Introduce complete_nested_command_line
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "libiberty.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "elf-nacl.h"
29 #include "elf-vxworks.h"
30 #include "elf/arm.h"
31
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
40 ((HTAB)->use_rel \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
43
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
47 ((HTAB)->use_rel \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
50
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
54 ((HTAB)->use_rel \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
57
58 #define elf_info_to_howto NULL
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
60
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
63
64 /* The Adjusted Place, as defined by AAELF. */
65 #define Pa(X) ((X) & 0xfffffffc)
66
67 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
68 struct bfd_link_info *link_info,
69 asection *sec,
70 bfd_byte *contents);
71
72 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
73 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
74 in that slot. */
75
76 static reloc_howto_type elf32_arm_howto_table_1[] =
77 {
78 /* No relocation. */
79 HOWTO (R_ARM_NONE, /* type */
80 0, /* rightshift */
81 3, /* size (0 = byte, 1 = short, 2 = long) */
82 0, /* bitsize */
83 FALSE, /* pc_relative */
84 0, /* bitpos */
85 complain_overflow_dont,/* complain_on_overflow */
86 bfd_elf_generic_reloc, /* special_function */
87 "R_ARM_NONE", /* name */
88 FALSE, /* partial_inplace */
89 0, /* src_mask */
90 0, /* dst_mask */
91 FALSE), /* pcrel_offset */
92
93 HOWTO (R_ARM_PC24, /* type */
94 2, /* rightshift */
95 2, /* size (0 = byte, 1 = short, 2 = long) */
96 24, /* bitsize */
97 TRUE, /* pc_relative */
98 0, /* bitpos */
99 complain_overflow_signed,/* complain_on_overflow */
100 bfd_elf_generic_reloc, /* special_function */
101 "R_ARM_PC24", /* name */
102 FALSE, /* partial_inplace */
103 0x00ffffff, /* src_mask */
104 0x00ffffff, /* dst_mask */
105 TRUE), /* pcrel_offset */
106
107 /* 32 bit absolute */
108 HOWTO (R_ARM_ABS32, /* type */
109 0, /* rightshift */
110 2, /* size (0 = byte, 1 = short, 2 = long) */
111 32, /* bitsize */
112 FALSE, /* pc_relative */
113 0, /* bitpos */
114 complain_overflow_bitfield,/* complain_on_overflow */
115 bfd_elf_generic_reloc, /* special_function */
116 "R_ARM_ABS32", /* name */
117 FALSE, /* partial_inplace */
118 0xffffffff, /* src_mask */
119 0xffffffff, /* dst_mask */
120 FALSE), /* pcrel_offset */
121
122 /* standard 32bit pc-relative reloc */
123 HOWTO (R_ARM_REL32, /* type */
124 0, /* rightshift */
125 2, /* size (0 = byte, 1 = short, 2 = long) */
126 32, /* bitsize */
127 TRUE, /* pc_relative */
128 0, /* bitpos */
129 complain_overflow_bitfield,/* complain_on_overflow */
130 bfd_elf_generic_reloc, /* special_function */
131 "R_ARM_REL32", /* name */
132 FALSE, /* partial_inplace */
133 0xffffffff, /* src_mask */
134 0xffffffff, /* dst_mask */
135 TRUE), /* pcrel_offset */
136
137 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
138 HOWTO (R_ARM_LDR_PC_G0, /* type */
139 0, /* rightshift */
140 0, /* size (0 = byte, 1 = short, 2 = long) */
141 32, /* bitsize */
142 TRUE, /* pc_relative */
143 0, /* bitpos */
144 complain_overflow_dont,/* complain_on_overflow */
145 bfd_elf_generic_reloc, /* special_function */
146 "R_ARM_LDR_PC_G0", /* name */
147 FALSE, /* partial_inplace */
148 0xffffffff, /* src_mask */
149 0xffffffff, /* dst_mask */
150 TRUE), /* pcrel_offset */
151
152 /* 16 bit absolute */
153 HOWTO (R_ARM_ABS16, /* type */
154 0, /* rightshift */
155 1, /* size (0 = byte, 1 = short, 2 = long) */
156 16, /* bitsize */
157 FALSE, /* pc_relative */
158 0, /* bitpos */
159 complain_overflow_bitfield,/* complain_on_overflow */
160 bfd_elf_generic_reloc, /* special_function */
161 "R_ARM_ABS16", /* name */
162 FALSE, /* partial_inplace */
163 0x0000ffff, /* src_mask */
164 0x0000ffff, /* dst_mask */
165 FALSE), /* pcrel_offset */
166
167 /* 12 bit absolute */
168 HOWTO (R_ARM_ABS12, /* type */
169 0, /* rightshift */
170 2, /* size (0 = byte, 1 = short, 2 = long) */
171 12, /* bitsize */
172 FALSE, /* pc_relative */
173 0, /* bitpos */
174 complain_overflow_bitfield,/* complain_on_overflow */
175 bfd_elf_generic_reloc, /* special_function */
176 "R_ARM_ABS12", /* name */
177 FALSE, /* partial_inplace */
178 0x00000fff, /* src_mask */
179 0x00000fff, /* dst_mask */
180 FALSE), /* pcrel_offset */
181
182 HOWTO (R_ARM_THM_ABS5, /* type */
183 6, /* rightshift */
184 1, /* size (0 = byte, 1 = short, 2 = long) */
185 5, /* bitsize */
186 FALSE, /* pc_relative */
187 0, /* bitpos */
188 complain_overflow_bitfield,/* complain_on_overflow */
189 bfd_elf_generic_reloc, /* special_function */
190 "R_ARM_THM_ABS5", /* name */
191 FALSE, /* partial_inplace */
192 0x000007e0, /* src_mask */
193 0x000007e0, /* dst_mask */
194 FALSE), /* pcrel_offset */
195
196 /* 8 bit absolute */
197 HOWTO (R_ARM_ABS8, /* type */
198 0, /* rightshift */
199 0, /* size (0 = byte, 1 = short, 2 = long) */
200 8, /* bitsize */
201 FALSE, /* pc_relative */
202 0, /* bitpos */
203 complain_overflow_bitfield,/* complain_on_overflow */
204 bfd_elf_generic_reloc, /* special_function */
205 "R_ARM_ABS8", /* name */
206 FALSE, /* partial_inplace */
207 0x000000ff, /* src_mask */
208 0x000000ff, /* dst_mask */
209 FALSE), /* pcrel_offset */
210
211 HOWTO (R_ARM_SBREL32, /* type */
212 0, /* rightshift */
213 2, /* size (0 = byte, 1 = short, 2 = long) */
214 32, /* bitsize */
215 FALSE, /* pc_relative */
216 0, /* bitpos */
217 complain_overflow_dont,/* complain_on_overflow */
218 bfd_elf_generic_reloc, /* special_function */
219 "R_ARM_SBREL32", /* name */
220 FALSE, /* partial_inplace */
221 0xffffffff, /* src_mask */
222 0xffffffff, /* dst_mask */
223 FALSE), /* pcrel_offset */
224
225 HOWTO (R_ARM_THM_CALL, /* type */
226 1, /* rightshift */
227 2, /* size (0 = byte, 1 = short, 2 = long) */
228 24, /* bitsize */
229 TRUE, /* pc_relative */
230 0, /* bitpos */
231 complain_overflow_signed,/* complain_on_overflow */
232 bfd_elf_generic_reloc, /* special_function */
233 "R_ARM_THM_CALL", /* name */
234 FALSE, /* partial_inplace */
235 0x07ff2fff, /* src_mask */
236 0x07ff2fff, /* dst_mask */
237 TRUE), /* pcrel_offset */
238
239 HOWTO (R_ARM_THM_PC8, /* type */
240 1, /* rightshift */
241 1, /* size (0 = byte, 1 = short, 2 = long) */
242 8, /* bitsize */
243 TRUE, /* pc_relative */
244 0, /* bitpos */
245 complain_overflow_signed,/* complain_on_overflow */
246 bfd_elf_generic_reloc, /* special_function */
247 "R_ARM_THM_PC8", /* name */
248 FALSE, /* partial_inplace */
249 0x000000ff, /* src_mask */
250 0x000000ff, /* dst_mask */
251 TRUE), /* pcrel_offset */
252
253 HOWTO (R_ARM_BREL_ADJ, /* type */
254 1, /* rightshift */
255 1, /* size (0 = byte, 1 = short, 2 = long) */
256 32, /* bitsize */
257 FALSE, /* pc_relative */
258 0, /* bitpos */
259 complain_overflow_signed,/* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_ARM_BREL_ADJ", /* name */
262 FALSE, /* partial_inplace */
263 0xffffffff, /* src_mask */
264 0xffffffff, /* dst_mask */
265 FALSE), /* pcrel_offset */
266
267 HOWTO (R_ARM_TLS_DESC, /* type */
268 0, /* rightshift */
269 2, /* size (0 = byte, 1 = short, 2 = long) */
270 32, /* bitsize */
271 FALSE, /* pc_relative */
272 0, /* bitpos */
273 complain_overflow_bitfield,/* complain_on_overflow */
274 bfd_elf_generic_reloc, /* special_function */
275 "R_ARM_TLS_DESC", /* name */
276 FALSE, /* partial_inplace */
277 0xffffffff, /* src_mask */
278 0xffffffff, /* dst_mask */
279 FALSE), /* pcrel_offset */
280
281 HOWTO (R_ARM_THM_SWI8, /* type */
282 0, /* rightshift */
283 0, /* size (0 = byte, 1 = short, 2 = long) */
284 0, /* bitsize */
285 FALSE, /* pc_relative */
286 0, /* bitpos */
287 complain_overflow_signed,/* complain_on_overflow */
288 bfd_elf_generic_reloc, /* special_function */
289 "R_ARM_SWI8", /* name */
290 FALSE, /* partial_inplace */
291 0x00000000, /* src_mask */
292 0x00000000, /* dst_mask */
293 FALSE), /* pcrel_offset */
294
295 /* BLX instruction for the ARM. */
296 HOWTO (R_ARM_XPC25, /* type */
297 2, /* rightshift */
298 2, /* size (0 = byte, 1 = short, 2 = long) */
299 24, /* bitsize */
300 TRUE, /* pc_relative */
301 0, /* bitpos */
302 complain_overflow_signed,/* complain_on_overflow */
303 bfd_elf_generic_reloc, /* special_function */
304 "R_ARM_XPC25", /* name */
305 FALSE, /* partial_inplace */
306 0x00ffffff, /* src_mask */
307 0x00ffffff, /* dst_mask */
308 TRUE), /* pcrel_offset */
309
310 /* BLX instruction for the Thumb. */
311 HOWTO (R_ARM_THM_XPC22, /* type */
312 2, /* rightshift */
313 2, /* size (0 = byte, 1 = short, 2 = long) */
314 24, /* bitsize */
315 TRUE, /* pc_relative */
316 0, /* bitpos */
317 complain_overflow_signed,/* complain_on_overflow */
318 bfd_elf_generic_reloc, /* special_function */
319 "R_ARM_THM_XPC22", /* name */
320 FALSE, /* partial_inplace */
321 0x07ff2fff, /* src_mask */
322 0x07ff2fff, /* dst_mask */
323 TRUE), /* pcrel_offset */
324
325 /* Dynamic TLS relocations. */
326
327 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
328 0, /* rightshift */
329 2, /* size (0 = byte, 1 = short, 2 = long) */
330 32, /* bitsize */
331 FALSE, /* pc_relative */
332 0, /* bitpos */
333 complain_overflow_bitfield,/* complain_on_overflow */
334 bfd_elf_generic_reloc, /* special_function */
335 "R_ARM_TLS_DTPMOD32", /* name */
336 TRUE, /* partial_inplace */
337 0xffffffff, /* src_mask */
338 0xffffffff, /* dst_mask */
339 FALSE), /* pcrel_offset */
340
341 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
342 0, /* rightshift */
343 2, /* size (0 = byte, 1 = short, 2 = long) */
344 32, /* bitsize */
345 FALSE, /* pc_relative */
346 0, /* bitpos */
347 complain_overflow_bitfield,/* complain_on_overflow */
348 bfd_elf_generic_reloc, /* special_function */
349 "R_ARM_TLS_DTPOFF32", /* name */
350 TRUE, /* partial_inplace */
351 0xffffffff, /* src_mask */
352 0xffffffff, /* dst_mask */
353 FALSE), /* pcrel_offset */
354
355 HOWTO (R_ARM_TLS_TPOFF32, /* type */
356 0, /* rightshift */
357 2, /* size (0 = byte, 1 = short, 2 = long) */
358 32, /* bitsize */
359 FALSE, /* pc_relative */
360 0, /* bitpos */
361 complain_overflow_bitfield,/* complain_on_overflow */
362 bfd_elf_generic_reloc, /* special_function */
363 "R_ARM_TLS_TPOFF32", /* name */
364 TRUE, /* partial_inplace */
365 0xffffffff, /* src_mask */
366 0xffffffff, /* dst_mask */
367 FALSE), /* pcrel_offset */
368
369 /* Relocs used in ARM Linux */
370
371 HOWTO (R_ARM_COPY, /* type */
372 0, /* rightshift */
373 2, /* size (0 = byte, 1 = short, 2 = long) */
374 32, /* bitsize */
375 FALSE, /* pc_relative */
376 0, /* bitpos */
377 complain_overflow_bitfield,/* complain_on_overflow */
378 bfd_elf_generic_reloc, /* special_function */
379 "R_ARM_COPY", /* name */
380 TRUE, /* partial_inplace */
381 0xffffffff, /* src_mask */
382 0xffffffff, /* dst_mask */
383 FALSE), /* pcrel_offset */
384
385 HOWTO (R_ARM_GLOB_DAT, /* type */
386 0, /* rightshift */
387 2, /* size (0 = byte, 1 = short, 2 = long) */
388 32, /* bitsize */
389 FALSE, /* pc_relative */
390 0, /* bitpos */
391 complain_overflow_bitfield,/* complain_on_overflow */
392 bfd_elf_generic_reloc, /* special_function */
393 "R_ARM_GLOB_DAT", /* name */
394 TRUE, /* partial_inplace */
395 0xffffffff, /* src_mask */
396 0xffffffff, /* dst_mask */
397 FALSE), /* pcrel_offset */
398
399 HOWTO (R_ARM_JUMP_SLOT, /* type */
400 0, /* rightshift */
401 2, /* size (0 = byte, 1 = short, 2 = long) */
402 32, /* bitsize */
403 FALSE, /* pc_relative */
404 0, /* bitpos */
405 complain_overflow_bitfield,/* complain_on_overflow */
406 bfd_elf_generic_reloc, /* special_function */
407 "R_ARM_JUMP_SLOT", /* name */
408 TRUE, /* partial_inplace */
409 0xffffffff, /* src_mask */
410 0xffffffff, /* dst_mask */
411 FALSE), /* pcrel_offset */
412
413 HOWTO (R_ARM_RELATIVE, /* type */
414 0, /* rightshift */
415 2, /* size (0 = byte, 1 = short, 2 = long) */
416 32, /* bitsize */
417 FALSE, /* pc_relative */
418 0, /* bitpos */
419 complain_overflow_bitfield,/* complain_on_overflow */
420 bfd_elf_generic_reloc, /* special_function */
421 "R_ARM_RELATIVE", /* name */
422 TRUE, /* partial_inplace */
423 0xffffffff, /* src_mask */
424 0xffffffff, /* dst_mask */
425 FALSE), /* pcrel_offset */
426
427 HOWTO (R_ARM_GOTOFF32, /* type */
428 0, /* rightshift */
429 2, /* size (0 = byte, 1 = short, 2 = long) */
430 32, /* bitsize */
431 FALSE, /* pc_relative */
432 0, /* bitpos */
433 complain_overflow_bitfield,/* complain_on_overflow */
434 bfd_elf_generic_reloc, /* special_function */
435 "R_ARM_GOTOFF32", /* name */
436 TRUE, /* partial_inplace */
437 0xffffffff, /* src_mask */
438 0xffffffff, /* dst_mask */
439 FALSE), /* pcrel_offset */
440
441 HOWTO (R_ARM_GOTPC, /* type */
442 0, /* rightshift */
443 2, /* size (0 = byte, 1 = short, 2 = long) */
444 32, /* bitsize */
445 TRUE, /* pc_relative */
446 0, /* bitpos */
447 complain_overflow_bitfield,/* complain_on_overflow */
448 bfd_elf_generic_reloc, /* special_function */
449 "R_ARM_GOTPC", /* name */
450 TRUE, /* partial_inplace */
451 0xffffffff, /* src_mask */
452 0xffffffff, /* dst_mask */
453 TRUE), /* pcrel_offset */
454
455 HOWTO (R_ARM_GOT32, /* type */
456 0, /* rightshift */
457 2, /* size (0 = byte, 1 = short, 2 = long) */
458 32, /* bitsize */
459 FALSE, /* pc_relative */
460 0, /* bitpos */
461 complain_overflow_bitfield,/* complain_on_overflow */
462 bfd_elf_generic_reloc, /* special_function */
463 "R_ARM_GOT32", /* name */
464 TRUE, /* partial_inplace */
465 0xffffffff, /* src_mask */
466 0xffffffff, /* dst_mask */
467 FALSE), /* pcrel_offset */
468
469 HOWTO (R_ARM_PLT32, /* type */
470 2, /* rightshift */
471 2, /* size (0 = byte, 1 = short, 2 = long) */
472 24, /* bitsize */
473 TRUE, /* pc_relative */
474 0, /* bitpos */
475 complain_overflow_bitfield,/* complain_on_overflow */
476 bfd_elf_generic_reloc, /* special_function */
477 "R_ARM_PLT32", /* name */
478 FALSE, /* partial_inplace */
479 0x00ffffff, /* src_mask */
480 0x00ffffff, /* dst_mask */
481 TRUE), /* pcrel_offset */
482
483 HOWTO (R_ARM_CALL, /* type */
484 2, /* rightshift */
485 2, /* size (0 = byte, 1 = short, 2 = long) */
486 24, /* bitsize */
487 TRUE, /* pc_relative */
488 0, /* bitpos */
489 complain_overflow_signed,/* complain_on_overflow */
490 bfd_elf_generic_reloc, /* special_function */
491 "R_ARM_CALL", /* name */
492 FALSE, /* partial_inplace */
493 0x00ffffff, /* src_mask */
494 0x00ffffff, /* dst_mask */
495 TRUE), /* pcrel_offset */
496
497 HOWTO (R_ARM_JUMP24, /* type */
498 2, /* rightshift */
499 2, /* size (0 = byte, 1 = short, 2 = long) */
500 24, /* bitsize */
501 TRUE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_signed,/* complain_on_overflow */
504 bfd_elf_generic_reloc, /* special_function */
505 "R_ARM_JUMP24", /* name */
506 FALSE, /* partial_inplace */
507 0x00ffffff, /* src_mask */
508 0x00ffffff, /* dst_mask */
509 TRUE), /* pcrel_offset */
510
511 HOWTO (R_ARM_THM_JUMP24, /* type */
512 1, /* rightshift */
513 2, /* size (0 = byte, 1 = short, 2 = long) */
514 24, /* bitsize */
515 TRUE, /* pc_relative */
516 0, /* bitpos */
517 complain_overflow_signed,/* complain_on_overflow */
518 bfd_elf_generic_reloc, /* special_function */
519 "R_ARM_THM_JUMP24", /* name */
520 FALSE, /* partial_inplace */
521 0x07ff2fff, /* src_mask */
522 0x07ff2fff, /* dst_mask */
523 TRUE), /* pcrel_offset */
524
525 HOWTO (R_ARM_BASE_ABS, /* type */
526 0, /* rightshift */
527 2, /* size (0 = byte, 1 = short, 2 = long) */
528 32, /* bitsize */
529 FALSE, /* pc_relative */
530 0, /* bitpos */
531 complain_overflow_dont,/* complain_on_overflow */
532 bfd_elf_generic_reloc, /* special_function */
533 "R_ARM_BASE_ABS", /* name */
534 FALSE, /* partial_inplace */
535 0xffffffff, /* src_mask */
536 0xffffffff, /* dst_mask */
537 FALSE), /* pcrel_offset */
538
539 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
540 0, /* rightshift */
541 2, /* size (0 = byte, 1 = short, 2 = long) */
542 12, /* bitsize */
543 TRUE, /* pc_relative */
544 0, /* bitpos */
545 complain_overflow_dont,/* complain_on_overflow */
546 bfd_elf_generic_reloc, /* special_function */
547 "R_ARM_ALU_PCREL_7_0", /* name */
548 FALSE, /* partial_inplace */
549 0x00000fff, /* src_mask */
550 0x00000fff, /* dst_mask */
551 TRUE), /* pcrel_offset */
552
553 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
554 0, /* rightshift */
555 2, /* size (0 = byte, 1 = short, 2 = long) */
556 12, /* bitsize */
557 TRUE, /* pc_relative */
558 8, /* bitpos */
559 complain_overflow_dont,/* complain_on_overflow */
560 bfd_elf_generic_reloc, /* special_function */
561 "R_ARM_ALU_PCREL_15_8",/* name */
562 FALSE, /* partial_inplace */
563 0x00000fff, /* src_mask */
564 0x00000fff, /* dst_mask */
565 TRUE), /* pcrel_offset */
566
567 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
568 0, /* rightshift */
569 2, /* size (0 = byte, 1 = short, 2 = long) */
570 12, /* bitsize */
571 TRUE, /* pc_relative */
572 16, /* bitpos */
573 complain_overflow_dont,/* complain_on_overflow */
574 bfd_elf_generic_reloc, /* special_function */
575 "R_ARM_ALU_PCREL_23_15",/* name */
576 FALSE, /* partial_inplace */
577 0x00000fff, /* src_mask */
578 0x00000fff, /* dst_mask */
579 TRUE), /* pcrel_offset */
580
581 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
582 0, /* rightshift */
583 2, /* size (0 = byte, 1 = short, 2 = long) */
584 12, /* bitsize */
585 FALSE, /* pc_relative */
586 0, /* bitpos */
587 complain_overflow_dont,/* complain_on_overflow */
588 bfd_elf_generic_reloc, /* special_function */
589 "R_ARM_LDR_SBREL_11_0",/* name */
590 FALSE, /* partial_inplace */
591 0x00000fff, /* src_mask */
592 0x00000fff, /* dst_mask */
593 FALSE), /* pcrel_offset */
594
595 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
596 0, /* rightshift */
597 2, /* size (0 = byte, 1 = short, 2 = long) */
598 8, /* bitsize */
599 FALSE, /* pc_relative */
600 12, /* bitpos */
601 complain_overflow_dont,/* complain_on_overflow */
602 bfd_elf_generic_reloc, /* special_function */
603 "R_ARM_ALU_SBREL_19_12",/* name */
604 FALSE, /* partial_inplace */
605 0x000ff000, /* src_mask */
606 0x000ff000, /* dst_mask */
607 FALSE), /* pcrel_offset */
608
609 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
610 0, /* rightshift */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
612 8, /* bitsize */
613 FALSE, /* pc_relative */
614 20, /* bitpos */
615 complain_overflow_dont,/* complain_on_overflow */
616 bfd_elf_generic_reloc, /* special_function */
617 "R_ARM_ALU_SBREL_27_20",/* name */
618 FALSE, /* partial_inplace */
619 0x0ff00000, /* src_mask */
620 0x0ff00000, /* dst_mask */
621 FALSE), /* pcrel_offset */
622
623 HOWTO (R_ARM_TARGET1, /* type */
624 0, /* rightshift */
625 2, /* size (0 = byte, 1 = short, 2 = long) */
626 32, /* bitsize */
627 FALSE, /* pc_relative */
628 0, /* bitpos */
629 complain_overflow_dont,/* complain_on_overflow */
630 bfd_elf_generic_reloc, /* special_function */
631 "R_ARM_TARGET1", /* name */
632 FALSE, /* partial_inplace */
633 0xffffffff, /* src_mask */
634 0xffffffff, /* dst_mask */
635 FALSE), /* pcrel_offset */
636
637 HOWTO (R_ARM_ROSEGREL32, /* type */
638 0, /* rightshift */
639 2, /* size (0 = byte, 1 = short, 2 = long) */
640 32, /* bitsize */
641 FALSE, /* pc_relative */
642 0, /* bitpos */
643 complain_overflow_dont,/* complain_on_overflow */
644 bfd_elf_generic_reloc, /* special_function */
645 "R_ARM_ROSEGREL32", /* name */
646 FALSE, /* partial_inplace */
647 0xffffffff, /* src_mask */
648 0xffffffff, /* dst_mask */
649 FALSE), /* pcrel_offset */
650
651 HOWTO (R_ARM_V4BX, /* type */
652 0, /* rightshift */
653 2, /* size (0 = byte, 1 = short, 2 = long) */
654 32, /* bitsize */
655 FALSE, /* pc_relative */
656 0, /* bitpos */
657 complain_overflow_dont,/* complain_on_overflow */
658 bfd_elf_generic_reloc, /* special_function */
659 "R_ARM_V4BX", /* name */
660 FALSE, /* partial_inplace */
661 0xffffffff, /* src_mask */
662 0xffffffff, /* dst_mask */
663 FALSE), /* pcrel_offset */
664
665 HOWTO (R_ARM_TARGET2, /* type */
666 0, /* rightshift */
667 2, /* size (0 = byte, 1 = short, 2 = long) */
668 32, /* bitsize */
669 FALSE, /* pc_relative */
670 0, /* bitpos */
671 complain_overflow_signed,/* complain_on_overflow */
672 bfd_elf_generic_reloc, /* special_function */
673 "R_ARM_TARGET2", /* name */
674 FALSE, /* partial_inplace */
675 0xffffffff, /* src_mask */
676 0xffffffff, /* dst_mask */
677 TRUE), /* pcrel_offset */
678
679 HOWTO (R_ARM_PREL31, /* type */
680 0, /* rightshift */
681 2, /* size (0 = byte, 1 = short, 2 = long) */
682 31, /* bitsize */
683 TRUE, /* pc_relative */
684 0, /* bitpos */
685 complain_overflow_signed,/* complain_on_overflow */
686 bfd_elf_generic_reloc, /* special_function */
687 "R_ARM_PREL31", /* name */
688 FALSE, /* partial_inplace */
689 0x7fffffff, /* src_mask */
690 0x7fffffff, /* dst_mask */
691 TRUE), /* pcrel_offset */
692
693 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
694 0, /* rightshift */
695 2, /* size (0 = byte, 1 = short, 2 = long) */
696 16, /* bitsize */
697 FALSE, /* pc_relative */
698 0, /* bitpos */
699 complain_overflow_dont,/* complain_on_overflow */
700 bfd_elf_generic_reloc, /* special_function */
701 "R_ARM_MOVW_ABS_NC", /* name */
702 FALSE, /* partial_inplace */
703 0x000f0fff, /* src_mask */
704 0x000f0fff, /* dst_mask */
705 FALSE), /* pcrel_offset */
706
707 HOWTO (R_ARM_MOVT_ABS, /* type */
708 0, /* rightshift */
709 2, /* size (0 = byte, 1 = short, 2 = long) */
710 16, /* bitsize */
711 FALSE, /* pc_relative */
712 0, /* bitpos */
713 complain_overflow_bitfield,/* complain_on_overflow */
714 bfd_elf_generic_reloc, /* special_function */
715 "R_ARM_MOVT_ABS", /* name */
716 FALSE, /* partial_inplace */
717 0x000f0fff, /* src_mask */
718 0x000f0fff, /* dst_mask */
719 FALSE), /* pcrel_offset */
720
721 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
722 0, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 16, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_dont,/* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 "R_ARM_MOVW_PREL_NC", /* name */
730 FALSE, /* partial_inplace */
731 0x000f0fff, /* src_mask */
732 0x000f0fff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 HOWTO (R_ARM_MOVT_PREL, /* type */
736 0, /* rightshift */
737 2, /* size (0 = byte, 1 = short, 2 = long) */
738 16, /* bitsize */
739 TRUE, /* pc_relative */
740 0, /* bitpos */
741 complain_overflow_bitfield,/* complain_on_overflow */
742 bfd_elf_generic_reloc, /* special_function */
743 "R_ARM_MOVT_PREL", /* name */
744 FALSE, /* partial_inplace */
745 0x000f0fff, /* src_mask */
746 0x000f0fff, /* dst_mask */
747 TRUE), /* pcrel_offset */
748
749 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
750 0, /* rightshift */
751 2, /* size (0 = byte, 1 = short, 2 = long) */
752 16, /* bitsize */
753 FALSE, /* pc_relative */
754 0, /* bitpos */
755 complain_overflow_dont,/* complain_on_overflow */
756 bfd_elf_generic_reloc, /* special_function */
757 "R_ARM_THM_MOVW_ABS_NC",/* name */
758 FALSE, /* partial_inplace */
759 0x040f70ff, /* src_mask */
760 0x040f70ff, /* dst_mask */
761 FALSE), /* pcrel_offset */
762
763 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
764 0, /* rightshift */
765 2, /* size (0 = byte, 1 = short, 2 = long) */
766 16, /* bitsize */
767 FALSE, /* pc_relative */
768 0, /* bitpos */
769 complain_overflow_bitfield,/* complain_on_overflow */
770 bfd_elf_generic_reloc, /* special_function */
771 "R_ARM_THM_MOVT_ABS", /* name */
772 FALSE, /* partial_inplace */
773 0x040f70ff, /* src_mask */
774 0x040f70ff, /* dst_mask */
775 FALSE), /* pcrel_offset */
776
777 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
778 0, /* rightshift */
779 2, /* size (0 = byte, 1 = short, 2 = long) */
780 16, /* bitsize */
781 TRUE, /* pc_relative */
782 0, /* bitpos */
783 complain_overflow_dont,/* complain_on_overflow */
784 bfd_elf_generic_reloc, /* special_function */
785 "R_ARM_THM_MOVW_PREL_NC",/* name */
786 FALSE, /* partial_inplace */
787 0x040f70ff, /* src_mask */
788 0x040f70ff, /* dst_mask */
789 TRUE), /* pcrel_offset */
790
791 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
792 0, /* rightshift */
793 2, /* size (0 = byte, 1 = short, 2 = long) */
794 16, /* bitsize */
795 TRUE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_bitfield,/* complain_on_overflow */
798 bfd_elf_generic_reloc, /* special_function */
799 "R_ARM_THM_MOVT_PREL", /* name */
800 FALSE, /* partial_inplace */
801 0x040f70ff, /* src_mask */
802 0x040f70ff, /* dst_mask */
803 TRUE), /* pcrel_offset */
804
805 HOWTO (R_ARM_THM_JUMP19, /* type */
806 1, /* rightshift */
807 2, /* size (0 = byte, 1 = short, 2 = long) */
808 19, /* bitsize */
809 TRUE, /* pc_relative */
810 0, /* bitpos */
811 complain_overflow_signed,/* complain_on_overflow */
812 bfd_elf_generic_reloc, /* special_function */
813 "R_ARM_THM_JUMP19", /* name */
814 FALSE, /* partial_inplace */
815 0x043f2fff, /* src_mask */
816 0x043f2fff, /* dst_mask */
817 TRUE), /* pcrel_offset */
818
819 HOWTO (R_ARM_THM_JUMP6, /* type */
820 1, /* rightshift */
821 1, /* size (0 = byte, 1 = short, 2 = long) */
822 6, /* bitsize */
823 TRUE, /* pc_relative */
824 0, /* bitpos */
825 complain_overflow_unsigned,/* complain_on_overflow */
826 bfd_elf_generic_reloc, /* special_function */
827 "R_ARM_THM_JUMP6", /* name */
828 FALSE, /* partial_inplace */
829 0x02f8, /* src_mask */
830 0x02f8, /* dst_mask */
831 TRUE), /* pcrel_offset */
832
833 /* These are declared as 13-bit signed relocations because we can
834 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
835 versa. */
836 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
837 0, /* rightshift */
838 2, /* size (0 = byte, 1 = short, 2 = long) */
839 13, /* bitsize */
840 TRUE, /* pc_relative */
841 0, /* bitpos */
842 complain_overflow_dont,/* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
844 "R_ARM_THM_ALU_PREL_11_0",/* name */
845 FALSE, /* partial_inplace */
846 0xffffffff, /* src_mask */
847 0xffffffff, /* dst_mask */
848 TRUE), /* pcrel_offset */
849
850 HOWTO (R_ARM_THM_PC12, /* type */
851 0, /* rightshift */
852 2, /* size (0 = byte, 1 = short, 2 = long) */
853 13, /* bitsize */
854 TRUE, /* pc_relative */
855 0, /* bitpos */
856 complain_overflow_dont,/* complain_on_overflow */
857 bfd_elf_generic_reloc, /* special_function */
858 "R_ARM_THM_PC12", /* name */
859 FALSE, /* partial_inplace */
860 0xffffffff, /* src_mask */
861 0xffffffff, /* dst_mask */
862 TRUE), /* pcrel_offset */
863
864 HOWTO (R_ARM_ABS32_NOI, /* type */
865 0, /* rightshift */
866 2, /* size (0 = byte, 1 = short, 2 = long) */
867 32, /* bitsize */
868 FALSE, /* pc_relative */
869 0, /* bitpos */
870 complain_overflow_dont,/* complain_on_overflow */
871 bfd_elf_generic_reloc, /* special_function */
872 "R_ARM_ABS32_NOI", /* name */
873 FALSE, /* partial_inplace */
874 0xffffffff, /* src_mask */
875 0xffffffff, /* dst_mask */
876 FALSE), /* pcrel_offset */
877
878 HOWTO (R_ARM_REL32_NOI, /* type */
879 0, /* rightshift */
880 2, /* size (0 = byte, 1 = short, 2 = long) */
881 32, /* bitsize */
882 TRUE, /* pc_relative */
883 0, /* bitpos */
884 complain_overflow_dont,/* complain_on_overflow */
885 bfd_elf_generic_reloc, /* special_function */
886 "R_ARM_REL32_NOI", /* name */
887 FALSE, /* partial_inplace */
888 0xffffffff, /* src_mask */
889 0xffffffff, /* dst_mask */
890 FALSE), /* pcrel_offset */
891
892 /* Group relocations. */
893
894 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
895 0, /* rightshift */
896 2, /* size (0 = byte, 1 = short, 2 = long) */
897 32, /* bitsize */
898 TRUE, /* pc_relative */
899 0, /* bitpos */
900 complain_overflow_dont,/* complain_on_overflow */
901 bfd_elf_generic_reloc, /* special_function */
902 "R_ARM_ALU_PC_G0_NC", /* name */
903 FALSE, /* partial_inplace */
904 0xffffffff, /* src_mask */
905 0xffffffff, /* dst_mask */
906 TRUE), /* pcrel_offset */
907
908 HOWTO (R_ARM_ALU_PC_G0, /* type */
909 0, /* rightshift */
910 2, /* size (0 = byte, 1 = short, 2 = long) */
911 32, /* bitsize */
912 TRUE, /* pc_relative */
913 0, /* bitpos */
914 complain_overflow_dont,/* complain_on_overflow */
915 bfd_elf_generic_reloc, /* special_function */
916 "R_ARM_ALU_PC_G0", /* name */
917 FALSE, /* partial_inplace */
918 0xffffffff, /* src_mask */
919 0xffffffff, /* dst_mask */
920 TRUE), /* pcrel_offset */
921
922 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
923 0, /* rightshift */
924 2, /* size (0 = byte, 1 = short, 2 = long) */
925 32, /* bitsize */
926 TRUE, /* pc_relative */
927 0, /* bitpos */
928 complain_overflow_dont,/* complain_on_overflow */
929 bfd_elf_generic_reloc, /* special_function */
930 "R_ARM_ALU_PC_G1_NC", /* name */
931 FALSE, /* partial_inplace */
932 0xffffffff, /* src_mask */
933 0xffffffff, /* dst_mask */
934 TRUE), /* pcrel_offset */
935
936 HOWTO (R_ARM_ALU_PC_G1, /* type */
937 0, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 32, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_dont,/* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 "R_ARM_ALU_PC_G1", /* name */
945 FALSE, /* partial_inplace */
946 0xffffffff, /* src_mask */
947 0xffffffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
950 HOWTO (R_ARM_ALU_PC_G2, /* type */
951 0, /* rightshift */
952 2, /* size (0 = byte, 1 = short, 2 = long) */
953 32, /* bitsize */
954 TRUE, /* pc_relative */
955 0, /* bitpos */
956 complain_overflow_dont,/* complain_on_overflow */
957 bfd_elf_generic_reloc, /* special_function */
958 "R_ARM_ALU_PC_G2", /* name */
959 FALSE, /* partial_inplace */
960 0xffffffff, /* src_mask */
961 0xffffffff, /* dst_mask */
962 TRUE), /* pcrel_offset */
963
964 HOWTO (R_ARM_LDR_PC_G1, /* type */
965 0, /* rightshift */
966 2, /* size (0 = byte, 1 = short, 2 = long) */
967 32, /* bitsize */
968 TRUE, /* pc_relative */
969 0, /* bitpos */
970 complain_overflow_dont,/* complain_on_overflow */
971 bfd_elf_generic_reloc, /* special_function */
972 "R_ARM_LDR_PC_G1", /* name */
973 FALSE, /* partial_inplace */
974 0xffffffff, /* src_mask */
975 0xffffffff, /* dst_mask */
976 TRUE), /* pcrel_offset */
977
978 HOWTO (R_ARM_LDR_PC_G2, /* type */
979 0, /* rightshift */
980 2, /* size (0 = byte, 1 = short, 2 = long) */
981 32, /* bitsize */
982 TRUE, /* pc_relative */
983 0, /* bitpos */
984 complain_overflow_dont,/* complain_on_overflow */
985 bfd_elf_generic_reloc, /* special_function */
986 "R_ARM_LDR_PC_G2", /* name */
987 FALSE, /* partial_inplace */
988 0xffffffff, /* src_mask */
989 0xffffffff, /* dst_mask */
990 TRUE), /* pcrel_offset */
991
992 HOWTO (R_ARM_LDRS_PC_G0, /* type */
993 0, /* rightshift */
994 2, /* size (0 = byte, 1 = short, 2 = long) */
995 32, /* bitsize */
996 TRUE, /* pc_relative */
997 0, /* bitpos */
998 complain_overflow_dont,/* complain_on_overflow */
999 bfd_elf_generic_reloc, /* special_function */
1000 "R_ARM_LDRS_PC_G0", /* name */
1001 FALSE, /* partial_inplace */
1002 0xffffffff, /* src_mask */
1003 0xffffffff, /* dst_mask */
1004 TRUE), /* pcrel_offset */
1005
1006 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1007 0, /* rightshift */
1008 2, /* size (0 = byte, 1 = short, 2 = long) */
1009 32, /* bitsize */
1010 TRUE, /* pc_relative */
1011 0, /* bitpos */
1012 complain_overflow_dont,/* complain_on_overflow */
1013 bfd_elf_generic_reloc, /* special_function */
1014 "R_ARM_LDRS_PC_G1", /* name */
1015 FALSE, /* partial_inplace */
1016 0xffffffff, /* src_mask */
1017 0xffffffff, /* dst_mask */
1018 TRUE), /* pcrel_offset */
1019
1020 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1021 0, /* rightshift */
1022 2, /* size (0 = byte, 1 = short, 2 = long) */
1023 32, /* bitsize */
1024 TRUE, /* pc_relative */
1025 0, /* bitpos */
1026 complain_overflow_dont,/* complain_on_overflow */
1027 bfd_elf_generic_reloc, /* special_function */
1028 "R_ARM_LDRS_PC_G2", /* name */
1029 FALSE, /* partial_inplace */
1030 0xffffffff, /* src_mask */
1031 0xffffffff, /* dst_mask */
1032 TRUE), /* pcrel_offset */
1033
1034 HOWTO (R_ARM_LDC_PC_G0, /* type */
1035 0, /* rightshift */
1036 2, /* size (0 = byte, 1 = short, 2 = long) */
1037 32, /* bitsize */
1038 TRUE, /* pc_relative */
1039 0, /* bitpos */
1040 complain_overflow_dont,/* complain_on_overflow */
1041 bfd_elf_generic_reloc, /* special_function */
1042 "R_ARM_LDC_PC_G0", /* name */
1043 FALSE, /* partial_inplace */
1044 0xffffffff, /* src_mask */
1045 0xffffffff, /* dst_mask */
1046 TRUE), /* pcrel_offset */
1047
1048 HOWTO (R_ARM_LDC_PC_G1, /* type */
1049 0, /* rightshift */
1050 2, /* size (0 = byte, 1 = short, 2 = long) */
1051 32, /* bitsize */
1052 TRUE, /* pc_relative */
1053 0, /* bitpos */
1054 complain_overflow_dont,/* complain_on_overflow */
1055 bfd_elf_generic_reloc, /* special_function */
1056 "R_ARM_LDC_PC_G1", /* name */
1057 FALSE, /* partial_inplace */
1058 0xffffffff, /* src_mask */
1059 0xffffffff, /* dst_mask */
1060 TRUE), /* pcrel_offset */
1061
1062 HOWTO (R_ARM_LDC_PC_G2, /* type */
1063 0, /* rightshift */
1064 2, /* size (0 = byte, 1 = short, 2 = long) */
1065 32, /* bitsize */
1066 TRUE, /* pc_relative */
1067 0, /* bitpos */
1068 complain_overflow_dont,/* complain_on_overflow */
1069 bfd_elf_generic_reloc, /* special_function */
1070 "R_ARM_LDC_PC_G2", /* name */
1071 FALSE, /* partial_inplace */
1072 0xffffffff, /* src_mask */
1073 0xffffffff, /* dst_mask */
1074 TRUE), /* pcrel_offset */
1075
1076 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1077 0, /* rightshift */
1078 2, /* size (0 = byte, 1 = short, 2 = long) */
1079 32, /* bitsize */
1080 TRUE, /* pc_relative */
1081 0, /* bitpos */
1082 complain_overflow_dont,/* complain_on_overflow */
1083 bfd_elf_generic_reloc, /* special_function */
1084 "R_ARM_ALU_SB_G0_NC", /* name */
1085 FALSE, /* partial_inplace */
1086 0xffffffff, /* src_mask */
1087 0xffffffff, /* dst_mask */
1088 TRUE), /* pcrel_offset */
1089
1090 HOWTO (R_ARM_ALU_SB_G0, /* type */
1091 0, /* rightshift */
1092 2, /* size (0 = byte, 1 = short, 2 = long) */
1093 32, /* bitsize */
1094 TRUE, /* pc_relative */
1095 0, /* bitpos */
1096 complain_overflow_dont,/* complain_on_overflow */
1097 bfd_elf_generic_reloc, /* special_function */
1098 "R_ARM_ALU_SB_G0", /* name */
1099 FALSE, /* partial_inplace */
1100 0xffffffff, /* src_mask */
1101 0xffffffff, /* dst_mask */
1102 TRUE), /* pcrel_offset */
1103
1104 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1105 0, /* rightshift */
1106 2, /* size (0 = byte, 1 = short, 2 = long) */
1107 32, /* bitsize */
1108 TRUE, /* pc_relative */
1109 0, /* bitpos */
1110 complain_overflow_dont,/* complain_on_overflow */
1111 bfd_elf_generic_reloc, /* special_function */
1112 "R_ARM_ALU_SB_G1_NC", /* name */
1113 FALSE, /* partial_inplace */
1114 0xffffffff, /* src_mask */
1115 0xffffffff, /* dst_mask */
1116 TRUE), /* pcrel_offset */
1117
1118 HOWTO (R_ARM_ALU_SB_G1, /* type */
1119 0, /* rightshift */
1120 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 32, /* bitsize */
1122 TRUE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_dont,/* complain_on_overflow */
1125 bfd_elf_generic_reloc, /* special_function */
1126 "R_ARM_ALU_SB_G1", /* name */
1127 FALSE, /* partial_inplace */
1128 0xffffffff, /* src_mask */
1129 0xffffffff, /* dst_mask */
1130 TRUE), /* pcrel_offset */
1131
1132 HOWTO (R_ARM_ALU_SB_G2, /* type */
1133 0, /* rightshift */
1134 2, /* size (0 = byte, 1 = short, 2 = long) */
1135 32, /* bitsize */
1136 TRUE, /* pc_relative */
1137 0, /* bitpos */
1138 complain_overflow_dont,/* complain_on_overflow */
1139 bfd_elf_generic_reloc, /* special_function */
1140 "R_ARM_ALU_SB_G2", /* name */
1141 FALSE, /* partial_inplace */
1142 0xffffffff, /* src_mask */
1143 0xffffffff, /* dst_mask */
1144 TRUE), /* pcrel_offset */
1145
1146 HOWTO (R_ARM_LDR_SB_G0, /* type */
1147 0, /* rightshift */
1148 2, /* size (0 = byte, 1 = short, 2 = long) */
1149 32, /* bitsize */
1150 TRUE, /* pc_relative */
1151 0, /* bitpos */
1152 complain_overflow_dont,/* complain_on_overflow */
1153 bfd_elf_generic_reloc, /* special_function */
1154 "R_ARM_LDR_SB_G0", /* name */
1155 FALSE, /* partial_inplace */
1156 0xffffffff, /* src_mask */
1157 0xffffffff, /* dst_mask */
1158 TRUE), /* pcrel_offset */
1159
1160 HOWTO (R_ARM_LDR_SB_G1, /* type */
1161 0, /* rightshift */
1162 2, /* size (0 = byte, 1 = short, 2 = long) */
1163 32, /* bitsize */
1164 TRUE, /* pc_relative */
1165 0, /* bitpos */
1166 complain_overflow_dont,/* complain_on_overflow */
1167 bfd_elf_generic_reloc, /* special_function */
1168 "R_ARM_LDR_SB_G1", /* name */
1169 FALSE, /* partial_inplace */
1170 0xffffffff, /* src_mask */
1171 0xffffffff, /* dst_mask */
1172 TRUE), /* pcrel_offset */
1173
1174 HOWTO (R_ARM_LDR_SB_G2, /* type */
1175 0, /* rightshift */
1176 2, /* size (0 = byte, 1 = short, 2 = long) */
1177 32, /* bitsize */
1178 TRUE, /* pc_relative */
1179 0, /* bitpos */
1180 complain_overflow_dont,/* complain_on_overflow */
1181 bfd_elf_generic_reloc, /* special_function */
1182 "R_ARM_LDR_SB_G2", /* name */
1183 FALSE, /* partial_inplace */
1184 0xffffffff, /* src_mask */
1185 0xffffffff, /* dst_mask */
1186 TRUE), /* pcrel_offset */
1187
1188 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1189 0, /* rightshift */
1190 2, /* size (0 = byte, 1 = short, 2 = long) */
1191 32, /* bitsize */
1192 TRUE, /* pc_relative */
1193 0, /* bitpos */
1194 complain_overflow_dont,/* complain_on_overflow */
1195 bfd_elf_generic_reloc, /* special_function */
1196 "R_ARM_LDRS_SB_G0", /* name */
1197 FALSE, /* partial_inplace */
1198 0xffffffff, /* src_mask */
1199 0xffffffff, /* dst_mask */
1200 TRUE), /* pcrel_offset */
1201
1202 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1203 0, /* rightshift */
1204 2, /* size (0 = byte, 1 = short, 2 = long) */
1205 32, /* bitsize */
1206 TRUE, /* pc_relative */
1207 0, /* bitpos */
1208 complain_overflow_dont,/* complain_on_overflow */
1209 bfd_elf_generic_reloc, /* special_function */
1210 "R_ARM_LDRS_SB_G1", /* name */
1211 FALSE, /* partial_inplace */
1212 0xffffffff, /* src_mask */
1213 0xffffffff, /* dst_mask */
1214 TRUE), /* pcrel_offset */
1215
1216 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1217 0, /* rightshift */
1218 2, /* size (0 = byte, 1 = short, 2 = long) */
1219 32, /* bitsize */
1220 TRUE, /* pc_relative */
1221 0, /* bitpos */
1222 complain_overflow_dont,/* complain_on_overflow */
1223 bfd_elf_generic_reloc, /* special_function */
1224 "R_ARM_LDRS_SB_G2", /* name */
1225 FALSE, /* partial_inplace */
1226 0xffffffff, /* src_mask */
1227 0xffffffff, /* dst_mask */
1228 TRUE), /* pcrel_offset */
1229
1230 HOWTO (R_ARM_LDC_SB_G0, /* type */
1231 0, /* rightshift */
1232 2, /* size (0 = byte, 1 = short, 2 = long) */
1233 32, /* bitsize */
1234 TRUE, /* pc_relative */
1235 0, /* bitpos */
1236 complain_overflow_dont,/* complain_on_overflow */
1237 bfd_elf_generic_reloc, /* special_function */
1238 "R_ARM_LDC_SB_G0", /* name */
1239 FALSE, /* partial_inplace */
1240 0xffffffff, /* src_mask */
1241 0xffffffff, /* dst_mask */
1242 TRUE), /* pcrel_offset */
1243
1244 HOWTO (R_ARM_LDC_SB_G1, /* type */
1245 0, /* rightshift */
1246 2, /* size (0 = byte, 1 = short, 2 = long) */
1247 32, /* bitsize */
1248 TRUE, /* pc_relative */
1249 0, /* bitpos */
1250 complain_overflow_dont,/* complain_on_overflow */
1251 bfd_elf_generic_reloc, /* special_function */
1252 "R_ARM_LDC_SB_G1", /* name */
1253 FALSE, /* partial_inplace */
1254 0xffffffff, /* src_mask */
1255 0xffffffff, /* dst_mask */
1256 TRUE), /* pcrel_offset */
1257
1258 HOWTO (R_ARM_LDC_SB_G2, /* type */
1259 0, /* rightshift */
1260 2, /* size (0 = byte, 1 = short, 2 = long) */
1261 32, /* bitsize */
1262 TRUE, /* pc_relative */
1263 0, /* bitpos */
1264 complain_overflow_dont,/* complain_on_overflow */
1265 bfd_elf_generic_reloc, /* special_function */
1266 "R_ARM_LDC_SB_G2", /* name */
1267 FALSE, /* partial_inplace */
1268 0xffffffff, /* src_mask */
1269 0xffffffff, /* dst_mask */
1270 TRUE), /* pcrel_offset */
1271
1272 /* End of group relocations. */
1273
1274 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1275 0, /* rightshift */
1276 2, /* size (0 = byte, 1 = short, 2 = long) */
1277 16, /* bitsize */
1278 FALSE, /* pc_relative */
1279 0, /* bitpos */
1280 complain_overflow_dont,/* complain_on_overflow */
1281 bfd_elf_generic_reloc, /* special_function */
1282 "R_ARM_MOVW_BREL_NC", /* name */
1283 FALSE, /* partial_inplace */
1284 0x0000ffff, /* src_mask */
1285 0x0000ffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1287
1288 HOWTO (R_ARM_MOVT_BREL, /* type */
1289 0, /* rightshift */
1290 2, /* size (0 = byte, 1 = short, 2 = long) */
1291 16, /* bitsize */
1292 FALSE, /* pc_relative */
1293 0, /* bitpos */
1294 complain_overflow_bitfield,/* complain_on_overflow */
1295 bfd_elf_generic_reloc, /* special_function */
1296 "R_ARM_MOVT_BREL", /* name */
1297 FALSE, /* partial_inplace */
1298 0x0000ffff, /* src_mask */
1299 0x0000ffff, /* dst_mask */
1300 FALSE), /* pcrel_offset */
1301
1302 HOWTO (R_ARM_MOVW_BREL, /* type */
1303 0, /* rightshift */
1304 2, /* size (0 = byte, 1 = short, 2 = long) */
1305 16, /* bitsize */
1306 FALSE, /* pc_relative */
1307 0, /* bitpos */
1308 complain_overflow_dont,/* complain_on_overflow */
1309 bfd_elf_generic_reloc, /* special_function */
1310 "R_ARM_MOVW_BREL", /* name */
1311 FALSE, /* partial_inplace */
1312 0x0000ffff, /* src_mask */
1313 0x0000ffff, /* dst_mask */
1314 FALSE), /* pcrel_offset */
1315
1316 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1317 0, /* rightshift */
1318 2, /* size (0 = byte, 1 = short, 2 = long) */
1319 16, /* bitsize */
1320 FALSE, /* pc_relative */
1321 0, /* bitpos */
1322 complain_overflow_dont,/* complain_on_overflow */
1323 bfd_elf_generic_reloc, /* special_function */
1324 "R_ARM_THM_MOVW_BREL_NC",/* name */
1325 FALSE, /* partial_inplace */
1326 0x040f70ff, /* src_mask */
1327 0x040f70ff, /* dst_mask */
1328 FALSE), /* pcrel_offset */
1329
1330 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1331 0, /* rightshift */
1332 2, /* size (0 = byte, 1 = short, 2 = long) */
1333 16, /* bitsize */
1334 FALSE, /* pc_relative */
1335 0, /* bitpos */
1336 complain_overflow_bitfield,/* complain_on_overflow */
1337 bfd_elf_generic_reloc, /* special_function */
1338 "R_ARM_THM_MOVT_BREL", /* name */
1339 FALSE, /* partial_inplace */
1340 0x040f70ff, /* src_mask */
1341 0x040f70ff, /* dst_mask */
1342 FALSE), /* pcrel_offset */
1343
1344 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1345 0, /* rightshift */
1346 2, /* size (0 = byte, 1 = short, 2 = long) */
1347 16, /* bitsize */
1348 FALSE, /* pc_relative */
1349 0, /* bitpos */
1350 complain_overflow_dont,/* complain_on_overflow */
1351 bfd_elf_generic_reloc, /* special_function */
1352 "R_ARM_THM_MOVW_BREL", /* name */
1353 FALSE, /* partial_inplace */
1354 0x040f70ff, /* src_mask */
1355 0x040f70ff, /* dst_mask */
1356 FALSE), /* pcrel_offset */
1357
1358 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1359 0, /* rightshift */
1360 2, /* size (0 = byte, 1 = short, 2 = long) */
1361 32, /* bitsize */
1362 FALSE, /* pc_relative */
1363 0, /* bitpos */
1364 complain_overflow_bitfield,/* complain_on_overflow */
1365 NULL, /* special_function */
1366 "R_ARM_TLS_GOTDESC", /* name */
1367 TRUE, /* partial_inplace */
1368 0xffffffff, /* src_mask */
1369 0xffffffff, /* dst_mask */
1370 FALSE), /* pcrel_offset */
1371
1372 HOWTO (R_ARM_TLS_CALL, /* type */
1373 0, /* rightshift */
1374 2, /* size (0 = byte, 1 = short, 2 = long) */
1375 24, /* bitsize */
1376 FALSE, /* pc_relative */
1377 0, /* bitpos */
1378 complain_overflow_dont,/* complain_on_overflow */
1379 bfd_elf_generic_reloc, /* special_function */
1380 "R_ARM_TLS_CALL", /* name */
1381 FALSE, /* partial_inplace */
1382 0x00ffffff, /* src_mask */
1383 0x00ffffff, /* dst_mask */
1384 FALSE), /* pcrel_offset */
1385
1386 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1387 0, /* rightshift */
1388 2, /* size (0 = byte, 1 = short, 2 = long) */
1389 0, /* bitsize */
1390 FALSE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_bitfield,/* complain_on_overflow */
1393 bfd_elf_generic_reloc, /* special_function */
1394 "R_ARM_TLS_DESCSEQ", /* name */
1395 FALSE, /* partial_inplace */
1396 0x00000000, /* src_mask */
1397 0x00000000, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1399
1400 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1401 0, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 24, /* bitsize */
1404 FALSE, /* pc_relative */
1405 0, /* bitpos */
1406 complain_overflow_dont,/* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 "R_ARM_THM_TLS_CALL", /* name */
1409 FALSE, /* partial_inplace */
1410 0x07ff07ff, /* src_mask */
1411 0x07ff07ff, /* dst_mask */
1412 FALSE), /* pcrel_offset */
1413
1414 HOWTO (R_ARM_PLT32_ABS, /* type */
1415 0, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 32, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_dont,/* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 "R_ARM_PLT32_ABS", /* name */
1423 FALSE, /* partial_inplace */
1424 0xffffffff, /* src_mask */
1425 0xffffffff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 HOWTO (R_ARM_GOT_ABS, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 32, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont,/* complain_on_overflow */
1435 bfd_elf_generic_reloc, /* special_function */
1436 "R_ARM_GOT_ABS", /* name */
1437 FALSE, /* partial_inplace */
1438 0xffffffff, /* src_mask */
1439 0xffffffff, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 HOWTO (R_ARM_GOT_PREL, /* type */
1443 0, /* rightshift */
1444 2, /* size (0 = byte, 1 = short, 2 = long) */
1445 32, /* bitsize */
1446 TRUE, /* pc_relative */
1447 0, /* bitpos */
1448 complain_overflow_dont, /* complain_on_overflow */
1449 bfd_elf_generic_reloc, /* special_function */
1450 "R_ARM_GOT_PREL", /* name */
1451 FALSE, /* partial_inplace */
1452 0xffffffff, /* src_mask */
1453 0xffffffff, /* dst_mask */
1454 TRUE), /* pcrel_offset */
1455
1456 HOWTO (R_ARM_GOT_BREL12, /* type */
1457 0, /* rightshift */
1458 2, /* size (0 = byte, 1 = short, 2 = long) */
1459 12, /* bitsize */
1460 FALSE, /* pc_relative */
1461 0, /* bitpos */
1462 complain_overflow_bitfield,/* complain_on_overflow */
1463 bfd_elf_generic_reloc, /* special_function */
1464 "R_ARM_GOT_BREL12", /* name */
1465 FALSE, /* partial_inplace */
1466 0x00000fff, /* src_mask */
1467 0x00000fff, /* dst_mask */
1468 FALSE), /* pcrel_offset */
1469
1470 HOWTO (R_ARM_GOTOFF12, /* type */
1471 0, /* rightshift */
1472 2, /* size (0 = byte, 1 = short, 2 = long) */
1473 12, /* bitsize */
1474 FALSE, /* pc_relative */
1475 0, /* bitpos */
1476 complain_overflow_bitfield,/* complain_on_overflow */
1477 bfd_elf_generic_reloc, /* special_function */
1478 "R_ARM_GOTOFF12", /* name */
1479 FALSE, /* partial_inplace */
1480 0x00000fff, /* src_mask */
1481 0x00000fff, /* dst_mask */
1482 FALSE), /* pcrel_offset */
1483
1484 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1485
1486 /* GNU extension to record C++ vtable member usage */
1487 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1488 0, /* rightshift */
1489 2, /* size (0 = byte, 1 = short, 2 = long) */
1490 0, /* bitsize */
1491 FALSE, /* pc_relative */
1492 0, /* bitpos */
1493 complain_overflow_dont, /* complain_on_overflow */
1494 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1495 "R_ARM_GNU_VTENTRY", /* name */
1496 FALSE, /* partial_inplace */
1497 0, /* src_mask */
1498 0, /* dst_mask */
1499 FALSE), /* pcrel_offset */
1500
1501 /* GNU extension to record C++ vtable hierarchy */
1502 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1503 0, /* rightshift */
1504 2, /* size (0 = byte, 1 = short, 2 = long) */
1505 0, /* bitsize */
1506 FALSE, /* pc_relative */
1507 0, /* bitpos */
1508 complain_overflow_dont, /* complain_on_overflow */
1509 NULL, /* special_function */
1510 "R_ARM_GNU_VTINHERIT", /* name */
1511 FALSE, /* partial_inplace */
1512 0, /* src_mask */
1513 0, /* dst_mask */
1514 FALSE), /* pcrel_offset */
1515
1516 HOWTO (R_ARM_THM_JUMP11, /* type */
1517 1, /* rightshift */
1518 1, /* size (0 = byte, 1 = short, 2 = long) */
1519 11, /* bitsize */
1520 TRUE, /* pc_relative */
1521 0, /* bitpos */
1522 complain_overflow_signed, /* complain_on_overflow */
1523 bfd_elf_generic_reloc, /* special_function */
1524 "R_ARM_THM_JUMP11", /* name */
1525 FALSE, /* partial_inplace */
1526 0x000007ff, /* src_mask */
1527 0x000007ff, /* dst_mask */
1528 TRUE), /* pcrel_offset */
1529
1530 HOWTO (R_ARM_THM_JUMP8, /* type */
1531 1, /* rightshift */
1532 1, /* size (0 = byte, 1 = short, 2 = long) */
1533 8, /* bitsize */
1534 TRUE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_signed, /* complain_on_overflow */
1537 bfd_elf_generic_reloc, /* special_function */
1538 "R_ARM_THM_JUMP8", /* name */
1539 FALSE, /* partial_inplace */
1540 0x000000ff, /* src_mask */
1541 0x000000ff, /* dst_mask */
1542 TRUE), /* pcrel_offset */
1543
1544 /* TLS relocations */
1545 HOWTO (R_ARM_TLS_GD32, /* type */
1546 0, /* rightshift */
1547 2, /* size (0 = byte, 1 = short, 2 = long) */
1548 32, /* bitsize */
1549 FALSE, /* pc_relative */
1550 0, /* bitpos */
1551 complain_overflow_bitfield,/* complain_on_overflow */
1552 NULL, /* special_function */
1553 "R_ARM_TLS_GD32", /* name */
1554 TRUE, /* partial_inplace */
1555 0xffffffff, /* src_mask */
1556 0xffffffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1558
1559 HOWTO (R_ARM_TLS_LDM32, /* type */
1560 0, /* rightshift */
1561 2, /* size (0 = byte, 1 = short, 2 = long) */
1562 32, /* bitsize */
1563 FALSE, /* pc_relative */
1564 0, /* bitpos */
1565 complain_overflow_bitfield,/* complain_on_overflow */
1566 bfd_elf_generic_reloc, /* special_function */
1567 "R_ARM_TLS_LDM32", /* name */
1568 TRUE, /* partial_inplace */
1569 0xffffffff, /* src_mask */
1570 0xffffffff, /* dst_mask */
1571 FALSE), /* pcrel_offset */
1572
1573 HOWTO (R_ARM_TLS_LDO32, /* type */
1574 0, /* rightshift */
1575 2, /* size (0 = byte, 1 = short, 2 = long) */
1576 32, /* bitsize */
1577 FALSE, /* pc_relative */
1578 0, /* bitpos */
1579 complain_overflow_bitfield,/* complain_on_overflow */
1580 bfd_elf_generic_reloc, /* special_function */
1581 "R_ARM_TLS_LDO32", /* name */
1582 TRUE, /* partial_inplace */
1583 0xffffffff, /* src_mask */
1584 0xffffffff, /* dst_mask */
1585 FALSE), /* pcrel_offset */
1586
1587 HOWTO (R_ARM_TLS_IE32, /* type */
1588 0, /* rightshift */
1589 2, /* size (0 = byte, 1 = short, 2 = long) */
1590 32, /* bitsize */
1591 FALSE, /* pc_relative */
1592 0, /* bitpos */
1593 complain_overflow_bitfield,/* complain_on_overflow */
1594 NULL, /* special_function */
1595 "R_ARM_TLS_IE32", /* name */
1596 TRUE, /* partial_inplace */
1597 0xffffffff, /* src_mask */
1598 0xffffffff, /* dst_mask */
1599 FALSE), /* pcrel_offset */
1600
1601 HOWTO (R_ARM_TLS_LE32, /* type */
1602 0, /* rightshift */
1603 2, /* size (0 = byte, 1 = short, 2 = long) */
1604 32, /* bitsize */
1605 FALSE, /* pc_relative */
1606 0, /* bitpos */
1607 complain_overflow_bitfield,/* complain_on_overflow */
1608 NULL, /* special_function */
1609 "R_ARM_TLS_LE32", /* name */
1610 TRUE, /* partial_inplace */
1611 0xffffffff, /* src_mask */
1612 0xffffffff, /* dst_mask */
1613 FALSE), /* pcrel_offset */
1614
1615 HOWTO (R_ARM_TLS_LDO12, /* type */
1616 0, /* rightshift */
1617 2, /* size (0 = byte, 1 = short, 2 = long) */
1618 12, /* bitsize */
1619 FALSE, /* pc_relative */
1620 0, /* bitpos */
1621 complain_overflow_bitfield,/* complain_on_overflow */
1622 bfd_elf_generic_reloc, /* special_function */
1623 "R_ARM_TLS_LDO12", /* name */
1624 FALSE, /* partial_inplace */
1625 0x00000fff, /* src_mask */
1626 0x00000fff, /* dst_mask */
1627 FALSE), /* pcrel_offset */
1628
1629 HOWTO (R_ARM_TLS_LE12, /* type */
1630 0, /* rightshift */
1631 2, /* size (0 = byte, 1 = short, 2 = long) */
1632 12, /* bitsize */
1633 FALSE, /* pc_relative */
1634 0, /* bitpos */
1635 complain_overflow_bitfield,/* complain_on_overflow */
1636 bfd_elf_generic_reloc, /* special_function */
1637 "R_ARM_TLS_LE12", /* name */
1638 FALSE, /* partial_inplace */
1639 0x00000fff, /* src_mask */
1640 0x00000fff, /* dst_mask */
1641 FALSE), /* pcrel_offset */
1642
1643 HOWTO (R_ARM_TLS_IE12GP, /* type */
1644 0, /* rightshift */
1645 2, /* size (0 = byte, 1 = short, 2 = long) */
1646 12, /* bitsize */
1647 FALSE, /* pc_relative */
1648 0, /* bitpos */
1649 complain_overflow_bitfield,/* complain_on_overflow */
1650 bfd_elf_generic_reloc, /* special_function */
1651 "R_ARM_TLS_IE12GP", /* name */
1652 FALSE, /* partial_inplace */
1653 0x00000fff, /* src_mask */
1654 0x00000fff, /* dst_mask */
1655 FALSE), /* pcrel_offset */
1656
1657 /* 112-127 private relocations. */
1658 EMPTY_HOWTO (112),
1659 EMPTY_HOWTO (113),
1660 EMPTY_HOWTO (114),
1661 EMPTY_HOWTO (115),
1662 EMPTY_HOWTO (116),
1663 EMPTY_HOWTO (117),
1664 EMPTY_HOWTO (118),
1665 EMPTY_HOWTO (119),
1666 EMPTY_HOWTO (120),
1667 EMPTY_HOWTO (121),
1668 EMPTY_HOWTO (122),
1669 EMPTY_HOWTO (123),
1670 EMPTY_HOWTO (124),
1671 EMPTY_HOWTO (125),
1672 EMPTY_HOWTO (126),
1673 EMPTY_HOWTO (127),
1674
1675 /* R_ARM_ME_TOO, obsolete. */
1676 EMPTY_HOWTO (128),
1677
1678 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1679 0, /* rightshift */
1680 1, /* size (0 = byte, 1 = short, 2 = long) */
1681 0, /* bitsize */
1682 FALSE, /* pc_relative */
1683 0, /* bitpos */
1684 complain_overflow_bitfield,/* complain_on_overflow */
1685 bfd_elf_generic_reloc, /* special_function */
1686 "R_ARM_THM_TLS_DESCSEQ",/* name */
1687 FALSE, /* partial_inplace */
1688 0x00000000, /* src_mask */
1689 0x00000000, /* dst_mask */
1690 FALSE), /* pcrel_offset */
1691 EMPTY_HOWTO (130),
1692 EMPTY_HOWTO (131),
1693 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1694 0, /* rightshift. */
1695 1, /* size (0 = byte, 1 = short, 2 = long). */
1696 16, /* bitsize. */
1697 FALSE, /* pc_relative. */
1698 0, /* bitpos. */
1699 complain_overflow_bitfield,/* complain_on_overflow. */
1700 bfd_elf_generic_reloc, /* special_function. */
1701 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1702 FALSE, /* partial_inplace. */
1703 0x00000000, /* src_mask. */
1704 0x00000000, /* dst_mask. */
1705 FALSE), /* pcrel_offset. */
1706 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1707 0, /* rightshift. */
1708 1, /* size (0 = byte, 1 = short, 2 = long). */
1709 16, /* bitsize. */
1710 FALSE, /* pc_relative. */
1711 0, /* bitpos. */
1712 complain_overflow_bitfield,/* complain_on_overflow. */
1713 bfd_elf_generic_reloc, /* special_function. */
1714 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1715 FALSE, /* partial_inplace. */
1716 0x00000000, /* src_mask. */
1717 0x00000000, /* dst_mask. */
1718 FALSE), /* pcrel_offset. */
1719 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1720 0, /* rightshift. */
1721 1, /* size (0 = byte, 1 = short, 2 = long). */
1722 16, /* bitsize. */
1723 FALSE, /* pc_relative. */
1724 0, /* bitpos. */
1725 complain_overflow_bitfield,/* complain_on_overflow. */
1726 bfd_elf_generic_reloc, /* special_function. */
1727 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1728 FALSE, /* partial_inplace. */
1729 0x00000000, /* src_mask. */
1730 0x00000000, /* dst_mask. */
1731 FALSE), /* pcrel_offset. */
1732 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1733 0, /* rightshift. */
1734 1, /* size (0 = byte, 1 = short, 2 = long). */
1735 16, /* bitsize. */
1736 FALSE, /* pc_relative. */
1737 0, /* bitpos. */
1738 complain_overflow_bitfield,/* complain_on_overflow. */
1739 bfd_elf_generic_reloc, /* special_function. */
1740 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1741 FALSE, /* partial_inplace. */
1742 0x00000000, /* src_mask. */
1743 0x00000000, /* dst_mask. */
1744 FALSE), /* pcrel_offset. */
1745 /* Relocations for Armv8.1-M Mainline. */
1746 HOWTO (R_ARM_THM_BF16, /* type. */
1747 0, /* rightshift. */
1748 1, /* size (0 = byte, 1 = short, 2 = long). */
1749 16, /* bitsize. */
1750 TRUE, /* pc_relative. */
1751 0, /* bitpos. */
1752 complain_overflow_dont,/* do not complain_on_overflow. */
1753 bfd_elf_generic_reloc, /* special_function. */
1754 "R_ARM_THM_BF16", /* name. */
1755 FALSE, /* partial_inplace. */
1756 0x001f0ffe, /* src_mask. */
1757 0x001f0ffe, /* dst_mask. */
1758 TRUE), /* pcrel_offset. */
1759 HOWTO (R_ARM_THM_BF12, /* type. */
1760 0, /* rightshift. */
1761 1, /* size (0 = byte, 1 = short, 2 = long). */
1762 12, /* bitsize. */
1763 TRUE, /* pc_relative. */
1764 0, /* bitpos. */
1765 complain_overflow_dont,/* do not complain_on_overflow. */
1766 bfd_elf_generic_reloc, /* special_function. */
1767 "R_ARM_THM_BF12", /* name. */
1768 FALSE, /* partial_inplace. */
1769 0x00010ffe, /* src_mask. */
1770 0x00010ffe, /* dst_mask. */
1771 TRUE), /* pcrel_offset. */
1772 HOWTO (R_ARM_THM_BF18, /* type. */
1773 0, /* rightshift. */
1774 1, /* size (0 = byte, 1 = short, 2 = long). */
1775 18, /* bitsize. */
1776 TRUE, /* pc_relative. */
1777 0, /* bitpos. */
1778 complain_overflow_dont,/* do not complain_on_overflow. */
1779 bfd_elf_generic_reloc, /* special_function. */
1780 "R_ARM_THM_BF18", /* name. */
1781 FALSE, /* partial_inplace. */
1782 0x007f0ffe, /* src_mask. */
1783 0x007f0ffe, /* dst_mask. */
1784 TRUE), /* pcrel_offset. */
1785 };
1786
1787 /* 160 onwards: */
1788 static reloc_howto_type elf32_arm_howto_table_2[8] =
1789 {
1790 HOWTO (R_ARM_IRELATIVE, /* type */
1791 0, /* rightshift */
1792 2, /* size (0 = byte, 1 = short, 2 = long) */
1793 32, /* bitsize */
1794 FALSE, /* pc_relative */
1795 0, /* bitpos */
1796 complain_overflow_bitfield,/* complain_on_overflow */
1797 bfd_elf_generic_reloc, /* special_function */
1798 "R_ARM_IRELATIVE", /* name */
1799 TRUE, /* partial_inplace */
1800 0xffffffff, /* src_mask */
1801 0xffffffff, /* dst_mask */
1802 FALSE), /* pcrel_offset */
1803 HOWTO (R_ARM_GOTFUNCDESC, /* type */
1804 0, /* rightshift */
1805 2, /* size (0 = byte, 1 = short, 2 = long) */
1806 32, /* bitsize */
1807 FALSE, /* pc_relative */
1808 0, /* bitpos */
1809 complain_overflow_bitfield,/* complain_on_overflow */
1810 bfd_elf_generic_reloc, /* special_function */
1811 "R_ARM_GOTFUNCDESC", /* name */
1812 FALSE, /* partial_inplace */
1813 0, /* src_mask */
1814 0xffffffff, /* dst_mask */
1815 FALSE), /* pcrel_offset */
1816 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */
1817 0, /* rightshift */
1818 2, /* size (0 = byte, 1 = short, 2 = long) */
1819 32, /* bitsize */
1820 FALSE, /* pc_relative */
1821 0, /* bitpos */
1822 complain_overflow_bitfield,/* complain_on_overflow */
1823 bfd_elf_generic_reloc, /* special_function */
1824 "R_ARM_GOTOFFFUNCDESC",/* name */
1825 FALSE, /* partial_inplace */
1826 0, /* src_mask */
1827 0xffffffff, /* dst_mask */
1828 FALSE), /* pcrel_offset */
1829 HOWTO (R_ARM_FUNCDESC, /* type */
1830 0, /* rightshift */
1831 2, /* size (0 = byte, 1 = short, 2 = long) */
1832 32, /* bitsize */
1833 FALSE, /* pc_relative */
1834 0, /* bitpos */
1835 complain_overflow_bitfield,/* complain_on_overflow */
1836 bfd_elf_generic_reloc, /* special_function */
1837 "R_ARM_FUNCDESC", /* name */
1838 FALSE, /* partial_inplace */
1839 0, /* src_mask */
1840 0xffffffff, /* dst_mask */
1841 FALSE), /* pcrel_offset */
1842 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */
1843 0, /* rightshift */
1844 2, /* size (0 = byte, 1 = short, 2 = long) */
1845 64, /* bitsize */
1846 FALSE, /* pc_relative */
1847 0, /* bitpos */
1848 complain_overflow_bitfield,/* complain_on_overflow */
1849 bfd_elf_generic_reloc, /* special_function */
1850 "R_ARM_FUNCDESC_VALUE",/* name */
1851 FALSE, /* partial_inplace */
1852 0, /* src_mask */
1853 0xffffffff, /* dst_mask */
1854 FALSE), /* pcrel_offset */
1855 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */
1856 0, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 32, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_bitfield,/* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 "R_ARM_TLS_GD32_FDPIC",/* name */
1864 FALSE, /* partial_inplace */
1865 0, /* src_mask */
1866 0xffffffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */
1869 0, /* rightshift */
1870 2, /* size (0 = byte, 1 = short, 2 = long) */
1871 32, /* bitsize */
1872 FALSE, /* pc_relative */
1873 0, /* bitpos */
1874 complain_overflow_bitfield,/* complain_on_overflow */
1875 bfd_elf_generic_reloc, /* special_function */
1876 "R_ARM_TLS_LDM32_FDPIC",/* name */
1877 FALSE, /* partial_inplace */
1878 0, /* src_mask */
1879 0xffffffff, /* dst_mask */
1880 FALSE), /* pcrel_offset */
1881 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */
1882 0, /* rightshift */
1883 2, /* size (0 = byte, 1 = short, 2 = long) */
1884 32, /* bitsize */
1885 FALSE, /* pc_relative */
1886 0, /* bitpos */
1887 complain_overflow_bitfield,/* complain_on_overflow */
1888 bfd_elf_generic_reloc, /* special_function */
1889 "R_ARM_TLS_IE32_FDPIC",/* name */
1890 FALSE, /* partial_inplace */
1891 0, /* src_mask */
1892 0xffffffff, /* dst_mask */
1893 FALSE), /* pcrel_offset */
1894 };
1895
1896 /* 249-255 extended, currently unused, relocations: */
1897 static reloc_howto_type elf32_arm_howto_table_3[4] =
1898 {
1899 HOWTO (R_ARM_RREL32, /* type */
1900 0, /* rightshift */
1901 0, /* size (0 = byte, 1 = short, 2 = long) */
1902 0, /* bitsize */
1903 FALSE, /* pc_relative */
1904 0, /* bitpos */
1905 complain_overflow_dont,/* complain_on_overflow */
1906 bfd_elf_generic_reloc, /* special_function */
1907 "R_ARM_RREL32", /* name */
1908 FALSE, /* partial_inplace */
1909 0, /* src_mask */
1910 0, /* dst_mask */
1911 FALSE), /* pcrel_offset */
1912
1913 HOWTO (R_ARM_RABS32, /* type */
1914 0, /* rightshift */
1915 0, /* size (0 = byte, 1 = short, 2 = long) */
1916 0, /* bitsize */
1917 FALSE, /* pc_relative */
1918 0, /* bitpos */
1919 complain_overflow_dont,/* complain_on_overflow */
1920 bfd_elf_generic_reloc, /* special_function */
1921 "R_ARM_RABS32", /* name */
1922 FALSE, /* partial_inplace */
1923 0, /* src_mask */
1924 0, /* dst_mask */
1925 FALSE), /* pcrel_offset */
1926
1927 HOWTO (R_ARM_RPC24, /* type */
1928 0, /* rightshift */
1929 0, /* size (0 = byte, 1 = short, 2 = long) */
1930 0, /* bitsize */
1931 FALSE, /* pc_relative */
1932 0, /* bitpos */
1933 complain_overflow_dont,/* complain_on_overflow */
1934 bfd_elf_generic_reloc, /* special_function */
1935 "R_ARM_RPC24", /* name */
1936 FALSE, /* partial_inplace */
1937 0, /* src_mask */
1938 0, /* dst_mask */
1939 FALSE), /* pcrel_offset */
1940
1941 HOWTO (R_ARM_RBASE, /* type */
1942 0, /* rightshift */
1943 0, /* size (0 = byte, 1 = short, 2 = long) */
1944 0, /* bitsize */
1945 FALSE, /* pc_relative */
1946 0, /* bitpos */
1947 complain_overflow_dont,/* complain_on_overflow */
1948 bfd_elf_generic_reloc, /* special_function */
1949 "R_ARM_RBASE", /* name */
1950 FALSE, /* partial_inplace */
1951 0, /* src_mask */
1952 0, /* dst_mask */
1953 FALSE) /* pcrel_offset */
1954 };
1955
1956 static reloc_howto_type *
1957 elf32_arm_howto_from_type (unsigned int r_type)
1958 {
1959 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1960 return &elf32_arm_howto_table_1[r_type];
1961
1962 if (r_type >= R_ARM_IRELATIVE
1963 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2))
1964 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1965
1966 if (r_type >= R_ARM_RREL32
1967 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1968 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1969
1970 return NULL;
1971 }
1972
1973 static bfd_boolean
1974 elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc,
1975 Elf_Internal_Rela * elf_reloc)
1976 {
1977 unsigned int r_type;
1978
1979 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1980 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL)
1981 {
1982 /* xgettext:c-format */
1983 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1984 abfd, r_type);
1985 bfd_set_error (bfd_error_bad_value);
1986 return FALSE;
1987 }
1988 return TRUE;
1989 }
1990
1991 struct elf32_arm_reloc_map
1992 {
1993 bfd_reloc_code_real_type bfd_reloc_val;
1994 unsigned char elf_reloc_val;
1995 };
1996
1997 /* All entries in this list must also be present in elf32_arm_howto_table. */
1998 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1999 {
2000 {BFD_RELOC_NONE, R_ARM_NONE},
2001 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
2002 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
2003 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
2004 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
2005 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
2006 {BFD_RELOC_32, R_ARM_ABS32},
2007 {BFD_RELOC_32_PCREL, R_ARM_REL32},
2008 {BFD_RELOC_8, R_ARM_ABS8},
2009 {BFD_RELOC_16, R_ARM_ABS16},
2010 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
2011 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
2012 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
2013 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
2014 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
2015 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
2016 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
2017 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
2018 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
2019 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
2020 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
2021 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
2022 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
2023 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
2024 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
2025 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2026 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
2027 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
2028 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
2029 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
2030 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
2031 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2032 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
2033 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
2034 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
2035 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
2036 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
2037 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
2038 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
2039 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
2040 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
2041 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
2042 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
2043 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
2044 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
2045 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
2046 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
2047 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC},
2048 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC},
2049 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC},
2050 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE},
2051 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC},
2052 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC},
2053 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC},
2054 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
2055 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
2056 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
2057 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
2058 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
2059 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
2060 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
2061 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
2062 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
2063 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
2064 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
2065 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
2066 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
2067 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
2068 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
2069 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
2070 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
2071 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
2072 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
2073 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
2074 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
2075 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
2076 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
2077 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
2078 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
2079 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
2080 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
2081 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
2082 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
2083 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
2084 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
2085 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
2086 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
2087 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
2088 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
2089 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
2090 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
2091 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
2092 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
2093 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
2094 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
2095 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
2096 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC},
2097 {BFD_RELOC_ARM_THUMB_BF17, R_ARM_THM_BF16},
2098 {BFD_RELOC_ARM_THUMB_BF13, R_ARM_THM_BF12},
2099 {BFD_RELOC_ARM_THUMB_BF19, R_ARM_THM_BF18}
2100 };
2101
2102 static reloc_howto_type *
2103 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2104 bfd_reloc_code_real_type code)
2105 {
2106 unsigned int i;
2107
2108 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
2109 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
2110 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
2111
2112 return NULL;
2113 }
2114
2115 static reloc_howto_type *
2116 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2117 const char *r_name)
2118 {
2119 unsigned int i;
2120
2121 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
2122 if (elf32_arm_howto_table_1[i].name != NULL
2123 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
2124 return &elf32_arm_howto_table_1[i];
2125
2126 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
2127 if (elf32_arm_howto_table_2[i].name != NULL
2128 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
2129 return &elf32_arm_howto_table_2[i];
2130
2131 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
2132 if (elf32_arm_howto_table_3[i].name != NULL
2133 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
2134 return &elf32_arm_howto_table_3[i];
2135
2136 return NULL;
2137 }
2138
2139 /* Support for core dump NOTE sections. */
2140
2141 static bfd_boolean
2142 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2143 {
2144 int offset;
2145 size_t size;
2146
2147 switch (note->descsz)
2148 {
2149 default:
2150 return FALSE;
2151
2152 case 148: /* Linux/ARM 32-bit. */
2153 /* pr_cursig */
2154 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2155
2156 /* pr_pid */
2157 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2158
2159 /* pr_reg */
2160 offset = 72;
2161 size = 72;
2162
2163 break;
2164 }
2165
2166 /* Make a ".reg/999" section. */
2167 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2168 size, note->descpos + offset);
2169 }
2170
2171 static bfd_boolean
2172 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2173 {
2174 switch (note->descsz)
2175 {
2176 default:
2177 return FALSE;
2178
2179 case 124: /* Linux/ARM elf_prpsinfo. */
2180 elf_tdata (abfd)->core->pid
2181 = bfd_get_32 (abfd, note->descdata + 12);
2182 elf_tdata (abfd)->core->program
2183 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2184 elf_tdata (abfd)->core->command
2185 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2186 }
2187
2188 /* Note that for some reason, a spurious space is tacked
2189 onto the end of the args in some (at least one anyway)
2190 implementations, so strip it off if it exists. */
2191 {
2192 char *command = elf_tdata (abfd)->core->command;
2193 int n = strlen (command);
2194
2195 if (0 < n && command[n - 1] == ' ')
2196 command[n - 1] = '\0';
2197 }
2198
2199 return TRUE;
2200 }
2201
2202 static char *
2203 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2204 int note_type, ...)
