*** empty log message ***
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libiberty.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf-vxworks.h"
27 #include "elf/arm.h"
28
29 #ifndef NUM_ELEM
30 #define NUM_ELEM(a) (sizeof (a) / (sizeof (a)[0]))
31 #endif
32
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
65 static struct elf_backend_data elf32_arm_vxworks_bed;
66
67 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
68 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
69 in that slot. */
70
71 static reloc_howto_type elf32_arm_howto_table_1[] =
72 {
73 /* No relocation */
74 HOWTO (R_ARM_NONE, /* type */
75 0, /* rightshift */
76 0, /* size (0 = byte, 1 = short, 2 = long) */
77 0, /* bitsize */
78 FALSE, /* pc_relative */
79 0, /* bitpos */
80 complain_overflow_dont,/* complain_on_overflow */
81 bfd_elf_generic_reloc, /* special_function */
82 "R_ARM_NONE", /* name */
83 FALSE, /* partial_inplace */
84 0, /* src_mask */
85 0, /* dst_mask */
86 FALSE), /* pcrel_offset */
87
88 HOWTO (R_ARM_PC24, /* type */
89 2, /* rightshift */
90 2, /* size (0 = byte, 1 = short, 2 = long) */
91 24, /* bitsize */
92 TRUE, /* pc_relative */
93 0, /* bitpos */
94 complain_overflow_signed,/* complain_on_overflow */
95 bfd_elf_generic_reloc, /* special_function */
96 "R_ARM_PC24", /* name */
97 FALSE, /* partial_inplace */
98 0x00ffffff, /* src_mask */
99 0x00ffffff, /* dst_mask */
100 TRUE), /* pcrel_offset */
101
102 /* 32 bit absolute */
103 HOWTO (R_ARM_ABS32, /* type */
104 0, /* rightshift */
105 2, /* size (0 = byte, 1 = short, 2 = long) */
106 32, /* bitsize */
107 FALSE, /* pc_relative */
108 0, /* bitpos */
109 complain_overflow_bitfield,/* complain_on_overflow */
110 bfd_elf_generic_reloc, /* special_function */
111 "R_ARM_ABS32", /* name */
112 FALSE, /* partial_inplace */
113 0xffffffff, /* src_mask */
114 0xffffffff, /* dst_mask */
115 FALSE), /* pcrel_offset */
116
117 /* standard 32bit pc-relative reloc */
118 HOWTO (R_ARM_REL32, /* type */
119 0, /* rightshift */
120 2, /* size (0 = byte, 1 = short, 2 = long) */
121 32, /* bitsize */
122 TRUE, /* pc_relative */
123 0, /* bitpos */
124 complain_overflow_bitfield,/* complain_on_overflow */
125 bfd_elf_generic_reloc, /* special_function */
126 "R_ARM_REL32", /* name */
127 FALSE, /* partial_inplace */
128 0xffffffff, /* src_mask */
129 0xffffffff, /* dst_mask */
130 TRUE), /* pcrel_offset */
131
132 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
133 HOWTO (R_ARM_LDR_PC_G0, /* type */
134 0, /* rightshift */
135 0, /* size (0 = byte, 1 = short, 2 = long) */
136 32, /* bitsize */
137 TRUE, /* pc_relative */
138 0, /* bitpos */
139 complain_overflow_dont,/* complain_on_overflow */
140 bfd_elf_generic_reloc, /* special_function */
141 "R_ARM_LDR_PC_G0", /* name */
142 FALSE, /* partial_inplace */
143 0xffffffff, /* src_mask */
144 0xffffffff, /* dst_mask */
145 TRUE), /* pcrel_offset */
146
147 /* 16 bit absolute */
148 HOWTO (R_ARM_ABS16, /* type */
149 0, /* rightshift */
150 1, /* size (0 = byte, 1 = short, 2 = long) */
151 16, /* bitsize */
152 FALSE, /* pc_relative */
153 0, /* bitpos */
154 complain_overflow_bitfield,/* complain_on_overflow */
155 bfd_elf_generic_reloc, /* special_function */
156 "R_ARM_ABS16", /* name */
157 FALSE, /* partial_inplace */
158 0x0000ffff, /* src_mask */
159 0x0000ffff, /* dst_mask */
160 FALSE), /* pcrel_offset */
161
162 /* 12 bit absolute */
163 HOWTO (R_ARM_ABS12, /* type */
164 0, /* rightshift */
165 2, /* size (0 = byte, 1 = short, 2 = long) */
166 12, /* bitsize */
167 FALSE, /* pc_relative */
168 0, /* bitpos */
169 complain_overflow_bitfield,/* complain_on_overflow */
170 bfd_elf_generic_reloc, /* special_function */
171 "R_ARM_ABS12", /* name */
172 FALSE, /* partial_inplace */
173 0x00000fff, /* src_mask */
174 0x00000fff, /* dst_mask */
175 FALSE), /* pcrel_offset */
176
177 HOWTO (R_ARM_THM_ABS5, /* type */
178 6, /* rightshift */
179 1, /* size (0 = byte, 1 = short, 2 = long) */
180 5, /* bitsize */
181 FALSE, /* pc_relative */
182 0, /* bitpos */
183 complain_overflow_bitfield,/* complain_on_overflow */
184 bfd_elf_generic_reloc, /* special_function */
185 "R_ARM_THM_ABS5", /* name */
186 FALSE, /* partial_inplace */
187 0x000007e0, /* src_mask */
188 0x000007e0, /* dst_mask */
189 FALSE), /* pcrel_offset */
190
191 /* 8 bit absolute */
192 HOWTO (R_ARM_ABS8, /* type */
193 0, /* rightshift */
194 0, /* size (0 = byte, 1 = short, 2 = long) */
195 8, /* bitsize */
196 FALSE, /* pc_relative */
197 0, /* bitpos */
198 complain_overflow_bitfield,/* complain_on_overflow */
199 bfd_elf_generic_reloc, /* special_function */
200 "R_ARM_ABS8", /* name */
201 FALSE, /* partial_inplace */
202 0x000000ff, /* src_mask */
203 0x000000ff, /* dst_mask */
204 FALSE), /* pcrel_offset */
205
206 HOWTO (R_ARM_SBREL32, /* type */
207 0, /* rightshift */
208 2, /* size (0 = byte, 1 = short, 2 = long) */
209 32, /* bitsize */
210 FALSE, /* pc_relative */
211 0, /* bitpos */
212 complain_overflow_dont,/* complain_on_overflow */
213 bfd_elf_generic_reloc, /* special_function */
214 "R_ARM_SBREL32", /* name */
215 FALSE, /* partial_inplace */
216 0xffffffff, /* src_mask */
217 0xffffffff, /* dst_mask */
218 FALSE), /* pcrel_offset */
219
220 HOWTO (R_ARM_THM_CALL, /* type */
221 1, /* rightshift */
222 2, /* size (0 = byte, 1 = short, 2 = long) */
223 25, /* bitsize */
224 TRUE, /* pc_relative */
225 0, /* bitpos */
226 complain_overflow_signed,/* complain_on_overflow */
227 bfd_elf_generic_reloc, /* special_function */
228 "R_ARM_THM_CALL", /* name */
229 FALSE, /* partial_inplace */
230 0x07ff07ff, /* src_mask */
231 0x07ff07ff, /* dst_mask */
232 TRUE), /* pcrel_offset */
233
234 HOWTO (R_ARM_THM_PC8, /* type */
235 1, /* rightshift */
236 1, /* size (0 = byte, 1 = short, 2 = long) */
237 8, /* bitsize */
238 TRUE, /* pc_relative */
239 0, /* bitpos */
240 complain_overflow_signed,/* complain_on_overflow */
241 bfd_elf_generic_reloc, /* special_function */
242 "R_ARM_THM_PC8", /* name */
243 FALSE, /* partial_inplace */
244 0x000000ff, /* src_mask */
245 0x000000ff, /* dst_mask */
246 TRUE), /* pcrel_offset */
247
248 HOWTO (R_ARM_BREL_ADJ, /* type */
249 1, /* rightshift */
250 1, /* size (0 = byte, 1 = short, 2 = long) */
251 32, /* bitsize */
252 FALSE, /* pc_relative */
253 0, /* bitpos */
254 complain_overflow_signed,/* complain_on_overflow */
255 bfd_elf_generic_reloc, /* special_function */
256 "R_ARM_BREL_ADJ", /* name */
257 FALSE, /* partial_inplace */
258 0xffffffff, /* src_mask */
259 0xffffffff, /* dst_mask */
260 FALSE), /* pcrel_offset */
261
262 HOWTO (R_ARM_SWI24, /* type */
263 0, /* rightshift */
264 0, /* size (0 = byte, 1 = short, 2 = long) */
265 0, /* bitsize */
266 FALSE, /* pc_relative */
267 0, /* bitpos */
268 complain_overflow_signed,/* complain_on_overflow */
269 bfd_elf_generic_reloc, /* special_function */
270 "R_ARM_SWI24", /* name */
271 FALSE, /* partial_inplace */
272 0x00000000, /* src_mask */
273 0x00000000, /* dst_mask */
274 FALSE), /* pcrel_offset */
275
276 HOWTO (R_ARM_THM_SWI8, /* type */
277 0, /* rightshift */
278 0, /* size (0 = byte, 1 = short, 2 = long) */
279 0, /* bitsize */
280 FALSE, /* pc_relative */
281 0, /* bitpos */
282 complain_overflow_signed,/* complain_on_overflow */
283 bfd_elf_generic_reloc, /* special_function */
284 "R_ARM_SWI8", /* name */
285 FALSE, /* partial_inplace */
286 0x00000000, /* src_mask */
287 0x00000000, /* dst_mask */
288 FALSE), /* pcrel_offset */
289
290 /* BLX instruction for the ARM. */
291 HOWTO (R_ARM_XPC25, /* type */
292 2, /* rightshift */
293 2, /* size (0 = byte, 1 = short, 2 = long) */
294 25, /* bitsize */
295 TRUE, /* pc_relative */
296 0, /* bitpos */
297 complain_overflow_signed,/* complain_on_overflow */
298 bfd_elf_generic_reloc, /* special_function */
299 "R_ARM_XPC25", /* name */
300 FALSE, /* partial_inplace */
301 0x00ffffff, /* src_mask */
302 0x00ffffff, /* dst_mask */
303 TRUE), /* pcrel_offset */
304
305 /* BLX instruction for the Thumb. */
306 HOWTO (R_ARM_THM_XPC22, /* type */
307 2, /* rightshift */
308 2, /* size (0 = byte, 1 = short, 2 = long) */
309 22, /* bitsize */
310 TRUE, /* pc_relative */
311 0, /* bitpos */
312 complain_overflow_signed,/* complain_on_overflow */
313 bfd_elf_generic_reloc, /* special_function */
314 "R_ARM_THM_XPC22", /* name */
315 FALSE, /* partial_inplace */
316 0x07ff07ff, /* src_mask */
317 0x07ff07ff, /* dst_mask */
318 TRUE), /* pcrel_offset */
319
320 /* Dynamic TLS relocations. */
321
322 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
323 0, /* rightshift */
324 2, /* size (0 = byte, 1 = short, 2 = long) */
325 32, /* bitsize */
326 FALSE, /* pc_relative */
327 0, /* bitpos */
328 complain_overflow_bitfield,/* complain_on_overflow */
329 bfd_elf_generic_reloc, /* special_function */
330 "R_ARM_TLS_DTPMOD32", /* name */
331 TRUE, /* partial_inplace */
332 0xffffffff, /* src_mask */
333 0xffffffff, /* dst_mask */
334 FALSE), /* pcrel_offset */
335
336 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
337 0, /* rightshift */
338 2, /* size (0 = byte, 1 = short, 2 = long) */
339 32, /* bitsize */
340 FALSE, /* pc_relative */
341 0, /* bitpos */
342 complain_overflow_bitfield,/* complain_on_overflow */
343 bfd_elf_generic_reloc, /* special_function */
344 "R_ARM_TLS_DTPOFF32", /* name */
345 TRUE, /* partial_inplace */
346 0xffffffff, /* src_mask */
347 0xffffffff, /* dst_mask */
348 FALSE), /* pcrel_offset */
349
350 HOWTO (R_ARM_TLS_TPOFF32, /* type */
351 0, /* rightshift */
352 2, /* size (0 = byte, 1 = short, 2 = long) */
353 32, /* bitsize */
354 FALSE, /* pc_relative */
355 0, /* bitpos */
356 complain_overflow_bitfield,/* complain_on_overflow */
357 bfd_elf_generic_reloc, /* special_function */
358 "R_ARM_TLS_TPOFF32", /* name */
359 TRUE, /* partial_inplace */
360 0xffffffff, /* src_mask */
361 0xffffffff, /* dst_mask */
362 FALSE), /* pcrel_offset */
363
364 /* Relocs used in ARM Linux */
365
366 HOWTO (R_ARM_COPY, /* type */
367 0, /* rightshift */
368 2, /* size (0 = byte, 1 = short, 2 = long) */
369 32, /* bitsize */
370 FALSE, /* pc_relative */
371 0, /* bitpos */
372 complain_overflow_bitfield,/* complain_on_overflow */
373 bfd_elf_generic_reloc, /* special_function */
374 "R_ARM_COPY", /* name */
375 TRUE, /* partial_inplace */
376 0xffffffff, /* src_mask */
377 0xffffffff, /* dst_mask */
378 FALSE), /* pcrel_offset */
379
380 HOWTO (R_ARM_GLOB_DAT, /* type */
381 0, /* rightshift */
382 2, /* size (0 = byte, 1 = short, 2 = long) */
383 32, /* bitsize */
384 FALSE, /* pc_relative */
385 0, /* bitpos */
386 complain_overflow_bitfield,/* complain_on_overflow */
387 bfd_elf_generic_reloc, /* special_function */
388 "R_ARM_GLOB_DAT", /* name */
389 TRUE, /* partial_inplace */
390 0xffffffff, /* src_mask */
391 0xffffffff, /* dst_mask */
392 FALSE), /* pcrel_offset */
393
394 HOWTO (R_ARM_JUMP_SLOT, /* type */
395 0, /* rightshift */
396 2, /* size (0 = byte, 1 = short, 2 = long) */
397 32, /* bitsize */
398 FALSE, /* pc_relative */
399 0, /* bitpos */
400 complain_overflow_bitfield,/* complain_on_overflow */
401 bfd_elf_generic_reloc, /* special_function */
402 "R_ARM_JUMP_SLOT", /* name */
403 TRUE, /* partial_inplace */
404 0xffffffff, /* src_mask */
405 0xffffffff, /* dst_mask */
406 FALSE), /* pcrel_offset */
407
408 HOWTO (R_ARM_RELATIVE, /* type */
409 0, /* rightshift */
410 2, /* size (0 = byte, 1 = short, 2 = long) */
411 32, /* bitsize */
412 FALSE, /* pc_relative */
413 0, /* bitpos */
414 complain_overflow_bitfield,/* complain_on_overflow */
415 bfd_elf_generic_reloc, /* special_function */
416 "R_ARM_RELATIVE", /* name */
417 TRUE, /* partial_inplace */
418 0xffffffff, /* src_mask */
419 0xffffffff, /* dst_mask */
420 FALSE), /* pcrel_offset */
421
422 HOWTO (R_ARM_GOTOFF32, /* type */
423 0, /* rightshift */
424 2, /* size (0 = byte, 1 = short, 2 = long) */
425 32, /* bitsize */
426 FALSE, /* pc_relative */
427 0, /* bitpos */
428 complain_overflow_bitfield,/* complain_on_overflow */
429 bfd_elf_generic_reloc, /* special_function */
430 "R_ARM_GOTOFF32", /* name */
431 TRUE, /* partial_inplace */
432 0xffffffff, /* src_mask */
433 0xffffffff, /* dst_mask */
434 FALSE), /* pcrel_offset */
435
436 HOWTO (R_ARM_GOTPC, /* type */
437 0, /* rightshift */
438 2, /* size (0 = byte, 1 = short, 2 = long) */
439 32, /* bitsize */
440 TRUE, /* pc_relative */
441 0, /* bitpos */
442 complain_overflow_bitfield,/* complain_on_overflow */
443 bfd_elf_generic_reloc, /* special_function */
444 "R_ARM_GOTPC", /* name */
445 TRUE, /* partial_inplace */
446 0xffffffff, /* src_mask */
447 0xffffffff, /* dst_mask */
448 TRUE), /* pcrel_offset */
449
450 HOWTO (R_ARM_GOT32, /* type */
451 0, /* rightshift */
452 2, /* size (0 = byte, 1 = short, 2 = long) */
453 32, /* bitsize */
454 FALSE, /* pc_relative */
455 0, /* bitpos */
456 complain_overflow_bitfield,/* complain_on_overflow */
457 bfd_elf_generic_reloc, /* special_function */
458 "R_ARM_GOT32", /* name */
459 TRUE, /* partial_inplace */
460 0xffffffff, /* src_mask */
461 0xffffffff, /* dst_mask */
462 FALSE), /* pcrel_offset */
463
464 HOWTO (R_ARM_PLT32, /* type */
465 2, /* rightshift */
466 2, /* size (0 = byte, 1 = short, 2 = long) */
467 24, /* bitsize */
468 TRUE, /* pc_relative */
469 0, /* bitpos */
470 complain_overflow_bitfield,/* complain_on_overflow */
471 bfd_elf_generic_reloc, /* special_function */
472 "R_ARM_PLT32", /* name */
473 FALSE, /* partial_inplace */
474 0x00ffffff, /* src_mask */
475 0x00ffffff, /* dst_mask */
476 TRUE), /* pcrel_offset */
477
478 HOWTO (R_ARM_CALL, /* type */
479 2, /* rightshift */
480 2, /* size (0 = byte, 1 = short, 2 = long) */
481 24, /* bitsize */
482 TRUE, /* pc_relative */
483 0, /* bitpos */
484 complain_overflow_signed,/* complain_on_overflow */
485 bfd_elf_generic_reloc, /* special_function */
486 "R_ARM_CALL", /* name */
487 FALSE, /* partial_inplace */
488 0x00ffffff, /* src_mask */
489 0x00ffffff, /* dst_mask */
490 TRUE), /* pcrel_offset */
491
492 HOWTO (R_ARM_JUMP24, /* type */
493 2, /* rightshift */
494 2, /* size (0 = byte, 1 = short, 2 = long) */
495 24, /* bitsize */
496 TRUE, /* pc_relative */
497 0, /* bitpos */
498 complain_overflow_signed,/* complain_on_overflow */
499 bfd_elf_generic_reloc, /* special_function */
500 "R_ARM_JUMP24", /* name */
501 FALSE, /* partial_inplace */
502 0x00ffffff, /* src_mask */
503 0x00ffffff, /* dst_mask */
504 TRUE), /* pcrel_offset */
505
506 HOWTO (R_ARM_THM_JUMP24, /* type */
507 1, /* rightshift */
508 2, /* size (0 = byte, 1 = short, 2 = long) */
509 24, /* bitsize */
510 TRUE, /* pc_relative */
511 0, /* bitpos */
512 complain_overflow_signed,/* complain_on_overflow */
513 bfd_elf_generic_reloc, /* special_function */
514 "R_ARM_THM_JUMP24", /* name */
515 FALSE, /* partial_inplace */
516 0x07ff2fff, /* src_mask */
517 0x07ff2fff, /* dst_mask */
518 TRUE), /* pcrel_offset */
519
520 HOWTO (R_ARM_BASE_ABS, /* type */
521 0, /* rightshift */
522 2, /* size (0 = byte, 1 = short, 2 = long) */
523 32, /* bitsize */
524 FALSE, /* pc_relative */
525 0, /* bitpos */
526 complain_overflow_dont,/* complain_on_overflow */
527 bfd_elf_generic_reloc, /* special_function */
528 "R_ARM_BASE_ABS", /* name */
529 FALSE, /* partial_inplace */
530 0xffffffff, /* src_mask */
531 0xffffffff, /* dst_mask */
532 FALSE), /* pcrel_offset */
533
534 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
535 0, /* rightshift */
536 2, /* size (0 = byte, 1 = short, 2 = long) */
537 12, /* bitsize */
538 TRUE, /* pc_relative */
539 0, /* bitpos */
540 complain_overflow_dont,/* complain_on_overflow */
541 bfd_elf_generic_reloc, /* special_function */
542 "R_ARM_ALU_PCREL_7_0", /* name */
543 FALSE, /* partial_inplace */
544 0x00000fff, /* src_mask */
545 0x00000fff, /* dst_mask */
546 TRUE), /* pcrel_offset */
547
548 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
549 0, /* rightshift */
550 2, /* size (0 = byte, 1 = short, 2 = long) */
551 12, /* bitsize */
552 TRUE, /* pc_relative */
553 8, /* bitpos */
554 complain_overflow_dont,/* complain_on_overflow */
555 bfd_elf_generic_reloc, /* special_function */
556 "R_ARM_ALU_PCREL_15_8",/* name */
557 FALSE, /* partial_inplace */
558 0x00000fff, /* src_mask */
559 0x00000fff, /* dst_mask */
560 TRUE), /* pcrel_offset */
561
562 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
563 0, /* rightshift */
564 2, /* size (0 = byte, 1 = short, 2 = long) */
565 12, /* bitsize */
566 TRUE, /* pc_relative */
567 16, /* bitpos */
568 complain_overflow_dont,/* complain_on_overflow */
569 bfd_elf_generic_reloc, /* special_function */
570 "R_ARM_ALU_PCREL_23_15",/* name */
571 FALSE, /* partial_inplace */
572 0x00000fff, /* src_mask */
573 0x00000fff, /* dst_mask */
574 TRUE), /* pcrel_offset */
575
576 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
577 0, /* rightshift */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
579 12, /* bitsize */
580 FALSE, /* pc_relative */
581 0, /* bitpos */
582 complain_overflow_dont,/* complain_on_overflow */
583 bfd_elf_generic_reloc, /* special_function */
584 "R_ARM_LDR_SBREL_11_0",/* name */
585 FALSE, /* partial_inplace */
586 0x00000fff, /* src_mask */
587 0x00000fff, /* dst_mask */
588 FALSE), /* pcrel_offset */
589
590 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
591 0, /* rightshift */
592 2, /* size (0 = byte, 1 = short, 2 = long) */
593 8, /* bitsize */
594 FALSE, /* pc_relative */
595 12, /* bitpos */
596 complain_overflow_dont,/* complain_on_overflow */
597 bfd_elf_generic_reloc, /* special_function */
598 "R_ARM_ALU_SBREL_19_12",/* name */
599 FALSE, /* partial_inplace */
600 0x000ff000, /* src_mask */
601 0x000ff000, /* dst_mask */
602 FALSE), /* pcrel_offset */
603
604 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
605 0, /* rightshift */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
607 8, /* bitsize */
608 FALSE, /* pc_relative */
609 20, /* bitpos */
610 complain_overflow_dont,/* complain_on_overflow */
611 bfd_elf_generic_reloc, /* special_function */
612 "R_ARM_ALU_SBREL_27_20",/* name */
613 FALSE, /* partial_inplace */
614 0x0ff00000, /* src_mask */
615 0x0ff00000, /* dst_mask */
616 FALSE), /* pcrel_offset */
617
618 HOWTO (R_ARM_TARGET1, /* type */
619 0, /* rightshift */
620 2, /* size (0 = byte, 1 = short, 2 = long) */
621 32, /* bitsize */
622 FALSE, /* pc_relative */
623 0, /* bitpos */
624 complain_overflow_dont,/* complain_on_overflow */
625 bfd_elf_generic_reloc, /* special_function */
626 "R_ARM_TARGET1", /* name */
627 FALSE, /* partial_inplace */
628 0xffffffff, /* src_mask */
629 0xffffffff, /* dst_mask */
630 FALSE), /* pcrel_offset */
631
632 HOWTO (R_ARM_ROSEGREL32, /* type */
633 0, /* rightshift */
634 2, /* size (0 = byte, 1 = short, 2 = long) */
635 32, /* bitsize */
636 FALSE, /* pc_relative */
637 0, /* bitpos */
638 complain_overflow_dont,/* complain_on_overflow */
639 bfd_elf_generic_reloc, /* special_function */
640 "R_ARM_ROSEGREL32", /* name */
641 FALSE, /* partial_inplace */
642 0xffffffff, /* src_mask */
643 0xffffffff, /* dst_mask */
644 FALSE), /* pcrel_offset */
645
646 HOWTO (R_ARM_V4BX, /* type */
647 0, /* rightshift */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
649 32, /* bitsize */
650 FALSE, /* pc_relative */
651 0, /* bitpos */
652 complain_overflow_dont,/* complain_on_overflow */
653 bfd_elf_generic_reloc, /* special_function */
654 "R_ARM_V4BX", /* name */
655 FALSE, /* partial_inplace */
656 0xffffffff, /* src_mask */
657 0xffffffff, /* dst_mask */
658 FALSE), /* pcrel_offset */
659
660 HOWTO (R_ARM_TARGET2, /* type */
661 0, /* rightshift */
662 2, /* size (0 = byte, 1 = short, 2 = long) */
663 32, /* bitsize */
664 FALSE, /* pc_relative */
665 0, /* bitpos */
666 complain_overflow_signed,/* complain_on_overflow */
667 bfd_elf_generic_reloc, /* special_function */
668 "R_ARM_TARGET2", /* name */
669 FALSE, /* partial_inplace */
670 0xffffffff, /* src_mask */
671 0xffffffff, /* dst_mask */
672 TRUE), /* pcrel_offset */
673
674 HOWTO (R_ARM_PREL31, /* type */
675 0, /* rightshift */
676 2, /* size (0 = byte, 1 = short, 2 = long) */
677 31, /* bitsize */
678 TRUE, /* pc_relative */
679 0, /* bitpos */
680 complain_overflow_signed,/* complain_on_overflow */
681 bfd_elf_generic_reloc, /* special_function */
682 "R_ARM_PREL31", /* name */
683 FALSE, /* partial_inplace */
684 0x7fffffff, /* src_mask */
685 0x7fffffff, /* dst_mask */
686 TRUE), /* pcrel_offset */
687
688 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
689 0, /* rightshift */
690 2, /* size (0 = byte, 1 = short, 2 = long) */
691 16, /* bitsize */
692 FALSE, /* pc_relative */
693 0, /* bitpos */
694 complain_overflow_dont,/* complain_on_overflow */
695 bfd_elf_generic_reloc, /* special_function */
696 "R_ARM_MOVW_ABS_NC", /* name */
697 FALSE, /* partial_inplace */
698 0x0000ffff, /* src_mask */
699 0x0000ffff, /* dst_mask */
700 FALSE), /* pcrel_offset */
701
702 HOWTO (R_ARM_MOVT_ABS, /* type */
703 0, /* rightshift */
704 2, /* size (0 = byte, 1 = short, 2 = long) */
705 16, /* bitsize */
706 FALSE, /* pc_relative */
707 0, /* bitpos */
708 complain_overflow_bitfield,/* complain_on_overflow */
709 bfd_elf_generic_reloc, /* special_function */
710 "R_ARM_MOVT_ABS", /* name */
711 FALSE, /* partial_inplace */
712 0x0000ffff, /* src_mask */
713 0x0000ffff, /* dst_mask */
714 FALSE), /* pcrel_offset */
715
716 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
717 0, /* rightshift */
718 2, /* size (0 = byte, 1 = short, 2 = long) */
719 16, /* bitsize */
720 TRUE, /* pc_relative */
721 0, /* bitpos */
722 complain_overflow_dont,/* complain_on_overflow */
723 bfd_elf_generic_reloc, /* special_function */
724 "R_ARM_MOVW_PREL_NC", /* name */
725 FALSE, /* partial_inplace */
726 0x0000ffff, /* src_mask */
727 0x0000ffff, /* dst_mask */
728 TRUE), /* pcrel_offset */
729
730 HOWTO (R_ARM_MOVT_PREL, /* type */
731 0, /* rightshift */
732 2, /* size (0 = byte, 1 = short, 2 = long) */
733 16, /* bitsize */
734 TRUE, /* pc_relative */
735 0, /* bitpos */
736 complain_overflow_bitfield,/* complain_on_overflow */
737 bfd_elf_generic_reloc, /* special_function */
738 "R_ARM_MOVT_PREL", /* name */
739 FALSE, /* partial_inplace */
740 0x0000ffff, /* src_mask */
741 0x0000ffff, /* dst_mask */
742 TRUE), /* pcrel_offset */
743
744 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
745 0, /* rightshift */
746 2, /* size (0 = byte, 1 = short, 2 = long) */
747 16, /* bitsize */
748 FALSE, /* pc_relative */
749 0, /* bitpos */
750 complain_overflow_dont,/* complain_on_overflow */
751 bfd_elf_generic_reloc, /* special_function */
752 "R_ARM_THM_MOVW_ABS_NC",/* name */
753 FALSE, /* partial_inplace */
754 0x040f70ff, /* src_mask */
755 0x040f70ff, /* dst_mask */
756 FALSE), /* pcrel_offset */
757
758 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
759 0, /* rightshift */
760 2, /* size (0 = byte, 1 = short, 2 = long) */
761 16, /* bitsize */
762 FALSE, /* pc_relative */
763 0, /* bitpos */
764 complain_overflow_bitfield,/* complain_on_overflow */
765 bfd_elf_generic_reloc, /* special_function */
766 "R_ARM_THM_MOVT_ABS", /* name */
767 FALSE, /* partial_inplace */
768 0x040f70ff, /* src_mask */
769 0x040f70ff, /* dst_mask */
770 FALSE), /* pcrel_offset */
771
772 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
773 0, /* rightshift */
774 2, /* size (0 = byte, 1 = short, 2 = long) */
775 16, /* bitsize */
776 TRUE, /* pc_relative */
777 0, /* bitpos */
778 complain_overflow_dont,/* complain_on_overflow */
779 bfd_elf_generic_reloc, /* special_function */
780 "R_ARM_THM_MOVW_PREL_NC",/* name */
781 FALSE, /* partial_inplace */
782 0x040f70ff, /* src_mask */
783 0x040f70ff, /* dst_mask */
784 TRUE), /* pcrel_offset */
785
786 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
787 0, /* rightshift */
788 2, /* size (0 = byte, 1 = short, 2 = long) */
789 16, /* bitsize */
790 TRUE, /* pc_relative */
791 0, /* bitpos */
792 complain_overflow_bitfield,/* complain_on_overflow */
793 bfd_elf_generic_reloc, /* special_function */
794 "R_ARM_THM_MOVT_PREL", /* name */
795 FALSE, /* partial_inplace */
796 0x040f70ff, /* src_mask */
797 0x040f70ff, /* dst_mask */
798 TRUE), /* pcrel_offset */
799
800 HOWTO (R_ARM_THM_JUMP19, /* type */
801 1, /* rightshift */
802 2, /* size (0 = byte, 1 = short, 2 = long) */
803 19, /* bitsize */
804 TRUE, /* pc_relative */
805 0, /* bitpos */
806 complain_overflow_signed,/* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 "R_ARM_THM_JUMP19", /* name */
809 FALSE, /* partial_inplace */
810 0x043f2fff, /* src_mask */
811 0x043f2fff, /* dst_mask */
812 TRUE), /* pcrel_offset */
813
814 HOWTO (R_ARM_THM_JUMP6, /* type */
815 1, /* rightshift */
816 1, /* size (0 = byte, 1 = short, 2 = long) */
817 6, /* bitsize */
818 TRUE, /* pc_relative */
819 0, /* bitpos */
820 complain_overflow_unsigned,/* complain_on_overflow */
821 bfd_elf_generic_reloc, /* special_function */
822 "R_ARM_THM_JUMP6", /* name */
823 FALSE, /* partial_inplace */
824 0x02f8, /* src_mask */
825 0x02f8, /* dst_mask */
826 TRUE), /* pcrel_offset */
827
828 /* These are declared as 13-bit signed relocations because we can
829 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
830 versa. */
831 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
832 0, /* rightshift */
833 2, /* size (0 = byte, 1 = short, 2 = long) */
834 13, /* bitsize */
835 TRUE, /* pc_relative */
836 0, /* bitpos */
837 complain_overflow_dont,/* complain_on_overflow */
838 bfd_elf_generic_reloc, /* special_function */
839 "R_ARM_THM_ALU_PREL_11_0",/* name */
840 FALSE, /* partial_inplace */
841 0xffffffff, /* src_mask */
842 0xffffffff, /* dst_mask */
843 TRUE), /* pcrel_offset */
844
845 HOWTO (R_ARM_THM_PC12, /* type */
846 0, /* rightshift */
847 2, /* size (0 = byte, 1 = short, 2 = long) */
848 13, /* bitsize */
849 TRUE, /* pc_relative */
850 0, /* bitpos */
851 complain_overflow_dont,/* complain_on_overflow */
852 bfd_elf_generic_reloc, /* special_function */
853 "R_ARM_THM_PC12", /* name */
854 FALSE, /* partial_inplace */
855 0xffffffff, /* src_mask */
856 0xffffffff, /* dst_mask */
857 TRUE), /* pcrel_offset */
858
859 HOWTO (R_ARM_ABS32_NOI, /* type */
860 0, /* rightshift */
861 2, /* size (0 = byte, 1 = short, 2 = long) */
862 32, /* bitsize */
863 FALSE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_dont,/* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_ARM_ABS32_NOI", /* name */
868 FALSE, /* partial_inplace */
869 0xffffffff, /* src_mask */
870 0xffffffff, /* dst_mask */
871 FALSE), /* pcrel_offset */
872
873 HOWTO (R_ARM_REL32_NOI, /* type */
874 0, /* rightshift */
875 2, /* size (0 = byte, 1 = short, 2 = long) */
876 32, /* bitsize */
877 TRUE, /* pc_relative */
878 0, /* bitpos */
879 complain_overflow_dont,/* complain_on_overflow */
880 bfd_elf_generic_reloc, /* special_function */
881 "R_ARM_REL32_NOI", /* name */
882 FALSE, /* partial_inplace */
883 0xffffffff, /* src_mask */
884 0xffffffff, /* dst_mask */
885 FALSE), /* pcrel_offset */
886
887 /* Group relocations. */
888
889 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
890 0, /* rightshift */
891 2, /* size (0 = byte, 1 = short, 2 = long) */
892 32, /* bitsize */
893 TRUE, /* pc_relative */
894 0, /* bitpos */
895 complain_overflow_dont,/* complain_on_overflow */
896 bfd_elf_generic_reloc, /* special_function */
897 "R_ARM_ALU_PC_G0_NC", /* name */
898 FALSE, /* partial_inplace */
899 0xffffffff, /* src_mask */
900 0xffffffff, /* dst_mask */
901 TRUE), /* pcrel_offset */
902
903 HOWTO (R_ARM_ALU_PC_G0, /* type */
904 0, /* rightshift */
905 2, /* size (0 = byte, 1 = short, 2 = long) */
906 32, /* bitsize */
907 TRUE, /* pc_relative */
908 0, /* bitpos */
909 complain_overflow_dont,/* complain_on_overflow */
910 bfd_elf_generic_reloc, /* special_function */
911 "R_ARM_ALU_PC_G0", /* name */
912 FALSE, /* partial_inplace */
913 0xffffffff, /* src_mask */
914 0xffffffff, /* dst_mask */
915 TRUE), /* pcrel_offset */
916
917 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
918 0, /* rightshift */
919 2, /* size (0 = byte, 1 = short, 2 = long) */
920 32, /* bitsize */
921 TRUE, /* pc_relative */
922 0, /* bitpos */
923 complain_overflow_dont,/* complain_on_overflow */
924 bfd_elf_generic_reloc, /* special_function */
925 "R_ARM_ALU_PC_G1_NC", /* name */
926 FALSE, /* partial_inplace */
927 0xffffffff, /* src_mask */
928 0xffffffff, /* dst_mask */
929 TRUE), /* pcrel_offset */
930
931 HOWTO (R_ARM_ALU_PC_G1, /* type */
932 0, /* rightshift */
933 2, /* size (0 = byte, 1 = short, 2 = long) */
934 32, /* bitsize */
935 TRUE, /* pc_relative */
936 0, /* bitpos */
937 complain_overflow_dont,/* complain_on_overflow */
938 bfd_elf_generic_reloc, /* special_function */
939 "R_ARM_ALU_PC_G1", /* name */
940 FALSE, /* partial_inplace */
941 0xffffffff, /* src_mask */
942 0xffffffff, /* dst_mask */
943 TRUE), /* pcrel_offset */
944
945 HOWTO (R_ARM_ALU_PC_G2, /* type */
946 0, /* rightshift */
947 2, /* size (0 = byte, 1 = short, 2 = long) */
948 32, /* bitsize */
949 TRUE, /* pc_relative */
950 0, /* bitpos */
951 complain_overflow_dont,/* complain_on_overflow */
952 bfd_elf_generic_reloc, /* special_function */
953 "R_ARM_ALU_PC_G2", /* name */
954 FALSE, /* partial_inplace */
955 0xffffffff, /* src_mask */
956 0xffffffff, /* dst_mask */
957 TRUE), /* pcrel_offset */
958
959 HOWTO (R_ARM_LDR_PC_G1, /* type */
960 0, /* rightshift */
961 2, /* size (0 = byte, 1 = short, 2 = long) */
962 32, /* bitsize */
963 TRUE, /* pc_relative */
964 0, /* bitpos */
965 complain_overflow_dont,/* complain_on_overflow */
966 bfd_elf_generic_reloc, /* special_function */
967 "R_ARM_LDR_PC_G1", /* name */
968 FALSE, /* partial_inplace */
969 0xffffffff, /* src_mask */
970 0xffffffff, /* dst_mask */
971 TRUE), /* pcrel_offset */
972
973 HOWTO (R_ARM_LDR_PC_G2, /* type */
974 0, /* rightshift */
975 2, /* size (0 = byte, 1 = short, 2 = long) */
976 32, /* bitsize */
977 TRUE, /* pc_relative */
978 0, /* bitpos */
979 complain_overflow_dont,/* complain_on_overflow */
980 bfd_elf_generic_reloc, /* special_function */
981 "R_ARM_LDR_PC_G2", /* name */
982 FALSE, /* partial_inplace */
983 0xffffffff, /* src_mask */
984 0xffffffff, /* dst_mask */
985 TRUE), /* pcrel_offset */
986
987 HOWTO (R_ARM_LDRS_PC_G0, /* type */
988 0, /* rightshift */
989 2, /* size (0 = byte, 1 = short, 2 = long) */
990 32, /* bitsize */
991 TRUE, /* pc_relative */
992 0, /* bitpos */
993 complain_overflow_dont,/* complain_on_overflow */
994 bfd_elf_generic_reloc, /* special_function */
995 "R_ARM_LDRS_PC_G0", /* name */
996 FALSE, /* partial_inplace */
997 0xffffffff, /* src_mask */
998 0xffffffff, /* dst_mask */
999 TRUE), /* pcrel_offset */
1000
1001 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1002 0, /* rightshift */
1003 2, /* size (0 = byte, 1 = short, 2 = long) */
1004 32, /* bitsize */
1005 TRUE, /* pc_relative */
1006 0, /* bitpos */
1007 complain_overflow_dont,/* complain_on_overflow */
1008 bfd_elf_generic_reloc, /* special_function */
1009 "R_ARM_LDRS_PC_G1", /* name */
1010 FALSE, /* partial_inplace */
1011 0xffffffff, /* src_mask */
1012 0xffffffff, /* dst_mask */
1013 TRUE), /* pcrel_offset */
1014
1015 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1016 0, /* rightshift */
1017 2, /* size (0 = byte, 1 = short, 2 = long) */
1018 32, /* bitsize */
1019 TRUE, /* pc_relative */
1020 0, /* bitpos */
1021 complain_overflow_dont,/* complain_on_overflow */
1022 bfd_elf_generic_reloc, /* special_function */
1023 "R_ARM_LDRS_PC_G2", /* name */
1024 FALSE, /* partial_inplace */
1025 0xffffffff, /* src_mask */
1026 0xffffffff, /* dst_mask */
1027 TRUE), /* pcrel_offset */
1028
1029 HOWTO (R_ARM_LDC_PC_G0, /* type */
1030 0, /* rightshift */
1031 2, /* size (0 = byte, 1 = short, 2 = long) */
1032 32, /* bitsize */
1033 TRUE, /* pc_relative */
1034 0, /* bitpos */
1035 complain_overflow_dont,/* complain_on_overflow */
1036 bfd_elf_generic_reloc, /* special_function */
1037 "R_ARM_LDC_PC_G0", /* name */
1038 FALSE, /* partial_inplace */
1039 0xffffffff, /* src_mask */
1040 0xffffffff, /* dst_mask */
1041 TRUE), /* pcrel_offset */
1042
1043 HOWTO (R_ARM_LDC_PC_G1, /* type */
1044 0, /* rightshift */
1045 2, /* size (0 = byte, 1 = short, 2 = long) */
1046 32, /* bitsize */
1047 TRUE, /* pc_relative */
1048 0, /* bitpos */
1049 complain_overflow_dont,/* complain_on_overflow */
1050 bfd_elf_generic_reloc, /* special_function */
1051 "R_ARM_LDC_PC_G1", /* name */
1052 FALSE, /* partial_inplace */
1053 0xffffffff, /* src_mask */
1054 0xffffffff, /* dst_mask */
1055 TRUE), /* pcrel_offset */
1056
1057 HOWTO (R_ARM_LDC_PC_G2, /* type */
1058 0, /* rightshift */
1059 2, /* size (0 = byte, 1 = short, 2 = long) */
1060 32, /* bitsize */
1061 TRUE, /* pc_relative */
1062 0, /* bitpos */
1063 complain_overflow_dont,/* complain_on_overflow */
1064 bfd_elf_generic_reloc, /* special_function */
1065 "R_ARM_LDC_PC_G2", /* name */
1066 FALSE, /* partial_inplace */
1067 0xffffffff, /* src_mask */
1068 0xffffffff, /* dst_mask */
1069 TRUE), /* pcrel_offset */
1070
1071 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1072 0, /* rightshift */
1073 2, /* size (0 = byte, 1 = short, 2 = long) */
1074 32, /* bitsize */
1075 TRUE, /* pc_relative */
1076 0, /* bitpos */
1077 complain_overflow_dont,/* complain_on_overflow */
1078 bfd_elf_generic_reloc, /* special_function */
1079 "R_ARM_ALU_SB_G0_NC", /* name */
1080 FALSE, /* partial_inplace */
1081 0xffffffff, /* src_mask */
1082 0xffffffff, /* dst_mask */
1083 TRUE), /* pcrel_offset */
1084
1085 HOWTO (R_ARM_ALU_SB_G0, /* type */
1086 0, /* rightshift */
1087 2, /* size (0 = byte, 1 = short, 2 = long) */
1088 32, /* bitsize */
1089 TRUE, /* pc_relative */
1090 0, /* bitpos */
1091 complain_overflow_dont,/* complain_on_overflow */
1092 bfd_elf_generic_reloc, /* special_function */
1093 "R_ARM_ALU_SB_G0", /* name */
1094 FALSE, /* partial_inplace */
1095 0xffffffff, /* src_mask */
1096 0xffffffff, /* dst_mask */
1097 TRUE), /* pcrel_offset */
1098
1099 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1100 0, /* rightshift */
1101 2, /* size (0 = byte, 1 = short, 2 = long) */
1102 32, /* bitsize */
1103 TRUE, /* pc_relative */
1104 0, /* bitpos */
1105 complain_overflow_dont,/* complain_on_overflow */
1106 bfd_elf_generic_reloc, /* special_function */
1107 "R_ARM_ALU_SB_G1_NC", /* name */
1108 FALSE, /* partial_inplace */
1109 0xffffffff, /* src_mask */
1110 0xffffffff, /* dst_mask */
1111 TRUE), /* pcrel_offset */
1112
1113 HOWTO (R_ARM_ALU_SB_G1, /* type */
1114 0, /* rightshift */
1115 2, /* size (0 = byte, 1 = short, 2 = long) */
1116 32, /* bitsize */
1117 TRUE, /* pc_relative */
1118 0, /* bitpos */
1119 complain_overflow_dont,/* complain_on_overflow */
1120 bfd_elf_generic_reloc, /* special_function */
1121 "R_ARM_ALU_SB_G1", /* name */
1122 FALSE, /* partial_inplace */
1123 0xffffffff, /* src_mask */
1124 0xffffffff, /* dst_mask */
1125 TRUE), /* pcrel_offset */
1126
1127 HOWTO (R_ARM_ALU_SB_G2, /* type */
1128 0, /* rightshift */
1129 2, /* size (0 = byte, 1 = short, 2 = long) */
1130 32, /* bitsize */
1131 TRUE, /* pc_relative */
1132 0, /* bitpos */
1133 complain_overflow_dont,/* complain_on_overflow */
1134 bfd_elf_generic_reloc, /* special_function */
1135 "R_ARM_ALU_SB_G2", /* name */
1136 FALSE, /* partial_inplace */
1137 0xffffffff, /* src_mask */
1138 0xffffffff, /* dst_mask */
1139 TRUE), /* pcrel_offset */
1140
1141 HOWTO (R_ARM_LDR_SB_G0, /* type */
1142 0, /* rightshift */
1143 2, /* size (0 = byte, 1 = short, 2 = long) */
1144 32, /* bitsize */
1145 TRUE, /* pc_relative */
1146 0, /* bitpos */
1147 complain_overflow_dont,/* complain_on_overflow */
1148 bfd_elf_generic_reloc, /* special_function */
1149 "R_ARM_LDR_SB_G0", /* name */
1150 FALSE, /* partial_inplace */
1151 0xffffffff, /* src_mask */
1152 0xffffffff, /* dst_mask */
1153 TRUE), /* pcrel_offset */
1154
1155 HOWTO (R_ARM_LDR_SB_G1, /* type */
1156 0, /* rightshift */
1157 2, /* size (0 = byte, 1 = short, 2 = long) */
1158 32, /* bitsize */
1159 TRUE, /* pc_relative */
1160 0, /* bitpos */
1161 complain_overflow_dont,/* complain_on_overflow */
1162 bfd_elf_generic_reloc, /* special_function */
1163 "R_ARM_LDR_SB_G1", /* name */
1164 FALSE, /* partial_inplace */
1165 0xffffffff, /* src_mask */
1166 0xffffffff, /* dst_mask */
1167 TRUE), /* pcrel_offset */
1168
1169 HOWTO (R_ARM_LDR_SB_G2, /* type */
1170 0, /* rightshift */
1171 2, /* size (0 = byte, 1 = short, 2 = long) */
1172 32, /* bitsize */
1173 TRUE, /* pc_relative */
1174 0, /* bitpos */
1175 complain_overflow_dont,/* complain_on_overflow */
1176 bfd_elf_generic_reloc, /* special_function */
1177 "R_ARM_LDR_SB_G2", /* name */
1178 FALSE, /* partial_inplace */
1179 0xffffffff, /* src_mask */
1180 0xffffffff, /* dst_mask */
1181 TRUE), /* pcrel_offset */
1182
1183 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1184 0, /* rightshift */
1185 2, /* size (0 = byte, 1 = short, 2 = long) */
1186 32, /* bitsize */
1187 TRUE, /* pc_relative */
1188 0, /* bitpos */
1189 complain_overflow_dont,/* complain_on_overflow */
1190 bfd_elf_generic_reloc, /* special_function */
1191 "R_ARM_LDRS_SB_G0", /* name */
1192 FALSE, /* partial_inplace */
1193 0xffffffff, /* src_mask */
1194 0xffffffff, /* dst_mask */
1195 TRUE), /* pcrel_offset */
1196
1197 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1198 0, /* rightshift */
1199 2, /* size (0 = byte, 1 = short, 2 = long) */
1200 32, /* bitsize */
1201 TRUE, /* pc_relative */
1202 0, /* bitpos */
1203 complain_overflow_dont,/* complain_on_overflow */
1204 bfd_elf_generic_reloc, /* special_function */
1205 "R_ARM_LDRS_SB_G1", /* name */
1206 FALSE, /* partial_inplace */
1207 0xffffffff, /* src_mask */
1208 0xffffffff, /* dst_mask */
1209 TRUE), /* pcrel_offset */
1210
1211 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1212 0, /* rightshift */
1213 2, /* size (0 = byte, 1 = short, 2 = long) */
1214 32, /* bitsize */
1215 TRUE, /* pc_relative */
1216 0, /* bitpos */
1217 complain_overflow_dont,/* complain_on_overflow */
1218 bfd_elf_generic_reloc, /* special_function */
1219 "R_ARM_LDRS_SB_G2", /* name */
1220 FALSE, /* partial_inplace */
1221 0xffffffff, /* src_mask */
1222 0xffffffff, /* dst_mask */
1223 TRUE), /* pcrel_offset */
1224
1225 HOWTO (R_ARM_LDC_SB_G0, /* type */
1226 0, /* rightshift */
1227 2, /* size (0 = byte, 1 = short, 2 = long) */
1228 32, /* bitsize */
1229 TRUE, /* pc_relative */
1230 0, /* bitpos */
1231 complain_overflow_dont,/* complain_on_overflow */
1232 bfd_elf_generic_reloc, /* special_function */
1233 "R_ARM_LDC_SB_G0", /* name */
1234 FALSE, /* partial_inplace */
1235 0xffffffff, /* src_mask */
1236 0xffffffff, /* dst_mask */
1237 TRUE), /* pcrel_offset */
1238
1239 HOWTO (R_ARM_LDC_SB_G1, /* type */
1240 0, /* rightshift */
1241 2, /* size (0 = byte, 1 = short, 2 = long) */
1242 32, /* bitsize */
1243 TRUE, /* pc_relative */
1244 0, /* bitpos */
1245 complain_overflow_dont,/* complain_on_overflow */
1246 bfd_elf_generic_reloc, /* special_function */
1247 "R_ARM_LDC_SB_G1", /* name */
1248 FALSE, /* partial_inplace */
1249 0xffffffff, /* src_mask */
1250 0xffffffff, /* dst_mask */
1251 TRUE), /* pcrel_offset */
1252
1253 HOWTO (R_ARM_LDC_SB_G2, /* type */
1254 0, /* rightshift */
1255 2, /* size (0 = byte, 1 = short, 2 = long) */
1256 32, /* bitsize */
1257 TRUE, /* pc_relative */
1258 0, /* bitpos */
1259 complain_overflow_dont,/* complain_on_overflow */
1260 bfd_elf_generic_reloc, /* special_function */
1261 "R_ARM_LDC_SB_G2", /* name */
1262 FALSE, /* partial_inplace */
1263 0xffffffff, /* src_mask */
1264 0xffffffff, /* dst_mask */
1265 TRUE), /* pcrel_offset */
1266
1267 /* End of group relocations. */
1268
1269 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1270 0, /* rightshift */
1271 2, /* size (0 = byte, 1 = short, 2 = long) */
1272 16, /* bitsize */
1273 FALSE, /* pc_relative */
1274 0, /* bitpos */
1275 complain_overflow_dont,/* complain_on_overflow */
1276 bfd_elf_generic_reloc, /* special_function */
1277 "R_ARM_MOVW_BREL_NC", /* name */
1278 FALSE, /* partial_inplace */
1279 0x0000ffff, /* src_mask */
1280 0x0000ffff, /* dst_mask */
1281 FALSE), /* pcrel_offset */
1282
1283 HOWTO (R_ARM_MOVT_BREL, /* type */
1284 0, /* rightshift */
1285 2, /* size (0 = byte, 1 = short, 2 = long) */
1286 16, /* bitsize */
1287 FALSE, /* pc_relative */
1288 0, /* bitpos */
1289 complain_overflow_bitfield,/* complain_on_overflow */
1290 bfd_elf_generic_reloc, /* special_function */
1291 "R_ARM_MOVT_BREL", /* name */
1292 FALSE, /* partial_inplace */
1293 0x0000ffff, /* src_mask */
