7218ba8c3c9814439b89d56b4733a39d1cd98b80
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 #ifndef NUM_ELEM
31 #define NUM_ELEM(a) (sizeof (a) / (sizeof (a)[0]))
32 #endif
33
34 /* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36 #define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38
39 /* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41 #define RELOC_SIZE(HTAB) \
42 ((HTAB)->use_rel \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
45
46 /* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48 #define SWAP_RELOC_IN(HTAB) \
49 ((HTAB)->use_rel \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
52
53 /* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55 #define SWAP_RELOC_OUT(HTAB) \
56 ((HTAB)->use_rel \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
59
60 #define elf_info_to_howto 0
61 #define elf_info_to_howto_rel elf32_arm_info_to_howto
62
63 #define ARM_ELF_ABI_VERSION 0
64 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65
66 static struct elf_backend_data elf32_arm_vxworks_bed;
67
68 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
69 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
70 in that slot. */
71
72 static reloc_howto_type elf32_arm_howto_table_1[] =
73 {
74 /* No relocation */
75 HOWTO (R_ARM_NONE, /* type */
76 0, /* rightshift */
77 0, /* size (0 = byte, 1 = short, 2 = long) */
78 0, /* bitsize */
79 FALSE, /* pc_relative */
80 0, /* bitpos */
81 complain_overflow_dont,/* complain_on_overflow */
82 bfd_elf_generic_reloc, /* special_function */
83 "R_ARM_NONE", /* name */
84 FALSE, /* partial_inplace */
85 0, /* src_mask */
86 0, /* dst_mask */
87 FALSE), /* pcrel_offset */
88
89 HOWTO (R_ARM_PC24, /* type */
90 2, /* rightshift */
91 2, /* size (0 = byte, 1 = short, 2 = long) */
92 24, /* bitsize */
93 TRUE, /* pc_relative */
94 0, /* bitpos */
95 complain_overflow_signed,/* complain_on_overflow */
96 bfd_elf_generic_reloc, /* special_function */
97 "R_ARM_PC24", /* name */
98 FALSE, /* partial_inplace */
99 0x00ffffff, /* src_mask */
100 0x00ffffff, /* dst_mask */
101 TRUE), /* pcrel_offset */
102
103 /* 32 bit absolute */
104 HOWTO (R_ARM_ABS32, /* type */
105 0, /* rightshift */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
107 32, /* bitsize */
108 FALSE, /* pc_relative */
109 0, /* bitpos */
110 complain_overflow_bitfield,/* complain_on_overflow */
111 bfd_elf_generic_reloc, /* special_function */
112 "R_ARM_ABS32", /* name */
113 FALSE, /* partial_inplace */
114 0xffffffff, /* src_mask */
115 0xffffffff, /* dst_mask */
116 FALSE), /* pcrel_offset */
117
118 /* standard 32bit pc-relative reloc */
119 HOWTO (R_ARM_REL32, /* type */
120 0, /* rightshift */
121 2, /* size (0 = byte, 1 = short, 2 = long) */
122 32, /* bitsize */
123 TRUE, /* pc_relative */
124 0, /* bitpos */
125 complain_overflow_bitfield,/* complain_on_overflow */
126 bfd_elf_generic_reloc, /* special_function */
127 "R_ARM_REL32", /* name */
128 FALSE, /* partial_inplace */
129 0xffffffff, /* src_mask */
130 0xffffffff, /* dst_mask */
131 TRUE), /* pcrel_offset */
132
133 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
134 HOWTO (R_ARM_LDR_PC_G0, /* type */
135 0, /* rightshift */
136 0, /* size (0 = byte, 1 = short, 2 = long) */
137 32, /* bitsize */
138 TRUE, /* pc_relative */
139 0, /* bitpos */
140 complain_overflow_dont,/* complain_on_overflow */
141 bfd_elf_generic_reloc, /* special_function */
142 "R_ARM_LDR_PC_G0", /* name */
143 FALSE, /* partial_inplace */
144 0xffffffff, /* src_mask */
145 0xffffffff, /* dst_mask */
146 TRUE), /* pcrel_offset */
147
148 /* 16 bit absolute */
149 HOWTO (R_ARM_ABS16, /* type */
150 0, /* rightshift */
151 1, /* size (0 = byte, 1 = short, 2 = long) */
152 16, /* bitsize */
153 FALSE, /* pc_relative */
154 0, /* bitpos */
155 complain_overflow_bitfield,/* complain_on_overflow */
156 bfd_elf_generic_reloc, /* special_function */
157 "R_ARM_ABS16", /* name */
158 FALSE, /* partial_inplace */
159 0x0000ffff, /* src_mask */
160 0x0000ffff, /* dst_mask */
161 FALSE), /* pcrel_offset */
162
163 /* 12 bit absolute */
164 HOWTO (R_ARM_ABS12, /* type */
165 0, /* rightshift */
166 2, /* size (0 = byte, 1 = short, 2 = long) */
167 12, /* bitsize */
168 FALSE, /* pc_relative */
169 0, /* bitpos */
170 complain_overflow_bitfield,/* complain_on_overflow */
171 bfd_elf_generic_reloc, /* special_function */
172 "R_ARM_ABS12", /* name */
173 FALSE, /* partial_inplace */
174 0x00000fff, /* src_mask */
175 0x00000fff, /* dst_mask */
176 FALSE), /* pcrel_offset */
177
178 HOWTO (R_ARM_THM_ABS5, /* type */
179 6, /* rightshift */
180 1, /* size (0 = byte, 1 = short, 2 = long) */
181 5, /* bitsize */
182 FALSE, /* pc_relative */
183 0, /* bitpos */
184 complain_overflow_bitfield,/* complain_on_overflow */
185 bfd_elf_generic_reloc, /* special_function */
186 "R_ARM_THM_ABS5", /* name */
187 FALSE, /* partial_inplace */
188 0x000007e0, /* src_mask */
189 0x000007e0, /* dst_mask */
190 FALSE), /* pcrel_offset */
191
192 /* 8 bit absolute */
193 HOWTO (R_ARM_ABS8, /* type */
194 0, /* rightshift */
195 0, /* size (0 = byte, 1 = short, 2 = long) */
196 8, /* bitsize */
197 FALSE, /* pc_relative */
198 0, /* bitpos */
199 complain_overflow_bitfield,/* complain_on_overflow */
200 bfd_elf_generic_reloc, /* special_function */
201 "R_ARM_ABS8", /* name */
202 FALSE, /* partial_inplace */
203 0x000000ff, /* src_mask */
204 0x000000ff, /* dst_mask */
205 FALSE), /* pcrel_offset */
206
207 HOWTO (R_ARM_SBREL32, /* type */
208 0, /* rightshift */
209 2, /* size (0 = byte, 1 = short, 2 = long) */
210 32, /* bitsize */
211 FALSE, /* pc_relative */
212 0, /* bitpos */
213 complain_overflow_dont,/* complain_on_overflow */
214 bfd_elf_generic_reloc, /* special_function */
215 "R_ARM_SBREL32", /* name */
216 FALSE, /* partial_inplace */
217 0xffffffff, /* src_mask */
218 0xffffffff, /* dst_mask */
219 FALSE), /* pcrel_offset */
220
221 HOWTO (R_ARM_THM_CALL, /* type */
222 1, /* rightshift */
223 2, /* size (0 = byte, 1 = short, 2 = long) */
224 25, /* bitsize */
225 TRUE, /* pc_relative */
226 0, /* bitpos */
227 complain_overflow_signed,/* complain_on_overflow */
228 bfd_elf_generic_reloc, /* special_function */
229 "R_ARM_THM_CALL", /* name */
230 FALSE, /* partial_inplace */
231 0x07ff07ff, /* src_mask */
232 0x07ff07ff, /* dst_mask */
233 TRUE), /* pcrel_offset */
234
235 HOWTO (R_ARM_THM_PC8, /* type */
236 1, /* rightshift */
237 1, /* size (0 = byte, 1 = short, 2 = long) */
238 8, /* bitsize */
239 TRUE, /* pc_relative */
240 0, /* bitpos */
241 complain_overflow_signed,/* complain_on_overflow */
242 bfd_elf_generic_reloc, /* special_function */
243 "R_ARM_THM_PC8", /* name */
244 FALSE, /* partial_inplace */
245 0x000000ff, /* src_mask */
246 0x000000ff, /* dst_mask */
247 TRUE), /* pcrel_offset */
248
249 HOWTO (R_ARM_BREL_ADJ, /* type */
250 1, /* rightshift */
251 1, /* size (0 = byte, 1 = short, 2 = long) */
252 32, /* bitsize */
253 FALSE, /* pc_relative */
254 0, /* bitpos */
255 complain_overflow_signed,/* complain_on_overflow */
256 bfd_elf_generic_reloc, /* special_function */
257 "R_ARM_BREL_ADJ", /* name */
258 FALSE, /* partial_inplace */
259 0xffffffff, /* src_mask */
260 0xffffffff, /* dst_mask */
261 FALSE), /* pcrel_offset */
262
263 HOWTO (R_ARM_SWI24, /* type */
264 0, /* rightshift */
265 0, /* size (0 = byte, 1 = short, 2 = long) */
266 0, /* bitsize */
267 FALSE, /* pc_relative */
268 0, /* bitpos */
269 complain_overflow_signed,/* complain_on_overflow */
270 bfd_elf_generic_reloc, /* special_function */
271 "R_ARM_SWI24", /* name */
272 FALSE, /* partial_inplace */
273 0x00000000, /* src_mask */
274 0x00000000, /* dst_mask */
275 FALSE), /* pcrel_offset */
276
277 HOWTO (R_ARM_THM_SWI8, /* type */
278 0, /* rightshift */
279 0, /* size (0 = byte, 1 = short, 2 = long) */
280 0, /* bitsize */
281 FALSE, /* pc_relative */
282 0, /* bitpos */
283 complain_overflow_signed,/* complain_on_overflow */
284 bfd_elf_generic_reloc, /* special_function */
285 "R_ARM_SWI8", /* name */
286 FALSE, /* partial_inplace */
287 0x00000000, /* src_mask */
288 0x00000000, /* dst_mask */
289 FALSE), /* pcrel_offset */
290
291 /* BLX instruction for the ARM. */
292 HOWTO (R_ARM_XPC25, /* type */
293 2, /* rightshift */
294 2, /* size (0 = byte, 1 = short, 2 = long) */
295 25, /* bitsize */
296 TRUE, /* pc_relative */
297 0, /* bitpos */
298 complain_overflow_signed,/* complain_on_overflow */
299 bfd_elf_generic_reloc, /* special_function */
300 "R_ARM_XPC25", /* name */
301 FALSE, /* partial_inplace */
302 0x00ffffff, /* src_mask */
303 0x00ffffff, /* dst_mask */
304 TRUE), /* pcrel_offset */
305
306 /* BLX instruction for the Thumb. */
307 HOWTO (R_ARM_THM_XPC22, /* type */
308 2, /* rightshift */
309 2, /* size (0 = byte, 1 = short, 2 = long) */
310 22, /* bitsize */
311 TRUE, /* pc_relative */
312 0, /* bitpos */
313 complain_overflow_signed,/* complain_on_overflow */
314 bfd_elf_generic_reloc, /* special_function */
315 "R_ARM_THM_XPC22", /* name */
316 FALSE, /* partial_inplace */
317 0x07ff07ff, /* src_mask */
318 0x07ff07ff, /* dst_mask */
319 TRUE), /* pcrel_offset */
320
321 /* Dynamic TLS relocations. */
322
323 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
324 0, /* rightshift */
325 2, /* size (0 = byte, 1 = short, 2 = long) */
326 32, /* bitsize */
327 FALSE, /* pc_relative */
328 0, /* bitpos */
329 complain_overflow_bitfield,/* complain_on_overflow */
330 bfd_elf_generic_reloc, /* special_function */
331 "R_ARM_TLS_DTPMOD32", /* name */
332 TRUE, /* partial_inplace */
333 0xffffffff, /* src_mask */
334 0xffffffff, /* dst_mask */
335 FALSE), /* pcrel_offset */
336
337 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
338 0, /* rightshift */
339 2, /* size (0 = byte, 1 = short, 2 = long) */
340 32, /* bitsize */
341 FALSE, /* pc_relative */
342 0, /* bitpos */
343 complain_overflow_bitfield,/* complain_on_overflow */
344 bfd_elf_generic_reloc, /* special_function */
345 "R_ARM_TLS_DTPOFF32", /* name */
346 TRUE, /* partial_inplace */
347 0xffffffff, /* src_mask */
348 0xffffffff, /* dst_mask */
349 FALSE), /* pcrel_offset */
350
351 HOWTO (R_ARM_TLS_TPOFF32, /* type */
352 0, /* rightshift */
353 2, /* size (0 = byte, 1 = short, 2 = long) */
354 32, /* bitsize */
355 FALSE, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_bitfield,/* complain_on_overflow */
358 bfd_elf_generic_reloc, /* special_function */
359 "R_ARM_TLS_TPOFF32", /* name */
360 TRUE, /* partial_inplace */
361 0xffffffff, /* src_mask */
362 0xffffffff, /* dst_mask */
363 FALSE), /* pcrel_offset */
364
365 /* Relocs used in ARM Linux */
366
367 HOWTO (R_ARM_COPY, /* type */
368 0, /* rightshift */
369 2, /* size (0 = byte, 1 = short, 2 = long) */
370 32, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_bitfield,/* complain_on_overflow */
374 bfd_elf_generic_reloc, /* special_function */
375 "R_ARM_COPY", /* name */
376 TRUE, /* partial_inplace */
377 0xffffffff, /* src_mask */
378 0xffffffff, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 HOWTO (R_ARM_GLOB_DAT, /* type */
382 0, /* rightshift */
383 2, /* size (0 = byte, 1 = short, 2 = long) */
384 32, /* bitsize */
385 FALSE, /* pc_relative */
386 0, /* bitpos */
387 complain_overflow_bitfield,/* complain_on_overflow */
388 bfd_elf_generic_reloc, /* special_function */
389 "R_ARM_GLOB_DAT", /* name */
390 TRUE, /* partial_inplace */
391 0xffffffff, /* src_mask */
392 0xffffffff, /* dst_mask */
393 FALSE), /* pcrel_offset */
394
395 HOWTO (R_ARM_JUMP_SLOT, /* type */
396 0, /* rightshift */
397 2, /* size (0 = byte, 1 = short, 2 = long) */
398 32, /* bitsize */
399 FALSE, /* pc_relative */
400 0, /* bitpos */
401 complain_overflow_bitfield,/* complain_on_overflow */
402 bfd_elf_generic_reloc, /* special_function */
403 "R_ARM_JUMP_SLOT", /* name */
404 TRUE, /* partial_inplace */
405 0xffffffff, /* src_mask */
406 0xffffffff, /* dst_mask */
407 FALSE), /* pcrel_offset */
408
409 HOWTO (R_ARM_RELATIVE, /* type */
410 0, /* rightshift */
411 2, /* size (0 = byte, 1 = short, 2 = long) */
412 32, /* bitsize */
413 FALSE, /* pc_relative */
414 0, /* bitpos */
415 complain_overflow_bitfield,/* complain_on_overflow */
416 bfd_elf_generic_reloc, /* special_function */
417 "R_ARM_RELATIVE", /* name */
418 TRUE, /* partial_inplace */
419 0xffffffff, /* src_mask */
420 0xffffffff, /* dst_mask */
421 FALSE), /* pcrel_offset */
422
423 HOWTO (R_ARM_GOTOFF32, /* type */
424 0, /* rightshift */
425 2, /* size (0 = byte, 1 = short, 2 = long) */
426 32, /* bitsize */
427 FALSE, /* pc_relative */
428 0, /* bitpos */
429 complain_overflow_bitfield,/* complain_on_overflow */
430 bfd_elf_generic_reloc, /* special_function */
431 "R_ARM_GOTOFF32", /* name */
432 TRUE, /* partial_inplace */
433 0xffffffff, /* src_mask */
434 0xffffffff, /* dst_mask */
435 FALSE), /* pcrel_offset */
436
437 HOWTO (R_ARM_GOTPC, /* type */
438 0, /* rightshift */
439 2, /* size (0 = byte, 1 = short, 2 = long) */
440 32, /* bitsize */
441 TRUE, /* pc_relative */
442 0, /* bitpos */
443 complain_overflow_bitfield,/* complain_on_overflow */
444 bfd_elf_generic_reloc, /* special_function */
445 "R_ARM_GOTPC", /* name */
446 TRUE, /* partial_inplace */
447 0xffffffff, /* src_mask */
448 0xffffffff, /* dst_mask */
449 TRUE), /* pcrel_offset */
450
451 HOWTO (R_ARM_GOT32, /* type */
452 0, /* rightshift */
453 2, /* size (0 = byte, 1 = short, 2 = long) */
454 32, /* bitsize */
455 FALSE, /* pc_relative */
456 0, /* bitpos */
457 complain_overflow_bitfield,/* complain_on_overflow */
458 bfd_elf_generic_reloc, /* special_function */
459 "R_ARM_GOT32", /* name */
460 TRUE, /* partial_inplace */
461 0xffffffff, /* src_mask */
462 0xffffffff, /* dst_mask */
463 FALSE), /* pcrel_offset */
464
465 HOWTO (R_ARM_PLT32, /* type */
466 2, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 24, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_bitfield,/* complain_on_overflow */
472 bfd_elf_generic_reloc, /* special_function */
473 "R_ARM_PLT32", /* name */
474 FALSE, /* partial_inplace */
475 0x00ffffff, /* src_mask */
476 0x00ffffff, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 HOWTO (R_ARM_CALL, /* type */
480 2, /* rightshift */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
482 24, /* bitsize */
483 TRUE, /* pc_relative */
484 0, /* bitpos */
485 complain_overflow_signed,/* complain_on_overflow */
486 bfd_elf_generic_reloc, /* special_function */
487 "R_ARM_CALL", /* name */
488 FALSE, /* partial_inplace */
489 0x00ffffff, /* src_mask */
490 0x00ffffff, /* dst_mask */
491 TRUE), /* pcrel_offset */
492
493 HOWTO (R_ARM_JUMP24, /* type */
494 2, /* rightshift */
495 2, /* size (0 = byte, 1 = short, 2 = long) */
496 24, /* bitsize */
497 TRUE, /* pc_relative */
498 0, /* bitpos */
499 complain_overflow_signed,/* complain_on_overflow */
500 bfd_elf_generic_reloc, /* special_function */
501 "R_ARM_JUMP24", /* name */
502 FALSE, /* partial_inplace */
503 0x00ffffff, /* src_mask */
504 0x00ffffff, /* dst_mask */
505 TRUE), /* pcrel_offset */
506
507 HOWTO (R_ARM_THM_JUMP24, /* type */
508 1, /* rightshift */
509 2, /* size (0 = byte, 1 = short, 2 = long) */
510 24, /* bitsize */
511 TRUE, /* pc_relative */
512 0, /* bitpos */
513 complain_overflow_signed,/* complain_on_overflow */
514 bfd_elf_generic_reloc, /* special_function */
515 "R_ARM_THM_JUMP24", /* name */
516 FALSE, /* partial_inplace */
517 0x07ff2fff, /* src_mask */
518 0x07ff2fff, /* dst_mask */
519 TRUE), /* pcrel_offset */
520
521 HOWTO (R_ARM_BASE_ABS, /* type */
522 0, /* rightshift */
523 2, /* size (0 = byte, 1 = short, 2 = long) */
524 32, /* bitsize */
525 FALSE, /* pc_relative */
526 0, /* bitpos */
527 complain_overflow_dont,/* complain_on_overflow */
528 bfd_elf_generic_reloc, /* special_function */
529 "R_ARM_BASE_ABS", /* name */
530 FALSE, /* partial_inplace */
531 0xffffffff, /* src_mask */
532 0xffffffff, /* dst_mask */
533 FALSE), /* pcrel_offset */
534
535 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
536 0, /* rightshift */
537 2, /* size (0 = byte, 1 = short, 2 = long) */
538 12, /* bitsize */
539 TRUE, /* pc_relative */
540 0, /* bitpos */
541 complain_overflow_dont,/* complain_on_overflow */
542 bfd_elf_generic_reloc, /* special_function */
543 "R_ARM_ALU_PCREL_7_0", /* name */
544 FALSE, /* partial_inplace */
545 0x00000fff, /* src_mask */
546 0x00000fff, /* dst_mask */
547 TRUE), /* pcrel_offset */
548
549 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
550 0, /* rightshift */
551 2, /* size (0 = byte, 1 = short, 2 = long) */
552 12, /* bitsize */
553 TRUE, /* pc_relative */
554 8, /* bitpos */
555 complain_overflow_dont,/* complain_on_overflow */
556 bfd_elf_generic_reloc, /* special_function */
557 "R_ARM_ALU_PCREL_15_8",/* name */
558 FALSE, /* partial_inplace */
559 0x00000fff, /* src_mask */
560 0x00000fff, /* dst_mask */
561 TRUE), /* pcrel_offset */
562
563 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
564 0, /* rightshift */
565 2, /* size (0 = byte, 1 = short, 2 = long) */
566 12, /* bitsize */
567 TRUE, /* pc_relative */
568 16, /* bitpos */
569 complain_overflow_dont,/* complain_on_overflow */
570 bfd_elf_generic_reloc, /* special_function */
571 "R_ARM_ALU_PCREL_23_15",/* name */
572 FALSE, /* partial_inplace */
573 0x00000fff, /* src_mask */
574 0x00000fff, /* dst_mask */
575 TRUE), /* pcrel_offset */
576
577 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
578 0, /* rightshift */
579 2, /* size (0 = byte, 1 = short, 2 = long) */
580 12, /* bitsize */
581 FALSE, /* pc_relative */
582 0, /* bitpos */
583 complain_overflow_dont,/* complain_on_overflow */
584 bfd_elf_generic_reloc, /* special_function */
585 "R_ARM_LDR_SBREL_11_0",/* name */
586 FALSE, /* partial_inplace */
587 0x00000fff, /* src_mask */
588 0x00000fff, /* dst_mask */
589 FALSE), /* pcrel_offset */
590
591 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
592 0, /* rightshift */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
594 8, /* bitsize */
595 FALSE, /* pc_relative */
596 12, /* bitpos */
597 complain_overflow_dont,/* complain_on_overflow */
598 bfd_elf_generic_reloc, /* special_function */
599 "R_ARM_ALU_SBREL_19_12",/* name */
600 FALSE, /* partial_inplace */
601 0x000ff000, /* src_mask */
602 0x000ff000, /* dst_mask */
603 FALSE), /* pcrel_offset */
604
605 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
606 0, /* rightshift */
607 2, /* size (0 = byte, 1 = short, 2 = long) */
608 8, /* bitsize */
609 FALSE, /* pc_relative */
610 20, /* bitpos */
611 complain_overflow_dont,/* complain_on_overflow */
612 bfd_elf_generic_reloc, /* special_function */
613 "R_ARM_ALU_SBREL_27_20",/* name */
614 FALSE, /* partial_inplace */
615 0x0ff00000, /* src_mask */
616 0x0ff00000, /* dst_mask */
617 FALSE), /* pcrel_offset */
618
619 HOWTO (R_ARM_TARGET1, /* type */
620 0, /* rightshift */
621 2, /* size (0 = byte, 1 = short, 2 = long) */
622 32, /* bitsize */
623 FALSE, /* pc_relative */
624 0, /* bitpos */
625 complain_overflow_dont,/* complain_on_overflow */
626 bfd_elf_generic_reloc, /* special_function */
627 "R_ARM_TARGET1", /* name */
628 FALSE, /* partial_inplace */
629 0xffffffff, /* src_mask */
630 0xffffffff, /* dst_mask */
631 FALSE), /* pcrel_offset */
632
633 HOWTO (R_ARM_ROSEGREL32, /* type */
634 0, /* rightshift */
635 2, /* size (0 = byte, 1 = short, 2 = long) */
636 32, /* bitsize */
637 FALSE, /* pc_relative */
638 0, /* bitpos */
639 complain_overflow_dont,/* complain_on_overflow */
640 bfd_elf_generic_reloc, /* special_function */
641 "R_ARM_ROSEGREL32", /* name */
642 FALSE, /* partial_inplace */
643 0xffffffff, /* src_mask */
644 0xffffffff, /* dst_mask */
645 FALSE), /* pcrel_offset */
646
647 HOWTO (R_ARM_V4BX, /* type */
648 0, /* rightshift */
649 2, /* size (0 = byte, 1 = short, 2 = long) */
650 32, /* bitsize */
651 FALSE, /* pc_relative */
652 0, /* bitpos */
653 complain_overflow_dont,/* complain_on_overflow */
654 bfd_elf_generic_reloc, /* special_function */
655 "R_ARM_V4BX", /* name */
656 FALSE, /* partial_inplace */
657 0xffffffff, /* src_mask */
658 0xffffffff, /* dst_mask */
659 FALSE), /* pcrel_offset */
660
661 HOWTO (R_ARM_TARGET2, /* type */
662 0, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 32, /* bitsize */
665 FALSE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_signed,/* complain_on_overflow */
668 bfd_elf_generic_reloc, /* special_function */
669 "R_ARM_TARGET2", /* name */
670 FALSE, /* partial_inplace */
671 0xffffffff, /* src_mask */
672 0xffffffff, /* dst_mask */
673 TRUE), /* pcrel_offset */
674
675 HOWTO (R_ARM_PREL31, /* type */
676 0, /* rightshift */
677 2, /* size (0 = byte, 1 = short, 2 = long) */
678 31, /* bitsize */
679 TRUE, /* pc_relative */
680 0, /* bitpos */
681 complain_overflow_signed,/* complain_on_overflow */
682 bfd_elf_generic_reloc, /* special_function */
683 "R_ARM_PREL31", /* name */
684 FALSE, /* partial_inplace */
685 0x7fffffff, /* src_mask */
686 0x7fffffff, /* dst_mask */
687 TRUE), /* pcrel_offset */
688
689 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
690 0, /* rightshift */
691 2, /* size (0 = byte, 1 = short, 2 = long) */
692 16, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont,/* complain_on_overflow */
696 bfd_elf_generic_reloc, /* special_function */
697 "R_ARM_MOVW_ABS_NC", /* name */
698 FALSE, /* partial_inplace */
699 0x0000ffff, /* src_mask */
700 0x0000ffff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 HOWTO (R_ARM_MOVT_ABS, /* type */
704 0, /* rightshift */
705 2, /* size (0 = byte, 1 = short, 2 = long) */
706 16, /* bitsize */
707 FALSE, /* pc_relative */
708 0, /* bitpos */
709 complain_overflow_bitfield,/* complain_on_overflow */
710 bfd_elf_generic_reloc, /* special_function */
711 "R_ARM_MOVT_ABS", /* name */
712 FALSE, /* partial_inplace */
713 0x0000ffff, /* src_mask */
714 0x0000ffff, /* dst_mask */
715 FALSE), /* pcrel_offset */
716
717 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
718 0, /* rightshift */
719 2, /* size (0 = byte, 1 = short, 2 = long) */
720 16, /* bitsize */
721 TRUE, /* pc_relative */
722 0, /* bitpos */
723 complain_overflow_dont,/* complain_on_overflow */
724 bfd_elf_generic_reloc, /* special_function */
725 "R_ARM_MOVW_PREL_NC", /* name */
726 FALSE, /* partial_inplace */
727 0x0000ffff, /* src_mask */
728 0x0000ffff, /* dst_mask */
729 TRUE), /* pcrel_offset */
730
731 HOWTO (R_ARM_MOVT_PREL, /* type */
732 0, /* rightshift */
733 2, /* size (0 = byte, 1 = short, 2 = long) */
734 16, /* bitsize */
735 TRUE, /* pc_relative */
736 0, /* bitpos */
737 complain_overflow_bitfield,/* complain_on_overflow */
738 bfd_elf_generic_reloc, /* special_function */
739 "R_ARM_MOVT_PREL", /* name */
740 FALSE, /* partial_inplace */
741 0x0000ffff, /* src_mask */
742 0x0000ffff, /* dst_mask */
743 TRUE), /* pcrel_offset */
744
745 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
746 0, /* rightshift */
747 2, /* size (0 = byte, 1 = short, 2 = long) */
748 16, /* bitsize */
749 FALSE, /* pc_relative */
750 0, /* bitpos */
751 complain_overflow_dont,/* complain_on_overflow */
752 bfd_elf_generic_reloc, /* special_function */
753 "R_ARM_THM_MOVW_ABS_NC",/* name */
754 FALSE, /* partial_inplace */
755 0x040f70ff, /* src_mask */
756 0x040f70ff, /* dst_mask */
757 FALSE), /* pcrel_offset */
758
759 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
760 0, /* rightshift */
761 2, /* size (0 = byte, 1 = short, 2 = long) */
762 16, /* bitsize */
763 FALSE, /* pc_relative */
764 0, /* bitpos */
765 complain_overflow_bitfield,/* complain_on_overflow */
766 bfd_elf_generic_reloc, /* special_function */
767 "R_ARM_THM_MOVT_ABS", /* name */
768 FALSE, /* partial_inplace */
769 0x040f70ff, /* src_mask */
770 0x040f70ff, /* dst_mask */
771 FALSE), /* pcrel_offset */
772
773 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
774 0, /* rightshift */
775 2, /* size (0 = byte, 1 = short, 2 = long) */
776 16, /* bitsize */
777 TRUE, /* pc_relative */
778 0, /* bitpos */
779 complain_overflow_dont,/* complain_on_overflow */
780 bfd_elf_generic_reloc, /* special_function */
781 "R_ARM_THM_MOVW_PREL_NC",/* name */
782 FALSE, /* partial_inplace */
783 0x040f70ff, /* src_mask */
784 0x040f70ff, /* dst_mask */
785 TRUE), /* pcrel_offset */
786
787 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
788 0, /* rightshift */
789 2, /* size (0 = byte, 1 = short, 2 = long) */
790 16, /* bitsize */
791 TRUE, /* pc_relative */
792 0, /* bitpos */
793 complain_overflow_bitfield,/* complain_on_overflow */
794 bfd_elf_generic_reloc, /* special_function */
795 "R_ARM_THM_MOVT_PREL", /* name */
796 FALSE, /* partial_inplace */
797 0x040f70ff, /* src_mask */
798 0x040f70ff, /* dst_mask */
799 TRUE), /* pcrel_offset */
800
801 HOWTO (R_ARM_THM_JUMP19, /* type */
802 1, /* rightshift */
803 2, /* size (0 = byte, 1 = short, 2 = long) */
804 19, /* bitsize */
805 TRUE, /* pc_relative */
806 0, /* bitpos */
807 complain_overflow_signed,/* complain_on_overflow */
808 bfd_elf_generic_reloc, /* special_function */
809 "R_ARM_THM_JUMP19", /* name */
810 FALSE, /* partial_inplace */
811 0x043f2fff, /* src_mask */
812 0x043f2fff, /* dst_mask */
813 TRUE), /* pcrel_offset */
814
815 HOWTO (R_ARM_THM_JUMP6, /* type */
816 1, /* rightshift */
817 1, /* size (0 = byte, 1 = short, 2 = long) */
818 6, /* bitsize */
819 TRUE, /* pc_relative */
820 0, /* bitpos */
821 complain_overflow_unsigned,/* complain_on_overflow */
822 bfd_elf_generic_reloc, /* special_function */
823 "R_ARM_THM_JUMP6", /* name */
824 FALSE, /* partial_inplace */
825 0x02f8, /* src_mask */
826 0x02f8, /* dst_mask */
827 TRUE), /* pcrel_offset */
828
829 /* These are declared as 13-bit signed relocations because we can
830 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
831 versa. */
832 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
833 0, /* rightshift */
834 2, /* size (0 = byte, 1 = short, 2 = long) */
835 13, /* bitsize */
836 TRUE, /* pc_relative */
837 0, /* bitpos */
838 complain_overflow_dont,/* complain_on_overflow */
839 bfd_elf_generic_reloc, /* special_function */
840 "R_ARM_THM_ALU_PREL_11_0",/* name */
841 FALSE, /* partial_inplace */
842 0xffffffff, /* src_mask */
843 0xffffffff, /* dst_mask */
844 TRUE), /* pcrel_offset */
845
846 HOWTO (R_ARM_THM_PC12, /* type */
847 0, /* rightshift */
848 2, /* size (0 = byte, 1 = short, 2 = long) */
849 13, /* bitsize */
850 TRUE, /* pc_relative */
851 0, /* bitpos */
852 complain_overflow_dont,/* complain_on_overflow */
853 bfd_elf_generic_reloc, /* special_function */
854 "R_ARM_THM_PC12", /* name */
855 FALSE, /* partial_inplace */
856 0xffffffff, /* src_mask */
857 0xffffffff, /* dst_mask */
858 TRUE), /* pcrel_offset */
859
860 HOWTO (R_ARM_ABS32_NOI, /* type */
861 0, /* rightshift */
862 2, /* size (0 = byte, 1 = short, 2 = long) */
863 32, /* bitsize */
864 FALSE, /* pc_relative */
865 0, /* bitpos */
866 complain_overflow_dont,/* complain_on_overflow */
867 bfd_elf_generic_reloc, /* special_function */
868 "R_ARM_ABS32_NOI", /* name */
869 FALSE, /* partial_inplace */
870 0xffffffff, /* src_mask */
871 0xffffffff, /* dst_mask */
872 FALSE), /* pcrel_offset */
873
874 HOWTO (R_ARM_REL32_NOI, /* type */
875 0, /* rightshift */
876 2, /* size (0 = byte, 1 = short, 2 = long) */
877 32, /* bitsize */
878 TRUE, /* pc_relative */
879 0, /* bitpos */
880 complain_overflow_dont,/* complain_on_overflow */
881 bfd_elf_generic_reloc, /* special_function */
882 "R_ARM_REL32_NOI", /* name */
883 FALSE, /* partial_inplace */
884 0xffffffff, /* src_mask */
885 0xffffffff, /* dst_mask */
886 FALSE), /* pcrel_offset */
887
888 /* Group relocations. */
889
890 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
891 0, /* rightshift */
892 2, /* size (0 = byte, 1 = short, 2 = long) */
893 32, /* bitsize */
894 TRUE, /* pc_relative */
895 0, /* bitpos */
896 complain_overflow_dont,/* complain_on_overflow */
897 bfd_elf_generic_reloc, /* special_function */
898 "R_ARM_ALU_PC_G0_NC", /* name */
899 FALSE, /* partial_inplace */
900 0xffffffff, /* src_mask */
901 0xffffffff, /* dst_mask */
902 TRUE), /* pcrel_offset */
903
904 HOWTO (R_ARM_ALU_PC_G0, /* type */
905 0, /* rightshift */
906 2, /* size (0 = byte, 1 = short, 2 = long) */
907 32, /* bitsize */
908 TRUE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_dont,/* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 "R_ARM_ALU_PC_G0", /* name */
913 FALSE, /* partial_inplace */
914 0xffffffff, /* src_mask */
915 0xffffffff, /* dst_mask */
916 TRUE), /* pcrel_offset */
917
918 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
919 0, /* rightshift */
920 2, /* size (0 = byte, 1 = short, 2 = long) */
921 32, /* bitsize */
922 TRUE, /* pc_relative */
923 0, /* bitpos */
924 complain_overflow_dont,/* complain_on_overflow */
925 bfd_elf_generic_reloc, /* special_function */
926 "R_ARM_ALU_PC_G1_NC", /* name */
927 FALSE, /* partial_inplace */
928 0xffffffff, /* src_mask */
929 0xffffffff, /* dst_mask */
930 TRUE), /* pcrel_offset */
931
932 HOWTO (R_ARM_ALU_PC_G1, /* type */
933 0, /* rightshift */
934 2, /* size (0 = byte, 1 = short, 2 = long) */
935 32, /* bitsize */
936 TRUE, /* pc_relative */
937 0, /* bitpos */
938 complain_overflow_dont,/* complain_on_overflow */
939 bfd_elf_generic_reloc, /* special_function */
940 "R_ARM_ALU_PC_G1", /* name */
941 FALSE, /* partial_inplace */
942 0xffffffff, /* src_mask */
943 0xffffffff, /* dst_mask */
944 TRUE), /* pcrel_offset */
945
946 HOWTO (R_ARM_ALU_PC_G2, /* type */
947 0, /* rightshift */
948 2, /* size (0 = byte, 1 = short, 2 = long) */
949 32, /* bitsize */
950 TRUE, /* pc_relative */
951 0, /* bitpos */
952 complain_overflow_dont,/* complain_on_overflow */
953 bfd_elf_generic_reloc, /* special_function */
954 "R_ARM_ALU_PC_G2", /* name */
955 FALSE, /* partial_inplace */
956 0xffffffff, /* src_mask */
957 0xffffffff, /* dst_mask */
958 TRUE), /* pcrel_offset */
959
960 HOWTO (R_ARM_LDR_PC_G1, /* type */
961 0, /* rightshift */
962 2, /* size (0 = byte, 1 = short, 2 = long) */
963 32, /* bitsize */
964 TRUE, /* pc_relative */
965 0, /* bitpos */
966 complain_overflow_dont,/* complain_on_overflow */
967 bfd_elf_generic_reloc, /* special_function */
968 "R_ARM_LDR_PC_G1", /* name */
969 FALSE, /* partial_inplace */
970 0xffffffff, /* src_mask */
971 0xffffffff, /* dst_mask */
972 TRUE), /* pcrel_offset */
973
974 HOWTO (R_ARM_LDR_PC_G2, /* type */
975 0, /* rightshift */
976 2, /* size (0 = byte, 1 = short, 2 = long) */
977 32, /* bitsize */
978 TRUE, /* pc_relative */
979 0, /* bitpos */
980 complain_overflow_dont,/* complain_on_overflow */
981 bfd_elf_generic_reloc, /* special_function */
982 "R_ARM_LDR_PC_G2", /* name */
983 FALSE, /* partial_inplace */
984 0xffffffff, /* src_mask */
985 0xffffffff, /* dst_mask */
986 TRUE), /* pcrel_offset */
987
988 HOWTO (R_ARM_LDRS_PC_G0, /* type */
989 0, /* rightshift */
990 2, /* size (0 = byte, 1 = short, 2 = long) */
991 32, /* bitsize */
992 TRUE, /* pc_relative */
993 0, /* bitpos */
994 complain_overflow_dont,/* complain_on_overflow */
995 bfd_elf_generic_reloc, /* special_function */
996 "R_ARM_LDRS_PC_G0", /* name */
997 FALSE, /* partial_inplace */
998 0xffffffff, /* src_mask */
999 0xffffffff, /* dst_mask */
1000 TRUE), /* pcrel_offset */
1001
1002 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1003 0, /* rightshift */
1004 2, /* size (0 = byte, 1 = short, 2 = long) */
1005 32, /* bitsize */
1006 TRUE, /* pc_relative */
1007 0, /* bitpos */
1008 complain_overflow_dont,/* complain_on_overflow */
1009 bfd_elf_generic_reloc, /* special_function */
1010 "R_ARM_LDRS_PC_G1", /* name */
1011 FALSE, /* partial_inplace */
1012 0xffffffff, /* src_mask */
1013 0xffffffff, /* dst_mask */
1014 TRUE), /* pcrel_offset */
1015
1016 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1017 0, /* rightshift */
1018 2, /* size (0 = byte, 1 = short, 2 = long) */
1019 32, /* bitsize */
1020 TRUE, /* pc_relative */
1021 0, /* bitpos */
1022 complain_overflow_dont,/* complain_on_overflow */
1023 bfd_elf_generic_reloc, /* special_function */
1024 "R_ARM_LDRS_PC_G2", /* name */
1025 FALSE, /* partial_inplace */
1026 0xffffffff, /* src_mask */
1027 0xffffffff, /* dst_mask */
1028 TRUE), /* pcrel_offset */
1029
1030 HOWTO (R_ARM_LDC_PC_G0, /* type */
1031 0, /* rightshift */
1032 2, /* size (0 = byte, 1 = short, 2 = long) */
1033 32, /* bitsize */
1034 TRUE, /* pc_relative */
1035 0, /* bitpos */
1036 complain_overflow_dont,/* complain_on_overflow */
1037 bfd_elf_generic_reloc, /* special_function */
1038 "R_ARM_LDC_PC_G0", /* name */
1039 FALSE, /* partial_inplace */
1040 0xffffffff, /* src_mask */
1041 0xffffffff, /* dst_mask */
1042 TRUE), /* pcrel_offset */
1043
1044 HOWTO (R_ARM_LDC_PC_G1, /* type */
1045 0, /* rightshift */
1046 2, /* size (0 = byte, 1 = short, 2 = long) */
1047 32, /* bitsize */
1048 TRUE, /* pc_relative */
1049 0, /* bitpos */
1050 complain_overflow_dont,/* complain_on_overflow */
1051 bfd_elf_generic_reloc, /* special_function */
1052 "R_ARM_LDC_PC_G1", /* name */
1053 FALSE, /* partial_inplace */
1054 0xffffffff, /* src_mask */
1055 0xffffffff, /* dst_mask */
1056 TRUE), /* pcrel_offset */
1057
1058 HOWTO (R_ARM_LDC_PC_G2, /* type */
1059 0, /* rightshift */
1060 2, /* size (0 = byte, 1 = short, 2 = long) */
1061 32, /* bitsize */
1062 TRUE, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_dont,/* complain_on_overflow */
1065 bfd_elf_generic_reloc, /* special_function */
1066 "R_ARM_LDC_PC_G2", /* name */
1067 FALSE, /* partial_inplace */
1068 0xffffffff, /* src_mask */
1069 0xffffffff, /* dst_mask */
1070 TRUE), /* pcrel_offset */
1071
1072 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1073 0, /* rightshift */
1074 2, /* size (0 = byte, 1 = short, 2 = long) */
1075 32, /* bitsize */
1076 TRUE, /* pc_relative */
1077 0, /* bitpos */
1078 complain_overflow_dont,/* complain_on_overflow */
1079 bfd_elf_generic_reloc, /* special_function */
1080 "R_ARM_ALU_SB_G0_NC", /* name */
1081 FALSE, /* partial_inplace */
1082 0xffffffff, /* src_mask */
1083 0xffffffff, /* dst_mask */
1084 TRUE), /* pcrel_offset */
1085
1086 HOWTO (R_ARM_ALU_SB_G0, /* type */
1087 0, /* rightshift */
1088 2, /* size (0 = byte, 1 = short, 2 = long) */
1089 32, /* bitsize */
1090 TRUE, /* pc_relative */
1091 0, /* bitpos */
1092 complain_overflow_dont,/* complain_on_overflow */
1093 bfd_elf_generic_reloc, /* special_function */
1094 "R_ARM_ALU_SB_G0", /* name */
1095 FALSE, /* partial_inplace */
1096 0xffffffff, /* src_mask */
1097 0xffffffff, /* dst_mask */
1098 TRUE), /* pcrel_offset */
1099
1100 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1101 0, /* rightshift */
1102 2, /* size (0 = byte, 1 = short, 2 = long) */
1103 32, /* bitsize */
1104 TRUE, /* pc_relative */
1105 0, /* bitpos */
1106 complain_overflow_dont,/* complain_on_overflow */
1107 bfd_elf_generic_reloc, /* special_function */
1108 "R_ARM_ALU_SB_G1_NC", /* name */
1109 FALSE, /* partial_inplace */
1110 0xffffffff, /* src_mask */
1111 0xffffffff, /* dst_mask */
1112 TRUE), /* pcrel_offset */
1113
1114 HOWTO (R_ARM_ALU_SB_G1, /* type */
1115 0, /* rightshift */
1116 2, /* size (0 = byte, 1 = short, 2 = long) */
1117 32, /* bitsize */
1118 TRUE, /* pc_relative */
1119 0, /* bitpos */
1120 complain_overflow_dont,/* complain_on_overflow */
1121 bfd_elf_generic_reloc, /* special_function */
1122 "R_ARM_ALU_SB_G1", /* name */
1123 FALSE, /* partial_inplace */
1124 0xffffffff, /* src_mask */
1125 0xffffffff, /* dst_mask */
1126 TRUE), /* pcrel_offset */
1127
1128 HOWTO (R_ARM_ALU_SB_G2, /* type */
1129 0, /* rightshift */
1130 2, /* size (0 = byte, 1 = short, 2 = long) */
1131 32, /* bitsize */
1132 TRUE, /* pc_relative */
1133 0, /* bitpos */
1134 complain_overflow_dont,/* complain_on_overflow */
1135 bfd_elf_generic_reloc, /* special_function */
1136 "R_ARM_ALU_SB_G2", /* name */
1137 FALSE, /* partial_inplace */
1138 0xffffffff, /* src_mask */
1139 0xffffffff, /* dst_mask */
1140 TRUE), /* pcrel_offset */
1141
1142 HOWTO (R_ARM_LDR_SB_G0, /* type */
1143 0, /* rightshift */
1144 2, /* size (0 = byte, 1 = short, 2 = long) */
1145 32, /* bitsize */
1146 TRUE, /* pc_relative */
1147 0, /* bitpos */
1148 complain_overflow_dont,/* complain_on_overflow */
1149 bfd_elf_generic_reloc, /* special_function */
1150 "R_ARM_LDR_SB_G0", /* name */
1151 FALSE, /* partial_inplace */
1152 0xffffffff, /* src_mask */
1153 0xffffffff, /* dst_mask */
1154 TRUE), /* pcrel_offset */
1155
1156 HOWTO (R_ARM_LDR_SB_G1, /* type */
1157 0, /* rightshift */
1158 2, /* size (0 = byte, 1 = short, 2 = long) */
1159 32, /* bitsize */
1160 TRUE, /* pc_relative */
1161 0, /* bitpos */
1162 complain_overflow_dont,/* complain_on_overflow */
1163 bfd_elf_generic_reloc, /* special_function */
1164 "R_ARM_LDR_SB_G1", /* name */
1165 FALSE, /* partial_inplace */
1166 0xffffffff, /* src_mask */
1167 0xffffffff, /* dst_mask */
1168 TRUE), /* pcrel_offset */
1169
1170 HOWTO (R_ARM_LDR_SB_G2, /* type */
1171 0, /* rightshift */
1172 2, /* size (0 = byte, 1 = short, 2 = long) */
1173 32, /* bitsize */
1174 TRUE, /* pc_relative */
1175 0, /* bitpos */
1176 complain_overflow_dont,/* complain_on_overflow */
1177 bfd_elf_generic_reloc, /* special_function */
1178 "R_ARM_LDR_SB_G2", /* name */
1179 FALSE, /* partial_inplace */
1180 0xffffffff, /* src_mask */
1181 0xffffffff, /* dst_mask */
1182 TRUE), /* pcrel_offset */
1183
1184 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1185 0, /* rightshift */
1186 2, /* size (0 = byte, 1 = short, 2 = long) */
1187 32, /* bitsize */
1188 TRUE, /* pc_relative */
1189 0, /* bitpos */
1190 complain_overflow_dont,/* complain_on_overflow */
1191 bfd_elf_generic_reloc, /* special_function */
1192 "R_ARM_LDRS_SB_G0", /* name */
1193 FALSE, /* partial_inplace */
1194 0xffffffff, /* src_mask */
1195 0xffffffff, /* dst_mask */
1196 TRUE), /* pcrel_offset */
1197
1198 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1199 0, /* rightshift */
1200 2, /* size (0 = byte, 1 = short, 2 = long) */
1201 32, /* bitsize */
1202 TRUE, /* pc_relative */
1203 0, /* bitpos */
1204 complain_overflow_dont,/* complain_on_overflow */
1205 bfd_elf_generic_reloc, /* special_function */
1206 "R_ARM_LDRS_SB_G1", /* name */
1207 FALSE, /* partial_inplace */
1208 0xffffffff, /* src_mask */
1209 0xffffffff, /* dst_mask */
1210 TRUE), /* pcrel_offset */
1211
1212 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1213 0, /* rightshift */
1214 2, /* size (0 = byte, 1 = short, 2 = long) */
1215 32, /* bitsize */
1216 TRUE, /* pc_relative */
1217 0, /* bitpos */
1218 complain_overflow_dont,/* complain_on_overflow */
1219 bfd_elf_generic_reloc, /* special_function */
1220 "R_ARM_LDRS_SB_G2", /* name */
1221 FALSE, /* partial_inplace */
1222 0xffffffff, /* src_mask */
1223 0xffffffff, /* dst_mask */
1224 TRUE), /* pcrel_offset */
1225
1226 HOWTO (R_ARM_LDC_SB_G0, /* type */
1227 0, /* rightshift */
1228 2, /* size (0 = byte, 1 = short, 2 = long) */
1229 32, /* bitsize */
1230 TRUE, /* pc_relative */
1231 0, /* bitpos */
1232 complain_overflow_dont,/* complain_on_overflow */
1233 bfd_elf_generic_reloc, /* special_function */
1234 "R_ARM_LDC_SB_G0", /* name */
1235 FALSE, /* partial_inplace */
1236 0xffffffff, /* src_mask */
1237 0xffffffff, /* dst_mask */
1238 TRUE), /* pcrel_offset */
1239
1240 HOWTO (R_ARM_LDC_SB_G1, /* type */
1241 0, /* rightshift */
1242 2, /* size (0 = byte, 1 = short, 2 = long) */
1243 32, /* bitsize */
1244 TRUE, /* pc_relative */
1245 0, /* bitpos */
1246 complain_overflow_dont,/* complain_on_overflow */
1247 bfd_elf_generic_reloc, /* special_function */
1248 "R_ARM_LDC_SB_G1", /* name */
1249 FALSE, /* partial_inplace */
1250 0xffffffff, /* src_mask */
1251 0xffffffff, /* dst_mask */
1252 TRUE), /* pcrel_offset */
1253
1254 HOWTO (R_ARM_LDC_SB_G2, /* type */
1255 0, /* rightshift */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1257 32, /* bitsize */
1258 TRUE, /* pc_relative */
1259 0, /* bitpos */
1260 complain_overflow_dont,/* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 "R_ARM_LDC_SB_G2", /* name */
1263 FALSE, /* partial_inplace */
1264 0xffffffff, /* src_mask */
1265 0xffffffff, /* dst_mask */
1266 TRUE), /* pcrel_offset */
1267
1268 /* End of group relocations. */
1269
1270 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1271 0, /* rightshift */
1272 2, /* size (0 = byte, 1 = short, 2 = long) */
1273 16, /* bitsize */
1274 FALSE, /* pc_relative */
1275 0, /* bitpos */
1276 complain_overflow_dont,/* complain_on_overflow */
