Use %A and %B in more error messages
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2017 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "bfd_stdint.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-nacl.h"
30 #include "elf-vxworks.h"
31 #include "elf/arm.h"
32
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
65 /* The Adjusted Place, as defined by AAELF. */
66 #define Pa(X) ((X) & 0xfffffffc)
67
68 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
69 struct bfd_link_info *link_info,
70 asection *sec,
71 bfd_byte *contents);
72
73 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
74 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
75 in that slot. */
76
77 static reloc_howto_type elf32_arm_howto_table_1[] =
78 {
79 /* No relocation. */
80 HOWTO (R_ARM_NONE, /* type */
81 0, /* rightshift */
82 3, /* size (0 = byte, 1 = short, 2 = long) */
83 0, /* bitsize */
84 FALSE, /* pc_relative */
85 0, /* bitpos */
86 complain_overflow_dont,/* complain_on_overflow */
87 bfd_elf_generic_reloc, /* special_function */
88 "R_ARM_NONE", /* name */
89 FALSE, /* partial_inplace */
90 0, /* src_mask */
91 0, /* dst_mask */
92 FALSE), /* pcrel_offset */
93
94 HOWTO (R_ARM_PC24, /* type */
95 2, /* rightshift */
96 2, /* size (0 = byte, 1 = short, 2 = long) */
97 24, /* bitsize */
98 TRUE, /* pc_relative */
99 0, /* bitpos */
100 complain_overflow_signed,/* complain_on_overflow */
101 bfd_elf_generic_reloc, /* special_function */
102 "R_ARM_PC24", /* name */
103 FALSE, /* partial_inplace */
104 0x00ffffff, /* src_mask */
105 0x00ffffff, /* dst_mask */
106 TRUE), /* pcrel_offset */
107
108 /* 32 bit absolute */
109 HOWTO (R_ARM_ABS32, /* type */
110 0, /* rightshift */
111 2, /* size (0 = byte, 1 = short, 2 = long) */
112 32, /* bitsize */
113 FALSE, /* pc_relative */
114 0, /* bitpos */
115 complain_overflow_bitfield,/* complain_on_overflow */
116 bfd_elf_generic_reloc, /* special_function */
117 "R_ARM_ABS32", /* name */
118 FALSE, /* partial_inplace */
119 0xffffffff, /* src_mask */
120 0xffffffff, /* dst_mask */
121 FALSE), /* pcrel_offset */
122
123 /* standard 32bit pc-relative reloc */
124 HOWTO (R_ARM_REL32, /* type */
125 0, /* rightshift */
126 2, /* size (0 = byte, 1 = short, 2 = long) */
127 32, /* bitsize */
128 TRUE, /* pc_relative */
129 0, /* bitpos */
130 complain_overflow_bitfield,/* complain_on_overflow */
131 bfd_elf_generic_reloc, /* special_function */
132 "R_ARM_REL32", /* name */
133 FALSE, /* partial_inplace */
134 0xffffffff, /* src_mask */
135 0xffffffff, /* dst_mask */
136 TRUE), /* pcrel_offset */
137
138 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
139 HOWTO (R_ARM_LDR_PC_G0, /* type */
140 0, /* rightshift */
141 0, /* size (0 = byte, 1 = short, 2 = long) */
142 32, /* bitsize */
143 TRUE, /* pc_relative */
144 0, /* bitpos */
145 complain_overflow_dont,/* complain_on_overflow */
146 bfd_elf_generic_reloc, /* special_function */
147 "R_ARM_LDR_PC_G0", /* name */
148 FALSE, /* partial_inplace */
149 0xffffffff, /* src_mask */
150 0xffffffff, /* dst_mask */
151 TRUE), /* pcrel_offset */
152
153 /* 16 bit absolute */
154 HOWTO (R_ARM_ABS16, /* type */
155 0, /* rightshift */
156 1, /* size (0 = byte, 1 = short, 2 = long) */
157 16, /* bitsize */
158 FALSE, /* pc_relative */
159 0, /* bitpos */
160 complain_overflow_bitfield,/* complain_on_overflow */
161 bfd_elf_generic_reloc, /* special_function */
162 "R_ARM_ABS16", /* name */
163 FALSE, /* partial_inplace */
164 0x0000ffff, /* src_mask */
165 0x0000ffff, /* dst_mask */
166 FALSE), /* pcrel_offset */
167
168 /* 12 bit absolute */
169 HOWTO (R_ARM_ABS12, /* type */
170 0, /* rightshift */
171 2, /* size (0 = byte, 1 = short, 2 = long) */
172 12, /* bitsize */
173 FALSE, /* pc_relative */
174 0, /* bitpos */
175 complain_overflow_bitfield,/* complain_on_overflow */
176 bfd_elf_generic_reloc, /* special_function */
177 "R_ARM_ABS12", /* name */
178 FALSE, /* partial_inplace */
179 0x00000fff, /* src_mask */
180 0x00000fff, /* dst_mask */
181 FALSE), /* pcrel_offset */
182
183 HOWTO (R_ARM_THM_ABS5, /* type */
184 6, /* rightshift */
185 1, /* size (0 = byte, 1 = short, 2 = long) */
186 5, /* bitsize */
187 FALSE, /* pc_relative */
188 0, /* bitpos */
189 complain_overflow_bitfield,/* complain_on_overflow */
190 bfd_elf_generic_reloc, /* special_function */
191 "R_ARM_THM_ABS5", /* name */
192 FALSE, /* partial_inplace */
193 0x000007e0, /* src_mask */
194 0x000007e0, /* dst_mask */
195 FALSE), /* pcrel_offset */
196
197 /* 8 bit absolute */
198 HOWTO (R_ARM_ABS8, /* type */
199 0, /* rightshift */
200 0, /* size (0 = byte, 1 = short, 2 = long) */
201 8, /* bitsize */
202 FALSE, /* pc_relative */
203 0, /* bitpos */
204 complain_overflow_bitfield,/* complain_on_overflow */
205 bfd_elf_generic_reloc, /* special_function */
206 "R_ARM_ABS8", /* name */
207 FALSE, /* partial_inplace */
208 0x000000ff, /* src_mask */
209 0x000000ff, /* dst_mask */
210 FALSE), /* pcrel_offset */
211
212 HOWTO (R_ARM_SBREL32, /* type */
213 0, /* rightshift */
214 2, /* size (0 = byte, 1 = short, 2 = long) */
215 32, /* bitsize */
216 FALSE, /* pc_relative */
217 0, /* bitpos */
218 complain_overflow_dont,/* complain_on_overflow */
219 bfd_elf_generic_reloc, /* special_function */
220 "R_ARM_SBREL32", /* name */
221 FALSE, /* partial_inplace */
222 0xffffffff, /* src_mask */
223 0xffffffff, /* dst_mask */
224 FALSE), /* pcrel_offset */
225
226 HOWTO (R_ARM_THM_CALL, /* type */
227 1, /* rightshift */
228 2, /* size (0 = byte, 1 = short, 2 = long) */
229 24, /* bitsize */
230 TRUE, /* pc_relative */
231 0, /* bitpos */
232 complain_overflow_signed,/* complain_on_overflow */
233 bfd_elf_generic_reloc, /* special_function */
234 "R_ARM_THM_CALL", /* name */
235 FALSE, /* partial_inplace */
236 0x07ff2fff, /* src_mask */
237 0x07ff2fff, /* dst_mask */
238 TRUE), /* pcrel_offset */
239
240 HOWTO (R_ARM_THM_PC8, /* type */
241 1, /* rightshift */
242 1, /* size (0 = byte, 1 = short, 2 = long) */
243 8, /* bitsize */
244 TRUE, /* pc_relative */
245 0, /* bitpos */
246 complain_overflow_signed,/* complain_on_overflow */
247 bfd_elf_generic_reloc, /* special_function */
248 "R_ARM_THM_PC8", /* name */
249 FALSE, /* partial_inplace */
250 0x000000ff, /* src_mask */
251 0x000000ff, /* dst_mask */
252 TRUE), /* pcrel_offset */
253
254 HOWTO (R_ARM_BREL_ADJ, /* type */
255 1, /* rightshift */
256 1, /* size (0 = byte, 1 = short, 2 = long) */
257 32, /* bitsize */
258 FALSE, /* pc_relative */
259 0, /* bitpos */
260 complain_overflow_signed,/* complain_on_overflow */
261 bfd_elf_generic_reloc, /* special_function */
262 "R_ARM_BREL_ADJ", /* name */
263 FALSE, /* partial_inplace */
264 0xffffffff, /* src_mask */
265 0xffffffff, /* dst_mask */
266 FALSE), /* pcrel_offset */
267
268 HOWTO (R_ARM_TLS_DESC, /* type */
269 0, /* rightshift */
270 2, /* size (0 = byte, 1 = short, 2 = long) */
271 32, /* bitsize */
272 FALSE, /* pc_relative */
273 0, /* bitpos */
274 complain_overflow_bitfield,/* complain_on_overflow */
275 bfd_elf_generic_reloc, /* special_function */
276 "R_ARM_TLS_DESC", /* name */
277 FALSE, /* partial_inplace */
278 0xffffffff, /* src_mask */
279 0xffffffff, /* dst_mask */
280 FALSE), /* pcrel_offset */
281
282 HOWTO (R_ARM_THM_SWI8, /* type */
283 0, /* rightshift */
284 0, /* size (0 = byte, 1 = short, 2 = long) */
285 0, /* bitsize */
286 FALSE, /* pc_relative */
287 0, /* bitpos */
288 complain_overflow_signed,/* complain_on_overflow */
289 bfd_elf_generic_reloc, /* special_function */
290 "R_ARM_SWI8", /* name */
291 FALSE, /* partial_inplace */
292 0x00000000, /* src_mask */
293 0x00000000, /* dst_mask */
294 FALSE), /* pcrel_offset */
295
296 /* BLX instruction for the ARM. */
297 HOWTO (R_ARM_XPC25, /* type */
298 2, /* rightshift */
299 2, /* size (0 = byte, 1 = short, 2 = long) */
300 24, /* bitsize */
301 TRUE, /* pc_relative */
302 0, /* bitpos */
303 complain_overflow_signed,/* complain_on_overflow */
304 bfd_elf_generic_reloc, /* special_function */
305 "R_ARM_XPC25", /* name */
306 FALSE, /* partial_inplace */
307 0x00ffffff, /* src_mask */
308 0x00ffffff, /* dst_mask */
309 TRUE), /* pcrel_offset */
310
311 /* BLX instruction for the Thumb. */
312 HOWTO (R_ARM_THM_XPC22, /* type */
313 2, /* rightshift */
314 2, /* size (0 = byte, 1 = short, 2 = long) */
315 24, /* bitsize */
316 TRUE, /* pc_relative */
317 0, /* bitpos */
318 complain_overflow_signed,/* complain_on_overflow */
319 bfd_elf_generic_reloc, /* special_function */
320 "R_ARM_THM_XPC22", /* name */
321 FALSE, /* partial_inplace */
322 0x07ff2fff, /* src_mask */
323 0x07ff2fff, /* dst_mask */
324 TRUE), /* pcrel_offset */
325
326 /* Dynamic TLS relocations. */
327
328 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
329 0, /* rightshift */
330 2, /* size (0 = byte, 1 = short, 2 = long) */
331 32, /* bitsize */
332 FALSE, /* pc_relative */
333 0, /* bitpos */
334 complain_overflow_bitfield,/* complain_on_overflow */
335 bfd_elf_generic_reloc, /* special_function */
336 "R_ARM_TLS_DTPMOD32", /* name */
337 TRUE, /* partial_inplace */
338 0xffffffff, /* src_mask */
339 0xffffffff, /* dst_mask */
340 FALSE), /* pcrel_offset */
341
342 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
343 0, /* rightshift */
344 2, /* size (0 = byte, 1 = short, 2 = long) */
345 32, /* bitsize */
346 FALSE, /* pc_relative */
347 0, /* bitpos */
348 complain_overflow_bitfield,/* complain_on_overflow */
349 bfd_elf_generic_reloc, /* special_function */
350 "R_ARM_TLS_DTPOFF32", /* name */
351 TRUE, /* partial_inplace */
352 0xffffffff, /* src_mask */
353 0xffffffff, /* dst_mask */
354 FALSE), /* pcrel_offset */
355
356 HOWTO (R_ARM_TLS_TPOFF32, /* type */
357 0, /* rightshift */
358 2, /* size (0 = byte, 1 = short, 2 = long) */
359 32, /* bitsize */
360 FALSE, /* pc_relative */
361 0, /* bitpos */
362 complain_overflow_bitfield,/* complain_on_overflow */
363 bfd_elf_generic_reloc, /* special_function */
364 "R_ARM_TLS_TPOFF32", /* name */
365 TRUE, /* partial_inplace */
366 0xffffffff, /* src_mask */
367 0xffffffff, /* dst_mask */
368 FALSE), /* pcrel_offset */
369
370 /* Relocs used in ARM Linux */
371
372 HOWTO (R_ARM_COPY, /* type */
373 0, /* rightshift */
374 2, /* size (0 = byte, 1 = short, 2 = long) */
375 32, /* bitsize */
376 FALSE, /* pc_relative */
377 0, /* bitpos */
378 complain_overflow_bitfield,/* complain_on_overflow */
379 bfd_elf_generic_reloc, /* special_function */
380 "R_ARM_COPY", /* name */
381 TRUE, /* partial_inplace */
382 0xffffffff, /* src_mask */
383 0xffffffff, /* dst_mask */
384 FALSE), /* pcrel_offset */
385
386 HOWTO (R_ARM_GLOB_DAT, /* type */
387 0, /* rightshift */
388 2, /* size (0 = byte, 1 = short, 2 = long) */
389 32, /* bitsize */
390 FALSE, /* pc_relative */
391 0, /* bitpos */
392 complain_overflow_bitfield,/* complain_on_overflow */
393 bfd_elf_generic_reloc, /* special_function */
394 "R_ARM_GLOB_DAT", /* name */
395 TRUE, /* partial_inplace */
396 0xffffffff, /* src_mask */
397 0xffffffff, /* dst_mask */
398 FALSE), /* pcrel_offset */
399
400 HOWTO (R_ARM_JUMP_SLOT, /* type */
401 0, /* rightshift */
402 2, /* size (0 = byte, 1 = short, 2 = long) */
403 32, /* bitsize */
404 FALSE, /* pc_relative */
405 0, /* bitpos */
406 complain_overflow_bitfield,/* complain_on_overflow */
407 bfd_elf_generic_reloc, /* special_function */
408 "R_ARM_JUMP_SLOT", /* name */
409 TRUE, /* partial_inplace */
410 0xffffffff, /* src_mask */
411 0xffffffff, /* dst_mask */
412 FALSE), /* pcrel_offset */
413
414 HOWTO (R_ARM_RELATIVE, /* type */
415 0, /* rightshift */
416 2, /* size (0 = byte, 1 = short, 2 = long) */
417 32, /* bitsize */
418 FALSE, /* pc_relative */
419 0, /* bitpos */
420 complain_overflow_bitfield,/* complain_on_overflow */
421 bfd_elf_generic_reloc, /* special_function */
422 "R_ARM_RELATIVE", /* name */
423 TRUE, /* partial_inplace */
424 0xffffffff, /* src_mask */
425 0xffffffff, /* dst_mask */
426 FALSE), /* pcrel_offset */
427
428 HOWTO (R_ARM_GOTOFF32, /* type */
429 0, /* rightshift */
430 2, /* size (0 = byte, 1 = short, 2 = long) */
431 32, /* bitsize */
432 FALSE, /* pc_relative */
433 0, /* bitpos */
434 complain_overflow_bitfield,/* complain_on_overflow */
435 bfd_elf_generic_reloc, /* special_function */
436 "R_ARM_GOTOFF32", /* name */
437 TRUE, /* partial_inplace */
438 0xffffffff, /* src_mask */
439 0xffffffff, /* dst_mask */
440 FALSE), /* pcrel_offset */
441
442 HOWTO (R_ARM_GOTPC, /* type */
443 0, /* rightshift */
444 2, /* size (0 = byte, 1 = short, 2 = long) */
445 32, /* bitsize */
446 TRUE, /* pc_relative */
447 0, /* bitpos */
448 complain_overflow_bitfield,/* complain_on_overflow */
449 bfd_elf_generic_reloc, /* special_function */
450 "R_ARM_GOTPC", /* name */
451 TRUE, /* partial_inplace */
452 0xffffffff, /* src_mask */
453 0xffffffff, /* dst_mask */
454 TRUE), /* pcrel_offset */
455
456 HOWTO (R_ARM_GOT32, /* type */
457 0, /* rightshift */
458 2, /* size (0 = byte, 1 = short, 2 = long) */
459 32, /* bitsize */
460 FALSE, /* pc_relative */
461 0, /* bitpos */
462 complain_overflow_bitfield,/* complain_on_overflow */
463 bfd_elf_generic_reloc, /* special_function */
464 "R_ARM_GOT32", /* name */
465 TRUE, /* partial_inplace */
466 0xffffffff, /* src_mask */
467 0xffffffff, /* dst_mask */
468 FALSE), /* pcrel_offset */
469
470 HOWTO (R_ARM_PLT32, /* type */
471 2, /* rightshift */
472 2, /* size (0 = byte, 1 = short, 2 = long) */
473 24, /* bitsize */
474 TRUE, /* pc_relative */
475 0, /* bitpos */
476 complain_overflow_bitfield,/* complain_on_overflow */
477 bfd_elf_generic_reloc, /* special_function */
478 "R_ARM_PLT32", /* name */
479 FALSE, /* partial_inplace */
480 0x00ffffff, /* src_mask */
481 0x00ffffff, /* dst_mask */
482 TRUE), /* pcrel_offset */
483
484 HOWTO (R_ARM_CALL, /* type */
485 2, /* rightshift */
486 2, /* size (0 = byte, 1 = short, 2 = long) */
487 24, /* bitsize */
488 TRUE, /* pc_relative */
489 0, /* bitpos */
490 complain_overflow_signed,/* complain_on_overflow */
491 bfd_elf_generic_reloc, /* special_function */
492 "R_ARM_CALL", /* name */
493 FALSE, /* partial_inplace */
494 0x00ffffff, /* src_mask */
495 0x00ffffff, /* dst_mask */
496 TRUE), /* pcrel_offset */
497
498 HOWTO (R_ARM_JUMP24, /* type */
499 2, /* rightshift */
500 2, /* size (0 = byte, 1 = short, 2 = long) */
501 24, /* bitsize */
502 TRUE, /* pc_relative */
503 0, /* bitpos */
504 complain_overflow_signed,/* complain_on_overflow */
505 bfd_elf_generic_reloc, /* special_function */
506 "R_ARM_JUMP24", /* name */
507 FALSE, /* partial_inplace */
508 0x00ffffff, /* src_mask */
509 0x00ffffff, /* dst_mask */
510 TRUE), /* pcrel_offset */
511
512 HOWTO (R_ARM_THM_JUMP24, /* type */
513 1, /* rightshift */
514 2, /* size (0 = byte, 1 = short, 2 = long) */
515 24, /* bitsize */
516 TRUE, /* pc_relative */
517 0, /* bitpos */
518 complain_overflow_signed,/* complain_on_overflow */
519 bfd_elf_generic_reloc, /* special_function */
520 "R_ARM_THM_JUMP24", /* name */
521 FALSE, /* partial_inplace */
522 0x07ff2fff, /* src_mask */
523 0x07ff2fff, /* dst_mask */
524 TRUE), /* pcrel_offset */
525
526 HOWTO (R_ARM_BASE_ABS, /* type */
527 0, /* rightshift */
528 2, /* size (0 = byte, 1 = short, 2 = long) */
529 32, /* bitsize */
530 FALSE, /* pc_relative */
531 0, /* bitpos */
532 complain_overflow_dont,/* complain_on_overflow */
533 bfd_elf_generic_reloc, /* special_function */
534 "R_ARM_BASE_ABS", /* name */
535 FALSE, /* partial_inplace */
536 0xffffffff, /* src_mask */
537 0xffffffff, /* dst_mask */
538 FALSE), /* pcrel_offset */
539
540 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
541 0, /* rightshift */
542 2, /* size (0 = byte, 1 = short, 2 = long) */
543 12, /* bitsize */
544 TRUE, /* pc_relative */
545 0, /* bitpos */
546 complain_overflow_dont,/* complain_on_overflow */
547 bfd_elf_generic_reloc, /* special_function */
548 "R_ARM_ALU_PCREL_7_0", /* name */
549 FALSE, /* partial_inplace */
550 0x00000fff, /* src_mask */
551 0x00000fff, /* dst_mask */
552 TRUE), /* pcrel_offset */
553
554 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
555 0, /* rightshift */
556 2, /* size (0 = byte, 1 = short, 2 = long) */
557 12, /* bitsize */
558 TRUE, /* pc_relative */
559 8, /* bitpos */
560 complain_overflow_dont,/* complain_on_overflow */
561 bfd_elf_generic_reloc, /* special_function */
562 "R_ARM_ALU_PCREL_15_8",/* name */
563 FALSE, /* partial_inplace */
564 0x00000fff, /* src_mask */
565 0x00000fff, /* dst_mask */
566 TRUE), /* pcrel_offset */
567
568 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
569 0, /* rightshift */
570 2, /* size (0 = byte, 1 = short, 2 = long) */
571 12, /* bitsize */
572 TRUE, /* pc_relative */
573 16, /* bitpos */
574 complain_overflow_dont,/* complain_on_overflow */
575 bfd_elf_generic_reloc, /* special_function */
576 "R_ARM_ALU_PCREL_23_15",/* name */
577 FALSE, /* partial_inplace */
578 0x00000fff, /* src_mask */
579 0x00000fff, /* dst_mask */
580 TRUE), /* pcrel_offset */
581
582 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
583 0, /* rightshift */
584 2, /* size (0 = byte, 1 = short, 2 = long) */
585 12, /* bitsize */
586 FALSE, /* pc_relative */
587 0, /* bitpos */
588 complain_overflow_dont,/* complain_on_overflow */
589 bfd_elf_generic_reloc, /* special_function */
590 "R_ARM_LDR_SBREL_11_0",/* name */
591 FALSE, /* partial_inplace */
592 0x00000fff, /* src_mask */
593 0x00000fff, /* dst_mask */
594 FALSE), /* pcrel_offset */
595
596 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
597 0, /* rightshift */
598 2, /* size (0 = byte, 1 = short, 2 = long) */
599 8, /* bitsize */
600 FALSE, /* pc_relative */
601 12, /* bitpos */
602 complain_overflow_dont,/* complain_on_overflow */
603 bfd_elf_generic_reloc, /* special_function */
604 "R_ARM_ALU_SBREL_19_12",/* name */
605 FALSE, /* partial_inplace */
606 0x000ff000, /* src_mask */
607 0x000ff000, /* dst_mask */
608 FALSE), /* pcrel_offset */
609
610 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
611 0, /* rightshift */
612 2, /* size (0 = byte, 1 = short, 2 = long) */
613 8, /* bitsize */
614 FALSE, /* pc_relative */
615 20, /* bitpos */
616 complain_overflow_dont,/* complain_on_overflow */
617 bfd_elf_generic_reloc, /* special_function */
618 "R_ARM_ALU_SBREL_27_20",/* name */
619 FALSE, /* partial_inplace */
620 0x0ff00000, /* src_mask */
621 0x0ff00000, /* dst_mask */
622 FALSE), /* pcrel_offset */
623
624 HOWTO (R_ARM_TARGET1, /* type */
625 0, /* rightshift */
626 2, /* size (0 = byte, 1 = short, 2 = long) */
627 32, /* bitsize */
628 FALSE, /* pc_relative */
629 0, /* bitpos */
630 complain_overflow_dont,/* complain_on_overflow */
631 bfd_elf_generic_reloc, /* special_function */
632 "R_ARM_TARGET1", /* name */
633 FALSE, /* partial_inplace */
634 0xffffffff, /* src_mask */
635 0xffffffff, /* dst_mask */
636 FALSE), /* pcrel_offset */
637
638 HOWTO (R_ARM_ROSEGREL32, /* type */
639 0, /* rightshift */
640 2, /* size (0 = byte, 1 = short, 2 = long) */
641 32, /* bitsize */
642 FALSE, /* pc_relative */
643 0, /* bitpos */
644 complain_overflow_dont,/* complain_on_overflow */
645 bfd_elf_generic_reloc, /* special_function */
646 "R_ARM_ROSEGREL32", /* name */
647 FALSE, /* partial_inplace */
648 0xffffffff, /* src_mask */
649 0xffffffff, /* dst_mask */
650 FALSE), /* pcrel_offset */
651
652 HOWTO (R_ARM_V4BX, /* type */
653 0, /* rightshift */
654 2, /* size (0 = byte, 1 = short, 2 = long) */
655 32, /* bitsize */
656 FALSE, /* pc_relative */
657 0, /* bitpos */
658 complain_overflow_dont,/* complain_on_overflow */
659 bfd_elf_generic_reloc, /* special_function */
660 "R_ARM_V4BX", /* name */
661 FALSE, /* partial_inplace */
662 0xffffffff, /* src_mask */
663 0xffffffff, /* dst_mask */
664 FALSE), /* pcrel_offset */
665
666 HOWTO (R_ARM_TARGET2, /* type */
667 0, /* rightshift */
668 2, /* size (0 = byte, 1 = short, 2 = long) */
669 32, /* bitsize */
670 FALSE, /* pc_relative */
671 0, /* bitpos */
672 complain_overflow_signed,/* complain_on_overflow */
673 bfd_elf_generic_reloc, /* special_function */
674 "R_ARM_TARGET2", /* name */
675 FALSE, /* partial_inplace */
676 0xffffffff, /* src_mask */
677 0xffffffff, /* dst_mask */
678 TRUE), /* pcrel_offset */
679
680 HOWTO (R_ARM_PREL31, /* type */
681 0, /* rightshift */
682 2, /* size (0 = byte, 1 = short, 2 = long) */
683 31, /* bitsize */
684 TRUE, /* pc_relative */
685 0, /* bitpos */
686 complain_overflow_signed,/* complain_on_overflow */
687 bfd_elf_generic_reloc, /* special_function */
688 "R_ARM_PREL31", /* name */
689 FALSE, /* partial_inplace */
690 0x7fffffff, /* src_mask */
691 0x7fffffff, /* dst_mask */
692 TRUE), /* pcrel_offset */
693
694 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
695 0, /* rightshift */
696 2, /* size (0 = byte, 1 = short, 2 = long) */
697 16, /* bitsize */
698 FALSE, /* pc_relative */
699 0, /* bitpos */
700 complain_overflow_dont,/* complain_on_overflow */
701 bfd_elf_generic_reloc, /* special_function */
702 "R_ARM_MOVW_ABS_NC", /* name */
703 FALSE, /* partial_inplace */
704 0x000f0fff, /* src_mask */
705 0x000f0fff, /* dst_mask */
706 FALSE), /* pcrel_offset */
707
708 HOWTO (R_ARM_MOVT_ABS, /* type */
709 0, /* rightshift */
710 2, /* size (0 = byte, 1 = short, 2 = long) */
711 16, /* bitsize */
712 FALSE, /* pc_relative */
713 0, /* bitpos */
714 complain_overflow_bitfield,/* complain_on_overflow */
715 bfd_elf_generic_reloc, /* special_function */
716 "R_ARM_MOVT_ABS", /* name */
717 FALSE, /* partial_inplace */
718 0x000f0fff, /* src_mask */
719 0x000f0fff, /* dst_mask */
720 FALSE), /* pcrel_offset */
721
722 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
723 0, /* rightshift */
724 2, /* size (0 = byte, 1 = short, 2 = long) */
725 16, /* bitsize */
726 TRUE, /* pc_relative */
727 0, /* bitpos */
728 complain_overflow_dont,/* complain_on_overflow */
729 bfd_elf_generic_reloc, /* special_function */
730 "R_ARM_MOVW_PREL_NC", /* name */
731 FALSE, /* partial_inplace */
732 0x000f0fff, /* src_mask */
733 0x000f0fff, /* dst_mask */
734 TRUE), /* pcrel_offset */
735
736 HOWTO (R_ARM_MOVT_PREL, /* type */
737 0, /* rightshift */
738 2, /* size (0 = byte, 1 = short, 2 = long) */
739 16, /* bitsize */
740 TRUE, /* pc_relative */
741 0, /* bitpos */
742 complain_overflow_bitfield,/* complain_on_overflow */
743 bfd_elf_generic_reloc, /* special_function */
744 "R_ARM_MOVT_PREL", /* name */
745 FALSE, /* partial_inplace */
746 0x000f0fff, /* src_mask */
747 0x000f0fff, /* dst_mask */
748 TRUE), /* pcrel_offset */
749
750 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
751 0, /* rightshift */
752 2, /* size (0 = byte, 1 = short, 2 = long) */
753 16, /* bitsize */
754 FALSE, /* pc_relative */
755 0, /* bitpos */
756 complain_overflow_dont,/* complain_on_overflow */
757 bfd_elf_generic_reloc, /* special_function */
758 "R_ARM_THM_MOVW_ABS_NC",/* name */
759 FALSE, /* partial_inplace */
760 0x040f70ff, /* src_mask */
761 0x040f70ff, /* dst_mask */
762 FALSE), /* pcrel_offset */
763
764 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
765 0, /* rightshift */
766 2, /* size (0 = byte, 1 = short, 2 = long) */
767 16, /* bitsize */
768 FALSE, /* pc_relative */
769 0, /* bitpos */
770 complain_overflow_bitfield,/* complain_on_overflow */
771 bfd_elf_generic_reloc, /* special_function */
772 "R_ARM_THM_MOVT_ABS", /* name */
773 FALSE, /* partial_inplace */
774 0x040f70ff, /* src_mask */
775 0x040f70ff, /* dst_mask */
776 FALSE), /* pcrel_offset */
777
778 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
779 0, /* rightshift */
780 2, /* size (0 = byte, 1 = short, 2 = long) */
781 16, /* bitsize */
782 TRUE, /* pc_relative */
783 0, /* bitpos */
784 complain_overflow_dont,/* complain_on_overflow */
785 bfd_elf_generic_reloc, /* special_function */
786 "R_ARM_THM_MOVW_PREL_NC",/* name */
787 FALSE, /* partial_inplace */
788 0x040f70ff, /* src_mask */
789 0x040f70ff, /* dst_mask */
790 TRUE), /* pcrel_offset */
791
792 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
793 0, /* rightshift */
794 2, /* size (0 = byte, 1 = short, 2 = long) */
795 16, /* bitsize */
796 TRUE, /* pc_relative */
797 0, /* bitpos */
798 complain_overflow_bitfield,/* complain_on_overflow */
799 bfd_elf_generic_reloc, /* special_function */
800 "R_ARM_THM_MOVT_PREL", /* name */
801 FALSE, /* partial_inplace */
802 0x040f70ff, /* src_mask */
803 0x040f70ff, /* dst_mask */
804 TRUE), /* pcrel_offset */
805
806 HOWTO (R_ARM_THM_JUMP19, /* type */
807 1, /* rightshift */
808 2, /* size (0 = byte, 1 = short, 2 = long) */
809 19, /* bitsize */
810 TRUE, /* pc_relative */
811 0, /* bitpos */
812 complain_overflow_signed,/* complain_on_overflow */
813 bfd_elf_generic_reloc, /* special_function */
814 "R_ARM_THM_JUMP19", /* name */
815 FALSE, /* partial_inplace */
816 0x043f2fff, /* src_mask */
817 0x043f2fff, /* dst_mask */
818 TRUE), /* pcrel_offset */
819
820 HOWTO (R_ARM_THM_JUMP6, /* type */
821 1, /* rightshift */
822 1, /* size (0 = byte, 1 = short, 2 = long) */
823 6, /* bitsize */
824 TRUE, /* pc_relative */
825 0, /* bitpos */
826 complain_overflow_unsigned,/* complain_on_overflow */
827 bfd_elf_generic_reloc, /* special_function */
828 "R_ARM_THM_JUMP6", /* name */
829 FALSE, /* partial_inplace */
830 0x02f8, /* src_mask */
831 0x02f8, /* dst_mask */
832 TRUE), /* pcrel_offset */
833
834 /* These are declared as 13-bit signed relocations because we can
835 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
836 versa. */
837 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
838 0, /* rightshift */
839 2, /* size (0 = byte, 1 = short, 2 = long) */
840 13, /* bitsize */
841 TRUE, /* pc_relative */
842 0, /* bitpos */
843 complain_overflow_dont,/* complain_on_overflow */
844 bfd_elf_generic_reloc, /* special_function */
845 "R_ARM_THM_ALU_PREL_11_0",/* name */
846 FALSE, /* partial_inplace */
847 0xffffffff, /* src_mask */
848 0xffffffff, /* dst_mask */
849 TRUE), /* pcrel_offset */
850
851 HOWTO (R_ARM_THM_PC12, /* type */
852 0, /* rightshift */
853 2, /* size (0 = byte, 1 = short, 2 = long) */
854 13, /* bitsize */
855 TRUE, /* pc_relative */
856 0, /* bitpos */
857 complain_overflow_dont,/* complain_on_overflow */
858 bfd_elf_generic_reloc, /* special_function */
859 "R_ARM_THM_PC12", /* name */
860 FALSE, /* partial_inplace */
861 0xffffffff, /* src_mask */
862 0xffffffff, /* dst_mask */
863 TRUE), /* pcrel_offset */
864
865 HOWTO (R_ARM_ABS32_NOI, /* type */
866 0, /* rightshift */
867 2, /* size (0 = byte, 1 = short, 2 = long) */
868 32, /* bitsize */
869 FALSE, /* pc_relative */
870 0, /* bitpos */
871 complain_overflow_dont,/* complain_on_overflow */
872 bfd_elf_generic_reloc, /* special_function */
873 "R_ARM_ABS32_NOI", /* name */
874 FALSE, /* partial_inplace */
875 0xffffffff, /* src_mask */
876 0xffffffff, /* dst_mask */
877 FALSE), /* pcrel_offset */
878
879 HOWTO (R_ARM_REL32_NOI, /* type */
880 0, /* rightshift */
881 2, /* size (0 = byte, 1 = short, 2 = long) */
882 32, /* bitsize */
883 TRUE, /* pc_relative */
884 0, /* bitpos */
885 complain_overflow_dont,/* complain_on_overflow */
886 bfd_elf_generic_reloc, /* special_function */
887 "R_ARM_REL32_NOI", /* name */
888 FALSE, /* partial_inplace */
889 0xffffffff, /* src_mask */
890 0xffffffff, /* dst_mask */
891 FALSE), /* pcrel_offset */
892
893 /* Group relocations. */
894
895 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
896 0, /* rightshift */
897 2, /* size (0 = byte, 1 = short, 2 = long) */
898 32, /* bitsize */
899 TRUE, /* pc_relative */
900 0, /* bitpos */
901 complain_overflow_dont,/* complain_on_overflow */
902 bfd_elf_generic_reloc, /* special_function */
903 "R_ARM_ALU_PC_G0_NC", /* name */
904 FALSE, /* partial_inplace */
905 0xffffffff, /* src_mask */
906 0xffffffff, /* dst_mask */
907 TRUE), /* pcrel_offset */
908
909 HOWTO (R_ARM_ALU_PC_G0, /* type */
910 0, /* rightshift */
911 2, /* size (0 = byte, 1 = short, 2 = long) */
912 32, /* bitsize */
913 TRUE, /* pc_relative */
914 0, /* bitpos */
915 complain_overflow_dont,/* complain_on_overflow */
916 bfd_elf_generic_reloc, /* special_function */
917 "R_ARM_ALU_PC_G0", /* name */
918 FALSE, /* partial_inplace */
919 0xffffffff, /* src_mask */
920 0xffffffff, /* dst_mask */
921 TRUE), /* pcrel_offset */
922
923 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
924 0, /* rightshift */
925 2, /* size (0 = byte, 1 = short, 2 = long) */
926 32, /* bitsize */
927 TRUE, /* pc_relative */
928 0, /* bitpos */
929 complain_overflow_dont,/* complain_on_overflow */
930 bfd_elf_generic_reloc, /* special_function */
931 "R_ARM_ALU_PC_G1_NC", /* name */
932 FALSE, /* partial_inplace */
933 0xffffffff, /* src_mask */
934 0xffffffff, /* dst_mask */
935 TRUE), /* pcrel_offset */
936
937 HOWTO (R_ARM_ALU_PC_G1, /* type */
938 0, /* rightshift */
939 2, /* size (0 = byte, 1 = short, 2 = long) */
940 32, /* bitsize */
941 TRUE, /* pc_relative */
942 0, /* bitpos */
943 complain_overflow_dont,/* complain_on_overflow */
944 bfd_elf_generic_reloc, /* special_function */
945 "R_ARM_ALU_PC_G1", /* name */
946 FALSE, /* partial_inplace */
947 0xffffffff, /* src_mask */
948 0xffffffff, /* dst_mask */
949 TRUE), /* pcrel_offset */
950
951 HOWTO (R_ARM_ALU_PC_G2, /* type */
952 0, /* rightshift */
953 2, /* size (0 = byte, 1 = short, 2 = long) */
954 32, /* bitsize */
955 TRUE, /* pc_relative */
956 0, /* bitpos */
957 complain_overflow_dont,/* complain_on_overflow */
958 bfd_elf_generic_reloc, /* special_function */
959 "R_ARM_ALU_PC_G2", /* name */
960 FALSE, /* partial_inplace */
961 0xffffffff, /* src_mask */
962 0xffffffff, /* dst_mask */
963 TRUE), /* pcrel_offset */
964
965 HOWTO (R_ARM_LDR_PC_G1, /* type */
966 0, /* rightshift */
967 2, /* size (0 = byte, 1 = short, 2 = long) */
968 32, /* bitsize */
969 TRUE, /* pc_relative */
970 0, /* bitpos */
971 complain_overflow_dont,/* complain_on_overflow */
972 bfd_elf_generic_reloc, /* special_function */
973 "R_ARM_LDR_PC_G1", /* name */
974 FALSE, /* partial_inplace */
975 0xffffffff, /* src_mask */
976 0xffffffff, /* dst_mask */
977 TRUE), /* pcrel_offset */
978
979 HOWTO (R_ARM_LDR_PC_G2, /* type */
980 0, /* rightshift */
981 2, /* size (0 = byte, 1 = short, 2 = long) */
982 32, /* bitsize */
983 TRUE, /* pc_relative */
984 0, /* bitpos */
985 complain_overflow_dont,/* complain_on_overflow */
986 bfd_elf_generic_reloc, /* special_function */
987 "R_ARM_LDR_PC_G2", /* name */
988 FALSE, /* partial_inplace */
989 0xffffffff, /* src_mask */
990 0xffffffff, /* dst_mask */
991 TRUE), /* pcrel_offset */
992
993 HOWTO (R_ARM_LDRS_PC_G0, /* type */
994 0, /* rightshift */
995 2, /* size (0 = byte, 1 = short, 2 = long) */
996 32, /* bitsize */
997 TRUE, /* pc_relative */
998 0, /* bitpos */
999 complain_overflow_dont,/* complain_on_overflow */
1000 bfd_elf_generic_reloc, /* special_function */
1001 "R_ARM_LDRS_PC_G0", /* name */
1002 FALSE, /* partial_inplace */
1003 0xffffffff, /* src_mask */
1004 0xffffffff, /* dst_mask */
1005 TRUE), /* pcrel_offset */
1006
1007 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1008 0, /* rightshift */
1009 2, /* size (0 = byte, 1 = short, 2 = long) */
1010 32, /* bitsize */
1011 TRUE, /* pc_relative */
1012 0, /* bitpos */
1013 complain_overflow_dont,/* complain_on_overflow */
1014 bfd_elf_generic_reloc, /* special_function */
1015 "R_ARM_LDRS_PC_G1", /* name */
1016 FALSE, /* partial_inplace */
1017 0xffffffff, /* src_mask */
1018 0xffffffff, /* dst_mask */
1019 TRUE), /* pcrel_offset */
1020
1021 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1022 0, /* rightshift */
1023 2, /* size (0 = byte, 1 = short, 2 = long) */
1024 32, /* bitsize */
1025 TRUE, /* pc_relative */
1026 0, /* bitpos */
1027 complain_overflow_dont,/* complain_on_overflow */
1028 bfd_elf_generic_reloc, /* special_function */
1029 "R_ARM_LDRS_PC_G2", /* name */
1030 FALSE, /* partial_inplace */
1031 0xffffffff, /* src_mask */
1032 0xffffffff, /* dst_mask */
1033 TRUE), /* pcrel_offset */
1034
1035 HOWTO (R_ARM_LDC_PC_G0, /* type */
1036 0, /* rightshift */
1037 2, /* size (0 = byte, 1 = short, 2 = long) */
1038 32, /* bitsize */
1039 TRUE, /* pc_relative */
1040 0, /* bitpos */
1041 complain_overflow_dont,/* complain_on_overflow */
1042 bfd_elf_generic_reloc, /* special_function */
1043 "R_ARM_LDC_PC_G0", /* name */
1044 FALSE, /* partial_inplace */
1045 0xffffffff, /* src_mask */
1046 0xffffffff, /* dst_mask */
1047 TRUE), /* pcrel_offset */
1048
1049 HOWTO (R_ARM_LDC_PC_G1, /* type */
1050 0, /* rightshift */
1051 2, /* size (0 = byte, 1 = short, 2 = long) */
1052 32, /* bitsize */
1053 TRUE, /* pc_relative */
1054 0, /* bitpos */
1055 complain_overflow_dont,/* complain_on_overflow */
1056 bfd_elf_generic_reloc, /* special_function */
1057 "R_ARM_LDC_PC_G1", /* name */
1058 FALSE, /* partial_inplace */
1059 0xffffffff, /* src_mask */
1060 0xffffffff, /* dst_mask */
1061 TRUE), /* pcrel_offset */
1062
1063 HOWTO (R_ARM_LDC_PC_G2, /* type */
1064 0, /* rightshift */
1065 2, /* size (0 = byte, 1 = short, 2 = long) */
1066 32, /* bitsize */
1067 TRUE, /* pc_relative */
1068 0, /* bitpos */
1069 complain_overflow_dont,/* complain_on_overflow */
1070 bfd_elf_generic_reloc, /* special_function */
1071 "R_ARM_LDC_PC_G2", /* name */
1072 FALSE, /* partial_inplace */
1073 0xffffffff, /* src_mask */
1074 0xffffffff, /* dst_mask */
1075 TRUE), /* pcrel_offset */
1076
1077 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1078 0, /* rightshift */
1079 2, /* size (0 = byte, 1 = short, 2 = long) */
1080 32, /* bitsize */
1081 TRUE, /* pc_relative */
1082 0, /* bitpos */
1083 complain_overflow_dont,/* complain_on_overflow */
1084 bfd_elf_generic_reloc, /* special_function */
1085 "R_ARM_ALU_SB_G0_NC", /* name */
1086 FALSE, /* partial_inplace */
1087 0xffffffff, /* src_mask */
1088 0xffffffff, /* dst_mask */
1089 TRUE), /* pcrel_offset */
1090
1091 HOWTO (R_ARM_ALU_SB_G0, /* type */
1092 0, /* rightshift */
1093 2, /* size (0 = byte, 1 = short, 2 = long) */
1094 32, /* bitsize */
1095 TRUE, /* pc_relative */
1096 0, /* bitpos */
1097 complain_overflow_dont,/* complain_on_overflow */
1098 bfd_elf_generic_reloc, /* special_function */
1099 "R_ARM_ALU_SB_G0", /* name */
1100 FALSE, /* partial_inplace */
1101 0xffffffff, /* src_mask */
1102 0xffffffff, /* dst_mask */
1103 TRUE), /* pcrel_offset */
1104
1105 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1106 0, /* rightshift */
1107 2, /* size (0 = byte, 1 = short, 2 = long) */
1108 32, /* bitsize */
1109 TRUE, /* pc_relative */
1110 0, /* bitpos */
1111 complain_overflow_dont,/* complain_on_overflow */
1112 bfd_elf_generic_reloc, /* special_function */
1113 "R_ARM_ALU_SB_G1_NC", /* name */
1114 FALSE, /* partial_inplace */
1115 0xffffffff, /* src_mask */
1116 0xffffffff, /* dst_mask */
1117 TRUE), /* pcrel_offset */
1118
1119 HOWTO (R_ARM_ALU_SB_G1, /* type */
1120 0, /* rightshift */
1121 2, /* size (0 = byte, 1 = short, 2 = long) */
1122 32, /* bitsize */
1123 TRUE, /* pc_relative */
1124 0, /* bitpos */
1125 complain_overflow_dont,/* complain_on_overflow */
1126 bfd_elf_generic_reloc, /* special_function */
1127 "R_ARM_ALU_SB_G1", /* name */
1128 FALSE, /* partial_inplace */
1129 0xffffffff, /* src_mask */
1130 0xffffffff, /* dst_mask */
1131 TRUE), /* pcrel_offset */
1132
1133 HOWTO (R_ARM_ALU_SB_G2, /* type */
1134 0, /* rightshift */
1135 2, /* size (0 = byte, 1 = short, 2 = long) */
1136 32, /* bitsize */
1137 TRUE, /* pc_relative */
1138 0, /* bitpos */
1139 complain_overflow_dont,/* complain_on_overflow */
1140 bfd_elf_generic_reloc, /* special_function */
1141 "R_ARM_ALU_SB_G2", /* name */
1142 FALSE, /* partial_inplace */
1143 0xffffffff, /* src_mask */
1144 0xffffffff, /* dst_mask */
1145 TRUE), /* pcrel_offset */
1146
1147 HOWTO (R_ARM_LDR_SB_G0, /* type */
1148 0, /* rightshift */
1149 2, /* size (0 = byte, 1 = short, 2 = long) */
1150 32, /* bitsize */
1151 TRUE, /* pc_relative */
1152 0, /* bitpos */
1153 complain_overflow_dont,/* complain_on_overflow */
1154 bfd_elf_generic_reloc, /* special_function */
1155 "R_ARM_LDR_SB_G0", /* name */
1156 FALSE, /* partial_inplace */
1157 0xffffffff, /* src_mask */
1158 0xffffffff, /* dst_mask */
1159 TRUE), /* pcrel_offset */
1160
1161 HOWTO (R_ARM_LDR_SB_G1, /* type */
1162 0, /* rightshift */
1163 2, /* size (0 = byte, 1 = short, 2 = long) */
1164 32, /* bitsize */
1165 TRUE, /* pc_relative */
1166 0, /* bitpos */
1167 complain_overflow_dont,/* complain_on_overflow */
1168 bfd_elf_generic_reloc, /* special_function */
1169 "R_ARM_LDR_SB_G1", /* name */
1170 FALSE, /* partial_inplace */
1171 0xffffffff, /* src_mask */
1172 0xffffffff, /* dst_mask */
1173 TRUE), /* pcrel_offset */
1174
1175 HOWTO (R_ARM_LDR_SB_G2, /* type */
1176 0, /* rightshift */
1177 2, /* size (0 = byte, 1 = short, 2 = long) */
1178 32, /* bitsize */
1179 TRUE, /* pc_relative */
1180 0, /* bitpos */
1181 complain_overflow_dont,/* complain_on_overflow */
1182 bfd_elf_generic_reloc, /* special_function */
1183 "R_ARM_LDR_SB_G2", /* name */
1184 FALSE, /* partial_inplace */
1185 0xffffffff, /* src_mask */
1186 0xffffffff, /* dst_mask */
1187 TRUE), /* pcrel_offset */
1188
1189 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1190 0, /* rightshift */
1191 2, /* size (0 = byte, 1 = short, 2 = long) */
1192 32, /* bitsize */
1193 TRUE, /* pc_relative */
1194 0, /* bitpos */
1195 complain_overflow_dont,/* complain_on_overflow */
1196 bfd_elf_generic_reloc, /* special_function */
1197 "R_ARM_LDRS_SB_G0", /* name */
1198 FALSE, /* partial_inplace */
1199 0xffffffff, /* src_mask */
1200 0xffffffff, /* dst_mask */
1201 TRUE), /* pcrel_offset */
1202
1203 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1204 0, /* rightshift */
1205 2, /* size (0 = byte, 1 = short, 2 = long) */
1206 32, /* bitsize */
1207 TRUE, /* pc_relative */
1208 0, /* bitpos */
1209 complain_overflow_dont,/* complain_on_overflow */
1210 bfd_elf_generic_reloc, /* special_function */
1211 "R_ARM_LDRS_SB_G1", /* name */
1212 FALSE, /* partial_inplace */
1213 0xffffffff, /* src_mask */
1214 0xffffffff, /* dst_mask */
1215 TRUE), /* pcrel_offset */
1216
1217 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1218 0, /* rightshift */
1219 2, /* size (0 = byte, 1 = short, 2 = long) */
1220 32, /* bitsize */
1221 TRUE, /* pc_relative */
1222 0, /* bitpos */
1223 complain_overflow_dont,/* complain_on_overflow */
1224 bfd_elf_generic_reloc, /* special_function */
1225 "R_ARM_LDRS_SB_G2", /* name */
1226 FALSE, /* partial_inplace */
1227 0xffffffff, /* src_mask */
1228 0xffffffff, /* dst_mask */
1229 TRUE), /* pcrel_offset */
1230
1231 HOWTO (R_ARM_LDC_SB_G0, /* type */
1232 0, /* rightshift */
1233 2, /* size (0 = byte, 1 = short, 2 = long) */
1234 32, /* bitsize */
1235 TRUE, /* pc_relative */
1236 0, /* bitpos */
1237 complain_overflow_dont,/* complain_on_overflow */
1238 bfd_elf_generic_reloc, /* special_function */
1239 "R_ARM_LDC_SB_G0", /* name */
1240 FALSE, /* partial_inplace */
1241 0xffffffff, /* src_mask */
1242 0xffffffff, /* dst_mask */
1243 TRUE), /* pcrel_offset */
1244
1245 HOWTO (R_ARM_LDC_SB_G1, /* type */
1246 0, /* rightshift */
1247 2, /* size (0 = byte, 1 = short, 2 = long) */
1248 32, /* bitsize */
1249 TRUE, /* pc_relative */
1250 0, /* bitpos */
1251 complain_overflow_dont,/* complain_on_overflow */
1252 bfd_elf_generic_reloc, /* special_function */
1253 "R_ARM_LDC_SB_G1", /* name */
1254 FALSE, /* partial_inplace */
1255 0xffffffff, /* src_mask */
1256 0xffffffff, /* dst_mask */
1257 TRUE), /* pcrel_offset */
1258
1259 HOWTO (R_ARM_LDC_SB_G2, /* type */
1260 0, /* rightshift */
1261 2, /* size (0 = byte, 1 = short, 2 = long) */
1262 32, /* bitsize */
1263 TRUE, /* pc_relative */
1264 0, /* bitpos */
1265 complain_overflow_dont,/* complain_on_overflow */
1266 bfd_elf_generic_reloc, /* special_function */
1267 "R_ARM_LDC_SB_G2", /* name */
1268 FALSE, /* partial_inplace */
1269 0xffffffff, /* src_mask */
1270 0xffffffff, /* dst_mask */
1271 TRUE), /* pcrel_offset */
1272
1273 /* End of group relocations. */
1274
1275 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1276 0, /* rightshift */
1277 2, /* size (0 = byte, 1 = short, 2 = long) */
1278 16, /* bitsize */
1279 FALSE, /* pc_relative */
1280 0, /* bitpos */
1281 complain_overflow_dont,/* complain_on_overflow */
1282 bfd_elf_generic_reloc, /* special_function */
1283 "R_ARM_MOVW_BREL_NC", /* name */
1284 FALSE, /* partial_inplace */
1285 0x0000ffff, /* src_mask */
1286 0x0000ffff, /* dst_mask */
1287 FALSE), /* pcrel_offset */
1288
1289 HOWTO (R_ARM_MOVT_BREL, /* type */
1290 0, /* rightshift */
1291 2, /* size (0 = byte, 1 = short, 2 = long) */
1292 16, /* bitsize */
1293 FALSE, /* pc_relative */
1294 0, /* bitpos */
1295 complain_overflow_bitfield,/* complain_on_overflow */
1296 bfd_elf_generic_reloc, /* special_function */
1297 "R_ARM_MOVT_BREL", /* name */
1298 FALSE, /* partial_inplace */
1299 0x0000ffff, /* src_mask */
1300 0x0000ffff, /* dst_mask */
1301 FALSE), /* pcrel_offset */
1302
1303 HOWTO (R_ARM_MOVW_BREL, /* type */
1304 0, /* rightshift */
1305 2, /* size (0 = byte, 1 = short, 2 = long) */
1306 16, /* bitsize */
1307 FALSE, /* pc_relative */
1308 0, /* bitpos */
1309 complain_overflow_dont,/* complain_on_overflow */
1310 bfd_elf_generic_reloc, /* special_function */
1311 "R_ARM_MOVW_BREL", /* name */
1312 FALSE, /* partial_inplace */
1313 0x0000ffff, /* src_mask */
1314 0x0000ffff, /* dst_mask */
1315 FALSE), /* pcrel_offset */
1316
1317 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1318 0, /* rightshift */
1319 2, /* size (0 = byte, 1 = short, 2 = long) */
1320 16, /* bitsize */
1321 FALSE, /* pc_relative */
1322 0, /* bitpos */
1323 complain_overflow_dont,/* complain_on_overflow */
1324 bfd_elf_generic_reloc, /* special_function */
1325 "R_ARM_THM_MOVW_BREL_NC",/* name */
1326 FALSE, /* partial_inplace */
1327 0x040f70ff, /* src_mask */
1328 0x040f70ff, /* dst_mask */
1329 FALSE), /* pcrel_offset */
1330
1331 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1332 0, /* rightshift */
1333 2, /* size (0 = byte, 1 = short, 2 = long) */
1334 16, /* bitsize */
1335 FALSE, /* pc_relative */
1336 0, /* bitpos */
1337 complain_overflow_bitfield,/* complain_on_overflow */
1338 bfd_elf_generic_reloc, /* special_function */
1339 "R_ARM_THM_MOVT_BREL", /* name */
1340 FALSE, /* partial_inplace */
1341 0x040f70ff, /* src_mask */
1342 0x040f70ff, /* dst_mask */
1343 FALSE), /* pcrel_offset */
1344
1345 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1346 0, /* rightshift */
1347 2, /* size (0 = byte, 1 = short, 2 = long) */
1348 16, /* bitsize */
1349 FALSE, /* pc_relative */
1350 0, /* bitpos */
1351 complain_overflow_dont,/* complain_on_overflow */
1352 bfd_elf_generic_reloc, /* special_function */
1353 "R_ARM_THM_MOVW_BREL", /* name */
1354 FALSE, /* partial_inplace */
1355 0x040f70ff, /* src_mask */
1356 0x040f70ff, /* dst_mask */
1357 FALSE), /* pcrel_offset */
1358
1359 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_bitfield,/* complain_on_overflow */
1366 NULL, /* special_function */
1367 "R_ARM_TLS_GOTDESC", /* name */
1368 TRUE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_TLS_CALL, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 24, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_TLS_CALL", /* name */
1382 FALSE, /* partial_inplace */
1383 0x00ffffff, /* src_mask */
1384 0x00ffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 0, /* bitsize */
1391 FALSE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_bitfield,/* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_TLS_DESCSEQ", /* name */
1396 FALSE, /* partial_inplace */
1397 0x00000000, /* src_mask */
1398 0x00000000, /* dst_mask */
1399 FALSE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 24, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_dont,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_THM_TLS_CALL", /* name */
1410 FALSE, /* partial_inplace */
1411 0x07ff07ff, /* src_mask */
1412 0x07ff07ff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_PLT32_ABS, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 32, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_dont,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_PLT32_ABS", /* name */
1424 FALSE, /* partial_inplace */
1425 0xffffffff, /* src_mask */
1426 0xffffffff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 HOWTO (R_ARM_GOT_ABS, /* type */
1430 0, /* rightshift */
1431 2, /* size (0 = byte, 1 = short, 2 = long) */
1432 32, /* bitsize */
1433 FALSE, /* pc_relative */
1434 0, /* bitpos */
1435 complain_overflow_dont,/* complain_on_overflow */
1436 bfd_elf_generic_reloc, /* special_function */
1437 "R_ARM_GOT_ABS", /* name */
1438 FALSE, /* partial_inplace */
1439 0xffffffff, /* src_mask */
1440 0xffffffff, /* dst_mask */
1441 FALSE), /* pcrel_offset */
1442
1443 HOWTO (R_ARM_GOT_PREL, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 32, /* bitsize */
1447 TRUE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 bfd_elf_generic_reloc, /* special_function */
1451 "R_ARM_GOT_PREL", /* name */
1452 FALSE, /* partial_inplace */
1453 0xffffffff, /* src_mask */
1454 0xffffffff, /* dst_mask */
1455 TRUE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_GOT_BREL12, /* type */
1458 0, /* rightshift */
1459 2, /* size (0 = byte, 1 = short, 2 = long) */
1460 12, /* bitsize */
1461 FALSE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_bitfield,/* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_GOT_BREL12", /* name */
1466 FALSE, /* partial_inplace */
1467 0x00000fff, /* src_mask */
1468 0x00000fff, /* dst_mask */
1469 FALSE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_GOTOFF12, /* type */
1472 0, /* rightshift */
1473 2, /* size (0 = byte, 1 = short, 2 = long) */
1474 12, /* bitsize */
1475 FALSE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_bitfield,/* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_GOTOFF12", /* name */
1480 FALSE, /* partial_inplace */
1481 0x00000fff, /* src_mask */
1482 0x00000fff, /* dst_mask */
1483 FALSE), /* pcrel_offset */
1484
1485 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1486
1487 /* GNU extension to record C++ vtable member usage */
1488 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1489 0, /* rightshift */
1490 2, /* size (0 = byte, 1 = short, 2 = long) */
1491 0, /* bitsize */
1492 FALSE, /* pc_relative */
1493 0, /* bitpos */
1494 complain_overflow_dont, /* complain_on_overflow */
1495 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1496 "R_ARM_GNU_VTENTRY", /* name */
1497 FALSE, /* partial_inplace */
1498 0, /* src_mask */
1499 0, /* dst_mask */
1500 FALSE), /* pcrel_offset */
1501
1502 /* GNU extension to record C++ vtable hierarchy */
1503 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 0, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_dont, /* complain_on_overflow */
1510 NULL, /* special_function */
1511 "R_ARM_GNU_VTINHERIT", /* name */
1512 FALSE, /* partial_inplace */
1513 0, /* src_mask */
1514 0, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 HOWTO (R_ARM_THM_JUMP11, /* type */
1518 1, /* rightshift */
1519 1, /* size (0 = byte, 1 = short, 2 = long) */
1520 11, /* bitsize */
1521 TRUE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_signed, /* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_THM_JUMP11", /* name */
1526 FALSE, /* partial_inplace */
1527 0x000007ff, /* src_mask */
1528 0x000007ff, /* dst_mask */
1529 TRUE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_THM_JUMP8, /* type */
1532 1, /* rightshift */
1533 1, /* size (0 = byte, 1 = short, 2 = long) */
1534 8, /* bitsize */
1535 TRUE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_signed, /* complain_on_overflow */
1538 bfd_elf_generic_reloc, /* special_function */
1539 "R_ARM_THM_JUMP8", /* name */
1540 FALSE, /* partial_inplace */
1541 0x000000ff, /* src_mask */
1542 0x000000ff, /* dst_mask */
1543 TRUE), /* pcrel_offset */
1544
1545 /* TLS relocations */
1546 HOWTO (R_ARM_TLS_GD32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 NULL, /* special_function */
1554 "R_ARM_TLS_GD32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDM32, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 32, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDM32", /* name */
1569 TRUE, /* partial_inplace */
1570 0xffffffff, /* src_mask */
1571 0xffffffff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LDO32, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 32, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LDO32", /* name */
1583 TRUE, /* partial_inplace */
1584 0xffffffff, /* src_mask */
1585 0xffffffff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE32, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 32, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 NULL, /* special_function */
1596 "R_ARM_TLS_IE32", /* name */
1597 TRUE, /* partial_inplace */
1598 0xffffffff, /* src_mask */
1599 0xffffffff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601
1602 HOWTO (R_ARM_TLS_LE32, /* type */
1603 0, /* rightshift */
1604 2, /* size (0 = byte, 1 = short, 2 = long) */
1605 32, /* bitsize */
1606 FALSE, /* pc_relative */
1607 0, /* bitpos */
1608 complain_overflow_bitfield,/* complain_on_overflow */
1609 NULL, /* special_function */
1610 "R_ARM_TLS_LE32", /* name */
1611 TRUE, /* partial_inplace */
1612 0xffffffff, /* src_mask */
1613 0xffffffff, /* dst_mask */
1614 FALSE), /* pcrel_offset */
1615
1616 HOWTO (R_ARM_TLS_LDO12, /* type */
1617 0, /* rightshift */
1618 2, /* size (0 = byte, 1 = short, 2 = long) */
1619 12, /* bitsize */
1620 FALSE, /* pc_relative */
1621 0, /* bitpos */
1622 complain_overflow_bitfield,/* complain_on_overflow */
1623 bfd_elf_generic_reloc, /* special_function */
1624 "R_ARM_TLS_LDO12", /* name */
1625 FALSE, /* partial_inplace */
1626 0x00000fff, /* src_mask */
1627 0x00000fff, /* dst_mask */
1628 FALSE), /* pcrel_offset */
1629
1630 HOWTO (R_ARM_TLS_LE12, /* type */
1631 0, /* rightshift */
1632 2, /* size (0 = byte, 1 = short, 2 = long) */
1633 12, /* bitsize */
1634 FALSE, /* pc_relative */
1635 0, /* bitpos */
1636 complain_overflow_bitfield,/* complain_on_overflow */
1637 bfd_elf_generic_reloc, /* special_function */
1638 "R_ARM_TLS_LE12", /* name */
1639 FALSE, /* partial_inplace */
1640 0x00000fff, /* src_mask */
1641 0x00000fff, /* dst_mask */
1642 FALSE), /* pcrel_offset */
1643
1644 HOWTO (R_ARM_TLS_IE12GP, /* type */
1645 0, /* rightshift */
1646 2, /* size (0 = byte, 1 = short, 2 = long) */
1647 12, /* bitsize */
1648 FALSE, /* pc_relative */
1649 0, /* bitpos */
1650 complain_overflow_bitfield,/* complain_on_overflow */
1651 bfd_elf_generic_reloc, /* special_function */
1652 "R_ARM_TLS_IE12GP", /* name */
1653 FALSE, /* partial_inplace */
1654 0x00000fff, /* src_mask */
1655 0x00000fff, /* dst_mask */
1656 FALSE), /* pcrel_offset */
1657
1658 /* 112-127 private relocations. */
1659 EMPTY_HOWTO (112),
1660 EMPTY_HOWTO (113),
1661 EMPTY_HOWTO (114),
1662 EMPTY_HOWTO (115),
1663 EMPTY_HOWTO (116),
1664 EMPTY_HOWTO (117),
1665 EMPTY_HOWTO (118),
1666 EMPTY_HOWTO (119),
1667 EMPTY_HOWTO (120),
1668 EMPTY_HOWTO (121),
1669 EMPTY_HOWTO (122),
1670 EMPTY_HOWTO (123),
1671 EMPTY_HOWTO (124),
1672 EMPTY_HOWTO (125),
1673 EMPTY_HOWTO (126),
1674 EMPTY_HOWTO (127),
1675
1676 /* R_ARM_ME_TOO, obsolete. */
1677 EMPTY_HOWTO (128),
1678
1679 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1680 0, /* rightshift */
1681 1, /* size (0 = byte, 1 = short, 2 = long) */
1682 0, /* bitsize */
1683 FALSE, /* pc_relative */
1684 0, /* bitpos */
1685 complain_overflow_bitfield,/* complain_on_overflow */
1686 bfd_elf_generic_reloc, /* special_function */
1687 "R_ARM_THM_TLS_DESCSEQ",/* name */
1688 FALSE, /* partial_inplace */
1689 0x00000000, /* src_mask */
1690 0x00000000, /* dst_mask */
1691 FALSE), /* pcrel_offset */
1692 EMPTY_HOWTO (130),
1693 EMPTY_HOWTO (131),
1694 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1695 0, /* rightshift. */
1696 1, /* size (0 = byte, 1 = short, 2 = long). */
1697 16, /* bitsize. */
1698 FALSE, /* pc_relative. */
1699 0, /* bitpos. */
1700 complain_overflow_bitfield,/* complain_on_overflow. */
1701 bfd_elf_generic_reloc, /* special_function. */
1702 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1703 FALSE, /* partial_inplace. */
1704 0x00000000, /* src_mask. */
1705 0x00000000, /* dst_mask. */
1706 FALSE), /* pcrel_offset. */
1707 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1708 0, /* rightshift. */
1709 1, /* size (0 = byte, 1 = short, 2 = long). */
1710 16, /* bitsize. */
1711 FALSE, /* pc_relative. */
1712 0, /* bitpos. */
1713 complain_overflow_bitfield,/* complain_on_overflow. */
1714 bfd_elf_generic_reloc, /* special_function. */
1715 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1716 FALSE, /* partial_inplace. */
1717 0x00000000, /* src_mask. */
1718 0x00000000, /* dst_mask. */
1719 FALSE), /* pcrel_offset. */
1720 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1721 0, /* rightshift. */
1722 1, /* size (0 = byte, 1 = short, 2 = long). */
1723 16, /* bitsize. */
1724 FALSE, /* pc_relative. */
1725 0, /* bitpos. */
1726 complain_overflow_bitfield,/* complain_on_overflow. */
1727 bfd_elf_generic_reloc, /* special_function. */
1728 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1729 FALSE, /* partial_inplace. */
1730 0x00000000, /* src_mask. */
1731 0x00000000, /* dst_mask. */
1732 FALSE), /* pcrel_offset. */
1733 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1734 0, /* rightshift. */
1735 1, /* size (0 = byte, 1 = short, 2 = long). */
1736 16, /* bitsize. */
1737 FALSE, /* pc_relative. */
1738 0, /* bitpos. */
1739 complain_overflow_bitfield,/* complain_on_overflow. */
1740 bfd_elf_generic_reloc, /* special_function. */
1741 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1742 FALSE, /* partial_inplace. */
1743 0x00000000, /* src_mask. */
1744 0x00000000, /* dst_mask. */
1745 FALSE), /* pcrel_offset. */
1746 };
1747
1748 /* 160 onwards: */
1749 static reloc_howto_type elf32_arm_howto_table_2[1] =
1750 {
1751 HOWTO (R_ARM_IRELATIVE, /* type */
1752 0, /* rightshift */
1753 2, /* size (0 = byte, 1 = short, 2 = long) */
1754 32, /* bitsize */
1755 FALSE, /* pc_relative */
1756 0, /* bitpos */
1757 complain_overflow_bitfield,/* complain_on_overflow */
1758 bfd_elf_generic_reloc, /* special_function */
1759 "R_ARM_IRELATIVE", /* name */
1760 TRUE, /* partial_inplace */
1761 0xffffffff, /* src_mask */
1762 0xffffffff, /* dst_mask */
1763 FALSE) /* pcrel_offset */
1764 };
1765
1766 /* 249-255 extended, currently unused, relocations: */
1767 static reloc_howto_type elf32_arm_howto_table_3[4] =
1768 {
1769 HOWTO (R_ARM_RREL32, /* type */
1770 0, /* rightshift */
1771 0, /* size (0 = byte, 1 = short, 2 = long) */
1772 0, /* bitsize */
1773 FALSE, /* pc_relative */
1774 0, /* bitpos */
1775 complain_overflow_dont,/* complain_on_overflow */
1776 bfd_elf_generic_reloc, /* special_function */
1777 "R_ARM_RREL32", /* name */
1778 FALSE, /* partial_inplace */
1779 0, /* src_mask */
1780 0, /* dst_mask */
1781 FALSE), /* pcrel_offset */
1782
1783 HOWTO (R_ARM_RABS32, /* type */
1784 0, /* rightshift */
1785 0, /* size (0 = byte, 1 = short, 2 = long) */
1786 0, /* bitsize */
1787 FALSE, /* pc_relative */
1788 0, /* bitpos */
1789 complain_overflow_dont,/* complain_on_overflow */
1790 bfd_elf_generic_reloc, /* special_function */
1791 "R_ARM_RABS32", /* name */
1792 FALSE, /* partial_inplace */
1793 0, /* src_mask */
1794 0, /* dst_mask */
1795 FALSE), /* pcrel_offset */
1796
1797 HOWTO (R_ARM_RPC24, /* type */
1798 0, /* rightshift */
1799 0, /* size (0 = byte, 1 = short, 2 = long) */
1800 0, /* bitsize */
1801 FALSE, /* pc_relative */
1802 0, /* bitpos */
1803 complain_overflow_dont,/* complain_on_overflow */
1804 bfd_elf_generic_reloc, /* special_function */
1805 "R_ARM_RPC24", /* name */
1806 FALSE, /* partial_inplace */
1807 0, /* src_mask */
1808 0, /* dst_mask */
1809 FALSE), /* pcrel_offset */
1810
1811 HOWTO (R_ARM_RBASE, /* type */
1812 0, /* rightshift */
1813 0, /* size (0 = byte, 1 = short, 2 = long) */
1814 0, /* bitsize */
1815 FALSE, /* pc_relative */
1816 0, /* bitpos */
1817 complain_overflow_dont,/* complain_on_overflow */
1818 bfd_elf_generic_reloc, /* special_function */
1819 "R_ARM_RBASE", /* name */
1820 FALSE, /* partial_inplace */
1821 0, /* src_mask */
1822 0, /* dst_mask */
1823 FALSE) /* pcrel_offset */
1824 };
1825
1826 static reloc_howto_type *
1827 elf32_arm_howto_from_type (unsigned int r_type)
1828 {
1829 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1830 return &elf32_arm_howto_table_1[r_type];
1831
1832 if (r_type == R_ARM_IRELATIVE)
1833 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1834
1835 if (r_type >= R_ARM_RREL32
1836 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1837 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1838
1839 return NULL;
1840 }
1841
1842 static void
1843 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1844 Elf_Internal_Rela * elf_reloc)
1845 {
1846 unsigned int r_type;
1847
1848 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1849 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1850 }
1851
1852 struct elf32_arm_reloc_map
1853 {
1854 bfd_reloc_code_real_type bfd_reloc_val;
1855 unsigned char elf_reloc_val;
1856 };
1857
1858 /* All entries in this list must also be present in elf32_arm_howto_table. */
1859 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1860 {
1861 {BFD_RELOC_NONE, R_ARM_NONE},
1862 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1863 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1864 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1865 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1866 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1867 {BFD_RELOC_32, R_ARM_ABS32},
1868 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1869 {BFD_RELOC_8, R_ARM_ABS8},
1870 {BFD_RELOC_16, R_ARM_ABS16},
1871 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1872 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1873 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1874 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1875 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1876 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1877 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1878 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1879 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1880 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1881 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1882 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1883 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1884 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1885 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1886 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1887 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1888 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1889 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1890 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1891 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1892 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1893 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1894 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1895 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1896 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1897 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1898 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1899 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1900 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1901 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1902 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1903 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1904 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1905 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1906 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1907 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1908 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1909 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1910 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1911 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1912 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1913 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1914 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1915 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1916 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1917 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1918 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1919 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1920 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1921 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1922 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1923 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1924 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1925 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1926 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1927 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1928 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1929 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1930 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1931 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1932 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1933 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1934 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1935 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1936 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1937 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1938 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1939 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1940 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1941 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1942 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1943 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1944 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1945 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1946 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
1947 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
1948 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
1949 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
1950 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC}
1951 };
1952
1953 static reloc_howto_type *
1954 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1955 bfd_reloc_code_real_type code)
1956 {
1957 unsigned int i;
1958
1959 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1960 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1961 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1962
1963 return NULL;
1964 }
1965
1966 static reloc_howto_type *
1967 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1968 const char *r_name)
1969 {
1970 unsigned int i;
1971
1972 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1973 if (elf32_arm_howto_table_1[i].name != NULL
1974 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1975 return &elf32_arm_howto_table_1[i];
1976
1977 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1978 if (elf32_arm_howto_table_2[i].name != NULL
1979 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1980 return &elf32_arm_howto_table_2[i];
1981
1982 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1983 if (elf32_arm_howto_table_3[i].name != NULL
1984 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1985 return &elf32_arm_howto_table_3[i];
1986
1987 return NULL;
1988 }
1989
1990 /* Support for core dump NOTE sections. */
1991
1992 static bfd_boolean
1993 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1994 {
1995 int offset;
1996 size_t size;
1997
1998 switch (note->descsz)
1999 {
2000 default:
2001 return FALSE;
2002
2003 case 148: /* Linux/ARM 32-bit. */
2004 /* pr_cursig */
2005 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2006
2007 /* pr_pid */
2008 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2009
2010 /* pr_reg */
2011 offset = 72;
2012 size = 72;
2013
2014 break;
2015 }
2016
2017 /* Make a ".reg/999" section. */
2018 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2019 size, note->descpos + offset);
2020 }
2021
2022 static bfd_boolean
2023 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2024 {
2025 switch (note->descsz)
2026 {
2027 default:
2028 return FALSE;
2029
2030 case 124: /* Linux/ARM elf_prpsinfo. */
2031 elf_tdata (abfd)->core->pid
2032 = bfd_get_32 (abfd, note->descdata + 12);
2033 elf_tdata (abfd)->core->program
2034 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2035 elf_tdata (abfd)->core->command
2036 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2037 }
2038
2039 /* Note that for some reason, a spurious space is tacked
2040 onto the end of the args in some (at least one anyway)
2041 implementations, so strip it off if it exists. */
2042 {
2043 char *command = elf_tdata (abfd)->core->command;
2044 int n = strlen (command);
2045
2046 if (0 < n && command[n - 1] == ' ')
2047 command[n - 1] = '\0';
2048 }
2049
2050 return TRUE;
2051 }
2052
2053 static char *
2054 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2055 int note_type, ...)
2056 {
2057 switch (note_type)
2058 {
2059 default:
2060 return NULL;
2061
2062 case NT_PRPSINFO:
2063 {
2064 char data[124];
2065 va_list ap;
2066
2067 va_start (ap, note_type);
2068 memset (data, 0, sizeof (data));
2069 strncpy (data + 28, va_arg (ap, const char *), 16);
2070 strncpy (data + 44, va_arg (ap, const char *), 80);
2071 va_end (ap);
2072
2073 return elfcore_write_note (abfd, buf, bufsiz,
2074 "CORE", note_type, data, sizeof (data));
2075 }
2076
2077 case NT_PRSTATUS:
2078 {
2079 char data[148];
2080 va_list ap;
2081 long pid;
2082 int cursig;
2083 const void *greg;
2084
2085 va_start (ap, note_type);
2086 memset (data, 0, sizeof (data));
2087 pid = va_arg (ap, long);
2088 bfd_put_32 (abfd, pid, data + 24);
2089 cursig = va_arg (ap, int);
2090 bfd_put_16 (abfd, cursig, data + 12);
2091 greg = va_arg (ap, const void *);
2092 memcpy (data + 72, greg, 72);
2093 va_end (ap);
2094
2095 return elfcore_write_note (abfd, buf, bufsiz,
2096 "CORE", note_type, data, sizeof (data));
2097 }
2098 }
2099 }
2100
2101 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2102 #define TARGET_LITTLE_NAME "elf32-littlearm"
2103 #define TARGET_BIG_SYM arm_elf32_be_vec
2104 #define TARGET_BIG_NAME "elf32-bigarm"
2105
2106 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2107 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2108 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2109
2110 typedef unsigned long int insn32;
2111 typedef unsigned short int insn16;
2112
2113 /* In lieu of proper flags, assume all EABIv4 or later objects are
2114 interworkable. */
2115 #define INTERWORK_FLAG(abfd) \
2116 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2117 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2118 || ((abfd)->flags & BFD_LINKER_CREATED))
2119
2120 /* The linker script knows the section names for placement.
2121 The entry_names are used to do simple name mangling on the stubs.
2122 Given a function name, and its type, the stub can be found. The
2123 name can be changed. The only requirement is the %s be present. */
2124 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2125 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2126
2127 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2128 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2129
2130 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2131 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2132
2133 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2134 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2135
2136 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2137 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2138
2139 #define STUB_ENTRY_NAME "__%s_veneer"
2140
2141 #define CMSE_PREFIX "__acle_se_"
2142
2143 /* The name of the dynamic interpreter. This is put in the .interp
2144 section. */
2145 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2146
2147 static const unsigned long tls_trampoline [] =
2148 {
2149 0xe08e0000, /* add r0, lr, r0 */
2150 0xe5901004, /* ldr r1, [r0,#4] */
2151 0xe12fff11, /* bx r1 */
2152 };
2153
2154 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2155 {
2156 0xe52d2004, /* push {r2} */
2157 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2158 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2159 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2160 0xe081100f, /* 2: add r1, pc */
2161 0xe12fff12, /* bx r2 */
2162 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2163 + dl_tlsdesc_lazy_resolver(GOT) */
2164 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2165 };
2166
2167 #ifdef FOUR_WORD_PLT
2168
2169 /* The first entry in a procedure linkage table looks like
2170 this. It is set up so that any shared library function that is
2171 called before the relocation has been set up calls the dynamic
2172 linker first. */
2173 static const bfd_vma elf32_arm_plt0_entry [] =
2174 {
2175 0xe52de004, /* str lr, [sp, #-4]! */
2176 0xe59fe010, /* ldr lr, [pc, #16] */
2177 0xe08fe00e, /* add lr, pc, lr */
2178 0xe5bef008, /* ldr pc, [lr, #8]! */
2179 };
2180
2181 /* Subsequent entries in a procedure linkage table look like
2182 this. */
2183 static const bfd_vma elf32_arm_plt_entry [] =
2184 {
2185 0xe28fc600, /* add ip, pc, #NN */
2186 0xe28cca00, /* add ip, ip, #NN */
2187 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2188 0x00000000, /* unused */
2189 };
2190
2191 #else /* not FOUR_WORD_PLT */
2192
2193 /* The first entry in a procedure linkage table looks like
2194 this. It is set up so that any shared library function that is
2195 called before the relocation has been set up calls the dynamic
2196 linker first. */
2197 static const bfd_vma elf32_arm_plt0_entry [] =
2198 {
2199 0xe52de004, /* str lr, [sp, #-4]! */
2200 0xe59fe004, /* ldr lr, [pc, #4] */
2201 0xe08fe00e, /* add lr, pc, lr */
2202 0xe5bef008, /* ldr pc, [lr, #8]! */
2203 0x00000000, /* &GOT[0] - . */
2204 };
2205
2206 /* By default subsequent entries in a procedure linkage table look like
2207 this. Offsets that don't fit into 28 bits will cause link error. */
2208 static const bfd_vma elf32_arm_plt_entry_short [] =
2209 {
2210 0xe28fc600, /* add ip, pc, #0xNN00000 */
2211 0xe28cca00, /* add ip, ip, #0xNN000 */
2212 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2213 };
2214
2215 /* When explicitly asked, we'll use this "long" entry format
2216 which can cope with arbitrary displacements. */
2217 static const bfd_vma elf32_arm_plt_entry_long [] =
2218 {
2219 0xe28fc200, /* add ip, pc, #0xN0000000 */
2220 0xe28cc600, /* add ip, ip, #0xNN00000 */
2221 0xe28cca00, /* add ip, ip, #0xNN000 */
2222 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2223 };
2224
2225 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2226
2227 #endif /* not FOUR_WORD_PLT */
2228
2229 /* The first entry in a procedure linkage table looks like this.
