PR 9934
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
34
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
38 ((HTAB)->use_rel \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
41
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
45 ((HTAB)->use_rel \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
48
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
52 ((HTAB)->use_rel \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
55
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
58
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
61
62 static struct elf_backend_data elf32_arm_vxworks_bed;
63
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
66 in that slot. */
67
68 static reloc_howto_type elf32_arm_howto_table_1[] =
69 {
70 /* No relocation. */
71 HOWTO (R_ARM_NONE, /* type */
72 0, /* rightshift */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
74 0, /* bitsize */
75 FALSE, /* pc_relative */
76 0, /* bitpos */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
81 0, /* src_mask */
82 0, /* dst_mask */
83 FALSE), /* pcrel_offset */
84
85 HOWTO (R_ARM_PC24, /* type */
86 2, /* rightshift */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
88 24, /* bitsize */
89 TRUE, /* pc_relative */
90 0, /* bitpos */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
98
99 /* 32 bit absolute */
100 HOWTO (R_ARM_ABS32, /* type */
101 0, /* rightshift */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
103 32, /* bitsize */
104 FALSE, /* pc_relative */
105 0, /* bitpos */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
113
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
116 0, /* rightshift */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
118 32, /* bitsize */
119 TRUE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
128
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0, /* type */
131 0, /* rightshift */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 TRUE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_dont,/* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
143
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
146 0, /* rightshift */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
148 16, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 12, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_ARM_THM_ABS5, /* type */
175 6, /* rightshift */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
177 5, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 /* 8 bit absolute */
189 HOWTO (R_ARM_ABS8, /* type */
190 0, /* rightshift */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
192 8, /* bitsize */
193 FALSE, /* pc_relative */
194 0, /* bitpos */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
202
203 HOWTO (R_ARM_SBREL32, /* type */
204 0, /* rightshift */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
206 32, /* bitsize */
207 FALSE, /* pc_relative */
208 0, /* bitpos */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
216
217 HOWTO (R_ARM_THM_CALL, /* type */
218 1, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 25, /* bitsize */
221 TRUE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
230
231 HOWTO (R_ARM_THM_PC8, /* type */
232 1, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 8, /* bitsize */
235 TRUE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
244
245 HOWTO (R_ARM_BREL_ADJ, /* type */
246 1, /* rightshift */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 HOWTO (R_ARM_SWI24, /* type */
260 0, /* rightshift */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 HOWTO (R_ARM_THM_SWI8, /* type */
274 0, /* rightshift */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
276 0, /* bitsize */
277 FALSE, /* pc_relative */
278 0, /* bitpos */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
286
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
289 2, /* rightshift */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
291 25, /* bitsize */
292 TRUE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
301
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
304 2, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 22, /* bitsize */
307 TRUE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
316
317 /* Dynamic TLS relocations. */
318
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* Relocs used in ARM Linux */
362
363 HOWTO (R_ARM_COPY, /* type */
364 0, /* rightshift */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
366 32, /* bitsize */
367 FALSE, /* pc_relative */
368 0, /* bitpos */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376
377 HOWTO (R_ARM_GLOB_DAT, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 FALSE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
390
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
392 0, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 32, /* bitsize */
395 FALSE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
404
405 HOWTO (R_ARM_RELATIVE, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 32, /* bitsize */
409 FALSE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418
419 HOWTO (R_ARM_GOTOFF32, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 32, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432
433 HOWTO (R_ARM_GOTPC, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 HOWTO (R_ARM_GOT32, /* type */
448 0, /* rightshift */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
450 32, /* bitsize */
451 FALSE, /* pc_relative */
452 0, /* bitpos */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
460
461 HOWTO (R_ARM_PLT32, /* type */
462 2, /* rightshift */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
464 24, /* bitsize */
465 TRUE, /* pc_relative */
466 0, /* bitpos */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
474
475 HOWTO (R_ARM_CALL, /* type */
476 2, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 24, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 HOWTO (R_ARM_JUMP24, /* type */
490 2, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 24, /* bitsize */
493 TRUE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
502
503 HOWTO (R_ARM_THM_JUMP24, /* type */
504 1, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 24, /* bitsize */
507 TRUE, /* pc_relative */
508 0, /* bitpos */
509 complain_overflow_signed,/* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
516
517 HOWTO (R_ARM_BASE_ABS, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 12, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 12, /* bitsize */
549 TRUE, /* pc_relative */
550 8, /* bitpos */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
560 0, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 12, /* bitsize */
563 TRUE, /* pc_relative */
564 16, /* bitpos */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
572
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 12, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 8, /* bitsize */
591 FALSE, /* pc_relative */
592 12, /* bitpos */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
600
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 8, /* bitsize */
605 FALSE, /* pc_relative */
606 20, /* bitpos */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 HOWTO (R_ARM_TARGET1, /* type */
616 0, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 32, /* bitsize */
619 FALSE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
628
629 HOWTO (R_ARM_ROSEGREL32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 HOWTO (R_ARM_V4BX, /* type */
644 0, /* rightshift */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
646 32, /* bitsize */
647 FALSE, /* pc_relative */
648 0, /* bitpos */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
656
657 HOWTO (R_ARM_TARGET2, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
670
671 HOWTO (R_ARM_PREL31, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 31, /* bitsize */
675 TRUE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
684
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 HOWTO (R_ARM_MOVT_ABS, /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
714 0, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 HOWTO (R_ARM_MOVT_PREL, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 TRUE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE), /* pcrel_offset */
740
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
742 0, /* rightshift */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 FALSE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
768
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 TRUE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
796
797 HOWTO (R_ARM_THM_JUMP19, /* type */
798 1, /* rightshift */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
800 19, /* bitsize */
801 TRUE, /* pc_relative */
802 0, /* bitpos */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
810
811 HOWTO (R_ARM_THM_JUMP6, /* type */
812 1, /* rightshift */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
814 6, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
827 versa. */
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
829 0, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 13, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont,/* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 HOWTO (R_ARM_THM_PC12, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 13, /* bitsize */
846 TRUE, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont,/* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE), /* pcrel_offset */
855
856 HOWTO (R_ARM_ABS32_NOI, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 FALSE, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
869
870 HOWTO (R_ARM_REL32_NOI, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 TRUE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* Group relocations. */
885
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
887 0, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 32, /* bitsize */
890 TRUE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
899
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
901 0, /* rightshift */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
903 32, /* bitsize */
904 TRUE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
913
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
915 0, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 32, /* bitsize */
918 TRUE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
927
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
929 0, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 TRUE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
941
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
943 0, /* rightshift */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
945 32, /* bitsize */
946 TRUE, /* pc_relative */
947 0, /* bitpos */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
955
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 32, /* bitsize */
960 TRUE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
969
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 32, /* bitsize */
974 TRUE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
983
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 32, /* bitsize */
988 TRUE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
997
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
999 0, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 32, /* bitsize */
1002 TRUE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1011
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 32, /* bitsize */
1016 TRUE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1025
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 TRUE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1039
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1041 0, /* rightshift */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1043 32, /* bitsize */
1044 TRUE, /* pc_relative */
1045 0, /* bitpos */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1053
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1055 0, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 32, /* bitsize */
1058 TRUE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1067
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1069 0, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 32, /* bitsize */
1072 TRUE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1081
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1083 0, /* rightshift */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1085 32, /* bitsize */
1086 TRUE, /* pc_relative */
1087 0, /* bitpos */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1095
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1097 0, /* rightshift */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1099 32, /* bitsize */
1100 TRUE, /* pc_relative */
1101 0, /* bitpos */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1109
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1111 0, /* rightshift */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 32, /* bitsize */
1114 TRUE, /* pc_relative */
1115 0, /* bitpos */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1123
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1125 0, /* rightshift */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1127 32, /* bitsize */
1128 TRUE, /* pc_relative */
1129 0, /* bitpos */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1137
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1139 0, /* rightshift */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 32, /* bitsize */
1142 TRUE, /* pc_relative */
1143 0, /* bitpos */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1151
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 32, /* bitsize */
1156 TRUE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1165
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1167 0, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 32, /* bitsize */
1170 TRUE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1179
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 32, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 32, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 32, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 32, /* bitsize */
1226 TRUE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1235
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 32, /* bitsize */
1240 TRUE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1249
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 32, /* bitsize */
1254 TRUE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1263
1264 /* End of group relocations. */
1265
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1267 0, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 16, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 16, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1309 0, /* rightshift */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1311 16, /* bitsize */
1312 FALSE, /* pc_relative */
1313 0, /* bitpos */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1321
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1323 0, /* rightshift */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1325 16, /* bitsize */
1326 FALSE, /* pc_relative */
1327 0, /* bitpos */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1335
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
1350 EMPTY_HOWTO (90), /* Unallocated. */
1351 EMPTY_HOWTO (91),
1352 EMPTY_HOWTO (92),
1353 EMPTY_HOWTO (93),
1354
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 32, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 32, /* bitsize */
1387 TRUE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 12, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 12, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1426
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 0, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1438 0, /* src_mask */
1439 0, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 0, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1453 0, /* src_mask */
1454 0, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1458 1, /* rightshift */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1460 11, /* bitsize */
1461 TRUE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1472 1, /* rightshift */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1474 8, /* bitsize */
1475 TRUE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
1484
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 32, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_bitfield,/* complain_on_overflow */
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1499
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 32, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 HOWTO (R_ARM_TLS_LDO32, /* type */
1515 0, /* rightshift */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 32, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1529 0, /* rightshift */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1531 32, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 HOWTO (R_ARM_TLS_LE32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 12, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 12, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 12, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 bfd_elf_generic_reloc, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597 };
1598
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1602
1603 249-255 extended, currently unused, relocations: */
1604
1605 static reloc_howto_type elf32_arm_howto_table_2[4] =
1606 {
1607 HOWTO (R_ARM_RREL32, /* type */
1608 0, /* rightshift */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1610 0, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 HOWTO (R_ARM_RABS32, /* type */
1622 0, /* rightshift */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1624 0, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 HOWTO (R_ARM_RPC24, /* type */
1636 0, /* rightshift */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1638 0, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 HOWTO (R_ARM_RBASE, /* type */
1650 0, /* rightshift */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1652 0, /* bitsize */
1653 FALSE, /* pc_relative */
1654 0, /* bitpos */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1659 0, /* src_mask */
1660 0, /* dst_mask */
1661 FALSE) /* pcrel_offset */
1662 };
1663
1664 static reloc_howto_type *
1665 elf32_arm_howto_from_type (unsigned int r_type)
1666 {
1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1668 return &elf32_arm_howto_table_1[r_type];
1669
1670 if (r_type >= R_ARM_RREL32
1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1673
1674 return NULL;
1675 }
1676
1677 static void
1678 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1680 {
1681 unsigned int r_type;
1682
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1685 }
1686
1687 struct elf32_arm_reloc_map
1688 {
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1691 };
1692
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1695 {
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1774 };
1775
1776 static reloc_howto_type *
1777 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
1779 {
1780 unsigned int i;
1781
1782 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1783 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1784 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1785
1786 return NULL;
1787 }
1788
1789 static reloc_howto_type *
1790 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1791 const char *r_name)
1792 {
1793 unsigned int i;
1794
1795 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1796 if (elf32_arm_howto_table_1[i].name != NULL
1797 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1798 return &elf32_arm_howto_table_1[i];
1799
1800 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1801 if (elf32_arm_howto_table_2[i].name != NULL
1802 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1803 return &elf32_arm_howto_table_2[i];
1804
1805 return NULL;
1806 }
1807
1808 /* Support for core dump NOTE sections. */
1809
1810 static bfd_boolean
1811 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1812 {
1813 int offset;
1814 size_t size;
1815
1816 switch (note->descsz)
1817 {
1818 default:
1819 return FALSE;
1820
1821 case 148: /* Linux/ARM 32-bit. */
1822 /* pr_cursig */
1823 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1824
1825 /* pr_pid */
1826 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1827
1828 /* pr_reg */
1829 offset = 72;
1830 size = 72;
1831
1832 break;
1833 }
1834
1835 /* Make a ".reg/999" section. */
1836 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1837 size, note->descpos + offset);
1838 }
1839
1840 static bfd_boolean
1841 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1842 {
1843 switch (note->descsz)
1844 {
1845 default:
1846 return FALSE;
1847
1848 case 124: /* Linux/ARM elf_prpsinfo. */
1849 elf_tdata (abfd)->core_program
1850 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1851 elf_tdata (abfd)->core_command
1852 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1853 }
1854
1855 /* Note that for some reason, a spurious space is tacked
1856 onto the end of the args in some (at least one anyway)
1857 implementations, so strip it off if it exists. */
1858 {
1859 char *command = elf_tdata (abfd)->core_command;
1860 int n = strlen (command);
1861
1862 if (0 < n && command[n - 1] == ' ')
1863 command[n - 1] = '\0';
1864 }
1865
1866 return TRUE;
1867 }
1868
1869 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1870 #define TARGET_LITTLE_NAME "elf32-littlearm"
1871 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1872 #define TARGET_BIG_NAME "elf32-bigarm"
1873
1874 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1875 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1876
1877 typedef unsigned long int insn32;
1878 typedef unsigned short int insn16;
1879
1880 /* In lieu of proper flags, assume all EABIv4 or later objects are
1881 interworkable. */
1882 #define INTERWORK_FLAG(abfd) \
1883 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1884 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1885
1886 /* The linker script knows the section names for placement.
1887 The entry_names are used to do simple name mangling on the stubs.
1888 Given a function name, and its type, the stub can be found. The
1889 name can be changed. The only requirement is the %s be present. */
1890 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1891 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1892
1893 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1894 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1895
1896 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1897 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1898
1899 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1900 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1901
1902 #define STUB_ENTRY_NAME "__%s_veneer"
1903
1904 /* The name of the dynamic interpreter. This is put in the .interp
1905 section. */
1906 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1907
1908 #ifdef FOUR_WORD_PLT
1909
1910 /* The first entry in a procedure linkage table looks like
1911 this. It is set up so that any shared library function that is
1912 called before the relocation has been set up calls the dynamic
1913 linker first. */
1914 static const bfd_vma elf32_arm_plt0_entry [] =
1915 {
1916 0xe52de004, /* str lr, [sp, #-4]! */
1917 0xe59fe010, /* ldr lr, [pc, #16] */
1918 0xe08fe00e, /* add lr, pc, lr */
1919 0xe5bef008, /* ldr pc, [lr, #8]! */
1920 };
1921
1922 /* Subsequent entries in a procedure linkage table look like
1923 this. */
1924 static const bfd_vma elf32_arm_plt_entry [] =
1925 {
1926 0xe28fc600, /* add ip, pc, #NN */
1927 0xe28cca00, /* add ip, ip, #NN */
1928 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1929 0x00000000, /* unused */
1930 };
1931
1932 #else
1933
1934 /* The first entry in a procedure linkage table looks like
1935 this. It is set up so that any shared library function that is
1936 called before the relocation has been set up calls the dynamic
1937 linker first. */
1938 static const bfd_vma elf32_arm_plt0_entry [] =
1939 {
1940 0xe52de004, /* str lr, [sp, #-4]! */
1941 0xe59fe004, /* ldr lr, [pc, #4] */
1942 0xe08fe00e, /* add lr, pc, lr */
1943 0xe5bef008, /* ldr pc, [lr, #8]! */
1944 0x00000000, /* &GOT[0] - . */
1945 };
1946
1947 /* Subsequent entries in a procedure linkage table look like
1948 this. */
1949 static const bfd_vma elf32_arm_plt_entry [] =
1950 {
1951 0xe28fc600, /* add ip, pc, #0xNN00000 */
1952 0xe28cca00, /* add ip, ip, #0xNN000 */
1953 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1954 };
1955
1956 #endif
1957
1958 /* The format of the first entry in the procedure linkage table
1959 for a VxWorks executable. */
1960 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1961 {
1962 0xe52dc008, /* str ip,[sp,#-8]! */
1963 0xe59fc000, /* ldr ip,[pc] */
1964 0xe59cf008, /* ldr pc,[ip,#8] */
1965 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1966 };
1967
1968 /* The format of subsequent entries in a VxWorks executable. */
1969 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1970 {
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf000, /* ldr pc,[ip] */
1973 0x00000000, /* .long @got */
1974 0xe59fc000, /* ldr ip,[pc] */
1975 0xea000000, /* b _PLT */
1976 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1977 };
1978
1979 /* The format of entries in a VxWorks shared library. */
1980 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1981 {
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe79cf009, /* ldr pc,[ip,r9] */
1984 0x00000000, /* .long @got */
1985 0xe59fc000, /* ldr ip,[pc] */
1986 0xe599f008, /* ldr pc,[r9,#8] */
1987 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1988 };
1989
1990 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1991 #define PLT_THUMB_STUB_SIZE 4
1992 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1993 {
1994 0x4778, /* bx pc */
1995 0x46c0 /* nop */
1996 };
1997
1998 /* The entries in a PLT when using a DLL-based target with multiple
1999 address spaces. */
2000 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2001 {
2002 0xe51ff004, /* ldr pc, [pc, #-4] */
2003 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2004 };
2005
2006 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2007 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2008 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2009 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2010 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2011 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2012
2013 enum stub_insn_type
2014 {
2015 THUMB16_TYPE = 1,
2016 THUMB32_TYPE,
2017 ARM_TYPE,
2018 DATA_TYPE
2019 };
2020
2021 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2022 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2023 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2024 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2025 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2026
2027 typedef struct
2028 {
2029 bfd_vma data;
2030 enum stub_insn_type type;
2031 unsigned int r_type;
2032 int reloc_addend;
2033 } insn_sequence;
2034
2035 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2036 to reach the stub if necessary. */
2037 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2038 {
2039 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2040 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2041 };
2042
2043 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2044 available. */
2045 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2046 {
2047 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2048 ARM_INSN(0xe12fff1c), /* bx ip */
2049 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2050 };
2051
2052 /* Thumb -> Thumb long branch stub. Used on architectures which
2053 support only this mode, or on V4T where it is expensive to switch
2054 to ARM. */
2055 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2056 {
2057 THUMB16_INSN(0xb401), /* push {r0} */
2058 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2059 THUMB16_INSN(0x4684), /* mov ip, r0 */
2060 THUMB16_INSN(0xbc01), /* pop {r0} */
2061 THUMB16_INSN(0x4760), /* bx ip */
2062 THUMB16_INSN(0xbf00), /* nop */
2063 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2064 };
2065
2066 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2067 available. */
2068 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2069 {
2070 THUMB16_INSN(0x4778), /* bx pc */
2071 THUMB16_INSN(0x46c0), /* nop */
2072 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2073 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2074 };
2075
2076 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2077 one, when the destination is close enough. */
2078 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2079 {
2080 THUMB16_INSN(0x4778), /* bx pc */
2081 THUMB16_INSN(0x46c0), /* nop */
2082 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2083 };
2084
2085 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2086 blx to reach the stub if necessary. */
2087 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2088 {
2089 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2090 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2091 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2092 };
2093
2094 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2095 blx to reach the stub if necessary. We can not add into pc;
2096 it is not guaranteed to mode switch (different in ARMv6 and
2097 ARMv7). */
2098 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2099 {
2100 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2101 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2102 ARM_INSN(0xe12fff1c), /* bx ip */
2103 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2104 };
2105
2106 /* V4T ARM -> ARM long branch stub, PIC. */
2107 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2108 {
2109 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2110 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2111 ARM_INSN(0xe12fff1c), /* bx ip */
2112 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2113 };
2114
2115 /* V4T Thumb -> ARM long branch stub, PIC. */
2116 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2117 {
2118 THUMB16_INSN(0x4778), /* bx pc */
2119 THUMB16_INSN(0x46c0), /* nop */
2120 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2121 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2122 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2123 };
2124
2125 /* Thumb -> Thumb long branch stub, PIC. Used on architectures which
2126 support only this mode, or on V4T where it is expensive to switch
2127 to ARM. */
2128 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2129 {
2130 THUMB16_INSN(0xb401), /* push {r0} */
2131 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2132 THUMB16_INSN(0x46fc), /* mov ip, pc */
2133 THUMB16_INSN(0x4484), /* add ip, r0 */
2134 THUMB16_INSN(0xbc01), /* pop {r0} */
2135 THUMB16_INSN(0x4760), /* bx ip */
2136 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2137 };
2138
2139 /* Section name for stubs is the associated section name plus this
2140 string. */
2141 #define STUB_SUFFIX ".stub"
2142
2143 enum elf32_arm_stub_type
2144 {
2145 arm_stub_none,
2146 arm_stub_long_branch_any_any,
2147 arm_stub_long_branch_v4t_arm_thumb,
2148 arm_stub_long_branch_thumb_only,
2149 arm_stub_long_branch_v4t_thumb_arm,
2150 arm_stub_short_branch_v4t_thumb_arm,
2151 arm_stub_long_branch_any_arm_pic,
2152 arm_stub_long_branch_any_thumb_pic,
2153 arm_stub_long_branch_v4t_arm_thumb_pic,
2154 arm_stub_long_branch_v4t_thumb_arm_pic,
2155 arm_stub_long_branch_thumb_only_pic,
2156 };
2157
2158 struct elf32_arm_stub_hash_entry
2159 {
2160 /* Base hash table entry structure. */
2161 struct bfd_hash_entry root;
2162
2163 /* The stub section. */
2164 asection *stub_sec;
2165
2166 /* Offset within stub_sec of the beginning of this stub. */
2167 bfd_vma stub_offset;
2168
2169 /* Given the symbol's value and its section we can determine its final
2170 value when building the stubs (so the stub knows where to jump). */
2171 bfd_vma target_value;
2172 asection *target_section;
2173
2174 /* The stub type. */
2175 enum elf32_arm_stub_type stub_type;
2176 /* Its encoding size in bytes. */
2177 int stub_size;
2178 /* Its template. */
2179 const insn_sequence *stub_template;
2180 /* The size of the template (number of entries). */
2181 int stub_template_size;
2182
2183 /* The symbol table entry, if any, that this was derived from. */
2184 struct elf32_arm_link_hash_entry *h;
2185
2186 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2187 unsigned char st_type;
2188
2189 /* Where this stub is being called from, or, in the case of combined
2190 stub sections, the first input section in the group. */
2191 asection *id_sec;
2192
2193 /* The name for the local symbol at the start of this stub. The
2194 stub name in the hash table has to be unique; this does not, so
2195 it can be friendlier. */
2196 char *output_name;
2197 };
2198
2199 /* Used to build a map of a section. This is required for mixed-endian
2200 code/data. */
2201
2202 typedef struct elf32_elf_section_map
2203 {
2204 bfd_vma vma;
2205 char type;
2206 }
2207 elf32_arm_section_map;
2208
2209 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2210
2211 typedef enum
2212 {
2213 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2214 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2215 VFP11_ERRATUM_ARM_VENEER,
2216 VFP11_ERRATUM_THUMB_VENEER
2217 }
2218 elf32_vfp11_erratum_type;
2219
2220 typedef struct elf32_vfp11_erratum_list
2221 {
2222 struct elf32_vfp11_erratum_list *next;
2223 bfd_vma vma;
2224 union
2225 {
2226 struct
2227 {
2228 struct elf32_vfp11_erratum_list *veneer;
2229 unsigned int vfp_insn;
2230 } b;
2231 struct
2232 {
2233 struct elf32_vfp11_erratum_list *branch;
2234 unsigned int id;
2235 } v;
2236 } u;
2237 elf32_vfp11_erratum_type type;
2238 }
2239 elf32_vfp11_erratum_list;
2240
2241 typedef struct _arm_elf_section_data
2242 {
2243 struct bfd_elf_section_data elf;
2244 unsigned int mapcount;
2245 unsigned int mapsize;
2246 elf32_arm_section_map *map;
2247 unsigned int erratumcount;
2248 elf32_vfp11_erratum_list *erratumlist;
2249 }
2250 _arm_elf_section_data;
2251
2252 #define elf32_arm_section_data(sec) \
2253 ((_arm_elf_section_data *) elf_section_data (sec))
2254
2255 /* The size of the thread control block. */
2256 #define TCB_SIZE 8
2257
2258 struct elf_arm_obj_tdata
2259 {
2260 struct elf_obj_tdata root;
2261
2262 /* tls_type for each local got entry. */
2263 char *local_got_tls_type;
2264
2265 /* Zero to warn when linking objects with incompatible enum sizes. */
2266 int no_enum_size_warning;
2267
2268 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2269 int no_wchar_size_warning;
2270 };
2271
2272 #define elf_arm_tdata(bfd) \
2273 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2274
2275 #define elf32_arm_local_got_tls_type(bfd) \
2276 (elf_arm_tdata (bfd)->local_got_tls_type)
2277
2278 #define is_arm_elf(bfd) \
2279 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2280 && elf_tdata (bfd) != NULL \
2281 && elf_object_id (bfd) == ARM_ELF_TDATA)
2282
2283 static bfd_boolean
2284 elf32_arm_mkobject (bfd *abfd)
2285 {
2286 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2287 ARM_ELF_TDATA);
2288 }
2289
2290 /* The ARM linker needs to keep track of the number of relocs that it
2291 decides to copy in check_relocs for each symbol. This is so that
2292 it can discard PC relative relocs if it doesn't need them when
2293 linking with -Bsymbolic. We store the information in a field
2294 extending the regular ELF linker hash table. */
2295
2296 /* This structure keeps track of the number of relocs we have copied
2297 for a given symbol. */
2298 struct elf32_arm_relocs_copied
2299 {
2300 /* Next section. */
2301 struct elf32_arm_relocs_copied * next;
2302 /* A section in dynobj. */
2303 asection * section;
2304 /* Number of relocs copied in this section. */
2305 bfd_size_type count;
2306 /* Number of PC-relative relocs copied in this section. */
2307 bfd_size_type pc_count;
2308 };
2309
2310 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2311
2312 /* Arm ELF linker hash entry. */
2313 struct elf32_arm_link_hash_entry
2314 {
2315 struct elf_link_hash_entry root;
2316
2317 /* Number of PC relative relocs copied for this symbol. */
2318 struct elf32_arm_relocs_copied * relocs_copied;
2319
2320 /* We reference count Thumb references to a PLT entry separately,
2321 so that we can emit the Thumb trampoline only if needed. */
2322 bfd_signed_vma plt_thumb_refcount;
2323
2324 /* Some references from Thumb code may be eliminated by BL->BLX
2325 conversion, so record them separately. */
2326 bfd_signed_vma plt_maybe_thumb_refcount;
2327
2328 /* Since PLT entries have variable size if the Thumb prologue is
2329 used, we need to record the index into .got.plt instead of
2330 recomputing it from the PLT offset. */
2331 bfd_signed_vma plt_got_offset;
2332
2333 #define GOT_UNKNOWN 0
2334 #define GOT_NORMAL 1
2335 #define GOT_TLS_GD 2
2336 #define GOT_TLS_IE 4
2337 unsigned char tls_type;
2338
2339 /* The symbol marking the real symbol location for exported thumb
2340 symbols with Arm stubs. */
2341 struct elf_link_hash_entry *export_glue;
2342
2343 /* A pointer to the most recently used stub hash entry against this
2344 symbol. */
2345 struct elf32_arm_stub_hash_entry *stub_cache;
2346 };
2347
2348 /* Traverse an arm ELF linker hash table. */
2349 #define elf32_arm_link_hash_traverse(table, func, info) \
2350 (elf_link_hash_traverse \
2351 (&(table)->root, \
2352 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2353 (info)))
2354
2355 /* Get the ARM elf linker hash table from a link_info structure. */
2356 #define elf32_arm_hash_table(info) \
2357 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2358
2359 #define arm_stub_hash_lookup(table, string, create, copy) \
2360 ((struct elf32_arm_stub_hash_entry *) \
2361 bfd_hash_lookup ((table), (string), (create), (copy)))
2362
2363 /* ARM ELF linker hash table. */
2364 struct elf32_arm_link_hash_table
2365 {
2366 /* The main hash table. */
2367 struct elf_link_hash_table root;
2368
2369 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2370 bfd_size_type thumb_glue_size;
2371
2372 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2373 bfd_size_type arm_glue_size;
2374
2375 /* The size in bytes of section containing the ARMv4 BX veneers. */
2376 bfd_size_type bx_glue_size;
2377
2378 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2379 veneer has been populated. */
2380 bfd_vma bx_glue_offset[15];
2381
2382 /* The size in bytes of the section containing glue for VFP11 erratum
2383 veneers. */
2384 bfd_size_type vfp11_erratum_glue_size;
2385
2386 /* An arbitrary input BFD chosen to hold the glue sections. */
2387 bfd * bfd_of_glue_owner;
2388
2389 /* Nonzero to output a BE8 image. */
2390 int byteswap_code;
2391
2392 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2393 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2394 int target1_is_rel;
2395
2396 /* The relocation to use for R_ARM_TARGET2 relocations. */
2397 int target2_reloc;
2398
2399 /* 0 = Ignore R_ARM_V4BX.
2400 1 = Convert BX to MOV PC.
2401 2 = Generate v4 interworing stubs. */
2402 int fix_v4bx;
2403
2404 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2405 int use_blx;
2406
2407 /* What sort of code sequences we should look for which may trigger the
2408 VFP11 denorm erratum. */
2409 bfd_arm_vfp11_fix vfp11_fix;
2410
2411 /* Global counter for the number of fixes we have emitted. */
2412 int num_vfp11_fixes;
2413
2414 /* Nonzero to force PIC branch veneers. */
2415 int pic_veneer;
2416
2417 /* The number of bytes in the initial entry in the PLT. */
2418 bfd_size_type plt_header_size;
2419
2420 /* The number of bytes in the subsequent PLT etries. */
2421 bfd_size_type plt_entry_size;
2422
2423 /* True if the target system is VxWorks. */
2424 int vxworks_p;
2425
2426 /* True if the target system is Symbian OS. */
2427 int symbian_p;
2428
2429 /* True if the target uses REL relocations. */
2430 int use_rel;
2431
2432 /* Short-cuts to get to dynamic linker sections. */
2433 asection *sgot;
2434 asection *sgotplt;
2435 asection *srelgot;
2436 asection *splt;
2437 asection *srelplt;
2438 asection *sdynbss;
2439 asection *srelbss;
2440
2441 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2442 asection *srelplt2;
2443
2444 /* Data for R_ARM_TLS_LDM32 relocations. */
2445 union
2446 {
2447 bfd_signed_vma refcount;
2448 bfd_vma offset;
2449 } tls_ldm_got;
2450
2451 /* Small local sym to section mapping cache. */
2452 struct sym_sec_cache sym_sec;
2453
2454 /* For convenience in allocate_dynrelocs. */
2455 bfd * obfd;
2456
2457 /* The stub hash table. */
2458 struct bfd_hash_table stub_hash_table;
2459
2460 /* Linker stub bfd. */
2461 bfd *stub_bfd;
2462
2463 /* Linker call-backs. */
2464 asection * (*add_stub_section) (const char *, asection *);
2465 void (*layout_sections_again) (void);
2466
2467 /* Array to keep track of which stub sections have been created, and
2468 information on stub grouping. */
2469 struct map_stub
2470 {
2471 /* This is the section to which stubs in the group will be
2472 attached. */
2473 asection *link_sec;
2474 /* The stub section. */
2475 asection *stub_sec;
2476 } *stub_group;
2477
2478 /* Assorted information used by elf32_arm_size_stubs. */
2479 unsigned int bfd_count;
2480 int top_index;
2481 asection **input_list;
2482 };
2483
2484 /* Create an entry in an ARM ELF linker hash table. */
2485
2486 static struct bfd_hash_entry *
2487 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2488 struct bfd_hash_table * table,
2489 const char * string)
2490 {
2491 struct elf32_arm_link_hash_entry * ret =
2492 (struct elf32_arm_link_hash_entry *) entry;
2493
2494 /* Allocate the structure if it has not already been allocated by a
2495 subclass. */
2496 if (ret == NULL)
2497 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2498 if (ret == NULL)
2499 return (struct bfd_hash_entry *) ret;
2500
2501 /* Call the allocation method of the superclass. */
2502 ret = ((struct elf32_arm_link_hash_entry *)
2503 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2504 table, string));
2505 if (ret != NULL)
2506 {
2507 ret->relocs_copied = NULL;
2508 ret->tls_type = GOT_UNKNOWN;
2509 ret->plt_thumb_refcount = 0;
2510 ret->plt_maybe_thumb_refcount = 0;
2511 ret->plt_got_offset = -1;
2512 ret->export_glue = NULL;
2513
2514 ret->stub_cache = NULL;
2515 }
2516
2517 return (struct bfd_hash_entry *) ret;
2518 }
2519
2520 /* Initialize an entry in the stub hash table. */
2521
2522 static struct bfd_hash_entry *
2523 stub_hash_newfunc (struct bfd_hash_entry *entry,
2524 struct bfd_hash_table *table,
2525 const char *string)
2526 {
2527 /* Allocate the structure if it has not already been allocated by a
2528 subclass. */
2529 if (entry == NULL)
2530 {
2531 entry = bfd_hash_allocate (table,
2532 sizeof (struct elf32_arm_stub_hash_entry));
2533 if (entry == NULL)
2534 return entry;
2535 }
2536
2537 /* Call the allocation method of the superclass. */
2538 entry = bfd_hash_newfunc (entry, table, string);
2539 if (entry != NULL)
2540 {
2541 struct elf32_arm_stub_hash_entry *eh;
2542
2543 /* Initialize the local fields. */
2544 eh = (struct elf32_arm_stub_hash_entry *) entry;
2545 eh->stub_sec = NULL;
2546 eh->stub_offset = 0;
2547 eh->target_value = 0;
2548 eh->target_section = NULL;
2549 eh->stub_type = arm_stub_none;
2550 eh->stub_size = 0;
2551 eh->stub_template = NULL;
2552 eh->stub_template_size = 0;
2553 eh->h = NULL;
2554 eh->id_sec = NULL;
2555 }
2556
2557 return entry;
2558 }
2559
2560 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2561 shortcuts to them in our hash table. */
2562
2563 static bfd_boolean
2564 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2565 {
2566 struct elf32_arm_link_hash_table *htab;
2567
2568 htab = elf32_arm_hash_table (info);
2569 /* BPABI objects never have a GOT, or associated sections. */
2570 if (htab->symbian_p)
2571 return TRUE;
2572
2573 if (! _bfd_elf_create_got_section (dynobj, info))
2574 return FALSE;
2575
2576 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2577 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2578 if (!htab->sgot || !htab->sgotplt)
2579 abort ();
2580
2581 htab->srelgot = bfd_make_section_with_flags (dynobj,
2582 RELOC_SECTION (htab, ".got"),
2583 (SEC_ALLOC | SEC_LOAD
2584 | SEC_HAS_CONTENTS
2585 | SEC_IN_MEMORY
2586 | SEC_LINKER_CREATED
2587 | SEC_READONLY));
2588 if (htab->srelgot == NULL
2589 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2590 return FALSE;
2591 return TRUE;
2592 }
2593
2594 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2595 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2596 hash table. */
2597
2598 static bfd_boolean
2599 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2600 {
2601 struct elf32_arm_link_hash_table *htab;
2602
2603 htab = elf32_arm_hash_table (info);
2604 if (!htab->sgot && !create_got_section (dynobj, info))
2605 return FALSE;
2606
2607 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2608 return FALSE;
2609
2610 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2611 htab->srelplt = bfd_get_section_by_name (dynobj,
2612 RELOC_SECTION (htab, ".plt"));
2613 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2614 if (!info->shared)
2615 htab->srelbss = bfd_get_section_by_name (dynobj,
2616 RELOC_SECTION (htab, ".bss"));
2617
2618 if (htab->vxworks_p)
2619 {
2620 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2621 return FALSE;
2622
2623 if (info->shared)
2624 {
2625 htab->plt_header_size = 0;
2626 htab->plt_entry_size
2627 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2628 }
2629 else
2630 {
2631 htab->plt_header_size
2632 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2633 htab->plt_entry_size
2634 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2635 }
2636 }
2637
2638 if (!htab->splt
2639 || !htab->srelplt
2640 || !htab->sdynbss
2641 || (!info->shared && !htab->srelbss))
2642 abort ();
2643
2644 return TRUE;
2645 }
2646
2647 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2648
2649 static void
2650 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2651 struct elf_link_hash_entry *dir,
2652 struct elf_link_hash_entry *ind)
2653 {
2654 struct elf32_arm_link_hash_entry *edir, *eind;
2655
2656 edir = (struct elf32_arm_link_hash_entry *) dir;
2657 eind = (struct elf32_arm_link_hash_entry *) ind;
2658
2659 if (eind->relocs_copied != NULL)
2660 {
2661 if (edir->relocs_copied != NULL)
2662 {
2663 struct elf32_arm_relocs_copied **pp;
2664 struct elf32_arm_relocs_copied *p;
2665
2666 /* Add reloc counts against the indirect sym to the direct sym
2667 list. Merge any entries against the same section. */
2668 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2669 {
2670 struct elf32_arm_relocs_copied *q;
2671
2672 for (q = edir->relocs_copied; q != NULL; q = q->next)
2673 if (q->section == p->section)
2674 {
2675 q->pc_count += p->pc_count;
2676 q->count += p->count;
2677 *pp = p->next;
2678 break;
2679 }
2680 if (q == NULL)
2681 pp = &p->next;
2682 }
2683 *pp = edir->relocs_copied;
2684 }
2685
2686 edir->relocs_copied = eind->relocs_copied;
2687 eind->relocs_copied = NULL;
2688 }
2689
2690 if (ind->root.type == bfd_link_hash_indirect)
2691 {
2692 /* Copy over PLT info. */
2693 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2694 eind->plt_thumb_refcount = 0;
2695 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2696 eind->plt_maybe_thumb_refcount = 0;
2697
2698 if (dir->got.refcount <= 0)
2699 {
2700 edir->tls_type = eind->tls_type;
2701 eind->tls_type = GOT_UNKNOWN;
2702 }
2703 }
2704
2705 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2706 }
2707
2708 /* Create an ARM elf linker hash table. */
2709
2710 static struct bfd_link_hash_table *
2711 elf32_arm_link_hash_table_create (bfd *abfd)
2712 {
2713 struct elf32_arm_link_hash_table *ret;
2714 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2715
2716 ret = bfd_malloc (amt);
2717 if (ret == NULL)
2718 return NULL;
2719
2720 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2721 elf32_arm_link_hash_newfunc,
2722 sizeof (struct elf32_arm_link_hash_entry)))
2723 {
2724 free (ret);
2725 return NULL;
2726 }
2727
2728 ret->sgot = NULL;
2729 ret->sgotplt = NULL;
2730 ret->srelgot = NULL;
2731 ret->splt = NULL;
2732 ret->srelplt = NULL;
2733 ret->sdynbss = NULL;
2734 ret->srelbss = NULL;
2735 ret->srelplt2 = NULL;
2736 ret->thumb_glue_size = 0;
2737 ret->arm_glue_size = 0;
2738 ret->bx_glue_size = 0;
2739 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2740 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2741 ret->vfp11_erratum_glue_size = 0;
2742 ret->num_vfp11_fixes = 0;
2743 ret->bfd_of_glue_owner = NULL;
2744 ret->byteswap_code = 0;
2745 ret->target1_is_rel = 0;
2746 ret->target2_reloc = R_ARM_NONE;
2747 #ifdef FOUR_WORD_PLT
2748 ret->plt_header_size = 16;
2749 ret->plt_entry_size = 16;
2750 #else
2751 ret->plt_header_size = 20;
2752 ret->plt_entry_size = 12;
2753 #endif
2754 ret->fix_v4bx = 0;
2755 ret->use_blx = 0;
2756 ret->vxworks_p = 0;
2757 ret->symbian_p = 0;
2758 ret->use_rel = 1;
2759 ret->sym_sec.abfd = NULL;
2760 ret->obfd = abfd;
2761 ret->tls_ldm_got.refcount = 0;
2762 ret->stub_bfd = NULL;
2763 ret->add_stub_section = NULL;
2764 ret->layout_sections_again = NULL;
2765 ret->stub_group = NULL;
2766 ret->bfd_count = 0;
2767 ret->top_index = 0;
2768 ret->input_list = NULL;
2769
2770 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2771 sizeof (struct elf32_arm_stub_hash_entry)))
2772 {
2773 free (ret);
2774 return NULL;
2775 }
2776
2777 return &ret->root.root;
2778 }
2779
2780 /* Free the derived linker hash table. */
2781
2782 static void
2783 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2784 {
2785 struct elf32_arm_link_hash_table *ret
2786 = (struct elf32_arm_link_hash_table *) hash;
2787
2788 bfd_hash_table_free (&ret->stub_hash_table);
2789 _bfd_generic_link_hash_table_free (hash);
2790 }
2791
2792 /* Determine if we're dealing with a Thumb only architecture. */
2793
2794 static bfd_boolean
2795 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2796 {
2797 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2798 Tag_CPU_arch);
2799 int profile;
2800
2801 if (arch != TAG_CPU_ARCH_V7)
2802 return FALSE;
2803
2804 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2805 Tag_CPU_arch_profile);
2806
2807 return profile == 'M';
2808 }
2809
2810 /* Determine if we're dealing with a Thumb-2 object. */
2811
2812 static bfd_boolean
2813 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2814 {
2815 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2816 Tag_CPU_arch);
2817 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2818 }
2819
2820 static bfd_boolean
2821 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
2822 {
2823 switch (stub_type)
2824 {
2825 case arm_stub_long_branch_thumb_only:
2826 case arm_stub_long_branch_v4t_thumb_arm:
2827 case arm_stub_short_branch_v4t_thumb_arm:
2828 case arm_stub_long_branch_v4t_thumb_arm_pic:
2829 case arm_stub_long_branch_thumb_only_pic:
2830 return TRUE;
2831 case arm_stub_none:
2832 BFD_FAIL ();
2833 return FALSE;
2834 break;
2835 default:
2836 return FALSE;
2837 }
2838 }
2839
2840 /* Determine the type of stub needed, if any, for a call. */
2841
2842 static enum elf32_arm_stub_type
2843 arm_type_of_stub (struct bfd_link_info *info,
2844 asection *input_sec,
2845 const Elf_Internal_Rela *rel,
2846 unsigned char st_type,
2847 struct elf32_arm_link_hash_entry *hash,
2848 bfd_vma destination,
2849 asection *sym_sec,
2850 bfd *input_bfd,
2851 const char *name)
2852 {
2853 bfd_vma location;
2854 bfd_signed_vma branch_offset;
2855 unsigned int r_type;
2856 struct elf32_arm_link_hash_table * globals;
2857 int thumb2;
2858 int thumb_only;
2859 enum elf32_arm_stub_type stub_type = arm_stub_none;
2860 int use_plt = 0;
2861
2862 /* We don't know the actual type of destination in case it is of
2863 type STT_SECTION: give up. */
2864 if (st_type == STT_SECTION)
2865 return stub_type;
2866
2867 globals = elf32_arm_hash_table (info);
2868
2869 thumb_only = using_thumb_only (globals);
2870
2871 thumb2 = using_thumb2 (globals);
2872
2873 /* Determine where the call point is. */
2874 location = (input_sec->output_offset
2875 + input_sec->output_section->vma
2876 + rel->r_offset);
2877
2878 branch_offset = (bfd_signed_vma)(destination - location);
2879
2880 r_type = ELF32_R_TYPE (rel->r_info);
2881
2882 /* Keep a simpler condition, for the sake of clarity. */
2883 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
2884 {
2885 use_plt = 1;
2886 /* Note when dealing with PLT entries: the main PLT stub is in
2887 ARM mode, so if the branch is in Thumb mode, another
2888 Thumb->ARM stub will be inserted later just before the ARM
2889 PLT stub. We don't take this extra distance into account
2890 here, because if a long branch stub is needed, we'll add a
2891 Thumb->Arm one and branch directly to the ARM PLT entry
2892 because it avoids spreading offset corrections in several
2893 places. */
2894 }
2895
2896 if (r_type == R_ARM_THM_CALL)
2897 {
2898 /* Handle cases where:
2899 - this call goes too far (different Thumb/Thumb2 max
2900 distance)
