* elf-bfd.h (enum elf_reloc_type_class): Add reloc_class_ifunc.
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include <limits.h>
24
25 #include "bfd.h"
26 #include "bfd_stdint.h"
27 #include "libiberty.h"
28 #include "libbfd.h"
29 #include "elf-bfd.h"
30 #include "elf-nacl.h"
31 #include "elf-vxworks.h"
32 #include "elf/arm.h"
33
34 /* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36 #define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38
39 /* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41 #define RELOC_SIZE(HTAB) \
42 ((HTAB)->use_rel \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
45
46 /* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48 #define SWAP_RELOC_IN(HTAB) \
49 ((HTAB)->use_rel \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
52
53 /* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55 #define SWAP_RELOC_OUT(HTAB) \
56 ((HTAB)->use_rel \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
59
60 #define elf_info_to_howto 0
61 #define elf_info_to_howto_rel elf32_arm_info_to_howto
62
63 #define ARM_ELF_ABI_VERSION 0
64 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65
66 /* The Adjusted Place, as defined by AAELF. */
67 #define Pa(X) ((X) & 0xfffffffc)
68
69 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
70 struct bfd_link_info *link_info,
71 asection *sec,
72 bfd_byte *contents);
73
74 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
75 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
76 in that slot. */
77
78 static reloc_howto_type elf32_arm_howto_table_1[] =
79 {
80 /* No relocation. */
81 HOWTO (R_ARM_NONE, /* type */
82 0, /* rightshift */
83 0, /* size (0 = byte, 1 = short, 2 = long) */
84 0, /* bitsize */
85 FALSE, /* pc_relative */
86 0, /* bitpos */
87 complain_overflow_dont,/* complain_on_overflow */
88 bfd_elf_generic_reloc, /* special_function */
89 "R_ARM_NONE", /* name */
90 FALSE, /* partial_inplace */
91 0, /* src_mask */
92 0, /* dst_mask */
93 FALSE), /* pcrel_offset */
94
95 HOWTO (R_ARM_PC24, /* type */
96 2, /* rightshift */
97 2, /* size (0 = byte, 1 = short, 2 = long) */
98 24, /* bitsize */
99 TRUE, /* pc_relative */
100 0, /* bitpos */
101 complain_overflow_signed,/* complain_on_overflow */
102 bfd_elf_generic_reloc, /* special_function */
103 "R_ARM_PC24", /* name */
104 FALSE, /* partial_inplace */
105 0x00ffffff, /* src_mask */
106 0x00ffffff, /* dst_mask */
107 TRUE), /* pcrel_offset */
108
109 /* 32 bit absolute */
110 HOWTO (R_ARM_ABS32, /* type */
111 0, /* rightshift */
112 2, /* size (0 = byte, 1 = short, 2 = long) */
113 32, /* bitsize */
114 FALSE, /* pc_relative */
115 0, /* bitpos */
116 complain_overflow_bitfield,/* complain_on_overflow */
117 bfd_elf_generic_reloc, /* special_function */
118 "R_ARM_ABS32", /* name */
119 FALSE, /* partial_inplace */
120 0xffffffff, /* src_mask */
121 0xffffffff, /* dst_mask */
122 FALSE), /* pcrel_offset */
123
124 /* standard 32bit pc-relative reloc */
125 HOWTO (R_ARM_REL32, /* type */
126 0, /* rightshift */
127 2, /* size (0 = byte, 1 = short, 2 = long) */
128 32, /* bitsize */
129 TRUE, /* pc_relative */
130 0, /* bitpos */
131 complain_overflow_bitfield,/* complain_on_overflow */
132 bfd_elf_generic_reloc, /* special_function */
133 "R_ARM_REL32", /* name */
134 FALSE, /* partial_inplace */
135 0xffffffff, /* src_mask */
136 0xffffffff, /* dst_mask */
137 TRUE), /* pcrel_offset */
138
139 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
140 HOWTO (R_ARM_LDR_PC_G0, /* type */
141 0, /* rightshift */
142 0, /* size (0 = byte, 1 = short, 2 = long) */
143 32, /* bitsize */
144 TRUE, /* pc_relative */
145 0, /* bitpos */
146 complain_overflow_dont,/* complain_on_overflow */
147 bfd_elf_generic_reloc, /* special_function */
148 "R_ARM_LDR_PC_G0", /* name */
149 FALSE, /* partial_inplace */
150 0xffffffff, /* src_mask */
151 0xffffffff, /* dst_mask */
152 TRUE), /* pcrel_offset */
153
154 /* 16 bit absolute */
155 HOWTO (R_ARM_ABS16, /* type */
156 0, /* rightshift */
157 1, /* size (0 = byte, 1 = short, 2 = long) */
158 16, /* bitsize */
159 FALSE, /* pc_relative */
160 0, /* bitpos */
161 complain_overflow_bitfield,/* complain_on_overflow */
162 bfd_elf_generic_reloc, /* special_function */
163 "R_ARM_ABS16", /* name */
164 FALSE, /* partial_inplace */
165 0x0000ffff, /* src_mask */
166 0x0000ffff, /* dst_mask */
167 FALSE), /* pcrel_offset */
168
169 /* 12 bit absolute */
170 HOWTO (R_ARM_ABS12, /* type */
171 0, /* rightshift */
172 2, /* size (0 = byte, 1 = short, 2 = long) */
173 12, /* bitsize */
174 FALSE, /* pc_relative */
175 0, /* bitpos */
176 complain_overflow_bitfield,/* complain_on_overflow */
177 bfd_elf_generic_reloc, /* special_function */
178 "R_ARM_ABS12", /* name */
179 FALSE, /* partial_inplace */
180 0x00000fff, /* src_mask */
181 0x00000fff, /* dst_mask */
182 FALSE), /* pcrel_offset */
183
184 HOWTO (R_ARM_THM_ABS5, /* type */
185 6, /* rightshift */
186 1, /* size (0 = byte, 1 = short, 2 = long) */
187 5, /* bitsize */
188 FALSE, /* pc_relative */
189 0, /* bitpos */
190 complain_overflow_bitfield,/* complain_on_overflow */
191 bfd_elf_generic_reloc, /* special_function */
192 "R_ARM_THM_ABS5", /* name */
193 FALSE, /* partial_inplace */
194 0x000007e0, /* src_mask */
195 0x000007e0, /* dst_mask */
196 FALSE), /* pcrel_offset */
197
198 /* 8 bit absolute */
199 HOWTO (R_ARM_ABS8, /* type */
200 0, /* rightshift */
201 0, /* size (0 = byte, 1 = short, 2 = long) */
