include/elf/
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include <limits.h>
24
25 #include "bfd.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-vxworks.h"
30 #include "elf/arm.h"
31
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
40 ((HTAB)->use_rel \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
43
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
47 ((HTAB)->use_rel \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
50
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
54 ((HTAB)->use_rel \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
57
58 #define elf_info_to_howto 0
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
60
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
63
64 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
65 struct bfd_link_info *link_info,
66 asection *sec,
67 bfd_byte *contents);
68
69 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
71 in that slot. */
72
73 static reloc_howto_type elf32_arm_howto_table_1[] =
74 {
75 /* No relocation. */
76 HOWTO (R_ARM_NONE, /* type */
77 0, /* rightshift */
78 0, /* size (0 = byte, 1 = short, 2 = long) */
79 0, /* bitsize */
80 FALSE, /* pc_relative */
81 0, /* bitpos */
82 complain_overflow_dont,/* complain_on_overflow */
83 bfd_elf_generic_reloc, /* special_function */
84 "R_ARM_NONE", /* name */
85 FALSE, /* partial_inplace */
86 0, /* src_mask */
87 0, /* dst_mask */
88 FALSE), /* pcrel_offset */
89
90 HOWTO (R_ARM_PC24, /* type */
91 2, /* rightshift */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
93 24, /* bitsize */
94 TRUE, /* pc_relative */
95 0, /* bitpos */
96 complain_overflow_signed,/* complain_on_overflow */
97 bfd_elf_generic_reloc, /* special_function */
98 "R_ARM_PC24", /* name */
99 FALSE, /* partial_inplace */
100 0x00ffffff, /* src_mask */
101 0x00ffffff, /* dst_mask */
102 TRUE), /* pcrel_offset */
103
104 /* 32 bit absolute */
105 HOWTO (R_ARM_ABS32, /* type */
106 0, /* rightshift */
107 2, /* size (0 = byte, 1 = short, 2 = long) */
108 32, /* bitsize */
109 FALSE, /* pc_relative */
110 0, /* bitpos */
111 complain_overflow_bitfield,/* complain_on_overflow */
112 bfd_elf_generic_reloc, /* special_function */
113 "R_ARM_ABS32", /* name */
114 FALSE, /* partial_inplace */
115 0xffffffff, /* src_mask */
116 0xffffffff, /* dst_mask */
117 FALSE), /* pcrel_offset */
118
119 /* standard 32bit pc-relative reloc */
120 HOWTO (R_ARM_REL32, /* type */
121 0, /* rightshift */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
123 32, /* bitsize */
124 TRUE, /* pc_relative */
125 0, /* bitpos */
126 complain_overflow_bitfield,/* complain_on_overflow */
127 bfd_elf_generic_reloc, /* special_function */
128 "R_ARM_REL32", /* name */
129 FALSE, /* partial_inplace */
130 0xffffffff, /* src_mask */
131 0xffffffff, /* dst_mask */
132 TRUE), /* pcrel_offset */
133
134 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135 HOWTO (R_ARM_LDR_PC_G0, /* type */
136 0, /* rightshift */
137 0, /* size (0 = byte, 1 = short, 2 = long) */
138 32, /* bitsize */
139 TRUE, /* pc_relative */
140 0, /* bitpos */
141 complain_overflow_dont,/* complain_on_overflow */
142 bfd_elf_generic_reloc, /* special_function */
143 "R_ARM_LDR_PC_G0", /* name */
144 FALSE, /* partial_inplace */
145 0xffffffff, /* src_mask */
146 0xffffffff, /* dst_mask */
147 TRUE), /* pcrel_offset */
148
149 /* 16 bit absolute */
150 HOWTO (R_ARM_ABS16, /* type */
151 0, /* rightshift */
152 1, /* size (0 = byte, 1 = short, 2 = long) */
153 16, /* bitsize */
154 FALSE, /* pc_relative */
155 0, /* bitpos */
156 complain_overflow_bitfield,/* complain_on_overflow */
157 bfd_elf_generic_reloc, /* special_function */
158 "R_ARM_ABS16", /* name */
159 FALSE, /* partial_inplace */
160 0x0000ffff, /* src_mask */
161 0x0000ffff, /* dst_mask */
162 FALSE), /* pcrel_offset */
163
164 /* 12 bit absolute */
165 HOWTO (R_ARM_ABS12, /* type */
166 0, /* rightshift */
167 2, /* size (0 = byte, 1 = short, 2 = long) */
168 12, /* bitsize */
169 FALSE, /* pc_relative */
170 0, /* bitpos */
171 complain_overflow_bitfield,/* complain_on_overflow */
172 bfd_elf_generic_reloc, /* special_function */
173 "R_ARM_ABS12", /* name */
174 FALSE, /* partial_inplace */
175 0x00000fff, /* src_mask */
176 0x00000fff, /* dst_mask */
177 FALSE), /* pcrel_offset */
178
179 HOWTO (R_ARM_THM_ABS5, /* type */
180 6, /* rightshift */
181 1, /* size (0 = byte, 1 = short, 2 = long) */
182 5, /* bitsize */
183 FALSE, /* pc_relative */
184 0, /* bitpos */
185 complain_overflow_bitfield,/* complain_on_overflow */
186 bfd_elf_generic_reloc, /* special_function */
187 "R_ARM_THM_ABS5", /* name */
188 FALSE, /* partial_inplace */
189 0x000007e0, /* src_mask */
190 0x000007e0, /* dst_mask */
191 FALSE), /* pcrel_offset */
192
193 /* 8 bit absolute */
194 HOWTO (R_ARM_ABS8, /* type */
195 0, /* rightshift */
196 0, /* size (0 = byte, 1 = short, 2 = long) */
197 8, /* bitsize */
198 FALSE, /* pc_relative */
199 0, /* bitpos */
200 complain_overflow_bitfield,/* complain_on_overflow */
201 bfd_elf_generic_reloc, /* special_function */
202 "R_ARM_ABS8", /* name */
203 FALSE, /* partial_inplace */
204 0x000000ff, /* src_mask */
205 0x000000ff, /* dst_mask */
206 FALSE), /* pcrel_offset */
207
208 HOWTO (R_ARM_SBREL32, /* type */
209 0, /* rightshift */
210 2, /* size (0 = byte, 1 = short, 2 = long) */
211 32, /* bitsize */
212 FALSE, /* pc_relative */
213 0, /* bitpos */
214 complain_overflow_dont,/* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_ARM_SBREL32", /* name */
217 FALSE, /* partial_inplace */
218 0xffffffff, /* src_mask */
219 0xffffffff, /* dst_mask */
220 FALSE), /* pcrel_offset */
221
222 HOWTO (R_ARM_THM_CALL, /* type */
223 1, /* rightshift */
224 2, /* size (0 = byte, 1 = short, 2 = long) */
225 24, /* bitsize */
226 TRUE, /* pc_relative */
227 0, /* bitpos */
228 complain_overflow_signed,/* complain_on_overflow */
229 bfd_elf_generic_reloc, /* special_function */
230 "R_ARM_THM_CALL", /* name */
231 FALSE, /* partial_inplace */
232 0x07ff07ff, /* src_mask */
233 0x07ff07ff, /* dst_mask */
234 TRUE), /* pcrel_offset */
235
236 HOWTO (R_ARM_THM_PC8, /* type */
237 1, /* rightshift */
238 1, /* size (0 = byte, 1 = short, 2 = long) */
239 8, /* bitsize */
240 TRUE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_signed,/* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_ARM_THM_PC8", /* name */
245 FALSE, /* partial_inplace */
246 0x000000ff, /* src_mask */
247 0x000000ff, /* dst_mask */
248 TRUE), /* pcrel_offset */
249
250 HOWTO (R_ARM_BREL_ADJ, /* type */
251 1, /* rightshift */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
253 32, /* bitsize */
254 FALSE, /* pc_relative */
255 0, /* bitpos */
256 complain_overflow_signed,/* complain_on_overflow */
257 bfd_elf_generic_reloc, /* special_function */
258 "R_ARM_BREL_ADJ", /* name */
259 FALSE, /* partial_inplace */
260 0xffffffff, /* src_mask */
261 0xffffffff, /* dst_mask */
262 FALSE), /* pcrel_offset */
263
264 HOWTO (R_ARM_TLS_DESC, /* type */
265 0, /* rightshift */
266 2, /* size (0 = byte, 1 = short, 2 = long) */
267 32, /* bitsize */
268 FALSE, /* pc_relative */
269 0, /* bitpos */
270 complain_overflow_bitfield,/* complain_on_overflow */
271 bfd_elf_generic_reloc, /* special_function */
272 "R_ARM_TLS_DESC", /* name */
273 FALSE, /* partial_inplace */
274 0xffffffff, /* src_mask */
275 0xffffffff, /* dst_mask */
276 FALSE), /* pcrel_offset */
277
278 HOWTO (R_ARM_THM_SWI8, /* type */
279 0, /* rightshift */
280 0, /* size (0 = byte, 1 = short, 2 = long) */
281 0, /* bitsize */
282 FALSE, /* pc_relative */
283 0, /* bitpos */
284 complain_overflow_signed,/* complain_on_overflow */
285 bfd_elf_generic_reloc, /* special_function */
286 "R_ARM_SWI8", /* name */
287 FALSE, /* partial_inplace */
288 0x00000000, /* src_mask */
289 0x00000000, /* dst_mask */
290 FALSE), /* pcrel_offset */
291
292 /* BLX instruction for the ARM. */
293 HOWTO (R_ARM_XPC25, /* type */
294 2, /* rightshift */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
296 25, /* bitsize */
297 TRUE, /* pc_relative */
298 0, /* bitpos */
299 complain_overflow_signed,/* complain_on_overflow */
300 bfd_elf_generic_reloc, /* special_function */
301 "R_ARM_XPC25", /* name */
302 FALSE, /* partial_inplace */
303 0x00ffffff, /* src_mask */
304 0x00ffffff, /* dst_mask */
305 TRUE), /* pcrel_offset */
306
307 /* BLX instruction for the Thumb. */
308 HOWTO (R_ARM_THM_XPC22, /* type */
309 2, /* rightshift */
310 2, /* size (0 = byte, 1 = short, 2 = long) */
311 22, /* bitsize */
312 TRUE, /* pc_relative */
313 0, /* bitpos */
314 complain_overflow_signed,/* complain_on_overflow */
315 bfd_elf_generic_reloc, /* special_function */
316 "R_ARM_THM_XPC22", /* name */
317 FALSE, /* partial_inplace */
318 0x07ff07ff, /* src_mask */
319 0x07ff07ff, /* dst_mask */
320 TRUE), /* pcrel_offset */
321
322 /* Dynamic TLS relocations. */
323
324 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
325 0, /* rightshift */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
327 32, /* bitsize */
328 FALSE, /* pc_relative */
329 0, /* bitpos */
330 complain_overflow_bitfield,/* complain_on_overflow */
331 bfd_elf_generic_reloc, /* special_function */
332 "R_ARM_TLS_DTPMOD32", /* name */
333 TRUE, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE), /* pcrel_offset */
337
338 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 32, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield,/* complain_on_overflow */
345 bfd_elf_generic_reloc, /* special_function */
346 "R_ARM_TLS_DTPOFF32", /* name */
347 TRUE, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE), /* pcrel_offset */
351
352 HOWTO (R_ARM_TLS_TPOFF32, /* type */
353 0, /* rightshift */
354 2, /* size (0 = byte, 1 = short, 2 = long) */
355 32, /* bitsize */
356 FALSE, /* pc_relative */
357 0, /* bitpos */
358 complain_overflow_bitfield,/* complain_on_overflow */
359 bfd_elf_generic_reloc, /* special_function */
360 "R_ARM_TLS_TPOFF32", /* name */
361 TRUE, /* partial_inplace */
362 0xffffffff, /* src_mask */
363 0xffffffff, /* dst_mask */
364 FALSE), /* pcrel_offset */
365
366 /* Relocs used in ARM Linux */
367
368 HOWTO (R_ARM_COPY, /* type */
369 0, /* rightshift */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
371 32, /* bitsize */
372 FALSE, /* pc_relative */
373 0, /* bitpos */
374 complain_overflow_bitfield,/* complain_on_overflow */
375 bfd_elf_generic_reloc, /* special_function */
376 "R_ARM_COPY", /* name */
377 TRUE, /* partial_inplace */
378 0xffffffff, /* src_mask */
379 0xffffffff, /* dst_mask */
380 FALSE), /* pcrel_offset */
381
382 HOWTO (R_ARM_GLOB_DAT, /* type */
383 0, /* rightshift */
384 2, /* size (0 = byte, 1 = short, 2 = long) */
385 32, /* bitsize */
386 FALSE, /* pc_relative */
387 0, /* bitpos */
388 complain_overflow_bitfield,/* complain_on_overflow */
389 bfd_elf_generic_reloc, /* special_function */
390 "R_ARM_GLOB_DAT", /* name */
391 TRUE, /* partial_inplace */
392 0xffffffff, /* src_mask */
393 0xffffffff, /* dst_mask */
394 FALSE), /* pcrel_offset */
395
396 HOWTO (R_ARM_JUMP_SLOT, /* type */
397 0, /* rightshift */
398 2, /* size (0 = byte, 1 = short, 2 = long) */
399 32, /* bitsize */
400 FALSE, /* pc_relative */
401 0, /* bitpos */
402 complain_overflow_bitfield,/* complain_on_overflow */
403 bfd_elf_generic_reloc, /* special_function */
404 "R_ARM_JUMP_SLOT", /* name */
405 TRUE, /* partial_inplace */
406 0xffffffff, /* src_mask */
407 0xffffffff, /* dst_mask */
408 FALSE), /* pcrel_offset */
409
410 HOWTO (R_ARM_RELATIVE, /* type */
411 0, /* rightshift */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
413 32, /* bitsize */
414 FALSE, /* pc_relative */
415 0, /* bitpos */
416 complain_overflow_bitfield,/* complain_on_overflow */
417 bfd_elf_generic_reloc, /* special_function */
418 "R_ARM_RELATIVE", /* name */
419 TRUE, /* partial_inplace */
420 0xffffffff, /* src_mask */
421 0xffffffff, /* dst_mask */
422 FALSE), /* pcrel_offset */
423
424 HOWTO (R_ARM_GOTOFF32, /* type */
425 0, /* rightshift */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
427 32, /* bitsize */
428 FALSE, /* pc_relative */
429 0, /* bitpos */
430 complain_overflow_bitfield,/* complain_on_overflow */
431 bfd_elf_generic_reloc, /* special_function */
432 "R_ARM_GOTOFF32", /* name */
433 TRUE, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 FALSE), /* pcrel_offset */
437
438 HOWTO (R_ARM_GOTPC, /* type */
439 0, /* rightshift */
440 2, /* size (0 = byte, 1 = short, 2 = long) */
441 32, /* bitsize */
442 TRUE, /* pc_relative */
443 0, /* bitpos */
444 complain_overflow_bitfield,/* complain_on_overflow */
445 bfd_elf_generic_reloc, /* special_function */
446 "R_ARM_GOTPC", /* name */
447 TRUE, /* partial_inplace */
448 0xffffffff, /* src_mask */
449 0xffffffff, /* dst_mask */
450 TRUE), /* pcrel_offset */
451
452 HOWTO (R_ARM_GOT32, /* type */
453 0, /* rightshift */
454 2, /* size (0 = byte, 1 = short, 2 = long) */
455 32, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_bitfield,/* complain_on_overflow */
459 bfd_elf_generic_reloc, /* special_function */
460 "R_ARM_GOT32", /* name */
461 TRUE, /* partial_inplace */
462 0xffffffff, /* src_mask */
463 0xffffffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465
466 HOWTO (R_ARM_PLT32, /* type */
467 2, /* rightshift */
468 2, /* size (0 = byte, 1 = short, 2 = long) */
469 24, /* bitsize */
470 TRUE, /* pc_relative */
471 0, /* bitpos */
472 complain_overflow_bitfield,/* complain_on_overflow */
473 bfd_elf_generic_reloc, /* special_function */
474 "R_ARM_PLT32", /* name */
475 FALSE, /* partial_inplace */
476 0x00ffffff, /* src_mask */
477 0x00ffffff, /* dst_mask */
478 TRUE), /* pcrel_offset */
479
480 HOWTO (R_ARM_CALL, /* type */
481 2, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 24, /* bitsize */
484 TRUE, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_signed,/* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
488 "R_ARM_CALL", /* name */
489 FALSE, /* partial_inplace */
490 0x00ffffff, /* src_mask */
491 0x00ffffff, /* dst_mask */
492 TRUE), /* pcrel_offset */
493
494 HOWTO (R_ARM_JUMP24, /* type */
495 2, /* rightshift */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
497 24, /* bitsize */
498 TRUE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_signed,/* complain_on_overflow */
501 bfd_elf_generic_reloc, /* special_function */
502 "R_ARM_JUMP24", /* name */
503 FALSE, /* partial_inplace */
504 0x00ffffff, /* src_mask */
505 0x00ffffff, /* dst_mask */
506 TRUE), /* pcrel_offset */
507
508 HOWTO (R_ARM_THM_JUMP24, /* type */
509 1, /* rightshift */
510 2, /* size (0 = byte, 1 = short, 2 = long) */
511 24, /* bitsize */
512 TRUE, /* pc_relative */
513 0, /* bitpos */
514 complain_overflow_signed,/* complain_on_overflow */
515 bfd_elf_generic_reloc, /* special_function */
516 "R_ARM_THM_JUMP24", /* name */
517 FALSE, /* partial_inplace */
518 0x07ff2fff, /* src_mask */
519 0x07ff2fff, /* dst_mask */
520 TRUE), /* pcrel_offset */
521
522 HOWTO (R_ARM_BASE_ABS, /* type */
523 0, /* rightshift */
524 2, /* size (0 = byte, 1 = short, 2 = long) */
525 32, /* bitsize */
526 FALSE, /* pc_relative */
527 0, /* bitpos */
528 complain_overflow_dont,/* complain_on_overflow */
529 bfd_elf_generic_reloc, /* special_function */
530 "R_ARM_BASE_ABS", /* name */
531 FALSE, /* partial_inplace */
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
534 FALSE), /* pcrel_offset */
535
536 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
537 0, /* rightshift */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
539 12, /* bitsize */
540 TRUE, /* pc_relative */
541 0, /* bitpos */
542 complain_overflow_dont,/* complain_on_overflow */
543 bfd_elf_generic_reloc, /* special_function */
544 "R_ARM_ALU_PCREL_7_0", /* name */
545 FALSE, /* partial_inplace */
546 0x00000fff, /* src_mask */
547 0x00000fff, /* dst_mask */
548 TRUE), /* pcrel_offset */
549
550 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
551 0, /* rightshift */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
553 12, /* bitsize */
554 TRUE, /* pc_relative */
555 8, /* bitpos */
556 complain_overflow_dont,/* complain_on_overflow */
557 bfd_elf_generic_reloc, /* special_function */
558 "R_ARM_ALU_PCREL_15_8",/* name */
559 FALSE, /* partial_inplace */
560 0x00000fff, /* src_mask */
561 0x00000fff, /* dst_mask */
562 TRUE), /* pcrel_offset */
563
564 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 12, /* bitsize */
568 TRUE, /* pc_relative */
569 16, /* bitpos */
570 complain_overflow_dont,/* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 "R_ARM_ALU_PCREL_23_15",/* name */
573 FALSE, /* partial_inplace */
574 0x00000fff, /* src_mask */
575 0x00000fff, /* dst_mask */
576 TRUE), /* pcrel_offset */
577
578 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
579 0, /* rightshift */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
581 12, /* bitsize */
582 FALSE, /* pc_relative */
583 0, /* bitpos */
584 complain_overflow_dont,/* complain_on_overflow */
585 bfd_elf_generic_reloc, /* special_function */
586 "R_ARM_LDR_SBREL_11_0",/* name */
587 FALSE, /* partial_inplace */
588 0x00000fff, /* src_mask */
589 0x00000fff, /* dst_mask */
590 FALSE), /* pcrel_offset */
591
592 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
593 0, /* rightshift */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
595 8, /* bitsize */
596 FALSE, /* pc_relative */
597 12, /* bitpos */
598 complain_overflow_dont,/* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
600 "R_ARM_ALU_SBREL_19_12",/* name */
601 FALSE, /* partial_inplace */
602 0x000ff000, /* src_mask */
603 0x000ff000, /* dst_mask */
604 FALSE), /* pcrel_offset */
605
606 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
607 0, /* rightshift */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
609 8, /* bitsize */
610 FALSE, /* pc_relative */
611 20, /* bitpos */
612 complain_overflow_dont,/* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 "R_ARM_ALU_SBREL_27_20",/* name */
615 FALSE, /* partial_inplace */
616 0x0ff00000, /* src_mask */
617 0x0ff00000, /* dst_mask */
618 FALSE), /* pcrel_offset */
619
620 HOWTO (R_ARM_TARGET1, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 FALSE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_dont,/* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_ARM_TARGET1", /* name */
629 FALSE, /* partial_inplace */
630 0xffffffff, /* src_mask */
631 0xffffffff, /* dst_mask */
632 FALSE), /* pcrel_offset */
633
634 HOWTO (R_ARM_ROSEGREL32, /* type */
635 0, /* rightshift */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
637 32, /* bitsize */
638 FALSE, /* pc_relative */
639 0, /* bitpos */
640 complain_overflow_dont,/* complain_on_overflow */
641 bfd_elf_generic_reloc, /* special_function */
642 "R_ARM_ROSEGREL32", /* name */
643 FALSE, /* partial_inplace */
644 0xffffffff, /* src_mask */
645 0xffffffff, /* dst_mask */
646 FALSE), /* pcrel_offset */
647
648 HOWTO (R_ARM_V4BX, /* type */
649 0, /* rightshift */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
651 32, /* bitsize */
652 FALSE, /* pc_relative */
653 0, /* bitpos */
654 complain_overflow_dont,/* complain_on_overflow */
655 bfd_elf_generic_reloc, /* special_function */
656 "R_ARM_V4BX", /* name */
657 FALSE, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 FALSE), /* pcrel_offset */
661
662 HOWTO (R_ARM_TARGET2, /* type */
663 0, /* rightshift */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
665 32, /* bitsize */
666 FALSE, /* pc_relative */
667 0, /* bitpos */
668 complain_overflow_signed,/* complain_on_overflow */
669 bfd_elf_generic_reloc, /* special_function */
670 "R_ARM_TARGET2", /* name */
671 FALSE, /* partial_inplace */
672 0xffffffff, /* src_mask */
673 0xffffffff, /* dst_mask */
674 TRUE), /* pcrel_offset */
675
676 HOWTO (R_ARM_PREL31, /* type */
677 0, /* rightshift */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
679 31, /* bitsize */
680 TRUE, /* pc_relative */
681 0, /* bitpos */
682 complain_overflow_signed,/* complain_on_overflow */
683 bfd_elf_generic_reloc, /* special_function */
684 "R_ARM_PREL31", /* name */
685 FALSE, /* partial_inplace */
686 0x7fffffff, /* src_mask */
687 0x7fffffff, /* dst_mask */
688 TRUE), /* pcrel_offset */
689
690 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
691 0, /* rightshift */
692 2, /* size (0 = byte, 1 = short, 2 = long) */
693 16, /* bitsize */
694 FALSE, /* pc_relative */
695 0, /* bitpos */
696 complain_overflow_dont,/* complain_on_overflow */
697 bfd_elf_generic_reloc, /* special_function */
698 "R_ARM_MOVW_ABS_NC", /* name */
699 FALSE, /* partial_inplace */
700 0x000f0fff, /* src_mask */
701 0x000f0fff, /* dst_mask */
702 FALSE), /* pcrel_offset */
703
704 HOWTO (R_ARM_MOVT_ABS, /* type */
705 0, /* rightshift */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
707 16, /* bitsize */
708 FALSE, /* pc_relative */
709 0, /* bitpos */
710 complain_overflow_bitfield,/* complain_on_overflow */
711 bfd_elf_generic_reloc, /* special_function */
712 "R_ARM_MOVT_ABS", /* name */
713 FALSE, /* partial_inplace */
714 0x000f0fff, /* src_mask */
715 0x000f0fff, /* dst_mask */
716 FALSE), /* pcrel_offset */
717
718 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
719 0, /* rightshift */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
721 16, /* bitsize */
722 TRUE, /* pc_relative */
723 0, /* bitpos */
724 complain_overflow_dont,/* complain_on_overflow */
725 bfd_elf_generic_reloc, /* special_function */
726 "R_ARM_MOVW_PREL_NC", /* name */
727 FALSE, /* partial_inplace */
728 0x000f0fff, /* src_mask */
729 0x000f0fff, /* dst_mask */
730 TRUE), /* pcrel_offset */
731
732 HOWTO (R_ARM_MOVT_PREL, /* type */
733 0, /* rightshift */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
735 16, /* bitsize */
736 TRUE, /* pc_relative */
737 0, /* bitpos */
738 complain_overflow_bitfield,/* complain_on_overflow */
739 bfd_elf_generic_reloc, /* special_function */
740 "R_ARM_MOVT_PREL", /* name */
741 FALSE, /* partial_inplace */
742 0x000f0fff, /* src_mask */
743 0x000f0fff, /* dst_mask */
744 TRUE), /* pcrel_offset */
745
746 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
747 0, /* rightshift */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
749 16, /* bitsize */
750 FALSE, /* pc_relative */
751 0, /* bitpos */
752 complain_overflow_dont,/* complain_on_overflow */
753 bfd_elf_generic_reloc, /* special_function */
754 "R_ARM_THM_MOVW_ABS_NC",/* name */
755 FALSE, /* partial_inplace */
756 0x040f70ff, /* src_mask */
757 0x040f70ff, /* dst_mask */
758 FALSE), /* pcrel_offset */
759
760 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
761 0, /* rightshift */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
763 16, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_bitfield,/* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_ARM_THM_MOVT_ABS", /* name */
769 FALSE, /* partial_inplace */
770 0x040f70ff, /* src_mask */
771 0x040f70ff, /* dst_mask */
772 FALSE), /* pcrel_offset */
773
774 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
775 0, /* rightshift */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
777 16, /* bitsize */
778 TRUE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont,/* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
782 "R_ARM_THM_MOVW_PREL_NC",/* name */
783 FALSE, /* partial_inplace */
784 0x040f70ff, /* src_mask */
785 0x040f70ff, /* dst_mask */
786 TRUE), /* pcrel_offset */
787
788 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
789 0, /* rightshift */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
791 16, /* bitsize */
792 TRUE, /* pc_relative */
793 0, /* bitpos */
794 complain_overflow_bitfield,/* complain_on_overflow */
795 bfd_elf_generic_reloc, /* special_function */
796 "R_ARM_THM_MOVT_PREL", /* name */
797 FALSE, /* partial_inplace */
798 0x040f70ff, /* src_mask */
799 0x040f70ff, /* dst_mask */
800 TRUE), /* pcrel_offset */
801
802 HOWTO (R_ARM_THM_JUMP19, /* type */
803 1, /* rightshift */
804 2, /* size (0 = byte, 1 = short, 2 = long) */
805 19, /* bitsize */
806 TRUE, /* pc_relative */
807 0, /* bitpos */
808 complain_overflow_signed,/* complain_on_overflow */
809 bfd_elf_generic_reloc, /* special_function */
810 "R_ARM_THM_JUMP19", /* name */
811 FALSE, /* partial_inplace */
812 0x043f2fff, /* src_mask */
813 0x043f2fff, /* dst_mask */
814 TRUE), /* pcrel_offset */
815
816 HOWTO (R_ARM_THM_JUMP6, /* type */
817 1, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 6, /* bitsize */
820 TRUE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_unsigned,/* complain_on_overflow */
823 bfd_elf_generic_reloc, /* special_function */
824 "R_ARM_THM_JUMP6", /* name */
825 FALSE, /* partial_inplace */
826 0x02f8, /* src_mask */
827 0x02f8, /* dst_mask */
828 TRUE), /* pcrel_offset */
829
830 /* These are declared as 13-bit signed relocations because we can
831 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
832 versa. */
833 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
834 0, /* rightshift */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
836 13, /* bitsize */
837 TRUE, /* pc_relative */
838 0, /* bitpos */
839 complain_overflow_dont,/* complain_on_overflow */
840 bfd_elf_generic_reloc, /* special_function */
841 "R_ARM_THM_ALU_PREL_11_0",/* name */
842 FALSE, /* partial_inplace */
843 0xffffffff, /* src_mask */
844 0xffffffff, /* dst_mask */
845 TRUE), /* pcrel_offset */
846
847 HOWTO (R_ARM_THM_PC12, /* type */
848 0, /* rightshift */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
850 13, /* bitsize */
851 TRUE, /* pc_relative */
852 0, /* bitpos */
853 complain_overflow_dont,/* complain_on_overflow */
854 bfd_elf_generic_reloc, /* special_function */
855 "R_ARM_THM_PC12", /* name */
856 FALSE, /* partial_inplace */
857 0xffffffff, /* src_mask */
858 0xffffffff, /* dst_mask */
859 TRUE), /* pcrel_offset */
860
861 HOWTO (R_ARM_ABS32_NOI, /* type */
862 0, /* rightshift */
863 2, /* size (0 = byte, 1 = short, 2 = long) */
864 32, /* bitsize */
865 FALSE, /* pc_relative */
866 0, /* bitpos */
867 complain_overflow_dont,/* complain_on_overflow */
868 bfd_elf_generic_reloc, /* special_function */
869 "R_ARM_ABS32_NOI", /* name */
870 FALSE, /* partial_inplace */
871 0xffffffff, /* src_mask */
872 0xffffffff, /* dst_mask */
873 FALSE), /* pcrel_offset */
874
875 HOWTO (R_ARM_REL32_NOI, /* type */
876 0, /* rightshift */
877 2, /* size (0 = byte, 1 = short, 2 = long) */
878 32, /* bitsize */
879 TRUE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont,/* complain_on_overflow */
882 bfd_elf_generic_reloc, /* special_function */
883 "R_ARM_REL32_NOI", /* name */
884 FALSE, /* partial_inplace */
885 0xffffffff, /* src_mask */
886 0xffffffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
888
889 /* Group relocations. */
890
891 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
892 0, /* rightshift */
893 2, /* size (0 = byte, 1 = short, 2 = long) */
894 32, /* bitsize */
895 TRUE, /* pc_relative */
896 0, /* bitpos */
897 complain_overflow_dont,/* complain_on_overflow */
898 bfd_elf_generic_reloc, /* special_function */
899 "R_ARM_ALU_PC_G0_NC", /* name */
900 FALSE, /* partial_inplace */
901 0xffffffff, /* src_mask */
902 0xffffffff, /* dst_mask */
903 TRUE), /* pcrel_offset */
904
905 HOWTO (R_ARM_ALU_PC_G0, /* type */
906 0, /* rightshift */
907 2, /* size (0 = byte, 1 = short, 2 = long) */
908 32, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont,/* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_ARM_ALU_PC_G0", /* name */
914 FALSE, /* partial_inplace */
915 0xffffffff, /* src_mask */
916 0xffffffff, /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
920 0, /* rightshift */
921 2, /* size (0 = byte, 1 = short, 2 = long) */
922 32, /* bitsize */
923 TRUE, /* pc_relative */
924 0, /* bitpos */
925 complain_overflow_dont,/* complain_on_overflow */
926 bfd_elf_generic_reloc, /* special_function */
927 "R_ARM_ALU_PC_G1_NC", /* name */
928 FALSE, /* partial_inplace */
929 0xffffffff, /* src_mask */
930 0xffffffff, /* dst_mask */
931 TRUE), /* pcrel_offset */
932
933 HOWTO (R_ARM_ALU_PC_G1, /* type */
934 0, /* rightshift */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
936 32, /* bitsize */
937 TRUE, /* pc_relative */
938 0, /* bitpos */
939 complain_overflow_dont,/* complain_on_overflow */
940 bfd_elf_generic_reloc, /* special_function */
941 "R_ARM_ALU_PC_G1", /* name */
942 FALSE, /* partial_inplace */
943 0xffffffff, /* src_mask */
944 0xffffffff, /* dst_mask */
945 TRUE), /* pcrel_offset */
946
947 HOWTO (R_ARM_ALU_PC_G2, /* type */
948 0, /* rightshift */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
950 32, /* bitsize */
951 TRUE, /* pc_relative */
952 0, /* bitpos */
953 complain_overflow_dont,/* complain_on_overflow */
954 bfd_elf_generic_reloc, /* special_function */
955 "R_ARM_ALU_PC_G2", /* name */
956 FALSE, /* partial_inplace */
957 0xffffffff, /* src_mask */
958 0xffffffff, /* dst_mask */
959 TRUE), /* pcrel_offset */
960
961 HOWTO (R_ARM_LDR_PC_G1, /* type */
962 0, /* rightshift */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
964 32, /* bitsize */
965 TRUE, /* pc_relative */
966 0, /* bitpos */
967 complain_overflow_dont,/* complain_on_overflow */
968 bfd_elf_generic_reloc, /* special_function */
969 "R_ARM_LDR_PC_G1", /* name */
970 FALSE, /* partial_inplace */
971 0xffffffff, /* src_mask */
972 0xffffffff, /* dst_mask */
973 TRUE), /* pcrel_offset */
974
975 HOWTO (R_ARM_LDR_PC_G2, /* type */
976 0, /* rightshift */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
978 32, /* bitsize */
979 TRUE, /* pc_relative */
980 0, /* bitpos */
981 complain_overflow_dont,/* complain_on_overflow */
982 bfd_elf_generic_reloc, /* special_function */
983 "R_ARM_LDR_PC_G2", /* name */
984 FALSE, /* partial_inplace */
985 0xffffffff, /* src_mask */
986 0xffffffff, /* dst_mask */
987 TRUE), /* pcrel_offset */
988
989 HOWTO (R_ARM_LDRS_PC_G0, /* type */
990 0, /* rightshift */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
992 32, /* bitsize */
993 TRUE, /* pc_relative */
994 0, /* bitpos */
995 complain_overflow_dont,/* complain_on_overflow */
996 bfd_elf_generic_reloc, /* special_function */
997 "R_ARM_LDRS_PC_G0", /* name */
998 FALSE, /* partial_inplace */
999 0xffffffff, /* src_mask */
1000 0xffffffff, /* dst_mask */
1001 TRUE), /* pcrel_offset */
1002
1003 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1004 0, /* rightshift */
1005 2, /* size (0 = byte, 1 = short, 2 = long) */
1006 32, /* bitsize */
1007 TRUE, /* pc_relative */
1008 0, /* bitpos */
1009 complain_overflow_dont,/* complain_on_overflow */
1010 bfd_elf_generic_reloc, /* special_function */
1011 "R_ARM_LDRS_PC_G1", /* name */
1012 FALSE, /* partial_inplace */
1013 0xffffffff, /* src_mask */
1014 0xffffffff, /* dst_mask */
1015 TRUE), /* pcrel_offset */
1016
1017 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1018 0, /* rightshift */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1020 32, /* bitsize */
1021 TRUE, /* pc_relative */
1022 0, /* bitpos */
1023 complain_overflow_dont,/* complain_on_overflow */
1024 bfd_elf_generic_reloc, /* special_function */
1025 "R_ARM_LDRS_PC_G2", /* name */
1026 FALSE, /* partial_inplace */
1027 0xffffffff, /* src_mask */
1028 0xffffffff, /* dst_mask */
1029 TRUE), /* pcrel_offset */
1030
1031 HOWTO (R_ARM_LDC_PC_G0, /* type */
1032 0, /* rightshift */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1034 32, /* bitsize */
1035 TRUE, /* pc_relative */
1036 0, /* bitpos */
1037 complain_overflow_dont,/* complain_on_overflow */
1038 bfd_elf_generic_reloc, /* special_function */
1039 "R_ARM_LDC_PC_G0", /* name */
1040 FALSE, /* partial_inplace */
1041 0xffffffff, /* src_mask */
1042 0xffffffff, /* dst_mask */
1043 TRUE), /* pcrel_offset */
1044
1045 HOWTO (R_ARM_LDC_PC_G1, /* type */
1046 0, /* rightshift */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1048 32, /* bitsize */
1049 TRUE, /* pc_relative */
1050 0, /* bitpos */
1051 complain_overflow_dont,/* complain_on_overflow */
1052 bfd_elf_generic_reloc, /* special_function */
1053 "R_ARM_LDC_PC_G1", /* name */
1054 FALSE, /* partial_inplace */
1055 0xffffffff, /* src_mask */
1056 0xffffffff, /* dst_mask */
1057 TRUE), /* pcrel_offset */
1058
1059 HOWTO (R_ARM_LDC_PC_G2, /* type */
1060 0, /* rightshift */
1061 2, /* size (0 = byte, 1 = short, 2 = long) */
1062 32, /* bitsize */
1063 TRUE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_dont,/* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_ARM_LDC_PC_G2", /* name */
1068 FALSE, /* partial_inplace */
1069 0xffffffff, /* src_mask */
1070 0xffffffff, /* dst_mask */
1071 TRUE), /* pcrel_offset */
1072
1073 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1074 0, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 32, /* bitsize */
1077 TRUE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont,/* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 "R_ARM_ALU_SB_G0_NC", /* name */
1082 FALSE, /* partial_inplace */
1083 0xffffffff, /* src_mask */
1084 0xffffffff, /* dst_mask */
1085 TRUE), /* pcrel_offset */
1086
1087 HOWTO (R_ARM_ALU_SB_G0, /* type */
1088 0, /* rightshift */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1090 32, /* bitsize */
1091 TRUE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_dont,/* complain_on_overflow */
1094 bfd_elf_generic_reloc, /* special_function */
1095 "R_ARM_ALU_SB_G0", /* name */
1096 FALSE, /* partial_inplace */
1097 0xffffffff, /* src_mask */
1098 0xffffffff, /* dst_mask */
1099 TRUE), /* pcrel_offset */
1100
1101 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1102 0, /* rightshift */
1103 2, /* size (0 = byte, 1 = short, 2 = long) */
1104 32, /* bitsize */
1105 TRUE, /* pc_relative */
1106 0, /* bitpos */
1107 complain_overflow_dont,/* complain_on_overflow */
1108 bfd_elf_generic_reloc, /* special_function */
1109 "R_ARM_ALU_SB_G1_NC", /* name */
1110 FALSE, /* partial_inplace */
1111 0xffffffff, /* src_mask */
1112 0xffffffff, /* dst_mask */
1113 TRUE), /* pcrel_offset */
1114
1115 HOWTO (R_ARM_ALU_SB_G1, /* type */
1116 0, /* rightshift */
1117 2, /* size (0 = byte, 1 = short, 2 = long) */
1118 32, /* bitsize */
1119 TRUE, /* pc_relative */
1120 0, /* bitpos */
1121 complain_overflow_dont,/* complain_on_overflow */
1122 bfd_elf_generic_reloc, /* special_function */
1123 "R_ARM_ALU_SB_G1", /* name */
1124 FALSE, /* partial_inplace */
1125 0xffffffff, /* src_mask */
1126 0xffffffff, /* dst_mask */
1127 TRUE), /* pcrel_offset */
1128
1129 HOWTO (R_ARM_ALU_SB_G2, /* type */
1130 0, /* rightshift */
1131 2, /* size (0 = byte, 1 = short, 2 = long) */
1132 32, /* bitsize */
1133 TRUE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont,/* complain_on_overflow */
1136 bfd_elf_generic_reloc, /* special_function */
1137 "R_ARM_ALU_SB_G2", /* name */
1138 FALSE, /* partial_inplace */
1139 0xffffffff, /* src_mask */
1140 0xffffffff, /* dst_mask */
1141 TRUE), /* pcrel_offset */
1142
1143 HOWTO (R_ARM_LDR_SB_G0, /* type */
1144 0, /* rightshift */
1145 2, /* size (0 = byte, 1 = short, 2 = long) */
1146 32, /* bitsize */
1147 TRUE, /* pc_relative */
1148 0, /* bitpos */
1149 complain_overflow_dont,/* complain_on_overflow */
1150 bfd_elf_generic_reloc, /* special_function */
1151 "R_ARM_LDR_SB_G0", /* name */
1152 FALSE, /* partial_inplace */
1153 0xffffffff, /* src_mask */
1154 0xffffffff, /* dst_mask */
1155 TRUE), /* pcrel_offset */
1156
1157 HOWTO (R_ARM_LDR_SB_G1, /* type */
1158 0, /* rightshift */
1159 2, /* size (0 = byte, 1 = short, 2 = long) */
1160 32, /* bitsize */
1161 TRUE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont,/* complain_on_overflow */
1164 bfd_elf_generic_reloc, /* special_function */
1165 "R_ARM_LDR_SB_G1", /* name */
1166 FALSE, /* partial_inplace */
1167 0xffffffff, /* src_mask */
1168 0xffffffff, /* dst_mask */
1169 TRUE), /* pcrel_offset */
1170
1171 HOWTO (R_ARM_LDR_SB_G2, /* type */
1172 0, /* rightshift */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1174 32, /* bitsize */
1175 TRUE, /* pc_relative */
1176 0, /* bitpos */
1177 complain_overflow_dont,/* complain_on_overflow */
1178 bfd_elf_generic_reloc, /* special_function */
1179 "R_ARM_LDR_SB_G2", /* name */
1180 FALSE, /* partial_inplace */
1181 0xffffffff, /* src_mask */
1182 0xffffffff, /* dst_mask */
1183 TRUE), /* pcrel_offset */
1184
1185 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1186 0, /* rightshift */
1187 2, /* size (0 = byte, 1 = short, 2 = long) */
1188 32, /* bitsize */
1189 TRUE, /* pc_relative */
1190 0, /* bitpos */
1191 complain_overflow_dont,/* complain_on_overflow */
1192 bfd_elf_generic_reloc, /* special_function */
1193 "R_ARM_LDRS_SB_G0", /* name */
1194 FALSE, /* partial_inplace */
1195 0xffffffff, /* src_mask */
1196 0xffffffff, /* dst_mask */
1197 TRUE), /* pcrel_offset */
1198
1199 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1200 0, /* rightshift */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1202 32, /* bitsize */
1203 TRUE, /* pc_relative */
1204 0, /* bitpos */
1205 complain_overflow_dont,/* complain_on_overflow */
1206 bfd_elf_generic_reloc, /* special_function */
1207 "R_ARM_LDRS_SB_G1", /* name */
1208 FALSE, /* partial_inplace */
1209 0xffffffff, /* src_mask */
1210 0xffffffff, /* dst_mask */
1211 TRUE), /* pcrel_offset */
1212
1213 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1214 0, /* rightshift */
1215 2, /* size (0 = byte, 1 = short, 2 = long) */
1216 32, /* bitsize */
1217 TRUE, /* pc_relative */
1218 0, /* bitpos */
1219 complain_overflow_dont,/* complain_on_overflow */
1220 bfd_elf_generic_reloc, /* special_function */
1221 "R_ARM_LDRS_SB_G2", /* name */
1222 FALSE, /* partial_inplace */
1223 0xffffffff, /* src_mask */
1224 0xffffffff, /* dst_mask */
1225 TRUE), /* pcrel_offset */
1226
1227 HOWTO (R_ARM_LDC_SB_G0, /* type */
1228 0, /* rightshift */
1229 2, /* size (0 = byte, 1 = short, 2 = long) */
1230 32, /* bitsize */
1231 TRUE, /* pc_relative */
1232 0, /* bitpos */
1233 complain_overflow_dont,/* complain_on_overflow */
1234 bfd_elf_generic_reloc, /* special_function */
1235 "R_ARM_LDC_SB_G0", /* name */
1236 FALSE, /* partial_inplace */
1237 0xffffffff, /* src_mask */
1238 0xffffffff, /* dst_mask */
1239 TRUE), /* pcrel_offset */
1240
1241 HOWTO (R_ARM_LDC_SB_G1, /* type */
1242 0, /* rightshift */
1243 2, /* size (0 = byte, 1 = short, 2 = long) */
1244 32, /* bitsize */
1245 TRUE, /* pc_relative */
1246 0, /* bitpos */
1247 complain_overflow_dont,/* complain_on_overflow */
1248 bfd_elf_generic_reloc, /* special_function */
1249 "R_ARM_LDC_SB_G1", /* name */
1250 FALSE, /* partial_inplace */
1251 0xffffffff, /* src_mask */
1252 0xffffffff, /* dst_mask */
1253 TRUE), /* pcrel_offset */
1254
1255 HOWTO (R_ARM_LDC_SB_G2, /* type */
1256 0, /* rightshift */
1257 2, /* size (0 = byte, 1 = short, 2 = long) */
1258 32, /* bitsize */
1259 TRUE, /* pc_relative */
1260 0, /* bitpos */
1261 complain_overflow_dont,/* complain_on_overflow */
1262 bfd_elf_generic_reloc, /* special_function */
1263 "R_ARM_LDC_SB_G2", /* name */
1264 FALSE, /* partial_inplace */
1265 0xffffffff, /* src_mask */
1266 0xffffffff, /* dst_mask */
1267 TRUE), /* pcrel_offset */
1268
1269 /* End of group relocations. */
1270
1271 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1272 0, /* rightshift */
1273 2, /* size (0 = byte, 1 = short, 2 = long) */
1274 16, /* bitsize */
1275 FALSE, /* pc_relative */
1276 0, /* bitpos */
1277 complain_overflow_dont,/* complain_on_overflow */
1278 bfd_elf_generic_reloc, /* special_function */
1279 "R_ARM_MOVW_BREL_NC", /* name */
1280 FALSE, /* partial_inplace */
1281 0x0000ffff, /* src_mask */
1282 0x0000ffff, /* dst_mask */
1283 FALSE), /* pcrel_offset */
1284
1285 HOWTO (R_ARM_MOVT_BREL, /* type */
1286 0, /* rightshift */
1287 2, /* size (0 = byte, 1 = short, 2 = long) */
1288 16, /* bitsize */
1289 FALSE, /* pc_relative */
1290 0, /* bitpos */
1291 complain_overflow_bitfield,/* complain_on_overflow */
1292 bfd_elf_generic_reloc, /* special_function */
1293 "R_ARM_MOVT_BREL", /* name */
1294 FALSE, /* partial_inplace */
1295 0x0000ffff, /* src_mask */
1296 0x0000ffff, /* dst_mask */
1297 FALSE), /* pcrel_offset */
1298
1299 HOWTO (R_ARM_MOVW_BREL, /* type */
1300 0, /* rightshift */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1302 16, /* bitsize */
1303 FALSE, /* pc_relative */
1304 0, /* bitpos */
1305 complain_overflow_dont,/* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 "R_ARM_MOVW_BREL", /* name */
1308 FALSE, /* partial_inplace */
1309 0x0000ffff, /* src_mask */
1310 0x0000ffff, /* dst_mask */
1311 FALSE), /* pcrel_offset */
1312
1313 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1314 0, /* rightshift */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1316 16, /* bitsize */
1317 FALSE, /* pc_relative */
1318 0, /* bitpos */
1319 complain_overflow_dont,/* complain_on_overflow */
1320 bfd_elf_generic_reloc, /* special_function */
1321 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322 FALSE, /* partial_inplace */
1323 0x040f70ff, /* src_mask */
1324 0x040f70ff, /* dst_mask */
1325 FALSE), /* pcrel_offset */
1326
1327 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1328 0, /* rightshift */
1329 2, /* size (0 = byte, 1 = short, 2 = long) */
1330 16, /* bitsize */
1331 FALSE, /* pc_relative */
1332 0, /* bitpos */
1333 complain_overflow_bitfield,/* complain_on_overflow */
1334 bfd_elf_generic_reloc, /* special_function */
1335 "R_ARM_THM_MOVT_BREL", /* name */
1336 FALSE, /* partial_inplace */
1337 0x040f70ff, /* src_mask */
1338 0x040f70ff, /* dst_mask */
1339 FALSE), /* pcrel_offset */
1340
1341 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1342 0, /* rightshift */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_dont,/* complain_on_overflow */
1348 bfd_elf_generic_reloc, /* special_function */
1349 "R_ARM_THM_MOVW_BREL", /* name */
1350 FALSE, /* partial_inplace */
1351 0x040f70ff, /* src_mask */
1352 0x040f70ff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
1355 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_bitfield,/* complain_on_overflow */
1362 NULL, /* special_function */
1363 "R_ARM_TLS_GOTDESC", /* name */
1364 TRUE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_TLS_CALL, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 24, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_TLS_CALL", /* name */
1378 FALSE, /* partial_inplace */
1379 0x00ffffff, /* src_mask */
1380 0x00ffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 0, /* bitsize */
1387 FALSE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_bitfield,/* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_TLS_DESCSEQ", /* name */
1392 FALSE, /* partial_inplace */
1393 0x00000000, /* src_mask */
1394 0x00000000, /* dst_mask */
1395 FALSE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 24, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_dont,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_THM_TLS_CALL", /* name */
1406 FALSE, /* partial_inplace */
1407 0x07ff07ff, /* src_mask */
1408 0x07ff07ff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_PLT32_ABS, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 32, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_dont,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_PLT32_ABS", /* name */
1420 FALSE, /* partial_inplace */
1421 0xffffffff, /* src_mask */
1422 0xffffffff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 HOWTO (R_ARM_GOT_ABS, /* type */
1426 0, /* rightshift */
1427 2, /* size (0 = byte, 1 = short, 2 = long) */
1428 32, /* bitsize */
1429 FALSE, /* pc_relative */
1430 0, /* bitpos */
1431 complain_overflow_dont,/* complain_on_overflow */
1432 bfd_elf_generic_reloc, /* special_function */
1433 "R_ARM_GOT_ABS", /* name */
1434 FALSE, /* partial_inplace */
1435 0xffffffff, /* src_mask */
1436 0xffffffff, /* dst_mask */
1437 FALSE), /* pcrel_offset */
1438
1439 HOWTO (R_ARM_GOT_PREL, /* type */
1440 0, /* rightshift */
1441 2, /* size (0 = byte, 1 = short, 2 = long) */
1442 32, /* bitsize */
1443 TRUE, /* pc_relative */
1444 0, /* bitpos */
1445 complain_overflow_dont, /* complain_on_overflow */
1446 bfd_elf_generic_reloc, /* special_function */
1447 "R_ARM_GOT_PREL", /* name */
1448 FALSE, /* partial_inplace */
1449 0xffffffff, /* src_mask */
1450 0xffffffff, /* dst_mask */
1451 TRUE), /* pcrel_offset */
1452
1453 HOWTO (R_ARM_GOT_BREL12, /* type */
1454 0, /* rightshift */
1455 2, /* size (0 = byte, 1 = short, 2 = long) */
1456 12, /* bitsize */
1457 FALSE, /* pc_relative */
1458 0, /* bitpos */
1459 complain_overflow_bitfield,/* complain_on_overflow */
1460 bfd_elf_generic_reloc, /* special_function */
1461 "R_ARM_GOT_BREL12", /* name */
1462 FALSE, /* partial_inplace */
1463 0x00000fff, /* src_mask */
1464 0x00000fff, /* dst_mask */
1465 FALSE), /* pcrel_offset */
1466
1467 HOWTO (R_ARM_GOTOFF12, /* type */
1468 0, /* rightshift */
1469 2, /* size (0 = byte, 1 = short, 2 = long) */
1470 12, /* bitsize */
1471 FALSE, /* pc_relative */
1472 0, /* bitpos */
1473 complain_overflow_bitfield,/* complain_on_overflow */
1474 bfd_elf_generic_reloc, /* special_function */
1475 "R_ARM_GOTOFF12", /* name */
1476 FALSE, /* partial_inplace */
1477 0x00000fff, /* src_mask */
1478 0x00000fff, /* dst_mask */
1479 FALSE), /* pcrel_offset */
1480
1481 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1482
1483 /* GNU extension to record C++ vtable member usage */
1484 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1485 0, /* rightshift */
1486 2, /* size (0 = byte, 1 = short, 2 = long) */
1487 0, /* bitsize */
1488 FALSE, /* pc_relative */
1489 0, /* bitpos */
1490 complain_overflow_dont, /* complain_on_overflow */
1491 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1492 "R_ARM_GNU_VTENTRY", /* name */
1493 FALSE, /* partial_inplace */
1494 0, /* src_mask */
1495 0, /* dst_mask */
1496 FALSE), /* pcrel_offset */
1497
1498 /* GNU extension to record C++ vtable hierarchy */
1499 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1500 0, /* rightshift */
1501 2, /* size (0 = byte, 1 = short, 2 = long) */
1502 0, /* bitsize */
1503 FALSE, /* pc_relative */
1504 0, /* bitpos */
1505 complain_overflow_dont, /* complain_on_overflow */
1506 NULL, /* special_function */
1507 "R_ARM_GNU_VTINHERIT", /* name */
1508 FALSE, /* partial_inplace */
1509 0, /* src_mask */
1510 0, /* dst_mask */
1511 FALSE), /* pcrel_offset */
1512
1513 HOWTO (R_ARM_THM_JUMP11, /* type */
1514 1, /* rightshift */
1515 1, /* size (0 = byte, 1 = short, 2 = long) */
1516 11, /* bitsize */
1517 TRUE, /* pc_relative */
1518 0, /* bitpos */
1519 complain_overflow_signed, /* complain_on_overflow */
1520 bfd_elf_generic_reloc, /* special_function */
1521 "R_ARM_THM_JUMP11", /* name */
1522 FALSE, /* partial_inplace */
1523 0x000007ff, /* src_mask */
1524 0x000007ff, /* dst_mask */
1525 TRUE), /* pcrel_offset */
1526
1527 HOWTO (R_ARM_THM_JUMP8, /* type */
1528 1, /* rightshift */
1529 1, /* size (0 = byte, 1 = short, 2 = long) */
1530 8, /* bitsize */
1531 TRUE, /* pc_relative */
1532 0, /* bitpos */
1533 complain_overflow_signed, /* complain_on_overflow */
1534 bfd_elf_generic_reloc, /* special_function */
1535 "R_ARM_THM_JUMP8", /* name */
1536 FALSE, /* partial_inplace */
1537 0x000000ff, /* src_mask */
1538 0x000000ff, /* dst_mask */
1539 TRUE), /* pcrel_offset */
1540
1541 /* TLS relocations */
1542 HOWTO (R_ARM_TLS_GD32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 NULL, /* special_function */
1550 "R_ARM_TLS_GD32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDM32, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 32, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDM32", /* name */
1565 TRUE, /* partial_inplace */
1566 0xffffffff, /* src_mask */
1567 0xffffffff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LDO32, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 32, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LDO32", /* name */
1579 TRUE, /* partial_inplace */
1580 0xffffffff, /* src_mask */
1581 0xffffffff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE32, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 32, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 NULL, /* special_function */
1592 "R_ARM_TLS_IE32", /* name */
1593 TRUE, /* partial_inplace */
1594 0xffffffff, /* src_mask */
1595 0xffffffff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597
1598 HOWTO (R_ARM_TLS_LE32, /* type */
1599 0, /* rightshift */
1600 2, /* size (0 = byte, 1 = short, 2 = long) */
1601 32, /* bitsize */
1602 FALSE, /* pc_relative */
1603 0, /* bitpos */
1604 complain_overflow_bitfield,/* complain_on_overflow */
1605 bfd_elf_generic_reloc, /* special_function */
1606 "R_ARM_TLS_LE32", /* name */
1607 TRUE, /* partial_inplace */
1608 0xffffffff, /* src_mask */
1609 0xffffffff, /* dst_mask */
1610 FALSE), /* pcrel_offset */
1611
1612 HOWTO (R_ARM_TLS_LDO12, /* type */
1613 0, /* rightshift */
1614 2, /* size (0 = byte, 1 = short, 2 = long) */
1615 12, /* bitsize */
1616 FALSE, /* pc_relative */
1617 0, /* bitpos */
1618 complain_overflow_bitfield,/* complain_on_overflow */
1619 bfd_elf_generic_reloc, /* special_function */
1620 "R_ARM_TLS_LDO12", /* name */
1621 FALSE, /* partial_inplace */
1622 0x00000fff, /* src_mask */
1623 0x00000fff, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1625
1626 HOWTO (R_ARM_TLS_LE12, /* type */
1627 0, /* rightshift */
1628 2, /* size (0 = byte, 1 = short, 2 = long) */
1629 12, /* bitsize */
1630 FALSE, /* pc_relative */
1631 0, /* bitpos */
1632 complain_overflow_bitfield,/* complain_on_overflow */
1633 bfd_elf_generic_reloc, /* special_function */
1634 "R_ARM_TLS_LE12", /* name */
1635 FALSE, /* partial_inplace */
1636 0x00000fff, /* src_mask */
1637 0x00000fff, /* dst_mask */
1638 FALSE), /* pcrel_offset */
1639
1640 HOWTO (R_ARM_TLS_IE12GP, /* type */
1641 0, /* rightshift */
1642 2, /* size (0 = byte, 1 = short, 2 = long) */
1643 12, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_bitfield,/* complain_on_overflow */
1647 bfd_elf_generic_reloc, /* special_function */
1648 "R_ARM_TLS_IE12GP", /* name */
1649 FALSE, /* partial_inplace */
1650 0x00000fff, /* src_mask */
1651 0x00000fff, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1653
1654 /* 112-127 private relocations. */
1655 EMPTY_HOWTO (112),
1656 EMPTY_HOWTO (113),
1657 EMPTY_HOWTO (114),
1658 EMPTY_HOWTO (115),
1659 EMPTY_HOWTO (116),
1660 EMPTY_HOWTO (117),
1661 EMPTY_HOWTO (118),
1662 EMPTY_HOWTO (119),
1663 EMPTY_HOWTO (120),
1664 EMPTY_HOWTO (121),
1665 EMPTY_HOWTO (122),
1666 EMPTY_HOWTO (123),
1667 EMPTY_HOWTO (124),
1668 EMPTY_HOWTO (125),
1669 EMPTY_HOWTO (126),
1670 EMPTY_HOWTO (127),
1671
1672 /* R_ARM_ME_TOO, obsolete. */
1673 EMPTY_HOWTO (128),
1674
1675 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1676 0, /* rightshift */
1677 1, /* size (0 = byte, 1 = short, 2 = long) */
1678 0, /* bitsize */
1679 FALSE, /* pc_relative */
1680 0, /* bitpos */
1681 complain_overflow_bitfield,/* complain_on_overflow */
1682 bfd_elf_generic_reloc, /* special_function */
1683 "R_ARM_THM_TLS_DESCSEQ",/* name */
1684 FALSE, /* partial_inplace */
1685 0x00000000, /* src_mask */
1686 0x00000000, /* dst_mask */
1687 FALSE), /* pcrel_offset */
1688 };
1689
1690 /* 160 onwards: */
1691 static reloc_howto_type elf32_arm_howto_table_2[1] =
1692 {
1693 HOWTO (R_ARM_IRELATIVE, /* type */
1694 0, /* rightshift */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1696 32, /* bitsize */
1697 FALSE, /* pc_relative */
1698 0, /* bitpos */
1699 complain_overflow_bitfield,/* complain_on_overflow */
1700 bfd_elf_generic_reloc, /* special_function */
1701 "R_ARM_IRELATIVE", /* name */
1702 TRUE, /* partial_inplace */
1703 0xffffffff, /* src_mask */
1704 0xffffffff, /* dst_mask */
1705 FALSE) /* pcrel_offset */
1706 };
1707
1708 /* 249-255 extended, currently unused, relocations: */
1709 static reloc_howto_type elf32_arm_howto_table_3[4] =
1710 {
1711 HOWTO (R_ARM_RREL32, /* type */
1712 0, /* rightshift */
1713 0, /* size (0 = byte, 1 = short, 2 = long) */
1714 0, /* bitsize */
1715 FALSE, /* pc_relative */
1716 0, /* bitpos */
1717 complain_overflow_dont,/* complain_on_overflow */
1718 bfd_elf_generic_reloc, /* special_function */
1719 "R_ARM_RREL32", /* name */
1720 FALSE, /* partial_inplace */
1721 0, /* src_mask */
1722 0, /* dst_mask */
1723 FALSE), /* pcrel_offset */
1724
1725 HOWTO (R_ARM_RABS32, /* type */
1726 0, /* rightshift */
1727 0, /* size (0 = byte, 1 = short, 2 = long) */
1728 0, /* bitsize */
1729 FALSE, /* pc_relative */
1730 0, /* bitpos */
1731 complain_overflow_dont,/* complain_on_overflow */
1732 bfd_elf_generic_reloc, /* special_function */
1733 "R_ARM_RABS32", /* name */
1734 FALSE, /* partial_inplace */
1735 0, /* src_mask */
1736 0, /* dst_mask */
1737 FALSE), /* pcrel_offset */
1738
1739 HOWTO (R_ARM_RPC24, /* type */
1740 0, /* rightshift */
1741 0, /* size (0 = byte, 1 = short, 2 = long) */
1742 0, /* bitsize */
1743 FALSE, /* pc_relative */
1744 0, /* bitpos */
1745 complain_overflow_dont,/* complain_on_overflow */
1746 bfd_elf_generic_reloc, /* special_function */
1747 "R_ARM_RPC24", /* name */
1748 FALSE, /* partial_inplace */
1749 0, /* src_mask */
1750 0, /* dst_mask */
1751 FALSE), /* pcrel_offset */
1752
1753 HOWTO (R_ARM_RBASE, /* type */
1754 0, /* rightshift */
1755 0, /* size (0 = byte, 1 = short, 2 = long) */
1756 0, /* bitsize */
1757 FALSE, /* pc_relative */
1758 0, /* bitpos */
1759 complain_overflow_dont,/* complain_on_overflow */
1760 bfd_elf_generic_reloc, /* special_function */
1761 "R_ARM_RBASE", /* name */
1762 FALSE, /* partial_inplace */
1763 0, /* src_mask */
1764 0, /* dst_mask */
1765 FALSE) /* pcrel_offset */
1766 };
1767
1768 static reloc_howto_type *
1769 elf32_arm_howto_from_type (unsigned int r_type)
1770 {
1771 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1772 return &elf32_arm_howto_table_1[r_type];
1773
1774 if (r_type == R_ARM_IRELATIVE)
1775 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1776
1777 if (r_type >= R_ARM_RREL32
1778 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1779 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1780
1781 return NULL;
1782 }
1783
1784 static void
1785 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1786 Elf_Internal_Rela * elf_reloc)
1787 {
1788 unsigned int r_type;
1789
1790 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1791 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1792 }
1793
1794 struct elf32_arm_reloc_map
1795 {
1796 bfd_reloc_code_real_type bfd_reloc_val;
1797 unsigned char elf_reloc_val;
1798 };
1799
1800 /* All entries in this list must also be present in elf32_arm_howto_table. */
1801 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1802 {
1803 {BFD_RELOC_NONE, R_ARM_NONE},
1804 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1805 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1806 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1807 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1808 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1809 {BFD_RELOC_32, R_ARM_ABS32},
1810 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1811 {BFD_RELOC_8, R_ARM_ABS8},
1812 {BFD_RELOC_16, R_ARM_ABS16},
1813 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1814 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1815 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1816 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1817 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1818 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1819 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1821 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1822 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1823 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1824 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1825 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1826 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1827 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1828 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1829 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1830 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1831 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1832 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1833 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1834 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1835 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1836 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1837 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1838 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1839 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1840 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1841 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1842 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1843 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1844 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1845 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1846 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1847 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1848 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1849 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1850 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1851 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1852 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1853 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1854 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1855 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1856 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1857 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1858 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1859 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1860 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1861 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1862 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1863 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1864 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1865 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1866 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1867 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1868 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1869 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1870 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1871 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1872 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1873 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1874 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1875 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1876 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1877 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1878 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1879 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1880 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1881 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1882 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1883 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1884 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1885 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1886 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1887 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1888 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1889 };
1890
1891 static reloc_howto_type *
1892 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1893 bfd_reloc_code_real_type code)
1894 {
1895 unsigned int i;
1896
1897 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1898 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1899 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1900
1901 return NULL;
1902 }
1903
1904 static reloc_howto_type *
1905 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1906 const char *r_name)
1907 {
1908 unsigned int i;
1909
1910 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1911 if (elf32_arm_howto_table_1[i].name != NULL
1912 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1913 return &elf32_arm_howto_table_1[i];
1914
1915 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1916 if (elf32_arm_howto_table_2[i].name != NULL
1917 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1918 return &elf32_arm_howto_table_2[i];
1919
1920 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1921 if (elf32_arm_howto_table_3[i].name != NULL
1922 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1923 return &elf32_arm_howto_table_3[i];
1924
1925 return NULL;
1926 }
1927
1928 /* Support for core dump NOTE sections. */
1929
1930 static bfd_boolean
1931 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1932 {
1933 int offset;
1934 size_t size;
1935
1936 switch (note->descsz)
1937 {
1938 default:
1939 return FALSE;
1940
1941 case 148: /* Linux/ARM 32-bit. */
1942 /* pr_cursig */
1943 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1944
1945 /* pr_pid */
1946 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
1947
1948 /* pr_reg */
1949 offset = 72;
1950 size = 72;
1951
1952 break;
1953 }
1954
1955 /* Make a ".reg/999" section. */
1956 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1957 size, note->descpos + offset);
1958 }
1959
1960 static bfd_boolean
1961 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1962 {
1963 switch (note->descsz)
1964 {
1965 default:
1966 return FALSE;
1967
1968 case 124: /* Linux/ARM elf_prpsinfo. */
1969 elf_tdata (abfd)->core_program
1970 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1971 elf_tdata (abfd)->core_command
1972 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1973 }
1974
1975 /* Note that for some reason, a spurious space is tacked
1976 onto the end of the args in some (at least one anyway)
1977 implementations, so strip it off if it exists. */
1978 {
1979 char *command = elf_tdata (abfd)->core_command;
1980 int n = strlen (command);
1981
1982 if (0 < n && command[n - 1] == ' ')
1983 command[n - 1] = '\0';
1984 }
1985
1986 return TRUE;
1987 }
1988
1989 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1990 #define TARGET_LITTLE_NAME "elf32-littlearm"
1991 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1992 #define TARGET_BIG_NAME "elf32-bigarm"
1993
1994 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1995 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1996
1997 typedef unsigned long int insn32;
1998 typedef unsigned short int insn16;
1999
2000 /* In lieu of proper flags, assume all EABIv4 or later objects are
2001 interworkable. */
2002 #define INTERWORK_FLAG(abfd) \
2003 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2004 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2005 || ((abfd)->flags & BFD_LINKER_CREATED))
2006
2007 /* The linker script knows the section names for placement.