2901 - it's a Thumb->Arm call and blx is not available. A stub is
2902 needed in this case, but only if this call is not through a
2903 PLT entry. Indeed, PLT stubs handle mode switching already.
2904 */
2905 if ((!thumb2
2906 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2907 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2908 || (thumb2
2909 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2910 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2911 || ((st_type != STT_ARM_TFUNC)
2912 && ((r_type == R_ARM_THM_CALL) && !globals->use_blx)
2913 && !use_plt))
2914 {
2915 if (st_type == STT_ARM_TFUNC)
2916 {
2917 /* Thumb to thumb. */
2918 if (!thumb_only)
2919 {
2920 stub_type = (info->shared | globals->pic_veneer)
2921 /* PIC stubs. */
2922 ? ((globals->use_blx)
2923 /* V5T and above. */
2924 ? arm_stub_long_branch_any_thumb_pic
2925 /* On V4T, use Thumb code only. */
2926 : arm_stub_long_branch_thumb_only_pic)
2927
2928 /* non-PIC stubs. */
2929 : ((globals->use_blx)
2930 /* V5T and above. */
2931 ? arm_stub_long_branch_any_any
2932 /* V4T. */
2933 : arm_stub_long_branch_thumb_only);
2934 }
2935 else
2936 {
2937 stub_type = (info->shared | globals->pic_veneer)
2938 /* PIC stub. */
2939 ? arm_stub_long_branch_thumb_only_pic
2940 /* non-PIC stub. */
2941 : arm_stub_long_branch_thumb_only;
2942 }
2943 }
2944 else
2945 {
2946 /* Thumb to arm. */
2947 if (sym_sec != NULL
2948 && sym_sec->owner != NULL
2949 && !INTERWORK_FLAG (sym_sec->owner))
2950 {
2951 (*_bfd_error_handler)
2952 (_("%B(%s): warning: interworking not enabled.\n"
2953 " first occurrence: %B: Thumb call to ARM"),
2954 sym_sec->owner, input_bfd, name);
2955 }
2956
2957 stub_type = (info->shared | globals->pic_veneer)
2958 /* PIC stubs. */
2959 ? ((globals->use_blx)
2960 /* V5T and above. */
2961 ? arm_stub_long_branch_any_arm_pic
2962 /* V4T PIC stub. */
2963 : arm_stub_long_branch_v4t_thumb_arm_pic)
2964
2965 /* non-PIC stubs. */
2966 : ((globals->use_blx)
2967 /* V5T and above. */
2968 ? arm_stub_long_branch_any_any
2969 /* V4T. */
2970 : arm_stub_long_branch_v4t_thumb_arm);
2971
2972 /* Handle v4t short branches. */
2973 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
2974 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
2975 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
2976 stub_type = arm_stub_short_branch_v4t_thumb_arm;
2977 }
2978 }
2979 }
2980 else if (r_type == R_ARM_CALL)
2981 {
2982 if (st_type == STT_ARM_TFUNC)
2983 {
2984 /* Arm to thumb. */
2985
2986 if (sym_sec != NULL
2987 && sym_sec->owner != NULL
2988 && !INTERWORK_FLAG (sym_sec->owner))
2989 {
2990 (*_bfd_error_handler)
2991 (_("%B(%s): warning: interworking not enabled.\n"
2992 " first occurrence: %B: ARM call to Thumb"),
2993 sym_sec->owner, input_bfd, name);
2994 }
2995
2996 /* We have an extra 2-bytes reach because of
2997 the mode change (bit 24 (H) of BLX encoding). */
2998 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2999 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3000 || !globals->use_blx)
3001 {
3002 stub_type = (info->shared | globals->pic_veneer)
3003 /* PIC stubs. */
3004 ? ((globals->use_blx)
3005 /* V5T and above. */
3006 ? arm_stub_long_branch_any_thumb_pic
3007 /* V4T stub. */
3008 : arm_stub_long_branch_v4t_arm_thumb_pic)
3009
3010 /* non-PIC stubs. */
3011 : ((globals->use_blx)
3012 /* V5T and above. */
3013 ? arm_stub_long_branch_any_any
3014 /* V4T. */
3015 : arm_stub_long_branch_v4t_arm_thumb);
3016 }
3017 }
3018 else
3019 {
3020 /* Arm to arm. */
3021 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3022 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3023 {
3024 stub_type = (info->shared | globals->pic_veneer)
3025 /* PIC stubs. */
3026 ? arm_stub_long_branch_any_arm_pic
3027 /* non-PIC stubs. */
3028 : arm_stub_long_branch_any_any;
3029 }
3030 }
3031 }
3032
3033 return stub_type;
3034 }
3035
3036 /* Build a name for an entry in the stub hash table. */
3037
3038 static char *
3039 elf32_arm_stub_name (const asection *input_section,
3040 const asection *sym_sec,
3041 const struct elf32_arm_link_hash_entry *hash,
3042 const Elf_Internal_Rela *rel)
3043 {
3044 char *stub_name;
3045 bfd_size_type len;
3046
3047 if (hash)
3048 {
3049 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
3050 stub_name = bfd_malloc (len);
3051 if (stub_name != NULL)
3052 sprintf (stub_name, "%08x_%s+%x",
3053 input_section->id & 0xffffffff,
3054 hash->root.root.root.string,
3055 (int) rel->r_addend & 0xffffffff);
3056 }
3057 else
3058 {
3059 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3060 stub_name = bfd_malloc (len);
3061 if (stub_name != NULL)
3062 sprintf (stub_name, "%08x_%x:%x+%x",
3063 input_section->id & 0xffffffff,
3064 sym_sec->id & 0xffffffff,
3065 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3066 (int) rel->r_addend & 0xffffffff);
3067 }
3068
3069 return stub_name;
3070 }
3071
3072 /* Look up an entry in the stub hash. Stub entries are cached because
3073 creating the stub name takes a bit of time. */
3074
3075 static struct elf32_arm_stub_hash_entry *
3076 elf32_arm_get_stub_entry (const asection *input_section,
3077 const asection *sym_sec,
3078 struct elf_link_hash_entry *hash,
3079 const Elf_Internal_Rela *rel,
3080 struct elf32_arm_link_hash_table *htab)
3081 {
3082 struct elf32_arm_stub_hash_entry *stub_entry;
3083 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3084 const asection *id_sec;
3085
3086 if ((input_section->flags & SEC_CODE) == 0)
3087 return NULL;
3088
3089 /* If this input section is part of a group of sections sharing one
3090 stub section, then use the id of the first section in the group.
3091 Stub names need to include a section id, as there may well be
3092 more than one stub used to reach say, printf, and we need to
3093 distinguish between them. */
3094 id_sec = htab->stub_group[input_section->id].link_sec;
3095
3096 if (h != NULL && h->stub_cache != NULL
3097 && h->stub_cache->h == h
3098 && h->stub_cache->id_sec == id_sec)
3099 {
3100 stub_entry = h->stub_cache;
3101 }
3102 else
3103 {
3104 char *stub_name;
3105
3106 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
3107 if (stub_name == NULL)
3108 return NULL;
3109
3110 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3111 stub_name, FALSE, FALSE);
3112 if (h != NULL)
3113 h->stub_cache = stub_entry;
3114
3115 free (stub_name);
3116 }
3117
3118 return stub_entry;
3119 }
3120
3121 /* Add a new stub entry to the stub hash. Not all fields of the new
3122 stub entry are initialised. */
3123
3124 static struct elf32_arm_stub_hash_entry *
3125 elf32_arm_add_stub (const char *stub_name,
3126 asection *section,
3127 struct elf32_arm_link_hash_table *htab)
3128 {
3129 asection *link_sec;
3130 asection *stub_sec;
3131 struct elf32_arm_stub_hash_entry *stub_entry;
3132
3133 link_sec = htab->stub_group[section->id].link_sec;
3134 stub_sec = htab->stub_group[section->id].stub_sec;
3135 if (stub_sec == NULL)
3136 {
3137 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3138 if (stub_sec == NULL)
3139 {
3140 size_t namelen;
3141 bfd_size_type len;
3142 char *s_name;
3143
3144 namelen = strlen (link_sec->name);
3145 len = namelen + sizeof (STUB_SUFFIX);
3146 s_name = bfd_alloc (htab->stub_bfd, len);
3147 if (s_name == NULL)
3148 return NULL;
3149
3150 memcpy (s_name, link_sec->name, namelen);
3151 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3152 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3153 if (stub_sec == NULL)
3154 return NULL;
3155 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3156 }
3157 htab->stub_group[section->id].stub_sec = stub_sec;
3158 }
3159
3160 /* Enter this entry into the linker stub hash table. */
3161 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3162 TRUE, FALSE);
3163 if (stub_entry == NULL)
3164 {
3165 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3166 section->owner,
3167 stub_name);
3168 return NULL;
3169 }
3170
3171 stub_entry->stub_sec = stub_sec;
3172 stub_entry->stub_offset = 0;
3173 stub_entry->id_sec = link_sec;
3174
3175 return stub_entry;
3176 }
3177
3178 /* Store an Arm insn into an output section not processed by
3179 elf32_arm_write_section. */
3180
3181 static void
3182 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3183 bfd * output_bfd, bfd_vma val, void * ptr)
3184 {
3185 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3186 bfd_putl32 (val, ptr);
3187 else
3188 bfd_putb32 (val, ptr);
3189 }
3190
3191 /* Store a 16-bit Thumb insn into an output section not processed by
3192 elf32_arm_write_section. */
3193
3194 static void
3195 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3196 bfd * output_bfd, bfd_vma val, void * ptr)
3197 {
3198 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3199 bfd_putl16 (val, ptr);
3200 else
3201 bfd_putb16 (val, ptr);
3202 }
3203
3204 static bfd_boolean
3205 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3206 void * in_arg)
3207 {
3208 struct elf32_arm_stub_hash_entry *stub_entry;
3209 struct bfd_link_info *info;
3210 struct elf32_arm_link_hash_table *htab;
3211 asection *stub_sec;
3212 bfd *stub_bfd;
3213 bfd_vma stub_addr;
3214 bfd_byte *loc;
3215 bfd_vma sym_value;
3216 int template_size;
3217 int size;
3218 const insn_sequence *template;
3219 int i;
3220 struct elf32_arm_link_hash_table * globals;
3221 int stub_reloc_idx = -1;
3222 int stub_reloc_offset = 0;
3223
3224 /* Massage our args to the form they really have. */
3225 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3226 info = (struct bfd_link_info *) in_arg;
3227
3228 globals = elf32_arm_hash_table (info);
3229
3230 htab = elf32_arm_hash_table (info);
3231 stub_sec = stub_entry->stub_sec;
3232
3233 /* Make a note of the offset within the stubs for this entry. */
3234 stub_entry->stub_offset = stub_sec->size;
3235 loc = stub_sec->contents + stub_entry->stub_offset;
3236
3237 stub_bfd = stub_sec->owner;
3238
3239 /* This is the address of the start of the stub. */
3240 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3241 + stub_entry->stub_offset;
3242
3243 /* This is the address of the stub destination. */
3244 sym_value = (stub_entry->target_value
3245 + stub_entry->target_section->output_offset
3246 + stub_entry->target_section->output_section->vma);
3247
3248 template = stub_entry->stub_template;
3249 template_size = stub_entry->stub_template_size;
3250
3251 size = 0;
3252 for (i = 0; i < template_size; i++)
3253 {
3254 switch (template[i].type)
3255 {
3256 case THUMB16_TYPE:
3257 put_thumb_insn (globals, stub_bfd, template[i].data, loc + size);
3258 size += 2;
3259 break;
3260
3261 case ARM_TYPE:
3262 put_arm_insn (globals, stub_bfd, template[i].data, loc + size);
3263 /* Handle cases where the target is encoded within the
3264 instruction. */
3265 if (template[i].r_type == R_ARM_JUMP24)
3266 {
3267 stub_reloc_idx = i;
3268 stub_reloc_offset = size;
3269 }
3270 size += 4;
3271 break;
3272
3273 case DATA_TYPE:
3274 bfd_put_32 (stub_bfd, template[i].data, loc + size);
3275 stub_reloc_idx = i;
3276 stub_reloc_offset = size;
3277 size += 4;
3278 break;
3279
3280 default:
3281 BFD_FAIL ();
3282 return FALSE;
3283 }
3284 }
3285
3286 stub_sec->size += size;
3287
3288 /* Stub size has already been computed in arm_size_one_stub. Check
3289 consistency. */
3290 BFD_ASSERT (size == stub_entry->stub_size);
3291
3292 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3293 if (stub_entry->st_type == STT_ARM_TFUNC)
3294 sym_value |= 1;
3295
3296 /* Assume there is one and only one entry to relocate in each stub. */
3297 BFD_ASSERT (stub_reloc_idx != -1);
3298
3299 _bfd_final_link_relocate (elf32_arm_howto_from_type (template[stub_reloc_idx].r_type),
3300 stub_bfd, stub_sec, stub_sec->contents,
3301 stub_entry->stub_offset + stub_reloc_offset,
3302 sym_value, template[stub_reloc_idx].reloc_addend);
3303
3304 return TRUE;
3305 }
3306
3307 /* As above, but don't actually build the stub. Just bump offset so
3308 we know stub section sizes. */
3309
3310 static bfd_boolean
3311 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3312 void * in_arg)
3313 {
3314 struct elf32_arm_stub_hash_entry *stub_entry;
3315 struct elf32_arm_link_hash_table *htab;
3316 const insn_sequence *template;
3317 int template_size;
3318 int size;
3319 int i;
3320
3321 /* Massage our args to the form they really have. */
3322 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3323 htab = (struct elf32_arm_link_hash_table *) in_arg;
3324
3325 switch (stub_entry->stub_type)
3326 {
3327 case arm_stub_long_branch_any_any:
3328 template = elf32_arm_stub_long_branch_any_any;
3329 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_any_any);
3330 break;
3331 case arm_stub_long_branch_v4t_arm_thumb:
3332 template = elf32_arm_stub_long_branch_v4t_arm_thumb;
3333 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_arm_thumb);
3334 break;
3335 case arm_stub_long_branch_thumb_only:
3336 template = elf32_arm_stub_long_branch_thumb_only;
3337 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_thumb_only);
3338 break;
3339 case arm_stub_long_branch_v4t_thumb_arm:
3340 template = elf32_arm_stub_long_branch_v4t_thumb_arm;
3341 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_thumb_arm);
3342 break;
3343 case arm_stub_short_branch_v4t_thumb_arm:
3344 template = elf32_arm_stub_short_branch_v4t_thumb_arm;
3345 template_size = ARRAY_SIZE (elf32_arm_stub_short_branch_v4t_thumb_arm);
3346 break;
3347 case arm_stub_long_branch_any_arm_pic:
3348 template = elf32_arm_stub_long_branch_any_arm_pic;
3349 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_any_arm_pic);
3350 break;
3351 case arm_stub_long_branch_any_thumb_pic:
3352 template = elf32_arm_stub_long_branch_any_thumb_pic;
3353 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_any_thumb_pic);
3354 break;
3355 case arm_stub_long_branch_v4t_arm_thumb_pic:
3356 template = elf32_arm_stub_long_branch_v4t_arm_thumb_pic;
3357 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_arm_thumb_pic);
3358 break;
3359 case arm_stub_long_branch_v4t_thumb_arm_pic:
3360 template = elf32_arm_stub_long_branch_v4t_thumb_arm_pic;
3361 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_v4t_thumb_arm_pic);
3362 break;
3363 case arm_stub_long_branch_thumb_only_pic:
3364 template = elf32_arm_stub_long_branch_thumb_only_pic;
3365 template_size = ARRAY_SIZE (elf32_arm_stub_long_branch_thumb_only_pic);
3366 break;
3367 default:
3368 BFD_FAIL ();
3369 return FALSE;
3370 }
3371
3372 size = 0;
3373 for (i = 0; i < template_size; i++)
3374 {
3375 switch (template[i].type)
3376 {
3377 case THUMB16_TYPE:
3378 size += 2;
3379 break;
3380
3381 case ARM_TYPE:
3382 size += 4;
3383 break;
3384
3385 case DATA_TYPE:
3386 size += 4;
3387 break;
3388
3389 default:
3390 BFD_FAIL ();
3391 return FALSE;
3392 }
3393 }
3394
3395 stub_entry->stub_size = size;
3396 stub_entry->stub_template = template;
3397 stub_entry->stub_template_size = template_size;
3398
3399 size = (size + 7) & ~7;
3400 stub_entry->stub_sec->size += size;
3401
3402 return TRUE;
3403 }
3404
3405 /* External entry points for sizing and building linker stubs. */
3406
3407 /* Set up various things so that we can make a list of input sections
3408 for each output section included in the link. Returns -1 on error,
3409 0 when no stubs will be needed, and 1 on success. */
3410
3411 int
3412 elf32_arm_setup_section_lists (bfd *output_bfd,
3413 struct bfd_link_info *info)
3414 {
3415 bfd *input_bfd;
3416 unsigned int bfd_count;
3417 int top_id, top_index;
3418 asection *section;
3419 asection **input_list, **list;
3420 bfd_size_type amt;
3421 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3422
3423 if (! is_elf_hash_table (htab))
3424 return 0;
3425
3426 /* Count the number of input BFDs and find the top input section id. */
3427 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3428 input_bfd != NULL;
3429 input_bfd = input_bfd->link_next)
3430 {
3431 bfd_count += 1;
3432 for (section = input_bfd->sections;
3433 section != NULL;
3434 section = section->next)
3435 {
3436 if (top_id < section->id)
3437 top_id = section->id;
3438 }
3439 }
3440 htab->bfd_count = bfd_count;
3441
3442 amt = sizeof (struct map_stub) * (top_id + 1);
3443 htab->stub_group = bfd_zmalloc (amt);
3444 if (htab->stub_group == NULL)
3445 return -1;
3446
3447 /* We can't use output_bfd->section_count here to find the top output
3448 section index as some sections may have been removed, and
3449 _bfd_strip_section_from_output doesn't renumber the indices. */
3450 for (section = output_bfd->sections, top_index = 0;
3451 section != NULL;
3452 section = section->next)
3453 {
3454 if (top_index < section->index)
3455 top_index = section->index;
3456 }
3457
3458 htab->top_index = top_index;
3459 amt = sizeof (asection *) * (top_index + 1);
3460 input_list = bfd_malloc (amt);
3461 htab->input_list = input_list;
3462 if (input_list == NULL)
3463 return -1;
3464
3465 /* For sections we aren't interested in, mark their entries with a
3466 value we can check later. */
3467 list = input_list + top_index;
3468 do
3469 *list = bfd_abs_section_ptr;
3470 while (list-- != input_list);
3471
3472 for (section = output_bfd->sections;
3473 section != NULL;
3474 section = section->next)
3475 {
3476 if ((section->flags & SEC_CODE) != 0)
3477 input_list[section->index] = NULL;
3478 }
3479
3480 return 1;
3481 }
3482
3483 /* The linker repeatedly calls this function for each input section,
3484 in the order that input sections are linked into output sections.
3485 Build lists of input sections to determine groupings between which
3486 we may insert linker stubs. */
3487
3488 void
3489 elf32_arm_next_input_section (struct bfd_link_info *info,
3490 asection *isec)
3491 {
3492 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3493
3494 if (isec->output_section->index <= htab->top_index)
3495 {
3496 asection **list = htab->input_list + isec->output_section->index;
3497
3498 if (*list != bfd_abs_section_ptr)
3499 {
3500 /* Steal the link_sec pointer for our list. */
3501 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3502 /* This happens to make the list in reverse order,
3503 which we reverse later. */
3504 PREV_SEC (isec) = *list;
3505 *list = isec;
3506 }
3507 }
3508 }
3509
3510 /* See whether we can group stub sections together. Grouping stub
3511 sections may result in fewer stubs. More importantly, we need to
3512 put all .init* and .fini* stubs at the end of the .init or
3513 .fini output sections respectively, because glibc splits the
3514 _init and _fini functions into multiple parts. Putting a stub in
3515 the middle of a function is not a good idea. */
3516
3517 static void
3518 group_sections (struct elf32_arm_link_hash_table *htab,
3519 bfd_size_type stub_group_size,
3520 bfd_boolean stubs_always_after_branch)
3521 {
3522 asection **list = htab->input_list;
3523
3524 do
3525 {
3526 asection *tail = *list;
3527 asection *head;
3528 asection *tp;
3529
3530 if (tail == bfd_abs_section_ptr)
3531 continue;
3532
3533 /* Reverse the list: we must avoid placing stubs at the
3534 beginning of the section because the beginning of the text
3535 section may be required for an interrupt vector in bare metal
3536 code. */
3537 #define NEXT_SEC PREV_SEC
3538 head = tail;
3539 tp = NULL;
3540 for (;;)
3541 {
3542 asection *h = PREV_SEC (head);
3543 NEXT_SEC (head) = tp;
3544 if (h == NULL)
3545 break;
3546 tp = head;
3547 head = h;
3548 }
3549
3550 while (head != NULL)
3551 {
3552 asection *curr;
3553 asection *next;
3554 bfd_size_type total;
3555
3556 curr = head;
3557 total = 0;
3558 while ((next = NEXT_SEC (curr)) != NULL)
3559 {
3560 if ( (total + next->output_offset - curr->output_offset
3561 + next->size)
3562 < stub_group_size )
3563 {
3564 total += next->output_offset - curr->output_offset;
3565 }
3566 else
3567 break;
3568
3569 curr = next;
3570 }
3571
3572 /* OK, the size from the start to the start of CURR is less
3573 than stub_group_size and thus can be handled by one stub
3574 section. (Or the head section is itself larger than
3575 stub_group_size, in which case we may be toast.)
3576 We should really be keeping track of the total size of
3577 stubs added here, as stubs contribute to the final output
3578 section size. */
3579 do
3580 {
3581 next = NEXT_SEC (head);
3582 /* Set up this stub group. */
3583 htab->stub_group[head->id].link_sec = curr;
3584 }
3585 while (head != curr && (head = next) != NULL);
3586
3587 /* But wait, there's more! Input sections up to stub_group_size
3588 bytes after the stub section can be handled by it too. */
3589 if (!stubs_always_after_branch)
3590 {
3591 total = head->size;
3592 while (next != NULL)
3593 {
3594 if ( (total + next->output_offset - head->output_offset
3595 + next->size)
3596 < stub_group_size )
3597 {
3598 total += next->output_offset - head->output_offset;
3599 }
3600 else
3601 break;
3602
3603 head = next;
3604 next = NEXT_SEC (head);
3605 htab->stub_group[head->id].link_sec = curr;
3606 }
3607 }
3608 head = next;
3609 }
3610 }
3611 while (list++ != htab->input_list + htab->top_index);
3612
3613 free (htab->input_list);
3614 #undef PREV_SEC
3615 #undef NEXT_SEC
3616 }
3617
3618 /* Determine and set the size of the stub section for a final link.
3619
3620 The basic idea here is to examine all the relocations looking for
3621 PC-relative calls to a target that is unreachable with a "bl"
3622 instruction. */
3623
3624 bfd_boolean
3625 elf32_arm_size_stubs (bfd *output_bfd,
3626 bfd *stub_bfd,
3627 struct bfd_link_info *info,
3628 bfd_signed_vma group_size,
3629 asection * (*add_stub_section) (const char *, asection *),
3630 void (*layout_sections_again) (void))
3631 {
3632 bfd_size_type stub_group_size;
3633 bfd_boolean stubs_always_after_branch;
3634 bfd_boolean stub_changed = 0;
3635 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3636
3637 /* Propagate mach to stub bfd, because it may not have been
3638 finalized when we created stub_bfd. */
3639 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3640 bfd_get_mach (output_bfd));
3641
3642 /* Stash our params away. */
3643 htab->stub_bfd = stub_bfd;
3644 htab->add_stub_section = add_stub_section;
3645 htab->layout_sections_again = layout_sections_again;
3646 stubs_always_after_branch = group_size < 0;
3647 if (group_size < 0)
3648 stub_group_size = -group_size;
3649 else
3650 stub_group_size = group_size;
3651
3652 if (stub_group_size == 1)
3653 {
3654 /* Default values. */
3655 /* Thumb branch range is +-4MB has to be used as the default
3656 maximum size (a given section can contain both ARM and Thumb
3657 code, so the worst case has to be taken into account).
3658
3659 This value is 24K less than that, which allows for 2025
3660 12-byte stubs. If we exceed that, then we will fail to link.
3661 The user will have to relink with an explicit group size
3662 option. */
3663 stub_group_size = 4170000;
3664 }
3665
3666 group_sections (htab, stub_group_size, stubs_always_after_branch);
3667
3668 while (1)
3669 {
3670 bfd *input_bfd;
3671 unsigned int bfd_indx;
3672 asection *stub_sec;
3673
3674 for (input_bfd = info->input_bfds, bfd_indx = 0;
3675 input_bfd != NULL;
3676 input_bfd = input_bfd->link_next, bfd_indx++)
3677 {
3678 Elf_Internal_Shdr *symtab_hdr;
3679 asection *section;
3680 Elf_Internal_Sym *local_syms = NULL;
3681
3682 /* We'll need the symbol table in a second. */
3683 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3684 if (symtab_hdr->sh_info == 0)
3685 continue;
3686
3687 /* Walk over each section attached to the input bfd. */
3688 for (section = input_bfd->sections;
3689 section != NULL;
3690 section = section->next)
3691 {
3692 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3693
3694 /* If there aren't any relocs, then there's nothing more
3695 to do. */
3696 if ((section->flags & SEC_RELOC) == 0
3697 || section->reloc_count == 0
3698 || (section->flags & SEC_CODE) == 0)
3699 continue;
3700
3701 /* If this section is a link-once section that will be
3702 discarded, then don't create any stubs. */
3703 if (section->output_section == NULL
3704 || section->output_section->owner != output_bfd)
3705 continue;
3706
3707 /* Get the relocs. */
3708 internal_relocs
3709 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3710 NULL, info->keep_memory);
3711 if (internal_relocs == NULL)
3712 goto error_ret_free_local;
3713
3714 /* Now examine each relocation. */
3715 irela = internal_relocs;
3716 irelaend = irela + section->reloc_count;
3717 for (; irela < irelaend; irela++)
3718 {
3719 unsigned int r_type, r_indx;
3720 enum elf32_arm_stub_type stub_type;
3721 struct elf32_arm_stub_hash_entry *stub_entry;
3722 asection *sym_sec;
3723 bfd_vma sym_value;
3724 bfd_vma destination;
3725 struct elf32_arm_link_hash_entry *hash;
3726 const char *sym_name;
3727 char *stub_name;
3728 const asection *id_sec;
3729 unsigned char st_type;
3730
3731 r_type = ELF32_R_TYPE (irela->r_info);
3732 r_indx = ELF32_R_SYM (irela->r_info);
3733
3734 if (r_type >= (unsigned int) R_ARM_max)
3735 {
3736 bfd_set_error (bfd_error_bad_value);
3737 error_ret_free_internal:
3738 if (elf_section_data (section)->relocs == NULL)
3739 free (internal_relocs);
3740 goto error_ret_free_local;
3741 }
3742
3743 /* Only look for stubs on call instructions. */
3744 if ((r_type != (unsigned int) R_ARM_CALL)
3745 && (r_type != (unsigned int) R_ARM_THM_CALL))
3746 continue;
3747
3748 /* Now determine the call target, its name, value,
3749 section. */
3750 sym_sec = NULL;
3751 sym_value = 0;
3752 destination = 0;
3753 hash = NULL;
3754 sym_name = NULL;
3755 if (r_indx < symtab_hdr->sh_info)
3756 {
3757 /* It's a local symbol. */
3758 Elf_Internal_Sym *sym;
3759 Elf_Internal_Shdr *hdr;
3760
3761 if (local_syms == NULL)
3762 {
3763 local_syms
3764 = (Elf_Internal_Sym *) symtab_hdr->contents;
3765 if (local_syms == NULL)
3766 local_syms
3767 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3768 symtab_hdr->sh_info, 0,
3769 NULL, NULL, NULL);
3770 if (local_syms == NULL)
3771 goto error_ret_free_internal;
3772 }
3773
3774 sym = local_syms + r_indx;
3775 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3776 sym_sec = hdr->bfd_section;
3777 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3778 sym_value = sym->st_value;
3779 destination = (sym_value + irela->r_addend
3780 + sym_sec->output_offset
3781 + sym_sec->output_section->vma);
3782 st_type = ELF_ST_TYPE (sym->st_info);
3783 sym_name
3784 = bfd_elf_string_from_elf_section (input_bfd,
3785 symtab_hdr->sh_link,
3786 sym->st_name);
3787 }
3788 else
3789 {
3790 /* It's an external symbol. */
3791 int e_indx;
3792
3793 e_indx = r_indx - symtab_hdr->sh_info;
3794 hash = ((struct elf32_arm_link_hash_entry *)
3795 elf_sym_hashes (input_bfd)[e_indx]);
3796
3797 while (hash->root.root.type == bfd_link_hash_indirect
3798 || hash->root.root.type == bfd_link_hash_warning)
3799 hash = ((struct elf32_arm_link_hash_entry *)
3800 hash->root.root.u.i.link);
3801
3802 if (hash->root.root.type == bfd_link_hash_defined
3803 || hash->root.root.type == bfd_link_hash_defweak)
3804 {
3805 sym_sec = hash->root.root.u.def.section;
3806 sym_value = hash->root.root.u.def.value;
3807 if (sym_sec->output_section != NULL)
3808 destination = (sym_value + irela->r_addend
3809 + sym_sec->output_offset
3810 + sym_sec->output_section->vma);
3811 }
3812 else if (hash->root.root.type == bfd_link_hash_undefweak
3813 || hash->root.root.type == bfd_link_hash_undefined)
3814 /* For a shared library, these will need a PLT stub,
3815 which is treated separately.
3816 For absolute code, they cannot be handled. */
3817 continue;
3818 else
3819 {
3820 bfd_set_error (bfd_error_bad_value);
3821 goto error_ret_free_internal;
3822 }
3823 st_type = ELF_ST_TYPE (hash->root.type);
3824 sym_name = hash->root.root.root.string;
3825 }
3826
3827 /* Determine what (if any) linker stub is needed. */
3828 stub_type = arm_type_of_stub (info, section, irela, st_type,
3829 hash, destination, sym_sec,
3830 input_bfd, sym_name);
3831 if (stub_type == arm_stub_none)
3832 continue;
3833
3834 /* Support for grouping stub sections. */
3835 id_sec = htab->stub_group[section->id].link_sec;
3836
3837 /* Get the name of this stub. */
3838 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3839 if (!stub_name)
3840 goto error_ret_free_internal;
3841
3842 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3843 stub_name,
3844 FALSE, FALSE);
3845 if (stub_entry != NULL)
3846 {
3847 /* The proper stub has already been created. */
3848 free (stub_name);
3849 continue;
3850 }
3851
3852 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
3853 if (stub_entry == NULL)
3854 {
3855 free (stub_name);
3856 goto error_ret_free_internal;
3857 }
3858
3859 stub_entry->target_value = sym_value;
3860 stub_entry->target_section = sym_sec;
3861 stub_entry->stub_type = stub_type;
3862 stub_entry->h = hash;
3863 stub_entry->st_type = st_type;
3864
3865 if (sym_name == NULL)
3866 sym_name = "unnamed";
3867 stub_entry->output_name
3868 = bfd_alloc (htab->stub_bfd,
3869 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
3870 + strlen (sym_name));
3871 if (stub_entry->output_name == NULL)
3872 {
3873 free (stub_name);
3874 goto error_ret_free_internal;
3875 }
3876
3877 /* For historical reasons, use the existing names for
3878 ARM-to-Thumb and Thumb-to-ARM stubs. */
3879 if (r_type == (unsigned int) R_ARM_THM_CALL
3880 && st_type != STT_ARM_TFUNC)
3881 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME,
3882 sym_name);
3883 else if (r_type == (unsigned int) R_ARM_CALL
3884 && st_type == STT_ARM_TFUNC)
3885 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME,
3886 sym_name);
3887 else
3888 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
3889 sym_name);
3890
3891 stub_changed = TRUE;
3892 }
3893
3894 /* We're done with the internal relocs, free them. */
3895 if (elf_section_data (section)->relocs == NULL)
3896 free (internal_relocs);
3897 }
3898 }
3899
3900 if (!stub_changed)
3901 break;
3902
3903 /* OK, we've added some stubs. Find out the new size of the
3904 stub sections. */
3905 for (stub_sec = htab->stub_bfd->sections;
3906 stub_sec != NULL;
3907 stub_sec = stub_sec->next)
3908 stub_sec->size = 0;
3909
3910 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3911
3912 /* Ask the linker to do its stuff. */
3913 (*htab->layout_sections_again) ();
3914 stub_changed = FALSE;
3915 }
3916
3917 return TRUE;
3918
3919 error_ret_free_local:
3920 return FALSE;
3921 }
3922
3923 /* Build all the stubs associated with the current output file. The
3924 stubs are kept in a hash table attached to the main linker hash
3925 table. We also set up the .plt entries for statically linked PIC
3926 functions here. This function is called via arm_elf_finish in the
3927 linker. */
3928
3929 bfd_boolean
3930 elf32_arm_build_stubs (struct bfd_link_info *info)
3931 {
3932 asection *stub_sec;
3933 struct bfd_hash_table *table;
3934 struct elf32_arm_link_hash_table *htab;
3935
3936 htab = elf32_arm_hash_table (info);
3937
3938 for (stub_sec = htab->stub_bfd->sections;
3939 stub_sec != NULL;
3940 stub_sec = stub_sec->next)
3941 {
3942 bfd_size_type size;
3943
3944 /* Ignore non-stub sections. */
3945 if (!strstr (stub_sec->name, STUB_SUFFIX))
3946 continue;
3947
3948 /* Allocate memory to hold the linker stubs. */
3949 size = stub_sec->size;
3950 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3951 if (stub_sec->contents == NULL && size != 0)
3952 return FALSE;
3953 stub_sec->size = 0;
3954 }
3955
3956 /* Build the stubs as directed by the stub hash table. */
3957 table = &htab->stub_hash_table;
3958 bfd_hash_traverse (table, arm_build_one_stub, info);
3959
3960 return TRUE;
3961 }
3962
3963 /* Locate the Thumb encoded calling stub for NAME. */
3964
3965 static struct elf_link_hash_entry *
3966 find_thumb_glue (struct bfd_link_info *link_info,
3967 const char *name,
3968 char **error_message)
3969 {
3970 char *tmp_name;
3971 struct elf_link_hash_entry *hash;
3972 struct elf32_arm_link_hash_table *hash_table;
3973
3974 /* We need a pointer to the armelf specific hash table. */
3975 hash_table = elf32_arm_hash_table (link_info);
3976
3977 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3978 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
3979
3980 BFD_ASSERT (tmp_name);
3981
3982 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
3983
3984 hash = elf_link_hash_lookup
3985 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3986
3987 if (hash == NULL
3988 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
3989 tmp_name, name) == -1)
3990 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3991
3992 free (tmp_name);
3993
3994 return hash;
3995 }
3996
3997 /* Locate the ARM encoded calling stub for NAME. */
3998
3999 static struct elf_link_hash_entry *
4000 find_arm_glue (struct bfd_link_info *link_info,
4001 const char *name,
4002 char **error_message)
4003 {
4004 char *tmp_name;
4005 struct elf_link_hash_entry *myh;
4006 struct elf32_arm_link_hash_table *hash_table;
4007
4008 /* We need a pointer to the elfarm specific hash table. */
4009 hash_table = elf32_arm_hash_table (link_info);
4010
4011 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4012 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4013
4014 BFD_ASSERT (tmp_name);
4015
4016 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4017
4018 myh = elf_link_hash_lookup
4019 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4020
4021 if (myh == NULL
4022 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
4023 tmp_name, name) == -1)
4024 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4025
4026 free (tmp_name);
4027
4028 return myh;
4029 }
4030
4031 /* ARM->Thumb glue (static images):
4032
4033 .arm
4034 __func_from_arm:
4035 ldr r12, __func_addr
4036 bx r12
4037 __func_addr:
4038 .word func @ behave as if you saw a ARM_32 reloc.
4039
4040 (v5t static images)
4041 .arm
4042 __func_from_arm:
4043 ldr pc, __func_addr
4044 __func_addr:
4045 .word func @ behave as if you saw a ARM_32 reloc.
4046
4047 (relocatable images)
4048 .arm
4049 __func_from_arm:
4050 ldr r12, __func_offset
4051 add r12, r12, pc
4052 bx r12
4053 __func_offset:
4054 .word func - . */
4055
4056 #define ARM2THUMB_STATIC_GLUE_SIZE 12
4057 static const insn32 a2t1_ldr_insn = 0xe59fc000;
4058 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
4059 static const insn32 a2t3_func_addr_insn = 0x00000001;
4060
4061 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4062 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
4063 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
4064
4065 #define ARM2THUMB_PIC_GLUE_SIZE 16
4066 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
4067 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
4068 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
4069
4070 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
4071
4072 .thumb .thumb
4073 .align 2 .align 2
4074 __func_from_thumb: __func_from_thumb:
4075 bx pc push {r6, lr}
4076 nop ldr r6, __func_addr
4077 .arm mov lr, pc
4078 b func bx r6
4079 .arm
4080 ;; back_to_thumb
4081 ldmia r13! {r6, lr}
4082 bx lr
4083 __func_addr:
4084 .word func */
4085
4086 #define THUMB2ARM_GLUE_SIZE 8
4087 static const insn16 t2a1_bx_pc_insn = 0x4778;
4088 static const insn16 t2a2_noop_insn = 0x46c0;
4089 static const insn32 t2a3_b_insn = 0xea000000;
4090
4091 #define VFP11_ERRATUM_VENEER_SIZE 8
4092
4093 #define ARM_BX_VENEER_SIZE 12
4094 static const insn32 armbx1_tst_insn = 0xe3100001;
4095 static const insn32 armbx2_moveq_insn = 0x01a0f000;
4096 static const insn32 armbx3_bx_insn = 0xe12fff10;
4097
4098 #ifndef ELFARM_NABI_C_INCLUDED
4099 static void
4100 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
4101 {
4102 asection * s;
4103 bfd_byte * contents;
4104
4105 if (size == 0)
4106 return;
4107
4108 BFD_ASSERT (abfd != NULL);
4109
4110 s = bfd_get_section_by_name (abfd, name);
4111 BFD_ASSERT (s != NULL);
4112
4113 contents = bfd_alloc (abfd, size);
4114
4115 BFD_ASSERT (s->size == size);
4116 s->contents = contents;
4117 }
4118
4119 bfd_boolean
4120 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
4121 {
4122 struct elf32_arm_link_hash_table * globals;
4123
4124 globals = elf32_arm_hash_table (info);
4125 BFD_ASSERT (globals != NULL);
4126
4127 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4128 globals->arm_glue_size,
4129 ARM2THUMB_GLUE_SECTION_NAME);
4130
4131 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4132 globals->thumb_glue_size,
4133 THUMB2ARM_GLUE_SECTION_NAME);
4134
4135 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4136 globals->vfp11_erratum_glue_size,
4137 VFP11_ERRATUM_VENEER_SECTION_NAME);
4138
4139 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4140 globals->bx_glue_size,
4141 ARM_BX_GLUE_SECTION_NAME);
4142
4143 return TRUE;
4144 }
4145
4146 /* Allocate space and symbols for calling a Thumb function from Arm mode.
4147 returns the symbol identifying the stub. */
4148
4149 static struct elf_link_hash_entry *
4150 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
4151 struct elf_link_hash_entry * h)
4152 {
4153 const char * name = h->root.root.string;
4154 asection * s;
4155 char * tmp_name;
4156 struct elf_link_hash_entry * myh;
4157 struct bfd_link_hash_entry * bh;
4158 struct elf32_arm_link_hash_table * globals;
4159 bfd_vma val;
4160 bfd_size_type size;
4161
4162 globals = elf32_arm_hash_table (link_info);
4163
4164 BFD_ASSERT (globals != NULL);
4165 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4166
4167 s = bfd_get_section_by_name
4168 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
4169
4170 BFD_ASSERT (s != NULL);
4171
4172 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4173
4174 BFD_ASSERT (tmp_name);
4175
4176 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4177
4178 myh = elf_link_hash_lookup
4179 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
4180
4181 if (myh != NULL)
4182 {
4183 /* We've already seen this guy. */
4184 free (tmp_name);
4185 return myh;
4186 }
4187
4188 /* The only trick here is using hash_table->arm_glue_size as the value.
4189 Even though the section isn't allocated yet, this is where we will be
4190 putting it. The +1 on the value marks that the stub has not been
4191 output yet - not that it is a Thumb function. */
4192 bh = NULL;
4193 val = globals->arm_glue_size + 1;
4194 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4195 tmp_name, BSF_GLOBAL, s, val,
4196 NULL, TRUE, FALSE, &bh);
4197
4198 myh = (struct elf_link_hash_entry *) bh;
4199 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4200 myh->forced_local = 1;
4201
4202 free (tmp_name);
4203
4204 if (link_info->shared || globals->root.is_relocatable_executable
4205 || globals->pic_veneer)
4206 size = ARM2THUMB_PIC_GLUE_SIZE;
4207 else if (globals->use_blx)
4208 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
4209 else
4210 size = ARM2THUMB_STATIC_GLUE_SIZE;
4211
4212 s->size += size;
4213 globals->arm_glue_size += size;
4214
4215 return myh;
4216 }
4217
4218 static void
4219 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
4220 struct elf_link_hash_entry *h)
4221 {
4222 const char *name = h->root.root.string;
4223 asection *s;
4224 char *tmp_name;
4225 struct elf_link_hash_entry *myh;
4226 struct bfd_link_hash_entry *bh;
4227 struct elf32_arm_link_hash_table *hash_table;
4228 bfd_vma val;
4229
4230 hash_table = elf32_arm_hash_table (link_info);
4231
4232 BFD_ASSERT (hash_table != NULL);
4233 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4234
4235 s = bfd_get_section_by_name
4236 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
4237
4238 BFD_ASSERT (s != NULL);
4239
4240 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4241 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4242
4243 BFD_ASSERT (tmp_name);
4244
4245 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4246
4247 myh = elf_link_hash_lookup
4248 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4249
4250 if (myh != NULL)
4251 {
4252 /* We've already seen this guy. */
4253 free (tmp_name);
4254 return;
4255 }
4256
4257 /* The only trick here is using hash_table->thumb_glue_size as the value.