202 8, /* bitsize */
203 FALSE, /* pc_relative */
204 0, /* bitpos */
205 complain_overflow_bitfield,/* complain_on_overflow */
206 bfd_elf_generic_reloc, /* special_function */
207 "R_ARM_ABS8", /* name */
208 FALSE, /* partial_inplace */
209 0x000000ff, /* src_mask */
210 0x000000ff, /* dst_mask */
211 FALSE), /* pcrel_offset */
212
213 HOWTO (R_ARM_SBREL32, /* type */
214 0, /* rightshift */
215 2, /* size (0 = byte, 1 = short, 2 = long) */
216 32, /* bitsize */
217 FALSE, /* pc_relative */
218 0, /* bitpos */
219 complain_overflow_dont,/* complain_on_overflow */
220 bfd_elf_generic_reloc, /* special_function */
221 "R_ARM_SBREL32", /* name */
222 FALSE, /* partial_inplace */
223 0xffffffff, /* src_mask */
224 0xffffffff, /* dst_mask */
225 FALSE), /* pcrel_offset */
226
227 HOWTO (R_ARM_THM_CALL, /* type */
228 1, /* rightshift */
229 2, /* size (0 = byte, 1 = short, 2 = long) */
230 24, /* bitsize */
231 TRUE, /* pc_relative */
232 0, /* bitpos */
233 complain_overflow_signed,/* complain_on_overflow */
234 bfd_elf_generic_reloc, /* special_function */
235 "R_ARM_THM_CALL", /* name */
236 FALSE, /* partial_inplace */
237 0x07ff2fff, /* src_mask */
238 0x07ff2fff, /* dst_mask */
239 TRUE), /* pcrel_offset */
240
241 HOWTO (R_ARM_THM_PC8, /* type */
242 1, /* rightshift */
243 1, /* size (0 = byte, 1 = short, 2 = long) */
244 8, /* bitsize */
245 TRUE, /* pc_relative */
246 0, /* bitpos */
247 complain_overflow_signed,/* complain_on_overflow */
248 bfd_elf_generic_reloc, /* special_function */
249 "R_ARM_THM_PC8", /* name */
250 FALSE, /* partial_inplace */
251 0x000000ff, /* src_mask */
252 0x000000ff, /* dst_mask */
253 TRUE), /* pcrel_offset */
254
255 HOWTO (R_ARM_BREL_ADJ, /* type */
256 1, /* rightshift */
257 1, /* size (0 = byte, 1 = short, 2 = long) */
258 32, /* bitsize */
259 FALSE, /* pc_relative */
260 0, /* bitpos */
261 complain_overflow_signed,/* complain_on_overflow */
262 bfd_elf_generic_reloc, /* special_function */
263 "R_ARM_BREL_ADJ", /* name */
264 FALSE, /* partial_inplace */
265 0xffffffff, /* src_mask */
266 0xffffffff, /* dst_mask */
267 FALSE), /* pcrel_offset */
268
269 HOWTO (R_ARM_TLS_DESC, /* type */
270 0, /* rightshift */
271 2, /* size (0 = byte, 1 = short, 2 = long) */
272 32, /* bitsize */
273 FALSE, /* pc_relative */
274 0, /* bitpos */
275 complain_overflow_bitfield,/* complain_on_overflow */
276 bfd_elf_generic_reloc, /* special_function */
277 "R_ARM_TLS_DESC", /* name */
278 FALSE, /* partial_inplace */
279 0xffffffff, /* src_mask */
280 0xffffffff, /* dst_mask */
281 FALSE), /* pcrel_offset */
282
283 HOWTO (R_ARM_THM_SWI8, /* type */
284 0, /* rightshift */
285 0, /* size (0 = byte, 1 = short, 2 = long) */
286 0, /* bitsize */
287 FALSE, /* pc_relative */
288 0, /* bitpos */
289 complain_overflow_signed,/* complain_on_overflow */
290 bfd_elf_generic_reloc, /* special_function */
291 "R_ARM_SWI8", /* name */
292 FALSE, /* partial_inplace */
293 0x00000000, /* src_mask */
294 0x00000000, /* dst_mask */
295 FALSE), /* pcrel_offset */
296
297 /* BLX instruction for the ARM. */
298 HOWTO (R_ARM_XPC25, /* type */
299 2, /* rightshift */
300 2, /* size (0 = byte, 1 = short, 2 = long) */
301 24, /* bitsize */
302 TRUE, /* pc_relative */
303 0, /* bitpos */
304 complain_overflow_signed,/* complain_on_overflow */
305 bfd_elf_generic_reloc, /* special_function */
306 "R_ARM_XPC25", /* name */
307 FALSE, /* partial_inplace */
308 0x00ffffff, /* src_mask */
309 0x00ffffff, /* dst_mask */
310 TRUE), /* pcrel_offset */
311
312 /* BLX instruction for the Thumb. */
313 HOWTO (R_ARM_THM_XPC22, /* type */
314 2, /* rightshift */
315 2, /* size (0 = byte, 1 = short, 2 = long) */
316 24, /* bitsize */
317 TRUE, /* pc_relative */
318 0, /* bitpos */
319 complain_overflow_signed,/* complain_on_overflow */
320 bfd_elf_generic_reloc, /* special_function */
321 "R_ARM_THM_XPC22", /* name */
322 FALSE, /* partial_inplace */
323 0x07ff2fff, /* src_mask */
324 0x07ff2fff, /* dst_mask */
325 TRUE), /* pcrel_offset */
326
327 /* Dynamic TLS relocations. */
328
329 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
330 0, /* rightshift */
331 2, /* size (0 = byte, 1 = short, 2 = long) */
332 32, /* bitsize */
333 FALSE, /* pc_relative */
334 0, /* bitpos */
335 complain_overflow_bitfield,/* complain_on_overflow */
336 bfd_elf_generic_reloc, /* special_function */
337 "R_ARM_TLS_DTPMOD32", /* name */
338 TRUE, /* partial_inplace */
339 0xffffffff, /* src_mask */
340 0xffffffff, /* dst_mask */
341 FALSE), /* pcrel_offset */
342
343 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
344 0, /* rightshift */
345 2, /* size (0 = byte, 1 = short, 2 = long) */
346 32, /* bitsize */
347 FALSE, /* pc_relative */
348 0, /* bitpos */
349 complain_overflow_bitfield,/* complain_on_overflow */
350 bfd_elf_generic_reloc, /* special_function */
351 "R_ARM_TLS_DTPOFF32", /* name */
352 TRUE, /* partial_inplace */
353 0xffffffff, /* src_mask */
354 0xffffffff, /* dst_mask */
355 FALSE), /* pcrel_offset */
356
357 HOWTO (R_ARM_TLS_TPOFF32, /* type */
358 0, /* rightshift */
359 2, /* size (0 = byte, 1 = short, 2 = long) */
360 32, /* bitsize */
361 FALSE, /* pc_relative */
362 0, /* bitpos */
363 complain_overflow_bitfield,/* complain_on_overflow */
364 bfd_elf_generic_reloc, /* special_function */
365 "R_ARM_TLS_TPOFF32", /* name */
366 TRUE, /* partial_inplace */
367 0xffffffff, /* src_mask */
368 0xffffffff, /* dst_mask */
