_entry == NULL)
5497 {
5498 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5499 section->owner,
5500 stub_name);
5501 return FALSE;
5502 }
5503
5504 stub_entry->stub_sec = stub_sec;
5505 stub_entry->stub_offset = 0;
5506 stub_entry->id_sec = link_sec;
5507 stub_entry->stub_type = a8_fixes[i].stub_type;
5508 stub_entry->target_section = a8_fixes[i].section;
5509 stub_entry->target_value = a8_fixes[i].offset;
5510 stub_entry->target_addend = a8_fixes[i].addend;
5511 stub_entry->orig_insn = a8_fixes[i].orig_insn;
5512 stub_entry->branch_type = a8_fixes[i].branch_type;
5513
5514 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5515 &template_sequence,
5516 &template_size);
5517
5518 stub_entry->stub_size = size;
5519 stub_entry->stub_template = template_sequence;
5520 stub_entry->stub_template_size = template_size;
5521 }
5522
5523 /* Stash the Cortex-A8 erratum fix array for use later in
5524 elf32_arm_write_section(). */
5525 htab->a8_erratum_fixes = a8_fixes;
5526 htab->num_a8_erratum_fixes = num_a8_fixes;
5527 }
5528 else
5529 {
5530 htab->a8_erratum_fixes = NULL;
5531 htab->num_a8_erratum_fixes = 0;
5532 }
5533 return TRUE;
5534
5535 error_ret_free_local:
5536 return FALSE;
5537 }
5538
5539 /* Build all the stubs associated with the current output file. The
5540 stubs are kept in a hash table attached to the main linker hash
5541 table. We also set up the .plt entries for statically linked PIC
5542 functions here. This function is called via arm_elf_finish in the
5543 linker. */
5544
5545 bfd_boolean
5546 elf32_arm_build_stubs (struct bfd_link_info *info)
5547 {
5548 asection *stub_sec;
5549 struct bfd_hash_table *table;
5550 struct elf32_arm_link_hash_table *htab;
5551
5552 htab = elf32_arm_hash_table (info);
5553 if (htab == NULL)
5554 return FALSE;
5555
5556 for (stub_sec = htab->stub_bfd->sections;
5557 stub_sec != NULL;
5558 stub_sec = stub_sec->next)
5559 {
5560 bfd_size_type size;
5561
5562 /* Ignore non-stub sections. */
5563 if (!strstr (stub_sec->name, STUB_SUFFIX))
5564 continue;
5565
5566 /* Allocate memory to hold the linker stubs. */
5567 size = stub_sec->size;
5568 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5569 if (stub_sec->contents == NULL && size != 0)
5570 return FALSE;
5571 stub_sec->size = 0;
5572 }
5573
5574 /* Build the stubs as directed by the stub hash table. */
5575 table = &htab->stub_hash_table;
5576 bfd_hash_traverse (table, arm_build_one_stub, info);
5577 if (htab->fix_cortex_a8)
5578 {
5579 /* Place the cortex a8 stubs last. */
5580 htab->fix_cortex_a8 = -1;
5581 bfd_hash_traverse (table, arm_build_one_stub, info);
5582 }
5583
5584 return TRUE;
5585 }
5586
5587 /* Locate the Thumb encoded calling stub for NAME. */
5588
5589 static struct elf_link_hash_entry *
5590 find_thumb_glue (struct bfd_link_info *link_info,
5591 const char *name,
5592 char **error_message)
5593 {
5594 char *tmp_name;
5595 struct elf_link_hash_entry *hash;
5596 struct elf32_arm_link_hash_table *hash_table;
5597
5598 /* We need a pointer to the armelf specific hash table. */
5599 hash_table = elf32_arm_hash_table (link_info);
5600 if (hash_table == NULL)
5601 return NULL;
5602
5603 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5604 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5605
5606 BFD_ASSERT (tmp_name);
5607
5608 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5609
5610 hash = elf_link_hash_lookup
5611 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5612
5613 if (hash == NULL
5614 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5615 tmp_name, name) == -1)
5616 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5617
5618 free (tmp_name);
5619
5620 return hash;
5621 }
5622
5623 /* Locate the ARM encoded calling stub for NAME. */
5624
5625 static struct elf_link_hash_entry *
5626 find_arm_glue (struct bfd_link_info *link_info,
5627 const char *name,
5628 char **error_message)
5629 {
5630 char *tmp_name;
5631 struct elf_link_hash_entry *myh;
5632 struct elf32_arm_link_hash_table *hash_table;
5633
5634 /* We need a pointer to the elfarm specific hash table. */
5635 hash_table = elf32_arm_hash_table (link_info);
5636 if (hash_table == NULL)
5637 return NULL;
5638
5639 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5640 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5641
5642 BFD_ASSERT (tmp_name);
5643
5644 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5645
5646 myh = elf_link_hash_lookup
5647 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5648
5649 if (myh == NULL
5650 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5651 tmp_name, name) == -1)
5652 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5653
5654 free (tmp_name);
5655
5656 return myh;
5657 }
5658
5659 /* ARM->Thumb glue (static images):
5660
5661 .arm
5662 __func_from_arm:
5663 ldr r12, __func_addr
5664 bx r12
5665 __func_addr:
5666 .word func @ behave as if you saw a ARM_32 reloc.
5667
5668 (v5t static images)
5669 .arm
5670 __func_from_arm:
5671 ldr pc, __func_addr
5672 __func_addr:
5673 .word func @ behave as if you saw a ARM_32 reloc.
5674
5675 (relocatable images)
5676 .arm
5677 __func_from_arm:
5678 ldr r12, __func_offset
5679 add r12, r12, pc
5680 bx r12
5681 __func_offset:
5682 .word func - . */
5683
5684 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5685 static const insn32 a2t1_ldr_insn = 0xe59fc000;
5686 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5687 static const insn32 a2t3_func_addr_insn = 0x00000001;
5688
5689 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5690 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5691 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5692
5693 #define ARM2THUMB_PIC_GLUE_SIZE 16
5694 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5695 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5696 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5697
5698 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5699
5700 .thumb .thumb
5701 .align 2 .align 2
5702 __func_from_thumb: __func_from_thumb:
5703 bx pc push {r6, lr}
5704 nop ldr r6, __func_addr
5705 .arm mov lr, pc
5706 b func bx r6
5707 .arm
5708 ;; back_to_thumb
5709 ldmia r13! {r6, lr}
5710 bx lr
5711 __func_addr:
5712 .word func */
5713
5714 #define THUMB2ARM_GLUE_SIZE 8
5715 static const insn16 t2a1_bx_pc_insn = 0x4778;
5716 static const insn16 t2a2_noop_insn = 0x46c0;
5717 static const insn32 t2a3_b_insn = 0xea000000;
5718
5719 #define VFP11_ERRATUM_VENEER_SIZE 8
5720
5721 #define ARM_BX_VENEER_SIZE 12
5722 static const insn32 armbx1_tst_insn = 0xe3100001;
5723 static const insn32 armbx2_moveq_insn = 0x01a0f000;
5724 static const insn32 armbx3_bx_insn = 0xe12fff10;
5725
5726 #ifndef ELFARM_NABI_C_INCLUDED
5727 static void
5728 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5729 {
5730 asection * s;
5731 bfd_byte * contents;
5732
5733 if (size == 0)
5734 {
5735 /* Do not include empty glue sections in the output. */
5736 if (abfd != NULL)
5737 {
5738 s = bfd_get_linker_section (abfd, name);
5739 if (s != NULL)
5740 s->flags |= SEC_EXCLUDE;
5741 }
5742 return;
5743 }
5744
5745 BFD_ASSERT (abfd != NULL);
5746
5747 s = bfd_get_linker_section (abfd, name);
5748 BFD_ASSERT (s != NULL);
5749
5750 contents = (bfd_byte *) bfd_alloc (abfd, size);
5751
5752 BFD_ASSERT (s->size == size);
5753 s->contents = contents;
5754 }
5755
5756 bfd_boolean
5757 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5758 {
5759 struct elf32_arm_link_hash_table * globals;
5760
5761 globals = elf32_arm_hash_table (info);
5762 BFD_ASSERT (globals != NULL);
5763
5764 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5765 globals->arm_glue_size,
5766 ARM2THUMB_GLUE_SECTION_NAME);
5767
5768 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5769 globals->thumb_glue_size,
5770 THUMB2ARM_GLUE_SECTION_NAME);
5771
5772 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5773 globals->vfp11_erratum_glue_size,
5774 VFP11_ERRATUM_VENEER_SECTION_NAME);
5775
5776 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5777 globals->bx_glue_size,
5778 ARM_BX_GLUE_SECTION_NAME);
5779
5780 return TRUE;
5781 }
5782
5783 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5784 returns the symbol identifying the stub. */
5785
5786 static struct elf_link_hash_entry *
5787 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5788 struct elf_link_hash_entry * h)
5789 {
5790 const char * name = h->root.root.string;
5791 asection * s;
5792 char * tmp_name;
5793 struct elf_link_hash_entry * myh;
5794 struct bfd_link_hash_entry * bh;
5795 struct elf32_arm_link_hash_table * globals;
5796 bfd_vma val;
5797 bfd_size_type size;
5798
5799 globals = elf32_arm_hash_table (link_info);
5800 BFD_ASSERT (globals != NULL);
5801 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5802
5803 s = bfd_get_linker_section
5804 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5805
5806 BFD_ASSERT (s != NULL);
5807
5808 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5809 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5810
5811 BFD_ASSERT (tmp_name);
5812
5813 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5814
5815 myh = elf_link_hash_lookup
5816 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5817
5818 if (myh != NULL)
5819 {
5820 /* We've already seen this guy. */
5821 free (tmp_name);
5822 return myh;
5823 }
5824
5825 /* The only trick here is using hash_table->arm_glue_size as the value.
5826 Even though the section isn't allocated yet, this is where we will be
5827 putting it. The +1 on the value marks that the stub has not been
5828 output yet - not that it is a Thumb function. */
5829 bh = NULL;
5830 val = globals->arm_glue_size + 1;
5831 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5832 tmp_name, BSF_GLOBAL, s, val,
5833 NULL, TRUE, FALSE, &bh);
5834
5835 myh = (struct elf_link_hash_entry *) bh;
5836 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5837 myh->forced_local = 1;
5838
5839 free (tmp_name);
5840
5841 if (link_info->shared || globals->root.is_relocatable_executable
5842 || globals->pic_veneer)
5843 size = ARM2THUMB_PIC_GLUE_SIZE;
5844 else if (globals->use_blx)
5845 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5846 else
5847 size = ARM2THUMB_STATIC_GLUE_SIZE;
5848
5849 s->size += size;
5850 globals->arm_glue_size += size;
5851
5852 return myh;
5853 }
5854
5855 /* Allocate space for ARMv4 BX veneers. */
5856
5857 static void
5858 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5859 {
5860 asection * s;
5861 struct elf32_arm_link_hash_table *globals;
5862 char *tmp_name;
5863 struct elf_link_hash_entry *myh;
5864 struct bfd_link_hash_entry *bh;
5865 bfd_vma val;
5866
5867 /* BX PC does not need a veneer. */
5868 if (reg == 15)
5869 return;
5870
5871 globals = elf32_arm_hash_table (link_info);
5872 BFD_ASSERT (globals != NULL);
5873 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5874
5875 /* Check if this veneer has already been allocated. */
5876 if (globals->bx_glue_offset[reg])
5877 return;
5878
5879 s = bfd_get_linker_section
5880 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5881
5882 BFD_ASSERT (s != NULL);
5883
5884 /* Add symbol for veneer. */
5885 tmp_name = (char *)
5886 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5887
5888 BFD_ASSERT (tmp_name);
5889
5890 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5891
5892 myh = elf_link_hash_lookup
5893 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5894
5895 BFD_ASSERT (myh == NULL);
5896
5897 bh = NULL;
5898 val = globals->bx_glue_size;
5899 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5900 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5901 NULL, TRUE, FALSE, &bh);
5902
5903 myh = (struct elf_link_hash_entry *) bh;
5904 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5905 myh->forced_local = 1;
5906
5907 s->size += ARM_BX_VENEER_SIZE;
5908 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5909 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5910 }
5911
5912
5913 /* Add an entry to the code/data map for section SEC. */
5914
5915 static void
5916 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5917 {
5918 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5919 unsigned int newidx;
5920
5921 if (sec_data->map == NULL)
5922 {
5923 sec_data->map = (elf32_arm_section_map *)
5924 bfd_malloc (sizeof (elf32_arm_section_map));
5925 sec_data->mapcount = 0;
5926 sec_data->mapsize = 1;
5927 }
5928
5929 newidx = sec_data->mapcount++;
5930
5931 if (sec_data->mapcount > sec_data->mapsize)
5932 {
5933 sec_data->mapsize *= 2;
5934 sec_data->map = (elf32_arm_section_map *)
5935 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5936 * sizeof (elf32_arm_section_map));
5937 }
5938
5939 if (sec_data->map)
5940 {
5941 sec_data->map[newidx].vma = vma;
5942 sec_data->map[newidx].type = type;
5943 }
5944 }
5945
5946
5947 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5948 veneers are handled for now. */
5949
5950 static bfd_vma
5951 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5952 elf32_vfp11_erratum_list *branch,
5953 bfd *branch_bfd,
5954 asection *branch_sec,
5955 unsigned int offset)
5956 {
5957 asection *s;
5958 struct elf32_arm_link_hash_table *hash_table;
5959 char *tmp_name;
5960 struct elf_link_hash_entry *myh;
5961 struct bfd_link_hash_entry *bh;
5962 bfd_vma val;
5963 struct _arm_elf_section_data *sec_data;
5964 elf32_vfp11_erratum_list *newerr;
5965
5966 hash_table = elf32_arm_hash_table (link_info);
5967 BFD_ASSERT (hash_table != NULL);
5968 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5969
5970 s = bfd_get_linker_section
5971 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5972
5973 sec_data = elf32_arm_section_data (s);
5974
5975 BFD_ASSERT (s != NULL);
5976
5977 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5978 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5979
5980 BFD_ASSERT (tmp_name);
5981
5982 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5983 hash_table->num_vfp11_fixes);
5984
5985 myh = elf_link_hash_lookup
5986 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5987
5988 BFD_ASSERT (myh == NULL);
5989
5990 bh = NULL;
5991 val = hash_table->vfp11_erratum_glue_size;
5992 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5993 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5994 NULL, TRUE, FALSE, &bh);
5995
5996 myh = (struct elf_link_hash_entry *) bh;
5997 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5998 myh->forced_local = 1;
5999
6000 /* Link veneer back to calling location. */
6001 sec_data->erratumcount += 1;
6002 newerr = (elf32_vfp11_erratum_list *)
6003 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6004
6005 newerr->type = VFP11_ERRATUM_ARM_VENEER;
6006 newerr->vma = -1;
6007 newerr->u.v.branch = branch;
6008 newerr->u.v.id = hash_table->num_vfp11_fixes;
6009 branch->u.b.veneer = newerr;
6010
6011 newerr->next = sec_data->erratumlist;
6012 sec_data->erratumlist = newerr;
6013
6014 /* A symbol for the return from the veneer. */
6015 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6016 hash_table->num_vfp11_fixes);
6017
6018 myh = elf_link_hash_lookup
6019 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
6020
6021 if (myh != NULL)
6022 abort ();
6023
6024 bh = NULL;
6025 val = offset + 4;
6026 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
6027 branch_sec, val, NULL, TRUE, FALSE, &bh);
6028
6029 myh = (struct elf_link_hash_entry *) bh;
6030 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6031 myh->forced_local = 1;
6032
6033 free (tmp_name);
6034
6035 /* Generate a mapping symbol for the veneer section, and explicitly add an
6036 entry for that symbol to the code/data map for the section. */
6037 if (hash_table->vfp11_erratum_glue_size == 0)
6038 {
6039 bh = NULL;
6040 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
6041 ever requires this erratum fix. */
6042 _bfd_generic_link_add_one_symbol (link_info,
6043 hash_table->bfd_of_glue_owner, "$a",
6044 BSF_LOCAL, s, 0, NULL,
6045 TRUE, FALSE, &bh);
6046
6047 myh = (struct elf_link_hash_entry *) bh;
6048 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
6049 myh->forced_local = 1;
6050
6051 /* The elf32_arm_init_maps function only cares about symbols from input
6052 BFDs. We must make a note of this generated mapping symbol
6053 ourselves so that code byteswapping works properly in
6054 elf32_arm_write_section. */
6055 elf32_arm_section_map_add (s, 'a', 0);
6056 }
6057
6058 s->size += VFP11_ERRATUM_VENEER_SIZE;
6059 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
6060 hash_table->num_vfp11_fixes++;
6061
6062 /* The offset of the veneer. */
6063 return val;
6064 }
6065
6066 #define ARM_GLUE_SECTION_FLAGS \
6067 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
6068 | SEC_READONLY | SEC_LINKER_CREATED)
6069
6070 /* Create a fake section for use by the ARM backend of the linker. */
6071
6072 static bfd_boolean
6073 arm_make_glue_section (bfd * abfd, const char * name)
6074 {
6075 asection * sec;
6076
6077 sec = bfd_get_linker_section (abfd, name);
6078 if (sec != NULL)
6079 /* Already made. */
6080 return TRUE;
6081
6082 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
6083
6084 if (sec == NULL
6085 || !bfd_set_section_alignment (abfd, sec, 2))
6086 return FALSE;
6087
6088 /* Set the gc mark to prevent the section from being removed by garbage
6089 collection, despite the fact that no relocs refer to this section. */
6090 sec->gc_mark = 1;
6091
6092 return TRUE;
6093 }
6094
6095 /* Set size of .plt entries. This function is called from the
6096 linker scripts in ld/emultempl/{armelf}.em. */
6097
6098 void
6099 bfd_elf32_arm_use_long_plt (void)
6100 {
6101 elf32_arm_use_long_plt_entry = TRUE;
6102 }
6103
6104 /* Add the glue sections to ABFD. This function is called from the
6105 linker scripts in ld/emultempl/{armelf}.em. */
6106
6107 bfd_boolean
6108 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
6109 struct bfd_link_info *info)
6110 {
6111 /* If we are only performing a partial
6112 link do not bother adding the glue. */
6113 if (info->relocatable)
6114 return TRUE;
6115
6116 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
6117 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
6118 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
6119 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
6120 }
6121
6122 /* Select a BFD to be used to hold the sections used by the glue code.
6123 This function is called from the linker scripts in ld/emultempl/
6124 {armelf/pe}.em. */
6125
6126 bfd_boolean
6127 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
6128 {
6129 struct elf32_arm_link_hash_table *globals;
6130
6131 /* If we are only performing a partial link
6132 do not bother getting a bfd to hold the glue. */
6133 if (info->relocatable)
6134 return TRUE;
6135
6136 /* Make sure we don't attach the glue sections to a dynamic object. */
6137 BFD_ASSERT (!(abfd->flags & DYNAMIC));
6138
6139 globals = elf32_arm_hash_table (info);
6140 BFD_ASSERT (globals != NULL);
6141
6142 if (globals->bfd_of_glue_owner != NULL)
6143 return TRUE;
6144
6145 /* Save the bfd for later use. */
6146 globals->bfd_of_glue_owner = abfd;
6147
6148 return TRUE;
6149 }
6150
6151 static void
6152 check_use_blx (struct elf32_arm_link_hash_table *globals)
6153 {
6154 int cpu_arch;
6155
6156 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
6157 Tag_CPU_arch);
6158
6159 if (globals->fix_arm1176)
6160 {
6161 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
6162 globals->use_blx = 1;
6163 }
6164 else
6165 {
6166 if (cpu_arch > TAG_CPU_ARCH_V4T)
6167 globals->use_blx = 1;
6168 }
6169 }
6170
6171 bfd_boolean
6172 bfd_elf32_arm_process_before_allocation (bfd *abfd,
6173 struct bfd_link_info *link_info)
6174 {
6175 Elf_Internal_Shdr *symtab_hdr;
6176 Elf_Internal_Rela *internal_relocs = NULL;
6177 Elf_Internal_Rela *irel, *irelend;
6178 bfd_byte *contents = NULL;
6179
6180 asection *sec;
6181 struct elf32_arm_link_hash_table *globals;
6182
6183 /* If we are only performing a partial link do not bother
6184 to construct any glue. */
6185 if (link_info->relocatable)
6186 return TRUE;
6187
6188 /* Here we have a bfd that is to be included on the link. We have a
6189 hook to do reloc rummaging, before section sizes are nailed down. */
6190 globals = elf32_arm_hash_table (link_info);
6191 BFD_ASSERT (globals != NULL);
6192
6193 check_use_blx (globals);
6194
6195 if (globals->byteswap_code && !bfd_big_endian (abfd))
6196 {
6197 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6198 abfd);
6199 return FALSE;
6200 }
6201
6202 /* PR 5398: If we have not decided to include any loadable sections in
6203 the output then we will not have a glue owner bfd. This is OK, it
6204 just means that there is nothing else for us to do here. */
6205 if (globals->bfd_of_glue_owner == NULL)
6206 return TRUE;
6207
6208 /* Rummage around all the relocs and map the glue vectors. */
6209 sec = abfd->sections;
6210
6211 if (sec == NULL)
6212 return TRUE;
6213
6214 for (; sec != NULL; sec = sec->next)
6215 {
6216 if (sec->reloc_count == 0)
6217 continue;
6218
6219 if ((sec->flags & SEC_EXCLUDE) != 0)
6220 continue;
6221
6222 symtab_hdr = & elf_symtab_hdr (abfd);
6223
6224 /* Load the relocs. */
6225 internal_relocs
6226 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
6227
6228 if (internal_relocs == NULL)
6229 goto error_return;
6230
6231 irelend = internal_relocs + sec->reloc_count;
6232 for (irel = internal_relocs; irel < irelend; irel++)
6233 {
6234 long r_type;
6235 unsigned long r_index;
6236
6237 struct elf_link_hash_entry *h;
6238
6239 r_type = ELF32_R_TYPE (irel->r_info);
6240 r_index = ELF32_R_SYM (irel->r_info);
6241
6242 /* These are the only relocation types we care about. */
6243 if ( r_type != R_ARM_PC24
6244 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6245 continue;
6246
6247 /* Get the section contents if we haven't done so already. */
6248 if (contents == NULL)
6249 {
6250 /* Get cached copy if it exists. */
6251 if (elf_section_data (sec)->this_hdr.contents != NULL)
6252 contents = elf_section_data (sec)->this_hdr.contents;
6253 else
6254 {
6255 /* Go get them off disk. */
6256 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6257 goto error_return;
6258 }
6259 }
6260
6261 if (r_type == R_ARM_V4BX)
6262 {
6263 int reg;
6264
6265 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6266 record_arm_bx_glue (link_info, reg);
6267 continue;
6268 }
6269
6270 /* If the relocation is not against a symbol it cannot concern us. */
6271 h = NULL;
6272
6273 /* We don't care about local symbols. */
6274 if (r_index < symtab_hdr->sh_info)
6275 continue;
6276
6277 /* This is an external symbol. */
6278 r_index -= symtab_hdr->sh_info;
6279 h = (struct elf_link_hash_entry *)
6280 elf_sym_hashes (abfd)[r_index];
6281
6282 /* If the relocation is against a static symbol it must be within
6283 the current section and so cannot be a cross ARM/Thumb relocation. */
6284 if (h == NULL)
6285 continue;
6286
6287 /* If the call will go through a PLT entry then we do not need
6288 glue. */
6289 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6290 continue;
6291
6292 switch (r_type)
6293 {
6294 case R_ARM_PC24:
6295 /* This one is a call from arm code. We need to look up
6296 the target of the call. If it is a thumb target, we
6297 insert glue. */
6298 if (h->target_internal == ST_BRANCH_TO_THUMB)
6299 record_arm_to_thumb_glue (link_info, h);
6300 break;
6301
6302 default:
6303 abort ();
6304 }
6305 }
6306
6307 if (contents != NULL
6308 && elf_section_data (sec)->this_hdr.contents != contents)
6309 free (contents);
6310 contents = NULL;
6311
6312 if (internal_relocs != NULL
6313 && elf_section_data (sec)->relocs != internal_relocs)
6314 free (internal_relocs);
6315 internal_relocs = NULL;
6316 }
6317
6318 return TRUE;
6319
6320 error_return:
6321 if (contents != NULL
6322 && elf_section_data (sec)->this_hdr.contents != contents)
6323 free (contents);
6324 if (internal_relocs != NULL
6325 && elf_section_data (sec)->relocs != internal_relocs)
6326 free (internal_relocs);
6327
6328 return FALSE;
6329 }
6330 #endif
6331
6332
6333 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6334
6335 void
6336 bfd_elf32_arm_init_maps (bfd *abfd)
6337 {
6338 Elf_Internal_Sym *isymbuf;
6339 Elf_Internal_Shdr *hdr;
6340 unsigned int i, localsyms;
6341
6342 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6343 if (! is_arm_elf (abfd))
6344 return;
6345
6346 if ((abfd->flags & DYNAMIC) != 0)
6347 return;
6348
6349 hdr = & elf_symtab_hdr (abfd);
6350 localsyms = hdr->sh_info;
6351
6352 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6353 should contain the number of local symbols, which should come before any
6354 global symbols. Mapping symbols are always local. */
6355 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6356 NULL);
6357
6358 /* No internal symbols read? Skip this BFD. */
6359 if (isymbuf == NULL)
6360 return;
6361
6362 for (i = 0; i < localsyms; i++)
6363 {
6364 Elf_Internal_Sym *isym = &isymbuf[i];
6365 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6366 const char *name;
6367
6368 if (sec != NULL
6369 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6370 {
6371 name = bfd_elf_string_from_elf_section (abfd,
6372 hdr->sh_link, isym->st_name);
6373
6374 if (bfd_is_arm_special_symbol_name (name,
6375 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6376 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6377 }
6378 }
6379 }
6380
6381
6382 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6383 say what they wanted. */
6384
6385 void
6386 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6387 {
6388 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6389 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6390
6391 if (globals == NULL)
6392 return;
6393
6394 if (globals->fix_cortex_a8 == -1)
6395 {
6396 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6397 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6398 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6399 || out_attr[Tag_CPU_arch_profile].i == 0))
6400 globals->fix_cortex_a8 = 1;
6401 else
6402 globals->fix_cortex_a8 = 0;
6403 }
6404 }
6405
6406
6407 void
6408 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6409 {
6410 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6411 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6412
6413 if (globals == NULL)
6414 return;
6415 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6416 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6417 {
6418 switch (globals->vfp11_fix)
6419 {
6420 case BFD_ARM_VFP11_FIX_DEFAULT:
6421 case BFD_ARM_VFP11_FIX_NONE:
6422 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6423 break;
6424
6425 default:
6426 /* Give a warning, but do as the user requests anyway. */
6427 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6428 "workaround is not necessary for target architecture"), obfd);
6429 }
6430 }
6431 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6432 /* For earlier architectures, we might need the workaround, but do not
6433 enable it by default. If users is running with broken hardware, they
6434 must enable the erratum fix explicitly. */
6435 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6436 }
6437
6438
6439 enum bfd_arm_vfp11_pipe
6440 {
6441 VFP11_FMAC,
6442 VFP11_LS,
6443 VFP11_DS,
6444 VFP11_BAD
6445 };
6446
6447 /* Return a VFP register number. This is encoded as RX:X for single-precision
6448 registers, or X:RX for double-precision registers, where RX is the group of
6449 four bits in the instruction encoding and X is the single extension bit.
6450 RX and X fields are specified using their lowest (starting) bit. The return
6451 value is:
6452
6453 0...31: single-precision registers s0...s31
6454 32...63: double-precision registers d0...d31.
6455
6456 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6457 encounter VFP3 instructions, so we allow the full range for DP registers. */
6458
6459 static unsigned int
6460 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6461 unsigned int x)
6462 {
6463 if (is_double)
6464 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6465 else
6466 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6467 }
6468
6469 /* Set bits in *WMASK according to a register number REG as encoded by
6470 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6471
6472 static void
6473 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6474 {
6475 if (reg < 32)
6476 *wmask |= 1 << reg;
6477 else if (reg < 48)
6478 *wmask |= 3 << ((reg - 32) * 2);
6479 }
6480
6481 /* Return TRUE if WMASK overwrites anything in REGS. */
6482
6483 static bfd_boolean
6484 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6485 {
6486 int i;
6487
6488 for (i = 0; i < numregs; i++)
6489 {
6490 unsigned int reg = regs[i];
6491
6492 if (reg < 32 && (wmask & (1 << reg)) != 0)
6493 return TRUE;
6494
6495 reg -= 32;
6496
6497 if (reg >= 16)
6498 continue;
6499
6500 if ((wmask & (3 << (reg * 2))) != 0)
6501 return TRUE;
6502 }
6503
6504 return FALSE;
6505 }
6506
6507 /* In this function, we're interested in two things: finding input registers
6508 for VFP data-processing instructions, and finding the set of registers which
6509 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6510 hold the written set, so FLDM etc. are easy to deal with (we're only
6511 interested in 32 SP registers or 16 dp registers, due to the VFP version
6512 implemented by the chip in question). DP registers are marked by setting
6513 both SP registers in the write mask). */
6514
6515 static enum bfd_arm_vfp11_pipe
6516 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6517 int *numregs)
6518 {
6519 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6520 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6521
6522 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6523 {
6524 unsigned int pqrs;
6525 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6526 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6527
6528 pqrs = ((insn & 0x00800000) >> 20)
6529 | ((insn & 0x00300000) >> 19)
6530 | ((insn & 0x00000040) >> 6);
6531
6532 switch (pqrs)
6533 {
6534 case 0: /* fmac[sd]. */
6535 case 1: /* fnmac[sd]. */
6536 case 2: /* fmsc[sd]. */
6537 case 3: /* fnmsc[sd]. */
6538 vpipe = VFP11_FMAC;
6539 bfd_arm_vfp11_write_mask (destmask, fd);
6540 regs[0] = fd;
6541 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6542 regs[2] = fm;
6543 *numregs = 3;
6544 break;
6545
6546 case 4: /* fmul[sd]. */
6547 case 5: /* fnmul[sd]. */
6548 case 6: /* fadd[sd]. */
6549 case 7: /* fsub[sd]. */
6550 vpipe = VFP11_FMAC;
6551 goto vfp_binop;
6552
6553 case 8: /* fdiv[sd]. */
6554 vpipe = VFP11_DS;
6555 vfp_binop:
6556 bfd_arm_vfp11_write_mask (destmask, fd);
6557 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6558 regs[1] = fm;
6559 *numregs = 2;
6560 break;
6561
6562 case 15: /* extended opcode. */
6563 {
6564 unsigned int extn = ((insn >> 15) & 0x1e)
6565 | ((insn >> 7) & 1);
6566
6567 switch (extn)
6568 {
6569 case 0: /* fcpy[sd]. */
6570 case 1: /* fabs[sd]. */
6571 case 2: /* fneg[sd]. */
6572 case 8: /* fcmp[sd]. */
6573 case 9: /* fcmpe[sd]. */
6574 case 10: /* fcmpz[sd]. */
6575 case 11: /* fcmpez[sd]. */
6576 case 16: /* fuito[sd]. */
6577 case 17: /* fsito[sd]. */
6578 case 24: /* ftoui[sd]. */
6579 case 25: /* ftouiz[sd]. */
6580 case 26: /* ftosi[sd]. */
6581 case 27: /* ftosiz[sd]. */
6582 /* These instructions will not bounce due to underflow. */
6583 *numregs = 0;
6584 vpipe = VFP11_FMAC;
6585 break;
6586
6587 case 3: /* fsqrt[sd]. */
6588 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6589 registers to cause the erratum in previous instructions. */
6590 bfd_arm_vfp11_write_mask (destmask, fd);
6591 vpipe = VFP11_DS;
6592 break;
6593
6594 case 15: /* fcvt{ds,sd}. */
6595 {
6596 int rnum = 0;
6597
6598 bfd_arm_vfp11_write_mask (destmask, fd);
6599
6600 /* Only FCVTSD can underflow. */
6601 if ((insn & 0x100) != 0)
6602 regs[rnum++] = fm;
6603
6604 *numregs = rnum;
6605
6606 vpipe = VFP11_FMAC;
6607 }
6608 break;
6609
6610 default:
6611 return VFP11_BAD;
6612 }
6613 }
6614 break;
6615
6616 default:
6617 return VFP11_BAD;
6618 }
6619 }
6620 /* Two-register transfer. */
6621 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6622 {
6623 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6624
6625 if ((insn & 0x100000) == 0)
6626 {
6627 if (is_double)
6628 bfd_arm_vfp11_write_mask (destmask, fm);
6629 else
6630 {
6631 bfd_arm_vfp11_write_mask (destmask, fm);
6632 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6633 }
6634 }
6635
6636 vpipe = VFP11_LS;
6637 }
6638 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6639 {
6640 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6641 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6642
6643 switch (puw)
6644 {
6645 case 0: /* Two-reg transfer. We should catch these above. */
6646 abort ();
6647
6648 case 2: /* fldm[sdx]. */
6649 case 3:
6650 case 5:
6651 {
6652 unsigned int i, offset = insn & 0xff;
6653
6654 if (is_double)
6655 offset >>= 1;
6656
6657 for (i = fd; i < fd + offset; i++)
6658 bfd_arm_vfp11_write_mask (destmask, i);
6659 }
6660 break;
6661
6662 case 4: /* fld[sd]. */
6663 case 6:
6664 bfd_arm_vfp11_write_mask (destmask, fd);
6665 break;
6666
6667 default:
6668 return VFP11_BAD;
6669 }
6670
6671 vpipe = VFP11_LS;
6672 }
6673 /* Single-register transfer. Note L==0. */
6674 else if ((insn & 0x0f100e10) == 0x0e000a10)
6675 {
6676 unsigned int opcode = (insn >> 21) & 7;
6677 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6678
6679 switch (opcode)
6680 {
6681 case 0: /* fmsr/fmdlr. */
6682 case 1: /* fmdhr. */
6683 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6684 destination register. I don't know if this is exactly right,
6685 but it is the conservative choice. */
6686 bfd_arm_vfp11_write_mask (destmask, fn);
6687 break;
6688
6689 case 7: /* fmxr. */
6690 break;
6691 }
6692
6693 vpipe = VFP11_LS;
6694 }
6695
6696 return vpipe;
6697 }
6698
6699
6700 static int elf32_arm_compare_mapping (const void * a, const void * b);
6701
6702
6703 /* Look for potentially-troublesome code sequences which might trigger the
6704 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6705 (available from ARM) for details of the erratum. A short version is
6706 described in ld.texinfo. */
6707
6708 bfd_boolean
6709 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6710 {
6711 asection *sec;
6712 bfd_byte *contents = NULL;
6713 int state = 0;
6714 int regs[3], numregs = 0;
6715 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6716 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
6717
6718 if (globals == NULL)
6719 return FALSE;
6720
6721 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6722 The states transition as follows:
6723
6724 0 -> 1 (vector) or 0 -> 2 (scalar)
6725 A VFP FMAC-pipeline instruction has been seen. Fill
6726 regs[0]..regs[numregs-1] with its input operands. Remember this
6727 instruction in 'first_fmac'.
6728
6729 1 -> 2
6730 Any instruction, except for a VFP instruction which overwrites
6731 regs[*].
6732
6733 1 -> 3 [ -> 0 ] or
6734 2 -> 3 [ -> 0 ]
6735 A VFP instruction has been seen which overwrites any of regs[*].
6736 We must make a veneer! Reset state to 0 before examining next
6737 instruction.
6738
6739 2 -> 0
6740 If we fail to match anything in state 2, reset to state 0 and reset
6741 the instruction pointer to the instruction after 'first_fmac'.