2205 {
2206 switch (note_type)
2207 {
2208 default:
2209 return NULL;
2210
2211 case NT_PRPSINFO:
2212 {
2213 char data[124] ATTRIBUTE_NONSTRING;
2214 va_list ap;
2215
2216 va_start (ap, note_type);
2217 memset (data, 0, sizeof (data));
2218 strncpy (data + 28, va_arg (ap, const char *), 16);
2219 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2220 DIAGNOSTIC_PUSH;
2221 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
2222 -Wstringop-truncation:
2223 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2224 */
2225 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
2226 #endif
2227 strncpy (data + 44, va_arg (ap, const char *), 80);
2228 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2229 DIAGNOSTIC_POP;
2230 #endif
2231 va_end (ap);
2232
2233 return elfcore_write_note (abfd, buf, bufsiz,
2234 "CORE", note_type, data, sizeof (data));
2235 }
2236
2237 case NT_PRSTATUS:
2238 {
2239 char data[148];
2240 va_list ap;
2241 long pid;
2242 int cursig;
2243 const void *greg;
2244
2245 va_start (ap, note_type);
2246 memset (data, 0, sizeof (data));
2247 pid = va_arg (ap, long);
2248 bfd_put_32 (abfd, pid, data + 24);
2249 cursig = va_arg (ap, int);
2250 bfd_put_16 (abfd, cursig, data + 12);
2251 greg = va_arg (ap, const void *);
2252 memcpy (data + 72, greg, 72);
2253 va_end (ap);
2254
2255 return elfcore_write_note (abfd, buf, bufsiz,
2256 "CORE", note_type, data, sizeof (data));
2257 }
2258 }
2259 }
2260
2261 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2262 #define TARGET_LITTLE_NAME "elf32-littlearm"
2263 #define TARGET_BIG_SYM arm_elf32_be_vec
2264 #define TARGET_BIG_NAME "elf32-bigarm"
2265
2266 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2267 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2268 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2269
2270 typedef unsigned long int insn32;
2271 typedef unsigned short int insn16;
2272
2273 /* In lieu of proper flags, assume all EABIv4 or later objects are
2274 interworkable. */
2275 #define INTERWORK_FLAG(abfd) \
2276 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2277 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2278 || ((abfd)->flags & BFD_LINKER_CREATED))
2279
2280 /* The linker script knows the section names for placement.
2281 The entry_names are used to do simple name mangling on the stubs.
2282 Given a function name, and its type, the stub can be found. The
2283 name can be changed. The only requirement is the %s be present. */
2284 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2285 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2286
2287 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2288 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2289
2290 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2291 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2292
2293 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2294 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2295
2296 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2297 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2298
2299 #define STUB_ENTRY_NAME "__%s_veneer"
2300
2301 #define CMSE_PREFIX "__acle_se_"
2302
2303 /* The name of the dynamic interpreter. This is put in the .interp
2304 section. */
2305 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2306
2307 /* FDPIC default stack size. */
2308 #define DEFAULT_STACK_SIZE 0x8000
2309
2310 static const unsigned long tls_trampoline [] =
2311 {
2312 0xe08e0000, /* add r0, lr, r0 */
2313 0xe5901004, /* ldr r1, [r0,#4] */
2314 0xe12fff11, /* bx r1 */
2315 };
2316
2317 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2318 {
2319 0xe52d2004, /* push {r2} */
2320 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2321 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2322 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2323 0xe081100f, /* 2: add r1, pc */
2324 0xe12fff12, /* bx r2 */
2325 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2326 + dl_tlsdesc_lazy_resolver(GOT) */
2327 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2328 };
2329
2330 /* ARM FDPIC PLT entry. */
2331 /* The last 5 words contain PLT lazy fragment code and data. */
2332 static const bfd_vma elf32_arm_fdpic_plt_entry [] =
2333 {
2334 0xe59fc008, /* ldr r12, .L1 */
2335 0xe08cc009, /* add r12, r12, r9 */
2336 0xe59c9004, /* ldr r9, [r12, #4] */
2337 0xe59cf000, /* ldr pc, [r12] */
2338 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2339 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2340 0xe51fc00c, /* ldr r12, [pc, #-12] */
2341 0xe92d1000, /* push {r12} */
2342 0xe599c004, /* ldr r12, [r9, #4] */
2343 0xe599f000, /* ldr pc, [r9] */
2344 };
2345
2346 /* Thumb FDPIC PLT entry. */
2347 /* The last 5 words contain PLT lazy fragment code and data. */
2348 static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] =
2349 {
2350 0xc00cf8df, /* ldr.w r12, .L1 */
2351 0x0c09eb0c, /* add.w r12, r12, r9 */
2352 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2353 0xf000f8dc, /* ldr.w pc, [r12] */
2354 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2355 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2356 0xc008f85f, /* ldr.w r12, .L2 */
2357 0xcd04f84d, /* push {r12} */
2358 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2359 0xf000f8d9, /* ldr.w pc, [r9] */
2360 };
2361
2362 #ifdef FOUR_WORD_PLT
2363
2364 /* The first entry in a procedure linkage table looks like
2365 this. It is set up so that any shared library function that is
2366 called before the relocation has been set up calls the dynamic
2367 linker first. */
2368 static const bfd_vma elf32_arm_plt0_entry [] =
2369 {
2370 0xe52de004, /* str lr, [sp, #-4]! */
2371 0xe59fe010, /* ldr lr, [pc, #16] */
2372 0xe08fe00e, /* add lr, pc, lr */
2373 0xe5bef008, /* ldr pc, [lr, #8]! */
2374 };
2375
2376 /* Subsequent entries in a procedure linkage table look like
2377 this. */
2378 static const bfd_vma elf32_arm_plt_entry [] =
2379 {
2380 0xe28fc600, /* add ip, pc, #NN */
2381 0xe28cca00, /* add ip, ip, #NN */
2382 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2383 0x00000000, /* unused */
2384 };
2385
2386 #else /* not FOUR_WORD_PLT */
2387
2388 /* The first entry in a procedure linkage table looks like
2389 this. It is set up so that any shared library function that is
2390 called before the relocation has been set up calls the dynamic
2391 linker first. */
2392 static const bfd_vma elf32_arm_plt0_entry [] =
2393 {
2394 0xe52de004, /* str lr, [sp, #-4]! */
2395 0xe59fe004, /* ldr lr, [pc, #4] */
2396 0xe08fe00e, /* add lr, pc, lr */
2397 0xe5bef008, /* ldr pc, [lr, #8]! */
2398 0x00000000, /* &GOT[0] - . */
2399 };
2400
2401 /* By default subsequent entries in a procedure linkage table look like
2402 this. Offsets that don't fit into 28 bits will cause link error. */
2403 static const bfd_vma elf32_arm_plt_entry_short [] =
2404 {
2405 0xe28fc600, /* add ip, pc, #0xNN00000 */
2406 0xe28cca00, /* add ip, ip, #0xNN000 */
2407 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2408 };
2409
2410 /* When explicitly asked, we'll use this "long" entry format
2411 which can cope with arbitrary displacements. */
2412 static const bfd_vma elf32_arm_plt_entry_long [] =
2413 {
2414 0xe28fc200, /* add ip, pc, #0xN0000000 */
2415 0xe28cc600, /* add ip, ip, #0xNN00000 */
2416 0xe28cca00, /* add ip, ip, #0xNN000 */
2417 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2418 };
2419
2420 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2421
2422 #endif /* not FOUR_WORD_PLT */
2423
2424 /* The first entry in a procedure linkage table looks like this.
2425 It is set up so that any shared library function that is called before the
2426 relocation has been set up calls the dynamic linker first. */
2427 static const bfd_vma elf32_thumb2_plt0_entry [] =
2428 {
2429 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2430 an instruction maybe encoded to one or two array elements. */
2431 0xf8dfb500, /* push {lr} */
2432 0x44fee008, /* ldr.w lr, [pc, #8] */
2433 /* add lr, pc */
2434 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2435 0x00000000, /* &GOT[0] - . */
2436 };
2437
2438 /* Subsequent entries in a procedure linkage table for thumb only target
2439 look like this. */
2440 static const bfd_vma elf32_thumb2_plt_entry [] =
2441 {
2442 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2443 an instruction maybe encoded to one or two array elements. */
2444 0x0c00f240, /* movw ip, #0xNNNN */
2445 0x0c00f2c0, /* movt ip, #0xNNNN */
2446 0xf8dc44fc, /* add ip, pc */
2447 0xbf00f000 /* ldr.w pc, [ip] */
2448 /* nop */
2449 };
2450
2451 /* The format of the first entry in the procedure linkage table
2452 for a VxWorks executable. */
2453 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2454 {
2455 0xe52dc008, /* str ip,[sp,#-8]! */
2456 0xe59fc000, /* ldr ip,[pc] */
2457 0xe59cf008, /* ldr pc,[ip,#8] */
2458 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2459 };
2460
2461 /* The format of subsequent entries in a VxWorks executable. */
2462 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2463 {
2464 0xe59fc000, /* ldr ip,[pc] */
2465 0xe59cf000, /* ldr pc,[ip] */
2466 0x00000000, /* .long @got */
2467 0xe59fc000, /* ldr ip,[pc] */
2468 0xea000000, /* b _PLT */
2469 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2470 };
2471
2472 /* The format of entries in a VxWorks shared library. */
2473 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2474 {
2475 0xe59fc000, /* ldr ip,[pc] */
2476 0xe79cf009, /* ldr pc,[ip,r9] */
2477 0x00000000, /* .long @got */
2478 0xe59fc000, /* ldr ip,[pc] */
2479 0xe599f008, /* ldr pc,[r9,#8] */
2480 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2481 };
2482
2483 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2484 #define PLT_THUMB_STUB_SIZE 4
2485 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2486 {
2487 0x4778, /* bx pc */
2488 0x46c0 /* nop */
2489 };
2490
2491 /* The entries in a PLT when using a DLL-based target with multiple
2492 address spaces. */
2493 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2494 {
2495 0xe51ff004, /* ldr pc, [pc, #-4] */
2496 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2497 };
2498
2499 /* The first entry in a procedure linkage table looks like
2500 this. It is set up so that any shared library function that is
2501 called before the relocation has been set up calls the dynamic
2502 linker first. */
2503 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2504 {
2505 /* First bundle: */
2506 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2507 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2508 0xe08cc00f, /* add ip, ip, pc */
2509 0xe52dc008, /* str ip, [sp, #-8]! */
2510 /* Second bundle: */
2511 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2512 0xe59cc000, /* ldr ip, [ip] */
2513 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2514 0xe12fff1c, /* bx ip */
2515 /* Third bundle: */
2516 0xe320f000, /* nop */
2517 0xe320f000, /* nop */
2518 0xe320f000, /* nop */
2519 /* .Lplt_tail: */
2520 0xe50dc004, /* str ip, [sp, #-4] */
2521 /* Fourth bundle: */
2522 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2523 0xe59cc000, /* ldr ip, [ip] */
2524 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2525 0xe12fff1c, /* bx ip */
2526 };
2527 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2528
2529 /* Subsequent entries in a procedure linkage table look like this. */
2530 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2531 {
2532 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2533 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2534 0xe08cc00f, /* add ip, ip, pc */
2535 0xea000000, /* b .Lplt_tail */
2536 };
2537
2538 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2539 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2540 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2541 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2542 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2543 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2544 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2545 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2546
2547 enum stub_insn_type
2548 {
2549 THUMB16_TYPE = 1,
2550 THUMB32_TYPE,
2551 ARM_TYPE,
2552 DATA_TYPE
2553 };
2554
2555 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2556 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2557 is inserted in arm_build_one_stub(). */
2558 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2559 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2560 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2561 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2562 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2563 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2564 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2565 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2566
2567 typedef struct
2568 {
2569 bfd_vma data;
2570 enum stub_insn_type type;
2571 unsigned int r_type;
2572 int reloc_addend;
2573 } insn_sequence;
2574
2575 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2576 to reach the stub if necessary. */
2577 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2578 {
2579 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2580 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2581 };
2582
2583 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2584 available. */
2585 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2586 {
2587 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2588 ARM_INSN (0xe12fff1c), /* bx ip */
2589 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2590 };
2591
2592 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2593 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2594 {
2595 THUMB16_INSN (0xb401), /* push {r0} */
2596 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2597 THUMB16_INSN (0x4684), /* mov ip, r0 */
2598 THUMB16_INSN (0xbc01), /* pop {r0} */
2599 THUMB16_INSN (0x4760), /* bx ip */
2600 THUMB16_INSN (0xbf00), /* nop */
2601 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2602 };
2603
2604 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2605 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2606 {
2607 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2608 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2609 };
2610
2611 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2612 M-profile architectures. */
2613 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2614 {
2615 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2616 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2617 THUMB16_INSN (0x4760), /* bx ip */
2618 };
2619
2620 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2621 allowed. */
2622 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2623 {
2624 THUMB16_INSN (0x4778), /* bx pc */
2625 THUMB16_INSN (0x46c0), /* nop */
2626 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2627 ARM_INSN (0xe12fff1c), /* bx ip */
2628 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2629 };
2630
2631 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2632 available. */
2633 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2634 {
2635 THUMB16_INSN (0x4778), /* bx pc */
2636 THUMB16_INSN (0x46c0), /* nop */
2637 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2638 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2639 };
2640
2641 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2642 one, when the destination is close enough. */
2643 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2644 {
2645 THUMB16_INSN (0x4778), /* bx pc */
2646 THUMB16_INSN (0x46c0), /* nop */
2647 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2648 };
2649
2650 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2651 blx to reach the stub if necessary. */
2652 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2653 {
2654 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2655 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2656 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2657 };
2658
2659 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2660 blx to reach the stub if necessary. We can not add into pc;
2661 it is not guaranteed to mode switch (different in ARMv6 and
2662 ARMv7). */
2663 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2664 {
2665 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2666 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2667 ARM_INSN (0xe12fff1c), /* bx ip */
2668 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2669 };
2670
2671 /* V4T ARM -> ARM long branch stub, PIC. */
2672 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2673 {
2674 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2675 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2676 ARM_INSN (0xe12fff1c), /* bx ip */
2677 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2678 };
2679
2680 /* V4T Thumb -> ARM long branch stub, PIC. */
2681 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2682 {
2683 THUMB16_INSN (0x4778), /* bx pc */
2684 THUMB16_INSN (0x46c0), /* nop */
2685 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2686 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2687 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2688 };
2689
2690 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2691 architectures. */
2692 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2693 {
2694 THUMB16_INSN (0xb401), /* push {r0} */
2695 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2696 THUMB16_INSN (0x46fc), /* mov ip, pc */
2697 THUMB16_INSN (0x4484), /* add ip, r0 */
2698 THUMB16_INSN (0xbc01), /* pop {r0} */
2699 THUMB16_INSN (0x4760), /* bx ip */
2700 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2701 };
2702
2703 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2704 allowed. */
2705 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2706 {
2707 THUMB16_INSN (0x4778), /* bx pc */
2708 THUMB16_INSN (0x46c0), /* nop */
2709 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2710 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2711 ARM_INSN (0xe12fff1c), /* bx ip */
2712 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2713 };
2714
2715 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2716 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2717 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2718 {
2719 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2720 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2721 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2722 };
2723
2724 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2725 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2726 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2727 {
2728 THUMB16_INSN (0x4778), /* bx pc */
2729 THUMB16_INSN (0x46c0), /* nop */
2730 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2731 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2732 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2733 };
2734
2735 /* NaCl ARM -> ARM long branch stub. */
2736 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2737 {
2738 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2739 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2740 ARM_INSN (0xe12fff1c), /* bx ip */
2741 ARM_INSN (0xe320f000), /* nop */
2742 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2743 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2744 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2745 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2746 };
2747
2748 /* NaCl ARM -> ARM long branch stub, PIC. */
2749 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2750 {
2751 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2752 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2753 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2754 ARM_INSN (0xe12fff1c), /* bx ip */
2755 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2756 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2757 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2758 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2759 };
2760
2761 /* Stub used for transition to secure state (aka SG veneer). */
2762 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2763 {
2764 THUMB32_INSN (0xe97fe97f), /* sg. */
2765 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2766 };
2767
2768
2769 /* Cortex-A8 erratum-workaround stubs. */
2770
2771 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2772 can't use a conditional branch to reach this stub). */
2773
2774 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2775 {
2776 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2777 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2778 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2779 };
2780
2781 /* Stub used for b.w and bl.w instructions. */
2782
2783 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2784 {
2785 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2786 };
2787
2788 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2789 {
2790 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2791 };
2792
2793 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2794 instruction (which switches to ARM mode) to point to this stub. Jump to the
2795 real destination using an ARM-mode branch. */
2796
2797 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2798 {
2799 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2800 };
2801
2802 /* For each section group there can be a specially created linker section
2803 to hold the stubs for that group. The name of the stub section is based
2804 upon the name of another section within that group with the suffix below
2805 applied.
2806
2807 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2808 create what appeared to be a linker stub section when it actually
2809 contained user code/data. For example, consider this fragment:
2810
2811 const char * stubborn_problems[] = { "np" };
2812
2813 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2814 section called:
2815
2816 .data.rel.local.stubborn_problems
2817
2818 This then causes problems in arm32_arm_build_stubs() as it triggers:
2819
2820 // Ignore non-stub sections.
2821 if (!strstr (stub_sec->name, STUB_SUFFIX))
2822 continue;
2823
2824 And so the section would be ignored instead of being processed. Hence
2825 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2826 C identifier. */
2827 #define STUB_SUFFIX ".__stub"
2828
2829 /* One entry per long/short branch stub defined above. */
2830 #define DEF_STUBS \
2831 DEF_STUB(long_branch_any_any) \
2832 DEF_STUB(long_branch_v4t_arm_thumb) \
2833 DEF_STUB(long_branch_thumb_only) \
2834 DEF_STUB(long_branch_v4t_thumb_thumb) \
2835 DEF_STUB(long_branch_v4t_thumb_arm) \
2836 DEF_STUB(short_branch_v4t_thumb_arm) \
2837 DEF_STUB(long_branch_any_arm_pic) \
2838 DEF_STUB(long_branch_any_thumb_pic) \
2839 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2840 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2841 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2842 DEF_STUB(long_branch_thumb_only_pic) \
2843 DEF_STUB(long_branch_any_tls_pic) \
2844 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2845 DEF_STUB(long_branch_arm_nacl) \
2846 DEF_STUB(long_branch_arm_nacl_pic) \
2847 DEF_STUB(cmse_branch_thumb_only) \
2848 DEF_STUB(a8_veneer_b_cond) \
2849 DEF_STUB(a8_veneer_b) \
2850 DEF_STUB(a8_veneer_bl) \
2851 DEF_STUB(a8_veneer_blx) \
2852 DEF_STUB(long_branch_thumb2_only) \
2853 DEF_STUB(long_branch_thumb2_only_pure)
2854
2855 #define DEF_STUB(x) arm_stub_##x,
2856 enum elf32_arm_stub_type
2857 {
2858 arm_stub_none,
2859 DEF_STUBS
2860 max_stub_type
2861 };
2862 #undef DEF_STUB
2863
2864 /* Note the first a8_veneer type. */
2865 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2866
2867 typedef struct
2868 {
2869 const insn_sequence* template_sequence;
2870 int template_size;
2871 } stub_def;
2872
2873 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2874 static const stub_def stub_definitions[] =
2875 {
2876 {NULL, 0},
2877 DEF_STUBS
2878 };
2879
2880 struct elf32_arm_stub_hash_entry
2881 {
2882 /* Base hash table entry structure. */
2883 struct bfd_hash_entry root;
2884
2885 /* The stub section. */
2886 asection *stub_sec;
2887
2888 /* Offset within stub_sec of the beginning of this stub. */
2889 bfd_vma stub_offset;
2890
2891 /* Given the symbol's value and its section we can determine its final
2892 value when building the stubs (so the stub knows where to jump). */
2893 bfd_vma target_value;
2894 asection *target_section;
2895
2896 /* Same as above but for the source of the branch to the stub. Used for
2897 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2898 such, source section does not need to be recorded since Cortex-A8 erratum
2899 workaround stubs are only generated when both source and target are in the
2900 same section. */
2901 bfd_vma source_value;
2902
2903 /* The instruction which caused this stub to be generated (only valid for
2904 Cortex-A8 erratum workaround stubs at present). */
2905 unsigned long orig_insn;
2906
2907 /* The stub type. */
2908 enum elf32_arm_stub_type stub_type;
2909 /* Its encoding size in bytes. */
2910 int stub_size;
2911 /* Its template. */
2912 const insn_sequence *stub_template;
2913 /* The size of the template (number of entries). */
2914 int stub_template_size;
2915
2916 /* The symbol table entry, if any, that this was derived from. */
2917 struct elf32_arm_link_hash_entry *h;
2918
2919 /* Type of branch. */
2920 enum arm_st_branch_type branch_type;
2921
2922 /* Where this stub is being called from, or, in the case of combined
2923 stub sections, the first input section in the group. */
2924 asection *id_sec;
2925
2926 /* The name for the local symbol at the start of this stub. The
2927 stub name in the hash table has to be unique; this does not, so
2928 it can be friendlier. */
2929 char *output_name;
2930 };
2931
2932 /* Used to build a map of a section. This is required for mixed-endian
2933 code/data. */
2934
2935 typedef struct elf32_elf_section_map
2936 {
2937 bfd_vma vma;
2938 char type;
2939 }
2940 elf32_arm_section_map;
2941
2942 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2943
2944 typedef enum
2945 {
2946 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2947 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2948 VFP11_ERRATUM_ARM_VENEER,
2949 VFP11_ERRATUM_THUMB_VENEER
2950 }
2951 elf32_vfp11_erratum_type;
2952
2953 typedef struct elf32_vfp11_erratum_list
2954 {
2955 struct elf32_vfp11_erratum_list *next;
2956 bfd_vma vma;
2957 union
2958 {
2959 struct
2960 {
2961 struct elf32_vfp11_erratum_list *veneer;
2962 unsigned int vfp_insn;
2963 } b;
2964 struct
2965 {
2966 struct elf32_vfp11_erratum_list *branch;
2967 unsigned int id;
2968 } v;
2969 } u;
2970 elf32_vfp11_erratum_type type;
2971 }
2972 elf32_vfp11_erratum_list;
2973
2974 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2975 veneer. */
2976 typedef enum
2977 {
2978 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2979 STM32L4XX_ERRATUM_VENEER
2980 }
2981 elf32_stm32l4xx_erratum_type;
2982
2983 typedef struct elf32_stm32l4xx_erratum_list
2984 {
2985 struct elf32_stm32l4xx_erratum_list *next;
2986 bfd_vma vma;
2987 union
2988 {
2989 struct
2990 {
2991 struct elf32_stm32l4xx_erratum_list *veneer;
2992 unsigned int insn;
2993 } b;
2994 struct
2995 {
2996 struct elf32_stm32l4xx_erratum_list *branch;
2997 unsigned int id;
2998 } v;
2999 } u;
3000 elf32_stm32l4xx_erratum_type type;
3001 }
3002 elf32_stm32l4xx_erratum_list;
3003
3004 typedef enum
3005 {
3006 DELETE_EXIDX_ENTRY,
3007 INSERT_EXIDX_CANTUNWIND_AT_END
3008 }
3009 arm_unwind_edit_type;
3010
3011 /* A (sorted) list of edits to apply to an unwind table. */
3012 typedef struct arm_unwind_table_edit
3013 {
3014 arm_unwind_edit_type type;
3015 /* Note: we sometimes want to insert an unwind entry corresponding to a
3016 section different from the one we're currently writing out, so record the
3017 (text) section this edit relates to here. */
3018 asection *linked_section;
3019 unsigned int index;
3020 struct arm_unwind_table_edit *next;
3021 }
3022 arm_unwind_table_edit;
3023
3024 typedef struct _arm_elf_section_data
3025 {
3026 /* Information about mapping symbols. */
3027 struct bfd_elf_section_data elf;
3028 unsigned int mapcount;
3029 unsigned int mapsize;
3030 elf32_arm_section_map *map;
3031 /* Information about CPU errata. */
3032 unsigned int erratumcount;
3033 elf32_vfp11_erratum_list *erratumlist;
3034 unsigned int stm32l4xx_erratumcount;
3035 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
3036 unsigned int additional_reloc_count;
3037 /* Information about unwind tables. */
3038 union
3039 {
3040 /* Unwind info attached to a text section. */
3041 struct
3042 {
3043 asection *arm_exidx_sec;
3044 } text;
3045
3046 /* Unwind info attached to an .ARM.exidx section. */
3047 struct
3048 {
3049 arm_unwind_table_edit *unwind_edit_list;
3050 arm_unwind_table_edit *unwind_edit_tail;
3051 } exidx;
3052 } u;
3053 }
3054 _arm_elf_section_data;
3055
3056 #define elf32_arm_section_data(sec) \
3057 ((_arm_elf_section_data *) elf_section_data (sec))
3058
3059 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3060 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3061 so may be created multiple times: we use an array of these entries whilst
3062 relaxing which we can refresh easily, then create stubs for each potentially
3063 erratum-triggering instruction once we've settled on a solution. */
3064
3065 struct a8_erratum_fix
3066 {
3067 bfd *input_bfd;
3068 asection *section;
3069 bfd_vma offset;
3070 bfd_vma target_offset;
3071 unsigned long orig_insn;
3072 char *stub_name;
3073 enum elf32_arm_stub_type stub_type;
3074 enum arm_st_branch_type branch_type;
3075 };
3076
3077 /* A table of relocs applied to branches which might trigger Cortex-A8
3078 erratum. */
3079
3080 struct a8_erratum_reloc
3081 {
3082 bfd_vma from;
3083 bfd_vma destination;
3084 struct elf32_arm_link_hash_entry *hash;
3085 const char *sym_name;
3086 unsigned int r_type;
3087 enum arm_st_branch_type branch_type;
3088 bfd_boolean non_a8_stub;
3089 };
3090
3091 /* The size of the thread control block. */
3092 #define TCB_SIZE 8
3093
3094 /* ARM-specific information about a PLT entry, over and above the usual
3095 gotplt_union. */
3096 struct arm_plt_info
3097 {
3098 /* We reference count Thumb references to a PLT entry separately,
3099 so that we can emit the Thumb trampoline only if needed. */
3100 bfd_signed_vma thumb_refcount;
3101
3102 /* Some references from Thumb code may be eliminated by BL->BLX
3103 conversion, so record them separately. */
3104 bfd_signed_vma maybe_thumb_refcount;
3105
3106 /* How many of the recorded PLT accesses were from non-call relocations.
3107 This information is useful when deciding whether anything takes the
3108 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3109 non-call references to the function should resolve directly to the
3110 real runtime target. */
3111 unsigned int noncall_refcount;
3112
3113 /* Since PLT entries have variable size if the Thumb prologue is
3114 used, we need to record the index into .got.plt instead of
3115 recomputing it from the PLT offset. */
3116 bfd_signed_vma got_offset;
3117 };
3118
3119 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
3120 struct arm_local_iplt_info
3121 {
3122 /* The information that is usually found in the generic ELF part of
3123 the hash table entry. */
3124 union gotplt_union root;
3125
3126 /* The information that is usually found in the ARM-specific part of
3127 the hash table entry. */
3128 struct arm_plt_info arm;
3129
3130 /* A list of all potential dynamic relocations against this symbol. */
3131 struct elf_dyn_relocs *dyn_relocs;
3132 };
3133
3134 /* Structure to handle FDPIC support for local functions. */
3135 struct fdpic_local {
3136 unsigned int funcdesc_cnt;
3137 unsigned int gotofffuncdesc_cnt;
3138 int funcdesc_offset;
3139 };
3140
3141 struct elf_arm_obj_tdata
3142 {
3143 struct elf_obj_tdata root;
3144
3145 /* tls_type for each local got entry. */
3146 char *local_got_tls_type;
3147
3148 /* GOTPLT entries for TLS descriptors. */
3149 bfd_vma *local_tlsdesc_gotent;
3150
3151 /* Information for local symbols that need entries in .iplt. */
3152 struct arm_local_iplt_info **local_iplt;
3153
3154 /* Zero to warn when linking objects with incompatible enum sizes. */
3155 int no_enum_size_warning;
3156
3157 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3158 int no_wchar_size_warning;
3159
3160 /* Maintains FDPIC counters and funcdesc info. */
3161 struct fdpic_local *local_fdpic_cnts;
3162 };
3163
3164 #define elf_arm_tdata(bfd) \
3165 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
3166
3167 #define elf32_arm_local_got_tls_type(bfd) \
3168 (elf_arm_tdata (bfd)->local_got_tls_type)
3169
3170 #define elf32_arm_local_tlsdesc_gotent(bfd) \
3171 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3172
3173 #define elf32_arm_local_iplt(bfd) \
3174 (elf_arm_tdata (bfd)->local_iplt)
3175
3176 #define elf32_arm_local_fdpic_cnts(bfd) \
3177 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3178
3179 #define is_arm_elf(bfd) \
3180 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3181 && elf_tdata (bfd) != NULL \
3182 && elf_object_id (bfd) == ARM_ELF_DATA)
3183
3184 static bfd_boolean
3185 elf32_arm_mkobject (bfd *abfd)
3186 {
3187 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
3188 ARM_ELF_DATA);
3189 }
3190
3191 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3192
3193 /* Structure to handle FDPIC support for extern functions. */
3194 struct fdpic_global {
3195 unsigned int gotofffuncdesc_cnt;
3196 unsigned int gotfuncdesc_cnt;
3197 unsigned int funcdesc_cnt;
3198 int funcdesc_offset;
3199 int gotfuncdesc_offset;
3200 };
3201
3202 /* Arm ELF linker hash entry. */
3203 struct elf32_arm_link_hash_entry
3204 {
3205 struct elf_link_hash_entry root;
3206
3207 /* Track dynamic relocs copied for this symbol. */
3208 struct elf_dyn_relocs *dyn_relocs;
3209
3210 /* ARM-specific PLT information. */
3211 struct arm_plt_info plt;
3212
3213 #define GOT_UNKNOWN 0
3214 #define GOT_NORMAL 1
3215 #define GOT_TLS_GD 2
3216 #define GOT_TLS_IE 4
3217 #define GOT_TLS_GDESC 8
3218 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3219 unsigned int tls_type : 8;
3220
3221 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3222 unsigned int is_iplt : 1;
3223
3224 unsigned int unused : 23;
3225
3226 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3227 starting at the end of the jump table. */
3228 bfd_vma tlsdesc_got;
3229
3230 /* The symbol marking the real symbol location for exported thumb
3231 symbols with Arm stubs. */
3232 struct elf_link_hash_entry *export_glue;
3233
3234 /* A pointer to the most recently used stub hash entry against this
3235 symbol. */
3236 struct elf32_arm_stub_hash_entry *stub_cache;
3237
3238 /* Counter for FDPIC relocations against this symbol. */
3239 struct fdpic_global fdpic_cnts;
3240 };
3241
3242 /* Traverse an arm ELF linker hash table. */
3243 #define elf32_arm_link_hash_traverse(table, func, info) \
3244 (elf_link_hash_traverse \
3245 (&(table)->root, \
3246 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3247 (info)))
3248
3249 /* Get the ARM elf linker hash table from a link_info structure. */
3250 #define elf32_arm_hash_table(info) \
3251 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3252 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3253
3254 #define arm_stub_hash_lookup(table, string, create, copy) \
3255 ((struct elf32_arm_stub_hash_entry *) \
3256 bfd_hash_lookup ((table), (string), (create), (copy)))
3257
3258 /* Array to keep track of which stub sections have been created, and
3259 information on stub grouping. */
3260 struct map_stub
3261 {
3262 /* This is the section to which stubs in the group will be
3263 attached. */
3264 asection *link_sec;
3265 /* The stub section. */
3266 asection *stub_sec;
3267 };
3268
3269 #define elf32_arm_compute_jump_table_size(htab) \
3270 ((htab)->next_tls_desc_index * 4)
3271
3272 /* ARM ELF linker hash table. */
3273 struct elf32_arm_link_hash_table
3274 {
3275 /* The main hash table. */
3276 struct elf_link_hash_table root;
3277
3278 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3279 bfd_size_type thumb_glue_size;
3280
3281 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3282 bfd_size_type arm_glue_size;
3283
3284 /* The size in bytes of section containing the ARMv4 BX veneers. */
3285 bfd_size_type bx_glue_size;
3286
3287 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3288 veneer has been populated. */
3289 bfd_vma bx_glue_offset[15];
3290
3291 /* The size in bytes of the section containing glue for VFP11 erratum
3292 veneers. */
3293 bfd_size_type vfp11_erratum_glue_size;
3294
3295 /* The size in bytes of the section containing glue for STM32L4XX erratum
3296 veneers. */
3297 bfd_size_type stm32l4xx_erratum_glue_size;
3298
3299 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3300 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3301 elf32_arm_write_section(). */
3302 struct a8_erratum_fix *a8_erratum_fixes;
3303 unsigned int num_a8_erratum_fixes;
3304
3305 /* An arbitrary input BFD chosen to hold the glue sections. */
3306 bfd * bfd_of_glue_owner;
3307
3308 /* Nonzero to output a BE8 image. */
3309 int byteswap_code;
3310
3311 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3312 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3313 int target1_is_rel;
3314
3315 /* The relocation to use for R_ARM_TARGET2 relocations. */
3316 int target2_reloc;
3317
3318 /* 0 = Ignore R_ARM_V4BX.
3319 1 = Convert BX to MOV PC.
3320 2 = Generate v4 interworing stubs. */
3321 int fix_v4bx;
3322
3323 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3324 int fix_cortex_a8;
3325
3326 /* Whether we should fix the ARM1176 BLX immediate issue. */
3327 int fix_arm1176;
3328
3329 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3330 int use_blx;
3331
3332 /* What sort of code sequences we should look for which may trigger the
3333 VFP11 denorm erratum. */
3334 bfd_arm_vfp11_fix vfp11_fix;
3335
3336 /* Global counter for the number of fixes we have emitted. */
3337 int num_vfp11_fixes;
3338
3339 /* What sort of code sequences we should look for which may trigger the
3340 STM32L4XX erratum. */
3341 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3342
3343 /* Global counter for the number of fixes we have emitted. */
3344 int num_stm32l4xx_fixes;
3345
3346 /* Nonzero to force PIC branch veneers. */
3347 int pic_veneer;
3348
3349 /* The number of bytes in the initial entry in the PLT. */
3350 bfd_size_type plt_header_size;
3351
3352 /* The number of bytes in the subsequent PLT etries. */
3353 bfd_size_type plt_entry_size;
3354
3355 /* True if the target system is VxWorks. */
3356 int vxworks_p;
3357
3358 /* True if the target system is Symbian OS. */
3359 int symbian_p;
3360
3361 /* True if the target system is Native Client. */
3362 int nacl_p;
3363
3364 /* True if the target uses REL relocations. */
3365 bfd_boolean use_rel;
3366
3367 /* Nonzero if import library must be a secure gateway import library
3368 as per ARMv8-M Security Extensions. */
3369 int cmse_implib;
3370
3371 /* The import library whose symbols' address must remain stable in
3372 the import library generated. */
3373 bfd *in_implib_bfd;
3374
3375 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3376 bfd_vma next_tls_desc_index;
3377
3378 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3379 bfd_vma num_tls_desc;
3380
3381 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3382 asection *srelplt2;
3383
3384 /* The offset into splt of the PLT entry for the TLS descriptor
3385 resolver. Special values are 0, if not necessary (or not found
3386 to be necessary yet), and -1 if needed but not determined
3387 yet. */
3388 bfd_vma dt_tlsdesc_plt;
3389
3390 /* The offset into sgot of the GOT entry used by the PLT entry
3391 above. */
3392 bfd_vma dt_tlsdesc_got;
3393
3394 /* Offset in .plt section of tls_arm_trampoline. */
3395 bfd_vma tls_trampoline;
3396
3397 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
3398 union
3399 {
3400 bfd_signed_vma refcount;
3401 bfd_vma offset;
3402 } tls_ldm_got;
3403
3404 /* Small local sym cache. */
3405 struct sym_cache sym_cache;
3406
3407 /* For convenience in allocate_dynrelocs. */
3408 bfd * obfd;
3409
3410 /* The amount of space used by the reserved portion of the sgotplt
3411 section, plus whatever space is used by the jump slots. */
3412 bfd_vma sgotplt_jump_table_size;
3413
3414 /* The stub hash table. */
3415 struct bfd_hash_table stub_hash_table;
3416
3417 /* Linker stub bfd. */
3418 bfd *stub_bfd;
3419
3420 /* Linker call-backs. */
3421 asection * (*add_stub_section) (const char *, asection *, asection *,
3422 unsigned int);
3423 void (*layout_sections_again) (void);
3424
3425 /* Array to keep track of which stub sections have been created, and
3426 information on stub grouping. */
3427 struct map_stub *stub_group;
3428
3429 /* Input stub section holding secure gateway veneers. */
3430 asection *cmse_stub_sec;
3431
3432 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3433 start to be allocated. */
3434 bfd_vma new_cmse_stub_offset;
3435
3436 /* Number of elements in stub_group. */
3437 unsigned int top_id;
3438
3439 /* Assorted information used by elf32_arm_size_stubs. */
3440 unsigned int bfd_count;
3441 unsigned int top_index;
3442 asection **input_list;
3443
3444 /* True if the target system uses FDPIC. */
3445 int fdpic_p;
3446
3447 /* Fixup section. Used for FDPIC. */
3448 asection *srofixup;
3449 };
3450
3451 /* Add an FDPIC read-only fixup. */
3452 static void
3453 arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset)
3454 {
3455 bfd_vma fixup_offset;
3456
3457 fixup_offset = srofixup->reloc_count++ * 4;
3458 BFD_ASSERT (fixup_offset < srofixup->size);
3459 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset);
3460 }
3461
3462 static inline int
3463 ctz (unsigned int mask)
3464 {
3465 #if GCC_VERSION >= 3004
3466 return __builtin_ctz (mask);
3467 #else
3468 unsigned int i;
3469
3470 for (i = 0; i < 8 * sizeof (mask); i++)
3471 {
3472 if (mask & 0x1)
3473 break;
3474 mask = (mask >> 1);
3475 }
3476 return i;
3477 #endif
3478 }
3479
3480 static inline int
3481 elf32_arm_popcount (unsigned int mask)
3482 {
3483 #if GCC_VERSION >= 3004
3484 return __builtin_popcount (mask);
3485 #else
3486 unsigned int i;
3487 int sum = 0;
3488
3489 for (i = 0; i < 8 * sizeof (mask); i++)
3490 {
3491 if (mask & 0x1)
3492 sum++;
3493 mask = (mask >> 1);
3494 }
3495 return sum;
3496 #endif
3497 }
3498
3499 static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
3500 asection *sreloc, Elf_Internal_Rela *rel);
3501
3502 static void
3503 arm_elf_fill_funcdesc(bfd *output_bfd,
3504 struct bfd_link_info *info,
3505 int *funcdesc_offset,
3506 int dynindx,
3507 int offset,
3508 bfd_vma addr,
3509 bfd_vma dynreloc_value,
3510 bfd_vma seg)
3511 {
3512 if ((*funcdesc_offset & 1) == 0)
3513 {
3514 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
3515 asection *sgot = globals->root.sgot;
3516
3517 if (bfd_link_pic(info))
3518 {
3519 asection *srelgot = globals->root.srelgot;
3520 Elf_Internal_Rela outrel;
3521
3522 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
3523 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset;
3524 outrel.r_addend = 0;
3525
3526 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
3527 bfd_put_32 (output_bfd, addr, sgot->contents + offset);
3528 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4);
3529 }
3530 else
3531 {
3532 struct elf_link_hash_entry *hgot = globals->root.hgot;
3533 bfd_vma got_value = hgot->root.u.def.value
3534 + hgot->root.u.def.section->output_section->vma
3535 + hgot->root.u.def.section->output_offset;
3536
3537 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3538 sgot->output_section->vma + sgot->output_offset
3539 + offset);
3540 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3541 sgot->output_section->vma + sgot->output_offset
3542 + offset + 4);
3543 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset);
3544 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4);
3545 }
3546 *funcdesc_offset |= 1;
3547 }
3548 }
3549
3550 /* Create an entry in an ARM ELF linker hash table. */
3551
3552 static struct bfd_hash_entry *
3553 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3554 struct bfd_hash_table * table,
3555 const char * string)
3556 {
3557 struct elf32_arm_link_hash_entry * ret =
3558 (struct elf32_arm_link_hash_entry *) entry;
3559
3560 /* Allocate the structure if it has not already been allocated by a
3561 subclass. */
3562 if (ret == NULL)
3563 ret = (struct elf32_arm_link_hash_entry *)
3564 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3565 if (ret == NULL)
3566 return (struct bfd_hash_entry *) ret;
3567
3568 /* Call the allocation method of the superclass. */
3569 ret = ((struct elf32_arm_link_hash_entry *)
3570 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3571 table, string));
3572 if (ret != NULL)
3573 {
3574 ret->dyn_relocs = NULL;
3575 ret->tls_type = GOT_UNKNOWN;
3576 ret->tlsdesc_got = (bfd_vma) -1;
3577 ret->plt.thumb_refcount = 0;
3578 ret->plt.maybe_thumb_refcount = 0;
3579 ret->plt.noncall_refcount = 0;
3580 ret->plt.got_offset = -1;
3581 ret->is_iplt = FALSE;
3582 ret->export_glue = NULL;
3583
3584 ret->stub_cache = NULL;
3585
3586 ret->fdpic_cnts.gotofffuncdesc_cnt = 0;
3587 ret->fdpic_cnts.gotfuncdesc_cnt = 0;
3588 ret->fdpic_cnts.funcdesc_cnt = 0;
3589 ret->fdpic_cnts.funcdesc_offset = -1;
3590 ret->fdpic_cnts.gotfuncdesc_offset = -1;
3591 }
3592
3593 return (struct bfd_hash_entry *) ret;
3594 }
3595
3596 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3597 symbols. */
3598
3599 static bfd_boolean
3600 elf32_arm_allocate_local_sym_info (bfd *abfd)
3601 {
3602 if (elf_local_got_refcounts (abfd) == NULL)
3603 {
3604 bfd_size_type num_syms;
3605 bfd_size_type size;
3606 char *data;
3607
3608 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3609 size = num_syms * (sizeof (bfd_signed_vma)
3610 + sizeof (struct arm_local_iplt_info *)
3611 + sizeof (bfd_vma)
3612 + sizeof (char)
3613 + sizeof (struct fdpic_local));
3614 data = bfd_zalloc (abfd, size);
3615 if (data == NULL)
3616 return FALSE;
3617
3618 elf32_arm_local_fdpic_cnts (abfd) = (struct fdpic_local *) data;
3619 data += num_syms * sizeof (struct fdpic_local);
3620
3621 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3622 data += num_syms * sizeof (bfd_signed_vma);
3623
3624 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3625 data += num_syms * sizeof (struct arm_local_iplt_info *);
3626
3627 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3628 data += num_syms * sizeof (bfd_vma);
3629
3630 elf32_arm_local_got_tls_type (abfd) = data;
3631 }
3632 return TRUE;
3633 }
3634
3635 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3636 to input bfd ABFD. Create the information if it doesn't already exist.
3637 Return null if an allocation fails. */
3638
3639 static struct arm_local_iplt_info *
3640 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3641 {
3642 struct arm_local_iplt_info **ptr;
3643
3644 if (!elf32_arm_allocate_local_sym_info (abfd))
3645 return NULL;
3646
3647 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3648 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3649 if (*ptr == NULL)
3650 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3651 return *ptr;
3652 }
3653
3654 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3655 in ABFD's symbol table. If the symbol is global, H points to its
3656 hash table entry, otherwise H is null.
3657
3658 Return true if the symbol does have PLT information. When returning
3659 true, point *ROOT_PLT at the target-independent reference count/offset
3660 union and *ARM_PLT at the ARM-specific information. */
3661
3662 static bfd_boolean
3663 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3664 struct elf32_arm_link_hash_entry *h,
3665 unsigned long r_symndx, union gotplt_union **root_plt,
3666 struct arm_plt_info **arm_plt)
3667 {
3668 struct arm_local_iplt_info *local_iplt;
3669
3670 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3671 return FALSE;
3672
3673 if (h != NULL)
3674 {
3675 *root_plt = &h->root.plt;
3676 *arm_plt = &h->plt;
3677 return TRUE;
3678 }
3679
3680 if (elf32_arm_local_iplt (abfd) == NULL)
3681 return FALSE;
3682
3683 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3684 if (local_iplt == NULL)
3685 return FALSE;
3686
3687 *root_plt = &local_iplt->root;
3688 *arm_plt = &local_iplt->arm;
3689 return TRUE;
3690 }
3691
3692 static bfd_boolean using_thumb_only (struct elf32_arm_link_hash_table *globals);
3693
3694 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3695 before it. */
3696
3697 static bfd_boolean
3698 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3699 struct arm_plt_info *arm_plt)
3700 {
3701 struct elf32_arm_link_hash_table *htab;
3702
3703 htab = elf32_arm_hash_table (info);
3704
3705 return (!using_thumb_only(htab) && (arm_plt->thumb_refcount != 0
3706 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)));
3707 }
3708
3709 /* Return a pointer to the head of the dynamic reloc list that should
3710 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3711 ABFD's symbol table. Return null if an error occurs. */
3712
3713 static struct elf_dyn_relocs **
3714 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3715 Elf_Internal_Sym *isym)
3716 {
3717 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3718 {
3719 struct arm_local_iplt_info *local_iplt;
3720
3721 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3722 if (local_iplt == NULL)
3723 return NULL;
3724 return &local_iplt->dyn_relocs;
3725 }
3726 else
3727 {
3728 /* Track dynamic relocs needed for local syms too.
3729 We really need local syms available to do this
3730 easily. Oh well. */
3731 asection *s;
3732 void *vpp;
3733
3734 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3735 if (s == NULL)
3736 abort ();
3737
3738 vpp = &elf_section_data (s)->local_dynrel;
3739 return (struct elf_dyn_relocs **) vpp;
3740 }
3741 }
3742
3743 /* Initialize an entry in the stub hash table. */
3744
3745 static struct bfd_hash_entry *
3746 stub_hash_newfunc (struct bfd_hash_entry *entry,
3747 struct bfd_hash_table *table,
3748 const char *string)
3749 {
3750 /* Allocate the structure if it has not already been allocated by a
3751 subclass. */
3752 if (entry == NULL)
3753 {
3754 entry = (struct bfd_hash_entry *)
3755 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3756 if (entry == NULL)
3757 return entry;
3758 }
3759
3760 /* Call the allocation method of the superclass. */
3761 entry = bfd_hash_newfunc (entry, table, string);
3762 if (entry != NULL)
3763 {
3764 struct elf32_arm_stub_hash_entry *eh;
3765
3766 /* Initialize the local fields. */
3767 eh = (struct elf32_arm_stub_hash_entry *) entry;
3768 eh->stub_sec = NULL;
3769 eh->stub_offset = (bfd_vma) -1;
3770 eh->source_value = 0;
3771 eh->target_value = 0;
3772 eh->target_section = NULL;
3773 eh->orig_insn = 0;
3774 eh->stub_type = arm_stub_none;
3775 eh->stub_size = 0;
3776 eh->stub_template = NULL;
3777 eh->stub_template_size = -1;
3778 eh->h = NULL;
3779 eh->id_sec = NULL;
3780 eh->output_name = NULL;
3781 }
3782
3783 return entry;
3784 }
3785
3786 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3787 shortcuts to them in our hash table. */
3788
3789 static bfd_boolean
3790 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3791 {
3792 struct elf32_arm_link_hash_table *htab;
3793
3794 htab = elf32_arm_hash_table (info);
3795 if (htab == NULL)
3796 return FALSE;
3797
3798 /* BPABI objects never have a GOT, or associated sections. */
3799 if (htab->symbian_p)
3800 return TRUE;
3801
3802 if (! _bfd_elf_create_got_section (dynobj, info))
3803 return FALSE;
3804
3805 /* Also create .rofixup. */
3806 if (htab->fdpic_p)
3807 {
3808 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup",
3809 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3810 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY));
3811 if (htab->srofixup == NULL || ! bfd_set_section_alignment (dynobj, htab->srofixup, 2))
3812 return FALSE;
3813 }
3814
3815 return TRUE;
3816 }
3817
3818 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3819
3820 static bfd_boolean
3821 create_ifunc_sections (struct bfd_link_info *info)
3822 {
3823 struct elf32_arm_link_hash_table *htab;
3824 const struct elf_backend_data *bed;
3825 bfd *dynobj;
3826 asection *s;
3827 flagword flags;
3828
3829 htab = elf32_arm_hash_table (info);
3830 dynobj = htab->root.dynobj;
3831 bed = get_elf_backend_data (dynobj);
3832 flags = bed->dynamic_sec_flags;
3833
3834 if (htab->root.iplt == NULL)
3835 {
3836 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3837 flags | SEC_READONLY | SEC_CODE);
3838 if (s == NULL
3839 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3840 return FALSE;
3841 htab->root.iplt = s;
3842 }
3843
3844 if (htab->root.irelplt == NULL)
3845 {
3846 s = bfd_make_section_anyway_with_flags (dynobj,
3847 RELOC_SECTION (htab, ".iplt"),
3848 flags | SEC_READONLY);
3849 if (s == NULL
3850 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3851 return FALSE;
3852 htab->root.irelplt = s;
3853 }
3854
3855 if (htab->root.igotplt == NULL)
3856 {
3857 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3858 if (s == NULL
3859 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3860 return FALSE;
3861 htab->root.igotplt = s;
3862 }
3863 return TRUE;
3864 }
3865
3866 /* Determine if we're dealing with a Thumb only architecture. */
3867
3868 static bfd_boolean
3869 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3870 {
3871 int arch;
3872 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3873 Tag_CPU_arch_profile);
3874
3875 if (profile)
3876 return profile == 'M';
3877
3878 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3879
3880 /* Force return logic to be reviewed for each new architecture. */
3881 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3882
3883 if (arch == TAG_CPU_ARCH_V6_M
3884 || arch == TAG_CPU_ARCH_V6S_M
3885 || arch == TAG_CPU_ARCH_V7E_M
3886 || arch == TAG_CPU_ARCH_V8M_BASE
3887 || arch == TAG_CPU_ARCH_V8M_MAIN
3888 || arch == TAG_CPU_ARCH_V8_1M_MAIN)
3889 return TRUE;
3890
3891 return FALSE;
3892 }
3893
3894 /* Determine if we're dealing with a Thumb-2 object. */
3895
3896 static bfd_boolean
3897 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3898 {
3899 int arch;
3900 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3901 Tag_THUMB_ISA_use);
3902
3903 if (thumb_isa)
3904 return thumb_isa == 2;
3905
3906 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3907
3908 /* Force return logic to be reviewed for each new architecture. */
3909 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3910
3911 return (arch == TAG_CPU_ARCH_V6T2
3912 || arch == TAG_CPU_ARCH_V7
3913 || arch == TAG_CPU_ARCH_V7E_M
3914 || arch == TAG_CPU_ARCH_V8
3915 || arch == TAG_CPU_ARCH_V8R
3916 || arch == TAG_CPU_ARCH_V8M_MAIN
3917 || arch == TAG_CPU_ARCH_V8_1M_MAIN);
3918 }
3919
3920 /* Determine whether Thumb-2 BL instruction is available. */
3921
3922 static bfd_boolean
3923 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3924 {
3925 int arch =
3926 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3927
3928 /* Force return logic to be reviewed for each new architecture. */
3929 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3930
3931 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3932 return (arch == TAG_CPU_ARCH_V6T2
3933 || arch >= TAG_CPU_ARCH_V7);
3934 }
3935
3936 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3937 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3938 hash table. */
3939
3940 static bfd_boolean
3941 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3942 {
3943 struct elf32_arm_link_hash_table *htab;
3944
3945 htab = elf32_arm_hash_table (info);
3946 if (htab == NULL)
3947 return FALSE;
3948
3949 if (!htab->root.sgot && !create_got_section (dynobj, info))
3950 return FALSE;
3951
3952 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3953 return FALSE;
3954
3955 if (htab->vxworks_p)
3956 {
3957 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3958 return FALSE;
3959
3960 if (bfd_link_pic (info))
3961 {
3962 htab->plt_header_size = 0;
3963 htab->plt_entry_size
3964 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3965 }
3966 else
3967 {
3968 htab->plt_header_size
3969 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3970 htab->plt_entry_size
3971 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3972 }
3973
3974 if (elf_elfheader (dynobj))
3975 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3976 }
3977 else
3978 {
3979 /* PR ld/16017
3980 Test for thumb only architectures. Note - we cannot just call
3981 using_thumb_only() as the attributes in the output bfd have not been
3982 initialised at this point, so instead we use the input bfd. */
3983 bfd * saved_obfd = htab->obfd;
3984
3985 htab->obfd = dynobj;
3986 if (using_thumb_only (htab))
3987 {
3988 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3989 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3990 }
3991 htab->obfd = saved_obfd;
3992 }
3993
3994 if (htab->fdpic_p) {
3995 htab->plt_header_size = 0;
3996 if (info->flags & DF_BIND_NOW)
3997 htab->plt_entry_size = 4 * (ARRAY_SIZE(elf32_arm_fdpic_plt_entry) - 5);
3998 else
3999 htab->plt_entry_size = 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry);
4000 }
4001
4002 if (!htab->root.splt
4003 || !htab->root.srelplt
4004 || !htab->root.sdynbss
4005 || (!bfd_link_pic (info) && !htab->root.srelbss))
4006 abort ();
4007
4008 return TRUE;
4009 }
4010
4011 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4012
4013 static void
4014 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
4015 struct elf_link_hash_entry *dir,
4016 struct elf_link_hash_entry *ind)
4017 {
4018 struct elf32_arm_link_hash_entry *edir, *eind;
4019
4020 edir = (struct elf32_arm_link_hash_entry *) dir;
4021 eind = (struct elf32_arm_link_hash_entry *) ind;
4022
4023 if (eind->dyn_relocs != NULL)
4024 {
4025 if (edir->dyn_relocs != NULL)
4026 {
4027 struct elf_dyn_relocs **pp;
4028 struct elf_dyn_relocs *p;
4029
4030 /* Add reloc counts against the indirect sym to the direct sym
4031 list. Merge any entries against the same section. */
4032 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4033 {
4034 struct elf_dyn_relocs *q;
4035
4036 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4037 if (q->sec == p->sec)
4038 {
4039 q->pc_count += p->pc_count;
4040 q->count += p->count;
4041 *pp = p->next;
4042 break;
4043 }
4044 if (q == NULL)
4045 pp = &p->next;
4046 }
4047 *pp = edir->dyn_relocs;
4048 }
4049
4050 edir->dyn_relocs = eind->dyn_relocs;
4051 eind->dyn_relocs = NULL;
4052 }
4053
4054 if (ind->root.type == bfd_link_hash_indirect)
4055 {
4056 /* Copy over PLT info. */
4057 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
4058 eind->plt.thumb_refcount = 0;
4059 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
4060 eind->plt.maybe_thumb_refcount = 0;
4061 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
4062 eind->plt.noncall_refcount = 0;
4063
4064 /* Copy FDPIC counters. */
4065 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt;
4066 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt;
4067 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt;
4068
4069 /* We should only allocate a function to .iplt once the final
4070 symbol information is known. */
4071 BFD_ASSERT (!eind->is_iplt);
4072
4073 if (dir->got.refcount <= 0)
4074 {
4075 edir->tls_type = eind->tls_type;
4076 eind->tls_type = GOT_UNKNOWN;
4077 }
4078 }
4079
4080 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4081 }
4082
4083 /* Destroy an ARM elf linker hash table. */
4084
4085 static void
4086 elf32_arm_link_hash_table_free (bfd *obfd)
4087 {
4088 struct elf32_arm_link_hash_table *ret
4089 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
4090
4091 bfd_hash_table_free (&ret->stub_hash_table);
4092 _bfd_elf_link_hash_table_free (obfd);
4093 }
4094
4095 /* Create an ARM elf linker hash table. */
4096
4097 static struct bfd_link_hash_table *
4098 elf32_arm_link_hash_table_create (bfd *abfd)
4099 {
4100 struct elf32_arm_link_hash_table *ret;
4101 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
4102
4103 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
4104 if (ret == NULL)
4105 return NULL;
4106
4107 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
4108 elf32_arm_link_hash_newfunc,
4109 sizeof (struct elf32_arm_link_hash_entry),
4110 ARM_ELF_DATA))
4111 {
4112 free (ret);
4113 return NULL;
4114 }
4115
4116 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4117 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
4118 #ifdef FOUR_WORD_PLT
4119 ret->plt_header_size = 16;
4120 ret->plt_entry_size = 16;
4121 #else
4122 ret->plt_header_size = 20;
4123 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
4124 #endif
4125 ret->use_rel = TRUE;
4126 ret->obfd = abfd;
4127 ret->fdpic_p = 0;
4128
4129 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
4130 sizeof (struct elf32_arm_stub_hash_entry)))
4131 {
4132 _bfd_elf_link_hash_table_free (abfd);
4133 return NULL;
4134 }
4135 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
4136
4137 return &ret->root.root;
4138 }
4139
4140 /* Determine what kind of NOPs are available. */
4141
4142 static bfd_boolean
4143 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
4144 {
4145 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4146 Tag_CPU_arch);
4147
4148 /* Force return logic to be reviewed for each new architecture. */
4149 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4150
4151 return (arch == TAG_CPU_ARCH_V6T2
4152 || arch == TAG_CPU_ARCH_V6K
4153 || arch == TAG_CPU_ARCH_V7
4154 || arch == TAG_CPU_ARCH_V8
4155 || arch == TAG_CPU_ARCH_V8R);
4156 }
4157
4158 static bfd_boolean
4159 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
4160 {
4161 switch (stub_type)
4162 {
4163 case arm_stub_long_branch_thumb_only:
4164 case arm_stub_long_branch_thumb2_only:
4165 case arm_stub_long_branch_thumb2_only_pure:
4166 case arm_stub_long_branch_v4t_thumb_arm:
4167 case arm_stub_short_branch_v4t_thumb_arm:
4168 case arm_stub_long_branch_v4t_thumb_arm_pic:
4169 case arm_stub_long_branch_v4t_thumb_tls_pic:
4170 case arm_stub_long_branch_thumb_only_pic:
4171 case arm_stub_cmse_branch_thumb_only:
4172 return TRUE;
4173 case arm_stub_none:
4174 BFD_FAIL ();
4175 return FALSE;
4176 break;
4177 default:
4178 return FALSE;
4179 }
4180 }
4181
4182 /* Determine the type of stub needed, if any, for a call. */
4183
4184 static enum elf32_arm_stub_type
4185 arm_type_of_stub (struct bfd_link_info *info,
4186 asection *input_sec,
4187 const Elf_Internal_Rela *rel,
4188 unsigned char st_type,
4189 enum arm_st_branch_type *actual_branch_type,
4190 struct elf32_arm_link_hash_entry *hash,
4191 bfd_vma destination,
4192 asection *sym_sec,
4193 bfd *input_bfd,
4194 const char *name)
4195 {
4196 bfd_vma location;
4197 bfd_signed_vma branch_offset;
4198 unsigned int r_type;
4199 struct elf32_arm_link_hash_table * globals;
4200 bfd_boolean thumb2, thumb2_bl, thumb_only;
4201 enum elf32_arm_stub_type stub_type = arm_stub_none;
4202 int use_plt = 0;
4203 enum arm_st_branch_type branch_type = *actual_branch_type;
4204 union gotplt_union *root_plt;
4205 struct arm_plt_info *arm_plt;
4206 int arch;
4207 int thumb2_movw;
4208
4209 if (branch_type == ST_BRANCH_LONG)
4210 return stub_type;
4211
4212 globals = elf32_arm_hash_table (info);
4213 if (globals == NULL)
4214 return stub_type;
4215
4216 thumb_only = using_thumb_only (globals);
4217 thumb2 = using_thumb2 (globals);
4218 thumb2_bl = using_thumb2_bl (globals);
4219
4220 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
4221
4222 /* True for architectures that implement the thumb2 movw instruction. */
4223 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
4224
4225 /* Determine where the call point is. */
4226 location = (input_sec->output_offset
4227 + input_sec->output_section->vma
4228 + rel->r_offset);
4229
4230 r_type = ELF32_R_TYPE (rel->r_info);
4231
4232 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4233 are considering a function call relocation. */
4234 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4235 || r_type == R_ARM_THM_JUMP19)
4236 && branch_type == ST_BRANCH_TO_ARM)
4237 branch_type = ST_BRANCH_TO_THUMB;
4238
4239 /* For TLS call relocs, it is the caller's responsibility to provide
4240 the address of the appropriate trampoline. */
4241 if (r_type != R_ARM_TLS_CALL
4242 && r_type != R_ARM_THM_TLS_CALL
4243 && elf32_arm_get_plt_info (input_bfd, globals, hash,
4244 ELF32_R_SYM (rel->r_info), &root_plt,
4245 &arm_plt)
4246 && root_plt->offset != (bfd_vma) -1)
4247 {
4248 asection *splt;
4249
4250 if (hash == NULL || hash->is_iplt)
4251 splt = globals->root.iplt;
4252 else
4253 splt = globals->root.splt;
4254 if (splt != NULL)
4255 {
4256 use_plt = 1;
4257
4258 /* Note when dealing with PLT entries: the main PLT stub is in
4259 ARM mode, so if the branch is in Thumb mode, another
4260 Thumb->ARM stub will be inserted later just before the ARM
4261 PLT stub. If a long branch stub is needed, we'll add a
4262 Thumb->Arm one and branch directly to the ARM PLT entry.
4263 Here, we have to check if a pre-PLT Thumb->ARM stub
4264 is needed and if it will be close enough. */
4265
4266 destination = (splt->output_section->vma
4267 + splt->output_offset
4268 + root_plt->offset);
4269 st_type = STT_FUNC;
4270
4271 /* Thumb branch/call to PLT: it can become a branch to ARM
4272 or to Thumb. We must perform the same checks and
4273 corrections as in elf32_arm_final_link_relocate. */
4274 if ((r_type == R_ARM_THM_CALL)
4275 || (r_type == R_ARM_THM_JUMP24))
4276 {
4277 if (globals->use_blx
4278 && r_type == R_ARM_THM_CALL
4279 && !thumb_only)
4280 {
4281 /* If the Thumb BLX instruction is available, convert
4282 the BL to a BLX instruction to call the ARM-mode
4283 PLT entry. */
4284 branch_type = ST_BRANCH_TO_ARM;
4285 }
4286 else
4287 {
4288 if (!thumb_only)
4289 /* Target the Thumb stub before the ARM PLT entry. */
4290 destination -= PLT_THUMB_STUB_SIZE;
4291 branch_type = ST_BRANCH_TO_THUMB;
4292 }
4293 }
4294 else
4295 {
4296 branch_type = ST_BRANCH_TO_ARM;
4297 }
4298 }
4299 }
4300 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4301 BFD_ASSERT (st_type != STT_GNU_IFUNC);
4302
4303 branch_offset = (bfd_signed_vma)(destination - location);
4304
4305 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4306 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
4307 {
4308 /* Handle cases where:
4309 - this call goes too far (different Thumb/Thumb2 max
4310 distance)
4311 - it's a Thumb->Arm call and blx is not available, or it's a
4312 Thumb->Arm branch (not bl). A stub is needed in this case,
4313 but only if this call is not through a PLT entry. Indeed,
4314 PLT stubs handle mode switching already. */
4315 if ((!thumb2_bl
4316 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4317 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4318 || (thumb2_bl
4319 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4320 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4321 || (thumb2
4322 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4323 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4324 && (r_type == R_ARM_THM_JUMP19))
4325 || (branch_type == ST_BRANCH_TO_ARM
4326 && (((r_type == R_ARM_THM_CALL
4327 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
4328 || (r_type == R_ARM_THM_JUMP24)
4329 || (r_type == R_ARM_THM_JUMP19))
4330 && !use_plt))
4331 {
4332 /* If we need to insert a Thumb-Thumb long branch stub to a
4333 PLT, use one that branches directly to the ARM PLT
4334 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4335 stub, undo this now. */
4336 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4337 {
4338 branch_type = ST_BRANCH_TO_ARM;
4339 branch_offset += PLT_THUMB_STUB_SIZE;
4340 }
4341
4342 if (branch_type == ST_BRANCH_TO_THUMB)
4343 {
4344 /* Thumb to thumb. */
4345 if (!thumb_only)
4346 {
4347 if (input_sec->flags & SEC_ELF_PURECODE)
4348 _bfd_error_handler
4349 (_("%pB(%pA): warning: long branch veneers used in"
4350 " section with SHF_ARM_PURECODE section"
4351 " attribute is only supported for M-profile"
4352 " targets that implement the movw instruction"),
4353 input_bfd, input_sec);
4354
4355 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4356 /* PIC stubs. */
4357 ? ((globals->use_blx
4358 && (r_type == R_ARM_THM_CALL))
4359 /* V5T and above. Stub starts with ARM code, so
4360 we must be able to switch mode before
4361 reaching it, which is only possible for 'bl'
4362 (ie R_ARM_THM_CALL relocation). */
4363 ? arm_stub_long_branch_any_thumb_pic
4364 /* On V4T, use Thumb code only. */
4365 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4366
4367 /* non-PIC stubs. */
4368 : ((globals->use_blx
4369 && (r_type == R_ARM_THM_CALL))
4370 /* V5T and above. */
4371 ? arm_stub_long_branch_any_any
4372 /* V4T. */
4373 : arm_stub_long_branch_v4t_thumb_thumb);
4374 }
4375 else
4376 {
4377 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4378 stub_type = arm_stub_long_branch_thumb2_only_pure;
4379 else
4380 {
4381 if (input_sec->flags & SEC_ELF_PURECODE)
4382 _bfd_error_handler
4383 (_("%pB(%pA): warning: long branch veneers used in"
4384 " section with SHF_ARM_PURECODE section"
4385 " attribute is only supported for M-profile"
4386 " targets that implement the movw instruction"),
4387 input_bfd, input_sec);
4388
4389 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4390 /* PIC stub. */
4391 ? arm_stub_long_branch_thumb_only_pic
4392 /* non-PIC stub. */
4393 : (thumb2 ? arm_stub_long_branch_thumb2_only
4394 : arm_stub_long_branch_thumb_only);
4395 }
4396 }
4397 }
4398 else
4399 {
4400 if (input_sec->flags & SEC_ELF_PURECODE)
4401 _bfd_error_handler
4402 (_("%pB(%pA): warning: long branch veneers used in"
4403 " section with SHF_ARM_PURECODE section"
4404 " attribute is only supported" " for M-profile"
4405 " targets that implement the movw instruction"),
4406 input_bfd, input_sec);
4407
4408 /* Thumb to arm. */
4409 if (sym_sec != NULL
4410 && sym_sec->owner != NULL
4411 && !INTERWORK_FLAG (sym_sec->owner))
4412 {
4413 _bfd_error_handler
4414 (_("%pB(%s): warning: interworking not enabled;"
4415 " first occurrence: %pB: %s call to %s"),
4416 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
4417 }
4418
4419 stub_type =
4420 (bfd_link_pic (info) | globals->pic_veneer)
4421 /* PIC stubs. */
4422 ? (r_type == R_ARM_THM_TLS_CALL
4423 /* TLS PIC stubs. */
4424 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4425 : arm_stub_long_branch_v4t_thumb_tls_pic)
4426 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4427 /* V5T PIC and above. */
4428 ? arm_stub_long_branch_any_arm_pic
4429 /* V4T PIC stub. */
4430 : arm_stub_long_branch_v4t_thumb_arm_pic))
4431
4432 /* non-PIC stubs. */
4433 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4434 /* V5T and above. */
4435 ? arm_stub_long_branch_any_any
4436 /* V4T. */
4437 : arm_stub_long_branch_v4t_thumb_arm);
4438
4439 /* Handle v4t short branches. */
4440 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4441 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4442 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4443 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4444 }
4445 }
4446 }
4447 else if (r_type == R_ARM_CALL
4448 || r_type == R_ARM_JUMP24
4449 || r_type == R_ARM_PLT32
4450 || r_type == R_ARM_TLS_CALL)
4451 {
4452 if (input_sec->flags & SEC_ELF_PURECODE)
4453 _bfd_error_handler
4454 (_("%pB(%pA): warning: long branch veneers used in"
4455 " section with SHF_ARM_PURECODE section"
4456 " attribute is only supported for M-profile"
4457 " targets that implement the movw instruction"),
4458 input_bfd, input_sec);
4459 if (branch_type == ST_BRANCH_TO_THUMB)
4460 {
4461 /* Arm to thumb. */
4462
4463 if (sym_sec != NULL
4464 && sym_sec->owner != NULL
4465 && !INTERWORK_FLAG (sym_sec->owner))
4466 {
4467 _bfd_error_handler
4468 (_("%pB(%s): warning: interworking not enabled;"
4469 " first occurrence: %pB: %s call to %s"),
4470 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
4471 }
4472
4473 /* We have an extra 2-bytes reach because of
4474 the mode change (bit 24 (H) of BLX encoding). */
4475 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4476 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4477 || (r_type == R_ARM_CALL && !globals->use_blx)
4478 || (r_type == R_ARM_JUMP24)
4479 || (r_type == R_ARM_PLT32))
4480 {
4481 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4482 /* PIC stubs. */
4483 ? ((globals->use_blx)
4484 /* V5T and above. */
4485 ? arm_stub_long_branch_any_thumb_pic
4486 /* V4T stub. */
4487 : arm_stub_long_branch_v4t_arm_thumb_pic)
4488
4489 /* non-PIC stubs. */
4490 : ((globals->use_blx)
4491 /* V5T and above. */
4492 ? arm_stub_long_branch_any_any
4493 /* V4T. */
4494 : arm_stub_long_branch_v4t_arm_thumb);
4495 }
4496 }
4497 else
4498 {
4499 /* Arm to arm. */
4500 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4501 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4502 {
4503 stub_type =
4504 (bfd_link_pic (info) | globals->pic_veneer)
4505 /* PIC stubs. */
4506 ? (r_type == R_ARM_TLS_CALL
4507 /* TLS PIC Stub. */
4508 ? arm_stub_long_branch_any_tls_pic
4509 : (globals->nacl_p
4510 ? arm_stub_long_branch_arm_nacl_pic
4511 : arm_stub_long_branch_any_arm_pic))
4512 /* non-PIC stubs. */
4513 : (globals->nacl_p
4514 ? arm_stub_long_branch_arm_nacl
4515 : arm_stub_long_branch_any_any);
4516 }
4517 }
4518 }
4519
4520 /* If a stub is needed, record the actual destination type. */
4521 if (stub_type != arm_stub_none)
4522 *actual_branch_type = branch_type;
4523
4524 return stub_type;
4525 }
4526
4527 /* Build a name for an entry in the stub hash table. */
4528
4529 static char *
4530 elf32_arm_stub_name (const asection *input_section,
4531 const asection *sym_sec,
4532 const struct elf32_arm_link_hash_entry *hash,
4533 const Elf_Internal_Rela *rel,
4534 enum elf32_arm_stub_type stub_type)
4535 {
4536 char *stub_name;
4537 bfd_size_type len;
4538
4539 if (hash)
4540 {
4541 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4542 stub_name = (char *) bfd_malloc (len);
4543 if (stub_name != NULL)
4544 sprintf (stub_name, "%08x_%s+%x_%d",
4545 input_section->id & 0xffffffff,
4546 hash->root.root.root.string,
4547 (int) rel->r_addend & 0xffffffff,
4548 (int) stub_type);
4549 }
4550 else
4551 {
4552 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4553 stub_name = (char *) bfd_malloc (len);
4554 if (stub_name != NULL)
4555 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4556 input_section->id & 0xffffffff,
4557 sym_sec->id & 0xffffffff,
4558 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4559 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4560 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4561 (int) rel->r_addend & 0xffffffff,
4562 (int) stub_type);
4563 }
4564
4565 return stub_name;
4566 }
4567
4568 /* Look up an entry in the stub hash. Stub entries are cached because
4569 creating the stub name takes a bit of time. */
4570
4571 static struct elf32_arm_stub_hash_entry *
4572 elf32_arm_get_stub_entry (const asection *input_section,
4573 const asection *sym_sec,
4574 struct elf_link_hash_entry *hash,
4575 const Elf_Internal_Rela *rel,
4576 struct elf32_arm_link_hash_table *htab,
4577 enum elf32_arm_stub_type stub_type)
4578 {
4579 struct elf32_arm_stub_hash_entry *stub_entry;
4580 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4581 const asection *id_sec;
4582
4583 if ((input_section->flags & SEC_CODE) == 0)
4584 return NULL;
4585
4586 /* If this input section is part of a group of sections sharing one
4587 stub section, then use the id of the first section in the group.
4588 Stub names need to include a section id, as there may well be
4589 more than one stub used to reach say, printf, and we need to
4590 distinguish between them. */
4591 BFD_ASSERT (input_section->id <= htab->top_id);
4592 id_sec = htab->stub_group[input_section->id].link_sec;
4593
4594 if (h != NULL && h->stub_cache != NULL
4595 && h->stub_cache->h == h
4596 && h->stub_cache->id_sec == id_sec
4597 && h->stub_cache->stub_type == stub_type)
4598 {
4599 stub_entry = h->stub_cache;
4600 }
4601 else
4602 {
4603 char *stub_name;
4604
4605 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4606 if (stub_name == NULL)
4607 return NULL;
4608
4609 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4610 stub_name, FALSE, FALSE);
4611 if (h != NULL)
4612 h->stub_cache = stub_entry;
4613
4614 free (stub_name);
4615 }
4616
4617 return stub_entry;
4618 }
4619
4620 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4621 section. */
4622
4623 static bfd_boolean
4624 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4625 {
4626 if (stub_type >= max_stub_type)
4627 abort (); /* Should be unreachable. */
4628
4629 switch (stub_type)
4630 {
4631 case arm_stub_cmse_branch_thumb_only:
4632 return TRUE;
4633
4634 default:
4635 return FALSE;
4636 }
4637
4638 abort (); /* Should be unreachable. */
4639 }
4640
4641 /* Required alignment (as a power of 2) for the dedicated section holding
4642 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4643 with input sections. */
4644
4645 static int
4646 arm_dedicated_stub_output_section_required_alignment
4647 (enum elf32_arm_stub_type stub_type)
4648 {
4649 if (stub_type >= max_stub_type)
4650 abort (); /* Should be unreachable. */
4651
4652 switch (stub_type)
4653 {
4654 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4655 boundary. */
4656 case arm_stub_cmse_branch_thumb_only:
4657 return 5;
4658
4659 default:
4660 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4661 return 0;
4662 }
4663
4664 abort (); /* Should be unreachable. */
4665 }
4666
4667 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4668 NULL if veneers of this type are interspersed with input sections. */
4669
4670 static const char *
4671 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4672 {
4673 if (stub_type >= max_stub_type)
4674 abort (); /* Should be unreachable. */
4675
4676 switch (stub_type)
4677 {
4678 case arm_stub_cmse_branch_thumb_only:
4679 return ".gnu.sgstubs";
4680
4681 default:
4682 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4683 return NULL;
4684 }
4685
4686 abort (); /* Should be unreachable. */
4687 }
4688
4689 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4690 returns the address of the hash table field in HTAB holding a pointer to the
4691 corresponding input section. Otherwise, returns NULL. */
4692
4693 static asection **
4694 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4695 enum elf32_arm_stub_type stub_type)
4696 {
4697 if (stub_type >= max_stub_type)
4698 abort (); /* Should be unreachable. */
4699
4700 switch (stub_type)
4701 {
4702 case arm_stub_cmse_branch_thumb_only:
4703 return &htab->cmse_stub_sec;
4704
4705 default:
4706 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4707 return NULL;
4708 }
4709
4710 abort (); /* Should be unreachable. */
4711 }
4712
4713 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4714 is the section that branch into veneer and can be NULL if stub should go in
4715 a dedicated output section. Returns a pointer to the stub section, and the
4716 section to which the stub section will be attached (in *LINK_SEC_P).