2230 It is set up so that any shared library function that is called before the
2231 relocation has been set up calls the dynamic linker first. */
2232 static const bfd_vma elf32_thumb2_plt0_entry [] =
2233 {
2234 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2235 an instruction maybe encoded to one or two array elements. */
2236 0xf8dfb500, /* push {lr} */
2237 0x44fee008, /* ldr.w lr, [pc, #8] */
2238 /* add lr, pc */
2239 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2240 0x00000000, /* &GOT[0] - . */
2241 };
2242
2243 /* Subsequent entries in a procedure linkage table for thumb only target
2244 look like this. */
2245 static const bfd_vma elf32_thumb2_plt_entry [] =
2246 {
2247 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2248 an instruction maybe encoded to one or two array elements. */
2249 0x0c00f240, /* movw ip, #0xNNNN */
2250 0x0c00f2c0, /* movt ip, #0xNNNN */
2251 0xf8dc44fc, /* add ip, pc */
2252 0xbf00f000 /* ldr.w pc, [ip] */
2253 /* nop */
2254 };
2255
2256 /* The format of the first entry in the procedure linkage table
2257 for a VxWorks executable. */
2258 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2259 {
2260 0xe52dc008, /* str ip,[sp,#-8]! */
2261 0xe59fc000, /* ldr ip,[pc] */
2262 0xe59cf008, /* ldr pc,[ip,#8] */
2263 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2264 };
2265
2266 /* The format of subsequent entries in a VxWorks executable. */
2267 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2268 {
2269 0xe59fc000, /* ldr ip,[pc] */
2270 0xe59cf000, /* ldr pc,[ip] */
2271 0x00000000, /* .long @got */
2272 0xe59fc000, /* ldr ip,[pc] */
2273 0xea000000, /* b _PLT */
2274 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2275 };
2276
2277 /* The format of entries in a VxWorks shared library. */
2278 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2279 {
2280 0xe59fc000, /* ldr ip,[pc] */
2281 0xe79cf009, /* ldr pc,[ip,r9] */
2282 0x00000000, /* .long @got */
2283 0xe59fc000, /* ldr ip,[pc] */
2284 0xe599f008, /* ldr pc,[r9,#8] */
2285 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2286 };
2287
2288 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2289 #define PLT_THUMB_STUB_SIZE 4
2290 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2291 {
2292 0x4778, /* bx pc */
2293 0x46c0 /* nop */
2294 };
2295
2296 /* The entries in a PLT when using a DLL-based target with multiple
2297 address spaces. */
2298 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2299 {
2300 0xe51ff004, /* ldr pc, [pc, #-4] */
2301 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2302 };
2303
2304 /* The first entry in a procedure linkage table looks like
2305 this. It is set up so that any shared library function that is
2306 called before the relocation has been set up calls the dynamic
2307 linker first. */
2308 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2309 {
2310 /* First bundle: */
2311 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2312 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2313 0xe08cc00f, /* add ip, ip, pc */
2314 0xe52dc008, /* str ip, [sp, #-8]! */
2315 /* Second bundle: */
2316 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2317 0xe59cc000, /* ldr ip, [ip] */
2318 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2319 0xe12fff1c, /* bx ip */
2320 /* Third bundle: */
2321 0xe320f000, /* nop */
2322 0xe320f000, /* nop */
2323 0xe320f000, /* nop */
2324 /* .Lplt_tail: */
2325 0xe50dc004, /* str ip, [sp, #-4] */
2326 /* Fourth bundle: */
2327 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2328 0xe59cc000, /* ldr ip, [ip] */
2329 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2330 0xe12fff1c, /* bx ip */
2331 };
2332 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2333
2334 /* Subsequent entries in a procedure linkage table look like this. */
2335 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2336 {
2337 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2338 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2339 0xe08cc00f, /* add ip, ip, pc */
2340 0xea000000, /* b .Lplt_tail */
2341 };
2342
2343 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2344 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2345 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2346 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2347 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2348 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2349 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2350 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2351
2352 enum stub_insn_type
2353 {
2354 THUMB16_TYPE = 1,
2355 THUMB32_TYPE,
2356 ARM_TYPE,
2357 DATA_TYPE
2358 };
2359
2360 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2361 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2362 is inserted in arm_build_one_stub(). */
2363 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2364 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2365 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2366 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2367 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2368 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2369 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2370 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2371
2372 typedef struct
2373 {
2374 bfd_vma data;
2375 enum stub_insn_type type;
2376 unsigned int r_type;
2377 int reloc_addend;
2378 } insn_sequence;
2379
2380 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2381 to reach the stub if necessary. */
2382 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2383 {
2384 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2385 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2386 };
2387
2388 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2389 available. */
2390 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2391 {
2392 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2393 ARM_INSN (0xe12fff1c), /* bx ip */
2394 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2395 };
2396
2397 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2398 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2399 {
2400 THUMB16_INSN (0xb401), /* push {r0} */
2401 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2402 THUMB16_INSN (0x4684), /* mov ip, r0 */
2403 THUMB16_INSN (0xbc01), /* pop {r0} */
2404 THUMB16_INSN (0x4760), /* bx ip */
2405 THUMB16_INSN (0xbf00), /* nop */
2406 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2407 };
2408
2409 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2410 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2411 {
2412 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2413 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2414 };
2415
2416 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2417 M-profile architectures. */
2418 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2419 {
2420 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2421 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2422 THUMB16_INSN (0x4760), /* bx ip */
2423 };
2424
2425 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2426 allowed. */
2427 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2428 {
2429 THUMB16_INSN (0x4778), /* bx pc */
2430 THUMB16_INSN (0x46c0), /* nop */
2431 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2432 ARM_INSN (0xe12fff1c), /* bx ip */
2433 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2434 };
2435
2436 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2437 available. */
2438 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2439 {
2440 THUMB16_INSN (0x4778), /* bx pc */
2441 THUMB16_INSN (0x46c0), /* nop */
2442 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2443 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2444 };
2445
2446 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2447 one, when the destination is close enough. */
2448 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2449 {
2450 THUMB16_INSN (0x4778), /* bx pc */
2451 THUMB16_INSN (0x46c0), /* nop */
2452 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2453 };
2454
2455 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2456 blx to reach the stub if necessary. */
2457 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2458 {
2459 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2460 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2461 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2462 };
2463
2464 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2465 blx to reach the stub if necessary. We can not add into pc;
2466 it is not guaranteed to mode switch (different in ARMv6 and
2467 ARMv7). */
2468 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2469 {
2470 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2471 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2472 ARM_INSN (0xe12fff1c), /* bx ip */
2473 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2474 };
2475
2476 /* V4T ARM -> ARM long branch stub, PIC. */
2477 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2478 {
2479 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2480 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2481 ARM_INSN (0xe12fff1c), /* bx ip */
2482 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2483 };
2484
2485 /* V4T Thumb -> ARM long branch stub, PIC. */
2486 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2487 {
2488 THUMB16_INSN (0x4778), /* bx pc */
2489 THUMB16_INSN (0x46c0), /* nop */
2490 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2491 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2492 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2493 };
2494
2495 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2496 architectures. */
2497 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2498 {
2499 THUMB16_INSN (0xb401), /* push {r0} */
2500 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2501 THUMB16_INSN (0x46fc), /* mov ip, pc */
2502 THUMB16_INSN (0x4484), /* add ip, r0 */
2503 THUMB16_INSN (0xbc01), /* pop {r0} */
2504 THUMB16_INSN (0x4760), /* bx ip */
2505 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2506 };
2507
2508 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2509 allowed. */
2510 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2511 {
2512 THUMB16_INSN (0x4778), /* bx pc */
2513 THUMB16_INSN (0x46c0), /* nop */
2514 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2515 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2516 ARM_INSN (0xe12fff1c), /* bx ip */
2517 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2518 };
2519
2520 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2521 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2522 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2523 {
2524 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2525 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2526 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2527 };
2528
2529 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2530 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2531 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2532 {
2533 THUMB16_INSN (0x4778), /* bx pc */
2534 THUMB16_INSN (0x46c0), /* nop */
2535 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2536 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2537 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2538 };
2539
2540 /* NaCl ARM -> ARM long branch stub. */
2541 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2542 {
2543 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2544 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2545 ARM_INSN (0xe12fff1c), /* bx ip */
2546 ARM_INSN (0xe320f000), /* nop */
2547 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2548 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2549 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2550 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2551 };
2552
2553 /* NaCl ARM -> ARM long branch stub, PIC. */
2554 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2555 {
2556 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2557 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2558 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2559 ARM_INSN (0xe12fff1c), /* bx ip */
2560 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2561 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2562 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2563 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2564 };
2565
2566 /* Stub used for transition to secure state (aka SG veneer). */
2567 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2568 {
2569 THUMB32_INSN (0xe97fe97f), /* sg. */
2570 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2571 };
2572
2573
2574 /* Cortex-A8 erratum-workaround stubs. */
2575
2576 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2577 can't use a conditional branch to reach this stub). */
2578
2579 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2580 {
2581 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2582 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2583 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2584 };
2585
2586 /* Stub used for b.w and bl.w instructions. */
2587
2588 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2589 {
2590 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2591 };
2592
2593 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2594 {
2595 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2596 };
2597
2598 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2599 instruction (which switches to ARM mode) to point to this stub. Jump to the
2600 real destination using an ARM-mode branch. */
2601
2602 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2603 {
2604 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2605 };
2606
2607 /* For each section group there can be a specially created linker section
2608 to hold the stubs for that group. The name of the stub section is based
2609 upon the name of another section within that group with the suffix below
2610 applied.
2611
2612 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2613 create what appeared to be a linker stub section when it actually
2614 contained user code/data. For example, consider this fragment:
2615
2616 const char * stubborn_problems[] = { "np" };
2617
2618 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2619 section called:
2620
2621 .data.rel.local.stubborn_problems
2622
2623 This then causes problems in arm32_arm_build_stubs() as it triggers:
2624
2625 // Ignore non-stub sections.
2626 if (!strstr (stub_sec->name, STUB_SUFFIX))
2627 continue;
2628
2629 And so the section would be ignored instead of being processed. Hence
2630 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2631 C identifier. */
2632 #define STUB_SUFFIX ".__stub"
2633
2634 /* One entry per long/short branch stub defined above. */
2635 #define DEF_STUBS \
2636 DEF_STUB(long_branch_any_any) \
2637 DEF_STUB(long_branch_v4t_arm_thumb) \
2638 DEF_STUB(long_branch_thumb_only) \
2639 DEF_STUB(long_branch_v4t_thumb_thumb) \
2640 DEF_STUB(long_branch_v4t_thumb_arm) \
2641 DEF_STUB(short_branch_v4t_thumb_arm) \
2642 DEF_STUB(long_branch_any_arm_pic) \
2643 DEF_STUB(long_branch_any_thumb_pic) \
2644 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2645 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2646 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2647 DEF_STUB(long_branch_thumb_only_pic) \
2648 DEF_STUB(long_branch_any_tls_pic) \
2649 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2650 DEF_STUB(long_branch_arm_nacl) \
2651 DEF_STUB(long_branch_arm_nacl_pic) \
2652 DEF_STUB(cmse_branch_thumb_only) \
2653 DEF_STUB(a8_veneer_b_cond) \
2654 DEF_STUB(a8_veneer_b) \
2655 DEF_STUB(a8_veneer_bl) \
2656 DEF_STUB(a8_veneer_blx) \
2657 DEF_STUB(long_branch_thumb2_only) \
2658 DEF_STUB(long_branch_thumb2_only_pure)
2659
2660 #define DEF_STUB(x) arm_stub_##x,
2661 enum elf32_arm_stub_type
2662 {
2663 arm_stub_none,
2664 DEF_STUBS
2665 max_stub_type
2666 };
2667 #undef DEF_STUB
2668
2669 /* Note the first a8_veneer type. */
2670 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2671
2672 typedef struct
2673 {
2674 const insn_sequence* template_sequence;
2675 int template_size;
2676 } stub_def;
2677
2678 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2679 static const stub_def stub_definitions[] =
2680 {
2681 {NULL, 0},
2682 DEF_STUBS
2683 };
2684
2685 struct elf32_arm_stub_hash_entry
2686 {
2687 /* Base hash table entry structure. */
2688 struct bfd_hash_entry root;
2689
2690 /* The stub section. */
2691 asection *stub_sec;
2692
2693 /* Offset within stub_sec of the beginning of this stub. */
2694 bfd_vma stub_offset;
2695
2696 /* Given the symbol's value and its section we can determine its final
2697 value when building the stubs (so the stub knows where to jump). */
2698 bfd_vma target_value;
2699 asection *target_section;
2700
2701 /* Same as above but for the source of the branch to the stub. Used for
2702 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2703 such, source section does not need to be recorded since Cortex-A8 erratum
2704 workaround stubs are only generated when both source and target are in the
2705 same section. */
2706 bfd_vma source_value;
2707
2708 /* The instruction which caused this stub to be generated (only valid for
2709 Cortex-A8 erratum workaround stubs at present). */
2710 unsigned long orig_insn;
2711
2712 /* The stub type. */
2713 enum elf32_arm_stub_type stub_type;
2714 /* Its encoding size in bytes. */
2715 int stub_size;
2716 /* Its template. */
2717 const insn_sequence *stub_template;
2718 /* The size of the template (number of entries). */
2719 int stub_template_size;
2720
2721 /* The symbol table entry, if any, that this was derived from. */
2722 struct elf32_arm_link_hash_entry *h;
2723
2724 /* Type of branch. */
2725 enum arm_st_branch_type branch_type;
2726
2727 /* Where this stub is being called from, or, in the case of combined
2728 stub sections, the first input section in the group. */
2729 asection *id_sec;
2730
2731 /* The name for the local symbol at the start of this stub. The
2732 stub name in the hash table has to be unique; this does not, so
2733 it can be friendlier. */
2734 char *output_name;
2735 };
2736
2737 /* Used to build a map of a section. This is required for mixed-endian
2738 code/data. */
2739
2740 typedef struct elf32_elf_section_map
2741 {
2742 bfd_vma vma;
2743 char type;
2744 }
2745 elf32_arm_section_map;
2746
2747 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2748
2749 typedef enum
2750 {
2751 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2752 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2753 VFP11_ERRATUM_ARM_VENEER,
2754 VFP11_ERRATUM_THUMB_VENEER
2755 }
2756 elf32_vfp11_erratum_type;
2757
2758 typedef struct elf32_vfp11_erratum_list
2759 {
2760 struct elf32_vfp11_erratum_list *next;
2761 bfd_vma vma;
2762 union
2763 {
2764 struct
2765 {
2766 struct elf32_vfp11_erratum_list *veneer;
2767 unsigned int vfp_insn;
2768 } b;
2769 struct
2770 {
2771 struct elf32_vfp11_erratum_list *branch;
2772 unsigned int id;
2773 } v;
2774 } u;
2775 elf32_vfp11_erratum_type type;
2776 }
2777 elf32_vfp11_erratum_list;
2778
2779 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2780 veneer. */
2781 typedef enum
2782 {
2783 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2784 STM32L4XX_ERRATUM_VENEER
2785 }
2786 elf32_stm32l4xx_erratum_type;
2787
2788 typedef struct elf32_stm32l4xx_erratum_list
2789 {
2790 struct elf32_stm32l4xx_erratum_list *next;
2791 bfd_vma vma;
2792 union
2793 {
2794 struct
2795 {
2796 struct elf32_stm32l4xx_erratum_list *veneer;
2797 unsigned int insn;
2798 } b;
2799 struct
2800 {
2801 struct elf32_stm32l4xx_erratum_list *branch;
2802 unsigned int id;
2803 } v;
2804 } u;
2805 elf32_stm32l4xx_erratum_type type;
2806 }
2807 elf32_stm32l4xx_erratum_list;
2808
2809 typedef enum
2810 {
2811 DELETE_EXIDX_ENTRY,
2812 INSERT_EXIDX_CANTUNWIND_AT_END
2813 }
2814 arm_unwind_edit_type;
2815
2816 /* A (sorted) list of edits to apply to an unwind table. */
2817 typedef struct arm_unwind_table_edit
2818 {
2819 arm_unwind_edit_type type;
2820 /* Note: we sometimes want to insert an unwind entry corresponding to a
2821 section different from the one we're currently writing out, so record the
2822 (text) section this edit relates to here. */
2823 asection *linked_section;
2824 unsigned int index;
2825 struct arm_unwind_table_edit *next;
2826 }
2827 arm_unwind_table_edit;
2828
2829 typedef struct _arm_elf_section_data
2830 {
2831 /* Information about mapping symbols. */
2832 struct bfd_elf_section_data elf;
2833 unsigned int mapcount;
2834 unsigned int mapsize;
2835 elf32_arm_section_map *map;
2836 /* Information about CPU errata. */
2837 unsigned int erratumcount;
2838 elf32_vfp11_erratum_list *erratumlist;
2839 unsigned int stm32l4xx_erratumcount;
2840 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
2841 unsigned int additional_reloc_count;
2842 /* Information about unwind tables. */
2843 union
2844 {
2845 /* Unwind info attached to a text section. */
2846 struct
2847 {
2848 asection *arm_exidx_sec;
2849 } text;
2850
2851 /* Unwind info attached to an .ARM.exidx section. */
2852 struct
2853 {
2854 arm_unwind_table_edit *unwind_edit_list;
2855 arm_unwind_table_edit *unwind_edit_tail;
2856 } exidx;
2857 } u;
2858 }
2859 _arm_elf_section_data;
2860
2861 #define elf32_arm_section_data(sec) \
2862 ((_arm_elf_section_data *) elf_section_data (sec))
2863
2864 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2865 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2866 so may be created multiple times: we use an array of these entries whilst
2867 relaxing which we can refresh easily, then create stubs for each potentially
2868 erratum-triggering instruction once we've settled on a solution. */
2869
2870 struct a8_erratum_fix
2871 {
2872 bfd *input_bfd;
2873 asection *section;
2874 bfd_vma offset;
2875 bfd_vma target_offset;
2876 unsigned long orig_insn;
2877 char *stub_name;
2878 enum elf32_arm_stub_type stub_type;
2879 enum arm_st_branch_type branch_type;
2880 };
2881
2882 /* A table of relocs applied to branches which might trigger Cortex-A8
2883 erratum. */
2884
2885 struct a8_erratum_reloc
2886 {
2887 bfd_vma from;
2888 bfd_vma destination;
2889 struct elf32_arm_link_hash_entry *hash;
2890 const char *sym_name;
2891 unsigned int r_type;
2892 enum arm_st_branch_type branch_type;
2893 bfd_boolean non_a8_stub;
2894 };
2895
2896 /* The size of the thread control block. */
2897 #define TCB_SIZE 8
2898
2899 /* ARM-specific information about a PLT entry, over and above the usual
2900 gotplt_union. */
2901 struct arm_plt_info
2902 {
2903 /* We reference count Thumb references to a PLT entry separately,
2904 so that we can emit the Thumb trampoline only if needed. */
2905 bfd_signed_vma thumb_refcount;
2906
2907 /* Some references from Thumb code may be eliminated by BL->BLX
2908 conversion, so record them separately. */
2909 bfd_signed_vma maybe_thumb_refcount;
2910
2911 /* How many of the recorded PLT accesses were from non-call relocations.
2912 This information is useful when deciding whether anything takes the
2913 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2914 non-call references to the function should resolve directly to the
2915 real runtime target. */
2916 unsigned int noncall_refcount;
2917
2918 /* Since PLT entries have variable size if the Thumb prologue is
2919 used, we need to record the index into .got.plt instead of
2920 recomputing it from the PLT offset. */
2921 bfd_signed_vma got_offset;
2922 };
2923
2924 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2925 struct arm_local_iplt_info
2926 {
2927 /* The information that is usually found in the generic ELF part of
2928 the hash table entry. */
2929 union gotplt_union root;
2930
2931 /* The information that is usually found in the ARM-specific part of
2932 the hash table entry. */
2933 struct arm_plt_info arm;
2934
2935 /* A list of all potential dynamic relocations against this symbol. */
2936 struct elf_dyn_relocs *dyn_relocs;
2937 };
2938
2939 struct elf_arm_obj_tdata
2940 {
2941 struct elf_obj_tdata root;
2942
2943 /* tls_type for each local got entry. */
2944 char *local_got_tls_type;
2945
2946 /* GOTPLT entries for TLS descriptors. */
2947 bfd_vma *local_tlsdesc_gotent;
2948
2949 /* Information for local symbols that need entries in .iplt. */
2950 struct arm_local_iplt_info **local_iplt;
2951
2952 /* Zero to warn when linking objects with incompatible enum sizes. */
2953 int no_enum_size_warning;
2954
2955 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2956 int no_wchar_size_warning;
2957 };
2958
2959 #define elf_arm_tdata(bfd) \
2960 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2961
2962 #define elf32_arm_local_got_tls_type(bfd) \
2963 (elf_arm_tdata (bfd)->local_got_tls_type)
2964
2965 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2966 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2967
2968 #define elf32_arm_local_iplt(bfd) \
2969 (elf_arm_tdata (bfd)->local_iplt)
2970
2971 #define is_arm_elf(bfd) \
2972 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2973 && elf_tdata (bfd) != NULL \
2974 && elf_object_id (bfd) == ARM_ELF_DATA)
2975
2976 static bfd_boolean
2977 elf32_arm_mkobject (bfd *abfd)
2978 {
2979 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2980 ARM_ELF_DATA);
2981 }
2982
2983 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2984
2985 /* Arm ELF linker hash entry. */
2986 struct elf32_arm_link_hash_entry
2987 {
2988 struct elf_link_hash_entry root;
2989
2990 /* Track dynamic relocs copied for this symbol. */
2991 struct elf_dyn_relocs *dyn_relocs;
2992
2993 /* ARM-specific PLT information. */
2994 struct arm_plt_info plt;
2995
2996 #define GOT_UNKNOWN 0
2997 #define GOT_NORMAL 1
2998 #define GOT_TLS_GD 2
2999 #define GOT_TLS_IE 4
3000 #define GOT_TLS_GDESC 8
3001 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3002 unsigned int tls_type : 8;
3003
3004 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3005 unsigned int is_iplt : 1;
3006
3007 unsigned int unused : 23;
3008
3009 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3010 starting at the end of the jump table. */
3011 bfd_vma tlsdesc_got;
3012
3013 /* The symbol marking the real symbol location for exported thumb
3014 symbols with Arm stubs. */
3015 struct elf_link_hash_entry *export_glue;
3016
3017 /* A pointer to the most recently used stub hash entry against this
3018 symbol. */
3019 struct elf32_arm_stub_hash_entry *stub_cache;
3020 };
3021
3022 /* Traverse an arm ELF linker hash table. */
3023 #define elf32_arm_link_hash_traverse(table, func, info) \
3024 (elf_link_hash_traverse \
3025 (&(table)->root, \
3026 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3027 (info)))
3028
3029 /* Get the ARM elf linker hash table from a link_info structure. */
3030 #define elf32_arm_hash_table(info) \
3031 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3032 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3033
3034 #define arm_stub_hash_lookup(table, string, create, copy) \
3035 ((struct elf32_arm_stub_hash_entry *) \
3036 bfd_hash_lookup ((table), (string), (create), (copy)))
3037
3038 /* Array to keep track of which stub sections have been created, and
3039 information on stub grouping. */
3040 struct map_stub
3041 {
3042 /* This is the section to which stubs in the group will be
3043 attached. */
3044 asection *link_sec;
3045 /* The stub section. */
3046 asection *stub_sec;
3047 };
3048
3049 #define elf32_arm_compute_jump_table_size(htab) \
3050 ((htab)->next_tls_desc_index * 4)
3051
3052 /* ARM ELF linker hash table. */
3053 struct elf32_arm_link_hash_table
3054 {
3055 /* The main hash table. */
3056 struct elf_link_hash_table root;
3057
3058 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3059 bfd_size_type thumb_glue_size;
3060
3061 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3062 bfd_size_type arm_glue_size;
3063
3064 /* The size in bytes of section containing the ARMv4 BX veneers. */
3065 bfd_size_type bx_glue_size;
3066
3067 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3068 veneer has been populated. */
3069 bfd_vma bx_glue_offset[15];
3070
3071 /* The size in bytes of the section containing glue for VFP11 erratum
3072 veneers. */
3073 bfd_size_type vfp11_erratum_glue_size;
3074
3075 /* The size in bytes of the section containing glue for STM32L4XX erratum
3076 veneers. */
3077 bfd_size_type stm32l4xx_erratum_glue_size;
3078
3079 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3080 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3081 elf32_arm_write_section(). */
3082 struct a8_erratum_fix *a8_erratum_fixes;
3083 unsigned int num_a8_erratum_fixes;
3084
3085 /* An arbitrary input BFD chosen to hold the glue sections. */
3086 bfd * bfd_of_glue_owner;
3087
3088 /* Nonzero to output a BE8 image. */
3089 int byteswap_code;
3090
3091 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3092 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3093 int target1_is_rel;
3094
3095 /* The relocation to use for R_ARM_TARGET2 relocations. */
3096 int target2_reloc;
3097
3098 /* 0 = Ignore R_ARM_V4BX.
3099 1 = Convert BX to MOV PC.
3100 2 = Generate v4 interworing stubs. */
3101 int fix_v4bx;
3102
3103 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3104 int fix_cortex_a8;
3105
3106 /* Whether we should fix the ARM1176 BLX immediate issue. */
3107 int fix_arm1176;
3108
3109 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3110 int use_blx;
3111
3112 /* What sort of code sequences we should look for which may trigger the
3113 VFP11 denorm erratum. */
3114 bfd_arm_vfp11_fix vfp11_fix;
3115
3116 /* Global counter for the number of fixes we have emitted. */
3117 int num_vfp11_fixes;
3118
3119 /* What sort of code sequences we should look for which may trigger the
3120 STM32L4XX erratum. */
3121 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3122
3123 /* Global counter for the number of fixes we have emitted. */
3124 int num_stm32l4xx_fixes;
3125
3126 /* Nonzero to force PIC branch veneers. */
3127 int pic_veneer;
3128
3129 /* The number of bytes in the initial entry in the PLT. */
3130 bfd_size_type plt_header_size;
3131
3132 /* The number of bytes in the subsequent PLT etries. */
3133 bfd_size_type plt_entry_size;
3134
3135 /* True if the target system is VxWorks. */
3136 int vxworks_p;
3137
3138 /* True if the target system is Symbian OS. */
3139 int symbian_p;
3140
3141 /* True if the target system is Native Client. */
3142 int nacl_p;
3143
3144 /* True if the target uses REL relocations. */
3145 int use_rel;
3146
3147 /* Nonzero if import library must be a secure gateway import library
3148 as per ARMv8-M Security Extensions. */
3149 int cmse_implib;
3150
3151 /* The import library whose symbols' address must remain stable in
3152 the import library generated. */
3153 bfd *in_implib_bfd;
3154
3155 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3156 bfd_vma next_tls_desc_index;
3157
3158 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3159 bfd_vma num_tls_desc;
3160
3161 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3162 asection *srelplt2;
3163
3164 /* The offset into splt of the PLT entry for the TLS descriptor
3165 resolver. Special values are 0, if not necessary (or not found
3166 to be necessary yet), and -1 if needed but not determined
3167 yet. */
3168 bfd_vma dt_tlsdesc_plt;
3169
3170 /* The offset into sgot of the GOT entry used by the PLT entry
3171 above. */
3172 bfd_vma dt_tlsdesc_got;
3173
3174 /* Offset in .plt section of tls_arm_trampoline. */
3175 bfd_vma tls_trampoline;
3176
3177 /* Data for R_ARM_TLS_LDM32 relocations. */
3178 union
3179 {
3180 bfd_signed_vma refcount;
3181 bfd_vma offset;
3182 } tls_ldm_got;
3183
3184 /* Small local sym cache. */
3185 struct sym_cache sym_cache;
3186
3187 /* For convenience in allocate_dynrelocs. */
3188 bfd * obfd;
3189
3190 /* The amount of space used by the reserved portion of the sgotplt
3191 section, plus whatever space is used by the jump slots. */
3192 bfd_vma sgotplt_jump_table_size;
3193
3194 /* The stub hash table. */
3195 struct bfd_hash_table stub_hash_table;
3196
3197 /* Linker stub bfd. */
3198 bfd *stub_bfd;
3199
3200 /* Linker call-backs. */
3201 asection * (*add_stub_section) (const char *, asection *, asection *,
3202 unsigned int);
3203 void (*layout_sections_again) (void);
3204
3205 /* Array to keep track of which stub sections have been created, and
3206 information on stub grouping. */
3207 struct map_stub *stub_group;
3208
3209 /* Input stub section holding secure gateway veneers. */
3210 asection *cmse_stub_sec;
3211
3212 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3213 start to be allocated. */
3214 bfd_vma new_cmse_stub_offset;
3215
3216 /* Number of elements in stub_group. */
3217 unsigned int top_id;
3218
3219 /* Assorted information used by elf32_arm_size_stubs. */
3220 unsigned int bfd_count;
3221 unsigned int top_index;
3222 asection **input_list;
3223 };
3224
3225 static inline int
3226 ctz (unsigned int mask)
3227 {
3228 #if GCC_VERSION >= 3004
3229 return __builtin_ctz (mask);
3230 #else
3231 unsigned int i;
3232
3233 for (i = 0; i < 8 * sizeof (mask); i++)
3234 {
3235 if (mask & 0x1)
3236 break;
3237 mask = (mask >> 1);
3238 }
3239 return i;
3240 #endif
3241 }
3242
3243 static inline int
3244 elf32_arm_popcount (unsigned int mask)
3245 {
3246 #if GCC_VERSION >= 3004
3247 return __builtin_popcount (mask);
3248 #else
3249 unsigned int i;
3250 int sum = 0;
3251
3252 for (i = 0; i < 8 * sizeof (mask); i++)
3253 {
3254 if (mask & 0x1)
3255 sum++;
3256 mask = (mask >> 1);
3257 }
3258 return sum;
3259 #endif
3260 }
3261
3262 /* Create an entry in an ARM ELF linker hash table. */
3263
3264 static struct bfd_hash_entry *
3265 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3266 struct bfd_hash_table * table,
3267 const char * string)
3268 {
3269 struct elf32_arm_link_hash_entry * ret =
3270 (struct elf32_arm_link_hash_entry *) entry;
3271
3272 /* Allocate the structure if it has not already been allocated by a
3273 subclass. */
3274 if (ret == NULL)
3275 ret = (struct elf32_arm_link_hash_entry *)
3276 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3277 if (ret == NULL)
3278 return (struct bfd_hash_entry *) ret;
3279
3280 /* Call the allocation method of the superclass. */
3281 ret = ((struct elf32_arm_link_hash_entry *)
3282 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3283 table, string));
3284 if (ret != NULL)
3285 {
3286 ret->dyn_relocs = NULL;
3287 ret->tls_type = GOT_UNKNOWN;
3288 ret->tlsdesc_got = (bfd_vma) -1;
3289 ret->plt.thumb_refcount = 0;
3290 ret->plt.maybe_thumb_refcount = 0;
3291 ret->plt.noncall_refcount = 0;
3292 ret->plt.got_offset = -1;
3293 ret->is_iplt = FALSE;
3294 ret->export_glue = NULL;
3295
3296 ret->stub_cache = NULL;
3297 }
3298
3299 return (struct bfd_hash_entry *) ret;
3300 }
3301
3302 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3303 symbols. */
3304
3305 static bfd_boolean
3306 elf32_arm_allocate_local_sym_info (bfd *abfd)
3307 {
3308 if (elf_local_got_refcounts (abfd) == NULL)
3309 {
3310 bfd_size_type num_syms;
3311 bfd_size_type size;
3312 char *data;
3313
3314 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3315 size = num_syms * (sizeof (bfd_signed_vma)
3316 + sizeof (struct arm_local_iplt_info *)
3317 + sizeof (bfd_vma)
3318 + sizeof (char));
3319 data = bfd_zalloc (abfd, size);
3320 if (data == NULL)
3321 return FALSE;
3322
3323 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3324 data += num_syms * sizeof (bfd_signed_vma);
3325
3326 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3327 data += num_syms * sizeof (struct arm_local_iplt_info *);
3328
3329 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3330 data += num_syms * sizeof (bfd_vma);
3331
3332 elf32_arm_local_got_tls_type (abfd) = data;
3333 }
3334 return TRUE;
3335 }
3336
3337 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3338 to input bfd ABFD. Create the information if it doesn't already exist.
3339 Return null if an allocation fails. */
3340
3341 static struct arm_local_iplt_info *
3342 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3343 {
3344 struct arm_local_iplt_info **ptr;
3345
3346 if (!elf32_arm_allocate_local_sym_info (abfd))
3347 return NULL;
3348
3349 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3350 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3351 if (*ptr == NULL)
3352 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3353 return *ptr;
3354 }
3355
3356 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3357 in ABFD's symbol table. If the symbol is global, H points to its
3358 hash table entry, otherwise H is null.
3359
3360 Return true if the symbol does have PLT information. When returning
3361 true, point *ROOT_PLT at the target-independent reference count/offset
3362 union and *ARM_PLT at the ARM-specific information. */
3363
3364 static bfd_boolean
3365 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3366 struct elf32_arm_link_hash_entry *h,
3367 unsigned long r_symndx, union gotplt_union **root_plt,
3368 struct arm_plt_info **arm_plt)
3369 {
3370 struct arm_local_iplt_info *local_iplt;
3371
3372 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3373 return FALSE;
3374
3375 if (h != NULL)
3376 {
3377 *root_plt = &h->root.plt;
3378 *arm_plt = &h->plt;
3379 return TRUE;
3380 }
3381
3382 if (elf32_arm_local_iplt (abfd) == NULL)
3383 return FALSE;
3384
3385 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3386 if (local_iplt == NULL)
3387 return FALSE;
3388
3389 *root_plt = &local_iplt->root;
3390 *arm_plt = &local_iplt->arm;
3391 return TRUE;
3392 }
3393
3394 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3395 before it. */
3396
3397 static bfd_boolean
3398 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3399 struct arm_plt_info *arm_plt)
3400 {
3401 struct elf32_arm_link_hash_table *htab;
3402
3403 htab = elf32_arm_hash_table (info);
3404 return (arm_plt->thumb_refcount != 0
3405 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3406 }
3407
3408 /* Return a pointer to the head of the dynamic reloc list that should
3409 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3410 ABFD's symbol table. Return null if an error occurs. */
3411
3412 static struct elf_dyn_relocs **
3413 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3414 Elf_Internal_Sym *isym)
3415 {
3416 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3417 {
3418 struct arm_local_iplt_info *local_iplt;
3419
3420 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3421 if (local_iplt == NULL)
3422 return NULL;
3423 return &local_iplt->dyn_relocs;
3424 }
3425 else
3426 {
3427 /* Track dynamic relocs needed for local syms too.
3428 We really need local syms available to do this
3429 easily. Oh well. */
3430 asection *s;
3431 void *vpp;
3432
3433 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3434 if (s == NULL)
3435 abort ();
3436
3437 vpp = &elf_section_data (s)->local_dynrel;
3438 return (struct elf_dyn_relocs **) vpp;
3439 }
3440 }
3441
3442 /* Initialize an entry in the stub hash table. */
3443
3444 static struct bfd_hash_entry *
3445 stub_hash_newfunc (struct bfd_hash_entry *entry,
3446 struct bfd_hash_table *table,
3447 const char *string)
3448 {
3449 /* Allocate the structure if it has not already been allocated by a
3450 subclass. */
3451 if (entry == NULL)
3452 {
3453 entry = (struct bfd_hash_entry *)
3454 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3455 if (entry == NULL)
3456 return entry;
3457 }
3458
3459 /* Call the allocation method of the superclass. */
3460 entry = bfd_hash_newfunc (entry, table, string);
3461 if (entry != NULL)
3462 {
3463 struct elf32_arm_stub_hash_entry *eh;
3464
3465 /* Initialize the local fields. */
3466 eh = (struct elf32_arm_stub_hash_entry *) entry;
3467 eh->stub_sec = NULL;
3468 eh->stub_offset = (bfd_vma) -1;
3469 eh->source_value = 0;
3470 eh->target_value = 0;
3471 eh->target_section = NULL;
3472 eh->orig_insn = 0;
3473 eh->stub_type = arm_stub_none;
3474 eh->stub_size = 0;
3475 eh->stub_template = NULL;
3476 eh->stub_template_size = -1;
3477 eh->h = NULL;
3478 eh->id_sec = NULL;
3479 eh->output_name = NULL;
3480 }
3481
3482 return entry;
3483 }
3484
3485 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3486 shortcuts to them in our hash table. */
3487
3488 static bfd_boolean
3489 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3490 {
3491 struct elf32_arm_link_hash_table *htab;
3492
3493 htab = elf32_arm_hash_table (info);
3494 if (htab == NULL)
3495 return FALSE;
3496
3497 /* BPABI objects never have a GOT, or associated sections. */
3498 if (htab->symbian_p)
3499 return TRUE;
3500
3501 if (! _bfd_elf_create_got_section (dynobj, info))
3502 return FALSE;
3503
3504 return TRUE;
3505 }
3506
3507 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3508
3509 static bfd_boolean
3510 create_ifunc_sections (struct bfd_link_info *info)
3511 {
3512 struct elf32_arm_link_hash_table *htab;
3513 const struct elf_backend_data *bed;
3514 bfd *dynobj;
3515 asection *s;
3516 flagword flags;
3517
3518 htab = elf32_arm_hash_table (info);
3519 dynobj = htab->root.dynobj;
3520 bed = get_elf_backend_data (dynobj);
3521 flags = bed->dynamic_sec_flags;
3522
3523 if (htab->root.iplt == NULL)
3524 {
3525 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3526 flags | SEC_READONLY | SEC_CODE);
3527 if (s == NULL
3528 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3529 return FALSE;
3530 htab->root.iplt = s;
3531 }
3532
3533 if (htab->root.irelplt == NULL)
3534 {
3535 s = bfd_make_section_anyway_with_flags (dynobj,
3536 RELOC_SECTION (htab, ".iplt"),
3537 flags | SEC_READONLY);
3538 if (s == NULL
3539 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3540 return FALSE;
3541 htab->root.irelplt = s;
3542 }
3543
3544 if (htab->root.igotplt == NULL)
3545 {
3546 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3547 if (s == NULL
3548 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3549 return FALSE;
3550 htab->root.igotplt = s;
3551 }
3552 return TRUE;
3553 }
3554
3555 /* Determine if we're dealing with a Thumb only architecture. */
3556
3557 static bfd_boolean
3558 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3559 {
3560 int arch;
3561 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3562 Tag_CPU_arch_profile);
3563
3564 if (profile)
3565 return profile == 'M';
3566
3567 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3568
3569 /* Force return logic to be reviewed for each new architecture. */
3570 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3571 || arch == TAG_CPU_ARCH_V8M_BASE
3572 || arch == TAG_CPU_ARCH_V8M_MAIN);
3573
3574 if (arch == TAG_CPU_ARCH_V6_M
3575 || arch == TAG_CPU_ARCH_V6S_M
3576 || arch == TAG_CPU_ARCH_V7E_M
3577 || arch == TAG_CPU_ARCH_V8M_BASE
3578 || arch == TAG_CPU_ARCH_V8M_MAIN)
3579 return TRUE;
3580
3581 return FALSE;
3582 }
3583
3584 /* Determine if we're dealing with a Thumb-2 object. */
3585
3586 static bfd_boolean
3587 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3588 {
3589 int arch;
3590 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3591 Tag_THUMB_ISA_use);
3592
3593 if (thumb_isa)
3594 return thumb_isa == 2;
3595
3596 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3597
3598 /* Force return logic to be reviewed for each new architecture. */
3599 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3600 || arch == TAG_CPU_ARCH_V8M_BASE
3601 || arch == TAG_CPU_ARCH_V8M_MAIN);
3602
3603 return (arch == TAG_CPU_ARCH_V6T2
3604 || arch == TAG_CPU_ARCH_V7
3605 || arch == TAG_CPU_ARCH_V7E_M
3606 || arch == TAG_CPU_ARCH_V8
3607 || arch == TAG_CPU_ARCH_V8M_MAIN);
3608 }
3609
3610 /* Determine whether Thumb-2 BL instruction is available. */
3611
3612 static bfd_boolean
3613 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3614 {
3615 int arch =
3616 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3617
3618 /* Force return logic to be reviewed for each new architecture. */
3619 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3620 || arch == TAG_CPU_ARCH_V8M_BASE
3621 || arch == TAG_CPU_ARCH_V8M_MAIN);
3622
3623 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3624 return (arch == TAG_CPU_ARCH_V6T2
3625 || arch >= TAG_CPU_ARCH_V7);
3626 }
3627
3628 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3629 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3630 hash table. */
3631
3632 static bfd_boolean
3633 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3634 {
3635 struct elf32_arm_link_hash_table *htab;
3636
3637 htab = elf32_arm_hash_table (info);
3638 if (htab == NULL)
3639 return FALSE;
3640
3641 if (!htab->root.sgot && !create_got_section (dynobj, info))
3642 return FALSE;
3643
3644 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3645 return FALSE;
3646
3647 if (htab->vxworks_p)
3648 {
3649 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3650 return FALSE;
3651
3652 if (bfd_link_pic (info))
3653 {
3654 htab->plt_header_size = 0;
3655 htab->plt_entry_size
3656 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3657 }
3658 else
3659 {
3660 htab->plt_header_size
3661 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3662 htab->plt_entry_size
3663 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3664 }
3665
3666 if (elf_elfheader (dynobj))
3667 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3668 }
3669 else
3670 {
3671 /* PR ld/16017
3672 Test for thumb only architectures. Note - we cannot just call
3673 using_thumb_only() as the attributes in the output bfd have not been
3674 initialised at this point, so instead we use the input bfd. */
3675 bfd * saved_obfd = htab->obfd;
3676
3677 htab->obfd = dynobj;
3678 if (using_thumb_only (htab))
3679 {
3680 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3681 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3682 }
3683 htab->obfd = saved_obfd;
3684 }
3685
3686 if (!htab->root.splt
3687 || !htab->root.srelplt
3688 || !htab->root.sdynbss
3689 || (!bfd_link_pic (info) && !htab->root.srelbss))
3690 abort ();
3691
3692 return TRUE;
3693 }
3694
3695 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3696
3697 static void
3698 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3699 struct elf_link_hash_entry *dir,
3700 struct elf_link_hash_entry *ind)
3701 {
3702 struct elf32_arm_link_hash_entry *edir, *eind;
3703
3704 edir = (struct elf32_arm_link_hash_entry *) dir;
3705 eind = (struct elf32_arm_link_hash_entry *) ind;
3706
3707 if (eind->dyn_relocs != NULL)
3708 {
3709 if (edir->dyn_relocs != NULL)
3710 {
3711 struct elf_dyn_relocs **pp;
3712 struct elf_dyn_relocs *p;
3713
3714 /* Add reloc counts against the indirect sym to the direct sym
3715 list. Merge any entries against the same section. */
3716 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3717 {
3718 struct elf_dyn_relocs *q;
3719
3720 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3721 if (q->sec == p->sec)
3722 {
3723 q->pc_count += p->pc_count;
3724 q->count += p->count;
3725 *pp = p->next;
3726 break;
3727 }
3728 if (q == NULL)
3729 pp = &p->next;
3730 }
3731 *pp = edir->dyn_relocs;
3732 }
3733
3734 edir->dyn_relocs = eind->dyn_relocs;
3735 eind->dyn_relocs = NULL;
3736 }
3737
3738 if (ind->root.type == bfd_link_hash_indirect)
3739 {
3740 /* Copy over PLT info. */
3741 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3742 eind->plt.thumb_refcount = 0;
3743 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3744 eind->plt.maybe_thumb_refcount = 0;
3745 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3746 eind->plt.noncall_refcount = 0;
3747
3748 /* We should only allocate a function to .iplt once the final
3749 symbol information is known. */
3750 BFD_ASSERT (!eind->is_iplt);
3751
3752 if (dir->got.refcount <= 0)
3753 {
3754 edir->tls_type = eind->tls_type;
3755 eind->tls_type = GOT_UNKNOWN;
3756 }
3757 }
3758
3759 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3760 }
3761
3762 /* Destroy an ARM elf linker hash table. */
3763
3764 static void
3765 elf32_arm_link_hash_table_free (bfd *obfd)
3766 {
3767 struct elf32_arm_link_hash_table *ret
3768 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
3769
3770 bfd_hash_table_free (&ret->stub_hash_table);
3771 _bfd_elf_link_hash_table_free (obfd);
3772 }
3773
3774 /* Create an ARM elf linker hash table. */
3775
3776 static struct bfd_link_hash_table *
3777 elf32_arm_link_hash_table_create (bfd *abfd)
3778 {
3779 struct elf32_arm_link_hash_table *ret;
3780 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3781
3782 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3783 if (ret == NULL)
3784 return NULL;
3785
3786 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3787 elf32_arm_link_hash_newfunc,
3788 sizeof (struct elf32_arm_link_hash_entry),
3789 ARM_ELF_DATA))
3790 {
3791 free (ret);
3792 return NULL;
3793 }
3794
3795 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3796 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
3797 #ifdef FOUR_WORD_PLT
3798 ret->plt_header_size = 16;
3799 ret->plt_entry_size = 16;
3800 #else
3801 ret->plt_header_size = 20;
3802 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
3803 #endif
3804 ret->use_rel = 1;
3805 ret->obfd = abfd;
3806
3807 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3808 sizeof (struct elf32_arm_stub_hash_entry)))
3809 {
3810 _bfd_elf_link_hash_table_free (abfd);
3811 return NULL;
3812 }
3813 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
3814
3815 return &ret->root.root;
3816 }
3817
3818 /* Determine what kind of NOPs are available. */
3819
3820 static bfd_boolean
3821 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3822 {
3823 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3824 Tag_CPU_arch);
3825
3826 /* Force return logic to be reviewed for each new architecture. */
3827 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8
3828 || arch == TAG_CPU_ARCH_V8M_BASE
3829 || arch == TAG_CPU_ARCH_V8M_MAIN);
3830
3831 return (arch == TAG_CPU_ARCH_V6T2
3832 || arch == TAG_CPU_ARCH_V6K
3833 || arch == TAG_CPU_ARCH_V7
3834 || arch == TAG_CPU_ARCH_V8);
3835 }
3836
3837 static bfd_boolean
3838 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3839 {
3840 switch (stub_type)
3841 {
3842 case arm_stub_long_branch_thumb_only:
3843 case arm_stub_long_branch_thumb2_only:
3844 case arm_stub_long_branch_thumb2_only_pure:
3845 case arm_stub_long_branch_v4t_thumb_arm:
3846 case arm_stub_short_branch_v4t_thumb_arm:
3847 case arm_stub_long_branch_v4t_thumb_arm_pic:
3848 case arm_stub_long_branch_v4t_thumb_tls_pic:
3849 case arm_stub_long_branch_thumb_only_pic:
3850 case arm_stub_cmse_branch_thumb_only:
3851 return TRUE;
3852 case arm_stub_none:
3853 BFD_FAIL ();
3854 return FALSE;
3855 break;
3856 default:
3857 return FALSE;
3858 }
3859 }
3860
3861 /* Determine the type of stub needed, if any, for a call. */
3862
3863 static enum elf32_arm_stub_type
3864 arm_type_of_stub (struct bfd_link_info *info,
3865 asection *input_sec,
3866 const Elf_Internal_Rela *rel,
3867 unsigned char st_type,
3868 enum arm_st_branch_type *actual_branch_type,
3869 struct elf32_arm_link_hash_entry *hash,
3870 bfd_vma destination,
3871 asection *sym_sec,
3872 bfd *input_bfd,
3873 const char *name)
3874 {
3875 bfd_vma location;
3876 bfd_signed_vma branch_offset;
3877 unsigned int r_type;
3878 struct elf32_arm_link_hash_table * globals;
3879 bfd_boolean thumb2, thumb2_bl, thumb_only;
3880 enum elf32_arm_stub_type stub_type = arm_stub_none;
3881 int use_plt = 0;
3882 enum arm_st_branch_type branch_type = *actual_branch_type;
3883 union gotplt_union *root_plt;
3884 struct arm_plt_info *arm_plt;
3885 int arch;
3886 int thumb2_movw;
3887
3888 if (branch_type == ST_BRANCH_LONG)
3889 return stub_type;
3890
3891 globals = elf32_arm_hash_table (info);
3892 if (globals == NULL)
3893 return stub_type;
3894
3895 thumb_only = using_thumb_only (globals);
3896 thumb2 = using_thumb2 (globals);
3897 thumb2_bl = using_thumb2_bl (globals);
3898
3899 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3900
3901 /* True for architectures that implement the thumb2 movw instruction. */
3902 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
3903
3904 /* Determine where the call point is. */
3905 location = (input_sec->output_offset
3906 + input_sec->output_section->vma
3907 + rel->r_offset);
3908
3909 r_type = ELF32_R_TYPE (rel->r_info);
3910
3911 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
3912 are considering a function call relocation. */
3913 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3914 || r_type == R_ARM_THM_JUMP19)
3915 && branch_type == ST_BRANCH_TO_ARM)
3916 branch_type = ST_BRANCH_TO_THUMB;
3917
3918 /* For TLS call relocs, it is the caller's responsibility to provide
3919 the address of the appropriate trampoline. */
3920 if (r_type != R_ARM_TLS_CALL
3921 && r_type != R_ARM_THM_TLS_CALL
3922 && elf32_arm_get_plt_info (input_bfd, globals, hash,
3923 ELF32_R_SYM (rel->r_info), &root_plt,
3924 &arm_plt)
3925 && root_plt->offset != (bfd_vma) -1)
3926 {
3927 asection *splt;
3928
3929 if (hash == NULL || hash->is_iplt)
3930 splt = globals->root.iplt;
3931 else
3932 splt = globals->root.splt;
3933 if (splt != NULL)
3934 {
3935 use_plt = 1;
3936
3937 /* Note when dealing with PLT entries: the main PLT stub is in
3938 ARM mode, so if the branch is in Thumb mode, another
3939 Thumb->ARM stub will be inserted later just before the ARM
3940 PLT stub. If a long branch stub is needed, we'll add a
3941 Thumb->Arm one and branch directly to the ARM PLT entry.
3942 Here, we have to check if a pre-PLT Thumb->ARM stub
3943 is needed and if it will be close enough. */
3944
3945 destination = (splt->output_section->vma
3946 + splt->output_offset
3947 + root_plt->offset);
3948 st_type = STT_FUNC;
3949
3950 /* Thumb branch/call to PLT: it can become a branch to ARM
3951 or to Thumb. We must perform the same checks and
3952 corrections as in elf32_arm_final_link_relocate. */
3953 if ((r_type == R_ARM_THM_CALL)
3954 || (r_type == R_ARM_THM_JUMP24))
3955 {
3956 if (globals->use_blx
3957 && r_type == R_ARM_THM_CALL
3958 && !thumb_only)
3959 {
3960 /* If the Thumb BLX instruction is available, convert
3961 the BL to a BLX instruction to call the ARM-mode
3962 PLT entry. */
3963 branch_type = ST_BRANCH_TO_ARM;
3964 }
3965 else
3966 {
3967 if (!thumb_only)
3968 /* Target the Thumb stub before the ARM PLT entry. */
3969 destination -= PLT_THUMB_STUB_SIZE;
3970 branch_type = ST_BRANCH_TO_THUMB;
3971 }
3972 }
3973 else
3974 {
3975 branch_type = ST_BRANCH_TO_ARM;
3976 }
3977 }
3978 }
3979 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3980 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3981
3982 branch_offset = (bfd_signed_vma)(destination - location);
3983
3984 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3985 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
3986 {
3987 /* Handle cases where:
3988 - this call goes too far (different Thumb/Thumb2 max
3989 distance)
3990 - it's a Thumb->Arm call and blx is not available, or it's a
3991 Thumb->Arm branch (not bl). A stub is needed in this case,
3992 but only if this call is not through a PLT entry. Indeed,
3993 PLT stubs handle mode switching already. */
3994 if ((!thumb2_bl
3995 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3996 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3997 || (thumb2_bl
3998 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3999 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4000 || (thumb2
4001 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4002 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4003 && (r_type == R_ARM_THM_JUMP19))
4004 || (branch_type == ST_BRANCH_TO_ARM
4005 && (((r_type == R_ARM_THM_CALL
4006 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
4007 || (r_type == R_ARM_THM_JUMP24)
4008 || (r_type == R_ARM_THM_JUMP19))
4009 && !use_plt))
4010 {
4011 /* If we need to insert a Thumb-Thumb long branch stub to a
4012 PLT, use one that branches directly to the ARM PLT
4013 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4014 stub, undo this now. */
4015 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4016 {
4017 branch_type = ST_BRANCH_TO_ARM;
4018 branch_offset += PLT_THUMB_STUB_SIZE;
4019 }
4020
4021 if (branch_type == ST_BRANCH_TO_THUMB)
4022 {
4023 /* Thumb to thumb. */
4024 if (!thumb_only)
4025 {
4026 if (input_sec->flags & SEC_ELF_PURECODE)
4027 _bfd_error_handler
4028 (_("%B(%A): warning: long branch veneers used in"
4029 " section with SHF_ARM_PURECODE section"
4030 " attribute is only supported for M-profile"
4031 " targets that implement the movw instruction."),
4032 input_bfd, input_sec);
4033
4034 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4035 /* PIC stubs. */
4036 ? ((globals->use_blx
4037 && (r_type == R_ARM_THM_CALL))
4038 /* V5T and above. Stub starts with ARM code, so
4039 we must be able to switch mode before
4040 reaching it, which is only possible for 'bl'
4041 (ie R_ARM_THM_CALL relocation). */
4042 ? arm_stub_long_branch_any_thumb_pic
4043 /* On V4T, use Thumb code only. */
4044 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4045
4046 /* non-PIC stubs. */
4047 : ((globals->use_blx
4048 && (r_type == R_ARM_THM_CALL))
4049 /* V5T and above. */
4050 ? arm_stub_long_branch_any_any
4051 /* V4T. */
4052 : arm_stub_long_branch_v4t_thumb_thumb);
4053 }
4054 else
4055 {
4056 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4057 stub_type = arm_stub_long_branch_thumb2_only_pure;
4058 else
4059 {
4060 if (input_sec->flags & SEC_ELF_PURECODE)
4061 _bfd_error_handler
4062 (_("%B(%A): warning: long branch veneers used in"
4063 " section with SHF_ARM_PURECODE section"
4064 " attribute is only supported for M-profile"
4065 " targets that implement the movw instruction."),
4066 input_bfd, input_sec);
4067
4068 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4069 /* PIC stub. */
4070 ? arm_stub_long_branch_thumb_only_pic
4071 /* non-PIC stub. */
4072 : (thumb2 ? arm_stub_long_branch_thumb2_only
4073 : arm_stub_long_branch_thumb_only);
4074 }
4075 }
4076 }
4077 else
4078 {
4079 if (input_sec->flags & SEC_ELF_PURECODE)
4080 _bfd_error_handler
4081 (_("%B(%A): warning: long branch veneers used in"
4082 " section with SHF_ARM_PURECODE section"
4083 " attribute is only supported" " for M-profile"
4084 " targets that implement the movw instruction."),
4085 input_bfd, input_sec);
4086
4087 /* Thumb to arm. */
4088 if (sym_sec != NULL
4089 && sym_sec->owner != NULL
4090 && !INTERWORK_FLAG (sym_sec->owner))
4091 {
4092 _bfd_error_handler
4093 (_("%B(%s): warning: interworking not enabled.\n"
4094 " first occurrence: %B: Thumb call to ARM"),
4095 sym_sec->owner, name, input_bfd);
4096 }
4097
4098 stub_type =
4099 (bfd_link_pic (info) | globals->pic_veneer)
4100 /* PIC stubs. */
4101 ? (r_type == R_ARM_THM_TLS_CALL
4102 /* TLS PIC stubs. */
4103 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4104 : arm_stub_long_branch_v4t_thumb_tls_pic)
4105 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4106 /* V5T PIC and above. */
4107 ? arm_stub_long_branch_any_arm_pic
4108 /* V4T PIC stub. */
4109 : arm_stub_long_branch_v4t_thumb_arm_pic))
4110
4111 /* non-PIC stubs. */
4112 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4113 /* V5T and above. */
4114 ? arm_stub_long_branch_any_any
4115 /* V4T. */
4116 : arm_stub_long_branch_v4t_thumb_arm);
4117
4118 /* Handle v4t short branches. */
4119 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4120 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4121 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4122 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4123 }
4124 }
4125 }
4126 else if (r_type == R_ARM_CALL
4127 || r_type == R_ARM_JUMP24
4128 || r_type == R_ARM_PLT32
4129 || r_type == R_ARM_TLS_CALL)
4130 {
4131 if (input_sec->flags & SEC_ELF_PURECODE)
4132 _bfd_error_handler
4133 (_("%B(%A): warning: long branch veneers used in"
4134 " section with SHF_ARM_PURECODE section"
4135 " attribute is only supported for M-profile"
4136 " targets that implement the movw instruction."),
4137 input_bfd, input_sec);
4138 if (branch_type == ST_BRANCH_TO_THUMB)
4139 {
4140 /* Arm to thumb. */
4141
4142 if (sym_sec != NULL
4143 && sym_sec->owner != NULL
4144 && !INTERWORK_FLAG (sym_sec->owner))
4145 {
4146 _bfd_error_handler
4147 (_("%B(%s): warning: interworking not enabled.\n"
4148 " first occurrence: %B: ARM call to Thumb"),
4149 sym_sec->owner, input_bfd, name);
4150 }
4151
4152 /* We have an extra 2-bytes reach because of
4153 the mode change (bit 24 (H) of BLX encoding). */
4154 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4155 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4156 || (r_type == R_ARM_CALL && !globals->use_blx)
4157 || (r_type == R_ARM_JUMP24)
4158 || (r_type == R_ARM_PLT32))
4159 {
4160 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4161 /* PIC stubs. */
4162 ? ((globals->use_blx)
4163 /* V5T and above. */
4164 ? arm_stub_long_branch_any_thumb_pic
4165 /* V4T stub. */
4166 : arm_stub_long_branch_v4t_arm_thumb_pic)
4167
4168 /* non-PIC stubs. */
4169 : ((globals->use_blx)
4170 /* V5T and above. */
4171 ? arm_stub_long_branch_any_any
4172 /* V4T. */
4173 : arm_stub_long_branch_v4t_arm_thumb);
4174 }
4175 }
4176 else
4177 {
4178 /* Arm to arm. */
4179 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4180 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4181 {
4182 stub_type =
4183 (bfd_link_pic (info) | globals->pic_veneer)
4184 /* PIC stubs. */
4185 ? (r_type == R_ARM_TLS_CALL
4186 /* TLS PIC Stub. */
4187 ? arm_stub_long_branch_any_tls_pic
4188 : (globals->nacl_p
4189 ? arm_stub_long_branch_arm_nacl_pic
4190 : arm_stub_long_branch_any_arm_pic))
4191 /* non-PIC stubs. */
4192 : (globals->nacl_p
4193 ? arm_stub_long_branch_arm_nacl
4194 : arm_stub_long_branch_any_any);
4195 }
4196 }
4197 }
4198
4199 /* If a stub is needed, record the actual destination type. */
4200 if (stub_type != arm_stub_none)
4201 *actual_branch_type = branch_type;
4202
4203 return stub_type;
4204 }
4205
4206 /* Build a name for an entry in the stub hash table. */
4207
4208 static char *
4209 elf32_arm_stub_name (const asection *input_section,
4210 const asection *sym_sec,
4211 const struct elf32_arm_link_hash_entry *hash,
4212 const Elf_Internal_Rela *rel,
4213 enum elf32_arm_stub_type stub_type)
4214 {
4215 char *stub_name;
4216 bfd_size_type len;
4217
4218 if (hash)
4219 {
4220 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4221 stub_name = (char *) bfd_malloc (len);
4222 if (stub_name != NULL)
4223 sprintf (stub_name, "%08x_%s+%x_%d",
4224 input_section->id & 0xffffffff,
4225 hash->root.root.root.string,
4226 (int) rel->r_addend & 0xffffffff,
4227 (int) stub_type);
4228 }
4229 else
4230 {
4231 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4232 stub_name = (char *) bfd_malloc (len);
4233 if (stub_name != NULL)
4234 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4235 input_section->id & 0xffffffff,
4236 sym_sec->id & 0xffffffff,
4237 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4238 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4239 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4240 (int) rel->r_addend & 0xffffffff,
4241 (int) stub_type);
4242 }
4243
4244 return stub_name;
4245 }
4246
4247 /* Look up an entry in the stub hash. Stub entries are cached because
4248 creating the stub name takes a bit of time. */
4249
4250 static struct elf32_arm_stub_hash_entry *
4251 elf32_arm_get_stub_entry (const asection *input_section,
4252 const asection *sym_sec,
4253 struct elf_link_hash_entry *hash,
4254 const Elf_Internal_Rela *rel,
4255 struct elf32_arm_link_hash_table *htab,
4256 enum elf32_arm_stub_type stub_type)
4257 {
4258 struct elf32_arm_stub_hash_entry *stub_entry;
4259 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4260 const asection *id_sec;
4261
4262 if ((input_section->flags & SEC_CODE) == 0)
4263 return NULL;
4264
4265 /* If this input section is part of a group of sections sharing one
4266 stub section, then use the id of the first section in the group.
4267 Stub names need to include a section id, as there may well be
4268 more than one stub used to reach say, printf, and we need to
4269 distinguish between them. */
4270 BFD_ASSERT (input_section->id <= htab->top_id);
4271 id_sec = htab->stub_group[input_section->id].link_sec;
4272
4273 if (h != NULL && h->stub_cache != NULL
4274 && h->stub_cache->h == h
4275 && h->stub_cache->id_sec == id_sec
4276 && h->stub_cache->stub_type == stub_type)
4277 {
4278 stub_entry = h->stub_cache;
4279 }
4280 else
4281 {
4282 char *stub_name;
4283
4284 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4285 if (stub_name == NULL)
4286 return NULL;
4287
4288 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4289 stub_name, FALSE, FALSE);
4290 if (h != NULL)
4291 h->stub_cache = stub_entry;
4292
4293 free (stub_name);
4294 }
4295
4296 return stub_entry;
4297 }
4298
4299 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4300 section. */
4301
4302 static bfd_boolean
4303 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4304 {
4305 if (stub_type >= max_stub_type)
4306 abort (); /* Should be unreachable. */
4307
4308 switch (stub_type)
4309 {
4310 case arm_stub_cmse_branch_thumb_only:
4311 return TRUE;
4312
4313 default:
4314 return FALSE;
4315 }
4316
4317 abort (); /* Should be unreachable. */
4318 }
4319
4320 /* Required alignment (as a power of 2) for the dedicated section holding
4321 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4322 with input sections. */
4323
4324 static int
4325 arm_dedicated_stub_output_section_required_alignment
4326 (enum elf32_arm_stub_type stub_type)
4327 {
4328 if (stub_type >= max_stub_type)
4329 abort (); /* Should be unreachable. */
4330
4331 switch (stub_type)
4332 {
4333 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4334 boundary. */
4335 case arm_stub_cmse_branch_thumb_only:
4336 return 5;
4337
4338 default:
4339 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4340 return 0;
4341 }
4342
4343 abort (); /* Should be unreachable. */
4344 }
4345
4346 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4347 NULL if veneers of this type are interspersed with input sections. */
4348
4349 static const char *
4350 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4351 {
4352 if (stub_type >= max_stub_type)
4353 abort (); /* Should be unreachable. */
4354
4355 switch (stub_type)
4356 {
4357 case arm_stub_cmse_branch_thumb_only:
4358 return ".gnu.sgstubs";
4359
4360 default:
4361 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4362 return NULL;
4363 }
4364
4365 abort (); /* Should be unreachable. */
4366 }
4367
4368 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4369 returns the address of the hash table field in HTAB holding a pointer to the
4370 corresponding input section. Otherwise, returns NULL. */
4371
4372 static asection **
4373 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4374 enum elf32_arm_stub_type stub_type)
4375 {
4376 if (stub_type >= max_stub_type)
4377 abort (); /* Should be unreachable. */
4378
4379 switch (stub_type)
4380 {
4381 case arm_stub_cmse_branch_thumb_only:
4382 return &htab->cmse_stub_sec;
4383
4384 default:
4385 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4386 return NULL;
4387 }
4388
4389 abort (); /* Should be unreachable. */
4390 }
4391
4392 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4393 is the section that branch into veneer and can be NULL if stub should go in
4394 a dedicated output section. Returns a pointer to the stub section, and the
4395 section to which the stub section will be attached (in *LINK_SEC_P).
4396 LINK_SEC_P may be NULL. */
4397
4398 static asection *
4399 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4400 struct elf32_arm_link_hash_table *htab,
4401 enum elf32_arm_stub_type stub_type)
4402 {
4403 asection *link_sec, *out_sec, **stub_sec_p;
4404 const char *stub_sec_prefix;
4405 bfd_boolean dedicated_output_section =
4406 arm_dedicated_stub_output_section_required (stub_type);
4407 int align;
4408
4409 if (dedicated_output_section)
4410 {
4411 bfd *output_bfd = htab->obfd;
4412 const char *out_sec_name =
4413 arm_dedicated_stub_output_section_name (stub_type);
4414 link_sec = NULL;
4415 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4416 stub_sec_prefix = out_sec_name;
4417 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4418 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4419 if (out_sec == NULL)
4420 {
4421 _bfd_error_handler (_("No address assigned to the veneers output "
4422 "section %s"), out_sec_name);
4423 return NULL;
4424 }
4425 }
4426 else
4427 {
4428 BFD_ASSERT (section->id <= htab->top_id);
4429 link_sec = htab->stub_group[section->id].link_sec;
4430 BFD_ASSERT (link_sec != NULL);
4431 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4432 if (*stub_sec_p == NULL)
4433 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4434 stub_sec_prefix = link_sec->name;
4435 out_sec = link_sec->output_section;
4436 align = htab->nacl_p ? 4 : 3;
4437 }
4438
4439 if (*stub_sec_p == NULL)
4440 {
4441 size_t namelen;
4442 bfd_size_type len;
4443 char *s_name;
4444
4445 namelen = strlen (stub_sec_prefix);
4446 len = namelen + sizeof (STUB_SUFFIX);
4447 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4448 if (s_name == NULL)
4449 return NULL;
4450
4451 memcpy (s_name, stub_sec_prefix, namelen);
4452 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4453 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4454 align);
4455 if (*stub_sec_p == NULL)
4456 return NULL;
4457
4458 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4459 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4460 | SEC_KEEP;
4461 }
4462
4463 if (!dedicated_output_section)
4464 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4465
4466 if (link_sec_p)
4467 *link_sec_p = link_sec;
4468
4469 return *stub_sec_p;
4470 }
4471
4472 /* Add a new stub entry to the stub hash. Not all fields of the new
4473 stub entry are initialised. */
4474
4475 static struct elf32_arm_stub_hash_entry *
4476 elf32_arm_add_stub (const char *stub_name, asection *section,
4477 struct elf32_arm_link_hash_table *htab,
4478 enum elf32_arm_stub_type stub_type)
4479 {
4480 asection *link_sec;
4481 asection *stub_sec;
4482 struct elf32_arm_stub_hash_entry *stub_entry;
4483
4484 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4485 stub_type);
4486 if (stub_sec == NULL)
4487 return NULL;
4488
4489 /* Enter this entry into the linker stub hash table. */
4490 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4491 TRUE, FALSE);
4492 if (stub_entry == NULL)
4493 {
4494 if (section == NULL)
4495 section = stub_sec;
4496 _bfd_error_handler (_("%B: cannot create stub entry %s"),
4497 section->owner, stub_name);
4498 return NULL;
4499 }
4500
4501 stub_entry->stub_sec = stub_sec;
4502 stub_entry->stub_offset = (bfd_vma) -1;
4503 stub_entry->id_sec = link_sec;
4504
4505 return stub_entry;
4506 }
4507
4508 /* Store an Arm insn into an output section not processed by
4509 elf32_arm_write_section. */
4510
4511 static void
4512 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4513 bfd * output_bfd, bfd_vma val, void * ptr)
4514 {
4515 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4516 bfd_putl32 (val, ptr);
4517 else
4518 bfd_putb32 (val, ptr);
4519 }
4520
4521 /* Store a 16-bit Thumb insn into an output section not processed by
4522 elf32_arm_write_section. */
4523
4524 static void
4525 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4526 bfd * output_bfd, bfd_vma val, void * ptr)
4527 {
4528 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4529 bfd_putl16 (val, ptr);
4530 else
4531 bfd_putb16 (val, ptr);
4532 }
4533
4534 /* Store a Thumb2 insn into an output section not processed by
4535 elf32_arm_write_section. */
4536
4537 static void
4538 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4539 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4540 {
4541 /* T2 instructions are 16-bit streamed. */
4542 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4543 {
4544 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4545 bfd_putl16 ((val & 0xffff), ptr + 2);
4546 }
4547 else
4548 {
4549 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4550 bfd_putb16 ((val & 0xffff), ptr + 2);
4551 }
4552 }
4553
4554 /* If it's possible to change R_TYPE to a more efficient access
4555 model, return the new reloc type. */
4556
4557 static unsigned
4558 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4559 struct elf_link_hash_entry *h)
4560 {
4561 int is_local = (h == NULL);
4562
4563 if (bfd_link_pic (info)
4564 || (h && h->root.type == bfd_link_hash_undefweak))
4565 return r_type;
4566
4567 /* We do not support relaxations for Old TLS models. */
4568 switch (r_type)
4569 {
4570 case R_ARM_TLS_GOTDESC:
4571 case R_ARM_TLS_CALL:
4572 case R_ARM_THM_TLS_CALL:
4573 case R_ARM_TLS_DESCSEQ:
4574 case R_ARM_THM_TLS_DESCSEQ:
4575 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4576 }
4577
4578 return r_type;
4579 }
4580
4581 static bfd_reloc_status_type elf32_arm_final_link_relocate
4582 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4583 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4584 const char *, unsigned char, enum arm_st_branch_type,
4585 struct elf_link_hash_entry *, bfd_boolean *, char **);
4586
4587 static unsigned int
4588 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4589 {
4590 switch (stub_type)
4591 {
4592 case arm_stub_a8_veneer_b_cond:
4593 case arm_stub_a8_veneer_b:
4594 case arm_stub_a8_veneer_bl:
4595 return 2;
4596
4597 case arm_stub_long_branch_any_any:
4598 case arm_stub_long_branch_v4t_arm_thumb:
4599 case arm_stub_long_branch_thumb_only:
4600 case arm_stub_long_branch_thumb2_only:
4601 case arm_stub_long_branch_thumb2_only_pure:
4602 case arm_stub_long_branch_v4t_thumb_thumb:
4603 case arm_stub_long_branch_v4t_thumb_arm:
4604 case arm_stub_short_branch_v4t_thumb_arm:
4605 case arm_stub_long_branch_any_arm_pic:
4606 case arm_stub_long_branch_any_thumb_pic:
4607 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4608 case arm_stub_long_branch_v4t_arm_thumb_pic:
4609 case arm_stub_long_branch_v4t_thumb_arm_pic:
4610 case arm_stub_long_branch_thumb_only_pic:
4611 case arm_stub_long_branch_any_tls_pic:
4612 case arm_stub_long_branch_v4t_thumb_tls_pic:
4613 case arm_stub_cmse_branch_thumb_only:
4614 case arm_stub_a8_veneer_blx:
4615 return 4;
4616
4617 case arm_stub_long_branch_arm_nacl:
4618 case arm_stub_long_branch_arm_nacl_pic:
4619 return 16;
4620
4621 default:
4622 abort (); /* Should be unreachable. */
4623 }
4624 }
4625
4626 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4627 veneering (TRUE) or have their own symbol (FALSE). */
4628
4629 static bfd_boolean
4630 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4631 {
4632 if (stub_type >= max_stub_type)
4633 abort (); /* Should be unreachable. */
4634
4635 switch (stub_type)
4636 {
4637 case arm_stub_cmse_branch_thumb_only:
4638 return TRUE;
4639
4640 default:
4641 return FALSE;
4642 }
4643
4644 abort (); /* Should be unreachable. */
4645 }
4646
4647 /* Returns the padding needed for the dedicated section used stubs of type
4648 STUB_TYPE. */
4649
4650 static int
4651 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
4652 {
4653 if (stub_type >= max_stub_type)
4654 abort (); /* Should be unreachable. */
4655
4656 switch (stub_type)
4657 {
4658 case arm_stub_cmse_branch_thumb_only:
4659 return 32;
4660
4661 default:
4662 return 0;
4663 }
4664
4665 abort (); /* Should be unreachable. */
4666 }
4667
4668 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4669 returns the address of the hash table field in HTAB holding the offset at
4670 which new veneers should be layed out in the stub section. */
4671
4672 static bfd_vma*
4673 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
4674 enum elf32_arm_stub_type stub_type)
4675 {
4676 switch (stub_type)
4677 {
4678 case arm_stub_cmse_branch_thumb_only:
4679 return &htab->new_cmse_stub_offset;
4680
4681 default:
4682 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4683 return NULL;
4684 }
4685 }
4686
4687 static bfd_boolean
4688 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4689 void * in_arg)
4690 {
4691 #define MAXRELOCS 3
4692 bfd_boolean removed_sg_veneer;
4693 struct elf32_arm_stub_hash_entry *stub_entry;
4694 struct elf32_arm_link_hash_table *globals;
4695 struct bfd_link_info *info;
4696 asection *stub_sec;
4697 bfd *stub_bfd;
4698 bfd_byte *loc;
4699 bfd_vma sym_value;
4700 int template_size;
4701 int size;
4702 const insn_sequence *template_sequence;
4703 int i;
4704 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4705 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4706 int nrelocs = 0;
4707 int just_allocated = 0;
4708
4709 /* Massage our args to the form they really have. */
4710 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4711 info = (struct bfd_link_info *) in_arg;
4712
4713 globals = elf32_arm_hash_table (info);
4714 if (globals == NULL)
4715 return FALSE;
4716
4717 stub_sec = stub_entry->stub_sec;
4718
4719 if ((globals->fix_cortex_a8 < 0)
4720 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4721 /* We have to do less-strictly-aligned fixes last. */
4722 return TRUE;
4723
4724 /* Assign a slot at the end of section if none assigned yet. */
4725 if (stub_entry->stub_offset == (bfd_vma) -1)
4726 {
4727 stub_entry->stub_offset = stub_sec->size;
4728 just_allocated = 1;
4729 }
4730 loc = stub_sec->contents + stub_entry->stub_offset;
4731
4732 stub_bfd = stub_sec->owner;
4733
4734 /* This is the address of the stub destination. */
4735 sym_value = (stub_entry->target_value
4736 + stub_entry->target_section->output_offset
4737 + stub_entry->target_section->output_section->vma);
4738
4739 template_sequence = stub_entry->stub_template;
4740 template_size = stub_entry->stub_template_size;
4741
4742 size = 0;
4743 for (i = 0; i < template_size; i++)
4744 {
4745 switch (template_sequence[i].type)
4746 {
4747 case THUMB16_TYPE:
4748 {
4749 bfd_vma data = (bfd_vma) template_sequence[i].data;
4750 if (template_sequence[i].reloc_addend != 0)
4751 {
4752 /* We've borrowed the reloc_addend field to mean we should
4753 insert a condition code into this (Thumb-1 branch)
4754 instruction. See THUMB16_BCOND_INSN. */
4755 BFD_ASSERT ((data & 0xff00) == 0xd000);
4756 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4757 }
4758 bfd_put_16 (stub_bfd, data, loc + size);
4759 size += 2;
4760 }
4761 break;
4762
4763 case THUMB32_TYPE:
4764 bfd_put_16 (stub_bfd,
4765 (template_sequence[i].data >> 16) & 0xffff,
4766 loc + size);
4767 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4768 loc + size + 2);
4769 if (template_sequence[i].r_type != R_ARM_NONE)
4770 {
4771 stub_reloc_idx[nrelocs] = i;
4772 stub_reloc_offset[nrelocs++] = size;
4773 }
4774 size += 4;
4775 break;
4776
4777 case ARM_TYPE:
4778 bfd_put_32 (stub_bfd, template_sequence[i].data,
4779 loc + size);
4780 /* Handle cases where the target is encoded within the
4781 instruction. */
4782 if (template_sequence[i].r_type == R_ARM_JUMP24)
4783 {
4784 stub_reloc_idx[nrelocs] = i;
4785 stub_reloc_offset[nrelocs++] = size;
4786 }
4787 size += 4;
4788 break;
4789
4790 case DATA_TYPE:
4791 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4792 stub_reloc_idx[nrelocs] = i;
4793 stub_reloc_offset[nrelocs++] = size;
4794 size += 4;
4795 break;
4796
4797 default:
4798 BFD_FAIL ();
4799 return FALSE;
4800 }
4801 }
4802
4803 if (just_allocated)
4804 stub_sec->size += size;
4805
4806 /* Stub size has already been computed in arm_size_one_stub. Check
4807 consistency. */
4808 BFD_ASSERT (size == stub_entry->stub_size);
4809
4810 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4811 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4812 sym_value |= 1;
4813
4814 /* Assume non empty slots have at least one and at most MAXRELOCS entries
4815 to relocate in each stub. */
4816 removed_sg_veneer =
4817 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
4818 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
4819
4820 for (i = 0; i < nrelocs; i++)
4821 {
4822 Elf_Internal_Rela rel;
4823 bfd_boolean unresolved_reloc;
4824 char *error_message;
4825 bfd_vma points_to =
4826 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
4827
4828 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4829 rel.r_info = ELF32_R_INFO (0,
4830 template_sequence[stub_reloc_idx[i]].r_type);
4831 rel.r_addend = 0;
4832
4833 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4834 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4835 template should refer back to the instruction after the original
4836 branch. We use target_section as Cortex-A8 erratum workaround stubs
4837 are only generated when both source and target are in the same
4838 section. */
4839 points_to = stub_entry->target_section->output_section->vma
4840 + stub_entry->target_section->output_offset
4841 + stub_entry->source_value;
4842
4843 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4844 (template_sequence[stub_reloc_idx[i]].r_type),
4845 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4846 points_to, info, stub_entry->target_section, "", STT_FUNC,
4847 stub_entry->branch_type,
4848 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4849 &error_message);
4850 }
4851
4852 return TRUE;
4853 #undef MAXRELOCS
4854 }
4855
4856 /* Calculate the template, template size and instruction size for a stub.