1277 bfd_elf_generic_reloc, /* special_function */
1278 "R_ARM_MOVW_BREL_NC", /* name */
1279 FALSE, /* partial_inplace */
1280 0x0000ffff, /* src_mask */
1281 0x0000ffff, /* dst_mask */
1282 FALSE), /* pcrel_offset */
1283
1284 HOWTO (R_ARM_MOVT_BREL, /* type */
1285 0, /* rightshift */
1286 2, /* size (0 = byte, 1 = short, 2 = long) */
1287 16, /* bitsize */
1288 FALSE, /* pc_relative */
1289 0, /* bitpos */
1290 complain_overflow_bitfield,/* complain_on_overflow */
1291 bfd_elf_generic_reloc, /* special_function */
1292 "R_ARM_MOVT_BREL", /* name */
1293 FALSE, /* partial_inplace */
1294 0x0000ffff, /* src_mask */
1295 0x0000ffff, /* dst_mask */
1296 FALSE), /* pcrel_offset */
1297
1298 HOWTO (R_ARM_MOVW_BREL, /* type */
1299 0, /* rightshift */
1300 2, /* size (0 = byte, 1 = short, 2 = long) */
1301 16, /* bitsize */
1302 FALSE, /* pc_relative */
1303 0, /* bitpos */
1304 complain_overflow_dont,/* complain_on_overflow */
1305 bfd_elf_generic_reloc, /* special_function */
1306 "R_ARM_MOVW_BREL", /* name */
1307 FALSE, /* partial_inplace */
1308 0x0000ffff, /* src_mask */
1309 0x0000ffff, /* dst_mask */
1310 FALSE), /* pcrel_offset */
1311
1312 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1313 0, /* rightshift */
1314 2, /* size (0 = byte, 1 = short, 2 = long) */
1315 16, /* bitsize */
1316 FALSE, /* pc_relative */
1317 0, /* bitpos */
1318 complain_overflow_dont,/* complain_on_overflow */
1319 bfd_elf_generic_reloc, /* special_function */
1320 "R_ARM_THM_MOVW_BREL_NC",/* name */
1321 FALSE, /* partial_inplace */
1322 0x040f70ff, /* src_mask */
1323 0x040f70ff, /* dst_mask */
1324 FALSE), /* pcrel_offset */
1325
1326 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1327 0, /* rightshift */
1328 2, /* size (0 = byte, 1 = short, 2 = long) */
1329 16, /* bitsize */
1330 FALSE, /* pc_relative */
1331 0, /* bitpos */
1332 complain_overflow_bitfield,/* complain_on_overflow */
1333 bfd_elf_generic_reloc, /* special_function */
1334 "R_ARM_THM_MOVT_BREL", /* name */
1335 FALSE, /* partial_inplace */
1336 0x040f70ff, /* src_mask */
1337 0x040f70ff, /* dst_mask */
1338 FALSE), /* pcrel_offset */
1339
1340 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1341 0, /* rightshift */
1342 2, /* size (0 = byte, 1 = short, 2 = long) */
1343 16, /* bitsize */
1344 FALSE, /* pc_relative */
1345 0, /* bitpos */
1346 complain_overflow_dont,/* complain_on_overflow */
1347 bfd_elf_generic_reloc, /* special_function */
1348 "R_ARM_THM_MOVW_BREL", /* name */
1349 FALSE, /* partial_inplace */
1350 0x040f70ff, /* src_mask */
1351 0x040f70ff, /* dst_mask */
1352 FALSE), /* pcrel_offset */
1353
1354 EMPTY_HOWTO (90), /* unallocated */
1355 EMPTY_HOWTO (91),
1356 EMPTY_HOWTO (92),
1357 EMPTY_HOWTO (93),
1358
1359 HOWTO (R_ARM_PLT32_ABS, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_dont,/* complain_on_overflow */
1366 bfd_elf_generic_reloc, /* special_function */
1367 "R_ARM_PLT32_ABS", /* name */
1368 FALSE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_GOT_ABS, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 32, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_GOT_ABS", /* name */
1382 FALSE, /* partial_inplace */
1383 0xffffffff, /* src_mask */
1384 0xffffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_GOT_PREL, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 32, /* bitsize */
1391 TRUE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_dont, /* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_GOT_PREL", /* name */
1396 FALSE, /* partial_inplace */
1397 0xffffffff, /* src_mask */
1398 0xffffffff, /* dst_mask */
1399 TRUE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_GOT_BREL12, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 12, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_bitfield,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_GOT_BREL12", /* name */
1410 FALSE, /* partial_inplace */
1411 0x00000fff, /* src_mask */
1412 0x00000fff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_GOTOFF12, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 12, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_bitfield,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_GOTOFF12", /* name */
1424 FALSE, /* partial_inplace */
1425 0x00000fff, /* src_mask */
1426 0x00000fff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1430
1431 /* GNU extension to record C++ vtable member usage */
1432 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1433 0, /* rightshift */
1434 2, /* size (0 = byte, 1 = short, 2 = long) */
1435 0, /* bitsize */
1436 FALSE, /* pc_relative */
1437 0, /* bitpos */
1438 complain_overflow_dont, /* complain_on_overflow */
1439 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1440 "R_ARM_GNU_VTENTRY", /* name */
1441 FALSE, /* partial_inplace */
1442 0, /* src_mask */
1443 0, /* dst_mask */
1444 FALSE), /* pcrel_offset */
1445
1446 /* GNU extension to record C++ vtable hierarchy */
1447 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1448 0, /* rightshift */
1449 2, /* size (0 = byte, 1 = short, 2 = long) */
1450 0, /* bitsize */
1451 FALSE, /* pc_relative */
1452 0, /* bitpos */
1453 complain_overflow_dont, /* complain_on_overflow */
1454 NULL, /* special_function */
1455 "R_ARM_GNU_VTINHERIT", /* name */
1456 FALSE, /* partial_inplace */
1457 0, /* src_mask */
1458 0, /* dst_mask */
1459 FALSE), /* pcrel_offset */
1460
1461 HOWTO (R_ARM_THM_JUMP11, /* type */
1462 1, /* rightshift */
1463 1, /* size (0 = byte, 1 = short, 2 = long) */
1464 11, /* bitsize */
1465 TRUE, /* pc_relative */
1466 0, /* bitpos */
1467 complain_overflow_signed, /* complain_on_overflow */
1468 bfd_elf_generic_reloc, /* special_function */
1469 "R_ARM_THM_JUMP11", /* name */
1470 FALSE, /* partial_inplace */
1471 0x000007ff, /* src_mask */
1472 0x000007ff, /* dst_mask */
1473 TRUE), /* pcrel_offset */
1474
1475 HOWTO (R_ARM_THM_JUMP8, /* type */
1476 1, /* rightshift */
1477 1, /* size (0 = byte, 1 = short, 2 = long) */
1478 8, /* bitsize */
1479 TRUE, /* pc_relative */
1480 0, /* bitpos */
1481 complain_overflow_signed, /* complain_on_overflow */
1482 bfd_elf_generic_reloc, /* special_function */
1483 "R_ARM_THM_JUMP8", /* name */
1484 FALSE, /* partial_inplace */
1485 0x000000ff, /* src_mask */
1486 0x000000ff, /* dst_mask */
1487 TRUE), /* pcrel_offset */
1488
1489 /* TLS relocations */
1490 HOWTO (R_ARM_TLS_GD32, /* type */
1491 0, /* rightshift */
1492 2, /* size (0 = byte, 1 = short, 2 = long) */
1493 32, /* bitsize */
1494 FALSE, /* pc_relative */
1495 0, /* bitpos */
1496 complain_overflow_bitfield,/* complain_on_overflow */
1497 NULL, /* special_function */
1498 "R_ARM_TLS_GD32", /* name */
1499 TRUE, /* partial_inplace */
1500 0xffffffff, /* src_mask */
1501 0xffffffff, /* dst_mask */
1502 FALSE), /* pcrel_offset */
1503
1504 HOWTO (R_ARM_TLS_LDM32, /* type */
1505 0, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 32, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_bitfield,/* complain_on_overflow */
1511 bfd_elf_generic_reloc, /* special_function */
1512 "R_ARM_TLS_LDM32", /* name */
1513 TRUE, /* partial_inplace */
1514 0xffffffff, /* src_mask */
1515 0xffffffff, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 HOWTO (R_ARM_TLS_LDO32, /* type */
1519 0, /* rightshift */
1520 2, /* size (0 = byte, 1 = short, 2 = long) */
1521 32, /* bitsize */
1522 FALSE, /* pc_relative */
1523 0, /* bitpos */
1524 complain_overflow_bitfield,/* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 "R_ARM_TLS_LDO32", /* name */
1527 TRUE, /* partial_inplace */
1528 0xffffffff, /* src_mask */
1529 0xffffffff, /* dst_mask */
1530 FALSE), /* pcrel_offset */
1531
1532 HOWTO (R_ARM_TLS_IE32, /* type */
1533 0, /* rightshift */
1534 2, /* size (0 = byte, 1 = short, 2 = long) */
1535 32, /* bitsize */
1536 FALSE, /* pc_relative */
1537 0, /* bitpos */
1538 complain_overflow_bitfield,/* complain_on_overflow */
1539 NULL, /* special_function */
1540 "R_ARM_TLS_IE32", /* name */
1541 TRUE, /* partial_inplace */
1542 0xffffffff, /* src_mask */
1543 0xffffffff, /* dst_mask */
1544 FALSE), /* pcrel_offset */
1545
1546 HOWTO (R_ARM_TLS_LE32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 bfd_elf_generic_reloc, /* special_function */
1554 "R_ARM_TLS_LE32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDO12, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 12, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDO12", /* name */
1569 FALSE, /* partial_inplace */
1570 0x00000fff, /* src_mask */
1571 0x00000fff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LE12, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 12, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LE12", /* name */
1583 FALSE, /* partial_inplace */
1584 0x00000fff, /* src_mask */
1585 0x00000fff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE12GP, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 12, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 bfd_elf_generic_reloc, /* special_function */
1596 "R_ARM_TLS_IE12GP", /* name */
1597 FALSE, /* partial_inplace */
1598 0x00000fff, /* src_mask */
1599 0x00000fff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601 };
1602
1603 /* 112-127 private relocations
1604 128 R_ARM_ME_TOO, obsolete
1605 129-255 unallocated in AAELF.
1606
1607 249-255 extended, currently unused, relocations: */
1608
1609 static reloc_howto_type elf32_arm_howto_table_2[4] =
1610 {
1611 HOWTO (R_ARM_RREL32, /* type */
1612 0, /* rightshift */
1613 0, /* size (0 = byte, 1 = short, 2 = long) */
1614 0, /* bitsize */
1615 FALSE, /* pc_relative */
1616 0, /* bitpos */
1617 complain_overflow_dont,/* complain_on_overflow */
1618 bfd_elf_generic_reloc, /* special_function */
1619 "R_ARM_RREL32", /* name */
1620 FALSE, /* partial_inplace */
1621 0, /* src_mask */
1622 0, /* dst_mask */
1623 FALSE), /* pcrel_offset */
1624
1625 HOWTO (R_ARM_RABS32, /* type */
1626 0, /* rightshift */
1627 0, /* size (0 = byte, 1 = short, 2 = long) */
1628 0, /* bitsize */
1629 FALSE, /* pc_relative */
1630 0, /* bitpos */
1631 complain_overflow_dont,/* complain_on_overflow */
1632 bfd_elf_generic_reloc, /* special_function */
1633 "R_ARM_RABS32", /* name */
1634 FALSE, /* partial_inplace */
1635 0, /* src_mask */
1636 0, /* dst_mask */
1637 FALSE), /* pcrel_offset */
1638
1639 HOWTO (R_ARM_RPC24, /* type */
1640 0, /* rightshift */
1641 0, /* size (0 = byte, 1 = short, 2 = long) */
1642 0, /* bitsize */
1643 FALSE, /* pc_relative */
1644 0, /* bitpos */
1645 complain_overflow_dont,/* complain_on_overflow */
1646 bfd_elf_generic_reloc, /* special_function */
1647 "R_ARM_RPC24", /* name */
1648 FALSE, /* partial_inplace */
1649 0, /* src_mask */
1650 0, /* dst_mask */
1651 FALSE), /* pcrel_offset */
1652
1653 HOWTO (R_ARM_RBASE, /* type */
1654 0, /* rightshift */
1655 0, /* size (0 = byte, 1 = short, 2 = long) */
1656 0, /* bitsize */
1657 FALSE, /* pc_relative */
1658 0, /* bitpos */
1659 complain_overflow_dont,/* complain_on_overflow */
1660 bfd_elf_generic_reloc, /* special_function */
1661 "R_ARM_RBASE", /* name */
1662 FALSE, /* partial_inplace */
1663 0, /* src_mask */
1664 0, /* dst_mask */
1665 FALSE) /* pcrel_offset */
1666 };
1667
1668 static reloc_howto_type *
1669 elf32_arm_howto_from_type (unsigned int r_type)
1670 {
1671 if (r_type < NUM_ELEM (elf32_arm_howto_table_1))
1672 return &elf32_arm_howto_table_1[r_type];
1673
1674 if (r_type >= R_ARM_RREL32
1675 && r_type < R_ARM_RREL32 + NUM_ELEM (elf32_arm_howto_table_2))
1676 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1677
1678 return NULL;
1679 }
1680
1681 static void
1682 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1683 Elf_Internal_Rela * elf_reloc)
1684 {
1685 unsigned int r_type;
1686
1687 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1688 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1689 }
1690
1691 struct elf32_arm_reloc_map
1692 {
1693 bfd_reloc_code_real_type bfd_reloc_val;
1694 unsigned char elf_reloc_val;
1695 };
1696
1697 /* All entries in this list must also be present in elf32_arm_howto_table. */
1698 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1699 {
1700 {BFD_RELOC_NONE, R_ARM_NONE},
1701 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1702 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1703 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1704 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1705 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1706 {BFD_RELOC_32, R_ARM_ABS32},
1707 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1708 {BFD_RELOC_8, R_ARM_ABS8},
1709 {BFD_RELOC_16, R_ARM_ABS16},
1710 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1711 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1714 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1715 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1717 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1718 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1719 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1720 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1721 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1722 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1723 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1724 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1725 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1726 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1727 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1728 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1729 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1730 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1731 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1732 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1733 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1734 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1735 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1736 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1737 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1738 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1739 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1740 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1741 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1743 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1745 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1746 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1747 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1748 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1749 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1750 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1751 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1752 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1753 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1754 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1755 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1756 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1757 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1758 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1759 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1760 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1761 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1762 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1763 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1764 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1765 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1766 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1767 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1768 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1769 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1770 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1771 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1772 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1773 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1774 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1775 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1776 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1777 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1778 };
1779
1780 static reloc_howto_type *
1781 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1782 bfd_reloc_code_real_type code)
1783 {
1784 unsigned int i;
1785 for (i = 0; i < NUM_ELEM (elf32_arm_reloc_map); i ++)
1786 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1787 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1788
1789 return NULL;
1790 }
1791
1792 static reloc_howto_type *
1793 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1794 const char *r_name)
1795 {
1796 unsigned int i;
1797
1798 for (i = 0;
1799 i < (sizeof (elf32_arm_howto_table_1)
1800 / sizeof (elf32_arm_howto_table_1[0]));
1801 i++)
1802 if (elf32_arm_howto_table_1[i].name != NULL
1803 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1804 return &elf32_arm_howto_table_1[i];
1805
1806 for (i = 0;
1807 i < (sizeof (elf32_arm_howto_table_2)
1808 / sizeof (elf32_arm_howto_table_2[0]));
1809 i++)
1810 if (elf32_arm_howto_table_2[i].name != NULL
1811 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1812 return &elf32_arm_howto_table_2[i];
1813
1814 return NULL;
1815 }
1816
1817 /* Support for core dump NOTE sections */
1818 static bfd_boolean
1819 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1820 {
1821 int offset;
1822 size_t size;
1823
1824 switch (note->descsz)
1825 {
1826 default:
1827 return FALSE;
1828
1829 case 148: /* Linux/ARM 32-bit*/
1830 /* pr_cursig */
1831 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1832
1833 /* pr_pid */
1834 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1835
1836 /* pr_reg */
1837 offset = 72;
1838 size = 72;
1839
1840 break;
1841 }
1842
1843 /* Make a ".reg/999" section. */
1844 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1845 size, note->descpos + offset);
1846 }
1847
1848 static bfd_boolean
1849 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1850 {
1851 switch (note->descsz)
1852 {
1853 default:
1854 return FALSE;
1855
1856 case 124: /* Linux/ARM elf_prpsinfo */
1857 elf_tdata (abfd)->core_program
1858 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1859 elf_tdata (abfd)->core_command
1860 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1861 }
1862
1863 /* Note that for some reason, a spurious space is tacked
1864 onto the end of the args in some (at least one anyway)
1865 implementations, so strip it off if it exists. */
1866
1867 {
1868 char *command = elf_tdata (abfd)->core_command;
1869 int n = strlen (command);
1870
1871 if (0 < n && command[n - 1] == ' ')
1872 command[n - 1] = '\0';
1873 }
1874
1875 return TRUE;
1876 }
1877
1878 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1879 #define TARGET_LITTLE_NAME "elf32-littlearm"
1880 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1881 #define TARGET_BIG_NAME "elf32-bigarm"
1882
1883 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1884 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1885
1886 typedef unsigned long int insn32;
1887 typedef unsigned short int insn16;
1888
1889 /* In lieu of proper flags, assume all EABIv4 or later objects are
1890 interworkable. */
1891 #define INTERWORK_FLAG(abfd) \
1892 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1893 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1894
1895 /* The linker script knows the section names for placement.
1896 The entry_names are used to do simple name mangling on the stubs.
1897 Given a function name, and its type, the stub can be found. The
1898 name can be changed. The only requirement is the %s be present. */
1899 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1900 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1901
1902 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1903 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1904
1905 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1906 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1907
1908 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1909 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1910
1911 /* The name of the dynamic interpreter. This is put in the .interp
1912 section. */
1913 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1914
1915 #ifdef FOUR_WORD_PLT
1916
1917 /* The first entry in a procedure linkage table looks like
1918 this. It is set up so that any shared library function that is
1919 called before the relocation has been set up calls the dynamic
1920 linker first. */
1921 static const bfd_vma elf32_arm_plt0_entry [] =
1922 {
1923 0xe52de004, /* str lr, [sp, #-4]! */
1924 0xe59fe010, /* ldr lr, [pc, #16] */
1925 0xe08fe00e, /* add lr, pc, lr */
1926 0xe5bef008, /* ldr pc, [lr, #8]! */
1927 };
1928
1929 /* Subsequent entries in a procedure linkage table look like
1930 this. */
1931 static const bfd_vma elf32_arm_plt_entry [] =
1932 {
1933 0xe28fc600, /* add ip, pc, #NN */
1934 0xe28cca00, /* add ip, ip, #NN */
1935 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1936 0x00000000, /* unused */
1937 };
1938
1939 #else
1940
1941 /* The first entry in a procedure linkage table looks like
1942 this. It is set up so that any shared library function that is
1943 called before the relocation has been set up calls the dynamic
1944 linker first. */
1945 static const bfd_vma elf32_arm_plt0_entry [] =
1946 {
1947 0xe52de004, /* str lr, [sp, #-4]! */
1948 0xe59fe004, /* ldr lr, [pc, #4] */
1949 0xe08fe00e, /* add lr, pc, lr */
1950 0xe5bef008, /* ldr pc, [lr, #8]! */
1951 0x00000000, /* &GOT[0] - . */
1952 };
1953
1954 /* Subsequent entries in a procedure linkage table look like
1955 this. */
1956 static const bfd_vma elf32_arm_plt_entry [] =
1957 {
1958 0xe28fc600, /* add ip, pc, #0xNN00000 */
1959 0xe28cca00, /* add ip, ip, #0xNN000 */
1960 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1961 };
1962
1963 #endif
1964
1965 /* The format of the first entry in the procedure linkage table
1966 for a VxWorks executable. */
1967 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1968 {
1969 0xe52dc008, /* str ip,[sp,#-8]! */
1970 0xe59fc000, /* ldr ip,[pc] */
1971 0xe59cf008, /* ldr pc,[ip,#8] */
1972 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1973 };
1974
1975 /* The format of subsequent entries in a VxWorks executable. */
1976 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1977 {
1978 0xe59fc000, /* ldr ip,[pc] */
1979 0xe59cf000, /* ldr pc,[ip] */
1980 0x00000000, /* .long @got */
1981 0xe59fc000, /* ldr ip,[pc] */
1982 0xea000000, /* b _PLT */
1983 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1984 };
1985
1986 /* The format of entries in a VxWorks shared library. */
1987 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1988 {
1989 0xe59fc000, /* ldr ip,[pc] */
1990 0xe79cf009, /* ldr pc,[ip,r9] */
1991 0x00000000, /* .long @got */
1992 0xe59fc000, /* ldr ip,[pc] */
1993 0xe599f008, /* ldr pc,[r9,#8] */
1994 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1995 };
1996
1997 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1998 #define PLT_THUMB_STUB_SIZE 4
1999 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2000 {
2001 0x4778, /* bx pc */
2002 0x46c0 /* nop */
2003 };
2004
2005 /* The entries in a PLT when using a DLL-based target with multiple
2006 address spaces. */
2007 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2008 {
2009 0xe51ff004, /* ldr pc, [pc, #-4] */
2010 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2011 };
2012
2013 /* Used to build a map of a section. This is required for mixed-endian
2014 code/data. */
2015
2016 typedef struct elf32_elf_section_map
2017 {
2018 bfd_vma vma;
2019 char type;
2020 }
2021 elf32_arm_section_map;
2022
2023 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2024
2025 typedef enum
2026 {
2027 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2028 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2029 VFP11_ERRATUM_ARM_VENEER,
2030 VFP11_ERRATUM_THUMB_VENEER
2031 }
2032 elf32_vfp11_erratum_type;
2033
2034 typedef struct elf32_vfp11_erratum_list
2035 {
2036 struct elf32_vfp11_erratum_list *next;
2037 bfd_vma vma;
2038 union
2039 {
2040 struct
2041 {
2042 struct elf32_vfp11_erratum_list *veneer;
2043 unsigned int vfp_insn;
2044 } b;
2045 struct
2046 {
2047 struct elf32_vfp11_erratum_list *branch;
2048 unsigned int id;
2049 } v;
2050 } u;
2051 elf32_vfp11_erratum_type type;
2052 }
2053 elf32_vfp11_erratum_list;
2054
2055 typedef struct _arm_elf_section_data
2056 {
2057 struct bfd_elf_section_data elf;
2058 unsigned int mapcount;
2059 unsigned int mapsize;
2060 elf32_arm_section_map *map;
2061 unsigned int erratumcount;
2062 elf32_vfp11_erratum_list *erratumlist;
2063 }
2064 _arm_elf_section_data;
2065
2066 #define elf32_arm_section_data(sec) \
2067 ((_arm_elf_section_data *) elf_section_data (sec))
2068
2069 /* The size of the thread control block. */
2070 #define TCB_SIZE 8
2071
2072 struct elf_arm_obj_tdata
2073 {
2074 struct elf_obj_tdata root;
2075
2076 /* tls_type for each local got entry. */
2077 char *local_got_tls_type;
2078
2079 /* Zero to warn when linking objects with incompatible enum sizes. */
2080 int no_enum_size_warning;
2081 };
2082
2083 #define elf_arm_tdata(bfd) \
2084 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2085
2086 #define elf32_arm_local_got_tls_type(bfd) \
2087 (elf_arm_tdata (bfd)->local_got_tls_type)
2088
2089 #define is_arm_elf(bfd) \
2090 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2091 && elf_tdata (bfd) != NULL \
2092 && elf_object_id (bfd) == ARM_ELF_TDATA)
2093
2094 static bfd_boolean
2095 elf32_arm_mkobject (bfd *abfd)
2096 {
2097 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2098 ARM_ELF_TDATA);
2099 }
2100
2101 /* The ARM linker needs to keep track of the number of relocs that it
2102 decides to copy in check_relocs for each symbol. This is so that
2103 it can discard PC relative relocs if it doesn't need them when
2104 linking with -Bsymbolic. We store the information in a field
2105 extending the regular ELF linker hash table. */
2106
2107 /* This structure keeps track of the number of relocs we have copied
2108 for a given symbol. */
2109 struct elf32_arm_relocs_copied
2110 {
2111 /* Next section. */
2112 struct elf32_arm_relocs_copied * next;
2113 /* A section in dynobj. */
2114 asection * section;
2115 /* Number of relocs copied in this section. */
2116 bfd_size_type count;
2117 /* Number of PC-relative relocs copied in this section. */
2118 bfd_size_type pc_count;
2119 };
2120
2121 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2122
2123 /* Arm ELF linker hash entry. */
2124 struct elf32_arm_link_hash_entry
2125 {
2126 struct elf_link_hash_entry root;
2127
2128 /* Number of PC relative relocs copied for this symbol. */
2129 struct elf32_arm_relocs_copied * relocs_copied;
2130
2131 /* We reference count Thumb references to a PLT entry separately,
2132 so that we can emit the Thumb trampoline only if needed. */
2133 bfd_signed_vma plt_thumb_refcount;
2134
2135 /* Some references from Thumb code may be eliminated by BL->BLX
2136 conversion, so record them separately. */
2137 bfd_signed_vma plt_maybe_thumb_refcount;
2138
2139 /* Since PLT entries have variable size if the Thumb prologue is
2140 used, we need to record the index into .got.plt instead of
2141 recomputing it from the PLT offset. */
2142 bfd_signed_vma plt_got_offset;
2143
2144 #define GOT_UNKNOWN 0
2145 #define GOT_NORMAL 1
2146 #define GOT_TLS_GD 2
2147 #define GOT_TLS_IE 4
2148 unsigned char tls_type;
2149
2150 /* The symbol marking the real symbol location for exported thumb
2151 symbols with Arm stubs. */
2152 struct elf_link_hash_entry *export_glue;
2153 };
2154
2155 /* Traverse an arm ELF linker hash table. */
2156 #define elf32_arm_link_hash_traverse(table, func, info) \
2157 (elf_link_hash_traverse \
2158 (&(table)->root, \
2159 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2160 (info)))
2161
2162 /* Get the ARM elf linker hash table from a link_info structure. */
2163 #define elf32_arm_hash_table(info) \
2164 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2165
2166 /* ARM ELF linker hash table. */
2167 struct elf32_arm_link_hash_table
2168 {
2169 /* The main hash table. */
2170 struct elf_link_hash_table root;
2171
2172 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2173 bfd_size_type thumb_glue_size;
2174
2175 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2176 bfd_size_type arm_glue_size;
2177
2178 /* The size in bytes of section containing the ARMv4 BX veneers. */
2179 bfd_size_type bx_glue_size;
2180
2181 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2182 veneer has been populated. */
2183 bfd_vma bx_glue_offset[15];
2184
2185 /* The size in bytes of the section containing glue for VFP11 erratum
2186 veneers. */
2187 bfd_size_type vfp11_erratum_glue_size;
2188
2189 /* An arbitrary input BFD chosen to hold the glue sections. */
2190 bfd * bfd_of_glue_owner;
2191
2192 /* Nonzero to output a BE8 image. */
2193 int byteswap_code;
2194
2195 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2196 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2197 int target1_is_rel;
2198
2199 /* The relocation to use for R_ARM_TARGET2 relocations. */
2200 int target2_reloc;
2201
2202 /* 0 = Ignore R_ARM_V4BX.
2203 1 = Convert BX to MOV PC.
2204 2 = Generate v4 interworing stubs. */
2205 int fix_v4bx;
2206
2207 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2208 int use_blx;
2209
2210 /* What sort of code sequences we should look for which may trigger the
2211 VFP11 denorm erratum. */
2212 bfd_arm_vfp11_fix vfp11_fix;
2213
2214 /* Global counter for the number of fixes we have emitted. */
2215 int num_vfp11_fixes;
2216
2217 /* Nonzero to force PIC branch veneers. */
2218 int pic_veneer;
2219
2220 /* The number of bytes in the initial entry in the PLT. */
2221 bfd_size_type plt_header_size;
2222
2223 /* The number of bytes in the subsequent PLT etries. */
2224 bfd_size_type plt_entry_size;
2225
2226 /* True if the target system is VxWorks. */
2227 int vxworks_p;
2228
2229 /* True if the target system is Symbian OS. */
2230 int symbian_p;
2231
2232 /* True if the target uses REL relocations. */
2233 int use_rel;
2234
2235 /* Short-cuts to get to dynamic linker sections. */
2236 asection *sgot;
2237 asection *sgotplt;
2238 asection *srelgot;
2239 asection *splt;
2240 asection *srelplt;
2241 asection *sdynbss;
2242 asection *srelbss;
2243
2244 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2245 asection *srelplt2;
2246
2247 /* Data for R_ARM_TLS_LDM32 relocations. */
2248 union {
2249 bfd_signed_vma refcount;
2250 bfd_vma offset;
2251 } tls_ldm_got;
2252
2253 /* Small local sym to section mapping cache. */
2254 struct sym_sec_cache sym_sec;
2255
2256 /* For convenience in allocate_dynrelocs. */
2257 bfd * obfd;
2258 };
2259
2260 /* Create an entry in an ARM ELF linker hash table. */
2261
2262 static struct bfd_hash_entry *
2263 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2264 struct bfd_hash_table * table,
2265 const char * string)
2266 {
2267 struct elf32_arm_link_hash_entry * ret =
2268 (struct elf32_arm_link_hash_entry *) entry;
2269
2270 /* Allocate the structure if it has not already been allocated by a
2271 subclass. */
2272 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
2273 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2274 if (ret == NULL)
2275 return (struct bfd_hash_entry *) ret;
2276
2277 /* Call the allocation method of the superclass. */
2278 ret = ((struct elf32_arm_link_hash_entry *)
2279 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2280 table, string));
2281 if (ret != NULL)
2282 {
2283 ret->relocs_copied = NULL;
2284 ret->tls_type = GOT_UNKNOWN;
2285 ret->plt_thumb_refcount = 0;
2286 ret->plt_maybe_thumb_refcount = 0;
2287 ret->plt_got_offset = -1;
2288 ret->export_glue = NULL;
2289 }
2290
2291 return (struct bfd_hash_entry *) ret;
2292 }
2293
2294 /* Return true if NAME is the name of the relocation section associated
2295 with S. */
2296
2297 static bfd_boolean
2298 reloc_section_p (struct elf32_arm_link_hash_table *htab,
2299 const char *name, asection *s)
2300 {
2301 if (htab->use_rel)
2302 return CONST_STRNEQ (name, ".rel") && strcmp (s->name, name + 4) == 0;
2303 else
2304 return CONST_STRNEQ (name, ".rela") && strcmp (s->name, name + 5) == 0;
2305 }
2306
2307 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2308 shortcuts to them in our hash table. */
2309
2310 static bfd_boolean
2311 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2312 {
2313 struct elf32_arm_link_hash_table *htab;
2314
2315 htab = elf32_arm_hash_table (info);
2316 /* BPABI objects never have a GOT, or associated sections. */
2317 if (htab->symbian_p)
2318 return TRUE;
2319
2320 if (! _bfd_elf_create_got_section (dynobj, info))
2321 return FALSE;
2322
2323 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2324 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2325 if (!htab->sgot || !htab->sgotplt)
2326 abort ();
2327
2328 htab->srelgot = bfd_make_section_with_flags (dynobj,
2329 RELOC_SECTION (htab, ".got"),
2330 (SEC_ALLOC | SEC_LOAD
2331 | SEC_HAS_CONTENTS
2332 | SEC_IN_MEMORY
2333 | SEC_LINKER_CREATED
2334 | SEC_READONLY));
2335 if (htab->srelgot == NULL
2336 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2337 return FALSE;
2338 return TRUE;
2339 }
2340
2341 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2342 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2343 hash table. */
2344
2345 static bfd_boolean
2346 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2347 {
2348 struct elf32_arm_link_hash_table *htab;
2349
2350 htab = elf32_arm_hash_table (info);
2351 if (!htab->sgot && !create_got_section (dynobj, info))
2352 return FALSE;
2353
2354 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2355 return FALSE;
2356
2357 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2358 htab->srelplt = bfd_get_section_by_name (dynobj,
2359 RELOC_SECTION (htab, ".plt"));
2360 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2361 if (!info->shared)
2362 htab->srelbss = bfd_get_section_by_name (dynobj,
2363 RELOC_SECTION (htab, ".bss"));
2364
2365 if (htab->vxworks_p)
2366 {
2367 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2368 return FALSE;
2369
2370 if (info->shared)
2371 {
2372 htab->plt_header_size = 0;
2373 htab->plt_entry_size
2374 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2375 }
2376 else
2377 {
2378 htab->plt_header_size
2379 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2380 htab->plt_entry_size
2381 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2382 }
2383 }
2384
2385 if (!htab->splt
2386 || !htab->srelplt
2387 || !htab->sdynbss
2388 || (!info->shared && !htab->srelbss))
2389 abort ();
2390
2391 return TRUE;
2392 }
2393
2394 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2395
2396 static void
2397 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2398 struct elf_link_hash_entry *dir,
2399 struct elf_link_hash_entry *ind)
2400 {
2401 struct elf32_arm_link_hash_entry *edir, *eind;
2402
2403 edir = (struct elf32_arm_link_hash_entry *) dir;
2404 eind = (struct elf32_arm_link_hash_entry *) ind;
2405
2406 if (eind->relocs_copied != NULL)
2407 {
2408 if (edir->relocs_copied != NULL)
2409 {
2410 struct elf32_arm_relocs_copied **pp;
2411 struct elf32_arm_relocs_copied *p;
2412
2413 /* Add reloc counts against the indirect sym to the direct sym
2414 list. Merge any entries against the same section. */
2415 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2416 {
2417 struct elf32_arm_relocs_copied *q;
2418
2419 for (q = edir->relocs_copied; q != NULL; q = q->next)
2420 if (q->section == p->section)
2421 {
2422 q->pc_count += p->pc_count;
2423 q->count += p->count;
2424 *pp = p->next;
2425 break;
2426 }
2427 if (q == NULL)
2428 pp = &p->next;
2429 }
2430 *pp = edir->relocs_copied;
2431 }
2432
2433 edir->relocs_copied = eind->relocs_copied;
2434 eind->relocs_copied = NULL;
2435 }
2436
2437 if (ind->root.type == bfd_link_hash_indirect)
2438 {
2439 /* Copy over PLT info. */
2440 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2441 eind->plt_thumb_refcount = 0;
2442 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2443 eind->plt_maybe_thumb_refcount = 0;
2444
2445 if (dir->got.refcount <= 0)
2446 {
2447 edir->tls_type = eind->tls_type;
2448 eind->tls_type = GOT_UNKNOWN;
2449 }
2450 }
2451
2452 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2453 }
2454
2455 /* Create an ARM elf linker hash table. */
2456
2457 static struct bfd_link_hash_table *
2458 elf32_arm_link_hash_table_create (bfd *abfd)
2459 {
2460 struct elf32_arm_link_hash_table *ret;
2461 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2462
2463 ret = bfd_malloc (amt);
2464 if (ret == NULL)
2465 return NULL;
2466
2467 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2468 elf32_arm_link_hash_newfunc,
2469 sizeof (struct elf32_arm_link_hash_entry)))
2470 {
2471 free (ret);
2472 return NULL;
2473 }
2474
2475 ret->sgot = NULL;
2476 ret->sgotplt = NULL;
2477 ret->srelgot = NULL;
2478 ret->splt = NULL;
2479 ret->srelplt = NULL;
2480 ret->sdynbss = NULL;
2481 ret->srelbss = NULL;
2482 ret->srelplt2 = NULL;
2483 ret->thumb_glue_size = 0;
2484 ret->arm_glue_size = 0;
2485 ret->bx_glue_size = 0;
2486 memset (ret->bx_glue_offset, 0, sizeof(ret->bx_glue_offset));
2487 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2488 ret->vfp11_erratum_glue_size = 0;
2489 ret->num_vfp11_fixes = 0;
2490 ret->bfd_of_glue_owner = NULL;
2491 ret->byteswap_code = 0;
2492 ret->target1_is_rel = 0;
2493 ret->target2_reloc = R_ARM_NONE;
2494 #ifdef FOUR_WORD_PLT
2495 ret->plt_header_size = 16;
2496 ret->plt_entry_size = 16;
2497 #else
2498 ret->plt_header_size = 20;
2499 ret->plt_entry_size = 12;
2500 #endif
2501 ret->fix_v4bx = 0;
2502 ret->use_blx = 0;
2503 ret->vxworks_p = 0;
2504 ret->symbian_p = 0;
2505 ret->use_rel = 1;
2506 ret->sym_sec.abfd = NULL;
2507 ret->obfd = abfd;
2508 ret->tls_ldm_got.refcount = 0;
2509
2510 return &ret->root.root;
2511 }
2512
2513 /* Locate the Thumb encoded calling stub for NAME. */
2514
2515 static struct elf_link_hash_entry *
2516 find_thumb_glue (struct bfd_link_info *link_info,
2517 const char *name,
2518 char **error_message)
2519 {
2520 char *tmp_name;
2521 struct elf_link_hash_entry *hash;
2522 struct elf32_arm_link_hash_table *hash_table;
2523
2524 /* We need a pointer to the armelf specific hash table. */
2525 hash_table = elf32_arm_hash_table (link_info);
2526
2527 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2528 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
2529
2530 BFD_ASSERT (tmp_name);
2531
2532 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
2533
2534 hash = elf_link_hash_lookup
2535 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2536
2537 if (hash == NULL
2538 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
2539 tmp_name, name) == -1)
2540 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
2541
2542 free (tmp_name);
2543
2544 return hash;
2545 }
2546
2547 /* Locate the ARM encoded calling stub for NAME. */
2548
2549 static struct elf_link_hash_entry *
2550 find_arm_glue (struct bfd_link_info *link_info,
2551 const char *name,
2552 char **error_message)
2553 {
2554 char *tmp_name;
2555 struct elf_link_hash_entry *myh;
2556 struct elf32_arm_link_hash_table *hash_table;
2557
2558 /* We need a pointer to the elfarm specific hash table. */
2559 hash_table = elf32_arm_hash_table (link_info);
2560
2561 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2562 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
2563
2564 BFD_ASSERT (tmp_name);
2565
2566 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
2567
2568 myh = elf_link_hash_lookup
2569 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2570
2571 if (myh == NULL
2572 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
2573 tmp_name, name) == -1)
2574 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
2575
2576 free (tmp_name);
2577
2578 return myh;
2579 }
2580
2581 /* ARM->Thumb glue (static images):
2582
2583 .arm
2584 __func_from_arm:
2585 ldr r12, __func_addr
2586 bx r12
2587 __func_addr:
2588 .word func @ behave as if you saw a ARM_32 reloc.