6742
6743 If the VFP11 vector mode is in use, there must be at least two unrelated
6744 instructions between anti-dependent VFP11 instructions to properly avoid
6745 triggering the erratum, hence the use of the extra state 1. */
6746
6747 /* If we are only performing a partial link do not bother
6748 to construct any glue. */
6749 if (link_info->relocatable)
6750 return TRUE;
6751
6752 /* Skip if this bfd does not correspond to an ELF image. */
6753 if (! is_arm_elf (abfd))
6754 return TRUE;
6755
6756 /* We should have chosen a fix type by the time we get here. */
6757 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6758
6759 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6760 return TRUE;
6761
6762 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6763 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6764 return TRUE;
6765
6766 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6767 {
6768 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6769 struct _arm_elf_section_data *sec_data;
6770
6771 /* If we don't have executable progbits, we're not interested in this
6772 section. Also skip if section is to be excluded. */
6773 if (elf_section_type (sec) != SHT_PROGBITS
6774 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6775 || (sec->flags & SEC_EXCLUDE) != 0
6776 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
6777 || sec->output_section == bfd_abs_section_ptr
6778 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6779 continue;
6780
6781 sec_data = elf32_arm_section_data (sec);
6782
6783 if (sec_data->mapcount == 0)
6784 continue;
6785
6786 if (elf_section_data (sec)->this_hdr.contents != NULL)
6787 contents = elf_section_data (sec)->this_hdr.contents;
6788 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6789 goto error_return;
6790
6791 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6792 elf32_arm_compare_mapping);
6793
6794 for (span = 0; span < sec_data->mapcount; span++)
6795 {
6796 unsigned int span_start = sec_data->map[span].vma;
6797 unsigned int span_end = (span == sec_data->mapcount - 1)
6798 ? sec->size : sec_data->map[span + 1].vma;
6799 char span_type = sec_data->map[span].type;
6800
6801 /* FIXME: Only ARM mode is supported at present. We may need to
6802 support Thumb-2 mode also at some point. */
6803 if (span_type != 'a')
6804 continue;
6805
6806 for (i = span_start; i < span_end;)
6807 {
6808 unsigned int next_i = i + 4;
6809 unsigned int insn = bfd_big_endian (abfd)
6810 ? (contents[i] << 24)
6811 | (contents[i + 1] << 16)
6812 | (contents[i + 2] << 8)
6813 | contents[i + 3]
6814 : (contents[i + 3] << 24)
6815 | (contents[i + 2] << 16)
6816 | (contents[i + 1] << 8)
6817 | contents[i];
6818 unsigned int writemask = 0;
6819 enum bfd_arm_vfp11_pipe vpipe;
6820
6821 switch (state)
6822 {
6823 case 0:
6824 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6825 &numregs);
6826 /* I'm assuming the VFP11 erratum can trigger with denorm
6827 operands on either the FMAC or the DS pipeline. This might
6828 lead to slightly overenthusiastic veneer insertion. */
6829 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6830 {
6831 state = use_vector ? 1 : 2;
6832 first_fmac = i;
6833 veneer_of_insn = insn;
6834 }
6835 break;
6836
6837 case 1:
6838 {
6839 int other_regs[3], other_numregs;
6840 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6841 other_regs,
6842 &other_numregs);
6843 if (vpipe != VFP11_BAD
6844 && bfd_arm_vfp11_antidependency (writemask, regs,
6845 numregs))
6846 state = 3;
6847 else
6848 state = 2;
6849 }
6850 break;
6851
6852 case 2:
6853 {
6854 int other_regs[3], other_numregs;
6855 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6856 other_regs,
6857 &other_numregs);
6858 if (vpipe != VFP11_BAD
6859 && bfd_arm_vfp11_antidependency (writemask, regs,
6860 numregs))
6861 state = 3;
6862 else
6863 {
6864 state = 0;
6865 next_i = first_fmac + 4;
6866 }
6867 }
6868 break;
6869
6870 case 3:
6871 abort (); /* Should be unreachable. */
6872 }
6873
6874 if (state == 3)
6875 {
6876 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6877 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6878
6879 elf32_arm_section_data (sec)->erratumcount += 1;
6880
6881 newerr->u.b.vfp_insn = veneer_of_insn;
6882
6883 switch (span_type)
6884 {
6885 case 'a':
6886 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6887 break;
6888
6889 default:
6890 abort ();
6891 }
6892
6893 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6894 first_fmac);
6895
6896 newerr->vma = -1;
6897
6898 newerr->next = sec_data->erratumlist;
6899 sec_data->erratumlist = newerr;
6900
6901 state = 0;
6902 }
6903
6904 i = next_i;
6905 }
6906 }
6907
6908 if (contents != NULL
6909 && elf_section_data (sec)->this_hdr.contents != contents)
6910 free (contents);
6911 contents = NULL;
6912 }
6913
6914 return TRUE;
6915
6916 error_return:
6917 if (contents != NULL
6918 && elf_section_data (sec)->this_hdr.contents != contents)
6919 free (contents);
6920
6921 return FALSE;
6922 }
6923
6924 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6925 after sections have been laid out, using specially-named symbols. */
6926
6927 void
6928 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6929 struct bfd_link_info *link_info)
6930 {
6931 asection *sec;
6932 struct elf32_arm_link_hash_table *globals;
6933 char *tmp_name;
6934
6935 if (link_info->relocatable)
6936 return;
6937
6938 /* Skip if this bfd does not correspond to an ELF image. */
6939 if (! is_arm_elf (abfd))
6940 return;
6941
6942 globals = elf32_arm_hash_table (link_info);
6943 if (globals == NULL)
6944 return;
6945
6946 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6947 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6948
6949 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6950 {
6951 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6952 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6953
6954 for (; errnode != NULL; errnode = errnode->next)
6955 {
6956 struct elf_link_hash_entry *myh;
6957 bfd_vma vma;
6958
6959 switch (errnode->type)
6960 {
6961 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6962 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6963 /* Find veneer symbol. */
6964 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6965 errnode->u.b.veneer->u.v.id);
6966
6967 myh = elf_link_hash_lookup
6968 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6969
6970 if (myh == NULL)
6971 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6972 "`%s'"), abfd, tmp_name);
6973
6974 vma = myh->root.u.def.section->output_section->vma
6975 + myh->root.u.def.section->output_offset
6976 + myh->root.u.def.value;
6977
6978 errnode->u.b.veneer->vma = vma;
6979 break;
6980
6981 case VFP11_ERRATUM_ARM_VENEER:
6982 case VFP11_ERRATUM_THUMB_VENEER:
6983 /* Find return location. */
6984 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6985 errnode->u.v.id);
6986
6987 myh = elf_link_hash_lookup
6988 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6989
6990 if (myh == NULL)
6991 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6992 "`%s'"), abfd, tmp_name);
6993
6994 vma = myh->root.u.def.section->output_section->vma
6995 + myh->root.u.def.section->output_offset
6996 + myh->root.u.def.value;
6997
6998 errnode->u.v.branch->vma = vma;
6999 break;
7000
7001 default:
7002 abort ();
7003 }
7004 }
7005 }
7006
7007 free (tmp_name);
7008 }
7009
7010
7011 /* Set target relocation values needed during linking. */
7012
7013 void
7014 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
7015 struct bfd_link_info *link_info,
7016 int target1_is_rel,
7017 char * target2_type,
7018 int fix_v4bx,
7019 int use_blx,
7020 bfd_arm_vfp11_fix vfp11_fix,
7021 int no_enum_warn, int no_wchar_warn,
7022 int pic_veneer, int fix_cortex_a8,
7023 int fix_arm1176)
7024 {
7025 struct elf32_arm_link_hash_table *globals;
7026
7027 globals = elf32_arm_hash_table (link_info);
7028 if (globals == NULL)
7029 return;
7030
7031 globals->target1_is_rel = target1_is_rel;
7032 if (strcmp (target2_type, "rel") == 0)
7033 globals->target2_reloc = R_ARM_REL32;
7034 else if (strcmp (target2_type, "abs") == 0)
7035 globals->target2_reloc = R_ARM_ABS32;
7036 else if (strcmp (target2_type, "got-rel") == 0)
7037 globals->target2_reloc = R_ARM_GOT_PREL;
7038 else
7039 {
7040 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
7041 target2_type);
7042 }
7043 globals->fix_v4bx = fix_v4bx;
7044 globals->use_blx |= use_blx;
7045 globals->vfp11_fix = vfp11_fix;
7046 globals->pic_veneer = pic_veneer;
7047 globals->fix_cortex_a8 = fix_cortex_a8;
7048 globals->fix_arm1176 = fix_arm1176;
7049
7050 BFD_ASSERT (is_arm_elf (output_bfd));
7051 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
7052 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
7053 }
7054
7055 /* Replace the target offset of a Thumb bl or b.w instruction. */
7056
7057 static void
7058 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
7059 {
7060 bfd_vma upper;
7061 bfd_vma lower;
7062 int reloc_sign;
7063
7064 BFD_ASSERT ((offset & 1) == 0);
7065
7066 upper = bfd_get_16 (abfd, insn);
7067 lower = bfd_get_16 (abfd, insn + 2);
7068 reloc_sign = (offset < 0) ? 1 : 0;
7069 upper = (upper & ~(bfd_vma) 0x7ff)
7070 | ((offset >> 12) & 0x3ff)
7071 | (reloc_sign << 10);
7072 lower = (lower & ~(bfd_vma) 0x2fff)
7073 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
7074 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
7075 | ((offset >> 1) & 0x7ff);
7076 bfd_put_16 (abfd, upper, insn);
7077 bfd_put_16 (abfd, lower, insn + 2);
7078 }
7079
7080 /* Thumb code calling an ARM function. */
7081
7082 static int
7083 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
7084 const char * name,
7085 bfd * input_bfd,
7086 bfd * output_bfd,
7087 asection * input_section,
7088 bfd_byte * hit_data,
7089 asection * sym_sec,
7090 bfd_vma offset,
7091 bfd_signed_vma addend,
7092 bfd_vma val,
7093 char **error_message)
7094 {
7095 asection * s = 0;
7096 bfd_vma my_offset;
7097 long int ret_offset;
7098 struct elf_link_hash_entry * myh;
7099 struct elf32_arm_link_hash_table * globals;
7100
7101 myh = find_thumb_glue (info, name, error_message);
7102 if (myh == NULL)
7103 return FALSE;
7104
7105 globals = elf32_arm_hash_table (info);
7106 BFD_ASSERT (globals != NULL);
7107 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7108
7109 my_offset = myh->root.u.def.value;
7110
7111 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7112 THUMB2ARM_GLUE_SECTION_NAME);
7113
7114 BFD_ASSERT (s != NULL);
7115 BFD_ASSERT (s->contents != NULL);
7116 BFD_ASSERT (s->output_section != NULL);
7117
7118 if ((my_offset & 0x01) == 0x01)
7119 {
7120 if (sym_sec != NULL
7121 && sym_sec->owner != NULL
7122 && !INTERWORK_FLAG (sym_sec->owner))
7123 {
7124 (*_bfd_error_handler)
7125 (_("%B(%s): warning: interworking not enabled.\n"
7126 " first occurrence: %B: Thumb call to ARM"),
7127 sym_sec->owner, input_bfd, name);
7128
7129 return FALSE;
7130 }
7131
7132 --my_offset;
7133 myh->root.u.def.value = my_offset;
7134
7135 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
7136 s->contents + my_offset);
7137
7138 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
7139 s->contents + my_offset + 2);
7140
7141 ret_offset =
7142 /* Address of destination of the stub. */
7143 ((bfd_signed_vma) val)
7144 - ((bfd_signed_vma)
7145 /* Offset from the start of the current section
7146 to the start of the stubs. */
7147 (s->output_offset
7148 /* Offset of the start of this stub from the start of the stubs. */
7149 + my_offset
7150 /* Address of the start of the current section. */
7151 + s->output_section->vma)
7152 /* The branch instruction is 4 bytes into the stub. */
7153 + 4
7154 /* ARM branches work from the pc of the instruction + 8. */
7155 + 8);
7156
7157 put_arm_insn (globals, output_bfd,
7158 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
7159 s->contents + my_offset + 4);
7160 }
7161
7162 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
7163
7164 /* Now go back and fix up the original BL insn to point to here. */
7165 ret_offset =
7166 /* Address of where the stub is located. */
7167 (s->output_section->vma + s->output_offset + my_offset)
7168 /* Address of where the BL is located. */
7169 - (input_section->output_section->vma + input_section->output_offset
7170 + offset)
7171 /* Addend in the relocation. */
7172 - addend
7173 /* Biassing for PC-relative addressing. */
7174 - 8;
7175
7176 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
7177
7178 return TRUE;
7179 }
7180
7181 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
7182
7183 static struct elf_link_hash_entry *
7184 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
7185 const char * name,
7186 bfd * input_bfd,
7187 bfd * output_bfd,
7188 asection * sym_sec,
7189 bfd_vma val,
7190 asection * s,
7191 char ** error_message)
7192 {
7193 bfd_vma my_offset;
7194 long int ret_offset;
7195 struct elf_link_hash_entry * myh;
7196 struct elf32_arm_link_hash_table * globals;
7197
7198 myh = find_arm_glue (info, name, error_message);
7199 if (myh == NULL)
7200 return NULL;
7201
7202 globals = elf32_arm_hash_table (info);
7203 BFD_ASSERT (globals != NULL);
7204 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7205
7206 my_offset = myh->root.u.def.value;
7207
7208 if ((my_offset & 0x01) == 0x01)
7209 {
7210 if (sym_sec != NULL
7211 && sym_sec->owner != NULL
7212 && !INTERWORK_FLAG (sym_sec->owner))
7213 {
7214 (*_bfd_error_handler)
7215 (_("%B(%s): warning: interworking not enabled.\n"
7216 " first occurrence: %B: arm call to thumb"),
7217 sym_sec->owner, input_bfd, name);
7218 }
7219
7220 --my_offset;
7221 myh->root.u.def.value = my_offset;
7222
7223 if (info->shared || globals->root.is_relocatable_executable
7224 || globals->pic_veneer)
7225 {
7226 /* For relocatable objects we can't use absolute addresses,
7227 so construct the address from a relative offset. */
7228 /* TODO: If the offset is small it's probably worth
7229 constructing the address with adds. */
7230 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7231 s->contents + my_offset);
7232 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7233 s->contents + my_offset + 4);
7234 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7235 s->contents + my_offset + 8);
7236 /* Adjust the offset by 4 for the position of the add,
7237 and 8 for the pipeline offset. */
7238 ret_offset = (val - (s->output_offset
7239 + s->output_section->vma
7240 + my_offset + 12))
7241 | 1;
7242 bfd_put_32 (output_bfd, ret_offset,
7243 s->contents + my_offset + 12);
7244 }
7245 else if (globals->use_blx)
7246 {
7247 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7248 s->contents + my_offset);
7249
7250 /* It's a thumb address. Add the low order bit. */
7251 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7252 s->contents + my_offset + 4);
7253 }
7254 else
7255 {
7256 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7257 s->contents + my_offset);
7258
7259 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7260 s->contents + my_offset + 4);
7261
7262 /* It's a thumb address. Add the low order bit. */
7263 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7264 s->contents + my_offset + 8);
7265
7266 my_offset += 12;
7267 }
7268 }
7269
7270 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7271
7272 return myh;
7273 }
7274
7275 /* Arm code calling a Thumb function. */
7276
7277 static int
7278 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7279 const char * name,
7280 bfd * input_bfd,
7281 bfd * output_bfd,
7282 asection * input_section,
7283 bfd_byte * hit_data,
7284 asection * sym_sec,
7285 bfd_vma offset,
7286 bfd_signed_vma addend,
7287 bfd_vma val,
7288 char **error_message)
7289 {
7290 unsigned long int tmp;
7291 bfd_vma my_offset;
7292 asection * s;
7293 long int ret_offset;
7294 struct elf_link_hash_entry * myh;
7295 struct elf32_arm_link_hash_table * globals;
7296
7297 globals = elf32_arm_hash_table (info);
7298 BFD_ASSERT (globals != NULL);
7299 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7300
7301 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7302 ARM2THUMB_GLUE_SECTION_NAME);
7303 BFD_ASSERT (s != NULL);
7304 BFD_ASSERT (s->contents != NULL);
7305 BFD_ASSERT (s->output_section != NULL);
7306
7307 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
7308 sym_sec, val, s, error_message);
7309 if (!myh)
7310 return FALSE;
7311
7312 my_offset = myh->root.u.def.value;
7313 tmp = bfd_get_32 (input_bfd, hit_data);
7314 tmp = tmp & 0xFF000000;
7315
7316 /* Somehow these are both 4 too far, so subtract 8. */
7317 ret_offset = (s->output_offset
7318 + my_offset
7319 + s->output_section->vma
7320 - (input_section->output_offset
7321 + input_section->output_section->vma
7322 + offset + addend)
7323 - 8);
7324
7325 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7326
7327 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
7328
7329 return TRUE;
7330 }
7331
7332 /* Populate Arm stub for an exported Thumb function. */
7333
7334 static bfd_boolean
7335 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7336 {
7337 struct bfd_link_info * info = (struct bfd_link_info *) inf;
7338 asection * s;
7339 struct elf_link_hash_entry * myh;
7340 struct elf32_arm_link_hash_entry *eh;
7341 struct elf32_arm_link_hash_table * globals;
7342 asection *sec;
7343 bfd_vma val;
7344 char *error_message;
7345
7346 eh = elf32_arm_hash_entry (h);
7347 /* Allocate stubs for exported Thumb functions on v4t. */
7348 if (eh->export_glue == NULL)
7349 return TRUE;
7350
7351 globals = elf32_arm_hash_table (info);
7352 BFD_ASSERT (globals != NULL);
7353 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7354
7355 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7356 ARM2THUMB_GLUE_SECTION_NAME);
7357 BFD_ASSERT (s != NULL);
7358 BFD_ASSERT (s->contents != NULL);
7359 BFD_ASSERT (s->output_section != NULL);
7360
7361 sec = eh->export_glue->root.u.def.section;
7362
7363 BFD_ASSERT (sec->output_section != NULL);
7364
7365 val = eh->export_glue->root.u.def.value + sec->output_offset
7366 + sec->output_section->vma;
7367
7368 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7369 h->root.u.def.section->owner,
7370 globals->obfd, sec, val, s,
7371 &error_message);
7372 BFD_ASSERT (myh);
7373 return TRUE;
7374 }
7375
7376 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7377
7378 static bfd_vma
7379 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7380 {
7381 bfd_byte *p;
7382 bfd_vma glue_addr;
7383 asection *s;
7384 struct elf32_arm_link_hash_table *globals;
7385
7386 globals = elf32_arm_hash_table (info);
7387 BFD_ASSERT (globals != NULL);
7388 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7389
7390 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7391 ARM_BX_GLUE_SECTION_NAME);
7392 BFD_ASSERT (s != NULL);
7393 BFD_ASSERT (s->contents != NULL);
7394 BFD_ASSERT (s->output_section != NULL);
7395
7396 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7397
7398 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7399
7400 if ((globals->bx_glue_offset[reg] & 1) == 0)
7401 {
7402 p = s->contents + glue_addr;
7403 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7404 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7405 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7406 globals->bx_glue_offset[reg] |= 1;
7407 }
7408
7409 return glue_addr + s->output_section->vma + s->output_offset;
7410 }
7411
7412 /* Generate Arm stubs for exported Thumb symbols. */
7413 static void
7414 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
7415 struct bfd_link_info *link_info)
7416 {
7417 struct elf32_arm_link_hash_table * globals;
7418
7419 if (link_info == NULL)
7420 /* Ignore this if we are not called by the ELF backend linker. */
7421 return;
7422
7423 globals = elf32_arm_hash_table (link_info);
7424 if (globals == NULL)
7425 return;
7426
7427 /* If blx is available then exported Thumb symbols are OK and there is
7428 nothing to do. */
7429 if (globals->use_blx)
7430 return;
7431
7432 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7433 link_info);
7434 }
7435
7436 /* Reserve space for COUNT dynamic relocations in relocation selection
7437 SRELOC. */
7438
7439 static void
7440 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7441 bfd_size_type count)
7442 {
7443 struct elf32_arm_link_hash_table *htab;
7444
7445 htab = elf32_arm_hash_table (info);
7446 BFD_ASSERT (htab->root.dynamic_sections_created);
7447 if (sreloc == NULL)
7448 abort ();
7449 sreloc->size += RELOC_SIZE (htab) * count;
7450 }
7451
7452 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7453 dynamic, the relocations should go in SRELOC, otherwise they should
7454 go in the special .rel.iplt section. */
7455
7456 static void
7457 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7458 bfd_size_type count)
7459 {
7460 struct elf32_arm_link_hash_table *htab;
7461
7462 htab = elf32_arm_hash_table (info);
7463 if (!htab->root.dynamic_sections_created)
7464 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7465 else
7466 {
7467 BFD_ASSERT (sreloc != NULL);
7468 sreloc->size += RELOC_SIZE (htab) * count;
7469 }
7470 }
7471
7472 /* Add relocation REL to the end of relocation section SRELOC. */
7473
7474 static void
7475 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7476 asection *sreloc, Elf_Internal_Rela *rel)
7477 {
7478 bfd_byte *loc;
7479 struct elf32_arm_link_hash_table *htab;
7480
7481 htab = elf32_arm_hash_table (info);
7482 if (!htab->root.dynamic_sections_created
7483 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7484 sreloc = htab->root.irelplt;
7485 if (sreloc == NULL)
7486 abort ();
7487 loc = sreloc->contents;
7488 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7489 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7490 abort ();
7491 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7492 }
7493
7494 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7495 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7496 to .plt. */
7497
7498 static void
7499 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7500 bfd_boolean is_iplt_entry,
7501 union gotplt_union *root_plt,
7502 struct arm_plt_info *arm_plt)
7503 {
7504 struct elf32_arm_link_hash_table *htab;
7505 asection *splt;
7506 asection *sgotplt;
7507
7508 htab = elf32_arm_hash_table (info);
7509
7510 if (is_iplt_entry)
7511 {
7512 splt = htab->root.iplt;
7513 sgotplt = htab->root.igotplt;
7514
7515 /* NaCl uses a special first entry in .iplt too. */
7516 if (htab->nacl_p && splt->size == 0)
7517 splt->size += htab->plt_header_size;
7518
7519 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7520 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7521 }
7522 else
7523 {
7524 splt = htab->root.splt;
7525 sgotplt = htab->root.sgotplt;
7526
7527 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7528 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7529
7530 /* If this is the first .plt entry, make room for the special
7531 first entry. */
7532 if (splt->size == 0)
7533 splt->size += htab->plt_header_size;
7534
7535 htab->next_tls_desc_index++;
7536 }
7537
7538 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7539 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7540 splt->size += PLT_THUMB_STUB_SIZE;
7541 root_plt->offset = splt->size;
7542 splt->size += htab->plt_entry_size;
7543
7544 if (!htab->symbian_p)
7545 {
7546 /* We also need to make an entry in the .got.plt section, which
7547 will be placed in the .got section by the linker script. */
7548 if (is_iplt_entry)
7549 arm_plt->got_offset = sgotplt->size;
7550 else
7551 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7552 sgotplt->size += 4;
7553 }
7554 }
7555
7556 static bfd_vma
7557 arm_movw_immediate (bfd_vma value)
7558 {
7559 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
7560 }
7561
7562 static bfd_vma
7563 arm_movt_immediate (bfd_vma value)
7564 {
7565 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
7566 }
7567
7568 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7569 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7570 Otherwise, DYNINDX is the index of the symbol in the dynamic
7571 symbol table and SYM_VALUE is undefined.
7572
7573 ROOT_PLT points to the offset of the PLT entry from the start of its
7574 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7575 bookkeeping information.
7576
7577 Returns FALSE if there was a problem. */
7578
7579 static bfd_boolean
7580 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7581 union gotplt_union *root_plt,
7582 struct arm_plt_info *arm_plt,
7583 int dynindx, bfd_vma sym_value)
7584 {
7585 struct elf32_arm_link_hash_table *htab;
7586 asection *sgot;
7587 asection *splt;
7588 asection *srel;
7589 bfd_byte *loc;
7590 bfd_vma plt_index;
7591 Elf_Internal_Rela rel;
7592 bfd_vma plt_header_size;
7593 bfd_vma got_header_size;
7594
7595 htab = elf32_arm_hash_table (info);
7596
7597 /* Pick the appropriate sections and sizes. */
7598 if (dynindx == -1)
7599 {
7600 splt = htab->root.iplt;
7601 sgot = htab->root.igotplt;
7602 srel = htab->root.irelplt;
7603
7604 /* There are no reserved entries in .igot.plt, and no special
7605 first entry in .iplt. */
7606 got_header_size = 0;
7607 plt_header_size = 0;
7608 }
7609 else
7610 {
7611 splt = htab->root.splt;
7612 sgot = htab->root.sgotplt;
7613 srel = htab->root.srelplt;
7614
7615 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7616 plt_header_size = htab->plt_header_size;
7617 }
7618 BFD_ASSERT (splt != NULL && srel != NULL);
7619
7620 /* Fill in the entry in the procedure linkage table. */
7621 if (htab->symbian_p)
7622 {
7623 BFD_ASSERT (dynindx >= 0);
7624 put_arm_insn (htab, output_bfd,
7625 elf32_arm_symbian_plt_entry[0],
7626 splt->contents + root_plt->offset);
7627 bfd_put_32 (output_bfd,
7628 elf32_arm_symbian_plt_entry[1],
7629 splt->contents + root_plt->offset + 4);
7630
7631 /* Fill in the entry in the .rel.plt section. */
7632 rel.r_offset = (splt->output_section->vma
7633 + splt->output_offset
7634 + root_plt->offset + 4);
7635 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7636
7637 /* Get the index in the procedure linkage table which
7638 corresponds to this symbol. This is the index of this symbol
7639 in all the symbols for which we are making plt entries. The
7640 first entry in the procedure linkage table is reserved. */
7641 plt_index = ((root_plt->offset - plt_header_size)
7642 / htab->plt_entry_size);
7643 }
7644 else
7645 {
7646 bfd_vma got_offset, got_address, plt_address;
7647 bfd_vma got_displacement, initial_got_entry;
7648 bfd_byte * ptr;
7649
7650 BFD_ASSERT (sgot != NULL);
7651
7652 /* Get the offset into the .(i)got.plt table of the entry that
7653 corresponds to this function. */
7654 got_offset = (arm_plt->got_offset & -2);
7655
7656 /* Get the index in the procedure linkage table which
7657 corresponds to this symbol. This is the index of this symbol
7658 in all the symbols for which we are making plt entries.
7659 After the reserved .got.plt entries, all symbols appear in
7660 the same order as in .plt. */
7661 plt_index = (got_offset - got_header_size) / 4;
7662
7663 /* Calculate the address of the GOT entry. */
7664 got_address = (sgot->output_section->vma
7665 + sgot->output_offset
7666 + got_offset);
7667
7668 /* ...and the address of the PLT entry. */
7669 plt_address = (splt->output_section->vma
7670 + splt->output_offset
7671 + root_plt->offset);
7672
7673 ptr = splt->contents + root_plt->offset;
7674 if (htab->vxworks_p && info->shared)
7675 {
7676 unsigned int i;
7677 bfd_vma val;
7678
7679 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7680 {
7681 val = elf32_arm_vxworks_shared_plt_entry[i];
7682 if (i == 2)
7683 val |= got_address - sgot->output_section->vma;
7684 if (i == 5)
7685 val |= plt_index * RELOC_SIZE (htab);
7686 if (i == 2 || i == 5)
7687 bfd_put_32 (output_bfd, val, ptr);
7688 else
7689 put_arm_insn (htab, output_bfd, val, ptr);
7690 }
7691 }
7692 else if (htab->vxworks_p)
7693 {
7694 unsigned int i;
7695 bfd_vma val;
7696
7697 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7698 {
7699 val = elf32_arm_vxworks_exec_plt_entry[i];
7700 if (i == 2)
7701 val |= got_address;
7702 if (i == 4)
7703 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7704 if (i == 5)
7705 val |= plt_index * RELOC_SIZE (htab);
7706 if (i == 2 || i == 5)
7707 bfd_put_32 (output_bfd, val, ptr);
7708 else
7709 put_arm_insn (htab, output_bfd, val, ptr);
7710 }
7711
7712 loc = (htab->srelplt2->contents
7713 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7714
7715 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7716 referencing the GOT for this PLT entry. */
7717 rel.r_offset = plt_address + 8;
7718 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7719 rel.r_addend = got_offset;
7720 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7721 loc += RELOC_SIZE (htab);
7722
7723 /* Create the R_ARM_ABS32 relocation referencing the
7724 beginning of the PLT for this GOT entry. */
7725 rel.r_offset = got_address;
7726 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7727 rel.r_addend = 0;
7728 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7729 }
7730 else if (htab->nacl_p)
7731 {
7732 /* Calculate the displacement between the PLT slot and the
7733 common tail that's part of the special initial PLT slot. */
7734 int32_t tail_displacement
7735 = ((splt->output_section->vma + splt->output_offset
7736 + ARM_NACL_PLT_TAIL_OFFSET)
7737 - (plt_address + htab->plt_entry_size + 4));
7738 BFD_ASSERT ((tail_displacement & 3) == 0);
7739 tail_displacement >>= 2;
7740
7741 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
7742 || (-tail_displacement & 0xff000000) == 0);
7743
7744 /* Calculate the displacement between the PLT slot and the entry
7745 in the GOT. The offset accounts for the value produced by
7746 adding to pc in the penultimate instruction of the PLT stub. */
7747 got_displacement = (got_address
7748 - (plt_address + htab->plt_entry_size));
7749
7750 /* NaCl does not support interworking at all. */
7751 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
7752
7753 put_arm_insn (htab, output_bfd,
7754 elf32_arm_nacl_plt_entry[0]
7755 | arm_movw_immediate (got_displacement),
7756 ptr + 0);
7757 put_arm_insn (htab, output_bfd,
7758 elf32_arm_nacl_plt_entry[1]
7759 | arm_movt_immediate (got_displacement),
7760 ptr + 4);
7761 put_arm_insn (htab, output_bfd,
7762 elf32_arm_nacl_plt_entry[2],
7763 ptr + 8);
7764 put_arm_insn (htab, output_bfd,
7765 elf32_arm_nacl_plt_entry[3]
7766 | (tail_displacement & 0x00ffffff),
7767 ptr + 12);
7768 }
7769 else if (using_thumb_only (htab))
7770 {
7771 /* PR ld/16017: Generate thumb only PLT entries. */
7772 if (!using_thumb2 (htab))
7773 {
7774 /* FIXME: We ought to be able to generate thumb-1 PLT
7775 instructions... */
7776 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
7777 output_bfd);
7778 return FALSE;
7779 }
7780
7781 /* Calculate the displacement between the PLT slot and the entry in
7782 the GOT. The 12-byte offset accounts for the value produced by
7783 adding to pc in the 3rd instruction of the PLT stub. */
7784 got_displacement = got_address - (plt_address + 12);
7785
7786 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
7787 instead of 'put_thumb_insn'. */
7788 put_arm_insn (htab, output_bfd,
7789 elf32_thumb2_plt_entry[0]
7790 | ((got_displacement & 0x000000ff) << 16)
7791 | ((got_displacement & 0x00000700) << 20)
7792 | ((got_displacement & 0x00000800) >> 1)
7793 | ((got_displacement & 0x0000f000) >> 12),
7794 ptr + 0);
7795 put_arm_insn (htab, output_bfd,
7796 elf32_thumb2_plt_entry[1]
7797 | ((got_displacement & 0x00ff0000) )
7798 | ((got_displacement & 0x07000000) << 4)
7799 | ((got_displacement & 0x08000000) >> 17)
7800 | ((got_displacement & 0xf0000000) >> 28),
7801 ptr + 4);
7802 put_arm_insn (htab, output_bfd,
7803 elf32_thumb2_plt_entry[2],
7804 ptr + 8);
7805 put_arm_insn (htab, output_bfd,
7806 elf32_thumb2_plt_entry[3],
7807 ptr + 12);
7808 }
7809 else
7810 {
7811 /* Calculate the displacement between the PLT slot and the
7812 entry in the GOT. The eight-byte offset accounts for the
7813 value produced by adding to pc in the first instruction
7814 of the PLT stub. */
7815 got_displacement = got_address - (plt_address + 8);
7816
7817 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7818 {
7819 put_thumb_insn (htab, output_bfd,
7820 elf32_arm_plt_thumb_stub[0], ptr - 4);
7821 put_thumb_insn (htab, output_bfd,
7822 elf32_arm_plt_thumb_stub[1], ptr - 2);
7823 }
7824
7825 if (!elf32_arm_use_long_plt_entry)
7826 {
7827 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7828
7829 put_arm_insn (htab, output_bfd,
7830 elf32_arm_plt_entry_short[0]
7831 | ((got_displacement & 0x0ff00000) >> 20),
7832 ptr + 0);
7833 put_arm_insn (htab, output_bfd,
7834 elf32_arm_plt_entry_short[1]
7835 | ((got_displacement & 0x000ff000) >> 12),
7836 ptr+ 4);
7837 put_arm_insn (htab, output_bfd,
7838 elf32_arm_plt_entry_short[2]
7839 | (got_displacement & 0x00000fff),
7840 ptr + 8);
7841 #ifdef FOUR_WORD_PLT
7842 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
7843 #endif
7844 }
7845 else
7846 {
7847 put_arm_insn (htab, output_bfd,
7848 elf32_arm_plt_entry_long[0]
7849 | ((got_displacement & 0xf0000000) >> 28),
7850 ptr + 0);
7851 put_arm_insn (htab, output_bfd,
7852 elf32_arm_plt_entry_long[1]
7853 | ((got_displacement & 0x0ff00000) >> 20),
7854 ptr + 4);
7855 put_arm_insn (htab, output_bfd,
7856 elf32_arm_plt_entry_long[2]
7857 | ((got_displacement & 0x000ff000) >> 12),
7858 ptr+ 8);
7859 put_arm_insn (htab, output_bfd,
7860 elf32_arm_plt_entry_long[3]
7861 | (got_displacement & 0x00000fff),
7862 ptr + 12);
7863 }
7864 }
7865
7866 /* Fill in the entry in the .rel(a).(i)plt section. */
7867 rel.r_offset = got_address;
7868 rel.r_addend = 0;
7869 if (dynindx == -1)
7870 {
7871 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7872 The dynamic linker or static executable then calls SYM_VALUE
7873 to determine the correct run-time value of the .igot.plt entry. */
7874 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7875 initial_got_entry = sym_value;
7876 }
7877 else
7878 {
7879 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7880 initial_got_entry = (splt->output_section->vma
7881 + splt->output_offset);
7882 }
7883
7884 /* Fill in the entry in the global offset table. */
7885 bfd_put_32 (output_bfd, initial_got_entry,
7886 sgot->contents + got_offset);
7887 }
7888
7889 if (dynindx == -1)
7890 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
7891 else
7892 {
7893 loc = srel->contents + plt_index * RELOC_SIZE (htab);
7894 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7895 }
7896
7897 return TRUE;
7898 }
7899
7900 /* Some relocations map to different relocations depending on the
7901 target. Return the real relocation. */
7902
7903 static int
7904 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7905 int r_type)
7906 {
7907 switch (r_type)
7908 {
7909 case R_ARM_TARGET1:
7910 if (globals->target1_is_rel)
7911 return R_ARM_REL32;
7912 else
7913 return R_ARM_ABS32;
7914
7915 case R_ARM_TARGET2:
7916 return globals->target2_reloc;
7917
7918 default:
7919 return r_type;
7920 }
7921 }
7922
7923 /* Return the base VMA address which should be subtracted from real addresses
7924 when resolving @dtpoff relocation.
7925 This is PT_TLS segment p_vaddr. */
7926
7927 static bfd_vma
7928 dtpoff_base (struct bfd_link_info *info)
7929 {
7930 /* If tls_sec is NULL, we should have signalled an error already. */
7931 if (elf_hash_table (info)->tls_sec == NULL)
7932 return 0;
7933 return elf_hash_table (info)->tls_sec->vma;
7934 }
7935
7936 /* Return the relocation value for @tpoff relocation
7937 if STT_TLS virtual address is ADDRESS. */
7938
7939 static bfd_vma
7940 tpoff (struct bfd_link_info *info, bfd_vma address)
7941 {
7942 struct elf_link_hash_table *htab = elf_hash_table (info);
7943 bfd_vma base;
7944
7945 /* If tls_sec is NULL, we should have signalled an error already. */
7946 if (htab->tls_sec == NULL)
7947 return 0;
7948 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7949 return address - htab->tls_sec->vma + base;
7950 }
7951
7952 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7953 VALUE is the relocation value. */
7954
7955 static bfd_reloc_status_type
7956 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7957 {
7958 if (value > 0xfff)
7959 return bfd_reloc_overflow;
7960
7961 value |= bfd_get_32 (abfd, data) & 0xfffff000;
7962 bfd_put_32 (abfd, value, data);
7963 return bfd_reloc_ok;
7964 }
7965
7966 /* Handle TLS relaxations. Relaxing is possible for symbols that use
7967 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7968 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7969
7970 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7971 is to then call final_link_relocate. Return other values in the
7972 case of error.
7973
7974 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7975 the pre-relaxed code. It would be nice if the relocs were updated
7976 to match the optimization. */
7977
7978 static bfd_reloc_status_type
7979 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
7980 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
7981 Elf_Internal_Rela *rel, unsigned long is_local)
7982 {
7983 unsigned long insn;
7984
7985 switch (ELF32_R_TYPE (rel->r_info))
7986 {
7987 default:
7988 return bfd_reloc_notsupported;
7989
7990 case R_ARM_TLS_GOTDESC:
7991 if (is_local)
7992 insn = 0;
7993 else
7994 {
7995 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7996 if (insn & 1)
7997 insn -= 5; /* THUMB */
7998 else
7999 insn -= 8; /* ARM */
8000 }
8001 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
8002 return bfd_reloc_continue;
8003
8004 case R_ARM_THM_TLS_DESCSEQ:
8005 /* Thumb insn. */
8006 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
8007 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
8008 {
8009 if (is_local)
8010 /* nop */
8011 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8012 }
8013 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
8014 {
8015 if (is_local)
8016 /* nop */
8017 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8018 else
8019 /* ldr rx,[ry] */
8020 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
8021 }
8022 else if ((insn & 0xff87) == 0x4780) /* blx rx */
8023 {
8024 if (is_local)
8025 /* nop */
8026 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
8027 else
8028 /* mov r0, rx */
8029 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
8030 contents + rel->r_offset);
8031 }
8032 else
8033 {
8034 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
8035 /* It's a 32 bit instruction, fetch the rest of it for
8036 error generation. */
8037 insn = (insn << 16)
8038 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
8039 (*_bfd_error_handler)
8040 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
8041 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
8042 return bfd_reloc_notsupported;
8043 }
8044 break;
8045
8046 case R_ARM_TLS_DESCSEQ:
8047 /* arm insn. */
8048 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
8049 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
8050 {
8051 if (is_local)
8052 /* mov rx, ry */
8053 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
8054 contents + rel->r_offset);
8055 }
8056 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
8057 {
8058 if (is_local)
8059 /* nop */
8060 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
8061 else
8062 /* ldr rx,[ry] */
8063 bfd_put_32 (input_bfd, insn & 0xfffff000,
8064 contents + rel->r_offset);
8065 }
8066 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
8067 {
8068 if (is_local)
8069 /* nop */
8070 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
8071 else
8072 /* mov r0, rx */
8073 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
8074 contents + rel->r_offset);
8075 }
8076 else
8077 {
8078 (*_bfd_error_handler)
8079 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
8080 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
8081 return bfd_reloc_notsupported;
8082 }
8083 break;
8084
8085 case R_ARM_TLS_CALL:
8086 /* GD->IE relaxation, turn the instruction into 'nop' or
8087 'ldr r0, [pc,r0]' */
8088 insn = is_local ? 0xe1a00000 : 0xe79f0000;
8089 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
8090 break;
8091
8092 case R_ARM_THM_TLS_CALL:
8093 /* GD->IE relaxation. */
8094 if (!is_local)
8095 /* add r0,pc; ldr r0, [r0] */
8096 insn = 0x44786800;
8097 else if (arch_has_thumb2_nop (globals))
8098 /* nop.w */
8099 insn = 0xf3af8000;
8100 else
8101 /* nop; nop */
8102 insn = 0xbf00bf00;
8103
8104 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
8105 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
8106 break;
8107 }
8108 return bfd_reloc_ok;
8109 }
8110
8111 /* For a given value of n, calculate the value of G_n as required to
8112 deal with group relocations. We return it in the form of an
8113 encoded constant-and-rotation, together with the final residual. If n is
8114 specified as less than zero, then final_residual is filled with the
8115 input value and no further action is performed. */
8116
8117 static bfd_vma
8118 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
8119 {
8120 int current_n;
8121 bfd_vma g_n;
8122 bfd_vma encoded_g_n = 0;
8123 bfd_vma residual = value; /* Also known as Y_n. */
8124
8125 for (current_n = 0; current_n <= n; current_n++)
8126 {
8127 int shift;
8128
8129 /* Calculate which part of the value to mask. */
8130 if (residual == 0)
8131 shift = 0;
8132 else
8133 {
8134 int msb;
8135
8136 /* Determine the most significant bit in the residual and
8137 align the resulting value to a 2-bit boundary. */
8138 for (msb = 30; msb >= 0; msb -= 2)
8139 if (residual & (3 << msb))
8140 break;
8141
8142 /* The desired shift is now (msb - 6), or zero, whichever
8143 is the greater. */
8144 shift = msb - 6;
8145 if (shift < 0)
8146 shift = 0;
8147 }
8148
8149 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
8150 g_n = residual & (0xff << shift);
8151 encoded_g_n = (g_n >> shift)
8152 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
8153
8154 /* Calculate the residual for the next time around. */
8155 residual &= ~g_n;
8156 }
8157
8158 *final_residual = residual;
8159
8160 return encoded_g_n;
8161 }
8162
8163 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
8164 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
8165
8166 static int
8167 identify_add_or_sub (bfd_vma insn)
8168 {
8169 int opcode = insn & 0x1e00000;
8170
8171 if (opcode == 1 << 23) /* ADD */
8172 return 1;
8173
8174 if (opcode == 1 << 22) /* SUB */
8175 return -1;
8176
8177 return 0;
8178 }
8179
8180 /* Perform a relocation as part of a final link. */
8181
8182 static bfd_reloc_status_type
8183 elf32_arm_final_link_relocate (reloc_howto_type * howto,
8184 bfd * input_bfd,
8185 bfd * output_bfd,
8186 asection * input_section,
8187 bfd_byte * contents,
8188 Elf_Internal_Rela * rel,
8189 bfd_vma value,
8190 struct bfd_link_info * info,
8191 asection * sym_sec,
8192 const char * sym_name,
8193 unsigned char st_type,
8194 enum arm_st_branch_type branch_type,
8195 struct elf_link_hash_entry * h,
8196 bfd_boolean * unresolved_reloc_p,
8197 char ** error_message)
8198 {
8199 unsigned long r_type = howto->type;
8200 unsigned long r_symndx;
8201 bfd_byte * hit_data = contents + rel->r_offset;
8202 bfd_vma * local_got_offsets;
8203 bfd_vma * local_tlsdesc_gotents;
8204 asection * sgot;
8205 asection * splt;
8206 asection * sreloc = NULL;
8207 asection * srelgot;
8208 bfd_vma addend;
8209 bfd_signed_vma signed_addend;
8210 unsigned char dynreloc_st_type;
8211 bfd_vma dynreloc_value;
8212 struct elf32_arm_link_hash_table * globals;
8213 struct elf32_arm_link_hash_entry *eh;
8214 union gotplt_union *root_plt;
8215 struct arm_plt_info *arm_plt;
8216 bfd_vma plt_offset;
8217 bfd_vma gotplt_offset;
8218 bfd_boolean has_iplt_entry;
8219
8220 globals = elf32_arm_hash_table (info);
8221 if (globals == NULL)
8222 return bfd_reloc_notsupported;
8223
8224 BFD_ASSERT (is_arm_elf (input_bfd));
8225
8226 /* Some relocation types map to different relocations depending on the
8227 target. We pick the right one here. */
8228 r_type = arm_real_reloc_type (globals, r_type);
8229
8230 /* It is possible to have linker relaxations on some TLS access
8231 models. Update our information here. */
8232 r_type = elf32_arm_tls_transition (info, r_type, h);
8233
8234 if (r_type != howto->type)
8235 howto = elf32_arm_howto_from_type (r_type);
8236
8237 /* If the start address has been set, then set the EF_ARM_HASENTRY
8238 flag. Setting this more than once is redundant, but the cost is
8239 not too high, and it keeps the code simple.
8240
8241 The test is done here, rather than somewhere else, because the
8242 start address is only set just before the final link commences.
8243
8244 Note - if the user deliberately sets a start address of 0, the
8245 flag will not be set. */
8246 if (bfd_get_start_address (output_bfd) != 0)
8247 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
8248
8249 eh = (struct elf32_arm_link_hash_entry *) h;
8250 sgot = globals->root.sgot;
8251 local_got_offsets = elf_local_got_offsets (input_bfd);
8252 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
8253
8254 if (globals->root.dynamic_sections_created)
8255 srelgot = globals->root.srelgot;
8256 else
8257 srelgot = NULL;
8258
8259 r_symndx = ELF32_R_SYM (rel->r_info);
8260
8261 if (globals->use_rel)
8262 {
8263 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
8264
8265 if (addend & ((howto->src_mask + 1) >> 1))
8266 {
8267 signed_addend = -1;
8268 signed_addend &= ~ howto->src_mask;
8269 signed_addend |= addend;
8270 }
8271 else
8272 signed_addend = addend;
8273 }
8274 else
8275 addend = signed_addend = rel->r_addend;
8276
8277 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
8278 are resolving a function call relocation. */
8279 if (using_thumb_only (globals)
8280 && (r_type == R_ARM_THM_CALL
8281 || r_type == R_ARM_THM_JUMP24)
8282 && branch_type == ST_BRANCH_TO_ARM)
8283 branch_type = ST_BRANCH_TO_THUMB;
8284
8285 /* Record the symbol information that should be used in dynamic
8286 relocations. */
8287 dynreloc_st_type = st_type;
8288 dynreloc_value = value;
8289 if (branch_type == ST_BRANCH_TO_THUMB)
8290 dynreloc_value |= 1;
8291
8292 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
8293 VALUE appropriately for relocations that we resolve at link time. */
8294 has_iplt_entry = FALSE;
8295 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
8296 && root_plt->offset != (bfd_vma) -1)
8297 {
8298 plt_offset = root_plt->offset;
8299 gotplt_offset = arm_plt->got_offset;
8300
8301 if (h == NULL || eh->is_iplt)
8302 {
8303 has_iplt_entry = TRUE;
8304 splt = globals->root.iplt;
8305
8306 /* Populate .iplt entries here, because not all of them will
8307 be seen by finish_dynamic_symbol. The lower bit is set if
8308 we have already populated the entry. */
8309 if (plt_offset & 1)
8310 plt_offset--;
8311 else
8312 {
8313 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
8314 -1, dynreloc_value))
8315 root_plt->offset |= 1;
8316 else
8317 return bfd_reloc_notsupported;
8318 }
8319
8320 /* Static relocations always resolve to the .iplt entry. */
8321 st_type = STT_FUNC;
8322 value = (splt->output_section->vma
8323 + splt->output_offset
8324 + plt_offset);
8325 branch_type = ST_BRANCH_TO_ARM;
8326
8327 /* If there are non-call relocations that resolve to the .iplt
8328 entry, then all dynamic ones must too. */
8329 if (arm_plt->noncall_refcount != 0)
8330 {
8331 dynreloc_st_type = st_type;
8332 dynreloc_value = value;
8333 }
8334 }
8335 else
8336 /* We populate the .plt entry in finish_dynamic_symbol. */
8337 splt = globals->root.splt;
8338 }
8339 else
8340 {
8341 splt = NULL;
8342 plt_offset = (bfd_vma) -1;
8343 gotplt_offset = (bfd_vma) -1;
8344 }
8345
8346 switch (r_type)
8347 {
8348 case R_ARM_NONE:
8349 /* We don't need to find a value for this symbol. It's just a
8350 marker. */
8351 *unresolved_reloc_p = FALSE;
8352 return bfd_reloc_ok;
8353
8354 case R_ARM_ABS12:
8355 if (!globals->vxworks_p)
8356 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8357
8358 case R_ARM_PC24:
8359 case R_ARM_ABS32:
8360 case R_ARM_ABS32_NOI:
8361 case R_ARM_REL32:
8362 case R_ARM_REL32_NOI:
8363 case R_ARM_CALL:
8364 case R_ARM_JUMP24:
8365 case R_ARM_XPC25:
8366 case R_ARM_PREL31:
8367 case R_ARM_PLT32:
8368 /* Handle relocations which should use the PLT entry. ABS32/REL32
8369 will use the symbol's value, which may point to a PLT entry, but we
8370 don't need to handle that here. If we created a PLT entry, all
8371 branches in this object should go to it, except if the PLT is too
8372 far away, in which case a long branch stub should be inserted. */
8373 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
8374 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
8375 && r_type != R_ARM_CALL
8376 && r_type != R_ARM_JUMP24
8377 && r_type != R_ARM_PLT32)
8378 && plt_offset != (bfd_vma) -1)
8379 {
8380 /* If we've created a .plt section, and assigned a PLT entry
8381 to this function, it must either be a STT_GNU_IFUNC reference
8382 or not be known to bind locally. In other cases, we should
8383 have cleared the PLT entry by now. */
8384 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
8385
8386 value = (splt->output_section->vma
8387 + splt->output_offset
8388 + plt_offset);
8389 *unresolved_reloc_p = FALSE;
8390 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8391 contents, rel->r_offset, value,
8392 rel->r_addend);
8393 }
8394
8395 /* When generating a shared object or relocatable executable, these
8396 relocations are copied into the output file to be resolved at
8397 run time. */
8398 if ((info->shared || globals->root.is_relocatable_executable)
8399 && (input_section->flags & SEC_ALLOC)
8400 && !(globals->vxworks_p
8401 && strcmp (input_section->output_section->name,
8402 ".tls_vars") == 0)
8403 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
8404 || !SYMBOL_CALLS_LOCAL (info, h))
8405 && !(input_bfd == globals->stub_bfd
8406 && strstr (input_section->name, STUB_SUFFIX))
8407 && (h == NULL
8408 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8409 || h->root.type != bfd_link_hash_undefweak)
8410 && r_type != R_ARM_PC24
8411 && r_type != R_ARM_CALL
8412 && r_type != R_ARM_JUMP24
8413 && r_type != R_ARM_PREL31
8414 && r_type != R_ARM_PLT32)
8415 {
8416 Elf_Internal_Rela outrel;
8417 bfd_boolean skip, relocate;
8418
8419 *unresolved_reloc_p = FALSE;
8420
8421 if (sreloc == NULL && globals->root.dynamic_sections_created)
8422 {
8423 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8424 ! globals->use_rel);
8425
8426 if (sreloc == NULL)
8427 return bfd_reloc_notsupported;
8428 }
8429
8430 skip = FALSE;
8431 relocate = FALSE;
8432
8433 outrel.r_addend = addend;
8434 outrel.r_offset =
8435 _bfd_elf_section_offset (output_bfd, info, input_section,
8436 rel->r_offset);
8437 if (outrel.r_offset == (bfd_vma) -1)
8438 skip = TRUE;
8439 else if (outrel.r_offset == (bfd_vma) -2)
8440 skip = TRUE, relocate = TRUE;
8441 outrel.r_offset += (input_section->output_section->vma
8442 + input_section->output_offset);
8443
8444 if (skip)
8445 memset (&outrel, 0, sizeof outrel);
8446 else if (h != NULL
8447 && h->dynindx != -1
8448 && (!info->shared
8449 || !info->symbolic
8450 || !h->def_regular))
8451 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
8452 else
8453 {
8454 int symbol;
8455
8456 /* This symbol is local, or marked to become local. */
8457 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
8458 if (globals->symbian_p)
8459 {
8460 asection *osec;
8461
8462 /* On Symbian OS, the data segment and text segement
8463 can be relocated independently. Therefore, we
8464 must indicate the segment to which this
8465 relocation is relative. The BPABI allows us to
8466 use any symbol in the right segment; we just use
8467 the section symbol as it is convenient. (We
8468 cannot use the symbol given by "h" directly as it
8469 will not appear in the dynamic symbol table.)