2008 The entry_names are used to do simple name mangling on the stubs.
2009 Given a function name, and its type, the stub can be found. The
2010 name can be changed. The only requirement is the %s be present. */
2011 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2012 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2013
2014 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2015 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2016
2017 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2018 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2019
2020 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2021 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2022
2023 #define STUB_ENTRY_NAME "__%s_veneer"
2024
2025 /* The name of the dynamic interpreter. This is put in the .interp
2026 section. */
2027 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2028
2029 static const unsigned long tls_trampoline [] =
2030 {
2031 0xe08e0000, /* add r0, lr, r0 */
2032 0xe5901004, /* ldr r1, [r0,#4] */
2033 0xe12fff11, /* bx r1 */
2034 };
2035
2036 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2037 {
2038 0xe52d2004, /* push {r2} */
2039 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2040 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2041 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2042 0xe081100f, /* 2: add r1, pc */
2043 0xe12fff12, /* bx r2 */
2044 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2045 + dl_tlsdesc_lazy_resolver(GOT) */
2046 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2047 };
2048
2049 #ifdef FOUR_WORD_PLT
2050
2051 /* The first entry in a procedure linkage table looks like
2052 this. It is set up so that any shared library function that is
2053 called before the relocation has been set up calls the dynamic
2054 linker first. */
2055 static const bfd_vma elf32_arm_plt0_entry [] =
2056 {
2057 0xe52de004, /* str lr, [sp, #-4]! */
2058 0xe59fe010, /* ldr lr, [pc, #16] */
2059 0xe08fe00e, /* add lr, pc, lr */
2060 0xe5bef008, /* ldr pc, [lr, #8]! */
2061 };
2062
2063 /* Subsequent entries in a procedure linkage table look like
2064 this. */
2065 static const bfd_vma elf32_arm_plt_entry [] =
2066 {
2067 0xe28fc600, /* add ip, pc, #NN */
2068 0xe28cca00, /* add ip, ip, #NN */
2069 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2070 0x00000000, /* unused */
2071 };
2072
2073 #else
2074
2075 /* The first entry in a procedure linkage table looks like
2076 this. It is set up so that any shared library function that is
2077 called before the relocation has been set up calls the dynamic
2078 linker first. */
2079 static const bfd_vma elf32_arm_plt0_entry [] =
2080 {
2081 0xe52de004, /* str lr, [sp, #-4]! */
2082 0xe59fe004, /* ldr lr, [pc, #4] */
2083 0xe08fe00e, /* add lr, pc, lr */
2084 0xe5bef008, /* ldr pc, [lr, #8]! */
2085 0x00000000, /* &GOT[0] - . */
2086 };
2087
2088 /* Subsequent entries in a procedure linkage table look like
2089 this. */
2090 static const bfd_vma elf32_arm_plt_entry [] =
2091 {
2092 0xe28fc600, /* add ip, pc, #0xNN00000 */
2093 0xe28cca00, /* add ip, ip, #0xNN000 */
2094 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2095 };
2096
2097 #endif
2098
2099 /* The format of the first entry in the procedure linkage table
2100 for a VxWorks executable. */
2101 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2102 {
2103 0xe52dc008, /* str ip,[sp,#-8]! */
2104 0xe59fc000, /* ldr ip,[pc] */
2105 0xe59cf008, /* ldr pc,[ip,#8] */
2106 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2107 };
2108
2109 /* The format of subsequent entries in a VxWorks executable. */
2110 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2111 {
2112 0xe59fc000, /* ldr ip,[pc] */
2113 0xe59cf000, /* ldr pc,[ip] */
2114 0x00000000, /* .long @got */
2115 0xe59fc000, /* ldr ip,[pc] */
2116 0xea000000, /* b _PLT */
2117 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2118 };
2119
2120 /* The format of entries in a VxWorks shared library. */
2121 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2122 {
2123 0xe59fc000, /* ldr ip,[pc] */
2124 0xe79cf009, /* ldr pc,[ip,r9] */
2125 0x00000000, /* .long @got */
2126 0xe59fc000, /* ldr ip,[pc] */
2127 0xe599f008, /* ldr pc,[r9,#8] */
2128 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2129 };
2130
2131 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2132 #define PLT_THUMB_STUB_SIZE 4
2133 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2134 {
2135 0x4778, /* bx pc */
2136 0x46c0 /* nop */
2137 };
2138
2139 /* The entries in a PLT when using a DLL-based target with multiple
2140 address spaces. */
2141 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2142 {
2143 0xe51ff004, /* ldr pc, [pc, #-4] */
2144 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2145 };
2146
2147 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2148 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2149 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2150 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2151 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2152 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2153
2154 enum stub_insn_type
2155 {
2156 THUMB16_TYPE = 1,
2157 THUMB32_TYPE,
2158 ARM_TYPE,
2159 DATA_TYPE
2160 };
2161
2162 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2163 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2164 is inserted in arm_build_one_stub(). */
2165 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2166 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2167 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2168 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2169 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2170 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2171
2172 typedef struct
2173 {
2174 bfd_vma data;
2175 enum stub_insn_type type;
2176 unsigned int r_type;
2177 int reloc_addend;
2178 } insn_sequence;
2179
2180 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2181 to reach the stub if necessary. */
2182 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2183 {
2184 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2185 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2186 };
2187
2188 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2189 available. */
2190 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2191 {
2192 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2193 ARM_INSN(0xe12fff1c), /* bx ip */
2194 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2195 };
2196
2197 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2198 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2199 {
2200 THUMB16_INSN(0xb401), /* push {r0} */
2201 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2202 THUMB16_INSN(0x4684), /* mov ip, r0 */
2203 THUMB16_INSN(0xbc01), /* pop {r0} */
2204 THUMB16_INSN(0x4760), /* bx ip */
2205 THUMB16_INSN(0xbf00), /* nop */
2206 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2207 };
2208
2209 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2210 allowed. */
2211 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2212 {
2213 THUMB16_INSN(0x4778), /* bx pc */
2214 THUMB16_INSN(0x46c0), /* nop */
2215 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2216 ARM_INSN(0xe12fff1c), /* bx ip */
2217 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2218 };
2219
2220 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2221 available. */
2222 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2223 {
2224 THUMB16_INSN(0x4778), /* bx pc */
2225 THUMB16_INSN(0x46c0), /* nop */
2226 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2227 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2228 };
2229
2230 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2231 one, when the destination is close enough. */
2232 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2233 {
2234 THUMB16_INSN(0x4778), /* bx pc */
2235 THUMB16_INSN(0x46c0), /* nop */
2236 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2237 };
2238
2239 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2240 blx to reach the stub if necessary. */
2241 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2242 {
2243 ARM_INSN(0xe59fc000), /* ldr ip, [pc] */
2244 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2245 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2246 };
2247
2248 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2249 blx to reach the stub if necessary. We can not add into pc;
2250 it is not guaranteed to mode switch (different in ARMv6 and
2251 ARMv7). */
2252 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2253 {
2254 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2255 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2256 ARM_INSN(0xe12fff1c), /* bx ip */
2257 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2258 };
2259
2260 /* V4T ARM -> ARM long branch stub, PIC. */
2261 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2262 {
2263 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2264 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2265 ARM_INSN(0xe12fff1c), /* bx ip */
2266 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2267 };
2268
2269 /* V4T Thumb -> ARM long branch stub, PIC. */
2270 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2271 {
2272 THUMB16_INSN(0x4778), /* bx pc */
2273 THUMB16_INSN(0x46c0), /* nop */
2274 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2275 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2276 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2277 };
2278
2279 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2280 architectures. */
2281 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2282 {
2283 THUMB16_INSN(0xb401), /* push {r0} */
2284 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2285 THUMB16_INSN(0x46fc), /* mov ip, pc */
2286 THUMB16_INSN(0x4484), /* add ip, r0 */
2287 THUMB16_INSN(0xbc01), /* pop {r0} */
2288 THUMB16_INSN(0x4760), /* bx ip */
2289 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2290 };
2291
2292 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2293 allowed. */
2294 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2295 {
2296 THUMB16_INSN(0x4778), /* bx pc */
2297 THUMB16_INSN(0x46c0), /* nop */
2298 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2299 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2300 ARM_INSN(0xe12fff1c), /* bx ip */
2301 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2302 };
2303
2304 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2305 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2306 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2307 {
2308 ARM_INSN(0xe59f1000), /* ldr r1, [pc] */
2309 ARM_INSN(0xe08ff001), /* add pc, pc, r1 */
2310 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2311 };
2312
2313 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2314 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2315 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2316 {
2317 THUMB16_INSN(0x4778), /* bx pc */
2318 THUMB16_INSN(0x46c0), /* nop */
2319 ARM_INSN(0xe59f1000), /* ldr r1, [pc, #0] */
2320 ARM_INSN(0xe081f00f), /* add pc, r1, pc */
2321 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2322 };
2323
2324 /* Cortex-A8 erratum-workaround stubs. */
2325
2326 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2327 can't use a conditional branch to reach this stub). */
2328
2329 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2330 {
2331 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2332 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2333 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2334 };
2335
2336 /* Stub used for b.w and bl.w instructions. */
2337
2338 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2339 {
2340 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2341 };
2342
2343 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2344 {
2345 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2346 };
2347
2348 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2349 instruction (which switches to ARM mode) to point to this stub. Jump to the
2350 real destination using an ARM-mode branch. */
2351
2352 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2353 {
2354 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2355 };
2356
2357 /* Section name for stubs is the associated section name plus this
2358 string. */
2359 #define STUB_SUFFIX ".stub"
2360
2361 /* One entry per long/short branch stub defined above. */
2362 #define DEF_STUBS \
2363 DEF_STUB(long_branch_any_any) \
2364 DEF_STUB(long_branch_v4t_arm_thumb) \
2365 DEF_STUB(long_branch_thumb_only) \
2366 DEF_STUB(long_branch_v4t_thumb_thumb) \
2367 DEF_STUB(long_branch_v4t_thumb_arm) \
2368 DEF_STUB(short_branch_v4t_thumb_arm) \
2369 DEF_STUB(long_branch_any_arm_pic) \
2370 DEF_STUB(long_branch_any_thumb_pic) \
2371 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2372 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2373 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2374 DEF_STUB(long_branch_thumb_only_pic) \
2375 DEF_STUB(long_branch_any_tls_pic) \
2376 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2377 DEF_STUB(a8_veneer_b_cond) \
2378 DEF_STUB(a8_veneer_b) \
2379 DEF_STUB(a8_veneer_bl) \
2380 DEF_STUB(a8_veneer_blx)
2381
2382 #define DEF_STUB(x) arm_stub_##x,
2383 enum elf32_arm_stub_type {
2384 arm_stub_none,
2385 DEF_STUBS
2386 /* Note the first a8_veneer type */
2387 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2388 };
2389 #undef DEF_STUB
2390
2391 typedef struct
2392 {
2393 const insn_sequence* template_sequence;
2394 int template_size;
2395 } stub_def;
2396
2397 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2398 static const stub_def stub_definitions[] = {
2399 {NULL, 0},
2400 DEF_STUBS
2401 };
2402
2403 struct elf32_arm_stub_hash_entry
2404 {
2405 /* Base hash table entry structure. */
2406 struct bfd_hash_entry root;
2407
2408 /* The stub section. */
2409 asection *stub_sec;
2410
2411 /* Offset within stub_sec of the beginning of this stub. */
2412 bfd_vma stub_offset;
2413
2414 /* Given the symbol's value and its section we can determine its final
2415 value when building the stubs (so the stub knows where to jump). */
2416 bfd_vma target_value;
2417 asection *target_section;
2418
2419 /* Offset to apply to relocation referencing target_value. */
2420 bfd_vma target_addend;
2421
2422 /* The instruction which caused this stub to be generated (only valid for
2423 Cortex-A8 erratum workaround stubs at present). */
2424 unsigned long orig_insn;
2425
2426 /* The stub type. */
2427 enum elf32_arm_stub_type stub_type;
2428 /* Its encoding size in bytes. */
2429 int stub_size;
2430 /* Its template. */
2431 const insn_sequence *stub_template;
2432 /* The size of the template (number of entries). */
2433 int stub_template_size;
2434
2435 /* The symbol table entry, if any, that this was derived from. */
2436 struct elf32_arm_link_hash_entry *h;
2437
2438 /* Type of branch. */
2439 enum arm_st_branch_type branch_type;
2440
2441 /* Where this stub is being called from, or, in the case of combined
2442 stub sections, the first input section in the group. */
2443 asection *id_sec;
2444
2445 /* The name for the local symbol at the start of this stub. The
2446 stub name in the hash table has to be unique; this does not, so
2447 it can be friendlier. */
2448 char *output_name;
2449 };
2450
2451 /* Used to build a map of a section. This is required for mixed-endian
2452 code/data. */
2453
2454 typedef struct elf32_elf_section_map
2455 {
2456 bfd_vma vma;
2457 char type;
2458 }
2459 elf32_arm_section_map;
2460
2461 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2462
2463 typedef enum
2464 {
2465 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2466 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2467 VFP11_ERRATUM_ARM_VENEER,
2468 VFP11_ERRATUM_THUMB_VENEER
2469 }
2470 elf32_vfp11_erratum_type;
2471
2472 typedef struct elf32_vfp11_erratum_list
2473 {
2474 struct elf32_vfp11_erratum_list *next;
2475 bfd_vma vma;
2476 union
2477 {
2478 struct
2479 {
2480 struct elf32_vfp11_erratum_list *veneer;
2481 unsigned int vfp_insn;
2482 } b;
2483 struct
2484 {
2485 struct elf32_vfp11_erratum_list *branch;
2486 unsigned int id;
2487 } v;
2488 } u;
2489 elf32_vfp11_erratum_type type;
2490 }
2491 elf32_vfp11_erratum_list;
2492
2493 typedef enum
2494 {
2495 DELETE_EXIDX_ENTRY,
2496 INSERT_EXIDX_CANTUNWIND_AT_END
2497 }
2498 arm_unwind_edit_type;
2499
2500 /* A (sorted) list of edits to apply to an unwind table. */
2501 typedef struct arm_unwind_table_edit
2502 {
2503 arm_unwind_edit_type type;
2504 /* Note: we sometimes want to insert an unwind entry corresponding to a
2505 section different from the one we're currently writing out, so record the
2506 (text) section this edit relates to here. */
2507 asection *linked_section;
2508 unsigned int index;
2509 struct arm_unwind_table_edit *next;
2510 }
2511 arm_unwind_table_edit;
2512
2513 typedef struct _arm_elf_section_data
2514 {
2515 /* Information about mapping symbols. */
2516 struct bfd_elf_section_data elf;
2517 unsigned int mapcount;
2518 unsigned int mapsize;
2519 elf32_arm_section_map *map;
2520 /* Information about CPU errata. */
2521 unsigned int erratumcount;
2522 elf32_vfp11_erratum_list *erratumlist;
2523 /* Information about unwind tables. */
2524 union
2525 {
2526 /* Unwind info attached to a text section. */
2527 struct
2528 {
2529 asection *arm_exidx_sec;
2530 } text;
2531
2532 /* Unwind info attached to an .ARM.exidx section. */
2533 struct
2534 {
2535 arm_unwind_table_edit *unwind_edit_list;
2536 arm_unwind_table_edit *unwind_edit_tail;
2537 } exidx;
2538 } u;
2539 }
2540 _arm_elf_section_data;
2541
2542 #define elf32_arm_section_data(sec) \
2543 ((_arm_elf_section_data *) elf_section_data (sec))
2544
2545 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2546 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2547 so may be created multiple times: we use an array of these entries whilst
2548 relaxing which we can refresh easily, then create stubs for each potentially
2549 erratum-triggering instruction once we've settled on a solution. */
2550
2551 struct a8_erratum_fix {
2552 bfd *input_bfd;
2553 asection *section;
2554 bfd_vma offset;
2555 bfd_vma addend;
2556 unsigned long orig_insn;
2557 char *stub_name;
2558 enum elf32_arm_stub_type stub_type;
2559 enum arm_st_branch_type branch_type;
2560 };
2561
2562 /* A table of relocs applied to branches which might trigger Cortex-A8
2563 erratum. */
2564
2565 struct a8_erratum_reloc {
2566 bfd_vma from;
2567 bfd_vma destination;
2568 struct elf32_arm_link_hash_entry *hash;
2569 const char *sym_name;
2570 unsigned int r_type;
2571 enum arm_st_branch_type branch_type;
2572 bfd_boolean non_a8_stub;
2573 };
2574
2575 /* The size of the thread control block. */
2576 #define TCB_SIZE 8
2577
2578 /* ARM-specific information about a PLT entry, over and above the usual
2579 gotplt_union. */
2580 struct arm_plt_info {
2581 /* We reference count Thumb references to a PLT entry separately,
2582 so that we can emit the Thumb trampoline only if needed. */
2583 bfd_signed_vma thumb_refcount;
2584
2585 /* Some references from Thumb code may be eliminated by BL->BLX
2586 conversion, so record them separately. */
2587 bfd_signed_vma maybe_thumb_refcount;
2588
2589 /* How many of the recorded PLT accesses were from non-call relocations.
2590 This information is useful when deciding whether anything takes the
2591 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2592 non-call references to the function should resolve directly to the
2593 real runtime target. */
2594 unsigned int noncall_refcount;
2595
2596 /* Since PLT entries have variable size if the Thumb prologue is
2597 used, we need to record the index into .got.plt instead of
2598 recomputing it from the PLT offset. */
2599 bfd_signed_vma got_offset;
2600 };
2601
2602 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2603 struct arm_local_iplt_info {
2604 /* The information that is usually found in the generic ELF part of
2605 the hash table entry. */
2606 union gotplt_union root;
2607
2608 /* The information that is usually found in the ARM-specific part of
2609 the hash table entry. */
2610 struct arm_plt_info arm;
2611
2612 /* A list of all potential dynamic relocations against this symbol. */
2613 struct elf_dyn_relocs *dyn_relocs;
2614 };
2615
2616 struct elf_arm_obj_tdata
2617 {
2618 struct elf_obj_tdata root;
2619
2620 /* tls_type for each local got entry. */
2621 char *local_got_tls_type;
2622
2623 /* GOTPLT entries for TLS descriptors. */
2624 bfd_vma *local_tlsdesc_gotent;
2625
2626 /* Information for local symbols that need entries in .iplt. */
2627 struct arm_local_iplt_info **local_iplt;
2628
2629 /* Zero to warn when linking objects with incompatible enum sizes. */
2630 int no_enum_size_warning;
2631
2632 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2633 int no_wchar_size_warning;
2634 };
2635
2636 #define elf_arm_tdata(bfd) \
2637 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2638
2639 #define elf32_arm_local_got_tls_type(bfd) \
2640 (elf_arm_tdata (bfd)->local_got_tls_type)
2641
2642 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2643 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2644
2645 #define elf32_arm_local_iplt(bfd) \
2646 (elf_arm_tdata (bfd)->local_iplt)
2647
2648 #define is_arm_elf(bfd) \
2649 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2650 && elf_tdata (bfd) != NULL \
2651 && elf_object_id (bfd) == ARM_ELF_DATA)
2652
2653 static bfd_boolean
2654 elf32_arm_mkobject (bfd *abfd)
2655 {
2656 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2657 ARM_ELF_DATA);
2658 }
2659
2660 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2661
2662 /* Arm ELF linker hash entry. */
2663 struct elf32_arm_link_hash_entry
2664 {
2665 struct elf_link_hash_entry root;
2666
2667 /* Track dynamic relocs copied for this symbol. */
2668 struct elf_dyn_relocs *dyn_relocs;
2669
2670 /* ARM-specific PLT information. */
2671 struct arm_plt_info plt;
2672
2673 #define GOT_UNKNOWN 0
2674 #define GOT_NORMAL 1
2675 #define GOT_TLS_GD 2
2676 #define GOT_TLS_IE 4
2677 #define GOT_TLS_GDESC 8
2678 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2679 unsigned int tls_type : 8;
2680
2681 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2682 unsigned int is_iplt : 1;
2683
2684 unsigned int unused : 23;
2685
2686 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2687 starting at the end of the jump table. */
2688 bfd_vma tlsdesc_got;
2689
2690 /* The symbol marking the real symbol location for exported thumb
2691 symbols with Arm stubs. */
2692 struct elf_link_hash_entry *export_glue;
2693
2694 /* A pointer to the most recently used stub hash entry against this
2695 symbol. */
2696 struct elf32_arm_stub_hash_entry *stub_cache;
2697 };
2698
2699 /* Traverse an arm ELF linker hash table. */
2700 #define elf32_arm_link_hash_traverse(table, func, info) \
2701 (elf_link_hash_traverse \
2702 (&(table)->root, \
2703 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2704 (info)))
2705
2706 /* Get the ARM elf linker hash table from a link_info structure. */
2707 #define elf32_arm_hash_table(info) \
2708 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2709 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2710
2711 #define arm_stub_hash_lookup(table, string, create, copy) \
2712 ((struct elf32_arm_stub_hash_entry *) \
2713 bfd_hash_lookup ((table), (string), (create), (copy)))
2714
2715 /* Array to keep track of which stub sections have been created, and
2716 information on stub grouping. */
2717 struct map_stub
2718 {
2719 /* This is the section to which stubs in the group will be
2720 attached. */
2721 asection *link_sec;
2722 /* The stub section. */
2723 asection *stub_sec;
2724 };
2725
2726 #define elf32_arm_compute_jump_table_size(htab) \
2727 ((htab)->next_tls_desc_index * 4)
2728
2729 /* ARM ELF linker hash table. */
2730 struct elf32_arm_link_hash_table
2731 {
2732 /* The main hash table. */
2733 struct elf_link_hash_table root;
2734
2735 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2736 bfd_size_type thumb_glue_size;
2737
2738 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2739 bfd_size_type arm_glue_size;
2740
2741 /* The size in bytes of section containing the ARMv4 BX veneers. */
2742 bfd_size_type bx_glue_size;
2743
2744 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2745 veneer has been populated. */
2746 bfd_vma bx_glue_offset[15];
2747
2748 /* The size in bytes of the section containing glue for VFP11 erratum
2749 veneers. */
2750 bfd_size_type vfp11_erratum_glue_size;
2751
2752 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2753 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2754 elf32_arm_write_section(). */
2755 struct a8_erratum_fix *a8_erratum_fixes;
2756 unsigned int num_a8_erratum_fixes;
2757
2758 /* An arbitrary input BFD chosen to hold the glue sections. */
2759 bfd * bfd_of_glue_owner;
2760
2761 /* Nonzero to output a BE8 image. */
2762 int byteswap_code;
2763
2764 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2765 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2766 int target1_is_rel;
2767
2768 /* The relocation to use for R_ARM_TARGET2 relocations. */
2769 int target2_reloc;
2770
2771 /* 0 = Ignore R_ARM_V4BX.
2772 1 = Convert BX to MOV PC.
2773 2 = Generate v4 interworing stubs. */
2774 int fix_v4bx;
2775
2776 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2777 int fix_cortex_a8;
2778
2779 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2780 int use_blx;
2781
2782 /* What sort of code sequences we should look for which may trigger the
2783 VFP11 denorm erratum. */
2784 bfd_arm_vfp11_fix vfp11_fix;
2785
2786 /* Global counter for the number of fixes we have emitted. */
2787 int num_vfp11_fixes;
2788
2789 /* Nonzero to force PIC branch veneers. */
2790 int pic_veneer;
2791
2792 /* The number of bytes in the initial entry in the PLT. */
2793 bfd_size_type plt_header_size;
2794
2795 /* The number of bytes in the subsequent PLT etries. */
2796 bfd_size_type plt_entry_size;
2797
2798 /* True if the target system is VxWorks. */
2799 int vxworks_p;
2800
2801 /* True if the target system is Symbian OS. */
2802 int symbian_p;
2803
2804 /* True if the target uses REL relocations. */
2805 int use_rel;
2806
2807 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
2808 bfd_vma next_tls_desc_index;
2809
2810 /* How many R_ARM_TLS_DESC relocations were generated so far. */
2811 bfd_vma num_tls_desc;
2812
2813 /* Short-cuts to get to dynamic linker sections. */
2814 asection *sdynbss;
2815 asection *srelbss;
2816
2817 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2818 asection *srelplt2;
2819
2820 /* The offset into splt of the PLT entry for the TLS descriptor
2821 resolver. Special values are 0, if not necessary (or not found
2822 to be necessary yet), and -1 if needed but not determined
2823 yet. */
2824 bfd_vma dt_tlsdesc_plt;
2825
2826 /* The offset into sgot of the GOT entry used by the PLT entry
2827 above. */
2828 bfd_vma dt_tlsdesc_got;
2829
2830 /* Offset in .plt section of tls_arm_trampoline. */
2831 bfd_vma tls_trampoline;
2832
2833 /* Data for R_ARM_TLS_LDM32 relocations. */
2834 union
2835 {
2836 bfd_signed_vma refcount;
2837 bfd_vma offset;
2838 } tls_ldm_got;
2839
2840 /* Small local sym cache. */
2841 struct sym_cache sym_cache;
2842
2843 /* For convenience in allocate_dynrelocs. */
2844 bfd * obfd;
2845
2846 /* The amount of space used by the reserved portion of the sgotplt
2847 section, plus whatever space is used by the jump slots. */
2848 bfd_vma sgotplt_jump_table_size;
2849
2850 /* The stub hash table. */
2851 struct bfd_hash_table stub_hash_table;
2852
2853 /* Linker stub bfd. */
2854 bfd *stub_bfd;
2855
2856 /* Linker call-backs. */
2857 asection * (*add_stub_section) (const char *, asection *);
2858 void (*layout_sections_again) (void);
2859
2860 /* Array to keep track of which stub sections have been created, and
2861 information on stub grouping. */
2862 struct map_stub *stub_group;
2863
2864 /* Number of elements in stub_group. */
2865 int top_id;
2866
2867 /* Assorted information used by elf32_arm_size_stubs. */
2868 unsigned int bfd_count;
2869 int top_index;
2870 asection **input_list;
2871 };
2872
2873 /* Create an entry in an ARM ELF linker hash table. */
2874
2875 static struct bfd_hash_entry *
2876 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2877 struct bfd_hash_table * table,
2878 const char * string)
2879 {
2880 struct elf32_arm_link_hash_entry * ret =
2881 (struct elf32_arm_link_hash_entry *) entry;
2882
2883 /* Allocate the structure if it has not already been allocated by a
2884 subclass. */
2885 if (ret == NULL)
2886 ret = (struct elf32_arm_link_hash_entry *)
2887 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2888 if (ret == NULL)
2889 return (struct bfd_hash_entry *) ret;
2890
2891 /* Call the allocation method of the superclass. */
2892 ret = ((struct elf32_arm_link_hash_entry *)
2893 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2894 table, string));
2895 if (ret != NULL)
2896 {
2897 ret->dyn_relocs = NULL;
2898 ret->tls_type = GOT_UNKNOWN;
2899 ret->tlsdesc_got = (bfd_vma) -1;
2900 ret->plt.thumb_refcount = 0;
2901 ret->plt.maybe_thumb_refcount = 0;
2902 ret->plt.noncall_refcount = 0;
2903 ret->plt.got_offset = -1;
2904 ret->is_iplt = FALSE;
2905 ret->export_glue = NULL;
2906
2907 ret->stub_cache = NULL;
2908 }
2909
2910 return (struct bfd_hash_entry *) ret;
2911 }
2912
2913 /* Ensure that we have allocated bookkeeping structures for ABFD's local
2914 symbols. */
2915
2916 static bfd_boolean
2917 elf32_arm_allocate_local_sym_info (bfd *abfd)
2918 {
2919 if (elf_local_got_refcounts (abfd) == NULL)
2920 {
2921 bfd_size_type num_syms;
2922 bfd_size_type size;
2923 char *data;
2924
2925 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
2926 size = num_syms * (sizeof (bfd_signed_vma)
2927 + sizeof (struct arm_local_iplt_info *)
2928 + sizeof (bfd_vma)
2929 + sizeof (char));
2930 data = bfd_zalloc (abfd, size);
2931 if (data == NULL)
2932 return FALSE;
2933
2934 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
2935 data += num_syms * sizeof (bfd_signed_vma);
2936
2937 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
2938 data += num_syms * sizeof (struct arm_local_iplt_info *);
2939
2940 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
2941 data += num_syms * sizeof (bfd_vma);
2942
2943 elf32_arm_local_got_tls_type (abfd) = data;
2944 }
2945 return TRUE;
2946 }
2947
2948 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
2949 to input bfd ABFD. Create the information if it doesn't already exist.
2950 Return null if an allocation fails. */
2951
2952 static struct arm_local_iplt_info *
2953 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
2954 {
2955 struct arm_local_iplt_info **ptr;
2956
2957 if (!elf32_arm_allocate_local_sym_info (abfd))
2958 return NULL;
2959
2960 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
2961 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
2962 if (*ptr == NULL)
2963 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
2964 return *ptr;
2965 }
2966
2967 /* Try to obtain PLT information for the symbol with index R_SYMNDX
2968 in ABFD's symbol table. If the symbol is global, H points to its
2969 hash table entry, otherwise H is null.
2970
2971 Return true if the symbol does have PLT information. When returning
2972 true, point *ROOT_PLT at the target-independent reference count/offset
2973 union and *ARM_PLT at the ARM-specific information. */
2974
2975 static bfd_boolean
2976 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
2977 unsigned long r_symndx, union gotplt_union **root_plt,
2978 struct arm_plt_info **arm_plt)
2979 {
2980 struct arm_local_iplt_info *local_iplt;
2981
2982 if (h != NULL)
2983 {
2984 *root_plt = &h->root.plt;
2985 *arm_plt = &h->plt;
2986 return TRUE;
2987 }
2988
2989 if (elf32_arm_local_iplt (abfd) == NULL)
2990 return FALSE;
2991
2992 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
2993 if (local_iplt == NULL)
2994 return FALSE;
2995
2996 *root_plt = &local_iplt->root;
2997 *arm_plt = &local_iplt->arm;
2998 return TRUE;
2999 }
3000
3001 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3002 before it. */
3003
3004 static bfd_boolean
3005 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3006 struct arm_plt_info *arm_plt)
3007 {
3008 struct elf32_arm_link_hash_table *htab;
3009
3010 htab = elf32_arm_hash_table (info);
3011 return (arm_plt->thumb_refcount != 0
3012 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3013 }
3014
3015 /* Return a pointer to the head of the dynamic reloc list that should
3016 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3017 ABFD's symbol table. Return null if an error occurs. */
3018
3019 static struct elf_dyn_relocs **
3020 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3021 Elf_Internal_Sym *isym)
3022 {
3023 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3024 {
3025 struct arm_local_iplt_info *local_iplt;
3026
3027 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3028 if (local_iplt == NULL)
3029 return NULL;
3030 return &local_iplt->dyn_relocs;
3031 }
3032 else
3033 {
3034 /* Track dynamic relocs needed for local syms too.
3035 We really need local syms available to do this
3036 easily. Oh well. */
3037 asection *s;
3038 void *vpp;
3039
3040 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3041 if (s == NULL)
3042 abort ();
3043
3044 vpp = &elf_section_data (s)->local_dynrel;
3045 return (struct elf_dyn_relocs **) vpp;
3046 }
3047 }
3048
3049 /* Initialize an entry in the stub hash table. */
3050
3051 static struct bfd_hash_entry *
3052 stub_hash_newfunc (struct bfd_hash_entry *entry,
3053 struct bfd_hash_table *table,
3054 const char *string)
3055 {
3056 /* Allocate the structure if it has not already been allocated by a
3057 subclass. */
3058 if (entry == NULL)
3059 {
3060 entry = (struct bfd_hash_entry *)
3061 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3062 if (entry == NULL)
3063 return entry;
3064 }
3065
3066 /* Call the allocation method of the superclass. */
3067 entry = bfd_hash_newfunc (entry, table, string);
3068 if (entry != NULL)
3069 {
3070 struct elf32_arm_stub_hash_entry *eh;
3071
3072 /* Initialize the local fields. */
3073 eh = (struct elf32_arm_stub_hash_entry *) entry;
3074 eh->stub_sec = NULL;
3075 eh->stub_offset = 0;
3076 eh->target_value = 0;
3077 eh->target_section = NULL;
3078 eh->target_addend = 0;
3079 eh->orig_insn = 0;
3080 eh->stub_type = arm_stub_none;
3081 eh->stub_size = 0;
3082 eh->stub_template = NULL;
3083 eh->stub_template_size = 0;
3084 eh->h = NULL;
3085 eh->id_sec = NULL;
3086 eh->output_name = NULL;
3087 }
3088
3089 return entry;
3090 }
3091
3092 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3093 shortcuts to them in our hash table. */
3094
3095 static bfd_boolean
3096 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3097 {
3098 struct elf32_arm_link_hash_table *htab;
3099
3100 htab = elf32_arm_hash_table (info);
3101 if (htab == NULL)
3102 return FALSE;
3103
3104 /* BPABI objects never have a GOT, or associated sections. */
3105 if (htab->symbian_p)
3106 return TRUE;
3107
3108 if (! _bfd_elf_create_got_section (dynobj, info))
3109 return FALSE;
3110
3111 return TRUE;
3112 }
3113
3114 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3115
3116 static bfd_boolean
3117 create_ifunc_sections (struct bfd_link_info *info)
3118 {
3119 struct elf32_arm_link_hash_table *htab;
3120 const struct elf_backend_data *bed;
3121 bfd *dynobj;
3122 asection *s;
3123 flagword flags;
3124
3125 htab = elf32_arm_hash_table (info);
3126 dynobj = htab->root.dynobj;
3127 bed = get_elf_backend_data (dynobj);
3128 flags = bed->dynamic_sec_flags;
3129
3130 if (htab->root.iplt == NULL)
3131 {
3132 s = bfd_make_section_with_flags (dynobj, ".iplt",
3133 flags | SEC_READONLY | SEC_CODE);
3134 if (s == NULL
3135 || !bfd_set_section_alignment (abfd, s, bed->plt_alignment))
3136 return FALSE;
3137 htab->root.iplt = s;
3138 }
3139
3140 if (htab->root.irelplt == NULL)
3141 {
3142 s = bfd_make_section_with_flags (dynobj, RELOC_SECTION (htab, ".iplt"),
3143 flags | SEC_READONLY);
3144 if (s == NULL
3145 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
3146 return FALSE;
3147 htab->root.irelplt = s;
3148 }
3149
3150 if (htab->root.igotplt == NULL)
3151 {
3152 s = bfd_make_section_with_flags (dynobj, ".igot.plt", flags);
3153 if (s == NULL
3154 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3155 return FALSE;
3156 htab->root.igotplt = s;
3157 }
3158 return TRUE;
3159 }
3160
3161 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3162 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3163 hash table. */
3164
3165 static bfd_boolean
3166 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3167 {
3168 struct elf32_arm_link_hash_table *htab;
3169
3170 htab = elf32_arm_hash_table (info);
3171 if (htab == NULL)
3172 return FALSE;
3173
3174 if (!htab->root.sgot && !create_got_section (dynobj, info))
3175 return FALSE;
3176
3177 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3178 return FALSE;
3179
3180 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3181 if (!info->shared)
3182 htab->srelbss = bfd_get_section_by_name (dynobj,
3183 RELOC_SECTION (htab, ".bss"));
3184
3185 if (htab->vxworks_p)
3186 {
3187 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3188 return FALSE;
3189
3190 if (info->shared)
3191 {
3192 htab->plt_header_size = 0;
3193 htab->plt_entry_size
3194 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3195 }
3196 else
3197 {
3198 htab->plt_header_size
3199 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3200 htab->plt_entry_size
3201 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3202 }
3203 }
3204
3205 if (!htab->root.splt
3206 || !htab->root.srelplt
3207 || !htab->sdynbss
3208 || (!info->shared && !htab->srelbss))
3209 abort ();
3210
3211 return TRUE;
3212 }
3213
3214 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3215
3216 static void
3217 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3218 struct elf_link_hash_entry *dir,
3219 struct elf_link_hash_entry *ind)
3220 {
3221 struct elf32_arm_link_hash_entry *edir, *eind;
3222
3223 edir = (struct elf32_arm_link_hash_entry *) dir;
3224 eind = (struct elf32_arm_link_hash_entry *) ind;
3225
3226 if (eind->dyn_relocs != NULL)
3227 {
3228 if (edir->dyn_relocs != NULL)
3229 {
3230 struct elf_dyn_relocs **pp;
3231 struct elf_dyn_relocs *p;
3232
3233 /* Add reloc counts against the indirect sym to the direct sym
3234 list. Merge any entries against the same section. */
3235 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3236 {
3237 struct elf_dyn_relocs *q;
3238
3239 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3240 if (q->sec == p->sec)
3241 {
3242 q->pc_count += p->pc_count;
3243 q->count += p->count;
3244 *pp = p->next;
3245 break;
3246 }
3247 if (q == NULL)
3248 pp = &p->next;
3249 }
3250 *pp = edir->dyn_relocs;
3251 }
3252
3253 edir->dyn_relocs = eind->dyn_relocs;
3254 eind->dyn_relocs = NULL;
3255 }
3256
3257 if (ind->root.type == bfd_link_hash_indirect)
3258 {
3259 /* Copy over PLT info. */
3260 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3261 eind->plt.thumb_refcount = 0;
3262 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3263 eind->plt.maybe_thumb_refcount = 0;
3264 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3265 eind->plt.noncall_refcount = 0;
3266
3267 /* We should only allocate a function to .iplt once the final
3268 symbol information is known. */
3269 BFD_ASSERT (!eind->is_iplt);
3270
3271 if (dir->got.refcount <= 0)
3272 {
3273 edir->tls_type = eind->tls_type;
3274 eind->tls_type = GOT_UNKNOWN;
3275 }
3276 }
3277
3278 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3279 }
3280
3281 /* Create an ARM elf linker hash table. */
3282
3283 static struct bfd_link_hash_table *
3284 elf32_arm_link_hash_table_create (bfd *abfd)
3285 {
3286 struct elf32_arm_link_hash_table *ret;
3287 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3288
3289 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
3290 if (ret == NULL)
3291 return NULL;
3292
3293 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3294 elf32_arm_link_hash_newfunc,
3295 sizeof (struct elf32_arm_link_hash_entry),
3296 ARM_ELF_DATA))
3297 {
3298 free (ret);
3299 return NULL;
3300 }
3301
3302 ret->sdynbss = NULL;
3303 ret->srelbss = NULL;
3304 ret->srelplt2 = NULL;
3305 ret->dt_tlsdesc_plt = 0;
3306 ret->dt_tlsdesc_got = 0;
3307 ret->tls_trampoline = 0;
3308 ret->next_tls_desc_index = 0;
3309 ret->num_tls_desc = 0;
3310 ret->thumb_glue_size = 0;
3311 ret->arm_glue_size = 0;
3312 ret->bx_glue_size = 0;
3313 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
3314 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3315 ret->vfp11_erratum_glue_size = 0;
3316 ret->num_vfp11_fixes = 0;
3317 ret->fix_cortex_a8 = 0;
3318 ret->bfd_of_glue_owner = NULL;
3319 ret->byteswap_code = 0;
3320 ret->target1_is_rel = 0;
3321 ret->target2_reloc = R_ARM_NONE;
3322 #ifdef FOUR_WORD_PLT
3323 ret->plt_header_size = 16;
3324 ret->plt_entry_size = 16;
3325 #else
3326 ret->plt_header_size = 20;
3327 ret->plt_entry_size = 12;
3328 #endif
3329 ret->fix_v4bx = 0;
3330 ret->use_blx = 0;
3331 ret->vxworks_p = 0;
3332 ret->symbian_p = 0;
3333 ret->use_rel = 1;
3334 ret->sym_cache.abfd = NULL;
3335 ret->obfd = abfd;
3336 ret->tls_ldm_got.refcount = 0;
3337 ret->stub_bfd = NULL;
3338 ret->add_stub_section = NULL;
3339 ret->layout_sections_again = NULL;
3340 ret->stub_group = NULL;
3341 ret->top_id = 0;
3342 ret->bfd_count = 0;
3343 ret->top_index = 0;
3344 ret->input_list = NULL;
3345
3346 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3347 sizeof (struct elf32_arm_stub_hash_entry)))
3348 {
3349 free (ret);
3350 return NULL;
3351 }
3352
3353 return &ret->root.root;
3354 }
3355
3356 /* Free the derived linker hash table. */
3357
3358 static void
3359 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
3360 {
3361 struct elf32_arm_link_hash_table *ret
3362 = (struct elf32_arm_link_hash_table *) hash;
3363
3364 bfd_hash_table_free (&ret->stub_hash_table);
3365 _bfd_generic_link_hash_table_free (hash);
3366 }
3367
3368 /* Determine if we're dealing with a Thumb only architecture. */
3369
3370 static bfd_boolean
3371 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3372 {
3373 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3374 Tag_CPU_arch);
3375 int profile;
3376
3377 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3378 return TRUE;
3379
3380 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
3381 return FALSE;
3382
3383 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3384 Tag_CPU_arch_profile);
3385
3386 return profile == 'M';
3387 }
3388
3389 /* Determine if we're dealing with a Thumb-2 object. */
3390
3391 static bfd_boolean
3392 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3393 {
3394 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3395 Tag_CPU_arch);
3396 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3397 }
3398
3399 /* Determine what kind of NOPs are available. */
3400
3401 static bfd_boolean
3402 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3403 {
3404 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3405 Tag_CPU_arch);
3406 return arch == TAG_CPU_ARCH_V6T2
3407 || arch == TAG_CPU_ARCH_V6K
3408 || arch == TAG_CPU_ARCH_V7
3409 || arch == TAG_CPU_ARCH_V7E_M;
3410 }
3411
3412 static bfd_boolean
3413 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3414 {
3415 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3416 Tag_CPU_arch);
3417 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3418 || arch == TAG_CPU_ARCH_V7E_M);
3419 }
3420
3421 static bfd_boolean
3422 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3423 {
3424 switch (stub_type)
3425 {
3426 case arm_stub_long_branch_thumb_only:
3427 case arm_stub_long_branch_v4t_thumb_arm:
3428 case arm_stub_short_branch_v4t_thumb_arm:
3429 case arm_stub_long_branch_v4t_thumb_arm_pic:
3430 case arm_stub_long_branch_thumb_only_pic:
3431 return TRUE;
3432 case arm_stub_none:
3433 BFD_FAIL ();
3434 return FALSE;
3435 break;
3436 default:
3437 return FALSE;
3438 }
3439 }
3440
3441 /* Determine the type of stub needed, if any, for a call. */
3442
3443 static enum elf32_arm_stub_type
3444 arm_type_of_stub (struct bfd_link_info *info,
3445 asection *input_sec,
3446 const Elf_Internal_Rela *rel,
3447 unsigned char st_type,
3448 enum arm_st_branch_type *actual_branch_type,
3449 struct elf32_arm_link_hash_entry *hash,
3450 bfd_vma destination,
3451 asection *sym_sec,
3452 bfd *input_bfd,
3453 const char *name)
3454 {
3455 bfd_vma location;
3456 bfd_signed_vma branch_offset;
3457 unsigned int r_type;
3458 struct elf32_arm_link_hash_table * globals;
3459 int thumb2;
3460 int thumb_only;
3461 enum elf32_arm_stub_type stub_type = arm_stub_none;
3462 int use_plt = 0;
3463 enum arm_st_branch_type branch_type = *actual_branch_type;
3464 union gotplt_union *root_plt;
3465 struct arm_plt_info *arm_plt;
3466
3467 if (branch_type == ST_BRANCH_LONG)
3468 return stub_type;
3469
3470 globals = elf32_arm_hash_table (info);
3471 if (globals == NULL)
3472 return stub_type;
3473
3474 thumb_only = using_thumb_only (globals);
3475
3476 thumb2 = using_thumb2 (globals);
3477
3478 /* Determine where the call point is. */
3479 location = (input_sec->output_offset
3480 + input_sec->output_section->vma
3481 + rel->r_offset);
3482
3483 r_type = ELF32_R_TYPE (rel->r_info);
3484
3485 /* For TLS call relocs, it is the caller's responsibility to provide
3486 the address of the appropriate trampoline. */
3487 if (r_type != R_ARM_TLS_CALL
3488 && r_type != R_ARM_THM_TLS_CALL
3489 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3490 &root_plt, &arm_plt)
3491 && root_plt->offset != (bfd_vma) -1)
3492 {
3493 asection *splt;
3494
3495 if (hash == NULL || hash->is_iplt)
3496 splt = globals->root.iplt;
3497 else
3498 splt = globals->root.splt;
3499 if (splt != NULL)
3500 {
3501 use_plt = 1;
3502
3503 /* Note when dealing with PLT entries: the main PLT stub is in
3504 ARM mode, so if the branch is in Thumb mode, another
3505 Thumb->ARM stub will be inserted later just before the ARM
3506 PLT stub. We don't take this extra distance into account
3507 here, because if a long branch stub is needed, we'll add a
3508 Thumb->Arm one and branch directly to the ARM PLT entry
3509 because it avoids spreading offset corrections in several
3510 places. */
3511
3512 destination = (splt->output_section->vma
3513 + splt->output_offset
3514 + root_plt->offset);
3515 st_type = STT_FUNC;
3516 branch_type = ST_BRANCH_TO_ARM;
3517 }
3518 }
3519 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3520 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3521
3522 branch_offset = (bfd_signed_vma)(destination - location);
3523
3524 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3525 || r_type == R_ARM_THM_TLS_CALL)
3526 {
3527 /* Handle cases where:
3528 - this call goes too far (different Thumb/Thumb2 max
3529 distance)
3530 - it's a Thumb->Arm call and blx is not available, or it's a
3531 Thumb->Arm branch (not bl). A stub is needed in this case,
3532 but only if this call is not through a PLT entry. Indeed,
3533 PLT stubs handle mode switching already.
3534 */
3535 if ((!thumb2
3536 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3537 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3538 || (thumb2
3539 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3540 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3541 || (branch_type == ST_BRANCH_TO_ARM
3542 && (((r_type == R_ARM_THM_CALL
3543 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3544 || (r_type == R_ARM_THM_JUMP24))
3545 && !use_plt))
3546 {
3547 if (branch_type == ST_BRANCH_TO_THUMB)
3548 {
3549 /* Thumb to thumb. */
3550 if (!thumb_only)
3551 {
3552 stub_type = (info->shared | globals->pic_veneer)
3553 /* PIC stubs. */
3554 ? ((globals->use_blx
3555 && (r_type ==R_ARM_THM_CALL))
3556 /* V5T and above. Stub starts with ARM code, so
3557 we must be able to switch mode before
3558 reaching it, which is only possible for 'bl'
3559 (ie R_ARM_THM_CALL relocation). */
3560 ? arm_stub_long_branch_any_thumb_pic
3561 /* On V4T, use Thumb code only. */
3562 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3563
3564 /* non-PIC stubs. */
3565 : ((globals->use_blx
3566 && (r_type ==R_ARM_THM_CALL))
3567 /* V5T and above. */
3568 ? arm_stub_long_branch_any_any
3569 /* V4T. */
3570 : arm_stub_long_branch_v4t_thumb_thumb);
3571 }
3572 else
3573 {
3574 stub_type = (info->shared | globals->pic_veneer)
3575 /* PIC stub. */
3576 ? arm_stub_long_branch_thumb_only_pic
3577 /* non-PIC stub. */
3578 : arm_stub_long_branch_thumb_only;
3579 }
3580 }
3581 else
3582 {
3583 /* Thumb to arm. */
3584 if (sym_sec != NULL
3585 && sym_sec->owner != NULL
3586 && !INTERWORK_FLAG (sym_sec->owner))
3587 {
3588 (*_bfd_error_handler)
3589 (_("%B(%s): warning: interworking not enabled.\n"
3590 " first occurrence: %B: Thumb call to ARM"),
3591 sym_sec->owner, input_bfd, name);
3592 }
3593
3594 stub_type =
3595 (info->shared | globals->pic_veneer)
3596 /* PIC stubs. */
3597 ? (r_type == R_ARM_THM_TLS_CALL
3598 /* TLS PIC stubs */
3599 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3600 : arm_stub_long_branch_v4t_thumb_tls_pic)
3601 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3602 /* V5T PIC and above. */
3603 ? arm_stub_long_branch_any_arm_pic
3604 /* V4T PIC stub. */
3605 : arm_stub_long_branch_v4t_thumb_arm_pic))
3606
3607 /* non-PIC stubs. */
3608 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3609 /* V5T and above. */
3610 ? arm_stub_long_branch_any_any
3611 /* V4T. */
3612 : arm_stub_long_branch_v4t_thumb_arm);
3613
3614 /* Handle v4t short branches. */
3615 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3616 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3617 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3618 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3619 }
3620 }
3621 }
3622 else if (r_type == R_ARM_CALL
3623 || r_type == R_ARM_JUMP24
3624 || r_type == R_ARM_PLT32
3625 || r_type == R_ARM_TLS_CALL)
3626 {
3627 if (branch_type == ST_BRANCH_TO_THUMB)
3628 {
3629 /* Arm to thumb. */
3630
3631 if (sym_sec != NULL
3632 && sym_sec->owner != NULL
3633 && !INTERWORK_FLAG (sym_sec->owner))
3634 {
3635 (*_bfd_error_handler)
3636 (_("%B(%s): warning: interworking not enabled.\n"
3637 " first occurrence: %B: ARM call to Thumb"),
3638 sym_sec->owner, input_bfd, name);
3639 }
3640
3641 /* We have an extra 2-bytes reach because of
3642 the mode change (bit 24 (H) of BLX encoding). */
3643 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3644 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3645 || (r_type == R_ARM_CALL && !globals->use_blx)
3646 || (r_type == R_ARM_JUMP24)
3647 || (r_type == R_ARM_PLT32))
3648 {
3649 stub_type = (info->shared | globals->pic_veneer)
3650 /* PIC stubs. */
3651 ? ((globals->use_blx)
3652 /* V5T and above. */
3653 ? arm_stub_long_branch_any_thumb_pic
3654 /* V4T stub. */
3655 : arm_stub_long_branch_v4t_arm_thumb_pic)
3656
3657 /* non-PIC stubs. */
3658 : ((globals->use_blx)
3659 /* V5T and above. */
3660 ? arm_stub_long_branch_any_any
3661 /* V4T. */
3662 : arm_stub_long_branch_v4t_arm_thumb);
3663 }
3664 }
3665 else
3666 {
3667 /* Arm to arm. */
3668 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3669 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3670 {
3671 stub_type =
3672 (info->shared | globals->pic_veneer)
3673 /* PIC stubs. */
3674 ? (r_type == R_ARM_TLS_CALL
3675 /* TLS PIC Stub */
3676 ? arm_stub_long_branch_any_tls_pic
3677 : arm_stub_long_branch_any_arm_pic)
3678 /* non-PIC stubs. */
3679 : arm_stub_long_branch_any_any;
3680 }
3681 }
3682 }
3683
3684 /* If a stub is needed, record the actual destination type. */
3685 if (stub_type != arm_stub_none)
3686 *actual_branch_type = branch_type;
3687
3688 return stub_type;
3689 }
3690
3691 /* Build a name for an entry in the stub hash table. */
3692
3693 static char *
3694 elf32_arm_stub_name (const asection *input_section,
3695 const asection *sym_sec,
3696 const struct elf32_arm_link_hash_entry *hash,
3697 const Elf_Internal_Rela *rel,
3698 enum elf32_arm_stub_type stub_type)
3699 {
3700 char *stub_name;
3701 bfd_size_type len;
3702
3703 if (hash)
3704 {
3705 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3706 stub_name = (char *) bfd_malloc (len);
3707 if (stub_name != NULL)
3708 sprintf (stub_name, "%08x_%s+%x_%d",
3709 input_section->id & 0xffffffff,
3710 hash->root.root.root.string,
3711 (int) rel->r_addend & 0xffffffff,
3712 (int) stub_type);
3713 }
3714 else
3715 {
3716 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3717 stub_name = (char *) bfd_malloc (len);
3718 if (stub_name != NULL)
3719 sprintf (stub_name, "%08x_%x:%x+%x_%d",
3720 input_section->id & 0xffffffff,
3721 sym_sec->id & 0xffffffff,
3722 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3723 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3724 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3725 (int) rel->r_addend & 0xffffffff,
3726 (int) stub_type);
3727 }
3728
3729 return stub_name;
3730 }
3731
3732 /* Look up an entry in the stub hash. Stub entries are cached because
3733 creating the stub name takes a bit of time. */
3734
3735 static struct elf32_arm_stub_hash_entry *
3736 elf32_arm_get_stub_entry (const asection *input_section,
3737 const asection *sym_sec,
3738 struct elf_link_hash_entry *hash,
3739 const Elf_Internal_Rela *rel,
3740 struct elf32_arm_link_hash_table *htab,
3741 enum elf32_arm_stub_type stub_type)
3742 {
3743 struct elf32_arm_stub_hash_entry *stub_entry;
3744 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3745 const asection *id_sec;
3746
3747 if ((input_section->flags & SEC_CODE) == 0)
3748 return NULL;
3749
3750 /* If this input section is part of a group of sections sharing one
3751 stub section, then use the id of the first section in the group.
3752 Stub names need to include a section id, as there may well be
3753 more than one stub used to reach say, printf, and we need to
3754 distinguish between them. */
3755 id_sec = htab->stub_group[input_section->id].link_sec;
3756
3757 if (h != NULL && h->stub_cache != NULL
3758 && h->stub_cache->h == h
3759 && h->stub_cache->id_sec == id_sec
3760 && h->stub_cache->stub_type == stub_type)
3761 {
3762 stub_entry = h->stub_cache;
3763 }
3764 else
3765 {
3766 char *stub_name;
3767
3768 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3769 if (stub_name == NULL)
3770 return NULL;
3771
3772 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3773 stub_name, FALSE, FALSE);
3774 if (h != NULL)
3775 h->stub_cache = stub_entry;
3776
3777 free (stub_name);
3778 }
3779
3780 return stub_entry;
3781 }
3782
3783 /* Find or create a stub section. Returns a pointer to the stub section, and
3784 the section to which the stub section will be attached (in *LINK_SEC_P).