4717 LINK_SEC_P may be NULL. */
4718
4719 static asection *
4720 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4721 struct elf32_arm_link_hash_table *htab,
4722 enum elf32_arm_stub_type stub_type)
4723 {
4724 asection *link_sec, *out_sec, **stub_sec_p;
4725 const char *stub_sec_prefix;
4726 bfd_boolean dedicated_output_section =
4727 arm_dedicated_stub_output_section_required (stub_type);
4728 int align;
4729
4730 if (dedicated_output_section)
4731 {
4732 bfd *output_bfd = htab->obfd;
4733 const char *out_sec_name =
4734 arm_dedicated_stub_output_section_name (stub_type);
4735 link_sec = NULL;
4736 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4737 stub_sec_prefix = out_sec_name;
4738 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4739 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4740 if (out_sec == NULL)
4741 {
4742 _bfd_error_handler (_("no address assigned to the veneers output "
4743 "section %s"), out_sec_name);
4744 return NULL;
4745 }
4746 }
4747 else
4748 {
4749 BFD_ASSERT (section->id <= htab->top_id);
4750 link_sec = htab->stub_group[section->id].link_sec;
4751 BFD_ASSERT (link_sec != NULL);
4752 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4753 if (*stub_sec_p == NULL)
4754 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4755 stub_sec_prefix = link_sec->name;
4756 out_sec = link_sec->output_section;
4757 align = htab->nacl_p ? 4 : 3;
4758 }
4759
4760 if (*stub_sec_p == NULL)
4761 {
4762 size_t namelen;
4763 bfd_size_type len;
4764 char *s_name;
4765
4766 namelen = strlen (stub_sec_prefix);
4767 len = namelen + sizeof (STUB_SUFFIX);
4768 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4769 if (s_name == NULL)
4770 return NULL;
4771
4772 memcpy (s_name, stub_sec_prefix, namelen);
4773 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4774 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4775 align);
4776 if (*stub_sec_p == NULL)
4777 return NULL;
4778
4779 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4780 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4781 | SEC_KEEP;
4782 }
4783
4784 if (!dedicated_output_section)
4785 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4786
4787 if (link_sec_p)
4788 *link_sec_p = link_sec;
4789
4790 return *stub_sec_p;
4791 }
4792
4793 /* Add a new stub entry to the stub hash. Not all fields of the new
4794 stub entry are initialised. */
4795
4796 static struct elf32_arm_stub_hash_entry *
4797 elf32_arm_add_stub (const char *stub_name, asection *section,
4798 struct elf32_arm_link_hash_table *htab,
4799 enum elf32_arm_stub_type stub_type)
4800 {
4801 asection *link_sec;
4802 asection *stub_sec;
4803 struct elf32_arm_stub_hash_entry *stub_entry;
4804
4805 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4806 stub_type);
4807 if (stub_sec == NULL)
4808 return NULL;
4809
4810 /* Enter this entry into the linker stub hash table. */
4811 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4812 TRUE, FALSE);
4813 if (stub_entry == NULL)
4814 {
4815 if (section == NULL)
4816 section = stub_sec;
4817 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4818 section->owner, stub_name);
4819 return NULL;
4820 }
4821
4822 stub_entry->stub_sec = stub_sec;
4823 stub_entry->stub_offset = (bfd_vma) -1;
4824 stub_entry->id_sec = link_sec;
4825
4826 return stub_entry;
4827 }
4828
4829 /* Store an Arm insn into an output section not processed by
4830 elf32_arm_write_section. */
4831
4832 static void
4833 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4834 bfd * output_bfd, bfd_vma val, void * ptr)
4835 {
4836 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4837 bfd_putl32 (val, ptr);
4838 else
4839 bfd_putb32 (val, ptr);
4840 }
4841
4842 /* Store a 16-bit Thumb insn into an output section not processed by
4843 elf32_arm_write_section. */
4844
4845 static void
4846 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4847 bfd * output_bfd, bfd_vma val, void * ptr)
4848 {
4849 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4850 bfd_putl16 (val, ptr);
4851 else
4852 bfd_putb16 (val, ptr);
4853 }
4854
4855 /* Store a Thumb2 insn into an output section not processed by
4856 elf32_arm_write_section. */
4857
4858 static void
4859 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4860 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4861 {
4862 /* T2 instructions are 16-bit streamed. */
4863 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4864 {
4865 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4866 bfd_putl16 ((val & 0xffff), ptr + 2);
4867 }
4868 else
4869 {
4870 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4871 bfd_putb16 ((val & 0xffff), ptr + 2);
4872 }
4873 }
4874
4875 /* If it's possible to change R_TYPE to a more efficient access
4876 model, return the new reloc type. */
4877
4878 static unsigned
4879 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4880 struct elf_link_hash_entry *h)
4881 {
4882 int is_local = (h == NULL);
4883
4884 if (bfd_link_pic (info)
4885 || (h && h->root.type == bfd_link_hash_undefweak))
4886 return r_type;
4887
4888 /* We do not support relaxations for Old TLS models. */
4889 switch (r_type)
4890 {
4891 case R_ARM_TLS_GOTDESC:
4892 case R_ARM_TLS_CALL:
4893 case R_ARM_THM_TLS_CALL:
4894 case R_ARM_TLS_DESCSEQ:
4895 case R_ARM_THM_TLS_DESCSEQ:
4896 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4897 }
4898
4899 return r_type;
4900 }
4901
4902 static bfd_reloc_status_type elf32_arm_final_link_relocate
4903 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4904 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4905 const char *, unsigned char, enum arm_st_branch_type,
4906 struct elf_link_hash_entry *, bfd_boolean *, char **);
4907
4908 static unsigned int
4909 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4910 {
4911 switch (stub_type)
4912 {
4913 case arm_stub_a8_veneer_b_cond:
4914 case arm_stub_a8_veneer_b:
4915 case arm_stub_a8_veneer_bl:
4916 return 2;
4917
4918 case arm_stub_long_branch_any_any:
4919 case arm_stub_long_branch_v4t_arm_thumb:
4920 case arm_stub_long_branch_thumb_only:
4921 case arm_stub_long_branch_thumb2_only:
4922 case arm_stub_long_branch_thumb2_only_pure:
4923 case arm_stub_long_branch_v4t_thumb_thumb:
4924 case arm_stub_long_branch_v4t_thumb_arm:
4925 case arm_stub_short_branch_v4t_thumb_arm:
4926 case arm_stub_long_branch_any_arm_pic:
4927 case arm_stub_long_branch_any_thumb_pic:
4928 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4929 case arm_stub_long_branch_v4t_arm_thumb_pic:
4930 case arm_stub_long_branch_v4t_thumb_arm_pic:
4931 case arm_stub_long_branch_thumb_only_pic:
4932 case arm_stub_long_branch_any_tls_pic:
4933 case arm_stub_long_branch_v4t_thumb_tls_pic:
4934 case arm_stub_cmse_branch_thumb_only:
4935 case arm_stub_a8_veneer_blx:
4936 return 4;
4937
4938 case arm_stub_long_branch_arm_nacl:
4939 case arm_stub_long_branch_arm_nacl_pic:
4940 return 16;
4941
4942 default:
4943 abort (); /* Should be unreachable. */
4944 }
4945 }
4946
4947 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4948 veneering (TRUE) or have their own symbol (FALSE). */
4949
4950 static bfd_boolean
4951 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4952 {
4953 if (stub_type >= max_stub_type)
4954 abort (); /* Should be unreachable. */
4955
4956 switch (stub_type)
4957 {
4958 case arm_stub_cmse_branch_thumb_only:
4959 return TRUE;
4960
4961 default:
4962 return FALSE;
4963 }
4964
4965 abort (); /* Should be unreachable. */
4966 }
4967
4968 /* Returns the padding needed for the dedicated section used stubs of type
4969 STUB_TYPE. */
4970
4971 static int
4972 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4973 {
4974 if (stub_type >= max_stub_type)
4975 abort (); /* Should be unreachable. */
4976
4977 switch (stub_type)
4978 {
4979 case arm_stub_cmse_branch_thumb_only:
4980 return 32;
4981
4982 default:
4983 return 0;
4984 }
4985
4986 abort (); /* Should be unreachable. */
4987 }
4988
4989 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4990 returns the address of the hash table field in HTAB holding the offset at
4991 which new veneers should be layed out in the stub section. */
4992
4993 static bfd_vma*
4994 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4995 enum elf32_arm_stub_type stub_type)
4996 {
4997 switch (stub_type)
4998 {
4999 case arm_stub_cmse_branch_thumb_only:
5000 return &htab->new_cmse_stub_offset;
5001
5002 default:
5003 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
5004 return NULL;
5005 }
5006 }
5007
5008 static bfd_boolean
5009 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
5010 void * in_arg)
5011 {
5012 #define MAXRELOCS 3
5013 bfd_boolean removed_sg_veneer;
5014 struct elf32_arm_stub_hash_entry *stub_entry;
5015 struct elf32_arm_link_hash_table *globals;
5016 struct bfd_link_info *info;
5017 asection *stub_sec;
5018 bfd *stub_bfd;
5019 bfd_byte *loc;
5020 bfd_vma sym_value;
5021 int template_size;
5022 int size;
5023 const insn_sequence *template_sequence;
5024 int i;
5025 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
5026 int stub_reloc_offset[MAXRELOCS] = {0, 0};
5027 int nrelocs = 0;
5028 int just_allocated = 0;
5029
5030 /* Massage our args to the form they really have. */
5031 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5032 info = (struct bfd_link_info *) in_arg;
5033
5034 globals = elf32_arm_hash_table (info);
5035 if (globals == NULL)
5036 return FALSE;
5037
5038 stub_sec = stub_entry->stub_sec;
5039
5040 if ((globals->fix_cortex_a8 < 0)
5041 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
5042 /* We have to do less-strictly-aligned fixes last. */
5043 return TRUE;
5044
5045 /* Assign a slot at the end of section if none assigned yet. */
5046 if (stub_entry->stub_offset == (bfd_vma) -1)
5047 {
5048 stub_entry->stub_offset = stub_sec->size;
5049 just_allocated = 1;
5050 }
5051 loc = stub_sec->contents + stub_entry->stub_offset;
5052
5053 stub_bfd = stub_sec->owner;
5054
5055 /* This is the address of the stub destination. */
5056 sym_value = (stub_entry->target_value
5057 + stub_entry->target_section->output_offset
5058 + stub_entry->target_section->output_section->vma);
5059
5060 template_sequence = stub_entry->stub_template;
5061 template_size = stub_entry->stub_template_size;
5062
5063 size = 0;
5064 for (i = 0; i < template_size; i++)
5065 {
5066 switch (template_sequence[i].type)
5067 {
5068 case THUMB16_TYPE:
5069 {
5070 bfd_vma data = (bfd_vma) template_sequence[i].data;
5071 if (template_sequence[i].reloc_addend != 0)
5072 {
5073 /* We've borrowed the reloc_addend field to mean we should
5074 insert a condition code into this (Thumb-1 branch)
5075 instruction. See THUMB16_BCOND_INSN. */
5076 BFD_ASSERT ((data & 0xff00) == 0xd000);
5077 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
5078 }
5079 bfd_put_16 (stub_bfd, data, loc + size);
5080 size += 2;
5081 }
5082 break;
5083
5084 case THUMB32_TYPE:
5085 bfd_put_16 (stub_bfd,
5086 (template_sequence[i].data >> 16) & 0xffff,
5087 loc + size);
5088 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
5089 loc + size + 2);
5090 if (template_sequence[i].r_type != R_ARM_NONE)
5091 {
5092 stub_reloc_idx[nrelocs] = i;
5093 stub_reloc_offset[nrelocs++] = size;
5094 }
5095 size += 4;
5096 break;
5097
5098 case ARM_TYPE:
5099 bfd_put_32 (stub_bfd, template_sequence[i].data,
5100 loc + size);
5101 /* Handle cases where the target is encoded within the
5102 instruction. */
5103 if (template_sequence[i].r_type == R_ARM_JUMP24)
5104 {
5105 stub_reloc_idx[nrelocs] = i;
5106 stub_reloc_offset[nrelocs++] = size;
5107 }
5108 size += 4;
5109 break;
5110
5111 case DATA_TYPE:
5112 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
5113 stub_reloc_idx[nrelocs] = i;
5114 stub_reloc_offset[nrelocs++] = size;
5115 size += 4;
5116 break;
5117
5118 default:
5119 BFD_FAIL ();
5120 return FALSE;
5121 }
5122 }
5123
5124 if (just_allocated)
5125 stub_sec->size += size;
5126
5127 /* Stub size has already been computed in arm_size_one_stub. Check
5128 consistency. */
5129 BFD_ASSERT (size == stub_entry->stub_size);
5130
5131 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
5132 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
5133 sym_value |= 1;
5134
5135 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5136 to relocate in each stub. */
5137 removed_sg_veneer =
5138 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5139 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
5140
5141 for (i = 0; i < nrelocs; i++)
5142 {
5143 Elf_Internal_Rela rel;
5144 bfd_boolean unresolved_reloc;
5145 char *error_message;
5146 bfd_vma points_to =
5147 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
5148
5149 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
5150 rel.r_info = ELF32_R_INFO (0,
5151 template_sequence[stub_reloc_idx[i]].r_type);
5152 rel.r_addend = 0;
5153
5154 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
5155 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5156 template should refer back to the instruction after the original
5157 branch. We use target_section as Cortex-A8 erratum workaround stubs
5158 are only generated when both source and target are in the same
5159 section. */
5160 points_to = stub_entry->target_section->output_section->vma
5161 + stub_entry->target_section->output_offset
5162 + stub_entry->source_value;
5163
5164 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5165 (template_sequence[stub_reloc_idx[i]].r_type),
5166 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
5167 points_to, info, stub_entry->target_section, "", STT_FUNC,
5168 stub_entry->branch_type,
5169 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
5170 &error_message);
5171 }
5172
5173 return TRUE;
5174 #undef MAXRELOCS
5175 }
5176
5177 /* Calculate the template, template size and instruction size for a stub.
5178 Return value is the instruction size. */
5179
5180 static unsigned int
5181 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
5182 const insn_sequence **stub_template,
5183 int *stub_template_size)
5184 {
5185 const insn_sequence *template_sequence = NULL;
5186 int template_size = 0, i;
5187 unsigned int size;
5188
5189 template_sequence = stub_definitions[stub_type].template_sequence;
5190 if (stub_template)
5191 *stub_template = template_sequence;
5192
5193 template_size = stub_definitions[stub_type].template_size;
5194 if (stub_template_size)
5195 *stub_template_size = template_size;
5196
5197 size = 0;
5198 for (i = 0; i < template_size; i++)
5199 {
5200 switch (template_sequence[i].type)
5201 {
5202 case THUMB16_TYPE:
5203 size += 2;
5204 break;
5205
5206 case ARM_TYPE:
5207 case THUMB32_TYPE:
5208 case DATA_TYPE:
5209 size += 4;
5210 break;
5211
5212 default:
5213 BFD_FAIL ();
5214 return 0;
5215 }
5216 }
5217
5218 return size;
5219 }
5220
5221 /* As above, but don't actually build the stub. Just bump offset so
5222 we know stub section sizes. */
5223
5224 static bfd_boolean
5225 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
5226 void *in_arg ATTRIBUTE_UNUSED)
5227 {
5228 struct elf32_arm_stub_hash_entry *stub_entry;
5229 const insn_sequence *template_sequence;
5230 int template_size, size;
5231
5232 /* Massage our args to the form they really have. */
5233 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5234
5235 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
5236 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
5237
5238 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
5239 &template_size);
5240
5241 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5242 if (stub_entry->stub_template_size)
5243 {
5244 stub_entry->stub_size = size;
5245 stub_entry->stub_template = template_sequence;
5246 stub_entry->stub_template_size = template_size;
5247 }
5248
5249 /* Already accounted for. */
5250 if (stub_entry->stub_offset != (bfd_vma) -1)
5251 return TRUE;
5252
5253 size = (size + 7) & ~7;
5254 stub_entry->stub_sec->size += size;
5255
5256 return TRUE;
5257 }
5258
5259 /* External entry points for sizing and building linker stubs. */
5260
5261 /* Set up various things so that we can make a list of input sections
5262 for each output section included in the link. Returns -1 on error,
5263 0 when no stubs will be needed, and 1 on success. */
5264
5265 int
5266 elf32_arm_setup_section_lists (bfd *output_bfd,
5267 struct bfd_link_info *info)
5268 {
5269 bfd *input_bfd;
5270 unsigned int bfd_count;
5271 unsigned int top_id, top_index;
5272 asection *section;
5273 asection **input_list, **list;
5274 bfd_size_type amt;
5275 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5276
5277 if (htab == NULL)
5278 return 0;
5279 if (! is_elf_hash_table (htab))
5280 return 0;
5281
5282 /* Count the number of input BFDs and find the top input section id. */
5283 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
5284 input_bfd != NULL;
5285 input_bfd = input_bfd->link.next)
5286 {
5287 bfd_count += 1;
5288 for (section = input_bfd->sections;
5289 section != NULL;
5290 section = section->next)
5291 {
5292 if (top_id < section->id)
5293 top_id = section->id;
5294 }
5295 }
5296 htab->bfd_count = bfd_count;
5297
5298 amt = sizeof (struct map_stub) * (top_id + 1);
5299 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
5300 if (htab->stub_group == NULL)
5301 return -1;
5302 htab->top_id = top_id;
5303
5304 /* We can't use output_bfd->section_count here to find the top output
5305 section index as some sections may have been removed, and
5306 _bfd_strip_section_from_output doesn't renumber the indices. */
5307 for (section = output_bfd->sections, top_index = 0;
5308 section != NULL;
5309 section = section->next)
5310 {
5311 if (top_index < section->index)
5312 top_index = section->index;
5313 }
5314
5315 htab->top_index = top_index;
5316 amt = sizeof (asection *) * (top_index + 1);
5317 input_list = (asection **) bfd_malloc (amt);
5318 htab->input_list = input_list;
5319 if (input_list == NULL)
5320 return -1;
5321
5322 /* For sections we aren't interested in, mark their entries with a
5323 value we can check later. */
5324 list = input_list + top_index;
5325 do
5326 *list = bfd_abs_section_ptr;
5327 while (list-- != input_list);
5328
5329 for (section = output_bfd->sections;
5330 section != NULL;
5331 section = section->next)
5332 {
5333 if ((section->flags & SEC_CODE) != 0)
5334 input_list[section->index] = NULL;
5335 }
5336
5337 return 1;
5338 }
5339
5340 /* The linker repeatedly calls this function for each input section,
5341 in the order that input sections are linked into output sections.
5342 Build lists of input sections to determine groupings between which
5343 we may insert linker stubs. */
5344
5345 void
5346 elf32_arm_next_input_section (struct bfd_link_info *info,
5347 asection *isec)
5348 {
5349 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5350
5351 if (htab == NULL)
5352 return;
5353
5354 if (isec->output_section->index <= htab->top_index)
5355 {
5356 asection **list = htab->input_list + isec->output_section->index;
5357
5358 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5359 {
5360 /* Steal the link_sec pointer for our list. */
5361 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5362 /* This happens to make the list in reverse order,
5363 which we reverse later. */
5364 PREV_SEC (isec) = *list;
5365 *list = isec;
5366 }
5367 }
5368 }
5369
5370 /* See whether we can group stub sections together. Grouping stub
5371 sections may result in fewer stubs. More importantly, we need to
5372 put all .init* and .fini* stubs at the end of the .init or
5373 .fini output sections respectively, because glibc splits the
5374 _init and _fini functions into multiple parts. Putting a stub in
5375 the middle of a function is not a good idea. */
5376
5377 static void
5378 group_sections (struct elf32_arm_link_hash_table *htab,
5379 bfd_size_type stub_group_size,
5380 bfd_boolean stubs_always_after_branch)
5381 {
5382 asection **list = htab->input_list;
5383
5384 do
5385 {
5386 asection *tail = *list;
5387 asection *head;
5388
5389 if (tail == bfd_abs_section_ptr)
5390 continue;
5391
5392 /* Reverse the list: we must avoid placing stubs at the
5393 beginning of the section because the beginning of the text
5394 section may be required for an interrupt vector in bare metal
5395 code. */
5396 #define NEXT_SEC PREV_SEC
5397 head = NULL;
5398 while (tail != NULL)
5399 {
5400 /* Pop from tail. */
5401 asection *item = tail;
5402 tail = PREV_SEC (item);
5403
5404 /* Push on head. */
5405 NEXT_SEC (item) = head;
5406 head = item;
5407 }
5408
5409 while (head != NULL)
5410 {
5411 asection *curr;
5412 asection *next;
5413 bfd_vma stub_group_start = head->output_offset;
5414 bfd_vma end_of_next;
5415
5416 curr = head;
5417 while (NEXT_SEC (curr) != NULL)
5418 {
5419 next = NEXT_SEC (curr);
5420 end_of_next = next->output_offset + next->size;
5421 if (end_of_next - stub_group_start >= stub_group_size)
5422 /* End of NEXT is too far from start, so stop. */
5423 break;
5424 /* Add NEXT to the group. */
5425 curr = next;
5426 }
5427
5428 /* OK, the size from the start to the start of CURR is less
5429 than stub_group_size and thus can be handled by one stub
5430 section. (Or the head section is itself larger than
5431 stub_group_size, in which case we may be toast.)
5432 We should really be keeping track of the total size of
5433 stubs added here, as stubs contribute to the final output
5434 section size. */
5435 do
5436 {
5437 next = NEXT_SEC (head);
5438 /* Set up this stub group. */
5439 htab->stub_group[head->id].link_sec = curr;
5440 }
5441 while (head != curr && (head = next) != NULL);
5442
5443 /* But wait, there's more! Input sections up to stub_group_size
5444 bytes after the stub section can be handled by it too. */
5445 if (!stubs_always_after_branch)
5446 {
5447 stub_group_start = curr->output_offset + curr->size;
5448
5449 while (next != NULL)
5450 {
5451 end_of_next = next->output_offset + next->size;
5452 if (end_of_next - stub_group_start >= stub_group_size)
5453 /* End of NEXT is too far from stubs, so stop. */
5454 break;
5455 /* Add NEXT to the stub group. */
5456 head = next;
5457 next = NEXT_SEC (head);
5458 htab->stub_group[head->id].link_sec = curr;
5459 }
5460 }
5461 head = next;
5462 }
5463 }
5464 while (list++ != htab->input_list + htab->top_index);
5465
5466 free (htab->input_list);
5467 #undef PREV_SEC
5468 #undef NEXT_SEC
5469 }
5470
5471 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5472 erratum fix. */
5473
5474 static int
5475 a8_reloc_compare (const void *a, const void *b)
5476 {
5477 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5478 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5479
5480 if (ra->from < rb->from)
5481 return -1;
5482 else if (ra->from > rb->from)
5483 return 1;
5484 else
5485 return 0;
5486 }
5487
5488 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5489 const char *, char **);
5490
5491 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5492 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5493 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5494 otherwise. */
5495
5496 static bfd_boolean
5497 cortex_a8_erratum_scan (bfd *input_bfd,
5498 struct bfd_link_info *info,
5499 struct a8_erratum_fix **a8_fixes_p,
5500 unsigned int *num_a8_fixes_p,
5501 unsigned int *a8_fix_table_size_p,
5502 struct a8_erratum_reloc *a8_relocs,
5503 unsigned int num_a8_relocs,
5504 unsigned prev_num_a8_fixes,
5505 bfd_boolean *stub_changed_p)
5506 {
5507 asection *section;
5508 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5509 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5510 unsigned int num_a8_fixes = *num_a8_fixes_p;
5511 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5512
5513 if (htab == NULL)
5514 return FALSE;
5515
5516 for (section = input_bfd->sections;
5517 section != NULL;
5518 section = section->next)
5519 {
5520 bfd_byte *contents = NULL;
5521 struct _arm_elf_section_data *sec_data;
5522 unsigned int span;
5523 bfd_vma base_vma;
5524
5525 if (elf_section_type (section) != SHT_PROGBITS
5526 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5527 || (section->flags & SEC_EXCLUDE) != 0
5528 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5529 || (section->output_section == bfd_abs_section_ptr))
5530 continue;
5531
5532 base_vma = section->output_section->vma + section->output_offset;
5533
5534 if (elf_section_data (section)->this_hdr.contents != NULL)
5535 contents = elf_section_data (section)->this_hdr.contents;
5536 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5537 return TRUE;
5538
5539 sec_data = elf32_arm_section_data (section);
5540
5541 for (span = 0; span < sec_data->mapcount; span++)
5542 {
5543 unsigned int span_start = sec_data->map[span].vma;
5544 unsigned int span_end = (span == sec_data->mapcount - 1)
5545 ? section->size : sec_data->map[span + 1].vma;
5546 unsigned int i;
5547 char span_type = sec_data->map[span].type;
5548 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5549
5550 if (span_type != 't')
5551 continue;
5552
5553 /* Span is entirely within a single 4KB region: skip scanning. */
5554 if (((base_vma + span_start) & ~0xfff)
5555 == ((base_vma + span_end) & ~0xfff))
5556 continue;
5557
5558 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5559
5560 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5561 * The branch target is in the same 4KB region as the
5562 first half of the branch.
5563 * The instruction before the branch is a 32-bit
5564 length non-branch instruction. */
5565 for (i = span_start; i < span_end;)
5566 {
5567 unsigned int insn = bfd_getl16 (&contents[i]);
5568 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5569 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5570
5571 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5572 insn_32bit = TRUE;
5573
5574 if (insn_32bit)
5575 {
5576 /* Load the rest of the insn (in manual-friendly order). */
5577 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5578
5579 /* Encoding T4: B<c>.W. */
5580 is_b = (insn & 0xf800d000) == 0xf0009000;
5581 /* Encoding T1: BL<c>.W. */
5582 is_bl = (insn & 0xf800d000) == 0xf000d000;
5583 /* Encoding T2: BLX<c>.W. */
5584 is_blx = (insn & 0xf800d000) == 0xf000c000;
5585 /* Encoding T3: B<c>.W (not permitted in IT block). */
5586 is_bcc = (insn & 0xf800d000) == 0xf0008000
5587 && (insn & 0x07f00000) != 0x03800000;
5588 }
5589
5590 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5591
5592 if (((base_vma + i) & 0xfff) == 0xffe
5593 && insn_32bit
5594 && is_32bit_branch
5595 && last_was_32bit
5596 && ! last_was_branch)
5597 {
5598 bfd_signed_vma offset = 0;
5599 bfd_boolean force_target_arm = FALSE;
5600 bfd_boolean force_target_thumb = FALSE;
5601 bfd_vma target;
5602 enum elf32_arm_stub_type stub_type = arm_stub_none;
5603 struct a8_erratum_reloc key, *found;
5604 bfd_boolean use_plt = FALSE;
5605
5606 key.from = base_vma + i;
5607 found = (struct a8_erratum_reloc *)
5608 bsearch (&key, a8_relocs, num_a8_relocs,
5609 sizeof (struct a8_erratum_reloc),
5610 &a8_reloc_compare);
5611
5612 if (found)
5613 {
5614 char *error_message = NULL;
5615 struct elf_link_hash_entry *entry;
5616
5617 /* We don't care about the error returned from this
5618 function, only if there is glue or not. */
5619 entry = find_thumb_glue (info, found->sym_name,
5620 &error_message);
5621
5622 if (entry)
5623 found->non_a8_stub = TRUE;
5624
5625 /* Keep a simpler condition, for the sake of clarity. */
5626 if (htab->root.splt != NULL && found->hash != NULL
5627 && found->hash->root.plt.offset != (bfd_vma) -1)
5628 use_plt = TRUE;
5629
5630 if (found->r_type == R_ARM_THM_CALL)
5631 {
5632 if (found->branch_type == ST_BRANCH_TO_ARM
5633 || use_plt)
5634 force_target_arm = TRUE;
5635 else
5636 force_target_thumb = TRUE;
5637 }
5638 }
5639
5640 /* Check if we have an offending branch instruction. */
5641
5642 if (found && found->non_a8_stub)
5643 /* We've already made a stub for this instruction, e.g.
5644 it's a long branch or a Thumb->ARM stub. Assume that
5645 stub will suffice to work around the A8 erratum (see
5646 setting of always_after_branch above). */
5647 ;
5648 else if (is_bcc)
5649 {
5650 offset = (insn & 0x7ff) << 1;
5651 offset |= (insn & 0x3f0000) >> 4;
5652 offset |= (insn & 0x2000) ? 0x40000 : 0;
5653 offset |= (insn & 0x800) ? 0x80000 : 0;
5654 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5655 if (offset & 0x100000)
5656 offset |= ~ ((bfd_signed_vma) 0xfffff);
5657 stub_type = arm_stub_a8_veneer_b_cond;
5658 }
5659 else if (is_b || is_bl || is_blx)
5660 {
5661 int s = (insn & 0x4000000) != 0;
5662 int j1 = (insn & 0x2000) != 0;
5663 int j2 = (insn & 0x800) != 0;
5664 int i1 = !(j1 ^ s);
5665 int i2 = !(j2 ^ s);
5666
5667 offset = (insn & 0x7ff) << 1;
5668 offset |= (insn & 0x3ff0000) >> 4;
5669 offset |= i2 << 22;
5670 offset |= i1 << 23;
5671 offset |= s << 24;
5672 if (offset & 0x1000000)
5673 offset |= ~ ((bfd_signed_vma) 0xffffff);
5674
5675 if (is_blx)
5676 offset &= ~ ((bfd_signed_vma) 3);
5677
5678 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5679 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5680 }
5681
5682 if (stub_type != arm_stub_none)
5683 {
5684 bfd_vma pc_for_insn = base_vma + i + 4;
5685
5686 /* The original instruction is a BL, but the target is
5687 an ARM instruction. If we were not making a stub,
5688 the BL would have been converted to a BLX. Use the
5689 BLX stub instead in that case. */
5690 if (htab->use_blx && force_target_arm
5691 && stub_type == arm_stub_a8_veneer_bl)
5692 {
5693 stub_type = arm_stub_a8_veneer_blx;
5694 is_blx = TRUE;
5695 is_bl = FALSE;
5696 }
5697 /* Conversely, if the original instruction was
5698 BLX but the target is Thumb mode, use the BL
5699 stub. */
5700 else if (force_target_thumb
5701 && stub_type == arm_stub_a8_veneer_blx)
5702 {
5703 stub_type = arm_stub_a8_veneer_bl;
5704 is_blx = FALSE;
5705 is_bl = TRUE;
5706 }
5707
5708 if (is_blx)
5709 pc_for_insn &= ~ ((bfd_vma) 3);
5710
5711 /* If we found a relocation, use the proper destination,
5712 not the offset in the (unrelocated) instruction.
5713 Note this is always done if we switched the stub type
5714 above. */
5715 if (found)
5716 offset =
5717 (bfd_signed_vma) (found->destination - pc_for_insn);
5718
5719 /* If the stub will use a Thumb-mode branch to a
5720 PLT target, redirect it to the preceding Thumb
5721 entry point. */
5722 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5723 offset -= PLT_THUMB_STUB_SIZE;
5724
5725 target = pc_for_insn + offset;
5726
5727 /* The BLX stub is ARM-mode code. Adjust the offset to
5728 take the different PC value (+8 instead of +4) into
5729 account. */
5730 if (stub_type == arm_stub_a8_veneer_blx)
5731 offset += 4;
5732
5733 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5734 {
5735 char *stub_name = NULL;
5736
5737 if (num_a8_fixes == a8_fix_table_size)
5738 {
5739 a8_fix_table_size *= 2;
5740 a8_fixes = (struct a8_erratum_fix *)
5741 bfd_realloc (a8_fixes,
5742 sizeof (struct a8_erratum_fix)
5743 * a8_fix_table_size);
5744 }
5745
5746 if (num_a8_fixes < prev_num_a8_fixes)
5747 {
5748 /* If we're doing a subsequent scan,
5749 check if we've found the same fix as
5750 before, and try and reuse the stub
5751 name. */
5752 stub_name = a8_fixes[num_a8_fixes].stub_name;
5753 if ((a8_fixes[num_a8_fixes].section != section)
5754 || (a8_fixes[num_a8_fixes].offset != i))
5755 {
5756 free (stub_name);
5757 stub_name = NULL;
5758 *stub_changed_p = TRUE;
5759 }
5760 }
5761
5762 if (!stub_name)
5763 {
5764 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5765 if (stub_name != NULL)
5766 sprintf (stub_name, "%x:%x", section->id, i);
5767 }
5768
5769 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5770 a8_fixes[num_a8_fixes].section = section;
5771 a8_fixes[num_a8_fixes].offset = i;
5772 a8_fixes[num_a8_fixes].target_offset =
5773 target - base_vma;
5774 a8_fixes[num_a8_fixes].orig_insn = insn;
5775 a8_fixes[num_a8_fixes].stub_name = stub_name;
5776 a8_fixes[num_a8_fixes].stub_type = stub_type;
5777 a8_fixes[num_a8_fixes].branch_type =
5778 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5779
5780 num_a8_fixes++;
5781 }
5782 }
5783 }
5784
5785 i += insn_32bit ? 4 : 2;
5786 last_was_32bit = insn_32bit;
5787 last_was_branch = is_32bit_branch;
5788 }
5789 }
5790
5791 if (elf_section_data (section)->this_hdr.contents == NULL)
5792 free (contents);
5793 }
5794
5795 *a8_fixes_p = a8_fixes;
5796 *num_a8_fixes_p = num_a8_fixes;
5797 *a8_fix_table_size_p = a8_fix_table_size;
5798
5799 return FALSE;
5800 }
5801
5802 /* Create or update a stub entry depending on whether the stub can already be
5803 found in HTAB. The stub is identified by:
5804 - its type STUB_TYPE
5805 - its source branch (note that several can share the same stub) whose
5806 section and relocation (if any) are given by SECTION and IRELA
5807 respectively
5808 - its target symbol whose input section, hash, name, value and branch type
5809 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5810 respectively
5811
5812 If found, the value of the stub's target symbol is updated from SYM_VALUE
5813 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5814 TRUE and the stub entry is initialized.
5815
5816 Returns the stub that was created or updated, or NULL if an error
5817 occurred. */
5818
5819 static struct elf32_arm_stub_hash_entry *
5820 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5821 enum elf32_arm_stub_type stub_type, asection *section,
5822 Elf_Internal_Rela *irela, asection *sym_sec,
5823 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5824 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5825 bfd_boolean *new_stub)
5826 {
5827 const asection *id_sec;
5828 char *stub_name;
5829 struct elf32_arm_stub_hash_entry *stub_entry;
5830 unsigned int r_type;
5831 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5832
5833 BFD_ASSERT (stub_type != arm_stub_none);
5834 *new_stub = FALSE;
5835
5836 if (sym_claimed)
5837 stub_name = sym_name;
5838 else
5839 {
5840 BFD_ASSERT (irela);
5841 BFD_ASSERT (section);
5842 BFD_ASSERT (section->id <= htab->top_id);
5843
5844 /* Support for grouping stub sections. */
5845 id_sec = htab->stub_group[section->id].link_sec;
5846
5847 /* Get the name of this stub. */
5848 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5849 stub_type);
5850 if (!stub_name)
5851 return NULL;
5852 }
5853
5854 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5855 FALSE);
5856 /* The proper stub has already been created, just update its value. */
5857 if (stub_entry != NULL)
5858 {
5859 if (!sym_claimed)
5860 free (stub_name);
5861 stub_entry->target_value = sym_value;
5862 return stub_entry;
5863 }
5864
5865 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5866 if (stub_entry == NULL)
5867 {
5868 if (!sym_claimed)
5869 free (stub_name);
5870 return NULL;
5871 }
5872
5873 stub_entry->target_value = sym_value;
5874 stub_entry->target_section = sym_sec;
5875 stub_entry->stub_type = stub_type;
5876 stub_entry->h = hash;
5877 stub_entry->branch_type = branch_type;
5878
5879 if (sym_claimed)
5880 stub_entry->output_name = sym_name;
5881 else
5882 {
5883 if (sym_name == NULL)
5884 sym_name = "unnamed";
5885 stub_entry->output_name = (char *)
5886 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5887 + strlen (sym_name));
5888 if (stub_entry->output_name == NULL)
5889 {
5890 free (stub_name);
5891 return NULL;
5892 }
5893
5894 /* For historical reasons, use the existing names for ARM-to-Thumb and
5895 Thumb-to-ARM stubs. */
5896 r_type = ELF32_R_TYPE (irela->r_info);
5897 if ((r_type == (unsigned int) R_ARM_THM_CALL
5898 || r_type == (unsigned int) R_ARM_THM_JUMP24
5899 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5900 && branch_type == ST_BRANCH_TO_ARM)
5901 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5902 else if ((r_type == (unsigned int) R_ARM_CALL
5903 || r_type == (unsigned int) R_ARM_JUMP24)
5904 && branch_type == ST_BRANCH_TO_THUMB)
5905 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5906 else
5907 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5908 }
5909
5910 *new_stub = TRUE;
5911 return stub_entry;
5912 }
5913
5914 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5915 gateway veneer to transition from non secure to secure state and create them
5916 accordingly.
5917
5918 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5919 defines the conditions that govern Secure Gateway veneer creation for a
5920 given symbol <SYM> as follows:
5921 - it has function type
5922 - it has non local binding
5923 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5924 same type, binding and value as <SYM> (called normal symbol).
5925 An entry function can handle secure state transition itself in which case
5926 its special symbol would have a different value from the normal symbol.
5927
5928 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5929 entry mapping while HTAB gives the name to hash entry mapping.
5930 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5931 created.
5932
5933 The return value gives whether a stub failed to be allocated. */
5934
5935 static bfd_boolean
5936 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5937 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5938 int *cmse_stub_created)
5939 {
5940 const struct elf_backend_data *bed;
5941 Elf_Internal_Shdr *symtab_hdr;
5942 unsigned i, j, sym_count, ext_start;
5943 Elf_Internal_Sym *cmse_sym, *local_syms;
5944 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5945 enum arm_st_branch_type branch_type;
5946 char *sym_name, *lsym_name;
5947 bfd_vma sym_value;
5948 asection *section;
5949 struct elf32_arm_stub_hash_entry *stub_entry;
5950 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5951
5952 bed = get_elf_backend_data (input_bfd);
5953 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5954 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5955 ext_start = symtab_hdr->sh_info;
5956 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5957 && out_attr[Tag_CPU_arch_profile].i == 'M');
5958
5959 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5960 if (local_syms == NULL)
5961 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5962 symtab_hdr->sh_info, 0, NULL, NULL,
5963 NULL);
5964 if (symtab_hdr->sh_info && local_syms == NULL)
5965 return FALSE;
5966
5967 /* Scan symbols. */
5968 for (i = 0; i < sym_count; i++)
5969 {
5970 cmse_invalid = FALSE;
5971
5972 if (i < ext_start)
5973 {
5974 cmse_sym = &local_syms[i];
5975 /* Not a special symbol. */
5976 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5977 continue;
5978 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5979 symtab_hdr->sh_link,
5980 cmse_sym->st_name);
5981 /* Special symbol with local binding. */
5982 cmse_invalid = TRUE;
5983 }
5984 else
5985 {
5986 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5987 sym_name = (char *) cmse_hash->root.root.root.string;
5988
5989 /* Not a special symbol. */
5990 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5991 continue;
5992
5993 /* Special symbol has incorrect binding or type. */
5994 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5995 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5996 || cmse_hash->root.type != STT_FUNC)
5997 cmse_invalid = TRUE;
5998 }
5999
6000 if (!is_v8m)
6001 {
6002 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
6003 "ARMv8-M architecture or later"),
6004 input_bfd, sym_name);
6005 is_v8m = TRUE; /* Avoid multiple warning. */
6006 ret = FALSE;
6007 }
6008
6009 if (cmse_invalid)
6010 {
6011 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
6012 " a global or weak function symbol"),
6013 input_bfd, sym_name);
6014 ret = FALSE;
6015 if (i < ext_start)
6016 continue;
6017 }
6018
6019 sym_name += strlen (CMSE_PREFIX);
6020 hash = (struct elf32_arm_link_hash_entry *)
6021 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6022
6023 /* No associated normal symbol or it is neither global nor weak. */
6024 if (!hash
6025 || (hash->root.root.type != bfd_link_hash_defined
6026 && hash->root.root.type != bfd_link_hash_defweak)
6027 || hash->root.type != STT_FUNC)
6028 {
6029 /* Initialize here to avoid warning about use of possibly
6030 uninitialized variable. */
6031 j = 0;
6032
6033 if (!hash)
6034 {
6035 /* Searching for a normal symbol with local binding. */
6036 for (; j < ext_start; j++)
6037 {
6038 lsym_name =
6039 bfd_elf_string_from_elf_section (input_bfd,
6040 symtab_hdr->sh_link,
6041 local_syms[j].st_name);
6042 if (!strcmp (sym_name, lsym_name))
6043 break;
6044 }
6045 }
6046
6047 if (hash || j < ext_start)
6048 {
6049 _bfd_error_handler
6050 (_("%pB: invalid standard symbol `%s'; it must be "
6051 "a global or weak function symbol"),
6052 input_bfd, sym_name);
6053 }
6054 else
6055 _bfd_error_handler
6056 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name);
6057 ret = FALSE;
6058 if (!hash)
6059 continue;
6060 }
6061
6062 sym_value = hash->root.root.u.def.value;
6063 section = hash->root.root.u.def.section;
6064
6065 if (cmse_hash->root.root.u.def.section != section)
6066 {
6067 _bfd_error_handler
6068 (_("%pB: `%s' and its special symbol are in different sections"),
6069 input_bfd, sym_name);
6070 ret = FALSE;
6071 }
6072 if (cmse_hash->root.root.u.def.value != sym_value)
6073 continue; /* Ignore: could be an entry function starting with SG. */
6074
6075 /* If this section is a link-once section that will be discarded, then
6076 don't create any stubs. */
6077 if (section->output_section == NULL)
6078 {
6079 _bfd_error_handler
6080 (_("%pB: entry function `%s' not output"), input_bfd, sym_name);
6081 continue;
6082 }
6083
6084 if (hash->root.size == 0)
6085 {
6086 _bfd_error_handler
6087 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name);
6088 ret = FALSE;
6089 }
6090
6091 if (!ret)
6092 continue;
6093 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6094 stub_entry
6095 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6096 NULL, NULL, section, hash, sym_name,
6097 sym_value, branch_type, &new_stub);
6098
6099 if (stub_entry == NULL)
6100 ret = FALSE;
6101 else
6102 {
6103 BFD_ASSERT (new_stub);
6104 (*cmse_stub_created)++;
6105 }
6106 }
6107
6108 if (!symtab_hdr->contents)
6109 free (local_syms);
6110 return ret;
6111 }
6112
6113 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6114 code entry function, ie can be called from non secure code without using a
6115 veneer. */
6116
6117 static bfd_boolean
6118 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
6119 {
6120 bfd_byte contents[4];
6121 uint32_t first_insn;
6122 asection *section;
6123 file_ptr offset;
6124 bfd *abfd;
6125
6126 /* Defined symbol of function type. */
6127 if (hash->root.root.type != bfd_link_hash_defined
6128 && hash->root.root.type != bfd_link_hash_defweak)
6129 return FALSE;
6130 if (hash->root.type != STT_FUNC)
6131 return FALSE;
6132
6133 /* Read first instruction. */
6134 section = hash->root.root.u.def.section;
6135 abfd = section->owner;
6136 offset = hash->root.root.u.def.value - section->vma;
6137 if (!bfd_get_section_contents (abfd, section, contents, offset,
6138 sizeof (contents)))
6139 return FALSE;
6140
6141 first_insn = bfd_get_32 (abfd, contents);
6142
6143 /* Starts by SG instruction. */
6144 return first_insn == 0xe97fe97f;
6145 }
6146
6147 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6148 secure gateway veneers (ie. the veneers was not in the input import library)
6149 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6150
6151 static bfd_boolean
6152 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
6153 {
6154 struct elf32_arm_stub_hash_entry *stub_entry;
6155 struct bfd_link_info *info;
6156
6157 /* Massage our args to the form they really have. */
6158 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
6159 info = (struct bfd_link_info *) gen_info;
6160
6161 if (info->out_implib_bfd)
6162 return TRUE;
6163
6164 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
6165 return TRUE;
6166
6167 if (stub_entry->stub_offset == (bfd_vma) -1)
6168 _bfd_error_handler (" %s", stub_entry->output_name);
6169
6170 return TRUE;
6171 }
6172
6173 /* Set offset of each secure gateway veneers so that its address remain
6174 identical to the one in the input import library referred by
6175 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6176 (present in input import library but absent from the executable being
6177 linked) or if new veneers appeared and there is no output import library
6178 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6179 number of secure gateway veneers found in the input import library.
6180
6181 The function returns whether an error occurred. If no error occurred,
6182 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6183 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6184 veneer observed set for new veneers to be layed out after. */
6185
6186 static bfd_boolean
6187 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
6188 struct elf32_arm_link_hash_table *htab,
6189 int *cmse_stub_created)
6190 {
6191 long symsize;
6192 char *sym_name;
6193 flagword flags;
6194 long i, symcount;
6195 bfd *in_implib_bfd;
6196 asection *stub_out_sec;
6197 bfd_boolean ret = TRUE;
6198 Elf_Internal_Sym *intsym;
6199 const char *out_sec_name;
6200 bfd_size_type cmse_stub_size;
6201 asymbol **sympp = NULL, *sym;
6202 struct elf32_arm_link_hash_entry *hash;
6203 const insn_sequence *cmse_stub_template;
6204 struct elf32_arm_stub_hash_entry *stub_entry;
6205 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
6206 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
6207 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
6208
6209 /* No input secure gateway import library. */
6210 if (!htab->in_implib_bfd)
6211 return TRUE;
6212
6213 in_implib_bfd = htab->in_implib_bfd;
6214 if (!htab->cmse_implib)
6215 {
6216 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
6217 "Gateway import libraries"), in_implib_bfd);
6218 return FALSE;
6219 }
6220
6221 /* Get symbol table size. */
6222 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
6223 if (symsize < 0)
6224 return FALSE;
6225
6226 /* Read in the input secure gateway import library's symbol table. */
6227 sympp = (asymbol **) xmalloc (symsize);
6228 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
6229 if (symcount < 0)
6230 {
6231 ret = FALSE;
6232 goto free_sym_buf;
6233 }
6234
6235 htab->new_cmse_stub_offset = 0;
6236 cmse_stub_size =
6237 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
6238 &cmse_stub_template,
6239 &cmse_stub_template_size);
6240 out_sec_name =
6241 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
6242 stub_out_sec =
6243 bfd_get_section_by_name (htab->obfd, out_sec_name);
6244 if (stub_out_sec != NULL)
6245 cmse_stub_sec_vma = stub_out_sec->vma;
6246
6247 /* Set addresses of veneers mentionned in input secure gateway import
6248 library's symbol table. */
6249 for (i = 0; i < symcount; i++)
6250 {
6251 sym = sympp[i];
6252 flags = sym->flags;
6253 sym_name = (char *) bfd_asymbol_name (sym);
6254 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
6255
6256 if (sym->section != bfd_abs_section_ptr
6257 || !(flags & (BSF_GLOBAL | BSF_WEAK))
6258 || (flags & BSF_FUNCTION) != BSF_FUNCTION
6259 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
6260 != ST_BRANCH_TO_THUMB))
6261 {
6262 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6263 "symbol should be absolute, global and "
6264 "refer to Thumb functions"),
6265 in_implib_bfd, sym_name);
6266 ret = FALSE;
6267 continue;
6268 }
6269
6270 veneer_value = bfd_asymbol_value (sym);
6271 stub_offset = veneer_value - cmse_stub_sec_vma;
6272 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
6273 FALSE, FALSE);
6274 hash = (struct elf32_arm_link_hash_entry *)
6275 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6276
6277 /* Stub entry should have been created by cmse_scan or the symbol be of
6278 a secure function callable from non secure code. */
6279 if (!stub_entry && !hash)
6280 {
6281 bfd_boolean new_stub;
6282
6283 _bfd_error_handler
6284 (_("entry function `%s' disappeared from secure code"), sym_name);
6285 hash = (struct elf32_arm_link_hash_entry *)
6286 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
6287 stub_entry
6288 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6289 NULL, NULL, bfd_abs_section_ptr, hash,
6290 sym_name, veneer_value,
6291 ST_BRANCH_TO_THUMB, &new_stub);
6292 if (stub_entry == NULL)
6293 ret = FALSE;
6294 else
6295 {
6296 BFD_ASSERT (new_stub);
6297 new_cmse_stubs_created++;
6298 (*cmse_stub_created)++;
6299 }
6300 stub_entry->stub_template_size = stub_entry->stub_size = 0;
6301 stub_entry->stub_offset = stub_offset;
6302 }
6303 /* Symbol found is not callable from non secure code. */
6304 else if (!stub_entry)
6305 {
6306 if (!cmse_entry_fct_p (hash))
6307 {
6308 _bfd_error_handler (_("`%s' refers to a non entry function"),
6309 sym_name);
6310 ret = FALSE;
6311 }
6312 continue;
6313 }
6314 else
6315 {
6316 /* Only stubs for SG veneers should have been created. */
6317 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6318
6319 /* Check visibility hasn't changed. */
6320 if (!!(flags & BSF_GLOBAL)
6321 != (hash->root.root.type == bfd_link_hash_defined))
6322 _bfd_error_handler
6323 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd,
6324 sym_name);
6325
6326 stub_entry->stub_offset = stub_offset;
6327 }
6328
6329 /* Size should match that of a SG veneer. */
6330 if (intsym->st_size != cmse_stub_size)
6331 {
6332 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
6333 in_implib_bfd, sym_name);
6334 ret = FALSE;
6335 }
6336
6337 /* Previous veneer address is before current SG veneer section. */
6338 if (veneer_value < cmse_stub_sec_vma)
6339 {
6340 /* Avoid offset underflow. */
6341 if (stub_entry)
6342 stub_entry->stub_offset = 0;
6343 stub_offset = 0;
6344 ret = FALSE;
6345 }
6346
6347 /* Complain if stub offset not a multiple of stub size. */
6348 if (stub_offset % cmse_stub_size)
6349 {
6350 _bfd_error_handler
6351 (_("offset of veneer for entry function `%s' not a multiple of "
6352 "its size"), sym_name);
6353 ret = FALSE;
6354 }
6355
6356 if (!ret)
6357 continue;
6358
6359 new_cmse_stubs_created--;
6360 if (veneer_value < cmse_stub_array_start)
6361 cmse_stub_array_start = veneer_value;
6362 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6363 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6364 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6365 }
6366
6367 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6368 {
6369 BFD_ASSERT (new_cmse_stubs_created > 0);
6370 _bfd_error_handler
6371 (_("new entry function(s) introduced but no output import library "
6372 "specified:"));
6373 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6374 }
6375
6376 if (cmse_stub_array_start != cmse_stub_sec_vma)
6377 {
6378 _bfd_error_handler
6379 (_("start address of `%s' is different from previous link"),
6380 out_sec_name);
6381 ret = FALSE;
6382 }
6383
6384 free_sym_buf:
6385 free (sympp);
6386 return ret;
6387 }
6388
6389 /* Determine and set the size of the stub section for a final link.
6390
6391 The basic idea here is to examine all the relocations looking for
6392 PC-relative calls to a target that is unreachable with a "bl"
6393 instruction. */
6394
6395 bfd_boolean
6396 elf32_arm_size_stubs (bfd *output_bfd,
6397 bfd *stub_bfd,
6398 struct bfd_link_info *info,
6399 bfd_signed_vma group_size,
6400 asection * (*add_stub_section) (const char *, asection *,
6401 asection *,
6402 unsigned int),
6403 void (*layout_sections_again) (void))
6404 {
6405 bfd_boolean ret = TRUE;
6406 obj_attribute *out_attr;
6407 int cmse_stub_created = 0;
6408 bfd_size_type stub_group_size;
6409 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6410 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6411 struct a8_erratum_fix *a8_fixes = NULL;
6412 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6413 struct a8_erratum_reloc *a8_relocs = NULL;
6414 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6415
6416 if (htab == NULL)
6417 return FALSE;
6418
6419 if (htab->fix_cortex_a8)
6420 {
6421 a8_fixes = (struct a8_erratum_fix *)
6422 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6423 a8_relocs = (struct a8_erratum_reloc *)
6424 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6425 }
6426
6427 /* Propagate mach to stub bfd, because it may not have been
6428 finalized when we created stub_bfd. */
6429 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6430 bfd_get_mach (output_bfd));
6431
6432 /* Stash our params away. */
6433 htab->stub_bfd = stub_bfd;
6434 htab->add_stub_section = add_stub_section;
6435 htab->layout_sections_again = layout_sections_again;
6436 stubs_always_after_branch = group_size < 0;
6437
6438 out_attr = elf_known_obj_attributes_proc (output_bfd);
6439 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6440
6441 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6442 as the first half of a 32-bit branch straddling two 4K pages. This is a
6443 crude way of enforcing that. */
6444 if (htab->fix_cortex_a8)
6445 stubs_always_after_branch = 1;
6446
6447 if (group_size < 0)
6448 stub_group_size = -group_size;
6449 else
6450 stub_group_size = group_size;
6451
6452 if (stub_group_size == 1)
6453 {
6454 /* Default values. */
6455 /* Thumb branch range is +-4MB has to be used as the default
6456 maximum size (a given section can contain both ARM and Thumb
6457 code, so the worst case has to be taken into account).
6458
6459 This value is 24K less than that, which allows for 2025
6460 12-byte stubs. If we exceed that, then we will fail to link.
6461 The user will have to relink with an explicit group size
6462 option. */
6463 stub_group_size = 4170000;
6464 }
6465
6466 group_sections (htab, stub_group_size, stubs_always_after_branch);
6467
6468 /* If we're applying the cortex A8 fix, we need to determine the
6469 program header size now, because we cannot change it later --
6470 that could alter section placements. Notice the A8 erratum fix
6471 ends up requiring the section addresses to remain unchanged
6472 modulo the page size. That's something we cannot represent
6473 inside BFD, and we don't want to force the section alignment to
6474 be the page size. */
6475 if (htab->fix_cortex_a8)
6476 (*htab->layout_sections_again) ();
6477
6478 while (1)
6479 {
6480 bfd *input_bfd;
6481 unsigned int bfd_indx;
6482 asection *stub_sec;
6483 enum elf32_arm_stub_type stub_type;
6484 bfd_boolean stub_changed = FALSE;
6485 unsigned prev_num_a8_fixes = num_a8_fixes;
6486
6487 num_a8_fixes = 0;
6488 for (input_bfd = info->input_bfds, bfd_indx = 0;
6489 input_bfd != NULL;
6490 input_bfd = input_bfd->link.next, bfd_indx++)
6491 {
6492 Elf_Internal_Shdr *symtab_hdr;
6493 asection *section;
6494 Elf_Internal_Sym *local_syms = NULL;
6495
6496 if (!is_arm_elf (input_bfd)
6497 || (elf_dyn_lib_class (input_bfd) & DYN_AS_NEEDED) != 0)
6498 continue;
6499
6500 num_a8_relocs = 0;
6501
6502 /* We'll need the symbol table in a second. */
6503 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6504 if (symtab_hdr->sh_info == 0)
6505 continue;
6506
6507 /* Limit scan of symbols to object file whose profile is
6508 Microcontroller to not hinder performance in the general case. */
6509 if (m_profile && first_veneer_scan)
6510 {
6511 struct elf_link_hash_entry **sym_hashes;
6512
6513 sym_hashes = elf_sym_hashes (input_bfd);
6514 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6515 &cmse_stub_created))
6516 goto error_ret_free_local;
6517
6518 if (cmse_stub_created != 0)
6519 stub_changed = TRUE;
6520 }
6521
6522 /* Walk over each section attached to the input bfd. */
6523 for (section = input_bfd->sections;
6524 section != NULL;
6525 section = section->next)
6526 {
6527 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6528
6529 /* If there aren't any relocs, then there's nothing more
6530 to do. */
6531 if ((section->flags & SEC_RELOC) == 0
6532 || section->reloc_count == 0
6533 || (section->flags & SEC_CODE) == 0)
6534 continue;
6535
6536 /* If this section is a link-once section that will be
6537 discarded, then don't create any stubs. */
6538 if (section->output_section == NULL
6539 || section->output_section->owner != output_bfd)
6540 continue;
6541
6542 /* Get the relocs. */
6543 internal_relocs
6544 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6545 NULL, info->keep_memory);
6546 if (internal_relocs == NULL)
6547 goto error_ret_free_local;
6548
6549 /* Now examine each relocation. */
6550 irela = internal_relocs;
6551 irelaend = irela + section->reloc_count;
6552 for (; irela < irelaend; irela++)
6553 {
6554 unsigned int r_type, r_indx;
6555 asection *sym_sec;
6556 bfd_vma sym_value;
6557 bfd_vma destination;
6558 struct elf32_arm_link_hash_entry *hash;
6559 const char *sym_name;
6560 unsigned char st_type;
6561 enum arm_st_branch_type branch_type;
6562 bfd_boolean created_stub = FALSE;
6563
6564 r_type = ELF32_R_TYPE (irela->r_info);
6565 r_indx = ELF32_R_SYM (irela->r_info);
6566
6567 if (r_type >= (unsigned int) R_ARM_max)
6568 {
6569 bfd_set_error (bfd_error_bad_value);
6570 error_ret_free_internal:
6571 if (elf_section_data (section)->relocs == NULL)
6572 free (internal_relocs);
6573 /* Fall through. */
6574 error_ret_free_local:
6575 if (local_syms != NULL
6576 && (symtab_hdr->contents
6577 != (unsigned char *) local_syms))
6578 free (local_syms);
6579 return FALSE;
6580 }
6581
6582 hash = NULL;
6583 if (r_indx >= symtab_hdr->sh_info)
6584 hash = elf32_arm_hash_entry
6585 (elf_sym_hashes (input_bfd)
6586 [r_indx - symtab_hdr->sh_info]);
6587
6588 /* Only look for stubs on branch instructions, or
6589 non-relaxed TLSCALL */
6590 if ((r_type != (unsigned int) R_ARM_CALL)
6591 && (r_type != (unsigned int) R_ARM_THM_CALL)
6592 && (r_type != (unsigned int) R_ARM_JUMP24)
6593 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6594 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6595 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6596 && (r_type != (unsigned int) R_ARM_PLT32)
6597 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6598 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6599 && r_type == elf32_arm_tls_transition
6600 (info, r_type, &hash->root)
6601 && ((hash ? hash->tls_type
6602 : (elf32_arm_local_got_tls_type
6603 (input_bfd)[r_indx]))
6604 & GOT_TLS_GDESC) != 0))
6605 continue;
6606
6607 /* Now determine the call target, its name, value,
6608 section. */
6609 sym_sec = NULL;
6610 sym_value = 0;
6611 destination = 0;
6612 sym_name = NULL;
6613
6614 if (r_type == (unsigned int) R_ARM_TLS_CALL
6615 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6616 {
6617 /* A non-relaxed TLS call. The target is the
6618 plt-resident trampoline and nothing to do
6619 with the symbol. */
6620 BFD_ASSERT (htab->tls_trampoline > 0);
6621 sym_sec = htab->root.splt;
6622 sym_value = htab->tls_trampoline;
6623 hash = 0;
6624 st_type = STT_FUNC;
6625 branch_type = ST_BRANCH_TO_ARM;
6626 }
6627 else if (!hash)
6628 {
6629 /* It's a local symbol. */
6630 Elf_Internal_Sym *sym;
6631
6632 if (local_syms == NULL)
6633 {
6634 local_syms
6635 = (Elf_Internal_Sym *) symtab_hdr->contents;
6636 if (local_syms == NULL)
6637 local_syms
6638 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6639 symtab_hdr->sh_info, 0,
6640 NULL, NULL, NULL);
6641 if (local_syms == NULL)
6642 goto error_ret_free_internal;
6643 }
6644
6645 sym = local_syms + r_indx;
6646 if (sym->st_shndx == SHN_UNDEF)
6647 sym_sec = bfd_und_section_ptr;
6648 else if (sym->st_shndx == SHN_ABS)
6649 sym_sec = bfd_abs_section_ptr;
6650 else if (sym->st_shndx == SHN_COMMON)
6651 sym_sec = bfd_com_section_ptr;
6652 else
6653 sym_sec =
6654 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6655
6656 if (!sym_sec)
6657 /* This is an undefined symbol. It can never
6658 be resolved. */
6659 continue;
6660
6661 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6662 sym_value = sym->st_value;
6663 destination = (sym_value + irela->r_addend
6664 + sym_sec->output_offset
6665 + sym_sec->output_section->vma);
6666 st_type = ELF_ST_TYPE (sym->st_info);
6667 branch_type =
6668 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6669 sym_name
6670 = bfd_elf_string_from_elf_section (input_bfd,
6671 symtab_hdr->sh_link,
6672 sym->st_name);
6673 }
6674 else
6675 {
6676 /* It's an external symbol. */
6677 while (hash->root.root.type == bfd_link_hash_indirect
6678 || hash->root.root.type == bfd_link_hash_warning)
6679 hash = ((struct elf32_arm_link_hash_entry *)
6680 hash->root.root.u.i.link);
6681
6682 if (hash->root.root.type == bfd_link_hash_defined
6683 || hash->root.root.type == bfd_link_hash_defweak)
6684 {
6685 sym_sec = hash->root.root.u.def.section;
6686 sym_value = hash->root.root.u.def.value;
6687
6688 struct elf32_arm_link_hash_table *globals =
6689 elf32_arm_hash_table (info);
6690
6691 /* For a destination in a shared library,
6692 use the PLT stub as target address to
6693 decide whether a branch stub is
6694 needed. */
6695 if (globals != NULL
6696 && globals->root.splt != NULL
6697 && hash != NULL
6698 && hash->root.plt.offset != (bfd_vma) -1)
6699 {
6700 sym_sec = globals->root.splt;
6701 sym_value = hash->root.plt.offset;
6702 if (sym_sec->output_section != NULL)
6703 destination = (sym_value
6704 + sym_sec->output_offset
6705 + sym_sec->output_section->vma);
6706 }
6707 else if (sym_sec->output_section != NULL)
6708 destination = (sym_value + irela->r_addend
6709 + sym_sec->output_offset
6710 + sym_sec->output_section->vma);
6711 }
6712 else if ((hash->root.root.type == bfd_link_hash_undefined)
6713 || (hash->root.root.type == bfd_link_hash_undefweak))
6714 {
6715 /* For a shared library, use the PLT stub as
6716 target address to decide whether a long
6717 branch stub is needed.
6718 For absolute code, they cannot be handled. */
6719 struct elf32_arm_link_hash_table *globals =
6720 elf32_arm_hash_table (info);
6721
6722 if (globals != NULL
6723 && globals->root.splt != NULL
6724 && hash != NULL
6725 && hash->root.plt.offset != (bfd_vma) -1)
6726 {
6727 sym_sec = globals->root.splt;
6728 sym_value = hash->root.plt.offset;
6729 if (sym_sec->output_section != NULL)
6730 destination = (sym_value
6731 + sym_sec->output_offset
6732 + sym_sec->output_section->vma);
6733 }
6734 else
6735 continue;
6736 }
6737 else
6738 {
6739 bfd_set_error (bfd_error_bad_value);
6740 goto error_ret_free_internal;
6741 }
6742 st_type = hash->root.type;
6743 branch_type =
6744 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6745 sym_name = hash->root.root.root.string;
6746 }
6747
6748 do
6749 {
6750 bfd_boolean new_stub;
6751 struct elf32_arm_stub_hash_entry *stub_entry;
6752
6753 /* Determine what (if any) linker stub is needed. */
6754 stub_type = arm_type_of_stub (info, section, irela,
6755 st_type, &branch_type,
6756 hash, destination, sym_sec,
6757 input_bfd, sym_name);
6758 if (stub_type == arm_stub_none)
6759 break;
6760
6761 /* We've either created a stub for this reloc already,
6762 or we are about to. */
6763 stub_entry =
6764 elf32_arm_create_stub (htab, stub_type, section, irela,
6765 sym_sec, hash,
6766 (char *) sym_name, sym_value,
6767 branch_type, &new_stub);
6768
6769 created_stub = stub_entry != NULL;
6770 if (!created_stub)
6771 goto error_ret_free_internal;
6772 else if (!new_stub)
6773 break;
6774 else
6775 stub_changed = TRUE;
6776 }
6777 while (0);
6778
6779 /* Look for relocations which might trigger Cortex-A8
6780 erratum. */
6781 if (htab->fix_cortex_a8
6782 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6783 || r_type == (unsigned int) R_ARM_THM_JUMP19
6784 || r_type == (unsigned int) R_ARM_THM_CALL
6785 || r_type == (unsigned int) R_ARM_THM_XPC22))
6786 {
6787 bfd_vma from = section->output_section->vma
6788 + section->output_offset
6789 + irela->r_offset;
6790
6791 if ((from & 0xfff) == 0xffe)
6792 {
6793 /* Found a candidate. Note we haven't checked the
6794 destination is within 4K here: if we do so (and
6795 don't create an entry in a8_relocs) we can't tell
6796 that a branch should have been relocated when
6797 scanning later. */
6798 if (num_a8_relocs == a8_reloc_table_size)
6799 {
6800 a8_reloc_table_size *= 2;
6801 a8_relocs = (struct a8_erratum_reloc *)
6802 bfd_realloc (a8_relocs,
6803 sizeof (struct a8_erratum_reloc)
6804 * a8_reloc_table_size);
6805 }
6806
6807 a8_relocs[num_a8_relocs].from = from;
6808 a8_relocs[num_a8_relocs].destination = destination;
6809 a8_relocs[num_a8_relocs].r_type = r_type;
6810 a8_relocs[num_a8_relocs].branch_type = branch_type;
6811 a8_relocs[num_a8_relocs].sym_name = sym_name;
6812 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6813 a8_relocs[num_a8_relocs].hash = hash;
6814
6815 num_a8_relocs++;
6816 }
6817 }
6818 }
6819
6820 /* We're done with the internal relocs, free them. */
6821 if (elf_section_data (section)->relocs == NULL)
6822 free (internal_relocs);
6823 }
6824
6825 if (htab->fix_cortex_a8)
6826 {
6827 /* Sort relocs which might apply to Cortex-A8 erratum. */
6828 qsort (a8_relocs, num_a8_relocs,
6829 sizeof (struct a8_erratum_reloc),
6830 &a8_reloc_compare);
6831
6832 /* Scan for branches which might trigger Cortex-A8 erratum. */
6833 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6834 &num_a8_fixes, &a8_fix_table_size,
6835 a8_relocs, num_a8_relocs,
6836 prev_num_a8_fixes, &stub_changed)
6837 != 0)
6838 goto error_ret_free_local;
6839 }
6840
6841 if (local_syms != NULL
6842 && symtab_hdr->contents != (unsigned char *) local_syms)
6843 {
6844 if (!info->keep_memory)
6845 free (local_syms);
6846 else
6847 symtab_hdr->contents = (unsigned char *) local_syms;
6848 }
6849 }
6850
6851 if (first_veneer_scan
6852 && !set_cmse_veneer_addr_from_implib (info, htab,
6853 &cmse_stub_created))
6854 ret = FALSE;
6855
6856 if (prev_num_a8_fixes != num_a8_fixes)
6857 stub_changed = TRUE;
6858
6859 if (!stub_changed)
6860 break;
6861
6862 /* OK, we've added some stubs. Find out the new size of the
6863 stub sections. */
6864 for (stub_sec = htab->stub_bfd->sections;
6865 stub_sec != NULL;
6866 stub_sec = stub_sec->next)
6867 {
6868 /* Ignore non-stub sections. */
6869 if (!strstr (stub_sec->name, STUB_SUFFIX))
6870 continue;
6871
6872 stub_sec->size = 0;
6873 }
6874
6875 /* Add new SG veneers after those already in the input import
6876 library. */
6877 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6878 stub_type++)
6879 {
6880 bfd_vma *start_offset_p;
6881 asection **stub_sec_p;
6882
6883 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6884 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6885 if (start_offset_p == NULL)
6886 continue;
6887
6888 BFD_ASSERT (stub_sec_p != NULL);
6889 if (*stub_sec_p != NULL)
6890 (*stub_sec_p)->size = *start_offset_p;
6891 }
6892
6893 /* Compute stub section size, considering padding. */
6894 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6895 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6896 stub_type++)
6897 {
6898 int size, padding;
6899 asection **stub_sec_p;
6900
6901 padding = arm_dedicated_stub_section_padding (stub_type);
6902 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6903 /* Skip if no stub input section or no stub section padding
6904 required. */
6905 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6906 continue;
6907 /* Stub section padding required but no dedicated section. */
6908 BFD_ASSERT (stub_sec_p);
6909
6910 size = (*stub_sec_p)->size;
6911 size = (size + padding - 1) & ~(padding - 1);
6912 (*stub_sec_p)->size = size;
6913 }
6914
6915 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6916 if (htab->fix_cortex_a8)
6917 for (i = 0; i < num_a8_fixes; i++)
6918 {
6919 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6920 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6921
6922 if (stub_sec == NULL)
6923 return FALSE;
6924
6925 stub_sec->size
6926 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6927 NULL);
6928 }
6929
6930
6931 /* Ask the linker to do its stuff. */
6932 (*htab->layout_sections_again) ();
6933 first_veneer_scan = FALSE;
6934 }
6935
6936 /* Add stubs for Cortex-A8 erratum fixes now. */
6937 if (htab->fix_cortex_a8)
6938 {
6939 for (i = 0; i < num_a8_fixes; i++)
6940 {
6941 struct elf32_arm_stub_hash_entry *stub_entry;
6942 char *stub_name = a8_fixes[i].stub_name;
6943 asection *section = a8_fixes[i].section;
6944 unsigned int section_id = a8_fixes[i].section->id;
6945 asection *link_sec = htab->stub_group[section_id].link_sec;
6946 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6947 const insn_sequence *template_sequence;
6948 int template_size, size = 0;
6949
6950 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6951 TRUE, FALSE);
6952 if (stub_entry == NULL)
6953 {
6954 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
6955 section->owner, stub_name);
6956 return FALSE;
6957 }
6958
6959 stub_entry->stub_sec = stub_sec;
6960 stub_entry->stub_offset = (bfd_vma) -1;
6961 stub_entry->id_sec = link_sec;
6962 stub_entry->stub_type = a8_fixes[i].stub_type;
6963 stub_entry->source_value = a8_fixes[i].offset;
6964 stub_entry->target_section = a8_fixes[i].section;
6965 stub_entry->target_value = a8_fixes[i].target_offset;
6966 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6967 stub_entry->branch_type = a8_fixes[i].branch_type;
6968
6969 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6970 &template_sequence,
6971 &template_size);
6972
6973 stub_entry->stub_size = size;
6974 stub_entry->stub_template = template_sequence;
6975 stub_entry->stub_template_size = template_size;
6976 }
6977
6978 /* Stash the Cortex-A8 erratum fix array for use later in
6979 elf32_arm_write_section(). */
6980 htab->a8_erratum_fixes = a8_fixes;
6981 htab->num_a8_erratum_fixes = num_a8_fixes;
6982 }
6983 else
6984 {
6985 htab->a8_erratum_fixes = NULL;
6986 htab->num_a8_erratum_fixes = 0;
6987 }
6988 return ret;
6989 }
6990
6991 /* Build all the stubs associated with the current output file. The
6992 stubs are kept in a hash table attached to the main linker hash
6993 table. We also set up the .plt entries for statically linked PIC
6994 functions here. This function is called via arm_elf_finish in the
6995 linker. */
6996
6997 bfd_boolean
6998 elf32_arm_build_stubs (struct bfd_link_info *info)
6999 {
7000 asection *stub_sec;
7001 struct bfd_hash_table *table;
7002 enum elf32_arm_stub_type stub_type;
7003 struct elf32_arm_link_hash_table *htab;
7004
7005 htab = elf32_arm_hash_table (info);
7006 if (htab == NULL)
7007 return FALSE;
7008
7009 for (stub_sec = htab->stub_bfd->sections;
7010 stub_sec != NULL;
7011 stub_sec = stub_sec->next)
7012 {
7013 bfd_size_type size;
7014
7015 /* Ignore non-stub sections. */
7016 if (!strstr (stub_sec->name, STUB_SUFFIX))
7017 continue;
7018
7019 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
7020 must at least be done for stub section requiring padding and for SG
7021 veneers to ensure that a non secure code branching to a removed SG
7022 veneer causes an error. */
7023 size = stub_sec->size;
7024 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
7025 if (stub_sec->contents == NULL && size != 0)
7026 return FALSE;
7027
7028 stub_sec->size = 0;
7029 }
7030
7031 /* Add new SG veneers after those already in the input import library. */
7032 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7033 {
7034 bfd_vma *start_offset_p;
7035 asection **stub_sec_p;
7036
7037 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
7038 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
7039 if (start_offset_p == NULL)
7040 continue;
7041
7042 BFD_ASSERT (stub_sec_p != NULL);
7043 if (*stub_sec_p != NULL)
7044 (*stub_sec_p)->size = *start_offset_p;
7045 }
7046
7047 /* Build the stubs as directed by the stub hash table. */
7048 table = &htab->stub_hash_table;
7049 bfd_hash_traverse (table, arm_build_one_stub, info);
7050 if (htab->fix_cortex_a8)
7051 {
7052 /* Place the cortex a8 stubs last. */
7053 htab->fix_cortex_a8 = -1;
7054 bfd_hash_traverse (table, arm_build_one_stub, info);
7055 }
7056
7057 return TRUE;
7058 }
7059
7060 /* Locate the Thumb encoded calling stub for NAME. */
7061
7062 static struct elf_link_hash_entry *
7063 find_thumb_glue (struct bfd_link_info *link_info,
7064 const char *name,
7065 char **error_message)
7066 {
7067 char *tmp_name;
7068 struct elf_link_hash_entry *hash;
7069 struct elf32_arm_link_hash_table *hash_table;
7070
7071 /* We need a pointer to the armelf specific hash table. */
7072 hash_table = elf32_arm_hash_table (link_info);
7073 if (hash_table == NULL)
7074 return NULL;
7075
7076 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7077 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
7078
7079 BFD_ASSERT (tmp_name);
7080
7081 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
7082
7083 hash = elf_link_hash_lookup
7084 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7085
7086 if (hash == NULL
7087 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7088 "Thumb", tmp_name, name) == -1)
7089 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7090
7091 free (tmp_name);
7092
7093 return hash;
7094 }
7095
7096 /* Locate the ARM encoded calling stub for NAME. */
7097
7098 static struct elf_link_hash_entry *
7099 find_arm_glue (struct bfd_link_info *link_info,
7100 const char *name,
7101 char **error_message)
7102 {
7103 char *tmp_name;
7104 struct elf_link_hash_entry *myh;
7105 struct elf32_arm_link_hash_table *hash_table;
7106
7107 /* We need a pointer to the elfarm specific hash table. */
7108 hash_table = elf32_arm_hash_table (link_info);
7109 if (hash_table == NULL)
7110 return NULL;
7111
7112 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7113 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7114
7115 BFD_ASSERT (tmp_name);
7116
7117 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7118
7119 myh = elf_link_hash_lookup
7120 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7121
7122 if (myh == NULL
7123 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7124 "ARM", tmp_name, name) == -1)
7125 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7126
7127 free (tmp_name);
7128
7129 return myh;
7130 }
7131
7132 /* ARM->Thumb glue (static images):
7133
7134 .arm
7135 __func_from_arm:
7136 ldr r12, __func_addr
7137 bx r12
7138 __func_addr:
7139 .word func @ behave as if you saw a ARM_32 reloc.
7140
7141 (v5t static images)
7142 .arm
7143 __func_from_arm:
7144 ldr pc, __func_addr
7145 __func_addr:
7146 .word func @ behave as if you saw a ARM_32 reloc.
7147
7148 (relocatable images)
7149 .arm
7150 __func_from_arm:
7151 ldr r12, __func_offset
7152 add r12, r12, pc
7153 bx r12
7154 __func_offset:
7155 .word func - . */
7156
7157 #define ARM2THUMB_STATIC_GLUE_SIZE 12
7158 static const insn32 a2t1_ldr_insn = 0xe59fc000;
7159 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
7160 static const insn32 a2t3_func_addr_insn = 0x00000001;
7161
7162 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7163 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
7164 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
7165
7166 #define ARM2THUMB_PIC_GLUE_SIZE 16
7167 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
7168 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
7169 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
7170
7171 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
7172
7173 .thumb .thumb
7174 .align 2 .align 2
7175 __func_from_thumb: __func_from_thumb:
7176 bx pc push {r6, lr}
7177 nop ldr r6, __func_addr
7178 .arm mov lr, pc
7179 b func bx r6
7180 .arm
7181 ;; back_to_thumb
7182 ldmia r13! {r6, lr}
7183 bx lr
7184 __func_addr:
7185 .word func */
7186
7187 #define THUMB2ARM_GLUE_SIZE 8
7188 static const insn16 t2a1_bx_pc_insn = 0x4778;
7189 static const insn16 t2a2_noop_insn = 0x46c0;
7190 static const insn32 t2a3_b_insn = 0xea000000;
7191
7192 #define VFP11_ERRATUM_VENEER_SIZE 8
7193 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7194 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
7195
7196 #define ARM_BX_VENEER_SIZE 12
7197 static const insn32 armbx1_tst_insn = 0xe3100001;
7198 static const insn32 armbx2_moveq_insn = 0x01a0f000;
7199 static const insn32 armbx3_bx_insn = 0xe12fff10;
7200
7201 #ifndef ELFARM_NABI_C_INCLUDED
7202 static void
7203 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
7204 {
7205 asection * s;
7206 bfd_byte * contents;
7207
7208 if (size == 0)
7209 {
7210 /* Do not include empty glue sections in the output. */
7211 if (abfd != NULL)
7212 {
7213 s = bfd_get_linker_section (abfd, name);
7214 if (s != NULL)
7215 s->flags |= SEC_EXCLUDE;
7216 }
7217 return;
7218 }
7219
7220 BFD_ASSERT (abfd != NULL);
7221
7222 s = bfd_get_linker_section (abfd, name);
7223 BFD_ASSERT (s != NULL);
7224
7225 contents = (bfd_byte *) bfd_zalloc (abfd, size);
7226
7227 BFD_ASSERT (s->size == size);
7228 s->contents = contents;
7229 }
7230
7231 bfd_boolean
7232 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
7233 {
7234 struct elf32_arm_link_hash_table * globals;
7235
7236 globals = elf32_arm_hash_table (info);
7237 BFD_ASSERT (globals != NULL);
7238
7239 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7240 globals->arm_glue_size,
7241 ARM2THUMB_GLUE_SECTION_NAME);
7242
7243 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7244 globals->thumb_glue_size,
7245 THUMB2ARM_GLUE_SECTION_NAME);
7246
7247 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7248 globals->vfp11_erratum_glue_size,
7249 VFP11_ERRATUM_VENEER_SECTION_NAME);
7250
7251 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7252 globals->stm32l4xx_erratum_glue_size,
7253 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7254
7255 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7256 globals->bx_glue_size,
7257 ARM_BX_GLUE_SECTION_NAME);
7258
7259 return TRUE;
7260 }
7261
7262 /* Allocate space and symbols for calling a Thumb function from Arm mode.
7263 returns the symbol identifying the stub. */
7264
7265 static struct elf_link_hash_entry *
7266 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
7267 struct elf_link_hash_entry * h)
7268 {
7269 const char * name = h->root.root.string;
7270 asection * s;
7271 char * tmp_name;
7272 struct elf_link_hash_entry * myh;
7273 struct bfd_link_hash_entry * bh;
7274 struct elf32_arm_link_hash_table * globals;
7275 bfd_vma val;
7276 bfd_size_type size;
7277
7278 globals = elf32_arm_hash_table (link_info);
7279 BFD_ASSERT (globals != NULL);
7280 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7281
7282 s = bfd_get_linker_section
7283 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
7284
7285 BFD_ASSERT (s != NULL);
7286
7287 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7288 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7289
7290 BFD_ASSERT (tmp_name);
7291
7292 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7293
7294 myh = elf_link_hash_lookup
7295 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7296
7297 if (myh != NULL)
7298 {
7299 /* We've already seen this guy. */
7300 free (tmp_name);
7301 return myh;
7302 }
7303
7304 /* The only trick here is using hash_table->arm_glue_size as the value.
7305 Even though the section isn't allocated yet, this is where we will be
7306 putting it. The +1 on the value marks that the stub has not been
7307 output yet - not that it is a Thumb function. */
7308 bh = NULL;
7309 val = globals->arm_glue_size + 1;
7310 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7311 tmp_name, BSF_GLOBAL, s, val,
7312 NULL, TRUE, FALSE, &bh);
7313
7314 myh = (struct elf_link_hash_entry *) bh;
7315 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7316 myh->forced_local = 1;
7317
7318 free (tmp_name);
7319
7320 if (bfd_link_pic (link_info)
7321 || globals->root.is_relocatable_executable
7322 || globals->pic_veneer)
7323 size = ARM2THUMB_PIC_GLUE_SIZE;
7324 else if (globals->use_blx)
7325 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
7326 else
7327 size = ARM2THUMB_STATIC_GLUE_SIZE;
7328
7329 s->size += size;
7330 globals->arm_glue_size += size;
7331
7332 return myh;
7333 }
7334
7335 /* Allocate space for ARMv4 BX veneers. */
7336
7337 static void
7338 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7339 {
7340 asection * s;
7341 struct elf32_arm_link_hash_table *globals;
7342 char *tmp_name;
7343 struct elf_link_hash_entry *myh;
7344 struct bfd_link_hash_entry *bh;
7345 bfd_vma val;
7346
7347 /* BX PC does not need a veneer. */
7348 if (reg == 15)
7349 return;
7350
7351 globals = elf32_arm_hash_table (link_info);
7352 BFD_ASSERT (globals != NULL);
7353 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7354
7355 /* Check if this veneer has already been allocated. */
7356 if (globals->bx_glue_offset[reg])
7357 return;
7358
7359 s = bfd_get_linker_section
7360 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7361
7362 BFD_ASSERT (s != NULL);
7363
7364 /* Add symbol for veneer. */
7365 tmp_name = (char *)
7366 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7367
7368 BFD_ASSERT (tmp_name);
7369
7370 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7371
7372 myh = elf_link_hash_lookup
7373 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7374
7375 BFD_ASSERT (myh == NULL);
7376
7377 bh = NULL;
7378 val = globals->bx_glue_size;
7379 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7380 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7381 NULL, TRUE, FALSE, &bh);
7382
7383 myh = (struct elf_link_hash_entry *) bh;
7384 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7385 myh->forced_local = 1;
7386
7387 s->size += ARM_BX_VENEER_SIZE;
7388 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7389 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7390 }
7391
7392
7393 /* Add an entry to the code/data map for section SEC. */
7394
7395 static void
7396 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7397 {
7398 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7399 unsigned int newidx;
7400
7401 if (sec_data->map == NULL)
7402 {
7403 sec_data->map = (elf32_arm_section_map *)
7404 bfd_malloc (sizeof (elf32_arm_section_map));
7405 sec_data->mapcount = 0;
7406 sec_data->mapsize = 1;
7407 }
7408
7409 newidx = sec_data->mapcount++;
7410
7411 if (sec_data->mapcount > sec_data->mapsize)
7412 {
7413 sec_data->mapsize *= 2;
7414 sec_data->map = (elf32_arm_section_map *)
7415 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7416 * sizeof (elf32_arm_section_map));
7417 }
7418
7419 if (sec_data->map)
7420 {
7421 sec_data->map[newidx].vma = vma;
7422 sec_data->map[newidx].type = type;
7423 }
7424 }
7425
7426
7427 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7428 veneers are handled for now. */
7429
7430 static bfd_vma
7431 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7432 elf32_vfp11_erratum_list *branch,
7433 bfd *branch_bfd,
7434 asection *branch_sec,
7435 unsigned int offset)
7436 {
7437 asection *s;
7438 struct elf32_arm_link_hash_table *hash_table;
7439 char *tmp_name;
7440 struct elf_link_hash_entry *myh;
7441 struct bfd_link_hash_entry *bh;
7442 bfd_vma val;
7443 struct _arm_elf_section_data *sec_data;
7444 elf32_vfp11_erratum_list *newerr;
7445
7446 hash_table = elf32_arm_hash_table (link_info);
7447 BFD_ASSERT (hash_table != NULL);
7448 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7449
7450 s = bfd_get_linker_section
7451 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7452
7453 sec_data = elf32_arm_section_data (s);
7454
7455 BFD_ASSERT (s != NULL);
7456
7457 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7458 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7459
7460 BFD_ASSERT (tmp_name);
7461
7462 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7463 hash_table->num_vfp11_fixes);
7464
7465 myh = elf_link_hash_lookup
7466 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7467
7468 BFD_ASSERT (myh == NULL);
7469
7470 bh = NULL;
7471 val = hash_table->vfp11_erratum_glue_size;
7472 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7473 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7474 NULL, TRUE, FALSE, &bh);
7475
7476 myh = (struct elf_link_hash_entry *) bh;
7477 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7478 myh->forced_local = 1;
7479
7480 /* Link veneer back to calling location. */
7481 sec_data->erratumcount += 1;
7482 newerr = (elf32_vfp11_erratum_list *)
7483 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7484
7485 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7486 newerr->vma = -1;
7487 newerr->u.v.branch = branch;
7488 newerr->u.v.id = hash_table->num_vfp11_fixes;
7489 branch->u.b.veneer = newerr;
7490
7491 newerr->next = sec_data->erratumlist;
7492 sec_data->erratumlist = newerr;
7493
7494 /* A symbol for the return from the veneer. */
7495 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7496 hash_table->num_vfp11_fixes);
7497
7498 myh = elf_link_hash_lookup
7499 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7500
7501 if (myh != NULL)
7502 abort ();
7503
7504 bh = NULL;
7505 val = offset + 4;
7506 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7507 branch_sec, val, NULL, TRUE, FALSE, &bh);
7508
7509 myh = (struct elf_link_hash_entry *) bh;
7510 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7511 myh->forced_local = 1;
7512
7513 free (tmp_name);
7514
7515 /* Generate a mapping symbol for the veneer section, and explicitly add an
7516 entry for that symbol to the code/data map for the section. */
7517 if (hash_table->vfp11_erratum_glue_size == 0)
7518 {
7519 bh = NULL;
7520 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7521 ever requires this erratum fix. */
7522 _bfd_generic_link_add_one_symbol (link_info,
7523 hash_table->bfd_of_glue_owner, "$a",
7524 BSF_LOCAL, s, 0, NULL,
7525 TRUE, FALSE, &bh);
7526
7527 myh = (struct elf_link_hash_entry *) bh;
7528 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7529 myh->forced_local = 1;
7530
7531 /* The elf32_arm_init_maps function only cares about symbols from input
7532 BFDs. We must make a note of this generated mapping symbol
7533 ourselves so that code byteswapping works properly in
7534 elf32_arm_write_section. */
7535 elf32_arm_section_map_add (s, 'a', 0);
7536 }
7537
7538 s->size += VFP11_ERRATUM_VENEER_SIZE;
7539 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7540 hash_table->num_vfp11_fixes++;
7541
7542 /* The offset of the veneer. */
7543 return val;
7544 }
7545
7546 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7547 veneers need to be handled because used only in Cortex-M. */
7548
7549 static bfd_vma
7550 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7551 elf32_stm32l4xx_erratum_list *branch,
7552 bfd *branch_bfd,
7553 asection *branch_sec,
7554 unsigned int offset,
7555 bfd_size_type veneer_size)
7556 {
7557 asection *s;
7558 struct elf32_arm_link_hash_table *hash_table;
7559 char *tmp_name;
7560 struct elf_link_hash_entry *myh;
7561 struct bfd_link_hash_entry *bh;
7562 bfd_vma val;
7563 struct _arm_elf_section_data *sec_data;
7564 elf32_stm32l4xx_erratum_list *newerr;
7565
7566 hash_table = elf32_arm_hash_table (link_info);
7567 BFD_ASSERT (hash_table != NULL);
7568 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7569
7570 s = bfd_get_linker_section
7571 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7572
7573 BFD_ASSERT (s != NULL);
7574
7575 sec_data = elf32_arm_section_data (s);
7576
7577 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7578 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7579
7580 BFD_ASSERT (tmp_name);
7581
7582 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7583 hash_table->num_stm32l4xx_fixes);
7584
7585 myh = elf_link_hash_lookup
7586 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7587
7588 BFD_ASSERT (myh == NULL);
7589
7590 bh = NULL;
7591 val = hash_table->stm32l4xx_erratum_glue_size;
7592 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7593 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7594 NULL, TRUE, FALSE, &bh);
7595
7596 myh = (struct elf_link_hash_entry *) bh;
7597 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7598 myh->forced_local = 1;
7599
7600 /* Link veneer back to calling location. */
7601 sec_data->stm32l4xx_erratumcount += 1;
7602 newerr = (elf32_stm32l4xx_erratum_list *)
7603 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7604
7605 newerr->type = STM32L4XX_ERRATUM_VENEER;
7606 newerr->vma = -1;
7607 newerr->u.v.branch = branch;
7608 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7609 branch->u.b.veneer = newerr;
7610
7611 newerr->next = sec_data->stm32l4xx_erratumlist;
7612 sec_data->stm32l4xx_erratumlist = newerr;
7613
7614 /* A symbol for the return from the veneer. */
7615 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7616 hash_table->num_stm32l4xx_fixes);
7617
7618 myh = elf_link_hash_lookup
7619 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7620
7621 if (myh != NULL)
7622 abort ();
7623
7624 bh = NULL;
7625 val = offset + 4;
7626 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7627 branch_sec, val, NULL, TRUE, FALSE, &bh);
7628
7629 myh = (struct elf_link_hash_entry *) bh;
7630 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7631 myh->forced_local = 1;
7632
7633 free (tmp_name);
7634
7635 /* Generate a mapping symbol for the veneer section, and explicitly add an
7636 entry for that symbol to the code/data map for the section. */
7637 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7638 {
7639 bh = NULL;
7640 /* Creates a THUMB symbol since there is no other choice. */
7641 _bfd_generic_link_add_one_symbol (link_info,
7642 hash_table->bfd_of_glue_owner, "$t",
7643 BSF_LOCAL, s, 0, NULL,
7644 TRUE, FALSE, &bh);
7645
7646 myh = (struct elf_link_hash_entry *) bh;
7647 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7648 myh->forced_local = 1;
7649
7650 /* The elf32_arm_init_maps function only cares about symbols from input
7651 BFDs. We must make a note of this generated mapping symbol
7652 ourselves so that code byteswapping works properly in
7653 elf32_arm_write_section. */
7654 elf32_arm_section_map_add (s, 't', 0);
7655 }
7656
7657 s->size += veneer_size;
7658 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7659 hash_table->num_stm32l4xx_fixes++;
7660
7661 /* The offset of the veneer. */
7662 return val;
7663 }
7664
7665 #define ARM_GLUE_SECTION_FLAGS \
7666 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7667 | SEC_READONLY | SEC_LINKER_CREATED)
7668
7669 /* Create a fake section for use by the ARM backend of the linker. */
7670
7671 static bfd_boolean
7672 arm_make_glue_section (bfd * abfd, const char * name)
7673 {
7674 asection * sec;
7675
7676 sec = bfd_get_linker_section (abfd, name);
7677 if (sec != NULL)
7678 /* Already made. */
7679 return TRUE;
7680
7681 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7682
7683 if (sec == NULL
7684 || !bfd_set_section_alignment (abfd, sec, 2))
7685 return FALSE;
7686
7687 /* Set the gc mark to prevent the section from being removed by garbage
7688 collection, despite the fact that no relocs refer to this section. */
7689 sec->gc_mark = 1;
7690
7691 return TRUE;
7692 }
7693
7694 /* Set size of .plt entries. This function is called from the
7695 linker scripts in ld/emultempl/{armelf}.em. */
7696
7697 void
7698 bfd_elf32_arm_use_long_plt (void)
7699 {
7700 elf32_arm_use_long_plt_entry = TRUE;
7701 }
7702
7703 /* Add the glue sections to ABFD. This function is called from the
7704 linker scripts in ld/emultempl/{armelf}.em. */
7705
7706 bfd_boolean
7707 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7708 struct bfd_link_info *info)
7709 {
7710 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7711 bfd_boolean dostm32l4xx = globals
7712 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7713 bfd_boolean addglue;
7714
7715 /* If we are only performing a partial
7716 link do not bother adding the glue. */
7717 if (bfd_link_relocatable (info))
7718 return TRUE;
7719
7720 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7721 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7722 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7723 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7724
7725 if (!dostm32l4xx)
7726 return addglue;
7727
7728 return addglue
7729 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7730 }
7731
7732 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7733 ensures they are not marked for deletion by
7734 strip_excluded_output_sections () when veneers are going to be created
7735 later. Not doing so would trigger assert on empty section size in
7736 lang_size_sections_1 (). */
7737
7738 void
7739 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7740 {
7741 enum elf32_arm_stub_type stub_type;
7742
7743 /* If we are only performing a partial
7744 link do not bother adding the glue. */
7745 if (bfd_link_relocatable (info))
7746 return;
7747
7748 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7749 {
7750 asection *out_sec;
7751 const char *out_sec_name;
7752
7753 if (!arm_dedicated_stub_output_section_required (stub_type))
7754 continue;
7755
7756 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7757 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7758 if (out_sec != NULL)
7759 out_sec->flags |= SEC_KEEP;
7760 }
7761 }
7762
7763 /* Select a BFD to be used to hold the sections used by the glue code.