8470
8471 Note that the dynamic linker ignores the section
8472 symbol value, so we don't subtract osec->vma
8473 from the emitted reloc addend. */
8474 if (sym_sec)
8475 osec = sym_sec->output_section;
8476 else
8477 osec = input_section->output_section;
8478 symbol = elf_section_data (osec)->dynindx;
8479 if (symbol == 0)
8480 {
8481 struct elf_link_hash_table *htab = elf_hash_table (info);
8482
8483 if ((osec->flags & SEC_READONLY) == 0
8484 && htab->data_index_section != NULL)
8485 osec = htab->data_index_section;
8486 else
8487 osec = htab->text_index_section;
8488 symbol = elf_section_data (osec)->dynindx;
8489 }
8490 BFD_ASSERT (symbol != 0);
8491 }
8492 else
8493 /* On SVR4-ish systems, the dynamic loader cannot
8494 relocate the text and data segments independently,
8495 so the symbol does not matter. */
8496 symbol = 0;
8497 if (dynreloc_st_type == STT_GNU_IFUNC)
8498 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8499 to the .iplt entry. Instead, every non-call reference
8500 must use an R_ARM_IRELATIVE relocation to obtain the
8501 correct run-time address. */
8502 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8503 else
8504 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
8505 if (globals->use_rel)
8506 relocate = TRUE;
8507 else
8508 outrel.r_addend += dynreloc_value;
8509 }
8510
8511 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
8512
8513 /* If this reloc is against an external symbol, we do not want to
8514 fiddle with the addend. Otherwise, we need to include the symbol
8515 value so that it becomes an addend for the dynamic reloc. */
8516 if (! relocate)
8517 return bfd_reloc_ok;
8518
8519 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8520 contents, rel->r_offset,
8521 dynreloc_value, (bfd_vma) 0);
8522 }
8523 else switch (r_type)
8524 {
8525 case R_ARM_ABS12:
8526 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8527
8528 case R_ARM_XPC25: /* Arm BLX instruction. */
8529 case R_ARM_CALL:
8530 case R_ARM_JUMP24:
8531 case R_ARM_PC24: /* Arm B/BL instruction. */
8532 case R_ARM_PLT32:
8533 {
8534 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8535
8536 if (r_type == R_ARM_XPC25)
8537 {
8538 /* Check for Arm calling Arm function. */
8539 /* FIXME: Should we translate the instruction into a BL
8540 instruction instead ? */
8541 if (branch_type != ST_BRANCH_TO_THUMB)
8542 (*_bfd_error_handler)
8543 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8544 input_bfd,
8545 h ? h->root.root.string : "(local)");
8546 }
8547 else if (r_type == R_ARM_PC24)
8548 {
8549 /* Check for Arm calling Thumb function. */
8550 if (branch_type == ST_BRANCH_TO_THUMB)
8551 {
8552 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8553 output_bfd, input_section,
8554 hit_data, sym_sec, rel->r_offset,
8555 signed_addend, value,
8556 error_message))
8557 return bfd_reloc_ok;
8558 else
8559 return bfd_reloc_dangerous;
8560 }
8561 }
8562
8563 /* Check if a stub has to be inserted because the
8564 destination is too far or we are changing mode. */
8565 if ( r_type == R_ARM_CALL
8566 || r_type == R_ARM_JUMP24
8567 || r_type == R_ARM_PLT32)
8568 {
8569 enum elf32_arm_stub_type stub_type = arm_stub_none;
8570 struct elf32_arm_link_hash_entry *hash;
8571
8572 hash = (struct elf32_arm_link_hash_entry *) h;
8573 stub_type = arm_type_of_stub (info, input_section, rel,
8574 st_type, &branch_type,
8575 hash, value, sym_sec,
8576 input_bfd, sym_name);
8577
8578 if (stub_type != arm_stub_none)
8579 {
8580 /* The target is out of reach, so redirect the
8581 branch to the local stub for this function. */
8582 stub_entry = elf32_arm_get_stub_entry (input_section,
8583 sym_sec, h,
8584 rel, globals,
8585 stub_type);
8586 {
8587 if (stub_entry != NULL)
8588 value = (stub_entry->stub_offset
8589 + stub_entry->stub_sec->output_offset
8590 + stub_entry->stub_sec->output_section->vma);
8591
8592 if (plt_offset != (bfd_vma) -1)
8593 *unresolved_reloc_p = FALSE;
8594 }
8595 }
8596 else
8597 {
8598 /* If the call goes through a PLT entry, make sure to
8599 check distance to the right destination address. */
8600 if (plt_offset != (bfd_vma) -1)
8601 {
8602 value = (splt->output_section->vma
8603 + splt->output_offset
8604 + plt_offset);
8605 *unresolved_reloc_p = FALSE;
8606 /* The PLT entry is in ARM mode, regardless of the
8607 target function. */
8608 branch_type = ST_BRANCH_TO_ARM;
8609 }
8610 }
8611 }
8612
8613 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8614 where:
8615 S is the address of the symbol in the relocation.
8616 P is address of the instruction being relocated.
8617 A is the addend (extracted from the instruction) in bytes.
8618
8619 S is held in 'value'.
8620 P is the base address of the section containing the
8621 instruction plus the offset of the reloc into that
8622 section, ie:
8623 (input_section->output_section->vma +
8624 input_section->output_offset +
8625 rel->r_offset).
8626 A is the addend, converted into bytes, ie:
8627 (signed_addend * 4)
8628
8629 Note: None of these operations have knowledge of the pipeline
8630 size of the processor, thus it is up to the assembler to
8631 encode this information into the addend. */
8632 value -= (input_section->output_section->vma
8633 + input_section->output_offset);
8634 value -= rel->r_offset;
8635 if (globals->use_rel)
8636 value += (signed_addend << howto->size);
8637 else
8638 /* RELA addends do not have to be adjusted by howto->size. */
8639 value += signed_addend;
8640
8641 signed_addend = value;
8642 signed_addend >>= howto->rightshift;
8643
8644 /* A branch to an undefined weak symbol is turned into a jump to
8645 the next instruction unless a PLT entry will be created.
8646 Do the same for local undefined symbols (but not for STN_UNDEF).
8647 The jump to the next instruction is optimized as a NOP depending
8648 on the architecture. */
8649 if (h ? (h->root.type == bfd_link_hash_undefweak
8650 && plt_offset == (bfd_vma) -1)
8651 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
8652 {
8653 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8654
8655 if (arch_has_arm_nop (globals))
8656 value |= 0x0320f000;
8657 else
8658 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
8659 }
8660 else
8661 {
8662 /* Perform a signed range check. */
8663 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
8664 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8665 return bfd_reloc_overflow;
8666
8667 addend = (value & 2);
8668
8669 value = (signed_addend & howto->dst_mask)
8670 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
8671
8672 if (r_type == R_ARM_CALL)
8673 {
8674 /* Set the H bit in the BLX instruction. */
8675 if (branch_type == ST_BRANCH_TO_THUMB)
8676 {
8677 if (addend)
8678 value |= (1 << 24);
8679 else
8680 value &= ~(bfd_vma)(1 << 24);
8681 }
8682
8683 /* Select the correct instruction (BL or BLX). */
8684 /* Only if we are not handling a BL to a stub. In this
8685 case, mode switching is performed by the stub. */
8686 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
8687 value |= (1 << 28);
8688 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
8689 {
8690 value &= ~(bfd_vma)(1 << 28);
8691 value |= (1 << 24);
8692 }
8693 }
8694 }
8695 }
8696 break;
8697
8698 case R_ARM_ABS32:
8699 value += addend;
8700 if (branch_type == ST_BRANCH_TO_THUMB)
8701 value |= 1;
8702 break;
8703
8704 case R_ARM_ABS32_NOI:
8705 value += addend;
8706 break;
8707
8708 case R_ARM_REL32:
8709 value += addend;
8710 if (branch_type == ST_BRANCH_TO_THUMB)
8711 value |= 1;
8712 value -= (input_section->output_section->vma
8713 + input_section->output_offset + rel->r_offset);
8714 break;
8715
8716 case R_ARM_REL32_NOI:
8717 value += addend;
8718 value -= (input_section->output_section->vma
8719 + input_section->output_offset + rel->r_offset);
8720 break;
8721
8722 case R_ARM_PREL31:
8723 value -= (input_section->output_section->vma
8724 + input_section->output_offset + rel->r_offset);
8725 value += signed_addend;
8726 if (! h || h->root.type != bfd_link_hash_undefweak)
8727 {
8728 /* Check for overflow. */
8729 if ((value ^ (value >> 1)) & (1 << 30))
8730 return bfd_reloc_overflow;
8731 }
8732 value &= 0x7fffffff;
8733 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
8734 if (branch_type == ST_BRANCH_TO_THUMB)
8735 value |= 1;
8736 break;
8737 }
8738
8739 bfd_put_32 (input_bfd, value, hit_data);
8740 return bfd_reloc_ok;
8741
8742 case R_ARM_ABS8:
8743 /* PR 16202: Refectch the addend using the correct size. */
8744 if (globals->use_rel)
8745 addend = bfd_get_8 (input_bfd, hit_data);
8746 value += addend;
8747
8748 /* There is no way to tell whether the user intended to use a signed or
8749 unsigned addend. When checking for overflow we accept either,
8750 as specified by the AAELF. */
8751 if ((long) value > 0xff || (long) value < -0x80)
8752 return bfd_reloc_overflow;
8753
8754 bfd_put_8 (input_bfd, value, hit_data);
8755 return bfd_reloc_ok;
8756
8757 case R_ARM_ABS16:
8758 /* PR 16202: Refectch the addend using the correct size. */
8759 if (globals->use_rel)
8760 addend = bfd_get_16 (input_bfd, hit_data);
8761 value += addend;
8762
8763 /* See comment for R_ARM_ABS8. */
8764 if ((long) value > 0xffff || (long) value < -0x8000)
8765 return bfd_reloc_overflow;
8766
8767 bfd_put_16 (input_bfd, value, hit_data);
8768 return bfd_reloc_ok;
8769
8770 case R_ARM_THM_ABS5:
8771 /* Support ldr and str instructions for the thumb. */
8772 if (globals->use_rel)
8773 {
8774 /* Need to refetch addend. */
8775 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8776 /* ??? Need to determine shift amount from operand size. */
8777 addend >>= howto->rightshift;
8778 }
8779 value += addend;
8780
8781 /* ??? Isn't value unsigned? */
8782 if ((long) value > 0x1f || (long) value < -0x10)
8783 return bfd_reloc_overflow;
8784
8785 /* ??? Value needs to be properly shifted into place first. */
8786 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8787 bfd_put_16 (input_bfd, value, hit_data);
8788 return bfd_reloc_ok;
8789
8790 case R_ARM_THM_ALU_PREL_11_0:
8791 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8792 {
8793 bfd_vma insn;
8794 bfd_signed_vma relocation;
8795
8796 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8797 | bfd_get_16 (input_bfd, hit_data + 2);
8798
8799 if (globals->use_rel)
8800 {
8801 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8802 | ((insn & (1 << 26)) >> 15);
8803 if (insn & 0xf00000)
8804 signed_addend = -signed_addend;
8805 }
8806
8807 relocation = value + signed_addend;
8808 relocation -= Pa (input_section->output_section->vma
8809 + input_section->output_offset
8810 + rel->r_offset);
8811
8812 value = abs (relocation);
8813
8814 if (value >= 0x1000)
8815 return bfd_reloc_overflow;
8816
8817 insn = (insn & 0xfb0f8f00) | (value & 0xff)
8818 | ((value & 0x700) << 4)
8819 | ((value & 0x800) << 15);
8820 if (relocation < 0)
8821 insn |= 0xa00000;
8822
8823 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8824 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8825
8826 return bfd_reloc_ok;
8827 }
8828
8829 case R_ARM_THM_PC8:
8830 /* PR 10073: This reloc is not generated by the GNU toolchain,
8831 but it is supported for compatibility with third party libraries
8832 generated by other compilers, specifically the ARM/IAR. */
8833 {
8834 bfd_vma insn;
8835 bfd_signed_vma relocation;
8836
8837 insn = bfd_get_16 (input_bfd, hit_data);
8838
8839 if (globals->use_rel)
8840 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
8841
8842 relocation = value + addend;
8843 relocation -= Pa (input_section->output_section->vma
8844 + input_section->output_offset
8845 + rel->r_offset);
8846
8847 value = abs (relocation);
8848
8849 /* We do not check for overflow of this reloc. Although strictly
8850 speaking this is incorrect, it appears to be necessary in order
8851 to work with IAR generated relocs. Since GCC and GAS do not
8852 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8853 a problem for them. */
8854 value &= 0x3fc;
8855
8856 insn = (insn & 0xff00) | (value >> 2);
8857
8858 bfd_put_16 (input_bfd, insn, hit_data);
8859
8860 return bfd_reloc_ok;
8861 }
8862
8863 case R_ARM_THM_PC12:
8864 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8865 {
8866 bfd_vma insn;
8867 bfd_signed_vma relocation;
8868
8869 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8870 | bfd_get_16 (input_bfd, hit_data + 2);
8871
8872 if (globals->use_rel)
8873 {
8874 signed_addend = insn & 0xfff;
8875 if (!(insn & (1 << 23)))
8876 signed_addend = -signed_addend;
8877 }
8878
8879 relocation = value + signed_addend;
8880 relocation -= Pa (input_section->output_section->vma
8881 + input_section->output_offset
8882 + rel->r_offset);
8883
8884 value = abs (relocation);
8885
8886 if (value >= 0x1000)
8887 return bfd_reloc_overflow;
8888
8889 insn = (insn & 0xff7ff000) | value;
8890 if (relocation >= 0)
8891 insn |= (1 << 23);
8892
8893 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8894 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8895
8896 return bfd_reloc_ok;
8897 }
8898
8899 case R_ARM_THM_XPC22:
8900 case R_ARM_THM_CALL:
8901 case R_ARM_THM_JUMP24:
8902 /* Thumb BL (branch long instruction). */
8903 {
8904 bfd_vma relocation;
8905 bfd_vma reloc_sign;
8906 bfd_boolean overflow = FALSE;
8907 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8908 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8909 bfd_signed_vma reloc_signed_max;
8910 bfd_signed_vma reloc_signed_min;
8911 bfd_vma check;
8912 bfd_signed_vma signed_check;
8913 int bitsize;
8914 const int thumb2 = using_thumb2 (globals);
8915
8916 /* A branch to an undefined weak symbol is turned into a jump to
8917 the next instruction unless a PLT entry will be created.
8918 The jump to the next instruction is optimized as a NOP.W for
8919 Thumb-2 enabled architectures. */
8920 if (h && h->root.type == bfd_link_hash_undefweak
8921 && plt_offset == (bfd_vma) -1)
8922 {
8923 if (arch_has_thumb2_nop (globals))
8924 {
8925 bfd_put_16 (input_bfd, 0xf3af, hit_data);
8926 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8927 }
8928 else
8929 {
8930 bfd_put_16 (input_bfd, 0xe000, hit_data);
8931 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8932 }
8933 return bfd_reloc_ok;
8934 }
8935
8936 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
8937 with Thumb-1) involving the J1 and J2 bits. */
8938 if (globals->use_rel)
8939 {
8940 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8941 bfd_vma upper = upper_insn & 0x3ff;
8942 bfd_vma lower = lower_insn & 0x7ff;
8943 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8944 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
8945 bfd_vma i1 = j1 ^ s ? 0 : 1;
8946 bfd_vma i2 = j2 ^ s ? 0 : 1;
8947
8948 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8949 /* Sign extend. */
8950 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
8951
8952 signed_addend = addend;
8953 }
8954
8955 if (r_type == R_ARM_THM_XPC22)
8956 {
8957 /* Check for Thumb to Thumb call. */
8958 /* FIXME: Should we translate the instruction into a BL
8959 instruction instead ? */
8960 if (branch_type == ST_BRANCH_TO_THUMB)
8961 (*_bfd_error_handler)
8962 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8963 input_bfd,
8964 h ? h->root.root.string : "(local)");
8965 }
8966 else
8967 {
8968 /* If it is not a call to Thumb, assume call to Arm.
8969 If it is a call relative to a section name, then it is not a
8970 function call at all, but rather a long jump. Calls through
8971 the PLT do not require stubs. */
8972 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
8973 {
8974 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8975 {
8976 /* Convert BL to BLX. */
8977 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8978 }
8979 else if (( r_type != R_ARM_THM_CALL)
8980 && (r_type != R_ARM_THM_JUMP24))
8981 {
8982 if (elf32_thumb_to_arm_stub
8983 (info, sym_name, input_bfd, output_bfd, input_section,
8984 hit_data, sym_sec, rel->r_offset, signed_addend, value,
8985 error_message))
8986 return bfd_reloc_ok;
8987 else
8988 return bfd_reloc_dangerous;
8989 }
8990 }
8991 else if (branch_type == ST_BRANCH_TO_THUMB
8992 && globals->use_blx
8993 && r_type == R_ARM_THM_CALL)
8994 {
8995 /* Make sure this is a BL. */
8996 lower_insn |= 0x1800;
8997 }
8998 }
8999
9000 enum elf32_arm_stub_type stub_type = arm_stub_none;
9001 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
9002 {
9003 /* Check if a stub has to be inserted because the destination
9004 is too far. */
9005 struct elf32_arm_stub_hash_entry *stub_entry;
9006 struct elf32_arm_link_hash_entry *hash;
9007
9008 hash = (struct elf32_arm_link_hash_entry *) h;
9009
9010 stub_type = arm_type_of_stub (info, input_section, rel,
9011 st_type, &branch_type,
9012 hash, value, sym_sec,
9013 input_bfd, sym_name);
9014
9015 if (stub_type != arm_stub_none)
9016 {
9017 /* The target is out of reach or we are changing modes, so
9018 redirect the branch to the local stub for this
9019 function. */
9020 stub_entry = elf32_arm_get_stub_entry (input_section,
9021 sym_sec, h,
9022 rel, globals,
9023 stub_type);
9024 if (stub_entry != NULL)
9025 {
9026 value = (stub_entry->stub_offset
9027 + stub_entry->stub_sec->output_offset
9028 + stub_entry->stub_sec->output_section->vma);
9029
9030 if (plt_offset != (bfd_vma) -1)
9031 *unresolved_reloc_p = FALSE;
9032 }
9033
9034 /* If this call becomes a call to Arm, force BLX. */
9035 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
9036 {
9037 if ((stub_entry
9038 && !arm_stub_is_thumb (stub_entry->stub_type))
9039 || branch_type != ST_BRANCH_TO_THUMB)
9040 lower_insn = (lower_insn & ~0x1000) | 0x0800;
9041 }
9042 }
9043 }
9044
9045 /* Handle calls via the PLT. */
9046 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
9047 {
9048 value = (splt->output_section->vma
9049 + splt->output_offset
9050 + plt_offset);
9051
9052 if (globals->use_blx
9053 && r_type == R_ARM_THM_CALL
9054 && ! using_thumb_only (globals))
9055 {
9056 /* If the Thumb BLX instruction is available, convert
9057 the BL to a BLX instruction to call the ARM-mode
9058 PLT entry. */
9059 lower_insn = (lower_insn & ~0x1000) | 0x0800;
9060 branch_type = ST_BRANCH_TO_ARM;
9061 }
9062 else
9063 {
9064 if (! using_thumb_only (globals))
9065 /* Target the Thumb stub before the ARM PLT entry. */
9066 value -= PLT_THUMB_STUB_SIZE;
9067 branch_type = ST_BRANCH_TO_THUMB;
9068 }
9069 *unresolved_reloc_p = FALSE;
9070 }
9071
9072 relocation = value + signed_addend;
9073
9074 relocation -= (input_section->output_section->vma
9075 + input_section->output_offset
9076 + rel->r_offset);
9077
9078 check = relocation >> howto->rightshift;
9079
9080 /* If this is a signed value, the rightshift just dropped
9081 leading 1 bits (assuming twos complement). */
9082 if ((bfd_signed_vma) relocation >= 0)
9083 signed_check = check;
9084 else
9085 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
9086
9087 /* Calculate the permissable maximum and minimum values for
9088 this relocation according to whether we're relocating for
9089 Thumb-2 or not. */
9090 bitsize = howto->bitsize;
9091 if (!thumb2)
9092 bitsize -= 2;
9093 reloc_signed_max = (1 << (bitsize - 1)) - 1;
9094 reloc_signed_min = ~reloc_signed_max;
9095
9096 /* Assumes two's complement. */
9097 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9098 overflow = TRUE;
9099
9100 if ((lower_insn & 0x5000) == 0x4000)
9101 /* For a BLX instruction, make sure that the relocation is rounded up
9102 to a word boundary. This follows the semantics of the instruction
9103 which specifies that bit 1 of the target address will come from bit
9104 1 of the base address. */
9105 relocation = (relocation + 2) & ~ 3;
9106
9107 /* Put RELOCATION back into the insn. Assumes two's complement.
9108 We use the Thumb-2 encoding, which is safe even if dealing with
9109 a Thumb-1 instruction by virtue of our overflow check above. */
9110 reloc_sign = (signed_check < 0) ? 1 : 0;
9111 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
9112 | ((relocation >> 12) & 0x3ff)
9113 | (reloc_sign << 10);
9114 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
9115 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
9116 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
9117 | ((relocation >> 1) & 0x7ff);
9118
9119 /* Put the relocated value back in the object file: */
9120 bfd_put_16 (input_bfd, upper_insn, hit_data);
9121 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9122
9123 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9124 }
9125 break;
9126
9127 case R_ARM_THM_JUMP19:
9128 /* Thumb32 conditional branch instruction. */
9129 {
9130 bfd_vma relocation;
9131 bfd_boolean overflow = FALSE;
9132 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
9133 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
9134 bfd_signed_vma reloc_signed_max = 0xffffe;
9135 bfd_signed_vma reloc_signed_min = -0x100000;
9136 bfd_signed_vma signed_check;
9137 enum elf32_arm_stub_type stub_type = arm_stub_none;
9138 struct elf32_arm_stub_hash_entry *stub_entry;
9139 struct elf32_arm_link_hash_entry *hash;
9140
9141 /* Need to refetch the addend, reconstruct the top three bits,
9142 and squish the two 11 bit pieces together. */
9143 if (globals->use_rel)
9144 {
9145 bfd_vma S = (upper_insn & 0x0400) >> 10;
9146 bfd_vma upper = (upper_insn & 0x003f);
9147 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
9148 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
9149 bfd_vma lower = (lower_insn & 0x07ff);
9150
9151 upper |= J1 << 6;
9152 upper |= J2 << 7;
9153 upper |= (!S) << 8;
9154 upper -= 0x0100; /* Sign extend. */
9155
9156 addend = (upper << 12) | (lower << 1);
9157 signed_addend = addend;
9158 }
9159
9160 /* Handle calls via the PLT. */
9161 if (plt_offset != (bfd_vma) -1)
9162 {
9163 value = (splt->output_section->vma
9164 + splt->output_offset
9165 + plt_offset);
9166 /* Target the Thumb stub before the ARM PLT entry. */
9167 value -= PLT_THUMB_STUB_SIZE;
9168 *unresolved_reloc_p = FALSE;
9169 }
9170
9171 hash = (struct elf32_arm_link_hash_entry *)h;
9172
9173 stub_type = arm_type_of_stub (info, input_section, rel,
9174 st_type, &branch_type,
9175 hash, value, sym_sec,
9176 input_bfd, sym_name);
9177 if (stub_type != arm_stub_none)
9178 {
9179 stub_entry = elf32_arm_get_stub_entry (input_section,
9180 sym_sec, h,
9181 rel, globals,
9182 stub_type);
9183 if (stub_entry != NULL)
9184 {
9185 value = (stub_entry->stub_offset
9186 + stub_entry->stub_sec->output_offset
9187 + stub_entry->stub_sec->output_section->vma);
9188 }
9189 }
9190
9191 relocation = value + signed_addend;
9192 relocation -= (input_section->output_section->vma
9193 + input_section->output_offset
9194 + rel->r_offset);
9195 signed_check = (bfd_signed_vma) relocation;
9196
9197 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9198 overflow = TRUE;
9199
9200 /* Put RELOCATION back into the insn. */
9201 {
9202 bfd_vma S = (relocation & 0x00100000) >> 20;
9203 bfd_vma J2 = (relocation & 0x00080000) >> 19;
9204 bfd_vma J1 = (relocation & 0x00040000) >> 18;
9205 bfd_vma hi = (relocation & 0x0003f000) >> 12;
9206 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
9207
9208 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
9209 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
9210 }
9211
9212 /* Put the relocated value back in the object file: */
9213 bfd_put_16 (input_bfd, upper_insn, hit_data);
9214 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9215
9216 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
9217 }
9218
9219 case R_ARM_THM_JUMP11:
9220 case R_ARM_THM_JUMP8:
9221 case R_ARM_THM_JUMP6:
9222 /* Thumb B (branch) instruction). */
9223 {
9224 bfd_signed_vma relocation;
9225 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
9226 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
9227 bfd_signed_vma signed_check;
9228
9229 /* CZB cannot jump backward. */
9230 if (r_type == R_ARM_THM_JUMP6)
9231 reloc_signed_min = 0;
9232
9233 if (globals->use_rel)
9234 {
9235 /* Need to refetch addend. */
9236 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9237 if (addend & ((howto->src_mask + 1) >> 1))
9238 {
9239 signed_addend = -1;
9240 signed_addend &= ~ howto->src_mask;
9241 signed_addend |= addend;
9242 }
9243 else
9244 signed_addend = addend;
9245 /* The value in the insn has been right shifted. We need to
9246 undo this, so that we can perform the address calculation
9247 in terms of bytes. */
9248 signed_addend <<= howto->rightshift;
9249 }
9250 relocation = value + signed_addend;
9251
9252 relocation -= (input_section->output_section->vma
9253 + input_section->output_offset
9254 + rel->r_offset);
9255
9256 relocation >>= howto->rightshift;
9257 signed_check = relocation;
9258
9259 if (r_type == R_ARM_THM_JUMP6)
9260 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
9261 else
9262 relocation &= howto->dst_mask;
9263 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
9264
9265 bfd_put_16 (input_bfd, relocation, hit_data);
9266
9267 /* Assumes two's complement. */
9268 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9269 return bfd_reloc_overflow;
9270
9271 return bfd_reloc_ok;
9272 }
9273
9274 case R_ARM_ALU_PCREL7_0:
9275 case R_ARM_ALU_PCREL15_8:
9276 case R_ARM_ALU_PCREL23_15:
9277 {
9278 bfd_vma insn;
9279 bfd_vma relocation;
9280
9281 insn = bfd_get_32 (input_bfd, hit_data);
9282 if (globals->use_rel)
9283 {
9284 /* Extract the addend. */
9285 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
9286 signed_addend = addend;
9287 }
9288 relocation = value + signed_addend;
9289
9290 relocation -= (input_section->output_section->vma
9291 + input_section->output_offset
9292 + rel->r_offset);
9293 insn = (insn & ~0xfff)
9294 | ((howto->bitpos << 7) & 0xf00)
9295 | ((relocation >> howto->bitpos) & 0xff);
9296 bfd_put_32 (input_bfd, value, hit_data);
9297 }
9298 return bfd_reloc_ok;
9299
9300 case R_ARM_GNU_VTINHERIT:
9301 case R_ARM_GNU_VTENTRY:
9302 return bfd_reloc_ok;
9303
9304 case R_ARM_GOTOFF32:
9305 /* Relocation is relative to the start of the
9306 global offset table. */
9307
9308 BFD_ASSERT (sgot != NULL);
9309 if (sgot == NULL)
9310 return bfd_reloc_notsupported;
9311
9312 /* If we are addressing a Thumb function, we need to adjust the
9313 address by one, so that attempts to call the function pointer will
9314 correctly interpret it as Thumb code. */
9315 if (branch_type == ST_BRANCH_TO_THUMB)
9316 value += 1;
9317
9318 /* Note that sgot->output_offset is not involved in this
9319 calculation. We always want the start of .got. If we
9320 define _GLOBAL_OFFSET_TABLE in a different way, as is
9321 permitted by the ABI, we might have to change this
9322 calculation. */
9323 value -= sgot->output_section->vma;
9324 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9325 contents, rel->r_offset, value,
9326 rel->r_addend);
9327
9328 case R_ARM_GOTPC:
9329 /* Use global offset table as symbol value. */
9330 BFD_ASSERT (sgot != NULL);
9331
9332 if (sgot == NULL)
9333 return bfd_reloc_notsupported;
9334
9335 *unresolved_reloc_p = FALSE;
9336 value = sgot->output_section->vma;
9337 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9338 contents, rel->r_offset, value,
9339 rel->r_addend);
9340
9341 case R_ARM_GOT32:
9342 case R_ARM_GOT_PREL:
9343 /* Relocation is to the entry for this symbol in the
9344 global offset table. */
9345 if (sgot == NULL)
9346 return bfd_reloc_notsupported;
9347
9348 if (dynreloc_st_type == STT_GNU_IFUNC
9349 && plt_offset != (bfd_vma) -1
9350 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
9351 {
9352 /* We have a relocation against a locally-binding STT_GNU_IFUNC
9353 symbol, and the relocation resolves directly to the runtime
9354 target rather than to the .iplt entry. This means that any
9355 .got entry would be the same value as the .igot.plt entry,
9356 so there's no point creating both. */
9357 sgot = globals->root.igotplt;
9358 value = sgot->output_offset + gotplt_offset;
9359 }
9360 else if (h != NULL)
9361 {
9362 bfd_vma off;
9363
9364 off = h->got.offset;
9365 BFD_ASSERT (off != (bfd_vma) -1);
9366 if ((off & 1) != 0)
9367 {
9368 /* We have already processsed one GOT relocation against
9369 this symbol. */
9370 off &= ~1;
9371 if (globals->root.dynamic_sections_created
9372 && !SYMBOL_REFERENCES_LOCAL (info, h))
9373 *unresolved_reloc_p = FALSE;
9374 }
9375 else
9376 {
9377 Elf_Internal_Rela outrel;
9378
9379 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
9380 {
9381 /* If the symbol doesn't resolve locally in a static
9382 object, we have an undefined reference. If the
9383 symbol doesn't resolve locally in a dynamic object,
9384 it should be resolved by the dynamic linker. */
9385 if (globals->root.dynamic_sections_created)
9386 {
9387 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9388 *unresolved_reloc_p = FALSE;
9389 }
9390 else
9391 outrel.r_info = 0;
9392 outrel.r_addend = 0;
9393 }
9394 else
9395 {
9396 if (dynreloc_st_type == STT_GNU_IFUNC)
9397 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9398 else if (info->shared &&
9399 (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9400 || h->root.type != bfd_link_hash_undefweak))
9401 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9402 else
9403 outrel.r_info = 0;
9404 outrel.r_addend = dynreloc_value;
9405 }
9406
9407 /* The GOT entry is initialized to zero by default.
9408 See if we should install a different value. */
9409 if (outrel.r_addend != 0
9410 && (outrel.r_info == 0 || globals->use_rel))
9411 {
9412 bfd_put_32 (output_bfd, outrel.r_addend,
9413 sgot->contents + off);
9414 outrel.r_addend = 0;
9415 }
9416
9417 if (outrel.r_info != 0)
9418 {
9419 outrel.r_offset = (sgot->output_section->vma
9420 + sgot->output_offset
9421 + off);
9422 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9423 }
9424 h->got.offset |= 1;
9425 }
9426 value = sgot->output_offset + off;
9427 }
9428 else
9429 {
9430 bfd_vma off;
9431
9432 BFD_ASSERT (local_got_offsets != NULL &&
9433 local_got_offsets[r_symndx] != (bfd_vma) -1);
9434
9435 off = local_got_offsets[r_symndx];
9436
9437 /* The offset must always be a multiple of 4. We use the
9438 least significant bit to record whether we have already
9439 generated the necessary reloc. */
9440 if ((off & 1) != 0)
9441 off &= ~1;
9442 else
9443 {
9444 if (globals->use_rel)
9445 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
9446
9447 if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
9448 {
9449 Elf_Internal_Rela outrel;
9450
9451 outrel.r_addend = addend + dynreloc_value;
9452 outrel.r_offset = (sgot->output_section->vma
9453 + sgot->output_offset
9454 + off);
9455 if (dynreloc_st_type == STT_GNU_IFUNC)
9456 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9457 else
9458 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9459 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9460 }
9461
9462 local_got_offsets[r_symndx] |= 1;
9463 }
9464
9465 value = sgot->output_offset + off;
9466 }
9467 if (r_type != R_ARM_GOT32)
9468 value += sgot->output_section->vma;
9469
9470 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9471 contents, rel->r_offset, value,
9472 rel->r_addend);
9473
9474 case R_ARM_TLS_LDO32:
9475 value = value - dtpoff_base (info);
9476
9477 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9478 contents, rel->r_offset, value,
9479 rel->r_addend);
9480
9481 case R_ARM_TLS_LDM32:
9482 {
9483 bfd_vma off;
9484
9485 if (sgot == NULL)
9486 abort ();
9487
9488 off = globals->tls_ldm_got.offset;
9489
9490 if ((off & 1) != 0)
9491 off &= ~1;
9492 else
9493 {
9494 /* If we don't know the module number, create a relocation
9495 for it. */
9496 if (info->shared)
9497 {
9498 Elf_Internal_Rela outrel;
9499
9500 if (srelgot == NULL)
9501 abort ();
9502
9503 outrel.r_addend = 0;
9504 outrel.r_offset = (sgot->output_section->vma
9505 + sgot->output_offset + off);
9506 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9507
9508 if (globals->use_rel)
9509 bfd_put_32 (output_bfd, outrel.r_addend,
9510 sgot->contents + off);
9511
9512 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9513 }
9514 else
9515 bfd_put_32 (output_bfd, 1, sgot->contents + off);
9516
9517 globals->tls_ldm_got.offset |= 1;
9518 }
9519
9520 value = sgot->output_section->vma + sgot->output_offset + off
9521 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9522
9523 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9524 contents, rel->r_offset, value,
9525 rel->r_addend);
9526 }
9527
9528 case R_ARM_TLS_CALL:
9529 case R_ARM_THM_TLS_CALL:
9530 case R_ARM_TLS_GD32:
9531 case R_ARM_TLS_IE32:
9532 case R_ARM_TLS_GOTDESC:
9533 case R_ARM_TLS_DESCSEQ:
9534 case R_ARM_THM_TLS_DESCSEQ:
9535 {
9536 bfd_vma off, offplt;
9537 int indx = 0;
9538 char tls_type;
9539
9540 BFD_ASSERT (sgot != NULL);
9541
9542 if (h != NULL)
9543 {
9544 bfd_boolean dyn;
9545 dyn = globals->root.dynamic_sections_created;
9546 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9547 && (!info->shared
9548 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9549 {
9550 *unresolved_reloc_p = FALSE;
9551 indx = h->dynindx;
9552 }
9553 off = h->got.offset;
9554 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
9555 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9556 }
9557 else
9558 {
9559 BFD_ASSERT (local_got_offsets != NULL);
9560 off = local_got_offsets[r_symndx];
9561 offplt = local_tlsdesc_gotents[r_symndx];
9562 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9563 }
9564
9565 /* Linker relaxations happens from one of the
9566 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
9567 if (ELF32_R_TYPE(rel->r_info) != r_type)
9568 tls_type = GOT_TLS_IE;
9569
9570 BFD_ASSERT (tls_type != GOT_UNKNOWN);
9571
9572 if ((off & 1) != 0)
9573 off &= ~1;
9574 else
9575 {
9576 bfd_boolean need_relocs = FALSE;
9577 Elf_Internal_Rela outrel;
9578 int cur_off = off;
9579
9580 /* The GOT entries have not been initialized yet. Do it
9581 now, and emit any relocations. If both an IE GOT and a
9582 GD GOT are necessary, we emit the GD first. */
9583
9584 if ((info->shared || indx != 0)
9585 && (h == NULL
9586 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9587 || h->root.type != bfd_link_hash_undefweak))
9588 {
9589 need_relocs = TRUE;
9590 BFD_ASSERT (srelgot != NULL);
9591 }
9592
9593 if (tls_type & GOT_TLS_GDESC)
9594 {
9595 bfd_byte *loc;
9596
9597 /* We should have relaxed, unless this is an undefined
9598 weak symbol. */
9599 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9600 || info->shared);
9601 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
9602 <= globals->root.sgotplt->size);
9603
9604 outrel.r_addend = 0;
9605 outrel.r_offset = (globals->root.sgotplt->output_section->vma
9606 + globals->root.sgotplt->output_offset
9607 + offplt
9608 + globals->sgotplt_jump_table_size);
9609
9610 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9611 sreloc = globals->root.srelplt;
9612 loc = sreloc->contents;
9613 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9614 BFD_ASSERT (loc + RELOC_SIZE (globals)
9615 <= sreloc->contents + sreloc->size);
9616
9617 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9618
9619 /* For globals, the first word in the relocation gets
9620 the relocation index and the top bit set, or zero,
9621 if we're binding now. For locals, it gets the
9622 symbol's offset in the tls section. */
9623 bfd_put_32 (output_bfd,
9624 !h ? value - elf_hash_table (info)->tls_sec->vma
9625 : info->flags & DF_BIND_NOW ? 0
9626 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
9627 globals->root.sgotplt->contents + offplt
9628 + globals->sgotplt_jump_table_size);
9629
9630 /* Second word in the relocation is always zero. */
9631 bfd_put_32 (output_bfd, 0,
9632 globals->root.sgotplt->contents + offplt
9633 + globals->sgotplt_jump_table_size + 4);
9634 }
9635 if (tls_type & GOT_TLS_GD)
9636 {
9637 if (need_relocs)
9638 {
9639 outrel.r_addend = 0;
9640 outrel.r_offset = (sgot->output_section->vma
9641 + sgot->output_offset
9642 + cur_off);
9643 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
9644
9645 if (globals->use_rel)
9646 bfd_put_32 (output_bfd, outrel.r_addend,
9647 sgot->contents + cur_off);
9648
9649 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9650
9651 if (indx == 0)
9652 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9653 sgot->contents + cur_off + 4);
9654 else
9655 {
9656 outrel.r_addend = 0;
9657 outrel.r_info = ELF32_R_INFO (indx,
9658 R_ARM_TLS_DTPOFF32);
9659 outrel.r_offset += 4;
9660
9661 if (globals->use_rel)
9662 bfd_put_32 (output_bfd, outrel.r_addend,
9663 sgot->contents + cur_off + 4);
9664
9665 elf32_arm_add_dynreloc (output_bfd, info,
9666 srelgot, &outrel);
9667 }
9668 }
9669 else
9670 {
9671 /* If we are not emitting relocations for a
9672 general dynamic reference, then we must be in a
9673 static link or an executable link with the
9674 symbol binding locally. Mark it as belonging
9675 to module 1, the executable. */
9676 bfd_put_32 (output_bfd, 1,
9677 sgot->contents + cur_off);
9678 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9679 sgot->contents + cur_off + 4);
9680 }
9681
9682 cur_off += 8;
9683 }
9684
9685 if (tls_type & GOT_TLS_IE)
9686 {
9687 if (need_relocs)
9688 {
9689 if (indx == 0)
9690 outrel.r_addend = value - dtpoff_base (info);
9691 else
9692 outrel.r_addend = 0;
9693 outrel.r_offset = (sgot->output_section->vma
9694 + sgot->output_offset
9695 + cur_off);
9696 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9697
9698 if (globals->use_rel)
9699 bfd_put_32 (output_bfd, outrel.r_addend,
9700 sgot->contents + cur_off);
9701
9702 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9703 }
9704 else
9705 bfd_put_32 (output_bfd, tpoff (info, value),
9706 sgot->contents + cur_off);
9707 cur_off += 4;
9708 }
9709
9710 if (h != NULL)
9711 h->got.offset |= 1;
9712 else
9713 local_got_offsets[r_symndx] |= 1;
9714 }
9715
9716 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9717 off += 8;
9718 else if (tls_type & GOT_TLS_GDESC)
9719 off = offplt;
9720
9721 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9722 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9723 {
9724 bfd_signed_vma offset;
9725 /* TLS stubs are arm mode. The original symbol is a
9726 data object, so branch_type is bogus. */
9727 branch_type = ST_BRANCH_TO_ARM;
9728 enum elf32_arm_stub_type stub_type
9729 = arm_type_of_stub (info, input_section, rel,
9730 st_type, &branch_type,
9731 (struct elf32_arm_link_hash_entry *)h,
9732 globals->tls_trampoline, globals->root.splt,
9733 input_bfd, sym_name);
9734
9735 if (stub_type != arm_stub_none)
9736 {
9737 struct elf32_arm_stub_hash_entry *stub_entry
9738 = elf32_arm_get_stub_entry
9739 (input_section, globals->root.splt, 0, rel,
9740 globals, stub_type);
9741 offset = (stub_entry->stub_offset
9742 + stub_entry->stub_sec->output_offset
9743 + stub_entry->stub_sec->output_section->vma);
9744 }
9745 else
9746 offset = (globals->root.splt->output_section->vma
9747 + globals->root.splt->output_offset
9748 + globals->tls_trampoline);
9749
9750 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9751 {
9752 unsigned long inst;
9753
9754 offset -= (input_section->output_section->vma
9755 + input_section->output_offset
9756 + rel->r_offset + 8);
9757
9758 inst = offset >> 2;
9759 inst &= 0x00ffffff;
9760 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9761 }
9762 else
9763 {
9764 /* Thumb blx encodes the offset in a complicated
9765 fashion. */
9766 unsigned upper_insn, lower_insn;
9767 unsigned neg;
9768
9769 offset -= (input_section->output_section->vma
9770 + input_section->output_offset
9771 + rel->r_offset + 4);
9772
9773 if (stub_type != arm_stub_none
9774 && arm_stub_is_thumb (stub_type))
9775 {
9776 lower_insn = 0xd000;
9777 }
9778 else
9779 {
9780 lower_insn = 0xc000;
9781 /* Round up the offset to a word boundary. */
9782 offset = (offset + 2) & ~2;
9783 }
9784
9785 neg = offset < 0;
9786 upper_insn = (0xf000
9787 | ((offset >> 12) & 0x3ff)
9788 | (neg << 10));
9789 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
9790 | (((!((offset >> 22) & 1)) ^ neg) << 11)
9791 | ((offset >> 1) & 0x7ff);
9792 bfd_put_16 (input_bfd, upper_insn, hit_data);
9793 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9794 return bfd_reloc_ok;
9795 }
9796 }
9797 /* These relocations needs special care, as besides the fact
9798 they point somewhere in .gotplt, the addend must be
9799 adjusted accordingly depending on the type of instruction
9800 we refer to. */
9801 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9802 {
9803 unsigned long data, insn;
9804 unsigned thumb;
9805
9806 data = bfd_get_32 (input_bfd, hit_data);
9807 thumb = data & 1;
9808 data &= ~1u;
9809
9810 if (thumb)
9811 {
9812 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9813 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9814 insn = (insn << 16)
9815 | bfd_get_16 (input_bfd,
9816 contents + rel->r_offset - data + 2);
9817 if ((insn & 0xf800c000) == 0xf000c000)
9818 /* bl/blx */
9819 value = -6;
9820 else if ((insn & 0xffffff00) == 0x4400)
9821 /* add */
9822 value = -5;
9823 else
9824 {
9825 (*_bfd_error_handler)
9826 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9827 input_bfd, input_section,
9828 (unsigned long)rel->r_offset, insn);
9829 return bfd_reloc_notsupported;
9830 }
9831 }
9832 else
9833 {
9834 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9835
9836 switch (insn >> 24)
9837 {
9838 case 0xeb: /* bl */
9839 case 0xfa: /* blx */
9840 value = -4;
9841 break;
9842
9843 case 0xe0: /* add */
9844 value = -8;
9845 break;
9846
9847 default:
9848 (*_bfd_error_handler)
9849 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9850 input_bfd, input_section,
9851 (unsigned long)rel->r_offset, insn);
9852 return bfd_reloc_notsupported;
9853 }
9854 }
9855
9856 value += ((globals->root.sgotplt->output_section->vma
9857 + globals->root.sgotplt->output_offset + off)
9858 - (input_section->output_section->vma
9859 + input_section->output_offset
9860 + rel->r_offset)
9861 + globals->sgotplt_jump_table_size);
9862 }
9863 else
9864 value = ((globals->root.sgot->output_section->vma
9865 + globals->root.sgot->output_offset + off)
9866 - (input_section->output_section->vma
9867 + input_section->output_offset + rel->r_offset));
9868
9869 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9870 contents, rel->r_offset, value,
9871 rel->r_addend);
9872 }
9873
9874 case R_ARM_TLS_LE32:
9875 if (info->shared && !info->pie)
9876 {
9877 (*_bfd_error_handler)
9878 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9879 input_bfd, input_section,
9880 (long) rel->r_offset, howto->name);
9881 return bfd_reloc_notsupported;
9882 }
9883 else
9884 value = tpoff (info, value);
9885
9886 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9887 contents, rel->r_offset, value,
9888 rel->r_addend);
9889
9890 case R_ARM_V4BX:
9891 if (globals->fix_v4bx)
9892 {
9893 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9894
9895 /* Ensure that we have a BX instruction. */
9896 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
9897
9898 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9899 {
9900 /* Branch to veneer. */
9901 bfd_vma glue_addr;
9902 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9903 glue_addr -= input_section->output_section->vma
9904 + input_section->output_offset
9905 + rel->r_offset + 8;
9906 insn = (insn & 0xf0000000) | 0x0a000000
9907 | ((glue_addr >> 2) & 0x00ffffff);
9908 }
9909 else
9910 {
9911 /* Preserve Rm (lowest four bits) and the condition code
9912 (highest four bits). Other bits encode MOV PC,Rm. */
9913 insn = (insn & 0xf000000f) | 0x01a0f000;
9914 }
9915
9916 bfd_put_32 (input_bfd, insn, hit_data);
9917 }
9918 return bfd_reloc_ok;
9919
9920 case R_ARM_MOVW_ABS_NC:
9921 case R_ARM_MOVT_ABS:
9922 case R_ARM_MOVW_PREL_NC:
9923 case R_ARM_MOVT_PREL:
9924 /* Until we properly support segment-base-relative addressing then
9925 we assume the segment base to be zero, as for the group relocations.