4258 Even though the section isn't allocated yet, this is where we will be
4259 putting it. The +1 on the value marks that the stub has not been
4260 output yet - not that it is a Thumb function. */
4261 bh = NULL;
4262 val = hash_table->thumb_glue_size + 1;
4263 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4264 tmp_name, BSF_GLOBAL, s, val,
4265 NULL, TRUE, FALSE, &bh);
4266
4267 /* If we mark it 'Thumb', the disassembler will do a better job. */
4268 myh = (struct elf_link_hash_entry *) bh;
4269 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4270 myh->forced_local = 1;
4271
4272 free (tmp_name);
4273
4274 #define CHANGE_TO_ARM "__%s_change_to_arm"
4275 #define BACK_FROM_ARM "__%s_back_from_arm"
4276
4277 /* Allocate another symbol to mark where we switch to Arm mode. */
4278 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4279 + strlen (CHANGE_TO_ARM) + 1);
4280
4281 BFD_ASSERT (tmp_name);
4282
4283 sprintf (tmp_name, CHANGE_TO_ARM, name);
4284
4285 bh = NULL;
4286 val = hash_table->thumb_glue_size + 4,
4287 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4288 tmp_name, BSF_LOCAL, s, val,
4289 NULL, TRUE, FALSE, &bh);
4290
4291 free (tmp_name);
4292
4293 s->size += THUMB2ARM_GLUE_SIZE;
4294 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
4295 }
4296
4297
4298 /* Allocate space for ARMv4 BX veneers. */
4299
4300 static void
4301 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4302 {
4303 asection * s;
4304 struct elf32_arm_link_hash_table *globals;
4305 char *tmp_name;
4306 struct elf_link_hash_entry *myh;
4307 struct bfd_link_hash_entry *bh;
4308 bfd_vma val;
4309
4310 /* BX PC does not need a veneer. */
4311 if (reg == 15)
4312 return;
4313
4314 globals = elf32_arm_hash_table (link_info);
4315
4316 BFD_ASSERT (globals != NULL);
4317 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4318
4319 /* Check if this veneer has already been allocated. */
4320 if (globals->bx_glue_offset[reg])
4321 return;
4322
4323 s = bfd_get_section_by_name
4324 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4325
4326 BFD_ASSERT (s != NULL);
4327
4328 /* Add symbol for veneer. */
4329 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
4330
4331 BFD_ASSERT (tmp_name);
4332
4333 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
4334
4335 myh = elf_link_hash_lookup
4336 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
4337
4338 BFD_ASSERT (myh == NULL);
4339
4340 bh = NULL;
4341 val = globals->bx_glue_size;
4342 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4343 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4344 NULL, TRUE, FALSE, &bh);
4345
4346 myh = (struct elf_link_hash_entry *) bh;
4347 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4348 myh->forced_local = 1;
4349
4350 s->size += ARM_BX_VENEER_SIZE;
4351 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4352 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4353 }
4354
4355
4356 /* Add an entry to the code/data map for section SEC. */
4357
4358 static void
4359 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4360 {
4361 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4362 unsigned int newidx;
4363
4364 if (sec_data->map == NULL)
4365 {
4366 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4367 sec_data->mapcount = 0;
4368 sec_data->mapsize = 1;
4369 }
4370
4371 newidx = sec_data->mapcount++;
4372
4373 if (sec_data->mapcount > sec_data->mapsize)
4374 {
4375 sec_data->mapsize *= 2;
4376 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4377 * sizeof (elf32_arm_section_map));
4378 }
4379
4380 if (sec_data->map)
4381 {
4382 sec_data->map[newidx].vma = vma;
4383 sec_data->map[newidx].type = type;
4384 }
4385 }
4386
4387
4388 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4389 veneers are handled for now. */
4390
4391 static bfd_vma
4392 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4393 elf32_vfp11_erratum_list *branch,
4394 bfd *branch_bfd,
4395 asection *branch_sec,
4396 unsigned int offset)
4397 {
4398 asection *s;
4399 struct elf32_arm_link_hash_table *hash_table;
4400 char *tmp_name;
4401 struct elf_link_hash_entry *myh;
4402 struct bfd_link_hash_entry *bh;
4403 bfd_vma val;
4404 struct _arm_elf_section_data *sec_data;
4405 int errcount;
4406 elf32_vfp11_erratum_list *newerr;
4407
4408 hash_table = elf32_arm_hash_table (link_info);
4409
4410 BFD_ASSERT (hash_table != NULL);
4411 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4412
4413 s = bfd_get_section_by_name
4414 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
4415
4416 sec_data = elf32_arm_section_data (s);
4417
4418 BFD_ASSERT (s != NULL);
4419
4420 tmp_name = bfd_malloc ((bfd_size_type) strlen
4421 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
4422
4423 BFD_ASSERT (tmp_name);
4424
4425 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4426 hash_table->num_vfp11_fixes);
4427
4428 myh = elf_link_hash_lookup
4429 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4430
4431 BFD_ASSERT (myh == NULL);
4432
4433 bh = NULL;
4434 val = hash_table->vfp11_erratum_glue_size;
4435 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4436 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4437 NULL, TRUE, FALSE, &bh);
4438
4439 myh = (struct elf_link_hash_entry *) bh;
4440 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4441 myh->forced_local = 1;
4442
4443 /* Link veneer back to calling location. */
4444 errcount = ++(sec_data->erratumcount);
4445 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
4446
4447 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4448 newerr->vma = -1;
4449 newerr->u.v.branch = branch;
4450 newerr->u.v.id = hash_table->num_vfp11_fixes;
4451 branch->u.b.veneer = newerr;
4452
4453 newerr->next = sec_data->erratumlist;
4454 sec_data->erratumlist = newerr;
4455
4456 /* A symbol for the return from the veneer. */
4457 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4458 hash_table->num_vfp11_fixes);
4459
4460 myh = elf_link_hash_lookup
4461 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4462
4463 if (myh != NULL)
4464 abort ();
4465
4466 bh = NULL;
4467 val = offset + 4;
4468 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4469 branch_sec, val, NULL, TRUE, FALSE, &bh);
4470
4471 myh = (struct elf_link_hash_entry *) bh;
4472 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4473 myh->forced_local = 1;
4474
4475 free (tmp_name);
4476
4477 /* Generate a mapping symbol for the veneer section, and explicitly add an
4478 entry for that symbol to the code/data map for the section. */
4479 if (hash_table->vfp11_erratum_glue_size == 0)
4480 {
4481 bh = NULL;
4482 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4483 ever requires this erratum fix. */
4484 _bfd_generic_link_add_one_symbol (link_info,
4485 hash_table->bfd_of_glue_owner, "$a",
4486 BSF_LOCAL, s, 0, NULL,
4487 TRUE, FALSE, &bh);
4488
4489 myh = (struct elf_link_hash_entry *) bh;
4490 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4491 myh->forced_local = 1;
4492
4493 /* The elf32_arm_init_maps function only cares about symbols from input
4494 BFDs. We must make a note of this generated mapping symbol
4495 ourselves so that code byteswapping works properly in
4496 elf32_arm_write_section. */
4497 elf32_arm_section_map_add (s, 'a', 0);
4498 }
4499
4500 s->size += VFP11_ERRATUM_VENEER_SIZE;
4501 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4502 hash_table->num_vfp11_fixes++;
4503
4504 /* The offset of the veneer. */
4505 return val;
4506 }
4507
4508 /* Note: we do not include the flag SEC_LINKER_CREATED, as that
4509 would prevent elf_link_input_bfd() from processing the contents
4510 of the section. */
4511 #define ARM_GLUE_SECTION_FLAGS \
4512 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY)
4513
4514 /* Create a fake section for use by the ARM backend of the linker. */
4515
4516 static bfd_boolean
4517 arm_make_glue_section (bfd * abfd, const char * name)
4518 {
4519 asection * sec;
4520
4521 sec = bfd_get_section_by_name (abfd, name);
4522 if (sec != NULL)
4523 /* Already made. */
4524 return TRUE;
4525
4526 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
4527
4528 if (sec == NULL
4529 || !bfd_set_section_alignment (abfd, sec, 2))
4530 return FALSE;
4531
4532 /* Set the gc mark to prevent the section from being removed by garbage
4533 collection, despite the fact that no relocs refer to this section. */
4534 sec->gc_mark = 1;
4535
4536 return TRUE;
4537 }
4538
4539 /* Add the glue sections to ABFD. This function is called from the
4540 linker scripts in ld/emultempl/{armelf}.em. */
4541
4542 bfd_boolean
4543 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4544 struct bfd_link_info *info)
4545 {
4546 /* If we are only performing a partial
4547 link do not bother adding the glue. */
4548 if (info->relocatable)
4549 return TRUE;
4550
4551 /* Linker stubs don't need glue. */
4552 if (!strcmp (abfd->filename, "linker stubs"))
4553 return TRUE;
4554
4555 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
4556 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
4557 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
4558 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
4559 }
4560
4561 /* Select a BFD to be used to hold the sections used by the glue code.
4562 This function is called from the linker scripts in ld/emultempl/
4563 {armelf/pe}.em. */
4564
4565 bfd_boolean
4566 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
4567 {
4568 struct elf32_arm_link_hash_table *globals;
4569
4570 /* If we are only performing a partial link
4571 do not bother getting a bfd to hold the glue. */
4572 if (info->relocatable)
4573 return TRUE;
4574
4575 /* Make sure we don't attach the glue sections to a dynamic object. */
4576 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4577
4578 globals = elf32_arm_hash_table (info);
4579
4580 BFD_ASSERT (globals != NULL);
4581
4582 if (globals->bfd_of_glue_owner != NULL)
4583 return TRUE;
4584
4585 /* Save the bfd for later use. */
4586 globals->bfd_of_glue_owner = abfd;
4587
4588 return TRUE;
4589 }
4590
4591 static void
4592 check_use_blx (struct elf32_arm_link_hash_table *globals)
4593 {
4594 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4595 Tag_CPU_arch) > 2)
4596 globals->use_blx = 1;
4597 }
4598
4599 bfd_boolean
4600 bfd_elf32_arm_process_before_allocation (bfd *abfd,
4601 struct bfd_link_info *link_info)
4602 {
4603 Elf_Internal_Shdr *symtab_hdr;
4604 Elf_Internal_Rela *internal_relocs = NULL;
4605 Elf_Internal_Rela *irel, *irelend;
4606 bfd_byte *contents = NULL;
4607
4608 asection *sec;
4609 struct elf32_arm_link_hash_table *globals;
4610
4611 /* If we are only performing a partial link do not bother
4612 to construct any glue. */
4613 if (link_info->relocatable)
4614 return TRUE;
4615
4616 /* Here we have a bfd that is to be included on the link. We have a
4617 hook to do reloc rummaging, before section sizes are nailed down. */
4618 globals = elf32_arm_hash_table (link_info);
4619
4620 BFD_ASSERT (globals != NULL);
4621
4622 check_use_blx (globals);
4623
4624 if (globals->byteswap_code && !bfd_big_endian (abfd))
4625 {
4626 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4627 abfd);
4628 return FALSE;
4629 }
4630
4631 /* PR 5398: If we have not decided to include any loadable sections in
4632 the output then we will not have a glue owner bfd. This is OK, it
4633 just means that there is nothing else for us to do here. */
4634 if (globals->bfd_of_glue_owner == NULL)
4635 return TRUE;
4636
4637 /* Rummage around all the relocs and map the glue vectors. */
4638 sec = abfd->sections;
4639
4640 if (sec == NULL)
4641 return TRUE;
4642
4643 for (; sec != NULL; sec = sec->next)
4644 {
4645 if (sec->reloc_count == 0)
4646 continue;
4647
4648 if ((sec->flags & SEC_EXCLUDE) != 0)
4649 continue;
4650
4651 symtab_hdr = & elf_symtab_hdr (abfd);
4652
4653 /* Load the relocs. */
4654 internal_relocs
4655 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
4656
4657 if (internal_relocs == NULL)
4658 goto error_return;
4659
4660 irelend = internal_relocs + sec->reloc_count;
4661 for (irel = internal_relocs; irel < irelend; irel++)
4662 {
4663 long r_type;
4664 unsigned long r_index;
4665
4666 struct elf_link_hash_entry *h;
4667
4668 r_type = ELF32_R_TYPE (irel->r_info);
4669 r_index = ELF32_R_SYM (irel->r_info);
4670
4671 /* These are the only relocation types we care about. */
4672 if ( r_type != R_ARM_PC24
4673 && r_type != R_ARM_PLT32
4674 && r_type != R_ARM_JUMP24
4675 && r_type != R_ARM_THM_JUMP24
4676 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
4677 continue;
4678
4679 /* Get the section contents if we haven't done so already. */
4680 if (contents == NULL)
4681 {
4682 /* Get cached copy if it exists. */
4683 if (elf_section_data (sec)->this_hdr.contents != NULL)
4684 contents = elf_section_data (sec)->this_hdr.contents;
4685 else
4686 {
4687 /* Go get them off disk. */
4688 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4689 goto error_return;
4690 }
4691 }
4692
4693 if (r_type == R_ARM_V4BX)
4694 {
4695 int reg;
4696
4697 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4698 record_arm_bx_glue (link_info, reg);
4699 continue;
4700 }
4701
4702 /* If the relocation is not against a symbol it cannot concern us. */
4703 h = NULL;
4704
4705 /* We don't care about local symbols. */
4706 if (r_index < symtab_hdr->sh_info)
4707 continue;
4708
4709 /* This is an external symbol. */
4710 r_index -= symtab_hdr->sh_info;
4711 h = (struct elf_link_hash_entry *)
4712 elf_sym_hashes (abfd)[r_index];
4713
4714 /* If the relocation is against a static symbol it must be within
4715 the current section and so cannot be a cross ARM/Thumb relocation. */
4716 if (h == NULL)
4717 continue;
4718
4719 /* If the call will go through a PLT entry then we do not need
4720 glue. */
4721 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
4722 continue;
4723
4724 switch (r_type)
4725 {
4726 case R_ARM_PC24:
4727 case R_ARM_PLT32:
4728 case R_ARM_JUMP24:
4729 /* This one is a call from arm code. We need to look up
4730 the target of the call. If it is a thumb target, we
4731 insert glue. */
4732 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
4733 record_arm_to_thumb_glue (link_info, h);
4734 break;
4735
4736 case R_ARM_THM_JUMP24:
4737 /* This one is a call from thumb code. We look
4738 up the target of the call. If it is not a thumb
4739 target, we insert glue. */
4740 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4741 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
4742 && h->root.type != bfd_link_hash_undefweak)
4743 record_thumb_to_arm_glue (link_info, h);
4744 break;
4745
4746 default:
4747 abort ();
4748 }
4749 }
4750
4751 if (contents != NULL
4752 && elf_section_data (sec)->this_hdr.contents != contents)
4753 free (contents);
4754 contents = NULL;
4755
4756 if (internal_relocs != NULL
4757 && elf_section_data (sec)->relocs != internal_relocs)
4758 free (internal_relocs);
4759 internal_relocs = NULL;
4760 }
4761
4762 return TRUE;
4763
4764 error_return:
4765 if (contents != NULL
4766 && elf_section_data (sec)->this_hdr.contents != contents)
4767 free (contents);
4768 if (internal_relocs != NULL
4769 && elf_section_data (sec)->relocs != internal_relocs)
4770 free (internal_relocs);
4771
4772 return FALSE;
4773 }
4774 #endif
4775
4776
4777 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4778
4779 void
4780 bfd_elf32_arm_init_maps (bfd *abfd)
4781 {
4782 Elf_Internal_Sym *isymbuf;
4783 Elf_Internal_Shdr *hdr;
4784 unsigned int i, localsyms;
4785
4786 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
4787 if (! is_arm_elf (abfd))
4788 return;
4789
4790 if ((abfd->flags & DYNAMIC) != 0)
4791 return;
4792
4793 hdr = & elf_symtab_hdr (abfd);
4794 localsyms = hdr->sh_info;
4795
4796 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4797 should contain the number of local symbols, which should come before any
4798 global symbols. Mapping symbols are always local. */
4799 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4800 NULL);
4801
4802 /* No internal symbols read? Skip this BFD. */
4803 if (isymbuf == NULL)
4804 return;
4805
4806 for (i = 0; i < localsyms; i++)
4807 {
4808 Elf_Internal_Sym *isym = &isymbuf[i];
4809 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4810 const char *name;
4811
4812 if (sec != NULL
4813 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4814 {
4815 name = bfd_elf_string_from_elf_section (abfd,
4816 hdr->sh_link, isym->st_name);
4817
4818 if (bfd_is_arm_special_symbol_name (name,
4819 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4820 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4821 }
4822 }
4823 }
4824
4825
4826 void
4827 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4828 {
4829 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4830 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
4831
4832 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4833 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4834 {
4835 switch (globals->vfp11_fix)
4836 {
4837 case BFD_ARM_VFP11_FIX_DEFAULT:
4838 case BFD_ARM_VFP11_FIX_NONE:
4839 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4840 break;
4841
4842 default:
4843 /* Give a warning, but do as the user requests anyway. */
4844 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4845 "workaround is not necessary for target architecture"), obfd);
4846 }
4847 }
4848 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4849 /* For earlier architectures, we might need the workaround, but do not
4850 enable it by default. If users is running with broken hardware, they
4851 must enable the erratum fix explicitly. */
4852 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4853 }
4854
4855
4856 enum bfd_arm_vfp11_pipe
4857 {
4858 VFP11_FMAC,
4859 VFP11_LS,
4860 VFP11_DS,
4861 VFP11_BAD
4862 };
4863
4864 /* Return a VFP register number. This is encoded as RX:X for single-precision
4865 registers, or X:RX for double-precision registers, where RX is the group of
4866 four bits in the instruction encoding and X is the single extension bit.
4867 RX and X fields are specified using their lowest (starting) bit. The return
4868 value is:
4869
4870 0...31: single-precision registers s0...s31
4871 32...63: double-precision registers d0...d31.
4872
4873 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4874 encounter VFP3 instructions, so we allow the full range for DP registers. */
4875
4876 static unsigned int
4877 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4878 unsigned int x)
4879 {
4880 if (is_double)
4881 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4882 else
4883 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4884 }
4885
4886 /* Set bits in *WMASK according to a register number REG as encoded by
4887 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4888
4889 static void
4890 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4891 {
4892 if (reg < 32)
4893 *wmask |= 1 << reg;
4894 else if (reg < 48)
4895 *wmask |= 3 << ((reg - 32) * 2);
4896 }
4897
4898 /* Return TRUE if WMASK overwrites anything in REGS. */
4899
4900 static bfd_boolean
4901 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4902 {
4903 int i;
4904
4905 for (i = 0; i < numregs; i++)
4906 {
4907 unsigned int reg = regs[i];
4908
4909 if (reg < 32 && (wmask & (1 << reg)) != 0)
4910 return TRUE;
4911
4912 reg -= 32;
4913
4914 if (reg >= 16)
4915 continue;
4916
4917 if ((wmask & (3 << (reg * 2))) != 0)
4918 return TRUE;
4919 }
4920
4921 return FALSE;
4922 }
4923
4924 /* In this function, we're interested in two things: finding input registers
4925 for VFP data-processing instructions, and finding the set of registers which
4926 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4927 hold the written set, so FLDM etc. are easy to deal with (we're only
4928 interested in 32 SP registers or 16 dp registers, due to the VFP version
4929 implemented by the chip in question). DP registers are marked by setting
4930 both SP registers in the write mask). */
4931
4932 static enum bfd_arm_vfp11_pipe
4933 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4934 int *numregs)
4935 {
4936 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4937 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4938
4939 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4940 {
4941 unsigned int pqrs;
4942 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4943 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4944
4945 pqrs = ((insn & 0x00800000) >> 20)
4946 | ((insn & 0x00300000) >> 19)
4947 | ((insn & 0x00000040) >> 6);
4948
4949 switch (pqrs)
4950 {
4951 case 0: /* fmac[sd]. */
4952 case 1: /* fnmac[sd]. */
4953 case 2: /* fmsc[sd]. */
4954 case 3: /* fnmsc[sd]. */
4955 pipe = VFP11_FMAC;
4956 bfd_arm_vfp11_write_mask (destmask, fd);
4957 regs[0] = fd;
4958 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4959 regs[2] = fm;
4960 *numregs = 3;
4961 break;
4962
4963 case 4: /* fmul[sd]. */
4964 case 5: /* fnmul[sd]. */
4965 case 6: /* fadd[sd]. */
4966 case 7: /* fsub[sd]. */
4967 pipe = VFP11_FMAC;
4968 goto vfp_binop;
4969
4970 case 8: /* fdiv[sd]. */
4971 pipe = VFP11_DS;
4972 vfp_binop:
4973 bfd_arm_vfp11_write_mask (destmask, fd);
4974 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4975 regs[1] = fm;
4976 *numregs = 2;
4977 break;
4978
4979 case 15: /* extended opcode. */
4980 {
4981 unsigned int extn = ((insn >> 15) & 0x1e)
4982 | ((insn >> 7) & 1);
4983
4984 switch (extn)
4985 {
4986 case 0: /* fcpy[sd]. */
4987 case 1: /* fabs[sd]. */
4988 case 2: /* fneg[sd]. */
4989 case 8: /* fcmp[sd]. */
4990 case 9: /* fcmpe[sd]. */
4991 case 10: /* fcmpz[sd]. */
4992 case 11: /* fcmpez[sd]. */
4993 case 16: /* fuito[sd]. */
4994 case 17: /* fsito[sd]. */
4995 case 24: /* ftoui[sd]. */
4996 case 25: /* ftouiz[sd]. */
4997 case 26: /* ftosi[sd]. */
4998 case 27: /* ftosiz[sd]. */
4999 /* These instructions will not bounce due to underflow. */
5000 *numregs = 0;
5001 pipe = VFP11_FMAC;
5002 break;
5003
5004 case 3: /* fsqrt[sd]. */
5005 /* fsqrt cannot underflow, but it can (perhaps) overwrite
5006 registers to cause the erratum in previous instructions. */
5007 bfd_arm_vfp11_write_mask (destmask, fd);
5008 pipe = VFP11_DS;
5009 break;
5010
5011 case 15: /* fcvt{ds,sd}. */
5012 {
5013 int rnum = 0;
5014
5015 bfd_arm_vfp11_write_mask (destmask, fd);
5016
5017 /* Only FCVTSD can underflow. */
5018 if ((insn & 0x100) != 0)
5019 regs[rnum++] = fm;
5020
5021 *numregs = rnum;
5022
5023 pipe = VFP11_FMAC;
5024 }
5025 break;
5026
5027 default:
5028 return VFP11_BAD;
5029 }
5030 }
5031 break;
5032
5033 default:
5034 return VFP11_BAD;
5035 }
5036 }
5037 /* Two-register transfer. */
5038 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
5039 {
5040 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5041
5042 if ((insn & 0x100000) == 0)
5043 {
5044 if (is_double)
5045 bfd_arm_vfp11_write_mask (destmask, fm);
5046 else
5047 {
5048 bfd_arm_vfp11_write_mask (destmask, fm);
5049 bfd_arm_vfp11_write_mask (destmask, fm + 1);
5050 }
5051 }
5052
5053 pipe = VFP11_LS;
5054 }
5055 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
5056 {
5057 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5058 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
5059
5060 switch (puw)
5061 {
5062 case 0: /* Two-reg transfer. We should catch these above. */
5063 abort ();
5064
5065 case 2: /* fldm[sdx]. */
5066 case 3:
5067 case 5:
5068 {
5069 unsigned int i, offset = insn & 0xff;
5070
5071 if (is_double)
5072 offset >>= 1;
5073
5074 for (i = fd; i < fd + offset; i++)
5075 bfd_arm_vfp11_write_mask (destmask, i);
5076 }
5077 break;
5078
5079 case 4: /* fld[sd]. */
5080 case 6:
5081 bfd_arm_vfp11_write_mask (destmask, fd);
5082 break;
5083
5084 default:
5085 return VFP11_BAD;
5086 }
5087
5088 pipe = VFP11_LS;
5089 }
5090 /* Single-register transfer. Note L==0. */
5091 else if ((insn & 0x0f100e10) == 0x0e000a10)
5092 {
5093 unsigned int opcode = (insn >> 21) & 7;
5094 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
5095
5096 switch (opcode)
5097 {
5098 case 0: /* fmsr/fmdlr. */
5099 case 1: /* fmdhr. */
5100 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5101 destination register. I don't know if this is exactly right,
5102 but it is the conservative choice. */
5103 bfd_arm_vfp11_write_mask (destmask, fn);
5104 break;
5105
5106 case 7: /* fmxr. */
5107 break;
5108 }
5109
5110 pipe = VFP11_LS;
5111 }
5112
5113 return pipe;
5114 }
5115
5116
5117 static int elf32_arm_compare_mapping (const void * a, const void * b);
5118
5119
5120 /* Look for potentially-troublesome code sequences which might trigger the
5121 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5122 (available from ARM) for details of the erratum. A short version is
5123 described in ld.texinfo. */
5124
5125 bfd_boolean
5126 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
5127 {
5128 asection *sec;
5129 bfd_byte *contents = NULL;
5130 int state = 0;
5131 int regs[3], numregs = 0;
5132 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5133 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
5134
5135 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5136 The states transition as follows:
5137
5138 0 -> 1 (vector) or 0 -> 2 (scalar)
5139 A VFP FMAC-pipeline instruction has been seen. Fill
5140 regs[0]..regs[numregs-1] with its input operands. Remember this
5141 instruction in 'first_fmac'.
5142
5143 1 -> 2
5144 Any instruction, except for a VFP instruction which overwrites
5145 regs[*].
5146
5147 1 -> 3 [ -> 0 ] or
5148 2 -> 3 [ -> 0 ]
5149 A VFP instruction has been seen which overwrites any of regs[*].
5150 We must make a veneer! Reset state to 0 before examining next
5151 instruction.
5152
5153 2 -> 0
5154 If we fail to match anything in state 2, reset to state 0 and reset
5155 the instruction pointer to the instruction after 'first_fmac'.
5156
5157 If the VFP11 vector mode is in use, there must be at least two unrelated
5158 instructions between anti-dependent VFP11 instructions to properly avoid
5159 triggering the erratum, hence the use of the extra state 1. */
5160
5161 /* If we are only performing a partial link do not bother
5162 to construct any glue. */
5163 if (link_info->relocatable)
5164 return TRUE;
5165
5166 /* Skip if this bfd does not correspond to an ELF image. */
5167 if (! is_arm_elf (abfd))
5168 return TRUE;
5169
5170 /* We should have chosen a fix type by the time we get here. */
5171 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
5172
5173 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
5174 return TRUE;
5175
5176 /* Skip this BFD if it corresponds to an executable or dynamic object. */
5177 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
5178 return TRUE;
5179
5180 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5181 {
5182 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5183 struct _arm_elf_section_data *sec_data;
5184
5185 /* If we don't have executable progbits, we're not interested in this
5186 section. Also skip if section is to be excluded. */
5187 if (elf_section_type (sec) != SHT_PROGBITS
5188 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5189 || (sec->flags & SEC_EXCLUDE) != 0
5190 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
5191 || sec->output_section == bfd_abs_section_ptr
5192 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5193 continue;
5194
5195 sec_data = elf32_arm_section_data (sec);
5196
5197 if (sec_data->mapcount == 0)
5198 continue;
5199
5200 if (elf_section_data (sec)->this_hdr.contents != NULL)
5201 contents = elf_section_data (sec)->this_hdr.contents;
5202 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5203 goto error_return;
5204
5205 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5206 elf32_arm_compare_mapping);
5207
5208 for (span = 0; span < sec_data->mapcount; span++)
5209 {
5210 unsigned int span_start = sec_data->map[span].vma;
5211 unsigned int span_end = (span == sec_data->mapcount - 1)
5212 ? sec->size : sec_data->map[span + 1].vma;
5213 char span_type = sec_data->map[span].type;
5214
5215 /* FIXME: Only ARM mode is supported at present. We may need to
5216 support Thumb-2 mode also at some point. */
5217 if (span_type != 'a')
5218 continue;
5219
5220 for (i = span_start; i < span_end;)
5221 {
5222 unsigned int next_i = i + 4;
5223 unsigned int insn = bfd_big_endian (abfd)
5224 ? (contents[i] << 24)
5225 | (contents[i + 1] << 16)
5226 | (contents[i + 2] << 8)
5227 | contents[i + 3]
5228 : (contents[i + 3] << 24)
5229 | (contents[i + 2] << 16)
5230 | (contents[i + 1] << 8)
5231 | contents[i];
5232 unsigned int writemask = 0;
5233 enum bfd_arm_vfp11_pipe pipe;
5234
5235 switch (state)
5236 {
5237 case 0:
5238 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5239 &numregs);
5240 /* I'm assuming the VFP11 erratum can trigger with denorm
5241 operands on either the FMAC or the DS pipeline. This might
5242 lead to slightly overenthusiastic veneer insertion. */
5243 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5244 {
5245 state = use_vector ? 1 : 2;
5246 first_fmac = i;
5247 veneer_of_insn = insn;
5248 }
5249 break;
5250
5251 case 1:
5252 {
5253 int other_regs[3], other_numregs;
5254 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5255 other_regs,
5256 &other_numregs);
5257 if (pipe != VFP11_BAD
5258 && bfd_arm_vfp11_antidependency (writemask, regs,
5259 numregs))
5260 state = 3;
5261 else
5262 state = 2;
5263 }
5264 break;
5265
5266 case 2:
5267 {
5268 int other_regs[3], other_numregs;
5269 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5270 other_regs,
5271 &other_numregs);
5272 if (pipe != VFP11_BAD
5273 && bfd_arm_vfp11_antidependency (writemask, regs,
5274 numregs))
5275 state = 3;
5276 else
5277 {
5278 state = 0;
5279 next_i = first_fmac + 4;
5280 }
5281 }
5282 break;
5283
5284 case 3:
5285 abort (); /* Should be unreachable. */
5286 }
5287
5288 if (state == 3)
5289 {
5290 elf32_vfp11_erratum_list *newerr
5291 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5292 int errcount;
5293
5294 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5295
5296 newerr->u.b.vfp_insn = veneer_of_insn;
5297
5298 switch (span_type)
5299 {
5300 case 'a':
5301 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5302 break;
5303
5304 default:
5305 abort ();
5306 }
5307
5308 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5309 first_fmac);
5310
5311 newerr->vma = -1;
5312
5313 newerr->next = sec_data->erratumlist;
5314 sec_data->erratumlist = newerr;
5315
5316 state = 0;
5317 }
5318
5319 i = next_i;
5320 }
5321 }
5322
5323 if (contents != NULL
5324 && elf_section_data (sec)->this_hdr.contents != contents)
5325 free (contents);
5326 contents = NULL;
5327 }
5328
5329 return TRUE;
5330
5331 error_return:
5332 if (contents != NULL
5333 && elf_section_data (sec)->this_hdr.contents != contents)
5334 free (contents);
5335
5336 return FALSE;
5337 }
5338
5339 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5340 after sections have been laid out, using specially-named symbols. */
5341
5342 void
5343 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5344 struct bfd_link_info *link_info)
5345 {
5346 asection *sec;
5347 struct elf32_arm_link_hash_table *globals;
5348 char *tmp_name;
5349
5350 if (link_info->relocatable)
5351 return;
5352
5353 /* Skip if this bfd does not correspond to an ELF image. */
5354 if (! is_arm_elf (abfd))
5355 return;
5356
5357 globals = elf32_arm_hash_table (link_info);
5358
5359 tmp_name = bfd_malloc ((bfd_size_type) strlen
5360 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5361
5362 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5363 {
5364 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5365 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
5366
5367 for (; errnode != NULL; errnode = errnode->next)
5368 {
5369 struct elf_link_hash_entry *myh;
5370 bfd_vma vma;
5371
5372 switch (errnode->type)
5373 {
5374 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5375 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5376 /* Find veneer symbol. */
5377 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5378 errnode->u.b.veneer->u.v.id);
5379
5380 myh = elf_link_hash_lookup
5381 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5382
5383 if (myh == NULL)
5384 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5385 "`%s'"), abfd, tmp_name);
5386
5387 vma = myh->root.u.def.section->output_section->vma
5388 + myh->root.u.def.section->output_offset
5389 + myh->root.u.def.value;
5390
5391 errnode->u.b.veneer->vma = vma;
5392 break;
5393
5394 case VFP11_ERRATUM_ARM_VENEER:
5395 case VFP11_ERRATUM_THUMB_VENEER:
5396 /* Find return location. */
5397 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5398 errnode->u.v.id);
5399
5400 myh = elf_link_hash_lookup
5401 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5402
5403 if (myh == NULL)
5404 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5405 "`%s'"), abfd, tmp_name);
5406
5407 vma = myh->root.u.def.section->output_section->vma
5408 + myh->root.u.def.section->output_offset
5409 + myh->root.u.def.value;
5410
5411 errnode->u.v.branch->vma = vma;
5412 break;
5413
5414 default:
5415 abort ();
5416 }
5417 }
5418 }
5419
5420 free (tmp_name);
5421 }
5422
5423
5424 /* Set target relocation values needed during linking. */
5425
5426 void
5427 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5428 struct bfd_link_info *link_info,
5429 int target1_is_rel,
5430 char * target2_type,
5431 int fix_v4bx,
5432 int use_blx,
5433 bfd_arm_vfp11_fix vfp11_fix,
5434 int no_enum_warn, int no_wchar_warn,
5435 int pic_veneer)
5436 {
5437 struct elf32_arm_link_hash_table *globals;
5438
5439 globals = elf32_arm_hash_table (link_info);
5440
5441 globals->target1_is_rel = target1_is_rel;
5442 if (strcmp (target2_type, "rel") == 0)
5443 globals->target2_reloc = R_ARM_REL32;
5444 else if (strcmp (target2_type, "abs") == 0)
5445 globals->target2_reloc = R_ARM_ABS32;
5446 else if (strcmp (target2_type, "got-rel") == 0)
5447 globals->target2_reloc = R_ARM_GOT_PREL;
5448 else
5449 {
5450 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5451 target2_type);
5452 }
5453 globals->fix_v4bx = fix_v4bx;
5454 globals->use_blx |= use_blx;
5455 globals->vfp11_fix = vfp11_fix;
5456 globals->pic_veneer = pic_veneer;
5457
5458 BFD_ASSERT (is_arm_elf (output_bfd));
5459 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
5460 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
5461 }
5462
5463 /* Replace the target offset of a Thumb bl or b.w instruction. */
5464
5465 static void
5466 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5467 {
5468 bfd_vma upper;
5469 bfd_vma lower;
5470 int reloc_sign;
5471
5472 BFD_ASSERT ((offset & 1) == 0);
5473
5474 upper = bfd_get_16 (abfd, insn);
5475 lower = bfd_get_16 (abfd, insn + 2);
5476 reloc_sign = (offset < 0) ? 1 : 0;
5477 upper = (upper & ~(bfd_vma) 0x7ff)
5478 | ((offset >> 12) & 0x3ff)
5479 | (reloc_sign << 10);
5480 lower = (lower & ~(bfd_vma) 0x2fff)
5481 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5482 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5483 | ((offset >> 1) & 0x7ff);
5484 bfd_put_16 (abfd, upper, insn);
5485 bfd_put_16 (abfd, lower, insn + 2);
5486 }
5487
5488 /* Thumb code calling an ARM function. */
5489
5490 static int
5491 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5492 const char * name,
5493 bfd * input_bfd,
5494 bfd * output_bfd,
5495 asection * input_section,
5496 bfd_byte * hit_data,
5497 asection * sym_sec,
5498 bfd_vma offset,
5499 bfd_signed_vma addend,
5500 bfd_vma val,
5501 char **error_message)
5502 {
5503 asection * s = 0;
5504 bfd_vma my_offset;
5505 long int ret_offset;
5506 struct elf_link_hash_entry * myh;
5507 struct elf32_arm_link_hash_table * globals;
5508
5509 myh = find_thumb_glue (info, name, error_message);
5510 if (myh == NULL)
5511 return FALSE;
5512
5513 globals = elf32_arm_hash_table (info);
5514
5515 BFD_ASSERT (globals != NULL);
5516 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5517
5518 my_offset = myh->root.u.def.value;
5519
5520 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5521 THUMB2ARM_GLUE_SECTION_NAME);
5522
5523 BFD_ASSERT (s != NULL);
5524 BFD_ASSERT (s->contents != NULL);
5525 BFD_ASSERT (s->output_section != NULL);
5526
5527 if ((my_offset & 0x01) == 0x01)
5528 {
5529 if (sym_sec != NULL
5530 && sym_sec->owner != NULL
5531 && !INTERWORK_FLAG (sym_sec->owner))
5532 {
5533 (*_bfd_error_handler)
5534 (_("%B(%s): warning: interworking not enabled.\n"
5535 " first occurrence: %B: thumb call to arm"),
5536 sym_sec->owner, input_bfd, name);
5537
5538 return FALSE;
5539 }
5540
5541 --my_offset;
5542 myh->root.u.def.value = my_offset;
5543
5544 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5545 s->contents + my_offset);
5546
5547 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5548 s->contents + my_offset + 2);
5549
5550 ret_offset =
5551 /* Address of destination of the stub. */
5552 ((bfd_signed_vma) val)
5553 - ((bfd_signed_vma)
5554 /* Offset from the start of the current section
5555 to the start of the stubs. */
5556 (s->output_offset
5557 /* Offset of the start of this stub from the start of the stubs. */
5558 + my_offset
5559 /* Address of the start of the current section. */
5560 + s->output_section->vma)
5561 /* The branch instruction is 4 bytes into the stub. */
5562 + 4
5563 /* ARM branches work from the pc of the instruction + 8. */
5564 + 8);
5565
5566 put_arm_insn (globals, output_bfd,
5567 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5568 s->contents + my_offset + 4);
5569 }
5570
5571 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5572
5573 /* Now go back and fix up the original BL insn to point to here. */
5574 ret_offset =
5575 /* Address of where the stub is located. */
5576 (s->output_section->vma + s->output_offset + my_offset)
5577 /* Address of where the BL is located. */
5578 - (input_section->output_section->vma + input_section->output_offset
5579 + offset)
5580 /* Addend in the relocation. */
5581 - addend
5582 /* Biassing for PC-relative addressing. */
5583 - 8;
5584
5585 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
5586
5587 return TRUE;
5588 }
5589
5590 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5591
5592 static struct elf_link_hash_entry *
5593 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5594 const char * name,
5595 bfd * input_bfd,
5596 bfd * output_bfd,
5597 asection * sym_sec,
5598 bfd_vma val,
5599 asection * s,
5600 char ** error_message)
5601 {
5602 bfd_vma my_offset;
5603 long int ret_offset;
5604 struct elf_link_hash_entry * myh;
5605 struct elf32_arm_link_hash_table * globals;
5606
5607 myh = find_arm_glue (info, name, error_message);
5608 if (myh == NULL)
5609 return NULL;
5610
5611 globals = elf32_arm_hash_table (info);
5612
5613 BFD_ASSERT (globals != NULL);
5614 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5615
5616 my_offset = myh->root.u.def.value;
5617
5618 if ((my_offset & 0x01) == 0x01)
5619 {
5620 if (sym_sec != NULL
5621 && sym_sec->owner != NULL
5622 && !INTERWORK_FLAG (sym_sec->owner))
5623 {
5624 (*_bfd_error_handler)
5625 (_("%B(%s): warning: interworking not enabled.\n"
5626 " first occurrence: %B: arm call to thumb"),
5627 sym_sec->owner, input_bfd, name);
5628 }
5629
5630 --my_offset;
5631 myh->root.u.def.value = my_offset;
5632
5633 if (info->shared || globals->root.is_relocatable_executable
5634 || globals->pic_veneer)
5635 {
5636 /* For relocatable objects we can't use absolute addresses,
5637 so construct the address from a relative offset. */
5638 /* TODO: If the offset is small it's probably worth
5639 constructing the address with adds. */
5640 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5641 s->contents + my_offset);
5642 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5643 s->contents + my_offset + 4);
5644 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5645 s->contents + my_offset + 8);
5646 /* Adjust the offset by 4 for the position of the add,
5647 and 8 for the pipeline offset. */
5648 ret_offset = (val - (s->output_offset
5649 + s->output_section->vma
5650 + my_offset + 12))
5651 | 1;
5652 bfd_put_32 (output_bfd, ret_offset,
5653 s->contents + my_offset + 12);
5654 }
5655 else if (globals->use_blx)
5656 {
5657 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5658 s->contents + my_offset);
5659
5660 /* It's a thumb address. Add the low order bit. */
5661 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5662 s->contents + my_offset + 4);
5663 }
5664 else
5665 {
5666 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5667 s->contents + my_offset);
5668
5669 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5670 s->contents + my_offset + 4);
5671
5672 /* It's a thumb address. Add the low order bit. */
5673 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5674 s->contents + my_offset + 8);
5675
5676 my_offset += 12;
5677 }
5678 }
5679
5680 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5681
5682 return myh;
5683 }
5684
5685 /* Arm code calling a Thumb function. */
5686
5687 static int
5688 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5689 const char * name,
5690 bfd * input_bfd,
5691 bfd * output_bfd,
5692 asection * input_section,
5693 bfd_byte * hit_data,
5694 asection * sym_sec,
5695 bfd_vma offset,
5696 bfd_signed_vma addend,
5697 bfd_vma val,
5698 char **error_message)
5699 {
5700 unsigned long int tmp;
5701 bfd_vma my_offset;
5702 asection * s;
5703 long int ret_offset;
5704 struct elf_link_hash_entry * myh;
5705 struct elf32_arm_link_hash_table * globals;
5706
5707 globals = elf32_arm_hash_table (info);
5708
5709 BFD_ASSERT (globals != NULL);
5710 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5711
5712 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5713 ARM2THUMB_GLUE_SECTION_NAME);
5714 BFD_ASSERT (s != NULL);
5715 BFD_ASSERT (s->contents != NULL);
5716 BFD_ASSERT (s->output_section != NULL);
5717
5718 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
5719 sym_sec, val, s, error_message);
5720 if (!myh)
5721 return FALSE;
5722
5723 my_offset = myh->root.u.def.value;
5724 tmp = bfd_get_32 (input_bfd, hit_data);
5725 tmp = tmp & 0xFF000000;
5726
5727 /* Somehow these are both 4 too far, so subtract 8. */
5728 ret_offset = (s->output_offset
5729 + my_offset
5730 + s->output_section->vma
5731 - (input_section->output_offset
5732 + input_section->output_section->vma
5733 + offset + addend)
5734 - 8);
5735
5736 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5737
5738 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
5739
5740 return TRUE;
5741 }
5742
5743 /* Populate Arm stub for an exported Thumb function. */
5744
5745 static bfd_boolean
5746 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5747 {
5748 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5749 asection * s;
5750 struct elf_link_hash_entry * myh;
5751 struct elf32_arm_link_hash_entry *eh;
5752 struct elf32_arm_link_hash_table * globals;
5753 asection *sec;
5754 bfd_vma val;
5755 char *error_message;
5756
5757 eh = elf32_arm_hash_entry (h);
5758 /* Allocate stubs for exported Thumb functions on v4t. */
5759 if (eh->export_glue == NULL)
5760 return TRUE;
5761
5762 globals = elf32_arm_hash_table (info);
5763
5764 BFD_ASSERT (globals != NULL);
5765 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5766
5767 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5768 ARM2THUMB_GLUE_SECTION_NAME);
5769 BFD_ASSERT (s != NULL);
5770 BFD_ASSERT (s->contents != NULL);
5771 BFD_ASSERT (s->output_section != NULL);
5772
5773 sec = eh->export_glue->root.u.def.section;
5774
5775 BFD_ASSERT (sec->output_section != NULL);
5776
5777 val = eh->export_glue->root.u.def.value + sec->output_offset
5778 + sec->output_section->vma;
5779
5780 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5781 h->root.u.def.section->owner,
5782 globals->obfd, sec, val, s,
5783 &error_message);
5784 BFD_ASSERT (myh);
5785 return TRUE;
5786 }
5787
5788 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5789
5790 static bfd_vma
5791 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5792 {
5793 bfd_byte *p;
5794 bfd_vma glue_addr;
5795 asection *s;
5796 struct elf32_arm_link_hash_table *globals;
5797
5798 globals = elf32_arm_hash_table (info);
5799
5800 BFD_ASSERT (globals != NULL);
5801 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5802
5803 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5804 ARM_BX_GLUE_SECTION_NAME);
5805 BFD_ASSERT (s != NULL);
5806 BFD_ASSERT (s->contents != NULL);
5807 BFD_ASSERT (s->output_section != NULL);
5808
5809 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5810
5811 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5812
5813 if ((globals->bx_glue_offset[reg] & 1) == 0)
5814 {
5815 p = s->contents + glue_addr;
5816 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5817 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5818 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5819 globals->bx_glue_offset[reg] |= 1;
5820 }
5821
5822 return glue_addr + s->output_section->vma + s->output_offset;
5823 }
5824
5825 /* Generate Arm stubs for exported Thumb symbols. */
5826 static void
5827 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
5828 struct bfd_link_info *link_info)
5829 {
5830 struct elf32_arm_link_hash_table * globals;
5831
5832 if (link_info == NULL)
5833 /* Ignore this if we are not called by the ELF backend linker. */
5834 return;
5835
5836 globals = elf32_arm_hash_table (link_info);
5837 /* If blx is available then exported Thumb symbols are OK and there is
5838 nothing to do. */
5839 if (globals->use_blx)
5840 return;
5841
5842 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5843 link_info);
5844 }
5845
5846 /* Some relocations map to different relocations depending on the
5847 target. Return the real relocation. */
5848
5849 static int
5850 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5851 int r_type)
5852 {
5853 switch (r_type)
5854 {
5855 case R_ARM_TARGET1:
5856 if (globals->target1_is_rel)
5857 return R_ARM_REL32;
5858 else
5859 return R_ARM_ABS32;
5860
5861 case R_ARM_TARGET2:
5862 return globals->target2_reloc;
5863
5864 default:
5865 return r_type;
5866 }
5867 }
5868
5869 /* Return the base VMA address which should be subtracted from real addresses
5870 when resolving @dtpoff relocation.