3785 LINK_SEC_P may be NULL. */
3786
3787 static asection *
3788 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3789 struct elf32_arm_link_hash_table *htab)
3790 {
3791 asection *link_sec;
3792 asection *stub_sec;
3793
3794 link_sec = htab->stub_group[section->id].link_sec;
3795 stub_sec = htab->stub_group[section->id].stub_sec;
3796 if (stub_sec == NULL)
3797 {
3798 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3799 if (stub_sec == NULL)
3800 {
3801 size_t namelen;
3802 bfd_size_type len;
3803 char *s_name;
3804
3805 namelen = strlen (link_sec->name);
3806 len = namelen + sizeof (STUB_SUFFIX);
3807 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
3808 if (s_name == NULL)
3809 return NULL;
3810
3811 memcpy (s_name, link_sec->name, namelen);
3812 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3813 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3814 if (stub_sec == NULL)
3815 return NULL;
3816 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3817 }
3818 htab->stub_group[section->id].stub_sec = stub_sec;
3819 }
3820
3821 if (link_sec_p)
3822 *link_sec_p = link_sec;
3823
3824 return stub_sec;
3825 }
3826
3827 /* Add a new stub entry to the stub hash. Not all fields of the new
3828 stub entry are initialised. */
3829
3830 static struct elf32_arm_stub_hash_entry *
3831 elf32_arm_add_stub (const char *stub_name,
3832 asection *section,
3833 struct elf32_arm_link_hash_table *htab)
3834 {
3835 asection *link_sec;
3836 asection *stub_sec;
3837 struct elf32_arm_stub_hash_entry *stub_entry;
3838
3839 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3840 if (stub_sec == NULL)
3841 return NULL;
3842
3843 /* Enter this entry into the linker stub hash table. */
3844 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3845 TRUE, FALSE);
3846 if (stub_entry == NULL)
3847 {
3848 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3849 section->owner,
3850 stub_name);
3851 return NULL;
3852 }
3853
3854 stub_entry->stub_sec = stub_sec;
3855 stub_entry->stub_offset = 0;
3856 stub_entry->id_sec = link_sec;
3857
3858 return stub_entry;
3859 }
3860
3861 /* Store an Arm insn into an output section not processed by
3862 elf32_arm_write_section. */
3863
3864 static void
3865 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3866 bfd * output_bfd, bfd_vma val, void * ptr)
3867 {
3868 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3869 bfd_putl32 (val, ptr);
3870 else
3871 bfd_putb32 (val, ptr);
3872 }
3873
3874 /* Store a 16-bit Thumb insn into an output section not processed by
3875 elf32_arm_write_section. */
3876
3877 static void
3878 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3879 bfd * output_bfd, bfd_vma val, void * ptr)
3880 {
3881 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3882 bfd_putl16 (val, ptr);
3883 else
3884 bfd_putb16 (val, ptr);
3885 }
3886
3887 /* If it's possible to change R_TYPE to a more efficient access
3888 model, return the new reloc type. */
3889
3890 static unsigned
3891 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
3892 struct elf_link_hash_entry *h)
3893 {
3894 int is_local = (h == NULL);
3895
3896 if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
3897 return r_type;
3898
3899 /* We do not support relaxations for Old TLS models. */
3900 switch (r_type)
3901 {
3902 case R_ARM_TLS_GOTDESC:
3903 case R_ARM_TLS_CALL:
3904 case R_ARM_THM_TLS_CALL:
3905 case R_ARM_TLS_DESCSEQ:
3906 case R_ARM_THM_TLS_DESCSEQ:
3907 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
3908 }
3909
3910 return r_type;
3911 }
3912
3913 static bfd_reloc_status_type elf32_arm_final_link_relocate
3914 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3915 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3916 const char *, unsigned char, enum arm_st_branch_type,
3917 struct elf_link_hash_entry *, bfd_boolean *, char **);
3918
3919 static unsigned int
3920 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
3921 {
3922 switch (stub_type)
3923 {
3924 case arm_stub_a8_veneer_b_cond:
3925 case arm_stub_a8_veneer_b:
3926 case arm_stub_a8_veneer_bl:
3927 return 2;
3928
3929 case arm_stub_long_branch_any_any:
3930 case arm_stub_long_branch_v4t_arm_thumb:
3931 case arm_stub_long_branch_thumb_only:
3932 case arm_stub_long_branch_v4t_thumb_thumb:
3933 case arm_stub_long_branch_v4t_thumb_arm:
3934 case arm_stub_short_branch_v4t_thumb_arm:
3935 case arm_stub_long_branch_any_arm_pic:
3936 case arm_stub_long_branch_any_thumb_pic:
3937 case arm_stub_long_branch_v4t_thumb_thumb_pic:
3938 case arm_stub_long_branch_v4t_arm_thumb_pic:
3939 case arm_stub_long_branch_v4t_thumb_arm_pic:
3940 case arm_stub_long_branch_thumb_only_pic:
3941 case arm_stub_long_branch_any_tls_pic:
3942 case arm_stub_long_branch_v4t_thumb_tls_pic:
3943 case arm_stub_a8_veneer_blx:
3944 return 4;
3945
3946 default:
3947 abort (); /* Should be unreachable. */
3948 }
3949 }
3950
3951 static bfd_boolean
3952 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3953 void * in_arg)
3954 {
3955 #define MAXRELOCS 2
3956 struct elf32_arm_stub_hash_entry *stub_entry;
3957 struct elf32_arm_link_hash_table *globals;
3958 struct bfd_link_info *info;
3959 asection *stub_sec;
3960 bfd *stub_bfd;
3961 bfd_byte *loc;
3962 bfd_vma sym_value;
3963 int template_size;
3964 int size;
3965 const insn_sequence *template_sequence;
3966 int i;
3967 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
3968 int stub_reloc_offset[MAXRELOCS] = {0, 0};
3969 int nrelocs = 0;
3970
3971 /* Massage our args to the form they really have. */
3972 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3973 info = (struct bfd_link_info *) in_arg;
3974
3975 globals = elf32_arm_hash_table (info);
3976 if (globals == NULL)
3977 return FALSE;
3978
3979 stub_sec = stub_entry->stub_sec;
3980
3981 if ((globals->fix_cortex_a8 < 0)
3982 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
3983 /* We have to do less-strictly-aligned fixes last. */
3984 return TRUE;
3985
3986 /* Make a note of the offset within the stubs for this entry. */
3987 stub_entry->stub_offset = stub_sec->size;
3988 loc = stub_sec->contents + stub_entry->stub_offset;
3989
3990 stub_bfd = stub_sec->owner;
3991
3992 /* This is the address of the stub destination. */
3993 sym_value = (stub_entry->target_value
3994 + stub_entry->target_section->output_offset
3995 + stub_entry->target_section->output_section->vma);
3996
3997 template_sequence = stub_entry->stub_template;
3998 template_size = stub_entry->stub_template_size;
3999
4000 size = 0;
4001 for (i = 0; i < template_size; i++)
4002 {
4003 switch (template_sequence[i].type)
4004 {
4005 case THUMB16_TYPE:
4006 {
4007 bfd_vma data = (bfd_vma) template_sequence[i].data;
4008 if (template_sequence[i].reloc_addend != 0)
4009 {
4010 /* We've borrowed the reloc_addend field to mean we should
4011 insert a condition code into this (Thumb-1 branch)
4012 instruction. See THUMB16_BCOND_INSN. */
4013 BFD_ASSERT ((data & 0xff00) == 0xd000);
4014 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4015 }
4016 bfd_put_16 (stub_bfd, data, loc + size);
4017 size += 2;
4018 }
4019 break;
4020
4021 case THUMB32_TYPE:
4022 bfd_put_16 (stub_bfd,
4023 (template_sequence[i].data >> 16) & 0xffff,
4024 loc + size);
4025 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4026 loc + size + 2);
4027 if (template_sequence[i].r_type != R_ARM_NONE)
4028 {
4029 stub_reloc_idx[nrelocs] = i;
4030 stub_reloc_offset[nrelocs++] = size;
4031 }
4032 size += 4;
4033 break;
4034
4035 case ARM_TYPE:
4036 bfd_put_32 (stub_bfd, template_sequence[i].data,
4037 loc + size);
4038 /* Handle cases where the target is encoded within the
4039 instruction. */
4040 if (template_sequence[i].r_type == R_ARM_JUMP24)
4041 {
4042 stub_reloc_idx[nrelocs] = i;
4043 stub_reloc_offset[nrelocs++] = size;
4044 }
4045 size += 4;
4046 break;
4047
4048 case DATA_TYPE:
4049 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4050 stub_reloc_idx[nrelocs] = i;
4051 stub_reloc_offset[nrelocs++] = size;
4052 size += 4;
4053 break;
4054
4055 default:
4056 BFD_FAIL ();
4057 return FALSE;
4058 }
4059 }
4060
4061 stub_sec->size += size;
4062
4063 /* Stub size has already been computed in arm_size_one_stub. Check
4064 consistency. */
4065 BFD_ASSERT (size == stub_entry->stub_size);
4066
4067 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4068 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4069 sym_value |= 1;
4070
4071 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4072 in each stub. */
4073 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4074
4075 for (i = 0; i < nrelocs; i++)
4076 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4077 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4078 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4079 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
4080 {
4081 Elf_Internal_Rela rel;
4082 bfd_boolean unresolved_reloc;
4083 char *error_message;
4084 enum arm_st_branch_type branch_type
4085 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4086 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
4087 bfd_vma points_to = sym_value + stub_entry->target_addend;
4088
4089 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4090 rel.r_info = ELF32_R_INFO (0,
4091 template_sequence[stub_reloc_idx[i]].r_type);
4092 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
4093
4094 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4095 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4096 template should refer back to the instruction after the original
4097 branch. */
4098 points_to = sym_value;
4099
4100 /* There may be unintended consequences if this is not true. */
4101 BFD_ASSERT (stub_entry->h == NULL);
4102
4103 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4104 properly. We should probably use this function unconditionally,
4105 rather than only for certain relocations listed in the enclosing
4106 conditional, for the sake of consistency. */
4107 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4108 (template_sequence[stub_reloc_idx[i]].r_type),
4109 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4110 points_to, info, stub_entry->target_section, "", STT_FUNC,
4111 branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4112 &unresolved_reloc, &error_message);
4113 }
4114 else
4115 {
4116 Elf_Internal_Rela rel;
4117 bfd_boolean unresolved_reloc;
4118 char *error_message;
4119 bfd_vma points_to = sym_value + stub_entry->target_addend
4120 + template_sequence[stub_reloc_idx[i]].reloc_addend;
4121
4122 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4123 rel.r_info = ELF32_R_INFO (0,
4124 template_sequence[stub_reloc_idx[i]].r_type);
4125 rel.r_addend = 0;
4126
4127 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4128 (template_sequence[stub_reloc_idx[i]].r_type),
4129 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4130 points_to, info, stub_entry->target_section, "", STT_FUNC,
4131 stub_entry->branch_type,
4132 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4133 &error_message);
4134 }
4135
4136 return TRUE;
4137 #undef MAXRELOCS
4138 }
4139
4140 /* Calculate the template, template size and instruction size for a stub.
4141 Return value is the instruction size. */
4142
4143 static unsigned int
4144 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4145 const insn_sequence **stub_template,
4146 int *stub_template_size)
4147 {
4148 const insn_sequence *template_sequence = NULL;
4149 int template_size = 0, i;
4150 unsigned int size;
4151
4152 template_sequence = stub_definitions[stub_type].template_sequence;
4153 if (stub_template)
4154 *stub_template = template_sequence;
4155
4156 template_size = stub_definitions[stub_type].template_size;
4157 if (stub_template_size)
4158 *stub_template_size = template_size;
4159
4160 size = 0;
4161 for (i = 0; i < template_size; i++)
4162 {
4163 switch (template_sequence[i].type)
4164 {
4165 case THUMB16_TYPE:
4166 size += 2;
4167 break;
4168
4169 case ARM_TYPE:
4170 case THUMB32_TYPE:
4171 case DATA_TYPE:
4172 size += 4;
4173 break;
4174
4175 default:
4176 BFD_FAIL ();
4177 return 0;
4178 }
4179 }
4180
4181 return size;
4182 }
4183
4184 /* As above, but don't actually build the stub. Just bump offset so
4185 we know stub section sizes. */
4186
4187 static bfd_boolean
4188 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4189 void *in_arg ATTRIBUTE_UNUSED)
4190 {
4191 struct elf32_arm_stub_hash_entry *stub_entry;
4192 const insn_sequence *template_sequence;
4193 int template_size, size;
4194
4195 /* Massage our args to the form they really have. */
4196 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4197
4198 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4199 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4200
4201 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4202 &template_size);
4203
4204 stub_entry->stub_size = size;
4205 stub_entry->stub_template = template_sequence;
4206 stub_entry->stub_template_size = template_size;
4207
4208 size = (size + 7) & ~7;
4209 stub_entry->stub_sec->size += size;
4210
4211 return TRUE;
4212 }
4213
4214 /* External entry points for sizing and building linker stubs. */
4215
4216 /* Set up various things so that we can make a list of input sections
4217 for each output section included in the link. Returns -1 on error,
4218 0 when no stubs will be needed, and 1 on success. */
4219
4220 int
4221 elf32_arm_setup_section_lists (bfd *output_bfd,
4222 struct bfd_link_info *info)
4223 {
4224 bfd *input_bfd;
4225 unsigned int bfd_count;
4226 int top_id, top_index;
4227 asection *section;
4228 asection **input_list, **list;
4229 bfd_size_type amt;
4230 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4231
4232 if (htab == NULL)
4233 return 0;
4234 if (! is_elf_hash_table (htab))
4235 return 0;
4236
4237 /* Count the number of input BFDs and find the top input section id. */
4238 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4239 input_bfd != NULL;
4240 input_bfd = input_bfd->link_next)
4241 {
4242 bfd_count += 1;
4243 for (section = input_bfd->sections;
4244 section != NULL;
4245 section = section->next)
4246 {
4247 if (top_id < section->id)
4248 top_id = section->id;
4249 }
4250 }
4251 htab->bfd_count = bfd_count;
4252
4253 amt = sizeof (struct map_stub) * (top_id + 1);
4254 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4255 if (htab->stub_group == NULL)
4256 return -1;
4257 htab->top_id = top_id;
4258
4259 /* We can't use output_bfd->section_count here to find the top output
4260 section index as some sections may have been removed, and
4261 _bfd_strip_section_from_output doesn't renumber the indices. */
4262 for (section = output_bfd->sections, top_index = 0;
4263 section != NULL;
4264 section = section->next)
4265 {
4266 if (top_index < section->index)
4267 top_index = section->index;
4268 }
4269
4270 htab->top_index = top_index;
4271 amt = sizeof (asection *) * (top_index + 1);
4272 input_list = (asection **) bfd_malloc (amt);
4273 htab->input_list = input_list;
4274 if (input_list == NULL)
4275 return -1;
4276
4277 /* For sections we aren't interested in, mark their entries with a
4278 value we can check later. */
4279 list = input_list + top_index;
4280 do
4281 *list = bfd_abs_section_ptr;
4282 while (list-- != input_list);
4283
4284 for (section = output_bfd->sections;
4285 section != NULL;
4286 section = section->next)
4287 {
4288 if ((section->flags & SEC_CODE) != 0)
4289 input_list[section->index] = NULL;
4290 }
4291
4292 return 1;
4293 }
4294
4295 /* The linker repeatedly calls this function for each input section,
4296 in the order that input sections are linked into output sections.
4297 Build lists of input sections to determine groupings between which
4298 we may insert linker stubs. */
4299
4300 void
4301 elf32_arm_next_input_section (struct bfd_link_info *info,
4302 asection *isec)
4303 {
4304 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4305
4306 if (htab == NULL)
4307 return;
4308
4309 if (isec->output_section->index <= htab->top_index)
4310 {
4311 asection **list = htab->input_list + isec->output_section->index;
4312
4313 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4314 {
4315 /* Steal the link_sec pointer for our list. */
4316 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4317 /* This happens to make the list in reverse order,
4318 which we reverse later. */
4319 PREV_SEC (isec) = *list;
4320 *list = isec;
4321 }
4322 }
4323 }
4324
4325 /* See whether we can group stub sections together. Grouping stub
4326 sections may result in fewer stubs. More importantly, we need to
4327 put all .init* and .fini* stubs at the end of the .init or
4328 .fini output sections respectively, because glibc splits the
4329 _init and _fini functions into multiple parts. Putting a stub in
4330 the middle of a function is not a good idea. */
4331
4332 static void
4333 group_sections (struct elf32_arm_link_hash_table *htab,
4334 bfd_size_type stub_group_size,
4335 bfd_boolean stubs_always_after_branch)
4336 {
4337 asection **list = htab->input_list;
4338
4339 do
4340 {
4341 asection *tail = *list;
4342 asection *head;
4343
4344 if (tail == bfd_abs_section_ptr)
4345 continue;
4346
4347 /* Reverse the list: we must avoid placing stubs at the
4348 beginning of the section because the beginning of the text
4349 section may be required for an interrupt vector in bare metal
4350 code. */
4351 #define NEXT_SEC PREV_SEC
4352 head = NULL;
4353 while (tail != NULL)
4354 {
4355 /* Pop from tail. */
4356 asection *item = tail;
4357 tail = PREV_SEC (item);
4358
4359 /* Push on head. */
4360 NEXT_SEC (item) = head;
4361 head = item;
4362 }
4363
4364 while (head != NULL)
4365 {
4366 asection *curr;
4367 asection *next;
4368 bfd_vma stub_group_start = head->output_offset;
4369 bfd_vma end_of_next;
4370
4371 curr = head;
4372 while (NEXT_SEC (curr) != NULL)
4373 {
4374 next = NEXT_SEC (curr);
4375 end_of_next = next->output_offset + next->size;
4376 if (end_of_next - stub_group_start >= stub_group_size)
4377 /* End of NEXT is too far from start, so stop. */
4378 break;
4379 /* Add NEXT to the group. */
4380 curr = next;
4381 }
4382
4383 /* OK, the size from the start to the start of CURR is less
4384 than stub_group_size and thus can be handled by one stub
4385 section. (Or the head section is itself larger than
4386 stub_group_size, in which case we may be toast.)
4387 We should really be keeping track of the total size of
4388 stubs added here, as stubs contribute to the final output
4389 section size. */
4390 do
4391 {
4392 next = NEXT_SEC (head);
4393 /* Set up this stub group. */
4394 htab->stub_group[head->id].link_sec = curr;
4395 }
4396 while (head != curr && (head = next) != NULL);
4397
4398 /* But wait, there's more! Input sections up to stub_group_size
4399 bytes after the stub section can be handled by it too. */
4400 if (!stubs_always_after_branch)
4401 {
4402 stub_group_start = curr->output_offset + curr->size;
4403
4404 while (next != NULL)
4405 {
4406 end_of_next = next->output_offset + next->size;
4407 if (end_of_next - stub_group_start >= stub_group_size)
4408 /* End of NEXT is too far from stubs, so stop. */
4409 break;
4410 /* Add NEXT to the stub group. */
4411 head = next;
4412 next = NEXT_SEC (head);
4413 htab->stub_group[head->id].link_sec = curr;
4414 }
4415 }
4416 head = next;
4417 }
4418 }
4419 while (list++ != htab->input_list + htab->top_index);
4420
4421 free (htab->input_list);
4422 #undef PREV_SEC
4423 #undef NEXT_SEC
4424 }
4425
4426 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4427 erratum fix. */
4428
4429 static int
4430 a8_reloc_compare (const void *a, const void *b)
4431 {
4432 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4433 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4434
4435 if (ra->from < rb->from)
4436 return -1;
4437 else if (ra->from > rb->from)
4438 return 1;
4439 else
4440 return 0;
4441 }
4442
4443 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4444 const char *, char **);
4445
4446 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4447 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4448 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4449 otherwise. */
4450
4451 static bfd_boolean
4452 cortex_a8_erratum_scan (bfd *input_bfd,
4453 struct bfd_link_info *info,
4454 struct a8_erratum_fix **a8_fixes_p,
4455 unsigned int *num_a8_fixes_p,
4456 unsigned int *a8_fix_table_size_p,
4457 struct a8_erratum_reloc *a8_relocs,
4458 unsigned int num_a8_relocs,
4459 unsigned prev_num_a8_fixes,
4460 bfd_boolean *stub_changed_p)
4461 {
4462 asection *section;
4463 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4464 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4465 unsigned int num_a8_fixes = *num_a8_fixes_p;
4466 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4467
4468 if (htab == NULL)
4469 return FALSE;
4470
4471 for (section = input_bfd->sections;
4472 section != NULL;
4473 section = section->next)
4474 {
4475 bfd_byte *contents = NULL;
4476 struct _arm_elf_section_data *sec_data;
4477 unsigned int span;
4478 bfd_vma base_vma;
4479
4480 if (elf_section_type (section) != SHT_PROGBITS
4481 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4482 || (section->flags & SEC_EXCLUDE) != 0
4483 || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
4484 || (section->output_section == bfd_abs_section_ptr))
4485 continue;
4486
4487 base_vma = section->output_section->vma + section->output_offset;
4488
4489 if (elf_section_data (section)->this_hdr.contents != NULL)
4490 contents = elf_section_data (section)->this_hdr.contents;
4491 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4492 return TRUE;
4493
4494 sec_data = elf32_arm_section_data (section);
4495
4496 for (span = 0; span < sec_data->mapcount; span++)
4497 {
4498 unsigned int span_start = sec_data->map[span].vma;
4499 unsigned int span_end = (span == sec_data->mapcount - 1)
4500 ? section->size : sec_data->map[span + 1].vma;
4501 unsigned int i;
4502 char span_type = sec_data->map[span].type;
4503 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4504
4505 if (span_type != 't')
4506 continue;
4507
4508 /* Span is entirely within a single 4KB region: skip scanning. */
4509 if (((base_vma + span_start) & ~0xfff)
4510 == ((base_vma + span_end) & ~0xfff))
4511 continue;
4512
4513 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4514
4515 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4516 * The branch target is in the same 4KB region as the
4517 first half of the branch.
4518 * The instruction before the branch is a 32-bit
4519 length non-branch instruction. */
4520 for (i = span_start; i < span_end;)
4521 {
4522 unsigned int insn = bfd_getl16 (&contents[i]);
4523 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4524 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4525
4526 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4527 insn_32bit = TRUE;
4528
4529 if (insn_32bit)
4530 {
4531 /* Load the rest of the insn (in manual-friendly order). */
4532 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4533
4534 /* Encoding T4: B<c>.W. */
4535 is_b = (insn & 0xf800d000) == 0xf0009000;
4536 /* Encoding T1: BL<c>.W. */
4537 is_bl = (insn & 0xf800d000) == 0xf000d000;
4538 /* Encoding T2: BLX<c>.W. */
4539 is_blx = (insn & 0xf800d000) == 0xf000c000;
4540 /* Encoding T3: B<c>.W (not permitted in IT block). */
4541 is_bcc = (insn & 0xf800d000) == 0xf0008000
4542 && (insn & 0x07f00000) != 0x03800000;
4543 }
4544
4545 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4546
4547 if (((base_vma + i) & 0xfff) == 0xffe
4548 && insn_32bit
4549 && is_32bit_branch
4550 && last_was_32bit
4551 && ! last_was_branch)
4552 {
4553 bfd_signed_vma offset = 0;
4554 bfd_boolean force_target_arm = FALSE;
4555 bfd_boolean force_target_thumb = FALSE;
4556 bfd_vma target;
4557 enum elf32_arm_stub_type stub_type = arm_stub_none;
4558 struct a8_erratum_reloc key, *found;
4559
4560 key.from = base_vma + i;
4561 found = (struct a8_erratum_reloc *)
4562 bsearch (&key, a8_relocs, num_a8_relocs,
4563 sizeof (struct a8_erratum_reloc),
4564 &a8_reloc_compare);
4565
4566 if (found)
4567 {
4568 char *error_message = NULL;
4569 struct elf_link_hash_entry *entry;
4570 bfd_boolean use_plt = FALSE;
4571
4572 /* We don't care about the error returned from this
4573 function, only if there is glue or not. */
4574 entry = find_thumb_glue (info, found->sym_name,
4575 &error_message);
4576
4577 if (entry)
4578 found->non_a8_stub = TRUE;
4579
4580 /* Keep a simpler condition, for the sake of clarity. */
4581 if (htab->root.splt != NULL && found->hash != NULL
4582 && found->hash->root.plt.offset != (bfd_vma) -1)
4583 use_plt = TRUE;
4584
4585 if (found->r_type == R_ARM_THM_CALL)
4586 {
4587 if (found->branch_type == ST_BRANCH_TO_ARM
4588 || use_plt)
4589 force_target_arm = TRUE;
4590 else
4591 force_target_thumb = TRUE;
4592 }
4593 }
4594
4595 /* Check if we have an offending branch instruction. */
4596
4597 if (found && found->non_a8_stub)
4598 /* We've already made a stub for this instruction, e.g.
4599 it's a long branch or a Thumb->ARM stub. Assume that
4600 stub will suffice to work around the A8 erratum (see
4601 setting of always_after_branch above). */
4602 ;
4603 else if (is_bcc)
4604 {
4605 offset = (insn & 0x7ff) << 1;
4606 offset |= (insn & 0x3f0000) >> 4;
4607 offset |= (insn & 0x2000) ? 0x40000 : 0;
4608 offset |= (insn & 0x800) ? 0x80000 : 0;
4609 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4610 if (offset & 0x100000)
4611 offset |= ~ ((bfd_signed_vma) 0xfffff);
4612 stub_type = arm_stub_a8_veneer_b_cond;
4613 }
4614 else if (is_b || is_bl || is_blx)
4615 {
4616 int s = (insn & 0x4000000) != 0;
4617 int j1 = (insn & 0x2000) != 0;
4618 int j2 = (insn & 0x800) != 0;
4619 int i1 = !(j1 ^ s);
4620 int i2 = !(j2 ^ s);
4621
4622 offset = (insn & 0x7ff) << 1;
4623 offset |= (insn & 0x3ff0000) >> 4;
4624 offset |= i2 << 22;
4625 offset |= i1 << 23;
4626 offset |= s << 24;
4627 if (offset & 0x1000000)
4628 offset |= ~ ((bfd_signed_vma) 0xffffff);
4629
4630 if (is_blx)
4631 offset &= ~ ((bfd_signed_vma) 3);
4632
4633 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4634 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4635 }
4636
4637 if (stub_type != arm_stub_none)
4638 {
4639 bfd_vma pc_for_insn = base_vma + i + 4;
4640
4641 /* The original instruction is a BL, but the target is
4642 an ARM instruction. If we were not making a stub,
4643 the BL would have been converted to a BLX. Use the
4644 BLX stub instead in that case. */
4645 if (htab->use_blx && force_target_arm
4646 && stub_type == arm_stub_a8_veneer_bl)
4647 {
4648 stub_type = arm_stub_a8_veneer_blx;
4649 is_blx = TRUE;
4650 is_bl = FALSE;
4651 }
4652 /* Conversely, if the original instruction was
4653 BLX but the target is Thumb mode, use the BL
4654 stub. */
4655 else if (force_target_thumb
4656 && stub_type == arm_stub_a8_veneer_blx)
4657 {
4658 stub_type = arm_stub_a8_veneer_bl;
4659 is_blx = FALSE;
4660 is_bl = TRUE;
4661 }
4662
4663 if (is_blx)
4664 pc_for_insn &= ~ ((bfd_vma) 3);
4665
4666 /* If we found a relocation, use the proper destination,
4667 not the offset in the (unrelocated) instruction.
4668 Note this is always done if we switched the stub type
4669 above. */
4670 if (found)
4671 offset =
4672 (bfd_signed_vma) (found->destination - pc_for_insn);
4673
4674 target = pc_for_insn + offset;
4675
4676 /* The BLX stub is ARM-mode code. Adjust the offset to
4677 take the different PC value (+8 instead of +4) into
4678 account. */
4679 if (stub_type == arm_stub_a8_veneer_blx)
4680 offset += 4;
4681
4682 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4683 {
4684 char *stub_name = NULL;
4685
4686 if (num_a8_fixes == a8_fix_table_size)
4687 {
4688 a8_fix_table_size *= 2;
4689 a8_fixes = (struct a8_erratum_fix *)
4690 bfd_realloc (a8_fixes,
4691 sizeof (struct a8_erratum_fix)
4692 * a8_fix_table_size);
4693 }
4694
4695 if (num_a8_fixes < prev_num_a8_fixes)
4696 {
4697 /* If we're doing a subsequent scan,
4698 check if we've found the same fix as
4699 before, and try and reuse the stub
4700 name. */
4701 stub_name = a8_fixes[num_a8_fixes].stub_name;
4702 if ((a8_fixes[num_a8_fixes].section != section)
4703 || (a8_fixes[num_a8_fixes].offset != i))
4704 {
4705 free (stub_name);
4706 stub_name = NULL;
4707 *stub_changed_p = TRUE;
4708 }
4709 }
4710
4711 if (!stub_name)
4712 {
4713 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4714 if (stub_name != NULL)
4715 sprintf (stub_name, "%x:%x", section->id, i);
4716 }
4717
4718 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4719 a8_fixes[num_a8_fixes].section = section;
4720 a8_fixes[num_a8_fixes].offset = i;
4721 a8_fixes[num_a8_fixes].addend = offset;
4722 a8_fixes[num_a8_fixes].orig_insn = insn;
4723 a8_fixes[num_a8_fixes].stub_name = stub_name;
4724 a8_fixes[num_a8_fixes].stub_type = stub_type;
4725 a8_fixes[num_a8_fixes].branch_type =
4726 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
4727
4728 num_a8_fixes++;
4729 }
4730 }
4731 }
4732
4733 i += insn_32bit ? 4 : 2;
4734 last_was_32bit = insn_32bit;
4735 last_was_branch = is_32bit_branch;
4736 }
4737 }
4738
4739 if (elf_section_data (section)->this_hdr.contents == NULL)
4740 free (contents);
4741 }
4742
4743 *a8_fixes_p = a8_fixes;
4744 *num_a8_fixes_p = num_a8_fixes;
4745 *a8_fix_table_size_p = a8_fix_table_size;
4746
4747 return FALSE;
4748 }
4749
4750 /* Determine and set the size of the stub section for a final link.
4751
4752 The basic idea here is to examine all the relocations looking for
4753 PC-relative calls to a target that is unreachable with a "bl"
4754 instruction. */
4755
4756 bfd_boolean
4757 elf32_arm_size_stubs (bfd *output_bfd,
4758 bfd *stub_bfd,
4759 struct bfd_link_info *info,
4760 bfd_signed_vma group_size,
4761 asection * (*add_stub_section) (const char *, asection *),
4762 void (*layout_sections_again) (void))
4763 {
4764 bfd_size_type stub_group_size;
4765 bfd_boolean stubs_always_after_branch;
4766 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4767 struct a8_erratum_fix *a8_fixes = NULL;
4768 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4769 struct a8_erratum_reloc *a8_relocs = NULL;
4770 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4771
4772 if (htab == NULL)
4773 return FALSE;
4774
4775 if (htab->fix_cortex_a8)
4776 {
4777 a8_fixes = (struct a8_erratum_fix *)
4778 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4779 a8_relocs = (struct a8_erratum_reloc *)
4780 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4781 }
4782
4783 /* Propagate mach to stub bfd, because it may not have been
4784 finalized when we created stub_bfd. */
4785 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4786 bfd_get_mach (output_bfd));
4787
4788 /* Stash our params away. */
4789 htab->stub_bfd = stub_bfd;
4790 htab->add_stub_section = add_stub_section;
4791 htab->layout_sections_again = layout_sections_again;
4792 stubs_always_after_branch = group_size < 0;
4793
4794 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4795 as the first half of a 32-bit branch straddling two 4K pages. This is a
4796 crude way of enforcing that. */
4797 if (htab->fix_cortex_a8)
4798 stubs_always_after_branch = 1;
4799
4800 if (group_size < 0)
4801 stub_group_size = -group_size;
4802 else
4803 stub_group_size = group_size;
4804
4805 if (stub_group_size == 1)
4806 {
4807 /* Default values. */
4808 /* Thumb branch range is +-4MB has to be used as the default
4809 maximum size (a given section can contain both ARM and Thumb
4810 code, so the worst case has to be taken into account).
4811
4812 This value is 24K less than that, which allows for 2025
4813 12-byte stubs. If we exceed that, then we will fail to link.
4814 The user will have to relink with an explicit group size
4815 option. */
4816 stub_group_size = 4170000;
4817 }
4818
4819 group_sections (htab, stub_group_size, stubs_always_after_branch);
4820
4821 /* If we're applying the cortex A8 fix, we need to determine the
4822 program header size now, because we cannot change it later --
4823 that could alter section placements. Notice the A8 erratum fix
4824 ends up requiring the section addresses to remain unchanged
4825 modulo the page size. That's something we cannot represent
4826 inside BFD, and we don't want to force the section alignment to
4827 be the page size. */
4828 if (htab->fix_cortex_a8)
4829 (*htab->layout_sections_again) ();
4830
4831 while (1)
4832 {
4833 bfd *input_bfd;
4834 unsigned int bfd_indx;
4835 asection *stub_sec;
4836 bfd_boolean stub_changed = FALSE;
4837 unsigned prev_num_a8_fixes = num_a8_fixes;
4838
4839 num_a8_fixes = 0;
4840 for (input_bfd = info->input_bfds, bfd_indx = 0;
4841 input_bfd != NULL;
4842 input_bfd = input_bfd->link_next, bfd_indx++)
4843 {
4844 Elf_Internal_Shdr *symtab_hdr;
4845 asection *section;
4846 Elf_Internal_Sym *local_syms = NULL;
4847
4848 num_a8_relocs = 0;
4849
4850 /* We'll need the symbol table in a second. */
4851 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4852 if (symtab_hdr->sh_info == 0)
4853 continue;
4854
4855 /* Walk over each section attached to the input bfd. */
4856 for (section = input_bfd->sections;
4857 section != NULL;
4858 section = section->next)
4859 {
4860 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4861
4862 /* If there aren't any relocs, then there's nothing more
4863 to do. */
4864 if ((section->flags & SEC_RELOC) == 0
4865 || section->reloc_count == 0
4866 || (section->flags & SEC_CODE) == 0)
4867 continue;
4868
4869 /* If this section is a link-once section that will be
4870 discarded, then don't create any stubs. */
4871 if (section->output_section == NULL
4872 || section->output_section->owner != output_bfd)
4873 continue;
4874
4875 /* Get the relocs. */
4876 internal_relocs
4877 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4878 NULL, info->keep_memory);
4879 if (internal_relocs == NULL)
4880 goto error_ret_free_local;
4881
4882 /* Now examine each relocation. */
4883 irela = internal_relocs;
4884 irelaend = irela + section->reloc_count;
4885 for (; irela < irelaend; irela++)
4886 {
4887 unsigned int r_type, r_indx;
4888 enum elf32_arm_stub_type stub_type;
4889 struct elf32_arm_stub_hash_entry *stub_entry;
4890 asection *sym_sec;
4891 bfd_vma sym_value;
4892 bfd_vma destination;
4893 struct elf32_arm_link_hash_entry *hash;
4894 const char *sym_name;
4895 char *stub_name;
4896 const asection *id_sec;
4897 unsigned char st_type;
4898 enum arm_st_branch_type branch_type;
4899 bfd_boolean created_stub = FALSE;
4900
4901 r_type = ELF32_R_TYPE (irela->r_info);
4902 r_indx = ELF32_R_SYM (irela->r_info);
4903
4904 if (r_type >= (unsigned int) R_ARM_max)
4905 {
4906 bfd_set_error (bfd_error_bad_value);
4907 error_ret_free_internal:
4908 if (elf_section_data (section)->relocs == NULL)
4909 free (internal_relocs);
4910 goto error_ret_free_local;
4911 }
4912
4913 hash = NULL;
4914 if (r_indx >= symtab_hdr->sh_info)
4915 hash = elf32_arm_hash_entry
4916 (elf_sym_hashes (input_bfd)
4917 [r_indx - symtab_hdr->sh_info]);
4918
4919 /* Only look for stubs on branch instructions, or
4920 non-relaxed TLSCALL */
4921 if ((r_type != (unsigned int) R_ARM_CALL)
4922 && (r_type != (unsigned int) R_ARM_THM_CALL)
4923 && (r_type != (unsigned int) R_ARM_JUMP24)
4924 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
4925 && (r_type != (unsigned int) R_ARM_THM_XPC22)
4926 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
4927 && (r_type != (unsigned int) R_ARM_PLT32)
4928 && !((r_type == (unsigned int) R_ARM_TLS_CALL
4929 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
4930 && r_type == elf32_arm_tls_transition
4931 (info, r_type, &hash->root)
4932 && ((hash ? hash->tls_type
4933 : (elf32_arm_local_got_tls_type
4934 (input_bfd)[r_indx]))
4935 & GOT_TLS_GDESC) != 0))
4936 continue;
4937
4938 /* Now determine the call target, its name, value,
4939 section. */
4940 sym_sec = NULL;
4941 sym_value = 0;
4942 destination = 0;
4943 sym_name = NULL;
4944
4945 if (r_type == (unsigned int) R_ARM_TLS_CALL
4946 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
4947 {
4948 /* A non-relaxed TLS call. The target is the
4949 plt-resident trampoline and nothing to do
4950 with the symbol. */
4951 BFD_ASSERT (htab->tls_trampoline > 0);
4952 sym_sec = htab->root.splt;
4953 sym_value = htab->tls_trampoline;
4954 hash = 0;
4955 st_type = STT_FUNC;
4956 branch_type = ST_BRANCH_TO_ARM;
4957 }
4958 else if (!hash)
4959 {
4960 /* It's a local symbol. */
4961 Elf_Internal_Sym *sym;
4962
4963 if (local_syms == NULL)
4964 {
4965 local_syms
4966 = (Elf_Internal_Sym *) symtab_hdr->contents;
4967 if (local_syms == NULL)
4968 local_syms
4969 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4970 symtab_hdr->sh_info, 0,
4971 NULL, NULL, NULL);
4972 if (local_syms == NULL)
4973 goto error_ret_free_internal;
4974 }
4975
4976 sym = local_syms + r_indx;
4977 if (sym->st_shndx == SHN_UNDEF)
4978 sym_sec = bfd_und_section_ptr;
4979 else if (sym->st_shndx == SHN_ABS)
4980 sym_sec = bfd_abs_section_ptr;
4981 else if (sym->st_shndx == SHN_COMMON)
4982 sym_sec = bfd_com_section_ptr;
4983 else
4984 sym_sec =
4985 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
4986
4987 if (!sym_sec)
4988 /* This is an undefined symbol. It can never
4989 be resolved. */
4990 continue;
4991
4992 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4993 sym_value = sym->st_value;
4994 destination = (sym_value + irela->r_addend
4995 + sym_sec->output_offset
4996 + sym_sec->output_section->vma);
4997 st_type = ELF_ST_TYPE (sym->st_info);
4998 branch_type = ARM_SYM_BRANCH_TYPE (sym);
4999 sym_name
5000 = bfd_elf_string_from_elf_section (input_bfd,
5001 symtab_hdr->sh_link,
5002 sym->st_name);
5003 }
5004 else
5005 {
5006 /* It's an external symbol. */
5007 while (hash->root.root.type == bfd_link_hash_indirect
5008 || hash->root.root.type == bfd_link_hash_warning)
5009 hash = ((struct elf32_arm_link_hash_entry *)
5010 hash->root.root.u.i.link);
5011
5012 if (hash->root.root.type == bfd_link_hash_defined
5013 || hash->root.root.type == bfd_link_hash_defweak)
5014 {
5015 sym_sec = hash->root.root.u.def.section;
5016 sym_value = hash->root.root.u.def.value;
5017
5018 struct elf32_arm_link_hash_table *globals =
5019 elf32_arm_hash_table (info);
5020
5021 /* For a destination in a shared library,
5022 use the PLT stub as target address to
5023 decide whether a branch stub is
5024 needed. */
5025 if (globals != NULL
5026 && globals->root.splt != NULL
5027 && hash != NULL
5028 && hash->root.plt.offset != (bfd_vma) -1)
5029 {
5030 sym_sec = globals->root.splt;
5031 sym_value = hash->root.plt.offset;
5032 if (sym_sec->output_section != NULL)
5033 destination = (sym_value
5034 + sym_sec->output_offset
5035 + sym_sec->output_section->vma);
5036 }
5037 else if (sym_sec->output_section != NULL)
5038 destination = (sym_value + irela->r_addend
5039 + sym_sec->output_offset
5040 + sym_sec->output_section->vma);
5041 }
5042 else if ((hash->root.root.type == bfd_link_hash_undefined)
5043 || (hash->root.root.type == bfd_link_hash_undefweak))
5044 {
5045 /* For a shared library, use the PLT stub as
5046 target address to decide whether a long
5047 branch stub is needed.
5048 For absolute code, they cannot be handled. */
5049 struct elf32_arm_link_hash_table *globals =
5050 elf32_arm_hash_table (info);
5051
5052 if (globals != NULL
5053 && globals->root.splt != NULL
5054 && hash != NULL
5055 && hash->root.plt.offset != (bfd_vma) -1)
5056 {
5057 sym_sec = globals->root.splt;
5058 sym_value = hash->root.plt.offset;
5059 if (sym_sec->output_section != NULL)
5060 destination = (sym_value
5061 + sym_sec->output_offset
5062 + sym_sec->output_section->vma);
5063 }
5064 else
5065 continue;
5066 }
5067 else
5068 {
5069 bfd_set_error (bfd_error_bad_value);
5070 goto error_ret_free_internal;
5071 }
5072 st_type = hash->root.type;
5073 branch_type = hash->root.target_internal;
5074 sym_name = hash->root.root.root.string;
5075 }
5076
5077 do
5078 {
5079 /* Determine what (if any) linker stub is needed. */
5080 stub_type = arm_type_of_stub (info, section, irela,
5081 st_type, &branch_type,
5082 hash, destination, sym_sec,
5083 input_bfd, sym_name);
5084 if (stub_type == arm_stub_none)
5085 break;
5086
5087 /* Support for grouping stub sections. */
5088 id_sec = htab->stub_group[section->id].link_sec;
5089
5090 /* Get the name of this stub. */
5091 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
5092 irela, stub_type);
5093 if (!stub_name)
5094 goto error_ret_free_internal;
5095
5096 /* We've either created a stub for this reloc already,
5097 or we are about to. */
5098 created_stub = TRUE;
5099
5100 stub_entry = arm_stub_hash_lookup
5101 (&htab->stub_hash_table, stub_name,
5102 FALSE, FALSE);
5103 if (stub_entry != NULL)
5104 {
5105 /* The proper stub has already been created. */
5106 free (stub_name);
5107 stub_entry->target_value = sym_value;
5108 break;
5109 }
5110
5111 stub_entry = elf32_arm_add_stub (stub_name, section,
5112 htab);
5113 if (stub_entry == NULL)
5114 {
5115 free (stub_name);
5116 goto error_ret_free_internal;
5117 }
5118
5119 stub_entry->target_value = sym_value;
5120 stub_entry->target_section = sym_sec;
5121 stub_entry->stub_type = stub_type;
5122 stub_entry->h = hash;
5123 stub_entry->branch_type = branch_type;
5124
5125 if (sym_name == NULL)
5126 sym_name = "unnamed";
5127 stub_entry->output_name = (char *)
5128 bfd_alloc (htab->stub_bfd,
5129 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5130 + strlen (sym_name));
5131 if (stub_entry->output_name == NULL)
5132 {
5133 free (stub_name);
5134 goto error_ret_free_internal;
5135 }
5136
5137 /* For historical reasons, use the existing names for
5138 ARM-to-Thumb and Thumb-to-ARM stubs. */
5139 if ((r_type == (unsigned int) R_ARM_THM_CALL
5140 || r_type == (unsigned int) R_ARM_THM_JUMP24)
5141 && branch_type == ST_BRANCH_TO_ARM)
5142 sprintf (stub_entry->output_name,
5143 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5144 else if ((r_type == (unsigned int) R_ARM_CALL
5145 || r_type == (unsigned int) R_ARM_JUMP24)
5146 && branch_type == ST_BRANCH_TO_THUMB)
5147 sprintf (stub_entry->output_name,
5148 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5149 else
5150 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5151 sym_name);
5152
5153 stub_changed = TRUE;
5154 }
5155 while (0);
5156
5157 /* Look for relocations which might trigger Cortex-A8
5158 erratum. */
5159 if (htab->fix_cortex_a8
5160 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5161 || r_type == (unsigned int) R_ARM_THM_JUMP19
5162 || r_type == (unsigned int) R_ARM_THM_CALL
5163 || r_type == (unsigned int) R_ARM_THM_XPC22))
5164 {
5165 bfd_vma from = section->output_section->vma
5166 + section->output_offset
5167 + irela->r_offset;
5168
5169 if ((from & 0xfff) == 0xffe)
5170 {
5171 /* Found a candidate. Note we haven't checked the
5172 destination is within 4K here: if we do so (and
5173 don't create an entry in a8_relocs) we can't tell
5174 that a branch should have been relocated when
5175 scanning later. */
5176 if (num_a8_relocs == a8_reloc_table_size)
5177 {
5178 a8_reloc_table_size *= 2;
5179 a8_relocs = (struct a8_erratum_reloc *)
5180 bfd_realloc (a8_relocs,
5181 sizeof (struct a8_erratum_reloc)
5182 * a8_reloc_table_size);
5183 }
5184
5185 a8_relocs[num_a8_relocs].from = from;
5186 a8_relocs[num_a8_relocs].destination = destination;
5187 a8_relocs[num_a8_relocs].r_type = r_type;
5188 a8_relocs[num_a8_relocs].branch_type = branch_type;
5189 a8_relocs[num_a8_relocs].sym_name = sym_name;
5190 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5191 a8_relocs[num_a8_relocs].hash = hash;
5192
5193 num_a8_relocs++;
5194 }
5195 }
5196 }
5197
5198 /* We're done with the internal relocs, free them. */
5199 if (elf_section_data (section)->relocs == NULL)
5200 free (internal_relocs);
5201 }
5202
5203 if (htab->fix_cortex_a8)
5204 {
5205 /* Sort relocs which might apply to Cortex-A8 erratum. */
5206 qsort (a8_relocs, num_a8_relocs,
5207 sizeof (struct a8_erratum_reloc),
5208 &a8_reloc_compare);
5209
5210 /* Scan for branches which might trigger Cortex-A8 erratum. */
5211 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5212 &num_a8_fixes, &a8_fix_table_size,
5213 a8_relocs, num_a8_relocs,
5214 prev_num_a8_fixes, &stub_changed)
5215 != 0)
5216 goto error_ret_free_local;
5217 }
5218 }
5219
5220 if (prev_num_a8_fixes != num_a8_fixes)
5221 stub_changed = TRUE;
5222
5223 if (!stub_changed)
5224 break;
5225
5226 /* OK, we've added some stubs. Find out the new size of the
5227 stub sections. */
5228 for (stub_sec = htab->stub_bfd->sections;
5229 stub_sec != NULL;
5230 stub_sec = stub_sec->next)
5231 {
5232 /* Ignore non-stub sections. */
5233 if (!strstr (stub_sec->name, STUB_SUFFIX))
5234 continue;
5235
5236 stub_sec->size = 0;
5237 }
5238
5239 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5240
5241 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5242 if (htab->fix_cortex_a8)
5243 for (i = 0; i < num_a8_fixes; i++)
5244 {
5245 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5246 a8_fixes[i].section, htab);
5247
5248 if (stub_sec == NULL)
5249 goto error_ret_free_local;
5250
5251 stub_sec->size
5252 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5253 NULL);
5254 }
5255
5256
5257 /* Ask the linker to do its stuff. */
5258 (*htab->layout_sections_again) ();
5259 }
5260
5261 /* Add stubs for Cortex-A8 erratum fixes now. */
5262 if (htab->fix_cortex_a8)
5263 {
5264 for (i = 0; i < num_a8_fixes; i++)
5265 {
5266 struct elf32_arm_stub_hash_entry *stub_entry;
5267 char *stub_name = a8_fixes[i].stub_name;
5268 asection *section = a8_fixes[i].section;
5269 unsigned int section_id = a8_fixes[i].section->id;
5270 asection *link_sec = htab->stub_group[section_id].link_sec;
5271 asection *stub_sec = htab->stub_group[section_id].stub_sec;
5272 const insn_sequence *template_sequence;
5273 int template_size, size = 0;
5274
5275 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5276 TRUE, FALSE);
5277 if (stub_entry == NULL)
5278 {
5279 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5280 section->owner,
5281 stub_name);
5282 return FALSE;
5283 }
5284
5285 stub_entry->stub_sec = stub_sec;
5286 stub_entry->stub_offset = 0;
5287 stub_entry->id_sec = link_sec;
5288 stub_entry->stub_type = a8_fixes[i].stub_type;
5289 stub_entry->target_section = a8_fixes[i].section;
5290 stub_entry->target_value = a8_fixes[i].offset;
5291 stub_entry->target_addend = a8_fixes[i].addend;
5292 stub_entry->orig_insn = a8_fixes[i].orig_insn;
5293 stub_entry->branch_type = a8_fixes[i].branch_type;
5294
5295 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5296 &template_sequence,
5297 &template_size);
5298
5299 stub_entry->stub_size = size;
5300 stub_entry->stub_template = template_sequence;
5301 stub_entry->stub_template_size = template_size;
5302 }
5303
5304 /* Stash the Cortex-A8 erratum fix array for use later in
5305 elf32_arm_write_section(). */
5306 htab->a8_erratum_fixes = a8_fixes;
5307 htab->num_a8_erratum_fixes = num_a8_fixes;
5308 }
5309 else
5310 {
5311 htab->a8_erratum_fixes = NULL;
5312 htab->num_a8_erratum_fixes = 0;
5313 }
5314 return TRUE;
5315
5316 error_ret_free_local:
5317 return FALSE;
5318 }
5319
5320 /* Build all the stubs associated with the current output file. The
5321 stubs are kept in a hash table attached to the main linker hash
5322 table. We also set up the .plt entries for statically linked PIC
5323 functions here. This function is called via arm_elf_finish in the
5324 linker. */
5325
5326 bfd_boolean
5327 elf32_arm_build_stubs (struct bfd_link_info *info)
5328 {
5329 asection *stub_sec;
5330 struct bfd_hash_table *table;
5331 struct elf32_arm_link_hash_table *htab;
5332
5333 htab = elf32_arm_hash_table (info);
5334 if (htab == NULL)
5335 return FALSE;
5336
5337 for (stub_sec = htab->stub_bfd->sections;
5338 stub_sec != NULL;
5339 stub_sec = stub_sec->next)
5340 {
5341 bfd_size_type size;
5342
5343 /* Ignore non-stub sections. */
5344 if (!strstr (stub_sec->name, STUB_SUFFIX))
5345 continue;
5346
5347 /* Allocate memory to hold the linker stubs. */
5348 size = stub_sec->size;
5349 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5350 if (stub_sec->contents == NULL && size != 0)
5351 return FALSE;
5352 stub_sec->size = 0;
5353 }
5354
5355 /* Build the stubs as directed by the stub hash table. */
5356 table = &htab->stub_hash_table;
5357 bfd_hash_traverse (table, arm_build_one_stub, info);
5358 if (htab->fix_cortex_a8)
5359 {
5360 /* Place the cortex a8 stubs last. */
5361 htab->fix_cortex_a8 = -1;
5362 bfd_hash_traverse (table, arm_build_one_stub, info);
5363 }
5364
5365 return TRUE;
5366 }
5367
5368 /* Locate the Thumb encoded calling stub for NAME. */
5369
5370 static struct elf_link_hash_entry *
5371 find_thumb_glue (struct bfd_link_info *link_info,
5372 const char *name,
5373 char **error_message)
5374 {
5375 char *tmp_name;
5376 struct elf_link_hash_entry *hash;
5377 struct elf32_arm_link_hash_table *hash_table;
5378
5379 /* We need a pointer to the armelf specific hash table. */
5380 hash_table = elf32_arm_hash_table (link_info);
5381 if (hash_table == NULL)
5382 return NULL;
5383
5384 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5385 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5386
5387 BFD_ASSERT (tmp_name);
5388
5389 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5390
5391 hash = elf_link_hash_lookup
5392 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5393
5394 if (hash == NULL
5395 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5396 tmp_name, name) == -1)
5397 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5398
5399 free (tmp_name);
5400
5401 return hash;
5402 }
5403
5404 /* Locate the ARM encoded calling stub for NAME. */
5405
5406 static struct elf_link_hash_entry *
5407 find_arm_glue (struct bfd_link_info *link_info,
5408 const char *name,
5409 char **error_message)
5410 {
5411 char *tmp_name;
5412 struct elf_link_hash_entry *myh;
5413 struct elf32_arm_link_hash_table *hash_table;
5414
5415 /* We need a pointer to the elfarm specific hash table. */
5416 hash_table = elf32_arm_hash_table (link_info);
5417 if (hash_table == NULL)
5418 return NULL;
5419
5420 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5421 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5422
5423 BFD_ASSERT (tmp_name);
5424
5425 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5426
5427 myh = elf_link_hash_lookup
5428 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5429
5430 if (myh == NULL
5431 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5432 tmp_name, name) == -1)
5433 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5434
5435 free (tmp_name);
5436
5437 return myh;
5438 }
5439
5440 /* ARM->Thumb glue (static images):
5441
5442 .arm
5443 __func_from_arm:
5444 ldr r12, __func_addr
5445 bx r12
5446 __func_addr:
5447 .word func @ behave as if you saw a ARM_32 reloc.
5448
5449 (v5t static images)
5450 .arm
5451 __func_from_arm:
5452 ldr pc, __func_addr
5453 __func_addr:
5454 .word func @ behave as if you saw a ARM_32 reloc.
5455
5456 (relocatable images)
5457 .arm
5458 __func_from_arm:
5459 ldr r12, __func_offset
5460 add r12, r12, pc
5461 bx r12
5462 __func_offset:
5463 .word func - . */
5464
5465 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5466 static const insn32 a2t1_ldr_insn = 0xe59fc000;
5467 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5468 static const insn32 a2t3_func_addr_insn = 0x00000001;
5469
5470 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5471 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5472 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5473
5474 #define ARM2THUMB_PIC_GLUE_SIZE 16
5475 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5476 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5477 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5478
5479 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5480
5481 .thumb .thumb
5482 .align 2 .align 2
5483 __func_from_thumb: __func_from_thumb:
5484 bx pc push {r6, lr}
5485 nop ldr r6, __func_addr
5486 .arm mov lr, pc
5487 b func bx r6
5488 .arm
5489 ;; back_to_thumb
5490 ldmia r13! {r6, lr}
5491 bx lr
5492 __func_addr:
5493 .word func */
5494
5495 #define THUMB2ARM_GLUE_SIZE 8
5496 static const insn16 t2a1_bx_pc_insn = 0x4778;
5497 static const insn16 t2a2_noop_insn = 0x46c0;
5498 static const insn32 t2a3_b_insn = 0xea000000;
5499
5500 #define VFP11_ERRATUM_VENEER_SIZE 8
5501
5502 #define ARM_BX_VENEER_SIZE 12
5503 static const insn32 armbx1_tst_insn = 0xe3100001;
5504 static const insn32 armbx2_moveq_insn = 0x01a0f000;
5505 static const insn32 armbx3_bx_insn = 0xe12fff10;
5506
5507 #ifndef ELFARM_NABI_C_INCLUDED
5508 static void
5509 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5510 {
5511 asection * s;
5512 bfd_byte * contents;
5513
5514 if (size == 0)
5515 {
5516 /* Do not include empty glue sections in the output. */
5517 if (abfd != NULL)
5518 {
5519 s = bfd_get_section_by_name (abfd, name);
5520 if (s != NULL)
5521 s->flags |= SEC_EXCLUDE;
5522 }
5523 return;
5524 }
5525
5526 BFD_ASSERT (abfd != NULL);
5527
5528 s = bfd_get_section_by_name (abfd, name);
5529 BFD_ASSERT (s != NULL);
5530
5531 contents = (bfd_byte *) bfd_alloc (abfd, size);
5532
5533 BFD_ASSERT (s->size == size);
5534 s->contents = contents;
5535 }
5536
5537 bfd_boolean
5538 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5539 {
5540 struct elf32_arm_link_hash_table * globals;
5541
5542 globals = elf32_arm_hash_table (info);
5543 BFD_ASSERT (globals != NULL);
5544
5545 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5546 globals->arm_glue_size,
5547 ARM2THUMB_GLUE_SECTION_NAME);
5548
5549 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5550 globals->thumb_glue_size,
5551 THUMB2ARM_GLUE_SECTION_NAME);
5552
5553 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5554 globals->vfp11_erratum_glue_size,
5555 VFP11_ERRATUM_VENEER_SECTION_NAME);
5556
5557 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5558 globals->bx_glue_size,
5559 ARM_BX_GLUE_SECTION_NAME);
5560
5561 return TRUE;
5562 }
5563
5564 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5565 returns the symbol identifying the stub. */
5566
5567 static struct elf_link_hash_entry *
5568 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5569 struct elf_link_hash_entry * h)
5570 {
5571 const char * name = h->root.root.string;
5572 asection * s;
5573 char * tmp_name;
5574 struct elf_link_hash_entry * myh;
5575 struct bfd_link_hash_entry * bh;
5576 struct elf32_arm_link_hash_table * globals;
5577 bfd_vma val;
5578 bfd_size_type size;
5579
5580 globals = elf32_arm_hash_table (link_info);
5581 BFD_ASSERT (globals != NULL);
5582 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5583
5584 s = bfd_get_section_by_name
5585 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5586
5587 BFD_ASSERT (s != NULL);
5588
5589 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5590 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5591
5592 BFD_ASSERT (tmp_name);
5593
5594 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5595
5596 myh = elf_link_hash_lookup
5597 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5598
5599 if (myh != NULL)
5600 {
5601 /* We've already seen this guy. */
5602 free (tmp_name);
5603 return myh;
5604 }
5605
5606 /* The only trick here is using hash_table->arm_glue_size as the value.
5607 Even though the section isn't allocated yet, this is where we will be
5608 putting it. The +1 on the value marks that the stub has not been
5609 output yet - not that it is a Thumb function. */
5610 bh = NULL;
5611 val = globals->arm_glue_size + 1;
5612 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5613 tmp_name, BSF_GLOBAL, s, val,
5614 NULL, TRUE, FALSE, &bh);
5615
5616 myh = (struct elf_link_hash_entry *) bh;
5617 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5618 myh->forced_local = 1;
5619
5620 free (tmp_name);
5621
5622 if (link_info->shared || globals->root.is_relocatable_executable
5623 || globals->pic_veneer)
5624 size = ARM2THUMB_PIC_GLUE_SIZE;
5625 else if (globals->use_blx)
5626 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5627 else
5628 size = ARM2THUMB_STATIC_GLUE_SIZE;
5629
5630 s->size += size;
5631 globals->arm_glue_size += size;
5632
5633 return myh;
5634 }
5635
5636 /* Allocate space for ARMv4 BX veneers. */
5637
5638 static void
5639 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5640 {
5641 asection * s;
5642 struct elf32_arm_link_hash_table *globals;
5643 char *tmp_name;
5644 struct elf_link_hash_entry *myh;
5645 struct bfd_link_hash_entry *bh;
5646 bfd_vma val;
5647
5648 /* BX PC does not need a veneer. */
5649 if (reg == 15)
5650 return;
5651
5652 globals = elf32_arm_hash_table (link_info);
5653 BFD_ASSERT (globals != NULL);
5654 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5655
5656 /* Check if this veneer has already been allocated. */
5657 if (globals->bx_glue_offset[reg])
5658 return;
5659
5660 s = bfd_get_section_by_name
5661 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5662
5663 BFD_ASSERT (s != NULL);
5664
5665 /* Add symbol for veneer. */
5666 tmp_name = (char *)
5667 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5668
5669 BFD_ASSERT (tmp_name);
5670
5671 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5672
5673 myh = elf_link_hash_lookup
5674 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5675
5676 BFD_ASSERT (myh == NULL);
5677
5678 bh = NULL;
5679 val = globals->bx_glue_size;
5680 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5681 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5682 NULL, TRUE, FALSE, &bh);
5683
5684 myh = (struct elf_link_hash_entry *) bh;
5685 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5686 myh->forced_local = 1;
5687
5688 s->size += ARM_BX_VENEER_SIZE;
5689 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5690 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5691 }
5692
5693
5694 /* Add an entry to the code/data map for section SEC. */
5695
5696 static void
5697 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5698 {
5699 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5700 unsigned int newidx;
5701
5702 if (sec_data->map == NULL)
5703 {
5704 sec_data->map = (elf32_arm_section_map *)
5705 bfd_malloc (sizeof (elf32_arm_section_map));
5706 sec_data->mapcount = 0;
5707 sec_data->mapsize = 1;
5708 }
5709
5710 newidx = sec_data->mapcount++;
5711
5712 if (sec_data->mapcount > sec_data->mapsize)
5713 {
5714 sec_data->mapsize *= 2;
5715 sec_data->map = (elf32_arm_section_map *)
5716 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5717 * sizeof (elf32_arm_section_map));
5718 }
5719
5720 if (sec_data->map)
5721 {
5722 sec_data->map[newidx].vma = vma;
5723 sec_data->map[newidx].type = type;
5724 }
5725 }
5726
5727
5728 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5729 veneers are handled for now. */
5730
5731 static bfd_vma
5732 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5733 elf32_vfp11_erratum_list *branch,
5734 bfd *branch_bfd,
5735 asection *branch_sec,
5736 unsigned int offset)
5737 {
5738 asection *s;
5739 struct elf32_arm_link_hash_table *hash_table;
5740 char *tmp_name;
5741 struct elf_link_hash_entry *myh;
5742 struct bfd_link_hash_entry *bh;
5743 bfd_vma val;
5744 struct _arm_elf_section_data *sec_data;
5745 elf32_vfp11_erratum_list *newerr;
5746
5747 hash_table = elf32_arm_hash_table (link_info);
5748 BFD_ASSERT (hash_table != NULL);
5749 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5750
5751 s = bfd_get_section_by_name
5752 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5753
5754 sec_data = elf32_arm_section_data (s);
5755
5756 BFD_ASSERT (s != NULL);
5757
5758 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5759 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5760
5761 BFD_ASSERT (tmp_name);
5762
5763 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5764 hash_table->num_vfp11_fixes);
5765
5766 myh = elf_link_hash_lookup
5767 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5768
5769 BFD_ASSERT (myh == NULL);
5770
5771 bh = NULL;
5772 val = hash_table->vfp11_erratum_glue_size;
5773 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5774 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5775 NULL, TRUE, FALSE, &bh);
5776
5777 myh = (struct elf_link_hash_entry *) bh;
5778 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5779 myh->forced_local = 1;
5780
5781 /* Link veneer back to calling location. */
5782 sec_data->erratumcount += 1;
5783 newerr = (elf32_vfp11_erratum_list *)
5784 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5785
5786 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5787 newerr->vma = -1;
5788 newerr->u.v.branch = branch;
5789 newerr->u.v.id = hash_table->num_vfp11_fixes;
5790 branch->u.b.veneer = newerr;
5791
5792 newerr->next = sec_data->erratumlist;
5793 sec_data->erratumlist = newerr;
5794
5795 /* A symbol for the return from the veneer. */
5796 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5797 hash_table->num_vfp11_fixes);
5798
5799 myh = elf_link_hash_lookup
5800 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5801
5802 if (myh != NULL)
5803 abort ();
5804
5805 bh = NULL;
5806 val = offset + 4;
5807 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5808 branch_sec, val, NULL, TRUE, FALSE, &bh);
5809
5810 myh = (struct elf_link_hash_entry *) bh;
5811 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5812 myh->forced_local = 1;
5813
5814 free (tmp_name);
5815
5816 /* Generate a mapping symbol for the veneer section, and explicitly add an
5817 entry for that symbol to the code/data map for the section. */
5818 if (hash_table->vfp11_erratum_glue_size == 0)
5819 {
5820 bh = NULL;
5821 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5822 ever requires this erratum fix. */
5823 _bfd_generic_link_add_one_symbol (link_info,
5824 hash_table->bfd_of_glue_owner, "$a",
5825 BSF_LOCAL, s, 0, NULL,
5826 TRUE, FALSE, &bh);
5827
5828 myh = (struct elf_link_hash_entry *) bh;
5829 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5830 myh->forced_local = 1;
5831
5832 /* The elf32_arm_init_maps function only cares about symbols from input
5833 BFDs. We must make a note of this generated mapping symbol
5834 ourselves so that code byteswapping works properly in
5835 elf32_arm_write_section. */
5836 elf32_arm_section_map_add (s, 'a', 0);
5837 }
5838
5839 s->size += VFP11_ERRATUM_VENEER_SIZE;
5840 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5841 hash_table->num_vfp11_fixes++;
5842
5843 /* The offset of the veneer. */
5844 return val;
5845 }
5846
5847 #define ARM_GLUE_SECTION_FLAGS \
5848 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5849 | SEC_READONLY | SEC_LINKER_CREATED)
5850
5851 /* Create a fake section for use by the ARM backend of the linker. */
5852
5853 static bfd_boolean
5854 arm_make_glue_section (bfd * abfd, const char * name)
5855 {
5856 asection * sec;
5857
5858 sec = bfd_get_section_by_name (abfd, name);
5859 if (sec != NULL)
5860 /* Already made. */
5861 return TRUE;
5862
5863 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5864
5865 if (sec == NULL
5866 || !bfd_set_section_alignment (abfd, sec, 2))
5867 return FALSE;
5868
5869 /* Set the gc mark to prevent the section from being removed by garbage
5870 collection, despite the fact that no relocs refer to this section. */
5871 sec->gc_mark = 1;
5872
5873 return TRUE;
5874 }
5875
5876 /* Add the glue sections to ABFD. This function is called from the
5877 linker scripts in ld/emultempl/{armelf}.em. */
5878
5879 bfd_boolean
5880 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5881 struct bfd_link_info *info)
5882 {
5883 /* If we are only performing a partial
5884 link do not bother adding the glue. */
5885 if (info->relocatable)
5886 return TRUE;
5887
5888 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5889 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5890 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5891 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
5892 }
5893
5894 /* Select a BFD to be used to hold the sections used by the glue code.