1294 0x0000ffff, /* dst_mask */
1295 FALSE), /* pcrel_offset */
1296
1297 HOWTO (R_ARM_MOVW_BREL, /* type */
1298 0, /* rightshift */
1299 2, /* size (0 = byte, 1 = short, 2 = long) */
1300 16, /* bitsize */
1301 FALSE, /* pc_relative */
1302 0, /* bitpos */
1303 complain_overflow_dont,/* complain_on_overflow */
1304 bfd_elf_generic_reloc, /* special_function */
1305 "R_ARM_MOVW_BREL", /* name */
1306 FALSE, /* partial_inplace */
1307 0x0000ffff, /* src_mask */
1308 0x0000ffff, /* dst_mask */
1309 FALSE), /* pcrel_offset */
1310
1311 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1312 0, /* rightshift */
1313 2, /* size (0 = byte, 1 = short, 2 = long) */
1314 16, /* bitsize */
1315 FALSE, /* pc_relative */
1316 0, /* bitpos */
1317 complain_overflow_dont,/* complain_on_overflow */
1318 bfd_elf_generic_reloc, /* special_function */
1319 "R_ARM_THM_MOVW_BREL_NC",/* name */
1320 FALSE, /* partial_inplace */
1321 0x040f70ff, /* src_mask */
1322 0x040f70ff, /* dst_mask */
1323 FALSE), /* pcrel_offset */
1324
1325 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1326 0, /* rightshift */
1327 2, /* size (0 = byte, 1 = short, 2 = long) */
1328 16, /* bitsize */
1329 FALSE, /* pc_relative */
1330 0, /* bitpos */
1331 complain_overflow_bitfield,/* complain_on_overflow */
1332 bfd_elf_generic_reloc, /* special_function */
1333 "R_ARM_THM_MOVT_BREL", /* name */
1334 FALSE, /* partial_inplace */
1335 0x040f70ff, /* src_mask */
1336 0x040f70ff, /* dst_mask */
1337 FALSE), /* pcrel_offset */
1338
1339 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1340 0, /* rightshift */
1341 2, /* size (0 = byte, 1 = short, 2 = long) */
1342 16, /* bitsize */
1343 FALSE, /* pc_relative */
1344 0, /* bitpos */
1345 complain_overflow_dont,/* complain_on_overflow */
1346 bfd_elf_generic_reloc, /* special_function */
1347 "R_ARM_THM_MOVW_BREL", /* name */
1348 FALSE, /* partial_inplace */
1349 0x040f70ff, /* src_mask */
1350 0x040f70ff, /* dst_mask */
1351 FALSE), /* pcrel_offset */
1352
1353 EMPTY_HOWTO (90), /* unallocated */
1354 EMPTY_HOWTO (91),
1355 EMPTY_HOWTO (92),
1356 EMPTY_HOWTO (93),
1357
1358 HOWTO (R_ARM_PLT32_ABS, /* type */
1359 0, /* rightshift */
1360 2, /* size (0 = byte, 1 = short, 2 = long) */
1361 32, /* bitsize */
1362 FALSE, /* pc_relative */
1363 0, /* bitpos */
1364 complain_overflow_dont,/* complain_on_overflow */
1365 bfd_elf_generic_reloc, /* special_function */
1366 "R_ARM_PLT32_ABS", /* name */
1367 FALSE, /* partial_inplace */
1368 0xffffffff, /* src_mask */
1369 0xffffffff, /* dst_mask */
1370 FALSE), /* pcrel_offset */
1371
1372 HOWTO (R_ARM_GOT_ABS, /* type */
1373 0, /* rightshift */
1374 2, /* size (0 = byte, 1 = short, 2 = long) */
1375 32, /* bitsize */
1376 FALSE, /* pc_relative */
1377 0, /* bitpos */
1378 complain_overflow_dont,/* complain_on_overflow */
1379 bfd_elf_generic_reloc, /* special_function */
1380 "R_ARM_GOT_ABS", /* name */
1381 FALSE, /* partial_inplace */
1382 0xffffffff, /* src_mask */
1383 0xffffffff, /* dst_mask */
1384 FALSE), /* pcrel_offset */
1385
1386 HOWTO (R_ARM_GOT_PREL, /* type */
1387 0, /* rightshift */
1388 2, /* size (0 = byte, 1 = short, 2 = long) */
1389 32, /* bitsize */
1390 TRUE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_dont, /* complain_on_overflow */
1393 bfd_elf_generic_reloc, /* special_function */
1394 "R_ARM_GOT_PREL", /* name */
1395 FALSE, /* partial_inplace */
1396 0xffffffff, /* src_mask */
1397 0xffffffff, /* dst_mask */
1398 TRUE), /* pcrel_offset */
1399
1400 HOWTO (R_ARM_GOT_BREL12, /* type */
1401 0, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 12, /* bitsize */
1404 FALSE, /* pc_relative */
1405 0, /* bitpos */
1406 complain_overflow_bitfield,/* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 "R_ARM_GOT_BREL12", /* name */
1409 FALSE, /* partial_inplace */
1410 0x00000fff, /* src_mask */
1411 0x00000fff, /* dst_mask */
1412 FALSE), /* pcrel_offset */
1413
1414 HOWTO (R_ARM_GOTOFF12, /* type */
1415 0, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 12, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_bitfield,/* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 "R_ARM_GOTOFF12", /* name */
1423 FALSE, /* partial_inplace */
1424 0x00000fff, /* src_mask */
1425 0x00000fff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1429
1430 /* GNU extension to record C++ vtable member usage */
1431 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1432 0, /* rightshift */
1433 2, /* size (0 = byte, 1 = short, 2 = long) */
1434 0, /* bitsize */
1435 FALSE, /* pc_relative */
1436 0, /* bitpos */
1437 complain_overflow_dont, /* complain_on_overflow */
1438 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1439 "R_ARM_GNU_VTENTRY", /* name */
1440 FALSE, /* partial_inplace */
1441 0, /* src_mask */
1442 0, /* dst_mask */
1443 FALSE), /* pcrel_offset */
1444
1445 /* GNU extension to record C++ vtable hierarchy */
1446 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1447 0, /* rightshift */
1448 2, /* size (0 = byte, 1 = short, 2 = long) */
1449 0, /* bitsize */
1450 FALSE, /* pc_relative */
1451 0, /* bitpos */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 NULL, /* special_function */
1454 "R_ARM_GNU_VTINHERIT", /* name */
1455 FALSE, /* partial_inplace */
1456 0, /* src_mask */
1457 0, /* dst_mask */
1458 FALSE), /* pcrel_offset */
1459
1460 HOWTO (R_ARM_THM_JUMP11, /* type */
1461 1, /* rightshift */
1462 1, /* size (0 = byte, 1 = short, 2 = long) */
1463 11, /* bitsize */
1464 TRUE, /* pc_relative */
1465 0, /* bitpos */
1466 complain_overflow_signed, /* complain_on_overflow */
1467 bfd_elf_generic_reloc, /* special_function */
1468 "R_ARM_THM_JUMP11", /* name */
1469 FALSE, /* partial_inplace */
1470 0x000007ff, /* src_mask */
1471 0x000007ff, /* dst_mask */
1472 TRUE), /* pcrel_offset */
1473
1474 HOWTO (R_ARM_THM_JUMP8, /* type */
1475 1, /* rightshift */
1476 1, /* size (0 = byte, 1 = short, 2 = long) */
1477 8, /* bitsize */
1478 TRUE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_signed, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 "R_ARM_THM_JUMP8", /* name */
1483 FALSE, /* partial_inplace */
1484 0x000000ff, /* src_mask */
1485 0x000000ff, /* dst_mask */
1486 TRUE), /* pcrel_offset */
1487
1488 /* TLS relocations */
1489 HOWTO (R_ARM_TLS_GD32, /* type */
1490 0, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 32, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_bitfield,/* complain_on_overflow */
1496 NULL, /* special_function */
1497 "R_ARM_TLS_GD32", /* name */
1498 TRUE, /* partial_inplace */
1499 0xffffffff, /* src_mask */
1500 0xffffffff, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 HOWTO (R_ARM_TLS_LDM32, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 32, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_bitfield,/* complain_on_overflow */
1510 bfd_elf_generic_reloc, /* special_function */
1511 "R_ARM_TLS_LDM32", /* name */
1512 TRUE, /* partial_inplace */
1513 0xffffffff, /* src_mask */
1514 0xffffffff, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 HOWTO (R_ARM_TLS_LDO32, /* type */
1518 0, /* rightshift */
1519 2, /* size (0 = byte, 1 = short, 2 = long) */
1520 32, /* bitsize */
1521 FALSE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_bitfield,/* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_TLS_LDO32", /* name */
1526 TRUE, /* partial_inplace */
1527 0xffffffff, /* src_mask */
1528 0xffffffff, /* dst_mask */
1529 FALSE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_TLS_IE32, /* type */
1532 0, /* rightshift */
1533 2, /* size (0 = byte, 1 = short, 2 = long) */
1534 32, /* bitsize */
1535 FALSE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_bitfield,/* complain_on_overflow */
1538 NULL, /* special_function */
1539 "R_ARM_TLS_IE32", /* name */
1540 TRUE, /* partial_inplace */
1541 0xffffffff, /* src_mask */
1542 0xffffffff, /* dst_mask */
1543 FALSE), /* pcrel_offset */
1544
1545 HOWTO (R_ARM_TLS_LE32, /* type */
1546 0, /* rightshift */
1547 2, /* size (0 = byte, 1 = short, 2 = long) */
1548 32, /* bitsize */
1549 FALSE, /* pc_relative */
1550 0, /* bitpos */
1551 complain_overflow_bitfield,/* complain_on_overflow */
1552 bfd_elf_generic_reloc, /* special_function */
1553 "R_ARM_TLS_LE32", /* name */
1554 TRUE, /* partial_inplace */
1555 0xffffffff, /* src_mask */
1556 0xffffffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1558
1559 HOWTO (R_ARM_TLS_LDO12, /* type */
1560 0, /* rightshift */
1561 2, /* size (0 = byte, 1 = short, 2 = long) */
1562 12, /* bitsize */
1563 FALSE, /* pc_relative */
1564 0, /* bitpos */
1565 complain_overflow_bitfield,/* complain_on_overflow */
1566 bfd_elf_generic_reloc, /* special_function */
1567 "R_ARM_TLS_LDO12", /* name */
1568 FALSE, /* partial_inplace */
1569 0x00000fff, /* src_mask */
1570 0x00000fff, /* dst_mask */
1571 FALSE), /* pcrel_offset */
1572
1573 HOWTO (R_ARM_TLS_LE12, /* type */
1574 0, /* rightshift */
1575 2, /* size (0 = byte, 1 = short, 2 = long) */
1576 12, /* bitsize */
1577 FALSE, /* pc_relative */
1578 0, /* bitpos */
1579 complain_overflow_bitfield,/* complain_on_overflow */
1580 bfd_elf_generic_reloc, /* special_function */
1581 "R_ARM_TLS_LE12", /* name */
1582 FALSE, /* partial_inplace */
1583 0x00000fff, /* src_mask */
1584 0x00000fff, /* dst_mask */
1585 FALSE), /* pcrel_offset */
1586
1587 HOWTO (R_ARM_TLS_IE12GP, /* type */
1588 0, /* rightshift */
1589 2, /* size (0 = byte, 1 = short, 2 = long) */
1590 12, /* bitsize */
1591 FALSE, /* pc_relative */
1592 0, /* bitpos */
1593 complain_overflow_bitfield,/* complain_on_overflow */
1594 bfd_elf_generic_reloc, /* special_function */
1595 "R_ARM_TLS_IE12GP", /* name */
1596 FALSE, /* partial_inplace */
1597 0x00000fff, /* src_mask */
1598 0x00000fff, /* dst_mask */
1599 FALSE), /* pcrel_offset */
1600 };
1601
1602 /* 112-127 private relocations
1603 128 R_ARM_ME_TOO, obsolete
1604 129-255 unallocated in AAELF.
1605
1606 249-255 extended, currently unused, relocations: */
1607
1608 static reloc_howto_type elf32_arm_howto_table_2[4] =
1609 {
1610 HOWTO (R_ARM_RREL32, /* type */
1611 0, /* rightshift */
1612 0, /* size (0 = byte, 1 = short, 2 = long) */
1613 0, /* bitsize */
1614 FALSE, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_dont,/* complain_on_overflow */
1617 bfd_elf_generic_reloc, /* special_function */
1618 "R_ARM_RREL32", /* name */
1619 FALSE, /* partial_inplace */
1620 0, /* src_mask */
1621 0, /* dst_mask */
1622 FALSE), /* pcrel_offset */
1623
1624 HOWTO (R_ARM_RABS32, /* type */
1625 0, /* rightshift */
1626 0, /* size (0 = byte, 1 = short, 2 = long) */
1627 0, /* bitsize */
1628 FALSE, /* pc_relative */
1629 0, /* bitpos */
1630 complain_overflow_dont,/* complain_on_overflow */
1631 bfd_elf_generic_reloc, /* special_function */
1632 "R_ARM_RABS32", /* name */
1633 FALSE, /* partial_inplace */
1634 0, /* src_mask */
1635 0, /* dst_mask */
1636 FALSE), /* pcrel_offset */
1637
1638 HOWTO (R_ARM_RPC24, /* type */
1639 0, /* rightshift */
1640 0, /* size (0 = byte, 1 = short, 2 = long) */
1641 0, /* bitsize */
1642 FALSE, /* pc_relative */
1643 0, /* bitpos */
1644 complain_overflow_dont,/* complain_on_overflow */
1645 bfd_elf_generic_reloc, /* special_function */
1646 "R_ARM_RPC24", /* name */
1647 FALSE, /* partial_inplace */
1648 0, /* src_mask */
1649 0, /* dst_mask */
1650 FALSE), /* pcrel_offset */
1651
1652 HOWTO (R_ARM_RBASE, /* type */
1653 0, /* rightshift */
1654 0, /* size (0 = byte, 1 = short, 2 = long) */
1655 0, /* bitsize */
1656 FALSE, /* pc_relative */
1657 0, /* bitpos */
1658 complain_overflow_dont,/* complain_on_overflow */
1659 bfd_elf_generic_reloc, /* special_function */
1660 "R_ARM_RBASE", /* name */
1661 FALSE, /* partial_inplace */
1662 0, /* src_mask */
1663 0, /* dst_mask */
1664 FALSE) /* pcrel_offset */
1665 };
1666
1667 static reloc_howto_type *
1668 elf32_arm_howto_from_type (unsigned int r_type)
1669 {
1670 if (r_type < NUM_ELEM (elf32_arm_howto_table_1))
1671 return &elf32_arm_howto_table_1[r_type];
1672
1673 if (r_type >= R_ARM_RREL32
1674 && r_type < R_ARM_RREL32 + NUM_ELEM (elf32_arm_howto_table_2))
1675 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1676
1677 return NULL;
1678 }
1679
1680 static void
1681 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1682 Elf_Internal_Rela * elf_reloc)
1683 {
1684 unsigned int r_type;
1685
1686 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1687 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1688 }
1689
1690 struct elf32_arm_reloc_map
1691 {
1692 bfd_reloc_code_real_type bfd_reloc_val;
1693 unsigned char elf_reloc_val;
1694 };
1695
1696 /* All entries in this list must also be present in elf32_arm_howto_table. */
1697 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1698 {
1699 {BFD_RELOC_NONE, R_ARM_NONE},
1700 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1701 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1702 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1703 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1704 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1705 {BFD_RELOC_32, R_ARM_ABS32},
1706 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1707 {BFD_RELOC_8, R_ARM_ABS8},
1708 {BFD_RELOC_16, R_ARM_ABS16},
1709 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1710 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1714 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1715 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1717 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1718 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1719 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1720 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1721 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1722 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1723 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1724 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1725 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1726 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1727 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1728 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1729 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1730 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1731 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1732 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1733 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1734 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1735 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1736 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1737 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1738 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1739 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1740 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1741 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1742 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1743 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1744 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1745 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1746 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1747 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1748 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1749 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1750 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1751 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1752 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1753 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1754 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1755 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1756 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1757 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1758 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1759 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1760 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1761 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1762 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1763 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1764 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1765 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1766 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1767 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1768 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1769 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1770 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1771 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1772 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1773 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1774 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1775 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2}
1776 };
1777
1778 static reloc_howto_type *
1779 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1780 bfd_reloc_code_real_type code)
1781 {
1782 unsigned int i;
1783 for (i = 0; i < NUM_ELEM (elf32_arm_reloc_map); i ++)
1784 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1785 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1786
1787 return NULL;
1788 }
1789
1790 static reloc_howto_type *
1791 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1792 const char *r_name)
1793 {
1794 unsigned int i;
1795
1796 for (i = 0;
1797 i < (sizeof (elf32_arm_howto_table_1)
1798 / sizeof (elf32_arm_howto_table_1[0]));
1799 i++)
1800 if (elf32_arm_howto_table_1[i].name != NULL
1801 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1802 return &elf32_arm_howto_table_1[i];
1803
1804 for (i = 0;
1805 i < (sizeof (elf32_arm_howto_table_2)
1806 / sizeof (elf32_arm_howto_table_2[0]));
1807 i++)
1808 if (elf32_arm_howto_table_2[i].name != NULL
1809 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1810 return &elf32_arm_howto_table_2[i];
1811
1812 return NULL;
1813 }
1814
1815 /* Support for core dump NOTE sections */
1816 static bfd_boolean
1817 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1818 {
1819 int offset;
1820 size_t size;
1821
1822 switch (note->descsz)
1823 {
1824 default:
1825 return FALSE;
1826
1827 case 148: /* Linux/ARM 32-bit*/
1828 /* pr_cursig */
1829 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1830
1831 /* pr_pid */
1832 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1833
1834 /* pr_reg */
1835 offset = 72;
1836 size = 72;
1837
1838 break;
1839 }
1840
1841 /* Make a ".reg/999" section. */
1842 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1843 size, note->descpos + offset);
1844 }
1845
1846 static bfd_boolean
1847 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1848 {
1849 switch (note->descsz)
1850 {
1851 default:
1852 return FALSE;
1853
1854 case 124: /* Linux/ARM elf_prpsinfo */
1855 elf_tdata (abfd)->core_program
1856 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1857 elf_tdata (abfd)->core_command
1858 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1859 }
1860
1861 /* Note that for some reason, a spurious space is tacked
1862 onto the end of the args in some (at least one anyway)
1863 implementations, so strip it off if it exists. */
1864
1865 {
1866 char *command = elf_tdata (abfd)->core_command;
1867 int n = strlen (command);
1868
1869 if (0 < n && command[n - 1] == ' ')
1870 command[n - 1] = '\0';
1871 }
1872
1873 return TRUE;
1874 }
1875
1876 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1877 #define TARGET_LITTLE_NAME "elf32-littlearm"
1878 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1879 #define TARGET_BIG_NAME "elf32-bigarm"
1880
1881 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1882 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1883
1884 typedef unsigned long int insn32;
1885 typedef unsigned short int insn16;
1886
1887 /* In lieu of proper flags, assume all EABIv4 or later objects are
1888 interworkable. */
1889 #define INTERWORK_FLAG(abfd) \
1890 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1891 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1892
1893 /* The linker script knows the section names for placement.
1894 The entry_names are used to do simple name mangling on the stubs.
1895 Given a function name, and its type, the stub can be found. The
1896 name can be changed. The only requirement is the %s be present. */
1897 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1898 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1899
1900 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1901 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1902
1903 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1904 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1905
1906 /* The name of the dynamic interpreter. This is put in the .interp
1907 section. */
1908 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1909
1910 #ifdef FOUR_WORD_PLT
1911
1912 /* The first entry in a procedure linkage table looks like
1913 this. It is set up so that any shared library function that is
1914 called before the relocation has been set up calls the dynamic
1915 linker first. */
1916 static const bfd_vma elf32_arm_plt0_entry [] =
1917 {
1918 0xe52de004, /* str lr, [sp, #-4]! */
1919 0xe59fe010, /* ldr lr, [pc, #16] */
1920 0xe08fe00e, /* add lr, pc, lr */
1921 0xe5bef008, /* ldr pc, [lr, #8]! */
1922 };
1923
1924 /* Subsequent entries in a procedure linkage table look like
1925 this. */
1926 static const bfd_vma elf32_arm_plt_entry [] =
1927 {
1928 0xe28fc600, /* add ip, pc, #NN */
1929 0xe28cca00, /* add ip, ip, #NN */
1930 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1931 0x00000000, /* unused */
1932 };
1933
1934 #else
1935
1936 /* The first entry in a procedure linkage table looks like
1937 this. It is set up so that any shared library function that is
1938 called before the relocation has been set up calls the dynamic
1939 linker first. */
1940 static const bfd_vma elf32_arm_plt0_entry [] =
1941 {
1942 0xe52de004, /* str lr, [sp, #-4]! */
1943 0xe59fe004, /* ldr lr, [pc, #4] */
1944 0xe08fe00e, /* add lr, pc, lr */
1945 0xe5bef008, /* ldr pc, [lr, #8]! */
1946 0x00000000, /* &GOT[0] - . */
1947 };
1948
1949 /* Subsequent entries in a procedure linkage table look like
1950 this. */
1951 static const bfd_vma elf32_arm_plt_entry [] =
1952 {
1953 0xe28fc600, /* add ip, pc, #0xNN00000 */
1954 0xe28cca00, /* add ip, ip, #0xNN000 */
1955 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1956 };
1957
1958 #endif
1959
1960 /* The format of the first entry in the procedure linkage table
1961 for a VxWorks executable. */
1962 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1963 {
1964 0xe52dc008, /* str ip,[sp,#-8]! */
1965 0xe59fc000, /* ldr ip,[pc] */
1966 0xe59cf008, /* ldr pc,[ip,#8] */
1967 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1968 };
1969
1970 /* The format of subsequent entries in a VxWorks executable. */
1971 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1972 {
1973 0xe59fc000, /* ldr ip,[pc] */
1974 0xe59cf000, /* ldr pc,[ip] */
1975 0x00000000, /* .long @got */
1976 0xe59fc000, /* ldr ip,[pc] */
1977 0xea000000, /* b _PLT */
1978 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1979 };
1980
1981 /* The format of entries in a VxWorks shared library. */
1982 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1983 {
1984 0xe59fc000, /* ldr ip,[pc] */
1985 0xe79cf009, /* ldr pc,[ip,r9] */
1986 0x00000000, /* .long @got */
1987 0xe59fc000, /* ldr ip,[pc] */
1988 0xe599f008, /* ldr pc,[r9,#8] */
1989 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1990 };
1991
1992 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1993 #define PLT_THUMB_STUB_SIZE 4
1994 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1995 {
1996 0x4778, /* bx pc */
1997 0x46c0 /* nop */
1998 };
1999
2000 /* The entries in a PLT when using a DLL-based target with multiple
2001 address spaces. */
2002 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2003 {
2004 0xe51ff004, /* ldr pc, [pc, #-4] */
2005 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2006 };
2007
2008 /* Used to build a map of a section. This is required for mixed-endian
2009 code/data. */
2010
2011 typedef struct elf32_elf_section_map
2012 {
2013 bfd_vma vma;
2014 char type;
2015 }
2016 elf32_arm_section_map;
2017
2018 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2019
2020 typedef enum
2021 {
2022 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2023 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2024 VFP11_ERRATUM_ARM_VENEER,
2025 VFP11_ERRATUM_THUMB_VENEER
2026 }
2027 elf32_vfp11_erratum_type;
2028
2029 typedef struct elf32_vfp11_erratum_list
2030 {
2031 struct elf32_vfp11_erratum_list *next;
2032 bfd_vma vma;
2033 union
2034 {
2035 struct
2036 {
2037 struct elf32_vfp11_erratum_list *veneer;
2038 unsigned int vfp_insn;
2039 } b;
2040 struct
2041 {
2042 struct elf32_vfp11_erratum_list *branch;
2043 unsigned int id;
2044 } v;
2045 } u;
2046 elf32_vfp11_erratum_type type;
2047 }
2048 elf32_vfp11_erratum_list;
2049
2050 typedef struct _arm_elf_section_data
2051 {
2052 struct bfd_elf_section_data elf;
2053 unsigned int mapcount;
2054 unsigned int mapsize;
2055 elf32_arm_section_map *map;
2056 unsigned int erratumcount;
2057 elf32_vfp11_erratum_list *erratumlist;
2058 }
2059 _arm_elf_section_data;
2060
2061 #define elf32_arm_section_data(sec) \
2062 ((_arm_elf_section_data *) elf_section_data (sec))
2063
2064 /* The size of the thread control block. */
2065 #define TCB_SIZE 8
2066
2067 #define NUM_KNOWN_ATTRIBUTES 32
2068
2069 typedef struct aeabi_attribute
2070 {
2071 int type;
2072 unsigned int i;
2073 char *s;
2074 } aeabi_attribute;
2075
2076 typedef struct aeabi_attribute_list
2077 {
2078 struct aeabi_attribute_list *next;
2079 int tag;
2080 aeabi_attribute attr;
2081 } aeabi_attribute_list;
2082
2083 struct elf32_arm_obj_tdata
2084 {
2085 struct elf_obj_tdata root;
2086
2087 /* tls_type for each local got entry. */
2088 char *local_got_tls_type;
2089
2090 aeabi_attribute known_eabi_attributes[NUM_KNOWN_ATTRIBUTES];
2091 aeabi_attribute_list *other_eabi_attributes;
2092
2093 /* Zero to warn when linking objects with incompatible enum sizes. */
2094 int no_enum_size_warning;
2095 };
2096
2097 #define elf32_arm_tdata(abfd) \
2098 ((struct elf32_arm_obj_tdata *) (abfd)->tdata.any)
2099
2100 #define elf32_arm_local_got_tls_type(abfd) \
2101 (elf32_arm_tdata (abfd)->local_got_tls_type)
2102
2103 static bfd_boolean
2104 elf32_arm_mkobject (bfd *abfd)
2105 {
2106 if (abfd->tdata.any == NULL)
2107 {
2108 bfd_size_type amt = sizeof (struct elf32_arm_obj_tdata);
2109 abfd->tdata.any = bfd_zalloc (abfd, amt);
2110 if (abfd->tdata.any == NULL)
2111 return FALSE;
2112 }
2113 return bfd_elf_mkobject (abfd);
2114 }
2115
2116 /* The ARM linker needs to keep track of the number of relocs that it
2117 decides to copy in check_relocs for each symbol. This is so that
2118 it can discard PC relative relocs if it doesn't need them when
2119 linking with -Bsymbolic. We store the information in a field
2120 extending the regular ELF linker hash table. */
2121
2122 /* This structure keeps track of the number of relocs we have copied
2123 for a given symbol. */
2124 struct elf32_arm_relocs_copied
2125 {
2126 /* Next section. */
2127 struct elf32_arm_relocs_copied * next;
2128 /* A section in dynobj. */
2129 asection * section;
2130 /* Number of relocs copied in this section. */
2131 bfd_size_type count;
2132 /* Number of PC-relative relocs copied in this section. */
2133 bfd_size_type pc_count;
2134 };
2135
2136 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2137
2138 /* Arm ELF linker hash entry. */
2139 struct elf32_arm_link_hash_entry
2140 {
2141 struct elf_link_hash_entry root;
2142
2143 /* Number of PC relative relocs copied for this symbol. */
2144 struct elf32_arm_relocs_copied * relocs_copied;
2145
2146 /* We reference count Thumb references to a PLT entry separately,
2147 so that we can emit the Thumb trampoline only if needed. */
2148 bfd_signed_vma plt_thumb_refcount;
2149
2150 /* Since PLT entries have variable size if the Thumb prologue is
2151 used, we need to record the index into .got.plt instead of
2152 recomputing it from the PLT offset. */
2153 bfd_signed_vma plt_got_offset;
2154
2155 #define GOT_UNKNOWN 0
2156 #define GOT_NORMAL 1
2157 #define GOT_TLS_GD 2
2158 #define GOT_TLS_IE 4
2159 unsigned char tls_type;
2160
2161 /* The symbol marking the real symbol location for exported thumb
2162 symbols with Arm stubs. */
2163 struct elf_link_hash_entry *export_glue;
2164 };
2165
2166 /* Traverse an arm ELF linker hash table. */
2167 #define elf32_arm_link_hash_traverse(table, func, info) \
2168 (elf_link_hash_traverse \
2169 (&(table)->root, \
2170 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2171 (info)))
2172
2173 /* Get the ARM elf linker hash table from a link_info structure. */
2174 #define elf32_arm_hash_table(info) \
2175 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2176
2177 /* ARM ELF linker hash table. */
2178 struct elf32_arm_link_hash_table
2179 {
2180 /* The main hash table. */
2181 struct elf_link_hash_table root;
2182
2183 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2184 bfd_size_type thumb_glue_size;
2185
2186 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2187 bfd_size_type arm_glue_size;
2188
2189 /* The size in bytes of the section containing glue for VFP11 erratum
2190 veneers. */
2191 bfd_size_type vfp11_erratum_glue_size;
2192
2193 /* An arbitrary input BFD chosen to hold the glue sections. */
2194 bfd * bfd_of_glue_owner;
2195
2196 /* Nonzero to output a BE8 image. */
2197 int byteswap_code;
2198
2199 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2200 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2201 int target1_is_rel;
2202
2203 /* The relocation to use for R_ARM_TARGET2 relocations. */
2204 int target2_reloc;
2205
2206 /* Nonzero to fix BX instructions for ARMv4 targets. */
2207 int fix_v4bx;
2208
2209 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2210 int use_blx;
2211
2212 /* What sort of code sequences we should look for which may trigger the
2213 VFP11 denorm erratum. */
2214 bfd_arm_vfp11_fix vfp11_fix;
2215
2216 /* Global counter for the number of fixes we have emitted. */
2217 int num_vfp11_fixes;
2218
2219 /* Nonzero to force PIC branch veneers. */
2220 int pic_veneer;
2221
2222 /* The number of bytes in the initial entry in the PLT. */
2223 bfd_size_type plt_header_size;
2224
2225 /* The number of bytes in the subsequent PLT etries. */
2226 bfd_size_type plt_entry_size;
2227
2228 /* True if the target system is VxWorks. */
2229 int vxworks_p;
2230
2231 /* True if the target system is Symbian OS. */
2232 int symbian_p;
2233
2234 /* True if the target uses REL relocations. */
2235 int use_rel;
2236
2237 /* Short-cuts to get to dynamic linker sections. */
2238 asection *sgot;
2239 asection *sgotplt;
2240 asection *srelgot;
2241 asection *splt;
2242 asection *srelplt;
2243 asection *sdynbss;
2244 asection *srelbss;
2245
2246 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2247 asection *srelplt2;
2248
2249 /* Data for R_ARM_TLS_LDM32 relocations. */
2250 union {
2251 bfd_signed_vma refcount;
2252 bfd_vma offset;
2253 } tls_ldm_got;
2254
2255 /* Small local sym to section mapping cache. */
2256 struct sym_sec_cache sym_sec;
2257
2258 /* For convenience in allocate_dynrelocs. */
2259 bfd * obfd;
2260 };
2261
2262 /* Create an entry in an ARM ELF linker hash table. */
2263
2264 static struct bfd_hash_entry *
2265 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2266 struct bfd_hash_table * table,
2267 const char * string)
2268 {
2269 struct elf32_arm_link_hash_entry * ret =
2270 (struct elf32_arm_link_hash_entry *) entry;
2271
2272 /* Allocate the structure if it has not already been allocated by a
2273 subclass. */
2274 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
2275 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2276 if (ret == NULL)
2277 return (struct bfd_hash_entry *) ret;
2278
2279 /* Call the allocation method of the superclass. */
2280 ret = ((struct elf32_arm_link_hash_entry *)
2281 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2282 table, string));
2283 if (ret != NULL)
2284 {
2285 ret->relocs_copied = NULL;
2286 ret->tls_type = GOT_UNKNOWN;
2287 ret->plt_thumb_refcount = 0;
2288 ret->plt_got_offset = -1;
2289 ret->export_glue = NULL;
2290 }
2291
2292 return (struct bfd_hash_entry *) ret;
2293 }
2294
2295 /* Return true if NAME is the name of the relocation section associated
2296 with S. */
2297
2298 static bfd_boolean
2299 reloc_section_p (struct elf32_arm_link_hash_table *htab,
2300 const char *name, asection *s)
2301 {
2302 if (htab->use_rel)
2303 return CONST_STRNEQ (name, ".rel") && strcmp (s->name, name + 4) == 0;
2304 else
2305 return CONST_STRNEQ (name, ".rela") && strcmp (s->name, name + 5) == 0;
2306 }
2307
2308 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2309 shortcuts to them in our hash table. */
2310
2311 static bfd_boolean
2312 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2313 {
2314 struct elf32_arm_link_hash_table *htab;
2315
2316 htab = elf32_arm_hash_table (info);
2317 /* BPABI objects never have a GOT, or associated sections. */
2318 if (htab->symbian_p)
2319 return TRUE;
2320
2321 if (! _bfd_elf_create_got_section (dynobj, info))
2322 return FALSE;
2323
2324 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2325 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2326 if (!htab->sgot || !htab->sgotplt)
2327 abort ();
2328
2329 htab->srelgot = bfd_make_section_with_flags (dynobj,
2330 RELOC_SECTION (htab, ".got"),
2331 (SEC_ALLOC | SEC_LOAD
2332 | SEC_HAS_CONTENTS
2333 | SEC_IN_MEMORY
2334 | SEC_LINKER_CREATED
2335 | SEC_READONLY));
2336 if (htab->srelgot == NULL
2337 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2338 return FALSE;
2339 return TRUE;
2340 }
2341
2342 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2343 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2344 hash table. */
2345
2346 static bfd_boolean
2347 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2348 {
2349 struct elf32_arm_link_hash_table *htab;
2350
2351 htab = elf32_arm_hash_table (info);
2352 if (!htab->sgot && !create_got_section (dynobj, info))
2353 return FALSE;
2354
2355 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2356 return FALSE;
2357
2358 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2359 htab->srelplt = bfd_get_section_by_name (dynobj,
2360 RELOC_SECTION (htab, ".plt"));
2361 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2362 if (!info->shared)
2363 htab->srelbss = bfd_get_section_by_name (dynobj,
2364 RELOC_SECTION (htab, ".bss"));
2365
2366 if (htab->vxworks_p)
2367 {
2368 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2369 return FALSE;
2370
2371 if (info->shared)
2372 {
2373 htab->plt_header_size = 0;
2374 htab->plt_entry_size
2375 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2376 }
2377 else
2378 {
2379 htab->plt_header_size
2380 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2381 htab->plt_entry_size
2382 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2383 }
2384 }
2385
2386 if (!htab->splt
2387 || !htab->srelplt
2388 || !htab->sdynbss
2389 || (!info->shared && !htab->srelbss))
2390 abort ();
2391
2392 return TRUE;
2393 }
2394
2395 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2396
2397 static void
2398 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2399 struct elf_link_hash_entry *dir,
2400 struct elf_link_hash_entry *ind)
2401 {
2402 struct elf32_arm_link_hash_entry *edir, *eind;
2403
2404 edir = (struct elf32_arm_link_hash_entry *) dir;
2405 eind = (struct elf32_arm_link_hash_entry *) ind;
2406
2407 if (eind->relocs_copied != NULL)
2408 {
2409 if (edir->relocs_copied != NULL)
2410 {
2411 struct elf32_arm_relocs_copied **pp;
2412 struct elf32_arm_relocs_copied *p;
2413
2414 /* Add reloc counts against the indirect sym to the direct sym
2415 list. Merge any entries against the same section. */
2416 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2417 {
2418 struct elf32_arm_relocs_copied *q;
2419
2420 for (q = edir->relocs_copied; q != NULL; q = q->next)
2421 if (q->section == p->section)
2422 {
2423 q->pc_count += p->pc_count;
2424 q->count += p->count;
2425 *pp = p->next;
2426 break;
2427 }
2428 if (q == NULL)
2429 pp = &p->next;
2430 }
2431 *pp = edir->relocs_copied;
2432 }
2433
2434 edir->relocs_copied = eind->relocs_copied;
2435 eind->relocs_copied = NULL;
2436 }
2437
2438 if (ind->root.type == bfd_link_hash_indirect)
2439 {
2440 /* Copy over PLT info. */
2441 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2442 eind->plt_thumb_refcount = 0;
2443
2444 if (dir->got.refcount <= 0)
2445 {
2446 edir->tls_type = eind->tls_type;
2447 eind->tls_type = GOT_UNKNOWN;
2448 }
2449 }
2450
2451 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2452 }
2453
2454 /* Create an ARM elf linker hash table. */
2455
2456 static struct bfd_link_hash_table *
2457 elf32_arm_link_hash_table_create (bfd *abfd)
2458 {
2459 struct elf32_arm_link_hash_table *ret;
2460 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2461
2462 ret = bfd_malloc (amt);
2463 if (ret == NULL)
2464 return NULL;
2465
2466 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2467 elf32_arm_link_hash_newfunc,
2468 sizeof (struct elf32_arm_link_hash_entry)))
2469 {
2470 free (ret);
2471 return NULL;
2472 }
2473
2474 ret->sgot = NULL;
2475 ret->sgotplt = NULL;
2476 ret->srelgot = NULL;
2477 ret->splt = NULL;
2478 ret->srelplt = NULL;
2479 ret->sdynbss = NULL;
2480 ret->srelbss = NULL;
2481 ret->srelplt2 = NULL;
2482 ret->thumb_glue_size = 0;
2483 ret->arm_glue_size = 0;
2484 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2485 ret->vfp11_erratum_glue_size = 0;
2486 ret->num_vfp11_fixes = 0;
2487 ret->bfd_of_glue_owner = NULL;
2488 ret->byteswap_code = 0;
2489 ret->target1_is_rel = 0;
2490 ret->target2_reloc = R_ARM_NONE;
2491 #ifdef FOUR_WORD_PLT
2492 ret->plt_header_size = 16;
2493 ret->plt_entry_size = 16;
2494 #else
2495 ret->plt_header_size = 20;
2496 ret->plt_entry_size = 12;
2497 #endif
2498 ret->fix_v4bx = 0;
2499 ret->use_blx = 0;
2500 ret->vxworks_p = 0;
2501 ret->symbian_p = 0;
2502 ret->use_rel = 1;
2503 ret->sym_sec.abfd = NULL;
2504 ret->obfd = abfd;
2505 ret->tls_ldm_got.refcount = 0;
2506
2507 return &ret->root.root;
2508 }
2509
2510 /* Locate the Thumb encoded calling stub for NAME. */
2511
2512 static struct elf_link_hash_entry *
2513 find_thumb_glue (struct bfd_link_info *link_info,
2514 const char *name,
2515 char **error_message)
2516 {
2517 char *tmp_name;
2518 struct elf_link_hash_entry *hash;
2519 struct elf32_arm_link_hash_table *hash_table;
2520
2521 /* We need a pointer to the armelf specific hash table. */
2522 hash_table = elf32_arm_hash_table (link_info);
2523
2524 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2525 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
2526
2527 BFD_ASSERT (tmp_name);
2528
2529 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
2530
2531 hash = elf_link_hash_lookup
2532 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2533
2534 if (hash == NULL)
2535 asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
2536 tmp_name, name);
2537
2538 free (tmp_name);
2539
2540 return hash;
2541 }
2542
2543 /* Locate the ARM encoded calling stub for NAME. */
2544
2545 static struct elf_link_hash_entry *
2546 find_arm_glue (struct bfd_link_info *link_info,
2547 const char *name,
2548 char **error_message)
2549 {
2550 char *tmp_name;
2551 struct elf_link_hash_entry *myh;
2552 struct elf32_arm_link_hash_table *hash_table;
2553
2554 /* We need a pointer to the elfarm specific hash table. */
2555 hash_table = elf32_arm_hash_table (link_info);
2556
2557 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2558 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
2559
2560 BFD_ASSERT (tmp_name);
2561
2562 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
2563
2564 myh = elf_link_hash_lookup
2565 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2566
2567 if (myh == NULL)
2568 asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
2569 tmp_name, name);
2570
2571 free (tmp_name);
2572
2573 return myh;
2574 }
2575
2576 /* ARM->Thumb glue (static images):
2577
2578 .arm
2579 __func_from_arm:
2580 ldr r12, __func_addr
2581 bx r12
2582 __func_addr:
2583 .word func @ behave as if you saw a ARM_32 reloc.