369 FALSE), /* pcrel_offset */
370
371 /* Relocs used in ARM Linux */
372
373 HOWTO (R_ARM_COPY, /* type */
374 0, /* rightshift */
375 2, /* size (0 = byte, 1 = short, 2 = long) */
376 32, /* bitsize */
377 FALSE, /* pc_relative */
378 0, /* bitpos */
379 complain_overflow_bitfield,/* complain_on_overflow */
380 bfd_elf_generic_reloc, /* special_function */
381 "R_ARM_COPY", /* name */
382 TRUE, /* partial_inplace */
383 0xffffffff, /* src_mask */
384 0xffffffff, /* dst_mask */
385 FALSE), /* pcrel_offset */
386
387 HOWTO (R_ARM_GLOB_DAT, /* type */
388 0, /* rightshift */
389 2, /* size (0 = byte, 1 = short, 2 = long) */
390 32, /* bitsize */
391 FALSE, /* pc_relative */
392 0, /* bitpos */
393 complain_overflow_bitfield,/* complain_on_overflow */
394 bfd_elf_generic_reloc, /* special_function */
395 "R_ARM_GLOB_DAT", /* name */
396 TRUE, /* partial_inplace */
397 0xffffffff, /* src_mask */
398 0xffffffff, /* dst_mask */
399 FALSE), /* pcrel_offset */
400
401 HOWTO (R_ARM_JUMP_SLOT, /* type */
402 0, /* rightshift */
403 2, /* size (0 = byte, 1 = short, 2 = long) */
404 32, /* bitsize */
405 FALSE, /* pc_relative */
406 0, /* bitpos */
407 complain_overflow_bitfield,/* complain_on_overflow */
408 bfd_elf_generic_reloc, /* special_function */
409 "R_ARM_JUMP_SLOT", /* name */
410 TRUE, /* partial_inplace */
411 0xffffffff, /* src_mask */
412 0xffffffff, /* dst_mask */
413 FALSE), /* pcrel_offset */
414
415 HOWTO (R_ARM_RELATIVE, /* type */
416 0, /* rightshift */
417 2, /* size (0 = byte, 1 = short, 2 = long) */
418 32, /* bitsize */
419 FALSE, /* pc_relative */
420 0, /* bitpos */
421 complain_overflow_bitfield,/* complain_on_overflow */
422 bfd_elf_generic_reloc, /* special_function */
423 "R_ARM_RELATIVE", /* name */
424 TRUE, /* partial_inplace */
425 0xffffffff, /* src_mask */
426 0xffffffff, /* dst_mask */
427 FALSE), /* pcrel_offset */
428
429 HOWTO (R_ARM_GOTOFF32, /* type */
430 0, /* rightshift */
431 2, /* size (0 = byte, 1 = short, 2 = long) */
432 32, /* bitsize */
433 FALSE, /* pc_relative */
434 0, /* bitpos */
435 complain_overflow_bitfield,/* complain_on_overflow */
436 bfd_elf_generic_reloc, /* special_function */
437 "R_ARM_GOTOFF32", /* name */
438 TRUE, /* partial_inplace */
439 0xffffffff, /* src_mask */
440 0xffffffff, /* dst_mask */
441 FALSE), /* pcrel_offset */
442
443 HOWTO (R_ARM_GOTPC, /* type */
444 0, /* rightshift */
445 2, /* size (0 = byte, 1 = short, 2 = long) */
446 32, /* bitsize */
447 TRUE, /* pc_relative */
448 0, /* bitpos */
449 complain_overflow_bitfield,/* complain_on_overflow */
450 bfd_elf_generic_reloc, /* special_function */
451 "R_ARM_GOTPC", /* name */
452 TRUE, /* partial_inplace */
453 0xffffffff, /* src_mask */
454 0xffffffff, /* dst_mask */
455 TRUE), /* pcrel_offset */
456
457 HOWTO (R_ARM_GOT32, /* type */
458 0, /* rightshift */
459 2, /* size (0 = byte, 1 = short, 2 = long) */
460 32, /* bitsize */
461 FALSE, /* pc_relative */
462 0, /* bitpos */
463 complain_overflow_bitfield,/* complain_on_overflow */
464 bfd_elf_generic_reloc, /* special_function */
465 "R_ARM_GOT32", /* name */
466 TRUE, /* partial_inplace */
467 0xffffffff, /* src_mask */
468 0xffffffff, /* dst_mask */
469 FALSE), /* pcrel_offset */
470
471 HOWTO (R_ARM_PLT32, /* type */
472 2, /* rightshift */
473 2, /* size (0 = byte, 1 = short, 2 = long) */
474 24, /* bitsize */
475 TRUE, /* pc_relative */
476 0, /* bitpos */
477 complain_overflow_bitfield,/* complain_on_overflow */
478 bfd_elf_generic_reloc, /* special_function */
479 "R_ARM_PLT32", /* name */
480 FALSE, /* partial_inplace */
481 0x00ffffff, /* src_mask */
482 0x00ffffff, /* dst_mask */
483 TRUE), /* pcrel_offset */
484
485 HOWTO (R_ARM_CALL, /* type */
486 2, /* rightshift */
487 2, /* size (0 = byte, 1 = short, 2 = long) */
488 24, /* bitsize */
489 TRUE, /* pc_relative */
490 0, /* bitpos */
491 complain_overflow_signed,/* complain_on_overflow */
492 bfd_elf_generic_reloc, /* special_function */
493 "R_ARM_CALL", /* name */
494 FALSE, /* partial_inplace */
495 0x00ffffff, /* src_mask */
496 0x00ffffff, /* dst_mask */
497 TRUE), /* pcrel_offset */
498
499 HOWTO (R_ARM_JUMP24, /* type */
500 2, /* rightshift */
501 2, /* size (0 = byte, 1 = short, 2 = long) */
502 24, /* bitsize */
503 TRUE, /* pc_relative */
504 0, /* bitpos */
505 complain_overflow_signed,/* complain_on_overflow */
506 bfd_elf_generic_reloc, /* special_function */
507 "R_ARM_JUMP24", /* name */
508 FALSE, /* partial_inplace */
509 0x00ffffff, /* src_mask */
510 0x00ffffff, /* dst_mask */
511 TRUE), /* pcrel_offset */
512
513 HOWTO (R_ARM_THM_JUMP24, /* type */
514 1, /* rightshift */
515 2, /* size (0 = byte, 1 = short, 2 = long) */
516 24, /* bitsize */
517 TRUE, /* pc_relative */
518 0, /* bitpos */
519 complain_overflow_signed,/* complain_on_overflow */
520 bfd_elf_generic_reloc, /* special_function */
521 "R_ARM_THM_JUMP24", /* name */
522 FALSE, /* partial_inplace */
523 0x07ff2fff, /* src_mask */
524 0x07ff2fff, /* dst_mask */
525 TRUE), /* pcrel_offset */
526
527 HOWTO (R_ARM_BASE_ABS, /* type */
528 0, /* rightshift */
529 2, /* size (0 = byte, 1 = short, 2 = long) */
530 32, /* bitsize */
531 FALSE, /* pc_relative */
532 0, /* bitpos */
533 complain_overflow_dont,/* complain_on_overflow */
534 bfd_elf_generic_reloc, /* special_function */
535 "R_ARM_BASE_ABS", /* name */
536 FALSE, /* partial_inplace */
537 0xffffffff, /* src_mask */
538 0xffffffff, /* dst_mask */
539 FALSE), /* pcrel_offset */