4857 Return value is the instruction size. */
4858
4859 static unsigned int
4860 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4861 const insn_sequence **stub_template,
4862 int *stub_template_size)
4863 {
4864 const insn_sequence *template_sequence = NULL;
4865 int template_size = 0, i;
4866 unsigned int size;
4867
4868 template_sequence = stub_definitions[stub_type].template_sequence;
4869 if (stub_template)
4870 *stub_template = template_sequence;
4871
4872 template_size = stub_definitions[stub_type].template_size;
4873 if (stub_template_size)
4874 *stub_template_size = template_size;
4875
4876 size = 0;
4877 for (i = 0; i < template_size; i++)
4878 {
4879 switch (template_sequence[i].type)
4880 {
4881 case THUMB16_TYPE:
4882 size += 2;
4883 break;
4884
4885 case ARM_TYPE:
4886 case THUMB32_TYPE:
4887 case DATA_TYPE:
4888 size += 4;
4889 break;
4890
4891 default:
4892 BFD_FAIL ();
4893 return 0;
4894 }
4895 }
4896
4897 return size;
4898 }
4899
4900 /* As above, but don't actually build the stub. Just bump offset so
4901 we know stub section sizes. */
4902
4903 static bfd_boolean
4904 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4905 void *in_arg ATTRIBUTE_UNUSED)
4906 {
4907 struct elf32_arm_stub_hash_entry *stub_entry;
4908 const insn_sequence *template_sequence;
4909 int template_size, size;
4910
4911 /* Massage our args to the form they really have. */
4912 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4913
4914 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4915 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4916
4917 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4918 &template_size);
4919
4920 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
4921 if (stub_entry->stub_template_size)
4922 {
4923 stub_entry->stub_size = size;
4924 stub_entry->stub_template = template_sequence;
4925 stub_entry->stub_template_size = template_size;
4926 }
4927
4928 /* Already accounted for. */
4929 if (stub_entry->stub_offset != (bfd_vma) -1)
4930 return TRUE;
4931
4932 size = (size + 7) & ~7;
4933 stub_entry->stub_sec->size += size;
4934
4935 return TRUE;
4936 }
4937
4938 /* External entry points for sizing and building linker stubs. */
4939
4940 /* Set up various things so that we can make a list of input sections
4941 for each output section included in the link. Returns -1 on error,
4942 0 when no stubs will be needed, and 1 on success. */
4943
4944 int
4945 elf32_arm_setup_section_lists (bfd *output_bfd,
4946 struct bfd_link_info *info)
4947 {
4948 bfd *input_bfd;
4949 unsigned int bfd_count;
4950 unsigned int top_id, top_index;
4951 asection *section;
4952 asection **input_list, **list;
4953 bfd_size_type amt;
4954 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4955
4956 if (htab == NULL)
4957 return 0;
4958 if (! is_elf_hash_table (htab))
4959 return 0;
4960
4961 /* Count the number of input BFDs and find the top input section id. */
4962 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4963 input_bfd != NULL;
4964 input_bfd = input_bfd->link.next)
4965 {
4966 bfd_count += 1;
4967 for (section = input_bfd->sections;
4968 section != NULL;
4969 section = section->next)
4970 {
4971 if (top_id < section->id)
4972 top_id = section->id;
4973 }
4974 }
4975 htab->bfd_count = bfd_count;
4976
4977 amt = sizeof (struct map_stub) * (top_id + 1);
4978 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4979 if (htab->stub_group == NULL)
4980 return -1;
4981 htab->top_id = top_id;
4982
4983 /* We can't use output_bfd->section_count here to find the top output
4984 section index as some sections may have been removed, and
4985 _bfd_strip_section_from_output doesn't renumber the indices. */
4986 for (section = output_bfd->sections, top_index = 0;
4987 section != NULL;
4988 section = section->next)
4989 {
4990 if (top_index < section->index)
4991 top_index = section->index;
4992 }
4993
4994 htab->top_index = top_index;
4995 amt = sizeof (asection *) * (top_index + 1);
4996 input_list = (asection **) bfd_malloc (amt);
4997 htab->input_list = input_list;
4998 if (input_list == NULL)
4999 return -1;
5000
5001 /* For sections we aren't interested in, mark their entries with a
5002 value we can check later. */
5003 list = input_list + top_index;
5004 do
5005 *list = bfd_abs_section_ptr;
5006 while (list-- != input_list);
5007
5008 for (section = output_bfd->sections;
5009 section != NULL;
5010 section = section->next)
5011 {
5012 if ((section->flags & SEC_CODE) != 0)
5013 input_list[section->index] = NULL;
5014 }
5015
5016 return 1;
5017 }
5018
5019 /* The linker repeatedly calls this function for each input section,
5020 in the order that input sections are linked into output sections.
5021 Build lists of input sections to determine groupings between which
5022 we may insert linker stubs. */
5023
5024 void
5025 elf32_arm_next_input_section (struct bfd_link_info *info,
5026 asection *isec)
5027 {
5028 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5029
5030 if (htab == NULL)
5031 return;
5032
5033 if (isec->output_section->index <= htab->top_index)
5034 {
5035 asection **list = htab->input_list + isec->output_section->index;
5036
5037 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5038 {
5039 /* Steal the link_sec pointer for our list. */
5040 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5041 /* This happens to make the list in reverse order,
5042 which we reverse later. */
5043 PREV_SEC (isec) = *list;
5044 *list = isec;
5045 }
5046 }
5047 }
5048
5049 /* See whether we can group stub sections together. Grouping stub
5050 sections may result in fewer stubs. More importantly, we need to
5051 put all .init* and .fini* stubs at the end of the .init or
5052 .fini output sections respectively, because glibc splits the
5053 _init and _fini functions into multiple parts. Putting a stub in
5054 the middle of a function is not a good idea. */
5055
5056 static void
5057 group_sections (struct elf32_arm_link_hash_table *htab,
5058 bfd_size_type stub_group_size,
5059 bfd_boolean stubs_always_after_branch)
5060 {
5061 asection **list = htab->input_list;
5062
5063 do
5064 {
5065 asection *tail = *list;
5066 asection *head;
5067
5068 if (tail == bfd_abs_section_ptr)
5069 continue;
5070
5071 /* Reverse the list: we must avoid placing stubs at the
5072 beginning of the section because the beginning of the text
5073 section may be required for an interrupt vector in bare metal
5074 code. */
5075 #define NEXT_SEC PREV_SEC
5076 head = NULL;
5077 while (tail != NULL)
5078 {
5079 /* Pop from tail. */
5080 asection *item = tail;
5081 tail = PREV_SEC (item);
5082
5083 /* Push on head. */
5084 NEXT_SEC (item) = head;
5085 head = item;
5086 }
5087
5088 while (head != NULL)
5089 {
5090 asection *curr;
5091 asection *next;
5092 bfd_vma stub_group_start = head->output_offset;
5093 bfd_vma end_of_next;
5094
5095 curr = head;
5096 while (NEXT_SEC (curr) != NULL)
5097 {
5098 next = NEXT_SEC (curr);
5099 end_of_next = next->output_offset + next->size;
5100 if (end_of_next - stub_group_start >= stub_group_size)
5101 /* End of NEXT is too far from start, so stop. */
5102 break;
5103 /* Add NEXT to the group. */
5104 curr = next;
5105 }
5106
5107 /* OK, the size from the start to the start of CURR is less
5108 than stub_group_size and thus can be handled by one stub
5109 section. (Or the head section is itself larger than
5110 stub_group_size, in which case we may be toast.)
5111 We should really be keeping track of the total size of
5112 stubs added here, as stubs contribute to the final output
5113 section size. */
5114 do
5115 {
5116 next = NEXT_SEC (head);
5117 /* Set up this stub group. */
5118 htab->stub_group[head->id].link_sec = curr;
5119 }
5120 while (head != curr && (head = next) != NULL);
5121
5122 /* But wait, there's more! Input sections up to stub_group_size
5123 bytes after the stub section can be handled by it too. */
5124 if (!stubs_always_after_branch)
5125 {
5126 stub_group_start = curr->output_offset + curr->size;
5127
5128 while (next != NULL)
5129 {
5130 end_of_next = next->output_offset + next->size;
5131 if (end_of_next - stub_group_start >= stub_group_size)
5132 /* End of NEXT is too far from stubs, so stop. */
5133 break;
5134 /* Add NEXT to the stub group. */
5135 head = next;
5136 next = NEXT_SEC (head);
5137 htab->stub_group[head->id].link_sec = curr;
5138 }
5139 }
5140 head = next;
5141 }
5142 }
5143 while (list++ != htab->input_list + htab->top_index);
5144
5145 free (htab->input_list);
5146 #undef PREV_SEC
5147 #undef NEXT_SEC
5148 }
5149
5150 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5151 erratum fix. */
5152
5153 static int
5154 a8_reloc_compare (const void *a, const void *b)
5155 {
5156 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5157 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5158
5159 if (ra->from < rb->from)
5160 return -1;
5161 else if (ra->from > rb->from)
5162 return 1;
5163 else
5164 return 0;
5165 }
5166
5167 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5168 const char *, char **);
5169
5170 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5171 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5172 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5173 otherwise. */
5174
5175 static bfd_boolean
5176 cortex_a8_erratum_scan (bfd *input_bfd,
5177 struct bfd_link_info *info,
5178 struct a8_erratum_fix **a8_fixes_p,
5179 unsigned int *num_a8_fixes_p,
5180 unsigned int *a8_fix_table_size_p,
5181 struct a8_erratum_reloc *a8_relocs,
5182 unsigned int num_a8_relocs,
5183 unsigned prev_num_a8_fixes,
5184 bfd_boolean *stub_changed_p)
5185 {
5186 asection *section;
5187 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5188 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5189 unsigned int num_a8_fixes = *num_a8_fixes_p;
5190 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5191
5192 if (htab == NULL)
5193 return FALSE;
5194
5195 for (section = input_bfd->sections;
5196 section != NULL;
5197 section = section->next)
5198 {
5199 bfd_byte *contents = NULL;
5200 struct _arm_elf_section_data *sec_data;
5201 unsigned int span;
5202 bfd_vma base_vma;
5203
5204 if (elf_section_type (section) != SHT_PROGBITS
5205 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5206 || (section->flags & SEC_EXCLUDE) != 0
5207 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5208 || (section->output_section == bfd_abs_section_ptr))
5209 continue;
5210
5211 base_vma = section->output_section->vma + section->output_offset;
5212
5213 if (elf_section_data (section)->this_hdr.contents != NULL)
5214 contents = elf_section_data (section)->this_hdr.contents;
5215 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5216 return TRUE;
5217
5218 sec_data = elf32_arm_section_data (section);
5219
5220 for (span = 0; span < sec_data->mapcount; span++)
5221 {
5222 unsigned int span_start = sec_data->map[span].vma;
5223 unsigned int span_end = (span == sec_data->mapcount - 1)
5224 ? section->size : sec_data->map[span + 1].vma;
5225 unsigned int i;
5226 char span_type = sec_data->map[span].type;
5227 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5228
5229 if (span_type != 't')
5230 continue;
5231
5232 /* Span is entirely within a single 4KB region: skip scanning. */
5233 if (((base_vma + span_start) & ~0xfff)
5234 == ((base_vma + span_end) & ~0xfff))
5235 continue;
5236
5237 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5238
5239 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5240 * The branch target is in the same 4KB region as the
5241 first half of the branch.
5242 * The instruction before the branch is a 32-bit
5243 length non-branch instruction. */
5244 for (i = span_start; i < span_end;)
5245 {
5246 unsigned int insn = bfd_getl16 (&contents[i]);
5247 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5248 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5249
5250 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5251 insn_32bit = TRUE;
5252
5253 if (insn_32bit)
5254 {
5255 /* Load the rest of the insn (in manual-friendly order). */
5256 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5257
5258 /* Encoding T4: B<c>.W. */
5259 is_b = (insn & 0xf800d000) == 0xf0009000;
5260 /* Encoding T1: BL<c>.W. */
5261 is_bl = (insn & 0xf800d000) == 0xf000d000;
5262 /* Encoding T2: BLX<c>.W. */
5263 is_blx = (insn & 0xf800d000) == 0xf000c000;
5264 /* Encoding T3: B<c>.W (not permitted in IT block). */
5265 is_bcc = (insn & 0xf800d000) == 0xf0008000
5266 && (insn & 0x07f00000) != 0x03800000;
5267 }
5268
5269 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5270
5271 if (((base_vma + i) & 0xfff) == 0xffe
5272 && insn_32bit
5273 && is_32bit_branch
5274 && last_was_32bit
5275 && ! last_was_branch)
5276 {
5277 bfd_signed_vma offset = 0;
5278 bfd_boolean force_target_arm = FALSE;
5279 bfd_boolean force_target_thumb = FALSE;
5280 bfd_vma target;
5281 enum elf32_arm_stub_type stub_type = arm_stub_none;
5282 struct a8_erratum_reloc key, *found;
5283 bfd_boolean use_plt = FALSE;
5284
5285 key.from = base_vma + i;
5286 found = (struct a8_erratum_reloc *)
5287 bsearch (&key, a8_relocs, num_a8_relocs,
5288 sizeof (struct a8_erratum_reloc),
5289 &a8_reloc_compare);
5290
5291 if (found)
5292 {
5293 char *error_message = NULL;
5294 struct elf_link_hash_entry *entry;
5295
5296 /* We don't care about the error returned from this
5297 function, only if there is glue or not. */
5298 entry = find_thumb_glue (info, found->sym_name,
5299 &error_message);
5300
5301 if (entry)
5302 found->non_a8_stub = TRUE;
5303
5304 /* Keep a simpler condition, for the sake of clarity. */
5305 if (htab->root.splt != NULL && found->hash != NULL
5306 && found->hash->root.plt.offset != (bfd_vma) -1)
5307 use_plt = TRUE;
5308
5309 if (found->r_type == R_ARM_THM_CALL)
5310 {
5311 if (found->branch_type == ST_BRANCH_TO_ARM
5312 || use_plt)
5313 force_target_arm = TRUE;
5314 else
5315 force_target_thumb = TRUE;
5316 }
5317 }
5318
5319 /* Check if we have an offending branch instruction. */
5320
5321 if (found && found->non_a8_stub)
5322 /* We've already made a stub for this instruction, e.g.
5323 it's a long branch or a Thumb->ARM stub. Assume that
5324 stub will suffice to work around the A8 erratum (see
5325 setting of always_after_branch above). */
5326 ;
5327 else if (is_bcc)
5328 {
5329 offset = (insn & 0x7ff) << 1;
5330 offset |= (insn & 0x3f0000) >> 4;
5331 offset |= (insn & 0x2000) ? 0x40000 : 0;
5332 offset |= (insn & 0x800) ? 0x80000 : 0;
5333 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5334 if (offset & 0x100000)
5335 offset |= ~ ((bfd_signed_vma) 0xfffff);
5336 stub_type = arm_stub_a8_veneer_b_cond;
5337 }
5338 else if (is_b || is_bl || is_blx)
5339 {
5340 int s = (insn & 0x4000000) != 0;
5341 int j1 = (insn & 0x2000) != 0;
5342 int j2 = (insn & 0x800) != 0;
5343 int i1 = !(j1 ^ s);
5344 int i2 = !(j2 ^ s);
5345
5346 offset = (insn & 0x7ff) << 1;
5347 offset |= (insn & 0x3ff0000) >> 4;
5348 offset |= i2 << 22;
5349 offset |= i1 << 23;
5350 offset |= s << 24;
5351 if (offset & 0x1000000)
5352 offset |= ~ ((bfd_signed_vma) 0xffffff);
5353
5354 if (is_blx)
5355 offset &= ~ ((bfd_signed_vma) 3);
5356
5357 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5358 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5359 }
5360
5361 if (stub_type != arm_stub_none)
5362 {
5363 bfd_vma pc_for_insn = base_vma + i + 4;
5364
5365 /* The original instruction is a BL, but the target is
5366 an ARM instruction. If we were not making a stub,
5367 the BL would have been converted to a BLX. Use the
5368 BLX stub instead in that case. */
5369 if (htab->use_blx && force_target_arm
5370 && stub_type == arm_stub_a8_veneer_bl)
5371 {
5372 stub_type = arm_stub_a8_veneer_blx;
5373 is_blx = TRUE;
5374 is_bl = FALSE;
5375 }
5376 /* Conversely, if the original instruction was
5377 BLX but the target is Thumb mode, use the BL
5378 stub. */
5379 else if (force_target_thumb
5380 && stub_type == arm_stub_a8_veneer_blx)
5381 {
5382 stub_type = arm_stub_a8_veneer_bl;
5383 is_blx = FALSE;
5384 is_bl = TRUE;
5385 }
5386
5387 if (is_blx)
5388 pc_for_insn &= ~ ((bfd_vma) 3);
5389
5390 /* If we found a relocation, use the proper destination,
5391 not the offset in the (unrelocated) instruction.
5392 Note this is always done if we switched the stub type
5393 above. */
5394 if (found)
5395 offset =
5396 (bfd_signed_vma) (found->destination - pc_for_insn);
5397
5398 /* If the stub will use a Thumb-mode branch to a
5399 PLT target, redirect it to the preceding Thumb
5400 entry point. */
5401 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5402 offset -= PLT_THUMB_STUB_SIZE;
5403
5404 target = pc_for_insn + offset;
5405
5406 /* The BLX stub is ARM-mode code. Adjust the offset to
5407 take the different PC value (+8 instead of +4) into
5408 account. */
5409 if (stub_type == arm_stub_a8_veneer_blx)
5410 offset += 4;
5411
5412 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5413 {
5414 char *stub_name = NULL;
5415
5416 if (num_a8_fixes == a8_fix_table_size)
5417 {
5418 a8_fix_table_size *= 2;
5419 a8_fixes = (struct a8_erratum_fix *)
5420 bfd_realloc (a8_fixes,
5421 sizeof (struct a8_erratum_fix)
5422 * a8_fix_table_size);
5423 }
5424
5425 if (num_a8_fixes < prev_num_a8_fixes)
5426 {
5427 /* If we're doing a subsequent scan,
5428 check if we've found the same fix as
5429 before, and try and reuse the stub
5430 name. */
5431 stub_name = a8_fixes[num_a8_fixes].stub_name;
5432 if ((a8_fixes[num_a8_fixes].section != section)
5433 || (a8_fixes[num_a8_fixes].offset != i))
5434 {
5435 free (stub_name);
5436 stub_name = NULL;
5437 *stub_changed_p = TRUE;
5438 }
5439 }
5440
5441 if (!stub_name)
5442 {
5443 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5444 if (stub_name != NULL)
5445 sprintf (stub_name, "%x:%x", section->id, i);
5446 }
5447
5448 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5449 a8_fixes[num_a8_fixes].section = section;
5450 a8_fixes[num_a8_fixes].offset = i;
5451 a8_fixes[num_a8_fixes].target_offset =
5452 target - base_vma;
5453 a8_fixes[num_a8_fixes].orig_insn = insn;
5454 a8_fixes[num_a8_fixes].stub_name = stub_name;
5455 a8_fixes[num_a8_fixes].stub_type = stub_type;
5456 a8_fixes[num_a8_fixes].branch_type =
5457 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5458
5459 num_a8_fixes++;
5460 }
5461 }
5462 }
5463
5464 i += insn_32bit ? 4 : 2;
5465 last_was_32bit = insn_32bit;
5466 last_was_branch = is_32bit_branch;
5467 }
5468 }
5469
5470 if (elf_section_data (section)->this_hdr.contents == NULL)
5471 free (contents);
5472 }
5473
5474 *a8_fixes_p = a8_fixes;
5475 *num_a8_fixes_p = num_a8_fixes;
5476 *a8_fix_table_size_p = a8_fix_table_size;
5477
5478 return FALSE;
5479 }
5480
5481 /* Create or update a stub entry depending on whether the stub can already be
5482 found in HTAB. The stub is identified by:
5483 - its type STUB_TYPE
5484 - its source branch (note that several can share the same stub) whose
5485 section and relocation (if any) are given by SECTION and IRELA
5486 respectively
5487 - its target symbol whose input section, hash, name, value and branch type
5488 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5489 respectively
5490
5491 If found, the value of the stub's target symbol is updated from SYM_VALUE
5492 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5493 TRUE and the stub entry is initialized.
5494
5495 Returns the stub that was created or updated, or NULL if an error
5496 occurred. */
5497
5498 static struct elf32_arm_stub_hash_entry *
5499 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5500 enum elf32_arm_stub_type stub_type, asection *section,
5501 Elf_Internal_Rela *irela, asection *sym_sec,
5502 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5503 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5504 bfd_boolean *new_stub)
5505 {
5506 const asection *id_sec;
5507 char *stub_name;
5508 struct elf32_arm_stub_hash_entry *stub_entry;
5509 unsigned int r_type;
5510 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5511
5512 BFD_ASSERT (stub_type != arm_stub_none);
5513 *new_stub = FALSE;
5514
5515 if (sym_claimed)
5516 stub_name = sym_name;
5517 else
5518 {
5519 BFD_ASSERT (irela);
5520 BFD_ASSERT (section);
5521 BFD_ASSERT (section->id <= htab->top_id);
5522
5523 /* Support for grouping stub sections. */
5524 id_sec = htab->stub_group[section->id].link_sec;
5525
5526 /* Get the name of this stub. */
5527 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5528 stub_type);
5529 if (!stub_name)
5530 return NULL;
5531 }
5532
5533 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5534 FALSE);
5535 /* The proper stub has already been created, just update its value. */
5536 if (stub_entry != NULL)
5537 {
5538 if (!sym_claimed)
5539 free (stub_name);
5540 stub_entry->target_value = sym_value;
5541 return stub_entry;
5542 }
5543
5544 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5545 if (stub_entry == NULL)
5546 {
5547 if (!sym_claimed)
5548 free (stub_name);
5549 return NULL;
5550 }
5551
5552 stub_entry->target_value = sym_value;
5553 stub_entry->target_section = sym_sec;
5554 stub_entry->stub_type = stub_type;
5555 stub_entry->h = hash;
5556 stub_entry->branch_type = branch_type;
5557
5558 if (sym_claimed)
5559 stub_entry->output_name = sym_name;
5560 else
5561 {
5562 if (sym_name == NULL)
5563 sym_name = "unnamed";
5564 stub_entry->output_name = (char *)
5565 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5566 + strlen (sym_name));
5567 if (stub_entry->output_name == NULL)
5568 {
5569 free (stub_name);
5570 return NULL;
5571 }
5572
5573 /* For historical reasons, use the existing names for ARM-to-Thumb and
5574 Thumb-to-ARM stubs. */
5575 r_type = ELF32_R_TYPE (irela->r_info);
5576 if ((r_type == (unsigned int) R_ARM_THM_CALL
5577 || r_type == (unsigned int) R_ARM_THM_JUMP24
5578 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5579 && branch_type == ST_BRANCH_TO_ARM)
5580 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5581 else if ((r_type == (unsigned int) R_ARM_CALL
5582 || r_type == (unsigned int) R_ARM_JUMP24)
5583 && branch_type == ST_BRANCH_TO_THUMB)
5584 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5585 else
5586 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5587 }
5588
5589 *new_stub = TRUE;
5590 return stub_entry;
5591 }
5592
5593 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5594 gateway veneer to transition from non secure to secure state and create them
5595 accordingly.
5596
5597 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5598 defines the conditions that govern Secure Gateway veneer creation for a
5599 given symbol <SYM> as follows:
5600 - it has function type
5601 - it has non local binding
5602 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5603 same type, binding and value as <SYM> (called normal symbol).
5604 An entry function can handle secure state transition itself in which case
5605 its special symbol would have a different value from the normal symbol.
5606
5607 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5608 entry mapping while HTAB gives the name to hash entry mapping.
5609 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5610 created.
5611
5612 The return value gives whether a stub failed to be allocated. */
5613
5614 static bfd_boolean
5615 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5616 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5617 int *cmse_stub_created)
5618 {
5619 const struct elf_backend_data *bed;
5620 Elf_Internal_Shdr *symtab_hdr;
5621 unsigned i, j, sym_count, ext_start;
5622 Elf_Internal_Sym *cmse_sym, *local_syms;
5623 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5624 enum arm_st_branch_type branch_type;
5625 char *sym_name, *lsym_name;
5626 bfd_vma sym_value;
5627 asection *section;
5628 struct elf32_arm_stub_hash_entry *stub_entry;
5629 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5630
5631 bed = get_elf_backend_data (input_bfd);
5632 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5633 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5634 ext_start = symtab_hdr->sh_info;
5635 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5636 && out_attr[Tag_CPU_arch_profile].i == 'M');
5637
5638 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5639 if (local_syms == NULL)
5640 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5641 symtab_hdr->sh_info, 0, NULL, NULL,
5642 NULL);
5643 if (symtab_hdr->sh_info && local_syms == NULL)
5644 return FALSE;
5645
5646 /* Scan symbols. */
5647 for (i = 0; i < sym_count; i++)
5648 {
5649 cmse_invalid = FALSE;
5650
5651 if (i < ext_start)
5652 {
5653 cmse_sym = &local_syms[i];
5654 /* Not a special symbol. */
5655 if (!ARM_GET_SYM_CMSE_SPCL (cmse_sym->st_target_internal))
5656 continue;
5657 sym_name = bfd_elf_string_from_elf_section (input_bfd,
5658 symtab_hdr->sh_link,
5659 cmse_sym->st_name);
5660 /* Special symbol with local binding. */
5661 cmse_invalid = TRUE;
5662 }
5663 else
5664 {
5665 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
5666 sym_name = (char *) cmse_hash->root.root.root.string;
5667
5668 /* Not a special symbol. */
5669 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
5670 continue;
5671
5672 /* Special symbol has incorrect binding or type. */
5673 if ((cmse_hash->root.root.type != bfd_link_hash_defined
5674 && cmse_hash->root.root.type != bfd_link_hash_defweak)
5675 || cmse_hash->root.type != STT_FUNC)
5676 cmse_invalid = TRUE;
5677 }
5678
5679 if (!is_v8m)
5680 {
5681 _bfd_error_handler (_("%B: Special symbol `%s' only allowed for "
5682 "ARMv8-M architecture or later."),
5683 input_bfd, sym_name);
5684 is_v8m = TRUE; /* Avoid multiple warning. */
5685 ret = FALSE;
5686 }
5687
5688 if (cmse_invalid)
5689 {
5690 _bfd_error_handler (_("%B: invalid special symbol `%s'."),
5691 input_bfd, sym_name);
5692 _bfd_error_handler (_("It must be a global or weak function "
5693 "symbol."));
5694 ret = FALSE;
5695 if (i < ext_start)
5696 continue;
5697 }
5698
5699 sym_name += strlen (CMSE_PREFIX);
5700 hash = (struct elf32_arm_link_hash_entry *)
5701 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5702
5703 /* No associated normal symbol or it is neither global nor weak. */
5704 if (!hash
5705 || (hash->root.root.type != bfd_link_hash_defined
5706 && hash->root.root.type != bfd_link_hash_defweak)
5707 || hash->root.type != STT_FUNC)
5708 {
5709 /* Initialize here to avoid warning about use of possibly
5710 uninitialized variable. */
5711 j = 0;
5712
5713 if (!hash)
5714 {
5715 /* Searching for a normal symbol with local binding. */
5716 for (; j < ext_start; j++)
5717 {
5718 lsym_name =
5719 bfd_elf_string_from_elf_section (input_bfd,
5720 symtab_hdr->sh_link,
5721 local_syms[j].st_name);
5722 if (!strcmp (sym_name, lsym_name))
5723 break;
5724 }
5725 }
5726
5727 if (hash || j < ext_start)
5728 {
5729 _bfd_error_handler
5730 (_("%B: invalid standard symbol `%s'."), input_bfd, sym_name);
5731 _bfd_error_handler
5732 (_("It must be a global or weak function symbol."));
5733 }
5734 else
5735 _bfd_error_handler
5736 (_("%B: absent standard symbol `%s'."), input_bfd, sym_name);
5737 ret = FALSE;
5738 if (!hash)
5739 continue;
5740 }
5741
5742 sym_value = hash->root.root.u.def.value;
5743 section = hash->root.root.u.def.section;
5744
5745 if (cmse_hash->root.root.u.def.section != section)
5746 {
5747 _bfd_error_handler
5748 (_("%B: `%s' and its special symbol are in different sections."),
5749 input_bfd, sym_name);
5750 ret = FALSE;
5751 }
5752 if (cmse_hash->root.root.u.def.value != sym_value)
5753 continue; /* Ignore: could be an entry function starting with SG. */
5754
5755 /* If this section is a link-once section that will be discarded, then
5756 don't create any stubs. */
5757 if (section->output_section == NULL)
5758 {
5759 _bfd_error_handler
5760 (_("%B: entry function `%s' not output."), input_bfd, sym_name);
5761 continue;
5762 }
5763
5764 if (hash->root.size == 0)
5765 {
5766 _bfd_error_handler
5767 (_("%B: entry function `%s' is empty."), input_bfd, sym_name);
5768 ret = FALSE;
5769 }
5770
5771 if (!ret)
5772 continue;
5773 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
5774 stub_entry
5775 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5776 NULL, NULL, section, hash, sym_name,
5777 sym_value, branch_type, &new_stub);
5778
5779 if (stub_entry == NULL)
5780 ret = FALSE;
5781 else
5782 {
5783 BFD_ASSERT (new_stub);
5784 (*cmse_stub_created)++;
5785 }
5786 }
5787
5788 if (!symtab_hdr->contents)
5789 free (local_syms);
5790 return ret;
5791 }
5792
5793 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
5794 code entry function, ie can be called from non secure code without using a
5795 veneer. */
5796
5797 static bfd_boolean
5798 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
5799 {
5800 bfd_byte contents[4];
5801 uint32_t first_insn;
5802 asection *section;
5803 file_ptr offset;
5804 bfd *abfd;
5805
5806 /* Defined symbol of function type. */
5807 if (hash->root.root.type != bfd_link_hash_defined
5808 && hash->root.root.type != bfd_link_hash_defweak)
5809 return FALSE;
5810 if (hash->root.type != STT_FUNC)
5811 return FALSE;
5812
5813 /* Read first instruction. */
5814 section = hash->root.root.u.def.section;
5815 abfd = section->owner;
5816 offset = hash->root.root.u.def.value - section->vma;
5817 if (!bfd_get_section_contents (abfd, section, contents, offset,
5818 sizeof (contents)))
5819 return FALSE;
5820
5821 first_insn = bfd_get_32 (abfd, contents);
5822
5823 /* Starts by SG instruction. */
5824 return first_insn == 0xe97fe97f;
5825 }
5826
5827 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
5828 secure gateway veneers (ie. the veneers was not in the input import library)
5829 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
5830
5831 static bfd_boolean
5832 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
5833 {
5834 struct elf32_arm_stub_hash_entry *stub_entry;
5835 struct bfd_link_info *info;
5836
5837 /* Massage our args to the form they really have. */
5838 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5839 info = (struct bfd_link_info *) gen_info;
5840
5841 if (info->out_implib_bfd)
5842 return TRUE;
5843
5844 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
5845 return TRUE;
5846
5847 if (stub_entry->stub_offset == (bfd_vma) -1)
5848 _bfd_error_handler (" %s", stub_entry->output_name);
5849
5850 return TRUE;
5851 }
5852
5853 /* Set offset of each secure gateway veneers so that its address remain
5854 identical to the one in the input import library referred by
5855 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
5856 (present in input import library but absent from the executable being
5857 linked) or if new veneers appeared and there is no output import library
5858 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
5859 number of secure gateway veneers found in the input import library.
5860
5861 The function returns whether an error occurred. If no error occurred,
5862 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
5863 and this function and HTAB->new_cmse_stub_offset is set to the biggest
5864 veneer observed set for new veneers to be layed out after. */
5865
5866 static bfd_boolean
5867 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
5868 struct elf32_arm_link_hash_table *htab,
5869 int *cmse_stub_created)
5870 {
5871 long symsize;
5872 char *sym_name;
5873 flagword flags;
5874 long i, symcount;
5875 bfd *in_implib_bfd;
5876 asection *stub_out_sec;
5877 bfd_boolean ret = TRUE;
5878 Elf_Internal_Sym *intsym;
5879 const char *out_sec_name;
5880 bfd_size_type cmse_stub_size;
5881 asymbol **sympp = NULL, *sym;
5882 struct elf32_arm_link_hash_entry *hash;
5883 const insn_sequence *cmse_stub_template;
5884 struct elf32_arm_stub_hash_entry *stub_entry;
5885 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
5886 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
5887 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
5888
5889 /* No input secure gateway import library. */
5890 if (!htab->in_implib_bfd)
5891 return TRUE;
5892
5893 in_implib_bfd = htab->in_implib_bfd;
5894 if (!htab->cmse_implib)
5895 {
5896 _bfd_error_handler (_("%B: --in-implib only supported for Secure "
5897 "Gateway import libraries."), in_implib_bfd);
5898 return FALSE;
5899 }
5900
5901 /* Get symbol table size. */
5902 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
5903 if (symsize < 0)
5904 return FALSE;
5905
5906 /* Read in the input secure gateway import library's symbol table. */
5907 sympp = (asymbol **) xmalloc (symsize);
5908 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
5909 if (symcount < 0)
5910 {
5911 ret = FALSE;
5912 goto free_sym_buf;
5913 }
5914
5915 htab->new_cmse_stub_offset = 0;
5916 cmse_stub_size =
5917 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
5918 &cmse_stub_template,
5919 &cmse_stub_template_size);
5920 out_sec_name =
5921 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
5922 stub_out_sec =
5923 bfd_get_section_by_name (htab->obfd, out_sec_name);
5924 if (stub_out_sec != NULL)
5925 cmse_stub_sec_vma = stub_out_sec->vma;
5926
5927 /* Set addresses of veneers mentionned in input secure gateway import
5928 library's symbol table. */
5929 for (i = 0; i < symcount; i++)
5930 {
5931 sym = sympp[i];
5932 flags = sym->flags;
5933 sym_name = (char *) bfd_asymbol_name (sym);
5934 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
5935
5936 if (sym->section != bfd_abs_section_ptr
5937 || !(flags & (BSF_GLOBAL | BSF_WEAK))
5938 || (flags & BSF_FUNCTION) != BSF_FUNCTION
5939 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
5940 != ST_BRANCH_TO_THUMB))
5941 {
5942 _bfd_error_handler (_("%B: invalid import library entry: `%s'."),
5943 in_implib_bfd, sym_name);
5944 _bfd_error_handler (_("Symbol should be absolute, global and "
5945 "refer to Thumb functions."));
5946 ret = FALSE;
5947 continue;
5948 }
5949
5950 veneer_value = bfd_asymbol_value (sym);
5951 stub_offset = veneer_value - cmse_stub_sec_vma;
5952 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
5953 FALSE, FALSE);
5954 hash = (struct elf32_arm_link_hash_entry *)
5955 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
5956
5957 /* Stub entry should have been created by cmse_scan or the symbol be of
5958 a secure function callable from non secure code. */
5959 if (!stub_entry && !hash)
5960 {
5961 bfd_boolean new_stub;
5962
5963 _bfd_error_handler
5964 (_("Entry function `%s' disappeared from secure code."), sym_name);
5965 hash = (struct elf32_arm_link_hash_entry *)
5966 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
5967 stub_entry
5968 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
5969 NULL, NULL, bfd_abs_section_ptr, hash,
5970 sym_name, veneer_value,
5971 ST_BRANCH_TO_THUMB, &new_stub);
5972 if (stub_entry == NULL)
5973 ret = FALSE;
5974 else
5975 {
5976 BFD_ASSERT (new_stub);
5977 new_cmse_stubs_created++;
5978 (*cmse_stub_created)++;
5979 }
5980 stub_entry->stub_template_size = stub_entry->stub_size = 0;
5981 stub_entry->stub_offset = stub_offset;
5982 }
5983 /* Symbol found is not callable from non secure code. */
5984 else if (!stub_entry)
5985 {
5986 if (!cmse_entry_fct_p (hash))
5987 {
5988 _bfd_error_handler (_("`%s' refers to a non entry function."),
5989 sym_name);
5990 ret = FALSE;
5991 }
5992 continue;
5993 }
5994 else
5995 {
5996 /* Only stubs for SG veneers should have been created. */
5997 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5998
5999 /* Check visibility hasn't changed. */
6000 if (!!(flags & BSF_GLOBAL)
6001 != (hash->root.root.type == bfd_link_hash_defined))
6002 _bfd_error_handler
6003 (_("%B: visibility of symbol `%s' has changed."), in_implib_bfd,
6004 sym_name);
6005
6006 stub_entry->stub_offset = stub_offset;
6007 }
6008
6009 /* Size should match that of a SG veneer. */
6010 if (intsym->st_size != cmse_stub_size)
6011 {
6012 _bfd_error_handler (_("%B: incorrect size for symbol `%s'."),
6013 in_implib_bfd, sym_name);
6014 ret = FALSE;
6015 }
6016
6017 /* Previous veneer address is before current SG veneer section. */
6018 if (veneer_value < cmse_stub_sec_vma)
6019 {
6020 /* Avoid offset underflow. */
6021 if (stub_entry)
6022 stub_entry->stub_offset = 0;
6023 stub_offset = 0;
6024 ret = FALSE;
6025 }
6026
6027 /* Complain if stub offset not a multiple of stub size. */
6028 if (stub_offset % cmse_stub_size)
6029 {
6030 _bfd_error_handler
6031 (_("Offset of veneer for entry function `%s' not a multiple of "
6032 "its size."), sym_name);
6033 ret = FALSE;
6034 }
6035
6036 if (!ret)
6037 continue;
6038
6039 new_cmse_stubs_created--;
6040 if (veneer_value < cmse_stub_array_start)
6041 cmse_stub_array_start = veneer_value;
6042 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6043 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6044 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6045 }
6046
6047 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6048 {
6049 BFD_ASSERT (new_cmse_stubs_created > 0);
6050 _bfd_error_handler
6051 (_("new entry function(s) introduced but no output import library "
6052 "specified:"));
6053 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6054 }
6055
6056 if (cmse_stub_array_start != cmse_stub_sec_vma)
6057 {
6058 _bfd_error_handler
6059 (_("Start address of `%s' is different from previous link."),
6060 out_sec_name);
6061 ret = FALSE;
6062 }
6063
6064 free_sym_buf:
6065 free (sympp);
6066 return ret;
6067 }
6068
6069 /* Determine and set the size of the stub section for a final link.
6070
6071 The basic idea here is to examine all the relocations looking for
6072 PC-relative calls to a target that is unreachable with a "bl"
6073 instruction. */
6074
6075 bfd_boolean
6076 elf32_arm_size_stubs (bfd *output_bfd,
6077 bfd *stub_bfd,
6078 struct bfd_link_info *info,
6079 bfd_signed_vma group_size,
6080 asection * (*add_stub_section) (const char *, asection *,
6081 asection *,
6082 unsigned int),
6083 void (*layout_sections_again) (void))
6084 {
6085 bfd_boolean ret = TRUE;
6086 obj_attribute *out_attr;
6087 int cmse_stub_created = 0;
6088 bfd_size_type stub_group_size;
6089 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6090 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6091 struct a8_erratum_fix *a8_fixes = NULL;
6092 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6093 struct a8_erratum_reloc *a8_relocs = NULL;
6094 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6095
6096 if (htab == NULL)
6097 return FALSE;
6098
6099 if (htab->fix_cortex_a8)
6100 {
6101 a8_fixes = (struct a8_erratum_fix *)
6102 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6103 a8_relocs = (struct a8_erratum_reloc *)
6104 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6105 }
6106
6107 /* Propagate mach to stub bfd, because it may not have been
6108 finalized when we created stub_bfd. */
6109 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6110 bfd_get_mach (output_bfd));
6111
6112 /* Stash our params away. */
6113 htab->stub_bfd = stub_bfd;
6114 htab->add_stub_section = add_stub_section;
6115 htab->layout_sections_again = layout_sections_again;
6116 stubs_always_after_branch = group_size < 0;
6117
6118 out_attr = elf_known_obj_attributes_proc (output_bfd);
6119 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6120
6121 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6122 as the first half of a 32-bit branch straddling two 4K pages. This is a
6123 crude way of enforcing that. */
6124 if (htab->fix_cortex_a8)
6125 stubs_always_after_branch = 1;
6126
6127 if (group_size < 0)
6128 stub_group_size = -group_size;
6129 else
6130 stub_group_size = group_size;
6131
6132 if (stub_group_size == 1)
6133 {
6134 /* Default values. */
6135 /* Thumb branch range is +-4MB has to be used as the default
6136 maximum size (a given section can contain both ARM and Thumb
6137 code, so the worst case has to be taken into account).
6138
6139 This value is 24K less than that, which allows for 2025
6140 12-byte stubs. If we exceed that, then we will fail to link.
6141 The user will have to relink with an explicit group size
6142 option. */
6143 stub_group_size = 4170000;
6144 }
6145
6146 group_sections (htab, stub_group_size, stubs_always_after_branch);
6147
6148 /* If we're applying the cortex A8 fix, we need to determine the
6149 program header size now, because we cannot change it later --
6150 that could alter section placements. Notice the A8 erratum fix
6151 ends up requiring the section addresses to remain unchanged
6152 modulo the page size. That's something we cannot represent
6153 inside BFD, and we don't want to force the section alignment to
6154 be the page size. */
6155 if (htab->fix_cortex_a8)
6156 (*htab->layout_sections_again) ();
6157
6158 while (1)
6159 {
6160 bfd *input_bfd;
6161 unsigned int bfd_indx;
6162 asection *stub_sec;
6163 enum elf32_arm_stub_type stub_type;
6164 bfd_boolean stub_changed = FALSE;
6165 unsigned prev_num_a8_fixes = num_a8_fixes;
6166
6167 num_a8_fixes = 0;
6168 for (input_bfd = info->input_bfds, bfd_indx = 0;
6169 input_bfd != NULL;
6170 input_bfd = input_bfd->link.next, bfd_indx++)
6171 {
6172 Elf_Internal_Shdr *symtab_hdr;
6173 asection *section;
6174 Elf_Internal_Sym *local_syms = NULL;
6175
6176 if (!is_arm_elf (input_bfd))
6177 continue;
6178
6179 num_a8_relocs = 0;
6180
6181 /* We'll need the symbol table in a second. */
6182 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6183 if (symtab_hdr->sh_info == 0)
6184 continue;
6185
6186 /* Limit scan of symbols to object file whose profile is
6187 Microcontroller to not hinder performance in the general case. */
6188 if (m_profile && first_veneer_scan)
6189 {
6190 struct elf_link_hash_entry **sym_hashes;
6191
6192 sym_hashes = elf_sym_hashes (input_bfd);
6193 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6194 &cmse_stub_created))
6195 goto error_ret_free_local;
6196
6197 if (cmse_stub_created != 0)
6198 stub_changed = TRUE;
6199 }
6200
6201 /* Walk over each section attached to the input bfd. */
6202 for (section = input_bfd->sections;
6203 section != NULL;
6204 section = section->next)
6205 {
6206 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6207
6208 /* If there aren't any relocs, then there's nothing more
6209 to do. */
6210 if ((section->flags & SEC_RELOC) == 0
6211 || section->reloc_count == 0
6212 || (section->flags & SEC_CODE) == 0)
6213 continue;
6214
6215 /* If this section is a link-once section that will be
6216 discarded, then don't create any stubs. */
6217 if (section->output_section == NULL
6218 || section->output_section->owner != output_bfd)
6219 continue;
6220
6221 /* Get the relocs. */
6222 internal_relocs
6223 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6224 NULL, info->keep_memory);
6225 if (internal_relocs == NULL)
6226 goto error_ret_free_local;
6227
6228 /* Now examine each relocation. */
6229 irela = internal_relocs;
6230 irelaend = irela + section->reloc_count;
6231 for (; irela < irelaend; irela++)
6232 {
6233 unsigned int r_type, r_indx;
6234 asection *sym_sec;
6235 bfd_vma sym_value;
6236 bfd_vma destination;
6237 struct elf32_arm_link_hash_entry *hash;
6238 const char *sym_name;
6239 unsigned char st_type;
6240 enum arm_st_branch_type branch_type;
6241 bfd_boolean created_stub = FALSE;
6242
6243 r_type = ELF32_R_TYPE (irela->r_info);
6244 r_indx = ELF32_R_SYM (irela->r_info);
6245
6246 if (r_type >= (unsigned int) R_ARM_max)
6247 {
6248 bfd_set_error (bfd_error_bad_value);
6249 error_ret_free_internal:
6250 if (elf_section_data (section)->relocs == NULL)
6251 free (internal_relocs);
6252 /* Fall through. */
6253 error_ret_free_local:
6254 if (local_syms != NULL
6255 && (symtab_hdr->contents
6256 != (unsigned char *) local_syms))
6257 free (local_syms);
6258 return FALSE;
6259 }
6260
6261 hash = NULL;
6262 if (r_indx >= symtab_hdr->sh_info)
6263 hash = elf32_arm_hash_entry
6264 (elf_sym_hashes (input_bfd)
6265 [r_indx - symtab_hdr->sh_info]);
6266
6267 /* Only look for stubs on branch instructions, or
6268 non-relaxed TLSCALL */
6269 if ((r_type != (unsigned int) R_ARM_CALL)
6270 && (r_type != (unsigned int) R_ARM_THM_CALL)
6271 && (r_type != (unsigned int) R_ARM_JUMP24)
6272 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6273 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6274 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6275 && (r_type != (unsigned int) R_ARM_PLT32)
6276 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6277 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6278 && r_type == elf32_arm_tls_transition
6279 (info, r_type, &hash->root)
6280 && ((hash ? hash->tls_type
6281 : (elf32_arm_local_got_tls_type
6282 (input_bfd)[r_indx]))
6283 & GOT_TLS_GDESC) != 0))
6284 continue;
6285
6286 /* Now determine the call target, its name, value,
6287 section. */
6288 sym_sec = NULL;
6289 sym_value = 0;
6290 destination = 0;
6291 sym_name = NULL;
6292
6293 if (r_type == (unsigned int) R_ARM_TLS_CALL
6294 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6295 {
6296 /* A non-relaxed TLS call. The target is the
6297 plt-resident trampoline and nothing to do
6298 with the symbol. */
6299 BFD_ASSERT (htab->tls_trampoline > 0);
6300 sym_sec = htab->root.splt;
6301 sym_value = htab->tls_trampoline;
6302 hash = 0;
6303 st_type = STT_FUNC;
6304 branch_type = ST_BRANCH_TO_ARM;
6305 }
6306 else if (!hash)
6307 {
6308 /* It's a local symbol. */
6309 Elf_Internal_Sym *sym;
6310
6311 if (local_syms == NULL)
6312 {
6313 local_syms
6314 = (Elf_Internal_Sym *) symtab_hdr->contents;
6315 if (local_syms == NULL)
6316 local_syms
6317 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6318 symtab_hdr->sh_info, 0,
6319 NULL, NULL, NULL);
6320 if (local_syms == NULL)
6321 goto error_ret_free_internal;
6322 }
6323
6324 sym = local_syms + r_indx;
6325 if (sym->st_shndx == SHN_UNDEF)
6326 sym_sec = bfd_und_section_ptr;
6327 else if (sym->st_shndx == SHN_ABS)
6328 sym_sec = bfd_abs_section_ptr;
6329 else if (sym->st_shndx == SHN_COMMON)
6330 sym_sec = bfd_com_section_ptr;
6331 else
6332 sym_sec =
6333 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6334
6335 if (!sym_sec)
6336 /* This is an undefined symbol. It can never
6337 be resolved. */
6338 continue;
6339
6340 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6341 sym_value = sym->st_value;
6342 destination = (sym_value + irela->r_addend
6343 + sym_sec->output_offset
6344 + sym_sec->output_section->vma);
6345 st_type = ELF_ST_TYPE (sym->st_info);
6346 branch_type =
6347 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6348 sym_name
6349 = bfd_elf_string_from_elf_section (input_bfd,
6350 symtab_hdr->sh_link,
6351 sym->st_name);
6352 }
6353 else
6354 {
6355 /* It's an external symbol. */
6356 while (hash->root.root.type == bfd_link_hash_indirect
6357 || hash->root.root.type == bfd_link_hash_warning)
6358 hash = ((struct elf32_arm_link_hash_entry *)
6359 hash->root.root.u.i.link);
6360
6361 if (hash->root.root.type == bfd_link_hash_defined
6362 || hash->root.root.type == bfd_link_hash_defweak)
6363 {
6364 sym_sec = hash->root.root.u.def.section;
6365 sym_value = hash->root.root.u.def.value;
6366
6367 struct elf32_arm_link_hash_table *globals =
6368 elf32_arm_hash_table (info);
6369
6370 /* For a destination in a shared library,
6371 use the PLT stub as target address to
6372 decide whether a branch stub is
6373 needed. */
6374 if (globals != NULL
6375 && globals->root.splt != NULL
6376 && hash != NULL
6377 && hash->root.plt.offset != (bfd_vma) -1)
6378 {
6379 sym_sec = globals->root.splt;
6380 sym_value = hash->root.plt.offset;
6381 if (sym_sec->output_section != NULL)
6382 destination = (sym_value
6383 + sym_sec->output_offset
6384 + sym_sec->output_section->vma);
6385 }
6386 else if (sym_sec->output_section != NULL)
6387 destination = (sym_value + irela->r_addend
6388 + sym_sec->output_offset
6389 + sym_sec->output_section->vma);
6390 }
6391 else if ((hash->root.root.type == bfd_link_hash_undefined)
6392 || (hash->root.root.type == bfd_link_hash_undefweak))
6393 {
6394 /* For a shared library, use the PLT stub as
6395 target address to decide whether a long
6396 branch stub is needed.
6397 For absolute code, they cannot be handled. */
6398 struct elf32_arm_link_hash_table *globals =
6399 elf32_arm_hash_table (info);
6400
6401 if (globals != NULL
6402 && globals->root.splt != NULL
6403 && hash != NULL
6404 && hash->root.plt.offset != (bfd_vma) -1)
6405 {
6406 sym_sec = globals->root.splt;
6407 sym_value = hash->root.plt.offset;
6408 if (sym_sec->output_section != NULL)
6409 destination = (sym_value
6410 + sym_sec->output_offset
6411 + sym_sec->output_section->vma);
6412 }
6413 else
6414 continue;
6415 }
6416 else
6417 {
6418 bfd_set_error (bfd_error_bad_value);
6419 goto error_ret_free_internal;
6420 }
6421 st_type = hash->root.type;
6422 branch_type =
6423 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6424 sym_name = hash->root.root.root.string;
6425 }
6426
6427 do
6428 {
6429 bfd_boolean new_stub;
6430 struct elf32_arm_stub_hash_entry *stub_entry;
6431
6432 /* Determine what (if any) linker stub is needed. */
6433 stub_type = arm_type_of_stub (info, section, irela,
6434 st_type, &branch_type,
6435 hash, destination, sym_sec,
6436 input_bfd, sym_name);
6437 if (stub_type == arm_stub_none)
6438 break;
6439
6440 /* We've either created a stub for this reloc already,
6441 or we are about to. */
6442 stub_entry =
6443 elf32_arm_create_stub (htab, stub_type, section, irela,
6444 sym_sec, hash,
6445 (char *) sym_name, sym_value,
6446 branch_type, &new_stub);
6447
6448 created_stub = stub_entry != NULL;
6449 if (!created_stub)
6450 goto error_ret_free_internal;
6451 else if (!new_stub)
6452 break;
6453 else
6454 stub_changed = TRUE;
6455 }
6456 while (0);
6457
6458 /* Look for relocations which might trigger Cortex-A8
6459 erratum. */
6460 if (htab->fix_cortex_a8
6461 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6462 || r_type == (unsigned int) R_ARM_THM_JUMP19
6463 || r_type == (unsigned int) R_ARM_THM_CALL
6464 || r_type == (unsigned int) R_ARM_THM_XPC22))
6465 {
6466 bfd_vma from = section->output_section->vma
6467 + section->output_offset
6468 + irela->r_offset;
6469
6470 if ((from & 0xfff) == 0xffe)
6471 {
6472 /* Found a candidate. Note we haven't checked the
6473 destination is within 4K here: if we do so (and
6474 don't create an entry in a8_relocs) we can't tell
6475 that a branch should have been relocated when
6476 scanning later. */
6477 if (num_a8_relocs == a8_reloc_table_size)
6478 {
6479 a8_reloc_table_size *= 2;
6480 a8_relocs = (struct a8_erratum_reloc *)
6481 bfd_realloc (a8_relocs,
6482 sizeof (struct a8_erratum_reloc)
6483 * a8_reloc_table_size);
6484 }
6485
6486 a8_relocs[num_a8_relocs].from = from;
6487 a8_relocs[num_a8_relocs].destination = destination;
6488 a8_relocs[num_a8_relocs].r_type = r_type;
6489 a8_relocs[num_a8_relocs].branch_type = branch_type;
6490 a8_relocs[num_a8_relocs].sym_name = sym_name;
6491 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6492 a8_relocs[num_a8_relocs].hash = hash;
6493
6494 num_a8_relocs++;
6495 }
6496 }
6497 }
6498
6499 /* We're done with the internal relocs, free them. */
6500 if (elf_section_data (section)->relocs == NULL)
6501 free (internal_relocs);
6502 }
6503
6504 if (htab->fix_cortex_a8)
6505 {
6506 /* Sort relocs which might apply to Cortex-A8 erratum. */
6507 qsort (a8_relocs, num_a8_relocs,
6508 sizeof (struct a8_erratum_reloc),
6509 &a8_reloc_compare);
6510
6511 /* Scan for branches which might trigger Cortex-A8 erratum. */
6512 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6513 &num_a8_fixes, &a8_fix_table_size,
6514 a8_relocs, num_a8_relocs,
6515 prev_num_a8_fixes, &stub_changed)
6516 != 0)
6517 goto error_ret_free_local;
6518 }
6519
6520 if (local_syms != NULL
6521 && symtab_hdr->contents != (unsigned char *) local_syms)
6522 {
6523 if (!info->keep_memory)
6524 free (local_syms);
6525 else
6526 symtab_hdr->contents = (unsigned char *) local_syms;
6527 }
6528 }
6529
6530 if (first_veneer_scan
6531 && !set_cmse_veneer_addr_from_implib (info, htab,
6532 &cmse_stub_created))
6533 ret = FALSE;
6534
6535 if (prev_num_a8_fixes != num_a8_fixes)
6536 stub_changed = TRUE;
6537
6538 if (!stub_changed)
6539 break;
6540
6541 /* OK, we've added some stubs. Find out the new size of the
6542 stub sections. */
6543 for (stub_sec = htab->stub_bfd->sections;
6544 stub_sec != NULL;
6545 stub_sec = stub_sec->next)
6546 {
6547 /* Ignore non-stub sections. */
6548 if (!strstr (stub_sec->name, STUB_SUFFIX))
6549 continue;
6550
6551 stub_sec->size = 0;
6552 }
6553
6554 /* Add new SG veneers after those already in the input import
6555 library. */
6556 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6557 stub_type++)
6558 {
6559 bfd_vma *start_offset_p;
6560 asection **stub_sec_p;
6561
6562 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6563 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6564 if (start_offset_p == NULL)
6565 continue;
6566
6567 BFD_ASSERT (stub_sec_p != NULL);
6568 if (*stub_sec_p != NULL)
6569 (*stub_sec_p)->size = *start_offset_p;
6570 }
6571
6572 /* Compute stub section size, considering padding. */
6573 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6574 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6575 stub_type++)
6576 {
6577 int size, padding;
6578 asection **stub_sec_p;
6579
6580 padding = arm_dedicated_stub_section_padding (stub_type);
6581 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6582 /* Skip if no stub input section or no stub section padding
6583 required. */
6584 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6585 continue;
6586 /* Stub section padding required but no dedicated section. */
6587 BFD_ASSERT (stub_sec_p);
6588
6589 size = (*stub_sec_p)->size;
6590 size = (size + padding - 1) & ~(padding - 1);
6591 (*stub_sec_p)->size = size;
6592 }
6593
6594 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6595 if (htab->fix_cortex_a8)
6596 for (i = 0; i < num_a8_fixes; i++)
6597 {
6598 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6599 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6600
6601 if (stub_sec == NULL)
6602 return FALSE;
6603
6604 stub_sec->size
6605 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6606 NULL);
6607 }
6608
6609
6610 /* Ask the linker to do its stuff. */
6611 (*htab->layout_sections_again) ();
6612 first_veneer_scan = FALSE;
6613 }
6614
6615 /* Add stubs for Cortex-A8 erratum fixes now. */
6616 if (htab->fix_cortex_a8)
6617 {
6618 for (i = 0; i < num_a8_fixes; i++)
6619 {
6620 struct elf32_arm_stub_hash_entry *stub_entry;
6621 char *stub_name = a8_fixes[i].stub_name;
6622 asection *section = a8_fixes[i].section;
6623 unsigned int section_id = a8_fixes[i].section->id;
6624 asection *link_sec = htab->stub_group[section_id].link_sec;
6625 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6626 const insn_sequence *template_sequence;
6627 int template_size, size = 0;
6628
6629 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6630 TRUE, FALSE);
6631 if (stub_entry == NULL)
6632 {
6633 _bfd_error_handler (_("%B: cannot create stub entry %s"),
6634 section->owner, stub_name);
6635 return FALSE;
6636 }
6637
6638 stub_entry->stub_sec = stub_sec;
6639 stub_entry->stub_offset = (bfd_vma) -1;
6640 stub_entry->id_sec = link_sec;
6641 stub_entry->stub_type = a8_fixes[i].stub_type;
6642 stub_entry->source_value = a8_fixes[i].offset;
6643 stub_entry->target_section = a8_fixes[i].section;
6644 stub_entry->target_value = a8_fixes[i].target_offset;
6645 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6646 stub_entry->branch_type = a8_fixes[i].branch_type;
6647
6648 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6649 &template_sequence,
6650 &template_size);
6651
6652 stub_entry->stub_size = size;
6653 stub_entry->stub_template = template_sequence;
6654 stub_entry->stub_template_size = template_size;
6655 }
6656
6657 /* Stash the Cortex-A8 erratum fix array for use later in
6658 elf32_arm_write_section(). */
6659 htab->a8_erratum_fixes = a8_fixes;
6660 htab->num_a8_erratum_fixes = num_a8_fixes;
6661 }
6662 else
6663 {
6664 htab->a8_erratum_fixes = NULL;
6665 htab->num_a8_erratum_fixes = 0;
6666 }
6667 return ret;
6668 }
6669
6670 /* Build all the stubs associated with the current output file. The
6671 stubs are kept in a hash table attached to the main linker hash
6672 table. We also set up the .plt entries for statically linked PIC
6673 functions here. This function is called via arm_elf_finish in the
6674 linker. */
6675
6676 bfd_boolean
6677 elf32_arm_build_stubs (struct bfd_link_info *info)
6678 {
6679 asection *stub_sec;
6680 struct bfd_hash_table *table;
6681 enum elf32_arm_stub_type stub_type;
6682 struct elf32_arm_link_hash_table *htab;
6683
6684 htab = elf32_arm_hash_table (info);
6685 if (htab == NULL)
6686 return FALSE;
6687
6688 for (stub_sec = htab->stub_bfd->sections;
6689 stub_sec != NULL;
6690 stub_sec = stub_sec->next)
6691 {
6692 bfd_size_type size;
6693
6694 /* Ignore non-stub sections. */
6695 if (!strstr (stub_sec->name, STUB_SUFFIX))
6696 continue;
6697
6698 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
6699 must at least be done for stub section requiring padding and for SG
6700 veneers to ensure that a non secure code branching to a removed SG
6701 veneer causes an error. */
6702 size = stub_sec->size;
6703 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
6704 if (stub_sec->contents == NULL && size != 0)
6705 return FALSE;
6706
6707 stub_sec->size = 0;
6708 }
6709
6710 /* Add new SG veneers after those already in the input import library. */
6711 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
6712 {
6713 bfd_vma *start_offset_p;
6714 asection **stub_sec_p;
6715
6716 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6717 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6718 if (start_offset_p == NULL)
6719 continue;
6720
6721 BFD_ASSERT (stub_sec_p != NULL);
6722 if (*stub_sec_p != NULL)
6723 (*stub_sec_p)->size = *start_offset_p;
6724 }
6725
6726 /* Build the stubs as directed by the stub hash table. */
6727 table = &htab->stub_hash_table;
6728 bfd_hash_traverse (table, arm_build_one_stub, info);
6729 if (htab->fix_cortex_a8)
6730 {
6731 /* Place the cortex a8 stubs last. */
6732 htab->fix_cortex_a8 = -1;
6733 bfd_hash_traverse (table, arm_build_one_stub, info);
6734 }
6735
6736 return TRUE;
6737 }
6738
6739 /* Locate the Thumb encoded calling stub for NAME. */
6740
6741 static struct elf_link_hash_entry *
6742 find_thumb_glue (struct bfd_link_info *link_info,
6743 const char *name,
6744 char **error_message)
6745 {
6746 char *tmp_name;
6747 struct elf_link_hash_entry *hash;
6748 struct elf32_arm_link_hash_table *hash_table;
6749
6750 /* We need a pointer to the armelf specific hash table. */
6751 hash_table = elf32_arm_hash_table (link_info);
6752 if (hash_table == NULL)
6753 return NULL;
6754
6755 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6756 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
6757
6758 BFD_ASSERT (tmp_name);
6759
6760 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
6761
6762 hash = elf_link_hash_lookup
6763 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6764
6765 if (hash == NULL
6766 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
6767 tmp_name, name) == -1)
6768 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6769
6770 free (tmp_name);
6771
6772 return hash;
6773 }
6774
6775 /* Locate the ARM encoded calling stub for NAME. */
6776
6777 static struct elf_link_hash_entry *
6778 find_arm_glue (struct bfd_link_info *link_info,
6779 const char *name,
6780 char **error_message)
6781 {
6782 char *tmp_name;
6783 struct elf_link_hash_entry *myh;
6784 struct elf32_arm_link_hash_table *hash_table;
6785
6786 /* We need a pointer to the elfarm specific hash table. */
6787 hash_table = elf32_arm_hash_table (link_info);
6788 if (hash_table == NULL)
6789 return NULL;
6790
6791 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6792 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6793
6794 BFD_ASSERT (tmp_name);
6795
6796 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6797
6798 myh = elf_link_hash_lookup
6799 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
6800
6801 if (myh == NULL
6802 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
6803 tmp_name, name) == -1)
6804 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
6805
6806 free (tmp_name);
6807
6808 return myh;
6809 }
6810
6811 /* ARM->Thumb glue (static images):
6812
6813 .arm
6814 __func_from_arm:
6815 ldr r12, __func_addr
6816 bx r12
6817 __func_addr:
6818 .word func @ behave as if you saw a ARM_32 reloc.
6819
6820 (v5t static images)
6821 .arm
6822 __func_from_arm:
6823 ldr pc, __func_addr
6824 __func_addr:
6825 .word func @ behave as if you saw a ARM_32 reloc.
6826
6827 (relocatable images)
6828 .arm
6829 __func_from_arm:
6830 ldr r12, __func_offset
6831 add r12, r12, pc
6832 bx r12
6833 __func_offset:
6834 .word func - . */
6835
6836 #define ARM2THUMB_STATIC_GLUE_SIZE 12
6837 static const insn32 a2t1_ldr_insn = 0xe59fc000;
6838 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
6839 static const insn32 a2t3_func_addr_insn = 0x00000001;
6840
6841 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
6842 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
6843 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
6844
6845 #define ARM2THUMB_PIC_GLUE_SIZE 16
6846 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
6847 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
6848 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
6849
6850 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
6851
6852 .thumb .thumb
6853 .align 2 .align 2
6854 __func_from_thumb: __func_from_thumb:
6855 bx pc push {r6, lr}
6856 nop ldr r6, __func_addr
6857 .arm mov lr, pc
6858 b func bx r6
6859 .arm
6860 ;; back_to_thumb
6861 ldmia r13! {r6, lr}
6862 bx lr
6863 __func_addr:
6864 .word func */
6865
6866 #define THUMB2ARM_GLUE_SIZE 8
6867 static const insn16 t2a1_bx_pc_insn = 0x4778;
6868 static const insn16 t2a2_noop_insn = 0x46c0;
6869 static const insn32 t2a3_b_insn = 0xea000000;
6870
6871 #define VFP11_ERRATUM_VENEER_SIZE 8
6872 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
6873 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
6874
6875 #define ARM_BX_VENEER_SIZE 12
6876 static const insn32 armbx1_tst_insn = 0xe3100001;
6877 static const insn32 armbx2_moveq_insn = 0x01a0f000;
6878 static const insn32 armbx3_bx_insn = 0xe12fff10;
6879
6880 #ifndef ELFARM_NABI_C_INCLUDED
6881 static void
6882 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
6883 {
6884 asection * s;
6885 bfd_byte * contents;
6886
6887 if (size == 0)
6888 {
6889 /* Do not include empty glue sections in the output. */
6890 if (abfd != NULL)
6891 {
6892 s = bfd_get_linker_section (abfd, name);
6893 if (s != NULL)
6894 s->flags |= SEC_EXCLUDE;
6895 }
6896 return;
6897 }
6898
6899 BFD_ASSERT (abfd != NULL);
6900
6901 s = bfd_get_linker_section (abfd, name);
6902 BFD_ASSERT (s != NULL);
6903
6904 contents = (bfd_byte *) bfd_alloc (abfd, size);
6905
6906 BFD_ASSERT (s->size == size);
6907 s->contents = contents;
6908 }
6909
6910 bfd_boolean
6911 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
6912 {
6913 struct elf32_arm_link_hash_table * globals;
6914
6915 globals = elf32_arm_hash_table (info);
6916 BFD_ASSERT (globals != NULL);
6917
6918 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6919 globals->arm_glue_size,
6920 ARM2THUMB_GLUE_SECTION_NAME);
6921
6922 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6923 globals->thumb_glue_size,
6924 THUMB2ARM_GLUE_SECTION_NAME);
6925
6926 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6927 globals->vfp11_erratum_glue_size,
6928 VFP11_ERRATUM_VENEER_SECTION_NAME);
6929
6930 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6931 globals->stm32l4xx_erratum_glue_size,
6932 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
6933
6934 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
6935 globals->bx_glue_size,
6936 ARM_BX_GLUE_SECTION_NAME);
6937
6938 return TRUE;
6939 }
6940
6941 /* Allocate space and symbols for calling a Thumb function from Arm mode.
6942 returns the symbol identifying the stub. */
6943
6944 static struct elf_link_hash_entry *
6945 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
6946 struct elf_link_hash_entry * h)
6947 {
6948 const char * name = h->root.root.string;
6949 asection * s;
6950 char * tmp_name;
6951 struct elf_link_hash_entry * myh;
6952 struct bfd_link_hash_entry * bh;
6953 struct elf32_arm_link_hash_table * globals;
6954 bfd_vma val;
6955 bfd_size_type size;
6956
6957 globals = elf32_arm_hash_table (link_info);
6958 BFD_ASSERT (globals != NULL);
6959 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6960
6961 s = bfd_get_linker_section
6962 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
6963
6964 BFD_ASSERT (s != NULL);
6965
6966 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
6967 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
6968
6969 BFD_ASSERT (tmp_name);
6970
6971 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
6972
6973 myh = elf_link_hash_lookup
6974 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6975
6976 if (myh != NULL)
6977 {
6978 /* We've already seen this guy. */
6979 free (tmp_name);
6980 return myh;
6981 }
6982
6983 /* The only trick here is using hash_table->arm_glue_size as the value.
6984 Even though the section isn't allocated yet, this is where we will be
6985 putting it. The +1 on the value marks that the stub has not been
6986 output yet - not that it is a Thumb function. */
6987 bh = NULL;
6988 val = globals->arm_glue_size + 1;
6989 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
6990 tmp_name, BSF_GLOBAL, s, val,
6991 NULL, TRUE, FALSE, &bh);
6992
6993 myh = (struct elf_link_hash_entry *) bh;
6994 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
6995 myh->forced_local = 1;
6996
6997 free (tmp_name);
6998
6999 if (bfd_link_pic (link_info)
7000 || globals->root.is_relocatable_executable
7001 || globals->pic_veneer)
7002 size = ARM2THUMB_PIC_GLUE_SIZE;
7003 else if (globals->use_blx)
7004 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
7005 else
7006 size = ARM2THUMB_STATIC_GLUE_SIZE;
7007
7008 s->size += size;
7009 globals->arm_glue_size += size;
7010
7011 return myh;
7012 }
7013
7014 /* Allocate space for ARMv4 BX veneers. */
7015
7016 static void
7017 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7018 {
7019 asection * s;
7020 struct elf32_arm_link_hash_table *globals;
7021 char *tmp_name;
7022 struct elf_link_hash_entry *myh;
7023 struct bfd_link_hash_entry *bh;
7024 bfd_vma val;
7025
7026 /* BX PC does not need a veneer. */
7027 if (reg == 15)
7028 return;
7029
7030 globals = elf32_arm_hash_table (link_info);
7031 BFD_ASSERT (globals != NULL);
7032 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7033
7034 /* Check if this veneer has already been allocated. */
7035 if (globals->bx_glue_offset[reg])
7036 return;
7037
7038 s = bfd_get_linker_section
7039 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7040
7041 BFD_ASSERT (s != NULL);
7042
7043 /* Add symbol for veneer. */
7044 tmp_name = (char *)
7045 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7046
7047 BFD_ASSERT (tmp_name);
7048
7049 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7050
7051 myh = elf_link_hash_lookup
7052 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7053
7054 BFD_ASSERT (myh == NULL);
7055
7056 bh = NULL;
7057 val = globals->bx_glue_size;
7058 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7059 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7060 NULL, TRUE, FALSE, &bh);
7061
7062 myh = (struct elf_link_hash_entry *) bh;
7063 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7064 myh->forced_local = 1;
7065
7066 s->size += ARM_BX_VENEER_SIZE;
7067 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7068 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7069 }
7070
7071
7072 /* Add an entry to the code/data map for section SEC. */
7073
7074 static void
7075 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7076 {
7077 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7078 unsigned int newidx;
7079
7080 if (sec_data->map == NULL)
7081 {
7082 sec_data->map = (elf32_arm_section_map *)
7083 bfd_malloc (sizeof (elf32_arm_section_map));
7084 sec_data->mapcount = 0;
7085 sec_data->mapsize = 1;
7086 }
7087
7088 newidx = sec_data->mapcount++;
7089
7090 if (sec_data->mapcount > sec_data->mapsize)
7091 {
7092 sec_data->mapsize *= 2;
7093 sec_data->map = (elf32_arm_section_map *)
7094 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7095 * sizeof (elf32_arm_section_map));
7096 }
7097
7098 if (sec_data->map)
7099 {
7100 sec_data->map[newidx].vma = vma;
7101 sec_data->map[newidx].type = type;
7102 }
7103 }
7104
7105
7106 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7107 veneers are handled for now. */
7108
7109 static bfd_vma
7110 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7111 elf32_vfp11_erratum_list *branch,
7112 bfd *branch_bfd,
7113 asection *branch_sec,
7114 unsigned int offset)
7115 {
7116 asection *s;
7117 struct elf32_arm_link_hash_table *hash_table;
7118 char *tmp_name;
7119 struct elf_link_hash_entry *myh;
7120 struct bfd_link_hash_entry *bh;
7121 bfd_vma val;
7122 struct _arm_elf_section_data *sec_data;
7123 elf32_vfp11_erratum_list *newerr;
7124
7125 hash_table = elf32_arm_hash_table (link_info);
7126 BFD_ASSERT (hash_table != NULL);
7127 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7128
7129 s = bfd_get_linker_section
7130 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7131
7132 sec_data = elf32_arm_section_data (s);
7133
7134 BFD_ASSERT (s != NULL);
7135
7136 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7137 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7138
7139 BFD_ASSERT (tmp_name);
7140
7141 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7142 hash_table->num_vfp11_fixes);
7143
7144 myh = elf_link_hash_lookup
7145 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7146
7147 BFD_ASSERT (myh == NULL);
7148
7149 bh = NULL;
7150 val = hash_table->vfp11_erratum_glue_size;
7151 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7152 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7153 NULL, TRUE, FALSE, &bh);
7154
7155 myh = (struct elf_link_hash_entry *) bh;
7156 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7157 myh->forced_local = 1;
7158
7159 /* Link veneer back to calling location. */
7160 sec_data->erratumcount += 1;
7161 newerr = (elf32_vfp11_erratum_list *)
7162 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7163
7164 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7165 newerr->vma = -1;
7166 newerr->u.v.branch = branch;
7167 newerr->u.v.id = hash_table->num_vfp11_fixes;
7168 branch->u.b.veneer = newerr;
7169
7170 newerr->next = sec_data->erratumlist;
7171 sec_data->erratumlist = newerr;
7172
7173 /* A symbol for the return from the veneer. */
7174 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7175 hash_table->num_vfp11_fixes);
7176
7177 myh = elf_link_hash_lookup
7178 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7179
7180 if (myh != NULL)
7181 abort ();
7182
7183 bh = NULL;
7184 val = offset + 4;
7185 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7186 branch_sec, val, NULL, TRUE, FALSE, &bh);
7187
7188 myh = (struct elf_link_hash_entry *) bh;
7189 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7190 myh->forced_local = 1;
7191
7192 free (tmp_name);
7193
7194 /* Generate a mapping symbol for the veneer section, and explicitly add an
7195 entry for that symbol to the code/data map for the section. */
7196 if (hash_table->vfp11_erratum_glue_size == 0)
7197 {
7198 bh = NULL;
7199 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7200 ever requires this erratum fix. */
7201 _bfd_generic_link_add_one_symbol (link_info,
7202 hash_table->bfd_of_glue_owner, "$a",
7203 BSF_LOCAL, s, 0, NULL,
7204 TRUE, FALSE, &bh);
7205
7206 myh = (struct elf_link_hash_entry *) bh;
7207 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7208 myh->forced_local = 1;
7209
7210 /* The elf32_arm_init_maps function only cares about symbols from input
7211 BFDs. We must make a note of this generated mapping symbol
7212 ourselves so that code byteswapping works properly in
7213 elf32_arm_write_section. */
7214 elf32_arm_section_map_add (s, 'a', 0);
7215 }
7216
7217 s->size += VFP11_ERRATUM_VENEER_SIZE;
7218 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7219 hash_table->num_vfp11_fixes++;
7220
7221 /* The offset of the veneer. */
7222 return val;
7223 }
7224
7225 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7226 veneers need to be handled because used only in Cortex-M. */
7227
7228 static bfd_vma
7229 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7230 elf32_stm32l4xx_erratum_list *branch,
7231 bfd *branch_bfd,
7232 asection *branch_sec,
7233 unsigned int offset,
7234 bfd_size_type veneer_size)
7235 {
7236 asection *s;
7237 struct elf32_arm_link_hash_table *hash_table;
7238 char *tmp_name;
7239 struct elf_link_hash_entry *myh;
7240 struct bfd_link_hash_entry *bh;
7241 bfd_vma val;
7242 struct _arm_elf_section_data *sec_data;
7243 elf32_stm32l4xx_erratum_list *newerr;
7244
7245 hash_table = elf32_arm_hash_table (link_info);
7246 BFD_ASSERT (hash_table != NULL);
7247 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7248
7249 s = bfd_get_linker_section
7250 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7251
7252 BFD_ASSERT (s != NULL);
7253
7254 sec_data = elf32_arm_section_data (s);
7255
7256 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7257 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7258
7259 BFD_ASSERT (tmp_name);
7260
7261 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7262 hash_table->num_stm32l4xx_fixes);
7263
7264 myh = elf_link_hash_lookup
7265 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7266
7267 BFD_ASSERT (myh == NULL);
7268
7269 bh = NULL;
7270 val = hash_table->stm32l4xx_erratum_glue_size;
7271 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7272 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7273 NULL, TRUE, FALSE, &bh);
7274
7275 myh = (struct elf_link_hash_entry *) bh;
7276 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7277 myh->forced_local = 1;
7278
7279 /* Link veneer back to calling location. */
7280 sec_data->stm32l4xx_erratumcount += 1;
7281 newerr = (elf32_stm32l4xx_erratum_list *)
7282 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7283
7284 newerr->type = STM32L4XX_ERRATUM_VENEER;
7285 newerr->vma = -1;
7286 newerr->u.v.branch = branch;
7287 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7288 branch->u.b.veneer = newerr;
7289
7290 newerr->next = sec_data->stm32l4xx_erratumlist;
7291 sec_data->stm32l4xx_erratumlist = newerr;
7292
7293 /* A symbol for the return from the veneer. */
7294 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7295 hash_table->num_stm32l4xx_fixes);
7296
7297 myh = elf_link_hash_lookup
7298 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7299
7300 if (myh != NULL)
7301 abort ();
7302
7303 bh = NULL;
7304 val = offset + 4;
7305 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7306 branch_sec, val, NULL, TRUE, FALSE, &bh);
7307
7308 myh = (struct elf_link_hash_entry *) bh;
7309 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7310 myh->forced_local = 1;
7311
7312 free (tmp_name);
7313
7314 /* Generate a mapping symbol for the veneer section, and explicitly add an
7315 entry for that symbol to the code/data map for the section. */
7316 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7317 {
7318 bh = NULL;
7319 /* Creates a THUMB symbol since there is no other choice. */
7320 _bfd_generic_link_add_one_symbol (link_info,
7321 hash_table->bfd_of_glue_owner, "$t",
7322 BSF_LOCAL, s, 0, NULL,
7323 TRUE, FALSE, &bh);
7324
7325 myh = (struct elf_link_hash_entry *) bh;
7326 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7327 myh->forced_local = 1;
7328
7329 /* The elf32_arm_init_maps function only cares about symbols from input
7330 BFDs. We must make a note of this generated mapping symbol
7331 ourselves so that code byteswapping works properly in
7332 elf32_arm_write_section. */
7333 elf32_arm_section_map_add (s, 't', 0);
7334 }
7335
7336 s->size += veneer_size;
7337 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7338 hash_table->num_stm32l4xx_fixes++;
7339
7340 /* The offset of the veneer. */
7341 return val;
7342 }
7343
7344 #define ARM_GLUE_SECTION_FLAGS \
7345 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7346 | SEC_READONLY | SEC_LINKER_CREATED)
7347
7348 /* Create a fake section for use by the ARM backend of the linker. */
7349
7350 static bfd_boolean
7351 arm_make_glue_section (bfd * abfd, const char * name)
7352 {
7353 asection * sec;
7354
7355 sec = bfd_get_linker_section (abfd, name);
7356 if (sec != NULL)
7357 /* Already made. */
7358 return TRUE;
7359
7360 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7361
7362 if (sec == NULL
7363 || !bfd_set_section_alignment (abfd, sec, 2))
7364 return FALSE;
7365
7366 /* Set the gc mark to prevent the section from being removed by garbage
7367 collection, despite the fact that no relocs refer to this section. */
7368 sec->gc_mark = 1;
7369
7370 return TRUE;
7371 }
7372
7373 /* Set size of .plt entries. This function is called from the
7374 linker scripts in ld/emultempl/{armelf}.em. */
7375
7376 void
7377 bfd_elf32_arm_use_long_plt (void)
7378 {
7379 elf32_arm_use_long_plt_entry = TRUE;
7380 }
7381
7382 /* Add the glue sections to ABFD. This function is called from the
7383 linker scripts in ld/emultempl/{armelf}.em. */
7384
7385 bfd_boolean
7386 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7387 struct bfd_link_info *info)
7388 {
7389 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7390 bfd_boolean dostm32l4xx = globals
7391 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7392 bfd_boolean addglue;
7393
7394 /* If we are only performing a partial
7395 link do not bother adding the glue. */
7396 if (bfd_link_relocatable (info))
7397 return TRUE;
7398
7399 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7400 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7401 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7402 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7403
7404 if (!dostm32l4xx)
7405 return addglue;
7406
7407 return addglue
7408 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7409 }
7410
7411 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7412 ensures they are not marked for deletion by
7413 strip_excluded_output_sections () when veneers are going to be created
7414 later. Not doing so would trigger assert on empty section size in
7415 lang_size_sections_1 (). */
7416
7417 void
7418 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7419 {
7420 enum elf32_arm_stub_type stub_type;
7421
7422 /* If we are only performing a partial
7423 link do not bother adding the glue. */
7424 if (bfd_link_relocatable (info))
7425 return;
7426
7427 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7428 {
7429 asection *out_sec;
7430 const char *out_sec_name;
7431
7432 if (!arm_dedicated_stub_output_section_required (stub_type))
7433 continue;
7434
7435 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7436 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7437 if (out_sec != NULL)
7438 out_sec->flags |= SEC_KEEP;
7439 }
7440 }
7441
7442 /* Select a BFD to be used to hold the sections used by the glue code.