5895 This function is called from the linker scripts in ld/emultempl/
5896 {armelf/pe}.em. */
5897
5898 bfd_boolean
5899 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
5900 {
5901 struct elf32_arm_link_hash_table *globals;
5902
5903 /* If we are only performing a partial link
5904 do not bother getting a bfd to hold the glue. */
5905 if (info->relocatable)
5906 return TRUE;
5907
5908 /* Make sure we don't attach the glue sections to a dynamic object. */
5909 BFD_ASSERT (!(abfd->flags & DYNAMIC));
5910
5911 globals = elf32_arm_hash_table (info);
5912 BFD_ASSERT (globals != NULL);
5913
5914 if (globals->bfd_of_glue_owner != NULL)
5915 return TRUE;
5916
5917 /* Save the bfd for later use. */
5918 globals->bfd_of_glue_owner = abfd;
5919
5920 return TRUE;
5921 }
5922
5923 static void
5924 check_use_blx (struct elf32_arm_link_hash_table *globals)
5925 {
5926 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
5927 Tag_CPU_arch) > 2)
5928 globals->use_blx = 1;
5929 }
5930
5931 bfd_boolean
5932 bfd_elf32_arm_process_before_allocation (bfd *abfd,
5933 struct bfd_link_info *link_info)
5934 {
5935 Elf_Internal_Shdr *symtab_hdr;
5936 Elf_Internal_Rela *internal_relocs = NULL;
5937 Elf_Internal_Rela *irel, *irelend;
5938 bfd_byte *contents = NULL;
5939
5940 asection *sec;
5941 struct elf32_arm_link_hash_table *globals;
5942
5943 /* If we are only performing a partial link do not bother
5944 to construct any glue. */
5945 if (link_info->relocatable)
5946 return TRUE;
5947
5948 /* Here we have a bfd that is to be included on the link. We have a
5949 hook to do reloc rummaging, before section sizes are nailed down. */
5950 globals = elf32_arm_hash_table (link_info);
5951 BFD_ASSERT (globals != NULL);
5952
5953 check_use_blx (globals);
5954
5955 if (globals->byteswap_code && !bfd_big_endian (abfd))
5956 {
5957 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5958 abfd);
5959 return FALSE;
5960 }
5961
5962 /* PR 5398: If we have not decided to include any loadable sections in
5963 the output then we will not have a glue owner bfd. This is OK, it
5964 just means that there is nothing else for us to do here. */
5965 if (globals->bfd_of_glue_owner == NULL)
5966 return TRUE;
5967
5968 /* Rummage around all the relocs and map the glue vectors. */
5969 sec = abfd->sections;
5970
5971 if (sec == NULL)
5972 return TRUE;
5973
5974 for (; sec != NULL; sec = sec->next)
5975 {
5976 if (sec->reloc_count == 0)
5977 continue;
5978
5979 if ((sec->flags & SEC_EXCLUDE) != 0)
5980 continue;
5981
5982 symtab_hdr = & elf_symtab_hdr (abfd);
5983
5984 /* Load the relocs. */
5985 internal_relocs
5986 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
5987
5988 if (internal_relocs == NULL)
5989 goto error_return;
5990
5991 irelend = internal_relocs + sec->reloc_count;
5992 for (irel = internal_relocs; irel < irelend; irel++)
5993 {
5994 long r_type;
5995 unsigned long r_index;
5996
5997 struct elf_link_hash_entry *h;
5998
5999 r_type = ELF32_R_TYPE (irel->r_info);
6000 r_index = ELF32_R_SYM (irel->r_info);
6001
6002 /* These are the only relocation types we care about. */
6003 if ( r_type != R_ARM_PC24
6004 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6005 continue;
6006
6007 /* Get the section contents if we haven't done so already. */
6008 if (contents == NULL)
6009 {
6010 /* Get cached copy if it exists. */
6011 if (elf_section_data (sec)->this_hdr.contents != NULL)
6012 contents = elf_section_data (sec)->this_hdr.contents;
6013 else
6014 {
6015 /* Go get them off disk. */
6016 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6017 goto error_return;
6018 }
6019 }
6020
6021 if (r_type == R_ARM_V4BX)
6022 {
6023 int reg;
6024
6025 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6026 record_arm_bx_glue (link_info, reg);
6027 continue;
6028 }
6029
6030 /* If the relocation is not against a symbol it cannot concern us. */
6031 h = NULL;
6032
6033 /* We don't care about local symbols. */
6034 if (r_index < symtab_hdr->sh_info)
6035 continue;
6036
6037 /* This is an external symbol. */
6038 r_index -= symtab_hdr->sh_info;
6039 h = (struct elf_link_hash_entry *)
6040 elf_sym_hashes (abfd)[r_index];
6041
6042 /* If the relocation is against a static symbol it must be within
6043 the current section and so cannot be a cross ARM/Thumb relocation. */
6044 if (h == NULL)
6045 continue;
6046
6047 /* If the call will go through a PLT entry then we do not need
6048 glue. */
6049 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6050 continue;
6051
6052 switch (r_type)
6053 {
6054 case R_ARM_PC24:
6055 /* This one is a call from arm code. We need to look up
6056 the target of the call. If it is a thumb target, we
6057 insert glue. */
6058 if (h->target_internal == ST_BRANCH_TO_THUMB)
6059 record_arm_to_thumb_glue (link_info, h);
6060 break;
6061
6062 default:
6063 abort ();
6064 }
6065 }
6066
6067 if (contents != NULL
6068 && elf_section_data (sec)->this_hdr.contents != contents)
6069 free (contents);
6070 contents = NULL;
6071
6072 if (internal_relocs != NULL
6073 && elf_section_data (sec)->relocs != internal_relocs)
6074 free (internal_relocs);
6075 internal_relocs = NULL;
6076 }
6077
6078 return TRUE;
6079
6080 error_return:
6081 if (contents != NULL
6082 && elf_section_data (sec)->this_hdr.contents != contents)
6083 free (contents);
6084 if (internal_relocs != NULL
6085 && elf_section_data (sec)->relocs != internal_relocs)
6086 free (internal_relocs);
6087
6088 return FALSE;
6089 }
6090 #endif
6091
6092
6093 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6094
6095 void
6096 bfd_elf32_arm_init_maps (bfd *abfd)
6097 {
6098 Elf_Internal_Sym *isymbuf;
6099 Elf_Internal_Shdr *hdr;
6100 unsigned int i, localsyms;
6101
6102 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6103 if (! is_arm_elf (abfd))
6104 return;
6105
6106 if ((abfd->flags & DYNAMIC) != 0)
6107 return;
6108
6109 hdr = & elf_symtab_hdr (abfd);
6110 localsyms = hdr->sh_info;
6111
6112 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6113 should contain the number of local symbols, which should come before any
6114 global symbols. Mapping symbols are always local. */
6115 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6116 NULL);
6117
6118 /* No internal symbols read? Skip this BFD. */
6119 if (isymbuf == NULL)
6120 return;
6121
6122 for (i = 0; i < localsyms; i++)
6123 {
6124 Elf_Internal_Sym *isym = &isymbuf[i];
6125 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6126 const char *name;
6127
6128 if (sec != NULL
6129 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6130 {
6131 name = bfd_elf_string_from_elf_section (abfd,
6132 hdr->sh_link, isym->st_name);
6133
6134 if (bfd_is_arm_special_symbol_name (name,
6135 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6136 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6137 }
6138 }
6139 }
6140
6141
6142 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6143 say what they wanted. */
6144
6145 void
6146 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6147 {
6148 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6149 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6150
6151 if (globals == NULL)
6152 return;
6153
6154 if (globals->fix_cortex_a8 == -1)
6155 {
6156 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6157 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6158 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6159 || out_attr[Tag_CPU_arch_profile].i == 0))
6160 globals->fix_cortex_a8 = 1;
6161 else
6162 globals->fix_cortex_a8 = 0;
6163 }
6164 }
6165
6166
6167 void
6168 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6169 {
6170 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6171 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6172
6173 if (globals == NULL)
6174 return;
6175 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6176 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6177 {
6178 switch (globals->vfp11_fix)
6179 {
6180 case BFD_ARM_VFP11_FIX_DEFAULT:
6181 case BFD_ARM_VFP11_FIX_NONE:
6182 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6183 break;
6184
6185 default:
6186 /* Give a warning, but do as the user requests anyway. */
6187 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6188 "workaround is not necessary for target architecture"), obfd);
6189 }
6190 }
6191 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6192 /* For earlier architectures, we might need the workaround, but do not
6193 enable it by default. If users is running with broken hardware, they
6194 must enable the erratum fix explicitly. */
6195 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6196 }
6197
6198
6199 enum bfd_arm_vfp11_pipe
6200 {
6201 VFP11_FMAC,
6202 VFP11_LS,
6203 VFP11_DS,
6204 VFP11_BAD
6205 };
6206
6207 /* Return a VFP register number. This is encoded as RX:X for single-precision
6208 registers, or X:RX for double-precision registers, where RX is the group of
6209 four bits in the instruction encoding and X is the single extension bit.
6210 RX and X fields are specified using their lowest (starting) bit. The return
6211 value is:
6212
6213 0...31: single-precision registers s0...s31
6214 32...63: double-precision registers d0...d31.
6215
6216 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6217 encounter VFP3 instructions, so we allow the full range for DP registers. */
6218
6219 static unsigned int
6220 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6221 unsigned int x)
6222 {
6223 if (is_double)
6224 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6225 else
6226 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6227 }
6228
6229 /* Set bits in *WMASK according to a register number REG as encoded by
6230 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6231
6232 static void
6233 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6234 {
6235 if (reg < 32)
6236 *wmask |= 1 << reg;
6237 else if (reg < 48)
6238 *wmask |= 3 << ((reg - 32) * 2);
6239 }
6240
6241 /* Return TRUE if WMASK overwrites anything in REGS. */
6242
6243 static bfd_boolean
6244 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6245 {
6246 int i;
6247
6248 for (i = 0; i < numregs; i++)
6249 {
6250 unsigned int reg = regs[i];
6251
6252 if (reg < 32 && (wmask & (1 << reg)) != 0)
6253 return TRUE;
6254
6255 reg -= 32;
6256
6257 if (reg >= 16)
6258 continue;
6259
6260 if ((wmask & (3 << (reg * 2))) != 0)
6261 return TRUE;
6262 }
6263
6264 return FALSE;
6265 }
6266
6267 /* In this function, we're interested in two things: finding input registers
6268 for VFP data-processing instructions, and finding the set of registers which
6269 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6270 hold the written set, so FLDM etc. are easy to deal with (we're only
6271 interested in 32 SP registers or 16 dp registers, due to the VFP version
6272 implemented by the chip in question). DP registers are marked by setting
6273 both SP registers in the write mask). */
6274
6275 static enum bfd_arm_vfp11_pipe
6276 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6277 int *numregs)
6278 {
6279 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6280 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6281
6282 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6283 {
6284 unsigned int pqrs;
6285 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6286 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6287
6288 pqrs = ((insn & 0x00800000) >> 20)
6289 | ((insn & 0x00300000) >> 19)
6290 | ((insn & 0x00000040) >> 6);
6291
6292 switch (pqrs)
6293 {
6294 case 0: /* fmac[sd]. */
6295 case 1: /* fnmac[sd]. */
6296 case 2: /* fmsc[sd]. */
6297 case 3: /* fnmsc[sd]. */
6298 vpipe = VFP11_FMAC;
6299 bfd_arm_vfp11_write_mask (destmask, fd);
6300 regs[0] = fd;
6301 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6302 regs[2] = fm;
6303 *numregs = 3;
6304 break;
6305
6306 case 4: /* fmul[sd]. */
6307 case 5: /* fnmul[sd]. */
6308 case 6: /* fadd[sd]. */
6309 case 7: /* fsub[sd]. */
6310 vpipe = VFP11_FMAC;
6311 goto vfp_binop;
6312
6313 case 8: /* fdiv[sd]. */
6314 vpipe = VFP11_DS;
6315 vfp_binop:
6316 bfd_arm_vfp11_write_mask (destmask, fd);
6317 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6318 regs[1] = fm;
6319 *numregs = 2;
6320 break;
6321
6322 case 15: /* extended opcode. */
6323 {
6324 unsigned int extn = ((insn >> 15) & 0x1e)
6325 | ((insn >> 7) & 1);
6326
6327 switch (extn)
6328 {
6329 case 0: /* fcpy[sd]. */
6330 case 1: /* fabs[sd]. */
6331 case 2: /* fneg[sd]. */
6332 case 8: /* fcmp[sd]. */
6333 case 9: /* fcmpe[sd]. */
6334 case 10: /* fcmpz[sd]. */
6335 case 11: /* fcmpez[sd]. */
6336 case 16: /* fuito[sd]. */
6337 case 17: /* fsito[sd]. */
6338 case 24: /* ftoui[sd]. */
6339 case 25: /* ftouiz[sd]. */
6340 case 26: /* ftosi[sd]. */
6341 case 27: /* ftosiz[sd]. */
6342 /* These instructions will not bounce due to underflow. */
6343 *numregs = 0;
6344 vpipe = VFP11_FMAC;
6345 break;
6346
6347 case 3: /* fsqrt[sd]. */
6348 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6349 registers to cause the erratum in previous instructions. */
6350 bfd_arm_vfp11_write_mask (destmask, fd);
6351 vpipe = VFP11_DS;
6352 break;
6353
6354 case 15: /* fcvt{ds,sd}. */
6355 {
6356 int rnum = 0;
6357
6358 bfd_arm_vfp11_write_mask (destmask, fd);
6359
6360 /* Only FCVTSD can underflow. */
6361 if ((insn & 0x100) != 0)
6362 regs[rnum++] = fm;
6363
6364 *numregs = rnum;
6365
6366 vpipe = VFP11_FMAC;
6367 }
6368 break;
6369
6370 default:
6371 return VFP11_BAD;
6372 }
6373 }
6374 break;
6375
6376 default:
6377 return VFP11_BAD;
6378 }
6379 }
6380 /* Two-register transfer. */
6381 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6382 {
6383 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6384
6385 if ((insn & 0x100000) == 0)
6386 {
6387 if (is_double)
6388 bfd_arm_vfp11_write_mask (destmask, fm);
6389 else
6390 {
6391 bfd_arm_vfp11_write_mask (destmask, fm);
6392 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6393 }
6394 }
6395
6396 vpipe = VFP11_LS;
6397 }
6398 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6399 {
6400 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6401 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6402
6403 switch (puw)
6404 {
6405 case 0: /* Two-reg transfer. We should catch these above. */
6406 abort ();
6407
6408 case 2: /* fldm[sdx]. */
6409 case 3:
6410 case 5:
6411 {
6412 unsigned int i, offset = insn & 0xff;
6413
6414 if (is_double)
6415 offset >>= 1;
6416
6417 for (i = fd; i < fd + offset; i++)
6418 bfd_arm_vfp11_write_mask (destmask, i);
6419 }
6420 break;
6421
6422 case 4: /* fld[sd]. */
6423 case 6:
6424 bfd_arm_vfp11_write_mask (destmask, fd);
6425 break;
6426
6427 default:
6428 return VFP11_BAD;
6429 }
6430
6431 vpipe = VFP11_LS;
6432 }
6433 /* Single-register transfer. Note L==0. */
6434 else if ((insn & 0x0f100e10) == 0x0e000a10)
6435 {
6436 unsigned int opcode = (insn >> 21) & 7;
6437 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6438
6439 switch (opcode)
6440 {
6441 case 0: /* fmsr/fmdlr. */
6442 case 1: /* fmdhr. */
6443 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6444 destination register. I don't know if this is exactly right,
6445 but it is the conservative choice. */
6446 bfd_arm_vfp11_write_mask (destmask, fn);
6447 break;
6448
6449 case 7: /* fmxr. */
6450 break;
6451 }
6452
6453 vpipe = VFP11_LS;
6454 }
6455
6456 return vpipe;
6457 }
6458
6459
6460 static int elf32_arm_compare_mapping (const void * a, const void * b);
6461
6462
6463 /* Look for potentially-troublesome code sequences which might trigger the
6464 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6465 (available from ARM) for details of the erratum. A short version is
6466 described in ld.texinfo. */
6467
6468 bfd_boolean
6469 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6470 {
6471 asection *sec;
6472 bfd_byte *contents = NULL;
6473 int state = 0;
6474 int regs[3], numregs = 0;
6475 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6476 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
6477
6478 if (globals == NULL)
6479 return FALSE;
6480
6481 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6482 The states transition as follows:
6483
6484 0 -> 1 (vector) or 0 -> 2 (scalar)
6485 A VFP FMAC-pipeline instruction has been seen. Fill
6486 regs[0]..regs[numregs-1] with its input operands. Remember this
6487 instruction in 'first_fmac'.
6488
6489 1 -> 2
6490 Any instruction, except for a VFP instruction which overwrites
6491 regs[*].
6492
6493 1 -> 3 [ -> 0 ] or
6494 2 -> 3 [ -> 0 ]
6495 A VFP instruction has been seen which overwrites any of regs[*].
6496 We must make a veneer! Reset state to 0 before examining next
6497 instruction.
6498
6499 2 -> 0
6500 If we fail to match anything in state 2, reset to state 0 and reset
6501 the instruction pointer to the instruction after 'first_fmac'.
6502
6503 If the VFP11 vector mode is in use, there must be at least two unrelated
6504 instructions between anti-dependent VFP11 instructions to properly avoid
6505 triggering the erratum, hence the use of the extra state 1. */
6506
6507 /* If we are only performing a partial link do not bother
6508 to construct any glue. */
6509 if (link_info->relocatable)
6510 return TRUE;
6511
6512 /* Skip if this bfd does not correspond to an ELF image. */
6513 if (! is_arm_elf (abfd))
6514 return TRUE;
6515
6516 /* We should have chosen a fix type by the time we get here. */
6517 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6518
6519 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6520 return TRUE;
6521
6522 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6523 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6524 return TRUE;
6525
6526 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6527 {
6528 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6529 struct _arm_elf_section_data *sec_data;
6530
6531 /* If we don't have executable progbits, we're not interested in this
6532 section. Also skip if section is to be excluded. */
6533 if (elf_section_type (sec) != SHT_PROGBITS
6534 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6535 || (sec->flags & SEC_EXCLUDE) != 0
6536 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6537 || sec->output_section == bfd_abs_section_ptr
6538 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6539 continue;
6540
6541 sec_data = elf32_arm_section_data (sec);
6542
6543 if (sec_data->mapcount == 0)
6544 continue;
6545
6546 if (elf_section_data (sec)->this_hdr.contents != NULL)
6547 contents = elf_section_data (sec)->this_hdr.contents;
6548 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6549 goto error_return;
6550
6551 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6552 elf32_arm_compare_mapping);
6553
6554 for (span = 0; span < sec_data->mapcount; span++)
6555 {
6556 unsigned int span_start = sec_data->map[span].vma;
6557 unsigned int span_end = (span == sec_data->mapcount - 1)
6558 ? sec->size : sec_data->map[span + 1].vma;
6559 char span_type = sec_data->map[span].type;
6560
6561 /* FIXME: Only ARM mode is supported at present. We may need to
6562 support Thumb-2 mode also at some point. */
6563 if (span_type != 'a')
6564 continue;
6565
6566 for (i = span_start; i < span_end;)
6567 {
6568 unsigned int next_i = i + 4;
6569 unsigned int insn = bfd_big_endian (abfd)
6570 ? (contents[i] << 24)
6571 | (contents[i + 1] << 16)
6572 | (contents[i + 2] << 8)
6573 | contents[i + 3]
6574 : (contents[i + 3] << 24)
6575 | (contents[i + 2] << 16)
6576 | (contents[i + 1] << 8)
6577 | contents[i];
6578 unsigned int writemask = 0;
6579 enum bfd_arm_vfp11_pipe vpipe;
6580
6581 switch (state)
6582 {
6583 case 0:
6584 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6585 &numregs);
6586 /* I'm assuming the VFP11 erratum can trigger with denorm
6587 operands on either the FMAC or the DS pipeline. This might
6588 lead to slightly overenthusiastic veneer insertion. */
6589 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6590 {
6591 state = use_vector ? 1 : 2;
6592 first_fmac = i;
6593 veneer_of_insn = insn;
6594 }
6595 break;
6596
6597 case 1:
6598 {
6599 int other_regs[3], other_numregs;
6600 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6601 other_regs,
6602 &other_numregs);
6603 if (vpipe != VFP11_BAD
6604 && bfd_arm_vfp11_antidependency (writemask, regs,
6605 numregs))
6606 state = 3;
6607 else
6608 state = 2;
6609 }
6610 break;
6611
6612 case 2:
6613 {
6614 int other_regs[3], other_numregs;
6615 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6616 other_regs,
6617 &other_numregs);
6618 if (vpipe != VFP11_BAD
6619 && bfd_arm_vfp11_antidependency (writemask, regs,
6620 numregs))
6621 state = 3;
6622 else
6623 {
6624 state = 0;
6625 next_i = first_fmac + 4;
6626 }
6627 }
6628 break;
6629
6630 case 3:
6631 abort (); /* Should be unreachable. */
6632 }
6633
6634 if (state == 3)
6635 {
6636 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6637 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6638
6639 elf32_arm_section_data (sec)->erratumcount += 1;
6640
6641 newerr->u.b.vfp_insn = veneer_of_insn;
6642
6643 switch (span_type)
6644 {
6645 case 'a':
6646 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6647 break;
6648
6649 default:
6650 abort ();
6651 }
6652
6653 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6654 first_fmac);
6655
6656 newerr->vma = -1;
6657
6658 newerr->next = sec_data->erratumlist;
6659 sec_data->erratumlist = newerr;
6660
6661 state = 0;
6662 }
6663
6664 i = next_i;
6665 }
6666 }
6667
6668 if (contents != NULL
6669 && elf_section_data (sec)->this_hdr.contents != contents)
6670 free (contents);
6671 contents = NULL;
6672 }
6673
6674 return TRUE;
6675
6676 error_return:
6677 if (contents != NULL
6678 && elf_section_data (sec)->this_hdr.contents != contents)
6679 free (contents);
6680
6681 return FALSE;
6682 }
6683
6684 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6685 after sections have been laid out, using specially-named symbols. */
6686
6687 void
6688 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6689 struct bfd_link_info *link_info)
6690 {
6691 asection *sec;
6692 struct elf32_arm_link_hash_table *globals;
6693 char *tmp_name;
6694
6695 if (link_info->relocatable)
6696 return;
6697
6698 /* Skip if this bfd does not correspond to an ELF image. */
6699 if (! is_arm_elf (abfd))
6700 return;
6701
6702 globals = elf32_arm_hash_table (link_info);
6703 if (globals == NULL)
6704 return;
6705
6706 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6707 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6708
6709 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6710 {
6711 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6712 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6713
6714 for (; errnode != NULL; errnode = errnode->next)
6715 {
6716 struct elf_link_hash_entry *myh;
6717 bfd_vma vma;
6718
6719 switch (errnode->type)
6720 {
6721 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6722 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6723 /* Find veneer symbol. */
6724 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6725 errnode->u.b.veneer->u.v.id);
6726
6727 myh = elf_link_hash_lookup
6728 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6729
6730 if (myh == NULL)
6731 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6732 "`%s'"), abfd, tmp_name);
6733
6734 vma = myh->root.u.def.section->output_section->vma
6735 + myh->root.u.def.section->output_offset
6736 + myh->root.u.def.value;
6737
6738 errnode->u.b.veneer->vma = vma;
6739 break;
6740
6741 case VFP11_ERRATUM_ARM_VENEER:
6742 case VFP11_ERRATUM_THUMB_VENEER:
6743 /* Find return location. */
6744 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6745 errnode->u.v.id);
6746
6747 myh = elf_link_hash_lookup
6748 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6749
6750 if (myh == NULL)
6751 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6752 "`%s'"), abfd, tmp_name);
6753
6754 vma = myh->root.u.def.section->output_section->vma
6755 + myh->root.u.def.section->output_offset
6756 + myh->root.u.def.value;
6757
6758 errnode->u.v.branch->vma = vma;
6759 break;
6760
6761 default:
6762 abort ();
6763 }
6764 }
6765 }
6766
6767 free (tmp_name);
6768 }
6769
6770
6771 /* Set target relocation values needed during linking. */
6772
6773 void
6774 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6775 struct bfd_link_info *link_info,
6776 int target1_is_rel,
6777 char * target2_type,
6778 int fix_v4bx,
6779 int use_blx,
6780 bfd_arm_vfp11_fix vfp11_fix,
6781 int no_enum_warn, int no_wchar_warn,
6782 int pic_veneer, int fix_cortex_a8)
6783 {
6784 struct elf32_arm_link_hash_table *globals;
6785
6786 globals = elf32_arm_hash_table (link_info);
6787 if (globals == NULL)
6788 return;
6789
6790 globals->target1_is_rel = target1_is_rel;
6791 if (strcmp (target2_type, "rel") == 0)
6792 globals->target2_reloc = R_ARM_REL32;
6793 else if (strcmp (target2_type, "abs") == 0)
6794 globals->target2_reloc = R_ARM_ABS32;
6795 else if (strcmp (target2_type, "got-rel") == 0)
6796 globals->target2_reloc = R_ARM_GOT_PREL;
6797 else
6798 {
6799 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6800 target2_type);
6801 }
6802 globals->fix_v4bx = fix_v4bx;
6803 globals->use_blx |= use_blx;
6804 globals->vfp11_fix = vfp11_fix;
6805 globals->pic_veneer = pic_veneer;
6806 globals->fix_cortex_a8 = fix_cortex_a8;
6807
6808 BFD_ASSERT (is_arm_elf (output_bfd));
6809 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6810 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6811 }
6812
6813 /* Replace the target offset of a Thumb bl or b.w instruction. */
6814
6815 static void
6816 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6817 {
6818 bfd_vma upper;
6819 bfd_vma lower;
6820 int reloc_sign;
6821
6822 BFD_ASSERT ((offset & 1) == 0);
6823
6824 upper = bfd_get_16 (abfd, insn);
6825 lower = bfd_get_16 (abfd, insn + 2);
6826 reloc_sign = (offset < 0) ? 1 : 0;
6827 upper = (upper & ~(bfd_vma) 0x7ff)
6828 | ((offset >> 12) & 0x3ff)
6829 | (reloc_sign << 10);
6830 lower = (lower & ~(bfd_vma) 0x2fff)
6831 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6832 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6833 | ((offset >> 1) & 0x7ff);
6834 bfd_put_16 (abfd, upper, insn);
6835 bfd_put_16 (abfd, lower, insn + 2);
6836 }
6837
6838 /* Thumb code calling an ARM function. */
6839
6840 static int
6841 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6842 const char * name,
6843 bfd * input_bfd,
6844 bfd * output_bfd,
6845 asection * input_section,
6846 bfd_byte * hit_data,
6847 asection * sym_sec,
6848 bfd_vma offset,
6849 bfd_signed_vma addend,
6850 bfd_vma val,
6851 char **error_message)
6852 {
6853 asection * s = 0;
6854 bfd_vma my_offset;
6855 long int ret_offset;
6856 struct elf_link_hash_entry * myh;
6857 struct elf32_arm_link_hash_table * globals;
6858
6859 myh = find_thumb_glue (info, name, error_message);
6860 if (myh == NULL)
6861 return FALSE;
6862
6863 globals = elf32_arm_hash_table (info);
6864 BFD_ASSERT (globals != NULL);
6865 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6866
6867 my_offset = myh->root.u.def.value;
6868
6869 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6870 THUMB2ARM_GLUE_SECTION_NAME);
6871
6872 BFD_ASSERT (s != NULL);
6873 BFD_ASSERT (s->contents != NULL);
6874 BFD_ASSERT (s->output_section != NULL);
6875
6876 if ((my_offset & 0x01) == 0x01)
6877 {
6878 if (sym_sec != NULL
6879 && sym_sec->owner != NULL
6880 && !INTERWORK_FLAG (sym_sec->owner))
6881 {
6882 (*_bfd_error_handler)
6883 (_("%B(%s): warning: interworking not enabled.\n"
6884 " first occurrence: %B: thumb call to arm"),
6885 sym_sec->owner, input_bfd, name);
6886
6887 return FALSE;
6888 }
6889
6890 --my_offset;
6891 myh->root.u.def.value = my_offset;
6892
6893 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6894 s->contents + my_offset);
6895
6896 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6897 s->contents + my_offset + 2);
6898
6899 ret_offset =
6900 /* Address of destination of the stub. */
6901 ((bfd_signed_vma) val)
6902 - ((bfd_signed_vma)
6903 /* Offset from the start of the current section
6904 to the start of the stubs. */
6905 (s->output_offset
6906 /* Offset of the start of this stub from the start of the stubs. */
6907 + my_offset
6908 /* Address of the start of the current section. */
6909 + s->output_section->vma)
6910 /* The branch instruction is 4 bytes into the stub. */
6911 + 4
6912 /* ARM branches work from the pc of the instruction + 8. */
6913 + 8);
6914
6915 put_arm_insn (globals, output_bfd,
6916 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
6917 s->contents + my_offset + 4);
6918 }
6919
6920 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
6921
6922 /* Now go back and fix up the original BL insn to point to here. */
6923 ret_offset =
6924 /* Address of where the stub is located. */
6925 (s->output_section->vma + s->output_offset + my_offset)
6926 /* Address of where the BL is located. */
6927 - (input_section->output_section->vma + input_section->output_offset
6928 + offset)
6929 /* Addend in the relocation. */
6930 - addend
6931 /* Biassing for PC-relative addressing. */
6932 - 8;
6933
6934 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
6935
6936 return TRUE;
6937 }
6938
6939 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
6940
6941 static struct elf_link_hash_entry *
6942 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
6943 const char * name,
6944 bfd * input_bfd,
6945 bfd * output_bfd,
6946 asection * sym_sec,
6947 bfd_vma val,
6948 asection * s,
6949 char ** error_message)
6950 {
6951 bfd_vma my_offset;
6952 long int ret_offset;
6953 struct elf_link_hash_entry * myh;
6954 struct elf32_arm_link_hash_table * globals;
6955
6956 myh = find_arm_glue (info, name, error_message);
6957 if (myh == NULL)
6958 return NULL;
6959
6960 globals = elf32_arm_hash_table (info);
6961 BFD_ASSERT (globals != NULL);
6962 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6963
6964 my_offset = myh->root.u.def.value;
6965
6966 if ((my_offset & 0x01) == 0x01)
6967 {
6968 if (sym_sec != NULL
6969 && sym_sec->owner != NULL
6970 && !INTERWORK_FLAG (sym_sec->owner))
6971 {
6972 (*_bfd_error_handler)
6973 (_("%B(%s): warning: interworking not enabled.\n"
6974 " first occurrence: %B: arm call to thumb"),
6975 sym_sec->owner, input_bfd, name);
6976 }
6977
6978 --my_offset;
6979 myh->root.u.def.value = my_offset;
6980
6981 if (info->shared || globals->root.is_relocatable_executable
6982 || globals->pic_veneer)
6983 {
6984 /* For relocatable objects we can't use absolute addresses,
6985 so construct the address from a relative offset. */
6986 /* TODO: If the offset is small it's probably worth
6987 constructing the address with adds. */
6988 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
6989 s->contents + my_offset);
6990 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
6991 s->contents + my_offset + 4);
6992 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
6993 s->contents + my_offset + 8);
6994 /* Adjust the offset by 4 for the position of the add,
6995 and 8 for the pipeline offset. */
6996 ret_offset = (val - (s->output_offset
6997 + s->output_section->vma
6998 + my_offset + 12))
6999 | 1;
7000 bfd_put_32 (output_bfd, ret_offset,
7001 s->contents + my_offset + 12);
7002 }
7003 else if (globals->use_blx)
7004 {
7005 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7006 s->contents + my_offset);
7007
7008 /* It's a thumb address. Add the low order bit. */
7009 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7010 s->contents + my_offset + 4);
7011 }
7012 else
7013 {
7014 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7015 s->contents + my_offset);
7016
7017 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7018 s->contents + my_offset + 4);
7019
7020 /* It's a thumb address. Add the low order bit. */
7021 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7022 s->contents + my_offset + 8);
7023
7024 my_offset += 12;
7025 }
7026 }
7027
7028 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7029
7030 return myh;
7031 }
7032
7033 /* Arm code calling a Thumb function. */
7034
7035 static int
7036 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7037 const char * name,
7038 bfd * input_bfd,
7039 bfd * output_bfd,
7040 asection * input_section,
7041 bfd_byte * hit_data,
7042 asection * sym_sec,
7043 bfd_vma offset,
7044 bfd_signed_vma addend,
7045 bfd_vma val,
7046 char **error_message)
7047 {
7048 unsigned long int tmp;
7049 bfd_vma my_offset;
7050 asection * s;
7051 long int ret_offset;
7052 struct elf_link_hash_entry * myh;
7053 struct elf32_arm_link_hash_table * globals;
7054
7055 globals = elf32_arm_hash_table (info);
7056 BFD_ASSERT (globals != NULL);
7057 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7058
7059 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7060 ARM2THUMB_GLUE_SECTION_NAME);
7061 BFD_ASSERT (s != NULL);
7062 BFD_ASSERT (s->contents != NULL);
7063 BFD_ASSERT (s->output_section != NULL);
7064
7065 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
7066 sym_sec, val, s, error_message);
7067 if (!myh)
7068 return FALSE;
7069
7070 my_offset = myh->root.u.def.value;
7071 tmp = bfd_get_32 (input_bfd, hit_data);
7072 tmp = tmp & 0xFF000000;
7073
7074 /* Somehow these are both 4 too far, so subtract 8. */
7075 ret_offset = (s->output_offset
7076 + my_offset
7077 + s->output_section->vma
7078 - (input_section->output_offset
7079 + input_section->output_section->vma
7080 + offset + addend)
7081 - 8);
7082
7083 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7084
7085 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
7086
7087 return TRUE;
7088 }
7089
7090 /* Populate Arm stub for an exported Thumb function. */
7091
7092 static bfd_boolean
7093 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7094 {
7095 struct bfd_link_info * info = (struct bfd_link_info *) inf;
7096 asection * s;
7097 struct elf_link_hash_entry * myh;
7098 struct elf32_arm_link_hash_entry *eh;
7099 struct elf32_arm_link_hash_table * globals;
7100 asection *sec;
7101 bfd_vma val;
7102 char *error_message;
7103
7104 eh = elf32_arm_hash_entry (h);
7105 /* Allocate stubs for exported Thumb functions on v4t. */
7106 if (eh->export_glue == NULL)
7107 return TRUE;
7108
7109 globals = elf32_arm_hash_table (info);
7110 BFD_ASSERT (globals != NULL);
7111 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7112
7113 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7114 ARM2THUMB_GLUE_SECTION_NAME);
7115 BFD_ASSERT (s != NULL);
7116 BFD_ASSERT (s->contents != NULL);
7117 BFD_ASSERT (s->output_section != NULL);
7118
7119 sec = eh->export_glue->root.u.def.section;
7120
7121 BFD_ASSERT (sec->output_section != NULL);
7122
7123 val = eh->export_glue->root.u.def.value + sec->output_offset
7124 + sec->output_section->vma;
7125
7126 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7127 h->root.u.def.section->owner,
7128 globals->obfd, sec, val, s,
7129 &error_message);
7130 BFD_ASSERT (myh);
7131 return TRUE;
7132 }
7133
7134 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7135
7136 static bfd_vma
7137 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7138 {
7139 bfd_byte *p;
7140 bfd_vma glue_addr;
7141 asection *s;
7142 struct elf32_arm_link_hash_table *globals;
7143
7144 globals = elf32_arm_hash_table (info);
7145 BFD_ASSERT (globals != NULL);
7146 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7147
7148 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7149 ARM_BX_GLUE_SECTION_NAME);
7150 BFD_ASSERT (s != NULL);
7151 BFD_ASSERT (s->contents != NULL);
7152 BFD_ASSERT (s->output_section != NULL);
7153
7154 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7155
7156 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7157
7158 if ((globals->bx_glue_offset[reg] & 1) == 0)
7159 {
7160 p = s->contents + glue_addr;
7161 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7162 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7163 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7164 globals->bx_glue_offset[reg] |= 1;
7165 }
7166
7167 return glue_addr + s->output_section->vma + s->output_offset;
7168 }
7169
7170 /* Generate Arm stubs for exported Thumb symbols. */
7171 static void
7172 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
7173 struct bfd_link_info *link_info)
7174 {
7175 struct elf32_arm_link_hash_table * globals;
7176
7177 if (link_info == NULL)
7178 /* Ignore this if we are not called by the ELF backend linker. */
7179 return;
7180
7181 globals = elf32_arm_hash_table (link_info);
7182 if (globals == NULL)
7183 return;
7184
7185 /* If blx is available then exported Thumb symbols are OK and there is
7186 nothing to do. */
7187 if (globals->use_blx)
7188 return;
7189
7190 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7191 link_info);
7192 }
7193
7194 /* Reserve space for COUNT dynamic relocations in relocation selection
7195 SRELOC. */
7196
7197 static void
7198 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7199 bfd_size_type count)
7200 {
7201 struct elf32_arm_link_hash_table *htab;
7202
7203 htab = elf32_arm_hash_table (info);
7204 BFD_ASSERT (htab->root.dynamic_sections_created);
7205 if (sreloc == NULL)
7206 abort ();
7207 sreloc->size += RELOC_SIZE (htab) * count;
7208 }
7209
7210 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7211 dynamic, the relocations should go in SRELOC, otherwise they should
7212 go in the special .rel.iplt section. */
7213
7214 static void
7215 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7216 bfd_size_type count)
7217 {
7218 struct elf32_arm_link_hash_table *htab;
7219
7220 htab = elf32_arm_hash_table (info);
7221 if (!htab->root.dynamic_sections_created)
7222 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7223 else
7224 {
7225 BFD_ASSERT (sreloc != NULL);
7226 sreloc->size += RELOC_SIZE (htab) * count;
7227 }
7228 }
7229
7230 /* Add relocation REL to the end of relocation section SRELOC. */
7231
7232 static void
7233 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7234 asection *sreloc, Elf_Internal_Rela *rel)
7235 {
7236 bfd_byte *loc;
7237 struct elf32_arm_link_hash_table *htab;
7238
7239 htab = elf32_arm_hash_table (info);
7240 if (!htab->root.dynamic_sections_created
7241 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7242 sreloc = htab->root.irelplt;
7243 if (sreloc == NULL)
7244 abort ();
7245 loc = sreloc->contents;
7246 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7247 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7248 abort ();
7249 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7250 }
7251
7252 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7253 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7254 to .plt. */
7255
7256 static void
7257 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7258 bfd_boolean is_iplt_entry,
7259 union gotplt_union *root_plt,
7260 struct arm_plt_info *arm_plt)
7261 {
7262 struct elf32_arm_link_hash_table *htab;
7263 asection *splt;
7264 asection *sgotplt;
7265
7266 htab = elf32_arm_hash_table (info);
7267
7268 if (is_iplt_entry)
7269 {
7270 splt = htab->root.iplt;
7271 sgotplt = htab->root.igotplt;
7272
7273 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7274 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7275 }
7276 else
7277 {
7278 splt = htab->root.splt;
7279 sgotplt = htab->root.sgotplt;
7280
7281 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7282 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7283
7284 /* If this is the first .plt entry, make room for the special
7285 first entry. */
7286 if (splt->size == 0)
7287 splt->size += htab->plt_header_size;
7288 }
7289
7290 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7291 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7292 splt->size += PLT_THUMB_STUB_SIZE;
7293 root_plt->offset = splt->size;
7294 splt->size += htab->plt_entry_size;
7295
7296 if (!htab->symbian_p)
7297 {
7298 /* We also need to make an entry in the .got.plt section, which
7299 will be placed in the .got section by the linker script. */
7300 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7301 sgotplt->size += 4;
7302 }
7303 }
7304
7305 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7306 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7307 Otherwise, DYNINDX is the index of the symbol in the dynamic
7308 symbol table and SYM_VALUE is undefined.
7309
7310 ROOT_PLT points to the offset of the PLT entry from the start of its
7311 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7312 bookkeeping information. */
7313
7314 static void
7315 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7316 union gotplt_union *root_plt,
7317 struct arm_plt_info *arm_plt,
7318 int dynindx, bfd_vma sym_value)
7319 {
7320 struct elf32_arm_link_hash_table *htab;
7321 asection *sgot;
7322 asection *splt;
7323 asection *srel;
7324 bfd_byte *loc;
7325 bfd_vma plt_index;
7326 Elf_Internal_Rela rel;
7327 bfd_vma plt_header_size;
7328 bfd_vma got_header_size;
7329
7330 htab = elf32_arm_hash_table (info);
7331
7332 /* Pick the appropriate sections and sizes. */
7333 if (dynindx == -1)
7334 {
7335 splt = htab->root.iplt;
7336 sgot = htab->root.igotplt;
7337 srel = htab->root.irelplt;
7338
7339 /* There are no reserved entries in .igot.plt, and no special
7340 first entry in .iplt. */
7341 got_header_size = 0;
7342 plt_header_size = 0;
7343 }
7344 else
7345 {
7346 splt = htab->root.splt;
7347 sgot = htab->root.sgotplt;
7348 srel = htab->root.srelplt;
7349
7350 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7351 plt_header_size = htab->plt_header_size;
7352 }
7353 BFD_ASSERT (splt != NULL && srel != NULL);
7354
7355 /* Fill in the entry in the procedure linkage table. */
7356 if (htab->symbian_p)
7357 {
7358 BFD_ASSERT (dynindx >= 0);
7359 put_arm_insn (htab, output_bfd,
7360 elf32_arm_symbian_plt_entry[0],
7361 splt->contents + root_plt->offset);
7362 bfd_put_32 (output_bfd,
7363 elf32_arm_symbian_plt_entry[1],
7364 splt->contents + root_plt->offset + 4);
7365
7366 /* Fill in the entry in the .rel.plt section. */
7367 rel.r_offset = (splt->output_section->vma
7368 + splt->output_offset
7369 + root_plt->offset + 4);
7370 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7371
7372 /* Get the index in the procedure linkage table which
7373 corresponds to this symbol. This is the index of this symbol
7374 in all the symbols for which we are making plt entries. The
7375 first entry in the procedure linkage table is reserved. */
7376 plt_index = ((root_plt->offset - plt_header_size)
7377 / htab->plt_entry_size);
7378 }
7379 else
7380 {
7381 bfd_vma got_offset, got_address, plt_address;
7382 bfd_vma got_displacement, initial_got_entry;
7383 bfd_byte * ptr;
7384
7385 BFD_ASSERT (sgot != NULL);
7386
7387 /* Get the offset into the .(i)got.plt table of the entry that
7388 corresponds to this function. */
7389 got_offset = (arm_plt->got_offset & -2);
7390
7391 /* Get the index in the procedure linkage table which
7392 corresponds to this symbol. This is the index of this symbol
7393 in all the symbols for which we are making plt entries.
7394 After the reserved .got.plt entries, all symbols appear in
7395 the same order as in .plt. */
7396 plt_index = (got_offset - got_header_size) / 4;
7397
7398 /* Calculate the address of the GOT entry. */
7399 got_address = (sgot->output_section->vma
7400 + sgot->output_offset
7401 + got_offset);
7402
7403 /* ...and the address of the PLT entry. */
7404 plt_address = (splt->output_section->vma
7405 + splt->output_offset
7406 + root_plt->offset);
7407
7408 ptr = splt->contents + root_plt->offset;
7409 if (htab->vxworks_p && info->shared)
7410 {
7411 unsigned int i;
7412 bfd_vma val;
7413
7414 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7415 {
7416 val = elf32_arm_vxworks_shared_plt_entry[i];
7417 if (i == 2)
7418 val |= got_address - sgot->output_section->vma;
7419 if (i == 5)
7420 val |= plt_index * RELOC_SIZE (htab);
7421 if (i == 2 || i == 5)
7422 bfd_put_32 (output_bfd, val, ptr);
7423 else
7424 put_arm_insn (htab, output_bfd, val, ptr);
7425 }
7426 }
7427 else if (htab->vxworks_p)
7428 {
7429 unsigned int i;
7430 bfd_vma val;
7431
7432 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7433 {
7434 val = elf32_arm_vxworks_exec_plt_entry[i];
7435 if (i == 2)
7436 val |= got_address;
7437 if (i == 4)
7438 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7439 if (i == 5)
7440 val |= plt_index * RELOC_SIZE (htab);
7441 if (i == 2 || i == 5)
7442 bfd_put_32 (output_bfd, val, ptr);
7443 else
7444 put_arm_insn (htab, output_bfd, val, ptr);
7445 }
7446
7447 loc = (htab->srelplt2->contents
7448 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7449
7450 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7451 referencing the GOT for this PLT entry. */
7452 rel.r_offset = plt_address + 8;
7453 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7454 rel.r_addend = got_offset;
7455 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7456 loc += RELOC_SIZE (htab);
7457
7458 /* Create the R_ARM_ABS32 relocation referencing the
7459 beginning of the PLT for this GOT entry. */
7460 rel.r_offset = got_address;
7461 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7462 rel.r_addend = 0;
7463 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7464 }
7465 else
7466 {
7467 /* Calculate the displacement between the PLT slot and the
7468 entry in the GOT. The eight-byte offset accounts for the
7469 value produced by adding to pc in the first instruction
7470 of the PLT stub. */
7471 got_displacement = got_address - (plt_address + 8);
7472
7473 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7474
7475 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7476 {
7477 put_thumb_insn (htab, output_bfd,
7478 elf32_arm_plt_thumb_stub[0], ptr - 4);
7479 put_thumb_insn (htab, output_bfd,
7480 elf32_arm_plt_thumb_stub[1], ptr - 2);
7481 }
7482
7483 put_arm_insn (htab, output_bfd,
7484 elf32_arm_plt_entry[0]
7485 | ((got_displacement & 0x0ff00000) >> 20),
7486 ptr + 0);
7487 put_arm_insn (htab, output_bfd,
7488 elf32_arm_plt_entry[1]
7489 | ((got_displacement & 0x000ff000) >> 12),
7490 ptr+ 4);
7491 put_arm_insn (htab, output_bfd,
7492 elf32_arm_plt_entry[2]
7493 | (got_displacement & 0x00000fff),
7494 ptr + 8);
7495 #ifdef FOUR_WORD_PLT
7496 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
7497 #endif
7498 }
7499
7500 /* Fill in the entry in the .rel(a).(i)plt section. */
7501 rel.r_offset = got_address;
7502 rel.r_addend = 0;
7503 if (dynindx == -1)
7504 {
7505 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7506 The dynamic linker or static executable then calls SYM_VALUE
7507 to determine the correct run-time value of the .igot.plt entry. */
7508 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7509 initial_got_entry = sym_value;
7510 }
7511 else
7512 {
7513 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7514 initial_got_entry = (splt->output_section->vma
7515 + splt->output_offset);
7516 }
7517
7518 /* Fill in the entry in the global offset table. */
7519 bfd_put_32 (output_bfd, initial_got_entry,
7520 sgot->contents + got_offset);
7521 }
7522
7523 loc = srel->contents + plt_index * RELOC_SIZE (htab);
7524 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7525 }
7526
7527 /* Some relocations map to different relocations depending on the
7528 target. Return the real relocation. */
7529
7530 static int
7531 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7532 int r_type)
7533 {
7534 switch (r_type)
7535 {
7536 case R_ARM_TARGET1:
7537 if (globals->target1_is_rel)
7538 return R_ARM_REL32;
7539 else
7540 return R_ARM_ABS32;
7541
7542 case R_ARM_TARGET2:
7543 return globals->target2_reloc;
7544
7545 default:
7546 return r_type;
7547 }
7548 }
7549
7550 /* Return the base VMA address which should be subtracted from real addresses
7551 when resolving @dtpoff relocation.
7552 This is PT_TLS segment p_vaddr. */
7553
7554 static bfd_vma
7555 dtpoff_base (struct bfd_link_info *info)
7556 {
7557 /* If tls_sec is NULL, we should have signalled an error already. */
7558 if (elf_hash_table (info)->tls_sec == NULL)
7559 return 0;
7560 return elf_hash_table (info)->tls_sec->vma;
7561 }
7562
7563 /* Return the relocation value for @tpoff relocation
7564 if STT_TLS virtual address is ADDRESS. */
7565
7566 static bfd_vma
7567 tpoff (struct bfd_link_info *info, bfd_vma address)
7568 {
7569 struct elf_link_hash_table *htab = elf_hash_table (info);
7570 bfd_vma base;
7571
7572 /* If tls_sec is NULL, we should have signalled an error already. */
7573 if (htab->tls_sec == NULL)
7574 return 0;
7575 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7576 return address - htab->tls_sec->vma + base;
7577 }
7578
7579 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7580 VALUE is the relocation value. */
7581
7582 static bfd_reloc_status_type
7583 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7584 {
7585 if (value > 0xfff)
7586 return bfd_reloc_overflow;
7587
7588 value |= bfd_get_32 (abfd, data) & 0xfffff000;
7589 bfd_put_32 (abfd, value, data);
7590 return bfd_reloc_ok;
7591 }
7592
7593 /* Handle TLS relaxations. Relaxing is possible for symbols that use
7594 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7595 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7596
7597 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7598 is to then call final_link_relocate. Return other values in the
7599 case of error.
7600
7601 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7602 the pre-relaxed code. It would be nice if the relocs were updated
7603 to match the optimization. */
7604
7605 static bfd_reloc_status_type
7606 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
7607 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
7608 Elf_Internal_Rela *rel, unsigned long is_local)
7609 {
7610 unsigned long insn;
7611
7612 switch (ELF32_R_TYPE (rel->r_info))
7613 {
7614 default:
7615 return bfd_reloc_notsupported;
7616
7617 case R_ARM_TLS_GOTDESC:
7618 if (is_local)
7619 insn = 0;
7620 else
7621 {
7622 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7623 if (insn & 1)
7624 insn -= 5; /* THUMB */
7625 else
7626 insn -= 8; /* ARM */
7627 }
7628 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7629 return bfd_reloc_continue;
7630
7631 case R_ARM_THM_TLS_DESCSEQ:
7632 /* Thumb insn. */
7633 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
7634 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
7635 {
7636 if (is_local)
7637 /* nop */
7638 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7639 }
7640 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
7641 {
7642 if (is_local)
7643 /* nop */
7644 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7645 else
7646 /* ldr rx,[ry] */
7647 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
7648 }
7649 else if ((insn & 0xff87) == 0x4780) /* blx rx */
7650 {
7651 if (is_local)
7652 /* nop */
7653 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7654 else
7655 /* mov r0, rx */
7656 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
7657 contents + rel->r_offset);
7658 }
7659 else
7660 {
7661 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
7662 /* It's a 32 bit instruction, fetch the rest of it for
7663 error generation. */
7664 insn = (insn << 16)
7665 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
7666 (*_bfd_error_handler)
7667 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7668 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7669 return bfd_reloc_notsupported;
7670 }
7671 break;
7672
7673 case R_ARM_TLS_DESCSEQ:
7674 /* arm insn. */
7675 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7676 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7677 {
7678 if (is_local)
7679 /* mov rx, ry */
7680 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
7681 contents + rel->r_offset);
7682 }
7683 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7684 {
7685 if (is_local)
7686 /* nop */
7687 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7688 else
7689 /* ldr rx,[ry] */
7690 bfd_put_32 (input_bfd, insn & 0xfffff000,
7691 contents + rel->r_offset);
7692 }
7693 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
7694 {
7695 if (is_local)
7696 /* nop */
7697 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7698 else
7699 /* mov r0, rx */
7700 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
7701 contents + rel->r_offset);
7702 }
7703 else
7704 {
7705 (*_bfd_error_handler)
7706 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7707 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7708 return bfd_reloc_notsupported;
7709 }
7710 break;
7711
7712 case R_ARM_TLS_CALL:
7713 /* GD->IE relaxation, turn the instruction into 'nop' or
7714 'ldr r0, [pc,r0]' */
7715 insn = is_local ? 0xe1a00000 : 0xe79f0000;
7716 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7717 break;
7718
7719 case R_ARM_THM_TLS_CALL:
7720 /* GD->IE relaxation */
7721 if (!is_local)
7722 /* add r0,pc; ldr r0, [r0] */
7723 insn = 0x44786800;
7724 else if (arch_has_thumb2_nop (globals))
7725 /* nop.w */
7726 insn = 0xf3af8000;
7727 else
7728 /* nop; nop */
7729 insn = 0xbf00bf00;
7730
7731 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
7732 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
7733 break;
7734 }
7735 return bfd_reloc_ok;
7736 }
7737
7738 /* For a given value of n, calculate the value of G_n as required to
7739 deal with group relocations. We return it in the form of an
7740 encoded constant-and-rotation, together with the final residual. If n is
7741 specified as less than zero, then final_residual is filled with the
7742 input value and no further action is performed. */
7743
7744 static bfd_vma
7745 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
7746 {
7747 int current_n;
7748 bfd_vma g_n;
7749 bfd_vma encoded_g_n = 0;
7750 bfd_vma residual = value; /* Also known as Y_n. */
7751
7752 for (current_n = 0; current_n <= n; current_n++)
7753 {
7754 int shift;
7755
7756 /* Calculate which part of the value to mask. */
7757 if (residual == 0)
7758 shift = 0;
7759 else
7760 {
7761 int msb;
7762
7763 /* Determine the most significant bit in the residual and
7764 align the resulting value to a 2-bit boundary. */
7765 for (msb = 30; msb >= 0; msb -= 2)
7766 if (residual & (3 << msb))
7767 break;
7768
7769 /* The desired shift is now (msb - 6), or zero, whichever
7770 is the greater. */
7771 shift = msb - 6;
7772 if (shift < 0)
7773 shift = 0;
7774 }
7775
7776 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
7777 g_n = residual & (0xff << shift);
7778 encoded_g_n = (g_n >> shift)
7779 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
7780
7781 /* Calculate the residual for the next time around. */
7782 residual &= ~g_n;
7783 }
7784
7785 *final_residual = residual;
7786
7787 return encoded_g_n;
7788 }
7789
7790 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
7791 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
7792
7793 static int
7794 identify_add_or_sub (bfd_vma insn)
7795 {
7796 int opcode = insn & 0x1e00000;
7797
7798 if (opcode == 1 << 23) /* ADD */
7799 return 1;
7800
7801 if (opcode == 1 << 22) /* SUB */
7802 return -1;
7803
7804 return 0;
7805 }
7806
7807 /* Perform a relocation as part of a final link. */
7808
7809 static bfd_reloc_status_type
7810 elf32_arm_final_link_relocate (reloc_howto_type * howto,
7811 bfd * input_bfd,
7812 bfd * output_bfd,
7813 asection * input_section,
7814 bfd_byte * contents,
7815 Elf_Internal_Rela * rel,
7816 bfd_vma value,
7817 struct bfd_link_info * info,
7818 asection * sym_sec,
7819 const char * sym_name,
7820 unsigned char st_type,
7821 enum arm_st_branch_type branch_type,
7822 struct elf_link_hash_entry * h,
7823 bfd_boolean * unresolved_reloc_p,
7824 char ** error_message)
7825 {
7826 unsigned long r_type = howto->type;
7827 unsigned long r_symndx;
7828 bfd_byte * hit_data = contents + rel->r_offset;
7829 bfd_vma * local_got_offsets;
7830 bfd_vma * local_tlsdesc_gotents;
7831 asection * sgot;
7832 asection * splt;
7833 asection * sreloc = NULL;
7834 asection * srelgot;
7835 bfd_vma addend;
7836 bfd_signed_vma signed_addend;
7837 unsigned char dynreloc_st_type;
7838 bfd_vma dynreloc_value;
7839 struct elf32_arm_link_hash_table * globals;
7840 struct elf32_arm_link_hash_entry *eh;
7841 union gotplt_union *root_plt;
7842 struct arm_plt_info *arm_plt;
7843 bfd_vma plt_offset;
7844 bfd_vma gotplt_offset;
7845 bfd_boolean has_iplt_entry;
7846
7847 globals = elf32_arm_hash_table (info);
7848 if (globals == NULL)
7849 return bfd_reloc_notsupported;
7850
7851 BFD_ASSERT (is_arm_elf (input_bfd));
7852
7853 /* Some relocation types map to different relocations depending on the
7854 target. We pick the right one here. */
7855 r_type = arm_real_reloc_type (globals, r_type);
7856
7857 /* It is possible to have linker relaxations on some TLS access
7858 models. Update our information here. */
7859 r_type = elf32_arm_tls_transition (info, r_type, h);
7860
7861 if (r_type != howto->type)
7862 howto = elf32_arm_howto_from_type (r_type);
7863
7864 /* If the start address has been set, then set the EF_ARM_HASENTRY
7865 flag. Setting this more than once is redundant, but the cost is
7866 not too high, and it keeps the code simple.
7867
7868 The test is done here, rather than somewhere else, because the
7869 start address is only set just before the final link commences.