2584
2585 (relocatable images)
2586 .arm
2587 __func_from_arm:
2588 ldr r12, __func_offset
2589 add r12, r12, pc
2590 bx r12
2591 __func_offset:
2592 .word func - .
2593 */
2594
2595 #define ARM2THUMB_STATIC_GLUE_SIZE 12
2596 static const insn32 a2t1_ldr_insn = 0xe59fc000;
2597 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
2598 static const insn32 a2t3_func_addr_insn = 0x00000001;
2599
2600 #define ARM2THUMB_PIC_GLUE_SIZE 16
2601 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
2602 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
2603 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
2604
2605 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
2606
2607 .thumb .thumb
2608 .align 2 .align 2
2609 __func_from_thumb: __func_from_thumb:
2610 bx pc push {r6, lr}
2611 nop ldr r6, __func_addr
2612 .arm mov lr, pc
2613 __func_change_to_arm: bx r6
2614 b func .arm
2615 __func_back_to_thumb:
2616 ldmia r13! {r6, lr}
2617 bx lr
2618 __func_addr:
2619 .word func */
2620
2621 #define THUMB2ARM_GLUE_SIZE 8
2622 static const insn16 t2a1_bx_pc_insn = 0x4778;
2623 static const insn16 t2a2_noop_insn = 0x46c0;
2624 static const insn32 t2a3_b_insn = 0xea000000;
2625
2626 #define VFP11_ERRATUM_VENEER_SIZE 8
2627
2628 #ifndef ELFARM_NABI_C_INCLUDED
2629 bfd_boolean
2630 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
2631 {
2632 asection * s;
2633 bfd_byte * foo;
2634 struct elf32_arm_link_hash_table * globals;
2635
2636 globals = elf32_arm_hash_table (info);
2637
2638 BFD_ASSERT (globals != NULL);
2639
2640 if (globals->arm_glue_size != 0)
2641 {
2642 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2643
2644 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
2645 ARM2THUMB_GLUE_SECTION_NAME);
2646
2647 BFD_ASSERT (s != NULL);
2648
2649 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->arm_glue_size);
2650
2651 BFD_ASSERT (s->size == globals->arm_glue_size);
2652 s->contents = foo;
2653 }
2654
2655 if (globals->thumb_glue_size != 0)
2656 {
2657 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2658
2659 s = bfd_get_section_by_name
2660 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
2661
2662 BFD_ASSERT (s != NULL);
2663
2664 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->thumb_glue_size);
2665
2666 BFD_ASSERT (s->size == globals->thumb_glue_size);
2667 s->contents = foo;
2668 }
2669
2670 if (globals->vfp11_erratum_glue_size != 0)
2671 {
2672 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2673
2674 s = bfd_get_section_by_name
2675 (globals->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
2676
2677 BFD_ASSERT (s != NULL);
2678
2679 foo = bfd_alloc (globals->bfd_of_glue_owner,
2680 globals->vfp11_erratum_glue_size);
2681
2682 BFD_ASSERT (s->size == globals->vfp11_erratum_glue_size);
2683 s->contents = foo;
2684 }
2685
2686 return TRUE;
2687 }
2688
2689 /* Allocate space and symbols for calling a Thumb function from Arm mode.
2690 returns the symbol identifying teh stub. */
2691 static struct elf_link_hash_entry *
2692 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
2693 struct elf_link_hash_entry * h)
2694 {
2695 const char * name = h->root.root.string;
2696 asection * s;
2697 char * tmp_name;
2698 struct elf_link_hash_entry * myh;
2699 struct bfd_link_hash_entry * bh;
2700 struct elf32_arm_link_hash_table * globals;
2701 bfd_vma val;
2702 bfd_size_type size;
2703
2704 globals = elf32_arm_hash_table (link_info);
2705
2706 BFD_ASSERT (globals != NULL);
2707 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2708
2709 s = bfd_get_section_by_name
2710 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
2711
2712 BFD_ASSERT (s != NULL);
2713
2714 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
2715
2716 BFD_ASSERT (tmp_name);
2717
2718 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
2719
2720 myh = elf_link_hash_lookup
2721 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
2722
2723 if (myh != NULL)
2724 {
2725 /* We've already seen this guy. */
2726 free (tmp_name);
2727 return myh;
2728 }
2729
2730 /* The only trick here is using hash_table->arm_glue_size as the value.
2731 Even though the section isn't allocated yet, this is where we will be
2732 putting it. */
2733 bh = NULL;
2734 val = globals->arm_glue_size + 1;
2735 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
2736 tmp_name, BSF_GLOBAL, s, val,
2737 NULL, TRUE, FALSE, &bh);
2738
2739 myh = (struct elf_link_hash_entry *) bh;
2740 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
2741 myh->forced_local = 1;
2742
2743 free (tmp_name);
2744
2745 if (link_info->shared || globals->root.is_relocatable_executable
2746 || globals->pic_veneer)
2747 size = ARM2THUMB_PIC_GLUE_SIZE;
2748 else
2749 size = ARM2THUMB_STATIC_GLUE_SIZE;
2750
2751 s->size += size;
2752 globals->arm_glue_size += size;
2753
2754 return myh;
2755 }
2756
2757 static void
2758 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
2759 struct elf_link_hash_entry *h)
2760 {
2761 const char *name = h->root.root.string;
2762 asection *s;
2763 char *tmp_name;
2764 struct elf_link_hash_entry *myh;
2765 struct bfd_link_hash_entry *bh;
2766 struct elf32_arm_link_hash_table *hash_table;
2767 bfd_vma val;
2768
2769 hash_table = elf32_arm_hash_table (link_info);
2770
2771 BFD_ASSERT (hash_table != NULL);
2772 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
2773
2774 s = bfd_get_section_by_name
2775 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
2776
2777 BFD_ASSERT (s != NULL);
2778
2779 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2780 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
2781
2782 BFD_ASSERT (tmp_name);
2783
2784 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
2785
2786 myh = elf_link_hash_lookup
2787 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2788
2789 if (myh != NULL)
2790 {
2791 /* We've already seen this guy. */
2792 free (tmp_name);
2793 return;
2794 }
2795
2796 bh = NULL;
2797 val = hash_table->thumb_glue_size + 1;
2798 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
2799 tmp_name, BSF_GLOBAL, s, val,
2800 NULL, TRUE, FALSE, &bh);
2801
2802 /* If we mark it 'Thumb', the disassembler will do a better job. */
2803 myh = (struct elf_link_hash_entry *) bh;
2804 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
2805 myh->forced_local = 1;
2806
2807 free (tmp_name);
2808
2809 #define CHANGE_TO_ARM "__%s_change_to_arm"
2810 #define BACK_FROM_ARM "__%s_back_from_arm"
2811
2812 /* Allocate another symbol to mark where we switch to Arm mode. */
2813 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2814 + strlen (CHANGE_TO_ARM) + 1);
2815
2816 BFD_ASSERT (tmp_name);
2817
2818 sprintf (tmp_name, CHANGE_TO_ARM, name);
2819
2820 bh = NULL;
2821 val = hash_table->thumb_glue_size + 4,
2822 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
2823 tmp_name, BSF_LOCAL, s, val,
2824 NULL, TRUE, FALSE, &bh);
2825
2826 free (tmp_name);
2827
2828 s->size += THUMB2ARM_GLUE_SIZE;
2829 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
2830
2831 return;
2832 }
2833
2834
2835 /* Add an entry to the code/data map for section SEC. */
2836
2837 static void
2838 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
2839 {
2840 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
2841 unsigned int newidx;
2842
2843 if (sec_data->map == NULL)
2844 {
2845 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
2846 sec_data->mapcount = 0;
2847 sec_data->mapsize = 1;
2848 }
2849
2850 newidx = sec_data->mapcount++;
2851
2852 if (sec_data->mapcount > sec_data->mapsize)
2853 {
2854 sec_data->mapsize *= 2;
2855 sec_data->map = bfd_realloc (sec_data->map, sec_data->mapsize
2856 * sizeof (elf32_arm_section_map));
2857 }
2858
2859 sec_data->map[newidx].vma = vma;
2860 sec_data->map[newidx].type = type;
2861 }
2862
2863
2864 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
2865 veneers are handled for now. */
2866
2867 static bfd_vma
2868 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
2869 elf32_vfp11_erratum_list *branch,
2870 bfd *branch_bfd,
2871 asection *branch_sec,
2872 unsigned int offset)
2873 {
2874 asection *s;
2875 struct elf32_arm_link_hash_table *hash_table;
2876 char *tmp_name;
2877 struct elf_link_hash_entry *myh;
2878 struct bfd_link_hash_entry *bh;
2879 bfd_vma val;
2880 struct _arm_elf_section_data *sec_data;
2881 int errcount;
2882 elf32_vfp11_erratum_list *newerr;
2883
2884 hash_table = elf32_arm_hash_table (link_info);
2885
2886 BFD_ASSERT (hash_table != NULL);
2887 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
2888
2889 s = bfd_get_section_by_name
2890 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
2891
2892 sec_data = elf32_arm_section_data (s);
2893
2894 BFD_ASSERT (s != NULL);
2895
2896 tmp_name = bfd_malloc ((bfd_size_type) strlen
2897 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
2898
2899 BFD_ASSERT (tmp_name);
2900
2901 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
2902 hash_table->num_vfp11_fixes);
2903
2904 myh = elf_link_hash_lookup
2905 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
2906
2907 BFD_ASSERT (myh == NULL);
2908
2909 bh = NULL;
2910 val = hash_table->vfp11_erratum_glue_size;
2911 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
2912 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
2913 NULL, TRUE, FALSE, &bh);
2914
2915 myh = (struct elf_link_hash_entry *) bh;
2916 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
2917 myh->forced_local = 1;
2918
2919 /* Link veneer back to calling location. */
2920 errcount = ++(sec_data->erratumcount);
2921 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
2922
2923 newerr->type = VFP11_ERRATUM_ARM_VENEER;
2924 newerr->vma = -1;
2925 newerr->u.v.branch = branch;
2926 newerr->u.v.id = hash_table->num_vfp11_fixes;
2927 branch->u.b.veneer = newerr;
2928
2929 newerr->next = sec_data->erratumlist;
2930 sec_data->erratumlist = newerr;
2931
2932 /* A symbol for the return from the veneer. */
2933 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
2934 hash_table->num_vfp11_fixes);
2935
2936 myh = elf_link_hash_lookup
2937 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
2938
2939 if (myh != NULL)
2940 abort ();
2941
2942 bh = NULL;
2943 val = offset + 4;
2944 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
2945 branch_sec, val, NULL, TRUE, FALSE, &bh);
2946
2947 myh = (struct elf_link_hash_entry *) bh;
2948 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
2949 myh->forced_local = 1;
2950
2951 free (tmp_name);
2952
2953 /* Generate a mapping symbol for the veneer section, and explicitly add an
2954 entry for that symbol to the code/data map for the section. */
2955 if (hash_table->vfp11_erratum_glue_size == 0)
2956 {
2957 bh = NULL;
2958 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
2959 ever requires this erratum fix. */
2960 _bfd_generic_link_add_one_symbol (link_info,
2961 hash_table->bfd_of_glue_owner, "$a",
2962 BSF_LOCAL, s, 0, NULL,
2963 TRUE, FALSE, &bh);
2964
2965 myh = (struct elf_link_hash_entry *) bh;
2966 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
2967 myh->forced_local = 1;
2968
2969 /* The elf32_arm_init_maps function only cares about symbols from input
2970 BFDs. We must make a note of this generated mapping symbol
2971 ourselves so that code byteswapping works properly in
2972 elf32_arm_write_section. */
2973 elf32_arm_section_map_add (s, 'a', 0);
2974 }
2975
2976 s->size += VFP11_ERRATUM_VENEER_SIZE;
2977 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
2978 hash_table->num_vfp11_fixes++;
2979
2980 /* The offset of the veneer. */
2981 return val;
2982 }
2983
2984 /* Add the glue sections to ABFD. This function is called from the
2985 linker scripts in ld/emultempl/{armelf}.em. */
2986
2987 bfd_boolean
2988 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
2989 struct bfd_link_info *info)
2990 {
2991 flagword flags;
2992 asection *sec;
2993
2994 /* If we are only performing a partial
2995 link do not bother adding the glue. */
2996 if (info->relocatable)
2997 return TRUE;
2998
2999 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
3000
3001 if (sec == NULL)
3002 {
3003 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
3004 will prevent elf_link_input_bfd() from processing the contents
3005 of this section. */
3006 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3007 | SEC_CODE | SEC_READONLY);
3008
3009 sec = bfd_make_section_with_flags (abfd,
3010 ARM2THUMB_GLUE_SECTION_NAME,
3011 flags);
3012
3013 if (sec == NULL
3014 || !bfd_set_section_alignment (abfd, sec, 2))
3015 return FALSE;
3016
3017 /* Set the gc mark to prevent the section from being removed by garbage
3018 collection, despite the fact that no relocs refer to this section. */
3019 sec->gc_mark = 1;
3020 }
3021
3022 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
3023
3024 if (sec == NULL)
3025 {
3026 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3027 | SEC_CODE | SEC_READONLY);
3028
3029 sec = bfd_make_section_with_flags (abfd,
3030 THUMB2ARM_GLUE_SECTION_NAME,
3031 flags);
3032
3033 if (sec == NULL
3034 || !bfd_set_section_alignment (abfd, sec, 2))
3035 return FALSE;
3036
3037 sec->gc_mark = 1;
3038 }
3039
3040 sec = bfd_get_section_by_name (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME);
3041
3042 if (sec == NULL)
3043 {
3044 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3045 | SEC_CODE | SEC_READONLY);
3046
3047 sec = bfd_make_section_with_flags (abfd,
3048 VFP11_ERRATUM_VENEER_SECTION_NAME,
3049 flags);
3050
3051 if (sec == NULL
3052 || !bfd_set_section_alignment (abfd, sec, 2))
3053 return FALSE;
3054
3055 sec->gc_mark = 1;
3056 }
3057
3058 return TRUE;
3059 }
3060
3061 /* Select a BFD to be used to hold the sections used by the glue code.
3062 This function is called from the linker scripts in ld/emultempl/
3063 {armelf/pe}.em */
3064
3065 bfd_boolean
3066 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
3067 {
3068 struct elf32_arm_link_hash_table *globals;
3069
3070 /* If we are only performing a partial link
3071 do not bother getting a bfd to hold the glue. */
3072 if (info->relocatable)
3073 return TRUE;
3074
3075 /* Make sure we don't attach the glue sections to a dynamic object. */
3076 BFD_ASSERT (!(abfd->flags & DYNAMIC));
3077
3078 globals = elf32_arm_hash_table (info);
3079
3080 BFD_ASSERT (globals != NULL);
3081
3082 if (globals->bfd_of_glue_owner != NULL)
3083 return TRUE;
3084
3085 /* Save the bfd for later use. */
3086 globals->bfd_of_glue_owner = abfd;
3087
3088 return TRUE;
3089 }
3090
3091 static void check_use_blx(struct elf32_arm_link_hash_table *globals)
3092 {
3093 if (elf32_arm_get_eabi_attr_int (globals->obfd, Tag_CPU_arch) > 2)
3094 globals->use_blx = 1;
3095 }
3096
3097 bfd_boolean
3098 bfd_elf32_arm_process_before_allocation (bfd *abfd,
3099 struct bfd_link_info *link_info)
3100 {
3101 Elf_Internal_Shdr *symtab_hdr;
3102 Elf_Internal_Rela *internal_relocs = NULL;
3103 Elf_Internal_Rela *irel, *irelend;
3104 bfd_byte *contents = NULL;
3105
3106 asection *sec;
3107 struct elf32_arm_link_hash_table *globals;
3108
3109 /* If we are only performing a partial link do not bother
3110 to construct any glue. */
3111 if (link_info->relocatable)
3112 return TRUE;
3113
3114 /* Here we have a bfd that is to be included on the link. We have a hook
3115 to do reloc rummaging, before section sizes are nailed down. */
3116 globals = elf32_arm_hash_table (link_info);
3117 check_use_blx (globals);
3118
3119 BFD_ASSERT (globals != NULL);
3120 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3121
3122 if (globals->byteswap_code && !bfd_big_endian (abfd))
3123 {
3124 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
3125 abfd);
3126 return FALSE;
3127 }
3128
3129 /* Rummage around all the relocs and map the glue vectors. */
3130 sec = abfd->sections;
3131
3132 if (sec == NULL)
3133 return TRUE;
3134
3135 for (; sec != NULL; sec = sec->next)
3136 {
3137 if (sec->reloc_count == 0)
3138 continue;
3139
3140 if ((sec->flags & SEC_EXCLUDE) != 0)
3141 continue;
3142
3143 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3144
3145 /* Load the relocs. */
3146 internal_relocs
3147 = _bfd_elf_link_read_relocs (abfd, sec, (void *) NULL,
3148 (Elf_Internal_Rela *) NULL, FALSE);
3149
3150 if (internal_relocs == NULL)
3151 goto error_return;
3152
3153 irelend = internal_relocs + sec->reloc_count;
3154 for (irel = internal_relocs; irel < irelend; irel++)
3155 {
3156 long r_type;
3157 unsigned long r_index;
3158
3159 struct elf_link_hash_entry *h;
3160
3161 r_type = ELF32_R_TYPE (irel->r_info);
3162 r_index = ELF32_R_SYM (irel->r_info);
3163
3164 /* These are the only relocation types we care about. */
3165 if ( r_type != R_ARM_PC24
3166 && r_type != R_ARM_PLT32
3167 && r_type != R_ARM_CALL
3168 && r_type != R_ARM_JUMP24
3169 && r_type != R_ARM_THM_CALL)
3170 continue;
3171
3172 /* Get the section contents if we haven't done so already. */
3173 if (contents == NULL)
3174 {
3175 /* Get cached copy if it exists. */
3176 if (elf_section_data (sec)->this_hdr.contents != NULL)
3177 contents = elf_section_data (sec)->this_hdr.contents;
3178 else
3179 {
3180 /* Go get them off disk. */
3181 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
3182 goto error_return;
3183 }
3184 }
3185
3186 /* If the relocation is not against a symbol it cannot concern us. */
3187 h = NULL;
3188
3189 /* We don't care about local symbols. */
3190 if (r_index < symtab_hdr->sh_info)
3191 continue;
3192
3193 /* This is an external symbol. */
3194 r_index -= symtab_hdr->sh_info;
3195 h = (struct elf_link_hash_entry *)
3196 elf_sym_hashes (abfd)[r_index];
3197
3198 /* If the relocation is against a static symbol it must be within
3199 the current section and so cannot be a cross ARM/Thumb relocation. */
3200 if (h == NULL)
3201 continue;
3202
3203 /* If the call will go through a PLT entry then we do not need
3204 glue. */
3205 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
3206 continue;
3207
3208 switch (r_type)
3209 {
3210 case R_ARM_PC24:
3211 case R_ARM_PLT32:
3212 case R_ARM_CALL:
3213 case R_ARM_JUMP24:
3214 /* This one is a call from arm code. We need to look up
3215 the target of the call. If it is a thumb target, we
3216 insert glue. */
3217 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC
3218 && !(r_type == R_ARM_CALL && globals->use_blx))
3219 record_arm_to_thumb_glue (link_info, h);
3220 break;
3221
3222 case R_ARM_THM_CALL:
3223 /* This one is a call from thumb code. We look
3224 up the target of the call. If it is not a thumb
3225 target, we insert glue. */
3226 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC && !globals->use_blx)
3227 record_thumb_to_arm_glue (link_info, h);
3228 break;
3229
3230 default:
3231 abort ();
3232 }
3233 }
3234
3235 if (contents != NULL
3236 && elf_section_data (sec)->this_hdr.contents != contents)
3237 free (contents);
3238 contents = NULL;
3239
3240 if (internal_relocs != NULL
3241 && elf_section_data (sec)->relocs != internal_relocs)
3242 free (internal_relocs);
3243 internal_relocs = NULL;
3244 }
3245
3246 return TRUE;
3247
3248 error_return:
3249 if (contents != NULL
3250 && elf_section_data (sec)->this_hdr.contents != contents)
3251 free (contents);
3252 if (internal_relocs != NULL
3253 && elf_section_data (sec)->relocs != internal_relocs)
3254 free (internal_relocs);
3255
3256 return FALSE;
3257 }
3258 #endif
3259
3260
3261 /* Initialise maps of ARM/Thumb/data for input BFDs. */
3262
3263 void
3264 bfd_elf32_arm_init_maps (bfd *abfd)
3265 {
3266 Elf_Internal_Sym *isymbuf;
3267 Elf_Internal_Shdr *hdr;
3268 unsigned int i, localsyms;
3269
3270 if ((abfd->flags & DYNAMIC) != 0)
3271 return;
3272
3273 hdr = &elf_tdata (abfd)->symtab_hdr;
3274 localsyms = hdr->sh_info;
3275
3276 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
3277 should contain the number of local symbols, which should come before any
3278 global symbols. Mapping symbols are always local. */
3279 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
3280 NULL);
3281
3282 /* No internal symbols read? Skip this BFD. */
3283 if (isymbuf == NULL)
3284 return;
3285
3286 for (i = 0; i < localsyms; i++)
3287 {
3288 Elf_Internal_Sym *isym = &isymbuf[i];
3289 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3290 const char *name;
3291
3292 if (sec != NULL
3293 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
3294 {
3295 name = bfd_elf_string_from_elf_section (abfd,
3296 hdr->sh_link, isym->st_name);
3297
3298 if (bfd_is_arm_special_symbol_name (name,
3299 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
3300 elf32_arm_section_map_add (sec, name[1], isym->st_value);
3301 }
3302 }
3303 }
3304
3305
3306 void
3307 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
3308 {
3309 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
3310 aeabi_attribute *out_attr = elf32_arm_tdata (obfd)->known_eabi_attributes;
3311
3312 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
3313 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
3314 {
3315 switch (globals->vfp11_fix)
3316 {
3317 case BFD_ARM_VFP11_FIX_DEFAULT:
3318 case BFD_ARM_VFP11_FIX_NONE:
3319 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3320 break;
3321
3322 default:
3323 /* Give a warning, but do as the user requests anyway. */
3324 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
3325 "workaround is not necessary for target architecture"), obfd);
3326 }
3327 }
3328 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
3329 /* For earlier architectures, we might need the workaround, but do not
3330 enable it by default. If users is running with broken hardware, they
3331 must enable the erratum fix explicitly. */
3332 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3333 }
3334
3335
3336 enum bfd_arm_vfp11_pipe {
3337 VFP11_FMAC,
3338 VFP11_LS,
3339 VFP11_DS,
3340 VFP11_BAD
3341 };
3342
3343 /* Return a VFP register number. This is encoded as RX:X for single-precision
3344 registers, or X:RX for double-precision registers, where RX is the group of
3345 four bits in the instruction encoding and X is the single extension bit.
3346 RX and X fields are specified using their lowest (starting) bit. The return
3347 value is:
3348
3349 0...31: single-precision registers s0...s31
3350 32...63: double-precision registers d0...d31.
3351
3352 Although X should be zero for VFP11 (encoding d0...d15 only), we might
3353 encounter VFP3 instructions, so we allow the full range for DP registers. */
3354
3355 static unsigned int
3356 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
3357 unsigned int x)
3358 {
3359 if (is_double)
3360 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
3361 else
3362 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
3363 }
3364
3365 /* Set bits in *WMASK according to a register number REG as encoded by
3366 bfd_arm_vfp11_regno(). Ignore d16-d31. */
3367
3368 static void
3369 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
3370 {
3371 if (reg < 32)
3372 *wmask |= 1 << reg;
3373 else if (reg < 48)
3374 *wmask |= 3 << ((reg - 32) * 2);
3375 }
3376
3377 /* Return TRUE if WMASK overwrites anything in REGS. */
3378
3379 static bfd_boolean
3380 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
3381 {
3382 int i;
3383
3384 for (i = 0; i < numregs; i++)
3385 {
3386 unsigned int reg = regs[i];
3387
3388 if (reg < 32 && (wmask & (1 << reg)) != 0)
3389 return TRUE;
3390
3391 reg -= 32;
3392
3393 if (reg >= 16)
3394 continue;
3395
3396 if ((wmask & (3 << (reg * 2))) != 0)
3397 return TRUE;
3398 }
3399
3400 return FALSE;
3401 }
3402
3403 /* In this function, we're interested in two things: finding input registers
3404 for VFP data-processing instructions, and finding the set of registers which
3405 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
3406 hold the written set, so FLDM etc. are easy to deal with (we're only
3407 interested in 32 SP registers or 16 dp registers, due to the VFP version
3408 implemented by the chip in question). DP registers are marked by setting
3409 both SP registers in the write mask). */
3410
3411 static enum bfd_arm_vfp11_pipe
3412 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
3413 int *numregs)
3414 {
3415 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
3416 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
3417
3418 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
3419 {
3420 unsigned int pqrs;
3421 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
3422 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
3423
3424 pqrs = ((insn & 0x00800000) >> 20)
3425 | ((insn & 0x00300000) >> 19)
3426 | ((insn & 0x00000040) >> 6);
3427
3428 switch (pqrs)
3429 {
3430 case 0: /* fmac[sd]. */
3431 case 1: /* fnmac[sd]. */
3432 case 2: /* fmsc[sd]. */
3433 case 3: /* fnmsc[sd]. */
3434 pipe = VFP11_FMAC;
3435 bfd_arm_vfp11_write_mask (destmask, fd);
3436 regs[0] = fd;
3437 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
3438 regs[2] = fm;
3439 *numregs = 3;
3440 break;
3441
3442 case 4: /* fmul[sd]. */
3443 case 5: /* fnmul[sd]. */
3444 case 6: /* fadd[sd]. */
3445 case 7: /* fsub[sd]. */
3446 pipe = VFP11_FMAC;
3447 goto vfp_binop;
3448
3449 case 8: /* fdiv[sd]. */
3450 pipe = VFP11_DS;
3451 vfp_binop:
3452 bfd_arm_vfp11_write_mask (destmask, fd);
3453 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
3454 regs[1] = fm;
3455 *numregs = 2;
3456 break;
3457
3458 case 15: /* extended opcode. */
3459 {
3460 unsigned int extn = ((insn >> 15) & 0x1e)
3461 | ((insn >> 7) & 1);
3462
3463 switch (extn)
3464 {
3465 case 0: /* fcpy[sd]. */
3466 case 1: /* fabs[sd]. */
3467 case 2: /* fneg[sd]. */
3468 case 8: /* fcmp[sd]. */
3469 case 9: /* fcmpe[sd]. */
3470 case 10: /* fcmpz[sd]. */
3471 case 11: /* fcmpez[sd]. */
3472 case 16: /* fuito[sd]. */
3473 case 17: /* fsito[sd]. */
3474 case 24: /* ftoui[sd]. */
3475 case 25: /* ftouiz[sd]. */
3476 case 26: /* ftosi[sd]. */
3477 case 27: /* ftosiz[sd]. */
3478 /* These instructions will not bounce due to underflow. */
3479 *numregs = 0;
3480 pipe = VFP11_FMAC;
3481 break;
3482
3483 case 3: /* fsqrt[sd]. */
3484 /* fsqrt cannot underflow, but it can (perhaps) overwrite
3485 registers to cause the erratum in previous instructions. */
3486 bfd_arm_vfp11_write_mask (destmask, fd);
3487 pipe = VFP11_DS;
3488 break;
3489
3490 case 15: /* fcvt{ds,sd}. */
3491 {
3492 int rnum = 0;
3493
3494 bfd_arm_vfp11_write_mask (destmask, fd);
3495
3496 /* Only FCVTSD can underflow. */
3497 if ((insn & 0x100) != 0)
3498 regs[rnum++] = fm;
3499
3500 *numregs = rnum;
3501
3502 pipe = VFP11_FMAC;
3503 }
3504 break;
3505
3506 default:
3507 return VFP11_BAD;
3508 }
3509 }
3510 break;
3511
3512 default:
3513 return VFP11_BAD;
3514 }
3515 }
3516 /* Two-register transfer. */
3517 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
3518 {
3519 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
3520
3521 if ((insn & 0x100000) == 0)
3522 {
3523 if (is_double)
3524 bfd_arm_vfp11_write_mask (destmask, fm);
3525 else
3526 {
3527 bfd_arm_vfp11_write_mask (destmask, fm);
3528 bfd_arm_vfp11_write_mask (destmask, fm + 1);
3529 }
3530 }
3531
3532 pipe = VFP11_LS;
3533 }
3534 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
3535 {
3536 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
3537 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
3538
3539 switch (puw)
3540 {
3541 case 0: /* Two-reg transfer. We should catch these above. */
3542 abort ();
3543
3544 case 2: /* fldm[sdx]. */
3545 case 3:
3546 case 5:
3547 {
3548 unsigned int i, offset = insn & 0xff;
3549
3550 if (is_double)
3551 offset >>= 1;
3552
3553 for (i = fd; i < fd + offset; i++)
3554 bfd_arm_vfp11_write_mask (destmask, i);
3555 }
3556 break;
3557
3558 case 4: /* fld[sd]. */
3559 case 6:
3560 bfd_arm_vfp11_write_mask (destmask, fd);
3561 break;
3562
3563 default:
3564 return VFP11_BAD;
3565 }
3566
3567 pipe = VFP11_LS;
3568 }
3569 /* Single-register transfer. Note L==0. */
3570 else if ((insn & 0x0f100e10) == 0x0e000a10)
3571 {
3572 unsigned int opcode = (insn >> 21) & 7;
3573 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
3574
3575 switch (opcode)
3576 {
3577 case 0: /* fmsr/fmdlr. */
3578 case 1: /* fmdhr. */
3579 /* Mark fmdhr and fmdlr as writing to the whole of the DP
3580 destination register. I don't know if this is exactly right,
3581 but it is the conservative choice. */
3582 bfd_arm_vfp11_write_mask (destmask, fn);
3583 break;
3584
3585 case 7: /* fmxr. */
3586 break;
3587 }
3588
3589 pipe = VFP11_LS;
3590 }
3591
3592 return pipe;
3593 }
3594
3595
3596 static int elf32_arm_compare_mapping (const void * a, const void * b);
3597
3598
3599 /* Look for potentially-troublesome code sequences which might trigger the
3600 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
3601 (available from ARM) for details of the erratum. A short version is
3602 described in ld.texinfo. */
3603
3604 bfd_boolean
3605 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
3606 {
3607 asection *sec;
3608 bfd_byte *contents = NULL;
3609 int state = 0;
3610 int regs[3], numregs = 0;
3611 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
3612 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
3613
3614 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
3615 The states transition as follows:
3616
3617 0 -> 1 (vector) or 0 -> 2 (scalar)
3618 A VFP FMAC-pipeline instruction has been seen. Fill
3619 regs[0]..regs[numregs-1] with its input operands. Remember this
3620 instruction in 'first_fmac'.
3621
3622 1 -> 2
3623 Any instruction, except for a VFP instruction which overwrites
3624 regs[*].
3625
3626 1 -> 3 [ -> 0 ] or
3627 2 -> 3 [ -> 0 ]
3628 A VFP instruction has been seen which overwrites any of regs[*].
3629 We must make a veneer! Reset state to 0 before examining next
3630 instruction.
3631
3632 2 -> 0
3633 If we fail to match anything in state 2, reset to state 0 and reset
3634 the instruction pointer to the instruction after 'first_fmac'.
3635
3636 If the VFP11 vector mode is in use, there must be at least two unrelated
3637 instructions between anti-dependent VFP11 instructions to properly avoid
3638 triggering the erratum, hence the use of the extra state 1.
3639 */
3640
3641 /* If we are only performing a partial link do not bother
3642 to construct any glue. */
3643 if (link_info->relocatable)
3644 return TRUE;
3645
3646 /* We should have chosen a fix type by the time we get here. */
3647 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
3648
3649 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
3650 return TRUE;
3651
3652 /* Skip if this bfd does not correspond to an ELF image. */
3653 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
3654 return TRUE;
3655
3656 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3657 {
3658 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
3659 struct _arm_elf_section_data *sec_data;
3660
3661 /* If we don't have executable progbits, we're not interested in this
3662 section. Also skip if section is to be excluded. */
3663 if (elf_section_type (sec) != SHT_PROGBITS
3664 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
3665 || (sec->flags & SEC_EXCLUDE) != 0
3666 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
3667 continue;
3668
3669 sec_data = elf32_arm_section_data (sec);
3670
3671 if (sec_data->mapcount == 0)
3672 continue;
3673
3674 if (elf_section_data (sec)->this_hdr.contents != NULL)
3675 contents = elf_section_data (sec)->this_hdr.contents;
3676 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
3677 goto error_return;
3678
3679 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
3680 elf32_arm_compare_mapping);
3681
3682 for (span = 0; span < sec_data->mapcount; span++)
3683 {
3684 unsigned int span_start = sec_data->map[span].vma;
3685 unsigned int span_end = (span == sec_data->mapcount - 1)
3686 ? sec->size : sec_data->map[span + 1].vma;
3687 char span_type = sec_data->map[span].type;
3688
3689 /* FIXME: Only ARM mode is supported at present. We may need to
3690 support Thumb-2 mode also at some point. */
3691 if (span_type != 'a')
3692 continue;
3693
3694 for (i = span_start; i < span_end;)
3695 {
3696 unsigned int next_i = i + 4;
3697 unsigned int insn = bfd_big_endian (abfd)
3698 ? (contents[i] << 24)
3699 | (contents[i + 1] << 16)
3700 | (contents[i + 2] << 8)
3701 | contents[i + 3]
3702 : (contents[i + 3] << 24)
3703 | (contents[i + 2] << 16)
3704 | (contents[i + 1] << 8)
3705 | contents[i];
3706 unsigned int writemask = 0;
3707 enum bfd_arm_vfp11_pipe pipe;
3708
3709 switch (state)
3710 {
3711 case 0:
3712 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
3713 &numregs);
3714 /* I'm assuming the VFP11 erratum can trigger with denorm
3715 operands on either the FMAC or the DS pipeline. This might
3716 lead to slightly overenthusiastic veneer insertion. */
3717 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
3718 {
3719 state = use_vector ? 1 : 2;
3720 first_fmac = i;
3721 veneer_of_insn = insn;
3722 }
3723 break;
3724
3725 case 1:
3726 {
3727 int other_regs[3], other_numregs;
3728 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
3729 other_regs,
3730 &other_numregs);
3731 if (pipe != VFP11_BAD
3732 && bfd_arm_vfp11_antidependency (writemask, regs,
3733 numregs))
3734 state = 3;
3735 else
3736 state = 2;
3737 }
3738 break;
3739
3740 case 2:
3741 {
3742 int other_regs[3], other_numregs;
3743 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
3744 other_regs,
3745 &other_numregs);
3746 if (pipe != VFP11_BAD
3747 && bfd_arm_vfp11_antidependency (writemask, regs,
3748 numregs))
3749 state = 3;
3750 else
3751 {
3752 state = 0;
3753 next_i = first_fmac + 4;
3754 }
3755 }
3756 break;
3757
3758 case 3:
3759 abort (); /* Should be unreachable. */
3760 }
3761
3762 if (state == 3)
3763 {
3764 elf32_vfp11_erratum_list *newerr
3765 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
3766 int errcount;
3767
3768 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
3769
3770 newerr->u.b.vfp_insn = veneer_of_insn;
3771
3772 switch (span_type)
3773 {
3774 case 'a':
3775 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
3776 break;
3777
3778 default:
3779 abort ();
3780 }
3781
3782 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
3783 first_fmac);
3784
3785 newerr->vma = -1;
3786
3787 newerr->next = sec_data->erratumlist;
3788 sec_data->erratumlist = newerr;
3789
3790 state = 0;
3791 }
3792
3793 i = next_i;
3794 }
3795 }
3796
3797 if (contents != NULL
3798 && elf_section_data (sec)->this_hdr.contents != contents)
3799 free (contents);
3800 contents = NULL;
3801 }
3802
3803 return TRUE;
3804
3805 error_return:
3806 if (contents != NULL
3807 && elf_section_data (sec)->this_hdr.contents != contents)
3808 free (contents);
3809
3810 return FALSE;
3811 }
3812
3813 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
3814 after sections have been laid out, using specially-named symbols. */
3815
3816 void
3817 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
3818 struct bfd_link_info *link_info)
3819 {
3820 asection *sec;
3821 struct elf32_arm_link_hash_table *globals;
3822 char *tmp_name;
3823
3824 if (link_info->relocatable)
3825 return;
3826
3827 /* Skip if this bfd does not correspond to an ELF image. */
3828 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
3829 return;
3830
3831 globals = elf32_arm_hash_table (link_info);
3832
3833 tmp_name = bfd_malloc ((bfd_size_type) strlen
3834 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
3835
3836 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3837 {
3838 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
3839 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
3840
3841 for (; errnode != NULL; errnode = errnode->next)
3842 {
3843 struct elf_link_hash_entry *myh;
3844 bfd_vma vma;
3845
3846 switch (errnode->type)
3847 {
3848 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
3849 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
3850 /* Find veneer symbol. */
3851 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
3852 errnode->u.b.veneer->u.v.id);
3853
3854 myh = elf_link_hash_lookup
3855 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
3856
3857 if (myh == NULL)
3858 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
3859 "`%s'"), abfd, tmp_name);
3860
3861 vma = myh->root.u.def.section->output_section->vma
3862 + myh->root.u.def.section->output_offset
3863 + myh->root.u.def.value;
3864
3865 errnode->u.b.veneer->vma = vma;
3866 break;
3867
3868 case VFP11_ERRATUM_ARM_VENEER:
3869 case VFP11_ERRATUM_THUMB_VENEER:
3870 /* Find return location. */
3871 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
3872 errnode->u.v.id);
3873
3874 myh = elf_link_hash_lookup
3875 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
3876
3877 if (myh == NULL)
3878 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
3879 "`%s'"), abfd, tmp_name);
3880
3881 vma = myh->root.u.def.section->output_section->vma
3882 + myh->root.u.def.section->output_offset
3883 + myh->root.u.def.value;
3884
3885 errnode->u.v.branch->vma = vma;
3886 break;
3887
3888 default:
3889 abort ();
3890 }
3891 }
3892 }
3893
3894 free (tmp_name);
3895 }
3896
3897
3898 /* Set target relocation values needed during linking. */
3899
3900 void
3901 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
3902 struct bfd_link_info *link_info,
3903 int target1_is_rel,
3904 char * target2_type,
3905 int fix_v4bx,
3906 int use_blx,
3907 bfd_arm_vfp11_fix vfp11_fix,
3908 int no_enum_warn, int pic_veneer)
3909 {
3910 struct elf32_arm_link_hash_table *globals;
3911
3912 globals = elf32_arm_hash_table (link_info);
3913
3914 globals->target1_is_rel = target1_is_rel;
3915 if (strcmp (target2_type, "rel") == 0)
3916 globals->target2_reloc = R_ARM_REL32;
3917 else if (strcmp (target2_type, "abs") == 0)
3918 globals->target2_reloc = R_ARM_ABS32;
3919 else if (strcmp (target2_type, "got-rel") == 0)
3920 globals->target2_reloc = R_ARM_GOT_PREL;
3921 else
3922 {
3923 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
3924 target2_type);
3925 }
3926 globals->fix_v4bx = fix_v4bx;
3927 globals->use_blx |= use_blx;
3928 globals->vfp11_fix = vfp11_fix;
3929 globals->pic_veneer = pic_veneer;
3930
3931 elf32_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
3932 }
3933
3934 /* The thumb form of a long branch is a bit finicky, because the offset
3935 encoding is split over two fields, each in it's own instruction. They
3936 can occur in any order. So given a thumb form of long branch, and an
3937 offset, insert the offset into the thumb branch and return finished
3938 instruction.
3939
3940 It takes two thumb instructions to encode the target address. Each has
3941 11 bits to invest. The upper 11 bits are stored in one (identified by
3942 H-0.. see below), the lower 11 bits are stored in the other (identified
3943 by H-1).
3944
3945 Combine together and shifted left by 1 (it's a half word address) and
3946 there you have it.