9926 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9927 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9928 case R_ARM_MOVW_BREL_NC:
9929 case R_ARM_MOVW_BREL:
9930 case R_ARM_MOVT_BREL:
9931 {
9932 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9933
9934 if (globals->use_rel)
9935 {
9936 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
9937 signed_addend = (addend ^ 0x8000) - 0x8000;
9938 }
9939
9940 value += signed_addend;
9941
9942 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9943 value -= (input_section->output_section->vma
9944 + input_section->output_offset + rel->r_offset);
9945
9946 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
9947 return bfd_reloc_overflow;
9948
9949 if (branch_type == ST_BRANCH_TO_THUMB)
9950 value |= 1;
9951
9952 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
9953 || r_type == R_ARM_MOVT_BREL)
9954 value >>= 16;
9955
9956 insn &= 0xfff0f000;
9957 insn |= value & 0xfff;
9958 insn |= (value & 0xf000) << 4;
9959 bfd_put_32 (input_bfd, insn, hit_data);
9960 }
9961 return bfd_reloc_ok;
9962
9963 case R_ARM_THM_MOVW_ABS_NC:
9964 case R_ARM_THM_MOVT_ABS:
9965 case R_ARM_THM_MOVW_PREL_NC:
9966 case R_ARM_THM_MOVT_PREL:
9967 /* Until we properly support segment-base-relative addressing then
9968 we assume the segment base to be zero, as for the above relocations.
9969 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9970 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9971 as R_ARM_THM_MOVT_ABS. */
9972 case R_ARM_THM_MOVW_BREL_NC:
9973 case R_ARM_THM_MOVW_BREL:
9974 case R_ARM_THM_MOVT_BREL:
9975 {
9976 bfd_vma insn;
9977
9978 insn = bfd_get_16 (input_bfd, hit_data) << 16;
9979 insn |= bfd_get_16 (input_bfd, hit_data + 2);
9980
9981 if (globals->use_rel)
9982 {
9983 addend = ((insn >> 4) & 0xf000)
9984 | ((insn >> 15) & 0x0800)
9985 | ((insn >> 4) & 0x0700)
9986 | (insn & 0x00ff);
9987 signed_addend = (addend ^ 0x8000) - 0x8000;
9988 }
9989
9990 value += signed_addend;
9991
9992 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
9993 value -= (input_section->output_section->vma
9994 + input_section->output_offset + rel->r_offset);
9995
9996 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
9997 return bfd_reloc_overflow;
9998
9999 if (branch_type == ST_BRANCH_TO_THUMB)
10000 value |= 1;
10001
10002 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
10003 || r_type == R_ARM_THM_MOVT_BREL)
10004 value >>= 16;
10005
10006 insn &= 0xfbf08f00;
10007 insn |= (value & 0xf000) << 4;
10008 insn |= (value & 0x0800) << 15;
10009 insn |= (value & 0x0700) << 4;
10010 insn |= (value & 0x00ff);
10011
10012 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10013 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10014 }
10015 return bfd_reloc_ok;
10016
10017 case R_ARM_ALU_PC_G0_NC:
10018 case R_ARM_ALU_PC_G1_NC:
10019 case R_ARM_ALU_PC_G0:
10020 case R_ARM_ALU_PC_G1:
10021 case R_ARM_ALU_PC_G2:
10022 case R_ARM_ALU_SB_G0_NC:
10023 case R_ARM_ALU_SB_G1_NC:
10024 case R_ARM_ALU_SB_G0:
10025 case R_ARM_ALU_SB_G1:
10026 case R_ARM_ALU_SB_G2:
10027 {
10028 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10029 bfd_vma pc = input_section->output_section->vma
10030 + input_section->output_offset + rel->r_offset;
10031 /* sb is the origin of the *segment* containing the symbol. */
10032 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10033 bfd_vma residual;
10034 bfd_vma g_n;
10035 bfd_signed_vma signed_value;
10036 int group = 0;
10037
10038 /* Determine which group of bits to select. */
10039 switch (r_type)
10040 {
10041 case R_ARM_ALU_PC_G0_NC:
10042 case R_ARM_ALU_PC_G0:
10043 case R_ARM_ALU_SB_G0_NC:
10044 case R_ARM_ALU_SB_G0:
10045 group = 0;
10046 break;
10047
10048 case R_ARM_ALU_PC_G1_NC:
10049 case R_ARM_ALU_PC_G1:
10050 case R_ARM_ALU_SB_G1_NC:
10051 case R_ARM_ALU_SB_G1:
10052 group = 1;
10053 break;
10054
10055 case R_ARM_ALU_PC_G2:
10056 case R_ARM_ALU_SB_G2:
10057 group = 2;
10058 break;
10059
10060 default:
10061 abort ();
10062 }
10063
10064 /* If REL, extract the addend from the insn. If RELA, it will
10065 have already been fetched for us. */
10066 if (globals->use_rel)
10067 {
10068 int negative;
10069 bfd_vma constant = insn & 0xff;
10070 bfd_vma rotation = (insn & 0xf00) >> 8;
10071
10072 if (rotation == 0)
10073 signed_addend = constant;
10074 else
10075 {
10076 /* Compensate for the fact that in the instruction, the
10077 rotation is stored in multiples of 2 bits. */
10078 rotation *= 2;
10079
10080 /* Rotate "constant" right by "rotation" bits. */
10081 signed_addend = (constant >> rotation) |
10082 (constant << (8 * sizeof (bfd_vma) - rotation));
10083 }
10084
10085 /* Determine if the instruction is an ADD or a SUB.
10086 (For REL, this determines the sign of the addend.) */
10087 negative = identify_add_or_sub (insn);
10088 if (negative == 0)
10089 {
10090 (*_bfd_error_handler)
10091 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
10092 input_bfd, input_section,
10093 (long) rel->r_offset, howto->name);
10094 return bfd_reloc_overflow;
10095 }
10096
10097 signed_addend *= negative;
10098 }
10099
10100 /* Compute the value (X) to go in the place. */
10101 if (r_type == R_ARM_ALU_PC_G0_NC
10102 || r_type == R_ARM_ALU_PC_G1_NC
10103 || r_type == R_ARM_ALU_PC_G0
10104 || r_type == R_ARM_ALU_PC_G1
10105 || r_type == R_ARM_ALU_PC_G2)
10106 /* PC relative. */
10107 signed_value = value - pc + signed_addend;
10108 else
10109 /* Section base relative. */
10110 signed_value = value - sb + signed_addend;
10111
10112 /* If the target symbol is a Thumb function, then set the
10113 Thumb bit in the address. */
10114 if (branch_type == ST_BRANCH_TO_THUMB)
10115 signed_value |= 1;
10116
10117 /* Calculate the value of the relevant G_n, in encoded
10118 constant-with-rotation format. */
10119 g_n = calculate_group_reloc_mask (abs (signed_value), group,
10120 &residual);
10121
10122 /* Check for overflow if required. */
10123 if ((r_type == R_ARM_ALU_PC_G0
10124 || r_type == R_ARM_ALU_PC_G1
10125 || r_type == R_ARM_ALU_PC_G2
10126 || r_type == R_ARM_ALU_SB_G0
10127 || r_type == R_ARM_ALU_SB_G1
10128 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
10129 {
10130 (*_bfd_error_handler)
10131 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10132 input_bfd, input_section,
10133 (long) rel->r_offset, abs (signed_value), howto->name);
10134 return bfd_reloc_overflow;
10135 }
10136
10137 /* Mask out the value and the ADD/SUB part of the opcode; take care
10138 not to destroy the S bit. */
10139 insn &= 0xff1ff000;
10140
10141 /* Set the opcode according to whether the value to go in the
10142 place is negative. */
10143 if (signed_value < 0)
10144 insn |= 1 << 22;
10145 else
10146 insn |= 1 << 23;
10147
10148 /* Encode the offset. */
10149 insn |= g_n;
10150
10151 bfd_put_32 (input_bfd, insn, hit_data);
10152 }
10153 return bfd_reloc_ok;
10154
10155 case R_ARM_LDR_PC_G0:
10156 case R_ARM_LDR_PC_G1:
10157 case R_ARM_LDR_PC_G2:
10158 case R_ARM_LDR_SB_G0:
10159 case R_ARM_LDR_SB_G1:
10160 case R_ARM_LDR_SB_G2:
10161 {
10162 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10163 bfd_vma pc = input_section->output_section->vma
10164 + input_section->output_offset + rel->r_offset;
10165 /* sb is the origin of the *segment* containing the symbol. */
10166 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10167 bfd_vma residual;
10168 bfd_signed_vma signed_value;
10169 int group = 0;
10170
10171 /* Determine which groups of bits to calculate. */
10172 switch (r_type)
10173 {
10174 case R_ARM_LDR_PC_G0:
10175 case R_ARM_LDR_SB_G0:
10176 group = 0;
10177 break;
10178
10179 case R_ARM_LDR_PC_G1:
10180 case R_ARM_LDR_SB_G1:
10181 group = 1;
10182 break;
10183
10184 case R_ARM_LDR_PC_G2:
10185 case R_ARM_LDR_SB_G2:
10186 group = 2;
10187 break;
10188
10189 default:
10190 abort ();
10191 }
10192
10193 /* If REL, extract the addend from the insn. If RELA, it will
10194 have already been fetched for us. */
10195 if (globals->use_rel)
10196 {
10197 int negative = (insn & (1 << 23)) ? 1 : -1;
10198 signed_addend = negative * (insn & 0xfff);
10199 }
10200
10201 /* Compute the value (X) to go in the place. */
10202 if (r_type == R_ARM_LDR_PC_G0
10203 || r_type == R_ARM_LDR_PC_G1
10204 || r_type == R_ARM_LDR_PC_G2)
10205 /* PC relative. */
10206 signed_value = value - pc + signed_addend;
10207 else
10208 /* Section base relative. */
10209 signed_value = value - sb + signed_addend;
10210
10211 /* Calculate the value of the relevant G_{n-1} to obtain
10212 the residual at that stage. */
10213 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10214
10215 /* Check for overflow. */
10216 if (residual >= 0x1000)
10217 {
10218 (*_bfd_error_handler)
10219 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10220 input_bfd, input_section,
10221 (long) rel->r_offset, abs (signed_value), howto->name);
10222 return bfd_reloc_overflow;
10223 }
10224
10225 /* Mask out the value and U bit. */
10226 insn &= 0xff7ff000;
10227
10228 /* Set the U bit if the value to go in the place is non-negative. */
10229 if (signed_value >= 0)
10230 insn |= 1 << 23;
10231
10232 /* Encode the offset. */
10233 insn |= residual;
10234
10235 bfd_put_32 (input_bfd, insn, hit_data);
10236 }
10237 return bfd_reloc_ok;
10238
10239 case R_ARM_LDRS_PC_G0:
10240 case R_ARM_LDRS_PC_G1:
10241 case R_ARM_LDRS_PC_G2:
10242 case R_ARM_LDRS_SB_G0:
10243 case R_ARM_LDRS_SB_G1:
10244 case R_ARM_LDRS_SB_G2:
10245 {
10246 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10247 bfd_vma pc = input_section->output_section->vma
10248 + input_section->output_offset + rel->r_offset;
10249 /* sb is the origin of the *segment* containing the symbol. */
10250 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10251 bfd_vma residual;
10252 bfd_signed_vma signed_value;
10253 int group = 0;
10254
10255 /* Determine which groups of bits to calculate. */
10256 switch (r_type)
10257 {
10258 case R_ARM_LDRS_PC_G0:
10259 case R_ARM_LDRS_SB_G0:
10260 group = 0;
10261 break;
10262
10263 case R_ARM_LDRS_PC_G1:
10264 case R_ARM_LDRS_SB_G1:
10265 group = 1;
10266 break;
10267
10268 case R_ARM_LDRS_PC_G2:
10269 case R_ARM_LDRS_SB_G2:
10270 group = 2;
10271 break;
10272
10273 default:
10274 abort ();
10275 }
10276
10277 /* If REL, extract the addend from the insn. If RELA, it will
10278 have already been fetched for us. */
10279 if (globals->use_rel)
10280 {
10281 int negative = (insn & (1 << 23)) ? 1 : -1;
10282 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
10283 }
10284
10285 /* Compute the value (X) to go in the place. */
10286 if (r_type == R_ARM_LDRS_PC_G0
10287 || r_type == R_ARM_LDRS_PC_G1
10288 || r_type == R_ARM_LDRS_PC_G2)
10289 /* PC relative. */
10290 signed_value = value - pc + signed_addend;
10291 else
10292 /* Section base relative. */
10293 signed_value = value - sb + signed_addend;
10294
10295 /* Calculate the value of the relevant G_{n-1} to obtain
10296 the residual at that stage. */
10297 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10298
10299 /* Check for overflow. */
10300 if (residual >= 0x100)
10301 {
10302 (*_bfd_error_handler)
10303 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10304 input_bfd, input_section,
10305 (long) rel->r_offset, abs (signed_value), howto->name);
10306 return bfd_reloc_overflow;
10307 }
10308
10309 /* Mask out the value and U bit. */
10310 insn &= 0xff7ff0f0;
10311
10312 /* Set the U bit if the value to go in the place is non-negative. */
10313 if (signed_value >= 0)
10314 insn |= 1 << 23;
10315
10316 /* Encode the offset. */
10317 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
10318
10319 bfd_put_32 (input_bfd, insn, hit_data);
10320 }
10321 return bfd_reloc_ok;
10322
10323 case R_ARM_LDC_PC_G0:
10324 case R_ARM_LDC_PC_G1:
10325 case R_ARM_LDC_PC_G2:
10326 case R_ARM_LDC_SB_G0:
10327 case R_ARM_LDC_SB_G1:
10328 case R_ARM_LDC_SB_G2:
10329 {
10330 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10331 bfd_vma pc = input_section->output_section->vma
10332 + input_section->output_offset + rel->r_offset;
10333 /* sb is the origin of the *segment* containing the symbol. */
10334 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
10335 bfd_vma residual;
10336 bfd_signed_vma signed_value;
10337 int group = 0;
10338
10339 /* Determine which groups of bits to calculate. */
10340 switch (r_type)
10341 {
10342 case R_ARM_LDC_PC_G0:
10343 case R_ARM_LDC_SB_G0:
10344 group = 0;
10345 break;
10346
10347 case R_ARM_LDC_PC_G1:
10348 case R_ARM_LDC_SB_G1:
10349 group = 1;
10350 break;
10351
10352 case R_ARM_LDC_PC_G2:
10353 case R_ARM_LDC_SB_G2:
10354 group = 2;
10355 break;
10356
10357 default:
10358 abort ();
10359 }
10360
10361 /* If REL, extract the addend from the insn. If RELA, it will
10362 have already been fetched for us. */
10363 if (globals->use_rel)
10364 {
10365 int negative = (insn & (1 << 23)) ? 1 : -1;
10366 signed_addend = negative * ((insn & 0xff) << 2);
10367 }
10368
10369 /* Compute the value (X) to go in the place. */
10370 if (r_type == R_ARM_LDC_PC_G0
10371 || r_type == R_ARM_LDC_PC_G1
10372 || r_type == R_ARM_LDC_PC_G2)
10373 /* PC relative. */
10374 signed_value = value - pc + signed_addend;
10375 else
10376 /* Section base relative. */
10377 signed_value = value - sb + signed_addend;
10378
10379 /* Calculate the value of the relevant G_{n-1} to obtain
10380 the residual at that stage. */
10381 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10382
10383 /* Check for overflow. (The absolute value to go in the place must be
10384 divisible by four and, after having been divided by four, must
10385 fit in eight bits.) */
10386 if ((residual & 0x3) != 0 || residual >= 0x400)
10387 {
10388 (*_bfd_error_handler)
10389 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10390 input_bfd, input_section,
10391 (long) rel->r_offset, abs (signed_value), howto->name);
10392 return bfd_reloc_overflow;
10393 }
10394
10395 /* Mask out the value and U bit. */
10396 insn &= 0xff7fff00;
10397
10398 /* Set the U bit if the value to go in the place is non-negative. */
10399 if (signed_value >= 0)
10400 insn |= 1 << 23;
10401
10402 /* Encode the offset. */
10403 insn |= residual >> 2;
10404
10405 bfd_put_32 (input_bfd, insn, hit_data);
10406 }
10407 return bfd_reloc_ok;
10408
10409 default:
10410 return bfd_reloc_notsupported;
10411 }
10412 }
10413
10414 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
10415 static void
10416 arm_add_to_rel (bfd * abfd,
10417 bfd_byte * address,
10418 reloc_howto_type * howto,
10419 bfd_signed_vma increment)
10420 {
10421 bfd_signed_vma addend;
10422
10423 if (howto->type == R_ARM_THM_CALL
10424 || howto->type == R_ARM_THM_JUMP24)
10425 {
10426 int upper_insn, lower_insn;
10427 int upper, lower;
10428
10429 upper_insn = bfd_get_16 (abfd, address);
10430 lower_insn = bfd_get_16 (abfd, address + 2);
10431 upper = upper_insn & 0x7ff;
10432 lower = lower_insn & 0x7ff;
10433
10434 addend = (upper << 12) | (lower << 1);
10435 addend += increment;
10436 addend >>= 1;
10437
10438 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10439 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10440
10441 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10442 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
10443 }
10444 else
10445 {
10446 bfd_vma contents;
10447
10448 contents = bfd_get_32 (abfd, address);
10449
10450 /* Get the (signed) value from the instruction. */
10451 addend = contents & howto->src_mask;
10452 if (addend & ((howto->src_mask + 1) >> 1))
10453 {
10454 bfd_signed_vma mask;
10455
10456 mask = -1;
10457 mask &= ~ howto->src_mask;
10458 addend |= mask;
10459 }
10460
10461 /* Add in the increment, (which is a byte value). */
10462 switch (howto->type)
10463 {
10464 default:
10465 addend += increment;
10466 break;
10467
10468 case R_ARM_PC24:
10469 case R_ARM_PLT32:
10470 case R_ARM_CALL:
10471 case R_ARM_JUMP24:
10472 addend <<= howto->size;
10473 addend += increment;
10474
10475 /* Should we check for overflow here ? */
10476
10477 /* Drop any undesired bits. */
10478 addend >>= howto->rightshift;
10479 break;
10480 }
10481
10482 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10483
10484 bfd_put_32 (abfd, contents, address);
10485 }
10486 }
10487
10488 #define IS_ARM_TLS_RELOC(R_TYPE) \
10489 ((R_TYPE) == R_ARM_TLS_GD32 \
10490 || (R_TYPE) == R_ARM_TLS_LDO32 \
10491 || (R_TYPE) == R_ARM_TLS_LDM32 \
10492 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10493 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10494 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10495 || (R_TYPE) == R_ARM_TLS_LE32 \
10496 || (R_TYPE) == R_ARM_TLS_IE32 \
10497 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10498
10499 /* Specific set of relocations for the gnu tls dialect. */
10500 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10501 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10502 || (R_TYPE) == R_ARM_TLS_CALL \
10503 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10504 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10505 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10506
10507 /* Relocate an ARM ELF section. */
10508
10509 static bfd_boolean
10510 elf32_arm_relocate_section (bfd * output_bfd,
10511 struct bfd_link_info * info,
10512 bfd * input_bfd,
10513 asection * input_section,
10514 bfd_byte * contents,
10515 Elf_Internal_Rela * relocs,
10516 Elf_Internal_Sym * local_syms,
10517 asection ** local_sections)
10518 {
10519 Elf_Internal_Shdr *symtab_hdr;
10520 struct elf_link_hash_entry **sym_hashes;
10521 Elf_Internal_Rela *rel;
10522 Elf_Internal_Rela *relend;
10523 const char *name;
10524 struct elf32_arm_link_hash_table * globals;
10525
10526 globals = elf32_arm_hash_table (info);
10527 if (globals == NULL)
10528 return FALSE;
10529
10530 symtab_hdr = & elf_symtab_hdr (input_bfd);
10531 sym_hashes = elf_sym_hashes (input_bfd);
10532
10533 rel = relocs;
10534 relend = relocs + input_section->reloc_count;
10535 for (; rel < relend; rel++)
10536 {
10537 int r_type;
10538 reloc_howto_type * howto;
10539 unsigned long r_symndx;
10540 Elf_Internal_Sym * sym;
10541 asection * sec;
10542 struct elf_link_hash_entry * h;
10543 bfd_vma relocation;
10544 bfd_reloc_status_type r;
10545 arelent bfd_reloc;
10546 char sym_type;
10547 bfd_boolean unresolved_reloc = FALSE;
10548 char *error_message = NULL;
10549
10550 r_symndx = ELF32_R_SYM (rel->r_info);
10551 r_type = ELF32_R_TYPE (rel->r_info);
10552 r_type = arm_real_reloc_type (globals, r_type);
10553
10554 if ( r_type == R_ARM_GNU_VTENTRY
10555 || r_type == R_ARM_GNU_VTINHERIT)
10556 continue;
10557
10558 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
10559 howto = bfd_reloc.howto;
10560
10561 h = NULL;
10562 sym = NULL;
10563 sec = NULL;
10564
10565 if (r_symndx < symtab_hdr->sh_info)
10566 {
10567 sym = local_syms + r_symndx;
10568 sym_type = ELF32_ST_TYPE (sym->st_info);
10569 sec = local_sections[r_symndx];
10570
10571 /* An object file might have a reference to a local
10572 undefined symbol. This is a daft object file, but we
10573 should at least do something about it. V4BX & NONE
10574 relocations do not use the symbol and are explicitly
10575 allowed to use the undefined symbol, so allow those.
10576 Likewise for relocations against STN_UNDEF. */
10577 if (r_type != R_ARM_V4BX
10578 && r_type != R_ARM_NONE
10579 && r_symndx != STN_UNDEF
10580 && bfd_is_und_section (sec)
10581 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10582 {
10583 if (!info->callbacks->undefined_symbol
10584 (info, bfd_elf_string_from_elf_section
10585 (input_bfd, symtab_hdr->sh_link, sym->st_name),
10586 input_bfd, input_section,
10587 rel->r_offset, TRUE))
10588 return FALSE;
10589 }
10590
10591 if (globals->use_rel)
10592 {
10593 relocation = (sec->output_section->vma
10594 + sec->output_offset
10595 + sym->st_value);
10596 if (!info->relocatable
10597 && (sec->flags & SEC_MERGE)
10598 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10599 {
10600 asection *msec;
10601 bfd_vma addend, value;
10602
10603 switch (r_type)
10604 {
10605 case R_ARM_MOVW_ABS_NC:
10606 case R_ARM_MOVT_ABS:
10607 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10608 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10609 addend = (addend ^ 0x8000) - 0x8000;
10610 break;
10611
10612 case R_ARM_THM_MOVW_ABS_NC:
10613 case R_ARM_THM_MOVT_ABS:
10614 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10615 << 16;
10616 value |= bfd_get_16 (input_bfd,
10617 contents + rel->r_offset + 2);
10618 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10619 | ((value & 0x04000000) >> 15);
10620 addend = (addend ^ 0x8000) - 0x8000;
10621 break;
10622
10623 default:
10624 if (howto->rightshift
10625 || (howto->src_mask & (howto->src_mask + 1)))
10626 {
10627 (*_bfd_error_handler)
10628 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10629 input_bfd, input_section,
10630 (long) rel->r_offset, howto->name);
10631 return FALSE;
10632 }
10633
10634 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10635
10636 /* Get the (signed) value from the instruction. */
10637 addend = value & howto->src_mask;
10638 if (addend & ((howto->src_mask + 1) >> 1))
10639 {
10640 bfd_signed_vma mask;
10641
10642 mask = -1;
10643 mask &= ~ howto->src_mask;
10644 addend |= mask;
10645 }
10646 break;
10647 }
10648
10649 msec = sec;
10650 addend =
10651 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10652 - relocation;
10653 addend += msec->output_section->vma + msec->output_offset;
10654
10655 /* Cases here must match those in the preceding
10656 switch statement. */
10657 switch (r_type)
10658 {
10659 case R_ARM_MOVW_ABS_NC:
10660 case R_ARM_MOVT_ABS:
10661 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10662 | (addend & 0xfff);
10663 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10664 break;
10665
10666 case R_ARM_THM_MOVW_ABS_NC:
10667 case R_ARM_THM_MOVT_ABS:
10668 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10669 | (addend & 0xff) | ((addend & 0x0800) << 15);
10670 bfd_put_16 (input_bfd, value >> 16,
10671 contents + rel->r_offset);
10672 bfd_put_16 (input_bfd, value,
10673 contents + rel->r_offset + 2);
10674 break;
10675
10676 default:
10677 value = (value & ~ howto->dst_mask)
10678 | (addend & howto->dst_mask);
10679 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10680 break;
10681 }
10682 }
10683 }
10684 else
10685 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10686 }
10687 else
10688 {
10689 bfd_boolean warned, ignored;
10690
10691 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10692 r_symndx, symtab_hdr, sym_hashes,
10693 h, sec, relocation,
10694 unresolved_reloc, warned, ignored);
10695
10696 sym_type = h->type;
10697 }
10698
10699 if (sec != NULL && discarded_section (sec))
10700 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10701 rel, 1, relend, howto, 0, contents);
10702
10703 if (info->relocatable)
10704 {
10705 /* This is a relocatable link. We don't have to change
10706 anything, unless the reloc is against a section symbol,
10707 in which case we have to adjust according to where the
10708 section symbol winds up in the output section. */
10709 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10710 {
10711 if (globals->use_rel)
10712 arm_add_to_rel (input_bfd, contents + rel->r_offset,
10713 howto, (bfd_signed_vma) sec->output_offset);
10714 else
10715 rel->r_addend += sec->output_offset;
10716 }
10717 continue;
10718 }
10719
10720 if (h != NULL)
10721 name = h->root.root.string;
10722 else
10723 {
10724 name = (bfd_elf_string_from_elf_section
10725 (input_bfd, symtab_hdr->sh_link, sym->st_name));
10726 if (name == NULL || *name == '\0')
10727 name = bfd_section_name (input_bfd, sec);
10728 }
10729
10730 if (r_symndx != STN_UNDEF
10731 && r_type != R_ARM_NONE
10732 && (h == NULL
10733 || h->root.type == bfd_link_hash_defined
10734 || h->root.type == bfd_link_hash_defweak)
10735 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10736 {
10737 (*_bfd_error_handler)
10738 ((sym_type == STT_TLS
10739 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10740 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10741 input_bfd,
10742 input_section,
10743 (long) rel->r_offset,
10744 howto->name,
10745 name);
10746 }
10747
10748 /* We call elf32_arm_final_link_relocate unless we're completely
10749 done, i.e., the relaxation produced the final output we want,
10750 and we won't let anybody mess with it. Also, we have to do
10751 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10752 both in relaxed and non-relaxed cases. */
10753 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10754 || (IS_ARM_TLS_GNU_RELOC (r_type)
10755 && !((h ? elf32_arm_hash_entry (h)->tls_type :
10756 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10757 & GOT_TLS_GDESC)))
10758 {
10759 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10760 contents, rel, h == NULL);
10761 /* This may have been marked unresolved because it came from
10762 a shared library. But we've just dealt with that. */
10763 unresolved_reloc = 0;
10764 }
10765 else
10766 r = bfd_reloc_continue;
10767
10768 if (r == bfd_reloc_continue)
10769 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10770 input_section, contents, rel,
10771 relocation, info, sec, name, sym_type,
10772 (h ? h->target_internal
10773 : ARM_SYM_BRANCH_TYPE (sym)), h,
10774 &unresolved_reloc, &error_message);
10775
10776 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10777 because such sections are not SEC_ALLOC and thus ld.so will
10778 not process them. */
10779 if (unresolved_reloc
10780 && !((input_section->flags & SEC_DEBUGGING) != 0
10781 && h->def_dynamic)
10782 && _bfd_elf_section_offset (output_bfd, info, input_section,
10783 rel->r_offset) != (bfd_vma) -1)
10784 {
10785 (*_bfd_error_handler)
10786 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10787 input_bfd,
10788 input_section,
10789 (long) rel->r_offset,
10790 howto->name,
10791 h->root.root.string);
10792 return FALSE;
10793 }
10794
10795 if (r != bfd_reloc_ok)
10796 {
10797 switch (r)
10798 {
10799 case bfd_reloc_overflow:
10800 /* If the overflowing reloc was to an undefined symbol,
10801 we have already printed one error message and there
10802 is no point complaining again. */
10803 if ((! h ||
10804 h->root.type != bfd_link_hash_undefined)
10805 && (!((*info->callbacks->reloc_overflow)
10806 (info, (h ? &h->root : NULL), name, howto->name,
10807 (bfd_vma) 0, input_bfd, input_section,
10808 rel->r_offset))))
10809 return FALSE;
10810 break;
10811
10812 case bfd_reloc_undefined:
10813 if (!((*info->callbacks->undefined_symbol)
10814 (info, name, input_bfd, input_section,
10815 rel->r_offset, TRUE)))
10816 return FALSE;
10817 break;
10818
10819 case bfd_reloc_outofrange:
10820 error_message = _("out of range");
10821 goto common_error;
10822
10823 case bfd_reloc_notsupported:
10824 error_message = _("unsupported relocation");
10825 goto common_error;
10826
10827 case bfd_reloc_dangerous:
10828 /* error_message should already be set. */
10829 goto common_error;
10830
10831 default:
10832 error_message = _("unknown error");
10833 /* Fall through. */
10834
10835 common_error:
10836 BFD_ASSERT (error_message != NULL);
10837 if (!((*info->callbacks->reloc_dangerous)
10838 (info, error_message, input_bfd, input_section,
10839 rel->r_offset)))
10840 return FALSE;
10841 break;
10842 }
10843 }
10844 }
10845
10846 return TRUE;
10847 }
10848
10849 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
10850 adds the edit to the start of the list. (The list must be built in order of
10851 ascending TINDEX: the function's callers are primarily responsible for
10852 maintaining that condition). */
10853
10854 static void
10855 add_unwind_table_edit (arm_unwind_table_edit **head,
10856 arm_unwind_table_edit **tail,
10857 arm_unwind_edit_type type,
10858 asection *linked_section,
10859 unsigned int tindex)
10860 {
10861 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10862 xmalloc (sizeof (arm_unwind_table_edit));
10863
10864 new_edit->type = type;
10865 new_edit->linked_section = linked_section;
10866 new_edit->index = tindex;
10867
10868 if (tindex > 0)
10869 {
10870 new_edit->next = NULL;
10871
10872 if (*tail)
10873 (*tail)->next = new_edit;
10874
10875 (*tail) = new_edit;
10876
10877 if (!*head)
10878 (*head) = new_edit;
10879 }
10880 else
10881 {
10882 new_edit->next = *head;
10883
10884 if (!*tail)
10885 *tail = new_edit;
10886
10887 *head = new_edit;
10888 }
10889 }
10890
10891 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10892
10893 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10894 static void
10895 adjust_exidx_size(asection *exidx_sec, int adjust)
10896 {
10897 asection *out_sec;
10898
10899 if (!exidx_sec->rawsize)
10900 exidx_sec->rawsize = exidx_sec->size;
10901
10902 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10903 out_sec = exidx_sec->output_section;
10904 /* Adjust size of output section. */
10905 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10906 }
10907
10908 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10909 static void
10910 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10911 {
10912 struct _arm_elf_section_data *exidx_arm_data;
10913
10914 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10915 add_unwind_table_edit (
10916 &exidx_arm_data->u.exidx.unwind_edit_list,
10917 &exidx_arm_data->u.exidx.unwind_edit_tail,
10918 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10919
10920 adjust_exidx_size(exidx_sec, 8);
10921 }
10922
10923 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10924 made to those tables, such that:
10925
10926 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10927 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10928 codes which have been inlined into the index).