7764 This function is called from the linker scripts in ld/emultempl/
7765 {armelf/pe}.em. */
7766
7767 bfd_boolean
7768 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7769 {
7770 struct elf32_arm_link_hash_table *globals;
7771
7772 /* If we are only performing a partial link
7773 do not bother getting a bfd to hold the glue. */
7774 if (bfd_link_relocatable (info))
7775 return TRUE;
7776
7777 /* Make sure we don't attach the glue sections to a dynamic object. */
7778 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7779
7780 globals = elf32_arm_hash_table (info);
7781 BFD_ASSERT (globals != NULL);
7782
7783 if (globals->bfd_of_glue_owner != NULL)
7784 return TRUE;
7785
7786 /* Save the bfd for later use. */
7787 globals->bfd_of_glue_owner = abfd;
7788
7789 return TRUE;
7790 }
7791
7792 static void
7793 check_use_blx (struct elf32_arm_link_hash_table *globals)
7794 {
7795 int cpu_arch;
7796
7797 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7798 Tag_CPU_arch);
7799
7800 if (globals->fix_arm1176)
7801 {
7802 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7803 globals->use_blx = 1;
7804 }
7805 else
7806 {
7807 if (cpu_arch > TAG_CPU_ARCH_V4T)
7808 globals->use_blx = 1;
7809 }
7810 }
7811
7812 bfd_boolean
7813 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7814 struct bfd_link_info *link_info)
7815 {
7816 Elf_Internal_Shdr *symtab_hdr;
7817 Elf_Internal_Rela *internal_relocs = NULL;
7818 Elf_Internal_Rela *irel, *irelend;
7819 bfd_byte *contents = NULL;
7820
7821 asection *sec;
7822 struct elf32_arm_link_hash_table *globals;
7823
7824 /* If we are only performing a partial link do not bother
7825 to construct any glue. */
7826 if (bfd_link_relocatable (link_info))
7827 return TRUE;
7828
7829 /* Here we have a bfd that is to be included on the link. We have a
7830 hook to do reloc rummaging, before section sizes are nailed down. */
7831 globals = elf32_arm_hash_table (link_info);
7832 BFD_ASSERT (globals != NULL);
7833
7834 check_use_blx (globals);
7835
7836 if (globals->byteswap_code && !bfd_big_endian (abfd))
7837 {
7838 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
7839 abfd);
7840 return FALSE;
7841 }
7842
7843 /* PR 5398: If we have not decided to include any loadable sections in
7844 the output then we will not have a glue owner bfd. This is OK, it
7845 just means that there is nothing else for us to do here. */
7846 if (globals->bfd_of_glue_owner == NULL)
7847 return TRUE;
7848
7849 /* Rummage around all the relocs and map the glue vectors. */
7850 sec = abfd->sections;
7851
7852 if (sec == NULL)
7853 return TRUE;
7854
7855 for (; sec != NULL; sec = sec->next)
7856 {
7857 if (sec->reloc_count == 0)
7858 continue;
7859
7860 if ((sec->flags & SEC_EXCLUDE) != 0)
7861 continue;
7862
7863 symtab_hdr = & elf_symtab_hdr (abfd);
7864
7865 /* Load the relocs. */
7866 internal_relocs
7867 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7868
7869 if (internal_relocs == NULL)
7870 goto error_return;
7871
7872 irelend = internal_relocs + sec->reloc_count;
7873 for (irel = internal_relocs; irel < irelend; irel++)
7874 {
7875 long r_type;
7876 unsigned long r_index;
7877
7878 struct elf_link_hash_entry *h;
7879
7880 r_type = ELF32_R_TYPE (irel->r_info);
7881 r_index = ELF32_R_SYM (irel->r_info);
7882
7883 /* These are the only relocation types we care about. */
7884 if ( r_type != R_ARM_PC24
7885 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7886 continue;
7887
7888 /* Get the section contents if we haven't done so already. */
7889 if (contents == NULL)
7890 {
7891 /* Get cached copy if it exists. */
7892 if (elf_section_data (sec)->this_hdr.contents != NULL)
7893 contents = elf_section_data (sec)->this_hdr.contents;
7894 else
7895 {
7896 /* Go get them off disk. */
7897 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7898 goto error_return;
7899 }
7900 }
7901
7902 if (r_type == R_ARM_V4BX)
7903 {
7904 int reg;
7905
7906 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7907 record_arm_bx_glue (link_info, reg);
7908 continue;
7909 }
7910
7911 /* If the relocation is not against a symbol it cannot concern us. */
7912 h = NULL;
7913
7914 /* We don't care about local symbols. */
7915 if (r_index < symtab_hdr->sh_info)
7916 continue;
7917
7918 /* This is an external symbol. */
7919 r_index -= symtab_hdr->sh_info;
7920 h = (struct elf_link_hash_entry *)
7921 elf_sym_hashes (abfd)[r_index];
7922
7923 /* If the relocation is against a static symbol it must be within
7924 the current section and so cannot be a cross ARM/Thumb relocation. */
7925 if (h == NULL)
7926 continue;
7927
7928 /* If the call will go through a PLT entry then we do not need
7929 glue. */
7930 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7931 continue;
7932
7933 switch (r_type)
7934 {
7935 case R_ARM_PC24:
7936 /* This one is a call from arm code. We need to look up
7937 the target of the call. If it is a thumb target, we
7938 insert glue. */
7939 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7940 == ST_BRANCH_TO_THUMB)
7941 record_arm_to_thumb_glue (link_info, h);
7942 break;
7943
7944 default:
7945 abort ();
7946 }
7947 }
7948
7949 if (contents != NULL
7950 && elf_section_data (sec)->this_hdr.contents != contents)
7951 free (contents);
7952 contents = NULL;
7953
7954 if (internal_relocs != NULL
7955 && elf_section_data (sec)->relocs != internal_relocs)
7956 free (internal_relocs);
7957 internal_relocs = NULL;
7958 }
7959
7960 return TRUE;
7961
7962 error_return:
7963 if (contents != NULL
7964 && elf_section_data (sec)->this_hdr.contents != contents)
7965 free (contents);
7966 if (internal_relocs != NULL
7967 && elf_section_data (sec)->relocs != internal_relocs)
7968 free (internal_relocs);
7969
7970 return FALSE;
7971 }
7972 #endif
7973
7974
7975 /* Initialise maps of ARM/Thumb/data for input BFDs. */
7976
7977 void
7978 bfd_elf32_arm_init_maps (bfd *abfd)
7979 {
7980 Elf_Internal_Sym *isymbuf;
7981 Elf_Internal_Shdr *hdr;
7982 unsigned int i, localsyms;
7983
7984 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7985 if (! is_arm_elf (abfd))
7986 return;
7987
7988 if ((abfd->flags & DYNAMIC) != 0)
7989 return;
7990
7991 hdr = & elf_symtab_hdr (abfd);
7992 localsyms = hdr->sh_info;
7993
7994 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7995 should contain the number of local symbols, which should come before any
7996 global symbols. Mapping symbols are always local. */
7997 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7998 NULL);
7999
8000 /* No internal symbols read? Skip this BFD. */
8001 if (isymbuf == NULL)
8002 return;
8003
8004 for (i = 0; i < localsyms; i++)
8005 {
8006 Elf_Internal_Sym *isym = &isymbuf[i];
8007 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
8008 const char *name;
8009
8010 if (sec != NULL
8011 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
8012 {
8013 name = bfd_elf_string_from_elf_section (abfd,
8014 hdr->sh_link, isym->st_name);
8015
8016 if (bfd_is_arm_special_symbol_name (name,
8017 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
8018 elf32_arm_section_map_add (sec, name[1], isym->st_value);
8019 }
8020 }
8021 }
8022
8023
8024 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
8025 say what they wanted. */
8026
8027 void
8028 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
8029 {
8030 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8031 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8032
8033 if (globals == NULL)
8034 return;
8035
8036 if (globals->fix_cortex_a8 == -1)
8037 {
8038 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
8039 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
8040 && (out_attr[Tag_CPU_arch_profile].i == 'A'
8041 || out_attr[Tag_CPU_arch_profile].i == 0))
8042 globals->fix_cortex_a8 = 1;
8043 else
8044 globals->fix_cortex_a8 = 0;
8045 }
8046 }
8047
8048
8049 void
8050 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
8051 {
8052 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8053 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8054
8055 if (globals == NULL)
8056 return;
8057 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8058 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
8059 {
8060 switch (globals->vfp11_fix)
8061 {
8062 case BFD_ARM_VFP11_FIX_DEFAULT:
8063 case BFD_ARM_VFP11_FIX_NONE:
8064 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8065 break;
8066
8067 default:
8068 /* Give a warning, but do as the user requests anyway. */
8069 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
8070 "workaround is not necessary for target architecture"), obfd);
8071 }
8072 }
8073 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
8074 /* For earlier architectures, we might need the workaround, but do not
8075 enable it by default. If users is running with broken hardware, they
8076 must enable the erratum fix explicitly. */
8077 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8078 }
8079
8080 void
8081 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
8082 {
8083 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8084 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8085
8086 if (globals == NULL)
8087 return;
8088
8089 /* We assume only Cortex-M4 may require the fix. */
8090 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
8091 || out_attr[Tag_CPU_arch_profile].i != 'M')
8092 {
8093 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
8094 /* Give a warning, but do as the user requests anyway. */
8095 _bfd_error_handler
8096 (_("%pB: warning: selected STM32L4XX erratum "
8097 "workaround is not necessary for target architecture"), obfd);
8098 }
8099 }
8100
8101 enum bfd_arm_vfp11_pipe
8102 {
8103 VFP11_FMAC,
8104 VFP11_LS,
8105 VFP11_DS,
8106 VFP11_BAD
8107 };
8108
8109 /* Return a VFP register number. This is encoded as RX:X for single-precision
8110 registers, or X:RX for double-precision registers, where RX is the group of
8111 four bits in the instruction encoding and X is the single extension bit.
8112 RX and X fields are specified using their lowest (starting) bit. The return
8113 value is:
8114
8115 0...31: single-precision registers s0...s31
8116 32...63: double-precision registers d0...d31.
8117
8118 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8119 encounter VFP3 instructions, so we allow the full range for DP registers. */
8120
8121 static unsigned int
8122 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
8123 unsigned int x)
8124 {
8125 if (is_double)
8126 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
8127 else
8128 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
8129 }
8130
8131 /* Set bits in *WMASK according to a register number REG as encoded by
8132 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8133
8134 static void
8135 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
8136 {
8137 if (reg < 32)
8138 *wmask |= 1 << reg;
8139 else if (reg < 48)
8140 *wmask |= 3 << ((reg - 32) * 2);
8141 }
8142
8143 /* Return TRUE if WMASK overwrites anything in REGS. */
8144
8145 static bfd_boolean
8146 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
8147 {
8148 int i;
8149
8150 for (i = 0; i < numregs; i++)
8151 {
8152 unsigned int reg = regs[i];
8153
8154 if (reg < 32 && (wmask & (1 << reg)) != 0)
8155 return TRUE;
8156
8157 reg -= 32;
8158
8159 if (reg >= 16)
8160 continue;
8161
8162 if ((wmask & (3 << (reg * 2))) != 0)
8163 return TRUE;
8164 }
8165
8166 return FALSE;
8167 }
8168
8169 /* In this function, we're interested in two things: finding input registers
8170 for VFP data-processing instructions, and finding the set of registers which
8171 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8172 hold the written set, so FLDM etc. are easy to deal with (we're only
8173 interested in 32 SP registers or 16 dp registers, due to the VFP version
8174 implemented by the chip in question). DP registers are marked by setting
8175 both SP registers in the write mask). */
8176
8177 static enum bfd_arm_vfp11_pipe
8178 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
8179 int *numregs)
8180 {
8181 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
8182 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
8183
8184 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8185 {
8186 unsigned int pqrs;
8187 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8188 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8189
8190 pqrs = ((insn & 0x00800000) >> 20)
8191 | ((insn & 0x00300000) >> 19)
8192 | ((insn & 0x00000040) >> 6);
8193
8194 switch (pqrs)
8195 {
8196 case 0: /* fmac[sd]. */
8197 case 1: /* fnmac[sd]. */
8198 case 2: /* fmsc[sd]. */
8199 case 3: /* fnmsc[sd]. */
8200 vpipe = VFP11_FMAC;
8201 bfd_arm_vfp11_write_mask (destmask, fd);
8202 regs[0] = fd;
8203 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8204 regs[2] = fm;
8205 *numregs = 3;
8206 break;
8207
8208 case 4: /* fmul[sd]. */
8209 case 5: /* fnmul[sd]. */
8210 case 6: /* fadd[sd]. */
8211 case 7: /* fsub[sd]. */
8212 vpipe = VFP11_FMAC;
8213 goto vfp_binop;
8214
8215 case 8: /* fdiv[sd]. */
8216 vpipe = VFP11_DS;
8217 vfp_binop:
8218 bfd_arm_vfp11_write_mask (destmask, fd);
8219 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8220 regs[1] = fm;
8221 *numregs = 2;
8222 break;
8223
8224 case 15: /* extended opcode. */
8225 {
8226 unsigned int extn = ((insn >> 15) & 0x1e)
8227 | ((insn >> 7) & 1);
8228
8229 switch (extn)
8230 {
8231 case 0: /* fcpy[sd]. */
8232 case 1: /* fabs[sd]. */
8233 case 2: /* fneg[sd]. */
8234 case 8: /* fcmp[sd]. */
8235 case 9: /* fcmpe[sd]. */
8236 case 10: /* fcmpz[sd]. */
8237 case 11: /* fcmpez[sd]. */
8238 case 16: /* fuito[sd]. */
8239 case 17: /* fsito[sd]. */
8240 case 24: /* ftoui[sd]. */
8241 case 25: /* ftouiz[sd]. */
8242 case 26: /* ftosi[sd]. */
8243 case 27: /* ftosiz[sd]. */
8244 /* These instructions will not bounce due to underflow. */
8245 *numregs = 0;
8246 vpipe = VFP11_FMAC;
8247 break;
8248
8249 case 3: /* fsqrt[sd]. */
8250 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8251 registers to cause the erratum in previous instructions. */
8252 bfd_arm_vfp11_write_mask (destmask, fd);
8253 vpipe = VFP11_DS;
8254 break;
8255
8256 case 15: /* fcvt{ds,sd}. */
8257 {
8258 int rnum = 0;
8259
8260 bfd_arm_vfp11_write_mask (destmask, fd);
8261
8262 /* Only FCVTSD can underflow. */
8263 if ((insn & 0x100) != 0)
8264 regs[rnum++] = fm;
8265
8266 *numregs = rnum;
8267
8268 vpipe = VFP11_FMAC;
8269 }
8270 break;
8271
8272 default:
8273 return VFP11_BAD;
8274 }
8275 }
8276 break;
8277
8278 default:
8279 return VFP11_BAD;
8280 }
8281 }
8282 /* Two-register transfer. */
8283 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
8284 {
8285 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8286
8287 if ((insn & 0x100000) == 0)
8288 {
8289 if (is_double)
8290 bfd_arm_vfp11_write_mask (destmask, fm);
8291 else
8292 {
8293 bfd_arm_vfp11_write_mask (destmask, fm);
8294 bfd_arm_vfp11_write_mask (destmask, fm + 1);
8295 }
8296 }
8297
8298 vpipe = VFP11_LS;
8299 }
8300 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
8301 {
8302 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8303 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
8304
8305 switch (puw)
8306 {
8307 case 0: /* Two-reg transfer. We should catch these above. */
8308 abort ();
8309
8310 case 2: /* fldm[sdx]. */
8311 case 3:
8312 case 5:
8313 {
8314 unsigned int i, offset = insn & 0xff;
8315
8316 if (is_double)
8317 offset >>= 1;
8318
8319 for (i = fd; i < fd + offset; i++)
8320 bfd_arm_vfp11_write_mask (destmask, i);
8321 }
8322 break;
8323
8324 case 4: /* fld[sd]. */
8325 case 6:
8326 bfd_arm_vfp11_write_mask (destmask, fd);
8327 break;
8328
8329 default:
8330 return VFP11_BAD;
8331 }
8332
8333 vpipe = VFP11_LS;
8334 }
8335 /* Single-register transfer. Note L==0. */
8336 else if ((insn & 0x0f100e10) == 0x0e000a10)
8337 {
8338 unsigned int opcode = (insn >> 21) & 7;
8339 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8340
8341 switch (opcode)
8342 {
8343 case 0: /* fmsr/fmdlr. */
8344 case 1: /* fmdhr. */
8345 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8346 destination register. I don't know if this is exactly right,
8347 but it is the conservative choice. */
8348 bfd_arm_vfp11_write_mask (destmask, fn);
8349 break;
8350
8351 case 7: /* fmxr. */
8352 break;
8353 }
8354
8355 vpipe = VFP11_LS;
8356 }
8357
8358 return vpipe;
8359 }
8360
8361
8362 static int elf32_arm_compare_mapping (const void * a, const void * b);
8363
8364
8365 /* Look for potentially-troublesome code sequences which might trigger the
8366 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8367 (available from ARM) for details of the erratum. A short version is
8368 described in ld.texinfo. */
8369
8370 bfd_boolean
8371 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8372 {
8373 asection *sec;
8374 bfd_byte *contents = NULL;
8375 int state = 0;
8376 int regs[3], numregs = 0;
8377 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8378 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8379
8380 if (globals == NULL)
8381 return FALSE;
8382
8383 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8384 The states transition as follows:
8385
8386 0 -> 1 (vector) or 0 -> 2 (scalar)
8387 A VFP FMAC-pipeline instruction has been seen. Fill
8388 regs[0]..regs[numregs-1] with its input operands. Remember this
8389 instruction in 'first_fmac'.
8390
8391 1 -> 2
8392 Any instruction, except for a VFP instruction which overwrites
8393 regs[*].
8394
8395 1 -> 3 [ -> 0 ] or
8396 2 -> 3 [ -> 0 ]
8397 A VFP instruction has been seen which overwrites any of regs[*].
8398 We must make a veneer! Reset state to 0 before examining next
8399 instruction.
8400
8401 2 -> 0
8402 If we fail to match anything in state 2, reset to state 0 and reset
8403 the instruction pointer to the instruction after 'first_fmac'.
8404
8405 If the VFP11 vector mode is in use, there must be at least two unrelated
8406 instructions between anti-dependent VFP11 instructions to properly avoid
8407 triggering the erratum, hence the use of the extra state 1. */
8408
8409 /* If we are only performing a partial link do not bother
8410 to construct any glue. */
8411 if (bfd_link_relocatable (link_info))
8412 return TRUE;
8413
8414 /* Skip if this bfd does not correspond to an ELF image. */
8415 if (! is_arm_elf (abfd))
8416 return TRUE;
8417
8418 /* We should have chosen a fix type by the time we get here. */
8419 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8420
8421 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8422 return TRUE;
8423
8424 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8425 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8426 return TRUE;
8427
8428 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8429 {
8430 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8431 struct _arm_elf_section_data *sec_data;
8432
8433 /* If we don't have executable progbits, we're not interested in this
8434 section. Also skip if section is to be excluded. */
8435 if (elf_section_type (sec) != SHT_PROGBITS
8436 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8437 || (sec->flags & SEC_EXCLUDE) != 0
8438 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8439 || sec->output_section == bfd_abs_section_ptr
8440 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8441 continue;
8442
8443 sec_data = elf32_arm_section_data (sec);
8444
8445 if (sec_data->mapcount == 0)
8446 continue;
8447
8448 if (elf_section_data (sec)->this_hdr.contents != NULL)
8449 contents = elf_section_data (sec)->this_hdr.contents;
8450 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8451 goto error_return;
8452
8453 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8454 elf32_arm_compare_mapping);
8455
8456 for (span = 0; span < sec_data->mapcount; span++)
8457 {
8458 unsigned int span_start = sec_data->map[span].vma;
8459 unsigned int span_end = (span == sec_data->mapcount - 1)
8460 ? sec->size : sec_data->map[span + 1].vma;
8461 char span_type = sec_data->map[span].type;
8462
8463 /* FIXME: Only ARM mode is supported at present. We may need to
8464 support Thumb-2 mode also at some point. */
8465 if (span_type != 'a')
8466 continue;
8467
8468 for (i = span_start; i < span_end;)
8469 {
8470 unsigned int next_i = i + 4;
8471 unsigned int insn = bfd_big_endian (abfd)
8472 ? (contents[i] << 24)
8473 | (contents[i + 1] << 16)
8474 | (contents[i + 2] << 8)
8475 | contents[i + 3]
8476 : (contents[i + 3] << 24)
8477 | (contents[i + 2] << 16)
8478 | (contents[i + 1] << 8)
8479 | contents[i];
8480 unsigned int writemask = 0;
8481 enum bfd_arm_vfp11_pipe vpipe;
8482
8483 switch (state)
8484 {
8485 case 0:
8486 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8487 &numregs);
8488 /* I'm assuming the VFP11 erratum can trigger with denorm
8489 operands on either the FMAC or the DS pipeline. This might
8490 lead to slightly overenthusiastic veneer insertion. */
8491 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8492 {
8493 state = use_vector ? 1 : 2;
8494 first_fmac = i;
8495 veneer_of_insn = insn;
8496 }
8497 break;
8498
8499 case 1:
8500 {
8501 int other_regs[3], other_numregs;
8502 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8503 other_regs,
8504 &other_numregs);
8505 if (vpipe != VFP11_BAD
8506 && bfd_arm_vfp11_antidependency (writemask, regs,
8507 numregs))
8508 state = 3;
8509 else
8510 state = 2;
8511 }
8512 break;
8513
8514 case 2:
8515 {
8516 int other_regs[3], other_numregs;
8517 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8518 other_regs,
8519 &other_numregs);
8520 if (vpipe != VFP11_BAD
8521 && bfd_arm_vfp11_antidependency (writemask, regs,
8522 numregs))
8523 state = 3;
8524 else
8525 {
8526 state = 0;
8527 next_i = first_fmac + 4;
8528 }
8529 }
8530 break;
8531
8532 case 3:
8533 abort (); /* Should be unreachable. */
8534 }
8535
8536 if (state == 3)
8537 {
8538 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8539 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8540
8541 elf32_arm_section_data (sec)->erratumcount += 1;
8542
8543 newerr->u.b.vfp_insn = veneer_of_insn;
8544
8545 switch (span_type)
8546 {
8547 case 'a':
8548 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8549 break;
8550
8551 default:
8552 abort ();
8553 }
8554
8555 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8556 first_fmac);
8557
8558 newerr->vma = -1;
8559
8560 newerr->next = sec_data->erratumlist;
8561 sec_data->erratumlist = newerr;
8562
8563 state = 0;
8564 }
8565
8566 i = next_i;
8567 }
8568 }
8569
8570 if (contents != NULL
8571 && elf_section_data (sec)->this_hdr.contents != contents)
8572 free (contents);
8573 contents = NULL;
8574 }
8575
8576 return TRUE;
8577
8578 error_return:
8579 if (contents != NULL
8580 && elf_section_data (sec)->this_hdr.contents != contents)
8581 free (contents);
8582
8583 return FALSE;
8584 }
8585
8586 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8587 after sections have been laid out, using specially-named symbols. */
8588
8589 void
8590 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8591 struct bfd_link_info *link_info)
8592 {
8593 asection *sec;
8594 struct elf32_arm_link_hash_table *globals;
8595 char *tmp_name;
8596
8597 if (bfd_link_relocatable (link_info))
8598 return;
8599
8600 /* Skip if this bfd does not correspond to an ELF image. */
8601 if (! is_arm_elf (abfd))
8602 return;
8603
8604 globals = elf32_arm_hash_table (link_info);
8605 if (globals == NULL)
8606 return;
8607
8608 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8609 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8610
8611 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8612 {
8613 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8614 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8615
8616 for (; errnode != NULL; errnode = errnode->next)
8617 {
8618 struct elf_link_hash_entry *myh;
8619 bfd_vma vma;
8620
8621 switch (errnode->type)
8622 {
8623 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8624 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8625 /* Find veneer symbol. */
8626 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8627 errnode->u.b.veneer->u.v.id);
8628
8629 myh = elf_link_hash_lookup
8630 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8631
8632 if (myh == NULL)
8633 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8634 abfd, "VFP11", tmp_name);
8635
8636 vma = myh->root.u.def.section->output_section->vma
8637 + myh->root.u.def.section->output_offset
8638 + myh->root.u.def.value;
8639
8640 errnode->u.b.veneer->vma = vma;
8641 break;
8642
8643 case VFP11_ERRATUM_ARM_VENEER:
8644 case VFP11_ERRATUM_THUMB_VENEER:
8645 /* Find return location. */
8646 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8647 errnode->u.v.id);
8648
8649 myh = elf_link_hash_lookup
8650 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8651
8652 if (myh == NULL)
8653 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8654 abfd, "VFP11", tmp_name);
8655
8656 vma = myh->root.u.def.section->output_section->vma
8657 + myh->root.u.def.section->output_offset
8658 + myh->root.u.def.value;
8659
8660 errnode->u.v.branch->vma = vma;
8661 break;
8662
8663 default:
8664 abort ();
8665 }
8666 }
8667 }
8668
8669 free (tmp_name);
8670 }
8671
8672 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8673 return locations after sections have been laid out, using
8674 specially-named symbols. */
8675
8676 void
8677 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8678 struct bfd_link_info *link_info)
8679 {
8680 asection *sec;
8681 struct elf32_arm_link_hash_table *globals;
8682 char *tmp_name;
8683
8684 if (bfd_link_relocatable (link_info))
8685 return;
8686
8687 /* Skip if this bfd does not correspond to an ELF image. */
8688 if (! is_arm_elf (abfd))
8689 return;
8690
8691 globals = elf32_arm_hash_table (link_info);
8692 if (globals == NULL)
8693 return;
8694
8695 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8696 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8697
8698 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8699 {
8700 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8701 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8702
8703 for (; errnode != NULL; errnode = errnode->next)
8704 {
8705 struct elf_link_hash_entry *myh;
8706 bfd_vma vma;
8707
8708 switch (errnode->type)
8709 {
8710 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8711 /* Find veneer symbol. */
8712 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8713 errnode->u.b.veneer->u.v.id);
8714
8715 myh = elf_link_hash_lookup
8716 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8717
8718 if (myh == NULL)
8719 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8720 abfd, "STM32L4XX", tmp_name);
8721
8722 vma = myh->root.u.def.section->output_section->vma
8723 + myh->root.u.def.section->output_offset
8724 + myh->root.u.def.value;
8725
8726 errnode->u.b.veneer->vma = vma;
8727 break;
8728
8729 case STM32L4XX_ERRATUM_VENEER:
8730 /* Find return location. */
8731 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8732 errnode->u.v.id);
8733
8734 myh = elf_link_hash_lookup
8735 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8736
8737 if (myh == NULL)
8738 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8739 abfd, "STM32L4XX", tmp_name);
8740
8741 vma = myh->root.u.def.section->output_section->vma
8742 + myh->root.u.def.section->output_offset
8743 + myh->root.u.def.value;
8744
8745 errnode->u.v.branch->vma = vma;
8746 break;
8747
8748 default:
8749 abort ();
8750 }
8751 }
8752 }
8753
8754 free (tmp_name);
8755 }
8756
8757 static inline bfd_boolean
8758 is_thumb2_ldmia (const insn32 insn)
8759 {
8760 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8761 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8762 return (insn & 0xffd02000) == 0xe8900000;
8763 }
8764
8765 static inline bfd_boolean
8766 is_thumb2_ldmdb (const insn32 insn)
8767 {
8768 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8769 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8770 return (insn & 0xffd02000) == 0xe9100000;
8771 }
8772
8773 static inline bfd_boolean
8774 is_thumb2_vldm (const insn32 insn)
8775 {
8776 /* A6.5 Extension register load or store instruction
8777 A7.7.229
8778 We look for SP 32-bit and DP 64-bit registers.
8779 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8780 <list> is consecutive 64-bit registers
8781 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8782 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8783 <list> is consecutive 32-bit registers
8784 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8785 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8786 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8787 return
8788 (((insn & 0xfe100f00) == 0xec100b00) ||
8789 ((insn & 0xfe100f00) == 0xec100a00))
8790 && /* (IA without !). */
8791 (((((insn << 7) >> 28) & 0xd) == 0x4)
8792 /* (IA with !), includes VPOP (when reg number is SP). */
8793 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8794 /* (DB with !). */
8795 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8796 }
8797
8798 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8799 VLDM opcode and:
8800 - computes the number and the mode of memory accesses
8801 - decides if the replacement should be done:
8802 . replaces only if > 8-word accesses
8803 . or (testing purposes only) replaces all accesses. */
8804
8805 static bfd_boolean
8806 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8807 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8808 {
8809 int nb_words = 0;
8810
8811 /* The field encoding the register list is the same for both LDMIA
8812 and LDMDB encodings. */
8813 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8814 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
8815 else if (is_thumb2_vldm (insn))
8816 nb_words = (insn & 0xff);
8817
8818 /* DEFAULT mode accounts for the real bug condition situation,
8819 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8820 return
8821 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8822 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8823 }
8824
8825 /* Look for potentially-troublesome code sequences which might trigger
8826 the STM STM32L4XX erratum. */
8827
8828 bfd_boolean
8829 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8830 struct bfd_link_info *link_info)
8831 {
8832 asection *sec;
8833 bfd_byte *contents = NULL;
8834 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8835
8836 if (globals == NULL)
8837 return FALSE;
8838
8839 /* If we are only performing a partial link do not bother
8840 to construct any glue. */
8841 if (bfd_link_relocatable (link_info))
8842 return TRUE;
8843
8844 /* Skip if this bfd does not correspond to an ELF image. */
8845 if (! is_arm_elf (abfd))
8846 return TRUE;
8847
8848 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8849 return TRUE;
8850
8851 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8852 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8853 return TRUE;
8854
8855 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8856 {
8857 unsigned int i, span;
8858 struct _arm_elf_section_data *sec_data;
8859
8860 /* If we don't have executable progbits, we're not interested in this
8861 section. Also skip if section is to be excluded. */
8862 if (elf_section_type (sec) != SHT_PROGBITS
8863 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8864 || (sec->flags & SEC_EXCLUDE) != 0
8865 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8866 || sec->output_section == bfd_abs_section_ptr
8867 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8868 continue;
8869
8870 sec_data = elf32_arm_section_data (sec);
8871
8872 if (sec_data->mapcount == 0)
8873 continue;
8874
8875 if (elf_section_data (sec)->this_hdr.contents != NULL)
8876 contents = elf_section_data (sec)->this_hdr.contents;
8877 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8878 goto error_return;
8879
8880 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8881 elf32_arm_compare_mapping);
8882
8883 for (span = 0; span < sec_data->mapcount; span++)
8884 {
8885 unsigned int span_start = sec_data->map[span].vma;
8886 unsigned int span_end = (span == sec_data->mapcount - 1)
8887 ? sec->size : sec_data->map[span + 1].vma;
8888 char span_type = sec_data->map[span].type;
8889 int itblock_current_pos = 0;
8890
8891 /* Only Thumb2 mode need be supported with this CM4 specific
8892 code, we should not encounter any arm mode eg span_type
8893 != 'a'. */
8894 if (span_type != 't')
8895 continue;
8896
8897 for (i = span_start; i < span_end;)
8898 {
8899 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8900 bfd_boolean insn_32bit = FALSE;
8901 bfd_boolean is_ldm = FALSE;
8902 bfd_boolean is_vldm = FALSE;
8903 bfd_boolean is_not_last_in_it_block = FALSE;
8904
8905 /* The first 16-bits of all 32-bit thumb2 instructions start
8906 with opcode[15..13]=0b111 and the encoded op1 can be anything
8907 except opcode[12..11]!=0b00.
8908 See 32-bit Thumb instruction encoding. */
8909 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8910 insn_32bit = TRUE;
8911
8912 /* Compute the predicate that tells if the instruction
8913 is concerned by the IT block
8914 - Creates an error if there is a ldm that is not
8915 last in the IT block thus cannot be replaced
8916 - Otherwise we can create a branch at the end of the
8917 IT block, it will be controlled naturally by IT
8918 with the proper pseudo-predicate
8919 - So the only interesting predicate is the one that
8920 tells that we are not on the last item of an IT
8921 block. */
8922 if (itblock_current_pos != 0)
8923 is_not_last_in_it_block = !!--itblock_current_pos;
8924
8925 if (insn_32bit)
8926 {
8927 /* Load the rest of the insn (in manual-friendly order). */
8928 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8929 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8930 is_vldm = is_thumb2_vldm (insn);
8931
8932 /* Veneers are created for (v)ldm depending on
8933 option flags and memory accesses conditions; but
8934 if the instruction is not the last instruction of
8935 an IT block, we cannot create a jump there, so we
8936 bail out. */
8937 if ((is_ldm || is_vldm)
8938 && stm32l4xx_need_create_replacing_stub
8939 (insn, globals->stm32l4xx_fix))
8940 {
8941 if (is_not_last_in_it_block)
8942 {
8943 _bfd_error_handler
8944 /* xgettext:c-format */
8945 (_("%pB(%pA+%#x): error: multiple load detected"
8946 " in non-last IT block instruction:"
8947 " STM32L4XX veneer cannot be generated; "
8948 "use gcc option -mrestrict-it to generate"
8949 " only one instruction per IT block"),
8950 abfd, sec, i);
8951 }
8952 else
8953 {
8954 elf32_stm32l4xx_erratum_list *newerr =
8955 (elf32_stm32l4xx_erratum_list *)
8956 bfd_zmalloc
8957 (sizeof (elf32_stm32l4xx_erratum_list));
8958
8959 elf32_arm_section_data (sec)
8960 ->stm32l4xx_erratumcount += 1;
8961 newerr->u.b.insn = insn;
8962 /* We create only thumb branches. */
8963 newerr->type =
8964 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8965 record_stm32l4xx_erratum_veneer
8966 (link_info, newerr, abfd, sec,
8967 i,
8968 is_ldm ?
8969 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8970 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8971 newerr->vma = -1;
8972 newerr->next = sec_data->stm32l4xx_erratumlist;
8973 sec_data->stm32l4xx_erratumlist = newerr;
8974 }
8975 }
8976 }
8977 else
8978 {
8979 /* A7.7.37 IT p208
8980 IT blocks are only encoded in T1
8981 Encoding T1: IT{x{y{z}}} <firstcond>
8982 1 0 1 1 - 1 1 1 1 - firstcond - mask
8983 if mask = '0000' then see 'related encodings'
8984 We don't deal with UNPREDICTABLE, just ignore these.
8985 There can be no nested IT blocks so an IT block
8986 is naturally a new one for which it is worth
8987 computing its size. */
8988 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8989 && ((insn & 0x000f) != 0x0000);
8990 /* If we have a new IT block we compute its size. */
8991 if (is_newitblock)
8992 {
8993 /* Compute the number of instructions controlled
8994 by the IT block, it will be used to decide
8995 whether we are inside an IT block or not. */
8996 unsigned int mask = insn & 0x000f;
8997 itblock_current_pos = 4 - ctz (mask);
8998 }
8999 }
9000
9001 i += insn_32bit ? 4 : 2;
9002 }
9003 }
9004
9005 if (contents != NULL
9006 && elf_section_data (sec)->this_hdr.contents != contents)
9007 free (contents);
9008 contents = NULL;
9009 }
9010
9011 return TRUE;
9012
9013 error_return:
9014 if (contents != NULL
9015 && elf_section_data (sec)->this_hdr.contents != contents)
9016 free (contents);
9017
9018 return FALSE;
9019 }
9020
9021 /* Set target relocation values needed during linking. */
9022
9023 void
9024 bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
9025 struct bfd_link_info *link_info,
9026 struct elf32_arm_params *params)
9027 {
9028 struct elf32_arm_link_hash_table *globals;
9029
9030 globals = elf32_arm_hash_table (link_info);
9031 if (globals == NULL)
9032 return;
9033
9034 globals->target1_is_rel = params->target1_is_rel;
9035 if (globals->fdpic_p)
9036 globals->target2_reloc = R_ARM_GOT32;
9037 else if (strcmp (params->target2_type, "rel") == 0)
9038 globals->target2_reloc = R_ARM_REL32;
9039 else if (strcmp (params->target2_type, "abs") == 0)
9040 globals->target2_reloc = R_ARM_ABS32;
9041 else if (strcmp (params->target2_type, "got-rel") == 0)
9042 globals->target2_reloc = R_ARM_GOT_PREL;
9043 else
9044 {
9045 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
9046 params->target2_type);
9047 }
9048 globals->fix_v4bx = params->fix_v4bx;
9049 globals->use_blx |= params->use_blx;
9050 globals->vfp11_fix = params->vfp11_denorm_fix;
9051 globals->stm32l4xx_fix = params->stm32l4xx_fix;
9052 if (globals->fdpic_p)
9053 globals->pic_veneer = 1;
9054 else
9055 globals->pic_veneer = params->pic_veneer;
9056 globals->fix_cortex_a8 = params->fix_cortex_a8;
9057 globals->fix_arm1176 = params->fix_arm1176;
9058 globals->cmse_implib = params->cmse_implib;
9059 globals->in_implib_bfd = params->in_implib_bfd;
9060
9061 BFD_ASSERT (is_arm_elf (output_bfd));
9062 elf_arm_tdata (output_bfd)->no_enum_size_warning
9063 = params->no_enum_size_warning;
9064 elf_arm_tdata (output_bfd)->no_wchar_size_warning
9065 = params->no_wchar_size_warning;
9066 }
9067
9068 /* Replace the target offset of a Thumb bl or b.w instruction. */
9069
9070 static void
9071 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
9072 {
9073 bfd_vma upper;
9074 bfd_vma lower;
9075 int reloc_sign;
9076
9077 BFD_ASSERT ((offset & 1) == 0);
9078
9079 upper = bfd_get_16 (abfd, insn);
9080 lower = bfd_get_16 (abfd, insn + 2);
9081 reloc_sign = (offset < 0) ? 1 : 0;
9082 upper = (upper & ~(bfd_vma) 0x7ff)
9083 | ((offset >> 12) & 0x3ff)
9084 | (reloc_sign << 10);
9085 lower = (lower & ~(bfd_vma) 0x2fff)
9086 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
9087 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
9088 | ((offset >> 1) & 0x7ff);
9089 bfd_put_16 (abfd, upper, insn);
9090 bfd_put_16 (abfd, lower, insn + 2);
9091 }
9092
9093 /* Thumb code calling an ARM function. */
9094
9095 static int
9096 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
9097 const char * name,
9098 bfd * input_bfd,
9099 bfd * output_bfd,
9100 asection * input_section,
9101 bfd_byte * hit_data,
9102 asection * sym_sec,
9103 bfd_vma offset,
9104 bfd_signed_vma addend,
9105 bfd_vma val,
9106 char **error_message)
9107 {
9108 asection * s = 0;
9109 bfd_vma my_offset;
9110 long int ret_offset;
9111 struct elf_link_hash_entry * myh;
9112 struct elf32_arm_link_hash_table * globals;
9113
9114 myh = find_thumb_glue (info, name, error_message);
9115 if (myh == NULL)
9116 return FALSE;
9117
9118 globals = elf32_arm_hash_table (info);
9119 BFD_ASSERT (globals != NULL);
9120 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9121
9122 my_offset = myh->root.u.def.value;
9123
9124 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9125 THUMB2ARM_GLUE_SECTION_NAME);
9126
9127 BFD_ASSERT (s != NULL);
9128 BFD_ASSERT (s->contents != NULL);
9129 BFD_ASSERT (s->output_section != NULL);
9130
9131 if ((my_offset & 0x01) == 0x01)
9132 {
9133 if (sym_sec != NULL
9134 && sym_sec->owner != NULL
9135 && !INTERWORK_FLAG (sym_sec->owner))
9136 {
9137 _bfd_error_handler
9138 (_("%pB(%s): warning: interworking not enabled;"
9139 " first occurrence: %pB: %s call to %s"),
9140 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
9141
9142 return FALSE;
9143 }
9144
9145 --my_offset;
9146 myh->root.u.def.value = my_offset;
9147
9148 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
9149 s->contents + my_offset);
9150
9151 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
9152 s->contents + my_offset + 2);
9153
9154 ret_offset =
9155 /* Address of destination of the stub. */
9156 ((bfd_signed_vma) val)
9157 - ((bfd_signed_vma)
9158 /* Offset from the start of the current section
9159 to the start of the stubs. */
9160 (s->output_offset
9161 /* Offset of the start of this stub from the start of the stubs. */
9162 + my_offset
9163 /* Address of the start of the current section. */
9164 + s->output_section->vma)
9165 /* The branch instruction is 4 bytes into the stub. */
9166 + 4
9167 /* ARM branches work from the pc of the instruction + 8. */
9168 + 8);
9169
9170 put_arm_insn (globals, output_bfd,
9171 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
9172 s->contents + my_offset + 4);
9173 }
9174
9175 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
9176
9177 /* Now go back and fix up the original BL insn to point to here. */
9178 ret_offset =
9179 /* Address of where the stub is located. */
9180 (s->output_section->vma + s->output_offset + my_offset)
9181 /* Address of where the BL is located. */
9182 - (input_section->output_section->vma + input_section->output_offset
9183 + offset)
9184 /* Addend in the relocation. */
9185 - addend
9186 /* Biassing for PC-relative addressing. */
9187 - 8;
9188
9189 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
9190
9191 return TRUE;
9192 }
9193
9194 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
9195
9196 static struct elf_link_hash_entry *
9197 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
9198 const char * name,
9199 bfd * input_bfd,
9200 bfd * output_bfd,
9201 asection * sym_sec,
9202 bfd_vma val,
9203 asection * s,
9204 char ** error_message)
9205 {
9206 bfd_vma my_offset;
9207 long int ret_offset;
9208 struct elf_link_hash_entry * myh;
9209 struct elf32_arm_link_hash_table * globals;
9210
9211 myh = find_arm_glue (info, name, error_message);
9212 if (myh == NULL)
9213 return NULL;
9214
9215 globals = elf32_arm_hash_table (info);
9216 BFD_ASSERT (globals != NULL);
9217 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9218
9219 my_offset = myh->root.u.def.value;
9220
9221 if ((my_offset & 0x01) == 0x01)
9222 {
9223 if (sym_sec != NULL
9224 && sym_sec->owner != NULL
9225 && !INTERWORK_FLAG (sym_sec->owner))
9226 {
9227 _bfd_error_handler
9228 (_("%pB(%s): warning: interworking not enabled;"
9229 " first occurrence: %pB: %s call to %s"),
9230 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
9231 }
9232
9233 --my_offset;
9234 myh->root.u.def.value = my_offset;
9235
9236 if (bfd_link_pic (info)
9237 || globals->root.is_relocatable_executable
9238 || globals->pic_veneer)
9239 {
9240 /* For relocatable objects we can't use absolute addresses,
9241 so construct the address from a relative offset. */
9242 /* TODO: If the offset is small it's probably worth
9243 constructing the address with adds. */
9244 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
9245 s->contents + my_offset);
9246 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
9247 s->contents + my_offset + 4);
9248 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
9249 s->contents + my_offset + 8);
9250 /* Adjust the offset by 4 for the position of the add,
9251 and 8 for the pipeline offset. */
9252 ret_offset = (val - (s->output_offset
9253 + s->output_section->vma
9254 + my_offset + 12))
9255 | 1;
9256 bfd_put_32 (output_bfd, ret_offset,
9257 s->contents + my_offset + 12);
9258 }
9259 else if (globals->use_blx)
9260 {
9261 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
9262 s->contents + my_offset);
9263
9264 /* It's a thumb address. Add the low order bit. */
9265 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
9266 s->contents + my_offset + 4);
9267 }
9268 else
9269 {
9270 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
9271 s->contents + my_offset);
9272
9273 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
9274 s->contents + my_offset + 4);
9275
9276 /* It's a thumb address. Add the low order bit. */
9277 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
9278 s->contents + my_offset + 8);
9279
9280 my_offset += 12;
9281 }
9282 }
9283
9284 BFD_ASSERT (my_offset <= globals->arm_glue_size);
9285
9286 return myh;
9287 }
9288
9289 /* Arm code calling a Thumb function. */
9290
9291 static int
9292 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
9293 const char * name,
9294 bfd * input_bfd,
9295 bfd * output_bfd,
9296 asection * input_section,
9297 bfd_byte * hit_data,
9298 asection * sym_sec,
9299 bfd_vma offset,
9300 bfd_signed_vma addend,
9301 bfd_vma val,
9302 char **error_message)
9303 {
9304 unsigned long int tmp;
9305 bfd_vma my_offset;
9306 asection * s;
9307 long int ret_offset;
9308 struct elf_link_hash_entry * myh;
9309 struct elf32_arm_link_hash_table * globals;
9310
9311 globals = elf32_arm_hash_table (info);
9312 BFD_ASSERT (globals != NULL);
9313 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9314
9315 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9316 ARM2THUMB_GLUE_SECTION_NAME);
9317 BFD_ASSERT (s != NULL);
9318 BFD_ASSERT (s->contents != NULL);
9319 BFD_ASSERT (s->output_section != NULL);
9320
9321 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
9322 sym_sec, val, s, error_message);
9323 if (!myh)
9324 return FALSE;
9325
9326 my_offset = myh->root.u.def.value;
9327 tmp = bfd_get_32 (input_bfd, hit_data);
9328 tmp = tmp & 0xFF000000;
9329
9330 /* Somehow these are both 4 too far, so subtract 8. */
9331 ret_offset = (s->output_offset
9332 + my_offset
9333 + s->output_section->vma
9334 - (input_section->output_offset
9335 + input_section->output_section->vma
9336 + offset + addend)
9337 - 8);
9338
9339 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9340
9341 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
9342
9343 return TRUE;
9344 }
9345
9346 /* Populate Arm stub for an exported Thumb function. */
9347
9348 static bfd_boolean
9349 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9350 {
9351 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9352 asection * s;
9353 struct elf_link_hash_entry * myh;
9354 struct elf32_arm_link_hash_entry *eh;
9355 struct elf32_arm_link_hash_table * globals;
9356 asection *sec;
9357 bfd_vma val;
9358 char *error_message;
9359
9360 eh = elf32_arm_hash_entry (h);
9361 /* Allocate stubs for exported Thumb functions on v4t. */
9362 if (eh->export_glue == NULL)
9363 return TRUE;
9364
9365 globals = elf32_arm_hash_table (info);
9366 BFD_ASSERT (globals != NULL);
9367 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9368
9369 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9370 ARM2THUMB_GLUE_SECTION_NAME);
9371 BFD_ASSERT (s != NULL);
9372 BFD_ASSERT (s->contents != NULL);
9373 BFD_ASSERT (s->output_section != NULL);
9374
9375 sec = eh->export_glue->root.u.def.section;
9376
9377 BFD_ASSERT (sec->output_section != NULL);
9378
9379 val = eh->export_glue->root.u.def.value + sec->output_offset
9380 + sec->output_section->vma;
9381
9382 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9383 h->root.u.def.section->owner,
9384 globals->obfd, sec, val, s,
9385 &error_message);
9386 BFD_ASSERT (myh);
9387 return TRUE;
9388 }
9389
9390 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9391
9392 static bfd_vma
9393 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9394 {
9395 bfd_byte *p;
9396 bfd_vma glue_addr;
9397 asection *s;
9398 struct elf32_arm_link_hash_table *globals;
9399
9400 globals = elf32_arm_hash_table (info);
9401 BFD_ASSERT (globals != NULL);
9402 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9403
9404 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9405 ARM_BX_GLUE_SECTION_NAME);
9406 BFD_ASSERT (s != NULL);
9407 BFD_ASSERT (s->contents != NULL);
9408 BFD_ASSERT (s->output_section != NULL);
9409
9410 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9411
9412 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9413
9414 if ((globals->bx_glue_offset[reg] & 1) == 0)
9415 {
9416 p = s->contents + glue_addr;
9417 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9418 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9419 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9420 globals->bx_glue_offset[reg] |= 1;
9421 }
9422
9423 return glue_addr + s->output_section->vma + s->output_offset;
9424 }
9425
9426 /* Generate Arm stubs for exported Thumb symbols. */
9427 static void
9428 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9429 struct bfd_link_info *link_info)
9430 {
9431 struct elf32_arm_link_hash_table * globals;
9432
9433 if (link_info == NULL)
9434 /* Ignore this if we are not called by the ELF backend linker. */
9435 return;
9436
9437 globals = elf32_arm_hash_table (link_info);
9438 if (globals == NULL)
9439 return;
9440
9441 /* If blx is available then exported Thumb symbols are OK and there is
9442 nothing to do. */
9443 if (globals->use_blx)
9444 return;
9445
9446 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9447 link_info);
9448 }
9449
9450 /* Reserve space for COUNT dynamic relocations in relocation selection
9451 SRELOC. */
9452
9453 static void
9454 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9455 bfd_size_type count)
9456 {
9457 struct elf32_arm_link_hash_table *htab;
9458
9459 htab = elf32_arm_hash_table (info);
9460 BFD_ASSERT (htab->root.dynamic_sections_created);
9461 if (sreloc == NULL)
9462 abort ();
9463 sreloc->size += RELOC_SIZE (htab) * count;
9464 }
9465
9466 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9467 dynamic, the relocations should go in SRELOC, otherwise they should
9468 go in the special .rel.iplt section. */
9469
9470 static void
9471 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9472 bfd_size_type count)
9473 {
9474 struct elf32_arm_link_hash_table *htab;
9475
9476 htab = elf32_arm_hash_table (info);
9477 if (!htab->root.dynamic_sections_created)
9478 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9479 else
9480 {
9481 BFD_ASSERT (sreloc != NULL);
9482 sreloc->size += RELOC_SIZE (htab) * count;
9483 }
9484 }
9485
9486 /* Add relocation REL to the end of relocation section SRELOC. */
9487
9488 static void
9489 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9490 asection *sreloc, Elf_Internal_Rela *rel)
9491 {
9492 bfd_byte *loc;
9493 struct elf32_arm_link_hash_table *htab;
9494
9495 htab = elf32_arm_hash_table (info);
9496 if (!htab->root.dynamic_sections_created
9497 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9498 sreloc = htab->root.irelplt;
9499 if (sreloc == NULL)
9500 abort ();
9501 loc = sreloc->contents;
9502 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9503 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9504 abort ();
9505 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9506 }
9507
9508 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9509 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9510 to .plt. */
9511
9512 static void
9513 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9514 bfd_boolean is_iplt_entry,
9515 union gotplt_union *root_plt,
9516 struct arm_plt_info *arm_plt)
9517 {
9518 struct elf32_arm_link_hash_table *htab;
9519 asection *splt;
9520 asection *sgotplt;
9521
9522 htab = elf32_arm_hash_table (info);
9523
9524 if (is_iplt_entry)
9525 {
9526 splt = htab->root.iplt;
9527 sgotplt = htab->root.igotplt;
9528
9529 /* NaCl uses a special first entry in .iplt too. */
9530 if (htab->nacl_p && splt->size == 0)
9531 splt->size += htab->plt_header_size;
9532
9533 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9534 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9535 }
9536 else
9537 {
9538 splt = htab->root.splt;
9539 sgotplt = htab->root.sgotplt;
9540
9541 if (htab->fdpic_p)
9542 {
9543 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9544 /* For lazy binding, relocations will be put into .rel.plt, in
9545 .rel.got otherwise. */
9546 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9547 if (info->flags & DF_BIND_NOW)
9548 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
9549 else
9550 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9551 }
9552 else
9553 {
9554 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9555 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9556 }
9557
9558 /* If this is the first .plt entry, make room for the special
9559 first entry. */
9560 if (splt->size == 0)
9561 splt->size += htab->plt_header_size;
9562
9563 htab->next_tls_desc_index++;
9564 }
9565
9566 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9567 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9568 splt->size += PLT_THUMB_STUB_SIZE;
9569 root_plt->offset = splt->size;
9570 splt->size += htab->plt_entry_size;
9571
9572 if (!htab->symbian_p)
9573 {
9574 /* We also need to make an entry in the .got.plt section, which
9575 will be placed in the .got section by the linker script. */
9576 if (is_iplt_entry)
9577 arm_plt->got_offset = sgotplt->size;
9578 else
9579 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9580 if (htab->fdpic_p)
9581 /* Function descriptor takes 64 bits in GOT. */
9582 sgotplt->size += 8;
9583 else
9584 sgotplt->size += 4;
9585 }
9586 }
9587
9588 static bfd_vma
9589 arm_movw_immediate (bfd_vma value)
9590 {
9591 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9592 }
9593
9594 static bfd_vma
9595 arm_movt_immediate (bfd_vma value)
9596 {
9597 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9598 }
9599
9600 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9601 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9602 Otherwise, DYNINDX is the index of the symbol in the dynamic
9603 symbol table and SYM_VALUE is undefined.
9604
9605 ROOT_PLT points to the offset of the PLT entry from the start of its
9606 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9607 bookkeeping information.
9608
9609 Returns FALSE if there was a problem. */
9610
9611 static bfd_boolean
9612 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9613 union gotplt_union *root_plt,
9614 struct arm_plt_info *arm_plt,
9615 int dynindx, bfd_vma sym_value)
9616 {
9617 struct elf32_arm_link_hash_table *htab;
9618 asection *sgot;
9619 asection *splt;
9620 asection *srel;
9621 bfd_byte *loc;
9622 bfd_vma plt_index;
9623 Elf_Internal_Rela rel;
9624 bfd_vma plt_header_size;
9625 bfd_vma got_header_size;
9626
9627 htab = elf32_arm_hash_table (info);
9628
9629 /* Pick the appropriate sections and sizes. */
9630 if (dynindx == -1)
9631 {
9632 splt = htab->root.iplt;
9633 sgot = htab->root.igotplt;
9634 srel = htab->root.irelplt;
9635
9636 /* There are no reserved entries in .igot.plt, and no special
9637 first entry in .iplt. */
9638 got_header_size = 0;
9639 plt_header_size = 0;
9640 }
9641 else
9642 {
9643 splt = htab->root.splt;
9644 sgot = htab->root.sgotplt;
9645 srel = htab->root.srelplt;
9646
9647 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9648 plt_header_size = htab->plt_header_size;
9649 }
9650 BFD_ASSERT (splt != NULL && srel != NULL);
9651
9652 /* Fill in the entry in the procedure linkage table. */
9653 if (htab->symbian_p)
9654 {
9655 BFD_ASSERT (dynindx >= 0);
9656 put_arm_insn (htab, output_bfd,
9657 elf32_arm_symbian_plt_entry[0],
9658 splt->contents + root_plt->offset);
9659 bfd_put_32 (output_bfd,
9660 elf32_arm_symbian_plt_entry[1],
9661 splt->contents + root_plt->offset + 4);
9662
9663 /* Fill in the entry in the .rel.plt section. */
9664 rel.r_offset = (splt->output_section->vma
9665 + splt->output_offset
9666 + root_plt->offset + 4);
9667 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9668
9669 /* Get the index in the procedure linkage table which
9670 corresponds to this symbol. This is the index of this symbol
9671 in all the symbols for which we are making plt entries. The
9672 first entry in the procedure linkage table is reserved. */
9673 plt_index = ((root_plt->offset - plt_header_size)
9674 / htab->plt_entry_size);
9675 }
9676 else
9677 {
9678 bfd_vma got_offset, got_address, plt_address;
9679 bfd_vma got_displacement, initial_got_entry;
9680 bfd_byte * ptr;
9681
9682 BFD_ASSERT (sgot != NULL);
9683
9684 /* Get the offset into the .(i)got.plt table of the entry that
9685 corresponds to this function. */
9686 got_offset = (arm_plt->got_offset & -2);
9687
9688 /* Get the index in the procedure linkage table which
9689 corresponds to this symbol. This is the index of this symbol
9690 in all the symbols for which we are making plt entries.
9691 After the reserved .got.plt entries, all symbols appear in
9692 the same order as in .plt. */
9693 if (htab->fdpic_p)
9694 /* Function descriptor takes 8 bytes. */
9695 plt_index = (got_offset - got_header_size) / 8;
9696 else
9697 plt_index = (got_offset - got_header_size) / 4;
9698
9699 /* Calculate the address of the GOT entry. */
9700 got_address = (sgot->output_section->vma
9701 + sgot->output_offset
9702 + got_offset);
9703
9704 /* ...and the address of the PLT entry. */
9705 plt_address = (splt->output_section->vma
9706 + splt->output_offset
9707 + root_plt->offset);
9708
9709 ptr = splt->contents + root_plt->offset;
9710 if (htab->vxworks_p && bfd_link_pic (info))
9711 {
9712 unsigned int i;
9713 bfd_vma val;
9714
9715 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9716 {
9717 val = elf32_arm_vxworks_shared_plt_entry[i];
9718 if (i == 2)
9719 val |= got_address - sgot->output_section->vma;
9720 if (i == 5)
9721 val |= plt_index * RELOC_SIZE (htab);
9722 if (i == 2 || i == 5)
9723 bfd_put_32 (output_bfd, val, ptr);
9724 else
9725 put_arm_insn (htab, output_bfd, val, ptr);
9726 }
9727 }
9728 else if (htab->vxworks_p)
9729 {
9730 unsigned int i;
9731 bfd_vma val;
9732
9733 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9734 {
9735 val = elf32_arm_vxworks_exec_plt_entry[i];
9736 if (i == 2)
9737 val |= got_address;
9738 if (i == 4)
9739 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9740 if (i == 5)
9741 val |= plt_index * RELOC_SIZE (htab);
9742 if (i == 2 || i == 5)
9743 bfd_put_32 (output_bfd, val, ptr);
9744 else
9745 put_arm_insn (htab, output_bfd, val, ptr);
9746 }
9747
9748 loc = (htab->srelplt2->contents
9749 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9750
9751 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9752 referencing the GOT for this PLT entry. */
9753 rel.r_offset = plt_address + 8;
9754 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9755 rel.r_addend = got_offset;
9756 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9757 loc += RELOC_SIZE (htab);
9758
9759 /* Create the R_ARM_ABS32 relocation referencing the
9760 beginning of the PLT for this GOT entry. */
9761 rel.r_offset = got_address;
9762 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9763 rel.r_addend = 0;
9764 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9765 }
9766 else if (htab->nacl_p)
9767 {
9768 /* Calculate the displacement between the PLT slot and the
9769 common tail that's part of the special initial PLT slot. */
9770 int32_t tail_displacement
9771 = ((splt->output_section->vma + splt->output_offset
9772 + ARM_NACL_PLT_TAIL_OFFSET)
9773 - (plt_address + htab->plt_entry_size + 4));
9774 BFD_ASSERT ((tail_displacement & 3) == 0);
9775 tail_displacement >>= 2;
9776
9777 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9778 || (-tail_displacement & 0xff000000) == 0);
9779
9780 /* Calculate the displacement between the PLT slot and the entry
9781 in the GOT. The offset accounts for the value produced by
9782 adding to pc in the penultimate instruction of the PLT stub. */
9783 got_displacement = (got_address
9784 - (plt_address + htab->plt_entry_size));
9785
9786 /* NaCl does not support interworking at all. */
9787 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9788
9789 put_arm_insn (htab, output_bfd,
9790 elf32_arm_nacl_plt_entry[0]
9791 | arm_movw_immediate (got_displacement),
9792 ptr + 0);
9793 put_arm_insn (htab, output_bfd,
9794 elf32_arm_nacl_plt_entry[1]
9795 | arm_movt_immediate (got_displacement),
9796 ptr + 4);
9797 put_arm_insn (htab, output_bfd,
9798 elf32_arm_nacl_plt_entry[2],
9799 ptr + 8);
9800 put_arm_insn (htab, output_bfd,
9801 elf32_arm_nacl_plt_entry[3]
9802 | (tail_displacement & 0x00ffffff),
9803 ptr + 12);
9804 }
9805 else if (htab->fdpic_p)
9806 {
9807 const bfd_vma *plt_entry = using_thumb_only(htab)
9808 ? elf32_arm_fdpic_thumb_plt_entry
9809 : elf32_arm_fdpic_plt_entry;
9810
9811 /* Fill-up Thumb stub if needed. */
9812 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9813 {
9814 put_thumb_insn (htab, output_bfd,
9815 elf32_arm_plt_thumb_stub[0], ptr - 4);
9816 put_thumb_insn (htab, output_bfd,
9817 elf32_arm_plt_thumb_stub[1], ptr - 2);
9818 }
9819 /* As we are using 32 bit instructions even for the Thumb
9820 version, we have to use 'put_arm_insn' instead of
9821 'put_thumb_insn'. */
9822 put_arm_insn(htab, output_bfd, plt_entry[0], ptr + 0);
9823 put_arm_insn(htab, output_bfd, plt_entry[1], ptr + 4);
9824 put_arm_insn(htab, output_bfd, plt_entry[2], ptr + 8);
9825 put_arm_insn(htab, output_bfd, plt_entry[3], ptr + 12);
9826 bfd_put_32 (output_bfd, got_offset, ptr + 16);
9827
9828 if (!(info->flags & DF_BIND_NOW))
9829 {
9830 /* funcdesc_value_reloc_offset. */
9831 bfd_put_32 (output_bfd,
9832 htab->root.srelplt->reloc_count * RELOC_SIZE (htab),
9833 ptr + 20);
9834 put_arm_insn(htab, output_bfd, plt_entry[6], ptr + 24);
9835 put_arm_insn(htab, output_bfd, plt_entry[7], ptr + 28);
9836 put_arm_insn(htab, output_bfd, plt_entry[8], ptr + 32);
9837 put_arm_insn(htab, output_bfd, plt_entry[9], ptr + 36);
9838 }
9839 }
9840 else if (using_thumb_only (htab))
9841 {
9842 /* PR ld/16017: Generate thumb only PLT entries. */
9843 if (!using_thumb2 (htab))
9844 {
9845 /* FIXME: We ought to be able to generate thumb-1 PLT
9846 instructions... */
9847 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
9848 output_bfd);
9849 return FALSE;
9850 }
9851
9852 /* Calculate the displacement between the PLT slot and the entry in
9853 the GOT. The 12-byte offset accounts for the value produced by
9854 adding to pc in the 3rd instruction of the PLT stub. */
9855 got_displacement = got_address - (plt_address + 12);
9856
9857 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9858 instead of 'put_thumb_insn'. */
9859 put_arm_insn (htab, output_bfd,
9860 elf32_thumb2_plt_entry[0]
9861 | ((got_displacement & 0x000000ff) << 16)
9862 | ((got_displacement & 0x00000700) << 20)
9863 | ((got_displacement & 0x00000800) >> 1)
9864 | ((got_displacement & 0x0000f000) >> 12),
9865 ptr + 0);
9866 put_arm_insn (htab, output_bfd,
9867 elf32_thumb2_plt_entry[1]
9868 | ((got_displacement & 0x00ff0000) )
9869 | ((got_displacement & 0x07000000) << 4)
9870 | ((got_displacement & 0x08000000) >> 17)
9871 | ((got_displacement & 0xf0000000) >> 28),
9872 ptr + 4);
9873 put_arm_insn (htab, output_bfd,
9874 elf32_thumb2_plt_entry[2],
9875 ptr + 8);
9876 put_arm_insn (htab, output_bfd,
9877 elf32_thumb2_plt_entry[3],
9878 ptr + 12);
9879 }
9880 else
9881 {
9882 /* Calculate the displacement between the PLT slot and the
9883 entry in the GOT. The eight-byte offset accounts for the
9884 value produced by adding to pc in the first instruction
9885 of the PLT stub. */
9886 got_displacement = got_address - (plt_address + 8);
9887
9888 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9889 {
9890 put_thumb_insn (htab, output_bfd,
9891 elf32_arm_plt_thumb_stub[0], ptr - 4);
9892 put_thumb_insn (htab, output_bfd,
9893 elf32_arm_plt_thumb_stub[1], ptr - 2);
9894 }
9895
9896 if (!elf32_arm_use_long_plt_entry)
9897 {
9898 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9899
9900 put_arm_insn (htab, output_bfd,
9901 elf32_arm_plt_entry_short[0]
9902 | ((got_displacement & 0x0ff00000) >> 20),
9903 ptr + 0);
9904 put_arm_insn (htab, output_bfd,
9905 elf32_arm_plt_entry_short[1]
9906 | ((got_displacement & 0x000ff000) >> 12),
9907 ptr+ 4);
9908 put_arm_insn (htab, output_bfd,
9909 elf32_arm_plt_entry_short[2]
9910 | (got_displacement & 0x00000fff),
9911 ptr + 8);
9912 #ifdef FOUR_WORD_PLT
9913 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9914 #endif
9915 }
9916 else
9917 {
9918 put_arm_insn (htab, output_bfd,
9919 elf32_arm_plt_entry_long[0]
9920 | ((got_displacement & 0xf0000000) >> 28),
9921 ptr + 0);
9922 put_arm_insn (htab, output_bfd,
9923 elf32_arm_plt_entry_long[1]
9924 | ((got_displacement & 0x0ff00000) >> 20),
9925 ptr + 4);
9926 put_arm_insn (htab, output_bfd,
9927 elf32_arm_plt_entry_long[2]
9928 | ((got_displacement & 0x000ff000) >> 12),
9929 ptr+ 8);
9930 put_arm_insn (htab, output_bfd,
9931 elf32_arm_plt_entry_long[3]
9932 | (got_displacement & 0x00000fff),
9933 ptr + 12);
9934 }
9935 }
9936
9937 /* Fill in the entry in the .rel(a).(i)plt section. */
9938 rel.r_offset = got_address;
9939 rel.r_addend = 0;
9940 if (dynindx == -1)
9941 {
9942 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9943 The dynamic linker or static executable then calls SYM_VALUE
9944 to determine the correct run-time value of the .igot.plt entry. */
9945 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9946 initial_got_entry = sym_value;
9947 }
9948 else
9949 {
9950 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9951 used by PLT entry. */
9952 if (htab->fdpic_p)
9953 {
9954 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
9955 initial_got_entry = 0;
9956 }
9957 else
9958 {
9959 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9960 initial_got_entry = (splt->output_section->vma
9961 + splt->output_offset);
9962 }
9963 }
9964
9965 /* Fill in the entry in the global offset table. */
9966 bfd_put_32 (output_bfd, initial_got_entry,
9967 sgot->contents + got_offset);
9968
9969 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW))
9970 {
9971 /* Setup initial funcdesc value. */
9972 /* FIXME: we don't support lazy binding because there is a
9973 race condition between both words getting written and
9974 some other thread attempting to read them. The ARM
9975 architecture does not have an atomic 64 bit load/store
9976 instruction that could be used to prevent it; it is
9977 recommended that threaded FDPIC applications run with the
9978 LD_BIND_NOW environment variable set. */
9979 bfd_put_32(output_bfd, plt_address + 0x18,
9980 sgot->contents + got_offset);
9981 bfd_put_32(output_bfd, -1 /*TODO*/,
9982 sgot->contents + got_offset + 4);
9983 }
9984 }
9985
9986 if (dynindx == -1)
9987 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9988 else
9989 {
9990 if (htab->fdpic_p)
9991 {
9992 /* For FDPIC we put PLT relocationss into .rel.got when not
9993 lazy binding otherwise we put them in .rel.plt. For now,
9994 we don't support lazy binding so put it in .rel.got. */
9995 if (info->flags & DF_BIND_NOW)
9996 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelgot, &rel);
9997 else
9998 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelplt, &rel);
9999 }
10000 else
10001 {
10002 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10003 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10004 }
10005 }
10006
10007 return TRUE;
10008 }
10009
10010 /* Some relocations map to different relocations depending on the
10011 target. Return the real relocation. */
10012
10013 static int
10014 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
10015 int r_type)
10016 {
10017 switch (r_type)
10018 {
10019 case R_ARM_TARGET1:
10020 if (globals->target1_is_rel)
10021 return R_ARM_REL32;
10022 else
10023 return R_ARM_ABS32;
10024
10025 case R_ARM_TARGET2:
10026 return globals->target2_reloc;
10027
10028 default:
10029 return r_type;
10030 }
10031 }
10032
10033 /* Return the base VMA address which should be subtracted from real addresses
10034 when resolving @dtpoff relocation.
10035 This is PT_TLS segment p_vaddr. */
10036
10037 static bfd_vma
10038 dtpoff_base (struct bfd_link_info *info)
10039 {
10040 /* If tls_sec is NULL, we should have signalled an error already. */
10041 if (elf_hash_table (info)->tls_sec == NULL)
10042 return 0;
10043 return elf_hash_table (info)->tls_sec->vma;
10044 }
10045
10046 /* Return the relocation value for @tpoff relocation
10047 if STT_TLS virtual address is ADDRESS. */
10048
10049 static bfd_vma
10050 tpoff (struct bfd_link_info *info, bfd_vma address)
10051 {
10052 struct elf_link_hash_table *htab = elf_hash_table (info);
10053 bfd_vma base;
10054
10055 /* If tls_sec is NULL, we should have signalled an error already. */
10056 if (htab->tls_sec == NULL)
10057 return 0;
10058 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
10059 return address - htab->tls_sec->vma + base;
10060 }
10061
10062 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10063 VALUE is the relocation value. */
10064
10065 static bfd_reloc_status_type
10066 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
10067 {
10068 if (value > 0xfff)
10069 return bfd_reloc_overflow;
10070
10071 value |= bfd_get_32 (abfd, data) & 0xfffff000;
10072 bfd_put_32 (abfd, value, data);
10073 return bfd_reloc_ok;
10074 }
10075
10076 /* Handle TLS relaxations. Relaxing is possible for symbols that use
10077 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10078 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10079
10080 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10081 is to then call final_link_relocate. Return other values in the
10082 case of error.
10083
10084 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10085 the pre-relaxed code. It would be nice if the relocs were updated
10086 to match the optimization. */
10087
10088 static bfd_reloc_status_type
10089 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
10090 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
10091 Elf_Internal_Rela *rel, unsigned long is_local)
10092 {
10093 unsigned long insn;
10094
10095 switch (ELF32_R_TYPE (rel->r_info))
10096 {
10097 default:
10098 return bfd_reloc_notsupported;
10099
10100 case R_ARM_TLS_GOTDESC:
10101 if (is_local)
10102 insn = 0;
10103 else
10104 {
10105 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10106 if (insn & 1)
10107 insn -= 5; /* THUMB */
10108 else
10109 insn -= 8; /* ARM */
10110 }
10111 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10112 return bfd_reloc_continue;
10113
10114 case R_ARM_THM_TLS_DESCSEQ:
10115 /* Thumb insn. */
10116 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
10117 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
10118 {
10119 if (is_local)
10120 /* nop */
10121 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10122 }
10123 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10124 {
10125 if (is_local)
10126 /* nop */
10127 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10128 else
10129 /* ldr rx,[ry] */
10130 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
10131 }
10132 else if ((insn & 0xff87) == 0x4780) /* blx rx */
10133 {
10134 if (is_local)
10135 /* nop */
10136 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10137 else
10138 /* mov r0, rx */
10139 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
10140 contents + rel->r_offset);
10141 }
10142 else
10143 {
10144 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10145 /* It's a 32 bit instruction, fetch the rest of it for
10146 error generation. */
10147 insn = (insn << 16)
10148 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
10149 _bfd_error_handler
10150 /* xgettext:c-format */
10151 (_("%pB(%pA+%#" PRIx64 "): "
10152 "unexpected %s instruction '%#lx' in TLS trampoline"),
10153 input_bfd, input_sec, (uint64_t) rel->r_offset,
10154 "Thumb", insn);
10155 return bfd_reloc_notsupported;
10156 }
10157 break;
10158
10159 case R_ARM_TLS_DESCSEQ:
10160 /* arm insn. */
10161 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10162 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10163 {
10164 if (is_local)
10165 /* mov rx, ry */
10166 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
10167 contents + rel->r_offset);
10168 }
10169 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10170 {
10171 if (is_local)
10172 /* nop */
10173 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10174 else
10175 /* ldr rx,[ry] */
10176 bfd_put_32 (input_bfd, insn & 0xfffff000,
10177 contents + rel->r_offset);
10178 }
10179 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
10180 {
10181 if (is_local)
10182 /* nop */
10183 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10184 else
10185 /* mov r0, rx */
10186 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
10187 contents + rel->r_offset);
10188 }
10189 else
10190 {
10191 _bfd_error_handler
10192 /* xgettext:c-format */
10193 (_("%pB(%pA+%#" PRIx64 "): "
10194 "unexpected %s instruction '%#lx' in TLS trampoline"),
10195 input_bfd, input_sec, (uint64_t) rel->r_offset,
10196 "ARM", insn);
10197 return bfd_reloc_notsupported;
10198 }
10199 break;
10200
10201 case R_ARM_TLS_CALL:
10202 /* GD->IE relaxation, turn the instruction into 'nop' or
10203 'ldr r0, [pc,r0]' */
10204 insn = is_local ? 0xe1a00000 : 0xe79f0000;
10205 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10206 break;
10207
10208 case R_ARM_THM_TLS_CALL:
10209 /* GD->IE relaxation. */
10210 if (!is_local)
10211 /* add r0,pc; ldr r0, [r0] */
10212 insn = 0x44786800;
10213 else if (using_thumb2 (globals))
10214 /* nop.w */
10215 insn = 0xf3af8000;
10216 else
10217 /* nop; nop */
10218 insn = 0xbf00bf00;
10219
10220 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
10221 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
10222 break;
10223 }
10224 return bfd_reloc_ok;
10225 }
10226
10227 /* For a given value of n, calculate the value of G_n as required to
10228 deal with group relocations. We return it in the form of an
10229 encoded constant-and-rotation, together with the final residual. If n is
10230 specified as less than zero, then final_residual is filled with the
10231 input value and no further action is performed. */
10232
10233 static bfd_vma
10234 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
10235 {
10236 int current_n;
10237 bfd_vma g_n;
10238 bfd_vma encoded_g_n = 0;
10239 bfd_vma residual = value; /* Also known as Y_n. */
10240
10241 for (current_n = 0; current_n <= n; current_n++)
10242 {
10243 int shift;
10244
10245 /* Calculate which part of the value to mask. */
10246 if (residual == 0)
10247 shift = 0;
10248 else
10249 {
10250 int msb;
10251
10252 /* Determine the most significant bit in the residual and
10253 align the resulting value to a 2-bit boundary. */
10254 for (msb = 30; msb >= 0; msb -= 2)
10255 if (residual & (3 << msb))
10256 break;
10257
10258 /* The desired shift is now (msb - 6), or zero, whichever
10259 is the greater. */
10260 shift = msb - 6;
10261 if (shift < 0)
10262 shift = 0;
10263 }
10264
10265 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10266 g_n = residual & (0xff << shift);
10267 encoded_g_n = (g_n >> shift)
10268 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
10269
10270 /* Calculate the residual for the next time around. */
10271 residual &= ~g_n;
10272 }
10273
10274 *final_residual = residual;
10275
10276 return encoded_g_n;
10277 }
10278
10279 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
10280 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
10281
10282 static int
10283 identify_add_or_sub (bfd_vma insn)
10284 {
10285 int opcode = insn & 0x1e00000;
10286
10287 if (opcode == 1 << 23) /* ADD */
10288 return 1;
10289
10290 if (opcode == 1 << 22) /* SUB */
10291 return -1;
10292
10293 return 0;
10294 }
10295
10296 /* Perform a relocation as part of a final link. */
10297
10298 static bfd_reloc_status_type
10299 elf32_arm_final_link_relocate (reloc_howto_type * howto,
10300 bfd * input_bfd,
10301 bfd * output_bfd,
10302 asection * input_section,
10303 bfd_byte * contents,
10304 Elf_Internal_Rela * rel,
10305 bfd_vma value,
10306 struct bfd_link_info * info,
10307 asection * sym_sec,
10308 const char * sym_name,
10309 unsigned char st_type,
10310 enum arm_st_branch_type branch_type,
10311 struct elf_link_hash_entry * h,
10312 bfd_boolean * unresolved_reloc_p,
10313 char ** error_message)
10314 {
10315 unsigned long r_type = howto->type;
10316 unsigned long r_symndx;
10317 bfd_byte * hit_data = contents + rel->r_offset;
10318 bfd_vma * local_got_offsets;
10319 bfd_vma * local_tlsdesc_gotents;
10320 asection * sgot;
10321 asection * splt;
10322 asection * sreloc = NULL;
10323 asection * srelgot;
10324 bfd_vma addend;
10325 bfd_signed_vma signed_addend;
10326 unsigned char dynreloc_st_type;
10327 bfd_vma dynreloc_value;
10328 struct elf32_arm_link_hash_table * globals;
10329 struct elf32_arm_link_hash_entry *eh;
10330 union gotplt_union *root_plt;
10331 struct arm_plt_info *arm_plt;
10332 bfd_vma plt_offset;
10333 bfd_vma gotplt_offset;
10334 bfd_boolean has_iplt_entry;
10335 bfd_boolean resolved_to_zero;
10336
10337 globals = elf32_arm_hash_table (info);
10338 if (globals == NULL)
10339 return bfd_reloc_notsupported;
10340
10341 BFD_ASSERT (is_arm_elf (input_bfd));
10342 BFD_ASSERT (howto != NULL);
10343
10344 /* Some relocation types map to different relocations depending on the
10345 target. We pick the right one here. */
10346 r_type = arm_real_reloc_type (globals, r_type);
10347
10348 /* It is possible to have linker relaxations on some TLS access
10349 models. Update our information here. */
10350 r_type = elf32_arm_tls_transition (info, r_type, h);
10351
10352 if (r_type != howto->type)
10353 howto = elf32_arm_howto_from_type (r_type);
10354
10355 eh = (struct elf32_arm_link_hash_entry *) h;
10356 sgot = globals->root.sgot;
10357 local_got_offsets = elf_local_got_offsets (input_bfd);
10358 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
10359
10360 if (globals->root.dynamic_sections_created)
10361 srelgot = globals->root.srelgot;
10362 else
10363 srelgot = NULL;
10364
10365 r_symndx = ELF32_R_SYM (rel->r_info);
10366
10367 if (globals->use_rel)
10368 {
10369 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
10370
10371 if (addend & ((howto->src_mask + 1) >> 1))
10372 {
10373 signed_addend = -1;
10374 signed_addend &= ~ howto->src_mask;
10375 signed_addend |= addend;
10376 }
10377 else
10378 signed_addend = addend;
10379 }
10380 else
10381 addend = signed_addend = rel->r_addend;
10382
10383 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10384 are resolving a function call relocation. */
10385 if (using_thumb_only (globals)
10386 && (r_type == R_ARM_THM_CALL
10387 || r_type == R_ARM_THM_JUMP24)
10388 && branch_type == ST_BRANCH_TO_ARM)
10389 branch_type = ST_BRANCH_TO_THUMB;
10390
10391 /* Record the symbol information that should be used in dynamic
10392 relocations. */
10393 dynreloc_st_type = st_type;
10394 dynreloc_value = value;
10395 if (branch_type == ST_BRANCH_TO_THUMB)
10396 dynreloc_value |= 1;
10397
10398 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10399 VALUE appropriately for relocations that we resolve at link time. */
10400 has_iplt_entry = FALSE;
10401 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
10402 &arm_plt)
10403 && root_plt->offset != (bfd_vma) -1)
10404 {
10405 plt_offset = root_plt->offset;
10406 gotplt_offset = arm_plt->got_offset;
10407
10408 if (h == NULL || eh->is_iplt)
10409 {
10410 has_iplt_entry = TRUE;
10411 splt = globals->root.iplt;
10412
10413 /* Populate .iplt entries here, because not all of them will
10414 be seen by finish_dynamic_symbol. The lower bit is set if
10415 we have already populated the entry. */
10416 if (plt_offset & 1)
10417 plt_offset--;
10418 else
10419 {
10420 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10421 -1, dynreloc_value))
10422 root_plt->offset |= 1;
10423 else
10424 return bfd_reloc_notsupported;
10425 }
10426
10427 /* Static relocations always resolve to the .iplt entry. */
10428 st_type = STT_FUNC;
10429 value = (splt->output_section->vma
10430 + splt->output_offset
10431 + plt_offset);
10432 branch_type = ST_BRANCH_TO_ARM;
10433
10434 /* If there are non-call relocations that resolve to the .iplt
10435 entry, then all dynamic ones must too. */
10436 if (arm_plt->noncall_refcount != 0)
10437 {
10438 dynreloc_st_type = st_type;
10439 dynreloc_value = value;
10440 }
10441 }
10442 else
10443 /* We populate the .plt entry in finish_dynamic_symbol. */
10444 splt = globals->root.splt;
10445 }
10446 else
10447 {
10448 splt = NULL;
10449 plt_offset = (bfd_vma) -1;
10450 gotplt_offset = (bfd_vma) -1;
10451 }
10452
10453 resolved_to_zero = (h != NULL
10454 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10455
10456 switch (r_type)
10457 {
10458 case R_ARM_NONE:
10459 /* We don't need to find a value for this symbol. It's just a
10460 marker. */
10461 *unresolved_reloc_p = FALSE;
10462 return bfd_reloc_ok;
10463
10464 case R_ARM_ABS12:
10465 if (!globals->vxworks_p)
10466 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10467 /* Fall through. */
10468
10469 case R_ARM_PC24:
10470 case R_ARM_ABS32:
10471 case R_ARM_ABS32_NOI:
10472 case R_ARM_REL32:
10473 case R_ARM_REL32_NOI:
10474 case R_ARM_CALL:
10475 case R_ARM_JUMP24:
10476 case R_ARM_XPC25:
10477 case R_ARM_PREL31:
10478 case R_ARM_PLT32:
10479 /* Handle relocations which should use the PLT entry. ABS32/REL32
10480 will use the symbol's value, which may point to a PLT entry, but we
10481 don't need to handle that here. If we created a PLT entry, all
10482 branches in this object should go to it, except if the PLT is too
10483 far away, in which case a long branch stub should be inserted. */
10484 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10485 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10486 && r_type != R_ARM_CALL
10487 && r_type != R_ARM_JUMP24
10488 && r_type != R_ARM_PLT32)
10489 && plt_offset != (bfd_vma) -1)
10490 {
10491 /* If we've created a .plt section, and assigned a PLT entry
10492 to this function, it must either be a STT_GNU_IFUNC reference
10493 or not be known to bind locally. In other cases, we should
10494 have cleared the PLT entry by now. */
10495 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10496
10497 value = (splt->output_section->vma
10498 + splt->output_offset
10499 + plt_offset);
10500 *unresolved_reloc_p = FALSE;
10501 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10502 contents, rel->r_offset, value,
10503 rel->r_addend);
10504 }
10505
10506 /* When generating a shared object or relocatable executable, these
10507 relocations are copied into the output file to be resolved at
10508 run time. */
10509 if ((bfd_link_pic (info)
10510 || globals->root.is_relocatable_executable
10511 || globals->fdpic_p)
10512 && (input_section->flags & SEC_ALLOC)
10513 && !(globals->vxworks_p
10514 && strcmp (input_section->output_section->name,
10515 ".tls_vars") == 0)
10516 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10517 || !SYMBOL_CALLS_LOCAL (info, h))
10518 && !(input_bfd == globals->stub_bfd
10519 && strstr (input_section->name, STUB_SUFFIX))
10520 && (h == NULL
10521 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10522 && !resolved_to_zero)
10523 || h->root.type != bfd_link_hash_undefweak)
10524 && r_type != R_ARM_PC24
10525 && r_type != R_ARM_CALL
10526 && r_type != R_ARM_JUMP24
10527 && r_type != R_ARM_PREL31
10528 && r_type != R_ARM_PLT32)
10529 {
10530 Elf_Internal_Rela outrel;
10531 bfd_boolean skip, relocate;
10532 int isrofixup = 0;
10533
10534 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10535 && !h->def_regular)
10536 {
10537 char *v = _("shared object");
10538
10539 if (bfd_link_executable (info))
10540 v = _("PIE executable");
10541
10542 _bfd_error_handler
10543 (_("%pB: relocation %s against external or undefined symbol `%s'"
10544 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10545 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10546 return bfd_reloc_notsupported;
10547 }
10548
10549 *unresolved_reloc_p = FALSE;
10550
10551 if (sreloc == NULL && globals->root.dynamic_sections_created)
10552 {
10553 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10554 ! globals->use_rel);
10555
10556 if (sreloc == NULL)
10557 return bfd_reloc_notsupported;
10558 }
10559
10560 skip = FALSE;
10561 relocate = FALSE;
10562
10563 outrel.r_addend = addend;
10564 outrel.r_offset =
10565 _bfd_elf_section_offset (output_bfd, info, input_section,
10566 rel->r_offset);
10567 if (outrel.r_offset == (bfd_vma) -1)
10568 skip = TRUE;
10569 else if (outrel.r_offset == (bfd_vma) -2)
10570 skip = TRUE, relocate = TRUE;
10571 outrel.r_offset += (input_section->output_section->vma
10572 + input_section->output_offset);
10573
10574 if (skip)
10575 memset (&outrel, 0, sizeof outrel);
10576 else if (h != NULL
10577 && h->dynindx != -1
10578 && (!bfd_link_pic (info)
10579 || !(bfd_link_pie (info)
10580 || SYMBOLIC_BIND (info, h))
10581 || !h->def_regular))
10582 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10583 else
10584 {
10585 int symbol;
10586
10587 /* This symbol is local, or marked to become local. */
10588 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI
10589 || (globals->fdpic_p && !bfd_link_pic(info)));
10590 if (globals->symbian_p)
10591 {
10592 asection *osec;
10593
10594 /* On Symbian OS, the data segment and text segement
10595 can be relocated independently. Therefore, we
10596 must indicate the segment to which this
10597 relocation is relative. The BPABI allows us to
10598 use any symbol in the right segment; we just use
10599 the section symbol as it is convenient. (We
10600 cannot use the symbol given by "h" directly as it
10601 will not appear in the dynamic symbol table.)