7443 This function is called from the linker scripts in ld/emultempl/
7444 {armelf/pe}.em. */
7445
7446 bfd_boolean
7447 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7448 {
7449 struct elf32_arm_link_hash_table *globals;
7450
7451 /* If we are only performing a partial link
7452 do not bother getting a bfd to hold the glue. */
7453 if (bfd_link_relocatable (info))
7454 return TRUE;
7455
7456 /* Make sure we don't attach the glue sections to a dynamic object. */
7457 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7458
7459 globals = elf32_arm_hash_table (info);
7460 BFD_ASSERT (globals != NULL);
7461
7462 if (globals->bfd_of_glue_owner != NULL)
7463 return TRUE;
7464
7465 /* Save the bfd for later use. */
7466 globals->bfd_of_glue_owner = abfd;
7467
7468 return TRUE;
7469 }
7470
7471 static void
7472 check_use_blx (struct elf32_arm_link_hash_table *globals)
7473 {
7474 int cpu_arch;
7475
7476 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7477 Tag_CPU_arch);
7478
7479 if (globals->fix_arm1176)
7480 {
7481 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7482 globals->use_blx = 1;
7483 }
7484 else
7485 {
7486 if (cpu_arch > TAG_CPU_ARCH_V4T)
7487 globals->use_blx = 1;
7488 }
7489 }
7490
7491 bfd_boolean
7492 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7493 struct bfd_link_info *link_info)
7494 {
7495 Elf_Internal_Shdr *symtab_hdr;
7496 Elf_Internal_Rela *internal_relocs = NULL;
7497 Elf_Internal_Rela *irel, *irelend;
7498 bfd_byte *contents = NULL;
7499
7500 asection *sec;
7501 struct elf32_arm_link_hash_table *globals;
7502
7503 /* If we are only performing a partial link do not bother
7504 to construct any glue. */
7505 if (bfd_link_relocatable (link_info))
7506 return TRUE;
7507
7508 /* Here we have a bfd that is to be included on the link. We have a
7509 hook to do reloc rummaging, before section sizes are nailed down. */
7510 globals = elf32_arm_hash_table (link_info);
7511 BFD_ASSERT (globals != NULL);
7512
7513 check_use_blx (globals);
7514
7515 if (globals->byteswap_code && !bfd_big_endian (abfd))
7516 {
7517 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
7518 abfd);
7519 return FALSE;
7520 }
7521
7522 /* PR 5398: If we have not decided to include any loadable sections in
7523 the output then we will not have a glue owner bfd. This is OK, it
7524 just means that there is nothing else for us to do here. */
7525 if (globals->bfd_of_glue_owner == NULL)
7526 return TRUE;
7527
7528 /* Rummage around all the relocs and map the glue vectors. */
7529 sec = abfd->sections;
7530
7531 if (sec == NULL)
7532 return TRUE;
7533
7534 for (; sec != NULL; sec = sec->next)
7535 {
7536 if (sec->reloc_count == 0)
7537 continue;
7538
7539 if ((sec->flags & SEC_EXCLUDE) != 0)
7540 continue;
7541
7542 symtab_hdr = & elf_symtab_hdr (abfd);
7543
7544 /* Load the relocs. */
7545 internal_relocs
7546 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7547
7548 if (internal_relocs == NULL)
7549 goto error_return;
7550
7551 irelend = internal_relocs + sec->reloc_count;
7552 for (irel = internal_relocs; irel < irelend; irel++)
7553 {
7554 long r_type;
7555 unsigned long r_index;
7556
7557 struct elf_link_hash_entry *h;
7558
7559 r_type = ELF32_R_TYPE (irel->r_info);
7560 r_index = ELF32_R_SYM (irel->r_info);
7561
7562 /* These are the only relocation types we care about. */
7563 if ( r_type != R_ARM_PC24
7564 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7565 continue;
7566
7567 /* Get the section contents if we haven't done so already. */
7568 if (contents == NULL)
7569 {
7570 /* Get cached copy if it exists. */
7571 if (elf_section_data (sec)->this_hdr.contents != NULL)
7572 contents = elf_section_data (sec)->this_hdr.contents;
7573 else
7574 {
7575 /* Go get them off disk. */
7576 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7577 goto error_return;
7578 }
7579 }
7580
7581 if (r_type == R_ARM_V4BX)
7582 {
7583 int reg;
7584
7585 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7586 record_arm_bx_glue (link_info, reg);
7587 continue;
7588 }
7589
7590 /* If the relocation is not against a symbol it cannot concern us. */
7591 h = NULL;
7592
7593 /* We don't care about local symbols. */
7594 if (r_index < symtab_hdr->sh_info)
7595 continue;
7596
7597 /* This is an external symbol. */
7598 r_index -= symtab_hdr->sh_info;
7599 h = (struct elf_link_hash_entry *)
7600 elf_sym_hashes (abfd)[r_index];
7601
7602 /* If the relocation is against a static symbol it must be within
7603 the current section and so cannot be a cross ARM/Thumb relocation. */
7604 if (h == NULL)
7605 continue;
7606
7607 /* If the call will go through a PLT entry then we do not need
7608 glue. */
7609 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7610 continue;
7611
7612 switch (r_type)
7613 {
7614 case R_ARM_PC24:
7615 /* This one is a call from arm code. We need to look up
7616 the target of the call. If it is a thumb target, we
7617 insert glue. */
7618 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7619 == ST_BRANCH_TO_THUMB)
7620 record_arm_to_thumb_glue (link_info, h);
7621 break;
7622
7623 default:
7624 abort ();
7625 }
7626 }
7627
7628 if (contents != NULL
7629 && elf_section_data (sec)->this_hdr.contents != contents)
7630 free (contents);
7631 contents = NULL;
7632
7633 if (internal_relocs != NULL
7634 && elf_section_data (sec)->relocs != internal_relocs)
7635 free (internal_relocs);
7636 internal_relocs = NULL;
7637 }
7638
7639 return TRUE;
7640
7641 error_return:
7642 if (contents != NULL
7643 && elf_section_data (sec)->this_hdr.contents != contents)
7644 free (contents);
7645 if (internal_relocs != NULL
7646 && elf_section_data (sec)->relocs != internal_relocs)
7647 free (internal_relocs);
7648
7649 return FALSE;
7650 }
7651 #endif
7652
7653
7654 /* Initialise maps of ARM/Thumb/data for input BFDs. */
7655
7656 void
7657 bfd_elf32_arm_init_maps (bfd *abfd)
7658 {
7659 Elf_Internal_Sym *isymbuf;
7660 Elf_Internal_Shdr *hdr;
7661 unsigned int i, localsyms;
7662
7663 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
7664 if (! is_arm_elf (abfd))
7665 return;
7666
7667 if ((abfd->flags & DYNAMIC) != 0)
7668 return;
7669
7670 hdr = & elf_symtab_hdr (abfd);
7671 localsyms = hdr->sh_info;
7672
7673 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
7674 should contain the number of local symbols, which should come before any
7675 global symbols. Mapping symbols are always local. */
7676 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
7677 NULL);
7678
7679 /* No internal symbols read? Skip this BFD. */
7680 if (isymbuf == NULL)
7681 return;
7682
7683 for (i = 0; i < localsyms; i++)
7684 {
7685 Elf_Internal_Sym *isym = &isymbuf[i];
7686 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
7687 const char *name;
7688
7689 if (sec != NULL
7690 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
7691 {
7692 name = bfd_elf_string_from_elf_section (abfd,
7693 hdr->sh_link, isym->st_name);
7694
7695 if (bfd_is_arm_special_symbol_name (name,
7696 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
7697 elf32_arm_section_map_add (sec, name[1], isym->st_value);
7698 }
7699 }
7700 }
7701
7702
7703 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
7704 say what they wanted. */
7705
7706 void
7707 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
7708 {
7709 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7710 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7711
7712 if (globals == NULL)
7713 return;
7714
7715 if (globals->fix_cortex_a8 == -1)
7716 {
7717 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
7718 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
7719 && (out_attr[Tag_CPU_arch_profile].i == 'A'
7720 || out_attr[Tag_CPU_arch_profile].i == 0))
7721 globals->fix_cortex_a8 = 1;
7722 else
7723 globals->fix_cortex_a8 = 0;
7724 }
7725 }
7726
7727
7728 void
7729 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
7730 {
7731 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7732 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7733
7734 if (globals == NULL)
7735 return;
7736 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
7737 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
7738 {
7739 switch (globals->vfp11_fix)
7740 {
7741 case BFD_ARM_VFP11_FIX_DEFAULT:
7742 case BFD_ARM_VFP11_FIX_NONE:
7743 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7744 break;
7745
7746 default:
7747 /* Give a warning, but do as the user requests anyway. */
7748 _bfd_error_handler (_("%B: warning: selected VFP11 erratum "
7749 "workaround is not necessary for target architecture"), obfd);
7750 }
7751 }
7752 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
7753 /* For earlier architectures, we might need the workaround, but do not
7754 enable it by default. If users is running with broken hardware, they
7755 must enable the erratum fix explicitly. */
7756 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
7757 }
7758
7759 void
7760 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
7761 {
7762 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
7763 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
7764
7765 if (globals == NULL)
7766 return;
7767
7768 /* We assume only Cortex-M4 may require the fix. */
7769 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
7770 || out_attr[Tag_CPU_arch_profile].i != 'M')
7771 {
7772 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
7773 /* Give a warning, but do as the user requests anyway. */
7774 _bfd_error_handler
7775 (_("%B: warning: selected STM32L4XX erratum "
7776 "workaround is not necessary for target architecture"), obfd);
7777 }
7778 }
7779
7780 enum bfd_arm_vfp11_pipe
7781 {
7782 VFP11_FMAC,
7783 VFP11_LS,
7784 VFP11_DS,
7785 VFP11_BAD
7786 };
7787
7788 /* Return a VFP register number. This is encoded as RX:X for single-precision
7789 registers, or X:RX for double-precision registers, where RX is the group of
7790 four bits in the instruction encoding and X is the single extension bit.
7791 RX and X fields are specified using their lowest (starting) bit. The return
7792 value is:
7793
7794 0...31: single-precision registers s0...s31
7795 32...63: double-precision registers d0...d31.
7796
7797 Although X should be zero for VFP11 (encoding d0...d15 only), we might
7798 encounter VFP3 instructions, so we allow the full range for DP registers. */
7799
7800 static unsigned int
7801 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
7802 unsigned int x)
7803 {
7804 if (is_double)
7805 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
7806 else
7807 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
7808 }
7809
7810 /* Set bits in *WMASK according to a register number REG as encoded by
7811 bfd_arm_vfp11_regno(). Ignore d16-d31. */
7812
7813 static void
7814 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
7815 {
7816 if (reg < 32)
7817 *wmask |= 1 << reg;
7818 else if (reg < 48)
7819 *wmask |= 3 << ((reg - 32) * 2);
7820 }
7821
7822 /* Return TRUE if WMASK overwrites anything in REGS. */
7823
7824 static bfd_boolean
7825 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
7826 {
7827 int i;
7828
7829 for (i = 0; i < numregs; i++)
7830 {
7831 unsigned int reg = regs[i];
7832
7833 if (reg < 32 && (wmask & (1 << reg)) != 0)
7834 return TRUE;
7835
7836 reg -= 32;
7837
7838 if (reg >= 16)
7839 continue;
7840
7841 if ((wmask & (3 << (reg * 2))) != 0)
7842 return TRUE;
7843 }
7844
7845 return FALSE;
7846 }
7847
7848 /* In this function, we're interested in two things: finding input registers
7849 for VFP data-processing instructions, and finding the set of registers which
7850 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
7851 hold the written set, so FLDM etc. are easy to deal with (we're only
7852 interested in 32 SP registers or 16 dp registers, due to the VFP version
7853 implemented by the chip in question). DP registers are marked by setting
7854 both SP registers in the write mask). */
7855
7856 static enum bfd_arm_vfp11_pipe
7857 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
7858 int *numregs)
7859 {
7860 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
7861 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
7862
7863 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
7864 {
7865 unsigned int pqrs;
7866 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7867 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7868
7869 pqrs = ((insn & 0x00800000) >> 20)
7870 | ((insn & 0x00300000) >> 19)
7871 | ((insn & 0x00000040) >> 6);
7872
7873 switch (pqrs)
7874 {
7875 case 0: /* fmac[sd]. */
7876 case 1: /* fnmac[sd]. */
7877 case 2: /* fmsc[sd]. */
7878 case 3: /* fnmsc[sd]. */
7879 vpipe = VFP11_FMAC;
7880 bfd_arm_vfp11_write_mask (destmask, fd);
7881 regs[0] = fd;
7882 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7883 regs[2] = fm;
7884 *numregs = 3;
7885 break;
7886
7887 case 4: /* fmul[sd]. */
7888 case 5: /* fnmul[sd]. */
7889 case 6: /* fadd[sd]. */
7890 case 7: /* fsub[sd]. */
7891 vpipe = VFP11_FMAC;
7892 goto vfp_binop;
7893
7894 case 8: /* fdiv[sd]. */
7895 vpipe = VFP11_DS;
7896 vfp_binop:
7897 bfd_arm_vfp11_write_mask (destmask, fd);
7898 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
7899 regs[1] = fm;
7900 *numregs = 2;
7901 break;
7902
7903 case 15: /* extended opcode. */
7904 {
7905 unsigned int extn = ((insn >> 15) & 0x1e)
7906 | ((insn >> 7) & 1);
7907
7908 switch (extn)
7909 {
7910 case 0: /* fcpy[sd]. */
7911 case 1: /* fabs[sd]. */
7912 case 2: /* fneg[sd]. */
7913 case 8: /* fcmp[sd]. */
7914 case 9: /* fcmpe[sd]. */
7915 case 10: /* fcmpz[sd]. */
7916 case 11: /* fcmpez[sd]. */
7917 case 16: /* fuito[sd]. */
7918 case 17: /* fsito[sd]. */
7919 case 24: /* ftoui[sd]. */
7920 case 25: /* ftouiz[sd]. */
7921 case 26: /* ftosi[sd]. */
7922 case 27: /* ftosiz[sd]. */
7923 /* These instructions will not bounce due to underflow. */
7924 *numregs = 0;
7925 vpipe = VFP11_FMAC;
7926 break;
7927
7928 case 3: /* fsqrt[sd]. */
7929 /* fsqrt cannot underflow, but it can (perhaps) overwrite
7930 registers to cause the erratum in previous instructions. */
7931 bfd_arm_vfp11_write_mask (destmask, fd);
7932 vpipe = VFP11_DS;
7933 break;
7934
7935 case 15: /* fcvt{ds,sd}. */
7936 {
7937 int rnum = 0;
7938
7939 bfd_arm_vfp11_write_mask (destmask, fd);
7940
7941 /* Only FCVTSD can underflow. */
7942 if ((insn & 0x100) != 0)
7943 regs[rnum++] = fm;
7944
7945 *numregs = rnum;
7946
7947 vpipe = VFP11_FMAC;
7948 }
7949 break;
7950
7951 default:
7952 return VFP11_BAD;
7953 }
7954 }
7955 break;
7956
7957 default:
7958 return VFP11_BAD;
7959 }
7960 }
7961 /* Two-register transfer. */
7962 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
7963 {
7964 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
7965
7966 if ((insn & 0x100000) == 0)
7967 {
7968 if (is_double)
7969 bfd_arm_vfp11_write_mask (destmask, fm);
7970 else
7971 {
7972 bfd_arm_vfp11_write_mask (destmask, fm);
7973 bfd_arm_vfp11_write_mask (destmask, fm + 1);
7974 }
7975 }
7976
7977 vpipe = VFP11_LS;
7978 }
7979 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
7980 {
7981 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
7982 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
7983
7984 switch (puw)
7985 {
7986 case 0: /* Two-reg transfer. We should catch these above. */
7987 abort ();
7988
7989 case 2: /* fldm[sdx]. */
7990 case 3:
7991 case 5:
7992 {
7993 unsigned int i, offset = insn & 0xff;
7994
7995 if (is_double)
7996 offset >>= 1;
7997
7998 for (i = fd; i < fd + offset; i++)
7999 bfd_arm_vfp11_write_mask (destmask, i);
8000 }
8001 break;
8002
8003 case 4: /* fld[sd]. */
8004 case 6:
8005 bfd_arm_vfp11_write_mask (destmask, fd);
8006 break;
8007
8008 default:
8009 return VFP11_BAD;
8010 }
8011
8012 vpipe = VFP11_LS;
8013 }
8014 /* Single-register transfer. Note L==0. */
8015 else if ((insn & 0x0f100e10) == 0x0e000a10)
8016 {
8017 unsigned int opcode = (insn >> 21) & 7;
8018 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8019
8020 switch (opcode)
8021 {
8022 case 0: /* fmsr/fmdlr. */
8023 case 1: /* fmdhr. */
8024 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8025 destination register. I don't know if this is exactly right,
8026 but it is the conservative choice. */
8027 bfd_arm_vfp11_write_mask (destmask, fn);
8028 break;
8029
8030 case 7: /* fmxr. */
8031 break;
8032 }
8033
8034 vpipe = VFP11_LS;
8035 }
8036
8037 return vpipe;
8038 }
8039
8040
8041 static int elf32_arm_compare_mapping (const void * a, const void * b);
8042
8043
8044 /* Look for potentially-troublesome code sequences which might trigger the
8045 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8046 (available from ARM) for details of the erratum. A short version is
8047 described in ld.texinfo. */
8048
8049 bfd_boolean
8050 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8051 {
8052 asection *sec;
8053 bfd_byte *contents = NULL;
8054 int state = 0;
8055 int regs[3], numregs = 0;
8056 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8057 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8058
8059 if (globals == NULL)
8060 return FALSE;
8061
8062 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8063 The states transition as follows:
8064
8065 0 -> 1 (vector) or 0 -> 2 (scalar)
8066 A VFP FMAC-pipeline instruction has been seen. Fill
8067 regs[0]..regs[numregs-1] with its input operands. Remember this
8068 instruction in 'first_fmac'.
8069
8070 1 -> 2
8071 Any instruction, except for a VFP instruction which overwrites
8072 regs[*].
8073
8074 1 -> 3 [ -> 0 ] or
8075 2 -> 3 [ -> 0 ]
8076 A VFP instruction has been seen which overwrites any of regs[*].
8077 We must make a veneer! Reset state to 0 before examining next
8078 instruction.
8079
8080 2 -> 0
8081 If we fail to match anything in state 2, reset to state 0 and reset
8082 the instruction pointer to the instruction after 'first_fmac'.
8083
8084 If the VFP11 vector mode is in use, there must be at least two unrelated
8085 instructions between anti-dependent VFP11 instructions to properly avoid
8086 triggering the erratum, hence the use of the extra state 1. */
8087
8088 /* If we are only performing a partial link do not bother
8089 to construct any glue. */
8090 if (bfd_link_relocatable (link_info))
8091 return TRUE;
8092
8093 /* Skip if this bfd does not correspond to an ELF image. */
8094 if (! is_arm_elf (abfd))
8095 return TRUE;
8096
8097 /* We should have chosen a fix type by the time we get here. */
8098 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8099
8100 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8101 return TRUE;
8102
8103 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8104 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8105 return TRUE;
8106
8107 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8108 {
8109 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8110 struct _arm_elf_section_data *sec_data;
8111
8112 /* If we don't have executable progbits, we're not interested in this
8113 section. Also skip if section is to be excluded. */
8114 if (elf_section_type (sec) != SHT_PROGBITS
8115 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8116 || (sec->flags & SEC_EXCLUDE) != 0
8117 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8118 || sec->output_section == bfd_abs_section_ptr
8119 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8120 continue;
8121
8122 sec_data = elf32_arm_section_data (sec);
8123
8124 if (sec_data->mapcount == 0)
8125 continue;
8126
8127 if (elf_section_data (sec)->this_hdr.contents != NULL)
8128 contents = elf_section_data (sec)->this_hdr.contents;
8129 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8130 goto error_return;
8131
8132 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8133 elf32_arm_compare_mapping);
8134
8135 for (span = 0; span < sec_data->mapcount; span++)
8136 {
8137 unsigned int span_start = sec_data->map[span].vma;
8138 unsigned int span_end = (span == sec_data->mapcount - 1)
8139 ? sec->size : sec_data->map[span + 1].vma;
8140 char span_type = sec_data->map[span].type;
8141
8142 /* FIXME: Only ARM mode is supported at present. We may need to
8143 support Thumb-2 mode also at some point. */
8144 if (span_type != 'a')
8145 continue;
8146
8147 for (i = span_start; i < span_end;)
8148 {
8149 unsigned int next_i = i + 4;
8150 unsigned int insn = bfd_big_endian (abfd)
8151 ? (contents[i] << 24)
8152 | (contents[i + 1] << 16)
8153 | (contents[i + 2] << 8)
8154 | contents[i + 3]
8155 : (contents[i + 3] << 24)
8156 | (contents[i + 2] << 16)
8157 | (contents[i + 1] << 8)
8158 | contents[i];
8159 unsigned int writemask = 0;
8160 enum bfd_arm_vfp11_pipe vpipe;
8161
8162 switch (state)
8163 {
8164 case 0:
8165 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8166 &numregs);
8167 /* I'm assuming the VFP11 erratum can trigger with denorm
8168 operands on either the FMAC or the DS pipeline. This might
8169 lead to slightly overenthusiastic veneer insertion. */
8170 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8171 {
8172 state = use_vector ? 1 : 2;
8173 first_fmac = i;
8174 veneer_of_insn = insn;
8175 }
8176 break;
8177
8178 case 1:
8179 {
8180 int other_regs[3], other_numregs;
8181 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8182 other_regs,
8183 &other_numregs);
8184 if (vpipe != VFP11_BAD
8185 && bfd_arm_vfp11_antidependency (writemask, regs,
8186 numregs))
8187 state = 3;
8188 else
8189 state = 2;
8190 }
8191 break;
8192
8193 case 2:
8194 {
8195 int other_regs[3], other_numregs;
8196 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8197 other_regs,
8198 &other_numregs);
8199 if (vpipe != VFP11_BAD
8200 && bfd_arm_vfp11_antidependency (writemask, regs,
8201 numregs))
8202 state = 3;
8203 else
8204 {
8205 state = 0;
8206 next_i = first_fmac + 4;
8207 }
8208 }
8209 break;
8210
8211 case 3:
8212 abort (); /* Should be unreachable. */
8213 }
8214
8215 if (state == 3)
8216 {
8217 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8218 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8219
8220 elf32_arm_section_data (sec)->erratumcount += 1;
8221
8222 newerr->u.b.vfp_insn = veneer_of_insn;
8223
8224 switch (span_type)
8225 {
8226 case 'a':
8227 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8228 break;
8229
8230 default:
8231 abort ();
8232 }
8233
8234 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8235 first_fmac);
8236
8237 newerr->vma = -1;
8238
8239 newerr->next = sec_data->erratumlist;
8240 sec_data->erratumlist = newerr;
8241
8242 state = 0;
8243 }
8244
8245 i = next_i;
8246 }
8247 }
8248
8249 if (contents != NULL
8250 && elf_section_data (sec)->this_hdr.contents != contents)
8251 free (contents);
8252 contents = NULL;
8253 }
8254
8255 return TRUE;
8256
8257 error_return:
8258 if (contents != NULL
8259 && elf_section_data (sec)->this_hdr.contents != contents)
8260 free (contents);
8261
8262 return FALSE;
8263 }
8264
8265 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8266 after sections have been laid out, using specially-named symbols. */
8267
8268 void
8269 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8270 struct bfd_link_info *link_info)
8271 {
8272 asection *sec;
8273 struct elf32_arm_link_hash_table *globals;
8274 char *tmp_name;
8275
8276 if (bfd_link_relocatable (link_info))
8277 return;
8278
8279 /* Skip if this bfd does not correspond to an ELF image. */
8280 if (! is_arm_elf (abfd))
8281 return;
8282
8283 globals = elf32_arm_hash_table (link_info);
8284 if (globals == NULL)
8285 return;
8286
8287 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8288 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8289
8290 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8291 {
8292 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8293 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8294
8295 for (; errnode != NULL; errnode = errnode->next)
8296 {
8297 struct elf_link_hash_entry *myh;
8298 bfd_vma vma;
8299
8300 switch (errnode->type)
8301 {
8302 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8303 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8304 /* Find veneer symbol. */
8305 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8306 errnode->u.b.veneer->u.v.id);
8307
8308 myh = elf_link_hash_lookup
8309 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8310
8311 if (myh == NULL)
8312 _bfd_error_handler (_("%B: unable to find VFP11 veneer "
8313 "`%s'"), abfd, tmp_name);
8314
8315 vma = myh->root.u.def.section->output_section->vma
8316 + myh->root.u.def.section->output_offset
8317 + myh->root.u.def.value;
8318
8319 errnode->u.b.veneer->vma = vma;
8320 break;
8321
8322 case VFP11_ERRATUM_ARM_VENEER:
8323 case VFP11_ERRATUM_THUMB_VENEER:
8324 /* Find return location. */
8325 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8326 errnode->u.v.id);
8327
8328 myh = elf_link_hash_lookup
8329 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8330
8331 if (myh == NULL)
8332 _bfd_error_handler (_("%B: unable to find VFP11 veneer "
8333 "`%s'"), abfd, tmp_name);
8334
8335 vma = myh->root.u.def.section->output_section->vma
8336 + myh->root.u.def.section->output_offset
8337 + myh->root.u.def.value;
8338
8339 errnode->u.v.branch->vma = vma;
8340 break;
8341
8342 default:
8343 abort ();
8344 }
8345 }
8346 }
8347
8348 free (tmp_name);
8349 }
8350
8351 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8352 return locations after sections have been laid out, using
8353 specially-named symbols. */
8354
8355 void
8356 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8357 struct bfd_link_info *link_info)
8358 {
8359 asection *sec;
8360 struct elf32_arm_link_hash_table *globals;
8361 char *tmp_name;
8362
8363 if (bfd_link_relocatable (link_info))
8364 return;
8365
8366 /* Skip if this bfd does not correspond to an ELF image. */
8367 if (! is_arm_elf (abfd))
8368 return;
8369
8370 globals = elf32_arm_hash_table (link_info);
8371 if (globals == NULL)
8372 return;
8373
8374 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8375 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8376
8377 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8378 {
8379 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8380 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8381
8382 for (; errnode != NULL; errnode = errnode->next)
8383 {
8384 struct elf_link_hash_entry *myh;
8385 bfd_vma vma;
8386
8387 switch (errnode->type)
8388 {
8389 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8390 /* Find veneer symbol. */
8391 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8392 errnode->u.b.veneer->u.v.id);
8393
8394 myh = elf_link_hash_lookup
8395 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8396
8397 if (myh == NULL)
8398 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8399 "`%s'"), abfd, tmp_name);
8400
8401 vma = myh->root.u.def.section->output_section->vma
8402 + myh->root.u.def.section->output_offset
8403 + myh->root.u.def.value;
8404
8405 errnode->u.b.veneer->vma = vma;
8406 break;
8407
8408 case STM32L4XX_ERRATUM_VENEER:
8409 /* Find return location. */
8410 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8411 errnode->u.v.id);
8412
8413 myh = elf_link_hash_lookup
8414 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8415
8416 if (myh == NULL)
8417 _bfd_error_handler (_("%B: unable to find STM32L4XX veneer "
8418 "`%s'"), abfd, tmp_name);
8419
8420 vma = myh->root.u.def.section->output_section->vma
8421 + myh->root.u.def.section->output_offset
8422 + myh->root.u.def.value;
8423
8424 errnode->u.v.branch->vma = vma;
8425 break;
8426
8427 default:
8428 abort ();
8429 }
8430 }
8431 }
8432
8433 free (tmp_name);
8434 }
8435
8436 static inline bfd_boolean
8437 is_thumb2_ldmia (const insn32 insn)
8438 {
8439 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8440 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8441 return (insn & 0xffd02000) == 0xe8900000;
8442 }
8443
8444 static inline bfd_boolean
8445 is_thumb2_ldmdb (const insn32 insn)
8446 {
8447 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8448 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8449 return (insn & 0xffd02000) == 0xe9100000;
8450 }
8451
8452 static inline bfd_boolean
8453 is_thumb2_vldm (const insn32 insn)
8454 {
8455 /* A6.5 Extension register load or store instruction
8456 A7.7.229
8457 We look for SP 32-bit and DP 64-bit registers.
8458 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8459 <list> is consecutive 64-bit registers
8460 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8461 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8462 <list> is consecutive 32-bit registers
8463 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8464 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8465 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8466 return
8467 (((insn & 0xfe100f00) == 0xec100b00) ||
8468 ((insn & 0xfe100f00) == 0xec100a00))
8469 && /* (IA without !). */
8470 (((((insn << 7) >> 28) & 0xd) == 0x4)
8471 /* (IA with !), includes VPOP (when reg number is SP). */
8472 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8473 /* (DB with !). */
8474 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8475 }
8476
8477 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8478 VLDM opcode and:
8479 - computes the number and the mode of memory accesses
8480 - decides if the replacement should be done:
8481 . replaces only if > 8-word accesses
8482 . or (testing purposes only) replaces all accesses. */
8483
8484 static bfd_boolean
8485 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8486 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8487 {
8488 int nb_words = 0;
8489
8490 /* The field encoding the register list is the same for both LDMIA
8491 and LDMDB encodings. */
8492 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8493 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
8494 else if (is_thumb2_vldm (insn))
8495 nb_words = (insn & 0xff);
8496
8497 /* DEFAULT mode accounts for the real bug condition situation,
8498 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8499 return
8500 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8501 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8502 }
8503
8504 /* Look for potentially-troublesome code sequences which might trigger
8505 the STM STM32L4XX erratum. */
8506
8507 bfd_boolean
8508 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8509 struct bfd_link_info *link_info)
8510 {
8511 asection *sec;
8512 bfd_byte *contents = NULL;
8513 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8514
8515 if (globals == NULL)
8516 return FALSE;
8517
8518 /* If we are only performing a partial link do not bother
8519 to construct any glue. */
8520 if (bfd_link_relocatable (link_info))
8521 return TRUE;
8522
8523 /* Skip if this bfd does not correspond to an ELF image. */
8524 if (! is_arm_elf (abfd))
8525 return TRUE;
8526
8527 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8528 return TRUE;
8529
8530 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8531 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8532 return TRUE;
8533
8534 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8535 {
8536 unsigned int i, span;
8537 struct _arm_elf_section_data *sec_data;
8538
8539 /* If we don't have executable progbits, we're not interested in this
8540 section. Also skip if section is to be excluded. */
8541 if (elf_section_type (sec) != SHT_PROGBITS
8542 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8543 || (sec->flags & SEC_EXCLUDE) != 0
8544 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8545 || sec->output_section == bfd_abs_section_ptr
8546 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8547 continue;
8548
8549 sec_data = elf32_arm_section_data (sec);
8550
8551 if (sec_data->mapcount == 0)
8552 continue;
8553
8554 if (elf_section_data (sec)->this_hdr.contents != NULL)
8555 contents = elf_section_data (sec)->this_hdr.contents;
8556 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8557 goto error_return;
8558
8559 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8560 elf32_arm_compare_mapping);
8561
8562 for (span = 0; span < sec_data->mapcount; span++)
8563 {
8564 unsigned int span_start = sec_data->map[span].vma;
8565 unsigned int span_end = (span == sec_data->mapcount - 1)
8566 ? sec->size : sec_data->map[span + 1].vma;
8567 char span_type = sec_data->map[span].type;
8568 int itblock_current_pos = 0;
8569
8570 /* Only Thumb2 mode need be supported with this CM4 specific
8571 code, we should not encounter any arm mode eg span_type
8572 != 'a'. */
8573 if (span_type != 't')
8574 continue;
8575
8576 for (i = span_start; i < span_end;)
8577 {
8578 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8579 bfd_boolean insn_32bit = FALSE;
8580 bfd_boolean is_ldm = FALSE;
8581 bfd_boolean is_vldm = FALSE;
8582 bfd_boolean is_not_last_in_it_block = FALSE;
8583
8584 /* The first 16-bits of all 32-bit thumb2 instructions start
8585 with opcode[15..13]=0b111 and the encoded op1 can be anything
8586 except opcode[12..11]!=0b00.
8587 See 32-bit Thumb instruction encoding. */
8588 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8589 insn_32bit = TRUE;
8590
8591 /* Compute the predicate that tells if the instruction
8592 is concerned by the IT block
8593 - Creates an error if there is a ldm that is not
8594 last in the IT block thus cannot be replaced
8595 - Otherwise we can create a branch at the end of the
8596 IT block, it will be controlled naturally by IT
8597 with the proper pseudo-predicate
8598 - So the only interesting predicate is the one that
8599 tells that we are not on the last item of an IT
8600 block. */
8601 if (itblock_current_pos != 0)
8602 is_not_last_in_it_block = !!--itblock_current_pos;
8603
8604 if (insn_32bit)
8605 {
8606 /* Load the rest of the insn (in manual-friendly order). */
8607 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8608 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8609 is_vldm = is_thumb2_vldm (insn);
8610
8611 /* Veneers are created for (v)ldm depending on
8612 option flags and memory accesses conditions; but
8613 if the instruction is not the last instruction of
8614 an IT block, we cannot create a jump there, so we
8615 bail out. */
8616 if ((is_ldm || is_vldm)
8617 && stm32l4xx_need_create_replacing_stub
8618 (insn, globals->stm32l4xx_fix))
8619 {
8620 if (is_not_last_in_it_block)
8621 {
8622 _bfd_error_handler
8623 /* Note - overlong line used here to allow for translation. */
8624 /* xgettext:c-format */
8625 (_("\
8626 %B(%A+0x%lx): error: multiple load detected in non-last IT block instruction : STM32L4XX veneer cannot be generated.\n"
8627 "Use gcc option -mrestrict-it to generate only one instruction per IT block.\n"),
8628 abfd, sec, (long) i);
8629 }
8630 else
8631 {
8632 elf32_stm32l4xx_erratum_list *newerr =
8633 (elf32_stm32l4xx_erratum_list *)
8634 bfd_zmalloc
8635 (sizeof (elf32_stm32l4xx_erratum_list));
8636
8637 elf32_arm_section_data (sec)
8638 ->stm32l4xx_erratumcount += 1;
8639 newerr->u.b.insn = insn;
8640 /* We create only thumb branches. */
8641 newerr->type =
8642 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8643 record_stm32l4xx_erratum_veneer
8644 (link_info, newerr, abfd, sec,
8645 i,
8646 is_ldm ?
8647 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8648 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8649 newerr->vma = -1;
8650 newerr->next = sec_data->stm32l4xx_erratumlist;
8651 sec_data->stm32l4xx_erratumlist = newerr;
8652 }
8653 }
8654 }
8655 else
8656 {
8657 /* A7.7.37 IT p208
8658 IT blocks are only encoded in T1
8659 Encoding T1: IT{x{y{z}}} <firstcond>
8660 1 0 1 1 - 1 1 1 1 - firstcond - mask
8661 if mask = '0000' then see 'related encodings'
8662 We don't deal with UNPREDICTABLE, just ignore these.
8663 There can be no nested IT blocks so an IT block
8664 is naturally a new one for which it is worth
8665 computing its size. */
8666 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
8667 && ((insn & 0x000f) != 0x0000);
8668 /* If we have a new IT block we compute its size. */
8669 if (is_newitblock)
8670 {
8671 /* Compute the number of instructions controlled
8672 by the IT block, it will be used to decide
8673 whether we are inside an IT block or not. */
8674 unsigned int mask = insn & 0x000f;
8675 itblock_current_pos = 4 - ctz (mask);
8676 }
8677 }
8678
8679 i += insn_32bit ? 4 : 2;
8680 }
8681 }
8682
8683 if (contents != NULL
8684 && elf_section_data (sec)->this_hdr.contents != contents)
8685 free (contents);
8686 contents = NULL;
8687 }
8688
8689 return TRUE;
8690
8691 error_return:
8692 if (contents != NULL
8693 && elf_section_data (sec)->this_hdr.contents != contents)
8694 free (contents);
8695
8696 return FALSE;
8697 }
8698
8699 /* Set target relocation values needed during linking. */
8700
8701 void
8702 bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
8703 struct bfd_link_info *link_info,
8704 struct elf32_arm_params *params)
8705 {
8706 struct elf32_arm_link_hash_table *globals;
8707
8708 globals = elf32_arm_hash_table (link_info);
8709 if (globals == NULL)
8710 return;
8711
8712 globals->target1_is_rel = params->target1_is_rel;
8713 if (strcmp (params->target2_type, "rel") == 0)
8714 globals->target2_reloc = R_ARM_REL32;
8715 else if (strcmp (params->target2_type, "abs") == 0)
8716 globals->target2_reloc = R_ARM_ABS32;
8717 else if (strcmp (params->target2_type, "got-rel") == 0)
8718 globals->target2_reloc = R_ARM_GOT_PREL;
8719 else
8720 {
8721 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
8722 params->target2_type);
8723 }
8724 globals->fix_v4bx = params->fix_v4bx;
8725 globals->use_blx |= params->use_blx;
8726 globals->vfp11_fix = params->vfp11_denorm_fix;
8727 globals->stm32l4xx_fix = params->stm32l4xx_fix;
8728 globals->pic_veneer = params->pic_veneer;
8729 globals->fix_cortex_a8 = params->fix_cortex_a8;
8730 globals->fix_arm1176 = params->fix_arm1176;
8731 globals->cmse_implib = params->cmse_implib;
8732 globals->in_implib_bfd = params->in_implib_bfd;
8733
8734 BFD_ASSERT (is_arm_elf (output_bfd));
8735 elf_arm_tdata (output_bfd)->no_enum_size_warning
8736 = params->no_enum_size_warning;
8737 elf_arm_tdata (output_bfd)->no_wchar_size_warning
8738 = params->no_wchar_size_warning;
8739 }
8740
8741 /* Replace the target offset of a Thumb bl or b.w instruction. */
8742
8743 static void
8744 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
8745 {
8746 bfd_vma upper;
8747 bfd_vma lower;
8748 int reloc_sign;
8749
8750 BFD_ASSERT ((offset & 1) == 0);
8751
8752 upper = bfd_get_16 (abfd, insn);
8753 lower = bfd_get_16 (abfd, insn + 2);
8754 reloc_sign = (offset < 0) ? 1 : 0;
8755 upper = (upper & ~(bfd_vma) 0x7ff)
8756 | ((offset >> 12) & 0x3ff)
8757 | (reloc_sign << 10);
8758 lower = (lower & ~(bfd_vma) 0x2fff)
8759 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
8760 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
8761 | ((offset >> 1) & 0x7ff);
8762 bfd_put_16 (abfd, upper, insn);
8763 bfd_put_16 (abfd, lower, insn + 2);
8764 }
8765
8766 /* Thumb code calling an ARM function. */
8767
8768 static int
8769 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
8770 const char * name,
8771 bfd * input_bfd,
8772 bfd * output_bfd,
8773 asection * input_section,
8774 bfd_byte * hit_data,
8775 asection * sym_sec,
8776 bfd_vma offset,
8777 bfd_signed_vma addend,
8778 bfd_vma val,
8779 char **error_message)
8780 {
8781 asection * s = 0;
8782 bfd_vma my_offset;
8783 long int ret_offset;
8784 struct elf_link_hash_entry * myh;
8785 struct elf32_arm_link_hash_table * globals;
8786
8787 myh = find_thumb_glue (info, name, error_message);
8788 if (myh == NULL)
8789 return FALSE;
8790
8791 globals = elf32_arm_hash_table (info);
8792 BFD_ASSERT (globals != NULL);
8793 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8794
8795 my_offset = myh->root.u.def.value;
8796
8797 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8798 THUMB2ARM_GLUE_SECTION_NAME);
8799
8800 BFD_ASSERT (s != NULL);
8801 BFD_ASSERT (s->contents != NULL);
8802 BFD_ASSERT (s->output_section != NULL);
8803
8804 if ((my_offset & 0x01) == 0x01)
8805 {
8806 if (sym_sec != NULL
8807 && sym_sec->owner != NULL
8808 && !INTERWORK_FLAG (sym_sec->owner))
8809 {
8810 _bfd_error_handler
8811 (_("%B(%s): warning: interworking not enabled.\n"
8812 " first occurrence: %B: Thumb call to ARM"),
8813 sym_sec->owner, name, input_bfd);
8814
8815 return FALSE;
8816 }
8817
8818 --my_offset;
8819 myh->root.u.def.value = my_offset;
8820
8821 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
8822 s->contents + my_offset);
8823
8824 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
8825 s->contents + my_offset + 2);
8826
8827 ret_offset =
8828 /* Address of destination of the stub. */
8829 ((bfd_signed_vma) val)
8830 - ((bfd_signed_vma)
8831 /* Offset from the start of the current section
8832 to the start of the stubs. */
8833 (s->output_offset
8834 /* Offset of the start of this stub from the start of the stubs. */
8835 + my_offset
8836 /* Address of the start of the current section. */
8837 + s->output_section->vma)
8838 /* The branch instruction is 4 bytes into the stub. */
8839 + 4
8840 /* ARM branches work from the pc of the instruction + 8. */
8841 + 8);
8842
8843 put_arm_insn (globals, output_bfd,
8844 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
8845 s->contents + my_offset + 4);
8846 }
8847
8848 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
8849
8850 /* Now go back and fix up the original BL insn to point to here. */
8851 ret_offset =
8852 /* Address of where the stub is located. */
8853 (s->output_section->vma + s->output_offset + my_offset)
8854 /* Address of where the BL is located. */
8855 - (input_section->output_section->vma + input_section->output_offset
8856 + offset)
8857 /* Addend in the relocation. */
8858 - addend
8859 /* Biassing for PC-relative addressing. */
8860 - 8;
8861
8862 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
8863
8864 return TRUE;
8865 }
8866
8867 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
8868
8869 static struct elf_link_hash_entry *
8870 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
8871 const char * name,
8872 bfd * input_bfd,
8873 bfd * output_bfd,
8874 asection * sym_sec,
8875 bfd_vma val,
8876 asection * s,
8877 char ** error_message)
8878 {
8879 bfd_vma my_offset;
8880 long int ret_offset;
8881 struct elf_link_hash_entry * myh;
8882 struct elf32_arm_link_hash_table * globals;
8883
8884 myh = find_arm_glue (info, name, error_message);
8885 if (myh == NULL)
8886 return NULL;
8887
8888 globals = elf32_arm_hash_table (info);
8889 BFD_ASSERT (globals != NULL);
8890 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8891
8892 my_offset = myh->root.u.def.value;
8893
8894 if ((my_offset & 0x01) == 0x01)
8895 {
8896 if (sym_sec != NULL
8897 && sym_sec->owner != NULL
8898 && !INTERWORK_FLAG (sym_sec->owner))
8899 {
8900 _bfd_error_handler
8901 (_("%B(%s): warning: interworking not enabled.\n"
8902 " first occurrence: %B: arm call to thumb"),
8903 sym_sec->owner, name, input_bfd);
8904 }
8905
8906 --my_offset;
8907 myh->root.u.def.value = my_offset;
8908
8909 if (bfd_link_pic (info)
8910 || globals->root.is_relocatable_executable
8911 || globals->pic_veneer)
8912 {
8913 /* For relocatable objects we can't use absolute addresses,
8914 so construct the address from a relative offset. */
8915 /* TODO: If the offset is small it's probably worth
8916 constructing the address with adds. */
8917 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
8918 s->contents + my_offset);
8919 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
8920 s->contents + my_offset + 4);
8921 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
8922 s->contents + my_offset + 8);
8923 /* Adjust the offset by 4 for the position of the add,
8924 and 8 for the pipeline offset. */
8925 ret_offset = (val - (s->output_offset
8926 + s->output_section->vma
8927 + my_offset + 12))
8928 | 1;
8929 bfd_put_32 (output_bfd, ret_offset,
8930 s->contents + my_offset + 12);
8931 }
8932 else if (globals->use_blx)
8933 {
8934 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
8935 s->contents + my_offset);
8936
8937 /* It's a thumb address. Add the low order bit. */
8938 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
8939 s->contents + my_offset + 4);
8940 }
8941 else
8942 {
8943 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
8944 s->contents + my_offset);
8945
8946 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
8947 s->contents + my_offset + 4);
8948
8949 /* It's a thumb address. Add the low order bit. */
8950 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
8951 s->contents + my_offset + 8);
8952
8953 my_offset += 12;
8954 }
8955 }
8956
8957 BFD_ASSERT (my_offset <= globals->arm_glue_size);
8958
8959 return myh;
8960 }
8961
8962 /* Arm code calling a Thumb function. */
8963
8964 static int
8965 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
8966 const char * name,
8967 bfd * input_bfd,
8968 bfd * output_bfd,
8969 asection * input_section,
8970 bfd_byte * hit_data,
8971 asection * sym_sec,
8972 bfd_vma offset,
8973 bfd_signed_vma addend,
8974 bfd_vma val,
8975 char **error_message)
8976 {
8977 unsigned long int tmp;
8978 bfd_vma my_offset;
8979 asection * s;
8980 long int ret_offset;
8981 struct elf_link_hash_entry * myh;
8982 struct elf32_arm_link_hash_table * globals;
8983
8984 globals = elf32_arm_hash_table (info);
8985 BFD_ASSERT (globals != NULL);
8986 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
8987
8988 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
8989 ARM2THUMB_GLUE_SECTION_NAME);
8990 BFD_ASSERT (s != NULL);
8991 BFD_ASSERT (s->contents != NULL);
8992 BFD_ASSERT (s->output_section != NULL);
8993
8994 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
8995 sym_sec, val, s, error_message);
8996 if (!myh)
8997 return FALSE;
8998
8999 my_offset = myh->root.u.def.value;
9000 tmp = bfd_get_32 (input_bfd, hit_data);
9001 tmp = tmp & 0xFF000000;
9002
9003 /* Somehow these are both 4 too far, so subtract 8. */
9004 ret_offset = (s->output_offset
9005 + my_offset
9006 + s->output_section->vma
9007 - (input_section->output_offset
9008 + input_section->output_section->vma
9009 + offset + addend)
9010 - 8);
9011
9012 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9013
9014 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
9015
9016 return TRUE;
9017 }
9018
9019 /* Populate Arm stub for an exported Thumb function. */
9020
9021 static bfd_boolean
9022 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9023 {
9024 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9025 asection * s;
9026 struct elf_link_hash_entry * myh;
9027 struct elf32_arm_link_hash_entry *eh;
9028 struct elf32_arm_link_hash_table * globals;
9029 asection *sec;
9030 bfd_vma val;
9031 char *error_message;
9032
9033 eh = elf32_arm_hash_entry (h);
9034 /* Allocate stubs for exported Thumb functions on v4t. */
9035 if (eh->export_glue == NULL)
9036 return TRUE;
9037
9038 globals = elf32_arm_hash_table (info);
9039 BFD_ASSERT (globals != NULL);
9040 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9041
9042 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9043 ARM2THUMB_GLUE_SECTION_NAME);
9044 BFD_ASSERT (s != NULL);
9045 BFD_ASSERT (s->contents != NULL);
9046 BFD_ASSERT (s->output_section != NULL);
9047
9048 sec = eh->export_glue->root.u.def.section;
9049
9050 BFD_ASSERT (sec->output_section != NULL);
9051
9052 val = eh->export_glue->root.u.def.value + sec->output_offset
9053 + sec->output_section->vma;
9054
9055 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9056 h->root.u.def.section->owner,
9057 globals->obfd, sec, val, s,
9058 &error_message);
9059 BFD_ASSERT (myh);
9060 return TRUE;
9061 }
9062
9063 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9064
9065 static bfd_vma
9066 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9067 {
9068 bfd_byte *p;
9069 bfd_vma glue_addr;
9070 asection *s;
9071 struct elf32_arm_link_hash_table *globals;
9072
9073 globals = elf32_arm_hash_table (info);
9074 BFD_ASSERT (globals != NULL);
9075 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9076
9077 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9078 ARM_BX_GLUE_SECTION_NAME);
9079 BFD_ASSERT (s != NULL);
9080 BFD_ASSERT (s->contents != NULL);
9081 BFD_ASSERT (s->output_section != NULL);
9082
9083 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9084
9085 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9086
9087 if ((globals->bx_glue_offset[reg] & 1) == 0)
9088 {
9089 p = s->contents + glue_addr;
9090 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9091 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9092 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9093 globals->bx_glue_offset[reg] |= 1;
9094 }
9095
9096 return glue_addr + s->output_section->vma + s->output_offset;
9097 }
9098
9099 /* Generate Arm stubs for exported Thumb symbols. */
9100 static void
9101 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9102 struct bfd_link_info *link_info)
9103 {
9104 struct elf32_arm_link_hash_table * globals;
9105
9106 if (link_info == NULL)
9107 /* Ignore this if we are not called by the ELF backend linker. */
9108 return;
9109
9110 globals = elf32_arm_hash_table (link_info);
9111 if (globals == NULL)
9112 return;
9113
9114 /* If blx is available then exported Thumb symbols are OK and there is
9115 nothing to do. */
9116 if (globals->use_blx)
9117 return;
9118
9119 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9120 link_info);
9121 }
9122
9123 /* Reserve space for COUNT dynamic relocations in relocation selection
9124 SRELOC. */
9125
9126 static void
9127 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9128 bfd_size_type count)
9129 {
9130 struct elf32_arm_link_hash_table *htab;
9131
9132 htab = elf32_arm_hash_table (info);
9133 BFD_ASSERT (htab->root.dynamic_sections_created);
9134 if (sreloc == NULL)
9135 abort ();
9136 sreloc->size += RELOC_SIZE (htab) * count;
9137 }
9138
9139 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9140 dynamic, the relocations should go in SRELOC, otherwise they should
9141 go in the special .rel.iplt section. */
9142
9143 static void
9144 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9145 bfd_size_type count)
9146 {
9147 struct elf32_arm_link_hash_table *htab;
9148
9149 htab = elf32_arm_hash_table (info);
9150 if (!htab->root.dynamic_sections_created)
9151 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9152 else
9153 {
9154 BFD_ASSERT (sreloc != NULL);
9155 sreloc->size += RELOC_SIZE (htab) * count;
9156 }
9157 }
9158
9159 /* Add relocation REL to the end of relocation section SRELOC. */
9160
9161 static void
9162 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9163 asection *sreloc, Elf_Internal_Rela *rel)
9164 {
9165 bfd_byte *loc;
9166 struct elf32_arm_link_hash_table *htab;
9167
9168 htab = elf32_arm_hash_table (info);
9169 if (!htab->root.dynamic_sections_created
9170 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9171 sreloc = htab->root.irelplt;
9172 if (sreloc == NULL)
9173 abort ();
9174 loc = sreloc->contents;
9175 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9176 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9177 abort ();
9178 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9179 }
9180
9181 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9182 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9183 to .plt. */
9184
9185 static void
9186 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9187 bfd_boolean is_iplt_entry,
9188 union gotplt_union *root_plt,
9189 struct arm_plt_info *arm_plt)
9190 {
9191 struct elf32_arm_link_hash_table *htab;
9192 asection *splt;
9193 asection *sgotplt;
9194
9195 htab = elf32_arm_hash_table (info);
9196
9197 if (is_iplt_entry)
9198 {
9199 splt = htab->root.iplt;
9200 sgotplt = htab->root.igotplt;
9201
9202 /* NaCl uses a special first entry in .iplt too. */
9203 if (htab->nacl_p && splt->size == 0)
9204 splt->size += htab->plt_header_size;
9205
9206 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9207 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9208 }
9209 else
9210 {
9211 splt = htab->root.splt;
9212 sgotplt = htab->root.sgotplt;
9213
9214 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9215 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9216
9217 /* If this is the first .plt entry, make room for the special
9218 first entry. */
9219 if (splt->size == 0)
9220 splt->size += htab->plt_header_size;
9221
9222 htab->next_tls_desc_index++;
9223 }
9224
9225 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9226 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9227 splt->size += PLT_THUMB_STUB_SIZE;
9228 root_plt->offset = splt->size;
9229 splt->size += htab->plt_entry_size;
9230
9231 if (!htab->symbian_p)
9232 {
9233 /* We also need to make an entry in the .got.plt section, which
9234 will be placed in the .got section by the linker script. */
9235 if (is_iplt_entry)
9236 arm_plt->got_offset = sgotplt->size;
9237 else
9238 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9239 sgotplt->size += 4;
9240 }
9241 }
9242
9243 static bfd_vma
9244 arm_movw_immediate (bfd_vma value)
9245 {
9246 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9247 }
9248
9249 static bfd_vma
9250 arm_movt_immediate (bfd_vma value)
9251 {
9252 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9253 }
9254
9255 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9256 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9257 Otherwise, DYNINDX is the index of the symbol in the dynamic
9258 symbol table and SYM_VALUE is undefined.
9259
9260 ROOT_PLT points to the offset of the PLT entry from the start of its
9261 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9262 bookkeeping information.
9263
9264 Returns FALSE if there was a problem. */
9265
9266 static bfd_boolean
9267 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9268 union gotplt_union *root_plt,
9269 struct arm_plt_info *arm_plt,
9270 int dynindx, bfd_vma sym_value)
9271 {
9272 struct elf32_arm_link_hash_table *htab;
9273 asection *sgot;
9274 asection *splt;
9275 asection *srel;
9276 bfd_byte *loc;
9277 bfd_vma plt_index;
9278 Elf_Internal_Rela rel;
9279 bfd_vma plt_header_size;
9280 bfd_vma got_header_size;
9281
9282 htab = elf32_arm_hash_table (info);
9283
9284 /* Pick the appropriate sections and sizes. */
9285 if (dynindx == -1)
9286 {
9287 splt = htab->root.iplt;
9288 sgot = htab->root.igotplt;
9289 srel = htab->root.irelplt;
9290
9291 /* There are no reserved entries in .igot.plt, and no special
9292 first entry in .iplt. */
9293 got_header_size = 0;
9294 plt_header_size = 0;
9295 }
9296 else
9297 {
9298 splt = htab->root.splt;
9299 sgot = htab->root.sgotplt;
9300 srel = htab->root.srelplt;
9301
9302 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9303 plt_header_size = htab->plt_header_size;
9304 }
9305 BFD_ASSERT (splt != NULL && srel != NULL);
9306
9307 /* Fill in the entry in the procedure linkage table. */
9308 if (htab->symbian_p)
9309 {
9310 BFD_ASSERT (dynindx >= 0);
9311 put_arm_insn (htab, output_bfd,
9312 elf32_arm_symbian_plt_entry[0],
9313 splt->contents + root_plt->offset);
9314 bfd_put_32 (output_bfd,
9315 elf32_arm_symbian_plt_entry[1],
9316 splt->contents + root_plt->offset + 4);
9317
9318 /* Fill in the entry in the .rel.plt section. */
9319 rel.r_offset = (splt->output_section->vma
9320 + splt->output_offset
9321 + root_plt->offset + 4);
9322 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9323
9324 /* Get the index in the procedure linkage table which
9325 corresponds to this symbol. This is the index of this symbol
9326 in all the symbols for which we are making plt entries. The
9327 first entry in the procedure linkage table is reserved. */
9328 plt_index = ((root_plt->offset - plt_header_size)
9329 / htab->plt_entry_size);
9330 }
9331 else
9332 {
9333 bfd_vma got_offset, got_address, plt_address;
9334 bfd_vma got_displacement, initial_got_entry;
9335 bfd_byte * ptr;
9336
9337 BFD_ASSERT (sgot != NULL);
9338
9339 /* Get the offset into the .(i)got.plt table of the entry that
9340 corresponds to this function. */
9341 got_offset = (arm_plt->got_offset & -2);
9342
9343 /* Get the index in the procedure linkage table which
9344 corresponds to this symbol. This is the index of this symbol
9345 in all the symbols for which we are making plt entries.
9346 After the reserved .got.plt entries, all symbols appear in
9347 the same order as in .plt. */
9348 plt_index = (got_offset - got_header_size) / 4;
9349
9350 /* Calculate the address of the GOT entry. */
9351 got_address = (sgot->output_section->vma
9352 + sgot->output_offset
9353 + got_offset);
9354
9355 /* ...and the address of the PLT entry. */
9356 plt_address = (splt->output_section->vma
9357 + splt->output_offset
9358 + root_plt->offset);
9359
9360 ptr = splt->contents + root_plt->offset;
9361 if (htab->vxworks_p && bfd_link_pic (info))
9362 {
9363 unsigned int i;
9364 bfd_vma val;
9365
9366 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9367 {
9368 val = elf32_arm_vxworks_shared_plt_entry[i];
9369 if (i == 2)
9370 val |= got_address - sgot->output_section->vma;
9371 if (i == 5)
9372 val |= plt_index * RELOC_SIZE (htab);
9373 if (i == 2 || i == 5)
9374 bfd_put_32 (output_bfd, val, ptr);
9375 else
9376 put_arm_insn (htab, output_bfd, val, ptr);
9377 }
9378 }
9379 else if (htab->vxworks_p)
9380 {
9381 unsigned int i;
9382 bfd_vma val;
9383
9384 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9385 {
9386 val = elf32_arm_vxworks_exec_plt_entry[i];
9387 if (i == 2)
9388 val |= got_address;
9389 if (i == 4)
9390 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9391 if (i == 5)
9392 val |= plt_index * RELOC_SIZE (htab);
9393 if (i == 2 || i == 5)
9394 bfd_put_32 (output_bfd, val, ptr);
9395 else
9396 put_arm_insn (htab, output_bfd, val, ptr);
9397 }
9398
9399 loc = (htab->srelplt2->contents
9400 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9401
9402 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9403 referencing the GOT for this PLT entry. */
9404 rel.r_offset = plt_address + 8;
9405 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9406 rel.r_addend = got_offset;
9407 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9408 loc += RELOC_SIZE (htab);
9409
9410 /* Create the R_ARM_ABS32 relocation referencing the
9411 beginning of the PLT for this GOT entry. */
9412 rel.r_offset = got_address;
9413 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9414 rel.r_addend = 0;
9415 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9416 }
9417 else if (htab->nacl_p)
9418 {
9419 /* Calculate the displacement between the PLT slot and the
9420 common tail that's part of the special initial PLT slot. */
9421 int32_t tail_displacement
9422 = ((splt->output_section->vma + splt->output_offset
9423 + ARM_NACL_PLT_TAIL_OFFSET)
9424 - (plt_address + htab->plt_entry_size + 4));
9425 BFD_ASSERT ((tail_displacement & 3) == 0);
9426 tail_displacement >>= 2;
9427
9428 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9429 || (-tail_displacement & 0xff000000) == 0);
9430
9431 /* Calculate the displacement between the PLT slot and the entry
9432 in the GOT. The offset accounts for the value produced by
9433 adding to pc in the penultimate instruction of the PLT stub. */
9434 got_displacement = (got_address
9435 - (plt_address + htab->plt_entry_size));
9436
9437 /* NaCl does not support interworking at all. */
9438 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9439
9440 put_arm_insn (htab, output_bfd,
9441 elf32_arm_nacl_plt_entry[0]
9442 | arm_movw_immediate (got_displacement),
9443 ptr + 0);
9444 put_arm_insn (htab, output_bfd,
9445 elf32_arm_nacl_plt_entry[1]
9446 | arm_movt_immediate (got_displacement),
9447 ptr + 4);
9448 put_arm_insn (htab, output_bfd,
9449 elf32_arm_nacl_plt_entry[2],
9450 ptr + 8);
9451 put_arm_insn (htab, output_bfd,
9452 elf32_arm_nacl_plt_entry[3]
9453 | (tail_displacement & 0x00ffffff),
9454 ptr + 12);
9455 }
9456 else if (using_thumb_only (htab))
9457 {
9458 /* PR ld/16017: Generate thumb only PLT entries. */
9459 if (!using_thumb2 (htab))
9460 {
9461 /* FIXME: We ought to be able to generate thumb-1 PLT
9462 instructions... */
9463 _bfd_error_handler (_("%B: Warning: thumb-1 mode PLT generation not currently supported"),
9464 output_bfd);
9465 return FALSE;
9466 }
9467
9468 /* Calculate the displacement between the PLT slot and the entry in
9469 the GOT. The 12-byte offset accounts for the value produced by
9470 adding to pc in the 3rd instruction of the PLT stub. */
9471 got_displacement = got_address - (plt_address + 12);
9472
9473 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9474 instead of 'put_thumb_insn'. */
9475 put_arm_insn (htab, output_bfd,
9476 elf32_thumb2_plt_entry[0]
9477 | ((got_displacement & 0x000000ff) << 16)
9478 | ((got_displacement & 0x00000700) << 20)
9479 | ((got_displacement & 0x00000800) >> 1)
9480 | ((got_displacement & 0x0000f000) >> 12),
9481 ptr + 0);
9482 put_arm_insn (htab, output_bfd,
9483 elf32_thumb2_plt_entry[1]
9484 | ((got_displacement & 0x00ff0000) )
9485 | ((got_displacement & 0x07000000) << 4)
9486 | ((got_displacement & 0x08000000) >> 17)
9487 | ((got_displacement & 0xf0000000) >> 28),
9488 ptr + 4);
9489 put_arm_insn (htab, output_bfd,
9490 elf32_thumb2_plt_entry[2],
9491 ptr + 8);
9492 put_arm_insn (htab, output_bfd,
9493 elf32_thumb2_plt_entry[3],
9494 ptr + 12);
9495 }
9496 else
9497 {
9498 /* Calculate the displacement between the PLT slot and the
9499 entry in the GOT. The eight-byte offset accounts for the
9500 value produced by adding to pc in the first instruction
9501 of the PLT stub. */
9502 got_displacement = got_address - (plt_address + 8);
9503
9504 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9505 {
9506 put_thumb_insn (htab, output_bfd,
9507 elf32_arm_plt_thumb_stub[0], ptr - 4);
9508 put_thumb_insn (htab, output_bfd,
9509 elf32_arm_plt_thumb_stub[1], ptr - 2);
9510 }
9511
9512 if (!elf32_arm_use_long_plt_entry)
9513 {
9514 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9515
9516 put_arm_insn (htab, output_bfd,
9517 elf32_arm_plt_entry_short[0]
9518 | ((got_displacement & 0x0ff00000) >> 20),
9519 ptr + 0);
9520 put_arm_insn (htab, output_bfd,
9521 elf32_arm_plt_entry_short[1]
9522 | ((got_displacement & 0x000ff000) >> 12),
9523 ptr+ 4);
9524 put_arm_insn (htab, output_bfd,
9525 elf32_arm_plt_entry_short[2]
9526 | (got_displacement & 0x00000fff),
9527 ptr + 8);
9528 #ifdef FOUR_WORD_PLT
9529 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9530 #endif
9531 }
9532 else
9533 {
9534 put_arm_insn (htab, output_bfd,
9535 elf32_arm_plt_entry_long[0]
9536 | ((got_displacement & 0xf0000000) >> 28),
9537 ptr + 0);
9538 put_arm_insn (htab, output_bfd,
9539 elf32_arm_plt_entry_long[1]
9540 | ((got_displacement & 0x0ff00000) >> 20),
9541 ptr + 4);
9542 put_arm_insn (htab, output_bfd,
9543 elf32_arm_plt_entry_long[2]
9544 | ((got_displacement & 0x000ff000) >> 12),
9545 ptr+ 8);
9546 put_arm_insn (htab, output_bfd,
9547 elf32_arm_plt_entry_long[3]
9548 | (got_displacement & 0x00000fff),
9549 ptr + 12);
9550 }
9551 }
9552
9553 /* Fill in the entry in the .rel(a).(i)plt section. */
9554 rel.r_offset = got_address;
9555 rel.r_addend = 0;
9556 if (dynindx == -1)
9557 {
9558 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9559 The dynamic linker or static executable then calls SYM_VALUE
9560 to determine the correct run-time value of the .igot.plt entry. */
9561 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9562 initial_got_entry = sym_value;
9563 }
9564 else
9565 {
9566 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9567 initial_got_entry = (splt->output_section->vma
9568 + splt->output_offset);
9569 }
9570
9571 /* Fill in the entry in the global offset table. */
9572 bfd_put_32 (output_bfd, initial_got_entry,
9573 sgot->contents + got_offset);
9574 }
9575
9576 if (dynindx == -1)
9577 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
9578 else
9579 {
9580 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9581 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9582 }
9583
9584 return TRUE;
9585 }
9586
9587 /* Some relocations map to different relocations depending on the
9588 target. Return the real relocation. */
9589
9590 static int
9591 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
9592 int r_type)
9593 {
9594 switch (r_type)
9595 {
9596 case R_ARM_TARGET1:
9597 if (globals->target1_is_rel)
9598 return R_ARM_REL32;
9599 else
9600 return R_ARM_ABS32;
9601
9602 case R_ARM_TARGET2:
9603 return globals->target2_reloc;
9604
9605 default:
9606 return r_type;
9607 }
9608 }
9609
9610 /* Return the base VMA address which should be subtracted from real addresses
9611 when resolving @dtpoff relocation.
9612 This is PT_TLS segment p_vaddr. */
9613
9614 static bfd_vma
9615 dtpoff_base (struct bfd_link_info *info)
9616 {
9617 /* If tls_sec is NULL, we should have signalled an error already. */
9618 if (elf_hash_table (info)->tls_sec == NULL)
9619 return 0;
9620 return elf_hash_table (info)->tls_sec->vma;
9621 }
9622
9623 /* Return the relocation value for @tpoff relocation
9624 if STT_TLS virtual address is ADDRESS. */
9625
9626 static bfd_vma
9627 tpoff (struct bfd_link_info *info, bfd_vma address)
9628 {
9629 struct elf_link_hash_table *htab = elf_hash_table (info);
9630 bfd_vma base;
9631
9632 /* If tls_sec is NULL, we should have signalled an error already. */
9633 if (htab->tls_sec == NULL)
9634 return 0;
9635 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
9636 return address - htab->tls_sec->vma + base;
9637 }
9638
9639 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
9640 VALUE is the relocation value. */
9641
9642 static bfd_reloc_status_type
9643 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
9644 {
9645 if (value > 0xfff)
9646 return bfd_reloc_overflow;
9647
9648 value |= bfd_get_32 (abfd, data) & 0xfffff000;
9649 bfd_put_32 (abfd, value, data);
9650 return bfd_reloc_ok;
9651 }
9652
9653 /* Handle TLS relaxations. Relaxing is possible for symbols that use
9654 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
9655 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
9656
9657 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
9658 is to then call final_link_relocate. Return other values in the
9659 case of error.
9660
9661 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
9662 the pre-relaxed code. It would be nice if the relocs were updated
9663 to match the optimization. */
9664
9665 static bfd_reloc_status_type
9666 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
9667 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
9668 Elf_Internal_Rela *rel, unsigned long is_local)
9669 {
9670 unsigned long insn;
9671
9672 switch (ELF32_R_TYPE (rel->r_info))
9673 {
9674 default:
9675 return bfd_reloc_notsupported;
9676
9677 case R_ARM_TLS_GOTDESC:
9678 if (is_local)
9679 insn = 0;
9680 else
9681 {
9682 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9683 if (insn & 1)
9684 insn -= 5; /* THUMB */
9685 else
9686 insn -= 8; /* ARM */
9687 }
9688 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9689 return bfd_reloc_continue;
9690
9691 case R_ARM_THM_TLS_DESCSEQ:
9692 /* Thumb insn. */
9693 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
9694 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
9695 {
9696 if (is_local)
9697 /* nop */
9698 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9699 }
9700 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
9701 {
9702 if (is_local)
9703 /* nop */
9704 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9705 else
9706 /* ldr rx,[ry] */
9707 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
9708 }
9709 else if ((insn & 0xff87) == 0x4780) /* blx rx */
9710 {
9711 if (is_local)
9712 /* nop */
9713 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
9714 else
9715 /* mov r0, rx */
9716 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
9717 contents + rel->r_offset);
9718 }
9719 else
9720 {
9721 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9722 /* It's a 32 bit instruction, fetch the rest of it for
9723 error generation. */
9724 insn = (insn << 16)
9725 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
9726 _bfd_error_handler
9727 /* xgettext:c-format */
9728 (_("%B(%A+0x%lx): unexpected Thumb instruction '0x%x' in TLS trampoline"),
9729 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9730 return bfd_reloc_notsupported;
9731 }
9732 break;
9733
9734 case R_ARM_TLS_DESCSEQ:
9735 /* arm insn. */
9736 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
9737 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
9738 {
9739 if (is_local)
9740 /* mov rx, ry */
9741 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
9742 contents + rel->r_offset);
9743 }
9744 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
9745 {
9746 if (is_local)
9747 /* nop */
9748 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9749 else
9750 /* ldr rx,[ry] */
9751 bfd_put_32 (input_bfd, insn & 0xfffff000,
9752 contents + rel->r_offset);
9753 }
9754 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
9755 {
9756 if (is_local)
9757 /* nop */
9758 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
9759 else
9760 /* mov r0, rx */
9761 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
9762 contents + rel->r_offset);
9763 }
9764 else
9765 {
9766 _bfd_error_handler
9767 /* xgettext:c-format */
9768 (_("%B(%A+0x%lx): unexpected ARM instruction '0x%x' in TLS trampoline"),
9769 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
9770 return bfd_reloc_notsupported;
9771 }
9772 break;
9773
9774 case R_ARM_TLS_CALL:
9775 /* GD->IE relaxation, turn the instruction into 'nop' or
9776 'ldr r0, [pc,r0]' */
9777 insn = is_local ? 0xe1a00000 : 0xe79f0000;
9778 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
9779 break;
9780
9781 case R_ARM_THM_TLS_CALL:
9782 /* GD->IE relaxation. */
9783 if (!is_local)
9784 /* add r0,pc; ldr r0, [r0] */
9785 insn = 0x44786800;
9786 else if (using_thumb2 (globals))
9787 /* nop.w */
9788 insn = 0xf3af8000;
9789 else
9790 /* nop; nop */
9791 insn = 0xbf00bf00;
9792
9793 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
9794 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
9795 break;
9796 }
9797 return bfd_reloc_ok;
9798 }
9799
9800 /* For a given value of n, calculate the value of G_n as required to
9801 deal with group relocations. We return it in the form of an
9802 encoded constant-and-rotation, together with the final residual. If n is
9803 specified as less than zero, then final_residual is filled with the
9804 input value and no further action is performed. */
9805
9806 static bfd_vma
9807 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
9808 {
9809 int current_n;
9810 bfd_vma g_n;
9811 bfd_vma encoded_g_n = 0;
9812 bfd_vma residual = value; /* Also known as Y_n. */
9813
9814 for (current_n = 0; current_n <= n; current_n++)
9815 {
9816 int shift;
9817
9818 /* Calculate which part of the value to mask. */
9819 if (residual == 0)
9820 shift = 0;
9821 else
9822 {
9823 int msb;
9824
9825 /* Determine the most significant bit in the residual and
9826 align the resulting value to a 2-bit boundary. */
9827 for (msb = 30; msb >= 0; msb -= 2)
9828 if (residual & (3 << msb))
9829 break;
9830
9831 /* The desired shift is now (msb - 6), or zero, whichever
9832 is the greater. */
9833 shift = msb - 6;
9834 if (shift < 0)
9835 shift = 0;
9836 }
9837
9838 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
9839 g_n = residual & (0xff << shift);
9840 encoded_g_n = (g_n >> shift)
9841 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
9842
9843 /* Calculate the residual for the next time around. */
9844 residual &= ~g_n;
9845 }
9846
9847 *final_residual = residual;
9848
9849 return encoded_g_n;
9850 }
9851
9852 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
9853 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
9854
9855 static int
9856 identify_add_or_sub (bfd_vma insn)
9857 {
9858 int opcode = insn & 0x1e00000;
9859
9860 if (opcode == 1 << 23) /* ADD */
9861 return 1;
9862
9863 if (opcode == 1 << 22) /* SUB */
9864 return -1;
9865
9866 return 0;
9867 }
9868
9869 /* Perform a relocation as part of a final link. */
9870
9871 static bfd_reloc_status_type
9872 elf32_arm_final_link_relocate (reloc_howto_type * howto,
9873 bfd * input_bfd,
9874 bfd * output_bfd,
9875 asection * input_section,
9876 bfd_byte * contents,
9877 Elf_Internal_Rela * rel,
9878 bfd_vma value,
9879 struct bfd_link_info * info,
9880 asection * sym_sec,
9881 const char * sym_name,
9882 unsigned char st_type,
9883 enum arm_st_branch_type branch_type,
9884 struct elf_link_hash_entry * h,
9885 bfd_boolean * unresolved_reloc_p,
9886 char ** error_message)
9887 {
9888 unsigned long r_type = howto->type;
9889 unsigned long r_symndx;
9890 bfd_byte * hit_data = contents + rel->r_offset;
9891 bfd_vma * local_got_offsets;
9892 bfd_vma * local_tlsdesc_gotents;
9893 asection * sgot;
9894 asection * splt;
9895 asection * sreloc = NULL;
9896 asection * srelgot;
9897 bfd_vma addend;
9898 bfd_signed_vma signed_addend;
9899 unsigned char dynreloc_st_type;
9900 bfd_vma dynreloc_value;
9901 struct elf32_arm_link_hash_table * globals;
9902 struct elf32_arm_link_hash_entry *eh;
9903 union gotplt_union *root_plt;
9904 struct arm_plt_info *arm_plt;
9905 bfd_vma plt_offset;
9906 bfd_vma gotplt_offset;
9907 bfd_boolean has_iplt_entry;
9908
9909 globals = elf32_arm_hash_table (info);
9910 if (globals == NULL)
9911 return bfd_reloc_notsupported;
9912
9913 BFD_ASSERT (is_arm_elf (input_bfd));
9914
9915 /* Some relocation types map to different relocations depending on the
9916 target. We pick the right one here. */
9917 r_type = arm_real_reloc_type (globals, r_type);
9918
9919 /* It is possible to have linker relaxations on some TLS access
9920 models. Update our information here. */
9921 r_type = elf32_arm_tls_transition (info, r_type, h);
9922
9923 if (r_type != howto->type)
9924 howto = elf32_arm_howto_from_type (r_type);
9925
9926 eh = (struct elf32_arm_link_hash_entry *) h;
9927 sgot = globals->root.sgot;
9928 local_got_offsets = elf_local_got_offsets (input_bfd);
9929 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
9930
9931 if (globals->root.dynamic_sections_created)
9932 srelgot = globals->root.srelgot;
9933 else
9934 srelgot = NULL;
9935
9936 r_symndx = ELF32_R_SYM (rel->r_info);
9937
9938 if (globals->use_rel)
9939 {
9940 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
9941
9942 if (addend & ((howto->src_mask + 1) >> 1))
9943 {
9944 signed_addend = -1;
9945 signed_addend &= ~ howto->src_mask;
9946 signed_addend |= addend;
9947 }
9948 else
9949 signed_addend = addend;
9950 }
9951 else
9952 addend = signed_addend = rel->r_addend;
9953
9954 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
9955 are resolving a function call relocation. */
9956 if (using_thumb_only (globals)
9957 && (r_type == R_ARM_THM_CALL
9958 || r_type == R_ARM_THM_JUMP24)
9959 && branch_type == ST_BRANCH_TO_ARM)
9960 branch_type = ST_BRANCH_TO_THUMB;
9961
9962 /* Record the symbol information that should be used in dynamic
9963 relocations. */
9964 dynreloc_st_type = st_type;
9965 dynreloc_value = value;
9966 if (branch_type == ST_BRANCH_TO_THUMB)
9967 dynreloc_value |= 1;
9968
9969 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
9970 VALUE appropriately for relocations that we resolve at link time. */
9971 has_iplt_entry = FALSE;
9972 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
9973 &arm_plt)
9974 && root_plt->offset != (bfd_vma) -1)
9975 {
9976 plt_offset = root_plt->offset;
9977 gotplt_offset = arm_plt->got_offset;
9978
9979 if (h == NULL || eh->is_iplt)
9980 {
9981 has_iplt_entry = TRUE;
9982 splt = globals->root.iplt;
9983
9984 /* Populate .iplt entries here, because not all of them will
9985 be seen by finish_dynamic_symbol. The lower bit is set if
9986 we have already populated the entry. */
9987 if (plt_offset & 1)
9988 plt_offset--;
9989 else
9990 {
9991 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
9992 -1, dynreloc_value))
9993 root_plt->offset |= 1;
9994 else
9995 return bfd_reloc_notsupported;
9996 }
9997
9998 /* Static relocations always resolve to the .iplt entry. */
9999 st_type = STT_FUNC;
10000 value = (splt->output_section->vma
10001 + splt->output_offset
10002 + plt_offset);
10003 branch_type = ST_BRANCH_TO_ARM;
10004
10005 /* If there are non-call relocations that resolve to the .iplt
10006 entry, then all dynamic ones must too. */
10007 if (arm_plt->noncall_refcount != 0)
10008 {
10009 dynreloc_st_type = st_type;
10010 dynreloc_value = value;
10011 }
10012 }
10013 else
10014 /* We populate the .plt entry in finish_dynamic_symbol. */
10015 splt = globals->root.splt;
10016 }
10017 else
10018 {
10019 splt = NULL;
10020 plt_offset = (bfd_vma) -1;
10021 gotplt_offset = (bfd_vma) -1;
10022 }
10023
10024 switch (r_type)
10025 {
10026 case R_ARM_NONE:
10027 /* We don't need to find a value for this symbol. It's just a
10028 marker. */
10029 *unresolved_reloc_p = FALSE;
10030 return bfd_reloc_ok;
10031
10032 case R_ARM_ABS12:
10033 if (!globals->vxworks_p)
10034 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10035 /* Fall through. */
10036
10037 case R_ARM_PC24:
10038 case R_ARM_ABS32:
10039 case R_ARM_ABS32_NOI:
10040 case R_ARM_REL32:
10041 case R_ARM_REL32_NOI:
10042 case R_ARM_CALL:
10043 case R_ARM_JUMP24:
10044 case R_ARM_XPC25:
10045 case R_ARM_PREL31:
10046 case R_ARM_PLT32:
10047 /* Handle relocations which should use the PLT entry. ABS32/REL32
10048 will use the symbol's value, which may point to a PLT entry, but we
10049 don't need to handle that here. If we created a PLT entry, all
10050 branches in this object should go to it, except if the PLT is too
10051 far away, in which case a long branch stub should be inserted. */
10052 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10053 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10054 && r_type != R_ARM_CALL
10055 && r_type != R_ARM_JUMP24
10056 && r_type != R_ARM_PLT32)
10057 && plt_offset != (bfd_vma) -1)
10058 {
10059 /* If we've created a .plt section, and assigned a PLT entry
10060 to this function, it must either be a STT_GNU_IFUNC reference
10061 or not be known to bind locally. In other cases, we should
10062 have cleared the PLT entry by now. */
10063 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10064
10065 value = (splt->output_section->vma
10066 + splt->output_offset
10067 + plt_offset);
10068 *unresolved_reloc_p = FALSE;
10069 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10070 contents, rel->r_offset, value,
10071 rel->r_addend);
10072 }
10073
10074 /* When generating a shared object or relocatable executable, these
10075 relocations are copied into the output file to be resolved at
10076 run time. */
10077 if ((bfd_link_pic (info)
10078 || globals->root.is_relocatable_executable)
10079 && (input_section->flags & SEC_ALLOC)
10080 && !(globals->vxworks_p
10081 && strcmp (input_section->output_section->name,
10082 ".tls_vars") == 0)
10083 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10084 || !SYMBOL_CALLS_LOCAL (info, h))
10085 && !(input_bfd == globals->stub_bfd
10086 && strstr (input_section->name, STUB_SUFFIX))
10087 && (h == NULL
10088 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10089 || h->root.type != bfd_link_hash_undefweak)
10090 && r_type != R_ARM_PC24
10091 && r_type != R_ARM_CALL
10092 && r_type != R_ARM_JUMP24
10093 && r_type != R_ARM_PREL31
10094 && r_type != R_ARM_PLT32)
10095 {
10096 Elf_Internal_Rela outrel;
10097 bfd_boolean skip, relocate;
10098
10099 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10100 && !h->def_regular)
10101 {
10102 char *v = _("shared object");
10103
10104 if (bfd_link_executable (info))
10105 v = _("PIE executable");
10106
10107 _bfd_error_handler
10108 (_("%B: relocation %s against external or undefined symbol `%s'"
10109 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10110 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10111 return bfd_reloc_notsupported;
10112 }
10113
10114 *unresolved_reloc_p = FALSE;
10115
10116 if (sreloc == NULL && globals->root.dynamic_sections_created)
10117 {
10118 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10119 ! globals->use_rel);
10120
10121 if (sreloc == NULL)
10122 return bfd_reloc_notsupported;
10123 }
10124
10125 skip = FALSE;
10126 relocate = FALSE;
10127
10128 outrel.r_addend = addend;
10129 outrel.r_offset =
10130 _bfd_elf_section_offset (output_bfd, info, input_section,
10131 rel->r_offset);
10132 if (outrel.r_offset == (bfd_vma) -1)
10133 skip = TRUE;
10134 else if (outrel.r_offset == (bfd_vma) -2)
10135 skip = TRUE, relocate = TRUE;
10136 outrel.r_offset += (input_section->output_section->vma
10137 + input_section->output_offset);
10138
10139 if (skip)
10140 memset (&outrel, 0, sizeof outrel);
10141 else if (h != NULL
10142 && h->dynindx != -1
10143 && (!bfd_link_pic (info)
10144 || !(bfd_link_pie (info)
10145 || SYMBOLIC_BIND (info, h))
10146 || !h->def_regular))
10147 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10148 else
10149 {
10150 int symbol;
10151
10152 /* This symbol is local, or marked to become local. */
10153 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
10154 if (globals->symbian_p)
10155 {
10156 asection *osec;
10157
10158 /* On Symbian OS, the data segment and text segement
10159 can be relocated independently. Therefore, we
10160 must indicate the segment to which this
10161 relocation is relative. The BPABI allows us to
10162 use any symbol in the right segment; we just use
10163 the section symbol as it is convenient. (We
10164 cannot use the symbol given by "h" directly as it
10165 will not appear in the dynamic symbol table.)