10929
10930 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10931
10932 The edits are applied when the tables are written
10933 (in elf32_arm_write_section). */
10934
10935 bfd_boolean
10936 elf32_arm_fix_exidx_coverage (asection **text_section_order,
10937 unsigned int num_text_sections,
10938 struct bfd_link_info *info,
10939 bfd_boolean merge_exidx_entries)
10940 {
10941 bfd *inp;
10942 unsigned int last_second_word = 0, i;
10943 asection *last_exidx_sec = NULL;
10944 asection *last_text_sec = NULL;
10945 int last_unwind_type = -1;
10946
10947 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10948 text sections. */
10949 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
10950 {
10951 asection *sec;
10952
10953 for (sec = inp->sections; sec != NULL; sec = sec->next)
10954 {
10955 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10956 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
10957
10958 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
10959 continue;
10960
10961 if (elf_sec->linked_to)
10962 {
10963 Elf_Internal_Shdr *linked_hdr
10964 = &elf_section_data (elf_sec->linked_to)->this_hdr;
10965 struct _arm_elf_section_data *linked_sec_arm_data
10966 = get_arm_elf_section_data (linked_hdr->bfd_section);
10967
10968 if (linked_sec_arm_data == NULL)
10969 continue;
10970
10971 /* Link this .ARM.exidx section back from the text section it
10972 describes. */
10973 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10974 }
10975 }
10976 }
10977
10978 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10979 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10980 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
10981
10982 for (i = 0; i < num_text_sections; i++)
10983 {
10984 asection *sec = text_section_order[i];
10985 asection *exidx_sec;
10986 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10987 struct _arm_elf_section_data *exidx_arm_data;
10988 bfd_byte *contents = NULL;
10989 int deleted_exidx_bytes = 0;
10990 bfd_vma j;
10991 arm_unwind_table_edit *unwind_edit_head = NULL;
10992 arm_unwind_table_edit *unwind_edit_tail = NULL;
10993 Elf_Internal_Shdr *hdr;
10994 bfd *ibfd;
10995
10996 if (arm_data == NULL)
10997 continue;
10998
10999 exidx_sec = arm_data->u.text.arm_exidx_sec;
11000 if (exidx_sec == NULL)
11001 {
11002 /* Section has no unwind data. */
11003 if (last_unwind_type == 0 || !last_exidx_sec)
11004 continue;
11005
11006 /* Ignore zero sized sections. */
11007 if (sec->size == 0)
11008 continue;
11009
11010 insert_cantunwind_after(last_text_sec, last_exidx_sec);
11011 last_unwind_type = 0;
11012 continue;
11013 }
11014
11015 /* Skip /DISCARD/ sections. */
11016 if (bfd_is_abs_section (exidx_sec->output_section))
11017 continue;
11018
11019 hdr = &elf_section_data (exidx_sec)->this_hdr;
11020 if (hdr->sh_type != SHT_ARM_EXIDX)
11021 continue;
11022
11023 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
11024 if (exidx_arm_data == NULL)
11025 continue;
11026
11027 ibfd = exidx_sec->owner;
11028
11029 if (hdr->contents != NULL)
11030 contents = hdr->contents;
11031 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
11032 /* An error? */
11033 continue;
11034
11035 for (j = 0; j < hdr->sh_size; j += 8)
11036 {
11037 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
11038 int unwind_type;
11039 int elide = 0;
11040
11041 /* An EXIDX_CANTUNWIND entry. */
11042 if (second_word == 1)
11043 {
11044 if (last_unwind_type == 0)
11045 elide = 1;
11046 unwind_type = 0;
11047 }
11048 /* Inlined unwinding data. Merge if equal to previous. */
11049 else if ((second_word & 0x80000000) != 0)
11050 {
11051 if (merge_exidx_entries
11052 && last_second_word == second_word && last_unwind_type == 1)
11053 elide = 1;
11054 unwind_type = 1;
11055 last_second_word = second_word;
11056 }
11057 /* Normal table entry. In theory we could merge these too,
11058 but duplicate entries are likely to be much less common. */
11059 else
11060 unwind_type = 2;
11061
11062 if (elide)
11063 {
11064 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
11065 DELETE_EXIDX_ENTRY, NULL, j / 8);
11066
11067 deleted_exidx_bytes += 8;
11068 }
11069
11070 last_unwind_type = unwind_type;
11071 }
11072
11073 /* Free contents if we allocated it ourselves. */
11074 if (contents != hdr->contents)
11075 free (contents);
11076
11077 /* Record edits to be applied later (in elf32_arm_write_section). */
11078 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
11079 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
11080
11081 if (deleted_exidx_bytes > 0)
11082 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
11083
11084 last_exidx_sec = exidx_sec;
11085 last_text_sec = sec;
11086 }
11087
11088 /* Add terminating CANTUNWIND entry. */
11089 if (last_exidx_sec && last_unwind_type != 0)
11090 insert_cantunwind_after(last_text_sec, last_exidx_sec);
11091
11092 return TRUE;
11093 }
11094
11095 static bfd_boolean
11096 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
11097 bfd *ibfd, const char *name)
11098 {
11099 asection *sec, *osec;
11100
11101 sec = bfd_get_linker_section (ibfd, name);
11102 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
11103 return TRUE;
11104
11105 osec = sec->output_section;
11106 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
11107 return TRUE;
11108
11109 if (! bfd_set_section_contents (obfd, osec, sec->contents,
11110 sec->output_offset, sec->size))
11111 return FALSE;
11112
11113 return TRUE;
11114 }
11115
11116 static bfd_boolean
11117 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
11118 {
11119 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
11120 asection *sec, *osec;
11121
11122 if (globals == NULL)
11123 return FALSE;
11124
11125 /* Invoke the regular ELF backend linker to do all the work. */
11126 if (!bfd_elf_final_link (abfd, info))
11127 return FALSE;
11128
11129 /* Process stub sections (eg BE8 encoding, ...). */
11130 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
11131 int i;
11132 for (i=0; i<htab->top_id; i++)
11133 {
11134 sec = htab->stub_group[i].stub_sec;
11135 /* Only process it once, in its link_sec slot. */
11136 if (sec && i == htab->stub_group[i].link_sec->id)
11137 {
11138 osec = sec->output_section;
11139 elf32_arm_write_section (abfd, info, sec, sec->contents);
11140 if (! bfd_set_section_contents (abfd, osec, sec->contents,
11141 sec->output_offset, sec->size))
11142 return FALSE;
11143 }
11144 }
11145
11146 /* Write out any glue sections now that we have created all the
11147 stubs. */
11148 if (globals->bfd_of_glue_owner != NULL)
11149 {
11150 if (! elf32_arm_output_glue_section (info, abfd,
11151 globals->bfd_of_glue_owner,
11152 ARM2THUMB_GLUE_SECTION_NAME))
11153 return FALSE;
11154
11155 if (! elf32_arm_output_glue_section (info, abfd,
11156 globals->bfd_of_glue_owner,
11157 THUMB2ARM_GLUE_SECTION_NAME))
11158 return FALSE;
11159
11160 if (! elf32_arm_output_glue_section (info, abfd,
11161 globals->bfd_of_glue_owner,
11162 VFP11_ERRATUM_VENEER_SECTION_NAME))
11163 return FALSE;
11164
11165 if (! elf32_arm_output_glue_section (info, abfd,
11166 globals->bfd_of_glue_owner,
11167 ARM_BX_GLUE_SECTION_NAME))
11168 return FALSE;
11169 }
11170
11171 return TRUE;
11172 }
11173
11174 /* Return a best guess for the machine number based on the attributes. */
11175
11176 static unsigned int
11177 bfd_arm_get_mach_from_attributes (bfd * abfd)
11178 {
11179 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
11180
11181 switch (arch)
11182 {
11183 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
11184 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
11185 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
11186
11187 case TAG_CPU_ARCH_V5TE:
11188 {
11189 char * name;
11190
11191 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
11192 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
11193
11194 if (name)
11195 {
11196 if (strcmp (name, "IWMMXT2") == 0)
11197 return bfd_mach_arm_iWMMXt2;
11198
11199 if (strcmp (name, "IWMMXT") == 0)
11200 return bfd_mach_arm_iWMMXt;
11201
11202 if (strcmp (name, "XSCALE") == 0)
11203 {
11204 int wmmx;
11205
11206 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
11207 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
11208 switch (wmmx)
11209 {
11210 case 1: return bfd_mach_arm_iWMMXt;
11211 case 2: return bfd_mach_arm_iWMMXt2;
11212 default: return bfd_mach_arm_XScale;
11213 }
11214 }
11215 }
11216
11217 return bfd_mach_arm_5TE;
11218 }
11219
11220 default:
11221 return bfd_mach_arm_unknown;
11222 }
11223 }
11224
11225 /* Set the right machine number. */
11226
11227 static bfd_boolean
11228 elf32_arm_object_p (bfd *abfd)
11229 {
11230 unsigned int mach;
11231
11232 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
11233
11234 if (mach == bfd_mach_arm_unknown)
11235 {
11236 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
11237 mach = bfd_mach_arm_ep9312;
11238 else
11239 mach = bfd_arm_get_mach_from_attributes (abfd);
11240 }
11241
11242 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
11243 return TRUE;
11244 }
11245
11246 /* Function to keep ARM specific flags in the ELF header. */
11247
11248 static bfd_boolean
11249 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
11250 {
11251 if (elf_flags_init (abfd)
11252 && elf_elfheader (abfd)->e_flags != flags)
11253 {
11254 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
11255 {
11256 if (flags & EF_ARM_INTERWORK)
11257 (*_bfd_error_handler)
11258 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
11259 abfd);
11260 else
11261 _bfd_error_handler
11262 (_("Warning: Clearing the interworking flag of %B due to outside request"),
11263 abfd);
11264 }
11265 }
11266 else
11267 {
11268 elf_elfheader (abfd)->e_flags = flags;
11269 elf_flags_init (abfd) = TRUE;
11270 }
11271
11272 return TRUE;
11273 }
11274
11275 /* Copy backend specific data from one object module to another. */
11276
11277 static bfd_boolean
11278 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
11279 {
11280 flagword in_flags;
11281 flagword out_flags;
11282
11283 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
11284 return TRUE;
11285
11286 in_flags = elf_elfheader (ibfd)->e_flags;
11287 out_flags = elf_elfheader (obfd)->e_flags;
11288
11289 if (elf_flags_init (obfd)
11290 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
11291 && in_flags != out_flags)
11292 {
11293 /* Cannot mix APCS26 and APCS32 code. */
11294 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
11295 return FALSE;
11296
11297 /* Cannot mix float APCS and non-float APCS code. */
11298 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
11299 return FALSE;
11300
11301 /* If the src and dest have different interworking flags
11302 then turn off the interworking bit. */
11303 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
11304 {
11305 if (out_flags & EF_ARM_INTERWORK)
11306 _bfd_error_handler
11307 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
11308 obfd, ibfd);
11309
11310 in_flags &= ~EF_ARM_INTERWORK;
11311 }
11312
11313 /* Likewise for PIC, though don't warn for this case. */
11314 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
11315 in_flags &= ~EF_ARM_PIC;
11316 }
11317
11318 elf_elfheader (obfd)->e_flags = in_flags;
11319 elf_flags_init (obfd) = TRUE;
11320
11321 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
11322 }
11323
11324 /* Values for Tag_ABI_PCS_R9_use. */
11325 enum
11326 {
11327 AEABI_R9_V6,
11328 AEABI_R9_SB,
11329 AEABI_R9_TLS,
11330 AEABI_R9_unused
11331 };
11332
11333 /* Values for Tag_ABI_PCS_RW_data. */
11334 enum
11335 {
11336 AEABI_PCS_RW_data_absolute,
11337 AEABI_PCS_RW_data_PCrel,
11338 AEABI_PCS_RW_data_SBrel,
11339 AEABI_PCS_RW_data_unused
11340 };
11341
11342 /* Values for Tag_ABI_enum_size. */
11343 enum
11344 {
11345 AEABI_enum_unused,
11346 AEABI_enum_short,
11347 AEABI_enum_wide,
11348 AEABI_enum_forced_wide
11349 };
11350
11351 /* Determine whether an object attribute tag takes an integer, a
11352 string or both. */
11353
11354 static int
11355 elf32_arm_obj_attrs_arg_type (int tag)
11356 {
11357 if (tag == Tag_compatibility)
11358 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
11359 else if (tag == Tag_nodefaults)
11360 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
11361 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
11362 return ATTR_TYPE_FLAG_STR_VAL;
11363 else if (tag < 32)
11364 return ATTR_TYPE_FLAG_INT_VAL;
11365 else
11366 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
11367 }
11368
11369 /* The ABI defines that Tag_conformance should be emitted first, and that
11370 Tag_nodefaults should be second (if either is defined). This sets those
11371 two positions, and bumps up the position of all the remaining tags to
11372 compensate. */
11373 static int
11374 elf32_arm_obj_attrs_order (int num)
11375 {
11376 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
11377 return Tag_conformance;
11378 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
11379 return Tag_nodefaults;
11380 if ((num - 2) < Tag_nodefaults)
11381 return num - 2;
11382 if ((num - 1) < Tag_conformance)
11383 return num - 1;
11384 return num;
11385 }
11386
11387 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
11388 static bfd_boolean
11389 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
11390 {
11391 if ((tag & 127) < 64)
11392 {
11393 _bfd_error_handler
11394 (_("%B: Unknown mandatory EABI object attribute %d"),
11395 abfd, tag);
11396 bfd_set_error (bfd_error_bad_value);
11397 return FALSE;
11398 }
11399 else
11400 {
11401 _bfd_error_handler
11402 (_("Warning: %B: Unknown EABI object attribute %d"),
11403 abfd, tag);
11404 return TRUE;
11405 }
11406 }
11407
11408 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
11409 Returns -1 if no architecture could be read. */
11410
11411 static int
11412 get_secondary_compatible_arch (bfd *abfd)
11413 {
11414 obj_attribute *attr =
11415 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11416
11417 /* Note: the tag and its argument below are uleb128 values, though
11418 currently-defined values fit in one byte for each. */
11419 if (attr->s
11420 && attr->s[0] == Tag_CPU_arch
11421 && (attr->s[1] & 128) != 128
11422 && attr->s[2] == 0)
11423 return attr->s[1];
11424
11425 /* This tag is "safely ignorable", so don't complain if it looks funny. */
11426 return -1;
11427 }
11428
11429 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
11430 The tag is removed if ARCH is -1. */
11431
11432 static void
11433 set_secondary_compatible_arch (bfd *abfd, int arch)
11434 {
11435 obj_attribute *attr =
11436 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11437
11438 if (arch == -1)
11439 {
11440 attr->s = NULL;
11441 return;
11442 }
11443
11444 /* Note: the tag and its argument below are uleb128 values, though
11445 currently-defined values fit in one byte for each. */
11446 if (!attr->s)
11447 attr->s = (char *) bfd_alloc (abfd, 3);
11448 attr->s[0] = Tag_CPU_arch;
11449 attr->s[1] = arch;
11450 attr->s[2] = '\0';
11451 }
11452
11453 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11454 into account. */
11455
11456 static int
11457 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
11458 int newtag, int secondary_compat)
11459 {
11460 #define T(X) TAG_CPU_ARCH_##X
11461 int tagl, tagh, result;
11462 const int v6t2[] =
11463 {
11464 T(V6T2), /* PRE_V4. */
11465 T(V6T2), /* V4. */
11466 T(V6T2), /* V4T. */
11467 T(V6T2), /* V5T. */
11468 T(V6T2), /* V5TE. */
11469 T(V6T2), /* V5TEJ. */
11470 T(V6T2), /* V6. */
11471 T(V7), /* V6KZ. */
11472 T(V6T2) /* V6T2. */
11473 };
11474 const int v6k[] =
11475 {
11476 T(V6K), /* PRE_V4. */
11477 T(V6K), /* V4. */
11478 T(V6K), /* V4T. */
11479 T(V6K), /* V5T. */
11480 T(V6K), /* V5TE. */
11481 T(V6K), /* V5TEJ. */
11482 T(V6K), /* V6. */
11483 T(V6KZ), /* V6KZ. */
11484 T(V7), /* V6T2. */
11485 T(V6K) /* V6K. */
11486 };
11487 const int v7[] =
11488 {
11489 T(V7), /* PRE_V4. */
11490 T(V7), /* V4. */
11491 T(V7), /* V4T. */
11492 T(V7), /* V5T. */
11493 T(V7), /* V5TE. */
11494 T(V7), /* V5TEJ. */
11495 T(V7), /* V6. */
11496 T(V7), /* V6KZ. */
11497 T(V7), /* V6T2. */
11498 T(V7), /* V6K. */
11499 T(V7) /* V7. */
11500 };
11501 const int v6_m[] =
11502 {
11503 -1, /* PRE_V4. */
11504 -1, /* V4. */
11505 T(V6K), /* V4T. */
11506 T(V6K), /* V5T. */
11507 T(V6K), /* V5TE. */
11508 T(V6K), /* V5TEJ. */
11509 T(V6K), /* V6. */
11510 T(V6KZ), /* V6KZ. */
11511 T(V7), /* V6T2. */
11512 T(V6K), /* V6K. */
11513 T(V7), /* V7. */
11514 T(V6_M) /* V6_M. */
11515 };
11516 const int v6s_m[] =
11517 {
11518 -1, /* PRE_V4. */
11519 -1, /* V4. */
11520 T(V6K), /* V4T. */
11521 T(V6K), /* V5T. */
11522 T(V6K), /* V5TE. */
11523 T(V6K), /* V5TEJ. */
11524 T(V6K), /* V6. */
11525 T(V6KZ), /* V6KZ. */
11526 T(V7), /* V6T2. */
11527 T(V6K), /* V6K. */
11528 T(V7), /* V7. */
11529 T(V6S_M), /* V6_M. */
11530 T(V6S_M) /* V6S_M. */
11531 };
11532 const int v7e_m[] =
11533 {
11534 -1, /* PRE_V4. */
11535 -1, /* V4. */
11536 T(V7E_M), /* V4T. */
11537 T(V7E_M), /* V5T. */
11538 T(V7E_M), /* V5TE. */
11539 T(V7E_M), /* V5TEJ. */
11540 T(V7E_M), /* V6. */
11541 T(V7E_M), /* V6KZ. */
11542 T(V7E_M), /* V6T2. */
11543 T(V7E_M), /* V6K. */
11544 T(V7E_M), /* V7. */
11545 T(V7E_M), /* V6_M. */
11546 T(V7E_M), /* V6S_M. */
11547 T(V7E_M) /* V7E_M. */
11548 };
11549 const int v8[] =
11550 {
11551 T(V8), /* PRE_V4. */
11552 T(V8), /* V4. */
11553 T(V8), /* V4T. */
11554 T(V8), /* V5T. */
11555 T(V8), /* V5TE. */
11556 T(V8), /* V5TEJ. */
11557 T(V8), /* V6. */
11558 T(V8), /* V6KZ. */
11559 T(V8), /* V6T2. */
11560 T(V8), /* V6K. */
11561 T(V8), /* V7. */
11562 T(V8), /* V6_M. */
11563 T(V8), /* V6S_M. */
11564 T(V8), /* V7E_M. */
11565 T(V8) /* V8. */
11566 };
11567 const int v4t_plus_v6_m[] =
11568 {
11569 -1, /* PRE_V4. */
11570 -1, /* V4. */
11571 T(V4T), /* V4T. */
11572 T(V5T), /* V5T. */
11573 T(V5TE), /* V5TE. */
11574 T(V5TEJ), /* V5TEJ. */
11575 T(V6), /* V6. */
11576 T(V6KZ), /* V6KZ. */
11577 T(V6T2), /* V6T2. */
11578 T(V6K), /* V6K. */
11579 T(V7), /* V7. */
11580 T(V6_M), /* V6_M. */
11581 T(V6S_M), /* V6S_M. */
11582 T(V7E_M), /* V7E_M. */
11583 T(V8), /* V8. */
11584 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
11585 };
11586 const int *comb[] =
11587 {
11588 v6t2,
11589 v6k,
11590 v7,
11591 v6_m,
11592 v6s_m,
11593 v7e_m,
11594 v8,
11595 /* Pseudo-architecture. */
11596 v4t_plus_v6_m
11597 };
11598
11599 /* Check we've not got a higher architecture than we know about. */
11600
11601 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
11602 {
11603 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
11604 return -1;
11605 }
11606
11607 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11608
11609 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11610 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11611 oldtag = T(V4T_PLUS_V6_M);
11612
11613 /* And override the new tag if we have a Tag_also_compatible_with on the
11614 input. */
11615
11616 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11617 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11618 newtag = T(V4T_PLUS_V6_M);
11619
11620 tagl = (oldtag < newtag) ? oldtag : newtag;
11621 result = tagh = (oldtag > newtag) ? oldtag : newtag;
11622
11623 /* Architectures before V6KZ add features monotonically. */
11624 if (tagh <= TAG_CPU_ARCH_V6KZ)
11625 return result;
11626
11627 result = comb[tagh - T(V6T2)][tagl];
11628
11629 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11630 as the canonical version. */
11631 if (result == T(V4T_PLUS_V6_M))
11632 {
11633 result = T(V4T);
11634 *secondary_compat_out = T(V6_M);
11635 }
11636 else
11637 *secondary_compat_out = -1;
11638
11639 if (result == -1)
11640 {
11641 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11642 ibfd, oldtag, newtag);
11643 return -1;
11644 }
11645
11646 return result;
11647 #undef T
11648 }
11649
11650 /* Query attributes object to see if integer divide instructions may be
11651 present in an object. */
11652 static bfd_boolean
11653 elf32_arm_attributes_accept_div (const obj_attribute *attr)
11654 {
11655 int arch = attr[Tag_CPU_arch].i;
11656 int profile = attr[Tag_CPU_arch_profile].i;
11657
11658 switch (attr[Tag_DIV_use].i)
11659 {
11660 case 0:
11661 /* Integer divide allowed if instruction contained in archetecture. */
11662 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11663 return TRUE;
11664 else if (arch >= TAG_CPU_ARCH_V7E_M)
11665 return TRUE;
11666 else
11667 return FALSE;
11668
11669 case 1:
11670 /* Integer divide explicitly prohibited. */
11671 return FALSE;
11672
11673 default:
11674 /* Unrecognised case - treat as allowing divide everywhere. */
11675 case 2:
11676 /* Integer divide allowed in ARM state. */
11677 return TRUE;
11678 }
11679 }
11680
11681 /* Query attributes object to see if integer divide instructions are
11682 forbidden to be in the object. This is not the inverse of
11683 elf32_arm_attributes_accept_div. */
11684 static bfd_boolean
11685 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
11686 {
11687 return attr[Tag_DIV_use].i == 1;
11688 }
11689
11690 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11691 are conflicting attributes. */
11692
11693 static bfd_boolean
11694 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11695 {
11696 obj_attribute *in_attr;
11697 obj_attribute *out_attr;
11698 /* Some tags have 0 = don't care, 1 = strong requirement,
11699 2 = weak requirement. */
11700 static const int order_021[3] = {0, 2, 1};
11701 int i;
11702 bfd_boolean result = TRUE;
11703
11704 /* Skip the linker stubs file. This preserves previous behavior
11705 of accepting unknown attributes in the first input file - but
11706 is that a bug? */
11707 if (ibfd->flags & BFD_LINKER_CREATED)
11708 return TRUE;
11709
11710 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11711 {
11712 /* This is the first object. Copy the attributes. */
11713 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11714
11715 out_attr = elf_known_obj_attributes_proc (obfd);
11716
11717 /* Use the Tag_null value to indicate the attributes have been
11718 initialized. */
11719 out_attr[0].i = 1;
11720
11721 /* We do not output objects with Tag_MPextension_use_legacy - we move
11722 the attribute's value to Tag_MPextension_use. */
11723 if (out_attr[Tag_MPextension_use_legacy].i != 0)
11724 {
11725 if (out_attr[Tag_MPextension_use].i != 0
11726 && out_attr[Tag_MPextension_use_legacy].i
11727 != out_attr[Tag_MPextension_use].i)
11728 {
11729 _bfd_error_handler
11730 (_("Error: %B has both the current and legacy "
11731 "Tag_MPextension_use attributes"), ibfd);
11732 result = FALSE;
11733 }
11734
11735 out_attr[Tag_MPextension_use] =
11736 out_attr[Tag_MPextension_use_legacy];
11737 out_attr[Tag_MPextension_use_legacy].type = 0;
11738 out_attr[Tag_MPextension_use_legacy].i = 0;
11739 }
11740
11741 return result;
11742 }
11743
11744 in_attr = elf_known_obj_attributes_proc (ibfd);
11745 out_attr = elf_known_obj_attributes_proc (obfd);
11746 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11747 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11748 {
11749 /* Ignore mismatches if the object doesn't use floating point. */
11750 if (out_attr[Tag_ABI_FP_number_model].i == 0)
11751 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11752 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
11753 {
11754 _bfd_error_handler
11755 (_("error: %B uses VFP register arguments, %B does not"),
11756 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11757 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
11758 result = FALSE;
11759 }
11760 }
11761
11762 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
11763 {
11764 /* Merge this attribute with existing attributes. */
11765 switch (i)
11766 {
11767 case Tag_CPU_raw_name:
11768 case Tag_CPU_name:
11769 /* These are merged after Tag_CPU_arch. */
11770 break;
11771
11772 case Tag_ABI_optimization_goals:
11773 case Tag_ABI_FP_optimization_goals:
11774 /* Use the first value seen. */
11775 break;
11776
11777 case Tag_CPU_arch:
11778 {
11779 int secondary_compat = -1, secondary_compat_out = -1;
11780 unsigned int saved_out_attr = out_attr[i].i;
11781 int arch_attr;
11782 static const char *name_table[] =
11783 {
11784 /* These aren't real CPU names, but we can't guess
11785 that from the architecture version alone. */
11786 "Pre v4",
11787 "ARM v4",
11788 "ARM v4T",
11789 "ARM v5T",
11790 "ARM v5TE",
11791 "ARM v5TEJ",
11792 "ARM v6",
11793 "ARM v6KZ",
11794 "ARM v6T2",
11795 "ARM v6K",
11796 "ARM v7",
11797 "ARM v6-M",
11798 "ARM v6S-M",
11799 "ARM v8"
11800 };
11801
11802 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11803 secondary_compat = get_secondary_compatible_arch (ibfd);
11804 secondary_compat_out = get_secondary_compatible_arch (obfd);
11805 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11806 &secondary_compat_out,
11807 in_attr[i].i,
11808 secondary_compat);
11809
11810 /* Return with error if failed to merge. */
11811 if (arch_attr == -1)
11812 return FALSE;
11813
11814 out_attr[i].i = arch_attr;
11815
11816 set_secondary_compatible_arch (obfd, secondary_compat_out);
11817
11818 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11819 if (out_attr[i].i == saved_out_attr)
11820 ; /* Leave the names alone. */
11821 else if (out_attr[i].i == in_attr[i].i)
11822 {
11823 /* The output architecture has been changed to match the
11824 input architecture. Use the input names. */
11825 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11826 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11827 : NULL;
11828 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11829 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11830 : NULL;
11831 }
11832 else
11833 {
11834 out_attr[Tag_CPU_name].s = NULL;
11835 out_attr[Tag_CPU_raw_name].s = NULL;
11836 }
11837
11838 /* If we still don't have a value for Tag_CPU_name,
11839 make one up now. Tag_CPU_raw_name remains blank. */
11840 if (out_attr[Tag_CPU_name].s == NULL
11841 && out_attr[i].i < ARRAY_SIZE (name_table))
11842 out_attr[Tag_CPU_name].s =
11843 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11844 }
11845 break;
11846
11847 case Tag_ARM_ISA_use:
11848 case Tag_THUMB_ISA_use:
11849 case Tag_WMMX_arch:
11850 case Tag_Advanced_SIMD_arch:
11851 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
11852 case Tag_ABI_FP_rounding:
11853 case Tag_ABI_FP_exceptions:
11854 case Tag_ABI_FP_user_exceptions:
11855 case Tag_ABI_FP_number_model:
11856 case Tag_FP_HP_extension:
11857 case Tag_CPU_unaligned_access:
11858 case Tag_T2EE_use:
11859 case Tag_MPextension_use:
11860 /* Use the largest value specified. */
11861 if (in_attr[i].i > out_attr[i].i)
11862 out_attr[i].i = in_attr[i].i;
11863 break;
11864
11865 case Tag_ABI_align_preserved:
11866 case Tag_ABI_PCS_RO_data:
11867 /* Use the smallest value specified. */
11868 if (in_attr[i].i < out_attr[i].i)
11869 out_attr[i].i = in_attr[i].i;
11870 break;
11871
11872 case Tag_ABI_align_needed:
11873 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
11874 && (in_attr[Tag_ABI_align_preserved].i == 0
11875 || out_attr[Tag_ABI_align_preserved].i == 0))
11876 {
11877 /* This error message should be enabled once all non-conformant
11878 binaries in the toolchain have had the attributes set
11879 properly.
11880 _bfd_error_handler
11881 (_("error: %B: 8-byte data alignment conflicts with %B"),
11882 obfd, ibfd);
11883 result = FALSE; */
11884 }
11885 /* Fall through. */
11886 case Tag_ABI_FP_denormal:
11887 case Tag_ABI_PCS_GOT_use:
11888 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11889 value if greater than 2 (for future-proofing). */
11890 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11891 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11892 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
11893 out_attr[i].i = in_attr[i].i;
11894 break;
11895
11896 case Tag_Virtualization_use:
11897 /* The virtualization tag effectively stores two bits of
11898 information: the intended use of TrustZone (in bit 0), and the
11899 intended use of Virtualization (in bit 1). */
11900 if (out_attr[i].i == 0)
11901 out_attr[i].i = in_attr[i].i;
11902 else if (in_attr[i].i != 0
11903 && in_attr[i].i != out_attr[i].i)
11904 {
11905 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11906 out_attr[i].i = 3;
11907 else
11908 {
11909 _bfd_error_handler
11910 (_("error: %B: unable to merge virtualization attributes "
11911 "with %B"),
11912 obfd, ibfd);
11913 result = FALSE;
11914 }
11915 }
11916 break;
11917
11918 case Tag_CPU_arch_profile:
11919 if (out_attr[i].i != in_attr[i].i)
11920 {
11921 /* 0 will merge with anything.
11922 'A' and 'S' merge to 'A'.
11923 'R' and 'S' merge to 'R'.
11924 'M' and 'A|R|S' is an error. */
11925 if (out_attr[i].i == 0
11926 || (out_attr[i].i == 'S'
11927 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11928 out_attr[i].i = in_attr[i].i;
11929 else if (in_attr[i].i == 0
11930 || (in_attr[i].i == 'S'
11931 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
11932 ; /* Do nothing. */
11933 else
11934 {
11935 _bfd_error_handler
11936 (_("error: %B: Conflicting architecture profiles %c/%c"),
11937 ibfd,
11938 in_attr[i].i ? in_attr[i].i : '0',
11939 out_attr[i].i ? out_attr[i].i : '0');
11940 result = FALSE;
11941 }
11942 }
11943 break;
11944 case Tag_FP_arch:
11945 {
11946 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11947 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11948 when it's 0. It might mean absence of FP hardware if
11949 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11950
11951 #define VFP_VERSION_COUNT 8
11952 static const struct
11953 {
11954 int ver;
11955 int regs;
11956 } vfp_versions[VFP_VERSION_COUNT] =
11957 {
11958 {0, 0},
11959 {1, 16},
11960 {2, 16},
11961 {3, 32},
11962 {3, 16},
11963 {4, 32},
11964 {4, 16},
11965 {8, 32}
11966 };
11967 int ver;
11968 int regs;
11969 int newval;
11970
11971 /* If the output has no requirement about FP hardware,
11972 follow the requirement of the input. */
11973 if (out_attr[i].i == 0)
11974 {
11975 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11976 out_attr[i].i = in_attr[i].i;
11977 out_attr[Tag_ABI_HardFP_use].i
11978 = in_attr[Tag_ABI_HardFP_use].i;
11979 break;
11980 }
11981 /* If the input has no requirement about FP hardware, do
11982 nothing. */
11983 else if (in_attr[i].i == 0)
11984 {
11985 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
11986 break;
11987 }
11988
11989 /* Both the input and the output have nonzero Tag_FP_arch.
11990 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
11991
11992 /* If both the input and the output have zero Tag_ABI_HardFP_use,
11993 do nothing. */
11994 if (in_attr[Tag_ABI_HardFP_use].i == 0
11995 && out_attr[Tag_ABI_HardFP_use].i == 0)
11996 ;
11997 /* If the input and the output have different Tag_ABI_HardFP_use,
11998 the combination of them is 3 (SP & DP). */
11999 else if (in_attr[Tag_ABI_HardFP_use].i
12000 != out_attr[Tag_ABI_HardFP_use].i)
12001 out_attr[Tag_ABI_HardFP_use].i = 3;
12002
12003 /* Now we can handle Tag_FP_arch. */
12004
12005 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
12006 pick the biggest. */
12007 if (in_attr[i].i >= VFP_VERSION_COUNT
12008 && in_attr[i].i > out_attr[i].i)
12009 {
12010 out_attr[i] = in_attr[i];
12011 break;
12012 }
12013 /* The output uses the superset of input features
12014 (ISA version) and registers. */
12015 ver = vfp_versions[in_attr[i].i].ver;
12016 if (ver < vfp_versions[out_attr[i].i].ver)
12017 ver = vfp_versions[out_attr[i].i].ver;
12018 regs = vfp_versions[in_attr[i].i].regs;
12019 if (regs < vfp_versions[out_attr[i].i].regs)
12020 regs = vfp_versions[out_attr[i].i].regs;
12021 /* This assumes all possible supersets are also a valid
12022 options. */
12023 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
12024 {
12025 if (regs == vfp_versions[newval].regs
12026 && ver == vfp_versions[newval].ver)
12027 break;
12028 }
12029 out_attr[i].i = newval;
12030 }
12031 break;
12032 case Tag_PCS_config:
12033 if (out_attr[i].i == 0)
12034 out_attr[i].i = in_attr[i].i;
12035 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
12036 {
12037 /* It's sometimes ok to mix different configs, so this is only
12038 a warning. */
12039 _bfd_error_handler
12040 (_("Warning: %B: Conflicting platform configuration"), ibfd);
12041 }
12042 break;
12043 case Tag_ABI_PCS_R9_use:
12044 if (in_attr[i].i != out_attr[i].i
12045 && out_attr[i].i != AEABI_R9_unused
12046 && in_attr[i].i != AEABI_R9_unused)
12047 {
12048 _bfd_error_handler
12049 (_("error: %B: Conflicting use of R9"), ibfd);
12050 result = FALSE;
12051 }
12052 if (out_attr[i].i == AEABI_R9_unused)
12053 out_attr[i].i = in_attr[i].i;
12054 break;
12055 case Tag_ABI_PCS_RW_data:
12056 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
12057 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
12058 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
12059 {
12060 _bfd_error_handler
12061 (_("error: %B: SB relative addressing conflicts with use of R9"),
12062 ibfd);
12063 result = FALSE;
12064 }
12065 /* Use the smallest value specified. */
12066 if (in_attr[i].i < out_attr[i].i)
12067 out_attr[i].i = in_attr[i].i;
12068 break;
12069 case Tag_ABI_PCS_wchar_t:
12070 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
12071 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
12072 {
12073 _bfd_error_handler
12074 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
12075 ibfd, in_attr[i].i, out_attr[i].i);
12076 }
12077 else if (in_attr[i].i && !out_attr[i].i)
12078 out_attr[i].i = in_attr[i].i;
12079 break;
12080 case Tag_ABI_enum_size:
12081 if (in_attr[i].i != AEABI_enum_unused)
12082 {
12083 if (out_attr[i].i == AEABI_enum_unused
12084 || out_attr[i].i == AEABI_enum_forced_wide)
12085 {
12086 /* The existing object is compatible with anything.
12087 Use whatever requirements the new object has. */
12088 out_attr[i].i = in_attr[i].i;
12089 }
12090 else if (in_attr[i].i != AEABI_enum_forced_wide
12091 && out_attr[i].i != in_attr[i].i
12092 && !elf_arm_tdata (obfd)->no_enum_size_warning)
12093 {
12094 static const char *aeabi_enum_names[] =
12095 { "", "variable-size", "32-bit", "" };
12096 const char *in_name =
12097 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
12098 ? aeabi_enum_names[in_attr[i].i]
12099 : "<unknown>";
12100 const char *out_name =
12101 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
12102 ? aeabi_enum_names[out_attr[i].i]
12103 : "<unknown>";
12104 _bfd_error_handler
12105 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
12106 ibfd, in_name, out_name);
12107 }
12108 }
12109 break;
12110 case Tag_ABI_VFP_args:
12111 /* Aready done. */
12112 break;
12113 case Tag_ABI_WMMX_args:
12114 if (in_attr[i].i != out_attr[i].i)
12115 {
12116 _bfd_error_handler
12117 (_("error: %B uses iWMMXt register arguments, %B does not"),
12118 ibfd, obfd);
12119 result = FALSE;
12120 }
12121 break;
12122 case Tag_compatibility:
12123 /* Merged in target-independent code. */
12124 break;
12125 case Tag_ABI_HardFP_use:
12126 /* This is handled along with Tag_FP_arch. */
12127 break;
12128 case Tag_ABI_FP_16bit_format:
12129 if (in_attr[i].i != 0 && out_attr[i].i != 0)
12130 {
12131 if (in_attr[i].i != out_attr[i].i)
12132 {
12133 _bfd_error_handler
12134 (_("error: fp16 format mismatch between %B and %B"),
12135 ibfd, obfd);
12136 result = FALSE;
12137 }
12138 }
12139 if (in_attr[i].i != 0)
12140 out_attr[i].i = in_attr[i].i;
12141 break;
12142
12143 case Tag_DIV_use:
12144 /* A value of zero on input means that the divide instruction may
12145 be used if available in the base architecture as specified via
12146 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
12147 the user did not want divide instructions. A value of 2
12148 explicitly means that divide instructions were allowed in ARM
12149 and Thumb state. */
12150 if (in_attr[i].i == out_attr[i].i)
12151 /* Do nothing. */ ;
12152 else if (elf32_arm_attributes_forbid_div (in_attr)
12153 && !elf32_arm_attributes_accept_div (out_attr))
12154 out_attr[i].i = 1;
12155 else if (elf32_arm_attributes_forbid_div (out_attr)
12156 && elf32_arm_attributes_accept_div (in_attr))
12157 out_attr[i].i = in_attr[i].i;
12158 else if (in_attr[i].i == 2)
12159 out_attr[i].i = in_attr[i].i;
12160 break;
12161
12162 case Tag_MPextension_use_legacy:
12163 /* We don't output objects with Tag_MPextension_use_legacy - we
12164 move the value to Tag_MPextension_use. */
12165 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
12166 {
12167 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
12168 {
12169 _bfd_error_handler
12170 (_("%B has has both the current and legacy "
12171 "Tag_MPextension_use attributes"),
12172 ibfd);
12173 result = FALSE;
12174 }
12175 }
12176
12177 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
12178 out_attr[Tag_MPextension_use] = in_attr[i];
12179
12180 break;
12181
12182 case Tag_nodefaults:
12183 /* This tag is set if it exists, but the value is unused (and is
12184 typically zero). We don't actually need to do anything here -
12185 the merge happens automatically when the type flags are merged
12186 below. */
12187 break;
12188 case Tag_also_compatible_with:
12189 /* Already done in Tag_CPU_arch. */
12190 break;
12191 case Tag_conformance:
12192 /* Keep the attribute if it matches. Throw it away otherwise.
