* elflink.c (is_reloc_section): New function. Returns true if the
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
34
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
38 ((HTAB)->use_rel \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
41
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
45 ((HTAB)->use_rel \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
48
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
52 ((HTAB)->use_rel \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
55
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
58
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
61
62 static struct elf_backend_data elf32_arm_vxworks_bed;
63
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
66 in that slot. */
67
68 static reloc_howto_type elf32_arm_howto_table_1[] =
69 {
70 /* No relocation. */
71 HOWTO (R_ARM_NONE, /* type */
72 0, /* rightshift */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
74 0, /* bitsize */
75 FALSE, /* pc_relative */
76 0, /* bitpos */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
81 0, /* src_mask */
82 0, /* dst_mask */
83 FALSE), /* pcrel_offset */
84
85 HOWTO (R_ARM_PC24, /* type */
86 2, /* rightshift */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
88 24, /* bitsize */
89 TRUE, /* pc_relative */
90 0, /* bitpos */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
98
99 /* 32 bit absolute */
100 HOWTO (R_ARM_ABS32, /* type */
101 0, /* rightshift */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
103 32, /* bitsize */
104 FALSE, /* pc_relative */
105 0, /* bitpos */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
113
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
116 0, /* rightshift */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
118 32, /* bitsize */
119 TRUE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
128
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0, /* type */
131 0, /* rightshift */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 TRUE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_dont,/* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
143
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
146 0, /* rightshift */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
148 16, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 12, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_ARM_THM_ABS5, /* type */
175 6, /* rightshift */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
177 5, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 /* 8 bit absolute */
189 HOWTO (R_ARM_ABS8, /* type */
190 0, /* rightshift */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
192 8, /* bitsize */
193 FALSE, /* pc_relative */
194 0, /* bitpos */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
202
203 HOWTO (R_ARM_SBREL32, /* type */
204 0, /* rightshift */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
206 32, /* bitsize */
207 FALSE, /* pc_relative */
208 0, /* bitpos */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
216
217 HOWTO (R_ARM_THM_CALL, /* type */
218 1, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 25, /* bitsize */
221 TRUE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
230
231 HOWTO (R_ARM_THM_PC8, /* type */
232 1, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 8, /* bitsize */
235 TRUE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
244
245 HOWTO (R_ARM_BREL_ADJ, /* type */
246 1, /* rightshift */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 HOWTO (R_ARM_SWI24, /* type */
260 0, /* rightshift */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 HOWTO (R_ARM_THM_SWI8, /* type */
274 0, /* rightshift */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
276 0, /* bitsize */
277 FALSE, /* pc_relative */
278 0, /* bitpos */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
286
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
289 2, /* rightshift */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
291 25, /* bitsize */
292 TRUE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
301
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
304 2, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 22, /* bitsize */
307 TRUE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
316
317 /* Dynamic TLS relocations. */
318
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* Relocs used in ARM Linux */
362
363 HOWTO (R_ARM_COPY, /* type */
364 0, /* rightshift */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
366 32, /* bitsize */
367 FALSE, /* pc_relative */
368 0, /* bitpos */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376
377 HOWTO (R_ARM_GLOB_DAT, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 FALSE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
390
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
392 0, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 32, /* bitsize */
395 FALSE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
404
405 HOWTO (R_ARM_RELATIVE, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 32, /* bitsize */
409 FALSE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418
419 HOWTO (R_ARM_GOTOFF32, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 32, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432
433 HOWTO (R_ARM_GOTPC, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 HOWTO (R_ARM_GOT32, /* type */
448 0, /* rightshift */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
450 32, /* bitsize */
451 FALSE, /* pc_relative */
452 0, /* bitpos */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
460
461 HOWTO (R_ARM_PLT32, /* type */
462 2, /* rightshift */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
464 24, /* bitsize */
465 TRUE, /* pc_relative */
466 0, /* bitpos */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
474
475 HOWTO (R_ARM_CALL, /* type */
476 2, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 24, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 HOWTO (R_ARM_JUMP24, /* type */
490 2, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 24, /* bitsize */
493 TRUE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
502
503 HOWTO (R_ARM_THM_JUMP24, /* type */
504 1, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 24, /* bitsize */
507 TRUE, /* pc_relative */
508 0, /* bitpos */
509 complain_overflow_signed,/* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
516
517 HOWTO (R_ARM_BASE_ABS, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 12, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 12, /* bitsize */
549 TRUE, /* pc_relative */
550 8, /* bitpos */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
560 0, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 12, /* bitsize */
563 TRUE, /* pc_relative */
564 16, /* bitpos */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
572
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 12, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 8, /* bitsize */
591 FALSE, /* pc_relative */
592 12, /* bitpos */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
600
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 8, /* bitsize */
605 FALSE, /* pc_relative */
606 20, /* bitpos */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 HOWTO (R_ARM_TARGET1, /* type */
616 0, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 32, /* bitsize */
619 FALSE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
628
629 HOWTO (R_ARM_ROSEGREL32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 HOWTO (R_ARM_V4BX, /* type */
644 0, /* rightshift */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
646 32, /* bitsize */
647 FALSE, /* pc_relative */
648 0, /* bitpos */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
656
657 HOWTO (R_ARM_TARGET2, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
670
671 HOWTO (R_ARM_PREL31, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 31, /* bitsize */
675 TRUE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
684
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 HOWTO (R_ARM_MOVT_ABS, /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
714 0, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 HOWTO (R_ARM_MOVT_PREL, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 TRUE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE), /* pcrel_offset */
740
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
742 0, /* rightshift */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 FALSE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
768
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 TRUE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
796
797 HOWTO (R_ARM_THM_JUMP19, /* type */
798 1, /* rightshift */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
800 19, /* bitsize */
801 TRUE, /* pc_relative */
802 0, /* bitpos */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
810
811 HOWTO (R_ARM_THM_JUMP6, /* type */
812 1, /* rightshift */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
814 6, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
827 versa. */
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
829 0, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 13, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont,/* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 HOWTO (R_ARM_THM_PC12, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 13, /* bitsize */
846 TRUE, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont,/* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE), /* pcrel_offset */
855
856 HOWTO (R_ARM_ABS32_NOI, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 FALSE, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
869
870 HOWTO (R_ARM_REL32_NOI, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 TRUE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* Group relocations. */
885
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
887 0, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 32, /* bitsize */
890 TRUE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
899
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
901 0, /* rightshift */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
903 32, /* bitsize */
904 TRUE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
913
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
915 0, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 32, /* bitsize */
918 TRUE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
927
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
929 0, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 TRUE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
941
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
943 0, /* rightshift */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
945 32, /* bitsize */
946 TRUE, /* pc_relative */
947 0, /* bitpos */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
955
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 32, /* bitsize */
960 TRUE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
969
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 32, /* bitsize */
974 TRUE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
983
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 32, /* bitsize */
988 TRUE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
997
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
999 0, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 32, /* bitsize */
1002 TRUE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1011
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 32, /* bitsize */
1016 TRUE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1025
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 TRUE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1039
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1041 0, /* rightshift */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1043 32, /* bitsize */
1044 TRUE, /* pc_relative */
1045 0, /* bitpos */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1053
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1055 0, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 32, /* bitsize */
1058 TRUE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1067
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1069 0, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 32, /* bitsize */
1072 TRUE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1081
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1083 0, /* rightshift */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1085 32, /* bitsize */
1086 TRUE, /* pc_relative */
1087 0, /* bitpos */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1095
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1097 0, /* rightshift */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1099 32, /* bitsize */
1100 TRUE, /* pc_relative */
1101 0, /* bitpos */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1109
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1111 0, /* rightshift */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 32, /* bitsize */
1114 TRUE, /* pc_relative */
1115 0, /* bitpos */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1123
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1125 0, /* rightshift */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1127 32, /* bitsize */
1128 TRUE, /* pc_relative */
1129 0, /* bitpos */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1137
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1139 0, /* rightshift */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 32, /* bitsize */
1142 TRUE, /* pc_relative */
1143 0, /* bitpos */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1151
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 32, /* bitsize */
1156 TRUE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1165
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1167 0, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 32, /* bitsize */
1170 TRUE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1179
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 32, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 32, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 32, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 32, /* bitsize */
1226 TRUE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1235
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 32, /* bitsize */
1240 TRUE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1249
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 32, /* bitsize */
1254 TRUE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1263
1264 /* End of group relocations. */
1265
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1267 0, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 16, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 16, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1309 0, /* rightshift */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1311 16, /* bitsize */
1312 FALSE, /* pc_relative */
1313 0, /* bitpos */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1321
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1323 0, /* rightshift */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1325 16, /* bitsize */
1326 FALSE, /* pc_relative */
1327 0, /* bitpos */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1335
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
1350 EMPTY_HOWTO (90), /* Unallocated. */
1351 EMPTY_HOWTO (91),
1352 EMPTY_HOWTO (92),
1353 EMPTY_HOWTO (93),
1354
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 32, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 32, /* bitsize */
1387 TRUE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 12, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 12, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1426
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 0, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1438 0, /* src_mask */
1439 0, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 0, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1453 0, /* src_mask */
1454 0, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1458 1, /* rightshift */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1460 11, /* bitsize */
1461 TRUE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1472 1, /* rightshift */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1474 8, /* bitsize */
1475 TRUE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
1484
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 32, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_bitfield,/* complain_on_overflow */
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1499
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 32, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 HOWTO (R_ARM_TLS_LDO32, /* type */
1515 0, /* rightshift */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 32, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1529 0, /* rightshift */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1531 32, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 HOWTO (R_ARM_TLS_LE32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 12, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 12, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 12, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 bfd_elf_generic_reloc, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597 };
1598
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1602
1603 249-255 extended, currently unused, relocations: */
1604
1605 static reloc_howto_type elf32_arm_howto_table_2[4] =
1606 {
1607 HOWTO (R_ARM_RREL32, /* type */
1608 0, /* rightshift */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1610 0, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 HOWTO (R_ARM_RABS32, /* type */
1622 0, /* rightshift */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1624 0, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 HOWTO (R_ARM_RPC24, /* type */
1636 0, /* rightshift */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1638 0, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 HOWTO (R_ARM_RBASE, /* type */
1650 0, /* rightshift */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1652 0, /* bitsize */
1653 FALSE, /* pc_relative */
1654 0, /* bitpos */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1659 0, /* src_mask */
1660 0, /* dst_mask */
1661 FALSE) /* pcrel_offset */
1662 };
1663
1664 static reloc_howto_type *
1665 elf32_arm_howto_from_type (unsigned int r_type)
1666 {
1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1668 return &elf32_arm_howto_table_1[r_type];
1669
1670 if (r_type >= R_ARM_RREL32
1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1673
1674 return NULL;
1675 }
1676
1677 static void
1678 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1680 {
1681 unsigned int r_type;
1682
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1685 }
1686
1687 struct elf32_arm_reloc_map
1688 {
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1691 };
1692
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1695 {
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1774 };
1775
1776 static reloc_howto_type *
1777 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
1779 {
1780 unsigned int i;
1781
1782 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1783 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1784 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1785
1786 return NULL;
1787 }
1788
1789 static reloc_howto_type *
1790 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1791 const char *r_name)
1792 {
1793 unsigned int i;
1794
1795 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1796 if (elf32_arm_howto_table_1[i].name != NULL
1797 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1798 return &elf32_arm_howto_table_1[i];
1799
1800 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1801 if (elf32_arm_howto_table_2[i].name != NULL
1802 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1803 return &elf32_arm_howto_table_2[i];
1804
1805 return NULL;
1806 }
1807
1808 /* Support for core dump NOTE sections. */
1809
1810 static bfd_boolean
1811 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1812 {
1813 int offset;
1814 size_t size;
1815
1816 switch (note->descsz)
1817 {
1818 default:
1819 return FALSE;
1820
1821 case 148: /* Linux/ARM 32-bit. */
1822 /* pr_cursig */
1823 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1824
1825 /* pr_pid */
1826 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1827
1828 /* pr_reg */
1829 offset = 72;
1830 size = 72;
1831
1832 break;
1833 }
1834
1835 /* Make a ".reg/999" section. */
1836 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1837 size, note->descpos + offset);
1838 }
1839
1840 static bfd_boolean
1841 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1842 {
1843 switch (note->descsz)
1844 {
1845 default:
1846 return FALSE;
1847
1848 case 124: /* Linux/ARM elf_prpsinfo. */
1849 elf_tdata (abfd)->core_program
1850 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1851 elf_tdata (abfd)->core_command
1852 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1853 }
1854
1855 /* Note that for some reason, a spurious space is tacked
1856 onto the end of the args in some (at least one anyway)
1857 implementations, so strip it off if it exists. */
1858 {
1859 char *command = elf_tdata (abfd)->core_command;
1860 int n = strlen (command);
1861
1862 if (0 < n && command[n - 1] == ' ')
1863 command[n - 1] = '\0';
1864 }
1865
1866 return TRUE;
1867 }
1868
1869 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1870 #define TARGET_LITTLE_NAME "elf32-littlearm"
1871 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1872 #define TARGET_BIG_NAME "elf32-bigarm"
1873
1874 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1875 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1876
1877 typedef unsigned long int insn32;
1878 typedef unsigned short int insn16;
1879
1880 /* In lieu of proper flags, assume all EABIv4 or later objects are
1881 interworkable. */
1882 #define INTERWORK_FLAG(abfd) \
1883 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1884 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1885
1886 /* The linker script knows the section names for placement.
1887 The entry_names are used to do simple name mangling on the stubs.
1888 Given a function name, and its type, the stub can be found. The
1889 name can be changed. The only requirement is the %s be present. */
1890 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1891 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1892
1893 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1894 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1895
1896 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1897 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1898
1899 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1900 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1901
1902 #define STUB_ENTRY_NAME "__%s_veneer"
1903
1904 /* The name of the dynamic interpreter. This is put in the .interp
1905 section. */
1906 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1907
1908 #ifdef FOUR_WORD_PLT
1909
1910 /* The first entry in a procedure linkage table looks like
1911 this. It is set up so that any shared library function that is
1912 called before the relocation has been set up calls the dynamic
1913 linker first. */
1914 static const bfd_vma elf32_arm_plt0_entry [] =
1915 {
1916 0xe52de004, /* str lr, [sp, #-4]! */
1917 0xe59fe010, /* ldr lr, [pc, #16] */
1918 0xe08fe00e, /* add lr, pc, lr */
1919 0xe5bef008, /* ldr pc, [lr, #8]! */
1920 };
1921
1922 /* Subsequent entries in a procedure linkage table look like
1923 this. */
1924 static const bfd_vma elf32_arm_plt_entry [] =
1925 {
1926 0xe28fc600, /* add ip, pc, #NN */
1927 0xe28cca00, /* add ip, ip, #NN */
1928 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1929 0x00000000, /* unused */
1930 };
1931
1932 #else
1933
1934 /* The first entry in a procedure linkage table looks like
1935 this. It is set up so that any shared library function that is
1936 called before the relocation has been set up calls the dynamic
1937 linker first. */
1938 static const bfd_vma elf32_arm_plt0_entry [] =
1939 {
1940 0xe52de004, /* str lr, [sp, #-4]! */
1941 0xe59fe004, /* ldr lr, [pc, #4] */
1942 0xe08fe00e, /* add lr, pc, lr */
1943 0xe5bef008, /* ldr pc, [lr, #8]! */
1944 0x00000000, /* &GOT[0] - . */
1945 };
1946
1947 /* Subsequent entries in a procedure linkage table look like
1948 this. */
1949 static const bfd_vma elf32_arm_plt_entry [] =
1950 {
1951 0xe28fc600, /* add ip, pc, #0xNN00000 */
1952 0xe28cca00, /* add ip, ip, #0xNN000 */
1953 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1954 };
1955
1956 #endif
1957
1958 /* The format of the first entry in the procedure linkage table
1959 for a VxWorks executable. */
1960 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1961 {
1962 0xe52dc008, /* str ip,[sp,#-8]! */
1963 0xe59fc000, /* ldr ip,[pc] */
1964 0xe59cf008, /* ldr pc,[ip,#8] */
1965 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1966 };
1967
1968 /* The format of subsequent entries in a VxWorks executable. */
1969 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1970 {
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf000, /* ldr pc,[ip] */
1973 0x00000000, /* .long @got */
1974 0xe59fc000, /* ldr ip,[pc] */
1975 0xea000000, /* b _PLT */
1976 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1977 };
1978
1979 /* The format of entries in a VxWorks shared library. */
1980 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1981 {
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe79cf009, /* ldr pc,[ip,r9] */
1984 0x00000000, /* .long @got */
1985 0xe59fc000, /* ldr ip,[pc] */
1986 0xe599f008, /* ldr pc,[r9,#8] */
1987 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1988 };
1989
1990 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1991 #define PLT_THUMB_STUB_SIZE 4
1992 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1993 {
1994 0x4778, /* bx pc */
1995 0x46c0 /* nop */
1996 };
1997
1998 /* The entries in a PLT when using a DLL-based target with multiple
1999 address spaces. */
2000 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2001 {
2002 0xe51ff004, /* ldr pc, [pc, #-4] */
2003 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2004 };
2005
2006 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2007 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2008 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2009 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2010 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2011 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2012
2013 static const bfd_vma arm_long_branch_stub[] =
2014 {
2015 0xe51ff004, /* ldr pc, [pc, #-4] */
2016 0x00000000, /* dcd R_ARM_ABS32(X) */
2017 };
2018
2019 static const bfd_vma arm_thumb_v4t_long_branch_stub[] =
2020 {
2021 0xe59fc000, /* ldr ip, [pc, #0] */
2022 0xe12fff1c, /* bx ip */
2023 0x00000000, /* dcd R_ARM_ABS32(X) */
2024 };
2025
2026 static const bfd_vma arm_thumb_thumb_long_branch_stub[] =
2027 {
2028 0x4e02b540, /* push {r6, lr} */
2029 /* ldr r6, [pc, #8] */
2030 0x473046fe, /* mov lr, pc */
2031 /* bx r6 */
2032 0xbf00bd40, /* pop {r6, pc} */
2033 /* nop */
2034 0x00000000, /* dcd R_ARM_ABS32(X) */
2035 };
2036
2037 static const bfd_vma arm_thumb_arm_v4t_long_branch_stub[] =
2038 {
2039 0x4e03b540, /* push {r6, lr} */
2040 /* ldr r6, [pc, #12] */
2041 0x473046fe, /* mov lr, pc */
2042 /* bx r6 */
2043 0xe8bd4040, /* pop {r6, pc} */
2044 0xe12fff1e, /* bx lr */
2045 0x00000000, /* dcd R_ARM_ABS32(X) */
2046 };
2047
2048 static const bfd_vma arm_thumb_arm_v4t_short_branch_stub[] =
2049 {
2050 0x46c04778, /* bx pc */
2051 /* nop */
2052 0xea000000, /* b (X) */
2053 };
2054
2055 static const bfd_vma arm_pic_long_branch_stub[] =
2056 {
2057 0xe59fc000, /* ldr r12, [pc] */
2058 0xe08ff00c, /* add pc, pc, ip */
2059 0x00000000, /* dcd R_ARM_REL32(X) */
2060 };
2061
2062 /* Section name for stubs is the associated section name plus this
2063 string. */
2064 #define STUB_SUFFIX ".stub"
2065
2066 enum elf32_arm_stub_type
2067 {
2068 arm_stub_none,
2069 arm_stub_long_branch,
2070 arm_thumb_v4t_stub_long_branch,
2071 arm_thumb_thumb_stub_long_branch,
2072 arm_thumb_arm_v4t_stub_long_branch,
2073 arm_thumb_arm_v4t_stub_short_branch,
2074 arm_stub_pic_long_branch,
2075 };
2076
2077 struct elf32_arm_stub_hash_entry
2078 {
2079 /* Base hash table entry structure. */
2080 struct bfd_hash_entry root;
2081
2082 /* The stub section. */
2083 asection *stub_sec;
2084
2085 /* Offset within stub_sec of the beginning of this stub. */
2086 bfd_vma stub_offset;
2087
2088 /* Given the symbol's value and its section we can determine its final
2089 value when building the stubs (so the stub knows where to jump). */
2090 bfd_vma target_value;
2091 asection *target_section;
2092
2093 enum elf32_arm_stub_type stub_type;
2094
2095 /* The symbol table entry, if any, that this was derived from. */
2096 struct elf32_arm_link_hash_entry *h;
2097
2098 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2099 unsigned char st_type;
2100
2101 /* Where this stub is being called from, or, in the case of combined
2102 stub sections, the first input section in the group. */
2103 asection *id_sec;
2104
2105 /* The name for the local symbol at the start of this stub. The
2106 stub name in the hash table has to be unique; this does not, so
2107 it can be friendlier. */
2108 char *output_name;
2109 };
2110
2111 /* Used to build a map of a section. This is required for mixed-endian
2112 code/data. */
2113
2114 typedef struct elf32_elf_section_map
2115 {
2116 bfd_vma vma;
2117 char type;
2118 }
2119 elf32_arm_section_map;
2120
2121 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2122
2123 typedef enum
2124 {
2125 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2126 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2127 VFP11_ERRATUM_ARM_VENEER,
2128 VFP11_ERRATUM_THUMB_VENEER
2129 }
2130 elf32_vfp11_erratum_type;
2131
2132 typedef struct elf32_vfp11_erratum_list
2133 {
2134 struct elf32_vfp11_erratum_list *next;
2135 bfd_vma vma;
2136 union
2137 {
2138 struct
2139 {
2140 struct elf32_vfp11_erratum_list *veneer;
2141 unsigned int vfp_insn;
2142 } b;
2143 struct
2144 {
2145 struct elf32_vfp11_erratum_list *branch;
2146 unsigned int id;
2147 } v;
2148 } u;
2149 elf32_vfp11_erratum_type type;
2150 }
2151 elf32_vfp11_erratum_list;
2152
2153 typedef struct _arm_elf_section_data
2154 {
2155 struct bfd_elf_section_data elf;
2156 unsigned int mapcount;
2157 unsigned int mapsize;
2158 elf32_arm_section_map *map;
2159 unsigned int erratumcount;
2160 elf32_vfp11_erratum_list *erratumlist;
2161 }
2162 _arm_elf_section_data;
2163
2164 #define elf32_arm_section_data(sec) \
2165 ((_arm_elf_section_data *) elf_section_data (sec))
2166
2167 /* The size of the thread control block. */
2168 #define TCB_SIZE 8
2169
2170 struct elf_arm_obj_tdata
2171 {
2172 struct elf_obj_tdata root;
2173
2174 /* tls_type for each local got entry. */
2175 char *local_got_tls_type;
2176
2177 /* Zero to warn when linking objects with incompatible enum sizes. */
2178 int no_enum_size_warning;
2179
2180 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2181 int no_wchar_size_warning;
2182 };
2183
2184 #define elf_arm_tdata(bfd) \
2185 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2186
2187 #define elf32_arm_local_got_tls_type(bfd) \
2188 (elf_arm_tdata (bfd)->local_got_tls_type)
2189
2190 #define is_arm_elf(bfd) \
2191 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2192 && elf_tdata (bfd) != NULL \
2193 && elf_object_id (bfd) == ARM_ELF_TDATA)
2194
2195 static bfd_boolean
2196 elf32_arm_mkobject (bfd *abfd)
2197 {
2198 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2199 ARM_ELF_TDATA);
2200 }
2201
2202 /* The ARM linker needs to keep track of the number of relocs that it
2203 decides to copy in check_relocs for each symbol. This is so that
2204 it can discard PC relative relocs if it doesn't need them when
2205 linking with -Bsymbolic. We store the information in a field
2206 extending the regular ELF linker hash table. */
2207
2208 /* This structure keeps track of the number of relocs we have copied
2209 for a given symbol. */
2210 struct elf32_arm_relocs_copied
2211 {
2212 /* Next section. */
2213 struct elf32_arm_relocs_copied * next;
2214 /* A section in dynobj. */
2215 asection * section;
2216 /* Number of relocs copied in this section. */
2217 bfd_size_type count;
2218 /* Number of PC-relative relocs copied in this section. */
2219 bfd_size_type pc_count;
2220 };
2221
2222 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2223
2224 /* Arm ELF linker hash entry. */
2225 struct elf32_arm_link_hash_entry
2226 {
2227 struct elf_link_hash_entry root;
2228
2229 /* Number of PC relative relocs copied for this symbol. */
2230 struct elf32_arm_relocs_copied * relocs_copied;
2231
2232 /* We reference count Thumb references to a PLT entry separately,
2233 so that we can emit the Thumb trampoline only if needed. */
2234 bfd_signed_vma plt_thumb_refcount;
2235
2236 /* Some references from Thumb code may be eliminated by BL->BLX
2237 conversion, so record them separately. */
2238 bfd_signed_vma plt_maybe_thumb_refcount;
2239
2240 /* Since PLT entries have variable size if the Thumb prologue is
2241 used, we need to record the index into .got.plt instead of
2242 recomputing it from the PLT offset. */
2243 bfd_signed_vma plt_got_offset;
2244
2245 #define GOT_UNKNOWN 0
2246 #define GOT_NORMAL 1
2247 #define GOT_TLS_GD 2
2248 #define GOT_TLS_IE 4
2249 unsigned char tls_type;
2250
2251 /* The symbol marking the real symbol location for exported thumb
2252 symbols with Arm stubs. */
2253 struct elf_link_hash_entry *export_glue;
2254
2255 /* A pointer to the most recently used stub hash entry against this
2256 symbol. */
2257 struct elf32_arm_stub_hash_entry *stub_cache;
2258 };
2259
2260 /* Traverse an arm ELF linker hash table. */
2261 #define elf32_arm_link_hash_traverse(table, func, info) \
2262 (elf_link_hash_traverse \
2263 (&(table)->root, \
2264 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2265 (info)))
2266
2267 /* Get the ARM elf linker hash table from a link_info structure. */
2268 #define elf32_arm_hash_table(info) \
2269 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2270
2271 #define arm_stub_hash_lookup(table, string, create, copy) \
2272 ((struct elf32_arm_stub_hash_entry *) \
2273 bfd_hash_lookup ((table), (string), (create), (copy)))
2274
2275 /* ARM ELF linker hash table. */
2276 struct elf32_arm_link_hash_table
2277 {
2278 /* The main hash table. */
2279 struct elf_link_hash_table root;
2280
2281 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2282 bfd_size_type thumb_glue_size;
2283
2284 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2285 bfd_size_type arm_glue_size;
2286
2287 /* The size in bytes of section containing the ARMv4 BX veneers. */
2288 bfd_size_type bx_glue_size;
2289
2290 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2291 veneer has been populated. */
2292 bfd_vma bx_glue_offset[15];
2293
2294 /* The size in bytes of the section containing glue for VFP11 erratum
2295 veneers. */
2296 bfd_size_type vfp11_erratum_glue_size;
2297
2298 /* An arbitrary input BFD chosen to hold the glue sections. */
2299 bfd * bfd_of_glue_owner;
2300
2301 /* Nonzero to output a BE8 image. */
2302 int byteswap_code;
2303
2304 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2305 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2306 int target1_is_rel;
2307
2308 /* The relocation to use for R_ARM_TARGET2 relocations. */
2309 int target2_reloc;
2310
2311 /* 0 = Ignore R_ARM_V4BX.
2312 1 = Convert BX to MOV PC.
2313 2 = Generate v4 interworing stubs. */
2314 int fix_v4bx;
2315
2316 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2317 int use_blx;
2318
2319 /* What sort of code sequences we should look for which may trigger the
2320 VFP11 denorm erratum. */
2321 bfd_arm_vfp11_fix vfp11_fix;
2322
2323 /* Global counter for the number of fixes we have emitted. */
2324 int num_vfp11_fixes;
2325
2326 /* Nonzero to force PIC branch veneers. */
2327 int pic_veneer;
2328
2329 /* The number of bytes in the initial entry in the PLT. */
2330 bfd_size_type plt_header_size;
2331
2332 /* The number of bytes in the subsequent PLT etries. */
2333 bfd_size_type plt_entry_size;
2334
2335 /* True if the target system is VxWorks. */
2336 int vxworks_p;
2337
2338 /* True if the target system is Symbian OS. */
2339 int symbian_p;
2340
2341 /* True if the target uses REL relocations. */
2342 int use_rel;
2343
2344 /* Short-cuts to get to dynamic linker sections. */
2345 asection *sgot;
2346 asection *sgotplt;
2347 asection *srelgot;
2348 asection *splt;
2349 asection *srelplt;
2350 asection *sdynbss;
2351 asection *srelbss;
2352
2353 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2354 asection *srelplt2;
2355
2356 /* Data for R_ARM_TLS_LDM32 relocations. */
2357 union
2358 {
2359 bfd_signed_vma refcount;
2360 bfd_vma offset;
2361 } tls_ldm_got;
2362
2363 /* Small local sym to section mapping cache. */
2364 struct sym_sec_cache sym_sec;
2365
2366 /* For convenience in allocate_dynrelocs. */
2367 bfd * obfd;
2368
2369 /* The stub hash table. */
2370 struct bfd_hash_table stub_hash_table;
2371
2372 /* Linker stub bfd. */
2373 bfd *stub_bfd;
2374
2375 /* Linker call-backs. */
2376 asection * (*add_stub_section) (const char *, asection *);
2377 void (*layout_sections_again) (void);
2378
2379 /* Array to keep track of which stub sections have been created, and
2380 information on stub grouping. */
2381 struct map_stub
2382 {
2383 /* This is the section to which stubs in the group will be
2384 attached. */
2385 asection *link_sec;
2386 /* The stub section. */
2387 asection *stub_sec;
2388 } *stub_group;
2389
2390 /* Assorted information used by elf32_arm_size_stubs. */
2391 unsigned int bfd_count;
2392 int top_index;
2393 asection **input_list;
2394 };
2395
2396 /* Create an entry in an ARM ELF linker hash table. */
2397
2398 static struct bfd_hash_entry *
2399 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2400 struct bfd_hash_table * table,
2401 const char * string)
2402 {
2403 struct elf32_arm_link_hash_entry * ret =
2404 (struct elf32_arm_link_hash_entry *) entry;
2405
2406 /* Allocate the structure if it has not already been allocated by a
2407 subclass. */
2408 if (ret == NULL)
2409 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2410 if (ret == NULL)
2411 return (struct bfd_hash_entry *) ret;
2412
2413 /* Call the allocation method of the superclass. */
2414 ret = ((struct elf32_arm_link_hash_entry *)
2415 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2416 table, string));
2417 if (ret != NULL)
2418 {
2419 ret->relocs_copied = NULL;
2420 ret->tls_type = GOT_UNKNOWN;
2421 ret->plt_thumb_refcount = 0;
2422 ret->plt_maybe_thumb_refcount = 0;
2423 ret->plt_got_offset = -1;
2424 ret->export_glue = NULL;
2425
2426 ret->stub_cache = NULL;
2427 }
2428
2429 return (struct bfd_hash_entry *) ret;
2430 }
2431
2432 /* Initialize an entry in the stub hash table. */
2433
2434 static struct bfd_hash_entry *
2435 stub_hash_newfunc (struct bfd_hash_entry *entry,
2436 struct bfd_hash_table *table,
2437 const char *string)
2438 {
2439 /* Allocate the structure if it has not already been allocated by a
2440 subclass. */
2441 if (entry == NULL)
2442 {
2443 entry = bfd_hash_allocate (table,
2444 sizeof (struct elf32_arm_stub_hash_entry));
2445 if (entry == NULL)
2446 return entry;
2447 }
2448
2449 /* Call the allocation method of the superclass. */
2450 entry = bfd_hash_newfunc (entry, table, string);
2451 if (entry != NULL)
2452 {
2453 struct elf32_arm_stub_hash_entry *eh;
2454
2455 /* Initialize the local fields. */
2456 eh = (struct elf32_arm_stub_hash_entry *) entry;
2457 eh->stub_sec = NULL;
2458 eh->stub_offset = 0;
2459 eh->target_value = 0;
2460 eh->target_section = NULL;
2461 eh->stub_type = arm_stub_none;
2462 eh->h = NULL;
2463 eh->id_sec = NULL;
2464 }
2465
2466 return entry;
2467 }
2468
2469 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2470 shortcuts to them in our hash table. */
2471
2472 static bfd_boolean
2473 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2474 {
2475 struct elf32_arm_link_hash_table *htab;
2476
2477 htab = elf32_arm_hash_table (info);
2478 /* BPABI objects never have a GOT, or associated sections. */
2479 if (htab->symbian_p)
2480 return TRUE;
2481
2482 if (! _bfd_elf_create_got_section (dynobj, info))
2483 return FALSE;
2484
2485 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2486 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2487 if (!htab->sgot || !htab->sgotplt)
2488 abort ();
2489
2490 htab->srelgot = bfd_make_section_with_flags (dynobj,
2491 RELOC_SECTION (htab, ".got"),
2492 (SEC_ALLOC | SEC_LOAD
2493 | SEC_HAS_CONTENTS
2494 | SEC_IN_MEMORY
2495 | SEC_LINKER_CREATED
2496 | SEC_READONLY));
2497 if (htab->srelgot == NULL
2498 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2499 return FALSE;
2500 return TRUE;
2501 }
2502
2503 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2504 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2505 hash table. */
2506
2507 static bfd_boolean
2508 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2509 {
2510 struct elf32_arm_link_hash_table *htab;
2511
2512 htab = elf32_arm_hash_table (info);
2513 if (!htab->sgot && !create_got_section (dynobj, info))
2514 return FALSE;
2515
2516 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2517 return FALSE;
2518
2519 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2520 htab->srelplt = bfd_get_section_by_name (dynobj,
2521 RELOC_SECTION (htab, ".plt"));
2522 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2523 if (!info->shared)
2524 htab->srelbss = bfd_get_section_by_name (dynobj,
2525 RELOC_SECTION (htab, ".bss"));
2526
2527 if (htab->vxworks_p)
2528 {
2529 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2530 return FALSE;
2531
2532 if (info->shared)
2533 {
2534 htab->plt_header_size = 0;
2535 htab->plt_entry_size
2536 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2537 }
2538 else
2539 {
2540 htab->plt_header_size
2541 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2542 htab->plt_entry_size
2543 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2544 }
2545 }
2546
2547 if (!htab->splt
2548 || !htab->srelplt
2549 || !htab->sdynbss
2550 || (!info->shared && !htab->srelbss))
2551 abort ();
2552
2553 return TRUE;
2554 }
2555
2556 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2557
2558 static void
2559 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2560 struct elf_link_hash_entry *dir,
2561 struct elf_link_hash_entry *ind)
2562 {
2563 struct elf32_arm_link_hash_entry *edir, *eind;
2564
2565 edir = (struct elf32_arm_link_hash_entry *) dir;
2566 eind = (struct elf32_arm_link_hash_entry *) ind;
2567
2568 if (eind->relocs_copied != NULL)
2569 {
2570 if (edir->relocs_copied != NULL)
2571 {
2572 struct elf32_arm_relocs_copied **pp;
2573 struct elf32_arm_relocs_copied *p;
2574
2575 /* Add reloc counts against the indirect sym to the direct sym
2576 list. Merge any entries against the same section. */
2577 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2578 {
2579 struct elf32_arm_relocs_copied *q;
2580
2581 for (q = edir->relocs_copied; q != NULL; q = q->next)
2582 if (q->section == p->section)
2583 {
2584 q->pc_count += p->pc_count;
2585 q->count += p->count;
2586 *pp = p->next;
2587 break;
2588 }
2589 if (q == NULL)
2590 pp = &p->next;
2591 }
2592 *pp = edir->relocs_copied;
2593 }
2594
2595 edir->relocs_copied = eind->relocs_copied;
2596 eind->relocs_copied = NULL;
2597 }
2598
2599 if (ind->root.type == bfd_link_hash_indirect)
2600 {
2601 /* Copy over PLT info. */
2602 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2603 eind->plt_thumb_refcount = 0;
2604 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2605 eind->plt_maybe_thumb_refcount = 0;
2606
2607 if (dir->got.refcount <= 0)
2608 {
2609 edir->tls_type = eind->tls_type;
2610 eind->tls_type = GOT_UNKNOWN;
2611 }
2612 }
2613
2614 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2615 }
2616
2617 /* Create an ARM elf linker hash table. */
2618
2619 static struct bfd_link_hash_table *
2620 elf32_arm_link_hash_table_create (bfd *abfd)
2621 {
2622 struct elf32_arm_link_hash_table *ret;
2623 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2624
2625 ret = bfd_malloc (amt);
2626 if (ret == NULL)
2627 return NULL;
2628
2629 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2630 elf32_arm_link_hash_newfunc,
2631 sizeof (struct elf32_arm_link_hash_entry)))
2632 {
2633 free (ret);
2634 return NULL;
2635 }
2636
2637 ret->sgot = NULL;
2638 ret->sgotplt = NULL;
2639 ret->srelgot = NULL;
2640 ret->splt = NULL;
2641 ret->srelplt = NULL;
2642 ret->sdynbss = NULL;
2643 ret->srelbss = NULL;
2644 ret->srelplt2 = NULL;
2645 ret->thumb_glue_size = 0;
2646 ret->arm_glue_size = 0;
2647 ret->bx_glue_size = 0;
2648 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2649 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2650 ret->vfp11_erratum_glue_size = 0;
2651 ret->num_vfp11_fixes = 0;
2652 ret->bfd_of_glue_owner = NULL;
2653 ret->byteswap_code = 0;
2654 ret->target1_is_rel = 0;
2655 ret->target2_reloc = R_ARM_NONE;
2656 #ifdef FOUR_WORD_PLT
2657 ret->plt_header_size = 16;
2658 ret->plt_entry_size = 16;
2659 #else
2660 ret->plt_header_size = 20;
2661 ret->plt_entry_size = 12;
2662 #endif
2663 ret->fix_v4bx = 0;
2664 ret->use_blx = 0;
2665 ret->vxworks_p = 0;
2666 ret->symbian_p = 0;
2667 ret->use_rel = 1;
2668 ret->sym_sec.abfd = NULL;
2669 ret->obfd = abfd;
2670 ret->tls_ldm_got.refcount = 0;
2671 ret->stub_bfd = NULL;
2672 ret->add_stub_section = NULL;
2673 ret->layout_sections_again = NULL;
2674 ret->stub_group = NULL;
2675 ret->bfd_count = 0;
2676 ret->top_index = 0;
2677 ret->input_list = NULL;
2678
2679 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2680 sizeof (struct elf32_arm_stub_hash_entry)))
2681 {
2682 free (ret);
2683 return NULL;
2684 }
2685
2686 return &ret->root.root;
2687 }
2688
2689 /* Free the derived linker hash table. */
2690
2691 static void
2692 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2693 {
2694 struct elf32_arm_link_hash_table *ret
2695 = (struct elf32_arm_link_hash_table *) hash;
2696
2697 bfd_hash_table_free (&ret->stub_hash_table);
2698 _bfd_generic_link_hash_table_free (hash);
2699 }
2700
2701 /* Determine if we're dealing with a Thumb only architecture. */
2702
2703 static bfd_boolean
2704 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2705 {
2706 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2707 Tag_CPU_arch);
2708 int profile;
2709
2710 if (arch != TAG_CPU_ARCH_V7)
2711 return FALSE;
2712
2713 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2714 Tag_CPU_arch_profile);
2715
2716 return profile == 'M';
2717 }
2718
2719 /* Determine if we're dealing with a Thumb-2 object. */
2720
2721 static bfd_boolean
2722 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2723 {
2724 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2725 Tag_CPU_arch);
2726 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2727 }
2728
2729 static bfd_boolean
2730 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
2731 {
2732 switch (stub_type)
2733 {
2734 case arm_thumb_thumb_stub_long_branch:
2735 case arm_thumb_arm_v4t_stub_long_branch:
2736 case arm_thumb_arm_v4t_stub_short_branch:
2737 return TRUE;
2738 case arm_stub_none:
2739 BFD_FAIL ();
2740 return FALSE;
2741 break;
2742 default:
2743 return FALSE;
2744 }
2745 }
2746
2747 /* Determine the type of stub needed, if any, for a call. */
2748
2749 static enum elf32_arm_stub_type
2750 arm_type_of_stub (struct bfd_link_info *info,
2751 asection *input_sec,
2752 const Elf_Internal_Rela *rel,
2753 unsigned char st_type,
2754 struct elf32_arm_link_hash_entry *hash,
2755 bfd_vma destination,
2756 asection *sym_sec,
2757 bfd *input_bfd,
2758 const char *name)
2759 {
2760 bfd_vma location;
2761 bfd_signed_vma branch_offset;
2762 unsigned int r_type;
2763 struct elf32_arm_link_hash_table * globals;
2764 int thumb2;
2765 int thumb_only;
2766 enum elf32_arm_stub_type stub_type = arm_stub_none;
2767
2768 /* We don't know the actual type of destination in case it is of
2769 type STT_SECTION: give up. */
2770 if (st_type == STT_SECTION)
2771 return stub_type;
2772
2773 globals = elf32_arm_hash_table (info);
2774
2775 thumb_only = using_thumb_only (globals);
2776
2777 thumb2 = using_thumb2 (globals);
2778
2779 /* Determine where the call point is. */
2780 location = (input_sec->output_offset
2781 + input_sec->output_section->vma
2782 + rel->r_offset);
2783
2784 branch_offset = (bfd_signed_vma)(destination - location);
2785
2786 r_type = ELF32_R_TYPE (rel->r_info);
2787
2788 /* If the call will go through a PLT entry then we do not need
2789 glue. */
2790 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
2791 return stub_type;
2792
2793 if (r_type == R_ARM_THM_CALL)
2794 {
2795 if ((!thumb2
2796 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2797 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2798 || (thumb2
2799 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2800 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2801 || ((st_type != STT_ARM_TFUNC) && !globals->use_blx))
2802 {
2803 if (st_type == STT_ARM_TFUNC)
2804 {
2805 /* Thumb to thumb. */
2806 if (!thumb_only)
2807 {
2808 stub_type = (info->shared | globals->pic_veneer)
2809 ? ((globals->use_blx)
2810 ? arm_stub_pic_long_branch
2811 : arm_stub_none)
2812 : (globals->use_blx)
2813 ? arm_stub_long_branch
2814 : arm_stub_none;
2815 }
2816 else
2817 {
2818 stub_type = (info->shared | globals->pic_veneer)
2819 ? arm_stub_none
2820 : (globals->use_blx)
2821 ? arm_thumb_thumb_stub_long_branch
2822 : arm_stub_none;
2823 }
2824 }
2825 else
2826 {
2827 /* Thumb to arm. */
2828 if (sym_sec != NULL
2829 && sym_sec->owner != NULL
2830 && !INTERWORK_FLAG (sym_sec->owner))
2831 {
2832 (*_bfd_error_handler)
2833 (_("%B(%s): warning: interworking not enabled.\n"
2834 " first occurrence: %B: Thumb call to ARM"),
2835 sym_sec->owner, input_bfd, name);
2836 }
2837
2838 stub_type = (info->shared | globals->pic_veneer)
2839 ? ((globals->use_blx)
2840 ? arm_stub_pic_long_branch
2841 : arm_stub_none)
2842 : (globals->use_blx)
2843 ? arm_stub_long_branch
2844 : arm_thumb_arm_v4t_stub_long_branch;
2845
2846 /* Handle v4t short branches. */
2847 if ((stub_type == arm_thumb_arm_v4t_stub_long_branch)
2848 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
2849 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
2850 stub_type = arm_thumb_arm_v4t_stub_short_branch;
2851 }
2852 }
2853 }
2854 else if (r_type == R_ARM_CALL)
2855 {
2856 if (st_type == STT_ARM_TFUNC)
2857 {
2858 /* Arm to thumb. */
2859
2860 if (sym_sec != NULL
2861 && sym_sec->owner != NULL
2862 && !INTERWORK_FLAG (sym_sec->owner))
2863 {
2864 (*_bfd_error_handler)
2865 (_("%B(%s): warning: interworking not enabled.\n"
2866 " first occurrence: %B: Thumb call to ARM"),
2867 sym_sec->owner, input_bfd, name);
2868 }
2869
2870 /* We have an extra 2-bytes reach because of
2871 the mode change (bit 24 (H) of BLX encoding). */
2872 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2873 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
2874 || !globals->use_blx)
2875 {
2876 stub_type = (info->shared | globals->pic_veneer)
2877 ? arm_stub_pic_long_branch
2878 : (globals->use_blx)
2879 ? arm_stub_long_branch
2880 : arm_thumb_v4t_stub_long_branch;
2881 }
2882 }
2883 else
2884 {
2885 /* Arm to arm. */
2886 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
2887 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
2888 {
2889 stub_type = (info->shared | globals->pic_veneer)
2890 ? arm_stub_pic_long_branch
2891 : arm_stub_long_branch;
2892 }
2893 }
2894 }
2895
2896 return stub_type;
2897 }
2898
2899 /* Build a name for an entry in the stub hash table. */
2900
2901 static char *
2902 elf32_arm_stub_name (const asection *input_section,
2903 const asection *sym_sec,
2904 const struct elf32_arm_link_hash_entry *hash,
2905 const Elf_Internal_Rela *rel)
2906 {
2907 char *stub_name;
2908 bfd_size_type len;
2909
2910 if (hash)
2911 {
2912 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
2913 stub_name = bfd_malloc (len);
2914 if (stub_name != NULL)
2915 sprintf (stub_name, "%08x_%s+%x",
2916 input_section->id & 0xffffffff,
2917 hash->root.root.root.string,
2918 (int) rel->r_addend & 0xffffffff);
2919 }
2920 else
2921 {
2922 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
2923 stub_name = bfd_malloc (len);
2924 if (stub_name != NULL)
2925 sprintf (stub_name, "%08x_%x:%x+%x",
2926 input_section->id & 0xffffffff,
2927 sym_sec->id & 0xffffffff,
2928 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
2929 (int) rel->r_addend & 0xffffffff);
2930 }
2931
2932 return stub_name;
2933 }
2934
2935 /* Look up an entry in the stub hash. Stub entries are cached because
2936 creating the stub name takes a bit of time. */
2937
2938 static struct elf32_arm_stub_hash_entry *
2939 elf32_arm_get_stub_entry (const asection *input_section,
2940 const asection *sym_sec,
2941 struct elf_link_hash_entry *hash,
2942 const Elf_Internal_Rela *rel,
2943 struct elf32_arm_link_hash_table *htab)
2944 {
2945 struct elf32_arm_stub_hash_entry *stub_entry;
2946 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
2947 const asection *id_sec;
2948
2949 if ((input_section->flags & SEC_CODE) == 0)
2950 return NULL;
2951
2952 /* If this input section is part of a group of sections sharing one
2953 stub section, then use the id of the first section in the group.