5871 This is PT_TLS segment p_vaddr. */
5872
5873 static bfd_vma
5874 dtpoff_base (struct bfd_link_info *info)
5875 {
5876 /* If tls_sec is NULL, we should have signalled an error already. */
5877 if (elf_hash_table (info)->tls_sec == NULL)
5878 return 0;
5879 return elf_hash_table (info)->tls_sec->vma;
5880 }
5881
5882 /* Return the relocation value for @tpoff relocation
5883 if STT_TLS virtual address is ADDRESS. */
5884
5885 static bfd_vma
5886 tpoff (struct bfd_link_info *info, bfd_vma address)
5887 {
5888 struct elf_link_hash_table *htab = elf_hash_table (info);
5889 bfd_vma base;
5890
5891 /* If tls_sec is NULL, we should have signalled an error already. */
5892 if (htab->tls_sec == NULL)
5893 return 0;
5894 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5895 return address - htab->tls_sec->vma + base;
5896 }
5897
5898 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5899 VALUE is the relocation value. */
5900
5901 static bfd_reloc_status_type
5902 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5903 {
5904 if (value > 0xfff)
5905 return bfd_reloc_overflow;
5906
5907 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5908 bfd_put_32 (abfd, value, data);
5909 return bfd_reloc_ok;
5910 }
5911
5912 /* For a given value of n, calculate the value of G_n as required to
5913 deal with group relocations. We return it in the form of an
5914 encoded constant-and-rotation, together with the final residual. If n is
5915 specified as less than zero, then final_residual is filled with the
5916 input value and no further action is performed. */
5917
5918 static bfd_vma
5919 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5920 {
5921 int current_n;
5922 bfd_vma g_n;
5923 bfd_vma encoded_g_n = 0;
5924 bfd_vma residual = value; /* Also known as Y_n. */
5925
5926 for (current_n = 0; current_n <= n; current_n++)
5927 {
5928 int shift;
5929
5930 /* Calculate which part of the value to mask. */
5931 if (residual == 0)
5932 shift = 0;
5933 else
5934 {
5935 int msb;
5936
5937 /* Determine the most significant bit in the residual and
5938 align the resulting value to a 2-bit boundary. */
5939 for (msb = 30; msb >= 0; msb -= 2)
5940 if (residual & (3 << msb))
5941 break;
5942
5943 /* The desired shift is now (msb - 6), or zero, whichever
5944 is the greater. */
5945 shift = msb - 6;
5946 if (shift < 0)
5947 shift = 0;
5948 }
5949
5950 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5951 g_n = residual & (0xff << shift);
5952 encoded_g_n = (g_n >> shift)
5953 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5954
5955 /* Calculate the residual for the next time around. */
5956 residual &= ~g_n;
5957 }
5958
5959 *final_residual = residual;
5960
5961 return encoded_g_n;
5962 }
5963
5964 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5965 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5966
5967 static int
5968 identify_add_or_sub (bfd_vma insn)
5969 {
5970 int opcode = insn & 0x1e00000;
5971
5972 if (opcode == 1 << 23) /* ADD */
5973 return 1;
5974
5975 if (opcode == 1 << 22) /* SUB */
5976 return -1;
5977
5978 return 0;
5979 }
5980
5981 /* Perform a relocation as part of a final link. */
5982
5983 static bfd_reloc_status_type
5984 elf32_arm_final_link_relocate (reloc_howto_type * howto,
5985 bfd * input_bfd,
5986 bfd * output_bfd,
5987 asection * input_section,
5988 bfd_byte * contents,
5989 Elf_Internal_Rela * rel,
5990 bfd_vma value,
5991 struct bfd_link_info * info,
5992 asection * sym_sec,
5993 const char * sym_name,
5994 int sym_flags,
5995 struct elf_link_hash_entry * h,
5996 bfd_boolean * unresolved_reloc_p,
5997 char ** error_message)
5998 {
5999 unsigned long r_type = howto->type;
6000 unsigned long r_symndx;
6001 bfd_byte * hit_data = contents + rel->r_offset;
6002 bfd * dynobj = NULL;
6003 Elf_Internal_Shdr * symtab_hdr;
6004 struct elf_link_hash_entry ** sym_hashes;
6005 bfd_vma * local_got_offsets;
6006 asection * sgot = NULL;
6007 asection * splt = NULL;
6008 asection * sreloc = NULL;
6009 bfd_vma addend;
6010 bfd_signed_vma signed_addend;
6011 struct elf32_arm_link_hash_table * globals;
6012
6013 globals = elf32_arm_hash_table (info);
6014
6015 BFD_ASSERT (is_arm_elf (input_bfd));
6016
6017 /* Some relocation types map to different relocations depending on the
6018 target. We pick the right one here. */
6019 r_type = arm_real_reloc_type (globals, r_type);
6020 if (r_type != howto->type)
6021 howto = elf32_arm_howto_from_type (r_type);
6022
6023 /* If the start address has been set, then set the EF_ARM_HASENTRY
6024 flag. Setting this more than once is redundant, but the cost is
6025 not too high, and it keeps the code simple.
6026
6027 The test is done here, rather than somewhere else, because the
6028 start address is only set just before the final link commences.
6029
6030 Note - if the user deliberately sets a start address of 0, the
6031 flag will not be set. */
6032 if (bfd_get_start_address (output_bfd) != 0)
6033 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
6034
6035 dynobj = elf_hash_table (info)->dynobj;
6036 if (dynobj)
6037 {
6038 sgot = bfd_get_section_by_name (dynobj, ".got");
6039 splt = bfd_get_section_by_name (dynobj, ".plt");
6040 }
6041 symtab_hdr = & elf_symtab_hdr (input_bfd);
6042 sym_hashes = elf_sym_hashes (input_bfd);
6043 local_got_offsets = elf_local_got_offsets (input_bfd);
6044 r_symndx = ELF32_R_SYM (rel->r_info);
6045
6046 if (globals->use_rel)
6047 {
6048 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
6049
6050 if (addend & ((howto->src_mask + 1) >> 1))
6051 {
6052 signed_addend = -1;
6053 signed_addend &= ~ howto->src_mask;
6054 signed_addend |= addend;
6055 }
6056 else
6057 signed_addend = addend;
6058 }
6059 else
6060 addend = signed_addend = rel->r_addend;
6061
6062 switch (r_type)
6063 {
6064 case R_ARM_NONE:
6065 /* We don't need to find a value for this symbol. It's just a
6066 marker. */
6067 *unresolved_reloc_p = FALSE;
6068 return bfd_reloc_ok;
6069
6070 case R_ARM_ABS12:
6071 if (!globals->vxworks_p)
6072 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6073
6074 case R_ARM_PC24:
6075 case R_ARM_ABS32:
6076 case R_ARM_ABS32_NOI:
6077 case R_ARM_REL32:
6078 case R_ARM_REL32_NOI:
6079 case R_ARM_CALL:
6080 case R_ARM_JUMP24:
6081 case R_ARM_XPC25:
6082 case R_ARM_PREL31:
6083 case R_ARM_PLT32:
6084 /* Handle relocations which should use the PLT entry. ABS32/REL32
6085 will use the symbol's value, which may point to a PLT entry, but we
6086 don't need to handle that here. If we created a PLT entry, all
6087 branches in this object should go to it, except if the PLT is too
6088 far away, in which case a long branch stub should be inserted. */
6089 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
6090 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
6091 && r_type != R_ARM_CALL)
6092 && h != NULL
6093 && splt != NULL
6094 && h->plt.offset != (bfd_vma) -1)
6095 {
6096 /* If we've created a .plt section, and assigned a PLT entry to
6097 this function, it should not be known to bind locally. If
6098 it were, we would have cleared the PLT entry. */
6099 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
6100
6101 value = (splt->output_section->vma
6102 + splt->output_offset
6103 + h->plt.offset);
6104 *unresolved_reloc_p = FALSE;
6105 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6106 contents, rel->r_offset, value,
6107 rel->r_addend);
6108 }
6109
6110 /* When generating a shared object or relocatable executable, these
6111 relocations are copied into the output file to be resolved at
6112 run time. */
6113 if ((info->shared || globals->root.is_relocatable_executable)
6114 && (input_section->flags & SEC_ALLOC)
6115 && !(elf32_arm_hash_table (info)->vxworks_p
6116 && strcmp (input_section->output_section->name,
6117 ".tls_vars") == 0)
6118 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
6119 || !SYMBOL_CALLS_LOCAL (info, h))
6120 && (h == NULL
6121 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6122 || h->root.type != bfd_link_hash_undefweak)
6123 && r_type != R_ARM_PC24
6124 && r_type != R_ARM_CALL
6125 && r_type != R_ARM_JUMP24
6126 && r_type != R_ARM_PREL31
6127 && r_type != R_ARM_PLT32)
6128 {
6129 Elf_Internal_Rela outrel;
6130 bfd_byte *loc;
6131 bfd_boolean skip, relocate;
6132
6133 *unresolved_reloc_p = FALSE;
6134
6135 if (sreloc == NULL)
6136 {
6137 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
6138 ! globals->use_rel);
6139
6140 if (sreloc == NULL)
6141 return bfd_reloc_notsupported;
6142 }
6143
6144 skip = FALSE;
6145 relocate = FALSE;
6146
6147 outrel.r_addend = addend;
6148 outrel.r_offset =
6149 _bfd_elf_section_offset (output_bfd, info, input_section,
6150 rel->r_offset);
6151 if (outrel.r_offset == (bfd_vma) -1)
6152 skip = TRUE;
6153 else if (outrel.r_offset == (bfd_vma) -2)
6154 skip = TRUE, relocate = TRUE;
6155 outrel.r_offset += (input_section->output_section->vma
6156 + input_section->output_offset);
6157
6158 if (skip)
6159 memset (&outrel, 0, sizeof outrel);
6160 else if (h != NULL
6161 && h->dynindx != -1
6162 && (!info->shared
6163 || !info->symbolic
6164 || !h->def_regular))
6165 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
6166 else
6167 {
6168 int symbol;
6169
6170 /* This symbol is local, or marked to become local. */
6171 if (sym_flags == STT_ARM_TFUNC)
6172 value |= 1;
6173 if (globals->symbian_p)
6174 {
6175 asection *osec;
6176
6177 /* On Symbian OS, the data segment and text segement
6178 can be relocated independently. Therefore, we
6179 must indicate the segment to which this
6180 relocation is relative. The BPABI allows us to
6181 use any symbol in the right segment; we just use
6182 the section symbol as it is convenient. (We
6183 cannot use the symbol given by "h" directly as it
6184 will not appear in the dynamic symbol table.)
6185
6186 Note that the dynamic linker ignores the section
6187 symbol value, so we don't subtract osec->vma
6188 from the emitted reloc addend. */
6189 if (sym_sec)
6190 osec = sym_sec->output_section;
6191 else
6192 osec = input_section->output_section;
6193 symbol = elf_section_data (osec)->dynindx;
6194 if (symbol == 0)
6195 {
6196 struct elf_link_hash_table *htab = elf_hash_table (info);
6197
6198 if ((osec->flags & SEC_READONLY) == 0
6199 && htab->data_index_section != NULL)
6200 osec = htab->data_index_section;
6201 else
6202 osec = htab->text_index_section;
6203 symbol = elf_section_data (osec)->dynindx;
6204 }
6205 BFD_ASSERT (symbol != 0);
6206 }
6207 else
6208 /* On SVR4-ish systems, the dynamic loader cannot
6209 relocate the text and data segments independently,
6210 so the symbol does not matter. */
6211 symbol = 0;
6212 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6213 if (globals->use_rel)
6214 relocate = TRUE;
6215 else
6216 outrel.r_addend += value;
6217 }
6218
6219 loc = sreloc->contents;
6220 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6221 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6222
6223 /* If this reloc is against an external symbol, we do not want to
6224 fiddle with the addend. Otherwise, we need to include the symbol
6225 value so that it becomes an addend for the dynamic reloc. */
6226 if (! relocate)
6227 return bfd_reloc_ok;
6228
6229 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6230 contents, rel->r_offset, value,
6231 (bfd_vma) 0);
6232 }
6233 else switch (r_type)
6234 {
6235 case R_ARM_ABS12:
6236 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6237
6238 case R_ARM_XPC25: /* Arm BLX instruction. */
6239 case R_ARM_CALL:
6240 case R_ARM_JUMP24:
6241 case R_ARM_PC24: /* Arm B/BL instruction. */
6242 case R_ARM_PLT32:
6243 {
6244 bfd_vma from;
6245 bfd_signed_vma branch_offset;
6246 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6247
6248 if (r_type == R_ARM_XPC25)
6249 {
6250 /* Check for Arm calling Arm function. */
6251 /* FIXME: Should we translate the instruction into a BL
6252 instruction instead ? */
6253 if (sym_flags != STT_ARM_TFUNC)
6254 (*_bfd_error_handler)
6255 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6256 input_bfd,
6257 h ? h->root.root.string : "(local)");
6258 }
6259 else if (r_type != R_ARM_CALL)
6260 {
6261 /* Check for Arm calling Thumb function. */
6262 if (sym_flags == STT_ARM_TFUNC)
6263 {
6264 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6265 output_bfd, input_section,
6266 hit_data, sym_sec, rel->r_offset,
6267 signed_addend, value,
6268 error_message))
6269 return bfd_reloc_ok;
6270 else
6271 return bfd_reloc_dangerous;
6272 }
6273 }
6274
6275 /* Check if a stub has to be inserted because the
6276 destination is too far or we are changing mode. */
6277 if (r_type == R_ARM_CALL)
6278 {
6279 /* If the call goes through a PLT entry, make sure to
6280 check distance to the right destination address. */
6281 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6282 {
6283 value = (splt->output_section->vma
6284 + splt->output_offset
6285 + h->plt.offset);
6286 *unresolved_reloc_p = FALSE;
6287 }
6288
6289 from = (input_section->output_section->vma
6290 + input_section->output_offset
6291 + rel->r_offset);
6292 branch_offset = (bfd_signed_vma)(value - from);
6293
6294 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6295 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6296 || sym_flags == STT_ARM_TFUNC)
6297 {
6298 /* The target is out of reach, so redirect the
6299 branch to the local stub for this function. */
6300
6301 stub_entry = elf32_arm_get_stub_entry (input_section,
6302 sym_sec, h,
6303 rel, globals);
6304 if (stub_entry != NULL)
6305 value = (stub_entry->stub_offset
6306 + stub_entry->stub_sec->output_offset
6307 + stub_entry->stub_sec->output_section->vma);
6308 }
6309 }
6310
6311 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6312 where:
6313 S is the address of the symbol in the relocation.
6314 P is address of the instruction being relocated.
6315 A is the addend (extracted from the instruction) in bytes.
6316
6317 S is held in 'value'.
6318 P is the base address of the section containing the
6319 instruction plus the offset of the reloc into that
6320 section, ie:
6321 (input_section->output_section->vma +
6322 input_section->output_offset +
6323 rel->r_offset).
6324 A is the addend, converted into bytes, ie:
6325 (signed_addend * 4)
6326
6327 Note: None of these operations have knowledge of the pipeline
6328 size of the processor, thus it is up to the assembler to
6329 encode this information into the addend. */
6330 value -= (input_section->output_section->vma
6331 + input_section->output_offset);
6332 value -= rel->r_offset;
6333 if (globals->use_rel)
6334 value += (signed_addend << howto->size);
6335 else
6336 /* RELA addends do not have to be adjusted by howto->size. */
6337 value += signed_addend;
6338
6339 signed_addend = value;
6340 signed_addend >>= howto->rightshift;
6341
6342 /* A branch to an undefined weak symbol is turned into a jump to
6343 the next instruction. */
6344 if (h && h->root.type == bfd_link_hash_undefweak)
6345 {
6346 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6347 | 0x0affffff;
6348 }
6349 else
6350 {
6351 /* Perform a signed range check. */
6352 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
6353 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6354 return bfd_reloc_overflow;
6355
6356 addend = (value & 2);
6357
6358 value = (signed_addend & howto->dst_mask)
6359 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
6360
6361 /* Set the H bit in the BLX instruction. */
6362 if (sym_flags == STT_ARM_TFUNC)
6363 {
6364 if (addend)
6365 value |= (1 << 24);
6366 else
6367 value &= ~(bfd_vma)(1 << 24);
6368 }
6369 if (r_type == R_ARM_CALL)
6370 {
6371 /* Select the correct instruction (BL or BLX). */
6372 /* Only if we are not handling a BL to a stub. In this
6373 case, mode switching is performed by the stub. */
6374 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
6375 value |= (1 << 28);
6376 else
6377 {
6378 value &= ~(bfd_vma)(1 << 28);
6379 value |= (1 << 24);
6380 }
6381 }
6382 }
6383 }
6384 break;
6385
6386 case R_ARM_ABS32:
6387 value += addend;
6388 if (sym_flags == STT_ARM_TFUNC)
6389 value |= 1;
6390 break;
6391
6392 case R_ARM_ABS32_NOI:
6393 value += addend;
6394 break;
6395
6396 case R_ARM_REL32:
6397 value += addend;
6398 if (sym_flags == STT_ARM_TFUNC)
6399 value |= 1;
6400 value -= (input_section->output_section->vma
6401 + input_section->output_offset + rel->r_offset);
6402 break;
6403
6404 case R_ARM_REL32_NOI:
6405 value += addend;
6406 value -= (input_section->output_section->vma
6407 + input_section->output_offset + rel->r_offset);
6408 break;
6409
6410 case R_ARM_PREL31:
6411 value -= (input_section->output_section->vma
6412 + input_section->output_offset + rel->r_offset);
6413 value += signed_addend;
6414 if (! h || h->root.type != bfd_link_hash_undefweak)
6415 {
6416 /* Check for overflow. */
6417 if ((value ^ (value >> 1)) & (1 << 30))
6418 return bfd_reloc_overflow;
6419 }
6420 value &= 0x7fffffff;
6421 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6422 if (sym_flags == STT_ARM_TFUNC)
6423 value |= 1;
6424 break;
6425 }
6426
6427 bfd_put_32 (input_bfd, value, hit_data);
6428 return bfd_reloc_ok;
6429
6430 case R_ARM_ABS8:
6431 value += addend;
6432 if ((long) value > 0x7f || (long) value < -0x80)
6433 return bfd_reloc_overflow;
6434
6435 bfd_put_8 (input_bfd, value, hit_data);
6436 return bfd_reloc_ok;
6437
6438 case R_ARM_ABS16:
6439 value += addend;
6440
6441 if ((long) value > 0x7fff || (long) value < -0x8000)
6442 return bfd_reloc_overflow;
6443
6444 bfd_put_16 (input_bfd, value, hit_data);
6445 return bfd_reloc_ok;
6446
6447 case R_ARM_THM_ABS5:
6448 /* Support ldr and str instructions for the thumb. */
6449 if (globals->use_rel)
6450 {
6451 /* Need to refetch addend. */
6452 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6453 /* ??? Need to determine shift amount from operand size. */
6454 addend >>= howto->rightshift;
6455 }
6456 value += addend;
6457
6458 /* ??? Isn't value unsigned? */
6459 if ((long) value > 0x1f || (long) value < -0x10)
6460 return bfd_reloc_overflow;
6461
6462 /* ??? Value needs to be properly shifted into place first. */
6463 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6464 bfd_put_16 (input_bfd, value, hit_data);
6465 return bfd_reloc_ok;
6466
6467 case R_ARM_THM_ALU_PREL_11_0:
6468 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6469 {
6470 bfd_vma insn;
6471 bfd_signed_vma relocation;
6472
6473 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6474 | bfd_get_16 (input_bfd, hit_data + 2);
6475
6476 if (globals->use_rel)
6477 {
6478 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6479 | ((insn & (1 << 26)) >> 15);
6480 if (insn & 0xf00000)
6481 signed_addend = -signed_addend;
6482 }
6483
6484 relocation = value + signed_addend;
6485 relocation -= (input_section->output_section->vma
6486 + input_section->output_offset
6487 + rel->r_offset);
6488
6489 value = abs (relocation);
6490
6491 if (value >= 0x1000)
6492 return bfd_reloc_overflow;
6493
6494 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6495 | ((value & 0x700) << 4)
6496 | ((value & 0x800) << 15);
6497 if (relocation < 0)
6498 insn |= 0xa00000;
6499
6500 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6501 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6502
6503 return bfd_reloc_ok;
6504 }
6505
6506 case R_ARM_THM_PC12:
6507 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6508 {
6509 bfd_vma insn;
6510 bfd_signed_vma relocation;
6511
6512 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6513 | bfd_get_16 (input_bfd, hit_data + 2);
6514
6515 if (globals->use_rel)
6516 {
6517 signed_addend = insn & 0xfff;
6518 if (!(insn & (1 << 23)))
6519 signed_addend = -signed_addend;
6520 }
6521
6522 relocation = value + signed_addend;
6523 relocation -= (input_section->output_section->vma
6524 + input_section->output_offset
6525 + rel->r_offset);
6526
6527 value = abs (relocation);
6528
6529 if (value >= 0x1000)
6530 return bfd_reloc_overflow;
6531
6532 insn = (insn & 0xff7ff000) | value;
6533 if (relocation >= 0)
6534 insn |= (1 << 23);
6535
6536 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6537 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6538
6539 return bfd_reloc_ok;
6540 }
6541
6542 case R_ARM_THM_XPC22:
6543 case R_ARM_THM_CALL:
6544 case R_ARM_THM_JUMP24:
6545 /* Thumb BL (branch long instruction). */
6546 {
6547 bfd_vma relocation;
6548 bfd_vma reloc_sign;
6549 bfd_boolean overflow = FALSE;
6550 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6551 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6552 bfd_signed_vma reloc_signed_max;
6553 bfd_signed_vma reloc_signed_min;
6554 bfd_vma check;
6555 bfd_signed_vma signed_check;
6556 int bitsize;
6557 int thumb2 = using_thumb2 (globals);
6558
6559 /* A branch to an undefined weak symbol is turned into a jump to
6560 the next instruction unless a PLT entry will be created. */
6561 if (h && h->root.type == bfd_link_hash_undefweak
6562 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
6563 {
6564 bfd_put_16 (input_bfd, 0xe000, hit_data);
6565 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6566 return bfd_reloc_ok;
6567 }
6568
6569 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6570 with Thumb-1) involving the J1 and J2 bits. */
6571 if (globals->use_rel)
6572 {
6573 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6574 bfd_vma upper = upper_insn & 0x3ff;
6575 bfd_vma lower = lower_insn & 0x7ff;
6576 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6577 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6578 bfd_vma i1 = j1 ^ s ? 0 : 1;
6579 bfd_vma i2 = j2 ^ s ? 0 : 1;
6580
6581 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6582 /* Sign extend. */
6583 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6584
6585 signed_addend = addend;
6586 }
6587
6588 if (r_type == R_ARM_THM_XPC22)
6589 {
6590 /* Check for Thumb to Thumb call. */
6591 /* FIXME: Should we translate the instruction into a BL
6592 instruction instead ? */
6593 if (sym_flags == STT_ARM_TFUNC)
6594 (*_bfd_error_handler)
6595 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6596 input_bfd,
6597 h ? h->root.root.string : "(local)");
6598 }
6599 else
6600 {
6601 /* If it is not a call to Thumb, assume call to Arm.
6602 If it is a call relative to a section name, then it is not a
6603 function call at all, but rather a long jump. Calls through
6604 the PLT do not require stubs. */
6605 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6606 && (h == NULL || splt == NULL
6607 || h->plt.offset == (bfd_vma) -1))
6608 {
6609 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6610 {
6611 /* Convert BL to BLX. */
6612 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6613 }
6614 else if (r_type != R_ARM_THM_CALL)
6615 {
6616 if (elf32_thumb_to_arm_stub
6617 (info, sym_name, input_bfd, output_bfd, input_section,
6618 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6619 error_message))
6620 return bfd_reloc_ok;
6621 else
6622 return bfd_reloc_dangerous;
6623 }
6624 }
6625 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6626 && r_type == R_ARM_THM_CALL)
6627 {
6628 /* Make sure this is a BL. */
6629 lower_insn |= 0x1800;
6630 }
6631 }
6632
6633 /* Handle calls via the PLT. */
6634 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6635 {
6636 value = (splt->output_section->vma
6637 + splt->output_offset
6638 + h->plt.offset);
6639 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6640 {
6641 /* If the Thumb BLX instruction is available, convert the
6642 BL to a BLX instruction to call the ARM-mode PLT entry. */
6643 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6644 }
6645 else
6646 /* Target the Thumb stub before the ARM PLT entry. */
6647 value -= PLT_THUMB_STUB_SIZE;
6648 *unresolved_reloc_p = FALSE;
6649 }
6650
6651 if (r_type == R_ARM_THM_CALL)
6652 {
6653 /* Check if a stub has to be inserted because the destination
6654 is too far. */
6655 bfd_vma from;
6656 bfd_signed_vma branch_offset;
6657 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6658
6659 from = (input_section->output_section->vma
6660 + input_section->output_offset
6661 + rel->r_offset);
6662 branch_offset = (bfd_signed_vma)(value - from);
6663
6664 if ((!thumb2
6665 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6666 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6667 ||
6668 (thumb2
6669 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
6670 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
6671 || ((sym_flags != STT_ARM_TFUNC) && !globals->use_blx))
6672 {
6673 /* The target is out of reach or we are changing modes, so
6674 redirect the branch to the local stub for this
6675 function. */
6676 stub_entry = elf32_arm_get_stub_entry (input_section,
6677 sym_sec, h,
6678 rel, globals);
6679 if (stub_entry != NULL)
6680 value = (stub_entry->stub_offset
6681 + stub_entry->stub_sec->output_offset
6682 + stub_entry->stub_sec->output_section->vma);
6683
6684 /* If this call becomes a call to Arm, force BLX. */
6685 if (globals->use_blx)
6686 {
6687 if ((stub_entry
6688 && !arm_stub_is_thumb (stub_entry->stub_type))
6689 || (sym_flags != STT_ARM_TFUNC))
6690 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6691 }
6692 }
6693 }
6694
6695 relocation = value + signed_addend;
6696
6697 relocation -= (input_section->output_section->vma
6698 + input_section->output_offset
6699 + rel->r_offset);
6700
6701 check = relocation >> howto->rightshift;
6702
6703 /* If this is a signed value, the rightshift just dropped
6704 leading 1 bits (assuming twos complement). */
6705 if ((bfd_signed_vma) relocation >= 0)
6706 signed_check = check;
6707 else
6708 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6709
6710 /* Calculate the permissable maximum and minimum values for
6711 this relocation according to whether we're relocating for
6712 Thumb-2 or not. */
6713 bitsize = howto->bitsize;
6714 if (!thumb2)
6715 bitsize -= 2;
6716 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6717 reloc_signed_min = ~reloc_signed_max;
6718
6719 /* Assumes two's complement. */
6720 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6721 overflow = TRUE;
6722
6723 if ((lower_insn & 0x5000) == 0x4000)
6724 /* For a BLX instruction, make sure that the relocation is rounded up
6725 to a word boundary. This follows the semantics of the instruction
6726 which specifies that bit 1 of the target address will come from bit
6727 1 of the base address. */
6728 relocation = (relocation + 2) & ~ 3;
6729
6730 /* Put RELOCATION back into the insn. Assumes two's complement.
6731 We use the Thumb-2 encoding, which is safe even if dealing with
6732 a Thumb-1 instruction by virtue of our overflow check above. */
6733 reloc_sign = (signed_check < 0) ? 1 : 0;
6734 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6735 | ((relocation >> 12) & 0x3ff)
6736 | (reloc_sign << 10);
6737 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
6738 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6739 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6740 | ((relocation >> 1) & 0x7ff);
6741
6742 /* Put the relocated value back in the object file: */
6743 bfd_put_16 (input_bfd, upper_insn, hit_data);
6744 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6745
6746 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6747 }
6748 break;
6749
6750 case R_ARM_THM_JUMP19:
6751 /* Thumb32 conditional branch instruction. */
6752 {
6753 bfd_vma relocation;
6754 bfd_boolean overflow = FALSE;
6755 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6756 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6757 bfd_signed_vma reloc_signed_max = 0xffffe;
6758 bfd_signed_vma reloc_signed_min = -0x100000;
6759 bfd_signed_vma signed_check;
6760
6761 /* Need to refetch the addend, reconstruct the top three bits,
6762 and squish the two 11 bit pieces together. */
6763 if (globals->use_rel)
6764 {
6765 bfd_vma S = (upper_insn & 0x0400) >> 10;
6766 bfd_vma upper = (upper_insn & 0x003f);
6767 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6768 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6769 bfd_vma lower = (lower_insn & 0x07ff);
6770
6771 upper |= J1 << 6;
6772 upper |= J2 << 7;
6773 upper |= (!S) << 8;
6774 upper -= 0x0100; /* Sign extend. */
6775
6776 addend = (upper << 12) | (lower << 1);
6777 signed_addend = addend;
6778 }
6779
6780 /* Handle calls via the PLT. */
6781 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6782 {
6783 value = (splt->output_section->vma
6784 + splt->output_offset
6785 + h->plt.offset);
6786 /* Target the Thumb stub before the ARM PLT entry. */
6787 value -= PLT_THUMB_STUB_SIZE;
6788 *unresolved_reloc_p = FALSE;
6789 }
6790
6791 /* ??? Should handle interworking? GCC might someday try to
6792 use this for tail calls. */
6793
6794 relocation = value + signed_addend;
6795 relocation -= (input_section->output_section->vma
6796 + input_section->output_offset
6797 + rel->r_offset);
6798 signed_check = (bfd_signed_vma) relocation;
6799
6800 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6801 overflow = TRUE;
6802
6803 /* Put RELOCATION back into the insn. */
6804 {
6805 bfd_vma S = (relocation & 0x00100000) >> 20;
6806 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6807 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6808 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6809 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6810
6811 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
6812 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6813 }
6814
6815 /* Put the relocated value back in the object file: */
6816 bfd_put_16 (input_bfd, upper_insn, hit_data);
6817 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6818
6819 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6820 }
6821
6822 case R_ARM_THM_JUMP11:
6823 case R_ARM_THM_JUMP8:
6824 case R_ARM_THM_JUMP6:
6825 /* Thumb B (branch) instruction). */
6826 {
6827 bfd_signed_vma relocation;
6828 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6829 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
6830 bfd_signed_vma signed_check;
6831
6832 /* CZB cannot jump backward. */
6833 if (r_type == R_ARM_THM_JUMP6)
6834 reloc_signed_min = 0;
6835
6836 if (globals->use_rel)
6837 {
6838 /* Need to refetch addend. */
6839 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6840 if (addend & ((howto->src_mask + 1) >> 1))
6841 {
6842 signed_addend = -1;
6843 signed_addend &= ~ howto->src_mask;
6844 signed_addend |= addend;
6845 }
6846 else
6847 signed_addend = addend;
6848 /* The value in the insn has been right shifted. We need to
6849 undo this, so that we can perform the address calculation
6850 in terms of bytes. */
6851 signed_addend <<= howto->rightshift;
6852 }
6853 relocation = value + signed_addend;
6854
6855 relocation -= (input_section->output_section->vma
6856 + input_section->output_offset
6857 + rel->r_offset);
6858
6859 relocation >>= howto->rightshift;
6860 signed_check = relocation;
6861
6862 if (r_type == R_ARM_THM_JUMP6)
6863 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6864 else
6865 relocation &= howto->dst_mask;
6866 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
6867
6868 bfd_put_16 (input_bfd, relocation, hit_data);
6869
6870 /* Assumes two's complement. */
6871 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6872 return bfd_reloc_overflow;
6873
6874 return bfd_reloc_ok;
6875 }
6876
6877 case R_ARM_ALU_PCREL7_0:
6878 case R_ARM_ALU_PCREL15_8:
6879 case R_ARM_ALU_PCREL23_15:
6880 {
6881 bfd_vma insn;
6882 bfd_vma relocation;
6883
6884 insn = bfd_get_32 (input_bfd, hit_data);
6885 if (globals->use_rel)
6886 {
6887 /* Extract the addend. */
6888 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6889 signed_addend = addend;
6890 }
6891 relocation = value + signed_addend;
6892
6893 relocation -= (input_section->output_section->vma
6894 + input_section->output_offset
6895 + rel->r_offset);
6896 insn = (insn & ~0xfff)
6897 | ((howto->bitpos << 7) & 0xf00)
6898 | ((relocation >> howto->bitpos) & 0xff);
6899 bfd_put_32 (input_bfd, value, hit_data);
6900 }
6901 return bfd_reloc_ok;
6902
6903 case R_ARM_GNU_VTINHERIT:
6904 case R_ARM_GNU_VTENTRY:
6905 return bfd_reloc_ok;
6906
6907 case R_ARM_GOTOFF32:
6908 /* Relocation is relative to the start of the
6909 global offset table. */
6910
6911 BFD_ASSERT (sgot != NULL);
6912 if (sgot == NULL)
6913 return bfd_reloc_notsupported;
6914
6915 /* If we are addressing a Thumb function, we need to adjust the
6916 address by one, so that attempts to call the function pointer will
6917 correctly interpret it as Thumb code. */
6918 if (sym_flags == STT_ARM_TFUNC)
6919 value += 1;
6920
6921 /* Note that sgot->output_offset is not involved in this
6922 calculation. We always want the start of .got. If we
6923 define _GLOBAL_OFFSET_TABLE in a different way, as is
6924 permitted by the ABI, we might have to change this
6925 calculation. */
6926 value -= sgot->output_section->vma;
6927 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6928 contents, rel->r_offset, value,
6929 rel->r_addend);
6930
6931 case R_ARM_GOTPC:
6932 /* Use global offset table as symbol value. */
6933 BFD_ASSERT (sgot != NULL);
6934
6935 if (sgot == NULL)
6936 return bfd_reloc_notsupported;
6937
6938 *unresolved_reloc_p = FALSE;
6939 value = sgot->output_section->vma;
6940 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6941 contents, rel->r_offset, value,
6942 rel->r_addend);
6943
6944 case R_ARM_GOT32:
6945 case R_ARM_GOT_PREL:
6946 /* Relocation is to the entry for this symbol in the
6947 global offset table. */
6948 if (sgot == NULL)
6949 return bfd_reloc_notsupported;
6950
6951 if (h != NULL)
6952 {
6953 bfd_vma off;
6954 bfd_boolean dyn;
6955
6956 off = h->got.offset;
6957 BFD_ASSERT (off != (bfd_vma) -1);
6958 dyn = globals->root.dynamic_sections_created;
6959
6960 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6961 || (info->shared
6962 && SYMBOL_REFERENCES_LOCAL (info, h))
6963 || (ELF_ST_VISIBILITY (h->other)
6964 && h->root.type == bfd_link_hash_undefweak))
6965 {
6966 /* This is actually a static link, or it is a -Bsymbolic link
6967 and the symbol is defined locally. We must initialize this
6968 entry in the global offset table. Since the offset must
6969 always be a multiple of 4, we use the least significant bit
6970 to record whether we have initialized it already.
6971
6972 When doing a dynamic link, we create a .rel(a).got relocation
6973 entry to initialize the value. This is done in the
6974 finish_dynamic_symbol routine. */
6975 if ((off & 1) != 0)
6976 off &= ~1;
6977 else
6978 {
6979 /* If we are addressing a Thumb function, we need to
6980 adjust the address by one, so that attempts to
6981 call the function pointer will correctly
6982 interpret it as Thumb code. */
6983 if (sym_flags == STT_ARM_TFUNC)
6984 value |= 1;
6985
6986 bfd_put_32 (output_bfd, value, sgot->contents + off);
6987 h->got.offset |= 1;
6988 }
6989 }
6990 else
6991 *unresolved_reloc_p = FALSE;
6992
6993 value = sgot->output_offset + off;
6994 }
6995 else
6996 {
6997 bfd_vma off;
6998
6999 BFD_ASSERT (local_got_offsets != NULL &&
7000 local_got_offsets[r_symndx] != (bfd_vma) -1);
7001
7002 off = local_got_offsets[r_symndx];
7003
7004 /* The offset must always be a multiple of 4. We use the
7005 least significant bit to record whether we have already
7006 generated the necessary reloc. */
7007 if ((off & 1) != 0)
7008 off &= ~1;
7009 else
7010 {
7011 /* If we are addressing a Thumb function, we need to
7012 adjust the address by one, so that attempts to
7013 call the function pointer will correctly
7014 interpret it as Thumb code. */
7015 if (sym_flags == STT_ARM_TFUNC)
7016 value |= 1;
7017
7018 if (globals->use_rel)
7019 bfd_put_32 (output_bfd, value, sgot->contents + off);
7020
7021 if (info->shared)
7022 {
7023 asection * srelgot;
7024 Elf_Internal_Rela outrel;
7025 bfd_byte *loc;
7026
7027 srelgot = (bfd_get_section_by_name
7028 (dynobj, RELOC_SECTION (globals, ".got")));
7029 BFD_ASSERT (srelgot != NULL);
7030
7031 outrel.r_addend = addend + value;
7032 outrel.r_offset = (sgot->output_section->vma
7033 + sgot->output_offset
7034 + off);
7035 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
7036 loc = srelgot->contents;
7037 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
7038 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7039 }
7040
7041 local_got_offsets[r_symndx] |= 1;
7042 }
7043
7044 value = sgot->output_offset + off;
7045 }
7046 if (r_type != R_ARM_GOT32)
7047 value += sgot->output_section->vma;
7048
7049 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7050 contents, rel->r_offset, value,
7051 rel->r_addend);
7052
7053 case R_ARM_TLS_LDO32:
7054 value = value - dtpoff_base (info);
7055
7056 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7057 contents, rel->r_offset, value,
7058 rel->r_addend);
7059
7060 case R_ARM_TLS_LDM32:
7061 {
7062 bfd_vma off;
7063
7064 if (globals->sgot == NULL)
7065 abort ();
7066
7067 off = globals->tls_ldm_got.offset;
7068
7069 if ((off & 1) != 0)
7070 off &= ~1;
7071 else
7072 {
7073 /* If we don't know the module number, create a relocation
7074 for it. */
7075 if (info->shared)
7076 {
7077 Elf_Internal_Rela outrel;
7078 bfd_byte *loc;
7079
7080 if (globals->srelgot == NULL)
7081 abort ();
7082
7083 outrel.r_addend = 0;
7084 outrel.r_offset = (globals->sgot->output_section->vma
7085 + globals->sgot->output_offset + off);
7086 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
7087
7088 if (globals->use_rel)
7089 bfd_put_32 (output_bfd, outrel.r_addend,
7090 globals->sgot->contents + off);
7091
7092 loc = globals->srelgot->contents;
7093 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
7094 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7095 }
7096 else
7097 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
7098
7099 globals->tls_ldm_got.offset |= 1;
7100 }
7101
7102 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7103 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7104
7105 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7106 contents, rel->r_offset, value,
7107 rel->r_addend);
7108 }
7109
7110 case R_ARM_TLS_GD32:
7111 case R_ARM_TLS_IE32:
7112 {
7113 bfd_vma off;
7114 int indx;
7115 char tls_type;
7116
7117 if (globals->sgot == NULL)
7118 abort ();
7119
7120 indx = 0;
7121 if (h != NULL)
7122 {
7123 bfd_boolean dyn;
7124 dyn = globals->root.dynamic_sections_created;
7125 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7126 && (!info->shared
7127 || !SYMBOL_REFERENCES_LOCAL (info, h)))
7128 {
7129 *unresolved_reloc_p = FALSE;
7130 indx = h->dynindx;
7131 }
7132 off = h->got.offset;
7133 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
7134 }
7135 else
7136 {
7137 if (local_got_offsets == NULL)
7138 abort ();
7139 off = local_got_offsets[r_symndx];
7140 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
7141 }
7142
7143 if (tls_type == GOT_UNKNOWN)
7144 abort ();
7145
7146 if ((off & 1) != 0)
7147 off &= ~1;
7148 else
7149 {
7150 bfd_boolean need_relocs = FALSE;
7151 Elf_Internal_Rela outrel;
7152 bfd_byte *loc = NULL;
7153 int cur_off = off;
7154
7155 /* The GOT entries have not been initialized yet. Do it
7156 now, and emit any relocations. If both an IE GOT and a
7157 GD GOT are necessary, we emit the GD first. */
7158
7159 if ((info->shared || indx != 0)
7160 && (h == NULL
7161 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7162 || h->root.type != bfd_link_hash_undefweak))
7163 {
7164 need_relocs = TRUE;
7165 if (globals->srelgot == NULL)
7166 abort ();
7167 loc = globals->srelgot->contents;
7168 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
7169 }
7170
7171 if (tls_type & GOT_TLS_GD)
7172 {
7173 if (need_relocs)
7174 {
7175 outrel.r_addend = 0;
7176 outrel.r_offset = (globals->sgot->output_section->vma
7177 + globals->sgot->output_offset
7178 + cur_off);
7179 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
7180
7181 if (globals->use_rel)
7182 bfd_put_32 (output_bfd, outrel.r_addend,
7183 globals->sgot->contents + cur_off);
7184
7185 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7186 globals->srelgot->reloc_count++;
7187 loc += RELOC_SIZE (globals);
7188
7189 if (indx == 0)
7190 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7191 globals->sgot->contents + cur_off + 4);
7192 else
7193 {
7194 outrel.r_addend = 0;
7195 outrel.r_info = ELF32_R_INFO (indx,
7196 R_ARM_TLS_DTPOFF32);
7197 outrel.r_offset += 4;
7198
7199 if (globals->use_rel)
7200 bfd_put_32 (output_bfd, outrel.r_addend,
7201 globals->sgot->contents + cur_off + 4);
7202
7203
7204 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7205 globals->srelgot->reloc_count++;
7206 loc += RELOC_SIZE (globals);
7207 }
7208 }
7209 else
7210 {
7211 /* If we are not emitting relocations for a
7212 general dynamic reference, then we must be in a
7213 static link or an executable link with the
7214 symbol binding locally. Mark it as belonging
7215 to module 1, the executable. */
7216 bfd_put_32 (output_bfd, 1,
7217 globals->sgot->contents + cur_off);
7218 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7219 globals->sgot->contents + cur_off + 4);
7220 }
7221
7222 cur_off += 8;
7223 }
7224
7225 if (tls_type & GOT_TLS_IE)
7226 {
7227 if (need_relocs)
7228 {
7229 if (indx == 0)
7230 outrel.r_addend = value - dtpoff_base (info);
7231 else
7232 outrel.r_addend = 0;
7233 outrel.r_offset = (globals->sgot->output_section->vma
7234 + globals->sgot->output_offset
7235 + cur_off);
7236 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7237
7238 if (globals->use_rel)
7239 bfd_put_32 (output_bfd, outrel.r_addend,
7240 globals->sgot->contents + cur_off);
7241
7242 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7243 globals->srelgot->reloc_count++;
7244 loc += RELOC_SIZE (globals);
7245 }
7246 else
7247 bfd_put_32 (output_bfd, tpoff (info, value),
7248 globals->sgot->contents + cur_off);
7249 cur_off += 4;
7250 }
7251
7252 if (h != NULL)
7253 h->got.offset |= 1;
7254 else
7255 local_got_offsets[r_symndx] |= 1;
7256 }
7257
7258 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7259 off += 8;
7260 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7261 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7262
7263 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7264 contents, rel->r_offset, value,
7265 rel->r_addend);
7266 }
7267
7268 case R_ARM_TLS_LE32:
7269 if (info->shared)
7270 {
7271 (*_bfd_error_handler)
7272 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7273 input_bfd, input_section,
7274 (long) rel->r_offset, howto->name);
7275 return FALSE;
7276 }
7277 else
7278 value = tpoff (info, value);
7279
7280 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7281 contents, rel->r_offset, value,
7282 rel->r_addend);
7283
7284 case R_ARM_V4BX:
7285 if (globals->fix_v4bx)
7286 {
7287 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7288
7289 /* Ensure that we have a BX instruction. */
7290 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
7291
7292 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7293 {
7294 /* Branch to veneer. */
7295 bfd_vma glue_addr;
7296 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7297 glue_addr -= input_section->output_section->vma
7298 + input_section->output_offset
7299 + rel->r_offset + 8;
7300 insn = (insn & 0xf0000000) | 0x0a000000
7301 | ((glue_addr >> 2) & 0x00ffffff);
7302 }
7303 else
7304 {
7305 /* Preserve Rm (lowest four bits) and the condition code
7306 (highest four bits). Other bits encode MOV PC,Rm. */
7307 insn = (insn & 0xf000000f) | 0x01a0f000;
7308 }
7309
7310 bfd_put_32 (input_bfd, insn, hit_data);
7311 }
7312 return bfd_reloc_ok;
7313
7314 case R_ARM_MOVW_ABS_NC:
7315 case R_ARM_MOVT_ABS:
7316 case R_ARM_MOVW_PREL_NC:
7317 case R_ARM_MOVT_PREL:
7318 /* Until we properly support segment-base-relative addressing then
7319 we assume the segment base to be zero, as for the group relocations.