540
541 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
542 0, /* rightshift */
543 2, /* size (0 = byte, 1 = short, 2 = long) */
544 12, /* bitsize */
545 TRUE, /* pc_relative */
546 0, /* bitpos */
547 complain_overflow_dont,/* complain_on_overflow */
548 bfd_elf_generic_reloc, /* special_function */
549 "R_ARM_ALU_PCREL_7_0", /* name */
550 FALSE, /* partial_inplace */
551 0x00000fff, /* src_mask */
552 0x00000fff, /* dst_mask */
553 TRUE), /* pcrel_offset */
554
555 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
556 0, /* rightshift */
557 2, /* size (0 = byte, 1 = short, 2 = long) */
558 12, /* bitsize */
559 TRUE, /* pc_relative */
560 8, /* bitpos */
561 complain_overflow_dont,/* complain_on_overflow */
562 bfd_elf_generic_reloc, /* special_function */
563 "R_ARM_ALU_PCREL_15_8",/* name */
564 FALSE, /* partial_inplace */
565 0x00000fff, /* src_mask */
566 0x00000fff, /* dst_mask */
567 TRUE), /* pcrel_offset */
568
569 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
570 0, /* rightshift */
571 2, /* size (0 = byte, 1 = short, 2 = long) */
572 12, /* bitsize */
573 TRUE, /* pc_relative */
574 16, /* bitpos */
575 complain_overflow_dont,/* complain_on_overflow */
576 bfd_elf_generic_reloc, /* special_function */
577 "R_ARM_ALU_PCREL_23_15",/* name */
578 FALSE, /* partial_inplace */
579 0x00000fff, /* src_mask */
580 0x00000fff, /* dst_mask */
581 TRUE), /* pcrel_offset */
582
583 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
584 0, /* rightshift */
585 2, /* size (0 = byte, 1 = short, 2 = long) */
586 12, /* bitsize */
587 FALSE, /* pc_relative */
588 0, /* bitpos */
589 complain_overflow_dont,/* complain_on_overflow */
590 bfd_elf_generic_reloc, /* special_function */
591 "R_ARM_LDR_SBREL_11_0",/* name */
592 FALSE, /* partial_inplace */
593 0x00000fff, /* src_mask */
594 0x00000fff, /* dst_mask */
595 FALSE), /* pcrel_offset */
596
597 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
598 0, /* rightshift */
599 2, /* size (0 = byte, 1 = short, 2 = long) */
600 8, /* bitsize */
601 FALSE, /* pc_relative */
602 12, /* bitpos */
603 complain_overflow_dont,/* complain_on_overflow */
604 bfd_elf_generic_reloc, /* special_function */
605 "R_ARM_ALU_SBREL_19_12",/* name */
606 FALSE, /* partial_inplace */
607 0x000ff000, /* src_mask */
608 0x000ff000, /* dst_mask */
609 FALSE), /* pcrel_offset */
610
611 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
612 0, /* rightshift */
613 2, /* size (0 = byte, 1 = short, 2 = long) */
614 8, /* bitsize */
615 FALSE, /* pc_relative */
616 20, /* bitpos */
617 complain_overflow_dont,/* complain_on_overflow */
618 bfd_elf_generic_reloc, /* special_function */
619 "R_ARM_ALU_SBREL_27_20",/* name */
620 FALSE, /* partial_inplace */
621 0x0ff00000, /* src_mask */
622 0x0ff00000, /* dst_mask */
623 FALSE), /* pcrel_offset */
624
625 HOWTO (R_ARM_TARGET1, /* type */
626 0, /* rightshift */
627 2, /* size (0 = byte, 1 = short, 2 = long) */
628 32, /* bitsize */
629 FALSE, /* pc_relative */
630 0, /* bitpos */
631 complain_overflow_dont,/* complain_on_overflow */
632 bfd_elf_generic_reloc, /* special_function */
633 "R_ARM_TARGET1", /* name */
634 FALSE, /* partial_inplace */
635 0xffffffff, /* src_mask */
636 0xffffffff, /* dst_mask */
637 FALSE), /* pcrel_offset */
638
639 HOWTO (R_ARM_ROSEGREL32, /* type */
640 0, /* rightshift */
641 2, /* size (0 = byte, 1 = short, 2 = long) */
642 32, /* bitsize */
643 FALSE, /* pc_relative */
644 0, /* bitpos */
645 complain_overflow_dont,/* complain_on_overflow */
646 bfd_elf_generic_reloc, /* special_function */
647 "R_ARM_ROSEGREL32", /* name */
648 FALSE, /* partial_inplace */
649 0xffffffff, /* src_mask */
650 0xffffffff, /* dst_mask */
651 FALSE), /* pcrel_offset */
652
653 HOWTO (R_ARM_V4BX, /* type */
654 0, /* rightshift */
655 2, /* size (0 = byte, 1 = short, 2 = long) */
656 32, /* bitsize */
657 FALSE, /* pc_relative */
658 0, /* bitpos */
659 complain_overflow_dont,/* complain_on_overflow */
660 bfd_elf_generic_reloc, /* special_function */
661 "R_ARM_V4BX", /* name */
662 FALSE, /* partial_inplace */
663 0xffffffff, /* src_mask */
664 0xffffffff, /* dst_mask */
665 FALSE), /* pcrel_offset */
666
667 HOWTO (R_ARM_TARGET2, /* type */
668 0, /* rightshift */
669 2, /* size (0 = byte, 1 = short, 2 = long) */
670 32, /* bitsize */
671 FALSE, /* pc_relative */
672 0, /* bitpos */
673 complain_overflow_signed,/* complain_on_overflow */
674 bfd_elf_generic_reloc, /* special_function */
675 "R_ARM_TARGET2", /* name */
676 FALSE, /* partial_inplace */
677 0xffffffff, /* src_mask */
678 0xffffffff, /* dst_mask */
679 TRUE), /* pcrel_offset */
680
681 HOWTO (R_ARM_PREL31, /* type */
682 0, /* rightshift */
683 2, /* size (0 = byte, 1 = short, 2 = long) */
684 31, /* bitsize */
685 TRUE, /* pc_relative */
686 0, /* bitpos */
687 complain_overflow_signed,/* complain_on_overflow */
688 bfd_elf_generic_reloc, /* special_function */
689 "R_ARM_PREL31", /* name */
690 FALSE, /* partial_inplace */
691 0x7fffffff, /* src_mask */
692 0x7fffffff, /* dst_mask */
693 TRUE), /* pcrel_offset */
694
695 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
696 0, /* rightshift */
697 2, /* size (0 = byte, 1 = short, 2 = long) */
698 16, /* bitsize */
699 FALSE, /* pc_relative */
700 0, /* bitpos */
701 complain_overflow_dont,/* complain_on_overflow */
702 bfd_elf_generic_reloc, /* special_function */
703 "R_ARM_MOVW_ABS_NC", /* name */