2954 Stub names need to include a section id, as there may well be
2955 more than one stub used to reach say, printf, and we need to
2956 distinguish between them. */
2957 id_sec = htab->stub_group[input_section->id].link_sec;
2958
2959 if (h != NULL && h->stub_cache != NULL
2960 && h->stub_cache->h == h
2961 && h->stub_cache->id_sec == id_sec)
2962 {
2963 stub_entry = h->stub_cache;
2964 }
2965 else
2966 {
2967 char *stub_name;
2968
2969 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
2970 if (stub_name == NULL)
2971 return NULL;
2972
2973 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
2974 stub_name, FALSE, FALSE);
2975 if (h != NULL)
2976 h->stub_cache = stub_entry;
2977
2978 free (stub_name);
2979 }
2980
2981 return stub_entry;
2982 }
2983
2984 /* Add a new stub entry to the stub hash. Not all fields of the new
2985 stub entry are initialised. */
2986
2987 static struct elf32_arm_stub_hash_entry *
2988 elf32_arm_add_stub (const char *stub_name,
2989 asection *section,
2990 struct elf32_arm_link_hash_table *htab)
2991 {
2992 asection *link_sec;
2993 asection *stub_sec;
2994 struct elf32_arm_stub_hash_entry *stub_entry;
2995
2996 link_sec = htab->stub_group[section->id].link_sec;
2997 stub_sec = htab->stub_group[section->id].stub_sec;
2998 if (stub_sec == NULL)
2999 {
3000 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3001 if (stub_sec == NULL)
3002 {
3003 size_t namelen;
3004 bfd_size_type len;
3005 char *s_name;
3006
3007 namelen = strlen (link_sec->name);
3008 len = namelen + sizeof (STUB_SUFFIX);
3009 s_name = bfd_alloc (htab->stub_bfd, len);
3010 if (s_name == NULL)
3011 return NULL;
3012
3013 memcpy (s_name, link_sec->name, namelen);
3014 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3015 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3016 if (stub_sec == NULL)
3017 return NULL;
3018 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3019 }
3020 htab->stub_group[section->id].stub_sec = stub_sec;
3021 }
3022
3023 /* Enter this entry into the linker stub hash table. */
3024 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3025 TRUE, FALSE);
3026 if (stub_entry == NULL)
3027 {
3028 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3029 section->owner,
3030 stub_name);
3031 return NULL;
3032 }
3033
3034 stub_entry->stub_sec = stub_sec;
3035 stub_entry->stub_offset = 0;
3036 stub_entry->id_sec = link_sec;
3037
3038 return stub_entry;
3039 }
3040
3041 /* Store an Arm insn into an output section not processed by
3042 elf32_arm_write_section. */
3043
3044 static void
3045 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3046 bfd * output_bfd, bfd_vma val, void * ptr)
3047 {
3048 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3049 bfd_putl32 (val, ptr);
3050 else
3051 bfd_putb32 (val, ptr);
3052 }
3053
3054 /* Store a 16-bit Thumb insn into an output section not processed by
3055 elf32_arm_write_section. */
3056
3057 static void
3058 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3059 bfd * output_bfd, bfd_vma val, void * ptr)
3060 {
3061 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3062 bfd_putl16 (val, ptr);
3063 else
3064 bfd_putb16 (val, ptr);
3065 }
3066
3067 static bfd_boolean
3068 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3069 void * in_arg)
3070 {
3071 struct elf32_arm_stub_hash_entry *stub_entry;
3072 struct bfd_link_info *info;
3073 struct elf32_arm_link_hash_table *htab;
3074 asection *stub_sec;
3075 bfd *stub_bfd;
3076 bfd_vma stub_addr;
3077 bfd_byte *loc;
3078 bfd_vma sym_value;
3079 int template_size;
3080 int size;
3081 const bfd_vma *template;
3082 int i;
3083 struct elf32_arm_link_hash_table * globals;
3084
3085 /* Massage our args to the form they really have. */
3086 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3087 info = (struct bfd_link_info *) in_arg;
3088
3089 globals = elf32_arm_hash_table (info);
3090
3091 htab = elf32_arm_hash_table (info);
3092 stub_sec = stub_entry->stub_sec;
3093
3094 /* Make a note of the offset within the stubs for this entry. */
3095 stub_entry->stub_offset = stub_sec->size;
3096 loc = stub_sec->contents + stub_entry->stub_offset;
3097
3098 stub_bfd = stub_sec->owner;
3099
3100 /* This is the address of the start of the stub. */
3101 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3102 + stub_entry->stub_offset;
3103
3104 /* This is the address of the stub destination. */
3105 sym_value = (stub_entry->target_value
3106 + stub_entry->target_section->output_offset
3107 + stub_entry->target_section->output_section->vma);
3108
3109 switch (stub_entry->stub_type)
3110 {
3111 case arm_stub_long_branch:
3112 template = arm_long_branch_stub;
3113 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3114 break;
3115 case arm_thumb_v4t_stub_long_branch:
3116 template = arm_thumb_v4t_long_branch_stub;
3117 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3118 break;
3119 case arm_thumb_thumb_stub_long_branch:
3120 template = arm_thumb_thumb_long_branch_stub;
3121 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3122 break;
3123 case arm_thumb_arm_v4t_stub_long_branch:
3124 template = arm_thumb_arm_v4t_long_branch_stub;
3125 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3126 break;
3127 case arm_thumb_arm_v4t_stub_short_branch:
3128 template = arm_thumb_arm_v4t_short_branch_stub;
3129 template_size = (sizeof(arm_thumb_arm_v4t_short_branch_stub) / sizeof (bfd_vma)) * 4;
3130 break;
3131 case arm_stub_pic_long_branch:
3132 template = arm_pic_long_branch_stub;
3133 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3134 break;
3135 default:
3136 BFD_FAIL ();
3137 return FALSE;
3138 }
3139
3140 size = 0;
3141 for (i = 0; i < (template_size / 4); i++)
3142 {
3143 /* A 0 pattern is a placeholder, every other pattern is an
3144 instruction. */
3145 if (template[i] != 0)
3146 put_arm_insn (globals, stub_bfd, template[i], loc + size);
3147 else
3148 bfd_put_32 (stub_bfd, template[i], loc + size);
3149
3150 size += 4;
3151 }
3152 stub_sec->size += size;
3153
3154 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3155 if (stub_entry->st_type == STT_ARM_TFUNC)
3156 sym_value |= 1;
3157
3158 switch (stub_entry->stub_type)
3159 {
3160 case arm_stub_long_branch:
3161 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3162 stub_bfd, stub_sec, stub_sec->contents,
3163 stub_entry->stub_offset + 4, sym_value, 0);
3164 break;
3165 case arm_thumb_v4t_stub_long_branch:
3166 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3167 stub_bfd, stub_sec, stub_sec->contents,
3168 stub_entry->stub_offset + 8, sym_value, 0);
3169 break;
3170 case arm_thumb_thumb_stub_long_branch:
3171 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3172 stub_bfd, stub_sec, stub_sec->contents,
3173 stub_entry->stub_offset + 12, sym_value, 0);
3174 break;
3175 case arm_thumb_arm_v4t_stub_long_branch:
3176 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3177 stub_bfd, stub_sec, stub_sec->contents,
3178 stub_entry->stub_offset + 16, sym_value, 0);
3179 break;
3180 case arm_thumb_arm_v4t_stub_short_branch:
3181 {
3182 long int rel_offset;
3183 static const insn32 t2a3_b_insn = 0xea000000;
3184
3185 rel_offset = sym_value - (stub_addr + 8 + 4);
3186
3187 put_arm_insn (globals, stub_bfd,
3188 (bfd_vma) t2a3_b_insn | ((rel_offset >> 2) & 0x00FFFFFF),
3189 loc + 4);
3190 }
3191 break;
3192
3193 case arm_stub_pic_long_branch:
3194 /* We want the value relative to the address 8 bytes from the
3195 start of the stub. */
3196 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_REL32),
3197 stub_bfd, stub_sec, stub_sec->contents,
3198 stub_entry->stub_offset + 8, sym_value, 0);
3199 break;
3200 default:
3201 break;
3202 }
3203
3204 return TRUE;
3205 }
3206
3207 /* As above, but don't actually build the stub. Just bump offset so
3208 we know stub section sizes. */
3209
3210 static bfd_boolean
3211 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3212 void * in_arg)
3213 {
3214 struct elf32_arm_stub_hash_entry *stub_entry;
3215 struct elf32_arm_link_hash_table *htab;
3216 const bfd_vma *template;
3217 int template_size;
3218 int size;
3219 int i;
3220
3221 /* Massage our args to the form they really have. */
3222 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3223 htab = (struct elf32_arm_link_hash_table *) in_arg;
3224
3225 switch (stub_entry->stub_type)
3226 {
3227 case arm_stub_long_branch:
3228 template = arm_long_branch_stub;
3229 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3230 break;
3231 case arm_thumb_v4t_stub_long_branch:
3232 template = arm_thumb_v4t_long_branch_stub;
3233 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3234 break;
3235 case arm_thumb_thumb_stub_long_branch:
3236 template = arm_thumb_thumb_long_branch_stub;
3237 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3238 break;
3239 case arm_thumb_arm_v4t_stub_long_branch:
3240 template = arm_thumb_arm_v4t_long_branch_stub;
3241 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3242 break;
3243 case arm_thumb_arm_v4t_stub_short_branch:
3244 template = arm_thumb_arm_v4t_short_branch_stub;
3245 template_size = (sizeof(arm_thumb_arm_v4t_short_branch_stub) / sizeof (bfd_vma)) * 4;
3246 break;
3247 case arm_stub_pic_long_branch:
3248 template = arm_pic_long_branch_stub;
3249 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3250 break;
3251 default:
3252 BFD_FAIL ();
3253 return FALSE;
3254 break;
3255 }
3256
3257 size = 0;
3258 for (i = 0; i < (template_size / 4); i++)
3259 size += 4;
3260 size = (size + 7) & ~7;
3261 stub_entry->stub_sec->size += size;
3262 return TRUE;
3263 }
3264
3265 /* External entry points for sizing and building linker stubs. */
3266
3267 /* Set up various things so that we can make a list of input sections
3268 for each output section included in the link. Returns -1 on error,
3269 0 when no stubs will be needed, and 1 on success. */
3270
3271 int
3272 elf32_arm_setup_section_lists (bfd *output_bfd,
3273 struct bfd_link_info *info)
3274 {
3275 bfd *input_bfd;
3276 unsigned int bfd_count;
3277 int top_id, top_index;
3278 asection *section;
3279 asection **input_list, **list;
3280 bfd_size_type amt;
3281 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3282
3283 if (! is_elf_hash_table (htab))
3284 return 0;
3285
3286 /* Count the number of input BFDs and find the top input section id. */
3287 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3288 input_bfd != NULL;
3289 input_bfd = input_bfd->link_next)
3290 {
3291 bfd_count += 1;
3292 for (section = input_bfd->sections;
3293 section != NULL;
3294 section = section->next)
3295 {
3296 if (top_id < section->id)
3297 top_id = section->id;
3298 }
3299 }
3300 htab->bfd_count = bfd_count;
3301
3302 amt = sizeof (struct map_stub) * (top_id + 1);
3303 htab->stub_group = bfd_zmalloc (amt);
3304 if (htab->stub_group == NULL)
3305 return -1;
3306
3307 /* We can't use output_bfd->section_count here to find the top output
3308 section index as some sections may have been removed, and
3309 _bfd_strip_section_from_output doesn't renumber the indices. */
3310 for (section = output_bfd->sections, top_index = 0;
3311 section != NULL;
3312 section = section->next)
3313 {
3314 if (top_index < section->index)
3315 top_index = section->index;
3316 }
3317
3318 htab->top_index = top_index;
3319 amt = sizeof (asection *) * (top_index + 1);
3320 input_list = bfd_malloc (amt);
3321 htab->input_list = input_list;
3322 if (input_list == NULL)
3323 return -1;
3324
3325 /* For sections we aren't interested in, mark their entries with a
3326 value we can check later. */
3327 list = input_list + top_index;
3328 do
3329 *list = bfd_abs_section_ptr;
3330 while (list-- != input_list);
3331
3332 for (section = output_bfd->sections;
3333 section != NULL;
3334 section = section->next)
3335 {
3336 if ((section->flags & SEC_CODE) != 0)
3337 input_list[section->index] = NULL;
3338 }
3339
3340 return 1;
3341 }
3342
3343 /* The linker repeatedly calls this function for each input section,
3344 in the order that input sections are linked into output sections.
3345 Build lists of input sections to determine groupings between which
3346 we may insert linker stubs. */
3347
3348 void
3349 elf32_arm_next_input_section (struct bfd_link_info *info,
3350 asection *isec)
3351 {
3352 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3353
3354 if (isec->output_section->index <= htab->top_index)
3355 {
3356 asection **list = htab->input_list + isec->output_section->index;
3357
3358 if (*list != bfd_abs_section_ptr)
3359 {
3360 /* Steal the link_sec pointer for our list. */
3361 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3362 /* This happens to make the list in reverse order,
3363 which is what we want. */
3364 PREV_SEC (isec) = *list;
3365 *list = isec;
3366 }
3367 }
3368 }
3369
3370 /* See whether we can group stub sections together. Grouping stub
3371 sections may result in fewer stubs. More importantly, we need to
3372 put all .init* and .fini* stubs at the beginning of the .init or
3373 .fini output sections respectively, because glibc splits the
3374 _init and _fini functions into multiple parts. Putting a stub in
3375 the middle of a function is not a good idea. */
3376
3377 static void
3378 group_sections (struct elf32_arm_link_hash_table *htab,
3379 bfd_size_type stub_group_size,
3380 bfd_boolean stubs_always_before_branch)
3381 {
3382 asection **list = htab->input_list + htab->top_index;
3383
3384 do
3385 {
3386 asection *tail = *list;
3387
3388 if (tail == bfd_abs_section_ptr)
3389 continue;
3390
3391 while (tail != NULL)
3392 {
3393 asection *curr;
3394 asection *prev;
3395 bfd_size_type total;
3396
3397 curr = tail;
3398 total = tail->size;
3399 while ((prev = PREV_SEC (curr)) != NULL
3400 && ((total += curr->output_offset - prev->output_offset)
3401 < stub_group_size))
3402 curr = prev;
3403
3404 /* OK, the size from the start of CURR to the end is less
3405 than stub_group_size and thus can be handled by one stub
3406 section. (Or the tail section is itself larger than
3407 stub_group_size, in which case we may be toast.)
3408 We should really be keeping track of the total size of
3409 stubs added here, as stubs contribute to the final output
3410 section size. */
3411 do
3412 {
3413 prev = PREV_SEC (tail);
3414 /* Set up this stub group. */
3415 htab->stub_group[tail->id].link_sec = curr;
3416 }
3417 while (tail != curr && (tail = prev) != NULL);
3418
3419 /* But wait, there's more! Input sections up to stub_group_size
3420 bytes before the stub section can be handled by it too. */
3421 if (!stubs_always_before_branch)
3422 {
3423 total = 0;
3424 while (prev != NULL
3425 && ((total += tail->output_offset - prev->output_offset)
3426 < stub_group_size))
3427 {
3428 tail = prev;
3429 prev = PREV_SEC (tail);
3430 htab->stub_group[tail->id].link_sec = curr;
3431 }
3432 }
3433 tail = prev;
3434 }
3435 }
3436 while (list-- != htab->input_list);
3437
3438 free (htab->input_list);
3439 #undef PREV_SEC
3440 }
3441
3442 /* Determine and set the size of the stub section for a final link.
3443
3444 The basic idea here is to examine all the relocations looking for
3445 PC-relative calls to a target that is unreachable with a "bl"
3446 instruction. */
3447
3448 bfd_boolean
3449 elf32_arm_size_stubs (bfd *output_bfd,
3450 bfd *stub_bfd,
3451 struct bfd_link_info *info,
3452 bfd_signed_vma group_size,
3453 asection * (*add_stub_section) (const char *, asection *),
3454 void (*layout_sections_again) (void))
3455 {
3456 bfd_size_type stub_group_size;
3457 bfd_boolean stubs_always_before_branch;
3458 bfd_boolean stub_changed = 0;
3459 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3460
3461 /* Propagate mach to stub bfd, because it may not have been
3462 finalized when we created stub_bfd. */
3463 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3464 bfd_get_mach (output_bfd));
3465
3466 /* Stash our params away. */
3467 htab->stub_bfd = stub_bfd;
3468 htab->add_stub_section = add_stub_section;
3469 htab->layout_sections_again = layout_sections_again;
3470 stubs_always_before_branch = group_size < 0;
3471 if (group_size < 0)
3472 stub_group_size = -group_size;
3473 else
3474 stub_group_size = group_size;
3475
3476 if (stub_group_size == 1)
3477 {
3478 /* Default values. */
3479 /* Thumb branch range is +-4MB has to be used as the default
3480 maximum size (a given section can contain both ARM and Thumb
3481 code, so the worst case has to be taken into account).
3482
3483 This value is 24K less than that, which allows for 2025
3484 12-byte stubs. If we exceed that, then we will fail to link.
3485 The user will have to relink with an explicit group size
3486 option. */
3487 stub_group_size = 4170000;
3488 }
3489
3490 group_sections (htab, stub_group_size, stubs_always_before_branch);
3491
3492 while (1)
3493 {
3494 bfd *input_bfd;
3495 unsigned int bfd_indx;
3496 asection *stub_sec;
3497
3498 for (input_bfd = info->input_bfds, bfd_indx = 0;
3499 input_bfd != NULL;
3500 input_bfd = input_bfd->link_next, bfd_indx++)
3501 {
3502 Elf_Internal_Shdr *symtab_hdr;
3503 asection *section;
3504 Elf_Internal_Sym *local_syms = NULL;
3505
3506 /* We'll need the symbol table in a second. */
3507 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3508 if (symtab_hdr->sh_info == 0)
3509 continue;
3510
3511 /* Walk over each section attached to the input bfd. */
3512 for (section = input_bfd->sections;
3513 section != NULL;
3514 section = section->next)
3515 {
3516 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3517
3518 /* If there aren't any relocs, then there's nothing more
3519 to do. */
3520 if ((section->flags & SEC_RELOC) == 0
3521 || section->reloc_count == 0
3522 || (section->flags & SEC_CODE) == 0)
3523 continue;
3524
3525 /* If this section is a link-once section that will be
3526 discarded, then don't create any stubs. */
3527 if (section->output_section == NULL
3528 || section->output_section->owner != output_bfd)
3529 continue;
3530
3531 /* Get the relocs. */
3532 internal_relocs
3533 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3534 NULL, info->keep_memory);
3535 if (internal_relocs == NULL)
3536 goto error_ret_free_local;
3537
3538 /* Now examine each relocation. */
3539 irela = internal_relocs;
3540 irelaend = irela + section->reloc_count;
3541 for (; irela < irelaend; irela++)
3542 {
3543 unsigned int r_type, r_indx;
3544 enum elf32_arm_stub_type stub_type;
3545 struct elf32_arm_stub_hash_entry *stub_entry;
3546 asection *sym_sec;
3547 bfd_vma sym_value;
3548 bfd_vma destination;
3549 struct elf32_arm_link_hash_entry *hash;
3550 const char *sym_name;
3551 char *stub_name;
3552 const asection *id_sec;
3553 unsigned char st_type;
3554
3555 r_type = ELF32_R_TYPE (irela->r_info);
3556 r_indx = ELF32_R_SYM (irela->r_info);
3557
3558 if (r_type >= (unsigned int) R_ARM_max)
3559 {
3560 bfd_set_error (bfd_error_bad_value);
3561 error_ret_free_internal:
3562 if (elf_section_data (section)->relocs == NULL)
3563 free (internal_relocs);
3564 goto error_ret_free_local;
3565 }
3566
3567 /* Only look for stubs on call instructions. */
3568 if ((r_type != (unsigned int) R_ARM_CALL)
3569 && (r_type != (unsigned int) R_ARM_THM_CALL))
3570 continue;
3571
3572 /* Now determine the call target, its name, value,
3573 section. */
3574 sym_sec = NULL;
3575 sym_value = 0;
3576 destination = 0;
3577 hash = NULL;
3578 sym_name = NULL;
3579 if (r_indx < symtab_hdr->sh_info)
3580 {
3581 /* It's a local symbol. */
3582 Elf_Internal_Sym *sym;
3583 Elf_Internal_Shdr *hdr;
3584
3585 if (local_syms == NULL)
3586 {
3587 local_syms
3588 = (Elf_Internal_Sym *) symtab_hdr->contents;
3589 if (local_syms == NULL)
3590 local_syms
3591 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3592 symtab_hdr->sh_info, 0,
3593 NULL, NULL, NULL);
3594 if (local_syms == NULL)
3595 goto error_ret_free_internal;
3596 }
3597
3598 sym = local_syms + r_indx;
3599 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3600 sym_sec = hdr->bfd_section;
3601 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3602 sym_value = sym->st_value;
3603 destination = (sym_value + irela->r_addend
3604 + sym_sec->output_offset
3605 + sym_sec->output_section->vma);
3606 st_type = ELF_ST_TYPE (sym->st_info);
3607 sym_name
3608 = bfd_elf_string_from_elf_section (input_bfd,
3609 symtab_hdr->sh_link,
3610 sym->st_name);
3611 }
3612 else
3613 {
3614 /* It's an external symbol. */
3615 int e_indx;
3616
3617 e_indx = r_indx - symtab_hdr->sh_info;
3618 hash = ((struct elf32_arm_link_hash_entry *)
3619 elf_sym_hashes (input_bfd)[e_indx]);
3620
3621 while (hash->root.root.type == bfd_link_hash_indirect
3622 || hash->root.root.type == bfd_link_hash_warning)
3623 hash = ((struct elf32_arm_link_hash_entry *)
3624 hash->root.root.u.i.link);
3625
3626 if (hash->root.root.type == bfd_link_hash_defined
3627 || hash->root.root.type == bfd_link_hash_defweak)
3628 {
3629 sym_sec = hash->root.root.u.def.section;
3630 sym_value = hash->root.root.u.def.value;
3631 if (sym_sec->output_section != NULL)
3632 destination = (sym_value + irela->r_addend
3633 + sym_sec->output_offset
3634 + sym_sec->output_section->vma);
3635 }
3636 else if (hash->root.root.type == bfd_link_hash_undefweak
3637 || hash->root.root.type == bfd_link_hash_undefined)
3638 /* For a shared library, these will need a PLT stub,
3639 which is treated separately.
3640 For absolute code, they cannot be handled. */
3641 continue;
3642 else
3643 {
3644 bfd_set_error (bfd_error_bad_value);
3645 goto error_ret_free_internal;
3646 }
3647 st_type = ELF_ST_TYPE (hash->root.type);
3648 sym_name = hash->root.root.root.string;
3649 }
3650
3651 /* Determine what (if any) linker stub is needed. */
3652 stub_type = arm_type_of_stub (info, section, irela, st_type,
3653 hash, destination, sym_sec,
3654 input_bfd, sym_name);
3655 if (stub_type == arm_stub_none)
3656 continue;
3657
3658 /* Support for grouping stub sections. */
3659 id_sec = htab->stub_group[section->id].link_sec;
3660
3661 /* Get the name of this stub. */
3662 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3663 if (!stub_name)
3664 goto error_ret_free_internal;
3665
3666 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3667 stub_name,
3668 FALSE, FALSE);
3669 if (stub_entry != NULL)
3670 {
3671 /* The proper stub has already been created. */
3672 free (stub_name);
3673 continue;
3674 }
3675
3676 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
3677 if (stub_entry == NULL)
3678 {
3679 free (stub_name);
3680 goto error_ret_free_internal;
3681 }
3682
3683 stub_entry->target_value = sym_value;
3684 stub_entry->target_section = sym_sec;
3685 stub_entry->stub_type = stub_type;
3686 stub_entry->h = hash;
3687 stub_entry->st_type = st_type;
3688
3689 if (sym_name == NULL)
3690 sym_name = "unnamed";
3691 stub_entry->output_name
3692 = bfd_alloc (htab->stub_bfd,
3693 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
3694 + strlen (sym_name));
3695 if (stub_entry->output_name == NULL)
3696 {
3697 free (stub_name);
3698 goto error_ret_free_internal;
3699 }
3700
3701 /* For historical reasons, use the existing names for
3702 ARM-to-Thumb and Thumb-to-ARM stubs. */
3703 if (r_type == (unsigned int) R_ARM_THM_CALL
3704 && st_type != STT_ARM_TFUNC)
3705 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME,
3706 sym_name);
3707 else if (r_type == (unsigned int) R_ARM_CALL
3708 && st_type == STT_ARM_TFUNC)
3709 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME,
3710 sym_name);
3711 else
3712 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
3713 sym_name);
3714
3715 stub_changed = TRUE;
3716 }
3717
3718 /* We're done with the internal relocs, free them. */
3719 if (elf_section_data (section)->relocs == NULL)
3720 free (internal_relocs);
3721 }
3722 }
3723
3724 if (!stub_changed)
3725 break;
3726
3727 /* OK, we've added some stubs. Find out the new size of the
3728 stub sections. */
3729 for (stub_sec = htab->stub_bfd->sections;
3730 stub_sec != NULL;
3731 stub_sec = stub_sec->next)
3732 stub_sec->size = 0;
3733
3734 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3735
3736 /* Ask the linker to do its stuff. */
3737 (*htab->layout_sections_again) ();
3738 stub_changed = FALSE;
3739 }
3740
3741 return TRUE;
3742
3743 error_ret_free_local:
3744 return FALSE;
3745 }
3746
3747 /* Build all the stubs associated with the current output file. The
3748 stubs are kept in a hash table attached to the main linker hash
3749 table. We also set up the .plt entries for statically linked PIC
3750 functions here. This function is called via arm_elf_finish in the
3751 linker. */
3752
3753 bfd_boolean
3754 elf32_arm_build_stubs (struct bfd_link_info *info)
3755 {
3756 asection *stub_sec;
3757 struct bfd_hash_table *table;
3758 struct elf32_arm_link_hash_table *htab;
3759
3760 htab = elf32_arm_hash_table (info);
3761
3762 for (stub_sec = htab->stub_bfd->sections;
3763 stub_sec != NULL;
3764 stub_sec = stub_sec->next)
3765 {
3766 bfd_size_type size;
3767
3768 /* Ignore non-stub sections. */
3769 if (!strstr (stub_sec->name, STUB_SUFFIX))
3770 continue;
3771
3772 /* Allocate memory to hold the linker stubs. */
3773 size = stub_sec->size;
3774 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3775 if (stub_sec->contents == NULL && size != 0)
3776 return FALSE;
3777 stub_sec->size = 0;
3778 }
3779
3780 /* Build the stubs as directed by the stub hash table. */
3781 table = &htab->stub_hash_table;
3782 bfd_hash_traverse (table, arm_build_one_stub, info);
3783
3784 return TRUE;
3785 }
3786
3787 /* Locate the Thumb encoded calling stub for NAME. */
3788
3789 static struct elf_link_hash_entry *
3790 find_thumb_glue (struct bfd_link_info *link_info,
3791 const char *name,
3792 char **error_message)
3793 {
3794 char *tmp_name;
3795 struct elf_link_hash_entry *hash;
3796 struct elf32_arm_link_hash_table *hash_table;
3797
3798 /* We need a pointer to the armelf specific hash table. */
3799 hash_table = elf32_arm_hash_table (link_info);
3800
3801 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3802 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
3803
3804 BFD_ASSERT (tmp_name);
3805
3806 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
3807
3808 hash = elf_link_hash_lookup
3809 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3810
3811 if (hash == NULL
3812 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
3813 tmp_name, name) == -1)
3814 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3815
3816 free (tmp_name);
3817
3818 return hash;
3819 }
3820
3821 /* Locate the ARM encoded calling stub for NAME. */
3822
3823 static struct elf_link_hash_entry *
3824 find_arm_glue (struct bfd_link_info *link_info,
3825 const char *name,
3826 char **error_message)
3827 {
3828 char *tmp_name;
3829 struct elf_link_hash_entry *myh;
3830 struct elf32_arm_link_hash_table *hash_table;
3831
3832 /* We need a pointer to the elfarm specific hash table. */
3833 hash_table = elf32_arm_hash_table (link_info);
3834
3835 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3836 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3837
3838 BFD_ASSERT (tmp_name);
3839
3840 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3841
3842 myh = elf_link_hash_lookup
3843 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3844
3845 if (myh == NULL
3846 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
3847 tmp_name, name) == -1)
3848 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3849
3850 free (tmp_name);
3851
3852 return myh;
3853 }
3854
3855 /* ARM->Thumb glue (static images):
3856
3857 .arm
3858 __func_from_arm:
3859 ldr r12, __func_addr
3860 bx r12
3861 __func_addr:
3862 .word func @ behave as if you saw a ARM_32 reloc.
3863
3864 (v5t static images)
3865 .arm
3866 __func_from_arm:
3867 ldr pc, __func_addr
3868 __func_addr:
3869 .word func @ behave as if you saw a ARM_32 reloc.
3870
3871 (relocatable images)
3872 .arm
3873 __func_from_arm:
3874 ldr r12, __func_offset
3875 add r12, r12, pc
3876 bx r12
3877 __func_offset:
3878 .word func - . */
3879
3880 #define ARM2THUMB_STATIC_GLUE_SIZE 12
3881 static const insn32 a2t1_ldr_insn = 0xe59fc000;
3882 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
3883 static const insn32 a2t3_func_addr_insn = 0x00000001;
3884
3885 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
3886 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
3887 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
3888
3889 #define ARM2THUMB_PIC_GLUE_SIZE 16
3890 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
3891 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
3892 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
3893
3894 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
3895
3896 .thumb .thumb
3897 .align 2 .align 2
3898 __func_from_thumb: __func_from_thumb:
3899 bx pc push {r6, lr}
3900 nop ldr r6, __func_addr
3901 .arm mov lr, pc
3902 b func bx r6
3903 .arm
3904 ;; back_to_thumb
3905 ldmia r13! {r6, lr}
3906 bx lr
3907 __func_addr:
3908 .word func */
3909
3910 #define THUMB2ARM_GLUE_SIZE 8
3911 static const insn16 t2a1_bx_pc_insn = 0x4778;
3912 static const insn16 t2a2_noop_insn = 0x46c0;
3913 static const insn32 t2a3_b_insn = 0xea000000;
3914
3915 #define VFP11_ERRATUM_VENEER_SIZE 8
3916
3917 #define ARM_BX_VENEER_SIZE 12
3918 static const insn32 armbx1_tst_insn = 0xe3100001;
3919 static const insn32 armbx2_moveq_insn = 0x01a0f000;
3920 static const insn32 armbx3_bx_insn = 0xe12fff10;
3921
3922 #ifndef ELFARM_NABI_C_INCLUDED
3923 static void
3924 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
3925 {
3926 asection * s;
3927 bfd_byte * contents;
3928
3929 if (size == 0)
3930 return;
3931
3932 BFD_ASSERT (abfd != NULL);
3933
3934 s = bfd_get_section_by_name (abfd, name);
3935 BFD_ASSERT (s != NULL);
3936
3937 contents = bfd_alloc (abfd, size);
3938
3939 BFD_ASSERT (s->size == size);
3940 s->contents = contents;
3941 }
3942
3943 bfd_boolean
3944 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
3945 {
3946 struct elf32_arm_link_hash_table * globals;
3947
3948 globals = elf32_arm_hash_table (info);
3949 BFD_ASSERT (globals != NULL);
3950
3951 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3952 globals->arm_glue_size,
3953 ARM2THUMB_GLUE_SECTION_NAME);
3954
3955 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3956 globals->thumb_glue_size,
3957 THUMB2ARM_GLUE_SECTION_NAME);
3958
3959 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3960 globals->vfp11_erratum_glue_size,
3961 VFP11_ERRATUM_VENEER_SECTION_NAME);
3962
3963 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3964 globals->bx_glue_size,
3965 ARM_BX_GLUE_SECTION_NAME);
3966
3967 return TRUE;
3968 }
3969
3970 /* Allocate space and symbols for calling a Thumb function from Arm mode.
3971 returns the symbol identifying the stub. */
3972
3973 static struct elf_link_hash_entry *
3974 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
3975 struct elf_link_hash_entry * h)
3976 {
3977 const char * name = h->root.root.string;
3978 asection * s;
3979 char * tmp_name;
3980 struct elf_link_hash_entry * myh;
3981 struct bfd_link_hash_entry * bh;
3982 struct elf32_arm_link_hash_table * globals;
3983 bfd_vma val;
3984 bfd_size_type size;
3985
3986 globals = elf32_arm_hash_table (link_info);
3987
3988 BFD_ASSERT (globals != NULL);
3989 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3990
3991 s = bfd_get_section_by_name
3992 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
3993
3994 BFD_ASSERT (s != NULL);
3995
3996 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3997
3998 BFD_ASSERT (tmp_name);
3999
4000 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4001
4002 myh = elf_link_hash_lookup
4003 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
4004
4005 if (myh != NULL)
4006 {
4007 /* We've already seen this guy. */
4008 free (tmp_name);
4009 return myh;
4010 }
4011
4012 /* The only trick here is using hash_table->arm_glue_size as the value.
4013 Even though the section isn't allocated yet, this is where we will be
4014 putting it. The +1 on the value marks that the stub has not been
4015 output yet - not that it is a Thumb function. */
4016 bh = NULL;
4017 val = globals->arm_glue_size + 1;
4018 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4019 tmp_name, BSF_GLOBAL, s, val,
4020 NULL, TRUE, FALSE, &bh);
4021
4022 myh = (struct elf_link_hash_entry *) bh;
4023 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4024 myh->forced_local = 1;
4025
4026 free (tmp_name);
4027
4028 if (link_info->shared || globals->root.is_relocatable_executable
4029 || globals->pic_veneer)
4030 size = ARM2THUMB_PIC_GLUE_SIZE;
4031 else if (globals->use_blx)
4032 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
4033 else
4034 size = ARM2THUMB_STATIC_GLUE_SIZE;
4035
4036 s->size += size;
4037 globals->arm_glue_size += size;
4038
4039 return myh;
4040 }
4041
4042 static void
4043 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
4044 struct elf_link_hash_entry *h)
4045 {
4046 const char *name = h->root.root.string;
4047 asection *s;
4048 char *tmp_name;
4049 struct elf_link_hash_entry *myh;
4050 struct bfd_link_hash_entry *bh;
4051 struct elf32_arm_link_hash_table *hash_table;
4052 bfd_vma val;
4053
4054 hash_table = elf32_arm_hash_table (link_info);
4055
4056 BFD_ASSERT (hash_table != NULL);
4057 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4058
4059 s = bfd_get_section_by_name
4060 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
4061
4062 BFD_ASSERT (s != NULL);
4063
4064 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4065 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4066
4067 BFD_ASSERT (tmp_name);
4068
4069 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4070
4071 myh = elf_link_hash_lookup
4072 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4073
4074 if (myh != NULL)
4075 {
4076 /* We've already seen this guy. */
4077 free (tmp_name);
4078 return;
4079 }
4080
4081 /* The only trick here is using hash_table->thumb_glue_size as the value.
