daily update
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include <limits.h>
24
25 #include "bfd.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-vxworks.h"
30 #include "elf/arm.h"
31
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
40 ((HTAB)->use_rel \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
43
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
47 ((HTAB)->use_rel \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
50
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
54 ((HTAB)->use_rel \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
57
58 #define elf_info_to_howto 0
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
60
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
63
64 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
65 struct bfd_link_info *link_info,
66 asection *sec,
67 bfd_byte *contents);
68
69 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
71 in that slot. */
72
73 static reloc_howto_type elf32_arm_howto_table_1[] =
74 {
75 /* No relocation. */
76 HOWTO (R_ARM_NONE, /* type */
77 0, /* rightshift */
78 0, /* size (0 = byte, 1 = short, 2 = long) */
79 0, /* bitsize */
80 FALSE, /* pc_relative */
81 0, /* bitpos */
82 complain_overflow_dont,/* complain_on_overflow */
83 bfd_elf_generic_reloc, /* special_function */
84 "R_ARM_NONE", /* name */
85 FALSE, /* partial_inplace */
86 0, /* src_mask */
87 0, /* dst_mask */
88 FALSE), /* pcrel_offset */
89
90 HOWTO (R_ARM_PC24, /* type */
91 2, /* rightshift */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
93 24, /* bitsize */
94 TRUE, /* pc_relative */
95 0, /* bitpos */
96 complain_overflow_signed,/* complain_on_overflow */
97 bfd_elf_generic_reloc, /* special_function */
98 "R_ARM_PC24", /* name */
99 FALSE, /* partial_inplace */
100 0x00ffffff, /* src_mask */
101 0x00ffffff, /* dst_mask */
102 TRUE), /* pcrel_offset */
103
104 /* 32 bit absolute */
105 HOWTO (R_ARM_ABS32, /* type */
106 0, /* rightshift */
107 2, /* size (0 = byte, 1 = short, 2 = long) */
108 32, /* bitsize */
109 FALSE, /* pc_relative */
110 0, /* bitpos */
111 complain_overflow_bitfield,/* complain_on_overflow */
112 bfd_elf_generic_reloc, /* special_function */
113 "R_ARM_ABS32", /* name */
114 FALSE, /* partial_inplace */
115 0xffffffff, /* src_mask */
116 0xffffffff, /* dst_mask */
117 FALSE), /* pcrel_offset */
118
119 /* standard 32bit pc-relative reloc */
120 HOWTO (R_ARM_REL32, /* type */
121 0, /* rightshift */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
123 32, /* bitsize */
124 TRUE, /* pc_relative */
125 0, /* bitpos */
126 complain_overflow_bitfield,/* complain_on_overflow */
127 bfd_elf_generic_reloc, /* special_function */
128 "R_ARM_REL32", /* name */
129 FALSE, /* partial_inplace */
130 0xffffffff, /* src_mask */
131 0xffffffff, /* dst_mask */
132 TRUE), /* pcrel_offset */
133
134 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135 HOWTO (R_ARM_LDR_PC_G0, /* type */
136 0, /* rightshift */
137 0, /* size (0 = byte, 1 = short, 2 = long) */
138 32, /* bitsize */
139 TRUE, /* pc_relative */
140 0, /* bitpos */
141 complain_overflow_dont,/* complain_on_overflow */
142 bfd_elf_generic_reloc, /* special_function */
143 "R_ARM_LDR_PC_G0", /* name */
144 FALSE, /* partial_inplace */
145 0xffffffff, /* src_mask */
146 0xffffffff, /* dst_mask */
147 TRUE), /* pcrel_offset */
148
149 /* 16 bit absolute */
150 HOWTO (R_ARM_ABS16, /* type */
151 0, /* rightshift */
152 1, /* size (0 = byte, 1 = short, 2 = long) */
153 16, /* bitsize */
154 FALSE, /* pc_relative */
155 0, /* bitpos */
156 complain_overflow_bitfield,/* complain_on_overflow */
157 bfd_elf_generic_reloc, /* special_function */
158 "R_ARM_ABS16", /* name */
159 FALSE, /* partial_inplace */
160 0x0000ffff, /* src_mask */
161 0x0000ffff, /* dst_mask */
162 FALSE), /* pcrel_offset */
163
164 /* 12 bit absolute */
165 HOWTO (R_ARM_ABS12, /* type */
166 0, /* rightshift */
167 2, /* size (0 = byte, 1 = short, 2 = long) */
168 12, /* bitsize */
169 FALSE, /* pc_relative */
170 0, /* bitpos */
171 complain_overflow_bitfield,/* complain_on_overflow */
172 bfd_elf_generic_reloc, /* special_function */
173 "R_ARM_ABS12", /* name */
174 FALSE, /* partial_inplace */
175 0x00000fff, /* src_mask */
176 0x00000fff, /* dst_mask */
177 FALSE), /* pcrel_offset */
178
179 HOWTO (R_ARM_THM_ABS5, /* type */
180 6, /* rightshift */
181 1, /* size (0 = byte, 1 = short, 2 = long) */
182 5, /* bitsize */
183 FALSE, /* pc_relative */
184 0, /* bitpos */
185 complain_overflow_bitfield,/* complain_on_overflow */
186 bfd_elf_generic_reloc, /* special_function */
187 "R_ARM_THM_ABS5", /* name */
188 FALSE, /* partial_inplace */
189 0x000007e0, /* src_mask */
190 0x000007e0, /* dst_mask */
191 FALSE), /* pcrel_offset */
192
193 /* 8 bit absolute */
194 HOWTO (R_ARM_ABS8, /* type */
195 0, /* rightshift */
196 0, /* size (0 = byte, 1 = short, 2 = long) */
197 8, /* bitsize */
198 FALSE, /* pc_relative */
199 0, /* bitpos */
200 complain_overflow_bitfield,/* complain_on_overflow */
201 bfd_elf_generic_reloc, /* special_function */
202 "R_ARM_ABS8", /* name */
203 FALSE, /* partial_inplace */
204 0x000000ff, /* src_mask */
205 0x000000ff, /* dst_mask */
206 FALSE), /* pcrel_offset */
207
208 HOWTO (R_ARM_SBREL32, /* type */
209 0, /* rightshift */
210 2, /* size (0 = byte, 1 = short, 2 = long) */
211 32, /* bitsize */
212 FALSE, /* pc_relative */
213 0, /* bitpos */
214 complain_overflow_dont,/* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_ARM_SBREL32", /* name */
217 FALSE, /* partial_inplace */
218 0xffffffff, /* src_mask */
219 0xffffffff, /* dst_mask */
220 FALSE), /* pcrel_offset */
221
222 HOWTO (R_ARM_THM_CALL, /* type */
223 1, /* rightshift */
224 2, /* size (0 = byte, 1 = short, 2 = long) */
225 24, /* bitsize */
226 TRUE, /* pc_relative */
227 0, /* bitpos */
228 complain_overflow_signed,/* complain_on_overflow */
229 bfd_elf_generic_reloc, /* special_function */
230 "R_ARM_THM_CALL", /* name */
231 FALSE, /* partial_inplace */
232 0x07ff2fff, /* src_mask */
233 0x07ff2fff, /* dst_mask */
234 TRUE), /* pcrel_offset */
235
236 HOWTO (R_ARM_THM_PC8, /* type */
237 1, /* rightshift */
238 1, /* size (0 = byte, 1 = short, 2 = long) */
239 8, /* bitsize */
240 TRUE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_signed,/* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_ARM_THM_PC8", /* name */
245 FALSE, /* partial_inplace */
246 0x000000ff, /* src_mask */
247 0x000000ff, /* dst_mask */
248 TRUE), /* pcrel_offset */
249
250 HOWTO (R_ARM_BREL_ADJ, /* type */
251 1, /* rightshift */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
253 32, /* bitsize */
254 FALSE, /* pc_relative */
255 0, /* bitpos */
256 complain_overflow_signed,/* complain_on_overflow */
257 bfd_elf_generic_reloc, /* special_function */
258 "R_ARM_BREL_ADJ", /* name */
259 FALSE, /* partial_inplace */
260 0xffffffff, /* src_mask */
261 0xffffffff, /* dst_mask */
262 FALSE), /* pcrel_offset */
263
264 HOWTO (R_ARM_TLS_DESC, /* type */
265 0, /* rightshift */
266 2, /* size (0 = byte, 1 = short, 2 = long) */
267 32, /* bitsize */
268 FALSE, /* pc_relative */
269 0, /* bitpos */
270 complain_overflow_bitfield,/* complain_on_overflow */
271 bfd_elf_generic_reloc, /* special_function */
272 "R_ARM_TLS_DESC", /* name */
273 FALSE, /* partial_inplace */
274 0xffffffff, /* src_mask */
275 0xffffffff, /* dst_mask */
276 FALSE), /* pcrel_offset */
277
278 HOWTO (R_ARM_THM_SWI8, /* type */
279 0, /* rightshift */
280 0, /* size (0 = byte, 1 = short, 2 = long) */
281 0, /* bitsize */
282 FALSE, /* pc_relative */
283 0, /* bitpos */
284 complain_overflow_signed,/* complain_on_overflow */
285 bfd_elf_generic_reloc, /* special_function */
286 "R_ARM_SWI8", /* name */
287 FALSE, /* partial_inplace */
288 0x00000000, /* src_mask */
289 0x00000000, /* dst_mask */
290 FALSE), /* pcrel_offset */
291
292 /* BLX instruction for the ARM. */
293 HOWTO (R_ARM_XPC25, /* type */
294 2, /* rightshift */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
296 24, /* bitsize */
297 TRUE, /* pc_relative */
298 0, /* bitpos */
299 complain_overflow_signed,/* complain_on_overflow */
300 bfd_elf_generic_reloc, /* special_function */
301 "R_ARM_XPC25", /* name */
302 FALSE, /* partial_inplace */
303 0x00ffffff, /* src_mask */
304 0x00ffffff, /* dst_mask */
305 TRUE), /* pcrel_offset */
306
307 /* BLX instruction for the Thumb. */
308 HOWTO (R_ARM_THM_XPC22, /* type */
309 2, /* rightshift */
310 2, /* size (0 = byte, 1 = short, 2 = long) */
311 24, /* bitsize */
312 TRUE, /* pc_relative */
313 0, /* bitpos */
314 complain_overflow_signed,/* complain_on_overflow */
315 bfd_elf_generic_reloc, /* special_function */
316 "R_ARM_THM_XPC22", /* name */
317 FALSE, /* partial_inplace */
318 0x07ff2fff, /* src_mask */
319 0x07ff2fff, /* dst_mask */
320 TRUE), /* pcrel_offset */
321
322 /* Dynamic TLS relocations. */
323
324 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
325 0, /* rightshift */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
327 32, /* bitsize */
328 FALSE, /* pc_relative */
329 0, /* bitpos */
330 complain_overflow_bitfield,/* complain_on_overflow */
331 bfd_elf_generic_reloc, /* special_function */
332 "R_ARM_TLS_DTPMOD32", /* name */
333 TRUE, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE), /* pcrel_offset */
337
338 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 32, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield,/* complain_on_overflow */
345 bfd_elf_generic_reloc, /* special_function */
346 "R_ARM_TLS_DTPOFF32", /* name */
347 TRUE, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE), /* pcrel_offset */
351
352 HOWTO (R_ARM_TLS_TPOFF32, /* type */
353 0, /* rightshift */
354 2, /* size (0 = byte, 1 = short, 2 = long) */
355 32, /* bitsize */
356 FALSE, /* pc_relative */
357 0, /* bitpos */
358 complain_overflow_bitfield,/* complain_on_overflow */
359 bfd_elf_generic_reloc, /* special_function */
360 "R_ARM_TLS_TPOFF32", /* name */
361 TRUE, /* partial_inplace */
362 0xffffffff, /* src_mask */
363 0xffffffff, /* dst_mask */
364 FALSE), /* pcrel_offset */
365
366 /* Relocs used in ARM Linux */
367
368 HOWTO (R_ARM_COPY, /* type */
369 0, /* rightshift */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
371 32, /* bitsize */
372 FALSE, /* pc_relative */
373 0, /* bitpos */
374 complain_overflow_bitfield,/* complain_on_overflow */
375 bfd_elf_generic_reloc, /* special_function */
376 "R_ARM_COPY", /* name */
377 TRUE, /* partial_inplace */
378 0xffffffff, /* src_mask */
379 0xffffffff, /* dst_mask */
380 FALSE), /* pcrel_offset */
381
382 HOWTO (R_ARM_GLOB_DAT, /* type */
383 0, /* rightshift */
384 2, /* size (0 = byte, 1 = short, 2 = long) */
385 32, /* bitsize */
386 FALSE, /* pc_relative */
387 0, /* bitpos */
388 complain_overflow_bitfield,/* complain_on_overflow */
389 bfd_elf_generic_reloc, /* special_function */
390 "R_ARM_GLOB_DAT", /* name */
391 TRUE, /* partial_inplace */
392 0xffffffff, /* src_mask */
393 0xffffffff, /* dst_mask */
394 FALSE), /* pcrel_offset */
395
396 HOWTO (R_ARM_JUMP_SLOT, /* type */
397 0, /* rightshift */
398 2, /* size (0 = byte, 1 = short, 2 = long) */
399 32, /* bitsize */
400 FALSE, /* pc_relative */
401 0, /* bitpos */
402 complain_overflow_bitfield,/* complain_on_overflow */
403 bfd_elf_generic_reloc, /* special_function */
404 "R_ARM_JUMP_SLOT", /* name */
405 TRUE, /* partial_inplace */
406 0xffffffff, /* src_mask */
407 0xffffffff, /* dst_mask */
408 FALSE), /* pcrel_offset */
409
410 HOWTO (R_ARM_RELATIVE, /* type */
411 0, /* rightshift */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
413 32, /* bitsize */
414 FALSE, /* pc_relative */
415 0, /* bitpos */
416 complain_overflow_bitfield,/* complain_on_overflow */
417 bfd_elf_generic_reloc, /* special_function */
418 "R_ARM_RELATIVE", /* name */
419 TRUE, /* partial_inplace */
420 0xffffffff, /* src_mask */
421 0xffffffff, /* dst_mask */
422 FALSE), /* pcrel_offset */
423
424 HOWTO (R_ARM_GOTOFF32, /* type */
425 0, /* rightshift */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
427 32, /* bitsize */
428 FALSE, /* pc_relative */
429 0, /* bitpos */
430 complain_overflow_bitfield,/* complain_on_overflow */
431 bfd_elf_generic_reloc, /* special_function */
432 "R_ARM_GOTOFF32", /* name */
433 TRUE, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 FALSE), /* pcrel_offset */
437
438 HOWTO (R_ARM_GOTPC, /* type */
439 0, /* rightshift */
440 2, /* size (0 = byte, 1 = short, 2 = long) */
441 32, /* bitsize */
442 TRUE, /* pc_relative */
443 0, /* bitpos */
444 complain_overflow_bitfield,/* complain_on_overflow */
445 bfd_elf_generic_reloc, /* special_function */
446 "R_ARM_GOTPC", /* name */
447 TRUE, /* partial_inplace */
448 0xffffffff, /* src_mask */
449 0xffffffff, /* dst_mask */
450 TRUE), /* pcrel_offset */
451
452 HOWTO (R_ARM_GOT32, /* type */
453 0, /* rightshift */
454 2, /* size (0 = byte, 1 = short, 2 = long) */
455 32, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_bitfield,/* complain_on_overflow */
459 bfd_elf_generic_reloc, /* special_function */
460 "R_ARM_GOT32", /* name */
461 TRUE, /* partial_inplace */
462 0xffffffff, /* src_mask */
463 0xffffffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465
466 HOWTO (R_ARM_PLT32, /* type */
467 2, /* rightshift */
468 2, /* size (0 = byte, 1 = short, 2 = long) */
469 24, /* bitsize */
470 TRUE, /* pc_relative */
471 0, /* bitpos */
472 complain_overflow_bitfield,/* complain_on_overflow */
473 bfd_elf_generic_reloc, /* special_function */
474 "R_ARM_PLT32", /* name */
475 FALSE, /* partial_inplace */
476 0x00ffffff, /* src_mask */
477 0x00ffffff, /* dst_mask */
478 TRUE), /* pcrel_offset */
479
480 HOWTO (R_ARM_CALL, /* type */
481 2, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 24, /* bitsize */
484 TRUE, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_signed,/* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
488 "R_ARM_CALL", /* name */
489 FALSE, /* partial_inplace */
490 0x00ffffff, /* src_mask */
491 0x00ffffff, /* dst_mask */
492 TRUE), /* pcrel_offset */
493
494 HOWTO (R_ARM_JUMP24, /* type */
495 2, /* rightshift */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
497 24, /* bitsize */
498 TRUE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_signed,/* complain_on_overflow */
501 bfd_elf_generic_reloc, /* special_function */
502 "R_ARM_JUMP24", /* name */
503 FALSE, /* partial_inplace */
504 0x00ffffff, /* src_mask */
505 0x00ffffff, /* dst_mask */
506 TRUE), /* pcrel_offset */
507
508 HOWTO (R_ARM_THM_JUMP24, /* type */
509 1, /* rightshift */
510 2, /* size (0 = byte, 1 = short, 2 = long) */
511 24, /* bitsize */
512 TRUE, /* pc_relative */
513 0, /* bitpos */
514 complain_overflow_signed,/* complain_on_overflow */
515 bfd_elf_generic_reloc, /* special_function */
516 "R_ARM_THM_JUMP24", /* name */
517 FALSE, /* partial_inplace */
518 0x07ff2fff, /* src_mask */
519 0x07ff2fff, /* dst_mask */
520 TRUE), /* pcrel_offset */
521
522 HOWTO (R_ARM_BASE_ABS, /* type */
523 0, /* rightshift */
524 2, /* size (0 = byte, 1 = short, 2 = long) */
525 32, /* bitsize */
526 FALSE, /* pc_relative */
527 0, /* bitpos */
528 complain_overflow_dont,/* complain_on_overflow */
529 bfd_elf_generic_reloc, /* special_function */
530 "R_ARM_BASE_ABS", /* name */
531 FALSE, /* partial_inplace */
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
534 FALSE), /* pcrel_offset */
535
536 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
537 0, /* rightshift */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
539 12, /* bitsize */
540 TRUE, /* pc_relative */
541 0, /* bitpos */
542 complain_overflow_dont,/* complain_on_overflow */
543 bfd_elf_generic_reloc, /* special_function */
544 "R_ARM_ALU_PCREL_7_0", /* name */
545 FALSE, /* partial_inplace */
546 0x00000fff, /* src_mask */
547 0x00000fff, /* dst_mask */
548 TRUE), /* pcrel_offset */
549
550 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
551 0, /* rightshift */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
553 12, /* bitsize */
554 TRUE, /* pc_relative */
555 8, /* bitpos */
556 complain_overflow_dont,/* complain_on_overflow */
557 bfd_elf_generic_reloc, /* special_function */
558 "R_ARM_ALU_PCREL_15_8",/* name */
559 FALSE, /* partial_inplace */
560 0x00000fff, /* src_mask */
561 0x00000fff, /* dst_mask */
562 TRUE), /* pcrel_offset */
563
564 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 12, /* bitsize */
568 TRUE, /* pc_relative */
569 16, /* bitpos */
570 complain_overflow_dont,/* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 "R_ARM_ALU_PCREL_23_15",/* name */
573 FALSE, /* partial_inplace */
574 0x00000fff, /* src_mask */
575 0x00000fff, /* dst_mask */
576 TRUE), /* pcrel_offset */
577
578 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
579 0, /* rightshift */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
581 12, /* bitsize */
582 FALSE, /* pc_relative */
583 0, /* bitpos */
584 complain_overflow_dont,/* complain_on_overflow */
585 bfd_elf_generic_reloc, /* special_function */
586 "R_ARM_LDR_SBREL_11_0",/* name */
587 FALSE, /* partial_inplace */
588 0x00000fff, /* src_mask */
589 0x00000fff, /* dst_mask */
590 FALSE), /* pcrel_offset */
591
592 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
593 0, /* rightshift */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
595 8, /* bitsize */
596 FALSE, /* pc_relative */
597 12, /* bitpos */
598 complain_overflow_dont,/* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
600 "R_ARM_ALU_SBREL_19_12",/* name */
601 FALSE, /* partial_inplace */
602 0x000ff000, /* src_mask */
603 0x000ff000, /* dst_mask */
604 FALSE), /* pcrel_offset */
605
606 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
607 0, /* rightshift */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
609 8, /* bitsize */
610 FALSE, /* pc_relative */
611 20, /* bitpos */
612 complain_overflow_dont,/* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 "R_ARM_ALU_SBREL_27_20",/* name */
615 FALSE, /* partial_inplace */
616 0x0ff00000, /* src_mask */
617 0x0ff00000, /* dst_mask */
618 FALSE), /* pcrel_offset */
619
620 HOWTO (R_ARM_TARGET1, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 FALSE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_dont,/* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_ARM_TARGET1", /* name */
629 FALSE, /* partial_inplace */
630 0xffffffff, /* src_mask */
631 0xffffffff, /* dst_mask */
632 FALSE), /* pcrel_offset */
633
634 HOWTO (R_ARM_ROSEGREL32, /* type */
635 0, /* rightshift */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
637 32, /* bitsize */
638 FALSE, /* pc_relative */
639 0, /* bitpos */
640 complain_overflow_dont,/* complain_on_overflow */
641 bfd_elf_generic_reloc, /* special_function */
642 "R_ARM_ROSEGREL32", /* name */
643 FALSE, /* partial_inplace */
644 0xffffffff, /* src_mask */
645 0xffffffff, /* dst_mask */
646 FALSE), /* pcrel_offset */
647
648 HOWTO (R_ARM_V4BX, /* type */
649 0, /* rightshift */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
651 32, /* bitsize */
652 FALSE, /* pc_relative */
653 0, /* bitpos */
654 complain_overflow_dont,/* complain_on_overflow */
655 bfd_elf_generic_reloc, /* special_function */
656 "R_ARM_V4BX", /* name */
657 FALSE, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 FALSE), /* pcrel_offset */
661
662 HOWTO (R_ARM_TARGET2, /* type */
663 0, /* rightshift */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
665 32, /* bitsize */
666 FALSE, /* pc_relative */
667 0, /* bitpos */
668 complain_overflow_signed,/* complain_on_overflow */
669 bfd_elf_generic_reloc, /* special_function */
670 "R_ARM_TARGET2", /* name */
671 FALSE, /* partial_inplace */
672 0xffffffff, /* src_mask */
673 0xffffffff, /* dst_mask */
674 TRUE), /* pcrel_offset */
675
676 HOWTO (R_ARM_PREL31, /* type */
677 0, /* rightshift */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
679 31, /* bitsize */
680 TRUE, /* pc_relative */
681 0, /* bitpos */
682 complain_overflow_signed,/* complain_on_overflow */
683 bfd_elf_generic_reloc, /* special_function */
684 "R_ARM_PREL31", /* name */
685 FALSE, /* partial_inplace */
686 0x7fffffff, /* src_mask */
687 0x7fffffff, /* dst_mask */
688 TRUE), /* pcrel_offset */
689
690 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
691 0, /* rightshift */
692 2, /* size (0 = byte, 1 = short, 2 = long) */
693 16, /* bitsize */
694 FALSE, /* pc_relative */
695 0, /* bitpos */
696 complain_overflow_dont,/* complain_on_overflow */
697 bfd_elf_generic_reloc, /* special_function */
698 "R_ARM_MOVW_ABS_NC", /* name */
699 FALSE, /* partial_inplace */
700 0x000f0fff, /* src_mask */
701 0x000f0fff, /* dst_mask */
702 FALSE), /* pcrel_offset */
703
704 HOWTO (R_ARM_MOVT_ABS, /* type */
705 0, /* rightshift */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
707 16, /* bitsize */
708 FALSE, /* pc_relative */
709 0, /* bitpos */
710 complain_overflow_bitfield,/* complain_on_overflow */
711 bfd_elf_generic_reloc, /* special_function */
712 "R_ARM_MOVT_ABS", /* name */
713 FALSE, /* partial_inplace */
714 0x000f0fff, /* src_mask */
715 0x000f0fff, /* dst_mask */
716 FALSE), /* pcrel_offset */
717
718 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
719 0, /* rightshift */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
721 16, /* bitsize */
722 TRUE, /* pc_relative */
723 0, /* bitpos */
724 complain_overflow_dont,/* complain_on_overflow */
725 bfd_elf_generic_reloc, /* special_function */
726 "R_ARM_MOVW_PREL_NC", /* name */
727 FALSE, /* partial_inplace */
728 0x000f0fff, /* src_mask */
729 0x000f0fff, /* dst_mask */
730 TRUE), /* pcrel_offset */
731
732 HOWTO (R_ARM_MOVT_PREL, /* type */
733 0, /* rightshift */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
735 16, /* bitsize */
736 TRUE, /* pc_relative */
737 0, /* bitpos */
738 complain_overflow_bitfield,/* complain_on_overflow */
739 bfd_elf_generic_reloc, /* special_function */
740 "R_ARM_MOVT_PREL", /* name */
741 FALSE, /* partial_inplace */
742 0x000f0fff, /* src_mask */
743 0x000f0fff, /* dst_mask */
744 TRUE), /* pcrel_offset */
745
746 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
747 0, /* rightshift */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
749 16, /* bitsize */
750 FALSE, /* pc_relative */
751 0, /* bitpos */
752 complain_overflow_dont,/* complain_on_overflow */
753 bfd_elf_generic_reloc, /* special_function */
754 "R_ARM_THM_MOVW_ABS_NC",/* name */
755 FALSE, /* partial_inplace */
756 0x040f70ff, /* src_mask */
757 0x040f70ff, /* dst_mask */
758 FALSE), /* pcrel_offset */
759
760 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
761 0, /* rightshift */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
763 16, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_bitfield,/* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_ARM_THM_MOVT_ABS", /* name */
769 FALSE, /* partial_inplace */
770 0x040f70ff, /* src_mask */
771 0x040f70ff, /* dst_mask */
772 FALSE), /* pcrel_offset */
773
774 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
775 0, /* rightshift */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
777 16, /* bitsize */
778 TRUE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont,/* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
782 "R_ARM_THM_MOVW_PREL_NC",/* name */
783 FALSE, /* partial_inplace */
784 0x040f70ff, /* src_mask */
785 0x040f70ff, /* dst_mask */
786 TRUE), /* pcrel_offset */
787
788 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
789 0, /* rightshift */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
791 16, /* bitsize */
792 TRUE, /* pc_relative */
793 0, /* bitpos */
794 complain_overflow_bitfield,/* complain_on_overflow */
795 bfd_elf_generic_reloc, /* special_function */
796 "R_ARM_THM_MOVT_PREL", /* name */
797 FALSE, /* partial_inplace */
798 0x040f70ff, /* src_mask */
799 0x040f70ff, /* dst_mask */
800 TRUE), /* pcrel_offset */
801
802 HOWTO (R_ARM_THM_JUMP19, /* type */
803 1, /* rightshift */
804 2, /* size (0 = byte, 1 = short, 2 = long) */
805 19, /* bitsize */
806 TRUE, /* pc_relative */
807 0, /* bitpos */
808 complain_overflow_signed,/* complain_on_overflow */
809 bfd_elf_generic_reloc, /* special_function */
810 "R_ARM_THM_JUMP19", /* name */
811 FALSE, /* partial_inplace */
812 0x043f2fff, /* src_mask */
813 0x043f2fff, /* dst_mask */
814 TRUE), /* pcrel_offset */
815
816 HOWTO (R_ARM_THM_JUMP6, /* type */
817 1, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 6, /* bitsize */
820 TRUE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_unsigned,/* complain_on_overflow */
823 bfd_elf_generic_reloc, /* special_function */
824 "R_ARM_THM_JUMP6", /* name */
825 FALSE, /* partial_inplace */
826 0x02f8, /* src_mask */
827 0x02f8, /* dst_mask */
828 TRUE), /* pcrel_offset */
829
830 /* These are declared as 13-bit signed relocations because we can
831 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
832 versa. */
833 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
834 0, /* rightshift */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
836 13, /* bitsize */
837 TRUE, /* pc_relative */
838 0, /* bitpos */
839 complain_overflow_dont,/* complain_on_overflow */
840 bfd_elf_generic_reloc, /* special_function */
841 "R_ARM_THM_ALU_PREL_11_0",/* name */
842 FALSE, /* partial_inplace */
843 0xffffffff, /* src_mask */
844 0xffffffff, /* dst_mask */
845 TRUE), /* pcrel_offset */
846
847 HOWTO (R_ARM_THM_PC12, /* type */
848 0, /* rightshift */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
850 13, /* bitsize */
851 TRUE, /* pc_relative */
852 0, /* bitpos */
853 complain_overflow_dont,/* complain_on_overflow */
854 bfd_elf_generic_reloc, /* special_function */
855 "R_ARM_THM_PC12", /* name */
856 FALSE, /* partial_inplace */
857 0xffffffff, /* src_mask */
858 0xffffffff, /* dst_mask */
859 TRUE), /* pcrel_offset */
860
861 HOWTO (R_ARM_ABS32_NOI, /* type */
862 0, /* rightshift */
863 2, /* size (0 = byte, 1 = short, 2 = long) */
864 32, /* bitsize */
865 FALSE, /* pc_relative */
866 0, /* bitpos */
867 complain_overflow_dont,/* complain_on_overflow */
868 bfd_elf_generic_reloc, /* special_function */
869 "R_ARM_ABS32_NOI", /* name */
870 FALSE, /* partial_inplace */
871 0xffffffff, /* src_mask */
872 0xffffffff, /* dst_mask */
873 FALSE), /* pcrel_offset */
874
875 HOWTO (R_ARM_REL32_NOI, /* type */
876 0, /* rightshift */
877 2, /* size (0 = byte, 1 = short, 2 = long) */
878 32, /* bitsize */
879 TRUE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont,/* complain_on_overflow */
882 bfd_elf_generic_reloc, /* special_function */
883 "R_ARM_REL32_NOI", /* name */
884 FALSE, /* partial_inplace */
885 0xffffffff, /* src_mask */
886 0xffffffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
888
889 /* Group relocations. */
890
891 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
892 0, /* rightshift */
893 2, /* size (0 = byte, 1 = short, 2 = long) */
894 32, /* bitsize */
895 TRUE, /* pc_relative */
896 0, /* bitpos */
897 complain_overflow_dont,/* complain_on_overflow */
898 bfd_elf_generic_reloc, /* special_function */
899 "R_ARM_ALU_PC_G0_NC", /* name */
900 FALSE, /* partial_inplace */
901 0xffffffff, /* src_mask */
902 0xffffffff, /* dst_mask */
903 TRUE), /* pcrel_offset */
904
905 HOWTO (R_ARM_ALU_PC_G0, /* type */
906 0, /* rightshift */
907 2, /* size (0 = byte, 1 = short, 2 = long) */
908 32, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont,/* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_ARM_ALU_PC_G0", /* name */
914 FALSE, /* partial_inplace */
915 0xffffffff, /* src_mask */
916 0xffffffff, /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
920 0, /* rightshift */
921 2, /* size (0 = byte, 1 = short, 2 = long) */
922 32, /* bitsize */
923 TRUE, /* pc_relative */
924 0, /* bitpos */
925 complain_overflow_dont,/* complain_on_overflow */
926 bfd_elf_generic_reloc, /* special_function */
927 "R_ARM_ALU_PC_G1_NC", /* name */
928 FALSE, /* partial_inplace */
929 0xffffffff, /* src_mask */
930 0xffffffff, /* dst_mask */
931 TRUE), /* pcrel_offset */
932
933 HOWTO (R_ARM_ALU_PC_G1, /* type */
934 0, /* rightshift */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
936 32, /* bitsize */
937 TRUE, /* pc_relative */
938 0, /* bitpos */
939 complain_overflow_dont,/* complain_on_overflow */
940 bfd_elf_generic_reloc, /* special_function */
941 "R_ARM_ALU_PC_G1", /* name */
942 FALSE, /* partial_inplace */
943 0xffffffff, /* src_mask */
944 0xffffffff, /* dst_mask */
945 TRUE), /* pcrel_offset */
946
947 HOWTO (R_ARM_ALU_PC_G2, /* type */
948 0, /* rightshift */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
950 32, /* bitsize */
951 TRUE, /* pc_relative */
952 0, /* bitpos */
953 complain_overflow_dont,/* complain_on_overflow */
954 bfd_elf_generic_reloc, /* special_function */
955 "R_ARM_ALU_PC_G2", /* name */
956 FALSE, /* partial_inplace */
957 0xffffffff, /* src_mask */
958 0xffffffff, /* dst_mask */
959 TRUE), /* pcrel_offset */
960
961 HOWTO (R_ARM_LDR_PC_G1, /* type */
962 0, /* rightshift */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
964 32, /* bitsize */
965 TRUE, /* pc_relative */
966 0, /* bitpos */
967 complain_overflow_dont,/* complain_on_overflow */
968 bfd_elf_generic_reloc, /* special_function */
969 "R_ARM_LDR_PC_G1", /* name */
970 FALSE, /* partial_inplace */
971 0xffffffff, /* src_mask */
972 0xffffffff, /* dst_mask */
973 TRUE), /* pcrel_offset */
974
975 HOWTO (R_ARM_LDR_PC_G2, /* type */
976 0, /* rightshift */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
978 32, /* bitsize */
979 TRUE, /* pc_relative */
980 0, /* bitpos */
981 complain_overflow_dont,/* complain_on_overflow */
982 bfd_elf_generic_reloc, /* special_function */
983 "R_ARM_LDR_PC_G2", /* name */
984 FALSE, /* partial_inplace */
985 0xffffffff, /* src_mask */
986 0xffffffff, /* dst_mask */
987 TRUE), /* pcrel_offset */
988
989 HOWTO (R_ARM_LDRS_PC_G0, /* type */
990 0, /* rightshift */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
992 32, /* bitsize */
993 TRUE, /* pc_relative */
994 0, /* bitpos */
995 complain_overflow_dont,/* complain_on_overflow */
996 bfd_elf_generic_reloc, /* special_function */
997 "R_ARM_LDRS_PC_G0", /* name */
998 FALSE, /* partial_inplace */
999 0xffffffff, /* src_mask */
1000 0xffffffff, /* dst_mask */
1001 TRUE), /* pcrel_offset */
1002
1003 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1004 0, /* rightshift */
1005 2, /* size (0 = byte, 1 = short, 2 = long) */
1006 32, /* bitsize */
1007 TRUE, /* pc_relative */
1008 0, /* bitpos */
1009 complain_overflow_dont,/* complain_on_overflow */
1010 bfd_elf_generic_reloc, /* special_function */
1011 "R_ARM_LDRS_PC_G1", /* name */
1012 FALSE, /* partial_inplace */
1013 0xffffffff, /* src_mask */
1014 0xffffffff, /* dst_mask */
1015 TRUE), /* pcrel_offset */
1016
1017 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1018 0, /* rightshift */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1020 32, /* bitsize */
1021 TRUE, /* pc_relative */
1022 0, /* bitpos */
1023 complain_overflow_dont,/* complain_on_overflow */
1024 bfd_elf_generic_reloc, /* special_function */
1025 "R_ARM_LDRS_PC_G2", /* name */
1026 FALSE, /* partial_inplace */
1027 0xffffffff, /* src_mask */
1028 0xffffffff, /* dst_mask */
1029 TRUE), /* pcrel_offset */
1030
1031 HOWTO (R_ARM_LDC_PC_G0, /* type */
1032 0, /* rightshift */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1034 32, /* bitsize */
1035 TRUE, /* pc_relative */
1036 0, /* bitpos */
1037 complain_overflow_dont,/* complain_on_overflow */
1038 bfd_elf_generic_reloc, /* special_function */
1039 "R_ARM_LDC_PC_G0", /* name */
1040 FALSE, /* partial_inplace */
1041 0xffffffff, /* src_mask */
1042 0xffffffff, /* dst_mask */
1043 TRUE), /* pcrel_offset */
1044
1045 HOWTO (R_ARM_LDC_PC_G1, /* type */
1046 0, /* rightshift */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1048 32, /* bitsize */
1049 TRUE, /* pc_relative */
1050 0, /* bitpos */
1051 complain_overflow_dont,/* complain_on_overflow */
1052 bfd_elf_generic_reloc, /* special_function */
1053 "R_ARM_LDC_PC_G1", /* name */
1054 FALSE, /* partial_inplace */
1055 0xffffffff, /* src_mask */
1056 0xffffffff, /* dst_mask */
1057 TRUE), /* pcrel_offset */
1058
1059 HOWTO (R_ARM_LDC_PC_G2, /* type */
1060 0, /* rightshift */
1061 2, /* size (0 = byte, 1 = short, 2 = long) */
1062 32, /* bitsize */
1063 TRUE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_dont,/* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_ARM_LDC_PC_G2", /* name */
1068 FALSE, /* partial_inplace */
1069 0xffffffff, /* src_mask */
1070 0xffffffff, /* dst_mask */
1071 TRUE), /* pcrel_offset */
1072
1073 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1074 0, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 32, /* bitsize */
1077 TRUE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont,/* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 "R_ARM_ALU_SB_G0_NC", /* name */
1082 FALSE, /* partial_inplace */
1083 0xffffffff, /* src_mask */
1084 0xffffffff, /* dst_mask */
1085 TRUE), /* pcrel_offset */
1086
1087 HOWTO (R_ARM_ALU_SB_G0, /* type */
1088 0, /* rightshift */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1090 32, /* bitsize */
1091 TRUE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_dont,/* complain_on_overflow */
1094 bfd_elf_generic_reloc, /* special_function */
1095 "R_ARM_ALU_SB_G0", /* name */
1096 FALSE, /* partial_inplace */
1097 0xffffffff, /* src_mask */
1098 0xffffffff, /* dst_mask */
1099 TRUE), /* pcrel_offset */
1100
1101 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1102 0, /* rightshift */
1103 2, /* size (0 = byte, 1 = short, 2 = long) */
1104 32, /* bitsize */
1105 TRUE, /* pc_relative */
1106 0, /* bitpos */
1107 complain_overflow_dont,/* complain_on_overflow */
1108 bfd_elf_generic_reloc, /* special_function */
1109 "R_ARM_ALU_SB_G1_NC", /* name */
1110 FALSE, /* partial_inplace */
1111 0xffffffff, /* src_mask */
1112 0xffffffff, /* dst_mask */
1113 TRUE), /* pcrel_offset */
1114
1115 HOWTO (R_ARM_ALU_SB_G1, /* type */
1116 0, /* rightshift */
1117 2, /* size (0 = byte, 1 = short, 2 = long) */
1118 32, /* bitsize */
1119 TRUE, /* pc_relative */
1120 0, /* bitpos */
1121 complain_overflow_dont,/* complain_on_overflow */
1122 bfd_elf_generic_reloc, /* special_function */
1123 "R_ARM_ALU_SB_G1", /* name */
1124 FALSE, /* partial_inplace */
1125 0xffffffff, /* src_mask */
1126 0xffffffff, /* dst_mask */
1127 TRUE), /* pcrel_offset */
1128
1129 HOWTO (R_ARM_ALU_SB_G2, /* type */
1130 0, /* rightshift */
1131 2, /* size (0 = byte, 1 = short, 2 = long) */
1132 32, /* bitsize */
1133 TRUE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont,/* complain_on_overflow */
1136 bfd_elf_generic_reloc, /* special_function */
1137 "R_ARM_ALU_SB_G2", /* name */
1138 FALSE, /* partial_inplace */
1139 0xffffffff, /* src_mask */
1140 0xffffffff, /* dst_mask */
1141 TRUE), /* pcrel_offset */
1142
1143 HOWTO (R_ARM_LDR_SB_G0, /* type */
1144 0, /* rightshift */
1145 2, /* size (0 = byte, 1 = short, 2 = long) */
1146 32, /* bitsize */
1147 TRUE, /* pc_relative */
1148 0, /* bitpos */
1149 complain_overflow_dont,/* complain_on_overflow */
1150 bfd_elf_generic_reloc, /* special_function */
1151 "R_ARM_LDR_SB_G0", /* name */
1152 FALSE, /* partial_inplace */
1153 0xffffffff, /* src_mask */
1154 0xffffffff, /* dst_mask */
1155 TRUE), /* pcrel_offset */
1156
1157 HOWTO (R_ARM_LDR_SB_G1, /* type */
1158 0, /* rightshift */
1159 2, /* size (0 = byte, 1 = short, 2 = long) */
1160 32, /* bitsize */
1161 TRUE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont,/* complain_on_overflow */
1164 bfd_elf_generic_reloc, /* special_function */
1165 "R_ARM_LDR_SB_G1", /* name */
1166 FALSE, /* partial_inplace */
1167 0xffffffff, /* src_mask */
1168 0xffffffff, /* dst_mask */
1169 TRUE), /* pcrel_offset */
1170
1171 HOWTO (R_ARM_LDR_SB_G2, /* type */
1172 0, /* rightshift */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1174 32, /* bitsize */
1175 TRUE, /* pc_relative */
1176 0, /* bitpos */
1177 complain_overflow_dont,/* complain_on_overflow */
1178 bfd_elf_generic_reloc, /* special_function */
1179 "R_ARM_LDR_SB_G2", /* name */
1180 FALSE, /* partial_inplace */
1181 0xffffffff, /* src_mask */
1182 0xffffffff, /* dst_mask */
1183 TRUE), /* pcrel_offset */
1184
1185 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1186 0, /* rightshift */
1187 2, /* size (0 = byte, 1 = short, 2 = long) */
1188 32, /* bitsize */
1189 TRUE, /* pc_relative */
1190 0, /* bitpos */
1191 complain_overflow_dont,/* complain_on_overflow */
1192 bfd_elf_generic_reloc, /* special_function */
1193 "R_ARM_LDRS_SB_G0", /* name */
1194 FALSE, /* partial_inplace */
1195 0xffffffff, /* src_mask */
1196 0xffffffff, /* dst_mask */
1197 TRUE), /* pcrel_offset */
1198
1199 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1200 0, /* rightshift */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1202 32, /* bitsize */
1203 TRUE, /* pc_relative */
1204 0, /* bitpos */
1205 complain_overflow_dont,/* complain_on_overflow */
1206 bfd_elf_generic_reloc, /* special_function */
1207 "R_ARM_LDRS_SB_G1", /* name */
1208 FALSE, /* partial_inplace */
1209 0xffffffff, /* src_mask */
1210 0xffffffff, /* dst_mask */
1211 TRUE), /* pcrel_offset */
1212
1213 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1214 0, /* rightshift */
1215 2, /* size (0 = byte, 1 = short, 2 = long) */
1216 32, /* bitsize */
1217 TRUE, /* pc_relative */
1218 0, /* bitpos */
1219 complain_overflow_dont,/* complain_on_overflow */
1220 bfd_elf_generic_reloc, /* special_function */
1221 "R_ARM_LDRS_SB_G2", /* name */
1222 FALSE, /* partial_inplace */
1223 0xffffffff, /* src_mask */
1224 0xffffffff, /* dst_mask */
1225 TRUE), /* pcrel_offset */
1226
1227 HOWTO (R_ARM_LDC_SB_G0, /* type */
1228 0, /* rightshift */
1229 2, /* size (0 = byte, 1 = short, 2 = long) */
1230 32, /* bitsize */
1231 TRUE, /* pc_relative */
1232 0, /* bitpos */
1233 complain_overflow_dont,/* complain_on_overflow */
1234 bfd_elf_generic_reloc, /* special_function */
1235 "R_ARM_LDC_SB_G0", /* name */
1236 FALSE, /* partial_inplace */
1237 0xffffffff, /* src_mask */
1238 0xffffffff, /* dst_mask */
1239 TRUE), /* pcrel_offset */
1240
1241 HOWTO (R_ARM_LDC_SB_G1, /* type */
1242 0, /* rightshift */
1243 2, /* size (0 = byte, 1 = short, 2 = long) */
1244 32, /* bitsize */
1245 TRUE, /* pc_relative */
1246 0, /* bitpos */
1247 complain_overflow_dont,/* complain_on_overflow */
1248 bfd_elf_generic_reloc, /* special_function */
1249 "R_ARM_LDC_SB_G1", /* name */
1250 FALSE, /* partial_inplace */
1251 0xffffffff, /* src_mask */
1252 0xffffffff, /* dst_mask */
1253 TRUE), /* pcrel_offset */
1254
1255 HOWTO (R_ARM_LDC_SB_G2, /* type */
1256 0, /* rightshift */
1257 2, /* size (0 = byte, 1 = short, 2 = long) */
1258 32, /* bitsize */
1259 TRUE, /* pc_relative */
1260 0, /* bitpos */
1261 complain_overflow_dont,/* complain_on_overflow */
1262 bfd_elf_generic_reloc, /* special_function */
1263 "R_ARM_LDC_SB_G2", /* name */
1264 FALSE, /* partial_inplace */
1265 0xffffffff, /* src_mask */
1266 0xffffffff, /* dst_mask */
1267 TRUE), /* pcrel_offset */
1268
1269 /* End of group relocations. */
1270
1271 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1272 0, /* rightshift */
1273 2, /* size (0 = byte, 1 = short, 2 = long) */
1274 16, /* bitsize */
1275 FALSE, /* pc_relative */
1276 0, /* bitpos */
1277 complain_overflow_dont,/* complain_on_overflow */
1278 bfd_elf_generic_reloc, /* special_function */
1279 "R_ARM_MOVW_BREL_NC", /* name */
1280 FALSE, /* partial_inplace */
1281 0x0000ffff, /* src_mask */
1282 0x0000ffff, /* dst_mask */
1283 FALSE), /* pcrel_offset */
1284
1285 HOWTO (R_ARM_MOVT_BREL, /* type */
1286 0, /* rightshift */
1287 2, /* size (0 = byte, 1 = short, 2 = long) */
1288 16, /* bitsize */
1289 FALSE, /* pc_relative */
1290 0, /* bitpos */
1291 complain_overflow_bitfield,/* complain_on_overflow */
1292 bfd_elf_generic_reloc, /* special_function */
1293 "R_ARM_MOVT_BREL", /* name */
1294 FALSE, /* partial_inplace */
1295 0x0000ffff, /* src_mask */
1296 0x0000ffff, /* dst_mask */
1297 FALSE), /* pcrel_offset */
1298
1299 HOWTO (R_ARM_MOVW_BREL, /* type */
1300 0, /* rightshift */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1302 16, /* bitsize */
1303 FALSE, /* pc_relative */
1304 0, /* bitpos */
1305 complain_overflow_dont,/* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 "R_ARM_MOVW_BREL", /* name */
1308 FALSE, /* partial_inplace */
1309 0x0000ffff, /* src_mask */
1310 0x0000ffff, /* dst_mask */
1311 FALSE), /* pcrel_offset */
1312
1313 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1314 0, /* rightshift */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1316 16, /* bitsize */
1317 FALSE, /* pc_relative */
1318 0, /* bitpos */
1319 complain_overflow_dont,/* complain_on_overflow */
1320 bfd_elf_generic_reloc, /* special_function */
1321 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322 FALSE, /* partial_inplace */
1323 0x040f70ff, /* src_mask */
1324 0x040f70ff, /* dst_mask */
1325 FALSE), /* pcrel_offset */
1326
1327 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1328 0, /* rightshift */
1329 2, /* size (0 = byte, 1 = short, 2 = long) */
1330 16, /* bitsize */
1331 FALSE, /* pc_relative */
1332 0, /* bitpos */
1333 complain_overflow_bitfield,/* complain_on_overflow */
1334 bfd_elf_generic_reloc, /* special_function */
1335 "R_ARM_THM_MOVT_BREL", /* name */
1336 FALSE, /* partial_inplace */
1337 0x040f70ff, /* src_mask */
1338 0x040f70ff, /* dst_mask */
1339 FALSE), /* pcrel_offset */
1340
1341 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1342 0, /* rightshift */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_dont,/* complain_on_overflow */
1348 bfd_elf_generic_reloc, /* special_function */
1349 "R_ARM_THM_MOVW_BREL", /* name */
1350 FALSE, /* partial_inplace */
1351 0x040f70ff, /* src_mask */
1352 0x040f70ff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
1355 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_bitfield,/* complain_on_overflow */
1362 NULL, /* special_function */
1363 "R_ARM_TLS_GOTDESC", /* name */
1364 TRUE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_TLS_CALL, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 24, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_TLS_CALL", /* name */
1378 FALSE, /* partial_inplace */
1379 0x00ffffff, /* src_mask */
1380 0x00ffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 0, /* bitsize */
1387 FALSE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_bitfield,/* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_TLS_DESCSEQ", /* name */
1392 FALSE, /* partial_inplace */
1393 0x00000000, /* src_mask */
1394 0x00000000, /* dst_mask */
1395 FALSE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 24, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_dont,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_THM_TLS_CALL", /* name */
1406 FALSE, /* partial_inplace */
1407 0x07ff07ff, /* src_mask */
1408 0x07ff07ff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_PLT32_ABS, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 32, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_dont,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_PLT32_ABS", /* name */
1420 FALSE, /* partial_inplace */
1421 0xffffffff, /* src_mask */
1422 0xffffffff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 HOWTO (R_ARM_GOT_ABS, /* type */
1426 0, /* rightshift */
1427 2, /* size (0 = byte, 1 = short, 2 = long) */
1428 32, /* bitsize */
1429 FALSE, /* pc_relative */
1430 0, /* bitpos */
1431 complain_overflow_dont,/* complain_on_overflow */
1432 bfd_elf_generic_reloc, /* special_function */
1433 "R_ARM_GOT_ABS", /* name */
1434 FALSE, /* partial_inplace */
1435 0xffffffff, /* src_mask */
1436 0xffffffff, /* dst_mask */
1437 FALSE), /* pcrel_offset */
1438
1439 HOWTO (R_ARM_GOT_PREL, /* type */
1440 0, /* rightshift */
1441 2, /* size (0 = byte, 1 = short, 2 = long) */
1442 32, /* bitsize */
1443 TRUE, /* pc_relative */
1444 0, /* bitpos */
1445 complain_overflow_dont, /* complain_on_overflow */
1446 bfd_elf_generic_reloc, /* special_function */
1447 "R_ARM_GOT_PREL", /* name */
1448 FALSE, /* partial_inplace */
1449 0xffffffff, /* src_mask */
1450 0xffffffff, /* dst_mask */
1451 TRUE), /* pcrel_offset */
1452
1453 HOWTO (R_ARM_GOT_BREL12, /* type */
1454 0, /* rightshift */
1455 2, /* size (0 = byte, 1 = short, 2 = long) */
1456 12, /* bitsize */
1457 FALSE, /* pc_relative */
1458 0, /* bitpos */
1459 complain_overflow_bitfield,/* complain_on_overflow */
1460 bfd_elf_generic_reloc, /* special_function */
1461 "R_ARM_GOT_BREL12", /* name */
1462 FALSE, /* partial_inplace */
1463 0x00000fff, /* src_mask */
1464 0x00000fff, /* dst_mask */
1465 FALSE), /* pcrel_offset */
1466
1467 HOWTO (R_ARM_GOTOFF12, /* type */
1468 0, /* rightshift */
1469 2, /* size (0 = byte, 1 = short, 2 = long) */
1470 12, /* bitsize */
1471 FALSE, /* pc_relative */
1472 0, /* bitpos */
1473 complain_overflow_bitfield,/* complain_on_overflow */
1474 bfd_elf_generic_reloc, /* special_function */
1475 "R_ARM_GOTOFF12", /* name */
1476 FALSE, /* partial_inplace */
1477 0x00000fff, /* src_mask */
1478 0x00000fff, /* dst_mask */
1479 FALSE), /* pcrel_offset */
1480
1481 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1482
1483 /* GNU extension to record C++ vtable member usage */
1484 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1485 0, /* rightshift */
1486 2, /* size (0 = byte, 1 = short, 2 = long) */
1487 0, /* bitsize */
1488 FALSE, /* pc_relative */
1489 0, /* bitpos */
1490 complain_overflow_dont, /* complain_on_overflow */
1491 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1492 "R_ARM_GNU_VTENTRY", /* name */
1493 FALSE, /* partial_inplace */
1494 0, /* src_mask */
1495 0, /* dst_mask */
1496 FALSE), /* pcrel_offset */
1497
1498 /* GNU extension to record C++ vtable hierarchy */
1499 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1500 0, /* rightshift */
1501 2, /* size (0 = byte, 1 = short, 2 = long) */
1502 0, /* bitsize */
1503 FALSE, /* pc_relative */
1504 0, /* bitpos */
1505 complain_overflow_dont, /* complain_on_overflow */
1506 NULL, /* special_function */
1507 "R_ARM_GNU_VTINHERIT", /* name */
1508 FALSE, /* partial_inplace */
1509 0, /* src_mask */
1510 0, /* dst_mask */
1511 FALSE), /* pcrel_offset */
1512
1513 HOWTO (R_ARM_THM_JUMP11, /* type */
1514 1, /* rightshift */
1515 1, /* size (0 = byte, 1 = short, 2 = long) */
1516 11, /* bitsize */
1517 TRUE, /* pc_relative */
1518 0, /* bitpos */
1519 complain_overflow_signed, /* complain_on_overflow */
1520 bfd_elf_generic_reloc, /* special_function */
1521 "R_ARM_THM_JUMP11", /* name */
1522 FALSE, /* partial_inplace */
1523 0x000007ff, /* src_mask */
1524 0x000007ff, /* dst_mask */
1525 TRUE), /* pcrel_offset */
1526
1527 HOWTO (R_ARM_THM_JUMP8, /* type */
1528 1, /* rightshift */
1529 1, /* size (0 = byte, 1 = short, 2 = long) */
1530 8, /* bitsize */
1531 TRUE, /* pc_relative */
1532 0, /* bitpos */
1533 complain_overflow_signed, /* complain_on_overflow */
1534 bfd_elf_generic_reloc, /* special_function */
1535 "R_ARM_THM_JUMP8", /* name */
1536 FALSE, /* partial_inplace */
1537 0x000000ff, /* src_mask */
1538 0x000000ff, /* dst_mask */
1539 TRUE), /* pcrel_offset */
1540
1541 /* TLS relocations */
1542 HOWTO (R_ARM_TLS_GD32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 NULL, /* special_function */
1550 "R_ARM_TLS_GD32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDM32, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 32, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDM32", /* name */
1565 TRUE, /* partial_inplace */
1566 0xffffffff, /* src_mask */
1567 0xffffffff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LDO32, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 32, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LDO32", /* name */
1579 TRUE, /* partial_inplace */
1580 0xffffffff, /* src_mask */
1581 0xffffffff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE32, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 32, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 NULL, /* special_function */
1592 "R_ARM_TLS_IE32", /* name */
1593 TRUE, /* partial_inplace */
1594 0xffffffff, /* src_mask */
1595 0xffffffff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597
1598 HOWTO (R_ARM_TLS_LE32, /* type */
1599 0, /* rightshift */
1600 2, /* size (0 = byte, 1 = short, 2 = long) */
1601 32, /* bitsize */
1602 FALSE, /* pc_relative */
1603 0, /* bitpos */
1604 complain_overflow_bitfield,/* complain_on_overflow */
1605 bfd_elf_generic_reloc, /* special_function */
1606 "R_ARM_TLS_LE32", /* name */
1607 TRUE, /* partial_inplace */
1608 0xffffffff, /* src_mask */
1609 0xffffffff, /* dst_mask */
1610 FALSE), /* pcrel_offset */
1611
1612 HOWTO (R_ARM_TLS_LDO12, /* type */
1613 0, /* rightshift */
1614 2, /* size (0 = byte, 1 = short, 2 = long) */
1615 12, /* bitsize */
1616 FALSE, /* pc_relative */
1617 0, /* bitpos */
1618 complain_overflow_bitfield,/* complain_on_overflow */
1619 bfd_elf_generic_reloc, /* special_function */
1620 "R_ARM_TLS_LDO12", /* name */
1621 FALSE, /* partial_inplace */
1622 0x00000fff, /* src_mask */
1623 0x00000fff, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1625
1626 HOWTO (R_ARM_TLS_LE12, /* type */
1627 0, /* rightshift */
1628 2, /* size (0 = byte, 1 = short, 2 = long) */
1629 12, /* bitsize */
1630 FALSE, /* pc_relative */
1631 0, /* bitpos */
1632 complain_overflow_bitfield,/* complain_on_overflow */
1633 bfd_elf_generic_reloc, /* special_function */
1634 "R_ARM_TLS_LE12", /* name */
1635 FALSE, /* partial_inplace */
1636 0x00000fff, /* src_mask */
1637 0x00000fff, /* dst_mask */
1638 FALSE), /* pcrel_offset */
1639
1640 HOWTO (R_ARM_TLS_IE12GP, /* type */
1641 0, /* rightshift */
1642 2, /* size (0 = byte, 1 = short, 2 = long) */
1643 12, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_bitfield,/* complain_on_overflow */
1647 bfd_elf_generic_reloc, /* special_function */
1648 "R_ARM_TLS_IE12GP", /* name */
1649 FALSE, /* partial_inplace */
1650 0x00000fff, /* src_mask */
1651 0x00000fff, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1653
1654 /* 112-127 private relocations. */
1655 EMPTY_HOWTO (112),
1656 EMPTY_HOWTO (113),
1657 EMPTY_HOWTO (114),
1658 EMPTY_HOWTO (115),
1659 EMPTY_HOWTO (116),
1660 EMPTY_HOWTO (117),
1661 EMPTY_HOWTO (118),
1662 EMPTY_HOWTO (119),
1663 EMPTY_HOWTO (120),
1664 EMPTY_HOWTO (121),
1665 EMPTY_HOWTO (122),
1666 EMPTY_HOWTO (123),
1667 EMPTY_HOWTO (124),
1668 EMPTY_HOWTO (125),
1669 EMPTY_HOWTO (126),
1670 EMPTY_HOWTO (127),
1671
1672 /* R_ARM_ME_TOO, obsolete. */
1673 EMPTY_HOWTO (128),
1674
1675 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1676 0, /* rightshift */
1677 1, /* size (0 = byte, 1 = short, 2 = long) */
1678 0, /* bitsize */
1679 FALSE, /* pc_relative */
1680 0, /* bitpos */
1681 complain_overflow_bitfield,/* complain_on_overflow */
1682 bfd_elf_generic_reloc, /* special_function */
1683 "R_ARM_THM_TLS_DESCSEQ",/* name */
1684 FALSE, /* partial_inplace */
1685 0x00000000, /* src_mask */
1686 0x00000000, /* dst_mask */
1687 FALSE), /* pcrel_offset */
1688 };
1689
1690 /* 160 onwards: */
1691 static reloc_howto_type elf32_arm_howto_table_2[1] =
1692 {
1693 HOWTO (R_ARM_IRELATIVE, /* type */
1694 0, /* rightshift */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1696 32, /* bitsize */
1697 FALSE, /* pc_relative */
1698 0, /* bitpos */
1699 complain_overflow_bitfield,/* complain_on_overflow */
1700 bfd_elf_generic_reloc, /* special_function */
1701 "R_ARM_IRELATIVE", /* name */
1702 TRUE, /* partial_inplace */
1703 0xffffffff, /* src_mask */
1704 0xffffffff, /* dst_mask */
1705 FALSE) /* pcrel_offset */
1706 };
1707
1708 /* 249-255 extended, currently unused, relocations: */
1709 static reloc_howto_type elf32_arm_howto_table_3[4] =
1710 {
1711 HOWTO (R_ARM_RREL32, /* type */
1712 0, /* rightshift */
1713 0, /* size (0 = byte, 1 = short, 2 = long) */
1714 0, /* bitsize */
1715 FALSE, /* pc_relative */
1716 0, /* bitpos */
1717 complain_overflow_dont,/* complain_on_overflow */
1718 bfd_elf_generic_reloc, /* special_function */
1719 "R_ARM_RREL32", /* name */
1720 FALSE, /* partial_inplace */
1721 0, /* src_mask */
1722 0, /* dst_mask */
1723 FALSE), /* pcrel_offset */
1724
1725 HOWTO (R_ARM_RABS32, /* type */
1726 0, /* rightshift */
1727 0, /* size (0 = byte, 1 = short, 2 = long) */
1728 0, /* bitsize */
1729 FALSE, /* pc_relative */
1730 0, /* bitpos */
1731 complain_overflow_dont,/* complain_on_overflow */
1732 bfd_elf_generic_reloc, /* special_function */
1733 "R_ARM_RABS32", /* name */
1734 FALSE, /* partial_inplace */
1735 0, /* src_mask */
1736 0, /* dst_mask */
1737 FALSE), /* pcrel_offset */
1738
1739 HOWTO (R_ARM_RPC24, /* type */
1740 0, /* rightshift */
1741 0, /* size (0 = byte, 1 = short, 2 = long) */
1742 0, /* bitsize */
1743 FALSE, /* pc_relative */
1744 0, /* bitpos */
1745 complain_overflow_dont,/* complain_on_overflow */
1746 bfd_elf_generic_reloc, /* special_function */
1747 "R_ARM_RPC24", /* name */
1748 FALSE, /* partial_inplace */
1749 0, /* src_mask */
1750 0, /* dst_mask */
1751 FALSE), /* pcrel_offset */
1752
1753 HOWTO (R_ARM_RBASE, /* type */
1754 0, /* rightshift */
1755 0, /* size (0 = byte, 1 = short, 2 = long) */
1756 0, /* bitsize */
1757 FALSE, /* pc_relative */
1758 0, /* bitpos */
1759 complain_overflow_dont,/* complain_on_overflow */
1760 bfd_elf_generic_reloc, /* special_function */
1761 "R_ARM_RBASE", /* name */
1762 FALSE, /* partial_inplace */
1763 0, /* src_mask */
1764 0, /* dst_mask */
1765 FALSE) /* pcrel_offset */
1766 };
1767
1768 static reloc_howto_type *
1769 elf32_arm_howto_from_type (unsigned int r_type)
1770 {
1771 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1772 return &elf32_arm_howto_table_1[r_type];
1773
1774 if (r_type == R_ARM_IRELATIVE)
1775 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1776
1777 if (r_type >= R_ARM_RREL32
1778 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1779 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1780
1781 return NULL;
1782 }
1783
1784 static void
1785 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1786 Elf_Internal_Rela * elf_reloc)
1787 {
1788 unsigned int r_type;
1789
1790 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1791 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1792 }
1793
1794 struct elf32_arm_reloc_map
1795 {
1796 bfd_reloc_code_real_type bfd_reloc_val;
1797 unsigned char elf_reloc_val;
1798 };
1799
1800 /* All entries in this list must also be present in elf32_arm_howto_table. */
1801 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1802 {
1803 {BFD_RELOC_NONE, R_ARM_NONE},
1804 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1805 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1806 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1807 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1808 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1809 {BFD_RELOC_32, R_ARM_ABS32},
1810 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1811 {BFD_RELOC_8, R_ARM_ABS8},
1812 {BFD_RELOC_16, R_ARM_ABS16},
1813 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1814 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1815 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1816 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1817 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1818 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1819 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1821 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1822 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1823 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1824 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1825 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1826 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1827 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1828 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1829 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1830 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1831 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1832 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1833 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1834 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1835 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1836 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1837 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1838 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1839 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1840 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1841 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1842 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1843 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1844 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1845 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1846 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1847 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1848 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1849 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1850 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1851 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1852 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1853 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1854 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1855 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1856 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1857 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1858 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1859 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1860 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1861 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1862 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1863 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1864 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1865 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1866 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1867 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1868 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1869 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1870 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1871 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1872 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1873 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1874 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1875 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1876 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1877 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1878 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1879 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1880 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1881 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1882 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1883 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1884 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1885 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1886 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1887 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1888 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1889 };
1890
1891 static reloc_howto_type *
1892 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1893 bfd_reloc_code_real_type code)
1894 {
1895 unsigned int i;
1896
1897 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1898 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1899 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1900
1901 return NULL;
1902 }
1903
1904 static reloc_howto_type *
1905 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1906 const char *r_name)
1907 {
1908 unsigned int i;
1909
1910 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1911 if (elf32_arm_howto_table_1[i].name != NULL
1912 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1913 return &elf32_arm_howto_table_1[i];
1914
1915 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1916 if (elf32_arm_howto_table_2[i].name != NULL
1917 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1918 return &elf32_arm_howto_table_2[i];
1919
1920 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1921 if (elf32_arm_howto_table_3[i].name != NULL
1922 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1923 return &elf32_arm_howto_table_3[i];
1924
1925 return NULL;
1926 }
1927
1928 /* Support for core dump NOTE sections. */
1929
1930 static bfd_boolean
1931 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1932 {
1933 int offset;
1934 size_t size;
1935
1936 switch (note->descsz)
1937 {
1938 default:
1939 return FALSE;
1940
1941 case 148: /* Linux/ARM 32-bit. */
1942 /* pr_cursig */
1943 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1944
1945 /* pr_pid */
1946 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
1947
1948 /* pr_reg */
1949 offset = 72;
1950 size = 72;
1951
1952 break;
1953 }
1954
1955 /* Make a ".reg/999" section. */
1956 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1957 size, note->descpos + offset);
1958 }
1959
1960 static bfd_boolean
1961 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1962 {
1963 switch (note->descsz)
1964 {
1965 default:
1966 return FALSE;
1967
1968 case 124: /* Linux/ARM elf_prpsinfo. */
1969 elf_tdata (abfd)->core_program
1970 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1971 elf_tdata (abfd)->core_command
1972 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1973 }
1974
1975 /* Note that for some reason, a spurious space is tacked
1976 onto the end of the args in some (at least one anyway)
1977 implementations, so strip it off if it exists. */
1978 {
1979 char *command = elf_tdata (abfd)->core_command;
1980 int n = strlen (command);
1981
1982 if (0 < n && command[n - 1] == ' ')
1983 command[n - 1] = '\0';
1984 }
1985
1986 return TRUE;
1987 }
1988
1989 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1990 #define TARGET_LITTLE_NAME "elf32-littlearm"
1991 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1992 #define TARGET_BIG_NAME "elf32-bigarm"
1993
1994 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1995 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1996
1997 typedef unsigned long int insn32;
1998 typedef unsigned short int insn16;
1999
2000 /* In lieu of proper flags, assume all EABIv4 or later objects are
2001 interworkable. */
2002 #define INTERWORK_FLAG(abfd) \
2003 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2004 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2005 || ((abfd)->flags & BFD_LINKER_CREATED))
2006
2007 /* The linker script knows the section names for placement.