7870
7871 Note - if the user deliberately sets a start address of 0, the
7872 flag will not be set. */
7873 if (bfd_get_start_address (output_bfd) != 0)
7874 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
7875
7876 eh = (struct elf32_arm_link_hash_entry *) h;
7877 sgot = globals->root.sgot;
7878 local_got_offsets = elf_local_got_offsets (input_bfd);
7879 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
7880
7881 if (globals->root.dynamic_sections_created)
7882 srelgot = globals->root.srelgot;
7883 else
7884 srelgot = NULL;
7885
7886 r_symndx = ELF32_R_SYM (rel->r_info);
7887
7888 if (globals->use_rel)
7889 {
7890 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
7891
7892 if (addend & ((howto->src_mask + 1) >> 1))
7893 {
7894 signed_addend = -1;
7895 signed_addend &= ~ howto->src_mask;
7896 signed_addend |= addend;
7897 }
7898 else
7899 signed_addend = addend;
7900 }
7901 else
7902 addend = signed_addend = rel->r_addend;
7903
7904 /* Record the symbol information that should be used in dynamic
7905 relocations. */
7906 dynreloc_st_type = st_type;
7907 dynreloc_value = value;
7908 if (branch_type == ST_BRANCH_TO_THUMB)
7909 dynreloc_value |= 1;
7910
7911 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
7912 VALUE appropriately for relocations that we resolve at link time. */
7913 has_iplt_entry = FALSE;
7914 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
7915 && root_plt->offset != (bfd_vma) -1)
7916 {
7917 plt_offset = root_plt->offset;
7918 gotplt_offset = arm_plt->got_offset;
7919
7920 if (h == NULL || eh->is_iplt)
7921 {
7922 has_iplt_entry = TRUE;
7923 splt = globals->root.iplt;
7924
7925 /* Populate .iplt entries here, because not all of them will
7926 be seen by finish_dynamic_symbol. The lower bit is set if
7927 we have already populated the entry. */
7928 if (plt_offset & 1)
7929 plt_offset--;
7930 else
7931 {
7932 elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
7933 -1, dynreloc_value);
7934 root_plt->offset |= 1;
7935 }
7936
7937 /* Static relocations always resolve to the .iplt entry. */
7938 st_type = STT_FUNC;
7939 value = (splt->output_section->vma
7940 + splt->output_offset
7941 + plt_offset);
7942 branch_type = ST_BRANCH_TO_ARM;
7943
7944 /* If there are non-call relocations that resolve to the .iplt
7945 entry, then all dynamic ones must too. */
7946 if (arm_plt->noncall_refcount != 0)
7947 {
7948 dynreloc_st_type = st_type;
7949 dynreloc_value = value;
7950 }
7951 }
7952 else
7953 /* We populate the .plt entry in finish_dynamic_symbol. */
7954 splt = globals->root.splt;
7955 }
7956 else
7957 {
7958 splt = NULL;
7959 plt_offset = (bfd_vma) -1;
7960 gotplt_offset = (bfd_vma) -1;
7961 }
7962
7963 switch (r_type)
7964 {
7965 case R_ARM_NONE:
7966 /* We don't need to find a value for this symbol. It's just a
7967 marker. */
7968 *unresolved_reloc_p = FALSE;
7969 return bfd_reloc_ok;
7970
7971 case R_ARM_ABS12:
7972 if (!globals->vxworks_p)
7973 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
7974
7975 case R_ARM_PC24:
7976 case R_ARM_ABS32:
7977 case R_ARM_ABS32_NOI:
7978 case R_ARM_REL32:
7979 case R_ARM_REL32_NOI:
7980 case R_ARM_CALL:
7981 case R_ARM_JUMP24:
7982 case R_ARM_XPC25:
7983 case R_ARM_PREL31:
7984 case R_ARM_PLT32:
7985 /* Handle relocations which should use the PLT entry. ABS32/REL32
7986 will use the symbol's value, which may point to a PLT entry, but we
7987 don't need to handle that here. If we created a PLT entry, all
7988 branches in this object should go to it, except if the PLT is too
7989 far away, in which case a long branch stub should be inserted. */
7990 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
7991 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
7992 && r_type != R_ARM_CALL
7993 && r_type != R_ARM_JUMP24
7994 && r_type != R_ARM_PLT32)
7995 && plt_offset != (bfd_vma) -1)
7996 {
7997 /* If we've created a .plt section, and assigned a PLT entry
7998 to this function, it must either be a STT_GNU_IFUNC reference
7999 or not be known to bind locally. In other cases, we should
8000 have cleared the PLT entry by now. */
8001 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
8002
8003 value = (splt->output_section->vma
8004 + splt->output_offset
8005 + plt_offset);
8006 *unresolved_reloc_p = FALSE;
8007 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8008 contents, rel->r_offset, value,
8009 rel->r_addend);
8010 }
8011
8012 /* When generating a shared object or relocatable executable, these
8013 relocations are copied into the output file to be resolved at
8014 run time. */
8015 if ((info->shared || globals->root.is_relocatable_executable)
8016 && (input_section->flags & SEC_ALLOC)
8017 && !(globals->vxworks_p
8018 && strcmp (input_section->output_section->name,
8019 ".tls_vars") == 0)
8020 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
8021 || !SYMBOL_CALLS_LOCAL (info, h))
8022 && (!strstr (input_section->name, STUB_SUFFIX))
8023 && (h == NULL
8024 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8025 || h->root.type != bfd_link_hash_undefweak)
8026 && r_type != R_ARM_PC24
8027 && r_type != R_ARM_CALL
8028 && r_type != R_ARM_JUMP24
8029 && r_type != R_ARM_PREL31
8030 && r_type != R_ARM_PLT32)
8031 {
8032 Elf_Internal_Rela outrel;
8033 bfd_boolean skip, relocate;
8034
8035 *unresolved_reloc_p = FALSE;
8036
8037 if (sreloc == NULL && globals->root.dynamic_sections_created)
8038 {
8039 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8040 ! globals->use_rel);
8041
8042 if (sreloc == NULL)
8043 return bfd_reloc_notsupported;
8044 }
8045
8046 skip = FALSE;
8047 relocate = FALSE;
8048
8049 outrel.r_addend = addend;
8050 outrel.r_offset =
8051 _bfd_elf_section_offset (output_bfd, info, input_section,
8052 rel->r_offset);
8053 if (outrel.r_offset == (bfd_vma) -1)
8054 skip = TRUE;
8055 else if (outrel.r_offset == (bfd_vma) -2)
8056 skip = TRUE, relocate = TRUE;
8057 outrel.r_offset += (input_section->output_section->vma
8058 + input_section->output_offset);
8059
8060 if (skip)
8061 memset (&outrel, 0, sizeof outrel);
8062 else if (h != NULL
8063 && h->dynindx != -1
8064 && (!info->shared
8065 || !info->symbolic
8066 || !h->def_regular))
8067 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
8068 else
8069 {
8070 int symbol;
8071
8072 /* This symbol is local, or marked to become local. */
8073 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
8074 if (globals->symbian_p)
8075 {
8076 asection *osec;
8077
8078 /* On Symbian OS, the data segment and text segement
8079 can be relocated independently. Therefore, we
8080 must indicate the segment to which this
8081 relocation is relative. The BPABI allows us to
8082 use any symbol in the right segment; we just use
8083 the section symbol as it is convenient. (We
8084 cannot use the symbol given by "h" directly as it
8085 will not appear in the dynamic symbol table.)
8086
8087 Note that the dynamic linker ignores the section
8088 symbol value, so we don't subtract osec->vma
8089 from the emitted reloc addend. */
8090 if (sym_sec)
8091 osec = sym_sec->output_section;
8092 else
8093 osec = input_section->output_section;
8094 symbol = elf_section_data (osec)->dynindx;
8095 if (symbol == 0)
8096 {
8097 struct elf_link_hash_table *htab = elf_hash_table (info);
8098
8099 if ((osec->flags & SEC_READONLY) == 0
8100 && htab->data_index_section != NULL)
8101 osec = htab->data_index_section;
8102 else
8103 osec = htab->text_index_section;
8104 symbol = elf_section_data (osec)->dynindx;
8105 }
8106 BFD_ASSERT (symbol != 0);
8107 }
8108 else
8109 /* On SVR4-ish systems, the dynamic loader cannot
8110 relocate the text and data segments independently,
8111 so the symbol does not matter. */
8112 symbol = 0;
8113 if (dynreloc_st_type == STT_GNU_IFUNC)
8114 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8115 to the .iplt entry. Instead, every non-call reference
8116 must use an R_ARM_IRELATIVE relocation to obtain the
8117 correct run-time address. */
8118 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8119 else
8120 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
8121 if (globals->use_rel)
8122 relocate = TRUE;
8123 else
8124 outrel.r_addend += dynreloc_value;
8125 }
8126
8127 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
8128
8129 /* If this reloc is against an external symbol, we do not want to
8130 fiddle with the addend. Otherwise, we need to include the symbol
8131 value so that it becomes an addend for the dynamic reloc. */
8132 if (! relocate)
8133 return bfd_reloc_ok;
8134
8135 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8136 contents, rel->r_offset,
8137 dynreloc_value, (bfd_vma) 0);
8138 }
8139 else switch (r_type)
8140 {
8141 case R_ARM_ABS12:
8142 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8143
8144 case R_ARM_XPC25: /* Arm BLX instruction. */
8145 case R_ARM_CALL:
8146 case R_ARM_JUMP24:
8147 case R_ARM_PC24: /* Arm B/BL instruction. */
8148 case R_ARM_PLT32:
8149 {
8150 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8151
8152 if (r_type == R_ARM_XPC25)
8153 {
8154 /* Check for Arm calling Arm function. */
8155 /* FIXME: Should we translate the instruction into a BL
8156 instruction instead ? */
8157 if (branch_type != ST_BRANCH_TO_THUMB)
8158 (*_bfd_error_handler)
8159 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8160 input_bfd,
8161 h ? h->root.root.string : "(local)");
8162 }
8163 else if (r_type == R_ARM_PC24)
8164 {
8165 /* Check for Arm calling Thumb function. */
8166 if (branch_type == ST_BRANCH_TO_THUMB)
8167 {
8168 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8169 output_bfd, input_section,
8170 hit_data, sym_sec, rel->r_offset,
8171 signed_addend, value,
8172 error_message))
8173 return bfd_reloc_ok;
8174 else
8175 return bfd_reloc_dangerous;
8176 }
8177 }
8178
8179 /* Check if a stub has to be inserted because the
8180 destination is too far or we are changing mode. */
8181 if ( r_type == R_ARM_CALL
8182 || r_type == R_ARM_JUMP24
8183 || r_type == R_ARM_PLT32)
8184 {
8185 enum elf32_arm_stub_type stub_type = arm_stub_none;
8186 struct elf32_arm_link_hash_entry *hash;
8187
8188 hash = (struct elf32_arm_link_hash_entry *) h;
8189 stub_type = arm_type_of_stub (info, input_section, rel,
8190 st_type, &branch_type,
8191 hash, value, sym_sec,
8192 input_bfd, sym_name);
8193
8194 if (stub_type != arm_stub_none)
8195 {
8196 /* The target is out of reach, so redirect the
8197 branch to the local stub for this function. */
8198
8199 stub_entry = elf32_arm_get_stub_entry (input_section,
8200 sym_sec, h,
8201 rel, globals,
8202 stub_type);
8203 if (stub_entry != NULL)
8204 value = (stub_entry->stub_offset
8205 + stub_entry->stub_sec->output_offset
8206 + stub_entry->stub_sec->output_section->vma);
8207 }
8208 else
8209 {
8210 /* If the call goes through a PLT entry, make sure to
8211 check distance to the right destination address. */
8212 if (plt_offset != (bfd_vma) -1)
8213 {
8214 value = (splt->output_section->vma
8215 + splt->output_offset
8216 + plt_offset);
8217 *unresolved_reloc_p = FALSE;
8218 /* The PLT entry is in ARM mode, regardless of the
8219 target function. */
8220 branch_type = ST_BRANCH_TO_ARM;
8221 }
8222 }
8223 }
8224
8225 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8226 where:
8227 S is the address of the symbol in the relocation.
8228 P is address of the instruction being relocated.
8229 A is the addend (extracted from the instruction) in bytes.
8230
8231 S is held in 'value'.
8232 P is the base address of the section containing the
8233 instruction plus the offset of the reloc into that
8234 section, ie:
8235 (input_section->output_section->vma +
8236 input_section->output_offset +
8237 rel->r_offset).
8238 A is the addend, converted into bytes, ie:
8239 (signed_addend * 4)
8240
8241 Note: None of these operations have knowledge of the pipeline
8242 size of the processor, thus it is up to the assembler to
8243 encode this information into the addend. */
8244 value -= (input_section->output_section->vma
8245 + input_section->output_offset);
8246 value -= rel->r_offset;
8247 if (globals->use_rel)
8248 value += (signed_addend << howto->size);
8249 else
8250 /* RELA addends do not have to be adjusted by howto->size. */
8251 value += signed_addend;
8252
8253 signed_addend = value;
8254 signed_addend >>= howto->rightshift;
8255
8256 /* A branch to an undefined weak symbol is turned into a jump to
8257 the next instruction unless a PLT entry will be created.
8258 Do the same for local undefined symbols (but not for STN_UNDEF).
8259 The jump to the next instruction is optimized as a NOP depending
8260 on the architecture. */
8261 if (h ? (h->root.type == bfd_link_hash_undefweak
8262 && plt_offset == (bfd_vma) -1)
8263 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
8264 {
8265 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8266
8267 if (arch_has_arm_nop (globals))
8268 value |= 0x0320f000;
8269 else
8270 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
8271 }
8272 else
8273 {
8274 /* Perform a signed range check. */
8275 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
8276 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8277 return bfd_reloc_overflow;
8278
8279 addend = (value & 2);
8280
8281 value = (signed_addend & howto->dst_mask)
8282 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
8283
8284 if (r_type == R_ARM_CALL)
8285 {
8286 /* Set the H bit in the BLX instruction. */
8287 if (branch_type == ST_BRANCH_TO_THUMB)
8288 {
8289 if (addend)
8290 value |= (1 << 24);
8291 else
8292 value &= ~(bfd_vma)(1 << 24);
8293 }
8294
8295 /* Select the correct instruction (BL or BLX). */
8296 /* Only if we are not handling a BL to a stub. In this
8297 case, mode switching is performed by the stub. */
8298 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
8299 value |= (1 << 28);
8300 else
8301 {
8302 value &= ~(bfd_vma)(1 << 28);
8303 value |= (1 << 24);
8304 }
8305 }
8306 }
8307 }
8308 break;
8309
8310 case R_ARM_ABS32:
8311 value += addend;
8312 if (branch_type == ST_BRANCH_TO_THUMB)
8313 value |= 1;
8314 break;
8315
8316 case R_ARM_ABS32_NOI:
8317 value += addend;
8318 break;
8319
8320 case R_ARM_REL32:
8321 value += addend;
8322 if (branch_type == ST_BRANCH_TO_THUMB)
8323 value |= 1;
8324 value -= (input_section->output_section->vma
8325 + input_section->output_offset + rel->r_offset);
8326 break;
8327
8328 case R_ARM_REL32_NOI:
8329 value += addend;
8330 value -= (input_section->output_section->vma
8331 + input_section->output_offset + rel->r_offset);
8332 break;
8333
8334 case R_ARM_PREL31:
8335 value -= (input_section->output_section->vma
8336 + input_section->output_offset + rel->r_offset);
8337 value += signed_addend;
8338 if (! h || h->root.type != bfd_link_hash_undefweak)
8339 {
8340 /* Check for overflow. */
8341 if ((value ^ (value >> 1)) & (1 << 30))
8342 return bfd_reloc_overflow;
8343 }
8344 value &= 0x7fffffff;
8345 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
8346 if (branch_type == ST_BRANCH_TO_THUMB)
8347 value |= 1;
8348 break;
8349 }
8350
8351 bfd_put_32 (input_bfd, value, hit_data);
8352 return bfd_reloc_ok;
8353
8354 case R_ARM_ABS8:
8355 value += addend;
8356
8357 /* There is no way to tell whether the user intended to use a signed or
8358 unsigned addend. When checking for overflow we accept either,
8359 as specified by the AAELF. */
8360 if ((long) value > 0xff || (long) value < -0x80)
8361 return bfd_reloc_overflow;
8362
8363 bfd_put_8 (input_bfd, value, hit_data);
8364 return bfd_reloc_ok;
8365
8366 case R_ARM_ABS16:
8367 value += addend;
8368
8369 /* See comment for R_ARM_ABS8. */
8370 if ((long) value > 0xffff || (long) value < -0x8000)
8371 return bfd_reloc_overflow;
8372
8373 bfd_put_16 (input_bfd, value, hit_data);
8374 return bfd_reloc_ok;
8375
8376 case R_ARM_THM_ABS5:
8377 /* Support ldr and str instructions for the thumb. */
8378 if (globals->use_rel)
8379 {
8380 /* Need to refetch addend. */
8381 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8382 /* ??? Need to determine shift amount from operand size. */
8383 addend >>= howto->rightshift;
8384 }
8385 value += addend;
8386
8387 /* ??? Isn't value unsigned? */
8388 if ((long) value > 0x1f || (long) value < -0x10)
8389 return bfd_reloc_overflow;
8390
8391 /* ??? Value needs to be properly shifted into place first. */
8392 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8393 bfd_put_16 (input_bfd, value, hit_data);
8394 return bfd_reloc_ok;
8395
8396 case R_ARM_THM_ALU_PREL_11_0:
8397 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8398 {
8399 bfd_vma insn;
8400 bfd_signed_vma relocation;
8401
8402 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8403 | bfd_get_16 (input_bfd, hit_data + 2);
8404
8405 if (globals->use_rel)
8406 {
8407 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8408 | ((insn & (1 << 26)) >> 15);
8409 if (insn & 0xf00000)
8410 signed_addend = -signed_addend;
8411 }
8412
8413 relocation = value + signed_addend;
8414 relocation -= (input_section->output_section->vma
8415 + input_section->output_offset
8416 + rel->r_offset);
8417
8418 value = abs (relocation);
8419
8420 if (value >= 0x1000)
8421 return bfd_reloc_overflow;
8422
8423 insn = (insn & 0xfb0f8f00) | (value & 0xff)
8424 | ((value & 0x700) << 4)
8425 | ((value & 0x800) << 15);
8426 if (relocation < 0)
8427 insn |= 0xa00000;
8428
8429 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8430 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8431
8432 return bfd_reloc_ok;
8433 }
8434
8435 case R_ARM_THM_PC8:
8436 /* PR 10073: This reloc is not generated by the GNU toolchain,
8437 but it is supported for compatibility with third party libraries
8438 generated by other compilers, specifically the ARM/IAR. */
8439 {
8440 bfd_vma insn;
8441 bfd_signed_vma relocation;
8442
8443 insn = bfd_get_16 (input_bfd, hit_data);
8444
8445 if (globals->use_rel)
8446 addend = (insn & 0x00ff) << 2;
8447
8448 relocation = value + addend;
8449 relocation -= (input_section->output_section->vma
8450 + input_section->output_offset
8451 + rel->r_offset);
8452
8453 value = abs (relocation);
8454
8455 /* We do not check for overflow of this reloc. Although strictly
8456 speaking this is incorrect, it appears to be necessary in order
8457 to work with IAR generated relocs. Since GCC and GAS do not
8458 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8459 a problem for them. */
8460 value &= 0x3fc;
8461
8462 insn = (insn & 0xff00) | (value >> 2);
8463
8464 bfd_put_16 (input_bfd, insn, hit_data);
8465
8466 return bfd_reloc_ok;
8467 }
8468
8469 case R_ARM_THM_PC12:
8470 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8471 {
8472 bfd_vma insn;
8473 bfd_signed_vma relocation;
8474
8475 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8476 | bfd_get_16 (input_bfd, hit_data + 2);
8477
8478 if (globals->use_rel)
8479 {
8480 signed_addend = insn & 0xfff;
8481 if (!(insn & (1 << 23)))
8482 signed_addend = -signed_addend;
8483 }
8484
8485 relocation = value + signed_addend;
8486 relocation -= (input_section->output_section->vma
8487 + input_section->output_offset
8488 + rel->r_offset);
8489
8490 value = abs (relocation);
8491
8492 if (value >= 0x1000)
8493 return bfd_reloc_overflow;
8494
8495 insn = (insn & 0xff7ff000) | value;
8496 if (relocation >= 0)
8497 insn |= (1 << 23);
8498
8499 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8500 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8501
8502 return bfd_reloc_ok;
8503 }
8504
8505 case R_ARM_THM_XPC22:
8506 case R_ARM_THM_CALL:
8507 case R_ARM_THM_JUMP24:
8508 /* Thumb BL (branch long instruction). */
8509 {
8510 bfd_vma relocation;
8511 bfd_vma reloc_sign;
8512 bfd_boolean overflow = FALSE;
8513 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8514 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8515 bfd_signed_vma reloc_signed_max;
8516 bfd_signed_vma reloc_signed_min;
8517 bfd_vma check;
8518 bfd_signed_vma signed_check;
8519 int bitsize;
8520 const int thumb2 = using_thumb2 (globals);
8521
8522 /* A branch to an undefined weak symbol is turned into a jump to
8523 the next instruction unless a PLT entry will be created.
8524 The jump to the next instruction is optimized as a NOP.W for
8525 Thumb-2 enabled architectures. */
8526 if (h && h->root.type == bfd_link_hash_undefweak
8527 && plt_offset == (bfd_vma) -1)
8528 {
8529 if (arch_has_thumb2_nop (globals))
8530 {
8531 bfd_put_16 (input_bfd, 0xf3af, hit_data);
8532 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8533 }
8534 else
8535 {
8536 bfd_put_16 (input_bfd, 0xe000, hit_data);
8537 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8538 }
8539 return bfd_reloc_ok;
8540 }
8541
8542 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
8543 with Thumb-1) involving the J1 and J2 bits. */
8544 if (globals->use_rel)
8545 {
8546 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8547 bfd_vma upper = upper_insn & 0x3ff;
8548 bfd_vma lower = lower_insn & 0x7ff;
8549 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8550 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
8551 bfd_vma i1 = j1 ^ s ? 0 : 1;
8552 bfd_vma i2 = j2 ^ s ? 0 : 1;
8553
8554 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8555 /* Sign extend. */
8556 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
8557
8558 signed_addend = addend;
8559 }
8560
8561 if (r_type == R_ARM_THM_XPC22)
8562 {
8563 /* Check for Thumb to Thumb call. */
8564 /* FIXME: Should we translate the instruction into a BL
8565 instruction instead ? */
8566 if (branch_type == ST_BRANCH_TO_THUMB)
8567 (*_bfd_error_handler)
8568 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8569 input_bfd,
8570 h ? h->root.root.string : "(local)");
8571 }
8572 else
8573 {
8574 /* If it is not a call to Thumb, assume call to Arm.
8575 If it is a call relative to a section name, then it is not a
8576 function call at all, but rather a long jump. Calls through
8577 the PLT do not require stubs. */
8578 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
8579 {
8580 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8581 {
8582 /* Convert BL to BLX. */
8583 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8584 }
8585 else if (( r_type != R_ARM_THM_CALL)
8586 && (r_type != R_ARM_THM_JUMP24))
8587 {
8588 if (elf32_thumb_to_arm_stub
8589 (info, sym_name, input_bfd, output_bfd, input_section,
8590 hit_data, sym_sec, rel->r_offset, signed_addend, value,
8591 error_message))
8592 return bfd_reloc_ok;
8593 else
8594 return bfd_reloc_dangerous;
8595 }
8596 }
8597 else if (branch_type == ST_BRANCH_TO_THUMB
8598 && globals->use_blx
8599 && r_type == R_ARM_THM_CALL)
8600 {
8601 /* Make sure this is a BL. */
8602 lower_insn |= 0x1800;
8603 }
8604 }
8605
8606 enum elf32_arm_stub_type stub_type = arm_stub_none;
8607 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
8608 {
8609 /* Check if a stub has to be inserted because the destination
8610 is too far. */
8611 struct elf32_arm_stub_hash_entry *stub_entry;
8612 struct elf32_arm_link_hash_entry *hash;
8613
8614 hash = (struct elf32_arm_link_hash_entry *) h;
8615
8616 stub_type = arm_type_of_stub (info, input_section, rel,
8617 st_type, &branch_type,
8618 hash, value, sym_sec,
8619 input_bfd, sym_name);
8620
8621 if (stub_type != arm_stub_none)
8622 {
8623 /* The target is out of reach or we are changing modes, so
8624 redirect the branch to the local stub for this
8625 function. */
8626 stub_entry = elf32_arm_get_stub_entry (input_section,
8627 sym_sec, h,
8628 rel, globals,
8629 stub_type);
8630 if (stub_entry != NULL)
8631 value = (stub_entry->stub_offset
8632 + stub_entry->stub_sec->output_offset
8633 + stub_entry->stub_sec->output_section->vma);
8634
8635 /* If this call becomes a call to Arm, force BLX. */
8636 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
8637 {
8638 if ((stub_entry
8639 && !arm_stub_is_thumb (stub_entry->stub_type))
8640 || branch_type != ST_BRANCH_TO_THUMB)
8641 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8642 }
8643 }
8644 }
8645
8646 /* Handle calls via the PLT. */
8647 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
8648 {
8649 value = (splt->output_section->vma
8650 + splt->output_offset
8651 + plt_offset);
8652
8653 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8654 {
8655 /* If the Thumb BLX instruction is available, convert
8656 the BL to a BLX instruction to call the ARM-mode
8657 PLT entry. */
8658 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8659 branch_type = ST_BRANCH_TO_ARM;
8660 }
8661 else
8662 {
8663 /* Target the Thumb stub before the ARM PLT entry. */
8664 value -= PLT_THUMB_STUB_SIZE;
8665 branch_type = ST_BRANCH_TO_THUMB;
8666 }
8667 *unresolved_reloc_p = FALSE;
8668 }
8669
8670 relocation = value + signed_addend;
8671
8672 relocation -= (input_section->output_section->vma
8673 + input_section->output_offset
8674 + rel->r_offset);
8675
8676 check = relocation >> howto->rightshift;
8677
8678 /* If this is a signed value, the rightshift just dropped
8679 leading 1 bits (assuming twos complement). */
8680 if ((bfd_signed_vma) relocation >= 0)
8681 signed_check = check;
8682 else
8683 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
8684
8685 /* Calculate the permissable maximum and minimum values for
8686 this relocation according to whether we're relocating for
8687 Thumb-2 or not. */
8688 bitsize = howto->bitsize;
8689 if (!thumb2)
8690 bitsize -= 2;
8691 reloc_signed_max = (1 << (bitsize - 1)) - 1;
8692 reloc_signed_min = ~reloc_signed_max;
8693
8694 /* Assumes two's complement. */
8695 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8696 overflow = TRUE;
8697
8698 if ((lower_insn & 0x5000) == 0x4000)
8699 /* For a BLX instruction, make sure that the relocation is rounded up
8700 to a word boundary. This follows the semantics of the instruction
8701 which specifies that bit 1 of the target address will come from bit
8702 1 of the base address. */
8703 relocation = (relocation + 2) & ~ 3;
8704
8705 /* Put RELOCATION back into the insn. Assumes two's complement.
8706 We use the Thumb-2 encoding, which is safe even if dealing with
8707 a Thumb-1 instruction by virtue of our overflow check above. */
8708 reloc_sign = (signed_check < 0) ? 1 : 0;
8709 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
8710 | ((relocation >> 12) & 0x3ff)
8711 | (reloc_sign << 10);
8712 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
8713 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
8714 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
8715 | ((relocation >> 1) & 0x7ff);
8716
8717 /* Put the relocated value back in the object file: */
8718 bfd_put_16 (input_bfd, upper_insn, hit_data);
8719 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8720
8721 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8722 }
8723 break;
8724
8725 case R_ARM_THM_JUMP19:
8726 /* Thumb32 conditional branch instruction. */
8727 {
8728 bfd_vma relocation;
8729 bfd_boolean overflow = FALSE;
8730 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8731 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8732 bfd_signed_vma reloc_signed_max = 0xffffe;
8733 bfd_signed_vma reloc_signed_min = -0x100000;
8734 bfd_signed_vma signed_check;
8735
8736 /* Need to refetch the addend, reconstruct the top three bits,
8737 and squish the two 11 bit pieces together. */
8738 if (globals->use_rel)
8739 {
8740 bfd_vma S = (upper_insn & 0x0400) >> 10;
8741 bfd_vma upper = (upper_insn & 0x003f);
8742 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
8743 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
8744 bfd_vma lower = (lower_insn & 0x07ff);
8745
8746 upper |= J1 << 6;
8747 upper |= J2 << 7;
8748 upper |= (!S) << 8;
8749 upper -= 0x0100; /* Sign extend. */
8750
8751 addend = (upper << 12) | (lower << 1);
8752 signed_addend = addend;
8753 }
8754
8755 /* Handle calls via the PLT. */
8756 if (plt_offset != (bfd_vma) -1)
8757 {
8758 value = (splt->output_section->vma
8759 + splt->output_offset
8760 + plt_offset);
8761 /* Target the Thumb stub before the ARM PLT entry. */
8762 value -= PLT_THUMB_STUB_SIZE;
8763 *unresolved_reloc_p = FALSE;
8764 }
8765
8766 /* ??? Should handle interworking? GCC might someday try to
8767 use this for tail calls. */
8768
8769 relocation = value + signed_addend;
8770 relocation -= (input_section->output_section->vma
8771 + input_section->output_offset
8772 + rel->r_offset);
8773 signed_check = (bfd_signed_vma) relocation;
8774
8775 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8776 overflow = TRUE;
8777
8778 /* Put RELOCATION back into the insn. */
8779 {
8780 bfd_vma S = (relocation & 0x00100000) >> 20;
8781 bfd_vma J2 = (relocation & 0x00080000) >> 19;
8782 bfd_vma J1 = (relocation & 0x00040000) >> 18;
8783 bfd_vma hi = (relocation & 0x0003f000) >> 12;
8784 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
8785
8786 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
8787 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
8788 }
8789
8790 /* Put the relocated value back in the object file: */
8791 bfd_put_16 (input_bfd, upper_insn, hit_data);
8792 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8793
8794 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8795 }
8796
8797 case R_ARM_THM_JUMP11:
8798 case R_ARM_THM_JUMP8:
8799 case R_ARM_THM_JUMP6:
8800 /* Thumb B (branch) instruction). */
8801 {
8802 bfd_signed_vma relocation;
8803 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
8804 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
8805 bfd_signed_vma signed_check;
8806
8807 /* CZB cannot jump backward. */
8808 if (r_type == R_ARM_THM_JUMP6)
8809 reloc_signed_min = 0;
8810
8811 if (globals->use_rel)
8812 {
8813 /* Need to refetch addend. */
8814 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8815 if (addend & ((howto->src_mask + 1) >> 1))
8816 {
8817 signed_addend = -1;
8818 signed_addend &= ~ howto->src_mask;
8819 signed_addend |= addend;
8820 }
8821 else
8822 signed_addend = addend;
8823 /* The value in the insn has been right shifted. We need to
8824 undo this, so that we can perform the address calculation
8825 in terms of bytes. */
8826 signed_addend <<= howto->rightshift;
8827 }
8828 relocation = value + signed_addend;
8829
8830 relocation -= (input_section->output_section->vma
8831 + input_section->output_offset
8832 + rel->r_offset);
8833
8834 relocation >>= howto->rightshift;
8835 signed_check = relocation;
8836
8837 if (r_type == R_ARM_THM_JUMP6)
8838 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
8839 else
8840 relocation &= howto->dst_mask;
8841 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
8842
8843 bfd_put_16 (input_bfd, relocation, hit_data);
8844
8845 /* Assumes two's complement. */
8846 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8847 return bfd_reloc_overflow;
8848
8849 return bfd_reloc_ok;
8850 }
8851
8852 case R_ARM_ALU_PCREL7_0:
8853 case R_ARM_ALU_PCREL15_8:
8854 case R_ARM_ALU_PCREL23_15:
8855 {
8856 bfd_vma insn;
8857 bfd_vma relocation;
8858
8859 insn = bfd_get_32 (input_bfd, hit_data);
8860 if (globals->use_rel)
8861 {
8862 /* Extract the addend. */
8863 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
8864 signed_addend = addend;
8865 }
8866 relocation = value + signed_addend;
8867
8868 relocation -= (input_section->output_section->vma
8869 + input_section->output_offset
8870 + rel->r_offset);
8871 insn = (insn & ~0xfff)
8872 | ((howto->bitpos << 7) & 0xf00)
8873 | ((relocation >> howto->bitpos) & 0xff);
8874 bfd_put_32 (input_bfd, value, hit_data);
8875 }
8876 return bfd_reloc_ok;
8877
8878 case R_ARM_GNU_VTINHERIT:
8879 case R_ARM_GNU_VTENTRY:
8880 return bfd_reloc_ok;
8881
8882 case R_ARM_GOTOFF32:
8883 /* Relocation is relative to the start of the
8884 global offset table. */
8885
8886 BFD_ASSERT (sgot != NULL);
8887 if (sgot == NULL)
8888 return bfd_reloc_notsupported;
8889
8890 /* If we are addressing a Thumb function, we need to adjust the
8891 address by one, so that attempts to call the function pointer will
8892 correctly interpret it as Thumb code. */
8893 if (branch_type == ST_BRANCH_TO_THUMB)
8894 value += 1;
8895
8896 /* Note that sgot->output_offset is not involved in this
8897 calculation. We always want the start of .got. If we
8898 define _GLOBAL_OFFSET_TABLE in a different way, as is
8899 permitted by the ABI, we might have to change this
8900 calculation. */
8901 value -= sgot->output_section->vma;
8902 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8903 contents, rel->r_offset, value,
8904 rel->r_addend);
8905
8906 case R_ARM_GOTPC:
8907 /* Use global offset table as symbol value. */
8908 BFD_ASSERT (sgot != NULL);
8909
8910 if (sgot == NULL)
8911 return bfd_reloc_notsupported;
8912
8913 *unresolved_reloc_p = FALSE;
8914 value = sgot->output_section->vma;
8915 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8916 contents, rel->r_offset, value,
8917 rel->r_addend);
8918
8919 case R_ARM_GOT32:
8920 case R_ARM_GOT_PREL:
8921 /* Relocation is to the entry for this symbol in the
8922 global offset table. */
8923 if (sgot == NULL)
8924 return bfd_reloc_notsupported;
8925
8926 if (dynreloc_st_type == STT_GNU_IFUNC
8927 && plt_offset != (bfd_vma) -1
8928 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
8929 {
8930 /* We have a relocation against a locally-binding STT_GNU_IFUNC
8931 symbol, and the relocation resolves directly to the runtime
8932 target rather than to the .iplt entry. This means that any
8933 .got entry would be the same value as the .igot.plt entry,
8934 so there's no point creating both. */
8935 sgot = globals->root.igotplt;
8936 value = sgot->output_offset + gotplt_offset;
8937 }
8938 else if (h != NULL)
8939 {
8940 bfd_vma off;
8941
8942 off = h->got.offset;
8943 BFD_ASSERT (off != (bfd_vma) -1);
8944 if ((off & 1) != 0)
8945 {
8946 /* We have already processsed one GOT relocation against
8947 this symbol. */
8948 off &= ~1;
8949 if (globals->root.dynamic_sections_created
8950 && !SYMBOL_REFERENCES_LOCAL (info, h))
8951 *unresolved_reloc_p = FALSE;
8952 }
8953 else
8954 {
8955 Elf_Internal_Rela outrel;
8956
8957 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8958 {
8959 /* If the symbol doesn't resolve locally in a static
8960 object, we have an undefined reference. If the
8961 symbol doesn't resolve locally in a dynamic object,
8962 it should be resolved by the dynamic linker. */
8963 if (globals->root.dynamic_sections_created)
8964 {
8965 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
8966 *unresolved_reloc_p = FALSE;
8967 }
8968 else
8969 outrel.r_info = 0;
8970 outrel.r_addend = 0;
8971 }
8972 else
8973 {
8974 if (dynreloc_st_type == STT_GNU_IFUNC)
8975 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
8976 else if (info->shared)
8977 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
8978 else
8979 outrel.r_info = 0;
8980 outrel.r_addend = dynreloc_value;
8981 }
8982
8983 /* The GOT entry is initialized to zero by default.
8984 See if we should install a different value. */
8985 if (outrel.r_addend != 0
8986 && (outrel.r_info == 0 || globals->use_rel))
8987 {
8988 bfd_put_32 (output_bfd, outrel.r_addend,
8989 sgot->contents + off);
8990 outrel.r_addend = 0;
8991 }
8992
8993 if (outrel.r_info != 0)
8994 {
8995 outrel.r_offset = (sgot->output_section->vma
8996 + sgot->output_offset
8997 + off);
8998 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
8999 }
9000 h->got.offset |= 1;
9001 }
9002 value = sgot->output_offset + off;
9003 }
9004 else
9005 {
9006 bfd_vma off;
9007
9008 BFD_ASSERT (local_got_offsets != NULL &&
9009 local_got_offsets[r_symndx] != (bfd_vma) -1);
9010
9011 off = local_got_offsets[r_symndx];
9012
9013 /* The offset must always be a multiple of 4. We use the
9014 least significant bit to record whether we have already
9015 generated the necessary reloc. */
9016 if ((off & 1) != 0)
9017 off &= ~1;
9018 else
9019 {
9020 if (globals->use_rel)
9021 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
9022
9023 if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
9024 {
9025 Elf_Internal_Rela outrel;
9026
9027 outrel.r_addend = addend + dynreloc_value;
9028 outrel.r_offset = (sgot->output_section->vma
9029 + sgot->output_offset
9030 + off);
9031 if (dynreloc_st_type == STT_GNU_IFUNC)
9032 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9033 else
9034 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9035 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9036 }
9037
9038 local_got_offsets[r_symndx] |= 1;
9039 }
9040
9041 value = sgot->output_offset + off;
9042 }
9043 if (r_type != R_ARM_GOT32)
9044 value += sgot->output_section->vma;
9045
9046 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9047 contents, rel->r_offset, value,
9048 rel->r_addend);
9049
9050 case R_ARM_TLS_LDO32:
9051 value = value - dtpoff_base (info);
9052
9053 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9054 contents, rel->r_offset, value,
9055 rel->r_addend);
9056
9057 case R_ARM_TLS_LDM32:
9058 {
9059 bfd_vma off;
9060
9061 if (sgot == NULL)
9062 abort ();
9063
9064 off = globals->tls_ldm_got.offset;
9065
9066 if ((off & 1) != 0)
9067 off &= ~1;
9068 else
9069 {
9070 /* If we don't know the module number, create a relocation
9071 for it. */
9072 if (info->shared)
9073 {
9074 Elf_Internal_Rela outrel;
9075
9076 if (srelgot == NULL)
9077 abort ();
9078
9079 outrel.r_addend = 0;
9080 outrel.r_offset = (sgot->output_section->vma
9081 + sgot->output_offset + off);
9082 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9083
9084 if (globals->use_rel)
9085 bfd_put_32 (output_bfd, outrel.r_addend,
9086 sgot->contents + off);
9087
9088 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9089 }
9090 else
9091 bfd_put_32 (output_bfd, 1, sgot->contents + off);
9092
9093 globals->tls_ldm_got.offset |= 1;
9094 }
9095
9096 value = sgot->output_section->vma + sgot->output_offset + off
9097 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9098
9099 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9100 contents, rel->r_offset, value,
9101 rel->r_addend);
9102 }
9103
9104 case R_ARM_TLS_CALL:
9105 case R_ARM_THM_TLS_CALL:
9106 case R_ARM_TLS_GD32:
9107 case R_ARM_TLS_IE32:
9108 case R_ARM_TLS_GOTDESC:
9109 case R_ARM_TLS_DESCSEQ:
9110 case R_ARM_THM_TLS_DESCSEQ:
9111 {
9112 bfd_vma off, offplt;
9113 int indx = 0;
9114 char tls_type;
9115
9116 BFD_ASSERT (sgot != NULL);
9117
9118 if (h != NULL)
9119 {
9120 bfd_boolean dyn;
9121 dyn = globals->root.dynamic_sections_created;
9122 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9123 && (!info->shared
9124 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9125 {
9126 *unresolved_reloc_p = FALSE;
9127 indx = h->dynindx;
9128 }
9129 off = h->got.offset;
9130 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
9131 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9132 }
9133 else
9134 {
9135 BFD_ASSERT (local_got_offsets != NULL);
9136 off = local_got_offsets[r_symndx];
9137 offplt = local_tlsdesc_gotents[r_symndx];
9138 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9139 }
9140
9141 /* Linker relaxations happens from one of the
9142 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
9143 if (ELF32_R_TYPE(rel->r_info) != r_type)
9144 tls_type = GOT_TLS_IE;
9145
9146 BFD_ASSERT (tls_type != GOT_UNKNOWN);
9147
9148 if ((off & 1) != 0)
9149 off &= ~1;
9150 else
9151 {
9152 bfd_boolean need_relocs = FALSE;
9153 Elf_Internal_Rela outrel;
9154 int cur_off = off;
9155
9156 /* The GOT entries have not been initialized yet. Do it
9157 now, and emit any relocations. If both an IE GOT and a
9158 GD GOT are necessary, we emit the GD first. */
9159
9160 if ((info->shared || indx != 0)
9161 && (h == NULL
9162 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9163 || h->root.type != bfd_link_hash_undefweak))
9164 {
9165 need_relocs = TRUE;
9166 BFD_ASSERT (srelgot != NULL);
9167 }
9168
9169 if (tls_type & GOT_TLS_GDESC)
9170 {
9171 bfd_byte *loc;
9172
9173 /* We should have relaxed, unless this is an undefined
9174 weak symbol. */
9175 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9176 || info->shared);
9177 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
9178 <= globals->root.sgotplt->size);
9179
9180 outrel.r_addend = 0;
9181 outrel.r_offset = (globals->root.sgotplt->output_section->vma
9182 + globals->root.sgotplt->output_offset
9183 + offplt
9184 + globals->sgotplt_jump_table_size);
9185
9186 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9187 sreloc = globals->root.srelplt;
9188 loc = sreloc->contents;
9189 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9190 BFD_ASSERT (loc + RELOC_SIZE (globals)
9191 <= sreloc->contents + sreloc->size);
9192
9193 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9194
9195 /* For globals, the first word in the relocation gets
9196 the relocation index and the top bit set, or zero,
9197 if we're binding now. For locals, it gets the
9198 symbol's offset in the tls section. */
9199 bfd_put_32 (output_bfd,
9200 !h ? value - elf_hash_table (info)->tls_sec->vma
9201 : info->flags & DF_BIND_NOW ? 0
9202 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
9203 globals->root.sgotplt->contents + offplt +
9204 globals->sgotplt_jump_table_size);
9205
9206 /* Second word in the relocation is always zero. */
9207 bfd_put_32 (output_bfd, 0,
9208 globals->root.sgotplt->contents + offplt +
9209 globals->sgotplt_jump_table_size + 4);
9210 }
9211 if (tls_type & GOT_TLS_GD)
9212 {
9213 if (need_relocs)
9214 {
9215 outrel.r_addend = 0;
9216 outrel.r_offset = (sgot->output_section->vma
9217 + sgot->output_offset
9218 + cur_off);
9219 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
9220
9221 if (globals->use_rel)
9222 bfd_put_32 (output_bfd, outrel.r_addend,
9223 sgot->contents + cur_off);
9224
9225 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9226
9227 if (indx == 0)
9228 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9229 sgot->contents + cur_off + 4);
9230 else
9231 {
9232 outrel.r_addend = 0;
9233 outrel.r_info = ELF32_R_INFO (indx,
9234 R_ARM_TLS_DTPOFF32);
9235 outrel.r_offset += 4;
9236
9237 if (globals->use_rel)
9238 bfd_put_32 (output_bfd, outrel.r_addend,
9239 sgot->contents + cur_off + 4);
9240
9241 elf32_arm_add_dynreloc (output_bfd, info,
9242 srelgot, &outrel);
9243 }
9244 }
9245 else
9246 {
9247 /* If we are not emitting relocations for a
9248 general dynamic reference, then we must be in a
9249 static link or an executable link with the
9250 symbol binding locally. Mark it as belonging
9251 to module 1, the executable. */
9252 bfd_put_32 (output_bfd, 1,
9253 sgot->contents + cur_off);
9254 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9255 sgot->contents + cur_off + 4);
9256 }
9257
9258 cur_off += 8;
9259 }
9260
9261 if (tls_type & GOT_TLS_IE)
9262 {
9263 if (need_relocs)
9264 {
9265 if (indx == 0)
9266 outrel.r_addend = value - dtpoff_base (info);
9267 else
9268 outrel.r_addend = 0;
9269 outrel.r_offset = (sgot->output_section->vma
9270 + sgot->output_offset
9271 + cur_off);
9272 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9273
9274 if (globals->use_rel)
9275 bfd_put_32 (output_bfd, outrel.r_addend,
9276 sgot->contents + cur_off);
9277
9278 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9279 }
9280 else
9281 bfd_put_32 (output_bfd, tpoff (info, value),
9282 sgot->contents + cur_off);
9283 cur_off += 4;
9284 }
9285
9286 if (h != NULL)
9287 h->got.offset |= 1;
9288 else
9289 local_got_offsets[r_symndx] |= 1;
9290 }
9291
9292 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9293 off += 8;
9294 else if (tls_type & GOT_TLS_GDESC)
9295 off = offplt;
9296
9297 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9298 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9299 {
9300 bfd_signed_vma offset;
9301 enum elf32_arm_stub_type stub_type
9302 = arm_type_of_stub (info, input_section, rel,
9303 st_type, &branch_type,
9304 (struct elf32_arm_link_hash_entry *)h,
9305 globals->tls_trampoline, globals->root.splt,
9306 input_bfd, sym_name);
9307
9308 if (stub_type != arm_stub_none)
9309 {
9310 struct elf32_arm_stub_hash_entry *stub_entry
9311 = elf32_arm_get_stub_entry
9312 (input_section, globals->root.splt, 0, rel,
9313 globals, stub_type);
9314 offset = (stub_entry->stub_offset
9315 + stub_entry->stub_sec->output_offset
9316 + stub_entry->stub_sec->output_section->vma);
9317 }
9318 else
9319 offset = (globals->root.splt->output_section->vma
9320 + globals->root.splt->output_offset
9321 + globals->tls_trampoline);
9322
9323 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9324 {
9325 unsigned long inst;
9326
9327 offset -= (input_section->output_section->vma +
9328 input_section->output_offset + rel->r_offset + 8);
9329
9330 inst = offset >> 2;
9331 inst &= 0x00ffffff;
9332 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9333 }
9334 else
9335 {
9336 /* Thumb blx encodes the offset in a complicated
9337 fashion. */
9338 unsigned upper_insn, lower_insn;
9339 unsigned neg;
9340
9341 offset -= (input_section->output_section->vma +
9342 input_section->output_offset
9343 + rel->r_offset + 4);
9344
9345 /* Round up the offset to a word boundary */
9346 offset = (offset + 2) & ~2;
9347 neg = offset < 0;
9348 upper_insn = (0xf000
9349 | ((offset >> 12) & 0x3ff)
9350 | (neg << 10));
9351 lower_insn = (0xc000
9352 | (((!((offset >> 23) & 1)) ^ neg) << 13)
9353 | (((!((offset >> 22) & 1)) ^ neg) << 11)
9354 | ((offset >> 1) & 0x7ff));
9355 bfd_put_16 (input_bfd, upper_insn, hit_data);
9356 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9357 return bfd_reloc_ok;
9358 }
9359 }
9360 /* These relocations needs special care, as besides the fact
9361 they point somewhere in .gotplt, the addend must be
9362 adjusted accordingly depending on the type of instruction
9363 we refer to */
9364 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9365 {
9366 unsigned long data, insn;
9367 unsigned thumb;
9368
9369 data = bfd_get_32 (input_bfd, hit_data);
9370 thumb = data & 1;
9371 data &= ~1u;
9372
9373 if (thumb)
9374 {
9375 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9376 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9377 insn = (insn << 16)
9378 | bfd_get_16 (input_bfd,
9379 contents + rel->r_offset - data + 2);
9380 if ((insn & 0xf800c000) == 0xf000c000)
9381 /* bl/blx */
9382 value = -6;
9383 else if ((insn & 0xffffff00) == 0x4400)
9384 /* add */
9385 value = -5;
9386 else
9387 {
9388 (*_bfd_error_handler)
9389 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9390 input_bfd, input_section,
9391 (unsigned long)rel->r_offset, insn);
9392 return bfd_reloc_notsupported;
9393 }
9394 }
9395 else
9396 {
9397 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9398
9399 switch (insn >> 24)
9400 {
9401 case 0xeb: /* bl */
9402 case 0xfa: /* blx */
9403 value = -4;
9404 break;
9405
9406 case 0xe0: /* add */
9407 value = -8;
9408 break;
9409
9410 default:
9411 (*_bfd_error_handler)
9412 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9413 input_bfd, input_section,
9414 (unsigned long)rel->r_offset, insn);
9415 return bfd_reloc_notsupported;
9416 }
9417 }
9418
9419 value += ((globals->root.sgotplt->output_section->vma
9420 + globals->root.sgotplt->output_offset + off)
9421 - (input_section->output_section->vma
9422 + input_section->output_offset
9423 + rel->r_offset)
9424 + globals->sgotplt_jump_table_size);
9425 }
9426 else
9427 value = ((globals->root.sgot->output_section->vma
9428 + globals->root.sgot->output_offset + off)
9429 - (input_section->output_section->vma
9430 + input_section->output_offset + rel->r_offset));
9431
9432 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9433 contents, rel->r_offset, value,
9434 rel->r_addend);
9435 }
9436
9437 case R_ARM_TLS_LE32:
9438 if (info->shared)
9439 {
9440 (*_bfd_error_handler)
9441 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9442 input_bfd, input_section,
9443 (long) rel->r_offset, howto->name);
9444 return (bfd_reloc_status_type) FALSE;
9445 }
9446 else
9447 value = tpoff (info, value);
9448
9449 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9450 contents, rel->r_offset, value,
9451 rel->r_addend);
9452
9453 case R_ARM_V4BX:
9454 if (globals->fix_v4bx)
9455 {
9456 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9457
9458 /* Ensure that we have a BX instruction. */
9459 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
9460
9461 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9462 {
9463 /* Branch to veneer. */
9464 bfd_vma glue_addr;
9465 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9466 glue_addr -= input_section->output_section->vma
9467 + input_section->output_offset
9468 + rel->r_offset + 8;
9469 insn = (insn & 0xf0000000) | 0x0a000000
9470 | ((glue_addr >> 2) & 0x00ffffff);
9471 }
9472 else
9473 {
9474 /* Preserve Rm (lowest four bits) and the condition code
9475 (highest four bits). Other bits encode MOV PC,Rm. */
9476 insn = (insn & 0xf000000f) | 0x01a0f000;
9477 }
9478
9479 bfd_put_32 (input_bfd, insn, hit_data);
9480 }
9481 return bfd_reloc_ok;
9482
9483 case R_ARM_MOVW_ABS_NC:
9484 case R_ARM_MOVT_ABS:
9485 case R_ARM_MOVW_PREL_NC:
9486 case R_ARM_MOVT_PREL:
9487 /* Until we properly support segment-base-relative addressing then
9488 we assume the segment base to be zero, as for the group relocations.
9489 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9490 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9491 case R_ARM_MOVW_BREL_NC:
9492 case R_ARM_MOVW_BREL:
9493 case R_ARM_MOVT_BREL:
9494 {
9495 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9496
9497 if (globals->use_rel)
9498 {
9499 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
9500 signed_addend = (addend ^ 0x8000) - 0x8000;
9501 }
9502
9503 value += signed_addend;
9504
9505 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9506 value -= (input_section->output_section->vma
9507 + input_section->output_offset + rel->r_offset);
9508
9509 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
9510 return bfd_reloc_overflow;
9511
9512 if (branch_type == ST_BRANCH_TO_THUMB)
9513 value |= 1;
9514
9515 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
9516 || r_type == R_ARM_MOVT_BREL)
9517 value >>= 16;
9518
9519 insn &= 0xfff0f000;
9520 insn |= value & 0xfff;
9521 insn |= (value & 0xf000) << 4;
9522 bfd_put_32 (input_bfd, insn, hit_data);
9523 }
9524 return bfd_reloc_ok;
9525
9526 case R_ARM_THM_MOVW_ABS_NC:
9527 case R_ARM_THM_MOVT_ABS:
9528 case R_ARM_THM_MOVW_PREL_NC:
9529 case R_ARM_THM_MOVT_PREL:
9530 /* Until we properly support segment-base-relative addressing then
9531 we assume the segment base to be zero, as for the above relocations.
9532 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9533 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9534 as R_ARM_THM_MOVT_ABS. */
9535 case R_ARM_THM_MOVW_BREL_NC:
9536 case R_ARM_THM_MOVW_BREL:
9537 case R_ARM_THM_MOVT_BREL:
9538 {
9539 bfd_vma insn;
9540
9541 insn = bfd_get_16 (input_bfd, hit_data) << 16;
9542 insn |= bfd_get_16 (input_bfd, hit_data + 2);
9543
9544 if (globals->use_rel)
9545 {
9546 addend = ((insn >> 4) & 0xf000)
9547 | ((insn >> 15) & 0x0800)
9548 | ((insn >> 4) & 0x0700)
9549 | (insn & 0x00ff);
9550 signed_addend = (addend ^ 0x8000) - 0x8000;
9551 }
9552
9553 value += signed_addend;
9554
9555 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
9556 value -= (input_section->output_section->vma
9557 + input_section->output_offset + rel->r_offset);
9558
9559 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
9560 return bfd_reloc_overflow;
9561
9562 if (branch_type == ST_BRANCH_TO_THUMB)
9563 value |= 1;
9564
9565 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
9566 || r_type == R_ARM_THM_MOVT_BREL)
9567 value >>= 16;
9568
9569 insn &= 0xfbf08f00;
9570 insn |= (value & 0xf000) << 4;
9571 insn |= (value & 0x0800) << 15;
9572 insn |= (value & 0x0700) << 4;
9573 insn |= (value & 0x00ff);
9574
9575 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9576 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9577 }
9578 return bfd_reloc_ok;
9579
9580 case R_ARM_ALU_PC_G0_NC:
9581 case R_ARM_ALU_PC_G1_NC:
9582 case R_ARM_ALU_PC_G0:
9583 case R_ARM_ALU_PC_G1:
9584 case R_ARM_ALU_PC_G2:
9585 case R_ARM_ALU_SB_G0_NC:
9586 case R_ARM_ALU_SB_G1_NC:
9587 case R_ARM_ALU_SB_G0:
9588 case R_ARM_ALU_SB_G1:
9589 case R_ARM_ALU_SB_G2:
9590 {
9591 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9592 bfd_vma pc = input_section->output_section->vma
9593 + input_section->output_offset + rel->r_offset;
9594 /* sb should be the origin of the *segment* containing the symbol.
9595 It is not clear how to obtain this OS-dependent value, so we
9596 make an arbitrary choice of zero. */
9597 bfd_vma sb = 0;
9598 bfd_vma residual;
9599 bfd_vma g_n;
9600 bfd_signed_vma signed_value;
9601 int group = 0;
9602
9603 /* Determine which group of bits to select. */
9604 switch (r_type)
9605 {
9606 case R_ARM_ALU_PC_G0_NC:
9607 case R_ARM_ALU_PC_G0:
9608 case R_ARM_ALU_SB_G0_NC:
9609 case R_ARM_ALU_SB_G0:
9610 group = 0;
9611 break;
9612
9613 case R_ARM_ALU_PC_G1_NC:
9614 case R_ARM_ALU_PC_G1:
9615 case R_ARM_ALU_SB_G1_NC:
9616 case R_ARM_ALU_SB_G1:
9617 group = 1;
9618 break;
9619
9620 case R_ARM_ALU_PC_G2:
9621 case R_ARM_ALU_SB_G2:
9622 group = 2;
9623 break;
9624
9625 default:
9626 abort ();
9627 }
9628
9629 /* If REL, extract the addend from the insn. If RELA, it will
9630 have already been fetched for us. */
9631 if (globals->use_rel)
9632 {
9633 int negative;
9634 bfd_vma constant = insn & 0xff;
9635 bfd_vma rotation = (insn & 0xf00) >> 8;
9636
9637 if (rotation == 0)
9638 signed_addend = constant;
9639 else
9640 {
9641 /* Compensate for the fact that in the instruction, the
9642 rotation is stored in multiples of 2 bits. */
9643 rotation *= 2;
9644
9645 /* Rotate "constant" right by "rotation" bits. */
9646 signed_addend = (constant >> rotation) |
9647 (constant << (8 * sizeof (bfd_vma) - rotation));
9648 }
9649
9650 /* Determine if the instruction is an ADD or a SUB.