2589
2590 (v5t static images)
2591 .arm
2592 __func_from_arm:
2593 ldr pc, __func_addr
2594 __func_addr:
2595 .word func @ behave as if you saw a ARM_32 reloc.
2596
2597 (relocatable images)
2598 .arm
2599 __func_from_arm:
2600 ldr r12, __func_offset
2601 add r12, r12, pc
2602 bx r12
2603 __func_offset:
2604 .word func - .
2605 */
2606
2607 #define ARM2THUMB_STATIC_GLUE_SIZE 12
2608 static const insn32 a2t1_ldr_insn = 0xe59fc000;
2609 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
2610 static const insn32 a2t3_func_addr_insn = 0x00000001;
2611
2612 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
2613 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
2614 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
2615
2616 #define ARM2THUMB_PIC_GLUE_SIZE 16
2617 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
2618 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
2619 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
2620
2621 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
2622
2623 .thumb .thumb
2624 .align 2 .align 2
2625 __func_from_thumb: __func_from_thumb:
2626 bx pc push {r6, lr}
2627 nop ldr r6, __func_addr
2628 .arm mov lr, pc
2629 __func_change_to_arm: bx r6
2630 b func .arm
2631 __func_back_to_thumb:
2632 ldmia r13! {r6, lr}
2633 bx lr
2634 __func_addr:
2635 .word func */
2636
2637 #define THUMB2ARM_GLUE_SIZE 8
2638 static const insn16 t2a1_bx_pc_insn = 0x4778;
2639 static const insn16 t2a2_noop_insn = 0x46c0;
2640 static const insn32 t2a3_b_insn = 0xea000000;
2641
2642 #define VFP11_ERRATUM_VENEER_SIZE 8
2643
2644 #define ARM_BX_VENEER_SIZE 12
2645 static const insn32 armbx1_tst_insn = 0xe3100001;
2646 static const insn32 armbx2_moveq_insn = 0x01a0f000;
2647 static const insn32 armbx3_bx_insn = 0xe12fff10;
2648
2649 #ifndef ELFARM_NABI_C_INCLUDED
2650 bfd_boolean
2651 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
2652 {
2653 asection * s;
2654 bfd_byte * foo;
2655 struct elf32_arm_link_hash_table * globals;
2656
2657 globals = elf32_arm_hash_table (info);
2658
2659 BFD_ASSERT (globals != NULL);
2660
2661 if (globals->arm_glue_size != 0)
2662 {
2663 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2664
2665 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
2666 ARM2THUMB_GLUE_SECTION_NAME);
2667
2668 BFD_ASSERT (s != NULL);
2669
2670 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->arm_glue_size);
2671
2672 BFD_ASSERT (s->size == globals->arm_glue_size);
2673 s->contents = foo;
2674 }
2675
2676 if (globals->thumb_glue_size != 0)
2677 {
2678 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2679
2680 s = bfd_get_section_by_name
2681 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
2682
2683 BFD_ASSERT (s != NULL);
2684
2685 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->thumb_glue_size);
2686
2687 BFD_ASSERT (s->size == globals->thumb_glue_size);
2688 s->contents = foo;
2689 }
2690
2691 if (globals->vfp11_erratum_glue_size != 0)
2692 {
2693 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2694
2695 s = bfd_get_section_by_name
2696 (globals->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
2697
2698 BFD_ASSERT (s != NULL);
2699
2700 foo = bfd_alloc (globals->bfd_of_glue_owner,
2701 globals->vfp11_erratum_glue_size);
2702
2703 BFD_ASSERT (s->size == globals->vfp11_erratum_glue_size);
2704 s->contents = foo;
2705 }
2706
2707 if (globals->bx_glue_size != 0)
2708 {
2709 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2710
2711 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
2712 ARM_BX_GLUE_SECTION_NAME);
2713
2714 BFD_ASSERT (s != NULL);
2715
2716 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->bx_glue_size);
2717
2718 BFD_ASSERT (s->size == globals->bx_glue_size);
2719 s->contents = foo;
2720 }
2721
2722 return TRUE;
2723 }
2724
2725 /* Allocate space and symbols for calling a Thumb function from Arm mode.
2726 returns the symbol identifying teh stub. */
2727 static struct elf_link_hash_entry *
2728 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
2729 struct elf_link_hash_entry * h)
2730 {
2731 const char * name = h->root.root.string;
2732 asection * s;
2733 char * tmp_name;
2734 struct elf_link_hash_entry * myh;
2735 struct bfd_link_hash_entry * bh;
2736 struct elf32_arm_link_hash_table * globals;
2737 bfd_vma val;
2738 bfd_size_type size;
2739
2740 globals = elf32_arm_hash_table (link_info);
2741
2742 BFD_ASSERT (globals != NULL);
2743 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2744
2745 s = bfd_get_section_by_name
2746 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
2747
2748 BFD_ASSERT (s != NULL);
2749
2750 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
2751
2752 BFD_ASSERT (tmp_name);
2753
2754 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
2755
2756 myh = elf_link_hash_lookup
2757 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
2758
2759 if (myh != NULL)
2760 {
2761 /* We've already seen this guy. */
2762 free (tmp_name);
2763 return myh;
2764 }
2765
2766 /* The only trick here is using hash_table->arm_glue_size as the value.
2767 Even though the section isn't allocated yet, this is where we will be
2768 putting it. */
2769 bh = NULL;
2770 val = globals->arm_glue_size + 1;
2771 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
2772 tmp_name, BSF_GLOBAL, s, val,
2773 NULL, TRUE, FALSE, &bh);
2774
2775 myh = (struct elf_link_hash_entry *) bh;
2776 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
2777 myh->forced_local = 1;
2778
2779 free (tmp_name);
2780
2781 if (link_info->shared || globals->root.is_relocatable_executable
2782 || globals->pic_veneer)
2783 size = ARM2THUMB_PIC_GLUE_SIZE;
2784 else if (globals->use_blx)
2785 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
2786 else
2787 size = ARM2THUMB_STATIC_GLUE_SIZE;
2788
2789 s->size += size;
2790 globals->arm_glue_size += size;
2791
2792 return myh;
2793 }
2794
2795 static void
2796 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
2797 struct elf_link_hash_entry *h)
2798 {
2799 const char *name = h->root.root.string;
2800 asection *s;
2801 char *tmp_name;
2802 struct elf_link_hash_entry *myh;
2803 struct bfd_link_hash_entry *bh;
2804 struct elf32_arm_link_hash_table *hash_table;
2805 bfd_vma val;
2806
2807 hash_table = elf32_arm_hash_table (link_info);
2808
2809 BFD_ASSERT (hash_table != NULL);
2810 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
2811
2812 s = bfd_get_section_by_name
2813 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
2814
2815 BFD_ASSERT (s != NULL);
2816
2817 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2818 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
2819
2820 BFD_ASSERT (tmp_name);
2821
2822 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
2823
2824 myh = elf_link_hash_lookup
2825 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2826
2827 if (myh != NULL)
2828 {
2829 /* We've already seen this guy. */
2830 free (tmp_name);
2831 return;
2832 }
2833
2834 bh = NULL;
2835 val = hash_table->thumb_glue_size + 1;
2836 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
2837 tmp_name, BSF_GLOBAL, s, val,
2838 NULL, TRUE, FALSE, &bh);
2839
2840 /* If we mark it 'Thumb', the disassembler will do a better job. */
2841 myh = (struct elf_link_hash_entry *) bh;
2842 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
2843 myh->forced_local = 1;
2844
2845 free (tmp_name);
2846
2847 #define CHANGE_TO_ARM "__%s_change_to_arm"
2848 #define BACK_FROM_ARM "__%s_back_from_arm"
2849
2850 /* Allocate another symbol to mark where we switch to Arm mode. */
2851 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2852 + strlen (CHANGE_TO_ARM) + 1);
2853
2854 BFD_ASSERT (tmp_name);
2855
2856 sprintf (tmp_name, CHANGE_TO_ARM, name);
2857
2858 bh = NULL;
2859 val = hash_table->thumb_glue_size + 4,
2860 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
2861 tmp_name, BSF_LOCAL, s, val,
2862 NULL, TRUE, FALSE, &bh);
2863
2864 free (tmp_name);
2865
2866 s->size += THUMB2ARM_GLUE_SIZE;
2867 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
2868
2869 return;
2870 }
2871
2872
2873 /* Allocate space for ARMv4 BX veneers. */
2874
2875 static void
2876 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
2877 {
2878 asection * s;
2879 struct elf32_arm_link_hash_table *globals;
2880 char *tmp_name;
2881 struct elf_link_hash_entry *myh;
2882 struct bfd_link_hash_entry *bh;
2883 bfd_vma val;
2884
2885 /* BX PC does not need a veneer. */
2886 if (reg == 15)
2887 return;
2888
2889 globals = elf32_arm_hash_table (link_info);
2890
2891 BFD_ASSERT (globals != NULL);
2892 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2893
2894 /* Check if this veneer has already been allocated. */
2895 if (globals->bx_glue_offset[reg])
2896 return;
2897
2898 s = bfd_get_section_by_name
2899 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
2900
2901 BFD_ASSERT (s != NULL);
2902
2903 /* Add symbol for veneer. */
2904 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
2905
2906 BFD_ASSERT (tmp_name);
2907
2908 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
2909
2910 myh = elf_link_hash_lookup
2911 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
2912
2913 BFD_ASSERT (myh == NULL);
2914
2915 bh = NULL;
2916 val = globals->bx_glue_size;
2917 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
2918 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
2919 NULL, TRUE, FALSE, &bh);
2920
2921 myh = (struct elf_link_hash_entry *) bh;
2922 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
2923 myh->forced_local = 1;
2924
2925 s->size += ARM_BX_VENEER_SIZE;
2926 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
2927 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
2928 }
2929
2930
2931 /* Add an entry to the code/data map for section SEC. */
2932
2933 static void
2934 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
2935 {
2936 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
2937 unsigned int newidx;
2938
2939 if (sec_data->map == NULL)
2940 {
2941 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
2942 sec_data->mapcount = 0;
2943 sec_data->mapsize = 1;
2944 }
2945
2946 newidx = sec_data->mapcount++;
2947
2948 if (sec_data->mapcount > sec_data->mapsize)
2949 {
2950 sec_data->mapsize *= 2;
2951 sec_data->map = bfd_realloc (sec_data->map, sec_data->mapsize
2952 * sizeof (elf32_arm_section_map));
2953 }
2954
2955 sec_data->map[newidx].vma = vma;
2956 sec_data->map[newidx].type = type;
2957 }
2958
2959
2960 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
2961 veneers are handled for now. */
2962
2963 static bfd_vma
2964 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
2965 elf32_vfp11_erratum_list *branch,
2966 bfd *branch_bfd,
2967 asection *branch_sec,
2968 unsigned int offset)
2969 {
2970 asection *s;
2971 struct elf32_arm_link_hash_table *hash_table;
2972 char *tmp_name;
2973 struct elf_link_hash_entry *myh;
2974 struct bfd_link_hash_entry *bh;
2975 bfd_vma val;
2976 struct _arm_elf_section_data *sec_data;
2977 int errcount;
2978 elf32_vfp11_erratum_list *newerr;
2979
2980 hash_table = elf32_arm_hash_table (link_info);
2981
2982 BFD_ASSERT (hash_table != NULL);
2983 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
2984
2985 s = bfd_get_section_by_name
2986 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
2987
2988 sec_data = elf32_arm_section_data (s);
2989
2990 BFD_ASSERT (s != NULL);
2991
2992 tmp_name = bfd_malloc ((bfd_size_type) strlen
2993 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
2994
2995 BFD_ASSERT (tmp_name);
2996
2997 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
2998 hash_table->num_vfp11_fixes);
2999
3000 myh = elf_link_hash_lookup
3001 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
3002
3003 BFD_ASSERT (myh == NULL);
3004
3005 bh = NULL;
3006 val = hash_table->vfp11_erratum_glue_size;
3007 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
3008 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
3009 NULL, TRUE, FALSE, &bh);
3010
3011 myh = (struct elf_link_hash_entry *) bh;
3012 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
3013 myh->forced_local = 1;
3014
3015 /* Link veneer back to calling location. */
3016 errcount = ++(sec_data->erratumcount);
3017 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
3018
3019 newerr->type = VFP11_ERRATUM_ARM_VENEER;
3020 newerr->vma = -1;
3021 newerr->u.v.branch = branch;
3022 newerr->u.v.id = hash_table->num_vfp11_fixes;
3023 branch->u.b.veneer = newerr;
3024
3025 newerr->next = sec_data->erratumlist;
3026 sec_data->erratumlist = newerr;
3027
3028 /* A symbol for the return from the veneer. */
3029 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
3030 hash_table->num_vfp11_fixes);
3031
3032 myh = elf_link_hash_lookup
3033 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
3034
3035 if (myh != NULL)
3036 abort ();
3037
3038 bh = NULL;
3039 val = offset + 4;
3040 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
3041 branch_sec, val, NULL, TRUE, FALSE, &bh);
3042
3043 myh = (struct elf_link_hash_entry *) bh;
3044 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
3045 myh->forced_local = 1;
3046
3047 free (tmp_name);
3048
3049 /* Generate a mapping symbol for the veneer section, and explicitly add an
3050 entry for that symbol to the code/data map for the section. */
3051 if (hash_table->vfp11_erratum_glue_size == 0)
3052 {
3053 bh = NULL;
3054 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
3055 ever requires this erratum fix. */
3056 _bfd_generic_link_add_one_symbol (link_info,
3057 hash_table->bfd_of_glue_owner, "$a",
3058 BSF_LOCAL, s, 0, NULL,
3059 TRUE, FALSE, &bh);
3060
3061 myh = (struct elf_link_hash_entry *) bh;
3062 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
3063 myh->forced_local = 1;
3064
3065 /* The elf32_arm_init_maps function only cares about symbols from input
3066 BFDs. We must make a note of this generated mapping symbol
3067 ourselves so that code byteswapping works properly in
3068 elf32_arm_write_section. */
3069 elf32_arm_section_map_add (s, 'a', 0);
3070 }
3071
3072 s->size += VFP11_ERRATUM_VENEER_SIZE;
3073 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
3074 hash_table->num_vfp11_fixes++;
3075
3076 /* The offset of the veneer. */
3077 return val;
3078 }
3079
3080 /* Add the glue sections to ABFD. This function is called from the
3081 linker scripts in ld/emultempl/{armelf}.em. */
3082
3083 bfd_boolean
3084 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
3085 struct bfd_link_info *info)
3086 {
3087 flagword flags;
3088 asection *sec;
3089
3090 /* If we are only performing a partial
3091 link do not bother adding the glue. */
3092 if (info->relocatable)
3093 return TRUE;
3094
3095 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
3096
3097 if (sec == NULL)
3098 {
3099 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
3100 will prevent elf_link_input_bfd() from processing the contents
3101 of this section. */
3102 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3103 | SEC_CODE | SEC_READONLY);
3104
3105 sec = bfd_make_section_with_flags (abfd,
3106 ARM2THUMB_GLUE_SECTION_NAME,
3107 flags);
3108
3109 if (sec == NULL
3110 || !bfd_set_section_alignment (abfd, sec, 2))
3111 return FALSE;
3112
3113 /* Set the gc mark to prevent the section from being removed by garbage
3114 collection, despite the fact that no relocs refer to this section. */
3115 sec->gc_mark = 1;
3116 }
3117
3118 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
3119
3120 if (sec == NULL)
3121 {
3122 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3123 | SEC_CODE | SEC_READONLY);
3124
3125 sec = bfd_make_section_with_flags (abfd,
3126 THUMB2ARM_GLUE_SECTION_NAME,
3127 flags);
3128
3129 if (sec == NULL
3130 || !bfd_set_section_alignment (abfd, sec, 2))
3131 return FALSE;
3132
3133 sec->gc_mark = 1;
3134 }
3135
3136 sec = bfd_get_section_by_name (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME);
3137
3138 if (sec == NULL)
3139 {
3140 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3141 | SEC_CODE | SEC_READONLY);
3142
3143 sec = bfd_make_section_with_flags (abfd,
3144 VFP11_ERRATUM_VENEER_SECTION_NAME,
3145 flags);
3146
3147 if (sec == NULL
3148 || !bfd_set_section_alignment (abfd, sec, 2))
3149 return FALSE;
3150
3151 sec->gc_mark = 1;
3152 }
3153
3154 sec = bfd_get_section_by_name (abfd, ARM_BX_GLUE_SECTION_NAME);
3155
3156 if (sec == NULL)
3157 {
3158 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3159 | SEC_CODE | SEC_READONLY);
3160
3161 sec = bfd_make_section_with_flags (abfd,
3162 ARM_BX_GLUE_SECTION_NAME,
3163 flags);
3164
3165 if (sec == NULL
3166 || !bfd_set_section_alignment (abfd, sec, 2))
3167 return FALSE;
3168
3169 sec->gc_mark = 1;
3170 }
3171
3172 return TRUE;
3173 }
3174
3175 /* Select a BFD to be used to hold the sections used by the glue code.
3176 This function is called from the linker scripts in ld/emultempl/
3177 {armelf/pe}.em */
3178
3179 bfd_boolean
3180 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
3181 {
3182 struct elf32_arm_link_hash_table *globals;
3183
3184 /* If we are only performing a partial link
3185 do not bother getting a bfd to hold the glue. */
3186 if (info->relocatable)
3187 return TRUE;
3188
3189 /* Make sure we don't attach the glue sections to a dynamic object. */
3190 BFD_ASSERT (!(abfd->flags & DYNAMIC));
3191
3192 globals = elf32_arm_hash_table (info);
3193
3194 BFD_ASSERT (globals != NULL);
3195
3196 if (globals->bfd_of_glue_owner != NULL)
3197 return TRUE;
3198
3199 /* Save the bfd for later use. */
3200 globals->bfd_of_glue_owner = abfd;
3201
3202 return TRUE;
3203 }
3204
3205 static void check_use_blx(struct elf32_arm_link_hash_table *globals)
3206 {
3207 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3208 Tag_CPU_arch) > 2)
3209 globals->use_blx = 1;
3210 }
3211
3212 bfd_boolean
3213 bfd_elf32_arm_process_before_allocation (bfd *abfd,
3214 struct bfd_link_info *link_info)
3215 {
3216 Elf_Internal_Shdr *symtab_hdr;
3217 Elf_Internal_Rela *internal_relocs = NULL;
3218 Elf_Internal_Rela *irel, *irelend;
3219 bfd_byte *contents = NULL;
3220
3221 asection *sec;
3222 struct elf32_arm_link_hash_table *globals;
3223
3224 /* If we are only performing a partial link do not bother
3225 to construct any glue. */
3226 if (link_info->relocatable)
3227 return TRUE;
3228
3229 /* Here we have a bfd that is to be included on the link. We have a
3230 hook to do reloc rummaging, before section sizes are nailed down. */
3231 globals = elf32_arm_hash_table (link_info);
3232
3233 BFD_ASSERT (globals != NULL);
3234
3235 check_use_blx (globals);
3236
3237 if (globals->byteswap_code && !bfd_big_endian (abfd))
3238 {
3239 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
3240 abfd);
3241 return FALSE;
3242 }
3243
3244 /* PR 5398: If we have not decided to include any loadable sections in
3245 the output then we will not have a glue owner bfd. This is OK, it
3246 just means that there is nothing else for us to do here. */
3247 if (globals->bfd_of_glue_owner == NULL)
3248 return TRUE;
3249
3250 /* Rummage around all the relocs and map the glue vectors. */
3251 sec = abfd->sections;
3252
3253 if (sec == NULL)
3254 return TRUE;
3255
3256 for (; sec != NULL; sec = sec->next)
3257 {
3258 if (sec->reloc_count == 0)
3259 continue;
3260
3261 if ((sec->flags & SEC_EXCLUDE) != 0)
3262 continue;
3263
3264 symtab_hdr = & elf_symtab_hdr (abfd);
3265
3266 /* Load the relocs. */
3267 internal_relocs
3268 = _bfd_elf_link_read_relocs (abfd, sec, (void *) NULL,
3269 (Elf_Internal_Rela *) NULL, FALSE);
3270
3271 if (internal_relocs == NULL)
3272 goto error_return;
3273
3274 irelend = internal_relocs + sec->reloc_count;
3275 for (irel = internal_relocs; irel < irelend; irel++)
3276 {
3277 long r_type;
3278 unsigned long r_index;
3279
3280 struct elf_link_hash_entry *h;
3281
3282 r_type = ELF32_R_TYPE (irel->r_info);
3283 r_index = ELF32_R_SYM (irel->r_info);
3284
3285 /* These are the only relocation types we care about. */
3286 if ( r_type != R_ARM_PC24
3287 && r_type != R_ARM_PLT32
3288 && r_type != R_ARM_CALL
3289 && r_type != R_ARM_JUMP24
3290 && r_type != R_ARM_THM_CALL
3291 && r_type != R_ARM_THM_JUMP24
3292 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
3293 continue;
3294
3295 /* Get the section contents if we haven't done so already. */
3296 if (contents == NULL)
3297 {
3298 /* Get cached copy if it exists. */
3299 if (elf_section_data (sec)->this_hdr.contents != NULL)
3300 contents = elf_section_data (sec)->this_hdr.contents;
3301 else
3302 {
3303 /* Go get them off disk. */
3304 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
3305 goto error_return;
3306 }
3307 }
3308
3309 if (r_type == R_ARM_V4BX)
3310 {
3311 int reg;
3312
3313 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
3314 record_arm_bx_glue (link_info, reg);
3315 continue;
3316 }
3317
3318 /* If the relocation is not against a symbol it cannot concern us. */
3319 h = NULL;
3320
3321 /* We don't care about local symbols. */
3322 if (r_index < symtab_hdr->sh_info)
3323 continue;
3324
3325 /* This is an external symbol. */
3326 r_index -= symtab_hdr->sh_info;
3327 h = (struct elf_link_hash_entry *)
3328 elf_sym_hashes (abfd)[r_index];
3329
3330 /* If the relocation is against a static symbol it must be within
3331 the current section and so cannot be a cross ARM/Thumb relocation. */
3332 if (h == NULL)
3333 continue;
3334
3335 /* If the call will go through a PLT entry then we do not need
3336 glue. */
3337 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
3338 continue;
3339
3340 switch (r_type)
3341 {
3342 case R_ARM_PC24:
3343 case R_ARM_PLT32:
3344 case R_ARM_CALL:
3345 case R_ARM_JUMP24:
3346 /* This one is a call from arm code. We need to look up
3347 the target of the call. If it is a thumb target, we
3348 insert glue. */
3349 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC
3350 && !(r_type == R_ARM_CALL && globals->use_blx))
3351 record_arm_to_thumb_glue (link_info, h);
3352 break;
3353
3354 case R_ARM_THM_CALL:
3355 case R_ARM_THM_JUMP24:
3356 /* This one is a call from thumb code. We look
3357 up the target of the call. If it is not a thumb
3358 target, we insert glue. */
3359 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
3360 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
3361 && h->root.type != bfd_link_hash_undefweak)
3362 record_thumb_to_arm_glue (link_info, h);
3363 break;
3364
3365 default:
3366 abort ();
3367 }
3368 }
3369
3370 if (contents != NULL
3371 && elf_section_data (sec)->this_hdr.contents != contents)
3372 free (contents);
3373 contents = NULL;
3374
3375 if (internal_relocs != NULL
3376 && elf_section_data (sec)->relocs != internal_relocs)
3377 free (internal_relocs);
3378 internal_relocs = NULL;
3379 }
3380
3381 return TRUE;
3382
3383 error_return:
3384 if (contents != NULL
3385 && elf_section_data (sec)->this_hdr.contents != contents)
3386 free (contents);
3387 if (internal_relocs != NULL
3388 && elf_section_data (sec)->relocs != internal_relocs)
3389 free (internal_relocs);
3390
3391 return FALSE;
3392 }
3393 #endif
3394
3395
3396 /* Initialise maps of ARM/Thumb/data for input BFDs. */
3397
3398 void
3399 bfd_elf32_arm_init_maps (bfd *abfd)
3400 {
3401 Elf_Internal_Sym *isymbuf;
3402 Elf_Internal_Shdr *hdr;
3403 unsigned int i, localsyms;
3404
3405 if ((abfd->flags & DYNAMIC) != 0)
3406 return;
3407
3408 hdr = & elf_symtab_hdr (abfd);
3409 localsyms = hdr->sh_info;
3410
3411 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
3412 should contain the number of local symbols, which should come before any
3413 global symbols. Mapping symbols are always local. */
3414 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
3415 NULL);
3416
3417 /* No internal symbols read? Skip this BFD. */
3418 if (isymbuf == NULL)
3419 return;
3420
3421 for (i = 0; i < localsyms; i++)
3422 {
3423 Elf_Internal_Sym *isym = &isymbuf[i];
3424 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3425 const char *name;
3426
3427 if (sec != NULL
3428 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
3429 {
3430 name = bfd_elf_string_from_elf_section (abfd,
3431 hdr->sh_link, isym->st_name);
3432
3433 if (bfd_is_arm_special_symbol_name (name,
3434 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
3435 elf32_arm_section_map_add (sec, name[1], isym->st_value);
3436 }
3437 }
3438 }
3439
3440
3441 void
3442 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
3443 {
3444 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
3445 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
3446
3447 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
3448 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
3449 {
3450 switch (globals->vfp11_fix)
3451 {
3452 case BFD_ARM_VFP11_FIX_DEFAULT:
3453 case BFD_ARM_VFP11_FIX_NONE:
3454 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3455 break;
3456
3457 default:
3458 /* Give a warning, but do as the user requests anyway. */
3459 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
3460 "workaround is not necessary for target architecture"), obfd);
3461 }
3462 }
3463 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
3464 /* For earlier architectures, we might need the workaround, but do not
3465 enable it by default. If users is running with broken hardware, they
3466 must enable the erratum fix explicitly. */
3467 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3468 }
3469
3470
3471 enum bfd_arm_vfp11_pipe {
3472 VFP11_FMAC,
3473 VFP11_LS,
3474 VFP11_DS,
3475 VFP11_BAD
3476 };
3477
3478 /* Return a VFP register number. This is encoded as RX:X for single-precision
3479 registers, or X:RX for double-precision registers, where RX is the group of
3480 four bits in the instruction encoding and X is the single extension bit.
3481 RX and X fields are specified using their lowest (starting) bit. The return
3482 value is:
3483
3484 0...31: single-precision registers s0...s31
3485 32...63: double-precision registers d0...d31.
3486
3487 Although X should be zero for VFP11 (encoding d0...d15 only), we might
3488 encounter VFP3 instructions, so we allow the full range for DP registers. */
3489
3490 static unsigned int
3491 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
3492 unsigned int x)
3493 {
3494 if (is_double)
3495 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
3496 else
3497 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
3498 }
3499
3500 /* Set bits in *WMASK according to a register number REG as encoded by
3501 bfd_arm_vfp11_regno(). Ignore d16-d31. */
3502
3503 static void
3504 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
3505 {
3506 if (reg < 32)
3507 *wmask |= 1 << reg;
3508 else if (reg < 48)
3509 *wmask |= 3 << ((reg - 32) * 2);
3510 }
3511
3512 /* Return TRUE if WMASK overwrites anything in REGS. */
3513
3514 static bfd_boolean
3515 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
3516 {
3517 int i;
3518
3519 for (i = 0; i < numregs; i++)
3520 {
3521 unsigned int reg = regs[i];
3522
3523 if (reg < 32 && (wmask & (1 << reg)) != 0)
3524 return TRUE;
3525
3526 reg -= 32;
3527
3528 if (reg >= 16)
3529 continue;
3530
3531 if ((wmask & (3 << (reg * 2))) != 0)
3532 return TRUE;
3533 }
3534
3535 return FALSE;
3536 }
3537
3538 /* In this function, we're interested in two things: finding input registers
3539 for VFP data-processing instructions, and finding the set of registers which
3540 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
3541 hold the written set, so FLDM etc. are easy to deal with (we're only
3542 interested in 32 SP registers or 16 dp registers, due to the VFP version
3543 implemented by the chip in question). DP registers are marked by setting
3544 both SP registers in the write mask). */
3545
3546 static enum bfd_arm_vfp11_pipe
3547 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
3548 int *numregs)
3549 {
3550 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
3551 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
3552
3553 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
3554 {
3555 unsigned int pqrs;
3556 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
3557 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
3558
3559 pqrs = ((insn & 0x00800000) >> 20)
3560 | ((insn & 0x00300000) >> 19)
3561 | ((insn & 0x00000040) >> 6);
3562
3563 switch (pqrs)
3564 {
3565 case 0: /* fmac[sd]. */
3566 case 1: /* fnmac[sd]. */
3567 case 2: /* fmsc[sd]. */
3568 case 3: /* fnmsc[sd]. */
3569 pipe = VFP11_FMAC;
3570 bfd_arm_vfp11_write_mask (destmask, fd);
3571 regs[0] = fd;
3572 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
3573 regs[2] = fm;
3574 *numregs = 3;
3575 break;
3576
3577 case 4: /* fmul[sd]. */
3578 case 5: /* fnmul[sd]. */
3579 case 6: /* fadd[sd]. */
3580 case 7: /* fsub[sd]. */
3581 pipe = VFP11_FMAC;
3582 goto vfp_binop;
3583
3584 case 8: /* fdiv[sd]. */
3585 pipe = VFP11_DS;
3586 vfp_binop:
3587 bfd_arm_vfp11_write_mask (destmask, fd);
3588 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
3589 regs[1] = fm;
3590 *numregs = 2;
3591 break;
3592
3593 case 15: /* extended opcode. */
3594 {
3595 unsigned int extn = ((insn >> 15) & 0x1e)
3596 | ((insn >> 7) & 1);
3597
3598 switch (extn)
3599 {
3600 case 0: /* fcpy[sd]. */
3601 case 1: /* fabs[sd]. */
3602 case 2: /* fneg[sd]. */
3603 case 8: /* fcmp[sd]. */
3604 case 9: /* fcmpe[sd]. */
3605 case 10: /* fcmpz[sd]. */
3606 case 11: /* fcmpez[sd]. */
3607 case 16: /* fuito[sd]. */
3608 case 17: /* fsito[sd]. */
3609 case 24: /* ftoui[sd]. */
3610 case 25: /* ftouiz[sd]. */
3611 case 26: /* ftosi[sd]. */
3612 case 27: /* ftosiz[sd]. */
3613 /* These instructions will not bounce due to underflow. */
3614 *numregs = 0;
3615 pipe = VFP11_FMAC;
3616 break;
3617
3618 case 3: /* fsqrt[sd]. */
3619 /* fsqrt cannot underflow, but it can (perhaps) overwrite
3620 registers to cause the erratum in previous instructions. */
3621 bfd_arm_vfp11_write_mask (destmask, fd);
3622 pipe = VFP11_DS;
3623 break;
3624
3625 case 15: /* fcvt{ds,sd}. */
3626 {
3627 int rnum = 0;
3628
3629 bfd_arm_vfp11_write_mask (destmask, fd);
3630
3631 /* Only FCVTSD can underflow. */
3632 if ((insn & 0x100) != 0)
3633 regs[rnum++] = fm;
3634
3635 *numregs = rnum;
3636
3637 pipe = VFP11_FMAC;
3638 }
3639 break;
3640
3641 default:
3642 return VFP11_BAD;
3643 }
3644 }
3645 break;
3646
3647 default:
3648 return VFP11_BAD;
3649 }
3650 }
3651 /* Two-register transfer. */
3652 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
3653 {
3654 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
3655
3656 if ((insn & 0x100000) == 0)
3657 {
3658 if (is_double)
3659 bfd_arm_vfp11_write_mask (destmask, fm);
3660 else
3661 {
3662 bfd_arm_vfp11_write_mask (destmask, fm);
3663 bfd_arm_vfp11_write_mask (destmask, fm + 1);
3664 }
3665 }
3666
3667 pipe = VFP11_LS;
3668 }
3669 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
3670 {
3671 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
3672 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
3673
3674 switch (puw)
3675 {
3676 case 0: /* Two-reg transfer. We should catch these above. */
3677 abort ();
3678
3679 case 2: /* fldm[sdx]. */
3680 case 3:
3681 case 5:
3682 {
3683 unsigned int i, offset = insn & 0xff;
3684
3685 if (is_double)
3686 offset >>= 1;
3687
3688 for (i = fd; i < fd + offset; i++)
3689 bfd_arm_vfp11_write_mask (destmask, i);
3690 }
3691 break;
3692
3693 case 4: /* fld[sd]. */
3694 case 6:
3695 bfd_arm_vfp11_write_mask (destmask, fd);
3696 break;
3697
3698 default:
3699 return VFP11_BAD;
3700 }
3701
3702 pipe = VFP11_LS;
3703 }
3704 /* Single-register transfer. Note L==0. */
3705 else if ((insn & 0x0f100e10) == 0x0e000a10)
3706 {
3707 unsigned int opcode = (insn >> 21) & 7;
3708 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
3709
3710 switch (opcode)
3711 {
3712 case 0: /* fmsr/fmdlr. */
3713 case 1: /* fmdhr. */
3714 /* Mark fmdhr and fmdlr as writing to the whole of the DP
3715 destination register. I don't know if this is exactly right,
3716 but it is the conservative choice. */
3717 bfd_arm_vfp11_write_mask (destmask, fn);
3718 break;
3719
3720 case 7: /* fmxr. */
3721 break;
3722 }
3723
3724 pipe = VFP11_LS;
3725 }
3726
3727 return pipe;
3728 }
3729
3730
3731 static int elf32_arm_compare_mapping (const void * a, const void * b);
3732
3733
3734 /* Look for potentially-troublesome code sequences which might trigger the
3735 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
3736 (available from ARM) for details of the erratum. A short version is
3737 described in ld.texinfo. */
3738
3739 bfd_boolean
3740 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
3741 {
3742 asection *sec;
3743 bfd_byte *contents = NULL;
3744 int state = 0;
3745 int regs[3], numregs = 0;
3746 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
3747 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
3748
3749 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
3750 The states transition as follows:
3751
3752 0 -> 1 (vector) or 0 -> 2 (scalar)
3753 A VFP FMAC-pipeline instruction has been seen. Fill
3754 regs[0]..regs[numregs-1] with its input operands. Remember this
3755 instruction in 'first_fmac'.
3756
3757 1 -> 2
3758 Any instruction, except for a VFP instruction which overwrites
3759 regs[*].
3760
3761 1 -> 3 [ -> 0 ] or
3762 2 -> 3 [ -> 0 ]
3763 A VFP instruction has been seen which overwrites any of regs[*].
3764 We must make a veneer! Reset state to 0 before examining next
3765 instruction.
3766
3767 2 -> 0
3768 If we fail to match anything in state 2, reset to state 0 and reset
3769 the instruction pointer to the instruction after 'first_fmac'.
3770
3771 If the VFP11 vector mode is in use, there must be at least two unrelated
3772 instructions between anti-dependent VFP11 instructions to properly avoid
3773 triggering the erratum, hence the use of the extra state 1.