10602
10603 Note that the dynamic linker ignores the section
10604 symbol value, so we don't subtract osec->vma
10605 from the emitted reloc addend. */
10606 if (sym_sec)
10607 osec = sym_sec->output_section;
10608 else
10609 osec = input_section->output_section;
10610 symbol = elf_section_data (osec)->dynindx;
10611 if (symbol == 0)
10612 {
10613 struct elf_link_hash_table *htab = elf_hash_table (info);
10614
10615 if ((osec->flags & SEC_READONLY) == 0
10616 && htab->data_index_section != NULL)
10617 osec = htab->data_index_section;
10618 else
10619 osec = htab->text_index_section;
10620 symbol = elf_section_data (osec)->dynindx;
10621 }
10622 BFD_ASSERT (symbol != 0);
10623 }
10624 else
10625 /* On SVR4-ish systems, the dynamic loader cannot
10626 relocate the text and data segments independently,
10627 so the symbol does not matter. */
10628 symbol = 0;
10629 if (dynreloc_st_type == STT_GNU_IFUNC)
10630 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10631 to the .iplt entry. Instead, every non-call reference
10632 must use an R_ARM_IRELATIVE relocation to obtain the
10633 correct run-time address. */
10634 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10635 else if (globals->fdpic_p && !bfd_link_pic(info))
10636 isrofixup = 1;
10637 else
10638 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10639 if (globals->use_rel)
10640 relocate = TRUE;
10641 else
10642 outrel.r_addend += dynreloc_value;
10643 }
10644
10645 if (isrofixup)
10646 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
10647 else
10648 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10649
10650 /* If this reloc is against an external symbol, we do not want to
10651 fiddle with the addend. Otherwise, we need to include the symbol
10652 value so that it becomes an addend for the dynamic reloc. */
10653 if (! relocate)
10654 return bfd_reloc_ok;
10655
10656 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10657 contents, rel->r_offset,
10658 dynreloc_value, (bfd_vma) 0);
10659 }
10660 else switch (r_type)
10661 {
10662 case R_ARM_ABS12:
10663 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10664
10665 case R_ARM_XPC25: /* Arm BLX instruction. */
10666 case R_ARM_CALL:
10667 case R_ARM_JUMP24:
10668 case R_ARM_PC24: /* Arm B/BL instruction. */
10669 case R_ARM_PLT32:
10670 {
10671 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10672
10673 if (r_type == R_ARM_XPC25)
10674 {
10675 /* Check for Arm calling Arm function. */
10676 /* FIXME: Should we translate the instruction into a BL
10677 instruction instead ? */
10678 if (branch_type != ST_BRANCH_TO_THUMB)
10679 _bfd_error_handler
10680 (_("\%pB: warning: %s BLX instruction targets"
10681 " %s function '%s'"),
10682 input_bfd, "ARM",
10683 "ARM", h ? h->root.root.string : "(local)");
10684 }
10685 else if (r_type == R_ARM_PC24)
10686 {
10687 /* Check for Arm calling Thumb function. */
10688 if (branch_type == ST_BRANCH_TO_THUMB)
10689 {
10690 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10691 output_bfd, input_section,
10692 hit_data, sym_sec, rel->r_offset,
10693 signed_addend, value,
10694 error_message))
10695 return bfd_reloc_ok;
10696 else
10697 return bfd_reloc_dangerous;
10698 }
10699 }
10700
10701 /* Check if a stub has to be inserted because the
10702 destination is too far or we are changing mode. */
10703 if ( r_type == R_ARM_CALL
10704 || r_type == R_ARM_JUMP24
10705 || r_type == R_ARM_PLT32)
10706 {
10707 enum elf32_arm_stub_type stub_type = arm_stub_none;
10708 struct elf32_arm_link_hash_entry *hash;
10709
10710 hash = (struct elf32_arm_link_hash_entry *) h;
10711 stub_type = arm_type_of_stub (info, input_section, rel,
10712 st_type, &branch_type,
10713 hash, value, sym_sec,
10714 input_bfd, sym_name);
10715
10716 if (stub_type != arm_stub_none)
10717 {
10718 /* The target is out of reach, so redirect the
10719 branch to the local stub for this function. */
10720 stub_entry = elf32_arm_get_stub_entry (input_section,
10721 sym_sec, h,
10722 rel, globals,
10723 stub_type);
10724 {
10725 if (stub_entry != NULL)
10726 value = (stub_entry->stub_offset
10727 + stub_entry->stub_sec->output_offset
10728 + stub_entry->stub_sec->output_section->vma);
10729
10730 if (plt_offset != (bfd_vma) -1)
10731 *unresolved_reloc_p = FALSE;
10732 }
10733 }
10734 else
10735 {
10736 /* If the call goes through a PLT entry, make sure to
10737 check distance to the right destination address. */
10738 if (plt_offset != (bfd_vma) -1)
10739 {
10740 value = (splt->output_section->vma
10741 + splt->output_offset
10742 + plt_offset);
10743 *unresolved_reloc_p = FALSE;
10744 /* The PLT entry is in ARM mode, regardless of the
10745 target function. */
10746 branch_type = ST_BRANCH_TO_ARM;
10747 }
10748 }
10749 }
10750
10751 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10752 where:
10753 S is the address of the symbol in the relocation.
10754 P is address of the instruction being relocated.
10755 A is the addend (extracted from the instruction) in bytes.
10756
10757 S is held in 'value'.
10758 P is the base address of the section containing the
10759 instruction plus the offset of the reloc into that
10760 section, ie:
10761 (input_section->output_section->vma +
10762 input_section->output_offset +
10763 rel->r_offset).
10764 A is the addend, converted into bytes, ie:
10765 (signed_addend * 4)
10766
10767 Note: None of these operations have knowledge of the pipeline
10768 size of the processor, thus it is up to the assembler to
10769 encode this information into the addend. */
10770 value -= (input_section->output_section->vma
10771 + input_section->output_offset);
10772 value -= rel->r_offset;
10773 if (globals->use_rel)
10774 value += (signed_addend << howto->size);
10775 else
10776 /* RELA addends do not have to be adjusted by howto->size. */
10777 value += signed_addend;
10778
10779 signed_addend = value;
10780 signed_addend >>= howto->rightshift;
10781
10782 /* A branch to an undefined weak symbol is turned into a jump to
10783 the next instruction unless a PLT entry will be created.
10784 Do the same for local undefined symbols (but not for STN_UNDEF).
10785 The jump to the next instruction is optimized as a NOP depending
10786 on the architecture. */
10787 if (h ? (h->root.type == bfd_link_hash_undefweak
10788 && plt_offset == (bfd_vma) -1)
10789 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10790 {
10791 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10792
10793 if (arch_has_arm_nop (globals))
10794 value |= 0x0320f000;
10795 else
10796 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10797 }
10798 else
10799 {
10800 /* Perform a signed range check. */
10801 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10802 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10803 return bfd_reloc_overflow;
10804
10805 addend = (value & 2);
10806
10807 value = (signed_addend & howto->dst_mask)
10808 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10809
10810 if (r_type == R_ARM_CALL)
10811 {
10812 /* Set the H bit in the BLX instruction. */
10813 if (branch_type == ST_BRANCH_TO_THUMB)
10814 {
10815 if (addend)
10816 value |= (1 << 24);
10817 else
10818 value &= ~(bfd_vma)(1 << 24);
10819 }
10820
10821 /* Select the correct instruction (BL or BLX). */
10822 /* Only if we are not handling a BL to a stub. In this
10823 case, mode switching is performed by the stub. */
10824 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10825 value |= (1 << 28);
10826 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10827 {
10828 value &= ~(bfd_vma)(1 << 28);
10829 value |= (1 << 24);
10830 }
10831 }
10832 }
10833 }
10834 break;
10835
10836 case R_ARM_ABS32:
10837 value += addend;
10838 if (branch_type == ST_BRANCH_TO_THUMB)
10839 value |= 1;
10840 break;
10841
10842 case R_ARM_ABS32_NOI:
10843 value += addend;
10844 break;
10845
10846 case R_ARM_REL32:
10847 value += addend;
10848 if (branch_type == ST_BRANCH_TO_THUMB)
10849 value |= 1;
10850 value -= (input_section->output_section->vma
10851 + input_section->output_offset + rel->r_offset);
10852 break;
10853
10854 case R_ARM_REL32_NOI:
10855 value += addend;
10856 value -= (input_section->output_section->vma
10857 + input_section->output_offset + rel->r_offset);
10858 break;
10859
10860 case R_ARM_PREL31:
10861 value -= (input_section->output_section->vma
10862 + input_section->output_offset + rel->r_offset);
10863 value += signed_addend;
10864 if (! h || h->root.type != bfd_link_hash_undefweak)
10865 {
10866 /* Check for overflow. */
10867 if ((value ^ (value >> 1)) & (1 << 30))
10868 return bfd_reloc_overflow;
10869 }
10870 value &= 0x7fffffff;
10871 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10872 if (branch_type == ST_BRANCH_TO_THUMB)
10873 value |= 1;
10874 break;
10875 }
10876
10877 bfd_put_32 (input_bfd, value, hit_data);
10878 return bfd_reloc_ok;
10879
10880 case R_ARM_ABS8:
10881 /* PR 16202: Refectch the addend using the correct size. */
10882 if (globals->use_rel)
10883 addend = bfd_get_8 (input_bfd, hit_data);
10884 value += addend;
10885
10886 /* There is no way to tell whether the user intended to use a signed or
10887 unsigned addend. When checking for overflow we accept either,
10888 as specified by the AAELF. */
10889 if ((long) value > 0xff || (long) value < -0x80)
10890 return bfd_reloc_overflow;
10891
10892 bfd_put_8 (input_bfd, value, hit_data);
10893 return bfd_reloc_ok;
10894
10895 case R_ARM_ABS16:
10896 /* PR 16202: Refectch the addend using the correct size. */
10897 if (globals->use_rel)
10898 addend = bfd_get_16 (input_bfd, hit_data);
10899 value += addend;
10900
10901 /* See comment for R_ARM_ABS8. */
10902 if ((long) value > 0xffff || (long) value < -0x8000)
10903 return bfd_reloc_overflow;
10904
10905 bfd_put_16 (input_bfd, value, hit_data);
10906 return bfd_reloc_ok;
10907
10908 case R_ARM_THM_ABS5:
10909 /* Support ldr and str instructions for the thumb. */
10910 if (globals->use_rel)
10911 {
10912 /* Need to refetch addend. */
10913 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10914 /* ??? Need to determine shift amount from operand size. */
10915 addend >>= howto->rightshift;
10916 }
10917 value += addend;
10918
10919 /* ??? Isn't value unsigned? */
10920 if ((long) value > 0x1f || (long) value < -0x10)
10921 return bfd_reloc_overflow;
10922
10923 /* ??? Value needs to be properly shifted into place first. */
10924 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10925 bfd_put_16 (input_bfd, value, hit_data);
10926 return bfd_reloc_ok;
10927
10928 case R_ARM_THM_ALU_PREL_11_0:
10929 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10930 {
10931 bfd_vma insn;
10932 bfd_signed_vma relocation;
10933
10934 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10935 | bfd_get_16 (input_bfd, hit_data + 2);
10936
10937 if (globals->use_rel)
10938 {
10939 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10940 | ((insn & (1 << 26)) >> 15);
10941 if (insn & 0xf00000)
10942 signed_addend = -signed_addend;
10943 }
10944
10945 relocation = value + signed_addend;
10946 relocation -= Pa (input_section->output_section->vma
10947 + input_section->output_offset
10948 + rel->r_offset);
10949
10950 /* PR 21523: Use an absolute value. The user of this reloc will
10951 have already selected an ADD or SUB insn appropriately. */
10952 value = llabs (relocation);
10953
10954 if (value >= 0x1000)
10955 return bfd_reloc_overflow;
10956
10957 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10958 if (branch_type == ST_BRANCH_TO_THUMB)
10959 value |= 1;
10960
10961 insn = (insn & 0xfb0f8f00) | (value & 0xff)
10962 | ((value & 0x700) << 4)
10963 | ((value & 0x800) << 15);
10964 if (relocation < 0)
10965 insn |= 0xa00000;
10966
10967 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10968 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10969
10970 return bfd_reloc_ok;
10971 }
10972
10973 case R_ARM_THM_PC8:
10974 /* PR 10073: This reloc is not generated by the GNU toolchain,
10975 but it is supported for compatibility with third party libraries
10976 generated by other compilers, specifically the ARM/IAR. */
10977 {
10978 bfd_vma insn;
10979 bfd_signed_vma relocation;
10980
10981 insn = bfd_get_16 (input_bfd, hit_data);
10982
10983 if (globals->use_rel)
10984 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
10985
10986 relocation = value + addend;
10987 relocation -= Pa (input_section->output_section->vma
10988 + input_section->output_offset
10989 + rel->r_offset);
10990
10991 value = relocation;
10992
10993 /* We do not check for overflow of this reloc. Although strictly
10994 speaking this is incorrect, it appears to be necessary in order
10995 to work with IAR generated relocs. Since GCC and GAS do not
10996 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10997 a problem for them. */
10998 value &= 0x3fc;
10999
11000 insn = (insn & 0xff00) | (value >> 2);
11001
11002 bfd_put_16 (input_bfd, insn, hit_data);
11003
11004 return bfd_reloc_ok;
11005 }
11006
11007 case R_ARM_THM_PC12:
11008 /* Corresponds to: ldr.w reg, [pc, #offset]. */
11009 {
11010 bfd_vma insn;
11011 bfd_signed_vma relocation;
11012
11013 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
11014 | bfd_get_16 (input_bfd, hit_data + 2);
11015
11016 if (globals->use_rel)
11017 {
11018 signed_addend = insn & 0xfff;
11019 if (!(insn & (1 << 23)))
11020 signed_addend = -signed_addend;
11021 }
11022
11023 relocation = value + signed_addend;
11024 relocation -= Pa (input_section->output_section->vma
11025 + input_section->output_offset
11026 + rel->r_offset);
11027
11028 value = relocation;
11029
11030 if (value >= 0x1000)
11031 return bfd_reloc_overflow;
11032
11033 insn = (insn & 0xff7ff000) | value;
11034 if (relocation >= 0)
11035 insn |= (1 << 23);
11036
11037 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11038 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11039
11040 return bfd_reloc_ok;
11041 }
11042
11043 case R_ARM_THM_XPC22:
11044 case R_ARM_THM_CALL:
11045 case R_ARM_THM_JUMP24:
11046 /* Thumb BL (branch long instruction). */
11047 {
11048 bfd_vma relocation;
11049 bfd_vma reloc_sign;
11050 bfd_boolean overflow = FALSE;
11051 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11052 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11053 bfd_signed_vma reloc_signed_max;
11054 bfd_signed_vma reloc_signed_min;
11055 bfd_vma check;
11056 bfd_signed_vma signed_check;
11057 int bitsize;
11058 const int thumb2 = using_thumb2 (globals);
11059 const int thumb2_bl = using_thumb2_bl (globals);
11060
11061 /* A branch to an undefined weak symbol is turned into a jump to
11062 the next instruction unless a PLT entry will be created.
11063 The jump to the next instruction is optimized as a NOP.W for
11064 Thumb-2 enabled architectures. */
11065 if (h && h->root.type == bfd_link_hash_undefweak
11066 && plt_offset == (bfd_vma) -1)
11067 {
11068 if (thumb2)
11069 {
11070 bfd_put_16 (input_bfd, 0xf3af, hit_data);
11071 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
11072 }
11073 else
11074 {
11075 bfd_put_16 (input_bfd, 0xe000, hit_data);
11076 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
11077 }
11078 return bfd_reloc_ok;
11079 }
11080
11081 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
11082 with Thumb-1) involving the J1 and J2 bits. */
11083 if (globals->use_rel)
11084 {
11085 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
11086 bfd_vma upper = upper_insn & 0x3ff;
11087 bfd_vma lower = lower_insn & 0x7ff;
11088 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
11089 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
11090 bfd_vma i1 = j1 ^ s ? 0 : 1;
11091 bfd_vma i2 = j2 ^ s ? 0 : 1;
11092
11093 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
11094 /* Sign extend. */
11095 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
11096
11097 signed_addend = addend;
11098 }
11099
11100 if (r_type == R_ARM_THM_XPC22)
11101 {
11102 /* Check for Thumb to Thumb call. */
11103 /* FIXME: Should we translate the instruction into a BL
11104 instruction instead ? */
11105 if (branch_type == ST_BRANCH_TO_THUMB)
11106 _bfd_error_handler
11107 (_("%pB: warning: %s BLX instruction targets"
11108 " %s function '%s'"),
11109 input_bfd, "Thumb",
11110 "Thumb", h ? h->root.root.string : "(local)");
11111 }
11112 else
11113 {
11114 /* If it is not a call to Thumb, assume call to Arm.
11115 If it is a call relative to a section name, then it is not a
11116 function call at all, but rather a long jump. Calls through
11117 the PLT do not require stubs. */
11118 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
11119 {
11120 if (globals->use_blx && r_type == R_ARM_THM_CALL)
11121 {
11122 /* Convert BL to BLX. */
11123 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11124 }
11125 else if (( r_type != R_ARM_THM_CALL)
11126 && (r_type != R_ARM_THM_JUMP24))
11127 {
11128 if (elf32_thumb_to_arm_stub
11129 (info, sym_name, input_bfd, output_bfd, input_section,
11130 hit_data, sym_sec, rel->r_offset, signed_addend, value,
11131 error_message))
11132 return bfd_reloc_ok;
11133 else
11134 return bfd_reloc_dangerous;
11135 }
11136 }
11137 else if (branch_type == ST_BRANCH_TO_THUMB
11138 && globals->use_blx
11139 && r_type == R_ARM_THM_CALL)
11140 {
11141 /* Make sure this is a BL. */
11142 lower_insn |= 0x1800;
11143 }
11144 }
11145
11146 enum elf32_arm_stub_type stub_type = arm_stub_none;
11147 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
11148 {
11149 /* Check if a stub has to be inserted because the destination
11150 is too far. */
11151 struct elf32_arm_stub_hash_entry *stub_entry;
11152 struct elf32_arm_link_hash_entry *hash;
11153
11154 hash = (struct elf32_arm_link_hash_entry *) h;
11155
11156 stub_type = arm_type_of_stub (info, input_section, rel,
11157 st_type, &branch_type,
11158 hash, value, sym_sec,
11159 input_bfd, sym_name);
11160
11161 if (stub_type != arm_stub_none)
11162 {
11163 /* The target is out of reach or we are changing modes, so
11164 redirect the branch to the local stub for this
11165 function. */
11166 stub_entry = elf32_arm_get_stub_entry (input_section,
11167 sym_sec, h,
11168 rel, globals,
11169 stub_type);
11170 if (stub_entry != NULL)
11171 {
11172 value = (stub_entry->stub_offset
11173 + stub_entry->stub_sec->output_offset
11174 + stub_entry->stub_sec->output_section->vma);
11175
11176 if (plt_offset != (bfd_vma) -1)
11177 *unresolved_reloc_p = FALSE;
11178 }
11179
11180 /* If this call becomes a call to Arm, force BLX. */
11181 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
11182 {
11183 if ((stub_entry
11184 && !arm_stub_is_thumb (stub_entry->stub_type))
11185 || branch_type != ST_BRANCH_TO_THUMB)
11186 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11187 }
11188 }
11189 }
11190
11191 /* Handle calls via the PLT. */
11192 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
11193 {
11194 value = (splt->output_section->vma
11195 + splt->output_offset
11196 + plt_offset);
11197
11198 if (globals->use_blx
11199 && r_type == R_ARM_THM_CALL
11200 && ! using_thumb_only (globals))
11201 {
11202 /* If the Thumb BLX instruction is available, convert
11203 the BL to a BLX instruction to call the ARM-mode
11204 PLT entry. */
11205 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11206 branch_type = ST_BRANCH_TO_ARM;
11207 }
11208 else
11209 {
11210 if (! using_thumb_only (globals))
11211 /* Target the Thumb stub before the ARM PLT entry. */
11212 value -= PLT_THUMB_STUB_SIZE;
11213 branch_type = ST_BRANCH_TO_THUMB;
11214 }
11215 *unresolved_reloc_p = FALSE;
11216 }
11217
11218 relocation = value + signed_addend;
11219
11220 relocation -= (input_section->output_section->vma
11221 + input_section->output_offset
11222 + rel->r_offset);
11223
11224 check = relocation >> howto->rightshift;
11225
11226 /* If this is a signed value, the rightshift just dropped
11227 leading 1 bits (assuming twos complement). */
11228 if ((bfd_signed_vma) relocation >= 0)
11229 signed_check = check;
11230 else
11231 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
11232
11233 /* Calculate the permissable maximum and minimum values for
11234 this relocation according to whether we're relocating for
11235 Thumb-2 or not. */
11236 bitsize = howto->bitsize;
11237 if (!thumb2_bl)
11238 bitsize -= 2;
11239 reloc_signed_max = (1 << (bitsize - 1)) - 1;
11240 reloc_signed_min = ~reloc_signed_max;
11241
11242 /* Assumes two's complement. */
11243 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11244 overflow = TRUE;
11245
11246 if ((lower_insn & 0x5000) == 0x4000)
11247 /* For a BLX instruction, make sure that the relocation is rounded up
11248 to a word boundary. This follows the semantics of the instruction
11249 which specifies that bit 1 of the target address will come from bit
11250 1 of the base address. */
11251 relocation = (relocation + 2) & ~ 3;
11252
11253 /* Put RELOCATION back into the insn. Assumes two's complement.
11254 We use the Thumb-2 encoding, which is safe even if dealing with
11255 a Thumb-1 instruction by virtue of our overflow check above. */
11256 reloc_sign = (signed_check < 0) ? 1 : 0;
11257 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
11258 | ((relocation >> 12) & 0x3ff)
11259 | (reloc_sign << 10);
11260 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
11261 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
11262 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
11263 | ((relocation >> 1) & 0x7ff);
11264
11265 /* Put the relocated value back in the object file: */
11266 bfd_put_16 (input_bfd, upper_insn, hit_data);
11267 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11268
11269 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11270 }
11271 break;
11272
11273 case R_ARM_THM_JUMP19:
11274 /* Thumb32 conditional branch instruction. */
11275 {
11276 bfd_vma relocation;
11277 bfd_boolean overflow = FALSE;
11278 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11279 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11280 bfd_signed_vma reloc_signed_max = 0xffffe;
11281 bfd_signed_vma reloc_signed_min = -0x100000;
11282 bfd_signed_vma signed_check;
11283 enum elf32_arm_stub_type stub_type = arm_stub_none;
11284 struct elf32_arm_stub_hash_entry *stub_entry;
11285 struct elf32_arm_link_hash_entry *hash;
11286
11287 /* Need to refetch the addend, reconstruct the top three bits,
11288 and squish the two 11 bit pieces together. */
11289 if (globals->use_rel)
11290 {
11291 bfd_vma S = (upper_insn & 0x0400) >> 10;
11292 bfd_vma upper = (upper_insn & 0x003f);
11293 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
11294 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
11295 bfd_vma lower = (lower_insn & 0x07ff);
11296
11297 upper |= J1 << 6;
11298 upper |= J2 << 7;
11299 upper |= (!S) << 8;
11300 upper -= 0x0100; /* Sign extend. */
11301
11302 addend = (upper << 12) | (lower << 1);
11303 signed_addend = addend;
11304 }
11305
11306 /* Handle calls via the PLT. */
11307 if (plt_offset != (bfd_vma) -1)
11308 {
11309 value = (splt->output_section->vma
11310 + splt->output_offset
11311 + plt_offset);
11312 /* Target the Thumb stub before the ARM PLT entry. */
11313 value -= PLT_THUMB_STUB_SIZE;
11314 *unresolved_reloc_p = FALSE;
11315 }
11316
11317 hash = (struct elf32_arm_link_hash_entry *)h;
11318
11319 stub_type = arm_type_of_stub (info, input_section, rel,
11320 st_type, &branch_type,
11321 hash, value, sym_sec,
11322 input_bfd, sym_name);
11323 if (stub_type != arm_stub_none)
11324 {
11325 stub_entry = elf32_arm_get_stub_entry (input_section,
11326 sym_sec, h,
11327 rel, globals,
11328 stub_type);
11329 if (stub_entry != NULL)
11330 {
11331 value = (stub_entry->stub_offset
11332 + stub_entry->stub_sec->output_offset
11333 + stub_entry->stub_sec->output_section->vma);
11334 }
11335 }
11336
11337 relocation = value + signed_addend;
11338 relocation -= (input_section->output_section->vma
11339 + input_section->output_offset
11340 + rel->r_offset);
11341 signed_check = (bfd_signed_vma) relocation;
11342
11343 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11344 overflow = TRUE;
11345
11346 /* Put RELOCATION back into the insn. */
11347 {
11348 bfd_vma S = (relocation & 0x00100000) >> 20;
11349 bfd_vma J2 = (relocation & 0x00080000) >> 19;
11350 bfd_vma J1 = (relocation & 0x00040000) >> 18;
11351 bfd_vma hi = (relocation & 0x0003f000) >> 12;
11352 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
11353
11354 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
11355 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
11356 }
11357
11358 /* Put the relocated value back in the object file: */
11359 bfd_put_16 (input_bfd, upper_insn, hit_data);
11360 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11361
11362 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11363 }
11364
11365 case R_ARM_THM_JUMP11:
11366 case R_ARM_THM_JUMP8:
11367 case R_ARM_THM_JUMP6:
11368 /* Thumb B (branch) instruction). */
11369 {
11370 bfd_signed_vma relocation;
11371 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
11372 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
11373 bfd_signed_vma signed_check;
11374
11375 /* CZB cannot jump backward. */
11376 if (r_type == R_ARM_THM_JUMP6)
11377 reloc_signed_min = 0;
11378
11379 if (globals->use_rel)
11380 {
11381 /* Need to refetch addend. */
11382 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
11383 if (addend & ((howto->src_mask + 1) >> 1))
11384 {
11385 signed_addend = -1;
11386 signed_addend &= ~ howto->src_mask;
11387 signed_addend |= addend;
11388 }
11389 else
11390 signed_addend = addend;
11391 /* The value in the insn has been right shifted. We need to
11392 undo this, so that we can perform the address calculation
11393 in terms of bytes. */
11394 signed_addend <<= howto->rightshift;
11395 }
11396 relocation = value + signed_addend;
11397
11398 relocation -= (input_section->output_section->vma
11399 + input_section->output_offset
11400 + rel->r_offset);
11401
11402 relocation >>= howto->rightshift;
11403 signed_check = relocation;
11404
11405 if (r_type == R_ARM_THM_JUMP6)
11406 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
11407 else
11408 relocation &= howto->dst_mask;
11409 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
11410
11411 bfd_put_16 (input_bfd, relocation, hit_data);
11412
11413 /* Assumes two's complement. */
11414 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11415 return bfd_reloc_overflow;
11416
11417 return bfd_reloc_ok;
11418 }
11419
11420 case R_ARM_ALU_PCREL7_0:
11421 case R_ARM_ALU_PCREL15_8:
11422 case R_ARM_ALU_PCREL23_15:
11423 {
11424 bfd_vma insn;
11425 bfd_vma relocation;
11426
11427 insn = bfd_get_32 (input_bfd, hit_data);
11428 if (globals->use_rel)
11429 {
11430 /* Extract the addend. */
11431 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
11432 signed_addend = addend;
11433 }
11434 relocation = value + signed_addend;
11435
11436 relocation -= (input_section->output_section->vma
11437 + input_section->output_offset
11438 + rel->r_offset);
11439 insn = (insn & ~0xfff)
11440 | ((howto->bitpos << 7) & 0xf00)
11441 | ((relocation >> howto->bitpos) & 0xff);
11442 bfd_put_32 (input_bfd, value, hit_data);
11443 }
11444 return bfd_reloc_ok;
11445
11446 case R_ARM_GNU_VTINHERIT:
11447 case R_ARM_GNU_VTENTRY:
11448 return bfd_reloc_ok;
11449
11450 case R_ARM_GOTOFF32:
11451 /* Relocation is relative to the start of the
11452 global offset table. */
11453
11454 BFD_ASSERT (sgot != NULL);
11455 if (sgot == NULL)
11456 return bfd_reloc_notsupported;
11457
11458 /* If we are addressing a Thumb function, we need to adjust the
11459 address by one, so that attempts to call the function pointer will
11460 correctly interpret it as Thumb code. */
11461 if (branch_type == ST_BRANCH_TO_THUMB)
11462 value += 1;
11463
11464 /* Note that sgot->output_offset is not involved in this
11465 calculation. We always want the start of .got. If we
11466 define _GLOBAL_OFFSET_TABLE in a different way, as is
11467 permitted by the ABI, we might have to change this
11468 calculation. */
11469 value -= sgot->output_section->vma;
11470 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11471 contents, rel->r_offset, value,
11472 rel->r_addend);
11473
11474 case R_ARM_GOTPC:
11475 /* Use global offset table as symbol value. */
11476 BFD_ASSERT (sgot != NULL);
11477
11478 if (sgot == NULL)
11479 return bfd_reloc_notsupported;
11480
11481 *unresolved_reloc_p = FALSE;
11482 value = sgot->output_section->vma;
11483 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11484 contents, rel->r_offset, value,
11485 rel->r_addend);
11486
11487 case R_ARM_GOT32:
11488 case R_ARM_GOT_PREL:
11489 /* Relocation is to the entry for this symbol in the
11490 global offset table. */
11491 if (sgot == NULL)
11492 return bfd_reloc_notsupported;
11493
11494 if (dynreloc_st_type == STT_GNU_IFUNC
11495 && plt_offset != (bfd_vma) -1
11496 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11497 {
11498 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11499 symbol, and the relocation resolves directly to the runtime
11500 target rather than to the .iplt entry. This means that any
11501 .got entry would be the same value as the .igot.plt entry,
11502 so there's no point creating both. */
11503 sgot = globals->root.igotplt;
11504 value = sgot->output_offset + gotplt_offset;
11505 }
11506 else if (h != NULL)
11507 {
11508 bfd_vma off;
11509
11510 off = h->got.offset;
11511 BFD_ASSERT (off != (bfd_vma) -1);
11512 if ((off & 1) != 0)
11513 {
11514 /* We have already processsed one GOT relocation against
11515 this symbol. */
11516 off &= ~1;
11517 if (globals->root.dynamic_sections_created
11518 && !SYMBOL_REFERENCES_LOCAL (info, h))
11519 *unresolved_reloc_p = FALSE;
11520 }
11521 else
11522 {
11523 Elf_Internal_Rela outrel;
11524 int isrofixup = 0;
11525
11526 if (((h->dynindx != -1) || globals->fdpic_p)
11527 && !SYMBOL_REFERENCES_LOCAL (info, h))
11528 {
11529 /* If the symbol doesn't resolve locally in a static
11530 object, we have an undefined reference. If the
11531 symbol doesn't resolve locally in a dynamic object,
11532 it should be resolved by the dynamic linker. */
11533 if (globals->root.dynamic_sections_created)
11534 {
11535 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11536 *unresolved_reloc_p = FALSE;
11537 }
11538 else
11539 outrel.r_info = 0;
11540 outrel.r_addend = 0;
11541 }
11542 else
11543 {
11544 if (dynreloc_st_type == STT_GNU_IFUNC)
11545 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11546 else if (bfd_link_pic (info)
11547 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11548 || h->root.type != bfd_link_hash_undefweak))
11549 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11550 else
11551 {
11552 outrel.r_info = 0;
11553 if (globals->fdpic_p)
11554 isrofixup = 1;
11555 }
11556 outrel.r_addend = dynreloc_value;
11557 }
11558
11559 /* The GOT entry is initialized to zero by default.
11560 See if we should install a different value. */
11561 if (outrel.r_addend != 0
11562 && (globals->use_rel || outrel.r_info == 0))
11563 {
11564 bfd_put_32 (output_bfd, outrel.r_addend,
11565 sgot->contents + off);
11566 outrel.r_addend = 0;
11567 }
11568
11569 if (isrofixup)
11570 arm_elf_add_rofixup (output_bfd,
11571 elf32_arm_hash_table(info)->srofixup,
11572 sgot->output_section->vma
11573 + sgot->output_offset + off);
11574
11575 else if (outrel.r_info != 0)
11576 {
11577 outrel.r_offset = (sgot->output_section->vma
11578 + sgot->output_offset
11579 + off);
11580 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11581 }
11582
11583 h->got.offset |= 1;
11584 }
11585 value = sgot->output_offset + off;
11586 }
11587 else
11588 {
11589 bfd_vma off;
11590
11591 BFD_ASSERT (local_got_offsets != NULL
11592 && local_got_offsets[r_symndx] != (bfd_vma) -1);
11593
11594 off = local_got_offsets[r_symndx];
11595
11596 /* The offset must always be a multiple of 4. We use the
11597 least significant bit to record whether we have already
11598 generated the necessary reloc. */
11599 if ((off & 1) != 0)
11600 off &= ~1;
11601 else
11602 {
11603 Elf_Internal_Rela outrel;
11604 int isrofixup = 0;
11605
11606 if (dynreloc_st_type == STT_GNU_IFUNC)
11607 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11608 else if (bfd_link_pic (info))
11609 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11610 else
11611 {
11612 outrel.r_info = 0;
11613 if (globals->fdpic_p)
11614 isrofixup = 1;
11615 }
11616
11617 /* The GOT entry is initialized to zero by default.
11618 See if we should install a different value. */
11619 if (globals->use_rel || outrel.r_info == 0)
11620 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11621
11622 if (isrofixup)
11623 arm_elf_add_rofixup (output_bfd,
11624 globals->srofixup,
11625 sgot->output_section->vma
11626 + sgot->output_offset + off);
11627
11628 else if (outrel.r_info != 0)
11629 {
11630 outrel.r_addend = addend + dynreloc_value;
11631 outrel.r_offset = (sgot->output_section->vma
11632 + sgot->output_offset
11633 + off);
11634 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11635 }
11636
11637 local_got_offsets[r_symndx] |= 1;
11638 }
11639
11640 value = sgot->output_offset + off;
11641 }
11642 if (r_type != R_ARM_GOT32)
11643 value += sgot->output_section->vma;
11644
11645 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11646 contents, rel->r_offset, value,
11647 rel->r_addend);
11648
11649 case R_ARM_TLS_LDO32:
11650 value = value - dtpoff_base (info);
11651
11652 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11653 contents, rel->r_offset, value,
11654 rel->r_addend);
11655
11656 case R_ARM_TLS_LDM32:
11657 case R_ARM_TLS_LDM32_FDPIC:
11658 {
11659 bfd_vma off;
11660
11661 if (sgot == NULL)
11662 abort ();
11663
11664 off = globals->tls_ldm_got.offset;
11665
11666 if ((off & 1) != 0)
11667 off &= ~1;
11668 else
11669 {
11670 /* If we don't know the module number, create a relocation
11671 for it. */
11672 if (bfd_link_pic (info))
11673 {
11674 Elf_Internal_Rela outrel;
11675
11676 if (srelgot == NULL)
11677 abort ();
11678
11679 outrel.r_addend = 0;
11680 outrel.r_offset = (sgot->output_section->vma
11681 + sgot->output_offset + off);
11682 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11683
11684 if (globals->use_rel)
11685 bfd_put_32 (output_bfd, outrel.r_addend,
11686 sgot->contents + off);
11687
11688 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11689 }
11690 else
11691 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11692
11693 globals->tls_ldm_got.offset |= 1;
11694 }
11695
11696 if (r_type == R_ARM_TLS_LDM32_FDPIC)
11697 {
11698 bfd_put_32(output_bfd,
11699 globals->root.sgot->output_offset + off,
11700 contents + rel->r_offset);
11701
11702 return bfd_reloc_ok;
11703 }
11704 else
11705 {
11706 value = sgot->output_section->vma + sgot->output_offset + off
11707 - (input_section->output_section->vma
11708 + input_section->output_offset + rel->r_offset);
11709
11710 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11711 contents, rel->r_offset, value,
11712 rel->r_addend);
11713 }
11714 }
11715
11716 case R_ARM_TLS_CALL:
11717 case R_ARM_THM_TLS_CALL:
11718 case R_ARM_TLS_GD32:
11719 case R_ARM_TLS_GD32_FDPIC:
11720 case R_ARM_TLS_IE32:
11721 case R_ARM_TLS_IE32_FDPIC:
11722 case R_ARM_TLS_GOTDESC:
11723 case R_ARM_TLS_DESCSEQ:
11724 case R_ARM_THM_TLS_DESCSEQ:
11725 {
11726 bfd_vma off, offplt;
11727 int indx = 0;
11728 char tls_type;
11729
11730 BFD_ASSERT (sgot != NULL);
11731
11732 if (h != NULL)
11733 {
11734 bfd_boolean dyn;
11735 dyn = globals->root.dynamic_sections_created;
11736 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11737 bfd_link_pic (info),
11738 h)
11739 && (!bfd_link_pic (info)
11740 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11741 {
11742 *unresolved_reloc_p = FALSE;
11743 indx = h->dynindx;
11744 }
11745 off = h->got.offset;
11746 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11747 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11748 }
11749 else
11750 {
11751 BFD_ASSERT (local_got_offsets != NULL);
11752 off = local_got_offsets[r_symndx];
11753 offplt = local_tlsdesc_gotents[r_symndx];
11754 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11755 }
11756
11757 /* Linker relaxations happens from one of the
11758 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11759 if (ELF32_R_TYPE(rel->r_info) != r_type)
11760 tls_type = GOT_TLS_IE;
11761
11762 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11763
11764 if ((off & 1) != 0)
11765 off &= ~1;
11766 else
11767 {
11768 bfd_boolean need_relocs = FALSE;
11769 Elf_Internal_Rela outrel;
11770 int cur_off = off;
11771
11772 /* The GOT entries have not been initialized yet. Do it
11773 now, and emit any relocations. If both an IE GOT and a
11774 GD GOT are necessary, we emit the GD first. */
11775
11776 if ((bfd_link_pic (info) || indx != 0)
11777 && (h == NULL
11778 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11779 && !resolved_to_zero)
11780 || h->root.type != bfd_link_hash_undefweak))
11781 {
11782 need_relocs = TRUE;
11783 BFD_ASSERT (srelgot != NULL);
11784 }
11785
11786 if (tls_type & GOT_TLS_GDESC)
11787 {
11788 bfd_byte *loc;
11789
11790 /* We should have relaxed, unless this is an undefined
11791 weak symbol. */
11792 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11793 || bfd_link_pic (info));
11794 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11795 <= globals->root.sgotplt->size);
11796
11797 outrel.r_addend = 0;
11798 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11799 + globals->root.sgotplt->output_offset
11800 + offplt
11801 + globals->sgotplt_jump_table_size);
11802
11803 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11804 sreloc = globals->root.srelplt;
11805 loc = sreloc->contents;
11806 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11807 BFD_ASSERT (loc + RELOC_SIZE (globals)
11808 <= sreloc->contents + sreloc->size);
11809
11810 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11811
11812 /* For globals, the first word in the relocation gets
11813 the relocation index and the top bit set, or zero,
11814 if we're binding now. For locals, it gets the
11815 symbol's offset in the tls section. */
11816 bfd_put_32 (output_bfd,
11817 !h ? value - elf_hash_table (info)->tls_sec->vma
11818 : info->flags & DF_BIND_NOW ? 0
11819 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11820 globals->root.sgotplt->contents + offplt
11821 + globals->sgotplt_jump_table_size);
11822
11823 /* Second word in the relocation is always zero. */
11824 bfd_put_32 (output_bfd, 0,
11825 globals->root.sgotplt->contents + offplt
11826 + globals->sgotplt_jump_table_size + 4);
11827 }
11828 if (tls_type & GOT_TLS_GD)
11829 {
11830 if (need_relocs)
11831 {
11832 outrel.r_addend = 0;
11833 outrel.r_offset = (sgot->output_section->vma
11834 + sgot->output_offset
11835 + cur_off);
11836 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11837
11838 if (globals->use_rel)
11839 bfd_put_32 (output_bfd, outrel.r_addend,
11840 sgot->contents + cur_off);
11841
11842 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11843
11844 if (indx == 0)
11845 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11846 sgot->contents + cur_off + 4);
11847 else
11848 {
11849 outrel.r_addend = 0;
11850 outrel.r_info = ELF32_R_INFO (indx,
11851 R_ARM_TLS_DTPOFF32);
11852 outrel.r_offset += 4;
11853
11854 if (globals->use_rel)
11855 bfd_put_32 (output_bfd, outrel.r_addend,
11856 sgot->contents + cur_off + 4);
11857
11858 elf32_arm_add_dynreloc (output_bfd, info,
11859 srelgot, &outrel);
11860 }
11861 }
11862 else
11863 {
11864 /* If we are not emitting relocations for a
11865 general dynamic reference, then we must be in a
11866 static link or an executable link with the
11867 symbol binding locally. Mark it as belonging
11868 to module 1, the executable. */
11869 bfd_put_32 (output_bfd, 1,
11870 sgot->contents + cur_off);
11871 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11872 sgot->contents + cur_off + 4);
11873 }
11874
11875 cur_off += 8;
11876 }
11877
11878 if (tls_type & GOT_TLS_IE)
11879 {
11880 if (need_relocs)
11881 {
11882 if (indx == 0)
11883 outrel.r_addend = value - dtpoff_base (info);
11884 else
11885 outrel.r_addend = 0;
11886 outrel.r_offset = (sgot->output_section->vma
11887 + sgot->output_offset
11888 + cur_off);
11889 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11890
11891 if (globals->use_rel)
11892 bfd_put_32 (output_bfd, outrel.r_addend,
11893 sgot->contents + cur_off);
11894
11895 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11896 }
11897 else
11898 bfd_put_32 (output_bfd, tpoff (info, value),
11899 sgot->contents + cur_off);
11900 cur_off += 4;
11901 }
11902
11903 if (h != NULL)
11904 h->got.offset |= 1;
11905 else
11906 local_got_offsets[r_symndx] |= 1;
11907 }
11908
11909 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC)
11910 off += 8;
11911 else if (tls_type & GOT_TLS_GDESC)
11912 off = offplt;
11913
11914 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11915 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11916 {
11917 bfd_signed_vma offset;
11918 /* TLS stubs are arm mode. The original symbol is a
11919 data object, so branch_type is bogus. */
11920 branch_type = ST_BRANCH_TO_ARM;
11921 enum elf32_arm_stub_type stub_type
11922 = arm_type_of_stub (info, input_section, rel,
11923 st_type, &branch_type,
11924 (struct elf32_arm_link_hash_entry *)h,
11925 globals->tls_trampoline, globals->root.splt,
11926 input_bfd, sym_name);
11927
11928 if (stub_type != arm_stub_none)
11929 {
11930 struct elf32_arm_stub_hash_entry *stub_entry
11931 = elf32_arm_get_stub_entry
11932 (input_section, globals->root.splt, 0, rel,
11933 globals, stub_type);
11934 offset = (stub_entry->stub_offset
11935 + stub_entry->stub_sec->output_offset
11936 + stub_entry->stub_sec->output_section->vma);
11937 }
11938 else
11939 offset = (globals->root.splt->output_section->vma
11940 + globals->root.splt->output_offset
11941 + globals->tls_trampoline);
11942
11943 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11944 {
11945 unsigned long inst;
11946
11947 offset -= (input_section->output_section->vma
11948 + input_section->output_offset
11949 + rel->r_offset + 8);
11950
11951 inst = offset >> 2;
11952 inst &= 0x00ffffff;
11953 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11954 }
11955 else
11956 {
11957 /* Thumb blx encodes the offset in a complicated
11958 fashion. */
11959 unsigned upper_insn, lower_insn;
11960 unsigned neg;
11961
11962 offset -= (input_section->output_section->vma
11963 + input_section->output_offset
11964 + rel->r_offset + 4);
11965
11966 if (stub_type != arm_stub_none
11967 && arm_stub_is_thumb (stub_type))
11968 {
11969 lower_insn = 0xd000;
11970 }
11971 else
11972 {
11973 lower_insn = 0xc000;
11974 /* Round up the offset to a word boundary. */
11975 offset = (offset + 2) & ~2;
11976 }
11977
11978 neg = offset < 0;
11979 upper_insn = (0xf000
11980 | ((offset >> 12) & 0x3ff)
11981 | (neg << 10));
11982 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
11983 | (((!((offset >> 22) & 1)) ^ neg) << 11)
11984 | ((offset >> 1) & 0x7ff);
11985 bfd_put_16 (input_bfd, upper_insn, hit_data);
11986 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11987 return bfd_reloc_ok;
11988 }
11989 }
11990 /* These relocations needs special care, as besides the fact
11991 they point somewhere in .gotplt, the addend must be
11992 adjusted accordingly depending on the type of instruction
11993 we refer to. */
11994 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11995 {
11996 unsigned long data, insn;
11997 unsigned thumb;
11998
11999 data = bfd_get_32 (input_bfd, hit_data);
12000 thumb = data & 1;
12001 data &= ~1u;
12002
12003 if (thumb)
12004 {
12005 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
12006 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
12007 insn = (insn << 16)
12008 | bfd_get_16 (input_bfd,
12009 contents + rel->r_offset - data + 2);
12010 if ((insn & 0xf800c000) == 0xf000c000)
12011 /* bl/blx */
12012 value = -6;
12013 else if ((insn & 0xffffff00) == 0x4400)
12014 /* add */
12015 value = -5;
12016 else
12017 {
12018 _bfd_error_handler
12019 /* xgettext:c-format */
12020 (_("%pB(%pA+%#" PRIx64 "): "
12021 "unexpected %s instruction '%#lx' "
12022 "referenced by TLS_GOTDESC"),
12023 input_bfd, input_section, (uint64_t) rel->r_offset,
12024 "Thumb", insn);
12025 return bfd_reloc_notsupported;
12026 }
12027 }
12028 else
12029 {
12030 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
12031
12032 switch (insn >> 24)
12033 {
12034 case 0xeb: /* bl */
12035 case 0xfa: /* blx */
12036 value = -4;
12037 break;
12038
12039 case 0xe0: /* add */
12040 value = -8;
12041 break;
12042
12043 default:
12044 _bfd_error_handler
12045 /* xgettext:c-format */
12046 (_("%pB(%pA+%#" PRIx64 "): "
12047 "unexpected %s instruction '%#lx' "
12048 "referenced by TLS_GOTDESC"),
12049 input_bfd, input_section, (uint64_t) rel->r_offset,
12050 "ARM", insn);
12051 return bfd_reloc_notsupported;
12052 }
12053 }
12054
12055 value += ((globals->root.sgotplt->output_section->vma
12056 + globals->root.sgotplt->output_offset + off)
12057 - (input_section->output_section->vma
12058 + input_section->output_offset
12059 + rel->r_offset)
12060 + globals->sgotplt_jump_table_size);
12061 }
12062 else
12063 value = ((globals->root.sgot->output_section->vma
12064 + globals->root.sgot->output_offset + off)
12065 - (input_section->output_section->vma
12066 + input_section->output_offset + rel->r_offset));
12067
12068 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC ||
12069 r_type == R_ARM_TLS_IE32_FDPIC))
12070 {
12071 /* For FDPIC relocations, resolve to the offset of the GOT
12072 entry from the start of GOT. */
12073 bfd_put_32(output_bfd,
12074 globals->root.sgot->output_offset + off,
12075 contents + rel->r_offset);
12076
12077 return bfd_reloc_ok;
12078 }
12079 else
12080 {
12081 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12082 contents, rel->r_offset, value,
12083 rel->r_addend);
12084 }
12085 }
12086
12087 case R_ARM_TLS_LE32:
12088 if (bfd_link_dll (info))
12089 {
12090 _bfd_error_handler
12091 /* xgettext:c-format */
12092 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
12093 "in shared object"),
12094 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name);
12095 return bfd_reloc_notsupported;
12096 }
12097 else
12098 value = tpoff (info, value);
12099
12100 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12101 contents, rel->r_offset, value,
12102 rel->r_addend);
12103
12104 case R_ARM_V4BX:
12105 if (globals->fix_v4bx)
12106 {
12107 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12108
12109 /* Ensure that we have a BX instruction. */
12110 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
12111
12112 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
12113 {
12114 /* Branch to veneer. */
12115 bfd_vma glue_addr;
12116 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
12117 glue_addr -= input_section->output_section->vma
12118 + input_section->output_offset
12119 + rel->r_offset + 8;
12120 insn = (insn & 0xf0000000) | 0x0a000000
12121 | ((glue_addr >> 2) & 0x00ffffff);
12122 }
12123 else
12124 {
12125 /* Preserve Rm (lowest four bits) and the condition code
12126 (highest four bits). Other bits encode MOV PC,Rm. */
12127 insn = (insn & 0xf000000f) | 0x01a0f000;
12128 }
12129
12130 bfd_put_32 (input_bfd, insn, hit_data);
12131 }
12132 return bfd_reloc_ok;
12133
12134 case R_ARM_MOVW_ABS_NC:
12135 case R_ARM_MOVT_ABS:
12136 case R_ARM_MOVW_PREL_NC:
12137 case R_ARM_MOVT_PREL:
12138 /* Until we properly support segment-base-relative addressing then
12139 we assume the segment base to be zero, as for the group relocations.
12140 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12141 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12142 case R_ARM_MOVW_BREL_NC:
12143 case R_ARM_MOVW_BREL:
12144 case R_ARM_MOVT_BREL:
12145 {
12146 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12147
12148 if (globals->use_rel)
12149 {
12150 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
12151 signed_addend = (addend ^ 0x8000) - 0x8000;
12152 }
12153
12154 value += signed_addend;
12155
12156 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
12157 value -= (input_section->output_section->vma
12158 + input_section->output_offset + rel->r_offset);
12159
12160 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
12161 return bfd_reloc_overflow;
12162
12163 if (branch_type == ST_BRANCH_TO_THUMB)
12164 value |= 1;
12165
12166 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
12167 || r_type == R_ARM_MOVT_BREL)
12168 value >>= 16;
12169
12170 insn &= 0xfff0f000;
12171 insn |= value & 0xfff;
12172 insn |= (value & 0xf000) << 4;
12173 bfd_put_32 (input_bfd, insn, hit_data);
12174 }
12175 return bfd_reloc_ok;
12176
12177 case R_ARM_THM_MOVW_ABS_NC:
12178 case R_ARM_THM_MOVT_ABS:
12179 case R_ARM_THM_MOVW_PREL_NC:
12180 case R_ARM_THM_MOVT_PREL:
12181 /* Until we properly support segment-base-relative addressing then
12182 we assume the segment base to be zero, as for the above relocations.
12183 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12184 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12185 as R_ARM_THM_MOVT_ABS. */
12186 case R_ARM_THM_MOVW_BREL_NC:
12187 case R_ARM_THM_MOVW_BREL:
12188 case R_ARM_THM_MOVT_BREL:
12189 {
12190 bfd_vma insn;
12191
12192 insn = bfd_get_16 (input_bfd, hit_data) << 16;
12193 insn |= bfd_get_16 (input_bfd, hit_data + 2);
12194
12195 if (globals->use_rel)
12196 {
12197 addend = ((insn >> 4) & 0xf000)
12198 | ((insn >> 15) & 0x0800)
12199 | ((insn >> 4) & 0x0700)
12200 | (insn & 0x00ff);
12201 signed_addend = (addend ^ 0x8000) - 0x8000;
12202 }
12203
12204 value += signed_addend;
12205
12206 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
12207 value -= (input_section->output_section->vma
12208 + input_section->output_offset + rel->r_offset);
12209
12210 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
12211 return bfd_reloc_overflow;
12212
12213 if (branch_type == ST_BRANCH_TO_THUMB)
12214 value |= 1;
12215
12216 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
12217 || r_type == R_ARM_THM_MOVT_BREL)
12218 value >>= 16;
12219
12220 insn &= 0xfbf08f00;
12221 insn |= (value & 0xf000) << 4;
12222 insn |= (value & 0x0800) << 15;
12223 insn |= (value & 0x0700) << 4;
12224 insn |= (value & 0x00ff);
12225
12226 bfd_put_16 (input_bfd, insn >> 16, hit_data);
12227 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
12228 }
12229 return bfd_reloc_ok;
12230
12231 case R_ARM_ALU_PC_G0_NC:
12232 case R_ARM_ALU_PC_G1_NC:
12233 case R_ARM_ALU_PC_G0:
12234 case R_ARM_ALU_PC_G1:
12235 case R_ARM_ALU_PC_G2:
12236 case R_ARM_ALU_SB_G0_NC:
12237 case R_ARM_ALU_SB_G1_NC:
12238 case R_ARM_ALU_SB_G0:
12239 case R_ARM_ALU_SB_G1:
12240 case R_ARM_ALU_SB_G2:
12241 {
12242 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12243 bfd_vma pc = input_section->output_section->vma
12244 + input_section->output_offset + rel->r_offset;
12245 /* sb is the origin of the *segment* containing the symbol. */
12246 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12247 bfd_vma residual;
12248 bfd_vma g_n;
12249 bfd_signed_vma signed_value;
12250 int group = 0;
12251
12252 /* Determine which group of bits to select. */
12253 switch (r_type)
12254 {
12255 case R_ARM_ALU_PC_G0_NC:
12256 case R_ARM_ALU_PC_G0:
12257 case R_ARM_ALU_SB_G0_NC:
12258 case R_ARM_ALU_SB_G0:
12259 group = 0;
12260 break;
12261
12262 case R_ARM_ALU_PC_G1_NC:
12263 case R_ARM_ALU_PC_G1:
12264 case R_ARM_ALU_SB_G1_NC:
12265 case R_ARM_ALU_SB_G1:
12266 group = 1;
12267 break;
12268
12269 case R_ARM_ALU_PC_G2:
12270 case R_ARM_ALU_SB_G2:
12271 group = 2;
12272 break;
12273
12274 default:
12275 abort ();
12276 }
12277
12278 /* If REL, extract the addend from the insn. If RELA, it will
12279 have already been fetched for us. */
12280 if (globals->use_rel)
12281 {
12282 int negative;
12283 bfd_vma constant = insn & 0xff;
12284 bfd_vma rotation = (insn & 0xf00) >> 8;
12285
12286 if (rotation == 0)
12287 signed_addend = constant;
12288 else
12289 {
12290 /* Compensate for the fact that in the instruction, the
12291 rotation is stored in multiples of 2 bits. */
12292 rotation *= 2;
12293
12294 /* Rotate "constant" right by "rotation" bits. */
12295 signed_addend = (constant >> rotation) |
12296 (constant << (8 * sizeof (bfd_vma) - rotation));
12297 }
12298
12299 /* Determine if the instruction is an ADD or a SUB.
12300 (For REL, this determines the sign of the addend.) */
12301 negative = identify_add_or_sub (insn);
12302 if (negative == 0)
12303 {
12304 _bfd_error_handler
12305 /* xgettext:c-format */
12306 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions "
12307 "are allowed for ALU group relocations"),
12308 input_bfd, input_section, (uint64_t) rel->r_offset);
12309 return bfd_reloc_overflow;
12310 }
12311
12312 signed_addend *= negative;
12313 }
12314
12315 /* Compute the value (X) to go in the place. */
12316 if (r_type == R_ARM_ALU_PC_G0_NC
12317 || r_type == R_ARM_ALU_PC_G1_NC
12318 || r_type == R_ARM_ALU_PC_G0
12319 || r_type == R_ARM_ALU_PC_G1
12320 || r_type == R_ARM_ALU_PC_G2)
12321 /* PC relative. */
12322 signed_value = value - pc + signed_addend;
12323 else
12324 /* Section base relative. */
12325 signed_value = value - sb + signed_addend;
12326
12327 /* If the target symbol is a Thumb function, then set the
12328 Thumb bit in the address. */
12329 if (branch_type == ST_BRANCH_TO_THUMB)
12330 signed_value |= 1;
12331
12332 /* Calculate the value of the relevant G_n, in encoded
12333 constant-with-rotation format. */
12334 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12335 group, &residual);
12336
12337 /* Check for overflow if required. */
12338 if ((r_type == R_ARM_ALU_PC_G0
12339 || r_type == R_ARM_ALU_PC_G1
12340 || r_type == R_ARM_ALU_PC_G2
12341 || r_type == R_ARM_ALU_SB_G0
12342 || r_type == R_ARM_ALU_SB_G1
12343 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
12344 {
12345 _bfd_error_handler
12346 /* xgettext:c-format */
12347 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12348 "splitting %#" PRIx64 " for group relocation %s"),
12349 input_bfd, input_section, (uint64_t) rel->r_offset,
12350 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12351 howto->name);
12352 return bfd_reloc_overflow;
12353 }
12354
12355 /* Mask out the value and the ADD/SUB part of the opcode; take care
12356 not to destroy the S bit. */
12357 insn &= 0xff1ff000;
12358
12359 /* Set the opcode according to whether the value to go in the
12360 place is negative. */
12361 if (signed_value < 0)
12362 insn |= 1 << 22;
12363 else
12364 insn |= 1 << 23;
12365
12366 /* Encode the offset. */
12367 insn |= g_n;
12368
12369 bfd_put_32 (input_bfd, insn, hit_data);
12370 }
12371 return bfd_reloc_ok;
12372
12373 case R_ARM_LDR_PC_G0:
12374 case R_ARM_LDR_PC_G1:
12375 case R_ARM_LDR_PC_G2:
12376 case R_ARM_LDR_SB_G0:
12377 case R_ARM_LDR_SB_G1:
12378 case R_ARM_LDR_SB_G2:
12379 {
12380 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12381 bfd_vma pc = input_section->output_section->vma
12382 + input_section->output_offset + rel->r_offset;
12383 /* sb is the origin of the *segment* containing the symbol. */
12384 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12385 bfd_vma residual;
12386 bfd_signed_vma signed_value;
12387 int group = 0;
12388
12389 /* Determine which groups of bits to calculate. */
12390 switch (r_type)
12391 {
12392 case R_ARM_LDR_PC_G0:
12393 case R_ARM_LDR_SB_G0:
12394 group = 0;
12395 break;
12396
12397 case R_ARM_LDR_PC_G1:
12398 case R_ARM_LDR_SB_G1:
12399 group = 1;
12400 break;
12401
12402 case R_ARM_LDR_PC_G2:
12403 case R_ARM_LDR_SB_G2:
12404 group = 2;
12405 break;
12406
12407 default:
12408 abort ();
12409 }
12410
12411 /* If REL, extract the addend from the insn. If RELA, it will
12412 have already been fetched for us. */
12413 if (globals->use_rel)
12414 {
12415 int negative = (insn & (1 << 23)) ? 1 : -1;
12416 signed_addend = negative * (insn & 0xfff);
12417 }
12418
12419 /* Compute the value (X) to go in the place. */
12420 if (r_type == R_ARM_LDR_PC_G0
12421 || r_type == R_ARM_LDR_PC_G1
12422 || r_type == R_ARM_LDR_PC_G2)
12423 /* PC relative. */
12424 signed_value = value - pc + signed_addend;
12425 else
12426 /* Section base relative. */
12427 signed_value = value - sb + signed_addend;
12428
12429 /* Calculate the value of the relevant G_{n-1} to obtain
12430 the residual at that stage. */
12431 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12432 group - 1, &residual);
12433
12434 /* Check for overflow. */
12435 if (residual >= 0x1000)
12436 {
12437 _bfd_error_handler
12438 /* xgettext:c-format */
12439 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12440 "splitting %#" PRIx64 " for group relocation %s"),
12441 input_bfd, input_section, (uint64_t) rel->r_offset,
12442 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12443 howto->name);
12444 return bfd_reloc_overflow;
12445 }
12446
12447 /* Mask out the value and U bit. */
12448 insn &= 0xff7ff000;
12449
12450 /* Set the U bit if the value to go in the place is non-negative. */
12451 if (signed_value >= 0)
12452 insn |= 1 << 23;
12453
12454 /* Encode the offset. */
12455 insn |= residual;
12456
12457 bfd_put_32 (input_bfd, insn, hit_data);
12458 }
12459 return bfd_reloc_ok;
12460
12461 case R_ARM_LDRS_PC_G0:
12462 case R_ARM_LDRS_PC_G1:
12463 case R_ARM_LDRS_PC_G2:
12464 case R_ARM_LDRS_SB_G0:
12465 case R_ARM_LDRS_SB_G1:
12466 case R_ARM_LDRS_SB_G2:
12467 {
12468 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12469 bfd_vma pc = input_section->output_section->vma
12470 + input_section->output_offset + rel->r_offset;
12471 /* sb is the origin of the *segment* containing the symbol. */
12472 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12473 bfd_vma residual;
12474 bfd_signed_vma signed_value;
12475 int group = 0;
12476
12477 /* Determine which groups of bits to calculate. */
12478 switch (r_type)
12479 {
12480 case R_ARM_LDRS_PC_G0:
12481 case R_ARM_LDRS_SB_G0:
12482 group = 0;
12483 break;
12484
12485 case R_ARM_LDRS_PC_G1:
12486 case R_ARM_LDRS_SB_G1:
12487 group = 1;
12488 break;
12489
12490 case R_ARM_LDRS_PC_G2:
12491 case R_ARM_LDRS_SB_G2:
12492 group = 2;
12493 break;
12494
12495 default:
12496 abort ();
12497 }
12498
12499 /* If REL, extract the addend from the insn. If RELA, it will
12500 have already been fetched for us. */
12501 if (globals->use_rel)
12502 {
12503 int negative = (insn & (1 << 23)) ? 1 : -1;
12504 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
12505 }
12506
12507 /* Compute the value (X) to go in the place. */
12508 if (r_type == R_ARM_LDRS_PC_G0
12509 || r_type == R_ARM_LDRS_PC_G1
12510 || r_type == R_ARM_LDRS_PC_G2)
12511 /* PC relative. */
12512 signed_value = value - pc + signed_addend;
12513 else
12514 /* Section base relative. */
12515 signed_value = value - sb + signed_addend;
12516
12517 /* Calculate the value of the relevant G_{n-1} to obtain
12518 the residual at that stage. */
12519 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12520 group - 1, &residual);
12521
12522 /* Check for overflow. */
12523 if (residual >= 0x100)
12524 {
12525 _bfd_error_handler
12526 /* xgettext:c-format */
12527 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12528 "splitting %#" PRIx64 " for group relocation %s"),
12529 input_bfd, input_section, (uint64_t) rel->r_offset,
12530 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12531 howto->name);
12532 return bfd_reloc_overflow;
12533 }
12534
12535 /* Mask out the value and U bit. */
12536 insn &= 0xff7ff0f0;
12537
12538 /* Set the U bit if the value to go in the place is non-negative. */
12539 if (signed_value >= 0)
12540 insn |= 1 << 23;
12541
12542 /* Encode the offset. */
12543 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
12544
12545 bfd_put_32 (input_bfd, insn, hit_data);
12546 }
12547 return bfd_reloc_ok;
12548
12549 case R_ARM_LDC_PC_G0:
12550 case R_ARM_LDC_PC_G1:
12551 case R_ARM_LDC_PC_G2:
12552 case R_ARM_LDC_SB_G0:
12553 case R_ARM_LDC_SB_G1:
12554 case R_ARM_LDC_SB_G2:
12555 {
12556 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12557 bfd_vma pc = input_section->output_section->vma
12558 + input_section->output_offset + rel->r_offset;
12559 /* sb is the origin of the *segment* containing the symbol. */
12560 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12561 bfd_vma residual;
12562 bfd_signed_vma signed_value;
12563 int group = 0;
12564
12565 /* Determine which groups of bits to calculate. */
12566 switch (r_type)
12567 {
12568 case R_ARM_LDC_PC_G0:
12569 case R_ARM_LDC_SB_G0:
12570 group = 0;
12571 break;
12572
12573 case R_ARM_LDC_PC_G1:
12574 case R_ARM_LDC_SB_G1:
12575 group = 1;
12576 break;
12577
12578 case R_ARM_LDC_PC_G2:
12579 case R_ARM_LDC_SB_G2:
12580 group = 2;
12581 break;
12582
12583 default:
12584 abort ();
12585 }
12586
12587 /* If REL, extract the addend from the insn. If RELA, it will
12588 have already been fetched for us. */
12589 if (globals->use_rel)
12590 {
12591 int negative = (insn & (1 << 23)) ? 1 : -1;
12592 signed_addend = negative * ((insn & 0xff) << 2);
12593 }
12594
12595 /* Compute the value (X) to go in the place. */
12596 if (r_type == R_ARM_LDC_PC_G0
12597 || r_type == R_ARM_LDC_PC_G1
12598 || r_type == R_ARM_LDC_PC_G2)
12599 /* PC relative. */
12600 signed_value = value - pc + signed_addend;
12601 else
12602 /* Section base relative. */
12603 signed_value = value - sb + signed_addend;
12604
12605 /* Calculate the value of the relevant G_{n-1} to obtain
12606 the residual at that stage. */
12607 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12608 group - 1, &residual);
12609
12610 /* Check for overflow. (The absolute value to go in the place must be
12611 divisible by four and, after having been divided by four, must
12612 fit in eight bits.) */
12613 if ((residual & 0x3) != 0 || residual >= 0x400)
12614 {
12615 _bfd_error_handler
12616 /* xgettext:c-format */
12617 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12618 "splitting %#" PRIx64 " for group relocation %s"),
12619 input_bfd, input_section, (uint64_t) rel->r_offset,
12620 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12621 howto->name);
12622 return bfd_reloc_overflow;
12623 }
12624
12625 /* Mask out the value and U bit. */
12626 insn &= 0xff7fff00;
12627
12628 /* Set the U bit if the value to go in the place is non-negative. */
12629 if (signed_value >= 0)
12630 insn |= 1 << 23;
12631
12632 /* Encode the offset. */
12633 insn |= residual >> 2;
12634
12635 bfd_put_32 (input_bfd, insn, hit_data);
12636 }
12637 return bfd_reloc_ok;
12638
12639 case R_ARM_THM_ALU_ABS_G0_NC:
12640 case R_ARM_THM_ALU_ABS_G1_NC:
12641 case R_ARM_THM_ALU_ABS_G2_NC:
12642 case R_ARM_THM_ALU_ABS_G3_NC:
12643 {
12644 const int shift_array[4] = {0, 8, 16, 24};
12645 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12646 bfd_vma addr = value;
12647 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12648
12649 /* Compute address. */
12650 if (globals->use_rel)
12651 signed_addend = insn & 0xff;
12652 addr += signed_addend;
12653 if (branch_type == ST_BRANCH_TO_THUMB)
12654 addr |= 1;
12655 /* Clean imm8 insn. */
12656 insn &= 0xff00;
12657 /* And update with correct part of address. */
12658 insn |= (addr >> shift) & 0xff;
12659 /* Update insn. */
12660 bfd_put_16 (input_bfd, insn, hit_data);
12661 }
12662
12663 *unresolved_reloc_p = FALSE;
12664 return bfd_reloc_ok;
12665
12666 case R_ARM_GOTOFFFUNCDESC:
12667 {
12668 if (h == NULL)
12669 {
12670 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12671 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12672 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12673 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12674 bfd_vma seg = -1;
12675
12676 if (bfd_link_pic(info) && dynindx == 0)
12677 abort();
12678
12679 /* Resolve relocation. */
12680 bfd_put_32(output_bfd, (offset + sgot->output_offset)
12681 , contents + rel->r_offset);
12682 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12683 not done yet. */
12684 arm_elf_fill_funcdesc(output_bfd, info,
12685 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12686 dynindx, offset, addr, dynreloc_value, seg);
12687 }
12688 else
12689 {
12690 int dynindx;
12691 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12692 bfd_vma addr;
12693 bfd_vma seg = -1;
12694
12695 /* For static binaries, sym_sec can be null. */
12696 if (sym_sec)
12697 {
12698 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12699 addr = dynreloc_value - sym_sec->output_section->vma;
12700 }
12701 else
12702 {
12703 dynindx = 0;
12704 addr = 0;
12705 }
12706
12707 if (bfd_link_pic(info) && dynindx == 0)
12708 abort();
12709
12710 /* This case cannot occur since funcdesc is allocated by
12711 the dynamic loader so we cannot resolve the relocation. */
12712 if (h->dynindx != -1)
12713 abort();
12714
12715 /* Resolve relocation. */
12716 bfd_put_32(output_bfd, (offset + sgot->output_offset),
12717 contents + rel->r_offset);
12718 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12719 arm_elf_fill_funcdesc(output_bfd, info,
12720 &eh->fdpic_cnts.funcdesc_offset,
12721 dynindx, offset, addr, dynreloc_value, seg);
12722 }
12723 }
12724 *unresolved_reloc_p = FALSE;
12725 return bfd_reloc_ok;
12726
12727 case R_ARM_GOTFUNCDESC:
12728 {
12729 if (h != NULL)
12730 {
12731 Elf_Internal_Rela outrel;
12732
12733 /* Resolve relocation. */
12734 bfd_put_32(output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1)
12735 + sgot->output_offset),
12736 contents + rel->r_offset);
12737 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
12738 if(h->dynindx == -1)
12739 {
12740 int dynindx;
12741 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12742 bfd_vma addr;
12743 bfd_vma seg = -1;
12744
12745 /* For static binaries sym_sec can be null. */
12746 if (sym_sec)
12747 {
12748 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12749 addr = dynreloc_value - sym_sec->output_section->vma;
12750 }
12751 else
12752 {
12753 dynindx = 0;
12754 addr = 0;
12755 }
12756
12757 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12758 arm_elf_fill_funcdesc(output_bfd, info,
12759 &eh->fdpic_cnts.funcdesc_offset,
12760 dynindx, offset, addr, dynreloc_value, seg);
12761 }
12762
12763 /* Add a dynamic relocation on GOT entry if not already done. */
12764 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0)
12765 {
12766 if (h->dynindx == -1)
12767 {
12768 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12769 if (h->root.type == bfd_link_hash_undefweak)
12770 bfd_put_32(output_bfd, 0, sgot->contents
12771 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12772 else
12773 bfd_put_32(output_bfd, sgot->output_section->vma
12774 + sgot->output_offset
12775 + (eh->fdpic_cnts.funcdesc_offset & ~1),
12776 sgot->contents
12777 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12778 }
12779 else
12780 {
12781 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12782 }
12783 outrel.r_offset = sgot->output_section->vma
12784 + sgot->output_offset
12785 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1);
12786 outrel.r_addend = 0;
12787 if (h->dynindx == -1 && !bfd_link_pic(info))
12788 if (h->root.type == bfd_link_hash_undefweak)
12789 arm_elf_add_rofixup(output_bfd, globals->srofixup, -1);
12790 else
12791 arm_elf_add_rofixup(output_bfd, globals->srofixup,
12792 outrel.r_offset);
12793 else
12794 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12795 eh->fdpic_cnts.gotfuncdesc_offset |= 1;
12796 }
12797 }
12798 else
12799 {
12800 /* Such relocation on static function should not have been
12801 emitted by the compiler. */
12802 abort();
12803 }
12804 }
12805 *unresolved_reloc_p = FALSE;
12806 return bfd_reloc_ok;
12807
12808 case R_ARM_FUNCDESC:
12809 {
12810 if (h == NULL)
12811 {
12812 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12813 Elf_Internal_Rela outrel;
12814 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12815 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12816 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12817 bfd_vma seg = -1;
12818
12819 if (bfd_link_pic(info) && dynindx == 0)
12820 abort();
12821
12822 /* Replace static FUNCDESC relocation with a
12823 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12824 executable. */
12825 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12826 outrel.r_offset = input_section->output_section->vma
12827 + input_section->output_offset + rel->r_offset;
12828 outrel.r_addend = 0;
12829 if (bfd_link_pic(info))
12830 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12831 else
12832 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12833
12834 bfd_put_32 (input_bfd, sgot->output_section->vma
12835 + sgot->output_offset + offset, hit_data);
12836
12837 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12838 arm_elf_fill_funcdesc(output_bfd, info,
12839 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12840 dynindx, offset, addr, dynreloc_value, seg);
12841 }
12842 else
12843 {
12844 if (h->dynindx == -1)
12845 {
12846 int dynindx;
12847 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12848 bfd_vma addr;
12849 bfd_vma seg = -1;
12850 Elf_Internal_Rela outrel;
12851
12852 /* For static binaries sym_sec can be null. */
12853 if (sym_sec)
12854 {
12855 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12856 addr = dynreloc_value - sym_sec->output_section->vma;
12857 }
12858 else
12859 {
12860 dynindx = 0;
12861 addr = 0;
12862 }
12863
12864 if (bfd_link_pic(info) && dynindx == 0)
12865 abort();
12866
12867 /* Replace static FUNCDESC relocation with a
12868 R_ARM_RELATIVE dynamic relocation. */
12869 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12870 outrel.r_offset = input_section->output_section->vma
12871 + input_section->output_offset + rel->r_offset;
12872 outrel.r_addend = 0;
12873 if (bfd_link_pic(info))
12874 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12875 else
12876 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12877
12878 bfd_put_32 (input_bfd, sgot->output_section->vma
12879 + sgot->output_offset + offset, hit_data);
12880
12881 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12882 arm_elf_fill_funcdesc(output_bfd, info,
12883 &eh->fdpic_cnts.funcdesc_offset,
12884 dynindx, offset, addr, dynreloc_value, seg);
12885 }
12886 else
12887 {
12888 Elf_Internal_Rela outrel;
12889
12890 /* Add a dynamic relocation. */
12891 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12892 outrel.r_offset = input_section->output_section->vma
12893 + input_section->output_offset + rel->r_offset;
12894 outrel.r_addend = 0;
12895 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12896 }
12897 }
12898 }
12899 *unresolved_reloc_p = FALSE;
12900 return bfd_reloc_ok;
12901
12902 case R_ARM_THM_BF16:
12903 {
12904 bfd_vma relocation;
12905 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12906 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12907
12908 if (globals->use_rel)
12909 {
12910 bfd_vma immA = (upper_insn & 0x001f);
12911 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12912 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12913 addend = (immA << 12);
12914 addend |= (immB << 2);
12915 addend |= (immC << 1);
12916 addend |= 1;
12917 /* Sign extend. */
12918 signed_addend = (addend & 0x10000) ? addend - (1 << 17) : addend;
12919 }
12920
12921 relocation = value + signed_addend;
12922 relocation -= (input_section->output_section->vma
12923 + input_section->output_offset
12924 + rel->r_offset);
12925
12926 /* Put RELOCATION back into the insn. */
12927 {
12928 bfd_vma immA = (relocation & 0x0001f000) >> 12;
12929 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12930 bfd_vma immC = (relocation & 0x00000002) >> 1;
12931
12932 upper_insn = (upper_insn & 0xffe0) | immA;
12933 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12934 }
12935
12936 /* Put the relocated value back in the object file: */
12937 bfd_put_16 (input_bfd, upper_insn, hit_data);
12938 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12939
12940 return bfd_reloc_ok;
12941 }
12942
12943 case R_ARM_THM_BF12:
12944 {
12945 bfd_vma relocation;
12946 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12947 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12948
12949 if (globals->use_rel)
12950 {
12951 bfd_vma immA = (upper_insn & 0x0001);
12952 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12953 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12954 addend = (immA << 12);
12955 addend |= (immB << 2);
12956 addend |= (immC << 1);
12957 addend |= 1;
12958 /* Sign extend. */
12959 addend = (addend & 0x1000) ? addend - (1 << 13) : addend;
12960 signed_addend = addend;
12961 }
12962
12963 relocation = value + signed_addend;
12964 relocation -= (input_section->output_section->vma
12965 + input_section->output_offset
12966 + rel->r_offset);
12967
12968 /* Put RELOCATION back into the insn. */
12969 {
12970 bfd_vma immA = (relocation & 0x00001000) >> 12;
12971 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12972 bfd_vma immC = (relocation & 0x00000002) >> 1;
12973
12974 upper_insn = (upper_insn & 0xfffe) | immA;
12975 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12976 }
12977
12978 /* Put the relocated value back in the object file: */
12979 bfd_put_16 (input_bfd, upper_insn, hit_data);
12980 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12981
12982 return bfd_reloc_ok;
12983 }
12984
12985 case R_ARM_THM_BF18:
12986 {
12987 bfd_vma relocation;
12988 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12989 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12990
12991 if (globals->use_rel)
12992 {
12993 bfd_vma immA = (upper_insn & 0x007f);
12994 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12995 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12996 addend = (immA << 12);
12997 addend |= (immB << 2);
12998 addend |= (immC << 1);
12999 addend |= 1;
13000 /* Sign extend. */
13001 addend = (addend & 0x40000) ? addend - (1 << 19) : addend;
13002 signed_addend = addend;
13003 }
13004
13005 relocation = value + signed_addend;
13006 relocation -= (input_section->output_section->vma
13007 + input_section->output_offset
13008 + rel->r_offset);
13009
13010 /* Put RELOCATION back into the insn. */
13011 {
13012 bfd_vma immA = (relocation & 0x0007f000) >> 12;
13013 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
13014 bfd_vma immC = (relocation & 0x00000002) >> 1;
13015
13016 upper_insn = (upper_insn & 0xff80) | immA;
13017 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
13018 }
13019
13020 /* Put the relocated value back in the object file: */
13021 bfd_put_16 (input_bfd, upper_insn, hit_data);
13022 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13023
13024 return bfd_reloc_ok;
13025 }
13026
13027 default:
13028 return bfd_reloc_notsupported;
13029 }
13030 }
13031
13032 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
13033 static void
13034 arm_add_to_rel (bfd * abfd,
13035 bfd_byte * address,
13036 reloc_howto_type * howto,
13037 bfd_signed_vma increment)
13038 {
13039 bfd_signed_vma addend;
13040
13041 if (howto->type == R_ARM_THM_CALL
13042 || howto->type == R_ARM_THM_JUMP24)
13043 {
13044 int upper_insn, lower_insn;
13045 int upper, lower;
13046
13047 upper_insn = bfd_get_16 (abfd, address);
13048 lower_insn = bfd_get_16 (abfd, address + 2);
13049 upper = upper_insn & 0x7ff;
13050 lower = lower_insn & 0x7ff;
13051
13052 addend = (upper << 12) | (lower << 1);
13053 addend += increment;
13054 addend >>= 1;
13055
13056 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
13057 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
13058
13059 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
13060 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
13061 }
13062 else
13063 {
13064 bfd_vma contents;
13065
13066 contents = bfd_get_32 (abfd, address);
13067
13068 /* Get the (signed) value from the instruction. */
13069 addend = contents & howto->src_mask;
13070 if (addend & ((howto->src_mask + 1) >> 1))
13071 {
13072 bfd_signed_vma mask;
13073
13074 mask = -1;
13075 mask &= ~ howto->src_mask;
13076 addend |= mask;
13077 }
13078
13079 /* Add in the increment, (which is a byte value). */
13080 switch (howto->type)
13081 {
13082 default:
13083 addend += increment;
13084 break;
13085
13086 case R_ARM_PC24:
13087 case R_ARM_PLT32:
13088 case R_ARM_CALL:
13089 case R_ARM_JUMP24:
13090 addend <<= howto->size;
13091 addend += increment;
13092
13093 /* Should we check for overflow here ? */
13094
13095 /* Drop any undesired bits. */
13096 addend >>= howto->rightshift;
13097 break;
13098 }
13099
13100 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
13101
13102 bfd_put_32 (abfd, contents, address);
13103 }
13104 }
13105
13106 #define IS_ARM_TLS_RELOC(R_TYPE) \
13107 ((R_TYPE) == R_ARM_TLS_GD32 \
13108 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
13109 || (R_TYPE) == R_ARM_TLS_LDO32 \
13110 || (R_TYPE) == R_ARM_TLS_LDM32 \
13111 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
13112 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
13113 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
13114 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
13115 || (R_TYPE) == R_ARM_TLS_LE32 \
13116 || (R_TYPE) == R_ARM_TLS_IE32 \
13117 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
13118 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
13119
13120 /* Specific set of relocations for the gnu tls dialect. */
13121 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
13122 ((R_TYPE) == R_ARM_TLS_GOTDESC \
13123 || (R_TYPE) == R_ARM_TLS_CALL \
13124 || (R_TYPE) == R_ARM_THM_TLS_CALL \
13125 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
13126 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
13127
13128 /* Relocate an ARM ELF section. */
13129
13130 static bfd_boolean
13131 elf32_arm_relocate_section (bfd * output_bfd,
13132 struct bfd_link_info * info,
13133 bfd * input_bfd,
13134 asection * input_section,
13135 bfd_byte * contents,
13136 Elf_Internal_Rela * relocs,
13137 Elf_Internal_Sym * local_syms,
13138 asection ** local_sections)
13139 {
13140 Elf_Internal_Shdr *symtab_hdr;
13141 struct elf_link_hash_entry **sym_hashes;
13142 Elf_Internal_Rela *rel;
13143 Elf_Internal_Rela *relend;
13144 const char *name;
13145 struct elf32_arm_link_hash_table * globals;
13146
13147 globals = elf32_arm_hash_table (info);
13148 if (globals == NULL)
13149 return FALSE;
13150
13151 symtab_hdr = & elf_symtab_hdr (input_bfd);
13152 sym_hashes = elf_sym_hashes (input_bfd);
13153
13154 rel = relocs;
13155 relend = relocs + input_section->reloc_count;
13156 for (; rel < relend; rel++)
13157 {
13158 int r_type;
13159 reloc_howto_type * howto;
13160 unsigned long r_symndx;
13161 Elf_Internal_Sym * sym;
13162 asection * sec;
13163 struct elf_link_hash_entry * h;
13164 bfd_vma relocation;
13165 bfd_reloc_status_type r;
13166 arelent bfd_reloc;
13167 char sym_type;
13168 bfd_boolean unresolved_reloc = FALSE;
13169 char *error_message = NULL;
13170
13171 r_symndx = ELF32_R_SYM (rel->r_info);
13172 r_type = ELF32_R_TYPE (rel->r_info);
13173 r_type = arm_real_reloc_type (globals, r_type);
13174
13175 if ( r_type == R_ARM_GNU_VTENTRY
13176 || r_type == R_ARM_GNU_VTINHERIT)
13177 continue;
13178
13179 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
13180
13181 if (howto == NULL)
13182 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
13183
13184 h = NULL;
13185 sym = NULL;
13186 sec = NULL;
13187
13188 if (r_symndx < symtab_hdr->sh_info)
13189 {
13190 sym = local_syms + r_symndx;
13191 sym_type = ELF32_ST_TYPE (sym->st_info);
13192 sec = local_sections[r_symndx];
13193
13194 /* An object file might have a reference to a local
13195 undefined symbol. This is a daft object file, but we
13196 should at least do something about it. V4BX & NONE
13197 relocations do not use the symbol and are explicitly
13198 allowed to use the undefined symbol, so allow those.