9651 (For REL, this determines the sign of the addend.) */
9652 negative = identify_add_or_sub (insn);
9653 if (negative == 0)
9654 {
9655 (*_bfd_error_handler)
9656 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9657 input_bfd, input_section,
9658 (long) rel->r_offset, howto->name);
9659 return bfd_reloc_overflow;
9660 }
9661
9662 signed_addend *= negative;
9663 }
9664
9665 /* Compute the value (X) to go in the place. */
9666 if (r_type == R_ARM_ALU_PC_G0_NC
9667 || r_type == R_ARM_ALU_PC_G1_NC
9668 || r_type == R_ARM_ALU_PC_G0
9669 || r_type == R_ARM_ALU_PC_G1
9670 || r_type == R_ARM_ALU_PC_G2)
9671 /* PC relative. */
9672 signed_value = value - pc + signed_addend;
9673 else
9674 /* Section base relative. */
9675 signed_value = value - sb + signed_addend;
9676
9677 /* If the target symbol is a Thumb function, then set the
9678 Thumb bit in the address. */
9679 if (branch_type == ST_BRANCH_TO_THUMB)
9680 signed_value |= 1;
9681
9682 /* Calculate the value of the relevant G_n, in encoded
9683 constant-with-rotation format. */
9684 g_n = calculate_group_reloc_mask (abs (signed_value), group,
9685 &residual);
9686
9687 /* Check for overflow if required. */
9688 if ((r_type == R_ARM_ALU_PC_G0
9689 || r_type == R_ARM_ALU_PC_G1
9690 || r_type == R_ARM_ALU_PC_G2
9691 || r_type == R_ARM_ALU_SB_G0
9692 || r_type == R_ARM_ALU_SB_G1
9693 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
9694 {
9695 (*_bfd_error_handler)
9696 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9697 input_bfd, input_section,
9698 (long) rel->r_offset, abs (signed_value), howto->name);
9699 return bfd_reloc_overflow;
9700 }
9701
9702 /* Mask out the value and the ADD/SUB part of the opcode; take care
9703 not to destroy the S bit. */
9704 insn &= 0xff1ff000;
9705
9706 /* Set the opcode according to whether the value to go in the
9707 place is negative. */
9708 if (signed_value < 0)
9709 insn |= 1 << 22;
9710 else
9711 insn |= 1 << 23;
9712
9713 /* Encode the offset. */
9714 insn |= g_n;
9715
9716 bfd_put_32 (input_bfd, insn, hit_data);
9717 }
9718 return bfd_reloc_ok;
9719
9720 case R_ARM_LDR_PC_G0:
9721 case R_ARM_LDR_PC_G1:
9722 case R_ARM_LDR_PC_G2:
9723 case R_ARM_LDR_SB_G0:
9724 case R_ARM_LDR_SB_G1:
9725 case R_ARM_LDR_SB_G2:
9726 {
9727 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9728 bfd_vma pc = input_section->output_section->vma
9729 + input_section->output_offset + rel->r_offset;
9730 bfd_vma sb = 0; /* See note above. */
9731 bfd_vma residual;
9732 bfd_signed_vma signed_value;
9733 int group = 0;
9734
9735 /* Determine which groups of bits to calculate. */
9736 switch (r_type)
9737 {
9738 case R_ARM_LDR_PC_G0:
9739 case R_ARM_LDR_SB_G0:
9740 group = 0;
9741 break;
9742
9743 case R_ARM_LDR_PC_G1:
9744 case R_ARM_LDR_SB_G1:
9745 group = 1;
9746 break;
9747
9748 case R_ARM_LDR_PC_G2:
9749 case R_ARM_LDR_SB_G2:
9750 group = 2;
9751 break;
9752
9753 default:
9754 abort ();
9755 }
9756
9757 /* If REL, extract the addend from the insn. If RELA, it will
9758 have already been fetched for us. */
9759 if (globals->use_rel)
9760 {
9761 int negative = (insn & (1 << 23)) ? 1 : -1;
9762 signed_addend = negative * (insn & 0xfff);
9763 }
9764
9765 /* Compute the value (X) to go in the place. */
9766 if (r_type == R_ARM_LDR_PC_G0
9767 || r_type == R_ARM_LDR_PC_G1
9768 || r_type == R_ARM_LDR_PC_G2)
9769 /* PC relative. */
9770 signed_value = value - pc + signed_addend;
9771 else
9772 /* Section base relative. */
9773 signed_value = value - sb + signed_addend;
9774
9775 /* Calculate the value of the relevant G_{n-1} to obtain
9776 the residual at that stage. */
9777 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9778
9779 /* Check for overflow. */
9780 if (residual >= 0x1000)
9781 {
9782 (*_bfd_error_handler)
9783 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9784 input_bfd, input_section,
9785 (long) rel->r_offset, abs (signed_value), howto->name);
9786 return bfd_reloc_overflow;
9787 }
9788
9789 /* Mask out the value and U bit. */
9790 insn &= 0xff7ff000;
9791
9792 /* Set the U bit if the value to go in the place is non-negative. */
9793 if (signed_value >= 0)
9794 insn |= 1 << 23;
9795
9796 /* Encode the offset. */
9797 insn |= residual;
9798
9799 bfd_put_32 (input_bfd, insn, hit_data);
9800 }
9801 return bfd_reloc_ok;
9802
9803 case R_ARM_LDRS_PC_G0:
9804 case R_ARM_LDRS_PC_G1:
9805 case R_ARM_LDRS_PC_G2:
9806 case R_ARM_LDRS_SB_G0:
9807 case R_ARM_LDRS_SB_G1:
9808 case R_ARM_LDRS_SB_G2:
9809 {
9810 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9811 bfd_vma pc = input_section->output_section->vma
9812 + input_section->output_offset + rel->r_offset;
9813 bfd_vma sb = 0; /* See note above. */
9814 bfd_vma residual;
9815 bfd_signed_vma signed_value;
9816 int group = 0;
9817
9818 /* Determine which groups of bits to calculate. */
9819 switch (r_type)
9820 {
9821 case R_ARM_LDRS_PC_G0:
9822 case R_ARM_LDRS_SB_G0:
9823 group = 0;
9824 break;
9825
9826 case R_ARM_LDRS_PC_G1:
9827 case R_ARM_LDRS_SB_G1:
9828 group = 1;
9829 break;
9830
9831 case R_ARM_LDRS_PC_G2:
9832 case R_ARM_LDRS_SB_G2:
9833 group = 2;
9834 break;
9835
9836 default:
9837 abort ();
9838 }
9839
9840 /* If REL, extract the addend from the insn. If RELA, it will
9841 have already been fetched for us. */
9842 if (globals->use_rel)
9843 {
9844 int negative = (insn & (1 << 23)) ? 1 : -1;
9845 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
9846 }
9847
9848 /* Compute the value (X) to go in the place. */
9849 if (r_type == R_ARM_LDRS_PC_G0
9850 || r_type == R_ARM_LDRS_PC_G1
9851 || r_type == R_ARM_LDRS_PC_G2)
9852 /* PC relative. */
9853 signed_value = value - pc + signed_addend;
9854 else
9855 /* Section base relative. */
9856 signed_value = value - sb + signed_addend;
9857
9858 /* Calculate the value of the relevant G_{n-1} to obtain
9859 the residual at that stage. */
9860 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9861
9862 /* Check for overflow. */
9863 if (residual >= 0x100)
9864 {
9865 (*_bfd_error_handler)
9866 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9867 input_bfd, input_section,
9868 (long) rel->r_offset, abs (signed_value), howto->name);
9869 return bfd_reloc_overflow;
9870 }
9871
9872 /* Mask out the value and U bit. */
9873 insn &= 0xff7ff0f0;
9874
9875 /* Set the U bit if the value to go in the place is non-negative. */
9876 if (signed_value >= 0)
9877 insn |= 1 << 23;
9878
9879 /* Encode the offset. */
9880 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
9881
9882 bfd_put_32 (input_bfd, insn, hit_data);
9883 }
9884 return bfd_reloc_ok;
9885
9886 case R_ARM_LDC_PC_G0:
9887 case R_ARM_LDC_PC_G1:
9888 case R_ARM_LDC_PC_G2:
9889 case R_ARM_LDC_SB_G0:
9890 case R_ARM_LDC_SB_G1:
9891 case R_ARM_LDC_SB_G2:
9892 {
9893 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9894 bfd_vma pc = input_section->output_section->vma
9895 + input_section->output_offset + rel->r_offset;
9896 bfd_vma sb = 0; /* See note above. */
9897 bfd_vma residual;
9898 bfd_signed_vma signed_value;
9899 int group = 0;
9900
9901 /* Determine which groups of bits to calculate. */
9902 switch (r_type)
9903 {
9904 case R_ARM_LDC_PC_G0:
9905 case R_ARM_LDC_SB_G0:
9906 group = 0;
9907 break;
9908
9909 case R_ARM_LDC_PC_G1:
9910 case R_ARM_LDC_SB_G1:
9911 group = 1;
9912 break;
9913
9914 case R_ARM_LDC_PC_G2:
9915 case R_ARM_LDC_SB_G2:
9916 group = 2;
9917 break;
9918
9919 default:
9920 abort ();
9921 }
9922
9923 /* If REL, extract the addend from the insn. If RELA, it will
9924 have already been fetched for us. */
9925 if (globals->use_rel)
9926 {
9927 int negative = (insn & (1 << 23)) ? 1 : -1;
9928 signed_addend = negative * ((insn & 0xff) << 2);
9929 }
9930
9931 /* Compute the value (X) to go in the place. */
9932 if (r_type == R_ARM_LDC_PC_G0
9933 || r_type == R_ARM_LDC_PC_G1
9934 || r_type == R_ARM_LDC_PC_G2)
9935 /* PC relative. */
9936 signed_value = value - pc + signed_addend;
9937 else
9938 /* Section base relative. */
9939 signed_value = value - sb + signed_addend;
9940
9941 /* Calculate the value of the relevant G_{n-1} to obtain
9942 the residual at that stage. */
9943 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9944
9945 /* Check for overflow. (The absolute value to go in the place must be
9946 divisible by four and, after having been divided by four, must
9947 fit in eight bits.) */
9948 if ((residual & 0x3) != 0 || residual >= 0x400)
9949 {
9950 (*_bfd_error_handler)
9951 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9952 input_bfd, input_section,
9953 (long) rel->r_offset, abs (signed_value), howto->name);
9954 return bfd_reloc_overflow;
9955 }
9956
9957 /* Mask out the value and U bit. */
9958 insn &= 0xff7fff00;
9959
9960 /* Set the U bit if the value to go in the place is non-negative. */
9961 if (signed_value >= 0)
9962 insn |= 1 << 23;
9963
9964 /* Encode the offset. */
9965 insn |= residual >> 2;
9966
9967 bfd_put_32 (input_bfd, insn, hit_data);
9968 }
9969 return bfd_reloc_ok;
9970
9971 default:
9972 return bfd_reloc_notsupported;
9973 }
9974 }
9975
9976 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
9977 static void
9978 arm_add_to_rel (bfd * abfd,
9979 bfd_byte * address,
9980 reloc_howto_type * howto,
9981 bfd_signed_vma increment)
9982 {
9983 bfd_signed_vma addend;
9984
9985 if (howto->type == R_ARM_THM_CALL
9986 || howto->type == R_ARM_THM_JUMP24)
9987 {
9988 int upper_insn, lower_insn;
9989 int upper, lower;
9990
9991 upper_insn = bfd_get_16 (abfd, address);
9992 lower_insn = bfd_get_16 (abfd, address + 2);
9993 upper = upper_insn & 0x7ff;
9994 lower = lower_insn & 0x7ff;
9995
9996 addend = (upper << 12) | (lower << 1);
9997 addend += increment;
9998 addend >>= 1;
9999
10000 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10001 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10002
10003 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10004 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
10005 }
10006 else
10007 {
10008 bfd_vma contents;
10009
10010 contents = bfd_get_32 (abfd, address);
10011
10012 /* Get the (signed) value from the instruction. */
10013 addend = contents & howto->src_mask;
10014 if (addend & ((howto->src_mask + 1) >> 1))
10015 {
10016 bfd_signed_vma mask;
10017
10018 mask = -1;
10019 mask &= ~ howto->src_mask;
10020 addend |= mask;
10021 }
10022
10023 /* Add in the increment, (which is a byte value). */
10024 switch (howto->type)
10025 {
10026 default:
10027 addend += increment;
10028 break;
10029
10030 case R_ARM_PC24:
10031 case R_ARM_PLT32:
10032 case R_ARM_CALL:
10033 case R_ARM_JUMP24:
10034 addend <<= howto->size;
10035 addend += increment;
10036
10037 /* Should we check for overflow here ? */
10038
10039 /* Drop any undesired bits. */
10040 addend >>= howto->rightshift;
10041 break;
10042 }
10043
10044 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10045
10046 bfd_put_32 (abfd, contents, address);
10047 }
10048 }
10049
10050 #define IS_ARM_TLS_RELOC(R_TYPE) \
10051 ((R_TYPE) == R_ARM_TLS_GD32 \
10052 || (R_TYPE) == R_ARM_TLS_LDO32 \
10053 || (R_TYPE) == R_ARM_TLS_LDM32 \
10054 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10055 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10056 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10057 || (R_TYPE) == R_ARM_TLS_LE32 \
10058 || (R_TYPE) == R_ARM_TLS_IE32 \
10059 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10060
10061 /* Specific set of relocations for the gnu tls dialect. */
10062 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10063 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10064 || (R_TYPE) == R_ARM_TLS_CALL \
10065 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10066 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10067 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10068
10069 /* Relocate an ARM ELF section. */
10070
10071 static bfd_boolean
10072 elf32_arm_relocate_section (bfd * output_bfd,
10073 struct bfd_link_info * info,
10074 bfd * input_bfd,
10075 asection * input_section,
10076 bfd_byte * contents,
10077 Elf_Internal_Rela * relocs,
10078 Elf_Internal_Sym * local_syms,
10079 asection ** local_sections)
10080 {
10081 Elf_Internal_Shdr *symtab_hdr;
10082 struct elf_link_hash_entry **sym_hashes;
10083 Elf_Internal_Rela *rel;
10084 Elf_Internal_Rela *relend;
10085 const char *name;
10086 struct elf32_arm_link_hash_table * globals;
10087
10088 globals = elf32_arm_hash_table (info);
10089 if (globals == NULL)
10090 return FALSE;
10091
10092 symtab_hdr = & elf_symtab_hdr (input_bfd);
10093 sym_hashes = elf_sym_hashes (input_bfd);
10094
10095 rel = relocs;
10096 relend = relocs + input_section->reloc_count;
10097 for (; rel < relend; rel++)
10098 {
10099 int r_type;
10100 reloc_howto_type * howto;
10101 unsigned long r_symndx;
10102 Elf_Internal_Sym * sym;
10103 asection * sec;
10104 struct elf_link_hash_entry * h;
10105 bfd_vma relocation;
10106 bfd_reloc_status_type r;
10107 arelent bfd_reloc;
10108 char sym_type;
10109 bfd_boolean unresolved_reloc = FALSE;
10110 char *error_message = NULL;
10111
10112 r_symndx = ELF32_R_SYM (rel->r_info);
10113 r_type = ELF32_R_TYPE (rel->r_info);
10114 r_type = arm_real_reloc_type (globals, r_type);
10115
10116 if ( r_type == R_ARM_GNU_VTENTRY
10117 || r_type == R_ARM_GNU_VTINHERIT)
10118 continue;
10119
10120 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
10121 howto = bfd_reloc.howto;
10122
10123 h = NULL;
10124 sym = NULL;
10125 sec = NULL;
10126
10127 if (r_symndx < symtab_hdr->sh_info)
10128 {
10129 sym = local_syms + r_symndx;
10130 sym_type = ELF32_ST_TYPE (sym->st_info);
10131 sec = local_sections[r_symndx];
10132
10133 /* An object file might have a reference to a local
10134 undefined symbol. This is a daft object file, but we
10135 should at least do something about it. V4BX & NONE
10136 relocations do not use the symbol and are explicitly
10137 allowed to use the undefined symbol, so allow those.
10138 Likewise for relocations against STN_UNDEF. */
10139 if (r_type != R_ARM_V4BX
10140 && r_type != R_ARM_NONE
10141 && r_symndx != STN_UNDEF
10142 && bfd_is_und_section (sec)
10143 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10144 {
10145 if (!info->callbacks->undefined_symbol
10146 (info, bfd_elf_string_from_elf_section
10147 (input_bfd, symtab_hdr->sh_link, sym->st_name),
10148 input_bfd, input_section,
10149 rel->r_offset, TRUE))
10150 return FALSE;
10151 }
10152
10153 if (globals->use_rel)
10154 {
10155 relocation = (sec->output_section->vma
10156 + sec->output_offset
10157 + sym->st_value);
10158 if (!info->relocatable
10159 && (sec->flags & SEC_MERGE)
10160 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10161 {
10162 asection *msec;
10163 bfd_vma addend, value;
10164
10165 switch (r_type)
10166 {
10167 case R_ARM_MOVW_ABS_NC:
10168 case R_ARM_MOVT_ABS:
10169 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10170 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10171 addend = (addend ^ 0x8000) - 0x8000;
10172 break;
10173
10174 case R_ARM_THM_MOVW_ABS_NC:
10175 case R_ARM_THM_MOVT_ABS:
10176 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10177 << 16;
10178 value |= bfd_get_16 (input_bfd,
10179 contents + rel->r_offset + 2);
10180 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10181 | ((value & 0x04000000) >> 15);
10182 addend = (addend ^ 0x8000) - 0x8000;
10183 break;
10184
10185 default:
10186 if (howto->rightshift
10187 || (howto->src_mask & (howto->src_mask + 1)))
10188 {
10189 (*_bfd_error_handler)
10190 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10191 input_bfd, input_section,
10192 (long) rel->r_offset, howto->name);
10193 return FALSE;
10194 }
10195
10196 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10197
10198 /* Get the (signed) value from the instruction. */
10199 addend = value & howto->src_mask;
10200 if (addend & ((howto->src_mask + 1) >> 1))
10201 {
10202 bfd_signed_vma mask;
10203
10204 mask = -1;
10205 mask &= ~ howto->src_mask;
10206 addend |= mask;
10207 }
10208 break;
10209 }
10210
10211 msec = sec;
10212 addend =
10213 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10214 - relocation;
10215 addend += msec->output_section->vma + msec->output_offset;
10216
10217 /* Cases here must match those in the preceeding
10218 switch statement. */
10219 switch (r_type)
10220 {
10221 case R_ARM_MOVW_ABS_NC:
10222 case R_ARM_MOVT_ABS:
10223 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10224 | (addend & 0xfff);
10225 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10226 break;
10227
10228 case R_ARM_THM_MOVW_ABS_NC:
10229 case R_ARM_THM_MOVT_ABS:
10230 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10231 | (addend & 0xff) | ((addend & 0x0800) << 15);
10232 bfd_put_16 (input_bfd, value >> 16,
10233 contents + rel->r_offset);
10234 bfd_put_16 (input_bfd, value,
10235 contents + rel->r_offset + 2);
10236 break;
10237
10238 default:
10239 value = (value & ~ howto->dst_mask)
10240 | (addend & howto->dst_mask);
10241 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10242 break;
10243 }
10244 }
10245 }
10246 else
10247 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10248 }
10249 else
10250 {
10251 bfd_boolean warned;
10252
10253 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10254 r_symndx, symtab_hdr, sym_hashes,
10255 h, sec, relocation,
10256 unresolved_reloc, warned);
10257
10258 sym_type = h->type;
10259 }
10260
10261 if (sec != NULL && elf_discarded_section (sec))
10262 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10263 rel, relend, howto, contents);
10264
10265 if (info->relocatable)
10266 {
10267 /* This is a relocatable link. We don't have to change
10268 anything, unless the reloc is against a section symbol,
10269 in which case we have to adjust according to where the
10270 section symbol winds up in the output section. */
10271 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10272 {
10273 if (globals->use_rel)
10274 arm_add_to_rel (input_bfd, contents + rel->r_offset,
10275 howto, (bfd_signed_vma) sec->output_offset);
10276 else
10277 rel->r_addend += sec->output_offset;
10278 }
10279 continue;
10280 }
10281
10282 if (h != NULL)
10283 name = h->root.root.string;
10284 else
10285 {
10286 name = (bfd_elf_string_from_elf_section
10287 (input_bfd, symtab_hdr->sh_link, sym->st_name));
10288 if (name == NULL || *name == '\0')
10289 name = bfd_section_name (input_bfd, sec);
10290 }
10291
10292 if (r_symndx != STN_UNDEF
10293 && r_type != R_ARM_NONE
10294 && (h == NULL
10295 || h->root.type == bfd_link_hash_defined
10296 || h->root.type == bfd_link_hash_defweak)
10297 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10298 {
10299 (*_bfd_error_handler)
10300 ((sym_type == STT_TLS
10301 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10302 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10303 input_bfd,
10304 input_section,
10305 (long) rel->r_offset,
10306 howto->name,
10307 name);
10308 }
10309
10310 /* We call elf32_arm_final_link_relocate unless we're completely
10311 done, i.e., the relaxation produced the final output we want,
10312 and we won't let anybody mess with it. Also, we have to do
10313 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10314 both in relaxed and non-relaxed cases */
10315 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10316 || (IS_ARM_TLS_GNU_RELOC (r_type)
10317 && !((h ? elf32_arm_hash_entry (h)->tls_type :
10318 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10319 & GOT_TLS_GDESC)))
10320 {
10321 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10322 contents, rel, h == NULL);
10323 /* This may have been marked unresolved because it came from
10324 a shared library. But we've just dealt with that. */
10325 unresolved_reloc = 0;
10326 }
10327 else
10328 r = bfd_reloc_continue;
10329
10330 if (r == bfd_reloc_continue)
10331 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10332 input_section, contents, rel,
10333 relocation, info, sec, name, sym_type,
10334 (h ? h->target_internal
10335 : ARM_SYM_BRANCH_TYPE (sym)), h,
10336 &unresolved_reloc, &error_message);
10337
10338 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10339 because such sections are not SEC_ALLOC and thus ld.so will
10340 not process them. */
10341 if (unresolved_reloc
10342 && !((input_section->flags & SEC_DEBUGGING) != 0
10343 && h->def_dynamic))
10344 {
10345 (*_bfd_error_handler)
10346 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10347 input_bfd,
10348 input_section,
10349 (long) rel->r_offset,
10350 howto->name,
10351 h->root.root.string);
10352 return FALSE;
10353 }
10354
10355 if (r != bfd_reloc_ok)
10356 {
10357 switch (r)
10358 {
10359 case bfd_reloc_overflow:
10360 /* If the overflowing reloc was to an undefined symbol,
10361 we have already printed one error message and there
10362 is no point complaining again. */
10363 if ((! h ||
10364 h->root.type != bfd_link_hash_undefined)
10365 && (!((*info->callbacks->reloc_overflow)
10366 (info, (h ? &h->root : NULL), name, howto->name,
10367 (bfd_vma) 0, input_bfd, input_section,
10368 rel->r_offset))))
10369 return FALSE;
10370 break;
10371
10372 case bfd_reloc_undefined:
10373 if (!((*info->callbacks->undefined_symbol)
10374 (info, name, input_bfd, input_section,
10375 rel->r_offset, TRUE)))
10376 return FALSE;
10377 break;
10378
10379 case bfd_reloc_outofrange:
10380 error_message = _("out of range");
10381 goto common_error;
10382
10383 case bfd_reloc_notsupported:
10384 error_message = _("unsupported relocation");
10385 goto common_error;
10386
10387 case bfd_reloc_dangerous:
10388 /* error_message should already be set. */
10389 goto common_error;
10390
10391 default:
10392 error_message = _("unknown error");
10393 /* Fall through. */
10394
10395 common_error:
10396 BFD_ASSERT (error_message != NULL);
10397 if (!((*info->callbacks->reloc_dangerous)
10398 (info, error_message, input_bfd, input_section,
10399 rel->r_offset)))
10400 return FALSE;
10401 break;
10402 }
10403 }
10404 }
10405
10406 return TRUE;
10407 }
10408
10409 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
10410 adds the edit to the start of the list. (The list must be built in order of
10411 ascending TINDEX: the function's callers are primarily responsible for
10412 maintaining that condition). */
10413
10414 static void
10415 add_unwind_table_edit (arm_unwind_table_edit **head,
10416 arm_unwind_table_edit **tail,
10417 arm_unwind_edit_type type,
10418 asection *linked_section,
10419 unsigned int tindex)
10420 {
10421 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10422 xmalloc (sizeof (arm_unwind_table_edit));
10423
10424 new_edit->type = type;
10425 new_edit->linked_section = linked_section;
10426 new_edit->index = tindex;
10427
10428 if (tindex > 0)
10429 {
10430 new_edit->next = NULL;
10431
10432 if (*tail)
10433 (*tail)->next = new_edit;
10434
10435 (*tail) = new_edit;
10436
10437 if (!*head)
10438 (*head) = new_edit;
10439 }
10440 else
10441 {
10442 new_edit->next = *head;
10443
10444 if (!*tail)
10445 *tail = new_edit;
10446
10447 *head = new_edit;
10448 }
10449 }
10450
10451 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10452
10453 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10454 static void
10455 adjust_exidx_size(asection *exidx_sec, int adjust)
10456 {
10457 asection *out_sec;
10458
10459 if (!exidx_sec->rawsize)
10460 exidx_sec->rawsize = exidx_sec->size;
10461
10462 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10463 out_sec = exidx_sec->output_section;
10464 /* Adjust size of output section. */
10465 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10466 }
10467
10468 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10469 static void
10470 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10471 {
10472 struct _arm_elf_section_data *exidx_arm_data;
10473
10474 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10475 add_unwind_table_edit (
10476 &exidx_arm_data->u.exidx.unwind_edit_list,
10477 &exidx_arm_data->u.exidx.unwind_edit_tail,
10478 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10479
10480 adjust_exidx_size(exidx_sec, 8);
10481 }
10482
10483 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10484 made to those tables, such that:
10485
10486 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10487 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10488 codes which have been inlined into the index).
10489
10490 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10491
10492 The edits are applied when the tables are written
10493 (in elf32_arm_write_section).
10494 */
10495
10496 bfd_boolean
10497 elf32_arm_fix_exidx_coverage (asection **text_section_order,
10498 unsigned int num_text_sections,
10499 struct bfd_link_info *info,
10500 bfd_boolean merge_exidx_entries)
10501 {
10502 bfd *inp;
10503 unsigned int last_second_word = 0, i;
10504 asection *last_exidx_sec = NULL;
10505 asection *last_text_sec = NULL;
10506 int last_unwind_type = -1;
10507
10508 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10509 text sections. */
10510 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
10511 {
10512 asection *sec;
10513
10514 for (sec = inp->sections; sec != NULL; sec = sec->next)
10515 {
10516 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10517 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
10518
10519 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
10520 continue;
10521
10522 if (elf_sec->linked_to)
10523 {
10524 Elf_Internal_Shdr *linked_hdr
10525 = &elf_section_data (elf_sec->linked_to)->this_hdr;
10526 struct _arm_elf_section_data *linked_sec_arm_data
10527 = get_arm_elf_section_data (linked_hdr->bfd_section);
10528
10529 if (linked_sec_arm_data == NULL)
10530 continue;
10531
10532 /* Link this .ARM.exidx section back from the text section it
10533 describes. */
10534 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10535 }
10536 }
10537 }
10538
10539 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10540 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10541 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
10542
10543 for (i = 0; i < num_text_sections; i++)
10544 {
10545 asection *sec = text_section_order[i];
10546 asection *exidx_sec;
10547 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10548 struct _arm_elf_section_data *exidx_arm_data;
10549 bfd_byte *contents = NULL;
10550 int deleted_exidx_bytes = 0;
10551 bfd_vma j;
10552 arm_unwind_table_edit *unwind_edit_head = NULL;
10553 arm_unwind_table_edit *unwind_edit_tail = NULL;
10554 Elf_Internal_Shdr *hdr;
10555 bfd *ibfd;
10556
10557 if (arm_data == NULL)
10558 continue;
10559
10560 exidx_sec = arm_data->u.text.arm_exidx_sec;
10561 if (exidx_sec == NULL)
10562 {
10563 /* Section has no unwind data. */
10564 if (last_unwind_type == 0 || !last_exidx_sec)
10565 continue;
10566
10567 /* Ignore zero sized sections. */
10568 if (sec->size == 0)
10569 continue;
10570
10571 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10572 last_unwind_type = 0;
10573 continue;
10574 }
10575
10576 /* Skip /DISCARD/ sections. */
10577 if (bfd_is_abs_section (exidx_sec->output_section))
10578 continue;
10579
10580 hdr = &elf_section_data (exidx_sec)->this_hdr;
10581 if (hdr->sh_type != SHT_ARM_EXIDX)
10582 continue;
10583
10584 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10585 if (exidx_arm_data == NULL)
10586 continue;
10587
10588 ibfd = exidx_sec->owner;
10589
10590 if (hdr->contents != NULL)
10591 contents = hdr->contents;
10592 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
10593 /* An error? */
10594 continue;
10595
10596 for (j = 0; j < hdr->sh_size; j += 8)
10597 {
10598 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
10599 int unwind_type;
10600 int elide = 0;
10601
10602 /* An EXIDX_CANTUNWIND entry. */
10603 if (second_word == 1)
10604 {
10605 if (last_unwind_type == 0)
10606 elide = 1;
10607 unwind_type = 0;
10608 }
10609 /* Inlined unwinding data. Merge if equal to previous. */
10610 else if ((second_word & 0x80000000) != 0)
10611 {
10612 if (merge_exidx_entries
10613 && last_second_word == second_word && last_unwind_type == 1)
10614 elide = 1;
10615 unwind_type = 1;
10616 last_second_word = second_word;
10617 }
10618 /* Normal table entry. In theory we could merge these too,
10619 but duplicate entries are likely to be much less common. */
10620 else
10621 unwind_type = 2;
10622
10623 if (elide)
10624 {
10625 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
10626 DELETE_EXIDX_ENTRY, NULL, j / 8);
10627
10628 deleted_exidx_bytes += 8;
10629 }
10630
10631 last_unwind_type = unwind_type;
10632 }
10633
10634 /* Free contents if we allocated it ourselves. */
10635 if (contents != hdr->contents)
10636 free (contents);
10637
10638 /* Record edits to be applied later (in elf32_arm_write_section). */
10639 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
10640 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
10641
10642 if (deleted_exidx_bytes > 0)
10643 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
10644
10645 last_exidx_sec = exidx_sec;
10646 last_text_sec = sec;
10647 }
10648
10649 /* Add terminating CANTUNWIND entry. */
10650 if (last_exidx_sec && last_unwind_type != 0)
10651 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10652
10653 return TRUE;
10654 }
10655
10656 static bfd_boolean
10657 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
10658 bfd *ibfd, const char *name)
10659 {
10660 asection *sec, *osec;
10661
10662 sec = bfd_get_section_by_name (ibfd, name);
10663 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
10664 return TRUE;
10665
10666 osec = sec->output_section;
10667 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
10668 return TRUE;
10669
10670 if (! bfd_set_section_contents (obfd, osec, sec->contents,
10671 sec->output_offset, sec->size))
10672 return FALSE;
10673
10674 return TRUE;
10675 }
10676
10677 static bfd_boolean
10678 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
10679 {
10680 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
10681 asection *sec, *osec;
10682
10683 if (globals == NULL)
10684 return FALSE;
10685
10686 /* Invoke the regular ELF backend linker to do all the work. */
10687 if (!bfd_elf_final_link (abfd, info))
10688 return FALSE;
10689
10690 /* Process stub sections (eg BE8 encoding, ...). */
10691 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
10692 int i;
10693 for (i=0; i<htab->top_id; i++)
10694 {
10695 sec = htab->stub_group[i].stub_sec;
10696 /* Only process it once, in its link_sec slot. */
10697 if (sec && i == htab->stub_group[i].link_sec->id)
10698 {
10699 osec = sec->output_section;
10700 elf32_arm_write_section (abfd, info, sec, sec->contents);
10701 if (! bfd_set_section_contents (abfd, osec, sec->contents,
10702 sec->output_offset, sec->size))
10703 return FALSE;
10704 }
10705 }
10706
10707 /* Write out any glue sections now that we have created all the
10708 stubs. */
10709 if (globals->bfd_of_glue_owner != NULL)
10710 {
10711 if (! elf32_arm_output_glue_section (info, abfd,
10712 globals->bfd_of_glue_owner,
10713 ARM2THUMB_GLUE_SECTION_NAME))
10714 return FALSE;
10715
10716 if (! elf32_arm_output_glue_section (info, abfd,
10717 globals->bfd_of_glue_owner,
10718 THUMB2ARM_GLUE_SECTION_NAME))
10719 return FALSE;
10720
10721 if (! elf32_arm_output_glue_section (info, abfd,
10722 globals->bfd_of_glue_owner,
10723 VFP11_ERRATUM_VENEER_SECTION_NAME))
10724 return FALSE;
10725
10726 if (! elf32_arm_output_glue_section (info, abfd,
10727 globals->bfd_of_glue_owner,
10728 ARM_BX_GLUE_SECTION_NAME))
10729 return FALSE;
10730 }
10731
10732 return TRUE;
10733 }
10734
10735 /* Set the right machine number. */
10736
10737 static bfd_boolean
10738 elf32_arm_object_p (bfd *abfd)
10739 {
10740 unsigned int mach;
10741
10742 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
10743
10744 if (mach != bfd_mach_arm_unknown)
10745 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
10746
10747 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
10748 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
10749
10750 else
10751 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
10752
10753 return TRUE;
10754 }
10755
10756 /* Function to keep ARM specific flags in the ELF header. */
10757
10758 static bfd_boolean
10759 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
10760 {
10761 if (elf_flags_init (abfd)
10762 && elf_elfheader (abfd)->e_flags != flags)
10763 {
10764 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
10765 {
10766 if (flags & EF_ARM_INTERWORK)
10767 (*_bfd_error_handler)
10768 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
10769 abfd);
10770 else
10771 _bfd_error_handler
10772 (_("Warning: Clearing the interworking flag of %B due to outside request"),
10773 abfd);
10774 }
10775 }
10776 else
10777 {
10778 elf_elfheader (abfd)->e_flags = flags;
10779 elf_flags_init (abfd) = TRUE;
10780 }
10781
10782 return TRUE;
10783 }
10784
10785 /* Copy backend specific data from one object module to another. */
10786
10787 static bfd_boolean
10788 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
10789 {
10790 flagword in_flags;
10791 flagword out_flags;
10792
10793 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
10794 return TRUE;
10795
10796 in_flags = elf_elfheader (ibfd)->e_flags;
10797 out_flags = elf_elfheader (obfd)->e_flags;
10798
10799 if (elf_flags_init (obfd)
10800 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
10801 && in_flags != out_flags)
10802 {
10803 /* Cannot mix APCS26 and APCS32 code. */
10804 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
10805 return FALSE;
10806
10807 /* Cannot mix float APCS and non-float APCS code. */
10808 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
10809 return FALSE;
10810
10811 /* If the src and dest have different interworking flags
10812 then turn off the interworking bit. */
10813 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
10814 {
10815 if (out_flags & EF_ARM_INTERWORK)
10816 _bfd_error_handler
10817 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
10818 obfd, ibfd);
10819
10820 in_flags &= ~EF_ARM_INTERWORK;
10821 }
10822
10823 /* Likewise for PIC, though don't warn for this case. */
10824 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
10825 in_flags &= ~EF_ARM_PIC;
10826 }
10827
10828 elf_elfheader (obfd)->e_flags = in_flags;
10829 elf_flags_init (obfd) = TRUE;
10830
10831 /* Also copy the EI_OSABI field. */
10832 elf_elfheader (obfd)->e_ident[EI_OSABI] =
10833 elf_elfheader (ibfd)->e_ident[EI_OSABI];
10834
10835 /* Copy object attributes. */
10836 _bfd_elf_copy_obj_attributes (ibfd, obfd);
10837
10838 return TRUE;
10839 }
10840
10841 /* Values for Tag_ABI_PCS_R9_use. */
10842 enum
10843 {
10844 AEABI_R9_V6,
10845 AEABI_R9_SB,
10846 AEABI_R9_TLS,
10847 AEABI_R9_unused
10848 };
10849
10850 /* Values for Tag_ABI_PCS_RW_data. */
10851 enum
10852 {
10853 AEABI_PCS_RW_data_absolute,
10854 AEABI_PCS_RW_data_PCrel,
10855 AEABI_PCS_RW_data_SBrel,
10856 AEABI_PCS_RW_data_unused
10857 };
10858
10859 /* Values for Tag_ABI_enum_size. */
10860 enum
10861 {
10862 AEABI_enum_unused,
10863 AEABI_enum_short,
10864 AEABI_enum_wide,
10865 AEABI_enum_forced_wide
10866 };
10867
10868 /* Determine whether an object attribute tag takes an integer, a
10869 string or both. */
10870
10871 static int
10872 elf32_arm_obj_attrs_arg_type (int tag)
10873 {
10874 if (tag == Tag_compatibility)
10875 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
10876 else if (tag == Tag_nodefaults)
10877 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
10878 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
10879 return ATTR_TYPE_FLAG_STR_VAL;
10880 else if (tag < 32)
10881 return ATTR_TYPE_FLAG_INT_VAL;
10882 else
10883 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
10884 }
10885
10886 /* The ABI defines that Tag_conformance should be emitted first, and that
10887 Tag_nodefaults should be second (if either is defined). This sets those
10888 two positions, and bumps up the position of all the remaining tags to
10889 compensate. */
10890 static int
10891 elf32_arm_obj_attrs_order (int num)
10892 {
10893 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
10894 return Tag_conformance;
10895 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
10896 return Tag_nodefaults;
10897 if ((num - 2) < Tag_nodefaults)
10898 return num - 2;
10899 if ((num - 1) < Tag_conformance)
10900 return num - 1;
10901 return num;
10902 }
10903
10904 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10905 static bfd_boolean
10906 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
10907 {
10908 if ((tag & 127) < 64)
10909 {
10910 _bfd_error_handler
10911 (_("%B: Unknown mandatory EABI object attribute %d"),
10912 abfd, tag);
10913 bfd_set_error (bfd_error_bad_value);
10914 return FALSE;
10915 }
10916 else
10917 {
10918 _bfd_error_handler
10919 (_("Warning: %B: Unknown EABI object attribute %d"),
10920 abfd, tag);
10921 return TRUE;
10922 }
10923 }
10924
10925 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
10926 Returns -1 if no architecture could be read. */
10927
10928 static int
10929 get_secondary_compatible_arch (bfd *abfd)
10930 {
10931 obj_attribute *attr =
10932 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
10933
10934 /* Note: the tag and its argument below are uleb128 values, though
10935 currently-defined values fit in one byte for each. */
10936 if (attr->s
10937 && attr->s[0] == Tag_CPU_arch
10938 && (attr->s[1] & 128) != 128
10939 && attr->s[2] == 0)
10940 return attr->s[1];
10941
10942 /* This tag is "safely ignorable", so don't complain if it looks funny. */
10943 return -1;
10944 }
10945
10946 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10947 The tag is removed if ARCH is -1. */
10948
10949 static void
10950 set_secondary_compatible_arch (bfd *abfd, int arch)
10951 {
10952 obj_attribute *attr =
10953 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
10954
10955 if (arch == -1)
10956 {
10957 attr->s = NULL;
10958 return;
10959 }
10960
10961 /* Note: the tag and its argument below are uleb128 values, though
10962 currently-defined values fit in one byte for each. */
10963 if (!attr->s)
10964 attr->s = (char *) bfd_alloc (abfd, 3);
10965 attr->s[0] = Tag_CPU_arch;
10966 attr->s[1] = arch;
10967 attr->s[2] = '\0';
10968 }
10969
10970 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
10971 into account. */
10972
10973 static int
10974 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
10975 int newtag, int secondary_compat)
10976 {
10977 #define T(X) TAG_CPU_ARCH_##X
10978 int tagl, tagh, result;
10979 const int v6t2[] =
10980 {
10981 T(V6T2), /* PRE_V4. */
10982 T(V6T2), /* V4. */
10983 T(V6T2), /* V4T. */
10984 T(V6T2), /* V5T. */
10985 T(V6T2), /* V5TE. */
10986 T(V6T2), /* V5TEJ. */
10987 T(V6T2), /* V6. */
10988 T(V7), /* V6KZ. */
10989 T(V6T2) /* V6T2. */
10990 };
10991 const int v6k[] =
10992 {
10993 T(V6K), /* PRE_V4. */
10994 T(V6K), /* V4. */
10995 T(V6K), /* V4T. */
10996 T(V6K), /* V5T. */
10997 T(V6K), /* V5TE. */
10998 T(V6K), /* V5TEJ. */
10999 T(V6K), /* V6. */
11000 T(V6KZ), /* V6KZ. */
11001 T(V7), /* V6T2. */
11002 T(V6K) /* V6K. */
11003 };
11004 const int v7[] =
11005 {
11006 T(V7), /* PRE_V4. */
11007 T(V7), /* V4. */
11008 T(V7), /* V4T. */
11009 T(V7), /* V5T. */
11010 T(V7), /* V5TE. */
11011 T(V7), /* V5TEJ. */
11012 T(V7), /* V6. */
11013 T(V7), /* V6KZ. */
11014 T(V7), /* V6T2. */
11015 T(V7), /* V6K. */
11016 T(V7) /* V7. */
11017 };
11018 const int v6_m[] =
11019 {
11020 -1, /* PRE_V4. */
11021 -1, /* V4. */
11022 T(V6K), /* V4T. */
11023 T(V6K), /* V5T. */
11024 T(V6K), /* V5TE. */
11025 T(V6K), /* V5TEJ. */
11026 T(V6K), /* V6. */
11027 T(V6KZ), /* V6KZ. */
11028 T(V7), /* V6T2. */
11029 T(V6K), /* V6K. */
11030 T(V7), /* V7. */
11031 T(V6_M) /* V6_M. */
11032 };
11033 const int v6s_m[] =
11034 {
11035 -1, /* PRE_V4. */
11036 -1, /* V4. */
11037 T(V6K), /* V4T. */
11038 T(V6K), /* V5T. */
11039 T(V6K), /* V5TE. */
11040 T(V6K), /* V5TEJ. */
11041 T(V6K), /* V6. */
11042 T(V6KZ), /* V6KZ. */
11043 T(V7), /* V6T2. */
11044 T(V6K), /* V6K. */
11045 T(V7), /* V7. */
11046 T(V6S_M), /* V6_M. */
11047 T(V6S_M) /* V6S_M. */
11048 };
11049 const int v7e_m[] =
11050 {
11051 -1, /* PRE_V4. */
11052 -1, /* V4. */
11053 T(V7E_M), /* V4T. */
11054 T(V7E_M), /* V5T. */
11055 T(V7E_M), /* V5TE. */
11056 T(V7E_M), /* V5TEJ. */
11057 T(V7E_M), /* V6. */
11058 T(V7E_M), /* V6KZ. */
11059 T(V7E_M), /* V6T2. */
11060 T(V7E_M), /* V6K. */
11061 T(V7E_M), /* V7. */
11062 T(V7E_M), /* V6_M. */
11063 T(V7E_M), /* V6S_M. */
11064 T(V7E_M) /* V7E_M. */
11065 };
11066 const int v4t_plus_v6_m[] =
11067 {
11068 -1, /* PRE_V4. */
11069 -1, /* V4. */
11070 T(V4T), /* V4T. */
11071 T(V5T), /* V5T. */
11072 T(V5TE), /* V5TE. */
11073 T(V5TEJ), /* V5TEJ. */
11074 T(V6), /* V6. */
11075 T(V6KZ), /* V6KZ. */
11076 T(V6T2), /* V6T2. */
11077 T(V6K), /* V6K. */
11078 T(V7), /* V7. */
11079 T(V6_M), /* V6_M. */
11080 T(V6S_M), /* V6S_M. */
11081 T(V7E_M), /* V7E_M. */
11082 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
11083 };
11084 const int *comb[] =
11085 {
11086 v6t2,
11087 v6k,
11088 v7,
11089 v6_m,
11090 v6s_m,
11091 v7e_m,
11092 /* Pseudo-architecture. */
11093 v4t_plus_v6_m
11094 };
11095
11096 /* Check we've not got a higher architecture than we know about. */
11097
11098 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
11099 {
11100 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
11101 return -1;
11102 }
11103
11104 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11105
11106 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11107 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11108 oldtag = T(V4T_PLUS_V6_M);
11109
11110 /* And override the new tag if we have a Tag_also_compatible_with on the
11111 input. */
11112
11113 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11114 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11115 newtag = T(V4T_PLUS_V6_M);
11116
11117 tagl = (oldtag < newtag) ? oldtag : newtag;
11118 result = tagh = (oldtag > newtag) ? oldtag : newtag;
11119
11120 /* Architectures before V6KZ add features monotonically. */
11121 if (tagh <= TAG_CPU_ARCH_V6KZ)
11122 return result;
11123
11124 result = comb[tagh - T(V6T2)][tagl];
11125
11126 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11127 as the canonical version. */
11128 if (result == T(V4T_PLUS_V6_M))
11129 {
11130 result = T(V4T);
11131 *secondary_compat_out = T(V6_M);
11132 }
11133 else
11134 *secondary_compat_out = -1;
11135
11136 if (result == -1)
11137 {
11138 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11139 ibfd, oldtag, newtag);
11140 return -1;
11141 }
11142
11143 return result;
11144 #undef T
11145 }
11146
11147 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11148 are conflicting attributes. */
11149
11150 static bfd_boolean
11151 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11152 {
11153 obj_attribute *in_attr;
11154 obj_attribute *out_attr;
11155 /* Some tags have 0 = don't care, 1 = strong requirement,
11156 2 = weak requirement. */
11157 static const int order_021[3] = {0, 2, 1};
11158 int i;
11159 bfd_boolean result = TRUE;
11160
11161 /* Skip the linker stubs file. This preserves previous behavior
11162 of accepting unknown attributes in the first input file - but
11163 is that a bug? */
11164 if (ibfd->flags & BFD_LINKER_CREATED)
11165 return TRUE;
11166
11167 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11168 {
11169 /* This is the first object. Copy the attributes. */
11170 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11171
11172 out_attr = elf_known_obj_attributes_proc (obfd);
11173
11174 /* Use the Tag_null value to indicate the attributes have been
11175 initialized. */
11176 out_attr[0].i = 1;
11177
11178 /* We do not output objects with Tag_MPextension_use_legacy - we move
11179 the attribute's value to Tag_MPextension_use. */
11180 if (out_attr[Tag_MPextension_use_legacy].i != 0)
11181 {
11182 if (out_attr[Tag_MPextension_use].i != 0
11183 && out_attr[Tag_MPextension_use_legacy].i
11184 != out_attr[Tag_MPextension_use].i)
11185 {
11186 _bfd_error_handler
11187 (_("Error: %B has both the current and legacy "
11188 "Tag_MPextension_use attributes"), ibfd);
11189 result = FALSE;
11190 }
11191
11192 out_attr[Tag_MPextension_use] =
11193 out_attr[Tag_MPextension_use_legacy];
11194 out_attr[Tag_MPextension_use_legacy].type = 0;
11195 out_attr[Tag_MPextension_use_legacy].i = 0;
11196 }
11197
11198 return result;
11199 }
11200
11201 in_attr = elf_known_obj_attributes_proc (ibfd);
11202 out_attr = elf_known_obj_attributes_proc (obfd);
11203 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11204 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11205 {
11206 /* Ignore mismatches if the object doesn't use floating point. */
11207 if (out_attr[Tag_ABI_FP_number_model].i == 0)
11208 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11209 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
11210 {
11211 _bfd_error_handler
11212 (_("error: %B uses VFP register arguments, %B does not"),
11213 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11214 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
11215 result = FALSE;
11216 }
11217 }
11218
11219 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
11220 {
11221 /* Merge this attribute with existing attributes. */
11222 switch (i)
11223 {
11224 case Tag_CPU_raw_name:
11225 case Tag_CPU_name:
11226 /* These are merged after Tag_CPU_arch. */
11227 break;
11228
11229 case Tag_ABI_optimization_goals:
11230 case Tag_ABI_FP_optimization_goals:
11231 /* Use the first value seen. */
11232 break;
11233
11234 case Tag_CPU_arch:
11235 {
11236 int secondary_compat = -1, secondary_compat_out = -1;
11237 unsigned int saved_out_attr = out_attr[i].i;
11238 static const char *name_table[] = {
11239 /* These aren't real CPU names, but we can't guess
11240 that from the architecture version alone. */
11241 "Pre v4",
11242 "ARM v4",
11243 "ARM v4T",
11244 "ARM v5T",
11245 "ARM v5TE",
11246 "ARM v5TEJ",
11247 "ARM v6",
11248 "ARM v6KZ",
11249 "ARM v6T2",
11250 "ARM v6K",
11251 "ARM v7",
11252 "ARM v6-M",
11253 "ARM v6S-M"
11254 };
11255
11256 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11257 secondary_compat = get_secondary_compatible_arch (ibfd);
11258 secondary_compat_out = get_secondary_compatible_arch (obfd);
11259 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11260 &secondary_compat_out,
11261 in_attr[i].i,
11262 secondary_compat);
11263 set_secondary_compatible_arch (obfd, secondary_compat_out);
11264
11265 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11266 if (out_attr[i].i == saved_out_attr)
11267 ; /* Leave the names alone. */
11268 else if (out_attr[i].i == in_attr[i].i)
11269 {
11270 /* The output architecture has been changed to match the
11271 input architecture. Use the input names. */
11272 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11273 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11274 : NULL;
11275 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11276 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11277 : NULL;
11278 }
11279 else
11280 {
11281 out_attr[Tag_CPU_name].s = NULL;
11282 out_attr[Tag_CPU_raw_name].s = NULL;
11283 }
11284
11285 /* If we still don't have a value for Tag_CPU_name,
11286 make one up now. Tag_CPU_raw_name remains blank. */
11287 if (out_attr[Tag_CPU_name].s == NULL
11288 && out_attr[i].i < ARRAY_SIZE (name_table))
11289 out_attr[Tag_CPU_name].s =
11290 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11291 }
11292 break;
11293
11294 case Tag_ARM_ISA_use:
11295 case Tag_THUMB_ISA_use:
11296 case Tag_WMMX_arch:
11297 case Tag_Advanced_SIMD_arch:
11298 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
11299 case Tag_ABI_FP_rounding:
11300 case Tag_ABI_FP_exceptions:
11301 case Tag_ABI_FP_user_exceptions:
11302 case Tag_ABI_FP_number_model:
11303 case Tag_FP_HP_extension:
11304 case Tag_CPU_unaligned_access:
11305 case Tag_T2EE_use:
11306 case Tag_MPextension_use:
11307 /* Use the largest value specified. */
11308 if (in_attr[i].i > out_attr[i].i)
11309 out_attr[i].i = in_attr[i].i;
11310 break;
11311
11312 case Tag_ABI_align_preserved:
11313 case Tag_ABI_PCS_RO_data:
11314 /* Use the smallest value specified. */
11315 if (in_attr[i].i < out_attr[i].i)
11316 out_attr[i].i = in_attr[i].i;
11317 break;
11318
11319 case Tag_ABI_align_needed:
11320 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
11321 && (in_attr[Tag_ABI_align_preserved].i == 0
11322 || out_attr[Tag_ABI_align_preserved].i == 0))
11323 {
11324 /* This error message should be enabled once all non-conformant
11325 binaries in the toolchain have had the attributes set
11326 properly.
11327 _bfd_error_handler
11328 (_("error: %B: 8-byte data alignment conflicts with %B"),
11329 obfd, ibfd);
11330 result = FALSE; */
11331 }
11332 /* Fall through. */
11333 case Tag_ABI_FP_denormal:
11334 case Tag_ABI_PCS_GOT_use:
11335 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11336 value if greater than 2 (for future-proofing). */
11337 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11338 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11339 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
11340 out_attr[i].i = in_attr[i].i;
11341 break;
11342
11343 case Tag_Virtualization_use:
11344 /* The virtualization tag effectively stores two bits of
11345 information: the intended use of TrustZone (in bit 0), and the
11346 intended use of Virtualization (in bit 1). */
11347 if (out_attr[i].i == 0)
11348 out_attr[i].i = in_attr[i].i;
11349 else if (in_attr[i].i != 0
11350 && in_attr[i].i != out_attr[i].i)
11351 {
11352 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11353 out_attr[i].i = 3;
11354 else
11355 {
11356 _bfd_error_handler
11357 (_("error: %B: unable to merge virtualization attributes "
11358 "with %B"),
11359 obfd, ibfd);
11360 result = FALSE;
11361 }
11362 }
11363 break;
11364
11365 case Tag_CPU_arch_profile:
11366 if (out_attr[i].i != in_attr[i].i)
11367 {
11368 /* 0 will merge with anything.
11369 'A' and 'S' merge to 'A'.
11370 'R' and 'S' merge to 'R'.
11371 'M' and 'A|R|S' is an error. */
11372 if (out_attr[i].i == 0
11373 || (out_attr[i].i == 'S'
11374 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11375 out_attr[i].i = in_attr[i].i;
11376 else if (in_attr[i].i == 0
11377 || (in_attr[i].i == 'S'
11378 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
11379 ; /* Do nothing. */
11380 else
11381 {
11382 _bfd_error_handler
11383 (_("error: %B: Conflicting architecture profiles %c/%c"),
11384 ibfd,
11385 in_attr[i].i ? in_attr[i].i : '0',
11386 out_attr[i].i ? out_attr[i].i : '0');
11387 result = FALSE;
11388 }
11389 }
11390 break;
11391 case Tag_FP_arch:
11392 {
11393 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11394 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11395 when it's 0. It might mean absence of FP hardware if
11396 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11397
11398 static const struct
11399 {
11400 int ver;
11401 int regs;
11402 } vfp_versions[7] =
11403 {
11404 {0, 0},
11405 {1, 16},
11406 {2, 16},
11407 {3, 32},
11408 {3, 16},
11409 {4, 32},
11410 {4, 16}
11411 };
11412 int ver;
11413 int regs;
11414 int newval;
11415
11416 /* If the output has no requirement about FP hardware,
11417 follow the requirement of the input. */
11418 if (out_attr[i].i == 0)
11419 {
11420 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11421 out_attr[i].i = in_attr[i].i;
11422 out_attr[Tag_ABI_HardFP_use].i
11423 = in_attr[Tag_ABI_HardFP_use].i;
11424 break;
11425 }
11426 /* If the input has no requirement about FP hardware, do
11427 nothing. */
11428 else if (in_attr[i].i == 0)
11429 {
11430 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
11431 break;
11432 }
11433
11434 /* Both the input and the output have nonzero Tag_FP_arch.
11435 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
11436
11437 /* If both the input and the output have zero Tag_ABI_HardFP_use,
11438 do nothing. */
11439 if (in_attr[Tag_ABI_HardFP_use].i == 0
11440 && out_attr[Tag_ABI_HardFP_use].i == 0)
11441 ;
11442 /* If the input and the output have different Tag_ABI_HardFP_use,
11443 the combination of them is 3 (SP & DP). */
11444 else if (in_attr[Tag_ABI_HardFP_use].i
11445 != out_attr[Tag_ABI_HardFP_use].i)
11446 out_attr[Tag_ABI_HardFP_use].i = 3;
11447
11448 /* Now we can handle Tag_FP_arch. */
11449
11450 /* Values greater than 6 aren't defined, so just pick the
11451 biggest */
11452 if (in_attr[i].i > 6 && in_attr[i].i > out_attr[i].i)
11453 {
11454 out_attr[i] = in_attr[i];
11455 break;
11456 }
11457 /* The output uses the superset of input features
11458 (ISA version) and registers. */
11459 ver = vfp_versions[in_attr[i].i].ver;
11460 if (ver < vfp_versions[out_attr[i].i].ver)
11461 ver = vfp_versions[out_attr[i].i].ver;
11462 regs = vfp_versions[in_attr[i].i].regs;
11463 if (regs < vfp_versions[out_attr[i].i].regs)
11464 regs = vfp_versions[out_attr[i].i].regs;
11465 /* This assumes all possible supersets are also a valid
11466 options. */
11467 for (newval = 6; newval > 0; newval--)
11468 {
11469 if (regs == vfp_versions[newval].regs
11470 && ver == vfp_versions[newval].ver)
11471 break;
11472 }
11473 out_attr[i].i = newval;
11474 }
11475 break;
11476 case Tag_PCS_config:
11477 if (out_attr[i].i == 0)
11478 out_attr[i].i = in_attr[i].i;
11479 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
11480 {
11481 /* It's sometimes ok to mix different configs, so this is only
11482 a warning. */
11483 _bfd_error_handler
11484 (_("Warning: %B: Conflicting platform configuration"), ibfd);
11485 }
11486 break;
11487 case Tag_ABI_PCS_R9_use:
11488 if (in_attr[i].i != out_attr[i].i
11489 && out_attr[i].i != AEABI_R9_unused
11490 && in_attr[i].i != AEABI_R9_unused)
11491 {
11492 _bfd_error_handler
11493 (_("error: %B: Conflicting use of R9"), ibfd);
11494 result = FALSE;
11495 }
11496 if (out_attr[i].i == AEABI_R9_unused)
11497 out_attr[i].i = in_attr[i].i;
11498 break;
11499 case Tag_ABI_PCS_RW_data:
11500 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
11501 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
11502 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
11503 {
11504 _bfd_error_handler
11505 (_("error: %B: SB relative addressing conflicts with use of R9"),
11506 ibfd);
11507 result = FALSE;
11508 }
11509 /* Use the smallest value specified. */
11510 if (in_attr[i].i < out_attr[i].i)
11511 out_attr[i].i = in_attr[i].i;
11512 break;
11513 case Tag_ABI_PCS_wchar_t:
11514 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
11515 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
11516 {
11517 _bfd_error_handler
11518 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11519 ibfd, in_attr[i].i, out_attr[i].i);
11520 }
11521 else if (in_attr[i].i && !out_attr[i].i)
11522 out_attr[i].i = in_attr[i].i;
11523 break;
11524 case Tag_ABI_enum_size:
11525 if (in_attr[i].i != AEABI_enum_unused)
11526 {
11527 if (out_attr[i].i == AEABI_enum_unused
11528 || out_attr[i].i == AEABI_enum_forced_wide)
11529 {
11530 /* The existing object is compatible with anything.
11531 Use whatever requirements the new object has. */
11532 out_attr[i].i = in_attr[i].i;
11533 }
11534 else if (in_attr[i].i != AEABI_enum_forced_wide
11535 && out_attr[i].i != in_attr[i].i
11536 && !elf_arm_tdata (obfd)->no_enum_size_warning)
11537 {
11538 static const char *aeabi_enum_names[] =
11539 { "", "variable-size", "32-bit", "" };
11540 const char *in_name =
11541 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11542 ? aeabi_enum_names[in_attr[i].i]
11543 : "<unknown>";
11544 const char *out_name =
11545 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11546 ? aeabi_enum_names[out_attr[i].i]
11547 : "<unknown>";
11548 _bfd_error_handler
11549 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
11550 ibfd, in_name, out_name);
11551 }
11552 }
11553 break;
11554 case Tag_ABI_VFP_args:
11555 /* Aready done. */
11556 break;
11557 case Tag_ABI_WMMX_args:
11558 if (in_attr[i].i != out_attr[i].i)
11559 {
11560 _bfd_error_handler
11561 (_("error: %B uses iWMMXt register arguments, %B does not"),
11562 ibfd, obfd);
11563 result = FALSE;
11564 }
11565 break;
11566 case Tag_compatibility:
11567 /* Merged in target-independent code. */
11568 break;
11569 case Tag_ABI_HardFP_use:
11570 /* This is handled along with Tag_FP_arch. */
11571 break;
11572 case Tag_ABI_FP_16bit_format:
11573 if (in_attr[i].i != 0 && out_attr[i].i != 0)
11574 {
11575 if (in_attr[i].i != out_attr[i].i)
11576 {
11577 _bfd_error_handler
11578 (_("error: fp16 format mismatch between %B and %B"),
11579 ibfd, obfd);
11580 result = FALSE;
11581 }
11582 }
11583 if (in_attr[i].i != 0)
11584 out_attr[i].i = in_attr[i].i;
11585 break;
11586
11587 case Tag_DIV_use:
11588 /* This tag is set to zero if we can use UDIV and SDIV in Thumb
11589 mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
11590 SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
11591 CPU. We will merge as follows: If the input attribute's value
11592 is one then the output attribute's value remains unchanged. If
11593 the input attribute's value is zero or two then if the output
11594 attribute's value is one the output value is set to the input
11595 value, otherwise the output value must be the same as the
11596 inputs. */
11597 if (in_attr[i].i != 1 && out_attr[i].i != 1)
11598 {
11599 if (in_attr[i].i != out_attr[i].i)
11600 {
11601 _bfd_error_handler
11602 (_("DIV usage mismatch between %B and %B"),
11603 ibfd, obfd);
11604 result = FALSE;
11605 }
11606 }
11607
11608 if (in_attr[i].i != 1)
11609 out_attr[i].i = in_attr[i].i;
11610
11611 break;
11612
11613 case Tag_MPextension_use_legacy:
11614 /* We don't output objects with Tag_MPextension_use_legacy - we
11615 move the value to Tag_MPextension_use. */
11616 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
11617 {
11618 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
11619 {
11620 _bfd_error_handler
11621 (_("%B has has both the current and legacy "
11622 "Tag_MPextension_use attributes"),
11623 ibfd);
11624 result = FALSE;
11625 }
11626 }
11627
11628 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
11629 out_attr[Tag_MPextension_use] = in_attr[i];
11630
11631 break;
11632
11633 case Tag_nodefaults:
11634 /* This tag is set if it exists, but the value is unused (and is
11635 typically zero). We don't actually need to do anything here -
11636 the merge happens automatically when the type flags are merged
11637 below. */
11638 break;
11639 case Tag_also_compatible_with:
11640 /* Already done in Tag_CPU_arch. */
11641 break;
11642 case Tag_conformance:
11643 /* Keep the attribute if it matches. Throw it away otherwise.