3774 */
3775
3776 /* If we are only performing a partial link do not bother
3777 to construct any glue. */
3778 if (link_info->relocatable)
3779 return TRUE;
3780
3781 /* Skip if this bfd does not correspond to an ELF image. */
3782 if (! is_arm_elf (abfd))
3783 return TRUE;
3784
3785 /* We should have chosen a fix type by the time we get here. */
3786 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
3787
3788 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
3789 return TRUE;
3790
3791 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3792 {
3793 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
3794 struct _arm_elf_section_data *sec_data;
3795
3796 /* If we don't have executable progbits, we're not interested in this
3797 section. Also skip if section is to be excluded. */
3798 if (elf_section_type (sec) != SHT_PROGBITS
3799 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
3800 || (sec->flags & SEC_EXCLUDE) != 0
3801 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
3802 continue;
3803
3804 sec_data = elf32_arm_section_data (sec);
3805
3806 if (sec_data->mapcount == 0)
3807 continue;
3808
3809 if (elf_section_data (sec)->this_hdr.contents != NULL)
3810 contents = elf_section_data (sec)->this_hdr.contents;
3811 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
3812 goto error_return;
3813
3814 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
3815 elf32_arm_compare_mapping);
3816
3817 for (span = 0; span < sec_data->mapcount; span++)
3818 {
3819 unsigned int span_start = sec_data->map[span].vma;
3820 unsigned int span_end = (span == sec_data->mapcount - 1)
3821 ? sec->size : sec_data->map[span + 1].vma;
3822 char span_type = sec_data->map[span].type;
3823
3824 /* FIXME: Only ARM mode is supported at present. We may need to
3825 support Thumb-2 mode also at some point. */
3826 if (span_type != 'a')
3827 continue;
3828
3829 for (i = span_start; i < span_end;)
3830 {
3831 unsigned int next_i = i + 4;
3832 unsigned int insn = bfd_big_endian (abfd)
3833 ? (contents[i] << 24)
3834 | (contents[i + 1] << 16)
3835 | (contents[i + 2] << 8)
3836 | contents[i + 3]
3837 : (contents[i + 3] << 24)
3838 | (contents[i + 2] << 16)
3839 | (contents[i + 1] << 8)
3840 | contents[i];
3841 unsigned int writemask = 0;
3842 enum bfd_arm_vfp11_pipe pipe;
3843
3844 switch (state)
3845 {
3846 case 0:
3847 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
3848 &numregs);
3849 /* I'm assuming the VFP11 erratum can trigger with denorm
3850 operands on either the FMAC or the DS pipeline. This might
3851 lead to slightly overenthusiastic veneer insertion. */
3852 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
3853 {
3854 state = use_vector ? 1 : 2;
3855 first_fmac = i;
3856 veneer_of_insn = insn;
3857 }
3858 break;
3859
3860 case 1:
3861 {
3862 int other_regs[3], other_numregs;
3863 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
3864 other_regs,
3865 &other_numregs);
3866 if (pipe != VFP11_BAD
3867 && bfd_arm_vfp11_antidependency (writemask, regs,
3868 numregs))
3869 state = 3;
3870 else
3871 state = 2;
3872 }
3873 break;
3874
3875 case 2:
3876 {
3877 int other_regs[3], other_numregs;
3878 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
3879 other_regs,
3880 &other_numregs);
3881 if (pipe != VFP11_BAD
3882 && bfd_arm_vfp11_antidependency (writemask, regs,
3883 numregs))
3884 state = 3;
3885 else
3886 {
3887 state = 0;
3888 next_i = first_fmac + 4;
3889 }
3890 }
3891 break;
3892
3893 case 3:
3894 abort (); /* Should be unreachable. */
3895 }
3896
3897 if (state == 3)
3898 {
3899 elf32_vfp11_erratum_list *newerr
3900 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
3901 int errcount;
3902
3903 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
3904
3905 newerr->u.b.vfp_insn = veneer_of_insn;
3906
3907 switch (span_type)
3908 {
3909 case 'a':
3910 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
3911 break;
3912
3913 default:
3914 abort ();
3915 }
3916
3917 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
3918 first_fmac);
3919
3920 newerr->vma = -1;
3921
3922 newerr->next = sec_data->erratumlist;
3923 sec_data->erratumlist = newerr;
3924
3925 state = 0;
3926 }
3927
3928 i = next_i;
3929 }
3930 }
3931
3932 if (contents != NULL
3933 && elf_section_data (sec)->this_hdr.contents != contents)
3934 free (contents);
3935 contents = NULL;
3936 }
3937
3938 return TRUE;
3939
3940 error_return:
3941 if (contents != NULL
3942 && elf_section_data (sec)->this_hdr.contents != contents)
3943 free (contents);
3944
3945 return FALSE;
3946 }
3947
3948 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
3949 after sections have been laid out, using specially-named symbols. */
3950
3951 void
3952 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
3953 struct bfd_link_info *link_info)
3954 {
3955 asection *sec;
3956 struct elf32_arm_link_hash_table *globals;
3957 char *tmp_name;
3958
3959 if (link_info->relocatable)
3960 return;
3961
3962 /* Skip if this bfd does not correspond to an ELF image. */
3963 if (! is_arm_elf (abfd))
3964 return;
3965
3966 globals = elf32_arm_hash_table (link_info);
3967
3968 tmp_name = bfd_malloc ((bfd_size_type) strlen
3969 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
3970
3971 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3972 {
3973 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
3974 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
3975
3976 for (; errnode != NULL; errnode = errnode->next)
3977 {
3978 struct elf_link_hash_entry *myh;
3979 bfd_vma vma;
3980
3981 switch (errnode->type)
3982 {
3983 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
3984 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
3985 /* Find veneer symbol. */
3986 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
3987 errnode->u.b.veneer->u.v.id);
3988
3989 myh = elf_link_hash_lookup
3990 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
3991
3992 if (myh == NULL)
3993 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
3994 "`%s'"), abfd, tmp_name);
3995
3996 vma = myh->root.u.def.section->output_section->vma
3997 + myh->root.u.def.section->output_offset
3998 + myh->root.u.def.value;
3999
4000 errnode->u.b.veneer->vma = vma;
4001 break;
4002
4003 case VFP11_ERRATUM_ARM_VENEER:
4004 case VFP11_ERRATUM_THUMB_VENEER:
4005 /* Find return location. */
4006 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4007 errnode->u.v.id);
4008
4009 myh = elf_link_hash_lookup
4010 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
4011
4012 if (myh == NULL)
4013 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
4014 "`%s'"), abfd, tmp_name);
4015
4016 vma = myh->root.u.def.section->output_section->vma
4017 + myh->root.u.def.section->output_offset
4018 + myh->root.u.def.value;
4019
4020 errnode->u.v.branch->vma = vma;
4021 break;
4022
4023 default:
4024 abort ();
4025 }
4026 }
4027 }
4028
4029 free (tmp_name);
4030 }
4031
4032
4033 /* Set target relocation values needed during linking. */
4034
4035 void
4036 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
4037 struct bfd_link_info *link_info,
4038 int target1_is_rel,
4039 char * target2_type,
4040 int fix_v4bx,
4041 int use_blx,
4042 bfd_arm_vfp11_fix vfp11_fix,
4043 int no_enum_warn, int pic_veneer)
4044 {
4045 struct elf32_arm_link_hash_table *globals;
4046
4047 globals = elf32_arm_hash_table (link_info);
4048
4049 globals->target1_is_rel = target1_is_rel;
4050 if (strcmp (target2_type, "rel") == 0)
4051 globals->target2_reloc = R_ARM_REL32;
4052 else if (strcmp (target2_type, "abs") == 0)
4053 globals->target2_reloc = R_ARM_ABS32;
4054 else if (strcmp (target2_type, "got-rel") == 0)
4055 globals->target2_reloc = R_ARM_GOT_PREL;
4056 else
4057 {
4058 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
4059 target2_type);
4060 }
4061 globals->fix_v4bx = fix_v4bx;
4062 globals->use_blx |= use_blx;
4063 globals->vfp11_fix = vfp11_fix;
4064 globals->pic_veneer = pic_veneer;
4065
4066 BFD_ASSERT (is_arm_elf (output_bfd));
4067 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4068 }
4069
4070 /* The thumb form of a long branch is a bit finicky, because the offset
4071 encoding is split over two fields, each in it's own instruction. They
4072 can occur in any order. So given a thumb form of long branch, and an
4073 offset, insert the offset into the thumb branch and return finished
4074 instruction.
4075
4076 It takes two thumb instructions to encode the target address. Each has
4077 11 bits to invest. The upper 11 bits are stored in one (identified by
4078 H-0.. see below), the lower 11 bits are stored in the other (identified
4079 by H-1).
4080
4081 Combine together and shifted left by 1 (it's a half word address) and
4082 there you have it.
4083
4084 Op: 1111 = F,
4085 H-0, upper address-0 = 000
4086 Op: 1111 = F,
4087 H-1, lower address-0 = 800
4088
4089 They can be ordered either way, but the arm tools I've seen always put
4090 the lower one first. It probably doesn't matter. krk@cygnus.com
4091
4092 XXX: Actually the order does matter. The second instruction (H-1)
4093 moves the computed address into the PC, so it must be the second one
4094 in the sequence. The problem, however is that whilst little endian code
4095 stores the instructions in HI then LOW order, big endian code does the
4096 reverse. nickc@cygnus.com. */
4097
4098 #define LOW_HI_ORDER 0xF800F000
4099 #define HI_LOW_ORDER 0xF000F800
4100
4101 static insn32
4102 insert_thumb_branch (insn32 br_insn, int rel_off)
4103 {
4104 unsigned int low_bits;
4105 unsigned int high_bits;
4106
4107 BFD_ASSERT ((rel_off & 1) != 1);
4108
4109 rel_off >>= 1; /* Half word aligned address. */
4110 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
4111 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
4112
4113 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
4114 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
4115 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
4116 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
4117 else
4118 /* FIXME: abort is probably not the right call. krk@cygnus.com */
4119 abort (); /* Error - not a valid branch instruction form. */
4120
4121 return br_insn;
4122 }
4123
4124
4125 /* Store an Arm insn into an output section not processed by
4126 elf32_arm_write_section. */
4127
4128 static void
4129 put_arm_insn (struct elf32_arm_link_hash_table *htab,
4130 bfd * output_bfd, bfd_vma val, void * ptr)
4131 {
4132 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4133 bfd_putl32 (val, ptr);
4134 else
4135 bfd_putb32 (val, ptr);
4136 }
4137
4138
4139 /* Store a 16-bit Thumb insn into an output section not processed by
4140 elf32_arm_write_section. */
4141
4142 static void
4143 put_thumb_insn (struct elf32_arm_link_hash_table *htab,
4144 bfd * output_bfd, bfd_vma val, void * ptr)
4145 {
4146 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4147 bfd_putl16 (val, ptr);
4148 else
4149 bfd_putb16 (val, ptr);
4150 }
4151
4152
4153 /* Thumb code calling an ARM function. */
4154
4155 static int
4156 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
4157 const char * name,
4158 bfd * input_bfd,
4159 bfd * output_bfd,
4160 asection * input_section,
4161 bfd_byte * hit_data,
4162 asection * sym_sec,
4163 bfd_vma offset,
4164 bfd_signed_vma addend,
4165 bfd_vma val,
4166 char **error_message)
4167 {
4168 asection * s = 0;
4169 bfd_vma my_offset;
4170 unsigned long int tmp;
4171 long int ret_offset;
4172 struct elf_link_hash_entry * myh;
4173 struct elf32_arm_link_hash_table * globals;
4174
4175 myh = find_thumb_glue (info, name, error_message);
4176 if (myh == NULL)
4177 return FALSE;
4178
4179 globals = elf32_arm_hash_table (info);
4180
4181 BFD_ASSERT (globals != NULL);
4182 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4183
4184 my_offset = myh->root.u.def.value;
4185
4186 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4187 THUMB2ARM_GLUE_SECTION_NAME);
4188
4189 BFD_ASSERT (s != NULL);
4190 BFD_ASSERT (s->contents != NULL);
4191 BFD_ASSERT (s->output_section != NULL);
4192
4193 if ((my_offset & 0x01) == 0x01)
4194 {
4195 if (sym_sec != NULL
4196 && sym_sec->owner != NULL
4197 && !INTERWORK_FLAG (sym_sec->owner))
4198 {
4199 (*_bfd_error_handler)
4200 (_("%B(%s): warning: interworking not enabled.\n"
4201 " first occurrence: %B: thumb call to arm"),
4202 sym_sec->owner, input_bfd, name);
4203
4204 return FALSE;
4205 }
4206
4207 --my_offset;
4208 myh->root.u.def.value = my_offset;
4209
4210 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
4211 s->contents + my_offset);
4212
4213 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
4214 s->contents + my_offset + 2);
4215
4216 ret_offset =
4217 /* Address of destination of the stub. */
4218 ((bfd_signed_vma) val)
4219 - ((bfd_signed_vma)
4220 /* Offset from the start of the current section
4221 to the start of the stubs. */
4222 (s->output_offset
4223 /* Offset of the start of this stub from the start of the stubs. */
4224 + my_offset
4225 /* Address of the start of the current section. */
4226 + s->output_section->vma)
4227 /* The branch instruction is 4 bytes into the stub. */
4228 + 4
4229 /* ARM branches work from the pc of the instruction + 8. */
4230 + 8);
4231
4232 put_arm_insn (globals, output_bfd,
4233 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
4234 s->contents + my_offset + 4);
4235 }
4236
4237 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
4238
4239 /* Now go back and fix up the original BL insn to point to here. */
4240 ret_offset =
4241 /* Address of where the stub is located. */
4242 (s->output_section->vma + s->output_offset + my_offset)
4243 /* Address of where the BL is located. */
4244 - (input_section->output_section->vma + input_section->output_offset
4245 + offset)
4246 /* Addend in the relocation. */
4247 - addend
4248 /* Biassing for PC-relative addressing. */
4249 - 8;
4250
4251 tmp = bfd_get_32 (input_bfd, hit_data
4252 - input_section->vma);
4253
4254 bfd_put_32 (output_bfd,
4255 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
4256 hit_data - input_section->vma);
4257
4258 return TRUE;
4259 }
4260
4261 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
4262
4263 static struct elf_link_hash_entry *
4264 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
4265 const char * name,
4266 bfd * input_bfd,
4267 bfd * output_bfd,
4268 asection * sym_sec,
4269 bfd_vma val,
4270 asection *s,
4271 char **error_message)
4272 {
4273 bfd_vma my_offset;
4274 long int ret_offset;
4275 struct elf_link_hash_entry * myh;
4276 struct elf32_arm_link_hash_table * globals;
4277
4278 myh = find_arm_glue (info, name, error_message);
4279 if (myh == NULL)
4280 return NULL;
4281
4282 globals = elf32_arm_hash_table (info);
4283
4284 BFD_ASSERT (globals != NULL);
4285 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4286
4287 my_offset = myh->root.u.def.value;
4288
4289 if ((my_offset & 0x01) == 0x01)
4290 {
4291 if (sym_sec != NULL
4292 && sym_sec->owner != NULL
4293 && !INTERWORK_FLAG (sym_sec->owner))
4294 {
4295 (*_bfd_error_handler)
4296 (_("%B(%s): warning: interworking not enabled.\n"
4297 " first occurrence: %B: arm call to thumb"),
4298 sym_sec->owner, input_bfd, name);
4299 }
4300
4301 --my_offset;
4302 myh->root.u.def.value = my_offset;
4303
4304 if (info->shared || globals->root.is_relocatable_executable
4305 || globals->pic_veneer)
4306 {
4307 /* For relocatable objects we can't use absolute addresses,
4308 so construct the address from a relative offset. */
4309 /* TODO: If the offset is small it's probably worth
4310 constructing the address with adds. */
4311 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
4312 s->contents + my_offset);
4313 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
4314 s->contents + my_offset + 4);
4315 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
4316 s->contents + my_offset + 8);
4317 /* Adjust the offset by 4 for the position of the add,
4318 and 8 for the pipeline offset. */
4319 ret_offset = (val - (s->output_offset
4320 + s->output_section->vma
4321 + my_offset + 12))
4322 | 1;
4323 bfd_put_32 (output_bfd, ret_offset,
4324 s->contents + my_offset + 12);
4325 }
4326 else if (globals->use_blx)
4327 {
4328 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
4329 s->contents + my_offset);
4330
4331 /* It's a thumb address. Add the low order bit. */
4332 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
4333 s->contents + my_offset + 4);
4334 }
4335 else
4336 {
4337 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
4338 s->contents + my_offset);
4339
4340 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
4341 s->contents + my_offset + 4);
4342
4343 /* It's a thumb address. Add the low order bit. */
4344 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
4345 s->contents + my_offset + 8);
4346 }
4347 }
4348
4349 BFD_ASSERT (my_offset <= globals->arm_glue_size);
4350
4351 return myh;
4352 }
4353
4354 /* Arm code calling a Thumb function. */
4355
4356 static int
4357 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
4358 const char * name,
4359 bfd * input_bfd,
4360 bfd * output_bfd,
4361 asection * input_section,
4362 bfd_byte * hit_data,
4363 asection * sym_sec,
4364 bfd_vma offset,
4365 bfd_signed_vma addend,
4366 bfd_vma val,
4367 char **error_message)
4368 {
4369 unsigned long int tmp;
4370 bfd_vma my_offset;
4371 asection * s;
4372 long int ret_offset;
4373 struct elf_link_hash_entry * myh;
4374 struct elf32_arm_link_hash_table * globals;
4375
4376 globals = elf32_arm_hash_table (info);
4377
4378 BFD_ASSERT (globals != NULL);
4379 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4380
4381 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4382 ARM2THUMB_GLUE_SECTION_NAME);
4383 BFD_ASSERT (s != NULL);
4384 BFD_ASSERT (s->contents != NULL);
4385 BFD_ASSERT (s->output_section != NULL);
4386
4387 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
4388 sym_sec, val, s, error_message);
4389 if (!myh)
4390 return FALSE;
4391
4392 my_offset = myh->root.u.def.value;
4393 tmp = bfd_get_32 (input_bfd, hit_data);
4394 tmp = tmp & 0xFF000000;
4395
4396 /* Somehow these are both 4 too far, so subtract 8. */
4397 ret_offset = (s->output_offset
4398 + my_offset
4399 + s->output_section->vma
4400 - (input_section->output_offset
4401 + input_section->output_section->vma
4402 + offset + addend)
4403 - 8);
4404
4405 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
4406
4407 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
4408
4409 return TRUE;
4410 }
4411
4412 /* Populate Arm stub for an exported Thumb function. */
4413
4414 static bfd_boolean
4415 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
4416 {
4417 struct bfd_link_info * info = (struct bfd_link_info *) inf;
4418 asection * s;
4419 struct elf_link_hash_entry * myh;
4420 struct elf32_arm_link_hash_entry *eh;
4421 struct elf32_arm_link_hash_table * globals;
4422 asection *sec;
4423 bfd_vma val;
4424 char *error_message;
4425
4426 eh = elf32_arm_hash_entry(h);
4427 /* Allocate stubs for exported Thumb functions on v4t. */
4428 if (eh->export_glue == NULL)
4429 return TRUE;
4430
4431 globals = elf32_arm_hash_table (info);
4432
4433 BFD_ASSERT (globals != NULL);
4434 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4435
4436 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4437 ARM2THUMB_GLUE_SECTION_NAME);
4438 BFD_ASSERT (s != NULL);
4439 BFD_ASSERT (s->contents != NULL);
4440 BFD_ASSERT (s->output_section != NULL);
4441
4442 sec = eh->export_glue->root.u.def.section;
4443
4444 BFD_ASSERT (sec->output_section != NULL);
4445
4446 val = eh->export_glue->root.u.def.value + sec->output_offset
4447 + sec->output_section->vma;
4448 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
4449 h->root.u.def.section->owner,
4450 globals->obfd, sec, val, s,
4451 &error_message);
4452 BFD_ASSERT (myh);
4453 return TRUE;
4454 }
4455
4456 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
4457
4458 static bfd_vma
4459 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
4460 {
4461 bfd_byte *p;
4462 bfd_vma glue_addr;
4463 asection *s;
4464 struct elf32_arm_link_hash_table *globals;
4465
4466 globals = elf32_arm_hash_table (info);
4467
4468 BFD_ASSERT (globals != NULL);
4469 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4470
4471 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4472 ARM_BX_GLUE_SECTION_NAME);
4473 BFD_ASSERT (s != NULL);
4474 BFD_ASSERT (s->contents != NULL);
4475 BFD_ASSERT (s->output_section != NULL);
4476
4477 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
4478
4479 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
4480
4481 if ((globals->bx_glue_offset[reg] & 1) == 0)
4482 {
4483 p = s->contents + glue_addr;
4484 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
4485 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
4486 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
4487 globals->bx_glue_offset[reg] |= 1;
4488 }
4489
4490 return glue_addr + s->output_section->vma + s->output_offset;
4491 }
4492
4493 /* Generate Arm stubs for exported Thumb symbols. */
4494 static void
4495 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
4496 struct bfd_link_info *link_info)
4497 {
4498 struct elf32_arm_link_hash_table * globals;
4499
4500 if (!link_info)
4501 return;
4502
4503 globals = elf32_arm_hash_table (link_info);
4504 /* If blx is available then exported Thumb symbols are OK and there is
4505 nothing to do. */
4506 if (globals->use_blx)
4507 return;
4508
4509 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
4510 link_info);
4511 }
4512
4513 /* Some relocations map to different relocations depending on the
4514 target. Return the real relocation. */
4515 static int
4516 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
4517 int r_type)
4518 {
4519 switch (r_type)
4520 {
4521 case R_ARM_TARGET1:
4522 if (globals->target1_is_rel)
4523 return R_ARM_REL32;
4524 else
4525 return R_ARM_ABS32;
4526
4527 case R_ARM_TARGET2:
4528 return globals->target2_reloc;
4529
4530 default:
4531 return r_type;
4532 }
4533 }
4534
4535 /* Return the base VMA address which should be subtracted from real addresses
4536 when resolving @dtpoff relocation.
4537 This is PT_TLS segment p_vaddr. */
4538
4539 static bfd_vma
4540 dtpoff_base (struct bfd_link_info *info)
4541 {
4542 /* If tls_sec is NULL, we should have signalled an error already. */
4543 if (elf_hash_table (info)->tls_sec == NULL)
4544 return 0;
4545 return elf_hash_table (info)->tls_sec->vma;
4546 }
4547
4548 /* Return the relocation value for @tpoff relocation
4549 if STT_TLS virtual address is ADDRESS. */
4550
4551 static bfd_vma
4552 tpoff (struct bfd_link_info *info, bfd_vma address)
4553 {
4554 struct elf_link_hash_table *htab = elf_hash_table (info);
4555 bfd_vma base;
4556
4557 /* If tls_sec is NULL, we should have signalled an error already. */
4558 if (htab->tls_sec == NULL)
4559 return 0;
4560 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
4561 return address - htab->tls_sec->vma + base;
4562 }
4563
4564 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
4565 VALUE is the relocation value. */
4566
4567 static bfd_reloc_status_type
4568 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
4569 {
4570 if (value > 0xfff)
4571 return bfd_reloc_overflow;
4572
4573 value |= bfd_get_32 (abfd, data) & 0xfffff000;
4574 bfd_put_32 (abfd, value, data);
4575 return bfd_reloc_ok;
4576 }
4577
4578 /* For a given value of n, calculate the value of G_n as required to
4579 deal with group relocations. We return it in the form of an
4580 encoded constant-and-rotation, together with the final residual. If n is
4581 specified as less than zero, then final_residual is filled with the
4582 input value and no further action is performed. */
4583
4584 static bfd_vma
4585 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
4586 {
4587 int current_n;
4588 bfd_vma g_n;
4589 bfd_vma encoded_g_n = 0;
4590 bfd_vma residual = value; /* Also known as Y_n. */
4591
4592 for (current_n = 0; current_n <= n; current_n++)
4593 {
4594 int shift;
4595
4596 /* Calculate which part of the value to mask. */
4597 if (residual == 0)
4598 shift = 0;
4599 else
4600 {
4601 int msb;
4602
4603 /* Determine the most significant bit in the residual and
4604 align the resulting value to a 2-bit boundary. */
4605 for (msb = 30; msb >= 0; msb -= 2)
4606 if (residual & (3 << msb))
4607 break;
4608
4609 /* The desired shift is now (msb - 6), or zero, whichever
4610 is the greater. */
4611 shift = msb - 6;
4612 if (shift < 0)
4613 shift = 0;
4614 }
4615
4616 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
4617 g_n = residual & (0xff << shift);
4618 encoded_g_n = (g_n >> shift)
4619 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4620
4621 /* Calculate the residual for the next time around. */
4622 residual &= ~g_n;
4623 }
4624
4625 *final_residual = residual;
4626
4627 return encoded_g_n;
4628 }
4629
4630 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
4631 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
4632 static int
4633 identify_add_or_sub(bfd_vma insn)
4634 {
4635 int opcode = insn & 0x1e00000;
4636
4637 if (opcode == 1 << 23) /* ADD */
4638 return 1;
4639
4640 if (opcode == 1 << 22) /* SUB */
4641 return -1;
4642
4643 return 0;
4644 }
4645
4646 /* Determine if we're dealing with a Thumb-2 object. */
4647
4648 static int using_thumb2 (struct elf32_arm_link_hash_table *globals)
4649 {
4650 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4651 Tag_CPU_arch);
4652 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
4653 }
4654
4655 /* Perform a relocation as part of a final link. */
4656
4657 static bfd_reloc_status_type
4658 elf32_arm_final_link_relocate (reloc_howto_type * howto,
4659 bfd * input_bfd,
4660 bfd * output_bfd,
4661 asection * input_section,
4662 bfd_byte * contents,
4663 Elf_Internal_Rela * rel,
4664 bfd_vma value,
4665 struct bfd_link_info * info,
4666 asection * sym_sec,
4667 const char * sym_name,
4668 int sym_flags,
4669 struct elf_link_hash_entry * h,
4670 bfd_boolean * unresolved_reloc_p,
4671 char **error_message)
4672 {
4673 unsigned long r_type = howto->type;
4674 unsigned long r_symndx;
4675 bfd_byte * hit_data = contents + rel->r_offset;
4676 bfd * dynobj = NULL;
4677 Elf_Internal_Shdr * symtab_hdr;
4678 struct elf_link_hash_entry ** sym_hashes;
4679 bfd_vma * local_got_offsets;
4680 asection * sgot = NULL;
4681 asection * splt = NULL;
4682 asection * sreloc = NULL;
4683 bfd_vma addend;
4684 bfd_signed_vma signed_addend;
4685 struct elf32_arm_link_hash_table * globals;
4686
4687 globals = elf32_arm_hash_table (info);
4688
4689 BFD_ASSERT (is_arm_elf (input_bfd));
4690
4691 /* Some relocation types map to different relocations depending on the
4692 target. We pick the right one here. */
4693 r_type = arm_real_reloc_type (globals, r_type);
4694 if (r_type != howto->type)
4695 howto = elf32_arm_howto_from_type (r_type);
4696
4697 /* If the start address has been set, then set the EF_ARM_HASENTRY
4698 flag. Setting this more than once is redundant, but the cost is
4699 not too high, and it keeps the code simple.
4700
4701 The test is done here, rather than somewhere else, because the
4702 start address is only set just before the final link commences.
4703
4704 Note - if the user deliberately sets a start address of 0, the
4705 flag will not be set. */
4706 if (bfd_get_start_address (output_bfd) != 0)
4707 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
4708
4709 dynobj = elf_hash_table (info)->dynobj;
4710 if (dynobj)
4711 {
4712 sgot = bfd_get_section_by_name (dynobj, ".got");
4713 splt = bfd_get_section_by_name (dynobj, ".plt");
4714 }
4715 symtab_hdr = & elf_symtab_hdr (input_bfd);
4716 sym_hashes = elf_sym_hashes (input_bfd);
4717 local_got_offsets = elf_local_got_offsets (input_bfd);
4718 r_symndx = ELF32_R_SYM (rel->r_info);
4719
4720 if (globals->use_rel)
4721 {
4722 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
4723
4724 if (addend & ((howto->src_mask + 1) >> 1))
4725 {
4726 signed_addend = -1;
4727 signed_addend &= ~ howto->src_mask;
4728 signed_addend |= addend;
4729 }
4730 else
4731 signed_addend = addend;
4732 }
4733 else
4734 addend = signed_addend = rel->r_addend;
4735
4736 switch (r_type)
4737 {
4738 case R_ARM_NONE:
4739 /* We don't need to find a value for this symbol. It's just a
4740 marker. */
4741 *unresolved_reloc_p = FALSE;
4742 return bfd_reloc_ok;
4743
4744 case R_ARM_ABS12:
4745 if (!globals->vxworks_p)
4746 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
4747
4748 case R_ARM_PC24:
4749 case R_ARM_ABS32:
4750 case R_ARM_ABS32_NOI:
4751 case R_ARM_REL32:
4752 case R_ARM_REL32_NOI:
4753 case R_ARM_CALL:
4754 case R_ARM_JUMP24:
4755 case R_ARM_XPC25:
4756 case R_ARM_PREL31:
4757 case R_ARM_PLT32:
4758 /* Handle relocations which should use the PLT entry. ABS32/REL32
4759 will use the symbol's value, which may point to a PLT entry, but we
4760 don't need to handle that here. If we created a PLT entry, all
4761 branches in this object should go to it. */
4762 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
4763 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
4764 && h != NULL
4765 && splt != NULL
4766 && h->plt.offset != (bfd_vma) -1)
4767 {
4768 /* If we've created a .plt section, and assigned a PLT entry to
4769 this function, it should not be known to bind locally. If
4770 it were, we would have cleared the PLT entry. */
4771 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
4772
4773 value = (splt->output_section->vma
4774 + splt->output_offset
4775 + h->plt.offset);
4776 *unresolved_reloc_p = FALSE;
4777 return _bfd_final_link_relocate (howto, input_bfd, input_section,
4778 contents, rel->r_offset, value,
4779 rel->r_addend);
4780 }
4781
4782 /* When generating a shared object or relocatable executable, these
4783 relocations are copied into the output file to be resolved at
4784 run time. */
4785 if ((info->shared || globals->root.is_relocatable_executable)
4786 && (input_section->flags & SEC_ALLOC)
4787 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
4788 || !SYMBOL_CALLS_LOCAL (info, h))
4789 && (h == NULL
4790 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4791 || h->root.type != bfd_link_hash_undefweak)
4792 && r_type != R_ARM_PC24
4793 && r_type != R_ARM_CALL
4794 && r_type != R_ARM_JUMP24
4795 && r_type != R_ARM_PREL31
4796 && r_type != R_ARM_PLT32)
4797 {
4798 Elf_Internal_Rela outrel;
4799 bfd_byte *loc;
4800 bfd_boolean skip, relocate;
4801
4802 *unresolved_reloc_p = FALSE;
4803
4804 if (sreloc == NULL)
4805 {
4806 const char * name;
4807
4808 name = (bfd_elf_string_from_elf_section
4809 (input_bfd,
4810 elf_elfheader (input_bfd)->e_shstrndx,
4811 elf_section_data (input_section)->rel_hdr.sh_name));
4812 if (name == NULL)
4813 return bfd_reloc_notsupported;
4814
4815 BFD_ASSERT (reloc_section_p (globals, name, input_section));
4816
4817 sreloc = bfd_get_section_by_name (dynobj, name);
4818 BFD_ASSERT (sreloc != NULL);
4819 }
4820
4821 skip = FALSE;
4822 relocate = FALSE;
4823
4824 outrel.r_addend = addend;
4825 outrel.r_offset =
4826 _bfd_elf_section_offset (output_bfd, info, input_section,
4827 rel->r_offset);
4828 if (outrel.r_offset == (bfd_vma) -1)
4829 skip = TRUE;
4830 else if (outrel.r_offset == (bfd_vma) -2)
4831 skip = TRUE, relocate = TRUE;
4832 outrel.r_offset += (input_section->output_section->vma
4833 + input_section->output_offset);
4834
4835 if (skip)
4836 memset (&outrel, 0, sizeof outrel);
4837 else if (h != NULL
4838 && h->dynindx != -1
4839 && (!info->shared
4840 || !info->symbolic
4841 || !h->def_regular))
4842 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
4843 else
4844 {
4845 int symbol;
4846
4847 /* This symbol is local, or marked to become local. */
4848 if (sym_flags == STT_ARM_TFUNC)
4849 value |= 1;
4850 if (globals->symbian_p)
4851 {
4852 asection *osec;
4853
4854 /* On Symbian OS, the data segment and text segement
4855 can be relocated independently. Therefore, we
4856 must indicate the segment to which this
4857 relocation is relative. The BPABI allows us to
4858 use any symbol in the right segment; we just use
4859 the section symbol as it is convenient. (We
4860 cannot use the symbol given by "h" directly as it
4861 will not appear in the dynamic symbol table.)
4862
4863 Note that the dynamic linker ignores the section
4864 symbol value, so we don't subtract osec->vma
4865 from the emitted reloc addend. */
4866 if (sym_sec)
4867 osec = sym_sec->output_section;
4868 else
4869 osec = input_section->output_section;
4870 symbol = elf_section_data (osec)->dynindx;
4871 if (symbol == 0)
4872 {
4873 struct elf_link_hash_table *htab = elf_hash_table (info);
4874
4875 if ((osec->flags & SEC_READONLY) == 0
4876 && htab->data_index_section != NULL)
4877 osec = htab->data_index_section;
4878 else
4879 osec = htab->text_index_section;
4880 symbol = elf_section_data (osec)->dynindx;
4881 }
4882 BFD_ASSERT (symbol != 0);
4883 }
4884 else
4885 /* On SVR4-ish systems, the dynamic loader cannot
4886 relocate the text and data segments independently,
4887 so the symbol does not matter. */
4888 symbol = 0;
4889 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
4890 if (globals->use_rel)
4891 relocate = TRUE;
4892 else
4893 outrel.r_addend += value;
4894 }
4895
4896 loc = sreloc->contents;
4897 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
4898 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
4899
4900 /* If this reloc is against an external symbol, we do not want to
4901 fiddle with the addend. Otherwise, we need to include the symbol
4902 value so that it becomes an addend for the dynamic reloc. */
4903 if (! relocate)
4904 return bfd_reloc_ok;
4905
4906 return _bfd_final_link_relocate (howto, input_bfd, input_section,
4907 contents, rel->r_offset, value,
4908 (bfd_vma) 0);
4909 }
4910 else switch (r_type)
4911 {
4912 case R_ARM_ABS12:
4913 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
4914
4915 case R_ARM_XPC25: /* Arm BLX instruction. */
4916 case R_ARM_CALL:
4917 case R_ARM_JUMP24:
4918 case R_ARM_PC24: /* Arm B/BL instruction */
4919 case R_ARM_PLT32:
4920 if (r_type == R_ARM_XPC25)
4921 {
4922 /* Check for Arm calling Arm function. */
4923 /* FIXME: Should we translate the instruction into a BL
4924 instruction instead ? */
4925 if (sym_flags != STT_ARM_TFUNC)
4926 (*_bfd_error_handler)
4927 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
4928 input_bfd,
4929 h ? h->root.root.string : "(local)");
4930 }
4931 else if (r_type != R_ARM_CALL || !globals->use_blx)
4932 {
4933 /* Check for Arm calling Thumb function. */
4934 if (sym_flags == STT_ARM_TFUNC)
4935 {
4936 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
4937 output_bfd, input_section,
4938 hit_data, sym_sec, rel->r_offset,
4939 signed_addend, value,
4940 error_message))
4941 return bfd_reloc_ok;
4942 else
4943 return bfd_reloc_dangerous;
4944 }
4945 }
4946
4947 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
4948 where:
4949 S is the address of the symbol in the relocation.
4950 P is address of the instruction being relocated.
4951 A is the addend (extracted from the instruction) in bytes.
4952
4953 S is held in 'value'.
4954 P is the base address of the section containing the
4955 instruction plus the offset of the reloc into that
4956 section, ie:
4957 (input_section->output_section->vma +
4958 input_section->output_offset +
4959 rel->r_offset).
4960 A is the addend, converted into bytes, ie:
4961 (signed_addend * 4)
4962
4963 Note: None of these operations have knowledge of the pipeline
4964 size of the processor, thus it is up to the assembler to
4965 encode this information into the addend. */
4966 value -= (input_section->output_section->vma
4967 + input_section->output_offset);
4968 value -= rel->r_offset;
4969 if (globals->use_rel)
4970 value += (signed_addend << howto->size);
4971 else
4972 /* RELA addends do not have to be adjusted by howto->size. */
4973 value += signed_addend;
4974
4975 signed_addend = value;
4976 signed_addend >>= howto->rightshift;
4977
4978 /* A branch to an undefined weak symbol is turned into a jump to
4979 the next instruction. */
4980 if (h && h->root.type == bfd_link_hash_undefweak)
4981 {
4982 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
4983 | 0x0affffff;
4984 }
4985 else
4986 {
4987 /* Perform a signed range check. */
4988 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
4989 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
4990 return bfd_reloc_overflow;
4991
4992 addend = (value & 2);
4993
4994 value = (signed_addend & howto->dst_mask)
4995 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
4996
4997 /* Set the H bit in the BLX instruction. */
4998 if (sym_flags == STT_ARM_TFUNC)
4999 {
5000 if (addend)
5001 value |= (1 << 24);
5002 else
5003 value &= ~(bfd_vma)(1 << 24);
5004 }
5005 if (r_type == R_ARM_CALL)
5006 {
5007 /* Select the correct instruction (BL or BLX). */
5008 if (sym_flags == STT_ARM_TFUNC)
5009 value |= (1 << 28);
5010 else
5011 {
5012 value &= ~(bfd_vma)(1 << 28);
5013 value |= (1 << 24);
5014 }
5015 }
5016 }
5017 break;
5018
5019 case R_ARM_ABS32:
5020 value += addend;
5021 if (sym_flags == STT_ARM_TFUNC)
5022 value |= 1;
5023 break;
5024
5025 case R_ARM_ABS32_NOI:
5026 value += addend;
5027 break;
5028
5029 case R_ARM_REL32:
5030 value += addend;
5031 if (sym_flags == STT_ARM_TFUNC)
5032 value |= 1;
5033 value -= (input_section->output_section->vma
5034 + input_section->output_offset + rel->r_offset);
5035 break;
5036
5037 case R_ARM_REL32_NOI:
5038 value += addend;
5039 value -= (input_section->output_section->vma
5040 + input_section->output_offset + rel->r_offset);
5041 break;
5042
5043 case R_ARM_PREL31:
5044 value -= (input_section->output_section->vma
5045 + input_section->output_offset + rel->r_offset);
5046 value += signed_addend;
5047 if (! h || h->root.type != bfd_link_hash_undefweak)
5048 {
5049 /* Check for overflow */
5050 if ((value ^ (value >> 1)) & (1 << 30))
5051 return bfd_reloc_overflow;
5052 }
5053 value &= 0x7fffffff;
5054 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
5055 if (sym_flags == STT_ARM_TFUNC)
5056 value |= 1;
5057 break;
5058 }
5059
5060 bfd_put_32 (input_bfd, value, hit_data);
5061 return bfd_reloc_ok;
5062
5063 case R_ARM_ABS8:
5064 value += addend;
5065 if ((long) value > 0x7f || (long) value < -0x80)
5066 return bfd_reloc_overflow;
5067
5068 bfd_put_8 (input_bfd, value, hit_data);
5069 return bfd_reloc_ok;
5070
5071 case R_ARM_ABS16:
5072 value += addend;
5073
5074 if ((long) value > 0x7fff || (long) value < -0x8000)
5075 return bfd_reloc_overflow;
5076
5077 bfd_put_16 (input_bfd, value, hit_data);
5078 return bfd_reloc_ok;
5079
5080 case R_ARM_THM_ABS5:
5081 /* Support ldr and str instructions for the thumb. */
5082 if (globals->use_rel)
5083 {
5084 /* Need to refetch addend. */
5085 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
5086 /* ??? Need to determine shift amount from operand size. */
5087 addend >>= howto->rightshift;
5088 }
5089 value += addend;
5090
5091 /* ??? Isn't value unsigned? */
5092 if ((long) value > 0x1f || (long) value < -0x10)
5093 return bfd_reloc_overflow;
5094
5095 /* ??? Value needs to be properly shifted into place first. */
5096 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
5097 bfd_put_16 (input_bfd, value, hit_data);
5098 return bfd_reloc_ok;
5099
5100 case R_ARM_THM_ALU_PREL_11_0:
5101 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
5102 {
5103 bfd_vma insn;
5104 bfd_signed_vma relocation;
5105
5106 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
5107 | bfd_get_16 (input_bfd, hit_data + 2);
5108
5109 if (globals->use_rel)
5110 {
5111 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
5112 | ((insn & (1 << 26)) >> 15);
5113 if (insn & 0xf00000)
5114 signed_addend = -signed_addend;
5115 }
5116
5117 relocation = value + signed_addend;
5118 relocation -= (input_section->output_section->vma
5119 + input_section->output_offset
5120 + rel->r_offset);
5121
5122 value = abs (relocation);
5123
5124 if (value >= 0x1000)
5125 return bfd_reloc_overflow;
5126
5127 insn = (insn & 0xfb0f8f00) | (value & 0xff)
5128 | ((value & 0x700) << 4)
5129 | ((value & 0x800) << 15);
5130 if (relocation < 0)
5131 insn |= 0xa00000;
5132
5133 bfd_put_16 (input_bfd, insn >> 16, hit_data);
5134 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
5135
5136 return bfd_reloc_ok;
5137 }
5138
5139 case R_ARM_THM_PC12:
5140 /* Corresponds to: ldr.w reg, [pc, #offset]. */
5141 {
5142 bfd_vma insn;
5143 bfd_signed_vma relocation;
5144
5145 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
5146 | bfd_get_16 (input_bfd, hit_data + 2);
5147
5148 if (globals->use_rel)
5149 {
5150 signed_addend = insn & 0xfff;
5151 if (!(insn & (1 << 23)))
5152 signed_addend = -signed_addend;
5153 }
5154
5155 relocation = value + signed_addend;
5156 relocation -= (input_section->output_section->vma
5157 + input_section->output_offset
5158 + rel->r_offset);
5159
5160 value = abs (relocation);
5161
5162 if (value >= 0x1000)
5163 return bfd_reloc_overflow;
5164
5165 insn = (insn & 0xff7ff000) | value;
5166 if (relocation >= 0)
5167 insn |= (1 << 23);
5168
5169 bfd_put_16 (input_bfd, insn >> 16, hit_data);
5170 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
5171
5172 return bfd_reloc_ok;
5173 }
5174
5175 case R_ARM_THM_XPC22:
5176 case R_ARM_THM_CALL:
5177 case R_ARM_THM_JUMP24:
5178 /* Thumb BL (branch long instruction). */
5179 {
5180 bfd_vma relocation;
5181 bfd_vma reloc_sign;
5182 bfd_boolean overflow = FALSE;
5183 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
5184 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
5185 bfd_signed_vma reloc_signed_max;
5186 bfd_signed_vma reloc_signed_min;
5187 bfd_vma check;
5188 bfd_signed_vma signed_check;
5189 int bitsize;
5190 int thumb2 = using_thumb2 (globals);
5191
5192 /* A branch to an undefined weak symbol is turned into a jump to
5193 the next instruction. */
5194 if (h && h->root.type == bfd_link_hash_undefweak)
5195 {
5196 bfd_put_16 (input_bfd, 0xe000, hit_data);
5197 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
5198 return bfd_reloc_ok;
5199 }
5200
5201 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
5202 with Thumb-1) involving the J1 and J2 bits. */
5203 if (globals->use_rel)
5204 {
5205 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
5206 bfd_vma upper = upper_insn & 0x3ff;
5207 bfd_vma lower = lower_insn & 0x7ff;
5208 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
5209 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
5210 bfd_vma i1 = j1 ^ s ? 0 : 1;
5211 bfd_vma i2 = j2 ^ s ? 0 : 1;
5212
5213 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
5214 /* Sign extend. */
5215 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
5216
5217 signed_addend = addend;
5218 }
5219
5220 if (r_type == R_ARM_THM_XPC22)
5221 {
5222 /* Check for Thumb to Thumb call. */
5223 /* FIXME: Should we translate the instruction into a BL
5224 instruction instead ? */
5225 if (sym_flags == STT_ARM_TFUNC)
5226 (*_bfd_error_handler)
5227 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
5228 input_bfd,
5229 h ? h->root.root.string : "(local)");
5230 }
5231 else
5232 {
5233 /* If it is not a call to Thumb, assume call to Arm.
5234 If it is a call relative to a section name, then it is not a
5235 function call at all, but rather a long jump. Calls through
5236 the PLT do not require stubs. */
5237 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
5238 && (h == NULL || splt == NULL
5239 || h->plt.offset == (bfd_vma) -1))
5240 {
5241 if (globals->use_blx && r_type == R_ARM_THM_CALL)
5242 {
5243 /* Convert BL to BLX. */
5244 lower_insn = (lower_insn & ~0x1000) | 0x0800;
5245 }
5246 else if (elf32_thumb_to_arm_stub
5247 (info, sym_name, input_bfd, output_bfd, input_section,
5248 hit_data, sym_sec, rel->r_offset, signed_addend, value,
5249 error_message))
5250 return bfd_reloc_ok;
5251 else
5252 return bfd_reloc_dangerous;
5253 }
5254 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
5255 && r_type == R_ARM_THM_CALL)
5256 {
5257 /* Make sure this is a BL. */
5258 lower_insn |= 0x1800;
5259 }
5260 }
5261
5262 /* Handle calls via the PLT. */
5263 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
5264 {
5265 value = (splt->output_section->vma
5266 + splt->output_offset
5267 + h->plt.offset);
5268 if (globals->use_blx && r_type == R_ARM_THM_CALL)
5269 {
5270 /* If the Thumb BLX instruction is available, convert the
5271 BL to a BLX instruction to call the ARM-mode PLT entry. */
5272 lower_insn = (lower_insn & ~0x1000) | 0x0800;
5273 }
5274 else
5275 /* Target the Thumb stub before the ARM PLT entry. */
5276 value -= PLT_THUMB_STUB_SIZE;
5277 *unresolved_reloc_p = FALSE;
5278 }
5279
5280 relocation = value + signed_addend;
5281
5282 relocation -= (input_section->output_section->vma
5283 + input_section->output_offset
5284 + rel->r_offset);
5285
5286 check = relocation >> howto->rightshift;
5287
5288 /* If this is a signed value, the rightshift just dropped
5289 leading 1 bits (assuming twos complement). */
5290 if ((bfd_signed_vma) relocation >= 0)
5291 signed_check = check;
5292 else
5293 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
5294
5295 /* Calculate the permissable maximum and minimum values for
5296 this relocation according to whether we're relocating for
5297 Thumb-2 or not. */
5298 bitsize = howto->bitsize;
5299 if (!thumb2)
5300 bitsize -= 2;
5301 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
5302 reloc_signed_min = ~reloc_signed_max;
5303
5304 /* Assumes two's complement. */
5305 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5306 overflow = TRUE;
5307
5308 if ((lower_insn & 0x5000) == 0x4000)
5309 /* For a BLX instruction, make sure that the relocation is rounded up
5310 to a word boundary. This follows the semantics of the instruction
5311 which specifies that bit 1 of the target address will come from bit
5312 1 of the base address. */
5313 relocation = (relocation + 2) & ~ 3;
5314
5315 /* Put RELOCATION back into the insn. Assumes two's complement.