13199 Likewise for relocations against STN_UNDEF. */
13200 if (r_type != R_ARM_V4BX
13201 && r_type != R_ARM_NONE
13202 && r_symndx != STN_UNDEF
13203 && bfd_is_und_section (sec)
13204 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
13205 (*info->callbacks->undefined_symbol)
13206 (info, bfd_elf_string_from_elf_section
13207 (input_bfd, symtab_hdr->sh_link, sym->st_name),
13208 input_bfd, input_section,
13209 rel->r_offset, TRUE);
13210
13211 if (globals->use_rel)
13212 {
13213 relocation = (sec->output_section->vma
13214 + sec->output_offset
13215 + sym->st_value);
13216 if (!bfd_link_relocatable (info)
13217 && (sec->flags & SEC_MERGE)
13218 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13219 {
13220 asection *msec;
13221 bfd_vma addend, value;
13222
13223 switch (r_type)
13224 {
13225 case R_ARM_MOVW_ABS_NC:
13226 case R_ARM_MOVT_ABS:
13227 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13228 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
13229 addend = (addend ^ 0x8000) - 0x8000;
13230 break;
13231
13232 case R_ARM_THM_MOVW_ABS_NC:
13233 case R_ARM_THM_MOVT_ABS:
13234 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
13235 << 16;
13236 value |= bfd_get_16 (input_bfd,
13237 contents + rel->r_offset + 2);
13238 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
13239 | ((value & 0x04000000) >> 15);
13240 addend = (addend ^ 0x8000) - 0x8000;
13241 break;
13242
13243 default:
13244 if (howto->rightshift
13245 || (howto->src_mask & (howto->src_mask + 1)))
13246 {
13247 _bfd_error_handler
13248 /* xgettext:c-format */
13249 (_("%pB(%pA+%#" PRIx64 "): "
13250 "%s relocation against SEC_MERGE section"),
13251 input_bfd, input_section,
13252 (uint64_t) rel->r_offset, howto->name);
13253 return FALSE;
13254 }
13255
13256 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13257
13258 /* Get the (signed) value from the instruction. */
13259 addend = value & howto->src_mask;
13260 if (addend & ((howto->src_mask + 1) >> 1))
13261 {
13262 bfd_signed_vma mask;
13263
13264 mask = -1;
13265 mask &= ~ howto->src_mask;
13266 addend |= mask;
13267 }
13268 break;
13269 }
13270
13271 msec = sec;
13272 addend =
13273 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
13274 - relocation;
13275 addend += msec->output_section->vma + msec->output_offset;
13276
13277 /* Cases here must match those in the preceding
13278 switch statement. */
13279 switch (r_type)
13280 {
13281 case R_ARM_MOVW_ABS_NC:
13282 case R_ARM_MOVT_ABS:
13283 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
13284 | (addend & 0xfff);
13285 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13286 break;
13287
13288 case R_ARM_THM_MOVW_ABS_NC:
13289 case R_ARM_THM_MOVT_ABS:
13290 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
13291 | (addend & 0xff) | ((addend & 0x0800) << 15);
13292 bfd_put_16 (input_bfd, value >> 16,
13293 contents + rel->r_offset);
13294 bfd_put_16 (input_bfd, value,
13295 contents + rel->r_offset + 2);
13296 break;
13297
13298 default:
13299 value = (value & ~ howto->dst_mask)
13300 | (addend & howto->dst_mask);
13301 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13302 break;
13303 }
13304 }
13305 }
13306 else
13307 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13308 }
13309 else
13310 {
13311 bfd_boolean warned, ignored;
13312
13313 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13314 r_symndx, symtab_hdr, sym_hashes,
13315 h, sec, relocation,
13316 unresolved_reloc, warned, ignored);
13317
13318 sym_type = h->type;
13319 }
13320
13321 if (sec != NULL && discarded_section (sec))
13322 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13323 rel, 1, relend, howto, 0, contents);
13324
13325 if (bfd_link_relocatable (info))
13326 {
13327 /* This is a relocatable link. We don't have to change
13328 anything, unless the reloc is against a section symbol,
13329 in which case we have to adjust according to where the
13330 section symbol winds up in the output section. */
13331 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13332 {
13333 if (globals->use_rel)
13334 arm_add_to_rel (input_bfd, contents + rel->r_offset,
13335 howto, (bfd_signed_vma) sec->output_offset);
13336 else
13337 rel->r_addend += sec->output_offset;
13338 }
13339 continue;
13340 }
13341
13342 if (h != NULL)
13343 name = h->root.root.string;
13344 else
13345 {
13346 name = (bfd_elf_string_from_elf_section
13347 (input_bfd, symtab_hdr->sh_link, sym->st_name));
13348 if (name == NULL || *name == '\0')
13349 name = bfd_section_name (input_bfd, sec);
13350 }
13351
13352 if (r_symndx != STN_UNDEF
13353 && r_type != R_ARM_NONE
13354 && (h == NULL
13355 || h->root.type == bfd_link_hash_defined
13356 || h->root.type == bfd_link_hash_defweak)
13357 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
13358 {
13359 _bfd_error_handler
13360 ((sym_type == STT_TLS
13361 /* xgettext:c-format */
13362 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
13363 /* xgettext:c-format */
13364 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
13365 input_bfd,
13366 input_section,
13367 (uint64_t) rel->r_offset,
13368 howto->name,
13369 name);
13370 }
13371
13372 /* We call elf32_arm_final_link_relocate unless we're completely
13373 done, i.e., the relaxation produced the final output we want,
13374 and we won't let anybody mess with it. Also, we have to do
13375 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
13376 both in relaxed and non-relaxed cases. */
13377 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
13378 || (IS_ARM_TLS_GNU_RELOC (r_type)
13379 && !((h ? elf32_arm_hash_entry (h)->tls_type :
13380 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
13381 & GOT_TLS_GDESC)))
13382 {
13383 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
13384 contents, rel, h == NULL);
13385 /* This may have been marked unresolved because it came from
13386 a shared library. But we've just dealt with that. */
13387 unresolved_reloc = 0;
13388 }
13389 else
13390 r = bfd_reloc_continue;
13391
13392 if (r == bfd_reloc_continue)
13393 {
13394 unsigned char branch_type =
13395 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
13396 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
13397
13398 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
13399 input_section, contents, rel,
13400 relocation, info, sec, name,
13401 sym_type, branch_type, h,
13402 &unresolved_reloc,
13403 &error_message);
13404 }
13405
13406 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13407 because such sections are not SEC_ALLOC and thus ld.so will
13408 not process them. */
13409 if (unresolved_reloc
13410 && !((input_section->flags & SEC_DEBUGGING) != 0
13411 && h->def_dynamic)
13412 && _bfd_elf_section_offset (output_bfd, info, input_section,
13413 rel->r_offset) != (bfd_vma) -1)
13414 {
13415 _bfd_error_handler
13416 /* xgettext:c-format */
13417 (_("%pB(%pA+%#" PRIx64 "): "
13418 "unresolvable %s relocation against symbol `%s'"),
13419 input_bfd,
13420 input_section,
13421 (uint64_t) rel->r_offset,
13422 howto->name,
13423 h->root.root.string);
13424 return FALSE;
13425 }
13426
13427 if (r != bfd_reloc_ok)
13428 {
13429 switch (r)
13430 {
13431 case bfd_reloc_overflow:
13432 /* If the overflowing reloc was to an undefined symbol,
13433 we have already printed one error message and there
13434 is no point complaining again. */
13435 if (!h || h->root.type != bfd_link_hash_undefined)
13436 (*info->callbacks->reloc_overflow)
13437 (info, (h ? &h->root : NULL), name, howto->name,
13438 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
13439 break;
13440
13441 case bfd_reloc_undefined:
13442 (*info->callbacks->undefined_symbol)
13443 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
13444 break;
13445
13446 case bfd_reloc_outofrange:
13447 error_message = _("out of range");
13448 goto common_error;
13449
13450 case bfd_reloc_notsupported:
13451 error_message = _("unsupported relocation");
13452 goto common_error;
13453
13454 case bfd_reloc_dangerous:
13455 /* error_message should already be set. */
13456 goto common_error;
13457
13458 default:
13459 error_message = _("unknown error");
13460 /* Fall through. */
13461
13462 common_error:
13463 BFD_ASSERT (error_message != NULL);
13464 (*info->callbacks->reloc_dangerous)
13465 (info, error_message, input_bfd, input_section, rel->r_offset);
13466 break;
13467 }
13468 }
13469 }
13470
13471 return TRUE;
13472 }
13473
13474 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
13475 adds the edit to the start of the list. (The list must be built in order of
13476 ascending TINDEX: the function's callers are primarily responsible for
13477 maintaining that condition). */
13478
13479 static void
13480 add_unwind_table_edit (arm_unwind_table_edit **head,
13481 arm_unwind_table_edit **tail,
13482 arm_unwind_edit_type type,
13483 asection *linked_section,
13484 unsigned int tindex)
13485 {
13486 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
13487 xmalloc (sizeof (arm_unwind_table_edit));
13488
13489 new_edit->type = type;
13490 new_edit->linked_section = linked_section;
13491 new_edit->index = tindex;
13492
13493 if (tindex > 0)
13494 {
13495 new_edit->next = NULL;
13496
13497 if (*tail)
13498 (*tail)->next = new_edit;
13499
13500 (*tail) = new_edit;
13501
13502 if (!*head)
13503 (*head) = new_edit;
13504 }
13505 else
13506 {
13507 new_edit->next = *head;
13508
13509 if (!*tail)
13510 *tail = new_edit;
13511
13512 *head = new_edit;
13513 }
13514 }
13515
13516 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
13517
13518 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
13519 static void
13520 adjust_exidx_size(asection *exidx_sec, int adjust)
13521 {
13522 asection *out_sec;
13523
13524 if (!exidx_sec->rawsize)
13525 exidx_sec->rawsize = exidx_sec->size;
13526
13527 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
13528 out_sec = exidx_sec->output_section;
13529 /* Adjust size of output section. */
13530 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
13531 }
13532
13533 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
13534 static void
13535 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
13536 {
13537 struct _arm_elf_section_data *exidx_arm_data;
13538
13539 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13540 add_unwind_table_edit (
13541 &exidx_arm_data->u.exidx.unwind_edit_list,
13542 &exidx_arm_data->u.exidx.unwind_edit_tail,
13543 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
13544
13545 exidx_arm_data->additional_reloc_count++;
13546
13547 adjust_exidx_size(exidx_sec, 8);
13548 }
13549
13550 /* Scan .ARM.exidx tables, and create a list describing edits which should be
13551 made to those tables, such that:
13552
13553 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13554 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
13555 codes which have been inlined into the index).
13556
13557 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13558
13559 The edits are applied when the tables are written
13560 (in elf32_arm_write_section). */
13561
13562 bfd_boolean
13563 elf32_arm_fix_exidx_coverage (asection **text_section_order,
13564 unsigned int num_text_sections,
13565 struct bfd_link_info *info,
13566 bfd_boolean merge_exidx_entries)
13567 {
13568 bfd *inp;
13569 unsigned int last_second_word = 0, i;
13570 asection *last_exidx_sec = NULL;
13571 asection *last_text_sec = NULL;
13572 int last_unwind_type = -1;
13573
13574 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13575 text sections. */
13576 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
13577 {
13578 asection *sec;
13579
13580 for (sec = inp->sections; sec != NULL; sec = sec->next)
13581 {
13582 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
13583 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
13584
13585 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
13586 continue;
13587
13588 if (elf_sec->linked_to)
13589 {
13590 Elf_Internal_Shdr *linked_hdr
13591 = &elf_section_data (elf_sec->linked_to)->this_hdr;
13592 struct _arm_elf_section_data *linked_sec_arm_data
13593 = get_arm_elf_section_data (linked_hdr->bfd_section);
13594
13595 if (linked_sec_arm_data == NULL)
13596 continue;
13597
13598 /* Link this .ARM.exidx section back from the text section it
13599 describes. */
13600 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
13601 }
13602 }
13603 }
13604
13605 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13606 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
13607 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
13608
13609 for (i = 0; i < num_text_sections; i++)
13610 {
13611 asection *sec = text_section_order[i];
13612 asection *exidx_sec;
13613 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
13614 struct _arm_elf_section_data *exidx_arm_data;
13615 bfd_byte *contents = NULL;
13616 int deleted_exidx_bytes = 0;
13617 bfd_vma j;
13618 arm_unwind_table_edit *unwind_edit_head = NULL;
13619 arm_unwind_table_edit *unwind_edit_tail = NULL;
13620 Elf_Internal_Shdr *hdr;
13621 bfd *ibfd;
13622
13623 if (arm_data == NULL)
13624 continue;
13625
13626 exidx_sec = arm_data->u.text.arm_exidx_sec;
13627 if (exidx_sec == NULL)
13628 {
13629 /* Section has no unwind data. */
13630 if (last_unwind_type == 0 || !last_exidx_sec)
13631 continue;
13632
13633 /* Ignore zero sized sections. */
13634 if (sec->size == 0)
13635 continue;
13636
13637 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13638 last_unwind_type = 0;
13639 continue;
13640 }
13641
13642 /* Skip /DISCARD/ sections. */
13643 if (bfd_is_abs_section (exidx_sec->output_section))
13644 continue;
13645
13646 hdr = &elf_section_data (exidx_sec)->this_hdr;
13647 if (hdr->sh_type != SHT_ARM_EXIDX)
13648 continue;
13649
13650 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13651 if (exidx_arm_data == NULL)
13652 continue;
13653
13654 ibfd = exidx_sec->owner;
13655
13656 if (hdr->contents != NULL)
13657 contents = hdr->contents;
13658 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
13659 /* An error? */
13660 continue;
13661
13662 if (last_unwind_type > 0)
13663 {
13664 unsigned int first_word = bfd_get_32 (ibfd, contents);
13665 /* Add cantunwind if first unwind item does not match section
13666 start. */
13667 if (first_word != sec->vma)
13668 {
13669 insert_cantunwind_after (last_text_sec, last_exidx_sec);
13670 last_unwind_type = 0;
13671 }
13672 }
13673
13674 for (j = 0; j < hdr->sh_size; j += 8)
13675 {
13676 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
13677 int unwind_type;
13678 int elide = 0;
13679
13680 /* An EXIDX_CANTUNWIND entry. */
13681 if (second_word == 1)
13682 {
13683 if (last_unwind_type == 0)
13684 elide = 1;
13685 unwind_type = 0;
13686 }
13687 /* Inlined unwinding data. Merge if equal to previous. */
13688 else if ((second_word & 0x80000000) != 0)
13689 {
13690 if (merge_exidx_entries
13691 && last_second_word == second_word && last_unwind_type == 1)
13692 elide = 1;
13693 unwind_type = 1;
13694 last_second_word = second_word;
13695 }
13696 /* Normal table entry. In theory we could merge these too,
13697 but duplicate entries are likely to be much less common. */
13698 else
13699 unwind_type = 2;
13700
13701 if (elide && !bfd_link_relocatable (info))
13702 {
13703 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
13704 DELETE_EXIDX_ENTRY, NULL, j / 8);
13705
13706 deleted_exidx_bytes += 8;
13707 }
13708
13709 last_unwind_type = unwind_type;
13710 }
13711
13712 /* Free contents if we allocated it ourselves. */
13713 if (contents != hdr->contents)
13714 free (contents);
13715
13716 /* Record edits to be applied later (in elf32_arm_write_section). */
13717 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
13718 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
13719
13720 if (deleted_exidx_bytes > 0)
13721 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
13722
13723 last_exidx_sec = exidx_sec;
13724 last_text_sec = sec;
13725 }
13726
13727 /* Add terminating CANTUNWIND entry. */
13728 if (!bfd_link_relocatable (info) && last_exidx_sec
13729 && last_unwind_type != 0)
13730 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13731
13732 return TRUE;
13733 }
13734
13735 static bfd_boolean
13736 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
13737 bfd *ibfd, const char *name)
13738 {
13739 asection *sec, *osec;
13740
13741 sec = bfd_get_linker_section (ibfd, name);
13742 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
13743 return TRUE;
13744
13745 osec = sec->output_section;
13746 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
13747 return TRUE;
13748
13749 if (! bfd_set_section_contents (obfd, osec, sec->contents,
13750 sec->output_offset, sec->size))
13751 return FALSE;
13752
13753 return TRUE;
13754 }
13755
13756 static bfd_boolean
13757 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
13758 {
13759 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
13760 asection *sec, *osec;
13761
13762 if (globals == NULL)
13763 return FALSE;
13764
13765 /* Invoke the regular ELF backend linker to do all the work. */
13766 if (!bfd_elf_final_link (abfd, info))
13767 return FALSE;
13768
13769 /* Process stub sections (eg BE8 encoding, ...). */
13770 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
13771 unsigned int i;
13772 for (i=0; i<htab->top_id; i++)
13773 {
13774 sec = htab->stub_group[i].stub_sec;
13775 /* Only process it once, in its link_sec slot. */
13776 if (sec && i == htab->stub_group[i].link_sec->id)
13777 {
13778 osec = sec->output_section;
13779 elf32_arm_write_section (abfd, info, sec, sec->contents);
13780 if (! bfd_set_section_contents (abfd, osec, sec->contents,
13781 sec->output_offset, sec->size))
13782 return FALSE;
13783 }
13784 }
13785
13786 /* Write out any glue sections now that we have created all the
13787 stubs. */
13788 if (globals->bfd_of_glue_owner != NULL)
13789 {
13790 if (! elf32_arm_output_glue_section (info, abfd,
13791 globals->bfd_of_glue_owner,
13792 ARM2THUMB_GLUE_SECTION_NAME))
13793 return FALSE;
13794
13795 if (! elf32_arm_output_glue_section (info, abfd,
13796 globals->bfd_of_glue_owner,
13797 THUMB2ARM_GLUE_SECTION_NAME))
13798 return FALSE;
13799
13800 if (! elf32_arm_output_glue_section (info, abfd,
13801 globals->bfd_of_glue_owner,
13802 VFP11_ERRATUM_VENEER_SECTION_NAME))
13803 return FALSE;
13804
13805 if (! elf32_arm_output_glue_section (info, abfd,
13806 globals->bfd_of_glue_owner,
13807 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
13808 return FALSE;
13809
13810 if (! elf32_arm_output_glue_section (info, abfd,
13811 globals->bfd_of_glue_owner,
13812 ARM_BX_GLUE_SECTION_NAME))
13813 return FALSE;
13814 }
13815
13816 return TRUE;
13817 }
13818
13819 /* Return a best guess for the machine number based on the attributes. */
13820
13821 static unsigned int
13822 bfd_arm_get_mach_from_attributes (bfd * abfd)
13823 {
13824 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
13825
13826 switch (arch)
13827 {
13828 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M;
13829 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
13830 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
13831 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
13832
13833 case TAG_CPU_ARCH_V5TE:
13834 {
13835 char * name;
13836
13837 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
13838 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
13839
13840 if (name)
13841 {
13842 if (strcmp (name, "IWMMXT2") == 0)
13843 return bfd_mach_arm_iWMMXt2;
13844
13845 if (strcmp (name, "IWMMXT") == 0)
13846 return bfd_mach_arm_iWMMXt;
13847
13848 if (strcmp (name, "XSCALE") == 0)
13849 {
13850 int wmmx;
13851
13852 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
13853 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
13854 switch (wmmx)
13855 {
13856 case 1: return bfd_mach_arm_iWMMXt;
13857 case 2: return bfd_mach_arm_iWMMXt2;
13858 default: return bfd_mach_arm_XScale;
13859 }
13860 }
13861 }
13862
13863 return bfd_mach_arm_5TE;
13864 }
13865
13866 case TAG_CPU_ARCH_V5TEJ:
13867 return bfd_mach_arm_5TEJ;
13868 case TAG_CPU_ARCH_V6:
13869 return bfd_mach_arm_6;
13870 case TAG_CPU_ARCH_V6KZ:
13871 return bfd_mach_arm_6KZ;
13872 case TAG_CPU_ARCH_V6T2:
13873 return bfd_mach_arm_6T2;
13874 case TAG_CPU_ARCH_V6K:
13875 return bfd_mach_arm_6K;
13876 case TAG_CPU_ARCH_V7:
13877 return bfd_mach_arm_7;
13878 case TAG_CPU_ARCH_V6_M:
13879 return bfd_mach_arm_6M;
13880 case TAG_CPU_ARCH_V6S_M:
13881 return bfd_mach_arm_6SM;
13882 case TAG_CPU_ARCH_V7E_M:
13883 return bfd_mach_arm_7EM;
13884 case TAG_CPU_ARCH_V8:
13885 return bfd_mach_arm_8;
13886 case TAG_CPU_ARCH_V8R:
13887 return bfd_mach_arm_8R;
13888 case TAG_CPU_ARCH_V8M_BASE:
13889 return bfd_mach_arm_8M_BASE;
13890 case TAG_CPU_ARCH_V8M_MAIN:
13891 return bfd_mach_arm_8M_MAIN;
13892 case TAG_CPU_ARCH_V8_1M_MAIN:
13893 return bfd_mach_arm_8_1M_MAIN;
13894
13895 default:
13896 /* Force entry to be added for any new known Tag_CPU_arch value. */
13897 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH);
13898
13899 /* Unknown Tag_CPU_arch value. */
13900 return bfd_mach_arm_unknown;
13901 }
13902 }
13903
13904 /* Set the right machine number. */
13905
13906 static bfd_boolean
13907 elf32_arm_object_p (bfd *abfd)
13908 {
13909 unsigned int mach;
13910
13911 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
13912
13913 if (mach == bfd_mach_arm_unknown)
13914 {
13915 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13916 mach = bfd_mach_arm_ep9312;
13917 else
13918 mach = bfd_arm_get_mach_from_attributes (abfd);
13919 }
13920
13921 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
13922 return TRUE;
13923 }
13924
13925 /* Function to keep ARM specific flags in the ELF header. */
13926
13927 static bfd_boolean
13928 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
13929 {
13930 if (elf_flags_init (abfd)
13931 && elf_elfheader (abfd)->e_flags != flags)
13932 {
13933 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13934 {
13935 if (flags & EF_ARM_INTERWORK)
13936 _bfd_error_handler
13937 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
13938 abfd);
13939 else
13940 _bfd_error_handler
13941 (_("warning: clearing the interworking flag of %pB due to outside request"),
13942 abfd);
13943 }
13944 }
13945 else
13946 {
13947 elf_elfheader (abfd)->e_flags = flags;
13948 elf_flags_init (abfd) = TRUE;
13949 }
13950
13951 return TRUE;
13952 }
13953
13954 /* Copy backend specific data from one object module to another. */
13955
13956 static bfd_boolean
13957 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
13958 {
13959 flagword in_flags;
13960 flagword out_flags;
13961
13962 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13963 return TRUE;
13964
13965 in_flags = elf_elfheader (ibfd)->e_flags;
13966 out_flags = elf_elfheader (obfd)->e_flags;
13967
13968 if (elf_flags_init (obfd)
13969 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13970 && in_flags != out_flags)
13971 {
13972 /* Cannot mix APCS26 and APCS32 code. */
13973 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
13974 return FALSE;
13975
13976 /* Cannot mix float APCS and non-float APCS code. */
13977 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
13978 return FALSE;
13979
13980 /* If the src and dest have different interworking flags
13981 then turn off the interworking bit. */
13982 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
13983 {
13984 if (out_flags & EF_ARM_INTERWORK)
13985 _bfd_error_handler
13986 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
13987 obfd, ibfd);
13988
13989 in_flags &= ~EF_ARM_INTERWORK;
13990 }
13991
13992 /* Likewise for PIC, though don't warn for this case. */
13993 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13994 in_flags &= ~EF_ARM_PIC;
13995 }
13996
13997 elf_elfheader (obfd)->e_flags = in_flags;
13998 elf_flags_init (obfd) = TRUE;
13999
14000 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
14001 }
14002
14003 /* Values for Tag_ABI_PCS_R9_use. */
14004 enum
14005 {
14006 AEABI_R9_V6,
14007 AEABI_R9_SB,
14008 AEABI_R9_TLS,
14009 AEABI_R9_unused
14010 };
14011
14012 /* Values for Tag_ABI_PCS_RW_data. */
14013 enum
14014 {
14015 AEABI_PCS_RW_data_absolute,
14016 AEABI_PCS_RW_data_PCrel,
14017 AEABI_PCS_RW_data_SBrel,
14018 AEABI_PCS_RW_data_unused
14019 };
14020
14021 /* Values for Tag_ABI_enum_size. */
14022 enum
14023 {
14024 AEABI_enum_unused,
14025 AEABI_enum_short,
14026 AEABI_enum_wide,
14027 AEABI_enum_forced_wide
14028 };
14029
14030 /* Determine whether an object attribute tag takes an integer, a
14031 string or both. */
14032
14033 static int
14034 elf32_arm_obj_attrs_arg_type (int tag)
14035 {
14036 if (tag == Tag_compatibility)
14037 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
14038 else if (tag == Tag_nodefaults)
14039 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
14040 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
14041 return ATTR_TYPE_FLAG_STR_VAL;
14042 else if (tag < 32)
14043 return ATTR_TYPE_FLAG_INT_VAL;
14044 else
14045 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
14046 }
14047
14048 /* The ABI defines that Tag_conformance should be emitted first, and that
14049 Tag_nodefaults should be second (if either is defined). This sets those
14050 two positions, and bumps up the position of all the remaining tags to
14051 compensate. */
14052 static int
14053 elf32_arm_obj_attrs_order (int num)
14054 {
14055 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
14056 return Tag_conformance;
14057 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
14058 return Tag_nodefaults;
14059 if ((num - 2) < Tag_nodefaults)
14060 return num - 2;
14061 if ((num - 1) < Tag_conformance)
14062 return num - 1;
14063 return num;
14064 }
14065
14066 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
14067 static bfd_boolean
14068 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
14069 {
14070 if ((tag & 127) < 64)
14071 {
14072 _bfd_error_handler
14073 (_("%pB: unknown mandatory EABI object attribute %d"),
14074 abfd, tag);
14075 bfd_set_error (bfd_error_bad_value);
14076 return FALSE;
14077 }
14078 else
14079 {
14080 _bfd_error_handler
14081 (_("warning: %pB: unknown EABI object attribute %d"),
14082 abfd, tag);
14083 return TRUE;
14084 }
14085 }
14086
14087 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
14088 Returns -1 if no architecture could be read. */
14089
14090 static int
14091 get_secondary_compatible_arch (bfd *abfd)
14092 {
14093 obj_attribute *attr =
14094 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14095
14096 /* Note: the tag and its argument below are uleb128 values, though
14097 currently-defined values fit in one byte for each. */
14098 if (attr->s
14099 && attr->s[0] == Tag_CPU_arch
14100 && (attr->s[1] & 128) != 128
14101 && attr->s[2] == 0)
14102 return attr->s[1];
14103
14104 /* This tag is "safely ignorable", so don't complain if it looks funny. */
14105 return -1;
14106 }
14107
14108 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
14109 The tag is removed if ARCH is -1. */
14110
14111 static void
14112 set_secondary_compatible_arch (bfd *abfd, int arch)
14113 {
14114 obj_attribute *attr =
14115 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14116
14117 if (arch == -1)
14118 {
14119 attr->s = NULL;
14120 return;
14121 }
14122
14123 /* Note: the tag and its argument below are uleb128 values, though
14124 currently-defined values fit in one byte for each. */
14125 if (!attr->s)
14126 attr->s = (char *) bfd_alloc (abfd, 3);
14127 attr->s[0] = Tag_CPU_arch;
14128 attr->s[1] = arch;
14129 attr->s[2] = '\0';
14130 }
14131
14132 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
14133 into account. */
14134
14135 static int
14136 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
14137 int newtag, int secondary_compat)
14138 {
14139 #define T(X) TAG_CPU_ARCH_##X
14140 int tagl, tagh, result;
14141 const int v6t2[] =
14142 {
14143 T(V6T2), /* PRE_V4. */
14144 T(V6T2), /* V4. */
14145 T(V6T2), /* V4T. */
14146 T(V6T2), /* V5T. */
14147 T(V6T2), /* V5TE. */
14148 T(V6T2), /* V5TEJ. */
14149 T(V6T2), /* V6. */
14150 T(V7), /* V6KZ. */
14151 T(V6T2) /* V6T2. */
14152 };
14153 const int v6k[] =
14154 {
14155 T(V6K), /* PRE_V4. */
14156 T(V6K), /* V4. */
14157 T(V6K), /* V4T. */
14158 T(V6K), /* V5T. */
14159 T(V6K), /* V5TE. */
14160 T(V6K), /* V5TEJ. */
14161 T(V6K), /* V6. */
14162 T(V6KZ), /* V6KZ. */
14163 T(V7), /* V6T2. */
14164 T(V6K) /* V6K. */
14165 };
14166 const int v7[] =
14167 {
14168 T(V7), /* PRE_V4. */
14169 T(V7), /* V4. */
14170 T(V7), /* V4T. */
14171 T(V7), /* V5T. */
14172 T(V7), /* V5TE. */
14173 T(V7), /* V5TEJ. */
14174 T(V7), /* V6. */
14175 T(V7), /* V6KZ. */
14176 T(V7), /* V6T2. */
14177 T(V7), /* V6K. */
14178 T(V7) /* V7. */
14179 };
14180 const int v6_m[] =
14181 {
14182 -1, /* PRE_V4. */
14183 -1, /* V4. */
14184 T(V6K), /* V4T. */
14185 T(V6K), /* V5T. */
14186 T(V6K), /* V5TE. */
14187 T(V6K), /* V5TEJ. */
14188 T(V6K), /* V6. */
14189 T(V6KZ), /* V6KZ. */
14190 T(V7), /* V6T2. */
14191 T(V6K), /* V6K. */
14192 T(V7), /* V7. */
14193 T(V6_M) /* V6_M. */
14194 };
14195 const int v6s_m[] =
14196 {
14197 -1, /* PRE_V4. */
14198 -1, /* V4. */
14199 T(V6K), /* V4T. */
14200 T(V6K), /* V5T. */
14201 T(V6K), /* V5TE. */
14202 T(V6K), /* V5TEJ. */
14203 T(V6K), /* V6. */
14204 T(V6KZ), /* V6KZ. */
14205 T(V7), /* V6T2. */
14206 T(V6K), /* V6K. */
14207 T(V7), /* V7. */
14208 T(V6S_M), /* V6_M. */
14209 T(V6S_M) /* V6S_M. */
14210 };
14211 const int v7e_m[] =
14212 {
14213 -1, /* PRE_V4. */
14214 -1, /* V4. */
14215 T(V7E_M), /* V4T. */
14216 T(V7E_M), /* V5T. */
14217 T(V7E_M), /* V5TE. */
14218 T(V7E_M), /* V5TEJ. */
14219 T(V7E_M), /* V6. */
14220 T(V7E_M), /* V6KZ. */
14221 T(V7E_M), /* V6T2. */
14222 T(V7E_M), /* V6K. */
14223 T(V7E_M), /* V7. */
14224 T(V7E_M), /* V6_M. */
14225 T(V7E_M), /* V6S_M. */
14226 T(V7E_M) /* V7E_M. */
14227 };
14228 const int v8[] =
14229 {
14230 T(V8), /* PRE_V4. */
14231 T(V8), /* V4. */
14232 T(V8), /* V4T. */
14233 T(V8), /* V5T. */
14234 T(V8), /* V5TE. */
14235 T(V8), /* V5TEJ. */
14236 T(V8), /* V6. */
14237 T(V8), /* V6KZ. */
14238 T(V8), /* V6T2. */
14239 T(V8), /* V6K. */
14240 T(V8), /* V7. */
14241 T(V8), /* V6_M. */
14242 T(V8), /* V6S_M. */
14243 T(V8), /* V7E_M. */
14244 T(V8) /* V8. */
14245 };
14246 const int v8r[] =
14247 {
14248 T(V8R), /* PRE_V4. */
14249 T(V8R), /* V4. */
14250 T(V8R), /* V4T. */
14251 T(V8R), /* V5T. */
14252 T(V8R), /* V5TE. */
14253 T(V8R), /* V5TEJ. */
14254 T(V8R), /* V6. */
14255 T(V8R), /* V6KZ. */
14256 T(V8R), /* V6T2. */
14257 T(V8R), /* V6K. */
14258 T(V8R), /* V7. */
14259 T(V8R), /* V6_M. */
14260 T(V8R), /* V6S_M. */
14261 T(V8R), /* V7E_M. */
14262 T(V8), /* V8. */
14263 T(V8R), /* V8R. */
14264 };
14265 const int v8m_baseline[] =
14266 {
14267 -1, /* PRE_V4. */
14268 -1, /* V4. */
14269 -1, /* V4T. */
14270 -1, /* V5T. */
14271 -1, /* V5TE. */
14272 -1, /* V5TEJ. */
14273 -1, /* V6. */
14274 -1, /* V6KZ. */
14275 -1, /* V6T2. */
14276 -1, /* V6K. */
14277 -1, /* V7. */
14278 T(V8M_BASE), /* V6_M. */
14279 T(V8M_BASE), /* V6S_M. */
14280 -1, /* V7E_M. */
14281 -1, /* V8. */
14282 -1, /* V8R. */
14283 T(V8M_BASE) /* V8-M BASELINE. */
14284 };
14285 const int v8m_mainline[] =
14286 {
14287 -1, /* PRE_V4. */
14288 -1, /* V4. */
14289 -1, /* V4T. */
14290 -1, /* V5T. */
14291 -1, /* V5TE. */
14292 -1, /* V5TEJ. */
14293 -1, /* V6. */
14294 -1, /* V6KZ. */
14295 -1, /* V6T2. */
14296 -1, /* V6K. */
14297 T(V8M_MAIN), /* V7. */
14298 T(V8M_MAIN), /* V6_M. */
14299 T(V8M_MAIN), /* V6S_M. */
14300 T(V8M_MAIN), /* V7E_M. */
14301 -1, /* V8. */
14302 -1, /* V8R. */
14303 T(V8M_MAIN), /* V8-M BASELINE. */
14304 T(V8M_MAIN) /* V8-M MAINLINE. */
14305 };
14306 const int v8_1m_mainline[] =
14307 {
14308 -1, /* PRE_V4. */
14309 -1, /* V4. */
14310 -1, /* V4T. */
14311 -1, /* V5T. */
14312 -1, /* V5TE. */
14313 -1, /* V5TEJ. */
14314 -1, /* V6. */
14315 -1, /* V6KZ. */
14316 -1, /* V6T2. */
14317 -1, /* V6K. */
14318 T(V8_1M_MAIN), /* V7. */
14319 T(V8_1M_MAIN), /* V6_M. */
14320 T(V8_1M_MAIN), /* V6S_M. */
14321 T(V8_1M_MAIN), /* V7E_M. */
14322 -1, /* V8. */
14323 -1, /* V8R. */
14324 T(V8_1M_MAIN), /* V8-M BASELINE. */
14325 T(V8_1M_MAIN), /* V8-M MAINLINE. */
14326 -1, /* Unused (18). */
14327 -1, /* Unused (19). */
14328 -1, /* Unused (20). */
14329 T(V8_1M_MAIN) /* V8.1-M MAINLINE. */
14330 };
14331 const int v4t_plus_v6_m[] =
14332 {
14333 -1, /* PRE_V4. */
14334 -1, /* V4. */
14335 T(V4T), /* V4T. */
14336 T(V5T), /* V5T. */
14337 T(V5TE), /* V5TE. */
14338 T(V5TEJ), /* V5TEJ. */
14339 T(V6), /* V6. */
14340 T(V6KZ), /* V6KZ. */
14341 T(V6T2), /* V6T2. */
14342 T(V6K), /* V6K. */
14343 T(V7), /* V7. */
14344 T(V6_M), /* V6_M. */
14345 T(V6S_M), /* V6S_M. */
14346 T(V7E_M), /* V7E_M. */
14347 T(V8), /* V8. */
14348 -1, /* V8R. */
14349 T(V8M_BASE), /* V8-M BASELINE. */
14350 T(V8M_MAIN), /* V8-M MAINLINE. */
14351 -1, /* Unused (18). */
14352 -1, /* Unused (19). */
14353 -1, /* Unused (20). */
14354 T(V8_1M_MAIN), /* V8.1-M MAINLINE. */
14355 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
14356 };
14357 const int *comb[] =
14358 {
14359 v6t2,
14360 v6k,
14361 v7,
14362 v6_m,
14363 v6s_m,
14364 v7e_m,
14365 v8,
14366 v8r,
14367 v8m_baseline,
14368 v8m_mainline,
14369 NULL,
14370 NULL,
14371 NULL,
14372 v8_1m_mainline,
14373 /* Pseudo-architecture. */
14374 v4t_plus_v6_m
14375 };
14376
14377 /* Check we've not got a higher architecture than we know about. */
14378
14379 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
14380 {
14381 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd);
14382 return -1;
14383 }
14384
14385 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14386
14387 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
14388 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
14389 oldtag = T(V4T_PLUS_V6_M);
14390
14391 /* And override the new tag if we have a Tag_also_compatible_with on the
14392 input. */
14393
14394 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
14395 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
14396 newtag = T(V4T_PLUS_V6_M);
14397
14398 tagl = (oldtag < newtag) ? oldtag : newtag;
14399 result = tagh = (oldtag > newtag) ? oldtag : newtag;
14400
14401 /* Architectures before V6KZ add features monotonically. */
14402 if (tagh <= TAG_CPU_ARCH_V6KZ)
14403 return result;
14404
14405 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
14406
14407 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14408 as the canonical version. */
14409 if (result == T(V4T_PLUS_V6_M))
14410 {
14411 result = T(V4T);
14412 *secondary_compat_out = T(V6_M);
14413 }
14414 else
14415 *secondary_compat_out = -1;
14416
14417 if (result == -1)
14418 {
14419 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"),
14420 ibfd, oldtag, newtag);
14421 return -1;
14422 }
14423
14424 return result;
14425 #undef T
14426 }
14427
14428 /* Query attributes object to see if integer divide instructions may be
14429 present in an object. */
14430 static bfd_boolean
14431 elf32_arm_attributes_accept_div (const obj_attribute *attr)
14432 {
14433 int arch = attr[Tag_CPU_arch].i;
14434 int profile = attr[Tag_CPU_arch_profile].i;
14435
14436 switch (attr[Tag_DIV_use].i)
14437 {
14438 case 0:
14439 /* Integer divide allowed if instruction contained in archetecture. */
14440 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
14441 return TRUE;
14442 else if (arch >= TAG_CPU_ARCH_V7E_M)
14443 return TRUE;
14444 else
14445 return FALSE;
14446
14447 case 1:
14448 /* Integer divide explicitly prohibited. */
14449 return FALSE;
14450
14451 default:
14452 /* Unrecognised case - treat as allowing divide everywhere. */
14453 case 2:
14454 /* Integer divide allowed in ARM state. */
14455 return TRUE;
14456 }
14457 }
14458
14459 /* Query attributes object to see if integer divide instructions are
14460 forbidden to be in the object. This is not the inverse of
14461 elf32_arm_attributes_accept_div. */
14462 static bfd_boolean
14463 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
14464 {
14465 return attr[Tag_DIV_use].i == 1;
14466 }
14467
14468 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14469 are conflicting attributes. */
14470
14471 static bfd_boolean
14472 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
14473 {
14474 bfd *obfd = info->output_bfd;
14475 obj_attribute *in_attr;
14476 obj_attribute *out_attr;
14477 /* Some tags have 0 = don't care, 1 = strong requirement,
14478 2 = weak requirement. */
14479 static const int order_021[3] = {0, 2, 1};
14480 int i;
14481 bfd_boolean result = TRUE;
14482 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
14483
14484 /* Skip the linker stubs file. This preserves previous behavior
14485 of accepting unknown attributes in the first input file - but
14486 is that a bug? */
14487 if (ibfd->flags & BFD_LINKER_CREATED)
14488 return TRUE;
14489
14490 /* Skip any input that hasn't attribute section.
14491 This enables to link object files without attribute section with
14492 any others. */
14493 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
14494 return TRUE;
14495
14496 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14497 {
14498 /* This is the first object. Copy the attributes. */
14499 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14500
14501 out_attr = elf_known_obj_attributes_proc (obfd);
14502
14503 /* Use the Tag_null value to indicate the attributes have been
14504 initialized. */
14505 out_attr[0].i = 1;
14506
14507 /* We do not output objects with Tag_MPextension_use_legacy - we move
14508 the attribute's value to Tag_MPextension_use. */
14509 if (out_attr[Tag_MPextension_use_legacy].i != 0)
14510 {
14511 if (out_attr[Tag_MPextension_use].i != 0
14512 && out_attr[Tag_MPextension_use_legacy].i
14513 != out_attr[Tag_MPextension_use].i)
14514 {
14515 _bfd_error_handler
14516 (_("Error: %pB has both the current and legacy "
14517 "Tag_MPextension_use attributes"), ibfd);
14518 result = FALSE;
14519 }
14520
14521 out_attr[Tag_MPextension_use] =
14522 out_attr[Tag_MPextension_use_legacy];
14523 out_attr[Tag_MPextension_use_legacy].type = 0;
14524 out_attr[Tag_MPextension_use_legacy].i = 0;
14525 }
14526
14527 return result;
14528 }
14529
14530 in_attr = elf_known_obj_attributes_proc (ibfd);
14531 out_attr = elf_known_obj_attributes_proc (obfd);
14532 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14533 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
14534 {
14535 /* Ignore mismatches if the object doesn't use floating point or is
14536 floating point ABI independent. */
14537 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
14538 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14539 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
14540 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
14541 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14542 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
14543 {
14544 _bfd_error_handler
14545 (_("error: %pB uses VFP register arguments, %pB does not"),
14546 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
14547 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
14548 result = FALSE;
14549 }
14550 }
14551
14552 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
14553 {
14554 /* Merge this attribute with existing attributes. */
14555 switch (i)
14556 {
14557 case Tag_CPU_raw_name:
14558 case Tag_CPU_name:
14559 /* These are merged after Tag_CPU_arch. */
14560 break;
14561
14562 case Tag_ABI_optimization_goals:
14563 case Tag_ABI_FP_optimization_goals:
14564 /* Use the first value seen. */
14565 break;
14566
14567 case Tag_CPU_arch:
14568 {
14569 int secondary_compat = -1, secondary_compat_out = -1;
14570 unsigned int saved_out_attr = out_attr[i].i;
14571 int arch_attr;
14572 static const char *name_table[] =
14573 {
14574 /* These aren't real CPU names, but we can't guess
14575 that from the architecture version alone. */
14576 "Pre v4",
14577 "ARM v4",
14578 "ARM v4T",
14579 "ARM v5T",
14580 "ARM v5TE",
14581 "ARM v5TEJ",
14582 "ARM v6",
14583 "ARM v6KZ",
14584 "ARM v6T2",
14585 "ARM v6K",
14586 "ARM v7",
14587 "ARM v6-M",
14588 "ARM v6S-M",
14589 "ARM v8",
14590 "",
14591 "ARM v8-M.baseline",
14592 "ARM v8-M.mainline",
14593 };
14594
14595 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14596 secondary_compat = get_secondary_compatible_arch (ibfd);
14597 secondary_compat_out = get_secondary_compatible_arch (obfd);
14598 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
14599 &secondary_compat_out,
14600 in_attr[i].i,
14601 secondary_compat);
14602
14603 /* Return with error if failed to merge. */
14604 if (arch_attr == -1)
14605 return FALSE;
14606
14607 out_attr[i].i = arch_attr;
14608
14609 set_secondary_compatible_arch (obfd, secondary_compat_out);
14610
14611 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14612 if (out_attr[i].i == saved_out_attr)
14613 ; /* Leave the names alone. */
14614 else if (out_attr[i].i == in_attr[i].i)
14615 {
14616 /* The output architecture has been changed to match the
14617 input architecture. Use the input names. */
14618 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
14619 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
14620 : NULL;
14621 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
14622 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
14623 : NULL;
14624 }
14625 else
14626 {
14627 out_attr[Tag_CPU_name].s = NULL;
14628 out_attr[Tag_CPU_raw_name].s = NULL;
14629 }
14630
14631 /* If we still don't have a value for Tag_CPU_name,
14632 make one up now. Tag_CPU_raw_name remains blank. */
14633 if (out_attr[Tag_CPU_name].s == NULL
14634 && out_attr[i].i < ARRAY_SIZE (name_table))
14635 out_attr[Tag_CPU_name].s =
14636 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
14637 }
14638 break;
14639
14640 case Tag_ARM_ISA_use:
14641 case Tag_THUMB_ISA_use:
14642 case Tag_WMMX_arch:
14643 case Tag_Advanced_SIMD_arch:
14644 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
14645 case Tag_ABI_FP_rounding:
14646 case Tag_ABI_FP_exceptions:
14647 case Tag_ABI_FP_user_exceptions:
14648 case Tag_ABI_FP_number_model:
14649 case Tag_FP_HP_extension:
14650 case Tag_CPU_unaligned_access:
14651 case Tag_T2EE_use:
14652 case Tag_MPextension_use:
14653 case Tag_MVE_arch:
14654 /* Use the largest value specified. */
14655 if (in_attr[i].i > out_attr[i].i)
14656 out_attr[i].i = in_attr[i].i;
14657 break;
14658
14659 case Tag_ABI_align_preserved:
14660 case Tag_ABI_PCS_RO_data:
14661 /* Use the smallest value specified. */
14662 if (in_attr[i].i < out_attr[i].i)
14663 out_attr[i].i = in_attr[i].i;
14664 break;
14665
14666 case Tag_ABI_align_needed:
14667 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
14668 && (in_attr[Tag_ABI_align_preserved].i == 0
14669 || out_attr[Tag_ABI_align_preserved].i == 0))
14670 {
14671 /* This error message should be enabled once all non-conformant
14672 binaries in the toolchain have had the attributes set
14673 properly.
14674 _bfd_error_handler
14675 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
14676 obfd, ibfd);
14677 result = FALSE; */
14678 }
14679 /* Fall through. */
14680 case Tag_ABI_FP_denormal:
14681 case Tag_ABI_PCS_GOT_use:
14682 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14683 value if greater than 2 (for future-proofing). */
14684 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
14685 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
14686 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
14687 out_attr[i].i = in_attr[i].i;
14688 break;
14689
14690 case Tag_Virtualization_use:
14691 /* The virtualization tag effectively stores two bits of
14692 information: the intended use of TrustZone (in bit 0), and the
14693 intended use of Virtualization (in bit 1). */
14694 if (out_attr[i].i == 0)
14695 out_attr[i].i = in_attr[i].i;
14696 else if (in_attr[i].i != 0
14697 && in_attr[i].i != out_attr[i].i)
14698 {
14699 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
14700 out_attr[i].i = 3;
14701 else
14702 {
14703 _bfd_error_handler
14704 (_("error: %pB: unable to merge virtualization attributes "
14705 "with %pB"),
14706 obfd, ibfd);
14707 result = FALSE;
14708 }
14709 }
14710 break;
14711
14712 case Tag_CPU_arch_profile:
14713 if (out_attr[i].i != in_attr[i].i)
14714 {
14715 /* 0 will merge with anything.
14716 'A' and 'S' merge to 'A'.
14717 'R' and 'S' merge to 'R'.
14718 'M' and 'A|R|S' is an error. */
14719 if (out_attr[i].i == 0
14720 || (out_attr[i].i == 'S'
14721 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
14722 out_attr[i].i = in_attr[i].i;
14723 else if (in_attr[i].i == 0
14724 || (in_attr[i].i == 'S'
14725 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
14726 ; /* Do nothing. */
14727 else
14728 {
14729 _bfd_error_handler
14730 (_("error: %pB: conflicting architecture profiles %c/%c"),
14731 ibfd,
14732 in_attr[i].i ? in_attr[i].i : '0',
14733 out_attr[i].i ? out_attr[i].i : '0');
14734 result = FALSE;
14735 }
14736 }
14737 break;
14738
14739 case Tag_DSP_extension:
14740 /* No need to change output value if any of:
14741 - pre (<=) ARMv5T input architecture (do not have DSP)
14742 - M input profile not ARMv7E-M and do not have DSP. */
14743 if (in_attr[Tag_CPU_arch].i <= 3
14744 || (in_attr[Tag_CPU_arch_profile].i == 'M'
14745 && in_attr[Tag_CPU_arch].i != 13
14746 && in_attr[i].i == 0))
14747 ; /* Do nothing. */
14748 /* Output value should be 0 if DSP part of architecture, ie.
14749 - post (>=) ARMv5te architecture output
14750 - A, R or S profile output or ARMv7E-M output architecture. */
14751 else if (out_attr[Tag_CPU_arch].i >= 4
14752 && (out_attr[Tag_CPU_arch_profile].i == 'A'
14753 || out_attr[Tag_CPU_arch_profile].i == 'R'
14754 || out_attr[Tag_CPU_arch_profile].i == 'S'
14755 || out_attr[Tag_CPU_arch].i == 13))
14756 out_attr[i].i = 0;
14757 /* Otherwise, DSP instructions are added and not part of output
14758 architecture. */
14759 else
14760 out_attr[i].i = 1;
14761 break;
14762
14763 case Tag_FP_arch:
14764 {
14765 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14766 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14767 when it's 0. It might mean absence of FP hardware if
14768 Tag_FP_arch is zero. */
14769
14770 #define VFP_VERSION_COUNT 9
14771 static const struct
14772 {
14773 int ver;
14774 int regs;
14775 } vfp_versions[VFP_VERSION_COUNT] =
14776 {
14777 {0, 0},
14778 {1, 16},
14779 {2, 16},
14780 {3, 32},
14781 {3, 16},
14782 {4, 32},
14783 {4, 16},
14784 {8, 32},
14785 {8, 16}
14786 };
14787 int ver;
14788 int regs;
14789 int newval;
14790
14791 /* If the output has no requirement about FP hardware,
14792 follow the requirement of the input. */
14793 if (out_attr[i].i == 0)
14794 {
14795 /* This assert is still reasonable, we shouldn't
14796 produce the suspicious build attribute
14797 combination (See below for in_attr). */
14798 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
14799 out_attr[i].i = in_attr[i].i;
14800 out_attr[Tag_ABI_HardFP_use].i
14801 = in_attr[Tag_ABI_HardFP_use].i;
14802 break;
14803 }
14804 /* If the input has no requirement about FP hardware, do
14805 nothing. */
14806 else if (in_attr[i].i == 0)
14807 {
14808 /* We used to assert that Tag_ABI_HardFP_use was
14809 zero here, but we should never assert when
14810 consuming an object file that has suspicious
14811 build attributes. The single precision variant
14812 of 'no FP architecture' is still 'no FP
14813 architecture', so we just ignore the tag in this
14814 case. */
14815 break;
14816 }
14817
14818 /* Both the input and the output have nonzero Tag_FP_arch.
14819 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
14820
14821 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14822 do nothing. */
14823 if (in_attr[Tag_ABI_HardFP_use].i == 0
14824 && out_attr[Tag_ABI_HardFP_use].i == 0)
14825 ;
14826 /* If the input and the output have different Tag_ABI_HardFP_use,
14827 the combination of them is 0 (implied by Tag_FP_arch). */
14828 else if (in_attr[Tag_ABI_HardFP_use].i
14829 != out_attr[Tag_ABI_HardFP_use].i)
14830 out_attr[Tag_ABI_HardFP_use].i = 0;
14831
14832 /* Now we can handle Tag_FP_arch. */
14833
14834 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14835 pick the biggest. */
14836 if (in_attr[i].i >= VFP_VERSION_COUNT
14837 && in_attr[i].i > out_attr[i].i)
14838 {
14839 out_attr[i] = in_attr[i];
14840 break;
14841 }
14842 /* The output uses the superset of input features
14843 (ISA version) and registers. */
14844 ver = vfp_versions[in_attr[i].i].ver;
14845 if (ver < vfp_versions[out_attr[i].i].ver)
14846 ver = vfp_versions[out_attr[i].i].ver;
14847 regs = vfp_versions[in_attr[i].i].regs;
14848 if (regs < vfp_versions[out_attr[i].i].regs)
14849 regs = vfp_versions[out_attr[i].i].regs;
14850 /* This assumes all possible supersets are also a valid
14851 options. */
14852 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
14853 {
14854 if (regs == vfp_versions[newval].regs
14855 && ver == vfp_versions[newval].ver)
14856 break;
14857 }
14858 out_attr[i].i = newval;
14859 }
14860 break;
14861 case Tag_PCS_config:
14862 if (out_attr[i].i == 0)
14863 out_attr[i].i = in_attr[i].i;
14864 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
14865 {
14866 /* It's sometimes ok to mix different configs, so this is only
14867 a warning. */
14868 _bfd_error_handler
14869 (_("warning: %pB: conflicting platform configuration"), ibfd);
14870 }
14871 break;
14872 case Tag_ABI_PCS_R9_use:
14873 if (in_attr[i].i != out_attr[i].i
14874 && out_attr[i].i != AEABI_R9_unused
14875 && in_attr[i].i != AEABI_R9_unused)
14876 {
14877 _bfd_error_handler
14878 (_("error: %pB: conflicting use of R9"), ibfd);
14879 result = FALSE;
14880 }
14881 if (out_attr[i].i == AEABI_R9_unused)
14882 out_attr[i].i = in_attr[i].i;
14883 break;
14884 case Tag_ABI_PCS_RW_data:
14885 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
14886 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
14887 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
14888 {
14889 _bfd_error_handler
14890 (_("error: %pB: SB relative addressing conflicts with use of R9"),
14891 ibfd);
14892 result = FALSE;
14893 }
14894 /* Use the smallest value specified. */
14895 if (in_attr[i].i < out_attr[i].i)
14896 out_attr[i].i = in_attr[i].i;
14897 break;
14898 case Tag_ABI_PCS_wchar_t:
14899 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
14900 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
14901 {
14902 _bfd_error_handler
14903 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
14904 ibfd, in_attr[i].i, out_attr[i].i);
14905 }
14906 else if (in_attr[i].i && !out_attr[i].i)
14907 out_attr[i].i = in_attr[i].i;
14908 break;
14909 case Tag_ABI_enum_size:
14910 if (in_attr[i].i != AEABI_enum_unused)
14911 {
14912 if (out_attr[i].i == AEABI_enum_unused
14913 || out_attr[i].i == AEABI_enum_forced_wide)
14914 {
14915 /* The existing object is compatible with anything.
14916 Use whatever requirements the new object has. */
14917 out_attr[i].i = in_attr[i].i;
14918 }
14919 else if (in_attr[i].i != AEABI_enum_forced_wide
14920 && out_attr[i].i != in_attr[i].i
14921 && !elf_arm_tdata (obfd)->no_enum_size_warning)
14922 {
14923 static const char *aeabi_enum_names[] =
14924 { "", "variable-size", "32-bit", "" };
14925 const char *in_name =
14926 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14927 ? aeabi_enum_names[in_attr[i].i]
14928 : "<unknown>";
14929 const char *out_name =
14930 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14931 ? aeabi_enum_names[out_attr[i].i]
14932 : "<unknown>";
14933 _bfd_error_handler
14934 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
14935 ibfd, in_name, out_name);
14936 }
14937 }
14938 break;
14939 case Tag_ABI_VFP_args:
14940 /* Aready done. */
14941 break;
14942 case Tag_ABI_WMMX_args:
14943 if (in_attr[i].i != out_attr[i].i)
14944 {
14945 _bfd_error_handler
14946 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
14947 ibfd, obfd);
14948 result = FALSE;
14949 }
14950 break;
14951 case Tag_compatibility:
14952 /* Merged in target-independent code. */
14953 break;
14954 case Tag_ABI_HardFP_use:
14955 /* This is handled along with Tag_FP_arch. */
14956 break;
14957 case Tag_ABI_FP_16bit_format:
14958 if (in_attr[i].i != 0 && out_attr[i].i != 0)
14959 {
14960 if (in_attr[i].i != out_attr[i].i)
14961 {
14962 _bfd_error_handler
14963 (_("error: fp16 format mismatch between %pB and %pB"),
14964 ibfd, obfd);
14965 result = FALSE;
14966 }
14967 }
14968 if (in_attr[i].i != 0)
14969 out_attr[i].i = in_attr[i].i;
14970 break;
14971
14972 case Tag_DIV_use:
14973 /* A value of zero on input means that the divide instruction may
14974 be used if available in the base architecture as specified via
14975 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
14976 the user did not want divide instructions. A value of 2
14977 explicitly means that divide instructions were allowed in ARM
14978 and Thumb state. */
14979 if (in_attr[i].i == out_attr[i].i)
14980 /* Do nothing. */ ;
14981 else if (elf32_arm_attributes_forbid_div (in_attr)
14982 && !elf32_arm_attributes_accept_div (out_attr))
14983 out_attr[i].i = 1;
14984 else if (elf32_arm_attributes_forbid_div (out_attr)
14985 && elf32_arm_attributes_accept_div (in_attr))
14986 out_attr[i].i = in_attr[i].i;
14987 else if (in_attr[i].i == 2)
14988 out_attr[i].i = in_attr[i].i;
14989 break;
14990
14991 case Tag_MPextension_use_legacy:
14992 /* We don't output objects with Tag_MPextension_use_legacy - we
14993 move the value to Tag_MPextension_use. */
14994 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
14995 {
14996 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
14997 {
14998 _bfd_error_handler
14999 (_("%pB has both the current and legacy "
15000 "Tag_MPextension_use attributes"),
15001 ibfd);
15002 result = FALSE;
15003 }
15004 }
15005
15006 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
15007 out_attr[Tag_MPextension_use] = in_attr[i];
15008
15009 break;
15010
15011 case Tag_nodefaults:
15012 /* This tag is set if it exists, but the value is unused (and is
15013 typically zero). We don't actually need to do anything here -
15014 the merge happens automatically when the type flags are merged
15015 below. */
15016 break;
15017 case Tag_also_compatible_with:
15018 /* Already done in Tag_CPU_arch. */
15019 break;
15020 case Tag_conformance:
15021 /* Keep the attribute if it matches. Throw it away otherwise.
15022 No attribute means no claim to conform. */
15023 if (!in_attr[i].s || !out_attr[i].s
15024 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
15025 out_attr[i].s = NULL;
15026 break;
15027
15028 default:
15029 result
15030 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
15031 }
15032
15033 /* If out_attr was copied from in_attr then it won't have a type yet. */
15034 if (in_attr[i].type && !out_attr[i].type)
15035 out_attr[i].type = in_attr[i].type;
15036 }
15037
15038 /* Merge Tag_compatibility attributes and any common GNU ones. */
15039 if (!_bfd_elf_merge_object_attributes (ibfd, info))
15040 return FALSE;
15041
15042 /* Check for any attributes not known on ARM. */
15043 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
15044
15045 return result;
15046 }
15047
15048
15049 /* Return TRUE if the two EABI versions are incompatible. */
15050
15051 static bfd_boolean
15052 elf32_arm_versions_compatible (unsigned iver, unsigned over)
15053 {
15054 /* v4 and v5 are the same spec before and after it was released,
15055 so allow mixing them. */
15056 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
15057 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
15058 return TRUE;
15059
15060 return (iver == over);
15061 }
15062
15063 /* Merge backend specific data from an object file to the output
15064 object file when linking. */
15065
15066 static bfd_boolean
15067 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
15068
15069 /* Display the flags field. */
15070
15071 static bfd_boolean
15072 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
15073 {
15074 FILE * file = (FILE *) ptr;
15075 unsigned long flags;
15076
15077 BFD_ASSERT (abfd != NULL && ptr != NULL);
15078
15079 /* Print normal ELF private data. */
15080 _bfd_elf_print_private_bfd_data (abfd, ptr);
15081
15082 flags = elf_elfheader (abfd)->e_flags;
15083 /* Ignore init flag - it may not be set, despite the flags field
15084 containing valid data. */
15085
15086 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15087
15088 switch (EF_ARM_EABI_VERSION (flags))
15089 {
15090 case EF_ARM_EABI_UNKNOWN:
15091 /* The following flag bits are GNU extensions and not part of the
15092 official ARM ELF extended ABI. Hence they are only decoded if
15093 the EABI version is not set. */
15094 if (flags & EF_ARM_INTERWORK)
15095 fprintf (file, _(" [interworking enabled]"));
15096
15097 if (flags & EF_ARM_APCS_26)
15098 fprintf (file, " [APCS-26]");
15099 else
15100 fprintf (file, " [APCS-32]");
15101
15102 if (flags & EF_ARM_VFP_FLOAT)
15103 fprintf (file, _(" [VFP float format]"));
15104 else if (flags & EF_ARM_MAVERICK_FLOAT)
15105 fprintf (file, _(" [Maverick float format]"));
15106 else
15107 fprintf (file, _(" [FPA float format]"));
15108
15109 if (flags & EF_ARM_APCS_FLOAT)
15110 fprintf (file, _(" [floats passed in float registers]"));
15111
15112 if (flags & EF_ARM_PIC)
15113 fprintf (file, _(" [position independent]"));
15114
15115 if (flags & EF_ARM_NEW_ABI)
15116 fprintf (file, _(" [new ABI]"));
15117
15118 if (flags & EF_ARM_OLD_ABI)
15119 fprintf (file, _(" [old ABI]"));
15120
15121 if (flags & EF_ARM_SOFT_FLOAT)
15122 fprintf (file, _(" [software FP]"));
15123
15124 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
15125 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
15126 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
15127 | EF_ARM_MAVERICK_FLOAT);
15128 break;
15129
15130 case EF_ARM_EABI_VER1:
15131 fprintf (file, _(" [Version1 EABI]"));
15132
15133 if (flags & EF_ARM_SYMSARESORTED)
15134 fprintf (file, _(" [sorted symbol table]"));
15135 else
15136 fprintf (file, _(" [unsorted symbol table]"));
15137
15138 flags &= ~ EF_ARM_SYMSARESORTED;
15139 break;
15140
15141 case EF_ARM_EABI_VER2:
15142 fprintf (file, _(" [Version2 EABI]"));
15143
15144 if (flags & EF_ARM_SYMSARESORTED)
15145 fprintf (file, _(" [sorted symbol table]"));
15146 else
15147 fprintf (file, _(" [unsorted symbol table]"));
15148
15149 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
15150 fprintf (file, _(" [dynamic symbols use segment index]"));
15151
15152 if (flags & EF_ARM_MAPSYMSFIRST)
15153 fprintf (file, _(" [mapping symbols precede others]"));
15154
15155 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
15156 | EF_ARM_MAPSYMSFIRST);
15157 break;
15158
15159 case EF_ARM_EABI_VER3:
15160 fprintf (file, _(" [Version3 EABI]"));
15161 break;
15162
15163 case EF_ARM_EABI_VER4:
15164 fprintf (file, _(" [Version4 EABI]"));
15165 goto eabi;
15166
15167 case EF_ARM_EABI_VER5:
15168 fprintf (file, _(" [Version5 EABI]"));
15169
15170 if (flags & EF_ARM_ABI_FLOAT_SOFT)
15171 fprintf (file, _(" [soft-float ABI]"));
15172
15173 if (flags & EF_ARM_ABI_FLOAT_HARD)
15174 fprintf (file, _(" [hard-float ABI]"));
15175
15176 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
15177
15178 eabi:
15179 if (flags & EF_ARM_BE8)
15180 fprintf (file, _(" [BE8]"));
15181
15182 if (flags & EF_ARM_LE8)
15183 fprintf (file, _(" [LE8]"));
15184
15185 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
15186 break;
15187
15188 default:
15189 fprintf (file, _(" <EABI version unrecognised>"));
15190 break;
15191 }
15192
15193 flags &= ~ EF_ARM_EABIMASK;
15194
15195 if (flags & EF_ARM_RELEXEC)
15196 fprintf (file, _(" [relocatable executable]"));
15197
15198 if (flags & EF_ARM_PIC)
15199 fprintf (file, _(" [position independent]"));
15200
15201 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC)
15202 fprintf (file, _(" [FDPIC ABI supplement]"));
15203
15204 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC);
15205
15206 if (flags)
15207 fprintf (file, _("<Unrecognised flag bits set>"));
15208
15209 fputc ('\n', file);
15210
15211 return TRUE;
15212 }
15213
15214 static int
15215 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
15216 {
15217 switch (ELF_ST_TYPE (elf_sym->st_info))
15218 {
15219 case STT_ARM_TFUNC:
15220 return ELF_ST_TYPE (elf_sym->st_info);
15221
15222 case STT_ARM_16BIT:
15223 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15224 This allows us to distinguish between data used by Thumb instructions
15225 and non-data (which is probably code) inside Thumb regions of an
15226 executable. */
15227 if (type != STT_OBJECT && type != STT_TLS)
15228 return ELF_ST_TYPE (elf_sym->st_info);
15229 break;
15230
15231 default:
15232 break;
15233 }
15234
15235 return type;
15236 }
15237
15238 static asection *
15239 elf32_arm_gc_mark_hook (asection *sec,
15240 struct bfd_link_info *info,
15241 Elf_Internal_Rela *rel,
15242 struct elf_link_hash_entry *h,
15243 Elf_Internal_Sym *sym)
15244 {
15245 if (h != NULL)
15246 switch (ELF32_R_TYPE (rel->r_info))
15247 {
15248 case R_ARM_GNU_VTINHERIT:
15249 case R_ARM_GNU_VTENTRY:
15250 return NULL;
15251 }
15252
15253 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
15254 }
15255
15256 /* Look through the relocs for a section during the first phase. */
15257
15258 static bfd_boolean
15259 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
15260 asection *sec, const Elf_Internal_Rela *relocs)
15261 {
15262 Elf_Internal_Shdr *symtab_hdr;
15263 struct elf_link_hash_entry **sym_hashes;
15264 const Elf_Internal_Rela *rel;
15265 const Elf_Internal_Rela *rel_end;
15266 bfd *dynobj;
15267 asection *sreloc;
15268 struct elf32_arm_link_hash_table *htab;
15269 bfd_boolean call_reloc_p;
15270 bfd_boolean may_become_dynamic_p;
15271 bfd_boolean may_need_local_target_p;
15272 unsigned long nsyms;
15273
15274 if (bfd_link_relocatable (info))
15275 return TRUE;
15276
15277 BFD_ASSERT (is_arm_elf (abfd));
15278
15279 htab = elf32_arm_hash_table (info);
15280 if (htab == NULL)
15281 return FALSE;
15282
15283 sreloc = NULL;
15284
15285 /* Create dynamic sections for relocatable executables so that we can
15286 copy relocations. */
15287 if (htab->root.is_relocatable_executable
15288 && ! htab->root.dynamic_sections_created)
15289 {
15290 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
15291 return FALSE;
15292 }
15293
15294 if (htab->root.dynobj == NULL)
15295 htab->root.dynobj = abfd;
15296 if (!create_ifunc_sections (info))
15297 return FALSE;
15298
15299 dynobj = htab->root.dynobj;
15300
15301 symtab_hdr = & elf_symtab_hdr (abfd);
15302 sym_hashes = elf_sym_hashes (abfd);
15303 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
15304
15305 rel_end = relocs + sec->reloc_count;
15306 for (rel = relocs; rel < rel_end; rel++)
15307 {
15308 Elf_Internal_Sym *isym;
15309 struct elf_link_hash_entry *h;
15310 struct elf32_arm_link_hash_entry *eh;
15311 unsigned int r_symndx;
15312 int r_type;
15313
15314 r_symndx = ELF32_R_SYM (rel->r_info);
15315 r_type = ELF32_R_TYPE (rel->r_info);
15316 r_type = arm_real_reloc_type (htab, r_type);
15317
15318 if (r_symndx >= nsyms
15319 /* PR 9934: It is possible to have relocations that do not
15320 refer to symbols, thus it is also possible to have an
15321 object file containing relocations but no symbol table. */
15322 && (r_symndx > STN_UNDEF || nsyms > 0))
15323 {
15324 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
15325 r_symndx);
15326 return FALSE;
15327 }
15328
15329 h = NULL;
15330 isym = NULL;
15331 if (nsyms > 0)
15332 {
15333 if (r_symndx < symtab_hdr->sh_info)
15334 {
15335 /* A local symbol. */
15336 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
15337 abfd, r_symndx);
15338 if (isym == NULL)
15339 return FALSE;
15340 }
15341 else
15342 {
15343 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
15344 while (h->root.type == bfd_link_hash_indirect
15345 || h->root.type == bfd_link_hash_warning)
15346 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15347 }
15348 }
15349
15350 eh = (struct elf32_arm_link_hash_entry *) h;
15351
15352 call_reloc_p = FALSE;
15353 may_become_dynamic_p = FALSE;
15354 may_need_local_target_p = FALSE;
15355
15356 /* Could be done earlier, if h were already available. */
15357 r_type = elf32_arm_tls_transition (info, r_type, h);
15358 switch (r_type)
15359 {
15360 case R_ARM_GOTOFFFUNCDESC:
15361 {
15362 if (h == NULL)
15363 {
15364 if (!elf32_arm_allocate_local_sym_info (abfd))
15365 return FALSE;
15366 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].gotofffuncdesc_cnt += 1;
15367 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15368 }
15369 else
15370 {
15371 eh->fdpic_cnts.gotofffuncdesc_cnt++;
15372 }
15373 }
15374 break;
15375
15376 case R_ARM_GOTFUNCDESC:
15377 {
15378 if (h == NULL)
15379 {
15380 /* Such a relocation is not supposed to be generated
15381 by gcc on a static function. */
15382 /* Anyway if needed it could be handled. */
15383 abort();
15384 }
15385 else
15386 {
15387 eh->fdpic_cnts.gotfuncdesc_cnt++;
15388 }
15389 }
15390 break;
15391
15392 case R_ARM_FUNCDESC:
15393 {
15394 if (h == NULL)
15395 {
15396 if (!elf32_arm_allocate_local_sym_info (abfd))
15397 return FALSE;
15398 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_cnt += 1;
15399 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15400 }
15401 else
15402 {
15403 eh->fdpic_cnts.funcdesc_cnt++;
15404 }
15405 }
15406 break;
15407
15408 case R_ARM_GOT32:
15409 case R_ARM_GOT_PREL:
15410 case R_ARM_TLS_GD32:
15411 case R_ARM_TLS_GD32_FDPIC:
15412 case R_ARM_TLS_IE32:
15413 case R_ARM_TLS_IE32_FDPIC:
15414 case R_ARM_TLS_GOTDESC:
15415 case R_ARM_TLS_DESCSEQ:
15416 case R_ARM_THM_TLS_DESCSEQ:
15417 case R_ARM_TLS_CALL:
15418 case R_ARM_THM_TLS_CALL:
15419 /* This symbol requires a global offset table entry. */
15420 {
15421 int tls_type, old_tls_type;
15422
15423 switch (r_type)
15424 {
15425 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
15426 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break;
15427
15428 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
15429 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break;
15430
15431 case R_ARM_TLS_GOTDESC:
15432 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
15433 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
15434 tls_type = GOT_TLS_GDESC; break;
15435
15436 default: tls_type = GOT_NORMAL; break;
15437 }
15438
15439 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
15440 info->flags |= DF_STATIC_TLS;
15441
15442 if (h != NULL)
15443 {
15444 h->got.refcount++;
15445 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
15446 }
15447 else
15448 {
15449 /* This is a global offset table entry for a local symbol. */
15450 if (!elf32_arm_allocate_local_sym_info (abfd))
15451 return FALSE;
15452 elf_local_got_refcounts (abfd)[r_symndx] += 1;
15453 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
15454 }
15455
15456 /* If a variable is accessed with both tls methods, two
15457 slots may be created. */
15458 if (GOT_TLS_GD_ANY_P (old_tls_type)
15459 && GOT_TLS_GD_ANY_P (tls_type))
15460 tls_type |= old_tls_type;
15461
15462 /* We will already have issued an error message if there
15463 is a TLS/non-TLS mismatch, based on the symbol
15464 type. So just combine any TLS types needed. */
15465 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
15466 && tls_type != GOT_NORMAL)
15467 tls_type |= old_tls_type;
15468
15469 /* If the symbol is accessed in both IE and GDESC
15470 method, we're able to relax. Turn off the GDESC flag,
15471 without messing up with any other kind of tls types
15472 that may be involved. */
15473 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
15474 tls_type &= ~GOT_TLS_GDESC;
15475
15476 if (old_tls_type != tls_type)
15477 {
15478 if (h != NULL)
15479 elf32_arm_hash_entry (h)->tls_type = tls_type;
15480 else
15481 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
15482 }
15483 }
15484 /* Fall through. */
15485
15486 case R_ARM_TLS_LDM32:
15487 case R_ARM_TLS_LDM32_FDPIC:
15488 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC)
15489 htab->tls_ldm_got.refcount++;
15490 /* Fall through. */
15491
15492 case R_ARM_GOTOFF32:
15493 case R_ARM_GOTPC:
15494 if (htab->root.sgot == NULL
15495 && !create_got_section (htab->root.dynobj, info))
15496 return FALSE;
15497 break;
15498
15499 case R_ARM_PC24:
15500 case R_ARM_PLT32:
15501 case R_ARM_CALL:
15502 case R_ARM_JUMP24:
15503 case R_ARM_PREL31:
15504 case R_ARM_THM_CALL:
15505 case R_ARM_THM_JUMP24:
15506 case R_ARM_THM_JUMP19:
15507 call_reloc_p = TRUE;
15508 may_need_local_target_p = TRUE;
15509 break;
15510
15511 case R_ARM_ABS12:
15512 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15513 ldr __GOTT_INDEX__ offsets. */
15514 if (!htab->vxworks_p)
15515 {
15516 may_need_local_target_p = TRUE;
15517 break;
15518 }
15519 else goto jump_over;
15520
15521 /* Fall through. */
15522
15523 case R_ARM_MOVW_ABS_NC:
15524 case R_ARM_MOVT_ABS:
15525 case R_ARM_THM_MOVW_ABS_NC:
15526 case R_ARM_THM_MOVT_ABS:
15527 if (bfd_link_pic (info))
15528 {
15529 _bfd_error_handler
15530 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
15531 abfd, elf32_arm_howto_table_1[r_type].name,
15532 (h) ? h->root.root.string : "a local symbol");
15533 bfd_set_error (bfd_error_bad_value);
15534 return FALSE;
15535 }
15536
15537 /* Fall through. */
15538 case R_ARM_ABS32:
15539 case R_ARM_ABS32_NOI:
15540 jump_over:
15541 if (h != NULL && bfd_link_executable (info))
15542 {
15543 h->pointer_equality_needed = 1;
15544 }
15545 /* Fall through. */
15546 case R_ARM_REL32:
15547 case R_ARM_REL32_NOI:
15548 case R_ARM_MOVW_PREL_NC:
15549 case R_ARM_MOVT_PREL:
15550 case R_ARM_THM_MOVW_PREL_NC:
15551 case R_ARM_THM_MOVT_PREL:
15552
15553 /* Should the interworking branches be listed here? */
15554 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable
15555 || htab->fdpic_p)
15556 && (sec->flags & SEC_ALLOC) != 0)
15557 {
15558 if (h == NULL
15559 && elf32_arm_howto_from_type (r_type)->pc_relative)
15560 {
15561 /* In shared libraries and relocatable executables,
15562 we treat local relative references as calls;
15563 see the related SYMBOL_CALLS_LOCAL code in
15564 allocate_dynrelocs. */
15565 call_reloc_p = TRUE;
15566 may_need_local_target_p = TRUE;
15567 }
15568 else
15569 /* We are creating a shared library or relocatable
15570 executable, and this is a reloc against a global symbol,
15571 or a non-PC-relative reloc against a local symbol.
15572 We may need to copy the reloc into the output. */
15573 may_become_dynamic_p = TRUE;
15574 }
15575 else
15576 may_need_local_target_p = TRUE;
15577 break;
15578
15579 /* This relocation describes the C++ object vtable hierarchy.
15580 Reconstruct it for later use during GC. */
15581 case R_ARM_GNU_VTINHERIT:
15582 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
15583 return FALSE;
15584 break;
15585
15586 /* This relocation describes which C++ vtable entries are actually
15587 used. Record for later use during GC. */
15588 case R_ARM_GNU_VTENTRY:
15589 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
15590 return FALSE;
15591 break;
15592 }
15593
15594 if (h != NULL)
15595 {
15596 if (call_reloc_p)
15597 /* We may need a .plt entry if the function this reloc
15598 refers to is in a different object, regardless of the
15599 symbol's type. We can't tell for sure yet, because
15600 something later might force the symbol local. */
15601 h->needs_plt = 1;
15602 else if (may_need_local_target_p)
15603 /* If this reloc is in a read-only section, we might
15604 need a copy reloc. We can't check reliably at this
15605 stage whether the section is read-only, as input
15606 sections have not yet been mapped to output sections.