7320 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7321 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7322 case R_ARM_MOVW_BREL_NC:
7323 case R_ARM_MOVW_BREL:
7324 case R_ARM_MOVT_BREL:
7325 {
7326 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7327
7328 if (globals->use_rel)
7329 {
7330 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
7331 signed_addend = (addend ^ 0x8000) - 0x8000;
7332 }
7333
7334 value += signed_addend;
7335
7336 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7337 value -= (input_section->output_section->vma
7338 + input_section->output_offset + rel->r_offset);
7339
7340 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7341 return bfd_reloc_overflow;
7342
7343 if (sym_flags == STT_ARM_TFUNC)
7344 value |= 1;
7345
7346 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7347 || r_type == R_ARM_MOVT_BREL)
7348 value >>= 16;
7349
7350 insn &= 0xfff0f000;
7351 insn |= value & 0xfff;
7352 insn |= (value & 0xf000) << 4;
7353 bfd_put_32 (input_bfd, insn, hit_data);
7354 }
7355 return bfd_reloc_ok;
7356
7357 case R_ARM_THM_MOVW_ABS_NC:
7358 case R_ARM_THM_MOVT_ABS:
7359 case R_ARM_THM_MOVW_PREL_NC:
7360 case R_ARM_THM_MOVT_PREL:
7361 /* Until we properly support segment-base-relative addressing then
7362 we assume the segment base to be zero, as for the above relocations.
7363 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7364 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7365 as R_ARM_THM_MOVT_ABS. */
7366 case R_ARM_THM_MOVW_BREL_NC:
7367 case R_ARM_THM_MOVW_BREL:
7368 case R_ARM_THM_MOVT_BREL:
7369 {
7370 bfd_vma insn;
7371
7372 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7373 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7374
7375 if (globals->use_rel)
7376 {
7377 addend = ((insn >> 4) & 0xf000)
7378 | ((insn >> 15) & 0x0800)
7379 | ((insn >> 4) & 0x0700)
7380 | (insn & 0x00ff);
7381 signed_addend = (addend ^ 0x8000) - 0x8000;
7382 }
7383
7384 value += signed_addend;
7385
7386 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7387 value -= (input_section->output_section->vma
7388 + input_section->output_offset + rel->r_offset);
7389
7390 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7391 return bfd_reloc_overflow;
7392
7393 if (sym_flags == STT_ARM_TFUNC)
7394 value |= 1;
7395
7396 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7397 || r_type == R_ARM_THM_MOVT_BREL)
7398 value >>= 16;
7399
7400 insn &= 0xfbf08f00;
7401 insn |= (value & 0xf000) << 4;
7402 insn |= (value & 0x0800) << 15;
7403 insn |= (value & 0x0700) << 4;
7404 insn |= (value & 0x00ff);
7405
7406 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7407 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7408 }
7409 return bfd_reloc_ok;
7410
7411 case R_ARM_ALU_PC_G0_NC:
7412 case R_ARM_ALU_PC_G1_NC:
7413 case R_ARM_ALU_PC_G0:
7414 case R_ARM_ALU_PC_G1:
7415 case R_ARM_ALU_PC_G2:
7416 case R_ARM_ALU_SB_G0_NC:
7417 case R_ARM_ALU_SB_G1_NC:
7418 case R_ARM_ALU_SB_G0:
7419 case R_ARM_ALU_SB_G1:
7420 case R_ARM_ALU_SB_G2:
7421 {
7422 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7423 bfd_vma pc = input_section->output_section->vma
7424 + input_section->output_offset + rel->r_offset;
7425 /* sb should be the origin of the *segment* containing the symbol.
7426 It is not clear how to obtain this OS-dependent value, so we
7427 make an arbitrary choice of zero. */
7428 bfd_vma sb = 0;
7429 bfd_vma residual;
7430 bfd_vma g_n;
7431 bfd_signed_vma signed_value;
7432 int group = 0;
7433
7434 /* Determine which group of bits to select. */
7435 switch (r_type)
7436 {
7437 case R_ARM_ALU_PC_G0_NC:
7438 case R_ARM_ALU_PC_G0:
7439 case R_ARM_ALU_SB_G0_NC:
7440 case R_ARM_ALU_SB_G0:
7441 group = 0;
7442 break;
7443
7444 case R_ARM_ALU_PC_G1_NC:
7445 case R_ARM_ALU_PC_G1:
7446 case R_ARM_ALU_SB_G1_NC:
7447 case R_ARM_ALU_SB_G1:
7448 group = 1;
7449 break;
7450
7451 case R_ARM_ALU_PC_G2:
7452 case R_ARM_ALU_SB_G2:
7453 group = 2;
7454 break;
7455
7456 default:
7457 abort ();
7458 }
7459
7460 /* If REL, extract the addend from the insn. If RELA, it will
7461 have already been fetched for us. */
7462 if (globals->use_rel)
7463 {
7464 int negative;
7465 bfd_vma constant = insn & 0xff;
7466 bfd_vma rotation = (insn & 0xf00) >> 8;
7467
7468 if (rotation == 0)
7469 signed_addend = constant;
7470 else
7471 {
7472 /* Compensate for the fact that in the instruction, the
7473 rotation is stored in multiples of 2 bits. */
7474 rotation *= 2;
7475
7476 /* Rotate "constant" right by "rotation" bits. */
7477 signed_addend = (constant >> rotation) |
7478 (constant << (8 * sizeof (bfd_vma) - rotation));
7479 }
7480
7481 /* Determine if the instruction is an ADD or a SUB.
7482 (For REL, this determines the sign of the addend.) */
7483 negative = identify_add_or_sub (insn);
7484 if (negative == 0)
7485 {
7486 (*_bfd_error_handler)
7487 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7488 input_bfd, input_section,
7489 (long) rel->r_offset, howto->name);
7490 return bfd_reloc_overflow;
7491 }
7492
7493 signed_addend *= negative;
7494 }
7495
7496 /* Compute the value (X) to go in the place. */
7497 if (r_type == R_ARM_ALU_PC_G0_NC
7498 || r_type == R_ARM_ALU_PC_G1_NC
7499 || r_type == R_ARM_ALU_PC_G0
7500 || r_type == R_ARM_ALU_PC_G1
7501 || r_type == R_ARM_ALU_PC_G2)
7502 /* PC relative. */
7503 signed_value = value - pc + signed_addend;
7504 else
7505 /* Section base relative. */
7506 signed_value = value - sb + signed_addend;
7507
7508 /* If the target symbol is a Thumb function, then set the
7509 Thumb bit in the address. */
7510 if (sym_flags == STT_ARM_TFUNC)
7511 signed_value |= 1;
7512
7513 /* Calculate the value of the relevant G_n, in encoded
7514 constant-with-rotation format. */
7515 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7516 &residual);
7517
7518 /* Check for overflow if required. */
7519 if ((r_type == R_ARM_ALU_PC_G0
7520 || r_type == R_ARM_ALU_PC_G1
7521 || r_type == R_ARM_ALU_PC_G2
7522 || r_type == R_ARM_ALU_SB_G0
7523 || r_type == R_ARM_ALU_SB_G1
7524 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7525 {
7526 (*_bfd_error_handler)
7527 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7528 input_bfd, input_section,
7529 (long) rel->r_offset, abs (signed_value), howto->name);
7530 return bfd_reloc_overflow;
7531 }
7532
7533 /* Mask out the value and the ADD/SUB part of the opcode; take care
7534 not to destroy the S bit. */
7535 insn &= 0xff1ff000;
7536
7537 /* Set the opcode according to whether the value to go in the
7538 place is negative. */
7539 if (signed_value < 0)
7540 insn |= 1 << 22;
7541 else
7542 insn |= 1 << 23;
7543
7544 /* Encode the offset. */
7545 insn |= g_n;
7546
7547 bfd_put_32 (input_bfd, insn, hit_data);
7548 }
7549 return bfd_reloc_ok;
7550
7551 case R_ARM_LDR_PC_G0:
7552 case R_ARM_LDR_PC_G1:
7553 case R_ARM_LDR_PC_G2:
7554 case R_ARM_LDR_SB_G0:
7555 case R_ARM_LDR_SB_G1:
7556 case R_ARM_LDR_SB_G2:
7557 {
7558 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7559 bfd_vma pc = input_section->output_section->vma
7560 + input_section->output_offset + rel->r_offset;
7561 bfd_vma sb = 0; /* See note above. */
7562 bfd_vma residual;
7563 bfd_signed_vma signed_value;
7564 int group = 0;
7565
7566 /* Determine which groups of bits to calculate. */
7567 switch (r_type)
7568 {
7569 case R_ARM_LDR_PC_G0:
7570 case R_ARM_LDR_SB_G0:
7571 group = 0;
7572 break;
7573
7574 case R_ARM_LDR_PC_G1:
7575 case R_ARM_LDR_SB_G1:
7576 group = 1;
7577 break;
7578
7579 case R_ARM_LDR_PC_G2:
7580 case R_ARM_LDR_SB_G2:
7581 group = 2;
7582 break;
7583
7584 default:
7585 abort ();
7586 }
7587
7588 /* If REL, extract the addend from the insn. If RELA, it will
7589 have already been fetched for us. */
7590 if (globals->use_rel)
7591 {
7592 int negative = (insn & (1 << 23)) ? 1 : -1;
7593 signed_addend = negative * (insn & 0xfff);
7594 }
7595
7596 /* Compute the value (X) to go in the place. */
7597 if (r_type == R_ARM_LDR_PC_G0
7598 || r_type == R_ARM_LDR_PC_G1
7599 || r_type == R_ARM_LDR_PC_G2)
7600 /* PC relative. */
7601 signed_value = value - pc + signed_addend;
7602 else
7603 /* Section base relative. */
7604 signed_value = value - sb + signed_addend;
7605
7606 /* Calculate the value of the relevant G_{n-1} to obtain
7607 the residual at that stage. */
7608 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7609
7610 /* Check for overflow. */
7611 if (residual >= 0x1000)
7612 {
7613 (*_bfd_error_handler)
7614 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7615 input_bfd, input_section,
7616 (long) rel->r_offset, abs (signed_value), howto->name);
7617 return bfd_reloc_overflow;
7618 }
7619
7620 /* Mask out the value and U bit. */
7621 insn &= 0xff7ff000;
7622
7623 /* Set the U bit if the value to go in the place is non-negative. */
7624 if (signed_value >= 0)
7625 insn |= 1 << 23;
7626
7627 /* Encode the offset. */
7628 insn |= residual;
7629
7630 bfd_put_32 (input_bfd, insn, hit_data);
7631 }
7632 return bfd_reloc_ok;
7633
7634 case R_ARM_LDRS_PC_G0:
7635 case R_ARM_LDRS_PC_G1:
7636 case R_ARM_LDRS_PC_G2:
7637 case R_ARM_LDRS_SB_G0:
7638 case R_ARM_LDRS_SB_G1:
7639 case R_ARM_LDRS_SB_G2:
7640 {
7641 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7642 bfd_vma pc = input_section->output_section->vma
7643 + input_section->output_offset + rel->r_offset;
7644 bfd_vma sb = 0; /* See note above. */
7645 bfd_vma residual;
7646 bfd_signed_vma signed_value;
7647 int group = 0;
7648
7649 /* Determine which groups of bits to calculate. */
7650 switch (r_type)
7651 {
7652 case R_ARM_LDRS_PC_G0:
7653 case R_ARM_LDRS_SB_G0:
7654 group = 0;
7655 break;
7656
7657 case R_ARM_LDRS_PC_G1:
7658 case R_ARM_LDRS_SB_G1:
7659 group = 1;
7660 break;
7661
7662 case R_ARM_LDRS_PC_G2:
7663 case R_ARM_LDRS_SB_G2:
7664 group = 2;
7665 break;
7666
7667 default:
7668 abort ();
7669 }
7670
7671 /* If REL, extract the addend from the insn. If RELA, it will
7672 have already been fetched for us. */
7673 if (globals->use_rel)
7674 {
7675 int negative = (insn & (1 << 23)) ? 1 : -1;
7676 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7677 }
7678
7679 /* Compute the value (X) to go in the place. */
7680 if (r_type == R_ARM_LDRS_PC_G0
7681 || r_type == R_ARM_LDRS_PC_G1
7682 || r_type == R_ARM_LDRS_PC_G2)
7683 /* PC relative. */
7684 signed_value = value - pc + signed_addend;
7685 else
7686 /* Section base relative. */
7687 signed_value = value - sb + signed_addend;
7688
7689 /* Calculate the value of the relevant G_{n-1} to obtain
7690 the residual at that stage. */
7691 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7692
7693 /* Check for overflow. */
7694 if (residual >= 0x100)
7695 {
7696 (*_bfd_error_handler)
7697 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7698 input_bfd, input_section,
7699 (long) rel->r_offset, abs (signed_value), howto->name);
7700 return bfd_reloc_overflow;
7701 }
7702
7703 /* Mask out the value and U bit. */
7704 insn &= 0xff7ff0f0;
7705
7706 /* Set the U bit if the value to go in the place is non-negative. */
7707 if (signed_value >= 0)
7708 insn |= 1 << 23;
7709
7710 /* Encode the offset. */
7711 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7712
7713 bfd_put_32 (input_bfd, insn, hit_data);
7714 }
7715 return bfd_reloc_ok;
7716
7717 case R_ARM_LDC_PC_G0:
7718 case R_ARM_LDC_PC_G1:
7719 case R_ARM_LDC_PC_G2:
7720 case R_ARM_LDC_SB_G0:
7721 case R_ARM_LDC_SB_G1:
7722 case R_ARM_LDC_SB_G2:
7723 {
7724 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7725 bfd_vma pc = input_section->output_section->vma
7726 + input_section->output_offset + rel->r_offset;
7727 bfd_vma sb = 0; /* See note above. */
7728 bfd_vma residual;
7729 bfd_signed_vma signed_value;
7730 int group = 0;
7731
7732 /* Determine which groups of bits to calculate. */
7733 switch (r_type)
7734 {
7735 case R_ARM_LDC_PC_G0:
7736 case R_ARM_LDC_SB_G0:
7737 group = 0;
7738 break;
7739
7740 case R_ARM_LDC_PC_G1:
7741 case R_ARM_LDC_SB_G1:
7742 group = 1;
7743 break;
7744
7745 case R_ARM_LDC_PC_G2:
7746 case R_ARM_LDC_SB_G2:
7747 group = 2;
7748 break;
7749
7750 default:
7751 abort ();
7752 }
7753
7754 /* If REL, extract the addend from the insn. If RELA, it will
7755 have already been fetched for us. */
7756 if (globals->use_rel)
7757 {
7758 int negative = (insn & (1 << 23)) ? 1 : -1;
7759 signed_addend = negative * ((insn & 0xff) << 2);
7760 }
7761
7762 /* Compute the value (X) to go in the place. */
7763 if (r_type == R_ARM_LDC_PC_G0
7764 || r_type == R_ARM_LDC_PC_G1
7765 || r_type == R_ARM_LDC_PC_G2)
7766 /* PC relative. */
7767 signed_value = value - pc + signed_addend;
7768 else
7769 /* Section base relative. */
7770 signed_value = value - sb + signed_addend;
7771
7772 /* Calculate the value of the relevant G_{n-1} to obtain
7773 the residual at that stage. */
7774 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7775
7776 /* Check for overflow. (The absolute value to go in the place must be
7777 divisible by four and, after having been divided by four, must
7778 fit in eight bits.) */
7779 if ((residual & 0x3) != 0 || residual >= 0x400)
7780 {
7781 (*_bfd_error_handler)
7782 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7783 input_bfd, input_section,
7784 (long) rel->r_offset, abs (signed_value), howto->name);
7785 return bfd_reloc_overflow;
7786 }
7787
7788 /* Mask out the value and U bit. */
7789 insn &= 0xff7fff00;
7790
7791 /* Set the U bit if the value to go in the place is non-negative. */
7792 if (signed_value >= 0)
7793 insn |= 1 << 23;
7794
7795 /* Encode the offset. */
7796 insn |= residual >> 2;
7797
7798 bfd_put_32 (input_bfd, insn, hit_data);
7799 }
7800 return bfd_reloc_ok;
7801
7802 default:
7803 return bfd_reloc_notsupported;
7804 }
7805 }
7806
7807 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7808 static void
7809 arm_add_to_rel (bfd * abfd,
7810 bfd_byte * address,
7811 reloc_howto_type * howto,
7812 bfd_signed_vma increment)
7813 {
7814 bfd_signed_vma addend;
7815
7816 if (howto->type == R_ARM_THM_CALL
7817 || howto->type == R_ARM_THM_JUMP24)
7818 {
7819 int upper_insn, lower_insn;
7820 int upper, lower;
7821
7822 upper_insn = bfd_get_16 (abfd, address);
7823 lower_insn = bfd_get_16 (abfd, address + 2);
7824 upper = upper_insn & 0x7ff;
7825 lower = lower_insn & 0x7ff;
7826
7827 addend = (upper << 12) | (lower << 1);
7828 addend += increment;
7829 addend >>= 1;
7830
7831 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7832 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7833
7834 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7835 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
7836 }
7837 else
7838 {
7839 bfd_vma contents;
7840
7841 contents = bfd_get_32 (abfd, address);
7842
7843 /* Get the (signed) value from the instruction. */
7844 addend = contents & howto->src_mask;
7845 if (addend & ((howto->src_mask + 1) >> 1))
7846 {
7847 bfd_signed_vma mask;
7848
7849 mask = -1;
7850 mask &= ~ howto->src_mask;
7851 addend |= mask;
7852 }
7853
7854 /* Add in the increment, (which is a byte value). */
7855 switch (howto->type)
7856 {
7857 default:
7858 addend += increment;
7859 break;
7860
7861 case R_ARM_PC24:
7862 case R_ARM_PLT32:
7863 case R_ARM_CALL:
7864 case R_ARM_JUMP24:
7865 addend <<= howto->size;
7866 addend += increment;
7867
7868 /* Should we check for overflow here ? */
7869
7870 /* Drop any undesired bits. */
7871 addend >>= howto->rightshift;
7872 break;
7873 }
7874
7875 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7876
7877 bfd_put_32 (abfd, contents, address);
7878 }
7879 }
7880
7881 #define IS_ARM_TLS_RELOC(R_TYPE) \
7882 ((R_TYPE) == R_ARM_TLS_GD32 \
7883 || (R_TYPE) == R_ARM_TLS_LDO32 \
7884 || (R_TYPE) == R_ARM_TLS_LDM32 \
7885 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7886 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7887 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7888 || (R_TYPE) == R_ARM_TLS_LE32 \
7889 || (R_TYPE) == R_ARM_TLS_IE32)
7890
7891 /* Relocate an ARM ELF section. */
7892
7893 static bfd_boolean
7894 elf32_arm_relocate_section (bfd * output_bfd,
7895 struct bfd_link_info * info,
7896 bfd * input_bfd,
7897 asection * input_section,
7898 bfd_byte * contents,
7899 Elf_Internal_Rela * relocs,
7900 Elf_Internal_Sym * local_syms,
7901 asection ** local_sections)
7902 {
7903 Elf_Internal_Shdr *symtab_hdr;
7904 struct elf_link_hash_entry **sym_hashes;
7905 Elf_Internal_Rela *rel;
7906 Elf_Internal_Rela *relend;
7907 const char *name;
7908 struct elf32_arm_link_hash_table * globals;
7909
7910 globals = elf32_arm_hash_table (info);
7911
7912 symtab_hdr = & elf_symtab_hdr (input_bfd);
7913 sym_hashes = elf_sym_hashes (input_bfd);
7914
7915 rel = relocs;
7916 relend = relocs + input_section->reloc_count;
7917 for (; rel < relend; rel++)
7918 {
7919 int r_type;
7920 reloc_howto_type * howto;
7921 unsigned long r_symndx;
7922 Elf_Internal_Sym * sym;
7923 asection * sec;
7924 struct elf_link_hash_entry * h;
7925 bfd_vma relocation;
7926 bfd_reloc_status_type r;
7927 arelent bfd_reloc;
7928 char sym_type;
7929 bfd_boolean unresolved_reloc = FALSE;
7930 char *error_message = NULL;
7931
7932 r_symndx = ELF32_R_SYM (rel->r_info);
7933 r_type = ELF32_R_TYPE (rel->r_info);
7934 r_type = arm_real_reloc_type (globals, r_type);
7935
7936 if ( r_type == R_ARM_GNU_VTENTRY
7937 || r_type == R_ARM_GNU_VTINHERIT)
7938 continue;
7939
7940 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
7941 howto = bfd_reloc.howto;
7942
7943 h = NULL;
7944 sym = NULL;
7945 sec = NULL;
7946
7947 if (r_symndx < symtab_hdr->sh_info)
7948 {
7949 sym = local_syms + r_symndx;
7950 sym_type = ELF32_ST_TYPE (sym->st_info);
7951 sec = local_sections[r_symndx];
7952 if (globals->use_rel)
7953 {
7954 relocation = (sec->output_section->vma
7955 + sec->output_offset
7956 + sym->st_value);
7957 if (!info->relocatable
7958 && (sec->flags & SEC_MERGE)
7959 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7960 {
7961 asection *msec;
7962 bfd_vma addend, value;
7963
7964 switch (r_type)
7965 {
7966 case R_ARM_MOVW_ABS_NC:
7967 case R_ARM_MOVT_ABS:
7968 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7969 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7970 addend = (addend ^ 0x8000) - 0x8000;
7971 break;
7972
7973 case R_ARM_THM_MOVW_ABS_NC:
7974 case R_ARM_THM_MOVT_ABS:
7975 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
7976 << 16;
7977 value |= bfd_get_16 (input_bfd,
7978 contents + rel->r_offset + 2);
7979 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
7980 | ((value & 0x04000000) >> 15);
7981 addend = (addend ^ 0x8000) - 0x8000;
7982 break;
7983
7984 default:
7985 if (howto->rightshift
7986 || (howto->src_mask & (howto->src_mask + 1)))
7987 {
7988 (*_bfd_error_handler)
7989 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7990 input_bfd, input_section,
7991 (long) rel->r_offset, howto->name);
7992 return FALSE;
7993 }
7994
7995 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7996
7997 /* Get the (signed) value from the instruction. */
7998 addend = value & howto->src_mask;
7999 if (addend & ((howto->src_mask + 1) >> 1))
8000 {
8001 bfd_signed_vma mask;
8002
8003 mask = -1;
8004 mask &= ~ howto->src_mask;
8005 addend |= mask;
8006 }
8007 break;
8008 }
8009
8010 msec = sec;
8011 addend =
8012 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
8013 - relocation;
8014 addend += msec->output_section->vma + msec->output_offset;
8015
8016 /* Cases here must match those in the preceeding
8017 switch statement. */
8018 switch (r_type)
8019 {
8020 case R_ARM_MOVW_ABS_NC:
8021 case R_ARM_MOVT_ABS:
8022 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
8023 | (addend & 0xfff);
8024 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8025 break;
8026
8027 case R_ARM_THM_MOVW_ABS_NC:
8028 case R_ARM_THM_MOVT_ABS:
8029 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
8030 | (addend & 0xff) | ((addend & 0x0800) << 15);
8031 bfd_put_16 (input_bfd, value >> 16,
8032 contents + rel->r_offset);
8033 bfd_put_16 (input_bfd, value,
8034 contents + rel->r_offset + 2);
8035 break;
8036
8037 default:
8038 value = (value & ~ howto->dst_mask)
8039 | (addend & howto->dst_mask);
8040 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8041 break;
8042 }
8043 }
8044 }
8045 else
8046 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8047 }
8048 else
8049 {
8050 bfd_boolean warned;
8051
8052 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8053 r_symndx, symtab_hdr, sym_hashes,
8054 h, sec, relocation,
8055 unresolved_reloc, warned);
8056
8057 sym_type = h->type;
8058 }
8059
8060 if (sec != NULL && elf_discarded_section (sec))
8061 {
8062 /* For relocs against symbols from removed linkonce sections,
8063 or sections discarded by a linker script, we just want the
8064 section contents zeroed. Avoid any special processing. */
8065 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8066 rel->r_info = 0;
8067 rel->r_addend = 0;
8068 continue;
8069 }
8070
8071 if (info->relocatable)
8072 {
8073 /* This is a relocatable link. We don't have to change
8074 anything, unless the reloc is against a section symbol,
8075 in which case we have to adjust according to where the
8076 section symbol winds up in the output section. */
8077 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8078 {
8079 if (globals->use_rel)
8080 arm_add_to_rel (input_bfd, contents + rel->r_offset,
8081 howto, (bfd_signed_vma) sec->output_offset);
8082 else
8083 rel->r_addend += sec->output_offset;
8084 }
8085 continue;
8086 }
8087
8088 if (h != NULL)
8089 name = h->root.root.string;
8090 else
8091 {
8092 name = (bfd_elf_string_from_elf_section
8093 (input_bfd, symtab_hdr->sh_link, sym->st_name));
8094 if (name == NULL || *name == '\0')
8095 name = bfd_section_name (input_bfd, sec);
8096 }
8097
8098 if (r_symndx != 0
8099 && r_type != R_ARM_NONE
8100 && (h == NULL
8101 || h->root.type == bfd_link_hash_defined
8102 || h->root.type == bfd_link_hash_defweak)
8103 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
8104 {
8105 (*_bfd_error_handler)
8106 ((sym_type == STT_TLS
8107 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8108 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
8109 input_bfd,
8110 input_section,
8111 (long) rel->r_offset,
8112 howto->name,
8113 name);
8114 }
8115
8116 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
8117 input_section, contents, rel,
8118 relocation, info, sec, name,
8119 (h ? ELF_ST_TYPE (h->type) :
8120 ELF_ST_TYPE (sym->st_info)), h,
8121 &unresolved_reloc, &error_message);
8122
8123 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
8124 because such sections are not SEC_ALLOC and thus ld.so will
8125 not process them. */
8126 if (unresolved_reloc
8127 && !((input_section->flags & SEC_DEBUGGING) != 0
8128 && h->def_dynamic))
8129 {
8130 (*_bfd_error_handler)
8131 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
8132 input_bfd,
8133 input_section,
8134 (long) rel->r_offset,
8135 howto->name,
8136 h->root.root.string);
8137 return FALSE;
8138 }
8139
8140 if (r != bfd_reloc_ok)
8141 {
8142 switch (r)
8143 {
8144 case bfd_reloc_overflow:
8145 /* If the overflowing reloc was to an undefined symbol,
8146 we have already printed one error message and there
8147 is no point complaining again. */
8148 if ((! h ||
8149 h->root.type != bfd_link_hash_undefined)
8150 && (!((*info->callbacks->reloc_overflow)
8151 (info, (h ? &h->root : NULL), name, howto->name,
8152 (bfd_vma) 0, input_bfd, input_section,
8153 rel->r_offset))))
8154 return FALSE;
8155 break;
8156
8157 case bfd_reloc_undefined:
8158 if (!((*info->callbacks->undefined_symbol)
8159 (info, name, input_bfd, input_section,
8160 rel->r_offset, TRUE)))
8161 return FALSE;
8162 break;
8163
8164 case bfd_reloc_outofrange:
8165 error_message = _("out of range");
8166 goto common_error;
8167
8168 case bfd_reloc_notsupported:
8169 error_message = _("unsupported relocation");
8170 goto common_error;
8171
8172 case bfd_reloc_dangerous:
8173 /* error_message should already be set. */
8174 goto common_error;
8175
8176 default:
8177 error_message = _("unknown error");
8178 /* Fall through. */
8179
8180 common_error:
8181 BFD_ASSERT (error_message != NULL);
8182 if (!((*info->callbacks->reloc_dangerous)
8183 (info, error_message, input_bfd, input_section,
8184 rel->r_offset)))
8185 return FALSE;
8186 break;
8187 }
8188 }
8189 }
8190
8191 return TRUE;
8192 }
8193
8194 /* Set the right machine number. */
8195
8196 static bfd_boolean
8197 elf32_arm_object_p (bfd *abfd)
8198 {
8199 unsigned int mach;
8200
8201 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
8202
8203 if (mach != bfd_mach_arm_unknown)
8204 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8205
8206 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
8207 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
8208
8209 else
8210 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8211
8212 return TRUE;
8213 }
8214
8215 /* Function to keep ARM specific flags in the ELF header. */
8216
8217 static bfd_boolean
8218 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
8219 {
8220 if (elf_flags_init (abfd)
8221 && elf_elfheader (abfd)->e_flags != flags)
8222 {
8223 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8224 {
8225 if (flags & EF_ARM_INTERWORK)
8226 (*_bfd_error_handler)
8227 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8228 abfd);
8229 else
8230 _bfd_error_handler
8231 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8232 abfd);
8233 }
8234 }
8235 else
8236 {
8237 elf_elfheader (abfd)->e_flags = flags;
8238 elf_flags_init (abfd) = TRUE;
8239 }
8240
8241 return TRUE;
8242 }
8243
8244 /* Copy backend specific data from one object module to another. */
8245
8246 static bfd_boolean
8247 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
8248 {
8249 flagword in_flags;
8250 flagword out_flags;
8251
8252 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8253 return TRUE;
8254
8255 in_flags = elf_elfheader (ibfd)->e_flags;
8256 out_flags = elf_elfheader (obfd)->e_flags;
8257
8258 if (elf_flags_init (obfd)
8259 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8260 && in_flags != out_flags)
8261 {
8262 /* Cannot mix APCS26 and APCS32 code. */
8263 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8264 return FALSE;
8265
8266 /* Cannot mix float APCS and non-float APCS code. */
8267 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8268 return FALSE;
8269
8270 /* If the src and dest have different interworking flags
8271 then turn off the interworking bit. */
8272 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8273 {
8274 if (out_flags & EF_ARM_INTERWORK)
8275 _bfd_error_handler
8276 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8277 obfd, ibfd);
8278
8279 in_flags &= ~EF_ARM_INTERWORK;
8280 }
8281
8282 /* Likewise for PIC, though don't warn for this case. */
8283 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8284 in_flags &= ~EF_ARM_PIC;
8285 }
8286
8287 elf_elfheader (obfd)->e_flags = in_flags;
8288 elf_flags_init (obfd) = TRUE;
8289
8290 /* Also copy the EI_OSABI field. */
8291 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8292 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8293
8294 /* Copy object attributes. */
8295 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8296
8297 return TRUE;
8298 }
8299
8300 /* Values for Tag_ABI_PCS_R9_use. */
8301 enum
8302 {
8303 AEABI_R9_V6,
8304 AEABI_R9_SB,
8305 AEABI_R9_TLS,
8306 AEABI_R9_unused
8307 };
8308
8309 /* Values for Tag_ABI_PCS_RW_data. */
8310 enum
8311 {
8312 AEABI_PCS_RW_data_absolute,
8313 AEABI_PCS_RW_data_PCrel,
8314 AEABI_PCS_RW_data_SBrel,
8315 AEABI_PCS_RW_data_unused
8316 };
8317
8318 /* Values for Tag_ABI_enum_size. */
8319 enum
8320 {
8321 AEABI_enum_unused,
8322 AEABI_enum_short,
8323 AEABI_enum_wide,
8324 AEABI_enum_forced_wide
8325 };
8326
8327 /* Determine whether an object attribute tag takes an integer, a
8328 string or both. */
8329
8330 static int
8331 elf32_arm_obj_attrs_arg_type (int tag)
8332 {
8333 if (tag == Tag_compatibility)
8334 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
8335 else if (tag == Tag_nodefaults)
8336 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
8337 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
8338 return ATTR_TYPE_FLAG_STR_VAL;
8339 else if (tag < 32)
8340 return ATTR_TYPE_FLAG_INT_VAL;
8341 else
8342 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
8343 }
8344
8345 /* The ABI defines that Tag_conformance should be emitted first, and that
8346 Tag_nodefaults should be second (if either is defined). This sets those
8347 two positions, and bumps up the position of all the remaining tags to
8348 compensate. */
8349 static int
8350 elf32_arm_obj_attrs_order (int num)
8351 {
8352 if (num == 4)
8353 return Tag_conformance;
8354 if (num == 5)
8355 return Tag_nodefaults;
8356 if ((num - 2) < Tag_nodefaults)
8357 return num - 2;
8358 if ((num - 1) < Tag_conformance)
8359 return num - 1;
8360 return num;
8361 }
8362
8363 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
8364 Returns -1 if no architecture could be read. */
8365
8366 static int
8367 get_secondary_compatible_arch (bfd *abfd)
8368 {
8369 obj_attribute *attr =
8370 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8371
8372 /* Note: the tag and its argument below are uleb128 values, though
8373 currently-defined values fit in one byte for each. */
8374 if (attr->s
8375 && attr->s[0] == Tag_CPU_arch
8376 && (attr->s[1] & 128) != 128
8377 && attr->s[2] == 0)
8378 return attr->s[1];
8379
8380 /* This tag is "safely ignorable", so don't complain if it looks funny. */
8381 return -1;
8382 }
8383
8384 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
8385 The tag is removed if ARCH is -1. */
8386
8387 static void
8388 set_secondary_compatible_arch (bfd *abfd, int arch)
8389 {
8390 obj_attribute *attr =
8391 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8392
8393 if (arch == -1)
8394 {
8395 attr->s = NULL;
8396 return;
8397 }
8398
8399 /* Note: the tag and its argument below are uleb128 values, though
8400 currently-defined values fit in one byte for each. */
8401 if (!attr->s)
8402 attr->s = bfd_alloc (abfd, 3);
8403 attr->s[0] = Tag_CPU_arch;
8404 attr->s[1] = arch;
8405 attr->s[2] = '\0';
8406 }
8407
8408 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
8409 into account. */
8410
8411 static int
8412 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
8413 int newtag, int secondary_compat)
8414 {
8415 #define T(X) TAG_CPU_ARCH_##X
8416 int tagl, tagh, result;
8417 const int v6t2[] =
8418 {
8419 T(V6T2), /* PRE_V4. */
8420 T(V6T2), /* V4. */
8421 T(V6T2), /* V4T. */
8422 T(V6T2), /* V5T. */
8423 T(V6T2), /* V5TE. */
8424 T(V6T2), /* V5TEJ. */
8425 T(V6T2), /* V6. */
8426 T(V7), /* V6KZ. */
8427 T(V6T2) /* V6T2. */
8428 };
8429 const int v6k[] =
8430 {
8431 T(V6K), /* PRE_V4. */
8432 T(V6K), /* V4. */
8433 T(V6K), /* V4T. */
8434 T(V6K), /* V5T. */
8435 T(V6K), /* V5TE. */
8436 T(V6K), /* V5TEJ. */
8437 T(V6K), /* V6. */
8438 T(V6KZ), /* V6KZ. */
8439 T(V7), /* V6T2. */
8440 T(V6K) /* V6K. */
8441 };
8442 const int v7[] =
8443 {
8444 T(V7), /* PRE_V4. */
8445 T(V7), /* V4. */
8446 T(V7), /* V4T. */
8447 T(V7), /* V5T. */
8448 T(V7), /* V5TE. */
8449 T(V7), /* V5TEJ. */
8450 T(V7), /* V6. */
8451 T(V7), /* V6KZ. */
8452 T(V7), /* V6T2. */
8453 T(V7), /* V6K. */
8454 T(V7) /* V7. */
8455 };
8456 const int v6_m[] =
8457 {
8458 -1, /* PRE_V4. */
8459 -1, /* V4. */
8460 T(V6K), /* V4T. */
8461 T(V6K), /* V5T. */
8462 T(V6K), /* V5TE. */
8463 T(V6K), /* V5TEJ. */
8464 T(V6K), /* V6. */
8465 T(V6KZ), /* V6KZ. */
8466 T(V7), /* V6T2. */
8467 T(V6K), /* V6K. */
8468 T(V7), /* V7. */
8469 T(V6_M) /* V6_M. */
8470 };
8471 const int v6s_m[] =
8472 {
8473 -1, /* PRE_V4. */
8474 -1, /* V4. */
8475 T(V6K), /* V4T. */
8476 T(V6K), /* V5T. */
8477 T(V6K), /* V5TE. */
8478 T(V6K), /* V5TEJ. */
8479 T(V6K), /* V6. */
8480 T(V6KZ), /* V6KZ. */
8481 T(V7), /* V6T2. */
8482 T(V6K), /* V6K. */
8483 T(V7), /* V7. */
8484 T(V6S_M), /* V6_M. */
8485 T(V6S_M) /* V6S_M. */
8486 };
8487 const int v4t_plus_v6_m[] =
8488 {
8489 -1, /* PRE_V4. */
8490 -1, /* V4. */
8491 T(V4T), /* V4T. */
8492 T(V5T), /* V5T. */
8493 T(V5TE), /* V5TE. */
8494 T(V5TEJ), /* V5TEJ. */
8495 T(V6), /* V6. */
8496 T(V6KZ), /* V6KZ. */
8497 T(V6T2), /* V6T2. */
8498 T(V6K), /* V6K. */
8499 T(V7), /* V7. */
8500 T(V6_M), /* V6_M. */
8501 T(V6S_M), /* V6S_M. */
8502 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
8503 };
8504 const int *comb[] =
8505 {
8506 v6t2,
8507 v6k,
8508 v7,
8509 v6_m,
8510 v6s_m,
8511 /* Pseudo-architecture. */
8512 v4t_plus_v6_m
8513 };
8514
8515 /* Check we've not got a higher architecture than we know about. */
8516
8517 if (oldtag >= MAX_TAG_CPU_ARCH || newtag >= MAX_TAG_CPU_ARCH)
8518 {
8519 _bfd_error_handler (_("ERROR: %B: Unknown CPU architecture"), ibfd);
8520 return -1;
8521 }
8522
8523 /* Override old tag if we have a Tag_also_compatible_with on the output. */
8524
8525 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
8526 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
8527 oldtag = T(V4T_PLUS_V6_M);
8528
8529 /* And override the new tag if we have a Tag_also_compatible_with on the
8530 input. */
8531
8532 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
8533 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
8534 newtag = T(V4T_PLUS_V6_M);
8535
8536 tagl = (oldtag < newtag) ? oldtag : newtag;
8537 result = tagh = (oldtag > newtag) ? oldtag : newtag;
8538
8539 /* Architectures before V6KZ add features monotonically. */
8540 if (tagh <= TAG_CPU_ARCH_V6KZ)
8541 return result;
8542
8543 result = comb[tagh - T(V6T2)][tagl];
8544
8545 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
8546 as the canonical version. */
8547 if (result == T(V4T_PLUS_V6_M))
8548 {
8549 result = T(V4T);
8550 *secondary_compat_out = T(V6_M);
8551 }
8552 else
8553 *secondary_compat_out = -1;
8554
8555 if (result == -1)
8556 {
8557 _bfd_error_handler (_("ERROR: %B: Conflicting CPU architectures %d/%d"),
8558 ibfd, oldtag, newtag);
8559 return -1;
8560 }
8561
8562 return result;
8563 #undef T
8564 }
8565
8566 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8567 are conflicting attributes. */
8568
8569 static bfd_boolean
8570 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8571 {
8572 obj_attribute *in_attr;
8573 obj_attribute *out_attr;
8574 obj_attribute_list *in_list;
8575 obj_attribute_list *out_list;
8576 obj_attribute_list **out_listp;
8577 /* Some tags have 0 = don't care, 1 = strong requirement,
8578 2 = weak requirement. */
8579 static const int order_021[3] = {0, 2, 1};
8580 /* For use with Tag_VFP_arch. */
8581 static const int order_01243[5] = {0, 1, 2, 4, 3};
8582 int i;
8583 bfd_boolean result = TRUE;
8584
8585 if (!elf_known_obj_attributes_proc (obfd)[0].i)
8586 {
8587 /* This is the first object. Copy the attributes. */
8588 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8589
8590 /* Use the Tag_null value to indicate the attributes have been
8591 initialized. */
8592 elf_known_obj_attributes_proc (obfd)[0].i = 1;
8593
8594 return TRUE;
8595 }
8596
8597 in_attr = elf_known_obj_attributes_proc (ibfd);
8598 out_attr = elf_known_obj_attributes_proc (obfd);
8599 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8600 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8601 {
8602 /* Ignore mismatches if the object doesn't use floating point. */
8603 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8604 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8605 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8606 {
8607 _bfd_error_handler
8608 (_("ERROR: %B uses VFP register arguments, %B does not"),
8609 ibfd, obfd);
8610 result = FALSE;
8611 }
8612 }
8613
8614 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
8615 {
8616 /* Merge this attribute with existing attributes. */
8617 switch (i)
8618 {
8619 case Tag_CPU_raw_name:
8620 case Tag_CPU_name:
8621 /* These are merged after Tag_CPU_arch. */
8622 break;
8623
8624 case Tag_ABI_optimization_goals:
8625 case Tag_ABI_FP_optimization_goals:
8626 /* Use the first value seen. */
8627 break;
8628
8629 case Tag_CPU_arch:
8630 {
8631 int secondary_compat = -1, secondary_compat_out = -1;
8632 unsigned int saved_out_attr = out_attr[i].i;
8633 static const char *name_table[] = {
8634 /* These aren't real CPU names, but we can't guess
8635 that from the architecture version alone. */
8636 "Pre v4",
8637 "ARM v4",
8638 "ARM v4T",
8639 "ARM v5T",
8640 "ARM v5TE",
8641 "ARM v5TEJ",
8642 "ARM v6",
8643 "ARM v6KZ",
8644 "ARM v6T2",
8645 "ARM v6K",
8646 "ARM v7",
8647 "ARM v6-M",
8648 "ARM v6S-M"
8649 };
8650
8651 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
8652 secondary_compat = get_secondary_compatible_arch (ibfd);
8653 secondary_compat_out = get_secondary_compatible_arch (obfd);
8654 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
8655 &secondary_compat_out,
8656 in_attr[i].i,
8657 secondary_compat);
8658 set_secondary_compatible_arch (obfd, secondary_compat_out);
8659
8660 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
8661 if (out_attr[i].i == saved_out_attr)
8662 ; /* Leave the names alone. */
8663 else if (out_attr[i].i == in_attr[i].i)
8664 {
8665 /* The output architecture has been changed to match the
8666 input architecture. Use the input names. */
8667 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
8668 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
8669 : NULL;
8670 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
8671 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
8672 : NULL;
8673 }
8674 else
8675 {
8676 out_attr[Tag_CPU_name].s = NULL;
8677 out_attr[Tag_CPU_raw_name].s = NULL;
8678 }
8679
8680 /* If we still don't have a value for Tag_CPU_name,
8681 make one up now. Tag_CPU_raw_name remains blank. */
8682 if (out_attr[Tag_CPU_name].s == NULL
8683 && out_attr[i].i < ARRAY_SIZE (name_table))
8684 out_attr[Tag_CPU_name].s =
8685 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
8686 }
8687 break;
8688
8689 case Tag_ARM_ISA_use:
8690 case Tag_THUMB_ISA_use:
8691 case Tag_WMMX_arch:
8692 case Tag_Advanced_SIMD_arch:
8693 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
8694 case Tag_ABI_FP_rounding:
8695 case Tag_ABI_FP_exceptions:
8696 case Tag_ABI_FP_user_exceptions:
8697 case Tag_ABI_FP_number_model:
8698 case Tag_VFP_HP_extension:
8699 case Tag_CPU_unaligned_access:
8700 case Tag_T2EE_use:
8701 case Tag_Virtualization_use:
8702 case Tag_MPextension_use:
8703 /* Use the largest value specified. */
8704 if (in_attr[i].i > out_attr[i].i)
8705 out_attr[i].i = in_attr[i].i;
8706 break;
8707
8708 case Tag_ABI_align8_preserved:
8709 case Tag_ABI_PCS_RO_data:
8710 /* Use the smallest value specified. */
8711 if (in_attr[i].i < out_attr[i].i)
8712 out_attr[i].i = in_attr[i].i;
8713 break;
8714
8715 case Tag_ABI_align8_needed:
8716 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
8717 && (in_attr[Tag_ABI_align8_preserved].i == 0
8718 || out_attr[Tag_ABI_align8_preserved].i == 0))
8719 {
8720 /* This error message should be enabled once all non-conformant
8721 binaries in the toolchain have had the attributes set
8722 properly.