2008 The entry_names are used to do simple name mangling on the stubs.
2009 Given a function name, and its type, the stub can be found. The
2010 name can be changed. The only requirement is the %s be present. */
2011 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2012 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2013
2014 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2015 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2016
2017 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2018 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2019
2020 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2021 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2022
2023 #define STUB_ENTRY_NAME "__%s_veneer"
2024
2025 /* The name of the dynamic interpreter. This is put in the .interp
2026 section. */
2027 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2028
2029 static const unsigned long tls_trampoline [] =
2030 {
2031 0xe08e0000, /* add r0, lr, r0 */
2032 0xe5901004, /* ldr r1, [r0,#4] */
2033 0xe12fff11, /* bx r1 */
2034 };
2035
2036 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2037 {
2038 0xe52d2004, /* push {r2} */
2039 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2040 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2041 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2042 0xe081100f, /* 2: add r1, pc */
2043 0xe12fff12, /* bx r2 */
2044 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2045 + dl_tlsdesc_lazy_resolver(GOT) */
2046 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2047 };
2048
2049 #ifdef FOUR_WORD_PLT
2050
2051 /* The first entry in a procedure linkage table looks like
2052 this. It is set up so that any shared library function that is
2053 called before the relocation has been set up calls the dynamic
2054 linker first. */
2055 static const bfd_vma elf32_arm_plt0_entry [] =
2056 {
2057 0xe52de004, /* str lr, [sp, #-4]! */
2058 0xe59fe010, /* ldr lr, [pc, #16] */
2059 0xe08fe00e, /* add lr, pc, lr */
2060 0xe5bef008, /* ldr pc, [lr, #8]! */
2061 };
2062
2063 /* Subsequent entries in a procedure linkage table look like
2064 this. */
2065 static const bfd_vma elf32_arm_plt_entry [] =
2066 {
2067 0xe28fc600, /* add ip, pc, #NN */
2068 0xe28cca00, /* add ip, ip, #NN */
2069 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2070 0x00000000, /* unused */
2071 };
2072
2073 #else
2074
2075 /* The first entry in a procedure linkage table looks like
2076 this. It is set up so that any shared library function that is
2077 called before the relocation has been set up calls the dynamic
2078 linker first. */
2079 static const bfd_vma elf32_arm_plt0_entry [] =
2080 {
2081 0xe52de004, /* str lr, [sp, #-4]! */
2082 0xe59fe004, /* ldr lr, [pc, #4] */
2083 0xe08fe00e, /* add lr, pc, lr */
2084 0xe5bef008, /* ldr pc, [lr, #8]! */
2085 0x00000000, /* &GOT[0] - . */
2086 };
2087
2088 /* Subsequent entries in a procedure linkage table look like
2089 this. */
2090 static const bfd_vma elf32_arm_plt_entry [] =
2091 {
2092 0xe28fc600, /* add ip, pc, #0xNN00000 */
2093 0xe28cca00, /* add ip, ip, #0xNN000 */
2094 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2095 };
2096
2097 #endif
2098
2099 /* The format of the first entry in the procedure linkage table
2100 for a VxWorks executable. */
2101 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2102 {
2103 0xe52dc008, /* str ip,[sp,#-8]! */
2104 0xe59fc000, /* ldr ip,[pc] */
2105 0xe59cf008, /* ldr pc,[ip,#8] */
2106 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2107 };
2108
2109 /* The format of subsequent entries in a VxWorks executable. */
2110 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2111 {
2112 0xe59fc000, /* ldr ip,[pc] */
2113 0xe59cf000, /* ldr pc,[ip] */
2114 0x00000000, /* .long @got */
2115 0xe59fc000, /* ldr ip,[pc] */
2116 0xea000000, /* b _PLT */
2117 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2118 };
2119
2120 /* The format of entries in a VxWorks shared library. */
2121 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2122 {
2123 0xe59fc000, /* ldr ip,[pc] */
2124 0xe79cf009, /* ldr pc,[ip,r9] */
2125 0x00000000, /* .long @got */
2126 0xe59fc000, /* ldr ip,[pc] */
2127 0xe599f008, /* ldr pc,[r9,#8] */
2128 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2129 };
2130
2131 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2132 #define PLT_THUMB_STUB_SIZE 4
2133 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2134 {
2135 0x4778, /* bx pc */
2136 0x46c0 /* nop */
2137 };
2138
2139 /* The entries in a PLT when using a DLL-based target with multiple
2140 address spaces. */
2141 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2142 {
2143 0xe51ff004, /* ldr pc, [pc, #-4] */
2144 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2145 };
2146
2147 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2148 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2149 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2150 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2151 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2152 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2153
2154 enum stub_insn_type
2155 {
2156 THUMB16_TYPE = 1,
2157 THUMB32_TYPE,
2158 ARM_TYPE,
2159 DATA_TYPE
2160 };
2161
2162 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2163 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2164 is inserted in arm_build_one_stub(). */
2165 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2166 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2167 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2168 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2169 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2170 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2171
2172 typedef struct
2173 {
2174 bfd_vma data;
2175 enum stub_insn_type type;
2176 unsigned int r_type;
2177 int reloc_addend;
2178 } insn_sequence;
2179
2180 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2181 to reach the stub if necessary. */
2182 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2183 {
2184 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2185 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2186 };
2187
2188 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2189 available. */
2190 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2191 {
2192 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2193 ARM_INSN(0xe12fff1c), /* bx ip */
2194 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2195 };
2196
2197 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2198 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2199 {
2200 THUMB16_INSN(0xb401), /* push {r0} */
2201 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2202 THUMB16_INSN(0x4684), /* mov ip, r0 */
2203 THUMB16_INSN(0xbc01), /* pop {r0} */
2204 THUMB16_INSN(0x4760), /* bx ip */
2205 THUMB16_INSN(0xbf00), /* nop */
2206 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2207 };
2208
2209 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2210 allowed. */
2211 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2212 {
2213 THUMB16_INSN(0x4778), /* bx pc */
2214 THUMB16_INSN(0x46c0), /* nop */
2215 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2216 ARM_INSN(0xe12fff1c), /* bx ip */
2217 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2218 };
2219
2220 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2221 available. */
2222 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2223 {
2224 THUMB16_INSN(0x4778), /* bx pc */
2225 THUMB16_INSN(0x46c0), /* nop */
2226 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2227 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2228 };
2229
2230 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2231 one, when the destination is close enough. */
2232 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2233 {
2234 THUMB16_INSN(0x4778), /* bx pc */
2235 THUMB16_INSN(0x46c0), /* nop */
2236 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2237 };
2238
2239 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2240 blx to reach the stub if necessary. */
2241 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2242 {
2243 ARM_INSN(0xe59fc000), /* ldr ip, [pc] */
2244 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2245 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2246 };
2247
2248 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2249 blx to reach the stub if necessary. We can not add into pc;
2250 it is not guaranteed to mode switch (different in ARMv6 and
2251 ARMv7). */
2252 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2253 {
2254 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2255 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2256 ARM_INSN(0xe12fff1c), /* bx ip */
2257 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2258 };
2259
2260 /* V4T ARM -> ARM long branch stub, PIC. */
2261 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2262 {
2263 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2264 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2265 ARM_INSN(0xe12fff1c), /* bx ip */
2266 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2267 };
2268
2269 /* V4T Thumb -> ARM long branch stub, PIC. */
2270 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2271 {
2272 THUMB16_INSN(0x4778), /* bx pc */
2273 THUMB16_INSN(0x46c0), /* nop */
2274 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2275 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2276 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2277 };
2278
2279 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2280 architectures. */
2281 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2282 {
2283 THUMB16_INSN(0xb401), /* push {r0} */
2284 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2285 THUMB16_INSN(0x46fc), /* mov ip, pc */
2286 THUMB16_INSN(0x4484), /* add ip, r0 */
2287 THUMB16_INSN(0xbc01), /* pop {r0} */
2288 THUMB16_INSN(0x4760), /* bx ip */
2289 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2290 };
2291
2292 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2293 allowed. */
2294 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2295 {
2296 THUMB16_INSN(0x4778), /* bx pc */
2297 THUMB16_INSN(0x46c0), /* nop */
2298 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2299 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2300 ARM_INSN(0xe12fff1c), /* bx ip */
2301 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2302 };
2303
2304 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2305 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2306 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2307 {
2308 ARM_INSN(0xe59f1000), /* ldr r1, [pc] */
2309 ARM_INSN(0xe08ff001), /* add pc, pc, r1 */
2310 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2311 };
2312
2313 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2314 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2315 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2316 {
2317 THUMB16_INSN(0x4778), /* bx pc */
2318 THUMB16_INSN(0x46c0), /* nop */
2319 ARM_INSN(0xe59f1000), /* ldr r1, [pc, #0] */
2320 ARM_INSN(0xe081f00f), /* add pc, r1, pc */
2321 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2322 };
2323
2324 /* Cortex-A8 erratum-workaround stubs. */
2325
2326 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2327 can't use a conditional branch to reach this stub). */
2328
2329 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2330 {
2331 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2332 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2333 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2334 };
2335
2336 /* Stub used for b.w and bl.w instructions. */
2337
2338 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2339 {
2340 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2341 };
2342
2343 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2344 {
2345 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2346 };
2347
2348 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2349 instruction (which switches to ARM mode) to point to this stub. Jump to the
2350 real destination using an ARM-mode branch. */
2351
2352 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2353 {
2354 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2355 };
2356
2357 /* Section name for stubs is the associated section name plus this
2358 string. */
2359 #define STUB_SUFFIX ".stub"
2360
2361 /* One entry per long/short branch stub defined above. */
2362 #define DEF_STUBS \
2363 DEF_STUB(long_branch_any_any) \
2364 DEF_STUB(long_branch_v4t_arm_thumb) \
2365 DEF_STUB(long_branch_thumb_only) \
2366 DEF_STUB(long_branch_v4t_thumb_thumb) \
2367 DEF_STUB(long_branch_v4t_thumb_arm) \
2368 DEF_STUB(short_branch_v4t_thumb_arm) \
2369 DEF_STUB(long_branch_any_arm_pic) \
2370 DEF_STUB(long_branch_any_thumb_pic) \
2371 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2372 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2373 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2374 DEF_STUB(long_branch_thumb_only_pic) \
2375 DEF_STUB(long_branch_any_tls_pic) \
2376 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2377 DEF_STUB(a8_veneer_b_cond) \
2378 DEF_STUB(a8_veneer_b) \
2379 DEF_STUB(a8_veneer_bl) \
2380 DEF_STUB(a8_veneer_blx)
2381
2382 #define DEF_STUB(x) arm_stub_##x,
2383 enum elf32_arm_stub_type {
2384 arm_stub_none,
2385 DEF_STUBS
2386 /* Note the first a8_veneer type */
2387 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2388 };
2389 #undef DEF_STUB
2390
2391 typedef struct
2392 {
2393 const insn_sequence* template_sequence;
2394 int template_size;
2395 } stub_def;
2396
2397 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2398 static const stub_def stub_definitions[] = {
2399 {NULL, 0},
2400 DEF_STUBS
2401 };
2402
2403 struct elf32_arm_stub_hash_entry
2404 {
2405 /* Base hash table entry structure. */
2406 struct bfd_hash_entry root;
2407
2408 /* The stub section. */
2409 asection *stub_sec;
2410
2411 /* Offset within stub_sec of the beginning of this stub. */
2412 bfd_vma stub_offset;
2413
2414 /* Given the symbol's value and its section we can determine its final
2415 value when building the stubs (so the stub knows where to jump). */
2416 bfd_vma target_value;
2417 asection *target_section;
2418
2419 /* Offset to apply to relocation referencing target_value. */
2420 bfd_vma target_addend;
2421
2422 /* The instruction which caused this stub to be generated (only valid for
2423 Cortex-A8 erratum workaround stubs at present). */
2424 unsigned long orig_insn;
2425
2426 /* The stub type. */
2427 enum elf32_arm_stub_type stub_type;
2428 /* Its encoding size in bytes. */
2429 int stub_size;
2430 /* Its template. */
2431 const insn_sequence *stub_template;
2432 /* The size of the template (number of entries). */
2433 int stub_template_size;
2434
2435 /* The symbol table entry, if any, that this was derived from. */
2436 struct elf32_arm_link_hash_entry *h;
2437
2438 /* Type of branch. */
2439 enum arm_st_branch_type branch_type;
2440
2441 /* Where this stub is being called from, or, in the case of combined
2442 stub sections, the first input section in the group. */
2443 asection *id_sec;
2444
2445 /* The name for the local symbol at the start of this stub. The
2446 stub name in the hash table has to be unique; this does not, so
2447 it can be friendlier. */
2448 char *output_name;
2449 };
2450
2451 /* Used to build a map of a section. This is required for mixed-endian
2452 code/data. */
2453
2454 typedef struct elf32_elf_section_map
2455 {
2456 bfd_vma vma;
2457 char type;
2458 }
2459 elf32_arm_section_map;
2460
2461 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2462
2463 typedef enum
2464 {
2465 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2466 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2467 VFP11_ERRATUM_ARM_VENEER,
2468 VFP11_ERRATUM_THUMB_VENEER
2469 }
2470 elf32_vfp11_erratum_type;
2471
2472 typedef struct elf32_vfp11_erratum_list
2473 {
2474 struct elf32_vfp11_erratum_list *next;
2475 bfd_vma vma;
2476 union
2477 {
2478 struct
2479 {
2480 struct elf32_vfp11_erratum_list *veneer;
2481 unsigned int vfp_insn;
2482 } b;
2483 struct
2484 {
2485 struct elf32_vfp11_erratum_list *branch;
2486 unsigned int id;
2487 } v;
2488 } u;
2489 elf32_vfp11_erratum_type type;
2490 }
2491 elf32_vfp11_erratum_list;
2492
2493 typedef enum
2494 {
2495 DELETE_EXIDX_ENTRY,
2496 INSERT_EXIDX_CANTUNWIND_AT_END
2497 }
2498 arm_unwind_edit_type;
2499
2500 /* A (sorted) list of edits to apply to an unwind table. */
2501 typedef struct arm_unwind_table_edit
2502 {
2503 arm_unwind_edit_type type;
2504 /* Note: we sometimes want to insert an unwind entry corresponding to a
2505 section different from the one we're currently writing out, so record the
2506 (text) section this edit relates to here. */
2507 asection *linked_section;
2508 unsigned int index;
2509 struct arm_unwind_table_edit *next;
2510 }
2511 arm_unwind_table_edit;
2512
2513 typedef struct _arm_elf_section_data
2514 {
2515 /* Information about mapping symbols. */
2516 struct bfd_elf_section_data elf;
2517 unsigned int mapcount;
2518 unsigned int mapsize;
2519 elf32_arm_section_map *map;
2520 /* Information about CPU errata. */
2521 unsigned int erratumcount;
2522 elf32_vfp11_erratum_list *erratumlist;
2523 /* Information about unwind tables. */
2524 union
2525 {
2526 /* Unwind info attached to a text section. */
2527 struct
2528 {
2529 asection *arm_exidx_sec;
2530 } text;
2531
2532 /* Unwind info attached to an .ARM.exidx section. */
2533 struct
2534 {
2535 arm_unwind_table_edit *unwind_edit_list;
2536 arm_unwind_table_edit *unwind_edit_tail;
2537 } exidx;
2538 } u;
2539 }
2540 _arm_elf_section_data;
2541
2542 #define elf32_arm_section_data(sec) \
2543 ((_arm_elf_section_data *) elf_section_data (sec))
2544
2545 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2546 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2547 so may be created multiple times: we use an array of these entries whilst
2548 relaxing which we can refresh easily, then create stubs for each potentially
2549 erratum-triggering instruction once we've settled on a solution. */
2550
2551 struct a8_erratum_fix {
2552 bfd *input_bfd;
2553 asection *section;
2554 bfd_vma offset;
2555 bfd_vma addend;
2556 unsigned long orig_insn;
2557 char *stub_name;
2558 enum elf32_arm_stub_type stub_type;
2559 enum arm_st_branch_type branch_type;
2560 };
2561
2562 /* A table of relocs applied to branches which might trigger Cortex-A8
2563 erratum. */
2564
2565 struct a8_erratum_reloc {
2566 bfd_vma from;
2567 bfd_vma destination;
2568 struct elf32_arm_link_hash_entry *hash;
2569 const char *sym_name;
2570 unsigned int r_type;
2571 enum arm_st_branch_type branch_type;
2572 bfd_boolean non_a8_stub;
2573 };
2574
2575 /* The size of the thread control block. */
2576 #define TCB_SIZE 8
2577
2578 /* ARM-specific information about a PLT entry, over and above the usual
2579 gotplt_union. */
2580 struct arm_plt_info {
2581 /* We reference count Thumb references to a PLT entry separately,
2582 so that we can emit the Thumb trampoline only if needed. */
2583 bfd_signed_vma thumb_refcount;
2584
2585 /* Some references from Thumb code may be eliminated by BL->BLX
2586 conversion, so record them separately. */
2587 bfd_signed_vma maybe_thumb_refcount;
2588
2589 /* How many of the recorded PLT accesses were from non-call relocations.
2590 This information is useful when deciding whether anything takes the
2591 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2592 non-call references to the function should resolve directly to the
2593 real runtime target. */
2594 unsigned int noncall_refcount;
2595
2596 /* Since PLT entries have variable size if the Thumb prologue is
2597 used, we need to record the index into .got.plt instead of
2598 recomputing it from the PLT offset. */
2599 bfd_signed_vma got_offset;
2600 };
2601
2602 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2603 struct arm_local_iplt_info {
2604 /* The information that is usually found in the generic ELF part of
2605 the hash table entry. */
2606 union gotplt_union root;
2607
2608 /* The information that is usually found in the ARM-specific part of
2609 the hash table entry. */
2610 struct arm_plt_info arm;
2611
2612 /* A list of all potential dynamic relocations against this symbol. */
2613 struct elf_dyn_relocs *dyn_relocs;
2614 };
2615
2616 struct elf_arm_obj_tdata
2617 {
2618 struct elf_obj_tdata root;
2619
2620 /* tls_type for each local got entry. */
2621 char *local_got_tls_type;
2622
2623 /* GOTPLT entries for TLS descriptors. */
2624 bfd_vma *local_tlsdesc_gotent;
2625
2626 /* Information for local symbols that need entries in .iplt. */
2627 struct arm_local_iplt_info **local_iplt;
2628
2629 /* Zero to warn when linking objects with incompatible enum sizes. */
2630 int no_enum_size_warning;
2631
2632 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2633 int no_wchar_size_warning;
2634 };
2635
2636 #define elf_arm_tdata(bfd) \
2637 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2638
2639 #define elf32_arm_local_got_tls_type(bfd) \
2640 (elf_arm_tdata (bfd)->local_got_tls_type)
2641
2642 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2643 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2644
2645 #define elf32_arm_local_iplt(bfd) \
2646 (elf_arm_tdata (bfd)->local_iplt)
2647
2648 #define is_arm_elf(bfd) \
2649 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2650 && elf_tdata (bfd) != NULL \
2651 && elf_object_id (bfd) == ARM_ELF_DATA)
2652
2653 static bfd_boolean
2654 elf32_arm_mkobject (bfd *abfd)
2655 {
2656 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2657 ARM_ELF_DATA);
2658 }
2659
2660 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2661
2662 /* Arm ELF linker hash entry. */
2663 struct elf32_arm_link_hash_entry
2664 {
2665 struct elf_link_hash_entry root;
2666
2667 /* Track dynamic relocs copied for this symbol. */
2668 struct elf_dyn_relocs *dyn_relocs;
2669
2670 /* ARM-specific PLT information. */
2671 struct arm_plt_info plt;
2672
2673 #define GOT_UNKNOWN 0
2674 #define GOT_NORMAL 1
2675 #define GOT_TLS_GD 2
2676 #define GOT_TLS_IE 4
2677 #define GOT_TLS_GDESC 8
2678 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2679 unsigned int tls_type : 8;
2680
2681 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2682 unsigned int is_iplt : 1;
2683
2684 unsigned int unused : 23;
2685
2686 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2687 starting at the end of the jump table. */
2688 bfd_vma tlsdesc_got;
2689
2690 /* The symbol marking the real symbol location for exported thumb
2691 symbols with Arm stubs. */
2692 struct elf_link_hash_entry *export_glue;
2693
2694 /* A pointer to the most recently used stub hash entry against this
2695 symbol. */
2696 struct elf32_arm_stub_hash_entry *stub_cache;
2697 };
2698
2699 /* Traverse an arm ELF linker hash table. */
2700 #define elf32_arm_link_hash_traverse(table, func, info) \
2701 (elf_link_hash_traverse \
2702 (&(table)->root, \
2703 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2704 (info)))
2705
2706 /* Get the ARM elf linker hash table from a link_info structure. */
2707 #define elf32_arm_hash_table(info) \
2708 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2709 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2710
2711 #define arm_stub_hash_lookup(table, string, create, copy) \
2712 ((struct elf32_arm_stub_hash_entry *) \
2713 bfd_hash_lookup ((table), (string), (create), (copy)))
2714
2715 /* Array to keep track of which stub sections have been created, and
2716 information on stub grouping. */
2717 struct map_stub
2718 {
2719 /* This is the section to which stubs in the group will be
2720 attached. */
2721 asection *link_sec;
2722 /* The stub section. */
2723 asection *stub_sec;
2724 };
2725
2726 #define elf32_arm_compute_jump_table_size(htab) \
2727 ((htab)->next_tls_desc_index * 4)
2728
2729 /* ARM ELF linker hash table. */
2730 struct elf32_arm_link_hash_table
2731 {
2732 /* The main hash table. */
2733 struct elf_link_hash_table root;
2734
2735 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2736 bfd_size_type thumb_glue_size;
2737
2738 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2739 bfd_size_type arm_glue_size;
2740
2741 /* The size in bytes of section containing the ARMv4 BX veneers. */
2742 bfd_size_type bx_glue_size;
2743
2744 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2745 veneer has been populated. */
2746 bfd_vma bx_glue_offset[15];
2747
2748 /* The size in bytes of the section containing glue for VFP11 erratum
2749 veneers. */
2750 bfd_size_type vfp11_erratum_glue_size;
2751
2752 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2753 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2754 elf32_arm_write_section(). */
2755 struct a8_erratum_fix *a8_erratum_fixes;
2756 unsigned int num_a8_erratum_fixes;
2757
2758 /* An arbitrary input BFD chosen to hold the glue sections. */
2759 bfd * bfd_of_glue_owner;
2760
2761 /* Nonzero to output a BE8 image. */
2762 int byteswap_code;
2763
2764 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2765 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2766 int target1_is_rel;
2767
2768 /* The relocation to use for R_ARM_TARGET2 relocations. */
2769 int target2_reloc;
2770
2771 /* 0 = Ignore R_ARM_V4BX.
2772 1 = Convert BX to MOV PC.
2773 2 = Generate v4 interworing stubs. */
2774 int fix_v4bx;
2775
2776 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2777 int fix_cortex_a8;
2778
2779 /* Whether we should fix the ARM1176 BLX immediate issue. */
2780 int fix_arm1176;
2781
2782 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2783 int use_blx;
2784
2785 /* What sort of code sequences we should look for which may trigger the
2786 VFP11 denorm erratum. */
2787 bfd_arm_vfp11_fix vfp11_fix;
2788
2789 /* Global counter for the number of fixes we have emitted. */
2790 int num_vfp11_fixes;
2791
2792 /* Nonzero to force PIC branch veneers. */
2793 int pic_veneer;
2794
2795 /* The number of bytes in the initial entry in the PLT. */
2796 bfd_size_type plt_header_size;
2797
2798 /* The number of bytes in the subsequent PLT etries. */
2799 bfd_size_type plt_entry_size;
2800
2801 /* True if the target system is VxWorks. */
2802 int vxworks_p;
2803
2804 /* True if the target system is Symbian OS. */
2805 int symbian_p;
2806
2807 /* True if the target uses REL relocations. */
2808 int use_rel;
2809
2810 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
2811 bfd_vma next_tls_desc_index;
2812
2813 /* How many R_ARM_TLS_DESC relocations were generated so far. */
2814 bfd_vma num_tls_desc;
2815
2816 /* Short-cuts to get to dynamic linker sections. */
2817 asection *sdynbss;
2818 asection *srelbss;
2819
2820 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2821 asection *srelplt2;
2822
2823 /* The offset into splt of the PLT entry for the TLS descriptor
2824 resolver. Special values are 0, if not necessary (or not found
2825 to be necessary yet), and -1 if needed but not determined
2826 yet. */
2827 bfd_vma dt_tlsdesc_plt;
2828
2829 /* The offset into sgot of the GOT entry used by the PLT entry
2830 above. */
2831 bfd_vma dt_tlsdesc_got;
2832
2833 /* Offset in .plt section of tls_arm_trampoline. */
2834 bfd_vma tls_trampoline;
2835
2836 /* Data for R_ARM_TLS_LDM32 relocations. */
2837 union
2838 {
2839 bfd_signed_vma refcount;
2840 bfd_vma offset;
2841 } tls_ldm_got;
2842
2843 /* Small local sym cache. */
2844 struct sym_cache sym_cache;
2845
2846 /* For convenience in allocate_dynrelocs. */
2847 bfd * obfd;
2848
2849 /* The amount of space used by the reserved portion of the sgotplt
2850 section, plus whatever space is used by the jump slots. */
2851 bfd_vma sgotplt_jump_table_size;
2852
2853 /* The stub hash table. */
2854 struct bfd_hash_table stub_hash_table;
2855
2856 /* Linker stub bfd. */
2857 bfd *stub_bfd;
2858
2859 /* Linker call-backs. */
2860 asection * (*add_stub_section) (const char *, asection *);
2861 void (*layout_sections_again) (void);
2862
2863 /* Array to keep track of which stub sections have been created, and
2864 information on stub grouping. */
2865 struct map_stub *stub_group;
2866
2867 /* Number of elements in stub_group. */
2868 int top_id;
2869
2870 /* Assorted information used by elf32_arm_size_stubs. */
2871 unsigned int bfd_count;
2872 int top_index;
2873 asection **input_list;
2874 };
2875
2876 /* Create an entry in an ARM ELF linker hash table. */
2877
2878 static struct bfd_hash_entry *
2879 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2880 struct bfd_hash_table * table,
2881 const char * string)
2882 {
2883 struct elf32_arm_link_hash_entry * ret =
2884 (struct elf32_arm_link_hash_entry *) entry;
2885
2886 /* Allocate the structure if it has not already been allocated by a
2887 subclass. */
2888 if (ret == NULL)
2889 ret = (struct elf32_arm_link_hash_entry *)
2890 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2891 if (ret == NULL)
2892 return (struct bfd_hash_entry *) ret;
2893
2894 /* Call the allocation method of the superclass. */
2895 ret = ((struct elf32_arm_link_hash_entry *)
2896 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2897 table, string));
2898 if (ret != NULL)
2899 {
2900 ret->dyn_relocs = NULL;
2901 ret->tls_type = GOT_UNKNOWN;
2902 ret->tlsdesc_got = (bfd_vma) -1;
2903 ret->plt.thumb_refcount = 0;
2904 ret->plt.maybe_thumb_refcount = 0;
2905 ret->plt.noncall_refcount = 0;
2906 ret->plt.got_offset = -1;
2907 ret->is_iplt = FALSE;
2908 ret->export_glue = NULL;
2909
2910 ret->stub_cache = NULL;
2911 }
2912
2913 return (struct bfd_hash_entry *) ret;
2914 }
2915
2916 /* Ensure that we have allocated bookkeeping structures for ABFD's local
2917 symbols. */
2918
2919 static bfd_boolean
2920 elf32_arm_allocate_local_sym_info (bfd *abfd)
2921 {
2922 if (elf_local_got_refcounts (abfd) == NULL)
2923 {
2924 bfd_size_type num_syms;
2925 bfd_size_type size;
2926 char *data;
2927
2928 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
2929 size = num_syms * (sizeof (bfd_signed_vma)
2930 + sizeof (struct arm_local_iplt_info *)
2931 + sizeof (bfd_vma)
2932 + sizeof (char));
2933 data = bfd_zalloc (abfd, size);
2934 if (data == NULL)
2935 return FALSE;
2936
2937 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
2938 data += num_syms * sizeof (bfd_signed_vma);
2939
2940 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
2941 data += num_syms * sizeof (struct arm_local_iplt_info *);
2942
2943 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
2944 data += num_syms * sizeof (bfd_vma);
2945
2946 elf32_arm_local_got_tls_type (abfd) = data;
2947 }
2948 return TRUE;
2949 }
2950
2951 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
2952 to input bfd ABFD. Create the information if it doesn't already exist.
2953 Return null if an allocation fails. */
2954
2955 static struct arm_local_iplt_info *
2956 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
2957 {
2958 struct arm_local_iplt_info **ptr;
2959
2960 if (!elf32_arm_allocate_local_sym_info (abfd))
2961 return NULL;
2962
2963 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
2964 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
2965 if (*ptr == NULL)
2966 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
2967 return *ptr;
2968 }
2969
2970 /* Try to obtain PLT information for the symbol with index R_SYMNDX
2971 in ABFD's symbol table. If the symbol is global, H points to its
2972 hash table entry, otherwise H is null.
2973
2974 Return true if the symbol does have PLT information. When returning
2975 true, point *ROOT_PLT at the target-independent reference count/offset
2976 union and *ARM_PLT at the ARM-specific information. */
2977
2978 static bfd_boolean
2979 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
2980 unsigned long r_symndx, union gotplt_union **root_plt,
2981 struct arm_plt_info **arm_plt)
2982 {
2983 struct arm_local_iplt_info *local_iplt;
2984
2985 if (h != NULL)
2986 {
2987 *root_plt = &h->root.plt;
2988 *arm_plt = &h->plt;
2989 return TRUE;
2990 }
2991
2992 if (elf32_arm_local_iplt (abfd) == NULL)
2993 return FALSE;
2994
2995 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
2996 if (local_iplt == NULL)
2997 return FALSE;
2998
2999 *root_plt = &local_iplt->root;
3000 *arm_plt = &local_iplt->arm;
3001 return TRUE;
3002 }
3003
3004 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3005 before it. */
3006
3007 static bfd_boolean
3008 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3009 struct arm_plt_info *arm_plt)
3010 {
3011 struct elf32_arm_link_hash_table *htab;
3012
3013 htab = elf32_arm_hash_table (info);
3014 return (arm_plt->thumb_refcount != 0
3015 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3016 }
3017
3018 /* Return a pointer to the head of the dynamic reloc list that should
3019 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3020 ABFD's symbol table. Return null if an error occurs. */
3021
3022 static struct elf_dyn_relocs **
3023 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3024 Elf_Internal_Sym *isym)
3025 {
3026 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3027 {
3028 struct arm_local_iplt_info *local_iplt;
3029
3030 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3031 if (local_iplt == NULL)
3032 return NULL;
3033 return &local_iplt->dyn_relocs;
3034 }
3035 else
3036 {
3037 /* Track dynamic relocs needed for local syms too.
3038 We really need local syms available to do this
3039 easily. Oh well. */
3040 asection *s;
3041 void *vpp;
3042
3043 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3044 if (s == NULL)
3045 abort ();
3046
3047 vpp = &elf_section_data (s)->local_dynrel;
3048 return (struct elf_dyn_relocs **) vpp;
3049 }
3050 }
3051
3052 /* Initialize an entry in the stub hash table. */
3053
3054 static struct bfd_hash_entry *
3055 stub_hash_newfunc (struct bfd_hash_entry *entry,
3056 struct bfd_hash_table *table,
3057 const char *string)
3058 {
3059 /* Allocate the structure if it has not already been allocated by a
3060 subclass. */
3061 if (entry == NULL)
3062 {
3063 entry = (struct bfd_hash_entry *)
3064 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3065 if (entry == NULL)
3066 return entry;
3067 }
3068
3069 /* Call the allocation method of the superclass. */
3070 entry = bfd_hash_newfunc (entry, table, string);
3071 if (entry != NULL)
3072 {
3073 struct elf32_arm_stub_hash_entry *eh;
3074
3075 /* Initialize the local fields. */
3076 eh = (struct elf32_arm_stub_hash_entry *) entry;
3077 eh->stub_sec = NULL;
3078 eh->stub_offset = 0;
3079 eh->target_value = 0;
3080 eh->target_section = NULL;
3081 eh->target_addend = 0;
3082 eh->orig_insn = 0;
3083 eh->stub_type = arm_stub_none;
3084 eh->stub_size = 0;
3085 eh->stub_template = NULL;
3086 eh->stub_template_size = 0;
3087 eh->h = NULL;
3088 eh->id_sec = NULL;
3089 eh->output_name = NULL;
3090 }
3091
3092 return entry;
3093 }
3094
3095 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3096 shortcuts to them in our hash table. */
3097
3098 static bfd_boolean
3099 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3100 {
3101 struct elf32_arm_link_hash_table *htab;
3102
3103 htab = elf32_arm_hash_table (info);
3104 if (htab == NULL)
3105 return FALSE;
3106
3107 /* BPABI objects never have a GOT, or associated sections. */
3108 if (htab->symbian_p)
3109 return TRUE;
3110
3111 if (! _bfd_elf_create_got_section (dynobj, info))
3112 return FALSE;
3113
3114 return TRUE;
3115 }
3116
3117 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3118
3119 static bfd_boolean
3120 create_ifunc_sections (struct bfd_link_info *info)
3121 {
3122 struct elf32_arm_link_hash_table *htab;
3123 const struct elf_backend_data *bed;
3124 bfd *dynobj;
3125 asection *s;
3126 flagword flags;
3127
3128 htab = elf32_arm_hash_table (info);
3129 dynobj = htab->root.dynobj;
3130 bed = get_elf_backend_data (dynobj);
3131 flags = bed->dynamic_sec_flags;
3132
3133 if (htab->root.iplt == NULL)
3134 {
3135 s = bfd_make_section_with_flags (dynobj, ".iplt",
3136 flags | SEC_READONLY | SEC_CODE);
3137 if (s == NULL
3138 || !bfd_set_section_alignment (abfd, s, bed->plt_alignment))
3139 return FALSE;
3140 htab->root.iplt = s;
3141 }
3142
3143 if (htab->root.irelplt == NULL)
3144 {
3145 s = bfd_make_section_with_flags (dynobj, RELOC_SECTION (htab, ".iplt"),
3146 flags | SEC_READONLY);
3147 if (s == NULL
3148 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
3149 return FALSE;
3150 htab->root.irelplt = s;
3151 }
3152
3153 if (htab->root.igotplt == NULL)
3154 {
3155 s = bfd_make_section_with_flags (dynobj, ".igot.plt", flags);
3156 if (s == NULL
3157 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3158 return FALSE;
3159 htab->root.igotplt = s;
3160 }
3161 return TRUE;
3162 }
3163
3164 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3165 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3166 hash table. */
3167
3168 static bfd_boolean
3169 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3170 {
3171 struct elf32_arm_link_hash_table *htab;
3172
3173 htab = elf32_arm_hash_table (info);
3174 if (htab == NULL)
3175 return FALSE;
3176
3177 if (!htab->root.sgot && !create_got_section (dynobj, info))
3178 return FALSE;
3179
3180 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3181 return FALSE;
3182
3183 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3184 if (!info->shared)
3185 htab->srelbss = bfd_get_section_by_name (dynobj,
3186 RELOC_SECTION (htab, ".bss"));
3187
3188 if (htab->vxworks_p)
3189 {
3190 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3191 return FALSE;
3192
3193 if (info->shared)
3194 {
3195 htab->plt_header_size = 0;
3196 htab->plt_entry_size
3197 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3198 }
3199 else
3200 {
3201 htab->plt_header_size
3202 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3203 htab->plt_entry_size
3204 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3205 }
3206 }
3207
3208 if (!htab->root.splt
3209 || !htab->root.srelplt
3210 || !htab->sdynbss
3211 || (!info->shared && !htab->srelbss))
3212 abort ();
3213
3214 return TRUE;
3215 }
3216
3217 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3218
3219 static void
3220 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3221 struct elf_link_hash_entry *dir,
3222 struct elf_link_hash_entry *ind)
3223 {
3224 struct elf32_arm_link_hash_entry *edir, *eind;
3225
3226 edir = (struct elf32_arm_link_hash_entry *) dir;
3227 eind = (struct elf32_arm_link_hash_entry *) ind;
3228
3229 if (eind->dyn_relocs != NULL)
3230 {
3231 if (edir->dyn_relocs != NULL)
3232 {
3233 struct elf_dyn_relocs **pp;
3234 struct elf_dyn_relocs *p;
3235
3236 /* Add reloc counts against the indirect sym to the direct sym
3237 list. Merge any entries against the same section. */
3238 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3239 {
3240 struct elf_dyn_relocs *q;
3241
3242 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3243 if (q->sec == p->sec)
3244 {
3245 q->pc_count += p->pc_count;
3246 q->count += p->count;
3247 *pp = p->next;
3248 break;
3249 }
3250 if (q == NULL)
3251 pp = &p->next;
3252 }
3253 *pp = edir->dyn_relocs;
3254 }
3255
3256 edir->dyn_relocs = eind->dyn_relocs;
3257 eind->dyn_relocs = NULL;
3258 }
3259
3260 if (ind->root.type == bfd_link_hash_indirect)
3261 {
3262 /* Copy over PLT info. */
3263 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3264 eind->plt.thumb_refcount = 0;
3265 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3266 eind->plt.maybe_thumb_refcount = 0;
3267 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3268 eind->plt.noncall_refcount = 0;
3269
3270 /* We should only allocate a function to .iplt once the final
3271 symbol information is known. */
3272 BFD_ASSERT (!eind->is_iplt);
3273
3274 if (dir->got.refcount <= 0)
3275 {
3276 edir->tls_type = eind->tls_type;
3277 eind->tls_type = GOT_UNKNOWN;
3278 }
3279 }
3280
3281 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3282 }
3283
3284 /* Create an ARM elf linker hash table. */
3285
3286 static struct bfd_link_hash_table *
3287 elf32_arm_link_hash_table_create (bfd *abfd)
3288 {
3289 struct elf32_arm_link_hash_table *ret;
3290 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3291
3292 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
3293 if (ret == NULL)
3294 return NULL;
3295
3296 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3297 elf32_arm_link_hash_newfunc,
3298 sizeof (struct elf32_arm_link_hash_entry),
3299 ARM_ELF_DATA))
3300 {
3301 free (ret);
3302 return NULL;
3303 }
3304
3305 ret->sdynbss = NULL;
3306 ret->srelbss = NULL;
3307 ret->srelplt2 = NULL;
3308 ret->dt_tlsdesc_plt = 0;
3309 ret->dt_tlsdesc_got = 0;
3310 ret->tls_trampoline = 0;
3311 ret->next_tls_desc_index = 0;
3312 ret->num_tls_desc = 0;
3313 ret->thumb_glue_size = 0;
3314 ret->arm_glue_size = 0;
3315 ret->bx_glue_size = 0;
3316 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
3317 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3318 ret->vfp11_erratum_glue_size = 0;
3319 ret->num_vfp11_fixes = 0;
3320 ret->fix_cortex_a8 = 0;
3321 ret->fix_arm1176 = 0;
3322 ret->bfd_of_glue_owner = NULL;
3323 ret->byteswap_code = 0;
3324 ret->target1_is_rel = 0;
3325 ret->target2_reloc = R_ARM_NONE;
3326 #ifdef FOUR_WORD_PLT
3327 ret->plt_header_size = 16;
3328 ret->plt_entry_size = 16;
3329 #else
3330 ret->plt_header_size = 20;
3331 ret->plt_entry_size = 12;
3332 #endif
3333 ret->fix_v4bx = 0;
3334 ret->use_blx = 0;
3335 ret->vxworks_p = 0;
3336 ret->symbian_p = 0;
3337 ret->use_rel = 1;
3338 ret->sym_cache.abfd = NULL;
3339 ret->obfd = abfd;
3340 ret->tls_ldm_got.refcount = 0;
3341 ret->stub_bfd = NULL;
3342 ret->add_stub_section = NULL;
3343 ret->layout_sections_again = NULL;
3344 ret->stub_group = NULL;
3345 ret->top_id = 0;
3346 ret->bfd_count = 0;
3347 ret->top_index = 0;
3348 ret->input_list = NULL;
3349
3350 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3351 sizeof (struct elf32_arm_stub_hash_entry)))
3352 {
3353 free (ret);
3354 return NULL;
3355 }
3356
3357 return &ret->root.root;
3358 }
3359
3360 /* Free the derived linker hash table. */
3361
3362 static void
3363 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
3364 {
3365 struct elf32_arm_link_hash_table *ret
3366 = (struct elf32_arm_link_hash_table *) hash;
3367
3368 bfd_hash_table_free (&ret->stub_hash_table);
3369 _bfd_generic_link_hash_table_free (hash);
3370 }
3371
3372 /* Determine if we're dealing with a Thumb only architecture. */
3373
3374 static bfd_boolean
3375 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3376 {
3377 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3378 Tag_CPU_arch);
3379 int profile;
3380
3381 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3382 return TRUE;
3383
3384 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
3385 return FALSE;
3386
3387 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3388 Tag_CPU_arch_profile);
3389
3390 return profile == 'M';
3391 }
3392
3393 /* Determine if we're dealing with a Thumb-2 object. */
3394
3395 static bfd_boolean
3396 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3397 {
3398 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3399 Tag_CPU_arch);
3400 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3401 }
3402
3403 /* Determine what kind of NOPs are available. */
3404
3405 static bfd_boolean
3406 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3407 {
3408 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3409 Tag_CPU_arch);
3410 return arch == TAG_CPU_ARCH_V6T2
3411 || arch == TAG_CPU_ARCH_V6K
3412 || arch == TAG_CPU_ARCH_V7
3413 || arch == TAG_CPU_ARCH_V7E_M;
3414 }
3415
3416 static bfd_boolean
3417 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3418 {
3419 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3420 Tag_CPU_arch);
3421 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3422 || arch == TAG_CPU_ARCH_V7E_M);
3423 }
3424
3425 static bfd_boolean
3426 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3427 {
3428 switch (stub_type)
3429 {
3430 case arm_stub_long_branch_thumb_only:
3431 case arm_stub_long_branch_v4t_thumb_arm:
3432 case arm_stub_short_branch_v4t_thumb_arm:
3433 case arm_stub_long_branch_v4t_thumb_arm_pic:
3434 case arm_stub_long_branch_v4t_thumb_tls_pic:
3435 case arm_stub_long_branch_thumb_only_pic:
3436 return TRUE;
3437 case arm_stub_none:
3438 BFD_FAIL ();
3439 return FALSE;
3440 break;
3441 default:
3442 return FALSE;
3443 }
3444 }
3445
3446 /* Determine the type of stub needed, if any, for a call. */
3447
3448 static enum elf32_arm_stub_type
3449 arm_type_of_stub (struct bfd_link_info *info,
3450 asection *input_sec,
3451 const Elf_Internal_Rela *rel,
3452 unsigned char st_type,
3453 enum arm_st_branch_type *actual_branch_type,
3454 struct elf32_arm_link_hash_entry *hash,
3455 bfd_vma destination,
3456 asection *sym_sec,
3457 bfd *input_bfd,
3458 const char *name)
3459 {
3460 bfd_vma location;
3461 bfd_signed_vma branch_offset;
3462 unsigned int r_type;
3463 struct elf32_arm_link_hash_table * globals;
3464 int thumb2;
3465 int thumb_only;
3466 enum elf32_arm_stub_type stub_type = arm_stub_none;
3467 int use_plt = 0;
3468 enum arm_st_branch_type branch_type = *actual_branch_type;
3469 union gotplt_union *root_plt;
3470 struct arm_plt_info *arm_plt;
3471
3472 if (branch_type == ST_BRANCH_LONG)
3473 return stub_type;
3474
3475 globals = elf32_arm_hash_table (info);
3476 if (globals == NULL)
3477 return stub_type;
3478
3479 thumb_only = using_thumb_only (globals);
3480
3481 thumb2 = using_thumb2 (globals);
3482
3483 /* Determine where the call point is. */
3484 location = (input_sec->output_offset
3485 + input_sec->output_section->vma
3486 + rel->r_offset);
3487
3488 r_type = ELF32_R_TYPE (rel->r_info);
3489
3490 /* For TLS call relocs, it is the caller's responsibility to provide
3491 the address of the appropriate trampoline. */
3492 if (r_type != R_ARM_TLS_CALL
3493 && r_type != R_ARM_THM_TLS_CALL
3494 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3495 &root_plt, &arm_plt)
3496 && root_plt->offset != (bfd_vma) -1)
3497 {
3498 asection *splt;
3499
3500 if (hash == NULL || hash->is_iplt)
3501 splt = globals->root.iplt;
3502 else
3503 splt = globals->root.splt;
3504 if (splt != NULL)
3505 {
3506 use_plt = 1;
3507
3508 /* Note when dealing with PLT entries: the main PLT stub is in
3509 ARM mode, so if the branch is in Thumb mode, another
3510 Thumb->ARM stub will be inserted later just before the ARM
3511 PLT stub. We don't take this extra distance into account
3512 here, because if a long branch stub is needed, we'll add a
3513 Thumb->Arm one and branch directly to the ARM PLT entry
3514 because it avoids spreading offset corrections in several
3515 places. */
3516
3517 destination = (splt->output_section->vma
3518 + splt->output_offset
3519 + root_plt->offset);
3520 st_type = STT_FUNC;
3521 branch_type = ST_BRANCH_TO_ARM;
3522 }
3523 }
3524 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3525 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3526
3527 branch_offset = (bfd_signed_vma)(destination - location);
3528
3529 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3530 || r_type == R_ARM_THM_TLS_CALL)
3531 {
3532 /* Handle cases where:
3533 - this call goes too far (different Thumb/Thumb2 max
3534 distance)
3535 - it's a Thumb->Arm call and blx is not available, or it's a
3536 Thumb->Arm branch (not bl). A stub is needed in this case,
3537 but only if this call is not through a PLT entry. Indeed,
3538 PLT stubs handle mode switching already.
3539 */
3540 if ((!thumb2
3541 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3542 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3543 || (thumb2
3544 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3545 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3546 || (branch_type == ST_BRANCH_TO_ARM
3547 && (((r_type == R_ARM_THM_CALL
3548 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3549 || (r_type == R_ARM_THM_JUMP24))
3550 && !use_plt))
3551 {
3552 if (branch_type == ST_BRANCH_TO_THUMB)
3553 {
3554 /* Thumb to thumb. */
3555 if (!thumb_only)
3556 {
3557 stub_type = (info->shared | globals->pic_veneer)
3558 /* PIC stubs. */
3559 ? ((globals->use_blx
3560 && (r_type ==R_ARM_THM_CALL))
3561 /* V5T and above. Stub starts with ARM code, so
3562 we must be able to switch mode before
3563 reaching it, which is only possible for 'bl'
3564 (ie R_ARM_THM_CALL relocation). */
3565 ? arm_stub_long_branch_any_thumb_pic
3566 /* On V4T, use Thumb code only. */
3567 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3568
3569 /* non-PIC stubs. */
3570 : ((globals->use_blx
3571 && (r_type ==R_ARM_THM_CALL))
3572 /* V5T and above. */
3573 ? arm_stub_long_branch_any_any
3574 /* V4T. */
3575 : arm_stub_long_branch_v4t_thumb_thumb);
3576 }
3577 else
3578 {
3579 stub_type = (info->shared | globals->pic_veneer)
3580 /* PIC stub. */
3581 ? arm_stub_long_branch_thumb_only_pic
3582 /* non-PIC stub. */
3583 : arm_stub_long_branch_thumb_only;
3584 }
3585 }
3586 else
3587 {
3588 /* Thumb to arm. */
3589 if (sym_sec != NULL
3590 && sym_sec->owner != NULL
3591 && !INTERWORK_FLAG (sym_sec->owner))
3592 {
3593 (*_bfd_error_handler)
3594 (_("%B(%s): warning: interworking not enabled.\n"
3595 " first occurrence: %B: Thumb call to ARM"),
3596 sym_sec->owner, input_bfd, name);
3597 }
3598
3599 stub_type =
3600 (info->shared | globals->pic_veneer)
3601 /* PIC stubs. */
3602 ? (r_type == R_ARM_THM_TLS_CALL
3603 /* TLS PIC stubs */
3604 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3605 : arm_stub_long_branch_v4t_thumb_tls_pic)
3606 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3607 /* V5T PIC and above. */
3608 ? arm_stub_long_branch_any_arm_pic
3609 /* V4T PIC stub. */
3610 : arm_stub_long_branch_v4t_thumb_arm_pic))
3611
3612 /* non-PIC stubs. */
3613 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3614 /* V5T and above. */
3615 ? arm_stub_long_branch_any_any
3616 /* V4T. */
3617 : arm_stub_long_branch_v4t_thumb_arm);
3618
3619 /* Handle v4t short branches. */
3620 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3621 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3622 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3623 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3624 }
3625 }
3626 }
3627 else if (r_type == R_ARM_CALL
3628 || r_type == R_ARM_JUMP24
3629 || r_type == R_ARM_PLT32
3630 || r_type == R_ARM_TLS_CALL)
3631 {
3632 if (branch_type == ST_BRANCH_TO_THUMB)
3633 {
3634 /* Arm to thumb. */
3635
3636 if (sym_sec != NULL
3637 && sym_sec->owner != NULL
3638 && !INTERWORK_FLAG (sym_sec->owner))
3639 {
3640 (*_bfd_error_handler)
3641 (_("%B(%s): warning: interworking not enabled.\n"
3642 " first occurrence: %B: ARM call to Thumb"),
3643 sym_sec->owner, input_bfd, name);
3644 }
3645
3646 /* We have an extra 2-bytes reach because of
3647 the mode change (bit 24 (H) of BLX encoding). */
3648 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3649 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3650 || (r_type == R_ARM_CALL && !globals->use_blx)
3651 || (r_type == R_ARM_JUMP24)
3652 || (r_type == R_ARM_PLT32))
3653 {
3654 stub_type = (info->shared | globals->pic_veneer)
3655 /* PIC stubs. */
3656 ? ((globals->use_blx)
3657 /* V5T and above. */
3658 ? arm_stub_long_branch_any_thumb_pic
3659 /* V4T stub. */
3660 : arm_stub_long_branch_v4t_arm_thumb_pic)
3661
3662 /* non-PIC stubs. */
3663 : ((globals->use_blx)
3664 /* V5T and above. */
3665 ? arm_stub_long_branch_any_any
3666 /* V4T. */
3667 : arm_stub_long_branch_v4t_arm_thumb);
3668 }
3669 }
3670 else
3671 {
3672 /* Arm to arm. */
3673 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3674 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3675 {
3676 stub_type =
3677 (info->shared | globals->pic_veneer)
3678 /* PIC stubs. */
3679 ? (r_type == R_ARM_TLS_CALL
3680 /* TLS PIC Stub */
3681 ? arm_stub_long_branch_any_tls_pic
3682 : arm_stub_long_branch_any_arm_pic)
3683 /* non-PIC stubs. */
3684 : arm_stub_long_branch_any_any;
3685 }
3686 }
3687 }
3688
3689 /* If a stub is needed, record the actual destination type. */
3690 if (stub_type != arm_stub_none)
3691 *actual_branch_type = branch_type;
3692
3693 return stub_type;
3694 }
3695
3696 /* Build a name for an entry in the stub hash table. */
3697
3698 static char *
3699 elf32_arm_stub_name (const asection *input_section,
3700 const asection *sym_sec,
3701 const struct elf32_arm_link_hash_entry *hash,
3702 const Elf_Internal_Rela *rel,
3703 enum elf32_arm_stub_type stub_type)
3704 {
3705 char *stub_name;
3706 bfd_size_type len;
3707
3708 if (hash)
3709 {
3710 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3711 stub_name = (char *) bfd_malloc (len);
3712 if (stub_name != NULL)
3713 sprintf (stub_name, "%08x_%s+%x_%d",
3714 input_section->id & 0xffffffff,
3715 hash->root.root.root.string,
3716 (int) rel->r_addend & 0xffffffff,
3717 (int) stub_type);
3718 }
3719 else
3720 {
3721 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3722 stub_name = (char *) bfd_malloc (len);
3723 if (stub_name != NULL)
3724 sprintf (stub_name, "%08x_%x:%x+%x_%d",
3725 input_section->id & 0xffffffff,
3726 sym_sec->id & 0xffffffff,
3727 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3728 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3729 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3730 (int) rel->r_addend & 0xffffffff,
3731 (int) stub_type);
3732 }
3733
3734 return stub_name;
3735 }
3736
3737 /* Look up an entry in the stub hash. Stub entries are cached because
3738 creating the stub name takes a bit of time. */
3739
3740 static struct elf32_arm_stub_hash_entry *
3741 elf32_arm_get_stub_entry (const asection *input_section,
3742 const asection *sym_sec,
3743 struct elf_link_hash_entry *hash,
3744 const Elf_Internal_Rela *rel,
3745 struct elf32_arm_link_hash_table *htab,
3746 enum elf32_arm_stub_type stub_type)
3747 {
3748 struct elf32_arm_stub_hash_entry *stub_entry;
3749 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3750 const asection *id_sec;
3751
3752 if ((input_section->flags & SEC_CODE) == 0)
3753 return NULL;
3754
3755 /* If this input section is part of a group of sections sharing one
3756 stub section, then use the id of the first section in the group.
3757 Stub names need to include a section id, as there may well be
3758 more than one stub used to reach say, printf, and we need to
3759 distinguish between them. */
3760 id_sec = htab->stub_group[input_section->id].link_sec;
3761
3762 if (h != NULL && h->stub_cache != NULL
3763 && h->stub_cache->h == h
3764 && h->stub_cache->id_sec == id_sec
3765 && h->stub_cache->stub_type == stub_type)
3766 {
3767 stub_entry = h->stub_cache;
3768 }
3769 else
3770 {
3771 char *stub_name;
3772
3773 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3774 if (stub_name == NULL)
3775 return NULL;
3776
3777 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3778 stub_name, FALSE, FALSE);
3779 if (h != NULL)
3780 h->stub_cache = stub_entry;
3781
3782 free (stub_name);
3783 }
3784
3785 return stub_entry;
3786 }
3787
3788 /* Find or create a stub section. Returns a pointer to the stub section, and
3789 the section to which the stub section will be attached (in *LINK_SEC_P).