10166
10167 Note that the dynamic linker ignores the section
10168 symbol value, so we don't subtract osec->vma
10169 from the emitted reloc addend. */
10170 if (sym_sec)
10171 osec = sym_sec->output_section;
10172 else
10173 osec = input_section->output_section;
10174 symbol = elf_section_data (osec)->dynindx;
10175 if (symbol == 0)
10176 {
10177 struct elf_link_hash_table *htab = elf_hash_table (info);
10178
10179 if ((osec->flags & SEC_READONLY) == 0
10180 && htab->data_index_section != NULL)
10181 osec = htab->data_index_section;
10182 else
10183 osec = htab->text_index_section;
10184 symbol = elf_section_data (osec)->dynindx;
10185 }
10186 BFD_ASSERT (symbol != 0);
10187 }
10188 else
10189 /* On SVR4-ish systems, the dynamic loader cannot
10190 relocate the text and data segments independently,
10191 so the symbol does not matter. */
10192 symbol = 0;
10193 if (dynreloc_st_type == STT_GNU_IFUNC)
10194 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10195 to the .iplt entry. Instead, every non-call reference
10196 must use an R_ARM_IRELATIVE relocation to obtain the
10197 correct run-time address. */
10198 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10199 else
10200 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10201 if (globals->use_rel)
10202 relocate = TRUE;
10203 else
10204 outrel.r_addend += dynreloc_value;
10205 }
10206
10207 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10208
10209 /* If this reloc is against an external symbol, we do not want to
10210 fiddle with the addend. Otherwise, we need to include the symbol
10211 value so that it becomes an addend for the dynamic reloc. */
10212 if (! relocate)
10213 return bfd_reloc_ok;
10214
10215 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10216 contents, rel->r_offset,
10217 dynreloc_value, (bfd_vma) 0);
10218 }
10219 else switch (r_type)
10220 {
10221 case R_ARM_ABS12:
10222 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10223
10224 case R_ARM_XPC25: /* Arm BLX instruction. */
10225 case R_ARM_CALL:
10226 case R_ARM_JUMP24:
10227 case R_ARM_PC24: /* Arm B/BL instruction. */
10228 case R_ARM_PLT32:
10229 {
10230 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10231
10232 if (r_type == R_ARM_XPC25)
10233 {
10234 /* Check for Arm calling Arm function. */
10235 /* FIXME: Should we translate the instruction into a BL
10236 instruction instead ? */
10237 if (branch_type != ST_BRANCH_TO_THUMB)
10238 _bfd_error_handler
10239 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
10240 input_bfd,
10241 h ? h->root.root.string : "(local)");
10242 }
10243 else if (r_type == R_ARM_PC24)
10244 {
10245 /* Check for Arm calling Thumb function. */
10246 if (branch_type == ST_BRANCH_TO_THUMB)
10247 {
10248 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10249 output_bfd, input_section,
10250 hit_data, sym_sec, rel->r_offset,
10251 signed_addend, value,
10252 error_message))
10253 return bfd_reloc_ok;
10254 else
10255 return bfd_reloc_dangerous;
10256 }
10257 }
10258
10259 /* Check if a stub has to be inserted because the
10260 destination is too far or we are changing mode. */
10261 if ( r_type == R_ARM_CALL
10262 || r_type == R_ARM_JUMP24
10263 || r_type == R_ARM_PLT32)
10264 {
10265 enum elf32_arm_stub_type stub_type = arm_stub_none;
10266 struct elf32_arm_link_hash_entry *hash;
10267
10268 hash = (struct elf32_arm_link_hash_entry *) h;
10269 stub_type = arm_type_of_stub (info, input_section, rel,
10270 st_type, &branch_type,
10271 hash, value, sym_sec,
10272 input_bfd, sym_name);
10273
10274 if (stub_type != arm_stub_none)
10275 {
10276 /* The target is out of reach, so redirect the
10277 branch to the local stub for this function. */
10278 stub_entry = elf32_arm_get_stub_entry (input_section,
10279 sym_sec, h,
10280 rel, globals,
10281 stub_type);
10282 {
10283 if (stub_entry != NULL)
10284 value = (stub_entry->stub_offset
10285 + stub_entry->stub_sec->output_offset
10286 + stub_entry->stub_sec->output_section->vma);
10287
10288 if (plt_offset != (bfd_vma) -1)
10289 *unresolved_reloc_p = FALSE;
10290 }
10291 }
10292 else
10293 {
10294 /* If the call goes through a PLT entry, make sure to
10295 check distance to the right destination address. */
10296 if (plt_offset != (bfd_vma) -1)
10297 {
10298 value = (splt->output_section->vma
10299 + splt->output_offset
10300 + plt_offset);
10301 *unresolved_reloc_p = FALSE;
10302 /* The PLT entry is in ARM mode, regardless of the
10303 target function. */
10304 branch_type = ST_BRANCH_TO_ARM;
10305 }
10306 }
10307 }
10308
10309 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10310 where:
10311 S is the address of the symbol in the relocation.
10312 P is address of the instruction being relocated.
10313 A is the addend (extracted from the instruction) in bytes.
10314
10315 S is held in 'value'.
10316 P is the base address of the section containing the
10317 instruction plus the offset of the reloc into that
10318 section, ie:
10319 (input_section->output_section->vma +
10320 input_section->output_offset +
10321 rel->r_offset).
10322 A is the addend, converted into bytes, ie:
10323 (signed_addend * 4)
10324
10325 Note: None of these operations have knowledge of the pipeline
10326 size of the processor, thus it is up to the assembler to
10327 encode this information into the addend. */
10328 value -= (input_section->output_section->vma
10329 + input_section->output_offset);
10330 value -= rel->r_offset;
10331 if (globals->use_rel)
10332 value += (signed_addend << howto->size);
10333 else
10334 /* RELA addends do not have to be adjusted by howto->size. */
10335 value += signed_addend;
10336
10337 signed_addend = value;
10338 signed_addend >>= howto->rightshift;
10339
10340 /* A branch to an undefined weak symbol is turned into a jump to
10341 the next instruction unless a PLT entry will be created.
10342 Do the same for local undefined symbols (but not for STN_UNDEF).
10343 The jump to the next instruction is optimized as a NOP depending
10344 on the architecture. */
10345 if (h ? (h->root.type == bfd_link_hash_undefweak
10346 && plt_offset == (bfd_vma) -1)
10347 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10348 {
10349 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10350
10351 if (arch_has_arm_nop (globals))
10352 value |= 0x0320f000;
10353 else
10354 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10355 }
10356 else
10357 {
10358 /* Perform a signed range check. */
10359 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10360 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10361 return bfd_reloc_overflow;
10362
10363 addend = (value & 2);
10364
10365 value = (signed_addend & howto->dst_mask)
10366 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10367
10368 if (r_type == R_ARM_CALL)
10369 {
10370 /* Set the H bit in the BLX instruction. */
10371 if (branch_type == ST_BRANCH_TO_THUMB)
10372 {
10373 if (addend)
10374 value |= (1 << 24);
10375 else
10376 value &= ~(bfd_vma)(1 << 24);
10377 }
10378
10379 /* Select the correct instruction (BL or BLX). */
10380 /* Only if we are not handling a BL to a stub. In this
10381 case, mode switching is performed by the stub. */
10382 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10383 value |= (1 << 28);
10384 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10385 {
10386 value &= ~(bfd_vma)(1 << 28);
10387 value |= (1 << 24);
10388 }
10389 }
10390 }
10391 }
10392 break;
10393
10394 case R_ARM_ABS32:
10395 value += addend;
10396 if (branch_type == ST_BRANCH_TO_THUMB)
10397 value |= 1;
10398 break;
10399
10400 case R_ARM_ABS32_NOI:
10401 value += addend;
10402 break;
10403
10404 case R_ARM_REL32:
10405 value += addend;
10406 if (branch_type == ST_BRANCH_TO_THUMB)
10407 value |= 1;
10408 value -= (input_section->output_section->vma
10409 + input_section->output_offset + rel->r_offset);
10410 break;
10411
10412 case R_ARM_REL32_NOI:
10413 value += addend;
10414 value -= (input_section->output_section->vma
10415 + input_section->output_offset + rel->r_offset);
10416 break;
10417
10418 case R_ARM_PREL31:
10419 value -= (input_section->output_section->vma
10420 + input_section->output_offset + rel->r_offset);
10421 value += signed_addend;
10422 if (! h || h->root.type != bfd_link_hash_undefweak)
10423 {
10424 /* Check for overflow. */
10425 if ((value ^ (value >> 1)) & (1 << 30))
10426 return bfd_reloc_overflow;
10427 }
10428 value &= 0x7fffffff;
10429 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10430 if (branch_type == ST_BRANCH_TO_THUMB)
10431 value |= 1;
10432 break;
10433 }
10434
10435 bfd_put_32 (input_bfd, value, hit_data);
10436 return bfd_reloc_ok;
10437
10438 case R_ARM_ABS8:
10439 /* PR 16202: Refectch the addend using the correct size. */
10440 if (globals->use_rel)
10441 addend = bfd_get_8 (input_bfd, hit_data);
10442 value += addend;
10443
10444 /* There is no way to tell whether the user intended to use a signed or
10445 unsigned addend. When checking for overflow we accept either,
10446 as specified by the AAELF. */
10447 if ((long) value > 0xff || (long) value < -0x80)
10448 return bfd_reloc_overflow;
10449
10450 bfd_put_8 (input_bfd, value, hit_data);
10451 return bfd_reloc_ok;
10452
10453 case R_ARM_ABS16:
10454 /* PR 16202: Refectch the addend using the correct size. */
10455 if (globals->use_rel)
10456 addend = bfd_get_16 (input_bfd, hit_data);
10457 value += addend;
10458
10459 /* See comment for R_ARM_ABS8. */
10460 if ((long) value > 0xffff || (long) value < -0x8000)
10461 return bfd_reloc_overflow;
10462
10463 bfd_put_16 (input_bfd, value, hit_data);
10464 return bfd_reloc_ok;
10465
10466 case R_ARM_THM_ABS5:
10467 /* Support ldr and str instructions for the thumb. */
10468 if (globals->use_rel)
10469 {
10470 /* Need to refetch addend. */
10471 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10472 /* ??? Need to determine shift amount from operand size. */
10473 addend >>= howto->rightshift;
10474 }
10475 value += addend;
10476
10477 /* ??? Isn't value unsigned? */
10478 if ((long) value > 0x1f || (long) value < -0x10)
10479 return bfd_reloc_overflow;
10480
10481 /* ??? Value needs to be properly shifted into place first. */
10482 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10483 bfd_put_16 (input_bfd, value, hit_data);
10484 return bfd_reloc_ok;
10485
10486 case R_ARM_THM_ALU_PREL_11_0:
10487 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10488 {
10489 bfd_vma insn;
10490 bfd_signed_vma relocation;
10491
10492 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10493 | bfd_get_16 (input_bfd, hit_data + 2);
10494
10495 if (globals->use_rel)
10496 {
10497 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10498 | ((insn & (1 << 26)) >> 15);
10499 if (insn & 0xf00000)
10500 signed_addend = -signed_addend;
10501 }
10502
10503 relocation = value + signed_addend;
10504 relocation -= Pa (input_section->output_section->vma
10505 + input_section->output_offset
10506 + rel->r_offset);
10507
10508 value = relocation;
10509
10510 if (value >= 0x1000)
10511 return bfd_reloc_overflow;
10512
10513 insn = (insn & 0xfb0f8f00) | (value & 0xff)
10514 | ((value & 0x700) << 4)
10515 | ((value & 0x800) << 15);
10516 if (relocation < 0)
10517 insn |= 0xa00000;
10518
10519 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10520 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10521
10522 return bfd_reloc_ok;
10523 }
10524
10525 case R_ARM_THM_PC8:
10526 /* PR 10073: This reloc is not generated by the GNU toolchain,
10527 but it is supported for compatibility with third party libraries
10528 generated by other compilers, specifically the ARM/IAR. */
10529 {
10530 bfd_vma insn;
10531 bfd_signed_vma relocation;
10532
10533 insn = bfd_get_16 (input_bfd, hit_data);
10534
10535 if (globals->use_rel)
10536 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
10537
10538 relocation = value + addend;
10539 relocation -= Pa (input_section->output_section->vma
10540 + input_section->output_offset
10541 + rel->r_offset);
10542
10543 value = relocation;
10544
10545 /* We do not check for overflow of this reloc. Although strictly
10546 speaking this is incorrect, it appears to be necessary in order
10547 to work with IAR generated relocs. Since GCC and GAS do not
10548 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
10549 a problem for them. */
10550 value &= 0x3fc;
10551
10552 insn = (insn & 0xff00) | (value >> 2);
10553
10554 bfd_put_16 (input_bfd, insn, hit_data);
10555
10556 return bfd_reloc_ok;
10557 }
10558
10559 case R_ARM_THM_PC12:
10560 /* Corresponds to: ldr.w reg, [pc, #offset]. */
10561 {
10562 bfd_vma insn;
10563 bfd_signed_vma relocation;
10564
10565 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10566 | bfd_get_16 (input_bfd, hit_data + 2);
10567
10568 if (globals->use_rel)
10569 {
10570 signed_addend = insn & 0xfff;
10571 if (!(insn & (1 << 23)))
10572 signed_addend = -signed_addend;
10573 }
10574
10575 relocation = value + signed_addend;
10576 relocation -= Pa (input_section->output_section->vma
10577 + input_section->output_offset
10578 + rel->r_offset);
10579
10580 value = relocation;
10581
10582 if (value >= 0x1000)
10583 return bfd_reloc_overflow;
10584
10585 insn = (insn & 0xff7ff000) | value;
10586 if (relocation >= 0)
10587 insn |= (1 << 23);
10588
10589 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10590 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10591
10592 return bfd_reloc_ok;
10593 }
10594
10595 case R_ARM_THM_XPC22:
10596 case R_ARM_THM_CALL:
10597 case R_ARM_THM_JUMP24:
10598 /* Thumb BL (branch long instruction). */
10599 {
10600 bfd_vma relocation;
10601 bfd_vma reloc_sign;
10602 bfd_boolean overflow = FALSE;
10603 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10604 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10605 bfd_signed_vma reloc_signed_max;
10606 bfd_signed_vma reloc_signed_min;
10607 bfd_vma check;
10608 bfd_signed_vma signed_check;
10609 int bitsize;
10610 const int thumb2 = using_thumb2 (globals);
10611 const int thumb2_bl = using_thumb2_bl (globals);
10612
10613 /* A branch to an undefined weak symbol is turned into a jump to
10614 the next instruction unless a PLT entry will be created.
10615 The jump to the next instruction is optimized as a NOP.W for
10616 Thumb-2 enabled architectures. */
10617 if (h && h->root.type == bfd_link_hash_undefweak
10618 && plt_offset == (bfd_vma) -1)
10619 {
10620 if (thumb2)
10621 {
10622 bfd_put_16 (input_bfd, 0xf3af, hit_data);
10623 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
10624 }
10625 else
10626 {
10627 bfd_put_16 (input_bfd, 0xe000, hit_data);
10628 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
10629 }
10630 return bfd_reloc_ok;
10631 }
10632
10633 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
10634 with Thumb-1) involving the J1 and J2 bits. */
10635 if (globals->use_rel)
10636 {
10637 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
10638 bfd_vma upper = upper_insn & 0x3ff;
10639 bfd_vma lower = lower_insn & 0x7ff;
10640 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
10641 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
10642 bfd_vma i1 = j1 ^ s ? 0 : 1;
10643 bfd_vma i2 = j2 ^ s ? 0 : 1;
10644
10645 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
10646 /* Sign extend. */
10647 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
10648
10649 signed_addend = addend;
10650 }
10651
10652 if (r_type == R_ARM_THM_XPC22)
10653 {
10654 /* Check for Thumb to Thumb call. */
10655 /* FIXME: Should we translate the instruction into a BL
10656 instruction instead ? */
10657 if (branch_type == ST_BRANCH_TO_THUMB)
10658 _bfd_error_handler
10659 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
10660 input_bfd,
10661 h ? h->root.root.string : "(local)");
10662 }
10663 else
10664 {
10665 /* If it is not a call to Thumb, assume call to Arm.
10666 If it is a call relative to a section name, then it is not a
10667 function call at all, but rather a long jump. Calls through
10668 the PLT do not require stubs. */
10669 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
10670 {
10671 if (globals->use_blx && r_type == R_ARM_THM_CALL)
10672 {
10673 /* Convert BL to BLX. */
10674 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10675 }
10676 else if (( r_type != R_ARM_THM_CALL)
10677 && (r_type != R_ARM_THM_JUMP24))
10678 {
10679 if (elf32_thumb_to_arm_stub
10680 (info, sym_name, input_bfd, output_bfd, input_section,
10681 hit_data, sym_sec, rel->r_offset, signed_addend, value,
10682 error_message))
10683 return bfd_reloc_ok;
10684 else
10685 return bfd_reloc_dangerous;
10686 }
10687 }
10688 else if (branch_type == ST_BRANCH_TO_THUMB
10689 && globals->use_blx
10690 && r_type == R_ARM_THM_CALL)
10691 {
10692 /* Make sure this is a BL. */
10693 lower_insn |= 0x1800;
10694 }
10695 }
10696
10697 enum elf32_arm_stub_type stub_type = arm_stub_none;
10698 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
10699 {
10700 /* Check if a stub has to be inserted because the destination
10701 is too far. */
10702 struct elf32_arm_stub_hash_entry *stub_entry;
10703 struct elf32_arm_link_hash_entry *hash;
10704
10705 hash = (struct elf32_arm_link_hash_entry *) h;
10706
10707 stub_type = arm_type_of_stub (info, input_section, rel,
10708 st_type, &branch_type,
10709 hash, value, sym_sec,
10710 input_bfd, sym_name);
10711
10712 if (stub_type != arm_stub_none)
10713 {
10714 /* The target is out of reach or we are changing modes, so
10715 redirect the branch to the local stub for this
10716 function. */
10717 stub_entry = elf32_arm_get_stub_entry (input_section,
10718 sym_sec, h,
10719 rel, globals,
10720 stub_type);
10721 if (stub_entry != NULL)
10722 {
10723 value = (stub_entry->stub_offset
10724 + stub_entry->stub_sec->output_offset
10725 + stub_entry->stub_sec->output_section->vma);
10726
10727 if (plt_offset != (bfd_vma) -1)
10728 *unresolved_reloc_p = FALSE;
10729 }
10730
10731 /* If this call becomes a call to Arm, force BLX. */
10732 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
10733 {
10734 if ((stub_entry
10735 && !arm_stub_is_thumb (stub_entry->stub_type))
10736 || branch_type != ST_BRANCH_TO_THUMB)
10737 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10738 }
10739 }
10740 }
10741
10742 /* Handle calls via the PLT. */
10743 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
10744 {
10745 value = (splt->output_section->vma
10746 + splt->output_offset
10747 + plt_offset);
10748
10749 if (globals->use_blx
10750 && r_type == R_ARM_THM_CALL
10751 && ! using_thumb_only (globals))
10752 {
10753 /* If the Thumb BLX instruction is available, convert
10754 the BL to a BLX instruction to call the ARM-mode
10755 PLT entry. */
10756 lower_insn = (lower_insn & ~0x1000) | 0x0800;
10757 branch_type = ST_BRANCH_TO_ARM;
10758 }
10759 else
10760 {
10761 if (! using_thumb_only (globals))
10762 /* Target the Thumb stub before the ARM PLT entry. */
10763 value -= PLT_THUMB_STUB_SIZE;
10764 branch_type = ST_BRANCH_TO_THUMB;
10765 }
10766 *unresolved_reloc_p = FALSE;
10767 }
10768
10769 relocation = value + signed_addend;
10770
10771 relocation -= (input_section->output_section->vma
10772 + input_section->output_offset
10773 + rel->r_offset);
10774
10775 check = relocation >> howto->rightshift;
10776
10777 /* If this is a signed value, the rightshift just dropped
10778 leading 1 bits (assuming twos complement). */
10779 if ((bfd_signed_vma) relocation >= 0)
10780 signed_check = check;
10781 else
10782 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
10783
10784 /* Calculate the permissable maximum and minimum values for
10785 this relocation according to whether we're relocating for
10786 Thumb-2 or not. */
10787 bitsize = howto->bitsize;
10788 if (!thumb2_bl)
10789 bitsize -= 2;
10790 reloc_signed_max = (1 << (bitsize - 1)) - 1;
10791 reloc_signed_min = ~reloc_signed_max;
10792
10793 /* Assumes two's complement. */
10794 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10795 overflow = TRUE;
10796
10797 if ((lower_insn & 0x5000) == 0x4000)
10798 /* For a BLX instruction, make sure that the relocation is rounded up
10799 to a word boundary. This follows the semantics of the instruction
10800 which specifies that bit 1 of the target address will come from bit
10801 1 of the base address. */
10802 relocation = (relocation + 2) & ~ 3;
10803
10804 /* Put RELOCATION back into the insn. Assumes two's complement.
10805 We use the Thumb-2 encoding, which is safe even if dealing with
10806 a Thumb-1 instruction by virtue of our overflow check above. */
10807 reloc_sign = (signed_check < 0) ? 1 : 0;
10808 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
10809 | ((relocation >> 12) & 0x3ff)
10810 | (reloc_sign << 10);
10811 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
10812 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
10813 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
10814 | ((relocation >> 1) & 0x7ff);
10815
10816 /* Put the relocated value back in the object file: */
10817 bfd_put_16 (input_bfd, upper_insn, hit_data);
10818 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10819
10820 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10821 }
10822 break;
10823
10824 case R_ARM_THM_JUMP19:
10825 /* Thumb32 conditional branch instruction. */
10826 {
10827 bfd_vma relocation;
10828 bfd_boolean overflow = FALSE;
10829 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
10830 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
10831 bfd_signed_vma reloc_signed_max = 0xffffe;
10832 bfd_signed_vma reloc_signed_min = -0x100000;
10833 bfd_signed_vma signed_check;
10834 enum elf32_arm_stub_type stub_type = arm_stub_none;
10835 struct elf32_arm_stub_hash_entry *stub_entry;
10836 struct elf32_arm_link_hash_entry *hash;
10837
10838 /* Need to refetch the addend, reconstruct the top three bits,
10839 and squish the two 11 bit pieces together. */
10840 if (globals->use_rel)
10841 {
10842 bfd_vma S = (upper_insn & 0x0400) >> 10;
10843 bfd_vma upper = (upper_insn & 0x003f);
10844 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
10845 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
10846 bfd_vma lower = (lower_insn & 0x07ff);
10847
10848 upper |= J1 << 6;
10849 upper |= J2 << 7;
10850 upper |= (!S) << 8;
10851 upper -= 0x0100; /* Sign extend. */
10852
10853 addend = (upper << 12) | (lower << 1);
10854 signed_addend = addend;
10855 }
10856
10857 /* Handle calls via the PLT. */
10858 if (plt_offset != (bfd_vma) -1)
10859 {
10860 value = (splt->output_section->vma
10861 + splt->output_offset
10862 + plt_offset);
10863 /* Target the Thumb stub before the ARM PLT entry. */
10864 value -= PLT_THUMB_STUB_SIZE;
10865 *unresolved_reloc_p = FALSE;
10866 }
10867
10868 hash = (struct elf32_arm_link_hash_entry *)h;
10869
10870 stub_type = arm_type_of_stub (info, input_section, rel,
10871 st_type, &branch_type,
10872 hash, value, sym_sec,
10873 input_bfd, sym_name);
10874 if (stub_type != arm_stub_none)
10875 {
10876 stub_entry = elf32_arm_get_stub_entry (input_section,
10877 sym_sec, h,
10878 rel, globals,
10879 stub_type);
10880 if (stub_entry != NULL)
10881 {
10882 value = (stub_entry->stub_offset
10883 + stub_entry->stub_sec->output_offset
10884 + stub_entry->stub_sec->output_section->vma);
10885 }
10886 }
10887
10888 relocation = value + signed_addend;
10889 relocation -= (input_section->output_section->vma
10890 + input_section->output_offset
10891 + rel->r_offset);
10892 signed_check = (bfd_signed_vma) relocation;
10893
10894 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10895 overflow = TRUE;
10896
10897 /* Put RELOCATION back into the insn. */
10898 {
10899 bfd_vma S = (relocation & 0x00100000) >> 20;
10900 bfd_vma J2 = (relocation & 0x00080000) >> 19;
10901 bfd_vma J1 = (relocation & 0x00040000) >> 18;
10902 bfd_vma hi = (relocation & 0x0003f000) >> 12;
10903 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
10904
10905 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
10906 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
10907 }
10908
10909 /* Put the relocated value back in the object file: */
10910 bfd_put_16 (input_bfd, upper_insn, hit_data);
10911 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
10912
10913 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
10914 }
10915
10916 case R_ARM_THM_JUMP11:
10917 case R_ARM_THM_JUMP8:
10918 case R_ARM_THM_JUMP6:
10919 /* Thumb B (branch) instruction). */
10920 {
10921 bfd_signed_vma relocation;
10922 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
10923 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
10924 bfd_signed_vma signed_check;
10925
10926 /* CZB cannot jump backward. */
10927 if (r_type == R_ARM_THM_JUMP6)
10928 reloc_signed_min = 0;
10929
10930 if (globals->use_rel)
10931 {
10932 /* Need to refetch addend. */
10933 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10934 if (addend & ((howto->src_mask + 1) >> 1))
10935 {
10936 signed_addend = -1;
10937 signed_addend &= ~ howto->src_mask;
10938 signed_addend |= addend;
10939 }
10940 else
10941 signed_addend = addend;
10942 /* The value in the insn has been right shifted. We need to
10943 undo this, so that we can perform the address calculation
10944 in terms of bytes. */
10945 signed_addend <<= howto->rightshift;
10946 }
10947 relocation = value + signed_addend;
10948
10949 relocation -= (input_section->output_section->vma
10950 + input_section->output_offset
10951 + rel->r_offset);
10952
10953 relocation >>= howto->rightshift;
10954 signed_check = relocation;
10955
10956 if (r_type == R_ARM_THM_JUMP6)
10957 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
10958 else
10959 relocation &= howto->dst_mask;
10960 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
10961
10962 bfd_put_16 (input_bfd, relocation, hit_data);
10963
10964 /* Assumes two's complement. */
10965 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
10966 return bfd_reloc_overflow;
10967
10968 return bfd_reloc_ok;
10969 }
10970
10971 case R_ARM_ALU_PCREL7_0:
10972 case R_ARM_ALU_PCREL15_8:
10973 case R_ARM_ALU_PCREL23_15:
10974 {
10975 bfd_vma insn;
10976 bfd_vma relocation;
10977
10978 insn = bfd_get_32 (input_bfd, hit_data);
10979 if (globals->use_rel)
10980 {
10981 /* Extract the addend. */
10982 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
10983 signed_addend = addend;
10984 }
10985 relocation = value + signed_addend;
10986
10987 relocation -= (input_section->output_section->vma
10988 + input_section->output_offset
10989 + rel->r_offset);
10990 insn = (insn & ~0xfff)
10991 | ((howto->bitpos << 7) & 0xf00)
10992 | ((relocation >> howto->bitpos) & 0xff);
10993 bfd_put_32 (input_bfd, value, hit_data);
10994 }
10995 return bfd_reloc_ok;
10996
10997 case R_ARM_GNU_VTINHERIT:
10998 case R_ARM_GNU_VTENTRY:
10999 return bfd_reloc_ok;
11000
11001 case R_ARM_GOTOFF32:
11002 /* Relocation is relative to the start of the
11003 global offset table. */
11004
11005 BFD_ASSERT (sgot != NULL);
11006 if (sgot == NULL)
11007 return bfd_reloc_notsupported;
11008
11009 /* If we are addressing a Thumb function, we need to adjust the
11010 address by one, so that attempts to call the function pointer will
11011 correctly interpret it as Thumb code. */
11012 if (branch_type == ST_BRANCH_TO_THUMB)
11013 value += 1;
11014
11015 /* Note that sgot->output_offset is not involved in this
11016 calculation. We always want the start of .got. If we
11017 define _GLOBAL_OFFSET_TABLE in a different way, as is
11018 permitted by the ABI, we might have to change this
11019 calculation. */
11020 value -= sgot->output_section->vma;
11021 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11022 contents, rel->r_offset, value,
11023 rel->r_addend);
11024
11025 case R_ARM_GOTPC:
11026 /* Use global offset table as symbol value. */
11027 BFD_ASSERT (sgot != NULL);
11028
11029 if (sgot == NULL)
11030 return bfd_reloc_notsupported;
11031
11032 *unresolved_reloc_p = FALSE;
11033 value = sgot->output_section->vma;
11034 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11035 contents, rel->r_offset, value,
11036 rel->r_addend);
11037
11038 case R_ARM_GOT32:
11039 case R_ARM_GOT_PREL:
11040 /* Relocation is to the entry for this symbol in the
11041 global offset table. */
11042 if (sgot == NULL)
11043 return bfd_reloc_notsupported;
11044
11045 if (dynreloc_st_type == STT_GNU_IFUNC
11046 && plt_offset != (bfd_vma) -1
11047 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11048 {
11049 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11050 symbol, and the relocation resolves directly to the runtime
11051 target rather than to the .iplt entry. This means that any
11052 .got entry would be the same value as the .igot.plt entry,
11053 so there's no point creating both. */
11054 sgot = globals->root.igotplt;
11055 value = sgot->output_offset + gotplt_offset;
11056 }
11057 else if (h != NULL)
11058 {
11059 bfd_vma off;
11060
11061 off = h->got.offset;
11062 BFD_ASSERT (off != (bfd_vma) -1);
11063 if ((off & 1) != 0)
11064 {
11065 /* We have already processsed one GOT relocation against
11066 this symbol. */
11067 off &= ~1;
11068 if (globals->root.dynamic_sections_created
11069 && !SYMBOL_REFERENCES_LOCAL (info, h))
11070 *unresolved_reloc_p = FALSE;
11071 }
11072 else
11073 {
11074 Elf_Internal_Rela outrel;
11075
11076 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
11077 {
11078 /* If the symbol doesn't resolve locally in a static
11079 object, we have an undefined reference. If the
11080 symbol doesn't resolve locally in a dynamic object,
11081 it should be resolved by the dynamic linker. */
11082 if (globals->root.dynamic_sections_created)
11083 {
11084 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11085 *unresolved_reloc_p = FALSE;
11086 }
11087 else
11088 outrel.r_info = 0;
11089 outrel.r_addend = 0;
11090 }
11091 else
11092 {
11093 if (dynreloc_st_type == STT_GNU_IFUNC)
11094 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11095 else if (bfd_link_pic (info)
11096 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11097 || h->root.type != bfd_link_hash_undefweak))
11098 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11099 else
11100 outrel.r_info = 0;
11101 outrel.r_addend = dynreloc_value;
11102 }
11103
11104 /* The GOT entry is initialized to zero by default.
11105 See if we should install a different value. */
11106 if (outrel.r_addend != 0
11107 && (outrel.r_info == 0 || globals->use_rel))
11108 {
11109 bfd_put_32 (output_bfd, outrel.r_addend,
11110 sgot->contents + off);
11111 outrel.r_addend = 0;
11112 }
11113
11114 if (outrel.r_info != 0)
11115 {
11116 outrel.r_offset = (sgot->output_section->vma
11117 + sgot->output_offset
11118 + off);
11119 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11120 }
11121 h->got.offset |= 1;
11122 }
11123 value = sgot->output_offset + off;
11124 }
11125 else
11126 {
11127 bfd_vma off;
11128
11129 BFD_ASSERT (local_got_offsets != NULL
11130 && local_got_offsets[r_symndx] != (bfd_vma) -1);
11131
11132 off = local_got_offsets[r_symndx];
11133
11134 /* The offset must always be a multiple of 4. We use the
11135 least significant bit to record whether we have already
11136 generated the necessary reloc. */
11137 if ((off & 1) != 0)
11138 off &= ~1;
11139 else
11140 {
11141 if (globals->use_rel)
11142 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11143
11144 if (bfd_link_pic (info) || dynreloc_st_type == STT_GNU_IFUNC)
11145 {
11146 Elf_Internal_Rela outrel;
11147
11148 outrel.r_addend = addend + dynreloc_value;
11149 outrel.r_offset = (sgot->output_section->vma
11150 + sgot->output_offset
11151 + off);
11152 if (dynreloc_st_type == STT_GNU_IFUNC)
11153 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11154 else
11155 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11156 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11157 }
11158
11159 local_got_offsets[r_symndx] |= 1;
11160 }
11161
11162 value = sgot->output_offset + off;
11163 }
11164 if (r_type != R_ARM_GOT32)
11165 value += sgot->output_section->vma;
11166
11167 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11168 contents, rel->r_offset, value,
11169 rel->r_addend);
11170
11171 case R_ARM_TLS_LDO32:
11172 value = value - dtpoff_base (info);
11173
11174 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11175 contents, rel->r_offset, value,
11176 rel->r_addend);
11177
11178 case R_ARM_TLS_LDM32:
11179 {
11180 bfd_vma off;
11181
11182 if (sgot == NULL)
11183 abort ();
11184
11185 off = globals->tls_ldm_got.offset;
11186
11187 if ((off & 1) != 0)
11188 off &= ~1;
11189 else
11190 {
11191 /* If we don't know the module number, create a relocation
11192 for it. */
11193 if (bfd_link_pic (info))
11194 {
11195 Elf_Internal_Rela outrel;
11196
11197 if (srelgot == NULL)
11198 abort ();
11199
11200 outrel.r_addend = 0;
11201 outrel.r_offset = (sgot->output_section->vma
11202 + sgot->output_offset + off);
11203 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11204
11205 if (globals->use_rel)
11206 bfd_put_32 (output_bfd, outrel.r_addend,
11207 sgot->contents + off);
11208
11209 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11210 }
11211 else
11212 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11213
11214 globals->tls_ldm_got.offset |= 1;
11215 }
11216
11217 value = sgot->output_section->vma + sgot->output_offset + off
11218 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
11219
11220 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11221 contents, rel->r_offset, value,
11222 rel->r_addend);
11223 }
11224
11225 case R_ARM_TLS_CALL:
11226 case R_ARM_THM_TLS_CALL:
11227 case R_ARM_TLS_GD32:
11228 case R_ARM_TLS_IE32:
11229 case R_ARM_TLS_GOTDESC:
11230 case R_ARM_TLS_DESCSEQ:
11231 case R_ARM_THM_TLS_DESCSEQ:
11232 {
11233 bfd_vma off, offplt;
11234 int indx = 0;
11235 char tls_type;
11236
11237 BFD_ASSERT (sgot != NULL);
11238
11239 if (h != NULL)
11240 {
11241 bfd_boolean dyn;
11242 dyn = globals->root.dynamic_sections_created;
11243 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11244 bfd_link_pic (info),
11245 h)
11246 && (!bfd_link_pic (info)
11247 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11248 {
11249 *unresolved_reloc_p = FALSE;
11250 indx = h->dynindx;
11251 }
11252 off = h->got.offset;
11253 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11254 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11255 }
11256 else
11257 {
11258 BFD_ASSERT (local_got_offsets != NULL);
11259 off = local_got_offsets[r_symndx];
11260 offplt = local_tlsdesc_gotents[r_symndx];
11261 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11262 }
11263
11264 /* Linker relaxations happens from one of the
11265 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11266 if (ELF32_R_TYPE(rel->r_info) != r_type)
11267 tls_type = GOT_TLS_IE;
11268
11269 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11270
11271 if ((off & 1) != 0)
11272 off &= ~1;
11273 else
11274 {
11275 bfd_boolean need_relocs = FALSE;
11276 Elf_Internal_Rela outrel;
11277 int cur_off = off;
11278
11279 /* The GOT entries have not been initialized yet. Do it
11280 now, and emit any relocations. If both an IE GOT and a
11281 GD GOT are necessary, we emit the GD first. */
11282
11283 if ((bfd_link_pic (info) || indx != 0)
11284 && (h == NULL
11285 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11286 || h->root.type != bfd_link_hash_undefweak))
11287 {
11288 need_relocs = TRUE;
11289 BFD_ASSERT (srelgot != NULL);
11290 }
11291
11292 if (tls_type & GOT_TLS_GDESC)
11293 {
11294 bfd_byte *loc;
11295
11296 /* We should have relaxed, unless this is an undefined
11297 weak symbol. */
11298 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11299 || bfd_link_pic (info));
11300 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11301 <= globals->root.sgotplt->size);
11302
11303 outrel.r_addend = 0;
11304 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11305 + globals->root.sgotplt->output_offset
11306 + offplt
11307 + globals->sgotplt_jump_table_size);
11308
11309 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11310 sreloc = globals->root.srelplt;
11311 loc = sreloc->contents;
11312 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11313 BFD_ASSERT (loc + RELOC_SIZE (globals)
11314 <= sreloc->contents + sreloc->size);
11315
11316 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11317
11318 /* For globals, the first word in the relocation gets
11319 the relocation index and the top bit set, or zero,
11320 if we're binding now. For locals, it gets the
11321 symbol's offset in the tls section. */
11322 bfd_put_32 (output_bfd,
11323 !h ? value - elf_hash_table (info)->tls_sec->vma
11324 : info->flags & DF_BIND_NOW ? 0
11325 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11326 globals->root.sgotplt->contents + offplt
11327 + globals->sgotplt_jump_table_size);
11328
11329 /* Second word in the relocation is always zero. */
11330 bfd_put_32 (output_bfd, 0,
11331 globals->root.sgotplt->contents + offplt
11332 + globals->sgotplt_jump_table_size + 4);
11333 }
11334 if (tls_type & GOT_TLS_GD)
11335 {
11336 if (need_relocs)
11337 {
11338 outrel.r_addend = 0;
11339 outrel.r_offset = (sgot->output_section->vma
11340 + sgot->output_offset
11341 + cur_off);
11342 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11343
11344 if (globals->use_rel)
11345 bfd_put_32 (output_bfd, outrel.r_addend,
11346 sgot->contents + cur_off);
11347
11348 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11349
11350 if (indx == 0)
11351 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11352 sgot->contents + cur_off + 4);
11353 else
11354 {
11355 outrel.r_addend = 0;
11356 outrel.r_info = ELF32_R_INFO (indx,
11357 R_ARM_TLS_DTPOFF32);
11358 outrel.r_offset += 4;
11359
11360 if (globals->use_rel)
11361 bfd_put_32 (output_bfd, outrel.r_addend,
11362 sgot->contents + cur_off + 4);
11363
11364 elf32_arm_add_dynreloc (output_bfd, info,
11365 srelgot, &outrel);
11366 }
11367 }
11368 else
11369 {
11370 /* If we are not emitting relocations for a
11371 general dynamic reference, then we must be in a
11372 static link or an executable link with the
11373 symbol binding locally. Mark it as belonging
11374 to module 1, the executable. */
11375 bfd_put_32 (output_bfd, 1,
11376 sgot->contents + cur_off);
11377 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11378 sgot->contents + cur_off + 4);
11379 }
11380
11381 cur_off += 8;
11382 }
11383
11384 if (tls_type & GOT_TLS_IE)
11385 {
11386 if (need_relocs)
11387 {
11388 if (indx == 0)
11389 outrel.r_addend = value - dtpoff_base (info);
11390 else
11391 outrel.r_addend = 0;
11392 outrel.r_offset = (sgot->output_section->vma
11393 + sgot->output_offset
11394 + cur_off);
11395 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11396
11397 if (globals->use_rel)
11398 bfd_put_32 (output_bfd, outrel.r_addend,
11399 sgot->contents + cur_off);
11400
11401 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11402 }
11403 else
11404 bfd_put_32 (output_bfd, tpoff (info, value),
11405 sgot->contents + cur_off);
11406 cur_off += 4;
11407 }
11408
11409 if (h != NULL)
11410 h->got.offset |= 1;
11411 else
11412 local_got_offsets[r_symndx] |= 1;
11413 }
11414
11415 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
11416 off += 8;
11417 else if (tls_type & GOT_TLS_GDESC)
11418 off = offplt;
11419
11420 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11421 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11422 {
11423 bfd_signed_vma offset;
11424 /* TLS stubs are arm mode. The original symbol is a
11425 data object, so branch_type is bogus. */
11426 branch_type = ST_BRANCH_TO_ARM;
11427 enum elf32_arm_stub_type stub_type
11428 = arm_type_of_stub (info, input_section, rel,
11429 st_type, &branch_type,
11430 (struct elf32_arm_link_hash_entry *)h,
11431 globals->tls_trampoline, globals->root.splt,
11432 input_bfd, sym_name);
11433
11434 if (stub_type != arm_stub_none)
11435 {
11436 struct elf32_arm_stub_hash_entry *stub_entry
11437 = elf32_arm_get_stub_entry
11438 (input_section, globals->root.splt, 0, rel,
11439 globals, stub_type);
11440 offset = (stub_entry->stub_offset
11441 + stub_entry->stub_sec->output_offset
11442 + stub_entry->stub_sec->output_section->vma);
11443 }
11444 else
11445 offset = (globals->root.splt->output_section->vma
11446 + globals->root.splt->output_offset
11447 + globals->tls_trampoline);
11448
11449 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11450 {
11451 unsigned long inst;
11452
11453 offset -= (input_section->output_section->vma
11454 + input_section->output_offset
11455 + rel->r_offset + 8);
11456
11457 inst = offset >> 2;
11458 inst &= 0x00ffffff;
11459 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11460 }
11461 else
11462 {
11463 /* Thumb blx encodes the offset in a complicated
11464 fashion. */
11465 unsigned upper_insn, lower_insn;
11466 unsigned neg;
11467
11468 offset -= (input_section->output_section->vma
11469 + input_section->output_offset
11470 + rel->r_offset + 4);
11471
11472 if (stub_type != arm_stub_none
11473 && arm_stub_is_thumb (stub_type))
11474 {
11475 lower_insn = 0xd000;
11476 }
11477 else
11478 {
11479 lower_insn = 0xc000;
11480 /* Round up the offset to a word boundary. */
11481 offset = (offset + 2) & ~2;
11482 }
11483
11484 neg = offset < 0;
11485 upper_insn = (0xf000
11486 | ((offset >> 12) & 0x3ff)
11487 | (neg << 10));
11488 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
11489 | (((!((offset >> 22) & 1)) ^ neg) << 11)
11490 | ((offset >> 1) & 0x7ff);
11491 bfd_put_16 (input_bfd, upper_insn, hit_data);
11492 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11493 return bfd_reloc_ok;
11494 }
11495 }
11496 /* These relocations needs special care, as besides the fact
11497 they point somewhere in .gotplt, the addend must be
11498 adjusted accordingly depending on the type of instruction
11499 we refer to. */
11500 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
11501 {
11502 unsigned long data, insn;
11503 unsigned thumb;
11504
11505 data = bfd_get_32 (input_bfd, hit_data);
11506 thumb = data & 1;
11507 data &= ~1u;
11508
11509 if (thumb)
11510 {
11511 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
11512 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
11513 insn = (insn << 16)
11514 | bfd_get_16 (input_bfd,
11515 contents + rel->r_offset - data + 2);
11516 if ((insn & 0xf800c000) == 0xf000c000)
11517 /* bl/blx */
11518 value = -6;
11519 else if ((insn & 0xffffff00) == 0x4400)
11520 /* add */
11521 value = -5;
11522 else
11523 {
11524 _bfd_error_handler
11525 /* xgettext:c-format */
11526 (_("%B(%A+0x%lx): unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
11527 input_bfd, input_section,
11528 (unsigned long)rel->r_offset, insn);
11529 return bfd_reloc_notsupported;
11530 }
11531 }
11532 else
11533 {
11534 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
11535
11536 switch (insn >> 24)
11537 {
11538 case 0xeb: /* bl */
11539 case 0xfa: /* blx */
11540 value = -4;
11541 break;
11542
11543 case 0xe0: /* add */
11544 value = -8;
11545 break;
11546
11547 default:
11548 _bfd_error_handler
11549 /* xgettext:c-format */
11550 (_("%B(%A+0x%lx): unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
11551 input_bfd, input_section,
11552 (unsigned long)rel->r_offset, insn);
11553 return bfd_reloc_notsupported;
11554 }
11555 }
11556
11557 value += ((globals->root.sgotplt->output_section->vma
11558 + globals->root.sgotplt->output_offset + off)
11559 - (input_section->output_section->vma
11560 + input_section->output_offset
11561 + rel->r_offset)
11562 + globals->sgotplt_jump_table_size);
11563 }
11564 else
11565 value = ((globals->root.sgot->output_section->vma
11566 + globals->root.sgot->output_offset + off)
11567 - (input_section->output_section->vma
11568 + input_section->output_offset + rel->r_offset));
11569
11570 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11571 contents, rel->r_offset, value,
11572 rel->r_addend);
11573 }
11574
11575 case R_ARM_TLS_LE32:
11576 if (bfd_link_dll (info))
11577 {
11578 _bfd_error_handler
11579 /* xgettext:c-format */
11580 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
11581 input_bfd, input_section,
11582 (long) rel->r_offset, howto->name);
11583 return bfd_reloc_notsupported;
11584 }
11585 else
11586 value = tpoff (info, value);
11587
11588 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11589 contents, rel->r_offset, value,
11590 rel->r_addend);
11591
11592 case R_ARM_V4BX:
11593 if (globals->fix_v4bx)
11594 {
11595 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11596
11597 /* Ensure that we have a BX instruction. */
11598 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
11599
11600 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
11601 {
11602 /* Branch to veneer. */
11603 bfd_vma glue_addr;
11604 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
11605 glue_addr -= input_section->output_section->vma
11606 + input_section->output_offset
11607 + rel->r_offset + 8;
11608 insn = (insn & 0xf0000000) | 0x0a000000
11609 | ((glue_addr >> 2) & 0x00ffffff);
11610 }
11611 else
11612 {
11613 /* Preserve Rm (lowest four bits) and the condition code
11614 (highest four bits). Other bits encode MOV PC,Rm. */
11615 insn = (insn & 0xf000000f) | 0x01a0f000;
11616 }
11617
11618 bfd_put_32 (input_bfd, insn, hit_data);
11619 }
11620 return bfd_reloc_ok;
11621
11622 case R_ARM_MOVW_ABS_NC:
11623 case R_ARM_MOVT_ABS:
11624 case R_ARM_MOVW_PREL_NC:
11625 case R_ARM_MOVT_PREL:
11626 /* Until we properly support segment-base-relative addressing then
11627 we assume the segment base to be zero, as for the group relocations.
11628 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
11629 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
11630 case R_ARM_MOVW_BREL_NC:
11631 case R_ARM_MOVW_BREL:
11632 case R_ARM_MOVT_BREL:
11633 {
11634 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11635
11636 if (globals->use_rel)
11637 {
11638 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
11639 signed_addend = (addend ^ 0x8000) - 0x8000;
11640 }
11641
11642 value += signed_addend;
11643
11644 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
11645 value -= (input_section->output_section->vma
11646 + input_section->output_offset + rel->r_offset);
11647
11648 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
11649 return bfd_reloc_overflow;
11650
11651 if (branch_type == ST_BRANCH_TO_THUMB)
11652 value |= 1;
11653
11654 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
11655 || r_type == R_ARM_MOVT_BREL)
11656 value >>= 16;
11657
11658 insn &= 0xfff0f000;
11659 insn |= value & 0xfff;
11660 insn |= (value & 0xf000) << 4;
11661 bfd_put_32 (input_bfd, insn, hit_data);
11662 }
11663 return bfd_reloc_ok;
11664
11665 case R_ARM_THM_MOVW_ABS_NC:
11666 case R_ARM_THM_MOVT_ABS:
11667 case R_ARM_THM_MOVW_PREL_NC:
11668 case R_ARM_THM_MOVT_PREL:
11669 /* Until we properly support segment-base-relative addressing then
11670 we assume the segment base to be zero, as for the above relocations.
11671 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
11672 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
11673 as R_ARM_THM_MOVT_ABS. */
11674 case R_ARM_THM_MOVW_BREL_NC:
11675 case R_ARM_THM_MOVW_BREL:
11676 case R_ARM_THM_MOVT_BREL:
11677 {
11678 bfd_vma insn;
11679
11680 insn = bfd_get_16 (input_bfd, hit_data) << 16;
11681 insn |= bfd_get_16 (input_bfd, hit_data + 2);
11682
11683 if (globals->use_rel)
11684 {
11685 addend = ((insn >> 4) & 0xf000)
11686 | ((insn >> 15) & 0x0800)
11687 | ((insn >> 4) & 0x0700)
11688 | (insn & 0x00ff);
11689 signed_addend = (addend ^ 0x8000) - 0x8000;
11690 }
11691
11692 value += signed_addend;
11693
11694 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
11695 value -= (input_section->output_section->vma
11696 + input_section->output_offset + rel->r_offset);
11697
11698 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
11699 return bfd_reloc_overflow;
11700
11701 if (branch_type == ST_BRANCH_TO_THUMB)
11702 value |= 1;
11703
11704 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
11705 || r_type == R_ARM_THM_MOVT_BREL)
11706 value >>= 16;
11707
11708 insn &= 0xfbf08f00;
11709 insn |= (value & 0xf000) << 4;
11710 insn |= (value & 0x0800) << 15;
11711 insn |= (value & 0x0700) << 4;
11712 insn |= (value & 0x00ff);
11713
11714 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11715 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11716 }
11717 return bfd_reloc_ok;
11718
11719 case R_ARM_ALU_PC_G0_NC:
11720 case R_ARM_ALU_PC_G1_NC:
11721 case R_ARM_ALU_PC_G0:
11722 case R_ARM_ALU_PC_G1:
11723 case R_ARM_ALU_PC_G2:
11724 case R_ARM_ALU_SB_G0_NC:
11725 case R_ARM_ALU_SB_G1_NC:
11726 case R_ARM_ALU_SB_G0:
11727 case R_ARM_ALU_SB_G1:
11728 case R_ARM_ALU_SB_G2:
11729 {
11730 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11731 bfd_vma pc = input_section->output_section->vma
11732 + input_section->output_offset + rel->r_offset;
11733 /* sb is the origin of the *segment* containing the symbol. */
11734 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11735 bfd_vma residual;
11736 bfd_vma g_n;
11737 bfd_signed_vma signed_value;
11738 int group = 0;
11739
11740 /* Determine which group of bits to select. */
11741 switch (r_type)
11742 {
11743 case R_ARM_ALU_PC_G0_NC:
11744 case R_ARM_ALU_PC_G0:
11745 case R_ARM_ALU_SB_G0_NC:
11746 case R_ARM_ALU_SB_G0:
11747 group = 0;
11748 break;
11749
11750 case R_ARM_ALU_PC_G1_NC:
11751 case R_ARM_ALU_PC_G1:
11752 case R_ARM_ALU_SB_G1_NC:
11753 case R_ARM_ALU_SB_G1:
11754 group = 1;
11755 break;
11756
11757 case R_ARM_ALU_PC_G2:
11758 case R_ARM_ALU_SB_G2:
11759 group = 2;
11760 break;
11761
11762 default:
11763 abort ();
11764 }
11765
11766 /* If REL, extract the addend from the insn. If RELA, it will
11767 have already been fetched for us. */
11768 if (globals->use_rel)
11769 {
11770 int negative;
11771 bfd_vma constant = insn & 0xff;
11772 bfd_vma rotation = (insn & 0xf00) >> 8;
11773
11774 if (rotation == 0)
11775 signed_addend = constant;
11776 else
11777 {
11778 /* Compensate for the fact that in the instruction, the
11779 rotation is stored in multiples of 2 bits. */
11780 rotation *= 2;
11781
11782 /* Rotate "constant" right by "rotation" bits. */
11783 signed_addend = (constant >> rotation) |
11784 (constant << (8 * sizeof (bfd_vma) - rotation));
11785 }
11786
11787 /* Determine if the instruction is an ADD or a SUB.
11788 (For REL, this determines the sign of the addend.) */
11789 negative = identify_add_or_sub (insn);
11790 if (negative == 0)
11791 {
11792 _bfd_error_handler
11793 /* xgettext:c-format */
11794 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
11795 input_bfd, input_section,
11796 (long) rel->r_offset, howto->name);
11797 return bfd_reloc_overflow;
11798 }
11799
11800 signed_addend *= negative;
11801 }
11802
11803 /* Compute the value (X) to go in the place. */
11804 if (r_type == R_ARM_ALU_PC_G0_NC
11805 || r_type == R_ARM_ALU_PC_G1_NC
11806 || r_type == R_ARM_ALU_PC_G0
11807 || r_type == R_ARM_ALU_PC_G1
11808 || r_type == R_ARM_ALU_PC_G2)
11809 /* PC relative. */
11810 signed_value = value - pc + signed_addend;
11811 else
11812 /* Section base relative. */
11813 signed_value = value - sb + signed_addend;
11814
11815 /* If the target symbol is a Thumb function, then set the
11816 Thumb bit in the address. */
11817 if (branch_type == ST_BRANCH_TO_THUMB)
11818 signed_value |= 1;
11819
11820 /* Calculate the value of the relevant G_n, in encoded
11821 constant-with-rotation format. */
11822 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11823 group, &residual);
11824
11825 /* Check for overflow if required. */
11826 if ((r_type == R_ARM_ALU_PC_G0
11827 || r_type == R_ARM_ALU_PC_G1
11828 || r_type == R_ARM_ALU_PC_G2
11829 || r_type == R_ARM_ALU_SB_G0
11830 || r_type == R_ARM_ALU_SB_G1
11831 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
11832 {
11833 _bfd_error_handler
11834 /* xgettext:c-format */
11835 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11836 input_bfd, input_section,
11837 (long) rel->r_offset, signed_value < 0 ? - signed_value : signed_value,
11838 howto->name);
11839 return bfd_reloc_overflow;
11840 }
11841
11842 /* Mask out the value and the ADD/SUB part of the opcode; take care
11843 not to destroy the S bit. */
11844 insn &= 0xff1ff000;
11845
11846 /* Set the opcode according to whether the value to go in the
11847 place is negative. */
11848 if (signed_value < 0)
11849 insn |= 1 << 22;
11850 else
11851 insn |= 1 << 23;
11852
11853 /* Encode the offset. */
11854 insn |= g_n;
11855
11856 bfd_put_32 (input_bfd, insn, hit_data);
11857 }
11858 return bfd_reloc_ok;
11859
11860 case R_ARM_LDR_PC_G0:
11861 case R_ARM_LDR_PC_G1:
11862 case R_ARM_LDR_PC_G2:
11863 case R_ARM_LDR_SB_G0:
11864 case R_ARM_LDR_SB_G1:
11865 case R_ARM_LDR_SB_G2:
11866 {
11867 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11868 bfd_vma pc = input_section->output_section->vma
11869 + input_section->output_offset + rel->r_offset;
11870 /* sb is the origin of the *segment* containing the symbol. */
11871 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11872 bfd_vma residual;
11873 bfd_signed_vma signed_value;
11874 int group = 0;
11875
11876 /* Determine which groups of bits to calculate. */
11877 switch (r_type)
11878 {
11879 case R_ARM_LDR_PC_G0:
11880 case R_ARM_LDR_SB_G0:
11881 group = 0;
11882 break;
11883
11884 case R_ARM_LDR_PC_G1:
11885 case R_ARM_LDR_SB_G1:
11886 group = 1;
11887 break;
11888
11889 case R_ARM_LDR_PC_G2:
11890 case R_ARM_LDR_SB_G2:
11891 group = 2;
11892 break;
11893
11894 default:
11895 abort ();
11896 }
11897
11898 /* If REL, extract the addend from the insn. If RELA, it will
11899 have already been fetched for us. */
11900 if (globals->use_rel)
11901 {
11902 int negative = (insn & (1 << 23)) ? 1 : -1;
11903 signed_addend = negative * (insn & 0xfff);
11904 }
11905
11906 /* Compute the value (X) to go in the place. */
11907 if (r_type == R_ARM_LDR_PC_G0
11908 || r_type == R_ARM_LDR_PC_G1
11909 || r_type == R_ARM_LDR_PC_G2)
11910 /* PC relative. */
11911 signed_value = value - pc + signed_addend;
11912 else
11913 /* Section base relative. */
11914 signed_value = value - sb + signed_addend;
11915
11916 /* Calculate the value of the relevant G_{n-1} to obtain
11917 the residual at that stage. */
11918 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
11919 group - 1, &residual);
11920
11921 /* Check for overflow. */
11922 if (residual >= 0x1000)
11923 {
11924 _bfd_error_handler
11925 /* xgettext:c-format */
11926 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
11927 input_bfd, input_section,
11928 (long) rel->r_offset, labs (signed_value), howto->name);
11929 return bfd_reloc_overflow;
11930 }
11931
11932 /* Mask out the value and U bit. */
11933 insn &= 0xff7ff000;
11934
11935 /* Set the U bit if the value to go in the place is non-negative. */
11936 if (signed_value >= 0)
11937 insn |= 1 << 23;
11938
11939 /* Encode the offset. */
11940 insn |= residual;
11941
11942 bfd_put_32 (input_bfd, insn, hit_data);
11943 }
11944 return bfd_reloc_ok;
11945
11946 case R_ARM_LDRS_PC_G0:
11947 case R_ARM_LDRS_PC_G1:
11948 case R_ARM_LDRS_PC_G2:
11949 case R_ARM_LDRS_SB_G0:
11950 case R_ARM_LDRS_SB_G1:
11951 case R_ARM_LDRS_SB_G2:
11952 {
11953 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
11954 bfd_vma pc = input_section->output_section->vma
11955 + input_section->output_offset + rel->r_offset;
11956 /* sb is the origin of the *segment* containing the symbol. */
11957 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
11958 bfd_vma residual;
11959 bfd_signed_vma signed_value;
11960 int group = 0;
11961
11962 /* Determine which groups of bits to calculate. */
11963 switch (r_type)
11964 {
11965 case R_ARM_LDRS_PC_G0:
11966 case R_ARM_LDRS_SB_G0:
11967 group = 0;
11968 break;
11969
11970 case R_ARM_LDRS_PC_G1:
11971 case R_ARM_LDRS_SB_G1:
11972 group = 1;
11973 break;
11974
11975 case R_ARM_LDRS_PC_G2:
11976 case R_ARM_LDRS_SB_G2:
11977 group = 2;
11978 break;
11979
11980 default:
11981 abort ();
11982 }
11983
11984 /* If REL, extract the addend from the insn. If RELA, it will
11985 have already been fetched for us. */
11986 if (globals->use_rel)
11987 {
11988 int negative = (insn & (1 << 23)) ? 1 : -1;
11989 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
11990 }
11991
11992 /* Compute the value (X) to go in the place. */
11993 if (r_type == R_ARM_LDRS_PC_G0
11994 || r_type == R_ARM_LDRS_PC_G1
11995 || r_type == R_ARM_LDRS_PC_G2)
11996 /* PC relative. */
11997 signed_value = value - pc + signed_addend;
11998 else
11999 /* Section base relative. */
12000 signed_value = value - sb + signed_addend;
12001
12002 /* Calculate the value of the relevant G_{n-1} to obtain
12003 the residual at that stage. */
12004 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12005 group - 1, &residual);
12006
12007 /* Check for overflow. */
12008 if (residual >= 0x100)
12009 {
12010 _bfd_error_handler
12011 /* xgettext:c-format */
12012 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
12013 input_bfd, input_section,
12014 (long) rel->r_offset, labs (signed_value), howto->name);
12015 return bfd_reloc_overflow;
12016 }
12017
12018 /* Mask out the value and U bit. */
12019 insn &= 0xff7ff0f0;
12020
12021 /* Set the U bit if the value to go in the place is non-negative. */
12022 if (signed_value >= 0)
12023 insn |= 1 << 23;
12024
12025 /* Encode the offset. */
12026 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
12027
12028 bfd_put_32 (input_bfd, insn, hit_data);
12029 }
12030 return bfd_reloc_ok;
12031
12032 case R_ARM_LDC_PC_G0:
12033 case R_ARM_LDC_PC_G1:
12034 case R_ARM_LDC_PC_G2:
12035 case R_ARM_LDC_SB_G0:
12036 case R_ARM_LDC_SB_G1:
12037 case R_ARM_LDC_SB_G2:
12038 {
12039 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12040 bfd_vma pc = input_section->output_section->vma
12041 + input_section->output_offset + rel->r_offset;
12042 /* sb is the origin of the *segment* containing the symbol. */
12043 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12044 bfd_vma residual;
12045 bfd_signed_vma signed_value;
12046 int group = 0;
12047
12048 /* Determine which groups of bits to calculate. */
12049 switch (r_type)
12050 {
12051 case R_ARM_LDC_PC_G0:
12052 case R_ARM_LDC_SB_G0:
12053 group = 0;
12054 break;
12055
12056 case R_ARM_LDC_PC_G1:
12057 case R_ARM_LDC_SB_G1:
12058 group = 1;
12059 break;
12060
12061 case R_ARM_LDC_PC_G2:
12062 case R_ARM_LDC_SB_G2:
12063 group = 2;
12064 break;
12065
12066 default:
12067 abort ();
12068 }
12069
12070 /* If REL, extract the addend from the insn. If RELA, it will
12071 have already been fetched for us. */
12072 if (globals->use_rel)
12073 {
12074 int negative = (insn & (1 << 23)) ? 1 : -1;
12075 signed_addend = negative * ((insn & 0xff) << 2);
12076 }
12077
12078 /* Compute the value (X) to go in the place. */
12079 if (r_type == R_ARM_LDC_PC_G0
12080 || r_type == R_ARM_LDC_PC_G1
12081 || r_type == R_ARM_LDC_PC_G2)
12082 /* PC relative. */
12083 signed_value = value - pc + signed_addend;
12084 else
12085 /* Section base relative. */
12086 signed_value = value - sb + signed_addend;
12087
12088 /* Calculate the value of the relevant G_{n-1} to obtain
12089 the residual at that stage. */
12090 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12091 group - 1, &residual);
12092
12093 /* Check for overflow. (The absolute value to go in the place must be
12094 divisible by four and, after having been divided by four, must
12095 fit in eight bits.) */
12096 if ((residual & 0x3) != 0 || residual >= 0x400)
12097 {
12098 _bfd_error_handler
12099 /* xgettext:c-format */
12100 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
12101 input_bfd, input_section,
12102 (long) rel->r_offset, labs (signed_value), howto->name);
12103 return bfd_reloc_overflow;
12104 }
12105
12106 /* Mask out the value and U bit. */
12107 insn &= 0xff7fff00;
12108
12109 /* Set the U bit if the value to go in the place is non-negative. */
12110 if (signed_value >= 0)
12111 insn |= 1 << 23;
12112
12113 /* Encode the offset. */
12114 insn |= residual >> 2;
12115
12116 bfd_put_32 (input_bfd, insn, hit_data);
12117 }
12118 return bfd_reloc_ok;
12119
12120 case R_ARM_THM_ALU_ABS_G0_NC:
12121 case R_ARM_THM_ALU_ABS_G1_NC:
12122 case R_ARM_THM_ALU_ABS_G2_NC:
12123 case R_ARM_THM_ALU_ABS_G3_NC:
12124 {
12125 const int shift_array[4] = {0, 8, 16, 24};
12126 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12127 bfd_vma addr = value;
12128 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12129
12130 /* Compute address. */
12131 if (globals->use_rel)
12132 signed_addend = insn & 0xff;
12133 addr += signed_addend;
12134 if (branch_type == ST_BRANCH_TO_THUMB)
12135 addr |= 1;
12136 /* Clean imm8 insn. */
12137 insn &= 0xff00;
12138 /* And update with correct part of address. */
12139 insn |= (addr >> shift) & 0xff;
12140 /* Update insn. */
12141 bfd_put_16 (input_bfd, insn, hit_data);
12142 }
12143
12144 *unresolved_reloc_p = FALSE;
12145 return bfd_reloc_ok;
12146
12147 default:
12148 return bfd_reloc_notsupported;
12149 }
12150 }
12151
12152 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
12153 static void
12154 arm_add_to_rel (bfd * abfd,
12155 bfd_byte * address,
12156 reloc_howto_type * howto,
12157 bfd_signed_vma increment)
12158 {
12159 bfd_signed_vma addend;
12160
12161 if (howto->type == R_ARM_THM_CALL
12162 || howto->type == R_ARM_THM_JUMP24)
12163 {
12164 int upper_insn, lower_insn;
12165 int upper, lower;
12166
12167 upper_insn = bfd_get_16 (abfd, address);
12168 lower_insn = bfd_get_16 (abfd, address + 2);
12169 upper = upper_insn & 0x7ff;
12170 lower = lower_insn & 0x7ff;
12171
12172 addend = (upper << 12) | (lower << 1);
12173 addend += increment;
12174 addend >>= 1;
12175
12176 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
12177 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
12178
12179 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
12180 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
12181 }
12182 else
12183 {
12184 bfd_vma contents;
12185
12186 contents = bfd_get_32 (abfd, address);
12187
12188 /* Get the (signed) value from the instruction. */
12189 addend = contents & howto->src_mask;
12190 if (addend & ((howto->src_mask + 1) >> 1))
12191 {
12192 bfd_signed_vma mask;
12193
12194 mask = -1;
12195 mask &= ~ howto->src_mask;
12196 addend |= mask;
12197 }
12198
12199 /* Add in the increment, (which is a byte value). */
12200 switch (howto->type)
12201 {
12202 default:
12203 addend += increment;
12204 break;
12205
12206 case R_ARM_PC24:
12207 case R_ARM_PLT32:
12208 case R_ARM_CALL:
12209 case R_ARM_JUMP24:
12210 addend <<= howto->size;
12211 addend += increment;
12212
12213 /* Should we check for overflow here ? */
12214
12215 /* Drop any undesired bits. */
12216 addend >>= howto->rightshift;
12217 break;
12218 }
12219
12220 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
12221
12222 bfd_put_32 (abfd, contents, address);
12223 }
12224 }
12225
12226 #define IS_ARM_TLS_RELOC(R_TYPE) \
12227 ((R_TYPE) == R_ARM_TLS_GD32 \
12228 || (R_TYPE) == R_ARM_TLS_LDO32 \
12229 || (R_TYPE) == R_ARM_TLS_LDM32 \
12230 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
12231 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
12232 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
12233 || (R_TYPE) == R_ARM_TLS_LE32 \
12234 || (R_TYPE) == R_ARM_TLS_IE32 \
12235 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
12236
12237 /* Specific set of relocations for the gnu tls dialect. */
12238 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
12239 ((R_TYPE) == R_ARM_TLS_GOTDESC \
12240 || (R_TYPE) == R_ARM_TLS_CALL \
12241 || (R_TYPE) == R_ARM_THM_TLS_CALL \
12242 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
12243 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
12244
12245 /* Relocate an ARM ELF section. */
12246
12247 static bfd_boolean
12248 elf32_arm_relocate_section (bfd * output_bfd,
12249 struct bfd_link_info * info,
12250 bfd * input_bfd,
12251 asection * input_section,
12252 bfd_byte * contents,
12253 Elf_Internal_Rela * relocs,
12254 Elf_Internal_Sym * local_syms,
12255 asection ** local_sections)
12256 {
12257 Elf_Internal_Shdr *symtab_hdr;
12258 struct elf_link_hash_entry **sym_hashes;
12259 Elf_Internal_Rela *rel;
12260 Elf_Internal_Rela *relend;
12261 const char *name;
12262 struct elf32_arm_link_hash_table * globals;
12263
12264 globals = elf32_arm_hash_table (info);
12265 if (globals == NULL)
12266 return FALSE;
12267
12268 symtab_hdr = & elf_symtab_hdr (input_bfd);
12269 sym_hashes = elf_sym_hashes (input_bfd);
12270
12271 rel = relocs;
12272 relend = relocs + input_section->reloc_count;
12273 for (; rel < relend; rel++)
12274 {
12275 int r_type;
12276 reloc_howto_type * howto;
12277 unsigned long r_symndx;
12278 Elf_Internal_Sym * sym;
12279 asection * sec;
12280 struct elf_link_hash_entry * h;
12281 bfd_vma relocation;
12282 bfd_reloc_status_type r;
12283 arelent bfd_reloc;
12284 char sym_type;
12285 bfd_boolean unresolved_reloc = FALSE;
12286 char *error_message = NULL;
12287
12288 r_symndx = ELF32_R_SYM (rel->r_info);
12289 r_type = ELF32_R_TYPE (rel->r_info);
12290 r_type = arm_real_reloc_type (globals, r_type);
12291
12292 if ( r_type == R_ARM_GNU_VTENTRY
12293 || r_type == R_ARM_GNU_VTINHERIT)
12294 continue;
12295
12296 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
12297 howto = bfd_reloc.howto;
12298
12299 h = NULL;
12300 sym = NULL;
12301 sec = NULL;
12302
12303 if (r_symndx < symtab_hdr->sh_info)
12304 {
12305 sym = local_syms + r_symndx;
12306 sym_type = ELF32_ST_TYPE (sym->st_info);
12307 sec = local_sections[r_symndx];
12308
12309 /* An object file might have a reference to a local
12310 undefined symbol. This is a daft object file, but we
12311 should at least do something about it. V4BX & NONE
12312 relocations do not use the symbol and are explicitly
12313 allowed to use the undefined symbol, so allow those.