3947
3948 Op: 1111 = F,
3949 H-0, upper address-0 = 000
3950 Op: 1111 = F,
3951 H-1, lower address-0 = 800
3952
3953 They can be ordered either way, but the arm tools I've seen always put
3954 the lower one first. It probably doesn't matter. krk@cygnus.com
3955
3956 XXX: Actually the order does matter. The second instruction (H-1)
3957 moves the computed address into the PC, so it must be the second one
3958 in the sequence. The problem, however is that whilst little endian code
3959 stores the instructions in HI then LOW order, big endian code does the
3960 reverse. nickc@cygnus.com. */
3961
3962 #define LOW_HI_ORDER 0xF800F000
3963 #define HI_LOW_ORDER 0xF000F800
3964
3965 static insn32
3966 insert_thumb_branch (insn32 br_insn, int rel_off)
3967 {
3968 unsigned int low_bits;
3969 unsigned int high_bits;
3970
3971 BFD_ASSERT ((rel_off & 1) != 1);
3972
3973 rel_off >>= 1; /* Half word aligned address. */
3974 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
3975 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
3976
3977 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
3978 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
3979 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
3980 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
3981 else
3982 /* FIXME: abort is probably not the right call. krk@cygnus.com */
3983 abort (); /* Error - not a valid branch instruction form. */
3984
3985 return br_insn;
3986 }
3987
3988
3989 /* Store an Arm insn into an output section not processed by
3990 elf32_arm_write_section. */
3991
3992 static void
3993 put_arm_insn (struct elf32_arm_link_hash_table *htab,
3994 bfd * output_bfd, bfd_vma val, void * ptr)
3995 {
3996 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3997 bfd_putl32 (val, ptr);
3998 else
3999 bfd_putb32 (val, ptr);
4000 }
4001
4002
4003 /* Store a 16-bit Thumb insn into an output section not processed by
4004 elf32_arm_write_section. */
4005
4006 static void
4007 put_thumb_insn (struct elf32_arm_link_hash_table *htab,
4008 bfd * output_bfd, bfd_vma val, void * ptr)
4009 {
4010 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4011 bfd_putl16 (val, ptr);
4012 else
4013 bfd_putb16 (val, ptr);
4014 }
4015
4016
4017 /* Thumb code calling an ARM function. */
4018
4019 static int
4020 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
4021 const char * name,
4022 bfd * input_bfd,
4023 bfd * output_bfd,
4024 asection * input_section,
4025 bfd_byte * hit_data,
4026 asection * sym_sec,
4027 bfd_vma offset,
4028 bfd_signed_vma addend,
4029 bfd_vma val,
4030 char **error_message)
4031 {
4032 asection * s = 0;
4033 bfd_vma my_offset;
4034 unsigned long int tmp;
4035 long int ret_offset;
4036 struct elf_link_hash_entry * myh;
4037 struct elf32_arm_link_hash_table * globals;
4038
4039 myh = find_thumb_glue (info, name, error_message);
4040 if (myh == NULL)
4041 return FALSE;
4042
4043 globals = elf32_arm_hash_table (info);
4044
4045 BFD_ASSERT (globals != NULL);
4046 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4047
4048 my_offset = myh->root.u.def.value;
4049
4050 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4051 THUMB2ARM_GLUE_SECTION_NAME);
4052
4053 BFD_ASSERT (s != NULL);
4054 BFD_ASSERT (s->contents != NULL);
4055 BFD_ASSERT (s->output_section != NULL);
4056
4057 if ((my_offset & 0x01) == 0x01)
4058 {
4059 if (sym_sec != NULL
4060 && sym_sec->owner != NULL
4061 && !INTERWORK_FLAG (sym_sec->owner))
4062 {
4063 (*_bfd_error_handler)
4064 (_("%B(%s): warning: interworking not enabled.\n"
4065 " first occurrence: %B: thumb call to arm"),
4066 sym_sec->owner, input_bfd, name);
4067
4068 return FALSE;
4069 }
4070
4071 --my_offset;
4072 myh->root.u.def.value = my_offset;
4073
4074 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
4075 s->contents + my_offset);
4076
4077 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
4078 s->contents + my_offset + 2);
4079
4080 ret_offset =
4081 /* Address of destination of the stub. */
4082 ((bfd_signed_vma) val)
4083 - ((bfd_signed_vma)
4084 /* Offset from the start of the current section
4085 to the start of the stubs. */
4086 (s->output_offset
4087 /* Offset of the start of this stub from the start of the stubs. */
4088 + my_offset
4089 /* Address of the start of the current section. */
4090 + s->output_section->vma)
4091 /* The branch instruction is 4 bytes into the stub. */
4092 + 4
4093 /* ARM branches work from the pc of the instruction + 8. */
4094 + 8);
4095
4096 put_arm_insn (globals, output_bfd,
4097 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
4098 s->contents + my_offset + 4);
4099 }
4100
4101 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
4102
4103 /* Now go back and fix up the original BL insn to point to here. */
4104 ret_offset =
4105 /* Address of where the stub is located. */
4106 (s->output_section->vma + s->output_offset + my_offset)
4107 /* Address of where the BL is located. */
4108 - (input_section->output_section->vma + input_section->output_offset
4109 + offset)
4110 /* Addend in the relocation. */
4111 - addend
4112 /* Biassing for PC-relative addressing. */
4113 - 8;
4114
4115 tmp = bfd_get_32 (input_bfd, hit_data
4116 - input_section->vma);
4117
4118 bfd_put_32 (output_bfd,
4119 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
4120 hit_data - input_section->vma);
4121
4122 return TRUE;
4123 }
4124
4125 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
4126
4127 static struct elf_link_hash_entry *
4128 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
4129 const char * name,
4130 bfd * input_bfd,
4131 bfd * output_bfd,
4132 asection * sym_sec,
4133 bfd_vma val,
4134 asection *s,
4135 char **error_message)
4136 {
4137 bfd_vma my_offset;
4138 long int ret_offset;
4139 struct elf_link_hash_entry * myh;
4140 struct elf32_arm_link_hash_table * globals;
4141
4142 myh = find_arm_glue (info, name, error_message);
4143 if (myh == NULL)
4144 return NULL;
4145
4146 globals = elf32_arm_hash_table (info);
4147
4148 BFD_ASSERT (globals != NULL);
4149 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4150
4151 my_offset = myh->root.u.def.value;
4152
4153 if ((my_offset & 0x01) == 0x01)
4154 {
4155 if (sym_sec != NULL
4156 && sym_sec->owner != NULL
4157 && !INTERWORK_FLAG (sym_sec->owner))
4158 {
4159 (*_bfd_error_handler)
4160 (_("%B(%s): warning: interworking not enabled.\n"
4161 " first occurrence: %B: arm call to thumb"),
4162 sym_sec->owner, input_bfd, name);
4163 }
4164
4165 --my_offset;
4166 myh->root.u.def.value = my_offset;
4167
4168 if (info->shared || globals->root.is_relocatable_executable
4169 || globals->pic_veneer)
4170 {
4171 /* For relocatable objects we can't use absolute addresses,
4172 so construct the address from a relative offset. */
4173 /* TODO: If the offset is small it's probably worth
4174 constructing the address with adds. */
4175 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
4176 s->contents + my_offset);
4177 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
4178 s->contents + my_offset + 4);
4179 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
4180 s->contents + my_offset + 8);
4181 /* Adjust the offset by 4 for the position of the add,
4182 and 8 for the pipeline offset. */
4183 ret_offset = (val - (s->output_offset
4184 + s->output_section->vma
4185 + my_offset + 12))
4186 | 1;
4187 bfd_put_32 (output_bfd, ret_offset,
4188 s->contents + my_offset + 12);
4189 }
4190 else
4191 {
4192 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
4193 s->contents + my_offset);
4194
4195 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
4196 s->contents + my_offset + 4);
4197
4198 /* It's a thumb address. Add the low order bit. */
4199 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
4200 s->contents + my_offset + 8);
4201 }
4202 }
4203
4204 BFD_ASSERT (my_offset <= globals->arm_glue_size);
4205
4206 return myh;
4207 }
4208
4209 /* Arm code calling a Thumb function. */
4210
4211 static int
4212 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
4213 const char * name,
4214 bfd * input_bfd,
4215 bfd * output_bfd,
4216 asection * input_section,
4217 bfd_byte * hit_data,
4218 asection * sym_sec,
4219 bfd_vma offset,
4220 bfd_signed_vma addend,
4221 bfd_vma val,
4222 char **error_message)
4223 {
4224 unsigned long int tmp;
4225 bfd_vma my_offset;
4226 asection * s;
4227 long int ret_offset;
4228 struct elf_link_hash_entry * myh;
4229 struct elf32_arm_link_hash_table * globals;
4230
4231 globals = elf32_arm_hash_table (info);
4232
4233 BFD_ASSERT (globals != NULL);
4234 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4235
4236 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4237 ARM2THUMB_GLUE_SECTION_NAME);
4238 BFD_ASSERT (s != NULL);
4239 BFD_ASSERT (s->contents != NULL);
4240 BFD_ASSERT (s->output_section != NULL);
4241
4242 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
4243 sym_sec, val, s, error_message);
4244 if (!myh)
4245 return FALSE;
4246
4247 my_offset = myh->root.u.def.value;
4248 tmp = bfd_get_32 (input_bfd, hit_data);
4249 tmp = tmp & 0xFF000000;
4250
4251 /* Somehow these are both 4 too far, so subtract 8. */
4252 ret_offset = (s->output_offset
4253 + my_offset
4254 + s->output_section->vma
4255 - (input_section->output_offset
4256 + input_section->output_section->vma
4257 + offset + addend)
4258 - 8);
4259
4260 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
4261
4262 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
4263
4264 return TRUE;
4265 }
4266
4267 /* Populate Arm stub for an exported Thumb function. */
4268
4269 static bfd_boolean
4270 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
4271 {
4272 struct bfd_link_info * info = (struct bfd_link_info *) inf;
4273 asection * s;
4274 struct elf_link_hash_entry * myh;
4275 struct elf32_arm_link_hash_entry *eh;
4276 struct elf32_arm_link_hash_table * globals;
4277 asection *sec;
4278 bfd_vma val;
4279 char *error_message;
4280
4281 eh = elf32_arm_hash_entry(h);
4282 /* Allocate stubs for exported Thumb functions on v4t. */
4283 if (eh->export_glue == NULL)
4284 return TRUE;
4285
4286 globals = elf32_arm_hash_table (info);
4287
4288 BFD_ASSERT (globals != NULL);
4289 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4290
4291 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4292 ARM2THUMB_GLUE_SECTION_NAME);
4293 BFD_ASSERT (s != NULL);
4294 BFD_ASSERT (s->contents != NULL);
4295 BFD_ASSERT (s->output_section != NULL);
4296
4297 sec = eh->export_glue->root.u.def.section;
4298
4299 BFD_ASSERT (sec->output_section != NULL);
4300
4301 val = eh->export_glue->root.u.def.value + sec->output_offset
4302 + sec->output_section->vma;
4303 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
4304 h->root.u.def.section->owner,
4305 globals->obfd, sec, val, s,
4306 &error_message);
4307 BFD_ASSERT (myh);
4308 return TRUE;
4309 }
4310
4311 /* Generate Arm stubs for exported Thumb symbols. */
4312 static void
4313 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
4314 struct bfd_link_info *link_info)
4315 {
4316 struct elf32_arm_link_hash_table * globals;
4317
4318 if (!link_info)
4319 return;
4320
4321 globals = elf32_arm_hash_table (link_info);
4322 /* If blx is available then exported Thumb symbols are OK and there is
4323 nothing to do. */
4324 if (globals->use_blx)
4325 return;
4326
4327 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
4328 link_info);
4329 }
4330
4331 /* Some relocations map to different relocations depending on the
4332 target. Return the real relocation. */
4333 static int
4334 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
4335 int r_type)
4336 {
4337 switch (r_type)
4338 {
4339 case R_ARM_TARGET1:
4340 if (globals->target1_is_rel)
4341 return R_ARM_REL32;
4342 else
4343 return R_ARM_ABS32;
4344
4345 case R_ARM_TARGET2:
4346 return globals->target2_reloc;
4347
4348 default:
4349 return r_type;
4350 }
4351 }
4352
4353 /* Return the base VMA address which should be subtracted from real addresses
4354 when resolving @dtpoff relocation.
4355 This is PT_TLS segment p_vaddr. */
4356
4357 static bfd_vma
4358 dtpoff_base (struct bfd_link_info *info)
4359 {
4360 /* If tls_sec is NULL, we should have signalled an error already. */
4361 if (elf_hash_table (info)->tls_sec == NULL)
4362 return 0;
4363 return elf_hash_table (info)->tls_sec->vma;
4364 }
4365
4366 /* Return the relocation value for @tpoff relocation
4367 if STT_TLS virtual address is ADDRESS. */
4368
4369 static bfd_vma
4370 tpoff (struct bfd_link_info *info, bfd_vma address)
4371 {
4372 struct elf_link_hash_table *htab = elf_hash_table (info);
4373 bfd_vma base;
4374
4375 /* If tls_sec is NULL, we should have signalled an error already. */
4376 if (htab->tls_sec == NULL)
4377 return 0;
4378 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
4379 return address - htab->tls_sec->vma + base;
4380 }
4381
4382 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
4383 VALUE is the relocation value. */
4384
4385 static bfd_reloc_status_type
4386 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
4387 {
4388 if (value > 0xfff)
4389 return bfd_reloc_overflow;
4390
4391 value |= bfd_get_32 (abfd, data) & 0xfffff000;
4392 bfd_put_32 (abfd, value, data);
4393 return bfd_reloc_ok;
4394 }
4395
4396 /* For a given value of n, calculate the value of G_n as required to
4397 deal with group relocations. We return it in the form of an
4398 encoded constant-and-rotation, together with the final residual. If n is
4399 specified as less than zero, then final_residual is filled with the
4400 input value and no further action is performed. */
4401
4402 static bfd_vma
4403 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
4404 {
4405 int current_n;
4406 bfd_vma g_n;
4407 bfd_vma encoded_g_n = 0;
4408 bfd_vma residual = value; /* Also known as Y_n. */
4409
4410 for (current_n = 0; current_n <= n; current_n++)
4411 {
4412 int shift;
4413
4414 /* Calculate which part of the value to mask. */
4415 if (residual == 0)
4416 shift = 0;
4417 else
4418 {
4419 int msb;
4420
4421 /* Determine the most significant bit in the residual and
4422 align the resulting value to a 2-bit boundary. */
4423 for (msb = 30; msb >= 0; msb -= 2)
4424 if (residual & (3 << msb))
4425 break;
4426
4427 /* The desired shift is now (msb - 6), or zero, whichever
4428 is the greater. */
4429 shift = msb - 6;
4430 if (shift < 0)
4431 shift = 0;
4432 }
4433
4434 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
4435 g_n = residual & (0xff << shift);
4436 encoded_g_n = (g_n >> shift)
4437 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4438
4439 /* Calculate the residual for the next time around. */
4440 residual &= ~g_n;
4441 }
4442
4443 *final_residual = residual;
4444
4445 return encoded_g_n;
4446 }
4447
4448 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
4449 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
4450 static int
4451 identify_add_or_sub(bfd_vma insn)
4452 {
4453 int opcode = insn & 0x1e00000;
4454
4455 if (opcode == 1 << 23) /* ADD */
4456 return 1;
4457
4458 if (opcode == 1 << 22) /* SUB */
4459 return -1;
4460
4461 return 0;
4462 }
4463
4464 /* Determine if we're dealing with a Thumb-2 object. */
4465
4466 static int using_thumb2 (struct elf32_arm_link_hash_table *globals)
4467 {
4468 int arch = elf32_arm_get_eabi_attr_int (globals->obfd, Tag_CPU_arch);
4469 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
4470 }
4471
4472 /* Perform a relocation as part of a final link. */
4473
4474 static bfd_reloc_status_type
4475 elf32_arm_final_link_relocate (reloc_howto_type * howto,
4476 bfd * input_bfd,
4477 bfd * output_bfd,
4478 asection * input_section,
4479 bfd_byte * contents,
4480 Elf_Internal_Rela * rel,
4481 bfd_vma value,
4482 struct bfd_link_info * info,
4483 asection * sym_sec,
4484 const char * sym_name,
4485 int sym_flags,
4486 struct elf_link_hash_entry * h,
4487 bfd_boolean * unresolved_reloc_p,
4488 char **error_message)
4489 {
4490 unsigned long r_type = howto->type;
4491 unsigned long r_symndx;
4492 bfd_byte * hit_data = contents + rel->r_offset;
4493 bfd * dynobj = NULL;
4494 Elf_Internal_Shdr * symtab_hdr;
4495 struct elf_link_hash_entry ** sym_hashes;
4496 bfd_vma * local_got_offsets;
4497 asection * sgot = NULL;
4498 asection * splt = NULL;
4499 asection * sreloc = NULL;
4500 bfd_vma addend;
4501 bfd_signed_vma signed_addend;
4502 struct elf32_arm_link_hash_table * globals;
4503
4504 globals = elf32_arm_hash_table (info);
4505
4506 /* Some relocation type map to different relocations depending on the
4507 target. We pick the right one here. */
4508 r_type = arm_real_reloc_type (globals, r_type);
4509 if (r_type != howto->type)
4510 howto = elf32_arm_howto_from_type (r_type);
4511
4512 /* If the start address has been set, then set the EF_ARM_HASENTRY
4513 flag. Setting this more than once is redundant, but the cost is
4514 not too high, and it keeps the code simple.
4515
4516 The test is done here, rather than somewhere else, because the
4517 start address is only set just before the final link commences.
4518
4519 Note - if the user deliberately sets a start address of 0, the
4520 flag will not be set. */
4521 if (bfd_get_start_address (output_bfd) != 0)
4522 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
4523
4524 dynobj = elf_hash_table (info)->dynobj;
4525 if (dynobj)
4526 {
4527 sgot = bfd_get_section_by_name (dynobj, ".got");
4528 splt = bfd_get_section_by_name (dynobj, ".plt");
4529 }
4530 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
4531 sym_hashes = elf_sym_hashes (input_bfd);
4532 local_got_offsets = elf_local_got_offsets (input_bfd);
4533 r_symndx = ELF32_R_SYM (rel->r_info);
4534
4535 if (globals->use_rel)
4536 {
4537 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
4538
4539 if (addend & ((howto->src_mask + 1) >> 1))
4540 {
4541 signed_addend = -1;
4542 signed_addend &= ~ howto->src_mask;
4543 signed_addend |= addend;
4544 }
4545 else
4546 signed_addend = addend;
4547 }
4548 else
4549 addend = signed_addend = rel->r_addend;
4550
4551 switch (r_type)
4552 {
4553 case R_ARM_NONE:
4554 /* We don't need to find a value for this symbol. It's just a
4555 marker. */
4556 *unresolved_reloc_p = FALSE;
4557 return bfd_reloc_ok;
4558
4559 case R_ARM_ABS12:
4560 if (!globals->vxworks_p)
4561 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
4562
4563 case R_ARM_PC24:
4564 case R_ARM_ABS32:
4565 case R_ARM_ABS32_NOI:
4566 case R_ARM_REL32:
4567 case R_ARM_REL32_NOI:
4568 case R_ARM_CALL:
4569 case R_ARM_JUMP24:
4570 case R_ARM_XPC25:
4571 case R_ARM_PREL31:
4572 case R_ARM_PLT32:
4573 /* Handle relocations which should use the PLT entry. ABS32/REL32
4574 will use the symbol's value, which may point to a PLT entry, but we
4575 don't need to handle that here. If we created a PLT entry, all
4576 branches in this object should go to it. */
4577 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
4578 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
4579 && h != NULL
4580 && splt != NULL
4581 && h->plt.offset != (bfd_vma) -1)
4582 {
4583 /* If we've created a .plt section, and assigned a PLT entry to
4584 this function, it should not be known to bind locally. If
4585 it were, we would have cleared the PLT entry. */
4586 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
4587
4588 value = (splt->output_section->vma
4589 + splt->output_offset
4590 + h->plt.offset);
4591 *unresolved_reloc_p = FALSE;
4592 return _bfd_final_link_relocate (howto, input_bfd, input_section,
4593 contents, rel->r_offset, value,
4594 rel->r_addend);
4595 }
4596
4597 /* When generating a shared object or relocatable executable, these
4598 relocations are copied into the output file to be resolved at
4599 run time. */
4600 if ((info->shared || globals->root.is_relocatable_executable)
4601 && (input_section->flags & SEC_ALLOC)
4602 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
4603 || !SYMBOL_CALLS_LOCAL (info, h))
4604 && (h == NULL
4605 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4606 || h->root.type != bfd_link_hash_undefweak)
4607 && r_type != R_ARM_PC24
4608 && r_type != R_ARM_CALL
4609 && r_type != R_ARM_JUMP24
4610 && r_type != R_ARM_PREL31
4611 && r_type != R_ARM_PLT32)
4612 {
4613 Elf_Internal_Rela outrel;
4614 bfd_byte *loc;
4615 bfd_boolean skip, relocate;
4616
4617 *unresolved_reloc_p = FALSE;
4618
4619 if (sreloc == NULL)
4620 {
4621 const char * name;
4622
4623 name = (bfd_elf_string_from_elf_section
4624 (input_bfd,
4625 elf_elfheader (input_bfd)->e_shstrndx,
4626 elf_section_data (input_section)->rel_hdr.sh_name));
4627 if (name == NULL)
4628 return bfd_reloc_notsupported;
4629
4630 BFD_ASSERT (reloc_section_p (globals, name, input_section));
4631
4632 sreloc = bfd_get_section_by_name (dynobj, name);
4633 BFD_ASSERT (sreloc != NULL);
4634 }
4635
4636 skip = FALSE;
4637 relocate = FALSE;
4638
4639 outrel.r_addend = addend;
4640 outrel.r_offset =
4641 _bfd_elf_section_offset (output_bfd, info, input_section,
4642 rel->r_offset);
4643 if (outrel.r_offset == (bfd_vma) -1)
4644 skip = TRUE;
4645 else if (outrel.r_offset == (bfd_vma) -2)
4646 skip = TRUE, relocate = TRUE;
4647 outrel.r_offset += (input_section->output_section->vma
4648 + input_section->output_offset);
4649
4650 if (skip)
4651 memset (&outrel, 0, sizeof outrel);
4652 else if (h != NULL
4653 && h->dynindx != -1
4654 && (!info->shared
4655 || !info->symbolic
4656 || !h->def_regular))
4657 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
4658 else
4659 {
4660 int symbol;
4661
4662 /* This symbol is local, or marked to become local. */
4663 if (sym_flags == STT_ARM_TFUNC)
4664 value |= 1;
4665 if (globals->symbian_p)
4666 {
4667 asection *osec;
4668
4669 /* On Symbian OS, the data segment and text segement
4670 can be relocated independently. Therefore, we
4671 must indicate the segment to which this
4672 relocation is relative. The BPABI allows us to
4673 use any symbol in the right segment; we just use
4674 the section symbol as it is convenient. (We
4675 cannot use the symbol given by "h" directly as it
4676 will not appear in the dynamic symbol table.)
4677
4678 Note that the dynamic linker ignores the section
4679 symbol value, so we don't subtract osec->vma
4680 from the emitted reloc addend. */
4681 if (sym_sec)
4682 osec = sym_sec->output_section;
4683 else
4684 osec = input_section->output_section;
4685 symbol = elf_section_data (osec)->dynindx;
4686 if (symbol == 0)
4687 {
4688 struct elf_link_hash_table *htab = elf_hash_table (info);
4689
4690 if ((osec->flags & SEC_READONLY) == 0
4691 && htab->data_index_section != NULL)
4692 osec = htab->data_index_section;
4693 else
4694 osec = htab->text_index_section;
4695 symbol = elf_section_data (osec)->dynindx;
4696 }
4697 BFD_ASSERT (symbol != 0);
4698 }
4699 else
4700 /* On SVR4-ish systems, the dynamic loader cannot
4701 relocate the text and data segments independently,
4702 so the symbol does not matter. */
4703 symbol = 0;
4704 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
4705 if (globals->use_rel)
4706 relocate = TRUE;
4707 else
4708 outrel.r_addend += value;
4709 }
4710
4711 loc = sreloc->contents;
4712 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
4713 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
4714
4715 /* If this reloc is against an external symbol, we do not want to
4716 fiddle with the addend. Otherwise, we need to include the symbol
4717 value so that it becomes an addend for the dynamic reloc. */
4718 if (! relocate)
4719 return bfd_reloc_ok;
4720
4721 return _bfd_final_link_relocate (howto, input_bfd, input_section,
4722 contents, rel->r_offset, value,
4723 (bfd_vma) 0);
4724 }
4725 else switch (r_type)
4726 {
4727 case R_ARM_ABS12:
4728 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
4729
4730 case R_ARM_XPC25: /* Arm BLX instruction. */
4731 case R_ARM_CALL:
4732 case R_ARM_JUMP24:
4733 case R_ARM_PC24: /* Arm B/BL instruction */
4734 case R_ARM_PLT32:
4735 if (r_type == R_ARM_XPC25)
4736 {
4737 /* Check for Arm calling Arm function. */
4738 /* FIXME: Should we translate the instruction into a BL
4739 instruction instead ? */
4740 if (sym_flags != STT_ARM_TFUNC)
4741 (*_bfd_error_handler)
4742 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
4743 input_bfd,
4744 h ? h->root.root.string : "(local)");
4745 }
4746 else if (r_type != R_ARM_CALL || !globals->use_blx)
4747 {
4748 /* Check for Arm calling Thumb function. */
4749 if (sym_flags == STT_ARM_TFUNC)
4750 {
4751 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
4752 output_bfd, input_section,
4753 hit_data, sym_sec, rel->r_offset,
4754 signed_addend, value,
4755 error_message))
4756 return bfd_reloc_ok;
4757 else
4758 return bfd_reloc_dangerous;
4759 }
4760 }
4761
4762 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
4763 where:
4764 S is the address of the symbol in the relocation.
4765 P is address of the instruction being relocated.
4766 A is the addend (extracted from the instruction) in bytes.
4767
4768 S is held in 'value'.
4769 P is the base address of the section containing the
4770 instruction plus the offset of the reloc into that
4771 section, ie:
4772 (input_section->output_section->vma +
4773 input_section->output_offset +
4774 rel->r_offset).
4775 A is the addend, converted into bytes, ie:
4776 (signed_addend * 4)
4777
4778 Note: None of these operations have knowledge of the pipeline
4779 size of the processor, thus it is up to the assembler to
4780 encode this information into the addend. */
4781 value -= (input_section->output_section->vma
4782 + input_section->output_offset);
4783 value -= rel->r_offset;
4784 if (globals->use_rel)
4785 value += (signed_addend << howto->size);
4786 else
4787 /* RELA addends do not have to be adjusted by howto->size. */
4788 value += signed_addend;
4789
4790 signed_addend = value;
4791 signed_addend >>= howto->rightshift;
4792
4793 /* It is not an error for an undefined weak reference to be
4794 out of range. Any program that branches to such a symbol
4795 is going to crash anyway, so there is no point worrying
4796 about getting the destination exactly right. */
4797 if (! h || h->root.type != bfd_link_hash_undefweak)
4798 {
4799 /* Perform a signed range check. */
4800 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
4801 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
4802 return bfd_reloc_overflow;
4803 }
4804
4805 addend = (value & 2);
4806
4807 value = (signed_addend & howto->dst_mask)
4808 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
4809
4810 /* Set the H bit in the BLX instruction. */
4811 if (sym_flags == STT_ARM_TFUNC)
4812 {
4813 if (addend)
4814 value |= (1 << 24);
4815 else
4816 value &= ~(bfd_vma)(1 << 24);
4817 }
4818 if (r_type == R_ARM_CALL)
4819 {
4820 /* Select the correct instruction (BL or BLX). */
4821 if (sym_flags == STT_ARM_TFUNC)
4822 value |= (1 << 28);
4823 else
4824 {
4825 value &= ~(bfd_vma)(1 << 28);
4826 value |= (1 << 24);
4827 }
4828 }
4829 break;
4830
4831 case R_ARM_ABS32:
4832 value += addend;
4833 if (sym_flags == STT_ARM_TFUNC)
4834 value |= 1;
4835 break;
4836
4837 case R_ARM_ABS32_NOI:
4838 value += addend;
4839 break;
4840
4841 case R_ARM_REL32:
4842 value += addend;
4843 if (sym_flags == STT_ARM_TFUNC)
4844 value |= 1;
4845 value -= (input_section->output_section->vma
4846 + input_section->output_offset + rel->r_offset);
4847 break;
4848
4849 case R_ARM_REL32_NOI:
4850 value += addend;
4851 value -= (input_section->output_section->vma
4852 + input_section->output_offset + rel->r_offset);
4853 break;
4854
4855 case R_ARM_PREL31:
4856 value -= (input_section->output_section->vma
4857 + input_section->output_offset + rel->r_offset);
4858 value += signed_addend;
4859 if (! h || h->root.type != bfd_link_hash_undefweak)
4860 {
4861 /* Check for overflow */
4862 if ((value ^ (value >> 1)) & (1 << 30))
4863 return bfd_reloc_overflow;
4864 }
4865 value &= 0x7fffffff;
4866 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
4867 if (sym_flags == STT_ARM_TFUNC)
4868 value |= 1;
4869 break;
4870 }
4871
4872 bfd_put_32 (input_bfd, value, hit_data);
4873 return bfd_reloc_ok;
4874
4875 case R_ARM_ABS8:
4876 value += addend;
4877 if ((long) value > 0x7f || (long) value < -0x80)
4878 return bfd_reloc_overflow;
4879
4880 bfd_put_8 (input_bfd, value, hit_data);
4881 return bfd_reloc_ok;
4882
4883 case R_ARM_ABS16:
4884 value += addend;
4885
4886 if ((long) value > 0x7fff || (long) value < -0x8000)
4887 return bfd_reloc_overflow;
4888
4889 bfd_put_16 (input_bfd, value, hit_data);
4890 return bfd_reloc_ok;
4891
4892 case R_ARM_THM_ABS5:
4893 /* Support ldr and str instructions for the thumb. */
4894 if (globals->use_rel)
4895 {
4896 /* Need to refetch addend. */
4897 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
4898 /* ??? Need to determine shift amount from operand size. */
4899 addend >>= howto->rightshift;
4900 }
4901 value += addend;
4902
4903 /* ??? Isn't value unsigned? */
4904 if ((long) value > 0x1f || (long) value < -0x10)
4905 return bfd_reloc_overflow;
4906
4907 /* ??? Value needs to be properly shifted into place first. */
4908 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
4909 bfd_put_16 (input_bfd, value, hit_data);
4910 return bfd_reloc_ok;
4911
4912 case R_ARM_THM_ALU_PREL_11_0:
4913 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
4914 {
4915 bfd_vma insn;
4916 bfd_signed_vma relocation;
4917
4918 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
4919 | bfd_get_16 (input_bfd, hit_data + 2);
4920
4921 if (globals->use_rel)
4922 {
4923 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
4924 | ((insn & (1 << 26)) >> 15);
4925 if (insn & 0xf00000)
4926 signed_addend = -signed_addend;
4927 }
4928
4929 relocation = value + signed_addend;
4930 relocation -= (input_section->output_section->vma
4931 + input_section->output_offset
4932 + rel->r_offset);
4933
4934 value = abs (relocation);
4935
4936 if (value >= 0x1000)
4937 return bfd_reloc_overflow;
4938
4939 insn = (insn & 0xfb0f8f00) | (value & 0xff)
4940 | ((value & 0x700) << 4)
4941 | ((value & 0x800) << 15);
4942 if (relocation < 0)
4943 insn |= 0xa00000;
4944
4945 bfd_put_16 (input_bfd, insn >> 16, hit_data);
4946 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
4947
4948 return bfd_reloc_ok;
4949 }
4950
4951 case R_ARM_THM_PC12:
4952 /* Corresponds to: ldr.w reg, [pc, #offset]. */
4953 {
4954 bfd_vma insn;
4955 bfd_signed_vma relocation;
4956
4957 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
4958 | bfd_get_16 (input_bfd, hit_data + 2);
4959
4960 if (globals->use_rel)
4961 {
4962 signed_addend = insn & 0xfff;
4963 if (!(insn & (1 << 23)))
4964 signed_addend = -signed_addend;
4965 }
4966
4967 relocation = value + signed_addend;
4968 relocation -= (input_section->output_section->vma
4969 + input_section->output_offset
4970 + rel->r_offset);
4971
4972 value = abs (relocation);
4973
4974 if (value >= 0x1000)
4975 return bfd_reloc_overflow;
4976
4977 insn = (insn & 0xff7ff000) | value;
4978 if (relocation >= 0)
4979 insn |= (1 << 23);
4980
4981 bfd_put_16 (input_bfd, insn >> 16, hit_data);
4982 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
4983
4984 return bfd_reloc_ok;
4985 }
4986
4987 case R_ARM_THM_XPC22:
4988 case R_ARM_THM_CALL:
4989 /* Thumb BL (branch long instruction). */
4990 {
4991 bfd_vma relocation;
4992 bfd_vma reloc_sign;
4993 bfd_boolean overflow = FALSE;
4994 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
4995 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
4996 bfd_signed_vma reloc_signed_max;
4997 bfd_signed_vma reloc_signed_min;
4998 bfd_vma check;
4999 bfd_signed_vma signed_check;
5000 int bitsize;
5001 int thumb2 = using_thumb2 (globals);
5002
5003 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
5004 with Thumb-1) involving the J1 and J2 bits. */
5005 if (globals->use_rel)
5006 {
5007 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
5008 bfd_vma upper = upper_insn & 0x3ff;
5009 bfd_vma lower = lower_insn & 0x7ff;
5010 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
5011 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
5012 bfd_vma i1 = j1 ^ s ? 0 : 1;
5013 bfd_vma i2 = j2 ^ s ? 0 : 1;
5014
5015 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
5016 /* Sign extend. */
5017 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
5018
5019 signed_addend = addend;
5020 }
5021
5022 if (r_type == R_ARM_THM_XPC22)
5023 {
5024 /* Check for Thumb to Thumb call. */
5025 /* FIXME: Should we translate the instruction into a BL
5026 instruction instead ? */
5027 if (sym_flags == STT_ARM_TFUNC)
5028 (*_bfd_error_handler)
5029 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
5030 input_bfd,
5031 h ? h->root.root.string : "(local)");
5032 }
5033 else
5034 {
5035 /* If it is not a call to Thumb, assume call to Arm.
5036 If it is a call relative to a section name, then it is not a
5037 function call at all, but rather a long jump. Calls through
5038 the PLT do not require stubs. */
5039 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
5040 && (h == NULL || splt == NULL
5041 || h->plt.offset == (bfd_vma) -1))
5042 {
5043 if (globals->use_blx)
5044 {
5045 /* Convert BL to BLX. */
5046 lower_insn = (lower_insn & ~0x1000) | 0x0800;
5047 }
5048 else if (elf32_thumb_to_arm_stub
5049 (info, sym_name, input_bfd, output_bfd, input_section,
5050 hit_data, sym_sec, rel->r_offset, signed_addend, value,
5051 error_message))
5052 return bfd_reloc_ok;
5053 else
5054 return bfd_reloc_dangerous;
5055 }
5056 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx)
5057 {
5058 /* Make sure this is a BL. */
5059 lower_insn |= 0x1800;
5060 }
5061 }
5062
5063 /* Handle calls via the PLT. */
5064 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
5065 {
5066 value = (splt->output_section->vma
5067 + splt->output_offset
5068 + h->plt.offset);
5069 if (globals->use_blx)
5070 {
5071 /* If the Thumb BLX instruction is available, convert the
5072 BL to a BLX instruction to call the ARM-mode PLT entry. */
5073 lower_insn = (lower_insn & ~0x1000) | 0x0800;
5074 }
5075 else
5076 /* Target the Thumb stub before the ARM PLT entry. */
5077 value -= PLT_THUMB_STUB_SIZE;
5078 *unresolved_reloc_p = FALSE;
5079 }
5080
5081 relocation = value + signed_addend;
5082
5083 relocation -= (input_section->output_section->vma
5084 + input_section->output_offset
5085 + rel->r_offset);
5086
5087 check = relocation >> howto->rightshift;
5088
5089 /* If this is a signed value, the rightshift just dropped
5090 leading 1 bits (assuming twos complement). */
5091 if ((bfd_signed_vma) relocation >= 0)
5092 signed_check = check;
5093 else
5094 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
5095
5096 /* Calculate the permissable maximum and minimum values for
5097 this relocation according to whether we're relocating for
5098 Thumb-2 or not. */
5099 bitsize = howto->bitsize;
5100 if (!thumb2)
5101 bitsize -= 2;
5102 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
5103 reloc_signed_min = ~reloc_signed_max;
5104
5105 /* Assumes two's complement. */
5106 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5107 overflow = TRUE;
5108
5109 if ((lower_insn & 0x1800) == 0x0800)
5110 /* For a BLX instruction, make sure that the relocation is rounded up
5111 to a word boundary. This follows the semantics of the instruction
5112 which specifies that bit 1 of the target address will come from bit
5113 1 of the base address. */
5114 relocation = (relocation + 2) & ~ 3;
5115
5116 /* Put RELOCATION back into the insn. Assumes two's complement.
5117 We use the Thumb-2 encoding, which is safe even if dealing with
5118 a Thumb-1 instruction by virtue of our overflow check above. */
5119 reloc_sign = (signed_check < 0) ? 1 : 0;
5120 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
5121 | ((relocation >> 12) & 0x3ff)
5122 | (reloc_sign << 10);
5123 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
5124 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
5125 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
5126 | ((relocation >> 1) & 0x7ff);
5127
5128 /* Put the relocated value back in the object file: */
5129 bfd_put_16 (input_bfd, upper_insn, hit_data);
5130 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
5131
5132 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
5133 }
5134 break;
5135
5136 case R_ARM_THM_JUMP24:
5137 /* Thumb32 unconditional branch instruction. */
5138 {
5139 bfd_vma relocation;
5140 bfd_boolean overflow = FALSE;
5141 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
5142 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
5143 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
5144 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
5145 bfd_vma check;
5146 bfd_signed_vma signed_check;
5147
5148 /* Need to refetch the addend, reconstruct the top three bits, and glue the
5149 two pieces together. */
5150 if (globals->use_rel)
5151 {
5152 bfd_vma S = (upper_insn & 0x0400) >> 10;
5153 bfd_vma hi = (upper_insn & 0x03ff);
5154 bfd_vma I1 = (lower_insn & 0x2000) >> 13;
5155 bfd_vma I2 = (lower_insn & 0x0800) >> 11;
5156 bfd_vma lo = (lower_insn & 0x07ff);
5157
5158 I1 = !(I1 ^ S);
5159 I2 = !(I2 ^ S);
5160 S = !S;
5161
5162 signed_addend = (S << 24) | (I1 << 23) | (I2 << 22) | (hi << 12) | (lo << 1);
5163 signed_addend -= (1 << 24); /* Sign extend. */
5164 }
5165
5166 /* ??? Should handle interworking? GCC might someday try to
5167 use this for tail calls. */
5168
5169 relocation = value + signed_addend;
5170 relocation -= (input_section->output_section->vma
5171 + input_section->output_offset
5172 + rel->r_offset);
5173
5174 check = relocation >> howto->rightshift;
5175
5176 /* If this is a signed value, the rightshift just dropped
5177 leading 1 bits (assuming twos complement). */
5178 if ((bfd_signed_vma) relocation >= 0)
5179 signed_check = check;
5180 else
5181 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
5182
5183 /* Assumes two's complement. */
5184 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5185 overflow = TRUE;
5186
5187 /* Put RELOCATION back into the insn. */
5188 {
5189 bfd_vma S = (relocation & 0x01000000) >> 24;
5190 bfd_vma I1 = (relocation & 0x00800000) >> 23;
5191 bfd_vma I2 = (relocation & 0x00400000) >> 22;
5192 bfd_vma hi = (relocation & 0x003ff000) >> 12;
5193 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
5194
5195 I1 = !(I1 ^ S);
5196 I2 = !(I2 ^ S);
5197
5198 upper_insn = (upper_insn & (bfd_vma) 0xf800) | (S << 10) | hi;
5199 lower_insn = (lower_insn & (bfd_vma) 0xd000) | (I1 << 13) | (I2 << 11) | lo;
5200 }
5201
5202 /* Put the relocated value back in the object file: */
5203 bfd_put_16 (input_bfd, upper_insn, hit_data);
5204 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
5205
5206 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
5207 }
5208
5209 case R_ARM_THM_JUMP19:
5210 /* Thumb32 conditional branch instruction. */
5211 {
5212 bfd_vma relocation;
5213 bfd_boolean overflow = FALSE;
5214 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
5215 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
5216 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
5217 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
5218 bfd_vma check;
5219 bfd_signed_vma signed_check;
5220
5221 /* Need to refetch the addend, reconstruct the top three bits,
5222 and squish the two 11 bit pieces together. */
5223 if (globals->use_rel)
5224 {
5225 bfd_vma S = (upper_insn & 0x0400) >> 10;
5226 bfd_vma upper = (upper_insn & 0x001f);
5227 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
5228 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
5229 bfd_vma lower = (lower_insn & 0x07ff);
5230
5231 upper |= J2 << 6;
5232 upper |= J1 << 7;
5233 upper |= ~S << 8;
5234 upper -= 0x0100; /* Sign extend. */
5235
5236 addend = (upper << 12) | (lower << 1);
5237 signed_addend = addend;
5238 }
5239
5240 /* ??? Should handle interworking? GCC might someday try to
5241 use this for tail calls. */
5242
5243 relocation = value + signed_addend;
5244 relocation -= (input_section->output_section->vma
5245 + input_section->output_offset
5246 + rel->r_offset);
5247
5248 check = relocation >> howto->rightshift;
5249
5250 /* If this is a signed value, the rightshift just dropped
5251 leading 1 bits (assuming twos complement). */
5252 if ((bfd_signed_vma) relocation >= 0)
5253 signed_check = check;
5254 else
5255 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
5256
5257 /* Assumes two's complement. */
5258 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5259 overflow = TRUE;
5260
5261 /* Put RELOCATION back into the insn. */
5262 {
5263 bfd_vma S = (relocation & 0x00100000) >> 20;
5264 bfd_vma J2 = (relocation & 0x00080000) >> 19;
5265 bfd_vma J1 = (relocation & 0x00040000) >> 18;
5266 bfd_vma hi = (relocation & 0x0003f000) >> 12;
5267 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
5268
5269 upper_insn = (upper_insn & 0xfb30) | (S << 10) | hi;
5270 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
5271 }
5272
5273 /* Put the relocated value back in the object file: */
5274 bfd_put_16 (input_bfd, upper_insn, hit_data);
5275 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
5276
5277 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
5278 }
5279
5280 case R_ARM_THM_JUMP11:
5281 case R_ARM_THM_JUMP8:
5282 case R_ARM_THM_JUMP6:
5283 /* Thumb B (branch) instruction). */
5284 {
5285 bfd_signed_vma relocation;
5286 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
5287 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
5288 bfd_signed_vma signed_check;
5289
5290 /* CZB cannot jump backward. */
5291 if (r_type == R_ARM_THM_JUMP6)
5292 reloc_signed_min = 0;
5293
5294 if (globals->use_rel)
5295 {
5296 /* Need to refetch addend. */
5297 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
5298 if (addend & ((howto->src_mask + 1) >> 1))
5299 {
5300 signed_addend = -1;
5301 signed_addend &= ~ howto->src_mask;
5302 signed_addend |= addend;
5303 }
5304 else
5305 signed_addend = addend;
5306 /* The value in the insn has been right shifted. We need to
5307 undo this, so that we can perform the address calculation
5308 in terms of bytes. */
5309 signed_addend <<= howto->rightshift;
5310 }
5311 relocation = value + signed_addend;
5312
5313 relocation -= (input_section->output_section->vma
5314 + input_section->output_offset
5315 + rel->r_offset);
5316
5317 relocation >>= howto->rightshift;
5318 signed_check = relocation;
5319
5320 if (r_type == R_ARM_THM_JUMP6)
5321 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
5322 else
5323 relocation &= howto->dst_mask;
5324 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
5325
5326 bfd_put_16 (input_bfd, relocation, hit_data);
5327
5328 /* Assumes two's complement. */
5329 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5330 return bfd_reloc_overflow;
5331
5332 return bfd_reloc_ok;
5333 }
5334
5335 case R_ARM_ALU_PCREL7_0:
5336 case R_ARM_ALU_PCREL15_8:
5337 case R_ARM_ALU_PCREL23_15:
5338 {
5339 bfd_vma insn;
5340 bfd_vma relocation;
5341
5342 insn = bfd_get_32 (input_bfd, hit_data);
5343 if (globals->use_rel)
5344 {
5345 /* Extract the addend. */
5346 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
5347 signed_addend = addend;
5348 }
5349 relocation = value + signed_addend;
5350
5351 relocation -= (input_section->output_section->vma
5352 + input_section->output_offset
5353 + rel->r_offset);
5354 insn = (insn & ~0xfff)
5355 | ((howto->bitpos << 7) & 0xf00)
5356 | ((relocation >> howto->bitpos) & 0xff);
5357 bfd_put_32 (input_bfd, value, hit_data);
5358 }
5359 return bfd_reloc_ok;
5360
5361 case R_ARM_GNU_VTINHERIT:
5362 case R_ARM_GNU_VTENTRY:
5363 return bfd_reloc_ok;
5364
5365 case R_ARM_GOTOFF32:
5366 /* Relocation is relative to the start of the
5367 global offset table. */
5368
5369 BFD_ASSERT (sgot != NULL);
5370 if (sgot == NULL)
5371 return bfd_reloc_notsupported;
5372
5373 /* If we are addressing a Thumb function, we need to adjust the
5374 address by one, so that attempts to call the function pointer will
5375 correctly interpret it as Thumb code. */
5376 if (sym_flags == STT_ARM_TFUNC)
5377 value += 1;
5378
5379 /* Note that sgot->output_offset is not involved in this
5380 calculation. We always want the start of .got. If we
5381 define _GLOBAL_OFFSET_TABLE in a different way, as is
5382 permitted by the ABI, we might have to change this
5383 calculation. */
5384 value -= sgot->output_section->vma;
5385 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5386 contents, rel->r_offset, value,
5387 rel->r_addend);
5388
5389 case R_ARM_GOTPC:
5390 /* Use global offset table as symbol value. */
5391 BFD_ASSERT (sgot != NULL);
5392
5393 if (sgot == NULL)
5394 return bfd_reloc_notsupported;
5395
5396 *unresolved_reloc_p = FALSE;
5397 value = sgot->output_section->vma;
5398 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5399 contents, rel->r_offset, value,
5400 rel->r_addend);
5401
5402 case R_ARM_GOT32:
5403 case R_ARM_GOT_PREL:
5404 /* Relocation is to the entry for this symbol in the
5405 global offset table. */
5406 if (sgot == NULL)
5407 return bfd_reloc_notsupported;
5408
5409 if (h != NULL)
5410 {
5411 bfd_vma off;
5412 bfd_boolean dyn;
5413
5414 off = h->got.offset;
5415 BFD_ASSERT (off != (bfd_vma) -1);
5416 dyn = globals->root.dynamic_sections_created;
5417
5418 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
5419 || (info->shared
5420 && SYMBOL_REFERENCES_LOCAL (info, h))
5421 || (ELF_ST_VISIBILITY (h->other)
5422 && h->root.type == bfd_link_hash_undefweak))
5423 {
5424 /* This is actually a static link, or it is a -Bsymbolic link
5425 and the symbol is defined locally. We must initialize this
5426 entry in the global offset table. Since the offset must
5427 always be a multiple of 4, we use the least significant bit
5428 to record whether we have initialized it already.