4082 Even though the section isn't allocated yet, this is where we will be
4083 putting it. The +1 on the value marks that the stub has not been
4084 output yet - not that it is a Thumb function. */
4085 bh = NULL;
4086 val = hash_table->thumb_glue_size + 1;
4087 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4088 tmp_name, BSF_GLOBAL, s, val,
4089 NULL, TRUE, FALSE, &bh);
4090
4091 /* If we mark it 'Thumb', the disassembler will do a better job. */
4092 myh = (struct elf_link_hash_entry *) bh;
4093 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4094 myh->forced_local = 1;
4095
4096 free (tmp_name);
4097
4098 #define CHANGE_TO_ARM "__%s_change_to_arm"
4099 #define BACK_FROM_ARM "__%s_back_from_arm"
4100
4101 /* Allocate another symbol to mark where we switch to Arm mode. */
4102 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4103 + strlen (CHANGE_TO_ARM) + 1);
4104
4105 BFD_ASSERT (tmp_name);
4106
4107 sprintf (tmp_name, CHANGE_TO_ARM, name);
4108
4109 bh = NULL;
4110 val = hash_table->thumb_glue_size + 4,
4111 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4112 tmp_name, BSF_LOCAL, s, val,
4113 NULL, TRUE, FALSE, &bh);
4114
4115 free (tmp_name);
4116
4117 s->size += THUMB2ARM_GLUE_SIZE;
4118 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
4119 }
4120
4121
4122 /* Allocate space for ARMv4 BX veneers. */
4123
4124 static void
4125 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4126 {
4127 asection * s;
4128 struct elf32_arm_link_hash_table *globals;
4129 char *tmp_name;
4130 struct elf_link_hash_entry *myh;
4131 struct bfd_link_hash_entry *bh;
4132 bfd_vma val;
4133
4134 /* BX PC does not need a veneer. */
4135 if (reg == 15)
4136 return;
4137
4138 globals = elf32_arm_hash_table (link_info);
4139
4140 BFD_ASSERT (globals != NULL);
4141 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4142
4143 /* Check if this veneer has already been allocated. */
4144 if (globals->bx_glue_offset[reg])
4145 return;
4146
4147 s = bfd_get_section_by_name
4148 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4149
4150 BFD_ASSERT (s != NULL);
4151
4152 /* Add symbol for veneer. */
4153 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
4154
4155 BFD_ASSERT (tmp_name);
4156
4157 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
4158
4159 myh = elf_link_hash_lookup
4160 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
4161
4162 BFD_ASSERT (myh == NULL);
4163
4164 bh = NULL;
4165 val = globals->bx_glue_size;
4166 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4167 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4168 NULL, TRUE, FALSE, &bh);
4169
4170 myh = (struct elf_link_hash_entry *) bh;
4171 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4172 myh->forced_local = 1;
4173
4174 s->size += ARM_BX_VENEER_SIZE;
4175 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4176 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4177 }
4178
4179
4180 /* Add an entry to the code/data map for section SEC. */
4181
4182 static void
4183 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4184 {
4185 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4186 unsigned int newidx;
4187
4188 if (sec_data->map == NULL)
4189 {
4190 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4191 sec_data->mapcount = 0;
4192 sec_data->mapsize = 1;
4193 }
4194
4195 newidx = sec_data->mapcount++;
4196
4197 if (sec_data->mapcount > sec_data->mapsize)
4198 {
4199 sec_data->mapsize *= 2;
4200 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4201 * sizeof (elf32_arm_section_map));
4202 }
4203
4204 if (sec_data->map)
4205 {
4206 sec_data->map[newidx].vma = vma;
4207 sec_data->map[newidx].type = type;
4208 }
4209 }
4210
4211
4212 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4213 veneers are handled for now. */
4214
4215 static bfd_vma
4216 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4217 elf32_vfp11_erratum_list *branch,
4218 bfd *branch_bfd,
4219 asection *branch_sec,
4220 unsigned int offset)
4221 {
4222 asection *s;
4223 struct elf32_arm_link_hash_table *hash_table;
4224 char *tmp_name;
4225 struct elf_link_hash_entry *myh;
4226 struct bfd_link_hash_entry *bh;
4227 bfd_vma val;
4228 struct _arm_elf_section_data *sec_data;
4229 int errcount;
4230 elf32_vfp11_erratum_list *newerr;
4231
4232 hash_table = elf32_arm_hash_table (link_info);
4233
4234 BFD_ASSERT (hash_table != NULL);
4235 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4236
4237 s = bfd_get_section_by_name
4238 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
4239
4240 sec_data = elf32_arm_section_data (s);
4241
4242 BFD_ASSERT (s != NULL);
4243
4244 tmp_name = bfd_malloc ((bfd_size_type) strlen
4245 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
4246
4247 BFD_ASSERT (tmp_name);
4248
4249 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4250 hash_table->num_vfp11_fixes);
4251
4252 myh = elf_link_hash_lookup
4253 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4254
4255 BFD_ASSERT (myh == NULL);
4256
4257 bh = NULL;
4258 val = hash_table->vfp11_erratum_glue_size;
4259 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4260 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4261 NULL, TRUE, FALSE, &bh);
4262
4263 myh = (struct elf_link_hash_entry *) bh;
4264 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4265 myh->forced_local = 1;
4266
4267 /* Link veneer back to calling location. */
4268 errcount = ++(sec_data->erratumcount);
4269 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
4270
4271 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4272 newerr->vma = -1;
4273 newerr->u.v.branch = branch;
4274 newerr->u.v.id = hash_table->num_vfp11_fixes;
4275 branch->u.b.veneer = newerr;
4276
4277 newerr->next = sec_data->erratumlist;
4278 sec_data->erratumlist = newerr;
4279
4280 /* A symbol for the return from the veneer. */
4281 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4282 hash_table->num_vfp11_fixes);
4283
4284 myh = elf_link_hash_lookup
4285 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4286
4287 if (myh != NULL)
4288 abort ();
4289
4290 bh = NULL;
4291 val = offset + 4;
4292 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4293 branch_sec, val, NULL, TRUE, FALSE, &bh);
4294
4295 myh = (struct elf_link_hash_entry *) bh;
4296 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4297 myh->forced_local = 1;
4298
4299 free (tmp_name);
4300
4301 /* Generate a mapping symbol for the veneer section, and explicitly add an
4302 entry for that symbol to the code/data map for the section. */
4303 if (hash_table->vfp11_erratum_glue_size == 0)
4304 {
4305 bh = NULL;
4306 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4307 ever requires this erratum fix. */
4308 _bfd_generic_link_add_one_symbol (link_info,
4309 hash_table->bfd_of_glue_owner, "$a",
4310 BSF_LOCAL, s, 0, NULL,
4311 TRUE, FALSE, &bh);
4312
4313 myh = (struct elf_link_hash_entry *) bh;
4314 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4315 myh->forced_local = 1;
4316
4317 /* The elf32_arm_init_maps function only cares about symbols from input
4318 BFDs. We must make a note of this generated mapping symbol
4319 ourselves so that code byteswapping works properly in
4320 elf32_arm_write_section. */
4321 elf32_arm_section_map_add (s, 'a', 0);
4322 }
4323
4324 s->size += VFP11_ERRATUM_VENEER_SIZE;
4325 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4326 hash_table->num_vfp11_fixes++;
4327
4328 /* The offset of the veneer. */
4329 return val;
4330 }
4331
4332 /* Note: we do not include the flag SEC_LINKER_CREATED, as that
4333 would prevent elf_link_input_bfd() from processing the contents
4334 of the section. */
4335 #define ARM_GLUE_SECTION_FLAGS \
4336 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY)
4337
4338 /* Create a fake section for use by the ARM backend of the linker. */
4339
4340 static bfd_boolean
4341 arm_make_glue_section (bfd * abfd, const char * name)
4342 {
4343 asection * sec;
4344
4345 sec = bfd_get_section_by_name (abfd, name);
4346 if (sec != NULL)
4347 /* Already made. */
4348 return TRUE;
4349
4350 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
4351
4352 if (sec == NULL
4353 || !bfd_set_section_alignment (abfd, sec, 2))
4354 return FALSE;
4355
4356 /* Set the gc mark to prevent the section from being removed by garbage
4357 collection, despite the fact that no relocs refer to this section. */
4358 sec->gc_mark = 1;
4359
4360 return TRUE;
4361 }
4362
4363 /* Add the glue sections to ABFD. This function is called from the
4364 linker scripts in ld/emultempl/{armelf}.em. */
4365
4366 bfd_boolean
4367 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4368 struct bfd_link_info *info)
4369 {
4370 /* If we are only performing a partial
4371 link do not bother adding the glue. */
4372 if (info->relocatable)
4373 return TRUE;
4374
4375 /* Linker stubs don't need glue. */
4376 if (!strcmp (abfd->filename, "linker stubs"))
4377 return TRUE;
4378
4379 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
4380 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
4381 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
4382 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
4383 }
4384
4385 /* Select a BFD to be used to hold the sections used by the glue code.
4386 This function is called from the linker scripts in ld/emultempl/
4387 {armelf/pe}.em. */
4388
4389 bfd_boolean
4390 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
4391 {
4392 struct elf32_arm_link_hash_table *globals;
4393
4394 /* If we are only performing a partial link
4395 do not bother getting a bfd to hold the glue. */
4396 if (info->relocatable)
4397 return TRUE;
4398
4399 /* Make sure we don't attach the glue sections to a dynamic object. */
4400 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4401
4402 globals = elf32_arm_hash_table (info);
4403
4404 BFD_ASSERT (globals != NULL);
4405
4406 if (globals->bfd_of_glue_owner != NULL)
4407 return TRUE;
4408
4409 /* Save the bfd for later use. */
4410 globals->bfd_of_glue_owner = abfd;
4411
4412 return TRUE;
4413 }
4414
4415 static void
4416 check_use_blx (struct elf32_arm_link_hash_table *globals)
4417 {
4418 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4419 Tag_CPU_arch) > 2)
4420 globals->use_blx = 1;
4421 }
4422
4423 bfd_boolean
4424 bfd_elf32_arm_process_before_allocation (bfd *abfd,
4425 struct bfd_link_info *link_info)
4426 {
4427 Elf_Internal_Shdr *symtab_hdr;
4428 Elf_Internal_Rela *internal_relocs = NULL;
4429 Elf_Internal_Rela *irel, *irelend;
4430 bfd_byte *contents = NULL;
4431
4432 asection *sec;
4433 struct elf32_arm_link_hash_table *globals;
4434
4435 /* If we are only performing a partial link do not bother
4436 to construct any glue. */
4437 if (link_info->relocatable)
4438 return TRUE;
4439
4440 /* Here we have a bfd that is to be included on the link. We have a
4441 hook to do reloc rummaging, before section sizes are nailed down. */
4442 globals = elf32_arm_hash_table (link_info);
4443
4444 BFD_ASSERT (globals != NULL);
4445
4446 check_use_blx (globals);
4447
4448 if (globals->byteswap_code && !bfd_big_endian (abfd))
4449 {
4450 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4451 abfd);
4452 return FALSE;
4453 }
4454
4455 /* PR 5398: If we have not decided to include any loadable sections in
4456 the output then we will not have a glue owner bfd. This is OK, it
4457 just means that there is nothing else for us to do here. */
4458 if (globals->bfd_of_glue_owner == NULL)
4459 return TRUE;
4460
4461 /* Rummage around all the relocs and map the glue vectors. */
4462 sec = abfd->sections;
4463
4464 if (sec == NULL)
4465 return TRUE;
4466
4467 for (; sec != NULL; sec = sec->next)
4468 {
4469 if (sec->reloc_count == 0)
4470 continue;
4471
4472 if ((sec->flags & SEC_EXCLUDE) != 0)
4473 continue;
4474
4475 symtab_hdr = & elf_symtab_hdr (abfd);
4476
4477 /* Load the relocs. */
4478 internal_relocs
4479 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
4480
4481 if (internal_relocs == NULL)
4482 goto error_return;
4483
4484 irelend = internal_relocs + sec->reloc_count;
4485 for (irel = internal_relocs; irel < irelend; irel++)
4486 {
4487 long r_type;
4488 unsigned long r_index;
4489
4490 struct elf_link_hash_entry *h;
4491
4492 r_type = ELF32_R_TYPE (irel->r_info);
4493 r_index = ELF32_R_SYM (irel->r_info);
4494
4495 /* These are the only relocation types we care about. */
4496 if ( r_type != R_ARM_PC24
4497 && r_type != R_ARM_PLT32
4498 && r_type != R_ARM_JUMP24
4499 && r_type != R_ARM_THM_JUMP24
4500 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
4501 continue;
4502
4503 /* Get the section contents if we haven't done so already. */
4504 if (contents == NULL)
4505 {
4506 /* Get cached copy if it exists. */
4507 if (elf_section_data (sec)->this_hdr.contents != NULL)
4508 contents = elf_section_data (sec)->this_hdr.contents;
4509 else
4510 {
4511 /* Go get them off disk. */
4512 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4513 goto error_return;
4514 }
4515 }
4516
4517 if (r_type == R_ARM_V4BX)
4518 {
4519 int reg;
4520
4521 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4522 record_arm_bx_glue (link_info, reg);
4523 continue;
4524 }
4525
4526 /* If the relocation is not against a symbol it cannot concern us. */
4527 h = NULL;
4528
4529 /* We don't care about local symbols. */
4530 if (r_index < symtab_hdr->sh_info)
4531 continue;
4532
4533 /* This is an external symbol. */
4534 r_index -= symtab_hdr->sh_info;
4535 h = (struct elf_link_hash_entry *)
4536 elf_sym_hashes (abfd)[r_index];
4537
4538 /* If the relocation is against a static symbol it must be within
4539 the current section and so cannot be a cross ARM/Thumb relocation. */
4540 if (h == NULL)
4541 continue;
4542
4543 /* If the call will go through a PLT entry then we do not need
4544 glue. */
4545 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
4546 continue;
4547
4548 switch (r_type)
4549 {
4550 case R_ARM_PC24:
4551 case R_ARM_PLT32:
4552 case R_ARM_JUMP24:
4553 /* This one is a call from arm code. We need to look up
4554 the target of the call. If it is a thumb target, we
4555 insert glue. */
4556 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
4557 && !(r_type == R_ARM_CALL && globals->use_blx))
4558 record_arm_to_thumb_glue (link_info, h);
4559 break;
4560
4561 case R_ARM_THM_JUMP24:
4562 /* This one is a call from thumb code. We look
4563 up the target of the call. If it is not a thumb
4564 target, we insert glue. */
4565 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4566 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
4567 && h->root.type != bfd_link_hash_undefweak)
4568 record_thumb_to_arm_glue (link_info, h);
4569 break;
4570
4571 default:
4572 abort ();
4573 }
4574 }
4575
4576 if (contents != NULL
4577 && elf_section_data (sec)->this_hdr.contents != contents)
4578 free (contents);
4579 contents = NULL;
4580
4581 if (internal_relocs != NULL
4582 && elf_section_data (sec)->relocs != internal_relocs)
4583 free (internal_relocs);
4584 internal_relocs = NULL;
4585 }
4586
4587 return TRUE;
4588
4589 error_return:
4590 if (contents != NULL
4591 && elf_section_data (sec)->this_hdr.contents != contents)
4592 free (contents);
4593 if (internal_relocs != NULL
4594 && elf_section_data (sec)->relocs != internal_relocs)
4595 free (internal_relocs);
4596
4597 return FALSE;
4598 }
4599 #endif
4600
4601
4602 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4603
4604 void
4605 bfd_elf32_arm_init_maps (bfd *abfd)
4606 {
4607 Elf_Internal_Sym *isymbuf;
4608 Elf_Internal_Shdr *hdr;
4609 unsigned int i, localsyms;
4610
4611 if ((abfd->flags & DYNAMIC) != 0)
4612 return;
4613
4614 hdr = & elf_symtab_hdr (abfd);
4615 localsyms = hdr->sh_info;
4616
4617 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4618 should contain the number of local symbols, which should come before any
4619 global symbols. Mapping symbols are always local. */
4620 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4621 NULL);
4622
4623 /* No internal symbols read? Skip this BFD. */
4624 if (isymbuf == NULL)
4625 return;
4626
4627 for (i = 0; i < localsyms; i++)
4628 {
4629 Elf_Internal_Sym *isym = &isymbuf[i];
4630 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4631 const char *name;
4632
4633 if (sec != NULL
4634 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4635 {
4636 name = bfd_elf_string_from_elf_section (abfd,
4637 hdr->sh_link, isym->st_name);
4638
4639 if (bfd_is_arm_special_symbol_name (name,
4640 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4641 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4642 }
4643 }
4644 }
4645
4646
4647 void
4648 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4649 {
4650 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4651 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
4652
4653 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4654 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4655 {
4656 switch (globals->vfp11_fix)
4657 {
4658 case BFD_ARM_VFP11_FIX_DEFAULT:
4659 case BFD_ARM_VFP11_FIX_NONE:
4660 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4661 break;
4662
4663 default:
4664 /* Give a warning, but do as the user requests anyway. */
4665 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4666 "workaround is not necessary for target architecture"), obfd);
4667 }
4668 }
4669 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4670 /* For earlier architectures, we might need the workaround, but do not
4671 enable it by default. If users is running with broken hardware, they
4672 must enable the erratum fix explicitly. */
4673 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4674 }
4675
4676
4677 enum bfd_arm_vfp11_pipe
4678 {
4679 VFP11_FMAC,
4680 VFP11_LS,
4681 VFP11_DS,
4682 VFP11_BAD
4683 };
4684
4685 /* Return a VFP register number. This is encoded as RX:X for single-precision
4686 registers, or X:RX for double-precision registers, where RX is the group of
4687 four bits in the instruction encoding and X is the single extension bit.
4688 RX and X fields are specified using their lowest (starting) bit. The return
4689 value is:
4690
4691 0...31: single-precision registers s0...s31
4692 32...63: double-precision registers d0...d31.
4693
4694 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4695 encounter VFP3 instructions, so we allow the full range for DP registers. */
4696
4697 static unsigned int
4698 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4699 unsigned int x)
4700 {
4701 if (is_double)
4702 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4703 else
4704 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4705 }
4706
4707 /* Set bits in *WMASK according to a register number REG as encoded by
4708 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4709
4710 static void
4711 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4712 {
4713 if (reg < 32)
4714 *wmask |= 1 << reg;
4715 else if (reg < 48)
4716 *wmask |= 3 << ((reg - 32) * 2);
4717 }
4718
4719 /* Return TRUE if WMASK overwrites anything in REGS. */
4720
4721 static bfd_boolean
4722 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4723 {
4724 int i;
4725
4726 for (i = 0; i < numregs; i++)
4727 {
4728 unsigned int reg = regs[i];
4729
4730 if (reg < 32 && (wmask & (1 << reg)) != 0)
4731 return TRUE;
4732
4733 reg -= 32;
4734
4735 if (reg >= 16)
4736 continue;
4737
4738 if ((wmask & (3 << (reg * 2))) != 0)
4739 return TRUE;
4740 }
4741
4742 return FALSE;
4743 }
4744
4745 /* In this function, we're interested in two things: finding input registers
4746 for VFP data-processing instructions, and finding the set of registers which
4747 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4748 hold the written set, so FLDM etc. are easy to deal with (we're only
4749 interested in 32 SP registers or 16 dp registers, due to the VFP version
4750 implemented by the chip in question). DP registers are marked by setting
4751 both SP registers in the write mask). */
4752
4753 static enum bfd_arm_vfp11_pipe
4754 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4755 int *numregs)
4756 {
4757 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4758 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4759
4760 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4761 {
4762 unsigned int pqrs;
4763 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4764 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4765
4766 pqrs = ((insn & 0x00800000) >> 20)
4767 | ((insn & 0x00300000) >> 19)
4768 | ((insn & 0x00000040) >> 6);
4769
4770 switch (pqrs)
4771 {
4772 case 0: /* fmac[sd]. */
4773 case 1: /* fnmac[sd]. */
4774 case 2: /* fmsc[sd]. */
4775 case 3: /* fnmsc[sd]. */
4776 pipe = VFP11_FMAC;
4777 bfd_arm_vfp11_write_mask (destmask, fd);
4778 regs[0] = fd;
4779 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4780 regs[2] = fm;
4781 *numregs = 3;
4782 break;
4783
4784 case 4: /* fmul[sd]. */
4785 case 5: /* fnmul[sd]. */
4786 case 6: /* fadd[sd]. */
4787 case 7: /* fsub[sd]. */
4788 pipe = VFP11_FMAC;
4789 goto vfp_binop;
4790
4791 case 8: /* fdiv[sd]. */
4792 pipe = VFP11_DS;
4793 vfp_binop:
4794 bfd_arm_vfp11_write_mask (destmask, fd);
4795 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4796 regs[1] = fm;
4797 *numregs = 2;
4798 break;
4799
4800 case 15: /* extended opcode. */
4801 {
4802 unsigned int extn = ((insn >> 15) & 0x1e)
4803 | ((insn >> 7) & 1);
4804
4805 switch (extn)
4806 {
4807 case 0: /* fcpy[sd]. */
4808 case 1: /* fabs[sd]. */
4809 case 2: /* fneg[sd]. */
4810 case 8: /* fcmp[sd]. */
4811 case 9: /* fcmpe[sd]. */
4812 case 10: /* fcmpz[sd]. */
4813 case 11: /* fcmpez[sd]. */
4814 case 16: /* fuito[sd]. */
4815 case 17: /* fsito[sd]. */
4816 case 24: /* ftoui[sd]. */
4817 case 25: /* ftouiz[sd]. */
4818 case 26: /* ftosi[sd]. */
4819 case 27: /* ftosiz[sd]. */
4820 /* These instructions will not bounce due to underflow. */
4821 *numregs = 0;
4822 pipe = VFP11_FMAC;
4823 break;
4824
4825 case 3: /* fsqrt[sd]. */
4826 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4827 registers to cause the erratum in previous instructions. */
4828 bfd_arm_vfp11_write_mask (destmask, fd);
4829 pipe = VFP11_DS;
4830 break;
4831
4832 case 15: /* fcvt{ds,sd}. */
4833 {
4834 int rnum = 0;
4835
4836 bfd_arm_vfp11_write_mask (destmask, fd);
4837
4838 /* Only FCVTSD can underflow. */
4839 if ((insn & 0x100) != 0)
4840 regs[rnum++] = fm;
4841
4842 *numregs = rnum;
4843
4844 pipe = VFP11_FMAC;
4845 }
4846 break;
4847
4848 default:
4849 return VFP11_BAD;
4850 }
4851 }
4852 break;
4853
4854 default:
4855 return VFP11_BAD;
4856 }
4857 }
4858 /* Two-register transfer. */
4859 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
4860 {
4861 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4862
4863 if ((insn & 0x100000) == 0)
4864 {
4865 if (is_double)
4866 bfd_arm_vfp11_write_mask (destmask, fm);
4867 else
4868 {
4869 bfd_arm_vfp11_write_mask (destmask, fm);
4870 bfd_arm_vfp11_write_mask (destmask, fm + 1);
4871 }
4872 }
4873
4874 pipe = VFP11_LS;
4875 }
4876 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
4877 {
4878 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4879 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
4880
4881 switch (puw)
4882 {
4883 case 0: /* Two-reg transfer. We should catch these above. */
4884 abort ();
4885
4886 case 2: /* fldm[sdx]. */
4887 case 3:
4888 case 5:
4889 {
4890 unsigned int i, offset = insn & 0xff;
4891
4892 if (is_double)
4893 offset >>= 1;
4894
4895 for (i = fd; i < fd + offset; i++)
4896 bfd_arm_vfp11_write_mask (destmask, i);
4897 }
4898 break;
4899
4900 case 4: /* fld[sd]. */
4901 case 6:
4902 bfd_arm_vfp11_write_mask (destmask, fd);
4903 break;
4904
4905 default:
4906 return VFP11_BAD;
4907 }
4908
4909 pipe = VFP11_LS;
4910 }
4911 /* Single-register transfer. Note L==0. */
4912 else if ((insn & 0x0f100e10) == 0x0e000a10)
4913 {
4914 unsigned int opcode = (insn >> 21) & 7;
4915 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
4916
4917 switch (opcode)
4918 {
4919 case 0: /* fmsr/fmdlr. */
4920 case 1: /* fmdhr. */
4921 /* Mark fmdhr and fmdlr as writing to the whole of the DP
4922 destination register. I don't know if this is exactly right,
4923 but it is the conservative choice. */
4924 bfd_arm_vfp11_write_mask (destmask, fn);
4925 break;
4926
4927 case 7: /* fmxr. */
4928 break;
4929 }
4930
4931 pipe = VFP11_LS;
4932 }
4933
4934 return pipe;
4935 }
4936
4937
4938 static int elf32_arm_compare_mapping (const void * a, const void * b);
4939
4940
4941 /* Look for potentially-troublesome code sequences which might trigger the
4942 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
4943 (available from ARM) for details of the erratum. A short version is
4944 described in ld.texinfo. */
4945
4946 bfd_boolean
4947 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
4948 {
4949 asection *sec;
4950 bfd_byte *contents = NULL;
4951 int state = 0;
4952 int regs[3], numregs = 0;
4953 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4954 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
4955
4956 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
4957 The states transition as follows:
4958
4959 0 -> 1 (vector) or 0 -> 2 (scalar)
4960 A VFP FMAC-pipeline instruction has been seen. Fill
4961 regs[0]..regs[numregs-1] with its input operands. Remember this
4962 instruction in 'first_fmac'.
4963
4964 1 -> 2
4965 Any instruction, except for a VFP instruction which overwrites
4966 regs[*].
4967
4968 1 -> 3 [ -> 0 ] or
4969 2 -> 3 [ -> 0 ]
4970 A VFP instruction has been seen which overwrites any of regs[*].
4971 We must make a veneer! Reset state to 0 before examining next
4972 instruction.
4973
4974 2 -> 0
4975 If we fail to match anything in state 2, reset to state 0 and reset
4976 the instruction pointer to the instruction after 'first_fmac'.
4977
4978 If the VFP11 vector mode is in use, there must be at least two unrelated
4979 instructions between anti-dependent VFP11 instructions to properly avoid
4980 triggering the erratum, hence the use of the extra state 1. */
4981
4982 /* If we are only performing a partial link do not bother
4983 to construct any glue. */
4984 if (link_info->relocatable)
4985 return TRUE;
4986
4987 /* Skip if this bfd does not correspond to an ELF image. */
4988 if (! is_arm_elf (abfd))
4989 return TRUE;
4990
4991 /* We should have chosen a fix type by the time we get here. */
4992 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
4993
4994 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
4995 return TRUE;
4996
4997 for (sec = abfd->sections; sec != NULL; sec = sec->next)
4998 {
4999 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5000 struct _arm_elf_section_data *sec_data;
5001
5002 /* If we don't have executable progbits, we're not interested in this
5003 section. Also skip if section is to be excluded. */
5004 if (elf_section_type (sec) != SHT_PROGBITS
5005 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5006 || (sec->flags & SEC_EXCLUDE) != 0
5007 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5008 continue;
5009
5010 sec_data = elf32_arm_section_data (sec);
5011
5012 if (sec_data->mapcount == 0)
5013 continue;
5014
5015 if (elf_section_data (sec)->this_hdr.contents != NULL)
5016 contents = elf_section_data (sec)->this_hdr.contents;
5017 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5018 goto error_return;
5019
5020 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5021 elf32_arm_compare_mapping);
5022
5023 for (span = 0; span < sec_data->mapcount; span++)
5024 {
5025 unsigned int span_start = sec_data->map[span].vma;
5026 unsigned int span_end = (span == sec_data->mapcount - 1)
5027 ? sec->size : sec_data->map[span + 1].vma;
5028 char span_type = sec_data->map[span].type;
5029
5030 /* FIXME: Only ARM mode is supported at present. We may need to
5031 support Thumb-2 mode also at some point. */
5032 if (span_type != 'a')
5033 continue;
5034
5035 for (i = span_start; i < span_end;)
5036 {
5037 unsigned int next_i = i + 4;
5038 unsigned int insn = bfd_big_endian (abfd)
5039 ? (contents[i] << 24)
5040 | (contents[i + 1] << 16)
5041 | (contents[i + 2] << 8)
5042 | contents[i + 3]
5043 : (contents[i + 3] << 24)
5044 | (contents[i + 2] << 16)
5045 | (contents[i + 1] << 8)
5046 | contents[i];
5047 unsigned int writemask = 0;
5048 enum bfd_arm_vfp11_pipe pipe;
5049
5050 switch (state)
5051 {
5052 case 0:
5053 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5054 &numregs);
5055 /* I'm assuming the VFP11 erratum can trigger with denorm
5056 operands on either the FMAC or the DS pipeline. This might
5057 lead to slightly overenthusiastic veneer insertion. */
5058 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5059 {
5060 state = use_vector ? 1 : 2;
5061 first_fmac = i;
5062 veneer_of_insn = insn;
5063 }
5064 break;
5065
5066 case 1:
5067 {
5068 int other_regs[3], other_numregs;
5069 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5070 other_regs,
5071 &other_numregs);
5072 if (pipe != VFP11_BAD
5073 && bfd_arm_vfp11_antidependency (writemask, regs,
5074 numregs))
5075 state = 3;
5076 else
5077 state = 2;
5078 }
5079 break;
5080
5081 case 2:
5082 {
5083 int other_regs[3], other_numregs;
5084 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5085 other_regs,
5086 &other_numregs);
5087 if (pipe != VFP11_BAD
5088 && bfd_arm_vfp11_antidependency (writemask, regs,
5089 numregs))
5090 state = 3;
5091 else
5092 {
5093 state = 0;
5094 next_i = first_fmac + 4;
5095 }
5096 }
5097 break;
5098
5099 case 3:
5100 abort (); /* Should be unreachable. */
5101 }
5102
5103 if (state == 3)
5104 {
5105 elf32_vfp11_erratum_list *newerr
5106 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5107 int errcount;
5108
5109 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5110
5111 newerr->u.b.vfp_insn = veneer_of_insn;
5112
5113 switch (span_type)
5114 {
5115 case 'a':
5116 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5117 break;
5118
5119 default:
5120 abort ();
5121 }
5122
5123 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5124 first_fmac);
5125
5126 newerr->vma = -1;
5127
5128 newerr->next = sec_data->erratumlist;
5129 sec_data->erratumlist = newerr;
5130
5131 state = 0;
5132 }
5133
5134 i = next_i;
5135 }
5136 }
5137
5138 if (contents != NULL
5139 && elf_section_data (sec)->this_hdr.contents != contents)
5140 free (contents);
5141 contents = NULL;
5142 }
5143
5144 return TRUE;
5145
5146 error_return:
5147 if (contents != NULL
5148 && elf_section_data (sec)->this_hdr.contents != contents)
5149 free (contents);
5150
5151 return FALSE;
5152 }
5153
5154 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5155 after sections have been laid out, using specially-named symbols. */
5156
5157 void
5158 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5159 struct bfd_link_info *link_info)
5160 {
5161 asection *sec;
5162 struct elf32_arm_link_hash_table *globals;
5163 char *tmp_name;
5164
5165 if (link_info->relocatable)
5166 return;
5167
5168 /* Skip if this bfd does not correspond to an ELF image. */
5169 if (! is_arm_elf (abfd))
5170 return;
5171
5172 globals = elf32_arm_hash_table (link_info);
5173
5174 tmp_name = bfd_malloc ((bfd_size_type) strlen
5175 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5176
5177 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5178 {
5179 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5180 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
5181
5182 for (; errnode != NULL; errnode = errnode->next)
5183 {
5184 struct elf_link_hash_entry *myh;
5185 bfd_vma vma;
5186
5187 switch (errnode->type)
5188 {
5189 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5190 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5191 /* Find veneer symbol. */
5192 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5193 errnode->u.b.veneer->u.v.id);
5194
5195 myh = elf_link_hash_lookup
5196 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5197
5198 if (myh == NULL)
5199 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5200 "`%s'"), abfd, tmp_name);
5201
5202 vma = myh->root.u.def.section->output_section->vma
5203 + myh->root.u.def.section->output_offset
5204 + myh->root.u.def.value;
5205
5206 errnode->u.b.veneer->vma = vma;
5207 break;
5208
5209 case VFP11_ERRATUM_ARM_VENEER:
5210 case VFP11_ERRATUM_THUMB_VENEER:
5211 /* Find return location. */
5212 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5213 errnode->u.v.id);
5214
5215 myh = elf_link_hash_lookup
5216 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5217
5218 if (myh == NULL)
5219 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5220 "`%s'"), abfd, tmp_name);
5221
5222 vma = myh->root.u.def.section->output_section->vma
5223 + myh->root.u.def.section->output_offset
5224 + myh->root.u.def.value;
5225
5226 errnode->u.v.branch->vma = vma;
5227 break;
5228
5229 default:
5230 abort ();
5231 }
5232 }
5233 }
5234
5235 free (tmp_name);
5236 }
5237
5238
5239 /* Set target relocation values needed during linking. */
5240
5241 void
5242 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5243 struct bfd_link_info *link_info,
5244 int target1_is_rel,
5245 char * target2_type,
5246 int fix_v4bx,
5247 int use_blx,
5248 bfd_arm_vfp11_fix vfp11_fix,
5249 int no_enum_warn, int no_wchar_warn,
5250 int pic_veneer)
5251 {
5252 struct elf32_arm_link_hash_table *globals;
5253
5254 globals = elf32_arm_hash_table (link_info);
5255
5256 globals->target1_is_rel = target1_is_rel;
5257 if (strcmp (target2_type, "rel") == 0)
5258 globals->target2_reloc = R_ARM_REL32;
5259 else if (strcmp (target2_type, "abs") == 0)
5260 globals->target2_reloc = R_ARM_ABS32;
5261 else if (strcmp (target2_type, "got-rel") == 0)
5262 globals->target2_reloc = R_ARM_GOT_PREL;
5263 else
5264 {
5265 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5266 target2_type);
5267 }
5268 globals->fix_v4bx = fix_v4bx;
5269 globals->use_blx |= use_blx;
5270 globals->vfp11_fix = vfp11_fix;
5271 globals->pic_veneer = pic_veneer;
5272
5273 BFD_ASSERT (is_arm_elf (output_bfd));
5274 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
5275 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
5276 }
5277
5278 /* Replace the target offset of a Thumb bl or b.w instruction. */
5279
5280 static void
5281 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5282 {
5283 bfd_vma upper;
5284 bfd_vma lower;
5285 int reloc_sign;
5286
5287 BFD_ASSERT ((offset & 1) == 0);
5288
5289 upper = bfd_get_16 (abfd, insn);
5290 lower = bfd_get_16 (abfd, insn + 2);
5291 reloc_sign = (offset < 0) ? 1 : 0;
5292 upper = (upper & ~(bfd_vma) 0x7ff)
5293 | ((offset >> 12) & 0x3ff)
5294 | (reloc_sign << 10);
5295 lower = (lower & ~(bfd_vma) 0x2fff)
5296 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5297 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5298 | ((offset >> 1) & 0x7ff);
5299 bfd_put_16 (abfd, upper, insn);
5300 bfd_put_16 (abfd, lower, insn + 2);
5301 }
5302
5303 /* Thumb code calling an ARM function. */
5304
5305 static int
5306 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5307 const char * name,
5308 bfd * input_bfd,
5309 bfd * output_bfd,
5310 asection * input_section,
5311 bfd_byte * hit_data,
5312 asection * sym_sec,
5313 bfd_vma offset,
5314 bfd_signed_vma addend,
5315 bfd_vma val,
5316 char **error_message)
5317 {
5318 asection * s = 0;
5319 bfd_vma my_offset;
5320 long int ret_offset;
5321 struct elf_link_hash_entry * myh;
5322 struct elf32_arm_link_hash_table * globals;
5323
5324 myh = find_thumb_glue (info, name, error_message);
5325 if (myh == NULL)
5326 return FALSE;
5327
5328 globals = elf32_arm_hash_table (info);
5329
5330 BFD_ASSERT (globals != NULL);
5331 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5332
5333 my_offset = myh->root.u.def.value;
5334
5335 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5336 THUMB2ARM_GLUE_SECTION_NAME);
5337
5338 BFD_ASSERT (s != NULL);
5339 BFD_ASSERT (s->contents != NULL);
5340 BFD_ASSERT (s->output_section != NULL);
5341
5342 if ((my_offset & 0x01) == 0x01)
5343 {
5344 if (sym_sec != NULL
5345 && sym_sec->owner != NULL
5346 && !INTERWORK_FLAG (sym_sec->owner))
5347 {
5348 (*_bfd_error_handler)
5349 (_("%B(%s): warning: interworking not enabled.\n"
5350 " first occurrence: %B: thumb call to arm"),
5351 sym_sec->owner, input_bfd, name);
5352
5353 return FALSE;
5354 }
5355
5356 --my_offset;
5357 myh->root.u.def.value = my_offset;
5358
5359 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5360 s->contents + my_offset);
5361
5362 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5363 s->contents + my_offset + 2);
5364
5365 ret_offset =
5366 /* Address of destination of the stub. */
5367 ((bfd_signed_vma) val)
5368 - ((bfd_signed_vma)
5369 /* Offset from the start of the current section
5370 to the start of the stubs. */
5371 (s->output_offset
5372 /* Offset of the start of this stub from the start of the stubs. */
5373 + my_offset
5374 /* Address of the start of the current section. */
5375 + s->output_section->vma)
5376 /* The branch instruction is 4 bytes into the stub. */
5377 + 4
5378 /* ARM branches work from the pc of the instruction + 8. */
5379 + 8);
5380
5381 put_arm_insn (globals, output_bfd,
5382 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5383 s->contents + my_offset + 4);
5384 }
5385
5386 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5387
5388 /* Now go back and fix up the original BL insn to point to here. */
5389 ret_offset =
5390 /* Address of where the stub is located. */
5391 (s->output_section->vma + s->output_offset + my_offset)
5392 /* Address of where the BL is located. */
5393 - (input_section->output_section->vma + input_section->output_offset
5394 + offset)
5395 /* Addend in the relocation. */
5396 - addend
5397 /* Biassing for PC-relative addressing. */
5398 - 8;
5399
5400 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
5401
5402 return TRUE;
5403 }
5404
5405 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5406
5407 static struct elf_link_hash_entry *
5408 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5409 const char * name,
5410 bfd * input_bfd,
5411 bfd * output_bfd,
5412 asection * sym_sec,
5413 bfd_vma val,
5414 asection * s,
5415 char ** error_message)
5416 {
5417 bfd_vma my_offset;
5418 long int ret_offset;
5419 struct elf_link_hash_entry * myh;
5420 struct elf32_arm_link_hash_table * globals;
5421
5422 myh = find_arm_glue (info, name, error_message);
5423 if (myh == NULL)
5424 return NULL;
5425
5426 globals = elf32_arm_hash_table (info);
5427
5428 BFD_ASSERT (globals != NULL);
5429 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5430
5431 my_offset = myh->root.u.def.value;
5432
5433 if ((my_offset & 0x01) == 0x01)
5434 {
5435 if (sym_sec != NULL
5436 && sym_sec->owner != NULL
5437 && !INTERWORK_FLAG (sym_sec->owner))
5438 {
5439 (*_bfd_error_handler)
5440 (_("%B(%s): warning: interworking not enabled.\n"
5441 " first occurrence: %B: arm call to thumb"),
5442 sym_sec->owner, input_bfd, name);
5443 }
5444
5445 --my_offset;
5446 myh->root.u.def.value = my_offset;
5447
5448 if (info->shared || globals->root.is_relocatable_executable
5449 || globals->pic_veneer)
5450 {
5451 /* For relocatable objects we can't use absolute addresses,
5452 so construct the address from a relative offset. */
5453 /* TODO: If the offset is small it's probably worth
5454 constructing the address with adds. */
5455 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5456 s->contents + my_offset);
5457 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5458 s->contents + my_offset + 4);
5459 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5460 s->contents + my_offset + 8);
5461 /* Adjust the offset by 4 for the position of the add,
5462 and 8 for the pipeline offset. */
5463 ret_offset = (val - (s->output_offset
5464 + s->output_section->vma
5465 + my_offset + 12))
5466 | 1;
5467 bfd_put_32 (output_bfd, ret_offset,
5468 s->contents + my_offset + 12);
5469 }
5470 else if (globals->use_blx)
5471 {
5472 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5473 s->contents + my_offset);
5474
5475 /* It's a thumb address. Add the low order bit. */
5476 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5477 s->contents + my_offset + 4);
5478 }
5479 else
5480 {
5481 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5482 s->contents + my_offset);
5483
5484 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5485 s->contents + my_offset + 4);
5486
5487 /* It's a thumb address. Add the low order bit. */
5488 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5489 s->contents + my_offset + 8);
5490
5491 my_offset += 12;
5492 }
5493 }
5494
5495 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5496
5497 return myh;
5498 }
5499
5500 /* Arm code calling a Thumb function. */
5501
5502 static int
5503 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5504 const char * name,
5505 bfd * input_bfd,
5506 bfd * output_bfd,
5507 asection * input_section,
5508 bfd_byte * hit_data,
5509 asection * sym_sec,
5510 bfd_vma offset,
5511 bfd_signed_vma addend,
5512 bfd_vma val,
5513 char **error_message)
5514 {
5515 unsigned long int tmp;
5516 bfd_vma my_offset;
5517 asection * s;
5518 long int ret_offset;
5519 struct elf_link_hash_entry * myh;
5520 struct elf32_arm_link_hash_table * globals;
5521
5522 globals = elf32_arm_hash_table (info);
5523
5524 BFD_ASSERT (globals != NULL);
5525 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5526
5527 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5528 ARM2THUMB_GLUE_SECTION_NAME);
5529 BFD_ASSERT (s != NULL);
5530 BFD_ASSERT (s->contents != NULL);
5531 BFD_ASSERT (s->output_section != NULL);
5532
5533 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
5534 sym_sec, val, s, error_message);
5535 if (!myh)
5536 return FALSE;
5537
5538 my_offset = myh->root.u.def.value;
5539 tmp = bfd_get_32 (input_bfd, hit_data);
5540 tmp = tmp & 0xFF000000;
5541
5542 /* Somehow these are both 4 too far, so subtract 8. */
5543 ret_offset = (s->output_offset
5544 + my_offset
5545 + s->output_section->vma
5546 - (input_section->output_offset
5547 + input_section->output_section->vma
5548 + offset + addend)
5549 - 8);
5550
5551 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5552
5553 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
5554
5555 return TRUE;
5556 }
5557
5558 /* Populate Arm stub for an exported Thumb function. */
5559
5560 static bfd_boolean
5561 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5562 {
5563 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5564 asection * s;
5565 struct elf_link_hash_entry * myh;
5566 struct elf32_arm_link_hash_entry *eh;
5567 struct elf32_arm_link_hash_table * globals;
5568 asection *sec;
5569 bfd_vma val;
5570 char *error_message;
5571
5572 eh = elf32_arm_hash_entry (h);
5573 /* Allocate stubs for exported Thumb functions on v4t. */
5574 if (eh->export_glue == NULL)
5575 return TRUE;
5576
5577 globals = elf32_arm_hash_table (info);
5578
5579 BFD_ASSERT (globals != NULL);
5580 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5581
5582 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5583 ARM2THUMB_GLUE_SECTION_NAME);
5584 BFD_ASSERT (s != NULL);
5585 BFD_ASSERT (s->contents != NULL);
5586 BFD_ASSERT (s->output_section != NULL);
5587
5588 sec = eh->export_glue->root.u.def.section;
5589
5590 BFD_ASSERT (sec->output_section != NULL);
5591
5592 val = eh->export_glue->root.u.def.value + sec->output_offset
5593 + sec->output_section->vma;
5594
5595 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5596 h->root.u.def.section->owner,
5597 globals->obfd, sec, val, s,
5598 &error_message);
5599 BFD_ASSERT (myh);
5600 return TRUE;
5601 }
5602
5603 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5604
5605 static bfd_vma
5606 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5607 {
5608 bfd_byte *p;
5609 bfd_vma glue_addr;
5610 asection *s;
5611 struct elf32_arm_link_hash_table *globals;
5612
5613 globals = elf32_arm_hash_table (info);
5614
5615 BFD_ASSERT (globals != NULL);
5616 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5617
5618 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5619 ARM_BX_GLUE_SECTION_NAME);
5620 BFD_ASSERT (s != NULL);
5621 BFD_ASSERT (s->contents != NULL);
5622 BFD_ASSERT (s->output_section != NULL);
5623
5624 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5625
5626 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5627
5628 if ((globals->bx_glue_offset[reg] & 1) == 0)
5629 {
5630 p = s->contents + glue_addr;
5631 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5632 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5633 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5634 globals->bx_glue_offset[reg] |= 1;
5635 }
5636
5637 return glue_addr + s->output_section->vma + s->output_offset;
5638 }
5639
5640 /* Generate Arm stubs for exported Thumb symbols. */
5641 static void
5642 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
5643 struct bfd_link_info *link_info)
5644 {
5645 struct elf32_arm_link_hash_table * globals;
5646
5647 if (link_info == NULL)
5648 /* Ignore this if we are not called by the ELF backend linker. */
5649 return;
5650
5651 globals = elf32_arm_hash_table (link_info);
5652 /* If blx is available then exported Thumb symbols are OK and there is
5653 nothing to do. */
5654 if (globals->use_blx)
5655 return;
5656
5657 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5658 link_info);
5659 }
5660
5661 /* Some relocations map to different relocations depending on the
5662 target. Return the real relocation. */
5663
5664 static int
5665 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5666 int r_type)
5667 {
5668 switch (r_type)
5669 {
5670 case R_ARM_TARGET1:
5671 if (globals->target1_is_rel)
5672 return R_ARM_REL32;
5673 else
5674 return R_ARM_ABS32;
5675
5676 case R_ARM_TARGET2:
5677 return globals->target2_reloc;
5678
5679 default:
5680 return r_type;
5681 }
5682 }
5683
5684 /* Return the base VMA address which should be subtracted from real addresses
5685 when resolving @dtpoff relocation.