5316 We use the Thumb-2 encoding, which is safe even if dealing with
5317 a Thumb-1 instruction by virtue of our overflow check above. */
5318 reloc_sign = (signed_check < 0) ? 1 : 0;
5319 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
5320 | ((relocation >> 12) & 0x3ff)
5321 | (reloc_sign << 10);
5322 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
5323 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
5324 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
5325 | ((relocation >> 1) & 0x7ff);
5326
5327 /* Put the relocated value back in the object file: */
5328 bfd_put_16 (input_bfd, upper_insn, hit_data);
5329 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
5330
5331 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
5332 }
5333 break;
5334
5335 case R_ARM_THM_JUMP19:
5336 /* Thumb32 conditional branch instruction. */
5337 {
5338 bfd_vma relocation;
5339 bfd_boolean overflow = FALSE;
5340 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
5341 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
5342 bfd_signed_vma reloc_signed_max = 0xffffe;
5343 bfd_signed_vma reloc_signed_min = -0x100000;
5344 bfd_signed_vma signed_check;
5345
5346 /* Need to refetch the addend, reconstruct the top three bits,
5347 and squish the two 11 bit pieces together. */
5348 if (globals->use_rel)
5349 {
5350 bfd_vma S = (upper_insn & 0x0400) >> 10;
5351 bfd_vma upper = (upper_insn & 0x003f);
5352 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
5353 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
5354 bfd_vma lower = (lower_insn & 0x07ff);
5355
5356 upper |= J1 << 6;
5357 upper |= J2 << 7;
5358 upper |= (!S) << 8;
5359 upper -= 0x0100; /* Sign extend. */
5360
5361 addend = (upper << 12) | (lower << 1);
5362 signed_addend = addend;
5363 }
5364
5365 /* Handle calls via the PLT. */
5366 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
5367 {
5368 value = (splt->output_section->vma
5369 + splt->output_offset
5370 + h->plt.offset);
5371 /* Target the Thumb stub before the ARM PLT entry. */
5372 value -= PLT_THUMB_STUB_SIZE;
5373 *unresolved_reloc_p = FALSE;
5374 }
5375
5376 /* ??? Should handle interworking? GCC might someday try to
5377 use this for tail calls. */
5378
5379 relocation = value + signed_addend;
5380 relocation -= (input_section->output_section->vma
5381 + input_section->output_offset
5382 + rel->r_offset);
5383 signed_check = (bfd_signed_vma) relocation;
5384
5385 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5386 overflow = TRUE;
5387
5388 /* Put RELOCATION back into the insn. */
5389 {
5390 bfd_vma S = (relocation & 0x00100000) >> 20;
5391 bfd_vma J2 = (relocation & 0x00080000) >> 19;
5392 bfd_vma J1 = (relocation & 0x00040000) >> 18;
5393 bfd_vma hi = (relocation & 0x0003f000) >> 12;
5394 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
5395
5396 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
5397 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
5398 }
5399
5400 /* Put the relocated value back in the object file: */
5401 bfd_put_16 (input_bfd, upper_insn, hit_data);
5402 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
5403
5404 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
5405 }
5406
5407 case R_ARM_THM_JUMP11:
5408 case R_ARM_THM_JUMP8:
5409 case R_ARM_THM_JUMP6:
5410 /* Thumb B (branch) instruction). */
5411 {
5412 bfd_signed_vma relocation;
5413 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
5414 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
5415 bfd_signed_vma signed_check;
5416
5417 /* CZB cannot jump backward. */
5418 if (r_type == R_ARM_THM_JUMP6)
5419 reloc_signed_min = 0;
5420
5421 if (globals->use_rel)
5422 {
5423 /* Need to refetch addend. */
5424 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
5425 if (addend & ((howto->src_mask + 1) >> 1))
5426 {
5427 signed_addend = -1;
5428 signed_addend &= ~ howto->src_mask;
5429 signed_addend |= addend;
5430 }
5431 else
5432 signed_addend = addend;
5433 /* The value in the insn has been right shifted. We need to
5434 undo this, so that we can perform the address calculation
5435 in terms of bytes. */
5436 signed_addend <<= howto->rightshift;
5437 }
5438 relocation = value + signed_addend;
5439
5440 relocation -= (input_section->output_section->vma
5441 + input_section->output_offset
5442 + rel->r_offset);
5443
5444 relocation >>= howto->rightshift;
5445 signed_check = relocation;
5446
5447 if (r_type == R_ARM_THM_JUMP6)
5448 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
5449 else
5450 relocation &= howto->dst_mask;
5451 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
5452
5453 bfd_put_16 (input_bfd, relocation, hit_data);
5454
5455 /* Assumes two's complement. */
5456 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5457 return bfd_reloc_overflow;
5458
5459 return bfd_reloc_ok;
5460 }
5461
5462 case R_ARM_ALU_PCREL7_0:
5463 case R_ARM_ALU_PCREL15_8:
5464 case R_ARM_ALU_PCREL23_15:
5465 {
5466 bfd_vma insn;
5467 bfd_vma relocation;
5468
5469 insn = bfd_get_32 (input_bfd, hit_data);
5470 if (globals->use_rel)
5471 {
5472 /* Extract the addend. */
5473 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
5474 signed_addend = addend;
5475 }
5476 relocation = value + signed_addend;
5477
5478 relocation -= (input_section->output_section->vma
5479 + input_section->output_offset
5480 + rel->r_offset);
5481 insn = (insn & ~0xfff)
5482 | ((howto->bitpos << 7) & 0xf00)
5483 | ((relocation >> howto->bitpos) & 0xff);
5484 bfd_put_32 (input_bfd, value, hit_data);
5485 }
5486 return bfd_reloc_ok;
5487
5488 case R_ARM_GNU_VTINHERIT:
5489 case R_ARM_GNU_VTENTRY:
5490 return bfd_reloc_ok;
5491
5492 case R_ARM_GOTOFF32:
5493 /* Relocation is relative to the start of the
5494 global offset table. */
5495
5496 BFD_ASSERT (sgot != NULL);
5497 if (sgot == NULL)
5498 return bfd_reloc_notsupported;
5499
5500 /* If we are addressing a Thumb function, we need to adjust the
5501 address by one, so that attempts to call the function pointer will
5502 correctly interpret it as Thumb code. */
5503 if (sym_flags == STT_ARM_TFUNC)
5504 value += 1;
5505
5506 /* Note that sgot->output_offset is not involved in this
5507 calculation. We always want the start of .got. If we
5508 define _GLOBAL_OFFSET_TABLE in a different way, as is
5509 permitted by the ABI, we might have to change this
5510 calculation. */
5511 value -= sgot->output_section->vma;
5512 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5513 contents, rel->r_offset, value,
5514 rel->r_addend);
5515
5516 case R_ARM_GOTPC:
5517 /* Use global offset table as symbol value. */
5518 BFD_ASSERT (sgot != NULL);
5519
5520 if (sgot == NULL)
5521 return bfd_reloc_notsupported;
5522
5523 *unresolved_reloc_p = FALSE;
5524 value = sgot->output_section->vma;
5525 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5526 contents, rel->r_offset, value,
5527 rel->r_addend);
5528
5529 case R_ARM_GOT32:
5530 case R_ARM_GOT_PREL:
5531 /* Relocation is to the entry for this symbol in the
5532 global offset table. */
5533 if (sgot == NULL)
5534 return bfd_reloc_notsupported;
5535
5536 if (h != NULL)
5537 {
5538 bfd_vma off;
5539 bfd_boolean dyn;
5540
5541 off = h->got.offset;
5542 BFD_ASSERT (off != (bfd_vma) -1);
5543 dyn = globals->root.dynamic_sections_created;
5544
5545 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
5546 || (info->shared
5547 && SYMBOL_REFERENCES_LOCAL (info, h))
5548 || (ELF_ST_VISIBILITY (h->other)
5549 && h->root.type == bfd_link_hash_undefweak))
5550 {
5551 /* This is actually a static link, or it is a -Bsymbolic link
5552 and the symbol is defined locally. We must initialize this
5553 entry in the global offset table. Since the offset must
5554 always be a multiple of 4, we use the least significant bit
5555 to record whether we have initialized it already.
5556
5557 When doing a dynamic link, we create a .rel(a).got relocation
5558 entry to initialize the value. This is done in the
5559 finish_dynamic_symbol routine. */
5560 if ((off & 1) != 0)
5561 off &= ~1;
5562 else
5563 {
5564 /* If we are addressing a Thumb function, we need to
5565 adjust the address by one, so that attempts to
5566 call the function pointer will correctly
5567 interpret it as Thumb code. */
5568 if (sym_flags == STT_ARM_TFUNC)
5569 value |= 1;
5570
5571 bfd_put_32 (output_bfd, value, sgot->contents + off);
5572 h->got.offset |= 1;
5573 }
5574 }
5575 else
5576 *unresolved_reloc_p = FALSE;
5577
5578 value = sgot->output_offset + off;
5579 }
5580 else
5581 {
5582 bfd_vma off;
5583
5584 BFD_ASSERT (local_got_offsets != NULL &&
5585 local_got_offsets[r_symndx] != (bfd_vma) -1);
5586
5587 off = local_got_offsets[r_symndx];
5588
5589 /* The offset must always be a multiple of 4. We use the
5590 least significant bit to record whether we have already
5591 generated the necessary reloc. */
5592 if ((off & 1) != 0)
5593 off &= ~1;
5594 else
5595 {
5596 /* If we are addressing a Thumb function, we need to
5597 adjust the address by one, so that attempts to
5598 call the function pointer will correctly
5599 interpret it as Thumb code. */
5600 if (sym_flags == STT_ARM_TFUNC)
5601 value |= 1;
5602
5603 if (globals->use_rel)
5604 bfd_put_32 (output_bfd, value, sgot->contents + off);
5605
5606 if (info->shared)
5607 {
5608 asection * srelgot;
5609 Elf_Internal_Rela outrel;
5610 bfd_byte *loc;
5611
5612 srelgot = (bfd_get_section_by_name
5613 (dynobj, RELOC_SECTION (globals, ".got")));
5614 BFD_ASSERT (srelgot != NULL);
5615
5616 outrel.r_addend = addend + value;
5617 outrel.r_offset = (sgot->output_section->vma
5618 + sgot->output_offset
5619 + off);
5620 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
5621 loc = srelgot->contents;
5622 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
5623 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5624 }
5625
5626 local_got_offsets[r_symndx] |= 1;
5627 }
5628
5629 value = sgot->output_offset + off;
5630 }
5631 if (r_type != R_ARM_GOT32)
5632 value += sgot->output_section->vma;
5633
5634 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5635 contents, rel->r_offset, value,
5636 rel->r_addend);
5637
5638 case R_ARM_TLS_LDO32:
5639 value = value - dtpoff_base (info);
5640
5641 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5642 contents, rel->r_offset, value,
5643 rel->r_addend);
5644
5645 case R_ARM_TLS_LDM32:
5646 {
5647 bfd_vma off;
5648
5649 if (globals->sgot == NULL)
5650 abort ();
5651
5652 off = globals->tls_ldm_got.offset;
5653
5654 if ((off & 1) != 0)
5655 off &= ~1;
5656 else
5657 {
5658 /* If we don't know the module number, create a relocation
5659 for it. */
5660 if (info->shared)
5661 {
5662 Elf_Internal_Rela outrel;
5663 bfd_byte *loc;
5664
5665 if (globals->srelgot == NULL)
5666 abort ();
5667
5668 outrel.r_addend = 0;
5669 outrel.r_offset = (globals->sgot->output_section->vma
5670 + globals->sgot->output_offset + off);
5671 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
5672
5673 if (globals->use_rel)
5674 bfd_put_32 (output_bfd, outrel.r_addend,
5675 globals->sgot->contents + off);
5676
5677 loc = globals->srelgot->contents;
5678 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
5679 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5680 }
5681 else
5682 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
5683
5684 globals->tls_ldm_got.offset |= 1;
5685 }
5686
5687 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
5688 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
5689
5690 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5691 contents, rel->r_offset, value,
5692 rel->r_addend);
5693 }
5694
5695 case R_ARM_TLS_GD32:
5696 case R_ARM_TLS_IE32:
5697 {
5698 bfd_vma off;
5699 int indx;
5700 char tls_type;
5701
5702 if (globals->sgot == NULL)
5703 abort ();
5704
5705 indx = 0;
5706 if (h != NULL)
5707 {
5708 bfd_boolean dyn;
5709 dyn = globals->root.dynamic_sections_created;
5710 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
5711 && (!info->shared
5712 || !SYMBOL_REFERENCES_LOCAL (info, h)))
5713 {
5714 *unresolved_reloc_p = FALSE;
5715 indx = h->dynindx;
5716 }
5717 off = h->got.offset;
5718 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
5719 }
5720 else
5721 {
5722 if (local_got_offsets == NULL)
5723 abort ();
5724 off = local_got_offsets[r_symndx];
5725 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
5726 }
5727
5728 if (tls_type == GOT_UNKNOWN)
5729 abort ();
5730
5731 if ((off & 1) != 0)
5732 off &= ~1;
5733 else
5734 {
5735 bfd_boolean need_relocs = FALSE;
5736 Elf_Internal_Rela outrel;
5737 bfd_byte *loc = NULL;
5738 int cur_off = off;
5739
5740 /* The GOT entries have not been initialized yet. Do it
5741 now, and emit any relocations. If both an IE GOT and a
5742 GD GOT are necessary, we emit the GD first. */
5743
5744 if ((info->shared || indx != 0)
5745 && (h == NULL
5746 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5747 || h->root.type != bfd_link_hash_undefweak))
5748 {
5749 need_relocs = TRUE;
5750 if (globals->srelgot == NULL)
5751 abort ();
5752 loc = globals->srelgot->contents;
5753 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
5754 }
5755
5756 if (tls_type & GOT_TLS_GD)
5757 {
5758 if (need_relocs)
5759 {
5760 outrel.r_addend = 0;
5761 outrel.r_offset = (globals->sgot->output_section->vma
5762 + globals->sgot->output_offset
5763 + cur_off);
5764 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
5765
5766 if (globals->use_rel)
5767 bfd_put_32 (output_bfd, outrel.r_addend,
5768 globals->sgot->contents + cur_off);
5769
5770 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5771 globals->srelgot->reloc_count++;
5772 loc += RELOC_SIZE (globals);
5773
5774 if (indx == 0)
5775 bfd_put_32 (output_bfd, value - dtpoff_base (info),
5776 globals->sgot->contents + cur_off + 4);
5777 else
5778 {
5779 outrel.r_addend = 0;
5780 outrel.r_info = ELF32_R_INFO (indx,
5781 R_ARM_TLS_DTPOFF32);
5782 outrel.r_offset += 4;
5783
5784 if (globals->use_rel)
5785 bfd_put_32 (output_bfd, outrel.r_addend,
5786 globals->sgot->contents + cur_off + 4);
5787
5788
5789 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5790 globals->srelgot->reloc_count++;
5791 loc += RELOC_SIZE (globals);
5792 }
5793 }
5794 else
5795 {
5796 /* If we are not emitting relocations for a
5797 general dynamic reference, then we must be in a
5798 static link or an executable link with the
5799 symbol binding locally. Mark it as belonging
5800 to module 1, the executable. */
5801 bfd_put_32 (output_bfd, 1,
5802 globals->sgot->contents + cur_off);
5803 bfd_put_32 (output_bfd, value - dtpoff_base (info),
5804 globals->sgot->contents + cur_off + 4);
5805 }
5806
5807 cur_off += 8;
5808 }
5809
5810 if (tls_type & GOT_TLS_IE)
5811 {
5812 if (need_relocs)
5813 {
5814 if (indx == 0)
5815 outrel.r_addend = value - dtpoff_base (info);
5816 else
5817 outrel.r_addend = 0;
5818 outrel.r_offset = (globals->sgot->output_section->vma
5819 + globals->sgot->output_offset
5820 + cur_off);
5821 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
5822
5823 if (globals->use_rel)
5824 bfd_put_32 (output_bfd, outrel.r_addend,
5825 globals->sgot->contents + cur_off);
5826
5827 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5828 globals->srelgot->reloc_count++;
5829 loc += RELOC_SIZE (globals);
5830 }
5831 else
5832 bfd_put_32 (output_bfd, tpoff (info, value),
5833 globals->sgot->contents + cur_off);
5834 cur_off += 4;
5835 }
5836
5837 if (h != NULL)
5838 h->got.offset |= 1;
5839 else
5840 local_got_offsets[r_symndx] |= 1;
5841 }
5842
5843 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
5844 off += 8;
5845 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
5846 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
5847
5848 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5849 contents, rel->r_offset, value,
5850 rel->r_addend);
5851 }
5852
5853 case R_ARM_TLS_LE32:
5854 if (info->shared)
5855 {
5856 (*_bfd_error_handler)
5857 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
5858 input_bfd, input_section,
5859 (long) rel->r_offset, howto->name);
5860 return FALSE;
5861 }
5862 else
5863 value = tpoff (info, value);
5864
5865 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5866 contents, rel->r_offset, value,
5867 rel->r_addend);
5868
5869 case R_ARM_V4BX:
5870 if (globals->fix_v4bx)
5871 {
5872 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
5873
5874 /* Ensure that we have a BX instruction. */
5875 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
5876
5877 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
5878 {
5879 /* Branch to veneer. */
5880 bfd_vma glue_addr;
5881 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
5882 glue_addr -= input_section->output_section->vma
5883 + input_section->output_offset
5884 + rel->r_offset + 8;
5885 insn = (insn & 0xf0000000) | 0x0a000000
5886 | ((glue_addr >> 2) & 0x00ffffff);
5887 }
5888 else
5889 {
5890 /* Preserve Rm (lowest four bits) and the condition code
5891 (highest four bits). Other bits encode MOV PC,Rm. */
5892 insn = (insn & 0xf000000f) | 0x01a0f000;
5893 }
5894
5895 bfd_put_32 (input_bfd, insn, hit_data);
5896 }
5897 return bfd_reloc_ok;
5898
5899 case R_ARM_MOVW_ABS_NC:
5900 case R_ARM_MOVT_ABS:
5901 case R_ARM_MOVW_PREL_NC:
5902 case R_ARM_MOVT_PREL:
5903 /* Until we properly support segment-base-relative addressing then
5904 we assume the segment base to be zero, as for the group relocations.
5905 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
5906 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
5907 case R_ARM_MOVW_BREL_NC:
5908 case R_ARM_MOVW_BREL:
5909 case R_ARM_MOVT_BREL:
5910 {
5911 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
5912
5913 if (globals->use_rel)
5914 {
5915 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
5916 signed_addend = (addend ^ 0x10000) - 0x10000;
5917 }
5918
5919 value += signed_addend;
5920
5921 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
5922 value -= (input_section->output_section->vma
5923 + input_section->output_offset + rel->r_offset);
5924
5925 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
5926 return bfd_reloc_overflow;
5927
5928 if (sym_flags == STT_ARM_TFUNC)
5929 value |= 1;
5930
5931 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
5932 || r_type == R_ARM_MOVT_BREL)
5933 value >>= 16;
5934
5935 insn &= 0xfff0f000;
5936 insn |= value & 0xfff;
5937 insn |= (value & 0xf000) << 4;
5938 bfd_put_32 (input_bfd, insn, hit_data);
5939 }
5940 return bfd_reloc_ok;
5941
5942 case R_ARM_THM_MOVW_ABS_NC:
5943 case R_ARM_THM_MOVT_ABS:
5944 case R_ARM_THM_MOVW_PREL_NC:
5945 case R_ARM_THM_MOVT_PREL:
5946 /* Until we properly support segment-base-relative addressing then
5947 we assume the segment base to be zero, as for the above relocations.
5948 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
5949 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
5950 as R_ARM_THM_MOVT_ABS. */
5951 case R_ARM_THM_MOVW_BREL_NC:
5952 case R_ARM_THM_MOVW_BREL:
5953 case R_ARM_THM_MOVT_BREL:
5954 {
5955 bfd_vma insn;
5956
5957 insn = bfd_get_16 (input_bfd, hit_data) << 16;
5958 insn |= bfd_get_16 (input_bfd, hit_data + 2);
5959
5960 if (globals->use_rel)
5961 {
5962 addend = ((insn >> 4) & 0xf000)
5963 | ((insn >> 15) & 0x0800)
5964 | ((insn >> 4) & 0x0700)
5965 | (insn & 0x00ff);
5966 signed_addend = (addend ^ 0x10000) - 0x10000;
5967 }
5968
5969 value += signed_addend;
5970
5971 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
5972 value -= (input_section->output_section->vma
5973 + input_section->output_offset + rel->r_offset);
5974
5975 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
5976 return bfd_reloc_overflow;
5977
5978 if (sym_flags == STT_ARM_TFUNC)
5979 value |= 1;
5980
5981 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
5982 || r_type == R_ARM_THM_MOVT_BREL)
5983 value >>= 16;
5984
5985 insn &= 0xfbf08f00;
5986 insn |= (value & 0xf000) << 4;
5987 insn |= (value & 0x0800) << 15;
5988 insn |= (value & 0x0700) << 4;
5989 insn |= (value & 0x00ff);
5990
5991 bfd_put_16 (input_bfd, insn >> 16, hit_data);
5992 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
5993 }
5994 return bfd_reloc_ok;
5995
5996 case R_ARM_ALU_PC_G0_NC:
5997 case R_ARM_ALU_PC_G1_NC:
5998 case R_ARM_ALU_PC_G0:
5999 case R_ARM_ALU_PC_G1:
6000 case R_ARM_ALU_PC_G2:
6001 case R_ARM_ALU_SB_G0_NC:
6002 case R_ARM_ALU_SB_G1_NC:
6003 case R_ARM_ALU_SB_G0:
6004 case R_ARM_ALU_SB_G1:
6005 case R_ARM_ALU_SB_G2:
6006 {
6007 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6008 bfd_vma pc = input_section->output_section->vma
6009 + input_section->output_offset + rel->r_offset;
6010 /* sb should be the origin of the *segment* containing the symbol.
6011 It is not clear how to obtain this OS-dependent value, so we
6012 make an arbitrary choice of zero. */
6013 bfd_vma sb = 0;
6014 bfd_vma residual;
6015 bfd_vma g_n;
6016 bfd_signed_vma signed_value;
6017 int group = 0;
6018
6019 /* Determine which group of bits to select. */
6020 switch (r_type)
6021 {
6022 case R_ARM_ALU_PC_G0_NC:
6023 case R_ARM_ALU_PC_G0:
6024 case R_ARM_ALU_SB_G0_NC:
6025 case R_ARM_ALU_SB_G0:
6026 group = 0;
6027 break;
6028
6029 case R_ARM_ALU_PC_G1_NC:
6030 case R_ARM_ALU_PC_G1:
6031 case R_ARM_ALU_SB_G1_NC:
6032 case R_ARM_ALU_SB_G1:
6033 group = 1;
6034 break;
6035
6036 case R_ARM_ALU_PC_G2:
6037 case R_ARM_ALU_SB_G2:
6038 group = 2;
6039 break;
6040
6041 default:
6042 abort();
6043 }
6044
6045 /* If REL, extract the addend from the insn. If RELA, it will
6046 have already been fetched for us. */
6047 if (globals->use_rel)
6048 {
6049 int negative;
6050 bfd_vma constant = insn & 0xff;
6051 bfd_vma rotation = (insn & 0xf00) >> 8;
6052
6053 if (rotation == 0)
6054 signed_addend = constant;
6055 else
6056 {
6057 /* Compensate for the fact that in the instruction, the
6058 rotation is stored in multiples of 2 bits. */
6059 rotation *= 2;
6060
6061 /* Rotate "constant" right by "rotation" bits. */
6062 signed_addend = (constant >> rotation) |
6063 (constant << (8 * sizeof (bfd_vma) - rotation));
6064 }
6065
6066 /* Determine if the instruction is an ADD or a SUB.
6067 (For REL, this determines the sign of the addend.) */
6068 negative = identify_add_or_sub (insn);
6069 if (negative == 0)
6070 {
6071 (*_bfd_error_handler)
6072 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
6073 input_bfd, input_section,
6074 (long) rel->r_offset, howto->name);
6075 return bfd_reloc_overflow;
6076 }
6077
6078 signed_addend *= negative;
6079 }
6080
6081 /* Compute the value (X) to go in the place. */
6082 if (r_type == R_ARM_ALU_PC_G0_NC
6083 || r_type == R_ARM_ALU_PC_G1_NC
6084 || r_type == R_ARM_ALU_PC_G0
6085 || r_type == R_ARM_ALU_PC_G1
6086 || r_type == R_ARM_ALU_PC_G2)
6087 /* PC relative. */
6088 signed_value = value - pc + signed_addend;
6089 else
6090 /* Section base relative. */
6091 signed_value = value - sb + signed_addend;
6092
6093 /* If the target symbol is a Thumb function, then set the
6094 Thumb bit in the address. */
6095 if (sym_flags == STT_ARM_TFUNC)
6096 signed_value |= 1;
6097
6098 /* Calculate the value of the relevant G_n, in encoded
6099 constant-with-rotation format. */
6100 g_n = calculate_group_reloc_mask (abs (signed_value), group,
6101 &residual);
6102
6103 /* Check for overflow if required. */
6104 if ((r_type == R_ARM_ALU_PC_G0
6105 || r_type == R_ARM_ALU_PC_G1
6106 || r_type == R_ARM_ALU_PC_G2
6107 || r_type == R_ARM_ALU_SB_G0
6108 || r_type == R_ARM_ALU_SB_G1
6109 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
6110 {
6111 (*_bfd_error_handler)
6112 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6113 input_bfd, input_section,
6114 (long) rel->r_offset, abs (signed_value), howto->name);
6115 return bfd_reloc_overflow;
6116 }
6117
6118 /* Mask out the value and the ADD/SUB part of the opcode; take care
6119 not to destroy the S bit. */
6120 insn &= 0xff1ff000;
6121
6122 /* Set the opcode according to whether the value to go in the
6123 place is negative. */
6124 if (signed_value < 0)
6125 insn |= 1 << 22;
6126 else
6127 insn |= 1 << 23;
6128
6129 /* Encode the offset. */
6130 insn |= g_n;
6131
6132 bfd_put_32 (input_bfd, insn, hit_data);
6133 }
6134 return bfd_reloc_ok;
6135
6136 case R_ARM_LDR_PC_G0:
6137 case R_ARM_LDR_PC_G1:
6138 case R_ARM_LDR_PC_G2:
6139 case R_ARM_LDR_SB_G0:
6140 case R_ARM_LDR_SB_G1:
6141 case R_ARM_LDR_SB_G2:
6142 {
6143 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6144 bfd_vma pc = input_section->output_section->vma
6145 + input_section->output_offset + rel->r_offset;
6146 bfd_vma sb = 0; /* See note above. */
6147 bfd_vma residual;
6148 bfd_signed_vma signed_value;
6149 int group = 0;
6150
6151 /* Determine which groups of bits to calculate. */
6152 switch (r_type)
6153 {
6154 case R_ARM_LDR_PC_G0:
6155 case R_ARM_LDR_SB_G0:
6156 group = 0;
6157 break;
6158
6159 case R_ARM_LDR_PC_G1:
6160 case R_ARM_LDR_SB_G1:
6161 group = 1;
6162 break;
6163
6164 case R_ARM_LDR_PC_G2:
6165 case R_ARM_LDR_SB_G2:
6166 group = 2;
6167 break;
6168
6169 default:
6170 abort();
6171 }
6172
6173 /* If REL, extract the addend from the insn. If RELA, it will
6174 have already been fetched for us. */
6175 if (globals->use_rel)
6176 {
6177 int negative = (insn & (1 << 23)) ? 1 : -1;
6178 signed_addend = negative * (insn & 0xfff);
6179 }
6180
6181 /* Compute the value (X) to go in the place. */
6182 if (r_type == R_ARM_LDR_PC_G0
6183 || r_type == R_ARM_LDR_PC_G1
6184 || r_type == R_ARM_LDR_PC_G2)
6185 /* PC relative. */
6186 signed_value = value - pc + signed_addend;
6187 else
6188 /* Section base relative. */
6189 signed_value = value - sb + signed_addend;
6190
6191 /* Calculate the value of the relevant G_{n-1} to obtain
6192 the residual at that stage. */
6193 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6194
6195 /* Check for overflow. */
6196 if (residual >= 0x1000)
6197 {
6198 (*_bfd_error_handler)
6199 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6200 input_bfd, input_section,
6201 (long) rel->r_offset, abs (signed_value), howto->name);
6202 return bfd_reloc_overflow;
6203 }
6204
6205 /* Mask out the value and U bit. */
6206 insn &= 0xff7ff000;
6207
6208 /* Set the U bit if the value to go in the place is non-negative. */
6209 if (signed_value >= 0)
6210 insn |= 1 << 23;
6211
6212 /* Encode the offset. */
6213 insn |= residual;
6214
6215 bfd_put_32 (input_bfd, insn, hit_data);
6216 }
6217 return bfd_reloc_ok;
6218
6219 case R_ARM_LDRS_PC_G0:
6220 case R_ARM_LDRS_PC_G1:
6221 case R_ARM_LDRS_PC_G2:
6222 case R_ARM_LDRS_SB_G0:
6223 case R_ARM_LDRS_SB_G1:
6224 case R_ARM_LDRS_SB_G2:
6225 {
6226 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6227 bfd_vma pc = input_section->output_section->vma
6228 + input_section->output_offset + rel->r_offset;
6229 bfd_vma sb = 0; /* See note above. */
6230 bfd_vma residual;
6231 bfd_signed_vma signed_value;
6232 int group = 0;
6233
6234 /* Determine which groups of bits to calculate. */
6235 switch (r_type)
6236 {
6237 case R_ARM_LDRS_PC_G0:
6238 case R_ARM_LDRS_SB_G0:
6239 group = 0;
6240 break;
6241
6242 case R_ARM_LDRS_PC_G1:
6243 case R_ARM_LDRS_SB_G1:
6244 group = 1;
6245 break;
6246
6247 case R_ARM_LDRS_PC_G2:
6248 case R_ARM_LDRS_SB_G2:
6249 group = 2;
6250 break;
6251
6252 default:
6253 abort();
6254 }
6255
6256 /* If REL, extract the addend from the insn. If RELA, it will
6257 have already been fetched for us. */
6258 if (globals->use_rel)
6259 {
6260 int negative = (insn & (1 << 23)) ? 1 : -1;
6261 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
6262 }
6263
6264 /* Compute the value (X) to go in the place. */
6265 if (r_type == R_ARM_LDRS_PC_G0
6266 || r_type == R_ARM_LDRS_PC_G1
6267 || r_type == R_ARM_LDRS_PC_G2)
6268 /* PC relative. */
6269 signed_value = value - pc + signed_addend;
6270 else
6271 /* Section base relative. */
6272 signed_value = value - sb + signed_addend;
6273
6274 /* Calculate the value of the relevant G_{n-1} to obtain
6275 the residual at that stage. */
6276 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6277
6278 /* Check for overflow. */
6279 if (residual >= 0x100)
6280 {
6281 (*_bfd_error_handler)
6282 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6283 input_bfd, input_section,
6284 (long) rel->r_offset, abs (signed_value), howto->name);
6285 return bfd_reloc_overflow;
6286 }
6287
6288 /* Mask out the value and U bit. */
6289 insn &= 0xff7ff0f0;
6290
6291 /* Set the U bit if the value to go in the place is non-negative. */
6292 if (signed_value >= 0)
6293 insn |= 1 << 23;
6294
6295 /* Encode the offset. */
6296 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
6297
6298 bfd_put_32 (input_bfd, insn, hit_data);
6299 }
6300 return bfd_reloc_ok;
6301
6302 case R_ARM_LDC_PC_G0:
6303 case R_ARM_LDC_PC_G1:
6304 case R_ARM_LDC_PC_G2:
6305 case R_ARM_LDC_SB_G0:
6306 case R_ARM_LDC_SB_G1:
6307 case R_ARM_LDC_SB_G2:
6308 {
6309 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6310 bfd_vma pc = input_section->output_section->vma
6311 + input_section->output_offset + rel->r_offset;
6312 bfd_vma sb = 0; /* See note above. */
6313 bfd_vma residual;
6314 bfd_signed_vma signed_value;
6315 int group = 0;
6316
6317 /* Determine which groups of bits to calculate. */
6318 switch (r_type)
6319 {
6320 case R_ARM_LDC_PC_G0:
6321 case R_ARM_LDC_SB_G0:
6322 group = 0;
6323 break;
6324
6325 case R_ARM_LDC_PC_G1:
6326 case R_ARM_LDC_SB_G1:
6327 group = 1;
6328 break;
6329
6330 case R_ARM_LDC_PC_G2:
6331 case R_ARM_LDC_SB_G2:
6332 group = 2;
6333 break;
6334
6335 default:
6336 abort();
6337 }
6338
6339 /* If REL, extract the addend from the insn. If RELA, it will
6340 have already been fetched for us. */
6341 if (globals->use_rel)
6342 {
6343 int negative = (insn & (1 << 23)) ? 1 : -1;
6344 signed_addend = negative * ((insn & 0xff) << 2);
6345 }
6346
6347 /* Compute the value (X) to go in the place. */
6348 if (r_type == R_ARM_LDC_PC_G0
6349 || r_type == R_ARM_LDC_PC_G1
6350 || r_type == R_ARM_LDC_PC_G2)
6351 /* PC relative. */
6352 signed_value = value - pc + signed_addend;
6353 else
6354 /* Section base relative. */
6355 signed_value = value - sb + signed_addend;
6356
6357 /* Calculate the value of the relevant G_{n-1} to obtain
6358 the residual at that stage. */
6359 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6360
6361 /* Check for overflow. (The absolute value to go in the place must be
6362 divisible by four and, after having been divided by four, must
6363 fit in eight bits.) */
6364 if ((residual & 0x3) != 0 || residual >= 0x400)
6365 {
6366 (*_bfd_error_handler)
6367 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6368 input_bfd, input_section,
6369 (long) rel->r_offset, abs (signed_value), howto->name);
6370 return bfd_reloc_overflow;
6371 }
6372
6373 /* Mask out the value and U bit. */
6374 insn &= 0xff7fff00;
6375
6376 /* Set the U bit if the value to go in the place is non-negative. */
6377 if (signed_value >= 0)
6378 insn |= 1 << 23;
6379
6380 /* Encode the offset. */
6381 insn |= residual >> 2;
6382
6383 bfd_put_32 (input_bfd, insn, hit_data);
6384 }
6385 return bfd_reloc_ok;
6386
6387 default:
6388 return bfd_reloc_notsupported;
6389 }
6390 }
6391
6392 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
6393 static void
6394 arm_add_to_rel (bfd * abfd,
6395 bfd_byte * address,
6396 reloc_howto_type * howto,
6397 bfd_signed_vma increment)
6398 {
6399 bfd_signed_vma addend;
6400
6401 if (howto->type == R_ARM_THM_CALL
6402 || howto->type == R_ARM_THM_JUMP24)
6403 {
6404 int upper_insn, lower_insn;
6405 int upper, lower;
6406
6407 upper_insn = bfd_get_16 (abfd, address);
6408 lower_insn = bfd_get_16 (abfd, address + 2);
6409 upper = upper_insn & 0x7ff;
6410 lower = lower_insn & 0x7ff;
6411
6412 addend = (upper << 12) | (lower << 1);
6413 addend += increment;
6414 addend >>= 1;
6415
6416 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
6417 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
6418
6419 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
6420 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
6421 }
6422 else
6423 {
6424 bfd_vma contents;
6425
6426 contents = bfd_get_32 (abfd, address);
6427
6428 /* Get the (signed) value from the instruction. */
6429 addend = contents & howto->src_mask;
6430 if (addend & ((howto->src_mask + 1) >> 1))
6431 {
6432 bfd_signed_vma mask;
6433
6434 mask = -1;
6435 mask &= ~ howto->src_mask;
6436 addend |= mask;
6437 }
6438
6439 /* Add in the increment, (which is a byte value). */
6440 switch (howto->type)
6441 {
6442 default:
6443 addend += increment;
6444 break;
6445
6446 case R_ARM_PC24:
6447 case R_ARM_PLT32:
6448 case R_ARM_CALL:
6449 case R_ARM_JUMP24:
6450 addend <<= howto->size;
6451 addend += increment;
6452
6453 /* Should we check for overflow here ? */
6454
6455 /* Drop any undesired bits. */
6456 addend >>= howto->rightshift;
6457 break;
6458 }
6459
6460 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
6461
6462 bfd_put_32 (abfd, contents, address);
6463 }
6464 }
6465
6466 #define IS_ARM_TLS_RELOC(R_TYPE) \
6467 ((R_TYPE) == R_ARM_TLS_GD32 \
6468 || (R_TYPE) == R_ARM_TLS_LDO32 \
6469 || (R_TYPE) == R_ARM_TLS_LDM32 \
6470 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
6471 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
6472 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
6473 || (R_TYPE) == R_ARM_TLS_LE32 \
6474 || (R_TYPE) == R_ARM_TLS_IE32)
6475
6476 /* Relocate an ARM ELF section. */
6477 static bfd_boolean
6478 elf32_arm_relocate_section (bfd * output_bfd,
6479 struct bfd_link_info * info,
6480 bfd * input_bfd,
6481 asection * input_section,
6482 bfd_byte * contents,
6483 Elf_Internal_Rela * relocs,
6484 Elf_Internal_Sym * local_syms,
6485 asection ** local_sections)
6486 {
6487 Elf_Internal_Shdr *symtab_hdr;
6488 struct elf_link_hash_entry **sym_hashes;
6489 Elf_Internal_Rela *rel;
6490 Elf_Internal_Rela *relend;
6491 const char *name;
6492 struct elf32_arm_link_hash_table * globals;
6493
6494 globals = elf32_arm_hash_table (info);
6495
6496 symtab_hdr = & elf_symtab_hdr (input_bfd);
6497 sym_hashes = elf_sym_hashes (input_bfd);
6498
6499 rel = relocs;
6500 relend = relocs + input_section->reloc_count;
6501 for (; rel < relend; rel++)
6502 {
6503 int r_type;
6504 reloc_howto_type * howto;
6505 unsigned long r_symndx;
6506 Elf_Internal_Sym * sym;
6507 asection * sec;
6508 struct elf_link_hash_entry * h;
6509 bfd_vma relocation;
6510 bfd_reloc_status_type r;
6511 arelent bfd_reloc;
6512 char sym_type;
6513 bfd_boolean unresolved_reloc = FALSE;
6514 char *error_message = NULL;
6515
6516 r_symndx = ELF32_R_SYM (rel->r_info);
6517 r_type = ELF32_R_TYPE (rel->r_info);
6518 r_type = arm_real_reloc_type (globals, r_type);
6519
6520 if ( r_type == R_ARM_GNU_VTENTRY
6521 || r_type == R_ARM_GNU_VTINHERIT)
6522 continue;
6523
6524 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
6525 howto = bfd_reloc.howto;
6526
6527 h = NULL;
6528 sym = NULL;
6529 sec = NULL;
6530
6531 if (r_symndx < symtab_hdr->sh_info)
6532 {
6533 sym = local_syms + r_symndx;
6534 sym_type = ELF32_ST_TYPE (sym->st_info);
6535 sec = local_sections[r_symndx];
6536 if (globals->use_rel)
6537 {
6538 relocation = (sec->output_section->vma
6539 + sec->output_offset
6540 + sym->st_value);
6541 if (!info->relocatable
6542 && (sec->flags & SEC_MERGE)
6543 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6544 {
6545 asection *msec;
6546 bfd_vma addend, value;
6547
6548 if (howto->rightshift)
6549 {
6550 (*_bfd_error_handler)
6551 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
6552 input_bfd, input_section,
6553 (long) rel->r_offset, howto->name);
6554 return FALSE;
6555 }
6556
6557 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
6558
6559 /* Get the (signed) value from the instruction. */
6560 addend = value & howto->src_mask;
6561 if (addend & ((howto->src_mask + 1) >> 1))
6562 {
6563 bfd_signed_vma mask;
6564
6565 mask = -1;
6566 mask &= ~ howto->src_mask;
6567 addend |= mask;
6568 }
6569 msec = sec;
6570 addend =
6571 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
6572 - relocation;
6573 addend += msec->output_section->vma + msec->output_offset;
6574 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
6575 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
6576 }
6577 }
6578 else
6579 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6580 }
6581 else
6582 {
6583 bfd_boolean warned;
6584
6585 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6586 r_symndx, symtab_hdr, sym_hashes,
6587 h, sec, relocation,
6588 unresolved_reloc, warned);
6589
6590 sym_type = h->type;
6591 }
6592
6593 if (sec != NULL && elf_discarded_section (sec))
6594 {
6595 /* For relocs against symbols from removed linkonce sections,
6596 or sections discarded by a linker script, we just want the
6597 section contents zeroed. Avoid any special processing. */
6598 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
6599 rel->r_info = 0;
6600 rel->r_addend = 0;
6601 continue;
6602 }
6603
6604 if (info->relocatable)
6605 {
6606 /* This is a relocatable link. We don't have to change
6607 anything, unless the reloc is against a section symbol,
6608 in which case we have to adjust according to where the
6609 section symbol winds up in the output section. */
6610 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6611 {
6612 if (globals->use_rel)
6613 arm_add_to_rel (input_bfd, contents + rel->r_offset,
6614 howto, (bfd_signed_vma) sec->output_offset);
6615 else
6616 rel->r_addend += sec->output_offset;
6617 }
6618 continue;
6619 }
6620
6621 if (h != NULL)
6622 name = h->root.root.string;
6623 else
6624 {
6625 name = (bfd_elf_string_from_elf_section
6626 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6627 if (name == NULL || *name == '\0')
6628 name = bfd_section_name (input_bfd, sec);
6629 }
6630
6631 if (r_symndx != 0
6632 && r_type != R_ARM_NONE
6633 && (h == NULL
6634 || h->root.type == bfd_link_hash_defined
6635 || h->root.type == bfd_link_hash_defweak)
6636 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
6637 {
6638 (*_bfd_error_handler)
6639 ((sym_type == STT_TLS
6640 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
6641 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
6642 input_bfd,
6643 input_section,