8723 _bfd_error_handler
8724 (_("ERROR: %B: 8-byte data alignment conflicts with %B"),
8725 obfd, ibfd);
8726 result = FALSE; */
8727 }
8728 /* Fall through. */
8729 case Tag_ABI_FP_denormal:
8730 case Tag_ABI_PCS_GOT_use:
8731 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
8732 value if greater than 2 (for future-proofing). */
8733 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
8734 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
8735 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
8736 out_attr[i].i = in_attr[i].i;
8737 break;
8738
8739
8740 case Tag_CPU_arch_profile:
8741 if (out_attr[i].i != in_attr[i].i)
8742 {
8743 /* 0 will merge with anything.
8744 'A' and 'S' merge to 'A'.
8745 'R' and 'S' merge to 'R'.
8746 'M' and 'A|R|S' is an error. */
8747 if (out_attr[i].i == 0
8748 || (out_attr[i].i == 'S'
8749 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
8750 out_attr[i].i = in_attr[i].i;
8751 else if (in_attr[i].i == 0
8752 || (in_attr[i].i == 'S'
8753 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
8754 ; /* Do nothing. */
8755 else
8756 {
8757 _bfd_error_handler
8758 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8759 ibfd,
8760 in_attr[i].i ? in_attr[i].i : '0',
8761 out_attr[i].i ? out_attr[i].i : '0');
8762 result = FALSE;
8763 }
8764 }
8765 break;
8766 case Tag_VFP_arch:
8767 /* Use the "greatest" from the sequence 0, 1, 2, 4, 3, or the
8768 largest value if greater than 4 (for future-proofing). */
8769 if ((in_attr[i].i > 4 && in_attr[i].i > out_attr[i].i)
8770 || (in_attr[i].i <= 4 && out_attr[i].i <= 4
8771 && order_01243[in_attr[i].i] > order_01243[out_attr[i].i]))
8772 out_attr[i].i = in_attr[i].i;
8773 break;
8774 case Tag_PCS_config:
8775 if (out_attr[i].i == 0)
8776 out_attr[i].i = in_attr[i].i;
8777 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8778 {
8779 /* It's sometimes ok to mix different configs, so this is only
8780 a warning. */
8781 _bfd_error_handler
8782 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8783 }
8784 break;
8785 case Tag_ABI_PCS_R9_use:
8786 if (in_attr[i].i != out_attr[i].i
8787 && out_attr[i].i != AEABI_R9_unused
8788 && in_attr[i].i != AEABI_R9_unused)
8789 {
8790 _bfd_error_handler
8791 (_("ERROR: %B: Conflicting use of R9"), ibfd);
8792 result = FALSE;
8793 }
8794 if (out_attr[i].i == AEABI_R9_unused)
8795 out_attr[i].i = in_attr[i].i;
8796 break;
8797 case Tag_ABI_PCS_RW_data:
8798 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8799 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8800 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8801 {
8802 _bfd_error_handler
8803 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8804 ibfd);
8805 result = FALSE;
8806 }
8807 /* Use the smallest value specified. */
8808 if (in_attr[i].i < out_attr[i].i)
8809 out_attr[i].i = in_attr[i].i;
8810 break;
8811 case Tag_ABI_PCS_wchar_t:
8812 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
8813 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
8814 {
8815 _bfd_error_handler
8816 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
8817 ibfd, in_attr[i].i, out_attr[i].i);
8818 }
8819 else if (in_attr[i].i && !out_attr[i].i)
8820 out_attr[i].i = in_attr[i].i;
8821 break;
8822 case Tag_ABI_enum_size:
8823 if (in_attr[i].i != AEABI_enum_unused)
8824 {
8825 if (out_attr[i].i == AEABI_enum_unused
8826 || out_attr[i].i == AEABI_enum_forced_wide)
8827 {
8828 /* The existing object is compatible with anything.
8829 Use whatever requirements the new object has. */
8830 out_attr[i].i = in_attr[i].i;
8831 }
8832 else if (in_attr[i].i != AEABI_enum_forced_wide
8833 && out_attr[i].i != in_attr[i].i
8834 && !elf_arm_tdata (obfd)->no_enum_size_warning)
8835 {
8836 static const char *aeabi_enum_names[] =
8837 { "", "variable-size", "32-bit", "" };
8838 const char *in_name =
8839 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
8840 ? aeabi_enum_names[in_attr[i].i]
8841 : "<unknown>";
8842 const char *out_name =
8843 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
8844 ? aeabi_enum_names[out_attr[i].i]
8845 : "<unknown>";
8846 _bfd_error_handler
8847 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8848 ibfd, in_name, out_name);
8849 }
8850 }
8851 break;
8852 case Tag_ABI_VFP_args:
8853 /* Aready done. */
8854 break;
8855 case Tag_ABI_WMMX_args:
8856 if (in_attr[i].i != out_attr[i].i)
8857 {
8858 _bfd_error_handler
8859 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8860 ibfd, obfd);
8861 result = FALSE;
8862 }
8863 break;
8864 case Tag_compatibility:
8865 /* Merged in target-independent code. */
8866 break;
8867 case Tag_ABI_HardFP_use:
8868 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
8869 if ((in_attr[i].i == 1 && out_attr[i].i == 2)
8870 || (in_attr[i].i == 2 && out_attr[i].i == 1))
8871 out_attr[i].i = 3;
8872 else if (in_attr[i].i > out_attr[i].i)
8873 out_attr[i].i = in_attr[i].i;
8874 break;
8875 case Tag_ABI_FP_16bit_format:
8876 if (in_attr[i].i != 0 && out_attr[i].i != 0)
8877 {
8878 if (in_attr[i].i != out_attr[i].i)
8879 {
8880 _bfd_error_handler
8881 (_("ERROR: fp16 format mismatch between %B and %B"),
8882 ibfd, obfd);
8883 result = FALSE;
8884 }
8885 }
8886 if (in_attr[i].i != 0)
8887 out_attr[i].i = in_attr[i].i;
8888 break;
8889
8890 case Tag_nodefaults:
8891 /* This tag is set if it exists, but the value is unused (and is
8892 typically zero). We don't actually need to do anything here -
8893 the merge happens automatically when the type flags are merged
8894 below. */
8895 break;
8896 case Tag_also_compatible_with:
8897 /* Already done in Tag_CPU_arch. */
8898 break;
8899 case Tag_conformance:
8900 /* Keep the attribute if it matches. Throw it away otherwise.
8901 No attribute means no claim to conform. */
8902 if (!in_attr[i].s || !out_attr[i].s
8903 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
8904 out_attr[i].s = NULL;
8905 break;
8906
8907 default:
8908 {
8909 bfd *err_bfd = NULL;
8910
8911 /* The "known_obj_attributes" table does contain some undefined
8912 attributes. Ensure that there are unused. */
8913 if (out_attr[i].i != 0 || out_attr[i].s != NULL)
8914 err_bfd = obfd;
8915 else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
8916 err_bfd = ibfd;
8917
8918 if (err_bfd != NULL)
8919 {
8920 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
8921 if ((i & 127) < 64)
8922 {
8923 _bfd_error_handler
8924 (_("%B: Unknown mandatory EABI object attribute %d"),
8925 err_bfd, i);
8926 bfd_set_error (bfd_error_bad_value);
8927 result = FALSE;
8928 }
8929 else
8930 {
8931 _bfd_error_handler
8932 (_("Warning: %B: Unknown EABI object attribute %d"),
8933 err_bfd, i);
8934 }
8935 }
8936
8937 /* Only pass on attributes that match in both inputs. */
8938 if (in_attr[i].i != out_attr[i].i
8939 || in_attr[i].s != out_attr[i].s
8940 || (in_attr[i].s != NULL && out_attr[i].s != NULL
8941 && strcmp (in_attr[i].s, out_attr[i].s) != 0))
8942 {
8943 out_attr[i].i = 0;
8944 out_attr[i].s = NULL;
8945 }
8946 }
8947 }
8948
8949 /* If out_attr was copied from in_attr then it won't have a type yet. */
8950 if (in_attr[i].type && !out_attr[i].type)
8951 out_attr[i].type = in_attr[i].type;
8952 }
8953
8954 /* Merge Tag_compatibility attributes and any common GNU ones. */
8955 _bfd_elf_merge_object_attributes (ibfd, obfd);
8956
8957 /* Check for any attributes not known on ARM. */
8958 in_list = elf_other_obj_attributes_proc (ibfd);
8959 out_listp = &elf_other_obj_attributes_proc (obfd);
8960 out_list = *out_listp;
8961
8962 for (; in_list || out_list; )
8963 {
8964 bfd *err_bfd = NULL;
8965 int err_tag = 0;
8966
8967 /* The tags for each list are in numerical order. */
8968 /* If the tags are equal, then merge. */
8969 if (out_list && (!in_list || in_list->tag > out_list->tag))
8970 {
8971 /* This attribute only exists in obfd. We can't merge, and we don't
8972 know what the tag means, so delete it. */
8973 err_bfd = obfd;
8974 err_tag = out_list->tag;
8975 *out_listp = out_list->next;
8976 out_list = *out_listp;
8977 }
8978 else if (in_list && (!out_list || in_list->tag < out_list->tag))
8979 {
8980 /* This attribute only exists in ibfd. We can't merge, and we don't
8981 know what the tag means, so ignore it. */
8982 err_bfd = ibfd;
8983 err_tag = in_list->tag;
8984 in_list = in_list->next;
8985 }
8986 else /* The tags are equal. */
8987 {
8988 /* As present, all attributes in the list are unknown, and
8989 therefore can't be merged meaningfully. */
8990 err_bfd = obfd;
8991 err_tag = out_list->tag;
8992
8993 /* Only pass on attributes that match in both inputs. */
8994 if (in_list->attr.i != out_list->attr.i
8995 || in_list->attr.s != out_list->attr.s
8996 || (in_list->attr.s && out_list->attr.s
8997 && strcmp (in_list->attr.s, out_list->attr.s) != 0))
8998 {
8999 /* No match. Delete the attribute. */
9000 *out_listp = out_list->next;
9001 out_list = *out_listp;
9002 }
9003 else
9004 {
9005 /* Matched. Keep the attribute and move to the next. */
9006 out_list = out_list->next;
9007 in_list = in_list->next;
9008 }
9009 }
9010
9011 if (err_bfd)
9012 {
9013 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
9014 if ((err_tag & 127) < 64)
9015 {
9016 _bfd_error_handler
9017 (_("%B: Unknown mandatory EABI object attribute %d"),
9018 err_bfd, err_tag);
9019 bfd_set_error (bfd_error_bad_value);
9020 result = FALSE;
9021 }
9022 else
9023 {
9024 _bfd_error_handler
9025 (_("Warning: %B: Unknown EABI object attribute %d"),
9026 err_bfd, err_tag);
9027 }
9028 }
9029 }
9030 return result;
9031 }
9032
9033
9034 /* Return TRUE if the two EABI versions are incompatible. */
9035
9036 static bfd_boolean
9037 elf32_arm_versions_compatible (unsigned iver, unsigned over)
9038 {
9039 /* v4 and v5 are the same spec before and after it was released,
9040 so allow mixing them. */
9041 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
9042 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
9043 return TRUE;
9044
9045 return (iver == over);
9046 }
9047
9048 /* Merge backend specific data from an object file to the output
9049 object file when linking. */
9050
9051 static bfd_boolean
9052 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
9053 {
9054 flagword out_flags;
9055 flagword in_flags;
9056 bfd_boolean flags_compatible = TRUE;
9057 asection *sec;
9058
9059 /* Check if we have the same endianess. */
9060 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
9061 return FALSE;
9062
9063 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
9064 return TRUE;
9065
9066 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
9067 return FALSE;
9068
9069 /* The input BFD must have had its flags initialised. */
9070 /* The following seems bogus to me -- The flags are initialized in
9071 the assembler but I don't think an elf_flags_init field is
9072 written into the object. */
9073 /* BFD_ASSERT (elf_flags_init (ibfd)); */
9074
9075 in_flags = elf_elfheader (ibfd)->e_flags;
9076 out_flags = elf_elfheader (obfd)->e_flags;
9077
9078 /* In theory there is no reason why we couldn't handle this. However
9079 in practice it isn't even close to working and there is no real
9080 reason to want it. */
9081 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
9082 && !(ibfd->flags & DYNAMIC)
9083 && (in_flags & EF_ARM_BE8))
9084 {
9085 _bfd_error_handler (_("ERROR: %B is already in final BE8 format"),
9086 ibfd);
9087 return FALSE;
9088 }
9089
9090 if (!elf_flags_init (obfd))
9091 {
9092 /* If the input is the default architecture and had the default
9093 flags then do not bother setting the flags for the output
9094 architecture, instead allow future merges to do this. If no
9095 future merges ever set these flags then they will retain their
9096 uninitialised values, which surprise surprise, correspond
9097 to the default values. */
9098 if (bfd_get_arch_info (ibfd)->the_default
9099 && elf_elfheader (ibfd)->e_flags == 0)
9100 return TRUE;
9101
9102 elf_flags_init (obfd) = TRUE;
9103 elf_elfheader (obfd)->e_flags = in_flags;
9104
9105 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
9106 && bfd_get_arch_info (obfd)->the_default)
9107 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
9108
9109 return TRUE;
9110 }
9111
9112 /* Determine what should happen if the input ARM architecture
9113 does not match the output ARM architecture. */
9114 if (! bfd_arm_merge_machines (ibfd, obfd))
9115 return FALSE;
9116
9117 /* Identical flags must be compatible. */
9118 if (in_flags == out_flags)
9119 return TRUE;
9120
9121 /* Check to see if the input BFD actually contains any sections. If
9122 not, its flags may not have been initialised either, but it
9123 cannot actually cause any incompatiblity. Do not short-circuit
9124 dynamic objects; their section list may be emptied by
9125 elf_link_add_object_symbols.
9126
9127 Also check to see if there are no code sections in the input.
9128 In this case there is no need to check for code specific flags.
9129 XXX - do we need to worry about floating-point format compatability
9130 in data sections ? */
9131 if (!(ibfd->flags & DYNAMIC))
9132 {
9133 bfd_boolean null_input_bfd = TRUE;
9134 bfd_boolean only_data_sections = TRUE;
9135
9136 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
9137 {
9138 /* Ignore synthetic glue sections. */
9139 if (strcmp (sec->name, ".glue_7")
9140 && strcmp (sec->name, ".glue_7t"))
9141 {
9142 if ((bfd_get_section_flags (ibfd, sec)
9143 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
9144 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
9145 only_data_sections = FALSE;
9146
9147 null_input_bfd = FALSE;
9148 break;
9149 }
9150 }
9151
9152 if (null_input_bfd || only_data_sections)
9153 return TRUE;
9154 }
9155
9156 /* Complain about various flag mismatches. */
9157 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
9158 EF_ARM_EABI_VERSION (out_flags)))
9159 {
9160 _bfd_error_handler
9161 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
9162 ibfd, obfd,
9163 (in_flags & EF_ARM_EABIMASK) >> 24,
9164 (out_flags & EF_ARM_EABIMASK) >> 24);
9165 return FALSE;
9166 }
9167
9168 /* Not sure what needs to be checked for EABI versions >= 1. */
9169 /* VxWorks libraries do not use these flags. */
9170 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
9171 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
9172 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
9173 {
9174 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
9175 {
9176 _bfd_error_handler
9177 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
9178 ibfd, obfd,
9179 in_flags & EF_ARM_APCS_26 ? 26 : 32,
9180 out_flags & EF_ARM_APCS_26 ? 26 : 32);
9181 flags_compatible = FALSE;
9182 }
9183
9184 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
9185 {
9186 if (in_flags & EF_ARM_APCS_FLOAT)
9187 _bfd_error_handler
9188 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
9189 ibfd, obfd);
9190 else
9191 _bfd_error_handler
9192 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
9193 ibfd, obfd);
9194
9195 flags_compatible = FALSE;
9196 }
9197
9198 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
9199 {
9200 if (in_flags & EF_ARM_VFP_FLOAT)
9201 _bfd_error_handler
9202 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
9203 ibfd, obfd);
9204 else
9205 _bfd_error_handler
9206 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
9207 ibfd, obfd);
9208
9209 flags_compatible = FALSE;
9210 }
9211
9212 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
9213 {
9214 if (in_flags & EF_ARM_MAVERICK_FLOAT)
9215 _bfd_error_handler
9216 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
9217 ibfd, obfd);
9218 else
9219 _bfd_error_handler
9220 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
9221 ibfd, obfd);
9222
9223 flags_compatible = FALSE;
9224 }
9225
9226 #ifdef EF_ARM_SOFT_FLOAT
9227 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
9228 {
9229 /* We can allow interworking between code that is VFP format
9230 layout, and uses either soft float or integer regs for
9231 passing floating point arguments and results. We already
9232 know that the APCS_FLOAT flags match; similarly for VFP
9233 flags. */
9234 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
9235 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
9236 {
9237 if (in_flags & EF_ARM_SOFT_FLOAT)
9238 _bfd_error_handler
9239 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
9240 ibfd, obfd);
9241 else
9242 _bfd_error_handler
9243 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
9244 ibfd, obfd);
9245
9246 flags_compatible = FALSE;
9247 }
9248 }
9249 #endif
9250
9251 /* Interworking mismatch is only a warning. */
9252 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
9253 {
9254 if (in_flags & EF_ARM_INTERWORK)
9255 {
9256 _bfd_error_handler
9257 (_("Warning: %B supports interworking, whereas %B does not"),
9258 ibfd, obfd);
9259 }
9260 else
9261 {
9262 _bfd_error_handler
9263 (_("Warning: %B does not support interworking, whereas %B does"),
9264 ibfd, obfd);
9265 }
9266 }
9267 }
9268
9269 return flags_compatible;
9270 }
9271
9272 /* Display the flags field. */
9273
9274 static bfd_boolean
9275 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
9276 {
9277 FILE * file = (FILE *) ptr;
9278 unsigned long flags;
9279
9280 BFD_ASSERT (abfd != NULL && ptr != NULL);
9281
9282 /* Print normal ELF private data. */
9283 _bfd_elf_print_private_bfd_data (abfd, ptr);
9284
9285 flags = elf_elfheader (abfd)->e_flags;
9286 /* Ignore init flag - it may not be set, despite the flags field
9287 containing valid data. */
9288
9289 /* xgettext:c-format */
9290 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9291
9292 switch (EF_ARM_EABI_VERSION (flags))
9293 {
9294 case EF_ARM_EABI_UNKNOWN:
9295 /* The following flag bits are GNU extensions and not part of the
9296 official ARM ELF extended ABI. Hence they are only decoded if
9297 the EABI version is not set. */
9298 if (flags & EF_ARM_INTERWORK)
9299 fprintf (file, _(" [interworking enabled]"));
9300
9301 if (flags & EF_ARM_APCS_26)
9302 fprintf (file, " [APCS-26]");
9303 else
9304 fprintf (file, " [APCS-32]");
9305
9306 if (flags & EF_ARM_VFP_FLOAT)
9307 fprintf (file, _(" [VFP float format]"));
9308 else if (flags & EF_ARM_MAVERICK_FLOAT)
9309 fprintf (file, _(" [Maverick float format]"));
9310 else
9311 fprintf (file, _(" [FPA float format]"));
9312
9313 if (flags & EF_ARM_APCS_FLOAT)
9314 fprintf (file, _(" [floats passed in float registers]"));
9315
9316 if (flags & EF_ARM_PIC)
9317 fprintf (file, _(" [position independent]"));
9318
9319 if (flags & EF_ARM_NEW_ABI)
9320 fprintf (file, _(" [new ABI]"));
9321
9322 if (flags & EF_ARM_OLD_ABI)
9323 fprintf (file, _(" [old ABI]"));
9324
9325 if (flags & EF_ARM_SOFT_FLOAT)
9326 fprintf (file, _(" [software FP]"));
9327
9328 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
9329 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
9330 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
9331 | EF_ARM_MAVERICK_FLOAT);
9332 break;
9333
9334 case EF_ARM_EABI_VER1:
9335 fprintf (file, _(" [Version1 EABI]"));
9336
9337 if (flags & EF_ARM_SYMSARESORTED)
9338 fprintf (file, _(" [sorted symbol table]"));
9339 else
9340 fprintf (file, _(" [unsorted symbol table]"));
9341
9342 flags &= ~ EF_ARM_SYMSARESORTED;
9343 break;
9344
9345 case EF_ARM_EABI_VER2:
9346 fprintf (file, _(" [Version2 EABI]"));
9347
9348 if (flags & EF_ARM_SYMSARESORTED)
9349 fprintf (file, _(" [sorted symbol table]"));
9350 else
9351 fprintf (file, _(" [unsorted symbol table]"));
9352
9353 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
9354 fprintf (file, _(" [dynamic symbols use segment index]"));
9355
9356 if (flags & EF_ARM_MAPSYMSFIRST)
9357 fprintf (file, _(" [mapping symbols precede others]"));
9358
9359 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
9360 | EF_ARM_MAPSYMSFIRST);
9361 break;
9362
9363 case EF_ARM_EABI_VER3:
9364 fprintf (file, _(" [Version3 EABI]"));
9365 break;
9366
9367 case EF_ARM_EABI_VER4:
9368 fprintf (file, _(" [Version4 EABI]"));
9369 goto eabi;
9370
9371 case EF_ARM_EABI_VER5:
9372 fprintf (file, _(" [Version5 EABI]"));
9373 eabi:
9374 if (flags & EF_ARM_BE8)
9375 fprintf (file, _(" [BE8]"));
9376
9377 if (flags & EF_ARM_LE8)
9378 fprintf (file, _(" [LE8]"));
9379
9380 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
9381 break;
9382
9383 default:
9384 fprintf (file, _(" <EABI version unrecognised>"));
9385 break;
9386 }
9387
9388 flags &= ~ EF_ARM_EABIMASK;
9389
9390 if (flags & EF_ARM_RELEXEC)
9391 fprintf (file, _(" [relocatable executable]"));
9392
9393 if (flags & EF_ARM_HASENTRY)
9394 fprintf (file, _(" [has entry point]"));
9395
9396 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
9397
9398 if (flags)
9399 fprintf (file, _("<Unrecognised flag bits set>"));
9400
9401 fputc ('\n', file);
9402
9403 return TRUE;
9404 }
9405
9406 static int
9407 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
9408 {
9409 switch (ELF_ST_TYPE (elf_sym->st_info))
9410 {
9411 case STT_ARM_TFUNC:
9412 return ELF_ST_TYPE (elf_sym->st_info);
9413
9414 case STT_ARM_16BIT:
9415 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
9416 This allows us to distinguish between data used by Thumb instructions
9417 and non-data (which is probably code) inside Thumb regions of an
9418 executable. */
9419 if (type != STT_OBJECT && type != STT_TLS)
9420 return ELF_ST_TYPE (elf_sym->st_info);
9421 break;
9422
9423 default:
9424 break;
9425 }
9426
9427 return type;
9428 }
9429
9430 static asection *
9431 elf32_arm_gc_mark_hook (asection *sec,
9432 struct bfd_link_info *info,
9433 Elf_Internal_Rela *rel,
9434 struct elf_link_hash_entry *h,
9435 Elf_Internal_Sym *sym)
9436 {
9437 if (h != NULL)
9438 switch (ELF32_R_TYPE (rel->r_info))
9439 {
9440 case R_ARM_GNU_VTINHERIT:
9441 case R_ARM_GNU_VTENTRY:
9442 return NULL;
9443 }
9444
9445 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9446 }
9447
9448 /* Update the got entry reference counts for the section being removed. */
9449
9450 static bfd_boolean
9451 elf32_arm_gc_sweep_hook (bfd * abfd,
9452 struct bfd_link_info * info,
9453 asection * sec,
9454 const Elf_Internal_Rela * relocs)
9455 {
9456 Elf_Internal_Shdr *symtab_hdr;
9457 struct elf_link_hash_entry **sym_hashes;
9458 bfd_signed_vma *local_got_refcounts;
9459 const Elf_Internal_Rela *rel, *relend;
9460 struct elf32_arm_link_hash_table * globals;
9461
9462 if (info->relocatable)
9463 return TRUE;
9464
9465 globals = elf32_arm_hash_table (info);
9466
9467 elf_section_data (sec)->local_dynrel = NULL;
9468
9469 symtab_hdr = & elf_symtab_hdr (abfd);
9470 sym_hashes = elf_sym_hashes (abfd);
9471 local_got_refcounts = elf_local_got_refcounts (abfd);
9472
9473 check_use_blx (globals);
9474
9475 relend = relocs + sec->reloc_count;
9476 for (rel = relocs; rel < relend; rel++)
9477 {
9478 unsigned long r_symndx;
9479 struct elf_link_hash_entry *h = NULL;
9480 int r_type;
9481
9482 r_symndx = ELF32_R_SYM (rel->r_info);
9483 if (r_symndx >= symtab_hdr->sh_info)
9484 {
9485 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9486 while (h->root.type == bfd_link_hash_indirect
9487 || h->root.type == bfd_link_hash_warning)
9488 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9489 }
9490
9491 r_type = ELF32_R_TYPE (rel->r_info);
9492 r_type = arm_real_reloc_type (globals, r_type);
9493 switch (r_type)
9494 {
9495 case R_ARM_GOT32:
9496 case R_ARM_GOT_PREL:
9497 case R_ARM_TLS_GD32:
9498 case R_ARM_TLS_IE32:
9499 if (h != NULL)
9500 {
9501 if (h->got.refcount > 0)
9502 h->got.refcount -= 1;
9503 }
9504 else if (local_got_refcounts != NULL)
9505 {
9506 if (local_got_refcounts[r_symndx] > 0)
9507 local_got_refcounts[r_symndx] -= 1;
9508 }
9509 break;
9510
9511 case R_ARM_TLS_LDM32:
9512 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
9513 break;
9514
9515 case R_ARM_ABS32:
9516 case R_ARM_ABS32_NOI:
9517 case R_ARM_REL32:
9518 case R_ARM_REL32_NOI:
9519 case R_ARM_PC24:
9520 case R_ARM_PLT32:
9521 case R_ARM_CALL:
9522 case R_ARM_JUMP24:
9523 case R_ARM_PREL31:
9524 case R_ARM_THM_CALL:
9525 case R_ARM_THM_JUMP24:
9526 case R_ARM_THM_JUMP19:
9527 case R_ARM_MOVW_ABS_NC:
9528 case R_ARM_MOVT_ABS:
9529 case R_ARM_MOVW_PREL_NC:
9530 case R_ARM_MOVT_PREL:
9531 case R_ARM_THM_MOVW_ABS_NC:
9532 case R_ARM_THM_MOVT_ABS:
9533 case R_ARM_THM_MOVW_PREL_NC:
9534 case R_ARM_THM_MOVT_PREL:
9535 /* Should the interworking branches be here also? */
9536
9537 if (h != NULL)
9538 {
9539 struct elf32_arm_link_hash_entry *eh;
9540 struct elf32_arm_relocs_copied **pp;
9541 struct elf32_arm_relocs_copied *p;
9542
9543 eh = (struct elf32_arm_link_hash_entry *) h;
9544
9545 if (h->plt.refcount > 0)
9546 {
9547 h->plt.refcount -= 1;
9548 if (r_type == R_ARM_THM_CALL)
9549 eh->plt_maybe_thumb_refcount--;
9550
9551 if (r_type == R_ARM_THM_JUMP24
9552 || r_type == R_ARM_THM_JUMP19)
9553 eh->plt_thumb_refcount--;
9554 }
9555
9556 if (r_type == R_ARM_ABS32
9557 || r_type == R_ARM_REL32
9558 || r_type == R_ARM_ABS32_NOI
9559 || r_type == R_ARM_REL32_NOI)
9560 {
9561 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
9562 pp = &p->next)
9563 if (p->section == sec)
9564 {
9565 p->count -= 1;
9566 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
9567 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
9568 p->pc_count -= 1;
9569 if (p->count == 0)
9570 *pp = p->next;
9571 break;
9572 }
9573 }
9574 }
9575 break;
9576
9577 default:
9578 break;
9579 }
9580 }
9581
9582 return TRUE;
9583 }
9584
9585 /* Look through the relocs for a section during the first phase. */
9586
9587 static bfd_boolean
9588 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
9589 asection *sec, const Elf_Internal_Rela *relocs)
9590 {
9591 Elf_Internal_Shdr *symtab_hdr;
9592 struct elf_link_hash_entry **sym_hashes;
9593 const Elf_Internal_Rela *rel;
9594 const Elf_Internal_Rela *rel_end;
9595 bfd *dynobj;
9596 asection *sreloc;
9597 bfd_vma *local_got_offsets;
9598 struct elf32_arm_link_hash_table *htab;
9599 bfd_boolean needs_plt;
9600 unsigned long nsyms;
9601
9602 if (info->relocatable)
9603 return TRUE;
9604
9605 BFD_ASSERT (is_arm_elf (abfd));
9606
9607 htab = elf32_arm_hash_table (info);
9608 sreloc = NULL;
9609
9610 /* Create dynamic sections for relocatable executables so that we can
9611 copy relocations. */
9612 if (htab->root.is_relocatable_executable
9613 && ! htab->root.dynamic_sections_created)
9614 {
9615 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
9616 return FALSE;
9617 }
9618
9619 dynobj = elf_hash_table (info)->dynobj;
9620 local_got_offsets = elf_local_got_offsets (abfd);
9621
9622 symtab_hdr = & elf_symtab_hdr (abfd);
9623 sym_hashes = elf_sym_hashes (abfd);
9624 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
9625
9626 rel_end = relocs + sec->reloc_count;
9627 for (rel = relocs; rel < rel_end; rel++)
9628 {
9629 struct elf_link_hash_entry *h;
9630 struct elf32_arm_link_hash_entry *eh;
9631 unsigned long r_symndx;
9632 int r_type;
9633
9634 r_symndx = ELF32_R_SYM (rel->r_info);
9635 r_type = ELF32_R_TYPE (rel->r_info);
9636 r_type = arm_real_reloc_type (htab, r_type);
9637
9638 if (r_symndx >= nsyms
9639 /* PR 9934: It is possible to have relocations that do not
9640 refer to symbols, thus it is also possible to have an
9641 object file containing relocations but no symbol table. */
9642 && (r_symndx > 0 || nsyms > 0))
9643 {
9644 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
9645 r_symndx);
9646 return FALSE;
9647 }
9648
9649 if (nsyms == 0 || r_symndx < symtab_hdr->sh_info)
9650 h = NULL;
9651 else
9652 {
9653 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9654 while (h->root.type == bfd_link_hash_indirect
9655 || h->root.type == bfd_link_hash_warning)
9656 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9657 }
9658
9659 eh = (struct elf32_arm_link_hash_entry *) h;
9660
9661 switch (r_type)
9662 {
9663 case R_ARM_GOT32:
9664 case R_ARM_GOT_PREL:
9665 case R_ARM_TLS_GD32:
9666 case R_ARM_TLS_IE32:
9667 /* This symbol requires a global offset table entry. */
9668 {
9669 int tls_type, old_tls_type;
9670
9671 switch (r_type)
9672 {
9673 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
9674 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
9675 default: tls_type = GOT_NORMAL; break;
9676 }
9677
9678 if (h != NULL)
9679 {
9680 h->got.refcount++;
9681 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9682 }
9683 else
9684 {
9685 bfd_signed_vma *local_got_refcounts;
9686
9687 /* This is a global offset table entry for a local symbol. */
9688 local_got_refcounts = elf_local_got_refcounts (abfd);
9689 if (local_got_refcounts == NULL)
9690 {
9691 bfd_size_type size;
9692
9693 size = symtab_hdr->sh_info;
9694 size *= (sizeof (bfd_signed_vma) + sizeof (char));
9695 local_got_refcounts = bfd_zalloc (abfd, size);
9696 if (local_got_refcounts == NULL)
9697 return FALSE;
9698 elf_local_got_refcounts (abfd) = local_got_refcounts;
9699 elf32_arm_local_got_tls_type (abfd)
9700 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
9701 }
9702 local_got_refcounts[r_symndx] += 1;
9703 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
9704 }
9705
9706 /* We will already have issued an error message if there is a
9707 TLS / non-TLS mismatch, based on the symbol type. We don't
9708 support any linker relaxations. So just combine any TLS
9709 types needed. */
9710 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
9711 && tls_type != GOT_NORMAL)
9712 tls_type |= old_tls_type;
9713
9714 if (old_tls_type != tls_type)
9715 {
9716 if (h != NULL)
9717 elf32_arm_hash_entry (h)->tls_type = tls_type;
9718 else
9719 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9720 }
9721 }
9722 /* Fall through. */
9723
9724 case R_ARM_TLS_LDM32:
9725 if (r_type == R_ARM_TLS_LDM32)
9726 htab->tls_ldm_got.refcount++;
9727 /* Fall through. */
9728
9729 case R_ARM_GOTOFF32:
9730 case R_ARM_GOTPC:
9731 if (htab->sgot == NULL)
9732 {
9733 if (htab->root.dynobj == NULL)
9734 htab->root.dynobj = abfd;
9735 if (!create_got_section (htab->root.dynobj, info))
9736 return FALSE;
9737 }
9738 break;
9739
9740 case R_ARM_ABS12:
9741 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9742 ldr __GOTT_INDEX__ offsets. */
9743 if (!htab->vxworks_p)
9744 break;
9745 /* Fall through. */
9746
9747 case R_ARM_PC24:
9748 case R_ARM_PLT32:
9749 case R_ARM_CALL:
9750 case R_ARM_JUMP24:
9751 case R_ARM_PREL31:
9752 case R_ARM_THM_CALL:
9753 case R_ARM_THM_JUMP24:
9754 case R_ARM_THM_JUMP19:
9755 needs_plt = 1;
9756 goto normal_reloc;
9757
9758 case R_ARM_ABS32:
9759 case R_ARM_ABS32_NOI:
9760 case R_ARM_REL32:
9761 case R_ARM_REL32_NOI:
9762 case R_ARM_MOVW_ABS_NC:
9763 case R_ARM_MOVT_ABS:
9764 case R_ARM_MOVW_PREL_NC:
9765 case R_ARM_MOVT_PREL:
9766 case R_ARM_THM_MOVW_ABS_NC:
9767 case R_ARM_THM_MOVT_ABS:
9768 case R_ARM_THM_MOVW_PREL_NC:
9769 case R_ARM_THM_MOVT_PREL:
9770 needs_plt = 0;
9771 normal_reloc:
9772
9773 /* Should the interworking branches be listed here? */
9774 if (h != NULL)
9775 {
9776 /* If this reloc is in a read-only section, we might
9777 need a copy reloc. We can't check reliably at this
9778 stage whether the section is read-only, as input
9779 sections have not yet been mapped to output sections.
9780 Tentatively set the flag for now, and correct in
9781 adjust_dynamic_symbol. */
9782 if (!info->shared)
9783 h->non_got_ref = 1;
9784
9785 /* We may need a .plt entry if the function this reloc
9786 refers to is in a different object. We can't tell for
9787 sure yet, because something later might force the
9788 symbol local. */
9789 if (needs_plt)
9790 h->needs_plt = 1;
9791
9792 /* If we create a PLT entry, this relocation will reference
9793 it, even if it's an ABS32 relocation. */
9794 h->plt.refcount += 1;
9795
9796 /* It's too early to use htab->use_blx here, so we have to
9797 record possible blx references separately from
9798 relocs that definitely need a thumb stub. */
9799
9800 if (r_type == R_ARM_THM_CALL)
9801 eh->plt_maybe_thumb_refcount += 1;
9802
9803 if (r_type == R_ARM_THM_JUMP24
9804 || r_type == R_ARM_THM_JUMP19)
9805 eh->plt_thumb_refcount += 1;
9806 }
9807
9808 /* If we are creating a shared library or relocatable executable,
9809 and this is a reloc against a global symbol, or a non PC
9810 relative reloc against a local symbol, then we need to copy
9811 the reloc into the shared library. However, if we are linking
9812 with -Bsymbolic, we do not need to copy a reloc against a
9813 global symbol which is defined in an object we are
9814 including in the link (i.e., DEF_REGULAR is set). At
9815 this point we have not seen all the input files, so it is
9816 possible that DEF_REGULAR is not set now but will be set
9817 later (it is never cleared). We account for that
9818 possibility below by storing information in the
9819 relocs_copied field of the hash table entry. */
9820 if ((info->shared || htab->root.is_relocatable_executable)
9821 && (sec->flags & SEC_ALLOC) != 0
9822 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
9823 || (h != NULL && ! h->needs_plt
9824 && (! info->symbolic || ! h->def_regular))))
9825 {
9826 struct elf32_arm_relocs_copied *p, **head;
9827
9828 /* When creating a shared object, we must copy these
9829 reloc types into the output file. We create a reloc
9830 section in dynobj and make room for this reloc. */
9831 if (sreloc == NULL)
9832 {
9833 sreloc = _bfd_elf_make_dynamic_reloc_section
9834 (sec, dynobj, 2, abfd, ! htab->use_rel);
9835
9836 if (sreloc == NULL)
9837 return FALSE;
9838
9839 /* BPABI objects never have dynamic relocations mapped. */
9840 if (! htab->symbian_p)
9841 {
9842 flagword flags;
9843
9844 flags = bfd_get_section_flags (dynobj, sreloc);
9845 flags |= (SEC_LOAD | SEC_ALLOC);
9846 bfd_set_section_flags (dynobj, sreloc, flags);
9847 }
9848 }
9849
9850 /* If this is a global symbol, we count the number of
9851 relocations we need for this symbol. */
9852 if (h != NULL)
9853 {
9854 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9855 }
9856 else
9857 {
9858 /* Track dynamic relocs needed for local syms too.
9859 We really need local syms available to do this
9860 easily. Oh well. */
9861
9862 asection *s;
9863 void *vpp;
9864
9865 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9866 sec, r_symndx);
9867 if (s == NULL)
9868 return FALSE;
9869
9870 vpp = &elf_section_data (s)->local_dynrel;
9871 head = (struct elf32_arm_relocs_copied **) vpp;
9872 }
9873
9874 p = *head;
9875 if (p == NULL || p->section != sec)
9876 {
9877 bfd_size_type amt = sizeof *p;
9878
9879 p = bfd_alloc (htab->root.dynobj, amt);
9880 if (p == NULL)
9881 return FALSE;
9882 p->next = *head;
9883 *head = p;
9884 p->section = sec;
9885 p->count = 0;
9886 p->pc_count = 0;
9887 }
9888
9889 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9890 p->pc_count += 1;
9891 p->count += 1;
9892 }
9893 break;
9894
9895 /* This relocation describes the C++ object vtable hierarchy.