3790 LINK_SEC_P may be NULL. */
3791
3792 static asection *
3793 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3794 struct elf32_arm_link_hash_table *htab)
3795 {
3796 asection *link_sec;
3797 asection *stub_sec;
3798
3799 link_sec = htab->stub_group[section->id].link_sec;
3800 stub_sec = htab->stub_group[section->id].stub_sec;
3801 if (stub_sec == NULL)
3802 {
3803 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3804 if (stub_sec == NULL)
3805 {
3806 size_t namelen;
3807 bfd_size_type len;
3808 char *s_name;
3809
3810 namelen = strlen (link_sec->name);
3811 len = namelen + sizeof (STUB_SUFFIX);
3812 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
3813 if (s_name == NULL)
3814 return NULL;
3815
3816 memcpy (s_name, link_sec->name, namelen);
3817 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3818 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3819 if (stub_sec == NULL)
3820 return NULL;
3821 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3822 }
3823 htab->stub_group[section->id].stub_sec = stub_sec;
3824 }
3825
3826 if (link_sec_p)
3827 *link_sec_p = link_sec;
3828
3829 return stub_sec;
3830 }
3831
3832 /* Add a new stub entry to the stub hash. Not all fields of the new
3833 stub entry are initialised. */
3834
3835 static struct elf32_arm_stub_hash_entry *
3836 elf32_arm_add_stub (const char *stub_name,
3837 asection *section,
3838 struct elf32_arm_link_hash_table *htab)
3839 {
3840 asection *link_sec;
3841 asection *stub_sec;
3842 struct elf32_arm_stub_hash_entry *stub_entry;
3843
3844 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3845 if (stub_sec == NULL)
3846 return NULL;
3847
3848 /* Enter this entry into the linker stub hash table. */
3849 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3850 TRUE, FALSE);
3851 if (stub_entry == NULL)
3852 {
3853 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3854 section->owner,
3855 stub_name);
3856 return NULL;
3857 }
3858
3859 stub_entry->stub_sec = stub_sec;
3860 stub_entry->stub_offset = 0;
3861 stub_entry->id_sec = link_sec;
3862
3863 return stub_entry;
3864 }
3865
3866 /* Store an Arm insn into an output section not processed by
3867 elf32_arm_write_section. */
3868
3869 static void
3870 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3871 bfd * output_bfd, bfd_vma val, void * ptr)
3872 {
3873 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3874 bfd_putl32 (val, ptr);
3875 else
3876 bfd_putb32 (val, ptr);
3877 }
3878
3879 /* Store a 16-bit Thumb insn into an output section not processed by
3880 elf32_arm_write_section. */
3881
3882 static void
3883 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3884 bfd * output_bfd, bfd_vma val, void * ptr)
3885 {
3886 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3887 bfd_putl16 (val, ptr);
3888 else
3889 bfd_putb16 (val, ptr);
3890 }
3891
3892 /* If it's possible to change R_TYPE to a more efficient access
3893 model, return the new reloc type. */
3894
3895 static unsigned
3896 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
3897 struct elf_link_hash_entry *h)
3898 {
3899 int is_local = (h == NULL);
3900
3901 if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
3902 return r_type;
3903
3904 /* We do not support relaxations for Old TLS models. */
3905 switch (r_type)
3906 {
3907 case R_ARM_TLS_GOTDESC:
3908 case R_ARM_TLS_CALL:
3909 case R_ARM_THM_TLS_CALL:
3910 case R_ARM_TLS_DESCSEQ:
3911 case R_ARM_THM_TLS_DESCSEQ:
3912 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
3913 }
3914
3915 return r_type;
3916 }
3917
3918 static bfd_reloc_status_type elf32_arm_final_link_relocate
3919 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3920 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3921 const char *, unsigned char, enum arm_st_branch_type,
3922 struct elf_link_hash_entry *, bfd_boolean *, char **);
3923
3924 static unsigned int
3925 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
3926 {
3927 switch (stub_type)
3928 {
3929 case arm_stub_a8_veneer_b_cond:
3930 case arm_stub_a8_veneer_b:
3931 case arm_stub_a8_veneer_bl:
3932 return 2;
3933
3934 case arm_stub_long_branch_any_any:
3935 case arm_stub_long_branch_v4t_arm_thumb:
3936 case arm_stub_long_branch_thumb_only:
3937 case arm_stub_long_branch_v4t_thumb_thumb:
3938 case arm_stub_long_branch_v4t_thumb_arm:
3939 case arm_stub_short_branch_v4t_thumb_arm:
3940 case arm_stub_long_branch_any_arm_pic:
3941 case arm_stub_long_branch_any_thumb_pic:
3942 case arm_stub_long_branch_v4t_thumb_thumb_pic:
3943 case arm_stub_long_branch_v4t_arm_thumb_pic:
3944 case arm_stub_long_branch_v4t_thumb_arm_pic:
3945 case arm_stub_long_branch_thumb_only_pic:
3946 case arm_stub_long_branch_any_tls_pic:
3947 case arm_stub_long_branch_v4t_thumb_tls_pic:
3948 case arm_stub_a8_veneer_blx:
3949 return 4;
3950
3951 default:
3952 abort (); /* Should be unreachable. */
3953 }
3954 }
3955
3956 static bfd_boolean
3957 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3958 void * in_arg)
3959 {
3960 #define MAXRELOCS 2
3961 struct elf32_arm_stub_hash_entry *stub_entry;
3962 struct elf32_arm_link_hash_table *globals;
3963 struct bfd_link_info *info;
3964 asection *stub_sec;
3965 bfd *stub_bfd;
3966 bfd_byte *loc;
3967 bfd_vma sym_value;
3968 int template_size;
3969 int size;
3970 const insn_sequence *template_sequence;
3971 int i;
3972 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
3973 int stub_reloc_offset[MAXRELOCS] = {0, 0};
3974 int nrelocs = 0;
3975
3976 /* Massage our args to the form they really have. */
3977 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3978 info = (struct bfd_link_info *) in_arg;
3979
3980 globals = elf32_arm_hash_table (info);
3981 if (globals == NULL)
3982 return FALSE;
3983
3984 stub_sec = stub_entry->stub_sec;
3985
3986 if ((globals->fix_cortex_a8 < 0)
3987 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
3988 /* We have to do less-strictly-aligned fixes last. */
3989 return TRUE;
3990
3991 /* Make a note of the offset within the stubs for this entry. */
3992 stub_entry->stub_offset = stub_sec->size;
3993 loc = stub_sec->contents + stub_entry->stub_offset;
3994
3995 stub_bfd = stub_sec->owner;
3996
3997 /* This is the address of the stub destination. */
3998 sym_value = (stub_entry->target_value
3999 + stub_entry->target_section->output_offset
4000 + stub_entry->target_section->output_section->vma);
4001
4002 template_sequence = stub_entry->stub_template;
4003 template_size = stub_entry->stub_template_size;
4004
4005 size = 0;
4006 for (i = 0; i < template_size; i++)
4007 {
4008 switch (template_sequence[i].type)
4009 {
4010 case THUMB16_TYPE:
4011 {
4012 bfd_vma data = (bfd_vma) template_sequence[i].data;
4013 if (template_sequence[i].reloc_addend != 0)
4014 {
4015 /* We've borrowed the reloc_addend field to mean we should
4016 insert a condition code into this (Thumb-1 branch)
4017 instruction. See THUMB16_BCOND_INSN. */
4018 BFD_ASSERT ((data & 0xff00) == 0xd000);
4019 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4020 }
4021 bfd_put_16 (stub_bfd, data, loc + size);
4022 size += 2;
4023 }
4024 break;
4025
4026 case THUMB32_TYPE:
4027 bfd_put_16 (stub_bfd,
4028 (template_sequence[i].data >> 16) & 0xffff,
4029 loc + size);
4030 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4031 loc + size + 2);
4032 if (template_sequence[i].r_type != R_ARM_NONE)
4033 {
4034 stub_reloc_idx[nrelocs] = i;
4035 stub_reloc_offset[nrelocs++] = size;
4036 }
4037 size += 4;
4038 break;
4039
4040 case ARM_TYPE:
4041 bfd_put_32 (stub_bfd, template_sequence[i].data,
4042 loc + size);
4043 /* Handle cases where the target is encoded within the
4044 instruction. */
4045 if (template_sequence[i].r_type == R_ARM_JUMP24)
4046 {
4047 stub_reloc_idx[nrelocs] = i;
4048 stub_reloc_offset[nrelocs++] = size;
4049 }
4050 size += 4;
4051 break;
4052
4053 case DATA_TYPE:
4054 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4055 stub_reloc_idx[nrelocs] = i;
4056 stub_reloc_offset[nrelocs++] = size;
4057 size += 4;
4058 break;
4059
4060 default:
4061 BFD_FAIL ();
4062 return FALSE;
4063 }
4064 }
4065
4066 stub_sec->size += size;
4067
4068 /* Stub size has already been computed in arm_size_one_stub. Check
4069 consistency. */
4070 BFD_ASSERT (size == stub_entry->stub_size);
4071
4072 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4073 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4074 sym_value |= 1;
4075
4076 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4077 in each stub. */
4078 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4079
4080 for (i = 0; i < nrelocs; i++)
4081 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4082 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4083 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4084 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
4085 {
4086 Elf_Internal_Rela rel;
4087 bfd_boolean unresolved_reloc;
4088 char *error_message;
4089 enum arm_st_branch_type branch_type
4090 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4091 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
4092 bfd_vma points_to = sym_value + stub_entry->target_addend;
4093
4094 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4095 rel.r_info = ELF32_R_INFO (0,
4096 template_sequence[stub_reloc_idx[i]].r_type);
4097 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
4098
4099 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4100 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4101 template should refer back to the instruction after the original
4102 branch. */
4103 points_to = sym_value;
4104
4105 /* There may be unintended consequences if this is not true. */
4106 BFD_ASSERT (stub_entry->h == NULL);
4107
4108 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4109 properly. We should probably use this function unconditionally,
4110 rather than only for certain relocations listed in the enclosing
4111 conditional, for the sake of consistency. */
4112 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4113 (template_sequence[stub_reloc_idx[i]].r_type),
4114 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4115 points_to, info, stub_entry->target_section, "", STT_FUNC,
4116 branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4117 &unresolved_reloc, &error_message);
4118 }
4119 else
4120 {
4121 Elf_Internal_Rela rel;
4122 bfd_boolean unresolved_reloc;
4123 char *error_message;
4124 bfd_vma points_to = sym_value + stub_entry->target_addend
4125 + template_sequence[stub_reloc_idx[i]].reloc_addend;
4126
4127 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4128 rel.r_info = ELF32_R_INFO (0,
4129 template_sequence[stub_reloc_idx[i]].r_type);
4130 rel.r_addend = 0;
4131
4132 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4133 (template_sequence[stub_reloc_idx[i]].r_type),
4134 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4135 points_to, info, stub_entry->target_section, "", STT_FUNC,
4136 stub_entry->branch_type,
4137 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4138 &error_message);
4139 }
4140
4141 return TRUE;
4142 #undef MAXRELOCS
4143 }
4144
4145 /* Calculate the template, template size and instruction size for a stub.
4146 Return value is the instruction size. */
4147
4148 static unsigned int
4149 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4150 const insn_sequence **stub_template,
4151 int *stub_template_size)
4152 {
4153 const insn_sequence *template_sequence = NULL;
4154 int template_size = 0, i;
4155 unsigned int size;
4156
4157 template_sequence = stub_definitions[stub_type].template_sequence;
4158 if (stub_template)
4159 *stub_template = template_sequence;
4160
4161 template_size = stub_definitions[stub_type].template_size;
4162 if (stub_template_size)
4163 *stub_template_size = template_size;
4164
4165 size = 0;
4166 for (i = 0; i < template_size; i++)
4167 {
4168 switch (template_sequence[i].type)
4169 {
4170 case THUMB16_TYPE:
4171 size += 2;
4172 break;
4173
4174 case ARM_TYPE:
4175 case THUMB32_TYPE:
4176 case DATA_TYPE:
4177 size += 4;
4178 break;
4179
4180 default:
4181 BFD_FAIL ();
4182 return 0;
4183 }
4184 }
4185
4186 return size;
4187 }
4188
4189 /* As above, but don't actually build the stub. Just bump offset so
4190 we know stub section sizes. */
4191
4192 static bfd_boolean
4193 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4194 void *in_arg ATTRIBUTE_UNUSED)
4195 {
4196 struct elf32_arm_stub_hash_entry *stub_entry;
4197 const insn_sequence *template_sequence;
4198 int template_size, size;
4199
4200 /* Massage our args to the form they really have. */
4201 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4202
4203 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4204 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4205
4206 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4207 &template_size);
4208
4209 stub_entry->stub_size = size;
4210 stub_entry->stub_template = template_sequence;
4211 stub_entry->stub_template_size = template_size;
4212
4213 size = (size + 7) & ~7;
4214 stub_entry->stub_sec->size += size;
4215
4216 return TRUE;
4217 }
4218
4219 /* External entry points for sizing and building linker stubs. */
4220
4221 /* Set up various things so that we can make a list of input sections
4222 for each output section included in the link. Returns -1 on error,
4223 0 when no stubs will be needed, and 1 on success. */
4224
4225 int
4226 elf32_arm_setup_section_lists (bfd *output_bfd,
4227 struct bfd_link_info *info)
4228 {
4229 bfd *input_bfd;
4230 unsigned int bfd_count;
4231 int top_id, top_index;
4232 asection *section;
4233 asection **input_list, **list;
4234 bfd_size_type amt;
4235 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4236
4237 if (htab == NULL)
4238 return 0;
4239 if (! is_elf_hash_table (htab))
4240 return 0;
4241
4242 /* Count the number of input BFDs and find the top input section id. */
4243 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4244 input_bfd != NULL;
4245 input_bfd = input_bfd->link_next)
4246 {
4247 bfd_count += 1;
4248 for (section = input_bfd->sections;
4249 section != NULL;
4250 section = section->next)
4251 {
4252 if (top_id < section->id)
4253 top_id = section->id;
4254 }
4255 }
4256 htab->bfd_count = bfd_count;
4257
4258 amt = sizeof (struct map_stub) * (top_id + 1);
4259 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4260 if (htab->stub_group == NULL)
4261 return -1;
4262 htab->top_id = top_id;
4263
4264 /* We can't use output_bfd->section_count here to find the top output
4265 section index as some sections may have been removed, and
4266 _bfd_strip_section_from_output doesn't renumber the indices. */
4267 for (section = output_bfd->sections, top_index = 0;
4268 section != NULL;
4269 section = section->next)
4270 {
4271 if (top_index < section->index)
4272 top_index = section->index;
4273 }
4274
4275 htab->top_index = top_index;
4276 amt = sizeof (asection *) * (top_index + 1);
4277 input_list = (asection **) bfd_malloc (amt);
4278 htab->input_list = input_list;
4279 if (input_list == NULL)
4280 return -1;
4281
4282 /* For sections we aren't interested in, mark their entries with a
4283 value we can check later. */
4284 list = input_list + top_index;
4285 do
4286 *list = bfd_abs_section_ptr;
4287 while (list-- != input_list);
4288
4289 for (section = output_bfd->sections;
4290 section != NULL;
4291 section = section->next)
4292 {
4293 if ((section->flags & SEC_CODE) != 0)
4294 input_list[section->index] = NULL;
4295 }
4296
4297 return 1;
4298 }
4299
4300 /* The linker repeatedly calls this function for each input section,
4301 in the order that input sections are linked into output sections.
4302 Build lists of input sections to determine groupings between which
4303 we may insert linker stubs. */
4304
4305 void
4306 elf32_arm_next_input_section (struct bfd_link_info *info,
4307 asection *isec)
4308 {
4309 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4310
4311 if (htab == NULL)
4312 return;
4313
4314 if (isec->output_section->index <= htab->top_index)
4315 {
4316 asection **list = htab->input_list + isec->output_section->index;
4317
4318 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4319 {
4320 /* Steal the link_sec pointer for our list. */
4321 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4322 /* This happens to make the list in reverse order,
4323 which we reverse later. */
4324 PREV_SEC (isec) = *list;
4325 *list = isec;
4326 }
4327 }
4328 }
4329
4330 /* See whether we can group stub sections together. Grouping stub
4331 sections may result in fewer stubs. More importantly, we need to
4332 put all .init* and .fini* stubs at the end of the .init or
4333 .fini output sections respectively, because glibc splits the
4334 _init and _fini functions into multiple parts. Putting a stub in
4335 the middle of a function is not a good idea. */
4336
4337 static void
4338 group_sections (struct elf32_arm_link_hash_table *htab,
4339 bfd_size_type stub_group_size,
4340 bfd_boolean stubs_always_after_branch)
4341 {
4342 asection **list = htab->input_list;
4343
4344 do
4345 {
4346 asection *tail = *list;
4347 asection *head;
4348
4349 if (tail == bfd_abs_section_ptr)
4350 continue;
4351
4352 /* Reverse the list: we must avoid placing stubs at the
4353 beginning of the section because the beginning of the text
4354 section may be required for an interrupt vector in bare metal
4355 code. */
4356 #define NEXT_SEC PREV_SEC
4357 head = NULL;
4358 while (tail != NULL)
4359 {
4360 /* Pop from tail. */
4361 asection *item = tail;
4362 tail = PREV_SEC (item);
4363
4364 /* Push on head. */
4365 NEXT_SEC (item) = head;
4366 head = item;
4367 }
4368
4369 while (head != NULL)
4370 {
4371 asection *curr;
4372 asection *next;
4373 bfd_vma stub_group_start = head->output_offset;
4374 bfd_vma end_of_next;
4375
4376 curr = head;
4377 while (NEXT_SEC (curr) != NULL)
4378 {
4379 next = NEXT_SEC (curr);
4380 end_of_next = next->output_offset + next->size;
4381 if (end_of_next - stub_group_start >= stub_group_size)
4382 /* End of NEXT is too far from start, so stop. */
4383 break;
4384 /* Add NEXT to the group. */
4385 curr = next;
4386 }
4387
4388 /* OK, the size from the start to the start of CURR is less
4389 than stub_group_size and thus can be handled by one stub
4390 section. (Or the head section is itself larger than
4391 stub_group_size, in which case we may be toast.)
4392 We should really be keeping track of the total size of
4393 stubs added here, as stubs contribute to the final output
4394 section size. */
4395 do
4396 {
4397 next = NEXT_SEC (head);
4398 /* Set up this stub group. */
4399 htab->stub_group[head->id].link_sec = curr;
4400 }
4401 while (head != curr && (head = next) != NULL);
4402
4403 /* But wait, there's more! Input sections up to stub_group_size
4404 bytes after the stub section can be handled by it too. */
4405 if (!stubs_always_after_branch)
4406 {
4407 stub_group_start = curr->output_offset + curr->size;
4408
4409 while (next != NULL)
4410 {
4411 end_of_next = next->output_offset + next->size;
4412 if (end_of_next - stub_group_start >= stub_group_size)
4413 /* End of NEXT is too far from stubs, so stop. */
4414 break;
4415 /* Add NEXT to the stub group. */
4416 head = next;
4417 next = NEXT_SEC (head);
4418 htab->stub_group[head->id].link_sec = curr;
4419 }
4420 }
4421 head = next;
4422 }
4423 }
4424 while (list++ != htab->input_list + htab->top_index);
4425
4426 free (htab->input_list);
4427 #undef PREV_SEC
4428 #undef NEXT_SEC
4429 }
4430
4431 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4432 erratum fix. */
4433
4434 static int
4435 a8_reloc_compare (const void *a, const void *b)
4436 {
4437 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4438 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4439
4440 if (ra->from < rb->from)
4441 return -1;
4442 else if (ra->from > rb->from)
4443 return 1;
4444 else
4445 return 0;
4446 }
4447
4448 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4449 const char *, char **);
4450
4451 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4452 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4453 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4454 otherwise. */
4455
4456 static bfd_boolean
4457 cortex_a8_erratum_scan (bfd *input_bfd,
4458 struct bfd_link_info *info,
4459 struct a8_erratum_fix **a8_fixes_p,
4460 unsigned int *num_a8_fixes_p,
4461 unsigned int *a8_fix_table_size_p,
4462 struct a8_erratum_reloc *a8_relocs,
4463 unsigned int num_a8_relocs,
4464 unsigned prev_num_a8_fixes,
4465 bfd_boolean *stub_changed_p)
4466 {
4467 asection *section;
4468 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4469 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4470 unsigned int num_a8_fixes = *num_a8_fixes_p;
4471 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4472
4473 if (htab == NULL)
4474 return FALSE;
4475
4476 for (section = input_bfd->sections;
4477 section != NULL;
4478 section = section->next)
4479 {
4480 bfd_byte *contents = NULL;
4481 struct _arm_elf_section_data *sec_data;
4482 unsigned int span;
4483 bfd_vma base_vma;
4484
4485 if (elf_section_type (section) != SHT_PROGBITS
4486 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4487 || (section->flags & SEC_EXCLUDE) != 0
4488 || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
4489 || (section->output_section == bfd_abs_section_ptr))
4490 continue;
4491
4492 base_vma = section->output_section->vma + section->output_offset;
4493
4494 if (elf_section_data (section)->this_hdr.contents != NULL)
4495 contents = elf_section_data (section)->this_hdr.contents;
4496 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4497 return TRUE;
4498
4499 sec_data = elf32_arm_section_data (section);
4500
4501 for (span = 0; span < sec_data->mapcount; span++)
4502 {
4503 unsigned int span_start = sec_data->map[span].vma;
4504 unsigned int span_end = (span == sec_data->mapcount - 1)
4505 ? section->size : sec_data->map[span + 1].vma;
4506 unsigned int i;
4507 char span_type = sec_data->map[span].type;
4508 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4509
4510 if (span_type != 't')
4511 continue;
4512
4513 /* Span is entirely within a single 4KB region: skip scanning. */
4514 if (((base_vma + span_start) & ~0xfff)
4515 == ((base_vma + span_end) & ~0xfff))
4516 continue;
4517
4518 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4519
4520 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4521 * The branch target is in the same 4KB region as the
4522 first half of the branch.
4523 * The instruction before the branch is a 32-bit
4524 length non-branch instruction. */
4525 for (i = span_start; i < span_end;)
4526 {
4527 unsigned int insn = bfd_getl16 (&contents[i]);
4528 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4529 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4530
4531 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4532 insn_32bit = TRUE;
4533
4534 if (insn_32bit)
4535 {
4536 /* Load the rest of the insn (in manual-friendly order). */
4537 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4538
4539 /* Encoding T4: B<c>.W. */
4540 is_b = (insn & 0xf800d000) == 0xf0009000;
4541 /* Encoding T1: BL<c>.W. */
4542 is_bl = (insn & 0xf800d000) == 0xf000d000;
4543 /* Encoding T2: BLX<c>.W. */
4544 is_blx = (insn & 0xf800d000) == 0xf000c000;
4545 /* Encoding T3: B<c>.W (not permitted in IT block). */
4546 is_bcc = (insn & 0xf800d000) == 0xf0008000
4547 && (insn & 0x07f00000) != 0x03800000;
4548 }
4549
4550 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4551
4552 if (((base_vma + i) & 0xfff) == 0xffe
4553 && insn_32bit
4554 && is_32bit_branch
4555 && last_was_32bit
4556 && ! last_was_branch)
4557 {
4558 bfd_signed_vma offset = 0;
4559 bfd_boolean force_target_arm = FALSE;
4560 bfd_boolean force_target_thumb = FALSE;
4561 bfd_vma target;
4562 enum elf32_arm_stub_type stub_type = arm_stub_none;
4563 struct a8_erratum_reloc key, *found;
4564 bfd_boolean use_plt = FALSE;
4565
4566 key.from = base_vma + i;
4567 found = (struct a8_erratum_reloc *)
4568 bsearch (&key, a8_relocs, num_a8_relocs,
4569 sizeof (struct a8_erratum_reloc),
4570 &a8_reloc_compare);
4571
4572 if (found)
4573 {
4574 char *error_message = NULL;
4575 struct elf_link_hash_entry *entry;
4576
4577 /* We don't care about the error returned from this
4578 function, only if there is glue or not. */
4579 entry = find_thumb_glue (info, found->sym_name,
4580 &error_message);
4581
4582 if (entry)
4583 found->non_a8_stub = TRUE;
4584
4585 /* Keep a simpler condition, for the sake of clarity. */
4586 if (htab->root.splt != NULL && found->hash != NULL
4587 && found->hash->root.plt.offset != (bfd_vma) -1)
4588 use_plt = TRUE;
4589
4590 if (found->r_type == R_ARM_THM_CALL)
4591 {
4592 if (found->branch_type == ST_BRANCH_TO_ARM
4593 || use_plt)
4594 force_target_arm = TRUE;
4595 else
4596 force_target_thumb = TRUE;
4597 }
4598 }
4599
4600 /* Check if we have an offending branch instruction. */
4601
4602 if (found && found->non_a8_stub)
4603 /* We've already made a stub for this instruction, e.g.
4604 it's a long branch or a Thumb->ARM stub. Assume that
4605 stub will suffice to work around the A8 erratum (see
4606 setting of always_after_branch above). */
4607 ;
4608 else if (is_bcc)
4609 {
4610 offset = (insn & 0x7ff) << 1;
4611 offset |= (insn & 0x3f0000) >> 4;
4612 offset |= (insn & 0x2000) ? 0x40000 : 0;
4613 offset |= (insn & 0x800) ? 0x80000 : 0;
4614 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4615 if (offset & 0x100000)
4616 offset |= ~ ((bfd_signed_vma) 0xfffff);
4617 stub_type = arm_stub_a8_veneer_b_cond;
4618 }
4619 else if (is_b || is_bl || is_blx)
4620 {
4621 int s = (insn & 0x4000000) != 0;
4622 int j1 = (insn & 0x2000) != 0;
4623 int j2 = (insn & 0x800) != 0;
4624 int i1 = !(j1 ^ s);
4625 int i2 = !(j2 ^ s);
4626
4627 offset = (insn & 0x7ff) << 1;
4628 offset |= (insn & 0x3ff0000) >> 4;
4629 offset |= i2 << 22;
4630 offset |= i1 << 23;
4631 offset |= s << 24;
4632 if (offset & 0x1000000)
4633 offset |= ~ ((bfd_signed_vma) 0xffffff);
4634
4635 if (is_blx)
4636 offset &= ~ ((bfd_signed_vma) 3);
4637
4638 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4639 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4640 }
4641
4642 if (stub_type != arm_stub_none)
4643 {
4644 bfd_vma pc_for_insn = base_vma + i + 4;
4645
4646 /* The original instruction is a BL, but the target is
4647 an ARM instruction. If we were not making a stub,
4648 the BL would have been converted to a BLX. Use the
4649 BLX stub instead in that case. */
4650 if (htab->use_blx && force_target_arm
4651 && stub_type == arm_stub_a8_veneer_bl)
4652 {
4653 stub_type = arm_stub_a8_veneer_blx;
4654 is_blx = TRUE;
4655 is_bl = FALSE;
4656 }
4657 /* Conversely, if the original instruction was
4658 BLX but the target is Thumb mode, use the BL
4659 stub. */
4660 else if (force_target_thumb
4661 && stub_type == arm_stub_a8_veneer_blx)
4662 {
4663 stub_type = arm_stub_a8_veneer_bl;
4664 is_blx = FALSE;
4665 is_bl = TRUE;
4666 }
4667
4668 if (is_blx)
4669 pc_for_insn &= ~ ((bfd_vma) 3);
4670
4671 /* If we found a relocation, use the proper destination,
4672 not the offset in the (unrelocated) instruction.
4673 Note this is always done if we switched the stub type
4674 above. */
4675 if (found)
4676 offset =
4677 (bfd_signed_vma) (found->destination - pc_for_insn);
4678
4679 /* If the stub will use a Thumb-mode branch to a
4680 PLT target, redirect it to the preceding Thumb
4681 entry point. */
4682 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4683 offset -= PLT_THUMB_STUB_SIZE;
4684
4685 target = pc_for_insn + offset;
4686
4687 /* The BLX stub is ARM-mode code. Adjust the offset to
4688 take the different PC value (+8 instead of +4) into
4689 account. */
4690 if (stub_type == arm_stub_a8_veneer_blx)
4691 offset += 4;
4692
4693 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4694 {
4695 char *stub_name = NULL;
4696
4697 if (num_a8_fixes == a8_fix_table_size)
4698 {
4699 a8_fix_table_size *= 2;
4700 a8_fixes = (struct a8_erratum_fix *)
4701 bfd_realloc (a8_fixes,
4702 sizeof (struct a8_erratum_fix)
4703 * a8_fix_table_size);
4704 }
4705
4706 if (num_a8_fixes < prev_num_a8_fixes)
4707 {
4708 /* If we're doing a subsequent scan,
4709 check if we've found the same fix as
4710 before, and try and reuse the stub
4711 name. */
4712 stub_name = a8_fixes[num_a8_fixes].stub_name;
4713 if ((a8_fixes[num_a8_fixes].section != section)
4714 || (a8_fixes[num_a8_fixes].offset != i))
4715 {
4716 free (stub_name);
4717 stub_name = NULL;
4718 *stub_changed_p = TRUE;
4719 }
4720 }
4721
4722 if (!stub_name)
4723 {
4724 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4725 if (stub_name != NULL)
4726 sprintf (stub_name, "%x:%x", section->id, i);
4727 }
4728
4729 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4730 a8_fixes[num_a8_fixes].section = section;
4731 a8_fixes[num_a8_fixes].offset = i;
4732 a8_fixes[num_a8_fixes].addend = offset;
4733 a8_fixes[num_a8_fixes].orig_insn = insn;
4734 a8_fixes[num_a8_fixes].stub_name = stub_name;
4735 a8_fixes[num_a8_fixes].stub_type = stub_type;
4736 a8_fixes[num_a8_fixes].branch_type =
4737 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
4738
4739 num_a8_fixes++;
4740 }
4741 }
4742 }
4743
4744 i += insn_32bit ? 4 : 2;
4745 last_was_32bit = insn_32bit;
4746 last_was_branch = is_32bit_branch;
4747 }
4748 }
4749
4750 if (elf_section_data (section)->this_hdr.contents == NULL)
4751 free (contents);
4752 }
4753
4754 *a8_fixes_p = a8_fixes;
4755 *num_a8_fixes_p = num_a8_fixes;
4756 *a8_fix_table_size_p = a8_fix_table_size;
4757
4758 return FALSE;
4759 }
4760
4761 /* Determine and set the size of the stub section for a final link.
4762
4763 The basic idea here is to examine all the relocations looking for
4764 PC-relative calls to a target that is unreachable with a "bl"
4765 instruction. */
4766
4767 bfd_boolean
4768 elf32_arm_size_stubs (bfd *output_bfd,
4769 bfd *stub_bfd,
4770 struct bfd_link_info *info,
4771 bfd_signed_vma group_size,
4772 asection * (*add_stub_section) (const char *, asection *),
4773 void (*layout_sections_again) (void))
4774 {
4775 bfd_size_type stub_group_size;
4776 bfd_boolean stubs_always_after_branch;
4777 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4778 struct a8_erratum_fix *a8_fixes = NULL;
4779 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4780 struct a8_erratum_reloc *a8_relocs = NULL;
4781 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4782
4783 if (htab == NULL)
4784 return FALSE;
4785
4786 if (htab->fix_cortex_a8)
4787 {
4788 a8_fixes = (struct a8_erratum_fix *)
4789 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4790 a8_relocs = (struct a8_erratum_reloc *)
4791 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4792 }
4793
4794 /* Propagate mach to stub bfd, because it may not have been
4795 finalized when we created stub_bfd. */
4796 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4797 bfd_get_mach (output_bfd));
4798
4799 /* Stash our params away. */
4800 htab->stub_bfd = stub_bfd;
4801 htab->add_stub_section = add_stub_section;
4802 htab->layout_sections_again = layout_sections_again;
4803 stubs_always_after_branch = group_size < 0;
4804
4805 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4806 as the first half of a 32-bit branch straddling two 4K pages. This is a
4807 crude way of enforcing that. */
4808 if (htab->fix_cortex_a8)
4809 stubs_always_after_branch = 1;
4810
4811 if (group_size < 0)
4812 stub_group_size = -group_size;
4813 else
4814 stub_group_size = group_size;
4815
4816 if (stub_group_size == 1)
4817 {
4818 /* Default values. */
4819 /* Thumb branch range is +-4MB has to be used as the default
4820 maximum size (a given section can contain both ARM and Thumb
4821 code, so the worst case has to be taken into account).
4822
4823 This value is 24K less than that, which allows for 2025
4824 12-byte stubs. If we exceed that, then we will fail to link.
4825 The user will have to relink with an explicit group size
4826 option. */
4827 stub_group_size = 4170000;
4828 }
4829
4830 group_sections (htab, stub_group_size, stubs_always_after_branch);
4831
4832 /* If we're applying the cortex A8 fix, we need to determine the
4833 program header size now, because we cannot change it later --
4834 that could alter section placements. Notice the A8 erratum fix
4835 ends up requiring the section addresses to remain unchanged
4836 modulo the page size. That's something we cannot represent
4837 inside BFD, and we don't want to force the section alignment to
4838 be the page size. */
4839 if (htab->fix_cortex_a8)
4840 (*htab->layout_sections_again) ();
4841
4842 while (1)
4843 {
4844 bfd *input_bfd;
4845 unsigned int bfd_indx;
4846 asection *stub_sec;
4847 bfd_boolean stub_changed = FALSE;
4848 unsigned prev_num_a8_fixes = num_a8_fixes;
4849
4850 num_a8_fixes = 0;
4851 for (input_bfd = info->input_bfds, bfd_indx = 0;
4852 input_bfd != NULL;
4853 input_bfd = input_bfd->link_next, bfd_indx++)
4854 {
4855 Elf_Internal_Shdr *symtab_hdr;
4856 asection *section;
4857 Elf_Internal_Sym *local_syms = NULL;
4858
4859 num_a8_relocs = 0;
4860
4861 /* We'll need the symbol table in a second. */
4862 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4863 if (symtab_hdr->sh_info == 0)
4864 continue;
4865
4866 /* Walk over each section attached to the input bfd. */
4867 for (section = input_bfd->sections;
4868 section != NULL;
4869 section = section->next)
4870 {
4871 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4872
4873 /* If there aren't any relocs, then there's nothing more
4874 to do. */
4875 if ((section->flags & SEC_RELOC) == 0
4876 || section->reloc_count == 0
4877 || (section->flags & SEC_CODE) == 0)
4878 continue;
4879
4880 /* If this section is a link-once section that will be
4881 discarded, then don't create any stubs. */
4882 if (section->output_section == NULL
4883 || section->output_section->owner != output_bfd)
4884 continue;
4885
4886 /* Get the relocs. */
4887 internal_relocs
4888 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4889 NULL, info->keep_memory);
4890 if (internal_relocs == NULL)
4891 goto error_ret_free_local;
4892
4893 /* Now examine each relocation. */
4894 irela = internal_relocs;
4895 irelaend = irela + section->reloc_count;
4896 for (; irela < irelaend; irela++)
4897 {
4898 unsigned int r_type, r_indx;
4899 enum elf32_arm_stub_type stub_type;
4900 struct elf32_arm_stub_hash_entry *stub_entry;
4901 asection *sym_sec;
4902 bfd_vma sym_value;
4903 bfd_vma destination;
4904 struct elf32_arm_link_hash_entry *hash;
4905 const char *sym_name;
4906 char *stub_name;
4907 const asection *id_sec;
4908 unsigned char st_type;
4909 enum arm_st_branch_type branch_type;
4910 bfd_boolean created_stub = FALSE;
4911
4912 r_type = ELF32_R_TYPE (irela->r_info);
4913 r_indx = ELF32_R_SYM (irela->r_info);
4914
4915 if (r_type >= (unsigned int) R_ARM_max)
4916 {
4917 bfd_set_error (bfd_error_bad_value);
4918 error_ret_free_internal:
4919 if (elf_section_data (section)->relocs == NULL)
4920 free (internal_relocs);
4921 goto error_ret_free_local;
4922 }
4923
4924 hash = NULL;
4925 if (r_indx >= symtab_hdr->sh_info)
4926 hash = elf32_arm_hash_entry
4927 (elf_sym_hashes (input_bfd)
4928 [r_indx - symtab_hdr->sh_info]);
4929
4930 /* Only look for stubs on branch instructions, or
4931 non-relaxed TLSCALL */
4932 if ((r_type != (unsigned int) R_ARM_CALL)
4933 && (r_type != (unsigned int) R_ARM_THM_CALL)
4934 && (r_type != (unsigned int) R_ARM_JUMP24)
4935 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
4936 && (r_type != (unsigned int) R_ARM_THM_XPC22)
4937 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
4938 && (r_type != (unsigned int) R_ARM_PLT32)
4939 && !((r_type == (unsigned int) R_ARM_TLS_CALL
4940 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
4941 && r_type == elf32_arm_tls_transition
4942 (info, r_type, &hash->root)
4943 && ((hash ? hash->tls_type
4944 : (elf32_arm_local_got_tls_type
4945 (input_bfd)[r_indx]))
4946 & GOT_TLS_GDESC) != 0))
4947 continue;
4948
4949 /* Now determine the call target, its name, value,
4950 section. */
4951 sym_sec = NULL;
4952 sym_value = 0;
4953 destination = 0;
4954 sym_name = NULL;
4955
4956 if (r_type == (unsigned int) R_ARM_TLS_CALL
4957 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
4958 {
4959 /* A non-relaxed TLS call. The target is the
4960 plt-resident trampoline and nothing to do
4961 with the symbol. */
4962 BFD_ASSERT (htab->tls_trampoline > 0);
4963 sym_sec = htab->root.splt;
4964 sym_value = htab->tls_trampoline;
4965 hash = 0;
4966 st_type = STT_FUNC;
4967 branch_type = ST_BRANCH_TO_ARM;
4968 }
4969 else if (!hash)
4970 {
4971 /* It's a local symbol. */
4972 Elf_Internal_Sym *sym;
4973
4974 if (local_syms == NULL)
4975 {
4976 local_syms
4977 = (Elf_Internal_Sym *) symtab_hdr->contents;
4978 if (local_syms == NULL)
4979 local_syms
4980 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4981 symtab_hdr->sh_info, 0,
4982 NULL, NULL, NULL);
4983 if (local_syms == NULL)
4984 goto error_ret_free_internal;
4985 }
4986
4987 sym = local_syms + r_indx;
4988 if (sym->st_shndx == SHN_UNDEF)
4989 sym_sec = bfd_und_section_ptr;
4990 else if (sym->st_shndx == SHN_ABS)
4991 sym_sec = bfd_abs_section_ptr;
4992 else if (sym->st_shndx == SHN_COMMON)
4993 sym_sec = bfd_com_section_ptr;
4994 else
4995 sym_sec =
4996 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
4997
4998 if (!sym_sec)
4999 /* This is an undefined symbol. It can never
5000 be resolved. */
5001 continue;
5002
5003 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5004 sym_value = sym->st_value;
5005 destination = (sym_value + irela->r_addend
5006 + sym_sec->output_offset
5007 + sym_sec->output_section->vma);
5008 st_type = ELF_ST_TYPE (sym->st_info);
5009 branch_type = ARM_SYM_BRANCH_TYPE (sym);
5010 sym_name
5011 = bfd_elf_string_from_elf_section (input_bfd,
5012 symtab_hdr->sh_link,
5013 sym->st_name);
5014 }
5015 else
5016 {
5017 /* It's an external symbol. */
5018 while (hash->root.root.type == bfd_link_hash_indirect
5019 || hash->root.root.type == bfd_link_hash_warning)
5020 hash = ((struct elf32_arm_link_hash_entry *)
5021 hash->root.root.u.i.link);
5022
5023 if (hash->root.root.type == bfd_link_hash_defined
5024 || hash->root.root.type == bfd_link_hash_defweak)
5025 {
5026 sym_sec = hash->root.root.u.def.section;
5027 sym_value = hash->root.root.u.def.value;
5028
5029 struct elf32_arm_link_hash_table *globals =
5030 elf32_arm_hash_table (info);
5031
5032 /* For a destination in a shared library,
5033 use the PLT stub as target address to
5034 decide whether a branch stub is
5035 needed. */
5036 if (globals != NULL
5037 && globals->root.splt != NULL
5038 && hash != NULL
5039 && hash->root.plt.offset != (bfd_vma) -1)
5040 {
5041 sym_sec = globals->root.splt;
5042 sym_value = hash->root.plt.offset;
5043 if (sym_sec->output_section != NULL)
5044 destination = (sym_value
5045 + sym_sec->output_offset
5046 + sym_sec->output_section->vma);
5047 }
5048 else if (sym_sec->output_section != NULL)
5049 destination = (sym_value + irela->r_addend
5050 + sym_sec->output_offset
5051 + sym_sec->output_section->vma);
5052 }
5053 else if ((hash->root.root.type == bfd_link_hash_undefined)
5054 || (hash->root.root.type == bfd_link_hash_undefweak))
5055 {
5056 /* For a shared library, use the PLT stub as
5057 target address to decide whether a long
5058 branch stub is needed.
5059 For absolute code, they cannot be handled. */
5060 struct elf32_arm_link_hash_table *globals =
5061 elf32_arm_hash_table (info);
5062
5063 if (globals != NULL
5064 && globals->root.splt != NULL
5065 && hash != NULL
5066 && hash->root.plt.offset != (bfd_vma) -1)
5067 {
5068 sym_sec = globals->root.splt;
5069 sym_value = hash->root.plt.offset;
5070 if (sym_sec->output_section != NULL)
5071 destination = (sym_value
5072 + sym_sec->output_offset
5073 + sym_sec->output_section->vma);
5074 }
5075 else
5076 continue;
5077 }
5078 else
5079 {
5080 bfd_set_error (bfd_error_bad_value);
5081 goto error_ret_free_internal;
5082 }
5083 st_type = hash->root.type;
5084 branch_type = hash->root.target_internal;
5085 sym_name = hash->root.root.root.string;
5086 }
5087
5088 do
5089 {
5090 /* Determine what (if any) linker stub is needed. */
5091 stub_type = arm_type_of_stub (info, section, irela,
5092 st_type, &branch_type,
5093 hash, destination, sym_sec,
5094 input_bfd, sym_name);
5095 if (stub_type == arm_stub_none)
5096 break;
5097
5098 /* Support for grouping stub sections. */
5099 id_sec = htab->stub_group[section->id].link_sec;
5100
5101 /* Get the name of this stub. */
5102 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
5103 irela, stub_type);
5104 if (!stub_name)
5105 goto error_ret_free_internal;
5106
5107 /* We've either created a stub for this reloc already,
5108 or we are about to. */
5109 created_stub = TRUE;
5110
5111 stub_entry = arm_stub_hash_lookup
5112 (&htab->stub_hash_table, stub_name,
5113 FALSE, FALSE);
5114 if (stub_entry != NULL)
5115 {
5116 /* The proper stub has already been created. */
5117 free (stub_name);
5118 stub_entry->target_value = sym_value;
5119 break;
5120 }
5121
5122 stub_entry = elf32_arm_add_stub (stub_name, section,
5123 htab);
5124 if (stub_entry == NULL)
5125 {
5126 free (stub_name);
5127 goto error_ret_free_internal;
5128 }
5129
5130 stub_entry->target_value = sym_value;
5131 stub_entry->target_section = sym_sec;
5132 stub_entry->stub_type = stub_type;
5133 stub_entry->h = hash;
5134 stub_entry->branch_type = branch_type;
5135
5136 if (sym_name == NULL)
5137 sym_name = "unnamed";
5138 stub_entry->output_name = (char *)
5139 bfd_alloc (htab->stub_bfd,
5140 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5141 + strlen (sym_name));
5142 if (stub_entry->output_name == NULL)
5143 {
5144 free (stub_name);
5145 goto error_ret_free_internal;
5146 }
5147
5148 /* For historical reasons, use the existing names for
5149 ARM-to-Thumb and Thumb-to-ARM stubs. */
5150 if ((r_type == (unsigned int) R_ARM_THM_CALL
5151 || r_type == (unsigned int) R_ARM_THM_JUMP24)
5152 && branch_type == ST_BRANCH_TO_ARM)
5153 sprintf (stub_entry->output_name,
5154 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5155 else if ((r_type == (unsigned int) R_ARM_CALL
5156 || r_type == (unsigned int) R_ARM_JUMP24)
5157 && branch_type == ST_BRANCH_TO_THUMB)
5158 sprintf (stub_entry->output_name,
5159 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5160 else
5161 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5162 sym_name);
5163
5164 stub_changed = TRUE;
5165 }
5166 while (0);
5167
5168 /* Look for relocations which might trigger Cortex-A8
5169 erratum. */
5170 if (htab->fix_cortex_a8
5171 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5172 || r_type == (unsigned int) R_ARM_THM_JUMP19
5173 || r_type == (unsigned int) R_ARM_THM_CALL
5174 || r_type == (unsigned int) R_ARM_THM_XPC22))
5175 {
5176 bfd_vma from = section->output_section->vma
5177 + section->output_offset
5178 + irela->r_offset;
5179
5180 if ((from & 0xfff) == 0xffe)
5181 {
5182 /* Found a candidate. Note we haven't checked the
5183 destination is within 4K here: if we do so (and
5184 don't create an entry in a8_relocs) we can't tell
5185 that a branch should have been relocated when
5186 scanning later. */
5187 if (num_a8_relocs == a8_reloc_table_size)
5188 {
5189 a8_reloc_table_size *= 2;
5190 a8_relocs = (struct a8_erratum_reloc *)
5191 bfd_realloc (a8_relocs,
5192 sizeof (struct a8_erratum_reloc)
5193 * a8_reloc_table_size);
5194 }
5195
5196 a8_relocs[num_a8_relocs].from = from;
5197 a8_relocs[num_a8_relocs].destination = destination;
5198 a8_relocs[num_a8_relocs].r_type = r_type;
5199 a8_relocs[num_a8_relocs].branch_type = branch_type;
5200 a8_relocs[num_a8_relocs].sym_name = sym_name;
5201 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5202 a8_relocs[num_a8_relocs].hash = hash;
5203
5204 num_a8_relocs++;
5205 }
5206 }
5207 }
5208
5209 /* We're done with the internal relocs, free them. */
5210 if (elf_section_data (section)->relocs == NULL)
5211 free (internal_relocs);
5212 }
5213
5214 if (htab->fix_cortex_a8)
5215 {
5216 /* Sort relocs which might apply to Cortex-A8 erratum. */
5217 qsort (a8_relocs, num_a8_relocs,
5218 sizeof (struct a8_erratum_reloc),
5219 &a8_reloc_compare);
5220
5221 /* Scan for branches which might trigger Cortex-A8 erratum. */
5222 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5223 &num_a8_fixes, &a8_fix_table_size,
5224 a8_relocs, num_a8_relocs,
5225 prev_num_a8_fixes, &stub_changed)
5226 != 0)
5227 goto error_ret_free_local;
5228 }
5229 }
5230
5231 if (prev_num_a8_fixes != num_a8_fixes)
5232 stub_changed = TRUE;
5233
5234 if (!stub_changed)
5235 break;
5236
5237 /* OK, we've added some stubs. Find out the new size of the
5238 stub sections. */
5239 for (stub_sec = htab->stub_bfd->sections;
5240 stub_sec != NULL;
5241 stub_sec = stub_sec->next)
5242 {
5243 /* Ignore non-stub sections. */
5244 if (!strstr (stub_sec->name, STUB_SUFFIX))
5245 continue;
5246
5247 stub_sec->size = 0;
5248 }
5249
5250 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5251
5252 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5253 if (htab->fix_cortex_a8)
5254 for (i = 0; i < num_a8_fixes; i++)
5255 {
5256 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5257 a8_fixes[i].section, htab);
5258
5259 if (stub_sec == NULL)
5260 goto error_ret_free_local;
5261
5262 stub_sec->size
5263 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5264 NULL);
5265 }
5266
5267
5268 /* Ask the linker to do its stuff. */
5269 (*htab->layout_sections_again) ();
5270 }
5271
5272 /* Add stubs for Cortex-A8 erratum fixes now. */
5273 if (htab->fix_cortex_a8)
5274 {
5275 for (i = 0; i < num_a8_fixes; i++)
5276 {
5277 struct elf32_arm_stub_hash_entry *stub_entry;
5278 char *stub_name = a8_fixes[i].stub_name;
5279 asection *section = a8_fixes[i].section;
5280 unsigned int section_id = a8_fixes[i].section->id;
5281 asection *link_sec = htab->stub_group[section_id].link_sec;
5282 asection *stub_sec = htab->stub_group[section_id].stub_sec;
5283 const insn_sequence *template_sequence;
5284 int template_size, size = 0;
5285
5286 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5287 TRUE, FALSE);
5288 if (stub_entry == NULL)
5289 {
5290 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5291 section->owner,
5292 stub_name);
5293 return FALSE;
5294 }
5295
5296 stub_entry->stub_sec = stub_sec;
5297 stub_entry->stub_offset = 0;
5298 stub_entry->id_sec = link_sec;
5299 stub_entry->stub_type = a8_fixes[i].stub_type;
5300 stub_entry->target_section = a8_fixes[i].section;
5301 stub_entry->target_value = a8_fixes[i].offset;
5302 stub_entry->target_addend = a8_fixes[i].addend;
5303 stub_entry->orig_insn = a8_fixes[i].orig_insn;
5304 stub_entry->branch_type = a8_fixes[i].branch_type;
5305
5306 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5307 &template_sequence,
5308 &template_size);
5309
5310 stub_entry->stub_size = size;
5311 stub_entry->stub_template = template_sequence;
5312 stub_entry->stub_template_size = template_size;
5313 }
5314
5315 /* Stash the Cortex-A8 erratum fix array for use later in
5316 elf32_arm_write_section(). */
5317 htab->a8_erratum_fixes = a8_fixes;
5318 htab->num_a8_erratum_fixes = num_a8_fixes;
5319 }
5320 else
5321 {
5322 htab->a8_erratum_fixes = NULL;
5323 htab->num_a8_erratum_fixes = 0;
5324 }
5325 return TRUE;
5326
5327 error_ret_free_local:
5328 return FALSE;
5329 }
5330
5331 /* Build all the stubs associated with the current output file. The
5332 stubs are kept in a hash table attached to the main linker hash
5333 table. We also set up the .plt entries for statically linked PIC
5334 functions here. This function is called via arm_elf_finish in the
5335 linker. */
5336
5337 bfd_boolean
5338 elf32_arm_build_stubs (struct bfd_link_info *info)
5339 {
5340 asection *stub_sec;
5341 struct bfd_hash_table *table;
5342 struct elf32_arm_link_hash_table *htab;
5343
5344 htab = elf32_arm_hash_table (info);
5345 if (htab == NULL)
5346 return FALSE;
5347
5348 for (stub_sec = htab->stub_bfd->sections;
5349 stub_sec != NULL;
5350 stub_sec = stub_sec->next)
5351 {
5352 bfd_size_type size;
5353
5354 /* Ignore non-stub sections. */
5355 if (!strstr (stub_sec->name, STUB_SUFFIX))
5356 continue;
5357
5358 /* Allocate memory to hold the linker stubs. */
5359 size = stub_sec->size;
5360 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5361 if (stub_sec->contents == NULL && size != 0)
5362 return FALSE;
5363 stub_sec->size = 0;
5364 }
5365
5366 /* Build the stubs as directed by the stub hash table. */
5367 table = &htab->stub_hash_table;
5368 bfd_hash_traverse (table, arm_build_one_stub, info);
5369 if (htab->fix_cortex_a8)
5370 {
5371 /* Place the cortex a8 stubs last. */
5372 htab->fix_cortex_a8 = -1;
5373 bfd_hash_traverse (table, arm_build_one_stub, info);
5374 }
5375
5376 return TRUE;
5377 }
5378
5379 /* Locate the Thumb encoded calling stub for NAME. */
5380
5381 static struct elf_link_hash_entry *
5382 find_thumb_glue (struct bfd_link_info *link_info,
5383 const char *name,
5384 char **error_message)
5385 {
5386 char *tmp_name;
5387 struct elf_link_hash_entry *hash;
5388 struct elf32_arm_link_hash_table *hash_table;
5389
5390 /* We need a pointer to the armelf specific hash table. */
5391 hash_table = elf32_arm_hash_table (link_info);
5392 if (hash_table == NULL)
5393 return NULL;
5394
5395 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5396 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5397
5398 BFD_ASSERT (tmp_name);
5399
5400 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5401
5402 hash = elf_link_hash_lookup
5403 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5404
5405 if (hash == NULL
5406 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5407 tmp_name, name) == -1)
5408 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5409
5410 free (tmp_name);
5411
5412 return hash;
5413 }
5414
5415 /* Locate the ARM encoded calling stub for NAME. */
5416
5417 static struct elf_link_hash_entry *
5418 find_arm_glue (struct bfd_link_info *link_info,
5419 const char *name,
5420 char **error_message)
5421 {
5422 char *tmp_name;
5423 struct elf_link_hash_entry *myh;
5424 struct elf32_arm_link_hash_table *hash_table;
5425
5426 /* We need a pointer to the elfarm specific hash table. */
5427 hash_table = elf32_arm_hash_table (link_info);
5428 if (hash_table == NULL)
5429 return NULL;
5430
5431 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5432 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5433
5434 BFD_ASSERT (tmp_name);
5435
5436 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5437
5438 myh = elf_link_hash_lookup
5439 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5440
5441 if (myh == NULL
5442 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5443 tmp_name, name) == -1)
5444 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5445
5446 free (tmp_name);
5447
5448 return myh;
5449 }
5450
5451 /* ARM->Thumb glue (static images):
5452
5453 .arm
5454 __func_from_arm:
5455 ldr r12, __func_addr
5456 bx r12
5457 __func_addr:
5458 .word func @ behave as if you saw a ARM_32 reloc.
5459
5460 (v5t static images)
5461 .arm
5462 __func_from_arm:
5463 ldr pc, __func_addr
5464 __func_addr:
5465 .word func @ behave as if you saw a ARM_32 reloc.
5466
5467 (relocatable images)
5468 .arm
5469 __func_from_arm:
5470 ldr r12, __func_offset
5471 add r12, r12, pc
5472 bx r12
5473 __func_offset:
5474 .word func - . */
5475
5476 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5477 static const insn32 a2t1_ldr_insn = 0xe59fc000;
5478 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5479 static const insn32 a2t3_func_addr_insn = 0x00000001;
5480
5481 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5482 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5483 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5484
5485 #define ARM2THUMB_PIC_GLUE_SIZE 16
5486 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5487 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5488 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5489
5490 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5491
5492 .thumb .thumb
5493 .align 2 .align 2
5494 __func_from_thumb: __func_from_thumb:
5495 bx pc push {r6, lr}
5496 nop ldr r6, __func_addr
5497 .arm mov lr, pc
5498 b func bx r6
5499 .arm
5500 ;; back_to_thumb
5501 ldmia r13! {r6, lr}
5502 bx lr
5503 __func_addr:
5504 .word func */
5505
5506 #define THUMB2ARM_GLUE_SIZE 8
5507 static const insn16 t2a1_bx_pc_insn = 0x4778;
5508 static const insn16 t2a2_noop_insn = 0x46c0;
5509 static const insn32 t2a3_b_insn = 0xea000000;
5510
5511 #define VFP11_ERRATUM_VENEER_SIZE 8
5512
5513 #define ARM_BX_VENEER_SIZE 12
5514 static const insn32 armbx1_tst_insn = 0xe3100001;
5515 static const insn32 armbx2_moveq_insn = 0x01a0f000;
5516 static const insn32 armbx3_bx_insn = 0xe12fff10;
5517
5518 #ifndef ELFARM_NABI_C_INCLUDED
5519 static void
5520 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5521 {
5522 asection * s;
5523 bfd_byte * contents;
5524
5525 if (size == 0)
5526 {
5527 /* Do not include empty glue sections in the output. */
5528 if (abfd != NULL)
5529 {
5530 s = bfd_get_section_by_name (abfd, name);
5531 if (s != NULL)
5532 s->flags |= SEC_EXCLUDE;
5533 }
5534 return;
5535 }
5536
5537 BFD_ASSERT (abfd != NULL);
5538
5539 s = bfd_get_section_by_name (abfd, name);
5540 BFD_ASSERT (s != NULL);
5541
5542 contents = (bfd_byte *) bfd_alloc (abfd, size);
5543
5544 BFD_ASSERT (s->size == size);
5545 s->contents = contents;
5546 }
5547
5548 bfd_boolean
5549 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5550 {
5551 struct elf32_arm_link_hash_table * globals;
5552
5553 globals = elf32_arm_hash_table (info);
5554 BFD_ASSERT (globals != NULL);
5555
5556 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5557 globals->arm_glue_size,
5558 ARM2THUMB_GLUE_SECTION_NAME);
5559
5560 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5561 globals->thumb_glue_size,
5562 THUMB2ARM_GLUE_SECTION_NAME);
5563
5564 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5565 globals->vfp11_erratum_glue_size,
5566 VFP11_ERRATUM_VENEER_SECTION_NAME);
5567
5568 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5569 globals->bx_glue_size,
5570 ARM_BX_GLUE_SECTION_NAME);
5571
5572 return TRUE;
5573 }
5574
5575 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5576 returns the symbol identifying the stub. */
5577
5578 static struct elf_link_hash_entry *
5579 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5580 struct elf_link_hash_entry * h)
5581 {
5582 const char * name = h->root.root.string;
5583 asection * s;
5584 char * tmp_name;
5585 struct elf_link_hash_entry * myh;
5586 struct bfd_link_hash_entry * bh;
5587 struct elf32_arm_link_hash_table * globals;
5588 bfd_vma val;
5589 bfd_size_type size;
5590
5591 globals = elf32_arm_hash_table (link_info);
5592 BFD_ASSERT (globals != NULL);
5593 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5594
5595 s = bfd_get_section_by_name
5596 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5597
5598 BFD_ASSERT (s != NULL);
5599
5600 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5601 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5602
5603 BFD_ASSERT (tmp_name);
5604
5605 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5606
5607 myh = elf_link_hash_lookup
5608 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5609
5610 if (myh != NULL)
5611 {
5612 /* We've already seen this guy. */
5613 free (tmp_name);
5614 return myh;
5615 }
5616
5617 /* The only trick here is using hash_table->arm_glue_size as the value.
5618 Even though the section isn't allocated yet, this is where we will be
5619 putting it. The +1 on the value marks that the stub has not been
5620 output yet - not that it is a Thumb function. */
5621 bh = NULL;
5622 val = globals->arm_glue_size + 1;
5623 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5624 tmp_name, BSF_GLOBAL, s, val,
5625 NULL, TRUE, FALSE, &bh);
5626
5627 myh = (struct elf_link_hash_entry *) bh;
5628 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5629 myh->forced_local = 1;
5630
5631 free (tmp_name);
5632
5633 if (link_info->shared || globals->root.is_relocatable_executable
5634 || globals->pic_veneer)
5635 size = ARM2THUMB_PIC_GLUE_SIZE;
5636 else if (globals->use_blx)
5637 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5638 else
5639 size = ARM2THUMB_STATIC_GLUE_SIZE;
5640
5641 s->size += size;
5642 globals->arm_glue_size += size;
5643
5644 return myh;
5645 }
5646
5647 /* Allocate space for ARMv4 BX veneers. */
5648
5649 static void
5650 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5651 {
5652 asection * s;
5653 struct elf32_arm_link_hash_table *globals;
5654 char *tmp_name;
5655 struct elf_link_hash_entry *myh;
5656 struct bfd_link_hash_entry *bh;
5657 bfd_vma val;
5658
5659 /* BX PC does not need a veneer. */
5660 if (reg == 15)
5661 return;
5662
5663 globals = elf32_arm_hash_table (link_info);
5664 BFD_ASSERT (globals != NULL);
5665 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5666
5667 /* Check if this veneer has already been allocated. */
5668 if (globals->bx_glue_offset[reg])
5669 return;
5670
5671 s = bfd_get_section_by_name
5672 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5673
5674 BFD_ASSERT (s != NULL);
5675
5676 /* Add symbol for veneer. */
5677 tmp_name = (char *)
5678 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5679
5680 BFD_ASSERT (tmp_name);
5681
5682 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5683
5684 myh = elf_link_hash_lookup
5685 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5686
5687 BFD_ASSERT (myh == NULL);
5688
5689 bh = NULL;
5690 val = globals->bx_glue_size;
5691 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5692 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5693 NULL, TRUE, FALSE, &bh);
5694
5695 myh = (struct elf_link_hash_entry *) bh;
5696 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5697 myh->forced_local = 1;
5698
5699 s->size += ARM_BX_VENEER_SIZE;
5700 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5701 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5702 }
5703
5704
5705 /* Add an entry to the code/data map for section SEC. */
5706
5707 static void
5708 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5709 {
5710 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5711 unsigned int newidx;
5712
5713 if (sec_data->map == NULL)
5714 {
5715 sec_data->map = (elf32_arm_section_map *)
5716 bfd_malloc (sizeof (elf32_arm_section_map));
5717 sec_data->mapcount = 0;
5718 sec_data->mapsize = 1;
5719 }
5720
5721 newidx = sec_data->mapcount++;
5722
5723 if (sec_data->mapcount > sec_data->mapsize)
5724 {
5725 sec_data->mapsize *= 2;
5726 sec_data->map = (elf32_arm_section_map *)
5727 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5728 * sizeof (elf32_arm_section_map));
5729 }
5730
5731 if (sec_data->map)
5732 {
5733 sec_data->map[newidx].vma = vma;
5734 sec_data->map[newidx].type = type;
5735 }
5736 }
5737
5738
5739 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5740 veneers are handled for now. */
5741
5742 static bfd_vma
5743 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5744 elf32_vfp11_erratum_list *branch,
5745 bfd *branch_bfd,
5746 asection *branch_sec,
5747 unsigned int offset)
5748 {
5749 asection *s;
5750 struct elf32_arm_link_hash_table *hash_table;
5751 char *tmp_name;
5752 struct elf_link_hash_entry *myh;
5753 struct bfd_link_hash_entry *bh;
5754 bfd_vma val;
5755 struct _arm_elf_section_data *sec_data;
5756 elf32_vfp11_erratum_list *newerr;
5757
5758 hash_table = elf32_arm_hash_table (link_info);
5759 BFD_ASSERT (hash_table != NULL);
5760 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5761
5762 s = bfd_get_section_by_name
5763 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5764
5765 sec_data = elf32_arm_section_data (s);
5766
5767 BFD_ASSERT (s != NULL);
5768
5769 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5770 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5771
5772 BFD_ASSERT (tmp_name);
5773
5774 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5775 hash_table->num_vfp11_fixes);
5776
5777 myh = elf_link_hash_lookup
5778 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5779
5780 BFD_ASSERT (myh == NULL);
5781
5782 bh = NULL;
5783 val = hash_table->vfp11_erratum_glue_size;
5784 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5785 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5786 NULL, TRUE, FALSE, &bh);
5787
5788 myh = (struct elf_link_hash_entry *) bh;
5789 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5790 myh->forced_local = 1;
5791
5792 /* Link veneer back to calling location. */
5793 sec_data->erratumcount += 1;
5794 newerr = (elf32_vfp11_erratum_list *)
5795 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5796
5797 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5798 newerr->vma = -1;
5799 newerr->u.v.branch = branch;
5800 newerr->u.v.id = hash_table->num_vfp11_fixes;
5801 branch->u.b.veneer = newerr;
5802
5803 newerr->next = sec_data->erratumlist;
5804 sec_data->erratumlist = newerr;
5805
5806 /* A symbol for the return from the veneer. */
5807 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5808 hash_table->num_vfp11_fixes);
5809
5810 myh = elf_link_hash_lookup
5811 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5812
5813 if (myh != NULL)
5814 abort ();
5815
5816 bh = NULL;
5817 val = offset + 4;
5818 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5819 branch_sec, val, NULL, TRUE, FALSE, &bh);
5820
5821 myh = (struct elf_link_hash_entry *) bh;
5822 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5823 myh->forced_local = 1;
5824
5825 free (tmp_name);
5826
5827 /* Generate a mapping symbol for the veneer section, and explicitly add an
5828 entry for that symbol to the code/data map for the section. */
5829 if (hash_table->vfp11_erratum_glue_size == 0)
5830 {
5831 bh = NULL;
5832 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5833 ever requires this erratum fix. */
5834 _bfd_generic_link_add_one_symbol (link_info,
5835 hash_table->bfd_of_glue_owner, "$a",
5836 BSF_LOCAL, s, 0, NULL,
5837 TRUE, FALSE, &bh);
5838
5839 myh = (struct elf_link_hash_entry *) bh;
5840 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5841 myh->forced_local = 1;
5842
5843 /* The elf32_arm_init_maps function only cares about symbols from input
5844 BFDs. We must make a note of this generated mapping symbol
5845 ourselves so that code byteswapping works properly in
5846 elf32_arm_write_section. */
5847 elf32_arm_section_map_add (s, 'a', 0);
5848 }
5849
5850 s->size += VFP11_ERRATUM_VENEER_SIZE;
5851 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5852 hash_table->num_vfp11_fixes++;
5853
5854 /* The offset of the veneer. */
5855 return val;
5856 }
5857
5858 #define ARM_GLUE_SECTION_FLAGS \
5859 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5860 | SEC_READONLY | SEC_LINKER_CREATED)
5861
5862 /* Create a fake section for use by the ARM backend of the linker. */
5863
5864 static bfd_boolean
5865 arm_make_glue_section (bfd * abfd, const char * name)
5866 {
5867 asection * sec;
5868
5869 sec = bfd_get_section_by_name (abfd, name);
5870 if (sec != NULL)
5871 /* Already made. */
5872 return TRUE;
5873
5874 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5875
5876 if (sec == NULL
5877 || !bfd_set_section_alignment (abfd, sec, 2))
5878 return FALSE;
5879
5880 /* Set the gc mark to prevent the section from being removed by garbage
5881 collection, despite the fact that no relocs refer to this section. */
5882 sec->gc_mark = 1;
5883
5884 return TRUE;
5885 }
5886
5887 /* Add the glue sections to ABFD. This function is called from the
5888 linker scripts in ld/emultempl/{armelf}.em. */
5889
5890 bfd_boolean
5891 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5892 struct bfd_link_info *info)
5893 {
5894 /* If we are only performing a partial
5895 link do not bother adding the glue. */
5896 if (info->relocatable)
5897 return TRUE;
5898
5899 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5900 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5901 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5902 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
5903 }
5904
5905 /* Select a BFD to be used to hold the sections used by the glue code.