6644 (long) rel->r_offset,
6645 howto->name,
6646 name);
6647 }
6648
6649 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
6650 input_section, contents, rel,
6651 relocation, info, sec, name,
6652 (h ? ELF_ST_TYPE (h->type) :
6653 ELF_ST_TYPE (sym->st_info)), h,
6654 &unresolved_reloc, &error_message);
6655
6656 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6657 because such sections are not SEC_ALLOC and thus ld.so will
6658 not process them. */
6659 if (unresolved_reloc
6660 && !((input_section->flags & SEC_DEBUGGING) != 0
6661 && h->def_dynamic))
6662 {
6663 (*_bfd_error_handler)
6664 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
6665 input_bfd,
6666 input_section,
6667 (long) rel->r_offset,
6668 howto->name,
6669 h->root.root.string);
6670 return FALSE;
6671 }
6672
6673 if (r != bfd_reloc_ok)
6674 {
6675 switch (r)
6676 {
6677 case bfd_reloc_overflow:
6678 /* If the overflowing reloc was to an undefined symbol,
6679 we have already printed one error message and there
6680 is no point complaining again. */
6681 if ((! h ||
6682 h->root.type != bfd_link_hash_undefined)
6683 && (!((*info->callbacks->reloc_overflow)
6684 (info, (h ? &h->root : NULL), name, howto->name,
6685 (bfd_vma) 0, input_bfd, input_section,
6686 rel->r_offset))))
6687 return FALSE;
6688 break;
6689
6690 case bfd_reloc_undefined:
6691 if (!((*info->callbacks->undefined_symbol)
6692 (info, name, input_bfd, input_section,
6693 rel->r_offset, TRUE)))
6694 return FALSE;
6695 break;
6696
6697 case bfd_reloc_outofrange:
6698 error_message = _("out of range");
6699 goto common_error;
6700
6701 case bfd_reloc_notsupported:
6702 error_message = _("unsupported relocation");
6703 goto common_error;
6704
6705 case bfd_reloc_dangerous:
6706 /* error_message should already be set. */
6707 goto common_error;
6708
6709 default:
6710 error_message = _("unknown error");
6711 /* fall through */
6712
6713 common_error:
6714 BFD_ASSERT (error_message != NULL);
6715 if (!((*info->callbacks->reloc_dangerous)
6716 (info, error_message, input_bfd, input_section,
6717 rel->r_offset)))
6718 return FALSE;
6719 break;
6720 }
6721 }
6722 }
6723
6724 return TRUE;
6725 }
6726
6727 /* Set the right machine number. */
6728
6729 static bfd_boolean
6730 elf32_arm_object_p (bfd *abfd)
6731 {
6732 unsigned int mach;
6733
6734 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
6735
6736 if (mach != bfd_mach_arm_unknown)
6737 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
6738
6739 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
6740 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
6741
6742 else
6743 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
6744
6745 return TRUE;
6746 }
6747
6748 /* Function to keep ARM specific flags in the ELF header. */
6749
6750 static bfd_boolean
6751 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
6752 {
6753 if (elf_flags_init (abfd)
6754 && elf_elfheader (abfd)->e_flags != flags)
6755 {
6756 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
6757 {
6758 if (flags & EF_ARM_INTERWORK)
6759 (*_bfd_error_handler)
6760 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
6761 abfd);
6762 else
6763 _bfd_error_handler
6764 (_("Warning: Clearing the interworking flag of %B due to outside request"),
6765 abfd);
6766 }
6767 }
6768 else
6769 {
6770 elf_elfheader (abfd)->e_flags = flags;
6771 elf_flags_init (abfd) = TRUE;
6772 }
6773
6774 return TRUE;
6775 }
6776
6777 /* Copy backend specific data from one object module to another. */
6778
6779 static bfd_boolean
6780 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6781 {
6782 flagword in_flags;
6783 flagword out_flags;
6784
6785 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
6786 return TRUE;
6787
6788 in_flags = elf_elfheader (ibfd)->e_flags;
6789 out_flags = elf_elfheader (obfd)->e_flags;
6790
6791 if (elf_flags_init (obfd)
6792 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
6793 && in_flags != out_flags)
6794 {
6795 /* Cannot mix APCS26 and APCS32 code. */
6796 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
6797 return FALSE;
6798
6799 /* Cannot mix float APCS and non-float APCS code. */
6800 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
6801 return FALSE;
6802
6803 /* If the src and dest have different interworking flags
6804 then turn off the interworking bit. */
6805 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
6806 {
6807 if (out_flags & EF_ARM_INTERWORK)
6808 _bfd_error_handler
6809 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
6810 obfd, ibfd);
6811
6812 in_flags &= ~EF_ARM_INTERWORK;
6813 }
6814
6815 /* Likewise for PIC, though don't warn for this case. */
6816 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
6817 in_flags &= ~EF_ARM_PIC;
6818 }
6819
6820 elf_elfheader (obfd)->e_flags = in_flags;
6821 elf_flags_init (obfd) = TRUE;
6822
6823 /* Also copy the EI_OSABI field. */
6824 elf_elfheader (obfd)->e_ident[EI_OSABI] =
6825 elf_elfheader (ibfd)->e_ident[EI_OSABI];
6826
6827 /* Copy object attributes. */
6828 _bfd_elf_copy_obj_attributes (ibfd, obfd);
6829
6830 return TRUE;
6831 }
6832
6833 /* Values for Tag_ABI_PCS_R9_use. */
6834 enum
6835 {
6836 AEABI_R9_V6,
6837 AEABI_R9_SB,
6838 AEABI_R9_TLS,
6839 AEABI_R9_unused
6840 };
6841
6842 /* Values for Tag_ABI_PCS_RW_data. */
6843 enum
6844 {
6845 AEABI_PCS_RW_data_absolute,
6846 AEABI_PCS_RW_data_PCrel,
6847 AEABI_PCS_RW_data_SBrel,
6848 AEABI_PCS_RW_data_unused
6849 };
6850
6851 /* Values for Tag_ABI_enum_size. */
6852 enum
6853 {
6854 AEABI_enum_unused,
6855 AEABI_enum_short,
6856 AEABI_enum_wide,
6857 AEABI_enum_forced_wide
6858 };
6859
6860 /* Determine whether an object attribute tag takes an integer, a
6861 string or both. */
6862 static int
6863 elf32_arm_obj_attrs_arg_type (int tag)
6864 {
6865 if (tag == Tag_compatibility)
6866 return 3;
6867 else if (tag == 4 || tag == 5)
6868 return 2;
6869 else if (tag < 32)
6870 return 1;
6871 else
6872 return (tag & 1) != 0 ? 2 : 1;
6873 }
6874
6875 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
6876 are conflicting attributes. */
6877 static bfd_boolean
6878 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
6879 {
6880 obj_attribute *in_attr;
6881 obj_attribute *out_attr;
6882 obj_attribute_list *in_list;
6883 /* Some tags have 0 = don't care, 1 = strong requirement,
6884 2 = weak requirement. */
6885 static const int order_312[3] = {3, 1, 2};
6886 int i;
6887
6888 if (!elf_known_obj_attributes_proc (obfd)[0].i)
6889 {
6890 /* This is the first object. Copy the attributes. */
6891 _bfd_elf_copy_obj_attributes (ibfd, obfd);
6892
6893 /* Use the Tag_null value to indicate the attributes have been
6894 initialized. */
6895 elf_known_obj_attributes_proc (obfd)[0].i = 1;
6896
6897 return TRUE;
6898 }
6899
6900 in_attr = elf_known_obj_attributes_proc (ibfd);
6901 out_attr = elf_known_obj_attributes_proc (obfd);
6902 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
6903 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
6904 {
6905 /* Ignore mismatches if teh object doesn't use floating point. */
6906 if (out_attr[Tag_ABI_FP_number_model].i == 0)
6907 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
6908 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
6909 {
6910 _bfd_error_handler
6911 (_("ERROR: %B uses VFP register arguments, %B does not"),
6912 ibfd, obfd);
6913 return FALSE;
6914 }
6915 }
6916
6917 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
6918 {
6919 /* Merge this attribute with existing attributes. */
6920 switch (i)
6921 {
6922 case Tag_CPU_raw_name:
6923 case Tag_CPU_name:
6924 /* Use whichever has the greatest architecture requirements. We
6925 won't necessarily have both the above tags, so make sure input
6926 name is non-NULL. */
6927 if (in_attr[Tag_CPU_arch].i > out_attr[Tag_CPU_arch].i
6928 && in_attr[i].s)
6929 out_attr[i].s = _bfd_elf_attr_strdup (obfd, in_attr[i].s);
6930 break;
6931
6932 case Tag_ABI_optimization_goals:
6933 case Tag_ABI_FP_optimization_goals:
6934 /* Use the first value seen. */
6935 break;
6936
6937 case Tag_CPU_arch:
6938 case Tag_ARM_ISA_use:
6939 case Tag_THUMB_ISA_use:
6940 case Tag_VFP_arch:
6941 case Tag_WMMX_arch:
6942 case Tag_NEON_arch:
6943 /* ??? Do NEON and WMMX conflict? */
6944 case Tag_ABI_FP_rounding:
6945 case Tag_ABI_FP_denormal:
6946 case Tag_ABI_FP_exceptions:
6947 case Tag_ABI_FP_user_exceptions:
6948 case Tag_ABI_FP_number_model:
6949 case Tag_ABI_align8_preserved:
6950 case Tag_ABI_HardFP_use:
6951 /* Use the largest value specified. */
6952 if (in_attr[i].i > out_attr[i].i)
6953 out_attr[i].i = in_attr[i].i;
6954 break;
6955
6956 case Tag_CPU_arch_profile:
6957 /* Warn if conflicting architecture profiles used. */
6958 if (out_attr[i].i && in_attr[i].i && in_attr[i].i != out_attr[i].i)
6959 {
6960 _bfd_error_handler
6961 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
6962 ibfd, in_attr[i].i, out_attr[i].i);
6963 return FALSE;
6964 }
6965 if (in_attr[i].i)
6966 out_attr[i].i = in_attr[i].i;
6967 break;
6968 case Tag_PCS_config:
6969 if (out_attr[i].i == 0)
6970 out_attr[i].i = in_attr[i].i;
6971 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
6972 {
6973 /* It's sometimes ok to mix different configs, so this is only
6974 a warning. */
6975 _bfd_error_handler
6976 (_("Warning: %B: Conflicting platform configuration"), ibfd);
6977 }
6978 break;
6979 case Tag_ABI_PCS_R9_use:
6980 if (in_attr[i].i != out_attr[i].i
6981 && out_attr[i].i != AEABI_R9_unused
6982 && in_attr[i].i != AEABI_R9_unused)
6983 {
6984 _bfd_error_handler
6985 (_("ERROR: %B: Conflicting use of R9"), ibfd);
6986 return FALSE;
6987 }
6988 if (out_attr[i].i == AEABI_R9_unused)
6989 out_attr[i].i = in_attr[i].i;
6990 break;
6991 case Tag_ABI_PCS_RW_data:
6992 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
6993 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
6994 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
6995 {
6996 _bfd_error_handler
6997 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
6998 ibfd);
6999 return FALSE;
7000 }
7001 /* Use the smallest value specified. */
7002 if (in_attr[i].i < out_attr[i].i)
7003 out_attr[i].i = in_attr[i].i;
7004 break;
7005 case Tag_ABI_PCS_RO_data:
7006 /* Use the smallest value specified. */
7007 if (in_attr[i].i < out_attr[i].i)
7008 out_attr[i].i = in_attr[i].i;
7009 break;
7010 case Tag_ABI_PCS_GOT_use:
7011 if (in_attr[i].i > 2 || out_attr[i].i > 2
7012 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
7013 out_attr[i].i = in_attr[i].i;
7014 break;
7015 case Tag_ABI_PCS_wchar_t:
7016 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i)
7017 {
7018 _bfd_error_handler
7019 (_("ERROR: %B: Conflicting definitions of wchar_t"), ibfd);
7020 return FALSE;
7021 }
7022 if (in_attr[i].i)
7023 out_attr[i].i = in_attr[i].i;
7024 break;
7025 case Tag_ABI_align8_needed:
7026 /* ??? Check against Tag_ABI_align8_preserved. */
7027 if (in_attr[i].i > 2 || out_attr[i].i > 2
7028 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
7029 out_attr[i].i = in_attr[i].i;
7030 break;
7031 case Tag_ABI_enum_size:
7032 if (in_attr[i].i != AEABI_enum_unused)
7033 {
7034 if (out_attr[i].i == AEABI_enum_unused
7035 || out_attr[i].i == AEABI_enum_forced_wide)
7036 {
7037 /* The existing object is compatible with anything.
7038 Use whatever requirements the new object has. */
7039 out_attr[i].i = in_attr[i].i;
7040 }
7041 else if (in_attr[i].i != AEABI_enum_forced_wide
7042 && out_attr[i].i != in_attr[i].i
7043 && !elf_arm_tdata (obfd)->no_enum_size_warning)
7044 {
7045 const char *aeabi_enum_names[] =
7046 { "", "variable-size", "32-bit", "" };
7047 _bfd_error_handler
7048 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
7049 ibfd, aeabi_enum_names[in_attr[i].i],
7050 aeabi_enum_names[out_attr[i].i]);
7051 }
7052 }
7053 break;
7054 case Tag_ABI_VFP_args:
7055 /* Aready done. */
7056 break;
7057 case Tag_ABI_WMMX_args:
7058 if (in_attr[i].i != out_attr[i].i)
7059 {
7060 _bfd_error_handler
7061 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
7062 ibfd, obfd);
7063 return FALSE;
7064 }
7065 break;
7066 default: /* All known attributes should be explicitly covered. */
7067 abort ();
7068 }
7069
7070 if (in_attr[i].type && !out_attr[i].type)
7071 switch (in_attr[i].type)
7072 {
7073 case 1:
7074 if (out_attr[i].i)
7075 out_attr[i].type = 1;
7076 break;
7077
7078 case 2:
7079 if (out_attr[i].s)
7080 out_attr[i].type = 2;
7081 break;
7082
7083 default:
7084 abort ();
7085 }
7086 }
7087
7088 /* Merge Tag_compatibility attributes and any common GNU ones. */
7089 _bfd_elf_merge_object_attributes (ibfd, obfd);
7090
7091 /* Check for any attributes not known on ARM. */
7092 in_list = elf_other_obj_attributes_proc (ibfd);
7093 while (in_list && in_list->tag == Tag_compatibility)
7094 in_list = in_list->next;
7095
7096 for (; in_list; in_list = in_list->next)
7097 {
7098 if ((in_list->tag & 128) < 64)
7099 {
7100 _bfd_error_handler
7101 (_("Warning: %B: Unknown EABI object attribute %d"),
7102 ibfd, in_list->tag);
7103 break;
7104 }
7105 }
7106 return TRUE;
7107 }
7108
7109
7110 /* Return TRUE if the two EABI versions are incompatible. */
7111
7112 static bfd_boolean
7113 elf32_arm_versions_compatible (unsigned iver, unsigned over)
7114 {
7115 /* v4 and v5 are the same spec before and after it was released,
7116 so allow mixing them. */
7117 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
7118 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
7119 return TRUE;
7120
7121 return (iver == over);
7122 }
7123
7124 /* Merge backend specific data from an object file to the output
7125 object file when linking. */
7126
7127 static bfd_boolean
7128 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
7129 {
7130 flagword out_flags;
7131 flagword in_flags;
7132 bfd_boolean flags_compatible = TRUE;
7133 asection *sec;
7134
7135 /* Check if we have the same endianess. */
7136 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
7137 return FALSE;
7138
7139 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
7140 return TRUE;
7141
7142 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
7143 return FALSE;
7144
7145 /* The input BFD must have had its flags initialised. */
7146 /* The following seems bogus to me -- The flags are initialized in
7147 the assembler but I don't think an elf_flags_init field is
7148 written into the object. */
7149 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7150
7151 in_flags = elf_elfheader (ibfd)->e_flags;
7152 out_flags = elf_elfheader (obfd)->e_flags;
7153
7154 if (!elf_flags_init (obfd))
7155 {
7156 /* If the input is the default architecture and had the default
7157 flags then do not bother setting the flags for the output
7158 architecture, instead allow future merges to do this. If no
7159 future merges ever set these flags then they will retain their
7160 uninitialised values, which surprise surprise, correspond
7161 to the default values. */
7162 if (bfd_get_arch_info (ibfd)->the_default
7163 && elf_elfheader (ibfd)->e_flags == 0)
7164 return TRUE;
7165
7166 elf_flags_init (obfd) = TRUE;
7167 elf_elfheader (obfd)->e_flags = in_flags;
7168
7169 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7170 && bfd_get_arch_info (obfd)->the_default)
7171 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
7172
7173 return TRUE;
7174 }
7175
7176 /* Determine what should happen if the input ARM architecture
7177 does not match the output ARM architecture. */
7178 if (! bfd_arm_merge_machines (ibfd, obfd))
7179 return FALSE;
7180
7181 /* Identical flags must be compatible. */
7182 if (in_flags == out_flags)
7183 return TRUE;
7184
7185 /* Check to see if the input BFD actually contains any sections. If
7186 not, its flags may not have been initialised either, but it
7187 cannot actually cause any incompatiblity. Do not short-circuit
7188 dynamic objects; their section list may be emptied by
7189 elf_link_add_object_symbols.
7190
7191 Also check to see if there are no code sections in the input.
7192 In this case there is no need to check for code specific flags.
7193 XXX - do we need to worry about floating-point format compatability
7194 in data sections ? */
7195 if (!(ibfd->flags & DYNAMIC))
7196 {
7197 bfd_boolean null_input_bfd = TRUE;
7198 bfd_boolean only_data_sections = TRUE;
7199
7200 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7201 {
7202 /* Ignore synthetic glue sections. */
7203 if (strcmp (sec->name, ".glue_7")
7204 && strcmp (sec->name, ".glue_7t"))
7205 {
7206 if ((bfd_get_section_flags (ibfd, sec)
7207 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7208 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7209 only_data_sections = FALSE;
7210
7211 null_input_bfd = FALSE;
7212 break;
7213 }
7214 }
7215
7216 if (null_input_bfd || only_data_sections)
7217 return TRUE;
7218 }
7219
7220 /* Complain about various flag mismatches. */
7221 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
7222 EF_ARM_EABI_VERSION (out_flags)))
7223 {
7224 _bfd_error_handler
7225 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
7226 ibfd, obfd,
7227 (in_flags & EF_ARM_EABIMASK) >> 24,
7228 (out_flags & EF_ARM_EABIMASK) >> 24);
7229 return FALSE;
7230 }
7231
7232 /* Not sure what needs to be checked for EABI versions >= 1. */
7233 /* VxWorks libraries do not use these flags. */
7234 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
7235 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
7236 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
7237 {
7238 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
7239 {
7240 _bfd_error_handler
7241 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
7242 ibfd, obfd,
7243 in_flags & EF_ARM_APCS_26 ? 26 : 32,
7244 out_flags & EF_ARM_APCS_26 ? 26 : 32);
7245 flags_compatible = FALSE;
7246 }
7247
7248 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
7249 {
7250 if (in_flags & EF_ARM_APCS_FLOAT)
7251 _bfd_error_handler
7252 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
7253 ibfd, obfd);
7254 else
7255 _bfd_error_handler
7256 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
7257 ibfd, obfd);
7258
7259 flags_compatible = FALSE;
7260 }
7261
7262 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
7263 {
7264 if (in_flags & EF_ARM_VFP_FLOAT)
7265 _bfd_error_handler
7266 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
7267 ibfd, obfd);
7268 else
7269 _bfd_error_handler
7270 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
7271 ibfd, obfd);
7272
7273 flags_compatible = FALSE;
7274 }
7275
7276 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
7277 {
7278 if (in_flags & EF_ARM_MAVERICK_FLOAT)
7279 _bfd_error_handler
7280 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
7281 ibfd, obfd);
7282 else
7283 _bfd_error_handler
7284 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
7285 ibfd, obfd);
7286
7287 flags_compatible = FALSE;
7288 }
7289
7290 #ifdef EF_ARM_SOFT_FLOAT
7291 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
7292 {
7293 /* We can allow interworking between code that is VFP format
7294 layout, and uses either soft float or integer regs for
7295 passing floating point arguments and results. We already
7296 know that the APCS_FLOAT flags match; similarly for VFP
7297 flags. */
7298 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
7299 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
7300 {
7301 if (in_flags & EF_ARM_SOFT_FLOAT)
7302 _bfd_error_handler
7303 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
7304 ibfd, obfd);
7305 else
7306 _bfd_error_handler
7307 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
7308 ibfd, obfd);
7309
7310 flags_compatible = FALSE;
7311 }
7312 }
7313 #endif
7314
7315 /* Interworking mismatch is only a warning. */
7316 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
7317 {
7318 if (in_flags & EF_ARM_INTERWORK)
7319 {
7320 _bfd_error_handler
7321 (_("Warning: %B supports interworking, whereas %B does not"),
7322 ibfd, obfd);
7323 }
7324 else
7325 {
7326 _bfd_error_handler
7327 (_("Warning: %B does not support interworking, whereas %B does"),
7328 ibfd, obfd);
7329 }
7330 }
7331 }
7332
7333 return flags_compatible;
7334 }
7335
7336 /* Display the flags field. */
7337
7338 static bfd_boolean
7339 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
7340 {
7341 FILE * file = (FILE *) ptr;
7342 unsigned long flags;
7343
7344 BFD_ASSERT (abfd != NULL && ptr != NULL);
7345
7346 /* Print normal ELF private data. */
7347 _bfd_elf_print_private_bfd_data (abfd, ptr);
7348
7349 flags = elf_elfheader (abfd)->e_flags;
7350 /* Ignore init flag - it may not be set, despite the flags field
7351 containing valid data. */
7352
7353 /* xgettext:c-format */
7354 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7355
7356 switch (EF_ARM_EABI_VERSION (flags))
7357 {
7358 case EF_ARM_EABI_UNKNOWN:
7359 /* The following flag bits are GNU extensions and not part of the
7360 official ARM ELF extended ABI. Hence they are only decoded if
7361 the EABI version is not set. */
7362 if (flags & EF_ARM_INTERWORK)
7363 fprintf (file, _(" [interworking enabled]"));
7364
7365 if (flags & EF_ARM_APCS_26)
7366 fprintf (file, " [APCS-26]");
7367 else
7368 fprintf (file, " [APCS-32]");
7369
7370 if (flags & EF_ARM_VFP_FLOAT)
7371 fprintf (file, _(" [VFP float format]"));
7372 else if (flags & EF_ARM_MAVERICK_FLOAT)
7373 fprintf (file, _(" [Maverick float format]"));
7374 else
7375 fprintf (file, _(" [FPA float format]"));
7376
7377 if (flags & EF_ARM_APCS_FLOAT)
7378 fprintf (file, _(" [floats passed in float registers]"));
7379
7380 if (flags & EF_ARM_PIC)
7381 fprintf (file, _(" [position independent]"));
7382
7383 if (flags & EF_ARM_NEW_ABI)
7384 fprintf (file, _(" [new ABI]"));
7385
7386 if (flags & EF_ARM_OLD_ABI)
7387 fprintf (file, _(" [old ABI]"));
7388
7389 if (flags & EF_ARM_SOFT_FLOAT)
7390 fprintf (file, _(" [software FP]"));
7391
7392 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
7393 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
7394 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
7395 | EF_ARM_MAVERICK_FLOAT);
7396 break;
7397
7398 case EF_ARM_EABI_VER1:
7399 fprintf (file, _(" [Version1 EABI]"));
7400
7401 if (flags & EF_ARM_SYMSARESORTED)
7402 fprintf (file, _(" [sorted symbol table]"));
7403 else
7404 fprintf (file, _(" [unsorted symbol table]"));
7405
7406 flags &= ~ EF_ARM_SYMSARESORTED;
7407 break;
7408
7409 case EF_ARM_EABI_VER2:
7410 fprintf (file, _(" [Version2 EABI]"));
7411
7412 if (flags & EF_ARM_SYMSARESORTED)
7413 fprintf (file, _(" [sorted symbol table]"));
7414 else
7415 fprintf (file, _(" [unsorted symbol table]"));
7416
7417 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
7418 fprintf (file, _(" [dynamic symbols use segment index]"));
7419
7420 if (flags & EF_ARM_MAPSYMSFIRST)
7421 fprintf (file, _(" [mapping symbols precede others]"));
7422
7423 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
7424 | EF_ARM_MAPSYMSFIRST);
7425 break;
7426
7427 case EF_ARM_EABI_VER3:
7428 fprintf (file, _(" [Version3 EABI]"));
7429 break;
7430
7431 case EF_ARM_EABI_VER4:
7432 fprintf (file, _(" [Version4 EABI]"));
7433 goto eabi;
7434
7435 case EF_ARM_EABI_VER5:
7436 fprintf (file, _(" [Version5 EABI]"));
7437 eabi:
7438 if (flags & EF_ARM_BE8)
7439 fprintf (file, _(" [BE8]"));
7440
7441 if (flags & EF_ARM_LE8)
7442 fprintf (file, _(" [LE8]"));
7443
7444 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
7445 break;
7446
7447 default:
7448 fprintf (file, _(" <EABI version unrecognised>"));
7449 break;
7450 }
7451
7452 flags &= ~ EF_ARM_EABIMASK;
7453
7454 if (flags & EF_ARM_RELEXEC)
7455 fprintf (file, _(" [relocatable executable]"));
7456
7457 if (flags & EF_ARM_HASENTRY)
7458 fprintf (file, _(" [has entry point]"));
7459
7460 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
7461
7462 if (flags)
7463 fprintf (file, _("<Unrecognised flag bits set>"));
7464
7465 fputc ('\n', file);
7466
7467 return TRUE;
7468 }
7469
7470 static int
7471 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
7472 {
7473 switch (ELF_ST_TYPE (elf_sym->st_info))
7474 {
7475 case STT_ARM_TFUNC:
7476 return ELF_ST_TYPE (elf_sym->st_info);
7477
7478 case STT_ARM_16BIT:
7479 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
7480 This allows us to distinguish between data used by Thumb instructions
7481 and non-data (which is probably code) inside Thumb regions of an
7482 executable. */
7483 if (type != STT_OBJECT && type != STT_TLS)
7484 return ELF_ST_TYPE (elf_sym->st_info);
7485 break;
7486
7487 default:
7488 break;
7489 }
7490
7491 return type;
7492 }
7493
7494 static asection *
7495 elf32_arm_gc_mark_hook (asection *sec,
7496 struct bfd_link_info *info,
7497 Elf_Internal_Rela *rel,
7498 struct elf_link_hash_entry *h,
7499 Elf_Internal_Sym *sym)
7500 {
7501 if (h != NULL)
7502 switch (ELF32_R_TYPE (rel->r_info))
7503 {
7504 case R_ARM_GNU_VTINHERIT:
7505 case R_ARM_GNU_VTENTRY:
7506 return NULL;
7507 }
7508
7509 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
7510 }
7511
7512 /* Update the got entry reference counts for the section being removed. */
7513
7514 static bfd_boolean
7515 elf32_arm_gc_sweep_hook (bfd * abfd,
7516 struct bfd_link_info * info,
7517 asection * sec,
7518 const Elf_Internal_Rela * relocs)
7519 {
7520 Elf_Internal_Shdr *symtab_hdr;
7521 struct elf_link_hash_entry **sym_hashes;
7522 bfd_signed_vma *local_got_refcounts;
7523 const Elf_Internal_Rela *rel, *relend;
7524 struct elf32_arm_link_hash_table * globals;
7525
7526 if (info->relocatable)
7527 return TRUE;
7528
7529 globals = elf32_arm_hash_table (info);
7530
7531 elf_section_data (sec)->local_dynrel = NULL;
7532
7533 symtab_hdr = & elf_symtab_hdr (abfd);
7534 sym_hashes = elf_sym_hashes (abfd);
7535 local_got_refcounts = elf_local_got_refcounts (abfd);
7536
7537 check_use_blx(globals);
7538
7539 relend = relocs + sec->reloc_count;
7540 for (rel = relocs; rel < relend; rel++)
7541 {
7542 unsigned long r_symndx;
7543 struct elf_link_hash_entry *h = NULL;
7544 int r_type;
7545
7546 r_symndx = ELF32_R_SYM (rel->r_info);
7547 if (r_symndx >= symtab_hdr->sh_info)
7548 {
7549 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7550 while (h->root.type == bfd_link_hash_indirect
7551 || h->root.type == bfd_link_hash_warning)
7552 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7553 }
7554
7555 r_type = ELF32_R_TYPE (rel->r_info);
7556 r_type = arm_real_reloc_type (globals, r_type);
7557 switch (r_type)
7558 {
7559 case R_ARM_GOT32:
7560 case R_ARM_GOT_PREL:
7561 case R_ARM_TLS_GD32:
7562 case R_ARM_TLS_IE32:
7563 if (h != NULL)
7564 {
7565 if (h->got.refcount > 0)
7566 h->got.refcount -= 1;
7567 }
7568 else if (local_got_refcounts != NULL)
7569 {
7570 if (local_got_refcounts[r_symndx] > 0)
7571 local_got_refcounts[r_symndx] -= 1;
7572 }
7573 break;
7574
7575 case R_ARM_TLS_LDM32:
7576 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
7577 break;
7578
7579 case R_ARM_ABS32:
7580 case R_ARM_ABS32_NOI:
7581 case R_ARM_REL32:
7582 case R_ARM_REL32_NOI:
7583 case R_ARM_PC24:
7584 case R_ARM_PLT32:
7585 case R_ARM_CALL:
7586 case R_ARM_JUMP24:
7587 case R_ARM_PREL31:
7588 case R_ARM_THM_CALL:
7589 case R_ARM_THM_JUMP24:
7590 case R_ARM_THM_JUMP19:
7591 case R_ARM_MOVW_ABS_NC:
7592 case R_ARM_MOVT_ABS:
7593 case R_ARM_MOVW_PREL_NC:
7594 case R_ARM_MOVT_PREL:
7595 case R_ARM_THM_MOVW_ABS_NC:
7596 case R_ARM_THM_MOVT_ABS:
7597 case R_ARM_THM_MOVW_PREL_NC:
7598 case R_ARM_THM_MOVT_PREL:
7599 /* Should the interworking branches be here also? */
7600
7601 if (h != NULL)
7602 {
7603 struct elf32_arm_link_hash_entry *eh;
7604 struct elf32_arm_relocs_copied **pp;
7605 struct elf32_arm_relocs_copied *p;
7606
7607 eh = (struct elf32_arm_link_hash_entry *) h;
7608
7609 if (h->plt.refcount > 0)
7610 {
7611 h->plt.refcount -= 1;
7612 if (r_type == R_ARM_THM_CALL)
7613 eh->plt_maybe_thumb_refcount--;
7614
7615 if (r_type == R_ARM_THM_JUMP24
7616 || r_type == R_ARM_THM_JUMP19)
7617 eh->plt_thumb_refcount--;
7618 }
7619
7620 if (r_type == R_ARM_ABS32
7621 || r_type == R_ARM_REL32
7622 || r_type == R_ARM_ABS32_NOI
7623 || r_type == R_ARM_REL32_NOI)
7624 {
7625 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
7626 pp = &p->next)
7627 if (p->section == sec)
7628 {
7629 p->count -= 1;
7630 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
7631 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
7632 p->pc_count -= 1;
7633 if (p->count == 0)
7634 *pp = p->next;
7635 break;
7636 }
7637 }
7638 }
7639 break;
7640
7641 default:
7642 break;
7643 }
7644 }
7645
7646 return TRUE;
7647 }
7648
7649 /* Look through the relocs for a section during the first phase. */
7650
7651 static bfd_boolean
7652 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
7653 asection *sec, const Elf_Internal_Rela *relocs)
7654 {
7655 Elf_Internal_Shdr *symtab_hdr;
7656 struct elf_link_hash_entry **sym_hashes;
7657 const Elf_Internal_Rela *rel;
7658 const Elf_Internal_Rela *rel_end;
7659 bfd *dynobj;
7660 asection *sreloc;
7661 bfd_vma *local_got_offsets;
7662 struct elf32_arm_link_hash_table *htab;
7663
7664 if (info->relocatable)
7665 return TRUE;
7666
7667 BFD_ASSERT (is_arm_elf (abfd));
7668
7669 htab = elf32_arm_hash_table (info);
7670 sreloc = NULL;
7671
7672 /* Create dynamic sections for relocatable executables so that we can
7673 copy relocations. */
7674 if (htab->root.is_relocatable_executable
7675 && ! htab->root.dynamic_sections_created)
7676 {
7677 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
7678 return FALSE;
7679 }
7680
7681 dynobj = elf_hash_table (info)->dynobj;
7682 local_got_offsets = elf_local_got_offsets (abfd);
7683
7684 symtab_hdr = & elf_symtab_hdr (abfd);
7685 sym_hashes = elf_sym_hashes (abfd);
7686
7687 rel_end = relocs + sec->reloc_count;
7688 for (rel = relocs; rel < rel_end; rel++)
7689 {
7690 struct elf_link_hash_entry *h;
7691 struct elf32_arm_link_hash_entry *eh;
7692 unsigned long r_symndx;
7693 int r_type;
7694
7695 r_symndx = ELF32_R_SYM (rel->r_info);
7696 r_type = ELF32_R_TYPE (rel->r_info);
7697 r_type = arm_real_reloc_type (htab, r_type);
7698
7699 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7700 {
7701 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
7702 r_symndx);
7703 return FALSE;
7704 }
7705
7706 if (r_symndx < symtab_hdr->sh_info)
7707 h = NULL;
7708 else
7709 {
7710 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7711 while (h->root.type == bfd_link_hash_indirect
7712 || h->root.type == bfd_link_hash_warning)
7713 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7714 }
7715
7716 eh = (struct elf32_arm_link_hash_entry *) h;
7717
7718 switch (r_type)
7719 {
7720 case R_ARM_GOT32:
7721 case R_ARM_GOT_PREL:
7722 case R_ARM_TLS_GD32:
7723 case R_ARM_TLS_IE32:
7724 /* This symbol requires a global offset table entry. */
7725 {
7726 int tls_type, old_tls_type;
7727
7728 switch (r_type)
7729 {
7730 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
7731 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
7732 default: tls_type = GOT_NORMAL; break;
7733 }
7734
7735 if (h != NULL)
7736 {
7737 h->got.refcount++;
7738 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
7739 }
7740 else
7741 {
7742 bfd_signed_vma *local_got_refcounts;
7743
7744 /* This is a global offset table entry for a local symbol. */
7745 local_got_refcounts = elf_local_got_refcounts (abfd);
7746 if (local_got_refcounts == NULL)
7747 {
7748 bfd_size_type size;
7749
7750 size = symtab_hdr->sh_info;
7751 size *= (sizeof (bfd_signed_vma) + sizeof(char));
7752 local_got_refcounts = bfd_zalloc (abfd, size);
7753 if (local_got_refcounts == NULL)
7754 return FALSE;
7755 elf_local_got_refcounts (abfd) = local_got_refcounts;
7756 elf32_arm_local_got_tls_type (abfd)
7757 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
7758 }
7759 local_got_refcounts[r_symndx] += 1;
7760 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
7761 }
7762
7763 /* We will already have issued an error message if there is a
7764 TLS / non-TLS mismatch, based on the symbol type. We don't
7765 support any linker relaxations. So just combine any TLS
7766 types needed. */
7767 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
7768 && tls_type != GOT_NORMAL)
7769 tls_type |= old_tls_type;
7770
7771 if (old_tls_type != tls_type)
7772 {
7773 if (h != NULL)
7774 elf32_arm_hash_entry (h)->tls_type = tls_type;
7775 else
7776 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
7777 }
7778 }
7779 /* Fall through */
7780
7781 case R_ARM_TLS_LDM32:
7782 if (r_type == R_ARM_TLS_LDM32)
7783 htab->tls_ldm_got.refcount++;
7784 /* Fall through */
7785
7786 case R_ARM_GOTOFF32:
7787 case R_ARM_GOTPC:
7788 if (htab->sgot == NULL)
7789 {
7790 if (htab->root.dynobj == NULL)
7791 htab->root.dynobj = abfd;
7792 if (!create_got_section (htab->root.dynobj, info))
7793 return FALSE;
7794 }
7795 break;
7796
7797 case R_ARM_ABS12:
7798 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
7799 ldr __GOTT_INDEX__ offsets. */
7800 if (!htab->vxworks_p)
7801 break;
7802 /* Fall through */
7803
7804 case R_ARM_ABS32:
7805 case R_ARM_ABS32_NOI:
7806 case R_ARM_REL32:
7807 case R_ARM_REL32_NOI:
7808 case R_ARM_PC24:
7809 case R_ARM_PLT32:
7810 case R_ARM_CALL:
7811 case R_ARM_JUMP24:
7812 case R_ARM_PREL31:
7813 case R_ARM_THM_CALL:
7814 case R_ARM_THM_JUMP24:
7815 case R_ARM_THM_JUMP19:
7816 case R_ARM_MOVW_ABS_NC:
7817 case R_ARM_MOVT_ABS:
7818 case R_ARM_MOVW_PREL_NC:
7819 case R_ARM_MOVT_PREL:
7820 case R_ARM_THM_MOVW_ABS_NC:
7821 case R_ARM_THM_MOVT_ABS:
7822 case R_ARM_THM_MOVW_PREL_NC:
7823 case R_ARM_THM_MOVT_PREL:
7824 /* Should the interworking branches be listed here? */
7825 if (h != NULL)
7826 {
7827 /* If this reloc is in a read-only section, we might
7828 need a copy reloc. We can't check reliably at this
7829 stage whether the section is read-only, as input
7830 sections have not yet been mapped to output sections.
7831 Tentatively set the flag for now, and correct in
7832 adjust_dynamic_symbol. */
7833 if (!info->shared)
7834 h->non_got_ref = 1;
7835
7836 /* We may need a .plt entry if the function this reloc
7837 refers to is in a different object. We can't tell for
7838 sure yet, because something later might force the
7839 symbol local. */
7840 if (r_type != R_ARM_ABS32
7841 && r_type != R_ARM_REL32
7842 && r_type != R_ARM_ABS32_NOI
7843 && r_type != R_ARM_REL32_NOI
7844 && r_type != R_ARM_ABS12)
7845 h->needs_plt = 1;
7846
7847 /* If we create a PLT entry, this relocation will reference
7848 it, even if it's an ABS32 relocation. */
7849 h->plt.refcount += 1;
7850
7851 /* It's too early to use htab->use_blx here, so we have to
7852 record possible blx references separately from
7853 relocs that definitely need a thumb stub. */
7854
7855 if (r_type == R_ARM_THM_CALL)
7856 eh->plt_maybe_thumb_refcount += 1;
7857
7858 if (r_type == R_ARM_THM_JUMP24
7859 || r_type == R_ARM_THM_JUMP19)
7860 eh->plt_thumb_refcount += 1;
7861 }
7862
7863 /* If we are creating a shared library or relocatable executable,
7864 and this is a reloc against a global symbol, or a non PC
7865 relative reloc against a local symbol, then we need to copy
7866 the reloc into the shared library. However, if we are linking
7867 with -Bsymbolic, we do not need to copy a reloc against a
7868 global symbol which is defined in an object we are
7869 including in the link (i.e., DEF_REGULAR is set). At
7870 this point we have not seen all the input files, so it is
7871 possible that DEF_REGULAR is not set now but will be set
7872 later (it is never cleared). We account for that
7873 possibility below by storing information in the
7874 relocs_copied field of the hash table entry. */
7875 if ((info->shared || htab->root.is_relocatable_executable)
7876 && (sec->flags & SEC_ALLOC) != 0
7877 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
7878 || (h != NULL && ! h->needs_plt
7879 && (! info->symbolic || ! h->def_regular))))
7880 {
7881 struct elf32_arm_relocs_copied *p, **head;
7882
7883 /* When creating a shared object, we must copy these
7884 reloc types into the output file. We create a reloc
7885 section in dynobj and make room for this reloc. */
7886 if (sreloc == NULL)
7887 {
7888 const char * name;
7889
7890 name = (bfd_elf_string_from_elf_section
7891 (abfd,
7892 elf_elfheader (abfd)->e_shstrndx,
7893 elf_section_data (sec)->rel_hdr.sh_name));
7894 if (name == NULL)
7895 return FALSE;
7896
7897 BFD_ASSERT (reloc_section_p (htab, name, sec));
7898
7899 sreloc = bfd_get_section_by_name (dynobj, name);
7900 if (sreloc == NULL)
7901 {
7902 flagword flags;
7903
7904 flags = (SEC_HAS_CONTENTS | SEC_READONLY
7905 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
7906 if ((sec->flags & SEC_ALLOC) != 0
7907 /* BPABI objects never have dynamic
7908 relocations mapped. */
7909 && !htab->symbian_p)
7910 flags |= SEC_ALLOC | SEC_LOAD;
7911 sreloc = bfd_make_section_with_flags (dynobj,
7912 name,
7913 flags);
7914 if (sreloc == NULL
7915 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
7916 return FALSE;
7917 }
7918
7919 elf_section_data (sec)->sreloc = sreloc;
7920 }
7921
7922 /* If this is a global symbol, we count the number of
7923 relocations we need for this symbol. */
7924 if (h != NULL)
7925 {
7926 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
7927 }
7928 else
7929 {
7930 /* Track dynamic relocs needed for local syms too.
7931 We really need local syms available to do this
7932 easily. Oh well. */
7933
7934 asection *s;
7935 void *vpp;
7936
7937 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
7938 sec, r_symndx);
7939 if (s == NULL)
7940 return FALSE;
7941
7942 vpp = &elf_section_data (s)->local_dynrel;
7943 head = (struct elf32_arm_relocs_copied **) vpp;
7944 }
7945
7946 p = *head;
7947 if (p == NULL || p->section != sec)
7948 {
7949 bfd_size_type amt = sizeof *p;
7950
7951 p = bfd_alloc (htab->root.dynobj, amt);
7952 if (p == NULL)
7953 return FALSE;
7954 p->next = *head;
7955 *head = p;
7956 p->section = sec;
7957 p->count = 0;
7958 p->pc_count = 0;
7959 }
7960
7961 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
7962 p->pc_count += 1;
7963 p->count += 1;
7964 }
7965 break;
7966
7967 /* This relocation describes the C++ object vtable hierarchy.