704 FALSE, /* partial_inplace */
705 0x000f0fff, /* src_mask */
706 0x000f0fff, /* dst_mask */
707 FALSE), /* pcrel_offset */
708
709 HOWTO (R_ARM_MOVT_ABS, /* type */
710 0, /* rightshift */
711 2, /* size (0 = byte, 1 = short, 2 = long) */
712 16, /* bitsize */
713 FALSE, /* pc_relative */
714 0, /* bitpos */
715 complain_overflow_bitfield,/* complain_on_overflow */
716 bfd_elf_generic_reloc, /* special_function */
717 "R_ARM_MOVT_ABS", /* name */
718 FALSE, /* partial_inplace */
719 0x000f0fff, /* src_mask */
720 0x000f0fff, /* dst_mask */
721 FALSE), /* pcrel_offset */
722
723 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
724 0, /* rightshift */
725 2, /* size (0 = byte, 1 = short, 2 = long) */
726 16, /* bitsize */
727 TRUE, /* pc_relative */
728 0, /* bitpos */
729 complain_overflow_dont,/* complain_on_overflow */
730 bfd_elf_generic_reloc, /* special_function */
731 "R_ARM_MOVW_PREL_NC", /* name */
732 FALSE, /* partial_inplace */
733 0x000f0fff, /* src_mask */
734 0x000f0fff, /* dst_mask */
735 TRUE), /* pcrel_offset */
736
737 HOWTO (R_ARM_MOVT_PREL, /* type */
738 0, /* rightshift */
739 2, /* size (0 = byte, 1 = short, 2 = long) */
740 16, /* bitsize */
741 TRUE, /* pc_relative */
742 0, /* bitpos */
743 complain_overflow_bitfield,/* complain_on_overflow */
744 bfd_elf_generic_reloc, /* special_function */
745 "R_ARM_MOVT_PREL", /* name */
746 FALSE, /* partial_inplace */
747 0x000f0fff, /* src_mask */
748 0x000f0fff, /* dst_mask */
749 TRUE), /* pcrel_offset */
750
751 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
752 0, /* rightshift */
753 2, /* size (0 = byte, 1 = short, 2 = long) */
754 16, /* bitsize */
755 FALSE, /* pc_relative */
756 0, /* bitpos */
757 complain_overflow_dont,/* complain_on_overflow */
758 bfd_elf_generic_reloc, /* special_function */
759 "R_ARM_THM_MOVW_ABS_NC",/* name */
760 FALSE, /* partial_inplace */
761 0x040f70ff, /* src_mask */
762 0x040f70ff, /* dst_mask */
763 FALSE), /* pcrel_offset */
764
765 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
766 0, /* rightshift */
767 2, /* size (0 = byte, 1 = short, 2 = long) */
768 16, /* bitsize */
769 FALSE, /* pc_relative */
770 0, /* bitpos */
771 complain_overflow_bitfield,/* complain_on_overflow */
772 bfd_elf_generic_reloc, /* special_function */
773 "R_ARM_THM_MOVT_ABS", /* name */
774 FALSE, /* partial_inplace */
775 0x040f70ff, /* src_mask */
776 0x040f70ff, /* dst_mask */
777 FALSE), /* pcrel_offset */
778
779 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
780 0, /* rightshift */
781 2, /* size (0 = byte, 1 = short, 2 = long) */
782 16, /* bitsize */
783 TRUE, /* pc_relative */
784 0, /* bitpos */
785 complain_overflow_dont,/* complain_on_overflow */
786 bfd_elf_generic_reloc, /* special_function */
787 "R_ARM_THM_MOVW_PREL_NC",/* name */
788 FALSE, /* partial_inplace */
789 0x040f70ff, /* src_mask */
790 0x040f70ff, /* dst_mask */
791 TRUE), /* pcrel_offset */
792
793 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
794 0, /* rightshift */
795 2, /* size (0 = byte, 1 = short, 2 = long) */
796 16, /* bitsize */
797 TRUE, /* pc_relative */
798 0, /* bitpos */
799 complain_overflow_bitfield,/* complain_on_overflow */
800 bfd_elf_generic_reloc, /* special_function */
801 "R_ARM_THM_MOVT_PREL", /* name */
802 FALSE, /* partial_inplace */
803 0x040f70ff, /* src_mask */
804 0x040f70ff, /* dst_mask */
805 TRUE), /* pcrel_offset */
806
807 HOWTO (R_ARM_THM_JUMP19, /* type */
808 1, /* rightshift */
809 2, /* size (0 = byte, 1 = short, 2 = long) */
810 19, /* bitsize */
811 TRUE, /* pc_relative */
812 0, /* bitpos */
813 complain_overflow_signed,/* complain_on_overflow */
814 bfd_elf_generic_reloc, /* special_function */
815 "R_ARM_THM_JUMP19", /* name */
816 FALSE, /* partial_inplace */
817 0x043f2fff, /* src_mask */
818 0x043f2fff, /* dst_mask */
819 TRUE), /* pcrel_offset */
820
821 HOWTO (R_ARM_THM_JUMP6, /* type */
822 1, /* rightshift */
823 1, /* size (0 = byte, 1 = short, 2 = long) */
824 6, /* bitsize */
825 TRUE, /* pc_relative */
826 0, /* bitpos */
827 complain_overflow_unsigned,/* complain_on_overflow */
828 bfd_elf_generic_reloc, /* special_function */
829 "R_ARM_THM_JUMP6", /* name */
830 FALSE, /* partial_inplace */
831 0x02f8, /* src_mask */
832 0x02f8, /* dst_mask */
833 TRUE), /* pcrel_offset */
834
835 /* These are declared as 13-bit signed relocations because we can
836 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
837 versa. */
838 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
839 0, /* rightshift */
840 2, /* size (0 = byte, 1 = short, 2 = long) */
841 13, /* bitsize */
842 TRUE, /* pc_relative */
843 0, /* bitpos */
844 complain_overflow_dont,/* complain_on_overflow */
845 bfd_elf_generic_reloc, /* special_function */
846 "R_ARM_THM_ALU_PREL_11_0",/* name */
847 FALSE, /* partial_inplace */
848 0xffffffff, /* src_mask */
849 0xffffffff, /* dst_mask */
850 TRUE), /* pcrel_offset */
851
852 HOWTO (R_ARM_THM_PC12, /* type */
853 0, /* rightshift */
854 2, /* size (0 = byte, 1 = short, 2 = long) */
855 13, /* bitsize */
856 TRUE, /* pc_relative */
857 0, /* bitpos */
858 complain_overflow_dont,/* complain_on_overflow */
859 bfd_elf_generic_reloc, /* special_function */
860 "R_ARM_THM_PC12", /* name */
861 FALSE, /* partial_inplace */
862 0xffffffff, /* src_mask */
863 0xffffffff, /* dst_mask */
864 TRUE), /* pcrel_offset */
865
866 HOWTO (R_ARM_ABS32_NOI, /* type */
867 0, /* rightshift */