15607 Tentatively set the flag for now, and correct in
15608 adjust_dynamic_symbol. */
15609 h->non_got_ref = 1;
15610 }
15611
15612 if (may_need_local_target_p
15613 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
15614 {
15615 union gotplt_union *root_plt;
15616 struct arm_plt_info *arm_plt;
15617 struct arm_local_iplt_info *local_iplt;
15618
15619 if (h != NULL)
15620 {
15621 root_plt = &h->plt;
15622 arm_plt = &eh->plt;
15623 }
15624 else
15625 {
15626 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
15627 if (local_iplt == NULL)
15628 return FALSE;
15629 root_plt = &local_iplt->root;
15630 arm_plt = &local_iplt->arm;
15631 }
15632
15633 /* If the symbol is a function that doesn't bind locally,
15634 this relocation will need a PLT entry. */
15635 if (root_plt->refcount != -1)
15636 root_plt->refcount += 1;
15637
15638 if (!call_reloc_p)
15639 arm_plt->noncall_refcount++;
15640
15641 /* It's too early to use htab->use_blx here, so we have to
15642 record possible blx references separately from
15643 relocs that definitely need a thumb stub. */
15644
15645 if (r_type == R_ARM_THM_CALL)
15646 arm_plt->maybe_thumb_refcount += 1;
15647
15648 if (r_type == R_ARM_THM_JUMP24
15649 || r_type == R_ARM_THM_JUMP19)
15650 arm_plt->thumb_refcount += 1;
15651 }
15652
15653 if (may_become_dynamic_p)
15654 {
15655 struct elf_dyn_relocs *p, **head;
15656
15657 /* Create a reloc section in dynobj. */
15658 if (sreloc == NULL)
15659 {
15660 sreloc = _bfd_elf_make_dynamic_reloc_section
15661 (sec, dynobj, 2, abfd, ! htab->use_rel);
15662
15663 if (sreloc == NULL)
15664 return FALSE;
15665
15666 /* BPABI objects never have dynamic relocations mapped. */
15667 if (htab->symbian_p)
15668 {
15669 flagword flags;
15670
15671 flags = bfd_get_section_flags (dynobj, sreloc);
15672 flags &= ~(SEC_LOAD | SEC_ALLOC);
15673 bfd_set_section_flags (dynobj, sreloc, flags);
15674 }
15675 }
15676
15677 /* If this is a global symbol, count the number of
15678 relocations we need for this symbol. */
15679 if (h != NULL)
15680 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
15681 else
15682 {
15683 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
15684 if (head == NULL)
15685 return FALSE;
15686 }
15687
15688 p = *head;
15689 if (p == NULL || p->sec != sec)
15690 {
15691 bfd_size_type amt = sizeof *p;
15692
15693 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
15694 if (p == NULL)
15695 return FALSE;
15696 p->next = *head;
15697 *head = p;
15698 p->sec = sec;
15699 p->count = 0;
15700 p->pc_count = 0;
15701 }
15702
15703 if (elf32_arm_howto_from_type (r_type)->pc_relative)
15704 p->pc_count += 1;
15705 p->count += 1;
15706 if (h == NULL && htab->fdpic_p && !bfd_link_pic(info)
15707 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI) {
15708 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15709 that will become rofixup. */
15710 /* This is due to the fact that we suppose all will become rofixup. */
15711 fprintf(stderr, "FDPIC does not yet support %d relocation to become dynamic for executable\n", r_type);
15712 _bfd_error_handler
15713 (_("FDPIC does not yet support %s relocation"
15714 " to become dynamic for executable"),
15715 elf32_arm_howto_table_1[r_type].name);
15716 abort();
15717 }
15718 }
15719 }
15720
15721 return TRUE;
15722 }
15723
15724 static void
15725 elf32_arm_update_relocs (asection *o,
15726 struct bfd_elf_section_reloc_data *reldata)
15727 {
15728 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
15729 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
15730 const struct elf_backend_data *bed;
15731 _arm_elf_section_data *eado;
15732 struct bfd_link_order *p;
15733 bfd_byte *erela_head, *erela;
15734 Elf_Internal_Rela *irela_head, *irela;
15735 Elf_Internal_Shdr *rel_hdr;
15736 bfd *abfd;
15737 unsigned int count;
15738
15739 eado = get_arm_elf_section_data (o);
15740
15741 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
15742 return;
15743
15744 abfd = o->owner;
15745 bed = get_elf_backend_data (abfd);
15746 rel_hdr = reldata->hdr;
15747
15748 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
15749 {
15750 swap_in = bed->s->swap_reloc_in;
15751 swap_out = bed->s->swap_reloc_out;
15752 }
15753 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
15754 {
15755 swap_in = bed->s->swap_reloca_in;
15756 swap_out = bed->s->swap_reloca_out;
15757 }
15758 else
15759 abort ();
15760
15761 erela_head = rel_hdr->contents;
15762 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
15763 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
15764
15765 erela = erela_head;
15766 irela = irela_head;
15767 count = 0;
15768
15769 for (p = o->map_head.link_order; p; p = p->next)
15770 {
15771 if (p->type == bfd_section_reloc_link_order
15772 || p->type == bfd_symbol_reloc_link_order)
15773 {
15774 (*swap_in) (abfd, erela, irela);
15775 erela += rel_hdr->sh_entsize;
15776 irela++;
15777 count++;
15778 }
15779 else if (p->type == bfd_indirect_link_order)
15780 {
15781 struct bfd_elf_section_reloc_data *input_reldata;
15782 arm_unwind_table_edit *edit_list, *edit_tail;
15783 _arm_elf_section_data *eadi;
15784 bfd_size_type j;
15785 bfd_vma offset;
15786 asection *i;
15787
15788 i = p->u.indirect.section;
15789
15790 eadi = get_arm_elf_section_data (i);
15791 edit_list = eadi->u.exidx.unwind_edit_list;
15792 edit_tail = eadi->u.exidx.unwind_edit_tail;
15793 offset = o->vma + i->output_offset;
15794
15795 if (eadi->elf.rel.hdr &&
15796 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
15797 input_reldata = &eadi->elf.rel;
15798 else if (eadi->elf.rela.hdr &&
15799 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
15800 input_reldata = &eadi->elf.rela;
15801 else
15802 abort ();
15803
15804 if (edit_list)
15805 {
15806 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15807 {
15808 arm_unwind_table_edit *edit_node, *edit_next;
15809 bfd_vma bias;
15810 bfd_vma reloc_index;
15811
15812 (*swap_in) (abfd, erela, irela);
15813 reloc_index = (irela->r_offset - offset) / 8;
15814
15815 bias = 0;
15816 edit_node = edit_list;
15817 for (edit_next = edit_list;
15818 edit_next && edit_next->index <= reloc_index;
15819 edit_next = edit_node->next)
15820 {
15821 bias++;
15822 edit_node = edit_next;
15823 }
15824
15825 if (edit_node->type != DELETE_EXIDX_ENTRY
15826 || edit_node->index != reloc_index)
15827 {
15828 irela->r_offset -= bias * 8;
15829 irela++;
15830 count++;
15831 }
15832
15833 erela += rel_hdr->sh_entsize;
15834 }
15835
15836 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15837 {
15838 /* New relocation entity. */
15839 asection *text_sec = edit_tail->linked_section;
15840 asection *text_out = text_sec->output_section;
15841 bfd_vma exidx_offset = offset + i->size - 8;
15842
15843 irela->r_addend = 0;
15844 irela->r_offset = exidx_offset;
15845 irela->r_info = ELF32_R_INFO
15846 (text_out->target_index, R_ARM_PREL31);
15847 irela++;
15848 count++;
15849 }
15850 }
15851 else
15852 {
15853 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15854 {
15855 (*swap_in) (abfd, erela, irela);
15856 erela += rel_hdr->sh_entsize;
15857 irela++;
15858 }
15859
15860 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15861 }
15862 }
15863 }
15864
15865 reldata->count = count;
15866 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15867
15868 erela = erela_head;
15869 irela = irela_head;
15870 while (count > 0)
15871 {
15872 (*swap_out) (abfd, irela, erela);
15873 erela += rel_hdr->sh_entsize;
15874 irela++;
15875 count--;
15876 }
15877
15878 free (irela_head);
15879
15880 /* Hashes are no longer valid. */
15881 free (reldata->hashes);
15882 reldata->hashes = NULL;
15883 }
15884
15885 /* Unwinding tables are not referenced directly. This pass marks them as
15886 required if the corresponding code section is marked. Similarly, ARMv8-M
15887 secure entry functions can only be referenced by SG veneers which are
15888 created after the GC process. They need to be marked in case they reside in
15889 their own section (as would be the case if code was compiled with
15890 -ffunction-sections). */
15891
15892 static bfd_boolean
15893 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15894 elf_gc_mark_hook_fn gc_mark_hook)
15895 {
15896 bfd *sub;
15897 Elf_Internal_Shdr **elf_shdrp;
15898 asection *cmse_sec;
15899 obj_attribute *out_attr;
15900 Elf_Internal_Shdr *symtab_hdr;
15901 unsigned i, sym_count, ext_start;
15902 const struct elf_backend_data *bed;
15903 struct elf_link_hash_entry **sym_hashes;
15904 struct elf32_arm_link_hash_entry *cmse_hash;
15905 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
15906
15907 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15908
15909 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15910 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15911 && out_attr[Tag_CPU_arch_profile].i == 'M';
15912
15913 /* Marking EH data may cause additional code sections to be marked,
15914 requiring multiple passes. */
15915 again = TRUE;
15916 while (again)
15917 {
15918 again = FALSE;
15919 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
15920 {
15921 asection *o;
15922
15923 if (! is_arm_elf (sub))
15924 continue;
15925
15926 elf_shdrp = elf_elfsections (sub);
15927 for (o = sub->sections; o != NULL; o = o->next)
15928 {
15929 Elf_Internal_Shdr *hdr;
15930
15931 hdr = &elf_section_data (o)->this_hdr;
15932 if (hdr->sh_type == SHT_ARM_EXIDX
15933 && hdr->sh_link
15934 && hdr->sh_link < elf_numsections (sub)
15935 && !o->gc_mark
15936 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15937 {
15938 again = TRUE;
15939 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15940 return FALSE;
15941 }
15942 }
15943
15944 /* Mark section holding ARMv8-M secure entry functions. We mark all
15945 of them so no need for a second browsing. */
15946 if (is_v8m && first_bfd_browse)
15947 {
15948 sym_hashes = elf_sym_hashes (sub);
15949 bed = get_elf_backend_data (sub);
15950 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15951 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15952 ext_start = symtab_hdr->sh_info;
15953
15954 /* Scan symbols. */
15955 for (i = ext_start; i < sym_count; i++)
15956 {
15957 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15958
15959 /* Assume it is a special symbol. If not, cmse_scan will
15960 warn about it and user can do something about it. */
15961 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
15962 {
15963 cmse_sec = cmse_hash->root.root.u.def.section;
15964 if (!cmse_sec->gc_mark
15965 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
15966 return FALSE;
15967 }
15968 }
15969 }
15970 }
15971 first_bfd_browse = FALSE;
15972 }
15973
15974 return TRUE;
15975 }
15976
15977 /* Treat mapping symbols as special target symbols. */
15978
15979 static bfd_boolean
15980 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
15981 {
15982 return bfd_is_arm_special_symbol_name (sym->name,
15983 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
15984 }
15985
15986 /* This is a version of _bfd_elf_find_function() from dwarf2.c except that
15987 ARM mapping symbols are ignored when looking for function names
15988 and STT_ARM_TFUNC is considered to a function type. */
15989
15990 static bfd_boolean
15991 arm_elf_find_function (bfd * abfd,
15992 asymbol ** symbols,
15993 asection * section,
15994 bfd_vma offset,
15995 const char ** filename_ptr,
15996 const char ** functionname_ptr)
15997 {
15998 const char * filename = NULL;
15999 asymbol * func = NULL;
16000 bfd_vma low_func = 0;
16001 asymbol ** p;
16002
16003 if (symbols == NULL)
16004 return FALSE;
16005
16006 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
16007 return FALSE;
16008
16009 for (p = symbols; *p != NULL; p++)
16010 {
16011 elf_symbol_type *q;
16012
16013 q = (elf_symbol_type *) *p;
16014
16015 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
16016 {
16017 default:
16018 break;
16019 case STT_FILE:
16020 filename = bfd_asymbol_name (&q->symbol);
16021 break;
16022 case STT_FUNC:
16023 case STT_ARM_TFUNC:
16024 case STT_NOTYPE:
16025 /* Skip mapping symbols. */
16026 if ((q->symbol.flags & BSF_LOCAL)
16027 && bfd_is_arm_special_symbol_name (q->symbol.name,
16028 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
16029 continue;
16030 /* Fall through. */
16031 if (bfd_get_section (&q->symbol) == section
16032 && q->symbol.value >= low_func
16033 && q->symbol.value <= offset)
16034 {
16035 func = (asymbol *) q;
16036 low_func = q->symbol.value;
16037 }
16038 break;
16039 }
16040 }
16041
16042 if (func == NULL)
16043 return FALSE;
16044
16045 if (filename_ptr)
16046 *filename_ptr = filename;
16047 if (functionname_ptr)
16048 *functionname_ptr = bfd_asymbol_name (func);
16049
16050 return TRUE;
16051 }
16052
16053
16054 /* Find the nearest line to a particular section and offset, for error
16055 reporting. This code is a duplicate of the code in elf.c, except
16056 that it uses arm_elf_find_function. */
16057
16058 static bfd_boolean
16059 elf32_arm_find_nearest_line (bfd * abfd,
16060 asymbol ** symbols,
16061 asection * section,
16062 bfd_vma offset,
16063 const char ** filename_ptr,
16064 const char ** functionname_ptr,
16065 unsigned int * line_ptr,
16066 unsigned int * discriminator_ptr)
16067 {
16068 bfd_boolean found = FALSE;
16069
16070 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
16071 filename_ptr, functionname_ptr,
16072 line_ptr, discriminator_ptr,
16073 dwarf_debug_sections, 0,
16074 & elf_tdata (abfd)->dwarf2_find_line_info))
16075 {
16076 if (!*functionname_ptr)
16077 arm_elf_find_function (abfd, symbols, section, offset,
16078 *filename_ptr ? NULL : filename_ptr,
16079 functionname_ptr);
16080
16081 return TRUE;
16082 }
16083
16084 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
16085 uses DWARF1. */
16086
16087 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
16088 & found, filename_ptr,
16089 functionname_ptr, line_ptr,
16090 & elf_tdata (abfd)->line_info))
16091 return FALSE;
16092
16093 if (found && (*functionname_ptr || *line_ptr))
16094 return TRUE;
16095
16096 if (symbols == NULL)
16097 return FALSE;
16098
16099 if (! arm_elf_find_function (abfd, symbols, section, offset,
16100 filename_ptr, functionname_ptr))
16101 return FALSE;
16102
16103 *line_ptr = 0;
16104 return TRUE;
16105 }
16106
16107 static bfd_boolean
16108 elf32_arm_find_inliner_info (bfd * abfd,
16109 const char ** filename_ptr,
16110 const char ** functionname_ptr,
16111 unsigned int * line_ptr)
16112 {
16113 bfd_boolean found;
16114 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
16115 functionname_ptr, line_ptr,
16116 & elf_tdata (abfd)->dwarf2_find_line_info);
16117 return found;
16118 }
16119
16120 /* Find dynamic relocs for H that apply to read-only sections. */
16121
16122 static asection *
16123 readonly_dynrelocs (struct elf_link_hash_entry *h)
16124 {
16125 struct elf_dyn_relocs *p;
16126
16127 for (p = elf32_arm_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
16128 {
16129 asection *s = p->sec->output_section;
16130
16131 if (s != NULL && (s->flags & SEC_READONLY) != 0)
16132 return p->sec;
16133 }
16134 return NULL;
16135 }
16136
16137 /* Adjust a symbol defined by a dynamic object and referenced by a
16138 regular object. The current definition is in some section of the
16139 dynamic object, but we're not including those sections. We have to
16140 change the definition to something the rest of the link can
16141 understand. */
16142
16143 static bfd_boolean
16144 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
16145 struct elf_link_hash_entry * h)
16146 {
16147 bfd * dynobj;
16148 asection *s, *srel;
16149 struct elf32_arm_link_hash_entry * eh;
16150 struct elf32_arm_link_hash_table *globals;
16151
16152 globals = elf32_arm_hash_table (info);
16153 if (globals == NULL)
16154 return FALSE;
16155
16156 dynobj = elf_hash_table (info)->dynobj;
16157
16158 /* Make sure we know what is going on here. */
16159 BFD_ASSERT (dynobj != NULL
16160 && (h->needs_plt
16161 || h->type == STT_GNU_IFUNC
16162 || h->is_weakalias
16163 || (h->def_dynamic
16164 && h->ref_regular
16165 && !h->def_regular)));
16166
16167 eh = (struct elf32_arm_link_hash_entry *) h;
16168
16169 /* If this is a function, put it in the procedure linkage table. We
16170 will fill in the contents of the procedure linkage table later,
16171 when we know the address of the .got section. */
16172 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
16173 {
16174 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
16175 symbol binds locally. */
16176 if (h->plt.refcount <= 0
16177 || (h->type != STT_GNU_IFUNC
16178 && (SYMBOL_CALLS_LOCAL (info, h)
16179 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16180 && h->root.type == bfd_link_hash_undefweak))))
16181 {
16182 /* This case can occur if we saw a PLT32 reloc in an input
16183 file, but the symbol was never referred to by a dynamic
16184 object, or if all references were garbage collected. In
16185 such a case, we don't actually need to build a procedure
16186 linkage table, and we can just do a PC24 reloc instead. */
16187 h->plt.offset = (bfd_vma) -1;
16188 eh->plt.thumb_refcount = 0;
16189 eh->plt.maybe_thumb_refcount = 0;
16190 eh->plt.noncall_refcount = 0;
16191 h->needs_plt = 0;
16192 }
16193
16194 return TRUE;
16195 }
16196 else
16197 {
16198 /* It's possible that we incorrectly decided a .plt reloc was
16199 needed for an R_ARM_PC24 or similar reloc to a non-function sym
16200 in check_relocs. We can't decide accurately between function
16201 and non-function syms in check-relocs; Objects loaded later in
16202 the link may change h->type. So fix it now. */
16203 h->plt.offset = (bfd_vma) -1;
16204 eh->plt.thumb_refcount = 0;
16205 eh->plt.maybe_thumb_refcount = 0;
16206 eh->plt.noncall_refcount = 0;
16207 }
16208
16209 /* If this is a weak symbol, and there is a real definition, the
16210 processor independent code will have arranged for us to see the
16211 real definition first, and we can just use the same value. */
16212 if (h->is_weakalias)
16213 {
16214 struct elf_link_hash_entry *def = weakdef (h);
16215 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
16216 h->root.u.def.section = def->root.u.def.section;
16217 h->root.u.def.value = def->root.u.def.value;
16218 return TRUE;
16219 }
16220
16221 /* If there are no non-GOT references, we do not need a copy
16222 relocation. */
16223 if (!h->non_got_ref)
16224 return TRUE;
16225
16226 /* This is a reference to a symbol defined by a dynamic object which
16227 is not a function. */
16228
16229 /* If we are creating a shared library, we must presume that the
16230 only references to the symbol are via the global offset table.
16231 For such cases we need not do anything here; the relocations will
16232 be handled correctly by relocate_section. Relocatable executables
16233 can reference data in shared objects directly, so we don't need to
16234 do anything here. */
16235 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
16236 return TRUE;
16237
16238 /* We must allocate the symbol in our .dynbss section, which will
16239 become part of the .bss section of the executable. There will be
16240 an entry for this symbol in the .dynsym section. The dynamic
16241 object will contain position independent code, so all references
16242 from the dynamic object to this symbol will go through the global
16243 offset table. The dynamic linker will use the .dynsym entry to
16244 determine the address it must put in the global offset table, so
16245 both the dynamic object and the regular object will refer to the
16246 same memory location for the variable. */
16247 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16248 linker to copy the initial value out of the dynamic object and into
16249 the runtime process image. We need to remember the offset into the
16250 .rel(a).bss section we are going to use. */
16251 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
16252 {
16253 s = globals->root.sdynrelro;
16254 srel = globals->root.sreldynrelro;
16255 }
16256 else
16257 {
16258 s = globals->root.sdynbss;
16259 srel = globals->root.srelbss;
16260 }
16261 if (info->nocopyreloc == 0
16262 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
16263 && h->size != 0)
16264 {
16265 elf32_arm_allocate_dynrelocs (info, srel, 1);
16266 h->needs_copy = 1;
16267 }
16268
16269 return _bfd_elf_adjust_dynamic_copy (info, h, s);
16270 }
16271
16272 /* Allocate space in .plt, .got and associated reloc sections for
16273 dynamic relocs. */
16274
16275 static bfd_boolean
16276 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
16277 {
16278 struct bfd_link_info *info;
16279 struct elf32_arm_link_hash_table *htab;
16280 struct elf32_arm_link_hash_entry *eh;
16281 struct elf_dyn_relocs *p;
16282
16283 if (h->root.type == bfd_link_hash_indirect)
16284 return TRUE;
16285
16286 eh = (struct elf32_arm_link_hash_entry *) h;
16287
16288 info = (struct bfd_link_info *) inf;
16289 htab = elf32_arm_hash_table (info);
16290 if (htab == NULL)
16291 return FALSE;
16292
16293 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
16294 && h->plt.refcount > 0)
16295 {
16296 /* Make sure this symbol is output as a dynamic symbol.
16297 Undefined weak syms won't yet be marked as dynamic. */
16298 if (h->dynindx == -1 && !h->forced_local
16299 && h->root.type == bfd_link_hash_undefweak)
16300 {
16301 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16302 return FALSE;
16303 }
16304
16305 /* If the call in the PLT entry binds locally, the associated
16306 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16307 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16308 than the .plt section. */
16309 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
16310 {
16311 eh->is_iplt = 1;
16312 if (eh->plt.noncall_refcount == 0
16313 && SYMBOL_REFERENCES_LOCAL (info, h))
16314 /* All non-call references can be resolved directly.
16315 This means that they can (and in some cases, must)
16316 resolve directly to the run-time target, rather than
16317 to the PLT. That in turns means that any .got entry
16318 would be equal to the .igot.plt entry, so there's
16319 no point having both. */
16320 h->got.refcount = 0;
16321 }
16322
16323 if (bfd_link_pic (info)
16324 || eh->is_iplt
16325 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
16326 {
16327 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
16328
16329 /* If this symbol is not defined in a regular file, and we are
16330 not generating a shared library, then set the symbol to this
16331 location in the .plt. This is required to make function
16332 pointers compare as equal between the normal executable and
16333 the shared library. */
16334 if (! bfd_link_pic (info)
16335 && !h->def_regular)
16336 {
16337 h->root.u.def.section = htab->root.splt;
16338 h->root.u.def.value = h->plt.offset;
16339
16340 /* Make sure the function is not marked as Thumb, in case
16341 it is the target of an ABS32 relocation, which will
16342 point to the PLT entry. */
16343 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16344 }
16345
16346 /* VxWorks executables have a second set of relocations for
16347 each PLT entry. They go in a separate relocation section,
16348 which is processed by the kernel loader. */
16349 if (htab->vxworks_p && !bfd_link_pic (info))
16350 {
16351 /* There is a relocation for the initial PLT entry:
16352 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16353 if (h->plt.offset == htab->plt_header_size)
16354 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
16355
16356 /* There are two extra relocations for each subsequent
16357 PLT entry: an R_ARM_32 relocation for the GOT entry,
16358 and an R_ARM_32 relocation for the PLT entry. */
16359 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
16360 }
16361 }
16362 else
16363 {
16364 h->plt.offset = (bfd_vma) -1;
16365 h->needs_plt = 0;
16366 }
16367 }
16368 else
16369 {
16370 h->plt.offset = (bfd_vma) -1;
16371 h->needs_plt = 0;
16372 }
16373
16374 eh = (struct elf32_arm_link_hash_entry *) h;
16375 eh->tlsdesc_got = (bfd_vma) -1;
16376
16377 if (h->got.refcount > 0)
16378 {
16379 asection *s;
16380 bfd_boolean dyn;
16381 int tls_type = elf32_arm_hash_entry (h)->tls_type;
16382 int indx;
16383
16384 /* Make sure this symbol is output as a dynamic symbol.
16385 Undefined weak syms won't yet be marked as dynamic. */
16386 if (htab->root.dynamic_sections_created && h->dynindx == -1 && !h->forced_local
16387 && h->root.type == bfd_link_hash_undefweak)
16388 {
16389 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16390 return FALSE;
16391 }
16392
16393 if (!htab->symbian_p)
16394 {
16395 s = htab->root.sgot;
16396 h->got.offset = s->size;
16397
16398 if (tls_type == GOT_UNKNOWN)
16399 abort ();
16400
16401 if (tls_type == GOT_NORMAL)
16402 /* Non-TLS symbols need one GOT slot. */
16403 s->size += 4;
16404 else
16405 {
16406 if (tls_type & GOT_TLS_GDESC)
16407 {
16408 /* R_ARM_TLS_DESC needs 2 GOT slots. */
16409 eh->tlsdesc_got
16410 = (htab->root.sgotplt->size
16411 - elf32_arm_compute_jump_table_size (htab));
16412 htab->root.sgotplt->size += 8;
16413 h->got.offset = (bfd_vma) -2;
16414 /* plt.got_offset needs to know there's a TLS_DESC
16415 reloc in the middle of .got.plt. */
16416 htab->num_tls_desc++;
16417 }
16418
16419 if (tls_type & GOT_TLS_GD)
16420 {
16421 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16422 consecutive GOT slots. If the symbol is both GD
16423 and GDESC, got.offset may have been
16424 overwritten. */
16425 h->got.offset = s->size;
16426 s->size += 8;
16427 }
16428
16429 if (tls_type & GOT_TLS_IE)
16430 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16431 slot. */
16432 s->size += 4;
16433 }
16434
16435 dyn = htab->root.dynamic_sections_created;
16436
16437 indx = 0;
16438 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
16439 bfd_link_pic (info),
16440 h)
16441 && (!bfd_link_pic (info)
16442 || !SYMBOL_REFERENCES_LOCAL (info, h)))
16443 indx = h->dynindx;
16444
16445 if (tls_type != GOT_NORMAL
16446 && (bfd_link_pic (info) || indx != 0)
16447 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16448 || h->root.type != bfd_link_hash_undefweak))
16449 {
16450 if (tls_type & GOT_TLS_IE)
16451 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16452
16453 if (tls_type & GOT_TLS_GD)
16454 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16455
16456 if (tls_type & GOT_TLS_GDESC)
16457 {
16458 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
16459 /* GDESC needs a trampoline to jump to. */
16460 htab->tls_trampoline = -1;
16461 }
16462
16463 /* Only GD needs it. GDESC just emits one relocation per
16464 2 entries. */
16465 if ((tls_type & GOT_TLS_GD) && indx != 0)
16466 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16467 }
16468 else if (((indx != -1) || htab->fdpic_p)
16469 && !SYMBOL_REFERENCES_LOCAL (info, h))
16470 {
16471 if (htab->root.dynamic_sections_created)
16472 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16473 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16474 }
16475 else if (h->type == STT_GNU_IFUNC
16476 && eh->plt.noncall_refcount == 0)
16477 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16478 they all resolve dynamically instead. Reserve room for the
16479 GOT entry's R_ARM_IRELATIVE relocation. */
16480 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
16481 else if (bfd_link_pic (info)
16482 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16483 || h->root.type != bfd_link_hash_undefweak))
16484 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
16485 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16486 else if (htab->fdpic_p && tls_type == GOT_NORMAL)
16487 /* Reserve room for rofixup for FDPIC executable. */
16488 /* TLS relocs do not need space since they are completely
16489 resolved. */
16490 htab->srofixup->size += 4;
16491 }
16492 }
16493 else
16494 h->got.offset = (bfd_vma) -1;
16495
16496 /* FDPIC support. */
16497 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0)
16498 {
16499 /* Symbol musn't be exported. */
16500 if (h->dynindx != -1)
16501 abort();
16502
16503 /* We only allocate one function descriptor with its associated relocation. */
16504 if (eh->fdpic_cnts.funcdesc_offset == -1)
16505 {
16506 asection *s = htab->root.sgot;
16507
16508 eh->fdpic_cnts.funcdesc_offset = s->size;
16509 s->size += 8;
16510 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16511 if (bfd_link_pic(info))
16512 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16513 else
16514 htab->srofixup->size += 8;
16515 }
16516 }
16517
16518 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0)
16519 {
16520 asection *s = htab->root.sgot;
16521
16522 if (htab->root.dynamic_sections_created && h->dynindx == -1
16523 && !h->forced_local)
16524 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16525 return FALSE;
16526
16527 if (h->dynindx == -1)
16528 {
16529 /* We only allocate one function descriptor with its associated relocation. q */
16530 if (eh->fdpic_cnts.funcdesc_offset == -1)
16531 {
16532
16533 eh->fdpic_cnts.funcdesc_offset = s->size;
16534 s->size += 8;
16535 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16536 if (bfd_link_pic(info))
16537 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16538 else
16539 htab->srofixup->size += 8;
16540 }
16541 }
16542
16543 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16544 R_ARM_RELATIVE/rofixup relocation on it. */
16545 eh->fdpic_cnts.gotfuncdesc_offset = s->size;
16546 s->size += 4;
16547 if (h->dynindx == -1 && !bfd_link_pic(info))
16548 htab->srofixup->size += 4;
16549 else
16550 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16551 }
16552
16553 if (eh->fdpic_cnts.funcdesc_cnt > 0)
16554 {
16555 if (htab->root.dynamic_sections_created && h->dynindx == -1
16556 && !h->forced_local)
16557 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16558 return FALSE;
16559
16560 if (h->dynindx == -1)
16561 {
16562 /* We only allocate one function descriptor with its associated relocation. */
16563 if (eh->fdpic_cnts.funcdesc_offset == -1)
16564 {
16565 asection *s = htab->root.sgot;
16566
16567 eh->fdpic_cnts.funcdesc_offset = s->size;
16568 s->size += 8;
16569 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16570 if (bfd_link_pic(info))
16571 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16572 else
16573 htab->srofixup->size += 8;
16574 }
16575 }
16576 if (h->dynindx == -1 && !bfd_link_pic(info))
16577 {
16578 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16579 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt;
16580 }
16581 else
16582 {
16583 /* Will need one dynamic reloc per reference. will be either
16584 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16585 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot,
16586 eh->fdpic_cnts.funcdesc_cnt);
16587 }
16588 }
16589
16590 /* Allocate stubs for exported Thumb functions on v4t. */
16591 if (!htab->use_blx && h->dynindx != -1
16592 && h->def_regular
16593 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
16594 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
16595 {
16596 struct elf_link_hash_entry * th;
16597 struct bfd_link_hash_entry * bh;
16598 struct elf_link_hash_entry * myh;
16599 char name[1024];
16600 asection *s;
16601 bh = NULL;
16602 /* Create a new symbol to regist the real location of the function. */
16603 s = h->root.u.def.section;
16604 sprintf (name, "__real_%s", h->root.root.string);
16605 _bfd_generic_link_add_one_symbol (info, s->owner,
16606 name, BSF_GLOBAL, s,
16607 h->root.u.def.value,
16608 NULL, TRUE, FALSE, &bh);
16609
16610 myh = (struct elf_link_hash_entry *) bh;
16611 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
16612 myh->forced_local = 1;
16613 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
16614 eh->export_glue = myh;
16615 th = record_arm_to_thumb_glue (info, h);
16616 /* Point the symbol at the stub. */
16617 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
16618 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16619 h->root.u.def.section = th->root.u.def.section;
16620 h->root.u.def.value = th->root.u.def.value & ~1;
16621 }
16622
16623 if (eh->dyn_relocs == NULL)
16624 return TRUE;
16625
16626 /* In the shared -Bsymbolic case, discard space allocated for
16627 dynamic pc-relative relocs against symbols which turn out to be
16628 defined in regular objects. For the normal shared case, discard
16629 space for pc-relative relocs that have become local due to symbol
16630 visibility changes. */
16631
16632 if (bfd_link_pic (info) || htab->root.is_relocatable_executable || htab->fdpic_p)
16633 {
16634 /* Relocs that use pc_count are PC-relative forms, which will appear
16635 on something like ".long foo - ." or "movw REG, foo - .". We want
16636 calls to protected symbols to resolve directly to the function
16637 rather than going via the plt. If people want function pointer
16638 comparisons to work as expected then they should avoid writing
16639 assembly like ".long foo - .". */
16640 if (SYMBOL_CALLS_LOCAL (info, h))
16641 {
16642 struct elf_dyn_relocs **pp;
16643
16644 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16645 {
16646 p->count -= p->pc_count;
16647 p->pc_count = 0;
16648 if (p->count == 0)
16649 *pp = p->next;
16650 else
16651 pp = &p->next;
16652 }
16653 }
16654
16655 if (htab->vxworks_p)
16656 {
16657 struct elf_dyn_relocs **pp;
16658
16659 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16660 {
16661 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
16662 *pp = p->next;
16663 else
16664 pp = &p->next;
16665 }
16666 }
16667
16668 /* Also discard relocs on undefined weak syms with non-default
16669 visibility. */
16670 if (eh->dyn_relocs != NULL
16671 && h->root.type == bfd_link_hash_undefweak)
16672 {
16673 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16674 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
16675 eh->dyn_relocs = NULL;
16676
16677 /* Make sure undefined weak symbols are output as a dynamic
16678 symbol in PIEs. */
16679 else if (htab->root.dynamic_sections_created && h->dynindx == -1
16680 && !h->forced_local)
16681 {
16682 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16683 return FALSE;
16684 }
16685 }
16686
16687 else if (htab->root.is_relocatable_executable && h->dynindx == -1
16688 && h->root.type == bfd_link_hash_new)
16689 {
16690 /* Output absolute symbols so that we can create relocations
16691 against them. For normal symbols we output a relocation
16692 against the section that contains them. */
16693 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16694 return FALSE;
16695 }
16696
16697 }
16698 else
16699 {
16700 /* For the non-shared case, discard space for relocs against
16701 symbols which turn out to need copy relocs or are not
16702 dynamic. */
16703
16704 if (!h->non_got_ref
16705 && ((h->def_dynamic
16706 && !h->def_regular)
16707 || (htab->root.dynamic_sections_created
16708 && (h->root.type == bfd_link_hash_undefweak
16709 || h->root.type == bfd_link_hash_undefined))))
16710 {
16711 /* Make sure this symbol is output as a dynamic symbol.
16712 Undefined weak syms won't yet be marked as dynamic. */
16713 if (h->dynindx == -1 && !h->forced_local
16714 && h->root.type == bfd_link_hash_undefweak)
16715 {
16716 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16717 return FALSE;
16718 }
16719
16720 /* If that succeeded, we know we'll be keeping all the
16721 relocs. */
16722 if (h->dynindx != -1)
16723 goto keep;
16724 }
16725
16726 eh->dyn_relocs = NULL;
16727
16728 keep: ;
16729 }
16730
16731 /* Finally, allocate space. */
16732 for (p = eh->dyn_relocs; p != NULL; p = p->next)
16733 {
16734 asection *sreloc = elf_section_data (p->sec)->sreloc;
16735
16736 if (h->type == STT_GNU_IFUNC
16737 && eh->plt.noncall_refcount == 0
16738 && SYMBOL_REFERENCES_LOCAL (info, h))
16739 elf32_arm_allocate_irelocs (info, sreloc, p->count);
16740 else if (h->dynindx != -1 && (!bfd_link_pic(info) || !info->symbolic || !h->def_regular))
16741 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16742 else if (htab->fdpic_p && !bfd_link_pic(info))
16743 htab->srofixup->size += 4 * p->count;
16744 else
16745 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16746 }
16747
16748 return TRUE;
16749 }
16750
16751 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
16752 read-only sections. */
16753
16754 static bfd_boolean
16755 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
16756 {
16757 asection *sec;
16758
16759 if (h->root.type == bfd_link_hash_indirect)
16760 return TRUE;
16761
16762 sec = readonly_dynrelocs (h);
16763 if (sec != NULL)
16764 {
16765 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
16766
16767 info->flags |= DF_TEXTREL;
16768 info->callbacks->minfo
16769 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
16770 sec->owner, h->root.root.string, sec);
16771
16772 /* Not an error, just cut short the traversal. */
16773 return FALSE;
16774 }
16775
16776 return TRUE;
16777 }
16778
16779 void
16780 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
16781 int byteswap_code)
16782 {
16783 struct elf32_arm_link_hash_table *globals;
16784
16785 globals = elf32_arm_hash_table (info);
16786 if (globals == NULL)
16787 return;
16788
16789 globals->byteswap_code = byteswap_code;
16790 }
16791
16792 /* Set the sizes of the dynamic sections. */
16793
16794 static bfd_boolean
16795 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
16796 struct bfd_link_info * info)
16797 {
16798 bfd * dynobj;
16799 asection * s;
16800 bfd_boolean plt;
16801 bfd_boolean relocs;
16802 bfd *ibfd;
16803 struct elf32_arm_link_hash_table *htab;
16804
16805 htab = elf32_arm_hash_table (info);
16806 if (htab == NULL)
16807 return FALSE;
16808
16809 dynobj = elf_hash_table (info)->dynobj;
16810 BFD_ASSERT (dynobj != NULL);
16811 check_use_blx (htab);
16812
16813 if (elf_hash_table (info)->dynamic_sections_created)
16814 {
16815 /* Set the contents of the .interp section to the interpreter. */
16816 if (bfd_link_executable (info) && !info->nointerp)
16817 {
16818 s = bfd_get_linker_section (dynobj, ".interp");
16819 BFD_ASSERT (s != NULL);
16820 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
16821 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
16822 }
16823 }
16824
16825 /* Set up .got offsets for local syms, and space for local dynamic
16826 relocs. */
16827 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16828 {
16829 bfd_signed_vma *local_got;
16830 bfd_signed_vma *end_local_got;
16831 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
16832 char *local_tls_type;
16833 bfd_vma *local_tlsdesc_gotent;
16834 bfd_size_type locsymcount;
16835 Elf_Internal_Shdr *symtab_hdr;
16836 asection *srel;
16837 bfd_boolean is_vxworks = htab->vxworks_p;
16838 unsigned int symndx;
16839 struct fdpic_local *local_fdpic_cnts;
16840
16841 if (! is_arm_elf (ibfd))
16842 continue;
16843
16844 for (s = ibfd->sections; s != NULL; s = s->next)
16845 {
16846 struct elf_dyn_relocs *p;
16847
16848 for (p = (struct elf_dyn_relocs *)
16849 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
16850 {
16851 if (!bfd_is_abs_section (p->sec)
16852 && bfd_is_abs_section (p->sec->output_section))
16853 {
16854 /* Input section has been discarded, either because
16855 it is a copy of a linkonce section or due to
16856 linker script /DISCARD/, so we'll be discarding
16857 the relocs too. */
16858 }
16859 else if (is_vxworks
16860 && strcmp (p->sec->output_section->name,
16861 ".tls_vars") == 0)
16862 {
16863 /* Relocations in vxworks .tls_vars sections are
16864 handled specially by the loader. */
16865 }
16866 else if (p->count != 0)
16867 {
16868 srel = elf_section_data (p->sec)->sreloc;
16869 if (htab->fdpic_p && !bfd_link_pic(info))
16870 htab->srofixup->size += 4 * p->count;
16871 else
16872 elf32_arm_allocate_dynrelocs (info, srel, p->count);
16873 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
16874 info->flags |= DF_TEXTREL;
16875 }
16876 }
16877 }
16878
16879 local_got = elf_local_got_refcounts (ibfd);
16880 if (!local_got)
16881 continue;
16882
16883 symtab_hdr = & elf_symtab_hdr (ibfd);
16884 locsymcount = symtab_hdr->sh_info;
16885 end_local_got = local_got + locsymcount;
16886 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
16887 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
16888 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
16889 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd);
16890 symndx = 0;
16891 s = htab->root.sgot;
16892 srel = htab->root.srelgot;
16893 for (; local_got < end_local_got;
16894 ++local_got, ++local_iplt_ptr, ++local_tls_type,
16895 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts)
16896 {
16897 *local_tlsdesc_gotent = (bfd_vma) -1;
16898 local_iplt = *local_iplt_ptr;
16899
16900 /* FDPIC support. */
16901 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0)
16902 {
16903 if (local_fdpic_cnts->funcdesc_offset == -1)
16904 {
16905 local_fdpic_cnts->funcdesc_offset = s->size;
16906 s->size += 8;
16907
16908 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16909 if (bfd_link_pic(info))
16910 elf32_arm_allocate_dynrelocs (info, srel, 1);
16911 else
16912 htab->srofixup->size += 8;
16913 }
16914 }
16915
16916 if (local_fdpic_cnts->funcdesc_cnt > 0)
16917 {
16918 if (local_fdpic_cnts->funcdesc_offset == -1)
16919 {
16920 local_fdpic_cnts->funcdesc_offset = s->size;
16921 s->size += 8;
16922
16923 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16924 if (bfd_link_pic(info))
16925 elf32_arm_allocate_dynrelocs (info, srel, 1);
16926 else
16927 htab->srofixup->size += 8;
16928 }
16929
16930 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
16931 if (bfd_link_pic(info))
16932 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt);
16933 else
16934 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt;
16935 }
16936
16937 if (local_iplt != NULL)
16938 {
16939 struct elf_dyn_relocs *p;
16940
16941 if (local_iplt->root.refcount > 0)
16942 {
16943 elf32_arm_allocate_plt_entry (info, TRUE,
16944 &local_iplt->root,
16945 &local_iplt->arm);
16946 if (local_iplt->arm.noncall_refcount == 0)
16947 /* All references to the PLT are calls, so all
16948 non-call references can resolve directly to the
16949 run-time target. This means that the .got entry
16950 would be the same as the .igot.plt entry, so there's
16951 no point creating both. */
16952 *local_got = 0;
16953 }
16954 else
16955 {
16956 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
16957 local_iplt->root.offset = (bfd_vma) -1;
16958 }
16959
16960 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
16961 {
16962 asection *psrel;
16963
16964 psrel = elf_section_data (p->sec)->sreloc;
16965 if (local_iplt->arm.noncall_refcount == 0)
16966 elf32_arm_allocate_irelocs (info, psrel, p->count);
16967 else
16968 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
16969 }
16970 }
16971 if (*local_got > 0)
16972 {
16973 Elf_Internal_Sym *isym;
16974
16975 *local_got = s->size;
16976 if (*local_tls_type & GOT_TLS_GD)
16977 /* TLS_GD relocs need an 8-byte structure in the GOT. */
16978 s->size += 8;
16979 if (*local_tls_type & GOT_TLS_GDESC)
16980 {
16981 *local_tlsdesc_gotent = htab->root.sgotplt->size
16982 - elf32_arm_compute_jump_table_size (htab);
16983 htab->root.sgotplt->size += 8;
16984 *local_got = (bfd_vma) -2;
16985 /* plt.got_offset needs to know there's a TLS_DESC
16986 reloc in the middle of .got.plt. */
16987 htab->num_tls_desc++;
16988 }
16989 if (*local_tls_type & GOT_TLS_IE)
16990 s->size += 4;
16991
16992 if (*local_tls_type & GOT_NORMAL)
16993 {
16994 /* If the symbol is both GD and GDESC, *local_got
16995 may have been overwritten. */
16996 *local_got = s->size;
16997 s->size += 4;
16998 }
16999
17000 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
17001 if (isym == NULL)
17002 return FALSE;
17003
17004 /* If all references to an STT_GNU_IFUNC PLT are calls,
17005 then all non-call references, including this GOT entry,
17006 resolve directly to the run-time target. */
17007 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
17008 && (local_iplt == NULL
17009 || local_iplt->arm.noncall_refcount == 0))
17010 elf32_arm_allocate_irelocs (info, srel, 1);
17011 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p)
17012 {
17013 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)))
17014 elf32_arm_allocate_dynrelocs (info, srel, 1);
17015 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL)
17016 htab->srofixup->size += 4;
17017
17018 if ((bfd_link_pic (info) || htab->fdpic_p)
17019 && *local_tls_type & GOT_TLS_GDESC)
17020 {
17021 elf32_arm_allocate_dynrelocs (info,
17022 htab->root.srelplt, 1);
17023 htab->tls_trampoline = -1;
17024 }
17025 }
17026 }
17027 else
17028 *local_got = (bfd_vma) -1;
17029 }
17030 }
17031
17032 if (htab->tls_ldm_got.refcount > 0)
17033 {
17034 /* Allocate two GOT entries and one dynamic relocation (if necessary)
17035 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
17036 htab->tls_ldm_got.offset = htab->root.sgot->size;
17037 htab->root.sgot->size += 8;
17038 if (bfd_link_pic (info))
17039 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
17040 }
17041 else
17042 htab->tls_ldm_got.offset = -1;
17043
17044 /* At the very end of the .rofixup section is a pointer to the GOT,
17045 reserve space for it. */
17046 if (htab->fdpic_p && htab->srofixup != NULL)
17047 htab->srofixup->size += 4;
17048
17049 /* Allocate global sym .plt and .got entries, and space for global
17050 sym dynamic relocs. */
17051 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
17052
17053 /* Here we rummage through the found bfds to collect glue information. */
17054 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
17055 {
17056 if (! is_arm_elf (ibfd))
17057 continue;
17058
17059 /* Initialise mapping tables for code/data. */
17060 bfd_elf32_arm_init_maps (ibfd);
17061
17062 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
17063 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
17064 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
17065 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd);
17066 }
17067
17068 /* Allocate space for the glue sections now that we've sized them. */
17069 bfd_elf32_arm_allocate_interworking_sections (info);
17070
17071 /* For every jump slot reserved in the sgotplt, reloc_count is
17072 incremented. However, when we reserve space for TLS descriptors,
17073 it's not incremented, so in order to compute the space reserved
17074 for them, it suffices to multiply the reloc count by the jump
17075 slot size. */
17076 if (htab->root.srelplt)
17077 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
17078
17079 if (htab->tls_trampoline)
17080 {
17081 if (htab->root.splt->size == 0)
17082 htab->root.splt->size += htab->plt_header_size;
17083
17084 htab->tls_trampoline = htab->root.splt->size;
17085 htab->root.splt->size += htab->plt_entry_size;
17086
17087 /* If we're not using lazy TLS relocations, don't generate the
17088 PLT and GOT entries they require. */
17089 if (!(info->flags & DF_BIND_NOW))
17090 {
17091 htab->dt_tlsdesc_got = htab->root.sgot->size;
17092 htab->root.sgot->size += 4;
17093
17094 htab->dt_tlsdesc_plt = htab->root.splt->size;
17095 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
17096 }
17097 }
17098
17099 /* The check_relocs and adjust_dynamic_symbol entry points have
17100 determined the sizes of the various dynamic sections. Allocate
17101 memory for them. */
17102 plt = FALSE;
17103 relocs = FALSE;
17104 for (s = dynobj->sections; s != NULL; s = s->next)
17105 {
17106 const char * name;
17107
17108 if ((s->flags & SEC_LINKER_CREATED) == 0)
17109 continue;
17110
17111 /* It's OK to base decisions on the section name, because none
17112 of the dynobj section names depend upon the input files. */
17113 name = bfd_get_section_name (dynobj, s);
17114
17115 if (s == htab->root.splt)
17116 {
17117 /* Remember whether there is a PLT. */
17118 plt = s->size != 0;
17119 }
17120 else if (CONST_STRNEQ (name, ".rel"))
17121 {
17122 if (s->size != 0)
17123 {
17124 /* Remember whether there are any reloc sections other
17125 than .rel(a).plt and .rela.plt.unloaded. */
17126 if (s != htab->root.srelplt && s != htab->srelplt2)
17127 relocs = TRUE;
17128
17129 /* We use the reloc_count field as a counter if we need
17130 to copy relocs into the output file. */
17131 s->reloc_count = 0;
17132 }
17133 }
17134 else if (s != htab->root.sgot
17135 && s != htab->root.sgotplt
17136 && s != htab->root.iplt
17137 && s != htab->root.igotplt
17138 && s != htab->root.sdynbss
17139 && s != htab->root.sdynrelro
17140 && s != htab->srofixup)
17141 {
17142 /* It's not one of our sections, so don't allocate space. */
17143 continue;
17144 }
17145
17146 if (s->size == 0)
17147 {
17148 /* If we don't need this section, strip it from the
17149 output file. This is mostly to handle .rel(a).bss and
17150 .rel(a).plt. We must create both sections in
17151 create_dynamic_sections, because they must be created
17152 before the linker maps input sections to output
17153 sections. The linker does that before
17154 adjust_dynamic_symbol is called, and it is that
17155 function which decides whether anything needs to go
17156 into these sections. */
17157 s->flags |= SEC_EXCLUDE;
17158 continue;
17159 }
17160
17161 if ((s->flags & SEC_HAS_CONTENTS) == 0)
17162 continue;
17163
17164 /* Allocate memory for the section contents. */
17165 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
17166 if (s->contents == NULL)
17167 return FALSE;
17168 }
17169
17170 if (elf_hash_table (info)->dynamic_sections_created)
17171 {
17172 /* Add some entries to the .dynamic section. We fill in the
17173 values later, in elf32_arm_finish_dynamic_sections, but we
17174 must add the entries now so that we get the correct size for
17175 the .dynamic section. The DT_DEBUG entry is filled in by the
17176 dynamic linker and used by the debugger. */
17177 #define add_dynamic_entry(TAG, VAL) \
17178 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
17179
17180 if (bfd_link_executable (info))
17181 {
17182 if (!add_dynamic_entry (DT_DEBUG, 0))
17183 return FALSE;
17184 }
17185
17186 if (plt)
17187 {
17188 if ( !add_dynamic_entry (DT_PLTGOT, 0)
17189 || !add_dynamic_entry (DT_PLTRELSZ, 0)
17190 || !add_dynamic_entry (DT_PLTREL,
17191 htab->use_rel ? DT_REL : DT_RELA)
17192 || !add_dynamic_entry (DT_JMPREL, 0))
17193 return FALSE;
17194
17195 if (htab->dt_tlsdesc_plt
17196 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
17197 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
17198 return FALSE;
17199 }
17200
17201 if (relocs)
17202 {
17203 if (htab->use_rel)
17204 {
17205 if (!add_dynamic_entry (DT_REL, 0)
17206 || !add_dynamic_entry (DT_RELSZ, 0)
17207 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
17208 return FALSE;
17209 }
17210 else
17211 {
17212 if (!add_dynamic_entry (DT_RELA, 0)
17213 || !add_dynamic_entry (DT_RELASZ, 0)
17214 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
17215 return FALSE;
17216 }
17217 }
17218
17219 /* If any dynamic relocs apply to a read-only section,
17220 then we need a DT_TEXTREL entry. */
17221 if ((info->flags & DF_TEXTREL) == 0)
17222 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
17223
17224 if ((info->flags & DF_TEXTREL) != 0)
17225 {
17226 if (!add_dynamic_entry (DT_TEXTREL, 0))
17227 return FALSE;
17228 }
17229 if (htab->vxworks_p
17230 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
17231 return FALSE;
17232 }
17233 #undef add_dynamic_entry
17234
17235 return TRUE;
17236 }
17237
17238 /* Size sections even though they're not dynamic. We use it to setup
17239 _TLS_MODULE_BASE_, if needed. */
17240
17241 static bfd_boolean
17242 elf32_arm_always_size_sections (bfd *output_bfd,
17243 struct bfd_link_info *info)
17244 {
17245 asection *tls_sec;
17246 struct elf32_arm_link_hash_table *htab;
17247
17248 htab = elf32_arm_hash_table (info);
17249
17250 if (bfd_link_relocatable (info))
17251 return TRUE;
17252
17253 tls_sec = elf_hash_table (info)->tls_sec;
17254
17255 if (tls_sec)
17256 {
17257 struct elf_link_hash_entry *tlsbase;
17258
17259 tlsbase = elf_link_hash_lookup
17260 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
17261
17262 if (tlsbase)
17263 {
17264 struct bfd_link_hash_entry *bh = NULL;
17265 const struct elf_backend_data *bed
17266 = get_elf_backend_data (output_bfd);
17267
17268 if (!(_bfd_generic_link_add_one_symbol
17269 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
17270 tls_sec, 0, NULL, FALSE,
17271 bed->collect, &bh)))
17272 return FALSE;
17273
17274 tlsbase->type = STT_TLS;
17275 tlsbase = (struct elf_link_hash_entry *)bh;
17276 tlsbase->def_regular = 1;
17277 tlsbase->other = STV_HIDDEN;
17278 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
17279 }
17280 }
17281
17282 if (htab->fdpic_p && !bfd_link_relocatable (info)
17283 && !bfd_elf_stack_segment_size (output_bfd, info,
17284 "__stacksize", DEFAULT_STACK_SIZE))
17285 return FALSE;
17286
17287 return TRUE;
17288 }
17289
17290 /* Finish up dynamic symbol handling. We set the contents of various
17291 dynamic sections here. */
17292
17293 static bfd_boolean
17294 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
17295 struct bfd_link_info * info,
17296 struct elf_link_hash_entry * h,
17297 Elf_Internal_Sym * sym)
17298 {
17299 struct elf32_arm_link_hash_table *htab;
17300 struct elf32_arm_link_hash_entry *eh;
17301
17302 htab = elf32_arm_hash_table (info);
17303 if (htab == NULL)
17304 return FALSE;
17305
17306 eh = (struct elf32_arm_link_hash_entry *) h;
17307
17308 if (h->plt.offset != (bfd_vma) -1)
17309 {
17310 if (!eh->is_iplt)
17311 {
17312 BFD_ASSERT (h->dynindx != -1);
17313 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
17314 h->dynindx, 0))
17315 return FALSE;
17316 }
17317
17318 if (!h->def_regular)
17319 {
17320 /* Mark the symbol as undefined, rather than as defined in
17321 the .plt section. */
17322 sym->st_shndx = SHN_UNDEF;
17323 /* If the symbol is weak we need to clear the value.
17324 Otherwise, the PLT entry would provide a definition for
17325 the symbol even if the symbol wasn't defined anywhere,
17326 and so the symbol would never be NULL. Leave the value if
17327 there were any relocations where pointer equality matters
17328 (this is a clue for the dynamic linker, to make function
17329 pointer comparisons work between an application and shared
17330 library). */
17331 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
17332 sym->st_value = 0;
17333 }
17334 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
17335 {
17336 /* At least one non-call relocation references this .iplt entry,
17337 so the .iplt entry is the function's canonical address. */
17338 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
17339 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
17340 sym->st_shndx = (_bfd_elf_section_from_bfd_section
17341 (output_bfd, htab->root.iplt->output_section));
17342 sym->st_value = (h->plt.offset
17343 + htab->root.iplt->output_section->vma
17344 + htab->root.iplt->output_offset);
17345 }
17346 }
17347
17348 if (h->needs_copy)
17349 {
17350 asection * s;
17351 Elf_Internal_Rela rel;
17352
17353 /* This symbol needs a copy reloc. Set it up. */
17354 BFD_ASSERT (h->dynindx != -1
17355 && (h->root.type == bfd_link_hash_defined
17356 || h->root.type == bfd_link_hash_defweak));
17357
17358 rel.r_addend = 0;
17359 rel.r_offset = (h->root.u.def.value
17360 + h->root.u.def.section->output_section->vma
17361 + h->root.u.def.section->output_offset);
17362 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
17363 if (h->root.u.def.section == htab->root.sdynrelro)
17364 s = htab->root.sreldynrelro;
17365 else
17366 s = htab->root.srelbss;
17367 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
17368 }
17369
17370 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
17371 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17372 it is relative to the ".got" section. */
17373 if (h == htab->root.hdynamic
17374 || (!htab->fdpic_p && !htab->vxworks_p && h == htab->root.hgot))
17375 sym->st_shndx = SHN_ABS;
17376
17377 return TRUE;
17378 }
17379
17380 static void
17381 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17382 void *contents,
17383 const unsigned long *template, unsigned count)
17384 {
17385 unsigned ix;
17386
17387 for (ix = 0; ix != count; ix++)
17388 {
17389 unsigned long insn = template[ix];
17390
17391 /* Emit mov pc,rx if bx is not permitted. */
17392 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
17393 insn = (insn & 0xf000000f) | 0x01a0f000;
17394 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
17395 }
17396 }
17397
17398 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
17399 other variants, NaCl needs this entry in a static executable's
17400 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17401 zero. For .iplt really only the last bundle is useful, and .iplt
17402 could have a shorter first entry, with each individual PLT entry's
17403 relative branch calculated differently so it targets the last
17404 bundle instead of the instruction before it (labelled .Lplt_tail
17405 above). But it's simpler to keep the size and layout of PLT0
17406 consistent with the dynamic case, at the cost of some dead code at
17407 the start of .iplt and the one dead store to the stack at the start
17408 of .Lplt_tail. */
17409 static void
17410 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17411 asection *plt, bfd_vma got_displacement)
17412 {
17413 unsigned int i;
17414
17415 put_arm_insn (htab, output_bfd,
17416 elf32_arm_nacl_plt0_entry[0]
17417 | arm_movw_immediate (got_displacement),
17418 plt->contents + 0);
17419 put_arm_insn (htab, output_bfd,
17420 elf32_arm_nacl_plt0_entry[1]
17421 | arm_movt_immediate (got_displacement),
17422 plt->contents + 4);
17423
17424 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
17425 put_arm_insn (htab, output_bfd,
17426 elf32_arm_nacl_plt0_entry[i],
17427 plt->contents + (i * 4));
17428 }
17429
17430 /* Finish up the dynamic sections. */
17431
17432 static bfd_boolean
17433 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
17434 {
17435 bfd * dynobj;
17436 asection * sgot;
17437 asection * sdyn;
17438 struct elf32_arm_link_hash_table *htab;
17439
17440 htab = elf32_arm_hash_table (info);
17441 if (htab == NULL)
17442 return FALSE;
17443
17444 dynobj = elf_hash_table (info)->dynobj;
17445
17446 sgot = htab->root.sgotplt;
17447 /* A broken linker script might have discarded the dynamic sections.
17448 Catch this here so that we do not seg-fault later on. */
17449 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
17450 return FALSE;
17451 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
17452
17453 if (elf_hash_table (info)->dynamic_sections_created)
17454 {
17455 asection *splt;
17456 Elf32_External_Dyn *dyncon, *dynconend;
17457
17458 splt = htab->root.splt;
17459 BFD_ASSERT (splt != NULL && sdyn != NULL);
17460 BFD_ASSERT (htab->symbian_p || sgot != NULL);
17461
17462 dyncon = (Elf32_External_Dyn *) sdyn->contents;
17463 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
17464
17465 for (; dyncon < dynconend; dyncon++)
17466 {
17467 Elf_Internal_Dyn dyn;
17468 const char * name;
17469 asection * s;
17470
17471 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
17472
17473 switch (dyn.d_tag)
17474 {
17475 unsigned int type;
17476
17477 default:
17478 if (htab->vxworks_p
17479 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
17480 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17481 break;
17482
17483 case DT_HASH:
17484 name = ".hash";
17485 goto get_vma_if_bpabi;
17486 case DT_STRTAB:
17487 name = ".dynstr";
17488 goto get_vma_if_bpabi;
17489 case DT_SYMTAB:
17490 name = ".dynsym";
17491 goto get_vma_if_bpabi;
17492 case DT_VERSYM:
17493 name = ".gnu.version";
17494 goto get_vma_if_bpabi;
17495 case DT_VERDEF:
17496 name = ".gnu.version_d";
17497 goto get_vma_if_bpabi;
17498 case DT_VERNEED:
17499 name = ".gnu.version_r";
17500 goto get_vma_if_bpabi;
17501
17502 case DT_PLTGOT:
17503 name = htab->symbian_p ? ".got" : ".got.plt";
17504 goto get_vma;
17505 case DT_JMPREL:
17506 name = RELOC_SECTION (htab, ".plt");
17507 get_vma:
17508 s = bfd_get_linker_section (dynobj, name);
17509 if (s == NULL)
17510 {
17511 _bfd_error_handler
17512 (_("could not find section %s"), name);
17513 bfd_set_error (bfd_error_invalid_operation);
17514 return FALSE;
17515 }
17516 if (!htab->symbian_p)
17517 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17518 else
17519 /* In the BPABI, tags in the PT_DYNAMIC section point
17520 at the file offset, not the memory address, for the
17521 convenience of the post linker. */
17522 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
17523 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17524 break;
17525
17526 get_vma_if_bpabi:
17527 if (htab->symbian_p)
17528 goto get_vma;
17529 break;
17530
17531 case DT_PLTRELSZ:
17532 s = htab->root.srelplt;
17533 BFD_ASSERT (s != NULL);
17534 dyn.d_un.d_val = s->size;
17535 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17536 break;
17537
17538 case DT_RELSZ:
17539 case DT_RELASZ:
17540 case DT_REL:
17541 case DT_RELA:
17542 /* In the BPABI, the DT_REL tag must point at the file
17543 offset, not the VMA, of the first relocation
17544 section. So, we use code similar to that in
17545 elflink.c, but do not check for SHF_ALLOC on the
17546 relocation section, since relocation sections are
17547 never allocated under the BPABI. PLT relocs are also
17548 included. */
17549 if (htab->symbian_p)
17550 {
17551 unsigned int i;
17552 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
17553 ? SHT_REL : SHT_RELA);
17554 dyn.d_un.d_val = 0;
17555 for (i = 1; i < elf_numsections (output_bfd); i++)
17556 {
17557 Elf_Internal_Shdr *hdr
17558 = elf_elfsections (output_bfd)[i];
17559 if (hdr->sh_type == type)
17560 {
17561 if (dyn.d_tag == DT_RELSZ
17562 || dyn.d_tag == DT_RELASZ)
17563 dyn.d_un.d_val += hdr->sh_size;
17564 else if ((ufile_ptr) hdr->sh_offset
17565 <= dyn.d_un.d_val - 1)
17566 dyn.d_un.d_val = hdr->sh_offset;
17567 }
17568 }
17569 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17570 }
17571 break;
17572
17573 case DT_TLSDESC_PLT:
17574 s = htab->root.splt;
17575 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17576 + htab->dt_tlsdesc_plt);
17577 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17578 break;
17579
17580 case DT_TLSDESC_GOT:
17581 s = htab->root.sgot;
17582 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17583 + htab->dt_tlsdesc_got);
17584 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17585 break;
17586
17587 /* Set the bottom bit of DT_INIT/FINI if the
17588 corresponding function is Thumb. */
17589 case DT_INIT:
17590 name = info->init_function;
17591 goto get_sym;
17592 case DT_FINI:
17593 name = info->fini_function;
17594 get_sym:
17595 /* If it wasn't set by elf_bfd_final_link
17596 then there is nothing to adjust. */
17597 if (dyn.d_un.d_val != 0)
17598 {
17599 struct elf_link_hash_entry * eh;
17600
17601 eh = elf_link_hash_lookup (elf_hash_table (info), name,
17602 FALSE, FALSE, TRUE);
17603 if (eh != NULL
17604 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
17605 == ST_BRANCH_TO_THUMB)
17606 {
17607 dyn.d_un.d_val |= 1;
17608 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17609 }
17610 }
17611 break;
17612 }
17613 }
17614
17615 /* Fill in the first entry in the procedure linkage table. */
17616 if (splt->size > 0 && htab->plt_header_size)
17617 {
17618 const bfd_vma *plt0_entry;
17619 bfd_vma got_address, plt_address, got_displacement;
17620
17621 /* Calculate the addresses of the GOT and PLT. */
17622 got_address = sgot->output_section->vma + sgot->output_offset;
17623 plt_address = splt->output_section->vma + splt->output_offset;
17624
17625 if (htab->vxworks_p)
17626 {
17627 /* The VxWorks GOT is relocated by the dynamic linker.
17628 Therefore, we must emit relocations rather than simply
17629 computing the values now. */
17630 Elf_Internal_Rela rel;
17631
17632 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
17633 put_arm_insn (htab, output_bfd, plt0_entry[0],
17634 splt->contents + 0);
17635 put_arm_insn (htab, output_bfd, plt0_entry[1],
17636 splt->contents + 4);
17637 put_arm_insn (htab, output_bfd, plt0_entry[2],
17638 splt->contents + 8);
17639 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
17640
17641 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
17642 rel.r_offset = plt_address + 12;
17643 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17644 rel.r_addend = 0;
17645 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
17646 htab->srelplt2->contents);
17647 }
17648 else if (htab->nacl_p)
17649 arm_nacl_put_plt0 (htab, output_bfd, splt,
17650 got_address + 8 - (plt_address + 16));
17651 else if (using_thumb_only (htab))
17652 {
17653 got_displacement = got_address - (plt_address + 12);
17654
17655 plt0_entry = elf32_thumb2_plt0_entry;
17656 put_arm_insn (htab, output_bfd, plt0_entry[0],
17657 splt->contents + 0);
17658 put_arm_insn (htab, output_bfd, plt0_entry[1],
17659 splt->contents + 4);
17660 put_arm_insn (htab, output_bfd, plt0_entry[2],
17661 splt->contents + 8);
17662
17663 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
17664 }
17665 else
17666 {
17667 got_displacement = got_address - (plt_address + 16);
17668
17669 plt0_entry = elf32_arm_plt0_entry;
17670 put_arm_insn (htab, output_bfd, plt0_entry[0],
17671 splt->contents + 0);
17672 put_arm_insn (htab, output_bfd, plt0_entry[1],
17673 splt->contents + 4);
17674 put_arm_insn (htab, output_bfd, plt0_entry[2],
17675 splt->contents + 8);
17676 put_arm_insn (htab, output_bfd, plt0_entry[3],
17677 splt->contents + 12);
17678
17679 #ifdef FOUR_WORD_PLT
17680 /* The displacement value goes in the otherwise-unused
17681 last word of the second entry. */
17682 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
17683 #else
17684 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
17685 #endif
17686 }
17687 }
17688
17689 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17690 really seem like the right value. */
17691 if (splt->output_section->owner == output_bfd)
17692 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
17693
17694 if (htab->dt_tlsdesc_plt)
17695 {
17696 bfd_vma got_address
17697 = sgot->output_section->vma + sgot->output_offset;
17698 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
17699 + htab->root.sgot->output_offset);
17700 bfd_vma plt_address
17701 = splt->output_section->vma + splt->output_offset;
17702
17703 arm_put_trampoline (htab, output_bfd,
17704 splt->contents + htab->dt_tlsdesc_plt,
17705 dl_tlsdesc_lazy_trampoline, 6);
17706
17707 bfd_put_32 (output_bfd,
17708 gotplt_address + htab->dt_tlsdesc_got
17709 - (plt_address + htab->dt_tlsdesc_plt)
17710 - dl_tlsdesc_lazy_trampoline[6],
17711 splt->contents + htab->dt_tlsdesc_plt + 24);
17712 bfd_put_32 (output_bfd,
17713 got_address - (plt_address + htab->dt_tlsdesc_plt)
17714 - dl_tlsdesc_lazy_trampoline[7],
17715 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
17716 }
17717
17718 if (htab->tls_trampoline)
17719 {
17720 arm_put_trampoline (htab, output_bfd,
17721 splt->contents + htab->tls_trampoline,
17722 tls_trampoline, 3);
17723 #ifdef FOUR_WORD_PLT
17724 bfd_put_32 (output_bfd, 0x00000000,
17725 splt->contents + htab->tls_trampoline + 12);
17726 #endif
17727 }
17728
17729 if (htab->vxworks_p
17730 && !bfd_link_pic (info)
17731 && htab->root.splt->size > 0)
17732 {
17733 /* Correct the .rel(a).plt.unloaded relocations. They will have
17734 incorrect symbol indexes. */
17735 int num_plts;
17736 unsigned char *p;
17737
17738 num_plts = ((htab->root.splt->size - htab->plt_header_size)
17739 / htab->plt_entry_size);
17740 p = htab->srelplt2->contents + RELOC_SIZE (htab);
17741
17742 for (; num_plts; num_plts--)
17743 {
17744 Elf_Internal_Rela rel;
17745
17746 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17747 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17748 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17749 p += RELOC_SIZE (htab);
17750
17751 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17752 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
17753 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17754 p += RELOC_SIZE (htab);
17755 }
17756 }
17757 }
17758
17759 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
17760 /* NaCl uses a special first entry in .iplt too. */
17761 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
17762
17763 /* Fill in the first three entries in the global offset table. */
17764 if (sgot)
17765 {
17766 if (sgot->size > 0)
17767 {
17768 if (sdyn == NULL)
17769 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
17770 else
17771 bfd_put_32 (output_bfd,
17772 sdyn->output_section->vma + sdyn->output_offset,
17773 sgot->contents);
17774 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
17775 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
17776 }
17777
17778 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
17779 }
17780
17781 /* At the very end of the .rofixup section is a pointer to the GOT. */
17782 if (htab->fdpic_p && htab->srofixup != NULL)
17783 {
17784 struct elf_link_hash_entry *hgot = htab->root.hgot;
17785
17786 bfd_vma got_value = hgot->root.u.def.value
17787 + hgot->root.u.def.section->output_section->vma
17788 + hgot->root.u.def.section->output_offset;
17789
17790 arm_elf_add_rofixup(output_bfd, htab->srofixup, got_value);
17791
17792 /* Make sure we allocated and generated the same number of fixups. */
17793 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size);
17794 }
17795
17796 return TRUE;
17797 }
17798
17799 static void
17800 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
17801 {
17802 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
17803 struct elf32_arm_link_hash_table *globals;
17804 struct elf_segment_map *m;
17805
17806 i_ehdrp = elf_elfheader (abfd);
17807
17808 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
17809 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
17810 else
17811 _bfd_elf_post_process_headers (abfd, link_info);
17812 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
17813
17814 if (link_info)
17815 {
17816 globals = elf32_arm_hash_table (link_info);
17817 if (globals != NULL && globals->byteswap_code)
17818 i_ehdrp->e_flags |= EF_ARM_BE8;
17819
17820 if (globals->fdpic_p)
17821 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC;
17822 }
17823
17824 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
17825 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
17826 {
17827 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
17828 if (abi == AEABI_VFP_args_vfp)
17829 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
17830 else
17831 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
17832 }
17833
17834 /* Scan segment to set p_flags attribute if it contains only sections with
17835 SHF_ARM_PURECODE flag. */
17836 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
17837 {
17838 unsigned int j;
17839
17840 if (m->count == 0)
17841 continue;
17842 for (j = 0; j < m->count; j++)
17843 {
17844 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
17845 break;
17846 }
17847 if (j == m->count)
17848 {
17849 m->p_flags = PF_X;
17850 m->p_flags_valid = 1;
17851 }
17852 }
17853 }
17854
17855 static enum elf_reloc_type_class
17856 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
17857 const asection *rel_sec ATTRIBUTE_UNUSED,
17858 const Elf_Internal_Rela *rela)
17859 {
17860 switch ((int) ELF32_R_TYPE (rela->r_info))
17861 {
17862 case R_ARM_RELATIVE:
17863 return reloc_class_relative;
17864 case R_ARM_JUMP_SLOT:
17865 return reloc_class_plt;
17866 case R_ARM_COPY:
17867 return reloc_class_copy;
17868 case R_ARM_IRELATIVE:
17869 return reloc_class_ifunc;
17870 default:
17871 return reloc_class_normal;
17872 }
17873 }
17874
17875 static void
17876 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
17877 {
17878 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
17879 }
17880
17881 /* Return TRUE if this is an unwinding table entry. */
17882
17883 static bfd_boolean
17884 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
17885 {
17886 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
17887 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
17888 }
17889
17890
17891 /* Set the type and flags for an ARM section. We do this by
17892 the section name, which is a hack, but ought to work. */
17893
17894 static bfd_boolean
17895 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
17896 {
17897 const char * name;
17898
17899 name = bfd_get_section_name (abfd, sec);
17900
17901 if (is_arm_elf_unwind_section_name (abfd, name))
17902 {
17903 hdr->sh_type = SHT_ARM_EXIDX;
17904 hdr->sh_flags |= SHF_LINK_ORDER;
17905 }
17906
17907 if (sec->flags & SEC_ELF_PURECODE)
17908 hdr->sh_flags |= SHF_ARM_PURECODE;
17909
17910 return TRUE;
17911 }
17912
17913 /* Handle an ARM specific section when reading an object file. This is
17914 called when bfd_section_from_shdr finds a section with an unknown
17915 type. */
17916
17917 static bfd_boolean
17918 elf32_arm_section_from_shdr (bfd *abfd,
17919 Elf_Internal_Shdr * hdr,
17920 const char *name,
17921 int shindex)
17922 {
17923 /* There ought to be a place to keep ELF backend specific flags, but
17924 at the moment there isn't one. We just keep track of the
17925 sections by their name, instead. Fortunately, the ABI gives
17926 names for all the ARM specific sections, so we will probably get
17927 away with this. */
17928 switch (hdr->sh_type)
17929 {
17930 case SHT_ARM_EXIDX:
17931 case SHT_ARM_PREEMPTMAP:
17932 case SHT_ARM_ATTRIBUTES:
17933 break;
17934
17935 default:
17936 return FALSE;
17937 }
17938
17939 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
17940 return FALSE;
17941
17942 return TRUE;
17943 }
17944
17945 static _arm_elf_section_data *
17946 get_arm_elf_section_data (asection * sec)
17947 {
17948 if (sec && sec->owner && is_arm_elf (sec->owner))
17949 return elf32_arm_section_data (sec);
17950 else
17951 return NULL;
17952 }
17953
17954 typedef struct
17955 {
17956 void *flaginfo;
17957 struct bfd_link_info *info;
17958 asection *sec;
17959 int sec_shndx;
17960 int (*func) (void *, const char *, Elf_Internal_Sym *,
17961 asection *, struct elf_link_hash_entry *);
17962 } output_arch_syminfo;
17963
17964 enum map_symbol_type
17965 {
17966 ARM_MAP_ARM,
17967 ARM_MAP_THUMB,
17968 ARM_MAP_DATA
17969 };
17970
17971
17972 /* Output a single mapping symbol. */
17973
17974 static bfd_boolean
17975 elf32_arm_output_map_sym (output_arch_syminfo *osi,
17976 enum map_symbol_type type,
17977 bfd_vma offset)
17978 {
17979 static const char *names[3] = {"$a", "$t", "$d"};
17980 Elf_Internal_Sym sym;
17981
17982 sym.st_value = osi->sec->output_section->vma
17983 + osi->sec->output_offset
17984 + offset;
17985 sym.st_size = 0;
17986 sym.st_other = 0;
17987 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
17988 sym.st_shndx = osi->sec_shndx;
17989 sym.st_target_internal = 0;
17990 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
17991 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
17992 }
17993
17994 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
17995 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
17996
17997 static bfd_boolean
17998 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
17999 bfd_boolean is_iplt_entry_p,
18000 union gotplt_union *root_plt,
18001 struct arm_plt_info *arm_plt)
18002 {
18003 struct elf32_arm_link_hash_table *htab;
18004 bfd_vma addr, plt_header_size;
18005
18006 if (root_plt->offset == (bfd_vma) -1)
18007 return TRUE;
18008
18009 htab = elf32_arm_hash_table (osi->info);
18010 if (htab == NULL)
18011 return FALSE;
18012
18013 if (is_iplt_entry_p)
18014 {
18015 osi->sec = htab->root.iplt;
18016 plt_header_size = 0;
18017 }
18018 else
18019 {
18020 osi->sec = htab->root.splt;
18021 plt_header_size = htab->plt_header_size;
18022 }
18023 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
18024 (osi->info->output_bfd, osi->sec->output_section));
18025
18026 addr = root_plt->offset & -2;
18027 if (htab->symbian_p)
18028 {
18029 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18030 return FALSE;
18031 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
18032 return FALSE;
18033 }
18034 else if (htab->vxworks_p)
18035 {
18036 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18037 return FALSE;
18038 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
18039 return FALSE;
18040 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
18041 return FALSE;
18042 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
18043 return FALSE;
18044 }
18045 else if (htab->nacl_p)
18046 {
18047 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18048 return FALSE;
18049 }
18050 else if (htab->fdpic_p)
18051 {
18052 enum map_symbol_type type = using_thumb_only(htab)
18053 ? ARM_MAP_THUMB
18054 : ARM_MAP_ARM;
18055
18056 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt))
18057 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
18058 return FALSE;
18059 if (!elf32_arm_output_map_sym (osi, type, addr))
18060 return FALSE;
18061 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
18062 return FALSE;
18063 if (htab->plt_entry_size == 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry))
18064 if (!elf32_arm_output_map_sym (osi, type, addr + 24))
18065 return FALSE;
18066 }
18067 else if (using_thumb_only (htab))
18068 {
18069 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
18070 return FALSE;
18071 }
18072 else
18073 {
18074 bfd_boolean thumb_stub_p;
18075
18076 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
18077 if (thumb_stub_p)
18078 {
18079 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
18080 return FALSE;
18081 }
18082 #ifdef FOUR_WORD_PLT
18083 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18084 return FALSE;
18085 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
18086 return FALSE;
18087 #else
18088 /* A three-word PLT with no Thumb thunk contains only Arm code,
18089 so only need to output a mapping symbol for the first PLT entry and
18090 entries with thumb thunks. */
18091 if (thumb_stub_p || addr == plt_header_size)
18092 {
18093 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18094 return FALSE;
18095 }
18096 #endif
18097 }
18098
18099 return TRUE;
18100 }
18101
18102 /* Output mapping symbols for PLT entries associated with H. */
18103
18104 static bfd_boolean
18105 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
18106 {
18107 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
18108 struct elf32_arm_link_hash_entry *eh;
18109
18110 if (h->root.type == bfd_link_hash_indirect)
18111 return TRUE;
18112
18113 if (h->root.type == bfd_link_hash_warning)
18114 /* When warning symbols are created, they **replace** the "real"
18115 entry in the hash table, thus we never get to see the real
18116 symbol in a hash traversal. So look at it now. */
18117 h = (struct elf_link_hash_entry *) h->root.u.i.link;
18118
18119 eh = (struct elf32_arm_link_hash_entry *) h;
18120 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
18121 &h->plt, &eh->plt);
18122 }
18123
18124 /* Bind a veneered symbol to its veneer identified by its hash entry
18125 STUB_ENTRY. The veneered location thus loose its symbol. */
18126
18127 static void
18128 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
18129 {
18130 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
18131
18132 BFD_ASSERT (hash);
18133 hash->root.root.u.def.section = stub_entry->stub_sec;
18134 hash->root.root.u.def.value = stub_entry->stub_offset;
18135 hash->root.size = stub_entry->stub_size;
18136 }
18137
18138 /* Output a single local symbol for a generated stub. */
18139
18140 static bfd_boolean
18141 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
18142 bfd_vma offset, bfd_vma size)
18143 {
18144 Elf_Internal_Sym sym;
18145
18146 sym.st_value = osi->sec->output_section->vma
18147 + osi->sec->output_offset
18148 + offset;
18149 sym.st_size = size;
18150 sym.st_other = 0;
18151 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
18152 sym.st_shndx = osi->sec_shndx;
18153 sym.st_target_internal = 0;
18154 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
18155 }
18156
18157 static bfd_boolean
18158 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
18159 void * in_arg)
18160 {
18161 struct elf32_arm_stub_hash_entry *stub_entry;
18162 asection *stub_sec;
18163 bfd_vma addr;
18164 char *stub_name;
18165 output_arch_syminfo *osi;
18166 const insn_sequence *template_sequence;
18167 enum stub_insn_type prev_type;
18168 int size;
18169 int i;
18170 enum map_symbol_type sym_type;
18171
18172 /* Massage our args to the form they really have. */
18173 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18174 osi = (output_arch_syminfo *) in_arg;
18175
18176 stub_sec = stub_entry->stub_sec;
18177
18178 /* Ensure this stub is attached to the current section being
18179 processed. */
18180 if (stub_sec != osi->sec)
18181 return TRUE;
18182
18183 addr = (bfd_vma) stub_entry->stub_offset;
18184 template_sequence = stub_entry->stub_template;
18185
18186 if (arm_stub_sym_claimed (stub_entry->stub_type))
18187 arm_stub_claim_sym (stub_entry);
18188 else
18189 {
18190 stub_name = stub_entry->output_name;
18191 switch (template_sequence[0].type)
18192 {
18193 case ARM_TYPE:
18194 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
18195 stub_entry->stub_size))
18196 return FALSE;
18197 break;
18198 case THUMB16_TYPE:
18199 case THUMB32_TYPE:
18200 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
18201 stub_entry->stub_size))
18202 return FALSE;
18203 break;
18204 default:
18205 BFD_FAIL ();
18206 return 0;
18207 }
18208 }
18209
18210 prev_type = DATA_TYPE;
18211 size = 0;
18212 for (i = 0; i < stub_entry->stub_template_size; i++)
18213 {
18214 switch (template_sequence[i].type)
18215 {
18216 case ARM_TYPE:
18217 sym_type = ARM_MAP_ARM;
18218 break;
18219
18220 case THUMB16_TYPE:
18221 case THUMB32_TYPE:
18222 sym_type = ARM_MAP_THUMB;
18223 break;
18224
18225 case DATA_TYPE:
18226 sym_type = ARM_MAP_DATA;
18227 break;
18228
18229 default:
18230 BFD_FAIL ();
18231 return FALSE;
18232 }
18233
18234 if (template_sequence[i].type != prev_type)
18235 {
18236 prev_type = template_sequence[i].type;
18237 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
18238 return FALSE;
18239 }
18240
18241 switch (template_sequence[i].type)
18242 {
18243 case ARM_TYPE:
18244 case THUMB32_TYPE:
18245 size += 4;
18246 break;
18247
18248 case THUMB16_TYPE:
18249 size += 2;
18250 break;
18251
18252 case DATA_TYPE:
18253 size += 4;
18254 break;
18255
18256 default:
18257 BFD_FAIL ();
18258 return FALSE;
18259 }
18260 }
18261
18262 return TRUE;
18263 }
18264
18265 /* Output mapping symbols for linker generated sections,
18266 and for those data-only sections that do not have a
18267 $d. */
18268
18269 static bfd_boolean
18270 elf32_arm_output_arch_local_syms (bfd *output_bfd,
18271 struct bfd_link_info *info,
18272 void *flaginfo,
18273 int (*func) (void *, const char *,
18274 Elf_Internal_Sym *,
18275 asection *,
18276 struct elf_link_hash_entry *))
18277 {
18278 output_arch_syminfo osi;
18279 struct elf32_arm_link_hash_table *htab;
18280 bfd_vma offset;
18281 bfd_size_type size;
18282 bfd *input_bfd;
18283
18284 htab = elf32_arm_hash_table (info);
18285 if (htab == NULL)
18286 return FALSE;
18287
18288 check_use_blx (htab);
18289
18290 osi.flaginfo = flaginfo;
18291 osi.info = info;
18292 osi.func = func;
18293
18294 /* Add a $d mapping symbol to data-only sections that
18295 don't have any mapping symbol. This may result in (harmless) redundant
18296 mapping symbols. */
18297 for (input_bfd = info->input_bfds;
18298 input_bfd != NULL;
18299 input_bfd = input_bfd->link.next)
18300 {
18301 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
18302 for (osi.sec = input_bfd->sections;
18303 osi.sec != NULL;
18304 osi.sec = osi.sec->next)
18305 {
18306 if (osi.sec->output_section != NULL
18307 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
18308 != 0)
18309 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
18310 == SEC_HAS_CONTENTS
18311 && get_arm_elf_section_data (osi.sec) != NULL
18312 && get_arm_elf_section_data (osi.sec)->mapcount == 0
18313 && osi.sec->size > 0
18314 && (osi.sec->flags & SEC_EXCLUDE) == 0)
18315 {
18316 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18317 (output_bfd, osi.sec->output_section);
18318 if (osi.sec_shndx != (int)SHN_BAD)
18319 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
18320 }
18321 }
18322 }
18323
18324 /* ARM->Thumb glue. */
18325 if (htab->arm_glue_size > 0)
18326 {
18327 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18328 ARM2THUMB_GLUE_SECTION_NAME);
18329
18330 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18331 (output_bfd, osi.sec->output_section);
18332 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
18333 || htab->pic_veneer)
18334 size = ARM2THUMB_PIC_GLUE_SIZE;
18335 else if (htab->use_blx)
18336 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
18337 else
18338 size = ARM2THUMB_STATIC_GLUE_SIZE;
18339
18340 for (offset = 0; offset < htab->arm_glue_size; offset += size)
18341 {
18342 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
18343 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
18344 }
18345 }
18346
18347 /* Thumb->ARM glue. */
18348 if (htab->thumb_glue_size > 0)
18349 {
18350 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18351 THUMB2ARM_GLUE_SECTION_NAME);
18352
18353 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18354 (output_bfd, osi.sec->output_section);
18355 size = THUMB2ARM_GLUE_SIZE;
18356
18357 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
18358 {
18359 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
18360 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
18361 }
18362 }
18363
18364 /* ARMv4 BX veneers. */
18365 if (htab->bx_glue_size > 0)
18366 {
18367 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18368 ARM_BX_GLUE_SECTION_NAME);
18369
18370 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18371 (output_bfd, osi.sec->output_section);
18372
18373 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
18374 }
18375
18376 /* Long calls stubs. */
18377 if (htab->stub_bfd && htab->stub_bfd->sections)
18378 {
18379 asection* stub_sec;
18380
18381 for (stub_sec = htab->stub_bfd->sections;
18382 stub_sec != NULL;
18383 stub_sec = stub_sec->next)
18384 {
18385 /* Ignore non-stub sections. */
18386 if (!strstr (stub_sec->name, STUB_SUFFIX))
18387 continue;
18388
18389 osi.sec = stub_sec;
18390
18391 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18392 (output_bfd, osi.sec->output_section);
18393
18394 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
18395 }
18396 }
18397
18398 /* Finally, output mapping symbols for the PLT. */
18399 if (htab->root.splt && htab->root.splt->size > 0)
18400 {
18401 osi.sec = htab->root.splt;
18402 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18403 (output_bfd, osi.sec->output_section));
18404
18405 /* Output mapping symbols for the plt header. SymbianOS does not have a
18406 plt header. */
18407 if (htab->vxworks_p)
18408 {
18409 /* VxWorks shared libraries have no PLT header. */
18410 if (!bfd_link_pic (info))
18411 {
18412 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18413 return FALSE;
18414 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18415 return FALSE;
18416 }
18417 }
18418 else if (htab->nacl_p)
18419 {
18420 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18421 return FALSE;
18422 }
18423 else if (using_thumb_only (htab) && !htab->fdpic_p)
18424 {
18425 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
18426 return FALSE;
18427 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18428 return FALSE;
18429 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
18430 return FALSE;
18431 }
18432 else if (!htab->symbian_p && !htab->fdpic_p)
18433 {
18434 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18435 return FALSE;
18436 #ifndef FOUR_WORD_PLT
18437 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
18438 return FALSE;
18439 #endif
18440 }
18441 }
18442 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
18443 {
18444 /* NaCl uses a special first entry in .iplt too. */
18445 osi.sec = htab->root.iplt;
18446 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18447 (output_bfd, osi.sec->output_section));
18448 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18449 return FALSE;
18450 }
18451 if ((htab->root.splt && htab->root.splt->size > 0)
18452 || (htab->root.iplt && htab->root.iplt->size > 0))
18453 {
18454 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
18455 for (input_bfd = info->input_bfds;
18456 input_bfd != NULL;
18457 input_bfd = input_bfd->link.next)
18458 {
18459 struct arm_local_iplt_info **local_iplt;
18460 unsigned int i, num_syms;
18461
18462 local_iplt = elf32_arm_local_iplt (input_bfd);
18463 if (local_iplt != NULL)
18464 {
18465 num_syms = elf_symtab_hdr (input_bfd).sh_info;
18466 for (i = 0; i < num_syms; i++)
18467 if (local_iplt[i] != NULL
18468 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
18469 &local_iplt[i]->root,
18470 &local_iplt[i]->arm))
18471 return FALSE;
18472 }
18473 }
18474 }
18475 if (htab->dt_tlsdesc_plt != 0)
18476 {
18477 /* Mapping symbols for the lazy tls trampoline. */
18478 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
18479 return FALSE;
18480
18481 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18482 htab->dt_tlsdesc_plt + 24))
18483 return FALSE;
18484 }
18485 if (htab->tls_trampoline != 0)
18486 {
18487 /* Mapping symbols for the tls trampoline. */
18488 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
18489 return FALSE;
18490 #ifdef FOUR_WORD_PLT
18491 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18492 htab->tls_trampoline + 12))
18493 return FALSE;
18494 #endif
18495 }
18496
18497 return TRUE;
18498 }
18499
18500 /* Filter normal symbols of CMSE entry functions of ABFD to include in
18501 the import library. All SYMCOUNT symbols of ABFD can be examined
18502 from their pointers in SYMS. Pointers of symbols to keep should be
18503 stored continuously at the beginning of that array.