7968 Reconstruct it for later use during GC. */
7969 case R_ARM_GNU_VTINHERIT:
7970 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7971 return FALSE;
7972 break;
7973
7974 /* This relocation describes which C++ vtable entries are actually
7975 used. Record for later use during GC. */
7976 case R_ARM_GNU_VTENTRY:
7977 BFD_ASSERT (h != NULL);
7978 if (h != NULL
7979 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7980 return FALSE;
7981 break;
7982 }
7983 }
7984
7985 return TRUE;
7986 }
7987
7988 /* Unwinding tables are not referenced directly. This pass marks them as
7989 required if the corresponding code section is marked. */
7990
7991 static bfd_boolean
7992 elf32_arm_gc_mark_extra_sections(struct bfd_link_info *info,
7993 elf_gc_mark_hook_fn gc_mark_hook)
7994 {
7995 bfd *sub;
7996 Elf_Internal_Shdr **elf_shdrp;
7997 bfd_boolean again;
7998
7999 /* Marking EH data may cause additional code sections to be marked,
8000 requiring multiple passes. */
8001 again = TRUE;
8002 while (again)
8003 {
8004 again = FALSE;
8005 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8006 {
8007 asection *o;
8008
8009 if (! is_arm_elf (sub))
8010 continue;
8011
8012 elf_shdrp = elf_elfsections (sub);
8013 for (o = sub->sections; o != NULL; o = o->next)
8014 {
8015 Elf_Internal_Shdr *hdr;
8016
8017 hdr = &elf_section_data (o)->this_hdr;
8018 if (hdr->sh_type == SHT_ARM_EXIDX && hdr->sh_link
8019 && !o->gc_mark
8020 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
8021 {
8022 again = TRUE;
8023 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
8024 return FALSE;
8025 }
8026 }
8027 }
8028 }
8029
8030 return TRUE;
8031 }
8032
8033 /* Treat mapping symbols as special target symbols. */
8034
8035 static bfd_boolean
8036 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
8037 {
8038 return bfd_is_arm_special_symbol_name (sym->name,
8039 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
8040 }
8041
8042 /* This is a copy of elf_find_function() from elf.c except that
8043 ARM mapping symbols are ignored when looking for function names
8044 and STT_ARM_TFUNC is considered to a function type. */
8045
8046 static bfd_boolean
8047 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
8048 asection * section,
8049 asymbol ** symbols,
8050 bfd_vma offset,
8051 const char ** filename_ptr,
8052 const char ** functionname_ptr)
8053 {
8054 const char * filename = NULL;
8055 asymbol * func = NULL;
8056 bfd_vma low_func = 0;
8057 asymbol ** p;
8058
8059 for (p = symbols; *p != NULL; p++)
8060 {
8061 elf_symbol_type *q;
8062
8063 q = (elf_symbol_type *) *p;
8064
8065 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
8066 {
8067 default:
8068 break;
8069 case STT_FILE:
8070 filename = bfd_asymbol_name (&q->symbol);
8071 break;
8072 case STT_FUNC:
8073 case STT_ARM_TFUNC:
8074 case STT_NOTYPE:
8075 /* Skip mapping symbols. */
8076 if ((q->symbol.flags & BSF_LOCAL)
8077 && bfd_is_arm_special_symbol_name (q->symbol.name,
8078 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
8079 continue;
8080 /* Fall through. */
8081 if (bfd_get_section (&q->symbol) == section
8082 && q->symbol.value >= low_func
8083 && q->symbol.value <= offset)
8084 {
8085 func = (asymbol *) q;
8086 low_func = q->symbol.value;
8087 }
8088 break;
8089 }
8090 }
8091
8092 if (func == NULL)
8093 return FALSE;
8094
8095 if (filename_ptr)
8096 *filename_ptr = filename;
8097 if (functionname_ptr)
8098 *functionname_ptr = bfd_asymbol_name (func);
8099
8100 return TRUE;
8101 }
8102
8103
8104 /* Find the nearest line to a particular section and offset, for error
8105 reporting. This code is a duplicate of the code in elf.c, except
8106 that it uses arm_elf_find_function. */
8107
8108 static bfd_boolean
8109 elf32_arm_find_nearest_line (bfd * abfd,
8110 asection * section,
8111 asymbol ** symbols,
8112 bfd_vma offset,
8113 const char ** filename_ptr,
8114 const char ** functionname_ptr,
8115 unsigned int * line_ptr)
8116 {
8117 bfd_boolean found = FALSE;
8118
8119 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
8120
8121 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
8122 filename_ptr, functionname_ptr,
8123 line_ptr, 0,
8124 & elf_tdata (abfd)->dwarf2_find_line_info))
8125 {
8126 if (!*functionname_ptr)
8127 arm_elf_find_function (abfd, section, symbols, offset,
8128 *filename_ptr ? NULL : filename_ptr,
8129 functionname_ptr);
8130
8131 return TRUE;
8132 }
8133
8134 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8135 & found, filename_ptr,
8136 functionname_ptr, line_ptr,
8137 & elf_tdata (abfd)->line_info))
8138 return FALSE;
8139
8140 if (found && (*functionname_ptr || *line_ptr))
8141 return TRUE;
8142
8143 if (symbols == NULL)
8144 return FALSE;
8145
8146 if (! arm_elf_find_function (abfd, section, symbols, offset,
8147 filename_ptr, functionname_ptr))
8148 return FALSE;
8149
8150 *line_ptr = 0;
8151 return TRUE;
8152 }
8153
8154 static bfd_boolean
8155 elf32_arm_find_inliner_info (bfd * abfd,
8156 const char ** filename_ptr,
8157 const char ** functionname_ptr,
8158 unsigned int * line_ptr)
8159 {
8160 bfd_boolean found;
8161 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8162 functionname_ptr, line_ptr,
8163 & elf_tdata (abfd)->dwarf2_find_line_info);
8164 return found;
8165 }
8166
8167 /* Adjust a symbol defined by a dynamic object and referenced by a
8168 regular object. The current definition is in some section of the
8169 dynamic object, but we're not including those sections. We have to
8170 change the definition to something the rest of the link can
8171 understand. */
8172
8173 static bfd_boolean
8174 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
8175 struct elf_link_hash_entry * h)
8176 {
8177 bfd * dynobj;
8178 asection * s;
8179 struct elf32_arm_link_hash_entry * eh;
8180 struct elf32_arm_link_hash_table *globals;
8181
8182 globals = elf32_arm_hash_table (info);
8183 dynobj = elf_hash_table (info)->dynobj;
8184
8185 /* Make sure we know what is going on here. */
8186 BFD_ASSERT (dynobj != NULL
8187 && (h->needs_plt
8188 || h->u.weakdef != NULL
8189 || (h->def_dynamic
8190 && h->ref_regular
8191 && !h->def_regular)));
8192
8193 eh = (struct elf32_arm_link_hash_entry *) h;
8194
8195 /* If this is a function, put it in the procedure linkage table. We
8196 will fill in the contents of the procedure linkage table later,
8197 when we know the address of the .got section. */
8198 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
8199 || h->needs_plt)
8200 {
8201 if (h->plt.refcount <= 0
8202 || SYMBOL_CALLS_LOCAL (info, h)
8203 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8204 && h->root.type == bfd_link_hash_undefweak))
8205 {
8206 /* This case can occur if we saw a PLT32 reloc in an input
8207 file, but the symbol was never referred to by a dynamic
8208 object, or if all references were garbage collected. In
8209 such a case, we don't actually need to build a procedure
8210 linkage table, and we can just do a PC24 reloc instead. */
8211 h->plt.offset = (bfd_vma) -1;
8212 eh->plt_thumb_refcount = 0;
8213 eh->plt_maybe_thumb_refcount = 0;
8214 h->needs_plt = 0;
8215 }
8216
8217 return TRUE;
8218 }
8219 else
8220 {
8221 /* It's possible that we incorrectly decided a .plt reloc was
8222 needed for an R_ARM_PC24 or similar reloc to a non-function sym
8223 in check_relocs. We can't decide accurately between function
8224 and non-function syms in check-relocs; Objects loaded later in
8225 the link may change h->type. So fix it now. */
8226 h->plt.offset = (bfd_vma) -1;
8227 eh->plt_thumb_refcount = 0;
8228 eh->plt_maybe_thumb_refcount = 0;
8229 }
8230
8231 /* If this is a weak symbol, and there is a real definition, the
8232 processor independent code will have arranged for us to see the
8233 real definition first, and we can just use the same value. */
8234 if (h->u.weakdef != NULL)
8235 {
8236 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8237 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8238 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8239 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8240 return TRUE;
8241 }
8242
8243 /* If there are no non-GOT references, we do not need a copy
8244 relocation. */
8245 if (!h->non_got_ref)
8246 return TRUE;
8247
8248 /* This is a reference to a symbol defined by a dynamic object which
8249 is not a function. */
8250
8251 /* If we are creating a shared library, we must presume that the
8252 only references to the symbol are via the global offset table.
8253 For such cases we need not do anything here; the relocations will
8254 be handled correctly by relocate_section. Relocatable executables
8255 can reference data in shared objects directly, so we don't need to
8256 do anything here. */
8257 if (info->shared || globals->root.is_relocatable_executable)
8258 return TRUE;
8259
8260 if (h->size == 0)
8261 {
8262 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
8263 h->root.root.string);
8264 return TRUE;
8265 }
8266
8267 /* We must allocate the symbol in our .dynbss section, which will
8268 become part of the .bss section of the executable. There will be
8269 an entry for this symbol in the .dynsym section. The dynamic
8270 object will contain position independent code, so all references
8271 from the dynamic object to this symbol will go through the global
8272 offset table. The dynamic linker will use the .dynsym entry to
8273 determine the address it must put in the global offset table, so
8274 both the dynamic object and the regular object will refer to the
8275 same memory location for the variable. */
8276 s = bfd_get_section_by_name (dynobj, ".dynbss");
8277 BFD_ASSERT (s != NULL);
8278
8279 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
8280 copy the initial value out of the dynamic object and into the
8281 runtime process image. We need to remember the offset into the
8282 .rel(a).bss section we are going to use. */
8283 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8284 {
8285 asection *srel;
8286
8287 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
8288 BFD_ASSERT (srel != NULL);
8289 srel->size += RELOC_SIZE (globals);
8290 h->needs_copy = 1;
8291 }
8292
8293 return _bfd_elf_adjust_dynamic_copy (h, s);
8294 }
8295
8296 /* Allocate space in .plt, .got and associated reloc sections for
8297 dynamic relocs. */
8298
8299 static bfd_boolean
8300 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
8301 {
8302 struct bfd_link_info *info;
8303 struct elf32_arm_link_hash_table *htab;
8304 struct elf32_arm_link_hash_entry *eh;
8305 struct elf32_arm_relocs_copied *p;
8306 bfd_signed_vma thumb_refs;
8307
8308 eh = (struct elf32_arm_link_hash_entry *) h;
8309
8310 if (h->root.type == bfd_link_hash_indirect)
8311 return TRUE;
8312
8313 if (h->root.type == bfd_link_hash_warning)
8314 /* When warning symbols are created, they **replace** the "real"
8315 entry in the hash table, thus we never get to see the real
8316 symbol in a hash traversal. So look at it now. */
8317 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8318
8319 info = (struct bfd_link_info *) inf;
8320 htab = elf32_arm_hash_table (info);
8321
8322 if (htab->root.dynamic_sections_created
8323 && h->plt.refcount > 0)
8324 {
8325 /* Make sure this symbol is output as a dynamic symbol.
8326 Undefined weak syms won't yet be marked as dynamic. */
8327 if (h->dynindx == -1
8328 && !h->forced_local)
8329 {
8330 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8331 return FALSE;
8332 }
8333
8334 if (info->shared
8335 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8336 {
8337 asection *s = htab->splt;
8338
8339 /* If this is the first .plt entry, make room for the special
8340 first entry. */
8341 if (s->size == 0)
8342 s->size += htab->plt_header_size;
8343
8344 h->plt.offset = s->size;
8345
8346 /* If we will insert a Thumb trampoline before this PLT, leave room
8347 for it. */
8348 thumb_refs = eh->plt_thumb_refcount;
8349 if (!htab->use_blx)
8350 thumb_refs += eh->plt_maybe_thumb_refcount;
8351
8352 if (thumb_refs > 0)
8353 {
8354 h->plt.offset += PLT_THUMB_STUB_SIZE;
8355 s->size += PLT_THUMB_STUB_SIZE;
8356 }
8357
8358 /* If this symbol is not defined in a regular file, and we are
8359 not generating a shared library, then set the symbol to this
8360 location in the .plt. This is required to make function
8361 pointers compare as equal between the normal executable and
8362 the shared library. */
8363 if (! info->shared
8364 && !h->def_regular)
8365 {
8366 h->root.u.def.section = s;
8367 h->root.u.def.value = h->plt.offset;
8368
8369 /* Make sure the function is not marked as Thumb, in case
8370 it is the target of an ABS32 relocation, which will
8371 point to the PLT entry. */
8372 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
8373 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
8374 }
8375
8376 /* Make room for this entry. */
8377 s->size += htab->plt_entry_size;
8378
8379 if (!htab->symbian_p)
8380 {
8381 /* We also need to make an entry in the .got.plt section, which
8382 will be placed in the .got section by the linker script. */
8383 eh->plt_got_offset = htab->sgotplt->size;
8384 htab->sgotplt->size += 4;
8385 }
8386
8387 /* We also need to make an entry in the .rel(a).plt section. */
8388 htab->srelplt->size += RELOC_SIZE (htab);
8389
8390 /* VxWorks executables have a second set of relocations for
8391 each PLT entry. They go in a separate relocation section,
8392 which is processed by the kernel loader. */
8393 if (htab->vxworks_p && !info->shared)
8394 {
8395 /* There is a relocation for the initial PLT entry:
8396 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
8397 if (h->plt.offset == htab->plt_header_size)
8398 htab->srelplt2->size += RELOC_SIZE (htab);
8399
8400 /* There are two extra relocations for each subsequent
8401 PLT entry: an R_ARM_32 relocation for the GOT entry,
8402 and an R_ARM_32 relocation for the PLT entry. */
8403 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
8404 }
8405 }
8406 else
8407 {
8408 h->plt.offset = (bfd_vma) -1;
8409 h->needs_plt = 0;
8410 }
8411 }
8412 else
8413 {
8414 h->plt.offset = (bfd_vma) -1;
8415 h->needs_plt = 0;
8416 }
8417
8418 if (h->got.refcount > 0)
8419 {
8420 asection *s;
8421 bfd_boolean dyn;
8422 int tls_type = elf32_arm_hash_entry (h)->tls_type;
8423 int indx;
8424
8425 /* Make sure this symbol is output as a dynamic symbol.
8426 Undefined weak syms won't yet be marked as dynamic. */
8427 if (h->dynindx == -1
8428 && !h->forced_local)
8429 {
8430 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8431 return FALSE;
8432 }
8433
8434 if (!htab->symbian_p)
8435 {
8436 s = htab->sgot;
8437 h->got.offset = s->size;
8438
8439 if (tls_type == GOT_UNKNOWN)
8440 abort ();
8441
8442 if (tls_type == GOT_NORMAL)
8443 /* Non-TLS symbols need one GOT slot. */
8444 s->size += 4;
8445 else
8446 {
8447 if (tls_type & GOT_TLS_GD)
8448 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
8449 s->size += 8;
8450 if (tls_type & GOT_TLS_IE)
8451 /* R_ARM_TLS_IE32 needs one GOT slot. */
8452 s->size += 4;
8453 }
8454
8455 dyn = htab->root.dynamic_sections_created;
8456
8457 indx = 0;
8458 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
8459 && (!info->shared
8460 || !SYMBOL_REFERENCES_LOCAL (info, h)))
8461 indx = h->dynindx;
8462
8463 if (tls_type != GOT_NORMAL
8464 && (info->shared || indx != 0)
8465 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8466 || h->root.type != bfd_link_hash_undefweak))
8467 {
8468 if (tls_type & GOT_TLS_IE)
8469 htab->srelgot->size += RELOC_SIZE (htab);
8470
8471 if (tls_type & GOT_TLS_GD)
8472 htab->srelgot->size += RELOC_SIZE (htab);
8473
8474 if ((tls_type & GOT_TLS_GD) && indx != 0)
8475 htab->srelgot->size += RELOC_SIZE (htab);
8476 }
8477 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8478 || h->root.type != bfd_link_hash_undefweak)
8479 && (info->shared
8480 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8481 htab->srelgot->size += RELOC_SIZE (htab);
8482 }
8483 }
8484 else
8485 h->got.offset = (bfd_vma) -1;
8486
8487 /* Allocate stubs for exported Thumb functions on v4t. */
8488 if (!htab->use_blx && h->dynindx != -1
8489 && h->def_regular
8490 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
8491 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
8492 {
8493 struct elf_link_hash_entry * th;
8494 struct bfd_link_hash_entry * bh;
8495 struct elf_link_hash_entry * myh;
8496 char name[1024];
8497 asection *s;
8498 bh = NULL;
8499 /* Create a new symbol to regist the real location of the function. */
8500 s = h->root.u.def.section;
8501 sprintf(name, "__real_%s", h->root.root.string);
8502 _bfd_generic_link_add_one_symbol (info, s->owner,
8503 name, BSF_GLOBAL, s,
8504 h->root.u.def.value,
8505 NULL, TRUE, FALSE, &bh);
8506
8507 myh = (struct elf_link_hash_entry *) bh;
8508 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
8509 myh->forced_local = 1;
8510 eh->export_glue = myh;
8511 th = record_arm_to_thumb_glue (info, h);
8512 /* Point the symbol at the stub. */
8513 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
8514 h->root.u.def.section = th->root.u.def.section;
8515 h->root.u.def.value = th->root.u.def.value & ~1;
8516 }
8517
8518 if (eh->relocs_copied == NULL)
8519 return TRUE;
8520
8521 /* In the shared -Bsymbolic case, discard space allocated for
8522 dynamic pc-relative relocs against symbols which turn out to be
8523 defined in regular objects. For the normal shared case, discard
8524 space for pc-relative relocs that have become local due to symbol
8525 visibility changes. */
8526
8527 if (info->shared || htab->root.is_relocatable_executable)
8528 {
8529 /* The only relocs that use pc_count are R_ARM_REL32 and
8530 R_ARM_REL32_NOI, which will appear on something like
8531 ".long foo - .". We want calls to protected symbols to resolve
8532 directly to the function rather than going via the plt. If people
8533 want function pointer comparisons to work as expected then they
8534 should avoid writing assembly like ".long foo - .". */
8535 if (SYMBOL_CALLS_LOCAL (info, h))
8536 {
8537 struct elf32_arm_relocs_copied **pp;
8538
8539 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
8540 {
8541 p->count -= p->pc_count;
8542 p->pc_count = 0;
8543 if (p->count == 0)
8544 *pp = p->next;
8545 else
8546 pp = &p->next;
8547 }
8548 }
8549
8550 /* Also discard relocs on undefined weak syms with non-default
8551 visibility. */
8552 if (eh->relocs_copied != NULL
8553 && h->root.type == bfd_link_hash_undefweak)
8554 {
8555 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8556 eh->relocs_copied = NULL;
8557
8558 /* Make sure undefined weak symbols are output as a dynamic
8559 symbol in PIEs. */
8560 else if (h->dynindx == -1
8561 && !h->forced_local)
8562 {
8563 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8564 return FALSE;
8565 }
8566 }
8567
8568 else if (htab->root.is_relocatable_executable && h->dynindx == -1
8569 && h->root.type == bfd_link_hash_new)
8570 {
8571 /* Output absolute symbols so that we can create relocations
8572 against them. For normal symbols we output a relocation
8573 against the section that contains them. */
8574 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8575 return FALSE;
8576 }
8577
8578 }
8579 else
8580 {
8581 /* For the non-shared case, discard space for relocs against
8582 symbols which turn out to need copy relocs or are not
8583 dynamic. */
8584
8585 if (!h->non_got_ref
8586 && ((h->def_dynamic
8587 && !h->def_regular)
8588 || (htab->root.dynamic_sections_created
8589 && (h->root.type == bfd_link_hash_undefweak
8590 || h->root.type == bfd_link_hash_undefined))))
8591 {
8592 /* Make sure this symbol is output as a dynamic symbol.
8593 Undefined weak syms won't yet be marked as dynamic. */
8594 if (h->dynindx == -1
8595 && !h->forced_local)
8596 {
8597 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8598 return FALSE;
8599 }
8600
8601 /* If that succeeded, we know we'll be keeping all the
8602 relocs. */
8603 if (h->dynindx != -1)
8604 goto keep;
8605 }
8606
8607 eh->relocs_copied = NULL;
8608
8609 keep: ;
8610 }
8611
8612 /* Finally, allocate space. */
8613 for (p = eh->relocs_copied; p != NULL; p = p->next)
8614 {
8615 asection *sreloc = elf_section_data (p->section)->sreloc;
8616 sreloc->size += p->count * RELOC_SIZE (htab);
8617 }
8618
8619 return TRUE;
8620 }
8621
8622 /* Find any dynamic relocs that apply to read-only sections. */
8623
8624 static bfd_boolean
8625 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
8626 {
8627 struct elf32_arm_link_hash_entry *eh;
8628 struct elf32_arm_relocs_copied *p;
8629
8630 if (h->root.type == bfd_link_hash_warning)
8631 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8632
8633 eh = (struct elf32_arm_link_hash_entry *) h;
8634 for (p = eh->relocs_copied; p != NULL; p = p->next)
8635 {
8636 asection *s = p->section;
8637
8638 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8639 {
8640 struct bfd_link_info *info = (struct bfd_link_info *) inf;
8641
8642 info->flags |= DF_TEXTREL;
8643
8644 /* Not an error, just cut short the traversal. */
8645 return FALSE;
8646 }
8647 }
8648 return TRUE;
8649 }
8650
8651 void
8652 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
8653 int byteswap_code)
8654 {
8655 struct elf32_arm_link_hash_table *globals;
8656
8657 globals = elf32_arm_hash_table (info);
8658 globals->byteswap_code = byteswap_code;
8659 }
8660
8661 /* Set the sizes of the dynamic sections. */
8662
8663 static bfd_boolean
8664 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
8665 struct bfd_link_info * info)
8666 {
8667 bfd * dynobj;
8668 asection * s;
8669 bfd_boolean plt;
8670 bfd_boolean relocs;
8671 bfd *ibfd;
8672 struct elf32_arm_link_hash_table *htab;
8673
8674 htab = elf32_arm_hash_table (info);
8675 dynobj = elf_hash_table (info)->dynobj;
8676 BFD_ASSERT (dynobj != NULL);
8677 check_use_blx (htab);
8678
8679 if (elf_hash_table (info)->dynamic_sections_created)
8680 {
8681 /* Set the contents of the .interp section to the interpreter. */
8682 if (info->executable)
8683 {
8684 s = bfd_get_section_by_name (dynobj, ".interp");
8685 BFD_ASSERT (s != NULL);
8686 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8687 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8688 }
8689 }
8690
8691 /* Set up .got offsets for local syms, and space for local dynamic
8692 relocs. */
8693 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8694 {
8695 bfd_signed_vma *local_got;
8696 bfd_signed_vma *end_local_got;
8697 char *local_tls_type;
8698 bfd_size_type locsymcount;
8699 Elf_Internal_Shdr *symtab_hdr;
8700 asection *srel;
8701
8702 if (! is_arm_elf (ibfd))
8703 continue;
8704
8705 for (s = ibfd->sections; s != NULL; s = s->next)
8706 {
8707 struct elf32_arm_relocs_copied *p;
8708
8709 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
8710 {
8711 if (!bfd_is_abs_section (p->section)
8712 && bfd_is_abs_section (p->section->output_section))
8713 {
8714 /* Input section has been discarded, either because
8715 it is a copy of a linkonce section or due to
8716 linker script /DISCARD/, so we'll be discarding
8717 the relocs too. */
8718 }
8719 else if (p->count != 0)
8720 {
8721 srel = elf_section_data (p->section)->sreloc;
8722 srel->size += p->count * RELOC_SIZE (htab);
8723 if ((p->section->output_section->flags & SEC_READONLY) != 0)
8724 info->flags |= DF_TEXTREL;
8725 }
8726 }
8727 }
8728
8729 local_got = elf_local_got_refcounts (ibfd);
8730 if (!local_got)
8731 continue;
8732
8733 symtab_hdr = & elf_symtab_hdr (ibfd);
8734 locsymcount = symtab_hdr->sh_info;
8735 end_local_got = local_got + locsymcount;
8736 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
8737 s = htab->sgot;
8738 srel = htab->srelgot;
8739 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
8740 {
8741 if (*local_got > 0)
8742 {
8743 *local_got = s->size;
8744 if (*local_tls_type & GOT_TLS_GD)
8745 /* TLS_GD relocs need an 8-byte structure in the GOT. */
8746 s->size += 8;
8747 if (*local_tls_type & GOT_TLS_IE)
8748 s->size += 4;
8749 if (*local_tls_type == GOT_NORMAL)
8750 s->size += 4;
8751
8752 if (info->shared || *local_tls_type == GOT_TLS_GD)
8753 srel->size += RELOC_SIZE (htab);
8754 }
8755 else
8756 *local_got = (bfd_vma) -1;
8757 }
8758 }
8759
8760 if (htab->tls_ldm_got.refcount > 0)
8761 {
8762 /* Allocate two GOT entries and one dynamic relocation (if necessary)
8763 for R_ARM_TLS_LDM32 relocations. */
8764 htab->tls_ldm_got.offset = htab->sgot->size;
8765 htab->sgot->size += 8;
8766 if (info->shared)
8767 htab->srelgot->size += RELOC_SIZE (htab);
8768 }
8769 else
8770 htab->tls_ldm_got.offset = -1;
8771
8772 /* Allocate global sym .plt and .got entries, and space for global
8773 sym dynamic relocs. */
8774 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
8775
8776 /* Here we rummage through the found bfds to collect glue information. */
8777 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8778 {
8779 if (! is_arm_elf (ibfd))
8780 continue;
8781
8782 /* Initialise mapping tables for code/data. */
8783 bfd_elf32_arm_init_maps (ibfd);
8784
8785 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
8786 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
8787 /* xgettext:c-format */
8788 _bfd_error_handler (_("Errors encountered processing file %s"),
8789 ibfd->filename);
8790 }
8791
8792 /* The check_relocs and adjust_dynamic_symbol entry points have
8793 determined the sizes of the various dynamic sections. Allocate
8794 memory for them. */
8795 plt = FALSE;
8796 relocs = FALSE;
8797 for (s = dynobj->sections; s != NULL; s = s->next)
8798 {
8799 const char * name;
8800
8801 if ((s->flags & SEC_LINKER_CREATED) == 0)
8802 continue;
8803
8804 /* It's OK to base decisions on the section name, because none
8805 of the dynobj section names depend upon the input files. */
8806 name = bfd_get_section_name (dynobj, s);
8807
8808 if (strcmp (name, ".plt") == 0)
8809 {
8810 /* Remember whether there is a PLT. */
8811 plt = s->size != 0;
8812 }
8813 else if (CONST_STRNEQ (name, ".rel"))
8814 {
8815 if (s->size != 0)
8816 {
8817 /* Remember whether there are any reloc sections other
8818 than .rel(a).plt and .rela.plt.unloaded. */
8819 if (s != htab->srelplt && s != htab->srelplt2)
8820 relocs = TRUE;
8821
8822 /* We use the reloc_count field as a counter if we need
8823 to copy relocs into the output file. */
8824 s->reloc_count = 0;
8825 }
8826 }
8827 else if (! CONST_STRNEQ (name, ".got")
8828 && strcmp (name, ".dynbss") != 0)
8829 {
8830 /* It's not one of our sections, so don't allocate space. */
8831 continue;
8832 }
8833
8834 if (s->size == 0)
8835 {
8836 /* If we don't need this section, strip it from the
8837 output file. This is mostly to handle .rel(a).bss and
8838 .rel(a).plt. We must create both sections in
8839 create_dynamic_sections, because they must be created
8840 before the linker maps input sections to output
8841 sections. The linker does that before
8842 adjust_dynamic_symbol is called, and it is that
8843 function which decides whether anything needs to go
8844 into these sections. */
8845 s->flags |= SEC_EXCLUDE;
8846 continue;
8847 }
8848
8849 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8850 continue;
8851
8852 /* Allocate memory for the section contents. */
8853 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8854 if (s->contents == NULL)
8855 return FALSE;
8856 }
8857
8858 if (elf_hash_table (info)->dynamic_sections_created)
8859 {
8860 /* Add some entries to the .dynamic section. We fill in the
8861 values later, in elf32_arm_finish_dynamic_sections, but we
8862 must add the entries now so that we get the correct size for
8863 the .dynamic section. The DT_DEBUG entry is filled in by the
8864 dynamic linker and used by the debugger. */
8865 #define add_dynamic_entry(TAG, VAL) \
8866 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8867
8868 if (info->executable)
8869 {
8870 if (!add_dynamic_entry (DT_DEBUG, 0))
8871 return FALSE;
8872 }
8873
8874 if (plt)
8875 {
8876 if ( !add_dynamic_entry (DT_PLTGOT, 0)
8877 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8878 || !add_dynamic_entry (DT_PLTREL,
8879 htab->use_rel ? DT_REL : DT_RELA)
8880 || !add_dynamic_entry (DT_JMPREL, 0))
8881 return FALSE;
8882 }
8883
8884 if (relocs)
8885 {
8886 if (htab->use_rel)
8887 {
8888 if (!add_dynamic_entry (DT_REL, 0)
8889 || !add_dynamic_entry (DT_RELSZ, 0)
8890 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
8891 return FALSE;
8892 }
8893 else
8894 {
8895 if (!add_dynamic_entry (DT_RELA, 0)
8896 || !add_dynamic_entry (DT_RELASZ, 0)
8897 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8898 return FALSE;
8899 }
8900 }
8901
8902 /* If any dynamic relocs apply to a read-only section,
8903 then we need a DT_TEXTREL entry. */
8904 if ((info->flags & DF_TEXTREL) == 0)
8905 elf_link_hash_traverse (&htab->root, elf32_arm_readonly_dynrelocs,
8906 (PTR) info);
8907
8908 if ((info->flags & DF_TEXTREL) != 0)
8909 {
8910 if (!add_dynamic_entry (DT_TEXTREL, 0))
8911 return FALSE;
8912 }
8913 if (htab->vxworks_p
8914 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8915 return FALSE;
8916 }
8917 #undef add_dynamic_entry
8918
8919 return TRUE;
8920 }
8921
8922 /* Finish up dynamic symbol handling. We set the contents of various
8923 dynamic sections here. */
8924
8925 static bfd_boolean
8926 elf32_arm_finish_dynamic_symbol (bfd * output_bfd, struct bfd_link_info * info,
8927 struct elf_link_hash_entry * h, Elf_Internal_Sym * sym)
8928 {
8929 bfd * dynobj;
8930 struct elf32_arm_link_hash_table *htab;
8931 struct elf32_arm_link_hash_entry *eh;
8932
8933 dynobj = elf_hash_table (info)->dynobj;
8934 htab = elf32_arm_hash_table (info);
8935 eh = (struct elf32_arm_link_hash_entry *) h;
8936
8937 if (h->plt.offset != (bfd_vma) -1)
8938 {
8939 asection * splt;
8940 asection * srel;
8941 bfd_byte *loc;
8942 bfd_vma plt_index;
8943 Elf_Internal_Rela rel;
8944
8945 /* This symbol has an entry in the procedure linkage table. Set
8946 it up. */
8947
8948 BFD_ASSERT (h->dynindx != -1);
8949
8950 splt = bfd_get_section_by_name (dynobj, ".plt");
8951 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
8952 BFD_ASSERT (splt != NULL && srel != NULL);
8953
8954 /* Fill in the entry in the procedure linkage table. */
8955 if (htab->symbian_p)
8956 {
8957 put_arm_insn (htab, output_bfd,
8958 elf32_arm_symbian_plt_entry[0],
8959 splt->contents + h->plt.offset);
8960 bfd_put_32 (output_bfd,
8961 elf32_arm_symbian_plt_entry[1],
8962 splt->contents + h->plt.offset + 4);
8963
8964 /* Fill in the entry in the .rel.plt section. */
8965 rel.r_offset = (splt->output_section->vma
8966 + splt->output_offset
8967 + h->plt.offset + 4);
8968 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
8969
8970 /* Get the index in the procedure linkage table which
8971 corresponds to this symbol. This is the index of this symbol
8972 in all the symbols for which we are making plt entries. The
8973 first entry in the procedure linkage table is reserved. */
8974 plt_index = ((h->plt.offset - htab->plt_header_size)
8975 / htab->plt_entry_size);
8976 }
8977 else
8978 {
8979 bfd_vma got_offset, got_address, plt_address;
8980 bfd_vma got_displacement;
8981 asection * sgot;
8982 bfd_byte * ptr;
8983
8984 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
8985 BFD_ASSERT (sgot != NULL);
8986
8987 /* Get the offset into the .got.plt table of the entry that
8988 corresponds to this function. */
8989 got_offset = eh->plt_got_offset;
8990
8991 /* Get the index in the procedure linkage table which
8992 corresponds to this symbol. This is the index of this symbol
8993 in all the symbols for which we are making plt entries. The
8994 first three entries in .got.plt are reserved; after that
8995 symbols appear in the same order as in .plt. */
8996 plt_index = (got_offset - 12) / 4;
8997
8998 /* Calculate the address of the GOT entry. */
8999 got_address = (sgot->output_section->vma
9000 + sgot->output_offset
9001 + got_offset);
9002
9003 /* ...and the address of the PLT entry. */
9004 plt_address = (splt->output_section->vma
9005 + splt->output_offset
9006 + h->plt.offset);
9007
9008 ptr = htab->splt->contents + h->plt.offset;
9009 if (htab->vxworks_p && info->shared)
9010 {
9011 unsigned int i;
9012 bfd_vma val;
9013
9014 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9015 {
9016 val = elf32_arm_vxworks_shared_plt_entry[i];
9017 if (i == 2)
9018 val |= got_address - sgot->output_section->vma;
9019 if (i == 5)
9020 val |= plt_index * RELOC_SIZE (htab);
9021 if (i == 2 || i == 5)
9022 bfd_put_32 (output_bfd, val, ptr);
9023 else
9024 put_arm_insn (htab, output_bfd, val, ptr);
9025 }
9026 }
9027 else if (htab->vxworks_p)
9028 {
9029 unsigned int i;
9030 bfd_vma val;
9031
9032 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9033 {
9034 val = elf32_arm_vxworks_exec_plt_entry[i];
9035 if (i == 2)
9036 val |= got_address;
9037 if (i == 4)
9038 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
9039 if (i == 5)
9040 val |= plt_index * RELOC_SIZE (htab);
9041 if (i == 2 || i == 5)
9042 bfd_put_32 (output_bfd, val, ptr);
9043 else
9044 put_arm_insn (htab, output_bfd, val, ptr);
9045 }
9046
9047 loc = (htab->srelplt2->contents
9048 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9049
9050 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9051 referencing the GOT for this PLT entry. */
9052 rel.r_offset = plt_address + 8;
9053 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9054 rel.r_addend = got_offset;
9055 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9056 loc += RELOC_SIZE (htab);
9057
9058 /* Create the R_ARM_ABS32 relocation referencing the
9059 beginning of the PLT for this GOT entry. */
9060 rel.r_offset = got_address;
9061 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9062 rel.r_addend = 0;
9063 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9064 }
9065 else
9066 {
9067 bfd_signed_vma thumb_refs;
9068 /* Calculate the displacement between the PLT slot and the
9069 entry in the GOT. The eight-byte offset accounts for the
9070 value produced by adding to pc in the first instruction
9071 of the PLT stub. */
9072 got_displacement = got_address - (plt_address + 8);
9073
9074 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9075
9076 thumb_refs = eh->plt_thumb_refcount;
9077 if (!htab->use_blx)
9078 thumb_refs += eh->plt_maybe_thumb_refcount;
9079
9080 if (thumb_refs > 0)
9081 {
9082 put_thumb_insn (htab, output_bfd,
9083 elf32_arm_plt_thumb_stub[0], ptr - 4);
9084 put_thumb_insn (htab, output_bfd,
9085 elf32_arm_plt_thumb_stub[1], ptr - 2);
9086 }
9087
9088 put_arm_insn (htab, output_bfd,
9089 elf32_arm_plt_entry[0]
9090 | ((got_displacement & 0x0ff00000) >> 20),
9091 ptr + 0);
9092 put_arm_insn (htab, output_bfd,
9093 elf32_arm_plt_entry[1]
9094 | ((got_displacement & 0x000ff000) >> 12),
9095 ptr+ 4);
9096 put_arm_insn (htab, output_bfd,
9097 elf32_arm_plt_entry[2]
9098 | (got_displacement & 0x00000fff),
9099 ptr + 8);
9100 #ifdef FOUR_WORD_PLT
9101 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
9102 #endif
9103 }
9104
9105 /* Fill in the entry in the global offset table. */
9106 bfd_put_32 (output_bfd,
9107 (splt->output_section->vma
9108 + splt->output_offset),
9109 sgot->contents + got_offset);
9110
9111 /* Fill in the entry in the .rel(a).plt section. */
9112 rel.r_addend = 0;
9113 rel.r_offset = got_address;
9114 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
9115 }
9116
9117 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9118 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9119
9120 if (!h->def_regular)
9121 {
9122 /* Mark the symbol as undefined, rather than as defined in
9123 the .plt section. Leave the value alone. */
9124 sym->st_shndx = SHN_UNDEF;
9125 /* If the symbol is weak, we do need to clear the value.
9126 Otherwise, the PLT entry would provide a definition for
9127 the symbol even if the symbol wasn't defined anywhere,
9128 and so the symbol would never be NULL. */
9129 if (!h->ref_regular_nonweak)
9130 sym->st_value = 0;
9131 }
9132 }
9133
9134 if (h->got.offset != (bfd_vma) -1
9135 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
9136 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
9137 {
9138 asection * sgot;
9139 asection * srel;
9140 Elf_Internal_Rela rel;
9141 bfd_byte *loc;
9142 bfd_vma offset;
9143
9144 /* This symbol has an entry in the global offset table. Set it
9145 up. */
9146 sgot = bfd_get_section_by_name (dynobj, ".got");
9147 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
9148 BFD_ASSERT (sgot != NULL && srel != NULL);
9149
9150 offset = (h->got.offset & ~(bfd_vma) 1);
9151 rel.r_addend = 0;
9152 rel.r_offset = (sgot->output_section->vma
9153 + sgot->output_offset
9154 + offset);
9155
9156 /* If this is a static link, or it is a -Bsymbolic link and the
9157 symbol is defined locally or was forced to be local because
9158 of a version file, we just want to emit a RELATIVE reloc.