5429
5430 When doing a dynamic link, we create a .rel(a).got relocation
5431 entry to initialize the value. This is done in the
5432 finish_dynamic_symbol routine. */
5433 if ((off & 1) != 0)
5434 off &= ~1;
5435 else
5436 {
5437 /* If we are addressing a Thumb function, we need to
5438 adjust the address by one, so that attempts to
5439 call the function pointer will correctly
5440 interpret it as Thumb code. */
5441 if (sym_flags == STT_ARM_TFUNC)
5442 value |= 1;
5443
5444 bfd_put_32 (output_bfd, value, sgot->contents + off);
5445 h->got.offset |= 1;
5446 }
5447 }
5448 else
5449 *unresolved_reloc_p = FALSE;
5450
5451 value = sgot->output_offset + off;
5452 }
5453 else
5454 {
5455 bfd_vma off;
5456
5457 BFD_ASSERT (local_got_offsets != NULL &&
5458 local_got_offsets[r_symndx] != (bfd_vma) -1);
5459
5460 off = local_got_offsets[r_symndx];
5461
5462 /* The offset must always be a multiple of 4. We use the
5463 least significant bit to record whether we have already
5464 generated the necessary reloc. */
5465 if ((off & 1) != 0)
5466 off &= ~1;
5467 else
5468 {
5469 /* If we are addressing a Thumb function, we need to
5470 adjust the address by one, so that attempts to
5471 call the function pointer will correctly
5472 interpret it as Thumb code. */
5473 if (sym_flags == STT_ARM_TFUNC)
5474 value |= 1;
5475
5476 if (globals->use_rel)
5477 bfd_put_32 (output_bfd, value, sgot->contents + off);
5478
5479 if (info->shared)
5480 {
5481 asection * srelgot;
5482 Elf_Internal_Rela outrel;
5483 bfd_byte *loc;
5484
5485 srelgot = (bfd_get_section_by_name
5486 (dynobj, RELOC_SECTION (globals, ".got")));
5487 BFD_ASSERT (srelgot != NULL);
5488
5489 outrel.r_addend = addend + value;
5490 outrel.r_offset = (sgot->output_section->vma
5491 + sgot->output_offset
5492 + off);
5493 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
5494 loc = srelgot->contents;
5495 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
5496 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5497 }
5498
5499 local_got_offsets[r_symndx] |= 1;
5500 }
5501
5502 value = sgot->output_offset + off;
5503 }
5504 if (r_type != R_ARM_GOT32)
5505 value += sgot->output_section->vma;
5506
5507 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5508 contents, rel->r_offset, value,
5509 rel->r_addend);
5510
5511 case R_ARM_TLS_LDO32:
5512 value = value - dtpoff_base (info);
5513
5514 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5515 contents, rel->r_offset, value,
5516 rel->r_addend);
5517
5518 case R_ARM_TLS_LDM32:
5519 {
5520 bfd_vma off;
5521
5522 if (globals->sgot == NULL)
5523 abort ();
5524
5525 off = globals->tls_ldm_got.offset;
5526
5527 if ((off & 1) != 0)
5528 off &= ~1;
5529 else
5530 {
5531 /* If we don't know the module number, create a relocation
5532 for it. */
5533 if (info->shared)
5534 {
5535 Elf_Internal_Rela outrel;
5536 bfd_byte *loc;
5537
5538 if (globals->srelgot == NULL)
5539 abort ();
5540
5541 outrel.r_addend = 0;
5542 outrel.r_offset = (globals->sgot->output_section->vma
5543 + globals->sgot->output_offset + off);
5544 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
5545
5546 if (globals->use_rel)
5547 bfd_put_32 (output_bfd, outrel.r_addend,
5548 globals->sgot->contents + off);
5549
5550 loc = globals->srelgot->contents;
5551 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
5552 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5553 }
5554 else
5555 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
5556
5557 globals->tls_ldm_got.offset |= 1;
5558 }
5559
5560 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
5561 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
5562
5563 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5564 contents, rel->r_offset, value,
5565 rel->r_addend);
5566 }
5567
5568 case R_ARM_TLS_GD32:
5569 case R_ARM_TLS_IE32:
5570 {
5571 bfd_vma off;
5572 int indx;
5573 char tls_type;
5574
5575 if (globals->sgot == NULL)
5576 abort ();
5577
5578 indx = 0;
5579 if (h != NULL)
5580 {
5581 bfd_boolean dyn;
5582 dyn = globals->root.dynamic_sections_created;
5583 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
5584 && (!info->shared
5585 || !SYMBOL_REFERENCES_LOCAL (info, h)))
5586 {
5587 *unresolved_reloc_p = FALSE;
5588 indx = h->dynindx;
5589 }
5590 off = h->got.offset;
5591 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
5592 }
5593 else
5594 {
5595 if (local_got_offsets == NULL)
5596 abort ();
5597 off = local_got_offsets[r_symndx];
5598 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
5599 }
5600
5601 if (tls_type == GOT_UNKNOWN)
5602 abort ();
5603
5604 if ((off & 1) != 0)
5605 off &= ~1;
5606 else
5607 {
5608 bfd_boolean need_relocs = FALSE;
5609 Elf_Internal_Rela outrel;
5610 bfd_byte *loc = NULL;
5611 int cur_off = off;
5612
5613 /* The GOT entries have not been initialized yet. Do it
5614 now, and emit any relocations. If both an IE GOT and a
5615 GD GOT are necessary, we emit the GD first. */
5616
5617 if ((info->shared || indx != 0)
5618 && (h == NULL
5619 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5620 || h->root.type != bfd_link_hash_undefweak))
5621 {
5622 need_relocs = TRUE;
5623 if (globals->srelgot == NULL)
5624 abort ();
5625 loc = globals->srelgot->contents;
5626 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
5627 }
5628
5629 if (tls_type & GOT_TLS_GD)
5630 {
5631 if (need_relocs)
5632 {
5633 outrel.r_addend = 0;
5634 outrel.r_offset = (globals->sgot->output_section->vma
5635 + globals->sgot->output_offset
5636 + cur_off);
5637 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
5638
5639 if (globals->use_rel)
5640 bfd_put_32 (output_bfd, outrel.r_addend,
5641 globals->sgot->contents + cur_off);
5642
5643 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5644 globals->srelgot->reloc_count++;
5645 loc += RELOC_SIZE (globals);
5646
5647 if (indx == 0)
5648 bfd_put_32 (output_bfd, value - dtpoff_base (info),
5649 globals->sgot->contents + cur_off + 4);
5650 else
5651 {
5652 outrel.r_addend = 0;
5653 outrel.r_info = ELF32_R_INFO (indx,
5654 R_ARM_TLS_DTPOFF32);
5655 outrel.r_offset += 4;
5656
5657 if (globals->use_rel)
5658 bfd_put_32 (output_bfd, outrel.r_addend,
5659 globals->sgot->contents + cur_off + 4);
5660
5661
5662 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5663 globals->srelgot->reloc_count++;
5664 loc += RELOC_SIZE (globals);
5665 }
5666 }
5667 else
5668 {
5669 /* If we are not emitting relocations for a
5670 general dynamic reference, then we must be in a
5671 static link or an executable link with the
5672 symbol binding locally. Mark it as belonging
5673 to module 1, the executable. */
5674 bfd_put_32 (output_bfd, 1,
5675 globals->sgot->contents + cur_off);
5676 bfd_put_32 (output_bfd, value - dtpoff_base (info),
5677 globals->sgot->contents + cur_off + 4);
5678 }
5679
5680 cur_off += 8;
5681 }
5682
5683 if (tls_type & GOT_TLS_IE)
5684 {
5685 if (need_relocs)
5686 {
5687 if (indx == 0)
5688 outrel.r_addend = value - dtpoff_base (info);
5689 else
5690 outrel.r_addend = 0;
5691 outrel.r_offset = (globals->sgot->output_section->vma
5692 + globals->sgot->output_offset
5693 + cur_off);
5694 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
5695
5696 if (globals->use_rel)
5697 bfd_put_32 (output_bfd, outrel.r_addend,
5698 globals->sgot->contents + cur_off);
5699
5700 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5701 globals->srelgot->reloc_count++;
5702 loc += RELOC_SIZE (globals);
5703 }
5704 else
5705 bfd_put_32 (output_bfd, tpoff (info, value),
5706 globals->sgot->contents + cur_off);
5707 cur_off += 4;
5708 }
5709
5710 if (h != NULL)
5711 h->got.offset |= 1;
5712 else
5713 local_got_offsets[r_symndx] |= 1;
5714 }
5715
5716 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
5717 off += 8;
5718 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
5719 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
5720
5721 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5722 contents, rel->r_offset, value,
5723 rel->r_addend);
5724 }
5725
5726 case R_ARM_TLS_LE32:
5727 if (info->shared)
5728 {
5729 (*_bfd_error_handler)
5730 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
5731 input_bfd, input_section,
5732 (long) rel->r_offset, howto->name);
5733 return FALSE;
5734 }
5735 else
5736 value = tpoff (info, value);
5737
5738 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5739 contents, rel->r_offset, value,
5740 rel->r_addend);
5741
5742 case R_ARM_V4BX:
5743 if (globals->fix_v4bx)
5744 {
5745 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
5746
5747 /* Ensure that we have a BX instruction. */
5748 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
5749
5750 /* Preserve Rm (lowest four bits) and the condition code
5751 (highest four bits). Other bits encode MOV PC,Rm. */
5752 insn = (insn & 0xf000000f) | 0x01a0f000;
5753
5754 bfd_put_32 (input_bfd, insn, hit_data);
5755 }
5756 return bfd_reloc_ok;
5757
5758 case R_ARM_MOVW_ABS_NC:
5759 case R_ARM_MOVT_ABS:
5760 case R_ARM_MOVW_PREL_NC:
5761 case R_ARM_MOVT_PREL:
5762 /* Until we properly support segment-base-relative addressing then
5763 we assume the segment base to be zero, as for the group relocations.
5764 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
5765 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
5766 case R_ARM_MOVW_BREL_NC:
5767 case R_ARM_MOVW_BREL:
5768 case R_ARM_MOVT_BREL:
5769 {
5770 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
5771
5772 if (globals->use_rel)
5773 {
5774 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
5775 signed_addend = (addend ^ 0x10000) - 0x10000;
5776 }
5777
5778 value += signed_addend;
5779
5780 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
5781 value -= (input_section->output_section->vma
5782 + input_section->output_offset + rel->r_offset);
5783
5784 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
5785 return bfd_reloc_overflow;
5786
5787 if (sym_flags == STT_ARM_TFUNC)
5788 value |= 1;
5789
5790 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
5791 || r_type == R_ARM_MOVT_BREL)
5792 value >>= 16;
5793
5794 insn &= 0xfff0f000;
5795 insn |= value & 0xfff;
5796 insn |= (value & 0xf000) << 4;
5797 bfd_put_32 (input_bfd, insn, hit_data);
5798 }
5799 return bfd_reloc_ok;
5800
5801 case R_ARM_THM_MOVW_ABS_NC:
5802 case R_ARM_THM_MOVT_ABS:
5803 case R_ARM_THM_MOVW_PREL_NC:
5804 case R_ARM_THM_MOVT_PREL:
5805 /* Until we properly support segment-base-relative addressing then
5806 we assume the segment base to be zero, as for the above relocations.
5807 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
5808 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
5809 as R_ARM_THM_MOVT_ABS. */
5810 case R_ARM_THM_MOVW_BREL_NC:
5811 case R_ARM_THM_MOVW_BREL:
5812 case R_ARM_THM_MOVT_BREL:
5813 {
5814 bfd_vma insn;
5815
5816 insn = bfd_get_16 (input_bfd, hit_data) << 16;
5817 insn |= bfd_get_16 (input_bfd, hit_data + 2);
5818
5819 if (globals->use_rel)
5820 {
5821 addend = ((insn >> 4) & 0xf000)
5822 | ((insn >> 15) & 0x0800)
5823 | ((insn >> 4) & 0x0700)
5824 | (insn & 0x00ff);
5825 signed_addend = (addend ^ 0x10000) - 0x10000;
5826 }
5827
5828 value += signed_addend;
5829
5830 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
5831 value -= (input_section->output_section->vma
5832 + input_section->output_offset + rel->r_offset);
5833
5834 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
5835 return bfd_reloc_overflow;
5836
5837 if (sym_flags == STT_ARM_TFUNC)
5838 value |= 1;
5839
5840 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
5841 || r_type == R_ARM_THM_MOVT_BREL)
5842 value >>= 16;
5843
5844 insn &= 0xfbf08f00;
5845 insn |= (value & 0xf000) << 4;
5846 insn |= (value & 0x0800) << 15;
5847 insn |= (value & 0x0700) << 4;
5848 insn |= (value & 0x00ff);
5849
5850 bfd_put_16 (input_bfd, insn >> 16, hit_data);
5851 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
5852 }
5853 return bfd_reloc_ok;
5854
5855 case R_ARM_ALU_PC_G0_NC:
5856 case R_ARM_ALU_PC_G1_NC:
5857 case R_ARM_ALU_PC_G0:
5858 case R_ARM_ALU_PC_G1:
5859 case R_ARM_ALU_PC_G2:
5860 case R_ARM_ALU_SB_G0_NC:
5861 case R_ARM_ALU_SB_G1_NC:
5862 case R_ARM_ALU_SB_G0:
5863 case R_ARM_ALU_SB_G1:
5864 case R_ARM_ALU_SB_G2:
5865 {
5866 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
5867 bfd_vma pc = input_section->output_section->vma
5868 + input_section->output_offset + rel->r_offset;
5869 /* sb should be the origin of the *segment* containing the symbol.
5870 It is not clear how to obtain this OS-dependent value, so we
5871 make an arbitrary choice of zero. */
5872 bfd_vma sb = 0;
5873 bfd_vma residual;
5874 bfd_vma g_n;
5875 bfd_signed_vma signed_value;
5876 int group = 0;
5877
5878 /* Determine which group of bits to select. */
5879 switch (r_type)
5880 {
5881 case R_ARM_ALU_PC_G0_NC:
5882 case R_ARM_ALU_PC_G0:
5883 case R_ARM_ALU_SB_G0_NC:
5884 case R_ARM_ALU_SB_G0:
5885 group = 0;
5886 break;
5887
5888 case R_ARM_ALU_PC_G1_NC:
5889 case R_ARM_ALU_PC_G1:
5890 case R_ARM_ALU_SB_G1_NC:
5891 case R_ARM_ALU_SB_G1:
5892 group = 1;
5893 break;
5894
5895 case R_ARM_ALU_PC_G2:
5896 case R_ARM_ALU_SB_G2:
5897 group = 2;
5898 break;
5899
5900 default:
5901 abort();
5902 }
5903
5904 /* If REL, extract the addend from the insn. If RELA, it will
5905 have already been fetched for us. */
5906 if (globals->use_rel)
5907 {
5908 int negative;
5909 bfd_vma constant = insn & 0xff;
5910 bfd_vma rotation = (insn & 0xf00) >> 8;
5911
5912 if (rotation == 0)
5913 signed_addend = constant;
5914 else
5915 {
5916 /* Compensate for the fact that in the instruction, the
5917 rotation is stored in multiples of 2 bits. */
5918 rotation *= 2;
5919
5920 /* Rotate "constant" right by "rotation" bits. */
5921 signed_addend = (constant >> rotation) |
5922 (constant << (8 * sizeof (bfd_vma) - rotation));
5923 }
5924
5925 /* Determine if the instruction is an ADD or a SUB.
5926 (For REL, this determines the sign of the addend.) */
5927 negative = identify_add_or_sub (insn);
5928 if (negative == 0)
5929 {
5930 (*_bfd_error_handler)
5931 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
5932 input_bfd, input_section,
5933 (long) rel->r_offset, howto->name);
5934 return bfd_reloc_overflow;
5935 }
5936
5937 signed_addend *= negative;
5938 }
5939
5940 /* Compute the value (X) to go in the place. */
5941 if (r_type == R_ARM_ALU_PC_G0_NC
5942 || r_type == R_ARM_ALU_PC_G1_NC
5943 || r_type == R_ARM_ALU_PC_G0
5944 || r_type == R_ARM_ALU_PC_G1
5945 || r_type == R_ARM_ALU_PC_G2)
5946 /* PC relative. */
5947 signed_value = value - pc + signed_addend;
5948 else
5949 /* Section base relative. */
5950 signed_value = value - sb + signed_addend;
5951
5952 /* If the target symbol is a Thumb function, then set the
5953 Thumb bit in the address. */
5954 if (sym_flags == STT_ARM_TFUNC)
5955 signed_value |= 1;
5956
5957 /* Calculate the value of the relevant G_n, in encoded
5958 constant-with-rotation format. */
5959 g_n = calculate_group_reloc_mask (abs (signed_value), group,
5960 &residual);
5961
5962 /* Check for overflow if required. */
5963 if ((r_type == R_ARM_ALU_PC_G0
5964 || r_type == R_ARM_ALU_PC_G1
5965 || r_type == R_ARM_ALU_PC_G2
5966 || r_type == R_ARM_ALU_SB_G0
5967 || r_type == R_ARM_ALU_SB_G1
5968 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
5969 {
5970 (*_bfd_error_handler)
5971 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
5972 input_bfd, input_section,
5973 (long) rel->r_offset, abs (signed_value), howto->name);
5974 return bfd_reloc_overflow;
5975 }
5976
5977 /* Mask out the value and the ADD/SUB part of the opcode; take care
5978 not to destroy the S bit. */
5979 insn &= 0xff1ff000;
5980
5981 /* Set the opcode according to whether the value to go in the
5982 place is negative. */
5983 if (signed_value < 0)
5984 insn |= 1 << 22;
5985 else
5986 insn |= 1 << 23;
5987
5988 /* Encode the offset. */
5989 insn |= g_n;
5990
5991 bfd_put_32 (input_bfd, insn, hit_data);
5992 }
5993 return bfd_reloc_ok;
5994
5995 case R_ARM_LDR_PC_G0:
5996 case R_ARM_LDR_PC_G1:
5997 case R_ARM_LDR_PC_G2:
5998 case R_ARM_LDR_SB_G0:
5999 case R_ARM_LDR_SB_G1:
6000 case R_ARM_LDR_SB_G2:
6001 {
6002 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6003 bfd_vma pc = input_section->output_section->vma
6004 + input_section->output_offset + rel->r_offset;
6005 bfd_vma sb = 0; /* See note above. */
6006 bfd_vma residual;
6007 bfd_signed_vma signed_value;
6008 int group = 0;
6009
6010 /* Determine which groups of bits to calculate. */
6011 switch (r_type)
6012 {
6013 case R_ARM_LDR_PC_G0:
6014 case R_ARM_LDR_SB_G0:
6015 group = 0;
6016 break;
6017
6018 case R_ARM_LDR_PC_G1:
6019 case R_ARM_LDR_SB_G1:
6020 group = 1;
6021 break;
6022
6023 case R_ARM_LDR_PC_G2:
6024 case R_ARM_LDR_SB_G2:
6025 group = 2;
6026 break;
6027
6028 default:
6029 abort();
6030 }
6031
6032 /* If REL, extract the addend from the insn. If RELA, it will
6033 have already been fetched for us. */
6034 if (globals->use_rel)
6035 {
6036 int negative = (insn & (1 << 23)) ? 1 : -1;
6037 signed_addend = negative * (insn & 0xfff);
6038 }
6039
6040 /* Compute the value (X) to go in the place. */
6041 if (r_type == R_ARM_LDR_PC_G0
6042 || r_type == R_ARM_LDR_PC_G1
6043 || r_type == R_ARM_LDR_PC_G2)
6044 /* PC relative. */
6045 signed_value = value - pc + signed_addend;
6046 else
6047 /* Section base relative. */
6048 signed_value = value - sb + signed_addend;
6049
6050 /* Calculate the value of the relevant G_{n-1} to obtain
6051 the residual at that stage. */
6052 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6053
6054 /* Check for overflow. */
6055 if (residual >= 0x1000)
6056 {
6057 (*_bfd_error_handler)
6058 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6059 input_bfd, input_section,
6060 (long) rel->r_offset, abs (signed_value), howto->name);
6061 return bfd_reloc_overflow;
6062 }
6063
6064 /* Mask out the value and U bit. */
6065 insn &= 0xff7ff000;
6066
6067 /* Set the U bit if the value to go in the place is non-negative. */
6068 if (signed_value >= 0)
6069 insn |= 1 << 23;
6070
6071 /* Encode the offset. */
6072 insn |= residual;
6073
6074 bfd_put_32 (input_bfd, insn, hit_data);
6075 }
6076 return bfd_reloc_ok;
6077
6078 case R_ARM_LDRS_PC_G0:
6079 case R_ARM_LDRS_PC_G1:
6080 case R_ARM_LDRS_PC_G2:
6081 case R_ARM_LDRS_SB_G0:
6082 case R_ARM_LDRS_SB_G1:
6083 case R_ARM_LDRS_SB_G2:
6084 {
6085 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6086 bfd_vma pc = input_section->output_section->vma
6087 + input_section->output_offset + rel->r_offset;
6088 bfd_vma sb = 0; /* See note above. */
6089 bfd_vma residual;
6090 bfd_signed_vma signed_value;
6091 int group = 0;
6092
6093 /* Determine which groups of bits to calculate. */
6094 switch (r_type)
6095 {
6096 case R_ARM_LDRS_PC_G0:
6097 case R_ARM_LDRS_SB_G0:
6098 group = 0;
6099 break;
6100
6101 case R_ARM_LDRS_PC_G1:
6102 case R_ARM_LDRS_SB_G1:
6103 group = 1;
6104 break;
6105
6106 case R_ARM_LDRS_PC_G2:
6107 case R_ARM_LDRS_SB_G2:
6108 group = 2;
6109 break;
6110
6111 default:
6112 abort();
6113 }
6114
6115 /* If REL, extract the addend from the insn. If RELA, it will
6116 have already been fetched for us. */
6117 if (globals->use_rel)
6118 {
6119 int negative = (insn & (1 << 23)) ? 1 : -1;
6120 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
6121 }
6122
6123 /* Compute the value (X) to go in the place. */
6124 if (r_type == R_ARM_LDRS_PC_G0
6125 || r_type == R_ARM_LDRS_PC_G1
6126 || r_type == R_ARM_LDRS_PC_G2)
6127 /* PC relative. */
6128 signed_value = value - pc + signed_addend;
6129 else
6130 /* Section base relative. */
6131 signed_value = value - sb + signed_addend;
6132
6133 /* Calculate the value of the relevant G_{n-1} to obtain
6134 the residual at that stage. */
6135 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6136
6137 /* Check for overflow. */
6138 if (residual >= 0x100)
6139 {
6140 (*_bfd_error_handler)
6141 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6142 input_bfd, input_section,
6143 (long) rel->r_offset, abs (signed_value), howto->name);
6144 return bfd_reloc_overflow;
6145 }
6146
6147 /* Mask out the value and U bit. */
6148 insn &= 0xff7ff0f0;
6149
6150 /* Set the U bit if the value to go in the place is non-negative. */
6151 if (signed_value >= 0)
6152 insn |= 1 << 23;
6153
6154 /* Encode the offset. */
6155 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
6156
6157 bfd_put_32 (input_bfd, insn, hit_data);
6158 }
6159 return bfd_reloc_ok;
6160
6161 case R_ARM_LDC_PC_G0:
6162 case R_ARM_LDC_PC_G1:
6163 case R_ARM_LDC_PC_G2:
6164 case R_ARM_LDC_SB_G0:
6165 case R_ARM_LDC_SB_G1:
6166 case R_ARM_LDC_SB_G2:
6167 {
6168 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6169 bfd_vma pc = input_section->output_section->vma
6170 + input_section->output_offset + rel->r_offset;
6171 bfd_vma sb = 0; /* See note above. */
6172 bfd_vma residual;
6173 bfd_signed_vma signed_value;
6174 int group = 0;
6175
6176 /* Determine which groups of bits to calculate. */
6177 switch (r_type)
6178 {
6179 case R_ARM_LDC_PC_G0:
6180 case R_ARM_LDC_SB_G0:
6181 group = 0;
6182 break;
6183
6184 case R_ARM_LDC_PC_G1:
6185 case R_ARM_LDC_SB_G1:
6186 group = 1;
6187 break;
6188
6189 case R_ARM_LDC_PC_G2:
6190 case R_ARM_LDC_SB_G2:
6191 group = 2;
6192 break;
6193
6194 default:
6195 abort();
6196 }
6197
6198 /* If REL, extract the addend from the insn. If RELA, it will
6199 have already been fetched for us. */
6200 if (globals->use_rel)
6201 {
6202 int negative = (insn & (1 << 23)) ? 1 : -1;
6203 signed_addend = negative * ((insn & 0xff) << 2);
6204 }
6205
6206 /* Compute the value (X) to go in the place. */
6207 if (r_type == R_ARM_LDC_PC_G0
6208 || r_type == R_ARM_LDC_PC_G1
6209 || r_type == R_ARM_LDC_PC_G2)
6210 /* PC relative. */
6211 signed_value = value - pc + signed_addend;
6212 else
6213 /* Section base relative. */
6214 signed_value = value - sb + signed_addend;
6215
6216 /* Calculate the value of the relevant G_{n-1} to obtain
6217 the residual at that stage. */
6218 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6219
6220 /* Check for overflow. (The absolute value to go in the place must be
6221 divisible by four and, after having been divided by four, must
6222 fit in eight bits.) */
6223 if ((residual & 0x3) != 0 || residual >= 0x400)
6224 {
6225 (*_bfd_error_handler)
6226 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6227 input_bfd, input_section,
6228 (long) rel->r_offset, abs (signed_value), howto->name);
6229 return bfd_reloc_overflow;
6230 }
6231
6232 /* Mask out the value and U bit. */
6233 insn &= 0xff7fff00;
6234
6235 /* Set the U bit if the value to go in the place is non-negative. */
6236 if (signed_value >= 0)
6237 insn |= 1 << 23;
6238
6239 /* Encode the offset. */
6240 insn |= residual >> 2;
6241
6242 bfd_put_32 (input_bfd, insn, hit_data);
6243 }
6244 return bfd_reloc_ok;
6245
6246 default:
6247 return bfd_reloc_notsupported;
6248 }
6249 }
6250
6251
6252 static int
6253 uleb128_size (unsigned int i)
6254 {
6255 int size;
6256 size = 1;
6257 while (i >= 0x80)
6258 {
6259 i >>= 7;
6260 size++;
6261 }
6262 return size;
6263 }
6264
6265 /* Return TRUE if the attribute has the default value (0/""). */
6266 static bfd_boolean
6267 is_default_attr (aeabi_attribute *attr)
6268 {
6269 if ((attr->type & 1) && attr->i != 0)
6270 return FALSE;
6271 if ((attr->type & 2) && attr->s && *attr->s)
6272 return FALSE;
6273
6274 return TRUE;
6275 }
6276
6277 /* Return the size of a single attribute. */
6278 static bfd_vma
6279 eabi_attr_size(int tag, aeabi_attribute *attr)
6280 {
6281 bfd_vma size;
6282
6283 if (is_default_attr (attr))
6284 return 0;
6285
6286 size = uleb128_size (tag);
6287 if (attr->type & 1)
6288 size += uleb128_size (attr->i);
6289 if (attr->type & 2)
6290 size += strlen ((char *)attr->s) + 1;
6291 return size;
6292 }
6293
6294 /* Returns the size of the eabi object attributess section. */
6295 bfd_vma
6296 elf32_arm_eabi_attr_size (bfd *abfd)
6297 {
6298 bfd_vma size;
6299 aeabi_attribute *attr;
6300 aeabi_attribute_list *list;
6301 int i;
6302
6303 attr = elf32_arm_tdata (abfd)->known_eabi_attributes;
6304 size = 16; /* 'A' <size> "aeabi" 0x1 <size>. */
6305 for (i = 4; i < NUM_KNOWN_ATTRIBUTES; i++)
6306 size += eabi_attr_size (i, &attr[i]);
6307
6308 for (list = elf32_arm_tdata (abfd)->other_eabi_attributes;
6309 list;
6310 list = list->next)
6311 size += eabi_attr_size (list->tag, &list->attr);
6312
6313 return size;
6314 }
6315
6316 static bfd_byte *
6317 write_uleb128 (bfd_byte *p, unsigned int val)
6318 {
6319 bfd_byte c;
6320 do
6321 {
6322 c = val & 0x7f;
6323 val >>= 7;
6324 if (val)
6325 c |= 0x80;
6326 *(p++) = c;
6327 }
6328 while (val);
6329 return p;
6330 }
6331
6332 /* Write attribute ATTR to butter P, and return a pointer to the following
6333 byte. */
6334 static bfd_byte *
6335 write_eabi_attribute (bfd_byte *p, int tag, aeabi_attribute *attr)
6336 {
6337 /* Suppress default entries. */
6338 if (is_default_attr(attr))
6339 return p;
6340
6341 p = write_uleb128 (p, tag);
6342 if (attr->type & 1)
6343 p = write_uleb128 (p, attr->i);
6344 if (attr->type & 2)
6345 {
6346 int len;
6347
6348 len = strlen (attr->s) + 1;
6349 memcpy (p, attr->s, len);
6350 p += len;
6351 }
6352
6353 return p;
6354 }
6355
6356 /* Write the contents of the eabi attributes section to p. */
6357 void
6358 elf32_arm_set_eabi_attr_contents (bfd *abfd, bfd_byte *contents, bfd_vma size)
6359 {
6360 bfd_byte *p;
6361 aeabi_attribute *attr;
6362 aeabi_attribute_list *list;
6363 int i;
6364
6365 p = contents;
6366 *(p++) = 'A';
6367 bfd_put_32 (abfd, size - 1, p);
6368 p += 4;
6369 memcpy (p, "aeabi", 6);
6370 p += 6;
6371 *(p++) = Tag_File;
6372 bfd_put_32 (abfd, size - 11, p);
6373 p += 4;
6374
6375 attr = elf32_arm_tdata (abfd)->known_eabi_attributes;
6376 for (i = 4; i < NUM_KNOWN_ATTRIBUTES; i++)
6377 p = write_eabi_attribute (p, i, &attr[i]);
6378
6379 for (list = elf32_arm_tdata (abfd)->other_eabi_attributes;
6380 list;
6381 list = list->next)
6382 p = write_eabi_attribute (p, list->tag, &list->attr);
6383 }
6384
6385 /* Override final_link to handle EABI object attribute sections. */
6386
6387 static bfd_boolean
6388 elf32_arm_bfd_final_link (bfd *abfd, struct bfd_link_info *info)
6389 {
6390 asection *o;
6391 struct bfd_link_order *p;
6392 asection *attr_section = NULL;
6393 bfd_byte *contents;
6394 bfd_vma size = 0;
6395
6396 /* elf32_arm_merge_private_bfd_data will already have merged the
6397 object attributes. Remove the input sections from the link, and set
6398 the contents of the output secton. */
6399 for (o = abfd->sections; o != NULL; o = o->next)
6400 {
6401 if (strcmp (o->name, ".ARM.attributes") == 0)
6402 {
6403 for (p = o->map_head.link_order; p != NULL; p = p->next)
6404 {
6405 asection *input_section;
6406
6407 if (p->type != bfd_indirect_link_order)
6408 continue;
6409 input_section = p->u.indirect.section;
6410 /* Hack: reset the SEC_HAS_CONTENTS flag so that
6411 elf_link_input_bfd ignores this section. */
6412 input_section->flags &= ~SEC_HAS_CONTENTS;
6413 }
6414
6415 size = elf32_arm_eabi_attr_size (abfd);
6416 bfd_set_section_size (abfd, o, size);
6417 attr_section = o;
6418 /* Skip this section later on. */
6419 o->map_head.link_order = NULL;
6420 }
6421 }
6422 /* Invoke the ELF linker to do all the work. */
6423 if (!bfd_elf_final_link (abfd, info))
6424 return FALSE;
6425
6426 if (attr_section)
6427 {
6428 contents = bfd_malloc(size);
6429 if (contents == NULL)
6430 return FALSE;
6431 elf32_arm_set_eabi_attr_contents (abfd, contents, size);
6432 bfd_set_section_contents (abfd, attr_section, contents, 0, size);
6433 free (contents);
6434 }
6435 return TRUE;
6436 }
6437
6438
6439 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
6440 static void
6441 arm_add_to_rel (bfd * abfd,
6442 bfd_byte * address,
6443 reloc_howto_type * howto,
6444 bfd_signed_vma increment)
6445 {
6446 bfd_signed_vma addend;
6447
6448 if (howto->type == R_ARM_THM_CALL)
6449 {
6450 int upper_insn, lower_insn;
6451 int upper, lower;
6452
6453 upper_insn = bfd_get_16 (abfd, address);
6454 lower_insn = bfd_get_16 (abfd, address + 2);
6455 upper = upper_insn & 0x7ff;
6456 lower = lower_insn & 0x7ff;
6457
6458 addend = (upper << 12) | (lower << 1);
6459 addend += increment;
6460 addend >>= 1;
6461
6462 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
6463 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
6464
6465 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
6466 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
6467 }
6468 else
6469 {
6470 bfd_vma contents;
6471
6472 contents = bfd_get_32 (abfd, address);
6473
6474 /* Get the (signed) value from the instruction. */
6475 addend = contents & howto->src_mask;
6476 if (addend & ((howto->src_mask + 1) >> 1))
6477 {
6478 bfd_signed_vma mask;
6479
6480 mask = -1;
6481 mask &= ~ howto->src_mask;
6482 addend |= mask;
6483 }
6484
6485 /* Add in the increment, (which is a byte value). */
6486 switch (howto->type)
6487 {
6488 default:
6489 addend += increment;
6490 break;
6491
6492 case R_ARM_PC24:
6493 case R_ARM_PLT32:
6494 case R_ARM_CALL:
6495 case R_ARM_JUMP24:
6496 addend <<= howto->size;
6497 addend += increment;
6498
6499 /* Should we check for overflow here ? */
6500
6501 /* Drop any undesired bits. */
6502 addend >>= howto->rightshift;
6503 break;
6504 }
6505
6506 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
6507
6508 bfd_put_32 (abfd, contents, address);
6509 }
6510 }
6511
6512 #define IS_ARM_TLS_RELOC(R_TYPE) \
6513 ((R_TYPE) == R_ARM_TLS_GD32 \
6514 || (R_TYPE) == R_ARM_TLS_LDO32 \
6515 || (R_TYPE) == R_ARM_TLS_LDM32 \
6516 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
6517 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
6518 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
6519 || (R_TYPE) == R_ARM_TLS_LE32 \
6520 || (R_TYPE) == R_ARM_TLS_IE32)
6521
6522 /* Relocate an ARM ELF section. */
6523 static bfd_boolean
6524 elf32_arm_relocate_section (bfd * output_bfd,
6525 struct bfd_link_info * info,
6526 bfd * input_bfd,
6527 asection * input_section,
6528 bfd_byte * contents,
6529 Elf_Internal_Rela * relocs,
6530 Elf_Internal_Sym * local_syms,
6531 asection ** local_sections)
6532 {
6533 Elf_Internal_Shdr *symtab_hdr;
6534 struct elf_link_hash_entry **sym_hashes;
6535 Elf_Internal_Rela *rel;
6536 Elf_Internal_Rela *relend;
6537 const char *name;
6538 struct elf32_arm_link_hash_table * globals;
6539
6540 globals = elf32_arm_hash_table (info);
6541
6542 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
6543 sym_hashes = elf_sym_hashes (input_bfd);
6544
6545 rel = relocs;
6546 relend = relocs + input_section->reloc_count;
6547 for (; rel < relend; rel++)
6548 {
6549 int r_type;
6550 reloc_howto_type * howto;
6551 unsigned long r_symndx;
6552 Elf_Internal_Sym * sym;
6553 asection * sec;
6554 struct elf_link_hash_entry * h;
6555 bfd_vma relocation;
6556 bfd_reloc_status_type r;
6557 arelent bfd_reloc;
6558 char sym_type;
6559 bfd_boolean unresolved_reloc = FALSE;
6560 char *error_message = NULL;
6561
6562 r_symndx = ELF32_R_SYM (rel->r_info);
6563 r_type = ELF32_R_TYPE (rel->r_info);
6564 r_type = arm_real_reloc_type (globals, r_type);
6565
6566 if ( r_type == R_ARM_GNU_VTENTRY
6567 || r_type == R_ARM_GNU_VTINHERIT)
6568 continue;
6569
6570 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
6571 howto = bfd_reloc.howto;
6572
6573 h = NULL;
6574 sym = NULL;
6575 sec = NULL;
6576
6577 if (r_symndx < symtab_hdr->sh_info)
6578 {
6579 sym = local_syms + r_symndx;
6580 sym_type = ELF32_ST_TYPE (sym->st_info);
6581 sec = local_sections[r_symndx];
6582 if (globals->use_rel)
6583 {
6584 relocation = (sec->output_section->vma
6585 + sec->output_offset
6586 + sym->st_value);
6587 if (!info->relocatable
6588 && (sec->flags & SEC_MERGE)
6589 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6590 {
6591 asection *msec;
6592 bfd_vma addend, value;
6593
6594 if (howto->rightshift)
6595 {
6596 (*_bfd_error_handler)
6597 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
6598 input_bfd, input_section,
6599 (long) rel->r_offset, howto->name);
6600 return FALSE;
6601 }
6602
6603 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
6604
6605 /* Get the (signed) value from the instruction. */
6606 addend = value & howto->src_mask;
6607 if (addend & ((howto->src_mask + 1) >> 1))
6608 {
6609 bfd_signed_vma mask;
6610
6611 mask = -1;
6612 mask &= ~ howto->src_mask;
6613 addend |= mask;
6614 }
6615 msec = sec;
6616 addend =
6617 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
6618 - relocation;
6619 addend += msec->output_section->vma + msec->output_offset;
6620 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
6621 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
6622 }
6623 }
6624 else
6625 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6626 }
6627 else
6628 {
6629 bfd_boolean warned;
6630
6631 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6632 r_symndx, symtab_hdr, sym_hashes,
6633 h, sec, relocation,
6634 unresolved_reloc, warned);
6635
6636 sym_type = h->type;
6637 }
6638
6639 if (sec != NULL && elf_discarded_section (sec))
6640 {
6641 /* For relocs against symbols from removed linkonce sections,
6642 or sections discarded by a linker script, we just want the
6643 section contents zeroed. Avoid any special processing. */
6644 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
6645 rel->r_info = 0;
6646 rel->r_addend = 0;
6647 continue;
6648 }
6649
6650 if (info->relocatable)
6651 {
6652 /* This is a relocatable link. We don't have to change
6653 anything, unless the reloc is against a section symbol,
6654 in which case we have to adjust according to where the
6655 section symbol winds up in the output section. */
6656 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6657 {
6658 if (globals->use_rel)
6659 arm_add_to_rel (input_bfd, contents + rel->r_offset,
6660 howto, (bfd_signed_vma) sec->output_offset);
6661 else
6662 rel->r_addend += sec->output_offset;
6663 }
6664 continue;
6665 }
6666
6667 if (h != NULL)
6668 name = h->root.root.string;
6669 else
6670 {
6671 name = (bfd_elf_string_from_elf_section
6672 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6673 if (name == NULL || *name == '\0')
6674 name = bfd_section_name (input_bfd, sec);
6675 }
6676
6677 if (r_symndx != 0
6678 && r_type != R_ARM_NONE
6679 && (h == NULL
6680 || h->root.type == bfd_link_hash_defined
6681 || h->root.type == bfd_link_hash_defweak)
6682 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
6683 {
6684 (*_bfd_error_handler)
6685 ((sym_type == STT_TLS
6686 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
6687 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
6688 input_bfd,
6689 input_section,
6690 (long) rel->r_offset,
6691 howto->name,
6692 name);
6693 }
6694
6695 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
6696 input_section, contents, rel,
6697 relocation, info, sec, name,
6698 (h ? ELF_ST_TYPE (h->type) :
6699 ELF_ST_TYPE (sym->st_info)), h,
6700 &unresolved_reloc, &error_message);
6701
6702 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6703 because such sections are not SEC_ALLOC and thus ld.so will
6704 not process them. */
6705 if (unresolved_reloc
6706 && !((input_section->flags & SEC_DEBUGGING) != 0
6707 && h->def_dynamic))
6708 {
6709 (*_bfd_error_handler)
6710 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
6711 input_bfd,
6712 input_section,
6713 (long) rel->r_offset,
6714 howto->name,
6715 h->root.root.string);
6716 return FALSE;
6717 }
6718
6719 if (r != bfd_reloc_ok)
6720 {
6721 switch (r)
6722 {
6723 case bfd_reloc_overflow:
6724 /* If the overflowing reloc was to an undefined symbol,
6725 we have already printed one error message and there
6726 is no point complaining again. */
6727 if ((! h ||
6728 h->root.type != bfd_link_hash_undefined)
6729 && (!((*info->callbacks->reloc_overflow)
6730 (info, (h ? &h->root : NULL), name, howto->name,
6731 (bfd_vma) 0, input_bfd, input_section,
6732 rel->r_offset))))
6733 return FALSE;
6734 break;
6735
6736 case bfd_reloc_undefined:
6737 if (!((*info->callbacks->undefined_symbol)
6738 (info, name, input_bfd, input_section,
6739 rel->r_offset, TRUE)))
6740 return FALSE;
6741 break;
6742
6743 case bfd_reloc_outofrange:
6744 error_message = _("out of range");
6745 goto common_error;
6746
6747 case bfd_reloc_notsupported:
6748 error_message = _("unsupported relocation");
6749 goto common_error;
6750
6751 case bfd_reloc_dangerous:
6752 /* error_message should already be set. */
6753 goto common_error;
6754
6755 default:
6756 error_message = _("unknown error");
6757 /* fall through */
6758
6759 common_error:
6760 BFD_ASSERT (error_message != NULL);
6761 if (!((*info->callbacks->reloc_dangerous)
6762 (info, error_message, input_bfd, input_section,
6763 rel->r_offset)))
6764 return FALSE;
6765 break;
6766 }
6767 }
6768 }
6769
6770 return TRUE;
6771 }
6772
6773 /* Allocate/find an object attribute. */
6774 static aeabi_attribute *
6775 elf32_arm_new_eabi_attr (bfd *abfd, int tag)
6776 {
6777 aeabi_attribute *attr;
6778 aeabi_attribute_list *list;
6779 aeabi_attribute_list *p;
6780 aeabi_attribute_list **lastp;
6781
6782
6783 if (tag < NUM_KNOWN_ATTRIBUTES)
6784 {
6785 /* Knwon tags are preallocated. */
6786 attr = &elf32_arm_tdata (abfd)->known_eabi_attributes[tag];
6787 }
6788 else
6789 {
6790 /* Create a new tag. */
6791 list = (aeabi_attribute_list *)
6792 bfd_alloc (abfd, sizeof (aeabi_attribute_list));
6793 memset (list, 0, sizeof (aeabi_attribute_list));
6794 list->tag = tag;
6795 /* Keep the tag list in order. */
6796 lastp = &elf32_arm_tdata (abfd)->other_eabi_attributes;
6797 for (p = *lastp; p; p = p->next)
6798 {
6799 if (tag < p->tag)
6800 break;
6801 lastp = &p->next;
6802 }
6803 list->next = *lastp;
6804 *lastp = list;
6805 attr = &list->attr;
6806 }
6807
6808 return attr;
6809 }
6810
6811 int
6812 elf32_arm_get_eabi_attr_int (bfd *abfd, int tag)
6813 {
6814 aeabi_attribute_list *p;
6815
6816 if (tag < NUM_KNOWN_ATTRIBUTES)
6817 {
6818 /* Knwon tags are preallocated. */
6819 return elf32_arm_tdata (abfd)->known_eabi_attributes[tag].i;
6820 }
6821 else
6822 {
6823 for (p = elf32_arm_tdata (abfd)->other_eabi_attributes;
6824 p;
6825 p = p->next)
6826 {
6827 if (tag == p->tag)
6828 return p->attr.i;
6829 if (tag < p->tag)
6830 break;
6831 }
6832 return 0;