11644 No attribute means no claim to conform. */
11645 if (!in_attr[i].s || !out_attr[i].s
11646 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
11647 out_attr[i].s = NULL;
11648 break;
11649
11650 default:
11651 result
11652 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
11653 }
11654
11655 /* If out_attr was copied from in_attr then it won't have a type yet. */
11656 if (in_attr[i].type && !out_attr[i].type)
11657 out_attr[i].type = in_attr[i].type;
11658 }
11659
11660 /* Merge Tag_compatibility attributes and any common GNU ones. */
11661 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
11662 return FALSE;
11663
11664 /* Check for any attributes not known on ARM. */
11665 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
11666
11667 return result;
11668 }
11669
11670
11671 /* Return TRUE if the two EABI versions are incompatible. */
11672
11673 static bfd_boolean
11674 elf32_arm_versions_compatible (unsigned iver, unsigned over)
11675 {
11676 /* v4 and v5 are the same spec before and after it was released,
11677 so allow mixing them. */
11678 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
11679 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
11680 return TRUE;
11681
11682 return (iver == over);
11683 }
11684
11685 /* Merge backend specific data from an object file to the output
11686 object file when linking. */
11687
11688 static bfd_boolean
11689 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
11690
11691 /* Display the flags field. */
11692
11693 static bfd_boolean
11694 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
11695 {
11696 FILE * file = (FILE *) ptr;
11697 unsigned long flags;
11698
11699 BFD_ASSERT (abfd != NULL && ptr != NULL);
11700
11701 /* Print normal ELF private data. */
11702 _bfd_elf_print_private_bfd_data (abfd, ptr);
11703
11704 flags = elf_elfheader (abfd)->e_flags;
11705 /* Ignore init flag - it may not be set, despite the flags field
11706 containing valid data. */
11707
11708 /* xgettext:c-format */
11709 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11710
11711 switch (EF_ARM_EABI_VERSION (flags))
11712 {
11713 case EF_ARM_EABI_UNKNOWN:
11714 /* The following flag bits are GNU extensions and not part of the
11715 official ARM ELF extended ABI. Hence they are only decoded if
11716 the EABI version is not set. */
11717 if (flags & EF_ARM_INTERWORK)
11718 fprintf (file, _(" [interworking enabled]"));
11719
11720 if (flags & EF_ARM_APCS_26)
11721 fprintf (file, " [APCS-26]");
11722 else
11723 fprintf (file, " [APCS-32]");
11724
11725 if (flags & EF_ARM_VFP_FLOAT)
11726 fprintf (file, _(" [VFP float format]"));
11727 else if (flags & EF_ARM_MAVERICK_FLOAT)
11728 fprintf (file, _(" [Maverick float format]"));
11729 else
11730 fprintf (file, _(" [FPA float format]"));
11731
11732 if (flags & EF_ARM_APCS_FLOAT)
11733 fprintf (file, _(" [floats passed in float registers]"));
11734
11735 if (flags & EF_ARM_PIC)
11736 fprintf (file, _(" [position independent]"));
11737
11738 if (flags & EF_ARM_NEW_ABI)
11739 fprintf (file, _(" [new ABI]"));
11740
11741 if (flags & EF_ARM_OLD_ABI)
11742 fprintf (file, _(" [old ABI]"));
11743
11744 if (flags & EF_ARM_SOFT_FLOAT)
11745 fprintf (file, _(" [software FP]"));
11746
11747 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
11748 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
11749 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
11750 | EF_ARM_MAVERICK_FLOAT);
11751 break;
11752
11753 case EF_ARM_EABI_VER1:
11754 fprintf (file, _(" [Version1 EABI]"));
11755
11756 if (flags & EF_ARM_SYMSARESORTED)
11757 fprintf (file, _(" [sorted symbol table]"));
11758 else
11759 fprintf (file, _(" [unsorted symbol table]"));
11760
11761 flags &= ~ EF_ARM_SYMSARESORTED;
11762 break;
11763
11764 case EF_ARM_EABI_VER2:
11765 fprintf (file, _(" [Version2 EABI]"));
11766
11767 if (flags & EF_ARM_SYMSARESORTED)
11768 fprintf (file, _(" [sorted symbol table]"));
11769 else
11770 fprintf (file, _(" [unsorted symbol table]"));
11771
11772 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
11773 fprintf (file, _(" [dynamic symbols use segment index]"));
11774
11775 if (flags & EF_ARM_MAPSYMSFIRST)
11776 fprintf (file, _(" [mapping symbols precede others]"));
11777
11778 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
11779 | EF_ARM_MAPSYMSFIRST);
11780 break;
11781
11782 case EF_ARM_EABI_VER3:
11783 fprintf (file, _(" [Version3 EABI]"));
11784 break;
11785
11786 case EF_ARM_EABI_VER4:
11787 fprintf (file, _(" [Version4 EABI]"));
11788 goto eabi;
11789
11790 case EF_ARM_EABI_VER5:
11791 fprintf (file, _(" [Version5 EABI]"));
11792 eabi:
11793 if (flags & EF_ARM_BE8)
11794 fprintf (file, _(" [BE8]"));
11795
11796 if (flags & EF_ARM_LE8)
11797 fprintf (file, _(" [LE8]"));
11798
11799 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
11800 break;
11801
11802 default:
11803 fprintf (file, _(" <EABI version unrecognised>"));
11804 break;
11805 }
11806
11807 flags &= ~ EF_ARM_EABIMASK;
11808
11809 if (flags & EF_ARM_RELEXEC)
11810 fprintf (file, _(" [relocatable executable]"));
11811
11812 if (flags & EF_ARM_HASENTRY)
11813 fprintf (file, _(" [has entry point]"));
11814
11815 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
11816
11817 if (flags)
11818 fprintf (file, _("<Unrecognised flag bits set>"));
11819
11820 fputc ('\n', file);
11821
11822 return TRUE;
11823 }
11824
11825 static int
11826 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
11827 {
11828 switch (ELF_ST_TYPE (elf_sym->st_info))
11829 {
11830 case STT_ARM_TFUNC:
11831 return ELF_ST_TYPE (elf_sym->st_info);
11832
11833 case STT_ARM_16BIT:
11834 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
11835 This allows us to distinguish between data used by Thumb instructions
11836 and non-data (which is probably code) inside Thumb regions of an
11837 executable. */
11838 if (type != STT_OBJECT && type != STT_TLS)
11839 return ELF_ST_TYPE (elf_sym->st_info);
11840 break;
11841
11842 default:
11843 break;
11844 }
11845
11846 return type;
11847 }
11848
11849 static asection *
11850 elf32_arm_gc_mark_hook (asection *sec,
11851 struct bfd_link_info *info,
11852 Elf_Internal_Rela *rel,
11853 struct elf_link_hash_entry *h,
11854 Elf_Internal_Sym *sym)
11855 {
11856 if (h != NULL)
11857 switch (ELF32_R_TYPE (rel->r_info))
11858 {
11859 case R_ARM_GNU_VTINHERIT:
11860 case R_ARM_GNU_VTENTRY:
11861 return NULL;
11862 }
11863
11864 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11865 }
11866
11867 /* Update the got entry reference counts for the section being removed. */
11868
11869 static bfd_boolean
11870 elf32_arm_gc_sweep_hook (bfd * abfd,
11871 struct bfd_link_info * info,
11872 asection * sec,
11873 const Elf_Internal_Rela * relocs)
11874 {
11875 Elf_Internal_Shdr *symtab_hdr;
11876 struct elf_link_hash_entry **sym_hashes;
11877 bfd_signed_vma *local_got_refcounts;
11878 const Elf_Internal_Rela *rel, *relend;
11879 struct elf32_arm_link_hash_table * globals;
11880
11881 if (info->relocatable)
11882 return TRUE;
11883
11884 globals = elf32_arm_hash_table (info);
11885 if (globals == NULL)
11886 return FALSE;
11887
11888 elf_section_data (sec)->local_dynrel = NULL;
11889
11890 symtab_hdr = & elf_symtab_hdr (abfd);
11891 sym_hashes = elf_sym_hashes (abfd);
11892 local_got_refcounts = elf_local_got_refcounts (abfd);
11893
11894 check_use_blx (globals);
11895
11896 relend = relocs + sec->reloc_count;
11897 for (rel = relocs; rel < relend; rel++)
11898 {
11899 unsigned long r_symndx;
11900 struct elf_link_hash_entry *h = NULL;
11901 struct elf32_arm_link_hash_entry *eh;
11902 int r_type;
11903 bfd_boolean call_reloc_p;
11904 bfd_boolean may_become_dynamic_p;
11905 bfd_boolean may_need_local_target_p;
11906 union gotplt_union *root_plt;
11907 struct arm_plt_info *arm_plt;
11908
11909 r_symndx = ELF32_R_SYM (rel->r_info);
11910 if (r_symndx >= symtab_hdr->sh_info)
11911 {
11912 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
11913 while (h->root.type == bfd_link_hash_indirect
11914 || h->root.type == bfd_link_hash_warning)
11915 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11916 }
11917 eh = (struct elf32_arm_link_hash_entry *) h;
11918
11919 call_reloc_p = FALSE;
11920 may_become_dynamic_p = FALSE;
11921 may_need_local_target_p = FALSE;
11922
11923 r_type = ELF32_R_TYPE (rel->r_info);
11924 r_type = arm_real_reloc_type (globals, r_type);
11925 switch (r_type)
11926 {
11927 case R_ARM_GOT32:
11928 case R_ARM_GOT_PREL:
11929 case R_ARM_TLS_GD32:
11930 case R_ARM_TLS_IE32:
11931 if (h != NULL)
11932 {
11933 if (h->got.refcount > 0)
11934 h->got.refcount -= 1;
11935 }
11936 else if (local_got_refcounts != NULL)
11937 {
11938 if (local_got_refcounts[r_symndx] > 0)
11939 local_got_refcounts[r_symndx] -= 1;
11940 }
11941 break;
11942
11943 case R_ARM_TLS_LDM32:
11944 globals->tls_ldm_got.refcount -= 1;
11945 break;
11946
11947 case R_ARM_PC24:
11948 case R_ARM_PLT32:
11949 case R_ARM_CALL:
11950 case R_ARM_JUMP24:
11951 case R_ARM_PREL31:
11952 case R_ARM_THM_CALL:
11953 case R_ARM_THM_JUMP24:
11954 case R_ARM_THM_JUMP19:
11955 call_reloc_p = TRUE;
11956 may_need_local_target_p = TRUE;
11957 break;
11958
11959 case R_ARM_ABS12:
11960 if (!globals->vxworks_p)
11961 {
11962 may_need_local_target_p = TRUE;
11963 break;
11964 }
11965 /* Fall through. */
11966 case R_ARM_ABS32:
11967 case R_ARM_ABS32_NOI:
11968 case R_ARM_REL32:
11969 case R_ARM_REL32_NOI:
11970 case R_ARM_MOVW_ABS_NC:
11971 case R_ARM_MOVT_ABS:
11972 case R_ARM_MOVW_PREL_NC:
11973 case R_ARM_MOVT_PREL:
11974 case R_ARM_THM_MOVW_ABS_NC:
11975 case R_ARM_THM_MOVT_ABS:
11976 case R_ARM_THM_MOVW_PREL_NC:
11977 case R_ARM_THM_MOVT_PREL:
11978 /* Should the interworking branches be here also? */
11979 if ((info->shared || globals->root.is_relocatable_executable)
11980 && (sec->flags & SEC_ALLOC) != 0)
11981 {
11982 if (h == NULL
11983 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
11984 {
11985 call_reloc_p = TRUE;
11986 may_need_local_target_p = TRUE;
11987 }
11988 else
11989 may_become_dynamic_p = TRUE;
11990 }
11991 else
11992 may_need_local_target_p = TRUE;
11993 break;
11994
11995 default:
11996 break;
11997 }
11998
11999 if (may_need_local_target_p
12000 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
12001 {
12002 BFD_ASSERT (root_plt->refcount > 0);
12003 root_plt->refcount -= 1;
12004
12005 if (!call_reloc_p)
12006 arm_plt->noncall_refcount--;
12007
12008 if (r_type == R_ARM_THM_CALL)
12009 arm_plt->maybe_thumb_refcount--;
12010
12011 if (r_type == R_ARM_THM_JUMP24
12012 || r_type == R_ARM_THM_JUMP19)
12013 arm_plt->thumb_refcount--;
12014 }
12015
12016 if (may_become_dynamic_p)
12017 {
12018 struct elf_dyn_relocs **pp;
12019 struct elf_dyn_relocs *p;
12020
12021 if (h != NULL)
12022 pp = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12023 else
12024 {
12025 Elf_Internal_Sym *isym;
12026
12027 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12028 abfd, r_symndx);
12029 if (isym == NULL)
12030 return FALSE;
12031 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12032 if (pp == NULL)
12033 return FALSE;
12034 }
12035 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; pp = &p->next)
12036 if (p->sec == sec)
12037 {
12038 /* Everything must go for SEC. */
12039 *pp = p->next;
12040 break;
12041 }
12042 }
12043 }
12044
12045 return TRUE;
12046 }
12047
12048 /* Look through the relocs for a section during the first phase. */
12049
12050 static bfd_boolean
12051 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12052 asection *sec, const Elf_Internal_Rela *relocs)
12053 {
12054 Elf_Internal_Shdr *symtab_hdr;
12055 struct elf_link_hash_entry **sym_hashes;
12056 const Elf_Internal_Rela *rel;
12057 const Elf_Internal_Rela *rel_end;
12058 bfd *dynobj;
12059 asection *sreloc;
12060 struct elf32_arm_link_hash_table *htab;
12061 bfd_boolean call_reloc_p;
12062 bfd_boolean may_become_dynamic_p;
12063 bfd_boolean may_need_local_target_p;
12064 unsigned long nsyms;
12065
12066 if (info->relocatable)
12067 return TRUE;
12068
12069 BFD_ASSERT (is_arm_elf (abfd));
12070
12071 htab = elf32_arm_hash_table (info);
12072 if (htab == NULL)
12073 return FALSE;
12074
12075 sreloc = NULL;
12076
12077 /* Create dynamic sections for relocatable executables so that we can
12078 copy relocations. */
12079 if (htab->root.is_relocatable_executable
12080 && ! htab->root.dynamic_sections_created)
12081 {
12082 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12083 return FALSE;
12084 }
12085
12086 if (htab->root.dynobj == NULL)
12087 htab->root.dynobj = abfd;
12088 if (!create_ifunc_sections (info))
12089 return FALSE;
12090
12091 dynobj = htab->root.dynobj;
12092
12093 symtab_hdr = & elf_symtab_hdr (abfd);
12094 sym_hashes = elf_sym_hashes (abfd);
12095 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
12096
12097 rel_end = relocs + sec->reloc_count;
12098 for (rel = relocs; rel < rel_end; rel++)
12099 {
12100 Elf_Internal_Sym *isym;
12101 struct elf_link_hash_entry *h;
12102 struct elf32_arm_link_hash_entry *eh;
12103 unsigned long r_symndx;
12104 int r_type;
12105
12106 r_symndx = ELF32_R_SYM (rel->r_info);
12107 r_type = ELF32_R_TYPE (rel->r_info);
12108 r_type = arm_real_reloc_type (htab, r_type);
12109
12110 if (r_symndx >= nsyms
12111 /* PR 9934: It is possible to have relocations that do not
12112 refer to symbols, thus it is also possible to have an
12113 object file containing relocations but no symbol table. */
12114 && (r_symndx > STN_UNDEF || nsyms > 0))
12115 {
12116 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
12117 r_symndx);
12118 return FALSE;
12119 }
12120
12121 h = NULL;
12122 isym = NULL;
12123 if (nsyms > 0)
12124 {
12125 if (r_symndx < symtab_hdr->sh_info)
12126 {
12127 /* A local symbol. */
12128 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12129 abfd, r_symndx);
12130 if (isym == NULL)
12131 return FALSE;
12132 }
12133 else
12134 {
12135 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12136 while (h->root.type == bfd_link_hash_indirect
12137 || h->root.type == bfd_link_hash_warning)
12138 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12139 }
12140 }
12141
12142 eh = (struct elf32_arm_link_hash_entry *) h;
12143
12144 call_reloc_p = FALSE;
12145 may_become_dynamic_p = FALSE;
12146 may_need_local_target_p = FALSE;
12147
12148 /* Could be done earlier, if h were already available. */
12149 r_type = elf32_arm_tls_transition (info, r_type, h);
12150 switch (r_type)
12151 {
12152 case R_ARM_GOT32:
12153 case R_ARM_GOT_PREL:
12154 case R_ARM_TLS_GD32:
12155 case R_ARM_TLS_IE32:
12156 case R_ARM_TLS_GOTDESC:
12157 case R_ARM_TLS_DESCSEQ:
12158 case R_ARM_THM_TLS_DESCSEQ:
12159 case R_ARM_TLS_CALL:
12160 case R_ARM_THM_TLS_CALL:
12161 /* This symbol requires a global offset table entry. */
12162 {
12163 int tls_type, old_tls_type;
12164
12165 switch (r_type)
12166 {
12167 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
12168
12169 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
12170
12171 case R_ARM_TLS_GOTDESC:
12172 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12173 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12174 tls_type = GOT_TLS_GDESC; break;
12175
12176 default: tls_type = GOT_NORMAL; break;
12177 }
12178
12179 if (h != NULL)
12180 {
12181 h->got.refcount++;
12182 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12183 }
12184 else
12185 {
12186 /* This is a global offset table entry for a local symbol. */
12187 if (!elf32_arm_allocate_local_sym_info (abfd))
12188 return FALSE;
12189 elf_local_got_refcounts (abfd)[r_symndx] += 1;
12190 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12191 }
12192
12193 /* If a variable is accessed with both tls methods, two
12194 slots may be created. */
12195 if (GOT_TLS_GD_ANY_P (old_tls_type)
12196 && GOT_TLS_GD_ANY_P (tls_type))
12197 tls_type |= old_tls_type;
12198
12199 /* We will already have issued an error message if there
12200 is a TLS/non-TLS mismatch, based on the symbol
12201 type. So just combine any TLS types needed. */
12202 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12203 && tls_type != GOT_NORMAL)
12204 tls_type |= old_tls_type;
12205
12206 /* If the symbol is accessed in both IE and GDESC
12207 method, we're able to relax. Turn off the GDESC flag,
12208 without messing up with any other kind of tls types
12209 that may be involved */
12210 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12211 tls_type &= ~GOT_TLS_GDESC;
12212
12213 if (old_tls_type != tls_type)
12214 {
12215 if (h != NULL)
12216 elf32_arm_hash_entry (h)->tls_type = tls_type;
12217 else
12218 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12219 }
12220 }
12221 /* Fall through. */
12222
12223 case R_ARM_TLS_LDM32:
12224 if (r_type == R_ARM_TLS_LDM32)
12225 htab->tls_ldm_got.refcount++;
12226 /* Fall through. */
12227
12228 case R_ARM_GOTOFF32:
12229 case R_ARM_GOTPC:
12230 if (htab->root.sgot == NULL
12231 && !create_got_section (htab->root.dynobj, info))
12232 return FALSE;
12233 break;
12234
12235 case R_ARM_PC24:
12236 case R_ARM_PLT32:
12237 case R_ARM_CALL:
12238 case R_ARM_JUMP24:
12239 case R_ARM_PREL31:
12240 case R_ARM_THM_CALL:
12241 case R_ARM_THM_JUMP24:
12242 case R_ARM_THM_JUMP19:
12243 call_reloc_p = TRUE;
12244 may_need_local_target_p = TRUE;
12245 break;
12246
12247 case R_ARM_ABS12:
12248 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12249 ldr __GOTT_INDEX__ offsets. */
12250 if (!htab->vxworks_p)
12251 {
12252 may_need_local_target_p = TRUE;
12253 break;
12254 }
12255 /* Fall through. */
12256
12257 case R_ARM_MOVW_ABS_NC:
12258 case R_ARM_MOVT_ABS:
12259 case R_ARM_THM_MOVW_ABS_NC:
12260 case R_ARM_THM_MOVT_ABS:
12261 if (info->shared)
12262 {
12263 (*_bfd_error_handler)
12264 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12265 abfd, elf32_arm_howto_table_1[r_type].name,
12266 (h) ? h->root.root.string : "a local symbol");
12267 bfd_set_error (bfd_error_bad_value);
12268 return FALSE;
12269 }
12270
12271 /* Fall through. */
12272 case R_ARM_ABS32:
12273 case R_ARM_ABS32_NOI:
12274 case R_ARM_REL32:
12275 case R_ARM_REL32_NOI:
12276 case R_ARM_MOVW_PREL_NC:
12277 case R_ARM_MOVT_PREL:
12278 case R_ARM_THM_MOVW_PREL_NC:
12279 case R_ARM_THM_MOVT_PREL:
12280
12281 /* Should the interworking branches be listed here? */
12282 if ((info->shared || htab->root.is_relocatable_executable)
12283 && (sec->flags & SEC_ALLOC) != 0)
12284 {
12285 if (h == NULL
12286 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12287 {
12288 /* In shared libraries and relocatable executables,
12289 we treat local relative references as calls;
12290 see the related SYMBOL_CALLS_LOCAL code in
12291 allocate_dynrelocs. */
12292 call_reloc_p = TRUE;
12293 may_need_local_target_p = TRUE;
12294 }
12295 else
12296 /* We are creating a shared library or relocatable
12297 executable, and this is a reloc against a global symbol,
12298 or a non-PC-relative reloc against a local symbol.
12299 We may need to copy the reloc into the output. */
12300 may_become_dynamic_p = TRUE;
12301 }
12302 else
12303 may_need_local_target_p = TRUE;
12304 break;
12305
12306 /* This relocation describes the C++ object vtable hierarchy.
12307 Reconstruct it for later use during GC. */
12308 case R_ARM_GNU_VTINHERIT:
12309 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12310 return FALSE;
12311 break;
12312
12313 /* This relocation describes which C++ vtable entries are actually
12314 used. Record for later use during GC. */
12315 case R_ARM_GNU_VTENTRY:
12316 BFD_ASSERT (h != NULL);
12317 if (h != NULL
12318 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12319 return FALSE;
12320 break;
12321 }
12322
12323 if (h != NULL)
12324 {
12325 if (call_reloc_p)
12326 /* We may need a .plt entry if the function this reloc
12327 refers to is in a different object, regardless of the
12328 symbol's type. We can't tell for sure yet, because
12329 something later might force the symbol local. */
12330 h->needs_plt = 1;
12331 else if (may_need_local_target_p)
12332 /* If this reloc is in a read-only section, we might
12333 need a copy reloc. We can't check reliably at this
12334 stage whether the section is read-only, as input
12335 sections have not yet been mapped to output sections.
12336 Tentatively set the flag for now, and correct in
12337 adjust_dynamic_symbol. */
12338 h->non_got_ref = 1;
12339 }
12340
12341 if (may_need_local_target_p
12342 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
12343 {
12344 union gotplt_union *root_plt;
12345 struct arm_plt_info *arm_plt;
12346 struct arm_local_iplt_info *local_iplt;
12347
12348 if (h != NULL)
12349 {
12350 root_plt = &h->plt;
12351 arm_plt = &eh->plt;
12352 }
12353 else
12354 {
12355 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12356 if (local_iplt == NULL)
12357 return FALSE;
12358 root_plt = &local_iplt->root;
12359 arm_plt = &local_iplt->arm;
12360 }
12361
12362 /* If the symbol is a function that doesn't bind locally,
12363 this relocation will need a PLT entry. */
12364 root_plt->refcount += 1;
12365
12366 if (!call_reloc_p)
12367 arm_plt->noncall_refcount++;
12368
12369 /* It's too early to use htab->use_blx here, so we have to
12370 record possible blx references separately from
12371 relocs that definitely need a thumb stub. */
12372
12373 if (r_type == R_ARM_THM_CALL)
12374 arm_plt->maybe_thumb_refcount += 1;
12375
12376 if (r_type == R_ARM_THM_JUMP24
12377 || r_type == R_ARM_THM_JUMP19)
12378 arm_plt->thumb_refcount += 1;
12379 }
12380
12381 if (may_become_dynamic_p)
12382 {
12383 struct elf_dyn_relocs *p, **head;
12384
12385 /* Create a reloc section in dynobj. */
12386 if (sreloc == NULL)
12387 {
12388 sreloc = _bfd_elf_make_dynamic_reloc_section
12389 (sec, dynobj, 2, abfd, ! htab->use_rel);
12390
12391 if (sreloc == NULL)
12392 return FALSE;
12393
12394 /* BPABI objects never have dynamic relocations mapped. */
12395 if (htab->symbian_p)
12396 {
12397 flagword flags;
12398
12399 flags = bfd_get_section_flags (dynobj, sreloc);
12400 flags &= ~(SEC_LOAD | SEC_ALLOC);
12401 bfd_set_section_flags (dynobj, sreloc, flags);
12402 }
12403 }
12404
12405 /* If this is a global symbol, count the number of
12406 relocations we need for this symbol. */
12407 if (h != NULL)
12408 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12409 else
12410 {
12411 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12412 if (head == NULL)
12413 return FALSE;
12414 }
12415
12416 p = *head;
12417 if (p == NULL || p->sec != sec)
12418 {
12419 bfd_size_type amt = sizeof *p;
12420
12421 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
12422 if (p == NULL)
12423 return FALSE;
12424 p->next = *head;
12425 *head = p;
12426 p->sec = sec;
12427 p->count = 0;
12428 p->pc_count = 0;
12429 }
12430
12431 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
12432 p->pc_count += 1;
12433 p->count += 1;
12434 }
12435 }
12436
12437 return TRUE;
12438 }
12439
12440 /* Unwinding tables are not referenced directly. This pass marks them as
12441 required if the corresponding code section is marked. */
12442
12443 static bfd_boolean
12444 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
12445 elf_gc_mark_hook_fn gc_mark_hook)
12446 {
12447 bfd *sub;
12448 Elf_Internal_Shdr **elf_shdrp;
12449 bfd_boolean again;
12450
12451 /* Marking EH data may cause additional code sections to be marked,
12452 requiring multiple passes. */
12453 again = TRUE;
12454 while (again)
12455 {
12456 again = FALSE;
12457 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12458 {
12459 asection *o;
12460
12461 if (! is_arm_elf (sub))
12462 continue;
12463
12464 elf_shdrp = elf_elfsections (sub);
12465 for (o = sub->sections; o != NULL; o = o->next)
12466 {
12467 Elf_Internal_Shdr *hdr;
12468
12469 hdr = &elf_section_data (o)->this_hdr;
12470 if (hdr->sh_type == SHT_ARM_EXIDX
12471 && hdr->sh_link
12472 && hdr->sh_link < elf_numsections (sub)
12473 && !o->gc_mark
12474 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
12475 {
12476 again = TRUE;
12477 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12478 return FALSE;
12479 }
12480 }
12481 }
12482 }
12483
12484 return TRUE;
12485 }
12486
12487 /* Treat mapping symbols as special target symbols. */
12488
12489 static bfd_boolean
12490 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
12491 {
12492 return bfd_is_arm_special_symbol_name (sym->name,
12493 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
12494 }
12495
12496 /* This is a copy of elf_find_function() from elf.c except that
12497 ARM mapping symbols are ignored when looking for function names
12498 and STT_ARM_TFUNC is considered to a function type. */
12499
12500 static bfd_boolean
12501 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
12502 asection * section,
12503 asymbol ** symbols,
12504 bfd_vma offset,
12505 const char ** filename_ptr,
12506 const char ** functionname_ptr)
12507 {
12508 const char * filename = NULL;
12509 asymbol * func = NULL;
12510 bfd_vma low_func = 0;
12511 asymbol ** p;
12512
12513 for (p = symbols; *p != NULL; p++)
12514 {
12515 elf_symbol_type *q;
12516
12517 q = (elf_symbol_type *) *p;
12518
12519 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
12520 {
12521 default:
12522 break;
12523 case STT_FILE:
12524 filename = bfd_asymbol_name (&q->symbol);
12525 break;
12526 case STT_FUNC:
12527 case STT_ARM_TFUNC:
12528 case STT_NOTYPE:
12529 /* Skip mapping symbols. */
12530 if ((q->symbol.flags & BSF_LOCAL)
12531 && bfd_is_arm_special_symbol_name (q->symbol.name,
12532 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
12533 continue;
12534 /* Fall through. */
12535 if (bfd_get_section (&q->symbol) == section
12536 && q->symbol.value >= low_func
12537 && q->symbol.value <= offset)
12538 {
12539 func = (asymbol *) q;
12540 low_func = q->symbol.value;
12541 }
12542 break;
12543 }
12544 }
12545
12546 if (func == NULL)
12547 return FALSE;
12548
12549 if (filename_ptr)
12550 *filename_ptr = filename;
12551 if (functionname_ptr)
12552 *functionname_ptr = bfd_asymbol_name (func);
12553
12554 return TRUE;
12555 }
12556
12557
12558 /* Find the nearest line to a particular section and offset, for error
12559 reporting. This code is a duplicate of the code in elf.c, except
12560 that it uses arm_elf_find_function. */
12561
12562 static bfd_boolean
12563 elf32_arm_find_nearest_line (bfd * abfd,
12564 asection * section,
12565 asymbol ** symbols,
12566 bfd_vma offset,
12567 const char ** filename_ptr,
12568 const char ** functionname_ptr,
12569 unsigned int * line_ptr)
12570 {
12571 bfd_boolean found = FALSE;
12572
12573 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
12574
12575 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
12576 filename_ptr, functionname_ptr,
12577 line_ptr, 0,
12578 & elf_tdata (abfd)->dwarf2_find_line_info))
12579 {
12580 if (!*functionname_ptr)
12581 arm_elf_find_function (abfd, section, symbols, offset,
12582 *filename_ptr ? NULL : filename_ptr,
12583 functionname_ptr);
12584
12585 return TRUE;
12586 }
12587
12588 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
12589 & found, filename_ptr,
12590 functionname_ptr, line_ptr,
12591 & elf_tdata (abfd)->line_info))
12592 return FALSE;
12593
12594 if (found && (*functionname_ptr || *line_ptr))
12595 return TRUE;
12596
12597 if (symbols == NULL)
12598 return FALSE;
12599
12600 if (! arm_elf_find_function (abfd, section, symbols, offset,
12601 filename_ptr, functionname_ptr))
12602 return FALSE;
12603
12604 *line_ptr = 0;
12605 return TRUE;
12606 }
12607
12608 static bfd_boolean
12609 elf32_arm_find_inliner_info (bfd * abfd,
12610 const char ** filename_ptr,
12611 const char ** functionname_ptr,
12612 unsigned int * line_ptr)
12613 {
12614 bfd_boolean found;
12615 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12616 functionname_ptr, line_ptr,
12617 & elf_tdata (abfd)->dwarf2_find_line_info);
12618 return found;
12619 }
12620
12621 /* Adjust a symbol defined by a dynamic object and referenced by a
12622 regular object. The current definition is in some section of the
12623 dynamic object, but we're not including those sections. We have to
12624 change the definition to something the rest of the link can
12625 understand. */
12626
12627 static bfd_boolean
12628 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
12629 struct elf_link_hash_entry * h)
12630 {
12631 bfd * dynobj;
12632 asection * s;
12633 struct elf32_arm_link_hash_entry * eh;
12634 struct elf32_arm_link_hash_table *globals;
12635
12636 globals = elf32_arm_hash_table (info);
12637 if (globals == NULL)
12638 return FALSE;
12639
12640 dynobj = elf_hash_table (info)->dynobj;
12641
12642 /* Make sure we know what is going on here. */
12643 BFD_ASSERT (dynobj != NULL
12644 && (h->needs_plt
12645 || h->type == STT_GNU_IFUNC
12646 || h->u.weakdef != NULL
12647 || (h->def_dynamic
12648 && h->ref_regular
12649 && !h->def_regular)));
12650
12651 eh = (struct elf32_arm_link_hash_entry *) h;
12652
12653 /* If this is a function, put it in the procedure linkage table. We
12654 will fill in the contents of the procedure linkage table later,
12655 when we know the address of the .got section. */
12656 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
12657 {
12658 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
12659 symbol binds locally. */
12660 if (h->plt.refcount <= 0
12661 || (h->type != STT_GNU_IFUNC
12662 && (SYMBOL_CALLS_LOCAL (info, h)
12663 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
12664 && h->root.type == bfd_link_hash_undefweak))))
12665 {
12666 /* This case can occur if we saw a PLT32 reloc in an input
12667 file, but the symbol was never referred to by a dynamic
12668 object, or if all references were garbage collected. In
12669 such a case, we don't actually need to build a procedure
12670 linkage table, and we can just do a PC24 reloc instead. */
12671 h->plt.offset = (bfd_vma) -1;
12672 eh->plt.thumb_refcount = 0;
12673 eh->plt.maybe_thumb_refcount = 0;
12674 eh->plt.noncall_refcount = 0;
12675 h->needs_plt = 0;
12676 }
12677
12678 return TRUE;
12679 }
12680 else
12681 {
12682 /* It's possible that we incorrectly decided a .plt reloc was
12683 needed for an R_ARM_PC24 or similar reloc to a non-function sym
12684 in check_relocs. We can't decide accurately between function
12685 and non-function syms in check-relocs; Objects loaded later in
12686 the link may change h->type. So fix it now. */
12687 h->plt.offset = (bfd_vma) -1;
12688 eh->plt.thumb_refcount = 0;
12689 eh->plt.maybe_thumb_refcount = 0;
12690 eh->plt.noncall_refcount = 0;
12691 }
12692
12693 /* If this is a weak symbol, and there is a real definition, the
12694 processor independent code will have arranged for us to see the
12695 real definition first, and we can just use the same value. */
12696 if (h->u.weakdef != NULL)
12697 {
12698 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
12699 || h->u.weakdef->root.type == bfd_link_hash_defweak);
12700 h->root.u.def.section = h->u.weakdef->root.u.def.section;
12701 h->root.u.def.value = h->u.weakdef->root.u.def.value;
12702 return TRUE;
12703 }
12704
12705 /* If there are no non-GOT references, we do not need a copy
12706 relocation. */
12707 if (!h->non_got_ref)
12708 return TRUE;
12709
12710 /* This is a reference to a symbol defined by a dynamic object which
12711 is not a function. */
12712
12713 /* If we are creating a shared library, we must presume that the
12714 only references to the symbol are via the global offset table.
12715 For such cases we need not do anything here; the relocations will
12716 be handled correctly by relocate_section. Relocatable executables
12717 can reference data in shared objects directly, so we don't need to
12718 do anything here. */
12719 if (info->shared || globals->root.is_relocatable_executable)
12720 return TRUE;
12721
12722 if (h->size == 0)
12723 {
12724 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
12725 h->root.root.string);
12726 return TRUE;
12727 }
12728
12729 /* We must allocate the symbol in our .dynbss section, which will
12730 become part of the .bss section of the executable. There will be
12731 an entry for this symbol in the .dynsym section. The dynamic
12732 object will contain position independent code, so all references
12733 from the dynamic object to this symbol will go through the global
12734 offset table. The dynamic linker will use the .dynsym entry to
12735 determine the address it must put in the global offset table, so
12736 both the dynamic object and the regular object will refer to the
12737 same memory location for the variable. */
12738 s = bfd_get_section_by_name (dynobj, ".dynbss");
12739 BFD_ASSERT (s != NULL);
12740
12741 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
12742 copy the initial value out of the dynamic object and into the
12743 runtime process image. We need to remember the offset into the
12744 .rel(a).bss section we are going to use. */
12745 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
12746 {
12747 asection *srel;
12748
12749 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
12750 elf32_arm_allocate_dynrelocs (info, srel, 1);
12751 h->needs_copy = 1;
12752 }
12753
12754 return _bfd_elf_adjust_dynamic_copy (h, s);
12755 }
12756
12757 /* Allocate space in .plt, .got and associated reloc sections for
12758 dynamic relocs. */
12759
12760 static bfd_boolean
12761 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
12762 {
12763 struct bfd_link_info *info;
12764 struct elf32_arm_link_hash_table *htab;
12765 struct elf32_arm_link_hash_entry *eh;
12766 struct elf_dyn_relocs *p;
12767
12768 if (h->root.type == bfd_link_hash_indirect)
12769 return TRUE;
12770
12771 if (h->root.type == bfd_link_hash_warning)
12772 /* When warning symbols are created, they **replace** the "real"
12773 entry in the hash table, thus we never get to see the real
12774 symbol in a hash traversal. So look at it now. */
12775 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12776
12777 eh = (struct elf32_arm_link_hash_entry *) h;
12778
12779 info = (struct bfd_link_info *) inf;
12780 htab = elf32_arm_hash_table (info);
12781 if (htab == NULL)
12782 return FALSE;
12783
12784 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
12785 && h->plt.refcount > 0)
12786 {
12787 /* Make sure this symbol is output as a dynamic symbol.
12788 Undefined weak syms won't yet be marked as dynamic. */
12789 if (h->dynindx == -1
12790 && !h->forced_local)
12791 {
12792 if (! bfd_elf_link_record_dynamic_symbol (info, h))
12793 return FALSE;
12794 }
12795
12796 /* If the call in the PLT entry binds locally, the associated
12797 GOT entry should use an R_ARM_IRELATIVE relocation instead of
12798 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
12799 than the .plt section. */
12800 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
12801 {
12802 eh->is_iplt = 1;
12803 if (eh->plt.noncall_refcount == 0
12804 && SYMBOL_REFERENCES_LOCAL (info, h))
12805 /* All non-call references can be resolved directly.
12806 This means that they can (and in some cases, must)
12807 resolve directly to the run-time target, rather than
12808 to the PLT. That in turns means that any .got entry
12809 would be equal to the .igot.plt entry, so there's
12810 no point having both. */
12811 h->got.refcount = 0;
12812 }
12813
12814 if (info->shared
12815 || eh->is_iplt
12816 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
12817 {
12818 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
12819
12820 /* If this symbol is not defined in a regular file, and we are
12821 not generating a shared library, then set the symbol to this
12822 location in the .plt. This is required to make function
12823 pointers compare as equal between the normal executable and
12824 the shared library. */
12825 if (! info->shared
12826 && !h->def_regular)
12827 {
12828 h->root.u.def.section = htab->root.splt;
12829 h->root.u.def.value = h->plt.offset;
12830
12831 /* Make sure the function is not marked as Thumb, in case
12832 it is the target of an ABS32 relocation, which will
12833 point to the PLT entry. */
12834 h->target_internal = ST_BRANCH_TO_ARM;
12835 }
12836
12837 htab->next_tls_desc_index++;
12838
12839 /* VxWorks executables have a second set of relocations for
12840 each PLT entry. They go in a separate relocation section,
12841 which is processed by the kernel loader. */
12842 if (htab->vxworks_p && !info->shared)
12843 {
12844 /* There is a relocation for the initial PLT entry:
12845 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
12846 if (h->plt.offset == htab->plt_header_size)
12847 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
12848
12849 /* There are two extra relocations for each subsequent
12850 PLT entry: an R_ARM_32 relocation for the GOT entry,
12851 and an R_ARM_32 relocation for the PLT entry. */
12852 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
12853 }
12854 }
12855 else
12856 {
12857 h->plt.offset = (bfd_vma) -1;
12858 h->needs_plt = 0;
12859 }
12860 }
12861 else
12862 {
12863 h->plt.offset = (bfd_vma) -1;
12864 h->needs_plt = 0;
12865 }
12866
12867 eh = (struct elf32_arm_link_hash_entry *) h;
12868 eh->tlsdesc_got = (bfd_vma) -1;
12869
12870 if (h->got.refcount > 0)
12871 {
12872 asection *s;
12873 bfd_boolean dyn;
12874 int tls_type = elf32_arm_hash_entry (h)->tls_type;
12875 int indx;
12876
12877 /* Make sure this symbol is output as a dynamic symbol.
12878 Undefined weak syms won't yet be marked as dynamic. */
12879 if (h->dynindx == -1
12880 && !h->forced_local)
12881 {
12882 if (! bfd_elf_link_record_dynamic_symbol (info, h))
12883 return FALSE;
12884 }
12885
12886 if (!htab->symbian_p)
12887 {
12888 s = htab->root.sgot;
12889 h->got.offset = s->size;
12890
12891 if (tls_type == GOT_UNKNOWN)
12892 abort ();
12893
12894 if (tls_type == GOT_NORMAL)
12895 /* Non-TLS symbols need one GOT slot. */
12896 s->size += 4;
12897 else
12898 {
12899 if (tls_type & GOT_TLS_GDESC)
12900 {
12901 /* R_ARM_TLS_DESC needs 2 GOT slots. */
12902 eh->tlsdesc_got
12903 = (htab->root.sgotplt->size
12904 - elf32_arm_compute_jump_table_size (htab));
12905 htab->root.sgotplt->size += 8;
12906 h->got.offset = (bfd_vma) -2;
12907 /* plt.got_offset needs to know there's a TLS_DESC
12908 reloc in the middle of .got.plt. */
12909 htab->num_tls_desc++;
12910 }
12911
12912 if (tls_type & GOT_TLS_GD)
12913 {
12914 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
12915 the symbol is both GD and GDESC, got.offset may
12916 have been overwritten. */
12917 h->got.offset = s->size;
12918 s->size += 8;
12919 }
12920
12921 if (tls_type & GOT_TLS_IE)
12922 /* R_ARM_TLS_IE32 needs one GOT slot. */
12923 s->size += 4;
12924 }
12925
12926 dyn = htab->root.dynamic_sections_created;
12927
12928 indx = 0;
12929 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
12930 && (!info->shared
12931 || !SYMBOL_REFERENCES_LOCAL (info, h)))
12932 indx = h->dynindx;
12933
12934 if (tls_type != GOT_NORMAL
12935 && (info->shared || indx != 0)
12936 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
12937 || h->root.type != bfd_link_hash_undefweak))
12938 {
12939 if (tls_type & GOT_TLS_IE)
12940 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12941
12942 if (tls_type & GOT_TLS_GD)
12943 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12944
12945 if (tls_type & GOT_TLS_GDESC)
12946 {
12947 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
12948 /* GDESC needs a trampoline to jump to. */
12949 htab->tls_trampoline = -1;
12950 }
12951
12952 /* Only GD needs it. GDESC just emits one relocation per
12953 2 entries. */
12954 if ((tls_type & GOT_TLS_GD) && indx != 0)
12955 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12956 }
12957 else if (!SYMBOL_REFERENCES_LOCAL (info, h))
12958 {
12959 if (htab->root.dynamic_sections_created)
12960 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
12961 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12962 }
12963 else if (h->type == STT_GNU_IFUNC
12964 && eh->plt.noncall_refcount == 0)
12965 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
12966 they all resolve dynamically instead. Reserve room for the
12967 GOT entry's R_ARM_IRELATIVE relocation. */
12968 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
12969 else if (info->shared)
12970 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
12971 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12972 }
12973 }
12974 else
12975 h->got.offset = (bfd_vma) -1;
12976
12977 /* Allocate stubs for exported Thumb functions on v4t. */
12978 if (!htab->use_blx && h->dynindx != -1
12979 && h->def_regular
12980 && h->target_internal == ST_BRANCH_TO_THUMB
12981 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
12982 {
12983 struct elf_link_hash_entry * th;
12984 struct bfd_link_hash_entry * bh;
12985 struct elf_link_hash_entry * myh;
12986 char name[1024];
12987 asection *s;
12988 bh = NULL;
12989 /* Create a new symbol to regist the real location of the function. */
12990 s = h->root.u.def.section;
12991 sprintf (name, "__real_%s", h->root.root.string);
12992 _bfd_generic_link_add_one_symbol (info, s->owner,
12993 name, BSF_GLOBAL, s,
12994 h->root.u.def.value,
12995 NULL, TRUE, FALSE, &bh);
12996
12997 myh = (struct elf_link_hash_entry *) bh;
12998 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
12999 myh->forced_local = 1;
13000 myh->target_internal = ST_BRANCH_TO_THUMB;
13001 eh->export_glue = myh;
13002 th = record_arm_to_thumb_glue (info, h);
13003 /* Point the symbol at the stub. */
13004 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
13005 h->target_internal = ST_BRANCH_TO_ARM;
13006 h->root.u.def.section = th->root.u.def.section;
13007 h->root.u.def.value = th->root.u.def.value & ~1;
13008 }
13009
13010 if (eh->dyn_relocs == NULL)
13011 return TRUE;
13012
13013 /* In the shared -Bsymbolic case, discard space allocated for
13014 dynamic pc-relative relocs against symbols which turn out to be
13015 defined in regular objects. For the normal shared case, discard
13016 space for pc-relative relocs that have become local due to symbol
13017 visibility changes. */
13018
13019 if (info->shared || htab->root.is_relocatable_executable)
13020 {
13021 /* The only relocs that use pc_count are R_ARM_REL32 and
13022 R_ARM_REL32_NOI, which will appear on something like
13023 ".long foo - .". We want calls to protected symbols to resolve
13024 directly to the function rather than going via the plt. If people
13025 want function pointer comparisons to work as expected then they
13026 should avoid writing assembly like ".long foo - .". */
13027 if (SYMBOL_CALLS_LOCAL (info, h))
13028 {
13029 struct elf_dyn_relocs **pp;
13030
13031 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13032 {
13033 p->count -= p->pc_count;
13034 p->pc_count = 0;
13035 if (p->count == 0)
13036 *pp = p->next;
13037 else
13038 pp = &p->next;
13039 }
13040 }
13041
13042 if (htab->vxworks_p)
13043 {
13044 struct elf_dyn_relocs **pp;
13045
13046 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13047 {
13048 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
13049 *pp = p->next;
13050 else
13051 pp = &p->next;
13052 }
13053 }
13054
13055 /* Also discard relocs on undefined weak syms with non-default
13056 visibility. */
13057 if (eh->dyn_relocs != NULL
13058 && h->root.type == bfd_link_hash_undefweak)
13059 {
13060 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
13061 eh->dyn_relocs = NULL;
13062
13063 /* Make sure undefined weak symbols are output as a dynamic
13064 symbol in PIEs. */
13065 else if (h->dynindx == -1
13066 && !h->forced_local)
13067 {
13068 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13069 return FALSE;
13070 }
13071 }
13072
13073 else if (htab->root.is_relocatable_executable && h->dynindx == -1
13074 && h->root.type == bfd_link_hash_new)
13075 {
13076 /* Output absolute symbols so that we can create relocations
13077 against them. For normal symbols we output a relocation
13078 against the section that contains them. */
13079 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13080 return FALSE;
13081 }
13082
13083 }
13084 else
13085 {
13086 /* For the non-shared case, discard space for relocs against
13087 symbols which turn out to need copy relocs or are not
13088 dynamic. */
13089
13090 if (!h->non_got_ref
13091 && ((h->def_dynamic
13092 && !h->def_regular)
13093 || (htab->root.dynamic_sections_created
13094 && (h->root.type == bfd_link_hash_undefweak
13095 || h->root.type == bfd_link_hash_undefined))))
13096 {
13097 /* Make sure this symbol is output as a dynamic symbol.
13098 Undefined weak syms won't yet be marked as dynamic. */
13099 if (h->dynindx == -1
13100 && !h->forced_local)
13101 {
13102 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13103 return FALSE;
13104 }
13105
13106 /* If that succeeded, we know we'll be keeping all the
13107 relocs. */
13108 if (h->dynindx != -1)
13109 goto keep;
13110 }
13111
13112 eh->dyn_relocs = NULL;
13113
13114 keep: ;
13115 }
13116
13117 /* Finally, allocate space. */
13118 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13119 {
13120 asection *sreloc = elf_section_data (p->sec)->sreloc;
13121 if (h->type == STT_GNU_IFUNC
13122 && eh->plt.noncall_refcount == 0
13123 && SYMBOL_REFERENCES_LOCAL (info, h))
13124 elf32_arm_allocate_irelocs (info, sreloc, p->count);
13125 else
13126 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
13127 }
13128
13129 return TRUE;
13130 }
13131
13132 /* Find any dynamic relocs that apply to read-only sections. */
13133
13134 static bfd_boolean
13135 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
13136 {
13137 struct elf32_arm_link_hash_entry * eh;
13138 struct elf_dyn_relocs * p;
13139
13140 if (h->root.type == bfd_link_hash_warning)
13141 h = (struct elf_link_hash_entry *) h->root.u.i.link;
13142
13143 eh = (struct elf32_arm_link_hash_entry *) h;
13144 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13145 {
13146 asection *s = p->sec;
13147
13148 if (s != NULL && (s->flags & SEC_READONLY) != 0)
13149 {
13150 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13151
13152 info->flags |= DF_TEXTREL;
13153
13154 /* Not an error, just cut short the traversal. */
13155 return FALSE;
13156 }
13157 }
13158 return TRUE;
13159 }
13160
13161 void
13162 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13163 int byteswap_code)
13164 {
13165 struct elf32_arm_link_hash_table *globals;
13166
13167 globals = elf32_arm_hash_table (info);
13168 if (globals == NULL)
13169 return;
13170
13171 globals->byteswap_code = byteswap_code;
13172 }
13173
13174 /* Set the sizes of the dynamic sections. */
13175
13176 static bfd_boolean
13177 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13178 struct bfd_link_info * info)
13179 {
13180 bfd * dynobj;
13181 asection * s;
13182 bfd_boolean plt;
13183 bfd_boolean relocs;
13184 bfd *ibfd;
13185 struct elf32_arm_link_hash_table *htab;
13186
13187 htab = elf32_arm_hash_table (info);
13188 if (htab == NULL)
13189 return FALSE;
13190
13191 dynobj = elf_hash_table (info)->dynobj;
13192 BFD_ASSERT (dynobj != NULL);
13193 check_use_blx (htab);
13194
13195 if (elf_hash_table (info)->dynamic_sections_created)
13196 {
13197 /* Set the contents of the .interp section to the interpreter. */
13198 if (info->executable)
13199 {
13200 s = bfd_get_section_by_name (dynobj, ".interp");
13201 BFD_ASSERT (s != NULL);
13202 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
13203 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13204 }
13205 }
13206
13207 /* Set up .got offsets for local syms, and space for local dynamic
13208 relocs. */
13209 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13210 {
13211 bfd_signed_vma *local_got;
13212 bfd_signed_vma *end_local_got;
13213 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
13214 char *local_tls_type;
13215 bfd_vma *local_tlsdesc_gotent;
13216 bfd_size_type locsymcount;
13217 Elf_Internal_Shdr *symtab_hdr;
13218 asection *srel;
13219 bfd_boolean is_vxworks = htab->vxworks_p;
13220 unsigned int symndx;
13221
13222 if (! is_arm_elf (ibfd))
13223 continue;
13224
13225 for (s = ibfd->sections; s != NULL; s = s->next)
13226 {
13227 struct elf_dyn_relocs *p;
13228
13229 for (p = (struct elf_dyn_relocs *)
13230 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
13231 {
13232 if (!bfd_is_abs_section (p->sec)
13233 && bfd_is_abs_section (p->sec->output_section))
13234 {
13235 /* Input section has been discarded, either because
13236 it is a copy of a linkonce section or due to
13237 linker script /DISCARD/, so we'll be discarding
13238 the relocs too. */
13239 }
13240 else if (is_vxworks
13241 && strcmp (p->sec->output_section->name,
13242 ".tls_vars") == 0)
13243 {
13244 /* Relocations in vxworks .tls_vars sections are
13245 handled specially by the loader. */
13246 }
13247 else if (p->count != 0)
13248 {
13249 srel = elf_section_data (p->sec)->sreloc;
13250 elf32_arm_allocate_dynrelocs (info, srel, p->count);
13251 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
13252 info->flags |= DF_TEXTREL;
13253 }
13254 }
13255 }
13256
13257 local_got = elf_local_got_refcounts (ibfd);
13258 if (!local_got)
13259 continue;
13260
13261 symtab_hdr = & elf_symtab_hdr (ibfd);
13262 locsymcount = symtab_hdr->sh_info;
13263 end_local_got = local_got + locsymcount;
13264 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
13265 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
13266 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
13267 symndx = 0;
13268 s = htab->root.sgot;
13269 srel = htab->root.srelgot;
13270 for (; local_got < end_local_got;
13271 ++local_got, ++local_iplt_ptr, ++local_tls_type,
13272 ++local_tlsdesc_gotent, ++symndx)
13273 {
13274 *local_tlsdesc_gotent = (bfd_vma) -1;
13275 local_iplt = *local_iplt_ptr;
13276 if (local_iplt != NULL)
13277 {
13278 struct elf_dyn_relocs *p;
13279
13280 if (local_iplt->root.refcount > 0)
13281 {
13282 elf32_arm_allocate_plt_entry (info, TRUE,
13283 &local_iplt->root,
13284 &local_iplt->arm);
13285 if (local_iplt->arm.noncall_refcount == 0)
13286 /* All references to the PLT are calls, so all
13287 non-call references can resolve directly to the
13288 run-time target. This means that the .got entry
13289 would be the same as the .igot.plt entry, so there's
13290 no point creating both. */
13291 *local_got = 0;
13292 }
13293 else
13294 {
13295 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13296 local_iplt->root.offset = (bfd_vma) -1;
13297 }
13298
13299 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13300 {
13301 asection *psrel;
13302
13303 psrel = elf_section_data (p->sec)->sreloc;
13304 if (local_iplt->arm.noncall_refcount == 0)
13305 elf32_arm_allocate_irelocs (info, psrel, p->count);
13306 else
13307 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13308 }
13309 }
13310 if (*local_got > 0)
13311 {
13312 Elf_Internal_Sym *isym;
13313
13314 *local_got = s->size;
13315 if (*local_tls_type & GOT_TLS_GD)
13316 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13317 s->size += 8;
13318 if (*local_tls_type & GOT_TLS_GDESC)
13319 {
13320 *local_tlsdesc_gotent = htab->root.sgotplt->size
13321 - elf32_arm_compute_jump_table_size (htab);
13322 htab->root.sgotplt->size += 8;
13323 *local_got = (bfd_vma) -2;
13324 /* plt.got_offset needs to know there's a TLS_DESC
13325 reloc in the middle of .got.plt. */
13326 htab->num_tls_desc++;
13327 }
13328 if (*local_tls_type & GOT_TLS_IE)
13329 s->size += 4;
13330
13331 if (*local_tls_type & GOT_NORMAL)
13332 {
13333 /* If the symbol is both GD and GDESC, *local_got
13334 may have been overwritten. */
13335 *local_got = s->size;
13336 s->size += 4;
13337 }
13338
13339 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13340 if (isym == NULL)
13341 return FALSE;
13342
13343 /* If all references to an STT_GNU_IFUNC PLT are calls,
13344 then all non-call references, including this GOT entry,
13345 resolve directly to the run-time target. */
13346 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13347 && (local_iplt == NULL
13348 || local_iplt->arm.noncall_refcount == 0))
13349 elf32_arm_allocate_irelocs (info, srel, 1);
13350 else if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13351 || *local_tls_type & GOT_TLS_GD)
13352 elf32_arm_allocate_dynrelocs (info, srel, 1);
13353
13354 if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13355 {
13356 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13357 htab->tls_trampoline = -1;
13358 }
13359 }
13360 else
13361 *local_got = (bfd_vma) -1;
13362 }
13363 }
13364
13365 if (htab->tls_ldm_got.refcount > 0)
13366 {
13367 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13368 for R_ARM_TLS_LDM32 relocations. */
13369 htab->tls_ldm_got.offset = htab->root.sgot->size;
13370 htab->root.sgot->size += 8;
13371 if (info->shared)
13372 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13373 }
13374 else
13375 htab->tls_ldm_got.offset = -1;
13376
13377 /* Allocate global sym .plt and .got entries, and space for global
13378 sym dynamic relocs. */
13379 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
13380
13381 /* Here we rummage through the found bfds to collect glue information. */
13382 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13383 {
13384 if (! is_arm_elf (ibfd))
13385 continue;
13386
13387 /* Initialise mapping tables for code/data. */
13388 bfd_elf32_arm_init_maps (ibfd);
13389
13390 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13391 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
13392 /* xgettext:c-format */
13393 _bfd_error_handler (_("Errors encountered processing file %s"),
13394 ibfd->filename);
13395 }
13396
13397 /* Allocate space for the glue sections now that we've sized them. */
13398 bfd_elf32_arm_allocate_interworking_sections (info);
13399
13400 /* For every jump slot reserved in the sgotplt, reloc_count is
13401 incremented. However, when we reserve space for TLS descriptors,
13402 it's not incremented, so in order to compute the space reserved
13403 for them, it suffices to multiply the reloc count by the jump
13404 slot size. */
13405 if (htab->root.srelplt)
13406 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
13407
13408 if (htab->tls_trampoline)
13409 {
13410 if (htab->root.splt->size == 0)
13411 htab->root.splt->size += htab->plt_header_size;
13412
13413 htab->tls_trampoline = htab->root.splt->size;
13414 htab->root.splt->size += htab->plt_entry_size;
13415
13416 /* If we're not using lazy TLS relocations, don't generate the
13417 PLT and GOT entries they require. */
13418 if (!(info->flags & DF_BIND_NOW))
13419 {
13420 htab->dt_tlsdesc_got = htab->root.sgot->size;
13421 htab->root.sgot->size += 4;
13422
13423 htab->dt_tlsdesc_plt = htab->root.splt->size;
13424 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
13425 }
13426 }
13427
13428 /* The check_relocs and adjust_dynamic_symbol entry points have
13429 determined the sizes of the various dynamic sections. Allocate
13430 memory for them. */
13431 plt = FALSE;
13432 relocs = FALSE;
13433 for (s = dynobj->sections; s != NULL; s = s->next)
13434 {
13435 const char * name;
13436
13437 if ((s->flags & SEC_LINKER_CREATED) == 0)
13438 continue;
13439
13440 /* It's OK to base decisions on the section name, because none
13441 of the dynobj section names depend upon the input files. */
13442 name = bfd_get_section_name (dynobj, s);
13443
13444 if (s == htab->root.splt)
13445 {
13446 /* Remember whether there is a PLT. */
13447 plt = s->size != 0;
13448 }
13449 else if (CONST_STRNEQ (name, ".rel"))
13450 {
13451 if (s->size != 0)
13452 {
13453 /* Remember whether there are any reloc sections other
13454 than .rel(a).plt and .rela.plt.unloaded. */
13455 if (s != htab->root.srelplt && s != htab->srelplt2)
13456 relocs = TRUE;
13457
13458 /* We use the reloc_count field as a counter if we need
13459 to copy relocs into the output file. */
13460 s->reloc_count = 0;
13461 }
13462 }
13463 else if (s != htab->root.sgot
13464 && s != htab->root.sgotplt
13465 && s != htab->root.iplt
13466 && s != htab->root.igotplt
13467 && s != htab->sdynbss)
13468 {
13469 /* It's not one of our sections, so don't allocate space. */
13470 continue;
13471 }
13472
13473 if (s->size == 0)
13474 {
13475 /* If we don't need this section, strip it from the
13476 output file. This is mostly to handle .rel(a).bss and
13477 .rel(a).plt. We must create both sections in
13478 create_dynamic_sections, because they must be created
13479 before the linker maps input sections to output
13480 sections. The linker does that before
13481 adjust_dynamic_symbol is called, and it is that
13482 function which decides whether anything needs to go
13483 into these sections. */
13484 s->flags |= SEC_EXCLUDE;
13485 continue;
13486 }
13487
13488 if ((s->flags & SEC_HAS_CONTENTS) == 0)
13489 continue;
13490
13491 /* Allocate memory for the section contents. */
13492 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
13493 if (s->contents == NULL)
13494 return FALSE;
13495 }
13496
13497 if (elf_hash_table (info)->dynamic_sections_created)
13498 {
13499 /* Add some entries to the .dynamic section. We fill in the
13500 values later, in elf32_arm_finish_dynamic_sections, but we
13501 must add the entries now so that we get the correct size for
13502 the .dynamic section. The DT_DEBUG entry is filled in by the
13503 dynamic linker and used by the debugger. */
13504 #define add_dynamic_entry(TAG, VAL) \
13505 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
13506
13507 if (info->executable)
13508 {
13509 if (!add_dynamic_entry (DT_DEBUG, 0))
13510 return FALSE;
13511 }
13512
13513 if (plt)
13514 {
13515 if ( !add_dynamic_entry (DT_PLTGOT, 0)
13516 || !add_dynamic_entry (DT_PLTRELSZ, 0)
13517 || !add_dynamic_entry (DT_PLTREL,
13518 htab->use_rel ? DT_REL : DT_RELA)
13519 || !add_dynamic_entry (DT_JMPREL, 0))
13520 return FALSE;
13521
13522 if (htab->dt_tlsdesc_plt &&
13523 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
13524 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
13525 return FALSE;
13526 }
13527
13528 if (relocs)
13529 {
13530 if (htab->use_rel)
13531 {
13532 if (!add_dynamic_entry (DT_REL, 0)
13533 || !add_dynamic_entry (DT_RELSZ, 0)
13534 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
13535 return FALSE;
13536 }
13537 else
13538 {
13539 if (!add_dynamic_entry (DT_RELA, 0)
13540 || !add_dynamic_entry (DT_RELASZ, 0)
13541 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
13542 return FALSE;
13543 }
13544 }
13545
13546 /* If any dynamic relocs apply to a read-only section,
13547 then we need a DT_TEXTREL entry. */
13548 if ((info->flags & DF_TEXTREL) == 0)
13549 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
13550 info);
13551
13552 if ((info->flags & DF_TEXTREL) != 0)
13553 {
13554 if (!add_dynamic_entry (DT_TEXTREL, 0))
13555 return FALSE;
13556 }
13557 if (htab->vxworks_p
13558 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
13559 return FALSE;
13560 }
13561 #undef add_dynamic_entry
13562
13563 return TRUE;
13564 }
13565
13566 /* Size sections even though they're not dynamic. We use it to setup
13567 _TLS_MODULE_BASE_, if needed. */
13568
13569 static bfd_boolean
13570 elf32_arm_always_size_sections (bfd *output_bfd,
13571 struct bfd_link_info *info)
13572 {
13573 asection *tls_sec;
13574
13575 if (info->relocatable)
13576 return TRUE;
13577
13578 tls_sec = elf_hash_table (info)->tls_sec;
13579
13580 if (tls_sec)
13581 {
13582 struct elf_link_hash_entry *tlsbase;
13583
13584 tlsbase = elf_link_hash_lookup
13585 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
13586
13587 if (tlsbase)
13588 {
13589 struct bfd_link_hash_entry *bh = NULL;
13590 const struct elf_backend_data *bed
13591 = get_elf_backend_data (output_bfd);
13592
13593 if (!(_bfd_generic_link_add_one_symbol
13594 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
13595 tls_sec, 0, NULL, FALSE,
13596 bed->collect, &bh)))
13597 return FALSE;
13598
13599 tlsbase->type = STT_TLS;
13600 tlsbase = (struct elf_link_hash_entry *)bh;
13601 tlsbase->def_regular = 1;
13602 tlsbase->other = STV_HIDDEN;
13603 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
13604 }
13605 }
13606 return TRUE;
13607 }
13608
13609 /* Finish up dynamic symbol handling. We set the contents of various
13610 dynamic sections here. */
13611
13612 static bfd_boolean
13613 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
13614 struct bfd_link_info * info,
13615 struct elf_link_hash_entry * h,
13616 Elf_Internal_Sym * sym)
13617 {
13618 struct elf32_arm_link_hash_table *htab;
13619 struct elf32_arm_link_hash_entry *eh;
13620
13621 htab = elf32_arm_hash_table (info);
13622 if (htab == NULL)
13623 return FALSE;
13624
13625 eh = (struct elf32_arm_link_hash_entry *) h;
13626
13627 if (h->plt.offset != (bfd_vma) -1)
13628 {
13629 if (!eh->is_iplt)
13630 {
13631 BFD_ASSERT (h->dynindx != -1);
13632 elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
13633 h->dynindx, 0);
13634 }
13635
13636 if (!h->def_regular)
13637 {
13638 /* Mark the symbol as undefined, rather than as defined in
13639 the .plt section. Leave the value alone. */
13640 sym->st_shndx = SHN_UNDEF;
13641 /* If the symbol is weak, we do need to clear the value.