9159 The entry in the global offset table will already have been
9160 initialized in the relocate_section function. */
9161 if (info->shared
9162 && SYMBOL_REFERENCES_LOCAL (info, h))
9163 {
9164 BFD_ASSERT((h->got.offset & 1) != 0);
9165 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9166 if (!htab->use_rel)
9167 {
9168 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
9169 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
9170 }
9171 }
9172 else
9173 {
9174 BFD_ASSERT((h->got.offset & 1) == 0);
9175 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
9176 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9177 }
9178
9179 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
9180 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9181 }
9182
9183 if (h->needs_copy)
9184 {
9185 asection * s;
9186 Elf_Internal_Rela rel;
9187 bfd_byte *loc;
9188
9189 /* This symbol needs a copy reloc. Set it up. */
9190 BFD_ASSERT (h->dynindx != -1
9191 && (h->root.type == bfd_link_hash_defined
9192 || h->root.type == bfd_link_hash_defweak));
9193
9194 s = bfd_get_section_by_name (h->root.u.def.section->owner,
9195 RELOC_SECTION (htab, ".bss"));
9196 BFD_ASSERT (s != NULL);
9197
9198 rel.r_addend = 0;
9199 rel.r_offset = (h->root.u.def.value
9200 + h->root.u.def.section->output_section->vma
9201 + h->root.u.def.section->output_offset);
9202 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
9203 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9204 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9205 }
9206
9207 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
9208 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
9209 to the ".got" section. */
9210 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
9211 || (!htab->vxworks_p && h == htab->root.hgot))
9212 sym->st_shndx = SHN_ABS;
9213
9214 return TRUE;
9215 }
9216
9217 /* Finish up the dynamic sections. */
9218
9219 static bfd_boolean
9220 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
9221 {
9222 bfd * dynobj;
9223 asection * sgot;
9224 asection * sdyn;
9225
9226 dynobj = elf_hash_table (info)->dynobj;
9227
9228 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
9229 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
9230 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9231
9232 if (elf_hash_table (info)->dynamic_sections_created)
9233 {
9234 asection *splt;
9235 Elf32_External_Dyn *dyncon, *dynconend;
9236 struct elf32_arm_link_hash_table *htab;
9237
9238 htab = elf32_arm_hash_table (info);
9239 splt = bfd_get_section_by_name (dynobj, ".plt");
9240 BFD_ASSERT (splt != NULL && sdyn != NULL);
9241
9242 dyncon = (Elf32_External_Dyn *) sdyn->contents;
9243 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9244
9245 for (; dyncon < dynconend; dyncon++)
9246 {
9247 Elf_Internal_Dyn dyn;
9248 const char * name;
9249 asection * s;
9250
9251 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
9252
9253 switch (dyn.d_tag)
9254 {
9255 unsigned int type;
9256
9257 default:
9258 if (htab->vxworks_p
9259 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
9260 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9261 break;
9262
9263 case DT_HASH:
9264 name = ".hash";
9265 goto get_vma_if_bpabi;
9266 case DT_STRTAB:
9267 name = ".dynstr";
9268 goto get_vma_if_bpabi;
9269 case DT_SYMTAB:
9270 name = ".dynsym";
9271 goto get_vma_if_bpabi;
9272 case DT_VERSYM:
9273 name = ".gnu.version";
9274 goto get_vma_if_bpabi;
9275 case DT_VERDEF:
9276 name = ".gnu.version_d";
9277 goto get_vma_if_bpabi;
9278 case DT_VERNEED:
9279 name = ".gnu.version_r";
9280 goto get_vma_if_bpabi;
9281
9282 case DT_PLTGOT:
9283 name = ".got";
9284 goto get_vma;
9285 case DT_JMPREL:
9286 name = RELOC_SECTION (htab, ".plt");
9287 get_vma:
9288 s = bfd_get_section_by_name (output_bfd, name);
9289 BFD_ASSERT (s != NULL);
9290 if (!htab->symbian_p)
9291 dyn.d_un.d_ptr = s->vma;
9292 else
9293 /* In the BPABI, tags in the PT_DYNAMIC section point
9294 at the file offset, not the memory address, for the
9295 convenience of the post linker. */
9296 dyn.d_un.d_ptr = s->filepos;
9297 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9298 break;
9299
9300 get_vma_if_bpabi:
9301 if (htab->symbian_p)
9302 goto get_vma;
9303 break;
9304
9305 case DT_PLTRELSZ:
9306 s = bfd_get_section_by_name (output_bfd,
9307 RELOC_SECTION (htab, ".plt"));
9308 BFD_ASSERT (s != NULL);
9309 dyn.d_un.d_val = s->size;
9310 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9311 break;
9312
9313 case DT_RELSZ:
9314 case DT_RELASZ:
9315 if (!htab->symbian_p)
9316 {
9317 /* My reading of the SVR4 ABI indicates that the
9318 procedure linkage table relocs (DT_JMPREL) should be
9319 included in the overall relocs (DT_REL). This is
9320 what Solaris does. However, UnixWare can not handle
9321 that case. Therefore, we override the DT_RELSZ entry
9322 here to make it not include the JMPREL relocs. Since
9323 the linker script arranges for .rel(a).plt to follow all
9324 other relocation sections, we don't have to worry
9325 about changing the DT_REL entry. */
9326 s = bfd_get_section_by_name (output_bfd,
9327 RELOC_SECTION (htab, ".plt"));
9328 if (s != NULL)
9329 dyn.d_un.d_val -= s->size;
9330 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9331 break;
9332 }
9333 /* Fall through */
9334
9335 case DT_REL:
9336 case DT_RELA:
9337 /* In the BPABI, the DT_REL tag must point at the file
9338 offset, not the VMA, of the first relocation
9339 section. So, we use code similar to that in
9340 elflink.c, but do not check for SHF_ALLOC on the
9341 relcoation section, since relocations sections are
9342 never allocated under the BPABI. The comments above
9343 about Unixware notwithstanding, we include all of the
9344 relocations here. */
9345 if (htab->symbian_p)
9346 {
9347 unsigned int i;
9348 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
9349 ? SHT_REL : SHT_RELA);
9350 dyn.d_un.d_val = 0;
9351 for (i = 1; i < elf_numsections (output_bfd); i++)
9352 {
9353 Elf_Internal_Shdr *hdr
9354 = elf_elfsections (output_bfd)[i];
9355 if (hdr->sh_type == type)
9356 {
9357 if (dyn.d_tag == DT_RELSZ
9358 || dyn.d_tag == DT_RELASZ)
9359 dyn.d_un.d_val += hdr->sh_size;
9360 else if ((ufile_ptr) hdr->sh_offset
9361 <= dyn.d_un.d_val - 1)
9362 dyn.d_un.d_val = hdr->sh_offset;
9363 }
9364 }
9365 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9366 }
9367 break;
9368
9369 /* Set the bottom bit of DT_INIT/FINI if the
9370 corresponding function is Thumb. */
9371 case DT_INIT:
9372 name = info->init_function;
9373 goto get_sym;
9374 case DT_FINI:
9375 name = info->fini_function;
9376 get_sym:
9377 /* If it wasn't set by elf_bfd_final_link
9378 then there is nothing to adjust. */
9379 if (dyn.d_un.d_val != 0)
9380 {
9381 struct elf_link_hash_entry * eh;
9382
9383 eh = elf_link_hash_lookup (elf_hash_table (info), name,
9384 FALSE, FALSE, TRUE);
9385 if (eh != (struct elf_link_hash_entry *) NULL
9386 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
9387 {
9388 dyn.d_un.d_val |= 1;
9389 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9390 }
9391 }
9392 break;
9393 }
9394 }
9395
9396 /* Fill in the first entry in the procedure linkage table. */
9397 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
9398 {
9399 const bfd_vma *plt0_entry;
9400 bfd_vma got_address, plt_address, got_displacement;
9401
9402 /* Calculate the addresses of the GOT and PLT. */
9403 got_address = sgot->output_section->vma + sgot->output_offset;
9404 plt_address = splt->output_section->vma + splt->output_offset;
9405
9406 if (htab->vxworks_p)
9407 {
9408 /* The VxWorks GOT is relocated by the dynamic linker.
9409 Therefore, we must emit relocations rather than simply
9410 computing the values now. */
9411 Elf_Internal_Rela rel;
9412
9413 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
9414 put_arm_insn (htab, output_bfd, plt0_entry[0],
9415 splt->contents + 0);
9416 put_arm_insn (htab, output_bfd, plt0_entry[1],
9417 splt->contents + 4);
9418 put_arm_insn (htab, output_bfd, plt0_entry[2],
9419 splt->contents + 8);
9420 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
9421
9422 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
9423 rel.r_offset = plt_address + 12;
9424 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9425 rel.r_addend = 0;
9426 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
9427 htab->srelplt2->contents);
9428 }
9429 else
9430 {
9431 got_displacement = got_address - (plt_address + 16);
9432
9433 plt0_entry = elf32_arm_plt0_entry;
9434 put_arm_insn (htab, output_bfd, plt0_entry[0],
9435 splt->contents + 0);
9436 put_arm_insn (htab, output_bfd, plt0_entry[1],
9437 splt->contents + 4);
9438 put_arm_insn (htab, output_bfd, plt0_entry[2],
9439 splt->contents + 8);
9440 put_arm_insn (htab, output_bfd, plt0_entry[3],
9441 splt->contents + 12);
9442
9443 #ifdef FOUR_WORD_PLT
9444 /* The displacement value goes in the otherwise-unused
9445 last word of the second entry. */
9446 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
9447 #else
9448 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
9449 #endif
9450 }
9451 }
9452
9453 /* UnixWare sets the entsize of .plt to 4, although that doesn't
9454 really seem like the right value. */
9455 if (splt->output_section->owner == output_bfd)
9456 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
9457
9458 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
9459 {
9460 /* Correct the .rel(a).plt.unloaded relocations. They will have
9461 incorrect symbol indexes. */
9462 int num_plts;
9463 unsigned char *p;
9464
9465 num_plts = ((htab->splt->size - htab->plt_header_size)
9466 / htab->plt_entry_size);
9467 p = htab->srelplt2->contents + RELOC_SIZE (htab);
9468
9469 for (; num_plts; num_plts--)
9470 {
9471 Elf_Internal_Rela rel;
9472
9473 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
9474 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9475 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
9476 p += RELOC_SIZE (htab);
9477
9478 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
9479 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9480 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
9481 p += RELOC_SIZE (htab);
9482 }
9483 }
9484 }
9485
9486 /* Fill in the first three entries in the global offset table. */
9487 if (sgot)
9488 {
9489 if (sgot->size > 0)
9490 {
9491 if (sdyn == NULL)
9492 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
9493 else
9494 bfd_put_32 (output_bfd,
9495 sdyn->output_section->vma + sdyn->output_offset,
9496 sgot->contents);
9497 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
9498 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
9499 }
9500
9501 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
9502 }
9503
9504 return TRUE;
9505 }
9506
9507 static void
9508 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9509 {
9510 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9511 struct elf32_arm_link_hash_table *globals;
9512
9513 i_ehdrp = elf_elfheader (abfd);
9514
9515 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
9516 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
9517 else
9518 i_ehdrp->e_ident[EI_OSABI] = 0;
9519 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
9520
9521 if (link_info)
9522 {
9523 globals = elf32_arm_hash_table (link_info);
9524 if (globals->byteswap_code)
9525 i_ehdrp->e_flags |= EF_ARM_BE8;
9526 }
9527 }
9528
9529 static enum elf_reloc_type_class
9530 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
9531 {
9532 switch ((int) ELF32_R_TYPE (rela->r_info))
9533 {
9534 case R_ARM_RELATIVE:
9535 return reloc_class_relative;
9536 case R_ARM_JUMP_SLOT:
9537 return reloc_class_plt;
9538 case R_ARM_COPY:
9539 return reloc_class_copy;
9540 default:
9541 return reloc_class_normal;
9542 }
9543 }
9544
9545 /* Set the right machine number for an Arm ELF file. */
9546
9547 static bfd_boolean
9548 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
9549 {
9550 if (hdr->sh_type == SHT_NOTE)
9551 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
9552
9553 return TRUE;
9554 }
9555
9556 static void
9557 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
9558 {
9559 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
9560 }
9561
9562 /* Return TRUE if this is an unwinding table entry. */
9563
9564 static bfd_boolean
9565 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
9566 {
9567 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
9568 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
9569 }
9570
9571
9572 /* Set the type and flags for an ARM section. We do this by
9573 the section name, which is a hack, but ought to work. */
9574
9575 static bfd_boolean
9576 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
9577 {
9578 const char * name;
9579
9580 name = bfd_get_section_name (abfd, sec);
9581
9582 if (is_arm_elf_unwind_section_name (abfd, name))
9583 {
9584 hdr->sh_type = SHT_ARM_EXIDX;
9585 hdr->sh_flags |= SHF_LINK_ORDER;
9586 }
9587 return TRUE;
9588 }
9589
9590 /* Handle an ARM specific section when reading an object file. This is
9591 called when bfd_section_from_shdr finds a section with an unknown
9592 type. */
9593
9594 static bfd_boolean
9595 elf32_arm_section_from_shdr (bfd *abfd,
9596 Elf_Internal_Shdr * hdr,
9597 const char *name,
9598 int shindex)
9599 {
9600 /* There ought to be a place to keep ELF backend specific flags, but
9601 at the moment there isn't one. We just keep track of the
9602 sections by their name, instead. Fortunately, the ABI gives
9603 names for all the ARM specific sections, so we will probably get
9604 away with this. */
9605 switch (hdr->sh_type)
9606 {
9607 case SHT_ARM_EXIDX:
9608 case SHT_ARM_PREEMPTMAP:
9609 case SHT_ARM_ATTRIBUTES:
9610 break;
9611
9612 default:
9613 return FALSE;
9614 }
9615
9616 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
9617 return FALSE;
9618
9619 return TRUE;
9620 }
9621
9622 /* A structure used to record a list of sections, independently
9623 of the next and prev fields in the asection structure. */
9624 typedef struct section_list
9625 {
9626 asection * sec;
9627 struct section_list * next;
9628 struct section_list * prev;
9629 }
9630 section_list;
9631
9632 /* Unfortunately we need to keep a list of sections for which
9633 an _arm_elf_section_data structure has been allocated. This
9634 is because it is possible for functions like elf32_arm_write_section
9635 to be called on a section which has had an elf_data_structure
9636 allocated for it (and so the used_by_bfd field is valid) but
9637 for which the ARM extended version of this structure - the
9638 _arm_elf_section_data structure - has not been allocated. */
9639 static section_list * sections_with_arm_elf_section_data = NULL;
9640
9641 static void
9642 record_section_with_arm_elf_section_data (asection * sec)
9643 {
9644 struct section_list * entry;
9645
9646 entry = bfd_malloc (sizeof (* entry));
9647 if (entry == NULL)
9648 return;
9649 entry->sec = sec;
9650 entry->next = sections_with_arm_elf_section_data;
9651 entry->prev = NULL;
9652 if (entry->next != NULL)
9653 entry->next->prev = entry;
9654 sections_with_arm_elf_section_data = entry;
9655 }
9656
9657 static struct section_list *
9658 find_arm_elf_section_entry (asection * sec)
9659 {
9660 struct section_list * entry;
9661 static struct section_list * last_entry = NULL;
9662
9663 /* This is a short cut for the typical case where the sections are added
9664 to the sections_with_arm_elf_section_data list in forward order and
9665 then looked up here in backwards order. This makes a real difference
9666 to the ld-srec/sec64k.exp linker test. */
9667 entry = sections_with_arm_elf_section_data;
9668 if (last_entry != NULL)
9669 {
9670 if (last_entry->sec == sec)
9671 entry = last_entry;
9672 else if (last_entry->next != NULL
9673 && last_entry->next->sec == sec)
9674 entry = last_entry->next;
9675 }
9676
9677 for (; entry; entry = entry->next)
9678 if (entry->sec == sec)
9679 break;
9680
9681 if (entry)
9682 /* Record the entry prior to this one - it is the entry we are most
9683 likely to want to locate next time. Also this way if we have been
9684 called from unrecord_section_with_arm_elf_section_data() we will not
9685 be caching a pointer that is about to be freed. */
9686 last_entry = entry->prev;
9687
9688 return entry;
9689 }
9690
9691 static _arm_elf_section_data *
9692 get_arm_elf_section_data (asection * sec)
9693 {
9694 struct section_list * entry;
9695
9696 entry = find_arm_elf_section_entry (sec);
9697
9698 if (entry)
9699 return elf32_arm_section_data (entry->sec);
9700 else
9701 return NULL;
9702 }
9703
9704 static void
9705 unrecord_section_with_arm_elf_section_data (asection * sec)
9706 {
9707 struct section_list * entry;
9708
9709 entry = find_arm_elf_section_entry (sec);
9710
9711 if (entry)
9712 {
9713 if (entry->prev != NULL)
9714 entry->prev->next = entry->next;
9715 if (entry->next != NULL)
9716 entry->next->prev = entry->prev;
9717 if (entry == sections_with_arm_elf_section_data)
9718 sections_with_arm_elf_section_data = entry->next;
9719 free (entry);
9720 }
9721 }
9722
9723
9724 typedef struct
9725 {
9726 void *finfo;
9727 struct bfd_link_info *info;
9728 asection *sec;
9729 int sec_shndx;
9730 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
9731 asection *, struct elf_link_hash_entry *);
9732 } output_arch_syminfo;
9733
9734 enum map_symbol_type
9735 {
9736 ARM_MAP_ARM,
9737 ARM_MAP_THUMB,
9738 ARM_MAP_DATA
9739 };
9740
9741
9742 /* Output a single PLT mapping symbol. */
9743
9744 static bfd_boolean
9745 elf32_arm_ouput_plt_map_sym (output_arch_syminfo *osi,
9746 enum map_symbol_type type,
9747 bfd_vma offset)
9748 {
9749 static const char *names[3] = {"$a", "$t", "$d"};
9750 struct elf32_arm_link_hash_table *htab;
9751 Elf_Internal_Sym sym;
9752
9753 htab = elf32_arm_hash_table (osi->info);
9754 sym.st_value = osi->sec->output_section->vma
9755 + osi->sec->output_offset
9756 + offset;
9757 sym.st_size = 0;
9758 sym.st_other = 0;
9759 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
9760 sym.st_shndx = osi->sec_shndx;
9761 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
9762 return FALSE;
9763 return TRUE;
9764 }
9765
9766
9767 /* Output mapping symbols for PLT entries associated with H. */
9768
9769 static bfd_boolean
9770 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
9771 {
9772 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
9773 struct elf32_arm_link_hash_table *htab;
9774 struct elf32_arm_link_hash_entry *eh;
9775 bfd_vma addr;
9776
9777 htab = elf32_arm_hash_table (osi->info);
9778
9779 if (h->root.type == bfd_link_hash_indirect)
9780 return TRUE;
9781
9782 if (h->root.type == bfd_link_hash_warning)
9783 /* When warning symbols are created, they **replace** the "real"
9784 entry in the hash table, thus we never get to see the real
9785 symbol in a hash traversal. So look at it now. */
9786 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9787
9788 if (h->plt.offset == (bfd_vma) -1)
9789 return TRUE;
9790
9791 eh = (struct elf32_arm_link_hash_entry *) h;
9792 addr = h->plt.offset;
9793 if (htab->symbian_p)
9794 {
9795 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
9796 return FALSE;
9797 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 4))
9798 return FALSE;
9799 }
9800 else if (htab->vxworks_p)
9801 {
9802 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
9803 return FALSE;
9804 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 8))
9805 return FALSE;
9806 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr + 12))
9807 return FALSE;
9808 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 20))
9809 return FALSE;
9810 }
9811 else
9812 {
9813 bfd_signed_vma thumb_refs;
9814
9815 thumb_refs = eh->plt_thumb_refcount;
9816 if (!htab->use_blx)
9817 thumb_refs += eh->plt_maybe_thumb_refcount;
9818
9819 if (thumb_refs > 0)
9820 {
9821 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_THUMB, addr - 4))
9822 return FALSE;
9823 }
9824 #ifdef FOUR_WORD_PLT
9825 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
9826 return FALSE;
9827 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 12))
9828 return FALSE;
9829 #else
9830 /* A three-word PLT with no Thumb thunk contains only Arm code,
9831 so only need to output a mapping symbol for the first PLT entry and
9832 entries with thumb thunks. */
9833 if (thumb_refs > 0 || addr == 20)
9834 {
9835 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
9836 return FALSE;
9837 }
9838 #endif
9839 }
9840
9841 return TRUE;
9842 }
9843
9844
9845 /* Output mapping symbols for linker generated sections. */
9846
9847 static bfd_boolean
9848 elf32_arm_output_arch_local_syms (bfd *output_bfd,
9849 struct bfd_link_info *info,
9850 void *finfo, bfd_boolean (*func) (void *, const char *,
9851 Elf_Internal_Sym *,
9852 asection *,
9853 struct elf_link_hash_entry *))
9854 {
9855 output_arch_syminfo osi;
9856 struct elf32_arm_link_hash_table *htab;
9857 bfd_vma offset;
9858 bfd_size_type size;
9859
9860 htab = elf32_arm_hash_table (info);
9861 check_use_blx(htab);
9862
9863 osi.finfo = finfo;
9864 osi.info = info;
9865 osi.func = func;
9866
9867 /* ARM->Thumb glue. */
9868 if (htab->arm_glue_size > 0)
9869 {
9870 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
9871 ARM2THUMB_GLUE_SECTION_NAME);
9872
9873 osi.sec_shndx = _bfd_elf_section_from_bfd_section
9874 (output_bfd, osi.sec->output_section);
9875 if (info->shared || htab->root.is_relocatable_executable
9876 || htab->pic_veneer)
9877 size = ARM2THUMB_PIC_GLUE_SIZE;
9878 else if (htab->use_blx)
9879 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
9880 else
9881 size = ARM2THUMB_STATIC_GLUE_SIZE;
9882
9883 for (offset = 0; offset < htab->arm_glue_size; offset += size)
9884 {
9885 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset);
9886 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
9887 }
9888 }
9889
9890 /* Thumb->ARM glue. */
9891 if (htab->thumb_glue_size > 0)
9892 {
9893 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
9894 THUMB2ARM_GLUE_SECTION_NAME);
9895
9896 osi.sec_shndx = _bfd_elf_section_from_bfd_section
9897 (output_bfd, osi.sec->output_section);
9898 size = THUMB2ARM_GLUE_SIZE;
9899
9900 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
9901 {
9902 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_THUMB, offset);
9903 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset + 4);
9904 }
9905 }
9906
9907 /* ARMv4 BX veneers. */
9908 if (htab->bx_glue_size > 0)
9909 {
9910 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
9911 ARM_BX_GLUE_SECTION_NAME);
9912
9913 osi.sec_shndx = _bfd_elf_section_from_bfd_section
9914 (output_bfd, osi.sec->output_section);
9915
9916 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0);
9917 }
9918
9919 /* Finally, output mapping symbols for the PLT. */
9920 if (!htab->splt || htab->splt->size == 0)
9921 return TRUE;
9922
9923 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9924 htab->splt->output_section);
9925 osi.sec = htab->splt;
9926 /* Output mapping symbols for the plt header. SymbianOS does not have a
9927 plt header. */
9928 if (htab->vxworks_p)
9929 {
9930 /* VxWorks shared libraries have no PLT header. */
9931 if (!info->shared)
9932 {
9933 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
9934 return FALSE;
9935 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 12))
9936 return FALSE;
9937 }
9938 }
9939 else if (!htab->symbian_p)
9940 {
9941 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
9942 return FALSE;
9943 #ifndef FOUR_WORD_PLT
9944 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 16))
9945 return FALSE;
9946 #endif
9947 }
9948
9949 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
9950 return TRUE;
9951 }
9952
9953 /* Allocate target specific section data. */
9954
9955 static bfd_boolean
9956 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
9957 {
9958 if (!sec->used_by_bfd)
9959 {
9960 _arm_elf_section_data *sdata;
9961 bfd_size_type amt = sizeof (*sdata);
9962
9963 sdata = bfd_zalloc (abfd, amt);
9964 if (sdata == NULL)
9965 return FALSE;
9966 sec->used_by_bfd = sdata;
9967 }
9968
9969 record_section_with_arm_elf_section_data (sec);
9970
9971 return _bfd_elf_new_section_hook (abfd, sec);
9972 }
9973
9974
9975 /* Used to order a list of mapping symbols by address. */
9976
9977 static int
9978 elf32_arm_compare_mapping (const void * a, const void * b)
9979 {
9980 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
9981 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
9982
9983 if (amap->vma > bmap->vma)
9984 return 1;
9985 else if (amap->vma < bmap->vma)
9986 return -1;
9987 else if (amap->type > bmap->type)
9988 /* Ensure results do not depend on the host qsort for objects with
9989 multiple mapping symbols at the same address by sorting on type
9990 after vma. */
9991 return 1;
9992 else if (amap->type < bmap->type)
9993 return -1;
9994 else
9995 return 0;
9996 }
9997
9998
9999 /* Do code byteswapping. Return FALSE afterwards so that the section is
10000 written out as normal. */
10001
10002 static bfd_boolean
10003 elf32_arm_write_section (bfd *output_bfd,
10004 struct bfd_link_info *link_info, asection *sec,
10005 bfd_byte *contents)
10006 {
10007 int mapcount, errcount;
10008 _arm_elf_section_data *arm_data;
10009 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
10010 elf32_arm_section_map *map;
10011 elf32_vfp11_erratum_list *errnode;
10012 bfd_vma ptr;
10013 bfd_vma end;
10014 bfd_vma offset = sec->output_section->vma + sec->output_offset;
10015 bfd_byte tmp;
10016 int i;
10017
10018 /* If this section has not been allocated an _arm_elf_section_data
10019 structure then we cannot record anything. */
10020 arm_data = get_arm_elf_section_data (sec);
10021 if (arm_data == NULL)
10022 return FALSE;
10023
10024 mapcount = arm_data->mapcount;
10025 map = arm_data->map;
10026 errcount = arm_data->erratumcount;
10027
10028 if (errcount != 0)
10029 {
10030 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
10031
10032 for (errnode = arm_data->erratumlist; errnode != 0;
10033 errnode = errnode->next)
10034 {
10035 bfd_vma index = errnode->vma - offset;
10036
10037 switch (errnode->type)
10038 {
10039 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
10040 {
10041 bfd_vma branch_to_veneer;
10042 /* Original condition code of instruction, plus bit mask for
10043 ARM B instruction. */
10044 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
10045 | 0x0a000000;
10046
10047 /* The instruction is before the label. */
10048 index -= 4;
10049
10050 /* Above offset included in -4 below. */
10051 branch_to_veneer = errnode->u.b.veneer->vma
10052 - errnode->vma - 4;
10053
10054 if ((signed) branch_to_veneer < -(1 << 25)
10055 || (signed) branch_to_veneer >= (1 << 25))
10056 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
10057 "range"), output_bfd);
10058
10059 insn |= (branch_to_veneer >> 2) & 0xffffff;
10060 contents[endianflip ^ index] = insn & 0xff;
10061 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
10062 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
10063 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
10064 }
10065 break;
10066
10067 case VFP11_ERRATUM_ARM_VENEER:
10068 {
10069 bfd_vma branch_from_veneer;
10070 unsigned int insn;
10071
10072 /* Take size of veneer into account. */
10073 branch_from_veneer = errnode->u.v.branch->vma
10074 - errnode->vma - 12;
10075
10076 if ((signed) branch_from_veneer < -(1 << 25)
10077 || (signed) branch_from_veneer >= (1 << 25))
10078 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
10079 "range"), output_bfd);
10080
10081 /* Original instruction. */
10082 insn = errnode->u.v.branch->u.b.vfp_insn;
10083 contents[endianflip ^ index] = insn & 0xff;
10084 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
10085 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
10086 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
10087
10088 /* Branch back to insn after original insn. */
10089 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
10090 contents[endianflip ^ (index + 4)] = insn & 0xff;
10091 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
10092 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
10093 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
10094 }
10095 break;
10096
10097 default:
10098 abort ();
10099 }
10100 }
10101 }
10102
10103 if (mapcount == 0)
10104 return FALSE;
10105
10106 if (globals->byteswap_code)
10107 {
10108 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
10109
10110 ptr = map[0].vma;
10111 for (i = 0; i < mapcount; i++)
10112 {
10113 if (i == mapcount - 1)
10114 end = sec->size;
10115 else
10116 end = map[i + 1].vma;
10117
10118 switch (map[i].type)
10119 {
10120 case 'a':
10121 /* Byte swap code words. */
10122 while (ptr + 3 < end)
10123 {
10124 tmp = contents[ptr];
10125 contents[ptr] = contents[ptr + 3];
10126 contents[ptr + 3] = tmp;
10127 tmp = contents[ptr + 1];
10128 contents[ptr + 1] = contents[ptr + 2];
10129 contents[ptr + 2] = tmp;
10130 ptr += 4;
10131 }
10132 break;
10133
10134 case 't':
10135 /* Byte swap code halfwords. */
10136 while (ptr + 1 < end)
10137 {
10138 tmp = contents[ptr];
10139 contents[ptr] = contents[ptr + 1];
10140 contents[ptr + 1] = tmp;
10141 ptr += 2;
10142 }
10143 break;
10144
10145 case 'd':
10146 /* Leave data alone. */
10147 break;
10148 }
10149 ptr = end;
10150 }
10151 }
10152
10153 free (map);
10154 arm_data->mapcount = 0;
10155 arm_data->mapsize = 0;
10156 arm_data->map = NULL;
10157 unrecord_section_with_arm_elf_section_data (sec);
10158
10159 return FALSE;
10160 }
10161
10162 static void
10163 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
10164 asection * sec,
10165 void * ignore ATTRIBUTE_UNUSED)
10166 {
10167 unrecord_section_with_arm_elf_section_data (sec);
10168 }
10169
10170 static bfd_boolean
10171 elf32_arm_close_and_cleanup (bfd * abfd)
10172 {
10173 if (abfd->sections)
10174 bfd_map_over_sections (abfd,
10175 unrecord_section_via_map_over_sections,
10176 NULL);
10177
10178 return _bfd_elf_close_and_cleanup (abfd);
10179 }
10180
10181 static bfd_boolean
10182 elf32_arm_bfd_free_cached_info (bfd * abfd)
10183 {
10184 if (abfd->sections)
10185 bfd_map_over_sections (abfd,
10186 unrecord_section_via_map_over_sections,
10187 NULL);
10188
10189 return _bfd_free_cached_info (abfd);
10190 }
10191
10192 /* Display STT_ARM_TFUNC symbols as functions. */
10193
10194 static void
10195 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
10196 asymbol *asym)
10197 {
10198 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
10199
10200 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
10201 elfsym->symbol.flags |= BSF_FUNCTION;
10202 }
10203
10204
10205 /* Mangle thumb function symbols as we read them in. */
10206
10207 static bfd_boolean
10208 elf32_arm_swap_symbol_in (bfd * abfd,
10209 const void *psrc,
10210 const void *pshn,
10211 Elf_Internal_Sym *dst)
10212 {
10213 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
10214 return FALSE;
10215
10216 /* New EABI objects mark thumb function symbols by setting the low bit of
10217 the address. Turn these into STT_ARM_TFUNC. */
10218 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
10219 && (dst->st_value & 1))
10220 {
10221 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
10222 dst->st_value &= ~(bfd_vma) 1;
10223 }
10224 return TRUE;
10225 }
10226
10227
10228 /* Mangle thumb function symbols as we write them out. */
10229
10230 static void
10231 elf32_arm_swap_symbol_out (bfd *abfd,
10232 const Elf_Internal_Sym *src,
10233 void *cdst,
10234 void *shndx)
10235 {
10236 Elf_Internal_Sym newsym;
10237
10238 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
10239 of the address set, as per the new EABI. We do this unconditionally
10240 because objcopy does not set the elf header flags until after
10241 it writes out the symbol table. */
10242 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
10243 {
10244 newsym = *src;
10245 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
10246 if (newsym.st_shndx != SHN_UNDEF)
10247 {
10248 /* Do this only for defined symbols. At link type, the static
10249 linker will simulate the work of dynamic linker of resolving
10250 symbols and will carry over the thumbness of found symbols to
10251 the output symbol table. It's not clear how it happens, but
10252 the thumbness of undefined symbols can well be different at
10253 runtime, and writing '1' for them will be confusing for users
10254 and possibly for dynamic linker itself.
10255 */
10256 newsym.st_value |= 1;
10257 }
10258
10259 src = &newsym;
10260 }
10261 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
10262 }
10263
10264 /* Add the PT_ARM_EXIDX program header. */
10265
10266 static bfd_boolean
10267 elf32_arm_modify_segment_map (bfd *abfd,
10268 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10269 {
10270 struct elf_segment_map *m;
10271 asection *sec;
10272
10273 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
10274 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
10275 {
10276 /* If there is already a PT_ARM_EXIDX header, then we do not
10277 want to add another one. This situation arises when running
10278 "strip"; the input binary already has the header. */
10279 m = elf_tdata (abfd)->segment_map;
10280 while (m && m->p_type != PT_ARM_EXIDX)
10281 m = m->next;
10282 if (!m)
10283 {
10284 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
10285 if (m == NULL)
10286 return FALSE;
10287 m->p_type = PT_ARM_EXIDX;
10288 m->count = 1;
10289 m->sections[0] = sec;
10290
10291 m->next = elf_tdata (abfd)->segment_map;
10292 elf_tdata (abfd)->segment_map = m;
10293 }
10294 }
10295
10296 return TRUE;
10297 }
10298
10299 /* We may add a PT_ARM_EXIDX program header. */
10300
10301 static int
10302 elf32_arm_additional_program_headers (bfd *abfd,
10303 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10304 {
10305 asection *sec;
10306
10307 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
10308 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
10309 return 1;
10310 else
10311 return 0;
10312 }
10313
10314 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
10315 static bfd_boolean
10316 elf32_arm_is_function_type (unsigned int type)
10317 {
10318 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
10319 }
10320
10321 /* We use this to override swap_symbol_in and swap_symbol_out. */
10322 const struct elf_size_info elf32_arm_size_info = {
10323 sizeof (Elf32_External_Ehdr),
10324 sizeof (Elf32_External_Phdr),
10325 sizeof (Elf32_External_Shdr),
10326 sizeof (Elf32_External_Rel),
10327 sizeof (Elf32_External_Rela),
10328 sizeof (Elf32_External_Sym),
10329 sizeof (Elf32_External_Dyn),
10330 sizeof (Elf_External_Note),
10331 4,
10332 1,
10333 32, 2,
10334 ELFCLASS32, EV_CURRENT,
10335 bfd_elf32_write_out_phdrs,
10336 bfd_elf32_write_shdrs_and_ehdr,
10337 bfd_elf32_checksum_contents,
10338 bfd_elf32_write_relocs,
10339 elf32_arm_swap_symbol_in,
10340 elf32_arm_swap_symbol_out,
10341 bfd_elf32_slurp_reloc_table,
10342 bfd_elf32_slurp_symbol_table,
10343 bfd_elf32_swap_dyn_in,
10344 bfd_elf32_swap_dyn_out,
10345 bfd_elf32_swap_reloc_in,
10346 bfd_elf32_swap_reloc_out,
10347 bfd_elf32_swap_reloca_in,
10348 bfd_elf32_swap_reloca_out
10349 };
10350
10351 #define ELF_ARCH bfd_arch_arm
10352 #define ELF_MACHINE_CODE EM_ARM
10353 #ifdef __QNXTARGET__
10354 #define ELF_MAXPAGESIZE 0x1000
10355 #else
10356 #define ELF_MAXPAGESIZE 0x8000
10357 #endif
10358 #define ELF_MINPAGESIZE 0x1000
10359 #define ELF_COMMONPAGESIZE 0x1000
10360
10361 #define bfd_elf32_mkobject elf32_arm_mkobject
10362
10363 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
10364 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
10365 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
10366 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
10367 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
10368 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
10369 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
10370 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
10371 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
10372 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
10373 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
10374 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
10375 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
10376
10377 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
10378 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
10379 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
10380 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
10381 #define elf_backend_check_relocs elf32_arm_check_relocs
10382 #define elf_backend_relocate_section elf32_arm_relocate_section
10383 #define elf_backend_write_section elf32_arm_write_section
10384 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
10385 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
10386 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
10387 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
10388 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
10389 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
10390 #define elf_backend_post_process_headers elf32_arm_post_process_headers
10391 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
10392 #define elf_backend_object_p elf32_arm_object_p
10393 #define elf_backend_section_flags elf32_arm_section_flags
10394 #define elf_backend_fake_sections elf32_arm_fake_sections
10395 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
10396 #define elf_backend_final_write_processing elf32_arm_final_write_processing
10397 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
10398 #define elf_backend_symbol_processing elf32_arm_symbol_processing
10399 #define elf_backend_size_info elf32_arm_size_info
10400 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
10401 #define elf_backend_additional_program_headers \
10402 elf32_arm_additional_program_headers
10403 #define elf_backend_output_arch_local_syms \
10404 elf32_arm_output_arch_local_syms
10405 #define elf_backend_begin_write_processing \
10406 elf32_arm_begin_write_processing
10407 #define elf_backend_is_function_type elf32_arm_is_function_type
10408
10409 #define elf_backend_can_refcount 1
10410 #define elf_backend_can_gc_sections 1
10411 #define elf_backend_plt_readonly 1
10412 #define elf_backend_want_got_plt 1
10413 #define elf_backend_want_plt_sym 0
10414 #define elf_backend_may_use_rel_p 1
10415 #define elf_backend_may_use_rela_p 0
10416 #define elf_backend_default_use_rela_p 0
10417
10418 #define elf_backend_got_header_size 12
10419
10420 #undef elf_backend_obj_attrs_vendor
10421 #define elf_backend_obj_attrs_vendor "aeabi"
10422 #undef elf_backend_obj_attrs_section
10423 #define elf_backend_obj_attrs_section ".ARM.attributes"
10424 #undef elf_backend_obj_attrs_arg_type
10425 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
10426 #undef elf_backend_obj_attrs_section_type
10427 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
10428
10429 #include "elf32-target.h"
10430
10431 /* VxWorks Targets */
10432
10433 #undef TARGET_LITTLE_SYM
10434 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
10435 #undef TARGET_LITTLE_NAME
10436 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
10437 #undef TARGET_BIG_SYM
10438 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
10439 #undef TARGET_BIG_NAME
10440 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
10441
10442 /* Like elf32_arm_link_hash_table_create -- but overrides
10443 appropriately for VxWorks. */
10444 static struct bfd_link_hash_table *
10445 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
10446 {
10447 struct bfd_link_hash_table *ret;
10448
10449 ret = elf32_arm_link_hash_table_create (abfd);
10450 if (ret)
10451 {
10452 struct elf32_arm_link_hash_table *htab
10453 = (struct elf32_arm_link_hash_table *) ret;
10454 htab->use_rel = 0;
10455 htab->vxworks_p = 1;
10456 }
10457 return ret;
10458 }
10459
10460 static void
10461 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
10462 {
10463 elf32_arm_final_write_processing (abfd, linker);
10464 elf_vxworks_final_write_processing (abfd, linker);
10465 }
10466
10467 #undef elf32_bed
10468 #define elf32_bed elf32_arm_vxworks_bed
10469
10470 #undef bfd_elf32_bfd_link_hash_table_create
10471 #define bfd_elf32_bfd_link_hash_table_create \
10472 elf32_arm_vxworks_link_hash_table_create
10473 #undef elf_backend_add_symbol_hook
10474 #define elf_backend_add_symbol_hook \
10475 elf_vxworks_add_symbol_hook
10476 #undef elf_backend_final_write_processing
10477 #define elf_backend_final_write_processing \
10478 elf32_arm_vxworks_final_write_processing
10479 #undef elf_backend_emit_relocs
10480 #define elf_backend_emit_relocs \
10481 elf_vxworks_emit_relocs
10482
10483 #undef elf_backend_may_use_rel_p
10484 #define elf_backend_may_use_rel_p 0
10485 #undef elf_backend_may_use_rela_p
10486 #define elf_backend_may_use_rela_p 1
10487 #undef elf_backend_default_use_rela_p
10488 #define elf_backend_default_use_rela_p 1
10489 #undef elf_backend_want_plt_sym
10490 #define elf_backend_want_plt_sym 1
10491 #undef ELF_MAXPAGESIZE
10492 #define ELF_MAXPAGESIZE 0x1000
10493
10494 #include "elf32-target.h"
10495
10496
10497 /* Symbian OS Targets */
10498
10499 #undef TARGET_LITTLE_SYM
10500 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
10501 #undef TARGET_LITTLE_NAME
10502 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
10503 #undef TARGET_BIG_SYM
10504 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
10505 #undef TARGET_BIG_NAME
10506 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
10507
10508 /* Like elf32_arm_link_hash_table_create -- but overrides
10509 appropriately for Symbian OS. */
10510 static struct bfd_link_hash_table *
10511 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
10512 {
10513 struct bfd_link_hash_table *ret;
10514
10515 ret = elf32_arm_link_hash_table_create (abfd);
10516 if (ret)
10517 {
10518 struct elf32_arm_link_hash_table *htab
10519 = (struct elf32_arm_link_hash_table *)ret;
10520 /* There is no PLT header for Symbian OS. */
10521 htab->plt_header_size = 0;
10522 /* The PLT entries are each three instructions. */
10523 htab->plt_entry_size = 4 * NUM_ELEM (elf32_arm_symbian_plt_entry);
10524 htab->symbian_p = 1;
10525 /* Symbian uses armv5t or above, so use_blx is always true. */
10526 htab->use_blx = 1;
10527 htab->root.is_relocatable_executable = 1;
10528 }
10529 return ret;
10530 }
10531
10532 static const struct bfd_elf_special_section
10533 elf32_arm_symbian_special_sections[] =
10534 {
10535 /* In a BPABI executable, the dynamic linking sections do not go in
10536 the loadable read-only segment. The post-linker may wish to
10537 refer to these sections, but they are not part of the final
10538 program image. */
10539 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
10540 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
10541 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
10542 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
10543 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
10544 /* These sections do not need to be writable as the SymbianOS
10545 postlinker will arrange things so that no dynamic relocation is
10546 required. */
10547 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
10548 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
10549 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
10550 { NULL, 0, 0, 0, 0 }
10551 };
10552
10553 static void
10554 elf32_arm_symbian_begin_write_processing (bfd *abfd,
10555 struct bfd_link_info *link_info)
10556 {
10557 /* BPABI objects are never loaded directly by an OS kernel; they are
10558 processed by a postlinker first, into an OS-specific format. If
10559 the D_PAGED bit is set on the file, BFD will align segments on
10560 page boundaries, so that an OS can directly map the file. With
10561 BPABI objects, that just results in wasted space. In addition,
10562 because we clear the D_PAGED bit, map_sections_to_segments will
10563 recognize that the program headers should not be mapped into any
10564 loadable segment. */
10565 abfd->flags &= ~D_PAGED;
10566 elf32_arm_begin_write_processing(abfd, link_info);
10567 }
10568
10569 static bfd_boolean
10570 elf32_arm_symbian_modify_segment_map (bfd *abfd,
10571 struct bfd_link_info *info)
10572 {
10573 struct elf_segment_map *m;
10574 asection *dynsec;
10575
10576 /* BPABI shared libraries and executables should have a PT_DYNAMIC
10577 segment. However, because the .dynamic section is not marked
10578 with SEC_LOAD, the generic ELF code will not create such a
10579 segment. */
10580 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
10581 if (dynsec)
10582 {
10583 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10584 if (m->p_type == PT_DYNAMIC)
10585 break;
10586
10587 if (m == NULL)
10588 {
10589 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
10590 m->next = elf_tdata (abfd)->segment_map;
10591 elf_tdata (abfd)->segment_map = m;
10592 }
10593 }
10594
10595 /* Also call the generic arm routine. */
10596 return elf32_arm_modify_segment_map (abfd, info);
10597 }
10598
10599 #undef elf32_bed
10600 #define elf32_bed elf32_arm_symbian_bed
10601
10602 /* The dynamic sections are not allocated on SymbianOS; the postlinker
10603 will process them and then discard them. */
10604 #undef ELF_DYNAMIC_SEC_FLAGS
10605 #define ELF_DYNAMIC_SEC_FLAGS \
10606 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
10607
10608 #undef bfd_elf32_bfd_link_hash_table_create
10609 #define bfd_elf32_bfd_link_hash_table_create \
10610 elf32_arm_symbian_link_hash_table_create
10611 #undef elf_backend_add_symbol_hook
10612
10613 #undef elf_backend_special_sections
10614 #define elf_backend_special_sections elf32_arm_symbian_special_sections
10615
10616 #undef elf_backend_begin_write_processing
10617 #define elf_backend_begin_write_processing \
10618 elf32_arm_symbian_begin_write_processing
10619 #undef elf_backend_final_write_processing
10620 #define elf_backend_final_write_processing \
10621 elf32_arm_final_write_processing
10622 #undef elf_backend_emit_relocs
10623
10624 #undef elf_backend_modify_segment_map
10625 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
10626
10627 /* There is no .got section for BPABI objects, and hence no header. */
10628 #undef elf_backend_got_header_size
10629 #define elf_backend_got_header_size 0
10630
10631 /* Similarly, there is no .got.plt section. */
10632 #undef elf_backend_want_got_plt
10633 #define elf_backend_want_got_plt 0
10634
10635 #undef elf_backend_may_use_rel_p
10636 #define elf_backend_may_use_rel_p 1
10637 #undef elf_backend_may_use_rela_p
10638 #define elf_backend_may_use_rela_p 0
10639 #undef elf_backend_default_use_rela_p
10640 #define elf_backend_default_use_rela_p 0
10641 #undef elf_backend_want_plt_sym
10642 #define elf_backend_want_plt_sym 0
10643 #undef ELF_MAXPAGESIZE
10644 #define ELF_MAXPAGESIZE 0x8000
10645
10646 #include "elf32-target.h"
This page took 0.322009 seconds and 3 git commands to generate.