868 2, /* size (0 = byte, 1 = short, 2 = long) */
869 32, /* bitsize */
870 FALSE, /* pc_relative */
871 0, /* bitpos */
872 complain_overflow_dont,/* complain_on_overflow */
873 bfd_elf_generic_reloc, /* special_function */
874 "R_ARM_ABS32_NOI", /* name */
875 FALSE, /* partial_inplace */
876 0xffffffff, /* src_mask */
877 0xffffffff, /* dst_mask */
878 FALSE), /* pcrel_offset */
879
880 HOWTO (R_ARM_REL32_NOI, /* type */
881 0, /* rightshift */
882 2, /* size (0 = byte, 1 = short, 2 = long) */
883 32, /* bitsize */
884 TRUE, /* pc_relative */
885 0, /* bitpos */
886 complain_overflow_dont,/* complain_on_overflow */
887 bfd_elf_generic_reloc, /* special_function */
888 "R_ARM_REL32_NOI", /* name */
889 FALSE, /* partial_inplace */
890 0xffffffff, /* src_mask */
891 0xffffffff, /* dst_mask */
892 FALSE), /* pcrel_offset */
893
894 /* Group relocations. */
895
896 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
897 0, /* rightshift */
898 2, /* size (0 = byte, 1 = short, 2 = long) */
899 32, /* bitsize */
900 TRUE, /* pc_relative */
901 0, /* bitpos */
902 complain_overflow_dont,/* complain_on_overflow */
903 bfd_elf_generic_reloc, /* special_function */
904 "R_ARM_ALU_PC_G0_NC", /* name */
905 FALSE, /* partial_inplace */
906 0xffffffff, /* src_mask */
907 0xffffffff, /* dst_mask */
908 TRUE), /* pcrel_offset */
909
910 HOWTO (R_ARM_ALU_PC_G0, /* type */
911 0, /* rightshift */
912 2, /* size (0 = byte, 1 = short, 2 = long) */
913 32, /* bitsize */
914 TRUE, /* pc_relative */
915 0, /* bitpos */
916 complain_overflow_dont,/* complain_on_overflow */
917 bfd_elf_generic_reloc, /* special_function */
918 "R_ARM_ALU_PC_G0", /* name */
919 FALSE, /* partial_inplace */
920 0xffffffff, /* src_mask */
921 0xffffffff, /* dst_mask */
922 TRUE), /* pcrel_offset */
923
924 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
925 0, /* rightshift */
926 2, /* size (0 = byte, 1 = short, 2 = long) */
927 32, /* bitsize */
928 TRUE, /* pc_relative */
929 0, /* bitpos */
930 complain_overflow_dont,/* complain_on_overflow */
931 bfd_elf_generic_reloc, /* special_function */
932 "R_ARM_ALU_PC_G1_NC", /* name */
933 FALSE, /* partial_inplace */
934 0xffffffff, /* src_mask */
935 0xffffffff, /* dst_mask */
936 TRUE), /* pcrel_offset */
937
938 HOWTO (R_ARM_ALU_PC_G1, /* type */
939 0, /* rightshift */
940 2, /* size (0 = byte, 1 = short, 2 = long) */
941 32, /* bitsize */
942 TRUE, /* pc_relative */
943 0, /* bitpos */
944 complain_overflow_dont,/* complain_on_overflow */
945 bfd_elf_generic_reloc, /* special_function */
946 "R_ARM_ALU_PC_G1", /* name */
947 FALSE, /* partial_inplace */
948 0xffffffff, /* src_mask */
949 0xffffffff, /* dst_mask */
950 TRUE), /* pcrel_offset */
951
952 HOWTO (R_ARM_ALU_PC_G2, /* type */
953 0, /* rightshift */
954 2, /* size (0 = byte, 1 = short, 2 = long) */
955 32, /* bitsize */
956 TRUE, /* pc_relative */
957 0, /* bitpos */
958 complain_overflow_dont,/* complain_on_overflow */
959 bfd_elf_generic_reloc, /* special_function */
960 "R_ARM_ALU_PC_G2", /* name */
961 FALSE, /* partial_inplace */
962 0xffffffff, /* src_mask */
963 0xffffffff, /* dst_mask */
964 TRUE), /* pcrel_offset */
965
966 HOWTO (R_ARM_LDR_PC_G1, /* type */
967 0, /* rightshift */
968 2, /* size (0 = byte, 1 = short, 2 = long) */
969 32, /* bitsize */
970 TRUE, /* pc_relative */
971 0, /* bitpos */
972 complain_overflow_dont,/* complain_on_overflow */
973 bfd_elf_generic_reloc, /* special_function */
974 "R_ARM_LDR_PC_G1", /* name */
975 FALSE, /* partial_inplace */
976 0xffffffff, /* src_mask */
977 0xffffffff, /* dst_mask */
978 TRUE), /* pcrel_offset */
979
980 HOWTO (R_ARM_LDR_PC_G2, /* type */
981 0, /* rightshift */
982 2, /* size (0 = byte, 1 = short, 2 = long) */
983 32, /* bitsize */
984 TRUE, /* pc_relative */
985 0, /* bitpos */
986 complain_overflow_dont,/* complain_on_overflow */
987 bfd_elf_generic_reloc, /* special_function */
988 "R_ARM_LDR_PC_G2", /* name */
989 FALSE, /* partial_inplace */
990 0xffffffff, /* src_mask */
991 0xffffffff, /* dst_mask */
992 TRUE), /* pcrel_offset */
993
994 HOWTO (R_ARM_LDRS_PC_G0, /* type */
995 0, /* rightshift */
996 2, /* size (0 = byte, 1 = short, 2 = long) */
997 32, /* bitsize */
998 TRUE, /* pc_relative */
999 0, /* bitpos */
1000 complain_overflow_dont,/* complain_on_overflow */
1001 bfd_elf_generic_reloc, /* special_function */
1002 "R_ARM_LDRS_PC_G0", /* name */
1003 FALSE, /* partial_inplace */
1004 0xffffffff, /* src_mask */
1005 0xffffffff, /* dst_mask */
1006 TRUE), /* pcrel_offset */
1007
1008 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1009 0, /* rightshift */
1010 2, /* size (0 = byte, 1 = short, 2 = long) */
1011 32, /* bitsize */
1012 TRUE, /* pc_relative */
1013 0, /* bitpos */
1014 complain_overflow_dont,/* complain_on_overflow */
1015 bfd_elf_generic_reloc, /* special_function */
1016 "R_ARM_LDRS_PC_G1", /* name */
1017 FALSE, /* partial_inplace */
1018 0xffffffff, /* src_mask */
1019 0xffffffff, /* dst_mask */
1020 TRUE), /* pcrel_offset */
1021
1022 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1023 0, /* rightshift */
1024 2, /* size (0 = byte, 1 = short, 2 = long) */
1025 32, /* bitsize */
1026 TRUE, /* pc_relative */
1027 0, /* bitpos */
1028 complain_overflow_dont,/* complain_on_overflow */
1029 bfd_elf_generic_reloc, /* special_function */
1030 "R_ARM_LDRS_PC_G2", /* name */
1031 FALSE, /* partial_inplace */
1032 0xffffffff, /* src_mask */