12314 Likewise for relocations against STN_UNDEF. */
12315 if (r_type != R_ARM_V4BX
12316 && r_type != R_ARM_NONE
12317 && r_symndx != STN_UNDEF
12318 && bfd_is_und_section (sec)
12319 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
12320 (*info->callbacks->undefined_symbol)
12321 (info, bfd_elf_string_from_elf_section
12322 (input_bfd, symtab_hdr->sh_link, sym->st_name),
12323 input_bfd, input_section,
12324 rel->r_offset, TRUE);
12325
12326 if (globals->use_rel)
12327 {
12328 relocation = (sec->output_section->vma
12329 + sec->output_offset
12330 + sym->st_value);
12331 if (!bfd_link_relocatable (info)
12332 && (sec->flags & SEC_MERGE)
12333 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12334 {
12335 asection *msec;
12336 bfd_vma addend, value;
12337
12338 switch (r_type)
12339 {
12340 case R_ARM_MOVW_ABS_NC:
12341 case R_ARM_MOVT_ABS:
12342 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12343 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
12344 addend = (addend ^ 0x8000) - 0x8000;
12345 break;
12346
12347 case R_ARM_THM_MOVW_ABS_NC:
12348 case R_ARM_THM_MOVT_ABS:
12349 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
12350 << 16;
12351 value |= bfd_get_16 (input_bfd,
12352 contents + rel->r_offset + 2);
12353 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
12354 | ((value & 0x04000000) >> 15);
12355 addend = (addend ^ 0x8000) - 0x8000;
12356 break;
12357
12358 default:
12359 if (howto->rightshift
12360 || (howto->src_mask & (howto->src_mask + 1)))
12361 {
12362 _bfd_error_handler
12363 /* xgettext:c-format */
12364 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
12365 input_bfd, input_section,
12366 (long) rel->r_offset, howto->name);
12367 return FALSE;
12368 }
12369
12370 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
12371
12372 /* Get the (signed) value from the instruction. */
12373 addend = value & howto->src_mask;
12374 if (addend & ((howto->src_mask + 1) >> 1))
12375 {
12376 bfd_signed_vma mask;
12377
12378 mask = -1;
12379 mask &= ~ howto->src_mask;
12380 addend |= mask;
12381 }
12382 break;
12383 }
12384
12385 msec = sec;
12386 addend =
12387 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
12388 - relocation;
12389 addend += msec->output_section->vma + msec->output_offset;
12390
12391 /* Cases here must match those in the preceding
12392 switch statement. */
12393 switch (r_type)
12394 {
12395 case R_ARM_MOVW_ABS_NC:
12396 case R_ARM_MOVT_ABS:
12397 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
12398 | (addend & 0xfff);
12399 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12400 break;
12401
12402 case R_ARM_THM_MOVW_ABS_NC:
12403 case R_ARM_THM_MOVT_ABS:
12404 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
12405 | (addend & 0xff) | ((addend & 0x0800) << 15);
12406 bfd_put_16 (input_bfd, value >> 16,
12407 contents + rel->r_offset);
12408 bfd_put_16 (input_bfd, value,
12409 contents + rel->r_offset + 2);
12410 break;
12411
12412 default:
12413 value = (value & ~ howto->dst_mask)
12414 | (addend & howto->dst_mask);
12415 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
12416 break;
12417 }
12418 }
12419 }
12420 else
12421 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
12422 }
12423 else
12424 {
12425 bfd_boolean warned, ignored;
12426
12427 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
12428 r_symndx, symtab_hdr, sym_hashes,
12429 h, sec, relocation,
12430 unresolved_reloc, warned, ignored);
12431
12432 sym_type = h->type;
12433 }
12434
12435 if (sec != NULL && discarded_section (sec))
12436 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
12437 rel, 1, relend, howto, 0, contents);
12438
12439 if (bfd_link_relocatable (info))
12440 {
12441 /* This is a relocatable link. We don't have to change
12442 anything, unless the reloc is against a section symbol,
12443 in which case we have to adjust according to where the
12444 section symbol winds up in the output section. */
12445 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
12446 {
12447 if (globals->use_rel)
12448 arm_add_to_rel (input_bfd, contents + rel->r_offset,
12449 howto, (bfd_signed_vma) sec->output_offset);
12450 else
12451 rel->r_addend += sec->output_offset;
12452 }
12453 continue;
12454 }
12455
12456 if (h != NULL)
12457 name = h->root.root.string;
12458 else
12459 {
12460 name = (bfd_elf_string_from_elf_section
12461 (input_bfd, symtab_hdr->sh_link, sym->st_name));
12462 if (name == NULL || *name == '\0')
12463 name = bfd_section_name (input_bfd, sec);
12464 }
12465
12466 if (r_symndx != STN_UNDEF
12467 && r_type != R_ARM_NONE
12468 && (h == NULL
12469 || h->root.type == bfd_link_hash_defined
12470 || h->root.type == bfd_link_hash_defweak)
12471 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
12472 {
12473 _bfd_error_handler
12474 ((sym_type == STT_TLS
12475 /* xgettext:c-format */
12476 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
12477 /* xgettext:c-format */
12478 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
12479 input_bfd,
12480 input_section,
12481 (long) rel->r_offset,
12482 howto->name,
12483 name);
12484 }
12485
12486 /* We call elf32_arm_final_link_relocate unless we're completely
12487 done, i.e., the relaxation produced the final output we want,
12488 and we won't let anybody mess with it. Also, we have to do
12489 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
12490 both in relaxed and non-relaxed cases. */
12491 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
12492 || (IS_ARM_TLS_GNU_RELOC (r_type)
12493 && !((h ? elf32_arm_hash_entry (h)->tls_type :
12494 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
12495 & GOT_TLS_GDESC)))
12496 {
12497 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
12498 contents, rel, h == NULL);
12499 /* This may have been marked unresolved because it came from
12500 a shared library. But we've just dealt with that. */
12501 unresolved_reloc = 0;
12502 }
12503 else
12504 r = bfd_reloc_continue;
12505
12506 if (r == bfd_reloc_continue)
12507 {
12508 unsigned char branch_type =
12509 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
12510 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
12511
12512 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
12513 input_section, contents, rel,
12514 relocation, info, sec, name,
12515 sym_type, branch_type, h,
12516 &unresolved_reloc,
12517 &error_message);
12518 }
12519
12520 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
12521 because such sections are not SEC_ALLOC and thus ld.so will
12522 not process them. */
12523 if (unresolved_reloc
12524 && !((input_section->flags & SEC_DEBUGGING) != 0
12525 && h->def_dynamic)
12526 && _bfd_elf_section_offset (output_bfd, info, input_section,
12527 rel->r_offset) != (bfd_vma) -1)
12528 {
12529 _bfd_error_handler
12530 /* xgettext:c-format */
12531 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
12532 input_bfd,
12533 input_section,
12534 (long) rel->r_offset,
12535 howto->name,
12536 h->root.root.string);
12537 return FALSE;
12538 }
12539
12540 if (r != bfd_reloc_ok)
12541 {
12542 switch (r)
12543 {
12544 case bfd_reloc_overflow:
12545 /* If the overflowing reloc was to an undefined symbol,
12546 we have already printed one error message and there
12547 is no point complaining again. */
12548 if (!h || h->root.type != bfd_link_hash_undefined)
12549 (*info->callbacks->reloc_overflow)
12550 (info, (h ? &h->root : NULL), name, howto->name,
12551 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
12552 break;
12553
12554 case bfd_reloc_undefined:
12555 (*info->callbacks->undefined_symbol)
12556 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
12557 break;
12558
12559 case bfd_reloc_outofrange:
12560 error_message = _("out of range");
12561 goto common_error;
12562
12563 case bfd_reloc_notsupported:
12564 error_message = _("unsupported relocation");
12565 goto common_error;
12566
12567 case bfd_reloc_dangerous:
12568 /* error_message should already be set. */
12569 goto common_error;
12570
12571 default:
12572 error_message = _("unknown error");
12573 /* Fall through. */
12574
12575 common_error:
12576 BFD_ASSERT (error_message != NULL);
12577 (*info->callbacks->reloc_dangerous)
12578 (info, error_message, input_bfd, input_section, rel->r_offset);
12579 break;
12580 }
12581 }
12582 }
12583
12584 return TRUE;
12585 }
12586
12587 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
12588 adds the edit to the start of the list. (The list must be built in order of
12589 ascending TINDEX: the function's callers are primarily responsible for
12590 maintaining that condition). */
12591
12592 static void
12593 add_unwind_table_edit (arm_unwind_table_edit **head,
12594 arm_unwind_table_edit **tail,
12595 arm_unwind_edit_type type,
12596 asection *linked_section,
12597 unsigned int tindex)
12598 {
12599 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
12600 xmalloc (sizeof (arm_unwind_table_edit));
12601
12602 new_edit->type = type;
12603 new_edit->linked_section = linked_section;
12604 new_edit->index = tindex;
12605
12606 if (tindex > 0)
12607 {
12608 new_edit->next = NULL;
12609
12610 if (*tail)
12611 (*tail)->next = new_edit;
12612
12613 (*tail) = new_edit;
12614
12615 if (!*head)
12616 (*head) = new_edit;
12617 }
12618 else
12619 {
12620 new_edit->next = *head;
12621
12622 if (!*tail)
12623 *tail = new_edit;
12624
12625 *head = new_edit;
12626 }
12627 }
12628
12629 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
12630
12631 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
12632 static void
12633 adjust_exidx_size(asection *exidx_sec, int adjust)
12634 {
12635 asection *out_sec;
12636
12637 if (!exidx_sec->rawsize)
12638 exidx_sec->rawsize = exidx_sec->size;
12639
12640 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
12641 out_sec = exidx_sec->output_section;
12642 /* Adjust size of output section. */
12643 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
12644 }
12645
12646 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
12647 static void
12648 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
12649 {
12650 struct _arm_elf_section_data *exidx_arm_data;
12651
12652 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12653 add_unwind_table_edit (
12654 &exidx_arm_data->u.exidx.unwind_edit_list,
12655 &exidx_arm_data->u.exidx.unwind_edit_tail,
12656 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
12657
12658 exidx_arm_data->additional_reloc_count++;
12659
12660 adjust_exidx_size(exidx_sec, 8);
12661 }
12662
12663 /* Scan .ARM.exidx tables, and create a list describing edits which should be
12664 made to those tables, such that:
12665
12666 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
12667 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
12668 codes which have been inlined into the index).
12669
12670 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
12671
12672 The edits are applied when the tables are written
12673 (in elf32_arm_write_section). */
12674
12675 bfd_boolean
12676 elf32_arm_fix_exidx_coverage (asection **text_section_order,
12677 unsigned int num_text_sections,
12678 struct bfd_link_info *info,
12679 bfd_boolean merge_exidx_entries)
12680 {
12681 bfd *inp;
12682 unsigned int last_second_word = 0, i;
12683 asection *last_exidx_sec = NULL;
12684 asection *last_text_sec = NULL;
12685 int last_unwind_type = -1;
12686
12687 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
12688 text sections. */
12689 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
12690 {
12691 asection *sec;
12692
12693 for (sec = inp->sections; sec != NULL; sec = sec->next)
12694 {
12695 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
12696 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
12697
12698 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
12699 continue;
12700
12701 if (elf_sec->linked_to)
12702 {
12703 Elf_Internal_Shdr *linked_hdr
12704 = &elf_section_data (elf_sec->linked_to)->this_hdr;
12705 struct _arm_elf_section_data *linked_sec_arm_data
12706 = get_arm_elf_section_data (linked_hdr->bfd_section);
12707
12708 if (linked_sec_arm_data == NULL)
12709 continue;
12710
12711 /* Link this .ARM.exidx section back from the text section it
12712 describes. */
12713 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
12714 }
12715 }
12716 }
12717
12718 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
12719 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
12720 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
12721
12722 for (i = 0; i < num_text_sections; i++)
12723 {
12724 asection *sec = text_section_order[i];
12725 asection *exidx_sec;
12726 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
12727 struct _arm_elf_section_data *exidx_arm_data;
12728 bfd_byte *contents = NULL;
12729 int deleted_exidx_bytes = 0;
12730 bfd_vma j;
12731 arm_unwind_table_edit *unwind_edit_head = NULL;
12732 arm_unwind_table_edit *unwind_edit_tail = NULL;
12733 Elf_Internal_Shdr *hdr;
12734 bfd *ibfd;
12735
12736 if (arm_data == NULL)
12737 continue;
12738
12739 exidx_sec = arm_data->u.text.arm_exidx_sec;
12740 if (exidx_sec == NULL)
12741 {
12742 /* Section has no unwind data. */
12743 if (last_unwind_type == 0 || !last_exidx_sec)
12744 continue;
12745
12746 /* Ignore zero sized sections. */
12747 if (sec->size == 0)
12748 continue;
12749
12750 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12751 last_unwind_type = 0;
12752 continue;
12753 }
12754
12755 /* Skip /DISCARD/ sections. */
12756 if (bfd_is_abs_section (exidx_sec->output_section))
12757 continue;
12758
12759 hdr = &elf_section_data (exidx_sec)->this_hdr;
12760 if (hdr->sh_type != SHT_ARM_EXIDX)
12761 continue;
12762
12763 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
12764 if (exidx_arm_data == NULL)
12765 continue;
12766
12767 ibfd = exidx_sec->owner;
12768
12769 if (hdr->contents != NULL)
12770 contents = hdr->contents;
12771 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
12772 /* An error? */
12773 continue;
12774
12775 if (last_unwind_type > 0)
12776 {
12777 unsigned int first_word = bfd_get_32 (ibfd, contents);
12778 /* Add cantunwind if first unwind item does not match section
12779 start. */
12780 if (first_word != sec->vma)
12781 {
12782 insert_cantunwind_after (last_text_sec, last_exidx_sec);
12783 last_unwind_type = 0;
12784 }
12785 }
12786
12787 for (j = 0; j < hdr->sh_size; j += 8)
12788 {
12789 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
12790 int unwind_type;
12791 int elide = 0;
12792
12793 /* An EXIDX_CANTUNWIND entry. */
12794 if (second_word == 1)
12795 {
12796 if (last_unwind_type == 0)
12797 elide = 1;
12798 unwind_type = 0;
12799 }
12800 /* Inlined unwinding data. Merge if equal to previous. */
12801 else if ((second_word & 0x80000000) != 0)
12802 {
12803 if (merge_exidx_entries
12804 && last_second_word == second_word && last_unwind_type == 1)
12805 elide = 1;
12806 unwind_type = 1;
12807 last_second_word = second_word;
12808 }
12809 /* Normal table entry. In theory we could merge these too,
12810 but duplicate entries are likely to be much less common. */
12811 else
12812 unwind_type = 2;
12813
12814 if (elide && !bfd_link_relocatable (info))
12815 {
12816 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
12817 DELETE_EXIDX_ENTRY, NULL, j / 8);
12818
12819 deleted_exidx_bytes += 8;
12820 }
12821
12822 last_unwind_type = unwind_type;
12823 }
12824
12825 /* Free contents if we allocated it ourselves. */
12826 if (contents != hdr->contents)
12827 free (contents);
12828
12829 /* Record edits to be applied later (in elf32_arm_write_section). */
12830 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
12831 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
12832
12833 if (deleted_exidx_bytes > 0)
12834 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
12835
12836 last_exidx_sec = exidx_sec;
12837 last_text_sec = sec;
12838 }
12839
12840 /* Add terminating CANTUNWIND entry. */
12841 if (!bfd_link_relocatable (info) && last_exidx_sec
12842 && last_unwind_type != 0)
12843 insert_cantunwind_after(last_text_sec, last_exidx_sec);
12844
12845 return TRUE;
12846 }
12847
12848 static bfd_boolean
12849 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
12850 bfd *ibfd, const char *name)
12851 {
12852 asection *sec, *osec;
12853
12854 sec = bfd_get_linker_section (ibfd, name);
12855 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
12856 return TRUE;
12857
12858 osec = sec->output_section;
12859 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
12860 return TRUE;
12861
12862 if (! bfd_set_section_contents (obfd, osec, sec->contents,
12863 sec->output_offset, sec->size))
12864 return FALSE;
12865
12866 return TRUE;
12867 }
12868
12869 static bfd_boolean
12870 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
12871 {
12872 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
12873 asection *sec, *osec;
12874
12875 if (globals == NULL)
12876 return FALSE;
12877
12878 /* Invoke the regular ELF backend linker to do all the work. */
12879 if (!bfd_elf_final_link (abfd, info))
12880 return FALSE;
12881
12882 /* Process stub sections (eg BE8 encoding, ...). */
12883 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
12884 unsigned int i;
12885 for (i=0; i<htab->top_id; i++)
12886 {
12887 sec = htab->stub_group[i].stub_sec;
12888 /* Only process it once, in its link_sec slot. */
12889 if (sec && i == htab->stub_group[i].link_sec->id)
12890 {
12891 osec = sec->output_section;
12892 elf32_arm_write_section (abfd, info, sec, sec->contents);
12893 if (! bfd_set_section_contents (abfd, osec, sec->contents,
12894 sec->output_offset, sec->size))
12895 return FALSE;
12896 }
12897 }
12898
12899 /* Write out any glue sections now that we have created all the
12900 stubs. */
12901 if (globals->bfd_of_glue_owner != NULL)
12902 {
12903 if (! elf32_arm_output_glue_section (info, abfd,
12904 globals->bfd_of_glue_owner,
12905 ARM2THUMB_GLUE_SECTION_NAME))
12906 return FALSE;
12907
12908 if (! elf32_arm_output_glue_section (info, abfd,
12909 globals->bfd_of_glue_owner,
12910 THUMB2ARM_GLUE_SECTION_NAME))
12911 return FALSE;
12912
12913 if (! elf32_arm_output_glue_section (info, abfd,
12914 globals->bfd_of_glue_owner,
12915 VFP11_ERRATUM_VENEER_SECTION_NAME))
12916 return FALSE;
12917
12918 if (! elf32_arm_output_glue_section (info, abfd,
12919 globals->bfd_of_glue_owner,
12920 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
12921 return FALSE;
12922
12923 if (! elf32_arm_output_glue_section (info, abfd,
12924 globals->bfd_of_glue_owner,
12925 ARM_BX_GLUE_SECTION_NAME))
12926 return FALSE;
12927 }
12928
12929 return TRUE;
12930 }
12931
12932 /* Return a best guess for the machine number based on the attributes. */
12933
12934 static unsigned int
12935 bfd_arm_get_mach_from_attributes (bfd * abfd)
12936 {
12937 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
12938
12939 switch (arch)
12940 {
12941 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
12942 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
12943 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
12944
12945 case TAG_CPU_ARCH_V5TE:
12946 {
12947 char * name;
12948
12949 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
12950 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
12951
12952 if (name)
12953 {
12954 if (strcmp (name, "IWMMXT2") == 0)
12955 return bfd_mach_arm_iWMMXt2;
12956
12957 if (strcmp (name, "IWMMXT") == 0)
12958 return bfd_mach_arm_iWMMXt;
12959
12960 if (strcmp (name, "XSCALE") == 0)
12961 {
12962 int wmmx;
12963
12964 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
12965 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
12966 switch (wmmx)
12967 {
12968 case 1: return bfd_mach_arm_iWMMXt;
12969 case 2: return bfd_mach_arm_iWMMXt2;
12970 default: return bfd_mach_arm_XScale;
12971 }
12972 }
12973 }
12974
12975 return bfd_mach_arm_5TE;
12976 }
12977
12978 default:
12979 return bfd_mach_arm_unknown;
12980 }
12981 }
12982
12983 /* Set the right machine number. */
12984
12985 static bfd_boolean
12986 elf32_arm_object_p (bfd *abfd)
12987 {
12988 unsigned int mach;
12989
12990 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
12991
12992 if (mach == bfd_mach_arm_unknown)
12993 {
12994 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
12995 mach = bfd_mach_arm_ep9312;
12996 else
12997 mach = bfd_arm_get_mach_from_attributes (abfd);
12998 }
12999
13000 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
13001 return TRUE;
13002 }
13003
13004 /* Function to keep ARM specific flags in the ELF header. */
13005
13006 static bfd_boolean
13007 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
13008 {
13009 if (elf_flags_init (abfd)
13010 && elf_elfheader (abfd)->e_flags != flags)
13011 {
13012 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13013 {
13014 if (flags & EF_ARM_INTERWORK)
13015 _bfd_error_handler
13016 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
13017 abfd);
13018 else
13019 _bfd_error_handler
13020 (_("Warning: Clearing the interworking flag of %B due to outside request"),
13021 abfd);
13022 }
13023 }
13024 else
13025 {
13026 elf_elfheader (abfd)->e_flags = flags;
13027 elf_flags_init (abfd) = TRUE;
13028 }
13029
13030 return TRUE;
13031 }
13032
13033 /* Copy backend specific data from one object module to another. */
13034
13035 static bfd_boolean
13036 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
13037 {
13038 flagword in_flags;
13039 flagword out_flags;
13040
13041 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13042 return TRUE;
13043
13044 in_flags = elf_elfheader (ibfd)->e_flags;
13045 out_flags = elf_elfheader (obfd)->e_flags;
13046
13047 if (elf_flags_init (obfd)
13048 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13049 && in_flags != out_flags)
13050 {
13051 /* Cannot mix APCS26 and APCS32 code. */
13052 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
13053 return FALSE;
13054
13055 /* Cannot mix float APCS and non-float APCS code. */
13056 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
13057 return FALSE;
13058
13059 /* If the src and dest have different interworking flags
13060 then turn off the interworking bit. */
13061 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
13062 {
13063 if (out_flags & EF_ARM_INTERWORK)
13064 _bfd_error_handler
13065 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
13066 obfd, ibfd);
13067
13068 in_flags &= ~EF_ARM_INTERWORK;
13069 }
13070
13071 /* Likewise for PIC, though don't warn for this case. */
13072 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
13073 in_flags &= ~EF_ARM_PIC;
13074 }
13075
13076 elf_elfheader (obfd)->e_flags = in_flags;
13077 elf_flags_init (obfd) = TRUE;
13078
13079 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
13080 }
13081
13082 /* Values for Tag_ABI_PCS_R9_use. */
13083 enum
13084 {
13085 AEABI_R9_V6,
13086 AEABI_R9_SB,
13087 AEABI_R9_TLS,
13088 AEABI_R9_unused
13089 };
13090
13091 /* Values for Tag_ABI_PCS_RW_data. */
13092 enum
13093 {
13094 AEABI_PCS_RW_data_absolute,
13095 AEABI_PCS_RW_data_PCrel,
13096 AEABI_PCS_RW_data_SBrel,
13097 AEABI_PCS_RW_data_unused
13098 };
13099
13100 /* Values for Tag_ABI_enum_size. */
13101 enum
13102 {
13103 AEABI_enum_unused,
13104 AEABI_enum_short,
13105 AEABI_enum_wide,
13106 AEABI_enum_forced_wide
13107 };
13108
13109 /* Determine whether an object attribute tag takes an integer, a
13110 string or both. */
13111
13112 static int
13113 elf32_arm_obj_attrs_arg_type (int tag)
13114 {
13115 if (tag == Tag_compatibility)
13116 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
13117 else if (tag == Tag_nodefaults)
13118 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
13119 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
13120 return ATTR_TYPE_FLAG_STR_VAL;
13121 else if (tag < 32)
13122 return ATTR_TYPE_FLAG_INT_VAL;
13123 else
13124 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
13125 }
13126
13127 /* The ABI defines that Tag_conformance should be emitted first, and that
13128 Tag_nodefaults should be second (if either is defined). This sets those
13129 two positions, and bumps up the position of all the remaining tags to
13130 compensate. */
13131 static int
13132 elf32_arm_obj_attrs_order (int num)
13133 {
13134 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
13135 return Tag_conformance;
13136 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
13137 return Tag_nodefaults;
13138 if ((num - 2) < Tag_nodefaults)
13139 return num - 2;
13140 if ((num - 1) < Tag_conformance)
13141 return num - 1;
13142 return num;
13143 }
13144
13145 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
13146 static bfd_boolean
13147 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
13148 {
13149 if ((tag & 127) < 64)
13150 {
13151 _bfd_error_handler
13152 (_("%B: Unknown mandatory EABI object attribute %d"),
13153 abfd, tag);
13154 bfd_set_error (bfd_error_bad_value);
13155 return FALSE;
13156 }
13157 else
13158 {
13159 _bfd_error_handler
13160 (_("Warning: %B: Unknown EABI object attribute %d"),
13161 abfd, tag);
13162 return TRUE;
13163 }
13164 }
13165
13166 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
13167 Returns -1 if no architecture could be read. */
13168
13169 static int
13170 get_secondary_compatible_arch (bfd *abfd)
13171 {
13172 obj_attribute *attr =
13173 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13174
13175 /* Note: the tag and its argument below are uleb128 values, though
13176 currently-defined values fit in one byte for each. */
13177 if (attr->s
13178 && attr->s[0] == Tag_CPU_arch
13179 && (attr->s[1] & 128) != 128
13180 && attr->s[2] == 0)
13181 return attr->s[1];
13182
13183 /* This tag is "safely ignorable", so don't complain if it looks funny. */
13184 return -1;
13185 }
13186
13187 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
13188 The tag is removed if ARCH is -1. */
13189
13190 static void
13191 set_secondary_compatible_arch (bfd *abfd, int arch)
13192 {
13193 obj_attribute *attr =
13194 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
13195
13196 if (arch == -1)
13197 {
13198 attr->s = NULL;
13199 return;
13200 }
13201
13202 /* Note: the tag and its argument below are uleb128 values, though
13203 currently-defined values fit in one byte for each. */
13204 if (!attr->s)
13205 attr->s = (char *) bfd_alloc (abfd, 3);
13206 attr->s[0] = Tag_CPU_arch;
13207 attr->s[1] = arch;
13208 attr->s[2] = '\0';
13209 }
13210
13211 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
13212 into account. */
13213
13214 static int
13215 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
13216 int newtag, int secondary_compat)
13217 {
13218 #define T(X) TAG_CPU_ARCH_##X
13219 int tagl, tagh, result;
13220 const int v6t2[] =
13221 {
13222 T(V6T2), /* PRE_V4. */
13223 T(V6T2), /* V4. */
13224 T(V6T2), /* V4T. */
13225 T(V6T2), /* V5T. */
13226 T(V6T2), /* V5TE. */
13227 T(V6T2), /* V5TEJ. */
13228 T(V6T2), /* V6. */
13229 T(V7), /* V6KZ. */
13230 T(V6T2) /* V6T2. */
13231 };
13232 const int v6k[] =
13233 {
13234 T(V6K), /* PRE_V4. */
13235 T(V6K), /* V4. */
13236 T(V6K), /* V4T. */
13237 T(V6K), /* V5T. */
13238 T(V6K), /* V5TE. */
13239 T(V6K), /* V5TEJ. */
13240 T(V6K), /* V6. */
13241 T(V6KZ), /* V6KZ. */
13242 T(V7), /* V6T2. */
13243 T(V6K) /* V6K. */
13244 };
13245 const int v7[] =
13246 {
13247 T(V7), /* PRE_V4. */
13248 T(V7), /* V4. */
13249 T(V7), /* V4T. */
13250 T(V7), /* V5T. */
13251 T(V7), /* V5TE. */
13252 T(V7), /* V5TEJ. */
13253 T(V7), /* V6. */
13254 T(V7), /* V6KZ. */
13255 T(V7), /* V6T2. */
13256 T(V7), /* V6K. */
13257 T(V7) /* V7. */
13258 };
13259 const int v6_m[] =
13260 {
13261 -1, /* PRE_V4. */
13262 -1, /* V4. */
13263 T(V6K), /* V4T. */
13264 T(V6K), /* V5T. */
13265 T(V6K), /* V5TE. */
13266 T(V6K), /* V5TEJ. */
13267 T(V6K), /* V6. */
13268 T(V6KZ), /* V6KZ. */
13269 T(V7), /* V6T2. */
13270 T(V6K), /* V6K. */
13271 T(V7), /* V7. */
13272 T(V6_M) /* V6_M. */
13273 };
13274 const int v6s_m[] =
13275 {
13276 -1, /* PRE_V4. */
13277 -1, /* V4. */
13278 T(V6K), /* V4T. */
13279 T(V6K), /* V5T. */
13280 T(V6K), /* V5TE. */
13281 T(V6K), /* V5TEJ. */
13282 T(V6K), /* V6. */
13283 T(V6KZ), /* V6KZ. */
13284 T(V7), /* V6T2. */
13285 T(V6K), /* V6K. */
13286 T(V7), /* V7. */
13287 T(V6S_M), /* V6_M. */
13288 T(V6S_M) /* V6S_M. */
13289 };
13290 const int v7e_m[] =
13291 {
13292 -1, /* PRE_V4. */
13293 -1, /* V4. */
13294 T(V7E_M), /* V4T. */
13295 T(V7E_M), /* V5T. */
13296 T(V7E_M), /* V5TE. */
13297 T(V7E_M), /* V5TEJ. */
13298 T(V7E_M), /* V6. */
13299 T(V7E_M), /* V6KZ. */
13300 T(V7E_M), /* V6T2. */
13301 T(V7E_M), /* V6K. */
13302 T(V7E_M), /* V7. */
13303 T(V7E_M), /* V6_M. */
13304 T(V7E_M), /* V6S_M. */
13305 T(V7E_M) /* V7E_M. */
13306 };
13307 const int v8[] =
13308 {
13309 T(V8), /* PRE_V4. */
13310 T(V8), /* V4. */
13311 T(V8), /* V4T. */
13312 T(V8), /* V5T. */
13313 T(V8), /* V5TE. */
13314 T(V8), /* V5TEJ. */
13315 T(V8), /* V6. */
13316 T(V8), /* V6KZ. */
13317 T(V8), /* V6T2. */
13318 T(V8), /* V6K. */
13319 T(V8), /* V7. */
13320 T(V8), /* V6_M. */
13321 T(V8), /* V6S_M. */
13322 T(V8), /* V7E_M. */
13323 T(V8) /* V8. */
13324 };
13325 const int v8m_baseline[] =
13326 {
13327 -1, /* PRE_V4. */
13328 -1, /* V4. */
13329 -1, /* V4T. */
13330 -1, /* V5T. */
13331 -1, /* V5TE. */
13332 -1, /* V5TEJ. */
13333 -1, /* V6. */
13334 -1, /* V6KZ. */
13335 -1, /* V6T2. */
13336 -1, /* V6K. */
13337 -1, /* V7. */
13338 T(V8M_BASE), /* V6_M. */
13339 T(V8M_BASE), /* V6S_M. */
13340 -1, /* V7E_M. */
13341 -1, /* V8. */
13342 -1,
13343 T(V8M_BASE) /* V8-M BASELINE. */
13344 };
13345 const int v8m_mainline[] =
13346 {
13347 -1, /* PRE_V4. */
13348 -1, /* V4. */
13349 -1, /* V4T. */
13350 -1, /* V5T. */
13351 -1, /* V5TE. */
13352 -1, /* V5TEJ. */
13353 -1, /* V6. */
13354 -1, /* V6KZ. */
13355 -1, /* V6T2. */
13356 -1, /* V6K. */
13357 T(V8M_MAIN), /* V7. */
13358 T(V8M_MAIN), /* V6_M. */
13359 T(V8M_MAIN), /* V6S_M. */
13360 T(V8M_MAIN), /* V7E_M. */
13361 -1, /* V8. */
13362 -1,
13363 T(V8M_MAIN), /* V8-M BASELINE. */
13364 T(V8M_MAIN) /* V8-M MAINLINE. */
13365 };
13366 const int v4t_plus_v6_m[] =
13367 {
13368 -1, /* PRE_V4. */
13369 -1, /* V4. */
13370 T(V4T), /* V4T. */
13371 T(V5T), /* V5T. */
13372 T(V5TE), /* V5TE. */
13373 T(V5TEJ), /* V5TEJ. */
13374 T(V6), /* V6. */
13375 T(V6KZ), /* V6KZ. */
13376 T(V6T2), /* V6T2. */
13377 T(V6K), /* V6K. */
13378 T(V7), /* V7. */
13379 T(V6_M), /* V6_M. */
13380 T(V6S_M), /* V6S_M. */
13381 T(V7E_M), /* V7E_M. */
13382 T(V8), /* V8. */
13383 -1, /* Unused. */
13384 T(V8M_BASE), /* V8-M BASELINE. */
13385 T(V8M_MAIN), /* V8-M MAINLINE. */
13386 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
13387 };
13388 const int *comb[] =
13389 {
13390 v6t2,
13391 v6k,
13392 v7,
13393 v6_m,
13394 v6s_m,
13395 v7e_m,
13396 v8,
13397 NULL,
13398 v8m_baseline,
13399 v8m_mainline,
13400 /* Pseudo-architecture. */
13401 v4t_plus_v6_m
13402 };
13403
13404 /* Check we've not got a higher architecture than we know about. */
13405
13406 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
13407 {
13408 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
13409 return -1;
13410 }
13411
13412 /* Override old tag if we have a Tag_also_compatible_with on the output. */
13413
13414 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
13415 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
13416 oldtag = T(V4T_PLUS_V6_M);
13417
13418 /* And override the new tag if we have a Tag_also_compatible_with on the
13419 input. */
13420
13421 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
13422 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
13423 newtag = T(V4T_PLUS_V6_M);
13424
13425 tagl = (oldtag < newtag) ? oldtag : newtag;
13426 result = tagh = (oldtag > newtag) ? oldtag : newtag;
13427
13428 /* Architectures before V6KZ add features monotonically. */
13429 if (tagh <= TAG_CPU_ARCH_V6KZ)
13430 return result;
13431
13432 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
13433
13434 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
13435 as the canonical version. */
13436 if (result == T(V4T_PLUS_V6_M))
13437 {
13438 result = T(V4T);
13439 *secondary_compat_out = T(V6_M);
13440 }
13441 else
13442 *secondary_compat_out = -1;
13443
13444 if (result == -1)
13445 {
13446 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
13447 ibfd, oldtag, newtag);
13448 return -1;
13449 }
13450
13451 return result;
13452 #undef T
13453 }
13454
13455 /* Query attributes object to see if integer divide instructions may be
13456 present in an object. */
13457 static bfd_boolean
13458 elf32_arm_attributes_accept_div (const obj_attribute *attr)
13459 {
13460 int arch = attr[Tag_CPU_arch].i;
13461 int profile = attr[Tag_CPU_arch_profile].i;
13462
13463 switch (attr[Tag_DIV_use].i)
13464 {
13465 case 0:
13466 /* Integer divide allowed if instruction contained in archetecture. */
13467 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
13468 return TRUE;
13469 else if (arch >= TAG_CPU_ARCH_V7E_M)
13470 return TRUE;
13471 else
13472 return FALSE;
13473
13474 case 1:
13475 /* Integer divide explicitly prohibited. */
13476 return FALSE;
13477
13478 default:
13479 /* Unrecognised case - treat as allowing divide everywhere. */
13480 case 2:
13481 /* Integer divide allowed in ARM state. */
13482 return TRUE;
13483 }
13484 }
13485
13486 /* Query attributes object to see if integer divide instructions are
13487 forbidden to be in the object. This is not the inverse of
13488 elf32_arm_attributes_accept_div. */
13489 static bfd_boolean
13490 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
13491 {
13492 return attr[Tag_DIV_use].i == 1;
13493 }
13494
13495 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
13496 are conflicting attributes. */
13497
13498 static bfd_boolean
13499 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
13500 {
13501 bfd *obfd = info->output_bfd;
13502 obj_attribute *in_attr;
13503 obj_attribute *out_attr;
13504 /* Some tags have 0 = don't care, 1 = strong requirement,
13505 2 = weak requirement. */
13506 static const int order_021[3] = {0, 2, 1};
13507 int i;
13508 bfd_boolean result = TRUE;
13509 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
13510
13511 /* Skip the linker stubs file. This preserves previous behavior
13512 of accepting unknown attributes in the first input file - but
13513 is that a bug? */
13514 if (ibfd->flags & BFD_LINKER_CREATED)
13515 return TRUE;
13516
13517 /* Skip any input that hasn't attribute section.
13518 This enables to link object files without attribute section with
13519 any others. */
13520 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
13521 return TRUE;
13522
13523 if (!elf_known_obj_attributes_proc (obfd)[0].i)
13524 {
13525 /* This is the first object. Copy the attributes. */
13526 _bfd_elf_copy_obj_attributes (ibfd, obfd);
13527
13528 out_attr = elf_known_obj_attributes_proc (obfd);
13529
13530 /* Use the Tag_null value to indicate the attributes have been
13531 initialized. */
13532 out_attr[0].i = 1;
13533
13534 /* We do not output objects with Tag_MPextension_use_legacy - we move
13535 the attribute's value to Tag_MPextension_use. */
13536 if (out_attr[Tag_MPextension_use_legacy].i != 0)
13537 {
13538 if (out_attr[Tag_MPextension_use].i != 0
13539 && out_attr[Tag_MPextension_use_legacy].i
13540 != out_attr[Tag_MPextension_use].i)
13541 {
13542 _bfd_error_handler
13543 (_("Error: %B has both the current and legacy "
13544 "Tag_MPextension_use attributes"), ibfd);
13545 result = FALSE;
13546 }
13547
13548 out_attr[Tag_MPextension_use] =
13549 out_attr[Tag_MPextension_use_legacy];
13550 out_attr[Tag_MPextension_use_legacy].type = 0;
13551 out_attr[Tag_MPextension_use_legacy].i = 0;
13552 }
13553
13554 return result;
13555 }
13556
13557 in_attr = elf_known_obj_attributes_proc (ibfd);
13558 out_attr = elf_known_obj_attributes_proc (obfd);
13559 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
13560 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
13561 {
13562 /* Ignore mismatches if the object doesn't use floating point or is
13563 floating point ABI independent. */
13564 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
13565 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13566 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
13567 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
13568 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
13569 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
13570 {
13571 _bfd_error_handler
13572 (_("error: %B uses VFP register arguments, %B does not"),
13573 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
13574 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
13575 result = FALSE;
13576 }
13577 }
13578
13579 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
13580 {
13581 /* Merge this attribute with existing attributes. */
13582 switch (i)
13583 {
13584 case Tag_CPU_raw_name:
13585 case Tag_CPU_name:
13586 /* These are merged after Tag_CPU_arch. */
13587 break;
13588
13589 case Tag_ABI_optimization_goals:
13590 case Tag_ABI_FP_optimization_goals:
13591 /* Use the first value seen. */
13592 break;
13593
13594 case Tag_CPU_arch:
13595 {
13596 int secondary_compat = -1, secondary_compat_out = -1;
13597 unsigned int saved_out_attr = out_attr[i].i;
13598 int arch_attr;
13599 static const char *name_table[] =
13600 {
13601 /* These aren't real CPU names, but we can't guess
13602 that from the architecture version alone. */
13603 "Pre v4",
13604 "ARM v4",
13605 "ARM v4T",
13606 "ARM v5T",
13607 "ARM v5TE",
13608 "ARM v5TEJ",
13609 "ARM v6",
13610 "ARM v6KZ",
13611 "ARM v6T2",
13612 "ARM v6K",
13613 "ARM v7",
13614 "ARM v6-M",
13615 "ARM v6S-M",
13616 "ARM v8",
13617 "",
13618 "ARM v8-M.baseline",
13619 "ARM v8-M.mainline",
13620 };
13621
13622 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
13623 secondary_compat = get_secondary_compatible_arch (ibfd);
13624 secondary_compat_out = get_secondary_compatible_arch (obfd);
13625 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
13626 &secondary_compat_out,
13627 in_attr[i].i,
13628 secondary_compat);
13629
13630 /* Return with error if failed to merge. */
13631 if (arch_attr == -1)
13632 return FALSE;
13633
13634 out_attr[i].i = arch_attr;
13635
13636 set_secondary_compatible_arch (obfd, secondary_compat_out);
13637
13638 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
13639 if (out_attr[i].i == saved_out_attr)
13640 ; /* Leave the names alone. */
13641 else if (out_attr[i].i == in_attr[i].i)
13642 {
13643 /* The output architecture has been changed to match the
13644 input architecture. Use the input names. */
13645 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
13646 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
13647 : NULL;
13648 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
13649 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
13650 : NULL;
13651 }
13652 else
13653 {
13654 out_attr[Tag_CPU_name].s = NULL;
13655 out_attr[Tag_CPU_raw_name].s = NULL;
13656 }
13657
13658 /* If we still don't have a value for Tag_CPU_name,
13659 make one up now. Tag_CPU_raw_name remains blank. */
13660 if (out_attr[Tag_CPU_name].s == NULL
13661 && out_attr[i].i < ARRAY_SIZE (name_table))
13662 out_attr[Tag_CPU_name].s =
13663 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
13664 }
13665 break;
13666
13667 case Tag_ARM_ISA_use:
13668 case Tag_THUMB_ISA_use:
13669 case Tag_WMMX_arch:
13670 case Tag_Advanced_SIMD_arch:
13671 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
13672 case Tag_ABI_FP_rounding:
13673 case Tag_ABI_FP_exceptions:
13674 case Tag_ABI_FP_user_exceptions:
13675 case Tag_ABI_FP_number_model:
13676 case Tag_FP_HP_extension:
13677 case Tag_CPU_unaligned_access:
13678 case Tag_T2EE_use:
13679 case Tag_MPextension_use:
13680 /* Use the largest value specified. */
13681 if (in_attr[i].i > out_attr[i].i)
13682 out_attr[i].i = in_attr[i].i;
13683 break;
13684
13685 case Tag_ABI_align_preserved:
13686 case Tag_ABI_PCS_RO_data:
13687 /* Use the smallest value specified. */
13688 if (in_attr[i].i < out_attr[i].i)
13689 out_attr[i].i = in_attr[i].i;
13690 break;
13691
13692 case Tag_ABI_align_needed:
13693 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
13694 && (in_attr[Tag_ABI_align_preserved].i == 0
13695 || out_attr[Tag_ABI_align_preserved].i == 0))
13696 {
13697 /* This error message should be enabled once all non-conformant
13698 binaries in the toolchain have had the attributes set
13699 properly.
13700 _bfd_error_handler
13701 (_("error: %B: 8-byte data alignment conflicts with %B"),
13702 obfd, ibfd);
13703 result = FALSE; */
13704 }
13705 /* Fall through. */
13706 case Tag_ABI_FP_denormal:
13707 case Tag_ABI_PCS_GOT_use:
13708 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
13709 value if greater than 2 (for future-proofing). */
13710 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
13711 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
13712 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
13713 out_attr[i].i = in_attr[i].i;
13714 break;
13715
13716 case Tag_Virtualization_use:
13717 /* The virtualization tag effectively stores two bits of
13718 information: the intended use of TrustZone (in bit 0), and the
13719 intended use of Virtualization (in bit 1). */
13720 if (out_attr[i].i == 0)
13721 out_attr[i].i = in_attr[i].i;
13722 else if (in_attr[i].i != 0
13723 && in_attr[i].i != out_attr[i].i)
13724 {
13725 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
13726 out_attr[i].i = 3;
13727 else
13728 {
13729 _bfd_error_handler
13730 (_("error: %B: unable to merge virtualization attributes "
13731 "with %B"),
13732 obfd, ibfd);
13733 result = FALSE;
13734 }
13735 }
13736 break;
13737
13738 case Tag_CPU_arch_profile:
13739 if (out_attr[i].i != in_attr[i].i)
13740 {
13741 /* 0 will merge with anything.
13742 'A' and 'S' merge to 'A'.
13743 'R' and 'S' merge to 'R'.
13744 'M' and 'A|R|S' is an error. */
13745 if (out_attr[i].i == 0
13746 || (out_attr[i].i == 'S'
13747 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
13748 out_attr[i].i = in_attr[i].i;
13749 else if (in_attr[i].i == 0
13750 || (in_attr[i].i == 'S'
13751 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
13752 ; /* Do nothing. */
13753 else
13754 {
13755 _bfd_error_handler
13756 (_("error: %B: Conflicting architecture profiles %c/%c"),
13757 ibfd,
13758 in_attr[i].i ? in_attr[i].i : '0',
13759 out_attr[i].i ? out_attr[i].i : '0');
13760 result = FALSE;
13761 }
13762 }
13763 break;
13764
13765 case Tag_DSP_extension:
13766 /* No need to change output value if any of:
13767 - pre (<=) ARMv5T input architecture (do not have DSP)
13768 - M input profile not ARMv7E-M and do not have DSP. */
13769 if (in_attr[Tag_CPU_arch].i <= 3
13770 || (in_attr[Tag_CPU_arch_profile].i == 'M'
13771 && in_attr[Tag_CPU_arch].i != 13
13772 && in_attr[i].i == 0))
13773 ; /* Do nothing. */
13774 /* Output value should be 0 if DSP part of architecture, ie.
13775 - post (>=) ARMv5te architecture output
13776 - A, R or S profile output or ARMv7E-M output architecture. */
13777 else if (out_attr[Tag_CPU_arch].i >= 4
13778 && (out_attr[Tag_CPU_arch_profile].i == 'A'
13779 || out_attr[Tag_CPU_arch_profile].i == 'R'
13780 || out_attr[Tag_CPU_arch_profile].i == 'S'
13781 || out_attr[Tag_CPU_arch].i == 13))
13782 out_attr[i].i = 0;
13783 /* Otherwise, DSP instructions are added and not part of output
13784 architecture. */
13785 else
13786 out_attr[i].i = 1;
13787 break;
13788
13789 case Tag_FP_arch:
13790 {
13791 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
13792 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
13793 when it's 0. It might mean absence of FP hardware if
13794 Tag_FP_arch is zero. */
13795
13796 #define VFP_VERSION_COUNT 9
13797 static const struct
13798 {
13799 int ver;
13800 int regs;
13801 } vfp_versions[VFP_VERSION_COUNT] =
13802 {
13803 {0, 0},
13804 {1, 16},
13805 {2, 16},
13806 {3, 32},
13807 {3, 16},
13808 {4, 32},
13809 {4, 16},
13810 {8, 32},
13811 {8, 16}
13812 };
13813 int ver;
13814 int regs;
13815 int newval;
13816
13817 /* If the output has no requirement about FP hardware,
13818 follow the requirement of the input. */
13819 if (out_attr[i].i == 0)
13820 {
13821 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
13822 out_attr[i].i = in_attr[i].i;
13823 out_attr[Tag_ABI_HardFP_use].i
13824 = in_attr[Tag_ABI_HardFP_use].i;
13825 break;
13826 }
13827 /* If the input has no requirement about FP hardware, do
13828 nothing. */
13829 else if (in_attr[i].i == 0)
13830 {
13831 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
13832 break;
13833 }
13834
13835 /* Both the input and the output have nonzero Tag_FP_arch.
13836 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
13837
13838 /* If both the input and the output have zero Tag_ABI_HardFP_use,
13839 do nothing. */
13840 if (in_attr[Tag_ABI_HardFP_use].i == 0
13841 && out_attr[Tag_ABI_HardFP_use].i == 0)
13842 ;
13843 /* If the input and the output have different Tag_ABI_HardFP_use,
13844 the combination of them is 0 (implied by Tag_FP_arch). */
13845 else if (in_attr[Tag_ABI_HardFP_use].i
13846 != out_attr[Tag_ABI_HardFP_use].i)
13847 out_attr[Tag_ABI_HardFP_use].i = 0;
13848
13849 /* Now we can handle Tag_FP_arch. */
13850
13851 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
13852 pick the biggest. */
13853 if (in_attr[i].i >= VFP_VERSION_COUNT
13854 && in_attr[i].i > out_attr[i].i)
13855 {
13856 out_attr[i] = in_attr[i];
13857 break;
13858 }
13859 /* The output uses the superset of input features
13860 (ISA version) and registers. */
13861 ver = vfp_versions[in_attr[i].i].ver;
13862 if (ver < vfp_versions[out_attr[i].i].ver)
13863 ver = vfp_versions[out_attr[i].i].ver;
13864 regs = vfp_versions[in_attr[i].i].regs;
13865 if (regs < vfp_versions[out_attr[i].i].regs)
13866 regs = vfp_versions[out_attr[i].i].regs;
13867 /* This assumes all possible supersets are also a valid
13868 options. */
13869 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
13870 {
13871 if (regs == vfp_versions[newval].regs
13872 && ver == vfp_versions[newval].ver)
13873 break;
13874 }
13875 out_attr[i].i = newval;
13876 }
13877 break;
13878 case Tag_PCS_config:
13879 if (out_attr[i].i == 0)
13880 out_attr[i].i = in_attr[i].i;
13881 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
13882 {
13883 /* It's sometimes ok to mix different configs, so this is only
13884 a warning. */
13885 _bfd_error_handler
13886 (_("Warning: %B: Conflicting platform configuration"), ibfd);
13887 }
13888 break;
13889 case Tag_ABI_PCS_R9_use:
13890 if (in_attr[i].i != out_attr[i].i
13891 && out_attr[i].i != AEABI_R9_unused
13892 && in_attr[i].i != AEABI_R9_unused)
13893 {
13894 _bfd_error_handler
13895 (_("error: %B: Conflicting use of R9"), ibfd);
13896 result = FALSE;
13897 }
13898 if (out_attr[i].i == AEABI_R9_unused)
13899 out_attr[i].i = in_attr[i].i;
13900 break;
13901 case Tag_ABI_PCS_RW_data:
13902 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
13903 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
13904 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
13905 {
13906 _bfd_error_handler
13907 (_("error: %B: SB relative addressing conflicts with use of R9"),
13908 ibfd);
13909 result = FALSE;
13910 }
13911 /* Use the smallest value specified. */
13912 if (in_attr[i].i < out_attr[i].i)
13913 out_attr[i].i = in_attr[i].i;
13914 break;
13915 case Tag_ABI_PCS_wchar_t:
13916 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
13917 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
13918 {
13919 _bfd_error_handler
13920 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
13921 ibfd, in_attr[i].i, out_attr[i].i);
13922 }
13923 else if (in_attr[i].i && !out_attr[i].i)
13924 out_attr[i].i = in_attr[i].i;
13925 break;
13926 case Tag_ABI_enum_size:
13927 if (in_attr[i].i != AEABI_enum_unused)
13928 {
13929 if (out_attr[i].i == AEABI_enum_unused
13930 || out_attr[i].i == AEABI_enum_forced_wide)
13931 {
13932 /* The existing object is compatible with anything.
13933 Use whatever requirements the new object has. */
13934 out_attr[i].i = in_attr[i].i;
13935 }
13936 else if (in_attr[i].i != AEABI_enum_forced_wide
13937 && out_attr[i].i != in_attr[i].i
13938 && !elf_arm_tdata (obfd)->no_enum_size_warning)
13939 {
13940 static const char *aeabi_enum_names[] =
13941 { "", "variable-size", "32-bit", "" };
13942 const char *in_name =
13943 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13944 ? aeabi_enum_names[in_attr[i].i]
13945 : "<unknown>";
13946 const char *out_name =
13947 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
13948 ? aeabi_enum_names[out_attr[i].i]
13949 : "<unknown>";
13950 _bfd_error_handler
13951 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
13952 ibfd, in_name, out_name);
13953 }
13954 }
13955 break;
13956 case Tag_ABI_VFP_args:
13957 /* Aready done. */
13958 break;
13959 case Tag_ABI_WMMX_args:
13960 if (in_attr[i].i != out_attr[i].i)
13961 {
13962 _bfd_error_handler
13963 (_("error: %B uses iWMMXt register arguments, %B does not"),
13964 ibfd, obfd);
13965 result = FALSE;
13966 }
13967 break;
13968 case Tag_compatibility:
13969 /* Merged in target-independent code. */
13970 break;
13971 case Tag_ABI_HardFP_use:
13972 /* This is handled along with Tag_FP_arch. */
13973 break;
13974 case Tag_ABI_FP_16bit_format:
13975 if (in_attr[i].i != 0 && out_attr[i].i != 0)
13976 {
13977 if (in_attr[i].i != out_attr[i].i)
13978 {
13979 _bfd_error_handler
13980 (_("error: fp16 format mismatch between %B and %B"),
13981 ibfd, obfd);
13982 result = FALSE;
13983 }
13984 }
13985 if (in_attr[i].i != 0)
13986 out_attr[i].i = in_attr[i].i;
13987 break;
13988
13989 case Tag_DIV_use:
13990 /* A value of zero on input means that the divide instruction may
13991 be used if available in the base architecture as specified via
13992 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
13993 the user did not want divide instructions. A value of 2
13994 explicitly means that divide instructions were allowed in ARM
13995 and Thumb state. */
13996 if (in_attr[i].i == out_attr[i].i)
13997 /* Do nothing. */ ;
13998 else if (elf32_arm_attributes_forbid_div (in_attr)
13999 && !elf32_arm_attributes_accept_div (out_attr))
14000 out_attr[i].i = 1;
14001 else if (elf32_arm_attributes_forbid_div (out_attr)
14002 && elf32_arm_attributes_accept_div (in_attr))
14003 out_attr[i].i = in_attr[i].i;
14004 else if (in_attr[i].i == 2)
14005 out_attr[i].i = in_attr[i].i;
14006 break;
14007
14008 case Tag_MPextension_use_legacy:
14009 /* We don't output objects with Tag_MPextension_use_legacy - we
14010 move the value to Tag_MPextension_use. */
14011 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
14012 {
14013 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
14014 {
14015 _bfd_error_handler
14016 (_("%B has has both the current and legacy "
14017 "Tag_MPextension_use attributes"),
14018 ibfd);
14019 result = FALSE;
14020 }
14021 }
14022
14023 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
14024 out_attr[Tag_MPextension_use] = in_attr[i];
14025
14026 break;
14027
14028 case Tag_nodefaults:
14029 /* This tag is set if it exists, but the value is unused (and is
14030 typically zero). We don't actually need to do anything here -
14031 the merge happens automatically when the type flags are merged
14032 below. */
14033 break;
14034 case Tag_also_compatible_with:
14035 /* Already done in Tag_CPU_arch. */
14036 break;
14037 case Tag_conformance:
14038 /* Keep the attribute if it matches. Throw it away otherwise.
14039 No attribute means no claim to conform. */
14040 if (!in_attr[i].s || !out_attr[i].s
14041 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
14042 out_attr[i].s = NULL;
14043 break;
14044
14045 default:
14046 result
14047 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
14048 }
14049
14050 /* If out_attr was copied from in_attr then it won't have a type yet. */
14051 if (in_attr[i].type && !out_attr[i].type)
14052 out_attr[i].type = in_attr[i].type;
14053 }
14054
14055 /* Merge Tag_compatibility attributes and any common GNU ones. */
14056 if (!_bfd_elf_merge_object_attributes (ibfd, info))
14057 return FALSE;
14058
14059 /* Check for any attributes not known on ARM. */
14060 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
14061
14062 return result;
14063 }
14064
14065
14066 /* Return TRUE if the two EABI versions are incompatible. */
14067
14068 static bfd_boolean
14069 elf32_arm_versions_compatible (unsigned iver, unsigned over)
14070 {
14071 /* v4 and v5 are the same spec before and after it was released,
14072 so allow mixing them. */
14073 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
14074 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
14075 return TRUE;
14076
14077 return (iver == over);
14078 }
14079
14080 /* Merge backend specific data from an object file to the output
14081 object file when linking. */
14082
14083 static bfd_boolean
14084 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
14085
14086 /* Display the flags field. */
14087
14088 static bfd_boolean
14089 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
14090 {
14091 FILE * file = (FILE *) ptr;
14092 unsigned long flags;
14093
14094 BFD_ASSERT (abfd != NULL && ptr != NULL);
14095
14096 /* Print normal ELF private data. */
14097 _bfd_elf_print_private_bfd_data (abfd, ptr);
14098
14099 flags = elf_elfheader (abfd)->e_flags;
14100 /* Ignore init flag - it may not be set, despite the flags field
14101 containing valid data. */
14102
14103 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
14104
14105 switch (EF_ARM_EABI_VERSION (flags))
14106 {
14107 case EF_ARM_EABI_UNKNOWN:
14108 /* The following flag bits are GNU extensions and not part of the
14109 official ARM ELF extended ABI. Hence they are only decoded if
14110 the EABI version is not set. */
14111 if (flags & EF_ARM_INTERWORK)
14112 fprintf (file, _(" [interworking enabled]"));
14113
14114 if (flags & EF_ARM_APCS_26)
14115 fprintf (file, " [APCS-26]");
14116 else
14117 fprintf (file, " [APCS-32]");
14118
14119 if (flags & EF_ARM_VFP_FLOAT)
14120 fprintf (file, _(" [VFP float format]"));
14121 else if (flags & EF_ARM_MAVERICK_FLOAT)
14122 fprintf (file, _(" [Maverick float format]"));
14123 else
14124 fprintf (file, _(" [FPA float format]"));
14125
14126 if (flags & EF_ARM_APCS_FLOAT)
14127 fprintf (file, _(" [floats passed in float registers]"));
14128
14129 if (flags & EF_ARM_PIC)
14130 fprintf (file, _(" [position independent]"));
14131
14132 if (flags & EF_ARM_NEW_ABI)
14133 fprintf (file, _(" [new ABI]"));
14134
14135 if (flags & EF_ARM_OLD_ABI)
14136 fprintf (file, _(" [old ABI]"));
14137
14138 if (flags & EF_ARM_SOFT_FLOAT)
14139 fprintf (file, _(" [software FP]"));
14140
14141 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
14142 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
14143 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
14144 | EF_ARM_MAVERICK_FLOAT);
14145 break;
14146
14147 case EF_ARM_EABI_VER1:
14148 fprintf (file, _(" [Version1 EABI]"));
14149
14150 if (flags & EF_ARM_SYMSARESORTED)
14151 fprintf (file, _(" [sorted symbol table]"));
14152 else
14153 fprintf (file, _(" [unsorted symbol table]"));
14154
14155 flags &= ~ EF_ARM_SYMSARESORTED;
14156 break;
14157
14158 case EF_ARM_EABI_VER2:
14159 fprintf (file, _(" [Version2 EABI]"));
14160
14161 if (flags & EF_ARM_SYMSARESORTED)
14162 fprintf (file, _(" [sorted symbol table]"));
14163 else
14164 fprintf (file, _(" [unsorted symbol table]"));
14165
14166 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
14167 fprintf (file, _(" [dynamic symbols use segment index]"));
14168
14169 if (flags & EF_ARM_MAPSYMSFIRST)
14170 fprintf (file, _(" [mapping symbols precede others]"));
14171
14172 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
14173 | EF_ARM_MAPSYMSFIRST);
14174 break;
14175
14176 case EF_ARM_EABI_VER3:
14177 fprintf (file, _(" [Version3 EABI]"));
14178 break;
14179
14180 case EF_ARM_EABI_VER4:
14181 fprintf (file, _(" [Version4 EABI]"));
14182 goto eabi;
14183
14184 case EF_ARM_EABI_VER5:
14185 fprintf (file, _(" [Version5 EABI]"));
14186
14187 if (flags & EF_ARM_ABI_FLOAT_SOFT)
14188 fprintf (file, _(" [soft-float ABI]"));
14189
14190 if (flags & EF_ARM_ABI_FLOAT_HARD)
14191 fprintf (file, _(" [hard-float ABI]"));
14192
14193 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
14194
14195 eabi:
14196 if (flags & EF_ARM_BE8)
14197 fprintf (file, _(" [BE8]"));
14198
14199 if (flags & EF_ARM_LE8)
14200 fprintf (file, _(" [LE8]"));
14201
14202 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
14203 break;
14204
14205 default:
14206 fprintf (file, _(" <EABI version unrecognised>"));
14207 break;
14208 }
14209
14210 flags &= ~ EF_ARM_EABIMASK;
14211
14212 if (flags & EF_ARM_RELEXEC)
14213 fprintf (file, _(" [relocatable executable]"));
14214
14215 flags &= ~EF_ARM_RELEXEC;
14216
14217 if (flags)
14218 fprintf (file, _("<Unrecognised flag bits set>"));
14219
14220 fputc ('\n', file);
14221
14222 return TRUE;
14223 }
14224
14225 static int
14226 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
14227 {
14228 switch (ELF_ST_TYPE (elf_sym->st_info))
14229 {
14230 case STT_ARM_TFUNC:
14231 return ELF_ST_TYPE (elf_sym->st_info);
14232
14233 case STT_ARM_16BIT:
14234 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
14235 This allows us to distinguish between data used by Thumb instructions
14236 and non-data (which is probably code) inside Thumb regions of an
14237 executable. */
14238 if (type != STT_OBJECT && type != STT_TLS)
14239 return ELF_ST_TYPE (elf_sym->st_info);
14240 break;
14241
14242 default:
14243 break;
14244 }
14245
14246 return type;
14247 }
14248
14249 static asection *
14250 elf32_arm_gc_mark_hook (asection *sec,
14251 struct bfd_link_info *info,
14252 Elf_Internal_Rela *rel,
14253 struct elf_link_hash_entry *h,
14254 Elf_Internal_Sym *sym)
14255 {
14256 if (h != NULL)
14257 switch (ELF32_R_TYPE (rel->r_info))
14258 {
14259 case R_ARM_GNU_VTINHERIT:
14260 case R_ARM_GNU_VTENTRY:
14261 return NULL;
14262 }
14263
14264 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
14265 }
14266
14267 /* Update the got entry reference counts for the section being removed. */
14268
14269 static bfd_boolean
14270 elf32_arm_gc_sweep_hook (bfd * abfd,
14271 struct bfd_link_info * info,
14272 asection * sec,
14273 const Elf_Internal_Rela * relocs)
14274 {
14275 Elf_Internal_Shdr *symtab_hdr;
14276 struct elf_link_hash_entry **sym_hashes;
14277 bfd_signed_vma *local_got_refcounts;
14278 const Elf_Internal_Rela *rel, *relend;
14279 struct elf32_arm_link_hash_table * globals;
14280
14281 if (bfd_link_relocatable (info))
14282 return TRUE;
14283
14284 globals = elf32_arm_hash_table (info);
14285 if (globals == NULL)
14286 return FALSE;
14287
14288 elf_section_data (sec)->local_dynrel = NULL;
14289
14290 symtab_hdr = & elf_symtab_hdr (abfd);
14291 sym_hashes = elf_sym_hashes (abfd);
14292 local_got_refcounts = elf_local_got_refcounts (abfd);
14293
14294 check_use_blx (globals);
14295
14296 relend = relocs + sec->reloc_count;
14297 for (rel = relocs; rel < relend; rel++)
14298 {
14299 unsigned long r_symndx;
14300 struct elf_link_hash_entry *h = NULL;
14301 struct elf32_arm_link_hash_entry *eh;
14302 int r_type;
14303 bfd_boolean call_reloc_p;
14304 bfd_boolean may_become_dynamic_p;
14305 bfd_boolean may_need_local_target_p;
14306 union gotplt_union *root_plt;
14307 struct arm_plt_info *arm_plt;
14308
14309 r_symndx = ELF32_R_SYM (rel->r_info);
14310 if (r_symndx >= symtab_hdr->sh_info)
14311 {
14312 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14313 while (h->root.type == bfd_link_hash_indirect
14314 || h->root.type == bfd_link_hash_warning)
14315 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14316 }
14317 eh = (struct elf32_arm_link_hash_entry *) h;
14318
14319 call_reloc_p = FALSE;
14320 may_become_dynamic_p = FALSE;
14321 may_need_local_target_p = FALSE;
14322
14323 r_type = ELF32_R_TYPE (rel->r_info);
14324 r_type = arm_real_reloc_type (globals, r_type);
14325 switch (r_type)
14326 {
14327 case R_ARM_GOT32:
14328 case R_ARM_GOT_PREL:
14329 case R_ARM_TLS_GD32:
14330 case R_ARM_TLS_IE32:
14331 if (h != NULL)
14332 {
14333 if (h->got.refcount > 0)
14334 h->got.refcount -= 1;
14335 }
14336 else if (local_got_refcounts != NULL)
14337 {
14338 if (local_got_refcounts[r_symndx] > 0)
14339 local_got_refcounts[r_symndx] -= 1;
14340 }
14341 break;
14342
14343 case R_ARM_TLS_LDM32:
14344 globals->tls_ldm_got.refcount -= 1;
14345 break;
14346
14347 case R_ARM_PC24:
14348 case R_ARM_PLT32:
14349 case R_ARM_CALL:
14350 case R_ARM_JUMP24:
14351 case R_ARM_PREL31:
14352 case R_ARM_THM_CALL:
14353 case R_ARM_THM_JUMP24:
14354 case R_ARM_THM_JUMP19:
14355 call_reloc_p = TRUE;
14356 may_need_local_target_p = TRUE;
14357 break;
14358
14359 case R_ARM_ABS12:
14360 if (!globals->vxworks_p)
14361 {
14362 may_need_local_target_p = TRUE;
14363 break;
14364 }
14365 /* Fall through. */
14366 case R_ARM_ABS32:
14367 case R_ARM_ABS32_NOI:
14368 case R_ARM_REL32:
14369 case R_ARM_REL32_NOI:
14370 case R_ARM_MOVW_ABS_NC:
14371 case R_ARM_MOVT_ABS:
14372 case R_ARM_MOVW_PREL_NC:
14373 case R_ARM_MOVT_PREL:
14374 case R_ARM_THM_MOVW_ABS_NC:
14375 case R_ARM_THM_MOVT_ABS:
14376 case R_ARM_THM_MOVW_PREL_NC:
14377 case R_ARM_THM_MOVT_PREL:
14378 /* Should the interworking branches be here also? */
14379 if ((bfd_link_pic (info) || globals->root.is_relocatable_executable)
14380 && (sec->flags & SEC_ALLOC) != 0)
14381 {
14382 if (h == NULL
14383 && elf32_arm_howto_from_type (r_type)->pc_relative)
14384 {
14385 call_reloc_p = TRUE;
14386 may_need_local_target_p = TRUE;
14387 }
14388 else
14389 may_become_dynamic_p = TRUE;
14390 }
14391 else
14392 may_need_local_target_p = TRUE;
14393 break;
14394
14395 default:
14396 break;
14397 }
14398
14399 if (may_need_local_target_p
14400 && elf32_arm_get_plt_info (abfd, globals, eh, r_symndx, &root_plt,
14401 &arm_plt))
14402 {
14403 /* If PLT refcount book-keeping is wrong and too low, we'll
14404 see a zero value (going to -1) for the root PLT reference
14405 count. */
14406 if (root_plt->refcount >= 0)
14407 {
14408 BFD_ASSERT (root_plt->refcount != 0);
14409 root_plt->refcount -= 1;
14410 }
14411 else
14412 /* A value of -1 means the symbol has become local, forced
14413 or seeing a hidden definition. Any other negative value
14414 is an error. */
14415 BFD_ASSERT (root_plt->refcount == -1);
14416
14417 if (!call_reloc_p)
14418 arm_plt->noncall_refcount--;
14419
14420 if (r_type == R_ARM_THM_CALL)
14421 arm_plt->maybe_thumb_refcount--;
14422
14423 if (r_type == R_ARM_THM_JUMP24
14424 || r_type == R_ARM_THM_JUMP19)
14425 arm_plt->thumb_refcount--;
14426 }
14427
14428 if (may_become_dynamic_p)
14429 {
14430 struct elf_dyn_relocs **pp;
14431 struct elf_dyn_relocs *p;
14432
14433 if (h != NULL)
14434 pp = &(eh->dyn_relocs);
14435 else
14436 {
14437 Elf_Internal_Sym *isym;
14438
14439 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
14440 abfd, r_symndx);
14441 if (isym == NULL)
14442 return FALSE;
14443 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14444 if (pp == NULL)
14445 return FALSE;
14446 }
14447 for (; (p = *pp) != NULL; pp = &p->next)
14448 if (p->sec == sec)
14449 {
14450 /* Everything must go for SEC. */
14451 *pp = p->next;
14452 break;
14453 }
14454 }
14455 }
14456
14457 return TRUE;
14458 }
14459
14460 /* Look through the relocs for a section during the first phase. */
14461
14462 static bfd_boolean
14463 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
14464 asection *sec, const Elf_Internal_Rela *relocs)
14465 {
14466 Elf_Internal_Shdr *symtab_hdr;
14467 struct elf_link_hash_entry **sym_hashes;
14468 const Elf_Internal_Rela *rel;
14469 const Elf_Internal_Rela *rel_end;
14470 bfd *dynobj;
14471 asection *sreloc;
14472 struct elf32_arm_link_hash_table *htab;
14473 bfd_boolean call_reloc_p;
14474 bfd_boolean may_become_dynamic_p;
14475 bfd_boolean may_need_local_target_p;
14476 unsigned long nsyms;
14477
14478 if (bfd_link_relocatable (info))
14479 return TRUE;
14480
14481 BFD_ASSERT (is_arm_elf (abfd));
14482
14483 htab = elf32_arm_hash_table (info);
14484 if (htab == NULL)
14485 return FALSE;
14486
14487 sreloc = NULL;
14488
14489 /* Create dynamic sections for relocatable executables so that we can
14490 copy relocations. */
14491 if (htab->root.is_relocatable_executable
14492 && ! htab->root.dynamic_sections_created)
14493 {
14494 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
14495 return FALSE;
14496 }
14497
14498 if (htab->root.dynobj == NULL)
14499 htab->root.dynobj = abfd;
14500 if (!create_ifunc_sections (info))
14501 return FALSE;
14502
14503 dynobj = htab->root.dynobj;
14504
14505 symtab_hdr = & elf_symtab_hdr (abfd);
14506 sym_hashes = elf_sym_hashes (abfd);
14507 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
14508
14509 rel_end = relocs + sec->reloc_count;
14510 for (rel = relocs; rel < rel_end; rel++)
14511 {
14512 Elf_Internal_Sym *isym;
14513 struct elf_link_hash_entry *h;
14514 struct elf32_arm_link_hash_entry *eh;
14515 unsigned long r_symndx;
14516 int r_type;
14517
14518 r_symndx = ELF32_R_SYM (rel->r_info);
14519 r_type = ELF32_R_TYPE (rel->r_info);
14520 r_type = arm_real_reloc_type (htab, r_type);
14521
14522 if (r_symndx >= nsyms
14523 /* PR 9934: It is possible to have relocations that do not
14524 refer to symbols, thus it is also possible to have an
14525 object file containing relocations but no symbol table. */
14526 && (r_symndx > STN_UNDEF || nsyms > 0))
14527 {
14528 _bfd_error_handler (_("%B: bad symbol index: %d"), abfd,
14529 r_symndx);
14530 return FALSE;
14531 }
14532
14533 h = NULL;
14534 isym = NULL;
14535 if (nsyms > 0)
14536 {
14537 if (r_symndx < symtab_hdr->sh_info)
14538 {
14539 /* A local symbol. */
14540 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
14541 abfd, r_symndx);
14542 if (isym == NULL)
14543 return FALSE;
14544 }
14545 else
14546 {
14547 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
14548 while (h->root.type == bfd_link_hash_indirect
14549 || h->root.type == bfd_link_hash_warning)
14550 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14551
14552 /* PR15323, ref flags aren't set for references in the
14553 same object. */
14554 h->root.non_ir_ref = 1;
14555 }
14556 }
14557
14558 eh = (struct elf32_arm_link_hash_entry *) h;
14559
14560 call_reloc_p = FALSE;
14561 may_become_dynamic_p = FALSE;
14562 may_need_local_target_p = FALSE;
14563
14564 /* Could be done earlier, if h were already available. */
14565 r_type = elf32_arm_tls_transition (info, r_type, h);
14566 switch (r_type)
14567 {
14568 case R_ARM_GOT32:
14569 case R_ARM_GOT_PREL:
14570 case R_ARM_TLS_GD32:
14571 case R_ARM_TLS_IE32:
14572 case R_ARM_TLS_GOTDESC:
14573 case R_ARM_TLS_DESCSEQ:
14574 case R_ARM_THM_TLS_DESCSEQ:
14575 case R_ARM_TLS_CALL:
14576 case R_ARM_THM_TLS_CALL:
14577 /* This symbol requires a global offset table entry. */
14578 {
14579 int tls_type, old_tls_type;
14580
14581 switch (r_type)
14582 {
14583 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
14584
14585 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
14586
14587 case R_ARM_TLS_GOTDESC:
14588 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
14589 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
14590 tls_type = GOT_TLS_GDESC; break;
14591
14592 default: tls_type = GOT_NORMAL; break;
14593 }
14594
14595 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
14596 info->flags |= DF_STATIC_TLS;
14597
14598 if (h != NULL)
14599 {
14600 h->got.refcount++;
14601 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
14602 }
14603 else
14604 {
14605 /* This is a global offset table entry for a local symbol. */
14606 if (!elf32_arm_allocate_local_sym_info (abfd))
14607 return FALSE;
14608 elf_local_got_refcounts (abfd)[r_symndx] += 1;
14609 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
14610 }
14611
14612 /* If a variable is accessed with both tls methods, two
14613 slots may be created. */
14614 if (GOT_TLS_GD_ANY_P (old_tls_type)
14615 && GOT_TLS_GD_ANY_P (tls_type))
14616 tls_type |= old_tls_type;
14617
14618 /* We will already have issued an error message if there
14619 is a TLS/non-TLS mismatch, based on the symbol
14620 type. So just combine any TLS types needed. */
14621 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
14622 && tls_type != GOT_NORMAL)
14623 tls_type |= old_tls_type;
14624
14625 /* If the symbol is accessed in both IE and GDESC
14626 method, we're able to relax. Turn off the GDESC flag,
14627 without messing up with any other kind of tls types
14628 that may be involved. */
14629 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
14630 tls_type &= ~GOT_TLS_GDESC;
14631
14632 if (old_tls_type != tls_type)
14633 {
14634 if (h != NULL)
14635 elf32_arm_hash_entry (h)->tls_type = tls_type;
14636 else
14637 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
14638 }
14639 }
14640 /* Fall through. */
14641
14642 case R_ARM_TLS_LDM32:
14643 if (r_type == R_ARM_TLS_LDM32)
14644 htab->tls_ldm_got.refcount++;
14645 /* Fall through. */
14646
14647 case R_ARM_GOTOFF32:
14648 case R_ARM_GOTPC:
14649 if (htab->root.sgot == NULL
14650 && !create_got_section (htab->root.dynobj, info))
14651 return FALSE;
14652 break;
14653
14654 case R_ARM_PC24:
14655 case R_ARM_PLT32:
14656 case R_ARM_CALL:
14657 case R_ARM_JUMP24:
14658 case R_ARM_PREL31:
14659 case R_ARM_THM_CALL:
14660 case R_ARM_THM_JUMP24:
14661 case R_ARM_THM_JUMP19:
14662 call_reloc_p = TRUE;
14663 may_need_local_target_p = TRUE;
14664 break;
14665
14666 case R_ARM_ABS12:
14667 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
14668 ldr __GOTT_INDEX__ offsets. */
14669 if (!htab->vxworks_p)
14670 {
14671 may_need_local_target_p = TRUE;
14672 break;
14673 }
14674 else goto jump_over;
14675
14676 /* Fall through. */
14677
14678 case R_ARM_MOVW_ABS_NC:
14679 case R_ARM_MOVT_ABS:
14680 case R_ARM_THM_MOVW_ABS_NC:
14681 case R_ARM_THM_MOVT_ABS:
14682 if (bfd_link_pic (info))
14683 {
14684 _bfd_error_handler
14685 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
14686 abfd, elf32_arm_howto_table_1[r_type].name,
14687 (h) ? h->root.root.string : "a local symbol");
14688 bfd_set_error (bfd_error_bad_value);
14689 return FALSE;
14690 }
14691
14692 /* Fall through. */
14693 case R_ARM_ABS32:
14694 case R_ARM_ABS32_NOI:
14695 jump_over:
14696 if (h != NULL && bfd_link_executable (info))
14697 {
14698 h->pointer_equality_needed = 1;
14699 }
14700 /* Fall through. */
14701 case R_ARM_REL32:
14702 case R_ARM_REL32_NOI:
14703 case R_ARM_MOVW_PREL_NC:
14704 case R_ARM_MOVT_PREL:
14705 case R_ARM_THM_MOVW_PREL_NC:
14706 case R_ARM_THM_MOVT_PREL:
14707
14708 /* Should the interworking branches be listed here? */
14709 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable)
14710 && (sec->flags & SEC_ALLOC) != 0)
14711 {
14712 if (h == NULL
14713 && elf32_arm_howto_from_type (r_type)->pc_relative)
14714 {
14715 /* In shared libraries and relocatable executables,
14716 we treat local relative references as calls;
14717 see the related SYMBOL_CALLS_LOCAL code in
14718 allocate_dynrelocs. */
14719 call_reloc_p = TRUE;
14720 may_need_local_target_p = TRUE;
14721 }
14722 else
14723 /* We are creating a shared library or relocatable
14724 executable, and this is a reloc against a global symbol,
14725 or a non-PC-relative reloc against a local symbol.
14726 We may need to copy the reloc into the output. */
14727 may_become_dynamic_p = TRUE;
14728 }
14729 else
14730 may_need_local_target_p = TRUE;
14731 break;
14732
14733 /* This relocation describes the C++ object vtable hierarchy.
14734 Reconstruct it for later use during GC. */
14735 case R_ARM_GNU_VTINHERIT:
14736 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
14737 return FALSE;
14738 break;
14739
14740 /* This relocation describes which C++ vtable entries are actually
14741 used. Record for later use during GC. */
14742 case R_ARM_GNU_VTENTRY:
14743 BFD_ASSERT (h != NULL);
14744 if (h != NULL
14745 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
14746 return FALSE;
14747 break;
14748 }
14749
14750 if (h != NULL)
14751 {
14752 if (call_reloc_p)
14753 /* We may need a .plt entry if the function this reloc
14754 refers to is in a different object, regardless of the
14755 symbol's type. We can't tell for sure yet, because
14756 something later might force the symbol local. */
14757 h->needs_plt = 1;
14758 else if (may_need_local_target_p)
14759 /* If this reloc is in a read-only section, we might
14760 need a copy reloc. We can't check reliably at this
14761 stage whether the section is read-only, as input
14762 sections have not yet been mapped to output sections.