12193 No attribute means no claim to conform. */
12194 if (!in_attr[i].s || !out_attr[i].s
12195 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
12196 out_attr[i].s = NULL;
12197 break;
12198
12199 default:
12200 result
12201 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
12202 }
12203
12204 /* If out_attr was copied from in_attr then it won't have a type yet. */
12205 if (in_attr[i].type && !out_attr[i].type)
12206 out_attr[i].type = in_attr[i].type;
12207 }
12208
12209 /* Merge Tag_compatibility attributes and any common GNU ones. */
12210 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
12211 return FALSE;
12212
12213 /* Check for any attributes not known on ARM. */
12214 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
12215
12216 return result;
12217 }
12218
12219
12220 /* Return TRUE if the two EABI versions are incompatible. */
12221
12222 static bfd_boolean
12223 elf32_arm_versions_compatible (unsigned iver, unsigned over)
12224 {
12225 /* v4 and v5 are the same spec before and after it was released,
12226 so allow mixing them. */
12227 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
12228 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
12229 return TRUE;
12230
12231 return (iver == over);
12232 }
12233
12234 /* Merge backend specific data from an object file to the output
12235 object file when linking. */
12236
12237 static bfd_boolean
12238 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
12239
12240 /* Display the flags field. */
12241
12242 static bfd_boolean
12243 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
12244 {
12245 FILE * file = (FILE *) ptr;
12246 unsigned long flags;
12247
12248 BFD_ASSERT (abfd != NULL && ptr != NULL);
12249
12250 /* Print normal ELF private data. */
12251 _bfd_elf_print_private_bfd_data (abfd, ptr);
12252
12253 flags = elf_elfheader (abfd)->e_flags;
12254 /* Ignore init flag - it may not be set, despite the flags field
12255 containing valid data. */
12256
12257 /* xgettext:c-format */
12258 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12259
12260 switch (EF_ARM_EABI_VERSION (flags))
12261 {
12262 case EF_ARM_EABI_UNKNOWN:
12263 /* The following flag bits are GNU extensions and not part of the
12264 official ARM ELF extended ABI. Hence they are only decoded if
12265 the EABI version is not set. */
12266 if (flags & EF_ARM_INTERWORK)
12267 fprintf (file, _(" [interworking enabled]"));
12268
12269 if (flags & EF_ARM_APCS_26)
12270 fprintf (file, " [APCS-26]");
12271 else
12272 fprintf (file, " [APCS-32]");
12273
12274 if (flags & EF_ARM_VFP_FLOAT)
12275 fprintf (file, _(" [VFP float format]"));
12276 else if (flags & EF_ARM_MAVERICK_FLOAT)
12277 fprintf (file, _(" [Maverick float format]"));
12278 else
12279 fprintf (file, _(" [FPA float format]"));
12280
12281 if (flags & EF_ARM_APCS_FLOAT)
12282 fprintf (file, _(" [floats passed in float registers]"));
12283
12284 if (flags & EF_ARM_PIC)
12285 fprintf (file, _(" [position independent]"));
12286
12287 if (flags & EF_ARM_NEW_ABI)
12288 fprintf (file, _(" [new ABI]"));
12289
12290 if (flags & EF_ARM_OLD_ABI)
12291 fprintf (file, _(" [old ABI]"));
12292
12293 if (flags & EF_ARM_SOFT_FLOAT)
12294 fprintf (file, _(" [software FP]"));
12295
12296 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
12297 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
12298 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
12299 | EF_ARM_MAVERICK_FLOAT);
12300 break;
12301
12302 case EF_ARM_EABI_VER1:
12303 fprintf (file, _(" [Version1 EABI]"));
12304
12305 if (flags & EF_ARM_SYMSARESORTED)
12306 fprintf (file, _(" [sorted symbol table]"));
12307 else
12308 fprintf (file, _(" [unsorted symbol table]"));
12309
12310 flags &= ~ EF_ARM_SYMSARESORTED;
12311 break;
12312
12313 case EF_ARM_EABI_VER2:
12314 fprintf (file, _(" [Version2 EABI]"));
12315
12316 if (flags & EF_ARM_SYMSARESORTED)
12317 fprintf (file, _(" [sorted symbol table]"));
12318 else
12319 fprintf (file, _(" [unsorted symbol table]"));
12320
12321 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
12322 fprintf (file, _(" [dynamic symbols use segment index]"));
12323
12324 if (flags & EF_ARM_MAPSYMSFIRST)
12325 fprintf (file, _(" [mapping symbols precede others]"));
12326
12327 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
12328 | EF_ARM_MAPSYMSFIRST);
12329 break;
12330
12331 case EF_ARM_EABI_VER3:
12332 fprintf (file, _(" [Version3 EABI]"));
12333 break;
12334
12335 case EF_ARM_EABI_VER4:
12336 fprintf (file, _(" [Version4 EABI]"));
12337 goto eabi;
12338
12339 case EF_ARM_EABI_VER5:
12340 fprintf (file, _(" [Version5 EABI]"));
12341
12342 if (flags & EF_ARM_ABI_FLOAT_SOFT)
12343 fprintf (file, _(" [soft-float ABI]"));
12344
12345 if (flags & EF_ARM_ABI_FLOAT_HARD)
12346 fprintf (file, _(" [hard-float ABI]"));
12347
12348 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
12349
12350 eabi:
12351 if (flags & EF_ARM_BE8)
12352 fprintf (file, _(" [BE8]"));
12353
12354 if (flags & EF_ARM_LE8)
12355 fprintf (file, _(" [LE8]"));
12356
12357 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
12358 break;
12359
12360 default:
12361 fprintf (file, _(" <EABI version unrecognised>"));
12362 break;
12363 }
12364
12365 flags &= ~ EF_ARM_EABIMASK;
12366
12367 if (flags & EF_ARM_RELEXEC)
12368 fprintf (file, _(" [relocatable executable]"));
12369
12370 if (flags & EF_ARM_HASENTRY)
12371 fprintf (file, _(" [has entry point]"));
12372
12373 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
12374
12375 if (flags)
12376 fprintf (file, _("<Unrecognised flag bits set>"));
12377
12378 fputc ('\n', file);
12379
12380 return TRUE;
12381 }
12382
12383 static int
12384 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
12385 {
12386 switch (ELF_ST_TYPE (elf_sym->st_info))
12387 {
12388 case STT_ARM_TFUNC:
12389 return ELF_ST_TYPE (elf_sym->st_info);
12390
12391 case STT_ARM_16BIT:
12392 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
12393 This allows us to distinguish between data used by Thumb instructions
12394 and non-data (which is probably code) inside Thumb regions of an
12395 executable. */
12396 if (type != STT_OBJECT && type != STT_TLS)
12397 return ELF_ST_TYPE (elf_sym->st_info);
12398 break;
12399
12400 default:
12401 break;
12402 }
12403
12404 return type;
12405 }
12406
12407 static asection *
12408 elf32_arm_gc_mark_hook (asection *sec,
12409 struct bfd_link_info *info,
12410 Elf_Internal_Rela *rel,
12411 struct elf_link_hash_entry *h,
12412 Elf_Internal_Sym *sym)
12413 {
12414 if (h != NULL)
12415 switch (ELF32_R_TYPE (rel->r_info))
12416 {
12417 case R_ARM_GNU_VTINHERIT:
12418 case R_ARM_GNU_VTENTRY:
12419 return NULL;
12420 }
12421
12422 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12423 }
12424
12425 /* Update the got entry reference counts for the section being removed. */
12426
12427 static bfd_boolean
12428 elf32_arm_gc_sweep_hook (bfd * abfd,
12429 struct bfd_link_info * info,
12430 asection * sec,
12431 const Elf_Internal_Rela * relocs)
12432 {
12433 Elf_Internal_Shdr *symtab_hdr;
12434 struct elf_link_hash_entry **sym_hashes;
12435 bfd_signed_vma *local_got_refcounts;
12436 const Elf_Internal_Rela *rel, *relend;
12437 struct elf32_arm_link_hash_table * globals;
12438
12439 if (info->relocatable)
12440 return TRUE;
12441
12442 globals = elf32_arm_hash_table (info);
12443 if (globals == NULL)
12444 return FALSE;
12445
12446 elf_section_data (sec)->local_dynrel = NULL;
12447
12448 symtab_hdr = & elf_symtab_hdr (abfd);
12449 sym_hashes = elf_sym_hashes (abfd);
12450 local_got_refcounts = elf_local_got_refcounts (abfd);
12451
12452 check_use_blx (globals);
12453
12454 relend = relocs + sec->reloc_count;
12455 for (rel = relocs; rel < relend; rel++)
12456 {
12457 unsigned long r_symndx;
12458 struct elf_link_hash_entry *h = NULL;
12459 struct elf32_arm_link_hash_entry *eh;
12460 int r_type;
12461 bfd_boolean call_reloc_p;
12462 bfd_boolean may_become_dynamic_p;
12463 bfd_boolean may_need_local_target_p;
12464 union gotplt_union *root_plt;
12465 struct arm_plt_info *arm_plt;
12466
12467 r_symndx = ELF32_R_SYM (rel->r_info);
12468 if (r_symndx >= symtab_hdr->sh_info)
12469 {
12470 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12471 while (h->root.type == bfd_link_hash_indirect
12472 || h->root.type == bfd_link_hash_warning)
12473 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12474 }
12475 eh = (struct elf32_arm_link_hash_entry *) h;
12476
12477 call_reloc_p = FALSE;
12478 may_become_dynamic_p = FALSE;
12479 may_need_local_target_p = FALSE;
12480
12481 r_type = ELF32_R_TYPE (rel->r_info);
12482 r_type = arm_real_reloc_type (globals, r_type);
12483 switch (r_type)
12484 {
12485 case R_ARM_GOT32:
12486 case R_ARM_GOT_PREL:
12487 case R_ARM_TLS_GD32:
12488 case R_ARM_TLS_IE32:
12489 if (h != NULL)
12490 {
12491 if (h->got.refcount > 0)
12492 h->got.refcount -= 1;
12493 }
12494 else if (local_got_refcounts != NULL)
12495 {
12496 if (local_got_refcounts[r_symndx] > 0)
12497 local_got_refcounts[r_symndx] -= 1;
12498 }
12499 break;
12500
12501 case R_ARM_TLS_LDM32:
12502 globals->tls_ldm_got.refcount -= 1;
12503 break;
12504
12505 case R_ARM_PC24:
12506 case R_ARM_PLT32:
12507 case R_ARM_CALL:
12508 case R_ARM_JUMP24:
12509 case R_ARM_PREL31:
12510 case R_ARM_THM_CALL:
12511 case R_ARM_THM_JUMP24:
12512 case R_ARM_THM_JUMP19:
12513 call_reloc_p = TRUE;
12514 may_need_local_target_p = TRUE;
12515 break;
12516
12517 case R_ARM_ABS12:
12518 if (!globals->vxworks_p)
12519 {
12520 may_need_local_target_p = TRUE;
12521 break;
12522 }
12523 /* Fall through. */
12524 case R_ARM_ABS32:
12525 case R_ARM_ABS32_NOI:
12526 case R_ARM_REL32:
12527 case R_ARM_REL32_NOI:
12528 case R_ARM_MOVW_ABS_NC:
12529 case R_ARM_MOVT_ABS:
12530 case R_ARM_MOVW_PREL_NC:
12531 case R_ARM_MOVT_PREL:
12532 case R_ARM_THM_MOVW_ABS_NC:
12533 case R_ARM_THM_MOVT_ABS:
12534 case R_ARM_THM_MOVW_PREL_NC:
12535 case R_ARM_THM_MOVT_PREL:
12536 /* Should the interworking branches be here also? */
12537 if ((info->shared || globals->root.is_relocatable_executable)
12538 && (sec->flags & SEC_ALLOC) != 0)
12539 {
12540 if (h == NULL
12541 && elf32_arm_howto_from_type (r_type)->pc_relative)
12542 {
12543 call_reloc_p = TRUE;
12544 may_need_local_target_p = TRUE;
12545 }
12546 else
12547 may_become_dynamic_p = TRUE;
12548 }
12549 else
12550 may_need_local_target_p = TRUE;
12551 break;
12552
12553 default:
12554 break;
12555 }
12556
12557 if (may_need_local_target_p
12558 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
12559 {
12560 /* If PLT refcount book-keeping is wrong and too low, we'll
12561 see a zero value (going to -1) for the root PLT reference
12562 count. */
12563 if (root_plt->refcount >= 0)
12564 {
12565 BFD_ASSERT (root_plt->refcount != 0);
12566 root_plt->refcount -= 1;
12567 }
12568 else
12569 /* A value of -1 means the symbol has become local, forced
12570 or seeing a hidden definition. Any other negative value
12571 is an error. */
12572 BFD_ASSERT (root_plt->refcount == -1);
12573
12574 if (!call_reloc_p)
12575 arm_plt->noncall_refcount--;
12576
12577 if (r_type == R_ARM_THM_CALL)
12578 arm_plt->maybe_thumb_refcount--;
12579
12580 if (r_type == R_ARM_THM_JUMP24
12581 || r_type == R_ARM_THM_JUMP19)
12582 arm_plt->thumb_refcount--;
12583 }
12584
12585 if (may_become_dynamic_p)
12586 {
12587 struct elf_dyn_relocs **pp;
12588 struct elf_dyn_relocs *p;
12589
12590 if (h != NULL)
12591 pp = &(eh->dyn_relocs);
12592 else
12593 {
12594 Elf_Internal_Sym *isym;
12595
12596 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12597 abfd, r_symndx);
12598 if (isym == NULL)
12599 return FALSE;
12600 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12601 if (pp == NULL)
12602 return FALSE;
12603 }
12604 for (; (p = *pp) != NULL; pp = &p->next)
12605 if (p->sec == sec)
12606 {
12607 /* Everything must go for SEC. */
12608 *pp = p->next;
12609 break;
12610 }
12611 }
12612 }
12613
12614 return TRUE;
12615 }
12616
12617 /* Look through the relocs for a section during the first phase. */
12618
12619 static bfd_boolean
12620 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12621 asection *sec, const Elf_Internal_Rela *relocs)
12622 {
12623 Elf_Internal_Shdr *symtab_hdr;
12624 struct elf_link_hash_entry **sym_hashes;
12625 const Elf_Internal_Rela *rel;
12626 const Elf_Internal_Rela *rel_end;
12627 bfd *dynobj;
12628 asection *sreloc;
12629 struct elf32_arm_link_hash_table *htab;
12630 bfd_boolean call_reloc_p;
12631 bfd_boolean may_become_dynamic_p;
12632 bfd_boolean may_need_local_target_p;
12633 unsigned long nsyms;
12634
12635 if (info->relocatable)
12636 return TRUE;
12637
12638 BFD_ASSERT (is_arm_elf (abfd));
12639
12640 htab = elf32_arm_hash_table (info);
12641 if (htab == NULL)
12642 return FALSE;
12643
12644 sreloc = NULL;
12645
12646 /* Create dynamic sections for relocatable executables so that we can
12647 copy relocations. */
12648 if (htab->root.is_relocatable_executable
12649 && ! htab->root.dynamic_sections_created)
12650 {
12651 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12652 return FALSE;
12653 }
12654
12655 if (htab->root.dynobj == NULL)
12656 htab->root.dynobj = abfd;
12657 if (!create_ifunc_sections (info))
12658 return FALSE;
12659
12660 dynobj = htab->root.dynobj;
12661
12662 symtab_hdr = & elf_symtab_hdr (abfd);
12663 sym_hashes = elf_sym_hashes (abfd);
12664 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
12665
12666 rel_end = relocs + sec->reloc_count;
12667 for (rel = relocs; rel < rel_end; rel++)
12668 {
12669 Elf_Internal_Sym *isym;
12670 struct elf_link_hash_entry *h;
12671 struct elf32_arm_link_hash_entry *eh;
12672 unsigned long r_symndx;
12673 int r_type;
12674
12675 r_symndx = ELF32_R_SYM (rel->r_info);
12676 r_type = ELF32_R_TYPE (rel->r_info);
12677 r_type = arm_real_reloc_type (htab, r_type);
12678
12679 if (r_symndx >= nsyms
12680 /* PR 9934: It is possible to have relocations that do not
12681 refer to symbols, thus it is also possible to have an
12682 object file containing relocations but no symbol table. */
12683 && (r_symndx > STN_UNDEF || nsyms > 0))
12684 {
12685 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
12686 r_symndx);
12687 return FALSE;
12688 }
12689
12690 h = NULL;
12691 isym = NULL;
12692 if (nsyms > 0)
12693 {
12694 if (r_symndx < symtab_hdr->sh_info)
12695 {
12696 /* A local symbol. */
12697 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12698 abfd, r_symndx);
12699 if (isym == NULL)
12700 return FALSE;
12701 }
12702 else
12703 {
12704 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12705 while (h->root.type == bfd_link_hash_indirect
12706 || h->root.type == bfd_link_hash_warning)
12707 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12708
12709 /* PR15323, ref flags aren't set for references in the
12710 same object. */
12711 h->root.non_ir_ref = 1;
12712 }
12713 }
12714
12715 eh = (struct elf32_arm_link_hash_entry *) h;
12716
12717 call_reloc_p = FALSE;
12718 may_become_dynamic_p = FALSE;
12719 may_need_local_target_p = FALSE;
12720
12721 /* Could be done earlier, if h were already available. */
12722 r_type = elf32_arm_tls_transition (info, r_type, h);
12723 switch (r_type)
12724 {
12725 case R_ARM_GOT32:
12726 case R_ARM_GOT_PREL:
12727 case R_ARM_TLS_GD32:
12728 case R_ARM_TLS_IE32:
12729 case R_ARM_TLS_GOTDESC:
12730 case R_ARM_TLS_DESCSEQ:
12731 case R_ARM_THM_TLS_DESCSEQ:
12732 case R_ARM_TLS_CALL:
12733 case R_ARM_THM_TLS_CALL:
12734 /* This symbol requires a global offset table entry. */
12735 {
12736 int tls_type, old_tls_type;
12737
12738 switch (r_type)
12739 {
12740 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
12741
12742 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
12743
12744 case R_ARM_TLS_GOTDESC:
12745 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12746 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12747 tls_type = GOT_TLS_GDESC; break;
12748
12749 default: tls_type = GOT_NORMAL; break;
12750 }
12751
12752 if (!info->executable && (tls_type & GOT_TLS_IE))
12753 info->flags |= DF_STATIC_TLS;
12754
12755 if (h != NULL)
12756 {
12757 h->got.refcount++;
12758 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12759 }
12760 else
12761 {
12762 /* This is a global offset table entry for a local symbol. */
12763 if (!elf32_arm_allocate_local_sym_info (abfd))
12764 return FALSE;
12765 elf_local_got_refcounts (abfd)[r_symndx] += 1;
12766 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12767 }
12768
12769 /* If a variable is accessed with both tls methods, two
12770 slots may be created. */
12771 if (GOT_TLS_GD_ANY_P (old_tls_type)
12772 && GOT_TLS_GD_ANY_P (tls_type))
12773 tls_type |= old_tls_type;
12774
12775 /* We will already have issued an error message if there
12776 is a TLS/non-TLS mismatch, based on the symbol
12777 type. So just combine any TLS types needed. */
12778 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12779 && tls_type != GOT_NORMAL)
12780 tls_type |= old_tls_type;
12781
12782 /* If the symbol is accessed in both IE and GDESC
12783 method, we're able to relax. Turn off the GDESC flag,
12784 without messing up with any other kind of tls types
12785 that may be involved. */
12786 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12787 tls_type &= ~GOT_TLS_GDESC;
12788
12789 if (old_tls_type != tls_type)
12790 {
12791 if (h != NULL)
12792 elf32_arm_hash_entry (h)->tls_type = tls_type;
12793 else
12794 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12795 }
12796 }
12797 /* Fall through. */
12798
12799 case R_ARM_TLS_LDM32:
12800 if (r_type == R_ARM_TLS_LDM32)
12801 htab->tls_ldm_got.refcount++;
12802 /* Fall through. */
12803
12804 case R_ARM_GOTOFF32:
12805 case R_ARM_GOTPC:
12806 if (htab->root.sgot == NULL
12807 && !create_got_section (htab->root.dynobj, info))
12808 return FALSE;
12809 break;
12810
12811 case R_ARM_PC24:
12812 case R_ARM_PLT32:
12813 case R_ARM_CALL:
12814 case R_ARM_JUMP24:
12815 case R_ARM_PREL31:
12816 case R_ARM_THM_CALL:
12817 case R_ARM_THM_JUMP24:
12818 case R_ARM_THM_JUMP19:
12819 call_reloc_p = TRUE;
12820 may_need_local_target_p = TRUE;
12821 break;
12822
12823 case R_ARM_ABS12:
12824 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12825 ldr __GOTT_INDEX__ offsets. */
12826 if (!htab->vxworks_p)
12827 {
12828 may_need_local_target_p = TRUE;
12829 break;
12830 }
12831 /* Fall through. */
12832
12833 case R_ARM_MOVW_ABS_NC:
12834 case R_ARM_MOVT_ABS:
12835 case R_ARM_THM_MOVW_ABS_NC:
12836 case R_ARM_THM_MOVT_ABS:
12837 if (info->shared)
12838 {
12839 (*_bfd_error_handler)
12840 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12841 abfd, elf32_arm_howto_table_1[r_type].name,
12842 (h) ? h->root.root.string : "a local symbol");
12843 bfd_set_error (bfd_error_bad_value);
12844 return FALSE;
12845 }
12846
12847 /* Fall through. */
12848 case R_ARM_ABS32:
12849 case R_ARM_ABS32_NOI:
12850 if (h != NULL && info->executable)
12851 {
12852 h->pointer_equality_needed = 1;
12853 }
12854 /* Fall through. */
12855 case R_ARM_REL32:
12856 case R_ARM_REL32_NOI:
12857 case R_ARM_MOVW_PREL_NC:
12858 case R_ARM_MOVT_PREL:
12859 case R_ARM_THM_MOVW_PREL_NC:
12860 case R_ARM_THM_MOVT_PREL:
12861
12862 /* Should the interworking branches be listed here? */
12863 if ((info->shared || htab->root.is_relocatable_executable)
12864 && (sec->flags & SEC_ALLOC) != 0)
12865 {
12866 if (h == NULL
12867 && elf32_arm_howto_from_type (r_type)->pc_relative)
12868 {
12869 /* In shared libraries and relocatable executables,
12870 we treat local relative references as calls;
12871 see the related SYMBOL_CALLS_LOCAL code in
12872 allocate_dynrelocs. */
12873 call_reloc_p = TRUE;
12874 may_need_local_target_p = TRUE;
12875 }
12876 else
12877 /* We are creating a shared library or relocatable
12878 executable, and this is a reloc against a global symbol,
12879 or a non-PC-relative reloc against a local symbol.
12880 We may need to copy the reloc into the output. */
12881 may_become_dynamic_p = TRUE;
12882 }
12883 else
12884 may_need_local_target_p = TRUE;
12885 break;
12886
12887 /* This relocation describes the C++ object vtable hierarchy.
12888 Reconstruct it for later use during GC. */
12889 case R_ARM_GNU_VTINHERIT:
12890 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12891 return FALSE;
12892 break;
12893
12894 /* This relocation describes which C++ vtable entries are actually
12895 used. Record for later use during GC. */
12896 case R_ARM_GNU_VTENTRY:
12897 BFD_ASSERT (h != NULL);
12898 if (h != NULL
12899 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12900 return FALSE;
12901 break;
12902 }
12903
12904 if (h != NULL)
12905 {
12906 if (call_reloc_p)
12907 /* We may need a .plt entry if the function this reloc
12908 refers to is in a different object, regardless of the
12909 symbol's type. We can't tell for sure yet, because
12910 something later might force the symbol local. */
12911 h->needs_plt = 1;
12912 else if (may_need_local_target_p)
12913 /* If this reloc is in a read-only section, we might
12914 need a copy reloc. We can't check reliably at this
12915 stage whether the section is read-only, as input
12916 sections have not yet been mapped to output sections.
12917 Tentatively set the flag for now, and correct in
12918 adjust_dynamic_symbol. */
12919 h->non_got_ref = 1;
12920 }
12921
12922 if (may_need_local_target_p
12923 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
12924 {
12925 union gotplt_union *root_plt;
12926 struct arm_plt_info *arm_plt;
12927 struct arm_local_iplt_info *local_iplt;
12928
12929 if (h != NULL)
12930 {
12931 root_plt = &h->plt;
12932 arm_plt = &eh->plt;
12933 }
12934 else
12935 {
12936 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12937 if (local_iplt == NULL)
12938 return FALSE;
12939 root_plt = &local_iplt->root;
12940 arm_plt = &local_iplt->arm;
12941 }
12942
12943 /* If the symbol is a function that doesn't bind locally,
12944 this relocation will need a PLT entry. */
12945 if (root_plt->refcount != -1)
12946 root_plt->refcount += 1;
12947
12948 if (!call_reloc_p)
12949 arm_plt->noncall_refcount++;
12950
12951 /* It's too early to use htab->use_blx here, so we have to
12952 record possible blx references separately from
12953 relocs that definitely need a thumb stub. */
12954
12955 if (r_type == R_ARM_THM_CALL)
12956 arm_plt->maybe_thumb_refcount += 1;
12957
12958 if (r_type == R_ARM_THM_JUMP24
12959 || r_type == R_ARM_THM_JUMP19)
12960 arm_plt->thumb_refcount += 1;
12961 }
12962
12963 if (may_become_dynamic_p)
12964 {
12965 struct elf_dyn_relocs *p, **head;
12966
12967 /* Create a reloc section in dynobj. */
12968 if (sreloc == NULL)
12969 {
12970 sreloc = _bfd_elf_make_dynamic_reloc_section
12971 (sec, dynobj, 2, abfd, ! htab->use_rel);
12972
12973 if (sreloc == NULL)
12974 return FALSE;
12975
12976 /* BPABI objects never have dynamic relocations mapped. */
12977 if (htab->symbian_p)
12978 {
12979 flagword flags;
12980
12981 flags = bfd_get_section_flags (dynobj, sreloc);
12982 flags &= ~(SEC_LOAD | SEC_ALLOC);
12983 bfd_set_section_flags (dynobj, sreloc, flags);
12984 }
12985 }
12986
12987 /* If this is a global symbol, count the number of
12988 relocations we need for this symbol. */
12989 if (h != NULL)
12990 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12991 else
12992 {
12993 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12994 if (head == NULL)
12995 return FALSE;
12996 }
12997
12998 p = *head;
12999 if (p == NULL || p->sec != sec)
13000 {
13001 bfd_size_type amt = sizeof *p;
13002
13003 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
13004 if (p == NULL)
13005 return FALSE;
13006 p->next = *head;
13007 *head = p;
13008 p->sec = sec;
13009 p->count = 0;
13010 p->pc_count = 0;
13011 }
13012
13013 if (elf32_arm_howto_from_type (r_type)->pc_relative)
13014 p->pc_count += 1;
13015 p->count += 1;
13016 }
13017 }
13018
13019 return TRUE;
13020 }
13021
13022 /* Unwinding tables are not referenced directly. This pass marks them as
13023 required if the corresponding code section is marked. */
13024
13025 static bfd_boolean
13026 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
13027 elf_gc_mark_hook_fn gc_mark_hook)
13028 {
13029 bfd *sub;
13030 Elf_Internal_Shdr **elf_shdrp;
13031 bfd_boolean again;
13032
13033 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
13034
13035 /* Marking EH data may cause additional code sections to be marked,
13036 requiring multiple passes. */
13037 again = TRUE;
13038 while (again)
13039 {
13040 again = FALSE;
13041 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
13042 {
13043 asection *o;
13044
13045 if (! is_arm_elf (sub))
13046 continue;
13047
13048 elf_shdrp = elf_elfsections (sub);
13049 for (o = sub->sections; o != NULL; o = o->next)
13050 {
13051 Elf_Internal_Shdr *hdr;
13052
13053 hdr = &elf_section_data (o)->this_hdr;
13054 if (hdr->sh_type == SHT_ARM_EXIDX
13055 && hdr->sh_link
13056 && hdr->sh_link < elf_numsections (sub)
13057 && !o->gc_mark
13058 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
13059 {
13060 again = TRUE;
13061 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
13062 return FALSE;
13063 }
13064 }
13065 }
13066 }
13067
13068 return TRUE;
13069 }
13070
13071 /* Treat mapping symbols as special target symbols. */
13072
13073 static bfd_boolean
13074 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
13075 {
13076 return bfd_is_arm_special_symbol_name (sym->name,
13077 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
13078 }
13079
13080 /* This is a copy of elf_find_function() from elf.c except that
13081 ARM mapping symbols are ignored when looking for function names
13082 and STT_ARM_TFUNC is considered to a function type. */
13083
13084 static bfd_boolean
13085 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
13086 asection * section,
13087 asymbol ** symbols,
13088 bfd_vma offset,
13089 const char ** filename_ptr,
13090 const char ** functionname_ptr)
13091 {
13092 const char * filename = NULL;
13093 asymbol * func = NULL;
13094 bfd_vma low_func = 0;
13095 asymbol ** p;
13096
13097 for (p = symbols; *p != NULL; p++)
13098 {
13099 elf_symbol_type *q;
13100
13101 q = (elf_symbol_type *) *p;
13102
13103 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
13104 {
13105 default:
13106 break;
13107 case STT_FILE:
13108 filename = bfd_asymbol_name (&q->symbol);
13109 break;
13110 case STT_FUNC:
13111 case STT_ARM_TFUNC:
13112 case STT_NOTYPE:
13113 /* Skip mapping symbols. */
13114 if ((q->symbol.flags & BSF_LOCAL)
13115 && bfd_is_arm_special_symbol_name (q->symbol.name,
13116 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
13117 continue;
13118 /* Fall through. */
13119 if (bfd_get_section (&q->symbol) == section
13120 && q->symbol.value >= low_func
13121 && q->symbol.value <= offset)
13122 {
13123 func = (asymbol *) q;
13124 low_func = q->symbol.value;
13125 }
13126 break;
13127 }
13128 }
13129
13130 if (func == NULL)
13131 return FALSE;
13132
13133 if (filename_ptr)
13134 *filename_ptr = filename;
13135 if (functionname_ptr)
13136 *functionname_ptr = bfd_asymbol_name (func);
13137
13138 return TRUE;
13139 }
13140
13141
13142 /* Find the nearest line to a particular section and offset, for error
13143 reporting. This code is a duplicate of the code in elf.c, except
13144 that it uses arm_elf_find_function. */
13145
13146 static bfd_boolean
13147 elf32_arm_find_nearest_line (bfd * abfd,
13148 asection * section,
13149 asymbol ** symbols,
13150 bfd_vma offset,
13151 const char ** filename_ptr,
13152 const char ** functionname_ptr,
13153 unsigned int * line_ptr)
13154 {
13155 bfd_boolean found = FALSE;
13156
13157 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
13158
13159 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
13160 section, symbols, offset,
13161 filename_ptr, functionname_ptr,
13162 line_ptr, NULL, 0,
13163 & elf_tdata (abfd)->dwarf2_find_line_info))
13164 {
13165 if (!*functionname_ptr)
13166 arm_elf_find_function (abfd, section, symbols, offset,
13167 *filename_ptr ? NULL : filename_ptr,
13168 functionname_ptr);
13169
13170 return TRUE;
13171 }
13172
13173 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
13174 & found, filename_ptr,
13175 functionname_ptr, line_ptr,
13176 & elf_tdata (abfd)->line_info))
13177 return FALSE;
13178
13179 if (found && (*functionname_ptr || *line_ptr))
13180 return TRUE;
13181
13182 if (symbols == NULL)
13183 return FALSE;
13184
13185 if (! arm_elf_find_function (abfd, section, symbols, offset,
13186 filename_ptr, functionname_ptr))
13187 return FALSE;
13188
13189 *line_ptr = 0;
13190 return TRUE;
13191 }
13192
13193 static bfd_boolean
13194 elf32_arm_find_inliner_info (bfd * abfd,
13195 const char ** filename_ptr,
13196 const char ** functionname_ptr,
13197 unsigned int * line_ptr)
13198 {
13199 bfd_boolean found;
13200 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13201 functionname_ptr, line_ptr,
13202 & elf_tdata (abfd)->dwarf2_find_line_info);
13203 return found;
13204 }
13205
13206 /* Adjust a symbol defined by a dynamic object and referenced by a
13207 regular object. The current definition is in some section of the
13208 dynamic object, but we're not including those sections. We have to
13209 change the definition to something the rest of the link can
13210 understand. */
13211
13212 static bfd_boolean
13213 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
13214 struct elf_link_hash_entry * h)
13215 {
13216 bfd * dynobj;
13217 asection * s;
13218 struct elf32_arm_link_hash_entry * eh;
13219 struct elf32_arm_link_hash_table *globals;
13220
13221 globals = elf32_arm_hash_table (info);
13222 if (globals == NULL)
13223 return FALSE;
13224
13225 dynobj = elf_hash_table (info)->dynobj;
13226
13227 /* Make sure we know what is going on here. */
13228 BFD_ASSERT (dynobj != NULL
13229 && (h->needs_plt
13230 || h->type == STT_GNU_IFUNC
13231 || h->u.weakdef != NULL
13232 || (h->def_dynamic
13233 && h->ref_regular
13234 && !h->def_regular)));
13235
13236 eh = (struct elf32_arm_link_hash_entry *) h;
13237
13238 /* If this is a function, put it in the procedure linkage table. We
13239 will fill in the contents of the procedure linkage table later,
13240 when we know the address of the .got section. */
13241 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
13242 {
13243 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
13244 symbol binds locally. */
13245 if (h->plt.refcount <= 0
13246 || (h->type != STT_GNU_IFUNC
13247 && (SYMBOL_CALLS_LOCAL (info, h)
13248 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
13249 && h->root.type == bfd_link_hash_undefweak))))
13250 {
13251 /* This case can occur if we saw a PLT32 reloc in an input
13252 file, but the symbol was never referred to by a dynamic
13253 object, or if all references were garbage collected. In
13254 such a case, we don't actually need to build a procedure
13255 linkage table, and we can just do a PC24 reloc instead. */
13256 h->plt.offset = (bfd_vma) -1;
13257 eh->plt.thumb_refcount = 0;
13258 eh->plt.maybe_thumb_refcount = 0;
13259 eh->plt.noncall_refcount = 0;
13260 h->needs_plt = 0;
13261 }
13262
13263 return TRUE;
13264 }
13265 else
13266 {
13267 /* It's possible that we incorrectly decided a .plt reloc was
13268 needed for an R_ARM_PC24 or similar reloc to a non-function sym
13269 in check_relocs. We can't decide accurately between function
13270 and non-function syms in check-relocs; Objects loaded later in
13271 the link may change h->type. So fix it now. */
13272 h->plt.offset = (bfd_vma) -1;
13273 eh->plt.thumb_refcount = 0;
13274 eh->plt.maybe_thumb_refcount = 0;
13275 eh->plt.noncall_refcount = 0;
13276 }
13277
13278 /* If this is a weak symbol, and there is a real definition, the
13279 processor independent code will have arranged for us to see the
13280 real definition first, and we can just use the same value. */
13281 if (h->u.weakdef != NULL)
13282 {
13283 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
13284 || h->u.weakdef->root.type == bfd_link_hash_defweak);
13285 h->root.u.def.section = h->u.weakdef->root.u.def.section;
13286 h->root.u.def.value = h->u.weakdef->root.u.def.value;
13287 return TRUE;
13288 }
13289
13290 /* If there are no non-GOT references, we do not need a copy
13291 relocation. */
13292 if (!h->non_got_ref)
13293 return TRUE;
13294
13295 /* This is a reference to a symbol defined by a dynamic object which
13296 is not a function. */
13297
13298 /* If we are creating a shared library, we must presume that the
13299 only references to the symbol are via the global offset table.
13300 For such cases we need not do anything here; the relocations will
13301 be handled correctly by relocate_section. Relocatable executables
13302 can reference data in shared objects directly, so we don't need to
13303 do anything here. */
13304 if (info->shared || globals->root.is_relocatable_executable)
13305 return TRUE;
13306
13307 /* We must allocate the symbol in our .dynbss section, which will
13308 become part of the .bss section of the executable. There will be
13309 an entry for this symbol in the .dynsym section. The dynamic
13310 object will contain position independent code, so all references
13311 from the dynamic object to this symbol will go through the global
13312 offset table. The dynamic linker will use the .dynsym entry to
13313 determine the address it must put in the global offset table, so
13314 both the dynamic object and the regular object will refer to the
13315 same memory location for the variable. */
13316 s = bfd_get_linker_section (dynobj, ".dynbss");
13317 BFD_ASSERT (s != NULL);
13318
13319 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
13320 copy the initial value out of the dynamic object and into the
13321 runtime process image. We need to remember the offset into the
13322 .rel(a).bss section we are going to use. */
13323 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
13324 {
13325 asection *srel;
13326
13327 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
13328 elf32_arm_allocate_dynrelocs (info, srel, 1);
13329 h->needs_copy = 1;
13330 }
13331
13332 return _bfd_elf_adjust_dynamic_copy (h, s);
13333 }
13334
13335 /* Allocate space in .plt, .got and associated reloc sections for
13336 dynamic relocs. */
13337
13338 static bfd_boolean
13339 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
13340 {
13341 struct bfd_link_info *info;
13342 struct elf32_arm_link_hash_table *htab;
13343 struct elf32_arm_link_hash_entry *eh;
13344 struct elf_dyn_relocs *p;
13345
13346 if (h->root.type == bfd_link_hash_indirect)
13347 return TRUE;
13348
13349 eh = (struct elf32_arm_link_hash_entry *) h;
13350
13351 info = (struct bfd_link_info *) inf;
13352 htab = elf32_arm_hash_table (info);
13353 if (htab == NULL)
13354 return FALSE;
13355
13356 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
13357 && h->plt.refcount > 0)
13358 {
13359 /* Make sure this symbol is output as a dynamic symbol.
13360 Undefined weak syms won't yet be marked as dynamic. */
13361 if (h->dynindx == -1
13362 && !h->forced_local)
13363 {
13364 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13365 return FALSE;
13366 }
13367
13368 /* If the call in the PLT entry binds locally, the associated
13369 GOT entry should use an R_ARM_IRELATIVE relocation instead of
13370 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
13371 than the .plt section. */
13372 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
13373 {
13374 eh->is_iplt = 1;
13375 if (eh->plt.noncall_refcount == 0
13376 && SYMBOL_REFERENCES_LOCAL (info, h))
13377 /* All non-call references can be resolved directly.
13378 This means that they can (and in some cases, must)
13379 resolve directly to the run-time target, rather than
13380 to the PLT. That in turns means that any .got entry
13381 would be equal to the .igot.plt entry, so there's
13382 no point having both. */
13383 h->got.refcount = 0;
13384 }
13385
13386 if (info->shared
13387 || eh->is_iplt
13388 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
13389 {
13390 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
13391
13392 /* If this symbol is not defined in a regular file, and we are
13393 not generating a shared library, then set the symbol to this
13394 location in the .plt. This is required to make function
13395 pointers compare as equal between the normal executable and
13396 the shared library. */
13397 if (! info->shared
13398 && !h->def_regular)
13399 {
13400 h->root.u.def.section = htab->root.splt;
13401 h->root.u.def.value = h->plt.offset;
13402
13403 /* Make sure the function is not marked as Thumb, in case
13404 it is the target of an ABS32 relocation, which will
13405 point to the PLT entry. */
13406 h->target_internal = ST_BRANCH_TO_ARM;
13407 }
13408
13409 /* VxWorks executables have a second set of relocations for
13410 each PLT entry. They go in a separate relocation section,
13411 which is processed by the kernel loader. */
13412 if (htab->vxworks_p && !info->shared)
13413 {
13414 /* There is a relocation for the initial PLT entry:
13415 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
13416 if (h->plt.offset == htab->plt_header_size)
13417 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
13418
13419 /* There are two extra relocations for each subsequent
13420 PLT entry: an R_ARM_32 relocation for the GOT entry,
13421 and an R_ARM_32 relocation for the PLT entry. */
13422 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
13423 }
13424 }
13425 else
13426 {
13427 h->plt.offset = (bfd_vma) -1;
13428 h->needs_plt = 0;
13429 }
13430 }
13431 else
13432 {
13433 h->plt.offset = (bfd_vma) -1;
13434 h->needs_plt = 0;
13435 }
13436
13437 eh = (struct elf32_arm_link_hash_entry *) h;
13438 eh->tlsdesc_got = (bfd_vma) -1;
13439
13440 if (h->got.refcount > 0)
13441 {
13442 asection *s;
13443 bfd_boolean dyn;
13444 int tls_type = elf32_arm_hash_entry (h)->tls_type;
13445 int indx;
13446
13447 /* Make sure this symbol is output as a dynamic symbol.
13448 Undefined weak syms won't yet be marked as dynamic. */
13449 if (h->dynindx == -1
13450 && !h->forced_local)
13451 {
13452 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13453 return FALSE;
13454 }
13455
13456 if (!htab->symbian_p)
13457 {
13458 s = htab->root.sgot;
13459 h->got.offset = s->size;
13460
13461 if (tls_type == GOT_UNKNOWN)
13462 abort ();
13463
13464 if (tls_type == GOT_NORMAL)
13465 /* Non-TLS symbols need one GOT slot. */
13466 s->size += 4;
13467 else
13468 {
13469 if (tls_type & GOT_TLS_GDESC)
13470 {
13471 /* R_ARM_TLS_DESC needs 2 GOT slots. */
13472 eh->tlsdesc_got
13473 = (htab->root.sgotplt->size
13474 - elf32_arm_compute_jump_table_size (htab));
13475 htab->root.sgotplt->size += 8;
13476 h->got.offset = (bfd_vma) -2;
13477 /* plt.got_offset needs to know there's a TLS_DESC
13478 reloc in the middle of .got.plt. */
13479 htab->num_tls_desc++;
13480 }
13481
13482 if (tls_type & GOT_TLS_GD)
13483 {
13484 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
13485 the symbol is both GD and GDESC, got.offset may
13486 have been overwritten. */
13487 h->got.offset = s->size;
13488 s->size += 8;
13489 }
13490
13491 if (tls_type & GOT_TLS_IE)
13492 /* R_ARM_TLS_IE32 needs one GOT slot. */
13493 s->size += 4;
13494 }
13495
13496 dyn = htab->root.dynamic_sections_created;
13497
13498 indx = 0;
13499 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
13500 && (!info->shared
13501 || !SYMBOL_REFERENCES_LOCAL (info, h)))
13502 indx = h->dynindx;
13503
13504 if (tls_type != GOT_NORMAL
13505 && (info->shared || indx != 0)
13506 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13507 || h->root.type != bfd_link_hash_undefweak))
13508 {
13509 if (tls_type & GOT_TLS_IE)
13510 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13511
13512 if (tls_type & GOT_TLS_GD)
13513 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13514
13515 if (tls_type & GOT_TLS_GDESC)
13516 {
13517 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13518 /* GDESC needs a trampoline to jump to. */
13519 htab->tls_trampoline = -1;
13520 }
13521
13522 /* Only GD needs it. GDESC just emits one relocation per
13523 2 entries. */
13524 if ((tls_type & GOT_TLS_GD) && indx != 0)
13525 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13526 }
13527 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
13528 {
13529 if (htab->root.dynamic_sections_created)
13530 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
13531 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13532 }
13533 else if (h->type == STT_GNU_IFUNC
13534 && eh->plt.noncall_refcount == 0)
13535 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13536 they all resolve dynamically instead. Reserve room for the
13537 GOT entry's R_ARM_IRELATIVE relocation. */
13538 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
13539 else if (info->shared && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13540 || h->root.type != bfd_link_hash_undefweak))
13541 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
13542 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13543 }
13544 }
13545 else
13546 h->got.offset = (bfd_vma) -1;
13547
13548 /* Allocate stubs for exported Thumb functions on v4t. */
13549 if (!htab->use_blx && h->dynindx != -1
13550 && h->def_regular
13551 && h->target_internal == ST_BRANCH_TO_THUMB
13552 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
13553 {
13554 struct elf_link_hash_entry * th;
13555 struct bfd_link_hash_entry * bh;
13556 struct elf_link_hash_entry * myh;
13557 char name[1024];
13558 asection *s;
13559 bh = NULL;
13560 /* Create a new symbol to regist the real location of the function. */
13561 s = h->root.u.def.section;
13562 sprintf (name, "__real_%s", h->root.root.string);
13563 _bfd_generic_link_add_one_symbol (info, s->owner,
13564 name, BSF_GLOBAL, s,
13565 h->root.u.def.value,
13566 NULL, TRUE, FALSE, &bh);
13567
13568 myh = (struct elf_link_hash_entry *) bh;
13569 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
13570 myh->forced_local = 1;
13571 myh->target_internal = ST_BRANCH_TO_THUMB;
13572 eh->export_glue = myh;
13573 th = record_arm_to_thumb_glue (info, h);
13574 /* Point the symbol at the stub. */
13575 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
13576 h->target_internal = ST_BRANCH_TO_ARM;
13577 h->root.u.def.section = th->root.u.def.section;
13578 h->root.u.def.value = th->root.u.def.value & ~1;
13579 }
13580
13581 if (eh->dyn_relocs == NULL)
13582 return TRUE;
13583
13584 /* In the shared -Bsymbolic case, discard space allocated for
13585 dynamic pc-relative relocs against symbols which turn out to be
13586 defined in regular objects. For the normal shared case, discard
13587 space for pc-relative relocs that have become local due to symbol
13588 visibility changes. */
13589
13590 if (info->shared || htab->root.is_relocatable_executable)
13591 {
13592 /* Relocs that use pc_count are PC-relative forms, which will appear
13593 on something like ".long foo - ." or "movw REG, foo - .". We want
13594 calls to protected symbols to resolve directly to the function
13595 rather than going via the plt. If people want function pointer
13596 comparisons to work as expected then they should avoid writing
13597 assembly like ".long foo - .". */
13598 if (SYMBOL_CALLS_LOCAL (info, h))
13599 {
13600 struct elf_dyn_relocs **pp;
13601
13602 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13603 {
13604 p->count -= p->pc_count;
13605 p->pc_count = 0;
13606 if (p->count == 0)
13607 *pp = p->next;
13608 else
13609 pp = &p->next;
13610 }
13611 }
13612
13613 if (htab->vxworks_p)
13614 {
13615 struct elf_dyn_relocs **pp;
13616
13617 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13618 {
13619 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
13620 *pp = p->next;
13621 else
13622 pp = &p->next;
13623 }
13624 }
13625
13626 /* Also discard relocs on undefined weak syms with non-default
13627 visibility. */
13628 if (eh->dyn_relocs != NULL
13629 && h->root.type == bfd_link_hash_undefweak)
13630 {
13631 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
13632 eh->dyn_relocs = NULL;
13633
13634 /* Make sure undefined weak symbols are output as a dynamic
13635 symbol in PIEs. */
13636 else if (h->dynindx == -1
13637 && !h->forced_local)
13638 {
13639 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13640 return FALSE;
13641 }
13642 }
13643
13644 else if (htab->root.is_relocatable_executable && h->dynindx == -1
13645 && h->root.type == bfd_link_hash_new)
13646 {
13647 /* Output absolute symbols so that we can create relocations
13648 against them. For normal symbols we output a relocation
13649 against the section that contains them. */
13650 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13651 return FALSE;
13652 }
13653
13654 }
13655 else
13656 {
13657 /* For the non-shared case, discard space for relocs against
13658 symbols which turn out to need copy relocs or are not
13659 dynamic. */
13660
13661 if (!h->non_got_ref
13662 && ((h->def_dynamic
13663 && !h->def_regular)
13664 || (htab->root.dynamic_sections_created
13665 && (h->root.type == bfd_link_hash_undefweak
13666 || h->root.type == bfd_link_hash_undefined))))
13667 {
13668 /* Make sure this symbol is output as a dynamic symbol.