5906 This function is called from the linker scripts in ld/emultempl/
5907 {armelf/pe}.em. */
5908
5909 bfd_boolean
5910 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
5911 {
5912 struct elf32_arm_link_hash_table *globals;
5913
5914 /* If we are only performing a partial link
5915 do not bother getting a bfd to hold the glue. */
5916 if (info->relocatable)
5917 return TRUE;
5918
5919 /* Make sure we don't attach the glue sections to a dynamic object. */
5920 BFD_ASSERT (!(abfd->flags & DYNAMIC));
5921
5922 globals = elf32_arm_hash_table (info);
5923 BFD_ASSERT (globals != NULL);
5924
5925 if (globals->bfd_of_glue_owner != NULL)
5926 return TRUE;
5927
5928 /* Save the bfd for later use. */
5929 globals->bfd_of_glue_owner = abfd;
5930
5931 return TRUE;
5932 }
5933
5934 static void
5935 check_use_blx (struct elf32_arm_link_hash_table *globals)
5936 {
5937 int cpu_arch;
5938
5939 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
5940 Tag_CPU_arch);
5941
5942 if (globals->fix_arm1176)
5943 {
5944 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
5945 globals->use_blx = 1;
5946 }
5947 else
5948 {
5949 if (cpu_arch > TAG_CPU_ARCH_V4T)
5950 globals->use_blx = 1;
5951 }
5952 }
5953
5954 bfd_boolean
5955 bfd_elf32_arm_process_before_allocation (bfd *abfd,
5956 struct bfd_link_info *link_info)
5957 {
5958 Elf_Internal_Shdr *symtab_hdr;
5959 Elf_Internal_Rela *internal_relocs = NULL;
5960 Elf_Internal_Rela *irel, *irelend;
5961 bfd_byte *contents = NULL;
5962
5963 asection *sec;
5964 struct elf32_arm_link_hash_table *globals;
5965
5966 /* If we are only performing a partial link do not bother
5967 to construct any glue. */
5968 if (link_info->relocatable)
5969 return TRUE;
5970
5971 /* Here we have a bfd that is to be included on the link. We have a
5972 hook to do reloc rummaging, before section sizes are nailed down. */
5973 globals = elf32_arm_hash_table (link_info);
5974 BFD_ASSERT (globals != NULL);
5975
5976 check_use_blx (globals);
5977
5978 if (globals->byteswap_code && !bfd_big_endian (abfd))
5979 {
5980 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5981 abfd);
5982 return FALSE;
5983 }
5984
5985 /* PR 5398: If we have not decided to include any loadable sections in
5986 the output then we will not have a glue owner bfd. This is OK, it
5987 just means that there is nothing else for us to do here. */
5988 if (globals->bfd_of_glue_owner == NULL)
5989 return TRUE;
5990
5991 /* Rummage around all the relocs and map the glue vectors. */
5992 sec = abfd->sections;
5993
5994 if (sec == NULL)
5995 return TRUE;
5996
5997 for (; sec != NULL; sec = sec->next)
5998 {
5999 if (sec->reloc_count == 0)
6000 continue;
6001
6002 if ((sec->flags & SEC_EXCLUDE) != 0)
6003 continue;
6004
6005 symtab_hdr = & elf_symtab_hdr (abfd);
6006
6007 /* Load the relocs. */
6008 internal_relocs
6009 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
6010
6011 if (internal_relocs == NULL)
6012 goto error_return;
6013
6014 irelend = internal_relocs + sec->reloc_count;
6015 for (irel = internal_relocs; irel < irelend; irel++)
6016 {
6017 long r_type;
6018 unsigned long r_index;
6019
6020 struct elf_link_hash_entry *h;
6021
6022 r_type = ELF32_R_TYPE (irel->r_info);
6023 r_index = ELF32_R_SYM (irel->r_info);
6024
6025 /* These are the only relocation types we care about. */
6026 if ( r_type != R_ARM_PC24
6027 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6028 continue;
6029
6030 /* Get the section contents if we haven't done so already. */
6031 if (contents == NULL)
6032 {
6033 /* Get cached copy if it exists. */
6034 if (elf_section_data (sec)->this_hdr.contents != NULL)
6035 contents = elf_section_data (sec)->this_hdr.contents;
6036 else
6037 {
6038 /* Go get them off disk. */
6039 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6040 goto error_return;
6041 }
6042 }
6043
6044 if (r_type == R_ARM_V4BX)
6045 {
6046 int reg;
6047
6048 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6049 record_arm_bx_glue (link_info, reg);
6050 continue;
6051 }
6052
6053 /* If the relocation is not against a symbol it cannot concern us. */
6054 h = NULL;
6055
6056 /* We don't care about local symbols. */
6057 if (r_index < symtab_hdr->sh_info)
6058 continue;
6059
6060 /* This is an external symbol. */
6061 r_index -= symtab_hdr->sh_info;
6062 h = (struct elf_link_hash_entry *)
6063 elf_sym_hashes (abfd)[r_index];
6064
6065 /* If the relocation is against a static symbol it must be within
6066 the current section and so cannot be a cross ARM/Thumb relocation. */
6067 if (h == NULL)
6068 continue;
6069
6070 /* If the call will go through a PLT entry then we do not need
6071 glue. */
6072 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6073 continue;
6074
6075 switch (r_type)
6076 {
6077 case R_ARM_PC24:
6078 /* This one is a call from arm code. We need to look up
6079 the target of the call. If it is a thumb target, we
6080 insert glue. */
6081 if (h->target_internal == ST_BRANCH_TO_THUMB)
6082 record_arm_to_thumb_glue (link_info, h);
6083 break;
6084
6085 default:
6086 abort ();
6087 }
6088 }
6089
6090 if (contents != NULL
6091 && elf_section_data (sec)->this_hdr.contents != contents)
6092 free (contents);
6093 contents = NULL;
6094
6095 if (internal_relocs != NULL
6096 && elf_section_data (sec)->relocs != internal_relocs)
6097 free (internal_relocs);
6098 internal_relocs = NULL;
6099 }
6100
6101 return TRUE;
6102
6103 error_return:
6104 if (contents != NULL
6105 && elf_section_data (sec)->this_hdr.contents != contents)
6106 free (contents);
6107 if (internal_relocs != NULL
6108 && elf_section_data (sec)->relocs != internal_relocs)
6109 free (internal_relocs);
6110
6111 return FALSE;
6112 }
6113 #endif
6114
6115
6116 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6117
6118 void
6119 bfd_elf32_arm_init_maps (bfd *abfd)
6120 {
6121 Elf_Internal_Sym *isymbuf;
6122 Elf_Internal_Shdr *hdr;
6123 unsigned int i, localsyms;
6124
6125 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6126 if (! is_arm_elf (abfd))
6127 return;
6128
6129 if ((abfd->flags & DYNAMIC) != 0)
6130 return;
6131
6132 hdr = & elf_symtab_hdr (abfd);
6133 localsyms = hdr->sh_info;
6134
6135 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6136 should contain the number of local symbols, which should come before any
6137 global symbols. Mapping symbols are always local. */
6138 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6139 NULL);
6140
6141 /* No internal symbols read? Skip this BFD. */
6142 if (isymbuf == NULL)
6143 return;
6144
6145 for (i = 0; i < localsyms; i++)
6146 {
6147 Elf_Internal_Sym *isym = &isymbuf[i];
6148 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6149 const char *name;
6150
6151 if (sec != NULL
6152 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6153 {
6154 name = bfd_elf_string_from_elf_section (abfd,
6155 hdr->sh_link, isym->st_name);
6156
6157 if (bfd_is_arm_special_symbol_name (name,
6158 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6159 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6160 }
6161 }
6162 }
6163
6164
6165 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6166 say what they wanted. */
6167
6168 void
6169 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6170 {
6171 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6172 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6173
6174 if (globals == NULL)
6175 return;
6176
6177 if (globals->fix_cortex_a8 == -1)
6178 {
6179 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6180 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6181 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6182 || out_attr[Tag_CPU_arch_profile].i == 0))
6183 globals->fix_cortex_a8 = 1;
6184 else
6185 globals->fix_cortex_a8 = 0;
6186 }
6187 }
6188
6189
6190 void
6191 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6192 {
6193 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6194 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6195
6196 if (globals == NULL)
6197 return;
6198 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6199 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6200 {
6201 switch (globals->vfp11_fix)
6202 {
6203 case BFD_ARM_VFP11_FIX_DEFAULT:
6204 case BFD_ARM_VFP11_FIX_NONE:
6205 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6206 break;
6207
6208 default:
6209 /* Give a warning, but do as the user requests anyway. */
6210 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6211 "workaround is not necessary for target architecture"), obfd);
6212 }
6213 }
6214 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6215 /* For earlier architectures, we might need the workaround, but do not
6216 enable it by default. If users is running with broken hardware, they
6217 must enable the erratum fix explicitly. */
6218 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6219 }
6220
6221
6222 enum bfd_arm_vfp11_pipe
6223 {
6224 VFP11_FMAC,
6225 VFP11_LS,
6226 VFP11_DS,
6227 VFP11_BAD
6228 };
6229
6230 /* Return a VFP register number. This is encoded as RX:X for single-precision
6231 registers, or X:RX for double-precision registers, where RX is the group of
6232 four bits in the instruction encoding and X is the single extension bit.
6233 RX and X fields are specified using their lowest (starting) bit. The return
6234 value is:
6235
6236 0...31: single-precision registers s0...s31
6237 32...63: double-precision registers d0...d31.
6238
6239 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6240 encounter VFP3 instructions, so we allow the full range for DP registers. */
6241
6242 static unsigned int
6243 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6244 unsigned int x)
6245 {
6246 if (is_double)
6247 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6248 else
6249 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6250 }
6251
6252 /* Set bits in *WMASK according to a register number REG as encoded by
6253 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6254
6255 static void
6256 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6257 {
6258 if (reg < 32)
6259 *wmask |= 1 << reg;
6260 else if (reg < 48)
6261 *wmask |= 3 << ((reg - 32) * 2);
6262 }
6263
6264 /* Return TRUE if WMASK overwrites anything in REGS. */
6265
6266 static bfd_boolean
6267 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6268 {
6269 int i;
6270
6271 for (i = 0; i < numregs; i++)
6272 {
6273 unsigned int reg = regs[i];
6274
6275 if (reg < 32 && (wmask & (1 << reg)) != 0)
6276 return TRUE;
6277
6278 reg -= 32;
6279
6280 if (reg >= 16)
6281 continue;
6282
6283 if ((wmask & (3 << (reg * 2))) != 0)
6284 return TRUE;
6285 }
6286
6287 return FALSE;
6288 }
6289
6290 /* In this function, we're interested in two things: finding input registers
6291 for VFP data-processing instructions, and finding the set of registers which
6292 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6293 hold the written set, so FLDM etc. are easy to deal with (we're only
6294 interested in 32 SP registers or 16 dp registers, due to the VFP version
6295 implemented by the chip in question). DP registers are marked by setting
6296 both SP registers in the write mask). */
6297
6298 static enum bfd_arm_vfp11_pipe
6299 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6300 int *numregs)
6301 {
6302 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6303 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6304
6305 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6306 {
6307 unsigned int pqrs;
6308 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6309 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6310
6311 pqrs = ((insn & 0x00800000) >> 20)
6312 | ((insn & 0x00300000) >> 19)
6313 | ((insn & 0x00000040) >> 6);
6314
6315 switch (pqrs)
6316 {
6317 case 0: /* fmac[sd]. */
6318 case 1: /* fnmac[sd]. */
6319 case 2: /* fmsc[sd]. */
6320 case 3: /* fnmsc[sd]. */
6321 vpipe = VFP11_FMAC;
6322 bfd_arm_vfp11_write_mask (destmask, fd);
6323 regs[0] = fd;
6324 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6325 regs[2] = fm;
6326 *numregs = 3;
6327 break;
6328
6329 case 4: /* fmul[sd]. */
6330 case 5: /* fnmul[sd]. */
6331 case 6: /* fadd[sd]. */
6332 case 7: /* fsub[sd]. */
6333 vpipe = VFP11_FMAC;
6334 goto vfp_binop;
6335
6336 case 8: /* fdiv[sd]. */
6337 vpipe = VFP11_DS;
6338 vfp_binop:
6339 bfd_arm_vfp11_write_mask (destmask, fd);
6340 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6341 regs[1] = fm;
6342 *numregs = 2;
6343 break;
6344
6345 case 15: /* extended opcode. */
6346 {
6347 unsigned int extn = ((insn >> 15) & 0x1e)
6348 | ((insn >> 7) & 1);
6349
6350 switch (extn)
6351 {
6352 case 0: /* fcpy[sd]. */
6353 case 1: /* fabs[sd]. */
6354 case 2: /* fneg[sd]. */
6355 case 8: /* fcmp[sd]. */
6356 case 9: /* fcmpe[sd]. */
6357 case 10: /* fcmpz[sd]. */
6358 case 11: /* fcmpez[sd]. */
6359 case 16: /* fuito[sd]. */
6360 case 17: /* fsito[sd]. */
6361 case 24: /* ftoui[sd]. */
6362 case 25: /* ftouiz[sd]. */
6363 case 26: /* ftosi[sd]. */
6364 case 27: /* ftosiz[sd]. */
6365 /* These instructions will not bounce due to underflow. */
6366 *numregs = 0;
6367 vpipe = VFP11_FMAC;
6368 break;
6369
6370 case 3: /* fsqrt[sd]. */
6371 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6372 registers to cause the erratum in previous instructions. */
6373 bfd_arm_vfp11_write_mask (destmask, fd);
6374 vpipe = VFP11_DS;
6375 break;
6376
6377 case 15: /* fcvt{ds,sd}. */
6378 {
6379 int rnum = 0;
6380
6381 bfd_arm_vfp11_write_mask (destmask, fd);
6382
6383 /* Only FCVTSD can underflow. */
6384 if ((insn & 0x100) != 0)
6385 regs[rnum++] = fm;
6386
6387 *numregs = rnum;
6388
6389 vpipe = VFP11_FMAC;
6390 }
6391 break;
6392
6393 default:
6394 return VFP11_BAD;
6395 }
6396 }
6397 break;
6398
6399 default:
6400 return VFP11_BAD;
6401 }
6402 }
6403 /* Two-register transfer. */
6404 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6405 {
6406 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6407
6408 if ((insn & 0x100000) == 0)
6409 {
6410 if (is_double)
6411 bfd_arm_vfp11_write_mask (destmask, fm);
6412 else
6413 {
6414 bfd_arm_vfp11_write_mask (destmask, fm);
6415 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6416 }
6417 }
6418
6419 vpipe = VFP11_LS;
6420 }
6421 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6422 {
6423 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6424 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6425
6426 switch (puw)
6427 {
6428 case 0: /* Two-reg transfer. We should catch these above. */
6429 abort ();
6430
6431 case 2: /* fldm[sdx]. */
6432 case 3:
6433 case 5:
6434 {
6435 unsigned int i, offset = insn & 0xff;
6436
6437 if (is_double)
6438 offset >>= 1;
6439
6440 for (i = fd; i < fd + offset; i++)
6441 bfd_arm_vfp11_write_mask (destmask, i);
6442 }
6443 break;
6444
6445 case 4: /* fld[sd]. */
6446 case 6:
6447 bfd_arm_vfp11_write_mask (destmask, fd);
6448 break;
6449
6450 default:
6451 return VFP11_BAD;
6452 }
6453
6454 vpipe = VFP11_LS;
6455 }
6456 /* Single-register transfer. Note L==0. */
6457 else if ((insn & 0x0f100e10) == 0x0e000a10)
6458 {
6459 unsigned int opcode = (insn >> 21) & 7;
6460 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6461
6462 switch (opcode)
6463 {
6464 case 0: /* fmsr/fmdlr. */
6465 case 1: /* fmdhr. */
6466 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6467 destination register. I don't know if this is exactly right,
6468 but it is the conservative choice. */
6469 bfd_arm_vfp11_write_mask (destmask, fn);
6470 break;
6471
6472 case 7: /* fmxr. */
6473 break;
6474 }
6475
6476 vpipe = VFP11_LS;
6477 }
6478
6479 return vpipe;
6480 }
6481
6482
6483 static int elf32_arm_compare_mapping (const void * a, const void * b);
6484
6485
6486 /* Look for potentially-troublesome code sequences which might trigger the
6487 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6488 (available from ARM) for details of the erratum. A short version is
6489 described in ld.texinfo. */
6490
6491 bfd_boolean
6492 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6493 {
6494 asection *sec;
6495 bfd_byte *contents = NULL;
6496 int state = 0;
6497 int regs[3], numregs = 0;
6498 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6499 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
6500
6501 if (globals == NULL)
6502 return FALSE;
6503
6504 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6505 The states transition as follows:
6506
6507 0 -> 1 (vector) or 0 -> 2 (scalar)
6508 A VFP FMAC-pipeline instruction has been seen. Fill
6509 regs[0]..regs[numregs-1] with its input operands. Remember this
6510 instruction in 'first_fmac'.
6511
6512 1 -> 2
6513 Any instruction, except for a VFP instruction which overwrites
6514 regs[*].
6515
6516 1 -> 3 [ -> 0 ] or
6517 2 -> 3 [ -> 0 ]
6518 A VFP instruction has been seen which overwrites any of regs[*].
6519 We must make a veneer! Reset state to 0 before examining next
6520 instruction.
6521
6522 2 -> 0
6523 If we fail to match anything in state 2, reset to state 0 and reset
6524 the instruction pointer to the instruction after 'first_fmac'.
6525
6526 If the VFP11 vector mode is in use, there must be at least two unrelated
6527 instructions between anti-dependent VFP11 instructions to properly avoid
6528 triggering the erratum, hence the use of the extra state 1. */
6529
6530 /* If we are only performing a partial link do not bother
6531 to construct any glue. */
6532 if (link_info->relocatable)
6533 return TRUE;
6534
6535 /* Skip if this bfd does not correspond to an ELF image. */
6536 if (! is_arm_elf (abfd))
6537 return TRUE;
6538
6539 /* We should have chosen a fix type by the time we get here. */
6540 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6541
6542 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6543 return TRUE;
6544
6545 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6546 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6547 return TRUE;
6548
6549 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6550 {
6551 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6552 struct _arm_elf_section_data *sec_data;
6553
6554 /* If we don't have executable progbits, we're not interested in this
6555 section. Also skip if section is to be excluded. */
6556 if (elf_section_type (sec) != SHT_PROGBITS
6557 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6558 || (sec->flags & SEC_EXCLUDE) != 0
6559 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6560 || sec->output_section == bfd_abs_section_ptr
6561 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6562 continue;
6563
6564 sec_data = elf32_arm_section_data (sec);
6565
6566 if (sec_data->mapcount == 0)
6567 continue;
6568
6569 if (elf_section_data (sec)->this_hdr.contents != NULL)
6570 contents = elf_section_data (sec)->this_hdr.contents;
6571 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6572 goto error_return;
6573
6574 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6575 elf32_arm_compare_mapping);
6576
6577 for (span = 0; span < sec_data->mapcount; span++)
6578 {
6579 unsigned int span_start = sec_data->map[span].vma;
6580 unsigned int span_end = (span == sec_data->mapcount - 1)
6581 ? sec->size : sec_data->map[span + 1].vma;
6582 char span_type = sec_data->map[span].type;
6583
6584 /* FIXME: Only ARM mode is supported at present. We may need to
6585 support Thumb-2 mode also at some point. */
6586 if (span_type != 'a')
6587 continue;
6588
6589 for (i = span_start; i < span_end;)
6590 {
6591 unsigned int next_i = i + 4;
6592 unsigned int insn = bfd_big_endian (abfd)
6593 ? (contents[i] << 24)
6594 | (contents[i + 1] << 16)
6595 | (contents[i + 2] << 8)
6596 | contents[i + 3]
6597 : (contents[i + 3] << 24)
6598 | (contents[i + 2] << 16)
6599 | (contents[i + 1] << 8)
6600 | contents[i];
6601 unsigned int writemask = 0;
6602 enum bfd_arm_vfp11_pipe vpipe;
6603
6604 switch (state)
6605 {
6606 case 0:
6607 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6608 &numregs);
6609 /* I'm assuming the VFP11 erratum can trigger with denorm
6610 operands on either the FMAC or the DS pipeline. This might
6611 lead to slightly overenthusiastic veneer insertion. */
6612 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6613 {
6614 state = use_vector ? 1 : 2;
6615 first_fmac = i;
6616 veneer_of_insn = insn;
6617 }
6618 break;
6619
6620 case 1:
6621 {
6622 int other_regs[3], other_numregs;
6623 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6624 other_regs,
6625 &other_numregs);
6626 if (vpipe != VFP11_BAD
6627 && bfd_arm_vfp11_antidependency (writemask, regs,
6628 numregs))
6629 state = 3;
6630 else
6631 state = 2;
6632 }
6633 break;
6634
6635 case 2:
6636 {
6637 int other_regs[3], other_numregs;
6638 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6639 other_regs,
6640 &other_numregs);
6641 if (vpipe != VFP11_BAD
6642 && bfd_arm_vfp11_antidependency (writemask, regs,
6643 numregs))
6644 state = 3;
6645 else
6646 {
6647 state = 0;
6648 next_i = first_fmac + 4;
6649 }
6650 }
6651 break;
6652
6653 case 3:
6654 abort (); /* Should be unreachable. */
6655 }
6656
6657 if (state == 3)
6658 {
6659 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6660 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6661
6662 elf32_arm_section_data (sec)->erratumcount += 1;
6663
6664 newerr->u.b.vfp_insn = veneer_of_insn;
6665
6666 switch (span_type)
6667 {
6668 case 'a':
6669 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6670 break;
6671
6672 default:
6673 abort ();
6674 }
6675
6676 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6677 first_fmac);
6678
6679 newerr->vma = -1;
6680
6681 newerr->next = sec_data->erratumlist;
6682 sec_data->erratumlist = newerr;
6683
6684 state = 0;
6685 }
6686
6687 i = next_i;
6688 }
6689 }
6690
6691 if (contents != NULL
6692 && elf_section_data (sec)->this_hdr.contents != contents)
6693 free (contents);
6694 contents = NULL;
6695 }
6696
6697 return TRUE;
6698
6699 error_return:
6700 if (contents != NULL
6701 && elf_section_data (sec)->this_hdr.contents != contents)
6702 free (contents);
6703
6704 return FALSE;
6705 }
6706
6707 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6708 after sections have been laid out, using specially-named symbols. */
6709
6710 void
6711 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6712 struct bfd_link_info *link_info)
6713 {
6714 asection *sec;
6715 struct elf32_arm_link_hash_table *globals;
6716 char *tmp_name;
6717
6718 if (link_info->relocatable)
6719 return;
6720
6721 /* Skip if this bfd does not correspond to an ELF image. */
6722 if (! is_arm_elf (abfd))
6723 return;
6724
6725 globals = elf32_arm_hash_table (link_info);
6726 if (globals == NULL)
6727 return;
6728
6729 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6730 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6731
6732 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6733 {
6734 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6735 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6736
6737 for (; errnode != NULL; errnode = errnode->next)
6738 {
6739 struct elf_link_hash_entry *myh;
6740 bfd_vma vma;
6741
6742 switch (errnode->type)
6743 {
6744 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6745 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6746 /* Find veneer symbol. */
6747 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6748 errnode->u.b.veneer->u.v.id);
6749
6750 myh = elf_link_hash_lookup
6751 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6752
6753 if (myh == NULL)
6754 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6755 "`%s'"), abfd, tmp_name);
6756
6757 vma = myh->root.u.def.section->output_section->vma
6758 + myh->root.u.def.section->output_offset
6759 + myh->root.u.def.value;
6760
6761 errnode->u.b.veneer->vma = vma;
6762 break;
6763
6764 case VFP11_ERRATUM_ARM_VENEER:
6765 case VFP11_ERRATUM_THUMB_VENEER:
6766 /* Find return location. */
6767 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6768 errnode->u.v.id);
6769
6770 myh = elf_link_hash_lookup
6771 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6772
6773 if (myh == NULL)
6774 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6775 "`%s'"), abfd, tmp_name);
6776
6777 vma = myh->root.u.def.section->output_section->vma
6778 + myh->root.u.def.section->output_offset
6779 + myh->root.u.def.value;
6780
6781 errnode->u.v.branch->vma = vma;
6782 break;
6783
6784 default:
6785 abort ();
6786 }
6787 }
6788 }
6789
6790 free (tmp_name);
6791 }
6792
6793
6794 /* Set target relocation values needed during linking. */
6795
6796 void
6797 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6798 struct bfd_link_info *link_info,
6799 int target1_is_rel,
6800 char * target2_type,
6801 int fix_v4bx,
6802 int use_blx,
6803 bfd_arm_vfp11_fix vfp11_fix,
6804 int no_enum_warn, int no_wchar_warn,
6805 int pic_veneer, int fix_cortex_a8,
6806 int fix_arm1176)
6807 {
6808 struct elf32_arm_link_hash_table *globals;
6809
6810 globals = elf32_arm_hash_table (link_info);
6811 if (globals == NULL)
6812 return;
6813
6814 globals->target1_is_rel = target1_is_rel;
6815 if (strcmp (target2_type, "rel") == 0)
6816 globals->target2_reloc = R_ARM_REL32;
6817 else if (strcmp (target2_type, "abs") == 0)
6818 globals->target2_reloc = R_ARM_ABS32;
6819 else if (strcmp (target2_type, "got-rel") == 0)
6820 globals->target2_reloc = R_ARM_GOT_PREL;
6821 else
6822 {
6823 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6824 target2_type);
6825 }
6826 globals->fix_v4bx = fix_v4bx;
6827 globals->use_blx |= use_blx;
6828 globals->vfp11_fix = vfp11_fix;
6829 globals->pic_veneer = pic_veneer;
6830 globals->fix_cortex_a8 = fix_cortex_a8;
6831 globals->fix_arm1176 = fix_arm1176;
6832
6833 BFD_ASSERT (is_arm_elf (output_bfd));
6834 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6835 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6836 }
6837
6838 /* Replace the target offset of a Thumb bl or b.w instruction. */
6839
6840 static void
6841 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6842 {
6843 bfd_vma upper;
6844 bfd_vma lower;
6845 int reloc_sign;
6846
6847 BFD_ASSERT ((offset & 1) == 0);
6848
6849 upper = bfd_get_16 (abfd, insn);
6850 lower = bfd_get_16 (abfd, insn + 2);
6851 reloc_sign = (offset < 0) ? 1 : 0;
6852 upper = (upper & ~(bfd_vma) 0x7ff)
6853 | ((offset >> 12) & 0x3ff)
6854 | (reloc_sign << 10);
6855 lower = (lower & ~(bfd_vma) 0x2fff)
6856 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6857 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6858 | ((offset >> 1) & 0x7ff);
6859 bfd_put_16 (abfd, upper, insn);
6860 bfd_put_16 (abfd, lower, insn + 2);
6861 }
6862
6863 /* Thumb code calling an ARM function. */
6864
6865 static int
6866 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6867 const char * name,
6868 bfd * input_bfd,
6869 bfd * output_bfd,
6870 asection * input_section,
6871 bfd_byte * hit_data,
6872 asection * sym_sec,
6873 bfd_vma offset,
6874 bfd_signed_vma addend,
6875 bfd_vma val,
6876 char **error_message)
6877 {
6878 asection * s = 0;
6879 bfd_vma my_offset;
6880 long int ret_offset;
6881 struct elf_link_hash_entry * myh;
6882 struct elf32_arm_link_hash_table * globals;
6883
6884 myh = find_thumb_glue (info, name, error_message);
6885 if (myh == NULL)
6886 return FALSE;
6887
6888 globals = elf32_arm_hash_table (info);
6889 BFD_ASSERT (globals != NULL);
6890 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6891
6892 my_offset = myh->root.u.def.value;
6893
6894 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6895 THUMB2ARM_GLUE_SECTION_NAME);
6896
6897 BFD_ASSERT (s != NULL);
6898 BFD_ASSERT (s->contents != NULL);
6899 BFD_ASSERT (s->output_section != NULL);
6900
6901 if ((my_offset & 0x01) == 0x01)
6902 {
6903 if (sym_sec != NULL
6904 && sym_sec->owner != NULL
6905 && !INTERWORK_FLAG (sym_sec->owner))
6906 {
6907 (*_bfd_error_handler)
6908 (_("%B(%s): warning: interworking not enabled.\n"
6909 " first occurrence: %B: thumb call to arm"),
6910 sym_sec->owner, input_bfd, name);
6911
6912 return FALSE;
6913 }
6914
6915 --my_offset;
6916 myh->root.u.def.value = my_offset;
6917
6918 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6919 s->contents + my_offset);
6920
6921 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6922 s->contents + my_offset + 2);
6923
6924 ret_offset =
6925 /* Address of destination of the stub. */
6926 ((bfd_signed_vma) val)
6927 - ((bfd_signed_vma)
6928 /* Offset from the start of the current section
6929 to the start of the stubs. */
6930 (s->output_offset
6931 /* Offset of the start of this stub from the start of the stubs. */
6932 + my_offset
6933 /* Address of the start of the current section. */
6934 + s->output_section->vma)
6935 /* The branch instruction is 4 bytes into the stub. */
6936 + 4
6937 /* ARM branches work from the pc of the instruction + 8. */
6938 + 8);
6939
6940 put_arm_insn (globals, output_bfd,
6941 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
6942 s->contents + my_offset + 4);
6943 }
6944
6945 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
6946
6947 /* Now go back and fix up the original BL insn to point to here. */
6948 ret_offset =
6949 /* Address of where the stub is located. */
6950 (s->output_section->vma + s->output_offset + my_offset)
6951 /* Address of where the BL is located. */
6952 - (input_section->output_section->vma + input_section->output_offset
6953 + offset)
6954 /* Addend in the relocation. */
6955 - addend
6956 /* Biassing for PC-relative addressing. */
6957 - 8;
6958
6959 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
6960
6961 return TRUE;
6962 }
6963
6964 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
6965
6966 static struct elf_link_hash_entry *
6967 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
6968 const char * name,
6969 bfd * input_bfd,
6970 bfd * output_bfd,
6971 asection * sym_sec,
6972 bfd_vma val,
6973 asection * s,
6974 char ** error_message)
6975 {
6976 bfd_vma my_offset;
6977 long int ret_offset;
6978 struct elf_link_hash_entry * myh;
6979 struct elf32_arm_link_hash_table * globals;
6980
6981 myh = find_arm_glue (info, name, error_message);
6982 if (myh == NULL)
6983 return NULL;
6984
6985 globals = elf32_arm_hash_table (info);
6986 BFD_ASSERT (globals != NULL);
6987 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6988
6989 my_offset = myh->root.u.def.value;
6990
6991 if ((my_offset & 0x01) == 0x01)
6992 {
6993 if (sym_sec != NULL
6994 && sym_sec->owner != NULL
6995 && !INTERWORK_FLAG (sym_sec->owner))
6996 {
6997 (*_bfd_error_handler)
6998 (_("%B(%s): warning: interworking not enabled.\n"
6999 " first occurrence: %B: arm call to thumb"),
7000 sym_sec->owner, input_bfd, name);
7001 }
7002
7003 --my_offset;
7004 myh->root.u.def.value = my_offset;
7005
7006 if (info->shared || globals->root.is_relocatable_executable
7007 || globals->pic_veneer)
7008 {
7009 /* For relocatable objects we can't use absolute addresses,
7010 so construct the address from a relative offset. */
7011 /* TODO: If the offset is small it's probably worth
7012 constructing the address with adds. */
7013 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7014 s->contents + my_offset);
7015 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7016 s->contents + my_offset + 4);
7017 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7018 s->contents + my_offset + 8);
7019 /* Adjust the offset by 4 for the position of the add,
7020 and 8 for the pipeline offset. */
7021 ret_offset = (val - (s->output_offset
7022 + s->output_section->vma
7023 + my_offset + 12))
7024 | 1;
7025 bfd_put_32 (output_bfd, ret_offset,
7026 s->contents + my_offset + 12);
7027 }
7028 else if (globals->use_blx)
7029 {
7030 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7031 s->contents + my_offset);
7032
7033 /* It's a thumb address. Add the low order bit. */
7034 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7035 s->contents + my_offset + 4);
7036 }
7037 else
7038 {
7039 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7040 s->contents + my_offset);
7041
7042 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7043 s->contents + my_offset + 4);
7044
7045 /* It's a thumb address. Add the low order bit. */
7046 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7047 s->contents + my_offset + 8);
7048
7049 my_offset += 12;
7050 }
7051 }
7052
7053 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7054
7055 return myh;
7056 }
7057
7058 /* Arm code calling a Thumb function. */
7059
7060 static int
7061 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7062 const char * name,
7063 bfd * input_bfd,
7064 bfd * output_bfd,
7065 asection * input_section,
7066 bfd_byte * hit_data,
7067 asection * sym_sec,
7068 bfd_vma offset,
7069 bfd_signed_vma addend,
7070 bfd_vma val,
7071 char **error_message)
7072 {
7073 unsigned long int tmp;
7074 bfd_vma my_offset;
7075 asection * s;
7076 long int ret_offset;
7077 struct elf_link_hash_entry * myh;
7078 struct elf32_arm_link_hash_table * globals;
7079
7080 globals = elf32_arm_hash_table (info);
7081 BFD_ASSERT (globals != NULL);
7082 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7083
7084 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7085 ARM2THUMB_GLUE_SECTION_NAME);
7086 BFD_ASSERT (s != NULL);
7087 BFD_ASSERT (s->contents != NULL);
7088 BFD_ASSERT (s->output_section != NULL);
7089
7090 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
7091 sym_sec, val, s, error_message);
7092 if (!myh)
7093 return FALSE;
7094
7095 my_offset = myh->root.u.def.value;
7096 tmp = bfd_get_32 (input_bfd, hit_data);
7097 tmp = tmp & 0xFF000000;
7098
7099 /* Somehow these are both 4 too far, so subtract 8. */
7100 ret_offset = (s->output_offset
7101 + my_offset
7102 + s->output_section->vma
7103 - (input_section->output_offset
7104 + input_section->output_section->vma
7105 + offset + addend)
7106 - 8);
7107
7108 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7109
7110 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
7111
7112 return TRUE;
7113 }
7114
7115 /* Populate Arm stub for an exported Thumb function. */
7116
7117 static bfd_boolean
7118 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7119 {
7120 struct bfd_link_info * info = (struct bfd_link_info *) inf;
7121 asection * s;
7122 struct elf_link_hash_entry * myh;
7123 struct elf32_arm_link_hash_entry *eh;
7124 struct elf32_arm_link_hash_table * globals;
7125 asection *sec;
7126 bfd_vma val;
7127 char *error_message;
7128
7129 eh = elf32_arm_hash_entry (h);
7130 /* Allocate stubs for exported Thumb functions on v4t. */
7131 if (eh->export_glue == NULL)
7132 return TRUE;
7133
7134 globals = elf32_arm_hash_table (info);
7135 BFD_ASSERT (globals != NULL);
7136 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7137
7138 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7139 ARM2THUMB_GLUE_SECTION_NAME);
7140 BFD_ASSERT (s != NULL);
7141 BFD_ASSERT (s->contents != NULL);
7142 BFD_ASSERT (s->output_section != NULL);
7143
7144 sec = eh->export_glue->root.u.def.section;
7145
7146 BFD_ASSERT (sec->output_section != NULL);
7147
7148 val = eh->export_glue->root.u.def.value + sec->output_offset
7149 + sec->output_section->vma;
7150
7151 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7152 h->root.u.def.section->owner,
7153 globals->obfd, sec, val, s,
7154 &error_message);
7155 BFD_ASSERT (myh);
7156 return TRUE;
7157 }
7158
7159 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7160
7161 static bfd_vma
7162 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7163 {
7164 bfd_byte *p;
7165 bfd_vma glue_addr;
7166 asection *s;
7167 struct elf32_arm_link_hash_table *globals;
7168
7169 globals = elf32_arm_hash_table (info);
7170 BFD_ASSERT (globals != NULL);
7171 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7172
7173 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7174 ARM_BX_GLUE_SECTION_NAME);
7175 BFD_ASSERT (s != NULL);
7176 BFD_ASSERT (s->contents != NULL);
7177 BFD_ASSERT (s->output_section != NULL);
7178
7179 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7180
7181 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7182
7183 if ((globals->bx_glue_offset[reg] & 1) == 0)
7184 {
7185 p = s->contents + glue_addr;
7186 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7187 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7188 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7189 globals->bx_glue_offset[reg] |= 1;
7190 }
7191
7192 return glue_addr + s->output_section->vma + s->output_offset;
7193 }
7194
7195 /* Generate Arm stubs for exported Thumb symbols. */
7196 static void
7197 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
7198 struct bfd_link_info *link_info)
7199 {
7200 struct elf32_arm_link_hash_table * globals;
7201
7202 if (link_info == NULL)
7203 /* Ignore this if we are not called by the ELF backend linker. */
7204 return;
7205
7206 globals = elf32_arm_hash_table (link_info);
7207 if (globals == NULL)
7208 return;
7209
7210 /* If blx is available then exported Thumb symbols are OK and there is
7211 nothing to do. */
7212 if (globals->use_blx)
7213 return;
7214
7215 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7216 link_info);
7217 }
7218
7219 /* Reserve space for COUNT dynamic relocations in relocation selection
7220 SRELOC. */
7221
7222 static void
7223 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7224 bfd_size_type count)
7225 {
7226 struct elf32_arm_link_hash_table *htab;
7227
7228 htab = elf32_arm_hash_table (info);
7229 BFD_ASSERT (htab->root.dynamic_sections_created);
7230 if (sreloc == NULL)
7231 abort ();
7232 sreloc->size += RELOC_SIZE (htab) * count;
7233 }
7234
7235 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7236 dynamic, the relocations should go in SRELOC, otherwise they should
7237 go in the special .rel.iplt section. */
7238
7239 static void
7240 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7241 bfd_size_type count)
7242 {
7243 struct elf32_arm_link_hash_table *htab;
7244
7245 htab = elf32_arm_hash_table (info);
7246 if (!htab->root.dynamic_sections_created)
7247 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7248 else
7249 {
7250 BFD_ASSERT (sreloc != NULL);
7251 sreloc->size += RELOC_SIZE (htab) * count;
7252 }
7253 }
7254
7255 /* Add relocation REL to the end of relocation section SRELOC. */
7256
7257 static void
7258 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7259 asection *sreloc, Elf_Internal_Rela *rel)
7260 {
7261 bfd_byte *loc;
7262 struct elf32_arm_link_hash_table *htab;
7263
7264 htab = elf32_arm_hash_table (info);
7265 if (!htab->root.dynamic_sections_created
7266 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7267 sreloc = htab->root.irelplt;
7268 if (sreloc == NULL)
7269 abort ();
7270 loc = sreloc->contents;
7271 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7272 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7273 abort ();
7274 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7275 }
7276
7277 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7278 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7279 to .plt. */
7280
7281 static void
7282 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7283 bfd_boolean is_iplt_entry,
7284 union gotplt_union *root_plt,
7285 struct arm_plt_info *arm_plt)
7286 {
7287 struct elf32_arm_link_hash_table *htab;
7288 asection *splt;
7289 asection *sgotplt;
7290
7291 htab = elf32_arm_hash_table (info);
7292
7293 if (is_iplt_entry)
7294 {
7295 splt = htab->root.iplt;
7296 sgotplt = htab->root.igotplt;
7297
7298 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7299 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7300 }
7301 else
7302 {
7303 splt = htab->root.splt;
7304 sgotplt = htab->root.sgotplt;
7305
7306 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7307 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7308
7309 /* If this is the first .plt entry, make room for the special
7310 first entry. */
7311 if (splt->size == 0)
7312 splt->size += htab->plt_header_size;
7313 }
7314
7315 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7316 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7317 splt->size += PLT_THUMB_STUB_SIZE;
7318 root_plt->offset = splt->size;
7319 splt->size += htab->plt_entry_size;
7320
7321 if (!htab->symbian_p)
7322 {
7323 /* We also need to make an entry in the .got.plt section, which
7324 will be placed in the .got section by the linker script. */
7325 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7326 sgotplt->size += 4;
7327 }
7328 }
7329
7330 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7331 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7332 Otherwise, DYNINDX is the index of the symbol in the dynamic
7333 symbol table and SYM_VALUE is undefined.
7334
7335 ROOT_PLT points to the offset of the PLT entry from the start of its
7336 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7337 bookkeeping information. */
7338
7339 static void
7340 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7341 union gotplt_union *root_plt,
7342 struct arm_plt_info *arm_plt,
7343 int dynindx, bfd_vma sym_value)
7344 {
7345 struct elf32_arm_link_hash_table *htab;
7346 asection *sgot;
7347 asection *splt;
7348 asection *srel;
7349 bfd_byte *loc;
7350 bfd_vma plt_index;
7351 Elf_Internal_Rela rel;
7352 bfd_vma plt_header_size;
7353 bfd_vma got_header_size;
7354
7355 htab = elf32_arm_hash_table (info);
7356
7357 /* Pick the appropriate sections and sizes. */
7358 if (dynindx == -1)
7359 {
7360 splt = htab->root.iplt;
7361 sgot = htab->root.igotplt;
7362 srel = htab->root.irelplt;
7363
7364 /* There are no reserved entries in .igot.plt, and no special
7365 first entry in .iplt. */
7366 got_header_size = 0;
7367 plt_header_size = 0;
7368 }
7369 else
7370 {
7371 splt = htab->root.splt;
7372 sgot = htab->root.sgotplt;
7373 srel = htab->root.srelplt;
7374
7375 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7376 plt_header_size = htab->plt_header_size;
7377 }
7378 BFD_ASSERT (splt != NULL && srel != NULL);
7379
7380 /* Fill in the entry in the procedure linkage table. */
7381 if (htab->symbian_p)
7382 {
7383 BFD_ASSERT (dynindx >= 0);
7384 put_arm_insn (htab, output_bfd,
7385 elf32_arm_symbian_plt_entry[0],
7386 splt->contents + root_plt->offset);
7387 bfd_put_32 (output_bfd,
7388 elf32_arm_symbian_plt_entry[1],
7389 splt->contents + root_plt->offset + 4);
7390
7391 /* Fill in the entry in the .rel.plt section. */
7392 rel.r_offset = (splt->output_section->vma
7393 + splt->output_offset
7394 + root_plt->offset + 4);
7395 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7396
7397 /* Get the index in the procedure linkage table which
7398 corresponds to this symbol. This is the index of this symbol
7399 in all the symbols for which we are making plt entries. The
7400 first entry in the procedure linkage table is reserved. */
7401 plt_index = ((root_plt->offset - plt_header_size)
7402 / htab->plt_entry_size);
7403 }
7404 else
7405 {
7406 bfd_vma got_offset, got_address, plt_address;
7407 bfd_vma got_displacement, initial_got_entry;
7408 bfd_byte * ptr;
7409
7410 BFD_ASSERT (sgot != NULL);
7411
7412 /* Get the offset into the .(i)got.plt table of the entry that
7413 corresponds to this function. */
7414 got_offset = (arm_plt->got_offset & -2);
7415
7416 /* Get the index in the procedure linkage table which
7417 corresponds to this symbol. This is the index of this symbol
7418 in all the symbols for which we are making plt entries.
7419 After the reserved .got.plt entries, all symbols appear in
7420 the same order as in .plt. */
7421 plt_index = (got_offset - got_header_size) / 4;
7422
7423 /* Calculate the address of the GOT entry. */
7424 got_address = (sgot->output_section->vma
7425 + sgot->output_offset
7426 + got_offset);
7427
7428 /* ...and the address of the PLT entry. */
7429 plt_address = (splt->output_section->vma
7430 + splt->output_offset
7431 + root_plt->offset);
7432
7433 ptr = splt->contents + root_plt->offset;
7434 if (htab->vxworks_p && info->shared)
7435 {
7436 unsigned int i;
7437 bfd_vma val;
7438
7439 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7440 {
7441 val = elf32_arm_vxworks_shared_plt_entry[i];
7442 if (i == 2)
7443 val |= got_address - sgot->output_section->vma;
7444 if (i == 5)
7445 val |= plt_index * RELOC_SIZE (htab);
7446 if (i == 2 || i == 5)
7447 bfd_put_32 (output_bfd, val, ptr);
7448 else
7449 put_arm_insn (htab, output_bfd, val, ptr);
7450 }
7451 }
7452 else if (htab->vxworks_p)
7453 {
7454 unsigned int i;
7455 bfd_vma val;
7456
7457 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7458 {
7459 val = elf32_arm_vxworks_exec_plt_entry[i];
7460 if (i == 2)
7461 val |= got_address;
7462 if (i == 4)
7463 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7464 if (i == 5)
7465 val |= plt_index * RELOC_SIZE (htab);
7466 if (i == 2 || i == 5)
7467 bfd_put_32 (output_bfd, val, ptr);
7468 else
7469 put_arm_insn (htab, output_bfd, val, ptr);
7470 }
7471
7472 loc = (htab->srelplt2->contents
7473 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7474
7475 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7476 referencing the GOT for this PLT entry. */
7477 rel.r_offset = plt_address + 8;
7478 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7479 rel.r_addend = got_offset;
7480 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7481 loc += RELOC_SIZE (htab);
7482
7483 /* Create the R_ARM_ABS32 relocation referencing the
7484 beginning of the PLT for this GOT entry. */
7485 rel.r_offset = got_address;
7486 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7487 rel.r_addend = 0;
7488 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7489 }
7490 else
7491 {
7492 /* Calculate the displacement between the PLT slot and the
7493 entry in the GOT. The eight-byte offset accounts for the
7494 value produced by adding to pc in the first instruction
7495 of the PLT stub. */
7496 got_displacement = got_address - (plt_address + 8);
7497
7498 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7499
7500 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7501 {
7502 put_thumb_insn (htab, output_bfd,
7503 elf32_arm_plt_thumb_stub[0], ptr - 4);
7504 put_thumb_insn (htab, output_bfd,
7505 elf32_arm_plt_thumb_stub[1], ptr - 2);
7506 }
7507
7508 put_arm_insn (htab, output_bfd,
7509 elf32_arm_plt_entry[0]
7510 | ((got_displacement & 0x0ff00000) >> 20),
7511 ptr + 0);
7512 put_arm_insn (htab, output_bfd,
7513 elf32_arm_plt_entry[1]
7514 | ((got_displacement & 0x000ff000) >> 12),
7515 ptr+ 4);
7516 put_arm_insn (htab, output_bfd,
7517 elf32_arm_plt_entry[2]
7518 | (got_displacement & 0x00000fff),
7519 ptr + 8);
7520 #ifdef FOUR_WORD_PLT
7521 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
7522 #endif
7523 }
7524
7525 /* Fill in the entry in the .rel(a).(i)plt section. */
7526 rel.r_offset = got_address;
7527 rel.r_addend = 0;
7528 if (dynindx == -1)
7529 {
7530 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7531 The dynamic linker or static executable then calls SYM_VALUE
7532 to determine the correct run-time value of the .igot.plt entry. */
7533 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7534 initial_got_entry = sym_value;
7535 }
7536 else
7537 {
7538 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7539 initial_got_entry = (splt->output_section->vma
7540 + splt->output_offset);
7541 }
7542
7543 /* Fill in the entry in the global offset table. */
7544 bfd_put_32 (output_bfd, initial_got_entry,
7545 sgot->contents + got_offset);
7546 }
7547
7548 loc = srel->contents + plt_index * RELOC_SIZE (htab);
7549 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7550 }
7551
7552 /* Some relocations map to different relocations depending on the
7553 target. Return the real relocation. */
7554
7555 static int
7556 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7557 int r_type)
7558 {
7559 switch (r_type)
7560 {
7561 case R_ARM_TARGET1:
7562 if (globals->target1_is_rel)
7563 return R_ARM_REL32;
7564 else
7565 return R_ARM_ABS32;
7566
7567 case R_ARM_TARGET2:
7568 return globals->target2_reloc;
7569
7570 default:
7571 return r_type;
7572 }
7573 }
7574
7575 /* Return the base VMA address which should be subtracted from real addresses
7576 when resolving @dtpoff relocation.
7577 This is PT_TLS segment p_vaddr. */
7578
7579 static bfd_vma
7580 dtpoff_base (struct bfd_link_info *info)
7581 {
7582 /* If tls_sec is NULL, we should have signalled an error already. */
7583 if (elf_hash_table (info)->tls_sec == NULL)
7584 return 0;
7585 return elf_hash_table (info)->tls_sec->vma;
7586 }
7587
7588 /* Return the relocation value for @tpoff relocation
7589 if STT_TLS virtual address is ADDRESS. */
7590
7591 static bfd_vma
7592 tpoff (struct bfd_link_info *info, bfd_vma address)
7593 {
7594 struct elf_link_hash_table *htab = elf_hash_table (info);
7595 bfd_vma base;
7596
7597 /* If tls_sec is NULL, we should have signalled an error already. */
7598 if (htab->tls_sec == NULL)
7599 return 0;
7600 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7601 return address - htab->tls_sec->vma + base;
7602 }
7603
7604 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7605 VALUE is the relocation value. */
7606
7607 static bfd_reloc_status_type
7608 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7609 {
7610 if (value > 0xfff)
7611 return bfd_reloc_overflow;
7612
7613 value |= bfd_get_32 (abfd, data) & 0xfffff000;
7614 bfd_put_32 (abfd, value, data);
7615 return bfd_reloc_ok;
7616 }
7617
7618 /* Handle TLS relaxations. Relaxing is possible for symbols that use
7619 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7620 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7621
7622 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7623 is to then call final_link_relocate. Return other values in the
7624 case of error.
7625
7626 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7627 the pre-relaxed code. It would be nice if the relocs were updated
7628 to match the optimization. */
7629
7630 static bfd_reloc_status_type
7631 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
7632 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
7633 Elf_Internal_Rela *rel, unsigned long is_local)
7634 {
7635 unsigned long insn;
7636
7637 switch (ELF32_R_TYPE (rel->r_info))
7638 {
7639 default:
7640 return bfd_reloc_notsupported;
7641
7642 case R_ARM_TLS_GOTDESC:
7643 if (is_local)
7644 insn = 0;
7645 else
7646 {
7647 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7648 if (insn & 1)
7649 insn -= 5; /* THUMB */
7650 else
7651 insn -= 8; /* ARM */
7652 }
7653 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7654 return bfd_reloc_continue;
7655
7656 case R_ARM_THM_TLS_DESCSEQ:
7657 /* Thumb insn. */
7658 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
7659 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
7660 {
7661 if (is_local)
7662 /* nop */
7663 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7664 }
7665 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
7666 {
7667 if (is_local)
7668 /* nop */
7669 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7670 else
7671 /* ldr rx,[ry] */
7672 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
7673 }
7674 else if ((insn & 0xff87) == 0x4780) /* blx rx */
7675 {
7676 if (is_local)
7677 /* nop */
7678 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7679 else
7680 /* mov r0, rx */
7681 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
7682 contents + rel->r_offset);
7683 }
7684 else
7685 {
7686 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
7687 /* It's a 32 bit instruction, fetch the rest of it for
7688 error generation. */
7689 insn = (insn << 16)
7690 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
7691 (*_bfd_error_handler)
7692 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7693 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7694 return bfd_reloc_notsupported;
7695 }
7696 break;
7697
7698 case R_ARM_TLS_DESCSEQ:
7699 /* arm insn. */
7700 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7701 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7702 {
7703 if (is_local)
7704 /* mov rx, ry */
7705 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
7706 contents + rel->r_offset);
7707 }
7708 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7709 {
7710 if (is_local)
7711 /* nop */
7712 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7713 else
7714 /* ldr rx,[ry] */
7715 bfd_put_32 (input_bfd, insn & 0xfffff000,
7716 contents + rel->r_offset);
7717 }
7718 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
7719 {
7720 if (is_local)
7721 /* nop */
7722 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7723 else
7724 /* mov r0, rx */
7725 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
7726 contents + rel->r_offset);
7727 }
7728 else
7729 {
7730 (*_bfd_error_handler)
7731 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7732 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7733 return bfd_reloc_notsupported;
7734 }
7735 break;
7736
7737 case R_ARM_TLS_CALL:
7738 /* GD->IE relaxation, turn the instruction into 'nop' or
7739 'ldr r0, [pc,r0]' */
7740 insn = is_local ? 0xe1a00000 : 0xe79f0000;
7741 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7742 break;
7743
7744 case R_ARM_THM_TLS_CALL:
7745 /* GD->IE relaxation */
7746 if (!is_local)
7747 /* add r0,pc; ldr r0, [r0] */
7748 insn = 0x44786800;
7749 else if (arch_has_thumb2_nop (globals))
7750 /* nop.w */
7751 insn = 0xf3af8000;
7752 else
7753 /* nop; nop */
7754 insn = 0xbf00bf00;
7755
7756 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
7757 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
7758 break;
7759 }
7760 return bfd_reloc_ok;
7761 }
7762
7763 /* For a given value of n, calculate the value of G_n as required to
7764 deal with group relocations. We return it in the form of an
7765 encoded constant-and-rotation, together with the final residual. If n is
7766 specified as less than zero, then final_residual is filled with the
7767 input value and no further action is performed. */
7768
7769 static bfd_vma
7770 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
7771 {
7772 int current_n;
7773 bfd_vma g_n;
7774 bfd_vma encoded_g_n = 0;
7775 bfd_vma residual = value; /* Also known as Y_n. */
7776
7777 for (current_n = 0; current_n <= n; current_n++)
7778 {
7779 int shift;
7780
7781 /* Calculate which part of the value to mask. */
7782 if (residual == 0)
7783 shift = 0;
7784 else
7785 {
7786 int msb;
7787
7788 /* Determine the most significant bit in the residual and
7789 align the resulting value to a 2-bit boundary. */
7790 for (msb = 30; msb >= 0; msb -= 2)
7791 if (residual & (3 << msb))
7792 break;
7793
7794 /* The desired shift is now (msb - 6), or zero, whichever
7795 is the greater. */
7796 shift = msb - 6;
7797 if (shift < 0)
7798 shift = 0;
7799 }
7800
7801 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
7802 g_n = residual & (0xff << shift);
7803 encoded_g_n = (g_n >> shift)
7804 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
7805
7806 /* Calculate the residual for the next time around. */
7807 residual &= ~g_n;
7808 }
7809
7810 *final_residual = residual;
7811
7812 return encoded_g_n;
7813 }
7814
7815 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
7816 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
7817
7818 static int
7819 identify_add_or_sub (bfd_vma insn)
7820 {
7821 int opcode = insn & 0x1e00000;
7822
7823 if (opcode == 1 << 23) /* ADD */
7824 return 1;
7825
7826 if (opcode == 1 << 22) /* SUB */
7827 return -1;
7828
7829 return 0;
7830 }
7831
7832 /* Perform a relocation as part of a final link. */
7833
7834 static bfd_reloc_status_type
7835 elf32_arm_final_link_relocate (reloc_howto_type * howto,
7836 bfd * input_bfd,
7837 bfd * output_bfd,
7838 asection * input_section,
7839 bfd_byte * contents,
7840 Elf_Internal_Rela * rel,
7841 bfd_vma value,
7842 struct bfd_link_info * info,
7843 asection * sym_sec,
7844 const char * sym_name,
7845 unsigned char st_type,
7846 enum arm_st_branch_type branch_type,
7847 struct elf_link_hash_entry * h,
7848 bfd_boolean * unresolved_reloc_p,
7849 char ** error_message)
7850 {
7851 unsigned long r_type = howto->type;
7852 unsigned long r_symndx;
7853 bfd_byte * hit_data = contents + rel->r_offset;
7854 bfd_vma * local_got_offsets;
7855 bfd_vma * local_tlsdesc_gotents;
7856 asection * sgot;
7857 asection * splt;
7858 asection * sreloc = NULL;
7859 asection * srelgot;
7860 bfd_vma addend;
7861 bfd_signed_vma signed_addend;
7862 unsigned char dynreloc_st_type;
7863 bfd_vma dynreloc_value;
7864 struct elf32_arm_link_hash_table * globals;
7865 struct elf32_arm_link_hash_entry *eh;
7866 union gotplt_union *root_plt;
7867 struct arm_plt_info *arm_plt;
7868 bfd_vma plt_offset;
7869 bfd_vma gotplt_offset;
7870 bfd_boolean has_iplt_entry;
7871
7872 globals = elf32_arm_hash_table (info);
7873 if (globals == NULL)
7874 return bfd_reloc_notsupported;
7875
7876 BFD_ASSERT (is_arm_elf (input_bfd));
7877
7878 /* Some relocation types map to different relocations depending on the
7879 target. We pick the right one here. */
7880 r_type = arm_real_reloc_type (globals, r_type);
7881
7882 /* It is possible to have linker relaxations on some TLS access
7883 models. Update our information here. */
7884 r_type = elf32_arm_tls_transition (info, r_type, h);
7885
7886 if (r_type != howto->type)
7887 howto = elf32_arm_howto_from_type (r_type);
7888
7889 /* If the start address has been set, then set the EF_ARM_HASENTRY
7890 flag. Setting this more than once is redundant, but the cost is
7891 not too high, and it keeps the code simple.
7892
7893 The test is done here, rather than somewhere else, because the
7894 start address is only set just before the final link commences.