9896 Reconstruct it for later use during GC. */
9897 case R_ARM_GNU_VTINHERIT:
9898 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9899 return FALSE;
9900 break;
9901
9902 /* This relocation describes which C++ vtable entries are actually
9903 used. Record for later use during GC. */
9904 case R_ARM_GNU_VTENTRY:
9905 BFD_ASSERT (h != NULL);
9906 if (h != NULL
9907 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9908 return FALSE;
9909 break;
9910 }
9911 }
9912
9913 return TRUE;
9914 }
9915
9916 /* Unwinding tables are not referenced directly. This pass marks them as
9917 required if the corresponding code section is marked. */
9918
9919 static bfd_boolean
9920 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9921 elf_gc_mark_hook_fn gc_mark_hook)
9922 {
9923 bfd *sub;
9924 Elf_Internal_Shdr **elf_shdrp;
9925 bfd_boolean again;
9926
9927 /* Marking EH data may cause additional code sections to be marked,
9928 requiring multiple passes. */
9929 again = TRUE;
9930 while (again)
9931 {
9932 again = FALSE;
9933 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9934 {
9935 asection *o;
9936
9937 if (! is_arm_elf (sub))
9938 continue;
9939
9940 elf_shdrp = elf_elfsections (sub);
9941 for (o = sub->sections; o != NULL; o = o->next)
9942 {
9943 Elf_Internal_Shdr *hdr;
9944
9945 hdr = &elf_section_data (o)->this_hdr;
9946 if (hdr->sh_type == SHT_ARM_EXIDX
9947 && hdr->sh_link
9948 && hdr->sh_link < elf_numsections (sub)
9949 && !o->gc_mark
9950 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9951 {
9952 again = TRUE;
9953 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9954 return FALSE;
9955 }
9956 }
9957 }
9958 }
9959
9960 return TRUE;
9961 }
9962
9963 /* Treat mapping symbols as special target symbols. */
9964
9965 static bfd_boolean
9966 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
9967 {
9968 return bfd_is_arm_special_symbol_name (sym->name,
9969 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
9970 }
9971
9972 /* This is a copy of elf_find_function() from elf.c except that
9973 ARM mapping symbols are ignored when looking for function names
9974 and STT_ARM_TFUNC is considered to a function type. */
9975
9976 static bfd_boolean
9977 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
9978 asection * section,
9979 asymbol ** symbols,
9980 bfd_vma offset,
9981 const char ** filename_ptr,
9982 const char ** functionname_ptr)
9983 {
9984 const char * filename = NULL;
9985 asymbol * func = NULL;
9986 bfd_vma low_func = 0;
9987 asymbol ** p;
9988
9989 for (p = symbols; *p != NULL; p++)
9990 {
9991 elf_symbol_type *q;
9992
9993 q = (elf_symbol_type *) *p;
9994
9995 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
9996 {
9997 default:
9998 break;
9999 case STT_FILE:
10000 filename = bfd_asymbol_name (&q->symbol);
10001 break;
10002 case STT_FUNC:
10003 case STT_ARM_TFUNC:
10004 case STT_NOTYPE:
10005 /* Skip mapping symbols. */
10006 if ((q->symbol.flags & BSF_LOCAL)
10007 && bfd_is_arm_special_symbol_name (q->symbol.name,
10008 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
10009 continue;
10010 /* Fall through. */
10011 if (bfd_get_section (&q->symbol) == section
10012 && q->symbol.value >= low_func
10013 && q->symbol.value <= offset)
10014 {
10015 func = (asymbol *) q;
10016 low_func = q->symbol.value;
10017 }
10018 break;
10019 }
10020 }
10021
10022 if (func == NULL)
10023 return FALSE;
10024
10025 if (filename_ptr)
10026 *filename_ptr = filename;
10027 if (functionname_ptr)
10028 *functionname_ptr = bfd_asymbol_name (func);
10029
10030 return TRUE;
10031 }
10032
10033
10034 /* Find the nearest line to a particular section and offset, for error
10035 reporting. This code is a duplicate of the code in elf.c, except
10036 that it uses arm_elf_find_function. */
10037
10038 static bfd_boolean
10039 elf32_arm_find_nearest_line (bfd * abfd,
10040 asection * section,
10041 asymbol ** symbols,
10042 bfd_vma offset,
10043 const char ** filename_ptr,
10044 const char ** functionname_ptr,
10045 unsigned int * line_ptr)
10046 {
10047 bfd_boolean found = FALSE;
10048
10049 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
10050
10051 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
10052 filename_ptr, functionname_ptr,
10053 line_ptr, 0,
10054 & elf_tdata (abfd)->dwarf2_find_line_info))
10055 {
10056 if (!*functionname_ptr)
10057 arm_elf_find_function (abfd, section, symbols, offset,
10058 *filename_ptr ? NULL : filename_ptr,
10059 functionname_ptr);
10060
10061 return TRUE;
10062 }
10063
10064 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
10065 & found, filename_ptr,
10066 functionname_ptr, line_ptr,
10067 & elf_tdata (abfd)->line_info))
10068 return FALSE;
10069
10070 if (found && (*functionname_ptr || *line_ptr))
10071 return TRUE;
10072
10073 if (symbols == NULL)
10074 return FALSE;
10075
10076 if (! arm_elf_find_function (abfd, section, symbols, offset,
10077 filename_ptr, functionname_ptr))
10078 return FALSE;
10079
10080 *line_ptr = 0;
10081 return TRUE;
10082 }
10083
10084 static bfd_boolean
10085 elf32_arm_find_inliner_info (bfd * abfd,
10086 const char ** filename_ptr,
10087 const char ** functionname_ptr,
10088 unsigned int * line_ptr)
10089 {
10090 bfd_boolean found;
10091 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
10092 functionname_ptr, line_ptr,
10093 & elf_tdata (abfd)->dwarf2_find_line_info);
10094 return found;
10095 }
10096
10097 /* Adjust a symbol defined by a dynamic object and referenced by a
10098 regular object. The current definition is in some section of the
10099 dynamic object, but we're not including those sections. We have to
10100 change the definition to something the rest of the link can
10101 understand. */
10102
10103 static bfd_boolean
10104 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
10105 struct elf_link_hash_entry * h)
10106 {
10107 bfd * dynobj;
10108 asection * s;
10109 struct elf32_arm_link_hash_entry * eh;
10110 struct elf32_arm_link_hash_table *globals;
10111
10112 globals = elf32_arm_hash_table (info);
10113 dynobj = elf_hash_table (info)->dynobj;
10114
10115 /* Make sure we know what is going on here. */
10116 BFD_ASSERT (dynobj != NULL
10117 && (h->needs_plt
10118 || h->u.weakdef != NULL
10119 || (h->def_dynamic
10120 && h->ref_regular
10121 && !h->def_regular)));
10122
10123 eh = (struct elf32_arm_link_hash_entry *) h;
10124
10125 /* If this is a function, put it in the procedure linkage table. We
10126 will fill in the contents of the procedure linkage table later,
10127 when we know the address of the .got section. */
10128 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
10129 || h->needs_plt)
10130 {
10131 if (h->plt.refcount <= 0
10132 || SYMBOL_CALLS_LOCAL (info, h)
10133 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
10134 && h->root.type == bfd_link_hash_undefweak))
10135 {
10136 /* This case can occur if we saw a PLT32 reloc in an input
10137 file, but the symbol was never referred to by a dynamic
10138 object, or if all references were garbage collected. In
10139 such a case, we don't actually need to build a procedure
10140 linkage table, and we can just do a PC24 reloc instead. */
10141 h->plt.offset = (bfd_vma) -1;
10142 eh->plt_thumb_refcount = 0;
10143 eh->plt_maybe_thumb_refcount = 0;
10144 h->needs_plt = 0;
10145 }
10146
10147 return TRUE;
10148 }
10149 else
10150 {
10151 /* It's possible that we incorrectly decided a .plt reloc was
10152 needed for an R_ARM_PC24 or similar reloc to a non-function sym
10153 in check_relocs. We can't decide accurately between function
10154 and non-function syms in check-relocs; Objects loaded later in
10155 the link may change h->type. So fix it now. */
10156 h->plt.offset = (bfd_vma) -1;
10157 eh->plt_thumb_refcount = 0;
10158 eh->plt_maybe_thumb_refcount = 0;
10159 }
10160
10161 /* If this is a weak symbol, and there is a real definition, the
10162 processor independent code will have arranged for us to see the
10163 real definition first, and we can just use the same value. */
10164 if (h->u.weakdef != NULL)
10165 {
10166 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
10167 || h->u.weakdef->root.type == bfd_link_hash_defweak);
10168 h->root.u.def.section = h->u.weakdef->root.u.def.section;
10169 h->root.u.def.value = h->u.weakdef->root.u.def.value;
10170 return TRUE;
10171 }
10172
10173 /* If there are no non-GOT references, we do not need a copy
10174 relocation. */
10175 if (!h->non_got_ref)
10176 return TRUE;
10177
10178 /* This is a reference to a symbol defined by a dynamic object which
10179 is not a function. */
10180
10181 /* If we are creating a shared library, we must presume that the
10182 only references to the symbol are via the global offset table.
10183 For such cases we need not do anything here; the relocations will
10184 be handled correctly by relocate_section. Relocatable executables
10185 can reference data in shared objects directly, so we don't need to
10186 do anything here. */
10187 if (info->shared || globals->root.is_relocatable_executable)
10188 return TRUE;
10189
10190 if (h->size == 0)
10191 {
10192 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
10193 h->root.root.string);
10194 return TRUE;
10195 }
10196
10197 /* We must allocate the symbol in our .dynbss section, which will
10198 become part of the .bss section of the executable. There will be
10199 an entry for this symbol in the .dynsym section. The dynamic
10200 object will contain position independent code, so all references
10201 from the dynamic object to this symbol will go through the global
10202 offset table. The dynamic linker will use the .dynsym entry to
10203 determine the address it must put in the global offset table, so
10204 both the dynamic object and the regular object will refer to the
10205 same memory location for the variable. */
10206 s = bfd_get_section_by_name (dynobj, ".dynbss");
10207 BFD_ASSERT (s != NULL);
10208
10209 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
10210 copy the initial value out of the dynamic object and into the
10211 runtime process image. We need to remember the offset into the
10212 .rel(a).bss section we are going to use. */
10213 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
10214 {
10215 asection *srel;
10216
10217 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
10218 BFD_ASSERT (srel != NULL);
10219 srel->size += RELOC_SIZE (globals);
10220 h->needs_copy = 1;
10221 }
10222
10223 return _bfd_elf_adjust_dynamic_copy (h, s);
10224 }
10225
10226 /* Allocate space in .plt, .got and associated reloc sections for
10227 dynamic relocs. */
10228
10229 static bfd_boolean
10230 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
10231 {
10232 struct bfd_link_info *info;
10233 struct elf32_arm_link_hash_table *htab;
10234 struct elf32_arm_link_hash_entry *eh;
10235 struct elf32_arm_relocs_copied *p;
10236 bfd_signed_vma thumb_refs;
10237
10238 eh = (struct elf32_arm_link_hash_entry *) h;
10239
10240 if (h->root.type == bfd_link_hash_indirect)
10241 return TRUE;
10242
10243 if (h->root.type == bfd_link_hash_warning)
10244 /* When warning symbols are created, they **replace** the "real"
10245 entry in the hash table, thus we never get to see the real
10246 symbol in a hash traversal. So look at it now. */
10247 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10248
10249 info = (struct bfd_link_info *) inf;
10250 htab = elf32_arm_hash_table (info);
10251
10252 if (htab->root.dynamic_sections_created
10253 && h->plt.refcount > 0)
10254 {
10255 /* Make sure this symbol is output as a dynamic symbol.
10256 Undefined weak syms won't yet be marked as dynamic. */
10257 if (h->dynindx == -1
10258 && !h->forced_local)
10259 {
10260 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10261 return FALSE;
10262 }
10263
10264 if (info->shared
10265 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
10266 {
10267 asection *s = htab->splt;
10268
10269 /* If this is the first .plt entry, make room for the special
10270 first entry. */
10271 if (s->size == 0)
10272 s->size += htab->plt_header_size;
10273
10274 h->plt.offset = s->size;
10275
10276 /* If we will insert a Thumb trampoline before this PLT, leave room
10277 for it. */
10278 thumb_refs = eh->plt_thumb_refcount;
10279 if (!htab->use_blx)
10280 thumb_refs += eh->plt_maybe_thumb_refcount;
10281
10282 if (thumb_refs > 0)
10283 {
10284 h->plt.offset += PLT_THUMB_STUB_SIZE;
10285 s->size += PLT_THUMB_STUB_SIZE;
10286 }
10287
10288 /* If this symbol is not defined in a regular file, and we are
10289 not generating a shared library, then set the symbol to this
10290 location in the .plt. This is required to make function
10291 pointers compare as equal between the normal executable and
10292 the shared library. */
10293 if (! info->shared
10294 && !h->def_regular)
10295 {
10296 h->root.u.def.section = s;
10297 h->root.u.def.value = h->plt.offset;
10298
10299 /* Make sure the function is not marked as Thumb, in case
10300 it is the target of an ABS32 relocation, which will
10301 point to the PLT entry. */
10302 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
10303 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
10304 }
10305
10306 /* Make room for this entry. */
10307 s->size += htab->plt_entry_size;
10308
10309 if (!htab->symbian_p)
10310 {
10311 /* We also need to make an entry in the .got.plt section, which
10312 will be placed in the .got section by the linker script. */
10313 eh->plt_got_offset = htab->sgotplt->size;
10314 htab->sgotplt->size += 4;
10315 }
10316
10317 /* We also need to make an entry in the .rel(a).plt section. */
10318 htab->srelplt->size += RELOC_SIZE (htab);
10319
10320 /* VxWorks executables have a second set of relocations for
10321 each PLT entry. They go in a separate relocation section,
10322 which is processed by the kernel loader. */
10323 if (htab->vxworks_p && !info->shared)
10324 {
10325 /* There is a relocation for the initial PLT entry:
10326 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
10327 if (h->plt.offset == htab->plt_header_size)
10328 htab->srelplt2->size += RELOC_SIZE (htab);
10329
10330 /* There are two extra relocations for each subsequent
10331 PLT entry: an R_ARM_32 relocation for the GOT entry,
10332 and an R_ARM_32 relocation for the PLT entry. */
10333 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
10334 }
10335 }
10336 else
10337 {
10338 h->plt.offset = (bfd_vma) -1;
10339 h->needs_plt = 0;
10340 }
10341 }
10342 else
10343 {
10344 h->plt.offset = (bfd_vma) -1;
10345 h->needs_plt = 0;
10346 }
10347
10348 if (h->got.refcount > 0)
10349 {
10350 asection *s;
10351 bfd_boolean dyn;
10352 int tls_type = elf32_arm_hash_entry (h)->tls_type;
10353 int indx;
10354
10355 /* Make sure this symbol is output as a dynamic symbol.
10356 Undefined weak syms won't yet be marked as dynamic. */
10357 if (h->dynindx == -1
10358 && !h->forced_local)
10359 {
10360 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10361 return FALSE;
10362 }
10363
10364 if (!htab->symbian_p)
10365 {
10366 s = htab->sgot;
10367 h->got.offset = s->size;
10368
10369 if (tls_type == GOT_UNKNOWN)
10370 abort ();
10371
10372 if (tls_type == GOT_NORMAL)
10373 /* Non-TLS symbols need one GOT slot. */
10374 s->size += 4;
10375 else
10376 {
10377 if (tls_type & GOT_TLS_GD)
10378 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
10379 s->size += 8;
10380 if (tls_type & GOT_TLS_IE)
10381 /* R_ARM_TLS_IE32 needs one GOT slot. */
10382 s->size += 4;
10383 }
10384
10385 dyn = htab->root.dynamic_sections_created;
10386
10387 indx = 0;
10388 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
10389 && (!info->shared
10390 || !SYMBOL_REFERENCES_LOCAL (info, h)))
10391 indx = h->dynindx;
10392
10393 if (tls_type != GOT_NORMAL
10394 && (info->shared || indx != 0)
10395 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10396 || h->root.type != bfd_link_hash_undefweak))
10397 {
10398 if (tls_type & GOT_TLS_IE)
10399 htab->srelgot->size += RELOC_SIZE (htab);
10400
10401 if (tls_type & GOT_TLS_GD)
10402 htab->srelgot->size += RELOC_SIZE (htab);
10403
10404 if ((tls_type & GOT_TLS_GD) && indx != 0)
10405 htab->srelgot->size += RELOC_SIZE (htab);
10406 }
10407 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10408 || h->root.type != bfd_link_hash_undefweak)
10409 && (info->shared
10410 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
10411 htab->srelgot->size += RELOC_SIZE (htab);
10412 }
10413 }
10414 else
10415 h->got.offset = (bfd_vma) -1;
10416
10417 /* Allocate stubs for exported Thumb functions on v4t. */
10418 if (!htab->use_blx && h->dynindx != -1
10419 && h->def_regular
10420 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
10421 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
10422 {
10423 struct elf_link_hash_entry * th;
10424 struct bfd_link_hash_entry * bh;
10425 struct elf_link_hash_entry * myh;
10426 char name[1024];
10427 asection *s;
10428 bh = NULL;
10429 /* Create a new symbol to regist the real location of the function. */
10430 s = h->root.u.def.section;
10431 sprintf (name, "__real_%s", h->root.root.string);
10432 _bfd_generic_link_add_one_symbol (info, s->owner,
10433 name, BSF_GLOBAL, s,
10434 h->root.u.def.value,
10435 NULL, TRUE, FALSE, &bh);
10436
10437 myh = (struct elf_link_hash_entry *) bh;
10438 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
10439 myh->forced_local = 1;
10440 eh->export_glue = myh;
10441 th = record_arm_to_thumb_glue (info, h);
10442 /* Point the symbol at the stub. */
10443 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
10444 h->root.u.def.section = th->root.u.def.section;
10445 h->root.u.def.value = th->root.u.def.value & ~1;
10446 }
10447
10448 if (eh->relocs_copied == NULL)
10449 return TRUE;
10450
10451 /* In the shared -Bsymbolic case, discard space allocated for
10452 dynamic pc-relative relocs against symbols which turn out to be
10453 defined in regular objects. For the normal shared case, discard
10454 space for pc-relative relocs that have become local due to symbol
10455 visibility changes. */
10456
10457 if (info->shared || htab->root.is_relocatable_executable)
10458 {
10459 /* The only relocs that use pc_count are R_ARM_REL32 and
10460 R_ARM_REL32_NOI, which will appear on something like
10461 ".long foo - .". We want calls to protected symbols to resolve
10462 directly to the function rather than going via the plt. If people
10463 want function pointer comparisons to work as expected then they
10464 should avoid writing assembly like ".long foo - .". */
10465 if (SYMBOL_CALLS_LOCAL (info, h))
10466 {
10467 struct elf32_arm_relocs_copied **pp;
10468
10469 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10470 {
10471 p->count -= p->pc_count;
10472 p->pc_count = 0;
10473 if (p->count == 0)
10474 *pp = p->next;
10475 else
10476 pp = &p->next;
10477 }
10478 }
10479
10480 if (elf32_arm_hash_table (info)->vxworks_p)
10481 {
10482 struct elf32_arm_relocs_copied **pp;
10483
10484 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10485 {
10486 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
10487 *pp = p->next;
10488 else
10489 pp = &p->next;
10490 }
10491 }
10492
10493 /* Also discard relocs on undefined weak syms with non-default
10494 visibility. */
10495 if (eh->relocs_copied != NULL
10496 && h->root.type == bfd_link_hash_undefweak)
10497 {
10498 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
10499 eh->relocs_copied = NULL;
10500
10501 /* Make sure undefined weak symbols are output as a dynamic
10502 symbol in PIEs. */
10503 else if (h->dynindx == -1
10504 && !h->forced_local)
10505 {
10506 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10507 return FALSE;
10508 }
10509 }
10510
10511 else if (htab->root.is_relocatable_executable && h->dynindx == -1
10512 && h->root.type == bfd_link_hash_new)
10513 {
10514 /* Output absolute symbols so that we can create relocations
10515 against them. For normal symbols we output a relocation
10516 against the section that contains them. */
10517 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10518 return FALSE;
10519 }
10520
10521 }
10522 else
10523 {
10524 /* For the non-shared case, discard space for relocs against
10525 symbols which turn out to need copy relocs or are not
10526 dynamic. */
10527
10528 if (!h->non_got_ref
10529 && ((h->def_dynamic
10530 && !h->def_regular)
10531 || (htab->root.dynamic_sections_created
10532 && (h->root.type == bfd_link_hash_undefweak
10533 || h->root.type == bfd_link_hash_undefined))))
10534 {
10535 /* Make sure this symbol is output as a dynamic symbol.
10536 Undefined weak syms won't yet be marked as dynamic. */
10537 if (h->dynindx == -1
10538 && !h->forced_local)
10539 {
10540 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10541 return FALSE;
10542 }
10543
10544 /* If that succeeded, we know we'll be keeping all the
10545 relocs. */
10546 if (h->dynindx != -1)
10547 goto keep;
10548 }
10549
10550 eh->relocs_copied = NULL;
10551
10552 keep: ;
10553 }
10554
10555 /* Finally, allocate space. */
10556 for (p = eh->relocs_copied; p != NULL; p = p->next)
10557 {
10558 asection *sreloc = elf_section_data (p->section)->sreloc;
10559 sreloc->size += p->count * RELOC_SIZE (htab);
10560 }
10561
10562 return TRUE;
10563 }
10564
10565 /* Find any dynamic relocs that apply to read-only sections. */
10566
10567 static bfd_boolean
10568 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
10569 {
10570 struct elf32_arm_link_hash_entry * eh;
10571 struct elf32_arm_relocs_copied * p;
10572
10573 if (h->root.type == bfd_link_hash_warning)
10574 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10575
10576 eh = (struct elf32_arm_link_hash_entry *) h;
10577 for (p = eh->relocs_copied; p != NULL; p = p->next)
10578 {
10579 asection *s = p->section;
10580
10581 if (s != NULL && (s->flags & SEC_READONLY) != 0)
10582 {
10583 struct bfd_link_info *info = (struct bfd_link_info *) inf;
10584
10585 info->flags |= DF_TEXTREL;
10586
10587 /* Not an error, just cut short the traversal. */
10588 return FALSE;
10589 }
10590 }
10591 return TRUE;
10592 }
10593
10594 void
10595 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
10596 int byteswap_code)
10597 {
10598 struct elf32_arm_link_hash_table *globals;
10599
10600 globals = elf32_arm_hash_table (info);
10601 globals->byteswap_code = byteswap_code;
10602 }
10603
10604 /* Set the sizes of the dynamic sections. */
10605
10606 static bfd_boolean
10607 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
10608 struct bfd_link_info * info)
10609 {
10610 bfd * dynobj;
10611 asection * s;
10612 bfd_boolean plt;
10613 bfd_boolean relocs;
10614 bfd *ibfd;
10615 struct elf32_arm_link_hash_table *htab;
10616
10617 htab = elf32_arm_hash_table (info);
10618 dynobj = elf_hash_table (info)->dynobj;
10619 BFD_ASSERT (dynobj != NULL);
10620 check_use_blx (htab);
10621
10622 if (elf_hash_table (info)->dynamic_sections_created)
10623 {
10624 /* Set the contents of the .interp section to the interpreter. */
10625 if (info->executable)
10626 {
10627 s = bfd_get_section_by_name (dynobj, ".interp");
10628 BFD_ASSERT (s != NULL);
10629 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
10630 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
10631 }
10632 }
10633
10634 /* Set up .got offsets for local syms, and space for local dynamic
10635 relocs. */
10636 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10637 {
10638 bfd_signed_vma *local_got;
10639 bfd_signed_vma *end_local_got;
10640 char *local_tls_type;
10641 bfd_size_type locsymcount;
10642 Elf_Internal_Shdr *symtab_hdr;
10643 asection *srel;
10644 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
10645
10646 if (! is_arm_elf (ibfd))
10647 continue;
10648
10649 for (s = ibfd->sections; s != NULL; s = s->next)
10650 {
10651 struct elf32_arm_relocs_copied *p;
10652
10653 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
10654 {
10655 if (!bfd_is_abs_section (p->section)
10656 && bfd_is_abs_section (p->section->output_section))
10657 {
10658 /* Input section has been discarded, either because
10659 it is a copy of a linkonce section or due to
10660 linker script /DISCARD/, so we'll be discarding
10661 the relocs too. */
10662 }
10663 else if (is_vxworks
10664 && strcmp (p->section->output_section->name,
10665 ".tls_vars") == 0)
10666 {
10667 /* Relocations in vxworks .tls_vars sections are
10668 handled specially by the loader. */
10669 }
10670 else if (p->count != 0)
10671 {
10672 srel = elf_section_data (p->section)->sreloc;
10673 srel->size += p->count * RELOC_SIZE (htab);
10674 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10675 info->flags |= DF_TEXTREL;
10676 }
10677 }
10678 }
10679
10680 local_got = elf_local_got_refcounts (ibfd);
10681 if (!local_got)
10682 continue;
10683
10684 symtab_hdr = & elf_symtab_hdr (ibfd);
10685 locsymcount = symtab_hdr->sh_info;
10686 end_local_got = local_got + locsymcount;
10687 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
10688 s = htab->sgot;
10689 srel = htab->srelgot;
10690 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
10691 {
10692 if (*local_got > 0)
10693 {
10694 *local_got = s->size;
10695 if (*local_tls_type & GOT_TLS_GD)
10696 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10697 s->size += 8;
10698 if (*local_tls_type & GOT_TLS_IE)
10699 s->size += 4;
10700 if (*local_tls_type == GOT_NORMAL)
10701 s->size += 4;
10702
10703 if (info->shared || *local_tls_type == GOT_TLS_GD)
10704 srel->size += RELOC_SIZE (htab);
10705 }
10706 else
10707 *local_got = (bfd_vma) -1;
10708 }
10709 }
10710
10711 if (htab->tls_ldm_got.refcount > 0)
10712 {
10713 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10714 for R_ARM_TLS_LDM32 relocations. */
10715 htab->tls_ldm_got.offset = htab->sgot->size;
10716 htab->sgot->size += 8;
10717 if (info->shared)
10718 htab->srelgot->size += RELOC_SIZE (htab);
10719 }
10720 else
10721 htab->tls_ldm_got.offset = -1;
10722
10723 /* Allocate global sym .plt and .got entries, and space for global
10724 sym dynamic relocs. */
10725 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
10726
10727 /* Here we rummage through the found bfds to collect glue information. */
10728 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10729 {
10730 if (! is_arm_elf (ibfd))
10731 continue;
10732
10733 /* Initialise mapping tables for code/data. */
10734 bfd_elf32_arm_init_maps (ibfd);
10735
10736 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10737 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10738 /* xgettext:c-format */
10739 _bfd_error_handler (_("Errors encountered processing file %s"),
10740 ibfd->filename);
10741 }
10742
10743 /* The check_relocs and adjust_dynamic_symbol entry points have
10744 determined the sizes of the various dynamic sections. Allocate
10745 memory for them. */
10746 plt = FALSE;
10747 relocs = FALSE;
10748 for (s = dynobj->sections; s != NULL; s = s->next)
10749 {
10750 const char * name;
10751
10752 if ((s->flags & SEC_LINKER_CREATED) == 0)
10753 continue;
10754
10755 /* It's OK to base decisions on the section name, because none
10756 of the dynobj section names depend upon the input files. */
10757 name = bfd_get_section_name (dynobj, s);
10758
10759 if (strcmp (name, ".plt") == 0)
10760 {
10761 /* Remember whether there is a PLT. */
10762 plt = s->size != 0;
10763 }
10764 else if (CONST_STRNEQ (name, ".rel"))
10765 {
10766 if (s->size != 0)
10767 {
10768 /* Remember whether there are any reloc sections other
10769 than .rel(a).plt and .rela.plt.unloaded. */
10770 if (s != htab->srelplt && s != htab->srelplt2)
10771 relocs = TRUE;
10772
10773 /* We use the reloc_count field as a counter if we need
10774 to copy relocs into the output file. */
10775 s->reloc_count = 0;
10776 }
10777 }
10778 else if (! CONST_STRNEQ (name, ".got")
10779 && strcmp (name, ".dynbss") != 0)
10780 {
10781 /* It's not one of our sections, so don't allocate space. */
10782 continue;
10783 }
10784
10785 if (s->size == 0)
10786 {
10787 /* If we don't need this section, strip it from the
10788 output file. This is mostly to handle .rel(a).bss and
10789 .rel(a).plt. We must create both sections in
10790 create_dynamic_sections, because they must be created
10791 before the linker maps input sections to output
10792 sections. The linker does that before
10793 adjust_dynamic_symbol is called, and it is that
10794 function which decides whether anything needs to go
10795 into these sections. */
10796 s->flags |= SEC_EXCLUDE;
10797 continue;
10798 }
10799
10800 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10801 continue;
10802
10803 /* Allocate memory for the section contents. */
10804 s->contents = bfd_zalloc (dynobj, s->size);
10805 if (s->contents == NULL)
10806 return FALSE;
10807 }
10808
10809 if (elf_hash_table (info)->dynamic_sections_created)
10810 {
10811 /* Add some entries to the .dynamic section. We fill in the
10812 values later, in elf32_arm_finish_dynamic_sections, but we
10813 must add the entries now so that we get the correct size for
10814 the .dynamic section. The DT_DEBUG entry is filled in by the
10815 dynamic linker and used by the debugger. */
10816 #define add_dynamic_entry(TAG, VAL) \
10817 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10818
10819 if (info->executable)
10820 {
10821 if (!add_dynamic_entry (DT_DEBUG, 0))
10822 return FALSE;
10823 }
10824
10825 if (plt)
10826 {
10827 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10828 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10829 || !add_dynamic_entry (DT_PLTREL,
10830 htab->use_rel ? DT_REL : DT_RELA)
10831 || !add_dynamic_entry (DT_JMPREL, 0))
10832 return FALSE;
10833 }
10834
10835 if (relocs)
10836 {
10837 if (htab->use_rel)
10838 {
10839 if (!add_dynamic_entry (DT_REL, 0)
10840 || !add_dynamic_entry (DT_RELSZ, 0)
10841 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10842 return FALSE;
10843 }
10844 else
10845 {
10846 if (!add_dynamic_entry (DT_RELA, 0)
10847 || !add_dynamic_entry (DT_RELASZ, 0)
10848 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10849 return FALSE;
10850 }
10851 }
10852
10853 /* If any dynamic relocs apply to a read-only section,
10854 then we need a DT_TEXTREL entry. */
10855 if ((info->flags & DF_TEXTREL) == 0)
10856 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
10857 info);
10858
10859 if ((info->flags & DF_TEXTREL) != 0)
10860 {
10861 if (!add_dynamic_entry (DT_TEXTREL, 0))
10862 return FALSE;
10863 }
10864 if (htab->vxworks_p
10865 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10866 return FALSE;
10867 }
10868 #undef add_dynamic_entry
10869
10870 return TRUE;
10871 }
10872
10873 /* Finish up dynamic symbol handling. We set the contents of various
10874 dynamic sections here. */
10875
10876 static bfd_boolean
10877 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10878 struct bfd_link_info * info,
10879 struct elf_link_hash_entry * h,
10880 Elf_Internal_Sym * sym)
10881 {
10882 bfd * dynobj;
10883 struct elf32_arm_link_hash_table *htab;
10884 struct elf32_arm_link_hash_entry *eh;
10885
10886 dynobj = elf_hash_table (info)->dynobj;
10887 htab = elf32_arm_hash_table (info);
10888 eh = (struct elf32_arm_link_hash_entry *) h;
10889
10890 if (h->plt.offset != (bfd_vma) -1)
10891 {
10892 asection * splt;
10893 asection * srel;
10894 bfd_byte *loc;
10895 bfd_vma plt_index;
10896 Elf_Internal_Rela rel;
10897
10898 /* This symbol has an entry in the procedure linkage table. Set
10899 it up. */
10900
10901 BFD_ASSERT (h->dynindx != -1);
10902
10903 splt = bfd_get_section_by_name (dynobj, ".plt");
10904 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
10905 BFD_ASSERT (splt != NULL && srel != NULL);
10906
10907 /* Fill in the entry in the procedure linkage table. */
10908 if (htab->symbian_p)
10909 {
10910 put_arm_insn (htab, output_bfd,
10911 elf32_arm_symbian_plt_entry[0],
10912 splt->contents + h->plt.offset);
10913 bfd_put_32 (output_bfd,
10914 elf32_arm_symbian_plt_entry[1],
10915 splt->contents + h->plt.offset + 4);
10916
10917 /* Fill in the entry in the .rel.plt section. */
10918 rel.r_offset = (splt->output_section->vma
10919 + splt->output_offset
10920 + h->plt.offset + 4);
10921 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10922
10923 /* Get the index in the procedure linkage table which
10924 corresponds to this symbol. This is the index of this symbol
10925 in all the symbols for which we are making plt entries. The
10926 first entry in the procedure linkage table is reserved. */
10927 plt_index = ((h->plt.offset - htab->plt_header_size)
10928 / htab->plt_entry_size);
10929 }
10930 else
10931 {
10932 bfd_vma got_offset, got_address, plt_address;
10933 bfd_vma got_displacement;
10934 asection * sgot;
10935 bfd_byte * ptr;
10936
10937 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10938 BFD_ASSERT (sgot != NULL);
10939
10940 /* Get the offset into the .got.plt table of the entry that
10941 corresponds to this function. */
10942 got_offset = eh->plt_got_offset;
10943
10944 /* Get the index in the procedure linkage table which
10945 corresponds to this symbol. This is the index of this symbol
10946 in all the symbols for which we are making plt entries. The
10947 first three entries in .got.plt are reserved; after that
10948 symbols appear in the same order as in .plt. */
10949 plt_index = (got_offset - 12) / 4;
10950
10951 /* Calculate the address of the GOT entry. */
10952 got_address = (sgot->output_section->vma
10953 + sgot->output_offset
10954 + got_offset);
10955
10956 /* ...and the address of the PLT entry. */
10957 plt_address = (splt->output_section->vma
10958 + splt->output_offset
10959 + h->plt.offset);
10960
10961 ptr = htab->splt->contents + h->plt.offset;
10962 if (htab->vxworks_p && info->shared)
10963 {
10964 unsigned int i;
10965 bfd_vma val;
10966
10967 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10968 {
10969 val = elf32_arm_vxworks_shared_plt_entry[i];
10970 if (i == 2)
10971 val |= got_address - sgot->output_section->vma;
10972 if (i == 5)
10973 val |= plt_index * RELOC_SIZE (htab);
10974 if (i == 2 || i == 5)
10975 bfd_put_32 (output_bfd, val, ptr);
10976 else
10977 put_arm_insn (htab, output_bfd, val, ptr);
10978 }
10979 }
10980 else if (htab->vxworks_p)
10981 {
10982 unsigned int i;
10983 bfd_vma val;
10984
10985 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10986 {
10987 val = elf32_arm_vxworks_exec_plt_entry[i];
10988 if (i == 2)
10989 val |= got_address;
10990 if (i == 4)
10991 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
10992 if (i == 5)
10993 val |= plt_index * RELOC_SIZE (htab);
10994 if (i == 2 || i == 5)
10995 bfd_put_32 (output_bfd, val, ptr);
10996 else
10997 put_arm_insn (htab, output_bfd, val, ptr);
10998 }
10999
11000 loc = (htab->srelplt2->contents
11001 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
11002
11003 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
11004 referencing the GOT for this PLT entry. */
11005 rel.r_offset = plt_address + 8;
11006 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11007 rel.r_addend = got_offset;
11008 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11009 loc += RELOC_SIZE (htab);
11010
11011 /* Create the R_ARM_ABS32 relocation referencing the
11012 beginning of the PLT for this GOT entry. */
11013 rel.r_offset = got_address;
11014 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
11015 rel.r_addend = 0;
11016 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11017 }
11018 else
11019 {
11020 bfd_signed_vma thumb_refs;
11021 /* Calculate the displacement between the PLT slot and the
11022 entry in the GOT. The eight-byte offset accounts for the
11023 value produced by adding to pc in the first instruction
11024 of the PLT stub. */
11025 got_displacement = got_address - (plt_address + 8);
11026
11027 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
11028
11029 thumb_refs = eh->plt_thumb_refcount;
11030 if (!htab->use_blx)
11031 thumb_refs += eh->plt_maybe_thumb_refcount;
11032
11033 if (thumb_refs > 0)
11034 {
11035 put_thumb_insn (htab, output_bfd,
11036 elf32_arm_plt_thumb_stub[0], ptr - 4);
11037 put_thumb_insn (htab, output_bfd,
11038 elf32_arm_plt_thumb_stub[1], ptr - 2);
11039 }
11040
11041 put_arm_insn (htab, output_bfd,
11042 elf32_arm_plt_entry[0]
11043 | ((got_displacement & 0x0ff00000) >> 20),
11044 ptr + 0);
11045 put_arm_insn (htab, output_bfd,
11046 elf32_arm_plt_entry[1]
11047 | ((got_displacement & 0x000ff000) >> 12),
11048 ptr+ 4);
11049 put_arm_insn (htab, output_bfd,
11050 elf32_arm_plt_entry[2]
11051 | (got_displacement & 0x00000fff),
11052 ptr + 8);
11053 #ifdef FOUR_WORD_PLT
11054 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
11055 #endif
11056 }
11057
11058 /* Fill in the entry in the global offset table. */
11059 bfd_put_32 (output_bfd,
11060 (splt->output_section->vma
11061 + splt->output_offset),
11062 sgot->contents + got_offset);
11063
11064 /* Fill in the entry in the .rel(a).plt section. */
11065 rel.r_addend = 0;
11066 rel.r_offset = got_address;
11067 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
11068 }
11069
11070 loc = srel->contents + plt_index * RELOC_SIZE (htab);
11071 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11072
11073 if (!h->def_regular)
11074 {
11075 /* Mark the symbol as undefined, rather than as defined in
11076 the .plt section. Leave the value alone. */
11077 sym->st_shndx = SHN_UNDEF;
11078 /* If the symbol is weak, we do need to clear the value.
11079 Otherwise, the PLT entry would provide a definition for
11080 the symbol even if the symbol wasn't defined anywhere,
11081 and so the symbol would never be NULL. */
11082 if (!h->ref_regular_nonweak)
11083 sym->st_value = 0;
11084 }
11085 }
11086
11087 if (h->got.offset != (bfd_vma) -1
11088 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
11089 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
11090 {
11091 asection * sgot;
11092 asection * srel;
11093 Elf_Internal_Rela rel;
11094 bfd_byte *loc;
11095 bfd_vma offset;
11096
11097 /* This symbol has an entry in the global offset table. Set it
11098 up. */
11099 sgot = bfd_get_section_by_name (dynobj, ".got");
11100 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
11101 BFD_ASSERT (sgot != NULL && srel != NULL);
11102
11103 offset = (h->got.offset & ~(bfd_vma) 1);
11104 rel.r_addend = 0;
11105 rel.r_offset = (sgot->output_section->vma
11106 + sgot->output_offset
11107 + offset);
11108
11109 /* If this is a static link, or it is a -Bsymbolic link and the
11110 symbol is defined locally or was forced to be local because
11111 of a version file, we just want to emit a RELATIVE reloc.
11112 The entry in the global offset table will already have been
11113 initialized in the relocate_section function. */
11114 if (info->shared
11115 && SYMBOL_REFERENCES_LOCAL (info, h))
11116 {
11117 BFD_ASSERT ((h->got.offset & 1) != 0);
11118 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11119 if (!htab->use_rel)
11120 {
11121 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
11122 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
11123 }
11124 }
11125 else
11126 {
11127 BFD_ASSERT ((h->got.offset & 1) == 0);
11128 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
11129 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11130 }
11131
11132 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
11133 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11134 }
11135
11136 if (h->needs_copy)
11137 {
11138 asection * s;
11139 Elf_Internal_Rela rel;
11140 bfd_byte *loc;
11141
11142 /* This symbol needs a copy reloc. Set it up. */
11143 BFD_ASSERT (h->dynindx != -1
11144 && (h->root.type == bfd_link_hash_defined
11145 || h->root.type == bfd_link_hash_defweak));
11146
11147 s = bfd_get_section_by_name (h->root.u.def.section->owner,
11148 RELOC_SECTION (htab, ".bss"));
11149 BFD_ASSERT (s != NULL);
11150
11151 rel.r_addend = 0;
11152 rel.r_offset = (h->root.u.def.value
11153 + h->root.u.def.section->output_section->vma
11154 + h->root.u.def.section->output_offset);
11155 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
11156 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
11157 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11158 }
11159
11160 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
11161 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
11162 to the ".got" section. */
11163 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
11164 || (!htab->vxworks_p && h == htab->root.hgot))
11165 sym->st_shndx = SHN_ABS;
11166
11167 return TRUE;
11168 }
11169
11170 /* Finish up the dynamic sections. */
11171
11172 static bfd_boolean
11173 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
11174 {
11175 bfd * dynobj;
11176 asection * sgot;
11177 asection * sdyn;
11178
11179 dynobj = elf_hash_table (info)->dynobj;
11180
11181 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
11182 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
11183 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
11184
11185 if (elf_hash_table (info)->dynamic_sections_created)
11186 {
11187 asection *splt;
11188 Elf32_External_Dyn *dyncon, *dynconend;
11189 struct elf32_arm_link_hash_table *htab;
11190
11191 htab = elf32_arm_hash_table (info);
11192 splt = bfd_get_section_by_name (dynobj, ".plt");
11193 BFD_ASSERT (splt != NULL && sdyn != NULL);
11194
11195 dyncon = (Elf32_External_Dyn *) sdyn->contents;
11196 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
11197
11198 for (; dyncon < dynconend; dyncon++)
11199 {
11200 Elf_Internal_Dyn dyn;
11201 const char * name;
11202 asection * s;
11203
11204 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
11205
11206 switch (dyn.d_tag)
11207 {
11208 unsigned int type;
11209
11210 default:
11211 if (htab->vxworks_p
11212 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11213 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11214 break;
11215
11216 case DT_HASH:
11217 name = ".hash";
11218 goto get_vma_if_bpabi;
11219 case DT_STRTAB:
11220 name = ".dynstr";
11221 goto get_vma_if_bpabi;
11222 case DT_SYMTAB:
11223 name = ".dynsym";
11224 goto get_vma_if_bpabi;
11225 case DT_VERSYM:
11226 name = ".gnu.version";
11227 goto get_vma_if_bpabi;
11228 case DT_VERDEF:
11229 name = ".gnu.version_d";
11230 goto get_vma_if_bpabi;
11231 case DT_VERNEED:
11232 name = ".gnu.version_r";
11233 goto get_vma_if_bpabi;
11234
11235 case DT_PLTGOT:
11236 name = ".got";
11237 goto get_vma;
11238 case DT_JMPREL:
11239 name = RELOC_SECTION (htab, ".plt");
11240 get_vma:
11241 s = bfd_get_section_by_name (output_bfd, name);
11242 BFD_ASSERT (s != NULL);
11243 if (!htab->symbian_p)
11244 dyn.d_un.d_ptr = s->vma;
11245 else
11246 /* In the BPABI, tags in the PT_DYNAMIC section point
11247 at the file offset, not the memory address, for the
11248 convenience of the post linker. */
11249 dyn.d_un.d_ptr = s->filepos;
11250 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11251 break;
11252
11253 get_vma_if_bpabi:
11254 if (htab->symbian_p)
11255 goto get_vma;
11256 break;
11257
11258 case DT_PLTRELSZ:
11259 s = bfd_get_section_by_name (output_bfd,
11260 RELOC_SECTION (htab, ".plt"));
11261 BFD_ASSERT (s != NULL);
11262 dyn.d_un.d_val = s->size;
11263 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11264 break;
11265
11266 case DT_RELSZ:
11267 case DT_RELASZ:
11268 if (!htab->symbian_p)
11269 {
11270 /* My reading of the SVR4 ABI indicates that the
11271 procedure linkage table relocs (DT_JMPREL) should be
11272 included in the overall relocs (DT_REL). This is
11273 what Solaris does. However, UnixWare can not handle
11274 that case. Therefore, we override the DT_RELSZ entry
11275 here to make it not include the JMPREL relocs. Since
11276 the linker script arranges for .rel(a).plt to follow all
11277 other relocation sections, we don't have to worry
11278 about changing the DT_REL entry. */
11279 s = bfd_get_section_by_name (output_bfd,
11280 RELOC_SECTION (htab, ".plt"));
11281 if (s != NULL)
11282 dyn.d_un.d_val -= s->size;
11283 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11284 break;
11285 }
11286 /* Fall through. */
11287
11288 case DT_REL:
11289 case DT_RELA:
11290 /* In the BPABI, the DT_REL tag must point at the file
11291 offset, not the VMA, of the first relocation
11292 section. So, we use code similar to that in
11293 elflink.c, but do not check for SHF_ALLOC on the
11294 relcoation section, since relocations sections are
11295 never allocated under the BPABI. The comments above
11296 about Unixware notwithstanding, we include all of the
11297 relocations here. */
11298 if (htab->symbian_p)
11299 {
11300 unsigned int i;
11301 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11302 ? SHT_REL : SHT_RELA);
11303 dyn.d_un.d_val = 0;
11304 for (i = 1; i < elf_numsections (output_bfd); i++)
11305 {
11306 Elf_Internal_Shdr *hdr
11307 = elf_elfsections (output_bfd)[i];
11308 if (hdr->sh_type == type)
11309 {
11310 if (dyn.d_tag == DT_RELSZ
11311 || dyn.d_tag == DT_RELASZ)
11312 dyn.d_un.d_val += hdr->sh_size;
11313 else if ((ufile_ptr) hdr->sh_offset
11314 <= dyn.d_un.d_val - 1)
11315 dyn.d_un.d_val = hdr->sh_offset;
11316 }
11317 }
11318 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11319 }
11320 break;
11321
11322 /* Set the bottom bit of DT_INIT/FINI if the
11323 corresponding function is Thumb. */
11324 case DT_INIT:
11325 name = info->init_function;
11326 goto get_sym;
11327 case DT_FINI:
11328 name = info->fini_function;
11329 get_sym:
11330 /* If it wasn't set by elf_bfd_final_link
11331 then there is nothing to adjust. */
11332 if (dyn.d_un.d_val != 0)
11333 {
11334 struct elf_link_hash_entry * eh;
11335
11336 eh = elf_link_hash_lookup (elf_hash_table (info), name,
11337 FALSE, FALSE, TRUE);
11338 if (eh != NULL
11339 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
11340 {
11341 dyn.d_un.d_val |= 1;
11342 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11343 }
11344 }
11345 break;
11346 }
11347 }
11348
11349 /* Fill in the first entry in the procedure linkage table. */
11350 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
11351 {
11352 const bfd_vma *plt0_entry;
11353 bfd_vma got_address, plt_address, got_displacement;
11354
11355 /* Calculate the addresses of the GOT and PLT. */
11356 got_address = sgot->output_section->vma + sgot->output_offset;
11357 plt_address = splt->output_section->vma + splt->output_offset;
11358
11359 if (htab->vxworks_p)
11360 {
11361 /* The VxWorks GOT is relocated by the dynamic linker.