6833 }
6834 }
6835
6836 void
6837 elf32_arm_add_eabi_attr_int (bfd *abfd, int tag, unsigned int i)
6838 {
6839 aeabi_attribute *attr;
6840
6841 attr = elf32_arm_new_eabi_attr (abfd, tag);
6842 attr->type = 1;
6843 attr->i = i;
6844 }
6845
6846 static char *
6847 attr_strdup (bfd *abfd, const char * s)
6848 {
6849 char * p;
6850 int len;
6851
6852 len = strlen (s) + 1;
6853 p = (char *)bfd_alloc(abfd, len);
6854 return memcpy (p, s, len);
6855 }
6856
6857 void
6858 elf32_arm_add_eabi_attr_string (bfd *abfd, int tag, const char *s)
6859 {
6860 aeabi_attribute *attr;
6861
6862 attr = elf32_arm_new_eabi_attr (abfd, tag);
6863 attr->type = 2;
6864 attr->s = attr_strdup (abfd, s);
6865 }
6866
6867 void
6868 elf32_arm_add_eabi_attr_compat (bfd *abfd, unsigned int i, const char *s)
6869 {
6870 aeabi_attribute_list *list;
6871 aeabi_attribute_list *p;
6872 aeabi_attribute_list **lastp;
6873
6874 list = (aeabi_attribute_list *)
6875 bfd_alloc (abfd, sizeof (aeabi_attribute_list));
6876 memset (list, 0, sizeof (aeabi_attribute_list));
6877 list->tag = Tag_compatibility;
6878 list->attr.type = 3;
6879 list->attr.i = i;
6880 list->attr.s = attr_strdup (abfd, s);
6881
6882 lastp = &elf32_arm_tdata (abfd)->other_eabi_attributes;
6883 for (p = *lastp; p; p = p->next)
6884 {
6885 int cmp;
6886 if (p->tag != Tag_compatibility)
6887 break;
6888 cmp = strcmp(s, p->attr.s);
6889 if (cmp < 0 || (cmp == 0 && i < p->attr.i))
6890 break;
6891 lastp = &p->next;
6892 }
6893 list->next = *lastp;
6894 *lastp = list;
6895 }
6896
6897 /* Set the right machine number. */
6898
6899 static bfd_boolean
6900 elf32_arm_object_p (bfd *abfd)
6901 {
6902 unsigned int mach;
6903
6904 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
6905
6906 if (mach != bfd_mach_arm_unknown)
6907 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
6908
6909 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
6910 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
6911
6912 else
6913 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
6914
6915 return TRUE;
6916 }
6917
6918 /* Function to keep ARM specific flags in the ELF header. */
6919
6920 static bfd_boolean
6921 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
6922 {
6923 if (elf_flags_init (abfd)
6924 && elf_elfheader (abfd)->e_flags != flags)
6925 {
6926 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
6927 {
6928 if (flags & EF_ARM_INTERWORK)
6929 (*_bfd_error_handler)
6930 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
6931 abfd);
6932 else
6933 _bfd_error_handler
6934 (_("Warning: Clearing the interworking flag of %B due to outside request"),
6935 abfd);
6936 }
6937 }
6938 else
6939 {
6940 elf_elfheader (abfd)->e_flags = flags;
6941 elf_flags_init (abfd) = TRUE;
6942 }
6943
6944 return TRUE;
6945 }
6946
6947 /* Copy the eabi object attribute from IBFD to OBFD. */
6948 static void
6949 copy_eabi_attributes (bfd *ibfd, bfd *obfd)
6950 {
6951 aeabi_attribute *in_attr;
6952 aeabi_attribute *out_attr;
6953 aeabi_attribute_list *list;
6954 int i;
6955
6956 in_attr = &elf32_arm_tdata (ibfd)->known_eabi_attributes[4];
6957 out_attr = &elf32_arm_tdata (obfd)->known_eabi_attributes[4];
6958 for (i = 4; i < NUM_KNOWN_ATTRIBUTES; i++)
6959 {
6960 out_attr->i = in_attr->i;
6961 if (in_attr->s && *in_attr->s)
6962 out_attr->s = attr_strdup (obfd, in_attr->s);
6963 in_attr++;
6964 out_attr++;
6965 }
6966
6967 for (list = elf32_arm_tdata (ibfd)->other_eabi_attributes;
6968 list;
6969 list = list->next)
6970 {
6971 in_attr = &list->attr;
6972 switch (in_attr->type)
6973 {
6974 case 1:
6975 elf32_arm_add_eabi_attr_int (obfd, list->tag, in_attr->i);
6976 break;
6977 case 2:
6978 elf32_arm_add_eabi_attr_string (obfd, list->tag, in_attr->s);
6979 break;
6980 case 3:
6981 elf32_arm_add_eabi_attr_compat (obfd, in_attr->i, in_attr->s);
6982 break;
6983 default:
6984 abort();
6985 }
6986 }
6987 }
6988
6989
6990 /* Copy backend specific data from one object module to another. */
6991
6992 static bfd_boolean
6993 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6994 {
6995 flagword in_flags;
6996 flagword out_flags;
6997
6998 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6999 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7000 return TRUE;
7001
7002 in_flags = elf_elfheader (ibfd)->e_flags;
7003 out_flags = elf_elfheader (obfd)->e_flags;
7004
7005 if (elf_flags_init (obfd)
7006 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
7007 && in_flags != out_flags)
7008 {
7009 /* Cannot mix APCS26 and APCS32 code. */
7010 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
7011 return FALSE;
7012
7013 /* Cannot mix float APCS and non-float APCS code. */
7014 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
7015 return FALSE;
7016
7017 /* If the src and dest have different interworking flags
7018 then turn off the interworking bit. */
7019 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
7020 {
7021 if (out_flags & EF_ARM_INTERWORK)
7022 _bfd_error_handler
7023 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
7024 obfd, ibfd);
7025
7026 in_flags &= ~EF_ARM_INTERWORK;
7027 }
7028
7029 /* Likewise for PIC, though don't warn for this case. */
7030 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
7031 in_flags &= ~EF_ARM_PIC;
7032 }
7033
7034 elf_elfheader (obfd)->e_flags = in_flags;
7035 elf_flags_init (obfd) = TRUE;
7036
7037 /* Also copy the EI_OSABI field. */
7038 elf_elfheader (obfd)->e_ident[EI_OSABI] =
7039 elf_elfheader (ibfd)->e_ident[EI_OSABI];
7040
7041 /* Copy EABI object attributes. */
7042 copy_eabi_attributes (ibfd, obfd);
7043
7044 return TRUE;
7045 }
7046
7047 /* Values for Tag_ABI_PCS_R9_use. */
7048 enum
7049 {
7050 AEABI_R9_V6,
7051 AEABI_R9_SB,
7052 AEABI_R9_TLS,
7053 AEABI_R9_unused
7054 };
7055
7056 /* Values for Tag_ABI_PCS_RW_data. */
7057 enum
7058 {
7059 AEABI_PCS_RW_data_absolute,
7060 AEABI_PCS_RW_data_PCrel,
7061 AEABI_PCS_RW_data_SBrel,
7062 AEABI_PCS_RW_data_unused
7063 };
7064
7065 /* Values for Tag_ABI_enum_size. */
7066 enum
7067 {
7068 AEABI_enum_unused,
7069 AEABI_enum_short,
7070 AEABI_enum_wide,
7071 AEABI_enum_forced_wide
7072 };
7073
7074 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
7075 are conflicting attributes. */
7076 static bfd_boolean
7077 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
7078 {
7079 aeabi_attribute *in_attr;
7080 aeabi_attribute *out_attr;
7081 aeabi_attribute_list *in_list;
7082 aeabi_attribute_list *out_list;
7083 /* Some tags have 0 = don't care, 1 = strong requirement,
7084 2 = weak requirement. */
7085 static const int order_312[3] = {3, 1, 2};
7086 int i;
7087
7088 if (!elf32_arm_tdata (obfd)->known_eabi_attributes[0].i)
7089 {
7090 /* This is the first object. Copy the attributes. */
7091 copy_eabi_attributes (ibfd, obfd);
7092
7093 /* Use the Tag_null value to indicate the attributes have been
7094 initialized. */
7095 elf32_arm_tdata (obfd)->known_eabi_attributes[0].i = 1;
7096
7097 return TRUE;
7098 }
7099
7100 in_attr = elf32_arm_tdata (ibfd)->known_eabi_attributes;
7101 out_attr = elf32_arm_tdata (obfd)->known_eabi_attributes;
7102 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
7103 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
7104 {
7105 /* Ignore mismatches if teh object doesn't use floating point. */
7106 if (out_attr[Tag_ABI_FP_number_model].i == 0)
7107 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
7108 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
7109 {
7110 _bfd_error_handler
7111 (_("ERROR: %B uses VFP register arguments, %B does not"),
7112 ibfd, obfd);
7113 return FALSE;
7114 }
7115 }
7116
7117 for (i = 4; i < NUM_KNOWN_ATTRIBUTES; i++)
7118 {
7119 /* Merge this attribute with existing attributes. */
7120 switch (i)
7121 {
7122 case Tag_CPU_raw_name:
7123 case Tag_CPU_name:
7124 /* Use whichever has the greatest architecture requirements. We
7125 won't necessarily have both the above tags, so make sure input
7126 name is non-NULL. */
7127 if (in_attr[Tag_CPU_arch].i > out_attr[Tag_CPU_arch].i
7128 && in_attr[i].s)
7129 out_attr[i].s = attr_strdup(obfd, in_attr[i].s);
7130 break;
7131
7132 case Tag_ABI_optimization_goals:
7133 case Tag_ABI_FP_optimization_goals:
7134 /* Use the first value seen. */
7135 break;
7136
7137 case Tag_CPU_arch:
7138 case Tag_ARM_ISA_use:
7139 case Tag_THUMB_ISA_use:
7140 case Tag_VFP_arch:
7141 case Tag_WMMX_arch:
7142 case Tag_NEON_arch:
7143 /* ??? Do NEON and WMMX conflict? */
7144 case Tag_ABI_FP_rounding:
7145 case Tag_ABI_FP_denormal:
7146 case Tag_ABI_FP_exceptions:
7147 case Tag_ABI_FP_user_exceptions:
7148 case Tag_ABI_FP_number_model:
7149 case Tag_ABI_align8_preserved:
7150 case Tag_ABI_HardFP_use:
7151 /* Use the largest value specified. */
7152 if (in_attr[i].i > out_attr[i].i)
7153 out_attr[i].i = in_attr[i].i;
7154 break;
7155
7156 case Tag_CPU_arch_profile:
7157 /* Warn if conflicting architecture profiles used. */
7158 if (out_attr[i].i && in_attr[i].i && in_attr[i].i != out_attr[i].i)
7159 {
7160 _bfd_error_handler
7161 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
7162 ibfd, in_attr[i].i, out_attr[i].i);
7163 return FALSE;
7164 }
7165 if (in_attr[i].i)
7166 out_attr[i].i = in_attr[i].i;
7167 break;
7168 case Tag_PCS_config:
7169 if (out_attr[i].i == 0)
7170 out_attr[i].i = in_attr[i].i;
7171 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
7172 {
7173 /* It's sometimes ok to mix different configs, so this is only
7174 a warning. */
7175 _bfd_error_handler
7176 (_("Warning: %B: Conflicting platform configuration"), ibfd);
7177 }
7178 break;
7179 case Tag_ABI_PCS_R9_use:
7180 if (in_attr[i].i != out_attr[i].i
7181 && out_attr[i].i != AEABI_R9_unused
7182 && in_attr[i].i != AEABI_R9_unused)
7183 {
7184 _bfd_error_handler
7185 (_("ERROR: %B: Conflicting use of R9"), ibfd);
7186 return FALSE;
7187 }
7188 if (out_attr[i].i == AEABI_R9_unused)
7189 out_attr[i].i = in_attr[i].i;
7190 break;
7191 case Tag_ABI_PCS_RW_data:
7192 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
7193 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
7194 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
7195 {
7196 _bfd_error_handler
7197 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
7198 ibfd);
7199 return FALSE;
7200 }
7201 /* Use the smallest value specified. */
7202 if (in_attr[i].i < out_attr[i].i)
7203 out_attr[i].i = in_attr[i].i;
7204 break;
7205 case Tag_ABI_PCS_RO_data:
7206 /* Use the smallest value specified. */
7207 if (in_attr[i].i < out_attr[i].i)
7208 out_attr[i].i = in_attr[i].i;
7209 break;
7210 case Tag_ABI_PCS_GOT_use:
7211 if (in_attr[i].i > 2 || out_attr[i].i > 2
7212 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
7213 out_attr[i].i = in_attr[i].i;
7214 break;
7215 case Tag_ABI_PCS_wchar_t:
7216 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i)
7217 {
7218 _bfd_error_handler
7219 (_("ERROR: %B: Conflicting definitions of wchar_t"), ibfd);
7220 return FALSE;
7221 }
7222 if (in_attr[i].i)
7223 out_attr[i].i = in_attr[i].i;
7224 break;
7225 case Tag_ABI_align8_needed:
7226 /* ??? Check against Tag_ABI_align8_preserved. */
7227 if (in_attr[i].i > 2 || out_attr[i].i > 2
7228 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
7229 out_attr[i].i = in_attr[i].i;
7230 break;
7231 case Tag_ABI_enum_size:
7232 if (in_attr[i].i != AEABI_enum_unused)
7233 {
7234 if (out_attr[i].i == AEABI_enum_unused
7235 || out_attr[i].i == AEABI_enum_forced_wide)
7236 {
7237 /* The existing object is compatible with anything.
7238 Use whatever requirements the new object has. */
7239 out_attr[i].i = in_attr[i].i;
7240 }
7241 else if (in_attr[i].i != AEABI_enum_forced_wide
7242 && out_attr[i].i != in_attr[i].i
7243 && !elf32_arm_tdata (obfd)->no_enum_size_warning)
7244 {
7245 const char *aeabi_enum_names[] =
7246 { "", "variable-size", "32-bit", "" };
7247 _bfd_error_handler
7248 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
7249 ibfd, aeabi_enum_names[in_attr[i].i],
7250 aeabi_enum_names[out_attr[i].i]);
7251 }
7252 }
7253 break;
7254 case Tag_ABI_VFP_args:
7255 /* Aready done. */
7256 break;
7257 case Tag_ABI_WMMX_args:
7258 if (in_attr[i].i != out_attr[i].i)
7259 {
7260 _bfd_error_handler
7261 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
7262 ibfd, obfd);
7263 return FALSE;
7264 }
7265 break;
7266 default: /* All known attributes should be explicitly covered. */
7267 abort ();
7268 }
7269 }
7270
7271 in_list = elf32_arm_tdata (ibfd)->other_eabi_attributes;
7272 out_list = elf32_arm_tdata (ibfd)->other_eabi_attributes;
7273 while (in_list && in_list->tag == Tag_compatibility)
7274 {
7275 in_attr = &in_list->attr;
7276 if (in_attr->i == 0)
7277 continue;
7278 if (in_attr->i == 1)
7279 {
7280 _bfd_error_handler
7281 (_("ERROR: %B: Must be processed by '%s' toolchain"),
7282 ibfd, in_attr->s);
7283 return FALSE;
7284 }
7285 if (!out_list || out_list->tag != Tag_compatibility
7286 || strcmp (in_attr->s, out_list->attr.s) != 0)
7287 {
7288 /* Add this compatibility tag to the output. */
7289 elf32_arm_add_eabi_attr_compat (obfd, in_attr->i, in_attr->s);
7290 continue;
7291 }
7292 out_attr = &out_list->attr;
7293 /* Check all the input tags with the same identifier. */
7294 for (;;)
7295 {
7296 if (out_list->tag != Tag_compatibility
7297 || in_attr->i != out_attr->i
7298 || strcmp (in_attr->s, out_attr->s) != 0)
7299 {
7300 _bfd_error_handler
7301 (_("ERROR: %B: Incompatible object tag '%s':%d"),
7302 ibfd, in_attr->s, in_attr->i);
7303 return FALSE;
7304 }
7305 in_list = in_list->next;
7306 if (in_list->tag != Tag_compatibility
7307 || strcmp (in_attr->s, in_list->attr.s) != 0)
7308 break;
7309 in_attr = &in_list->attr;
7310 out_list = out_list->next;
7311 if (out_list)
7312 out_attr = &out_list->attr;
7313 }
7314
7315 /* Check the output doesn't have extra tags with this identifier. */
7316 if (out_list && out_list->tag == Tag_compatibility
7317 && strcmp (in_attr->s, out_list->attr.s) == 0)
7318 {
7319 _bfd_error_handler
7320 (_("ERROR: %B: Incompatible object tag '%s':%d"),
7321 ibfd, in_attr->s, out_list->attr.i);
7322 return FALSE;
7323 }
7324 }
7325
7326 for (; in_list; in_list = in_list->next)
7327 {
7328 if ((in_list->tag & 128) < 64)
7329 {
7330 _bfd_error_handler
7331 (_("Warning: %B: Unknown EABI object attribute %d"),
7332 ibfd, in_list->tag);
7333 break;
7334 }
7335 }
7336 return TRUE;
7337 }
7338
7339
7340 /* Return TRUE if the two EABI versions are incompatible. */
7341
7342 static bfd_boolean
7343 elf32_arm_versions_compatible (unsigned iver, unsigned over)
7344 {
7345 /* v4 and v5 are the same spec before and after it was released,
7346 so allow mixing them. */
7347 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
7348 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
7349 return TRUE;
7350
7351 return (iver == over);
7352 }
7353
7354 /* Merge backend specific data from an object file to the output
7355 object file when linking. */
7356
7357 static bfd_boolean
7358 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
7359 {
7360 flagword out_flags;
7361 flagword in_flags;
7362 bfd_boolean flags_compatible = TRUE;
7363 asection *sec;
7364
7365 /* Check if we have the same endianess. */
7366 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
7367 return FALSE;
7368
7369 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7370 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7371 return TRUE;
7372
7373 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
7374 return FALSE;
7375
7376 /* The input BFD must have had its flags initialised. */
7377 /* The following seems bogus to me -- The flags are initialized in
7378 the assembler but I don't think an elf_flags_init field is
7379 written into the object. */
7380 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7381
7382 in_flags = elf_elfheader (ibfd)->e_flags;
7383 out_flags = elf_elfheader (obfd)->e_flags;
7384
7385 if (!elf_flags_init (obfd))
7386 {
7387 /* If the input is the default architecture and had the default
7388 flags then do not bother setting the flags for the output
7389 architecture, instead allow future merges to do this. If no
7390 future merges ever set these flags then they will retain their
7391 uninitialised values, which surprise surprise, correspond
7392 to the default values. */
7393 if (bfd_get_arch_info (ibfd)->the_default
7394 && elf_elfheader (ibfd)->e_flags == 0)
7395 return TRUE;
7396
7397 elf_flags_init (obfd) = TRUE;
7398 elf_elfheader (obfd)->e_flags = in_flags;
7399
7400 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7401 && bfd_get_arch_info (obfd)->the_default)
7402 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
7403
7404 return TRUE;
7405 }
7406
7407 /* Determine what should happen if the input ARM architecture
7408 does not match the output ARM architecture. */
7409 if (! bfd_arm_merge_machines (ibfd, obfd))
7410 return FALSE;
7411
7412 /* Identical flags must be compatible. */
7413 if (in_flags == out_flags)
7414 return TRUE;
7415
7416 /* Check to see if the input BFD actually contains any sections. If
7417 not, its flags may not have been initialised either, but it
7418 cannot actually cause any incompatiblity. Do not short-circuit
7419 dynamic objects; their section list may be emptied by
7420 elf_link_add_object_symbols.
7421
7422 Also check to see if there are no code sections in the input.
7423 In this case there is no need to check for code specific flags.
7424 XXX - do we need to worry about floating-point format compatability
7425 in data sections ? */
7426 if (!(ibfd->flags & DYNAMIC))
7427 {
7428 bfd_boolean null_input_bfd = TRUE;
7429 bfd_boolean only_data_sections = TRUE;
7430
7431 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7432 {
7433 /* Ignore synthetic glue sections. */
7434 if (strcmp (sec->name, ".glue_7")
7435 && strcmp (sec->name, ".glue_7t"))
7436 {
7437 if ((bfd_get_section_flags (ibfd, sec)
7438 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7439 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7440 only_data_sections = FALSE;
7441
7442 null_input_bfd = FALSE;
7443 break;
7444 }
7445 }
7446
7447 if (null_input_bfd || only_data_sections)
7448 return TRUE;
7449 }
7450
7451 /* Complain about various flag mismatches. */
7452 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
7453 EF_ARM_EABI_VERSION (out_flags)))
7454 {
7455 _bfd_error_handler
7456 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
7457 ibfd, obfd,
7458 (in_flags & EF_ARM_EABIMASK) >> 24,
7459 (out_flags & EF_ARM_EABIMASK) >> 24);
7460 return FALSE;
7461 }
7462
7463 /* Not sure what needs to be checked for EABI versions >= 1. */
7464 /* VxWorks libraries do not use these flags. */
7465 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
7466 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
7467 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
7468 {
7469 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
7470 {
7471 _bfd_error_handler
7472 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
7473 ibfd, obfd,
7474 in_flags & EF_ARM_APCS_26 ? 26 : 32,
7475 out_flags & EF_ARM_APCS_26 ? 26 : 32);
7476 flags_compatible = FALSE;
7477 }
7478
7479 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
7480 {
7481 if (in_flags & EF_ARM_APCS_FLOAT)
7482 _bfd_error_handler
7483 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
7484 ibfd, obfd);
7485 else
7486 _bfd_error_handler
7487 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
7488 ibfd, obfd);
7489
7490 flags_compatible = FALSE;
7491 }
7492
7493 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
7494 {
7495 if (in_flags & EF_ARM_VFP_FLOAT)
7496 _bfd_error_handler
7497 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
7498 ibfd, obfd);
7499 else
7500 _bfd_error_handler
7501 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
7502 ibfd, obfd);
7503
7504 flags_compatible = FALSE;
7505 }
7506
7507 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
7508 {
7509 if (in_flags & EF_ARM_MAVERICK_FLOAT)
7510 _bfd_error_handler
7511 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
7512 ibfd, obfd);
7513 else
7514 _bfd_error_handler
7515 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
7516 ibfd, obfd);
7517
7518 flags_compatible = FALSE;
7519 }
7520
7521 #ifdef EF_ARM_SOFT_FLOAT
7522 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
7523 {
7524 /* We can allow interworking between code that is VFP format
7525 layout, and uses either soft float or integer regs for
7526 passing floating point arguments and results. We already
7527 know that the APCS_FLOAT flags match; similarly for VFP
7528 flags. */
7529 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
7530 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
7531 {
7532 if (in_flags & EF_ARM_SOFT_FLOAT)
7533 _bfd_error_handler
7534 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
7535 ibfd, obfd);
7536 else
7537 _bfd_error_handler
7538 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
7539 ibfd, obfd);
7540
7541 flags_compatible = FALSE;
7542 }
7543 }
7544 #endif
7545
7546 /* Interworking mismatch is only a warning. */
7547 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
7548 {
7549 if (in_flags & EF_ARM_INTERWORK)
7550 {
7551 _bfd_error_handler
7552 (_("Warning: %B supports interworking, whereas %B does not"),
7553 ibfd, obfd);
7554 }
7555 else
7556 {
7557 _bfd_error_handler
7558 (_("Warning: %B does not support interworking, whereas %B does"),
7559 ibfd, obfd);
7560 }
7561 }
7562 }
7563
7564 return flags_compatible;
7565 }
7566
7567 /* Display the flags field. */
7568
7569 static bfd_boolean
7570 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
7571 {
7572 FILE * file = (FILE *) ptr;
7573 unsigned long flags;
7574
7575 BFD_ASSERT (abfd != NULL && ptr != NULL);
7576
7577 /* Print normal ELF private data. */
7578 _bfd_elf_print_private_bfd_data (abfd, ptr);
7579
7580 flags = elf_elfheader (abfd)->e_flags;
7581 /* Ignore init flag - it may not be set, despite the flags field
7582 containing valid data. */
7583
7584 /* xgettext:c-format */
7585 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7586
7587 switch (EF_ARM_EABI_VERSION (flags))
7588 {
7589 case EF_ARM_EABI_UNKNOWN:
7590 /* The following flag bits are GNU extensions and not part of the
7591 official ARM ELF extended ABI. Hence they are only decoded if
7592 the EABI version is not set. */
7593 if (flags & EF_ARM_INTERWORK)
7594 fprintf (file, _(" [interworking enabled]"));
7595
7596 if (flags & EF_ARM_APCS_26)
7597 fprintf (file, " [APCS-26]");
7598 else
7599 fprintf (file, " [APCS-32]");
7600
7601 if (flags & EF_ARM_VFP_FLOAT)
7602 fprintf (file, _(" [VFP float format]"));
7603 else if (flags & EF_ARM_MAVERICK_FLOAT)
7604 fprintf (file, _(" [Maverick float format]"));
7605 else
7606 fprintf (file, _(" [FPA float format]"));
7607
7608 if (flags & EF_ARM_APCS_FLOAT)
7609 fprintf (file, _(" [floats passed in float registers]"));
7610
7611 if (flags & EF_ARM_PIC)
7612 fprintf (file, _(" [position independent]"));
7613
7614 if (flags & EF_ARM_NEW_ABI)
7615 fprintf (file, _(" [new ABI]"));
7616
7617 if (flags & EF_ARM_OLD_ABI)
7618 fprintf (file, _(" [old ABI]"));
7619
7620 if (flags & EF_ARM_SOFT_FLOAT)
7621 fprintf (file, _(" [software FP]"));
7622
7623 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
7624 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
7625 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
7626 | EF_ARM_MAVERICK_FLOAT);
7627 break;
7628
7629 case EF_ARM_EABI_VER1:
7630 fprintf (file, _(" [Version1 EABI]"));
7631
7632 if (flags & EF_ARM_SYMSARESORTED)
7633 fprintf (file, _(" [sorted symbol table]"));
7634 else
7635 fprintf (file, _(" [unsorted symbol table]"));
7636
7637 flags &= ~ EF_ARM_SYMSARESORTED;
7638 break;
7639
7640 case EF_ARM_EABI_VER2:
7641 fprintf (file, _(" [Version2 EABI]"));
7642
7643 if (flags & EF_ARM_SYMSARESORTED)
7644 fprintf (file, _(" [sorted symbol table]"));
7645 else
7646 fprintf (file, _(" [unsorted symbol table]"));
7647
7648 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
7649 fprintf (file, _(" [dynamic symbols use segment index]"));
7650
7651 if (flags & EF_ARM_MAPSYMSFIRST)
7652 fprintf (file, _(" [mapping symbols precede others]"));
7653
7654 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
7655 | EF_ARM_MAPSYMSFIRST);
7656 break;
7657
7658 case EF_ARM_EABI_VER3:
7659 fprintf (file, _(" [Version3 EABI]"));
7660 break;
7661
7662 case EF_ARM_EABI_VER4:
7663 fprintf (file, _(" [Version4 EABI]"));
7664 goto eabi;
7665
7666 case EF_ARM_EABI_VER5:
7667 fprintf (file, _(" [Version5 EABI]"));
7668 eabi:
7669 if (flags & EF_ARM_BE8)
7670 fprintf (file, _(" [BE8]"));
7671
7672 if (flags & EF_ARM_LE8)
7673 fprintf (file, _(" [LE8]"));
7674
7675 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
7676 break;
7677
7678 default:
7679 fprintf (file, _(" <EABI version unrecognised>"));
7680 break;
7681 }
7682
7683 flags &= ~ EF_ARM_EABIMASK;
7684
7685 if (flags & EF_ARM_RELEXEC)
7686 fprintf (file, _(" [relocatable executable]"));
7687
7688 if (flags & EF_ARM_HASENTRY)
7689 fprintf (file, _(" [has entry point]"));
7690
7691 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
7692
7693 if (flags)
7694 fprintf (file, _("<Unrecognised flag bits set>"));
7695
7696 fputc ('\n', file);
7697
7698 return TRUE;
7699 }
7700
7701 static int
7702 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
7703 {
7704 switch (ELF_ST_TYPE (elf_sym->st_info))
7705 {
7706 case STT_ARM_TFUNC:
7707 return ELF_ST_TYPE (elf_sym->st_info);
7708
7709 case STT_ARM_16BIT:
7710 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
7711 This allows us to distinguish between data used by Thumb instructions
7712 and non-data (which is probably code) inside Thumb regions of an
7713 executable. */
7714 if (type != STT_OBJECT && type != STT_TLS)
7715 return ELF_ST_TYPE (elf_sym->st_info);
7716 break;
7717
7718 default:
7719 break;
7720 }
7721
7722 return type;
7723 }
7724
7725 static asection *
7726 elf32_arm_gc_mark_hook (asection *sec,
7727 struct bfd_link_info *info,
7728 Elf_Internal_Rela *rel,
7729 struct elf_link_hash_entry *h,
7730 Elf_Internal_Sym *sym)
7731 {
7732 if (h != NULL)
7733 switch (ELF32_R_TYPE (rel->r_info))
7734 {
7735 case R_ARM_GNU_VTINHERIT:
7736 case R_ARM_GNU_VTENTRY:
7737 return NULL;
7738 }
7739
7740 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
7741 }
7742
7743 /* Update the got entry reference counts for the section being removed. */
7744
7745 static bfd_boolean
7746 elf32_arm_gc_sweep_hook (bfd * abfd,
7747 struct bfd_link_info * info,
7748 asection * sec,
7749 const Elf_Internal_Rela * relocs)
7750 {
7751 Elf_Internal_Shdr *symtab_hdr;
7752 struct elf_link_hash_entry **sym_hashes;
7753 bfd_signed_vma *local_got_refcounts;
7754 const Elf_Internal_Rela *rel, *relend;
7755 struct elf32_arm_link_hash_table * globals;
7756
7757 globals = elf32_arm_hash_table (info);
7758
7759 elf_section_data (sec)->local_dynrel = NULL;
7760
7761 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7762 sym_hashes = elf_sym_hashes (abfd);
7763 local_got_refcounts = elf_local_got_refcounts (abfd);
7764
7765 relend = relocs + sec->reloc_count;
7766 for (rel = relocs; rel < relend; rel++)
7767 {
7768 unsigned long r_symndx;
7769 struct elf_link_hash_entry *h = NULL;
7770 int r_type;
7771
7772 r_symndx = ELF32_R_SYM (rel->r_info);
7773 if (r_symndx >= symtab_hdr->sh_info)
7774 {
7775 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7776 while (h->root.type == bfd_link_hash_indirect
7777 || h->root.type == bfd_link_hash_warning)
7778 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7779 }
7780
7781 r_type = ELF32_R_TYPE (rel->r_info);
7782 r_type = arm_real_reloc_type (globals, r_type);
7783 switch (r_type)
7784 {
7785 case R_ARM_GOT32:
7786 case R_ARM_GOT_PREL:
7787 case R_ARM_TLS_GD32:
7788 case R_ARM_TLS_IE32:
7789 if (h != NULL)
7790 {
7791 if (h->got.refcount > 0)
7792 h->got.refcount -= 1;
7793 }
7794 else if (local_got_refcounts != NULL)
7795 {
7796 if (local_got_refcounts[r_symndx] > 0)
7797 local_got_refcounts[r_symndx] -= 1;
7798 }
7799 break;
7800
7801 case R_ARM_TLS_LDM32:
7802 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
7803 break;
7804
7805 case R_ARM_ABS32:
7806 case R_ARM_ABS32_NOI:
7807 case R_ARM_REL32:
7808 case R_ARM_REL32_NOI:
7809 case R_ARM_PC24:
7810 case R_ARM_PLT32:
7811 case R_ARM_CALL:
7812 case R_ARM_JUMP24:
7813 case R_ARM_PREL31:
7814 case R_ARM_THM_CALL:
7815 case R_ARM_MOVW_ABS_NC:
7816 case R_ARM_MOVT_ABS:
7817 case R_ARM_MOVW_PREL_NC:
7818 case R_ARM_MOVT_PREL:
7819 case R_ARM_THM_MOVW_ABS_NC:
7820 case R_ARM_THM_MOVT_ABS:
7821 case R_ARM_THM_MOVW_PREL_NC:
7822 case R_ARM_THM_MOVT_PREL:
7823 /* Should the interworking branches be here also? */
7824
7825 if (h != NULL)
7826 {
7827 struct elf32_arm_link_hash_entry *eh;
7828 struct elf32_arm_relocs_copied **pp;
7829 struct elf32_arm_relocs_copied *p;
7830
7831 eh = (struct elf32_arm_link_hash_entry *) h;
7832
7833 if (h->plt.refcount > 0)
7834 {
7835 h->plt.refcount -= 1;
7836 if (ELF32_R_TYPE (rel->r_info) == R_ARM_THM_CALL)
7837 eh->plt_thumb_refcount--;
7838 }
7839
7840 if (r_type == R_ARM_ABS32
7841 || r_type == R_ARM_REL32
7842 || r_type == R_ARM_ABS32_NOI
7843 || r_type == R_ARM_REL32_NOI)
7844 {
7845 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
7846 pp = &p->next)
7847 if (p->section == sec)
7848 {
7849 p->count -= 1;
7850 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
7851 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
7852 p->pc_count -= 1;
7853 if (p->count == 0)
7854 *pp = p->next;
7855 break;
7856 }
7857 }
7858 }
7859 break;
7860
7861 default:
7862 break;
7863 }
7864 }
7865
7866 return TRUE;
7867 }
7868
7869 /* Look through the relocs for a section during the first phase. */
7870
7871 static bfd_boolean
7872 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
7873 asection *sec, const Elf_Internal_Rela *relocs)
7874 {
7875 Elf_Internal_Shdr *symtab_hdr;
7876 struct elf_link_hash_entry **sym_hashes;
7877 struct elf_link_hash_entry **sym_hashes_end;
7878 const Elf_Internal_Rela *rel;
7879 const Elf_Internal_Rela *rel_end;
7880 bfd *dynobj;
7881 asection *sreloc;
7882 bfd_vma *local_got_offsets;
7883 struct elf32_arm_link_hash_table *htab;
7884
7885 if (info->relocatable)
7886 return TRUE;
7887
7888 htab = elf32_arm_hash_table (info);
7889 sreloc = NULL;
7890
7891 /* Create dynamic sections for relocatable executables so that we can
7892 copy relocations. */
7893 if (htab->root.is_relocatable_executable
7894 && ! htab->root.dynamic_sections_created)
7895 {
7896 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
7897 return FALSE;
7898 }
7899
7900 dynobj = elf_hash_table (info)->dynobj;
7901 local_got_offsets = elf_local_got_offsets (abfd);
7902
7903 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7904 sym_hashes = elf_sym_hashes (abfd);
7905 sym_hashes_end = sym_hashes
7906 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
7907
7908 if (!elf_bad_symtab (abfd))
7909 sym_hashes_end -= symtab_hdr->sh_info;
7910
7911 rel_end = relocs + sec->reloc_count;
7912 for (rel = relocs; rel < rel_end; rel++)
7913 {
7914 struct elf_link_hash_entry *h;
7915 struct elf32_arm_link_hash_entry *eh;
7916 unsigned long r_symndx;
7917 int r_type;
7918
7919 r_symndx = ELF32_R_SYM (rel->r_info);
7920 r_type = ELF32_R_TYPE (rel->r_info);
7921 r_type = arm_real_reloc_type (htab, r_type);
7922
7923 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7924 {
7925 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
7926 r_symndx);
7927 return FALSE;
7928 }
7929
7930 if (r_symndx < symtab_hdr->sh_info)
7931 h = NULL;
7932 else
7933 {
7934 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7935 while (h->root.type == bfd_link_hash_indirect
7936 || h->root.type == bfd_link_hash_warning)
7937 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7938 }
7939
7940 eh = (struct elf32_arm_link_hash_entry *) h;
7941
7942 switch (r_type)
7943 {
7944 case R_ARM_GOT32:
7945 case R_ARM_GOT_PREL:
7946 case R_ARM_TLS_GD32:
7947 case R_ARM_TLS_IE32:
7948 /* This symbol requires a global offset table entry. */
7949 {
7950 int tls_type, old_tls_type;
7951
7952 switch (r_type)
7953 {
7954 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
7955 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
7956 default: tls_type = GOT_NORMAL; break;
7957 }
7958
7959 if (h != NULL)
7960 {
7961 h->got.refcount++;
7962 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
7963 }
7964 else
7965 {
7966 bfd_signed_vma *local_got_refcounts;
7967
7968 /* This is a global offset table entry for a local symbol. */
7969 local_got_refcounts = elf_local_got_refcounts (abfd);
7970 if (local_got_refcounts == NULL)
7971 {
7972 bfd_size_type size;
7973
7974 size = symtab_hdr->sh_info;
7975 size *= (sizeof (bfd_signed_vma) + sizeof(char));
7976 local_got_refcounts = bfd_zalloc (abfd, size);
7977 if (local_got_refcounts == NULL)
7978 return FALSE;
7979 elf_local_got_refcounts (abfd) = local_got_refcounts;
7980 elf32_arm_local_got_tls_type (abfd)
7981 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
7982 }
7983 local_got_refcounts[r_symndx] += 1;
7984 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
7985 }
7986
7987 /* We will already have issued an error message if there is a
7988 TLS / non-TLS mismatch, based on the symbol type. We don't
7989 support any linker relaxations. So just combine any TLS
7990 types needed. */
7991 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
7992 && tls_type != GOT_NORMAL)
7993 tls_type |= old_tls_type;
7994
7995 if (old_tls_type != tls_type)
7996 {
7997 if (h != NULL)
7998 elf32_arm_hash_entry (h)->tls_type = tls_type;
7999 else
8000 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
8001 }
8002 }
8003 /* Fall through */
8004
8005 case R_ARM_TLS_LDM32:
8006 if (r_type == R_ARM_TLS_LDM32)
8007 htab->tls_ldm_got.refcount++;
8008 /* Fall through */
8009
8010 case R_ARM_GOTOFF32:
8011 case R_ARM_GOTPC:
8012 if (htab->sgot == NULL)
8013 {
8014 if (htab->root.dynobj == NULL)
8015 htab->root.dynobj = abfd;
8016 if (!create_got_section (htab->root.dynobj, info))
8017 return FALSE;
8018 }
8019 break;
8020
8021 case R_ARM_ABS12:
8022 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
8023 ldr __GOTT_INDEX__ offsets. */
8024 if (!htab->vxworks_p)
8025 break;
8026 /* Fall through */
8027
8028 case R_ARM_ABS32:
8029 case R_ARM_ABS32_NOI:
8030 case R_ARM_REL32:
8031 case R_ARM_REL32_NOI:
8032 case R_ARM_PC24:
8033 case R_ARM_PLT32:
8034 case R_ARM_CALL:
8035 case R_ARM_JUMP24:
8036 case R_ARM_PREL31:
8037 case R_ARM_THM_CALL:
8038 case R_ARM_MOVW_ABS_NC:
8039 case R_ARM_MOVT_ABS:
8040 case R_ARM_MOVW_PREL_NC:
8041 case R_ARM_MOVT_PREL:
8042 case R_ARM_THM_MOVW_ABS_NC:
8043 case R_ARM_THM_MOVT_ABS:
8044 case R_ARM_THM_MOVW_PREL_NC:
8045 case R_ARM_THM_MOVT_PREL:
8046 /* Should the interworking branches be listed here? */
8047 if (h != NULL)
8048 {
8049 /* If this reloc is in a read-only section, we might
8050 need a copy reloc. We can't check reliably at this
8051 stage whether the section is read-only, as input
8052 sections have not yet been mapped to output sections.
8053 Tentatively set the flag for now, and correct in
8054 adjust_dynamic_symbol. */
8055 if (!info->shared)
8056 h->non_got_ref = 1;
8057
8058 /* We may need a .plt entry if the function this reloc
8059 refers to is in a different object. We can't tell for
8060 sure yet, because something later might force the
8061 symbol local. */
8062 if (r_type != R_ARM_ABS32
8063 && r_type != R_ARM_REL32
8064 && r_type != R_ARM_ABS32_NOI
8065 && r_type != R_ARM_REL32_NOI
8066 && r_type != R_ARM_ABS12)
8067 h->needs_plt = 1;
8068
8069 /* If we create a PLT entry, this relocation will reference
8070 it, even if it's an ABS32 relocation. */
8071 h->plt.refcount += 1;
8072
8073 if (r_type == R_ARM_THM_CALL)
8074 eh->plt_thumb_refcount += 1;
8075 }
8076
8077 /* If we are creating a shared library or relocatable executable,
8078 and this is a reloc against a global symbol, or a non PC
8079 relative reloc against a local symbol, then we need to copy
8080 the reloc into the shared library. However, if we are linking
8081 with -Bsymbolic, we do not need to copy a reloc against a
8082 global symbol which is defined in an object we are
8083 including in the link (i.e., DEF_REGULAR is set). At
8084 this point we have not seen all the input files, so it is
8085 possible that DEF_REGULAR is not set now but will be set
8086 later (it is never cleared). We account for that
8087 possibility below by storing information in the
8088 relocs_copied field of the hash table entry. */
8089 if ((info->shared || htab->root.is_relocatable_executable)
8090 && (sec->flags & SEC_ALLOC) != 0
8091 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
8092 || (h != NULL && ! h->needs_plt
8093 && (! info->symbolic || ! h->def_regular))))
8094 {
8095 struct elf32_arm_relocs_copied *p, **head;
8096
8097 /* When creating a shared object, we must copy these
8098 reloc types into the output file. We create a reloc
8099 section in dynobj and make room for this reloc. */
8100 if (sreloc == NULL)
8101 {
8102 const char * name;
8103
8104 name = (bfd_elf_string_from_elf_section
8105 (abfd,
8106 elf_elfheader (abfd)->e_shstrndx,
8107 elf_section_data (sec)->rel_hdr.sh_name));
8108 if (name == NULL)
8109 return FALSE;
8110
8111 BFD_ASSERT (reloc_section_p (htab, name, sec));
8112
8113 sreloc = bfd_get_section_by_name (dynobj, name);
8114 if (sreloc == NULL)
8115 {
8116 flagword flags;
8117
8118 flags = (SEC_HAS_CONTENTS | SEC_READONLY
8119 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
8120 if ((sec->flags & SEC_ALLOC) != 0
8121 /* BPABI objects never have dynamic
8122 relocations mapped. */
8123 && !htab->symbian_p)
8124 flags |= SEC_ALLOC | SEC_LOAD;
8125 sreloc = bfd_make_section_with_flags (dynobj,
8126 name,
8127 flags);
8128 if (sreloc == NULL
8129 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
8130 return FALSE;
8131 }
8132
8133 elf_section_data (sec)->sreloc = sreloc;
8134 }
8135
8136 /* If this is a global symbol, we count the number of
8137 relocations we need for this symbol. */
8138 if (h != NULL)
8139 {
8140 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
8141 }
8142 else
8143 {
8144 /* Track dynamic relocs needed for local syms too.