14763 Tentatively set the flag for now, and correct in
14764 adjust_dynamic_symbol. */
14765 h->non_got_ref = 1;
14766 }
14767
14768 if (may_need_local_target_p
14769 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
14770 {
14771 union gotplt_union *root_plt;
14772 struct arm_plt_info *arm_plt;
14773 struct arm_local_iplt_info *local_iplt;
14774
14775 if (h != NULL)
14776 {
14777 root_plt = &h->plt;
14778 arm_plt = &eh->plt;
14779 }
14780 else
14781 {
14782 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
14783 if (local_iplt == NULL)
14784 return FALSE;
14785 root_plt = &local_iplt->root;
14786 arm_plt = &local_iplt->arm;
14787 }
14788
14789 /* If the symbol is a function that doesn't bind locally,
14790 this relocation will need a PLT entry. */
14791 if (root_plt->refcount != -1)
14792 root_plt->refcount += 1;
14793
14794 if (!call_reloc_p)
14795 arm_plt->noncall_refcount++;
14796
14797 /* It's too early to use htab->use_blx here, so we have to
14798 record possible blx references separately from
14799 relocs that definitely need a thumb stub. */
14800
14801 if (r_type == R_ARM_THM_CALL)
14802 arm_plt->maybe_thumb_refcount += 1;
14803
14804 if (r_type == R_ARM_THM_JUMP24
14805 || r_type == R_ARM_THM_JUMP19)
14806 arm_plt->thumb_refcount += 1;
14807 }
14808
14809 if (may_become_dynamic_p)
14810 {
14811 struct elf_dyn_relocs *p, **head;
14812
14813 /* Create a reloc section in dynobj. */
14814 if (sreloc == NULL)
14815 {
14816 sreloc = _bfd_elf_make_dynamic_reloc_section
14817 (sec, dynobj, 2, abfd, ! htab->use_rel);
14818
14819 if (sreloc == NULL)
14820 return FALSE;
14821
14822 /* BPABI objects never have dynamic relocations mapped. */
14823 if (htab->symbian_p)
14824 {
14825 flagword flags;
14826
14827 flags = bfd_get_section_flags (dynobj, sreloc);
14828 flags &= ~(SEC_LOAD | SEC_ALLOC);
14829 bfd_set_section_flags (dynobj, sreloc, flags);
14830 }
14831 }
14832
14833 /* If this is a global symbol, count the number of
14834 relocations we need for this symbol. */
14835 if (h != NULL)
14836 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
14837 else
14838 {
14839 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
14840 if (head == NULL)
14841 return FALSE;
14842 }
14843
14844 p = *head;
14845 if (p == NULL || p->sec != sec)
14846 {
14847 bfd_size_type amt = sizeof *p;
14848
14849 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
14850 if (p == NULL)
14851 return FALSE;
14852 p->next = *head;
14853 *head = p;
14854 p->sec = sec;
14855 p->count = 0;
14856 p->pc_count = 0;
14857 }
14858
14859 if (elf32_arm_howto_from_type (r_type)->pc_relative)
14860 p->pc_count += 1;
14861 p->count += 1;
14862 }
14863 }
14864
14865 return TRUE;
14866 }
14867
14868 static void
14869 elf32_arm_update_relocs (asection *o,
14870 struct bfd_elf_section_reloc_data *reldata)
14871 {
14872 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
14873 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
14874 const struct elf_backend_data *bed;
14875 _arm_elf_section_data *eado;
14876 struct bfd_link_order *p;
14877 bfd_byte *erela_head, *erela;
14878 Elf_Internal_Rela *irela_head, *irela;
14879 Elf_Internal_Shdr *rel_hdr;
14880 bfd *abfd;
14881 unsigned int count;
14882
14883 eado = get_arm_elf_section_data (o);
14884
14885 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
14886 return;
14887
14888 abfd = o->owner;
14889 bed = get_elf_backend_data (abfd);
14890 rel_hdr = reldata->hdr;
14891
14892 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
14893 {
14894 swap_in = bed->s->swap_reloc_in;
14895 swap_out = bed->s->swap_reloc_out;
14896 }
14897 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
14898 {
14899 swap_in = bed->s->swap_reloca_in;
14900 swap_out = bed->s->swap_reloca_out;
14901 }
14902 else
14903 abort ();
14904
14905 erela_head = rel_hdr->contents;
14906 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
14907 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
14908
14909 erela = erela_head;
14910 irela = irela_head;
14911 count = 0;
14912
14913 for (p = o->map_head.link_order; p; p = p->next)
14914 {
14915 if (p->type == bfd_section_reloc_link_order
14916 || p->type == bfd_symbol_reloc_link_order)
14917 {
14918 (*swap_in) (abfd, erela, irela);
14919 erela += rel_hdr->sh_entsize;
14920 irela++;
14921 count++;
14922 }
14923 else if (p->type == bfd_indirect_link_order)
14924 {
14925 struct bfd_elf_section_reloc_data *input_reldata;
14926 arm_unwind_table_edit *edit_list, *edit_tail;
14927 _arm_elf_section_data *eadi;
14928 bfd_size_type j;
14929 bfd_vma offset;
14930 asection *i;
14931
14932 i = p->u.indirect.section;
14933
14934 eadi = get_arm_elf_section_data (i);
14935 edit_list = eadi->u.exidx.unwind_edit_list;
14936 edit_tail = eadi->u.exidx.unwind_edit_tail;
14937 offset = o->vma + i->output_offset;
14938
14939 if (eadi->elf.rel.hdr &&
14940 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
14941 input_reldata = &eadi->elf.rel;
14942 else if (eadi->elf.rela.hdr &&
14943 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
14944 input_reldata = &eadi->elf.rela;
14945 else
14946 abort ();
14947
14948 if (edit_list)
14949 {
14950 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
14951 {
14952 arm_unwind_table_edit *edit_node, *edit_next;
14953 bfd_vma bias;
14954 bfd_vma reloc_index;
14955
14956 (*swap_in) (abfd, erela, irela);
14957 reloc_index = (irela->r_offset - offset) / 8;
14958
14959 bias = 0;
14960 edit_node = edit_list;
14961 for (edit_next = edit_list;
14962 edit_next && edit_next->index <= reloc_index;
14963 edit_next = edit_node->next)
14964 {
14965 bias++;
14966 edit_node = edit_next;
14967 }
14968
14969 if (edit_node->type != DELETE_EXIDX_ENTRY
14970 || edit_node->index != reloc_index)
14971 {
14972 irela->r_offset -= bias * 8;
14973 irela++;
14974 count++;
14975 }
14976
14977 erela += rel_hdr->sh_entsize;
14978 }
14979
14980 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
14981 {
14982 /* New relocation entity. */
14983 asection *text_sec = edit_tail->linked_section;
14984 asection *text_out = text_sec->output_section;
14985 bfd_vma exidx_offset = offset + i->size - 8;
14986
14987 irela->r_addend = 0;
14988 irela->r_offset = exidx_offset;
14989 irela->r_info = ELF32_R_INFO
14990 (text_out->target_index, R_ARM_PREL31);
14991 irela++;
14992 count++;
14993 }
14994 }
14995 else
14996 {
14997 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
14998 {
14999 (*swap_in) (abfd, erela, irela);
15000 erela += rel_hdr->sh_entsize;
15001 irela++;
15002 }
15003
15004 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15005 }
15006 }
15007 }
15008
15009 reldata->count = count;
15010 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15011
15012 erela = erela_head;
15013 irela = irela_head;
15014 while (count > 0)
15015 {
15016 (*swap_out) (abfd, irela, erela);
15017 erela += rel_hdr->sh_entsize;
15018 irela++;
15019 count--;
15020 }
15021
15022 free (irela_head);
15023
15024 /* Hashes are no longer valid. */
15025 free (reldata->hashes);
15026 reldata->hashes = NULL;
15027 }
15028
15029 /* Unwinding tables are not referenced directly. This pass marks them as
15030 required if the corresponding code section is marked. Similarly, ARMv8-M
15031 secure entry functions can only be referenced by SG veneers which are
15032 created after the GC process. They need to be marked in case they reside in
15033 their own section (as would be the case if code was compiled with
15034 -ffunction-sections). */
15035
15036 static bfd_boolean
15037 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15038 elf_gc_mark_hook_fn gc_mark_hook)
15039 {
15040 bfd *sub;
15041 Elf_Internal_Shdr **elf_shdrp;
15042 asection *cmse_sec;
15043 obj_attribute *out_attr;
15044 Elf_Internal_Shdr *symtab_hdr;
15045 unsigned i, sym_count, ext_start;
15046 const struct elf_backend_data *bed;
15047 struct elf_link_hash_entry **sym_hashes;
15048 struct elf32_arm_link_hash_entry *cmse_hash;
15049 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
15050
15051 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15052
15053 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15054 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15055 && out_attr[Tag_CPU_arch_profile].i == 'M';
15056
15057 /* Marking EH data may cause additional code sections to be marked,
15058 requiring multiple passes. */
15059 again = TRUE;
15060 while (again)
15061 {
15062 again = FALSE;
15063 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
15064 {
15065 asection *o;
15066
15067 if (! is_arm_elf (sub))
15068 continue;
15069
15070 elf_shdrp = elf_elfsections (sub);
15071 for (o = sub->sections; o != NULL; o = o->next)
15072 {
15073 Elf_Internal_Shdr *hdr;
15074
15075 hdr = &elf_section_data (o)->this_hdr;
15076 if (hdr->sh_type == SHT_ARM_EXIDX
15077 && hdr->sh_link
15078 && hdr->sh_link < elf_numsections (sub)
15079 && !o->gc_mark
15080 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15081 {
15082 again = TRUE;
15083 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15084 return FALSE;
15085 }
15086 }
15087
15088 /* Mark section holding ARMv8-M secure entry functions. We mark all
15089 of them so no need for a second browsing. */
15090 if (is_v8m && first_bfd_browse)
15091 {
15092 sym_hashes = elf_sym_hashes (sub);
15093 bed = get_elf_backend_data (sub);
15094 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15095 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15096 ext_start = symtab_hdr->sh_info;
15097
15098 /* Scan symbols. */
15099 for (i = ext_start; i < sym_count; i++)
15100 {
15101 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15102
15103 /* Assume it is a special symbol. If not, cmse_scan will
15104 warn about it and user can do something about it. */
15105 if (ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
15106 {
15107 cmse_sec = cmse_hash->root.root.u.def.section;
15108 if (!cmse_sec->gc_mark
15109 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
15110 return FALSE;
15111 }
15112 }
15113 }
15114 }
15115 first_bfd_browse = FALSE;
15116 }
15117
15118 return TRUE;
15119 }
15120
15121 /* Treat mapping symbols as special target symbols. */
15122
15123 static bfd_boolean
15124 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
15125 {
15126 return bfd_is_arm_special_symbol_name (sym->name,
15127 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
15128 }
15129
15130 /* This is a copy of elf_find_function() from elf.c except that
15131 ARM mapping symbols are ignored when looking for function names
15132 and STT_ARM_TFUNC is considered to a function type. */
15133
15134 static bfd_boolean
15135 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
15136 asymbol ** symbols,
15137 asection * section,
15138 bfd_vma offset,
15139 const char ** filename_ptr,
15140 const char ** functionname_ptr)
15141 {
15142 const char * filename = NULL;
15143 asymbol * func = NULL;
15144 bfd_vma low_func = 0;
15145 asymbol ** p;
15146
15147 for (p = symbols; *p != NULL; p++)
15148 {
15149 elf_symbol_type *q;
15150
15151 q = (elf_symbol_type *) *p;
15152
15153 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
15154 {
15155 default:
15156 break;
15157 case STT_FILE:
15158 filename = bfd_asymbol_name (&q->symbol);
15159 break;
15160 case STT_FUNC:
15161 case STT_ARM_TFUNC:
15162 case STT_NOTYPE:
15163 /* Skip mapping symbols. */
15164 if ((q->symbol.flags & BSF_LOCAL)
15165 && bfd_is_arm_special_symbol_name (q->symbol.name,
15166 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
15167 continue;
15168 /* Fall through. */
15169 if (bfd_get_section (&q->symbol) == section
15170 && q->symbol.value >= low_func
15171 && q->symbol.value <= offset)
15172 {
15173 func = (asymbol *) q;
15174 low_func = q->symbol.value;
15175 }
15176 break;
15177 }
15178 }
15179
15180 if (func == NULL)
15181 return FALSE;
15182
15183 if (filename_ptr)
15184 *filename_ptr = filename;
15185 if (functionname_ptr)
15186 *functionname_ptr = bfd_asymbol_name (func);
15187
15188 return TRUE;
15189 }
15190
15191
15192 /* Find the nearest line to a particular section and offset, for error
15193 reporting. This code is a duplicate of the code in elf.c, except
15194 that it uses arm_elf_find_function. */
15195
15196 static bfd_boolean
15197 elf32_arm_find_nearest_line (bfd * abfd,
15198 asymbol ** symbols,
15199 asection * section,
15200 bfd_vma offset,
15201 const char ** filename_ptr,
15202 const char ** functionname_ptr,
15203 unsigned int * line_ptr,
15204 unsigned int * discriminator_ptr)
15205 {
15206 bfd_boolean found = FALSE;
15207
15208 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
15209 filename_ptr, functionname_ptr,
15210 line_ptr, discriminator_ptr,
15211 dwarf_debug_sections, 0,
15212 & elf_tdata (abfd)->dwarf2_find_line_info))
15213 {
15214 if (!*functionname_ptr)
15215 arm_elf_find_function (abfd, symbols, section, offset,
15216 *filename_ptr ? NULL : filename_ptr,
15217 functionname_ptr);
15218
15219 return TRUE;
15220 }
15221
15222 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
15223 uses DWARF1. */
15224
15225 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
15226 & found, filename_ptr,
15227 functionname_ptr, line_ptr,
15228 & elf_tdata (abfd)->line_info))
15229 return FALSE;
15230
15231 if (found && (*functionname_ptr || *line_ptr))
15232 return TRUE;
15233
15234 if (symbols == NULL)
15235 return FALSE;
15236
15237 if (! arm_elf_find_function (abfd, symbols, section, offset,
15238 filename_ptr, functionname_ptr))
15239 return FALSE;
15240
15241 *line_ptr = 0;
15242 return TRUE;
15243 }
15244
15245 static bfd_boolean
15246 elf32_arm_find_inliner_info (bfd * abfd,
15247 const char ** filename_ptr,
15248 const char ** functionname_ptr,
15249 unsigned int * line_ptr)
15250 {
15251 bfd_boolean found;
15252 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
15253 functionname_ptr, line_ptr,
15254 & elf_tdata (abfd)->dwarf2_find_line_info);
15255 return found;
15256 }
15257
15258 /* Adjust a symbol defined by a dynamic object and referenced by a
15259 regular object. The current definition is in some section of the
15260 dynamic object, but we're not including those sections. We have to
15261 change the definition to something the rest of the link can
15262 understand. */
15263
15264 static bfd_boolean
15265 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
15266 struct elf_link_hash_entry * h)
15267 {
15268 bfd * dynobj;
15269 asection *s, *srel;
15270 struct elf32_arm_link_hash_entry * eh;
15271 struct elf32_arm_link_hash_table *globals;
15272
15273 globals = elf32_arm_hash_table (info);
15274 if (globals == NULL)
15275 return FALSE;
15276
15277 dynobj = elf_hash_table (info)->dynobj;
15278
15279 /* Make sure we know what is going on here. */
15280 BFD_ASSERT (dynobj != NULL
15281 && (h->needs_plt
15282 || h->type == STT_GNU_IFUNC
15283 || h->u.weakdef != NULL
15284 || (h->def_dynamic
15285 && h->ref_regular
15286 && !h->def_regular)));
15287
15288 eh = (struct elf32_arm_link_hash_entry *) h;
15289
15290 /* If this is a function, put it in the procedure linkage table. We
15291 will fill in the contents of the procedure linkage table later,
15292 when we know the address of the .got section. */
15293 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
15294 {
15295 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
15296 symbol binds locally. */
15297 if (h->plt.refcount <= 0
15298 || (h->type != STT_GNU_IFUNC
15299 && (SYMBOL_CALLS_LOCAL (info, h)
15300 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
15301 && h->root.type == bfd_link_hash_undefweak))))
15302 {
15303 /* This case can occur if we saw a PLT32 reloc in an input
15304 file, but the symbol was never referred to by a dynamic
15305 object, or if all references were garbage collected. In
15306 such a case, we don't actually need to build a procedure
15307 linkage table, and we can just do a PC24 reloc instead. */
15308 h->plt.offset = (bfd_vma) -1;
15309 eh->plt.thumb_refcount = 0;
15310 eh->plt.maybe_thumb_refcount = 0;
15311 eh->plt.noncall_refcount = 0;
15312 h->needs_plt = 0;
15313 }
15314
15315 return TRUE;
15316 }
15317 else
15318 {
15319 /* It's possible that we incorrectly decided a .plt reloc was
15320 needed for an R_ARM_PC24 or similar reloc to a non-function sym
15321 in check_relocs. We can't decide accurately between function
15322 and non-function syms in check-relocs; Objects loaded later in
15323 the link may change h->type. So fix it now. */
15324 h->plt.offset = (bfd_vma) -1;
15325 eh->plt.thumb_refcount = 0;
15326 eh->plt.maybe_thumb_refcount = 0;
15327 eh->plt.noncall_refcount = 0;
15328 }
15329
15330 /* If this is a weak symbol, and there is a real definition, the
15331 processor independent code will have arranged for us to see the
15332 real definition first, and we can just use the same value. */
15333 if (h->u.weakdef != NULL)
15334 {
15335 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
15336 || h->u.weakdef->root.type == bfd_link_hash_defweak);
15337 h->root.u.def.section = h->u.weakdef->root.u.def.section;
15338 h->root.u.def.value = h->u.weakdef->root.u.def.value;
15339 return TRUE;
15340 }
15341
15342 /* If there are no non-GOT references, we do not need a copy
15343 relocation. */
15344 if (!h->non_got_ref)
15345 return TRUE;
15346
15347 /* This is a reference to a symbol defined by a dynamic object which
15348 is not a function. */
15349
15350 /* If we are creating a shared library, we must presume that the
15351 only references to the symbol are via the global offset table.
15352 For such cases we need not do anything here; the relocations will
15353 be handled correctly by relocate_section. Relocatable executables
15354 can reference data in shared objects directly, so we don't need to
15355 do anything here. */
15356 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
15357 return TRUE;
15358
15359 /* We must allocate the symbol in our .dynbss section, which will
15360 become part of the .bss section of the executable. There will be
15361 an entry for this symbol in the .dynsym section. The dynamic
15362 object will contain position independent code, so all references
15363 from the dynamic object to this symbol will go through the global
15364 offset table. The dynamic linker will use the .dynsym entry to
15365 determine the address it must put in the global offset table, so
15366 both the dynamic object and the regular object will refer to the
15367 same memory location for the variable. */
15368 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
15369 linker to copy the initial value out of the dynamic object and into
15370 the runtime process image. We need to remember the offset into the
15371 .rel(a).bss section we are going to use. */
15372 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
15373 {
15374 s = globals->root.sdynrelro;
15375 srel = globals->root.sreldynrelro;
15376 }
15377 else
15378 {
15379 s = globals->root.sdynbss;
15380 srel = globals->root.srelbss;
15381 }
15382 if (info->nocopyreloc == 0
15383 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
15384 && h->size != 0)
15385 {
15386 elf32_arm_allocate_dynrelocs (info, srel, 1);
15387 h->needs_copy = 1;
15388 }
15389
15390 return _bfd_elf_adjust_dynamic_copy (info, h, s);
15391 }
15392
15393 /* Allocate space in .plt, .got and associated reloc sections for
15394 dynamic relocs. */
15395
15396 static bfd_boolean
15397 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
15398 {
15399 struct bfd_link_info *info;
15400 struct elf32_arm_link_hash_table *htab;
15401 struct elf32_arm_link_hash_entry *eh;
15402 struct elf_dyn_relocs *p;
15403
15404 if (h->root.type == bfd_link_hash_indirect)
15405 return TRUE;
15406
15407 eh = (struct elf32_arm_link_hash_entry *) h;
15408
15409 info = (struct bfd_link_info *) inf;
15410 htab = elf32_arm_hash_table (info);
15411 if (htab == NULL)
15412 return FALSE;
15413
15414 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
15415 && h->plt.refcount > 0)
15416 {
15417 /* Make sure this symbol is output as a dynamic symbol.
15418 Undefined weak syms won't yet be marked as dynamic. */
15419 if (h->dynindx == -1
15420 && !h->forced_local)
15421 {
15422 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15423 return FALSE;
15424 }
15425
15426 /* If the call in the PLT entry binds locally, the associated
15427 GOT entry should use an R_ARM_IRELATIVE relocation instead of
15428 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
15429 than the .plt section. */
15430 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
15431 {
15432 eh->is_iplt = 1;
15433 if (eh->plt.noncall_refcount == 0
15434 && SYMBOL_REFERENCES_LOCAL (info, h))
15435 /* All non-call references can be resolved directly.
15436 This means that they can (and in some cases, must)
15437 resolve directly to the run-time target, rather than
15438 to the PLT. That in turns means that any .got entry
15439 would be equal to the .igot.plt entry, so there's
15440 no point having both. */
15441 h->got.refcount = 0;
15442 }
15443
15444 if (bfd_link_pic (info)
15445 || eh->is_iplt
15446 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
15447 {
15448 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
15449
15450 /* If this symbol is not defined in a regular file, and we are
15451 not generating a shared library, then set the symbol to this
15452 location in the .plt. This is required to make function
15453 pointers compare as equal between the normal executable and
15454 the shared library. */
15455 if (! bfd_link_pic (info)
15456 && !h->def_regular)
15457 {
15458 h->root.u.def.section = htab->root.splt;
15459 h->root.u.def.value = h->plt.offset;
15460
15461 /* Make sure the function is not marked as Thumb, in case
15462 it is the target of an ABS32 relocation, which will
15463 point to the PLT entry. */
15464 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15465 }
15466
15467 /* VxWorks executables have a second set of relocations for
15468 each PLT entry. They go in a separate relocation section,
15469 which is processed by the kernel loader. */
15470 if (htab->vxworks_p && !bfd_link_pic (info))
15471 {
15472 /* There is a relocation for the initial PLT entry:
15473 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
15474 if (h->plt.offset == htab->plt_header_size)
15475 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
15476
15477 /* There are two extra relocations for each subsequent
15478 PLT entry: an R_ARM_32 relocation for the GOT entry,
15479 and an R_ARM_32 relocation for the PLT entry. */
15480 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
15481 }
15482 }
15483 else
15484 {
15485 h->plt.offset = (bfd_vma) -1;
15486 h->needs_plt = 0;
15487 }
15488 }
15489 else
15490 {
15491 h->plt.offset = (bfd_vma) -1;
15492 h->needs_plt = 0;
15493 }
15494
15495 eh = (struct elf32_arm_link_hash_entry *) h;
15496 eh->tlsdesc_got = (bfd_vma) -1;
15497
15498 if (h->got.refcount > 0)
15499 {
15500 asection *s;
15501 bfd_boolean dyn;
15502 int tls_type = elf32_arm_hash_entry (h)->tls_type;
15503 int indx;
15504
15505 /* Make sure this symbol is output as a dynamic symbol.
15506 Undefined weak syms won't yet be marked as dynamic. */
15507 if (h->dynindx == -1
15508 && !h->forced_local)
15509 {
15510 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15511 return FALSE;
15512 }
15513
15514 if (!htab->symbian_p)
15515 {
15516 s = htab->root.sgot;
15517 h->got.offset = s->size;
15518
15519 if (tls_type == GOT_UNKNOWN)
15520 abort ();
15521
15522 if (tls_type == GOT_NORMAL)
15523 /* Non-TLS symbols need one GOT slot. */
15524 s->size += 4;
15525 else
15526 {
15527 if (tls_type & GOT_TLS_GDESC)
15528 {
15529 /* R_ARM_TLS_DESC needs 2 GOT slots. */
15530 eh->tlsdesc_got
15531 = (htab->root.sgotplt->size
15532 - elf32_arm_compute_jump_table_size (htab));
15533 htab->root.sgotplt->size += 8;
15534 h->got.offset = (bfd_vma) -2;
15535 /* plt.got_offset needs to know there's a TLS_DESC
15536 reloc in the middle of .got.plt. */
15537 htab->num_tls_desc++;
15538 }
15539
15540 if (tls_type & GOT_TLS_GD)
15541 {
15542 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
15543 the symbol is both GD and GDESC, got.offset may
15544 have been overwritten. */
15545 h->got.offset = s->size;
15546 s->size += 8;
15547 }
15548
15549 if (tls_type & GOT_TLS_IE)
15550 /* R_ARM_TLS_IE32 needs one GOT slot. */
15551 s->size += 4;
15552 }
15553
15554 dyn = htab->root.dynamic_sections_created;
15555
15556 indx = 0;
15557 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
15558 bfd_link_pic (info),
15559 h)
15560 && (!bfd_link_pic (info)
15561 || !SYMBOL_REFERENCES_LOCAL (info, h)))
15562 indx = h->dynindx;
15563
15564 if (tls_type != GOT_NORMAL
15565 && (bfd_link_pic (info) || indx != 0)
15566 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15567 || h->root.type != bfd_link_hash_undefweak))
15568 {
15569 if (tls_type & GOT_TLS_IE)
15570 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15571
15572 if (tls_type & GOT_TLS_GD)
15573 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15574
15575 if (tls_type & GOT_TLS_GDESC)
15576 {
15577 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
15578 /* GDESC needs a trampoline to jump to. */
15579 htab->tls_trampoline = -1;
15580 }
15581
15582 /* Only GD needs it. GDESC just emits one relocation per
15583 2 entries. */
15584 if ((tls_type & GOT_TLS_GD) && indx != 0)
15585 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15586 }
15587 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
15588 {
15589 if (htab->root.dynamic_sections_created)
15590 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
15591 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15592 }
15593 else if (h->type == STT_GNU_IFUNC
15594 && eh->plt.noncall_refcount == 0)
15595 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
15596 they all resolve dynamically instead. Reserve room for the
15597 GOT entry's R_ARM_IRELATIVE relocation. */
15598 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
15599 else if (bfd_link_pic (info)
15600 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
15601 || h->root.type != bfd_link_hash_undefweak))
15602 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
15603 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
15604 }
15605 }
15606 else
15607 h->got.offset = (bfd_vma) -1;
15608
15609 /* Allocate stubs for exported Thumb functions on v4t. */
15610 if (!htab->use_blx && h->dynindx != -1
15611 && h->def_regular
15612 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
15613 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
15614 {
15615 struct elf_link_hash_entry * th;
15616 struct bfd_link_hash_entry * bh;
15617 struct elf_link_hash_entry * myh;
15618 char name[1024];
15619 asection *s;
15620 bh = NULL;
15621 /* Create a new symbol to regist the real location of the function. */
15622 s = h->root.u.def.section;
15623 sprintf (name, "__real_%s", h->root.root.string);
15624 _bfd_generic_link_add_one_symbol (info, s->owner,
15625 name, BSF_GLOBAL, s,
15626 h->root.u.def.value,
15627 NULL, TRUE, FALSE, &bh);
15628
15629 myh = (struct elf_link_hash_entry *) bh;
15630 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
15631 myh->forced_local = 1;
15632 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
15633 eh->export_glue = myh;
15634 th = record_arm_to_thumb_glue (info, h);
15635 /* Point the symbol at the stub. */
15636 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
15637 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
15638 h->root.u.def.section = th->root.u.def.section;
15639 h->root.u.def.value = th->root.u.def.value & ~1;
15640 }
15641
15642 if (eh->dyn_relocs == NULL)
15643 return TRUE;
15644
15645 /* In the shared -Bsymbolic case, discard space allocated for
15646 dynamic pc-relative relocs against symbols which turn out to be
15647 defined in regular objects. For the normal shared case, discard
15648 space for pc-relative relocs that have become local due to symbol
15649 visibility changes. */
15650
15651 if (bfd_link_pic (info) || htab->root.is_relocatable_executable)
15652 {
15653 /* Relocs that use pc_count are PC-relative forms, which will appear
15654 on something like ".long foo - ." or "movw REG, foo - .". We want
15655 calls to protected symbols to resolve directly to the function
15656 rather than going via the plt. If people want function pointer
15657 comparisons to work as expected then they should avoid writing
15658 assembly like ".long foo - .". */
15659 if (SYMBOL_CALLS_LOCAL (info, h))
15660 {
15661 struct elf_dyn_relocs **pp;
15662
15663 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15664 {
15665 p->count -= p->pc_count;
15666 p->pc_count = 0;
15667 if (p->count == 0)
15668 *pp = p->next;
15669 else
15670 pp = &p->next;
15671 }
15672 }
15673
15674 if (htab->vxworks_p)
15675 {
15676 struct elf_dyn_relocs **pp;
15677
15678 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
15679 {
15680 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
15681 *pp = p->next;
15682 else
15683 pp = &p->next;
15684 }
15685 }
15686
15687 /* Also discard relocs on undefined weak syms with non-default
15688 visibility. */
15689 if (eh->dyn_relocs != NULL
15690 && h->root.type == bfd_link_hash_undefweak)
15691 {
15692 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
15693 eh->dyn_relocs = NULL;
15694
15695 /* Make sure undefined weak symbols are output as a dynamic
15696 symbol in PIEs. */
15697 else if (h->dynindx == -1
15698 && !h->forced_local)
15699 {
15700 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15701 return FALSE;
15702 }
15703 }
15704
15705 else if (htab->root.is_relocatable_executable && h->dynindx == -1
15706 && h->root.type == bfd_link_hash_new)
15707 {
15708 /* Output absolute symbols so that we can create relocations
15709 against them. For normal symbols we output a relocation
15710 against the section that contains them. */
15711 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15712 return FALSE;
15713 }
15714
15715 }
15716 else
15717 {
15718 /* For the non-shared case, discard space for relocs against
15719 symbols which turn out to need copy relocs or are not
15720 dynamic. */
15721
15722 if (!h->non_got_ref
15723 && ((h->def_dynamic
15724 && !h->def_regular)
15725 || (htab->root.dynamic_sections_created
15726 && (h->root.type == bfd_link_hash_undefweak
15727 || h->root.type == bfd_link_hash_undefined))))
15728 {
15729 /* Make sure this symbol is output as a dynamic symbol.
15730 Undefined weak syms won't yet be marked as dynamic. */
15731 if (h->dynindx == -1
15732 && !h->forced_local)
15733 {
15734 if (! bfd_elf_link_record_dynamic_symbol (info, h))
15735 return FALSE;
15736 }
15737
15738 /* If that succeeded, we know we'll be keeping all the
15739 relocs. */
15740 if (h->dynindx != -1)
15741 goto keep;
15742 }
15743
15744 eh->dyn_relocs = NULL;
15745
15746 keep: ;
15747 }
15748
15749 /* Finally, allocate space. */
15750 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15751 {
15752 asection *sreloc = elf_section_data (p->sec)->sreloc;
15753 if (h->type == STT_GNU_IFUNC
15754 && eh->plt.noncall_refcount == 0
15755 && SYMBOL_REFERENCES_LOCAL (info, h))
15756 elf32_arm_allocate_irelocs (info, sreloc, p->count);
15757 else
15758 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
15759 }
15760
15761 return TRUE;
15762 }
15763
15764 /* Find any dynamic relocs that apply to read-only sections. */
15765
15766 static bfd_boolean
15767 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
15768 {
15769 struct elf32_arm_link_hash_entry * eh;
15770 struct elf_dyn_relocs * p;
15771
15772 eh = (struct elf32_arm_link_hash_entry *) h;
15773 for (p = eh->dyn_relocs; p != NULL; p = p->next)
15774 {
15775 asection *s = p->sec;
15776
15777 if (s != NULL && (s->flags & SEC_READONLY) != 0)
15778 {
15779 struct bfd_link_info *info = (struct bfd_link_info *) inf;
15780
15781 info->flags |= DF_TEXTREL;
15782
15783 /* Not an error, just cut short the traversal. */
15784 return FALSE;
15785 }
15786 }
15787 return TRUE;
15788 }
15789
15790 void
15791 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
15792 int byteswap_code)
15793 {
15794 struct elf32_arm_link_hash_table *globals;
15795
15796 globals = elf32_arm_hash_table (info);
15797 if (globals == NULL)
15798 return;
15799
15800 globals->byteswap_code = byteswap_code;
15801 }
15802
15803 /* Set the sizes of the dynamic sections. */
15804
15805 static bfd_boolean
15806 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
15807 struct bfd_link_info * info)
15808 {
15809 bfd * dynobj;
15810 asection * s;
15811 bfd_boolean plt;
15812 bfd_boolean relocs;
15813 bfd *ibfd;
15814 struct elf32_arm_link_hash_table *htab;
15815
15816 htab = elf32_arm_hash_table (info);
15817 if (htab == NULL)
15818 return FALSE;
15819
15820 dynobj = elf_hash_table (info)->dynobj;
15821 BFD_ASSERT (dynobj != NULL);
15822 check_use_blx (htab);
15823
15824 if (elf_hash_table (info)->dynamic_sections_created)
15825 {
15826 /* Set the contents of the .interp section to the interpreter. */
15827 if (bfd_link_executable (info) && !info->nointerp)
15828 {
15829 s = bfd_get_linker_section (dynobj, ".interp");
15830 BFD_ASSERT (s != NULL);
15831 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
15832 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
15833 }
15834 }
15835
15836 /* Set up .got offsets for local syms, and space for local dynamic
15837 relocs. */
15838 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
15839 {
15840 bfd_signed_vma *local_got;
15841 bfd_signed_vma *end_local_got;
15842 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
15843 char *local_tls_type;
15844 bfd_vma *local_tlsdesc_gotent;
15845 bfd_size_type locsymcount;
15846 Elf_Internal_Shdr *symtab_hdr;
15847 asection *srel;
15848 bfd_boolean is_vxworks = htab->vxworks_p;
15849 unsigned int symndx;
15850
15851 if (! is_arm_elf (ibfd))
15852 continue;
15853
15854 for (s = ibfd->sections; s != NULL; s = s->next)
15855 {
15856 struct elf_dyn_relocs *p;
15857
15858 for (p = (struct elf_dyn_relocs *)
15859 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
15860 {
15861 if (!bfd_is_abs_section (p->sec)
15862 && bfd_is_abs_section (p->sec->output_section))
15863 {
15864 /* Input section has been discarded, either because
15865 it is a copy of a linkonce section or due to
15866 linker script /DISCARD/, so we'll be discarding
15867 the relocs too. */
15868 }
15869 else if (is_vxworks
15870 && strcmp (p->sec->output_section->name,
15871 ".tls_vars") == 0)
15872 {
15873 /* Relocations in vxworks .tls_vars sections are
15874 handled specially by the loader. */
15875 }
15876 else if (p->count != 0)
15877 {
15878 srel = elf_section_data (p->sec)->sreloc;
15879 elf32_arm_allocate_dynrelocs (info, srel, p->count);
15880 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
15881 info->flags |= DF_TEXTREL;
15882 }
15883 }
15884 }
15885
15886 local_got = elf_local_got_refcounts (ibfd);
15887 if (!local_got)
15888 continue;
15889
15890 symtab_hdr = & elf_symtab_hdr (ibfd);
15891 locsymcount = symtab_hdr->sh_info;
15892 end_local_got = local_got + locsymcount;
15893 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
15894 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
15895 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
15896 symndx = 0;
15897 s = htab->root.sgot;
15898 srel = htab->root.srelgot;
15899 for (; local_got < end_local_got;
15900 ++local_got, ++local_iplt_ptr, ++local_tls_type,
15901 ++local_tlsdesc_gotent, ++symndx)
15902 {
15903 *local_tlsdesc_gotent = (bfd_vma) -1;
15904 local_iplt = *local_iplt_ptr;
15905 if (local_iplt != NULL)
15906 {
15907 struct elf_dyn_relocs *p;
15908
15909 if (local_iplt->root.refcount > 0)
15910 {
15911 elf32_arm_allocate_plt_entry (info, TRUE,
15912 &local_iplt->root,
15913 &local_iplt->arm);
15914 if (local_iplt->arm.noncall_refcount == 0)
15915 /* All references to the PLT are calls, so all
15916 non-call references can resolve directly to the
15917 run-time target. This means that the .got entry
15918 would be the same as the .igot.plt entry, so there's
15919 no point creating both. */
15920 *local_got = 0;
15921 }
15922 else
15923 {
15924 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
15925 local_iplt->root.offset = (bfd_vma) -1;
15926 }
15927
15928 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
15929 {
15930 asection *psrel;
15931
15932 psrel = elf_section_data (p->sec)->sreloc;
15933 if (local_iplt->arm.noncall_refcount == 0)
15934 elf32_arm_allocate_irelocs (info, psrel, p->count);
15935 else
15936 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
15937 }
15938 }
15939 if (*local_got > 0)
15940 {
15941 Elf_Internal_Sym *isym;
15942
15943 *local_got = s->size;
15944 if (*local_tls_type & GOT_TLS_GD)
15945 /* TLS_GD relocs need an 8-byte structure in the GOT. */
15946 s->size += 8;
15947 if (*local_tls_type & GOT_TLS_GDESC)
15948 {
15949 *local_tlsdesc_gotent = htab->root.sgotplt->size
15950 - elf32_arm_compute_jump_table_size (htab);
15951 htab->root.sgotplt->size += 8;
15952 *local_got = (bfd_vma) -2;
15953 /* plt.got_offset needs to know there's a TLS_DESC
15954 reloc in the middle of .got.plt. */
15955 htab->num_tls_desc++;
15956 }
15957 if (*local_tls_type & GOT_TLS_IE)
15958 s->size += 4;
15959
15960 if (*local_tls_type & GOT_NORMAL)
15961 {
15962 /* If the symbol is both GD and GDESC, *local_got
15963 may have been overwritten. */
15964 *local_got = s->size;
15965 s->size += 4;
15966 }
15967
15968 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
15969 if (isym == NULL)
15970 return FALSE;
15971
15972 /* If all references to an STT_GNU_IFUNC PLT are calls,
15973 then all non-call references, including this GOT entry,
15974 resolve directly to the run-time target. */
15975 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
15976 && (local_iplt == NULL
15977 || local_iplt->arm.noncall_refcount == 0))
15978 elf32_arm_allocate_irelocs (info, srel, 1);
15979 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC)
15980 {
15981 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC))
15982 || *local_tls_type & GOT_TLS_GD)
15983 elf32_arm_allocate_dynrelocs (info, srel, 1);
15984
15985 if (bfd_link_pic (info) && *local_tls_type & GOT_TLS_GDESC)
15986 {
15987 elf32_arm_allocate_dynrelocs (info,
15988 htab->root.srelplt, 1);
15989 htab->tls_trampoline = -1;
15990 }
15991 }
15992 }
15993 else
15994 *local_got = (bfd_vma) -1;
15995 }
15996 }
15997
15998 if (htab->tls_ldm_got.refcount > 0)
15999 {
16000 /* Allocate two GOT entries and one dynamic relocation (if necessary)
16001 for R_ARM_TLS_LDM32 relocations. */
16002 htab->tls_ldm_got.offset = htab->root.sgot->size;
16003 htab->root.sgot->size += 8;
16004 if (bfd_link_pic (info))
16005 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16006 }
16007 else
16008 htab->tls_ldm_got.offset = -1;
16009
16010 /* Allocate global sym .plt and .got entries, and space for global
16011 sym dynamic relocs. */
16012 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
16013
16014 /* Here we rummage through the found bfds to collect glue information. */
16015 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16016 {
16017 if (! is_arm_elf (ibfd))
16018 continue;
16019
16020 /* Initialise mapping tables for code/data. */
16021 bfd_elf32_arm_init_maps (ibfd);
16022
16023 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
16024 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
16025 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
16026 _bfd_error_handler (_("Errors encountered processing file %B"), ibfd);
16027 }
16028
16029 /* Allocate space for the glue sections now that we've sized them. */
16030 bfd_elf32_arm_allocate_interworking_sections (info);
16031
16032 /* For every jump slot reserved in the sgotplt, reloc_count is
16033 incremented. However, when we reserve space for TLS descriptors,
16034 it's not incremented, so in order to compute the space reserved
16035 for them, it suffices to multiply the reloc count by the jump
16036 slot size. */
16037 if (htab->root.srelplt)
16038 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
16039
16040 if (htab->tls_trampoline)
16041 {
16042 if (htab->root.splt->size == 0)
16043 htab->root.splt->size += htab->plt_header_size;
16044
16045 htab->tls_trampoline = htab->root.splt->size;
16046 htab->root.splt->size += htab->plt_entry_size;
16047
16048 /* If we're not using lazy TLS relocations, don't generate the
16049 PLT and GOT entries they require. */
16050 if (!(info->flags & DF_BIND_NOW))
16051 {
16052 htab->dt_tlsdesc_got = htab->root.sgot->size;
16053 htab->root.sgot->size += 4;
16054
16055 htab->dt_tlsdesc_plt = htab->root.splt->size;
16056 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
16057 }
16058 }
16059
16060 /* The check_relocs and adjust_dynamic_symbol entry points have
16061 determined the sizes of the various dynamic sections. Allocate
16062 memory for them. */
16063 plt = FALSE;
16064 relocs = FALSE;
16065 for (s = dynobj->sections; s != NULL; s = s->next)
16066 {
16067 const char * name;
16068
16069 if ((s->flags & SEC_LINKER_CREATED) == 0)
16070 continue;
16071
16072 /* It's OK to base decisions on the section name, because none
16073 of the dynobj section names depend upon the input files. */
16074 name = bfd_get_section_name (dynobj, s);
16075
16076 if (s == htab->root.splt)
16077 {
16078 /* Remember whether there is a PLT. */
16079 plt = s->size != 0;
16080 }
16081 else if (CONST_STRNEQ (name, ".rel"))
16082 {
16083 if (s->size != 0)
16084 {
16085 /* Remember whether there are any reloc sections other
16086 than .rel(a).plt and .rela.plt.unloaded. */
16087 if (s != htab->root.srelplt && s != htab->srelplt2)
16088 relocs = TRUE;
16089
16090 /* We use the reloc_count field as a counter if we need
16091 to copy relocs into the output file. */
16092 s->reloc_count = 0;
16093 }
16094 }
16095 else if (s != htab->root.sgot
16096 && s != htab->root.sgotplt
16097 && s != htab->root.iplt
16098 && s != htab->root.igotplt
16099 && s != htab->root.sdynbss
16100 && s != htab->root.sdynrelro)
16101 {
16102 /* It's not one of our sections, so don't allocate space. */
16103 continue;
16104 }
16105
16106 if (s->size == 0)
16107 {
16108 /* If we don't need this section, strip it from the
16109 output file. This is mostly to handle .rel(a).bss and
16110 .rel(a).plt. We must create both sections in
16111 create_dynamic_sections, because they must be created
16112 before the linker maps input sections to output
16113 sections. The linker does that before
16114 adjust_dynamic_symbol is called, and it is that
16115 function which decides whether anything needs to go
16116 into these sections. */
16117 s->flags |= SEC_EXCLUDE;
16118 continue;
16119 }
16120
16121 if ((s->flags & SEC_HAS_CONTENTS) == 0)
16122 continue;
16123
16124 /* Allocate memory for the section contents. */
16125 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
16126 if (s->contents == NULL)
16127 return FALSE;
16128 }
16129
16130 if (elf_hash_table (info)->dynamic_sections_created)
16131 {
16132 /* Add some entries to the .dynamic section. We fill in the
16133 values later, in elf32_arm_finish_dynamic_sections, but we
16134 must add the entries now so that we get the correct size for
16135 the .dynamic section. The DT_DEBUG entry is filled in by the
16136 dynamic linker and used by the debugger. */
16137 #define add_dynamic_entry(TAG, VAL) \
16138 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
16139
16140 if (bfd_link_executable (info))
16141 {
16142 if (!add_dynamic_entry (DT_DEBUG, 0))
16143 return FALSE;
16144 }
16145
16146 if (plt)
16147 {
16148 if ( !add_dynamic_entry (DT_PLTGOT, 0)
16149 || !add_dynamic_entry (DT_PLTRELSZ, 0)
16150 || !add_dynamic_entry (DT_PLTREL,
16151 htab->use_rel ? DT_REL : DT_RELA)
16152 || !add_dynamic_entry (DT_JMPREL, 0))
16153 return FALSE;
16154
16155 if (htab->dt_tlsdesc_plt
16156 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
16157 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
16158 return FALSE;
16159 }
16160
16161 if (relocs)
16162 {
16163 if (htab->use_rel)
16164 {
16165 if (!add_dynamic_entry (DT_REL, 0)
16166 || !add_dynamic_entry (DT_RELSZ, 0)
16167 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
16168 return FALSE;
16169 }
16170 else
16171 {
16172 if (!add_dynamic_entry (DT_RELA, 0)
16173 || !add_dynamic_entry (DT_RELASZ, 0)
16174 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
16175 return FALSE;
16176 }
16177 }
16178
16179 /* If any dynamic relocs apply to a read-only section,
16180 then we need a DT_TEXTREL entry. */
16181 if ((info->flags & DF_TEXTREL) == 0)
16182 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
16183 info);
16184
16185 if ((info->flags & DF_TEXTREL) != 0)
16186 {
16187 if (!add_dynamic_entry (DT_TEXTREL, 0))
16188 return FALSE;
16189 }
16190 if (htab->vxworks_p
16191 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
16192 return FALSE;
16193 }
16194 #undef add_dynamic_entry
16195
16196 return TRUE;
16197 }
16198
16199 /* Size sections even though they're not dynamic. We use it to setup
16200 _TLS_MODULE_BASE_, if needed. */
16201
16202 static bfd_boolean
16203 elf32_arm_always_size_sections (bfd *output_bfd,
16204 struct bfd_link_info *info)
16205 {
16206 asection *tls_sec;
16207
16208 if (bfd_link_relocatable (info))
16209 return TRUE;
16210
16211 tls_sec = elf_hash_table (info)->tls_sec;
16212
16213 if (tls_sec)
16214 {
16215 struct elf_link_hash_entry *tlsbase;
16216
16217 tlsbase = elf_link_hash_lookup
16218 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
16219
16220 if (tlsbase)
16221 {
16222 struct bfd_link_hash_entry *bh = NULL;
16223 const struct elf_backend_data *bed
16224 = get_elf_backend_data (output_bfd);
16225
16226 if (!(_bfd_generic_link_add_one_symbol
16227 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
16228 tls_sec, 0, NULL, FALSE,
16229 bed->collect, &bh)))
16230 return FALSE;
16231
16232 tlsbase->type = STT_TLS;
16233 tlsbase = (struct elf_link_hash_entry *)bh;
16234 tlsbase->def_regular = 1;
16235 tlsbase->other = STV_HIDDEN;
16236 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
16237 }
16238 }
16239 return TRUE;
16240 }
16241
16242 /* Finish up dynamic symbol handling. We set the contents of various
16243 dynamic sections here. */
16244
16245 static bfd_boolean
16246 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
16247 struct bfd_link_info * info,
16248 struct elf_link_hash_entry * h,
16249 Elf_Internal_Sym * sym)
16250 {
16251 struct elf32_arm_link_hash_table *htab;
16252 struct elf32_arm_link_hash_entry *eh;
16253
16254 htab = elf32_arm_hash_table (info);
16255 if (htab == NULL)
16256 return FALSE;
16257
16258 eh = (struct elf32_arm_link_hash_entry *) h;
16259
16260 if (h->plt.offset != (bfd_vma) -1)
16261 {
16262 if (!eh->is_iplt)
16263 {
16264 BFD_ASSERT (h->dynindx != -1);
16265 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
16266 h->dynindx, 0))
16267 return FALSE;
16268 }
16269
16270 if (!h->def_regular)
16271 {
16272 /* Mark the symbol as undefined, rather than as defined in
16273 the .plt section. */
16274 sym->st_shndx = SHN_UNDEF;
16275 /* If the symbol is weak we need to clear the value.
16276 Otherwise, the PLT entry would provide a definition for
16277 the symbol even if the symbol wasn't defined anywhere,
16278 and so the symbol would never be NULL. Leave the value if
16279 there were any relocations where pointer equality matters
16280 (this is a clue for the dynamic linker, to make function
16281 pointer comparisons work between an application and shared
16282 library). */
16283 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
16284 sym->st_value = 0;
16285 }
16286 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
16287 {
16288 /* At least one non-call relocation references this .iplt entry,
16289 so the .iplt entry is the function's canonical address. */
16290 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
16291 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
16292 sym->st_shndx = (_bfd_elf_section_from_bfd_section
16293 (output_bfd, htab->root.iplt->output_section));
16294 sym->st_value = (h->plt.offset
16295 + htab->root.iplt->output_section->vma
16296 + htab->root.iplt->output_offset);
16297 }
16298 }
16299
16300 if (h->needs_copy)
16301 {
16302 asection * s;
16303 Elf_Internal_Rela rel;
16304
16305 /* This symbol needs a copy reloc. Set it up. */
16306 BFD_ASSERT (h->dynindx != -1
16307 && (h->root.type == bfd_link_hash_defined
16308 || h->root.type == bfd_link_hash_defweak));
16309
16310 rel.r_addend = 0;
16311 rel.r_offset = (h->root.u.def.value
16312 + h->root.u.def.section->output_section->vma
16313 + h->root.u.def.section->output_offset);
16314 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
16315 if (h->root.u.def.section == htab->root.sdynrelro)
16316 s = htab->root.sreldynrelro;
16317 else
16318 s = htab->root.srelbss;
16319 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
16320 }
16321
16322 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
16323 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
16324 to the ".got" section. */
16325 if (h == htab->root.hdynamic
16326 || (!htab->vxworks_p && h == htab->root.hgot))
16327 sym->st_shndx = SHN_ABS;
16328
16329 return TRUE;
16330 }
16331
16332 static void
16333 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16334 void *contents,
16335 const unsigned long *template, unsigned count)
16336 {
16337 unsigned ix;
16338
16339 for (ix = 0; ix != count; ix++)
16340 {
16341 unsigned long insn = template[ix];
16342
16343 /* Emit mov pc,rx if bx is not permitted. */
16344 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
16345 insn = (insn & 0xf000000f) | 0x01a0f000;
16346 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
16347 }
16348 }
16349
16350 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
16351 other variants, NaCl needs this entry in a static executable's
16352 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
16353 zero. For .iplt really only the last bundle is useful, and .iplt
16354 could have a shorter first entry, with each individual PLT entry's
16355 relative branch calculated differently so it targets the last
16356 bundle instead of the instruction before it (labelled .Lplt_tail
16357 above). But it's simpler to keep the size and layout of PLT0
16358 consistent with the dynamic case, at the cost of some dead code at
16359 the start of .iplt and the one dead store to the stack at the start
16360 of .Lplt_tail. */
16361 static void
16362 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
16363 asection *plt, bfd_vma got_displacement)
16364 {
16365 unsigned int i;
16366
16367 put_arm_insn (htab, output_bfd,
16368 elf32_arm_nacl_plt0_entry[0]
16369 | arm_movw_immediate (got_displacement),
16370 plt->contents + 0);
16371 put_arm_insn (htab, output_bfd,
16372 elf32_arm_nacl_plt0_entry[1]
16373 | arm_movt_immediate (got_displacement),
16374 plt->contents + 4);
16375
16376 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
16377 put_arm_insn (htab, output_bfd,
16378 elf32_arm_nacl_plt0_entry[i],
16379 plt->contents + (i * 4));
16380 }
16381
16382 /* Finish up the dynamic sections. */
16383
16384 static bfd_boolean
16385 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
16386 {
16387 bfd * dynobj;
16388 asection * sgot;
16389 asection * sdyn;
16390 struct elf32_arm_link_hash_table *htab;
16391
16392 htab = elf32_arm_hash_table (info);
16393 if (htab == NULL)
16394 return FALSE;
16395
16396 dynobj = elf_hash_table (info)->dynobj;
16397
16398 sgot = htab->root.sgotplt;
16399 /* A broken linker script might have discarded the dynamic sections.
16400 Catch this here so that we do not seg-fault later on. */
16401 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
16402 return FALSE;
16403 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
16404
16405 if (elf_hash_table (info)->dynamic_sections_created)
16406 {
16407 asection *splt;
16408 Elf32_External_Dyn *dyncon, *dynconend;
16409
16410 splt = htab->root.splt;
16411 BFD_ASSERT (splt != NULL && sdyn != NULL);
16412 BFD_ASSERT (htab->symbian_p || sgot != NULL);
16413
16414 dyncon = (Elf32_External_Dyn *) sdyn->contents;
16415 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
16416
16417 for (; dyncon < dynconend; dyncon++)
16418 {
16419 Elf_Internal_Dyn dyn;
16420 const char * name;
16421 asection * s;
16422
16423 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
16424
16425 switch (dyn.d_tag)
16426 {
16427 unsigned int type;
16428
16429 default:
16430 if (htab->vxworks_p
16431 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
16432 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16433 break;
16434
16435 case DT_HASH:
16436 name = ".hash";
16437 goto get_vma_if_bpabi;
16438 case DT_STRTAB:
16439 name = ".dynstr";
16440 goto get_vma_if_bpabi;
16441 case DT_SYMTAB:
16442 name = ".dynsym";
16443 goto get_vma_if_bpabi;
16444 case DT_VERSYM:
16445 name = ".gnu.version";
16446 goto get_vma_if_bpabi;
16447 case DT_VERDEF:
16448 name = ".gnu.version_d";
16449 goto get_vma_if_bpabi;
16450 case DT_VERNEED:
16451 name = ".gnu.version_r";
16452 goto get_vma_if_bpabi;
16453
16454 case DT_PLTGOT:
16455 name = htab->symbian_p ? ".got" : ".got.plt";
16456 goto get_vma;
16457 case DT_JMPREL:
16458 name = RELOC_SECTION (htab, ".plt");
16459 get_vma:
16460 s = bfd_get_linker_section (dynobj, name);
16461 if (s == NULL)
16462 {
16463 _bfd_error_handler
16464 (_("could not find section %s"), name);
16465 bfd_set_error (bfd_error_invalid_operation);
16466 return FALSE;
16467 }
16468 if (!htab->symbian_p)
16469 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
16470 else
16471 /* In the BPABI, tags in the PT_DYNAMIC section point
16472 at the file offset, not the memory address, for the
16473 convenience of the post linker. */
16474 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
16475 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16476 break;
16477
16478 get_vma_if_bpabi:
16479 if (htab->symbian_p)
16480 goto get_vma;
16481 break;
16482
16483 case DT_PLTRELSZ:
16484 s = htab->root.srelplt;
16485 BFD_ASSERT (s != NULL);
16486 dyn.d_un.d_val = s->size;
16487 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16488 break;
16489
16490 case DT_RELSZ:
16491 case DT_RELASZ:
16492 case DT_REL:
16493 case DT_RELA:
16494 /* In the BPABI, the DT_REL tag must point at the file
16495 offset, not the VMA, of the first relocation
16496 section. So, we use code similar to that in
16497 elflink.c, but do not check for SHF_ALLOC on the
16498 relocation section, since relocation sections are
16499 never allocated under the BPABI. PLT relocs are also
16500 included. */
16501 if (htab->symbian_p)
16502 {
16503 unsigned int i;
16504 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
16505 ? SHT_REL : SHT_RELA);
16506 dyn.d_un.d_val = 0;
16507 for (i = 1; i < elf_numsections (output_bfd); i++)
16508 {
16509 Elf_Internal_Shdr *hdr
16510 = elf_elfsections (output_bfd)[i];
16511 if (hdr->sh_type == type)
16512 {
16513 if (dyn.d_tag == DT_RELSZ
16514 || dyn.d_tag == DT_RELASZ)
16515 dyn.d_un.d_val += hdr->sh_size;
16516 else if ((ufile_ptr) hdr->sh_offset
16517 <= dyn.d_un.d_val - 1)
16518 dyn.d_un.d_val = hdr->sh_offset;
16519 }
16520 }
16521 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16522 }
16523 break;
16524
16525 case DT_TLSDESC_PLT:
16526 s = htab->root.splt;
16527 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16528 + htab->dt_tlsdesc_plt);
16529 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16530 break;
16531
16532 case DT_TLSDESC_GOT:
16533 s = htab->root.sgot;
16534 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
16535 + htab->dt_tlsdesc_got);
16536 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16537 break;
16538
16539 /* Set the bottom bit of DT_INIT/FINI if the
16540 corresponding function is Thumb. */
16541 case DT_INIT:
16542 name = info->init_function;
16543 goto get_sym;
16544 case DT_FINI:
16545 name = info->fini_function;
16546 get_sym:
16547 /* If it wasn't set by elf_bfd_final_link
16548 then there is nothing to adjust. */
16549 if (dyn.d_un.d_val != 0)
16550 {
16551 struct elf_link_hash_entry * eh;
16552
16553 eh = elf_link_hash_lookup (elf_hash_table (info), name,
16554 FALSE, FALSE, TRUE);
16555 if (eh != NULL
16556 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
16557 == ST_BRANCH_TO_THUMB)
16558 {
16559 dyn.d_un.d_val |= 1;
16560 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
16561 }
16562 }
16563 break;
16564 }
16565 }
16566
16567 /* Fill in the first entry in the procedure linkage table. */
16568 if (splt->size > 0 && htab->plt_header_size)
16569 {
16570 const bfd_vma *plt0_entry;
16571 bfd_vma got_address, plt_address, got_displacement;
16572
16573 /* Calculate the addresses of the GOT and PLT. */
16574 got_address = sgot->output_section->vma + sgot->output_offset;
16575 plt_address = splt->output_section->vma + splt->output_offset;
16576
16577 if (htab->vxworks_p)
16578 {
16579 /* The VxWorks GOT is relocated by the dynamic linker.
16580 Therefore, we must emit relocations rather than simply
16581 computing the values now. */
16582 Elf_Internal_Rela rel;
16583
16584 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
16585 put_arm_insn (htab, output_bfd, plt0_entry[0],
16586 splt->contents + 0);
16587 put_arm_insn (htab, output_bfd, plt0_entry[1],
16588 splt->contents + 4);
16589 put_arm_insn (htab, output_bfd, plt0_entry[2],
16590 splt->contents + 8);
16591 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
16592
16593 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
16594 rel.r_offset = plt_address + 12;
16595 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16596 rel.r_addend = 0;
16597 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
16598 htab->srelplt2->contents);
16599 }
16600 else if (htab->nacl_p)
16601 arm_nacl_put_plt0 (htab, output_bfd, splt,
16602 got_address + 8 - (plt_address + 16));
16603 else if (using_thumb_only (htab))
16604 {
16605 got_displacement = got_address - (plt_address + 12);
16606
16607 plt0_entry = elf32_thumb2_plt0_entry;
16608 put_arm_insn (htab, output_bfd, plt0_entry[0],
16609 splt->contents + 0);
16610 put_arm_insn (htab, output_bfd, plt0_entry[1],
16611 splt->contents + 4);
16612 put_arm_insn (htab, output_bfd, plt0_entry[2],
16613 splt->contents + 8);
16614
16615 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
16616 }
16617 else
16618 {
16619 got_displacement = got_address - (plt_address + 16);
16620
16621 plt0_entry = elf32_arm_plt0_entry;
16622 put_arm_insn (htab, output_bfd, plt0_entry[0],
16623 splt->contents + 0);
16624 put_arm_insn (htab, output_bfd, plt0_entry[1],
16625 splt->contents + 4);
16626 put_arm_insn (htab, output_bfd, plt0_entry[2],
16627 splt->contents + 8);
16628 put_arm_insn (htab, output_bfd, plt0_entry[3],
16629 splt->contents + 12);
16630
16631 #ifdef FOUR_WORD_PLT
16632 /* The displacement value goes in the otherwise-unused
16633 last word of the second entry. */
16634 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
16635 #else
16636 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
16637 #endif
16638 }
16639 }
16640
16641 /* UnixWare sets the entsize of .plt to 4, although that doesn't
16642 really seem like the right value. */
16643 if (splt->output_section->owner == output_bfd)
16644 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
16645
16646 if (htab->dt_tlsdesc_plt)
16647 {
16648 bfd_vma got_address
16649 = sgot->output_section->vma + sgot->output_offset;
16650 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
16651 + htab->root.sgot->output_offset);
16652 bfd_vma plt_address
16653 = splt->output_section->vma + splt->output_offset;
16654
16655 arm_put_trampoline (htab, output_bfd,
16656 splt->contents + htab->dt_tlsdesc_plt,
16657 dl_tlsdesc_lazy_trampoline, 6);
16658
16659 bfd_put_32 (output_bfd,
16660 gotplt_address + htab->dt_tlsdesc_got
16661 - (plt_address + htab->dt_tlsdesc_plt)
16662 - dl_tlsdesc_lazy_trampoline[6],
16663 splt->contents + htab->dt_tlsdesc_plt + 24);
16664 bfd_put_32 (output_bfd,
16665 got_address - (plt_address + htab->dt_tlsdesc_plt)
16666 - dl_tlsdesc_lazy_trampoline[7],
16667 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
16668 }
16669
16670 if (htab->tls_trampoline)
16671 {
16672 arm_put_trampoline (htab, output_bfd,
16673 splt->contents + htab->tls_trampoline,
16674 tls_trampoline, 3);
16675 #ifdef FOUR_WORD_PLT
16676 bfd_put_32 (output_bfd, 0x00000000,
16677 splt->contents + htab->tls_trampoline + 12);
16678 #endif
16679 }
16680
16681 if (htab->vxworks_p
16682 && !bfd_link_pic (info)
16683 && htab->root.splt->size > 0)
16684 {
16685 /* Correct the .rel(a).plt.unloaded relocations. They will have
16686 incorrect symbol indexes. */
16687 int num_plts;
16688 unsigned char *p;
16689
16690 num_plts = ((htab->root.splt->size - htab->plt_header_size)
16691 / htab->plt_entry_size);
16692 p = htab->srelplt2->contents + RELOC_SIZE (htab);
16693
16694 for (; num_plts; num_plts--)
16695 {
16696 Elf_Internal_Rela rel;
16697
16698 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16699 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
16700 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16701 p += RELOC_SIZE (htab);
16702
16703 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
16704 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
16705 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
16706 p += RELOC_SIZE (htab);
16707 }
16708 }
16709 }
16710
16711 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
16712 /* NaCl uses a special first entry in .iplt too. */
16713 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
16714
16715 /* Fill in the first three entries in the global offset table. */
16716 if (sgot)
16717 {
16718 if (sgot->size > 0)
16719 {
16720 if (sdyn == NULL)
16721 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
16722 else
16723 bfd_put_32 (output_bfd,
16724 sdyn->output_section->vma + sdyn->output_offset,
16725 sgot->contents);
16726 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
16727 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
16728 }
16729
16730 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
16731 }
16732
16733 return TRUE;
16734 }
16735
16736 static void
16737 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
16738 {
16739 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
16740 struct elf32_arm_link_hash_table *globals;
16741 struct elf_segment_map *m;
16742
16743 i_ehdrp = elf_elfheader (abfd);
16744
16745 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
16746 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
16747 else
16748 _bfd_elf_post_process_headers (abfd, link_info);
16749 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
16750
16751 if (link_info)
16752 {
16753 globals = elf32_arm_hash_table (link_info);
16754 if (globals != NULL && globals->byteswap_code)
16755 i_ehdrp->e_flags |= EF_ARM_BE8;
16756 }
16757
16758 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
16759 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
16760 {
16761 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
16762 if (abi == AEABI_VFP_args_vfp)
16763 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
16764 else
16765 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
16766 }
16767
16768 /* Scan segment to set p_flags attribute if it contains only sections with
16769 SHF_ARM_PURECODE flag. */
16770 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16771 {
16772 unsigned int j;
16773
16774 if (m->count == 0)
16775 continue;
16776 for (j = 0; j < m->count; j++)
16777 {
16778 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
16779 break;
16780 }
16781 if (j == m->count)
16782 {
16783 m->p_flags = PF_X;
16784 m->p_flags_valid = 1;
16785 }
16786 }
16787 }
16788
16789 static enum elf_reloc_type_class
16790 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
16791 const asection *rel_sec ATTRIBUTE_UNUSED,
16792 const Elf_Internal_Rela *rela)
16793 {
16794 switch ((int) ELF32_R_TYPE (rela->r_info))
16795 {
16796 case R_ARM_RELATIVE:
16797 return reloc_class_relative;
16798 case R_ARM_JUMP_SLOT:
16799 return reloc_class_plt;
16800 case R_ARM_COPY:
16801 return reloc_class_copy;
16802 case R_ARM_IRELATIVE:
16803 return reloc_class_ifunc;
16804 default:
16805 return reloc_class_normal;
16806 }
16807 }
16808
16809 static void
16810 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
16811 {
16812 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
16813 }
16814
16815 /* Return TRUE if this is an unwinding table entry. */
16816
16817 static bfd_boolean
16818 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
16819 {
16820 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
16821 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
16822 }
16823
16824
16825 /* Set the type and flags for an ARM section. We do this by
16826 the section name, which is a hack, but ought to work. */
16827
16828 static bfd_boolean
16829 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
16830 {
16831 const char * name;
16832
16833 name = bfd_get_section_name (abfd, sec);
16834
16835 if (is_arm_elf_unwind_section_name (abfd, name))
16836 {
16837 hdr->sh_type = SHT_ARM_EXIDX;
16838 hdr->sh_flags |= SHF_LINK_ORDER;
16839 }
16840
16841 if (sec->flags & SEC_ELF_PURECODE)
16842 hdr->sh_flags |= SHF_ARM_PURECODE;
16843
16844 return TRUE;
16845 }
16846
16847 /* Handle an ARM specific section when reading an object file. This is
16848 called when bfd_section_from_shdr finds a section with an unknown
16849 type. */
16850
16851 static bfd_boolean
16852 elf32_arm_section_from_shdr (bfd *abfd,
16853 Elf_Internal_Shdr * hdr,
16854 const char *name,
16855 int shindex)
16856 {
16857 /* There ought to be a place to keep ELF backend specific flags, but
16858 at the moment there isn't one. We just keep track of the
16859 sections by their name, instead. Fortunately, the ABI gives
16860 names for all the ARM specific sections, so we will probably get
16861 away with this. */
16862 switch (hdr->sh_type)
16863 {
16864 case SHT_ARM_EXIDX:
16865 case SHT_ARM_PREEMPTMAP:
16866 case SHT_ARM_ATTRIBUTES:
16867 break;
16868
16869 default:
16870 return FALSE;
16871 }
16872
16873 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
16874 return FALSE;
16875
16876 return TRUE;
16877 }
16878
16879 static _arm_elf_section_data *
16880 get_arm_elf_section_data (asection * sec)
16881 {
16882 if (sec && sec->owner && is_arm_elf (sec->owner))
16883 return elf32_arm_section_data (sec);
16884 else
16885 return NULL;
16886 }
16887
16888 typedef struct
16889 {
16890 void *flaginfo;
16891 struct bfd_link_info *info;
16892 asection *sec;
16893 int sec_shndx;
16894 int (*func) (void *, const char *, Elf_Internal_Sym *,
16895 asection *, struct elf_link_hash_entry *);
16896 } output_arch_syminfo;
16897
16898 enum map_symbol_type
16899 {
16900 ARM_MAP_ARM,
16901 ARM_MAP_THUMB,
16902 ARM_MAP_DATA
16903 };
16904
16905
16906 /* Output a single mapping symbol. */
16907
16908 static bfd_boolean
16909 elf32_arm_output_map_sym (output_arch_syminfo *osi,
16910 enum map_symbol_type type,
16911 bfd_vma offset)
16912 {
16913 static const char *names[3] = {"$a", "$t", "$d"};
16914 Elf_Internal_Sym sym;
16915
16916 sym.st_value = osi->sec->output_section->vma
16917 + osi->sec->output_offset
16918 + offset;
16919 sym.st_size = 0;
16920 sym.st_other = 0;
16921 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
16922 sym.st_shndx = osi->sec_shndx;
16923 sym.st_target_internal = 0;
16924 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
16925 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
16926 }
16927
16928 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
16929 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
16930
16931 static bfd_boolean
16932 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
16933 bfd_boolean is_iplt_entry_p,
16934 union gotplt_union *root_plt,
16935 struct arm_plt_info *arm_plt)
16936 {
16937 struct elf32_arm_link_hash_table *htab;
16938 bfd_vma addr, plt_header_size;
16939
16940 if (root_plt->offset == (bfd_vma) -1)
16941 return TRUE;
16942
16943 htab = elf32_arm_hash_table (osi->info);
16944 if (htab == NULL)
16945 return FALSE;
16946
16947 if (is_iplt_entry_p)
16948 {
16949 osi->sec = htab->root.iplt;
16950 plt_header_size = 0;
16951 }
16952 else
16953 {
16954 osi->sec = htab->root.splt;
16955 plt_header_size = htab->plt_header_size;
16956 }
16957 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
16958 (osi->info->output_bfd, osi->sec->output_section));
16959
16960 addr = root_plt->offset & -2;
16961 if (htab->symbian_p)
16962 {
16963 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16964 return FALSE;
16965 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
16966 return FALSE;
16967 }
16968 else if (htab->vxworks_p)
16969 {
16970 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16971 return FALSE;
16972 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
16973 return FALSE;
16974 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
16975 return FALSE;
16976 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
16977 return FALSE;
16978 }
16979 else if (htab->nacl_p)
16980 {
16981 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
16982 return FALSE;
16983 }
16984 else if (using_thumb_only (htab))
16985 {
16986 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
16987 return FALSE;
16988 }
16989 else
16990 {
16991 bfd_boolean thumb_stub_p;
16992
16993 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
16994 if (thumb_stub_p)
16995 {
16996 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
16997 return FALSE;
16998 }
16999 #ifdef FOUR_WORD_PLT
17000 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17001 return FALSE;
17002 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
17003 return FALSE;
17004 #else
17005 /* A three-word PLT with no Thumb thunk contains only Arm code,
17006 so only need to output a mapping symbol for the first PLT entry and
17007 entries with thumb thunks. */
17008 if (thumb_stub_p || addr == plt_header_size)
17009 {
17010 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
17011 return FALSE;
17012 }
17013 #endif
17014 }
17015
17016 return TRUE;
17017 }
17018
17019 /* Output mapping symbols for PLT entries associated with H. */
17020
17021 static bfd_boolean
17022 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
17023 {
17024 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
17025 struct elf32_arm_link_hash_entry *eh;
17026
17027 if (h->root.type == bfd_link_hash_indirect)
17028 return TRUE;
17029
17030 if (h->root.type == bfd_link_hash_warning)
17031 /* When warning symbols are created, they **replace** the "real"
17032 entry in the hash table, thus we never get to see the real
17033 symbol in a hash traversal. So look at it now. */
17034 h = (struct elf_link_hash_entry *) h->root.u.i.link;
17035
17036 eh = (struct elf32_arm_link_hash_entry *) h;
17037 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
17038 &h->plt, &eh->plt);
17039 }
17040
17041 /* Bind a veneered symbol to its veneer identified by its hash entry
17042 STUB_ENTRY. The veneered location thus loose its symbol. */
17043
17044 static void
17045 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
17046 {
17047 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
17048
17049 BFD_ASSERT (hash);
17050 hash->root.root.u.def.section = stub_entry->stub_sec;
17051 hash->root.root.u.def.value = stub_entry->stub_offset;
17052 hash->root.size = stub_entry->stub_size;
17053 }
17054
17055 /* Output a single local symbol for a generated stub. */
17056
17057 static bfd_boolean
17058 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
17059 bfd_vma offset, bfd_vma size)
17060 {
17061 Elf_Internal_Sym sym;
17062
17063 sym.st_value = osi->sec->output_section->vma
17064 + osi->sec->output_offset
17065 + offset;
17066 sym.st_size = size;
17067 sym.st_other = 0;
17068 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
17069 sym.st_shndx = osi->sec_shndx;
17070 sym.st_target_internal = 0;
17071 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
17072 }
17073
17074 static bfd_boolean
17075 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
17076 void * in_arg)
17077 {
17078 struct elf32_arm_stub_hash_entry *stub_entry;
17079 asection *stub_sec;
17080 bfd_vma addr;
17081 char *stub_name;
17082 output_arch_syminfo *osi;
17083 const insn_sequence *template_sequence;
17084 enum stub_insn_type prev_type;
17085 int size;
17086 int i;
17087 enum map_symbol_type sym_type;
17088
17089 /* Massage our args to the form they really have. */
17090 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17091 osi = (output_arch_syminfo *) in_arg;
17092
17093 stub_sec = stub_entry->stub_sec;
17094
17095 /* Ensure this stub is attached to the current section being
17096 processed. */
17097 if (stub_sec != osi->sec)
17098 return TRUE;
17099
17100 addr = (bfd_vma) stub_entry->stub_offset;
17101 template_sequence = stub_entry->stub_template;
17102
17103 if (arm_stub_sym_claimed (stub_entry->stub_type))
17104 arm_stub_claim_sym (stub_entry);
17105 else
17106 {
17107 stub_name = stub_entry->output_name;
17108 switch (template_sequence[0].type)
17109 {
17110 case ARM_TYPE:
17111 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
17112 stub_entry->stub_size))
17113 return FALSE;
17114 break;
17115 case THUMB16_TYPE:
17116 case THUMB32_TYPE:
17117 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
17118 stub_entry->stub_size))
17119 return FALSE;
17120 break;
17121 default:
17122 BFD_FAIL ();
17123 return 0;
17124 }
17125 }
17126
17127 prev_type = DATA_TYPE;
17128 size = 0;
17129 for (i = 0; i < stub_entry->stub_template_size; i++)
17130 {
17131 switch (template_sequence[i].type)
17132 {
17133 case ARM_TYPE:
17134 sym_type = ARM_MAP_ARM;
17135 break;
17136
17137 case THUMB16_TYPE:
17138 case THUMB32_TYPE:
17139 sym_type = ARM_MAP_THUMB;
17140 break;
17141
17142 case DATA_TYPE:
17143 sym_type = ARM_MAP_DATA;
17144 break;
17145
17146 default:
17147 BFD_FAIL ();
17148 return FALSE;
17149 }
17150
17151 if (template_sequence[i].type != prev_type)
17152 {
17153 prev_type = template_sequence[i].type;
17154 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
17155 return FALSE;
17156 }
17157
17158 switch (template_sequence[i].type)
17159 {
17160 case ARM_TYPE:
17161 case THUMB32_TYPE:
17162 size += 4;
17163 break;
17164
17165 case THUMB16_TYPE:
17166 size += 2;
17167 break;
17168
17169 case DATA_TYPE:
17170 size += 4;
17171 break;
17172
17173 default:
17174 BFD_FAIL ();
17175 return FALSE;
17176 }
17177 }
17178
17179 return TRUE;
17180 }
17181
17182 /* Output mapping symbols for linker generated sections,
17183 and for those data-only sections that do not have a
17184 $d. */
17185
17186 static bfd_boolean
17187 elf32_arm_output_arch_local_syms (bfd *output_bfd,
17188 struct bfd_link_info *info,
17189 void *flaginfo,
17190 int (*func) (void *, const char *,
17191 Elf_Internal_Sym *,
17192 asection *,
17193 struct elf_link_hash_entry *))
17194 {
17195 output_arch_syminfo osi;
17196 struct elf32_arm_link_hash_table *htab;
17197 bfd_vma offset;
17198 bfd_size_type size;
17199 bfd *input_bfd;
17200
17201 htab = elf32_arm_hash_table (info);
17202 if (htab == NULL)
17203 return FALSE;
17204
17205 check_use_blx (htab);
17206
17207 osi.flaginfo = flaginfo;
17208 osi.info = info;
17209 osi.func = func;
17210
17211 /* Add a $d mapping symbol to data-only sections that
17212 don't have any mapping symbol. This may result in (harmless) redundant
17213 mapping symbols. */
17214 for (input_bfd = info->input_bfds;
17215 input_bfd != NULL;
17216 input_bfd = input_bfd->link.next)
17217 {
17218 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
17219 for (osi.sec = input_bfd->sections;
17220 osi.sec != NULL;
17221 osi.sec = osi.sec->next)
17222 {
17223 if (osi.sec->output_section != NULL
17224 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
17225 != 0)
17226 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
17227 == SEC_HAS_CONTENTS
17228 && get_arm_elf_section_data (osi.sec) != NULL
17229 && get_arm_elf_section_data (osi.sec)->mapcount == 0
17230 && osi.sec->size > 0
17231 && (osi.sec->flags & SEC_EXCLUDE) == 0)
17232 {
17233 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17234 (output_bfd, osi.sec->output_section);
17235 if (osi.sec_shndx != (int)SHN_BAD)
17236 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
17237 }
17238 }
17239 }
17240
17241 /* ARM->Thumb glue. */
17242 if (htab->arm_glue_size > 0)
17243 {
17244 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17245 ARM2THUMB_GLUE_SECTION_NAME);
17246
17247 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17248 (output_bfd, osi.sec->output_section);
17249 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
17250 || htab->pic_veneer)
17251 size = ARM2THUMB_PIC_GLUE_SIZE;
17252 else if (htab->use_blx)
17253 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
17254 else
17255 size = ARM2THUMB_STATIC_GLUE_SIZE;
17256
17257 for (offset = 0; offset < htab->arm_glue_size; offset += size)
17258 {
17259 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
17260 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
17261 }
17262 }
17263
17264 /* Thumb->ARM glue. */
17265 if (htab->thumb_glue_size > 0)
17266 {
17267 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17268 THUMB2ARM_GLUE_SECTION_NAME);
17269
17270 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17271 (output_bfd, osi.sec->output_section);
17272 size = THUMB2ARM_GLUE_SIZE;
17273
17274 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
17275 {
17276 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
17277 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
17278 }
17279 }
17280
17281 /* ARMv4 BX veneers. */
17282 if (htab->bx_glue_size > 0)
17283 {
17284 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
17285 ARM_BX_GLUE_SECTION_NAME);
17286
17287 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17288 (output_bfd, osi.sec->output_section);
17289
17290 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
17291 }
17292
17293 /* Long calls stubs. */
17294 if (htab->stub_bfd && htab->stub_bfd->sections)
17295 {
17296 asection* stub_sec;
17297
17298 for (stub_sec = htab->stub_bfd->sections;
17299 stub_sec != NULL;
17300 stub_sec = stub_sec->next)
17301 {
17302 /* Ignore non-stub sections. */
17303 if (!strstr (stub_sec->name, STUB_SUFFIX))
17304 continue;
17305
17306 osi.sec = stub_sec;
17307
17308 osi.sec_shndx = _bfd_elf_section_from_bfd_section
17309 (output_bfd, osi.sec->output_section);
17310
17311 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
17312 }
17313 }
17314
17315 /* Finally, output mapping symbols for the PLT. */
17316 if (htab->root.splt && htab->root.splt->size > 0)
17317 {
17318 osi.sec = htab->root.splt;
17319 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17320 (output_bfd, osi.sec->output_section));
17321
17322 /* Output mapping symbols for the plt header. SymbianOS does not have a
17323 plt header. */
17324 if (htab->vxworks_p)
17325 {
17326 /* VxWorks shared libraries have no PLT header. */
17327 if (!bfd_link_pic (info))
17328 {
17329 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17330 return FALSE;
17331 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17332 return FALSE;
17333 }
17334 }
17335 else if (htab->nacl_p)
17336 {
17337 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17338 return FALSE;
17339 }
17340 else if (using_thumb_only (htab))
17341 {
17342 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
17343 return FALSE;
17344 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
17345 return FALSE;
17346 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
17347 return FALSE;
17348 }
17349 else if (!htab->symbian_p)
17350 {
17351 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17352 return FALSE;
17353 #ifndef FOUR_WORD_PLT
17354 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
17355 return FALSE;
17356 #endif
17357 }
17358 }
17359 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
17360 {
17361 /* NaCl uses a special first entry in .iplt too. */
17362 osi.sec = htab->root.iplt;
17363 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
17364 (output_bfd, osi.sec->output_section));
17365 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
17366 return FALSE;
17367 }
17368 if ((htab->root.splt && htab->root.splt->size > 0)
17369 || (htab->root.iplt && htab->root.iplt->size > 0))
17370 {
17371 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
17372 for (input_bfd = info->input_bfds;
17373 input_bfd != NULL;
17374 input_bfd = input_bfd->link.next)
17375 {
17376 struct arm_local_iplt_info **local_iplt;
17377 unsigned int i, num_syms;
17378
17379 local_iplt = elf32_arm_local_iplt (input_bfd);
17380 if (local_iplt != NULL)
17381 {
17382 num_syms = elf_symtab_hdr (input_bfd).sh_info;
17383 for (i = 0; i < num_syms; i++)
17384 if (local_iplt[i] != NULL
17385 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
17386 &local_iplt[i]->root,
17387 &local_iplt[i]->arm))
17388 return FALSE;
17389 }
17390 }
17391 }
17392 if (htab->dt_tlsdesc_plt != 0)
17393 {
17394 /* Mapping symbols for the lazy tls trampoline. */
17395 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
17396 return FALSE;
17397
17398 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17399 htab->dt_tlsdesc_plt + 24))
17400 return FALSE;
17401 }
17402 if (htab->tls_trampoline != 0)
17403 {
17404 /* Mapping symbols for the tls trampoline. */
17405 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
17406 return FALSE;
17407 #ifdef FOUR_WORD_PLT
17408 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
17409 htab->tls_trampoline + 12))
17410 return FALSE;
17411 #endif
17412 }
17413
17414 return TRUE;
17415 }
17416
17417 /* Filter normal symbols of CMSE entry functions of ABFD to include in
17418 the import library. All SYMCOUNT symbols of ABFD can be examined
17419 from their pointers in SYMS. Pointers of symbols to keep should be
17420 stored continuously at the beginning of that array.