7895
7896 Note - if the user deliberately sets a start address of 0, the
7897 flag will not be set. */
7898 if (bfd_get_start_address (output_bfd) != 0)
7899 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
7900
7901 eh = (struct elf32_arm_link_hash_entry *) h;
7902 sgot = globals->root.sgot;
7903 local_got_offsets = elf_local_got_offsets (input_bfd);
7904 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
7905
7906 if (globals->root.dynamic_sections_created)
7907 srelgot = globals->root.srelgot;
7908 else
7909 srelgot = NULL;
7910
7911 r_symndx = ELF32_R_SYM (rel->r_info);
7912
7913 if (globals->use_rel)
7914 {
7915 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
7916
7917 if (addend & ((howto->src_mask + 1) >> 1))
7918 {
7919 signed_addend = -1;
7920 signed_addend &= ~ howto->src_mask;
7921 signed_addend |= addend;
7922 }
7923 else
7924 signed_addend = addend;
7925 }
7926 else
7927 addend = signed_addend = rel->r_addend;
7928
7929 /* Record the symbol information that should be used in dynamic
7930 relocations. */
7931 dynreloc_st_type = st_type;
7932 dynreloc_value = value;
7933 if (branch_type == ST_BRANCH_TO_THUMB)
7934 dynreloc_value |= 1;
7935
7936 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
7937 VALUE appropriately for relocations that we resolve at link time. */
7938 has_iplt_entry = FALSE;
7939 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
7940 && root_plt->offset != (bfd_vma) -1)
7941 {
7942 plt_offset = root_plt->offset;
7943 gotplt_offset = arm_plt->got_offset;
7944
7945 if (h == NULL || eh->is_iplt)
7946 {
7947 has_iplt_entry = TRUE;
7948 splt = globals->root.iplt;
7949
7950 /* Populate .iplt entries here, because not all of them will
7951 be seen by finish_dynamic_symbol. The lower bit is set if
7952 we have already populated the entry. */
7953 if (plt_offset & 1)
7954 plt_offset--;
7955 else
7956 {
7957 elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
7958 -1, dynreloc_value);
7959 root_plt->offset |= 1;
7960 }
7961
7962 /* Static relocations always resolve to the .iplt entry. */
7963 st_type = STT_FUNC;
7964 value = (splt->output_section->vma
7965 + splt->output_offset
7966 + plt_offset);
7967 branch_type = ST_BRANCH_TO_ARM;
7968
7969 /* If there are non-call relocations that resolve to the .iplt
7970 entry, then all dynamic ones must too. */
7971 if (arm_plt->noncall_refcount != 0)
7972 {
7973 dynreloc_st_type = st_type;
7974 dynreloc_value = value;
7975 }
7976 }
7977 else
7978 /* We populate the .plt entry in finish_dynamic_symbol. */
7979 splt = globals->root.splt;
7980 }
7981 else
7982 {
7983 splt = NULL;
7984 plt_offset = (bfd_vma) -1;
7985 gotplt_offset = (bfd_vma) -1;
7986 }
7987
7988 switch (r_type)
7989 {
7990 case R_ARM_NONE:
7991 /* We don't need to find a value for this symbol. It's just a
7992 marker. */
7993 *unresolved_reloc_p = FALSE;
7994 return bfd_reloc_ok;
7995
7996 case R_ARM_ABS12:
7997 if (!globals->vxworks_p)
7998 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
7999
8000 case R_ARM_PC24:
8001 case R_ARM_ABS32:
8002 case R_ARM_ABS32_NOI:
8003 case R_ARM_REL32:
8004 case R_ARM_REL32_NOI:
8005 case R_ARM_CALL:
8006 case R_ARM_JUMP24:
8007 case R_ARM_XPC25:
8008 case R_ARM_PREL31:
8009 case R_ARM_PLT32:
8010 /* Handle relocations which should use the PLT entry. ABS32/REL32
8011 will use the symbol's value, which may point to a PLT entry, but we
8012 don't need to handle that here. If we created a PLT entry, all
8013 branches in this object should go to it, except if the PLT is too
8014 far away, in which case a long branch stub should be inserted. */
8015 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
8016 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
8017 && r_type != R_ARM_CALL
8018 && r_type != R_ARM_JUMP24
8019 && r_type != R_ARM_PLT32)
8020 && plt_offset != (bfd_vma) -1)
8021 {
8022 /* If we've created a .plt section, and assigned a PLT entry
8023 to this function, it must either be a STT_GNU_IFUNC reference
8024 or not be known to bind locally. In other cases, we should
8025 have cleared the PLT entry by now. */
8026 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
8027
8028 value = (splt->output_section->vma
8029 + splt->output_offset
8030 + plt_offset);
8031 *unresolved_reloc_p = FALSE;
8032 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8033 contents, rel->r_offset, value,
8034 rel->r_addend);
8035 }
8036
8037 /* When generating a shared object or relocatable executable, these
8038 relocations are copied into the output file to be resolved at
8039 run time. */
8040 if ((info->shared || globals->root.is_relocatable_executable)
8041 && (input_section->flags & SEC_ALLOC)
8042 && !(globals->vxworks_p
8043 && strcmp (input_section->output_section->name,
8044 ".tls_vars") == 0)
8045 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
8046 || !SYMBOL_CALLS_LOCAL (info, h))
8047 && (!strstr (input_section->name, STUB_SUFFIX))
8048 && (h == NULL
8049 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8050 || h->root.type != bfd_link_hash_undefweak)
8051 && r_type != R_ARM_PC24
8052 && r_type != R_ARM_CALL
8053 && r_type != R_ARM_JUMP24
8054 && r_type != R_ARM_PREL31
8055 && r_type != R_ARM_PLT32)
8056 {
8057 Elf_Internal_Rela outrel;
8058 bfd_boolean skip, relocate;
8059
8060 *unresolved_reloc_p = FALSE;
8061
8062 if (sreloc == NULL && globals->root.dynamic_sections_created)
8063 {
8064 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8065 ! globals->use_rel);
8066
8067 if (sreloc == NULL)
8068 return bfd_reloc_notsupported;
8069 }
8070
8071 skip = FALSE;
8072 relocate = FALSE;
8073
8074 outrel.r_addend = addend;
8075 outrel.r_offset =
8076 _bfd_elf_section_offset (output_bfd, info, input_section,
8077 rel->r_offset);
8078 if (outrel.r_offset == (bfd_vma) -1)
8079 skip = TRUE;
8080 else if (outrel.r_offset == (bfd_vma) -2)
8081 skip = TRUE, relocate = TRUE;
8082 outrel.r_offset += (input_section->output_section->vma
8083 + input_section->output_offset);
8084
8085 if (skip)
8086 memset (&outrel, 0, sizeof outrel);
8087 else if (h != NULL
8088 && h->dynindx != -1
8089 && (!info->shared
8090 || !info->symbolic
8091 || !h->def_regular))
8092 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
8093 else
8094 {
8095 int symbol;
8096
8097 /* This symbol is local, or marked to become local. */
8098 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
8099 if (globals->symbian_p)
8100 {
8101 asection *osec;
8102
8103 /* On Symbian OS, the data segment and text segement
8104 can be relocated independently. Therefore, we
8105 must indicate the segment to which this
8106 relocation is relative. The BPABI allows us to
8107 use any symbol in the right segment; we just use
8108 the section symbol as it is convenient. (We
8109 cannot use the symbol given by "h" directly as it
8110 will not appear in the dynamic symbol table.)
8111
8112 Note that the dynamic linker ignores the section
8113 symbol value, so we don't subtract osec->vma
8114 from the emitted reloc addend. */
8115 if (sym_sec)
8116 osec = sym_sec->output_section;
8117 else
8118 osec = input_section->output_section;
8119 symbol = elf_section_data (osec)->dynindx;
8120 if (symbol == 0)
8121 {
8122 struct elf_link_hash_table *htab = elf_hash_table (info);
8123
8124 if ((osec->flags & SEC_READONLY) == 0
8125 && htab->data_index_section != NULL)
8126 osec = htab->data_index_section;
8127 else
8128 osec = htab->text_index_section;
8129 symbol = elf_section_data (osec)->dynindx;
8130 }
8131 BFD_ASSERT (symbol != 0);
8132 }
8133 else
8134 /* On SVR4-ish systems, the dynamic loader cannot
8135 relocate the text and data segments independently,
8136 so the symbol does not matter. */
8137 symbol = 0;
8138 if (dynreloc_st_type == STT_GNU_IFUNC)
8139 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8140 to the .iplt entry. Instead, every non-call reference
8141 must use an R_ARM_IRELATIVE relocation to obtain the
8142 correct run-time address. */
8143 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8144 else
8145 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
8146 if (globals->use_rel)
8147 relocate = TRUE;
8148 else
8149 outrel.r_addend += dynreloc_value;
8150 }
8151
8152 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
8153
8154 /* If this reloc is against an external symbol, we do not want to
8155 fiddle with the addend. Otherwise, we need to include the symbol
8156 value so that it becomes an addend for the dynamic reloc. */
8157 if (! relocate)
8158 return bfd_reloc_ok;
8159
8160 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8161 contents, rel->r_offset,
8162 dynreloc_value, (bfd_vma) 0);
8163 }
8164 else switch (r_type)
8165 {
8166 case R_ARM_ABS12:
8167 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8168
8169 case R_ARM_XPC25: /* Arm BLX instruction. */
8170 case R_ARM_CALL:
8171 case R_ARM_JUMP24:
8172 case R_ARM_PC24: /* Arm B/BL instruction. */
8173 case R_ARM_PLT32:
8174 {
8175 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8176
8177 if (r_type == R_ARM_XPC25)
8178 {
8179 /* Check for Arm calling Arm function. */
8180 /* FIXME: Should we translate the instruction into a BL
8181 instruction instead ? */
8182 if (branch_type != ST_BRANCH_TO_THUMB)
8183 (*_bfd_error_handler)
8184 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8185 input_bfd,
8186 h ? h->root.root.string : "(local)");
8187 }
8188 else if (r_type == R_ARM_PC24)
8189 {
8190 /* Check for Arm calling Thumb function. */
8191 if (branch_type == ST_BRANCH_TO_THUMB)
8192 {
8193 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8194 output_bfd, input_section,
8195 hit_data, sym_sec, rel->r_offset,
8196 signed_addend, value,
8197 error_message))
8198 return bfd_reloc_ok;
8199 else
8200 return bfd_reloc_dangerous;
8201 }
8202 }
8203
8204 /* Check if a stub has to be inserted because the
8205 destination is too far or we are changing mode. */
8206 if ( r_type == R_ARM_CALL
8207 || r_type == R_ARM_JUMP24
8208 || r_type == R_ARM_PLT32)
8209 {
8210 enum elf32_arm_stub_type stub_type = arm_stub_none;
8211 struct elf32_arm_link_hash_entry *hash;
8212
8213 hash = (struct elf32_arm_link_hash_entry *) h;
8214 stub_type = arm_type_of_stub (info, input_section, rel,
8215 st_type, &branch_type,
8216 hash, value, sym_sec,
8217 input_bfd, sym_name);
8218
8219 if (stub_type != arm_stub_none)
8220 {
8221 /* The target is out of reach, so redirect the
8222 branch to the local stub for this function. */
8223
8224 stub_entry = elf32_arm_get_stub_entry (input_section,
8225 sym_sec, h,
8226 rel, globals,
8227 stub_type);
8228 if (stub_entry != NULL)
8229 value = (stub_entry->stub_offset
8230 + stub_entry->stub_sec->output_offset
8231 + stub_entry->stub_sec->output_section->vma);
8232 }
8233 else
8234 {
8235 /* If the call goes through a PLT entry, make sure to
8236 check distance to the right destination address. */
8237 if (plt_offset != (bfd_vma) -1)
8238 {
8239 value = (splt->output_section->vma
8240 + splt->output_offset
8241 + plt_offset);
8242 *unresolved_reloc_p = FALSE;
8243 /* The PLT entry is in ARM mode, regardless of the
8244 target function. */
8245 branch_type = ST_BRANCH_TO_ARM;
8246 }
8247 }
8248 }
8249
8250 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8251 where:
8252 S is the address of the symbol in the relocation.
8253 P is address of the instruction being relocated.
8254 A is the addend (extracted from the instruction) in bytes.
8255
8256 S is held in 'value'.
8257 P is the base address of the section containing the
8258 instruction plus the offset of the reloc into that
8259 section, ie:
8260 (input_section->output_section->vma +
8261 input_section->output_offset +
8262 rel->r_offset).
8263 A is the addend, converted into bytes, ie:
8264 (signed_addend * 4)
8265
8266 Note: None of these operations have knowledge of the pipeline
8267 size of the processor, thus it is up to the assembler to
8268 encode this information into the addend. */
8269 value -= (input_section->output_section->vma
8270 + input_section->output_offset);
8271 value -= rel->r_offset;
8272 if (globals->use_rel)
8273 value += (signed_addend << howto->size);
8274 else
8275 /* RELA addends do not have to be adjusted by howto->size. */
8276 value += signed_addend;
8277
8278 signed_addend = value;
8279 signed_addend >>= howto->rightshift;
8280
8281 /* A branch to an undefined weak symbol is turned into a jump to
8282 the next instruction unless a PLT entry will be created.
8283 Do the same for local undefined symbols (but not for STN_UNDEF).
8284 The jump to the next instruction is optimized as a NOP depending
8285 on the architecture. */
8286 if (h ? (h->root.type == bfd_link_hash_undefweak
8287 && plt_offset == (bfd_vma) -1)
8288 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
8289 {
8290 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8291
8292 if (arch_has_arm_nop (globals))
8293 value |= 0x0320f000;
8294 else
8295 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
8296 }
8297 else
8298 {
8299 /* Perform a signed range check. */
8300 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
8301 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8302 return bfd_reloc_overflow;
8303
8304 addend = (value & 2);
8305
8306 value = (signed_addend & howto->dst_mask)
8307 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
8308
8309 if (r_type == R_ARM_CALL)
8310 {
8311 /* Set the H bit in the BLX instruction. */
8312 if (branch_type == ST_BRANCH_TO_THUMB)
8313 {
8314 if (addend)
8315 value |= (1 << 24);
8316 else
8317 value &= ~(bfd_vma)(1 << 24);
8318 }
8319
8320 /* Select the correct instruction (BL or BLX). */
8321 /* Only if we are not handling a BL to a stub. In this
8322 case, mode switching is performed by the stub. */
8323 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
8324 value |= (1 << 28);
8325 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
8326 {
8327 value &= ~(bfd_vma)(1 << 28);
8328 value |= (1 << 24);
8329 }
8330 }
8331 }
8332 }
8333 break;
8334
8335 case R_ARM_ABS32:
8336 value += addend;
8337 if (branch_type == ST_BRANCH_TO_THUMB)
8338 value |= 1;
8339 break;
8340
8341 case R_ARM_ABS32_NOI:
8342 value += addend;
8343 break;
8344
8345 case R_ARM_REL32:
8346 value += addend;
8347 if (branch_type == ST_BRANCH_TO_THUMB)
8348 value |= 1;
8349 value -= (input_section->output_section->vma
8350 + input_section->output_offset + rel->r_offset);
8351 break;
8352
8353 case R_ARM_REL32_NOI:
8354 value += addend;
8355 value -= (input_section->output_section->vma
8356 + input_section->output_offset + rel->r_offset);
8357 break;
8358
8359 case R_ARM_PREL31:
8360 value -= (input_section->output_section->vma
8361 + input_section->output_offset + rel->r_offset);
8362 value += signed_addend;
8363 if (! h || h->root.type != bfd_link_hash_undefweak)
8364 {
8365 /* Check for overflow. */
8366 if ((value ^ (value >> 1)) & (1 << 30))
8367 return bfd_reloc_overflow;
8368 }
8369 value &= 0x7fffffff;
8370 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
8371 if (branch_type == ST_BRANCH_TO_THUMB)
8372 value |= 1;
8373 break;
8374 }
8375
8376 bfd_put_32 (input_bfd, value, hit_data);
8377 return bfd_reloc_ok;
8378
8379 case R_ARM_ABS8:
8380 value += addend;
8381
8382 /* There is no way to tell whether the user intended to use a signed or
8383 unsigned addend. When checking for overflow we accept either,
8384 as specified by the AAELF. */
8385 if ((long) value > 0xff || (long) value < -0x80)
8386 return bfd_reloc_overflow;
8387
8388 bfd_put_8 (input_bfd, value, hit_data);
8389 return bfd_reloc_ok;
8390
8391 case R_ARM_ABS16:
8392 value += addend;
8393
8394 /* See comment for R_ARM_ABS8. */
8395 if ((long) value > 0xffff || (long) value < -0x8000)
8396 return bfd_reloc_overflow;
8397
8398 bfd_put_16 (input_bfd, value, hit_data);
8399 return bfd_reloc_ok;
8400
8401 case R_ARM_THM_ABS5:
8402 /* Support ldr and str instructions for the thumb. */
8403 if (globals->use_rel)
8404 {
8405 /* Need to refetch addend. */
8406 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8407 /* ??? Need to determine shift amount from operand size. */
8408 addend >>= howto->rightshift;
8409 }
8410 value += addend;
8411
8412 /* ??? Isn't value unsigned? */
8413 if ((long) value > 0x1f || (long) value < -0x10)
8414 return bfd_reloc_overflow;
8415
8416 /* ??? Value needs to be properly shifted into place first. */
8417 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8418 bfd_put_16 (input_bfd, value, hit_data);
8419 return bfd_reloc_ok;
8420
8421 case R_ARM_THM_ALU_PREL_11_0:
8422 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8423 {
8424 bfd_vma insn;
8425 bfd_signed_vma relocation;
8426
8427 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8428 | bfd_get_16 (input_bfd, hit_data + 2);
8429
8430 if (globals->use_rel)
8431 {
8432 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8433 | ((insn & (1 << 26)) >> 15);
8434 if (insn & 0xf00000)
8435 signed_addend = -signed_addend;
8436 }
8437
8438 relocation = value + signed_addend;
8439 relocation -= (input_section->output_section->vma
8440 + input_section->output_offset
8441 + rel->r_offset);
8442
8443 value = abs (relocation);
8444
8445 if (value >= 0x1000)
8446 return bfd_reloc_overflow;
8447
8448 insn = (insn & 0xfb0f8f00) | (value & 0xff)
8449 | ((value & 0x700) << 4)
8450 | ((value & 0x800) << 15);
8451 if (relocation < 0)
8452 insn |= 0xa00000;
8453
8454 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8455 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8456
8457 return bfd_reloc_ok;
8458 }
8459
8460 case R_ARM_THM_PC8:
8461 /* PR 10073: This reloc is not generated by the GNU toolchain,
8462 but it is supported for compatibility with third party libraries
8463 generated by other compilers, specifically the ARM/IAR. */
8464 {
8465 bfd_vma insn;
8466 bfd_signed_vma relocation;
8467
8468 insn = bfd_get_16 (input_bfd, hit_data);
8469
8470 if (globals->use_rel)
8471 addend = (insn & 0x00ff) << 2;
8472
8473 relocation = value + addend;
8474 relocation -= (input_section->output_section->vma
8475 + input_section->output_offset
8476 + rel->r_offset);
8477
8478 value = abs (relocation);
8479
8480 /* We do not check for overflow of this reloc. Although strictly
8481 speaking this is incorrect, it appears to be necessary in order
8482 to work with IAR generated relocs. Since GCC and GAS do not
8483 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8484 a problem for them. */
8485 value &= 0x3fc;
8486
8487 insn = (insn & 0xff00) | (value >> 2);
8488
8489 bfd_put_16 (input_bfd, insn, hit_data);
8490
8491 return bfd_reloc_ok;
8492 }
8493
8494 case R_ARM_THM_PC12:
8495 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8496 {
8497 bfd_vma insn;
8498 bfd_signed_vma relocation;
8499
8500 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8501 | bfd_get_16 (input_bfd, hit_data + 2);
8502
8503 if (globals->use_rel)
8504 {
8505 signed_addend = insn & 0xfff;
8506 if (!(insn & (1 << 23)))
8507 signed_addend = -signed_addend;
8508 }
8509
8510 relocation = value + signed_addend;
8511 relocation -= (input_section->output_section->vma
8512 + input_section->output_offset
8513 + rel->r_offset);
8514
8515 value = abs (relocation);
8516
8517 if (value >= 0x1000)
8518 return bfd_reloc_overflow;
8519
8520 insn = (insn & 0xff7ff000) | value;
8521 if (relocation >= 0)
8522 insn |= (1 << 23);
8523
8524 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8525 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8526
8527 return bfd_reloc_ok;
8528 }
8529
8530 case R_ARM_THM_XPC22:
8531 case R_ARM_THM_CALL:
8532 case R_ARM_THM_JUMP24:
8533 /* Thumb BL (branch long instruction). */
8534 {
8535 bfd_vma relocation;
8536 bfd_vma reloc_sign;
8537 bfd_boolean overflow = FALSE;
8538 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8539 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8540 bfd_signed_vma reloc_signed_max;
8541 bfd_signed_vma reloc_signed_min;
8542 bfd_vma check;
8543 bfd_signed_vma signed_check;
8544 int bitsize;
8545 const int thumb2 = using_thumb2 (globals);
8546
8547 /* A branch to an undefined weak symbol is turned into a jump to
8548 the next instruction unless a PLT entry will be created.
8549 The jump to the next instruction is optimized as a NOP.W for
8550 Thumb-2 enabled architectures. */
8551 if (h && h->root.type == bfd_link_hash_undefweak
8552 && plt_offset == (bfd_vma) -1)
8553 {
8554 if (arch_has_thumb2_nop (globals))
8555 {
8556 bfd_put_16 (input_bfd, 0xf3af, hit_data);
8557 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8558 }
8559 else
8560 {
8561 bfd_put_16 (input_bfd, 0xe000, hit_data);
8562 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8563 }
8564 return bfd_reloc_ok;
8565 }
8566
8567 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
8568 with Thumb-1) involving the J1 and J2 bits. */
8569 if (globals->use_rel)
8570 {
8571 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8572 bfd_vma upper = upper_insn & 0x3ff;
8573 bfd_vma lower = lower_insn & 0x7ff;
8574 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8575 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
8576 bfd_vma i1 = j1 ^ s ? 0 : 1;
8577 bfd_vma i2 = j2 ^ s ? 0 : 1;
8578
8579 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8580 /* Sign extend. */
8581 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
8582
8583 signed_addend = addend;
8584 }
8585
8586 if (r_type == R_ARM_THM_XPC22)
8587 {
8588 /* Check for Thumb to Thumb call. */
8589 /* FIXME: Should we translate the instruction into a BL
8590 instruction instead ? */
8591 if (branch_type == ST_BRANCH_TO_THUMB)
8592 (*_bfd_error_handler)
8593 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8594 input_bfd,
8595 h ? h->root.root.string : "(local)");
8596 }
8597 else
8598 {
8599 /* If it is not a call to Thumb, assume call to Arm.
8600 If it is a call relative to a section name, then it is not a
8601 function call at all, but rather a long jump. Calls through
8602 the PLT do not require stubs. */
8603 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
8604 {
8605 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8606 {
8607 /* Convert BL to BLX. */
8608 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8609 }
8610 else if (( r_type != R_ARM_THM_CALL)
8611 && (r_type != R_ARM_THM_JUMP24))
8612 {
8613 if (elf32_thumb_to_arm_stub
8614 (info, sym_name, input_bfd, output_bfd, input_section,
8615 hit_data, sym_sec, rel->r_offset, signed_addend, value,
8616 error_message))
8617 return bfd_reloc_ok;
8618 else
8619 return bfd_reloc_dangerous;
8620 }
8621 }
8622 else if (branch_type == ST_BRANCH_TO_THUMB
8623 && globals->use_blx
8624 && r_type == R_ARM_THM_CALL)
8625 {
8626 /* Make sure this is a BL. */
8627 lower_insn |= 0x1800;
8628 }
8629 }
8630
8631 enum elf32_arm_stub_type stub_type = arm_stub_none;
8632 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
8633 {
8634 /* Check if a stub has to be inserted because the destination
8635 is too far. */
8636 struct elf32_arm_stub_hash_entry *stub_entry;
8637 struct elf32_arm_link_hash_entry *hash;
8638
8639 hash = (struct elf32_arm_link_hash_entry *) h;
8640
8641 stub_type = arm_type_of_stub (info, input_section, rel,
8642 st_type, &branch_type,
8643 hash, value, sym_sec,
8644 input_bfd, sym_name);
8645
8646 if (stub_type != arm_stub_none)
8647 {
8648 /* The target is out of reach or we are changing modes, so
8649 redirect the branch to the local stub for this
8650 function. */
8651 stub_entry = elf32_arm_get_stub_entry (input_section,
8652 sym_sec, h,
8653 rel, globals,
8654 stub_type);
8655 if (stub_entry != NULL)
8656 value = (stub_entry->stub_offset
8657 + stub_entry->stub_sec->output_offset
8658 + stub_entry->stub_sec->output_section->vma);
8659
8660 /* If this call becomes a call to Arm, force BLX. */
8661 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
8662 {
8663 if ((stub_entry
8664 && !arm_stub_is_thumb (stub_entry->stub_type))
8665 || branch_type != ST_BRANCH_TO_THUMB)
8666 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8667 }
8668 }
8669 }
8670
8671 /* Handle calls via the PLT. */
8672 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
8673 {
8674 value = (splt->output_section->vma
8675 + splt->output_offset
8676 + plt_offset);
8677
8678 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8679 {
8680 /* If the Thumb BLX instruction is available, convert
8681 the BL to a BLX instruction to call the ARM-mode
8682 PLT entry. */
8683 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8684 branch_type = ST_BRANCH_TO_ARM;
8685 }
8686 else
8687 {
8688 /* Target the Thumb stub before the ARM PLT entry. */
8689 value -= PLT_THUMB_STUB_SIZE;
8690 branch_type = ST_BRANCH_TO_THUMB;
8691 }
8692 *unresolved_reloc_p = FALSE;
8693 }
8694
8695 relocation = value + signed_addend;
8696
8697 relocation -= (input_section->output_section->vma
8698 + input_section->output_offset
8699 + rel->r_offset);
8700
8701 check = relocation >> howto->rightshift;
8702
8703 /* If this is a signed value, the rightshift just dropped
8704 leading 1 bits (assuming twos complement). */
8705 if ((bfd_signed_vma) relocation >= 0)
8706 signed_check = check;
8707 else
8708 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
8709
8710 /* Calculate the permissable maximum and minimum values for
8711 this relocation according to whether we're relocating for
8712 Thumb-2 or not. */
8713 bitsize = howto->bitsize;
8714 if (!thumb2)
8715 bitsize -= 2;
8716 reloc_signed_max = (1 << (bitsize - 1)) - 1;
8717 reloc_signed_min = ~reloc_signed_max;
8718
8719 /* Assumes two's complement. */
8720 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8721 overflow = TRUE;
8722
8723 if ((lower_insn & 0x5000) == 0x4000)
8724 /* For a BLX instruction, make sure that the relocation is rounded up
8725 to a word boundary. This follows the semantics of the instruction
8726 which specifies that bit 1 of the target address will come from bit
8727 1 of the base address. */
8728 relocation = (relocation + 2) & ~ 3;
8729
8730 /* Put RELOCATION back into the insn. Assumes two's complement.
8731 We use the Thumb-2 encoding, which is safe even if dealing with
8732 a Thumb-1 instruction by virtue of our overflow check above. */
8733 reloc_sign = (signed_check < 0) ? 1 : 0;
8734 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
8735 | ((relocation >> 12) & 0x3ff)
8736 | (reloc_sign << 10);
8737 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
8738 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
8739 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
8740 | ((relocation >> 1) & 0x7ff);
8741
8742 /* Put the relocated value back in the object file: */
8743 bfd_put_16 (input_bfd, upper_insn, hit_data);
8744 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8745
8746 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8747 }
8748 break;
8749
8750 case R_ARM_THM_JUMP19:
8751 /* Thumb32 conditional branch instruction. */
8752 {
8753 bfd_vma relocation;
8754 bfd_boolean overflow = FALSE;
8755 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8756 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8757 bfd_signed_vma reloc_signed_max = 0xffffe;
8758 bfd_signed_vma reloc_signed_min = -0x100000;
8759 bfd_signed_vma signed_check;
8760
8761 /* Need to refetch the addend, reconstruct the top three bits,
8762 and squish the two 11 bit pieces together. */
8763 if (globals->use_rel)
8764 {
8765 bfd_vma S = (upper_insn & 0x0400) >> 10;
8766 bfd_vma upper = (upper_insn & 0x003f);
8767 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
8768 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
8769 bfd_vma lower = (lower_insn & 0x07ff);
8770
8771 upper |= J1 << 6;
8772 upper |= J2 << 7;
8773 upper |= (!S) << 8;
8774 upper -= 0x0100; /* Sign extend. */
8775
8776 addend = (upper << 12) | (lower << 1);
8777 signed_addend = addend;
8778 }
8779
8780 /* Handle calls via the PLT. */
8781 if (plt_offset != (bfd_vma) -1)
8782 {
8783 value = (splt->output_section->vma
8784 + splt->output_offset
8785 + plt_offset);
8786 /* Target the Thumb stub before the ARM PLT entry. */
8787 value -= PLT_THUMB_STUB_SIZE;
8788 *unresolved_reloc_p = FALSE;
8789 }
8790
8791 /* ??? Should handle interworking? GCC might someday try to
8792 use this for tail calls. */
8793
8794 relocation = value + signed_addend;
8795 relocation -= (input_section->output_section->vma
8796 + input_section->output_offset
8797 + rel->r_offset);
8798 signed_check = (bfd_signed_vma) relocation;
8799
8800 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8801 overflow = TRUE;
8802
8803 /* Put RELOCATION back into the insn. */
8804 {
8805 bfd_vma S = (relocation & 0x00100000) >> 20;
8806 bfd_vma J2 = (relocation & 0x00080000) >> 19;
8807 bfd_vma J1 = (relocation & 0x00040000) >> 18;
8808 bfd_vma hi = (relocation & 0x0003f000) >> 12;
8809 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
8810
8811 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
8812 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
8813 }
8814
8815 /* Put the relocated value back in the object file: */
8816 bfd_put_16 (input_bfd, upper_insn, hit_data);
8817 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8818
8819 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8820 }
8821
8822 case R_ARM_THM_JUMP11:
8823 case R_ARM_THM_JUMP8:
8824 case R_ARM_THM_JUMP6:
8825 /* Thumb B (branch) instruction). */
8826 {
8827 bfd_signed_vma relocation;
8828 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
8829 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
8830 bfd_signed_vma signed_check;
8831
8832 /* CZB cannot jump backward. */
8833 if (r_type == R_ARM_THM_JUMP6)
8834 reloc_signed_min = 0;
8835
8836 if (globals->use_rel)
8837 {
8838 /* Need to refetch addend. */
8839 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8840 if (addend & ((howto->src_mask + 1) >> 1))
8841 {
8842 signed_addend = -1;
8843 signed_addend &= ~ howto->src_mask;
8844 signed_addend |= addend;
8845 }
8846 else
8847 signed_addend = addend;
8848 /* The value in the insn has been right shifted. We need to
8849 undo this, so that we can perform the address calculation
8850 in terms of bytes. */
8851 signed_addend <<= howto->rightshift;
8852 }
8853 relocation = value + signed_addend;
8854
8855 relocation -= (input_section->output_section->vma
8856 + input_section->output_offset
8857 + rel->r_offset);
8858
8859 relocation >>= howto->rightshift;
8860 signed_check = relocation;
8861
8862 if (r_type == R_ARM_THM_JUMP6)
8863 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
8864 else
8865 relocation &= howto->dst_mask;
8866 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
8867
8868 bfd_put_16 (input_bfd, relocation, hit_data);
8869
8870 /* Assumes two's complement. */
8871 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8872 return bfd_reloc_overflow;
8873
8874 return bfd_reloc_ok;
8875 }
8876
8877 case R_ARM_ALU_PCREL7_0:
8878 case R_ARM_ALU_PCREL15_8:
8879 case R_ARM_ALU_PCREL23_15:
8880 {
8881 bfd_vma insn;
8882 bfd_vma relocation;
8883
8884 insn = bfd_get_32 (input_bfd, hit_data);
8885 if (globals->use_rel)
8886 {
8887 /* Extract the addend. */
8888 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
8889 signed_addend = addend;
8890 }
8891 relocation = value + signed_addend;
8892
8893 relocation -= (input_section->output_section->vma
8894 + input_section->output_offset
8895 + rel->r_offset);
8896 insn = (insn & ~0xfff)
8897 | ((howto->bitpos << 7) & 0xf00)
8898 | ((relocation >> howto->bitpos) & 0xff);
8899 bfd_put_32 (input_bfd, value, hit_data);
8900 }
8901 return bfd_reloc_ok;
8902
8903 case R_ARM_GNU_VTINHERIT:
8904 case R_ARM_GNU_VTENTRY:
8905 return bfd_reloc_ok;
8906
8907 case R_ARM_GOTOFF32:
8908 /* Relocation is relative to the start of the
8909 global offset table. */
8910
8911 BFD_ASSERT (sgot != NULL);
8912 if (sgot == NULL)
8913 return bfd_reloc_notsupported;
8914
8915 /* If we are addressing a Thumb function, we need to adjust the
8916 address by one, so that attempts to call the function pointer will
8917 correctly interpret it as Thumb code. */
8918 if (branch_type == ST_BRANCH_TO_THUMB)
8919 value += 1;
8920
8921 /* Note that sgot->output_offset is not involved in this
8922 calculation. We always want the start of .got. If we
8923 define _GLOBAL_OFFSET_TABLE in a different way, as is
8924 permitted by the ABI, we might have to change this
8925 calculation. */
8926 value -= sgot->output_section->vma;
8927 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8928 contents, rel->r_offset, value,
8929 rel->r_addend);
8930
8931 case R_ARM_GOTPC:
8932 /* Use global offset table as symbol value. */
8933 BFD_ASSERT (sgot != NULL);
8934
8935 if (sgot == NULL)
8936 return bfd_reloc_notsupported;
8937
8938 *unresolved_reloc_p = FALSE;
8939 value = sgot->output_section->vma;
8940 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8941 contents, rel->r_offset, value,
8942 rel->r_addend);
8943
8944 case R_ARM_GOT32:
8945 case R_ARM_GOT_PREL:
8946 /* Relocation is to the entry for this symbol in the
8947 global offset table. */
8948 if (sgot == NULL)
8949 return bfd_reloc_notsupported;
8950
8951 if (dynreloc_st_type == STT_GNU_IFUNC
8952 && plt_offset != (bfd_vma) -1
8953 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
8954 {
8955 /* We have a relocation against a locally-binding STT_GNU_IFUNC
8956 symbol, and the relocation resolves directly to the runtime
8957 target rather than to the .iplt entry. This means that any
8958 .got entry would be the same value as the .igot.plt entry,
8959 so there's no point creating both. */
8960 sgot = globals->root.igotplt;
8961 value = sgot->output_offset + gotplt_offset;
8962 }
8963 else if (h != NULL)
8964 {
8965 bfd_vma off;
8966
8967 off = h->got.offset;
8968 BFD_ASSERT (off != (bfd_vma) -1);
8969 if ((off & 1) != 0)
8970 {
8971 /* We have already processsed one GOT relocation against
8972 this symbol. */
8973 off &= ~1;
8974 if (globals->root.dynamic_sections_created
8975 && !SYMBOL_REFERENCES_LOCAL (info, h))
8976 *unresolved_reloc_p = FALSE;
8977 }
8978 else
8979 {
8980 Elf_Internal_Rela outrel;
8981
8982 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8983 {
8984 /* If the symbol doesn't resolve locally in a static
8985 object, we have an undefined reference. If the
8986 symbol doesn't resolve locally in a dynamic object,
8987 it should be resolved by the dynamic linker. */
8988 if (globals->root.dynamic_sections_created)
8989 {
8990 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
8991 *unresolved_reloc_p = FALSE;
8992 }
8993 else
8994 outrel.r_info = 0;
8995 outrel.r_addend = 0;
8996 }
8997 else
8998 {
8999 if (dynreloc_st_type == STT_GNU_IFUNC)
9000 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9001 else if (info->shared)
9002 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9003 else
9004 outrel.r_info = 0;
9005 outrel.r_addend = dynreloc_value;
9006 }
9007
9008 /* The GOT entry is initialized to zero by default.
9009 See if we should install a different value. */
9010 if (outrel.r_addend != 0
9011 && (outrel.r_info == 0 || globals->use_rel))
9012 {
9013 bfd_put_32 (output_bfd, outrel.r_addend,
9014 sgot->contents + off);
9015 outrel.r_addend = 0;
9016 }
9017
9018 if (outrel.r_info != 0)
9019 {
9020 outrel.r_offset = (sgot->output_section->vma
9021 + sgot->output_offset
9022 + off);
9023 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9024 }
9025 h->got.offset |= 1;
9026 }
9027 value = sgot->output_offset + off;
9028 }
9029 else
9030 {
9031 bfd_vma off;
9032
9033 BFD_ASSERT (local_got_offsets != NULL &&
9034 local_got_offsets[r_symndx] != (bfd_vma) -1);
9035
9036 off = local_got_offsets[r_symndx];
9037
9038 /* The offset must always be a multiple of 4. We use the
9039 least significant bit to record whether we have already
9040 generated the necessary reloc. */
9041 if ((off & 1) != 0)
9042 off &= ~1;
9043 else
9044 {
9045 if (globals->use_rel)
9046 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
9047
9048 if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
9049 {
9050 Elf_Internal_Rela outrel;
9051
9052 outrel.r_addend = addend + dynreloc_value;
9053 outrel.r_offset = (sgot->output_section->vma
9054 + sgot->output_offset
9055 + off);
9056 if (dynreloc_st_type == STT_GNU_IFUNC)
9057 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9058 else
9059 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9060 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9061 }
9062
9063 local_got_offsets[r_symndx] |= 1;
9064 }
9065
9066 value = sgot->output_offset + off;
9067 }
9068 if (r_type != R_ARM_GOT32)
9069 value += sgot->output_section->vma;
9070
9071 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9072 contents, rel->r_offset, value,
9073 rel->r_addend);
9074
9075 case R_ARM_TLS_LDO32:
9076 value = value - dtpoff_base (info);
9077
9078 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9079 contents, rel->r_offset, value,
9080 rel->r_addend);
9081
9082 case R_ARM_TLS_LDM32:
9083 {
9084 bfd_vma off;
9085
9086 if (sgot == NULL)
9087 abort ();
9088
9089 off = globals->tls_ldm_got.offset;
9090
9091 if ((off & 1) != 0)
9092 off &= ~1;
9093 else
9094 {
9095 /* If we don't know the module number, create a relocation
9096 for it. */
9097 if (info->shared)
9098 {
9099 Elf_Internal_Rela outrel;
9100
9101 if (srelgot == NULL)
9102 abort ();
9103
9104 outrel.r_addend = 0;
9105 outrel.r_offset = (sgot->output_section->vma
9106 + sgot->output_offset + off);
9107 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9108
9109 if (globals->use_rel)
9110 bfd_put_32 (output_bfd, outrel.r_addend,
9111 sgot->contents + off);
9112
9113 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9114 }
9115 else
9116 bfd_put_32 (output_bfd, 1, sgot->contents + off);
9117
9118 globals->tls_ldm_got.offset |= 1;
9119 }
9120
9121 value = sgot->output_section->vma + sgot->output_offset + off
9122 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9123
9124 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9125 contents, rel->r_offset, value,
9126 rel->r_addend);
9127 }
9128
9129 case R_ARM_TLS_CALL:
9130 case R_ARM_THM_TLS_CALL:
9131 case R_ARM_TLS_GD32:
9132 case R_ARM_TLS_IE32:
9133 case R_ARM_TLS_GOTDESC:
9134 case R_ARM_TLS_DESCSEQ:
9135 case R_ARM_THM_TLS_DESCSEQ:
9136 {
9137 bfd_vma off, offplt;
9138 int indx = 0;
9139 char tls_type;
9140
9141 BFD_ASSERT (sgot != NULL);
9142
9143 if (h != NULL)
9144 {
9145 bfd_boolean dyn;
9146 dyn = globals->root.dynamic_sections_created;
9147 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9148 && (!info->shared
9149 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9150 {
9151 *unresolved_reloc_p = FALSE;
9152 indx = h->dynindx;
9153 }
9154 off = h->got.offset;
9155 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
9156 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9157 }
9158 else
9159 {
9160 BFD_ASSERT (local_got_offsets != NULL);
9161 off = local_got_offsets[r_symndx];
9162 offplt = local_tlsdesc_gotents[r_symndx];
9163 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9164 }
9165
9166 /* Linker relaxations happens from one of the
9167 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
9168 if (ELF32_R_TYPE(rel->r_info) != r_type)
9169 tls_type = GOT_TLS_IE;
9170
9171 BFD_ASSERT (tls_type != GOT_UNKNOWN);
9172
9173 if ((off & 1) != 0)
9174 off &= ~1;
9175 else
9176 {
9177 bfd_boolean need_relocs = FALSE;
9178 Elf_Internal_Rela outrel;
9179 int cur_off = off;
9180
9181 /* The GOT entries have not been initialized yet. Do it
9182 now, and emit any relocations. If both an IE GOT and a
9183 GD GOT are necessary, we emit the GD first. */
9184
9185 if ((info->shared || indx != 0)
9186 && (h == NULL
9187 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9188 || h->root.type != bfd_link_hash_undefweak))
9189 {
9190 need_relocs = TRUE;
9191 BFD_ASSERT (srelgot != NULL);
9192 }
9193
9194 if (tls_type & GOT_TLS_GDESC)
9195 {
9196 bfd_byte *loc;
9197
9198 /* We should have relaxed, unless this is an undefined
9199 weak symbol. */
9200 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9201 || info->shared);
9202 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
9203 <= globals->root.sgotplt->size);
9204
9205 outrel.r_addend = 0;
9206 outrel.r_offset = (globals->root.sgotplt->output_section->vma
9207 + globals->root.sgotplt->output_offset
9208 + offplt
9209 + globals->sgotplt_jump_table_size);
9210
9211 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9212 sreloc = globals->root.srelplt;
9213 loc = sreloc->contents;
9214 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9215 BFD_ASSERT (loc + RELOC_SIZE (globals)
9216 <= sreloc->contents + sreloc->size);
9217
9218 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9219
9220 /* For globals, the first word in the relocation gets
9221 the relocation index and the top bit set, or zero,
9222 if we're binding now. For locals, it gets the
9223 symbol's offset in the tls section. */
9224 bfd_put_32 (output_bfd,
9225 !h ? value - elf_hash_table (info)->tls_sec->vma
9226 : info->flags & DF_BIND_NOW ? 0
9227 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
9228 globals->root.sgotplt->contents + offplt +
9229 globals->sgotplt_jump_table_size);
9230
9231 /* Second word in the relocation is always zero. */
9232 bfd_put_32 (output_bfd, 0,
9233 globals->root.sgotplt->contents + offplt +
9234 globals->sgotplt_jump_table_size + 4);
9235 }
9236 if (tls_type & GOT_TLS_GD)
9237 {
9238 if (need_relocs)
9239 {
9240 outrel.r_addend = 0;
9241 outrel.r_offset = (sgot->output_section->vma
9242 + sgot->output_offset
9243 + cur_off);
9244 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
9245
9246 if (globals->use_rel)
9247 bfd_put_32 (output_bfd, outrel.r_addend,
9248 sgot->contents + cur_off);
9249
9250 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9251
9252 if (indx == 0)
9253 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9254 sgot->contents + cur_off + 4);
9255 else
9256 {
9257 outrel.r_addend = 0;
9258 outrel.r_info = ELF32_R_INFO (indx,
9259 R_ARM_TLS_DTPOFF32);
9260 outrel.r_offset += 4;
9261
9262 if (globals->use_rel)
9263 bfd_put_32 (output_bfd, outrel.r_addend,
9264 sgot->contents + cur_off + 4);
9265
9266 elf32_arm_add_dynreloc (output_bfd, info,
9267 srelgot, &outrel);
9268 }
9269 }
9270 else
9271 {
9272 /* If we are not emitting relocations for a
9273 general dynamic reference, then we must be in a
9274 static link or an executable link with the
9275 symbol binding locally. Mark it as belonging
9276 to module 1, the executable. */
9277 bfd_put_32 (output_bfd, 1,
9278 sgot->contents + cur_off);
9279 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9280 sgot->contents + cur_off + 4);
9281 }
9282
9283 cur_off += 8;
9284 }
9285
9286 if (tls_type & GOT_TLS_IE)
9287 {
9288 if (need_relocs)
9289 {
9290 if (indx == 0)
9291 outrel.r_addend = value - dtpoff_base (info);
9292 else
9293 outrel.r_addend = 0;
9294 outrel.r_offset = (sgot->output_section->vma
9295 + sgot->output_offset
9296 + cur_off);
9297 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9298
9299 if (globals->use_rel)
9300 bfd_put_32 (output_bfd, outrel.r_addend,
9301 sgot->contents + cur_off);
9302
9303 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9304 }
9305 else
9306 bfd_put_32 (output_bfd, tpoff (info, value),
9307 sgot->contents + cur_off);
9308 cur_off += 4;
9309 }
9310
9311 if (h != NULL)
9312 h->got.offset |= 1;
9313 else
9314 local_got_offsets[r_symndx] |= 1;
9315 }
9316
9317 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9318 off += 8;
9319 else if (tls_type & GOT_TLS_GDESC)
9320 off = offplt;
9321
9322 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9323 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9324 {
9325 bfd_signed_vma offset;
9326 /* TLS stubs are arm mode. The original symbol is a
9327 data object, so branch_type is bogus. */
9328 branch_type = ST_BRANCH_TO_ARM;
9329 enum elf32_arm_stub_type stub_type
9330 = arm_type_of_stub (info, input_section, rel,
9331 st_type, &branch_type,
9332 (struct elf32_arm_link_hash_entry *)h,
9333 globals->tls_trampoline, globals->root.splt,
9334 input_bfd, sym_name);
9335
9336 if (stub_type != arm_stub_none)
9337 {
9338 struct elf32_arm_stub_hash_entry *stub_entry
9339 = elf32_arm_get_stub_entry
9340 (input_section, globals->root.splt, 0, rel,
9341 globals, stub_type);
9342 offset = (stub_entry->stub_offset
9343 + stub_entry->stub_sec->output_offset
9344 + stub_entry->stub_sec->output_section->vma);
9345 }
9346 else
9347 offset = (globals->root.splt->output_section->vma
9348 + globals->root.splt->output_offset
9349 + globals->tls_trampoline);
9350
9351 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9352 {
9353 unsigned long inst;
9354
9355 offset -= (input_section->output_section->vma +
9356 input_section->output_offset + rel->r_offset + 8);
9357
9358 inst = offset >> 2;
9359 inst &= 0x00ffffff;
9360 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9361 }
9362 else
9363 {
9364 /* Thumb blx encodes the offset in a complicated
9365 fashion. */
9366 unsigned upper_insn, lower_insn;
9367 unsigned neg;
9368
9369 offset -= (input_section->output_section->vma +
9370 input_section->output_offset
9371 + rel->r_offset + 4);
9372
9373 if (stub_type != arm_stub_none
9374 && arm_stub_is_thumb (stub_type))
9375 {
9376 lower_insn = 0xd000;
9377 }
9378 else
9379 {
9380 lower_insn = 0xc000;
9381 /* Round up the offset to a word boundary */
9382 offset = (offset + 2) & ~2;
9383 }
9384
9385 neg = offset < 0;
9386 upper_insn = (0xf000
9387 | ((offset >> 12) & 0x3ff)
9388 | (neg << 10));
9389 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
9390 | (((!((offset >> 22) & 1)) ^ neg) << 11)
9391 | ((offset >> 1) & 0x7ff);
9392 bfd_put_16 (input_bfd, upper_insn, hit_data);
9393 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9394 return bfd_reloc_ok;
9395 }
9396 }
9397 /* These relocations needs special care, as besides the fact
9398 they point somewhere in .gotplt, the addend must be
9399 adjusted accordingly depending on the type of instruction
9400 we refer to */
9401 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9402 {
9403 unsigned long data, insn;
9404 unsigned thumb;
9405
9406 data = bfd_get_32 (input_bfd, hit_data);
9407 thumb = data & 1;
9408 data &= ~1u;
9409
9410 if (thumb)
9411 {
9412 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9413 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9414 insn = (insn << 16)
9415 | bfd_get_16 (input_bfd,
9416 contents + rel->r_offset - data + 2);
9417 if ((insn & 0xf800c000) == 0xf000c000)
9418 /* bl/blx */
9419 value = -6;
9420 else if ((insn & 0xffffff00) == 0x4400)
9421 /* add */
9422 value = -5;
9423 else
9424 {
9425 (*_bfd_error_handler)
9426 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9427 input_bfd, input_section,
9428 (unsigned long)rel->r_offset, insn);
9429 return bfd_reloc_notsupported;
9430 }
9431 }
9432 else
9433 {
9434 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9435
9436 switch (insn >> 24)
9437 {
9438 case 0xeb: /* bl */
9439 case 0xfa: /* blx */
9440 value = -4;
9441 break;
9442
9443 case 0xe0: /* add */
9444 value = -8;
9445 break;
9446
9447 default:
9448 (*_bfd_error_handler)
9449 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9450 input_bfd, input_section,
9451 (unsigned long)rel->r_offset, insn);
9452 return bfd_reloc_notsupported;
9453 }
9454 }
9455
9456 value += ((globals->root.sgotplt->output_section->vma
9457 + globals->root.sgotplt->output_offset + off)
9458 - (input_section->output_section->vma
9459 + input_section->output_offset
9460 + rel->r_offset)
9461 + globals->sgotplt_jump_table_size);
9462 }
9463 else
9464 value = ((globals->root.sgot->output_section->vma
9465 + globals->root.sgot->output_offset + off)
9466 - (input_section->output_section->vma
9467 + input_section->output_offset + rel->r_offset));
9468
9469 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9470 contents, rel->r_offset, value,
9471 rel->r_addend);
9472 }
9473
9474 case R_ARM_TLS_LE32:
9475 if (info->shared && !info->pie)
9476 {
9477 (*_bfd_error_handler)
9478 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9479 input_bfd, input_section,
9480 (long) rel->r_offset, howto->name);
9481 return (bfd_reloc_status_type) FALSE;
9482 }
9483 else
9484 value = tpoff (info, value);
9485
9486 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9487 contents, rel->r_offset, value,
9488 rel->r_addend);
9489
9490 case R_ARM_V4BX:
9491 if (globals->fix_v4bx)
9492 {
9493 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9494
9495 /* Ensure that we have a BX instruction. */
9496 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
9497
9498 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9499 {
9500 /* Branch to veneer. */
9501 bfd_vma glue_addr;
9502 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9503 glue_addr -= input_section->output_section->vma
9504 + input_section->output_offset
9505 + rel->r_offset + 8;
9506 insn = (insn & 0xf0000000) | 0x0a000000
9507 | ((glue_addr >> 2) & 0x00ffffff);
9508 }
9509 else
9510 {
9511 /* Preserve Rm (lowest four bits) and the condition code
9512 (highest four bits). Other bits encode MOV PC,Rm. */
9513 insn = (insn & 0xf000000f) | 0x01a0f000;
9514 }
9515
9516 bfd_put_32 (input_bfd, insn, hit_data);
9517 }
9518 return bfd_reloc_ok;
9519
9520 case R_ARM_MOVW_ABS_NC:
9521 case R_ARM_MOVT_ABS:
9522 case R_ARM_MOVW_PREL_NC:
9523 case R_ARM_MOVT_PREL:
9524 /* Until we properly support segment-base-relative addressing then
9525 we assume the segment base to be zero, as for the group relocations.
9526 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9527 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9528 case R_ARM_MOVW_BREL_NC:
9529 case R_ARM_MOVW_BREL:
9530 case R_ARM_MOVT_BREL:
9531 {
9532 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9533
9534 if (globals->use_rel)
9535 {
9536 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
9537 signed_addend = (addend ^ 0x8000) - 0x8000;
9538 }
9539
9540 value += signed_addend;
9541
9542 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9543 value -= (input_section->output_section->vma
9544 + input_section->output_offset + rel->r_offset);
9545
9546 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
9547 return bfd_reloc_overflow;
9548
9549 if (branch_type == ST_BRANCH_TO_THUMB)
9550 value |= 1;
9551
9552 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
9553 || r_type == R_ARM_MOVT_BREL)
9554 value >>= 16;
9555
9556 insn &= 0xfff0f000;
9557 insn |= value & 0xfff;
9558 insn |= (value & 0xf000) << 4;
9559 bfd_put_32 (input_bfd, insn, hit_data);
9560 }
9561 return bfd_reloc_ok;
9562
9563 case R_ARM_THM_MOVW_ABS_NC:
9564 case R_ARM_THM_MOVT_ABS:
9565 case R_ARM_THM_MOVW_PREL_NC:
9566 case R_ARM_THM_MOVT_PREL:
9567 /* Until we properly support segment-base-relative addressing then
9568 we assume the segment base to be zero, as for the above relocations.
9569 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9570 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9571 as R_ARM_THM_MOVT_ABS. */
9572 case R_ARM_THM_MOVW_BREL_NC:
9573 case R_ARM_THM_MOVW_BREL:
9574 case R_ARM_THM_MOVT_BREL:
9575 {
9576 bfd_vma insn;
9577
9578 insn = bfd_get_16 (input_bfd, hit_data) << 16;
9579 insn |= bfd_get_16 (input_bfd, hit_data + 2);
9580
9581 if (globals->use_rel)
9582 {
9583 addend = ((insn >> 4) & 0xf000)
9584 | ((insn >> 15) & 0x0800)
9585 | ((insn >> 4) & 0x0700)
9586 | (insn & 0x00ff);
9587 signed_addend = (addend ^ 0x8000) - 0x8000;
9588 }
9589
9590 value += signed_addend;
9591
9592 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
9593 value -= (input_section->output_section->vma
9594 + input_section->output_offset + rel->r_offset);
9595
9596 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
9597 return bfd_reloc_overflow;
9598
9599 if (branch_type == ST_BRANCH_TO_THUMB)
9600 value |= 1;
9601
9602 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
9603 || r_type == R_ARM_THM_MOVT_BREL)
9604 value >>= 16;
9605
9606 insn &= 0xfbf08f00;
9607 insn |= (value & 0xf000) << 4;
9608 insn |= (value & 0x0800) << 15;
9609 insn |= (value & 0x0700) << 4;
9610 insn |= (value & 0x00ff);
9611
9612 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9613 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9614 }
9615 return bfd_reloc_ok;
9616
9617 case R_ARM_ALU_PC_G0_NC:
9618 case R_ARM_ALU_PC_G1_NC:
9619 case R_ARM_ALU_PC_G0:
9620 case R_ARM_ALU_PC_G1:
9621 case R_ARM_ALU_PC_G2:
9622 case R_ARM_ALU_SB_G0_NC:
9623 case R_ARM_ALU_SB_G1_NC:
9624 case R_ARM_ALU_SB_G0:
9625 case R_ARM_ALU_SB_G1:
9626 case R_ARM_ALU_SB_G2:
9627 {
9628 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9629 bfd_vma pc = input_section->output_section->vma
9630 + input_section->output_offset + rel->r_offset;
9631 /* sb should be the origin of the *segment* containing the symbol.
9632 It is not clear how to obtain this OS-dependent value, so we
9633 make an arbitrary choice of zero. */
9634 bfd_vma sb = 0;
9635 bfd_vma residual;
9636 bfd_vma g_n;
9637 bfd_signed_vma signed_value;
9638 int group = 0;
9639
9640 /* Determine which group of bits to select. */
9641 switch (r_type)
9642 {
9643 case R_ARM_ALU_PC_G0_NC:
9644 case R_ARM_ALU_PC_G0:
9645 case R_ARM_ALU_SB_G0_NC:
9646 case R_ARM_ALU_SB_G0:
9647 group = 0;
9648 break;
9649
9650 case R_ARM_ALU_PC_G1_NC:
9651 case R_ARM_ALU_PC_G1:
9652 case R_ARM_ALU_SB_G1_NC:
9653 case R_ARM_ALU_SB_G1:
9654 group = 1;
9655 break;
9656
9657 case R_ARM_ALU_PC_G2:
9658 case R_ARM_ALU_SB_G2:
9659 group = 2;
9660 break;
9661
9662 default:
9663 abort ();
9664 }
9665
9666 /* If REL, extract the addend from the insn. If RELA, it will
9667 have already been fetched for us. */
9668 if (globals->use_rel)
9669 {
9670 int negative;
9671 bfd_vma constant = insn & 0xff;
9672 bfd_vma rotation = (insn & 0xf00) >> 8;
9673
9674 if (rotation == 0)
9675 signed_addend = constant;
9676 else
9677 {
9678 /* Compensate for the fact that in the instruction, the
9679 rotation is stored in multiples of 2 bits. */
9680 rotation *= 2;
9681
9682 /* Rotate "constant" right by "rotation" bits. */
9683 signed_addend = (constant >> rotation) |
9684 (constant << (8 * sizeof (bfd_vma) - rotation));
9685 }
9686
9687 /* Determine if the instruction is an ADD or a SUB.