1033 0xffffffff, /* dst_mask */
1034 TRUE), /* pcrel_offset */
1035
1036 HOWTO (R_ARM_LDC_PC_G0, /* type */
1037 0, /* rightshift */
1038 2, /* size (0 = byte, 1 = short, 2 = long) */
1039 32, /* bitsize */
1040 TRUE, /* pc_relative */
1041 0, /* bitpos */
1042 complain_overflow_dont,/* complain_on_overflow */
1043 bfd_elf_generic_reloc, /* special_function */
1044 "R_ARM_LDC_PC_G0", /* name */
1045 FALSE, /* partial_inplace */
1046 0xffffffff, /* src_mask */
1047 0xffffffff, /* dst_mask */
1048 TRUE), /* pcrel_offset */
1049
1050 HOWTO (R_ARM_LDC_PC_G1, /* type */
1051 0, /* rightshift */
1052 2, /* size (0 = byte, 1 = short, 2 = long) */
1053 32, /* bitsize */
1054 TRUE, /* pc_relative */
1055 0, /* bitpos */
1056 complain_overflow_dont,/* complain_on_overflow */
1057 bfd_elf_generic_reloc, /* special_function */
1058 "R_ARM_LDC_PC_G1", /* name */
1059 FALSE, /* partial_inplace */
1060 0xffffffff, /* src_mask */
1061 0xffffffff, /* dst_mask */
1062 TRUE), /* pcrel_offset */
1063
1064 HOWTO (R_ARM_LDC_PC_G2, /* type */
1065 0, /* rightshift */
1066 2, /* size (0 = byte, 1 = short, 2 = long) */
1067 32, /* bitsize */
1068 TRUE, /* pc_relative */
1069 0, /* bitpos */
1070 complain_overflow_dont,/* complain_on_overflow */
1071 bfd_elf_generic_reloc, /* special_function */
1072 "R_ARM_LDC_PC_G2", /* name */
1073 FALSE, /* partial_inplace */
1074 0xffffffff, /* src_mask */
1075 0xffffffff, /* dst_mask */
1076 TRUE), /* pcrel_offset */
1077
1078 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1079 0, /* rightshift */
1080 2, /* size (0 = byte, 1 = short, 2 = long) */
1081 32, /* bitsize */
1082 TRUE, /* pc_relative */
1083 0, /* bitpos */
1084 complain_overflow_dont,/* complain_on_overflow */
1085 bfd_elf_generic_reloc, /* special_function */
1086 "R_ARM_ALU_SB_G0_NC", /* name */
1087 FALSE, /* partial_inplace */
1088 0xffffffff, /* src_mask */
1089 0xffffffff, /* dst_mask */
1090 TRUE), /* pcrel_offset */
1091
1092 HOWTO (R_ARM_ALU_SB_G0, /* type */
1093 0, /* rightshift */
1094 2, /* size (0 = byte, 1 = short, 2 = long) */
1095 32, /* bitsize */
1096 TRUE, /* pc_relative */
1097 0, /* bitpos */
1098 complain_overflow_dont,/* complain_on_overflow */
1099 bfd_elf_generic_reloc, /* special_function */
1100 "R_ARM_ALU_SB_G0", /* name */
1101 FALSE, /* partial_inplace */
1102 0xffffffff, /* src_mask */
1103 0xffffffff, /* dst_mask */
1104 TRUE), /* pcrel_offset */
1105
1106 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1107 0, /* rightshift */
1108 2, /* size (0 = byte, 1 = short, 2 = long) */
1109 32, /* bitsize */
1110 TRUE, /* pc_relative */
1111 0, /* bitpos */
1112 complain_overflow_dont,/* complain_on_overflow */
1113 bfd_elf_generic_reloc, /* special_function */
1114 "R_ARM_ALU_SB_G1_NC", /* name */
1115 FALSE, /* partial_inplace */
1116 0xffffffff, /* src_mask */
1117 0xffffffff, /* dst_mask */
1118 TRUE), /* pcrel_offset */
1119
1120 HOWTO (R_ARM_ALU_SB_G1, /* type */
1121 0, /* rightshift */
1122 2, /* size (0 = byte, 1 = short, 2 = long) */
1123 32, /* bitsize */
1124 TRUE, /* pc_relative */
1125 0, /* bitpos */
1126 complain_overflow_dont,/* complain_on_overflow */
1127 bfd_elf_generic_reloc, /* special_function */
1128 "R_ARM_ALU_SB_G1", /* name */
1129 FALSE, /* partial_inplace */
1130 0xffffffff, /* src_mask */
1131 0xffffffff, /* dst_mask */
1132 TRUE), /* pcrel_offset */
1133
1134 HOWTO (R_ARM_ALU_SB_G2, /* type */
1135 0, /* rightshift */
1136 2, /* size (0 = byte, 1 = short, 2 = long) */
1137 32, /* bitsize */
1138 TRUE, /* pc_relative */
1139 0, /* bitpos */
1140 complain_overflow_dont,/* complain_on_overflow */
1141 bfd_elf_generic_reloc, /* special_function */
1142 "R_ARM_ALU_SB_G2", /* name */
1143 FALSE, /* partial_inplace */
1144 0xffffffff, /* src_mask */
1145 0xffffffff, /* dst_mask */
1146 TRUE), /* pcrel_offset */
1147
1148 HOWTO (R_ARM_LDR_SB_G0, /* type */
1149 0, /* rightshift */
1150 2, /* size (0 = byte, 1 = short, 2 = long) */
1151 32, /* bitsize */
1152 TRUE, /* pc_relative */
1153 0, /* bitpos */
1154 complain_overflow_dont,/* complain_on_overflow */
1155 bfd_elf_generic_reloc, /* special_function */
1156 "R_ARM_LDR_SB_G0", /* name */
1157 FALSE, /* partial_inplace */
1158 0xffffffff, /* src_mask */
1159 0xffffffff, /* dst_mask */
1160 TRUE), /* pcrel_offset */
1161
1162 HOWTO (R_ARM_LDR_SB_G1, /* type */
1163 0, /* rightshift */
1164 2, /* size (0 = byte, 1 = short, 2 = long) */
1165 32, /* bitsize */
1166 TRUE, /* pc_relative */
1167 0, /* bitpos */
1168 complain_overflow_dont,/* complain_on_overflow */
1169 bfd_elf_generic_reloc, /* special_function */
1170 "R_ARM_LDR_SB_G1", /* name */
1171 FALSE, /* partial_inplace */
1172 0xffffffff, /* src_mask */
1173 0xffffffff, /* dst_mask */
1174 TRUE), /* pcrel_offset */
1175
1176 HOWTO (R_ARM_LDR_SB_G2, /* type */
1177 0, /* rightshift */
1178 2, /* size (0 = byte, 1 = short, 2 = long) */
1179 32, /* bitsize */
1180 TRUE, /* pc_relative */
1181 0, /* bitpos */
1182 complain_overflow_dont,/* complain_on_overflow */
1183 bfd_elf_generic_reloc, /* special_function */
1184 "R_ARM_LDR_SB_G2", /* name */
1185 FALSE, /* partial_inplace */
1186 0xffffffff, /* src_mask */
1187 0xffffffff, /* dst_mask */
1188 TRUE), /* pcrel_offset */
1189
1190 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1191 0, /* rightshift */
1192 2, /* size (0 = byte, 1 = short, 2 = long) */
1193 32, /* bitsize */
1194 TRUE, /* pc_relative */
1195 0, /* bitpos */