18504
18505 Returns the number of symbols to keep. */
18506
18507 static unsigned int
18508 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18509 struct bfd_link_info *info,
18510 asymbol **syms, long symcount)
18511 {
18512 size_t maxnamelen;
18513 char *cmse_name;
18514 long src_count, dst_count = 0;
18515 struct elf32_arm_link_hash_table *htab;
18516
18517 htab = elf32_arm_hash_table (info);
18518 if (!htab->stub_bfd || !htab->stub_bfd->sections)
18519 symcount = 0;
18520
18521 maxnamelen = 128;
18522 cmse_name = (char *) bfd_malloc (maxnamelen);
18523 for (src_count = 0; src_count < symcount; src_count++)
18524 {
18525 struct elf32_arm_link_hash_entry *cmse_hash;
18526 asymbol *sym;
18527 flagword flags;
18528 char *name;
18529 size_t namelen;
18530
18531 sym = syms[src_count];
18532 flags = sym->flags;
18533 name = (char *) bfd_asymbol_name (sym);
18534
18535 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
18536 continue;
18537 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
18538 continue;
18539
18540 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
18541 if (namelen > maxnamelen)
18542 {
18543 cmse_name = (char *)
18544 bfd_realloc (cmse_name, namelen);
18545 maxnamelen = namelen;
18546 }
18547 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
18548 cmse_hash = (struct elf32_arm_link_hash_entry *)
18549 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
18550
18551 if (!cmse_hash
18552 || (cmse_hash->root.root.type != bfd_link_hash_defined
18553 && cmse_hash->root.root.type != bfd_link_hash_defweak)
18554 || cmse_hash->root.type != STT_FUNC)
18555 continue;
18556
18557 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
18558 continue;
18559
18560 syms[dst_count++] = sym;
18561 }
18562 free (cmse_name);
18563
18564 syms[dst_count] = NULL;
18565
18566 return dst_count;
18567 }
18568
18569 /* Filter symbols of ABFD to include in the import library. All
18570 SYMCOUNT symbols of ABFD can be examined from their pointers in
18571 SYMS. Pointers of symbols to keep should be stored continuously at
18572 the beginning of that array.
18573
18574 Returns the number of symbols to keep. */
18575
18576 static unsigned int
18577 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18578 struct bfd_link_info *info,
18579 asymbol **syms, long symcount)
18580 {
18581 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
18582
18583 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18584 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18585 library to be a relocatable object file. */
18586 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
18587 if (globals->cmse_implib)
18588 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
18589 else
18590 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
18591 }
18592
18593 /* Allocate target specific section data. */
18594
18595 static bfd_boolean
18596 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
18597 {
18598 if (!sec->used_by_bfd)
18599 {
18600 _arm_elf_section_data *sdata;
18601 bfd_size_type amt = sizeof (*sdata);
18602
18603 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
18604 if (sdata == NULL)
18605 return FALSE;
18606 sec->used_by_bfd = sdata;
18607 }
18608
18609 return _bfd_elf_new_section_hook (abfd, sec);
18610 }
18611
18612
18613 /* Used to order a list of mapping symbols by address. */
18614
18615 static int
18616 elf32_arm_compare_mapping (const void * a, const void * b)
18617 {
18618 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
18619 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
18620
18621 if (amap->vma > bmap->vma)
18622 return 1;
18623 else if (amap->vma < bmap->vma)
18624 return -1;
18625 else if (amap->type > bmap->type)
18626 /* Ensure results do not depend on the host qsort for objects with
18627 multiple mapping symbols at the same address by sorting on type
18628 after vma. */
18629 return 1;
18630 else if (amap->type < bmap->type)
18631 return -1;
18632 else
18633 return 0;
18634 }
18635
18636 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18637
18638 static unsigned long
18639 offset_prel31 (unsigned long addr, bfd_vma offset)
18640 {
18641 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
18642 }
18643
18644 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18645 relocations. */
18646
18647 static void
18648 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
18649 {
18650 unsigned long first_word = bfd_get_32 (output_bfd, from);
18651 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
18652
18653 /* High bit of first word is supposed to be zero. */
18654 if ((first_word & 0x80000000ul) == 0)
18655 first_word = offset_prel31 (first_word, offset);
18656
18657 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18658 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18659 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
18660 second_word = offset_prel31 (second_word, offset);
18661
18662 bfd_put_32 (output_bfd, first_word, to);
18663 bfd_put_32 (output_bfd, second_word, to + 4);
18664 }
18665
18666 /* Data for make_branch_to_a8_stub(). */
18667
18668 struct a8_branch_to_stub_data
18669 {
18670 asection *writing_section;
18671 bfd_byte *contents;
18672 };
18673
18674
18675 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
18676 places for a particular section. */
18677
18678 static bfd_boolean
18679 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
18680 void *in_arg)
18681 {
18682 struct elf32_arm_stub_hash_entry *stub_entry;
18683 struct a8_branch_to_stub_data *data;
18684 bfd_byte *contents;
18685 unsigned long branch_insn;
18686 bfd_vma veneered_insn_loc, veneer_entry_loc;
18687 bfd_signed_vma branch_offset;
18688 bfd *abfd;
18689 unsigned int loc;
18690
18691 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18692 data = (struct a8_branch_to_stub_data *) in_arg;
18693
18694 if (stub_entry->target_section != data->writing_section
18695 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
18696 return TRUE;
18697
18698 contents = data->contents;
18699
18700 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18701 generated when both source and target are in the same section. */
18702 veneered_insn_loc = stub_entry->target_section->output_section->vma
18703 + stub_entry->target_section->output_offset
18704 + stub_entry->source_value;
18705
18706 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
18707 + stub_entry->stub_sec->output_offset
18708 + stub_entry->stub_offset;
18709
18710 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
18711 veneered_insn_loc &= ~3u;
18712
18713 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
18714
18715 abfd = stub_entry->target_section->owner;
18716 loc = stub_entry->source_value;
18717
18718 /* We attempt to avoid this condition by setting stubs_always_after_branch
18719 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18720 This check is just to be on the safe side... */
18721 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
18722 {
18723 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
18724 "allocated in unsafe location"), abfd);
18725 return FALSE;
18726 }
18727
18728 switch (stub_entry->stub_type)
18729 {
18730 case arm_stub_a8_veneer_b:
18731 case arm_stub_a8_veneer_b_cond:
18732 branch_insn = 0xf0009000;
18733 goto jump24;
18734
18735 case arm_stub_a8_veneer_blx:
18736 branch_insn = 0xf000e800;
18737 goto jump24;
18738
18739 case arm_stub_a8_veneer_bl:
18740 {
18741 unsigned int i1, j1, i2, j2, s;
18742
18743 branch_insn = 0xf000d000;
18744
18745 jump24:
18746 if (branch_offset < -16777216 || branch_offset > 16777214)
18747 {
18748 /* There's not much we can do apart from complain if this
18749 happens. */
18750 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
18751 "of range (input file too large)"), abfd);
18752 return FALSE;
18753 }
18754
18755 /* i1 = not(j1 eor s), so:
18756 not i1 = j1 eor s
18757 j1 = (not i1) eor s. */
18758
18759 branch_insn |= (branch_offset >> 1) & 0x7ff;
18760 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
18761 i2 = (branch_offset >> 22) & 1;
18762 i1 = (branch_offset >> 23) & 1;
18763 s = (branch_offset >> 24) & 1;
18764 j1 = (!i1) ^ s;
18765 j2 = (!i2) ^ s;
18766 branch_insn |= j2 << 11;
18767 branch_insn |= j1 << 13;
18768 branch_insn |= s << 26;
18769 }
18770 break;
18771
18772 default:
18773 BFD_FAIL ();
18774 return FALSE;
18775 }
18776
18777 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
18778 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
18779
18780 return TRUE;
18781 }
18782
18783 /* Beginning of stm32l4xx work-around. */
18784
18785 /* Functions encoding instructions necessary for the emission of the
18786 fix-stm32l4xx-629360.
18787 Encoding is extracted from the
18788 ARM (C) Architecture Reference Manual
18789 ARMv7-A and ARMv7-R edition
18790 ARM DDI 0406C.b (ID072512). */
18791
18792 static inline bfd_vma
18793 create_instruction_branch_absolute (int branch_offset)
18794 {
18795 /* A8.8.18 B (A8-334)
18796 B target_address (Encoding T4). */
18797 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18798 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18799 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18800
18801 int s = ((branch_offset & 0x1000000) >> 24);
18802 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
18803 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
18804
18805 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
18806 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18807
18808 bfd_vma patched_inst = 0xf0009000
18809 | s << 26 /* S. */
18810 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
18811 | j1 << 13 /* J1. */
18812 | j2 << 11 /* J2. */
18813 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
18814
18815 return patched_inst;
18816 }
18817
18818 static inline bfd_vma
18819 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
18820 {
18821 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18822 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18823 bfd_vma patched_inst = 0xe8900000
18824 | (/*W=*/wback << 21)
18825 | (base_reg << 16)
18826 | (reg_mask & 0x0000ffff);
18827
18828 return patched_inst;
18829 }
18830
18831 static inline bfd_vma
18832 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
18833 {
18834 /* A8.8.60 LDMDB/LDMEA (A8-402)
18835 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18836 bfd_vma patched_inst = 0xe9100000
18837 | (/*W=*/wback << 21)
18838 | (base_reg << 16)
18839 | (reg_mask & 0x0000ffff);
18840
18841 return patched_inst;
18842 }
18843
18844 static inline bfd_vma
18845 create_instruction_mov (int target_reg, int source_reg)
18846 {
18847 /* A8.8.103 MOV (register) (A8-486)
18848 MOV Rd, Rm (Encoding T1). */
18849 bfd_vma patched_inst = 0x4600
18850 | (target_reg & 0x7)
18851 | ((target_reg & 0x8) >> 3) << 7
18852 | (source_reg << 3);
18853
18854 return patched_inst;
18855 }
18856
18857 static inline bfd_vma
18858 create_instruction_sub (int target_reg, int source_reg, int value)
18859 {
18860 /* A8.8.221 SUB (immediate) (A8-708)
18861 SUB Rd, Rn, #value (Encoding T3). */
18862 bfd_vma patched_inst = 0xf1a00000
18863 | (target_reg << 8)
18864 | (source_reg << 16)
18865 | (/*S=*/0 << 20)
18866 | ((value & 0x800) >> 11) << 26
18867 | ((value & 0x700) >> 8) << 12
18868 | (value & 0x0ff);
18869
18870 return patched_inst;
18871 }
18872
18873 static inline bfd_vma
18874 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
18875 int first_reg)
18876 {
18877 /* A8.8.332 VLDM (A8-922)
18878 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18879 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
18880 | (/*W=*/wback << 21)
18881 | (base_reg << 16)
18882 | (num_words & 0x000000ff)
18883 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
18884 | (first_reg & 0x00000001) << 22;
18885
18886 return patched_inst;
18887 }
18888
18889 static inline bfd_vma
18890 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
18891 int first_reg)
18892 {
18893 /* A8.8.332 VLDM (A8-922)
18894 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18895 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
18896 | (base_reg << 16)
18897 | (num_words & 0x000000ff)
18898 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
18899 | (first_reg & 0x00000001) << 22;
18900
18901 return patched_inst;
18902 }
18903
18904 static inline bfd_vma
18905 create_instruction_udf_w (int value)
18906 {
18907 /* A8.8.247 UDF (A8-758)
18908 Undefined (Encoding T2). */
18909 bfd_vma patched_inst = 0xf7f0a000
18910 | (value & 0x00000fff)
18911 | (value & 0x000f0000) << 16;
18912
18913 return patched_inst;
18914 }
18915
18916 static inline bfd_vma
18917 create_instruction_udf (int value)
18918 {
18919 /* A8.8.247 UDF (A8-758)
18920 Undefined (Encoding T1). */
18921 bfd_vma patched_inst = 0xde00
18922 | (value & 0xff);
18923
18924 return patched_inst;
18925 }
18926
18927 /* Functions writing an instruction in memory, returning the next
18928 memory position to write to. */
18929
18930 static inline bfd_byte *
18931 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
18932 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18933 {
18934 put_thumb2_insn (htab, output_bfd, insn, pt);
18935 return pt + 4;
18936 }
18937
18938 static inline bfd_byte *
18939 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
18940 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18941 {
18942 put_thumb_insn (htab, output_bfd, insn, pt);
18943 return pt + 2;
18944 }
18945
18946 /* Function filling up a region in memory with T1 and T2 UDFs taking
18947 care of alignment. */
18948
18949 static bfd_byte *
18950 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
18951 bfd * output_bfd,
18952 const bfd_byte * const base_stub_contents,
18953 bfd_byte * const from_stub_contents,
18954 const bfd_byte * const end_stub_contents)
18955 {
18956 bfd_byte *current_stub_contents = from_stub_contents;
18957
18958 /* Fill the remaining of the stub with deterministic contents : UDF
18959 instructions.
18960 Check if realignment is needed on modulo 4 frontier using T1, to
18961 further use T2. */
18962 if ((current_stub_contents < end_stub_contents)
18963 && !((current_stub_contents - base_stub_contents) % 2)
18964 && ((current_stub_contents - base_stub_contents) % 4))
18965 current_stub_contents =
18966 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18967 create_instruction_udf (0));
18968
18969 for (; current_stub_contents < end_stub_contents;)
18970 current_stub_contents =
18971 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18972 create_instruction_udf_w (0));
18973
18974 return current_stub_contents;
18975 }
18976
18977 /* Functions writing the stream of instructions equivalent to the
18978 derived sequence for ldmia, ldmdb, vldm respectively. */
18979
18980 static void
18981 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
18982 bfd * output_bfd,
18983 const insn32 initial_insn,
18984 const bfd_byte *const initial_insn_addr,
18985 bfd_byte *const base_stub_contents)
18986 {
18987 int wback = (initial_insn & 0x00200000) >> 21;
18988 int ri, rn = (initial_insn & 0x000F0000) >> 16;
18989 int insn_all_registers = initial_insn & 0x0000ffff;
18990 int insn_low_registers, insn_high_registers;
18991 int usable_register_mask;
18992 int nb_registers = elf32_arm_popcount (insn_all_registers);
18993 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18994 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18995 bfd_byte *current_stub_contents = base_stub_contents;
18996
18997 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
18998
18999 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19000 smaller than 8 registers load sequences that do not cause the
19001 hardware issue. */
19002 if (nb_registers <= 8)
19003 {
19004 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19005 current_stub_contents =
19006 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19007 initial_insn);
19008
19009 /* B initial_insn_addr+4. */
19010 if (!restore_pc)
19011 current_stub_contents =
19012 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19013 create_instruction_branch_absolute
19014 (initial_insn_addr - current_stub_contents));
19015
19016 /* Fill the remaining of the stub with deterministic contents. */
19017 current_stub_contents =
19018 stm32l4xx_fill_stub_udf (htab, output_bfd,
19019 base_stub_contents, current_stub_contents,
19020 base_stub_contents +
19021 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19022
19023 return;
19024 }
19025
19026 /* - reg_list[13] == 0. */
19027 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
19028
19029 /* - reg_list[14] & reg_list[15] != 1. */
19030 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19031
19032 /* - if (wback==1) reg_list[rn] == 0. */
19033 BFD_ASSERT (!wback || !restore_rn);
19034
19035 /* - nb_registers > 8. */
19036 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
19037
19038 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19039
19040 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
19041 - One with the 7 lowest registers (register mask 0x007F)
19042 This LDM will finally contain between 2 and 7 registers
19043 - One with the 7 highest registers (register mask 0xDF80)
19044 This ldm will finally contain between 2 and 7 registers. */
19045 insn_low_registers = insn_all_registers & 0x007F;
19046 insn_high_registers = insn_all_registers & 0xDF80;
19047
19048 /* A spare register may be needed during this veneer to temporarily
19049 handle the base register. This register will be restored with the
19050 last LDM operation.
19051 The usable register may be any general purpose register (that
19052 excludes PC, SP, LR : register mask is 0x1FFF). */
19053 usable_register_mask = 0x1FFF;
19054
19055 /* Generate the stub function. */
19056 if (wback)
19057 {
19058 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
19059 current_stub_contents =
19060 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19061 create_instruction_ldmia
19062 (rn, /*wback=*/1, insn_low_registers));
19063
19064 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
19065 current_stub_contents =
19066 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19067 create_instruction_ldmia
19068 (rn, /*wback=*/1, insn_high_registers));
19069 if (!restore_pc)
19070 {
19071 /* B initial_insn_addr+4. */
19072 current_stub_contents =
19073 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19074 create_instruction_branch_absolute
19075 (initial_insn_addr - current_stub_contents));
19076 }
19077 }
19078 else /* if (!wback). */
19079 {
19080 ri = rn;
19081
19082 /* If Rn is not part of the high-register-list, move it there. */
19083 if (!(insn_high_registers & (1 << rn)))
19084 {
19085 /* Choose a Ri in the high-register-list that will be restored. */
19086 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19087
19088 /* MOV Ri, Rn. */
19089 current_stub_contents =
19090 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19091 create_instruction_mov (ri, rn));
19092 }
19093
19094 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
19095 current_stub_contents =
19096 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19097 create_instruction_ldmia
19098 (ri, /*wback=*/1, insn_low_registers));
19099
19100 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
19101 current_stub_contents =
19102 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19103 create_instruction_ldmia
19104 (ri, /*wback=*/0, insn_high_registers));
19105
19106 if (!restore_pc)
19107 {
19108 /* B initial_insn_addr+4. */
19109 current_stub_contents =
19110 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19111 create_instruction_branch_absolute
19112 (initial_insn_addr - current_stub_contents));
19113 }
19114 }
19115
19116 /* Fill the remaining of the stub with deterministic contents. */
19117 current_stub_contents =
19118 stm32l4xx_fill_stub_udf (htab, output_bfd,
19119 base_stub_contents, current_stub_contents,
19120 base_stub_contents +
19121 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19122 }
19123
19124 static void
19125 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
19126 bfd * output_bfd,
19127 const insn32 initial_insn,
19128 const bfd_byte *const initial_insn_addr,
19129 bfd_byte *const base_stub_contents)
19130 {
19131 int wback = (initial_insn & 0x00200000) >> 21;
19132 int ri, rn = (initial_insn & 0x000f0000) >> 16;
19133 int insn_all_registers = initial_insn & 0x0000ffff;
19134 int insn_low_registers, insn_high_registers;
19135 int usable_register_mask;
19136 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
19137 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
19138 int nb_registers = elf32_arm_popcount (insn_all_registers);
19139 bfd_byte *current_stub_contents = base_stub_contents;
19140
19141 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
19142
19143 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19144 smaller than 8 registers load sequences that do not cause the
19145 hardware issue. */
19146 if (nb_registers <= 8)
19147 {
19148 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19149 current_stub_contents =
19150 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19151 initial_insn);
19152
19153 /* B initial_insn_addr+4. */
19154 current_stub_contents =
19155 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19156 create_instruction_branch_absolute
19157 (initial_insn_addr - current_stub_contents));
19158
19159 /* Fill the remaining of the stub with deterministic contents. */
19160 current_stub_contents =
19161 stm32l4xx_fill_stub_udf (htab, output_bfd,
19162 base_stub_contents, current_stub_contents,
19163 base_stub_contents +
19164 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19165
19166 return;
19167 }
19168
19169 /* - reg_list[13] == 0. */
19170 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
19171
19172 /* - reg_list[14] & reg_list[15] != 1. */
19173 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19174
19175 /* - if (wback==1) reg_list[rn] == 0. */
19176 BFD_ASSERT (!wback || !restore_rn);
19177
19178 /* - nb_registers > 8. */
19179 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
19180
19181 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19182
19183 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
19184 - One with the 7 lowest registers (register mask 0x007F)
19185 This LDM will finally contain between 2 and 7 registers
19186 - One with the 7 highest registers (register mask 0xDF80)
19187 This ldm will finally contain between 2 and 7 registers. */
19188 insn_low_registers = insn_all_registers & 0x007F;
19189 insn_high_registers = insn_all_registers & 0xDF80;
19190
19191 /* A spare register may be needed during this veneer to temporarily
19192 handle the base register. This register will be restored with
19193 the last LDM operation.
19194 The usable register may be any general purpose register (that excludes
19195 PC, SP, LR : register mask is 0x1FFF). */
19196 usable_register_mask = 0x1FFF;
19197
19198 /* Generate the stub function. */
19199 if (!wback && !restore_pc && !restore_rn)
19200 {
19201 /* Choose a Ri in the low-register-list that will be restored. */
19202 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19203
19204 /* MOV Ri, Rn. */
19205 current_stub_contents =
19206 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19207 create_instruction_mov (ri, rn));
19208
19209 /* LDMDB Ri!, {R-high-register-list}. */
19210 current_stub_contents =
19211 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19212 create_instruction_ldmdb
19213 (ri, /*wback=*/1, insn_high_registers));
19214
19215 /* LDMDB Ri, {R-low-register-list}. */
19216 current_stub_contents =
19217 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19218 create_instruction_ldmdb
19219 (ri, /*wback=*/0, insn_low_registers));
19220
19221 /* B initial_insn_addr+4. */
19222 current_stub_contents =
19223 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19224 create_instruction_branch_absolute
19225 (initial_insn_addr - current_stub_contents));
19226 }
19227 else if (wback && !restore_pc && !restore_rn)
19228 {
19229 /* LDMDB Rn!, {R-high-register-list}. */
19230 current_stub_contents =
19231 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19232 create_instruction_ldmdb
19233 (rn, /*wback=*/1, insn_high_registers));
19234
19235 /* LDMDB Rn!, {R-low-register-list}. */
19236 current_stub_contents =
19237 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19238 create_instruction_ldmdb
19239 (rn, /*wback=*/1, insn_low_registers));
19240
19241 /* B initial_insn_addr+4. */
19242 current_stub_contents =
19243 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19244 create_instruction_branch_absolute
19245 (initial_insn_addr - current_stub_contents));
19246 }
19247 else if (!wback && restore_pc && !restore_rn)
19248 {
19249 /* Choose a Ri in the high-register-list that will be restored. */
19250 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19251
19252 /* SUB Ri, Rn, #(4*nb_registers). */
19253 current_stub_contents =
19254 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19255 create_instruction_sub (ri, rn, (4 * nb_registers)));
19256
19257 /* LDMIA Ri!, {R-low-register-list}. */
19258 current_stub_contents =
19259 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19260 create_instruction_ldmia
19261 (ri, /*wback=*/1, insn_low_registers));
19262
19263 /* LDMIA Ri, {R-high-register-list}. */
19264 current_stub_contents =
19265 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19266 create_instruction_ldmia
19267 (ri, /*wback=*/0, insn_high_registers));
19268 }
19269 else if (wback && restore_pc && !restore_rn)
19270 {
19271 /* Choose a Ri in the high-register-list that will be restored. */
19272 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19273
19274 /* SUB Rn, Rn, #(4*nb_registers) */
19275 current_stub_contents =
19276 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19277 create_instruction_sub (rn, rn, (4 * nb_registers)));
19278
19279 /* MOV Ri, Rn. */
19280 current_stub_contents =
19281 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19282 create_instruction_mov (ri, rn));
19283
19284 /* LDMIA Ri!, {R-low-register-list}. */
19285 current_stub_contents =
19286 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19287 create_instruction_ldmia
19288 (ri, /*wback=*/1, insn_low_registers));
19289
19290 /* LDMIA Ri, {R-high-register-list}. */
19291 current_stub_contents =
19292 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19293 create_instruction_ldmia
19294 (ri, /*wback=*/0, insn_high_registers));
19295 }
19296 else if (!wback && !restore_pc && restore_rn)
19297 {
19298 ri = rn;
19299 if (!(insn_low_registers & (1 << rn)))
19300 {
19301 /* Choose a Ri in the low-register-list that will be restored. */
19302 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19303
19304 /* MOV Ri, Rn. */
19305 current_stub_contents =
19306 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19307 create_instruction_mov (ri, rn));
19308 }
19309
19310 /* LDMDB Ri!, {R-high-register-list}. */
19311 current_stub_contents =
19312 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19313 create_instruction_ldmdb
19314 (ri, /*wback=*/1, insn_high_registers));
19315
19316 /* LDMDB Ri, {R-low-register-list}. */
19317 current_stub_contents =
19318 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19319 create_instruction_ldmdb
19320 (ri, /*wback=*/0, insn_low_registers));
19321
19322 /* B initial_insn_addr+4. */
19323 current_stub_contents =
19324 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19325 create_instruction_branch_absolute
19326 (initial_insn_addr - current_stub_contents));
19327 }
19328 else if (!wback && restore_pc && restore_rn)
19329 {
19330 ri = rn;
19331 if (!(insn_high_registers & (1 << rn)))
19332 {
19333 /* Choose a Ri in the high-register-list that will be restored. */
19334 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19335 }
19336
19337 /* SUB Ri, Rn, #(4*nb_registers). */
19338 current_stub_contents =
19339 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19340 create_instruction_sub (ri, rn, (4 * nb_registers)));
19341
19342 /* LDMIA Ri!, {R-low-register-list}. */
19343 current_stub_contents =
19344 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19345 create_instruction_ldmia
19346 (ri, /*wback=*/1, insn_low_registers));
19347
19348 /* LDMIA Ri, {R-high-register-list}. */
19349 current_stub_contents =
19350 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19351 create_instruction_ldmia
19352 (ri, /*wback=*/0, insn_high_registers));
19353 }
19354 else if (wback && restore_rn)
19355 {
19356 /* The assembler should not have accepted to encode this. */
19357 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19358 "undefined behavior.\n");
19359 }
19360
19361 /* Fill the remaining of the stub with deterministic contents. */
19362 current_stub_contents =
19363 stm32l4xx_fill_stub_udf (htab, output_bfd,
19364 base_stub_contents, current_stub_contents,
19365 base_stub_contents +
19366 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19367
19368 }
19369
19370 static void
19371 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
19372 bfd * output_bfd,
19373 const insn32 initial_insn,
19374 const bfd_byte *const initial_insn_addr,
19375 bfd_byte *const base_stub_contents)
19376 {
19377 int num_words = ((unsigned int) initial_insn << 24) >> 24;
19378 bfd_byte *current_stub_contents = base_stub_contents;
19379
19380 BFD_ASSERT (is_thumb2_vldm (initial_insn));
19381
19382 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19383 smaller than 8 words load sequences that do not cause the
19384 hardware issue. */
19385 if (num_words <= 8)
19386 {
19387 /* Untouched instruction. */
19388 current_stub_contents =
19389 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19390 initial_insn);
19391
19392 /* B initial_insn_addr+4. */
19393 current_stub_contents =
19394 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19395 create_instruction_branch_absolute
19396 (initial_insn_addr - current_stub_contents));
19397 }
19398 else
19399 {
19400 bfd_boolean is_dp = /* DP encoding. */
19401 (initial_insn & 0xfe100f00) == 0xec100b00;
19402 bfd_boolean is_ia_nobang = /* (IA without !). */
19403 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
19404 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
19405 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
19406 bfd_boolean is_db_bang = /* (DB with !). */
19407 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
19408 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
19409 /* d = UInt (Vd:D);. */
19410 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
19411 | (((unsigned int)initial_insn << 9) >> 31);
19412
19413 /* Compute the number of 8-words chunks needed to split. */
19414 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
19415 int chunk;
19416
19417 /* The test coverage has been done assuming the following
19418 hypothesis that exactly one of the previous is_ predicates is
19419 true. */
19420 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
19421 && !(is_ia_nobang & is_ia_bang & is_db_bang));
19422
19423 /* We treat the cutting of the words in one pass for all
19424 cases, then we emit the adjustments:
19425
19426 vldm rx, {...}
19427 -> vldm rx!, {8_words_or_less} for each needed 8_word
19428 -> sub rx, rx, #size (list)
19429
19430 vldm rx!, {...}
19431 -> vldm rx!, {8_words_or_less} for each needed 8_word
19432 This also handles vpop instruction (when rx is sp)
19433
19434 vldmd rx!, {...}
19435 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
19436 for (chunk = 0; chunk < chunks; ++chunk)
19437 {
19438 bfd_vma new_insn = 0;
19439
19440 if (is_ia_nobang || is_ia_bang)
19441 {
19442 new_insn = create_instruction_vldmia
19443 (base_reg,
19444 is_dp,
19445 /*wback= . */1,
19446 chunks - (chunk + 1) ?
19447 8 : num_words - chunk * 8,
19448 first_reg + chunk * 8);
19449 }
19450 else if (is_db_bang)
19451 {
19452 new_insn = create_instruction_vldmdb
19453 (base_reg,
19454 is_dp,
19455 chunks - (chunk + 1) ?
19456 8 : num_words - chunk * 8,
19457 first_reg + chunk * 8);
19458 }
19459
19460 if (new_insn)
19461 current_stub_contents =
19462 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19463 new_insn);
19464 }
19465
19466 /* Only this case requires the base register compensation
19467 subtract. */
19468 if (is_ia_nobang)
19469 {
19470 current_stub_contents =
19471 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19472 create_instruction_sub
19473 (base_reg, base_reg, 4*num_words));
19474 }
19475
19476 /* B initial_insn_addr+4. */
19477 current_stub_contents =
19478 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19479 create_instruction_branch_absolute
19480 (initial_insn_addr - current_stub_contents));
19481 }
19482
19483 /* Fill the remaining of the stub with deterministic contents. */
19484 current_stub_contents =
19485 stm32l4xx_fill_stub_udf (htab, output_bfd,
19486 base_stub_contents, current_stub_contents,
19487 base_stub_contents +
19488 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
19489 }
19490
19491 static void
19492 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
19493 bfd * output_bfd,
19494 const insn32 wrong_insn,
19495 const bfd_byte *const wrong_insn_addr,
19496 bfd_byte *const stub_contents)
19497 {
19498 if (is_thumb2_ldmia (wrong_insn))
19499 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
19500 wrong_insn, wrong_insn_addr,
19501 stub_contents);
19502 else if (is_thumb2_ldmdb (wrong_insn))
19503 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
19504 wrong_insn, wrong_insn_addr,
19505 stub_contents);
19506 else if (is_thumb2_vldm (wrong_insn))
19507 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
19508 wrong_insn, wrong_insn_addr,
19509 stub_contents);
19510 }
19511
19512 /* End of stm32l4xx work-around. */
19513
19514
19515 /* Do code byteswapping. Return FALSE afterwards so that the section is
19516 written out as normal. */
19517
19518 static bfd_boolean
19519 elf32_arm_write_section (bfd *output_bfd,
19520 struct bfd_link_info *link_info,
19521 asection *sec,
19522 bfd_byte *contents)
19523 {
19524 unsigned int mapcount, errcount;
19525 _arm_elf_section_data *arm_data;
19526 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
19527 elf32_arm_section_map *map;
19528 elf32_vfp11_erratum_list *errnode;
19529 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
19530 bfd_vma ptr;
19531 bfd_vma end;
19532 bfd_vma offset = sec->output_section->vma + sec->output_offset;
19533 bfd_byte tmp;
19534 unsigned int i;
19535
19536 if (globals == NULL)
19537 return FALSE;
19538
19539 /* If this section has not been allocated an _arm_elf_section_data
19540 structure then we cannot record anything. */
19541 arm_data = get_arm_elf_section_data (sec);
19542 if (arm_data == NULL)
19543 return FALSE;
19544
19545 mapcount = arm_data->mapcount;
19546 map = arm_data->map;
19547 errcount = arm_data->erratumcount;
19548
19549 if (errcount != 0)
19550 {
19551 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
19552
19553 for (errnode = arm_data->erratumlist; errnode != 0;
19554 errnode = errnode->next)
19555 {
19556 bfd_vma target = errnode->vma - offset;
19557
19558 switch (errnode->type)
19559 {
19560 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
19561 {
19562 bfd_vma branch_to_veneer;
19563 /* Original condition code of instruction, plus bit mask for
19564 ARM B instruction. */
19565 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
19566 | 0x0a000000;
19567
19568 /* The instruction is before the label. */
19569 target -= 4;
19570
19571 /* Above offset included in -4 below. */
19572 branch_to_veneer = errnode->u.b.veneer->vma
19573 - errnode->vma - 4;
19574
19575 if ((signed) branch_to_veneer < -(1 << 25)
19576 || (signed) branch_to_veneer >= (1 << 25))
19577 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19578 "range"), output_bfd);
19579
19580 insn |= (branch_to_veneer >> 2) & 0xffffff;
19581 contents[endianflip ^ target] = insn & 0xff;
19582 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19583 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19584 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19585 }
19586 break;
19587
19588 case VFP11_ERRATUM_ARM_VENEER:
19589 {
19590 bfd_vma branch_from_veneer;
19591 unsigned int insn;
19592
19593 /* Take size of veneer into account. */
19594 branch_from_veneer = errnode->u.v.branch->vma
19595 - errnode->vma - 12;
19596
19597 if ((signed) branch_from_veneer < -(1 << 25)
19598 || (signed) branch_from_veneer >= (1 << 25))
19599 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19600 "range"), output_bfd);
19601
19602 /* Original instruction. */
19603 insn = errnode->u.v.branch->u.b.vfp_insn;
19604 contents[endianflip ^ target] = insn & 0xff;
19605 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19606 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19607 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19608
19609 /* Branch back to insn after original insn. */
19610 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
19611 contents[endianflip ^ (target + 4)] = insn & 0xff;
19612 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
19613 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
19614 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
19615 }
19616 break;
19617
19618 default:
19619 abort ();
19620 }
19621 }
19622 }
19623
19624 if (arm_data->stm32l4xx_erratumcount != 0)
19625 {
19626 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
19627 stm32l4xx_errnode != 0;
19628 stm32l4xx_errnode = stm32l4xx_errnode->next)
19629 {
19630 bfd_vma target = stm32l4xx_errnode->vma - offset;
19631
19632 switch (stm32l4xx_errnode->type)
19633 {
19634 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
19635 {
19636 unsigned int insn;
19637 bfd_vma branch_to_veneer =
19638 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
19639
19640 if ((signed) branch_to_veneer < -(1 << 24)
19641 || (signed) branch_to_veneer >= (1 << 24))
19642 {
19643 bfd_vma out_of_range =
19644 ((signed) branch_to_veneer < -(1 << 24)) ?
19645 - branch_to_veneer - (1 << 24) :
19646 ((signed) branch_to_veneer >= (1 << 24)) ?
19647 branch_to_veneer - (1 << 24) : 0;
19648
19649 _bfd_error_handler
19650 (_("%pB(%#" PRIx64 "): error: "
19651 "cannot create STM32L4XX veneer; "
19652 "jump out of range by %" PRId64 " bytes; "
19653 "cannot encode branch instruction"),
19654 output_bfd,
19655 (uint64_t) (stm32l4xx_errnode->vma - 4),
19656 (int64_t) out_of_range);
19657 continue;
19658 }
19659
19660 insn = create_instruction_branch_absolute
19661 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
19662
19663 /* The instruction is before the label. */
19664 target -= 4;
19665
19666 put_thumb2_insn (globals, output_bfd,
19667 (bfd_vma) insn, contents + target);
19668 }
19669 break;
19670
19671 case STM32L4XX_ERRATUM_VENEER:
19672 {
19673 bfd_byte * veneer;
19674 bfd_byte * veneer_r;
19675 unsigned int insn;
19676
19677 veneer = contents + target;
19678 veneer_r = veneer
19679 + stm32l4xx_errnode->u.b.veneer->vma
19680 - stm32l4xx_errnode->vma - 4;
19681
19682 if ((signed) (veneer_r - veneer -
19683 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
19684 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
19685 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
19686 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
19687 || (signed) (veneer_r - veneer) >= (1 << 24))
19688 {
19689 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19690 "veneer"), output_bfd);
19691 continue;
19692 }
19693
19694 /* Original instruction. */
19695 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
19696
19697 stm32l4xx_create_replacing_stub
19698 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
19699 }
19700 break;
19701
19702 default:
19703 abort ();
19704 }
19705 }
19706 }
19707
19708 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
19709 {
19710 arm_unwind_table_edit *edit_node
19711 = arm_data->u.exidx.unwind_edit_list;
19712 /* Now, sec->size is the size of the section we will write. The original
19713 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
19714 markers) was sec->rawsize. (This isn't the case if we perform no
19715 edits, then rawsize will be zero and we should use size). */
19716 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
19717 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
19718 unsigned int in_index, out_index;
19719 bfd_vma add_to_offsets = 0;
19720
19721 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
19722 {
19723 if (edit_node)
19724 {
19725 unsigned int edit_index = edit_node->index;
19726
19727 if (in_index < edit_index && in_index * 8 < input_size)
19728 {
19729 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19730 contents + in_index * 8, add_to_offsets);
19731 out_index++;
19732 in_index++;
19733 }
19734 else if (in_index == edit_index
19735 || (in_index * 8 >= input_size
19736 && edit_index == UINT_MAX))
19737 {
19738 switch (edit_node->type)
19739 {
19740 case DELETE_EXIDX_ENTRY:
19741 in_index++;
19742 add_to_offsets += 8;
19743 break;
19744
19745 case INSERT_EXIDX_CANTUNWIND_AT_END:
19746 {
19747 asection *text_sec = edit_node->linked_section;
19748 bfd_vma text_offset = text_sec->output_section->vma
19749 + text_sec->output_offset
19750 + text_sec->size;
19751 bfd_vma exidx_offset = offset + out_index * 8;
19752 unsigned long prel31_offset;
19753
19754 /* Note: this is meant to be equivalent to an
19755 R_ARM_PREL31 relocation. These synthetic
19756 EXIDX_CANTUNWIND markers are not relocated by the
19757 usual BFD method. */
19758 prel31_offset = (text_offset - exidx_offset)
19759 & 0x7ffffffful;
19760 if (bfd_link_relocatable (link_info))
19761 {
19762 /* Here relocation for new EXIDX_CANTUNWIND is
19763 created, so there is no need to
19764 adjust offset by hand. */
19765 prel31_offset = text_sec->output_offset
19766 + text_sec->size;
19767 }
19768
19769 /* First address we can't unwind. */
19770 bfd_put_32 (output_bfd, prel31_offset,
19771 &edited_contents[out_index * 8]);
19772
19773 /* Code for EXIDX_CANTUNWIND. */
19774 bfd_put_32 (output_bfd, 0x1,
19775 &edited_contents[out_index * 8 + 4]);
19776
19777 out_index++;
19778 add_to_offsets -= 8;
19779 }
19780 break;
19781 }
19782
19783 edit_node = edit_node->next;
19784 }
19785 }
19786 else
19787 {
19788 /* No more edits, copy remaining entries verbatim. */
19789 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19790 contents + in_index * 8, add_to_offsets);
19791 out_index++;
19792 in_index++;
19793 }
19794 }
19795
19796 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
19797 bfd_set_section_contents (output_bfd, sec->output_section,
19798 edited_contents,
19799 (file_ptr) sec->output_offset, sec->size);
19800
19801 return TRUE;
19802 }
19803
19804 /* Fix code to point to Cortex-A8 erratum stubs. */
19805 if (globals->fix_cortex_a8)
19806 {
19807 struct a8_branch_to_stub_data data;
19808
19809 data.writing_section = sec;
19810 data.contents = contents;
19811
19812 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
19813 & data);
19814 }
19815
19816 if (mapcount == 0)
19817 return FALSE;
19818
19819 if (globals->byteswap_code)
19820 {
19821 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
19822
19823 ptr = map[0].vma;
19824 for (i = 0; i < mapcount; i++)
19825 {
19826 if (i == mapcount - 1)
19827 end = sec->size;
19828 else
19829 end = map[i + 1].vma;
19830
19831 switch (map[i].type)
19832 {
19833 case 'a':
19834 /* Byte swap code words. */
19835 while (ptr + 3 < end)
19836 {
19837 tmp = contents[ptr];
19838 contents[ptr] = contents[ptr + 3];
19839 contents[ptr + 3] = tmp;
19840 tmp = contents[ptr + 1];
19841 contents[ptr + 1] = contents[ptr + 2];
19842 contents[ptr + 2] = tmp;
19843 ptr += 4;
19844 }
19845 break;
19846
19847 case 't':
19848 /* Byte swap code halfwords. */
19849 while (ptr + 1 < end)
19850 {
19851 tmp = contents[ptr];
19852 contents[ptr] = contents[ptr + 1];
19853 contents[ptr + 1] = tmp;
19854 ptr += 2;
19855 }
19856 break;
19857
19858 case 'd':
19859 /* Leave data alone. */
19860 break;
19861 }
19862 ptr = end;
19863 }
19864 }
19865
19866 free (map);
19867 arm_data->mapcount = -1;
19868 arm_data->mapsize = 0;
19869 arm_data->map = NULL;
19870
19871 return FALSE;
19872 }
19873
19874 /* Mangle thumb function symbols as we read them in. */
19875
19876 static bfd_boolean
19877 elf32_arm_swap_symbol_in (bfd * abfd,
19878 const void *psrc,
19879 const void *pshn,
19880 Elf_Internal_Sym *dst)
19881 {
19882 Elf_Internal_Shdr *symtab_hdr;
19883 const char *name = NULL;
19884
19885 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
19886 return FALSE;
19887 dst->st_target_internal = 0;
19888
19889 /* New EABI objects mark thumb function symbols by setting the low bit of
19890 the address. */
19891 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
19892 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
19893 {
19894 if (dst->st_value & 1)
19895 {
19896 dst->st_value &= ~(bfd_vma) 1;
19897 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
19898 ST_BRANCH_TO_THUMB);
19899 }
19900 else
19901 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
19902 }
19903 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
19904 {
19905 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
19906 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
19907 }
19908 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
19909 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
19910 else
19911 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
19912
19913 /* Mark CMSE special symbols. */
19914 symtab_hdr = & elf_symtab_hdr (abfd);
19915 if (symtab_hdr->sh_size)
19916 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
19917 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
19918 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
19919
19920 return TRUE;
19921 }
19922
19923
19924 /* Mangle thumb function symbols as we write them out. */
19925
19926 static void
19927 elf32_arm_swap_symbol_out (bfd *abfd,
19928 const Elf_Internal_Sym *src,
19929 void *cdst,
19930 void *shndx)
19931 {
19932 Elf_Internal_Sym newsym;
19933
19934 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19935 of the address set, as per the new EABI. We do this unconditionally
19936 because objcopy does not set the elf header flags until after
19937 it writes out the symbol table. */
19938 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
19939 {
19940 newsym = *src;
19941 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
19942 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
19943 if (newsym.st_shndx != SHN_UNDEF)
19944 {
19945 /* Do this only for defined symbols. At link type, the static
19946 linker will simulate the work of dynamic linker of resolving
19947 symbols and will carry over the thumbness of found symbols to
19948 the output symbol table. It's not clear how it happens, but
19949 the thumbness of undefined symbols can well be different at
19950 runtime, and writing '1' for them will be confusing for users
19951 and possibly for dynamic linker itself.
19952 */
19953 newsym.st_value |= 1;
19954 }
19955
19956 src = &newsym;
19957 }
19958 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
19959 }
19960
19961 /* Add the PT_ARM_EXIDX program header. */
19962
19963 static bfd_boolean
19964 elf32_arm_modify_segment_map (bfd *abfd,
19965 struct bfd_link_info *info ATTRIBUTE_UNUSED)
19966 {
19967 struct elf_segment_map *m;
19968 asection *sec;
19969
19970 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
19971 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
19972 {
19973 /* If there is already a PT_ARM_EXIDX header, then we do not
19974 want to add another one. This situation arises when running
19975 "strip"; the input binary already has the header. */
19976 m = elf_seg_map (abfd);
19977 while (m && m->p_type != PT_ARM_EXIDX)
19978 m = m->next;
19979 if (!m)
19980 {
19981 m = (struct elf_segment_map *)
19982 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
19983 if (m == NULL)
19984 return FALSE;
19985 m->p_type = PT_ARM_EXIDX;
19986 m->count = 1;
19987 m->sections[0] = sec;
19988
19989 m->next = elf_seg_map (abfd);
19990 elf_seg_map (abfd) = m;
19991 }
19992 }
19993
19994 return TRUE;
19995 }
19996
19997 /* We may add a PT_ARM_EXIDX program header. */
19998
19999 static int
20000 elf32_arm_additional_program_headers (bfd *abfd,
20001 struct bfd_link_info *info ATTRIBUTE_UNUSED)
20002 {
20003 asection *sec;
20004
20005 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
20006 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
20007 return 1;
20008 else
20009 return 0;
20010 }
20011
20012 /* Hook called by the linker routine which adds symbols from an object
20013 file. */
20014
20015 static bfd_boolean
20016 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
20017 Elf_Internal_Sym *sym, const char **namep,
20018 flagword *flagsp, asection **secp, bfd_vma *valp)
20019 {
20020 if (elf32_arm_hash_table (info) == NULL)
20021 return FALSE;
20022
20023 if (elf32_arm_hash_table (info)->vxworks_p
20024 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
20025 flagsp, secp, valp))
20026 return FALSE;
20027
20028 return TRUE;
20029 }
20030
20031 /* We use this to override swap_symbol_in and swap_symbol_out. */
20032 const struct elf_size_info elf32_arm_size_info =
20033 {
20034 sizeof (Elf32_External_Ehdr),
20035 sizeof (Elf32_External_Phdr),
20036 sizeof (Elf32_External_Shdr),
20037 sizeof (Elf32_External_Rel),
20038 sizeof (Elf32_External_Rela),
20039 sizeof (Elf32_External_Sym),
20040 sizeof (Elf32_External_Dyn),
20041 sizeof (Elf_External_Note),
20042 4,
20043 1,
20044 32, 2,
20045 ELFCLASS32, EV_CURRENT,
20046 bfd_elf32_write_out_phdrs,
20047 bfd_elf32_write_shdrs_and_ehdr,
20048 bfd_elf32_checksum_contents,
20049 bfd_elf32_write_relocs,
20050 elf32_arm_swap_symbol_in,
20051 elf32_arm_swap_symbol_out,
20052 bfd_elf32_slurp_reloc_table,
20053 bfd_elf32_slurp_symbol_table,
20054 bfd_elf32_swap_dyn_in,
20055 bfd_elf32_swap_dyn_out,
20056 bfd_elf32_swap_reloc_in,
20057 bfd_elf32_swap_reloc_out,
20058 bfd_elf32_swap_reloca_in,
20059 bfd_elf32_swap_reloca_out
20060 };
20061
20062 static bfd_vma
20063 read_code32 (const bfd *abfd, const bfd_byte *addr)
20064 {
20065 /* V7 BE8 code is always little endian. */
20066 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
20067 return bfd_getl32 (addr);
20068
20069 return bfd_get_32 (abfd, addr);
20070 }
20071
20072 static bfd_vma
20073 read_code16 (const bfd *abfd, const bfd_byte *addr)
20074 {
20075 /* V7 BE8 code is always little endian. */
20076 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
20077 return bfd_getl16 (addr);
20078
20079 return bfd_get_16 (abfd, addr);
20080 }
20081
20082 /* Return size of plt0 entry starting at ADDR
20083 or (bfd_vma) -1 if size can not be determined. */
20084
20085 static bfd_vma
20086 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
20087 {
20088 bfd_vma first_word;
20089 bfd_vma plt0_size;
20090
20091 first_word = read_code32 (abfd, addr);
20092
20093 if (first_word == elf32_arm_plt0_entry[0])
20094 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
20095 else if (first_word == elf32_thumb2_plt0_entry[0])
20096 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
20097 else
20098 /* We don't yet handle this PLT format. */
20099 return (bfd_vma) -1;
20100
20101 return plt0_size;
20102 }
20103
20104 /* Return size of plt entry starting at offset OFFSET
20105 of plt section located at address START
20106 or (bfd_vma) -1 if size can not be determined. */
20107
20108 static bfd_vma
20109 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
20110 {
20111 bfd_vma first_insn;
20112 bfd_vma plt_size = 0;
20113 const bfd_byte *addr = start + offset;
20114
20115 /* PLT entry size if fixed on Thumb-only platforms. */
20116 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
20117 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
20118
20119 /* Respect Thumb stub if necessary. */
20120 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
20121 {
20122 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
20123 }
20124
20125 /* Strip immediate from first add. */
20126 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
20127
20128 #ifdef FOUR_WORD_PLT
20129 if (first_insn == elf32_arm_plt_entry[0])
20130 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
20131 #else
20132 if (first_insn == elf32_arm_plt_entry_long[0])
20133 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
20134 else if (first_insn == elf32_arm_plt_entry_short[0])
20135 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
20136 #endif
20137 else
20138 /* We don't yet handle this PLT format. */
20139 return (bfd_vma) -1;
20140
20141 return plt_size;
20142 }
20143
20144 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
20145
20146 static long
20147 elf32_arm_get_synthetic_symtab (bfd *abfd,
20148 long symcount ATTRIBUTE_UNUSED,
20149 asymbol **syms ATTRIBUTE_UNUSED,
20150 long dynsymcount,
20151 asymbol **dynsyms,
20152 asymbol **ret)
20153 {
20154 asection *relplt;
20155 asymbol *s;
20156 arelent *p;
20157 long count, i, n;
20158 size_t size;
20159 Elf_Internal_Shdr *hdr;
20160 char *names;
20161 asection *plt;
20162 bfd_vma offset;
20163 bfd_byte *data;
20164
20165 *ret = NULL;
20166
20167 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
20168 return 0;
20169
20170 if (dynsymcount <= 0)
20171 return 0;
20172
20173 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
20174 if (relplt == NULL)
20175 return 0;
20176
20177 hdr = &elf_section_data (relplt)->this_hdr;
20178 if (hdr->sh_link != elf_dynsymtab (abfd)
20179 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
20180 return 0;
20181
20182 plt = bfd_get_section_by_name (abfd, ".plt");
20183 if (plt == NULL)
20184 return 0;
20185
20186 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
20187 return -1;
20188
20189 data = plt->contents;
20190 if (data == NULL)
20191 {
20192 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
20193 return -1;
20194 bfd_cache_section_contents((asection *) plt, data);
20195 }
20196
20197 count = relplt->size / hdr->sh_entsize;
20198 size = count * sizeof (asymbol);
20199 p = relplt->relocation;
20200 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20201 {
20202 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
20203 if (p->addend != 0)
20204 size += sizeof ("+0x") - 1 + 8;
20205 }
20206
20207 s = *ret = (asymbol *) bfd_malloc (size);
20208 if (s == NULL)
20209 return -1;
20210
20211 offset = elf32_arm_plt0_size (abfd, data);
20212 if (offset == (bfd_vma) -1)
20213 return -1;
20214
20215 names = (char *) (s + count);
20216 p = relplt->relocation;
20217 n = 0;
20218 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20219 {
20220 size_t len;
20221
20222 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
20223 if (plt_size == (bfd_vma) -1)
20224 break;
20225
20226 *s = **p->sym_ptr_ptr;
20227 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20228 we are defining a symbol, ensure one of them is set. */
20229 if ((s->flags & BSF_LOCAL) == 0)
20230 s->flags |= BSF_GLOBAL;
20231 s->flags |= BSF_SYNTHETIC;
20232 s->section = plt;
20233 s->value = offset;
20234 s->name = names;
20235 s->udata.p = NULL;
20236 len = strlen ((*p->sym_ptr_ptr)->name);
20237 memcpy (names, (*p->sym_ptr_ptr)->name, len);
20238 names += len;
20239 if (p->addend != 0)
20240 {
20241 char buf[30], *a;
20242
20243 memcpy (names, "+0x", sizeof ("+0x") - 1);
20244 names += sizeof ("+0x") - 1;
20245 bfd_sprintf_vma (abfd, buf, p->addend);
20246 for (a = buf; *a == '0'; ++a)
20247 ;
20248 len = strlen (a);
20249 memcpy (names, a, len);
20250 names += len;
20251 }
20252 memcpy (names, "@plt", sizeof ("@plt"));
20253 names += sizeof ("@plt");
20254 ++s, ++n;
20255 offset += plt_size;
20256 }
20257
20258 return n;
20259 }
20260
20261 static bfd_boolean
20262 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
20263 {
20264 if (hdr->sh_flags & SHF_ARM_PURECODE)
20265 *flags |= SEC_ELF_PURECODE;
20266 return TRUE;
20267 }
20268
20269 static flagword
20270 elf32_arm_lookup_section_flags (char *flag_name)
20271 {
20272 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
20273 return SHF_ARM_PURECODE;
20274
20275 return SEC_NO_FLAGS;
20276 }
20277
20278 static unsigned int
20279 elf32_arm_count_additional_relocs (asection *sec)
20280 {
20281 struct _arm_elf_section_data *arm_data;
20282 arm_data = get_arm_elf_section_data (sec);
20283
20284 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
20285 }
20286
20287 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
20288 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
20289 FALSE otherwise. ISECTION is the best guess matching section from the
20290 input bfd IBFD, but it might be NULL. */
20291
20292 static bfd_boolean
20293 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
20294 bfd *obfd ATTRIBUTE_UNUSED,
20295 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
20296 Elf_Internal_Shdr *osection)
20297 {
20298 switch (osection->sh_type)
20299 {
20300 case SHT_ARM_EXIDX:
20301 {
20302 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
20303 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
20304 unsigned i = 0;
20305
20306 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
20307 osection->sh_info = 0;
20308
20309 /* The sh_link field must be set to the text section associated with
20310 this index section. Unfortunately the ARM EHABI does not specify
20311 exactly how to determine this association. Our caller does try
20312 to match up OSECTION with its corresponding input section however
20313 so that is a good first guess. */
20314 if (isection != NULL
20315 && osection->bfd_section != NULL
20316 && isection->bfd_section != NULL
20317 && isection->bfd_section->output_section != NULL
20318 && isection->bfd_section->output_section == osection->bfd_section
20319 && iheaders != NULL
20320 && isection->sh_link > 0
20321 && isection->sh_link < elf_numsections (ibfd)
20322 && iheaders[isection->sh_link]->bfd_section != NULL
20323 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
20324 )
20325 {
20326 for (i = elf_numsections (obfd); i-- > 0;)
20327 if (oheaders[i]->bfd_section
20328 == iheaders[isection->sh_link]->bfd_section->output_section)
20329 break;
20330 }
20331
20332 if (i == 0)
20333 {
20334 /* Failing that we have to find a matching section ourselves. If
20335 we had the output section name available we could compare that
20336 with input section names. Unfortunately we don't. So instead
20337 we use a simple heuristic and look for the nearest executable
20338 section before this one. */
20339 for (i = elf_numsections (obfd); i-- > 0;)
20340 if (oheaders[i] == osection)
20341 break;
20342 if (i == 0)
20343 break;
20344
20345 while (i-- > 0)
20346 if (oheaders[i]->sh_type == SHT_PROGBITS
20347 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
20348 == (SHF_ALLOC | SHF_EXECINSTR))
20349 break;
20350 }
20351
20352 if (i)
20353 {
20354 osection->sh_link = i;
20355 /* If the text section was part of a group
20356 then the index section should be too. */
20357 if (oheaders[i]->sh_flags & SHF_GROUP)
20358 osection->sh_flags |= SHF_GROUP;
20359 return TRUE;
20360 }
20361 }
20362 break;
20363
20364 case SHT_ARM_PREEMPTMAP:
20365 osection->sh_flags = SHF_ALLOC;
20366 break;
20367
20368 case SHT_ARM_ATTRIBUTES:
20369 case SHT_ARM_DEBUGOVERLAY:
20370 case SHT_ARM_OVERLAYSECTION:
20371 default:
20372 break;
20373 }
20374
20375 return FALSE;
20376 }
20377
20378 /* Returns TRUE if NAME is an ARM mapping symbol.
20379 Traditionally the symbols $a, $d and $t have been used.
20380 The ARM ELF standard also defines $x (for A64 code). It also allows a
20381 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20382 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20383 not support them here. $t.x indicates the start of ThumbEE instructions. */
20384
20385 static bfd_boolean
20386 is_arm_mapping_symbol (const char * name)
20387 {
20388 return name != NULL /* Paranoia. */
20389 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20390 the mapping symbols could have acquired a prefix.
20391 We do not support this here, since such symbols no
20392 longer conform to the ARM ELF ABI. */
20393 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
20394 && (name[2] == 0 || name[2] == '.');
20395 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20396 any characters that follow the period are legal characters for the body
20397 of a symbol's name. For now we just assume that this is the case. */
20398 }
20399
20400 /* Make sure that mapping symbols in object files are not removed via the
20401 "strip --strip-unneeded" tool. These symbols are needed in order to
20402 correctly generate interworking veneers, and for byte swapping code
20403 regions. Once an object file has been linked, it is safe to remove the
20404 symbols as they will no longer be needed. */
20405
20406 static void
20407 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
20408 {
20409 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
20410 && sym->section != bfd_abs_section_ptr
20411 && is_arm_mapping_symbol (sym->name))
20412 sym->flags |= BSF_KEEP;
20413 }
20414
20415 #undef elf_backend_copy_special_section_fields
20416 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20417
20418 #define ELF_ARCH bfd_arch_arm
20419 #define ELF_TARGET_ID ARM_ELF_DATA
20420 #define ELF_MACHINE_CODE EM_ARM
20421 #ifdef __QNXTARGET__
20422 #define ELF_MAXPAGESIZE 0x1000
20423 #else
20424 #define ELF_MAXPAGESIZE 0x10000
20425 #endif
20426 #define ELF_MINPAGESIZE 0x1000
20427 #define ELF_COMMONPAGESIZE 0x1000
20428
20429 #define bfd_elf32_mkobject elf32_arm_mkobject
20430
20431 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20432 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
20433 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20434 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
20435 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
20436 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
20437 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
20438 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
20439 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
20440 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
20441 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
20442 #define bfd_elf32_bfd_final_link elf32_arm_final_link
20443 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
20444
20445 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
20446 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
20447 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
20448 #define elf_backend_check_relocs elf32_arm_check_relocs
20449 #define elf_backend_update_relocs elf32_arm_update_relocs
20450 #define elf_backend_relocate_section elf32_arm_relocate_section
20451 #define elf_backend_write_section elf32_arm_write_section
20452 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
20453 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
20454 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20455 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20456 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
20457 #define elf_backend_always_size_sections elf32_arm_always_size_sections
20458 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
20459 #define elf_backend_post_process_headers elf32_arm_post_process_headers
20460 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
20461 #define elf_backend_object_p elf32_arm_object_p
20462 #define elf_backend_fake_sections elf32_arm_fake_sections
20463 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20464 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20465 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
20466 #define elf_backend_size_info elf32_arm_size_info
20467 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20468 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20469 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
20470 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
20471 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
20472 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
20473 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
20474 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
20475
20476 #define elf_backend_can_refcount 1
20477 #define elf_backend_can_gc_sections 1
20478 #define elf_backend_plt_readonly 1
20479 #define elf_backend_want_got_plt 1
20480 #define elf_backend_want_plt_sym 0
20481 #define elf_backend_want_dynrelro 1
20482 #define elf_backend_may_use_rel_p 1
20483 #define elf_backend_may_use_rela_p 0
20484 #define elf_backend_default_use_rela_p 0
20485 #define elf_backend_dtrel_excludes_plt 1
20486
20487 #define elf_backend_got_header_size 12
20488 #define elf_backend_extern_protected_data 1
20489
20490 #undef elf_backend_obj_attrs_vendor
20491 #define elf_backend_obj_attrs_vendor "aeabi"
20492 #undef elf_backend_obj_attrs_section
20493 #define elf_backend_obj_attrs_section ".ARM.attributes"
20494 #undef elf_backend_obj_attrs_arg_type
20495 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
20496 #undef elf_backend_obj_attrs_section_type
20497 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
20498 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
20499 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
20500
20501 #undef elf_backend_section_flags
20502 #define elf_backend_section_flags elf32_arm_section_flags
20503 #undef elf_backend_lookup_section_flags_hook
20504 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
20505
20506 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
20507
20508 #include "elf32-target.h"
20509
20510 /* Native Client targets. */
20511
20512 #undef TARGET_LITTLE_SYM
20513 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
20514 #undef TARGET_LITTLE_NAME
20515 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20516 #undef TARGET_BIG_SYM
20517 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
20518 #undef TARGET_BIG_NAME
20519 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
20520
20521 /* Like elf32_arm_link_hash_table_create -- but overrides
20522 appropriately for NaCl. */
20523
20524 static struct bfd_link_hash_table *
20525 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
20526 {
20527 struct bfd_link_hash_table *ret;
20528
20529 ret = elf32_arm_link_hash_table_create (abfd);
20530 if (ret)
20531 {
20532 struct elf32_arm_link_hash_table *htab
20533 = (struct elf32_arm_link_hash_table *) ret;
20534
20535 htab->nacl_p = 1;
20536
20537 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
20538 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
20539 }
20540 return ret;
20541 }
20542
20543 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
20544 really need to use elf32_arm_modify_segment_map. But we do it
20545 anyway just to reduce gratuitous differences with the stock ARM backend. */
20546
20547 static bfd_boolean
20548 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
20549 {
20550 return (elf32_arm_modify_segment_map (abfd, info)
20551 && nacl_modify_segment_map (abfd, info));
20552 }
20553
20554 static void
20555 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
20556 {
20557 elf32_arm_final_write_processing (abfd, linker);
20558 nacl_final_write_processing (abfd, linker);
20559 }
20560
20561 static bfd_vma
20562 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
20563 const arelent *rel ATTRIBUTE_UNUSED)
20564 {
20565 return plt->vma
20566 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
20567 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
20568 }
20569
20570 #undef elf32_bed
20571 #define elf32_bed elf32_arm_nacl_bed
20572 #undef bfd_elf32_bfd_link_hash_table_create
20573 #define bfd_elf32_bfd_link_hash_table_create \
20574 elf32_arm_nacl_link_hash_table_create
20575 #undef elf_backend_plt_alignment
20576 #define elf_backend_plt_alignment 4
20577 #undef elf_backend_modify_segment_map
20578 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
20579 #undef elf_backend_modify_program_headers
20580 #define elf_backend_modify_program_headers nacl_modify_program_headers
20581 #undef elf_backend_final_write_processing
20582 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
20583 #undef bfd_elf32_get_synthetic_symtab
20584 #undef elf_backend_plt_sym_val
20585 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
20586 #undef elf_backend_copy_special_section_fields
20587
20588 #undef ELF_MINPAGESIZE
20589 #undef ELF_COMMONPAGESIZE
20590
20591
20592 #include "elf32-target.h"
20593
20594 /* Reset to defaults. */
20595 #undef elf_backend_plt_alignment
20596 #undef elf_backend_modify_segment_map
20597 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20598 #undef elf_backend_modify_program_headers
20599 #undef elf_backend_final_write_processing
20600 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20601 #undef ELF_MINPAGESIZE
20602 #define ELF_MINPAGESIZE 0x1000
20603 #undef ELF_COMMONPAGESIZE
20604 #define ELF_COMMONPAGESIZE 0x1000
20605
20606
20607 /* FDPIC Targets. */
20608
20609 #undef TARGET_LITTLE_SYM
20610 #define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20611 #undef TARGET_LITTLE_NAME
20612 #define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20613 #undef TARGET_BIG_SYM
20614 #define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20615 #undef TARGET_BIG_NAME
20616 #define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20617 #undef elf_match_priority
20618 #define elf_match_priority 128
20619 #undef ELF_OSABI
20620 #define ELF_OSABI ELFOSABI_ARM_FDPIC
20621
20622 /* Like elf32_arm_link_hash_table_create -- but overrides
20623 appropriately for FDPIC. */
20624
20625 static struct bfd_link_hash_table *
20626 elf32_arm_fdpic_link_hash_table_create (bfd *abfd)
20627 {
20628 struct bfd_link_hash_table *ret;
20629
20630 ret = elf32_arm_link_hash_table_create (abfd);
20631 if (ret)
20632 {
20633 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret;
20634
20635 htab->fdpic_p = 1;
20636 }
20637 return ret;
20638 }
20639
20640 /* We need dynamic symbols for every section, since segments can
20641 relocate independently. */
20642 static bfd_boolean
20643 elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
20644 struct bfd_link_info *info
20645 ATTRIBUTE_UNUSED,
20646 asection *p ATTRIBUTE_UNUSED)
20647 {
20648 switch (elf_section_data (p)->this_hdr.sh_type)
20649 {
20650 case SHT_PROGBITS:
20651 case SHT_NOBITS:
20652 /* If sh_type is yet undecided, assume it could be
20653 SHT_PROGBITS/SHT_NOBITS. */
20654 case SHT_NULL:
20655 return FALSE;
20656
20657 /* There shouldn't be section relative relocations
20658 against any other section. */
20659 default:
20660 return TRUE;
20661 }
20662 }
20663
20664 #undef elf32_bed
20665 #define elf32_bed elf32_arm_fdpic_bed
20666
20667 #undef bfd_elf32_bfd_link_hash_table_create
20668 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
20669
20670 #undef elf_backend_omit_section_dynsym
20671 #define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20672
20673 #include "elf32-target.h"
20674
20675 #undef elf_match_priority
20676 #undef ELF_OSABI
20677 #undef elf_backend_omit_section_dynsym
20678
20679 /* VxWorks Targets. */
20680
20681 #undef TARGET_LITTLE_SYM
20682 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20683 #undef TARGET_LITTLE_NAME
20684 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20685 #undef TARGET_BIG_SYM
20686 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20687 #undef TARGET_BIG_NAME
20688 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
20689
20690 /* Like elf32_arm_link_hash_table_create -- but overrides
20691 appropriately for VxWorks. */
20692
20693 static struct bfd_link_hash_table *
20694 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
20695 {
20696 struct bfd_link_hash_table *ret;
20697
20698 ret = elf32_arm_link_hash_table_create (abfd);
20699 if (ret)
20700 {
20701 struct elf32_arm_link_hash_table *htab
20702 = (struct elf32_arm_link_hash_table *) ret;
20703 htab->use_rel = 0;
20704 htab->vxworks_p = 1;
20705 }
20706 return ret;
20707 }
20708
20709 static void
20710 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
20711 {
20712 elf32_arm_final_write_processing (abfd, linker);
20713 elf_vxworks_final_write_processing (abfd, linker);
20714 }
20715
20716 #undef elf32_bed
20717 #define elf32_bed elf32_arm_vxworks_bed
20718
20719 #undef bfd_elf32_bfd_link_hash_table_create
20720 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
20721 #undef elf_backend_final_write_processing
20722 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20723 #undef elf_backend_emit_relocs
20724 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
20725
20726 #undef elf_backend_may_use_rel_p
20727 #define elf_backend_may_use_rel_p 0
20728 #undef elf_backend_may_use_rela_p
20729 #define elf_backend_may_use_rela_p 1
20730 #undef elf_backend_default_use_rela_p
20731 #define elf_backend_default_use_rela_p 1
20732 #undef elf_backend_want_plt_sym
20733 #define elf_backend_want_plt_sym 1
20734 #undef ELF_MAXPAGESIZE
20735 #define ELF_MAXPAGESIZE 0x1000
20736
20737 #include "elf32-target.h"
20738
20739
20740 /* Merge backend specific data from an object file to the output
20741 object file when linking. */
20742
20743 static bfd_boolean
20744 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
20745 {
20746 bfd *obfd = info->output_bfd;
20747 flagword out_flags;
20748 flagword in_flags;
20749 bfd_boolean flags_compatible = TRUE;
20750 asection *sec;
20751
20752 /* Check if we have the same endianness. */
20753 if (! _bfd_generic_verify_endian_match (ibfd, info))
20754 return FALSE;
20755
20756 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
20757 return TRUE;
20758
20759 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
20760 return FALSE;
20761
20762 /* The input BFD must have had its flags initialised. */
20763 /* The following seems bogus to me -- The flags are initialized in
20764 the assembler but I don't think an elf_flags_init field is
20765 written into the object. */
20766 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20767
20768 in_flags = elf_elfheader (ibfd)->e_flags;
20769 out_flags = elf_elfheader (obfd)->e_flags;
20770
20771 /* In theory there is no reason why we couldn't handle this. However
20772 in practice it isn't even close to working and there is no real
20773 reason to want it. */
20774 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
20775 && !(ibfd->flags & DYNAMIC)
20776 && (in_flags & EF_ARM_BE8))
20777 {
20778 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
20779 ibfd);
20780 return FALSE;
20781 }
20782
20783 if (!elf_flags_init (obfd))
20784 {
20785 /* If the input is the default architecture and had the default
20786 flags then do not bother setting the flags for the output
20787 architecture, instead allow future merges to do this. If no
20788 future merges ever set these flags then they will retain their
20789 uninitialised values, which surprise surprise, correspond
20790 to the default values. */
20791 if (bfd_get_arch_info (ibfd)->the_default
20792 && elf_elfheader (ibfd)->e_flags == 0)
20793 return TRUE;
20794
20795 elf_flags_init (obfd) = TRUE;
20796 elf_elfheader (obfd)->e_flags = in_flags;
20797
20798 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
20799 && bfd_get_arch_info (obfd)->the_default)
20800 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
20801
20802 return TRUE;
20803 }
20804
20805 /* Determine what should happen if the input ARM architecture
20806 does not match the output ARM architecture. */
20807 if (! bfd_arm_merge_machines (ibfd, obfd))
20808 return FALSE;
20809
20810 /* Identical flags must be compatible. */
20811 if (in_flags == out_flags)
20812 return TRUE;
20813
20814 /* Check to see if the input BFD actually contains any sections. If
20815 not, its flags may not have been initialised either, but it
20816 cannot actually cause any incompatiblity. Do not short-circuit
20817 dynamic objects; their section list may be emptied by
20818 elf_link_add_object_symbols.
20819
20820 Also check to see if there are no code sections in the input.
20821 In this case there is no need to check for code specific flags.
20822 XXX - do we need to worry about floating-point format compatability
20823 in data sections ? */
20824 if (!(ibfd->flags & DYNAMIC))
20825 {
20826 bfd_boolean null_input_bfd = TRUE;
20827 bfd_boolean only_data_sections = TRUE;
20828
20829 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
20830 {
20831 /* Ignore synthetic glue sections. */
20832 if (strcmp (sec->name, ".glue_7")
20833 && strcmp (sec->name, ".glue_7t"))
20834 {
20835 if ((bfd_get_section_flags (ibfd, sec)
20836 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20837 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20838 only_data_sections = FALSE;
20839
20840 null_input_bfd = FALSE;
20841 break;
20842 }
20843 }
20844
20845 if (null_input_bfd || only_data_sections)
20846 return TRUE;
20847 }
20848
20849 /* Complain about various flag mismatches. */
20850 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
20851 EF_ARM_EABI_VERSION (out_flags)))
20852 {
20853 _bfd_error_handler
20854 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
20855 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
20856 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
20857 return FALSE;
20858 }
20859
20860 /* Not sure what needs to be checked for EABI versions >= 1. */
20861 /* VxWorks libraries do not use these flags. */
20862 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
20863 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
20864 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
20865 {
20866 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
20867 {
20868 _bfd_error_handler
20869 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
20870 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
20871 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
20872 flags_compatible = FALSE;
20873 }
20874
20875 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
20876 {
20877 if (in_flags & EF_ARM_APCS_FLOAT)
20878 _bfd_error_handler
20879 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
20880 ibfd, obfd);
20881 else
20882 _bfd_error_handler
20883 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
20884 ibfd, obfd);
20885
20886 flags_compatible = FALSE;
20887 }
20888
20889 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
20890 {
20891 if (in_flags & EF_ARM_VFP_FLOAT)
20892 _bfd_error_handler
20893 (_("error: %pB uses %s instructions, whereas %pB does not"),
20894 ibfd, "VFP", obfd);
20895 else
20896 _bfd_error_handler
20897 (_("error: %pB uses %s instructions, whereas %pB does not"),
20898 ibfd, "FPA", obfd);
20899
20900 flags_compatible = FALSE;
20901 }
20902
20903 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
20904 {
20905 if (in_flags & EF_ARM_MAVERICK_FLOAT)
20906 _bfd_error_handler
20907 (_("error: %pB uses %s instructions, whereas %pB does not"),
20908 ibfd, "Maverick", obfd);
20909 else
20910 _bfd_error_handler
20911 (_("error: %pB does not use %s instructions, whereas %pB does"),
20912 ibfd, "Maverick", obfd);
20913
20914 flags_compatible = FALSE;
20915 }
20916
20917 #ifdef EF_ARM_SOFT_FLOAT
20918 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
20919 {
20920 /* We can allow interworking between code that is VFP format
20921 layout, and uses either soft float or integer regs for
20922 passing floating point arguments and results. We already
20923 know that the APCS_FLOAT flags match; similarly for VFP
20924 flags. */
20925 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
20926 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
20927 {
20928 if (in_flags & EF_ARM_SOFT_FLOAT)
20929 _bfd_error_handler
20930 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
20931 ibfd, obfd);
20932 else
20933 _bfd_error_handler
20934 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
20935 ibfd, obfd);
20936
20937 flags_compatible = FALSE;
20938 }
20939 }
20940 #endif
20941
20942 /* Interworking mismatch is only a warning. */
20943 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
20944 {
20945 if (in_flags & EF_ARM_INTERWORK)
20946 {
20947 _bfd_error_handler
20948 (_("warning: %pB supports interworking, whereas %pB does not"),
20949 ibfd, obfd);
20950 }
20951 else
20952 {
20953 _bfd_error_handler
20954 (_("warning: %pB does not support interworking, whereas %pB does"),
20955 ibfd, obfd);
20956 }
20957 }
20958 }
20959
20960 return flags_compatible;
20961 }
20962
20963
20964 /* Symbian OS Targets. */
20965
20966 #undef TARGET_LITTLE_SYM
20967 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
20968 #undef TARGET_LITTLE_NAME
20969 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
20970 #undef TARGET_BIG_SYM
20971 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
20972 #undef TARGET_BIG_NAME
20973 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
20974
20975 /* Like elf32_arm_link_hash_table_create -- but overrides
20976 appropriately for Symbian OS. */
20977
20978 static struct bfd_link_hash_table *
20979 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
20980 {
20981 struct bfd_link_hash_table *ret;
20982
20983 ret = elf32_arm_link_hash_table_create (abfd);
20984 if (ret)
20985 {
20986 struct elf32_arm_link_hash_table *htab
20987 = (struct elf32_arm_link_hash_table *)ret;
20988 /* There is no PLT header for Symbian OS. */
20989 htab->plt_header_size = 0;
20990 /* The PLT entries are each one instruction and one word. */
20991 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
20992 htab->symbian_p = 1;
20993 /* Symbian uses armv5t or above, so use_blx is always true. */
20994 htab->use_blx = 1;
20995 htab->root.is_relocatable_executable = 1;
20996 }
20997 return ret;
20998 }
20999
21000 static const struct bfd_elf_special_section
21001 elf32_arm_symbian_special_sections[] =
21002 {
21003 /* In a BPABI executable, the dynamic linking sections do not go in
21004 the loadable read-only segment. The post-linker may wish to
21005 refer to these sections, but they are not part of the final
21006 program image. */
21007 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
21008 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
21009 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
21010 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
21011 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
21012 /* These sections do not need to be writable as the SymbianOS
21013 postlinker will arrange things so that no dynamic relocation is
21014 required. */
21015 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
21016 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
21017 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
21018 { NULL, 0, 0, 0, 0 }
21019 };
21020
21021 static void
21022 elf32_arm_symbian_begin_write_processing (bfd *abfd,
21023 struct bfd_link_info *link_info)
21024 {
21025 /* BPABI objects are never loaded directly by an OS kernel; they are
21026 processed by a postlinker first, into an OS-specific format. If
21027 the D_PAGED bit is set on the file, BFD will align segments on
21028 page boundaries, so that an OS can directly map the file. With
21029 BPABI objects, that just results in wasted space. In addition,
21030 because we clear the D_PAGED bit, map_sections_to_segments will
21031 recognize that the program headers should not be mapped into any
21032 loadable segment. */
21033 abfd->flags &= ~D_PAGED;
21034 elf32_arm_begin_write_processing (abfd, link_info);
21035 }
21036
21037 static bfd_boolean
21038 elf32_arm_symbian_modify_segment_map (bfd *abfd,
21039 struct bfd_link_info *info)
21040 {
21041 struct elf_segment_map *m;
21042 asection *dynsec;
21043
21044 /* BPABI shared libraries and executables should have a PT_DYNAMIC
21045 segment. However, because the .dynamic section is not marked
21046 with SEC_LOAD, the generic ELF code will not create such a
21047 segment. */
21048 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
21049 if (dynsec)
21050 {
21051 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
21052 if (m->p_type == PT_DYNAMIC)
21053 break;
21054
21055 if (m == NULL)
21056 {
21057 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
21058 m->next = elf_seg_map (abfd);
21059 elf_seg_map (abfd) = m;
21060 }
21061 }
21062
21063 /* Also call the generic arm routine. */
21064 return elf32_arm_modify_segment_map (abfd, info);
21065 }
21066
21067 /* Return address for Ith PLT stub in section PLT, for relocation REL
21068 or (bfd_vma) -1 if it should not be included. */
21069
21070 static bfd_vma
21071 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
21072 const arelent *rel ATTRIBUTE_UNUSED)
21073 {
21074 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
21075 }
21076
21077 #undef elf32_bed
21078 #define elf32_bed elf32_arm_symbian_bed
21079
21080 /* The dynamic sections are not allocated on SymbianOS; the postlinker
21081 will process them and then discard them. */
21082 #undef ELF_DYNAMIC_SEC_FLAGS
21083 #define ELF_DYNAMIC_SEC_FLAGS \
21084 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
21085
21086 #undef elf_backend_emit_relocs
21087
21088 #undef bfd_elf32_bfd_link_hash_table_create
21089 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
21090 #undef elf_backend_special_sections
21091 #define elf_backend_special_sections elf32_arm_symbian_special_sections
21092 #undef elf_backend_begin_write_processing
21093 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
21094 #undef elf_backend_final_write_processing
21095 #define elf_backend_final_write_processing elf32_arm_final_write_processing
21096
21097 #undef elf_backend_modify_segment_map
21098 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
21099
21100 /* There is no .got section for BPABI objects, and hence no header. */
21101 #undef elf_backend_got_header_size
21102 #define elf_backend_got_header_size 0
21103
21104 /* Similarly, there is no .got.plt section. */
21105 #undef elf_backend_want_got_plt
21106 #define elf_backend_want_got_plt 0
21107
21108 #undef elf_backend_plt_sym_val
21109 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
21110
21111 #undef elf_backend_may_use_rel_p
21112 #define elf_backend_may_use_rel_p 1
21113 #undef elf_backend_may_use_rela_p
21114 #define elf_backend_may_use_rela_p 0
21115 #undef elf_backend_default_use_rela_p
21116 #define elf_backend_default_use_rela_p 0
21117 #undef elf_backend_want_plt_sym
21118 #define elf_backend_want_plt_sym 0
21119 #undef elf_backend_dtrel_excludes_plt
21120 #define elf_backend_dtrel_excludes_plt 0
21121 #undef ELF_MAXPAGESIZE
21122 #define ELF_MAXPAGESIZE 0x8000
21123
21124 #include "elf32-target.h"
This page took 0.690538 seconds and 4 git commands to generate.