9688 (For REL, this determines the sign of the addend.) */
9689 negative = identify_add_or_sub (insn);
9690 if (negative == 0)
9691 {
9692 (*_bfd_error_handler)
9693 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9694 input_bfd, input_section,
9695 (long) rel->r_offset, howto->name);
9696 return bfd_reloc_overflow;
9697 }
9698
9699 signed_addend *= negative;
9700 }
9701
9702 /* Compute the value (X) to go in the place. */
9703 if (r_type == R_ARM_ALU_PC_G0_NC
9704 || r_type == R_ARM_ALU_PC_G1_NC
9705 || r_type == R_ARM_ALU_PC_G0
9706 || r_type == R_ARM_ALU_PC_G1
9707 || r_type == R_ARM_ALU_PC_G2)
9708 /* PC relative. */
9709 signed_value = value - pc + signed_addend;
9710 else
9711 /* Section base relative. */
9712 signed_value = value - sb + signed_addend;
9713
9714 /* If the target symbol is a Thumb function, then set the
9715 Thumb bit in the address. */
9716 if (branch_type == ST_BRANCH_TO_THUMB)
9717 signed_value |= 1;
9718
9719 /* Calculate the value of the relevant G_n, in encoded
9720 constant-with-rotation format. */
9721 g_n = calculate_group_reloc_mask (abs (signed_value), group,
9722 &residual);
9723
9724 /* Check for overflow if required. */
9725 if ((r_type == R_ARM_ALU_PC_G0
9726 || r_type == R_ARM_ALU_PC_G1
9727 || r_type == R_ARM_ALU_PC_G2
9728 || r_type == R_ARM_ALU_SB_G0
9729 || r_type == R_ARM_ALU_SB_G1
9730 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
9731 {
9732 (*_bfd_error_handler)
9733 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9734 input_bfd, input_section,
9735 (long) rel->r_offset, abs (signed_value), howto->name);
9736 return bfd_reloc_overflow;
9737 }
9738
9739 /* Mask out the value and the ADD/SUB part of the opcode; take care
9740 not to destroy the S bit. */
9741 insn &= 0xff1ff000;
9742
9743 /* Set the opcode according to whether the value to go in the
9744 place is negative. */
9745 if (signed_value < 0)
9746 insn |= 1 << 22;
9747 else
9748 insn |= 1 << 23;
9749
9750 /* Encode the offset. */
9751 insn |= g_n;
9752
9753 bfd_put_32 (input_bfd, insn, hit_data);
9754 }
9755 return bfd_reloc_ok;
9756
9757 case R_ARM_LDR_PC_G0:
9758 case R_ARM_LDR_PC_G1:
9759 case R_ARM_LDR_PC_G2:
9760 case R_ARM_LDR_SB_G0:
9761 case R_ARM_LDR_SB_G1:
9762 case R_ARM_LDR_SB_G2:
9763 {
9764 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9765 bfd_vma pc = input_section->output_section->vma
9766 + input_section->output_offset + rel->r_offset;
9767 bfd_vma sb = 0; /* See note above. */
9768 bfd_vma residual;
9769 bfd_signed_vma signed_value;
9770 int group = 0;
9771
9772 /* Determine which groups of bits to calculate. */
9773 switch (r_type)
9774 {
9775 case R_ARM_LDR_PC_G0:
9776 case R_ARM_LDR_SB_G0:
9777 group = 0;
9778 break;
9779
9780 case R_ARM_LDR_PC_G1:
9781 case R_ARM_LDR_SB_G1:
9782 group = 1;
9783 break;
9784
9785 case R_ARM_LDR_PC_G2:
9786 case R_ARM_LDR_SB_G2:
9787 group = 2;
9788 break;
9789
9790 default:
9791 abort ();
9792 }
9793
9794 /* If REL, extract the addend from the insn. If RELA, it will
9795 have already been fetched for us. */
9796 if (globals->use_rel)
9797 {
9798 int negative = (insn & (1 << 23)) ? 1 : -1;
9799 signed_addend = negative * (insn & 0xfff);
9800 }
9801
9802 /* Compute the value (X) to go in the place. */
9803 if (r_type == R_ARM_LDR_PC_G0
9804 || r_type == R_ARM_LDR_PC_G1
9805 || r_type == R_ARM_LDR_PC_G2)
9806 /* PC relative. */
9807 signed_value = value - pc + signed_addend;
9808 else
9809 /* Section base relative. */
9810 signed_value = value - sb + signed_addend;
9811
9812 /* Calculate the value of the relevant G_{n-1} to obtain
9813 the residual at that stage. */
9814 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9815
9816 /* Check for overflow. */
9817 if (residual >= 0x1000)
9818 {
9819 (*_bfd_error_handler)
9820 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9821 input_bfd, input_section,
9822 (long) rel->r_offset, abs (signed_value), howto->name);
9823 return bfd_reloc_overflow;
9824 }
9825
9826 /* Mask out the value and U bit. */
9827 insn &= 0xff7ff000;
9828
9829 /* Set the U bit if the value to go in the place is non-negative. */
9830 if (signed_value >= 0)
9831 insn |= 1 << 23;
9832
9833 /* Encode the offset. */
9834 insn |= residual;
9835
9836 bfd_put_32 (input_bfd, insn, hit_data);
9837 }
9838 return bfd_reloc_ok;
9839
9840 case R_ARM_LDRS_PC_G0:
9841 case R_ARM_LDRS_PC_G1:
9842 case R_ARM_LDRS_PC_G2:
9843 case R_ARM_LDRS_SB_G0:
9844 case R_ARM_LDRS_SB_G1:
9845 case R_ARM_LDRS_SB_G2:
9846 {
9847 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9848 bfd_vma pc = input_section->output_section->vma
9849 + input_section->output_offset + rel->r_offset;
9850 bfd_vma sb = 0; /* See note above. */
9851 bfd_vma residual;
9852 bfd_signed_vma signed_value;
9853 int group = 0;
9854
9855 /* Determine which groups of bits to calculate. */
9856 switch (r_type)
9857 {
9858 case R_ARM_LDRS_PC_G0:
9859 case R_ARM_LDRS_SB_G0:
9860 group = 0;
9861 break;
9862
9863 case R_ARM_LDRS_PC_G1:
9864 case R_ARM_LDRS_SB_G1:
9865 group = 1;
9866 break;
9867
9868 case R_ARM_LDRS_PC_G2:
9869 case R_ARM_LDRS_SB_G2:
9870 group = 2;
9871 break;
9872
9873 default:
9874 abort ();
9875 }
9876
9877 /* If REL, extract the addend from the insn. If RELA, it will
9878 have already been fetched for us. */
9879 if (globals->use_rel)
9880 {
9881 int negative = (insn & (1 << 23)) ? 1 : -1;
9882 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
9883 }
9884
9885 /* Compute the value (X) to go in the place. */
9886 if (r_type == R_ARM_LDRS_PC_G0
9887 || r_type == R_ARM_LDRS_PC_G1
9888 || r_type == R_ARM_LDRS_PC_G2)
9889 /* PC relative. */
9890 signed_value = value - pc + signed_addend;
9891 else
9892 /* Section base relative. */
9893 signed_value = value - sb + signed_addend;
9894
9895 /* Calculate the value of the relevant G_{n-1} to obtain
9896 the residual at that stage. */
9897 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9898
9899 /* Check for overflow. */
9900 if (residual >= 0x100)
9901 {
9902 (*_bfd_error_handler)
9903 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9904 input_bfd, input_section,
9905 (long) rel->r_offset, abs (signed_value), howto->name);
9906 return bfd_reloc_overflow;
9907 }
9908
9909 /* Mask out the value and U bit. */
9910 insn &= 0xff7ff0f0;
9911
9912 /* Set the U bit if the value to go in the place is non-negative. */
9913 if (signed_value >= 0)
9914 insn |= 1 << 23;
9915
9916 /* Encode the offset. */
9917 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
9918
9919 bfd_put_32 (input_bfd, insn, hit_data);
9920 }
9921 return bfd_reloc_ok;
9922
9923 case R_ARM_LDC_PC_G0:
9924 case R_ARM_LDC_PC_G1:
9925 case R_ARM_LDC_PC_G2:
9926 case R_ARM_LDC_SB_G0:
9927 case R_ARM_LDC_SB_G1:
9928 case R_ARM_LDC_SB_G2:
9929 {
9930 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9931 bfd_vma pc = input_section->output_section->vma
9932 + input_section->output_offset + rel->r_offset;
9933 bfd_vma sb = 0; /* See note above. */
9934 bfd_vma residual;
9935 bfd_signed_vma signed_value;
9936 int group = 0;
9937
9938 /* Determine which groups of bits to calculate. */
9939 switch (r_type)
9940 {
9941 case R_ARM_LDC_PC_G0:
9942 case R_ARM_LDC_SB_G0:
9943 group = 0;
9944 break;
9945
9946 case R_ARM_LDC_PC_G1:
9947 case R_ARM_LDC_SB_G1:
9948 group = 1;
9949 break;
9950
9951 case R_ARM_LDC_PC_G2:
9952 case R_ARM_LDC_SB_G2:
9953 group = 2;
9954 break;
9955
9956 default:
9957 abort ();
9958 }
9959
9960 /* If REL, extract the addend from the insn. If RELA, it will
9961 have already been fetched for us. */
9962 if (globals->use_rel)
9963 {
9964 int negative = (insn & (1 << 23)) ? 1 : -1;
9965 signed_addend = negative * ((insn & 0xff) << 2);
9966 }
9967
9968 /* Compute the value (X) to go in the place. */
9969 if (r_type == R_ARM_LDC_PC_G0
9970 || r_type == R_ARM_LDC_PC_G1
9971 || r_type == R_ARM_LDC_PC_G2)
9972 /* PC relative. */
9973 signed_value = value - pc + signed_addend;
9974 else
9975 /* Section base relative. */
9976 signed_value = value - sb + signed_addend;
9977
9978 /* Calculate the value of the relevant G_{n-1} to obtain
9979 the residual at that stage. */
9980 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9981
9982 /* Check for overflow. (The absolute value to go in the place must be
9983 divisible by four and, after having been divided by four, must
9984 fit in eight bits.) */
9985 if ((residual & 0x3) != 0 || residual >= 0x400)
9986 {
9987 (*_bfd_error_handler)
9988 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9989 input_bfd, input_section,
9990 (long) rel->r_offset, abs (signed_value), howto->name);
9991 return bfd_reloc_overflow;
9992 }
9993
9994 /* Mask out the value and U bit. */
9995 insn &= 0xff7fff00;
9996
9997 /* Set the U bit if the value to go in the place is non-negative. */
9998 if (signed_value >= 0)
9999 insn |= 1 << 23;
10000
10001 /* Encode the offset. */
10002 insn |= residual >> 2;
10003
10004 bfd_put_32 (input_bfd, insn, hit_data);
10005 }
10006 return bfd_reloc_ok;
10007
10008 default:
10009 return bfd_reloc_notsupported;
10010 }
10011 }
10012
10013 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
10014 static void
10015 arm_add_to_rel (bfd * abfd,
10016 bfd_byte * address,
10017 reloc_howto_type * howto,
10018 bfd_signed_vma increment)
10019 {
10020 bfd_signed_vma addend;
10021
10022 if (howto->type == R_ARM_THM_CALL
10023 || howto->type == R_ARM_THM_JUMP24)
10024 {
10025 int upper_insn, lower_insn;
10026 int upper, lower;
10027
10028 upper_insn = bfd_get_16 (abfd, address);
10029 lower_insn = bfd_get_16 (abfd, address + 2);
10030 upper = upper_insn & 0x7ff;
10031 lower = lower_insn & 0x7ff;
10032
10033 addend = (upper << 12) | (lower << 1);
10034 addend += increment;
10035 addend >>= 1;
10036
10037 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10038 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10039
10040 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10041 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
10042 }
10043 else
10044 {
10045 bfd_vma contents;
10046
10047 contents = bfd_get_32 (abfd, address);
10048
10049 /* Get the (signed) value from the instruction. */
10050 addend = contents & howto->src_mask;
10051 if (addend & ((howto->src_mask + 1) >> 1))
10052 {
10053 bfd_signed_vma mask;
10054
10055 mask = -1;
10056 mask &= ~ howto->src_mask;
10057 addend |= mask;
10058 }
10059
10060 /* Add in the increment, (which is a byte value). */
10061 switch (howto->type)
10062 {
10063 default:
10064 addend += increment;
10065 break;
10066
10067 case R_ARM_PC24:
10068 case R_ARM_PLT32:
10069 case R_ARM_CALL:
10070 case R_ARM_JUMP24:
10071 addend <<= howto->size;
10072 addend += increment;
10073
10074 /* Should we check for overflow here ? */
10075
10076 /* Drop any undesired bits. */
10077 addend >>= howto->rightshift;
10078 break;
10079 }
10080
10081 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10082
10083 bfd_put_32 (abfd, contents, address);
10084 }
10085 }
10086
10087 #define IS_ARM_TLS_RELOC(R_TYPE) \
10088 ((R_TYPE) == R_ARM_TLS_GD32 \
10089 || (R_TYPE) == R_ARM_TLS_LDO32 \
10090 || (R_TYPE) == R_ARM_TLS_LDM32 \
10091 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10092 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10093 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10094 || (R_TYPE) == R_ARM_TLS_LE32 \
10095 || (R_TYPE) == R_ARM_TLS_IE32 \
10096 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10097
10098 /* Specific set of relocations for the gnu tls dialect. */
10099 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10100 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10101 || (R_TYPE) == R_ARM_TLS_CALL \
10102 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10103 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10104 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10105
10106 /* Relocate an ARM ELF section. */
10107
10108 static bfd_boolean
10109 elf32_arm_relocate_section (bfd * output_bfd,
10110 struct bfd_link_info * info,
10111 bfd * input_bfd,
10112 asection * input_section,
10113 bfd_byte * contents,
10114 Elf_Internal_Rela * relocs,
10115 Elf_Internal_Sym * local_syms,
10116 asection ** local_sections)
10117 {
10118 Elf_Internal_Shdr *symtab_hdr;
10119 struct elf_link_hash_entry **sym_hashes;
10120 Elf_Internal_Rela *rel;
10121 Elf_Internal_Rela *relend;
10122 const char *name;
10123 struct elf32_arm_link_hash_table * globals;
10124
10125 globals = elf32_arm_hash_table (info);
10126 if (globals == NULL)
10127 return FALSE;
10128
10129 symtab_hdr = & elf_symtab_hdr (input_bfd);
10130 sym_hashes = elf_sym_hashes (input_bfd);
10131
10132 rel = relocs;
10133 relend = relocs + input_section->reloc_count;
10134 for (; rel < relend; rel++)
10135 {
10136 int r_type;
10137 reloc_howto_type * howto;
10138 unsigned long r_symndx;
10139 Elf_Internal_Sym * sym;
10140 asection * sec;
10141 struct elf_link_hash_entry * h;
10142 bfd_vma relocation;
10143 bfd_reloc_status_type r;
10144 arelent bfd_reloc;
10145 char sym_type;
10146 bfd_boolean unresolved_reloc = FALSE;
10147 char *error_message = NULL;
10148
10149 r_symndx = ELF32_R_SYM (rel->r_info);
10150 r_type = ELF32_R_TYPE (rel->r_info);
10151 r_type = arm_real_reloc_type (globals, r_type);
10152
10153 if ( r_type == R_ARM_GNU_VTENTRY
10154 || r_type == R_ARM_GNU_VTINHERIT)
10155 continue;
10156
10157 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
10158 howto = bfd_reloc.howto;
10159
10160 h = NULL;
10161 sym = NULL;
10162 sec = NULL;
10163
10164 if (r_symndx < symtab_hdr->sh_info)
10165 {
10166 sym = local_syms + r_symndx;
10167 sym_type = ELF32_ST_TYPE (sym->st_info);
10168 sec = local_sections[r_symndx];
10169
10170 /* An object file might have a reference to a local
10171 undefined symbol. This is a daft object file, but we
10172 should at least do something about it. V4BX & NONE
10173 relocations do not use the symbol and are explicitly
10174 allowed to use the undefined symbol, so allow those.
10175 Likewise for relocations against STN_UNDEF. */
10176 if (r_type != R_ARM_V4BX
10177 && r_type != R_ARM_NONE
10178 && r_symndx != STN_UNDEF
10179 && bfd_is_und_section (sec)
10180 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10181 {
10182 if (!info->callbacks->undefined_symbol
10183 (info, bfd_elf_string_from_elf_section
10184 (input_bfd, symtab_hdr->sh_link, sym->st_name),
10185 input_bfd, input_section,
10186 rel->r_offset, TRUE))
10187 return FALSE;
10188 }
10189
10190 if (globals->use_rel)
10191 {
10192 relocation = (sec->output_section->vma
10193 + sec->output_offset
10194 + sym->st_value);
10195 if (!info->relocatable
10196 && (sec->flags & SEC_MERGE)
10197 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10198 {
10199 asection *msec;
10200 bfd_vma addend, value;
10201
10202 switch (r_type)
10203 {
10204 case R_ARM_MOVW_ABS_NC:
10205 case R_ARM_MOVT_ABS:
10206 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10207 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10208 addend = (addend ^ 0x8000) - 0x8000;
10209 break;
10210
10211 case R_ARM_THM_MOVW_ABS_NC:
10212 case R_ARM_THM_MOVT_ABS:
10213 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10214 << 16;
10215 value |= bfd_get_16 (input_bfd,
10216 contents + rel->r_offset + 2);
10217 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10218 | ((value & 0x04000000) >> 15);
10219 addend = (addend ^ 0x8000) - 0x8000;
10220 break;
10221
10222 default:
10223 if (howto->rightshift
10224 || (howto->src_mask & (howto->src_mask + 1)))
10225 {
10226 (*_bfd_error_handler)
10227 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10228 input_bfd, input_section,
10229 (long) rel->r_offset, howto->name);
10230 return FALSE;
10231 }
10232
10233 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10234
10235 /* Get the (signed) value from the instruction. */
10236 addend = value & howto->src_mask;
10237 if (addend & ((howto->src_mask + 1) >> 1))
10238 {
10239 bfd_signed_vma mask;
10240
10241 mask = -1;
10242 mask &= ~ howto->src_mask;
10243 addend |= mask;
10244 }
10245 break;
10246 }
10247
10248 msec = sec;
10249 addend =
10250 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10251 - relocation;
10252 addend += msec->output_section->vma + msec->output_offset;
10253
10254 /* Cases here must match those in the preceding
10255 switch statement. */
10256 switch (r_type)
10257 {
10258 case R_ARM_MOVW_ABS_NC:
10259 case R_ARM_MOVT_ABS:
10260 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10261 | (addend & 0xfff);
10262 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10263 break;
10264
10265 case R_ARM_THM_MOVW_ABS_NC:
10266 case R_ARM_THM_MOVT_ABS:
10267 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10268 | (addend & 0xff) | ((addend & 0x0800) << 15);
10269 bfd_put_16 (input_bfd, value >> 16,
10270 contents + rel->r_offset);
10271 bfd_put_16 (input_bfd, value,
10272 contents + rel->r_offset + 2);
10273 break;
10274
10275 default:
10276 value = (value & ~ howto->dst_mask)
10277 | (addend & howto->dst_mask);
10278 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10279 break;
10280 }
10281 }
10282 }
10283 else
10284 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10285 }
10286 else
10287 {
10288 bfd_boolean warned;
10289
10290 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10291 r_symndx, symtab_hdr, sym_hashes,
10292 h, sec, relocation,
10293 unresolved_reloc, warned);
10294
10295 sym_type = h->type;
10296 }
10297
10298 if (sec != NULL && elf_discarded_section (sec))
10299 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10300 rel, relend, howto, contents);
10301
10302 if (info->relocatable)
10303 {
10304 /* This is a relocatable link. We don't have to change
10305 anything, unless the reloc is against a section symbol,
10306 in which case we have to adjust according to where the
10307 section symbol winds up in the output section. */
10308 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10309 {
10310 if (globals->use_rel)
10311 arm_add_to_rel (input_bfd, contents + rel->r_offset,
10312 howto, (bfd_signed_vma) sec->output_offset);
10313 else
10314 rel->r_addend += sec->output_offset;
10315 }
10316 continue;
10317 }
10318
10319 if (h != NULL)
10320 name = h->root.root.string;
10321 else
10322 {
10323 name = (bfd_elf_string_from_elf_section
10324 (input_bfd, symtab_hdr->sh_link, sym->st_name));
10325 if (name == NULL || *name == '\0')
10326 name = bfd_section_name (input_bfd, sec);
10327 }
10328
10329 if (r_symndx != STN_UNDEF
10330 && r_type != R_ARM_NONE
10331 && (h == NULL
10332 || h->root.type == bfd_link_hash_defined
10333 || h->root.type == bfd_link_hash_defweak)
10334 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10335 {
10336 (*_bfd_error_handler)
10337 ((sym_type == STT_TLS
10338 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10339 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10340 input_bfd,
10341 input_section,
10342 (long) rel->r_offset,
10343 howto->name,
10344 name);
10345 }
10346
10347 /* We call elf32_arm_final_link_relocate unless we're completely
10348 done, i.e., the relaxation produced the final output we want,
10349 and we won't let anybody mess with it. Also, we have to do
10350 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10351 both in relaxed and non-relaxed cases */
10352 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10353 || (IS_ARM_TLS_GNU_RELOC (r_type)
10354 && !((h ? elf32_arm_hash_entry (h)->tls_type :
10355 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10356 & GOT_TLS_GDESC)))
10357 {
10358 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10359 contents, rel, h == NULL);
10360 /* This may have been marked unresolved because it came from
10361 a shared library. But we've just dealt with that. */
10362 unresolved_reloc = 0;
10363 }
10364 else
10365 r = bfd_reloc_continue;
10366
10367 if (r == bfd_reloc_continue)
10368 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10369 input_section, contents, rel,
10370 relocation, info, sec, name, sym_type,
10371 (h ? h->target_internal
10372 : ARM_SYM_BRANCH_TYPE (sym)), h,
10373 &unresolved_reloc, &error_message);
10374
10375 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10376 because such sections are not SEC_ALLOC and thus ld.so will
10377 not process them. */
10378 if (unresolved_reloc
10379 && !((input_section->flags & SEC_DEBUGGING) != 0
10380 && h->def_dynamic))
10381 {
10382 (*_bfd_error_handler)
10383 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10384 input_bfd,
10385 input_section,
10386 (long) rel->r_offset,
10387 howto->name,
10388 h->root.root.string);
10389 return FALSE;
10390 }
10391
10392 if (r != bfd_reloc_ok)
10393 {
10394 switch (r)
10395 {
10396 case bfd_reloc_overflow:
10397 /* If the overflowing reloc was to an undefined symbol,
10398 we have already printed one error message and there
10399 is no point complaining again. */
10400 if ((! h ||
10401 h->root.type != bfd_link_hash_undefined)
10402 && (!((*info->callbacks->reloc_overflow)
10403 (info, (h ? &h->root : NULL), name, howto->name,
10404 (bfd_vma) 0, input_bfd, input_section,
10405 rel->r_offset))))
10406 return FALSE;
10407 break;
10408
10409 case bfd_reloc_undefined:
10410 if (!((*info->callbacks->undefined_symbol)
10411 (info, name, input_bfd, input_section,
10412 rel->r_offset, TRUE)))
10413 return FALSE;
10414 break;
10415
10416 case bfd_reloc_outofrange:
10417 error_message = _("out of range");
10418 goto common_error;
10419
10420 case bfd_reloc_notsupported:
10421 error_message = _("unsupported relocation");
10422 goto common_error;
10423
10424 case bfd_reloc_dangerous:
10425 /* error_message should already be set. */
10426 goto common_error;
10427
10428 default:
10429 error_message = _("unknown error");
10430 /* Fall through. */
10431
10432 common_error:
10433 BFD_ASSERT (error_message != NULL);
10434 if (!((*info->callbacks->reloc_dangerous)
10435 (info, error_message, input_bfd, input_section,
10436 rel->r_offset)))
10437 return FALSE;
10438 break;
10439 }
10440 }
10441 }
10442
10443 return TRUE;
10444 }
10445
10446 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
10447 adds the edit to the start of the list. (The list must be built in order of
10448 ascending TINDEX: the function's callers are primarily responsible for
10449 maintaining that condition). */
10450
10451 static void
10452 add_unwind_table_edit (arm_unwind_table_edit **head,
10453 arm_unwind_table_edit **tail,
10454 arm_unwind_edit_type type,
10455 asection *linked_section,
10456 unsigned int tindex)
10457 {
10458 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10459 xmalloc (sizeof (arm_unwind_table_edit));
10460
10461 new_edit->type = type;
10462 new_edit->linked_section = linked_section;
10463 new_edit->index = tindex;
10464
10465 if (tindex > 0)
10466 {
10467 new_edit->next = NULL;
10468
10469 if (*tail)
10470 (*tail)->next = new_edit;
10471
10472 (*tail) = new_edit;
10473
10474 if (!*head)
10475 (*head) = new_edit;
10476 }
10477 else
10478 {
10479 new_edit->next = *head;
10480
10481 if (!*tail)
10482 *tail = new_edit;
10483
10484 *head = new_edit;
10485 }
10486 }
10487
10488 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10489
10490 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10491 static void
10492 adjust_exidx_size(asection *exidx_sec, int adjust)
10493 {
10494 asection *out_sec;
10495
10496 if (!exidx_sec->rawsize)
10497 exidx_sec->rawsize = exidx_sec->size;
10498
10499 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10500 out_sec = exidx_sec->output_section;
10501 /* Adjust size of output section. */
10502 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10503 }
10504
10505 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10506 static void
10507 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10508 {
10509 struct _arm_elf_section_data *exidx_arm_data;
10510
10511 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10512 add_unwind_table_edit (
10513 &exidx_arm_data->u.exidx.unwind_edit_list,
10514 &exidx_arm_data->u.exidx.unwind_edit_tail,
10515 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10516
10517 adjust_exidx_size(exidx_sec, 8);
10518 }
10519
10520 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10521 made to those tables, such that:
10522
10523 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10524 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10525 codes which have been inlined into the index).
10526
10527 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10528
10529 The edits are applied when the tables are written
10530 (in elf32_arm_write_section).
10531 */
10532
10533 bfd_boolean
10534 elf32_arm_fix_exidx_coverage (asection **text_section_order,
10535 unsigned int num_text_sections,
10536 struct bfd_link_info *info,
10537 bfd_boolean merge_exidx_entries)
10538 {
10539 bfd *inp;
10540 unsigned int last_second_word = 0, i;
10541 asection *last_exidx_sec = NULL;
10542 asection *last_text_sec = NULL;
10543 int last_unwind_type = -1;
10544
10545 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10546 text sections. */
10547 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
10548 {
10549 asection *sec;
10550
10551 for (sec = inp->sections; sec != NULL; sec = sec->next)
10552 {
10553 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10554 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
10555
10556 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
10557 continue;
10558
10559 if (elf_sec->linked_to)
10560 {
10561 Elf_Internal_Shdr *linked_hdr
10562 = &elf_section_data (elf_sec->linked_to)->this_hdr;
10563 struct _arm_elf_section_data *linked_sec_arm_data
10564 = get_arm_elf_section_data (linked_hdr->bfd_section);
10565
10566 if (linked_sec_arm_data == NULL)
10567 continue;
10568
10569 /* Link this .ARM.exidx section back from the text section it
10570 describes. */
10571 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10572 }
10573 }
10574 }
10575
10576 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10577 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10578 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
10579
10580 for (i = 0; i < num_text_sections; i++)
10581 {
10582 asection *sec = text_section_order[i];
10583 asection *exidx_sec;
10584 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10585 struct _arm_elf_section_data *exidx_arm_data;
10586 bfd_byte *contents = NULL;
10587 int deleted_exidx_bytes = 0;
10588 bfd_vma j;
10589 arm_unwind_table_edit *unwind_edit_head = NULL;
10590 arm_unwind_table_edit *unwind_edit_tail = NULL;
10591 Elf_Internal_Shdr *hdr;
10592 bfd *ibfd;
10593
10594 if (arm_data == NULL)
10595 continue;
10596
10597 exidx_sec = arm_data->u.text.arm_exidx_sec;
10598 if (exidx_sec == NULL)
10599 {
10600 /* Section has no unwind data. */
10601 if (last_unwind_type == 0 || !last_exidx_sec)
10602 continue;
10603
10604 /* Ignore zero sized sections. */
10605 if (sec->size == 0)
10606 continue;
10607
10608 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10609 last_unwind_type = 0;
10610 continue;
10611 }
10612
10613 /* Skip /DISCARD/ sections. */
10614 if (bfd_is_abs_section (exidx_sec->output_section))
10615 continue;
10616
10617 hdr = &elf_section_data (exidx_sec)->this_hdr;
10618 if (hdr->sh_type != SHT_ARM_EXIDX)
10619 continue;
10620
10621 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10622 if (exidx_arm_data == NULL)
10623 continue;
10624
10625 ibfd = exidx_sec->owner;
10626
10627 if (hdr->contents != NULL)
10628 contents = hdr->contents;
10629 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
10630 /* An error? */
10631 continue;
10632
10633 for (j = 0; j < hdr->sh_size; j += 8)
10634 {
10635 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
10636 int unwind_type;
10637 int elide = 0;
10638
10639 /* An EXIDX_CANTUNWIND entry. */
10640 if (second_word == 1)
10641 {
10642 if (last_unwind_type == 0)
10643 elide = 1;
10644 unwind_type = 0;
10645 }
10646 /* Inlined unwinding data. Merge if equal to previous. */
10647 else if ((second_word & 0x80000000) != 0)
10648 {
10649 if (merge_exidx_entries
10650 && last_second_word == second_word && last_unwind_type == 1)
10651 elide = 1;
10652 unwind_type = 1;
10653 last_second_word = second_word;
10654 }
10655 /* Normal table entry. In theory we could merge these too,
10656 but duplicate entries are likely to be much less common. */
10657 else
10658 unwind_type = 2;
10659
10660 if (elide)
10661 {
10662 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
10663 DELETE_EXIDX_ENTRY, NULL, j / 8);
10664
10665 deleted_exidx_bytes += 8;
10666 }
10667
10668 last_unwind_type = unwind_type;
10669 }
10670
10671 /* Free contents if we allocated it ourselves. */
10672 if (contents != hdr->contents)
10673 free (contents);
10674
10675 /* Record edits to be applied later (in elf32_arm_write_section). */
10676 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
10677 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
10678
10679 if (deleted_exidx_bytes > 0)
10680 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
10681
10682 last_exidx_sec = exidx_sec;
10683 last_text_sec = sec;
10684 }
10685
10686 /* Add terminating CANTUNWIND entry. */
10687 if (last_exidx_sec && last_unwind_type != 0)
10688 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10689
10690 return TRUE;
10691 }
10692
10693 static bfd_boolean
10694 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
10695 bfd *ibfd, const char *name)
10696 {
10697 asection *sec, *osec;
10698
10699 sec = bfd_get_section_by_name (ibfd, name);
10700 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
10701 return TRUE;
10702
10703 osec = sec->output_section;
10704 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
10705 return TRUE;
10706
10707 if (! bfd_set_section_contents (obfd, osec, sec->contents,
10708 sec->output_offset, sec->size))
10709 return FALSE;
10710
10711 return TRUE;
10712 }
10713
10714 static bfd_boolean
10715 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
10716 {
10717 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
10718 asection *sec, *osec;
10719
10720 if (globals == NULL)
10721 return FALSE;
10722
10723 /* Invoke the regular ELF backend linker to do all the work. */
10724 if (!bfd_elf_final_link (abfd, info))
10725 return FALSE;
10726
10727 /* Process stub sections (eg BE8 encoding, ...). */
10728 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
10729 int i;
10730 for (i=0; i<htab->top_id; i++)
10731 {
10732 sec = htab->stub_group[i].stub_sec;
10733 /* Only process it once, in its link_sec slot. */
10734 if (sec && i == htab->stub_group[i].link_sec->id)
10735 {
10736 osec = sec->output_section;
10737 elf32_arm_write_section (abfd, info, sec, sec->contents);
10738 if (! bfd_set_section_contents (abfd, osec, sec->contents,
10739 sec->output_offset, sec->size))
10740 return FALSE;
10741 }
10742 }
10743
10744 /* Write out any glue sections now that we have created all the
10745 stubs. */
10746 if (globals->bfd_of_glue_owner != NULL)
10747 {
10748 if (! elf32_arm_output_glue_section (info, abfd,
10749 globals->bfd_of_glue_owner,
10750 ARM2THUMB_GLUE_SECTION_NAME))
10751 return FALSE;
10752
10753 if (! elf32_arm_output_glue_section (info, abfd,
10754 globals->bfd_of_glue_owner,
10755 THUMB2ARM_GLUE_SECTION_NAME))
10756 return FALSE;
10757
10758 if (! elf32_arm_output_glue_section (info, abfd,
10759 globals->bfd_of_glue_owner,
10760 VFP11_ERRATUM_VENEER_SECTION_NAME))
10761 return FALSE;
10762
10763 if (! elf32_arm_output_glue_section (info, abfd,
10764 globals->bfd_of_glue_owner,
10765 ARM_BX_GLUE_SECTION_NAME))
10766 return FALSE;
10767 }
10768
10769 return TRUE;
10770 }
10771
10772 /* Set the right machine number. */
10773
10774 static bfd_boolean
10775 elf32_arm_object_p (bfd *abfd)
10776 {
10777 unsigned int mach;
10778
10779 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
10780
10781 if (mach != bfd_mach_arm_unknown)
10782 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
10783
10784 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
10785 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
10786
10787 else
10788 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
10789
10790 return TRUE;
10791 }
10792
10793 /* Function to keep ARM specific flags in the ELF header. */
10794
10795 static bfd_boolean
10796 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
10797 {
10798 if (elf_flags_init (abfd)
10799 && elf_elfheader (abfd)->e_flags != flags)
10800 {
10801 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
10802 {
10803 if (flags & EF_ARM_INTERWORK)
10804 (*_bfd_error_handler)
10805 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
10806 abfd);
10807 else
10808 _bfd_error_handler
10809 (_("Warning: Clearing the interworking flag of %B due to outside request"),
10810 abfd);
10811 }
10812 }
10813 else
10814 {
10815 elf_elfheader (abfd)->e_flags = flags;
10816 elf_flags_init (abfd) = TRUE;
10817 }
10818
10819 return TRUE;
10820 }
10821
10822 /* Copy backend specific data from one object module to another. */
10823
10824 static bfd_boolean
10825 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
10826 {
10827 flagword in_flags;
10828 flagword out_flags;
10829
10830 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
10831 return TRUE;
10832
10833 in_flags = elf_elfheader (ibfd)->e_flags;
10834 out_flags = elf_elfheader (obfd)->e_flags;
10835
10836 if (elf_flags_init (obfd)
10837 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
10838 && in_flags != out_flags)
10839 {
10840 /* Cannot mix APCS26 and APCS32 code. */
10841 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
10842 return FALSE;
10843
10844 /* Cannot mix float APCS and non-float APCS code. */
10845 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
10846 return FALSE;
10847
10848 /* If the src and dest have different interworking flags
10849 then turn off the interworking bit. */
10850 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
10851 {
10852 if (out_flags & EF_ARM_INTERWORK)
10853 _bfd_error_handler
10854 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
10855 obfd, ibfd);
10856
10857 in_flags &= ~EF_ARM_INTERWORK;
10858 }
10859
10860 /* Likewise for PIC, though don't warn for this case. */
10861 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
10862 in_flags &= ~EF_ARM_PIC;
10863 }
10864
10865 elf_elfheader (obfd)->e_flags = in_flags;
10866 elf_flags_init (obfd) = TRUE;
10867
10868 /* Also copy the EI_OSABI field. */
10869 elf_elfheader (obfd)->e_ident[EI_OSABI] =
10870 elf_elfheader (ibfd)->e_ident[EI_OSABI];
10871
10872 /* Copy object attributes. */
10873 _bfd_elf_copy_obj_attributes (ibfd, obfd);
10874
10875 return TRUE;
10876 }
10877
10878 /* Values for Tag_ABI_PCS_R9_use. */
10879 enum
10880 {
10881 AEABI_R9_V6,
10882 AEABI_R9_SB,
10883 AEABI_R9_TLS,
10884 AEABI_R9_unused
10885 };
10886
10887 /* Values for Tag_ABI_PCS_RW_data. */
10888 enum
10889 {
10890 AEABI_PCS_RW_data_absolute,
10891 AEABI_PCS_RW_data_PCrel,
10892 AEABI_PCS_RW_data_SBrel,
10893 AEABI_PCS_RW_data_unused
10894 };
10895
10896 /* Values for Tag_ABI_enum_size. */
10897 enum
10898 {
10899 AEABI_enum_unused,
10900 AEABI_enum_short,
10901 AEABI_enum_wide,
10902 AEABI_enum_forced_wide
10903 };
10904
10905 /* Determine whether an object attribute tag takes an integer, a
10906 string or both. */
10907
10908 static int
10909 elf32_arm_obj_attrs_arg_type (int tag)
10910 {
10911 if (tag == Tag_compatibility)
10912 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
10913 else if (tag == Tag_nodefaults)
10914 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
10915 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
10916 return ATTR_TYPE_FLAG_STR_VAL;
10917 else if (tag < 32)
10918 return ATTR_TYPE_FLAG_INT_VAL;
10919 else
10920 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
10921 }
10922
10923 /* The ABI defines that Tag_conformance should be emitted first, and that
10924 Tag_nodefaults should be second (if either is defined). This sets those
10925 two positions, and bumps up the position of all the remaining tags to
10926 compensate. */
10927 static int
10928 elf32_arm_obj_attrs_order (int num)
10929 {
10930 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
10931 return Tag_conformance;
10932 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
10933 return Tag_nodefaults;
10934 if ((num - 2) < Tag_nodefaults)
10935 return num - 2;
10936 if ((num - 1) < Tag_conformance)
10937 return num - 1;
10938 return num;
10939 }
10940
10941 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10942 static bfd_boolean
10943 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
10944 {
10945 if ((tag & 127) < 64)
10946 {
10947 _bfd_error_handler
10948 (_("%B: Unknown mandatory EABI object attribute %d"),
10949 abfd, tag);
10950 bfd_set_error (bfd_error_bad_value);
10951 return FALSE;
10952 }
10953 else
10954 {
10955 _bfd_error_handler
10956 (_("Warning: %B: Unknown EABI object attribute %d"),
10957 abfd, tag);
10958 return TRUE;
10959 }
10960 }
10961
10962 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
10963 Returns -1 if no architecture could be read. */
10964
10965 static int
10966 get_secondary_compatible_arch (bfd *abfd)
10967 {
10968 obj_attribute *attr =
10969 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
10970
10971 /* Note: the tag and its argument below are uleb128 values, though
10972 currently-defined values fit in one byte for each. */
10973 if (attr->s
10974 && attr->s[0] == Tag_CPU_arch
10975 && (attr->s[1] & 128) != 128
10976 && attr->s[2] == 0)
10977 return attr->s[1];
10978
10979 /* This tag is "safely ignorable", so don't complain if it looks funny. */
10980 return -1;
10981 }
10982
10983 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10984 The tag is removed if ARCH is -1. */
10985
10986 static void
10987 set_secondary_compatible_arch (bfd *abfd, int arch)
10988 {
10989 obj_attribute *attr =
10990 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
10991
10992 if (arch == -1)
10993 {
10994 attr->s = NULL;
10995 return;
10996 }
10997
10998 /* Note: the tag and its argument below are uleb128 values, though
10999 currently-defined values fit in one byte for each. */
11000 if (!attr->s)
11001 attr->s = (char *) bfd_alloc (abfd, 3);
11002 attr->s[0] = Tag_CPU_arch;
11003 attr->s[1] = arch;
11004 attr->s[2] = '\0';
11005 }
11006
11007 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11008 into account. */
11009
11010 static int
11011 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
11012 int newtag, int secondary_compat)
11013 {
11014 #define T(X) TAG_CPU_ARCH_##X
11015 int tagl, tagh, result;
11016 const int v6t2[] =
11017 {
11018 T(V6T2), /* PRE_V4. */
11019 T(V6T2), /* V4. */
11020 T(V6T2), /* V4T. */
11021 T(V6T2), /* V5T. */
11022 T(V6T2), /* V5TE. */
11023 T(V6T2), /* V5TEJ. */
11024 T(V6T2), /* V6. */
11025 T(V7), /* V6KZ. */
11026 T(V6T2) /* V6T2. */
11027 };
11028 const int v6k[] =
11029 {
11030 T(V6K), /* PRE_V4. */
11031 T(V6K), /* V4. */
11032 T(V6K), /* V4T. */
11033 T(V6K), /* V5T. */
11034 T(V6K), /* V5TE. */
11035 T(V6K), /* V5TEJ. */
11036 T(V6K), /* V6. */
11037 T(V6KZ), /* V6KZ. */
11038 T(V7), /* V6T2. */
11039 T(V6K) /* V6K. */
11040 };
11041 const int v7[] =
11042 {
11043 T(V7), /* PRE_V4. */
11044 T(V7), /* V4. */
11045 T(V7), /* V4T. */
11046 T(V7), /* V5T. */
11047 T(V7), /* V5TE. */
11048 T(V7), /* V5TEJ. */
11049 T(V7), /* V6. */
11050 T(V7), /* V6KZ. */
11051 T(V7), /* V6T2. */
11052 T(V7), /* V6K. */
11053 T(V7) /* V7. */
11054 };
11055 const int v6_m[] =
11056 {
11057 -1, /* PRE_V4. */
11058 -1, /* V4. */
11059 T(V6K), /* V4T. */
11060 T(V6K), /* V5T. */
11061 T(V6K), /* V5TE. */
11062 T(V6K), /* V5TEJ. */
11063 T(V6K), /* V6. */
11064 T(V6KZ), /* V6KZ. */
11065 T(V7), /* V6T2. */
11066 T(V6K), /* V6K. */
11067 T(V7), /* V7. */
11068 T(V6_M) /* V6_M. */
11069 };
11070 const int v6s_m[] =
11071 {
11072 -1, /* PRE_V4. */
11073 -1, /* V4. */
11074 T(V6K), /* V4T. */
11075 T(V6K), /* V5T. */
11076 T(V6K), /* V5TE. */
11077 T(V6K), /* V5TEJ. */
11078 T(V6K), /* V6. */
11079 T(V6KZ), /* V6KZ. */
11080 T(V7), /* V6T2. */
11081 T(V6K), /* V6K. */
11082 T(V7), /* V7. */
11083 T(V6S_M), /* V6_M. */
11084 T(V6S_M) /* V6S_M. */
11085 };
11086 const int v7e_m[] =
11087 {
11088 -1, /* PRE_V4. */
11089 -1, /* V4. */
11090 T(V7E_M), /* V4T. */
11091 T(V7E_M), /* V5T. */
11092 T(V7E_M), /* V5TE. */
11093 T(V7E_M), /* V5TEJ. */
11094 T(V7E_M), /* V6. */
11095 T(V7E_M), /* V6KZ. */
11096 T(V7E_M), /* V6T2. */
11097 T(V7E_M), /* V6K. */
11098 T(V7E_M), /* V7. */
11099 T(V7E_M), /* V6_M. */
11100 T(V7E_M), /* V6S_M. */
11101 T(V7E_M) /* V7E_M. */
11102 };
11103 const int v4t_plus_v6_m[] =
11104 {
11105 -1, /* PRE_V4. */
11106 -1, /* V4. */
11107 T(V4T), /* V4T. */
11108 T(V5T), /* V5T. */
11109 T(V5TE), /* V5TE. */
11110 T(V5TEJ), /* V5TEJ. */
11111 T(V6), /* V6. */
11112 T(V6KZ), /* V6KZ. */
11113 T(V6T2), /* V6T2. */
11114 T(V6K), /* V6K. */
11115 T(V7), /* V7. */
11116 T(V6_M), /* V6_M. */
11117 T(V6S_M), /* V6S_M. */
11118 T(V7E_M), /* V7E_M. */
11119 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
11120 };
11121 const int *comb[] =
11122 {
11123 v6t2,
11124 v6k,
11125 v7,
11126 v6_m,
11127 v6s_m,
11128 v7e_m,
11129 /* Pseudo-architecture. */
11130 v4t_plus_v6_m
11131 };
11132
11133 /* Check we've not got a higher architecture than we know about. */
11134
11135 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
11136 {
11137 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
11138 return -1;
11139 }
11140
11141 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11142
11143 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11144 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11145 oldtag = T(V4T_PLUS_V6_M);
11146
11147 /* And override the new tag if we have a Tag_also_compatible_with on the
11148 input. */
11149
11150 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11151 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11152 newtag = T(V4T_PLUS_V6_M);
11153
11154 tagl = (oldtag < newtag) ? oldtag : newtag;
11155 result = tagh = (oldtag > newtag) ? oldtag : newtag;
11156
11157 /* Architectures before V6KZ add features monotonically. */
11158 if (tagh <= TAG_CPU_ARCH_V6KZ)
11159 return result;
11160
11161 result = comb[tagh - T(V6T2)][tagl];
11162
11163 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11164 as the canonical version. */
11165 if (result == T(V4T_PLUS_V6_M))
11166 {
11167 result = T(V4T);
11168 *secondary_compat_out = T(V6_M);
11169 }
11170 else
11171 *secondary_compat_out = -1;
11172
11173 if (result == -1)
11174 {
11175 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11176 ibfd, oldtag, newtag);
11177 return -1;
11178 }
11179
11180 return result;
11181 #undef T
11182 }
11183
11184 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11185 are conflicting attributes. */
11186
11187 static bfd_boolean
11188 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11189 {
11190 obj_attribute *in_attr;
11191 obj_attribute *out_attr;
11192 /* Some tags have 0 = don't care, 1 = strong requirement,
11193 2 = weak requirement. */
11194 static const int order_021[3] = {0, 2, 1};
11195 int i;
11196 bfd_boolean result = TRUE;
11197
11198 /* Skip the linker stubs file. This preserves previous behavior
11199 of accepting unknown attributes in the first input file - but
11200 is that a bug? */
11201 if (ibfd->flags & BFD_LINKER_CREATED)
11202 return TRUE;
11203
11204 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11205 {
11206 /* This is the first object. Copy the attributes. */
11207 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11208
11209 out_attr = elf_known_obj_attributes_proc (obfd);
11210
11211 /* Use the Tag_null value to indicate the attributes have been
11212 initialized. */
11213 out_attr[0].i = 1;
11214
11215 /* We do not output objects with Tag_MPextension_use_legacy - we move
11216 the attribute's value to Tag_MPextension_use. */
11217 if (out_attr[Tag_MPextension_use_legacy].i != 0)
11218 {
11219 if (out_attr[Tag_MPextension_use].i != 0
11220 && out_attr[Tag_MPextension_use_legacy].i
11221 != out_attr[Tag_MPextension_use].i)
11222 {
11223 _bfd_error_handler
11224 (_("Error: %B has both the current and legacy "
11225 "Tag_MPextension_use attributes"), ibfd);
11226 result = FALSE;
11227 }
11228
11229 out_attr[Tag_MPextension_use] =
11230 out_attr[Tag_MPextension_use_legacy];
11231 out_attr[Tag_MPextension_use_legacy].type = 0;
11232 out_attr[Tag_MPextension_use_legacy].i = 0;
11233 }
11234
11235 return result;
11236 }
11237
11238 in_attr = elf_known_obj_attributes_proc (ibfd);
11239 out_attr = elf_known_obj_attributes_proc (obfd);
11240 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11241 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11242 {
11243 /* Ignore mismatches if the object doesn't use floating point. */
11244 if (out_attr[Tag_ABI_FP_number_model].i == 0)
11245 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11246 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
11247 {
11248 _bfd_error_handler
11249 (_("error: %B uses VFP register arguments, %B does not"),
11250 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11251 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
11252 result = FALSE;
11253 }
11254 }
11255
11256 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
11257 {
11258 /* Merge this attribute with existing attributes. */
11259 switch (i)
11260 {
11261 case Tag_CPU_raw_name:
11262 case Tag_CPU_name:
11263 /* These are merged after Tag_CPU_arch. */
11264 break;
11265
11266 case Tag_ABI_optimization_goals:
11267 case Tag_ABI_FP_optimization_goals:
11268 /* Use the first value seen. */
11269 break;
11270
11271 case Tag_CPU_arch:
11272 {
11273 int secondary_compat = -1, secondary_compat_out = -1;
11274 unsigned int saved_out_attr = out_attr[i].i;
11275 static const char *name_table[] = {
11276 /* These aren't real CPU names, but we can't guess
11277 that from the architecture version alone. */
11278 "Pre v4",
11279 "ARM v4",
11280 "ARM v4T",
11281 "ARM v5T",
11282 "ARM v5TE",
11283 "ARM v5TEJ",
11284 "ARM v6",
11285 "ARM v6KZ",
11286 "ARM v6T2",
11287 "ARM v6K",
11288 "ARM v7",
11289 "ARM v6-M",
11290 "ARM v6S-M"
11291 };
11292
11293 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11294 secondary_compat = get_secondary_compatible_arch (ibfd);
11295 secondary_compat_out = get_secondary_compatible_arch (obfd);
11296 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11297 &secondary_compat_out,
11298 in_attr[i].i,
11299 secondary_compat);
11300 set_secondary_compatible_arch (obfd, secondary_compat_out);
11301
11302 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11303 if (out_attr[i].i == saved_out_attr)
11304 ; /* Leave the names alone. */
11305 else if (out_attr[i].i == in_attr[i].i)
11306 {
11307 /* The output architecture has been changed to match the
11308 input architecture. Use the input names. */
11309 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11310 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11311 : NULL;
11312 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11313 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11314 : NULL;
11315 }
11316 else
11317 {
11318 out_attr[Tag_CPU_name].s = NULL;
11319 out_attr[Tag_CPU_raw_name].s = NULL;
11320 }
11321
11322 /* If we still don't have a value for Tag_CPU_name,
11323 make one up now. Tag_CPU_raw_name remains blank. */
11324 if (out_attr[Tag_CPU_name].s == NULL
11325 && out_attr[i].i < ARRAY_SIZE (name_table))
11326 out_attr[Tag_CPU_name].s =
11327 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11328 }
11329 break;
11330
11331 case Tag_ARM_ISA_use:
11332 case Tag_THUMB_ISA_use:
11333 case Tag_WMMX_arch:
11334 case Tag_Advanced_SIMD_arch:
11335 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
11336 case Tag_ABI_FP_rounding:
11337 case Tag_ABI_FP_exceptions:
11338 case Tag_ABI_FP_user_exceptions:
11339 case Tag_ABI_FP_number_model:
11340 case Tag_FP_HP_extension:
11341 case Tag_CPU_unaligned_access:
11342 case Tag_T2EE_use:
11343 case Tag_MPextension_use:
11344 /* Use the largest value specified. */
11345 if (in_attr[i].i > out_attr[i].i)
11346 out_attr[i].i = in_attr[i].i;
11347 break;
11348
11349 case Tag_ABI_align_preserved:
11350 case Tag_ABI_PCS_RO_data:
11351 /* Use the smallest value specified. */
11352 if (in_attr[i].i < out_attr[i].i)
11353 out_attr[i].i = in_attr[i].i;
11354 break;
11355
11356 case Tag_ABI_align_needed:
11357 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
11358 && (in_attr[Tag_ABI_align_preserved].i == 0
11359 || out_attr[Tag_ABI_align_preserved].i == 0))
11360 {
11361 /* This error message should be enabled once all non-conformant
11362 binaries in the toolchain have had the attributes set
11363 properly.
11364 _bfd_error_handler
11365 (_("error: %B: 8-byte data alignment conflicts with %B"),
11366 obfd, ibfd);
11367 result = FALSE; */
11368 }
11369 /* Fall through. */
11370 case Tag_ABI_FP_denormal:
11371 case Tag_ABI_PCS_GOT_use:
11372 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11373 value if greater than 2 (for future-proofing). */
11374 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11375 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11376 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
11377 out_attr[i].i = in_attr[i].i;
11378 break;
11379
11380 case Tag_Virtualization_use:
11381 /* The virtualization tag effectively stores two bits of
11382 information: the intended use of TrustZone (in bit 0), and the
11383 intended use of Virtualization (in bit 1). */
11384 if (out_attr[i].i == 0)
11385 out_attr[i].i = in_attr[i].i;
11386 else if (in_attr[i].i != 0
11387 && in_attr[i].i != out_attr[i].i)
11388 {
11389 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11390 out_attr[i].i = 3;
11391 else
11392 {
11393 _bfd_error_handler
11394 (_("error: %B: unable to merge virtualization attributes "
11395 "with %B"),
11396 obfd, ibfd);
11397 result = FALSE;
11398 }
11399 }
11400 break;
11401
11402 case Tag_CPU_arch_profile:
11403 if (out_attr[i].i != in_attr[i].i)
11404 {
11405 /* 0 will merge with anything.
11406 'A' and 'S' merge to 'A'.
11407 'R' and 'S' merge to 'R'.
11408 'M' and 'A|R|S' is an error. */
11409 if (out_attr[i].i == 0
11410 || (out_attr[i].i == 'S'
11411 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11412 out_attr[i].i = in_attr[i].i;
11413 else if (in_attr[i].i == 0
11414 || (in_attr[i].i == 'S'
11415 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
11416 ; /* Do nothing. */
11417 else
11418 {
11419 _bfd_error_handler
11420 (_("error: %B: Conflicting architecture profiles %c/%c"),
11421 ibfd,
11422 in_attr[i].i ? in_attr[i].i : '0',
11423 out_attr[i].i ? out_attr[i].i : '0');
11424 result = FALSE;
11425 }
11426 }
11427 break;
11428 case Tag_FP_arch:
11429 {
11430 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11431 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11432 when it's 0. It might mean absence of FP hardware if
11433 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11434
11435 static const struct
11436 {
11437 int ver;
11438 int regs;
11439 } vfp_versions[7] =
11440 {
11441 {0, 0},
11442 {1, 16},
11443 {2, 16},
11444 {3, 32},
11445 {3, 16},
11446 {4, 32},
11447 {4, 16}
11448 };
11449 int ver;
11450 int regs;
11451 int newval;
11452
11453 /* If the output has no requirement about FP hardware,
11454 follow the requirement of the input. */
11455 if (out_attr[i].i == 0)
11456 {
11457 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11458 out_attr[i].i = in_attr[i].i;
11459 out_attr[Tag_ABI_HardFP_use].i
11460 = in_attr[Tag_ABI_HardFP_use].i;
11461 break;
11462 }
11463 /* If the input has no requirement about FP hardware, do
11464 nothing. */
11465 else if (in_attr[i].i == 0)
11466 {
11467 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
11468 break;
11469 }
11470
11471 /* Both the input and the output have nonzero Tag_FP_arch.
11472 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
11473
11474 /* If both the input and the output have zero Tag_ABI_HardFP_use,
11475 do nothing. */
11476 if (in_attr[Tag_ABI_HardFP_use].i == 0
11477 && out_attr[Tag_ABI_HardFP_use].i == 0)
11478 ;
11479 /* If the input and the output have different Tag_ABI_HardFP_use,
11480 the combination of them is 3 (SP & DP). */
11481 else if (in_attr[Tag_ABI_HardFP_use].i
11482 != out_attr[Tag_ABI_HardFP_use].i)
11483 out_attr[Tag_ABI_HardFP_use].i = 3;
11484
11485 /* Now we can handle Tag_FP_arch. */
11486
11487 /* Values greater than 6 aren't defined, so just pick the
11488 biggest */
11489 if (in_attr[i].i > 6 && in_attr[i].i > out_attr[i].i)
11490 {
11491 out_attr[i] = in_attr[i];
11492 break;
11493 }
11494 /* The output uses the superset of input features
11495 (ISA version) and registers. */
11496 ver = vfp_versions[in_attr[i].i].ver;
11497 if (ver < vfp_versions[out_attr[i].i].ver)
11498 ver = vfp_versions[out_attr[i].i].ver;
11499 regs = vfp_versions[in_attr[i].i].regs;
11500 if (regs < vfp_versions[out_attr[i].i].regs)
11501 regs = vfp_versions[out_attr[i].i].regs;
11502 /* This assumes all possible supersets are also a valid
11503 options. */
11504 for (newval = 6; newval > 0; newval--)
11505 {
11506 if (regs == vfp_versions[newval].regs
11507 && ver == vfp_versions[newval].ver)
11508 break;
11509 }
11510 out_attr[i].i = newval;
11511 }
11512 break;
11513 case Tag_PCS_config:
11514 if (out_attr[i].i == 0)
11515 out_attr[i].i = in_attr[i].i;
11516 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
11517 {
11518 /* It's sometimes ok to mix different configs, so this is only
11519 a warning. */
11520 _bfd_error_handler
11521 (_("Warning: %B: Conflicting platform configuration"), ibfd);
11522 }
11523 break;
11524 case Tag_ABI_PCS_R9_use:
11525 if (in_attr[i].i != out_attr[i].i
11526 && out_attr[i].i != AEABI_R9_unused
11527 && in_attr[i].i != AEABI_R9_unused)
11528 {
11529 _bfd_error_handler
11530 (_("error: %B: Conflicting use of R9"), ibfd);
11531 result = FALSE;
11532 }
11533 if (out_attr[i].i == AEABI_R9_unused)
11534 out_attr[i].i = in_attr[i].i;
11535 break;
11536 case Tag_ABI_PCS_RW_data:
11537 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
11538 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
11539 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
11540 {
11541 _bfd_error_handler
11542 (_("error: %B: SB relative addressing conflicts with use of R9"),
11543 ibfd);
11544 result = FALSE;
11545 }
11546 /* Use the smallest value specified. */
11547 if (in_attr[i].i < out_attr[i].i)
11548 out_attr[i].i = in_attr[i].i;
11549 break;
11550 case Tag_ABI_PCS_wchar_t:
11551 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
11552 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
11553 {
11554 _bfd_error_handler
11555 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11556 ibfd, in_attr[i].i, out_attr[i].i);
11557 }
11558 else if (in_attr[i].i && !out_attr[i].i)
11559 out_attr[i].i = in_attr[i].i;
11560 break;
11561 case Tag_ABI_enum_size:
11562 if (in_attr[i].i != AEABI_enum_unused)
11563 {
11564 if (out_attr[i].i == AEABI_enum_unused
11565 || out_attr[i].i == AEABI_enum_forced_wide)
11566 {
11567 /* The existing object is compatible with anything.
11568 Use whatever requirements the new object has. */
11569 out_attr[i].i = in_attr[i].i;
11570 }
11571 else if (in_attr[i].i != AEABI_enum_forced_wide
11572 && out_attr[i].i != in_attr[i].i
11573 && !elf_arm_tdata (obfd)->no_enum_size_warning)
11574 {
11575 static const char *aeabi_enum_names[] =
11576 { "", "variable-size", "32-bit", "" };
11577 const char *in_name =
11578 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11579 ? aeabi_enum_names[in_attr[i].i]
11580 : "<unknown>";
11581 const char *out_name =
11582 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11583 ? aeabi_enum_names[out_attr[i].i]
11584 : "<unknown>";
11585 _bfd_error_handler
11586 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
11587 ibfd, in_name, out_name);
11588 }
11589 }
11590 break;
11591 case Tag_ABI_VFP_args:
11592 /* Aready done. */
11593 break;
11594 case Tag_ABI_WMMX_args:
11595 if (in_attr[i].i != out_attr[i].i)
11596 {
11597 _bfd_error_handler
11598 (_("error: %B uses iWMMXt register arguments, %B does not"),
11599 ibfd, obfd);
11600 result = FALSE;
11601 }
11602 break;
11603 case Tag_compatibility:
11604 /* Merged in target-independent code. */
11605 break;
11606 case Tag_ABI_HardFP_use:
11607 /* This is handled along with Tag_FP_arch. */
11608 break;
11609 case Tag_ABI_FP_16bit_format:
11610 if (in_attr[i].i != 0 && out_attr[i].i != 0)
11611 {
11612 if (in_attr[i].i != out_attr[i].i)
11613 {
11614 _bfd_error_handler
11615 (_("error: fp16 format mismatch between %B and %B"),
11616 ibfd, obfd);
11617 result = FALSE;
11618 }
11619 }
11620 if (in_attr[i].i != 0)
11621 out_attr[i].i = in_attr[i].i;
11622 break;
11623
11624 case Tag_DIV_use:
11625 /* This tag is set to zero if we can use UDIV and SDIV in Thumb
11626 mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
11627 SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
11628 CPU. We will merge as follows: If the input attribute's value
11629 is one then the output attribute's value remains unchanged. If
11630 the input attribute's value is zero or two then if the output
11631 attribute's value is one the output value is set to the input
11632 value, otherwise the output value must be the same as the
11633 inputs. */
11634 if (in_attr[i].i != 1 && out_attr[i].i != 1)
11635 {
11636 if (in_attr[i].i != out_attr[i].i)
11637 {
11638 _bfd_error_handler
11639 (_("DIV usage mismatch between %B and %B"),
11640 ibfd, obfd);
11641 result = FALSE;
11642 }
11643 }
11644
11645 if (in_attr[i].i != 1)
11646 out_attr[i].i = in_attr[i].i;
11647
11648 break;
11649
11650 case Tag_MPextension_use_legacy:
11651 /* We don't output objects with Tag_MPextension_use_legacy - we
11652 move the value to Tag_MPextension_use. */
11653 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
11654 {
11655 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
11656 {
11657 _bfd_error_handler
11658 (_("%B has has both the current and legacy "
11659 "Tag_MPextension_use attributes"),
11660 ibfd);
11661 result = FALSE;
11662 }
11663 }
11664
11665 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
11666 out_attr[Tag_MPextension_use] = in_attr[i];
11667
11668 break;
11669
11670 case Tag_nodefaults:
11671 /* This tag is set if it exists, but the value is unused (and is
11672 typically zero). We don't actually need to do anything here -
11673 the merge happens automatically when the type flags are merged
11674 below. */
11675 break;
11676 case Tag_also_compatible_with:
11677 /* Already done in Tag_CPU_arch. */
11678 break;
11679 case Tag_conformance:
11680 /* Keep the attribute if it matches. Throw it away otherwise.