13669 Undefined weak syms won't yet be marked as dynamic. */
13670 if (h->dynindx == -1
13671 && !h->forced_local)
13672 {
13673 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13674 return FALSE;
13675 }
13676
13677 /* If that succeeded, we know we'll be keeping all the
13678 relocs. */
13679 if (h->dynindx != -1)
13680 goto keep;
13681 }
13682
13683 eh->dyn_relocs = NULL;
13684
13685 keep: ;
13686 }
13687
13688 /* Finally, allocate space. */
13689 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13690 {
13691 asection *sreloc = elf_section_data (p->sec)->sreloc;
13692 if (h->type == STT_GNU_IFUNC
13693 && eh->plt.noncall_refcount == 0
13694 && SYMBOL_REFERENCES_LOCAL (info, h))
13695 elf32_arm_allocate_irelocs (info, sreloc, p->count);
13696 else
13697 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
13698 }
13699
13700 return TRUE;
13701 }
13702
13703 /* Find any dynamic relocs that apply to read-only sections. */
13704
13705 static bfd_boolean
13706 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
13707 {
13708 struct elf32_arm_link_hash_entry * eh;
13709 struct elf_dyn_relocs * p;
13710
13711 eh = (struct elf32_arm_link_hash_entry *) h;
13712 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13713 {
13714 asection *s = p->sec;
13715
13716 if (s != NULL && (s->flags & SEC_READONLY) != 0)
13717 {
13718 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13719
13720 info->flags |= DF_TEXTREL;
13721
13722 /* Not an error, just cut short the traversal. */
13723 return FALSE;
13724 }
13725 }
13726 return TRUE;
13727 }
13728
13729 void
13730 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13731 int byteswap_code)
13732 {
13733 struct elf32_arm_link_hash_table *globals;
13734
13735 globals = elf32_arm_hash_table (info);
13736 if (globals == NULL)
13737 return;
13738
13739 globals->byteswap_code = byteswap_code;
13740 }
13741
13742 /* Set the sizes of the dynamic sections. */
13743
13744 static bfd_boolean
13745 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13746 struct bfd_link_info * info)
13747 {
13748 bfd * dynobj;
13749 asection * s;
13750 bfd_boolean plt;
13751 bfd_boolean relocs;
13752 bfd *ibfd;
13753 struct elf32_arm_link_hash_table *htab;
13754
13755 htab = elf32_arm_hash_table (info);
13756 if (htab == NULL)
13757 return FALSE;
13758
13759 dynobj = elf_hash_table (info)->dynobj;
13760 BFD_ASSERT (dynobj != NULL);
13761 check_use_blx (htab);
13762
13763 if (elf_hash_table (info)->dynamic_sections_created)
13764 {
13765 /* Set the contents of the .interp section to the interpreter. */
13766 if (info->executable)
13767 {
13768 s = bfd_get_linker_section (dynobj, ".interp");
13769 BFD_ASSERT (s != NULL);
13770 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
13771 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13772 }
13773 }
13774
13775 /* Set up .got offsets for local syms, and space for local dynamic
13776 relocs. */
13777 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13778 {
13779 bfd_signed_vma *local_got;
13780 bfd_signed_vma *end_local_got;
13781 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
13782 char *local_tls_type;
13783 bfd_vma *local_tlsdesc_gotent;
13784 bfd_size_type locsymcount;
13785 Elf_Internal_Shdr *symtab_hdr;
13786 asection *srel;
13787 bfd_boolean is_vxworks = htab->vxworks_p;
13788 unsigned int symndx;
13789
13790 if (! is_arm_elf (ibfd))
13791 continue;
13792
13793 for (s = ibfd->sections; s != NULL; s = s->next)
13794 {
13795 struct elf_dyn_relocs *p;
13796
13797 for (p = (struct elf_dyn_relocs *)
13798 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
13799 {
13800 if (!bfd_is_abs_section (p->sec)
13801 && bfd_is_abs_section (p->sec->output_section))
13802 {
13803 /* Input section has been discarded, either because
13804 it is a copy of a linkonce section or due to
13805 linker script /DISCARD/, so we'll be discarding
13806 the relocs too. */
13807 }
13808 else if (is_vxworks
13809 && strcmp (p->sec->output_section->name,
13810 ".tls_vars") == 0)
13811 {
13812 /* Relocations in vxworks .tls_vars sections are
13813 handled specially by the loader. */
13814 }
13815 else if (p->count != 0)
13816 {
13817 srel = elf_section_data (p->sec)->sreloc;
13818 elf32_arm_allocate_dynrelocs (info, srel, p->count);
13819 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
13820 info->flags |= DF_TEXTREL;
13821 }
13822 }
13823 }
13824
13825 local_got = elf_local_got_refcounts (ibfd);
13826 if (!local_got)
13827 continue;
13828
13829 symtab_hdr = & elf_symtab_hdr (ibfd);
13830 locsymcount = symtab_hdr->sh_info;
13831 end_local_got = local_got + locsymcount;
13832 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
13833 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
13834 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
13835 symndx = 0;
13836 s = htab->root.sgot;
13837 srel = htab->root.srelgot;
13838 for (; local_got < end_local_got;
13839 ++local_got, ++local_iplt_ptr, ++local_tls_type,
13840 ++local_tlsdesc_gotent, ++symndx)
13841 {
13842 *local_tlsdesc_gotent = (bfd_vma) -1;
13843 local_iplt = *local_iplt_ptr;
13844 if (local_iplt != NULL)
13845 {
13846 struct elf_dyn_relocs *p;
13847
13848 if (local_iplt->root.refcount > 0)
13849 {
13850 elf32_arm_allocate_plt_entry (info, TRUE,
13851 &local_iplt->root,
13852 &local_iplt->arm);
13853 if (local_iplt->arm.noncall_refcount == 0)
13854 /* All references to the PLT are calls, so all
13855 non-call references can resolve directly to the
13856 run-time target. This means that the .got entry
13857 would be the same as the .igot.plt entry, so there's
13858 no point creating both. */
13859 *local_got = 0;
13860 }
13861 else
13862 {
13863 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13864 local_iplt->root.offset = (bfd_vma) -1;
13865 }
13866
13867 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13868 {
13869 asection *psrel;
13870
13871 psrel = elf_section_data (p->sec)->sreloc;
13872 if (local_iplt->arm.noncall_refcount == 0)
13873 elf32_arm_allocate_irelocs (info, psrel, p->count);
13874 else
13875 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13876 }
13877 }
13878 if (*local_got > 0)
13879 {
13880 Elf_Internal_Sym *isym;
13881
13882 *local_got = s->size;
13883 if (*local_tls_type & GOT_TLS_GD)
13884 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13885 s->size += 8;
13886 if (*local_tls_type & GOT_TLS_GDESC)
13887 {
13888 *local_tlsdesc_gotent = htab->root.sgotplt->size
13889 - elf32_arm_compute_jump_table_size (htab);
13890 htab->root.sgotplt->size += 8;
13891 *local_got = (bfd_vma) -2;
13892 /* plt.got_offset needs to know there's a TLS_DESC
13893 reloc in the middle of .got.plt. */
13894 htab->num_tls_desc++;
13895 }
13896 if (*local_tls_type & GOT_TLS_IE)
13897 s->size += 4;
13898
13899 if (*local_tls_type & GOT_NORMAL)
13900 {
13901 /* If the symbol is both GD and GDESC, *local_got
13902 may have been overwritten. */
13903 *local_got = s->size;
13904 s->size += 4;
13905 }
13906
13907 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13908 if (isym == NULL)
13909 return FALSE;
13910
13911 /* If all references to an STT_GNU_IFUNC PLT are calls,
13912 then all non-call references, including this GOT entry,
13913 resolve directly to the run-time target. */
13914 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13915 && (local_iplt == NULL
13916 || local_iplt->arm.noncall_refcount == 0))
13917 elf32_arm_allocate_irelocs (info, srel, 1);
13918 else if (info->shared || output_bfd->flags & DYNAMIC)
13919 {
13920 if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13921 || *local_tls_type & GOT_TLS_GD)
13922 elf32_arm_allocate_dynrelocs (info, srel, 1);
13923
13924 if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13925 {
13926 elf32_arm_allocate_dynrelocs (info,
13927 htab->root.srelplt, 1);
13928 htab->tls_trampoline = -1;
13929 }
13930 }
13931 }
13932 else
13933 *local_got = (bfd_vma) -1;
13934 }
13935 }
13936
13937 if (htab->tls_ldm_got.refcount > 0)
13938 {
13939 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13940 for R_ARM_TLS_LDM32 relocations. */
13941 htab->tls_ldm_got.offset = htab->root.sgot->size;
13942 htab->root.sgot->size += 8;
13943 if (info->shared)
13944 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13945 }
13946 else
13947 htab->tls_ldm_got.offset = -1;
13948
13949 /* Allocate global sym .plt and .got entries, and space for global
13950 sym dynamic relocs. */
13951 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
13952
13953 /* Here we rummage through the found bfds to collect glue information. */
13954 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
13955 {
13956 if (! is_arm_elf (ibfd))
13957 continue;
13958
13959 /* Initialise mapping tables for code/data. */
13960 bfd_elf32_arm_init_maps (ibfd);
13961
13962 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13963 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
13964 /* xgettext:c-format */
13965 _bfd_error_handler (_("Errors encountered processing file %s"),
13966 ibfd->filename);
13967 }
13968
13969 /* Allocate space for the glue sections now that we've sized them. */
13970 bfd_elf32_arm_allocate_interworking_sections (info);
13971
13972 /* For every jump slot reserved in the sgotplt, reloc_count is
13973 incremented. However, when we reserve space for TLS descriptors,
13974 it's not incremented, so in order to compute the space reserved
13975 for them, it suffices to multiply the reloc count by the jump
13976 slot size. */
13977 if (htab->root.srelplt)
13978 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
13979
13980 if (htab->tls_trampoline)
13981 {
13982 if (htab->root.splt->size == 0)
13983 htab->root.splt->size += htab->plt_header_size;
13984
13985 htab->tls_trampoline = htab->root.splt->size;
13986 htab->root.splt->size += htab->plt_entry_size;
13987
13988 /* If we're not using lazy TLS relocations, don't generate the
13989 PLT and GOT entries they require. */
13990 if (!(info->flags & DF_BIND_NOW))
13991 {
13992 htab->dt_tlsdesc_got = htab->root.sgot->size;
13993 htab->root.sgot->size += 4;
13994
13995 htab->dt_tlsdesc_plt = htab->root.splt->size;
13996 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
13997 }
13998 }
13999
14000 /* The check_relocs and adjust_dynamic_symbol entry points have
14001 determined the sizes of the various dynamic sections. Allocate
14002 memory for them. */
14003 plt = FALSE;
14004 relocs = FALSE;
14005 for (s = dynobj->sections; s != NULL; s = s->next)
14006 {
14007 const char * name;
14008
14009 if ((s->flags & SEC_LINKER_CREATED) == 0)
14010 continue;
14011
14012 /* It's OK to base decisions on the section name, because none
14013 of the dynobj section names depend upon the input files. */
14014 name = bfd_get_section_name (dynobj, s);
14015
14016 if (s == htab->root.splt)
14017 {
14018 /* Remember whether there is a PLT. */
14019 plt = s->size != 0;
14020 }
14021 else if (CONST_STRNEQ (name, ".rel"))
14022 {
14023 if (s->size != 0)
14024 {
14025 /* Remember whether there are any reloc sections other
14026 than .rel(a).plt and .rela.plt.unloaded. */
14027 if (s != htab->root.srelplt && s != htab->srelplt2)
14028 relocs = TRUE;
14029
14030 /* We use the reloc_count field as a counter if we need
14031 to copy relocs into the output file. */
14032 s->reloc_count = 0;
14033 }
14034 }
14035 else if (s != htab->root.sgot
14036 && s != htab->root.sgotplt
14037 && s != htab->root.iplt
14038 && s != htab->root.igotplt
14039 && s != htab->sdynbss)
14040 {
14041 /* It's not one of our sections, so don't allocate space. */
14042 continue;
14043 }
14044
14045 if (s->size == 0)
14046 {
14047 /* If we don't need this section, strip it from the
14048 output file. This is mostly to handle .rel(a).bss and
14049 .rel(a).plt. We must create both sections in
14050 create_dynamic_sections, because they must be created
14051 before the linker maps input sections to output
14052 sections. The linker does that before
14053 adjust_dynamic_symbol is called, and it is that
14054 function which decides whether anything needs to go
14055 into these sections. */
14056 s->flags |= SEC_EXCLUDE;
14057 continue;
14058 }
14059
14060 if ((s->flags & SEC_HAS_CONTENTS) == 0)
14061 continue;
14062
14063 /* Allocate memory for the section contents. */
14064 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
14065 if (s->contents == NULL)
14066 return FALSE;
14067 }
14068
14069 if (elf_hash_table (info)->dynamic_sections_created)
14070 {
14071 /* Add some entries to the .dynamic section. We fill in the
14072 values later, in elf32_arm_finish_dynamic_sections, but we
14073 must add the entries now so that we get the correct size for
14074 the .dynamic section. The DT_DEBUG entry is filled in by the
14075 dynamic linker and used by the debugger. */
14076 #define add_dynamic_entry(TAG, VAL) \
14077 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
14078
14079 if (info->executable)
14080 {
14081 if (!add_dynamic_entry (DT_DEBUG, 0))
14082 return FALSE;
14083 }
14084
14085 if (plt)
14086 {
14087 if ( !add_dynamic_entry (DT_PLTGOT, 0)
14088 || !add_dynamic_entry (DT_PLTRELSZ, 0)
14089 || !add_dynamic_entry (DT_PLTREL,
14090 htab->use_rel ? DT_REL : DT_RELA)
14091 || !add_dynamic_entry (DT_JMPREL, 0))
14092 return FALSE;
14093
14094 if (htab->dt_tlsdesc_plt &&
14095 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
14096 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
14097 return FALSE;
14098 }
14099
14100 if (relocs)
14101 {
14102 if (htab->use_rel)
14103 {
14104 if (!add_dynamic_entry (DT_REL, 0)
14105 || !add_dynamic_entry (DT_RELSZ, 0)
14106 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
14107 return FALSE;
14108 }
14109 else
14110 {
14111 if (!add_dynamic_entry (DT_RELA, 0)
14112 || !add_dynamic_entry (DT_RELASZ, 0)
14113 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
14114 return FALSE;
14115 }
14116 }
14117
14118 /* If any dynamic relocs apply to a read-only section,
14119 then we need a DT_TEXTREL entry. */
14120 if ((info->flags & DF_TEXTREL) == 0)
14121 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
14122 info);
14123
14124 if ((info->flags & DF_TEXTREL) != 0)
14125 {
14126 if (!add_dynamic_entry (DT_TEXTREL, 0))
14127 return FALSE;
14128 }
14129 if (htab->vxworks_p
14130 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
14131 return FALSE;
14132 }
14133 #undef add_dynamic_entry
14134
14135 return TRUE;
14136 }
14137
14138 /* Size sections even though they're not dynamic. We use it to setup
14139 _TLS_MODULE_BASE_, if needed. */
14140
14141 static bfd_boolean
14142 elf32_arm_always_size_sections (bfd *output_bfd,
14143 struct bfd_link_info *info)
14144 {
14145 asection *tls_sec;
14146
14147 if (info->relocatable)
14148 return TRUE;
14149
14150 tls_sec = elf_hash_table (info)->tls_sec;
14151
14152 if (tls_sec)
14153 {
14154 struct elf_link_hash_entry *tlsbase;
14155
14156 tlsbase = elf_link_hash_lookup
14157 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
14158
14159 if (tlsbase)
14160 {
14161 struct bfd_link_hash_entry *bh = NULL;
14162 const struct elf_backend_data *bed
14163 = get_elf_backend_data (output_bfd);
14164
14165 if (!(_bfd_generic_link_add_one_symbol
14166 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
14167 tls_sec, 0, NULL, FALSE,
14168 bed->collect, &bh)))
14169 return FALSE;
14170
14171 tlsbase->type = STT_TLS;
14172 tlsbase = (struct elf_link_hash_entry *)bh;
14173 tlsbase->def_regular = 1;
14174 tlsbase->other = STV_HIDDEN;
14175 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
14176 }
14177 }
14178 return TRUE;
14179 }
14180
14181 /* Finish up dynamic symbol handling. We set the contents of various
14182 dynamic sections here. */
14183
14184 static bfd_boolean
14185 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
14186 struct bfd_link_info * info,
14187 struct elf_link_hash_entry * h,
14188 Elf_Internal_Sym * sym)
14189 {
14190 struct elf32_arm_link_hash_table *htab;
14191 struct elf32_arm_link_hash_entry *eh;
14192
14193 htab = elf32_arm_hash_table (info);
14194 if (htab == NULL)
14195 return FALSE;
14196
14197 eh = (struct elf32_arm_link_hash_entry *) h;
14198
14199 if (h->plt.offset != (bfd_vma) -1)
14200 {
14201 if (!eh->is_iplt)
14202 {
14203 BFD_ASSERT (h->dynindx != -1);
14204 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
14205 h->dynindx, 0))
14206 return FALSE;
14207 }
14208
14209 if (!h->def_regular)
14210 {
14211 /* Mark the symbol as undefined, rather than as defined in
14212 the .plt section. Leave the value alone. */
14213 sym->st_shndx = SHN_UNDEF;
14214 /* If the symbol is weak, we do need to clear the value.
14215 Otherwise, the PLT entry would provide a definition for
14216 the symbol even if the symbol wasn't defined anywhere,
14217 and so the symbol would never be NULL. */
14218 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
14219 sym->st_value = 0;
14220 }
14221 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
14222 {
14223 /* At least one non-call relocation references this .iplt entry,
14224 so the .iplt entry is the function's canonical address. */
14225 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
14226 sym->st_target_internal = ST_BRANCH_TO_ARM;
14227 sym->st_shndx = (_bfd_elf_section_from_bfd_section
14228 (output_bfd, htab->root.iplt->output_section));
14229 sym->st_value = (h->plt.offset
14230 + htab->root.iplt->output_section->vma
14231 + htab->root.iplt->output_offset);
14232 }
14233 }
14234
14235 if (h->needs_copy)
14236 {
14237 asection * s;
14238 Elf_Internal_Rela rel;
14239
14240 /* This symbol needs a copy reloc. Set it up. */
14241 BFD_ASSERT (h->dynindx != -1
14242 && (h->root.type == bfd_link_hash_defined
14243 || h->root.type == bfd_link_hash_defweak));
14244
14245 s = htab->srelbss;
14246 BFD_ASSERT (s != NULL);
14247
14248 rel.r_addend = 0;
14249 rel.r_offset = (h->root.u.def.value
14250 + h->root.u.def.section->output_section->vma
14251 + h->root.u.def.section->output_offset);
14252 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
14253 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
14254 }
14255
14256 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
14257 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
14258 to the ".got" section. */
14259 if (h == htab->root.hdynamic
14260 || (!htab->vxworks_p && h == htab->root.hgot))
14261 sym->st_shndx = SHN_ABS;
14262
14263 return TRUE;
14264 }
14265
14266 static void
14267 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14268 void *contents,
14269 const unsigned long *template, unsigned count)
14270 {
14271 unsigned ix;
14272
14273 for (ix = 0; ix != count; ix++)
14274 {
14275 unsigned long insn = template[ix];
14276
14277 /* Emit mov pc,rx if bx is not permitted. */
14278 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
14279 insn = (insn & 0xf000000f) | 0x01a0f000;
14280 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
14281 }
14282 }
14283
14284 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
14285 other variants, NaCl needs this entry in a static executable's
14286 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
14287 zero. For .iplt really only the last bundle is useful, and .iplt
14288 could have a shorter first entry, with each individual PLT entry's
14289 relative branch calculated differently so it targets the last
14290 bundle instead of the instruction before it (labelled .Lplt_tail
14291 above). But it's simpler to keep the size and layout of PLT0
14292 consistent with the dynamic case, at the cost of some dead code at
14293 the start of .iplt and the one dead store to the stack at the start
14294 of .Lplt_tail. */
14295 static void
14296 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14297 asection *plt, bfd_vma got_displacement)
14298 {
14299 unsigned int i;
14300
14301 put_arm_insn (htab, output_bfd,
14302 elf32_arm_nacl_plt0_entry[0]
14303 | arm_movw_immediate (got_displacement),
14304 plt->contents + 0);
14305 put_arm_insn (htab, output_bfd,
14306 elf32_arm_nacl_plt0_entry[1]
14307 | arm_movt_immediate (got_displacement),
14308 plt->contents + 4);
14309
14310 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
14311 put_arm_insn (htab, output_bfd,
14312 elf32_arm_nacl_plt0_entry[i],
14313 plt->contents + (i * 4));
14314 }
14315
14316 /* Finish up the dynamic sections. */
14317
14318 static bfd_boolean
14319 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
14320 {
14321 bfd * dynobj;
14322 asection * sgot;
14323 asection * sdyn;
14324 struct elf32_arm_link_hash_table *htab;
14325
14326 htab = elf32_arm_hash_table (info);
14327 if (htab == NULL)
14328 return FALSE;
14329
14330 dynobj = elf_hash_table (info)->dynobj;
14331
14332 sgot = htab->root.sgotplt;
14333 /* A broken linker script might have discarded the dynamic sections.
14334 Catch this here so that we do not seg-fault later on. */
14335 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
14336 return FALSE;
14337 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14338
14339 if (elf_hash_table (info)->dynamic_sections_created)
14340 {
14341 asection *splt;
14342 Elf32_External_Dyn *dyncon, *dynconend;
14343
14344 splt = htab->root.splt;
14345 BFD_ASSERT (splt != NULL && sdyn != NULL);
14346 BFD_ASSERT (htab->symbian_p || sgot != NULL);
14347
14348 dyncon = (Elf32_External_Dyn *) sdyn->contents;
14349 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
14350
14351 for (; dyncon < dynconend; dyncon++)
14352 {
14353 Elf_Internal_Dyn dyn;
14354 const char * name;
14355 asection * s;
14356
14357 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
14358
14359 switch (dyn.d_tag)
14360 {
14361 unsigned int type;
14362
14363 default:
14364 if (htab->vxworks_p
14365 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
14366 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14367 break;
14368
14369 case DT_HASH:
14370 name = ".hash";
14371 goto get_vma_if_bpabi;
14372 case DT_STRTAB:
14373 name = ".dynstr";
14374 goto get_vma_if_bpabi;
14375 case DT_SYMTAB:
14376 name = ".dynsym";
14377 goto get_vma_if_bpabi;
14378 case DT_VERSYM:
14379 name = ".gnu.version";
14380 goto get_vma_if_bpabi;
14381 case DT_VERDEF:
14382 name = ".gnu.version_d";
14383 goto get_vma_if_bpabi;
14384 case DT_VERNEED:
14385 name = ".gnu.version_r";
14386 goto get_vma_if_bpabi;
14387
14388 case DT_PLTGOT:
14389 name = ".got";
14390 goto get_vma;
14391 case DT_JMPREL:
14392 name = RELOC_SECTION (htab, ".plt");
14393 get_vma:
14394 s = bfd_get_section_by_name (output_bfd, name);
14395 if (s == NULL)
14396 {
14397 /* PR ld/14397: Issue an error message if a required section is missing. */
14398 (*_bfd_error_handler)
14399 (_("error: required section '%s' not found in the linker script"), name);
14400 bfd_set_error (bfd_error_invalid_operation);
14401 return FALSE;
14402 }
14403 if (!htab->symbian_p)
14404 dyn.d_un.d_ptr = s->vma;
14405 else
14406 /* In the BPABI, tags in the PT_DYNAMIC section point
14407 at the file offset, not the memory address, for the
14408 convenience of the post linker. */
14409 dyn.d_un.d_ptr = s->filepos;
14410 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14411 break;
14412
14413 get_vma_if_bpabi:
14414 if (htab->symbian_p)
14415 goto get_vma;
14416 break;
14417
14418 case DT_PLTRELSZ:
14419 s = htab->root.srelplt;
14420 BFD_ASSERT (s != NULL);
14421 dyn.d_un.d_val = s->size;
14422 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14423 break;
14424
14425 case DT_RELSZ:
14426 case DT_RELASZ:
14427 if (!htab->symbian_p)
14428 {
14429 /* My reading of the SVR4 ABI indicates that the
14430 procedure linkage table relocs (DT_JMPREL) should be
14431 included in the overall relocs (DT_REL). This is
14432 what Solaris does. However, UnixWare can not handle
14433 that case. Therefore, we override the DT_RELSZ entry
14434 here to make it not include the JMPREL relocs. Since
14435 the linker script arranges for .rel(a).plt to follow all
14436 other relocation sections, we don't have to worry
14437 about changing the DT_REL entry. */
14438 s = htab->root.srelplt;
14439 if (s != NULL)
14440 dyn.d_un.d_val -= s->size;
14441 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14442 break;
14443 }
14444 /* Fall through. */
14445
14446 case DT_REL:
14447 case DT_RELA:
14448 /* In the BPABI, the DT_REL tag must point at the file
14449 offset, not the VMA, of the first relocation
14450 section. So, we use code similar to that in
14451 elflink.c, but do not check for SHF_ALLOC on the
14452 relcoation section, since relocations sections are
14453 never allocated under the BPABI. The comments above
14454 about Unixware notwithstanding, we include all of the
14455 relocations here. */
14456 if (htab->symbian_p)
14457 {
14458 unsigned int i;
14459 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
14460 ? SHT_REL : SHT_RELA);
14461 dyn.d_un.d_val = 0;
14462 for (i = 1; i < elf_numsections (output_bfd); i++)
14463 {
14464 Elf_Internal_Shdr *hdr
14465 = elf_elfsections (output_bfd)[i];
14466 if (hdr->sh_type == type)
14467 {
14468 if (dyn.d_tag == DT_RELSZ
14469 || dyn.d_tag == DT_RELASZ)
14470 dyn.d_un.d_val += hdr->sh_size;
14471 else if ((ufile_ptr) hdr->sh_offset
14472 <= dyn.d_un.d_val - 1)
14473 dyn.d_un.d_val = hdr->sh_offset;
14474 }
14475 }
14476 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14477 }
14478 break;
14479
14480 case DT_TLSDESC_PLT:
14481 s = htab->root.splt;
14482 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14483 + htab->dt_tlsdesc_plt);
14484 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14485 break;
14486
14487 case DT_TLSDESC_GOT:
14488 s = htab->root.sgot;
14489 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14490 + htab->dt_tlsdesc_got);
14491 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14492 break;
14493
14494 /* Set the bottom bit of DT_INIT/FINI if the
14495 corresponding function is Thumb. */
14496 case DT_INIT:
14497 name = info->init_function;
14498 goto get_sym;
14499 case DT_FINI:
14500 name = info->fini_function;
14501 get_sym:
14502 /* If it wasn't set by elf_bfd_final_link
14503 then there is nothing to adjust. */
14504 if (dyn.d_un.d_val != 0)
14505 {
14506 struct elf_link_hash_entry * eh;
14507
14508 eh = elf_link_hash_lookup (elf_hash_table (info), name,
14509 FALSE, FALSE, TRUE);
14510 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
14511 {
14512 dyn.d_un.d_val |= 1;
14513 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14514 }
14515 }
14516 break;
14517 }
14518 }
14519
14520 /* Fill in the first entry in the procedure linkage table. */
14521 if (splt->size > 0 && htab->plt_header_size)
14522 {
14523 const bfd_vma *plt0_entry;
14524 bfd_vma got_address, plt_address, got_displacement;
14525
14526 /* Calculate the addresses of the GOT and PLT. */
14527 got_address = sgot->output_section->vma + sgot->output_offset;
14528 plt_address = splt->output_section->vma + splt->output_offset;
14529
14530 if (htab->vxworks_p)
14531 {
14532 /* The VxWorks GOT is relocated by the dynamic linker.
14533 Therefore, we must emit relocations rather than simply
14534 computing the values now. */
14535 Elf_Internal_Rela rel;
14536
14537 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
14538 put_arm_insn (htab, output_bfd, plt0_entry[0],
14539 splt->contents + 0);
14540 put_arm_insn (htab, output_bfd, plt0_entry[1],
14541 splt->contents + 4);
14542 put_arm_insn (htab, output_bfd, plt0_entry[2],
14543 splt->contents + 8);
14544 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
14545
14546 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
14547 rel.r_offset = plt_address + 12;
14548 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14549 rel.r_addend = 0;
14550 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
14551 htab->srelplt2->contents);
14552 }
14553 else if (htab->nacl_p)
14554 arm_nacl_put_plt0 (htab, output_bfd, splt,
14555 got_address + 8 - (plt_address + 16));
14556 else if (using_thumb_only (htab))
14557 {
14558 got_displacement = got_address - (plt_address + 12);
14559
14560 plt0_entry = elf32_thumb2_plt0_entry;
14561 put_arm_insn (htab, output_bfd, plt0_entry[0],
14562 splt->contents + 0);
14563 put_arm_insn (htab, output_bfd, plt0_entry[1],
14564 splt->contents + 4);
14565 put_arm_insn (htab, output_bfd, plt0_entry[2],
14566 splt->contents + 8);
14567
14568 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
14569 }
14570 else
14571 {
14572 got_displacement = got_address - (plt_address + 16);
14573
14574 plt0_entry = elf32_arm_plt0_entry;
14575 put_arm_insn (htab, output_bfd, plt0_entry[0],
14576 splt->contents + 0);
14577 put_arm_insn (htab, output_bfd, plt0_entry[1],
14578 splt->contents + 4);
14579 put_arm_insn (htab, output_bfd, plt0_entry[2],
14580 splt->contents + 8);
14581 put_arm_insn (htab, output_bfd, plt0_entry[3],
14582 splt->contents + 12);
14583
14584 #ifdef FOUR_WORD_PLT
14585 /* The displacement value goes in the otherwise-unused
14586 last word of the second entry. */
14587 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
14588 #else
14589 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
14590 #endif
14591 }
14592 }
14593
14594 /* UnixWare sets the entsize of .plt to 4, although that doesn't
14595 really seem like the right value. */
14596 if (splt->output_section->owner == output_bfd)
14597 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
14598
14599 if (htab->dt_tlsdesc_plt)
14600 {
14601 bfd_vma got_address
14602 = sgot->output_section->vma + sgot->output_offset;
14603 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
14604 + htab->root.sgot->output_offset);
14605 bfd_vma plt_address
14606 = splt->output_section->vma + splt->output_offset;
14607
14608 arm_put_trampoline (htab, output_bfd,
14609 splt->contents + htab->dt_tlsdesc_plt,
14610 dl_tlsdesc_lazy_trampoline, 6);
14611
14612 bfd_put_32 (output_bfd,
14613 gotplt_address + htab->dt_tlsdesc_got
14614 - (plt_address + htab->dt_tlsdesc_plt)
14615 - dl_tlsdesc_lazy_trampoline[6],
14616 splt->contents + htab->dt_tlsdesc_plt + 24);
14617 bfd_put_32 (output_bfd,
14618 got_address - (plt_address + htab->dt_tlsdesc_plt)
14619 - dl_tlsdesc_lazy_trampoline[7],
14620 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
14621 }
14622
14623 if (htab->tls_trampoline)
14624 {
14625 arm_put_trampoline (htab, output_bfd,
14626 splt->contents + htab->tls_trampoline,
14627 tls_trampoline, 3);
14628 #ifdef FOUR_WORD_PLT
14629 bfd_put_32 (output_bfd, 0x00000000,
14630 splt->contents + htab->tls_trampoline + 12);
14631 #endif
14632 }
14633
14634 if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
14635 {
14636 /* Correct the .rel(a).plt.unloaded relocations. They will have
14637 incorrect symbol indexes. */
14638 int num_plts;
14639 unsigned char *p;
14640
14641 num_plts = ((htab->root.splt->size - htab->plt_header_size)
14642 / htab->plt_entry_size);
14643 p = htab->srelplt2->contents + RELOC_SIZE (htab);
14644
14645 for (; num_plts; num_plts--)
14646 {
14647 Elf_Internal_Rela rel;
14648
14649 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14650 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14651 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14652 p += RELOC_SIZE (htab);
14653
14654 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14655 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14656 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14657 p += RELOC_SIZE (htab);
14658 }
14659 }
14660 }
14661
14662 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
14663 /* NaCl uses a special first entry in .iplt too. */
14664 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
14665
14666 /* Fill in the first three entries in the global offset table. */
14667 if (sgot)
14668 {
14669 if (sgot->size > 0)
14670 {
14671 if (sdyn == NULL)
14672 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14673 else
14674 bfd_put_32 (output_bfd,
14675 sdyn->output_section->vma + sdyn->output_offset,
14676 sgot->contents);
14677 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14678 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14679 }
14680
14681 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14682 }
14683
14684 return TRUE;
14685 }
14686
14687 static void
14688 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
14689 {
14690 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
14691 struct elf32_arm_link_hash_table *globals;
14692
14693 i_ehdrp = elf_elfheader (abfd);
14694
14695 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14696 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14697 else
14698 _bfd_elf_post_process_headers (abfd, link_info);
14699 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
14700
14701 if (link_info)
14702 {
14703 globals = elf32_arm_hash_table (link_info);
14704 if (globals != NULL && globals->byteswap_code)
14705 i_ehdrp->e_flags |= EF_ARM_BE8;
14706 }
14707
14708 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
14709 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
14710 {
14711 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
14712 if (abi)
14713 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
14714 else
14715 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
14716 }
14717 }
14718
14719 static enum elf_reloc_type_class
14720 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
14721 const asection *rel_sec ATTRIBUTE_UNUSED,
14722 const Elf_Internal_Rela *rela)
14723 {
14724 switch ((int) ELF32_R_TYPE (rela->r_info))
14725 {
14726 case R_ARM_RELATIVE:
14727 return reloc_class_relative;
14728 case R_ARM_JUMP_SLOT:
14729 return reloc_class_plt;
14730 case R_ARM_COPY:
14731 return reloc_class_copy;
14732 default:
14733 return reloc_class_normal;
14734 }
14735 }
14736
14737 static void
14738 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
14739 {
14740 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
14741 }
14742
14743 /* Return TRUE if this is an unwinding table entry. */
14744
14745 static bfd_boolean
14746 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14747 {
14748 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14749 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
14750 }
14751
14752
14753 /* Set the type and flags for an ARM section. We do this by
14754 the section name, which is a hack, but ought to work. */
14755
14756 static bfd_boolean
14757 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14758 {
14759 const char * name;
14760
14761 name = bfd_get_section_name (abfd, sec);
14762
14763 if (is_arm_elf_unwind_section_name (abfd, name))
14764 {
14765 hdr->sh_type = SHT_ARM_EXIDX;
14766 hdr->sh_flags |= SHF_LINK_ORDER;
14767 }
14768 return TRUE;
14769 }
14770
14771 /* Handle an ARM specific section when reading an object file. This is
14772 called when bfd_section_from_shdr finds a section with an unknown
14773 type. */
14774
14775 static bfd_boolean
14776 elf32_arm_section_from_shdr (bfd *abfd,
14777 Elf_Internal_Shdr * hdr,
14778 const char *name,
14779 int shindex)
14780 {
14781 /* There ought to be a place to keep ELF backend specific flags, but
14782 at the moment there isn't one. We just keep track of the
14783 sections by their name, instead. Fortunately, the ABI gives
14784 names for all the ARM specific sections, so we will probably get
14785 away with this. */
14786 switch (hdr->sh_type)
14787 {
14788 case SHT_ARM_EXIDX:
14789 case SHT_ARM_PREEMPTMAP:
14790 case SHT_ARM_ATTRIBUTES:
14791 break;
14792
14793 default:
14794 return FALSE;
14795 }
14796
14797 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
14798 return FALSE;
14799
14800 return TRUE;
14801 }
14802
14803 static _arm_elf_section_data *
14804 get_arm_elf_section_data (asection * sec)
14805 {
14806 if (sec && sec->owner && is_arm_elf (sec->owner))
14807 return elf32_arm_section_data (sec);
14808 else
14809 return NULL;
14810 }
14811
14812 typedef struct
14813 {
14814 void *flaginfo;
14815 struct bfd_link_info *info;
14816 asection *sec;
14817 int sec_shndx;
14818 int (*func) (void *, const char *, Elf_Internal_Sym *,
14819 asection *, struct elf_link_hash_entry *);
14820 } output_arch_syminfo;
14821
14822 enum map_symbol_type
14823 {
14824 ARM_MAP_ARM,
14825 ARM_MAP_THUMB,
14826 ARM_MAP_DATA
14827 };
14828
14829
14830 /* Output a single mapping symbol. */
14831
14832 static bfd_boolean
14833 elf32_arm_output_map_sym (output_arch_syminfo *osi,
14834 enum map_symbol_type type,
14835 bfd_vma offset)
14836 {
14837 static const char *names[3] = {"$a", "$t", "$d"};
14838 Elf_Internal_Sym sym;
14839
14840 sym.st_value = osi->sec->output_section->vma
14841 + osi->sec->output_offset
14842 + offset;
14843 sym.st_size = 0;
14844 sym.st_other = 0;
14845 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
14846 sym.st_shndx = osi->sec_shndx;
14847 sym.st_target_internal = 0;
14848 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
14849 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
14850 }
14851
14852 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14853 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
14854
14855 static bfd_boolean
14856 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14857 bfd_boolean is_iplt_entry_p,
14858 union gotplt_union *root_plt,
14859 struct arm_plt_info *arm_plt)
14860 {
14861 struct elf32_arm_link_hash_table *htab;
14862 bfd_vma addr, plt_header_size;
14863
14864 if (root_plt->offset == (bfd_vma) -1)
14865 return TRUE;
14866
14867 htab = elf32_arm_hash_table (osi->info);
14868 if (htab == NULL)
14869 return FALSE;
14870
14871 if (is_iplt_entry_p)
14872 {
14873 osi->sec = htab->root.iplt;
14874 plt_header_size = 0;
14875 }
14876 else
14877 {
14878 osi->sec = htab->root.splt;
14879 plt_header_size = htab->plt_header_size;
14880 }
14881 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14882 (osi->info->output_bfd, osi->sec->output_section));
14883
14884 addr = root_plt->offset & -2;
14885 if (htab->symbian_p)
14886 {
14887 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14888 return FALSE;
14889 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
14890 return FALSE;
14891 }
14892 else if (htab->vxworks_p)
14893 {
14894 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14895 return FALSE;
14896 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
14897 return FALSE;
14898 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
14899 return FALSE;
14900 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
14901 return FALSE;
14902 }
14903 else if (htab->nacl_p)
14904 {
14905 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14906 return FALSE;
14907 }
14908 else if (using_thumb_only (htab))
14909 {
14910 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
14911 return FALSE;
14912 }
14913 else
14914 {
14915 bfd_boolean thumb_stub_p;
14916
14917 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14918 if (thumb_stub_p)
14919 {
14920 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
14921 return FALSE;
14922 }
14923 #ifdef FOUR_WORD_PLT
14924 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14925 return FALSE;
14926 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
14927 return FALSE;
14928 #else
14929 /* A three-word PLT with no Thumb thunk contains only Arm code,
14930 so only need to output a mapping symbol for the first PLT entry and
14931 entries with thumb thunks. */
14932 if (thumb_stub_p || addr == plt_header_size)
14933 {
14934 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14935 return FALSE;
14936 }
14937 #endif
14938 }
14939
14940 return TRUE;
14941 }
14942
14943 /* Output mapping symbols for PLT entries associated with H. */
14944
14945 static bfd_boolean
14946 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14947 {
14948 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14949 struct elf32_arm_link_hash_entry *eh;
14950
14951 if (h->root.type == bfd_link_hash_indirect)
14952 return TRUE;
14953
14954 if (h->root.type == bfd_link_hash_warning)
14955 /* When warning symbols are created, they **replace** the "real"
14956 entry in the hash table, thus we never get to see the real
14957 symbol in a hash traversal. So look at it now. */
14958 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14959
14960 eh = (struct elf32_arm_link_hash_entry *) h;
14961 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14962 &h->plt, &eh->plt);
14963 }
14964
14965 /* Output a single local symbol for a generated stub. */
14966
14967 static bfd_boolean
14968 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14969 bfd_vma offset, bfd_vma size)
14970 {
14971 Elf_Internal_Sym sym;
14972
14973 sym.st_value = osi->sec->output_section->vma
14974 + osi->sec->output_offset
14975 + offset;
14976 sym.st_size = size;
14977 sym.st_other = 0;
14978 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14979 sym.st_shndx = osi->sec_shndx;
14980 sym.st_target_internal = 0;
14981 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
14982 }
14983
14984 static bfd_boolean
14985 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
14986 void * in_arg)
14987 {
14988 struct elf32_arm_stub_hash_entry *stub_entry;
14989 asection *stub_sec;
14990 bfd_vma addr;
14991 char *stub_name;
14992 output_arch_syminfo *osi;
14993 const insn_sequence *template_sequence;
14994 enum stub_insn_type prev_type;
14995 int size;
14996 int i;
14997 enum map_symbol_type sym_type;
14998
14999 /* Massage our args to the form they really have. */
15000 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
15001 osi = (output_arch_syminfo *) in_arg;
15002
15003 stub_sec = stub_entry->stub_sec;
15004
15005 /* Ensure this stub is attached to the current section being
15006 processed. */
15007 if (stub_sec != osi->sec)
15008 return TRUE;
15009
15010 addr = (bfd_vma) stub_entry->stub_offset;
15011 stub_name = stub_entry->output_name;
15012
15013 template_sequence = stub_entry->stub_template;
15014 switch (template_sequence[0].type)
15015 {
15016 case ARM_TYPE:
15017 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
15018 return FALSE;
15019 break;
15020 case THUMB16_TYPE:
15021 case THUMB32_TYPE:
15022 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
15023 stub_entry->stub_size))
15024 return FALSE;
15025 break;
15026 default:
15027 BFD_FAIL ();
15028 return 0;
15029 }
15030
15031 prev_type = DATA_TYPE;
15032 size = 0;
15033 for (i = 0; i < stub_entry->stub_template_size; i++)
15034 {
15035 switch (template_sequence[i].type)
15036 {
15037 case ARM_TYPE:
15038 sym_type = ARM_MAP_ARM;
15039 break;
15040
15041 case THUMB16_TYPE:
15042 case THUMB32_TYPE:
15043 sym_type = ARM_MAP_THUMB;
15044 break;
15045
15046 case DATA_TYPE:
15047 sym_type = ARM_MAP_DATA;
15048 break;
15049
15050 default:
15051 BFD_FAIL ();
15052 return FALSE;
15053 }
15054
15055 if (template_sequence[i].type != prev_type)
15056 {
15057 prev_type = template_sequence[i].type;
15058 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
15059 return FALSE;
15060 }
15061
15062 switch (template_sequence[i].type)
15063 {
15064 case ARM_TYPE:
15065 case THUMB32_TYPE:
15066 size += 4;
15067 break;
15068
15069 case THUMB16_TYPE:
15070 size += 2;
15071 break;
15072
15073 case DATA_TYPE:
15074 size += 4;
15075 break;
15076
15077 default:
15078 BFD_FAIL ();
15079 return FALSE;
15080 }
15081 }
15082
15083 return TRUE;
15084 }
15085
15086 /* Output mapping symbols for linker generated sections,
15087 and for those data-only sections that do not have a
15088 $d. */
15089
15090 static bfd_boolean
15091 elf32_arm_output_arch_local_syms (bfd *output_bfd,
15092 struct bfd_link_info *info,
15093 void *flaginfo,
15094 int (*func) (void *, const char *,
15095 Elf_Internal_Sym *,
15096 asection *,
15097 struct elf_link_hash_entry *))
15098 {
15099 output_arch_syminfo osi;
15100 struct elf32_arm_link_hash_table *htab;
15101 bfd_vma offset;
15102 bfd_size_type size;
15103 bfd *input_bfd;
15104
15105 htab = elf32_arm_hash_table (info);
15106 if (htab == NULL)
15107 return FALSE;
15108
15109 check_use_blx (htab);
15110
15111 osi.flaginfo = flaginfo;
15112 osi.info = info;
15113 osi.func = func;
15114
15115 /* Add a $d mapping symbol to data-only sections that
15116 don't have any mapping symbol. This may result in (harmless) redundant
15117 mapping symbols. */
15118 for (input_bfd = info->input_bfds;
15119 input_bfd != NULL;
15120 input_bfd = input_bfd->link.next)
15121 {
15122 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
15123 for (osi.sec = input_bfd->sections;
15124 osi.sec != NULL;
15125 osi.sec = osi.sec->next)
15126 {
15127 if (osi.sec->output_section != NULL
15128 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
15129 != 0)
15130 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
15131 == SEC_HAS_CONTENTS
15132 && get_arm_elf_section_data (osi.sec) != NULL
15133 && get_arm_elf_section_data (osi.sec)->mapcount == 0
15134 && osi.sec->size > 0
15135 && (osi.sec->flags & SEC_EXCLUDE) == 0)
15136 {
15137 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15138 (output_bfd, osi.sec->output_section);
15139 if (osi.sec_shndx != (int)SHN_BAD)
15140 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
15141 }
15142 }
15143 }
15144
15145 /* ARM->Thumb glue. */
15146 if (htab->arm_glue_size > 0)
15147 {
15148 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
15149 ARM2THUMB_GLUE_SECTION_NAME);
15150
15151 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15152 (output_bfd, osi.sec->output_section);
15153 if (info->shared || htab->root.is_relocatable_executable
15154 || htab->pic_veneer)
15155 size = ARM2THUMB_PIC_GLUE_SIZE;
15156 else if (htab->use_blx)
15157 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
15158 else
15159 size = ARM2THUMB_STATIC_GLUE_SIZE;
15160
15161 for (offset = 0; offset < htab->arm_glue_size; offset += size)
15162 {
15163 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
15164 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
15165 }
15166 }
15167
15168 /* Thumb->ARM glue. */
15169 if (htab->thumb_glue_size > 0)
15170 {
15171 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
15172 THUMB2ARM_GLUE_SECTION_NAME);
15173
15174 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15175 (output_bfd, osi.sec->output_section);
15176 size = THUMB2ARM_GLUE_SIZE;
15177
15178 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
15179 {
15180 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
15181 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
15182 }
15183 }
15184
15185 /* ARMv4 BX veneers. */
15186 if (htab->bx_glue_size > 0)
15187 {
15188 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
15189 ARM_BX_GLUE_SECTION_NAME);
15190
15191 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15192 (output_bfd, osi.sec->output_section);
15193
15194 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
15195 }
15196
15197 /* Long calls stubs. */
15198 if (htab->stub_bfd && htab->stub_bfd->sections)
15199 {
15200 asection* stub_sec;
15201
15202 for (stub_sec = htab->stub_bfd->sections;
15203 stub_sec != NULL;
15204 stub_sec = stub_sec->next)
15205 {
15206 /* Ignore non-stub sections. */
15207 if (!strstr (stub_sec->name, STUB_SUFFIX))
15208 continue;
15209
15210 osi.sec = stub_sec;
15211
15212 osi.sec_shndx = _bfd_elf_section_from_bfd_section
15213 (output_bfd, osi.sec->output_section);
15214
15215 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
15216 }
15217 }
15218
15219 /* Finally, output mapping symbols for the PLT. */
15220 if (htab->root.splt && htab->root.splt->size > 0)
15221 {
15222 osi.sec = htab->root.splt;
15223 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15224 (output_bfd, osi.sec->output_section));
15225
15226 /* Output mapping symbols for the plt header. SymbianOS does not have a
15227 plt header. */
15228 if (htab->vxworks_p)
15229 {
15230 /* VxWorks shared libraries have no PLT header. */
15231 if (!info->shared)
15232 {
15233 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15234 return FALSE;
15235 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
15236 return FALSE;
15237 }
15238 }
15239 else if (htab->nacl_p)
15240 {
15241 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15242 return FALSE;
15243 }
15244 else if (using_thumb_only (htab))
15245 {
15246 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
15247 return FALSE;
15248 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
15249 return FALSE;
15250 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
15251 return FALSE;
15252 }
15253 else if (!htab->symbian_p)
15254 {
15255 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15256 return FALSE;
15257 #ifndef FOUR_WORD_PLT
15258 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