13642 Otherwise, the PLT entry would provide a definition for
13643 the symbol even if the symbol wasn't defined anywhere,
13644 and so the symbol would never be NULL. */
13645 if (!h->ref_regular_nonweak)
13646 sym->st_value = 0;
13647 }
13648 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
13649 {
13650 /* At least one non-call relocation references this .iplt entry,
13651 so the .iplt entry is the function's canonical address. */
13652 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
13653 sym->st_target_internal = ST_BRANCH_TO_ARM;
13654 sym->st_shndx = (_bfd_elf_section_from_bfd_section
13655 (output_bfd, htab->root.iplt->output_section));
13656 sym->st_value = (h->plt.offset
13657 + htab->root.iplt->output_section->vma
13658 + htab->root.iplt->output_offset);
13659 }
13660 }
13661
13662 if (h->needs_copy)
13663 {
13664 asection * s;
13665 Elf_Internal_Rela rel;
13666
13667 /* This symbol needs a copy reloc. Set it up. */
13668 BFD_ASSERT (h->dynindx != -1
13669 && (h->root.type == bfd_link_hash_defined
13670 || h->root.type == bfd_link_hash_defweak));
13671
13672 s = htab->srelbss;
13673 BFD_ASSERT (s != NULL);
13674
13675 rel.r_addend = 0;
13676 rel.r_offset = (h->root.u.def.value
13677 + h->root.u.def.section->output_section->vma
13678 + h->root.u.def.section->output_offset);
13679 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
13680 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
13681 }
13682
13683 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
13684 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
13685 to the ".got" section. */
13686 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
13687 || (!htab->vxworks_p && h == htab->root.hgot))
13688 sym->st_shndx = SHN_ABS;
13689
13690 return TRUE;
13691 }
13692
13693 static void
13694 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
13695 void *contents,
13696 const unsigned long *template, unsigned count)
13697 {
13698 unsigned ix;
13699
13700 for (ix = 0; ix != count; ix++)
13701 {
13702 unsigned long insn = template[ix];
13703
13704 /* Emit mov pc,rx if bx is not permitted. */
13705 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
13706 insn = (insn & 0xf000000f) | 0x01a0f000;
13707 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
13708 }
13709 }
13710
13711 /* Finish up the dynamic sections. */
13712
13713 static bfd_boolean
13714 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
13715 {
13716 bfd * dynobj;
13717 asection * sgot;
13718 asection * sdyn;
13719 struct elf32_arm_link_hash_table *htab;
13720
13721 htab = elf32_arm_hash_table (info);
13722 if (htab == NULL)
13723 return FALSE;
13724
13725 dynobj = elf_hash_table (info)->dynobj;
13726
13727 sgot = htab->root.sgotplt;
13728 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
13729
13730 if (elf_hash_table (info)->dynamic_sections_created)
13731 {
13732 asection *splt;
13733 Elf32_External_Dyn *dyncon, *dynconend;
13734
13735 splt = htab->root.splt;
13736 BFD_ASSERT (splt != NULL && sdyn != NULL);
13737 BFD_ASSERT (htab->symbian_p || sgot != NULL);
13738
13739 dyncon = (Elf32_External_Dyn *) sdyn->contents;
13740 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
13741
13742 for (; dyncon < dynconend; dyncon++)
13743 {
13744 Elf_Internal_Dyn dyn;
13745 const char * name;
13746 asection * s;
13747
13748 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
13749
13750 switch (dyn.d_tag)
13751 {
13752 unsigned int type;
13753
13754 default:
13755 if (htab->vxworks_p
13756 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
13757 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13758 break;
13759
13760 case DT_HASH:
13761 name = ".hash";
13762 goto get_vma_if_bpabi;
13763 case DT_STRTAB:
13764 name = ".dynstr";
13765 goto get_vma_if_bpabi;
13766 case DT_SYMTAB:
13767 name = ".dynsym";
13768 goto get_vma_if_bpabi;
13769 case DT_VERSYM:
13770 name = ".gnu.version";
13771 goto get_vma_if_bpabi;
13772 case DT_VERDEF:
13773 name = ".gnu.version_d";
13774 goto get_vma_if_bpabi;
13775 case DT_VERNEED:
13776 name = ".gnu.version_r";
13777 goto get_vma_if_bpabi;
13778
13779 case DT_PLTGOT:
13780 name = ".got";
13781 goto get_vma;
13782 case DT_JMPREL:
13783 name = RELOC_SECTION (htab, ".plt");
13784 get_vma:
13785 s = bfd_get_section_by_name (output_bfd, name);
13786 BFD_ASSERT (s != NULL);
13787 if (!htab->symbian_p)
13788 dyn.d_un.d_ptr = s->vma;
13789 else
13790 /* In the BPABI, tags in the PT_DYNAMIC section point
13791 at the file offset, not the memory address, for the
13792 convenience of the post linker. */
13793 dyn.d_un.d_ptr = s->filepos;
13794 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13795 break;
13796
13797 get_vma_if_bpabi:
13798 if (htab->symbian_p)
13799 goto get_vma;
13800 break;
13801
13802 case DT_PLTRELSZ:
13803 s = htab->root.srelplt;
13804 BFD_ASSERT (s != NULL);
13805 dyn.d_un.d_val = s->size;
13806 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13807 break;
13808
13809 case DT_RELSZ:
13810 case DT_RELASZ:
13811 if (!htab->symbian_p)
13812 {
13813 /* My reading of the SVR4 ABI indicates that the
13814 procedure linkage table relocs (DT_JMPREL) should be
13815 included in the overall relocs (DT_REL). This is
13816 what Solaris does. However, UnixWare can not handle
13817 that case. Therefore, we override the DT_RELSZ entry
13818 here to make it not include the JMPREL relocs. Since
13819 the linker script arranges for .rel(a).plt to follow all
13820 other relocation sections, we don't have to worry
13821 about changing the DT_REL entry. */
13822 s = htab->root.srelplt;
13823 if (s != NULL)
13824 dyn.d_un.d_val -= s->size;
13825 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13826 break;
13827 }
13828 /* Fall through. */
13829
13830 case DT_REL:
13831 case DT_RELA:
13832 /* In the BPABI, the DT_REL tag must point at the file
13833 offset, not the VMA, of the first relocation
13834 section. So, we use code similar to that in
13835 elflink.c, but do not check for SHF_ALLOC on the
13836 relcoation section, since relocations sections are
13837 never allocated under the BPABI. The comments above
13838 about Unixware notwithstanding, we include all of the
13839 relocations here. */
13840 if (htab->symbian_p)
13841 {
13842 unsigned int i;
13843 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
13844 ? SHT_REL : SHT_RELA);
13845 dyn.d_un.d_val = 0;
13846 for (i = 1; i < elf_numsections (output_bfd); i++)
13847 {
13848 Elf_Internal_Shdr *hdr
13849 = elf_elfsections (output_bfd)[i];
13850 if (hdr->sh_type == type)
13851 {
13852 if (dyn.d_tag == DT_RELSZ
13853 || dyn.d_tag == DT_RELASZ)
13854 dyn.d_un.d_val += hdr->sh_size;
13855 else if ((ufile_ptr) hdr->sh_offset
13856 <= dyn.d_un.d_val - 1)
13857 dyn.d_un.d_val = hdr->sh_offset;
13858 }
13859 }
13860 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13861 }
13862 break;
13863
13864 case DT_TLSDESC_PLT:
13865 s = htab->root.splt;
13866 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
13867 + htab->dt_tlsdesc_plt);
13868 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13869 break;
13870
13871 case DT_TLSDESC_GOT:
13872 s = htab->root.sgot;
13873 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
13874 + htab->dt_tlsdesc_got);
13875 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13876 break;
13877
13878 /* Set the bottom bit of DT_INIT/FINI if the
13879 corresponding function is Thumb. */
13880 case DT_INIT:
13881 name = info->init_function;
13882 goto get_sym;
13883 case DT_FINI:
13884 name = info->fini_function;
13885 get_sym:
13886 /* If it wasn't set by elf_bfd_final_link
13887 then there is nothing to adjust. */
13888 if (dyn.d_un.d_val != 0)
13889 {
13890 struct elf_link_hash_entry * eh;
13891
13892 eh = elf_link_hash_lookup (elf_hash_table (info), name,
13893 FALSE, FALSE, TRUE);
13894 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
13895 {
13896 dyn.d_un.d_val |= 1;
13897 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13898 }
13899 }
13900 break;
13901 }
13902 }
13903
13904 /* Fill in the first entry in the procedure linkage table. */
13905 if (splt->size > 0 && htab->plt_header_size)
13906 {
13907 const bfd_vma *plt0_entry;
13908 bfd_vma got_address, plt_address, got_displacement;
13909
13910 /* Calculate the addresses of the GOT and PLT. */
13911 got_address = sgot->output_section->vma + sgot->output_offset;
13912 plt_address = splt->output_section->vma + splt->output_offset;
13913
13914 if (htab->vxworks_p)
13915 {
13916 /* The VxWorks GOT is relocated by the dynamic linker.
13917 Therefore, we must emit relocations rather than simply
13918 computing the values now. */
13919 Elf_Internal_Rela rel;
13920
13921 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
13922 put_arm_insn (htab, output_bfd, plt0_entry[0],
13923 splt->contents + 0);
13924 put_arm_insn (htab, output_bfd, plt0_entry[1],
13925 splt->contents + 4);
13926 put_arm_insn (htab, output_bfd, plt0_entry[2],
13927 splt->contents + 8);
13928 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
13929
13930 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
13931 rel.r_offset = plt_address + 12;
13932 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
13933 rel.r_addend = 0;
13934 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
13935 htab->srelplt2->contents);
13936 }
13937 else
13938 {
13939 got_displacement = got_address - (plt_address + 16);
13940
13941 plt0_entry = elf32_arm_plt0_entry;
13942 put_arm_insn (htab, output_bfd, plt0_entry[0],
13943 splt->contents + 0);
13944 put_arm_insn (htab, output_bfd, plt0_entry[1],
13945 splt->contents + 4);
13946 put_arm_insn (htab, output_bfd, plt0_entry[2],
13947 splt->contents + 8);
13948 put_arm_insn (htab, output_bfd, plt0_entry[3],
13949 splt->contents + 12);
13950
13951 #ifdef FOUR_WORD_PLT
13952 /* The displacement value goes in the otherwise-unused
13953 last word of the second entry. */
13954 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
13955 #else
13956 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
13957 #endif
13958 }
13959 }
13960
13961 /* UnixWare sets the entsize of .plt to 4, although that doesn't
13962 really seem like the right value. */
13963 if (splt->output_section->owner == output_bfd)
13964 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
13965
13966 if (htab->dt_tlsdesc_plt)
13967 {
13968 bfd_vma got_address
13969 = sgot->output_section->vma + sgot->output_offset;
13970 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
13971 + htab->root.sgot->output_offset);
13972 bfd_vma plt_address
13973 = splt->output_section->vma + splt->output_offset;
13974
13975 arm_put_trampoline (htab, output_bfd,
13976 splt->contents + htab->dt_tlsdesc_plt,
13977 dl_tlsdesc_lazy_trampoline, 6);
13978
13979 bfd_put_32 (output_bfd,
13980 gotplt_address + htab->dt_tlsdesc_got
13981 - (plt_address + htab->dt_tlsdesc_plt)
13982 - dl_tlsdesc_lazy_trampoline[6],
13983 splt->contents + htab->dt_tlsdesc_plt + 24);
13984 bfd_put_32 (output_bfd,
13985 got_address - (plt_address + htab->dt_tlsdesc_plt)
13986 - dl_tlsdesc_lazy_trampoline[7],
13987 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
13988 }
13989
13990 if (htab->tls_trampoline)
13991 {
13992 arm_put_trampoline (htab, output_bfd,
13993 splt->contents + htab->tls_trampoline,
13994 tls_trampoline, 3);
13995 #ifdef FOUR_WORD_PLT
13996 bfd_put_32 (output_bfd, 0x00000000,
13997 splt->contents + htab->tls_trampoline + 12);
13998 #endif
13999 }
14000
14001 if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
14002 {
14003 /* Correct the .rel(a).plt.unloaded relocations. They will have
14004 incorrect symbol indexes. */
14005 int num_plts;
14006 unsigned char *p;
14007
14008 num_plts = ((htab->root.splt->size - htab->plt_header_size)
14009 / htab->plt_entry_size);
14010 p = htab->srelplt2->contents + RELOC_SIZE (htab);
14011
14012 for (; num_plts; num_plts--)
14013 {
14014 Elf_Internal_Rela rel;
14015
14016 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14017 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14018 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14019 p += RELOC_SIZE (htab);
14020
14021 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14022 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14023 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14024 p += RELOC_SIZE (htab);
14025 }
14026 }
14027 }
14028
14029 /* Fill in the first three entries in the global offset table. */
14030 if (sgot)
14031 {
14032 if (sgot->size > 0)
14033 {
14034 if (sdyn == NULL)
14035 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14036 else
14037 bfd_put_32 (output_bfd,
14038 sdyn->output_section->vma + sdyn->output_offset,
14039 sgot->contents);
14040 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14041 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14042 }
14043
14044 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14045 }
14046
14047 return TRUE;
14048 }
14049
14050 static void
14051 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
14052 {
14053 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
14054 struct elf32_arm_link_hash_table *globals;
14055
14056 i_ehdrp = elf_elfheader (abfd);
14057
14058 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14059 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14060 else
14061 i_ehdrp->e_ident[EI_OSABI] = 0;
14062 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
14063
14064 if (link_info)
14065 {
14066 globals = elf32_arm_hash_table (link_info);
14067 if (globals != NULL && globals->byteswap_code)
14068 i_ehdrp->e_flags |= EF_ARM_BE8;
14069 }
14070 }
14071
14072 static enum elf_reloc_type_class
14073 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
14074 {
14075 switch ((int) ELF32_R_TYPE (rela->r_info))
14076 {
14077 case R_ARM_RELATIVE:
14078 return reloc_class_relative;
14079 case R_ARM_JUMP_SLOT:
14080 return reloc_class_plt;
14081 case R_ARM_COPY:
14082 return reloc_class_copy;
14083 default:
14084 return reloc_class_normal;
14085 }
14086 }
14087
14088 /* Set the right machine number for an Arm ELF file. */
14089
14090 static bfd_boolean
14091 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
14092 {
14093 if (hdr->sh_type == SHT_NOTE)
14094 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
14095
14096 return TRUE;
14097 }
14098
14099 static void
14100 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
14101 {
14102 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
14103 }
14104
14105 /* Return TRUE if this is an unwinding table entry. */
14106
14107 static bfd_boolean
14108 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14109 {
14110 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14111 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
14112 }
14113
14114
14115 /* Set the type and flags for an ARM section. We do this by
14116 the section name, which is a hack, but ought to work. */
14117
14118 static bfd_boolean
14119 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14120 {
14121 const char * name;
14122
14123 name = bfd_get_section_name (abfd, sec);
14124
14125 if (is_arm_elf_unwind_section_name (abfd, name))
14126 {
14127 hdr->sh_type = SHT_ARM_EXIDX;
14128 hdr->sh_flags |= SHF_LINK_ORDER;
14129 }
14130 return TRUE;
14131 }
14132
14133 /* Handle an ARM specific section when reading an object file. This is
14134 called when bfd_section_from_shdr finds a section with an unknown
14135 type. */
14136
14137 static bfd_boolean
14138 elf32_arm_section_from_shdr (bfd *abfd,
14139 Elf_Internal_Shdr * hdr,
14140 const char *name,
14141 int shindex)
14142 {
14143 /* There ought to be a place to keep ELF backend specific flags, but
14144 at the moment there isn't one. We just keep track of the
14145 sections by their name, instead. Fortunately, the ABI gives
14146 names for all the ARM specific sections, so we will probably get
14147 away with this. */
14148 switch (hdr->sh_type)
14149 {
14150 case SHT_ARM_EXIDX:
14151 case SHT_ARM_PREEMPTMAP:
14152 case SHT_ARM_ATTRIBUTES:
14153 break;
14154
14155 default:
14156 return FALSE;
14157 }
14158
14159 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
14160 return FALSE;
14161
14162 return TRUE;
14163 }
14164
14165 static _arm_elf_section_data *
14166 get_arm_elf_section_data (asection * sec)
14167 {
14168 if (sec && sec->owner && is_arm_elf (sec->owner))
14169 return elf32_arm_section_data (sec);
14170 else
14171 return NULL;
14172 }
14173
14174 typedef struct
14175 {
14176 void *finfo;
14177 struct bfd_link_info *info;
14178 asection *sec;
14179 int sec_shndx;
14180 int (*func) (void *, const char *, Elf_Internal_Sym *,
14181 asection *, struct elf_link_hash_entry *);
14182 } output_arch_syminfo;
14183
14184 enum map_symbol_type
14185 {
14186 ARM_MAP_ARM,
14187 ARM_MAP_THUMB,
14188 ARM_MAP_DATA
14189 };
14190
14191
14192 /* Output a single mapping symbol. */
14193
14194 static bfd_boolean
14195 elf32_arm_output_map_sym (output_arch_syminfo *osi,
14196 enum map_symbol_type type,
14197 bfd_vma offset)
14198 {
14199 static const char *names[3] = {"$a", "$t", "$d"};
14200 Elf_Internal_Sym sym;
14201
14202 sym.st_value = osi->sec->output_section->vma
14203 + osi->sec->output_offset
14204 + offset;
14205 sym.st_size = 0;
14206 sym.st_other = 0;
14207 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
14208 sym.st_shndx = osi->sec_shndx;
14209 sym.st_target_internal = 0;
14210 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
14211 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
14212 }
14213
14214 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14215 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
14216
14217 static bfd_boolean
14218 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14219 bfd_boolean is_iplt_entry_p,
14220 union gotplt_union *root_plt,
14221 struct arm_plt_info *arm_plt)
14222 {
14223 struct elf32_arm_link_hash_table *htab;
14224 bfd_vma addr, plt_header_size;
14225
14226 if (root_plt->offset == (bfd_vma) -1)
14227 return TRUE;
14228
14229 htab = elf32_arm_hash_table (osi->info);
14230 if (htab == NULL)
14231 return FALSE;
14232
14233 if (is_iplt_entry_p)
14234 {
14235 osi->sec = htab->root.iplt;
14236 plt_header_size = 0;
14237 }
14238 else
14239 {
14240 osi->sec = htab->root.splt;
14241 plt_header_size = htab->plt_header_size;
14242 }
14243 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14244 (osi->info->output_bfd, osi->sec->output_section));
14245
14246 addr = root_plt->offset & -2;
14247 if (htab->symbian_p)
14248 {
14249 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14250 return FALSE;
14251 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
14252 return FALSE;
14253 }
14254 else if (htab->vxworks_p)
14255 {
14256 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14257 return FALSE;
14258 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
14259 return FALSE;
14260 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
14261 return FALSE;
14262 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
14263 return FALSE;
14264 }
14265 else
14266 {
14267 bfd_boolean thumb_stub_p;
14268
14269 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14270 if (thumb_stub_p)
14271 {
14272 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
14273 return FALSE;
14274 }
14275 #ifdef FOUR_WORD_PLT
14276 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14277 return FALSE;
14278 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
14279 return FALSE;
14280 #else
14281 /* A three-word PLT with no Thumb thunk contains only Arm code,
14282 so only need to output a mapping symbol for the first PLT entry and
14283 entries with thumb thunks. */
14284 if (thumb_stub_p || addr == plt_header_size)
14285 {
14286 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14287 return FALSE;
14288 }
14289 #endif
14290 }
14291
14292 return TRUE;
14293 }
14294
14295 /* Output mapping symbols for PLT entries associated with H. */
14296
14297 static bfd_boolean
14298 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14299 {
14300 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14301 struct elf32_arm_link_hash_entry *eh;
14302
14303 if (h->root.type == bfd_link_hash_indirect)
14304 return TRUE;
14305
14306 if (h->root.type == bfd_link_hash_warning)
14307 /* When warning symbols are created, they **replace** the "real"
14308 entry in the hash table, thus we never get to see the real
14309 symbol in a hash traversal. So look at it now. */
14310 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14311
14312 eh = (struct elf32_arm_link_hash_entry *) h;
14313 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14314 &h->plt, &eh->plt);
14315 }
14316
14317 /* Output a single local symbol for a generated stub. */
14318
14319 static bfd_boolean
14320 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14321 bfd_vma offset, bfd_vma size)
14322 {
14323 Elf_Internal_Sym sym;
14324
14325 sym.st_value = osi->sec->output_section->vma
14326 + osi->sec->output_offset
14327 + offset;
14328 sym.st_size = size;
14329 sym.st_other = 0;
14330 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14331 sym.st_shndx = osi->sec_shndx;
14332 sym.st_target_internal = 0;
14333 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
14334 }
14335
14336 static bfd_boolean
14337 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
14338 void * in_arg)
14339 {
14340 struct elf32_arm_stub_hash_entry *stub_entry;
14341 asection *stub_sec;
14342 bfd_vma addr;
14343 char *stub_name;
14344 output_arch_syminfo *osi;
14345 const insn_sequence *template_sequence;
14346 enum stub_insn_type prev_type;
14347 int size;
14348 int i;
14349 enum map_symbol_type sym_type;
14350
14351 /* Massage our args to the form they really have. */
14352 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14353 osi = (output_arch_syminfo *) in_arg;
14354
14355 stub_sec = stub_entry->stub_sec;
14356
14357 /* Ensure this stub is attached to the current section being
14358 processed. */
14359 if (stub_sec != osi->sec)
14360 return TRUE;
14361
14362 addr = (bfd_vma) stub_entry->stub_offset;
14363 stub_name = stub_entry->output_name;
14364
14365 template_sequence = stub_entry->stub_template;
14366 switch (template_sequence[0].type)
14367 {
14368 case ARM_TYPE:
14369 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
14370 return FALSE;
14371 break;
14372 case THUMB16_TYPE:
14373 case THUMB32_TYPE:
14374 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
14375 stub_entry->stub_size))
14376 return FALSE;
14377 break;
14378 default:
14379 BFD_FAIL ();
14380 return 0;
14381 }
14382
14383 prev_type = DATA_TYPE;
14384 size = 0;
14385 for (i = 0; i < stub_entry->stub_template_size; i++)
14386 {
14387 switch (template_sequence[i].type)
14388 {
14389 case ARM_TYPE:
14390 sym_type = ARM_MAP_ARM;
14391 break;
14392
14393 case THUMB16_TYPE:
14394 case THUMB32_TYPE:
14395 sym_type = ARM_MAP_THUMB;
14396 break;
14397
14398 case DATA_TYPE:
14399 sym_type = ARM_MAP_DATA;
14400 break;
14401
14402 default:
14403 BFD_FAIL ();
14404 return FALSE;
14405 }
14406
14407 if (template_sequence[i].type != prev_type)
14408 {
14409 prev_type = template_sequence[i].type;
14410 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
14411 return FALSE;
14412 }
14413
14414 switch (template_sequence[i].type)
14415 {
14416 case ARM_TYPE:
14417 case THUMB32_TYPE:
14418 size += 4;
14419 break;
14420
14421 case THUMB16_TYPE:
14422 size += 2;
14423 break;
14424
14425 case DATA_TYPE:
14426 size += 4;
14427 break;
14428
14429 default:
14430 BFD_FAIL ();
14431 return FALSE;
14432 }
14433 }
14434
14435 return TRUE;
14436 }
14437
14438 /* Output mapping symbols for linker generated sections,
14439 and for those data-only sections that do not have a
14440 $d. */
14441
14442 static bfd_boolean
14443 elf32_arm_output_arch_local_syms (bfd *output_bfd,
14444 struct bfd_link_info *info,
14445 void *finfo,
14446 int (*func) (void *, const char *,
14447 Elf_Internal_Sym *,
14448 asection *,
14449 struct elf_link_hash_entry *))
14450 {
14451 output_arch_syminfo osi;
14452 struct elf32_arm_link_hash_table *htab;
14453 bfd_vma offset;
14454 bfd_size_type size;
14455 bfd *input_bfd;
14456
14457 htab = elf32_arm_hash_table (info);
14458 if (htab == NULL)
14459 return FALSE;
14460
14461 check_use_blx (htab);
14462
14463 osi.finfo = finfo;
14464 osi.info = info;
14465 osi.func = func;
14466
14467 /* Add a $d mapping symbol to data-only sections that
14468 don't have any mapping symbol. This may result in (harmless) redundant
14469 mapping symbols. */
14470 for (input_bfd = info->input_bfds;
14471 input_bfd != NULL;
14472 input_bfd = input_bfd->link_next)
14473 {
14474 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
14475 for (osi.sec = input_bfd->sections;
14476 osi.sec != NULL;
14477 osi.sec = osi.sec->next)
14478 {
14479 if (osi.sec->output_section != NULL
14480 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
14481 != 0)
14482 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
14483 == SEC_HAS_CONTENTS
14484 && get_arm_elf_section_data (osi.sec) != NULL
14485 && get_arm_elf_section_data (osi.sec)->mapcount == 0
14486 && osi.sec->size > 0)
14487 {
14488 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14489 (output_bfd, osi.sec->output_section);
14490 if (osi.sec_shndx != (int)SHN_BAD)
14491 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
14492 }
14493 }
14494 }
14495
14496 /* ARM->Thumb glue. */
14497 if (htab->arm_glue_size > 0)
14498 {
14499 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14500 ARM2THUMB_GLUE_SECTION_NAME);
14501
14502 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14503 (output_bfd, osi.sec->output_section);
14504 if (info->shared || htab->root.is_relocatable_executable
14505 || htab->pic_veneer)
14506 size = ARM2THUMB_PIC_GLUE_SIZE;
14507 else if (htab->use_blx)
14508 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
14509 else
14510 size = ARM2THUMB_STATIC_GLUE_SIZE;
14511
14512 for (offset = 0; offset < htab->arm_glue_size; offset += size)
14513 {
14514 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
14515 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
14516 }
14517 }
14518
14519 /* Thumb->ARM glue. */
14520 if (htab->thumb_glue_size > 0)
14521 {
14522 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14523 THUMB2ARM_GLUE_SECTION_NAME);
14524
14525 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14526 (output_bfd, osi.sec->output_section);
14527 size = THUMB2ARM_GLUE_SIZE;
14528
14529 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
14530 {
14531 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
14532 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
14533 }
14534 }
14535
14536 /* ARMv4 BX veneers. */
14537 if (htab->bx_glue_size > 0)
14538 {
14539 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14540 ARM_BX_GLUE_SECTION_NAME);
14541
14542 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14543 (output_bfd, osi.sec->output_section);
14544
14545 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
14546 }
14547
14548 /* Long calls stubs. */
14549 if (htab->stub_bfd && htab->stub_bfd->sections)
14550 {
14551 asection* stub_sec;
14552
14553 for (stub_sec = htab->stub_bfd->sections;
14554 stub_sec != NULL;
14555 stub_sec = stub_sec->next)
14556 {
14557 /* Ignore non-stub sections. */
14558 if (!strstr (stub_sec->name, STUB_SUFFIX))
14559 continue;
14560
14561 osi.sec = stub_sec;
14562
14563 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14564 (output_bfd, osi.sec->output_section);
14565
14566 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
14567 }
14568 }
14569
14570 /* Finally, output mapping symbols for the PLT. */
14571 if (htab->root.splt && htab->root.splt->size > 0)
14572 {
14573 osi.sec = htab->root.splt;
14574 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
14575 (output_bfd, osi.sec->output_section));
14576
14577 /* Output mapping symbols for the plt header. SymbianOS does not have a
14578 plt header. */
14579 if (htab->vxworks_p)
14580 {
14581 /* VxWorks shared libraries have no PLT header. */
14582 if (!info->shared)
14583 {
14584 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14585 return FALSE;
14586 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
14587 return FALSE;
14588 }
14589 }
14590 else if (!htab->symbian_p)
14591 {
14592 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14593 return FALSE;
14594 #ifndef FOUR_WORD_PLT
14595 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
14596 return FALSE;
14597 #endif
14598 }
14599 }
14600 if ((htab->root.splt && htab->root.splt->size > 0)
14601 || (htab->root.iplt && htab->root.iplt->size > 0))
14602 {
14603 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
14604 for (input_bfd = info->input_bfds;
14605 input_bfd != NULL;
14606 input_bfd = input_bfd->link_next)
14607 {
14608 struct arm_local_iplt_info **local_iplt;
14609 unsigned int i, num_syms;
14610
14611 local_iplt = elf32_arm_local_iplt (input_bfd);
14612 if (local_iplt != NULL)
14613 {
14614 num_syms = elf_symtab_hdr (input_bfd).sh_info;
14615 for (i = 0; i < num_syms; i++)
14616 if (local_iplt[i] != NULL
14617 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
14618 &local_iplt[i]->root,
14619 &local_iplt[i]->arm))
14620 return FALSE;
14621 }
14622 }
14623 }
14624 if (htab->dt_tlsdesc_plt != 0)
14625 {
14626 /* Mapping symbols for the lazy tls trampoline. */
14627 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
14628 return FALSE;
14629
14630 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
14631 htab->dt_tlsdesc_plt + 24))
14632 return FALSE;
14633 }
14634 if (htab->tls_trampoline != 0)
14635 {
14636 /* Mapping symbols for the tls trampoline. */
14637 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
14638 return FALSE;
14639 #ifdef FOUR_WORD_PLT
14640 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
14641 htab->tls_trampoline + 12))
14642 return FALSE;
14643 #endif
14644 }
14645
14646 return TRUE;
14647 }
14648
14649 /* Allocate target specific section data. */
14650
14651 static bfd_boolean
14652 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
14653 {
14654 if (!sec->used_by_bfd)
14655 {
14656 _arm_elf_section_data *sdata;
14657 bfd_size_type amt = sizeof (*sdata);
14658
14659 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
14660 if (sdata == NULL)
14661 return FALSE;
14662 sec->used_by_bfd = sdata;
14663 }
14664
14665 return _bfd_elf_new_section_hook (abfd, sec);
14666 }
14667
14668
14669 /* Used to order a list of mapping symbols by address. */
14670
14671 static int
14672 elf32_arm_compare_mapping (const void * a, const void * b)
14673 {
14674 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
14675 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
14676
14677 if (amap->vma > bmap->vma)
14678 return 1;
14679 else if (amap->vma < bmap->vma)
14680 return -1;
14681 else if (amap->type > bmap->type)
14682 /* Ensure results do not depend on the host qsort for objects with
14683 multiple mapping symbols at the same address by sorting on type
14684 after vma. */
14685 return 1;
14686 else if (amap->type < bmap->type)
14687 return -1;
14688 else
14689 return 0;
14690 }
14691
14692 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
14693
14694 static unsigned long
14695 offset_prel31 (unsigned long addr, bfd_vma offset)
14696 {
14697 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
14698 }
14699
14700 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
14701 relocations. */
14702
14703 static void
14704 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
14705 {
14706 unsigned long first_word = bfd_get_32 (output_bfd, from);
14707 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
14708
14709 /* High bit of first word is supposed to be zero. */
14710 if ((first_word & 0x80000000ul) == 0)
14711 first_word = offset_prel31 (first_word, offset);
14712
14713 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
14714 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
14715 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
14716 second_word = offset_prel31 (second_word, offset);
14717
14718 bfd_put_32 (output_bfd, first_word, to);
14719 bfd_put_32 (output_bfd, second_word, to + 4);
14720 }
14721
14722 /* Data for make_branch_to_a8_stub(). */
14723
14724 struct a8_branch_to_stub_data {
14725 asection *writing_section;
14726 bfd_byte *contents;
14727 };
14728
14729
14730 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
14731 places for a particular section. */
14732
14733 static bfd_boolean
14734 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
14735 void *in_arg)
14736 {
14737 struct elf32_arm_stub_hash_entry *stub_entry;
14738 struct a8_branch_to_stub_data *data;
14739 bfd_byte *contents;
14740 unsigned long branch_insn;
14741 bfd_vma veneered_insn_loc, veneer_entry_loc;
14742 bfd_signed_vma branch_offset;
14743 bfd *abfd;
14744 unsigned int target;
14745
14746 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14747 data = (struct a8_branch_to_stub_data *) in_arg;
14748
14749 if (stub_entry->target_section != data->writing_section
14750 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
14751 return TRUE;
14752
14753 contents = data->contents;
14754
14755 veneered_insn_loc = stub_entry->target_section->output_section->vma
14756 + stub_entry->target_section->output_offset
14757 + stub_entry->target_value;
14758
14759 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
14760 + stub_entry->stub_sec->output_offset
14761 + stub_entry->stub_offset;
14762
14763 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
14764 veneered_insn_loc &= ~3u;
14765
14766 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
14767
14768 abfd = stub_entry->target_section->owner;
14769 target = stub_entry->target_value;
14770
14771 /* We attempt to avoid this condition by setting stubs_always_after_branch
14772 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
14773 This check is just to be on the safe side... */
14774 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
14775 {
14776 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
14777 "allocated in unsafe location"), abfd);
14778 return FALSE;
14779 }
14780
14781 switch (stub_entry->stub_type)
14782 {
14783 case arm_stub_a8_veneer_b:
14784 case arm_stub_a8_veneer_b_cond:
14785 branch_insn = 0xf0009000;
14786 goto jump24;
14787
14788 case arm_stub_a8_veneer_blx:
14789 branch_insn = 0xf000e800;
14790 goto jump24;
14791
14792 case arm_stub_a8_veneer_bl:
14793 {
14794 unsigned int i1, j1, i2, j2, s;
14795
14796 branch_insn = 0xf000d000;
14797
14798 jump24:
14799 if (branch_offset < -16777216 || branch_offset > 16777214)
14800 {
14801 /* There's not much we can do apart from complain if this
14802 happens. */
14803 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
14804 "of range (input file too large)"), abfd);
14805 return FALSE;
14806 }
14807
14808 /* i1 = not(j1 eor s), so:
14809 not i1 = j1 eor s
14810 j1 = (not i1) eor s. */
14811
14812 branch_insn |= (branch_offset >> 1) & 0x7ff;
14813 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
14814 i2 = (branch_offset >> 22) & 1;
14815 i1 = (branch_offset >> 23) & 1;
14816 s = (branch_offset >> 24) & 1;
14817 j1 = (!i1) ^ s;
14818 j2 = (!i2) ^ s;
14819 branch_insn |= j2 << 11;
14820 branch_insn |= j1 << 13;
14821 branch_insn |= s << 26;
14822 }
14823 break;
14824
14825 default:
14826 BFD_FAIL ();
14827 return FALSE;
14828 }
14829
14830 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
14831 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
14832
14833 return TRUE;
14834 }
14835
14836 /* Do code byteswapping. Return FALSE afterwards so that the section is
14837 written out as normal. */
14838
14839 static bfd_boolean
14840 elf32_arm_write_section (bfd *output_bfd,
14841 struct bfd_link_info *link_info,
14842 asection *sec,
14843 bfd_byte *contents)
14844 {
14845 unsigned int mapcount, errcount;
14846 _arm_elf_section_data *arm_data;
14847 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
14848 elf32_arm_section_map *map;
14849 elf32_vfp11_erratum_list *errnode;
14850 bfd_vma ptr;
14851 bfd_vma end;
14852 bfd_vma offset = sec->output_section->vma + sec->output_offset;
14853 bfd_byte tmp;
14854 unsigned int i;
14855
14856 if (globals == NULL)
14857 return FALSE;
14858
14859 /* If this section has not been allocated an _arm_elf_section_data
14860 structure then we cannot record anything. */
14861 arm_data = get_arm_elf_section_data (sec);
14862 if (arm_data == NULL)
14863 return FALSE;
14864
14865 mapcount = arm_data->mapcount;
14866 map = arm_data->map;
14867 errcount = arm_data->erratumcount;
14868
14869 if (errcount != 0)
14870 {
14871 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
14872
14873 for (errnode = arm_data->erratumlist; errnode != 0;
14874 errnode = errnode->next)
14875 {
14876 bfd_vma target = errnode->vma - offset;
14877
14878 switch (errnode->type)
14879 {
14880 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
14881 {
14882 bfd_vma branch_to_veneer;
14883 /* Original condition code of instruction, plus bit mask for
14884 ARM B instruction. */
14885 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
14886 | 0x0a000000;
14887
14888 /* The instruction is before the label. */
14889 target -= 4;
14890
14891 /* Above offset included in -4 below. */
14892 branch_to_veneer = errnode->u.b.veneer->vma
14893 - errnode->vma - 4;
14894
14895 if ((signed) branch_to_veneer < -(1 << 25)
14896 || (signed) branch_to_veneer >= (1 << 25))
14897 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
14898 "range"), output_bfd);
14899
14900 insn |= (branch_to_veneer >> 2) & 0xffffff;
14901 contents[endianflip ^ target] = insn & 0xff;
14902 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
14903 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
14904 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
14905 }
14906 break;
14907
14908 case VFP11_ERRATUM_ARM_VENEER:
14909 {
14910 bfd_vma branch_from_veneer;
14911 unsigned int insn;
14912
14913 /* Take size of veneer into account. */
14914 branch_from_veneer = errnode->u.v.branch->vma
14915 - errnode->vma - 12;
14916
14917 if ((signed) branch_from_veneer < -(1 << 25)
14918 || (signed) branch_from_veneer >= (1 << 25))
14919 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
14920 "range"), output_bfd);
14921
14922 /* Original instruction. */
14923 insn = errnode->u.v.branch->u.b.vfp_insn;
14924 contents[endianflip ^ target] = insn & 0xff;
14925 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
14926 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
14927 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
14928
14929 /* Branch back to insn after original insn. */
14930 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
14931 contents[endianflip ^ (target + 4)] = insn & 0xff;
14932 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
14933 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
14934 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
14935 }
14936 break;
14937
14938 default:
14939 abort ();
14940 }
14941 }
14942 }
14943
14944 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
14945 {
14946 arm_unwind_table_edit *edit_node
14947 = arm_data->u.exidx.unwind_edit_list;
14948 /* Now, sec->size is the size of the section we will write. The original
14949 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
14950 markers) was sec->rawsize. (This isn't the case if we perform no
14951 edits, then rawsize will be zero and we should use size). */
14952 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
14953 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
14954 unsigned int in_index, out_index;
14955 bfd_vma add_to_offsets = 0;
14956
14957 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
14958 {
14959 if (edit_node)
14960 {
14961 unsigned int edit_index = edit_node->index;
14962
14963 if (in_index < edit_index && in_index * 8 < input_size)
14964 {
14965 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
14966 contents + in_index * 8, add_to_offsets);
14967 out_index++;
14968 in_index++;
14969 }
14970 else if (in_index == edit_index
14971 || (in_index * 8 >= input_size
14972 && edit_index == UINT_MAX))
14973 {
14974 switch (edit_node->type)
14975 {
14976 case DELETE_EXIDX_ENTRY:
14977 in_index++;
14978 add_to_offsets += 8;
14979 break;
14980
14981 case INSERT_EXIDX_CANTUNWIND_AT_END:
14982 {
14983 asection *text_sec = edit_node->linked_section;
14984 bfd_vma text_offset = text_sec->output_section->vma
14985 + text_sec->output_offset
14986 + text_sec->size;
14987 bfd_vma exidx_offset = offset + out_index * 8;
14988 unsigned long prel31_offset;
14989
14990 /* Note: this is meant to be equivalent to an
14991 R_ARM_PREL31 relocation. These synthetic
14992 EXIDX_CANTUNWIND markers are not relocated by the
14993 usual BFD method. */
14994 prel31_offset = (text_offset - exidx_offset)
14995 & 0x7ffffffful;
14996
14997 /* First address we can't unwind. */
14998 bfd_put_32 (output_bfd, prel31_offset,
14999 &edited_contents[out_index * 8]);
15000
15001 /* Code for EXIDX_CANTUNWIND. */
15002 bfd_put_32 (output_bfd, 0x1,
15003 &edited_contents[out_index * 8 + 4]);
15004
15005 out_index++;
15006 add_to_offsets -= 8;
15007 }
15008 break;
15009 }
15010
15011 edit_node = edit_node->next;
15012 }
15013 }
15014 else
15015 {
15016 /* No more edits, copy remaining entries verbatim. */
15017 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15018 contents + in_index * 8, add_to_offsets);
15019 out_index++;
15020 in_index++;
15021 }
15022 }
15023
15024 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15025 bfd_set_section_contents (output_bfd, sec->output_section,
15026 edited_contents,
15027 (file_ptr) sec->output_offset, sec->size);
15028
15029 return TRUE;
15030 }
15031
15032 /* Fix code to point to Cortex-A8 erratum stubs. */
15033 if (globals->fix_cortex_a8)
15034 {
15035 struct a8_branch_to_stub_data data;
15036
15037 data.writing_section = sec;
15038 data.contents = contents;
15039
15040 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15041 &data);
15042 }
15043
15044 if (mapcount == 0)
15045 return FALSE;
15046
15047 if (globals->byteswap_code)
15048 {
15049 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
15050
15051 ptr = map[0].vma;
15052 for (i = 0; i < mapcount; i++)
15053 {
15054 if (i == mapcount - 1)
15055 end = sec->size;
15056 else
15057 end = map[i + 1].vma;
15058
15059 switch (map[i].type)
15060 {
15061 case 'a':
15062 /* Byte swap code words. */
15063 while (ptr + 3 < end)
15064 {
15065 tmp = contents[ptr];
15066 contents[ptr] = contents[ptr + 3];
15067 contents[ptr + 3] = tmp;
15068 tmp = contents[ptr + 1];
15069 contents[ptr + 1] = contents[ptr + 2];
15070 contents[ptr + 2] = tmp;
15071 ptr += 4;
15072 }
15073 break;
15074
15075 case 't':
15076 /* Byte swap code halfwords. */
15077 while (ptr + 1 < end)
15078 {
15079 tmp = contents[ptr];
15080 contents[ptr] = contents[ptr + 1];
15081 contents[ptr + 1] = tmp;
15082 ptr += 2;
15083 }
15084 break;
15085
15086 case 'd':
15087 /* Leave data alone. */
15088 break;
15089 }
15090 ptr = end;
15091 }
15092 }
15093
15094 free (map);
15095 arm_data->mapcount = -1;
15096 arm_data->mapsize = 0;
15097 arm_data->map = NULL;
15098
15099 return FALSE;
15100 }
15101
15102 /* Mangle thumb function symbols as we read them in. */
15103
15104 static bfd_boolean
15105 elf32_arm_swap_symbol_in (bfd * abfd,
15106 const void *psrc,
15107 const void *pshn,
15108 Elf_Internal_Sym *dst)
15109 {
15110 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15111 return FALSE;
15112
15113 /* New EABI objects mark thumb function symbols by setting the low bit of
15114 the address. */
15115 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC
15116 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
15117 && (dst->st_value & 1))
15118 {
15119 dst->st_value &= ~(bfd_vma) 1;
15120 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15121 }
15122 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15123 {
15124 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15125 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15126 }
15127 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15128 dst->st_target_internal = ST_BRANCH_LONG;
15129 else
15130 dst->st_target_internal = ST_BRANCH_TO_ARM;
15131
15132 return TRUE;
15133 }
15134
15135
15136 /* Mangle thumb function symbols as we write them out. */
15137
15138 static void
15139 elf32_arm_swap_symbol_out (bfd *abfd,
15140 const Elf_Internal_Sym *src,
15141 void *cdst,
15142 void *shndx)
15143 {
15144 Elf_Internal_Sym newsym;
15145
15146 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15147 of the address set, as per the new EABI. We do this unconditionally
15148 because objcopy does not set the elf header flags until after
15149 it writes out the symbol table. */
15150 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
15151 {
15152 newsym = *src;
15153 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15154 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
15155 if (newsym.st_shndx != SHN_UNDEF)
15156 {
15157 /* Do this only for defined symbols. At link type, the static
15158 linker will simulate the work of dynamic linker of resolving
15159 symbols and will carry over the thumbness of found symbols to
15160 the output symbol table. It's not clear how it happens, but
15161 the thumbness of undefined symbols can well be different at
15162 runtime, and writing '1' for them will be confusing for users
15163 and possibly for dynamic linker itself.
15164 */
15165 newsym.st_value |= 1;
15166 }
15167
15168 src = &newsym;
15169 }
15170 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15171 }
15172
15173 /* Add the PT_ARM_EXIDX program header. */
15174
15175 static bfd_boolean
15176 elf32_arm_modify_segment_map (bfd *abfd,
15177 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15178 {
15179 struct elf_segment_map *m;
15180 asection *sec;
15181
15182 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15183 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15184 {
15185 /* If there is already a PT_ARM_EXIDX header, then we do not
15186 want to add another one. This situation arises when running
15187 "strip"; the input binary already has the header. */
15188 m = elf_tdata (abfd)->segment_map;
15189 while (m && m->p_type != PT_ARM_EXIDX)
15190 m = m->next;
15191 if (!m)
15192 {
15193 m = (struct elf_segment_map *)
15194 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
15195 if (m == NULL)
15196 return FALSE;
15197 m->p_type = PT_ARM_EXIDX;
15198 m->count = 1;
15199 m->sections[0] = sec;
15200
15201 m->next = elf_tdata (abfd)->segment_map;
15202 elf_tdata (abfd)->segment_map = m;
15203 }
15204 }
15205
15206 return TRUE;
15207 }
15208
15209 /* We may add a PT_ARM_EXIDX program header. */
15210
15211 static int
15212 elf32_arm_additional_program_headers (bfd *abfd,
15213 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15214 {
15215 asection *sec;
15216
15217 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15218 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15219 return 1;
15220 else
15221 return 0;
15222 }
15223
15224 /* Hook called by the linker routine which adds symbols from an object
15225 file. */
15226
15227 static bfd_boolean
15228 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15229 Elf_Internal_Sym *sym, const char **namep,
15230 flagword *flagsp, asection **secp, bfd_vma *valp)
15231 {
15232 if ((abfd->flags & DYNAMIC) == 0
15233 && ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC)
15234 elf_tdata (info->output_bfd)->has_ifunc_symbols = TRUE;
15235
15236 if (elf32_arm_hash_table (info)->vxworks_p
15237 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15238 flagsp, secp, valp))
15239 return FALSE;
15240
15241 return TRUE;
15242 }
15243
15244 /* We use this to override swap_symbol_in and swap_symbol_out. */
15245 const struct elf_size_info elf32_arm_size_info =
15246 {
15247 sizeof (Elf32_External_Ehdr),
15248 sizeof (Elf32_External_Phdr),
15249 sizeof (Elf32_External_Shdr),
15250 sizeof (Elf32_External_Rel),
15251 sizeof (Elf32_External_Rela),
15252 sizeof (Elf32_External_Sym),
15253 sizeof (Elf32_External_Dyn),
15254 sizeof (Elf_External_Note),
15255 4,
15256 1,
15257 32, 2,
15258 ELFCLASS32, EV_CURRENT,
15259 bfd_elf32_write_out_phdrs,
15260 bfd_elf32_write_shdrs_and_ehdr,
15261 bfd_elf32_checksum_contents,
15262 bfd_elf32_write_relocs,
15263 elf32_arm_swap_symbol_in,
15264 elf32_arm_swap_symbol_out,
15265 bfd_elf32_slurp_reloc_table,
15266 bfd_elf32_slurp_symbol_table,
15267 bfd_elf32_swap_dyn_in,
15268 bfd_elf32_swap_dyn_out,
15269 bfd_elf32_swap_reloc_in,
15270 bfd_elf32_swap_reloc_out,
15271 bfd_elf32_swap_reloca_in,
15272 bfd_elf32_swap_reloca_out
15273 };
15274
15275 #define ELF_ARCH bfd_arch_arm
15276 #define ELF_TARGET_ID ARM_ELF_DATA
15277 #define ELF_MACHINE_CODE EM_ARM
15278 #ifdef __QNXTARGET__
15279 #define ELF_MAXPAGESIZE 0x1000
15280 #else
15281 #define ELF_MAXPAGESIZE 0x8000
15282 #endif
15283 #define ELF_MINPAGESIZE 0x1000
15284 #define ELF_COMMONPAGESIZE 0x1000
15285
15286 #define bfd_elf32_mkobject elf32_arm_mkobject
15287
15288 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
15289 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
15290 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
15291 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
15292 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
15293 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
15294 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
15295 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
15296 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
15297 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
15298 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
15299 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
15300 #define bfd_elf32_bfd_final_link elf32_arm_final_link
15301
15302 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
15303 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
15304 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
15305 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
15306 #define elf_backend_check_relocs elf32_arm_check_relocs
15307 #define elf_backend_relocate_section elf32_arm_relocate_section
15308 #define elf_backend_write_section elf32_arm_write_section
15309 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
15310 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
15311 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
15312 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
15313 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
15314 #define elf_backend_always_size_sections elf32_arm_always_size_sections
15315 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
15316 #define elf_backend_post_process_headers elf32_arm_post_process_headers
15317 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
15318 #define elf_backend_object_p elf32_arm_object_p
15319 #define elf_backend_section_flags elf32_arm_section_flags
15320 #define elf_backend_fake_sections elf32_arm_fake_sections
15321 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
15322 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15323 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
15324 #define elf_backend_size_info elf32_arm_size_info
15325 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15326 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
15327 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
15328 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
15329 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
15330
15331 #define elf_backend_can_refcount 1
15332 #define elf_backend_can_gc_sections 1
15333 #define elf_backend_plt_readonly 1
15334 #define elf_backend_want_got_plt 1
15335 #define elf_backend_want_plt_sym 0
15336 #define elf_backend_may_use_rel_p 1
15337 #define elf_backend_may_use_rela_p 0
15338 #define elf_backend_default_use_rela_p 0
15339
15340 #define elf_backend_got_header_size 12
15341
15342 #undef elf_backend_obj_attrs_vendor
15343 #define elf_backend_obj_attrs_vendor "aeabi"
15344 #undef elf_backend_obj_attrs_section
15345 #define elf_backend_obj_attrs_section ".ARM.attributes"
15346 #undef elf_backend_obj_attrs_arg_type
15347 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
15348 #undef elf_backend_obj_attrs_section_type
15349 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
15350 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
15351 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
15352
15353 #include "elf32-target.h"
15354
15355 /* VxWorks Targets. */
15356
15357 #undef TARGET_LITTLE_SYM
15358 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
15359 #undef TARGET_LITTLE_NAME
15360 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
15361 #undef TARGET_BIG_SYM
15362 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
15363 #undef TARGET_BIG_NAME
15364 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
15365
15366 /* Like elf32_arm_link_hash_table_create -- but overrides
15367 appropriately for VxWorks. */
15368
15369 static struct bfd_link_hash_table *
15370 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
15371 {
15372 struct bfd_link_hash_table *ret;
15373
15374 ret = elf32_arm_link_hash_table_create (abfd);
15375 if (ret)
15376 {
15377 struct elf32_arm_link_hash_table *htab
15378 = (struct elf32_arm_link_hash_table *) ret;
15379 htab->use_rel = 0;
15380 htab->vxworks_p = 1;
15381 }
15382 return ret;
15383 }
15384
15385 static void
15386 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
15387 {
15388 elf32_arm_final_write_processing (abfd, linker);
15389 elf_vxworks_final_write_processing (abfd, linker);
15390 }
15391
15392 #undef elf32_bed
15393 #define elf32_bed elf32_arm_vxworks_bed
15394
15395 #undef bfd_elf32_bfd_link_hash_table_create
15396 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
15397 #undef elf_backend_final_write_processing
15398 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
15399 #undef elf_backend_emit_relocs
15400 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
15401
15402 #undef elf_backend_may_use_rel_p
15403 #define elf_backend_may_use_rel_p 0
15404 #undef elf_backend_may_use_rela_p
15405 #define elf_backend_may_use_rela_p 1
15406 #undef elf_backend_default_use_rela_p
15407 #define elf_backend_default_use_rela_p 1
15408 #undef elf_backend_want_plt_sym
15409 #define elf_backend_want_plt_sym 1
15410 #undef ELF_MAXPAGESIZE
15411 #define ELF_MAXPAGESIZE 0x1000
15412
15413 #include "elf32-target.h"
15414
15415
15416 /* Merge backend specific data from an object file to the output
15417 object file when linking. */
15418
15419 static bfd_boolean
15420 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
15421 {
15422 flagword out_flags;
15423 flagword in_flags;
15424 bfd_boolean flags_compatible = TRUE;
15425 asection *sec;
15426
15427 /* Check if we have the same endianess. */
15428 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15429 return FALSE;
15430
15431 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
15432 return TRUE;
15433
15434 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
15435 return FALSE;
15436
15437 /* The input BFD must have had its flags initialised. */
15438 /* The following seems bogus to me -- The flags are initialized in
15439 the assembler but I don't think an elf_flags_init field is
15440 written into the object. */
15441 /* BFD_ASSERT (elf_flags_init (ibfd)); */
15442
15443 in_flags = elf_elfheader (ibfd)->e_flags;
15444 out_flags = elf_elfheader (obfd)->e_flags;
15445
15446 /* In theory there is no reason why we couldn't handle this. However
15447 in practice it isn't even close to working and there is no real
15448 reason to want it. */
15449 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
15450 && !(ibfd->flags & DYNAMIC)
15451 && (in_flags & EF_ARM_BE8))
15452 {
15453 _bfd_error_handler (_("error: %B is already in final BE8 format"),
15454 ibfd);
15455 return FALSE;
15456 }
15457
15458 if (!elf_flags_init (obfd))
15459 {
15460 /* If the input is the default architecture and had the default
15461 flags then do not bother setting the flags for the output
15462 architecture, instead allow future merges to do this. If no
15463 future merges ever set these flags then they will retain their
15464 uninitialised values, which surprise surprise, correspond
15465 to the default values. */
15466 if (bfd_get_arch_info (ibfd)->the_default
15467 && elf_elfheader (ibfd)->e_flags == 0)
15468 return TRUE;
15469
15470 elf_flags_init (obfd) = TRUE;
15471 elf_elfheader (obfd)->e_flags = in_flags;
15472
15473 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15474 && bfd_get_arch_info (obfd)->the_default)
15475 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
15476
15477 return TRUE;
15478 }
15479
15480 /* Determine what should happen if the input ARM architecture
15481 does not match the output ARM architecture. */
15482 if (! bfd_arm_merge_machines (ibfd, obfd))
15483 return FALSE;
15484
15485 /* Identical flags must be compatible. */
15486 if (in_flags == out_flags)
15487 return TRUE;
15488
15489 /* Check to see if the input BFD actually contains any sections. If
15490 not, its flags may not have been initialised either, but it
15491 cannot actually cause any incompatiblity. Do not short-circuit
15492 dynamic objects; their section list may be emptied by
15493 elf_link_add_object_symbols.
15494
15495 Also check to see if there are no code sections in the input.
15496 In this case there is no need to check for code specific flags.
15497 XXX - do we need to worry about floating-point format compatability
15498 in data sections ? */
15499 if (!(ibfd->flags & DYNAMIC))
15500 {
15501 bfd_boolean null_input_bfd = TRUE;
15502 bfd_boolean only_data_sections = TRUE;
15503
15504 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15505 {
15506 /* Ignore synthetic glue sections. */
15507 if (strcmp (sec->name, ".glue_7")
15508 && strcmp (sec->name, ".glue_7t"))
15509 {
15510 if ((bfd_get_section_flags (ibfd, sec)
15511 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15512 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15513 only_data_sections = FALSE;
15514
15515 null_input_bfd = FALSE;
15516 break;
15517 }
15518 }
15519
15520 if (null_input_bfd || only_data_sections)
15521 return TRUE;
15522 }
15523
15524 /* Complain about various flag mismatches. */
15525 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
15526 EF_ARM_EABI_VERSION (out_flags)))
15527 {
15528 _bfd_error_handler
15529 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
15530 ibfd, obfd,
15531 (in_flags & EF_ARM_EABIMASK) >> 24,
15532 (out_flags & EF_ARM_EABIMASK) >> 24);
15533 return FALSE;
15534 }
15535
15536 /* Not sure what needs to be checked for EABI versions >= 1. */
15537 /* VxWorks libraries do not use these flags. */
15538 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
15539 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
15540 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
15541 {
15542 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
15543 {
15544 _bfd_error_handler
15545 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
15546 ibfd, obfd,
15547 in_flags & EF_ARM_APCS_26 ? 26 : 32,
15548 out_flags & EF_ARM_APCS_26 ? 26 : 32);
15549 flags_compatible = FALSE;
15550 }
15551
15552 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
15553 {
15554 if (in_flags & EF_ARM_APCS_FLOAT)
15555 _bfd_error_handler
15556 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
15557 ibfd, obfd);
15558 else
15559 _bfd_error_handler
15560 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
15561 ibfd, obfd);
15562
15563 flags_compatible = FALSE;
15564 }
15565
15566 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
15567 {
15568 if (in_flags & EF_ARM_VFP_FLOAT)
15569 _bfd_error_handler
15570 (_("error: %B uses VFP instructions, whereas %B does not"),
15571 ibfd, obfd);
15572 else
15573 _bfd_error_handler
15574 (_("error: %B uses FPA instructions, whereas %B does not"),
15575 ibfd, obfd);
15576
15577 flags_compatible = FALSE;
15578 }
15579
15580 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
15581 {
15582 if (in_flags & EF_ARM_MAVERICK_FLOAT)
15583 _bfd_error_handler
15584 (_("error: %B uses Maverick instructions, whereas %B does not"),
15585 ibfd, obfd);
15586 else
15587 _bfd_error_handler
15588 (_("error: %B does not use Maverick instructions, whereas %B does"),
15589 ibfd, obfd);
15590
15591 flags_compatible = FALSE;
15592 }
15593
15594 #ifdef EF_ARM_SOFT_FLOAT
15595 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
15596 {
15597 /* We can allow interworking between code that is VFP format
15598 layout, and uses either soft float or integer regs for
15599 passing floating point arguments and results. We already
15600 know that the APCS_FLOAT flags match; similarly for VFP
15601 flags. */
15602 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
15603 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
15604 {
15605 if (in_flags & EF_ARM_SOFT_FLOAT)
15606 _bfd_error_handler
15607 (_("error: %B uses software FP, whereas %B uses hardware FP"),
15608 ibfd, obfd);
15609 else
15610 _bfd_error_handler
15611 (_("error: %B uses hardware FP, whereas %B uses software FP"),
15612 ibfd, obfd);
15613
15614 flags_compatible = FALSE;
15615 }
15616 }
15617 #endif
15618
15619 /* Interworking mismatch is only a warning. */
15620 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
15621 {
15622 if (in_flags & EF_ARM_INTERWORK)
15623 {
15624 _bfd_error_handler
15625 (_("Warning: %B supports interworking, whereas %B does not"),
15626 ibfd, obfd);
15627 }
15628 else
15629 {
15630 _bfd_error_handler
15631 (_("Warning: %B does not support interworking, whereas %B does"),
15632 ibfd, obfd);
15633 }
15634 }
15635 }
15636
15637 return flags_compatible;
15638 }
15639
15640
15641 /* Symbian OS Targets. */
15642
15643 #undef TARGET_LITTLE_SYM
15644 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
15645 #undef TARGET_LITTLE_NAME
15646 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
15647 #undef TARGET_BIG_SYM
15648 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
15649 #undef TARGET_BIG_NAME
15650 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
15651
15652 /* Like elf32_arm_link_hash_table_create -- but overrides
15653 appropriately for Symbian OS. */
15654
15655 static struct bfd_link_hash_table *
15656 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
15657 {
15658 struct bfd_link_hash_table *ret;
15659
15660 ret = elf32_arm_link_hash_table_create (abfd);
15661 if (ret)
15662 {
15663 struct elf32_arm_link_hash_table *htab
15664 = (struct elf32_arm_link_hash_table *)ret;
15665 /* There is no PLT header for Symbian OS. */
15666 htab->plt_header_size = 0;
15667 /* The PLT entries are each one instruction and one word. */
15668 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
15669 htab->symbian_p = 1;
15670 /* Symbian uses armv5t or above, so use_blx is always true. */
15671 htab->use_blx = 1;
15672 htab->root.is_relocatable_executable = 1;
15673 }
15674 return ret;
15675 }
15676
15677 static const struct bfd_elf_special_section
15678 elf32_arm_symbian_special_sections[] =
15679 {
15680 /* In a BPABI executable, the dynamic linking sections do not go in
15681 the loadable read-only segment. The post-linker may wish to
15682 refer to these sections, but they are not part of the final
15683 program image. */
15684 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
15685 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
15686 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
15687 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
15688 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
15689 /* These sections do not need to be writable as the SymbianOS
15690 postlinker will arrange things so that no dynamic relocation is
15691 required. */
15692 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
15693 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
15694 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
15695 { NULL, 0, 0, 0, 0 }
15696 };
15697
15698 static void
15699 elf32_arm_symbian_begin_write_processing (bfd *abfd,
15700 struct bfd_link_info *link_info)
15701 {
15702 /* BPABI objects are never loaded directly by an OS kernel; they are
15703 processed by a postlinker first, into an OS-specific format. If
15704 the D_PAGED bit is set on the file, BFD will align segments on
15705 page boundaries, so that an OS can directly map the file. With
15706 BPABI objects, that just results in wasted space. In addition,
15707 because we clear the D_PAGED bit, map_sections_to_segments will
15708 recognize that the program headers should not be mapped into any
15709 loadable segment. */
15710 abfd->flags &= ~D_PAGED;
15711 elf32_arm_begin_write_processing (abfd, link_info);
15712 }
15713
15714 static bfd_boolean
15715 elf32_arm_symbian_modify_segment_map (bfd *abfd,
15716 struct bfd_link_info *info)
15717 {
15718 struct elf_segment_map *m;
15719 asection *dynsec;
15720
15721 /* BPABI shared libraries and executables should have a PT_DYNAMIC
15722 segment. However, because the .dynamic section is not marked
15723 with SEC_LOAD, the generic ELF code will not create such a
15724 segment. */
15725 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
15726 if (dynsec)
15727 {
15728 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
15729 if (m->p_type == PT_DYNAMIC)
15730 break;
15731
15732 if (m == NULL)
15733 {
15734 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
15735 m->next = elf_tdata (abfd)->segment_map;
15736 elf_tdata (abfd)->segment_map = m;
15737 }
15738 }
15739
15740 /* Also call the generic arm routine. */
15741 return elf32_arm_modify_segment_map (abfd, info);
15742 }
15743
15744 /* Return address for Ith PLT stub in section PLT, for relocation REL
15745 or (bfd_vma) -1 if it should not be included. */
15746
15747 static bfd_vma
15748 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
15749 const arelent *rel ATTRIBUTE_UNUSED)
15750 {
15751 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
15752 }
15753
15754
15755 #undef elf32_bed
15756 #define elf32_bed elf32_arm_symbian_bed
15757
15758 /* The dynamic sections are not allocated on SymbianOS; the postlinker
15759 will process them and then discard them. */
15760 #undef ELF_DYNAMIC_SEC_FLAGS
15761 #define ELF_DYNAMIC_SEC_FLAGS \
15762 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
15763
15764 #undef elf_backend_emit_relocs
15765
15766 #undef bfd_elf32_bfd_link_hash_table_create
15767 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
15768 #undef elf_backend_special_sections
15769 #define elf_backend_special_sections elf32_arm_symbian_special_sections
15770 #undef elf_backend_begin_write_processing
15771 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
15772 #undef elf_backend_final_write_processing
15773 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15774
15775 #undef elf_backend_modify_segment_map
15776 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
15777
15778 /* There is no .got section for BPABI objects, and hence no header. */
15779 #undef elf_backend_got_header_size
15780 #define elf_backend_got_header_size 0
15781
15782 /* Similarly, there is no .got.plt section. */
15783 #undef elf_backend_want_got_plt
15784 #define elf_backend_want_got_plt 0
15785
15786 #undef elf_backend_plt_sym_val
15787 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
15788
15789 #undef elf_backend_may_use_rel_p
15790 #define elf_backend_may_use_rel_p 1
15791 #undef elf_backend_may_use_rela_p
15792 #define elf_backend_may_use_rela_p 0
15793 #undef elf_backend_default_use_rela_p
15794 #define elf_backend_default_use_rela_p 0
15795 #undef elf_backend_want_plt_sym
15796 #define elf_backend_want_plt_sym 0
15797 #undef ELF_MAXPAGESIZE
15798 #define ELF_MAXPAGESIZE 0x8000
15799
15800 #include "elf32-target.h"
This page took 0.575351 seconds and 4 git commands to generate.