5686 This is PT_TLS segment p_vaddr. */
5687
5688 static bfd_vma
5689 dtpoff_base (struct bfd_link_info *info)
5690 {
5691 /* If tls_sec is NULL, we should have signalled an error already. */
5692 if (elf_hash_table (info)->tls_sec == NULL)
5693 return 0;
5694 return elf_hash_table (info)->tls_sec->vma;
5695 }
5696
5697 /* Return the relocation value for @tpoff relocation
5698 if STT_TLS virtual address is ADDRESS. */
5699
5700 static bfd_vma
5701 tpoff (struct bfd_link_info *info, bfd_vma address)
5702 {
5703 struct elf_link_hash_table *htab = elf_hash_table (info);
5704 bfd_vma base;
5705
5706 /* If tls_sec is NULL, we should have signalled an error already. */
5707 if (htab->tls_sec == NULL)
5708 return 0;
5709 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5710 return address - htab->tls_sec->vma + base;
5711 }
5712
5713 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5714 VALUE is the relocation value. */
5715
5716 static bfd_reloc_status_type
5717 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5718 {
5719 if (value > 0xfff)
5720 return bfd_reloc_overflow;
5721
5722 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5723 bfd_put_32 (abfd, value, data);
5724 return bfd_reloc_ok;
5725 }
5726
5727 /* For a given value of n, calculate the value of G_n as required to
5728 deal with group relocations. We return it in the form of an
5729 encoded constant-and-rotation, together with the final residual. If n is
5730 specified as less than zero, then final_residual is filled with the
5731 input value and no further action is performed. */
5732
5733 static bfd_vma
5734 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5735 {
5736 int current_n;
5737 bfd_vma g_n;
5738 bfd_vma encoded_g_n = 0;
5739 bfd_vma residual = value; /* Also known as Y_n. */
5740
5741 for (current_n = 0; current_n <= n; current_n++)
5742 {
5743 int shift;
5744
5745 /* Calculate which part of the value to mask. */
5746 if (residual == 0)
5747 shift = 0;
5748 else
5749 {
5750 int msb;
5751
5752 /* Determine the most significant bit in the residual and
5753 align the resulting value to a 2-bit boundary. */
5754 for (msb = 30; msb >= 0; msb -= 2)
5755 if (residual & (3 << msb))
5756 break;
5757
5758 /* The desired shift is now (msb - 6), or zero, whichever
5759 is the greater. */
5760 shift = msb - 6;
5761 if (shift < 0)
5762 shift = 0;
5763 }
5764
5765 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5766 g_n = residual & (0xff << shift);
5767 encoded_g_n = (g_n >> shift)
5768 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5769
5770 /* Calculate the residual for the next time around. */
5771 residual &= ~g_n;
5772 }
5773
5774 *final_residual = residual;
5775
5776 return encoded_g_n;
5777 }
5778
5779 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5780 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5781
5782 static int
5783 identify_add_or_sub (bfd_vma insn)
5784 {
5785 int opcode = insn & 0x1e00000;
5786
5787 if (opcode == 1 << 23) /* ADD */
5788 return 1;
5789
5790 if (opcode == 1 << 22) /* SUB */
5791 return -1;
5792
5793 return 0;
5794 }
5795
5796 /* Perform a relocation as part of a final link. */
5797
5798 static bfd_reloc_status_type
5799 elf32_arm_final_link_relocate (reloc_howto_type * howto,
5800 bfd * input_bfd,
5801 bfd * output_bfd,
5802 asection * input_section,
5803 bfd_byte * contents,
5804 Elf_Internal_Rela * rel,
5805 bfd_vma value,
5806 struct bfd_link_info * info,
5807 asection * sym_sec,
5808 const char * sym_name,
5809 int sym_flags,
5810 struct elf_link_hash_entry * h,
5811 bfd_boolean * unresolved_reloc_p,
5812 char ** error_message)
5813 {
5814 unsigned long r_type = howto->type;
5815 unsigned long r_symndx;
5816 bfd_byte * hit_data = contents + rel->r_offset;
5817 bfd * dynobj = NULL;
5818 Elf_Internal_Shdr * symtab_hdr;
5819 struct elf_link_hash_entry ** sym_hashes;
5820 bfd_vma * local_got_offsets;
5821 asection * sgot = NULL;
5822 asection * splt = NULL;
5823 asection * sreloc = NULL;
5824 bfd_vma addend;
5825 bfd_signed_vma signed_addend;
5826 struct elf32_arm_link_hash_table * globals;
5827
5828 globals = elf32_arm_hash_table (info);
5829
5830 BFD_ASSERT (is_arm_elf (input_bfd));
5831
5832 /* Some relocation types map to different relocations depending on the
5833 target. We pick the right one here. */
5834 r_type = arm_real_reloc_type (globals, r_type);
5835 if (r_type != howto->type)
5836 howto = elf32_arm_howto_from_type (r_type);
5837
5838 /* If the start address has been set, then set the EF_ARM_HASENTRY
5839 flag. Setting this more than once is redundant, but the cost is
5840 not too high, and it keeps the code simple.
5841
5842 The test is done here, rather than somewhere else, because the
5843 start address is only set just before the final link commences.
5844
5845 Note - if the user deliberately sets a start address of 0, the
5846 flag will not be set. */
5847 if (bfd_get_start_address (output_bfd) != 0)
5848 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
5849
5850 dynobj = elf_hash_table (info)->dynobj;
5851 if (dynobj)
5852 {
5853 sgot = bfd_get_section_by_name (dynobj, ".got");
5854 splt = bfd_get_section_by_name (dynobj, ".plt");
5855 }
5856 symtab_hdr = & elf_symtab_hdr (input_bfd);
5857 sym_hashes = elf_sym_hashes (input_bfd);
5858 local_got_offsets = elf_local_got_offsets (input_bfd);
5859 r_symndx = ELF32_R_SYM (rel->r_info);
5860
5861 if (globals->use_rel)
5862 {
5863 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
5864
5865 if (addend & ((howto->src_mask + 1) >> 1))
5866 {
5867 signed_addend = -1;
5868 signed_addend &= ~ howto->src_mask;
5869 signed_addend |= addend;
5870 }
5871 else
5872 signed_addend = addend;
5873 }
5874 else
5875 addend = signed_addend = rel->r_addend;
5876
5877 switch (r_type)
5878 {
5879 case R_ARM_NONE:
5880 /* We don't need to find a value for this symbol. It's just a
5881 marker. */
5882 *unresolved_reloc_p = FALSE;
5883 return bfd_reloc_ok;
5884
5885 case R_ARM_ABS12:
5886 if (!globals->vxworks_p)
5887 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
5888
5889 case R_ARM_PC24:
5890 case R_ARM_ABS32:
5891 case R_ARM_ABS32_NOI:
5892 case R_ARM_REL32:
5893 case R_ARM_REL32_NOI:
5894 case R_ARM_CALL:
5895 case R_ARM_JUMP24:
5896 case R_ARM_XPC25:
5897 case R_ARM_PREL31:
5898 case R_ARM_PLT32:
5899 /* Handle relocations which should use the PLT entry. ABS32/REL32
5900 will use the symbol's value, which may point to a PLT entry, but we
5901 don't need to handle that here. If we created a PLT entry, all
5902 branches in this object should go to it. */
5903 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5904 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
5905 && h != NULL
5906 && splt != NULL
5907 && h->plt.offset != (bfd_vma) -1)
5908 {
5909 /* If we've created a .plt section, and assigned a PLT entry to
5910 this function, it should not be known to bind locally. If
5911 it were, we would have cleared the PLT entry. */
5912 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
5913
5914 value = (splt->output_section->vma
5915 + splt->output_offset
5916 + h->plt.offset);
5917 *unresolved_reloc_p = FALSE;
5918 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5919 contents, rel->r_offset, value,
5920 rel->r_addend);
5921 }
5922
5923 /* When generating a shared object or relocatable executable, these
5924 relocations are copied into the output file to be resolved at
5925 run time. */
5926 if ((info->shared || globals->root.is_relocatable_executable)
5927 && (input_section->flags & SEC_ALLOC)
5928 && !(elf32_arm_hash_table (info)->vxworks_p
5929 && strcmp (input_section->output_section->name,
5930 ".tls_vars") == 0)
5931 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
5932 || !SYMBOL_CALLS_LOCAL (info, h))
5933 && (h == NULL
5934 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5935 || h->root.type != bfd_link_hash_undefweak)
5936 && r_type != R_ARM_PC24
5937 && r_type != R_ARM_CALL
5938 && r_type != R_ARM_JUMP24
5939 && r_type != R_ARM_PREL31
5940 && r_type != R_ARM_PLT32)
5941 {
5942 Elf_Internal_Rela outrel;
5943 bfd_byte *loc;
5944 bfd_boolean skip, relocate;
5945
5946 *unresolved_reloc_p = FALSE;
5947
5948 if (sreloc == NULL)
5949 {
5950 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
5951 ! globals->use_rel);
5952
5953 if (sreloc == NULL)
5954 return bfd_reloc_notsupported;
5955 }
5956
5957 skip = FALSE;
5958 relocate = FALSE;
5959
5960 outrel.r_addend = addend;
5961 outrel.r_offset =
5962 _bfd_elf_section_offset (output_bfd, info, input_section,
5963 rel->r_offset);
5964 if (outrel.r_offset == (bfd_vma) -1)
5965 skip = TRUE;
5966 else if (outrel.r_offset == (bfd_vma) -2)
5967 skip = TRUE, relocate = TRUE;
5968 outrel.r_offset += (input_section->output_section->vma
5969 + input_section->output_offset);
5970
5971 if (skip)
5972 memset (&outrel, 0, sizeof outrel);
5973 else if (h != NULL
5974 && h->dynindx != -1
5975 && (!info->shared
5976 || !info->symbolic
5977 || !h->def_regular))
5978 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
5979 else
5980 {
5981 int symbol;
5982
5983 /* This symbol is local, or marked to become local. */
5984 if (sym_flags == STT_ARM_TFUNC)
5985 value |= 1;
5986 if (globals->symbian_p)
5987 {
5988 asection *osec;
5989
5990 /* On Symbian OS, the data segment and text segement
5991 can be relocated independently. Therefore, we
5992 must indicate the segment to which this
5993 relocation is relative. The BPABI allows us to
5994 use any symbol in the right segment; we just use
5995 the section symbol as it is convenient. (We
5996 cannot use the symbol given by "h" directly as it
5997 will not appear in the dynamic symbol table.)
5998
5999 Note that the dynamic linker ignores the section
6000 symbol value, so we don't subtract osec->vma
6001 from the emitted reloc addend. */
6002 if (sym_sec)
6003 osec = sym_sec->output_section;
6004 else
6005 osec = input_section->output_section;
6006 symbol = elf_section_data (osec)->dynindx;
6007 if (symbol == 0)
6008 {
6009 struct elf_link_hash_table *htab = elf_hash_table (info);
6010
6011 if ((osec->flags & SEC_READONLY) == 0
6012 && htab->data_index_section != NULL)
6013 osec = htab->data_index_section;
6014 else
6015 osec = htab->text_index_section;
6016 symbol = elf_section_data (osec)->dynindx;
6017 }
6018 BFD_ASSERT (symbol != 0);
6019 }
6020 else
6021 /* On SVR4-ish systems, the dynamic loader cannot
6022 relocate the text and data segments independently,
6023 so the symbol does not matter. */
6024 symbol = 0;
6025 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6026 if (globals->use_rel)
6027 relocate = TRUE;
6028 else
6029 outrel.r_addend += value;
6030 }
6031
6032 loc = sreloc->contents;
6033 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6034 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6035
6036 /* If this reloc is against an external symbol, we do not want to
6037 fiddle with the addend. Otherwise, we need to include the symbol
6038 value so that it becomes an addend for the dynamic reloc. */
6039 if (! relocate)
6040 return bfd_reloc_ok;
6041
6042 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6043 contents, rel->r_offset, value,
6044 (bfd_vma) 0);
6045 }
6046 else switch (r_type)
6047 {
6048 case R_ARM_ABS12:
6049 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6050
6051 case R_ARM_XPC25: /* Arm BLX instruction. */
6052 case R_ARM_CALL:
6053 case R_ARM_JUMP24:
6054 case R_ARM_PC24: /* Arm B/BL instruction. */
6055 case R_ARM_PLT32:
6056 {
6057 bfd_vma from;
6058 bfd_signed_vma branch_offset;
6059 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6060
6061 from = (input_section->output_section->vma
6062 + input_section->output_offset
6063 + rel->r_offset);
6064 branch_offset = (bfd_signed_vma)(value - from);
6065
6066 if (r_type == R_ARM_XPC25)
6067 {
6068 /* Check for Arm calling Arm function. */
6069 /* FIXME: Should we translate the instruction into a BL
6070 instruction instead ? */
6071 if (sym_flags != STT_ARM_TFUNC)
6072 (*_bfd_error_handler)
6073 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6074 input_bfd,
6075 h ? h->root.root.string : "(local)");
6076 }
6077 else if (r_type != R_ARM_CALL)
6078 {
6079 /* Check for Arm calling Thumb function. */
6080 if (sym_flags == STT_ARM_TFUNC)
6081 {
6082 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6083 output_bfd, input_section,
6084 hit_data, sym_sec, rel->r_offset,
6085 signed_addend, value,
6086 error_message))
6087 return bfd_reloc_ok;
6088 else
6089 return bfd_reloc_dangerous;
6090 }
6091 }
6092
6093 /* Check if a stub has to be inserted because the
6094 destination is too far or we are changing mode. */
6095 if (r_type == R_ARM_CALL)
6096 {
6097 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6098 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6099 || sym_flags == STT_ARM_TFUNC)
6100 {
6101 /* The target is out of reach, so redirect the
6102 branch to the local stub for this function. */
6103
6104 stub_entry = elf32_arm_get_stub_entry (input_section,
6105 sym_sec, h,
6106 rel, globals);
6107 if (stub_entry != NULL)
6108 value = (stub_entry->stub_offset
6109 + stub_entry->stub_sec->output_offset
6110 + stub_entry->stub_sec->output_section->vma);
6111 }
6112 }
6113
6114 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6115 where:
6116 S is the address of the symbol in the relocation.
6117 P is address of the instruction being relocated.
6118 A is the addend (extracted from the instruction) in bytes.
6119
6120 S is held in 'value'.
6121 P is the base address of the section containing the
6122 instruction plus the offset of the reloc into that
6123 section, ie:
6124 (input_section->output_section->vma +
6125 input_section->output_offset +
6126 rel->r_offset).
6127 A is the addend, converted into bytes, ie:
6128 (signed_addend * 4)
6129
6130 Note: None of these operations have knowledge of the pipeline
6131 size of the processor, thus it is up to the assembler to
6132 encode this information into the addend. */
6133 value -= (input_section->output_section->vma
6134 + input_section->output_offset);
6135 value -= rel->r_offset;
6136 if (globals->use_rel)
6137 value += (signed_addend << howto->size);
6138 else
6139 /* RELA addends do not have to be adjusted by howto->size. */
6140 value += signed_addend;
6141
6142 signed_addend = value;
6143 signed_addend >>= howto->rightshift;
6144
6145 /* A branch to an undefined weak symbol is turned into a jump to
6146 the next instruction. */
6147 if (h && h->root.type == bfd_link_hash_undefweak)
6148 {
6149 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6150 | 0x0affffff;
6151 }
6152 else
6153 {
6154 /* Perform a signed range check. */
6155 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
6156 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6157 return bfd_reloc_overflow;
6158
6159 addend = (value & 2);
6160
6161 value = (signed_addend & howto->dst_mask)
6162 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
6163
6164 /* Set the H bit in the BLX instruction. */
6165 if (sym_flags == STT_ARM_TFUNC)
6166 {
6167 if (addend)
6168 value |= (1 << 24);
6169 else
6170 value &= ~(bfd_vma)(1 << 24);
6171 }
6172 if (r_type == R_ARM_CALL)
6173 {
6174 /* Select the correct instruction (BL or BLX). */
6175 /* Only if we are not handling a BL to a stub. In this
6176 case, mode switching is performed by the stub. */
6177 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
6178 value |= (1 << 28);
6179 else
6180 {
6181 value &= ~(bfd_vma)(1 << 28);
6182 value |= (1 << 24);
6183 }
6184 }
6185 }
6186 }
6187 break;
6188
6189 case R_ARM_ABS32:
6190 value += addend;
6191 if (sym_flags == STT_ARM_TFUNC)
6192 value |= 1;
6193 break;
6194
6195 case R_ARM_ABS32_NOI:
6196 value += addend;
6197 break;
6198
6199 case R_ARM_REL32:
6200 value += addend;
6201 if (sym_flags == STT_ARM_TFUNC)
6202 value |= 1;
6203 value -= (input_section->output_section->vma
6204 + input_section->output_offset + rel->r_offset);
6205 break;
6206
6207 case R_ARM_REL32_NOI:
6208 value += addend;
6209 value -= (input_section->output_section->vma
6210 + input_section->output_offset + rel->r_offset);
6211 break;
6212
6213 case R_ARM_PREL31:
6214 value -= (input_section->output_section->vma
6215 + input_section->output_offset + rel->r_offset);
6216 value += signed_addend;
6217 if (! h || h->root.type != bfd_link_hash_undefweak)
6218 {
6219 /* Check for overflow. */
6220 if ((value ^ (value >> 1)) & (1 << 30))
6221 return bfd_reloc_overflow;
6222 }
6223 value &= 0x7fffffff;
6224 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6225 if (sym_flags == STT_ARM_TFUNC)
6226 value |= 1;
6227 break;
6228 }
6229
6230 bfd_put_32 (input_bfd, value, hit_data);
6231 return bfd_reloc_ok;
6232
6233 case R_ARM_ABS8:
6234 value += addend;
6235 if ((long) value > 0x7f || (long) value < -0x80)
6236 return bfd_reloc_overflow;
6237
6238 bfd_put_8 (input_bfd, value, hit_data);
6239 return bfd_reloc_ok;
6240
6241 case R_ARM_ABS16:
6242 value += addend;
6243
6244 if ((long) value > 0x7fff || (long) value < -0x8000)
6245 return bfd_reloc_overflow;
6246
6247 bfd_put_16 (input_bfd, value, hit_data);
6248 return bfd_reloc_ok;
6249
6250 case R_ARM_THM_ABS5:
6251 /* Support ldr and str instructions for the thumb. */
6252 if (globals->use_rel)
6253 {
6254 /* Need to refetch addend. */
6255 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6256 /* ??? Need to determine shift amount from operand size. */
6257 addend >>= howto->rightshift;
6258 }
6259 value += addend;
6260
6261 /* ??? Isn't value unsigned? */
6262 if ((long) value > 0x1f || (long) value < -0x10)
6263 return bfd_reloc_overflow;
6264
6265 /* ??? Value needs to be properly shifted into place first. */
6266 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6267 bfd_put_16 (input_bfd, value, hit_data);
6268 return bfd_reloc_ok;
6269
6270 case R_ARM_THM_ALU_PREL_11_0:
6271 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6272 {
6273 bfd_vma insn;
6274 bfd_signed_vma relocation;
6275
6276 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6277 | bfd_get_16 (input_bfd, hit_data + 2);
6278
6279 if (globals->use_rel)
6280 {
6281 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6282 | ((insn & (1 << 26)) >> 15);
6283 if (insn & 0xf00000)
6284 signed_addend = -signed_addend;
6285 }
6286
6287 relocation = value + signed_addend;
6288 relocation -= (input_section->output_section->vma
6289 + input_section->output_offset
6290 + rel->r_offset);
6291
6292 value = abs (relocation);
6293
6294 if (value >= 0x1000)
6295 return bfd_reloc_overflow;
6296
6297 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6298 | ((value & 0x700) << 4)
6299 | ((value & 0x800) << 15);
6300 if (relocation < 0)
6301 insn |= 0xa00000;
6302
6303 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6304 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6305
6306 return bfd_reloc_ok;
6307 }
6308
6309 case R_ARM_THM_PC12:
6310 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6311 {
6312 bfd_vma insn;
6313 bfd_signed_vma relocation;
6314
6315 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6316 | bfd_get_16 (input_bfd, hit_data + 2);
6317
6318 if (globals->use_rel)
6319 {
6320 signed_addend = insn & 0xfff;
6321 if (!(insn & (1 << 23)))
6322 signed_addend = -signed_addend;
6323 }
6324
6325 relocation = value + signed_addend;
6326 relocation -= (input_section->output_section->vma
6327 + input_section->output_offset
6328 + rel->r_offset);
6329
6330 value = abs (relocation);
6331
6332 if (value >= 0x1000)
6333 return bfd_reloc_overflow;
6334
6335 insn = (insn & 0xff7ff000) | value;
6336 if (relocation >= 0)
6337 insn |= (1 << 23);
6338
6339 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6340 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6341
6342 return bfd_reloc_ok;
6343 }
6344
6345 case R_ARM_THM_XPC22:
6346 case R_ARM_THM_CALL:
6347 case R_ARM_THM_JUMP24:
6348 /* Thumb BL (branch long instruction). */
6349 {
6350 bfd_vma relocation;
6351 bfd_vma reloc_sign;
6352 bfd_boolean overflow = FALSE;
6353 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6354 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6355 bfd_signed_vma reloc_signed_max;
6356 bfd_signed_vma reloc_signed_min;
6357 bfd_vma check;
6358 bfd_signed_vma signed_check;
6359 int bitsize;
6360 int thumb2 = using_thumb2 (globals);
6361
6362 /* A branch to an undefined weak symbol is turned into a jump to
6363 the next instruction. */
6364 if (h && h->root.type == bfd_link_hash_undefweak)
6365 {
6366 bfd_put_16 (input_bfd, 0xe000, hit_data);
6367 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6368 return bfd_reloc_ok;
6369 }
6370
6371 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6372 with Thumb-1) involving the J1 and J2 bits. */
6373 if (globals->use_rel)
6374 {
6375 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6376 bfd_vma upper = upper_insn & 0x3ff;
6377 bfd_vma lower = lower_insn & 0x7ff;
6378 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6379 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6380 bfd_vma i1 = j1 ^ s ? 0 : 1;
6381 bfd_vma i2 = j2 ^ s ? 0 : 1;
6382
6383 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6384 /* Sign extend. */
6385 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6386
6387 signed_addend = addend;
6388 }
6389
6390 if (r_type == R_ARM_THM_XPC22)
6391 {
6392 /* Check for Thumb to Thumb call. */
6393 /* FIXME: Should we translate the instruction into a BL
6394 instruction instead ? */
6395 if (sym_flags == STT_ARM_TFUNC)
6396 (*_bfd_error_handler)
6397 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6398 input_bfd,
6399 h ? h->root.root.string : "(local)");
6400 }
6401 else
6402 {
6403 /* If it is not a call to Thumb, assume call to Arm.
6404 If it is a call relative to a section name, then it is not a
6405 function call at all, but rather a long jump. Calls through
6406 the PLT do not require stubs. */
6407 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6408 && (h == NULL || splt == NULL
6409 || h->plt.offset == (bfd_vma) -1))
6410 {
6411 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6412 {
6413 /* Convert BL to BLX. */
6414 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6415 }
6416 else if (r_type != R_ARM_THM_CALL)
6417 {
6418 if (elf32_thumb_to_arm_stub
6419 (info, sym_name, input_bfd, output_bfd, input_section,
6420 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6421 error_message))
6422 return bfd_reloc_ok;
6423 else
6424 return bfd_reloc_dangerous;
6425 }
6426 }
6427 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6428 && r_type == R_ARM_THM_CALL)
6429 {
6430 /* Make sure this is a BL. */
6431 lower_insn |= 0x1800;
6432 }
6433 }
6434
6435 /* Handle calls via the PLT. */
6436 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6437 {
6438 value = (splt->output_section->vma
6439 + splt->output_offset
6440 + h->plt.offset);
6441 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6442 {
6443 /* If the Thumb BLX instruction is available, convert the
6444 BL to a BLX instruction to call the ARM-mode PLT entry. */
6445 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6446 }
6447 else
6448 /* Target the Thumb stub before the ARM PLT entry. */
6449 value -= PLT_THUMB_STUB_SIZE;
6450 *unresolved_reloc_p = FALSE;
6451 }
6452
6453 if (r_type == R_ARM_THM_CALL)
6454 {
6455 /* Check if a stub has to be inserted because the destination
6456 is too far. */
6457 bfd_vma from;
6458 bfd_signed_vma branch_offset;
6459 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6460
6461 from = (input_section->output_section->vma
6462 + input_section->output_offset
6463 + rel->r_offset);
6464 branch_offset = (bfd_signed_vma)(value - from);
6465
6466 if ((!thumb2
6467 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6468 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6469 ||
6470 (thumb2
6471 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
6472 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
6473 || ((sym_flags != STT_ARM_TFUNC) && !globals->use_blx))
6474 {
6475 /* The target is out of reach or we are changing modes, so
6476 redirect the branch to the local stub for this
6477 function. */
6478 stub_entry = elf32_arm_get_stub_entry (input_section,
6479 sym_sec, h,
6480 rel, globals);
6481 if (stub_entry != NULL)
6482 value = (stub_entry->stub_offset
6483 + stub_entry->stub_sec->output_offset
6484 + stub_entry->stub_sec->output_section->vma);
6485
6486 /* If this call becomes a call to Arm, force BLX. */
6487 if (globals->use_blx)
6488 {
6489 if ((stub_entry
6490 && !arm_stub_is_thumb (stub_entry->stub_type))
6491 || (sym_flags != STT_ARM_TFUNC))
6492 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6493 }
6494 }
6495 }
6496
6497 relocation = value + signed_addend;
6498
6499 relocation -= (input_section->output_section->vma
6500 + input_section->output_offset
6501 + rel->r_offset);
6502
6503 check = relocation >> howto->rightshift;
6504
6505 /* If this is a signed value, the rightshift just dropped
6506 leading 1 bits (assuming twos complement). */
6507 if ((bfd_signed_vma) relocation >= 0)
6508 signed_check = check;
6509 else
6510 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6511
6512 /* Calculate the permissable maximum and minimum values for
6513 this relocation according to whether we're relocating for
6514 Thumb-2 or not. */
6515 bitsize = howto->bitsize;
6516 if (!thumb2)
6517 bitsize -= 2;
6518 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6519 reloc_signed_min = ~reloc_signed_max;
6520
6521 /* Assumes two's complement. */
6522 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6523 overflow = TRUE;
6524
6525 if ((lower_insn & 0x5000) == 0x4000)
6526 /* For a BLX instruction, make sure that the relocation is rounded up
6527 to a word boundary. This follows the semantics of the instruction
6528 which specifies that bit 1 of the target address will come from bit
6529 1 of the base address. */
6530 relocation = (relocation + 2) & ~ 3;
6531
6532 /* Put RELOCATION back into the insn. Assumes two's complement.
6533 We use the Thumb-2 encoding, which is safe even if dealing with
6534 a Thumb-1 instruction by virtue of our overflow check above. */
6535 reloc_sign = (signed_check < 0) ? 1 : 0;
6536 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6537 | ((relocation >> 12) & 0x3ff)
6538 | (reloc_sign << 10);
6539 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
6540 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6541 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6542 | ((relocation >> 1) & 0x7ff);
6543
6544 /* Put the relocated value back in the object file: */
6545 bfd_put_16 (input_bfd, upper_insn, hit_data);
6546 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6547
6548 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6549 }
6550 break;
6551
6552 case R_ARM_THM_JUMP19:
6553 /* Thumb32 conditional branch instruction. */
6554 {
6555 bfd_vma relocation;
6556 bfd_boolean overflow = FALSE;
6557 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6558 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6559 bfd_signed_vma reloc_signed_max = 0xffffe;
6560 bfd_signed_vma reloc_signed_min = -0x100000;
6561 bfd_signed_vma signed_check;
6562
6563 /* Need to refetch the addend, reconstruct the top three bits,
6564 and squish the two 11 bit pieces together. */
6565 if (globals->use_rel)
6566 {
6567 bfd_vma S = (upper_insn & 0x0400) >> 10;
6568 bfd_vma upper = (upper_insn & 0x003f);
6569 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6570 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6571 bfd_vma lower = (lower_insn & 0x07ff);
6572
6573 upper |= J1 << 6;
6574 upper |= J2 << 7;
6575 upper |= (!S) << 8;
6576 upper -= 0x0100; /* Sign extend. */
6577
6578 addend = (upper << 12) | (lower << 1);
6579 signed_addend = addend;
6580 }
6581
6582 /* Handle calls via the PLT. */
6583 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6584 {
6585 value = (splt->output_section->vma
6586 + splt->output_offset
6587 + h->plt.offset);
6588 /* Target the Thumb stub before the ARM PLT entry. */
6589 value -= PLT_THUMB_STUB_SIZE;
6590 *unresolved_reloc_p = FALSE;
6591 }
6592
6593 /* ??? Should handle interworking? GCC might someday try to
6594 use this for tail calls. */
6595
6596 relocation = value + signed_addend;
6597 relocation -= (input_section->output_section->vma
6598 + input_section->output_offset
6599 + rel->r_offset);
6600 signed_check = (bfd_signed_vma) relocation;
6601
6602 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6603 overflow = TRUE;
6604
6605 /* Put RELOCATION back into the insn. */
6606 {
6607 bfd_vma S = (relocation & 0x00100000) >> 20;
6608 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6609 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6610 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6611 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6612
6613 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
6614 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6615 }
6616
6617 /* Put the relocated value back in the object file: */
6618 bfd_put_16 (input_bfd, upper_insn, hit_data);
6619 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6620
6621 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6622 }
6623
6624 case R_ARM_THM_JUMP11:
6625 case R_ARM_THM_JUMP8:
6626 case R_ARM_THM_JUMP6:
6627 /* Thumb B (branch) instruction). */
6628 {
6629 bfd_signed_vma relocation;
6630 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6631 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
6632 bfd_signed_vma signed_check;
6633
6634 /* CZB cannot jump backward. */
6635 if (r_type == R_ARM_THM_JUMP6)
6636 reloc_signed_min = 0;
6637
6638 if (globals->use_rel)
6639 {
6640 /* Need to refetch addend. */
6641 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6642 if (addend & ((howto->src_mask + 1) >> 1))
6643 {
6644 signed_addend = -1;
6645 signed_addend &= ~ howto->src_mask;
6646 signed_addend |= addend;
6647 }
6648 else
6649 signed_addend = addend;
6650 /* The value in the insn has been right shifted. We need to
6651 undo this, so that we can perform the address calculation
6652 in terms of bytes. */
6653 signed_addend <<= howto->rightshift;
6654 }
6655 relocation = value + signed_addend;
6656
6657 relocation -= (input_section->output_section->vma
6658 + input_section->output_offset
6659 + rel->r_offset);
6660
6661 relocation >>= howto->rightshift;
6662 signed_check = relocation;
6663
6664 if (r_type == R_ARM_THM_JUMP6)
6665 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6666 else
6667 relocation &= howto->dst_mask;
6668 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
6669
6670 bfd_put_16 (input_bfd, relocation, hit_data);
6671
6672 /* Assumes two's complement. */
6673 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6674 return bfd_reloc_overflow;
6675
6676 return bfd_reloc_ok;
6677 }
6678
6679 case R_ARM_ALU_PCREL7_0:
6680 case R_ARM_ALU_PCREL15_8:
6681 case R_ARM_ALU_PCREL23_15:
6682 {
6683 bfd_vma insn;
6684 bfd_vma relocation;
6685
6686 insn = bfd_get_32 (input_bfd, hit_data);
6687 if (globals->use_rel)
6688 {
6689 /* Extract the addend. */
6690 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6691 signed_addend = addend;
6692 }
6693 relocation = value + signed_addend;
6694
6695 relocation -= (input_section->output_section->vma
6696 + input_section->output_offset
6697 + rel->r_offset);
6698 insn = (insn & ~0xfff)
6699 | ((howto->bitpos << 7) & 0xf00)
6700 | ((relocation >> howto->bitpos) & 0xff);
6701 bfd_put_32 (input_bfd, value, hit_data);
6702 }
6703 return bfd_reloc_ok;
6704
6705 case R_ARM_GNU_VTINHERIT:
6706 case R_ARM_GNU_VTENTRY:
6707 return bfd_reloc_ok;
6708
6709 case R_ARM_GOTOFF32:
6710 /* Relocation is relative to the start of the
6711 global offset table. */
6712
6713 BFD_ASSERT (sgot != NULL);
6714 if (sgot == NULL)
6715 return bfd_reloc_notsupported;
6716
6717 /* If we are addressing a Thumb function, we need to adjust the
6718 address by one, so that attempts to call the function pointer will
6719 correctly interpret it as Thumb code. */
6720 if (sym_flags == STT_ARM_TFUNC)
6721 value += 1;
6722
6723 /* Note that sgot->output_offset is not involved in this
6724 calculation. We always want the start of .got. If we
6725 define _GLOBAL_OFFSET_TABLE in a different way, as is
6726 permitted by the ABI, we might have to change this
6727 calculation. */
6728 value -= sgot->output_section->vma;
6729 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6730 contents, rel->r_offset, value,
6731 rel->r_addend);
6732
6733 case R_ARM_GOTPC:
6734 /* Use global offset table as symbol value. */
6735 BFD_ASSERT (sgot != NULL);
6736
6737 if (sgot == NULL)
6738 return bfd_reloc_notsupported;
6739
6740 *unresolved_reloc_p = FALSE;
6741 value = sgot->output_section->vma;
6742 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6743 contents, rel->r_offset, value,
6744 rel->r_addend);
6745
6746 case R_ARM_GOT32:
6747 case R_ARM_GOT_PREL:
6748 /* Relocation is to the entry for this symbol in the
6749 global offset table. */
6750 if (sgot == NULL)
6751 return bfd_reloc_notsupported;
6752
6753 if (h != NULL)
6754 {
6755 bfd_vma off;
6756 bfd_boolean dyn;
6757
6758 off = h->got.offset;
6759 BFD_ASSERT (off != (bfd_vma) -1);
6760 dyn = globals->root.dynamic_sections_created;
6761
6762 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6763 || (info->shared
6764 && SYMBOL_REFERENCES_LOCAL (info, h))
6765 || (ELF_ST_VISIBILITY (h->other)
6766 && h->root.type == bfd_link_hash_undefweak))
6767 {
6768 /* This is actually a static link, or it is a -Bsymbolic link
6769 and the symbol is defined locally. We must initialize this
6770 entry in the global offset table. Since the offset must
6771 always be a multiple of 4, we use the least significant bit
6772 to record whether we have initialized it already.