11362 Therefore, we must emit relocations rather than simply
11363 computing the values now. */
11364 Elf_Internal_Rela rel;
11365
11366 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
11367 put_arm_insn (htab, output_bfd, plt0_entry[0],
11368 splt->contents + 0);
11369 put_arm_insn (htab, output_bfd, plt0_entry[1],
11370 splt->contents + 4);
11371 put_arm_insn (htab, output_bfd, plt0_entry[2],
11372 splt->contents + 8);
11373 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
11374
11375 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
11376 rel.r_offset = plt_address + 12;
11377 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11378 rel.r_addend = 0;
11379 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
11380 htab->srelplt2->contents);
11381 }
11382 else
11383 {
11384 got_displacement = got_address - (plt_address + 16);
11385
11386 plt0_entry = elf32_arm_plt0_entry;
11387 put_arm_insn (htab, output_bfd, plt0_entry[0],
11388 splt->contents + 0);
11389 put_arm_insn (htab, output_bfd, plt0_entry[1],
11390 splt->contents + 4);
11391 put_arm_insn (htab, output_bfd, plt0_entry[2],
11392 splt->contents + 8);
11393 put_arm_insn (htab, output_bfd, plt0_entry[3],
11394 splt->contents + 12);
11395
11396 #ifdef FOUR_WORD_PLT
11397 /* The displacement value goes in the otherwise-unused
11398 last word of the second entry. */
11399 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
11400 #else
11401 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
11402 #endif
11403 }
11404 }
11405
11406 /* UnixWare sets the entsize of .plt to 4, although that doesn't
11407 really seem like the right value. */
11408 if (splt->output_section->owner == output_bfd)
11409 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
11410
11411 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
11412 {
11413 /* Correct the .rel(a).plt.unloaded relocations. They will have
11414 incorrect symbol indexes. */
11415 int num_plts;
11416 unsigned char *p;
11417
11418 num_plts = ((htab->splt->size - htab->plt_header_size)
11419 / htab->plt_entry_size);
11420 p = htab->srelplt2->contents + RELOC_SIZE (htab);
11421
11422 for (; num_plts; num_plts--)
11423 {
11424 Elf_Internal_Rela rel;
11425
11426 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11427 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11428 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11429 p += RELOC_SIZE (htab);
11430
11431 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11432 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
11433 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11434 p += RELOC_SIZE (htab);
11435 }
11436 }
11437 }
11438
11439 /* Fill in the first three entries in the global offset table. */
11440 if (sgot)
11441 {
11442 if (sgot->size > 0)
11443 {
11444 if (sdyn == NULL)
11445 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
11446 else
11447 bfd_put_32 (output_bfd,
11448 sdyn->output_section->vma + sdyn->output_offset,
11449 sgot->contents);
11450 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
11451 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
11452 }
11453
11454 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
11455 }
11456
11457 return TRUE;
11458 }
11459
11460 static void
11461 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11462 {
11463 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11464 struct elf32_arm_link_hash_table *globals;
11465
11466 i_ehdrp = elf_elfheader (abfd);
11467
11468 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
11469 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
11470 else
11471 i_ehdrp->e_ident[EI_OSABI] = 0;
11472 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
11473
11474 if (link_info)
11475 {
11476 globals = elf32_arm_hash_table (link_info);
11477 if (globals->byteswap_code)
11478 i_ehdrp->e_flags |= EF_ARM_BE8;
11479 }
11480 }
11481
11482 static enum elf_reloc_type_class
11483 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
11484 {
11485 switch ((int) ELF32_R_TYPE (rela->r_info))
11486 {
11487 case R_ARM_RELATIVE:
11488 return reloc_class_relative;
11489 case R_ARM_JUMP_SLOT:
11490 return reloc_class_plt;
11491 case R_ARM_COPY:
11492 return reloc_class_copy;
11493 default:
11494 return reloc_class_normal;
11495 }
11496 }
11497
11498 /* Set the right machine number for an Arm ELF file. */
11499
11500 static bfd_boolean
11501 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
11502 {
11503 if (hdr->sh_type == SHT_NOTE)
11504 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
11505
11506 return TRUE;
11507 }
11508
11509 static void
11510 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
11511 {
11512 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
11513 }
11514
11515 /* Return TRUE if this is an unwinding table entry. */
11516
11517 static bfd_boolean
11518 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
11519 {
11520 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
11521 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
11522 }
11523
11524
11525 /* Set the type and flags for an ARM section. We do this by
11526 the section name, which is a hack, but ought to work. */
11527
11528 static bfd_boolean
11529 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
11530 {
11531 const char * name;
11532
11533 name = bfd_get_section_name (abfd, sec);
11534
11535 if (is_arm_elf_unwind_section_name (abfd, name))
11536 {
11537 hdr->sh_type = SHT_ARM_EXIDX;
11538 hdr->sh_flags |= SHF_LINK_ORDER;
11539 }
11540 return TRUE;
11541 }
11542
11543 /* Handle an ARM specific section when reading an object file. This is
11544 called when bfd_section_from_shdr finds a section with an unknown
11545 type. */
11546
11547 static bfd_boolean
11548 elf32_arm_section_from_shdr (bfd *abfd,
11549 Elf_Internal_Shdr * hdr,
11550 const char *name,
11551 int shindex)
11552 {
11553 /* There ought to be a place to keep ELF backend specific flags, but
11554 at the moment there isn't one. We just keep track of the
11555 sections by their name, instead. Fortunately, the ABI gives
11556 names for all the ARM specific sections, so we will probably get
11557 away with this. */
11558 switch (hdr->sh_type)
11559 {
11560 case SHT_ARM_EXIDX:
11561 case SHT_ARM_PREEMPTMAP:
11562 case SHT_ARM_ATTRIBUTES:
11563 break;
11564
11565 default:
11566 return FALSE;
11567 }
11568
11569 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
11570 return FALSE;
11571
11572 return TRUE;
11573 }
11574
11575 /* A structure used to record a list of sections, independently
11576 of the next and prev fields in the asection structure. */
11577 typedef struct section_list
11578 {
11579 asection * sec;
11580 struct section_list * next;
11581 struct section_list * prev;
11582 }
11583 section_list;
11584
11585 /* Unfortunately we need to keep a list of sections for which
11586 an _arm_elf_section_data structure has been allocated. This
11587 is because it is possible for functions like elf32_arm_write_section
11588 to be called on a section which has had an elf_data_structure
11589 allocated for it (and so the used_by_bfd field is valid) but
11590 for which the ARM extended version of this structure - the
11591 _arm_elf_section_data structure - has not been allocated. */
11592 static section_list * sections_with_arm_elf_section_data = NULL;
11593
11594 static void
11595 record_section_with_arm_elf_section_data (asection * sec)
11596 {
11597 struct section_list * entry;
11598
11599 entry = bfd_malloc (sizeof (* entry));
11600 if (entry == NULL)
11601 return;
11602 entry->sec = sec;
11603 entry->next = sections_with_arm_elf_section_data;
11604 entry->prev = NULL;
11605 if (entry->next != NULL)
11606 entry->next->prev = entry;
11607 sections_with_arm_elf_section_data = entry;
11608 }
11609
11610 static struct section_list *
11611 find_arm_elf_section_entry (asection * sec)
11612 {
11613 struct section_list * entry;
11614 static struct section_list * last_entry = NULL;
11615
11616 /* This is a short cut for the typical case where the sections are added
11617 to the sections_with_arm_elf_section_data list in forward order and
11618 then looked up here in backwards order. This makes a real difference
11619 to the ld-srec/sec64k.exp linker test. */
11620 entry = sections_with_arm_elf_section_data;
11621 if (last_entry != NULL)
11622 {
11623 if (last_entry->sec == sec)
11624 entry = last_entry;
11625 else if (last_entry->next != NULL
11626 && last_entry->next->sec == sec)
11627 entry = last_entry->next;
11628 }
11629
11630 for (; entry; entry = entry->next)
11631 if (entry->sec == sec)
11632 break;
11633
11634 if (entry)
11635 /* Record the entry prior to this one - it is the entry we are most
11636 likely to want to locate next time. Also this way if we have been
11637 called from unrecord_section_with_arm_elf_section_data() we will not
11638 be caching a pointer that is about to be freed. */
11639 last_entry = entry->prev;
11640
11641 return entry;
11642 }
11643
11644 static _arm_elf_section_data *
11645 get_arm_elf_section_data (asection * sec)
11646 {
11647 struct section_list * entry;
11648
11649 entry = find_arm_elf_section_entry (sec);
11650
11651 if (entry)
11652 return elf32_arm_section_data (entry->sec);
11653 else
11654 return NULL;
11655 }
11656
11657 static void
11658 unrecord_section_with_arm_elf_section_data (asection * sec)
11659 {
11660 struct section_list * entry;
11661
11662 entry = find_arm_elf_section_entry (sec);
11663
11664 if (entry)
11665 {
11666 if (entry->prev != NULL)
11667 entry->prev->next = entry->next;
11668 if (entry->next != NULL)
11669 entry->next->prev = entry->prev;
11670 if (entry == sections_with_arm_elf_section_data)
11671 sections_with_arm_elf_section_data = entry->next;
11672 free (entry);
11673 }
11674 }
11675
11676
11677 typedef struct
11678 {
11679 void *finfo;
11680 struct bfd_link_info *info;
11681 asection *sec;
11682 int sec_shndx;
11683 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11684 asection *, struct elf_link_hash_entry *);
11685 } output_arch_syminfo;
11686
11687 enum map_symbol_type
11688 {
11689 ARM_MAP_ARM,
11690 ARM_MAP_THUMB,
11691 ARM_MAP_DATA
11692 };
11693
11694
11695 /* Output a single mapping symbol. */
11696
11697 static bfd_boolean
11698 elf32_arm_output_map_sym (output_arch_syminfo *osi,
11699 enum map_symbol_type type,
11700 bfd_vma offset)
11701 {
11702 static const char *names[3] = {"$a", "$t", "$d"};
11703 struct elf32_arm_link_hash_table *htab;
11704 Elf_Internal_Sym sym;
11705
11706 htab = elf32_arm_hash_table (osi->info);
11707 sym.st_value = osi->sec->output_section->vma
11708 + osi->sec->output_offset
11709 + offset;
11710 sym.st_size = 0;
11711 sym.st_other = 0;
11712 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
11713 sym.st_shndx = osi->sec_shndx;
11714 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
11715 return FALSE;
11716 return TRUE;
11717 }
11718
11719
11720 /* Output mapping symbols for PLT entries associated with H. */
11721
11722 static bfd_boolean
11723 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11724 {
11725 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11726 struct elf32_arm_link_hash_table *htab;
11727 struct elf32_arm_link_hash_entry *eh;
11728 bfd_vma addr;
11729
11730 htab = elf32_arm_hash_table (osi->info);
11731
11732 if (h->root.type == bfd_link_hash_indirect)
11733 return TRUE;
11734
11735 if (h->root.type == bfd_link_hash_warning)
11736 /* When warning symbols are created, they **replace** the "real"
11737 entry in the hash table, thus we never get to see the real
11738 symbol in a hash traversal. So look at it now. */
11739 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11740
11741 if (h->plt.offset == (bfd_vma) -1)
11742 return TRUE;
11743
11744 eh = (struct elf32_arm_link_hash_entry *) h;
11745 addr = h->plt.offset;
11746 if (htab->symbian_p)
11747 {
11748 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11749 return FALSE;
11750 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11751 return FALSE;
11752 }
11753 else if (htab->vxworks_p)
11754 {
11755 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11756 return FALSE;
11757 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11758 return FALSE;
11759 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
11760 return FALSE;
11761 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
11762 return FALSE;
11763 }
11764 else
11765 {
11766 bfd_signed_vma thumb_refs;
11767
11768 thumb_refs = eh->plt_thumb_refcount;
11769 if (!htab->use_blx)
11770 thumb_refs += eh->plt_maybe_thumb_refcount;
11771
11772 if (thumb_refs > 0)
11773 {
11774 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
11775 return FALSE;
11776 }
11777 #ifdef FOUR_WORD_PLT
11778 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11779 return FALSE;
11780 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11781 return FALSE;
11782 #else
11783 /* A three-word PLT with no Thumb thunk contains only Arm code,
11784 so only need to output a mapping symbol for the first PLT entry and
11785 entries with thumb thunks. */
11786 if (thumb_refs > 0 || addr == 20)
11787 {
11788 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11789 return FALSE;
11790 }
11791 #endif
11792 }
11793
11794 return TRUE;
11795 }
11796
11797 /* Output a single local symbol for a generated stub. */
11798
11799 static bfd_boolean
11800 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
11801 bfd_vma offset, bfd_vma size)
11802 {
11803 struct elf32_arm_link_hash_table *htab;
11804 Elf_Internal_Sym sym;
11805
11806 htab = elf32_arm_hash_table (osi->info);
11807 sym.st_value = osi->sec->output_section->vma
11808 + osi->sec->output_offset
11809 + offset;
11810 sym.st_size = size;
11811 sym.st_other = 0;
11812 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
11813 sym.st_shndx = osi->sec_shndx;
11814 if (!osi->func (osi->finfo, name, &sym, osi->sec, NULL))
11815 return FALSE;
11816 return TRUE;
11817 }
11818
11819 static bfd_boolean
11820 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
11821 void * in_arg)
11822 {
11823 struct elf32_arm_stub_hash_entry *stub_entry;
11824 struct bfd_link_info *info;
11825 struct elf32_arm_link_hash_table *htab;
11826 asection *stub_sec;
11827 bfd_vma addr;
11828 char *stub_name;
11829 output_arch_syminfo *osi;
11830 const insn_sequence *template;
11831 enum stub_insn_type prev_type;
11832 int size;
11833 int i;
11834 enum map_symbol_type sym_type;
11835
11836 /* Massage our args to the form they really have. */
11837 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
11838 osi = (output_arch_syminfo *) in_arg;
11839
11840 info = osi->info;
11841
11842 htab = elf32_arm_hash_table (info);
11843 stub_sec = stub_entry->stub_sec;
11844
11845 /* Ensure this stub is attached to the current section being
11846 processed. */
11847 if (stub_sec != osi->sec)
11848 return TRUE;
11849
11850 addr = (bfd_vma) stub_entry->stub_offset;
11851 stub_name = stub_entry->output_name;
11852
11853 template = stub_entry->stub_template;
11854 switch (template[0].type)
11855 {
11856 case ARM_TYPE:
11857 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
11858 return FALSE;
11859 break;
11860 case THUMB16_TYPE:
11861 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
11862 stub_entry->stub_size))
11863 return FALSE;
11864 break;
11865 default:
11866 BFD_FAIL ();
11867 return FALSE;
11868 }
11869
11870 prev_type = DATA_TYPE;
11871 size = 0;
11872 for (i = 0; i < stub_entry->stub_template_size; i++)
11873 {
11874 switch (template[i].type)
11875 {
11876 case ARM_TYPE:
11877 sym_type = ARM_MAP_ARM;
11878 break;
11879
11880 case THUMB16_TYPE:
11881 sym_type = ARM_MAP_THUMB;
11882 break;
11883
11884 case DATA_TYPE:
11885 sym_type = ARM_MAP_DATA;
11886 break;
11887
11888 default:
11889 BFD_FAIL ();
11890 return FALSE;
11891 }
11892
11893 if (template[i].type != prev_type)
11894 {
11895 prev_type = template[i].type;
11896 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
11897 return FALSE;
11898 }
11899
11900 switch (template[i].type)
11901 {
11902 case ARM_TYPE:
11903 size += 4;
11904 break;
11905
11906 case THUMB16_TYPE:
11907 size += 2;
11908 break;
11909
11910 case DATA_TYPE:
11911 size += 4;
11912 break;
11913
11914 default:
11915 BFD_FAIL ();
11916 return FALSE;
11917 }
11918 }
11919
11920 return TRUE;
11921 }
11922
11923 /* Output mapping symbols for linker generated sections. */
11924
11925 static bfd_boolean
11926 elf32_arm_output_arch_local_syms (bfd *output_bfd,
11927 struct bfd_link_info *info,
11928 void *finfo,
11929 bfd_boolean (*func) (void *, const char *,
11930 Elf_Internal_Sym *,
11931 asection *,
11932 struct elf_link_hash_entry *))
11933 {
11934 output_arch_syminfo osi;
11935 struct elf32_arm_link_hash_table *htab;
11936 bfd_vma offset;
11937 bfd_size_type size;
11938
11939 htab = elf32_arm_hash_table (info);
11940 check_use_blx (htab);
11941
11942 osi.finfo = finfo;
11943 osi.info = info;
11944 osi.func = func;
11945
11946 /* ARM->Thumb glue. */
11947 if (htab->arm_glue_size > 0)
11948 {
11949 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11950 ARM2THUMB_GLUE_SECTION_NAME);
11951
11952 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11953 (output_bfd, osi.sec->output_section);
11954 if (info->shared || htab->root.is_relocatable_executable
11955 || htab->pic_veneer)
11956 size = ARM2THUMB_PIC_GLUE_SIZE;
11957 else if (htab->use_blx)
11958 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
11959 else
11960 size = ARM2THUMB_STATIC_GLUE_SIZE;
11961
11962 for (offset = 0; offset < htab->arm_glue_size; offset += size)
11963 {
11964 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
11965 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
11966 }
11967 }
11968
11969 /* Thumb->ARM glue. */
11970 if (htab->thumb_glue_size > 0)
11971 {
11972 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11973 THUMB2ARM_GLUE_SECTION_NAME);
11974
11975 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11976 (output_bfd, osi.sec->output_section);
11977 size = THUMB2ARM_GLUE_SIZE;
11978
11979 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
11980 {
11981 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
11982 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
11983 }
11984 }
11985
11986 /* ARMv4 BX veneers. */
11987 if (htab->bx_glue_size > 0)
11988 {
11989 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11990 ARM_BX_GLUE_SECTION_NAME);
11991
11992 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11993 (output_bfd, osi.sec->output_section);
11994
11995 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
11996 }
11997
11998 /* Long calls stubs. */
11999 if (htab->stub_bfd && htab->stub_bfd->sections)
12000 {
12001 asection* stub_sec;
12002
12003 for (stub_sec = htab->stub_bfd->sections;
12004 stub_sec != NULL;
12005 stub_sec = stub_sec->next)
12006 {
12007 /* Ignore non-stub sections. */
12008 if (!strstr (stub_sec->name, STUB_SUFFIX))
12009 continue;
12010
12011 osi.sec = stub_sec;
12012
12013 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12014 (output_bfd, osi.sec->output_section);
12015
12016 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
12017 }
12018 }
12019
12020 /* Finally, output mapping symbols for the PLT. */
12021 if (!htab->splt || htab->splt->size == 0)
12022 return TRUE;
12023
12024 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
12025 htab->splt->output_section);
12026 osi.sec = htab->splt;
12027 /* Output mapping symbols for the plt header. SymbianOS does not have a
12028 plt header. */
12029 if (htab->vxworks_p)
12030 {
12031 /* VxWorks shared libraries have no PLT header. */
12032 if (!info->shared)
12033 {
12034 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
12035 return FALSE;
12036 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
12037 return FALSE;
12038 }
12039 }
12040 else if (!htab->symbian_p)
12041 {
12042 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
12043 return FALSE;
12044 #ifndef FOUR_WORD_PLT
12045 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
12046 return FALSE;
12047 #endif
12048 }
12049
12050 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
12051 return TRUE;
12052 }
12053
12054 /* Allocate target specific section data. */
12055
12056 static bfd_boolean
12057 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
12058 {
12059 if (!sec->used_by_bfd)
12060 {
12061 _arm_elf_section_data *sdata;
12062 bfd_size_type amt = sizeof (*sdata);
12063
12064 sdata = bfd_zalloc (abfd, amt);
12065 if (sdata == NULL)
12066 return FALSE;
12067 sec->used_by_bfd = sdata;
12068 }
12069
12070 record_section_with_arm_elf_section_data (sec);
12071
12072 return _bfd_elf_new_section_hook (abfd, sec);
12073 }
12074
12075
12076 /* Used to order a list of mapping symbols by address. */
12077
12078 static int
12079 elf32_arm_compare_mapping (const void * a, const void * b)
12080 {
12081 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
12082 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
12083
12084 if (amap->vma > bmap->vma)
12085 return 1;
12086 else if (amap->vma < bmap->vma)
12087 return -1;
12088 else if (amap->type > bmap->type)
12089 /* Ensure results do not depend on the host qsort for objects with
12090 multiple mapping symbols at the same address by sorting on type
12091 after vma. */
12092 return 1;
12093 else if (amap->type < bmap->type)
12094 return -1;
12095 else
12096 return 0;
12097 }
12098
12099
12100 /* Do code byteswapping. Return FALSE afterwards so that the section is
12101 written out as normal. */
12102
12103 static bfd_boolean
12104 elf32_arm_write_section (bfd *output_bfd,
12105 struct bfd_link_info *link_info,
12106 asection *sec,
12107 bfd_byte *contents)
12108 {
12109 int mapcount, errcount;
12110 _arm_elf_section_data *arm_data;
12111 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
12112 elf32_arm_section_map *map;
12113 elf32_vfp11_erratum_list *errnode;
12114 bfd_vma ptr;
12115 bfd_vma end;
12116 bfd_vma offset = sec->output_section->vma + sec->output_offset;
12117 bfd_byte tmp;
12118 int i;
12119
12120 /* If this section has not been allocated an _arm_elf_section_data
12121 structure then we cannot record anything. */
12122 arm_data = get_arm_elf_section_data (sec);
12123 if (arm_data == NULL)
12124 return FALSE;
12125
12126 mapcount = arm_data->mapcount;
12127 map = arm_data->map;
12128 errcount = arm_data->erratumcount;
12129
12130 if (errcount != 0)
12131 {
12132 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
12133
12134 for (errnode = arm_data->erratumlist; errnode != 0;
12135 errnode = errnode->next)
12136 {
12137 bfd_vma index = errnode->vma - offset;
12138
12139 switch (errnode->type)
12140 {
12141 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
12142 {
12143 bfd_vma branch_to_veneer;
12144 /* Original condition code of instruction, plus bit mask for
12145 ARM B instruction. */
12146 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
12147 | 0x0a000000;
12148
12149 /* The instruction is before the label. */
12150 index -= 4;
12151
12152 /* Above offset included in -4 below. */
12153 branch_to_veneer = errnode->u.b.veneer->vma
12154 - errnode->vma - 4;
12155
12156 if ((signed) branch_to_veneer < -(1 << 25)
12157 || (signed) branch_to_veneer >= (1 << 25))
12158 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
12159 "range"), output_bfd);
12160
12161 insn |= (branch_to_veneer >> 2) & 0xffffff;
12162 contents[endianflip ^ index] = insn & 0xff;
12163 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
12164 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
12165 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
12166 }
12167 break;
12168
12169 case VFP11_ERRATUM_ARM_VENEER:
12170 {
12171 bfd_vma branch_from_veneer;
12172 unsigned int insn;
12173
12174 /* Take size of veneer into account. */
12175 branch_from_veneer = errnode->u.v.branch->vma
12176 - errnode->vma - 12;
12177
12178 if ((signed) branch_from_veneer < -(1 << 25)
12179 || (signed) branch_from_veneer >= (1 << 25))
12180 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
12181 "range"), output_bfd);
12182
12183 /* Original instruction. */
12184 insn = errnode->u.v.branch->u.b.vfp_insn;
12185 contents[endianflip ^ index] = insn & 0xff;
12186 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
12187 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
12188 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
12189
12190 /* Branch back to insn after original insn. */
12191 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
12192 contents[endianflip ^ (index + 4)] = insn & 0xff;
12193 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
12194 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
12195 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
12196 }
12197 break;
12198
12199 default:
12200 abort ();
12201 }
12202 }
12203 }
12204
12205 if (mapcount == 0)
12206 return FALSE;
12207
12208 if (globals->byteswap_code)
12209 {
12210 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
12211
12212 ptr = map[0].vma;
12213 for (i = 0; i < mapcount; i++)
12214 {
12215 if (i == mapcount - 1)
12216 end = sec->size;
12217 else
12218 end = map[i + 1].vma;
12219
12220 switch (map[i].type)
12221 {
12222 case 'a':
12223 /* Byte swap code words. */
12224 while (ptr + 3 < end)
12225 {
12226 tmp = contents[ptr];
12227 contents[ptr] = contents[ptr + 3];
12228 contents[ptr + 3] = tmp;
12229 tmp = contents[ptr + 1];
12230 contents[ptr + 1] = contents[ptr + 2];
12231 contents[ptr + 2] = tmp;
12232 ptr += 4;
12233 }
12234 break;
12235
12236 case 't':
12237 /* Byte swap code halfwords. */
12238 while (ptr + 1 < end)
12239 {
12240 tmp = contents[ptr];
12241 contents[ptr] = contents[ptr + 1];
12242 contents[ptr + 1] = tmp;
12243 ptr += 2;
12244 }
12245 break;
12246
12247 case 'd':
12248 /* Leave data alone. */
12249 break;
12250 }
12251 ptr = end;
12252 }
12253 }
12254
12255 free (map);
12256 arm_data->mapcount = 0;
12257 arm_data->mapsize = 0;
12258 arm_data->map = NULL;
12259 unrecord_section_with_arm_elf_section_data (sec);
12260
12261 return FALSE;
12262 }
12263
12264 static void
12265 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
12266 asection * sec,
12267 void * ignore ATTRIBUTE_UNUSED)
12268 {
12269 unrecord_section_with_arm_elf_section_data (sec);
12270 }
12271
12272 static bfd_boolean
12273 elf32_arm_close_and_cleanup (bfd * abfd)
12274 {
12275 if (abfd->sections)
12276 bfd_map_over_sections (abfd,
12277 unrecord_section_via_map_over_sections,
12278 NULL);
12279
12280 return _bfd_elf_close_and_cleanup (abfd);
12281 }
12282
12283 static bfd_boolean
12284 elf32_arm_bfd_free_cached_info (bfd * abfd)
12285 {
12286 if (abfd->sections)
12287 bfd_map_over_sections (abfd,
12288 unrecord_section_via_map_over_sections,
12289 NULL);
12290
12291 return _bfd_free_cached_info (abfd);
12292 }
12293
12294 /* Display STT_ARM_TFUNC symbols as functions. */
12295
12296 static void
12297 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
12298 asymbol *asym)
12299 {
12300 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
12301
12302 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
12303 elfsym->symbol.flags |= BSF_FUNCTION;
12304 }
12305
12306
12307 /* Mangle thumb function symbols as we read them in. */
12308
12309 static bfd_boolean
12310 elf32_arm_swap_symbol_in (bfd * abfd,
12311 const void *psrc,
12312 const void *pshn,
12313 Elf_Internal_Sym *dst)
12314 {
12315 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
12316 return FALSE;
12317
12318 /* New EABI objects mark thumb function symbols by setting the low bit of
12319 the address. Turn these into STT_ARM_TFUNC. */
12320 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
12321 && (dst->st_value & 1))
12322 {
12323 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
12324 dst->st_value &= ~(bfd_vma) 1;
12325 }
12326 return TRUE;
12327 }
12328
12329
12330 /* Mangle thumb function symbols as we write them out. */
12331
12332 static void
12333 elf32_arm_swap_symbol_out (bfd *abfd,
12334 const Elf_Internal_Sym *src,
12335 void *cdst,
12336 void *shndx)
12337 {
12338 Elf_Internal_Sym newsym;
12339
12340 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
12341 of the address set, as per the new EABI. We do this unconditionally
12342 because objcopy does not set the elf header flags until after
12343 it writes out the symbol table. */
12344 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
12345 {
12346 newsym = *src;
12347 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
12348 if (newsym.st_shndx != SHN_UNDEF)
12349 {
12350 /* Do this only for defined symbols. At link type, the static
12351 linker will simulate the work of dynamic linker of resolving
12352 symbols and will carry over the thumbness of found symbols to
12353 the output symbol table. It's not clear how it happens, but
12354 the thumbness of undefined symbols can well be different at
12355 runtime, and writing '1' for them will be confusing for users
12356 and possibly for dynamic linker itself.
12357 */
12358 newsym.st_value |= 1;
12359 }
12360
12361 src = &newsym;
12362 }
12363 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
12364 }
12365
12366 /* Add the PT_ARM_EXIDX program header. */
12367
12368 static bfd_boolean
12369 elf32_arm_modify_segment_map (bfd *abfd,
12370 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12371 {
12372 struct elf_segment_map *m;
12373 asection *sec;
12374
12375 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12376 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12377 {
12378 /* If there is already a PT_ARM_EXIDX header, then we do not
12379 want to add another one. This situation arises when running
12380 "strip"; the input binary already has the header. */
12381 m = elf_tdata (abfd)->segment_map;
12382 while (m && m->p_type != PT_ARM_EXIDX)
12383 m = m->next;
12384 if (!m)
12385 {
12386 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
12387 if (m == NULL)
12388 return FALSE;
12389 m->p_type = PT_ARM_EXIDX;
12390 m->count = 1;
12391 m->sections[0] = sec;
12392
12393 m->next = elf_tdata (abfd)->segment_map;
12394 elf_tdata (abfd)->segment_map = m;
12395 }
12396 }
12397
12398 return TRUE;
12399 }
12400
12401 /* We may add a PT_ARM_EXIDX program header. */
12402
12403 static int
12404 elf32_arm_additional_program_headers (bfd *abfd,
12405 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12406 {
12407 asection *sec;
12408
12409 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12410 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12411 return 1;
12412 else
12413 return 0;
12414 }
12415
12416 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
12417
12418 static bfd_boolean
12419 elf32_arm_is_function_type (unsigned int type)
12420 {
12421 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
12422 }
12423
12424 /* We use this to override swap_symbol_in and swap_symbol_out. */
12425 const struct elf_size_info elf32_arm_size_info =
12426 {
12427 sizeof (Elf32_External_Ehdr),
12428 sizeof (Elf32_External_Phdr),
12429 sizeof (Elf32_External_Shdr),
12430 sizeof (Elf32_External_Rel),
12431 sizeof (Elf32_External_Rela),
12432 sizeof (Elf32_External_Sym),
12433 sizeof (Elf32_External_Dyn),
12434 sizeof (Elf_External_Note),
12435 4,
12436 1,
12437 32, 2,
12438 ELFCLASS32, EV_CURRENT,
12439 bfd_elf32_write_out_phdrs,
12440 bfd_elf32_write_shdrs_and_ehdr,
12441 bfd_elf32_checksum_contents,
12442 bfd_elf32_write_relocs,
12443 elf32_arm_swap_symbol_in,
12444 elf32_arm_swap_symbol_out,
12445 bfd_elf32_slurp_reloc_table,
12446 bfd_elf32_slurp_symbol_table,
12447 bfd_elf32_swap_dyn_in,
12448 bfd_elf32_swap_dyn_out,
12449 bfd_elf32_swap_reloc_in,
12450 bfd_elf32_swap_reloc_out,
12451 bfd_elf32_swap_reloca_in,
12452 bfd_elf32_swap_reloca_out
12453 };
12454
12455 #define ELF_ARCH bfd_arch_arm
12456 #define ELF_MACHINE_CODE EM_ARM
12457 #ifdef __QNXTARGET__
12458 #define ELF_MAXPAGESIZE 0x1000
12459 #else
12460 #define ELF_MAXPAGESIZE 0x8000
12461 #endif
12462 #define ELF_MINPAGESIZE 0x1000
12463 #define ELF_COMMONPAGESIZE 0x1000
12464
12465 #define bfd_elf32_mkobject elf32_arm_mkobject
12466
12467 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
12468 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
12469 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
12470 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
12471 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
12472 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
12473 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
12474 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
12475 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
12476 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
12477 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
12478 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
12479 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
12480 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
12481
12482 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
12483 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
12484 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
12485 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
12486 #define elf_backend_check_relocs elf32_arm_check_relocs
12487 #define elf_backend_relocate_section elf32_arm_relocate_section
12488 #define elf_backend_write_section elf32_arm_write_section
12489 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
12490 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
12491 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
12492 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
12493 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
12494 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
12495 #define elf_backend_post_process_headers elf32_arm_post_process_headers
12496 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
12497 #define elf_backend_object_p elf32_arm_object_p
12498 #define elf_backend_section_flags elf32_arm_section_flags
12499 #define elf_backend_fake_sections elf32_arm_fake_sections
12500 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
12501 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12502 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
12503 #define elf_backend_symbol_processing elf32_arm_symbol_processing
12504 #define elf_backend_size_info elf32_arm_size_info
12505 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
12506 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
12507 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
12508 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
12509 #define elf_backend_is_function_type elf32_arm_is_function_type
12510
12511 #define elf_backend_can_refcount 1
12512 #define elf_backend_can_gc_sections 1
12513 #define elf_backend_plt_readonly 1
12514 #define elf_backend_want_got_plt 1
12515 #define elf_backend_want_plt_sym 0
12516 #define elf_backend_may_use_rel_p 1
12517 #define elf_backend_may_use_rela_p 0
12518 #define elf_backend_default_use_rela_p 0
12519
12520 #define elf_backend_got_header_size 12
12521
12522 #undef elf_backend_obj_attrs_vendor
12523 #define elf_backend_obj_attrs_vendor "aeabi"
12524 #undef elf_backend_obj_attrs_section
12525 #define elf_backend_obj_attrs_section ".ARM.attributes"
12526 #undef elf_backend_obj_attrs_arg_type
12527 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
12528 #undef elf_backend_obj_attrs_section_type
12529 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
12530 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
12531
12532 #include "elf32-target.h"
12533
12534 /* VxWorks Targets. */
12535
12536 #undef TARGET_LITTLE_SYM
12537 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
12538 #undef TARGET_LITTLE_NAME
12539 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
12540 #undef TARGET_BIG_SYM
12541 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
12542 #undef TARGET_BIG_NAME
12543 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
12544
12545 /* Like elf32_arm_link_hash_table_create -- but overrides
12546 appropriately for VxWorks. */
12547
12548 static struct bfd_link_hash_table *
12549 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
12550 {
12551 struct bfd_link_hash_table *ret;
12552
12553 ret = elf32_arm_link_hash_table_create (abfd);
12554 if (ret)
12555 {
12556 struct elf32_arm_link_hash_table *htab
12557 = (struct elf32_arm_link_hash_table *) ret;
12558 htab->use_rel = 0;
12559 htab->vxworks_p = 1;
12560 }
12561 return ret;
12562 }
12563
12564 static void
12565 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
12566 {
12567 elf32_arm_final_write_processing (abfd, linker);
12568 elf_vxworks_final_write_processing (abfd, linker);
12569 }
12570
12571 #undef elf32_bed
12572 #define elf32_bed elf32_arm_vxworks_bed
12573
12574 #undef bfd_elf32_bfd_link_hash_table_create
12575 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
12576 #undef elf_backend_add_symbol_hook
12577 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
12578 #undef elf_backend_final_write_processing
12579 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
12580 #undef elf_backend_emit_relocs
12581 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
12582
12583 #undef elf_backend_may_use_rel_p
12584 #define elf_backend_may_use_rel_p 0
12585 #undef elf_backend_may_use_rela_p
12586 #define elf_backend_may_use_rela_p 1
12587 #undef elf_backend_default_use_rela_p
12588 #define elf_backend_default_use_rela_p 1
12589 #undef elf_backend_want_plt_sym
12590 #define elf_backend_want_plt_sym 1
12591 #undef ELF_MAXPAGESIZE
12592 #define ELF_MAXPAGESIZE 0x1000
12593
12594 #include "elf32-target.h"
12595
12596
12597 /* Symbian OS Targets. */
12598
12599 #undef TARGET_LITTLE_SYM
12600 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
12601 #undef TARGET_LITTLE_NAME
12602 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
12603 #undef TARGET_BIG_SYM
12604 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
12605 #undef TARGET_BIG_NAME
12606 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
12607
12608 /* Like elf32_arm_link_hash_table_create -- but overrides
12609 appropriately for Symbian OS. */
12610
12611 static struct bfd_link_hash_table *
12612 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
12613 {
12614 struct bfd_link_hash_table *ret;
12615
12616 ret = elf32_arm_link_hash_table_create (abfd);
12617 if (ret)
12618 {
12619 struct elf32_arm_link_hash_table *htab
12620 = (struct elf32_arm_link_hash_table *)ret;
12621 /* There is no PLT header for Symbian OS. */
12622 htab->plt_header_size = 0;
12623 /* The PLT entries are each one instruction and one word. */
12624 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
12625 htab->symbian_p = 1;
12626 /* Symbian uses armv5t or above, so use_blx is always true. */
12627 htab->use_blx = 1;
12628 htab->root.is_relocatable_executable = 1;
12629 }
12630 return ret;
12631 }
12632
12633 static const struct bfd_elf_special_section
12634 elf32_arm_symbian_special_sections[] =
12635 {
12636 /* In a BPABI executable, the dynamic linking sections do not go in
12637 the loadable read-only segment. The post-linker may wish to
12638 refer to these sections, but they are not part of the final
12639 program image. */
12640 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
12641 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
12642 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
12643 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
12644 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
12645 /* These sections do not need to be writable as the SymbianOS
12646 postlinker will arrange things so that no dynamic relocation is
12647 required. */
12648 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
12649 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
12650 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
12651 { NULL, 0, 0, 0, 0 }
12652 };
12653
12654 static void
12655 elf32_arm_symbian_begin_write_processing (bfd *abfd,
12656 struct bfd_link_info *link_info)
12657 {
12658 /* BPABI objects are never loaded directly by an OS kernel; they are
12659 processed by a postlinker first, into an OS-specific format. If
12660 the D_PAGED bit is set on the file, BFD will align segments on
12661 page boundaries, so that an OS can directly map the file. With
12662 BPABI objects, that just results in wasted space. In addition,
12663 because we clear the D_PAGED bit, map_sections_to_segments will
12664 recognize that the program headers should not be mapped into any
12665 loadable segment. */
12666 abfd->flags &= ~D_PAGED;
12667 elf32_arm_begin_write_processing (abfd, link_info);
12668 }
12669
12670 static bfd_boolean
12671 elf32_arm_symbian_modify_segment_map (bfd *abfd,
12672 struct bfd_link_info *info)
12673 {
12674 struct elf_segment_map *m;
12675 asection *dynsec;
12676
12677 /* BPABI shared libraries and executables should have a PT_DYNAMIC
12678 segment. However, because the .dynamic section is not marked
12679 with SEC_LOAD, the generic ELF code will not create such a
12680 segment. */
12681 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
12682 if (dynsec)
12683 {
12684 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
12685 if (m->p_type == PT_DYNAMIC)
12686 break;
12687
12688 if (m == NULL)
12689 {
12690 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12691 m->next = elf_tdata (abfd)->segment_map;
12692 elf_tdata (abfd)->segment_map = m;
12693 }
12694 }
12695
12696 /* Also call the generic arm routine. */
12697 return elf32_arm_modify_segment_map (abfd, info);
12698 }
12699
12700 /* Return address for Ith PLT stub in section PLT, for relocation REL
12701 or (bfd_vma) -1 if it should not be included. */
12702
12703 static bfd_vma
12704 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
12705 const arelent *rel ATTRIBUTE_UNUSED)
12706 {
12707 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
12708 }
12709
12710
12711 #undef elf32_bed
12712 #define elf32_bed elf32_arm_symbian_bed
12713
12714 /* The dynamic sections are not allocated on SymbianOS; the postlinker
12715 will process them and then discard them. */
12716 #undef ELF_DYNAMIC_SEC_FLAGS
12717 #define ELF_DYNAMIC_SEC_FLAGS \
12718 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
12719
12720 #undef elf_backend_add_symbol_hook
12721 #undef elf_backend_emit_relocs
12722
12723 #undef bfd_elf32_bfd_link_hash_table_create
12724 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
12725 #undef elf_backend_special_sections
12726 #define elf_backend_special_sections elf32_arm_symbian_special_sections
12727 #undef elf_backend_begin_write_processing
12728 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12729 #undef elf_backend_final_write_processing
12730 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12731
12732 #undef elf_backend_modify_segment_map
12733 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12734
12735 /* There is no .got section for BPABI objects, and hence no header. */
12736 #undef elf_backend_got_header_size
12737 #define elf_backend_got_header_size 0
12738
12739 /* Similarly, there is no .got.plt section. */
12740 #undef elf_backend_want_got_plt
12741 #define elf_backend_want_got_plt 0
12742
12743 #undef elf_backend_plt_sym_val
12744 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12745
12746 #undef elf_backend_may_use_rel_p
12747 #define elf_backend_may_use_rel_p 1
12748 #undef elf_backend_may_use_rela_p
12749 #define elf_backend_may_use_rela_p 0
12750 #undef elf_backend_default_use_rela_p
12751 #define elf_backend_default_use_rela_p 0
12752 #undef elf_backend_want_plt_sym
12753 #define elf_backend_want_plt_sym 0
12754 #undef ELF_MAXPAGESIZE
12755 #define ELF_MAXPAGESIZE 0x8000
12756
12757 #include "elf32-target.h"
This page took 0.356164 seconds and 4 git commands to generate.