11681 No attribute means no claim to conform. */
11682 if (!in_attr[i].s || !out_attr[i].s
11683 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
11684 out_attr[i].s = NULL;
11685 break;
11686
11687 default:
11688 result
11689 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
11690 }
11691
11692 /* If out_attr was copied from in_attr then it won't have a type yet. */
11693 if (in_attr[i].type && !out_attr[i].type)
11694 out_attr[i].type = in_attr[i].type;
11695 }
11696
11697 /* Merge Tag_compatibility attributes and any common GNU ones. */
11698 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
11699 return FALSE;
11700
11701 /* Check for any attributes not known on ARM. */
11702 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
11703
11704 return result;
11705 }
11706
11707
11708 /* Return TRUE if the two EABI versions are incompatible. */
11709
11710 static bfd_boolean
11711 elf32_arm_versions_compatible (unsigned iver, unsigned over)
11712 {
11713 /* v4 and v5 are the same spec before and after it was released,
11714 so allow mixing them. */
11715 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
11716 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
11717 return TRUE;
11718
11719 return (iver == over);
11720 }
11721
11722 /* Merge backend specific data from an object file to the output
11723 object file when linking. */
11724
11725 static bfd_boolean
11726 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
11727
11728 /* Display the flags field. */
11729
11730 static bfd_boolean
11731 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
11732 {
11733 FILE * file = (FILE *) ptr;
11734 unsigned long flags;
11735
11736 BFD_ASSERT (abfd != NULL && ptr != NULL);
11737
11738 /* Print normal ELF private data. */
11739 _bfd_elf_print_private_bfd_data (abfd, ptr);
11740
11741 flags = elf_elfheader (abfd)->e_flags;
11742 /* Ignore init flag - it may not be set, despite the flags field
11743 containing valid data. */
11744
11745 /* xgettext:c-format */
11746 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11747
11748 switch (EF_ARM_EABI_VERSION (flags))
11749 {
11750 case EF_ARM_EABI_UNKNOWN:
11751 /* The following flag bits are GNU extensions and not part of the
11752 official ARM ELF extended ABI. Hence they are only decoded if
11753 the EABI version is not set. */
11754 if (flags & EF_ARM_INTERWORK)
11755 fprintf (file, _(" [interworking enabled]"));
11756
11757 if (flags & EF_ARM_APCS_26)
11758 fprintf (file, " [APCS-26]");
11759 else
11760 fprintf (file, " [APCS-32]");
11761
11762 if (flags & EF_ARM_VFP_FLOAT)
11763 fprintf (file, _(" [VFP float format]"));
11764 else if (flags & EF_ARM_MAVERICK_FLOAT)
11765 fprintf (file, _(" [Maverick float format]"));
11766 else
11767 fprintf (file, _(" [FPA float format]"));
11768
11769 if (flags & EF_ARM_APCS_FLOAT)
11770 fprintf (file, _(" [floats passed in float registers]"));
11771
11772 if (flags & EF_ARM_PIC)
11773 fprintf (file, _(" [position independent]"));
11774
11775 if (flags & EF_ARM_NEW_ABI)
11776 fprintf (file, _(" [new ABI]"));
11777
11778 if (flags & EF_ARM_OLD_ABI)
11779 fprintf (file, _(" [old ABI]"));
11780
11781 if (flags & EF_ARM_SOFT_FLOAT)
11782 fprintf (file, _(" [software FP]"));
11783
11784 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
11785 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
11786 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
11787 | EF_ARM_MAVERICK_FLOAT);
11788 break;
11789
11790 case EF_ARM_EABI_VER1:
11791 fprintf (file, _(" [Version1 EABI]"));
11792
11793 if (flags & EF_ARM_SYMSARESORTED)
11794 fprintf (file, _(" [sorted symbol table]"));
11795 else
11796 fprintf (file, _(" [unsorted symbol table]"));
11797
11798 flags &= ~ EF_ARM_SYMSARESORTED;
11799 break;
11800
11801 case EF_ARM_EABI_VER2:
11802 fprintf (file, _(" [Version2 EABI]"));
11803
11804 if (flags & EF_ARM_SYMSARESORTED)
11805 fprintf (file, _(" [sorted symbol table]"));
11806 else
11807 fprintf (file, _(" [unsorted symbol table]"));
11808
11809 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
11810 fprintf (file, _(" [dynamic symbols use segment index]"));
11811
11812 if (flags & EF_ARM_MAPSYMSFIRST)
11813 fprintf (file, _(" [mapping symbols precede others]"));
11814
11815 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
11816 | EF_ARM_MAPSYMSFIRST);
11817 break;
11818
11819 case EF_ARM_EABI_VER3:
11820 fprintf (file, _(" [Version3 EABI]"));
11821 break;
11822
11823 case EF_ARM_EABI_VER4:
11824 fprintf (file, _(" [Version4 EABI]"));
11825 goto eabi;
11826
11827 case EF_ARM_EABI_VER5:
11828 fprintf (file, _(" [Version5 EABI]"));
11829 eabi:
11830 if (flags & EF_ARM_BE8)
11831 fprintf (file, _(" [BE8]"));
11832
11833 if (flags & EF_ARM_LE8)
11834 fprintf (file, _(" [LE8]"));
11835
11836 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
11837 break;
11838
11839 default:
11840 fprintf (file, _(" <EABI version unrecognised>"));
11841 break;
11842 }
11843
11844 flags &= ~ EF_ARM_EABIMASK;
11845
11846 if (flags & EF_ARM_RELEXEC)
11847 fprintf (file, _(" [relocatable executable]"));
11848
11849 if (flags & EF_ARM_HASENTRY)
11850 fprintf (file, _(" [has entry point]"));
11851
11852 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
11853
11854 if (flags)
11855 fprintf (file, _("<Unrecognised flag bits set>"));
11856
11857 fputc ('\n', file);
11858
11859 return TRUE;
11860 }
11861
11862 static int
11863 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
11864 {
11865 switch (ELF_ST_TYPE (elf_sym->st_info))
11866 {
11867 case STT_ARM_TFUNC:
11868 return ELF_ST_TYPE (elf_sym->st_info);
11869
11870 case STT_ARM_16BIT:
11871 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
11872 This allows us to distinguish between data used by Thumb instructions
11873 and non-data (which is probably code) inside Thumb regions of an
11874 executable. */
11875 if (type != STT_OBJECT && type != STT_TLS)
11876 return ELF_ST_TYPE (elf_sym->st_info);
11877 break;
11878
11879 default:
11880 break;
11881 }
11882
11883 return type;
11884 }
11885
11886 static asection *
11887 elf32_arm_gc_mark_hook (asection *sec,
11888 struct bfd_link_info *info,
11889 Elf_Internal_Rela *rel,
11890 struct elf_link_hash_entry *h,
11891 Elf_Internal_Sym *sym)
11892 {
11893 if (h != NULL)
11894 switch (ELF32_R_TYPE (rel->r_info))
11895 {
11896 case R_ARM_GNU_VTINHERIT:
11897 case R_ARM_GNU_VTENTRY:
11898 return NULL;
11899 }
11900
11901 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11902 }
11903
11904 /* Update the got entry reference counts for the section being removed. */
11905
11906 static bfd_boolean
11907 elf32_arm_gc_sweep_hook (bfd * abfd,
11908 struct bfd_link_info * info,
11909 asection * sec,
11910 const Elf_Internal_Rela * relocs)
11911 {
11912 Elf_Internal_Shdr *symtab_hdr;
11913 struct elf_link_hash_entry **sym_hashes;
11914 bfd_signed_vma *local_got_refcounts;
11915 const Elf_Internal_Rela *rel, *relend;
11916 struct elf32_arm_link_hash_table * globals;
11917
11918 if (info->relocatable)
11919 return TRUE;
11920
11921 globals = elf32_arm_hash_table (info);
11922 if (globals == NULL)
11923 return FALSE;
11924
11925 elf_section_data (sec)->local_dynrel = NULL;
11926
11927 symtab_hdr = & elf_symtab_hdr (abfd);
11928 sym_hashes = elf_sym_hashes (abfd);
11929 local_got_refcounts = elf_local_got_refcounts (abfd);
11930
11931 check_use_blx (globals);
11932
11933 relend = relocs + sec->reloc_count;
11934 for (rel = relocs; rel < relend; rel++)
11935 {
11936 unsigned long r_symndx;
11937 struct elf_link_hash_entry *h = NULL;
11938 struct elf32_arm_link_hash_entry *eh;
11939 int r_type;
11940 bfd_boolean call_reloc_p;
11941 bfd_boolean may_become_dynamic_p;
11942 bfd_boolean may_need_local_target_p;
11943 union gotplt_union *root_plt;
11944 struct arm_plt_info *arm_plt;
11945
11946 r_symndx = ELF32_R_SYM (rel->r_info);
11947 if (r_symndx >= symtab_hdr->sh_info)
11948 {
11949 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
11950 while (h->root.type == bfd_link_hash_indirect
11951 || h->root.type == bfd_link_hash_warning)
11952 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11953 }
11954 eh = (struct elf32_arm_link_hash_entry *) h;
11955
11956 call_reloc_p = FALSE;
11957 may_become_dynamic_p = FALSE;
11958 may_need_local_target_p = FALSE;
11959
11960 r_type = ELF32_R_TYPE (rel->r_info);
11961 r_type = arm_real_reloc_type (globals, r_type);
11962 switch (r_type)
11963 {
11964 case R_ARM_GOT32:
11965 case R_ARM_GOT_PREL:
11966 case R_ARM_TLS_GD32:
11967 case R_ARM_TLS_IE32:
11968 if (h != NULL)
11969 {
11970 if (h->got.refcount > 0)
11971 h->got.refcount -= 1;
11972 }
11973 else if (local_got_refcounts != NULL)
11974 {
11975 if (local_got_refcounts[r_symndx] > 0)
11976 local_got_refcounts[r_symndx] -= 1;
11977 }
11978 break;
11979
11980 case R_ARM_TLS_LDM32:
11981 globals->tls_ldm_got.refcount -= 1;
11982 break;
11983
11984 case R_ARM_PC24:
11985 case R_ARM_PLT32:
11986 case R_ARM_CALL:
11987 case R_ARM_JUMP24:
11988 case R_ARM_PREL31:
11989 case R_ARM_THM_CALL:
11990 case R_ARM_THM_JUMP24:
11991 case R_ARM_THM_JUMP19:
11992 call_reloc_p = TRUE;
11993 may_need_local_target_p = TRUE;
11994 break;
11995
11996 case R_ARM_ABS12:
11997 if (!globals->vxworks_p)
11998 {
11999 may_need_local_target_p = TRUE;
12000 break;
12001 }
12002 /* Fall through. */
12003 case R_ARM_ABS32:
12004 case R_ARM_ABS32_NOI:
12005 case R_ARM_REL32:
12006 case R_ARM_REL32_NOI:
12007 case R_ARM_MOVW_ABS_NC:
12008 case R_ARM_MOVT_ABS:
12009 case R_ARM_MOVW_PREL_NC:
12010 case R_ARM_MOVT_PREL:
12011 case R_ARM_THM_MOVW_ABS_NC:
12012 case R_ARM_THM_MOVT_ABS:
12013 case R_ARM_THM_MOVW_PREL_NC:
12014 case R_ARM_THM_MOVT_PREL:
12015 /* Should the interworking branches be here also? */
12016 if ((info->shared || globals->root.is_relocatable_executable)
12017 && (sec->flags & SEC_ALLOC) != 0)
12018 {
12019 if (h == NULL
12020 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12021 {
12022 call_reloc_p = TRUE;
12023 may_need_local_target_p = TRUE;
12024 }
12025 else
12026 may_become_dynamic_p = TRUE;
12027 }
12028 else
12029 may_need_local_target_p = TRUE;
12030 break;
12031
12032 default:
12033 break;
12034 }
12035
12036 if (may_need_local_target_p
12037 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
12038 {
12039 BFD_ASSERT (root_plt->refcount > 0);
12040 root_plt->refcount -= 1;
12041
12042 if (!call_reloc_p)
12043 arm_plt->noncall_refcount--;
12044
12045 if (r_type == R_ARM_THM_CALL)
12046 arm_plt->maybe_thumb_refcount--;
12047
12048 if (r_type == R_ARM_THM_JUMP24
12049 || r_type == R_ARM_THM_JUMP19)
12050 arm_plt->thumb_refcount--;
12051 }
12052
12053 if (may_become_dynamic_p)
12054 {
12055 struct elf_dyn_relocs **pp;
12056 struct elf_dyn_relocs *p;
12057
12058 if (h != NULL)
12059 pp = &(eh->dyn_relocs);
12060 else
12061 {
12062 Elf_Internal_Sym *isym;
12063
12064 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12065 abfd, r_symndx);
12066 if (isym == NULL)
12067 return FALSE;
12068 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12069 if (pp == NULL)
12070 return FALSE;
12071 }
12072 for (; (p = *pp) != NULL; pp = &p->next)
12073 if (p->sec == sec)
12074 {
12075 /* Everything must go for SEC. */
12076 *pp = p->next;
12077 break;
12078 }
12079 }
12080 }
12081
12082 return TRUE;
12083 }
12084
12085 /* Look through the relocs for a section during the first phase. */
12086
12087 static bfd_boolean
12088 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12089 asection *sec, const Elf_Internal_Rela *relocs)
12090 {
12091 Elf_Internal_Shdr *symtab_hdr;
12092 struct elf_link_hash_entry **sym_hashes;
12093 const Elf_Internal_Rela *rel;
12094 const Elf_Internal_Rela *rel_end;
12095 bfd *dynobj;
12096 asection *sreloc;
12097 struct elf32_arm_link_hash_table *htab;
12098 bfd_boolean call_reloc_p;
12099 bfd_boolean may_become_dynamic_p;
12100 bfd_boolean may_need_local_target_p;
12101 unsigned long nsyms;
12102
12103 if (info->relocatable)
12104 return TRUE;
12105
12106 BFD_ASSERT (is_arm_elf (abfd));
12107
12108 htab = elf32_arm_hash_table (info);
12109 if (htab == NULL)
12110 return FALSE;
12111
12112 sreloc = NULL;
12113
12114 /* Create dynamic sections for relocatable executables so that we can
12115 copy relocations. */
12116 if (htab->root.is_relocatable_executable
12117 && ! htab->root.dynamic_sections_created)
12118 {
12119 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12120 return FALSE;
12121 }
12122
12123 if (htab->root.dynobj == NULL)
12124 htab->root.dynobj = abfd;
12125 if (!create_ifunc_sections (info))
12126 return FALSE;
12127
12128 dynobj = htab->root.dynobj;
12129
12130 symtab_hdr = & elf_symtab_hdr (abfd);
12131 sym_hashes = elf_sym_hashes (abfd);
12132 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
12133
12134 rel_end = relocs + sec->reloc_count;
12135 for (rel = relocs; rel < rel_end; rel++)
12136 {
12137 Elf_Internal_Sym *isym;
12138 struct elf_link_hash_entry *h;
12139 struct elf32_arm_link_hash_entry *eh;
12140 unsigned long r_symndx;
12141 int r_type;
12142
12143 r_symndx = ELF32_R_SYM (rel->r_info);
12144 r_type = ELF32_R_TYPE (rel->r_info);
12145 r_type = arm_real_reloc_type (htab, r_type);
12146
12147 if (r_symndx >= nsyms
12148 /* PR 9934: It is possible to have relocations that do not
12149 refer to symbols, thus it is also possible to have an
12150 object file containing relocations but no symbol table. */
12151 && (r_symndx > STN_UNDEF || nsyms > 0))
12152 {
12153 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
12154 r_symndx);
12155 return FALSE;
12156 }
12157
12158 h = NULL;
12159 isym = NULL;
12160 if (nsyms > 0)
12161 {
12162 if (r_symndx < symtab_hdr->sh_info)
12163 {
12164 /* A local symbol. */
12165 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12166 abfd, r_symndx);
12167 if (isym == NULL)
12168 return FALSE;
12169 }
12170 else
12171 {
12172 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12173 while (h->root.type == bfd_link_hash_indirect
12174 || h->root.type == bfd_link_hash_warning)
12175 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12176 }
12177 }
12178
12179 eh = (struct elf32_arm_link_hash_entry *) h;
12180
12181 call_reloc_p = FALSE;
12182 may_become_dynamic_p = FALSE;
12183 may_need_local_target_p = FALSE;
12184
12185 /* Could be done earlier, if h were already available. */
12186 r_type = elf32_arm_tls_transition (info, r_type, h);
12187 switch (r_type)
12188 {
12189 case R_ARM_GOT32:
12190 case R_ARM_GOT_PREL:
12191 case R_ARM_TLS_GD32:
12192 case R_ARM_TLS_IE32:
12193 case R_ARM_TLS_GOTDESC:
12194 case R_ARM_TLS_DESCSEQ:
12195 case R_ARM_THM_TLS_DESCSEQ:
12196 case R_ARM_TLS_CALL:
12197 case R_ARM_THM_TLS_CALL:
12198 /* This symbol requires a global offset table entry. */
12199 {
12200 int tls_type, old_tls_type;
12201
12202 switch (r_type)
12203 {
12204 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
12205
12206 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
12207
12208 case R_ARM_TLS_GOTDESC:
12209 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12210 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12211 tls_type = GOT_TLS_GDESC; break;
12212
12213 default: tls_type = GOT_NORMAL; break;
12214 }
12215
12216 if (h != NULL)
12217 {
12218 h->got.refcount++;
12219 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12220 }
12221 else
12222 {
12223 /* This is a global offset table entry for a local symbol. */
12224 if (!elf32_arm_allocate_local_sym_info (abfd))
12225 return FALSE;
12226 elf_local_got_refcounts (abfd)[r_symndx] += 1;
12227 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12228 }
12229
12230 /* If a variable is accessed with both tls methods, two
12231 slots may be created. */
12232 if (GOT_TLS_GD_ANY_P (old_tls_type)
12233 && GOT_TLS_GD_ANY_P (tls_type))
12234 tls_type |= old_tls_type;
12235
12236 /* We will already have issued an error message if there
12237 is a TLS/non-TLS mismatch, based on the symbol
12238 type. So just combine any TLS types needed. */
12239 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12240 && tls_type != GOT_NORMAL)
12241 tls_type |= old_tls_type;
12242
12243 /* If the symbol is accessed in both IE and GDESC
12244 method, we're able to relax. Turn off the GDESC flag,
12245 without messing up with any other kind of tls types
12246 that may be involved */
12247 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12248 tls_type &= ~GOT_TLS_GDESC;
12249
12250 if (old_tls_type != tls_type)
12251 {
12252 if (h != NULL)
12253 elf32_arm_hash_entry (h)->tls_type = tls_type;
12254 else
12255 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12256 }
12257 }
12258 /* Fall through. */
12259
12260 case R_ARM_TLS_LDM32:
12261 if (r_type == R_ARM_TLS_LDM32)
12262 htab->tls_ldm_got.refcount++;
12263 /* Fall through. */
12264
12265 case R_ARM_GOTOFF32:
12266 case R_ARM_GOTPC:
12267 if (htab->root.sgot == NULL
12268 && !create_got_section (htab->root.dynobj, info))
12269 return FALSE;
12270 break;
12271
12272 case R_ARM_PC24:
12273 case R_ARM_PLT32:
12274 case R_ARM_CALL:
12275 case R_ARM_JUMP24:
12276 case R_ARM_PREL31:
12277 case R_ARM_THM_CALL:
12278 case R_ARM_THM_JUMP24:
12279 case R_ARM_THM_JUMP19:
12280 call_reloc_p = TRUE;
12281 may_need_local_target_p = TRUE;
12282 break;
12283
12284 case R_ARM_ABS12:
12285 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12286 ldr __GOTT_INDEX__ offsets. */
12287 if (!htab->vxworks_p)
12288 {
12289 may_need_local_target_p = TRUE;
12290 break;
12291 }
12292 /* Fall through. */
12293
12294 case R_ARM_MOVW_ABS_NC:
12295 case R_ARM_MOVT_ABS:
12296 case R_ARM_THM_MOVW_ABS_NC:
12297 case R_ARM_THM_MOVT_ABS:
12298 if (info->shared)
12299 {
12300 (*_bfd_error_handler)
12301 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12302 abfd, elf32_arm_howto_table_1[r_type].name,
12303 (h) ? h->root.root.string : "a local symbol");
12304 bfd_set_error (bfd_error_bad_value);
12305 return FALSE;
12306 }
12307
12308 /* Fall through. */
12309 case R_ARM_ABS32:
12310 case R_ARM_ABS32_NOI:
12311 case R_ARM_REL32:
12312 case R_ARM_REL32_NOI:
12313 case R_ARM_MOVW_PREL_NC:
12314 case R_ARM_MOVT_PREL:
12315 case R_ARM_THM_MOVW_PREL_NC:
12316 case R_ARM_THM_MOVT_PREL:
12317
12318 /* Should the interworking branches be listed here? */
12319 if ((info->shared || htab->root.is_relocatable_executable)
12320 && (sec->flags & SEC_ALLOC) != 0)
12321 {
12322 if (h == NULL
12323 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12324 {
12325 /* In shared libraries and relocatable executables,
12326 we treat local relative references as calls;
12327 see the related SYMBOL_CALLS_LOCAL code in
12328 allocate_dynrelocs. */
12329 call_reloc_p = TRUE;
12330 may_need_local_target_p = TRUE;
12331 }
12332 else
12333 /* We are creating a shared library or relocatable
12334 executable, and this is a reloc against a global symbol,
12335 or a non-PC-relative reloc against a local symbol.
12336 We may need to copy the reloc into the output. */
12337 may_become_dynamic_p = TRUE;
12338 }
12339 else
12340 may_need_local_target_p = TRUE;
12341 break;
12342
12343 /* This relocation describes the C++ object vtable hierarchy.
12344 Reconstruct it for later use during GC. */
12345 case R_ARM_GNU_VTINHERIT:
12346 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12347 return FALSE;
12348 break;
12349
12350 /* This relocation describes which C++ vtable entries are actually
12351 used. Record for later use during GC. */
12352 case R_ARM_GNU_VTENTRY:
12353 BFD_ASSERT (h != NULL);
12354 if (h != NULL
12355 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12356 return FALSE;
12357 break;
12358 }
12359
12360 if (h != NULL)
12361 {
12362 if (call_reloc_p)
12363 /* We may need a .plt entry if the function this reloc
12364 refers to is in a different object, regardless of the
12365 symbol's type. We can't tell for sure yet, because
12366 something later might force the symbol local. */
12367 h->needs_plt = 1;
12368 else if (may_need_local_target_p)
12369 /* If this reloc is in a read-only section, we might
12370 need a copy reloc. We can't check reliably at this
12371 stage whether the section is read-only, as input
12372 sections have not yet been mapped to output sections.
12373 Tentatively set the flag for now, and correct in
12374 adjust_dynamic_symbol. */
12375 h->non_got_ref = 1;
12376 }
12377
12378 if (may_need_local_target_p
12379 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
12380 {
12381 union gotplt_union *root_plt;
12382 struct arm_plt_info *arm_plt;
12383 struct arm_local_iplt_info *local_iplt;
12384
12385 if (h != NULL)
12386 {
12387 root_plt = &h->plt;
12388 arm_plt = &eh->plt;
12389 }
12390 else
12391 {
12392 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12393 if (local_iplt == NULL)
12394 return FALSE;
12395 root_plt = &local_iplt->root;
12396 arm_plt = &local_iplt->arm;
12397 }
12398
12399 /* If the symbol is a function that doesn't bind locally,
12400 this relocation will need a PLT entry. */
12401 root_plt->refcount += 1;
12402
12403 if (!call_reloc_p)
12404 arm_plt->noncall_refcount++;
12405
12406 /* It's too early to use htab->use_blx here, so we have to
12407 record possible blx references separately from
12408 relocs that definitely need a thumb stub. */
12409
12410 if (r_type == R_ARM_THM_CALL)
12411 arm_plt->maybe_thumb_refcount += 1;
12412
12413 if (r_type == R_ARM_THM_JUMP24
12414 || r_type == R_ARM_THM_JUMP19)
12415 arm_plt->thumb_refcount += 1;
12416 }
12417
12418 if (may_become_dynamic_p)
12419 {
12420 struct elf_dyn_relocs *p, **head;
12421
12422 /* Create a reloc section in dynobj. */
12423 if (sreloc == NULL)
12424 {
12425 sreloc = _bfd_elf_make_dynamic_reloc_section
12426 (sec, dynobj, 2, abfd, ! htab->use_rel);
12427
12428 if (sreloc == NULL)
12429 return FALSE;
12430
12431 /* BPABI objects never have dynamic relocations mapped. */
12432 if (htab->symbian_p)
12433 {
12434 flagword flags;
12435
12436 flags = bfd_get_section_flags (dynobj, sreloc);
12437 flags &= ~(SEC_LOAD | SEC_ALLOC);
12438 bfd_set_section_flags (dynobj, sreloc, flags);
12439 }
12440 }
12441
12442 /* If this is a global symbol, count the number of
12443 relocations we need for this symbol. */
12444 if (h != NULL)
12445 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12446 else
12447 {
12448 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12449 if (head == NULL)
12450 return FALSE;
12451 }
12452
12453 p = *head;
12454 if (p == NULL || p->sec != sec)
12455 {
12456 bfd_size_type amt = sizeof *p;
12457
12458 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
12459 if (p == NULL)
12460 return FALSE;
12461 p->next = *head;
12462 *head = p;
12463 p->sec = sec;
12464 p->count = 0;
12465 p->pc_count = 0;
12466 }
12467
12468 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
12469 p->pc_count += 1;
12470 p->count += 1;
12471 }
12472 }
12473
12474 return TRUE;
12475 }
12476
12477 /* Unwinding tables are not referenced directly. This pass marks them as
12478 required if the corresponding code section is marked. */
12479
12480 static bfd_boolean
12481 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
12482 elf_gc_mark_hook_fn gc_mark_hook)
12483 {
12484 bfd *sub;
12485 Elf_Internal_Shdr **elf_shdrp;
12486 bfd_boolean again;
12487
12488 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12489
12490 /* Marking EH data may cause additional code sections to be marked,
12491 requiring multiple passes. */
12492 again = TRUE;
12493 while (again)
12494 {
12495 again = FALSE;
12496 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12497 {
12498 asection *o;
12499
12500 if (! is_arm_elf (sub))
12501 continue;
12502
12503 elf_shdrp = elf_elfsections (sub);
12504 for (o = sub->sections; o != NULL; o = o->next)
12505 {
12506 Elf_Internal_Shdr *hdr;
12507
12508 hdr = &elf_section_data (o)->this_hdr;
12509 if (hdr->sh_type == SHT_ARM_EXIDX
12510 && hdr->sh_link
12511 && hdr->sh_link < elf_numsections (sub)
12512 && !o->gc_mark
12513 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
12514 {
12515 again = TRUE;
12516 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12517 return FALSE;
12518 }
12519 }
12520 }
12521 }
12522
12523 return TRUE;
12524 }
12525
12526 /* Treat mapping symbols as special target symbols. */
12527
12528 static bfd_boolean
12529 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
12530 {
12531 return bfd_is_arm_special_symbol_name (sym->name,
12532 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
12533 }
12534
12535 /* This is a copy of elf_find_function() from elf.c except that
12536 ARM mapping symbols are ignored when looking for function names
12537 and STT_ARM_TFUNC is considered to a function type. */
12538
12539 static bfd_boolean
12540 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
12541 asection * section,
12542 asymbol ** symbols,
12543 bfd_vma offset,
12544 const char ** filename_ptr,
12545 const char ** functionname_ptr)
12546 {
12547 const char * filename = NULL;
12548 asymbol * func = NULL;
12549 bfd_vma low_func = 0;
12550 asymbol ** p;
12551
12552 for (p = symbols; *p != NULL; p++)
12553 {
12554 elf_symbol_type *q;
12555
12556 q = (elf_symbol_type *) *p;
12557
12558 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
12559 {
12560 default:
12561 break;
12562 case STT_FILE:
12563 filename = bfd_asymbol_name (&q->symbol);
12564 break;
12565 case STT_FUNC:
12566 case STT_ARM_TFUNC:
12567 case STT_NOTYPE:
12568 /* Skip mapping symbols. */
12569 if ((q->symbol.flags & BSF_LOCAL)
12570 && bfd_is_arm_special_symbol_name (q->symbol.name,
12571 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
12572 continue;
12573 /* Fall through. */
12574 if (bfd_get_section (&q->symbol) == section
12575 && q->symbol.value >= low_func
12576 && q->symbol.value <= offset)
12577 {
12578 func = (asymbol *) q;
12579 low_func = q->symbol.value;
12580 }
12581 break;
12582 }
12583 }
12584
12585 if (func == NULL)
12586 return FALSE;
12587
12588 if (filename_ptr)
12589 *filename_ptr = filename;
12590 if (functionname_ptr)
12591 *functionname_ptr = bfd_asymbol_name (func);
12592
12593 return TRUE;
12594 }
12595
12596
12597 /* Find the nearest line to a particular section and offset, for error
12598 reporting. This code is a duplicate of the code in elf.c, except
12599 that it uses arm_elf_find_function. */
12600
12601 static bfd_boolean
12602 elf32_arm_find_nearest_line (bfd * abfd,
12603 asection * section,
12604 asymbol ** symbols,
12605 bfd_vma offset,
12606 const char ** filename_ptr,
12607 const char ** functionname_ptr,
12608 unsigned int * line_ptr)
12609 {
12610 bfd_boolean found = FALSE;
12611
12612 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
12613
12614 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
12615 filename_ptr, functionname_ptr,
12616 line_ptr, 0,
12617 & elf_tdata (abfd)->dwarf2_find_line_info))
12618 {
12619 if (!*functionname_ptr)
12620 arm_elf_find_function (abfd, section, symbols, offset,
12621 *filename_ptr ? NULL : filename_ptr,
12622 functionname_ptr);
12623
12624 return TRUE;
12625 }
12626
12627 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
12628 & found, filename_ptr,
12629 functionname_ptr, line_ptr,
12630 & elf_tdata (abfd)->line_info))
12631 return FALSE;
12632
12633 if (found && (*functionname_ptr || *line_ptr))
12634 return TRUE;
12635
12636 if (symbols == NULL)
12637 return FALSE;
12638
12639 if (! arm_elf_find_function (abfd, section, symbols, offset,
12640 filename_ptr, functionname_ptr))
12641 return FALSE;
12642
12643 *line_ptr = 0;
12644 return TRUE;
12645 }
12646
12647 static bfd_boolean
12648 elf32_arm_find_inliner_info (bfd * abfd,
12649 const char ** filename_ptr,
12650 const char ** functionname_ptr,
12651 unsigned int * line_ptr)
12652 {
12653 bfd_boolean found;
12654 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12655 functionname_ptr, line_ptr,
12656 & elf_tdata (abfd)->dwarf2_find_line_info);
12657 return found;
12658 }
12659
12660 /* Adjust a symbol defined by a dynamic object and referenced by a
12661 regular object. The current definition is in some section of the
12662 dynamic object, but we're not including those sections. We have to
12663 change the definition to something the rest of the link can
12664 understand. */
12665
12666 static bfd_boolean
12667 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
12668 struct elf_link_hash_entry * h)
12669 {
12670 bfd * dynobj;
12671 asection * s;
12672 struct elf32_arm_link_hash_entry * eh;
12673 struct elf32_arm_link_hash_table *globals;
12674
12675 globals = elf32_arm_hash_table (info);
12676 if (globals == NULL)
12677 return FALSE;
12678
12679 dynobj = elf_hash_table (info)->dynobj;
12680
12681 /* Make sure we know what is going on here. */
12682 BFD_ASSERT (dynobj != NULL
12683 && (h->needs_plt
12684 || h->type == STT_GNU_IFUNC
12685 || h->u.weakdef != NULL
12686 || (h->def_dynamic
12687 && h->ref_regular
12688 && !h->def_regular)));
12689
12690 eh = (struct elf32_arm_link_hash_entry *) h;
12691
12692 /* If this is a function, put it in the procedure linkage table. We
12693 will fill in the contents of the procedure linkage table later,
12694 when we know the address of the .got section. */
12695 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
12696 {
12697 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
12698 symbol binds locally. */
12699 if (h->plt.refcount <= 0
12700 || (h->type != STT_GNU_IFUNC
12701 && (SYMBOL_CALLS_LOCAL (info, h)
12702 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
12703 && h->root.type == bfd_link_hash_undefweak))))
12704 {
12705 /* This case can occur if we saw a PLT32 reloc in an input
12706 file, but the symbol was never referred to by a dynamic
12707 object, or if all references were garbage collected. In
12708 such a case, we don't actually need to build a procedure
12709 linkage table, and we can just do a PC24 reloc instead. */
12710 h->plt.offset = (bfd_vma) -1;
12711 eh->plt.thumb_refcount = 0;
12712 eh->plt.maybe_thumb_refcount = 0;
12713 eh->plt.noncall_refcount = 0;
12714 h->needs_plt = 0;
12715 }
12716
12717 return TRUE;
12718 }
12719 else
12720 {
12721 /* It's possible that we incorrectly decided a .plt reloc was
12722 needed for an R_ARM_PC24 or similar reloc to a non-function sym
12723 in check_relocs. We can't decide accurately between function
12724 and non-function syms in check-relocs; Objects loaded later in
12725 the link may change h->type. So fix it now. */
12726 h->plt.offset = (bfd_vma) -1;
12727 eh->plt.thumb_refcount = 0;
12728 eh->plt.maybe_thumb_refcount = 0;
12729 eh->plt.noncall_refcount = 0;
12730 }
12731
12732 /* If this is a weak symbol, and there is a real definition, the
12733 processor independent code will have arranged for us to see the
12734 real definition first, and we can just use the same value. */
12735 if (h->u.weakdef != NULL)
12736 {
12737 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
12738 || h->u.weakdef->root.type == bfd_link_hash_defweak);
12739 h->root.u.def.section = h->u.weakdef->root.u.def.section;
12740 h->root.u.def.value = h->u.weakdef->root.u.def.value;
12741 return TRUE;
12742 }
12743
12744 /* If there are no non-GOT references, we do not need a copy
12745 relocation. */
12746 if (!h->non_got_ref)
12747 return TRUE;
12748
12749 /* This is a reference to a symbol defined by a dynamic object which
12750 is not a function. */
12751
12752 /* If we are creating a shared library, we must presume that the
12753 only references to the symbol are via the global offset table.
12754 For such cases we need not do anything here; the relocations will
12755 be handled correctly by relocate_section. Relocatable executables
12756 can reference data in shared objects directly, so we don't need to
12757 do anything here. */
12758 if (info->shared || globals->root.is_relocatable_executable)
12759 return TRUE;
12760
12761 if (h->size == 0)
12762 {
12763 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
12764 h->root.root.string);
12765 return TRUE;
12766 }
12767
12768 /* We must allocate the symbol in our .dynbss section, which will
12769 become part of the .bss section of the executable. There will be
12770 an entry for this symbol in the .dynsym section. The dynamic
12771 object will contain position independent code, so all references
12772 from the dynamic object to this symbol will go through the global
12773 offset table. The dynamic linker will use the .dynsym entry to
12774 determine the address it must put in the global offset table, so
12775 both the dynamic object and the regular object will refer to the
12776 same memory location for the variable. */
12777 s = bfd_get_section_by_name (dynobj, ".dynbss");
12778 BFD_ASSERT (s != NULL);
12779
12780 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
12781 copy the initial value out of the dynamic object and into the
12782 runtime process image. We need to remember the offset into the
12783 .rel(a).bss section we are going to use. */
12784 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
12785 {
12786 asection *srel;
12787
12788 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
12789 elf32_arm_allocate_dynrelocs (info, srel, 1);
12790 h->needs_copy = 1;
12791 }
12792
12793 return _bfd_elf_adjust_dynamic_copy (h, s);
12794 }
12795
12796 /* Allocate space in .plt, .got and associated reloc sections for
12797 dynamic relocs. */
12798
12799 static bfd_boolean
12800 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
12801 {
12802 struct bfd_link_info *info;
12803 struct elf32_arm_link_hash_table *htab;
12804 struct elf32_arm_link_hash_entry *eh;
12805 struct elf_dyn_relocs *p;
12806
12807 if (h->root.type == bfd_link_hash_indirect)
12808 return TRUE;
12809
12810 eh = (struct elf32_arm_link_hash_entry *) h;
12811
12812 info = (struct bfd_link_info *) inf;
12813 htab = elf32_arm_hash_table (info);
12814 if (htab == NULL)
12815 return FALSE;
12816
12817 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
12818 && h->plt.refcount > 0)
12819 {
12820 /* Make sure this symbol is output as a dynamic symbol.
12821 Undefined weak syms won't yet be marked as dynamic. */
12822 if (h->dynindx == -1
12823 && !h->forced_local)
12824 {
12825 if (! bfd_elf_link_record_dynamic_symbol (info, h))
12826 return FALSE;
12827 }
12828
12829 /* If the call in the PLT entry binds locally, the associated
12830 GOT entry should use an R_ARM_IRELATIVE relocation instead of
12831 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
12832 than the .plt section. */
12833 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
12834 {
12835 eh->is_iplt = 1;
12836 if (eh->plt.noncall_refcount == 0
12837 && SYMBOL_REFERENCES_LOCAL (info, h))
12838 /* All non-call references can be resolved directly.
12839 This means that they can (and in some cases, must)
12840 resolve directly to the run-time target, rather than
12841 to the PLT. That in turns means that any .got entry
12842 would be equal to the .igot.plt entry, so there's
12843 no point having both. */
12844 h->got.refcount = 0;
12845 }
12846
12847 if (info->shared
12848 || eh->is_iplt
12849 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
12850 {
12851 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
12852
12853 /* If this symbol is not defined in a regular file, and we are
12854 not generating a shared library, then set the symbol to this
12855 location in the .plt. This is required to make function
12856 pointers compare as equal between the normal executable and
12857 the shared library. */
12858 if (! info->shared
12859 && !h->def_regular)
12860 {
12861 h->root.u.def.section = htab->root.splt;
12862 h->root.u.def.value = h->plt.offset;
12863
12864 /* Make sure the function is not marked as Thumb, in case
12865 it is the target of an ABS32 relocation, which will
12866 point to the PLT entry. */
12867 h->target_internal = ST_BRANCH_TO_ARM;
12868 }
12869
12870 htab->next_tls_desc_index++;
12871
12872 /* VxWorks executables have a second set of relocations for
12873 each PLT entry. They go in a separate relocation section,
12874 which is processed by the kernel loader. */
12875 if (htab->vxworks_p && !info->shared)
12876 {
12877 /* There is a relocation for the initial PLT entry:
12878 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
12879 if (h->plt.offset == htab->plt_header_size)
12880 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
12881
12882 /* There are two extra relocations for each subsequent
12883 PLT entry: an R_ARM_32 relocation for the GOT entry,
12884 and an R_ARM_32 relocation for the PLT entry. */
12885 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
12886 }
12887 }
12888 else
12889 {
12890 h->plt.offset = (bfd_vma) -1;
12891 h->needs_plt = 0;
12892 }
12893 }
12894 else
12895 {
12896 h->plt.offset = (bfd_vma) -1;
12897 h->needs_plt = 0;
12898 }
12899
12900 eh = (struct elf32_arm_link_hash_entry *) h;
12901 eh->tlsdesc_got = (bfd_vma) -1;
12902
12903 if (h->got.refcount > 0)
12904 {
12905 asection *s;
12906 bfd_boolean dyn;
12907 int tls_type = elf32_arm_hash_entry (h)->tls_type;
12908 int indx;
12909
12910 /* Make sure this symbol is output as a dynamic symbol.
12911 Undefined weak syms won't yet be marked as dynamic. */
12912 if (h->dynindx == -1
12913 && !h->forced_local)
12914 {
12915 if (! bfd_elf_link_record_dynamic_symbol (info, h))
12916 return FALSE;
12917 }
12918
12919 if (!htab->symbian_p)
12920 {
12921 s = htab->root.sgot;
12922 h->got.offset = s->size;
12923
12924 if (tls_type == GOT_UNKNOWN)
12925 abort ();
12926
12927 if (tls_type == GOT_NORMAL)
12928 /* Non-TLS symbols need one GOT slot. */
12929 s->size += 4;
12930 else
12931 {
12932 if (tls_type & GOT_TLS_GDESC)
12933 {
12934 /* R_ARM_TLS_DESC needs 2 GOT slots. */
12935 eh->tlsdesc_got
12936 = (htab->root.sgotplt->size
12937 - elf32_arm_compute_jump_table_size (htab));
12938 htab->root.sgotplt->size += 8;
12939 h->got.offset = (bfd_vma) -2;
12940 /* plt.got_offset needs to know there's a TLS_DESC
12941 reloc in the middle of .got.plt. */
12942 htab->num_tls_desc++;
12943 }
12944
12945 if (tls_type & GOT_TLS_GD)
12946 {
12947 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
12948 the symbol is both GD and GDESC, got.offset may
12949 have been overwritten. */
12950 h->got.offset = s->size;
12951 s->size += 8;
12952 }
12953
12954 if (tls_type & GOT_TLS_IE)
12955 /* R_ARM_TLS_IE32 needs one GOT slot. */
12956 s->size += 4;
12957 }
12958
12959 dyn = htab->root.dynamic_sections_created;
12960
12961 indx = 0;
12962 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
12963 && (!info->shared
12964 || !SYMBOL_REFERENCES_LOCAL (info, h)))
12965 indx = h->dynindx;
12966
12967 if (tls_type != GOT_NORMAL
12968 && (info->shared || indx != 0)
12969 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
12970 || h->root.type != bfd_link_hash_undefweak))
12971 {
12972 if (tls_type & GOT_TLS_IE)
12973 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12974
12975 if (tls_type & GOT_TLS_GD)
12976 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12977
12978 if (tls_type & GOT_TLS_GDESC)
12979 {
12980 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
12981 /* GDESC needs a trampoline to jump to. */
12982 htab->tls_trampoline = -1;
12983 }
12984
12985 /* Only GD needs it. GDESC just emits one relocation per
12986 2 entries. */
12987 if ((tls_type & GOT_TLS_GD) && indx != 0)
12988 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12989 }
12990 else if (!SYMBOL_REFERENCES_LOCAL (info, h))
12991 {
12992 if (htab->root.dynamic_sections_created)
12993 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
12994 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12995 }
12996 else if (h->type == STT_GNU_IFUNC
12997 && eh->plt.noncall_refcount == 0)
12998 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
12999 they all resolve dynamically instead. Reserve room for the
13000 GOT entry's R_ARM_IRELATIVE relocation. */
13001 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
13002 else if (info->shared)
13003 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
13004 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13005 }
13006 }
13007 else
13008 h->got.offset = (bfd_vma) -1;
13009
13010 /* Allocate stubs for exported Thumb functions on v4t. */
13011 if (!htab->use_blx && h->dynindx != -1
13012 && h->def_regular
13013 && h->target_internal == ST_BRANCH_TO_THUMB
13014 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
13015 {
13016 struct elf_link_hash_entry * th;
13017 struct bfd_link_hash_entry * bh;
13018 struct elf_link_hash_entry * myh;
13019 char name[1024];
13020 asection *s;
13021 bh = NULL;
13022 /* Create a new symbol to regist the real location of the function. */
13023 s = h->root.u.def.section;
13024 sprintf (name, "__real_%s", h->root.root.string);
13025 _bfd_generic_link_add_one_symbol (info, s->owner,
13026 name, BSF_GLOBAL, s,
13027 h->root.u.def.value,
13028 NULL, TRUE, FALSE, &bh);
13029
13030 myh = (struct elf_link_hash_entry *) bh;
13031 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
13032 myh->forced_local = 1;
13033 myh->target_internal = ST_BRANCH_TO_THUMB;
13034 eh->export_glue = myh;
13035 th = record_arm_to_thumb_glue (info, h);
13036 /* Point the symbol at the stub. */
13037 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
13038 h->target_internal = ST_BRANCH_TO_ARM;
13039 h->root.u.def.section = th->root.u.def.section;
13040 h->root.u.def.value = th->root.u.def.value & ~1;
13041 }
13042
13043 if (eh->dyn_relocs == NULL)
13044 return TRUE;
13045
13046 /* In the shared -Bsymbolic case, discard space allocated for
13047 dynamic pc-relative relocs against symbols which turn out to be
13048 defined in regular objects. For the normal shared case, discard
13049 space for pc-relative relocs that have become local due to symbol
13050 visibility changes. */
13051
13052 if (info->shared || htab->root.is_relocatable_executable)
13053 {
13054 /* The only relocs that use pc_count are R_ARM_REL32 and
13055 R_ARM_REL32_NOI, which will appear on something like
13056 ".long foo - .". We want calls to protected symbols to resolve
13057 directly to the function rather than going via the plt. If people
13058 want function pointer comparisons to work as expected then they
13059 should avoid writing assembly like ".long foo - .". */
13060 if (SYMBOL_CALLS_LOCAL (info, h))
13061 {
13062 struct elf_dyn_relocs **pp;
13063
13064 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13065 {
13066 p->count -= p->pc_count;
13067 p->pc_count = 0;
13068 if (p->count == 0)
13069 *pp = p->next;
13070 else
13071 pp = &p->next;
13072 }
13073 }
13074
13075 if (htab->vxworks_p)
13076 {
13077 struct elf_dyn_relocs **pp;
13078
13079 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13080 {
13081 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
13082 *pp = p->next;
13083 else
13084 pp = &p->next;
13085 }
13086 }
13087
13088 /* Also discard relocs on undefined weak syms with non-default
13089 visibility. */
13090 if (eh->dyn_relocs != NULL
13091 && h->root.type == bfd_link_hash_undefweak)
13092 {
13093 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
13094 eh->dyn_relocs = NULL;
13095
13096 /* Make sure undefined weak symbols are output as a dynamic
13097 symbol in PIEs. */
13098 else if (h->dynindx == -1
13099 && !h->forced_local)
13100 {
13101 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13102 return FALSE;
13103 }
13104 }
13105
13106 else if (htab->root.is_relocatable_executable && h->dynindx == -1
13107 && h->root.type == bfd_link_hash_new)
13108 {
13109 /* Output absolute symbols so that we can create relocations
13110 against them. For normal symbols we output a relocation
13111 against the section that contains them. */
13112 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13113 return FALSE;
13114 }
13115
13116 }
13117 else
13118 {
13119 /* For the non-shared case, discard space for relocs against
13120 symbols which turn out to need copy relocs or are not
13121 dynamic. */
13122
13123 if (!h->non_got_ref
13124 && ((h->def_dynamic
13125 && !h->def_regular)
13126 || (htab->root.dynamic_sections_created
13127 && (h->root.type == bfd_link_hash_undefweak
13128 || h->root.type == bfd_link_hash_undefined))))
13129 {
13130 /* Make sure this symbol is output as a dynamic symbol.
13131 Undefined weak syms won't yet be marked as dynamic. */
13132 if (h->dynindx == -1
13133 && !h->forced_local)
13134 {
13135 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13136 return FALSE;
13137 }
13138
13139 /* If that succeeded, we know we'll be keeping all the
13140 relocs. */
13141 if (h->dynindx != -1)
13142 goto keep;
13143 }
13144
13145 eh->dyn_relocs = NULL;
13146
13147 keep: ;
13148 }
13149
13150 /* Finally, allocate space. */
13151 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13152 {
13153 asection *sreloc = elf_section_data (p->sec)->sreloc;
13154 if (h->type == STT_GNU_IFUNC
13155 && eh->plt.noncall_refcount == 0
13156 && SYMBOL_REFERENCES_LOCAL (info, h))
13157 elf32_arm_allocate_irelocs (info, sreloc, p->count);
13158 else
13159 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
13160 }
13161
13162 return TRUE;
13163 }
13164
13165 /* Find any dynamic relocs that apply to read-only sections. */
13166
13167 static bfd_boolean
13168 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
13169 {
13170 struct elf32_arm_link_hash_entry * eh;
13171 struct elf_dyn_relocs * p;
13172
13173 eh = (struct elf32_arm_link_hash_entry *) h;
13174 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13175 {
13176 asection *s = p->sec;
13177
13178 if (s != NULL && (s->flags & SEC_READONLY) != 0)
13179 {
13180 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13181
13182 info->flags |= DF_TEXTREL;
13183
13184 /* Not an error, just cut short the traversal. */
13185 return FALSE;
13186 }
13187 }
13188 return TRUE;
13189 }
13190
13191 void
13192 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13193 int byteswap_code)
13194 {
13195 struct elf32_arm_link_hash_table *globals;
13196
13197 globals = elf32_arm_hash_table (info);
13198 if (globals == NULL)
13199 return;
13200
13201 globals->byteswap_code = byteswap_code;
13202 }
13203
13204 /* Set the sizes of the dynamic sections. */
13205
13206 static bfd_boolean
13207 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13208 struct bfd_link_info * info)
13209 {
13210 bfd * dynobj;
13211 asection * s;
13212 bfd_boolean plt;
13213 bfd_boolean relocs;
13214 bfd *ibfd;
13215 struct elf32_arm_link_hash_table *htab;
13216
13217 htab = elf32_arm_hash_table (info);
13218 if (htab == NULL)
13219 return FALSE;
13220
13221 dynobj = elf_hash_table (info)->dynobj;
13222 BFD_ASSERT (dynobj != NULL);
13223 check_use_blx (htab);
13224
13225 if (elf_hash_table (info)->dynamic_sections_created)
13226 {
13227 /* Set the contents of the .interp section to the interpreter. */
13228 if (info->executable)
13229 {
13230 s = bfd_get_section_by_name (dynobj, ".interp");
13231 BFD_ASSERT (s != NULL);
13232 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
13233 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13234 }
13235 }
13236
13237 /* Set up .got offsets for local syms, and space for local dynamic
13238 relocs. */
13239 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13240 {
13241 bfd_signed_vma *local_got;
13242 bfd_signed_vma *end_local_got;
13243 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
13244 char *local_tls_type;
13245 bfd_vma *local_tlsdesc_gotent;
13246 bfd_size_type locsymcount;
13247 Elf_Internal_Shdr *symtab_hdr;
13248 asection *srel;
13249 bfd_boolean is_vxworks = htab->vxworks_p;
13250 unsigned int symndx;
13251
13252 if (! is_arm_elf (ibfd))
13253 continue;
13254
13255 for (s = ibfd->sections; s != NULL; s = s->next)
13256 {
13257 struct elf_dyn_relocs *p;
13258
13259 for (p = (struct elf_dyn_relocs *)
13260 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
13261 {
13262 if (!bfd_is_abs_section (p->sec)
13263 && bfd_is_abs_section (p->sec->output_section))
13264 {
13265 /* Input section has been discarded, either because
13266 it is a copy of a linkonce section or due to
13267 linker script /DISCARD/, so we'll be discarding
13268 the relocs too. */
13269 }
13270 else if (is_vxworks
13271 && strcmp (p->sec->output_section->name,
13272 ".tls_vars") == 0)
13273 {
13274 /* Relocations in vxworks .tls_vars sections are
13275 handled specially by the loader. */
13276 }
13277 else if (p->count != 0)
13278 {
13279 srel = elf_section_data (p->sec)->sreloc;
13280 elf32_arm_allocate_dynrelocs (info, srel, p->count);
13281 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
13282 info->flags |= DF_TEXTREL;
13283 }
13284 }
13285 }
13286
13287 local_got = elf_local_got_refcounts (ibfd);
13288 if (!local_got)
13289 continue;
13290
13291 symtab_hdr = & elf_symtab_hdr (ibfd);
13292 locsymcount = symtab_hdr->sh_info;
13293 end_local_got = local_got + locsymcount;
13294 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
13295 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
13296 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
13297 symndx = 0;
13298 s = htab->root.sgot;
13299 srel = htab->root.srelgot;
13300 for (; local_got < end_local_got;
13301 ++local_got, ++local_iplt_ptr, ++local_tls_type,
13302 ++local_tlsdesc_gotent, ++symndx)
13303 {
13304 *local_tlsdesc_gotent = (bfd_vma) -1;
13305 local_iplt = *local_iplt_ptr;
13306 if (local_iplt != NULL)
13307 {
13308 struct elf_dyn_relocs *p;
13309
13310 if (local_iplt->root.refcount > 0)
13311 {
13312 elf32_arm_allocate_plt_entry (info, TRUE,
13313 &local_iplt->root,
13314 &local_iplt->arm);
13315 if (local_iplt->arm.noncall_refcount == 0)
13316 /* All references to the PLT are calls, so all
13317 non-call references can resolve directly to the
13318 run-time target. This means that the .got entry
13319 would be the same as the .igot.plt entry, so there's
13320 no point creating both. */
13321 *local_got = 0;
13322 }
13323 else
13324 {
13325 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13326 local_iplt->root.offset = (bfd_vma) -1;
13327 }
13328
13329 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13330 {
13331 asection *psrel;
13332
13333 psrel = elf_section_data (p->sec)->sreloc;
13334 if (local_iplt->arm.noncall_refcount == 0)
13335 elf32_arm_allocate_irelocs (info, psrel, p->count);
13336 else
13337 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13338 }
13339 }
13340 if (*local_got > 0)
13341 {
13342 Elf_Internal_Sym *isym;
13343
13344 *local_got = s->size;
13345 if (*local_tls_type & GOT_TLS_GD)
13346 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13347 s->size += 8;
13348 if (*local_tls_type & GOT_TLS_GDESC)
13349 {
13350 *local_tlsdesc_gotent = htab->root.sgotplt->size
13351 - elf32_arm_compute_jump_table_size (htab);
13352 htab->root.sgotplt->size += 8;
13353 *local_got = (bfd_vma) -2;
13354 /* plt.got_offset needs to know there's a TLS_DESC
13355 reloc in the middle of .got.plt. */
13356 htab->num_tls_desc++;
13357 }
13358 if (*local_tls_type & GOT_TLS_IE)
13359 s->size += 4;
13360
13361 if (*local_tls_type & GOT_NORMAL)
13362 {
13363 /* If the symbol is both GD and GDESC, *local_got
13364 may have been overwritten. */
13365 *local_got = s->size;
13366 s->size += 4;
13367 }
13368
13369 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13370 if (isym == NULL)
13371 return FALSE;
13372
13373 /* If all references to an STT_GNU_IFUNC PLT are calls,
13374 then all non-call references, including this GOT entry,
13375 resolve directly to the run-time target. */
13376 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13377 && (local_iplt == NULL
13378 || local_iplt->arm.noncall_refcount == 0))
13379 elf32_arm_allocate_irelocs (info, srel, 1);
13380 else if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13381 || *local_tls_type & GOT_TLS_GD)
13382 elf32_arm_allocate_dynrelocs (info, srel, 1);
13383
13384 if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13385 {
13386 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13387 htab->tls_trampoline = -1;
13388 }
13389 }
13390 else
13391 *local_got = (bfd_vma) -1;
13392 }
13393 }
13394
13395 if (htab->tls_ldm_got.refcount > 0)
13396 {
13397 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13398 for R_ARM_TLS_LDM32 relocations. */
13399 htab->tls_ldm_got.offset = htab->root.sgot->size;
13400 htab->root.sgot->size += 8;
13401 if (info->shared)
13402 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13403 }
13404 else
13405 htab->tls_ldm_got.offset = -1;
13406
13407 /* Allocate global sym .plt and .got entries, and space for global
13408 sym dynamic relocs. */
13409 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
13410
13411 /* Here we rummage through the found bfds to collect glue information. */
13412 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13413 {
13414 if (! is_arm_elf (ibfd))
13415 continue;
13416
13417 /* Initialise mapping tables for code/data. */
13418 bfd_elf32_arm_init_maps (ibfd);
13419
13420 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13421 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
13422 /* xgettext:c-format */
13423 _bfd_error_handler (_("Errors encountered processing file %s"),
13424 ibfd->filename);
13425 }
13426
13427 /* Allocate space for the glue sections now that we've sized them. */
13428 bfd_elf32_arm_allocate_interworking_sections (info);
13429
13430 /* For every jump slot reserved in the sgotplt, reloc_count is
13431 incremented. However, when we reserve space for TLS descriptors,
13432 it's not incremented, so in order to compute the space reserved
13433 for them, it suffices to multiply the reloc count by the jump
13434 slot size. */
13435 if (htab->root.srelplt)
13436 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
13437
13438 if (htab->tls_trampoline)
13439 {
13440 if (htab->root.splt->size == 0)
13441 htab->root.splt->size += htab->plt_header_size;
13442
13443 htab->tls_trampoline = htab->root.splt->size;
13444 htab->root.splt->size += htab->plt_entry_size;
13445
13446 /* If we're not using lazy TLS relocations, don't generate the
13447 PLT and GOT entries they require. */
13448 if (!(info->flags & DF_BIND_NOW))
13449 {
13450 htab->dt_tlsdesc_got = htab->root.sgot->size;
13451 htab->root.sgot->size += 4;
13452
13453 htab->dt_tlsdesc_plt = htab->root.splt->size;
13454 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
13455 }
13456 }
13457
13458 /* The check_relocs and adjust_dynamic_symbol entry points have
13459 determined the sizes of the various dynamic sections. Allocate
13460 memory for them. */
13461 plt = FALSE;
13462 relocs = FALSE;
13463 for (s = dynobj->sections; s != NULL; s = s->next)
13464 {
13465 const char * name;
13466
13467 if ((s->flags & SEC_LINKER_CREATED) == 0)
13468 continue;
13469
13470 /* It's OK to base decisions on the section name, because none
13471 of the dynobj section names depend upon the input files. */
13472 name = bfd_get_section_name (dynobj, s);
13473
13474 if (s == htab->root.splt)
13475 {
13476 /* Remember whether there is a PLT. */
13477 plt = s->size != 0;
13478 }
13479 else if (CONST_STRNEQ (name, ".rel"))
13480 {
13481 if (s->size != 0)
13482 {
13483 /* Remember whether there are any reloc sections other
13484 than .rel(a).plt and .rela.plt.unloaded. */
13485 if (s != htab->root.srelplt && s != htab->srelplt2)
13486 relocs = TRUE;
13487
13488 /* We use the reloc_count field as a counter if we need
13489 to copy relocs into the output file. */
13490 s->reloc_count = 0;
13491 }
13492 }
13493 else if (s != htab->root.sgot
13494 && s != htab->root.sgotplt
13495 && s != htab->root.iplt
13496 && s != htab->root.igotplt
13497 && s != htab->sdynbss)
13498 {
13499 /* It's not one of our sections, so don't allocate space. */
13500 continue;
13501 }
13502
13503 if (s->size == 0)
13504 {
13505 /* If we don't need this section, strip it from the
13506 output file. This is mostly to handle .rel(a).bss and
13507 .rel(a).plt. We must create both sections in
13508 create_dynamic_sections, because they must be created
13509 before the linker maps input sections to output
13510 sections. The linker does that before
13511 adjust_dynamic_symbol is called, and it is that
13512 function which decides whether anything needs to go
13513 into these sections. */
13514 s->flags |= SEC_EXCLUDE;
13515 continue;
13516 }
13517
13518 if ((s->flags & SEC_HAS_CONTENTS) == 0)
13519 continue;
13520
13521 /* Allocate memory for the section contents. */
13522 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
13523 if (s->contents == NULL)
13524 return FALSE;
13525 }
13526
13527 if (elf_hash_table (info)->dynamic_sections_created)
13528 {
13529 /* Add some entries to the .dynamic section. We fill in the
13530 values later, in elf32_arm_finish_dynamic_sections, but we
13531 must add the entries now so that we get the correct size for
13532 the .dynamic section. The DT_DEBUG entry is filled in by the
13533 dynamic linker and used by the debugger. */
13534 #define add_dynamic_entry(TAG, VAL) \
13535 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
13536
13537 if (info->executable)
13538 {
13539 if (!add_dynamic_entry (DT_DEBUG, 0))
13540 return FALSE;
13541 }
13542
13543 if (plt)
13544 {
13545 if ( !add_dynamic_entry (DT_PLTGOT, 0)
13546 || !add_dynamic_entry (DT_PLTRELSZ, 0)
13547 || !add_dynamic_entry (DT_PLTREL,
13548 htab->use_rel ? DT_REL : DT_RELA)
13549 || !add_dynamic_entry (DT_JMPREL, 0))
13550 return FALSE;
13551
13552 if (htab->dt_tlsdesc_plt &&
13553 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
13554 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
13555 return FALSE;
13556 }
13557
13558 if (relocs)
13559 {
13560 if (htab->use_rel)
13561 {
13562 if (!add_dynamic_entry (DT_REL, 0)
13563 || !add_dynamic_entry (DT_RELSZ, 0)
13564 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
13565 return FALSE;
13566 }
13567 else
13568 {
13569 if (!add_dynamic_entry (DT_RELA, 0)
13570 || !add_dynamic_entry (DT_RELASZ, 0)
13571 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
13572 return FALSE;
13573 }
13574 }
13575
13576 /* If any dynamic relocs apply to a read-only section,
13577 then we need a DT_TEXTREL entry. */
13578 if ((info->flags & DF_TEXTREL) == 0)
13579 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
13580 info);
13581
13582 if ((info->flags & DF_TEXTREL) != 0)
13583 {
13584 if (!add_dynamic_entry (DT_TEXTREL, 0))
13585 return FALSE;
13586 }
13587 if (htab->vxworks_p
13588 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
13589 return FALSE;
13590 }
13591 #undef add_dynamic_entry
13592
13593 return TRUE;
13594 }
13595
13596 /* Size sections even though they're not dynamic. We use it to setup
13597 _TLS_MODULE_BASE_, if needed. */
13598
13599 static bfd_boolean
13600 elf32_arm_always_size_sections (bfd *output_bfd,
13601 struct bfd_link_info *info)
13602 {
13603 asection *tls_sec;
13604
13605 if (info->relocatable)
13606 return TRUE;
13607
13608 tls_sec = elf_hash_table (info)->tls_sec;
13609
13610 if (tls_sec)
13611 {
13612 struct elf_link_hash_entry *tlsbase;
13613
13614 tlsbase = elf_link_hash_lookup
13615 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
13616
13617 if (tlsbase)
13618 {
13619 struct bfd_link_hash_entry *bh = NULL;
13620 const struct elf_backend_data *bed
13621 = get_elf_backend_data (output_bfd);
13622
13623 if (!(_bfd_generic_link_add_one_symbol
13624 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
13625 tls_sec, 0, NULL, FALSE,
13626 bed->collect, &bh)))
13627 return FALSE;
13628
13629 tlsbase->type = STT_TLS;
13630 tlsbase = (struct elf_link_hash_entry *)bh;
13631 tlsbase->def_regular = 1;
13632 tlsbase->other = STV_HIDDEN;
13633 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
13634 }
13635 }
13636 return TRUE;
13637 }
13638
13639 /* Finish up dynamic symbol handling. We set the contents of various
13640 dynamic sections here. */
13641
13642 static bfd_boolean
13643 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
13644 struct bfd_link_info * info,
13645 struct elf_link_hash_entry * h,
13646 Elf_Internal_Sym * sym)
13647 {
13648 struct elf32_arm_link_hash_table *htab;
13649 struct elf32_arm_link_hash_entry *eh;
13650
13651 htab = elf32_arm_hash_table (info);
13652 if (htab == NULL)
13653 return FALSE;
13654
13655 eh = (struct elf32_arm_link_hash_entry *) h;
13656
13657 if (h->plt.offset != (bfd_vma) -1)
13658 {
13659 if (!eh->is_iplt)
13660 {
13661 BFD_ASSERT (h->dynindx != -1);
13662 elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
13663 h->dynindx, 0);
13664 }
13665
13666 if (!h->def_regular)
13667 {
13668 /* Mark the symbol as undefined, rather than as defined in
13669 the .plt section. Leave the value alone. */
13670 sym->st_shndx = SHN_UNDEF;
13671 /* If the symbol is weak, we do need to clear the value.
13672 Otherwise, the PLT entry would provide a definition for
13673 the symbol even if the symbol wasn't defined anywhere,
13674 and so the symbol would never be NULL. */
13675 if (!h->ref_regular_nonweak)
13676 sym->st_value = 0;
13677 }
13678 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
13679 {
13680 /* At least one non-call relocation references this .iplt entry,
13681 so the .iplt entry is the function's canonical address. */
13682 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
13683 sym->st_target_internal = ST_BRANCH_TO_ARM;
13684 sym->st_shndx = (_bfd_elf_section_from_bfd_section
13685 (output_bfd, htab->root.iplt->output_section));
13686 sym->st_value = (h->plt.offset
13687 + htab->root.iplt->output_section->vma
13688 + htab->root.iplt->output_offset);
13689 }
13690 }
13691
13692 if (h->needs_copy)
13693 {
13694 asection * s;
13695 Elf_Internal_Rela rel;
13696
13697 /* This symbol needs a copy reloc. Set it up. */
13698 BFD_ASSERT (h->dynindx != -1
13699 && (h->root.type == bfd_link_hash_defined
13700 || h->root.type == bfd_link_hash_defweak));
13701
13702 s = htab->srelbss;
13703 BFD_ASSERT (s != NULL);
13704
13705 rel.r_addend = 0;
13706 rel.r_offset = (h->root.u.def.value
13707 + h->root.u.def.section->output_section->vma
13708 + h->root.u.def.section->output_offset);
13709 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
13710 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
13711 }
13712
13713 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
13714 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
13715 to the ".got" section. */
13716 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
13717 || (!htab->vxworks_p && h == htab->root.hgot))
13718 sym->st_shndx = SHN_ABS;
13719
13720 return TRUE;
13721 }
13722
13723 static void
13724 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
13725 void *contents,
13726 const unsigned long *template, unsigned count)
13727 {
13728 unsigned ix;
13729
13730 for (ix = 0; ix != count; ix++)
13731 {
13732 unsigned long insn = template[ix];
13733
13734 /* Emit mov pc,rx if bx is not permitted. */
13735 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
13736 insn = (insn & 0xf000000f) | 0x01a0f000;
13737 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
13738 }
13739 }
13740
13741 /* Finish up the dynamic sections. */
13742
13743 static bfd_boolean
13744 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
13745 {
13746 bfd * dynobj;
13747 asection * sgot;
13748 asection * sdyn;
13749 struct elf32_arm_link_hash_table *htab;
13750
13751 htab = elf32_arm_hash_table (info);
13752 if (htab == NULL)
13753 return FALSE;
13754
13755 dynobj = elf_hash_table (info)->dynobj;
13756
13757 sgot = htab->root.sgotplt;
13758 /* A broken linker script might have discarded the dynamic sections.