6773
6774 When doing a dynamic link, we create a .rel(a).got relocation
6775 entry to initialize the value. This is done in the
6776 finish_dynamic_symbol routine. */
6777 if ((off & 1) != 0)
6778 off &= ~1;
6779 else
6780 {
6781 /* If we are addressing a Thumb function, we need to
6782 adjust the address by one, so that attempts to
6783 call the function pointer will correctly
6784 interpret it as Thumb code. */
6785 if (sym_flags == STT_ARM_TFUNC)
6786 value |= 1;
6787
6788 bfd_put_32 (output_bfd, value, sgot->contents + off);
6789 h->got.offset |= 1;
6790 }
6791 }
6792 else
6793 *unresolved_reloc_p = FALSE;
6794
6795 value = sgot->output_offset + off;
6796 }
6797 else
6798 {
6799 bfd_vma off;
6800
6801 BFD_ASSERT (local_got_offsets != NULL &&
6802 local_got_offsets[r_symndx] != (bfd_vma) -1);
6803
6804 off = local_got_offsets[r_symndx];
6805
6806 /* The offset must always be a multiple of 4. We use the
6807 least significant bit to record whether we have already
6808 generated the necessary reloc. */
6809 if ((off & 1) != 0)
6810 off &= ~1;
6811 else
6812 {
6813 /* If we are addressing a Thumb function, we need to
6814 adjust the address by one, so that attempts to
6815 call the function pointer will correctly
6816 interpret it as Thumb code. */
6817 if (sym_flags == STT_ARM_TFUNC)
6818 value |= 1;
6819
6820 if (globals->use_rel)
6821 bfd_put_32 (output_bfd, value, sgot->contents + off);
6822
6823 if (info->shared)
6824 {
6825 asection * srelgot;
6826 Elf_Internal_Rela outrel;
6827 bfd_byte *loc;
6828
6829 srelgot = (bfd_get_section_by_name
6830 (dynobj, RELOC_SECTION (globals, ".got")));
6831 BFD_ASSERT (srelgot != NULL);
6832
6833 outrel.r_addend = addend + value;
6834 outrel.r_offset = (sgot->output_section->vma
6835 + sgot->output_offset
6836 + off);
6837 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
6838 loc = srelgot->contents;
6839 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
6840 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6841 }
6842
6843 local_got_offsets[r_symndx] |= 1;
6844 }
6845
6846 value = sgot->output_offset + off;
6847 }
6848 if (r_type != R_ARM_GOT32)
6849 value += sgot->output_section->vma;
6850
6851 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6852 contents, rel->r_offset, value,
6853 rel->r_addend);
6854
6855 case R_ARM_TLS_LDO32:
6856 value = value - dtpoff_base (info);
6857
6858 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6859 contents, rel->r_offset, value,
6860 rel->r_addend);
6861
6862 case R_ARM_TLS_LDM32:
6863 {
6864 bfd_vma off;
6865
6866 if (globals->sgot == NULL)
6867 abort ();
6868
6869 off = globals->tls_ldm_got.offset;
6870
6871 if ((off & 1) != 0)
6872 off &= ~1;
6873 else
6874 {
6875 /* If we don't know the module number, create a relocation
6876 for it. */
6877 if (info->shared)
6878 {
6879 Elf_Internal_Rela outrel;
6880 bfd_byte *loc;
6881
6882 if (globals->srelgot == NULL)
6883 abort ();
6884
6885 outrel.r_addend = 0;
6886 outrel.r_offset = (globals->sgot->output_section->vma
6887 + globals->sgot->output_offset + off);
6888 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
6889
6890 if (globals->use_rel)
6891 bfd_put_32 (output_bfd, outrel.r_addend,
6892 globals->sgot->contents + off);
6893
6894 loc = globals->srelgot->contents;
6895 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
6896 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6897 }
6898 else
6899 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
6900
6901 globals->tls_ldm_got.offset |= 1;
6902 }
6903
6904 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
6905 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
6906
6907 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6908 contents, rel->r_offset, value,
6909 rel->r_addend);
6910 }
6911
6912 case R_ARM_TLS_GD32:
6913 case R_ARM_TLS_IE32:
6914 {
6915 bfd_vma off;
6916 int indx;
6917 char tls_type;
6918
6919 if (globals->sgot == NULL)
6920 abort ();
6921
6922 indx = 0;
6923 if (h != NULL)
6924 {
6925 bfd_boolean dyn;
6926 dyn = globals->root.dynamic_sections_created;
6927 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6928 && (!info->shared
6929 || !SYMBOL_REFERENCES_LOCAL (info, h)))
6930 {
6931 *unresolved_reloc_p = FALSE;
6932 indx = h->dynindx;
6933 }
6934 off = h->got.offset;
6935 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
6936 }
6937 else
6938 {
6939 if (local_got_offsets == NULL)
6940 abort ();
6941 off = local_got_offsets[r_symndx];
6942 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
6943 }
6944
6945 if (tls_type == GOT_UNKNOWN)
6946 abort ();
6947
6948 if ((off & 1) != 0)
6949 off &= ~1;
6950 else
6951 {
6952 bfd_boolean need_relocs = FALSE;
6953 Elf_Internal_Rela outrel;
6954 bfd_byte *loc = NULL;
6955 int cur_off = off;
6956
6957 /* The GOT entries have not been initialized yet. Do it
6958 now, and emit any relocations. If both an IE GOT and a
6959 GD GOT are necessary, we emit the GD first. */
6960
6961 if ((info->shared || indx != 0)
6962 && (h == NULL
6963 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6964 || h->root.type != bfd_link_hash_undefweak))
6965 {
6966 need_relocs = TRUE;
6967 if (globals->srelgot == NULL)
6968 abort ();
6969 loc = globals->srelgot->contents;
6970 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
6971 }
6972
6973 if (tls_type & GOT_TLS_GD)
6974 {
6975 if (need_relocs)
6976 {
6977 outrel.r_addend = 0;
6978 outrel.r_offset = (globals->sgot->output_section->vma
6979 + globals->sgot->output_offset
6980 + cur_off);
6981 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
6982
6983 if (globals->use_rel)
6984 bfd_put_32 (output_bfd, outrel.r_addend,
6985 globals->sgot->contents + cur_off);
6986
6987 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6988 globals->srelgot->reloc_count++;
6989 loc += RELOC_SIZE (globals);
6990
6991 if (indx == 0)
6992 bfd_put_32 (output_bfd, value - dtpoff_base (info),
6993 globals->sgot->contents + cur_off + 4);
6994 else
6995 {
6996 outrel.r_addend = 0;
6997 outrel.r_info = ELF32_R_INFO (indx,
6998 R_ARM_TLS_DTPOFF32);
6999 outrel.r_offset += 4;
7000
7001 if (globals->use_rel)
7002 bfd_put_32 (output_bfd, outrel.r_addend,
7003 globals->sgot->contents + cur_off + 4);
7004
7005
7006 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7007 globals->srelgot->reloc_count++;
7008 loc += RELOC_SIZE (globals);
7009 }
7010 }
7011 else
7012 {
7013 /* If we are not emitting relocations for a
7014 general dynamic reference, then we must be in a
7015 static link or an executable link with the
7016 symbol binding locally. Mark it as belonging
7017 to module 1, the executable. */
7018 bfd_put_32 (output_bfd, 1,
7019 globals->sgot->contents + cur_off);
7020 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7021 globals->sgot->contents + cur_off + 4);
7022 }
7023
7024 cur_off += 8;
7025 }
7026
7027 if (tls_type & GOT_TLS_IE)
7028 {
7029 if (need_relocs)
7030 {
7031 if (indx == 0)
7032 outrel.r_addend = value - dtpoff_base (info);
7033 else
7034 outrel.r_addend = 0;
7035 outrel.r_offset = (globals->sgot->output_section->vma
7036 + globals->sgot->output_offset
7037 + cur_off);
7038 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7039
7040 if (globals->use_rel)
7041 bfd_put_32 (output_bfd, outrel.r_addend,
7042 globals->sgot->contents + cur_off);
7043
7044 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7045 globals->srelgot->reloc_count++;
7046 loc += RELOC_SIZE (globals);
7047 }
7048 else
7049 bfd_put_32 (output_bfd, tpoff (info, value),
7050 globals->sgot->contents + cur_off);
7051 cur_off += 4;
7052 }
7053
7054 if (h != NULL)
7055 h->got.offset |= 1;
7056 else
7057 local_got_offsets[r_symndx] |= 1;
7058 }
7059
7060 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7061 off += 8;
7062 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7063 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7064
7065 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7066 contents, rel->r_offset, value,
7067 rel->r_addend);
7068 }
7069
7070 case R_ARM_TLS_LE32:
7071 if (info->shared)
7072 {
7073 (*_bfd_error_handler)
7074 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7075 input_bfd, input_section,
7076 (long) rel->r_offset, howto->name);
7077 return FALSE;
7078 }
7079 else
7080 value = tpoff (info, value);
7081
7082 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7083 contents, rel->r_offset, value,
7084 rel->r_addend);
7085
7086 case R_ARM_V4BX:
7087 if (globals->fix_v4bx)
7088 {
7089 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7090
7091 /* Ensure that we have a BX instruction. */
7092 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
7093
7094 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7095 {
7096 /* Branch to veneer. */
7097 bfd_vma glue_addr;
7098 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7099 glue_addr -= input_section->output_section->vma
7100 + input_section->output_offset
7101 + rel->r_offset + 8;
7102 insn = (insn & 0xf0000000) | 0x0a000000
7103 | ((glue_addr >> 2) & 0x00ffffff);
7104 }
7105 else
7106 {
7107 /* Preserve Rm (lowest four bits) and the condition code
7108 (highest four bits). Other bits encode MOV PC,Rm. */
7109 insn = (insn & 0xf000000f) | 0x01a0f000;
7110 }
7111
7112 bfd_put_32 (input_bfd, insn, hit_data);
7113 }
7114 return bfd_reloc_ok;
7115
7116 case R_ARM_MOVW_ABS_NC:
7117 case R_ARM_MOVT_ABS:
7118 case R_ARM_MOVW_PREL_NC:
7119 case R_ARM_MOVT_PREL:
7120 /* Until we properly support segment-base-relative addressing then
7121 we assume the segment base to be zero, as for the group relocations.
7122 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7123 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7124 case R_ARM_MOVW_BREL_NC:
7125 case R_ARM_MOVW_BREL:
7126 case R_ARM_MOVT_BREL:
7127 {
7128 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7129
7130 if (globals->use_rel)
7131 {
7132 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
7133 signed_addend = (addend ^ 0x8000) - 0x8000;
7134 }
7135
7136 value += signed_addend;
7137
7138 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7139 value -= (input_section->output_section->vma
7140 + input_section->output_offset + rel->r_offset);
7141
7142 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7143 return bfd_reloc_overflow;
7144
7145 if (sym_flags == STT_ARM_TFUNC)
7146 value |= 1;
7147
7148 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7149 || r_type == R_ARM_MOVT_BREL)
7150 value >>= 16;
7151
7152 insn &= 0xfff0f000;
7153 insn |= value & 0xfff;
7154 insn |= (value & 0xf000) << 4;
7155 bfd_put_32 (input_bfd, insn, hit_data);
7156 }
7157 return bfd_reloc_ok;
7158
7159 case R_ARM_THM_MOVW_ABS_NC:
7160 case R_ARM_THM_MOVT_ABS:
7161 case R_ARM_THM_MOVW_PREL_NC:
7162 case R_ARM_THM_MOVT_PREL:
7163 /* Until we properly support segment-base-relative addressing then
7164 we assume the segment base to be zero, as for the above relocations.
7165 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7166 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7167 as R_ARM_THM_MOVT_ABS. */
7168 case R_ARM_THM_MOVW_BREL_NC:
7169 case R_ARM_THM_MOVW_BREL:
7170 case R_ARM_THM_MOVT_BREL:
7171 {
7172 bfd_vma insn;
7173
7174 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7175 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7176
7177 if (globals->use_rel)
7178 {
7179 addend = ((insn >> 4) & 0xf000)
7180 | ((insn >> 15) & 0x0800)
7181 | ((insn >> 4) & 0x0700)
7182 | (insn & 0x00ff);
7183 signed_addend = (addend ^ 0x8000) - 0x8000;
7184 }
7185
7186 value += signed_addend;
7187
7188 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7189 value -= (input_section->output_section->vma
7190 + input_section->output_offset + rel->r_offset);
7191
7192 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7193 return bfd_reloc_overflow;
7194
7195 if (sym_flags == STT_ARM_TFUNC)
7196 value |= 1;
7197
7198 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7199 || r_type == R_ARM_THM_MOVT_BREL)
7200 value >>= 16;
7201
7202 insn &= 0xfbf08f00;
7203 insn |= (value & 0xf000) << 4;
7204 insn |= (value & 0x0800) << 15;
7205 insn |= (value & 0x0700) << 4;
7206 insn |= (value & 0x00ff);
7207
7208 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7209 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7210 }
7211 return bfd_reloc_ok;
7212
7213 case R_ARM_ALU_PC_G0_NC:
7214 case R_ARM_ALU_PC_G1_NC:
7215 case R_ARM_ALU_PC_G0:
7216 case R_ARM_ALU_PC_G1:
7217 case R_ARM_ALU_PC_G2:
7218 case R_ARM_ALU_SB_G0_NC:
7219 case R_ARM_ALU_SB_G1_NC:
7220 case R_ARM_ALU_SB_G0:
7221 case R_ARM_ALU_SB_G1:
7222 case R_ARM_ALU_SB_G2:
7223 {
7224 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7225 bfd_vma pc = input_section->output_section->vma
7226 + input_section->output_offset + rel->r_offset;
7227 /* sb should be the origin of the *segment* containing the symbol.
7228 It is not clear how to obtain this OS-dependent value, so we
7229 make an arbitrary choice of zero. */
7230 bfd_vma sb = 0;
7231 bfd_vma residual;
7232 bfd_vma g_n;
7233 bfd_signed_vma signed_value;
7234 int group = 0;
7235
7236 /* Determine which group of bits to select. */
7237 switch (r_type)
7238 {
7239 case R_ARM_ALU_PC_G0_NC:
7240 case R_ARM_ALU_PC_G0:
7241 case R_ARM_ALU_SB_G0_NC:
7242 case R_ARM_ALU_SB_G0:
7243 group = 0;
7244 break;
7245
7246 case R_ARM_ALU_PC_G1_NC:
7247 case R_ARM_ALU_PC_G1:
7248 case R_ARM_ALU_SB_G1_NC:
7249 case R_ARM_ALU_SB_G1:
7250 group = 1;
7251 break;
7252
7253 case R_ARM_ALU_PC_G2:
7254 case R_ARM_ALU_SB_G2:
7255 group = 2;
7256 break;
7257
7258 default:
7259 abort ();
7260 }
7261
7262 /* If REL, extract the addend from the insn. If RELA, it will
7263 have already been fetched for us. */
7264 if (globals->use_rel)
7265 {
7266 int negative;
7267 bfd_vma constant = insn & 0xff;
7268 bfd_vma rotation = (insn & 0xf00) >> 8;
7269
7270 if (rotation == 0)
7271 signed_addend = constant;
7272 else
7273 {
7274 /* Compensate for the fact that in the instruction, the
7275 rotation is stored in multiples of 2 bits. */
7276 rotation *= 2;
7277
7278 /* Rotate "constant" right by "rotation" bits. */
7279 signed_addend = (constant >> rotation) |
7280 (constant << (8 * sizeof (bfd_vma) - rotation));
7281 }
7282
7283 /* Determine if the instruction is an ADD or a SUB.
7284 (For REL, this determines the sign of the addend.) */
7285 negative = identify_add_or_sub (insn);
7286 if (negative == 0)
7287 {
7288 (*_bfd_error_handler)
7289 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7290 input_bfd, input_section,
7291 (long) rel->r_offset, howto->name);
7292 return bfd_reloc_overflow;
7293 }
7294
7295 signed_addend *= negative;
7296 }
7297
7298 /* Compute the value (X) to go in the place. */
7299 if (r_type == R_ARM_ALU_PC_G0_NC
7300 || r_type == R_ARM_ALU_PC_G1_NC
7301 || r_type == R_ARM_ALU_PC_G0
7302 || r_type == R_ARM_ALU_PC_G1
7303 || r_type == R_ARM_ALU_PC_G2)
7304 /* PC relative. */
7305 signed_value = value - pc + signed_addend;
7306 else
7307 /* Section base relative. */
7308 signed_value = value - sb + signed_addend;
7309
7310 /* If the target symbol is a Thumb function, then set the
7311 Thumb bit in the address. */
7312 if (sym_flags == STT_ARM_TFUNC)
7313 signed_value |= 1;
7314
7315 /* Calculate the value of the relevant G_n, in encoded
7316 constant-with-rotation format. */
7317 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7318 &residual);
7319
7320 /* Check for overflow if required. */
7321 if ((r_type == R_ARM_ALU_PC_G0
7322 || r_type == R_ARM_ALU_PC_G1
7323 || r_type == R_ARM_ALU_PC_G2
7324 || r_type == R_ARM_ALU_SB_G0
7325 || r_type == R_ARM_ALU_SB_G1
7326 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7327 {
7328 (*_bfd_error_handler)
7329 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7330 input_bfd, input_section,
7331 (long) rel->r_offset, abs (signed_value), howto->name);
7332 return bfd_reloc_overflow;
7333 }
7334
7335 /* Mask out the value and the ADD/SUB part of the opcode; take care
7336 not to destroy the S bit. */
7337 insn &= 0xff1ff000;
7338
7339 /* Set the opcode according to whether the value to go in the
7340 place is negative. */
7341 if (signed_value < 0)
7342 insn |= 1 << 22;
7343 else
7344 insn |= 1 << 23;
7345
7346 /* Encode the offset. */
7347 insn |= g_n;
7348
7349 bfd_put_32 (input_bfd, insn, hit_data);
7350 }
7351 return bfd_reloc_ok;
7352
7353 case R_ARM_LDR_PC_G0:
7354 case R_ARM_LDR_PC_G1:
7355 case R_ARM_LDR_PC_G2:
7356 case R_ARM_LDR_SB_G0:
7357 case R_ARM_LDR_SB_G1:
7358 case R_ARM_LDR_SB_G2:
7359 {
7360 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7361 bfd_vma pc = input_section->output_section->vma
7362 + input_section->output_offset + rel->r_offset;
7363 bfd_vma sb = 0; /* See note above. */
7364 bfd_vma residual;
7365 bfd_signed_vma signed_value;
7366 int group = 0;
7367
7368 /* Determine which groups of bits to calculate. */
7369 switch (r_type)
7370 {
7371 case R_ARM_LDR_PC_G0:
7372 case R_ARM_LDR_SB_G0:
7373 group = 0;
7374 break;
7375
7376 case R_ARM_LDR_PC_G1:
7377 case R_ARM_LDR_SB_G1:
7378 group = 1;
7379 break;
7380
7381 case R_ARM_LDR_PC_G2:
7382 case R_ARM_LDR_SB_G2:
7383 group = 2;
7384 break;
7385
7386 default:
7387 abort ();
7388 }
7389
7390 /* If REL, extract the addend from the insn. If RELA, it will
7391 have already been fetched for us. */
7392 if (globals->use_rel)
7393 {
7394 int negative = (insn & (1 << 23)) ? 1 : -1;
7395 signed_addend = negative * (insn & 0xfff);
7396 }
7397
7398 /* Compute the value (X) to go in the place. */
7399 if (r_type == R_ARM_LDR_PC_G0
7400 || r_type == R_ARM_LDR_PC_G1
7401 || r_type == R_ARM_LDR_PC_G2)
7402 /* PC relative. */
7403 signed_value = value - pc + signed_addend;
7404 else
7405 /* Section base relative. */
7406 signed_value = value - sb + signed_addend;
7407
7408 /* Calculate the value of the relevant G_{n-1} to obtain
7409 the residual at that stage. */
7410 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7411
7412 /* Check for overflow. */
7413 if (residual >= 0x1000)
7414 {
7415 (*_bfd_error_handler)
7416 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7417 input_bfd, input_section,
7418 (long) rel->r_offset, abs (signed_value), howto->name);
7419 return bfd_reloc_overflow;
7420 }
7421
7422 /* Mask out the value and U bit. */
7423 insn &= 0xff7ff000;
7424
7425 /* Set the U bit if the value to go in the place is non-negative. */
7426 if (signed_value >= 0)
7427 insn |= 1 << 23;
7428
7429 /* Encode the offset. */
7430 insn |= residual;
7431
7432 bfd_put_32 (input_bfd, insn, hit_data);
7433 }
7434 return bfd_reloc_ok;
7435
7436 case R_ARM_LDRS_PC_G0:
7437 case R_ARM_LDRS_PC_G1:
7438 case R_ARM_LDRS_PC_G2:
7439 case R_ARM_LDRS_SB_G0:
7440 case R_ARM_LDRS_SB_G1:
7441 case R_ARM_LDRS_SB_G2:
7442 {
7443 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7444 bfd_vma pc = input_section->output_section->vma
7445 + input_section->output_offset + rel->r_offset;
7446 bfd_vma sb = 0; /* See note above. */
7447 bfd_vma residual;
7448 bfd_signed_vma signed_value;
7449 int group = 0;
7450
7451 /* Determine which groups of bits to calculate. */
7452 switch (r_type)
7453 {
7454 case R_ARM_LDRS_PC_G0:
7455 case R_ARM_LDRS_SB_G0:
7456 group = 0;
7457 break;
7458
7459 case R_ARM_LDRS_PC_G1:
7460 case R_ARM_LDRS_SB_G1:
7461 group = 1;
7462 break;
7463
7464 case R_ARM_LDRS_PC_G2:
7465 case R_ARM_LDRS_SB_G2:
7466 group = 2;
7467 break;
7468
7469 default:
7470 abort ();
7471 }
7472
7473 /* If REL, extract the addend from the insn. If RELA, it will
7474 have already been fetched for us. */
7475 if (globals->use_rel)
7476 {
7477 int negative = (insn & (1 << 23)) ? 1 : -1;
7478 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7479 }
7480
7481 /* Compute the value (X) to go in the place. */
7482 if (r_type == R_ARM_LDRS_PC_G0
7483 || r_type == R_ARM_LDRS_PC_G1
7484 || r_type == R_ARM_LDRS_PC_G2)
7485 /* PC relative. */
7486 signed_value = value - pc + signed_addend;
7487 else
7488 /* Section base relative. */
7489 signed_value = value - sb + signed_addend;
7490
7491 /* Calculate the value of the relevant G_{n-1} to obtain
7492 the residual at that stage. */
7493 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7494
7495 /* Check for overflow. */
7496 if (residual >= 0x100)
7497 {
7498 (*_bfd_error_handler)
7499 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7500 input_bfd, input_section,
7501 (long) rel->r_offset, abs (signed_value), howto->name);
7502 return bfd_reloc_overflow;
7503 }
7504
7505 /* Mask out the value and U bit. */
7506 insn &= 0xff7ff0f0;
7507
7508 /* Set the U bit if the value to go in the place is non-negative. */
7509 if (signed_value >= 0)
7510 insn |= 1 << 23;
7511
7512 /* Encode the offset. */
7513 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7514
7515 bfd_put_32 (input_bfd, insn, hit_data);
7516 }
7517 return bfd_reloc_ok;
7518
7519 case R_ARM_LDC_PC_G0:
7520 case R_ARM_LDC_PC_G1:
7521 case R_ARM_LDC_PC_G2:
7522 case R_ARM_LDC_SB_G0:
7523 case R_ARM_LDC_SB_G1:
7524 case R_ARM_LDC_SB_G2:
7525 {
7526 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7527 bfd_vma pc = input_section->output_section->vma
7528 + input_section->output_offset + rel->r_offset;
7529 bfd_vma sb = 0; /* See note above. */
7530 bfd_vma residual;
7531 bfd_signed_vma signed_value;
7532 int group = 0;
7533
7534 /* Determine which groups of bits to calculate. */
7535 switch (r_type)
7536 {
7537 case R_ARM_LDC_PC_G0:
7538 case R_ARM_LDC_SB_G0:
7539 group = 0;
7540 break;
7541
7542 case R_ARM_LDC_PC_G1:
7543 case R_ARM_LDC_SB_G1:
7544 group = 1;
7545 break;
7546
7547 case R_ARM_LDC_PC_G2:
7548 case R_ARM_LDC_SB_G2:
7549 group = 2;
7550 break;
7551
7552 default:
7553 abort ();
7554 }
7555
7556 /* If REL, extract the addend from the insn. If RELA, it will
7557 have already been fetched for us. */
7558 if (globals->use_rel)
7559 {
7560 int negative = (insn & (1 << 23)) ? 1 : -1;
7561 signed_addend = negative * ((insn & 0xff) << 2);
7562 }
7563
7564 /* Compute the value (X) to go in the place. */
7565 if (r_type == R_ARM_LDC_PC_G0
7566 || r_type == R_ARM_LDC_PC_G1
7567 || r_type == R_ARM_LDC_PC_G2)
7568 /* PC relative. */
7569 signed_value = value - pc + signed_addend;
7570 else
7571 /* Section base relative. */
7572 signed_value = value - sb + signed_addend;
7573
7574 /* Calculate the value of the relevant G_{n-1} to obtain
7575 the residual at that stage. */
7576 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7577
7578 /* Check for overflow. (The absolute value to go in the place must be
7579 divisible by four and, after having been divided by four, must
7580 fit in eight bits.) */
7581 if ((residual & 0x3) != 0 || residual >= 0x400)
7582 {
7583 (*_bfd_error_handler)
7584 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7585 input_bfd, input_section,
7586 (long) rel->r_offset, abs (signed_value), howto->name);
7587 return bfd_reloc_overflow;
7588 }
7589
7590 /* Mask out the value and U bit. */
7591 insn &= 0xff7fff00;
7592
7593 /* Set the U bit if the value to go in the place is non-negative. */
7594 if (signed_value >= 0)
7595 insn |= 1 << 23;
7596
7597 /* Encode the offset. */
7598 insn |= residual >> 2;
7599
7600 bfd_put_32 (input_bfd, insn, hit_data);
7601 }
7602 return bfd_reloc_ok;
7603
7604 default:
7605 return bfd_reloc_notsupported;
7606 }
7607 }
7608
7609 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7610 static void
7611 arm_add_to_rel (bfd * abfd,
7612 bfd_byte * address,
7613 reloc_howto_type * howto,
7614 bfd_signed_vma increment)
7615 {
7616 bfd_signed_vma addend;
7617
7618 if (howto->type == R_ARM_THM_CALL
7619 || howto->type == R_ARM_THM_JUMP24)
7620 {
7621 int upper_insn, lower_insn;
7622 int upper, lower;
7623
7624 upper_insn = bfd_get_16 (abfd, address);
7625 lower_insn = bfd_get_16 (abfd, address + 2);
7626 upper = upper_insn & 0x7ff;
7627 lower = lower_insn & 0x7ff;
7628
7629 addend = (upper << 12) | (lower << 1);
7630 addend += increment;
7631 addend >>= 1;
7632
7633 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7634 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7635
7636 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7637 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
7638 }
7639 else
7640 {
7641 bfd_vma contents;
7642
7643 contents = bfd_get_32 (abfd, address);
7644
7645 /* Get the (signed) value from the instruction. */
7646 addend = contents & howto->src_mask;
7647 if (addend & ((howto->src_mask + 1) >> 1))
7648 {
7649 bfd_signed_vma mask;
7650
7651 mask = -1;
7652 mask &= ~ howto->src_mask;
7653 addend |= mask;
7654 }
7655
7656 /* Add in the increment, (which is a byte value). */
7657 switch (howto->type)
7658 {
7659 default:
7660 addend += increment;
7661 break;
7662
7663 case R_ARM_PC24:
7664 case R_ARM_PLT32:
7665 case R_ARM_CALL:
7666 case R_ARM_JUMP24:
7667 addend <<= howto->size;
7668 addend += increment;
7669
7670 /* Should we check for overflow here ? */
7671
7672 /* Drop any undesired bits. */
7673 addend >>= howto->rightshift;
7674 break;
7675 }
7676
7677 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7678
7679 bfd_put_32 (abfd, contents, address);
7680 }
7681 }
7682
7683 #define IS_ARM_TLS_RELOC(R_TYPE) \
7684 ((R_TYPE) == R_ARM_TLS_GD32 \
7685 || (R_TYPE) == R_ARM_TLS_LDO32 \
7686 || (R_TYPE) == R_ARM_TLS_LDM32 \
7687 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7688 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7689 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7690 || (R_TYPE) == R_ARM_TLS_LE32 \
7691 || (R_TYPE) == R_ARM_TLS_IE32)
7692
7693 /* Relocate an ARM ELF section. */
7694
7695 static bfd_boolean
7696 elf32_arm_relocate_section (bfd * output_bfd,
7697 struct bfd_link_info * info,
7698 bfd * input_bfd,
7699 asection * input_section,
7700 bfd_byte * contents,
7701 Elf_Internal_Rela * relocs,
7702 Elf_Internal_Sym * local_syms,
7703 asection ** local_sections)
7704 {
7705 Elf_Internal_Shdr *symtab_hdr;
7706 struct elf_link_hash_entry **sym_hashes;
7707 Elf_Internal_Rela *rel;
7708 Elf_Internal_Rela *relend;
7709 const char *name;
7710 struct elf32_arm_link_hash_table * globals;
7711
7712 globals = elf32_arm_hash_table (info);
7713
7714 symtab_hdr = & elf_symtab_hdr (input_bfd);
7715 sym_hashes = elf_sym_hashes (input_bfd);
7716
7717 rel = relocs;
7718 relend = relocs + input_section->reloc_count;
7719 for (; rel < relend; rel++)
7720 {
7721 int r_type;
7722 reloc_howto_type * howto;
7723 unsigned long r_symndx;
7724 Elf_Internal_Sym * sym;
7725 asection * sec;
7726 struct elf_link_hash_entry * h;
7727 bfd_vma relocation;
7728 bfd_reloc_status_type r;
7729 arelent bfd_reloc;
7730 char sym_type;
7731 bfd_boolean unresolved_reloc = FALSE;
7732 char *error_message = NULL;
7733
7734 r_symndx = ELF32_R_SYM (rel->r_info);
7735 r_type = ELF32_R_TYPE (rel->r_info);
7736 r_type = arm_real_reloc_type (globals, r_type);
7737
7738 if ( r_type == R_ARM_GNU_VTENTRY
7739 || r_type == R_ARM_GNU_VTINHERIT)
7740 continue;
7741
7742 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
7743 howto = bfd_reloc.howto;
7744
7745 h = NULL;
7746 sym = NULL;
7747 sec = NULL;
7748
7749 if (r_symndx < symtab_hdr->sh_info)
7750 {
7751 sym = local_syms + r_symndx;
7752 sym_type = ELF32_ST_TYPE (sym->st_info);
7753 sec = local_sections[r_symndx];
7754 if (globals->use_rel)
7755 {
7756 relocation = (sec->output_section->vma
7757 + sec->output_offset
7758 + sym->st_value);
7759 if (!info->relocatable
7760 && (sec->flags & SEC_MERGE)
7761 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7762 {
7763 asection *msec;
7764 bfd_vma addend, value;
7765
7766 switch (r_type)
7767 {
7768 case R_ARM_MOVW_ABS_NC:
7769 case R_ARM_MOVT_ABS:
7770 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7771 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7772 addend = (addend ^ 0x8000) - 0x8000;
7773 break;
7774
7775 case R_ARM_THM_MOVW_ABS_NC:
7776 case R_ARM_THM_MOVT_ABS:
7777 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
7778 << 16;
7779 value |= bfd_get_16 (input_bfd,
7780 contents + rel->r_offset + 2);
7781 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
7782 | ((value & 0x04000000) >> 15);
7783 addend = (addend ^ 0x8000) - 0x8000;
7784 break;
7785
7786 default:
7787 if (howto->rightshift
7788 || (howto->src_mask & (howto->src_mask + 1)))
7789 {
7790 (*_bfd_error_handler)
7791 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7792 input_bfd, input_section,
7793 (long) rel->r_offset, howto->name);
7794 return FALSE;
7795 }
7796
7797 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7798
7799 /* Get the (signed) value from the instruction. */
7800 addend = value & howto->src_mask;
7801 if (addend & ((howto->src_mask + 1) >> 1))
7802 {
7803 bfd_signed_vma mask;
7804
7805 mask = -1;
7806 mask &= ~ howto->src_mask;
7807 addend |= mask;
7808 }
7809 break;
7810 }
7811
7812 msec = sec;
7813 addend =
7814 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
7815 - relocation;
7816 addend += msec->output_section->vma + msec->output_offset;
7817
7818 /* Cases here must match those in the preceeding
7819 switch statement. */
7820 switch (r_type)
7821 {
7822 case R_ARM_MOVW_ABS_NC:
7823 case R_ARM_MOVT_ABS:
7824 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
7825 | (addend & 0xfff);
7826 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7827 break;
7828
7829 case R_ARM_THM_MOVW_ABS_NC:
7830 case R_ARM_THM_MOVT_ABS:
7831 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
7832 | (addend & 0xff) | ((addend & 0x0800) << 15);
7833 bfd_put_16 (input_bfd, value >> 16,
7834 contents + rel->r_offset);
7835 bfd_put_16 (input_bfd, value,
7836 contents + rel->r_offset + 2);
7837 break;
7838
7839 default:
7840 value = (value & ~ howto->dst_mask)
7841 | (addend & howto->dst_mask);
7842 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7843 break;
7844 }
7845 }
7846 }
7847 else
7848 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7849 }
7850 else
7851 {
7852 bfd_boolean warned;
7853
7854 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
7855 r_symndx, symtab_hdr, sym_hashes,
7856 h, sec, relocation,
7857 unresolved_reloc, warned);
7858
7859 sym_type = h->type;
7860 }
7861
7862 if (sec != NULL && elf_discarded_section (sec))
7863 {
7864 /* For relocs against symbols from removed linkonce sections,
7865 or sections discarded by a linker script, we just want the
7866 section contents zeroed. Avoid any special processing. */
7867 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7868 rel->r_info = 0;
7869 rel->r_addend = 0;
7870 continue;
7871 }
7872
7873 if (info->relocatable)
7874 {
7875 /* This is a relocatable link. We don't have to change
7876 anything, unless the reloc is against a section symbol,
7877 in which case we have to adjust according to where the
7878 section symbol winds up in the output section. */
7879 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7880 {
7881 if (globals->use_rel)
7882 arm_add_to_rel (input_bfd, contents + rel->r_offset,
7883 howto, (bfd_signed_vma) sec->output_offset);
7884 else
7885 rel->r_addend += sec->output_offset;
7886 }
7887 continue;
7888 }
7889
7890 if (h != NULL)
7891 name = h->root.root.string;
7892 else
7893 {
7894 name = (bfd_elf_string_from_elf_section
7895 (input_bfd, symtab_hdr->sh_link, sym->st_name));
7896 if (name == NULL || *name == '\0')
7897 name = bfd_section_name (input_bfd, sec);
7898 }
7899
7900 if (r_symndx != 0
7901 && r_type != R_ARM_NONE
7902 && (h == NULL
7903 || h->root.type == bfd_link_hash_defined
7904 || h->root.type == bfd_link_hash_defweak)
7905 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
7906 {
7907 (*_bfd_error_handler)
7908 ((sym_type == STT_TLS
7909 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
7910 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
7911 input_bfd,
7912 input_section,
7913 (long) rel->r_offset,
7914 howto->name,
7915 name);
7916 }
7917
7918 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
7919 input_section, contents, rel,
7920 relocation, info, sec, name,
7921 (h ? ELF_ST_TYPE (h->type) :
7922 ELF_ST_TYPE (sym->st_info)), h,
7923 &unresolved_reloc, &error_message);
7924
7925 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7926 because such sections are not SEC_ALLOC and thus ld.so will
7927 not process them. */
7928 if (unresolved_reloc
7929 && !((input_section->flags & SEC_DEBUGGING) != 0
7930 && h->def_dynamic))
7931 {
7932 (*_bfd_error_handler)
7933 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
7934 input_bfd,
7935 input_section,
7936 (long) rel->r_offset,
7937 howto->name,
7938 h->root.root.string);
7939 return FALSE;
7940 }
7941
7942 if (r != bfd_reloc_ok)
7943 {
7944 switch (r)
7945 {
7946 case bfd_reloc_overflow:
7947 /* If the overflowing reloc was to an undefined symbol,
7948 we have already printed one error message and there
7949 is no point complaining again. */
7950 if ((! h ||
7951 h->root.type != bfd_link_hash_undefined)
7952 && (!((*info->callbacks->reloc_overflow)
7953 (info, (h ? &h->root : NULL), name, howto->name,
7954 (bfd_vma) 0, input_bfd, input_section,
7955 rel->r_offset))))
7956 return FALSE;
7957 break;
7958
7959 case bfd_reloc_undefined:
7960 if (!((*info->callbacks->undefined_symbol)
7961 (info, name, input_bfd, input_section,
7962 rel->r_offset, TRUE)))
7963 return FALSE;
7964 break;
7965
7966 case bfd_reloc_outofrange:
7967 error_message = _("out of range");
7968 goto common_error;
7969
7970 case bfd_reloc_notsupported:
7971 error_message = _("unsupported relocation");
7972 goto common_error;
7973
7974 case bfd_reloc_dangerous:
7975 /* error_message should already be set. */
7976 goto common_error;
7977
7978 default:
7979 error_message = _("unknown error");
7980 /* Fall through. */
7981
7982 common_error:
7983 BFD_ASSERT (error_message != NULL);
7984 if (!((*info->callbacks->reloc_dangerous)
7985 (info, error_message, input_bfd, input_section,
7986 rel->r_offset)))
7987 return FALSE;
7988 break;
7989 }
7990 }
7991 }
7992
7993 return TRUE;
7994 }
7995
7996 /* Set the right machine number. */
7997
7998 static bfd_boolean
7999 elf32_arm_object_p (bfd *abfd)
8000 {
8001 unsigned int mach;
8002
8003 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
8004
8005 if (mach != bfd_mach_arm_unknown)
8006 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8007
8008 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
8009 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
8010
8011 else
8012 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8013
8014 return TRUE;
8015 }
8016
8017 /* Function to keep ARM specific flags in the ELF header. */
8018
8019 static bfd_boolean
8020 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
8021 {
8022 if (elf_flags_init (abfd)
8023 && elf_elfheader (abfd)->e_flags != flags)
8024 {
8025 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8026 {
8027 if (flags & EF_ARM_INTERWORK)
8028 (*_bfd_error_handler)
8029 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8030 abfd);
8031 else
8032 _bfd_error_handler
8033 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8034 abfd);
8035 }
8036 }
8037 else
8038 {
8039 elf_elfheader (abfd)->e_flags = flags;
8040 elf_flags_init (abfd) = TRUE;
8041 }
8042
8043 return TRUE;
8044 }
8045
8046 /* Copy backend specific data from one object module to another. */
8047
8048 static bfd_boolean
8049 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
8050 {
8051 flagword in_flags;
8052 flagword out_flags;
8053
8054 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8055 return TRUE;
8056
8057 in_flags = elf_elfheader (ibfd)->e_flags;
8058 out_flags = elf_elfheader (obfd)->e_flags;
8059
8060 if (elf_flags_init (obfd)
8061 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8062 && in_flags != out_flags)
8063 {
8064 /* Cannot mix APCS26 and APCS32 code. */
8065 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8066 return FALSE;
8067
8068 /* Cannot mix float APCS and non-float APCS code. */
8069 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8070 return FALSE;
8071
8072 /* If the src and dest have different interworking flags
8073 then turn off the interworking bit. */
8074 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8075 {
8076 if (out_flags & EF_ARM_INTERWORK)
8077 _bfd_error_handler
8078 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8079 obfd, ibfd);
8080
8081 in_flags &= ~EF_ARM_INTERWORK;
8082 }
8083
8084 /* Likewise for PIC, though don't warn for this case. */
8085 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8086 in_flags &= ~EF_ARM_PIC;
8087 }
8088
8089 elf_elfheader (obfd)->e_flags = in_flags;
8090 elf_flags_init (obfd) = TRUE;
8091
8092 /* Also copy the EI_OSABI field. */
8093 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8094 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8095
8096 /* Copy object attributes. */
8097 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8098
8099 return TRUE;
8100 }
8101
8102 /* Values for Tag_ABI_PCS_R9_use. */
8103 enum
8104 {
8105 AEABI_R9_V6,
8106 AEABI_R9_SB,
8107 AEABI_R9_TLS,
8108 AEABI_R9_unused
8109 };
8110
8111 /* Values for Tag_ABI_PCS_RW_data. */
8112 enum
8113 {
8114 AEABI_PCS_RW_data_absolute,
8115 AEABI_PCS_RW_data_PCrel,
8116 AEABI_PCS_RW_data_SBrel,
8117 AEABI_PCS_RW_data_unused
8118 };
8119
8120 /* Values for Tag_ABI_enum_size. */
8121 enum
8122 {
8123 AEABI_enum_unused,
8124 AEABI_enum_short,
8125 AEABI_enum_wide,
8126 AEABI_enum_forced_wide
8127 };
8128
8129 /* Determine whether an object attribute tag takes an integer, a
8130 string or both. */
8131
8132 static int
8133 elf32_arm_obj_attrs_arg_type (int tag)
8134 {
8135 if (tag == Tag_compatibility)
8136 return 3;
8137 else if (tag == 4 || tag == 5)
8138 return 2;
8139 else if (tag < 32)
8140 return 1;
8141 else
8142 return (tag & 1) != 0 ? 2 : 1;
8143 }
8144
8145 static void
8146 elf32_arm_copy_one_eabi_other_attribute (bfd *ibfd, bfd *obfd, obj_attribute_list *in_list)
8147 {
8148 switch (in_list->tag)
8149 {
8150 case Tag_VFP_HP_extension:
8151 case Tag_ABI_FP_16bit_format:
8152 bfd_elf_add_obj_attr_int (obfd, OBJ_ATTR_PROC, in_list->tag, in_list->attr.i);
8153 break;
8154
8155 default:
8156 if ((in_list->tag & 127) < 64)
8157 {
8158 _bfd_error_handler
8159 (_("Warning: %B: Unknown EABI object attribute %d"), ibfd, in_list->tag);
8160 break;
8161 }
8162 }
8163 }
8164
8165 static void
8166 elf32_arm_copy_eabi_other_attribute_list (bfd *ibfd, bfd *obfd, obj_attribute_list *in_list)
8167 {
8168 for (; in_list; in_list = in_list->next )
8169 elf32_arm_copy_one_eabi_other_attribute (ibfd, obfd, in_list);
8170 }
8171
8172 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8173 are conflicting attributes. */
8174
8175 static bfd_boolean
8176 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8177 {
8178 obj_attribute *in_attr;
8179 obj_attribute *out_attr;
8180 obj_attribute_list *in_list;
8181 obj_attribute_list *out_list;
8182 /* Some tags have 0 = don't care, 1 = strong requirement,
8183 2 = weak requirement. */
8184 static const int order_312[3] = {3, 1, 2};
8185 /* For use with Tag_VFP_arch. */
8186 static const int order_01243[5] = {0, 1, 2, 4, 3};
8187 int i;
8188
8189 if (!elf_known_obj_attributes_proc (obfd)[0].i)
8190 {
8191 /* This is the first object. Copy the attributes. */
8192 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8193
8194 /* Use the Tag_null value to indicate the attributes have been
8195 initialized. */
8196 elf_known_obj_attributes_proc (obfd)[0].i = 1;
8197
8198 return TRUE;
8199 }
8200
8201 in_attr = elf_known_obj_attributes_proc (ibfd);
8202 out_attr = elf_known_obj_attributes_proc (obfd);
8203 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8204 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8205 {
8206 /* Ignore mismatches if the object doesn't use floating point. */
8207 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8208 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8209 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8210 {
8211 _bfd_error_handler
8212 (_("ERROR: %B uses VFP register arguments, %B does not"),
8213 ibfd, obfd);
8214 return FALSE;
8215 }
8216 }
8217
8218 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
8219 {
8220 /* Merge this attribute with existing attributes. */
8221 switch (i)
8222 {
8223 case Tag_CPU_raw_name:
8224 case Tag_CPU_name:
8225 /* Use whichever has the greatest architecture requirements. We
8226 won't necessarily have both the above tags, so make sure input
8227 name is non-NULL. */
8228 if (in_attr[Tag_CPU_arch].i > out_attr[Tag_CPU_arch].i
8229 && in_attr[i].s)
8230 out_attr[i].s = _bfd_elf_attr_strdup (obfd, in_attr[i].s);
8231 break;
8232
8233 case Tag_ABI_optimization_goals:
8234 case Tag_ABI_FP_optimization_goals:
8235 /* Use the first value seen. */
8236 break;
8237
8238 case Tag_CPU_arch:
8239 case Tag_ARM_ISA_use:
8240 case Tag_THUMB_ISA_use:
8241 case Tag_WMMX_arch:
8242 case Tag_NEON_arch:
8243 /* ??? Do NEON and WMMX conflict? */
8244 case Tag_ABI_FP_rounding:
8245 case Tag_ABI_FP_denormal:
8246 case Tag_ABI_FP_exceptions:
8247 case Tag_ABI_FP_user_exceptions:
8248 case Tag_ABI_FP_number_model:
8249 case Tag_ABI_align8_preserved:
8250 case Tag_ABI_HardFP_use:
8251 /* Use the largest value specified. */
8252 if (in_attr[i].i > out_attr[i].i)
8253 out_attr[i].i = in_attr[i].i;
8254 break;
8255
8256 case Tag_CPU_arch_profile:
8257 /* Warn if conflicting architecture profiles used. */
8258 if (out_attr[i].i && in_attr[i].i && in_attr[i].i != out_attr[i].i)
8259 {
8260 _bfd_error_handler
8261 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8262 ibfd, in_attr[i].i, out_attr[i].i);
8263 return FALSE;
8264 }
8265 if (in_attr[i].i)
8266 out_attr[i].i = in_attr[i].i;
8267 break;
8268 case Tag_VFP_arch:
8269 if (in_attr[i].i > 4 || out_attr[i].i > 4
8270 || order_01243[in_attr[i].i] > order_01243[out_attr[i].i])
8271 out_attr[i].i = in_attr[i].i;
8272 break;
8273 case Tag_PCS_config:
8274 if (out_attr[i].i == 0)
8275 out_attr[i].i = in_attr[i].i;
8276 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8277 {
8278 /* It's sometimes ok to mix different configs, so this is only
8279 a warning. */
8280 _bfd_error_handler
8281 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8282 }
8283 break;
8284 case Tag_ABI_PCS_R9_use:
8285 if (in_attr[i].i != out_attr[i].i
8286 && out_attr[i].i != AEABI_R9_unused
8287 && in_attr[i].i != AEABI_R9_unused)
8288 {
8289 _bfd_error_handler
8290 (_("ERROR: %B: Conflicting use of R9"), ibfd);
8291 return FALSE;
8292 }
8293 if (out_attr[i].i == AEABI_R9_unused)
8294 out_attr[i].i = in_attr[i].i;
8295 break;
8296 case Tag_ABI_PCS_RW_data:
8297 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8298 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8299 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8300 {
8301 _bfd_error_handler
8302 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8303 ibfd);
8304 return FALSE;
8305 }
8306 /* Use the smallest value specified. */
8307 if (in_attr[i].i < out_attr[i].i)
8308 out_attr[i].i = in_attr[i].i;
8309 break;
8310 case Tag_ABI_PCS_RO_data:
8311 /* Use the smallest value specified. */
8312 if (in_attr[i].i < out_attr[i].i)
8313 out_attr[i].i = in_attr[i].i;
8314 break;
8315 case Tag_ABI_PCS_GOT_use:
8316 if (in_attr[i].i > 2 || out_attr[i].i > 2
8317 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8318 out_attr[i].i = in_attr[i].i;
8319 break;
8320 case Tag_ABI_PCS_wchar_t:
8321 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
8322 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
8323 {
8324 _bfd_error_handler
8325 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
8326 ibfd, in_attr[i].i, out_attr[i].i);
8327 }
8328 else if (in_attr[i].i && !out_attr[i].i)
8329 out_attr[i].i = in_attr[i].i;
8330 break;
8331 case Tag_ABI_align8_needed:
8332 /* ??? Check against Tag_ABI_align8_preserved. */
8333 if (in_attr[i].i > 2 || out_attr[i].i > 2
8334 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8335 out_attr[i].i = in_attr[i].i;
8336 break;
8337 case Tag_ABI_enum_size:
8338 if (in_attr[i].i != AEABI_enum_unused)
8339 {
8340 if (out_attr[i].i == AEABI_enum_unused
8341 || out_attr[i].i == AEABI_enum_forced_wide)
8342 {
8343 /* The existing object is compatible with anything.