8145 We really need local syms available to do this
8146 easily. Oh well. */
8147
8148 asection *s;
8149 void *vpp;
8150
8151 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
8152 sec, r_symndx);
8153 if (s == NULL)
8154 return FALSE;
8155
8156 vpp = &elf_section_data (s)->local_dynrel;
8157 head = (struct elf32_arm_relocs_copied **) vpp;
8158 }
8159
8160 p = *head;
8161 if (p == NULL || p->section != sec)
8162 {
8163 bfd_size_type amt = sizeof *p;
8164
8165 p = bfd_alloc (htab->root.dynobj, amt);
8166 if (p == NULL)
8167 return FALSE;
8168 p->next = *head;
8169 *head = p;
8170 p->section = sec;
8171 p->count = 0;
8172 p->pc_count = 0;
8173 }
8174
8175 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
8176 p->pc_count += 1;
8177 p->count += 1;
8178 }
8179 break;
8180
8181 /* This relocation describes the C++ object vtable hierarchy.
8182 Reconstruct it for later use during GC. */
8183 case R_ARM_GNU_VTINHERIT:
8184 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8185 return FALSE;
8186 break;
8187
8188 /* This relocation describes which C++ vtable entries are actually
8189 used. Record for later use during GC. */
8190 case R_ARM_GNU_VTENTRY:
8191 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8192 return FALSE;
8193 break;
8194 }
8195 }
8196
8197 return TRUE;
8198 }
8199
8200 /* Unwinding tables are not referenced directly. This pass marks them as
8201 required if the corresponding code section is marked. */
8202
8203 static bfd_boolean
8204 elf32_arm_gc_mark_extra_sections(struct bfd_link_info *info,
8205 elf_gc_mark_hook_fn gc_mark_hook)
8206 {
8207 bfd *sub;
8208 Elf_Internal_Shdr **elf_shdrp;
8209 bfd_boolean again;
8210
8211 /* Marking EH data may cause additional code sections to be marked,
8212 requiring multiple passes. */
8213 again = TRUE;
8214 while (again)
8215 {
8216 again = FALSE;
8217 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8218 {
8219 asection *o;
8220
8221 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8222 continue;
8223
8224 elf_shdrp = elf_elfsections (sub);
8225 for (o = sub->sections; o != NULL; o = o->next)
8226 {
8227 Elf_Internal_Shdr *hdr;
8228 hdr = &elf_section_data (o)->this_hdr;
8229 if (hdr->sh_type == SHT_ARM_EXIDX && hdr->sh_link
8230 && !o->gc_mark
8231 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
8232 {
8233 again = TRUE;
8234 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
8235 return FALSE;
8236 }
8237 }
8238 }
8239 }
8240
8241 return TRUE;
8242 }
8243
8244 /* Treat mapping symbols as special target symbols. */
8245
8246 static bfd_boolean
8247 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
8248 {
8249 return bfd_is_arm_special_symbol_name (sym->name,
8250 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
8251 }
8252
8253 /* This is a copy of elf_find_function() from elf.c except that
8254 ARM mapping symbols are ignored when looking for function names
8255 and STT_ARM_TFUNC is considered to a function type. */
8256
8257 static bfd_boolean
8258 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
8259 asection * section,
8260 asymbol ** symbols,
8261 bfd_vma offset,
8262 const char ** filename_ptr,
8263 const char ** functionname_ptr)
8264 {
8265 const char * filename = NULL;
8266 asymbol * func = NULL;
8267 bfd_vma low_func = 0;
8268 asymbol ** p;
8269
8270 for (p = symbols; *p != NULL; p++)
8271 {
8272 elf_symbol_type *q;
8273
8274 q = (elf_symbol_type *) *p;
8275
8276 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
8277 {
8278 default:
8279 break;
8280 case STT_FILE:
8281 filename = bfd_asymbol_name (&q->symbol);
8282 break;
8283 case STT_FUNC:
8284 case STT_ARM_TFUNC:
8285 case STT_NOTYPE:
8286 /* Skip mapping symbols. */
8287 if ((q->symbol.flags & BSF_LOCAL)
8288 && bfd_is_arm_special_symbol_name (q->symbol.name,
8289 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
8290 continue;
8291 /* Fall through. */
8292 if (bfd_get_section (&q->symbol) == section
8293 && q->symbol.value >= low_func
8294 && q->symbol.value <= offset)
8295 {
8296 func = (asymbol *) q;
8297 low_func = q->symbol.value;
8298 }
8299 break;
8300 }
8301 }
8302
8303 if (func == NULL)
8304 return FALSE;
8305
8306 if (filename_ptr)
8307 *filename_ptr = filename;
8308 if (functionname_ptr)
8309 *functionname_ptr = bfd_asymbol_name (func);
8310
8311 return TRUE;
8312 }
8313
8314
8315 /* Find the nearest line to a particular section and offset, for error
8316 reporting. This code is a duplicate of the code in elf.c, except
8317 that it uses arm_elf_find_function. */
8318
8319 static bfd_boolean
8320 elf32_arm_find_nearest_line (bfd * abfd,
8321 asection * section,
8322 asymbol ** symbols,
8323 bfd_vma offset,
8324 const char ** filename_ptr,
8325 const char ** functionname_ptr,
8326 unsigned int * line_ptr)
8327 {
8328 bfd_boolean found = FALSE;
8329
8330 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
8331
8332 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
8333 filename_ptr, functionname_ptr,
8334 line_ptr, 0,
8335 & elf_tdata (abfd)->dwarf2_find_line_info))
8336 {
8337 if (!*functionname_ptr)
8338 arm_elf_find_function (abfd, section, symbols, offset,
8339 *filename_ptr ? NULL : filename_ptr,
8340 functionname_ptr);
8341
8342 return TRUE;
8343 }
8344
8345 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8346 & found, filename_ptr,
8347 functionname_ptr, line_ptr,
8348 & elf_tdata (abfd)->line_info))
8349 return FALSE;
8350
8351 if (found && (*functionname_ptr || *line_ptr))
8352 return TRUE;
8353
8354 if (symbols == NULL)
8355 return FALSE;
8356
8357 if (! arm_elf_find_function (abfd, section, symbols, offset,
8358 filename_ptr, functionname_ptr))
8359 return FALSE;
8360
8361 *line_ptr = 0;
8362 return TRUE;
8363 }
8364
8365 static bfd_boolean
8366 elf32_arm_find_inliner_info (bfd * abfd,
8367 const char ** filename_ptr,
8368 const char ** functionname_ptr,
8369 unsigned int * line_ptr)
8370 {
8371 bfd_boolean found;
8372 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8373 functionname_ptr, line_ptr,
8374 & elf_tdata (abfd)->dwarf2_find_line_info);
8375 return found;
8376 }
8377
8378 /* Adjust a symbol defined by a dynamic object and referenced by a
8379 regular object. The current definition is in some section of the
8380 dynamic object, but we're not including those sections. We have to
8381 change the definition to something the rest of the link can
8382 understand. */
8383
8384 static bfd_boolean
8385 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
8386 struct elf_link_hash_entry * h)
8387 {
8388 bfd * dynobj;
8389 asection * s;
8390 unsigned int power_of_two;
8391 struct elf32_arm_link_hash_entry * eh;
8392 struct elf32_arm_link_hash_table *globals;
8393
8394 globals = elf32_arm_hash_table (info);
8395 dynobj = elf_hash_table (info)->dynobj;
8396
8397 /* Make sure we know what is going on here. */
8398 BFD_ASSERT (dynobj != NULL
8399 && (h->needs_plt
8400 || h->u.weakdef != NULL
8401 || (h->def_dynamic
8402 && h->ref_regular
8403 && !h->def_regular)));
8404
8405 eh = (struct elf32_arm_link_hash_entry *) h;
8406
8407 /* If this is a function, put it in the procedure linkage table. We
8408 will fill in the contents of the procedure linkage table later,
8409 when we know the address of the .got section. */
8410 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
8411 || h->needs_plt)
8412 {
8413 if (h->plt.refcount <= 0
8414 || SYMBOL_CALLS_LOCAL (info, h)
8415 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8416 && h->root.type == bfd_link_hash_undefweak))
8417 {
8418 /* This case can occur if we saw a PLT32 reloc in an input
8419 file, but the symbol was never referred to by a dynamic
8420 object, or if all references were garbage collected. In
8421 such a case, we don't actually need to build a procedure
8422 linkage table, and we can just do a PC24 reloc instead. */
8423 h->plt.offset = (bfd_vma) -1;
8424 eh->plt_thumb_refcount = 0;
8425 h->needs_plt = 0;
8426 }
8427
8428 return TRUE;
8429 }
8430 else
8431 {
8432 /* It's possible that we incorrectly decided a .plt reloc was
8433 needed for an R_ARM_PC24 or similar reloc to a non-function sym
8434 in check_relocs. We can't decide accurately between function
8435 and non-function syms in check-relocs; Objects loaded later in
8436 the link may change h->type. So fix it now. */
8437 h->plt.offset = (bfd_vma) -1;
8438 eh->plt_thumb_refcount = 0;
8439 }
8440
8441 /* If this is a weak symbol, and there is a real definition, the
8442 processor independent code will have arranged for us to see the
8443 real definition first, and we can just use the same value. */
8444 if (h->u.weakdef != NULL)
8445 {
8446 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8447 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8448 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8449 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8450 return TRUE;
8451 }
8452
8453 /* If there are no non-GOT references, we do not need a copy
8454 relocation. */
8455 if (!h->non_got_ref)
8456 return TRUE;
8457
8458 /* This is a reference to a symbol defined by a dynamic object which
8459 is not a function. */
8460
8461 /* If we are creating a shared library, we must presume that the
8462 only references to the symbol are via the global offset table.
8463 For such cases we need not do anything here; the relocations will
8464 be handled correctly by relocate_section. Relocatable executables
8465 can reference data in shared objects directly, so we don't need to
8466 do anything here. */
8467 if (info->shared || globals->root.is_relocatable_executable)
8468 return TRUE;
8469
8470 if (h->size == 0)
8471 {
8472 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
8473 h->root.root.string);
8474 return TRUE;
8475 }
8476
8477 /* We must allocate the symbol in our .dynbss section, which will
8478 become part of the .bss section of the executable. There will be
8479 an entry for this symbol in the .dynsym section. The dynamic
8480 object will contain position independent code, so all references
8481 from the dynamic object to this symbol will go through the global
8482 offset table. The dynamic linker will use the .dynsym entry to
8483 determine the address it must put in the global offset table, so
8484 both the dynamic object and the regular object will refer to the
8485 same memory location for the variable. */
8486 s = bfd_get_section_by_name (dynobj, ".dynbss");
8487 BFD_ASSERT (s != NULL);
8488
8489 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
8490 copy the initial value out of the dynamic object and into the
8491 runtime process image. We need to remember the offset into the
8492 .rel(a).bss section we are going to use. */
8493 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8494 {
8495 asection *srel;
8496
8497 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
8498 BFD_ASSERT (srel != NULL);
8499 srel->size += RELOC_SIZE (globals);
8500 h->needs_copy = 1;
8501 }
8502
8503 /* We need to figure out the alignment required for this symbol. I
8504 have no idea how ELF linkers handle this. */
8505 power_of_two = bfd_log2 (h->size);
8506 if (power_of_two > 3)
8507 power_of_two = 3;
8508
8509 /* Apply the required alignment. */
8510 s->size = BFD_ALIGN (s->size, (bfd_size_type) (1 << power_of_two));
8511 if (power_of_two > bfd_get_section_alignment (dynobj, s))
8512 {
8513 if (! bfd_set_section_alignment (dynobj, s, power_of_two))
8514 return FALSE;
8515 }
8516
8517 /* Define the symbol as being at this point in the section. */
8518 h->root.u.def.section = s;
8519 h->root.u.def.value = s->size;
8520
8521 /* Increment the section size to make room for the symbol. */
8522 s->size += h->size;
8523
8524 return TRUE;
8525 }
8526
8527 /* Allocate space in .plt, .got and associated reloc sections for
8528 dynamic relocs. */
8529
8530 static bfd_boolean
8531 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
8532 {
8533 struct bfd_link_info *info;
8534 struct elf32_arm_link_hash_table *htab;
8535 struct elf32_arm_link_hash_entry *eh;
8536 struct elf32_arm_relocs_copied *p;
8537
8538 eh = (struct elf32_arm_link_hash_entry *) h;
8539
8540 if (h->root.type == bfd_link_hash_indirect)
8541 return TRUE;
8542
8543 if (h->root.type == bfd_link_hash_warning)
8544 /* When warning symbols are created, they **replace** the "real"
8545 entry in the hash table, thus we never get to see the real
8546 symbol in a hash traversal. So look at it now. */
8547 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8548
8549 info = (struct bfd_link_info *) inf;
8550 htab = elf32_arm_hash_table (info);
8551
8552 if (htab->root.dynamic_sections_created
8553 && h->plt.refcount > 0)
8554 {
8555 /* Make sure this symbol is output as a dynamic symbol.
8556 Undefined weak syms won't yet be marked as dynamic. */
8557 if (h->dynindx == -1
8558 && !h->forced_local)
8559 {
8560 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8561 return FALSE;
8562 }
8563
8564 if (info->shared
8565 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8566 {
8567 asection *s = htab->splt;
8568
8569 /* If this is the first .plt entry, make room for the special
8570 first entry. */
8571 if (s->size == 0)
8572 s->size += htab->plt_header_size;
8573
8574 h->plt.offset = s->size;
8575
8576 /* If we will insert a Thumb trampoline before this PLT, leave room
8577 for it. */
8578 if (!htab->use_blx && eh->plt_thumb_refcount > 0)
8579 {
8580 h->plt.offset += PLT_THUMB_STUB_SIZE;
8581 s->size += PLT_THUMB_STUB_SIZE;
8582 }
8583
8584 /* If this symbol is not defined in a regular file, and we are
8585 not generating a shared library, then set the symbol to this
8586 location in the .plt. This is required to make function
8587 pointers compare as equal between the normal executable and
8588 the shared library. */
8589 if (! info->shared
8590 && !h->def_regular)
8591 {
8592 h->root.u.def.section = s;
8593 h->root.u.def.value = h->plt.offset;
8594
8595 /* Make sure the function is not marked as Thumb, in case
8596 it is the target of an ABS32 relocation, which will
8597 point to the PLT entry. */
8598 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
8599 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
8600 }
8601
8602 /* Make room for this entry. */
8603 s->size += htab->plt_entry_size;
8604
8605 if (!htab->symbian_p)
8606 {
8607 /* We also need to make an entry in the .got.plt section, which
8608 will be placed in the .got section by the linker script. */
8609 eh->plt_got_offset = htab->sgotplt->size;
8610 htab->sgotplt->size += 4;
8611 }
8612
8613 /* We also need to make an entry in the .rel(a).plt section. */
8614 htab->srelplt->size += RELOC_SIZE (htab);
8615
8616 /* VxWorks executables have a second set of relocations for
8617 each PLT entry. They go in a separate relocation section,
8618 which is processed by the kernel loader. */
8619 if (htab->vxworks_p && !info->shared)
8620 {
8621 /* There is a relocation for the initial PLT entry:
8622 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
8623 if (h->plt.offset == htab->plt_header_size)
8624 htab->srelplt2->size += RELOC_SIZE (htab);
8625
8626 /* There are two extra relocations for each subsequent
8627 PLT entry: an R_ARM_32 relocation for the GOT entry,
8628 and an R_ARM_32 relocation for the PLT entry. */
8629 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
8630 }
8631 }
8632 else
8633 {
8634 h->plt.offset = (bfd_vma) -1;
8635 h->needs_plt = 0;
8636 }
8637 }
8638 else
8639 {
8640 h->plt.offset = (bfd_vma) -1;
8641 h->needs_plt = 0;
8642 }
8643
8644 if (h->got.refcount > 0)
8645 {
8646 asection *s;
8647 bfd_boolean dyn;
8648 int tls_type = elf32_arm_hash_entry (h)->tls_type;
8649 int indx;
8650
8651 /* Make sure this symbol is output as a dynamic symbol.
8652 Undefined weak syms won't yet be marked as dynamic. */
8653 if (h->dynindx == -1
8654 && !h->forced_local)
8655 {
8656 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8657 return FALSE;
8658 }
8659
8660 if (!htab->symbian_p)
8661 {
8662 s = htab->sgot;
8663 h->got.offset = s->size;
8664
8665 if (tls_type == GOT_UNKNOWN)
8666 abort ();
8667
8668 if (tls_type == GOT_NORMAL)
8669 /* Non-TLS symbols need one GOT slot. */
8670 s->size += 4;
8671 else
8672 {
8673 if (tls_type & GOT_TLS_GD)
8674 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
8675 s->size += 8;
8676 if (tls_type & GOT_TLS_IE)
8677 /* R_ARM_TLS_IE32 needs one GOT slot. */
8678 s->size += 4;
8679 }
8680
8681 dyn = htab->root.dynamic_sections_created;
8682
8683 indx = 0;
8684 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
8685 && (!info->shared
8686 || !SYMBOL_REFERENCES_LOCAL (info, h)))
8687 indx = h->dynindx;
8688
8689 if (tls_type != GOT_NORMAL
8690 && (info->shared || indx != 0)
8691 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8692 || h->root.type != bfd_link_hash_undefweak))
8693 {
8694 if (tls_type & GOT_TLS_IE)
8695 htab->srelgot->size += RELOC_SIZE (htab);
8696
8697 if (tls_type & GOT_TLS_GD)
8698 htab->srelgot->size += RELOC_SIZE (htab);
8699
8700 if ((tls_type & GOT_TLS_GD) && indx != 0)
8701 htab->srelgot->size += RELOC_SIZE (htab);
8702 }
8703 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8704 || h->root.type != bfd_link_hash_undefweak)
8705 && (info->shared
8706 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8707 htab->srelgot->size += RELOC_SIZE (htab);
8708 }
8709 }
8710 else
8711 h->got.offset = (bfd_vma) -1;
8712
8713 /* Allocate stubs for exported Thumb functions on v4t. */
8714 if (!htab->use_blx && h->dynindx != -1
8715 && h->def_regular
8716 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
8717 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
8718 {
8719 struct elf_link_hash_entry * th;
8720 struct bfd_link_hash_entry * bh;
8721 struct elf_link_hash_entry * myh;
8722 char name[1024];
8723 asection *s;
8724 bh = NULL;
8725 /* Create a new symbol to regist the real location of the function. */
8726 s = h->root.u.def.section;
8727 sprintf(name, "__real_%s", h->root.root.string);
8728 _bfd_generic_link_add_one_symbol (info, s->owner,
8729 name, BSF_GLOBAL, s,
8730 h->root.u.def.value,
8731 NULL, TRUE, FALSE, &bh);
8732
8733 myh = (struct elf_link_hash_entry *) bh;
8734 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
8735 myh->forced_local = 1;
8736 eh->export_glue = myh;
8737 th = record_arm_to_thumb_glue (info, h);
8738 /* Point the symbol at the stub. */
8739 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
8740 h->root.u.def.section = th->root.u.def.section;
8741 h->root.u.def.value = th->root.u.def.value & ~1;
8742 }
8743
8744 if (eh->relocs_copied == NULL)
8745 return TRUE;
8746
8747 /* In the shared -Bsymbolic case, discard space allocated for
8748 dynamic pc-relative relocs against symbols which turn out to be
8749 defined in regular objects. For the normal shared case, discard
8750 space for pc-relative relocs that have become local due to symbol
8751 visibility changes. */
8752
8753 if (info->shared || htab->root.is_relocatable_executable)
8754 {
8755 /* The only relocs that use pc_count are R_ARM_REL32 and
8756 R_ARM_REL32_NOI, which will appear on something like
8757 ".long foo - .". We want calls to protected symbols to resolve
8758 directly to the function rather than going via the plt. If people
8759 want function pointer comparisons to work as expected then they
8760 should avoid writing assembly like ".long foo - .". */
8761 if (SYMBOL_CALLS_LOCAL (info, h))
8762 {
8763 struct elf32_arm_relocs_copied **pp;
8764
8765 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
8766 {
8767 p->count -= p->pc_count;
8768 p->pc_count = 0;
8769 if (p->count == 0)
8770 *pp = p->next;
8771 else
8772 pp = &p->next;
8773 }
8774 }
8775
8776 /* Also discard relocs on undefined weak syms with non-default
8777 visibility. */
8778 if (eh->relocs_copied != NULL
8779 && h->root.type == bfd_link_hash_undefweak)
8780 {
8781 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8782 eh->relocs_copied = NULL;
8783
8784 /* Make sure undefined weak symbols are output as a dynamic
8785 symbol in PIEs. */
8786 else if (h->dynindx == -1
8787 && !h->forced_local)
8788 {
8789 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8790 return FALSE;
8791 }
8792 }
8793
8794 else if (htab->root.is_relocatable_executable && h->dynindx == -1
8795 && h->root.type == bfd_link_hash_new)
8796 {
8797 /* Output absolute symbols so that we can create relocations
8798 against them. For normal symbols we output a relocation
8799 against the section that contains them. */
8800 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8801 return FALSE;
8802 }
8803
8804 }
8805 else
8806 {
8807 /* For the non-shared case, discard space for relocs against
8808 symbols which turn out to need copy relocs or are not
8809 dynamic. */
8810
8811 if (!h->non_got_ref
8812 && ((h->def_dynamic
8813 && !h->def_regular)
8814 || (htab->root.dynamic_sections_created
8815 && (h->root.type == bfd_link_hash_undefweak
8816 || h->root.type == bfd_link_hash_undefined))))
8817 {
8818 /* Make sure this symbol is output as a dynamic symbol.
8819 Undefined weak syms won't yet be marked as dynamic. */
8820 if (h->dynindx == -1
8821 && !h->forced_local)
8822 {
8823 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8824 return FALSE;
8825 }
8826
8827 /* If that succeeded, we know we'll be keeping all the
8828 relocs. */
8829 if (h->dynindx != -1)
8830 goto keep;
8831 }
8832
8833 eh->relocs_copied = NULL;
8834
8835 keep: ;
8836 }
8837
8838 /* Finally, allocate space. */
8839 for (p = eh->relocs_copied; p != NULL; p = p->next)
8840 {
8841 asection *sreloc = elf_section_data (p->section)->sreloc;
8842 sreloc->size += p->count * RELOC_SIZE (htab);
8843 }
8844
8845 return TRUE;
8846 }
8847
8848 /* Find any dynamic relocs that apply to read-only sections. */
8849
8850 static bfd_boolean
8851 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
8852 {
8853 struct elf32_arm_link_hash_entry *eh;
8854 struct elf32_arm_relocs_copied *p;
8855
8856 if (h->root.type == bfd_link_hash_warning)
8857 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8858
8859 eh = (struct elf32_arm_link_hash_entry *) h;
8860 for (p = eh->relocs_copied; p != NULL; p = p->next)
8861 {
8862 asection *s = p->section;
8863
8864 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8865 {
8866 struct bfd_link_info *info = (struct bfd_link_info *) inf;
8867
8868 info->flags |= DF_TEXTREL;
8869
8870 /* Not an error, just cut short the traversal. */
8871 return FALSE;
8872 }
8873 }
8874 return TRUE;
8875 }
8876
8877 void
8878 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
8879 int byteswap_code)
8880 {
8881 struct elf32_arm_link_hash_table *globals;
8882
8883 globals = elf32_arm_hash_table (info);
8884 globals->byteswap_code = byteswap_code;
8885 }
8886
8887 /* Set the sizes of the dynamic sections. */
8888
8889 static bfd_boolean
8890 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
8891 struct bfd_link_info * info)
8892 {
8893 bfd * dynobj;
8894 asection * s;
8895 bfd_boolean plt;
8896 bfd_boolean relocs;
8897 bfd *ibfd;
8898 struct elf32_arm_link_hash_table *htab;
8899
8900 htab = elf32_arm_hash_table (info);
8901 dynobj = elf_hash_table (info)->dynobj;
8902 BFD_ASSERT (dynobj != NULL);
8903 check_use_blx (htab);
8904
8905 if (elf_hash_table (info)->dynamic_sections_created)
8906 {
8907 /* Set the contents of the .interp section to the interpreter. */
8908 if (info->executable)
8909 {
8910 s = bfd_get_section_by_name (dynobj, ".interp");
8911 BFD_ASSERT (s != NULL);
8912 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8913 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8914 }
8915 }
8916
8917 /* Set up .got offsets for local syms, and space for local dynamic
8918 relocs. */
8919 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8920 {
8921 bfd_signed_vma *local_got;
8922 bfd_signed_vma *end_local_got;
8923 char *local_tls_type;
8924 bfd_size_type locsymcount;
8925 Elf_Internal_Shdr *symtab_hdr;
8926 asection *srel;
8927
8928 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
8929 continue;
8930
8931 for (s = ibfd->sections; s != NULL; s = s->next)
8932 {
8933 struct elf32_arm_relocs_copied *p;
8934
8935 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
8936 {
8937 if (!bfd_is_abs_section (p->section)
8938 && bfd_is_abs_section (p->section->output_section))
8939 {
8940 /* Input section has been discarded, either because
8941 it is a copy of a linkonce section or due to
8942 linker script /DISCARD/, so we'll be discarding
8943 the relocs too. */
8944 }
8945 else if (p->count != 0)
8946 {
8947 srel = elf_section_data (p->section)->sreloc;
8948 srel->size += p->count * RELOC_SIZE (htab);
8949 if ((p->section->output_section->flags & SEC_READONLY) != 0)
8950 info->flags |= DF_TEXTREL;
8951 }
8952 }
8953 }
8954
8955 local_got = elf_local_got_refcounts (ibfd);
8956 if (!local_got)
8957 continue;
8958
8959 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
8960 locsymcount = symtab_hdr->sh_info;
8961 end_local_got = local_got + locsymcount;
8962 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
8963 s = htab->sgot;
8964 srel = htab->srelgot;
8965 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
8966 {
8967 if (*local_got > 0)
8968 {
8969 *local_got = s->size;
8970 if (*local_tls_type & GOT_TLS_GD)
8971 /* TLS_GD relocs need an 8-byte structure in the GOT. */
8972 s->size += 8;
8973 if (*local_tls_type & GOT_TLS_IE)
8974 s->size += 4;
8975 if (*local_tls_type == GOT_NORMAL)
8976 s->size += 4;
8977
8978 if (info->shared || *local_tls_type == GOT_TLS_GD)
8979 srel->size += RELOC_SIZE (htab);
8980 }
8981 else
8982 *local_got = (bfd_vma) -1;
8983 }
8984 }
8985
8986 if (htab->tls_ldm_got.refcount > 0)
8987 {
8988 /* Allocate two GOT entries and one dynamic relocation (if necessary)
8989 for R_ARM_TLS_LDM32 relocations. */
8990 htab->tls_ldm_got.offset = htab->sgot->size;
8991 htab->sgot->size += 8;
8992 if (info->shared)
8993 htab->srelgot->size += RELOC_SIZE (htab);
8994 }
8995 else
8996 htab->tls_ldm_got.offset = -1;
8997
8998 /* Allocate global sym .plt and .got entries, and space for global
8999 sym dynamic relocs. */
9000 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
9001
9002 /* Here we rummage through the found bfds to collect glue information. */
9003 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
9004 {
9005 /* Initialise mapping tables for code/data. */
9006 bfd_elf32_arm_init_maps (ibfd);
9007
9008 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
9009 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
9010 /* xgettext:c-format */
9011 _bfd_error_handler (_("Errors encountered processing file %s"),
9012 ibfd->filename);
9013 }
9014
9015 /* The check_relocs and adjust_dynamic_symbol entry points have
9016 determined the sizes of the various dynamic sections. Allocate
9017 memory for them. */
9018 plt = FALSE;
9019 relocs = FALSE;
9020 for (s = dynobj->sections; s != NULL; s = s->next)
9021 {
9022 const char * name;
9023
9024 if ((s->flags & SEC_LINKER_CREATED) == 0)
9025 continue;
9026
9027 /* It's OK to base decisions on the section name, because none
9028 of the dynobj section names depend upon the input files. */
9029 name = bfd_get_section_name (dynobj, s);
9030
9031 if (strcmp (name, ".plt") == 0)
9032 {
9033 /* Remember whether there is a PLT. */
9034 plt = s->size != 0;
9035 }
9036 else if (CONST_STRNEQ (name, ".rel"))
9037 {
9038 if (s->size != 0)
9039 {
9040 /* Remember whether there are any reloc sections other
9041 than .rel(a).plt and .rela.plt.unloaded. */
9042 if (s != htab->srelplt && s != htab->srelplt2)
9043 relocs = TRUE;
9044
9045 /* We use the reloc_count field as a counter if we need
9046 to copy relocs into the output file. */
9047 s->reloc_count = 0;
9048 }
9049 }
9050 else if (! CONST_STRNEQ (name, ".got")
9051 && strcmp (name, ".dynbss") != 0)
9052 {
9053 /* It's not one of our sections, so don't allocate space. */
9054 continue;
9055 }
9056
9057 if (s->size == 0)
9058 {
9059 /* If we don't need this section, strip it from the
9060 output file. This is mostly to handle .rel(a).bss and
9061 .rel(a).plt. We must create both sections in
9062 create_dynamic_sections, because they must be created
9063 before the linker maps input sections to output
9064 sections. The linker does that before
9065 adjust_dynamic_symbol is called, and it is that
9066 function which decides whether anything needs to go
9067 into these sections. */
9068 s->flags |= SEC_EXCLUDE;
9069 continue;
9070 }
9071
9072 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9073 continue;
9074
9075 /* Allocate memory for the section contents. */
9076 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
9077 if (s->contents == NULL)
9078 return FALSE;
9079 }
9080
9081 if (elf_hash_table (info)->dynamic_sections_created)
9082 {
9083 /* Add some entries to the .dynamic section. We fill in the
9084 values later, in elf32_arm_finish_dynamic_sections, but we
9085 must add the entries now so that we get the correct size for
9086 the .dynamic section. The DT_DEBUG entry is filled in by the
9087 dynamic linker and used by the debugger. */
9088 #define add_dynamic_entry(TAG, VAL) \
9089 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9090
9091 if (info->executable)
9092 {
9093 if (!add_dynamic_entry (DT_DEBUG, 0))
9094 return FALSE;
9095 }
9096
9097 if (plt)
9098 {
9099 if ( !add_dynamic_entry (DT_PLTGOT, 0)
9100 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9101 || !add_dynamic_entry (DT_PLTREL,
9102 htab->use_rel ? DT_REL : DT_RELA)
9103 || !add_dynamic_entry (DT_JMPREL, 0))
9104 return FALSE;
9105 }
9106
9107 if (relocs)
9108 {
9109 if (htab->use_rel)
9110 {
9111 if (!add_dynamic_entry (DT_REL, 0)
9112 || !add_dynamic_entry (DT_RELSZ, 0)
9113 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
9114 return FALSE;
9115 }
9116 else
9117 {
9118 if (!add_dynamic_entry (DT_RELA, 0)
9119 || !add_dynamic_entry (DT_RELASZ, 0)
9120 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
9121 return FALSE;
9122 }
9123 }
9124
9125 /* If any dynamic relocs apply to a read-only section,
9126 then we need a DT_TEXTREL entry. */
9127 if ((info->flags & DF_TEXTREL) == 0)
9128 elf_link_hash_traverse (&htab->root, elf32_arm_readonly_dynrelocs,
9129 (PTR) info);
9130
9131 if ((info->flags & DF_TEXTREL) != 0)
9132 {
9133 if (!add_dynamic_entry (DT_TEXTREL, 0))
9134 return FALSE;
9135 }
9136 }
9137 #undef add_dynamic_entry
9138
9139 return TRUE;
9140 }
9141
9142 /* Finish up dynamic symbol handling. We set the contents of various
9143 dynamic sections here. */
9144
9145 static bfd_boolean
9146 elf32_arm_finish_dynamic_symbol (bfd * output_bfd, struct bfd_link_info * info,
9147 struct elf_link_hash_entry * h, Elf_Internal_Sym * sym)
9148 {
9149 bfd * dynobj;
9150 struct elf32_arm_link_hash_table *htab;
9151 struct elf32_arm_link_hash_entry *eh;
9152
9153 dynobj = elf_hash_table (info)->dynobj;
9154 htab = elf32_arm_hash_table (info);
9155 eh = (struct elf32_arm_link_hash_entry *) h;
9156
9157 if (h->plt.offset != (bfd_vma) -1)
9158 {
9159 asection * splt;
9160 asection * srel;
9161 bfd_byte *loc;
9162 bfd_vma plt_index;
9163 Elf_Internal_Rela rel;
9164
9165 /* This symbol has an entry in the procedure linkage table. Set
9166 it up. */
9167
9168 BFD_ASSERT (h->dynindx != -1);
9169
9170 splt = bfd_get_section_by_name (dynobj, ".plt");
9171 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
9172 BFD_ASSERT (splt != NULL && srel != NULL);
9173
9174 /* Fill in the entry in the procedure linkage table. */
9175 if (htab->symbian_p)
9176 {
9177 put_arm_insn (htab, output_bfd,
9178 elf32_arm_symbian_plt_entry[0],
9179 splt->contents + h->plt.offset);
9180 bfd_put_32 (output_bfd,
9181 elf32_arm_symbian_plt_entry[1],
9182 splt->contents + h->plt.offset + 4);
9183
9184 /* Fill in the entry in the .rel.plt section. */
9185 rel.r_offset = (splt->output_section->vma
9186 + splt->output_offset
9187 + h->plt.offset + 4);
9188 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9189
9190 /* Get the index in the procedure linkage table which
9191 corresponds to this symbol. This is the index of this symbol
9192 in all the symbols for which we are making plt entries. The
9193 first entry in the procedure linkage table is reserved. */
9194 plt_index = ((h->plt.offset - htab->plt_header_size)
9195 / htab->plt_entry_size);
9196 }
9197 else
9198 {
9199 bfd_vma got_offset, got_address, plt_address;
9200 bfd_vma got_displacement;
9201 asection * sgot;
9202 bfd_byte * ptr;
9203
9204 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
9205 BFD_ASSERT (sgot != NULL);
9206
9207 /* Get the offset into the .got.plt table of the entry that
9208 corresponds to this function. */
9209 got_offset = eh->plt_got_offset;
9210
9211 /* Get the index in the procedure linkage table which
9212 corresponds to this symbol. This is the index of this symbol
9213 in all the symbols for which we are making plt entries. The
9214 first three entries in .got.plt are reserved; after that
9215 symbols appear in the same order as in .plt. */
9216 plt_index = (got_offset - 12) / 4;
9217
9218 /* Calculate the address of the GOT entry. */
9219 got_address = (sgot->output_section->vma
9220 + sgot->output_offset
9221 + got_offset);
9222
9223 /* ...and the address of the PLT entry. */
9224 plt_address = (splt->output_section->vma
9225 + splt->output_offset
9226 + h->plt.offset);
9227
9228 ptr = htab->splt->contents + h->plt.offset;
9229 if (htab->vxworks_p && info->shared)
9230 {
9231 unsigned int i;
9232 bfd_vma val;
9233
9234 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9235 {
9236 val = elf32_arm_vxworks_shared_plt_entry[i];
9237 if (i == 2)
9238 val |= got_address - sgot->output_section->vma;
9239 if (i == 5)
9240 val |= plt_index * RELOC_SIZE (htab);
9241 if (i == 2 || i == 5)
9242 bfd_put_32 (output_bfd, val, ptr);
9243 else
9244 put_arm_insn (htab, output_bfd, val, ptr);
9245 }
9246 }
9247 else if (htab->vxworks_p)
9248 {
9249 unsigned int i;
9250 bfd_vma val;
9251
9252 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9253 {
9254 val = elf32_arm_vxworks_exec_plt_entry[i];
9255 if (i == 2)
9256 val |= got_address;
9257 if (i == 4)
9258 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
9259 if (i == 5)
9260 val |= plt_index * RELOC_SIZE (htab);
9261 if (i == 2 || i == 5)
9262 bfd_put_32 (output_bfd, val, ptr);
9263 else
9264 put_arm_insn (htab, output_bfd, val, ptr);
9265 }
9266
9267 loc = (htab->srelplt2->contents
9268 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9269
9270 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9271 referencing the GOT for this PLT entry. */
9272 rel.r_offset = plt_address + 8;
9273 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9274 rel.r_addend = got_offset;
9275 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9276 loc += RELOC_SIZE (htab);
9277
9278 /* Create the R_ARM_ABS32 relocation referencing the
9279 beginning of the PLT for this GOT entry. */
9280 rel.r_offset = got_address;
9281 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9282 rel.r_addend = 0;
9283 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9284 }
9285 else
9286 {
9287 /* Calculate the displacement between the PLT slot and the
9288 entry in the GOT. The eight-byte offset accounts for the
9289 value produced by adding to pc in the first instruction
9290 of the PLT stub. */
9291 got_displacement = got_address - (plt_address + 8);
9292
9293 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9294
9295 if (!htab->use_blx && eh->plt_thumb_refcount > 0)
9296 {
9297 put_thumb_insn (htab, output_bfd,
9298 elf32_arm_plt_thumb_stub[0], ptr - 4);
9299 put_thumb_insn (htab, output_bfd,
9300 elf32_arm_plt_thumb_stub[1], ptr - 2);
9301 }
9302
9303 put_arm_insn (htab, output_bfd,
9304 elf32_arm_plt_entry[0]
9305 | ((got_displacement & 0x0ff00000) >> 20),
9306 ptr + 0);
9307 put_arm_insn (htab, output_bfd,
9308 elf32_arm_plt_entry[1]
9309 | ((got_displacement & 0x000ff000) >> 12),
9310 ptr+ 4);
9311 put_arm_insn (htab, output_bfd,
9312 elf32_arm_plt_entry[2]
9313 | (got_displacement & 0x00000fff),
9314 ptr + 8);
9315 #ifdef FOUR_WORD_PLT
9316 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
9317 #endif
9318 }
9319
9320 /* Fill in the entry in the global offset table. */
9321 bfd_put_32 (output_bfd,
9322 (splt->output_section->vma
9323 + splt->output_offset),
9324 sgot->contents + got_offset);
9325
9326 /* Fill in the entry in the .rel(a).plt section. */
9327 rel.r_addend = 0;
9328 rel.r_offset = got_address;
9329 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
9330 }
9331
9332 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9333 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9334
9335 if (!h->def_regular)
9336 {
9337 /* Mark the symbol as undefined, rather than as defined in
9338 the .plt section. Leave the value alone. */
9339 sym->st_shndx = SHN_UNDEF;
9340 /* If the symbol is weak, we do need to clear the value.
9341 Otherwise, the PLT entry would provide a definition for
9342 the symbol even if the symbol wasn't defined anywhere,
9343 and so the symbol would never be NULL. */
9344 if (!h->ref_regular_nonweak)
9345 sym->st_value = 0;
9346 }
9347 }
9348
9349 if (h->got.offset != (bfd_vma) -1
9350 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
9351 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
9352 {
9353 asection * sgot;
9354 asection * srel;
9355 Elf_Internal_Rela rel;
9356 bfd_byte *loc;
9357 bfd_vma offset;
9358
9359 /* This symbol has an entry in the global offset table. Set it
9360 up. */
9361 sgot = bfd_get_section_by_name (dynobj, ".got");
9362 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
9363 BFD_ASSERT (sgot != NULL && srel != NULL);
9364
9365 offset = (h->got.offset & ~(bfd_vma) 1);
9366 rel.r_addend = 0;
9367 rel.r_offset = (sgot->output_section->vma
9368 + sgot->output_offset
9369 + offset);
9370
9371 /* If this is a static link, or it is a -Bsymbolic link and the
9372 symbol is defined locally or was forced to be local because
9373 of a version file, we just want to emit a RELATIVE reloc.