15259 return FALSE;
15260 #endif
15261 }
15262 }
15263 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
15264 {
15265 /* NaCl uses a special first entry in .iplt too. */
15266 osi.sec = htab->root.iplt;
15267 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
15268 (output_bfd, osi.sec->output_section));
15269 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
15270 return FALSE;
15271 }
15272 if ((htab->root.splt && htab->root.splt->size > 0)
15273 || (htab->root.iplt && htab->root.iplt->size > 0))
15274 {
15275 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
15276 for (input_bfd = info->input_bfds;
15277 input_bfd != NULL;
15278 input_bfd = input_bfd->link.next)
15279 {
15280 struct arm_local_iplt_info **local_iplt;
15281 unsigned int i, num_syms;
15282
15283 local_iplt = elf32_arm_local_iplt (input_bfd);
15284 if (local_iplt != NULL)
15285 {
15286 num_syms = elf_symtab_hdr (input_bfd).sh_info;
15287 for (i = 0; i < num_syms; i++)
15288 if (local_iplt[i] != NULL
15289 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
15290 &local_iplt[i]->root,
15291 &local_iplt[i]->arm))
15292 return FALSE;
15293 }
15294 }
15295 }
15296 if (htab->dt_tlsdesc_plt != 0)
15297 {
15298 /* Mapping symbols for the lazy tls trampoline. */
15299 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
15300 return FALSE;
15301
15302 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15303 htab->dt_tlsdesc_plt + 24))
15304 return FALSE;
15305 }
15306 if (htab->tls_trampoline != 0)
15307 {
15308 /* Mapping symbols for the tls trampoline. */
15309 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
15310 return FALSE;
15311 #ifdef FOUR_WORD_PLT
15312 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15313 htab->tls_trampoline + 12))
15314 return FALSE;
15315 #endif
15316 }
15317
15318 return TRUE;
15319 }
15320
15321 /* Allocate target specific section data. */
15322
15323 static bfd_boolean
15324 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
15325 {
15326 if (!sec->used_by_bfd)
15327 {
15328 _arm_elf_section_data *sdata;
15329 bfd_size_type amt = sizeof (*sdata);
15330
15331 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
15332 if (sdata == NULL)
15333 return FALSE;
15334 sec->used_by_bfd = sdata;
15335 }
15336
15337 return _bfd_elf_new_section_hook (abfd, sec);
15338 }
15339
15340
15341 /* Used to order a list of mapping symbols by address. */
15342
15343 static int
15344 elf32_arm_compare_mapping (const void * a, const void * b)
15345 {
15346 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
15347 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
15348
15349 if (amap->vma > bmap->vma)
15350 return 1;
15351 else if (amap->vma < bmap->vma)
15352 return -1;
15353 else if (amap->type > bmap->type)
15354 /* Ensure results do not depend on the host qsort for objects with
15355 multiple mapping symbols at the same address by sorting on type
15356 after vma. */
15357 return 1;
15358 else if (amap->type < bmap->type)
15359 return -1;
15360 else
15361 return 0;
15362 }
15363
15364 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
15365
15366 static unsigned long
15367 offset_prel31 (unsigned long addr, bfd_vma offset)
15368 {
15369 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
15370 }
15371
15372 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
15373 relocations. */
15374
15375 static void
15376 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
15377 {
15378 unsigned long first_word = bfd_get_32 (output_bfd, from);
15379 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
15380
15381 /* High bit of first word is supposed to be zero. */
15382 if ((first_word & 0x80000000ul) == 0)
15383 first_word = offset_prel31 (first_word, offset);
15384
15385 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
15386 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
15387 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
15388 second_word = offset_prel31 (second_word, offset);
15389
15390 bfd_put_32 (output_bfd, first_word, to);
15391 bfd_put_32 (output_bfd, second_word, to + 4);
15392 }
15393
15394 /* Data for make_branch_to_a8_stub(). */
15395
15396 struct a8_branch_to_stub_data
15397 {
15398 asection *writing_section;
15399 bfd_byte *contents;
15400 };
15401
15402
15403 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
15404 places for a particular section. */
15405
15406 static bfd_boolean
15407 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
15408 void *in_arg)
15409 {
15410 struct elf32_arm_stub_hash_entry *stub_entry;
15411 struct a8_branch_to_stub_data *data;
15412 bfd_byte *contents;
15413 unsigned long branch_insn;
15414 bfd_vma veneered_insn_loc, veneer_entry_loc;
15415 bfd_signed_vma branch_offset;
15416 bfd *abfd;
15417 unsigned int target;
15418
15419 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
15420 data = (struct a8_branch_to_stub_data *) in_arg;
15421
15422 if (stub_entry->target_section != data->writing_section
15423 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
15424 return TRUE;
15425
15426 contents = data->contents;
15427
15428 veneered_insn_loc = stub_entry->target_section->output_section->vma
15429 + stub_entry->target_section->output_offset
15430 + stub_entry->target_value;
15431
15432 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
15433 + stub_entry->stub_sec->output_offset
15434 + stub_entry->stub_offset;
15435
15436 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
15437 veneered_insn_loc &= ~3u;
15438
15439 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
15440
15441 abfd = stub_entry->target_section->owner;
15442 target = stub_entry->target_value;
15443
15444 /* We attempt to avoid this condition by setting stubs_always_after_branch
15445 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
15446 This check is just to be on the safe side... */
15447 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
15448 {
15449 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
15450 "allocated in unsafe location"), abfd);
15451 return FALSE;
15452 }
15453
15454 switch (stub_entry->stub_type)
15455 {
15456 case arm_stub_a8_veneer_b:
15457 case arm_stub_a8_veneer_b_cond:
15458 branch_insn = 0xf0009000;
15459 goto jump24;
15460
15461 case arm_stub_a8_veneer_blx:
15462 branch_insn = 0xf000e800;
15463 goto jump24;
15464
15465 case arm_stub_a8_veneer_bl:
15466 {
15467 unsigned int i1, j1, i2, j2, s;
15468
15469 branch_insn = 0xf000d000;
15470
15471 jump24:
15472 if (branch_offset < -16777216 || branch_offset > 16777214)
15473 {
15474 /* There's not much we can do apart from complain if this
15475 happens. */
15476 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
15477 "of range (input file too large)"), abfd);
15478 return FALSE;
15479 }
15480
15481 /* i1 = not(j1 eor s), so:
15482 not i1 = j1 eor s
15483 j1 = (not i1) eor s. */
15484
15485 branch_insn |= (branch_offset >> 1) & 0x7ff;
15486 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
15487 i2 = (branch_offset >> 22) & 1;
15488 i1 = (branch_offset >> 23) & 1;
15489 s = (branch_offset >> 24) & 1;
15490 j1 = (!i1) ^ s;
15491 j2 = (!i2) ^ s;
15492 branch_insn |= j2 << 11;
15493 branch_insn |= j1 << 13;
15494 branch_insn |= s << 26;
15495 }
15496 break;
15497
15498 default:
15499 BFD_FAIL ();
15500 return FALSE;
15501 }
15502
15503 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
15504 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
15505
15506 return TRUE;
15507 }
15508
15509 /* Do code byteswapping. Return FALSE afterwards so that the section is
15510 written out as normal. */
15511
15512 static bfd_boolean
15513 elf32_arm_write_section (bfd *output_bfd,
15514 struct bfd_link_info *link_info,
15515 asection *sec,
15516 bfd_byte *contents)
15517 {
15518 unsigned int mapcount, errcount;
15519 _arm_elf_section_data *arm_data;
15520 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
15521 elf32_arm_section_map *map;
15522 elf32_vfp11_erratum_list *errnode;
15523 bfd_vma ptr;
15524 bfd_vma end;
15525 bfd_vma offset = sec->output_section->vma + sec->output_offset;
15526 bfd_byte tmp;
15527 unsigned int i;
15528
15529 if (globals == NULL)
15530 return FALSE;
15531
15532 /* If this section has not been allocated an _arm_elf_section_data
15533 structure then we cannot record anything. */
15534 arm_data = get_arm_elf_section_data (sec);
15535 if (arm_data == NULL)
15536 return FALSE;
15537
15538 mapcount = arm_data->mapcount;
15539 map = arm_data->map;
15540 errcount = arm_data->erratumcount;
15541
15542 if (errcount != 0)
15543 {
15544 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
15545
15546 for (errnode = arm_data->erratumlist; errnode != 0;
15547 errnode = errnode->next)
15548 {
15549 bfd_vma target = errnode->vma - offset;
15550
15551 switch (errnode->type)
15552 {
15553 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
15554 {
15555 bfd_vma branch_to_veneer;
15556 /* Original condition code of instruction, plus bit mask for
15557 ARM B instruction. */
15558 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
15559 | 0x0a000000;
15560
15561 /* The instruction is before the label. */
15562 target -= 4;
15563
15564 /* Above offset included in -4 below. */
15565 branch_to_veneer = errnode->u.b.veneer->vma
15566 - errnode->vma - 4;
15567
15568 if ((signed) branch_to_veneer < -(1 << 25)
15569 || (signed) branch_to_veneer >= (1 << 25))
15570 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15571 "range"), output_bfd);
15572
15573 insn |= (branch_to_veneer >> 2) & 0xffffff;
15574 contents[endianflip ^ target] = insn & 0xff;
15575 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15576 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15577 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15578 }
15579 break;
15580
15581 case VFP11_ERRATUM_ARM_VENEER:
15582 {
15583 bfd_vma branch_from_veneer;
15584 unsigned int insn;
15585
15586 /* Take size of veneer into account. */
15587 branch_from_veneer = errnode->u.v.branch->vma
15588 - errnode->vma - 12;
15589
15590 if ((signed) branch_from_veneer < -(1 << 25)
15591 || (signed) branch_from_veneer >= (1 << 25))
15592 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15593 "range"), output_bfd);
15594
15595 /* Original instruction. */
15596 insn = errnode->u.v.branch->u.b.vfp_insn;
15597 contents[endianflip ^ target] = insn & 0xff;
15598 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15599 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15600 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15601
15602 /* Branch back to insn after original insn. */
15603 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
15604 contents[endianflip ^ (target + 4)] = insn & 0xff;
15605 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
15606 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
15607 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
15608 }
15609 break;
15610
15611 default:
15612 abort ();
15613 }
15614 }
15615 }
15616
15617 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
15618 {
15619 arm_unwind_table_edit *edit_node
15620 = arm_data->u.exidx.unwind_edit_list;
15621 /* Now, sec->size is the size of the section we will write. The original
15622 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
15623 markers) was sec->rawsize. (This isn't the case if we perform no
15624 edits, then rawsize will be zero and we should use size). */
15625 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
15626 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
15627 unsigned int in_index, out_index;
15628 bfd_vma add_to_offsets = 0;
15629
15630 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
15631 {
15632 if (edit_node)
15633 {
15634 unsigned int edit_index = edit_node->index;
15635
15636 if (in_index < edit_index && in_index * 8 < input_size)
15637 {
15638 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15639 contents + in_index * 8, add_to_offsets);
15640 out_index++;
15641 in_index++;
15642 }
15643 else if (in_index == edit_index
15644 || (in_index * 8 >= input_size
15645 && edit_index == UINT_MAX))
15646 {
15647 switch (edit_node->type)
15648 {
15649 case DELETE_EXIDX_ENTRY:
15650 in_index++;
15651 add_to_offsets += 8;
15652 break;
15653
15654 case INSERT_EXIDX_CANTUNWIND_AT_END:
15655 {
15656 asection *text_sec = edit_node->linked_section;
15657 bfd_vma text_offset = text_sec->output_section->vma
15658 + text_sec->output_offset
15659 + text_sec->size;
15660 bfd_vma exidx_offset = offset + out_index * 8;
15661 unsigned long prel31_offset;
15662
15663 /* Note: this is meant to be equivalent to an
15664 R_ARM_PREL31 relocation. These synthetic
15665 EXIDX_CANTUNWIND markers are not relocated by the
15666 usual BFD method. */
15667 prel31_offset = (text_offset - exidx_offset)
15668 & 0x7ffffffful;
15669
15670 /* First address we can't unwind. */
15671 bfd_put_32 (output_bfd, prel31_offset,
15672 &edited_contents[out_index * 8]);
15673
15674 /* Code for EXIDX_CANTUNWIND. */
15675 bfd_put_32 (output_bfd, 0x1,
15676 &edited_contents[out_index * 8 + 4]);
15677
15678 out_index++;
15679 add_to_offsets -= 8;
15680 }
15681 break;
15682 }
15683
15684 edit_node = edit_node->next;
15685 }
15686 }
15687 else
15688 {
15689 /* No more edits, copy remaining entries verbatim. */
15690 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15691 contents + in_index * 8, add_to_offsets);
15692 out_index++;
15693 in_index++;
15694 }
15695 }
15696
15697 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15698 bfd_set_section_contents (output_bfd, sec->output_section,
15699 edited_contents,
15700 (file_ptr) sec->output_offset, sec->size);
15701
15702 return TRUE;
15703 }
15704
15705 /* Fix code to point to Cortex-A8 erratum stubs. */
15706 if (globals->fix_cortex_a8)
15707 {
15708 struct a8_branch_to_stub_data data;
15709
15710 data.writing_section = sec;
15711 data.contents = contents;
15712
15713 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15714 &data);
15715 }
15716
15717 if (mapcount == 0)
15718 return FALSE;
15719
15720 if (globals->byteswap_code)
15721 {
15722 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
15723
15724 ptr = map[0].vma;
15725 for (i = 0; i < mapcount; i++)
15726 {
15727 if (i == mapcount - 1)
15728 end = sec->size;
15729 else
15730 end = map[i + 1].vma;
15731
15732 switch (map[i].type)
15733 {
15734 case 'a':
15735 /* Byte swap code words. */
15736 while (ptr + 3 < end)
15737 {
15738 tmp = contents[ptr];
15739 contents[ptr] = contents[ptr + 3];
15740 contents[ptr + 3] = tmp;
15741 tmp = contents[ptr + 1];
15742 contents[ptr + 1] = contents[ptr + 2];
15743 contents[ptr + 2] = tmp;
15744 ptr += 4;
15745 }
15746 break;
15747
15748 case 't':
15749 /* Byte swap code halfwords. */
15750 while (ptr + 1 < end)
15751 {
15752 tmp = contents[ptr];
15753 contents[ptr] = contents[ptr + 1];
15754 contents[ptr + 1] = tmp;
15755 ptr += 2;
15756 }
15757 break;
15758
15759 case 'd':
15760 /* Leave data alone. */
15761 break;
15762 }
15763 ptr = end;
15764 }
15765 }
15766
15767 free (map);
15768 arm_data->mapcount = -1;
15769 arm_data->mapsize = 0;
15770 arm_data->map = NULL;
15771
15772 return FALSE;
15773 }
15774
15775 /* Mangle thumb function symbols as we read them in. */
15776
15777 static bfd_boolean
15778 elf32_arm_swap_symbol_in (bfd * abfd,
15779 const void *psrc,
15780 const void *pshn,
15781 Elf_Internal_Sym *dst)
15782 {
15783 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15784 return FALSE;
15785
15786 /* New EABI objects mark thumb function symbols by setting the low bit of
15787 the address. */
15788 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
15789 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
15790 {
15791 if (dst->st_value & 1)
15792 {
15793 dst->st_value &= ~(bfd_vma) 1;
15794 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15795 }
15796 else
15797 dst->st_target_internal = ST_BRANCH_TO_ARM;
15798 }
15799 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15800 {
15801 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15802 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15803 }
15804 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15805 dst->st_target_internal = ST_BRANCH_LONG;
15806 else
15807 dst->st_target_internal = ST_BRANCH_UNKNOWN;
15808
15809 return TRUE;
15810 }
15811
15812
15813 /* Mangle thumb function symbols as we write them out. */
15814
15815 static void
15816 elf32_arm_swap_symbol_out (bfd *abfd,
15817 const Elf_Internal_Sym *src,
15818 void *cdst,
15819 void *shndx)
15820 {
15821 Elf_Internal_Sym newsym;
15822
15823 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15824 of the address set, as per the new EABI. We do this unconditionally
15825 because objcopy does not set the elf header flags until after
15826 it writes out the symbol table. */
15827 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
15828 {
15829 newsym = *src;
15830 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15831 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
15832 if (newsym.st_shndx != SHN_UNDEF)
15833 {
15834 /* Do this only for defined symbols. At link type, the static
15835 linker will simulate the work of dynamic linker of resolving
15836 symbols and will carry over the thumbness of found symbols to
15837 the output symbol table. It's not clear how it happens, but
15838 the thumbness of undefined symbols can well be different at
15839 runtime, and writing '1' for them will be confusing for users
15840 and possibly for dynamic linker itself.
15841 */
15842 newsym.st_value |= 1;
15843 }
15844
15845 src = &newsym;
15846 }
15847 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15848 }
15849
15850 /* Add the PT_ARM_EXIDX program header. */
15851
15852 static bfd_boolean
15853 elf32_arm_modify_segment_map (bfd *abfd,
15854 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15855 {
15856 struct elf_segment_map *m;
15857 asection *sec;
15858
15859 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15860 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15861 {
15862 /* If there is already a PT_ARM_EXIDX header, then we do not
15863 want to add another one. This situation arises when running
15864 "strip"; the input binary already has the header. */
15865 m = elf_seg_map (abfd);
15866 while (m && m->p_type != PT_ARM_EXIDX)
15867 m = m->next;
15868 if (!m)
15869 {
15870 m = (struct elf_segment_map *)
15871 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
15872 if (m == NULL)
15873 return FALSE;
15874 m->p_type = PT_ARM_EXIDX;
15875 m->count = 1;
15876 m->sections[0] = sec;
15877
15878 m->next = elf_seg_map (abfd);
15879 elf_seg_map (abfd) = m;
15880 }
15881 }
15882
15883 return TRUE;
15884 }
15885
15886 /* We may add a PT_ARM_EXIDX program header. */
15887
15888 static int
15889 elf32_arm_additional_program_headers (bfd *abfd,
15890 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15891 {
15892 asection *sec;
15893
15894 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15895 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15896 return 1;
15897 else
15898 return 0;
15899 }
15900
15901 /* Hook called by the linker routine which adds symbols from an object
15902 file. */
15903
15904 static bfd_boolean
15905 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15906 Elf_Internal_Sym *sym, const char **namep,
15907 flagword *flagsp, asection **secp, bfd_vma *valp)
15908 {
15909 if ((abfd->flags & DYNAMIC) == 0
15910 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
15911 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
15912 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
15913
15914 if (elf32_arm_hash_table (info) == NULL)
15915 return FALSE;
15916
15917 if (elf32_arm_hash_table (info)->vxworks_p
15918 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15919 flagsp, secp, valp))
15920 return FALSE;
15921
15922 return TRUE;
15923 }
15924
15925 /* We use this to override swap_symbol_in and swap_symbol_out. */
15926 const struct elf_size_info elf32_arm_size_info =
15927 {
15928 sizeof (Elf32_External_Ehdr),
15929 sizeof (Elf32_External_Phdr),
15930 sizeof (Elf32_External_Shdr),
15931 sizeof (Elf32_External_Rel),
15932 sizeof (Elf32_External_Rela),
15933 sizeof (Elf32_External_Sym),
15934 sizeof (Elf32_External_Dyn),
15935 sizeof (Elf_External_Note),
15936 4,
15937 1,
15938 32, 2,
15939 ELFCLASS32, EV_CURRENT,
15940 bfd_elf32_write_out_phdrs,
15941 bfd_elf32_write_shdrs_and_ehdr,
15942 bfd_elf32_checksum_contents,
15943 bfd_elf32_write_relocs,
15944 elf32_arm_swap_symbol_in,
15945 elf32_arm_swap_symbol_out,
15946 bfd_elf32_slurp_reloc_table,
15947 bfd_elf32_slurp_symbol_table,
15948 bfd_elf32_swap_dyn_in,
15949 bfd_elf32_swap_dyn_out,
15950 bfd_elf32_swap_reloc_in,
15951 bfd_elf32_swap_reloc_out,
15952 bfd_elf32_swap_reloca_in,
15953 bfd_elf32_swap_reloca_out
15954 };
15955
15956 /* Return size of plt0 entry starting at ADDR
15957 or (bfd_vma) -1 if size can not be determined. */
15958
15959 static bfd_vma
15960 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
15961 {
15962 bfd_vma first_word;
15963 bfd_vma plt0_size;
15964
15965 first_word = H_GET_32 (abfd, addr);
15966
15967 if (first_word == elf32_arm_plt0_entry[0])
15968 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
15969 else if (first_word == elf32_thumb2_plt0_entry[0])
15970 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
15971 else
15972 /* We don't yet handle this PLT format. */
15973 return (bfd_vma) -1;
15974
15975 return plt0_size;
15976 }
15977
15978 /* Return size of plt entry starting at offset OFFSET
15979 of plt section located at address START
15980 or (bfd_vma) -1 if size can not be determined. */
15981
15982 static bfd_vma
15983 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
15984 {
15985 bfd_vma first_insn;
15986 bfd_vma plt_size = 0;
15987 const bfd_byte *addr = start + offset;
15988
15989 /* PLT entry size if fixed on Thumb-only platforms. */
15990 if (H_GET_32(abfd, start) == elf32_thumb2_plt0_entry[0])
15991 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
15992
15993 /* Respect Thumb stub if necessary. */
15994 if (H_GET_16(abfd, addr) == elf32_arm_plt_thumb_stub[0])
15995 {
15996 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
15997 }
15998
15999 /* Strip immediate from first add. */
16000 first_insn = H_GET_32(abfd, addr + plt_size) & 0xffffff00;
16001
16002 #ifdef FOUR_WORD_PLT
16003 if (first_insn == elf32_arm_plt_entry[0])
16004 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
16005 #else
16006 if (first_insn == elf32_arm_plt_entry_long[0])
16007 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
16008 else if (first_insn == elf32_arm_plt_entry_short[0])
16009 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
16010 #endif
16011 else
16012 /* We don't yet handle this PLT format. */
16013 return (bfd_vma) -1;
16014
16015 return plt_size;
16016 }
16017
16018 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
16019
16020 static long
16021 elf32_arm_get_synthetic_symtab (bfd *abfd,
16022 long symcount ATTRIBUTE_UNUSED,
16023 asymbol **syms ATTRIBUTE_UNUSED,
16024 long dynsymcount,
16025 asymbol **dynsyms,
16026 asymbol **ret)
16027 {
16028 asection *relplt;
16029 asymbol *s;
16030 arelent *p;
16031 long count, i, n;
16032 size_t size;
16033 Elf_Internal_Shdr *hdr;
16034 char *names;
16035 asection *plt;
16036 bfd_vma offset;
16037 bfd_byte *data;
16038
16039 *ret = NULL;
16040
16041 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
16042 return 0;
16043
16044 if (dynsymcount <= 0)
16045 return 0;
16046
16047 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16048 if (relplt == NULL)
16049 return 0;
16050
16051 hdr = &elf_section_data (relplt)->this_hdr;
16052 if (hdr->sh_link != elf_dynsymtab (abfd)
16053 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
16054 return 0;
16055
16056 plt = bfd_get_section_by_name (abfd, ".plt");
16057 if (plt == NULL)
16058 return 0;
16059
16060 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
16061 return -1;
16062
16063 data = plt->contents;
16064 if (data == NULL)
16065 {
16066 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
16067 return -1;
16068 bfd_cache_section_contents((asection *) plt, data);
16069 }
16070
16071 count = relplt->size / hdr->sh_entsize;
16072 size = count * sizeof (asymbol);
16073 p = relplt->relocation;
16074 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
16075 {
16076 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
16077 if (p->addend != 0)
16078 size += sizeof ("+0x") - 1 + 8;
16079 }
16080
16081 s = *ret = (asymbol *) bfd_malloc (size);
16082 if (s == NULL)
16083 return -1;
16084
16085 offset = elf32_arm_plt0_size (abfd, data);
16086 if (offset == (bfd_vma) -1)
16087 return -1;
16088
16089 names = (char *) (s + count);
16090 p = relplt->relocation;
16091 n = 0;
16092 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
16093 {
16094 size_t len;
16095
16096 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
16097 if (plt_size == (bfd_vma) -1)
16098 break;
16099
16100 *s = **p->sym_ptr_ptr;
16101 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16102 we are defining a symbol, ensure one of them is set. */
16103 if ((s->flags & BSF_LOCAL) == 0)
16104 s->flags |= BSF_GLOBAL;
16105 s->flags |= BSF_SYNTHETIC;
16106 s->section = plt;
16107 s->value = offset;
16108 s->name = names;
16109 s->udata.p = NULL;
16110 len = strlen ((*p->sym_ptr_ptr)->name);
16111 memcpy (names, (*p->sym_ptr_ptr)->name, len);
16112 names += len;
16113 if (p->addend != 0)
16114 {
16115 char buf[30], *a;
16116
16117 memcpy (names, "+0x", sizeof ("+0x") - 1);
16118 names += sizeof ("+0x") - 1;
16119 bfd_sprintf_vma (abfd, buf, p->addend);
16120 for (a = buf; *a == '0'; ++a)
16121 ;
16122 len = strlen (a);
16123 memcpy (names, a, len);
16124 names += len;
16125 }
16126 memcpy (names, "@plt", sizeof ("@plt"));
16127 names += sizeof ("@plt");
16128 ++s, ++n;
16129 offset += plt_size;
16130 }
16131
16132 return n;
16133 }
16134
16135 #define ELF_ARCH bfd_arch_arm
16136 #define ELF_TARGET_ID ARM_ELF_DATA
16137 #define ELF_MACHINE_CODE EM_ARM
16138 #ifdef __QNXTARGET__
16139 #define ELF_MAXPAGESIZE 0x1000
16140 #else
16141 #define ELF_MAXPAGESIZE 0x10000
16142 #endif
16143 #define ELF_MINPAGESIZE 0x1000
16144 #define ELF_COMMONPAGESIZE 0x1000
16145
16146 #define bfd_elf32_mkobject elf32_arm_mkobject
16147
16148 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
16149 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
16150 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
16151 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
16152 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
16153 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
16154 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
16155 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
16156 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
16157 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
16158 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
16159 #define bfd_elf32_bfd_final_link elf32_arm_final_link
16160 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
16161
16162 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
16163 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
16164 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
16165 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
16166 #define elf_backend_check_relocs elf32_arm_check_relocs
16167 #define elf_backend_relocate_section elf32_arm_relocate_section
16168 #define elf_backend_write_section elf32_arm_write_section
16169 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
16170 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
16171 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
16172 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
16173 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
16174 #define elf_backend_always_size_sections elf32_arm_always_size_sections
16175 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
16176 #define elf_backend_post_process_headers elf32_arm_post_process_headers
16177 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
16178 #define elf_backend_object_p elf32_arm_object_p
16179 #define elf_backend_fake_sections elf32_arm_fake_sections
16180 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
16181 #define elf_backend_final_write_processing elf32_arm_final_write_processing
16182 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
16183 #define elf_backend_size_info elf32_arm_size_info
16184 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
16185 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
16186 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
16187 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
16188 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
16189
16190 #define elf_backend_can_refcount 1
16191 #define elf_backend_can_gc_sections 1
16192 #define elf_backend_plt_readonly 1
16193 #define elf_backend_want_got_plt 1
16194 #define elf_backend_want_plt_sym 0
16195 #define elf_backend_may_use_rel_p 1
16196 #define elf_backend_may_use_rela_p 0
16197 #define elf_backend_default_use_rela_p 0
16198
16199 #define elf_backend_got_header_size 12
16200
16201 #undef elf_backend_obj_attrs_vendor
16202 #define elf_backend_obj_attrs_vendor "aeabi"
16203 #undef elf_backend_obj_attrs_section
16204 #define elf_backend_obj_attrs_section ".ARM.attributes"
16205 #undef elf_backend_obj_attrs_arg_type
16206 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
16207 #undef elf_backend_obj_attrs_section_type
16208 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
16209 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
16210 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
16211
16212 #include "elf32-target.h"
16213
16214 /* Native Client targets. */
16215
16216 #undef TARGET_LITTLE_SYM
16217 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
16218 #undef TARGET_LITTLE_NAME
16219 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
16220 #undef TARGET_BIG_SYM
16221 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
16222 #undef TARGET_BIG_NAME
16223 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
16224
16225 /* Like elf32_arm_link_hash_table_create -- but overrides
16226 appropriately for NaCl. */
16227
16228 static struct bfd_link_hash_table *
16229 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
16230 {
16231 struct bfd_link_hash_table *ret;
16232
16233 ret = elf32_arm_link_hash_table_create (abfd);
16234 if (ret)
16235 {
16236 struct elf32_arm_link_hash_table *htab
16237 = (struct elf32_arm_link_hash_table *) ret;
16238
16239 htab->nacl_p = 1;
16240
16241 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
16242 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
16243 }
16244 return ret;
16245 }
16246
16247 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
16248 really need to use elf32_arm_modify_segment_map. But we do it
16249 anyway just to reduce gratuitous differences with the stock ARM backend. */
16250
16251 static bfd_boolean
16252 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
16253 {
16254 return (elf32_arm_modify_segment_map (abfd, info)
16255 && nacl_modify_segment_map (abfd, info));
16256 }
16257
16258 static void
16259 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
16260 {
16261 elf32_arm_final_write_processing (abfd, linker);
16262 nacl_final_write_processing (abfd, linker);
16263 }
16264
16265 static bfd_vma
16266 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
16267 const arelent *rel ATTRIBUTE_UNUSED)
16268 {
16269 return plt->vma
16270 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
16271 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
16272 }
16273
16274 #undef elf32_bed
16275 #define elf32_bed elf32_arm_nacl_bed
16276 #undef bfd_elf32_bfd_link_hash_table_create
16277 #define bfd_elf32_bfd_link_hash_table_create \
16278 elf32_arm_nacl_link_hash_table_create
16279 #undef elf_backend_plt_alignment
16280 #define elf_backend_plt_alignment 4
16281 #undef elf_backend_modify_segment_map
16282 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
16283 #undef elf_backend_modify_program_headers
16284 #define elf_backend_modify_program_headers nacl_modify_program_headers
16285 #undef elf_backend_final_write_processing
16286 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
16287 #undef bfd_elf32_get_synthetic_symtab
16288 #undef elf_backend_plt_sym_val
16289 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
16290
16291 #undef ELF_MINPAGESIZE
16292 #undef ELF_COMMONPAGESIZE
16293
16294
16295 #include "elf32-target.h"
16296
16297 /* Reset to defaults. */
16298 #undef elf_backend_plt_alignment
16299 #undef elf_backend_modify_segment_map
16300 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
16301 #undef elf_backend_modify_program_headers
16302 #undef elf_backend_final_write_processing
16303 #define elf_backend_final_write_processing elf32_arm_final_write_processing
16304 #undef ELF_MINPAGESIZE
16305 #define ELF_MINPAGESIZE 0x1000
16306 #undef ELF_COMMONPAGESIZE
16307 #define ELF_COMMONPAGESIZE 0x1000
16308
16309
16310 /* VxWorks Targets. */
16311
16312 #undef TARGET_LITTLE_SYM
16313 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
16314 #undef TARGET_LITTLE_NAME
16315 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
16316 #undef TARGET_BIG_SYM
16317 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
16318 #undef TARGET_BIG_NAME
16319 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
16320
16321 /* Like elf32_arm_link_hash_table_create -- but overrides
16322 appropriately for VxWorks. */
16323
16324 static struct bfd_link_hash_table *
16325 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
16326 {
16327 struct bfd_link_hash_table *ret;
16328
16329 ret = elf32_arm_link_hash_table_create (abfd);
16330 if (ret)
16331 {
16332 struct elf32_arm_link_hash_table *htab
16333 = (struct elf32_arm_link_hash_table *) ret;
16334 htab->use_rel = 0;
16335 htab->vxworks_p = 1;
16336 }
16337 return ret;
16338 }
16339
16340 static void
16341 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
16342 {
16343 elf32_arm_final_write_processing (abfd, linker);
16344 elf_vxworks_final_write_processing (abfd, linker);
16345 }
16346
16347 #undef elf32_bed
16348 #define elf32_bed elf32_arm_vxworks_bed
16349
16350 #undef bfd_elf32_bfd_link_hash_table_create
16351 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
16352 #undef elf_backend_final_write_processing
16353 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
16354 #undef elf_backend_emit_relocs
16355 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
16356
16357 #undef elf_backend_may_use_rel_p
16358 #define elf_backend_may_use_rel_p 0
16359 #undef elf_backend_may_use_rela_p
16360 #define elf_backend_may_use_rela_p 1
16361 #undef elf_backend_default_use_rela_p
16362 #define elf_backend_default_use_rela_p 1
16363 #undef elf_backend_want_plt_sym
16364 #define elf_backend_want_plt_sym 1
16365 #undef ELF_MAXPAGESIZE
16366 #define ELF_MAXPAGESIZE 0x1000
16367
16368 #include "elf32-target.h"
16369
16370
16371 /* Merge backend specific data from an object file to the output
16372 object file when linking. */
16373
16374 static bfd_boolean
16375 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
16376 {
16377 flagword out_flags;
16378 flagword in_flags;
16379 bfd_boolean flags_compatible = TRUE;
16380 asection *sec;
16381
16382 /* Check if we have the same endianness. */
16383 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
16384 return FALSE;
16385
16386 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
16387 return TRUE;
16388
16389 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
16390 return FALSE;
16391
16392 /* The input BFD must have had its flags initialised. */
16393 /* The following seems bogus to me -- The flags are initialized in
16394 the assembler but I don't think an elf_flags_init field is
16395 written into the object. */
16396 /* BFD_ASSERT (elf_flags_init (ibfd)); */
16397
16398 in_flags = elf_elfheader (ibfd)->e_flags;
16399 out_flags = elf_elfheader (obfd)->e_flags;
16400
16401 /* In theory there is no reason why we couldn't handle this. However
16402 in practice it isn't even close to working and there is no real
16403 reason to want it. */
16404 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
16405 && !(ibfd->flags & DYNAMIC)
16406 && (in_flags & EF_ARM_BE8))
16407 {
16408 _bfd_error_handler (_("error: %B is already in final BE8 format"),
16409 ibfd);
16410 return FALSE;
16411 }
16412
16413 if (!elf_flags_init (obfd))
16414 {
16415 /* If the input is the default architecture and had the default
16416 flags then do not bother setting the flags for the output
16417 architecture, instead allow future merges to do this. If no
16418 future merges ever set these flags then they will retain their
16419 uninitialised values, which surprise surprise, correspond
16420 to the default values. */
16421 if (bfd_get_arch_info (ibfd)->the_default
16422 && elf_elfheader (ibfd)->e_flags == 0)
16423 return TRUE;
16424
16425 elf_flags_init (obfd) = TRUE;
16426 elf_elfheader (obfd)->e_flags = in_flags;
16427
16428 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
16429 && bfd_get_arch_info (obfd)->the_default)
16430 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
16431
16432 return TRUE;
16433 }
16434
16435 /* Determine what should happen if the input ARM architecture
16436 does not match the output ARM architecture. */
16437 if (! bfd_arm_merge_machines (ibfd, obfd))
16438 return FALSE;
16439
16440 /* Identical flags must be compatible. */
16441 if (in_flags == out_flags)
16442 return TRUE;
16443
16444 /* Check to see if the input BFD actually contains any sections. If
16445 not, its flags may not have been initialised either, but it
16446 cannot actually cause any incompatiblity. Do not short-circuit
16447 dynamic objects; their section list may be emptied by
16448 elf_link_add_object_symbols.
16449
16450 Also check to see if there are no code sections in the input.
16451 In this case there is no need to check for code specific flags.
16452 XXX - do we need to worry about floating-point format compatability
16453 in data sections ? */
16454 if (!(ibfd->flags & DYNAMIC))
16455 {
16456 bfd_boolean null_input_bfd = TRUE;
16457 bfd_boolean only_data_sections = TRUE;
16458
16459 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
16460 {
16461 /* Ignore synthetic glue sections. */
16462 if (strcmp (sec->name, ".glue_7")
16463 && strcmp (sec->name, ".glue_7t"))
16464 {
16465 if ((bfd_get_section_flags (ibfd, sec)
16466 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
16467 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
16468 only_data_sections = FALSE;
16469
16470 null_input_bfd = FALSE;
16471 break;
16472 }
16473 }
16474
16475 if (null_input_bfd || only_data_sections)
16476 return TRUE;
16477 }
16478
16479 /* Complain about various flag mismatches. */
16480 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
16481 EF_ARM_EABI_VERSION (out_flags)))
16482 {
16483 _bfd_error_handler
16484 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
16485 ibfd, obfd,
16486 (in_flags & EF_ARM_EABIMASK) >> 24,
16487 (out_flags & EF_ARM_EABIMASK) >> 24);
16488 return FALSE;
16489 }
16490
16491 /* Not sure what needs to be checked for EABI versions >= 1. */
16492 /* VxWorks libraries do not use these flags. */
16493 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
16494 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
16495 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
16496 {
16497 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
16498 {
16499 _bfd_error_handler
16500 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
16501 ibfd, obfd,
16502 in_flags & EF_ARM_APCS_26 ? 26 : 32,
16503 out_flags & EF_ARM_APCS_26 ? 26 : 32);
16504 flags_compatible = FALSE;
16505 }
16506
16507 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
16508 {
16509 if (in_flags & EF_ARM_APCS_FLOAT)
16510 _bfd_error_handler
16511 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
16512 ibfd, obfd);
16513 else
16514 _bfd_error_handler
16515 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
16516 ibfd, obfd);
16517
16518 flags_compatible = FALSE;
16519 }
16520
16521 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
16522 {
16523 if (in_flags & EF_ARM_VFP_FLOAT)
16524 _bfd_error_handler
16525 (_("error: %B uses VFP instructions, whereas %B does not"),
16526 ibfd, obfd);
16527 else
16528 _bfd_error_handler
16529 (_("error: %B uses FPA instructions, whereas %B does not"),
16530 ibfd, obfd);
16531
16532 flags_compatible = FALSE;
16533 }
16534
16535 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
16536 {
16537 if (in_flags & EF_ARM_MAVERICK_FLOAT)
16538 _bfd_error_handler
16539 (_("error: %B uses Maverick instructions, whereas %B does not"),
16540 ibfd, obfd);
16541 else
16542 _bfd_error_handler
16543 (_("error: %B does not use Maverick instructions, whereas %B does"),
16544 ibfd, obfd);
16545
16546 flags_compatible = FALSE;
16547 }
16548
16549 #ifdef EF_ARM_SOFT_FLOAT
16550 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
16551 {
16552 /* We can allow interworking between code that is VFP format
16553 layout, and uses either soft float or integer regs for
16554 passing floating point arguments and results. We already
16555 know that the APCS_FLOAT flags match; similarly for VFP
16556 flags. */
16557 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
16558 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
16559 {
16560 if (in_flags & EF_ARM_SOFT_FLOAT)
16561 _bfd_error_handler
16562 (_("error: %B uses software FP, whereas %B uses hardware FP"),
16563 ibfd, obfd);
16564 else
16565 _bfd_error_handler
16566 (_("error: %B uses hardware FP, whereas %B uses software FP"),
16567 ibfd, obfd);
16568
16569 flags_compatible = FALSE;
16570 }
16571 }
16572 #endif
16573
16574 /* Interworking mismatch is only a warning. */
16575 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
16576 {
16577 if (in_flags & EF_ARM_INTERWORK)
16578 {
16579 _bfd_error_handler
16580 (_("Warning: %B supports interworking, whereas %B does not"),
16581 ibfd, obfd);
16582 }
16583 else
16584 {
16585 _bfd_error_handler
16586 (_("Warning: %B does not support interworking, whereas %B does"),
16587 ibfd, obfd);
16588 }
16589 }
16590 }
16591
16592 return flags_compatible;
16593 }
16594
16595
16596 /* Symbian OS Targets. */
16597
16598 #undef TARGET_LITTLE_SYM
16599 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
16600 #undef TARGET_LITTLE_NAME
16601 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
16602 #undef TARGET_BIG_SYM
16603 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
16604 #undef TARGET_BIG_NAME
16605 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
16606
16607 /* Like elf32_arm_link_hash_table_create -- but overrides
16608 appropriately for Symbian OS. */
16609
16610 static struct bfd_link_hash_table *
16611 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
16612 {
16613 struct bfd_link_hash_table *ret;
16614
16615 ret = elf32_arm_link_hash_table_create (abfd);
16616 if (ret)
16617 {
16618 struct elf32_arm_link_hash_table *htab
16619 = (struct elf32_arm_link_hash_table *)ret;
16620 /* There is no PLT header for Symbian OS. */
16621 htab->plt_header_size = 0;
16622 /* The PLT entries are each one instruction and one word. */
16623 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
16624 htab->symbian_p = 1;
16625 /* Symbian uses armv5t or above, so use_blx is always true. */
16626 htab->use_blx = 1;
16627 htab->root.is_relocatable_executable = 1;
16628 }
16629 return ret;
16630 }
16631
16632 static const struct bfd_elf_special_section
16633 elf32_arm_symbian_special_sections[] =
16634 {
16635 /* In a BPABI executable, the dynamic linking sections do not go in
16636 the loadable read-only segment. The post-linker may wish to
16637 refer to these sections, but they are not part of the final
16638 program image. */
16639 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
16640 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
16641 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
16642 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
16643 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
16644 /* These sections do not need to be writable as the SymbianOS
16645 postlinker will arrange things so that no dynamic relocation is
16646 required. */
16647 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
16648 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
16649 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
16650 { NULL, 0, 0, 0, 0 }
16651 };
16652
16653 static void
16654 elf32_arm_symbian_begin_write_processing (bfd *abfd,
16655 struct bfd_link_info *link_info)
16656 {
16657 /* BPABI objects are never loaded directly by an OS kernel; they are
16658 processed by a postlinker first, into an OS-specific format. If
16659 the D_PAGED bit is set on the file, BFD will align segments on
16660 page boundaries, so that an OS can directly map the file. With
16661 BPABI objects, that just results in wasted space. In addition,
16662 because we clear the D_PAGED bit, map_sections_to_segments will
16663 recognize that the program headers should not be mapped into any
16664 loadable segment. */
16665 abfd->flags &= ~D_PAGED;
16666 elf32_arm_begin_write_processing (abfd, link_info);
16667 }
16668
16669 static bfd_boolean
16670 elf32_arm_symbian_modify_segment_map (bfd *abfd,
16671 struct bfd_link_info *info)
16672 {
16673 struct elf_segment_map *m;
16674 asection *dynsec;
16675
16676 /* BPABI shared libraries and executables should have a PT_DYNAMIC
16677 segment. However, because the .dynamic section is not marked
16678 with SEC_LOAD, the generic ELF code will not create such a
16679 segment. */
16680 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
16681 if (dynsec)
16682 {
16683 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16684 if (m->p_type == PT_DYNAMIC)
16685 break;
16686
16687 if (m == NULL)
16688 {
16689 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
16690 m->next = elf_seg_map (abfd);
16691 elf_seg_map (abfd) = m;
16692 }
16693 }
16694
16695 /* Also call the generic arm routine. */
16696 return elf32_arm_modify_segment_map (abfd, info);
16697 }
16698
16699 /* Return address for Ith PLT stub in section PLT, for relocation REL
16700 or (bfd_vma) -1 if it should not be included. */
16701
16702 static bfd_vma
16703 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
16704 const arelent *rel ATTRIBUTE_UNUSED)
16705 {
16706 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
16707 }
16708
16709
16710 #undef elf32_bed
16711 #define elf32_bed elf32_arm_symbian_bed
16712
16713 /* The dynamic sections are not allocated on SymbianOS; the postlinker
16714 will process them and then discard them. */
16715 #undef ELF_DYNAMIC_SEC_FLAGS
16716 #define ELF_DYNAMIC_SEC_FLAGS \
16717 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
16718
16719 #undef elf_backend_emit_relocs
16720
16721 #undef bfd_elf32_bfd_link_hash_table_create
16722 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
16723 #undef elf_backend_special_sections
16724 #define elf_backend_special_sections elf32_arm_symbian_special_sections
16725 #undef elf_backend_begin_write_processing
16726 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
16727 #undef elf_backend_final_write_processing
16728 #define elf_backend_final_write_processing elf32_arm_final_write_processing
16729
16730 #undef elf_backend_modify_segment_map
16731 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
16732
16733 /* There is no .got section for BPABI objects, and hence no header. */
16734 #undef elf_backend_got_header_size
16735 #define elf_backend_got_header_size 0
16736
16737 /* Similarly, there is no .got.plt section. */
16738 #undef elf_backend_want_got_plt
16739 #define elf_backend_want_got_plt 0
16740
16741 #undef elf_backend_plt_sym_val
16742 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
16743
16744 #undef elf_backend_may_use_rel_p
16745 #define elf_backend_may_use_rel_p 1
16746 #undef elf_backend_may_use_rela_p
16747 #define elf_backend_may_use_rela_p 0
16748 #undef elf_backend_default_use_rela_p
16749 #define elf_backend_default_use_rela_p 0
16750 #undef elf_backend_want_plt_sym
16751 #define elf_backend_want_plt_sym 0
16752 #undef ELF_MAXPAGESIZE
16753 #define ELF_MAXPAGESIZE 0x8000
16754
16755 #include "elf32-target.h"
This page took 0.406386 seconds and 4 git commands to generate.