8344 Use whatever requirements the new object has. */
8345 out_attr[i].i = in_attr[i].i;
8346 }
8347 else if (in_attr[i].i != AEABI_enum_forced_wide
8348 && out_attr[i].i != in_attr[i].i
8349 && !elf_arm_tdata (obfd)->no_enum_size_warning)
8350 {
8351 const char *aeabi_enum_names[] =
8352 { "", "variable-size", "32-bit", "" };
8353 _bfd_error_handler
8354 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8355 ibfd, aeabi_enum_names[in_attr[i].i],
8356 aeabi_enum_names[out_attr[i].i]);
8357 }
8358 }
8359 break;
8360 case Tag_ABI_VFP_args:
8361 /* Aready done. */
8362 break;
8363 case Tag_ABI_WMMX_args:
8364 if (in_attr[i].i != out_attr[i].i)
8365 {
8366 _bfd_error_handler
8367 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8368 ibfd, obfd);
8369 return FALSE;
8370 }
8371 break;
8372
8373 default: /* All known attributes should be explicitly covered. */
8374 abort ();
8375 }
8376
8377 if (in_attr[i].type && !out_attr[i].type)
8378 switch (in_attr[i].type)
8379 {
8380 case 1:
8381 if (out_attr[i].i)
8382 out_attr[i].type = 1;
8383 break;
8384
8385 case 2:
8386 if (out_attr[i].s)
8387 out_attr[i].type = 2;
8388 break;
8389
8390 default:
8391 abort ();
8392 }
8393 }
8394
8395 /* Merge Tag_compatibility attributes and any common GNU ones. */
8396 _bfd_elf_merge_object_attributes (ibfd, obfd);
8397
8398 /* Check for any attributes not known on ARM. */
8399 in_list = elf_other_obj_attributes_proc (ibfd);
8400 while (in_list && in_list->tag == Tag_compatibility)
8401 in_list = in_list->next;
8402
8403 out_list = elf_other_obj_attributes_proc (obfd);
8404 while (out_list && out_list->tag == Tag_compatibility)
8405 out_list = out_list->next;
8406
8407 for (; in_list != NULL; )
8408 {
8409 if (out_list == NULL)
8410 {
8411 elf32_arm_copy_eabi_other_attribute_list (ibfd, obfd, in_list);
8412 return TRUE;
8413 }
8414
8415 /* The tags for each list are in numerical order. */
8416 /* If the tags are equal, then merge. */
8417 if (in_list->tag == out_list->tag)
8418 {
8419 switch (in_list->tag)
8420 {
8421 case Tag_VFP_HP_extension:
8422 if (out_list->attr.i == 0)
8423 out_list->attr.i = in_list->attr.i;
8424 break;
8425
8426 case Tag_ABI_FP_16bit_format:
8427 if (in_list->attr.i != 0 && out_list->attr.i != 0)
8428 {
8429 if (in_list->attr.i != out_list->attr.i)
8430 {
8431 _bfd_error_handler
8432 (_("ERROR: fp16 format mismatch between %B and %B"),
8433 ibfd, obfd);
8434 return FALSE;
8435 }
8436 }
8437 if (in_list->attr.i != 0)
8438 out_list->attr.i = in_list->attr.i;
8439 break;
8440
8441 default:
8442 if ((in_list->tag & 127) < 64)
8443 {
8444 _bfd_error_handler
8445 (_("Warning: %B: Unknown EABI object attribute %d"), ibfd, in_list->tag);
8446 break;
8447 }
8448 }
8449 }
8450 else if (in_list->tag < out_list->tag)
8451 {
8452 /* This attribute is in ibfd, but not obfd. Copy to obfd and advance to
8453 next input attribute. */
8454 elf32_arm_copy_one_eabi_other_attribute (ibfd, obfd, in_list);
8455 }
8456 if (in_list->tag <= out_list->tag)
8457 {
8458 in_list = in_list->next;
8459 if (in_list == NULL)
8460 continue;
8461 }
8462 while (out_list && out_list->tag < in_list->tag)
8463 out_list = out_list->next;
8464 }
8465 return TRUE;
8466 }
8467
8468
8469 /* Return TRUE if the two EABI versions are incompatible. */
8470
8471 static bfd_boolean
8472 elf32_arm_versions_compatible (unsigned iver, unsigned over)
8473 {
8474 /* v4 and v5 are the same spec before and after it was released,
8475 so allow mixing them. */
8476 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
8477 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
8478 return TRUE;
8479
8480 return (iver == over);
8481 }
8482
8483 /* Merge backend specific data from an object file to the output
8484 object file when linking. */
8485
8486 static bfd_boolean
8487 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
8488 {
8489 flagword out_flags;
8490 flagword in_flags;
8491 bfd_boolean flags_compatible = TRUE;
8492 asection *sec;
8493
8494 /* Check if we have the same endianess. */
8495 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8496 return FALSE;
8497
8498 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8499 return TRUE;
8500
8501 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
8502 return FALSE;
8503
8504 /* The input BFD must have had its flags initialised. */
8505 /* The following seems bogus to me -- The flags are initialized in
8506 the assembler but I don't think an elf_flags_init field is
8507 written into the object. */
8508 /* BFD_ASSERT (elf_flags_init (ibfd)); */
8509
8510 in_flags = elf_elfheader (ibfd)->e_flags;
8511 out_flags = elf_elfheader (obfd)->e_flags;
8512
8513 /* In theory there is no reason why we couldn't handle this. However
8514 in practice it isn't even close to working and there is no real
8515 reason to want it. */
8516 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
8517 && !(ibfd->flags & DYNAMIC)
8518 && (in_flags & EF_ARM_BE8))
8519 {
8520 _bfd_error_handler (_("ERROR: %B is already in final BE8 format"),
8521 ibfd);
8522 return FALSE;
8523 }
8524
8525 if (!elf_flags_init (obfd))
8526 {
8527 /* If the input is the default architecture and had the default
8528 flags then do not bother setting the flags for the output
8529 architecture, instead allow future merges to do this. If no
8530 future merges ever set these flags then they will retain their
8531 uninitialised values, which surprise surprise, correspond
8532 to the default values. */
8533 if (bfd_get_arch_info (ibfd)->the_default
8534 && elf_elfheader (ibfd)->e_flags == 0)
8535 return TRUE;
8536
8537 elf_flags_init (obfd) = TRUE;
8538 elf_elfheader (obfd)->e_flags = in_flags;
8539
8540 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8541 && bfd_get_arch_info (obfd)->the_default)
8542 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
8543
8544 return TRUE;
8545 }
8546
8547 /* Determine what should happen if the input ARM architecture
8548 does not match the output ARM architecture. */
8549 if (! bfd_arm_merge_machines (ibfd, obfd))
8550 return FALSE;
8551
8552 /* Identical flags must be compatible. */
8553 if (in_flags == out_flags)
8554 return TRUE;
8555
8556 /* Check to see if the input BFD actually contains any sections. If
8557 not, its flags may not have been initialised either, but it
8558 cannot actually cause any incompatiblity. Do not short-circuit
8559 dynamic objects; their section list may be emptied by
8560 elf_link_add_object_symbols.
8561
8562 Also check to see if there are no code sections in the input.
8563 In this case there is no need to check for code specific flags.
8564 XXX - do we need to worry about floating-point format compatability
8565 in data sections ? */
8566 if (!(ibfd->flags & DYNAMIC))
8567 {
8568 bfd_boolean null_input_bfd = TRUE;
8569 bfd_boolean only_data_sections = TRUE;
8570
8571 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8572 {
8573 /* Ignore synthetic glue sections. */
8574 if (strcmp (sec->name, ".glue_7")
8575 && strcmp (sec->name, ".glue_7t"))
8576 {
8577 if ((bfd_get_section_flags (ibfd, sec)
8578 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8579 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8580 only_data_sections = FALSE;
8581
8582 null_input_bfd = FALSE;
8583 break;
8584 }
8585 }
8586
8587 if (null_input_bfd || only_data_sections)
8588 return TRUE;
8589 }
8590
8591 /* Complain about various flag mismatches. */
8592 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
8593 EF_ARM_EABI_VERSION (out_flags)))
8594 {
8595 _bfd_error_handler
8596 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
8597 ibfd, obfd,
8598 (in_flags & EF_ARM_EABIMASK) >> 24,
8599 (out_flags & EF_ARM_EABIMASK) >> 24);
8600 return FALSE;
8601 }
8602
8603 /* Not sure what needs to be checked for EABI versions >= 1. */
8604 /* VxWorks libraries do not use these flags. */
8605 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
8606 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
8607 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
8608 {
8609 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8610 {
8611 _bfd_error_handler
8612 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
8613 ibfd, obfd,
8614 in_flags & EF_ARM_APCS_26 ? 26 : 32,
8615 out_flags & EF_ARM_APCS_26 ? 26 : 32);
8616 flags_compatible = FALSE;
8617 }
8618
8619 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8620 {
8621 if (in_flags & EF_ARM_APCS_FLOAT)
8622 _bfd_error_handler
8623 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
8624 ibfd, obfd);
8625 else
8626 _bfd_error_handler
8627 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
8628 ibfd, obfd);
8629
8630 flags_compatible = FALSE;
8631 }
8632
8633 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
8634 {
8635 if (in_flags & EF_ARM_VFP_FLOAT)
8636 _bfd_error_handler
8637 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
8638 ibfd, obfd);
8639 else
8640 _bfd_error_handler
8641 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
8642 ibfd, obfd);
8643
8644 flags_compatible = FALSE;
8645 }
8646
8647 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
8648 {
8649 if (in_flags & EF_ARM_MAVERICK_FLOAT)
8650 _bfd_error_handler
8651 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
8652 ibfd, obfd);
8653 else
8654 _bfd_error_handler
8655 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
8656 ibfd, obfd);
8657
8658 flags_compatible = FALSE;
8659 }
8660
8661 #ifdef EF_ARM_SOFT_FLOAT
8662 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
8663 {
8664 /* We can allow interworking between code that is VFP format
8665 layout, and uses either soft float or integer regs for
8666 passing floating point arguments and results. We already
8667 know that the APCS_FLOAT flags match; similarly for VFP
8668 flags. */
8669 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
8670 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
8671 {
8672 if (in_flags & EF_ARM_SOFT_FLOAT)
8673 _bfd_error_handler
8674 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
8675 ibfd, obfd);
8676 else
8677 _bfd_error_handler
8678 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
8679 ibfd, obfd);
8680
8681 flags_compatible = FALSE;
8682 }
8683 }
8684 #endif
8685
8686 /* Interworking mismatch is only a warning. */
8687 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8688 {
8689 if (in_flags & EF_ARM_INTERWORK)
8690 {
8691 _bfd_error_handler
8692 (_("Warning: %B supports interworking, whereas %B does not"),
8693 ibfd, obfd);
8694 }
8695 else
8696 {
8697 _bfd_error_handler
8698 (_("Warning: %B does not support interworking, whereas %B does"),
8699 ibfd, obfd);
8700 }
8701 }
8702 }
8703
8704 return flags_compatible;
8705 }
8706
8707 /* Display the flags field. */
8708
8709 static bfd_boolean
8710 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
8711 {
8712 FILE * file = (FILE *) ptr;
8713 unsigned long flags;
8714
8715 BFD_ASSERT (abfd != NULL && ptr != NULL);
8716
8717 /* Print normal ELF private data. */
8718 _bfd_elf_print_private_bfd_data (abfd, ptr);
8719
8720 flags = elf_elfheader (abfd)->e_flags;
8721 /* Ignore init flag - it may not be set, despite the flags field
8722 containing valid data. */
8723
8724 /* xgettext:c-format */
8725 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
8726
8727 switch (EF_ARM_EABI_VERSION (flags))
8728 {
8729 case EF_ARM_EABI_UNKNOWN:
8730 /* The following flag bits are GNU extensions and not part of the
8731 official ARM ELF extended ABI. Hence they are only decoded if
8732 the EABI version is not set. */
8733 if (flags & EF_ARM_INTERWORK)
8734 fprintf (file, _(" [interworking enabled]"));
8735
8736 if (flags & EF_ARM_APCS_26)
8737 fprintf (file, " [APCS-26]");
8738 else
8739 fprintf (file, " [APCS-32]");
8740
8741 if (flags & EF_ARM_VFP_FLOAT)
8742 fprintf (file, _(" [VFP float format]"));
8743 else if (flags & EF_ARM_MAVERICK_FLOAT)
8744 fprintf (file, _(" [Maverick float format]"));
8745 else
8746 fprintf (file, _(" [FPA float format]"));
8747
8748 if (flags & EF_ARM_APCS_FLOAT)
8749 fprintf (file, _(" [floats passed in float registers]"));
8750
8751 if (flags & EF_ARM_PIC)
8752 fprintf (file, _(" [position independent]"));
8753
8754 if (flags & EF_ARM_NEW_ABI)
8755 fprintf (file, _(" [new ABI]"));
8756
8757 if (flags & EF_ARM_OLD_ABI)
8758 fprintf (file, _(" [old ABI]"));
8759
8760 if (flags & EF_ARM_SOFT_FLOAT)
8761 fprintf (file, _(" [software FP]"));
8762
8763 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
8764 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
8765 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
8766 | EF_ARM_MAVERICK_FLOAT);
8767 break;
8768
8769 case EF_ARM_EABI_VER1:
8770 fprintf (file, _(" [Version1 EABI]"));
8771
8772 if (flags & EF_ARM_SYMSARESORTED)
8773 fprintf (file, _(" [sorted symbol table]"));
8774 else
8775 fprintf (file, _(" [unsorted symbol table]"));
8776
8777 flags &= ~ EF_ARM_SYMSARESORTED;
8778 break;
8779
8780 case EF_ARM_EABI_VER2:
8781 fprintf (file, _(" [Version2 EABI]"));
8782
8783 if (flags & EF_ARM_SYMSARESORTED)
8784 fprintf (file, _(" [sorted symbol table]"));
8785 else
8786 fprintf (file, _(" [unsorted symbol table]"));
8787
8788 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
8789 fprintf (file, _(" [dynamic symbols use segment index]"));
8790
8791 if (flags & EF_ARM_MAPSYMSFIRST)
8792 fprintf (file, _(" [mapping symbols precede others]"));
8793
8794 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
8795 | EF_ARM_MAPSYMSFIRST);
8796 break;
8797
8798 case EF_ARM_EABI_VER3:
8799 fprintf (file, _(" [Version3 EABI]"));
8800 break;
8801
8802 case EF_ARM_EABI_VER4:
8803 fprintf (file, _(" [Version4 EABI]"));
8804 goto eabi;
8805
8806 case EF_ARM_EABI_VER5:
8807 fprintf (file, _(" [Version5 EABI]"));
8808 eabi:
8809 if (flags & EF_ARM_BE8)
8810 fprintf (file, _(" [BE8]"));
8811
8812 if (flags & EF_ARM_LE8)
8813 fprintf (file, _(" [LE8]"));
8814
8815 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
8816 break;
8817
8818 default:
8819 fprintf (file, _(" <EABI version unrecognised>"));
8820 break;
8821 }
8822
8823 flags &= ~ EF_ARM_EABIMASK;
8824
8825 if (flags & EF_ARM_RELEXEC)
8826 fprintf (file, _(" [relocatable executable]"));
8827
8828 if (flags & EF_ARM_HASENTRY)
8829 fprintf (file, _(" [has entry point]"));
8830
8831 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
8832
8833 if (flags)
8834 fprintf (file, _("<Unrecognised flag bits set>"));
8835
8836 fputc ('\n', file);
8837
8838 return TRUE;
8839 }
8840
8841 static int
8842 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
8843 {
8844 switch (ELF_ST_TYPE (elf_sym->st_info))
8845 {
8846 case STT_ARM_TFUNC:
8847 return ELF_ST_TYPE (elf_sym->st_info);
8848
8849 case STT_ARM_16BIT:
8850 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
8851 This allows us to distinguish between data used by Thumb instructions
8852 and non-data (which is probably code) inside Thumb regions of an
8853 executable. */
8854 if (type != STT_OBJECT && type != STT_TLS)
8855 return ELF_ST_TYPE (elf_sym->st_info);
8856 break;
8857
8858 default:
8859 break;
8860 }
8861
8862 return type;
8863 }
8864
8865 static asection *
8866 elf32_arm_gc_mark_hook (asection *sec,
8867 struct bfd_link_info *info,
8868 Elf_Internal_Rela *rel,
8869 struct elf_link_hash_entry *h,
8870 Elf_Internal_Sym *sym)
8871 {
8872 if (h != NULL)
8873 switch (ELF32_R_TYPE (rel->r_info))
8874 {
8875 case R_ARM_GNU_VTINHERIT:
8876 case R_ARM_GNU_VTENTRY:
8877 return NULL;
8878 }
8879
8880 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
8881 }
8882
8883 /* Update the got entry reference counts for the section being removed. */
8884
8885 static bfd_boolean
8886 elf32_arm_gc_sweep_hook (bfd * abfd,
8887 struct bfd_link_info * info,
8888 asection * sec,
8889 const Elf_Internal_Rela * relocs)
8890 {
8891 Elf_Internal_Shdr *symtab_hdr;
8892 struct elf_link_hash_entry **sym_hashes;
8893 bfd_signed_vma *local_got_refcounts;
8894 const Elf_Internal_Rela *rel, *relend;
8895 struct elf32_arm_link_hash_table * globals;
8896
8897 if (info->relocatable)
8898 return TRUE;
8899
8900 globals = elf32_arm_hash_table (info);
8901
8902 elf_section_data (sec)->local_dynrel = NULL;
8903
8904 symtab_hdr = & elf_symtab_hdr (abfd);
8905 sym_hashes = elf_sym_hashes (abfd);
8906 local_got_refcounts = elf_local_got_refcounts (abfd);
8907
8908 check_use_blx (globals);
8909
8910 relend = relocs + sec->reloc_count;
8911 for (rel = relocs; rel < relend; rel++)
8912 {
8913 unsigned long r_symndx;
8914 struct elf_link_hash_entry *h = NULL;
8915 int r_type;
8916
8917 r_symndx = ELF32_R_SYM (rel->r_info);
8918 if (r_symndx >= symtab_hdr->sh_info)
8919 {
8920 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8921 while (h->root.type == bfd_link_hash_indirect
8922 || h->root.type == bfd_link_hash_warning)
8923 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8924 }
8925
8926 r_type = ELF32_R_TYPE (rel->r_info);
8927 r_type = arm_real_reloc_type (globals, r_type);
8928 switch (r_type)
8929 {
8930 case R_ARM_GOT32:
8931 case R_ARM_GOT_PREL:
8932 case R_ARM_TLS_GD32:
8933 case R_ARM_TLS_IE32:
8934 if (h != NULL)
8935 {
8936 if (h->got.refcount > 0)
8937 h->got.refcount -= 1;
8938 }
8939 else if (local_got_refcounts != NULL)
8940 {
8941 if (local_got_refcounts[r_symndx] > 0)
8942 local_got_refcounts[r_symndx] -= 1;
8943 }
8944 break;
8945
8946 case R_ARM_TLS_LDM32:
8947 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
8948 break;
8949
8950 case R_ARM_ABS32:
8951 case R_ARM_ABS32_NOI:
8952 case R_ARM_REL32:
8953 case R_ARM_REL32_NOI:
8954 case R_ARM_PC24:
8955 case R_ARM_PLT32:
8956 case R_ARM_CALL:
8957 case R_ARM_JUMP24:
8958 case R_ARM_PREL31:
8959 case R_ARM_THM_CALL:
8960 case R_ARM_THM_JUMP24:
8961 case R_ARM_THM_JUMP19:
8962 case R_ARM_MOVW_ABS_NC:
8963 case R_ARM_MOVT_ABS:
8964 case R_ARM_MOVW_PREL_NC:
8965 case R_ARM_MOVT_PREL:
8966 case R_ARM_THM_MOVW_ABS_NC:
8967 case R_ARM_THM_MOVT_ABS:
8968 case R_ARM_THM_MOVW_PREL_NC:
8969 case R_ARM_THM_MOVT_PREL:
8970 /* Should the interworking branches be here also? */
8971
8972 if (h != NULL)
8973 {
8974 struct elf32_arm_link_hash_entry *eh;
8975 struct elf32_arm_relocs_copied **pp;
8976 struct elf32_arm_relocs_copied *p;
8977
8978 eh = (struct elf32_arm_link_hash_entry *) h;
8979
8980 if (h->plt.refcount > 0)
8981 {
8982 h->plt.refcount -= 1;
8983 if (r_type == R_ARM_THM_CALL)
8984 eh->plt_maybe_thumb_refcount--;
8985
8986 if (r_type == R_ARM_THM_JUMP24
8987 || r_type == R_ARM_THM_JUMP19)
8988 eh->plt_thumb_refcount--;
8989 }
8990
8991 if (r_type == R_ARM_ABS32
8992 || r_type == R_ARM_REL32
8993 || r_type == R_ARM_ABS32_NOI
8994 || r_type == R_ARM_REL32_NOI)
8995 {
8996 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
8997 pp = &p->next)
8998 if (p->section == sec)
8999 {
9000 p->count -= 1;
9001 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
9002 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
9003 p->pc_count -= 1;
9004 if (p->count == 0)
9005 *pp = p->next;
9006 break;
9007 }
9008 }
9009 }
9010 break;
9011
9012 default:
9013 break;
9014 }
9015 }
9016
9017 return TRUE;
9018 }
9019
9020 /* Look through the relocs for a section during the first phase. */
9021
9022 static bfd_boolean
9023 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
9024 asection *sec, const Elf_Internal_Rela *relocs)
9025 {
9026 Elf_Internal_Shdr *symtab_hdr;
9027 struct elf_link_hash_entry **sym_hashes;
9028 const Elf_Internal_Rela *rel;
9029 const Elf_Internal_Rela *rel_end;
9030 bfd *dynobj;
9031 asection *sreloc;
9032 bfd_vma *local_got_offsets;
9033 struct elf32_arm_link_hash_table *htab;
9034 bfd_boolean needs_plt;
9035
9036 if (info->relocatable)
9037 return TRUE;
9038
9039 BFD_ASSERT (is_arm_elf (abfd));
9040
9041 htab = elf32_arm_hash_table (info);
9042 sreloc = NULL;
9043
9044 /* Create dynamic sections for relocatable executables so that we can
9045 copy relocations. */
9046 if (htab->root.is_relocatable_executable
9047 && ! htab->root.dynamic_sections_created)
9048 {
9049 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
9050 return FALSE;
9051 }
9052
9053 dynobj = elf_hash_table (info)->dynobj;
9054 local_got_offsets = elf_local_got_offsets (abfd);
9055
9056 symtab_hdr = & elf_symtab_hdr (abfd);
9057 sym_hashes = elf_sym_hashes (abfd);
9058
9059 rel_end = relocs + sec->reloc_count;
9060 for (rel = relocs; rel < rel_end; rel++)
9061 {
9062 struct elf_link_hash_entry *h;
9063 struct elf32_arm_link_hash_entry *eh;
9064 unsigned long r_symndx;
9065 int r_type;
9066
9067 r_symndx = ELF32_R_SYM (rel->r_info);
9068 r_type = ELF32_R_TYPE (rel->r_info);
9069 r_type = arm_real_reloc_type (htab, r_type);
9070
9071 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
9072 {
9073 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
9074 r_symndx);
9075 return FALSE;
9076 }
9077
9078 if (r_symndx < symtab_hdr->sh_info)
9079 h = NULL;
9080 else
9081 {
9082 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9083 while (h->root.type == bfd_link_hash_indirect
9084 || h->root.type == bfd_link_hash_warning)
9085 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9086 }
9087
9088 eh = (struct elf32_arm_link_hash_entry *) h;
9089
9090 switch (r_type)
9091 {
9092 case R_ARM_GOT32:
9093 case R_ARM_GOT_PREL:
9094 case R_ARM_TLS_GD32:
9095 case R_ARM_TLS_IE32:
9096 /* This symbol requires a global offset table entry. */
9097 {
9098 int tls_type, old_tls_type;
9099
9100 switch (r_type)
9101 {
9102 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
9103 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
9104 default: tls_type = GOT_NORMAL; break;
9105 }
9106
9107 if (h != NULL)
9108 {
9109 h->got.refcount++;
9110 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9111 }
9112 else
9113 {
9114 bfd_signed_vma *local_got_refcounts;
9115
9116 /* This is a global offset table entry for a local symbol. */
9117 local_got_refcounts = elf_local_got_refcounts (abfd);
9118 if (local_got_refcounts == NULL)
9119 {
9120 bfd_size_type size;
9121
9122 size = symtab_hdr->sh_info;
9123 size *= (sizeof (bfd_signed_vma) + sizeof (char));
9124 local_got_refcounts = bfd_zalloc (abfd, size);
9125 if (local_got_refcounts == NULL)
9126 return FALSE;
9127 elf_local_got_refcounts (abfd) = local_got_refcounts;
9128 elf32_arm_local_got_tls_type (abfd)
9129 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
9130 }
9131 local_got_refcounts[r_symndx] += 1;
9132 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
9133 }
9134
9135 /* We will already have issued an error message if there is a
9136 TLS / non-TLS mismatch, based on the symbol type. We don't
9137 support any linker relaxations. So just combine any TLS
9138 types needed. */
9139 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
9140 && tls_type != GOT_NORMAL)
9141 tls_type |= old_tls_type;
9142
9143 if (old_tls_type != tls_type)
9144 {
9145 if (h != NULL)
9146 elf32_arm_hash_entry (h)->tls_type = tls_type;
9147 else
9148 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9149 }
9150 }
9151 /* Fall through. */
9152
9153 case R_ARM_TLS_LDM32:
9154 if (r_type == R_ARM_TLS_LDM32)
9155 htab->tls_ldm_got.refcount++;
9156 /* Fall through. */
9157
9158 case R_ARM_GOTOFF32:
9159 case R_ARM_GOTPC:
9160 if (htab->sgot == NULL)
9161 {
9162 if (htab->root.dynobj == NULL)
9163 htab->root.dynobj = abfd;
9164 if (!create_got_section (htab->root.dynobj, info))
9165 return FALSE;
9166 }
9167 break;
9168
9169 case R_ARM_ABS12:
9170 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9171 ldr __GOTT_INDEX__ offsets. */
9172 if (!htab->vxworks_p)
9173 break;
9174 /* Fall through. */
9175
9176 case R_ARM_PC24:
9177 case R_ARM_PLT32:
9178 case R_ARM_CALL:
9179 case R_ARM_JUMP24:
9180 case R_ARM_PREL31:
9181 case R_ARM_THM_CALL:
9182 case R_ARM_THM_JUMP24:
9183 case R_ARM_THM_JUMP19:
9184 needs_plt = 1;
9185 goto normal_reloc;
9186
9187 case R_ARM_ABS32:
9188 case R_ARM_ABS32_NOI:
9189 case R_ARM_REL32:
9190 case R_ARM_REL32_NOI:
9191 case R_ARM_MOVW_ABS_NC:
9192 case R_ARM_MOVT_ABS:
9193 case R_ARM_MOVW_PREL_NC:
9194 case R_ARM_MOVT_PREL:
9195 case R_ARM_THM_MOVW_ABS_NC:
9196 case R_ARM_THM_MOVT_ABS:
9197 case R_ARM_THM_MOVW_PREL_NC:
9198 case R_ARM_THM_MOVT_PREL:
9199 needs_plt = 0;
9200 normal_reloc:
9201
9202 /* Should the interworking branches be listed here? */
9203 if (h != NULL)
9204 {
9205 /* If this reloc is in a read-only section, we might
9206 need a copy reloc. We can't check reliably at this
9207 stage whether the section is read-only, as input
9208 sections have not yet been mapped to output sections.
9209 Tentatively set the flag for now, and correct in
9210 adjust_dynamic_symbol. */
9211 if (!info->shared)
9212 h->non_got_ref = 1;
9213
9214 /* We may need a .plt entry if the function this reloc
9215 refers to is in a different object. We can't tell for
9216 sure yet, because something later might force the
9217 symbol local. */
9218 if (needs_plt)
9219 h->needs_plt = 1;
9220
9221 /* If we create a PLT entry, this relocation will reference
9222 it, even if it's an ABS32 relocation. */
9223 h->plt.refcount += 1;
9224
9225 /* It's too early to use htab->use_blx here, so we have to
9226 record possible blx references separately from
9227 relocs that definitely need a thumb stub. */
9228
9229 if (r_type == R_ARM_THM_CALL)
9230 eh->plt_maybe_thumb_refcount += 1;
9231
9232 if (r_type == R_ARM_THM_JUMP24
9233 || r_type == R_ARM_THM_JUMP19)
9234 eh->plt_thumb_refcount += 1;
9235 }
9236
9237 /* If we are creating a shared library or relocatable executable,
9238 and this is a reloc against a global symbol, or a non PC
9239 relative reloc against a local symbol, then we need to copy
9240 the reloc into the shared library. However, if we are linking
9241 with -Bsymbolic, we do not need to copy a reloc against a
9242 global symbol which is defined in an object we are
9243 including in the link (i.e., DEF_REGULAR is set). At
9244 this point we have not seen all the input files, so it is
9245 possible that DEF_REGULAR is not set now but will be set
9246 later (it is never cleared). We account for that
9247 possibility below by storing information in the
9248 relocs_copied field of the hash table entry. */
9249 if ((info->shared || htab->root.is_relocatable_executable)
9250 && (sec->flags & SEC_ALLOC) != 0
9251 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
9252 || (h != NULL && ! h->needs_plt
9253 && (! info->symbolic || ! h->def_regular))))
9254 {
9255 struct elf32_arm_relocs_copied *p, **head;
9256
9257 /* When creating a shared object, we must copy these
9258 reloc types into the output file. We create a reloc
9259 section in dynobj and make room for this reloc. */
9260 if (sreloc == NULL)
9261 {
9262 sreloc = _bfd_elf_make_dynamic_reloc_section
9263 (sec, dynobj, 2, abfd, ! htab->use_rel);
9264
9265 if (sreloc == NULL)
9266 return FALSE;
9267
9268 /* BPABI objects never have dynamic relocations mapped. */
9269 if (! htab->symbian_p)
9270 {
9271 flagword flags;
9272
9273 flags = bfd_get_section_flags (dynobj, sreloc);
9274 flags &= ~(SEC_LOAD | SEC_ALLOC);
9275 bfd_set_section_flags (dynobj, sreloc, flags);
9276 }
9277 }
9278
9279 /* If this is a global symbol, we count the number of
9280 relocations we need for this symbol. */
9281 if (h != NULL)
9282 {
9283 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9284 }
9285 else
9286 {
9287 /* Track dynamic relocs needed for local syms too.
9288 We really need local syms available to do this
9289 easily. Oh well. */
9290
9291 asection *s;
9292 void *vpp;
9293
9294 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9295 sec, r_symndx);
9296 if (s == NULL)
9297 return FALSE;
9298
9299 vpp = &elf_section_data (s)->local_dynrel;
9300 head = (struct elf32_arm_relocs_copied **) vpp;
9301 }
9302
9303 p = *head;
9304 if (p == NULL || p->section != sec)
9305 {
9306 bfd_size_type amt = sizeof *p;
9307
9308 p = bfd_alloc (htab->root.dynobj, amt);
9309 if (p == NULL)
9310 return FALSE;
9311 p->next = *head;
9312 *head = p;
9313 p->section = sec;
9314 p->count = 0;
9315 p->pc_count = 0;
9316 }
9317
9318 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9319 p->pc_count += 1;
9320 p->count += 1;
9321 }
9322 break;
9323
9324 /* This relocation describes the C++ object vtable hierarchy.
9325 Reconstruct it for later use during GC. */
9326 case R_ARM_GNU_VTINHERIT:
9327 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9328 return FALSE;
9329 break;
9330
9331 /* This relocation describes which C++ vtable entries are actually
9332 used. Record for later use during GC. */
9333 case R_ARM_GNU_VTENTRY:
9334 BFD_ASSERT (h != NULL);
9335 if (h != NULL
9336 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9337 return FALSE;
9338 break;
9339 }
9340 }
9341
9342 return TRUE;
9343 }
9344
9345 /* Unwinding tables are not referenced directly. This pass marks them as
9346 required if the corresponding code section is marked. */
9347
9348 static bfd_boolean
9349 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9350 elf_gc_mark_hook_fn gc_mark_hook)
9351 {
9352 bfd *sub;
9353 Elf_Internal_Shdr **elf_shdrp;
9354 bfd_boolean again;
9355
9356 /* Marking EH data may cause additional code sections to be marked,
9357 requiring multiple passes. */
9358 again = TRUE;
9359 while (again)
9360 {
9361 again = FALSE;
9362 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9363 {
9364 asection *o;
9365
9366 if (! is_arm_elf (sub))
9367 continue;
9368
9369 elf_shdrp = elf_elfsections (sub);
9370 for (o = sub->sections; o != NULL; o = o->next)
9371 {
9372 Elf_Internal_Shdr *hdr;
9373
9374 hdr = &elf_section_data (o)->this_hdr;
9375 if (hdr->sh_type == SHT_ARM_EXIDX
9376 && hdr->sh_link
9377 && hdr->sh_link < elf_numsections (sub)
9378 && !o->gc_mark
9379 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9380 {
9381 again = TRUE;
9382 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9383 return FALSE;
9384 }
9385 }
9386 }
9387 }
9388
9389 return TRUE;
9390 }
9391
9392 /* Treat mapping symbols as special target symbols. */
9393
9394 static bfd_boolean
9395 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
9396 {
9397 return bfd_is_arm_special_symbol_name (sym->name,
9398 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
9399 }
9400
9401 /* This is a copy of elf_find_function() from elf.c except that
9402 ARM mapping symbols are ignored when looking for function names
9403 and STT_ARM_TFUNC is considered to a function type. */
9404
9405 static bfd_boolean
9406 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
9407 asection * section,
9408 asymbol ** symbols,
9409 bfd_vma offset,
9410 const char ** filename_ptr,
9411 const char ** functionname_ptr)
9412 {
9413 const char * filename = NULL;
9414 asymbol * func = NULL;
9415 bfd_vma low_func = 0;
9416 asymbol ** p;
9417
9418 for (p = symbols; *p != NULL; p++)
9419 {
9420 elf_symbol_type *q;
9421
9422 q = (elf_symbol_type *) *p;
9423
9424 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
9425 {
9426 default:
9427 break;
9428 case STT_FILE:
9429 filename = bfd_asymbol_name (&q->symbol);
9430 break;
9431 case STT_FUNC:
9432 case STT_ARM_TFUNC:
9433 case STT_NOTYPE:
9434 /* Skip mapping symbols. */
9435 if ((q->symbol.flags & BSF_LOCAL)
9436 && bfd_is_arm_special_symbol_name (q->symbol.name,
9437 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
9438 continue;
9439 /* Fall through. */
9440 if (bfd_get_section (&q->symbol) == section
9441 && q->symbol.value >= low_func
9442 && q->symbol.value <= offset)
9443 {
9444 func = (asymbol *) q;
9445 low_func = q->symbol.value;
9446 }
9447 break;
9448 }
9449 }
9450
9451 if (func == NULL)
9452 return FALSE;
9453
9454 if (filename_ptr)
9455 *filename_ptr = filename;
9456 if (functionname_ptr)
9457 *functionname_ptr = bfd_asymbol_name (func);
9458
9459 return TRUE;
9460 }
9461
9462
9463 /* Find the nearest line to a particular section and offset, for error
9464 reporting. This code is a duplicate of the code in elf.c, except
9465 that it uses arm_elf_find_function. */
9466
9467 static bfd_boolean
9468 elf32_arm_find_nearest_line (bfd * abfd,
9469 asection * section,
9470 asymbol ** symbols,
9471 bfd_vma offset,
9472 const char ** filename_ptr,
9473 const char ** functionname_ptr,
9474 unsigned int * line_ptr)
9475 {
9476 bfd_boolean found = FALSE;
9477
9478 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
9479
9480 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9481 filename_ptr, functionname_ptr,
9482 line_ptr, 0,
9483 & elf_tdata (abfd)->dwarf2_find_line_info))
9484 {
9485 if (!*functionname_ptr)
9486 arm_elf_find_function (abfd, section, symbols, offset,
9487 *filename_ptr ? NULL : filename_ptr,
9488 functionname_ptr);
9489
9490 return TRUE;
9491 }
9492
9493 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9494 & found, filename_ptr,
9495 functionname_ptr, line_ptr,
9496 & elf_tdata (abfd)->line_info))
9497 return FALSE;
9498
9499 if (found && (*functionname_ptr || *line_ptr))
9500 return TRUE;
9501
9502 if (symbols == NULL)
9503 return FALSE;
9504
9505 if (! arm_elf_find_function (abfd, section, symbols, offset,
9506 filename_ptr, functionname_ptr))
9507 return FALSE;
9508
9509 *line_ptr = 0;
9510 return TRUE;
9511 }
9512
9513 static bfd_boolean
9514 elf32_arm_find_inliner_info (bfd * abfd,
9515 const char ** filename_ptr,
9516 const char ** functionname_ptr,
9517 unsigned int * line_ptr)
9518 {
9519 bfd_boolean found;
9520 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9521 functionname_ptr, line_ptr,
9522 & elf_tdata (abfd)->dwarf2_find_line_info);
9523 return found;
9524 }
9525
9526 /* Adjust a symbol defined by a dynamic object and referenced by a
9527 regular object. The current definition is in some section of the
9528 dynamic object, but we're not including those sections. We have to
9529 change the definition to something the rest of the link can
9530 understand. */
9531
9532 static bfd_boolean
9533 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
9534 struct elf_link_hash_entry * h)
9535 {
9536 bfd * dynobj;
9537 asection * s;
9538 struct elf32_arm_link_hash_entry * eh;
9539 struct elf32_arm_link_hash_table *globals;
9540
9541 globals = elf32_arm_hash_table (info);
9542 dynobj = elf_hash_table (info)->dynobj;
9543
9544 /* Make sure we know what is going on here. */
9545 BFD_ASSERT (dynobj != NULL
9546 && (h->needs_plt
9547 || h->u.weakdef != NULL
9548 || (h->def_dynamic
9549 && h->ref_regular
9550 && !h->def_regular)));
9551
9552 eh = (struct elf32_arm_link_hash_entry *) h;
9553
9554 /* If this is a function, put it in the procedure linkage table. We
9555 will fill in the contents of the procedure linkage table later,
9556 when we know the address of the .got section. */
9557 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
9558 || h->needs_plt)
9559 {
9560 if (h->plt.refcount <= 0
9561 || SYMBOL_CALLS_LOCAL (info, h)
9562 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9563 && h->root.type == bfd_link_hash_undefweak))
9564 {
9565 /* This case can occur if we saw a PLT32 reloc in an input
9566 file, but the symbol was never referred to by a dynamic
9567 object, or if all references were garbage collected. In
9568 such a case, we don't actually need to build a procedure
9569 linkage table, and we can just do a PC24 reloc instead. */
9570 h->plt.offset = (bfd_vma) -1;
9571 eh->plt_thumb_refcount = 0;
9572 eh->plt_maybe_thumb_refcount = 0;
9573 h->needs_plt = 0;
9574 }
9575
9576 return TRUE;
9577 }
9578 else
9579 {
9580 /* It's possible that we incorrectly decided a .plt reloc was
9581 needed for an R_ARM_PC24 or similar reloc to a non-function sym
9582 in check_relocs. We can't decide accurately between function
9583 and non-function syms in check-relocs; Objects loaded later in
9584 the link may change h->type. So fix it now. */
9585 h->plt.offset = (bfd_vma) -1;
9586 eh->plt_thumb_refcount = 0;
9587 eh->plt_maybe_thumb_refcount = 0;
9588 }
9589
9590 /* If this is a weak symbol, and there is a real definition, the
9591 processor independent code will have arranged for us to see the
9592 real definition first, and we can just use the same value. */
9593 if (h->u.weakdef != NULL)
9594 {
9595 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9596 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9597 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9598 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9599 return TRUE;
9600 }
9601
9602 /* If there are no non-GOT references, we do not need a copy
9603 relocation. */
9604 if (!h->non_got_ref)
9605 return TRUE;
9606
9607 /* This is a reference to a symbol defined by a dynamic object which
9608 is not a function. */
9609
9610 /* If we are creating a shared library, we must presume that the
9611 only references to the symbol are via the global offset table.