9374 The entry in the global offset table will already have been
9375 initialized in the relocate_section function. */
9376 if (info->shared
9377 && SYMBOL_REFERENCES_LOCAL (info, h))
9378 {
9379 BFD_ASSERT((h->got.offset & 1) != 0);
9380 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9381 if (!htab->use_rel)
9382 {
9383 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
9384 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
9385 }
9386 }
9387 else
9388 {
9389 BFD_ASSERT((h->got.offset & 1) == 0);
9390 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
9391 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9392 }
9393
9394 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
9395 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9396 }
9397
9398 if (h->needs_copy)
9399 {
9400 asection * s;
9401 Elf_Internal_Rela rel;
9402 bfd_byte *loc;
9403
9404 /* This symbol needs a copy reloc. Set it up. */
9405 BFD_ASSERT (h->dynindx != -1
9406 && (h->root.type == bfd_link_hash_defined
9407 || h->root.type == bfd_link_hash_defweak));
9408
9409 s = bfd_get_section_by_name (h->root.u.def.section->owner,
9410 RELOC_SECTION (htab, ".bss"));
9411 BFD_ASSERT (s != NULL);
9412
9413 rel.r_addend = 0;
9414 rel.r_offset = (h->root.u.def.value
9415 + h->root.u.def.section->output_section->vma
9416 + h->root.u.def.section->output_offset);
9417 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
9418 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9419 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9420 }
9421
9422 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
9423 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
9424 to the ".got" section. */
9425 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
9426 || (!htab->vxworks_p && h == htab->root.hgot))
9427 sym->st_shndx = SHN_ABS;
9428
9429 return TRUE;
9430 }
9431
9432 /* Finish up the dynamic sections. */
9433
9434 static bfd_boolean
9435 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
9436 {
9437 bfd * dynobj;
9438 asection * sgot;
9439 asection * sdyn;
9440
9441 dynobj = elf_hash_table (info)->dynobj;
9442
9443 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
9444 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
9445 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9446
9447 if (elf_hash_table (info)->dynamic_sections_created)
9448 {
9449 asection *splt;
9450 Elf32_External_Dyn *dyncon, *dynconend;
9451 struct elf32_arm_link_hash_table *htab;
9452
9453 htab = elf32_arm_hash_table (info);
9454 splt = bfd_get_section_by_name (dynobj, ".plt");
9455 BFD_ASSERT (splt != NULL && sdyn != NULL);
9456
9457 dyncon = (Elf32_External_Dyn *) sdyn->contents;
9458 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9459
9460 for (; dyncon < dynconend; dyncon++)
9461 {
9462 Elf_Internal_Dyn dyn;
9463 const char * name;
9464 asection * s;
9465
9466 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
9467
9468 switch (dyn.d_tag)
9469 {
9470 unsigned int type;
9471
9472 default:
9473 break;
9474
9475 case DT_HASH:
9476 name = ".hash";
9477 goto get_vma_if_bpabi;
9478 case DT_STRTAB:
9479 name = ".dynstr";
9480 goto get_vma_if_bpabi;
9481 case DT_SYMTAB:
9482 name = ".dynsym";
9483 goto get_vma_if_bpabi;
9484 case DT_VERSYM:
9485 name = ".gnu.version";
9486 goto get_vma_if_bpabi;
9487 case DT_VERDEF:
9488 name = ".gnu.version_d";
9489 goto get_vma_if_bpabi;
9490 case DT_VERNEED:
9491 name = ".gnu.version_r";
9492 goto get_vma_if_bpabi;
9493
9494 case DT_PLTGOT:
9495 name = ".got";
9496 goto get_vma;
9497 case DT_JMPREL:
9498 name = RELOC_SECTION (htab, ".plt");
9499 get_vma:
9500 s = bfd_get_section_by_name (output_bfd, name);
9501 BFD_ASSERT (s != NULL);
9502 if (!htab->symbian_p)
9503 dyn.d_un.d_ptr = s->vma;
9504 else
9505 /* In the BPABI, tags in the PT_DYNAMIC section point
9506 at the file offset, not the memory address, for the
9507 convenience of the post linker. */
9508 dyn.d_un.d_ptr = s->filepos;
9509 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9510 break;
9511
9512 get_vma_if_bpabi:
9513 if (htab->symbian_p)
9514 goto get_vma;
9515 break;
9516
9517 case DT_PLTRELSZ:
9518 s = bfd_get_section_by_name (output_bfd,
9519 RELOC_SECTION (htab, ".plt"));
9520 BFD_ASSERT (s != NULL);
9521 dyn.d_un.d_val = s->size;
9522 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9523 break;
9524
9525 case DT_RELSZ:
9526 case DT_RELASZ:
9527 if (!htab->symbian_p)
9528 {
9529 /* My reading of the SVR4 ABI indicates that the
9530 procedure linkage table relocs (DT_JMPREL) should be
9531 included in the overall relocs (DT_REL). This is
9532 what Solaris does. However, UnixWare can not handle
9533 that case. Therefore, we override the DT_RELSZ entry
9534 here to make it not include the JMPREL relocs. Since
9535 the linker script arranges for .rel(a).plt to follow all
9536 other relocation sections, we don't have to worry
9537 about changing the DT_REL entry. */
9538 s = bfd_get_section_by_name (output_bfd,
9539 RELOC_SECTION (htab, ".plt"));
9540 if (s != NULL)
9541 dyn.d_un.d_val -= s->size;
9542 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9543 break;
9544 }
9545 /* Fall through */
9546
9547 case DT_REL:
9548 case DT_RELA:
9549 /* In the BPABI, the DT_REL tag must point at the file
9550 offset, not the VMA, of the first relocation
9551 section. So, we use code similar to that in
9552 elflink.c, but do not check for SHF_ALLOC on the
9553 relcoation section, since relocations sections are
9554 never allocated under the BPABI. The comments above
9555 about Unixware notwithstanding, we include all of the
9556 relocations here. */
9557 if (htab->symbian_p)
9558 {
9559 unsigned int i;
9560 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
9561 ? SHT_REL : SHT_RELA);
9562 dyn.d_un.d_val = 0;
9563 for (i = 1; i < elf_numsections (output_bfd); i++)
9564 {
9565 Elf_Internal_Shdr *hdr
9566 = elf_elfsections (output_bfd)[i];
9567 if (hdr->sh_type == type)
9568 {
9569 if (dyn.d_tag == DT_RELSZ
9570 || dyn.d_tag == DT_RELASZ)
9571 dyn.d_un.d_val += hdr->sh_size;
9572 else if ((ufile_ptr) hdr->sh_offset
9573 <= dyn.d_un.d_val - 1)
9574 dyn.d_un.d_val = hdr->sh_offset;
9575 }
9576 }
9577 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9578 }
9579 break;
9580
9581 /* Set the bottom bit of DT_INIT/FINI if the
9582 corresponding function is Thumb. */
9583 case DT_INIT:
9584 name = info->init_function;
9585 goto get_sym;
9586 case DT_FINI:
9587 name = info->fini_function;
9588 get_sym:
9589 /* If it wasn't set by elf_bfd_final_link
9590 then there is nothing to adjust. */
9591 if (dyn.d_un.d_val != 0)
9592 {
9593 struct elf_link_hash_entry * eh;
9594
9595 eh = elf_link_hash_lookup (elf_hash_table (info), name,
9596 FALSE, FALSE, TRUE);
9597 if (eh != (struct elf_link_hash_entry *) NULL
9598 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
9599 {
9600 dyn.d_un.d_val |= 1;
9601 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9602 }
9603 }
9604 break;
9605 }
9606 }
9607
9608 /* Fill in the first entry in the procedure linkage table. */
9609 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
9610 {
9611 const bfd_vma *plt0_entry;
9612 bfd_vma got_address, plt_address, got_displacement;
9613
9614 /* Calculate the addresses of the GOT and PLT. */
9615 got_address = sgot->output_section->vma + sgot->output_offset;
9616 plt_address = splt->output_section->vma + splt->output_offset;
9617
9618 if (htab->vxworks_p)
9619 {
9620 /* The VxWorks GOT is relocated by the dynamic linker.
9621 Therefore, we must emit relocations rather than simply
9622 computing the values now. */
9623 Elf_Internal_Rela rel;
9624
9625 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
9626 put_arm_insn (htab, output_bfd, plt0_entry[0],
9627 splt->contents + 0);
9628 put_arm_insn (htab, output_bfd, plt0_entry[1],
9629 splt->contents + 4);
9630 put_arm_insn (htab, output_bfd, plt0_entry[2],
9631 splt->contents + 8);
9632 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
9633
9634 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
9635 rel.r_offset = plt_address + 12;
9636 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9637 rel.r_addend = 0;
9638 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
9639 htab->srelplt2->contents);
9640 }
9641 else
9642 {
9643 got_displacement = got_address - (plt_address + 16);
9644
9645 plt0_entry = elf32_arm_plt0_entry;
9646 put_arm_insn (htab, output_bfd, plt0_entry[0],
9647 splt->contents + 0);
9648 put_arm_insn (htab, output_bfd, plt0_entry[1],
9649 splt->contents + 4);
9650 put_arm_insn (htab, output_bfd, plt0_entry[2],
9651 splt->contents + 8);
9652 put_arm_insn (htab, output_bfd, plt0_entry[3],
9653 splt->contents + 12);
9654
9655 #ifdef FOUR_WORD_PLT
9656 /* The displacement value goes in the otherwise-unused
9657 last word of the second entry. */
9658 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
9659 #else
9660 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
9661 #endif
9662 }
9663 }
9664
9665 /* UnixWare sets the entsize of .plt to 4, although that doesn't
9666 really seem like the right value. */
9667 if (splt->output_section->owner == output_bfd)
9668 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
9669
9670 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
9671 {
9672 /* Correct the .rel(a).plt.unloaded relocations. They will have
9673 incorrect symbol indexes. */
9674 int num_plts;
9675 unsigned char *p;
9676
9677 num_plts = ((htab->splt->size - htab->plt_header_size)
9678 / htab->plt_entry_size);
9679 p = htab->srelplt2->contents + RELOC_SIZE (htab);
9680
9681 for (; num_plts; num_plts--)
9682 {
9683 Elf_Internal_Rela rel;
9684
9685 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
9686 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9687 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
9688 p += RELOC_SIZE (htab);
9689
9690 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
9691 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9692 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
9693 p += RELOC_SIZE (htab);
9694 }
9695 }
9696 }
9697
9698 /* Fill in the first three entries in the global offset table. */
9699 if (sgot)
9700 {
9701 if (sgot->size > 0)
9702 {
9703 if (sdyn == NULL)
9704 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
9705 else
9706 bfd_put_32 (output_bfd,
9707 sdyn->output_section->vma + sdyn->output_offset,
9708 sgot->contents);
9709 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
9710 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
9711 }
9712
9713 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
9714 }
9715
9716 return TRUE;
9717 }
9718
9719 static void
9720 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9721 {
9722 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9723 struct elf32_arm_link_hash_table *globals;
9724
9725 i_ehdrp = elf_elfheader (abfd);
9726
9727 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
9728 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
9729 else
9730 i_ehdrp->e_ident[EI_OSABI] = 0;
9731 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
9732
9733 if (link_info)
9734 {
9735 globals = elf32_arm_hash_table (link_info);
9736 if (globals->byteswap_code)
9737 i_ehdrp->e_flags |= EF_ARM_BE8;
9738 }
9739 }
9740
9741 static enum elf_reloc_type_class
9742 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
9743 {
9744 switch ((int) ELF32_R_TYPE (rela->r_info))
9745 {
9746 case R_ARM_RELATIVE:
9747 return reloc_class_relative;
9748 case R_ARM_JUMP_SLOT:
9749 return reloc_class_plt;
9750 case R_ARM_COPY:
9751 return reloc_class_copy;
9752 default:
9753 return reloc_class_normal;
9754 }
9755 }
9756
9757 /* Set the right machine number for an Arm ELF file. */
9758
9759 static bfd_boolean
9760 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
9761 {
9762 if (hdr->sh_type == SHT_NOTE)
9763 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
9764
9765 return TRUE;
9766 }
9767
9768 static void
9769 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
9770 {
9771 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
9772 }
9773
9774 /* Return TRUE if this is an unwinding table entry. */
9775
9776 static bfd_boolean
9777 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
9778 {
9779 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
9780 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
9781 }
9782
9783
9784 /* Set the type and flags for an ARM section. We do this by
9785 the section name, which is a hack, but ought to work. */
9786
9787 static bfd_boolean
9788 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
9789 {
9790 const char * name;
9791
9792 name = bfd_get_section_name (abfd, sec);
9793
9794 if (is_arm_elf_unwind_section_name (abfd, name))
9795 {
9796 hdr->sh_type = SHT_ARM_EXIDX;
9797 hdr->sh_flags |= SHF_LINK_ORDER;
9798 }
9799 else if (strcmp(name, ".ARM.attributes") == 0)
9800 {
9801 hdr->sh_type = SHT_ARM_ATTRIBUTES;
9802 }
9803 return TRUE;
9804 }
9805
9806 /* Parse an Arm EABI attributes section. */
9807 static void
9808 elf32_arm_parse_attributes (bfd *abfd, Elf_Internal_Shdr * hdr)
9809 {
9810 bfd_byte *contents;
9811 bfd_byte *p;
9812 bfd_vma len;
9813
9814 contents = bfd_malloc (hdr->sh_size);
9815 if (!contents)
9816 return;
9817 if (!bfd_get_section_contents (abfd, hdr->bfd_section, contents, 0,
9818 hdr->sh_size))
9819 {
9820 free (contents);
9821 return;
9822 }
9823 p = contents;
9824 if (*(p++) == 'A')
9825 {
9826 len = hdr->sh_size - 1;
9827 while (len > 0)
9828 {
9829 int namelen;
9830 bfd_vma section_len;
9831
9832 section_len = bfd_get_32 (abfd, p);
9833 p += 4;
9834 if (section_len > len)
9835 section_len = len;
9836 len -= section_len;
9837 namelen = strlen ((char *)p) + 1;
9838 section_len -= namelen + 4;
9839 if (strcmp((char *)p, "aeabi") != 0)
9840 {
9841 /* Vendor section. Ignore it. */
9842 p += namelen + section_len;
9843 }
9844 else
9845 {
9846 p += namelen;
9847 while (section_len > 0)
9848 {
9849 int tag;
9850 unsigned int n;
9851 unsigned int val;
9852 bfd_vma subsection_len;
9853 bfd_byte *end;
9854
9855 tag = read_unsigned_leb128 (abfd, p, &n);
9856 p += n;
9857 subsection_len = bfd_get_32 (abfd, p);
9858 p += 4;
9859 if (subsection_len > section_len)
9860 subsection_len = section_len;
9861 section_len -= subsection_len;
9862 subsection_len -= n + 4;
9863 end = p + subsection_len;
9864 switch (tag)
9865 {
9866 case Tag_File:
9867 while (p < end)
9868 {
9869 bfd_boolean is_string;
9870
9871 tag = read_unsigned_leb128 (abfd, p, &n);
9872 p += n;
9873 if (tag == 4 || tag == 5)
9874 is_string = 1;
9875 else if (tag < 32)
9876 is_string = 0;
9877 else
9878 is_string = (tag & 1) != 0;
9879 if (tag == Tag_compatibility)
9880 {
9881 val = read_unsigned_leb128 (abfd, p, &n);
9882 p += n;
9883 elf32_arm_add_eabi_attr_compat (abfd, val,
9884 (char *)p);
9885 p += strlen ((char *)p) + 1;
9886 }
9887 else if (is_string)
9888 {
9889 elf32_arm_add_eabi_attr_string (abfd, tag,
9890 (char *)p);
9891 p += strlen ((char *)p) + 1;
9892 }
9893 else
9894 {
9895 val = read_unsigned_leb128 (abfd, p, &n);
9896 p += n;
9897 elf32_arm_add_eabi_attr_int (abfd, tag, val);
9898 }
9899 }
9900 break;
9901 case Tag_Section:
9902 case Tag_Symbol:
9903 /* Don't have anywhere convenient to attach these.
9904 Fall through for now. */
9905 default:
9906 /* Ignore things we don't kow about. */
9907 p += subsection_len;
9908 subsection_len = 0;
9909 break;
9910 }
9911 }
9912 }
9913 }
9914 }
9915 free (contents);
9916 }
9917
9918 /* Handle an ARM specific section when reading an object file. This is
9919 called when bfd_section_from_shdr finds a section with an unknown
9920 type. */
9921
9922 static bfd_boolean
9923 elf32_arm_section_from_shdr (bfd *abfd,
9924 Elf_Internal_Shdr * hdr,
9925 const char *name,
9926 int shindex)
9927 {
9928 /* There ought to be a place to keep ELF backend specific flags, but
9929 at the moment there isn't one. We just keep track of the
9930 sections by their name, instead. Fortunately, the ABI gives
9931 names for all the ARM specific sections, so we will probably get
9932 away with this. */
9933 switch (hdr->sh_type)
9934 {
9935 case SHT_ARM_EXIDX:
9936 case SHT_ARM_PREEMPTMAP:
9937 case SHT_ARM_ATTRIBUTES:
9938 break;
9939
9940 default:
9941 return FALSE;
9942 }
9943
9944 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
9945 return FALSE;
9946
9947 if (hdr->sh_type == SHT_ARM_ATTRIBUTES)
9948 elf32_arm_parse_attributes(abfd, hdr);
9949 return TRUE;
9950 }
9951
9952 /* A structure used to record a list of sections, independently
9953 of the next and prev fields in the asection structure. */
9954 typedef struct section_list
9955 {
9956 asection * sec;
9957 struct section_list * next;
9958 struct section_list * prev;
9959 }
9960 section_list;
9961
9962 /* Unfortunately we need to keep a list of sections for which
9963 an _arm_elf_section_data structure has been allocated. This
9964 is because it is possible for functions like elf32_arm_write_section
9965 to be called on a section which has had an elf_data_structure
9966 allocated for it (and so the used_by_bfd field is valid) but
9967 for which the ARM extended version of this structure - the
9968 _arm_elf_section_data structure - has not been allocated. */
9969 static section_list * sections_with_arm_elf_section_data = NULL;
9970
9971 static void
9972 record_section_with_arm_elf_section_data (asection * sec)
9973 {
9974 struct section_list * entry;
9975
9976 entry = bfd_malloc (sizeof (* entry));
9977 if (entry == NULL)
9978 return;
9979 entry->sec = sec;
9980 entry->next = sections_with_arm_elf_section_data;
9981 entry->prev = NULL;
9982 if (entry->next != NULL)
9983 entry->next->prev = entry;
9984 sections_with_arm_elf_section_data = entry;
9985 }
9986
9987 static struct section_list *
9988 find_arm_elf_section_entry (asection * sec)
9989 {
9990 struct section_list * entry;
9991 static struct section_list * last_entry = NULL;
9992
9993 /* This is a short cut for the typical case where the sections are added
9994 to the sections_with_arm_elf_section_data list in forward order and
9995 then looked up here in backwards order. This makes a real difference
9996 to the ld-srec/sec64k.exp linker test. */
9997 entry = sections_with_arm_elf_section_data;
9998 if (last_entry != NULL)
9999 {
10000 if (last_entry->sec == sec)
10001 entry = last_entry;
10002 else if (last_entry->next != NULL
10003 && last_entry->next->sec == sec)
10004 entry = last_entry->next;
10005 }
10006
10007 for (; entry; entry = entry->next)
10008 if (entry->sec == sec)
10009 break;
10010
10011 if (entry)
10012 /* Record the entry prior to this one - it is the entry we are most
10013 likely to want to locate next time. Also this way if we have been
10014 called from unrecord_section_with_arm_elf_section_data() we will not
10015 be caching a pointer that is about to be freed. */
10016 last_entry = entry->prev;
10017
10018 return entry;
10019 }
10020
10021 static _arm_elf_section_data *
10022 get_arm_elf_section_data (asection * sec)
10023 {
10024 struct section_list * entry;
10025
10026 entry = find_arm_elf_section_entry (sec);
10027
10028 if (entry)
10029 return elf32_arm_section_data (entry->sec);
10030 else
10031 return NULL;
10032 }
10033
10034 static void
10035 unrecord_section_with_arm_elf_section_data (asection * sec)
10036 {
10037 struct section_list * entry;
10038
10039 entry = find_arm_elf_section_entry (sec);
10040
10041 if (entry)
10042 {
10043 if (entry->prev != NULL)
10044 entry->prev->next = entry->next;
10045 if (entry->next != NULL)
10046 entry->next->prev = entry->prev;
10047 if (entry == sections_with_arm_elf_section_data)
10048 sections_with_arm_elf_section_data = entry->next;
10049 free (entry);
10050 }
10051 }
10052
10053
10054 typedef struct
10055 {
10056 void *finfo;
10057 struct bfd_link_info *info;
10058 int plt_shndx;
10059 bfd_vma plt_offset;
10060 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
10061 asection *, struct elf_link_hash_entry *);
10062 } output_arch_syminfo;
10063
10064 enum map_symbol_type
10065 {
10066 ARM_MAP_ARM,
10067 ARM_MAP_THUMB,
10068 ARM_MAP_DATA
10069 };
10070
10071
10072 /* Output a single PLT mapping symbol. */
10073
10074 static bfd_boolean
10075 elf32_arm_ouput_plt_map_sym (output_arch_syminfo *osi,
10076 enum map_symbol_type type,
10077 bfd_vma offset)
10078 {
10079 static const char *names[3] = {"$a", "$t", "$d"};
10080 struct elf32_arm_link_hash_table *htab;
10081 Elf_Internal_Sym sym;
10082
10083 htab = elf32_arm_hash_table (osi->info);
10084 sym.st_value = osi->plt_offset + offset;
10085 sym.st_size = 0;
10086 sym.st_other = 0;
10087 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
10088 sym.st_shndx = osi->plt_shndx;
10089 if (!osi->func (osi->finfo, names[type], &sym, htab->splt, NULL))
10090 return FALSE;
10091 return TRUE;
10092 }
10093
10094
10095 /* Output mapping symbols for PLT entries associated with H. */
10096
10097 static bfd_boolean
10098 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
10099 {
10100 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
10101 struct elf32_arm_link_hash_table *htab;
10102 struct elf32_arm_link_hash_entry *eh;
10103 bfd_vma addr;
10104
10105 htab = elf32_arm_hash_table (osi->info);
10106
10107 if (h->root.type == bfd_link_hash_indirect)
10108 return TRUE;
10109
10110 if (h->root.type == bfd_link_hash_warning)
10111 /* When warning symbols are created, they **replace** the "real"
10112 entry in the hash table, thus we never get to see the real
10113 symbol in a hash traversal. So look at it now. */
10114 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10115
10116 if (h->plt.offset == (bfd_vma) -1)
10117 return TRUE;
10118
10119 eh = (struct elf32_arm_link_hash_entry *) h;
10120 addr = h->plt.offset;
10121 if (htab->symbian_p)
10122 {
10123 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
10124 return FALSE;
10125 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 4))
10126 return FALSE;
10127 }
10128 else if (htab->vxworks_p)
10129 {
10130 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
10131 return FALSE;
10132 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 8))
10133 return FALSE;
10134 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr + 12))
10135 return FALSE;
10136 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 20))
10137 return FALSE;
10138 }
10139 else
10140 {
10141 bfd_boolean thumb_stub;
10142
10143 thumb_stub = eh->plt_thumb_refcount > 0 && !htab->use_blx;
10144 if (thumb_stub)
10145 {
10146 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_THUMB, addr - 4))
10147 return FALSE;
10148 }
10149 #ifdef FOUR_WORD_PLT
10150 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
10151 return FALSE;
10152 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 12))
10153 return FALSE;
10154 #else
10155 /* A three-word PLT with no Thumb thunk contains only Arm code,
10156 so only need to output a mapping symbol for the first PLT entry and
10157 entries with thumb thunks. */
10158 if (thumb_stub || addr == 20)
10159 {
10160 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
10161 return FALSE;
10162 }
10163 #endif
10164 }
10165
10166 return TRUE;
10167 }
10168
10169
10170 /* Output mapping symbols for the PLT. */
10171
10172 static bfd_boolean
10173 elf32_arm_output_arch_local_syms (bfd *output_bfd,
10174 struct bfd_link_info *info,
10175 void *finfo, bfd_boolean (*func) (void *, const char *,
10176 Elf_Internal_Sym *,
10177 asection *,
10178 struct elf_link_hash_entry *))
10179 {
10180 output_arch_syminfo osi;
10181 struct elf32_arm_link_hash_table *htab;
10182
10183 htab = elf32_arm_hash_table (info);
10184 if (!htab->splt || htab->splt->size == 0)
10185 return TRUE;
10186
10187 check_use_blx(htab);
10188 osi.finfo = finfo;
10189 osi.info = info;
10190 osi.func = func;
10191 osi.plt_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10192 htab->splt->output_section);
10193 osi.plt_offset = htab->splt->output_section->vma;
10194
10195 /* Output mapping symbols for the plt header. SymbianOS does not have a
10196 plt header. */
10197 if (htab->vxworks_p)
10198 {
10199 /* VxWorks shared libraries have no PLT header. */
10200 if (!info->shared)
10201 {
10202 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
10203 return FALSE;
10204 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 12))
10205 return FALSE;
10206 }
10207 }
10208 else if (!htab->symbian_p)
10209 {
10210 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
10211 return FALSE;
10212 #ifndef FOUR_WORD_PLT
10213 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 16))
10214 return FALSE;
10215 #endif
10216 }
10217
10218 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
10219 return TRUE;
10220 }
10221
10222 /* Allocate target specific section data. */
10223
10224 static bfd_boolean
10225 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
10226 {
10227 if (!sec->used_by_bfd)
10228 {
10229 _arm_elf_section_data *sdata;
10230 bfd_size_type amt = sizeof (*sdata);
10231
10232 sdata = bfd_zalloc (abfd, amt);
10233 if (sdata == NULL)
10234 return FALSE;
10235 sec->used_by_bfd = sdata;
10236 }
10237
10238 record_section_with_arm_elf_section_data (sec);
10239
10240 return _bfd_elf_new_section_hook (abfd, sec);
10241 }
10242
10243
10244 /* Used to order a list of mapping symbols by address. */
10245
10246 static int
10247 elf32_arm_compare_mapping (const void * a, const void * b)
10248 {
10249 return ((const elf32_arm_section_map *) a)->vma
10250 > ((const elf32_arm_section_map *) b)->vma;
10251 }
10252
10253
10254 /* Do code byteswapping. Return FALSE afterwards so that the section is
10255 written out as normal. */
10256
10257 static bfd_boolean
10258 elf32_arm_write_section (bfd *output_bfd,
10259 struct bfd_link_info *link_info, asection *sec,
10260 bfd_byte *contents)
10261 {
10262 int mapcount, errcount;
10263 _arm_elf_section_data *arm_data;
10264 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
10265 elf32_arm_section_map *map;
10266 elf32_vfp11_erratum_list *errnode;
10267 bfd_vma ptr;
10268 bfd_vma end;
10269 bfd_vma offset = sec->output_section->vma + sec->output_offset;
10270 bfd_byte tmp;
10271 int i;
10272
10273 /* If this section has not been allocated an _arm_elf_section_data
10274 structure then we cannot record anything. */
10275 arm_data = get_arm_elf_section_data (sec);
10276 if (arm_data == NULL)
10277 return FALSE;
10278
10279 mapcount = arm_data->mapcount;
10280 map = arm_data->map;
10281 errcount = arm_data->erratumcount;
10282
10283 if (errcount != 0)
10284 {
10285 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
10286
10287 for (errnode = arm_data->erratumlist; errnode != 0;
10288 errnode = errnode->next)
10289 {
10290 bfd_vma index = errnode->vma - offset;
10291
10292 switch (errnode->type)
10293 {
10294 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
10295 {
10296 bfd_vma branch_to_veneer;
10297 /* Original condition code of instruction, plus bit mask for
10298 ARM B instruction. */
10299 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
10300 | 0x0a000000;
10301
10302 /* The instruction is before the label. */
10303 index -= 4;
10304
10305 /* Above offset included in -4 below. */
10306 branch_to_veneer = errnode->u.b.veneer->vma
10307 - errnode->vma - 4;
10308
10309 if ((signed) branch_to_veneer < -(1 << 25)
10310 || (signed) branch_to_veneer >= (1 << 25))
10311 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
10312 "range"), output_bfd);
10313
10314 insn |= (branch_to_veneer >> 2) & 0xffffff;
10315 contents[endianflip ^ index] = insn & 0xff;
10316 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
10317 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
10318 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
10319 }
10320 break;
10321
10322 case VFP11_ERRATUM_ARM_VENEER:
10323 {
10324 bfd_vma branch_from_veneer;
10325 unsigned int insn;
10326
10327 /* Take size of veneer into account. */
10328 branch_from_veneer = errnode->u.v.branch->vma
10329 - errnode->vma - 12;
10330
10331 if ((signed) branch_from_veneer < -(1 << 25)
10332 || (signed) branch_from_veneer >= (1 << 25))
10333 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
10334 "range"), output_bfd);
10335
10336 /* Original instruction. */
10337 insn = errnode->u.v.branch->u.b.vfp_insn;
10338 contents[endianflip ^ index] = insn & 0xff;
10339 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
10340 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
10341 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
10342
10343 /* Branch back to insn after original insn. */
10344 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
10345 contents[endianflip ^ (index + 4)] = insn & 0xff;
10346 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
10347 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
10348 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
10349 }
10350 break;
10351
10352 default:
10353 abort ();
10354 }
10355 }
10356 }
10357
10358 if (mapcount == 0)
10359 return FALSE;
10360
10361 if (globals->byteswap_code)
10362 {
10363 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
10364
10365 ptr = map[0].vma;
10366 for (i = 0; i < mapcount; i++)
10367 {
10368 if (i == mapcount - 1)
10369 end = sec->size;
10370 else
10371 end = map[i + 1].vma;
10372
10373 switch (map[i].type)
10374 {
10375 case 'a':
10376 /* Byte swap code words. */
10377 while (ptr + 3 < end)
10378 {
10379 tmp = contents[ptr];
10380 contents[ptr] = contents[ptr + 3];
10381 contents[ptr + 3] = tmp;
10382 tmp = contents[ptr + 1];
10383 contents[ptr + 1] = contents[ptr + 2];
10384 contents[ptr + 2] = tmp;
10385 ptr += 4;
10386 }
10387 break;
10388
10389 case 't':
10390 /* Byte swap code halfwords. */
10391 while (ptr + 1 < end)
10392 {
10393 tmp = contents[ptr];
10394 contents[ptr] = contents[ptr + 1];
10395 contents[ptr + 1] = tmp;
10396 ptr += 2;
10397 }
10398 break;
10399
10400 case 'd':
10401 /* Leave data alone. */
10402 break;
10403 }
10404 ptr = end;
10405 }
10406 }
10407
10408 free (map);
10409 arm_data->mapcount = 0;
10410 arm_data->mapsize = 0;
10411 arm_data->map = NULL;
10412 unrecord_section_with_arm_elf_section_data (sec);
10413
10414 return FALSE;
10415 }
10416
10417 static void
10418 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
10419 asection * sec,
10420 void * ignore ATTRIBUTE_UNUSED)
10421 {
10422 unrecord_section_with_arm_elf_section_data (sec);
10423 }
10424
10425 static bfd_boolean
10426 elf32_arm_close_and_cleanup (bfd * abfd)
10427 {
10428 if (abfd->sections)
10429 bfd_map_over_sections (abfd,
10430 unrecord_section_via_map_over_sections,
10431 NULL);
10432
10433 return _bfd_elf_close_and_cleanup (abfd);
10434 }
10435
10436 static bfd_boolean
10437 elf32_arm_bfd_free_cached_info (bfd * abfd)
10438 {
10439 if (abfd->sections)
10440 bfd_map_over_sections (abfd,
10441 unrecord_section_via_map_over_sections,
10442 NULL);
10443
10444 return _bfd_free_cached_info (abfd);
10445 }
10446
10447 /* Display STT_ARM_TFUNC symbols as functions. */
10448
10449 static void
10450 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
10451 asymbol *asym)
10452 {
10453 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
10454
10455 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
10456 elfsym->symbol.flags |= BSF_FUNCTION;
10457 }
10458
10459
10460 /* Mangle thumb function symbols as we read them in. */
10461
10462 static bfd_boolean
10463 elf32_arm_swap_symbol_in (bfd * abfd,
10464 const void *psrc,
10465 const void *pshn,
10466 Elf_Internal_Sym *dst)
10467 {
10468 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
10469 return FALSE;
10470
10471 /* New EABI objects mark thumb function symbols by setting the low bit of
10472 the address. Turn these into STT_ARM_TFUNC. */
10473 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
10474 && (dst->st_value & 1))
10475 {
10476 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
10477 dst->st_value &= ~(bfd_vma) 1;
10478 }
10479 return TRUE;
10480 }
10481
10482
10483 /* Mangle thumb function symbols as we write them out. */
10484
10485 static void
10486 elf32_arm_swap_symbol_out (bfd *abfd,
10487 const Elf_Internal_Sym *src,
10488 void *cdst,
10489 void *shndx)
10490 {
10491 Elf_Internal_Sym newsym;
10492
10493 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
10494 of the address set, as per the new EABI. We do this unconditionally
10495 because objcopy does not set the elf header flags until after
10496 it writes out the symbol table. */
10497 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
10498 {
10499 newsym = *src;
10500 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
10501 if (newsym.st_shndx != SHN_UNDEF)
10502 {
10503 /* Do this only for defined symbols. At link type, the static
10504 linker will simulate the work of dynamic linker of resolving
10505 symbols and will carry over the thumbness of found symbols to
10506 the output symbol table. It's not clear how it happens, but
10507 the thumbness of undefined symbols can well be different at
10508 runtime, and writing '1' for them will be confusing for users
10509 and possibly for dynamic linker itself.
10510 */
10511 newsym.st_value |= 1;
10512 }
10513
10514 src = &newsym;
10515 }
10516 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
10517 }
10518
10519 /* Add the PT_ARM_EXIDX program header. */
10520
10521 static bfd_boolean
10522 elf32_arm_modify_segment_map (bfd *abfd,
10523 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10524 {
10525 struct elf_segment_map *m;
10526 asection *sec;
10527
10528 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
10529 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
10530 {
10531 /* If there is already a PT_ARM_EXIDX header, then we do not
10532 want to add another one. This situation arises when running
10533 "strip"; the input binary already has the header. */
10534 m = elf_tdata (abfd)->segment_map;
10535 while (m && m->p_type != PT_ARM_EXIDX)
10536 m = m->next;
10537 if (!m)
10538 {
10539 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
10540 if (m == NULL)
10541 return FALSE;
10542 m->p_type = PT_ARM_EXIDX;
10543 m->count = 1;
10544 m->sections[0] = sec;
10545
10546 m->next = elf_tdata (abfd)->segment_map;
10547 elf_tdata (abfd)->segment_map = m;
10548 }
10549 }
10550
10551 return TRUE;
10552 }
10553
10554 /* We may add a PT_ARM_EXIDX program header. */
10555
10556 static int
10557 elf32_arm_additional_program_headers (bfd *abfd,
10558 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10559 {
10560 asection *sec;
10561
10562 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
10563 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
10564 return 1;
10565 else
10566 return 0;
10567 }
10568
10569 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
10570 static bfd_boolean
10571 elf32_arm_is_function_type (unsigned int type)
10572 {
10573 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
10574 }
10575
10576 /* We use this to override swap_symbol_in and swap_symbol_out. */
10577 const struct elf_size_info elf32_arm_size_info = {
10578 sizeof (Elf32_External_Ehdr),
10579 sizeof (Elf32_External_Phdr),
10580 sizeof (Elf32_External_Shdr),
10581 sizeof (Elf32_External_Rel),
10582 sizeof (Elf32_External_Rela),
10583 sizeof (Elf32_External_Sym),
10584 sizeof (Elf32_External_Dyn),
10585 sizeof (Elf_External_Note),
10586 4,
10587 1,
10588 32, 2,
10589 ELFCLASS32, EV_CURRENT,
10590 bfd_elf32_write_out_phdrs,
10591 bfd_elf32_write_shdrs_and_ehdr,
10592 bfd_elf32_write_relocs,
10593 elf32_arm_swap_symbol_in,
10594 elf32_arm_swap_symbol_out,
10595 bfd_elf32_slurp_reloc_table,
10596 bfd_elf32_slurp_symbol_table,
10597 bfd_elf32_swap_dyn_in,
10598 bfd_elf32_swap_dyn_out,
10599 bfd_elf32_swap_reloc_in,
10600 bfd_elf32_swap_reloc_out,
10601 bfd_elf32_swap_reloca_in,
10602 bfd_elf32_swap_reloca_out
10603 };
10604
10605 #define ELF_ARCH bfd_arch_arm
10606 #define ELF_MACHINE_CODE EM_ARM
10607 #ifdef __QNXTARGET__
10608 #define ELF_MAXPAGESIZE 0x1000
10609 #else
10610 #define ELF_MAXPAGESIZE 0x8000
10611 #endif
10612 #define ELF_MINPAGESIZE 0x1000
10613 #define ELF_COMMONPAGESIZE 0x1000
10614
10615 #define bfd_elf32_mkobject elf32_arm_mkobject
10616
10617 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
10618 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
10619 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
10620 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
10621 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
10622 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
10623 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
10624 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
10625 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
10626 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
10627 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
10628 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
10629 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
10630 #define bfd_elf32_bfd_final_link elf32_arm_bfd_final_link
10631
10632 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
10633 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
10634 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
10635 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
10636 #define elf_backend_check_relocs elf32_arm_check_relocs
10637 #define elf_backend_relocate_section elf32_arm_relocate_section
10638 #define elf_backend_write_section elf32_arm_write_section
10639 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
10640 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
10641 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
10642 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
10643 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
10644 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
10645 #define elf_backend_post_process_headers elf32_arm_post_process_headers
10646 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
10647 #define elf_backend_object_p elf32_arm_object_p
10648 #define elf_backend_section_flags elf32_arm_section_flags
10649 #define elf_backend_fake_sections elf32_arm_fake_sections
10650 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
10651 #define elf_backend_final_write_processing elf32_arm_final_write_processing
10652 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
10653 #define elf_backend_symbol_processing elf32_arm_symbol_processing
10654 #define elf_backend_size_info elf32_arm_size_info
10655 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
10656 #define elf_backend_additional_program_headers \
10657 elf32_arm_additional_program_headers
10658 #define elf_backend_output_arch_local_syms \
10659 elf32_arm_output_arch_local_syms
10660 #define elf_backend_begin_write_processing \
10661 elf32_arm_begin_write_processing
10662 #define elf_backend_is_function_type elf32_arm_is_function_type
10663
10664 #define elf_backend_can_refcount 1
10665 #define elf_backend_can_gc_sections 1
10666 #define elf_backend_plt_readonly 1
10667 #define elf_backend_want_got_plt 1
10668 #define elf_backend_want_plt_sym 0
10669 #define elf_backend_may_use_rel_p 1
10670 #define elf_backend_may_use_rela_p 0
10671 #define elf_backend_default_use_rela_p 0
10672
10673 #define elf_backend_got_header_size 12
10674
10675 #include "elf32-target.h"
10676
10677 /* VxWorks Targets */
10678
10679 #undef TARGET_LITTLE_SYM
10680 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
10681 #undef TARGET_LITTLE_NAME
10682 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
10683 #undef TARGET_BIG_SYM
10684 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
10685 #undef TARGET_BIG_NAME
10686 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
10687
10688 /* Like elf32_arm_link_hash_table_create -- but overrides
10689 appropriately for VxWorks. */
10690 static struct bfd_link_hash_table *
10691 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
10692 {
10693 struct bfd_link_hash_table *ret;
10694
10695 ret = elf32_arm_link_hash_table_create (abfd);
10696 if (ret)
10697 {
10698 struct elf32_arm_link_hash_table *htab
10699 = (struct elf32_arm_link_hash_table *) ret;
10700 htab->use_rel = 0;
10701 htab->vxworks_p = 1;
10702 }
10703 return ret;
10704 }
10705
10706 static void
10707 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
10708 {
10709 elf32_arm_final_write_processing (abfd, linker);
10710 elf_vxworks_final_write_processing (abfd, linker);
10711 }
10712
10713 #undef elf32_bed
10714 #define elf32_bed elf32_arm_vxworks_bed
10715
10716 #undef bfd_elf32_bfd_link_hash_table_create
10717 #define bfd_elf32_bfd_link_hash_table_create \
10718 elf32_arm_vxworks_link_hash_table_create
10719 #undef elf_backend_add_symbol_hook
10720 #define elf_backend_add_symbol_hook \
10721 elf_vxworks_add_symbol_hook
10722 #undef elf_backend_final_write_processing
10723 #define elf_backend_final_write_processing \
10724 elf32_arm_vxworks_final_write_processing
10725 #undef elf_backend_emit_relocs
10726 #define elf_backend_emit_relocs \
10727 elf_vxworks_emit_relocs
10728
10729 #undef elf_backend_may_use_rel_p
10730 #define elf_backend_may_use_rel_p 0
10731 #undef elf_backend_may_use_rela_p
10732 #define elf_backend_may_use_rela_p 1
10733 #undef elf_backend_default_use_rela_p
10734 #define elf_backend_default_use_rela_p 1
10735 #undef elf_backend_want_plt_sym
10736 #define elf_backend_want_plt_sym 1
10737 #undef ELF_MAXPAGESIZE
10738 #define ELF_MAXPAGESIZE 0x1000
10739
10740 #include "elf32-target.h"
10741
10742
10743 /* Symbian OS Targets */
10744
10745 #undef TARGET_LITTLE_SYM
10746 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
10747 #undef TARGET_LITTLE_NAME
10748 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
10749 #undef TARGET_BIG_SYM
10750 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
10751 #undef TARGET_BIG_NAME
10752 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
10753
10754 /* Like elf32_arm_link_hash_table_create -- but overrides
10755 appropriately for Symbian OS. */
10756 static struct bfd_link_hash_table *
10757 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
10758 {
10759 struct bfd_link_hash_table *ret;
10760
10761 ret = elf32_arm_link_hash_table_create (abfd);
10762 if (ret)
10763 {
10764 struct elf32_arm_link_hash_table *htab
10765 = (struct elf32_arm_link_hash_table *)ret;
10766 /* There is no PLT header for Symbian OS. */
10767 htab->plt_header_size = 0;
10768 /* The PLT entries are each three instructions. */
10769 htab->plt_entry_size = 4 * NUM_ELEM (elf32_arm_symbian_plt_entry);
10770 htab->symbian_p = 1;
10771 /* Symbian uses armv5t or above, so use_blx is always true. */
10772 htab->use_blx = 1;
10773 htab->root.is_relocatable_executable = 1;
10774 }
10775 return ret;
10776 }
10777
10778 static const struct bfd_elf_special_section
10779 elf32_arm_symbian_special_sections[] =
10780 {
10781 /* In a BPABI executable, the dynamic linking sections do not go in
10782 the loadable read-only segment. The post-linker may wish to
10783 refer to these sections, but they are not part of the final
10784 program image. */
10785 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
10786 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
10787 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
10788 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
10789 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
10790 /* These sections do not need to be writable as the SymbianOS
10791 postlinker will arrange things so that no dynamic relocation is
10792 required. */
10793 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
10794 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
10795 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
10796 { NULL, 0, 0, 0, 0 }
10797 };
10798
10799 static void
10800 elf32_arm_symbian_begin_write_processing (bfd *abfd,
10801 struct bfd_link_info *link_info)
10802 {
10803 /* BPABI objects are never loaded directly by an OS kernel; they are
10804 processed by a postlinker first, into an OS-specific format. If
10805 the D_PAGED bit is set on the file, BFD will align segments on
10806 page boundaries, so that an OS can directly map the file. With
10807 BPABI objects, that just results in wasted space. In addition,
10808 because we clear the D_PAGED bit, map_sections_to_segments will
10809 recognize that the program headers should not be mapped into any
10810 loadable segment. */
10811 abfd->flags &= ~D_PAGED;
10812 elf32_arm_begin_write_processing(abfd, link_info);
10813 }
10814
10815 static bfd_boolean
10816 elf32_arm_symbian_modify_segment_map (bfd *abfd,
10817 struct bfd_link_info *info)
10818 {
10819 struct elf_segment_map *m;
10820 asection *dynsec;
10821
10822 /* BPABI shared libraries and executables should have a PT_DYNAMIC
10823 segment. However, because the .dynamic section is not marked
10824 with SEC_LOAD, the generic ELF code will not create such a
10825 segment. */
10826 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
10827 if (dynsec)
10828 {
10829 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10830 if (m->p_type == PT_DYNAMIC)
10831 break;
10832
10833 if (m == NULL)
10834 {
10835 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
10836 m->next = elf_tdata (abfd)->segment_map;
10837 elf_tdata (abfd)->segment_map = m;
10838 }
10839 }
10840
10841 /* Also call the generic arm routine. */
10842 return elf32_arm_modify_segment_map (abfd, info);
10843 }
10844
10845 #undef elf32_bed
10846 #define elf32_bed elf32_arm_symbian_bed
10847
10848 /* The dynamic sections are not allocated on SymbianOS; the postlinker
10849 will process them and then discard them. */
10850 #undef ELF_DYNAMIC_SEC_FLAGS
10851 #define ELF_DYNAMIC_SEC_FLAGS \
10852 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
10853
10854 #undef bfd_elf32_bfd_link_hash_table_create
10855 #define bfd_elf32_bfd_link_hash_table_create \
10856 elf32_arm_symbian_link_hash_table_create
10857 #undef elf_backend_add_symbol_hook
10858
10859 #undef elf_backend_special_sections
10860 #define elf_backend_special_sections elf32_arm_symbian_special_sections
10861
10862 #undef elf_backend_begin_write_processing
10863 #define elf_backend_begin_write_processing \
10864 elf32_arm_symbian_begin_write_processing
10865 #undef elf_backend_final_write_processing
10866 #define elf_backend_final_write_processing \
10867 elf32_arm_final_write_processing
10868 #undef elf_backend_emit_relocs
10869
10870 #undef elf_backend_modify_segment_map
10871 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
10872
10873 /* There is no .got section for BPABI objects, and hence no header. */
10874 #undef elf_backend_got_header_size
10875 #define elf_backend_got_header_size 0
10876
10877 /* Similarly, there is no .got.plt section. */
10878 #undef elf_backend_want_got_plt
10879 #define elf_backend_want_got_plt 0
10880
10881 #undef elf_backend_may_use_rel_p
10882 #define elf_backend_may_use_rel_p 1
10883 #undef elf_backend_may_use_rela_p
10884 #define elf_backend_may_use_rela_p 0
10885 #undef elf_backend_default_use_rela_p
10886 #define elf_backend_default_use_rela_p 0
10887 #undef elf_backend_want_plt_sym
10888 #define elf_backend_want_plt_sym 0
10889 #undef ELF_MAXPAGESIZE
10890 #define ELF_MAXPAGESIZE 0x8000
10891
10892 #include "elf32-target.h"
This page took 0.26162 seconds and 4 git commands to generate.