17421
17422 Returns the number of symbols to keep. */
17423
17424 static unsigned int
17425 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17426 struct bfd_link_info *info,
17427 asymbol **syms, long symcount)
17428 {
17429 size_t maxnamelen;
17430 char *cmse_name;
17431 long src_count, dst_count = 0;
17432 struct elf32_arm_link_hash_table *htab;
17433
17434 htab = elf32_arm_hash_table (info);
17435 if (!htab->stub_bfd || !htab->stub_bfd->sections)
17436 symcount = 0;
17437
17438 maxnamelen = 128;
17439 cmse_name = (char *) bfd_malloc (maxnamelen);
17440 for (src_count = 0; src_count < symcount; src_count++)
17441 {
17442 struct elf32_arm_link_hash_entry *cmse_hash;
17443 asymbol *sym;
17444 flagword flags;
17445 char *name;
17446 size_t namelen;
17447
17448 sym = syms[src_count];
17449 flags = sym->flags;
17450 name = (char *) bfd_asymbol_name (sym);
17451
17452 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
17453 continue;
17454 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
17455 continue;
17456
17457 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
17458 if (namelen > maxnamelen)
17459 {
17460 cmse_name = (char *)
17461 bfd_realloc (cmse_name, namelen);
17462 maxnamelen = namelen;
17463 }
17464 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
17465 cmse_hash = (struct elf32_arm_link_hash_entry *)
17466 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
17467
17468 if (!cmse_hash
17469 || (cmse_hash->root.root.type != bfd_link_hash_defined
17470 && cmse_hash->root.root.type != bfd_link_hash_defweak)
17471 || cmse_hash->root.type != STT_FUNC)
17472 continue;
17473
17474 if (!ARM_GET_SYM_CMSE_SPCL (cmse_hash->root.target_internal))
17475 continue;
17476
17477 syms[dst_count++] = sym;
17478 }
17479 free (cmse_name);
17480
17481 syms[dst_count] = NULL;
17482
17483 return dst_count;
17484 }
17485
17486 /* Filter symbols of ABFD to include in the import library. All
17487 SYMCOUNT symbols of ABFD can be examined from their pointers in
17488 SYMS. Pointers of symbols to keep should be stored continuously at
17489 the beginning of that array.
17490
17491 Returns the number of symbols to keep. */
17492
17493 static unsigned int
17494 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
17495 struct bfd_link_info *info,
17496 asymbol **syms, long symcount)
17497 {
17498 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
17499
17500 if (globals->cmse_implib)
17501 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
17502 else
17503 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
17504 }
17505
17506 /* Allocate target specific section data. */
17507
17508 static bfd_boolean
17509 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
17510 {
17511 if (!sec->used_by_bfd)
17512 {
17513 _arm_elf_section_data *sdata;
17514 bfd_size_type amt = sizeof (*sdata);
17515
17516 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
17517 if (sdata == NULL)
17518 return FALSE;
17519 sec->used_by_bfd = sdata;
17520 }
17521
17522 return _bfd_elf_new_section_hook (abfd, sec);
17523 }
17524
17525
17526 /* Used to order a list of mapping symbols by address. */
17527
17528 static int
17529 elf32_arm_compare_mapping (const void * a, const void * b)
17530 {
17531 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
17532 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
17533
17534 if (amap->vma > bmap->vma)
17535 return 1;
17536 else if (amap->vma < bmap->vma)
17537 return -1;
17538 else if (amap->type > bmap->type)
17539 /* Ensure results do not depend on the host qsort for objects with
17540 multiple mapping symbols at the same address by sorting on type
17541 after vma. */
17542 return 1;
17543 else if (amap->type < bmap->type)
17544 return -1;
17545 else
17546 return 0;
17547 }
17548
17549 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
17550
17551 static unsigned long
17552 offset_prel31 (unsigned long addr, bfd_vma offset)
17553 {
17554 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
17555 }
17556
17557 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
17558 relocations. */
17559
17560 static void
17561 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
17562 {
17563 unsigned long first_word = bfd_get_32 (output_bfd, from);
17564 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
17565
17566 /* High bit of first word is supposed to be zero. */
17567 if ((first_word & 0x80000000ul) == 0)
17568 first_word = offset_prel31 (first_word, offset);
17569
17570 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
17571 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
17572 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
17573 second_word = offset_prel31 (second_word, offset);
17574
17575 bfd_put_32 (output_bfd, first_word, to);
17576 bfd_put_32 (output_bfd, second_word, to + 4);
17577 }
17578
17579 /* Data for make_branch_to_a8_stub(). */
17580
17581 struct a8_branch_to_stub_data
17582 {
17583 asection *writing_section;
17584 bfd_byte *contents;
17585 };
17586
17587
17588 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
17589 places for a particular section. */
17590
17591 static bfd_boolean
17592 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
17593 void *in_arg)
17594 {
17595 struct elf32_arm_stub_hash_entry *stub_entry;
17596 struct a8_branch_to_stub_data *data;
17597 bfd_byte *contents;
17598 unsigned long branch_insn;
17599 bfd_vma veneered_insn_loc, veneer_entry_loc;
17600 bfd_signed_vma branch_offset;
17601 bfd *abfd;
17602 unsigned int loc;
17603
17604 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
17605 data = (struct a8_branch_to_stub_data *) in_arg;
17606
17607 if (stub_entry->target_section != data->writing_section
17608 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
17609 return TRUE;
17610
17611 contents = data->contents;
17612
17613 /* We use target_section as Cortex-A8 erratum workaround stubs are only
17614 generated when both source and target are in the same section. */
17615 veneered_insn_loc = stub_entry->target_section->output_section->vma
17616 + stub_entry->target_section->output_offset
17617 + stub_entry->source_value;
17618
17619 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
17620 + stub_entry->stub_sec->output_offset
17621 + stub_entry->stub_offset;
17622
17623 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
17624 veneered_insn_loc &= ~3u;
17625
17626 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
17627
17628 abfd = stub_entry->target_section->owner;
17629 loc = stub_entry->source_value;
17630
17631 /* We attempt to avoid this condition by setting stubs_always_after_branch
17632 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
17633 This check is just to be on the safe side... */
17634 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
17635 {
17636 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub is "
17637 "allocated in unsafe location"), abfd);
17638 return FALSE;
17639 }
17640
17641 switch (stub_entry->stub_type)
17642 {
17643 case arm_stub_a8_veneer_b:
17644 case arm_stub_a8_veneer_b_cond:
17645 branch_insn = 0xf0009000;
17646 goto jump24;
17647
17648 case arm_stub_a8_veneer_blx:
17649 branch_insn = 0xf000e800;
17650 goto jump24;
17651
17652 case arm_stub_a8_veneer_bl:
17653 {
17654 unsigned int i1, j1, i2, j2, s;
17655
17656 branch_insn = 0xf000d000;
17657
17658 jump24:
17659 if (branch_offset < -16777216 || branch_offset > 16777214)
17660 {
17661 /* There's not much we can do apart from complain if this
17662 happens. */
17663 _bfd_error_handler (_("%B: error: Cortex-A8 erratum stub out "
17664 "of range (input file too large)"), abfd);
17665 return FALSE;
17666 }
17667
17668 /* i1 = not(j1 eor s), so:
17669 not i1 = j1 eor s
17670 j1 = (not i1) eor s. */
17671
17672 branch_insn |= (branch_offset >> 1) & 0x7ff;
17673 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
17674 i2 = (branch_offset >> 22) & 1;
17675 i1 = (branch_offset >> 23) & 1;
17676 s = (branch_offset >> 24) & 1;
17677 j1 = (!i1) ^ s;
17678 j2 = (!i2) ^ s;
17679 branch_insn |= j2 << 11;
17680 branch_insn |= j1 << 13;
17681 branch_insn |= s << 26;
17682 }
17683 break;
17684
17685 default:
17686 BFD_FAIL ();
17687 return FALSE;
17688 }
17689
17690 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
17691 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
17692
17693 return TRUE;
17694 }
17695
17696 /* Beginning of stm32l4xx work-around. */
17697
17698 /* Functions encoding instructions necessary for the emission of the
17699 fix-stm32l4xx-629360.
17700 Encoding is extracted from the
17701 ARM (C) Architecture Reference Manual
17702 ARMv7-A and ARMv7-R edition
17703 ARM DDI 0406C.b (ID072512). */
17704
17705 static inline bfd_vma
17706 create_instruction_branch_absolute (int branch_offset)
17707 {
17708 /* A8.8.18 B (A8-334)
17709 B target_address (Encoding T4). */
17710 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
17711 /* jump offset is: S:I1:I2:imm10:imm11:0. */
17712 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
17713
17714 int s = ((branch_offset & 0x1000000) >> 24);
17715 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
17716 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
17717
17718 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
17719 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
17720
17721 bfd_vma patched_inst = 0xf0009000
17722 | s << 26 /* S. */
17723 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
17724 | j1 << 13 /* J1. */
17725 | j2 << 11 /* J2. */
17726 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
17727
17728 return patched_inst;
17729 }
17730
17731 static inline bfd_vma
17732 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
17733 {
17734 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
17735 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
17736 bfd_vma patched_inst = 0xe8900000
17737 | (/*W=*/wback << 21)
17738 | (base_reg << 16)
17739 | (reg_mask & 0x0000ffff);
17740
17741 return patched_inst;
17742 }
17743
17744 static inline bfd_vma
17745 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
17746 {
17747 /* A8.8.60 LDMDB/LDMEA (A8-402)
17748 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
17749 bfd_vma patched_inst = 0xe9100000
17750 | (/*W=*/wback << 21)
17751 | (base_reg << 16)
17752 | (reg_mask & 0x0000ffff);
17753
17754 return patched_inst;
17755 }
17756
17757 static inline bfd_vma
17758 create_instruction_mov (int target_reg, int source_reg)
17759 {
17760 /* A8.8.103 MOV (register) (A8-486)
17761 MOV Rd, Rm (Encoding T1). */
17762 bfd_vma patched_inst = 0x4600
17763 | (target_reg & 0x7)
17764 | ((target_reg & 0x8) >> 3) << 7
17765 | (source_reg << 3);
17766
17767 return patched_inst;
17768 }
17769
17770 static inline bfd_vma
17771 create_instruction_sub (int target_reg, int source_reg, int value)
17772 {
17773 /* A8.8.221 SUB (immediate) (A8-708)
17774 SUB Rd, Rn, #value (Encoding T3). */
17775 bfd_vma patched_inst = 0xf1a00000
17776 | (target_reg << 8)
17777 | (source_reg << 16)
17778 | (/*S=*/0 << 20)
17779 | ((value & 0x800) >> 11) << 26
17780 | ((value & 0x700) >> 8) << 12
17781 | (value & 0x0ff);
17782
17783 return patched_inst;
17784 }
17785
17786 static inline bfd_vma
17787 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
17788 int first_reg)
17789 {
17790 /* A8.8.332 VLDM (A8-922)
17791 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
17792 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
17793 | (/*W=*/wback << 21)
17794 | (base_reg << 16)
17795 | (num_words & 0x000000ff)
17796 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
17797 | (first_reg & 0x00000001) << 22;
17798
17799 return patched_inst;
17800 }
17801
17802 static inline bfd_vma
17803 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
17804 int first_reg)
17805 {
17806 /* A8.8.332 VLDM (A8-922)
17807 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
17808 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
17809 | (base_reg << 16)
17810 | (num_words & 0x000000ff)
17811 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
17812 | (first_reg & 0x00000001) << 22;
17813
17814 return patched_inst;
17815 }
17816
17817 static inline bfd_vma
17818 create_instruction_udf_w (int value)
17819 {
17820 /* A8.8.247 UDF (A8-758)
17821 Undefined (Encoding T2). */
17822 bfd_vma patched_inst = 0xf7f0a000
17823 | (value & 0x00000fff)
17824 | (value & 0x000f0000) << 16;
17825
17826 return patched_inst;
17827 }
17828
17829 static inline bfd_vma
17830 create_instruction_udf (int value)
17831 {
17832 /* A8.8.247 UDF (A8-758)
17833 Undefined (Encoding T1). */
17834 bfd_vma patched_inst = 0xde00
17835 | (value & 0xff);
17836
17837 return patched_inst;
17838 }
17839
17840 /* Functions writing an instruction in memory, returning the next
17841 memory position to write to. */
17842
17843 static inline bfd_byte *
17844 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
17845 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17846 {
17847 put_thumb2_insn (htab, output_bfd, insn, pt);
17848 return pt + 4;
17849 }
17850
17851 static inline bfd_byte *
17852 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
17853 bfd * output_bfd, bfd_byte *pt, insn32 insn)
17854 {
17855 put_thumb_insn (htab, output_bfd, insn, pt);
17856 return pt + 2;
17857 }
17858
17859 /* Function filling up a region in memory with T1 and T2 UDFs taking
17860 care of alignment. */
17861
17862 static bfd_byte *
17863 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
17864 bfd * output_bfd,
17865 const bfd_byte * const base_stub_contents,
17866 bfd_byte * const from_stub_contents,
17867 const bfd_byte * const end_stub_contents)
17868 {
17869 bfd_byte *current_stub_contents = from_stub_contents;
17870
17871 /* Fill the remaining of the stub with deterministic contents : UDF
17872 instructions.
17873 Check if realignment is needed on modulo 4 frontier using T1, to
17874 further use T2. */
17875 if ((current_stub_contents < end_stub_contents)
17876 && !((current_stub_contents - base_stub_contents) % 2)
17877 && ((current_stub_contents - base_stub_contents) % 4))
17878 current_stub_contents =
17879 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
17880 create_instruction_udf (0));
17881
17882 for (; current_stub_contents < end_stub_contents;)
17883 current_stub_contents =
17884 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17885 create_instruction_udf_w (0));
17886
17887 return current_stub_contents;
17888 }
17889
17890 /* Functions writing the stream of instructions equivalent to the
17891 derived sequence for ldmia, ldmdb, vldm respectively. */
17892
17893 static void
17894 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
17895 bfd * output_bfd,
17896 const insn32 initial_insn,
17897 const bfd_byte *const initial_insn_addr,
17898 bfd_byte *const base_stub_contents)
17899 {
17900 int wback = (initial_insn & 0x00200000) >> 21;
17901 int ri, rn = (initial_insn & 0x000F0000) >> 16;
17902 int insn_all_registers = initial_insn & 0x0000ffff;
17903 int insn_low_registers, insn_high_registers;
17904 int usable_register_mask;
17905 int nb_registers = elf32_arm_popcount (insn_all_registers);
17906 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
17907 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
17908 bfd_byte *current_stub_contents = base_stub_contents;
17909
17910 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
17911
17912 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
17913 smaller than 8 registers load sequences that do not cause the
17914 hardware issue. */
17915 if (nb_registers <= 8)
17916 {
17917 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
17918 current_stub_contents =
17919 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17920 initial_insn);
17921
17922 /* B initial_insn_addr+4. */
17923 if (!restore_pc)
17924 current_stub_contents =
17925 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17926 create_instruction_branch_absolute
17927 (initial_insn_addr - current_stub_contents));
17928
17929 /* Fill the remaining of the stub with deterministic contents. */
17930 current_stub_contents =
17931 stm32l4xx_fill_stub_udf (htab, output_bfd,
17932 base_stub_contents, current_stub_contents,
17933 base_stub_contents +
17934 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
17935
17936 return;
17937 }
17938
17939 /* - reg_list[13] == 0. */
17940 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
17941
17942 /* - reg_list[14] & reg_list[15] != 1. */
17943 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
17944
17945 /* - if (wback==1) reg_list[rn] == 0. */
17946 BFD_ASSERT (!wback || !restore_rn);
17947
17948 /* - nb_registers > 8. */
17949 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
17950
17951 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
17952
17953 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
17954 - One with the 7 lowest registers (register mask 0x007F)
17955 This LDM will finally contain between 2 and 7 registers
17956 - One with the 7 highest registers (register mask 0xDF80)
17957 This ldm will finally contain between 2 and 7 registers. */
17958 insn_low_registers = insn_all_registers & 0x007F;
17959 insn_high_registers = insn_all_registers & 0xDF80;
17960
17961 /* A spare register may be needed during this veneer to temporarily
17962 handle the base register. This register will be restored with the
17963 last LDM operation.
17964 The usable register may be any general purpose register (that
17965 excludes PC, SP, LR : register mask is 0x1FFF). */
17966 usable_register_mask = 0x1FFF;
17967
17968 /* Generate the stub function. */
17969 if (wback)
17970 {
17971 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
17972 current_stub_contents =
17973 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17974 create_instruction_ldmia
17975 (rn, /*wback=*/1, insn_low_registers));
17976
17977 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
17978 current_stub_contents =
17979 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17980 create_instruction_ldmia
17981 (rn, /*wback=*/1, insn_high_registers));
17982 if (!restore_pc)
17983 {
17984 /* B initial_insn_addr+4. */
17985 current_stub_contents =
17986 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
17987 create_instruction_branch_absolute
17988 (initial_insn_addr - current_stub_contents));
17989 }
17990 }
17991 else /* if (!wback). */
17992 {
17993 ri = rn;
17994
17995 /* If Rn is not part of the high-register-list, move it there. */
17996 if (!(insn_high_registers & (1 << rn)))
17997 {
17998 /* Choose a Ri in the high-register-list that will be restored. */
17999 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18000
18001 /* MOV Ri, Rn. */
18002 current_stub_contents =
18003 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18004 create_instruction_mov (ri, rn));
18005 }
18006
18007 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
18008 current_stub_contents =
18009 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18010 create_instruction_ldmia
18011 (ri, /*wback=*/1, insn_low_registers));
18012
18013 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
18014 current_stub_contents =
18015 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18016 create_instruction_ldmia
18017 (ri, /*wback=*/0, insn_high_registers));
18018
18019 if (!restore_pc)
18020 {
18021 /* B initial_insn_addr+4. */
18022 current_stub_contents =
18023 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18024 create_instruction_branch_absolute
18025 (initial_insn_addr - current_stub_contents));
18026 }
18027 }
18028
18029 /* Fill the remaining of the stub with deterministic contents. */
18030 current_stub_contents =
18031 stm32l4xx_fill_stub_udf (htab, output_bfd,
18032 base_stub_contents, current_stub_contents,
18033 base_stub_contents +
18034 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18035 }
18036
18037 static void
18038 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
18039 bfd * output_bfd,
18040 const insn32 initial_insn,
18041 const bfd_byte *const initial_insn_addr,
18042 bfd_byte *const base_stub_contents)
18043 {
18044 int wback = (initial_insn & 0x00200000) >> 21;
18045 int ri, rn = (initial_insn & 0x000f0000) >> 16;
18046 int insn_all_registers = initial_insn & 0x0000ffff;
18047 int insn_low_registers, insn_high_registers;
18048 int usable_register_mask;
18049 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
18050 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
18051 int nb_registers = elf32_arm_popcount (insn_all_registers);
18052 bfd_byte *current_stub_contents = base_stub_contents;
18053
18054 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
18055
18056 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18057 smaller than 8 registers load sequences that do not cause the
18058 hardware issue. */
18059 if (nb_registers <= 8)
18060 {
18061 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
18062 current_stub_contents =
18063 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18064 initial_insn);
18065
18066 /* B initial_insn_addr+4. */
18067 current_stub_contents =
18068 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18069 create_instruction_branch_absolute
18070 (initial_insn_addr - current_stub_contents));
18071
18072 /* Fill the remaining of the stub with deterministic contents. */
18073 current_stub_contents =
18074 stm32l4xx_fill_stub_udf (htab, output_bfd,
18075 base_stub_contents, current_stub_contents,
18076 base_stub_contents +
18077 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18078
18079 return;
18080 }
18081
18082 /* - reg_list[13] == 0. */
18083 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
18084
18085 /* - reg_list[14] & reg_list[15] != 1. */
18086 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
18087
18088 /* - if (wback==1) reg_list[rn] == 0. */
18089 BFD_ASSERT (!wback || !restore_rn);
18090
18091 /* - nb_registers > 8. */
18092 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
18093
18094 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
18095
18096 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
18097 - One with the 7 lowest registers (register mask 0x007F)
18098 This LDM will finally contain between 2 and 7 registers
18099 - One with the 7 highest registers (register mask 0xDF80)
18100 This ldm will finally contain between 2 and 7 registers. */
18101 insn_low_registers = insn_all_registers & 0x007F;
18102 insn_high_registers = insn_all_registers & 0xDF80;
18103
18104 /* A spare register may be needed during this veneer to temporarily
18105 handle the base register. This register will be restored with
18106 the last LDM operation.
18107 The usable register may be any general purpose register (that excludes
18108 PC, SP, LR : register mask is 0x1FFF). */
18109 usable_register_mask = 0x1FFF;
18110
18111 /* Generate the stub function. */
18112 if (!wback && !restore_pc && !restore_rn)
18113 {
18114 /* Choose a Ri in the low-register-list that will be restored. */
18115 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18116
18117 /* MOV Ri, Rn. */
18118 current_stub_contents =
18119 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18120 create_instruction_mov (ri, rn));
18121
18122 /* LDMDB Ri!, {R-high-register-list}. */
18123 current_stub_contents =
18124 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18125 create_instruction_ldmdb
18126 (ri, /*wback=*/1, insn_high_registers));
18127
18128 /* LDMDB Ri, {R-low-register-list}. */
18129 current_stub_contents =
18130 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18131 create_instruction_ldmdb
18132 (ri, /*wback=*/0, insn_low_registers));
18133
18134 /* B initial_insn_addr+4. */
18135 current_stub_contents =
18136 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18137 create_instruction_branch_absolute
18138 (initial_insn_addr - current_stub_contents));
18139 }
18140 else if (wback && !restore_pc && !restore_rn)
18141 {
18142 /* LDMDB Rn!, {R-high-register-list}. */
18143 current_stub_contents =
18144 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18145 create_instruction_ldmdb
18146 (rn, /*wback=*/1, insn_high_registers));
18147
18148 /* LDMDB Rn!, {R-low-register-list}. */
18149 current_stub_contents =
18150 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18151 create_instruction_ldmdb
18152 (rn, /*wback=*/1, insn_low_registers));
18153
18154 /* B initial_insn_addr+4. */
18155 current_stub_contents =
18156 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18157 create_instruction_branch_absolute
18158 (initial_insn_addr - current_stub_contents));
18159 }
18160 else if (!wback && restore_pc && !restore_rn)
18161 {
18162 /* Choose a Ri in the high-register-list that will be restored. */
18163 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18164
18165 /* SUB Ri, Rn, #(4*nb_registers). */
18166 current_stub_contents =
18167 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18168 create_instruction_sub (ri, rn, (4 * nb_registers)));
18169
18170 /* LDMIA Ri!, {R-low-register-list}. */
18171 current_stub_contents =
18172 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18173 create_instruction_ldmia
18174 (ri, /*wback=*/1, insn_low_registers));
18175
18176 /* LDMIA Ri, {R-high-register-list}. */
18177 current_stub_contents =
18178 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18179 create_instruction_ldmia
18180 (ri, /*wback=*/0, insn_high_registers));
18181 }
18182 else if (wback && restore_pc && !restore_rn)
18183 {
18184 /* Choose a Ri in the high-register-list that will be restored. */
18185 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18186
18187 /* SUB Rn, Rn, #(4*nb_registers) */
18188 current_stub_contents =
18189 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18190 create_instruction_sub (rn, rn, (4 * nb_registers)));
18191
18192 /* MOV Ri, Rn. */
18193 current_stub_contents =
18194 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18195 create_instruction_mov (ri, rn));
18196
18197 /* LDMIA Ri!, {R-low-register-list}. */
18198 current_stub_contents =
18199 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18200 create_instruction_ldmia
18201 (ri, /*wback=*/1, insn_low_registers));
18202
18203 /* LDMIA Ri, {R-high-register-list}. */
18204 current_stub_contents =
18205 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18206 create_instruction_ldmia
18207 (ri, /*wback=*/0, insn_high_registers));
18208 }
18209 else if (!wback && !restore_pc && restore_rn)
18210 {
18211 ri = rn;
18212 if (!(insn_low_registers & (1 << rn)))
18213 {
18214 /* Choose a Ri in the low-register-list that will be restored. */
18215 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
18216
18217 /* MOV Ri, Rn. */
18218 current_stub_contents =
18219 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
18220 create_instruction_mov (ri, rn));
18221 }
18222
18223 /* LDMDB Ri!, {R-high-register-list}. */
18224 current_stub_contents =
18225 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18226 create_instruction_ldmdb
18227 (ri, /*wback=*/1, insn_high_registers));
18228
18229 /* LDMDB Ri, {R-low-register-list}. */
18230 current_stub_contents =
18231 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18232 create_instruction_ldmdb
18233 (ri, /*wback=*/0, insn_low_registers));
18234
18235 /* B initial_insn_addr+4. */
18236 current_stub_contents =
18237 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18238 create_instruction_branch_absolute
18239 (initial_insn_addr - current_stub_contents));
18240 }
18241 else if (!wback && restore_pc && restore_rn)
18242 {
18243 ri = rn;
18244 if (!(insn_high_registers & (1 << rn)))
18245 {
18246 /* Choose a Ri in the high-register-list that will be restored. */
18247 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
18248 }
18249
18250 /* SUB Ri, Rn, #(4*nb_registers). */
18251 current_stub_contents =
18252 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18253 create_instruction_sub (ri, rn, (4 * nb_registers)));
18254
18255 /* LDMIA Ri!, {R-low-register-list}. */
18256 current_stub_contents =
18257 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18258 create_instruction_ldmia
18259 (ri, /*wback=*/1, insn_low_registers));
18260
18261 /* LDMIA Ri, {R-high-register-list}. */
18262 current_stub_contents =
18263 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18264 create_instruction_ldmia
18265 (ri, /*wback=*/0, insn_high_registers));
18266 }
18267 else if (wback && restore_rn)
18268 {
18269 /* The assembler should not have accepted to encode this. */
18270 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
18271 "undefined behavior.\n");
18272 }
18273
18274 /* Fill the remaining of the stub with deterministic contents. */
18275 current_stub_contents =
18276 stm32l4xx_fill_stub_udf (htab, output_bfd,
18277 base_stub_contents, current_stub_contents,
18278 base_stub_contents +
18279 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
18280
18281 }
18282
18283 static void
18284 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
18285 bfd * output_bfd,
18286 const insn32 initial_insn,
18287 const bfd_byte *const initial_insn_addr,
18288 bfd_byte *const base_stub_contents)
18289 {
18290 int num_words = ((unsigned int) initial_insn << 24) >> 24;
18291 bfd_byte *current_stub_contents = base_stub_contents;
18292
18293 BFD_ASSERT (is_thumb2_vldm (initial_insn));
18294
18295 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
18296 smaller than 8 words load sequences that do not cause the
18297 hardware issue. */
18298 if (num_words <= 8)
18299 {
18300 /* Untouched instruction. */
18301 current_stub_contents =
18302 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18303 initial_insn);
18304
18305 /* B initial_insn_addr+4. */
18306 current_stub_contents =
18307 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18308 create_instruction_branch_absolute
18309 (initial_insn_addr - current_stub_contents));
18310 }
18311 else
18312 {
18313 bfd_boolean is_dp = /* DP encoding. */
18314 (initial_insn & 0xfe100f00) == 0xec100b00;
18315 bfd_boolean is_ia_nobang = /* (IA without !). */
18316 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
18317 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
18318 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
18319 bfd_boolean is_db_bang = /* (DB with !). */
18320 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
18321 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
18322 /* d = UInt (Vd:D);. */
18323 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
18324 | (((unsigned int)initial_insn << 9) >> 31);
18325
18326 /* Compute the number of 8-words chunks needed to split. */
18327 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
18328 int chunk;
18329
18330 /* The test coverage has been done assuming the following
18331 hypothesis that exactly one of the previous is_ predicates is
18332 true. */
18333 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
18334 && !(is_ia_nobang & is_ia_bang & is_db_bang));
18335
18336 /* We treat the cutting of the words in one pass for all
18337 cases, then we emit the adjustments:
18338
18339 vldm rx, {...}
18340 -> vldm rx!, {8_words_or_less} for each needed 8_word
18341 -> sub rx, rx, #size (list)
18342
18343 vldm rx!, {...}
18344 -> vldm rx!, {8_words_or_less} for each needed 8_word
18345 This also handles vpop instruction (when rx is sp)
18346
18347 vldmd rx!, {...}
18348 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
18349 for (chunk = 0; chunk < chunks; ++chunk)
18350 {
18351 bfd_vma new_insn = 0;
18352
18353 if (is_ia_nobang || is_ia_bang)
18354 {
18355 new_insn = create_instruction_vldmia
18356 (base_reg,
18357 is_dp,
18358 /*wback= . */1,
18359 chunks - (chunk + 1) ?
18360 8 : num_words - chunk * 8,
18361 first_reg + chunk * 8);
18362 }
18363 else if (is_db_bang)
18364 {
18365 new_insn = create_instruction_vldmdb
18366 (base_reg,
18367 is_dp,
18368 chunks - (chunk + 1) ?
18369 8 : num_words - chunk * 8,
18370 first_reg + chunk * 8);
18371 }
18372
18373 if (new_insn)
18374 current_stub_contents =
18375 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18376 new_insn);
18377 }
18378
18379 /* Only this case requires the base register compensation
18380 subtract. */
18381 if (is_ia_nobang)
18382 {
18383 current_stub_contents =
18384 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18385 create_instruction_sub
18386 (base_reg, base_reg, 4*num_words));
18387 }
18388
18389 /* B initial_insn_addr+4. */
18390 current_stub_contents =
18391 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
18392 create_instruction_branch_absolute
18393 (initial_insn_addr - current_stub_contents));
18394 }
18395
18396 /* Fill the remaining of the stub with deterministic contents. */
18397 current_stub_contents =
18398 stm32l4xx_fill_stub_udf (htab, output_bfd,
18399 base_stub_contents, current_stub_contents,
18400 base_stub_contents +
18401 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
18402 }
18403
18404 static void
18405 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
18406 bfd * output_bfd,
18407 const insn32 wrong_insn,
18408 const bfd_byte *const wrong_insn_addr,
18409 bfd_byte *const stub_contents)
18410 {
18411 if (is_thumb2_ldmia (wrong_insn))
18412 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
18413 wrong_insn, wrong_insn_addr,
18414 stub_contents);
18415 else if (is_thumb2_ldmdb (wrong_insn))
18416 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
18417 wrong_insn, wrong_insn_addr,
18418 stub_contents);
18419 else if (is_thumb2_vldm (wrong_insn))
18420 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
18421 wrong_insn, wrong_insn_addr,
18422 stub_contents);
18423 }
18424
18425 /* End of stm32l4xx work-around. */
18426
18427
18428 /* Do code byteswapping. Return FALSE afterwards so that the section is
18429 written out as normal. */
18430
18431 static bfd_boolean
18432 elf32_arm_write_section (bfd *output_bfd,
18433 struct bfd_link_info *link_info,
18434 asection *sec,
18435 bfd_byte *contents)
18436 {
18437 unsigned int mapcount, errcount;
18438 _arm_elf_section_data *arm_data;
18439 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
18440 elf32_arm_section_map *map;
18441 elf32_vfp11_erratum_list *errnode;
18442 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
18443 bfd_vma ptr;
18444 bfd_vma end;
18445 bfd_vma offset = sec->output_section->vma + sec->output_offset;
18446 bfd_byte tmp;
18447 unsigned int i;
18448
18449 if (globals == NULL)
18450 return FALSE;
18451
18452 /* If this section has not been allocated an _arm_elf_section_data
18453 structure then we cannot record anything. */
18454 arm_data = get_arm_elf_section_data (sec);
18455 if (arm_data == NULL)
18456 return FALSE;
18457
18458 mapcount = arm_data->mapcount;
18459 map = arm_data->map;
18460 errcount = arm_data->erratumcount;
18461
18462 if (errcount != 0)
18463 {
18464 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
18465
18466 for (errnode = arm_data->erratumlist; errnode != 0;
18467 errnode = errnode->next)
18468 {
18469 bfd_vma target = errnode->vma - offset;
18470
18471 switch (errnode->type)
18472 {
18473 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
18474 {
18475 bfd_vma branch_to_veneer;
18476 /* Original condition code of instruction, plus bit mask for
18477 ARM B instruction. */
18478 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
18479 | 0x0a000000;
18480
18481 /* The instruction is before the label. */
18482 target -= 4;
18483
18484 /* Above offset included in -4 below. */
18485 branch_to_veneer = errnode->u.b.veneer->vma
18486 - errnode->vma - 4;
18487
18488 if ((signed) branch_to_veneer < -(1 << 25)
18489 || (signed) branch_to_veneer >= (1 << 25))
18490 _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18491 "range"), output_bfd);
18492
18493 insn |= (branch_to_veneer >> 2) & 0xffffff;
18494 contents[endianflip ^ target] = insn & 0xff;
18495 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18496 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18497 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18498 }
18499 break;
18500
18501 case VFP11_ERRATUM_ARM_VENEER:
18502 {
18503 bfd_vma branch_from_veneer;
18504 unsigned int insn;
18505
18506 /* Take size of veneer into account. */
18507 branch_from_veneer = errnode->u.v.branch->vma
18508 - errnode->vma - 12;
18509
18510 if ((signed) branch_from_veneer < -(1 << 25)
18511 || (signed) branch_from_veneer >= (1 << 25))
18512 _bfd_error_handler (_("%B: error: VFP11 veneer out of "
18513 "range"), output_bfd);
18514
18515 /* Original instruction. */
18516 insn = errnode->u.v.branch->u.b.vfp_insn;
18517 contents[endianflip ^ target] = insn & 0xff;
18518 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
18519 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
18520 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
18521
18522 /* Branch back to insn after original insn. */
18523 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
18524 contents[endianflip ^ (target + 4)] = insn & 0xff;
18525 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
18526 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
18527 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
18528 }
18529 break;
18530
18531 default:
18532 abort ();
18533 }
18534 }
18535 }
18536
18537 if (arm_data->stm32l4xx_erratumcount != 0)
18538 {
18539 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
18540 stm32l4xx_errnode != 0;
18541 stm32l4xx_errnode = stm32l4xx_errnode->next)
18542 {
18543 bfd_vma target = stm32l4xx_errnode->vma - offset;
18544
18545 switch (stm32l4xx_errnode->type)
18546 {
18547 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
18548 {
18549 unsigned int insn;
18550 bfd_vma branch_to_veneer =
18551 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
18552
18553 if ((signed) branch_to_veneer < -(1 << 24)
18554 || (signed) branch_to_veneer >= (1 << 24))
18555 {
18556 bfd_vma out_of_range =
18557 ((signed) branch_to_veneer < -(1 << 24)) ?
18558 - branch_to_veneer - (1 << 24) :
18559 ((signed) branch_to_veneer >= (1 << 24)) ?
18560 branch_to_veneer - (1 << 24) : 0;
18561
18562 _bfd_error_handler
18563 (_("%B(%#x): error: Cannot create STM32L4XX veneer. "
18564 "Jump out of range by %ld bytes. "
18565 "Cannot encode branch instruction. "),
18566 output_bfd,
18567 (long) (stm32l4xx_errnode->vma - 4),
18568 out_of_range);
18569 continue;
18570 }
18571
18572 insn = create_instruction_branch_absolute
18573 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
18574
18575 /* The instruction is before the label. */
18576 target -= 4;
18577
18578 put_thumb2_insn (globals, output_bfd,
18579 (bfd_vma) insn, contents + target);
18580 }
18581 break;
18582
18583 case STM32L4XX_ERRATUM_VENEER:
18584 {
18585 bfd_byte * veneer;
18586 bfd_byte * veneer_r;
18587 unsigned int insn;
18588
18589 veneer = contents + target;
18590 veneer_r = veneer
18591 + stm32l4xx_errnode->u.b.veneer->vma
18592 - stm32l4xx_errnode->vma - 4;
18593
18594 if ((signed) (veneer_r - veneer -
18595 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
18596 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
18597 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
18598 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
18599 || (signed) (veneer_r - veneer) >= (1 << 24))
18600 {
18601 _bfd_error_handler (_("%B: error: Cannot create STM32L4XX "
18602 "veneer."), output_bfd);
18603 continue;
18604 }
18605
18606 /* Original instruction. */
18607 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
18608
18609 stm32l4xx_create_replacing_stub
18610 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
18611 }
18612 break;
18613
18614 default:
18615 abort ();
18616 }
18617 }
18618 }
18619
18620 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
18621 {
18622 arm_unwind_table_edit *edit_node
18623 = arm_data->u.exidx.unwind_edit_list;
18624 /* Now, sec->size is the size of the section we will write. The original
18625 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
18626 markers) was sec->rawsize. (This isn't the case if we perform no
18627 edits, then rawsize will be zero and we should use size). */
18628 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
18629 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
18630 unsigned int in_index, out_index;
18631 bfd_vma add_to_offsets = 0;
18632
18633 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
18634 {
18635 if (edit_node)
18636 {
18637 unsigned int edit_index = edit_node->index;
18638
18639 if (in_index < edit_index && in_index * 8 < input_size)
18640 {
18641 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18642 contents + in_index * 8, add_to_offsets);
18643 out_index++;
18644 in_index++;
18645 }
18646 else if (in_index == edit_index
18647 || (in_index * 8 >= input_size
18648 && edit_index == UINT_MAX))
18649 {
18650 switch (edit_node->type)
18651 {
18652 case DELETE_EXIDX_ENTRY:
18653 in_index++;
18654 add_to_offsets += 8;
18655 break;
18656
18657 case INSERT_EXIDX_CANTUNWIND_AT_END:
18658 {
18659 asection *text_sec = edit_node->linked_section;
18660 bfd_vma text_offset = text_sec->output_section->vma
18661 + text_sec->output_offset
18662 + text_sec->size;
18663 bfd_vma exidx_offset = offset + out_index * 8;
18664 unsigned long prel31_offset;
18665
18666 /* Note: this is meant to be equivalent to an
18667 R_ARM_PREL31 relocation. These synthetic
18668 EXIDX_CANTUNWIND markers are not relocated by the
18669 usual BFD method. */
18670 prel31_offset = (text_offset - exidx_offset)
18671 & 0x7ffffffful;
18672 if (bfd_link_relocatable (link_info))
18673 {
18674 /* Here relocation for new EXIDX_CANTUNWIND is
18675 created, so there is no need to
18676 adjust offset by hand. */
18677 prel31_offset = text_sec->output_offset
18678 + text_sec->size;
18679 }
18680
18681 /* First address we can't unwind. */
18682 bfd_put_32 (output_bfd, prel31_offset,
18683 &edited_contents[out_index * 8]);
18684
18685 /* Code for EXIDX_CANTUNWIND. */
18686 bfd_put_32 (output_bfd, 0x1,
18687 &edited_contents[out_index * 8 + 4]);
18688
18689 out_index++;
18690 add_to_offsets -= 8;
18691 }
18692 break;
18693 }
18694
18695 edit_node = edit_node->next;
18696 }
18697 }
18698 else
18699 {
18700 /* No more edits, copy remaining entries verbatim. */
18701 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
18702 contents + in_index * 8, add_to_offsets);
18703 out_index++;
18704 in_index++;
18705 }
18706 }
18707
18708 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
18709 bfd_set_section_contents (output_bfd, sec->output_section,
18710 edited_contents,
18711 (file_ptr) sec->output_offset, sec->size);
18712
18713 return TRUE;
18714 }
18715
18716 /* Fix code to point to Cortex-A8 erratum stubs. */
18717 if (globals->fix_cortex_a8)
18718 {
18719 struct a8_branch_to_stub_data data;
18720
18721 data.writing_section = sec;
18722 data.contents = contents;
18723
18724 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
18725 & data);
18726 }
18727
18728 if (mapcount == 0)
18729 return FALSE;
18730
18731 if (globals->byteswap_code)
18732 {
18733 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
18734
18735 ptr = map[0].vma;
18736 for (i = 0; i < mapcount; i++)
18737 {
18738 if (i == mapcount - 1)
18739 end = sec->size;
18740 else
18741 end = map[i + 1].vma;
18742
18743 switch (map[i].type)
18744 {
18745 case 'a':
18746 /* Byte swap code words. */
18747 while (ptr + 3 < end)
18748 {
18749 tmp = contents[ptr];
18750 contents[ptr] = contents[ptr + 3];
18751 contents[ptr + 3] = tmp;
18752 tmp = contents[ptr + 1];
18753 contents[ptr + 1] = contents[ptr + 2];
18754 contents[ptr + 2] = tmp;
18755 ptr += 4;
18756 }
18757 break;
18758
18759 case 't':
18760 /* Byte swap code halfwords. */
18761 while (ptr + 1 < end)
18762 {
18763 tmp = contents[ptr];
18764 contents[ptr] = contents[ptr + 1];
18765 contents[ptr + 1] = tmp;
18766 ptr += 2;
18767 }
18768 break;
18769
18770 case 'd':
18771 /* Leave data alone. */
18772 break;
18773 }
18774 ptr = end;
18775 }
18776 }
18777
18778 free (map);
18779 arm_data->mapcount = -1;
18780 arm_data->mapsize = 0;
18781 arm_data->map = NULL;
18782
18783 return FALSE;
18784 }
18785
18786 /* Mangle thumb function symbols as we read them in. */
18787
18788 static bfd_boolean
18789 elf32_arm_swap_symbol_in (bfd * abfd,
18790 const void *psrc,
18791 const void *pshn,
18792 Elf_Internal_Sym *dst)
18793 {
18794 Elf_Internal_Shdr *symtab_hdr;
18795 const char *name = NULL;
18796
18797 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
18798 return FALSE;
18799 dst->st_target_internal = 0;
18800
18801 /* New EABI objects mark thumb function symbols by setting the low bit of
18802 the address. */
18803 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
18804 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
18805 {
18806 if (dst->st_value & 1)
18807 {
18808 dst->st_value &= ~(bfd_vma) 1;
18809 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
18810 ST_BRANCH_TO_THUMB);
18811 }
18812 else
18813 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
18814 }
18815 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
18816 {
18817 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
18818 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
18819 }
18820 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
18821 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
18822 else
18823 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
18824
18825 /* Mark CMSE special symbols. */
18826 symtab_hdr = & elf_symtab_hdr (abfd);
18827 if (symtab_hdr->sh_size)
18828 name = bfd_elf_sym_name (abfd, symtab_hdr, dst, NULL);
18829 if (name && CONST_STRNEQ (name, CMSE_PREFIX))
18830 ARM_SET_SYM_CMSE_SPCL (dst->st_target_internal);
18831
18832 return TRUE;
18833 }
18834
18835
18836 /* Mangle thumb function symbols as we write them out. */
18837
18838 static void
18839 elf32_arm_swap_symbol_out (bfd *abfd,
18840 const Elf_Internal_Sym *src,
18841 void *cdst,
18842 void *shndx)
18843 {
18844 Elf_Internal_Sym newsym;
18845
18846 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
18847 of the address set, as per the new EABI. We do this unconditionally
18848 because objcopy does not set the elf header flags until after
18849 it writes out the symbol table. */
18850 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
18851 {
18852 newsym = *src;
18853 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
18854 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
18855 if (newsym.st_shndx != SHN_UNDEF)
18856 {
18857 /* Do this only for defined symbols. At link type, the static
18858 linker will simulate the work of dynamic linker of resolving
18859 symbols and will carry over the thumbness of found symbols to
18860 the output symbol table. It's not clear how it happens, but
18861 the thumbness of undefined symbols can well be different at
18862 runtime, and writing '1' for them will be confusing for users
18863 and possibly for dynamic linker itself.
18864 */
18865 newsym.st_value |= 1;
18866 }
18867
18868 src = &newsym;
18869 }
18870 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
18871 }
18872
18873 /* Add the PT_ARM_EXIDX program header. */
18874
18875 static bfd_boolean
18876 elf32_arm_modify_segment_map (bfd *abfd,
18877 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18878 {
18879 struct elf_segment_map *m;
18880 asection *sec;
18881
18882 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18883 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18884 {
18885 /* If there is already a PT_ARM_EXIDX header, then we do not
18886 want to add another one. This situation arises when running
18887 "strip"; the input binary already has the header. */
18888 m = elf_seg_map (abfd);
18889 while (m && m->p_type != PT_ARM_EXIDX)
18890 m = m->next;
18891 if (!m)
18892 {
18893 m = (struct elf_segment_map *)
18894 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
18895 if (m == NULL)
18896 return FALSE;
18897 m->p_type = PT_ARM_EXIDX;
18898 m->count = 1;
18899 m->sections[0] = sec;
18900
18901 m->next = elf_seg_map (abfd);
18902 elf_seg_map (abfd) = m;
18903 }
18904 }
18905
18906 return TRUE;
18907 }
18908
18909 /* We may add a PT_ARM_EXIDX program header. */
18910
18911 static int
18912 elf32_arm_additional_program_headers (bfd *abfd,
18913 struct bfd_link_info *info ATTRIBUTE_UNUSED)
18914 {
18915 asection *sec;
18916
18917 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
18918 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
18919 return 1;
18920 else
18921 return 0;
18922 }
18923
18924 /* Hook called by the linker routine which adds symbols from an object
18925 file. */
18926
18927 static bfd_boolean
18928 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
18929 Elf_Internal_Sym *sym, const char **namep,
18930 flagword *flagsp, asection **secp, bfd_vma *valp)
18931 {
18932 if (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
18933 && (abfd->flags & DYNAMIC) == 0
18934 && bfd_get_flavour (info->output_bfd) == bfd_target_elf_flavour)
18935 elf_tdata (info->output_bfd)->has_gnu_symbols |= elf_gnu_symbol_ifunc;
18936
18937 if (elf32_arm_hash_table (info) == NULL)
18938 return FALSE;
18939
18940 if (elf32_arm_hash_table (info)->vxworks_p
18941 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
18942 flagsp, secp, valp))
18943 return FALSE;
18944
18945 return TRUE;
18946 }
18947
18948 /* We use this to override swap_symbol_in and swap_symbol_out. */
18949 const struct elf_size_info elf32_arm_size_info =
18950 {
18951 sizeof (Elf32_External_Ehdr),
18952 sizeof (Elf32_External_Phdr),
18953 sizeof (Elf32_External_Shdr),
18954 sizeof (Elf32_External_Rel),
18955 sizeof (Elf32_External_Rela),
18956 sizeof (Elf32_External_Sym),
18957 sizeof (Elf32_External_Dyn),
18958 sizeof (Elf_External_Note),
18959 4,
18960 1,
18961 32, 2,
18962 ELFCLASS32, EV_CURRENT,
18963 bfd_elf32_write_out_phdrs,
18964 bfd_elf32_write_shdrs_and_ehdr,
18965 bfd_elf32_checksum_contents,
18966 bfd_elf32_write_relocs,
18967 elf32_arm_swap_symbol_in,
18968 elf32_arm_swap_symbol_out,
18969 bfd_elf32_slurp_reloc_table,
18970 bfd_elf32_slurp_symbol_table,
18971 bfd_elf32_swap_dyn_in,
18972 bfd_elf32_swap_dyn_out,
18973 bfd_elf32_swap_reloc_in,
18974 bfd_elf32_swap_reloc_out,
18975 bfd_elf32_swap_reloca_in,
18976 bfd_elf32_swap_reloca_out
18977 };
18978
18979 static bfd_vma
18980 read_code32 (const bfd *abfd, const bfd_byte *addr)
18981 {
18982 /* V7 BE8 code is always little endian. */
18983 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
18984 return bfd_getl32 (addr);
18985
18986 return bfd_get_32 (abfd, addr);
18987 }
18988
18989 static bfd_vma
18990 read_code16 (const bfd *abfd, const bfd_byte *addr)
18991 {
18992 /* V7 BE8 code is always little endian. */
18993 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
18994 return bfd_getl16 (addr);
18995
18996 return bfd_get_16 (abfd, addr);
18997 }
18998
18999 /* Return size of plt0 entry starting at ADDR
19000 or (bfd_vma) -1 if size can not be determined. */
19001
19002 static bfd_vma
19003 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
19004 {
19005 bfd_vma first_word;
19006 bfd_vma plt0_size;
19007
19008 first_word = read_code32 (abfd, addr);
19009
19010 if (first_word == elf32_arm_plt0_entry[0])
19011 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
19012 else if (first_word == elf32_thumb2_plt0_entry[0])
19013 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
19014 else
19015 /* We don't yet handle this PLT format. */
19016 return (bfd_vma) -1;
19017
19018 return plt0_size;
19019 }
19020
19021 /* Return size of plt entry starting at offset OFFSET
19022 of plt section located at address START
19023 or (bfd_vma) -1 if size can not be determined. */
19024
19025 static bfd_vma
19026 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
19027 {
19028 bfd_vma first_insn;
19029 bfd_vma plt_size = 0;
19030 const bfd_byte *addr = start + offset;
19031
19032 /* PLT entry size if fixed on Thumb-only platforms. */
19033 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
19034 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
19035
19036 /* Respect Thumb stub if necessary. */
19037 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
19038 {
19039 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
19040 }
19041
19042 /* Strip immediate from first add. */
19043 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
19044
19045 #ifdef FOUR_WORD_PLT
19046 if (first_insn == elf32_arm_plt_entry[0])
19047 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
19048 #else
19049 if (first_insn == elf32_arm_plt_entry_long[0])
19050 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
19051 else if (first_insn == elf32_arm_plt_entry_short[0])
19052 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
19053 #endif
19054 else
19055 /* We don't yet handle this PLT format. */
19056 return (bfd_vma) -1;
19057
19058 return plt_size;
19059 }
19060
19061 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
19062
19063 static long
19064 elf32_arm_get_synthetic_symtab (bfd *abfd,
19065 long symcount ATTRIBUTE_UNUSED,
19066 asymbol **syms ATTRIBUTE_UNUSED,
19067 long dynsymcount,
19068 asymbol **dynsyms,
19069 asymbol **ret)
19070 {
19071 asection *relplt;
19072 asymbol *s;
19073 arelent *p;
19074 long count, i, n;
19075 size_t size;
19076 Elf_Internal_Shdr *hdr;
19077 char *names;
19078 asection *plt;
19079 bfd_vma offset;
19080 bfd_byte *data;
19081
19082 *ret = NULL;
19083
19084 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
19085 return 0;
19086
19087 if (dynsymcount <= 0)
19088 return 0;
19089
19090 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
19091 if (relplt == NULL)
19092 return 0;
19093
19094 hdr = &elf_section_data (relplt)->this_hdr;
19095 if (hdr->sh_link != elf_dynsymtab (abfd)
19096 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
19097 return 0;
19098
19099 plt = bfd_get_section_by_name (abfd, ".plt");
19100 if (plt == NULL)
19101 return 0;
19102
19103 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
19104 return -1;
19105
19106 data = plt->contents;
19107 if (data == NULL)
19108 {
19109 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
19110 return -1;
19111 bfd_cache_section_contents((asection *) plt, data);
19112 }
19113
19114 count = relplt->size / hdr->sh_entsize;
19115 size = count * sizeof (asymbol);
19116 p = relplt->relocation;
19117 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19118 {
19119 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
19120 if (p->addend != 0)
19121 size += sizeof ("+0x") - 1 + 8;
19122 }
19123
19124 s = *ret = (asymbol *) bfd_malloc (size);
19125 if (s == NULL)
19126 return -1;
19127
19128 offset = elf32_arm_plt0_size (abfd, data);
19129 if (offset == (bfd_vma) -1)
19130 return -1;
19131
19132 names = (char *) (s + count);
19133 p = relplt->relocation;
19134 n = 0;
19135 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
19136 {
19137 size_t len;
19138
19139 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
19140 if (plt_size == (bfd_vma) -1)
19141 break;
19142
19143 *s = **p->sym_ptr_ptr;
19144 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
19145 we are defining a symbol, ensure one of them is set. */
19146 if ((s->flags & BSF_LOCAL) == 0)
19147 s->flags |= BSF_GLOBAL;
19148 s->flags |= BSF_SYNTHETIC;
19149 s->section = plt;
19150 s->value = offset;
19151 s->name = names;
19152 s->udata.p = NULL;
19153 len = strlen ((*p->sym_ptr_ptr)->name);
19154 memcpy (names, (*p->sym_ptr_ptr)->name, len);
19155 names += len;
19156 if (p->addend != 0)
19157 {
19158 char buf[30], *a;
19159
19160 memcpy (names, "+0x", sizeof ("+0x") - 1);
19161 names += sizeof ("+0x") - 1;
19162 bfd_sprintf_vma (abfd, buf, p->addend);
19163 for (a = buf; *a == '0'; ++a)
19164 ;
19165 len = strlen (a);
19166 memcpy (names, a, len);
19167 names += len;
19168 }
19169 memcpy (names, "@plt", sizeof ("@plt"));
19170 names += sizeof ("@plt");
19171 ++s, ++n;
19172 offset += plt_size;
19173 }
19174
19175 return n;
19176 }
19177
19178 static bfd_boolean
19179 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
19180 {
19181 if (hdr->sh_flags & SHF_ARM_PURECODE)
19182 *flags |= SEC_ELF_PURECODE;
19183 return TRUE;
19184 }
19185
19186 static flagword
19187 elf32_arm_lookup_section_flags (char *flag_name)
19188 {
19189 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
19190 return SHF_ARM_PURECODE;
19191
19192 return SEC_NO_FLAGS;
19193 }
19194
19195 static unsigned int
19196 elf32_arm_count_additional_relocs (asection *sec)
19197 {
19198 struct _arm_elf_section_data *arm_data;
19199 arm_data = get_arm_elf_section_data (sec);
19200
19201 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
19202 }
19203
19204 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
19205 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
19206 FALSE otherwise. ISECTION is the best guess matching section from the
19207 input bfd IBFD, but it might be NULL. */
19208
19209 static bfd_boolean
19210 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
19211 bfd *obfd ATTRIBUTE_UNUSED,
19212 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
19213 Elf_Internal_Shdr *osection)
19214 {
19215 switch (osection->sh_type)
19216 {
19217 case SHT_ARM_EXIDX:
19218 {
19219 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
19220 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
19221 unsigned i = 0;
19222
19223 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
19224 osection->sh_info = 0;
19225
19226 /* The sh_link field must be set to the text section associated with
19227 this index section. Unfortunately the ARM EHABI does not specify
19228 exactly how to determine this association. Our caller does try
19229 to match up OSECTION with its corresponding input section however
19230 so that is a good first guess. */
19231 if (isection != NULL
19232 && osection->bfd_section != NULL
19233 && isection->bfd_section != NULL
19234 && isection->bfd_section->output_section != NULL
19235 && isection->bfd_section->output_section == osection->bfd_section
19236 && iheaders != NULL
19237 && isection->sh_link > 0
19238 && isection->sh_link < elf_numsections (ibfd)
19239 && iheaders[isection->sh_link]->bfd_section != NULL
19240 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
19241 )
19242 {
19243 for (i = elf_numsections (obfd); i-- > 0;)
19244 if (oheaders[i]->bfd_section
19245 == iheaders[isection->sh_link]->bfd_section->output_section)
19246 break;
19247 }
19248
19249 if (i == 0)
19250 {
19251 /* Failing that we have to find a matching section ourselves. If
19252 we had the output section name available we could compare that
19253 with input section names. Unfortunately we don't. So instead
19254 we use a simple heuristic and look for the nearest executable
19255 section before this one. */
19256 for (i = elf_numsections (obfd); i-- > 0;)
19257 if (oheaders[i] == osection)
19258 break;
19259 if (i == 0)
19260 break;
19261
19262 while (i-- > 0)
19263 if (oheaders[i]->sh_type == SHT_PROGBITS
19264 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
19265 == (SHF_ALLOC | SHF_EXECINSTR))
19266 break;
19267 }
19268
19269 if (i)
19270 {
19271 osection->sh_link = i;
19272 /* If the text section was part of a group
19273 then the index section should be too. */
19274 if (oheaders[i]->sh_flags & SHF_GROUP)
19275 osection->sh_flags |= SHF_GROUP;
19276 return TRUE;
19277 }
19278 }
19279 break;
19280
19281 case SHT_ARM_PREEMPTMAP:
19282 osection->sh_flags = SHF_ALLOC;
19283 break;
19284
19285 case SHT_ARM_ATTRIBUTES:
19286 case SHT_ARM_DEBUGOVERLAY:
19287 case SHT_ARM_OVERLAYSECTION:
19288 default:
19289 break;
19290 }
19291
19292 return FALSE;
19293 }
19294
19295 /* Returns TRUE if NAME is an ARM mapping symbol.
19296 Traditionally the symbols $a, $d and $t have been used.
19297 The ARM ELF standard also defines $x (for A64 code). It also allows a
19298 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
19299 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
19300 not support them here. $t.x indicates the start of ThumbEE instructions. */
19301
19302 static bfd_boolean
19303 is_arm_mapping_symbol (const char * name)
19304 {
19305 return name != NULL /* Paranoia. */
19306 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
19307 the mapping symbols could have acquired a prefix.
19308 We do not support this here, since such symbols no
19309 longer conform to the ARM ELF ABI. */
19310 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
19311 && (name[2] == 0 || name[2] == '.');
19312 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
19313 any characters that follow the period are legal characters for the body
19314 of a symbol's name. For now we just assume that this is the case. */
19315 }
19316
19317 /* Make sure that mapping symbols in object files are not removed via the
19318 "strip --strip-unneeded" tool. These symbols are needed in order to
19319 correctly generate interworking veneers, and for byte swapping code
19320 regions. Once an object file has been linked, it is safe to remove the
19321 symbols as they will no longer be needed. */
19322
19323 static void
19324 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
19325 {
19326 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
19327 && sym->section != bfd_abs_section_ptr
19328 && is_arm_mapping_symbol (sym->name))
19329 sym->flags |= BSF_KEEP;
19330 }
19331
19332 #undef elf_backend_copy_special_section_fields
19333 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
19334
19335 #define ELF_ARCH bfd_arch_arm
19336 #define ELF_TARGET_ID ARM_ELF_DATA
19337 #define ELF_MACHINE_CODE EM_ARM
19338 #ifdef __QNXTARGET__
19339 #define ELF_MAXPAGESIZE 0x1000
19340 #else
19341 #define ELF_MAXPAGESIZE 0x10000
19342 #endif
19343 #define ELF_MINPAGESIZE 0x1000
19344 #define ELF_COMMONPAGESIZE 0x1000
19345
19346 #define bfd_elf32_mkobject elf32_arm_mkobject
19347
19348 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
19349 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
19350 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
19351 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
19352 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
19353 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
19354 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
19355 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
19356 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
19357 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
19358 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
19359 #define bfd_elf32_bfd_final_link elf32_arm_final_link
19360 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
19361
19362 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
19363 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
19364 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
19365 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
19366 #define elf_backend_check_relocs elf32_arm_check_relocs
19367 #define elf_backend_update_relocs elf32_arm_update_relocs
19368 #define elf_backend_relocate_section elf32_arm_relocate_section
19369 #define elf_backend_write_section elf32_arm_write_section
19370 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
19371 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
19372 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
19373 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
19374 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
19375 #define elf_backend_always_size_sections elf32_arm_always_size_sections
19376 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
19377 #define elf_backend_post_process_headers elf32_arm_post_process_headers
19378 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
19379 #define elf_backend_object_p elf32_arm_object_p
19380 #define elf_backend_fake_sections elf32_arm_fake_sections
19381 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
19382 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19383 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
19384 #define elf_backend_size_info elf32_arm_size_info
19385 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19386 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
19387 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
19388 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
19389 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
19390 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
19391 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
19392 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
19393
19394 #define elf_backend_can_refcount 1
19395 #define elf_backend_can_gc_sections 1
19396 #define elf_backend_plt_readonly 1
19397 #define elf_backend_want_got_plt 1
19398 #define elf_backend_want_plt_sym 0
19399 #define elf_backend_want_dynrelro 1
19400 #define elf_backend_may_use_rel_p 1
19401 #define elf_backend_may_use_rela_p 0
19402 #define elf_backend_default_use_rela_p 0
19403 #define elf_backend_dtrel_excludes_plt 1
19404
19405 #define elf_backend_got_header_size 12
19406 #define elf_backend_extern_protected_data 1
19407
19408 #undef elf_backend_obj_attrs_vendor
19409 #define elf_backend_obj_attrs_vendor "aeabi"
19410 #undef elf_backend_obj_attrs_section
19411 #define elf_backend_obj_attrs_section ".ARM.attributes"
19412 #undef elf_backend_obj_attrs_arg_type
19413 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
19414 #undef elf_backend_obj_attrs_section_type
19415 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
19416 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
19417 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
19418
19419 #undef elf_backend_section_flags
19420 #define elf_backend_section_flags elf32_arm_section_flags
19421 #undef elf_backend_lookup_section_flags_hook
19422 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
19423
19424 #include "elf32-target.h"
19425
19426 /* Native Client targets. */
19427
19428 #undef TARGET_LITTLE_SYM
19429 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
19430 #undef TARGET_LITTLE_NAME
19431 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
19432 #undef TARGET_BIG_SYM
19433 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
19434 #undef TARGET_BIG_NAME
19435 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
19436
19437 /* Like elf32_arm_link_hash_table_create -- but overrides
19438 appropriately for NaCl. */
19439
19440 static struct bfd_link_hash_table *
19441 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
19442 {
19443 struct bfd_link_hash_table *ret;
19444
19445 ret = elf32_arm_link_hash_table_create (abfd);
19446 if (ret)
19447 {
19448 struct elf32_arm_link_hash_table *htab
19449 = (struct elf32_arm_link_hash_table *) ret;
19450
19451 htab->nacl_p = 1;
19452
19453 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
19454 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
19455 }
19456 return ret;
19457 }
19458
19459 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
19460 really need to use elf32_arm_modify_segment_map. But we do it
19461 anyway just to reduce gratuitous differences with the stock ARM backend. */
19462
19463 static bfd_boolean
19464 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
19465 {
19466 return (elf32_arm_modify_segment_map (abfd, info)
19467 && nacl_modify_segment_map (abfd, info));
19468 }
19469
19470 static void
19471 elf32_arm_nacl_final_write_processing (bfd *abfd, bfd_boolean linker)
19472 {
19473 elf32_arm_final_write_processing (abfd, linker);
19474 nacl_final_write_processing (abfd, linker);
19475 }
19476
19477 static bfd_vma
19478 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
19479 const arelent *rel ATTRIBUTE_UNUSED)
19480 {
19481 return plt->vma
19482 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
19483 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
19484 }
19485
19486 #undef elf32_bed
19487 #define elf32_bed elf32_arm_nacl_bed
19488 #undef bfd_elf32_bfd_link_hash_table_create
19489 #define bfd_elf32_bfd_link_hash_table_create \
19490 elf32_arm_nacl_link_hash_table_create
19491 #undef elf_backend_plt_alignment
19492 #define elf_backend_plt_alignment 4
19493 #undef elf_backend_modify_segment_map
19494 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
19495 #undef elf_backend_modify_program_headers
19496 #define elf_backend_modify_program_headers nacl_modify_program_headers
19497 #undef elf_backend_final_write_processing
19498 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
19499 #undef bfd_elf32_get_synthetic_symtab
19500 #undef elf_backend_plt_sym_val
19501 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
19502 #undef elf_backend_copy_special_section_fields
19503
19504 #undef ELF_MINPAGESIZE
19505 #undef ELF_COMMONPAGESIZE
19506
19507
19508 #include "elf32-target.h"
19509
19510 /* Reset to defaults. */
19511 #undef elf_backend_plt_alignment
19512 #undef elf_backend_modify_segment_map
19513 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
19514 #undef elf_backend_modify_program_headers
19515 #undef elf_backend_final_write_processing
19516 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19517 #undef ELF_MINPAGESIZE
19518 #define ELF_MINPAGESIZE 0x1000
19519 #undef ELF_COMMONPAGESIZE
19520 #define ELF_COMMONPAGESIZE 0x1000
19521
19522
19523 /* VxWorks Targets. */
19524
19525 #undef TARGET_LITTLE_SYM
19526 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
19527 #undef TARGET_LITTLE_NAME
19528 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
19529 #undef TARGET_BIG_SYM
19530 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
19531 #undef TARGET_BIG_NAME
19532 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
19533
19534 /* Like elf32_arm_link_hash_table_create -- but overrides
19535 appropriately for VxWorks. */
19536
19537 static struct bfd_link_hash_table *
19538 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
19539 {
19540 struct bfd_link_hash_table *ret;
19541
19542 ret = elf32_arm_link_hash_table_create (abfd);
19543 if (ret)
19544 {
19545 struct elf32_arm_link_hash_table *htab
19546 = (struct elf32_arm_link_hash_table *) ret;
19547 htab->use_rel = 0;
19548 htab->vxworks_p = 1;
19549 }
19550 return ret;
19551 }
19552
19553 static void
19554 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
19555 {
19556 elf32_arm_final_write_processing (abfd, linker);
19557 elf_vxworks_final_write_processing (abfd, linker);
19558 }
19559
19560 #undef elf32_bed
19561 #define elf32_bed elf32_arm_vxworks_bed
19562
19563 #undef bfd_elf32_bfd_link_hash_table_create
19564 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
19565 #undef elf_backend_final_write_processing
19566 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
19567 #undef elf_backend_emit_relocs
19568 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
19569
19570 #undef elf_backend_may_use_rel_p
19571 #define elf_backend_may_use_rel_p 0
19572 #undef elf_backend_may_use_rela_p
19573 #define elf_backend_may_use_rela_p 1
19574 #undef elf_backend_default_use_rela_p
19575 #define elf_backend_default_use_rela_p 1
19576 #undef elf_backend_want_plt_sym
19577 #define elf_backend_want_plt_sym 1
19578 #undef ELF_MAXPAGESIZE
19579 #define ELF_MAXPAGESIZE 0x1000
19580
19581 #include "elf32-target.h"
19582
19583
19584 /* Merge backend specific data from an object file to the output
19585 object file when linking. */
19586
19587 static bfd_boolean
19588 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
19589 {
19590 bfd *obfd = info->output_bfd;
19591 flagword out_flags;
19592 flagword in_flags;
19593 bfd_boolean flags_compatible = TRUE;
19594 asection *sec;
19595
19596 /* Check if we have the same endianness. */
19597 if (! _bfd_generic_verify_endian_match (ibfd, info))
19598 return FALSE;
19599
19600 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
19601 return TRUE;
19602
19603 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
19604 return FALSE;
19605
19606 /* The input BFD must have had its flags initialised. */
19607 /* The following seems bogus to me -- The flags are initialized in
19608 the assembler but I don't think an elf_flags_init field is
19609 written into the object. */
19610 /* BFD_ASSERT (elf_flags_init (ibfd)); */
19611
19612 in_flags = elf_elfheader (ibfd)->e_flags;
19613 out_flags = elf_elfheader (obfd)->e_flags;
19614
19615 /* In theory there is no reason why we couldn't handle this. However
19616 in practice it isn't even close to working and there is no real
19617 reason to want it. */
19618 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
19619 && !(ibfd->flags & DYNAMIC)
19620 && (in_flags & EF_ARM_BE8))
19621 {
19622 _bfd_error_handler (_("error: %B is already in final BE8 format"),
19623 ibfd);
19624 return FALSE;
19625 }
19626
19627 if (!elf_flags_init (obfd))
19628 {
19629 /* If the input is the default architecture and had the default
19630 flags then do not bother setting the flags for the output
19631 architecture, instead allow future merges to do this. If no
19632 future merges ever set these flags then they will retain their
19633 uninitialised values, which surprise surprise, correspond
19634 to the default values. */
19635 if (bfd_get_arch_info (ibfd)->the_default
19636 && elf_elfheader (ibfd)->e_flags == 0)
19637 return TRUE;
19638
19639 elf_flags_init (obfd) = TRUE;
19640 elf_elfheader (obfd)->e_flags = in_flags;
19641
19642 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
19643 && bfd_get_arch_info (obfd)->the_default)
19644 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
19645
19646 return TRUE;
19647 }
19648
19649 /* Determine what should happen if the input ARM architecture
19650 does not match the output ARM architecture. */
19651 if (! bfd_arm_merge_machines (ibfd, obfd))
19652 return FALSE;
19653
19654 /* Identical flags must be compatible. */
19655 if (in_flags == out_flags)
19656 return TRUE;
19657
19658 /* Check to see if the input BFD actually contains any sections. If
19659 not, its flags may not have been initialised either, but it
19660 cannot actually cause any incompatiblity. Do not short-circuit
19661 dynamic objects; their section list may be emptied by
19662 elf_link_add_object_symbols.
19663
19664 Also check to see if there are no code sections in the input.
19665 In this case there is no need to check for code specific flags.
19666 XXX - do we need to worry about floating-point format compatability
19667 in data sections ? */
19668 if (!(ibfd->flags & DYNAMIC))
19669 {
19670 bfd_boolean null_input_bfd = TRUE;
19671 bfd_boolean only_data_sections = TRUE;
19672
19673 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
19674 {
19675 /* Ignore synthetic glue sections. */
19676 if (strcmp (sec->name, ".glue_7")
19677 && strcmp (sec->name, ".glue_7t"))
19678 {
19679 if ((bfd_get_section_flags (ibfd, sec)
19680 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19681 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
19682 only_data_sections = FALSE;
19683
19684 null_input_bfd = FALSE;
19685 break;
19686 }
19687 }
19688
19689 if (null_input_bfd || only_data_sections)
19690 return TRUE;
19691 }
19692
19693 /* Complain about various flag mismatches. */
19694 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
19695 EF_ARM_EABI_VERSION (out_flags)))
19696 {
19697 _bfd_error_handler
19698 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
19699 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
19700 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
19701 return FALSE;
19702 }
19703
19704 /* Not sure what needs to be checked for EABI versions >= 1. */
19705 /* VxWorks libraries do not use these flags. */
19706 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
19707 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
19708 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
19709 {
19710 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
19711 {
19712 _bfd_error_handler
19713 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
19714 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
19715 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
19716 flags_compatible = FALSE;
19717 }
19718
19719 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
19720 {
19721 if (in_flags & EF_ARM_APCS_FLOAT)
19722 _bfd_error_handler
19723 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
19724 ibfd, obfd);
19725 else
19726 _bfd_error_handler
19727 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
19728 ibfd, obfd);
19729
19730 flags_compatible = FALSE;
19731 }
19732
19733 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
19734 {
19735 if (in_flags & EF_ARM_VFP_FLOAT)
19736 _bfd_error_handler
19737 (_("error: %B uses VFP instructions, whereas %B does not"),
19738 ibfd, obfd);
19739 else
19740 _bfd_error_handler
19741 (_("error: %B uses FPA instructions, whereas %B does not"),
19742 ibfd, obfd);
19743
19744 flags_compatible = FALSE;
19745 }
19746
19747 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
19748 {
19749 if (in_flags & EF_ARM_MAVERICK_FLOAT)
19750 _bfd_error_handler
19751 (_("error: %B uses Maverick instructions, whereas %B does not"),
19752 ibfd, obfd);
19753 else
19754 _bfd_error_handler
19755 (_("error: %B does not use Maverick instructions, whereas %B does"),
19756 ibfd, obfd);
19757
19758 flags_compatible = FALSE;
19759 }
19760
19761 #ifdef EF_ARM_SOFT_FLOAT
19762 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
19763 {
19764 /* We can allow interworking between code that is VFP format
19765 layout, and uses either soft float or integer regs for
19766 passing floating point arguments and results. We already
19767 know that the APCS_FLOAT flags match; similarly for VFP
19768 flags. */
19769 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
19770 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
19771 {
19772 if (in_flags & EF_ARM_SOFT_FLOAT)
19773 _bfd_error_handler
19774 (_("error: %B uses software FP, whereas %B uses hardware FP"),
19775 ibfd, obfd);
19776 else
19777 _bfd_error_handler
19778 (_("error: %B uses hardware FP, whereas %B uses software FP"),
19779 ibfd, obfd);
19780
19781 flags_compatible = FALSE;
19782 }
19783 }
19784 #endif
19785
19786 /* Interworking mismatch is only a warning. */
19787 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
19788 {
19789 if (in_flags & EF_ARM_INTERWORK)
19790 {
19791 _bfd_error_handler
19792 (_("Warning: %B supports interworking, whereas %B does not"),
19793 ibfd, obfd);
19794 }
19795 else
19796 {
19797 _bfd_error_handler
19798 (_("Warning: %B does not support interworking, whereas %B does"),
19799 ibfd, obfd);
19800 }
19801 }
19802 }
19803
19804 return flags_compatible;
19805 }
19806
19807
19808 /* Symbian OS Targets. */
19809
19810 #undef TARGET_LITTLE_SYM
19811 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
19812 #undef TARGET_LITTLE_NAME
19813 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
19814 #undef TARGET_BIG_SYM
19815 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
19816 #undef TARGET_BIG_NAME
19817 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
19818
19819 /* Like elf32_arm_link_hash_table_create -- but overrides
19820 appropriately for Symbian OS. */
19821
19822 static struct bfd_link_hash_table *
19823 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
19824 {
19825 struct bfd_link_hash_table *ret;
19826
19827 ret = elf32_arm_link_hash_table_create (abfd);
19828 if (ret)
19829 {
19830 struct elf32_arm_link_hash_table *htab
19831 = (struct elf32_arm_link_hash_table *)ret;
19832 /* There is no PLT header for Symbian OS. */
19833 htab->plt_header_size = 0;
19834 /* The PLT entries are each one instruction and one word. */
19835 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
19836 htab->symbian_p = 1;
19837 /* Symbian uses armv5t or above, so use_blx is always true. */
19838 htab->use_blx = 1;
19839 htab->root.is_relocatable_executable = 1;
19840 }
19841 return ret;
19842 }
19843
19844 static const struct bfd_elf_special_section
19845 elf32_arm_symbian_special_sections[] =
19846 {
19847 /* In a BPABI executable, the dynamic linking sections do not go in
19848 the loadable read-only segment. The post-linker may wish to
19849 refer to these sections, but they are not part of the final
19850 program image. */
19851 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
19852 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
19853 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
19854 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
19855 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
19856 /* These sections do not need to be writable as the SymbianOS
19857 postlinker will arrange things so that no dynamic relocation is
19858 required. */
19859 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
19860 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
19861 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
19862 { NULL, 0, 0, 0, 0 }
19863 };
19864
19865 static void
19866 elf32_arm_symbian_begin_write_processing (bfd *abfd,
19867 struct bfd_link_info *link_info)
19868 {
19869 /* BPABI objects are never loaded directly by an OS kernel; they are
19870 processed by a postlinker first, into an OS-specific format. If
19871 the D_PAGED bit is set on the file, BFD will align segments on
19872 page boundaries, so that an OS can directly map the file. With
19873 BPABI objects, that just results in wasted space. In addition,
19874 because we clear the D_PAGED bit, map_sections_to_segments will
19875 recognize that the program headers should not be mapped into any
19876 loadable segment. */
19877 abfd->flags &= ~D_PAGED;
19878 elf32_arm_begin_write_processing (abfd, link_info);
19879 }
19880
19881 static bfd_boolean
19882 elf32_arm_symbian_modify_segment_map (bfd *abfd,
19883 struct bfd_link_info *info)
19884 {
19885 struct elf_segment_map *m;
19886 asection *dynsec;
19887
19888 /* BPABI shared libraries and executables should have a PT_DYNAMIC
19889 segment. However, because the .dynamic section is not marked
19890 with SEC_LOAD, the generic ELF code will not create such a
19891 segment. */
19892 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
19893 if (dynsec)
19894 {
19895 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
19896 if (m->p_type == PT_DYNAMIC)
19897 break;
19898
19899 if (m == NULL)
19900 {
19901 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
19902 m->next = elf_seg_map (abfd);
19903 elf_seg_map (abfd) = m;
19904 }
19905 }
19906
19907 /* Also call the generic arm routine. */
19908 return elf32_arm_modify_segment_map (abfd, info);
19909 }
19910
19911 /* Return address for Ith PLT stub in section PLT, for relocation REL
19912 or (bfd_vma) -1 if it should not be included. */
19913
19914 static bfd_vma
19915 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
19916 const arelent *rel ATTRIBUTE_UNUSED)
19917 {
19918 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
19919 }
19920
19921 #undef elf32_bed
19922 #define elf32_bed elf32_arm_symbian_bed
19923
19924 /* The dynamic sections are not allocated on SymbianOS; the postlinker
19925 will process them and then discard them. */
19926 #undef ELF_DYNAMIC_SEC_FLAGS
19927 #define ELF_DYNAMIC_SEC_FLAGS \
19928 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
19929
19930 #undef elf_backend_emit_relocs
19931
19932 #undef bfd_elf32_bfd_link_hash_table_create
19933 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
19934 #undef elf_backend_special_sections
19935 #define elf_backend_special_sections elf32_arm_symbian_special_sections
19936 #undef elf_backend_begin_write_processing
19937 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
19938 #undef elf_backend_final_write_processing
19939 #define elf_backend_final_write_processing elf32_arm_final_write_processing
19940
19941 #undef elf_backend_modify_segment_map
19942 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
19943
19944 /* There is no .got section for BPABI objects, and hence no header. */
19945 #undef elf_backend_got_header_size
19946 #define elf_backend_got_header_size 0
19947
19948 /* Similarly, there is no .got.plt section. */
19949 #undef elf_backend_want_got_plt
19950 #define elf_backend_want_got_plt 0
19951
19952 #undef elf_backend_plt_sym_val
19953 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
19954
19955 #undef elf_backend_may_use_rel_p
19956 #define elf_backend_may_use_rel_p 1
19957 #undef elf_backend_may_use_rela_p
19958 #define elf_backend_may_use_rela_p 0
19959 #undef elf_backend_default_use_rela_p
19960 #define elf_backend_default_use_rela_p 0
19961 #undef elf_backend_want_plt_sym
19962 #define elf_backend_want_plt_sym 0
19963 #undef elf_backend_dtrel_excludes_plt
19964 #define elf_backend_dtrel_excludes_plt 0
19965 #undef ELF_MAXPAGESIZE
19966 #define ELF_MAXPAGESIZE 0x8000
19967
19968 #include "elf32-target.h"
This page took 0.973207 seconds and 4 git commands to generate.