9612 For such cases we need not do anything here; the relocations will
9613 be handled correctly by relocate_section. Relocatable executables
9614 can reference data in shared objects directly, so we don't need to
9615 do anything here. */
9616 if (info->shared || globals->root.is_relocatable_executable)
9617 return TRUE;
9618
9619 if (h->size == 0)
9620 {
9621 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
9622 h->root.root.string);
9623 return TRUE;
9624 }
9625
9626 /* We must allocate the symbol in our .dynbss section, which will
9627 become part of the .bss section of the executable. There will be
9628 an entry for this symbol in the .dynsym section. The dynamic
9629 object will contain position independent code, so all references
9630 from the dynamic object to this symbol will go through the global
9631 offset table. The dynamic linker will use the .dynsym entry to
9632 determine the address it must put in the global offset table, so
9633 both the dynamic object and the regular object will refer to the
9634 same memory location for the variable. */
9635 s = bfd_get_section_by_name (dynobj, ".dynbss");
9636 BFD_ASSERT (s != NULL);
9637
9638 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
9639 copy the initial value out of the dynamic object and into the
9640 runtime process image. We need to remember the offset into the
9641 .rel(a).bss section we are going to use. */
9642 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9643 {
9644 asection *srel;
9645
9646 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
9647 BFD_ASSERT (srel != NULL);
9648 srel->size += RELOC_SIZE (globals);
9649 h->needs_copy = 1;
9650 }
9651
9652 return _bfd_elf_adjust_dynamic_copy (h, s);
9653 }
9654
9655 /* Allocate space in .plt, .got and associated reloc sections for
9656 dynamic relocs. */
9657
9658 static bfd_boolean
9659 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
9660 {
9661 struct bfd_link_info *info;
9662 struct elf32_arm_link_hash_table *htab;
9663 struct elf32_arm_link_hash_entry *eh;
9664 struct elf32_arm_relocs_copied *p;
9665 bfd_signed_vma thumb_refs;
9666
9667 eh = (struct elf32_arm_link_hash_entry *) h;
9668
9669 if (h->root.type == bfd_link_hash_indirect)
9670 return TRUE;
9671
9672 if (h->root.type == bfd_link_hash_warning)
9673 /* When warning symbols are created, they **replace** the "real"
9674 entry in the hash table, thus we never get to see the real
9675 symbol in a hash traversal. So look at it now. */
9676 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9677
9678 info = (struct bfd_link_info *) inf;
9679 htab = elf32_arm_hash_table (info);
9680
9681 if (htab->root.dynamic_sections_created
9682 && h->plt.refcount > 0)
9683 {
9684 /* Make sure this symbol is output as a dynamic symbol.
9685 Undefined weak syms won't yet be marked as dynamic. */
9686 if (h->dynindx == -1
9687 && !h->forced_local)
9688 {
9689 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9690 return FALSE;
9691 }
9692
9693 if (info->shared
9694 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
9695 {
9696 asection *s = htab->splt;
9697
9698 /* If this is the first .plt entry, make room for the special
9699 first entry. */
9700 if (s->size == 0)
9701 s->size += htab->plt_header_size;
9702
9703 h->plt.offset = s->size;
9704
9705 /* If we will insert a Thumb trampoline before this PLT, leave room
9706 for it. */
9707 thumb_refs = eh->plt_thumb_refcount;
9708 if (!htab->use_blx)
9709 thumb_refs += eh->plt_maybe_thumb_refcount;
9710
9711 if (thumb_refs > 0)
9712 {
9713 h->plt.offset += PLT_THUMB_STUB_SIZE;
9714 s->size += PLT_THUMB_STUB_SIZE;
9715 }
9716
9717 /* If this symbol is not defined in a regular file, and we are
9718 not generating a shared library, then set the symbol to this
9719 location in the .plt. This is required to make function
9720 pointers compare as equal between the normal executable and
9721 the shared library. */
9722 if (! info->shared
9723 && !h->def_regular)
9724 {
9725 h->root.u.def.section = s;
9726 h->root.u.def.value = h->plt.offset;
9727
9728 /* Make sure the function is not marked as Thumb, in case
9729 it is the target of an ABS32 relocation, which will
9730 point to the PLT entry. */
9731 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
9732 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9733 }
9734
9735 /* Make room for this entry. */
9736 s->size += htab->plt_entry_size;
9737
9738 if (!htab->symbian_p)
9739 {
9740 /* We also need to make an entry in the .got.plt section, which
9741 will be placed in the .got section by the linker script. */
9742 eh->plt_got_offset = htab->sgotplt->size;
9743 htab->sgotplt->size += 4;
9744 }
9745
9746 /* We also need to make an entry in the .rel(a).plt section. */
9747 htab->srelplt->size += RELOC_SIZE (htab);
9748
9749 /* VxWorks executables have a second set of relocations for
9750 each PLT entry. They go in a separate relocation section,
9751 which is processed by the kernel loader. */
9752 if (htab->vxworks_p && !info->shared)
9753 {
9754 /* There is a relocation for the initial PLT entry:
9755 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
9756 if (h->plt.offset == htab->plt_header_size)
9757 htab->srelplt2->size += RELOC_SIZE (htab);
9758
9759 /* There are two extra relocations for each subsequent
9760 PLT entry: an R_ARM_32 relocation for the GOT entry,
9761 and an R_ARM_32 relocation for the PLT entry. */
9762 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
9763 }
9764 }
9765 else
9766 {
9767 h->plt.offset = (bfd_vma) -1;
9768 h->needs_plt = 0;
9769 }
9770 }
9771 else
9772 {
9773 h->plt.offset = (bfd_vma) -1;
9774 h->needs_plt = 0;
9775 }
9776
9777 if (h->got.refcount > 0)
9778 {
9779 asection *s;
9780 bfd_boolean dyn;
9781 int tls_type = elf32_arm_hash_entry (h)->tls_type;
9782 int indx;
9783
9784 /* Make sure this symbol is output as a dynamic symbol.
9785 Undefined weak syms won't yet be marked as dynamic. */
9786 if (h->dynindx == -1
9787 && !h->forced_local)
9788 {
9789 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9790 return FALSE;
9791 }
9792
9793 if (!htab->symbian_p)
9794 {
9795 s = htab->sgot;
9796 h->got.offset = s->size;
9797
9798 if (tls_type == GOT_UNKNOWN)
9799 abort ();
9800
9801 if (tls_type == GOT_NORMAL)
9802 /* Non-TLS symbols need one GOT slot. */
9803 s->size += 4;
9804 else
9805 {
9806 if (tls_type & GOT_TLS_GD)
9807 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
9808 s->size += 8;
9809 if (tls_type & GOT_TLS_IE)
9810 /* R_ARM_TLS_IE32 needs one GOT slot. */
9811 s->size += 4;
9812 }
9813
9814 dyn = htab->root.dynamic_sections_created;
9815
9816 indx = 0;
9817 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9818 && (!info->shared
9819 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9820 indx = h->dynindx;
9821
9822 if (tls_type != GOT_NORMAL
9823 && (info->shared || indx != 0)
9824 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9825 || h->root.type != bfd_link_hash_undefweak))
9826 {
9827 if (tls_type & GOT_TLS_IE)
9828 htab->srelgot->size += RELOC_SIZE (htab);
9829
9830 if (tls_type & GOT_TLS_GD)
9831 htab->srelgot->size += RELOC_SIZE (htab);
9832
9833 if ((tls_type & GOT_TLS_GD) && indx != 0)
9834 htab->srelgot->size += RELOC_SIZE (htab);
9835 }
9836 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9837 || h->root.type != bfd_link_hash_undefweak)
9838 && (info->shared
9839 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
9840 htab->srelgot->size += RELOC_SIZE (htab);
9841 }
9842 }
9843 else
9844 h->got.offset = (bfd_vma) -1;
9845
9846 /* Allocate stubs for exported Thumb functions on v4t. */
9847 if (!htab->use_blx && h->dynindx != -1
9848 && h->def_regular
9849 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
9850 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9851 {
9852 struct elf_link_hash_entry * th;
9853 struct bfd_link_hash_entry * bh;
9854 struct elf_link_hash_entry * myh;
9855 char name[1024];
9856 asection *s;
9857 bh = NULL;
9858 /* Create a new symbol to regist the real location of the function. */
9859 s = h->root.u.def.section;
9860 sprintf (name, "__real_%s", h->root.root.string);
9861 _bfd_generic_link_add_one_symbol (info, s->owner,
9862 name, BSF_GLOBAL, s,
9863 h->root.u.def.value,
9864 NULL, TRUE, FALSE, &bh);
9865
9866 myh = (struct elf_link_hash_entry *) bh;
9867 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
9868 myh->forced_local = 1;
9869 eh->export_glue = myh;
9870 th = record_arm_to_thumb_glue (info, h);
9871 /* Point the symbol at the stub. */
9872 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9873 h->root.u.def.section = th->root.u.def.section;
9874 h->root.u.def.value = th->root.u.def.value & ~1;
9875 }
9876
9877 if (eh->relocs_copied == NULL)
9878 return TRUE;
9879
9880 /* In the shared -Bsymbolic case, discard space allocated for
9881 dynamic pc-relative relocs against symbols which turn out to be
9882 defined in regular objects. For the normal shared case, discard
9883 space for pc-relative relocs that have become local due to symbol
9884 visibility changes. */
9885
9886 if (info->shared || htab->root.is_relocatable_executable)
9887 {
9888 /* The only relocs that use pc_count are R_ARM_REL32 and
9889 R_ARM_REL32_NOI, which will appear on something like
9890 ".long foo - .". We want calls to protected symbols to resolve
9891 directly to the function rather than going via the plt. If people
9892 want function pointer comparisons to work as expected then they
9893 should avoid writing assembly like ".long foo - .". */
9894 if (SYMBOL_CALLS_LOCAL (info, h))
9895 {
9896 struct elf32_arm_relocs_copied **pp;
9897
9898 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9899 {
9900 p->count -= p->pc_count;
9901 p->pc_count = 0;
9902 if (p->count == 0)
9903 *pp = p->next;
9904 else
9905 pp = &p->next;
9906 }
9907 }
9908
9909 if (elf32_arm_hash_table (info)->vxworks_p)
9910 {
9911 struct elf32_arm_relocs_copied **pp;
9912
9913 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9914 {
9915 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
9916 *pp = p->next;
9917 else
9918 pp = &p->next;
9919 }
9920 }
9921
9922 /* Also discard relocs on undefined weak syms with non-default
9923 visibility. */
9924 if (eh->relocs_copied != NULL
9925 && h->root.type == bfd_link_hash_undefweak)
9926 {
9927 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9928 eh->relocs_copied = NULL;
9929
9930 /* Make sure undefined weak symbols are output as a dynamic
9931 symbol in PIEs. */
9932 else if (h->dynindx == -1
9933 && !h->forced_local)
9934 {
9935 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9936 return FALSE;
9937 }
9938 }
9939
9940 else if (htab->root.is_relocatable_executable && h->dynindx == -1
9941 && h->root.type == bfd_link_hash_new)
9942 {
9943 /* Output absolute symbols so that we can create relocations
9944 against them. For normal symbols we output a relocation
9945 against the section that contains them. */
9946 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9947 return FALSE;
9948 }
9949
9950 }
9951 else
9952 {
9953 /* For the non-shared case, discard space for relocs against
9954 symbols which turn out to need copy relocs or are not
9955 dynamic. */
9956
9957 if (!h->non_got_ref
9958 && ((h->def_dynamic
9959 && !h->def_regular)
9960 || (htab->root.dynamic_sections_created
9961 && (h->root.type == bfd_link_hash_undefweak
9962 || h->root.type == bfd_link_hash_undefined))))
9963 {
9964 /* Make sure this symbol is output as a dynamic symbol.
9965 Undefined weak syms won't yet be marked as dynamic. */
9966 if (h->dynindx == -1
9967 && !h->forced_local)
9968 {
9969 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9970 return FALSE;
9971 }
9972
9973 /* If that succeeded, we know we'll be keeping all the
9974 relocs. */
9975 if (h->dynindx != -1)
9976 goto keep;
9977 }
9978
9979 eh->relocs_copied = NULL;
9980
9981 keep: ;
9982 }
9983
9984 /* Finally, allocate space. */
9985 for (p = eh->relocs_copied; p != NULL; p = p->next)
9986 {
9987 asection *sreloc = elf_section_data (p->section)->sreloc;
9988 sreloc->size += p->count * RELOC_SIZE (htab);
9989 }
9990
9991 return TRUE;
9992 }
9993
9994 /* Find any dynamic relocs that apply to read-only sections. */
9995
9996 static bfd_boolean
9997 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
9998 {
9999 struct elf32_arm_link_hash_entry * eh;
10000 struct elf32_arm_relocs_copied * p;
10001
10002 if (h->root.type == bfd_link_hash_warning)
10003 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10004
10005 eh = (struct elf32_arm_link_hash_entry *) h;
10006 for (p = eh->relocs_copied; p != NULL; p = p->next)
10007 {
10008 asection *s = p->section;
10009
10010 if (s != NULL && (s->flags & SEC_READONLY) != 0)
10011 {
10012 struct bfd_link_info *info = (struct bfd_link_info *) inf;
10013
10014 info->flags |= DF_TEXTREL;
10015
10016 /* Not an error, just cut short the traversal. */
10017 return FALSE;
10018 }
10019 }
10020 return TRUE;
10021 }
10022
10023 void
10024 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
10025 int byteswap_code)
10026 {
10027 struct elf32_arm_link_hash_table *globals;
10028
10029 globals = elf32_arm_hash_table (info);
10030 globals->byteswap_code = byteswap_code;
10031 }
10032
10033 /* Set the sizes of the dynamic sections. */
10034
10035 static bfd_boolean
10036 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
10037 struct bfd_link_info * info)
10038 {
10039 bfd * dynobj;
10040 asection * s;
10041 bfd_boolean plt;
10042 bfd_boolean relocs;
10043 bfd *ibfd;
10044 struct elf32_arm_link_hash_table *htab;
10045
10046 htab = elf32_arm_hash_table (info);
10047 dynobj = elf_hash_table (info)->dynobj;
10048 BFD_ASSERT (dynobj != NULL);
10049 check_use_blx (htab);
10050
10051 if (elf_hash_table (info)->dynamic_sections_created)
10052 {
10053 /* Set the contents of the .interp section to the interpreter. */
10054 if (info->executable)
10055 {
10056 s = bfd_get_section_by_name (dynobj, ".interp");
10057 BFD_ASSERT (s != NULL);
10058 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
10059 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
10060 }
10061 }
10062
10063 /* Set up .got offsets for local syms, and space for local dynamic
10064 relocs. */
10065 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10066 {
10067 bfd_signed_vma *local_got;
10068 bfd_signed_vma *end_local_got;
10069 char *local_tls_type;
10070 bfd_size_type locsymcount;
10071 Elf_Internal_Shdr *symtab_hdr;
10072 asection *srel;
10073 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
10074
10075 if (! is_arm_elf (ibfd))
10076 continue;
10077
10078 for (s = ibfd->sections; s != NULL; s = s->next)
10079 {
10080 struct elf32_arm_relocs_copied *p;
10081
10082 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
10083 {
10084 if (!bfd_is_abs_section (p->section)
10085 && bfd_is_abs_section (p->section->output_section))
10086 {
10087 /* Input section has been discarded, either because
10088 it is a copy of a linkonce section or due to
10089 linker script /DISCARD/, so we'll be discarding
10090 the relocs too. */
10091 }
10092 else if (is_vxworks
10093 && strcmp (p->section->output_section->name,
10094 ".tls_vars") == 0)
10095 {
10096 /* Relocations in vxworks .tls_vars sections are
10097 handled specially by the loader. */
10098 }
10099 else if (p->count != 0)
10100 {
10101 srel = elf_section_data (p->section)->sreloc;
10102 srel->size += p->count * RELOC_SIZE (htab);
10103 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10104 info->flags |= DF_TEXTREL;
10105 }
10106 }
10107 }
10108
10109 local_got = elf_local_got_refcounts (ibfd);
10110 if (!local_got)
10111 continue;
10112
10113 symtab_hdr = & elf_symtab_hdr (ibfd);
10114 locsymcount = symtab_hdr->sh_info;
10115 end_local_got = local_got + locsymcount;
10116 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
10117 s = htab->sgot;
10118 srel = htab->srelgot;
10119 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
10120 {
10121 if (*local_got > 0)
10122 {
10123 *local_got = s->size;
10124 if (*local_tls_type & GOT_TLS_GD)
10125 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10126 s->size += 8;
10127 if (*local_tls_type & GOT_TLS_IE)
10128 s->size += 4;
10129 if (*local_tls_type == GOT_NORMAL)
10130 s->size += 4;
10131
10132 if (info->shared || *local_tls_type == GOT_TLS_GD)
10133 srel->size += RELOC_SIZE (htab);
10134 }
10135 else
10136 *local_got = (bfd_vma) -1;
10137 }
10138 }
10139
10140 if (htab->tls_ldm_got.refcount > 0)
10141 {
10142 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10143 for R_ARM_TLS_LDM32 relocations. */
10144 htab->tls_ldm_got.offset = htab->sgot->size;
10145 htab->sgot->size += 8;
10146 if (info->shared)
10147 htab->srelgot->size += RELOC_SIZE (htab);
10148 }
10149 else
10150 htab->tls_ldm_got.offset = -1;
10151
10152 /* Allocate global sym .plt and .got entries, and space for global
10153 sym dynamic relocs. */
10154 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
10155
10156 /* Here we rummage through the found bfds to collect glue information. */
10157 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10158 {
10159 if (! is_arm_elf (ibfd))
10160 continue;
10161
10162 /* Initialise mapping tables for code/data. */
10163 bfd_elf32_arm_init_maps (ibfd);
10164
10165 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10166 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10167 /* xgettext:c-format */
10168 _bfd_error_handler (_("Errors encountered processing file %s"),
10169 ibfd->filename);
10170 }
10171
10172 /* The check_relocs and adjust_dynamic_symbol entry points have
10173 determined the sizes of the various dynamic sections. Allocate
10174 memory for them. */
10175 plt = FALSE;
10176 relocs = FALSE;
10177 for (s = dynobj->sections; s != NULL; s = s->next)
10178 {
10179 const char * name;
10180
10181 if ((s->flags & SEC_LINKER_CREATED) == 0)
10182 continue;
10183
10184 /* It's OK to base decisions on the section name, because none
10185 of the dynobj section names depend upon the input files. */
10186 name = bfd_get_section_name (dynobj, s);
10187
10188 if (strcmp (name, ".plt") == 0)
10189 {
10190 /* Remember whether there is a PLT. */
10191 plt = s->size != 0;
10192 }
10193 else if (CONST_STRNEQ (name, ".rel"))
10194 {
10195 if (s->size != 0)
10196 {
10197 /* Remember whether there are any reloc sections other
10198 than .rel(a).plt and .rela.plt.unloaded. */
10199 if (s != htab->srelplt && s != htab->srelplt2)
10200 relocs = TRUE;
10201
10202 /* We use the reloc_count field as a counter if we need
10203 to copy relocs into the output file. */
10204 s->reloc_count = 0;
10205 }
10206 }
10207 else if (! CONST_STRNEQ (name, ".got")
10208 && strcmp (name, ".dynbss") != 0)
10209 {
10210 /* It's not one of our sections, so don't allocate space. */
10211 continue;
10212 }
10213
10214 if (s->size == 0)
10215 {
10216 /* If we don't need this section, strip it from the
10217 output file. This is mostly to handle .rel(a).bss and
10218 .rel(a).plt. We must create both sections in
10219 create_dynamic_sections, because they must be created
10220 before the linker maps input sections to output
10221 sections. The linker does that before
10222 adjust_dynamic_symbol is called, and it is that
10223 function which decides whether anything needs to go
10224 into these sections. */
10225 s->flags |= SEC_EXCLUDE;
10226 continue;
10227 }
10228
10229 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10230 continue;
10231
10232 /* Allocate memory for the section contents. */
10233 s->contents = bfd_zalloc (dynobj, s->size);
10234 if (s->contents == NULL)
10235 return FALSE;
10236 }
10237
10238 if (elf_hash_table (info)->dynamic_sections_created)
10239 {
10240 /* Add some entries to the .dynamic section. We fill in the
10241 values later, in elf32_arm_finish_dynamic_sections, but we
10242 must add the entries now so that we get the correct size for
10243 the .dynamic section. The DT_DEBUG entry is filled in by the
10244 dynamic linker and used by the debugger. */
10245 #define add_dynamic_entry(TAG, VAL) \
10246 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10247
10248 if (info->executable)
10249 {
10250 if (!add_dynamic_entry (DT_DEBUG, 0))
10251 return FALSE;
10252 }
10253
10254 if (plt)
10255 {
10256 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10257 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10258 || !add_dynamic_entry (DT_PLTREL,
10259 htab->use_rel ? DT_REL : DT_RELA)
10260 || !add_dynamic_entry (DT_JMPREL, 0))
10261 return FALSE;
10262 }
10263
10264 if (relocs)
10265 {
10266 if (htab->use_rel)
10267 {
10268 if (!add_dynamic_entry (DT_REL, 0)
10269 || !add_dynamic_entry (DT_RELSZ, 0)
10270 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10271 return FALSE;
10272 }
10273 else
10274 {
10275 if (!add_dynamic_entry (DT_RELA, 0)
10276 || !add_dynamic_entry (DT_RELASZ, 0)
10277 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10278 return FALSE;
10279 }
10280 }
10281
10282 /* If any dynamic relocs apply to a read-only section,
10283 then we need a DT_TEXTREL entry. */
10284 if ((info->flags & DF_TEXTREL) == 0)
10285 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
10286 info);
10287
10288 if ((info->flags & DF_TEXTREL) != 0)
10289 {
10290 if (!add_dynamic_entry (DT_TEXTREL, 0))
10291 return FALSE;
10292 }
10293 if (htab->vxworks_p
10294 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10295 return FALSE;
10296 }
10297 #undef add_dynamic_entry
10298
10299 return TRUE;
10300 }
10301
10302 /* Finish up dynamic symbol handling. We set the contents of various
10303 dynamic sections here. */
10304
10305 static bfd_boolean
10306 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10307 struct bfd_link_info * info,
10308 struct elf_link_hash_entry * h,
10309 Elf_Internal_Sym * sym)
10310 {
10311 bfd * dynobj;
10312 struct elf32_arm_link_hash_table *htab;
10313 struct elf32_arm_link_hash_entry *eh;
10314
10315 dynobj = elf_hash_table (info)->dynobj;
10316 htab = elf32_arm_hash_table (info);
10317 eh = (struct elf32_arm_link_hash_entry *) h;
10318
10319 if (h->plt.offset != (bfd_vma) -1)
10320 {
10321 asection * splt;
10322 asection * srel;
10323 bfd_byte *loc;
10324 bfd_vma plt_index;
10325 Elf_Internal_Rela rel;
10326
10327 /* This symbol has an entry in the procedure linkage table. Set
10328 it up. */
10329
10330 BFD_ASSERT (h->dynindx != -1);
10331
10332 splt = bfd_get_section_by_name (dynobj, ".plt");
10333 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
10334 BFD_ASSERT (splt != NULL && srel != NULL);
10335
10336 /* Fill in the entry in the procedure linkage table. */
10337 if (htab->symbian_p)
10338 {
10339 put_arm_insn (htab, output_bfd,
10340 elf32_arm_symbian_plt_entry[0],
10341 splt->contents + h->plt.offset);
10342 bfd_put_32 (output_bfd,
10343 elf32_arm_symbian_plt_entry[1],
10344 splt->contents + h->plt.offset + 4);
10345
10346 /* Fill in the entry in the .rel.plt section. */
10347 rel.r_offset = (splt->output_section->vma
10348 + splt->output_offset
10349 + h->plt.offset + 4);
10350 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10351
10352 /* Get the index in the procedure linkage table which
10353 corresponds to this symbol. This is the index of this symbol
10354 in all the symbols for which we are making plt entries. The
10355 first entry in the procedure linkage table is reserved. */
10356 plt_index = ((h->plt.offset - htab->plt_header_size)
10357 / htab->plt_entry_size);
10358 }
10359 else
10360 {
10361 bfd_vma got_offset, got_address, plt_address;
10362 bfd_vma got_displacement;
10363 asection * sgot;
10364 bfd_byte * ptr;
10365
10366 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10367 BFD_ASSERT (sgot != NULL);
10368
10369 /* Get the offset into the .got.plt table of the entry that
10370 corresponds to this function. */
10371 got_offset = eh->plt_got_offset;
10372
10373 /* Get the index in the procedure linkage table which
10374 corresponds to this symbol. This is the index of this symbol
10375 in all the symbols for which we are making plt entries. The
10376 first three entries in .got.plt are reserved; after that
10377 symbols appear in the same order as in .plt. */
10378 plt_index = (got_offset - 12) / 4;
10379
10380 /* Calculate the address of the GOT entry. */
10381 got_address = (sgot->output_section->vma
10382 + sgot->output_offset
10383 + got_offset);
10384
10385 /* ...and the address of the PLT entry. */
10386 plt_address = (splt->output_section->vma
10387 + splt->output_offset
10388 + h->plt.offset);
10389
10390 ptr = htab->splt->contents + h->plt.offset;
10391 if (htab->vxworks_p && info->shared)
10392 {
10393 unsigned int i;
10394 bfd_vma val;
10395
10396 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10397 {
10398 val = elf32_arm_vxworks_shared_plt_entry[i];
10399 if (i == 2)
10400 val |= got_address - sgot->output_section->vma;
10401 if (i == 5)
10402 val |= plt_index * RELOC_SIZE (htab);
10403 if (i == 2 || i == 5)
10404 bfd_put_32 (output_bfd, val, ptr);
10405 else
10406 put_arm_insn (htab, output_bfd, val, ptr);
10407 }
10408 }
10409 else if (htab->vxworks_p)
10410 {
10411 unsigned int i;
10412 bfd_vma val;
10413
10414 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10415 {
10416 val = elf32_arm_vxworks_exec_plt_entry[i];
10417 if (i == 2)
10418 val |= got_address;
10419 if (i == 4)
10420 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
10421 if (i == 5)
10422 val |= plt_index * RELOC_SIZE (htab);
10423 if (i == 2 || i == 5)
10424 bfd_put_32 (output_bfd, val, ptr);
10425 else
10426 put_arm_insn (htab, output_bfd, val, ptr);
10427 }
10428
10429 loc = (htab->srelplt2->contents
10430 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
10431
10432 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10433 referencing the GOT for this PLT entry. */
10434 rel.r_offset = plt_address + 8;
10435 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10436 rel.r_addend = got_offset;
10437 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10438 loc += RELOC_SIZE (htab);
10439
10440 /* Create the R_ARM_ABS32 relocation referencing the
10441 beginning of the PLT for this GOT entry. */
10442 rel.r_offset = got_address;
10443 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10444 rel.r_addend = 0;
10445 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10446 }
10447 else
10448 {
10449 bfd_signed_vma thumb_refs;
10450 /* Calculate the displacement between the PLT slot and the
10451 entry in the GOT. The eight-byte offset accounts for the
10452 value produced by adding to pc in the first instruction
10453 of the PLT stub. */
10454 got_displacement = got_address - (plt_address + 8);
10455
10456 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
10457
10458 thumb_refs = eh->plt_thumb_refcount;
10459 if (!htab->use_blx)
10460 thumb_refs += eh->plt_maybe_thumb_refcount;
10461
10462 if (thumb_refs > 0)
10463 {
10464 put_thumb_insn (htab, output_bfd,
10465 elf32_arm_plt_thumb_stub[0], ptr - 4);
10466 put_thumb_insn (htab, output_bfd,
10467 elf32_arm_plt_thumb_stub[1], ptr - 2);
10468 }
10469
10470 put_arm_insn (htab, output_bfd,
10471 elf32_arm_plt_entry[0]
10472 | ((got_displacement & 0x0ff00000) >> 20),
10473 ptr + 0);
10474 put_arm_insn (htab, output_bfd,
10475 elf32_arm_plt_entry[1]
10476 | ((got_displacement & 0x000ff000) >> 12),
10477 ptr+ 4);
10478 put_arm_insn (htab, output_bfd,
10479 elf32_arm_plt_entry[2]
10480 | (got_displacement & 0x00000fff),
10481 ptr + 8);
10482 #ifdef FOUR_WORD_PLT
10483 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
10484 #endif
10485 }
10486
10487 /* Fill in the entry in the global offset table. */
10488 bfd_put_32 (output_bfd,
10489 (splt->output_section->vma
10490 + splt->output_offset),
10491 sgot->contents + got_offset);
10492
10493 /* Fill in the entry in the .rel(a).plt section. */
10494 rel.r_addend = 0;
10495 rel.r_offset = got_address;
10496 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
10497 }
10498
10499 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10500 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10501
10502 if (!h->def_regular)
10503 {
10504 /* Mark the symbol as undefined, rather than as defined in
10505 the .plt section. Leave the value alone. */
10506 sym->st_shndx = SHN_UNDEF;
10507 /* If the symbol is weak, we do need to clear the value.
10508 Otherwise, the PLT entry would provide a definition for
10509 the symbol even if the symbol wasn't defined anywhere,
10510 and so the symbol would never be NULL. */
10511 if (!h->ref_regular_nonweak)
10512 sym->st_value = 0;
10513 }
10514 }
10515
10516 if (h->got.offset != (bfd_vma) -1
10517 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
10518 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
10519 {
10520 asection * sgot;
10521 asection * srel;
10522 Elf_Internal_Rela rel;
10523 bfd_byte *loc;
10524 bfd_vma offset;
10525
10526 /* This symbol has an entry in the global offset table. Set it
10527 up. */
10528 sgot = bfd_get_section_by_name (dynobj, ".got");
10529 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
10530 BFD_ASSERT (sgot != NULL && srel != NULL);
10531
10532 offset = (h->got.offset & ~(bfd_vma) 1);
10533 rel.r_addend = 0;
10534 rel.r_offset = (sgot->output_section->vma
10535 + sgot->output_offset
10536 + offset);
10537
10538 /* If this is a static link, or it is a -Bsymbolic link and the
10539 symbol is defined locally or was forced to be local because
10540 of a version file, we just want to emit a RELATIVE reloc.
10541 The entry in the global offset table will already have been
10542 initialized in the relocate_section function. */
10543 if (info->shared
10544 && SYMBOL_REFERENCES_LOCAL (info, h))
10545 {
10546 BFD_ASSERT ((h->got.offset & 1) != 0);
10547 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10548 if (!htab->use_rel)
10549 {
10550 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
10551 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10552 }
10553 }
10554 else
10555 {
10556 BFD_ASSERT ((h->got.offset & 1) == 0);
10557 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10558 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10559 }
10560
10561 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
10562 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10563 }
10564
10565 if (h->needs_copy)
10566 {
10567 asection * s;
10568 Elf_Internal_Rela rel;
10569 bfd_byte *loc;
10570
10571 /* This symbol needs a copy reloc. Set it up. */
10572 BFD_ASSERT (h->dynindx != -1
10573 && (h->root.type == bfd_link_hash_defined
10574 || h->root.type == bfd_link_hash_defweak));
10575
10576 s = bfd_get_section_by_name (h->root.u.def.section->owner,
10577 RELOC_SECTION (htab, ".bss"));
10578 BFD_ASSERT (s != NULL);
10579
10580 rel.r_addend = 0;
10581 rel.r_offset = (h->root.u.def.value
10582 + h->root.u.def.section->output_section->vma
10583 + h->root.u.def.section->output_offset);
10584 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
10585 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
10586 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10587 }
10588
10589 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
10590 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
10591 to the ".got" section. */
10592 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
10593 || (!htab->vxworks_p && h == htab->root.hgot))
10594 sym->st_shndx = SHN_ABS;
10595
10596 return TRUE;
10597 }
10598
10599 /* Finish up the dynamic sections. */
10600
10601 static bfd_boolean
10602 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
10603 {
10604 bfd * dynobj;
10605 asection * sgot;
10606 asection * sdyn;
10607
10608 dynobj = elf_hash_table (info)->dynobj;
10609
10610 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10611 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
10612 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10613
10614 if (elf_hash_table (info)->dynamic_sections_created)
10615 {
10616 asection *splt;
10617 Elf32_External_Dyn *dyncon, *dynconend;
10618 struct elf32_arm_link_hash_table *htab;
10619
10620 htab = elf32_arm_hash_table (info);
10621 splt = bfd_get_section_by_name (dynobj, ".plt");
10622 BFD_ASSERT (splt != NULL && sdyn != NULL);
10623
10624 dyncon = (Elf32_External_Dyn *) sdyn->contents;
10625 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
10626
10627 for (; dyncon < dynconend; dyncon++)
10628 {
10629 Elf_Internal_Dyn dyn;
10630 const char * name;
10631 asection * s;
10632
10633 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
10634
10635 switch (dyn.d_tag)
10636 {
10637 unsigned int type;
10638
10639 default:
10640 if (htab->vxworks_p
10641 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10642 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10643 break;
10644
10645 case DT_HASH:
10646 name = ".hash";
10647 goto get_vma_if_bpabi;
10648 case DT_STRTAB:
10649 name = ".dynstr";
10650 goto get_vma_if_bpabi;
10651 case DT_SYMTAB:
10652 name = ".dynsym";
10653 goto get_vma_if_bpabi;
10654 case DT_VERSYM:
10655 name = ".gnu.version";
10656 goto get_vma_if_bpabi;
10657 case DT_VERDEF:
10658 name = ".gnu.version_d";
10659 goto get_vma_if_bpabi;
10660 case DT_VERNEED:
10661 name = ".gnu.version_r";
10662 goto get_vma_if_bpabi;
10663
10664 case DT_PLTGOT:
10665 name = ".got";
10666 goto get_vma;
10667 case DT_JMPREL:
10668 name = RELOC_SECTION (htab, ".plt");
10669 get_vma:
10670 s = bfd_get_section_by_name (output_bfd, name);
10671 BFD_ASSERT (s != NULL);
10672 if (!htab->symbian_p)
10673 dyn.d_un.d_ptr = s->vma;
10674 else
10675 /* In the BPABI, tags in the PT_DYNAMIC section point
10676 at the file offset, not the memory address, for the
10677 convenience of the post linker. */
10678 dyn.d_un.d_ptr = s->filepos;
10679 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10680 break;
10681
10682 get_vma_if_bpabi:
10683 if (htab->symbian_p)
10684 goto get_vma;
10685 break;
10686
10687 case DT_PLTRELSZ:
10688 s = bfd_get_section_by_name (output_bfd,
10689 RELOC_SECTION (htab, ".plt"));
10690 BFD_ASSERT (s != NULL);
10691 dyn.d_un.d_val = s->size;
10692 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10693 break;
10694
10695 case DT_RELSZ:
10696 case DT_RELASZ:
10697 if (!htab->symbian_p)
10698 {
10699 /* My reading of the SVR4 ABI indicates that the
10700 procedure linkage table relocs (DT_JMPREL) should be
10701 included in the overall relocs (DT_REL). This is
10702 what Solaris does. However, UnixWare can not handle
10703 that case. Therefore, we override the DT_RELSZ entry
10704 here to make it not include the JMPREL relocs. Since
10705 the linker script arranges for .rel(a).plt to follow all
10706 other relocation sections, we don't have to worry
10707 about changing the DT_REL entry. */
10708 s = bfd_get_section_by_name (output_bfd,
10709 RELOC_SECTION (htab, ".plt"));
10710 if (s != NULL)
10711 dyn.d_un.d_val -= s->size;
10712 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10713 break;
10714 }
10715 /* Fall through. */
10716
10717 case DT_REL:
10718 case DT_RELA:
10719 /* In the BPABI, the DT_REL tag must point at the file
10720 offset, not the VMA, of the first relocation
10721 section. So, we use code similar to that in
10722 elflink.c, but do not check for SHF_ALLOC on the
10723 relcoation section, since relocations sections are
10724 never allocated under the BPABI. The comments above
10725 about Unixware notwithstanding, we include all of the
10726 relocations here. */
10727 if (htab->symbian_p)
10728 {
10729 unsigned int i;
10730 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10731 ? SHT_REL : SHT_RELA);
10732 dyn.d_un.d_val = 0;
10733 for (i = 1; i < elf_numsections (output_bfd); i++)
10734 {
10735 Elf_Internal_Shdr *hdr
10736 = elf_elfsections (output_bfd)[i];
10737 if (hdr->sh_type == type)
10738 {
10739 if (dyn.d_tag == DT_RELSZ
10740 || dyn.d_tag == DT_RELASZ)
10741 dyn.d_un.d_val += hdr->sh_size;
10742 else if ((ufile_ptr) hdr->sh_offset
10743 <= dyn.d_un.d_val - 1)
10744 dyn.d_un.d_val = hdr->sh_offset;
10745 }
10746 }
10747 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10748 }
10749 break;
10750
10751 /* Set the bottom bit of DT_INIT/FINI if the
10752 corresponding function is Thumb. */
10753 case DT_INIT:
10754 name = info->init_function;
10755 goto get_sym;
10756 case DT_FINI:
10757 name = info->fini_function;
10758 get_sym:
10759 /* If it wasn't set by elf_bfd_final_link
10760 then there is nothing to adjust. */
10761 if (dyn.d_un.d_val != 0)
10762 {
10763 struct elf_link_hash_entry * eh;
10764
10765 eh = elf_link_hash_lookup (elf_hash_table (info), name,
10766 FALSE, FALSE, TRUE);
10767 if (eh != NULL
10768 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
10769 {
10770 dyn.d_un.d_val |= 1;
10771 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10772 }
10773 }
10774 break;
10775 }
10776 }
10777
10778 /* Fill in the first entry in the procedure linkage table. */
10779 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
10780 {
10781 const bfd_vma *plt0_entry;
10782 bfd_vma got_address, plt_address, got_displacement;
10783
10784 /* Calculate the addresses of the GOT and PLT. */
10785 got_address = sgot->output_section->vma + sgot->output_offset;
10786 plt_address = splt->output_section->vma + splt->output_offset;
10787
10788 if (htab->vxworks_p)
10789 {
10790 /* The VxWorks GOT is relocated by the dynamic linker.