13759 Catch this here so that we do not seg-fault later on. */
13760 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
13761 return FALSE;
13762 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
13763
13764 if (elf_hash_table (info)->dynamic_sections_created)
13765 {
13766 asection *splt;
13767 Elf32_External_Dyn *dyncon, *dynconend;
13768
13769 splt = htab->root.splt;
13770 BFD_ASSERT (splt != NULL && sdyn != NULL);
13771 BFD_ASSERT (htab->symbian_p || sgot != NULL);
13772
13773 dyncon = (Elf32_External_Dyn *) sdyn->contents;
13774 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
13775
13776 for (; dyncon < dynconend; dyncon++)
13777 {
13778 Elf_Internal_Dyn dyn;
13779 const char * name;
13780 asection * s;
13781
13782 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
13783
13784 switch (dyn.d_tag)
13785 {
13786 unsigned int type;
13787
13788 default:
13789 if (htab->vxworks_p
13790 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
13791 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13792 break;
13793
13794 case DT_HASH:
13795 name = ".hash";
13796 goto get_vma_if_bpabi;
13797 case DT_STRTAB:
13798 name = ".dynstr";
13799 goto get_vma_if_bpabi;
13800 case DT_SYMTAB:
13801 name = ".dynsym";
13802 goto get_vma_if_bpabi;
13803 case DT_VERSYM:
13804 name = ".gnu.version";
13805 goto get_vma_if_bpabi;
13806 case DT_VERDEF:
13807 name = ".gnu.version_d";
13808 goto get_vma_if_bpabi;
13809 case DT_VERNEED:
13810 name = ".gnu.version_r";
13811 goto get_vma_if_bpabi;
13812
13813 case DT_PLTGOT:
13814 name = ".got";
13815 goto get_vma;
13816 case DT_JMPREL:
13817 name = RELOC_SECTION (htab, ".plt");
13818 get_vma:
13819 s = bfd_get_section_by_name (output_bfd, name);
13820 BFD_ASSERT (s != NULL);
13821 if (!htab->symbian_p)
13822 dyn.d_un.d_ptr = s->vma;
13823 else
13824 /* In the BPABI, tags in the PT_DYNAMIC section point
13825 at the file offset, not the memory address, for the
13826 convenience of the post linker. */
13827 dyn.d_un.d_ptr = s->filepos;
13828 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13829 break;
13830
13831 get_vma_if_bpabi:
13832 if (htab->symbian_p)
13833 goto get_vma;
13834 break;
13835
13836 case DT_PLTRELSZ:
13837 s = htab->root.srelplt;
13838 BFD_ASSERT (s != NULL);
13839 dyn.d_un.d_val = s->size;
13840 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13841 break;
13842
13843 case DT_RELSZ:
13844 case DT_RELASZ:
13845 if (!htab->symbian_p)
13846 {
13847 /* My reading of the SVR4 ABI indicates that the
13848 procedure linkage table relocs (DT_JMPREL) should be
13849 included in the overall relocs (DT_REL). This is
13850 what Solaris does. However, UnixWare can not handle
13851 that case. Therefore, we override the DT_RELSZ entry
13852 here to make it not include the JMPREL relocs. Since
13853 the linker script arranges for .rel(a).plt to follow all
13854 other relocation sections, we don't have to worry
13855 about changing the DT_REL entry. */
13856 s = htab->root.srelplt;
13857 if (s != NULL)
13858 dyn.d_un.d_val -= s->size;
13859 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13860 break;
13861 }
13862 /* Fall through. */
13863
13864 case DT_REL:
13865 case DT_RELA:
13866 /* In the BPABI, the DT_REL tag must point at the file
13867 offset, not the VMA, of the first relocation
13868 section. So, we use code similar to that in
13869 elflink.c, but do not check for SHF_ALLOC on the
13870 relcoation section, since relocations sections are
13871 never allocated under the BPABI. The comments above
13872 about Unixware notwithstanding, we include all of the
13873 relocations here. */
13874 if (htab->symbian_p)
13875 {
13876 unsigned int i;
13877 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
13878 ? SHT_REL : SHT_RELA);
13879 dyn.d_un.d_val = 0;
13880 for (i = 1; i < elf_numsections (output_bfd); i++)
13881 {
13882 Elf_Internal_Shdr *hdr
13883 = elf_elfsections (output_bfd)[i];
13884 if (hdr->sh_type == type)
13885 {
13886 if (dyn.d_tag == DT_RELSZ
13887 || dyn.d_tag == DT_RELASZ)
13888 dyn.d_un.d_val += hdr->sh_size;
13889 else if ((ufile_ptr) hdr->sh_offset
13890 <= dyn.d_un.d_val - 1)
13891 dyn.d_un.d_val = hdr->sh_offset;
13892 }
13893 }
13894 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13895 }
13896 break;
13897
13898 case DT_TLSDESC_PLT:
13899 s = htab->root.splt;
13900 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
13901 + htab->dt_tlsdesc_plt);
13902 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13903 break;
13904
13905 case DT_TLSDESC_GOT:
13906 s = htab->root.sgot;
13907 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
13908 + htab->dt_tlsdesc_got);
13909 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13910 break;
13911
13912 /* Set the bottom bit of DT_INIT/FINI if the
13913 corresponding function is Thumb. */
13914 case DT_INIT:
13915 name = info->init_function;
13916 goto get_sym;
13917 case DT_FINI:
13918 name = info->fini_function;
13919 get_sym:
13920 /* If it wasn't set by elf_bfd_final_link
13921 then there is nothing to adjust. */
13922 if (dyn.d_un.d_val != 0)
13923 {
13924 struct elf_link_hash_entry * eh;
13925
13926 eh = elf_link_hash_lookup (elf_hash_table (info), name,
13927 FALSE, FALSE, TRUE);
13928 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
13929 {
13930 dyn.d_un.d_val |= 1;
13931 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13932 }
13933 }
13934 break;
13935 }
13936 }
13937
13938 /* Fill in the first entry in the procedure linkage table. */
13939 if (splt->size > 0 && htab->plt_header_size)
13940 {
13941 const bfd_vma *plt0_entry;
13942 bfd_vma got_address, plt_address, got_displacement;
13943
13944 /* Calculate the addresses of the GOT and PLT. */
13945 got_address = sgot->output_section->vma + sgot->output_offset;
13946 plt_address = splt->output_section->vma + splt->output_offset;
13947
13948 if (htab->vxworks_p)
13949 {
13950 /* The VxWorks GOT is relocated by the dynamic linker.
13951 Therefore, we must emit relocations rather than simply
13952 computing the values now. */
13953 Elf_Internal_Rela rel;
13954
13955 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
13956 put_arm_insn (htab, output_bfd, plt0_entry[0],
13957 splt->contents + 0);
13958 put_arm_insn (htab, output_bfd, plt0_entry[1],
13959 splt->contents + 4);
13960 put_arm_insn (htab, output_bfd, plt0_entry[2],
13961 splt->contents + 8);
13962 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
13963
13964 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
13965 rel.r_offset = plt_address + 12;
13966 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
13967 rel.r_addend = 0;
13968 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
13969 htab->srelplt2->contents);
13970 }
13971 else
13972 {
13973 got_displacement = got_address - (plt_address + 16);
13974
13975 plt0_entry = elf32_arm_plt0_entry;
13976 put_arm_insn (htab, output_bfd, plt0_entry[0],
13977 splt->contents + 0);
13978 put_arm_insn (htab, output_bfd, plt0_entry[1],
13979 splt->contents + 4);
13980 put_arm_insn (htab, output_bfd, plt0_entry[2],
13981 splt->contents + 8);
13982 put_arm_insn (htab, output_bfd, plt0_entry[3],
13983 splt->contents + 12);
13984
13985 #ifdef FOUR_WORD_PLT
13986 /* The displacement value goes in the otherwise-unused
13987 last word of the second entry. */
13988 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
13989 #else
13990 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
13991 #endif
13992 }
13993 }
13994
13995 /* UnixWare sets the entsize of .plt to 4, although that doesn't
13996 really seem like the right value. */
13997 if (splt->output_section->owner == output_bfd)
13998 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
13999
14000 if (htab->dt_tlsdesc_plt)
14001 {
14002 bfd_vma got_address
14003 = sgot->output_section->vma + sgot->output_offset;
14004 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
14005 + htab->root.sgot->output_offset);
14006 bfd_vma plt_address
14007 = splt->output_section->vma + splt->output_offset;
14008
14009 arm_put_trampoline (htab, output_bfd,
14010 splt->contents + htab->dt_tlsdesc_plt,
14011 dl_tlsdesc_lazy_trampoline, 6);
14012
14013 bfd_put_32 (output_bfd,
14014 gotplt_address + htab->dt_tlsdesc_got
14015 - (plt_address + htab->dt_tlsdesc_plt)
14016 - dl_tlsdesc_lazy_trampoline[6],
14017 splt->contents + htab->dt_tlsdesc_plt + 24);
14018 bfd_put_32 (output_bfd,
14019 got_address - (plt_address + htab->dt_tlsdesc_plt)
14020 - dl_tlsdesc_lazy_trampoline[7],
14021 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
14022 }
14023
14024 if (htab->tls_trampoline)
14025 {
14026 arm_put_trampoline (htab, output_bfd,
14027 splt->contents + htab->tls_trampoline,
14028 tls_trampoline, 3);
14029 #ifdef FOUR_WORD_PLT
14030 bfd_put_32 (output_bfd, 0x00000000,
14031 splt->contents + htab->tls_trampoline + 12);
14032 #endif
14033 }
14034
14035 if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
14036 {
14037 /* Correct the .rel(a).plt.unloaded relocations. They will have
14038 incorrect symbol indexes. */
14039 int num_plts;
14040 unsigned char *p;
14041
14042 num_plts = ((htab->root.splt->size - htab->plt_header_size)
14043 / htab->plt_entry_size);
14044 p = htab->srelplt2->contents + RELOC_SIZE (htab);
14045
14046 for (; num_plts; num_plts--)
14047 {
14048 Elf_Internal_Rela rel;
14049
14050 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14051 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14052 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14053 p += RELOC_SIZE (htab);
14054
14055 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14056 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14057 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14058 p += RELOC_SIZE (htab);
14059 }
14060 }
14061 }
14062
14063 /* Fill in the first three entries in the global offset table. */
14064 if (sgot)
14065 {
14066 if (sgot->size > 0)
14067 {
14068 if (sdyn == NULL)
14069 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14070 else
14071 bfd_put_32 (output_bfd,
14072 sdyn->output_section->vma + sdyn->output_offset,
14073 sgot->contents);
14074 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14075 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14076 }
14077
14078 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14079 }
14080
14081 return TRUE;
14082 }
14083
14084 static void
14085 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
14086 {
14087 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
14088 struct elf32_arm_link_hash_table *globals;
14089
14090 i_ehdrp = elf_elfheader (abfd);
14091
14092 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14093 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14094 else
14095 i_ehdrp->e_ident[EI_OSABI] = 0;
14096 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
14097
14098 if (link_info)
14099 {
14100 globals = elf32_arm_hash_table (link_info);
14101 if (globals != NULL && globals->byteswap_code)
14102 i_ehdrp->e_flags |= EF_ARM_BE8;
14103 }
14104 }
14105
14106 static enum elf_reloc_type_class
14107 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
14108 {
14109 switch ((int) ELF32_R_TYPE (rela->r_info))
14110 {
14111 case R_ARM_RELATIVE:
14112 return reloc_class_relative;
14113 case R_ARM_JUMP_SLOT:
14114 return reloc_class_plt;
14115 case R_ARM_COPY:
14116 return reloc_class_copy;
14117 default:
14118 return reloc_class_normal;
14119 }
14120 }
14121
14122 static void
14123 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
14124 {
14125 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
14126 }
14127
14128 /* Return TRUE if this is an unwinding table entry. */
14129
14130 static bfd_boolean
14131 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14132 {
14133 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14134 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
14135 }
14136
14137
14138 /* Set the type and flags for an ARM section. We do this by
14139 the section name, which is a hack, but ought to work. */
14140
14141 static bfd_boolean
14142 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14143 {
14144 const char * name;
14145
14146 name = bfd_get_section_name (abfd, sec);
14147
14148 if (is_arm_elf_unwind_section_name (abfd, name))
14149 {
14150 hdr->sh_type = SHT_ARM_EXIDX;
14151 hdr->sh_flags |= SHF_LINK_ORDER;
14152 }
14153 return TRUE;
14154 }
14155
14156 /* Handle an ARM specific section when reading an object file. This is
14157 called when bfd_section_from_shdr finds a section with an unknown
14158 type. */
14159
14160 static bfd_boolean
14161 elf32_arm_section_from_shdr (bfd *abfd,
14162 Elf_Internal_Shdr * hdr,
14163 const char *name,
14164 int shindex)
14165 {
14166 /* There ought to be a place to keep ELF backend specific flags, but
14167 at the moment there isn't one. We just keep track of the
14168 sections by their name, instead. Fortunately, the ABI gives
14169 names for all the ARM specific sections, so we will probably get
14170 away with this. */
14171 switch (hdr->sh_type)
14172 {
14173 case SHT_ARM_EXIDX:
14174 case SHT_ARM_PREEMPTMAP:
14175 case SHT_ARM_ATTRIBUTES:
14176 break;
14177
14178 default:
14179 return FALSE;
14180 }
14181
14182 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
14183 return FALSE;
14184
14185 return TRUE;
14186 }
14187
14188 static _arm_elf_section_data *
14189 get_arm_elf_section_data (asection * sec)
14190 {
14191 if (sec && sec->owner && is_arm_elf (sec->owner))
14192 return elf32_arm_section_data (sec);
14193 else
14194 return NULL;
14195 }
14196
14197 typedef struct
14198 {
14199 void *finfo;
14200 struct bfd_link_info *info;
14201 asection *sec;
14202 int sec_shndx;
14203 int (*func) (void *, const char *, Elf_Internal_Sym *,
14204 asection *, struct elf_link_hash_entry *);
14205 } output_arch_syminfo;
14206
14207 enum map_symbol_type
14208 {
14209 ARM_MAP_ARM,
14210 ARM_MAP_THUMB,
14211 ARM_MAP_DATA
14212 };
14213
14214
14215 /* Output a single mapping symbol. */
14216
14217 static bfd_boolean
14218 elf32_arm_output_map_sym (output_arch_syminfo *osi,
14219 enum map_symbol_type type,
14220 bfd_vma offset)
14221 {
14222 static const char *names[3] = {"$a", "$t", "$d"};
14223 Elf_Internal_Sym sym;
14224
14225 sym.st_value = osi->sec->output_section->vma
14226 + osi->sec->output_offset
14227 + offset;
14228 sym.st_size = 0;
14229 sym.st_other = 0;
14230 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
14231 sym.st_shndx = osi->sec_shndx;
14232 sym.st_target_internal = 0;
14233 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
14234 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
14235 }
14236
14237 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14238 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
14239
14240 static bfd_boolean
14241 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14242 bfd_boolean is_iplt_entry_p,
14243 union gotplt_union *root_plt,
14244 struct arm_plt_info *arm_plt)
14245 {
14246 struct elf32_arm_link_hash_table *htab;
14247 bfd_vma addr, plt_header_size;
14248
14249 if (root_plt->offset == (bfd_vma) -1)
14250 return TRUE;
14251
14252 htab = elf32_arm_hash_table (osi->info);
14253 if (htab == NULL)
14254 return FALSE;
14255
14256 if (is_iplt_entry_p)
14257 {
14258 osi->sec = htab->root.iplt;
14259 plt_header_size = 0;
14260 }
14261 else
14262 {
14263 osi->sec = htab->root.splt;
14264 plt_header_size = htab->plt_header_size;
14265 }
14266 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14267 (osi->info->output_bfd, osi->sec->output_section));
14268
14269 addr = root_plt->offset & -2;
14270 if (htab->symbian_p)
14271 {
14272 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14273 return FALSE;
14274 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
14275 return FALSE;
14276 }
14277 else if (htab->vxworks_p)
14278 {
14279 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14280 return FALSE;
14281 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
14282 return FALSE;
14283 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
14284 return FALSE;
14285 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
14286 return FALSE;
14287 }
14288 else
14289 {
14290 bfd_boolean thumb_stub_p;
14291
14292 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14293 if (thumb_stub_p)
14294 {
14295 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
14296 return FALSE;
14297 }
14298 #ifdef FOUR_WORD_PLT
14299 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14300 return FALSE;
14301 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
14302 return FALSE;
14303 #else
14304 /* A three-word PLT with no Thumb thunk contains only Arm code,
14305 so only need to output a mapping symbol for the first PLT entry and
14306 entries with thumb thunks. */
14307 if (thumb_stub_p || addr == plt_header_size)
14308 {
14309 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14310 return FALSE;
14311 }
14312 #endif
14313 }
14314
14315 return TRUE;
14316 }
14317
14318 /* Output mapping symbols for PLT entries associated with H. */
14319
14320 static bfd_boolean
14321 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14322 {
14323 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14324 struct elf32_arm_link_hash_entry *eh;
14325
14326 if (h->root.type == bfd_link_hash_indirect)
14327 return TRUE;
14328
14329 if (h->root.type == bfd_link_hash_warning)
14330 /* When warning symbols are created, they **replace** the "real"
14331 entry in the hash table, thus we never get to see the real
14332 symbol in a hash traversal. So look at it now. */
14333 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14334
14335 eh = (struct elf32_arm_link_hash_entry *) h;
14336 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14337 &h->plt, &eh->plt);
14338 }
14339
14340 /* Output a single local symbol for a generated stub. */
14341
14342 static bfd_boolean
14343 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14344 bfd_vma offset, bfd_vma size)
14345 {
14346 Elf_Internal_Sym sym;
14347
14348 sym.st_value = osi->sec->output_section->vma
14349 + osi->sec->output_offset
14350 + offset;
14351 sym.st_size = size;
14352 sym.st_other = 0;
14353 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14354 sym.st_shndx = osi->sec_shndx;
14355 sym.st_target_internal = 0;
14356 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
14357 }
14358
14359 static bfd_boolean
14360 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
14361 void * in_arg)
14362 {
14363 struct elf32_arm_stub_hash_entry *stub_entry;
14364 asection *stub_sec;
14365 bfd_vma addr;
14366 char *stub_name;
14367 output_arch_syminfo *osi;
14368 const insn_sequence *template_sequence;
14369 enum stub_insn_type prev_type;
14370 int size;
14371 int i;
14372 enum map_symbol_type sym_type;
14373
14374 /* Massage our args to the form they really have. */
14375 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14376 osi = (output_arch_syminfo *) in_arg;
14377
14378 stub_sec = stub_entry->stub_sec;
14379
14380 /* Ensure this stub is attached to the current section being
14381 processed. */
14382 if (stub_sec != osi->sec)
14383 return TRUE;
14384
14385 addr = (bfd_vma) stub_entry->stub_offset;
14386 stub_name = stub_entry->output_name;
14387
14388 template_sequence = stub_entry->stub_template;
14389 switch (template_sequence[0].type)
14390 {
14391 case ARM_TYPE:
14392 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
14393 return FALSE;
14394 break;
14395 case THUMB16_TYPE:
14396 case THUMB32_TYPE:
14397 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
14398 stub_entry->stub_size))
14399 return FALSE;
14400 break;
14401 default:
14402 BFD_FAIL ();
14403 return 0;
14404 }
14405
14406 prev_type = DATA_TYPE;
14407 size = 0;
14408 for (i = 0; i < stub_entry->stub_template_size; i++)
14409 {
14410 switch (template_sequence[i].type)
14411 {
14412 case ARM_TYPE:
14413 sym_type = ARM_MAP_ARM;
14414 break;
14415
14416 case THUMB16_TYPE:
14417 case THUMB32_TYPE:
14418 sym_type = ARM_MAP_THUMB;
14419 break;
14420
14421 case DATA_TYPE:
14422 sym_type = ARM_MAP_DATA;
14423 break;
14424
14425 default:
14426 BFD_FAIL ();
14427 return FALSE;
14428 }
14429
14430 if (template_sequence[i].type != prev_type)
14431 {
14432 prev_type = template_sequence[i].type;
14433 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
14434 return FALSE;
14435 }
14436
14437 switch (template_sequence[i].type)
14438 {
14439 case ARM_TYPE:
14440 case THUMB32_TYPE:
14441 size += 4;
14442 break;
14443
14444 case THUMB16_TYPE:
14445 size += 2;
14446 break;
14447
14448 case DATA_TYPE:
14449 size += 4;
14450 break;
14451
14452 default:
14453 BFD_FAIL ();
14454 return FALSE;
14455 }
14456 }
14457
14458 return TRUE;
14459 }
14460
14461 /* Output mapping symbols for linker generated sections,
14462 and for those data-only sections that do not have a
14463 $d. */
14464
14465 static bfd_boolean
14466 elf32_arm_output_arch_local_syms (bfd *output_bfd,
14467 struct bfd_link_info *info,
14468 void *finfo,
14469 int (*func) (void *, const char *,
14470 Elf_Internal_Sym *,
14471 asection *,
14472 struct elf_link_hash_entry *))
14473 {
14474 output_arch_syminfo osi;
14475 struct elf32_arm_link_hash_table *htab;
14476 bfd_vma offset;
14477 bfd_size_type size;
14478 bfd *input_bfd;
14479
14480 htab = elf32_arm_hash_table (info);
14481 if (htab == NULL)
14482 return FALSE;
14483
14484 check_use_blx (htab);
14485
14486 osi.finfo = finfo;
14487 osi.info = info;
14488 osi.func = func;
14489
14490 /* Add a $d mapping symbol to data-only sections that
14491 don't have any mapping symbol. This may result in (harmless) redundant
14492 mapping symbols. */
14493 for (input_bfd = info->input_bfds;
14494 input_bfd != NULL;
14495 input_bfd = input_bfd->link_next)
14496 {
14497 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
14498 for (osi.sec = input_bfd->sections;
14499 osi.sec != NULL;
14500 osi.sec = osi.sec->next)
14501 {
14502 if (osi.sec->output_section != NULL
14503 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
14504 != 0)
14505 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
14506 == SEC_HAS_CONTENTS
14507 && get_arm_elf_section_data (osi.sec) != NULL
14508 && get_arm_elf_section_data (osi.sec)->mapcount == 0
14509 && osi.sec->size > 0
14510 && (osi.sec->flags & SEC_EXCLUDE) == 0)
14511 {
14512 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14513 (output_bfd, osi.sec->output_section);
14514 if (osi.sec_shndx != (int)SHN_BAD)
14515 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
14516 }
14517 }
14518 }
14519
14520 /* ARM->Thumb glue. */
14521 if (htab->arm_glue_size > 0)
14522 {
14523 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14524 ARM2THUMB_GLUE_SECTION_NAME);
14525
14526 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14527 (output_bfd, osi.sec->output_section);
14528 if (info->shared || htab->root.is_relocatable_executable
14529 || htab->pic_veneer)
14530 size = ARM2THUMB_PIC_GLUE_SIZE;
14531 else if (htab->use_blx)
14532 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
14533 else
14534 size = ARM2THUMB_STATIC_GLUE_SIZE;
14535
14536 for (offset = 0; offset < htab->arm_glue_size; offset += size)
14537 {
14538 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
14539 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
14540 }
14541 }
14542
14543 /* Thumb->ARM glue. */
14544 if (htab->thumb_glue_size > 0)
14545 {
14546 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14547 THUMB2ARM_GLUE_SECTION_NAME);
14548
14549 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14550 (output_bfd, osi.sec->output_section);
14551 size = THUMB2ARM_GLUE_SIZE;
14552
14553 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
14554 {
14555 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
14556 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
14557 }
14558 }
14559
14560 /* ARMv4 BX veneers. */
14561 if (htab->bx_glue_size > 0)
14562 {
14563 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14564 ARM_BX_GLUE_SECTION_NAME);
14565
14566 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14567 (output_bfd, osi.sec->output_section);
14568
14569 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
14570 }
14571
14572 /* Long calls stubs. */
14573 if (htab->stub_bfd && htab->stub_bfd->sections)
14574 {
14575 asection* stub_sec;
14576
14577 for (stub_sec = htab->stub_bfd->sections;
14578 stub_sec != NULL;
14579 stub_sec = stub_sec->next)
14580 {
14581 /* Ignore non-stub sections. */
14582 if (!strstr (stub_sec->name, STUB_SUFFIX))
14583 continue;
14584
14585 osi.sec = stub_sec;
14586
14587 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14588 (output_bfd, osi.sec->output_section);
14589
14590 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
14591 }
14592 }
14593
14594 /* Finally, output mapping symbols for the PLT. */
14595 if (htab->root.splt && htab->root.splt->size > 0)
14596 {
14597 osi.sec = htab->root.splt;
14598 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
14599 (output_bfd, osi.sec->output_section));
14600
14601 /* Output mapping symbols for the plt header. SymbianOS does not have a
14602 plt header. */
14603 if (htab->vxworks_p)
14604 {
14605 /* VxWorks shared libraries have no PLT header. */
14606 if (!info->shared)
14607 {
14608 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14609 return FALSE;
14610 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
14611 return FALSE;
14612 }
14613 }
14614 else if (!htab->symbian_p)
14615 {
14616 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14617 return FALSE;
14618 #ifndef FOUR_WORD_PLT
14619 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
14620 return FALSE;
14621 #endif
14622 }
14623 }
14624 if ((htab->root.splt && htab->root.splt->size > 0)
14625 || (htab->root.iplt && htab->root.iplt->size > 0))
14626 {
14627 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
14628 for (input_bfd = info->input_bfds;
14629 input_bfd != NULL;
14630 input_bfd = input_bfd->link_next)
14631 {
14632 struct arm_local_iplt_info **local_iplt;
14633 unsigned int i, num_syms;
14634
14635 local_iplt = elf32_arm_local_iplt (input_bfd);
14636 if (local_iplt != NULL)
14637 {
14638 num_syms = elf_symtab_hdr (input_bfd).sh_info;
14639 for (i = 0; i < num_syms; i++)
14640 if (local_iplt[i] != NULL
14641 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
14642 &local_iplt[i]->root,
14643 &local_iplt[i]->arm))
14644 return FALSE;
14645 }
14646 }
14647 }
14648 if (htab->dt_tlsdesc_plt != 0)
14649 {
14650 /* Mapping symbols for the lazy tls trampoline. */
14651 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
14652 return FALSE;
14653
14654 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
14655 htab->dt_tlsdesc_plt + 24))
14656 return FALSE;
14657 }
14658 if (htab->tls_trampoline != 0)
14659 {
14660 /* Mapping symbols for the tls trampoline. */
14661 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
14662 return FALSE;
14663 #ifdef FOUR_WORD_PLT
14664 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
14665 htab->tls_trampoline + 12))
14666 return FALSE;
14667 #endif
14668 }
14669
14670 return TRUE;
14671 }
14672
14673 /* Allocate target specific section data. */
14674
14675 static bfd_boolean
14676 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
14677 {
14678 if (!sec->used_by_bfd)
14679 {
14680 _arm_elf_section_data *sdata;
14681 bfd_size_type amt = sizeof (*sdata);
14682
14683 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
14684 if (sdata == NULL)
14685 return FALSE;
14686 sec->used_by_bfd = sdata;
14687 }
14688
14689 return _bfd_elf_new_section_hook (abfd, sec);
14690 }
14691
14692
14693 /* Used to order a list of mapping symbols by address. */
14694
14695 static int
14696 elf32_arm_compare_mapping (const void * a, const void * b)
14697 {
14698 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
14699 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
14700
14701 if (amap->vma > bmap->vma)
14702 return 1;
14703 else if (amap->vma < bmap->vma)
14704 return -1;
14705 else if (amap->type > bmap->type)
14706 /* Ensure results do not depend on the host qsort for objects with
14707 multiple mapping symbols at the same address by sorting on type
14708 after vma. */
14709 return 1;
14710 else if (amap->type < bmap->type)
14711 return -1;
14712 else
14713 return 0;
14714 }
14715
14716 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
14717
14718 static unsigned long
14719 offset_prel31 (unsigned long addr, bfd_vma offset)
14720 {
14721 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
14722 }
14723
14724 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
14725 relocations. */
14726
14727 static void
14728 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
14729 {
14730 unsigned long first_word = bfd_get_32 (output_bfd, from);
14731 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
14732
14733 /* High bit of first word is supposed to be zero. */
14734 if ((first_word & 0x80000000ul) == 0)
14735 first_word = offset_prel31 (first_word, offset);
14736
14737 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
14738 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
14739 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
14740 second_word = offset_prel31 (second_word, offset);
14741
14742 bfd_put_32 (output_bfd, first_word, to);
14743 bfd_put_32 (output_bfd, second_word, to + 4);
14744 }
14745
14746 /* Data for make_branch_to_a8_stub(). */
14747
14748 struct a8_branch_to_stub_data {
14749 asection *writing_section;
14750 bfd_byte *contents;
14751 };
14752
14753
14754 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
14755 places for a particular section. */
14756
14757 static bfd_boolean
14758 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
14759 void *in_arg)
14760 {
14761 struct elf32_arm_stub_hash_entry *stub_entry;
14762 struct a8_branch_to_stub_data *data;
14763 bfd_byte *contents;
14764 unsigned long branch_insn;
14765 bfd_vma veneered_insn_loc, veneer_entry_loc;
14766 bfd_signed_vma branch_offset;
14767 bfd *abfd;
14768 unsigned int target;
14769
14770 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14771 data = (struct a8_branch_to_stub_data *) in_arg;
14772
14773 if (stub_entry->target_section != data->writing_section
14774 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
14775 return TRUE;
14776
14777 contents = data->contents;
14778
14779 veneered_insn_loc = stub_entry->target_section->output_section->vma
14780 + stub_entry->target_section->output_offset
14781 + stub_entry->target_value;
14782
14783 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
14784 + stub_entry->stub_sec->output_offset
14785 + stub_entry->stub_offset;
14786
14787 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
14788 veneered_insn_loc &= ~3u;
14789
14790 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
14791
14792 abfd = stub_entry->target_section->owner;
14793 target = stub_entry->target_value;
14794
14795 /* We attempt to avoid this condition by setting stubs_always_after_branch
14796 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
14797 This check is just to be on the safe side... */
14798 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
14799 {
14800 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
14801 "allocated in unsafe location"), abfd);
14802 return FALSE;
14803 }
14804
14805 switch (stub_entry->stub_type)
14806 {
14807 case arm_stub_a8_veneer_b:
14808 case arm_stub_a8_veneer_b_cond:
14809 branch_insn = 0xf0009000;
14810 goto jump24;
14811
14812 case arm_stub_a8_veneer_blx:
14813 branch_insn = 0xf000e800;
14814 goto jump24;
14815
14816 case arm_stub_a8_veneer_bl:
14817 {
14818 unsigned int i1, j1, i2, j2, s;
14819
14820 branch_insn = 0xf000d000;
14821
14822 jump24:
14823 if (branch_offset < -16777216 || branch_offset > 16777214)
14824 {
14825 /* There's not much we can do apart from complain if this
14826 happens. */
14827 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
14828 "of range (input file too large)"), abfd);
14829 return FALSE;
14830 }
14831
14832 /* i1 = not(j1 eor s), so:
14833 not i1 = j1 eor s
14834 j1 = (not i1) eor s. */
14835
14836 branch_insn |= (branch_offset >> 1) & 0x7ff;
14837 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
14838 i2 = (branch_offset >> 22) & 1;
14839 i1 = (branch_offset >> 23) & 1;
14840 s = (branch_offset >> 24) & 1;
14841 j1 = (!i1) ^ s;
14842 j2 = (!i2) ^ s;
14843 branch_insn |= j2 << 11;
14844 branch_insn |= j1 << 13;
14845 branch_insn |= s << 26;
14846 }
14847 break;
14848
14849 default:
14850 BFD_FAIL ();
14851 return FALSE;
14852 }
14853
14854 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
14855 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
14856
14857 return TRUE;
14858 }
14859
14860 /* Do code byteswapping. Return FALSE afterwards so that the section is
14861 written out as normal. */
14862
14863 static bfd_boolean
14864 elf32_arm_write_section (bfd *output_bfd,
14865 struct bfd_link_info *link_info,
14866 asection *sec,
14867 bfd_byte *contents)
14868 {
14869 unsigned int mapcount, errcount;
14870 _arm_elf_section_data *arm_data;
14871 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
14872 elf32_arm_section_map *map;
14873 elf32_vfp11_erratum_list *errnode;
14874 bfd_vma ptr;
14875 bfd_vma end;
14876 bfd_vma offset = sec->output_section->vma + sec->output_offset;
14877 bfd_byte tmp;
14878 unsigned int i;
14879
14880 if (globals == NULL)
14881 return FALSE;
14882
14883 /* If this section has not been allocated an _arm_elf_section_data
14884 structure then we cannot record anything. */
14885 arm_data = get_arm_elf_section_data (sec);
14886 if (arm_data == NULL)
14887 return FALSE;
14888
14889 mapcount = arm_data->mapcount;
14890 map = arm_data->map;
14891 errcount = arm_data->erratumcount;
14892
14893 if (errcount != 0)
14894 {
14895 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
14896
14897 for (errnode = arm_data->erratumlist; errnode != 0;
14898 errnode = errnode->next)
14899 {
14900 bfd_vma target = errnode->vma - offset;
14901
14902 switch (errnode->type)
14903 {
14904 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
14905 {
14906 bfd_vma branch_to_veneer;
14907 /* Original condition code of instruction, plus bit mask for
14908 ARM B instruction. */
14909 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
14910 | 0x0a000000;
14911
14912 /* The instruction is before the label. */
14913 target -= 4;
14914
14915 /* Above offset included in -4 below. */
14916 branch_to_veneer = errnode->u.b.veneer->vma
14917 - errnode->vma - 4;
14918
14919 if ((signed) branch_to_veneer < -(1 << 25)
14920 || (signed) branch_to_veneer >= (1 << 25))
14921 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
14922 "range"), output_bfd);
14923
14924 insn |= (branch_to_veneer >> 2) & 0xffffff;
14925 contents[endianflip ^ target] = insn & 0xff;
14926 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
14927 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
14928 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
14929 }
14930 break;
14931
14932 case VFP11_ERRATUM_ARM_VENEER:
14933 {
14934 bfd_vma branch_from_veneer;
14935 unsigned int insn;
14936
14937 /* Take size of veneer into account. */
14938 branch_from_veneer = errnode->u.v.branch->vma
14939 - errnode->vma - 12;
14940
14941 if ((signed) branch_from_veneer < -(1 << 25)
14942 || (signed) branch_from_veneer >= (1 << 25))
14943 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
14944 "range"), output_bfd);
14945
14946 /* Original instruction. */
14947 insn = errnode->u.v.branch->u.b.vfp_insn;
14948 contents[endianflip ^ target] = insn & 0xff;
14949 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
14950 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
14951 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
14952
14953 /* Branch back to insn after original insn. */
14954 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
14955 contents[endianflip ^ (target + 4)] = insn & 0xff;
14956 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
14957 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
14958 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
14959 }
14960 break;
14961
14962 default:
14963 abort ();
14964 }
14965 }
14966 }
14967
14968 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
14969 {
14970 arm_unwind_table_edit *edit_node
14971 = arm_data->u.exidx.unwind_edit_list;
14972 /* Now, sec->size is the size of the section we will write. The original
14973 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
14974 markers) was sec->rawsize. (This isn't the case if we perform no
14975 edits, then rawsize will be zero and we should use size). */
14976 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
14977 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
14978 unsigned int in_index, out_index;
14979 bfd_vma add_to_offsets = 0;
14980
14981 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
14982 {
14983 if (edit_node)
14984 {
14985 unsigned int edit_index = edit_node->index;
14986
14987 if (in_index < edit_index && in_index * 8 < input_size)
14988 {
14989 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
14990 contents + in_index * 8, add_to_offsets);
14991 out_index++;
14992 in_index++;
14993 }
14994 else if (in_index == edit_index
14995 || (in_index * 8 >= input_size
14996 && edit_index == UINT_MAX))
14997 {
14998 switch (edit_node->type)
14999 {
15000 case DELETE_EXIDX_ENTRY:
15001 in_index++;
15002 add_to_offsets += 8;
15003 break;
15004
15005 case INSERT_EXIDX_CANTUNWIND_AT_END:
15006 {
15007 asection *text_sec = edit_node->linked_section;
15008 bfd_vma text_offset = text_sec->output_section->vma
15009 + text_sec->output_offset
15010 + text_sec->size;
15011 bfd_vma exidx_offset = offset + out_index * 8;
15012 unsigned long prel31_offset;
15013
15014 /* Note: this is meant to be equivalent to an
15015 R_ARM_PREL31 relocation. These synthetic
15016 EXIDX_CANTUNWIND markers are not relocated by the
15017 usual BFD method. */
15018 prel31_offset = (text_offset - exidx_offset)
15019 & 0x7ffffffful;
15020
15021 /* First address we can't unwind. */
15022 bfd_put_32 (output_bfd, prel31_offset,
15023 &edited_contents[out_index * 8]);
15024
15025 /* Code for EXIDX_CANTUNWIND. */
15026 bfd_put_32 (output_bfd, 0x1,
15027 &edited_contents[out_index * 8 + 4]);
15028
15029 out_index++;
15030 add_to_offsets -= 8;
15031 }
15032 break;
15033 }
15034
15035 edit_node = edit_node->next;
15036 }
15037 }
15038 else
15039 {
15040 /* No more edits, copy remaining entries verbatim. */
15041 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15042 contents + in_index * 8, add_to_offsets);
15043 out_index++;
15044 in_index++;
15045 }
15046 }
15047
15048 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15049 bfd_set_section_contents (output_bfd, sec->output_section,
15050 edited_contents,
15051 (file_ptr) sec->output_offset, sec->size);
15052
15053 return TRUE;
15054 }
15055
15056 /* Fix code to point to Cortex-A8 erratum stubs. */
15057 if (globals->fix_cortex_a8)
15058 {
15059 struct a8_branch_to_stub_data data;
15060
15061 data.writing_section = sec;
15062 data.contents = contents;
15063
15064 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15065 &data);
15066 }
15067
15068 if (mapcount == 0)
15069 return FALSE;
15070
15071 if (globals->byteswap_code)
15072 {
15073 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
15074
15075 ptr = map[0].vma;
15076 for (i = 0; i < mapcount; i++)
15077 {
15078 if (i == mapcount - 1)
15079 end = sec->size;
15080 else
15081 end = map[i + 1].vma;
15082
15083 switch (map[i].type)
15084 {
15085 case 'a':
15086 /* Byte swap code words. */
15087 while (ptr + 3 < end)
15088 {
15089 tmp = contents[ptr];
15090 contents[ptr] = contents[ptr + 3];
15091 contents[ptr + 3] = tmp;
15092 tmp = contents[ptr + 1];
15093 contents[ptr + 1] = contents[ptr + 2];
15094 contents[ptr + 2] = tmp;
15095 ptr += 4;
15096 }
15097 break;
15098
15099 case 't':
15100 /* Byte swap code halfwords. */
15101 while (ptr + 1 < end)
15102 {
15103 tmp = contents[ptr];
15104 contents[ptr] = contents[ptr + 1];
15105 contents[ptr + 1] = tmp;
15106 ptr += 2;
15107 }
15108 break;
15109
15110 case 'd':
15111 /* Leave data alone. */
15112 break;
15113 }
15114 ptr = end;
15115 }
15116 }
15117
15118 free (map);
15119 arm_data->mapcount = -1;
15120 arm_data->mapsize = 0;
15121 arm_data->map = NULL;
15122
15123 return FALSE;
15124 }
15125
15126 /* Mangle thumb function symbols as we read them in. */
15127
15128 static bfd_boolean
15129 elf32_arm_swap_symbol_in (bfd * abfd,
15130 const void *psrc,
15131 const void *pshn,
15132 Elf_Internal_Sym *dst)
15133 {
15134 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15135 return FALSE;
15136
15137 /* New EABI objects mark thumb function symbols by setting the low bit of
15138 the address. */
15139 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
15140 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
15141 {
15142 if (dst->st_value & 1)
15143 {
15144 dst->st_value &= ~(bfd_vma) 1;
15145 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15146 }
15147 else
15148 dst->st_target_internal = ST_BRANCH_TO_ARM;
15149 }
15150 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15151 {
15152 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15153 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15154 }
15155 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15156 dst->st_target_internal = ST_BRANCH_LONG;
15157 else
15158 dst->st_target_internal = ST_BRANCH_UNKNOWN;
15159
15160 return TRUE;
15161 }
15162
15163
15164 /* Mangle thumb function symbols as we write them out. */
15165
15166 static void
15167 elf32_arm_swap_symbol_out (bfd *abfd,
15168 const Elf_Internal_Sym *src,
15169 void *cdst,
15170 void *shndx)
15171 {
15172 Elf_Internal_Sym newsym;
15173
15174 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15175 of the address set, as per the new EABI. We do this unconditionally
15176 because objcopy does not set the elf header flags until after
15177 it writes out the symbol table. */
15178 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
15179 {
15180 newsym = *src;
15181 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15182 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
15183 if (newsym.st_shndx != SHN_UNDEF)
15184 {
15185 /* Do this only for defined symbols. At link type, the static
15186 linker will simulate the work of dynamic linker of resolving
15187 symbols and will carry over the thumbness of found symbols to
15188 the output symbol table. It's not clear how it happens, but
15189 the thumbness of undefined symbols can well be different at
15190 runtime, and writing '1' for them will be confusing for users
15191 and possibly for dynamic linker itself.
15192 */
15193 newsym.st_value |= 1;
15194 }
15195
15196 src = &newsym;
15197 }
15198 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15199 }
15200
15201 /* Add the PT_ARM_EXIDX program header. */
15202
15203 static bfd_boolean
15204 elf32_arm_modify_segment_map (bfd *abfd,
15205 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15206 {
15207 struct elf_segment_map *m;
15208 asection *sec;
15209
15210 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15211 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15212 {
15213 /* If there is already a PT_ARM_EXIDX header, then we do not
15214 want to add another one. This situation arises when running
15215 "strip"; the input binary already has the header. */
15216 m = elf_tdata (abfd)->segment_map;
15217 while (m && m->p_type != PT_ARM_EXIDX)
15218 m = m->next;
15219 if (!m)
15220 {
15221 m = (struct elf_segment_map *)
15222 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
15223 if (m == NULL)
15224 return FALSE;
15225 m->p_type = PT_ARM_EXIDX;
15226 m->count = 1;
15227 m->sections[0] = sec;
15228
15229 m->next = elf_tdata (abfd)->segment_map;
15230 elf_tdata (abfd)->segment_map = m;
15231 }
15232 }
15233
15234 return TRUE;
15235 }
15236
15237 /* We may add a PT_ARM_EXIDX program header. */
15238
15239 static int
15240 elf32_arm_additional_program_headers (bfd *abfd,
15241 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15242 {
15243 asection *sec;
15244
15245 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15246 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15247 return 1;
15248 else
15249 return 0;
15250 }
15251
15252 /* Hook called by the linker routine which adds symbols from an object
15253 file. */
15254
15255 static bfd_boolean
15256 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15257 Elf_Internal_Sym *sym, const char **namep,
15258 flagword *flagsp, asection **secp, bfd_vma *valp)
15259 {
15260 if ((abfd->flags & DYNAMIC) == 0
15261 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
15262 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
15263 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
15264
15265 if (elf32_arm_hash_table (info)->vxworks_p
15266 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15267 flagsp, secp, valp))
15268 return FALSE;
15269
15270 return TRUE;
15271 }
15272
15273 /* We use this to override swap_symbol_in and swap_symbol_out. */
15274 const struct elf_size_info elf32_arm_size_info =
15275 {
15276 sizeof (Elf32_External_Ehdr),
15277 sizeof (Elf32_External_Phdr),
15278 sizeof (Elf32_External_Shdr),
15279 sizeof (Elf32_External_Rel),
15280 sizeof (Elf32_External_Rela),
15281 sizeof (Elf32_External_Sym),
15282 sizeof (Elf32_External_Dyn),
15283 sizeof (Elf_External_Note),
15284 4,
15285 1,
15286 32, 2,
15287 ELFCLASS32, EV_CURRENT,
15288 bfd_elf32_write_out_phdrs,
15289 bfd_elf32_write_shdrs_and_ehdr,
15290 bfd_elf32_checksum_contents,
15291 bfd_elf32_write_relocs,
15292 elf32_arm_swap_symbol_in,
15293 elf32_arm_swap_symbol_out,
15294 bfd_elf32_slurp_reloc_table,
15295 bfd_elf32_slurp_symbol_table,
15296 bfd_elf32_swap_dyn_in,
15297 bfd_elf32_swap_dyn_out,
15298 bfd_elf32_swap_reloc_in,
15299 bfd_elf32_swap_reloc_out,
15300 bfd_elf32_swap_reloca_in,
15301 bfd_elf32_swap_reloca_out
15302 };
15303
15304 #define ELF_ARCH bfd_arch_arm
15305 #define ELF_TARGET_ID ARM_ELF_DATA
15306 #define ELF_MACHINE_CODE EM_ARM
15307 #ifdef __QNXTARGET__
15308 #define ELF_MAXPAGESIZE 0x1000
15309 #else
15310 #define ELF_MAXPAGESIZE 0x8000
15311 #endif
15312 #define ELF_MINPAGESIZE 0x1000
15313 #define ELF_COMMONPAGESIZE 0x1000
15314
15315 #define bfd_elf32_mkobject elf32_arm_mkobject
15316
15317 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
15318 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
15319 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
15320 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
15321 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
15322 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
15323 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
15324 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
15325 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
15326 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
15327 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
15328 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
15329 #define bfd_elf32_bfd_final_link elf32_arm_final_link
15330
15331 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
15332 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
15333 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
15334 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
15335 #define elf_backend_check_relocs elf32_arm_check_relocs
15336 #define elf_backend_relocate_section elf32_arm_relocate_section
15337 #define elf_backend_write_section elf32_arm_write_section
15338 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
15339 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
15340 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
15341 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
15342 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
15343 #define elf_backend_always_size_sections elf32_arm_always_size_sections
15344 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
15345 #define elf_backend_post_process_headers elf32_arm_post_process_headers
15346 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
15347 #define elf_backend_object_p elf32_arm_object_p
15348 #define elf_backend_fake_sections elf32_arm_fake_sections
15349 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
15350 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15351 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
15352 #define elf_backend_size_info elf32_arm_size_info
15353 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15354 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
15355 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
15356 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
15357 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
15358
15359 #define elf_backend_can_refcount 1
15360 #define elf_backend_can_gc_sections 1
15361 #define elf_backend_plt_readonly 1
15362 #define elf_backend_want_got_plt 1
15363 #define elf_backend_want_plt_sym 0
15364 #define elf_backend_may_use_rel_p 1
15365 #define elf_backend_may_use_rela_p 0
15366 #define elf_backend_default_use_rela_p 0
15367
15368 #define elf_backend_got_header_size 12
15369
15370 #undef elf_backend_obj_attrs_vendor
15371 #define elf_backend_obj_attrs_vendor "aeabi"
15372 #undef elf_backend_obj_attrs_section
15373 #define elf_backend_obj_attrs_section ".ARM.attributes"
15374 #undef elf_backend_obj_attrs_arg_type
15375 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
15376 #undef elf_backend_obj_attrs_section_type
15377 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
15378 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
15379 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
15380
15381 #include "elf32-target.h"
15382
15383 /* VxWorks Targets. */
15384
15385 #undef TARGET_LITTLE_SYM
15386 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
15387 #undef TARGET_LITTLE_NAME
15388 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
15389 #undef TARGET_BIG_SYM
15390 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
15391 #undef TARGET_BIG_NAME
15392 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
15393
15394 /* Like elf32_arm_link_hash_table_create -- but overrides
15395 appropriately for VxWorks. */
15396
15397 static struct bfd_link_hash_table *
15398 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
15399 {
15400 struct bfd_link_hash_table *ret;
15401
15402 ret = elf32_arm_link_hash_table_create (abfd);
15403 if (ret)
15404 {
15405 struct elf32_arm_link_hash_table *htab
15406 = (struct elf32_arm_link_hash_table *) ret;
15407 htab->use_rel = 0;
15408 htab->vxworks_p = 1;
15409 }
15410 return ret;
15411 }
15412
15413 static void
15414 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
15415 {
15416 elf32_arm_final_write_processing (abfd, linker);
15417 elf_vxworks_final_write_processing (abfd, linker);
15418 }
15419
15420 #undef elf32_bed
15421 #define elf32_bed elf32_arm_vxworks_bed
15422
15423 #undef bfd_elf32_bfd_link_hash_table_create
15424 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
15425 #undef elf_backend_final_write_processing
15426 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
15427 #undef elf_backend_emit_relocs
15428 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
15429
15430 #undef elf_backend_may_use_rel_p
15431 #define elf_backend_may_use_rel_p 0
15432 #undef elf_backend_may_use_rela_p
15433 #define elf_backend_may_use_rela_p 1
15434 #undef elf_backend_default_use_rela_p
15435 #define elf_backend_default_use_rela_p 1
15436 #undef elf_backend_want_plt_sym
15437 #define elf_backend_want_plt_sym 1
15438 #undef ELF_MAXPAGESIZE
15439 #define ELF_MAXPAGESIZE 0x1000
15440
15441 #include "elf32-target.h"
15442
15443
15444 /* Merge backend specific data from an object file to the output
15445 object file when linking. */
15446
15447 static bfd_boolean
15448 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
15449 {
15450 flagword out_flags;
15451 flagword in_flags;
15452 bfd_boolean flags_compatible = TRUE;
15453 asection *sec;
15454
15455 /* Check if we have the same endianness. */
15456 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15457 return FALSE;
15458
15459 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
15460 return TRUE;
15461
15462 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
15463 return FALSE;
15464
15465 /* The input BFD must have had its flags initialised. */
15466 /* The following seems bogus to me -- The flags are initialized in
15467 the assembler but I don't think an elf_flags_init field is
15468 written into the object. */
15469 /* BFD_ASSERT (elf_flags_init (ibfd)); */
15470
15471 in_flags = elf_elfheader (ibfd)->e_flags;
15472 out_flags = elf_elfheader (obfd)->e_flags;
15473
15474 /* In theory there is no reason why we couldn't handle this. However
15475 in practice it isn't even close to working and there is no real
15476 reason to want it. */
15477 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
15478 && !(ibfd->flags & DYNAMIC)
15479 && (in_flags & EF_ARM_BE8))
15480 {
15481 _bfd_error_handler (_("error: %B is already in final BE8 format"),
15482 ibfd);
15483 return FALSE;
15484 }
15485
15486 if (!elf_flags_init (obfd))
15487 {
15488 /* If the input is the default architecture and had the default
15489 flags then do not bother setting the flags for the output
15490 architecture, instead allow future merges to do this. If no
15491 future merges ever set these flags then they will retain their
15492 uninitialised values, which surprise surprise, correspond
15493 to the default values. */
15494 if (bfd_get_arch_info (ibfd)->the_default
15495 && elf_elfheader (ibfd)->e_flags == 0)
15496 return TRUE;
15497
15498 elf_flags_init (obfd) = TRUE;
15499 elf_elfheader (obfd)->e_flags = in_flags;
15500
15501 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15502 && bfd_get_arch_info (obfd)->the_default)
15503 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
15504
15505 return TRUE;
15506 }
15507
15508 /* Determine what should happen if the input ARM architecture
15509 does not match the output ARM architecture. */
15510 if (! bfd_arm_merge_machines (ibfd, obfd))
15511 return FALSE;
15512
15513 /* Identical flags must be compatible. */
15514 if (in_flags == out_flags)
15515 return TRUE;
15516
15517 /* Check to see if the input BFD actually contains any sections. If
15518 not, its flags may not have been initialised either, but it
15519 cannot actually cause any incompatiblity. Do not short-circuit
15520 dynamic objects; their section list may be emptied by
15521 elf_link_add_object_symbols.
15522
15523 Also check to see if there are no code sections in the input.
15524 In this case there is no need to check for code specific flags.
15525 XXX - do we need to worry about floating-point format compatability
15526 in data sections ? */
15527 if (!(ibfd->flags & DYNAMIC))
15528 {
15529 bfd_boolean null_input_bfd = TRUE;
15530 bfd_boolean only_data_sections = TRUE;
15531
15532 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15533 {
15534 /* Ignore synthetic glue sections. */
15535 if (strcmp (sec->name, ".glue_7")
15536 && strcmp (sec->name, ".glue_7t"))
15537 {
15538 if ((bfd_get_section_flags (ibfd, sec)
15539 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15540 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15541 only_data_sections = FALSE;
15542
15543 null_input_bfd = FALSE;
15544 break;
15545 }
15546 }
15547
15548 if (null_input_bfd || only_data_sections)
15549 return TRUE;
15550 }
15551
15552 /* Complain about various flag mismatches. */
15553 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
15554 EF_ARM_EABI_VERSION (out_flags)))
15555 {
15556 _bfd_error_handler
15557 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
15558 ibfd, obfd,
15559 (in_flags & EF_ARM_EABIMASK) >> 24,
15560 (out_flags & EF_ARM_EABIMASK) >> 24);
15561 return FALSE;
15562 }
15563
15564 /* Not sure what needs to be checked for EABI versions >= 1. */
15565 /* VxWorks libraries do not use these flags. */
15566 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
15567 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
15568 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
15569 {
15570 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
15571 {
15572 _bfd_error_handler
15573 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
15574 ibfd, obfd,
15575 in_flags & EF_ARM_APCS_26 ? 26 : 32,
15576 out_flags & EF_ARM_APCS_26 ? 26 : 32);
15577 flags_compatible = FALSE;
15578 }
15579
15580 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
15581 {
15582 if (in_flags & EF_ARM_APCS_FLOAT)
15583 _bfd_error_handler
15584 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
15585 ibfd, obfd);
15586 else
15587 _bfd_error_handler
15588 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
15589 ibfd, obfd);
15590
15591 flags_compatible = FALSE;
15592 }
15593
15594 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
15595 {
15596 if (in_flags & EF_ARM_VFP_FLOAT)
15597 _bfd_error_handler
15598 (_("error: %B uses VFP instructions, whereas %B does not"),
15599 ibfd, obfd);
15600 else
15601 _bfd_error_handler
15602 (_("error: %B uses FPA instructions, whereas %B does not"),
15603 ibfd, obfd);
15604
15605 flags_compatible = FALSE;
15606 }
15607
15608 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
15609 {
15610 if (in_flags & EF_ARM_MAVERICK_FLOAT)
15611 _bfd_error_handler
15612 (_("error: %B uses Maverick instructions, whereas %B does not"),
15613 ibfd, obfd);
15614 else
15615 _bfd_error_handler
15616 (_("error: %B does not use Maverick instructions, whereas %B does"),
15617 ibfd, obfd);
15618
15619 flags_compatible = FALSE;
15620 }
15621
15622 #ifdef EF_ARM_SOFT_FLOAT
15623 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
15624 {
15625 /* We can allow interworking between code that is VFP format
15626 layout, and uses either soft float or integer regs for
15627 passing floating point arguments and results. We already
15628 know that the APCS_FLOAT flags match; similarly for VFP
15629 flags. */
15630 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
15631 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
15632 {
15633 if (in_flags & EF_ARM_SOFT_FLOAT)
15634 _bfd_error_handler
15635 (_("error: %B uses software FP, whereas %B uses hardware FP"),
15636 ibfd, obfd);
15637 else
15638 _bfd_error_handler
15639 (_("error: %B uses hardware FP, whereas %B uses software FP"),
15640 ibfd, obfd);
15641
15642 flags_compatible = FALSE;
15643 }
15644 }
15645 #endif
15646
15647 /* Interworking mismatch is only a warning. */
15648 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
15649 {
15650 if (in_flags & EF_ARM_INTERWORK)
15651 {
15652 _bfd_error_handler
15653 (_("Warning: %B supports interworking, whereas %B does not"),
15654 ibfd, obfd);
15655 }
15656 else
15657 {
15658 _bfd_error_handler
15659 (_("Warning: %B does not support interworking, whereas %B does"),
15660 ibfd, obfd);
15661 }
15662 }
15663 }
15664
15665 return flags_compatible;
15666 }
15667
15668
15669 /* Symbian OS Targets. */
15670
15671 #undef TARGET_LITTLE_SYM
15672 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
15673 #undef TARGET_LITTLE_NAME
15674 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
15675 #undef TARGET_BIG_SYM
15676 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
15677 #undef TARGET_BIG_NAME
15678 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
15679
15680 /* Like elf32_arm_link_hash_table_create -- but overrides
15681 appropriately for Symbian OS. */
15682
15683 static struct bfd_link_hash_table *
15684 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
15685 {
15686 struct bfd_link_hash_table *ret;
15687
15688 ret = elf32_arm_link_hash_table_create (abfd);
15689 if (ret)
15690 {
15691 struct elf32_arm_link_hash_table *htab
15692 = (struct elf32_arm_link_hash_table *)ret;
15693 /* There is no PLT header for Symbian OS. */
15694 htab->plt_header_size = 0;
15695 /* The PLT entries are each one instruction and one word. */
15696 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
15697 htab->symbian_p = 1;
15698 /* Symbian uses armv5t or above, so use_blx is always true. */
15699 htab->use_blx = 1;
15700 htab->root.is_relocatable_executable = 1;
15701 }
15702 return ret;
15703 }
15704
15705 static const struct bfd_elf_special_section
15706 elf32_arm_symbian_special_sections[] =
15707 {
15708 /* In a BPABI executable, the dynamic linking sections do not go in
15709 the loadable read-only segment. The post-linker may wish to
15710 refer to these sections, but they are not part of the final
15711 program image. */
15712 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
15713 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
15714 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
15715 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
15716 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
15717 /* These sections do not need to be writable as the SymbianOS
15718 postlinker will arrange things so that no dynamic relocation is
15719 required. */
15720 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
15721 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
15722 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
15723 { NULL, 0, 0, 0, 0 }
15724 };
15725
15726 static void
15727 elf32_arm_symbian_begin_write_processing (bfd *abfd,
15728 struct bfd_link_info *link_info)
15729 {
15730 /* BPABI objects are never loaded directly by an OS kernel; they are
15731 processed by a postlinker first, into an OS-specific format. If
15732 the D_PAGED bit is set on the file, BFD will align segments on
15733 page boundaries, so that an OS can directly map the file. With
15734 BPABI objects, that just results in wasted space. In addition,
15735 because we clear the D_PAGED bit, map_sections_to_segments will
15736 recognize that the program headers should not be mapped into any
15737 loadable segment. */
15738 abfd->flags &= ~D_PAGED;
15739 elf32_arm_begin_write_processing (abfd, link_info);
15740 }
15741
15742 static bfd_boolean
15743 elf32_arm_symbian_modify_segment_map (bfd *abfd,
15744 struct bfd_link_info *info)
15745 {
15746 struct elf_segment_map *m;
15747 asection *dynsec;
15748
15749 /* BPABI shared libraries and executables should have a PT_DYNAMIC
15750 segment. However, because the .dynamic section is not marked
15751 with SEC_LOAD, the generic ELF code will not create such a
15752 segment. */
15753 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
15754 if (dynsec)
15755 {
15756 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
15757 if (m->p_type == PT_DYNAMIC)
15758 break;
15759
15760 if (m == NULL)
15761 {
15762 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
15763 m->next = elf_tdata (abfd)->segment_map;
15764 elf_tdata (abfd)->segment_map = m;
15765 }
15766 }
15767
15768 /* Also call the generic arm routine. */
15769 return elf32_arm_modify_segment_map (abfd, info);
15770 }
15771
15772 /* Return address for Ith PLT stub in section PLT, for relocation REL
15773 or (bfd_vma) -1 if it should not be included. */
15774
15775 static bfd_vma
15776 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
15777 const arelent *rel ATTRIBUTE_UNUSED)
15778 {
15779 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
15780 }
15781
15782
15783 #undef elf32_bed
15784 #define elf32_bed elf32_arm_symbian_bed
15785
15786 /* The dynamic sections are not allocated on SymbianOS; the postlinker
15787 will process them and then discard them. */
15788 #undef ELF_DYNAMIC_SEC_FLAGS
15789 #define ELF_DYNAMIC_SEC_FLAGS \
15790 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
15791
15792 #undef elf_backend_emit_relocs
15793
15794 #undef bfd_elf32_bfd_link_hash_table_create
15795 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
15796 #undef elf_backend_special_sections
15797 #define elf_backend_special_sections elf32_arm_symbian_special_sections
15798 #undef elf_backend_begin_write_processing
15799 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
15800 #undef elf_backend_final_write_processing
15801 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15802
15803 #undef elf_backend_modify_segment_map
15804 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
15805
15806 /* There is no .got section for BPABI objects, and hence no header. */
15807 #undef elf_backend_got_header_size
15808 #define elf_backend_got_header_size 0
15809
15810 /* Similarly, there is no .got.plt section. */
15811 #undef elf_backend_want_got_plt
15812 #define elf_backend_want_got_plt 0
15813
15814 #undef elf_backend_plt_sym_val
15815 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
15816
15817 #undef elf_backend_may_use_rel_p
15818 #define elf_backend_may_use_rel_p 1
15819 #undef elf_backend_may_use_rela_p
15820 #define elf_backend_may_use_rela_p 0
15821 #undef elf_backend_default_use_rela_p
15822 #define elf_backend_default_use_rela_p 0
15823 #undef elf_backend_want_plt_sym
15824 #define elf_backend_want_plt_sym 0
15825 #undef ELF_MAXPAGESIZE
15826 #define ELF_MAXPAGESIZE 0x8000
15827
15828 #include "elf32-target.h"
This page took 0.509041 seconds and 4 git commands to generate.