10791 Therefore, we must emit relocations rather than simply
10792 computing the values now. */
10793 Elf_Internal_Rela rel;
10794
10795 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
10796 put_arm_insn (htab, output_bfd, plt0_entry[0],
10797 splt->contents + 0);
10798 put_arm_insn (htab, output_bfd, plt0_entry[1],
10799 splt->contents + 4);
10800 put_arm_insn (htab, output_bfd, plt0_entry[2],
10801 splt->contents + 8);
10802 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
10803
10804 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
10805 rel.r_offset = plt_address + 12;
10806 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10807 rel.r_addend = 0;
10808 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
10809 htab->srelplt2->contents);
10810 }
10811 else
10812 {
10813 got_displacement = got_address - (plt_address + 16);
10814
10815 plt0_entry = elf32_arm_plt0_entry;
10816 put_arm_insn (htab, output_bfd, plt0_entry[0],
10817 splt->contents + 0);
10818 put_arm_insn (htab, output_bfd, plt0_entry[1],
10819 splt->contents + 4);
10820 put_arm_insn (htab, output_bfd, plt0_entry[2],
10821 splt->contents + 8);
10822 put_arm_insn (htab, output_bfd, plt0_entry[3],
10823 splt->contents + 12);
10824
10825 #ifdef FOUR_WORD_PLT
10826 /* The displacement value goes in the otherwise-unused
10827 last word of the second entry. */
10828 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
10829 #else
10830 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
10831 #endif
10832 }
10833 }
10834
10835 /* UnixWare sets the entsize of .plt to 4, although that doesn't
10836 really seem like the right value. */
10837 if (splt->output_section->owner == output_bfd)
10838 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
10839
10840 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
10841 {
10842 /* Correct the .rel(a).plt.unloaded relocations. They will have
10843 incorrect symbol indexes. */
10844 int num_plts;
10845 unsigned char *p;
10846
10847 num_plts = ((htab->splt->size - htab->plt_header_size)
10848 / htab->plt_entry_size);
10849 p = htab->srelplt2->contents + RELOC_SIZE (htab);
10850
10851 for (; num_plts; num_plts--)
10852 {
10853 Elf_Internal_Rela rel;
10854
10855 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10856 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10857 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10858 p += RELOC_SIZE (htab);
10859
10860 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10861 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10862 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10863 p += RELOC_SIZE (htab);
10864 }
10865 }
10866 }
10867
10868 /* Fill in the first three entries in the global offset table. */
10869 if (sgot)
10870 {
10871 if (sgot->size > 0)
10872 {
10873 if (sdyn == NULL)
10874 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
10875 else
10876 bfd_put_32 (output_bfd,
10877 sdyn->output_section->vma + sdyn->output_offset,
10878 sgot->contents);
10879 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
10880 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
10881 }
10882
10883 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
10884 }
10885
10886 return TRUE;
10887 }
10888
10889 static void
10890 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10891 {
10892 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10893 struct elf32_arm_link_hash_table *globals;
10894
10895 i_ehdrp = elf_elfheader (abfd);
10896
10897 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
10898 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
10899 else
10900 i_ehdrp->e_ident[EI_OSABI] = 0;
10901 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
10902
10903 if (link_info)
10904 {
10905 globals = elf32_arm_hash_table (link_info);
10906 if (globals->byteswap_code)
10907 i_ehdrp->e_flags |= EF_ARM_BE8;
10908 }
10909 }
10910
10911 static enum elf_reloc_type_class
10912 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
10913 {
10914 switch ((int) ELF32_R_TYPE (rela->r_info))
10915 {
10916 case R_ARM_RELATIVE:
10917 return reloc_class_relative;
10918 case R_ARM_JUMP_SLOT:
10919 return reloc_class_plt;
10920 case R_ARM_COPY:
10921 return reloc_class_copy;
10922 default:
10923 return reloc_class_normal;
10924 }
10925 }
10926
10927 /* Set the right machine number for an Arm ELF file. */
10928
10929 static bfd_boolean
10930 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
10931 {
10932 if (hdr->sh_type == SHT_NOTE)
10933 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
10934
10935 return TRUE;
10936 }
10937
10938 static void
10939 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
10940 {
10941 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
10942 }
10943
10944 /* Return TRUE if this is an unwinding table entry. */
10945
10946 static bfd_boolean
10947 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
10948 {
10949 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
10950 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
10951 }
10952
10953
10954 /* Set the type and flags for an ARM section. We do this by
10955 the section name, which is a hack, but ought to work. */
10956
10957 static bfd_boolean
10958 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
10959 {
10960 const char * name;
10961
10962 name = bfd_get_section_name (abfd, sec);
10963
10964 if (is_arm_elf_unwind_section_name (abfd, name))
10965 {
10966 hdr->sh_type = SHT_ARM_EXIDX;
10967 hdr->sh_flags |= SHF_LINK_ORDER;
10968 }
10969 return TRUE;
10970 }
10971
10972 /* Handle an ARM specific section when reading an object file. This is
10973 called when bfd_section_from_shdr finds a section with an unknown
10974 type. */
10975
10976 static bfd_boolean
10977 elf32_arm_section_from_shdr (bfd *abfd,
10978 Elf_Internal_Shdr * hdr,
10979 const char *name,
10980 int shindex)
10981 {
10982 /* There ought to be a place to keep ELF backend specific flags, but
10983 at the moment there isn't one. We just keep track of the
10984 sections by their name, instead. Fortunately, the ABI gives
10985 names for all the ARM specific sections, so we will probably get
10986 away with this. */
10987 switch (hdr->sh_type)
10988 {
10989 case SHT_ARM_EXIDX:
10990 case SHT_ARM_PREEMPTMAP:
10991 case SHT_ARM_ATTRIBUTES:
10992 break;
10993
10994 default:
10995 return FALSE;
10996 }
10997
10998 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
10999 return FALSE;
11000
11001 return TRUE;
11002 }
11003
11004 /* A structure used to record a list of sections, independently
11005 of the next and prev fields in the asection structure. */
11006 typedef struct section_list
11007 {
11008 asection * sec;
11009 struct section_list * next;
11010 struct section_list * prev;
11011 }
11012 section_list;
11013
11014 /* Unfortunately we need to keep a list of sections for which
11015 an _arm_elf_section_data structure has been allocated. This
11016 is because it is possible for functions like elf32_arm_write_section
11017 to be called on a section which has had an elf_data_structure
11018 allocated for it (and so the used_by_bfd field is valid) but
11019 for which the ARM extended version of this structure - the
11020 _arm_elf_section_data structure - has not been allocated. */
11021 static section_list * sections_with_arm_elf_section_data = NULL;
11022
11023 static void
11024 record_section_with_arm_elf_section_data (asection * sec)
11025 {
11026 struct section_list * entry;
11027
11028 entry = bfd_malloc (sizeof (* entry));
11029 if (entry == NULL)
11030 return;
11031 entry->sec = sec;
11032 entry->next = sections_with_arm_elf_section_data;
11033 entry->prev = NULL;
11034 if (entry->next != NULL)
11035 entry->next->prev = entry;
11036 sections_with_arm_elf_section_data = entry;
11037 }
11038
11039 static struct section_list *
11040 find_arm_elf_section_entry (asection * sec)
11041 {
11042 struct section_list * entry;
11043 static struct section_list * last_entry = NULL;
11044
11045 /* This is a short cut for the typical case where the sections are added
11046 to the sections_with_arm_elf_section_data list in forward order and
11047 then looked up here in backwards order. This makes a real difference
11048 to the ld-srec/sec64k.exp linker test. */
11049 entry = sections_with_arm_elf_section_data;
11050 if (last_entry != NULL)
11051 {
11052 if (last_entry->sec == sec)
11053 entry = last_entry;
11054 else if (last_entry->next != NULL
11055 && last_entry->next->sec == sec)
11056 entry = last_entry->next;
11057 }
11058
11059 for (; entry; entry = entry->next)
11060 if (entry->sec == sec)
11061 break;
11062
11063 if (entry)
11064 /* Record the entry prior to this one - it is the entry we are most
11065 likely to want to locate next time. Also this way if we have been
11066 called from unrecord_section_with_arm_elf_section_data() we will not
11067 be caching a pointer that is about to be freed. */
11068 last_entry = entry->prev;
11069
11070 return entry;
11071 }
11072
11073 static _arm_elf_section_data *
11074 get_arm_elf_section_data (asection * sec)
11075 {
11076 struct section_list * entry;
11077
11078 entry = find_arm_elf_section_entry (sec);
11079
11080 if (entry)
11081 return elf32_arm_section_data (entry->sec);
11082 else
11083 return NULL;
11084 }
11085
11086 static void
11087 unrecord_section_with_arm_elf_section_data (asection * sec)
11088 {
11089 struct section_list * entry;
11090
11091 entry = find_arm_elf_section_entry (sec);
11092
11093 if (entry)
11094 {
11095 if (entry->prev != NULL)
11096 entry->prev->next = entry->next;
11097 if (entry->next != NULL)
11098 entry->next->prev = entry->prev;
11099 if (entry == sections_with_arm_elf_section_data)
11100 sections_with_arm_elf_section_data = entry->next;
11101 free (entry);
11102 }
11103 }
11104
11105
11106 typedef struct
11107 {
11108 void *finfo;
11109 struct bfd_link_info *info;
11110 asection *sec;
11111 int sec_shndx;
11112 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11113 asection *, struct elf_link_hash_entry *);
11114 } output_arch_syminfo;
11115
11116 enum map_symbol_type
11117 {
11118 ARM_MAP_ARM,
11119 ARM_MAP_THUMB,
11120 ARM_MAP_DATA
11121 };
11122
11123
11124 /* Output a single mapping symbol. */
11125
11126 static bfd_boolean
11127 elf32_arm_output_map_sym (output_arch_syminfo *osi,
11128 enum map_symbol_type type,
11129 bfd_vma offset)
11130 {
11131 static const char *names[3] = {"$a", "$t", "$d"};
11132 struct elf32_arm_link_hash_table *htab;
11133 Elf_Internal_Sym sym;
11134
11135 htab = elf32_arm_hash_table (osi->info);
11136 sym.st_value = osi->sec->output_section->vma
11137 + osi->sec->output_offset
11138 + offset;
11139 sym.st_size = 0;
11140 sym.st_other = 0;
11141 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
11142 sym.st_shndx = osi->sec_shndx;
11143 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
11144 return FALSE;
11145 return TRUE;
11146 }
11147
11148
11149 /* Output mapping symbols for PLT entries associated with H. */
11150
11151 static bfd_boolean
11152 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11153 {
11154 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11155 struct elf32_arm_link_hash_table *htab;
11156 struct elf32_arm_link_hash_entry *eh;
11157 bfd_vma addr;
11158
11159 htab = elf32_arm_hash_table (osi->info);
11160
11161 if (h->root.type == bfd_link_hash_indirect)
11162 return TRUE;
11163
11164 if (h->root.type == bfd_link_hash_warning)
11165 /* When warning symbols are created, they **replace** the "real"
11166 entry in the hash table, thus we never get to see the real
11167 symbol in a hash traversal. So look at it now. */
11168 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11169
11170 if (h->plt.offset == (bfd_vma) -1)
11171 return TRUE;
11172
11173 eh = (struct elf32_arm_link_hash_entry *) h;
11174 addr = h->plt.offset;
11175 if (htab->symbian_p)
11176 {
11177 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11178 return FALSE;
11179 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11180 return FALSE;
11181 }
11182 else if (htab->vxworks_p)
11183 {
11184 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11185 return FALSE;
11186 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11187 return FALSE;
11188 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
11189 return FALSE;
11190 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
11191 return FALSE;
11192 }
11193 else
11194 {
11195 bfd_signed_vma thumb_refs;
11196
11197 thumb_refs = eh->plt_thumb_refcount;
11198 if (!htab->use_blx)
11199 thumb_refs += eh->plt_maybe_thumb_refcount;
11200
11201 if (thumb_refs > 0)
11202 {
11203 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
11204 return FALSE;
11205 }
11206 #ifdef FOUR_WORD_PLT
11207 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11208 return FALSE;
11209 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11210 return FALSE;
11211 #else
11212 /* A three-word PLT with no Thumb thunk contains only Arm code,
11213 so only need to output a mapping symbol for the first PLT entry and
11214 entries with thumb thunks. */
11215 if (thumb_refs > 0 || addr == 20)
11216 {
11217 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11218 return FALSE;
11219 }
11220 #endif
11221 }
11222
11223 return TRUE;
11224 }
11225
11226 /* Output a single local symbol for a generated stub. */
11227
11228 static bfd_boolean
11229 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
11230 bfd_vma offset, bfd_vma size)
11231 {
11232 struct elf32_arm_link_hash_table *htab;
11233 Elf_Internal_Sym sym;
11234
11235 htab = elf32_arm_hash_table (osi->info);
11236 sym.st_value = osi->sec->output_section->vma
11237 + osi->sec->output_offset
11238 + offset;
11239 sym.st_size = size;
11240 sym.st_other = 0;
11241 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
11242 sym.st_shndx = osi->sec_shndx;
11243 if (!osi->func (osi->finfo, name, &sym, osi->sec, NULL))
11244 return FALSE;
11245 return TRUE;
11246 }
11247
11248 static bfd_boolean
11249 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
11250 void * in_arg)
11251 {
11252 struct elf32_arm_stub_hash_entry *stub_entry;
11253 struct bfd_link_info *info;
11254 struct elf32_arm_link_hash_table *htab;
11255 asection *stub_sec;
11256 bfd_vma addr;
11257 char *stub_name;
11258 output_arch_syminfo *osi;
11259
11260 /* Massage our args to the form they really have. */
11261 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
11262 osi = (output_arch_syminfo *) in_arg;
11263
11264 info = osi->info;
11265
11266 htab = elf32_arm_hash_table (info);
11267 stub_sec = stub_entry->stub_sec;
11268
11269 /* Ensure this stub is attached to the current section being
11270 processed. */
11271 if (stub_sec != osi->sec)
11272 return TRUE;
11273
11274 addr = (bfd_vma) stub_entry->stub_offset;
11275 stub_name = stub_entry->output_name;
11276
11277 switch (stub_entry->stub_type)
11278 {
11279 case arm_stub_long_branch:
11280 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 8))
11281 return FALSE;
11282 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11283 return FALSE;
11284 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11285 return FALSE;
11286 break;
11287 case arm_thumb_v4t_stub_long_branch:
11288 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 12))
11289 return FALSE;
11290 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11291 return FALSE;
11292 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11293 return FALSE;
11294 break;
11295 case arm_thumb_thumb_stub_long_branch:
11296 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 16))
11297 return FALSE;
11298 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
11299 return FALSE;
11300 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11301 return FALSE;
11302 break;
11303 case arm_thumb_arm_v4t_stub_long_branch:
11304 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 20))
11305 return FALSE;
11306 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
11307 return FALSE;
11308 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 8))
11309 return FALSE;
11310 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
11311 return FALSE;
11312 break;
11313 case arm_thumb_arm_v4t_stub_short_branch:
11314 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 8))
11315 return FALSE;
11316 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 4))
11317 return FALSE;
11318 break;
11319 case arm_stub_pic_long_branch:
11320 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 12))
11321 return FALSE;
11322 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11323 return FALSE;
11324 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11325 return FALSE;
11326 break;
11327 default:
11328 BFD_FAIL ();
11329 }
11330
11331 return TRUE;
11332 }
11333
11334 /* Output mapping symbols for linker generated sections. */
11335
11336 static bfd_boolean
11337 elf32_arm_output_arch_local_syms (bfd *output_bfd,
11338 struct bfd_link_info *info,
11339 void *finfo,
11340 bfd_boolean (*func) (void *, const char *,
11341 Elf_Internal_Sym *,
11342 asection *,
11343 struct elf_link_hash_entry *))
11344 {
11345 output_arch_syminfo osi;
11346 struct elf32_arm_link_hash_table *htab;
11347 bfd_vma offset;
11348 bfd_size_type size;
11349
11350 htab = elf32_arm_hash_table (info);
11351 check_use_blx (htab);
11352
11353 osi.finfo = finfo;
11354 osi.info = info;
11355 osi.func = func;
11356
11357 /* ARM->Thumb glue. */
11358 if (htab->arm_glue_size > 0)
11359 {
11360 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11361 ARM2THUMB_GLUE_SECTION_NAME);
11362
11363 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11364 (output_bfd, osi.sec->output_section);
11365 if (info->shared || htab->root.is_relocatable_executable
11366 || htab->pic_veneer)
11367 size = ARM2THUMB_PIC_GLUE_SIZE;
11368 else if (htab->use_blx)
11369 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
11370 else
11371 size = ARM2THUMB_STATIC_GLUE_SIZE;
11372
11373 for (offset = 0; offset < htab->arm_glue_size; offset += size)
11374 {
11375 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
11376 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
11377 }
11378 }
11379
11380 /* Thumb->ARM glue. */
11381 if (htab->thumb_glue_size > 0)
11382 {
11383 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11384 THUMB2ARM_GLUE_SECTION_NAME);
11385
11386 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11387 (output_bfd, osi.sec->output_section);
11388 size = THUMB2ARM_GLUE_SIZE;
11389
11390 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
11391 {
11392 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
11393 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
11394 }
11395 }
11396
11397 /* ARMv4 BX veneers. */
11398 if (htab->bx_glue_size > 0)
11399 {
11400 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11401 ARM_BX_GLUE_SECTION_NAME);
11402
11403 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11404 (output_bfd, osi.sec->output_section);
11405
11406 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
11407 }
11408
11409 /* Long calls stubs. */
11410 if (htab->stub_bfd && htab->stub_bfd->sections)
11411 {
11412 asection* stub_sec;
11413
11414 for (stub_sec = htab->stub_bfd->sections;
11415 stub_sec != NULL;
11416 stub_sec = stub_sec->next)
11417 {
11418 /* Ignore non-stub sections. */
11419 if (!strstr (stub_sec->name, STUB_SUFFIX))
11420 continue;
11421
11422 osi.sec = stub_sec;
11423
11424 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11425 (output_bfd, osi.sec->output_section);
11426
11427 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
11428 }
11429 }
11430
11431 /* Finally, output mapping symbols for the PLT. */
11432 if (!htab->splt || htab->splt->size == 0)
11433 return TRUE;
11434
11435 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11436 htab->splt->output_section);
11437 osi.sec = htab->splt;
11438 /* Output mapping symbols for the plt header. SymbianOS does not have a
11439 plt header. */
11440 if (htab->vxworks_p)
11441 {
11442 /* VxWorks shared libraries have no PLT header. */
11443 if (!info->shared)
11444 {
11445 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11446 return FALSE;
11447 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
11448 return FALSE;
11449 }
11450 }
11451 else if (!htab->symbian_p)
11452 {
11453 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11454 return FALSE;
11455 #ifndef FOUR_WORD_PLT
11456 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
11457 return FALSE;
11458 #endif
11459 }
11460
11461 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
11462 return TRUE;
11463 }
11464
11465 /* Allocate target specific section data. */
11466
11467 static bfd_boolean
11468 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
11469 {
11470 if (!sec->used_by_bfd)
11471 {
11472 _arm_elf_section_data *sdata;
11473 bfd_size_type amt = sizeof (*sdata);
11474
11475 sdata = bfd_zalloc (abfd, amt);
11476 if (sdata == NULL)
11477 return FALSE;
11478 sec->used_by_bfd = sdata;
11479 }
11480
11481 record_section_with_arm_elf_section_data (sec);
11482
11483 return _bfd_elf_new_section_hook (abfd, sec);
11484 }
11485
11486
11487 /* Used to order a list of mapping symbols by address. */
11488
11489 static int
11490 elf32_arm_compare_mapping (const void * a, const void * b)
11491 {
11492 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
11493 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
11494
11495 if (amap->vma > bmap->vma)
11496 return 1;
11497 else if (amap->vma < bmap->vma)
11498 return -1;
11499 else if (amap->type > bmap->type)
11500 /* Ensure results do not depend on the host qsort for objects with
11501 multiple mapping symbols at the same address by sorting on type
11502 after vma. */
11503 return 1;
11504 else if (amap->type < bmap->type)
11505 return -1;
11506 else
11507 return 0;
11508 }
11509
11510
11511 /* Do code byteswapping. Return FALSE afterwards so that the section is
11512 written out as normal. */
11513
11514 static bfd_boolean
11515 elf32_arm_write_section (bfd *output_bfd,
11516 struct bfd_link_info *link_info,
11517 asection *sec,
11518 bfd_byte *contents)
11519 {
11520 int mapcount, errcount;
11521 _arm_elf_section_data *arm_data;
11522 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
11523 elf32_arm_section_map *map;
11524 elf32_vfp11_erratum_list *errnode;
11525 bfd_vma ptr;
11526 bfd_vma end;
11527 bfd_vma offset = sec->output_section->vma + sec->output_offset;
11528 bfd_byte tmp;
11529 int i;
11530
11531 /* If this section has not been allocated an _arm_elf_section_data
11532 structure then we cannot record anything. */
11533 arm_data = get_arm_elf_section_data (sec);
11534 if (arm_data == NULL)
11535 return FALSE;
11536
11537 mapcount = arm_data->mapcount;
11538 map = arm_data->map;
11539 errcount = arm_data->erratumcount;
11540
11541 if (errcount != 0)
11542 {
11543 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
11544
11545 for (errnode = arm_data->erratumlist; errnode != 0;
11546 errnode = errnode->next)
11547 {
11548 bfd_vma index = errnode->vma - offset;
11549
11550 switch (errnode->type)
11551 {
11552 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
11553 {
11554 bfd_vma branch_to_veneer;
11555 /* Original condition code of instruction, plus bit mask for
11556 ARM B instruction. */
11557 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
11558 | 0x0a000000;
11559
11560 /* The instruction is before the label. */
11561 index -= 4;
11562
11563 /* Above offset included in -4 below. */
11564 branch_to_veneer = errnode->u.b.veneer->vma
11565 - errnode->vma - 4;
11566
11567 if ((signed) branch_to_veneer < -(1 << 25)
11568 || (signed) branch_to_veneer >= (1 << 25))
11569 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11570 "range"), output_bfd);
11571
11572 insn |= (branch_to_veneer >> 2) & 0xffffff;
11573 contents[endianflip ^ index] = insn & 0xff;
11574 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11575 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11576 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11577 }
11578 break;
11579
11580 case VFP11_ERRATUM_ARM_VENEER:
11581 {
11582 bfd_vma branch_from_veneer;
11583 unsigned int insn;
11584
11585 /* Take size of veneer into account. */
11586 branch_from_veneer = errnode->u.v.branch->vma
11587 - errnode->vma - 12;
11588
11589 if ((signed) branch_from_veneer < -(1 << 25)
11590 || (signed) branch_from_veneer >= (1 << 25))
11591 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11592 "range"), output_bfd);
11593
11594 /* Original instruction. */
11595 insn = errnode->u.v.branch->u.b.vfp_insn;
11596 contents[endianflip ^ index] = insn & 0xff;
11597 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11598 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11599 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11600
11601 /* Branch back to insn after original insn. */
11602 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
11603 contents[endianflip ^ (index + 4)] = insn & 0xff;
11604 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
11605 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
11606 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
11607 }
11608 break;
11609
11610 default:
11611 abort ();
11612 }
11613 }
11614 }
11615
11616 if (mapcount == 0)
11617 return FALSE;
11618
11619 if (globals->byteswap_code)
11620 {
11621 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
11622
11623 ptr = map[0].vma;
11624 for (i = 0; i < mapcount; i++)
11625 {
11626 if (i == mapcount - 1)
11627 end = sec->size;
11628 else
11629 end = map[i + 1].vma;
11630
11631 switch (map[i].type)
11632 {
11633 case 'a':
11634 /* Byte swap code words. */
11635 while (ptr + 3 < end)
11636 {
11637 tmp = contents[ptr];
11638 contents[ptr] = contents[ptr + 3];
11639 contents[ptr + 3] = tmp;
11640 tmp = contents[ptr + 1];
11641 contents[ptr + 1] = contents[ptr + 2];
11642 contents[ptr + 2] = tmp;
11643 ptr += 4;
11644 }
11645 break;
11646
11647 case 't':
11648 /* Byte swap code halfwords. */
11649 while (ptr + 1 < end)
11650 {
11651 tmp = contents[ptr];
11652 contents[ptr] = contents[ptr + 1];
11653 contents[ptr + 1] = tmp;
11654 ptr += 2;
11655 }
11656 break;
11657
11658 case 'd':
11659 /* Leave data alone. */
11660 break;
11661 }
11662 ptr = end;
11663 }
11664 }
11665
11666 free (map);
11667 arm_data->mapcount = 0;
11668 arm_data->mapsize = 0;
11669 arm_data->map = NULL;
11670 unrecord_section_with_arm_elf_section_data (sec);
11671
11672 return FALSE;
11673 }
11674
11675 static void
11676 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
11677 asection * sec,
11678 void * ignore ATTRIBUTE_UNUSED)
11679 {
11680 unrecord_section_with_arm_elf_section_data (sec);
11681 }
11682
11683 static bfd_boolean
11684 elf32_arm_close_and_cleanup (bfd * abfd)
11685 {
11686 if (abfd->sections)
11687 bfd_map_over_sections (abfd,
11688 unrecord_section_via_map_over_sections,
11689 NULL);
11690
11691 return _bfd_elf_close_and_cleanup (abfd);
11692 }
11693
11694 static bfd_boolean
11695 elf32_arm_bfd_free_cached_info (bfd * abfd)
11696 {
11697 if (abfd->sections)
11698 bfd_map_over_sections (abfd,
11699 unrecord_section_via_map_over_sections,
11700 NULL);
11701
11702 return _bfd_free_cached_info (abfd);
11703 }
11704
11705 /* Display STT_ARM_TFUNC symbols as functions. */
11706
11707 static void
11708 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
11709 asymbol *asym)
11710 {
11711 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
11712
11713 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
11714 elfsym->symbol.flags |= BSF_FUNCTION;
11715 }
11716
11717
11718 /* Mangle thumb function symbols as we read them in. */
11719
11720 static bfd_boolean
11721 elf32_arm_swap_symbol_in (bfd * abfd,
11722 const void *psrc,
11723 const void *pshn,
11724 Elf_Internal_Sym *dst)
11725 {
11726 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
11727 return FALSE;
11728
11729 /* New EABI objects mark thumb function symbols by setting the low bit of
11730 the address. Turn these into STT_ARM_TFUNC. */
11731 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
11732 && (dst->st_value & 1))
11733 {
11734 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
11735 dst->st_value &= ~(bfd_vma) 1;
11736 }
11737 return TRUE;
11738 }
11739
11740
11741 /* Mangle thumb function symbols as we write them out. */
11742
11743 static void
11744 elf32_arm_swap_symbol_out (bfd *abfd,
11745 const Elf_Internal_Sym *src,
11746 void *cdst,
11747 void *shndx)
11748 {
11749 Elf_Internal_Sym newsym;
11750
11751 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
11752 of the address set, as per the new EABI. We do this unconditionally
11753 because objcopy does not set the elf header flags until after
11754 it writes out the symbol table. */
11755 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
11756 {
11757 newsym = *src;
11758 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
11759 if (newsym.st_shndx != SHN_UNDEF)
11760 {
11761 /* Do this only for defined symbols. At link type, the static
11762 linker will simulate the work of dynamic linker of resolving
11763 symbols and will carry over the thumbness of found symbols to
11764 the output symbol table. It's not clear how it happens, but
11765 the thumbness of undefined symbols can well be different at
11766 runtime, and writing '1' for them will be confusing for users
11767 and possibly for dynamic linker itself.
11768 */
11769 newsym.st_value |= 1;
11770 }
11771
11772 src = &newsym;
11773 }
11774 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
11775 }
11776
11777 /* Add the PT_ARM_EXIDX program header. */
11778
11779 static bfd_boolean
11780 elf32_arm_modify_segment_map (bfd *abfd,
11781 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11782 {
11783 struct elf_segment_map *m;
11784 asection *sec;
11785
11786 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11787 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11788 {
11789 /* If there is already a PT_ARM_EXIDX header, then we do not
11790 want to add another one. This situation arises when running
11791 "strip"; the input binary already has the header. */
11792 m = elf_tdata (abfd)->segment_map;
11793 while (m && m->p_type != PT_ARM_EXIDX)
11794 m = m->next;
11795 if (!m)
11796 {
11797 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
11798 if (m == NULL)
11799 return FALSE;
11800 m->p_type = PT_ARM_EXIDX;
11801 m->count = 1;
11802 m->sections[0] = sec;
11803
11804 m->next = elf_tdata (abfd)->segment_map;
11805 elf_tdata (abfd)->segment_map = m;
11806 }
11807 }
11808
11809 return TRUE;
11810 }
11811
11812 /* We may add a PT_ARM_EXIDX program header. */
11813
11814 static int
11815 elf32_arm_additional_program_headers (bfd *abfd,
11816 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11817 {
11818 asection *sec;
11819
11820 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11821 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11822 return 1;
11823 else
11824 return 0;
11825 }
11826
11827 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
11828
11829 static bfd_boolean
11830 elf32_arm_is_function_type (unsigned int type)
11831 {
11832 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
11833 }
11834
11835 /* We use this to override swap_symbol_in and swap_symbol_out. */
11836 const struct elf_size_info elf32_arm_size_info =
11837 {
11838 sizeof (Elf32_External_Ehdr),
11839 sizeof (Elf32_External_Phdr),
11840 sizeof (Elf32_External_Shdr),
11841 sizeof (Elf32_External_Rel),
11842 sizeof (Elf32_External_Rela),
11843 sizeof (Elf32_External_Sym),
11844 sizeof (Elf32_External_Dyn),
11845 sizeof (Elf_External_Note),
11846 4,
11847 1,
11848 32, 2,
11849 ELFCLASS32, EV_CURRENT,
11850 bfd_elf32_write_out_phdrs,
11851 bfd_elf32_write_shdrs_and_ehdr,
11852 bfd_elf32_checksum_contents,
11853 bfd_elf32_write_relocs,
11854 elf32_arm_swap_symbol_in,
11855 elf32_arm_swap_symbol_out,
11856 bfd_elf32_slurp_reloc_table,
11857 bfd_elf32_slurp_symbol_table,
11858 bfd_elf32_swap_dyn_in,
11859 bfd_elf32_swap_dyn_out,
11860 bfd_elf32_swap_reloc_in,
11861 bfd_elf32_swap_reloc_out,
11862 bfd_elf32_swap_reloca_in,
11863 bfd_elf32_swap_reloca_out
11864 };
11865
11866 #define ELF_ARCH bfd_arch_arm
11867 #define ELF_MACHINE_CODE EM_ARM
11868 #ifdef __QNXTARGET__
11869 #define ELF_MAXPAGESIZE 0x1000
11870 #else
11871 #define ELF_MAXPAGESIZE 0x8000
11872 #endif
11873 #define ELF_MINPAGESIZE 0x1000
11874 #define ELF_COMMONPAGESIZE 0x1000
11875
11876 #define bfd_elf32_mkobject elf32_arm_mkobject
11877
11878 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
11879 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
11880 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
11881 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
11882 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
11883 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
11884 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
11885 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
11886 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
11887 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
11888 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
11889 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
11890 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
11891 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
11892
11893 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
11894 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
11895 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
11896 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
11897 #define elf_backend_check_relocs elf32_arm_check_relocs
11898 #define elf_backend_relocate_section elf32_arm_relocate_section
11899 #define elf_backend_write_section elf32_arm_write_section
11900 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
11901 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
11902 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
11903 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
11904 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
11905 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
11906 #define elf_backend_post_process_headers elf32_arm_post_process_headers
11907 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
11908 #define elf_backend_object_p elf32_arm_object_p
11909 #define elf_backend_section_flags elf32_arm_section_flags
11910 #define elf_backend_fake_sections elf32_arm_fake_sections
11911 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
11912 #define elf_backend_final_write_processing elf32_arm_final_write_processing
11913 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
11914 #define elf_backend_symbol_processing elf32_arm_symbol_processing
11915 #define elf_backend_size_info elf32_arm_size_info
11916 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
11917 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
11918 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
11919 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
11920 #define elf_backend_is_function_type elf32_arm_is_function_type
11921
11922 #define elf_backend_can_refcount 1
11923 #define elf_backend_can_gc_sections 1
11924 #define elf_backend_plt_readonly 1
11925 #define elf_backend_want_got_plt 1
11926 #define elf_backend_want_plt_sym 0
11927 #define elf_backend_may_use_rel_p 1
11928 #define elf_backend_may_use_rela_p 0
11929 #define elf_backend_default_use_rela_p 0
11930
11931 #define elf_backend_got_header_size 12
11932
11933 #undef elf_backend_obj_attrs_vendor
11934 #define elf_backend_obj_attrs_vendor "aeabi"
11935 #undef elf_backend_obj_attrs_section
11936 #define elf_backend_obj_attrs_section ".ARM.attributes"
11937 #undef elf_backend_obj_attrs_arg_type
11938 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
11939 #undef elf_backend_obj_attrs_section_type
11940 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
11941
11942 #include "elf32-target.h"
11943
11944 /* VxWorks Targets. */
11945
11946 #undef TARGET_LITTLE_SYM
11947 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
11948 #undef TARGET_LITTLE_NAME
11949 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
11950 #undef TARGET_BIG_SYM
11951 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
11952 #undef TARGET_BIG_NAME
11953 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
11954
11955 /* Like elf32_arm_link_hash_table_create -- but overrides
11956 appropriately for VxWorks. */
11957
11958 static struct bfd_link_hash_table *
11959 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
11960 {
11961 struct bfd_link_hash_table *ret;
11962
11963 ret = elf32_arm_link_hash_table_create (abfd);
11964 if (ret)
11965 {
11966 struct elf32_arm_link_hash_table *htab
11967 = (struct elf32_arm_link_hash_table *) ret;
11968 htab->use_rel = 0;
11969 htab->vxworks_p = 1;
11970 }
11971 return ret;
11972 }
11973
11974 static void
11975 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
11976 {
11977 elf32_arm_final_write_processing (abfd, linker);
11978 elf_vxworks_final_write_processing (abfd, linker);
11979 }
11980
11981 #undef elf32_bed
11982 #define elf32_bed elf32_arm_vxworks_bed
11983
11984 #undef bfd_elf32_bfd_link_hash_table_create
11985 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
11986 #undef elf_backend_add_symbol_hook
11987 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
11988 #undef elf_backend_final_write_processing
11989 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
11990 #undef elf_backend_emit_relocs
11991 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
11992
11993 #undef elf_backend_may_use_rel_p
11994 #define elf_backend_may_use_rel_p 0
11995 #undef elf_backend_may_use_rela_p
11996 #define elf_backend_may_use_rela_p 1
11997 #undef elf_backend_default_use_rela_p
11998 #define elf_backend_default_use_rela_p 1
11999 #undef elf_backend_want_plt_sym
12000 #define elf_backend_want_plt_sym 1
12001 #undef ELF_MAXPAGESIZE
12002 #define ELF_MAXPAGESIZE 0x1000
12003
12004 #include "elf32-target.h"
12005
12006
12007 /* Symbian OS Targets. */
12008
12009 #undef TARGET_LITTLE_SYM
12010 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
12011 #undef TARGET_LITTLE_NAME
12012 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
12013 #undef TARGET_BIG_SYM
12014 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
12015 #undef TARGET_BIG_NAME
12016 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
12017
12018 /* Like elf32_arm_link_hash_table_create -- but overrides
12019 appropriately for Symbian OS. */
12020
12021 static struct bfd_link_hash_table *
12022 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
12023 {
12024 struct bfd_link_hash_table *ret;
12025
12026 ret = elf32_arm_link_hash_table_create (abfd);
12027 if (ret)
12028 {
12029 struct elf32_arm_link_hash_table *htab
12030 = (struct elf32_arm_link_hash_table *)ret;
12031 /* There is no PLT header for Symbian OS. */
12032 htab->plt_header_size = 0;
12033 /* The PLT entries are each one instruction and one word. */
12034 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
12035 htab->symbian_p = 1;
12036 /* Symbian uses armv5t or above, so use_blx is always true. */
12037 htab->use_blx = 1;
12038 htab->root.is_relocatable_executable = 1;
12039 }
12040 return ret;
12041 }
12042
12043 static const struct bfd_elf_special_section
12044 elf32_arm_symbian_special_sections[] =
12045 {
12046 /* In a BPABI executable, the dynamic linking sections do not go in
12047 the loadable read-only segment. The post-linker may wish to
12048 refer to these sections, but they are not part of the final
12049 program image. */
12050 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
12051 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
12052 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
12053 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
12054 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
12055 /* These sections do not need to be writable as the SymbianOS
12056 postlinker will arrange things so that no dynamic relocation is
12057 required. */
12058 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
12059 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
12060 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
12061 { NULL, 0, 0, 0, 0 }
12062 };
12063
12064 static void
12065 elf32_arm_symbian_begin_write_processing (bfd *abfd,
12066 struct bfd_link_info *link_info)
12067 {
12068 /* BPABI objects are never loaded directly by an OS kernel; they are
12069 processed by a postlinker first, into an OS-specific format. If
12070 the D_PAGED bit is set on the file, BFD will align segments on
12071 page boundaries, so that an OS can directly map the file. With
12072 BPABI objects, that just results in wasted space. In addition,
12073 because we clear the D_PAGED bit, map_sections_to_segments will
12074 recognize that the program headers should not be mapped into any
12075 loadable segment. */
12076 abfd->flags &= ~D_PAGED;
12077 elf32_arm_begin_write_processing (abfd, link_info);
12078 }
12079
12080 static bfd_boolean
12081 elf32_arm_symbian_modify_segment_map (bfd *abfd,
12082 struct bfd_link_info *info)
12083 {
12084 struct elf_segment_map *m;
12085 asection *dynsec;
12086
12087 /* BPABI shared libraries and executables should have a PT_DYNAMIC
12088 segment. However, because the .dynamic section is not marked
12089 with SEC_LOAD, the generic ELF code will not create such a
12090 segment. */
12091 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
12092 if (dynsec)
12093 {
12094 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
12095 if (m->p_type == PT_DYNAMIC)
12096 break;
12097
12098 if (m == NULL)
12099 {
12100 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12101 m->next = elf_tdata (abfd)->segment_map;
12102 elf_tdata (abfd)->segment_map = m;
12103 }
12104 }
12105
12106 /* Also call the generic arm routine. */
12107 return elf32_arm_modify_segment_map (abfd, info);
12108 }
12109
12110 /* Return address for Ith PLT stub in section PLT, for relocation REL
12111 or (bfd_vma) -1 if it should not be included. */
12112
12113 static bfd_vma
12114 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
12115 const arelent *rel ATTRIBUTE_UNUSED)
12116 {
12117 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
12118 }
12119
12120
12121 #undef elf32_bed
12122 #define elf32_bed elf32_arm_symbian_bed
12123
12124 /* The dynamic sections are not allocated on SymbianOS; the postlinker
12125 will process them and then discard them. */
12126 #undef ELF_DYNAMIC_SEC_FLAGS
12127 #define ELF_DYNAMIC_SEC_FLAGS \
12128 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
12129
12130 #undef elf_backend_add_symbol_hook
12131 #undef elf_backend_emit_relocs
12132
12133 #undef bfd_elf32_bfd_link_hash_table_create
12134 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
12135 #undef elf_backend_special_sections
12136 #define elf_backend_special_sections elf32_arm_symbian_special_sections
12137 #undef elf_backend_begin_write_processing
12138 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12139 #undef elf_backend_final_write_processing
12140 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12141
12142 #undef elf_backend_modify_segment_map
12143 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12144
12145 /* There is no .got section for BPABI objects, and hence no header. */
12146 #undef elf_backend_got_header_size
12147 #define elf_backend_got_header_size 0
12148
12149 /* Similarly, there is no .got.plt section. */
12150 #undef elf_backend_want_got_plt
12151 #define elf_backend_want_got_plt 0
12152
12153 #undef elf_backend_plt_sym_val
12154 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12155
12156 #undef elf_backend_may_use_rel_p
12157 #define elf_backend_may_use_rel_p 1
12158 #undef elf_backend_may_use_rela_p
12159 #define elf_backend_may_use_rela_p 0
12160 #undef elf_backend_default_use_rela_p
12161 #define elf_backend_default_use_rela_p 0
12162 #undef elf_backend_want_plt_sym
12163 #define elf_backend_want_plt_sym 0
12164 #undef ELF_MAXPAGESIZE
12165 #define ELF_MAXPAGESIZE 0x8000
12166
12167 #include "elf32-target.h"
This page took 0.45535 seconds and 4 git commands to generate.