1196 complain_overflow_dont,/* complain_on_overflow */
1197 bfd_elf_generic_reloc, /* special_function */
1198 "R_ARM_LDRS_SB_G0", /* name */
1199 FALSE, /* partial_inplace */
1200 0xffffffff, /* src_mask */
1201 0xffffffff, /* dst_mask */
1202 TRUE), /* pcrel_offset */
1203
1204 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1205 0, /* rightshift */
1206 2, /* size (0 = byte, 1 = short, 2 = long) */
1207 32, /* bitsize */
1208 TRUE, /* pc_relative */
1209 0, /* bitpos */
1210 complain_overflow_dont,/* complain_on_overflow */
1211 bfd_elf_generic_reloc, /* special_function */
1212 "R_ARM_LDRS_SB_G1", /* name */
1213 FALSE, /* partial_inplace */
1214 0xffffffff, /* src_mask */
1215 0xffffffff, /* dst_mask */
1216 TRUE), /* pcrel_offset */
1217
1218 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1219 0, /* rightshift */
1220 2, /* size (0 = byte, 1 = short, 2 = long) */
1221 32, /* bitsize */
1222 TRUE, /* pc_relative */
1223 0, /* bitpos */
1224 complain_overflow_dont,/* complain_on_overflow */
1225 bfd_elf_generic_reloc, /* special_function */
1226 "R_ARM_LDRS_SB_G2", /* name */
1227 FALSE, /* partial_inplace */
1228 0xffffffff, /* src_mask */
1229 0xffffffff, /* dst_mask */
1230 TRUE), /* pcrel_offset */
1231
1232 HOWTO (R_ARM_LDC_SB_G0, /* type */
1233 0, /* rightshift */
1234 2, /* size (0 = byte, 1 = short, 2 = long) */
1235 32, /* bitsize */
1236 TRUE, /* pc_relative */
1237 0, /* bitpos */
1238 complain_overflow_dont,/* complain_on_overflow */
1239 bfd_elf_generic_reloc, /* special_function */
1240 "R_ARM_LDC_SB_G0", /* name */
1241 FALSE, /* partial_inplace */
1242 0xffffffff, /* src_mask */
1243 0xffffffff, /* dst_mask */
1244 TRUE), /* pcrel_offset */
1245
1246 HOWTO (R_ARM_LDC_SB_G1, /* type */
1247 0, /* rightshift */
1248 2, /* size (0 = byte, 1 = short, 2 = long) */
1249 32, /* bitsize */
1250 TRUE, /* pc_relative */
1251 0, /* bitpos */
1252 complain_overflow_dont,/* complain_on_overflow */
1253 bfd_elf_generic_reloc, /* special_function */
1254 "R_ARM_LDC_SB_G1", /* name */
1255 FALSE, /* partial_inplace */
1256 0xffffffff, /* src_mask */
1257 0xffffffff, /* dst_mask */
1258 TRUE), /* pcrel_offset */
1259
1260 HOWTO (R_ARM_LDC_SB_G2, /* type */
1261 0, /* rightshift */
1262 2, /* size (0 = byte, 1 = short, 2 = long) */
1263 32, /* bitsize */
1264 TRUE, /* pc_relative */
1265 0, /* bitpos */
1266 complain_overflow_dont,/* complain_on_overflow */
1267 bfd_elf_generic_reloc, /* special_function */
1268 "R_ARM_LDC_SB_G2", /* name */
1269 FALSE, /* partial_inplace */
1270 0xffffffff, /* src_mask */
1271 0xffffffff, /* dst_mask */
1272 TRUE), /* pcrel_offset */
1273
1274 /* End of group relocations. */
1275
1276 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1277 0, /* rightshift */
1278 2, /* size (0 = byte, 1 = short, 2 = long) */
1279 16, /* bitsize */
1280 FALSE, /* pc_relative */
1281 0, /* bitpos */
1282 complain_overflow_dont,/* complain_on_overflow */
1283 bfd_elf_generic_reloc, /* special_function */
1284 "R_ARM_MOVW_BREL_NC", /* name */
1285 FALSE, /* partial_inplace */
1286 0x0000ffff, /* src_mask */
1287 0x0000ffff, /* dst_mask */
1288 FALSE), /* pcrel_offset */
1289
1290 HOWTO (R_ARM_MOVT_BREL, /* type */
1291 0, /* rightshift */
1292 2, /* size (0 = byte, 1 = short, 2 = long) */
1293 16, /* bitsize */
1294 FALSE, /* pc_relative */
1295 0, /* bitpos */
1296 complain_overflow_bitfield,/* complain_on_overflow */
1297 bfd_elf_generic_reloc, /* special_function */
1298 "R_ARM_MOVT_BREL", /* name */
1299 FALSE, /* partial_inplace */
1300 0x0000ffff, /* src_mask */
1301 0x0000ffff, /* dst_mask */
1302 FALSE), /* pcrel_offset */
1303
1304 HOWTO (R_ARM_MOVW_BREL, /* type */
1305 0, /* rightshift */
1306 2, /* size (0 = byte, 1 = short, 2 = long) */
1307 16, /* bitsize */
1308 FALSE, /* pc_relative */
1309 0, /* bitpos */
1310 complain_overflow_dont,/* complain_on_overflow */
1311 bfd_elf_generic_reloc, /* special_function */
1312 "R_ARM_MOVW_BREL", /* name */
1313 FALSE, /* partial_inplace */
1314 0x0000ffff, /* src_mask */
1315 0x0000ffff, /* dst_mask */
1316 FALSE), /* pcrel_offset */
1317
1318 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1319 0, /* rightshift */
1320 2, /* size (0 = byte, 1 = short, 2 = long) */
1321 16, /* bitsize */
1322 FALSE, /* pc_relative */
1323 0, /* bitpos */
1324 complain_overflow_dont,/* complain_on_overflow */
1325 bfd_elf_generic_reloc, /* special_function */
1326 "R_ARM_THM_MOVW_BREL_NC",/* name */
1327 FALSE, /* partial_inplace */
1328 0x040f70ff, /* src_mask */
1329 0x040f70ff, /* dst_mask */
1330 FALSE), /* pcrel_offset */
1331
1332 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1333 0, /* rightshift */
1334 2, /* size (0 = byte, 1 = short, 2 = long) */
1335 16, /* bitsize */
1336 FALSE, /* pc_relative */
1337 0, /* bitpos */
1338 complain_overflow_bitfield,/* complain_on_overflow */
1339 bfd_elf_generic_reloc, /* special_function */
1340 "R_ARM_THM_MOVT_BREL", /* name */
1341 FALSE, /* partial_inplace */
1342 0x040f70ff, /* src_mask */
1343 0x040f70ff, /* dst_mask */
1344 FALSE), /* pcrel_offset */
1345
1346 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1347 0, /* rightshift */
1348 2, /* size (0 = byte, 1 = short, 2 = long) */
1349 16, /* bitsize */
1350 FALSE, /* pc_relative */
1351 0, /* bitpos */
1352 complain_overflow_dont,/* complain_on_overflow */
1353 bfd_elf_generic_reloc, /* special_function */
1354 "R_ARM_THM_MOVW_BREL", /* name */
1355 FALSE, /* partial_inplace */
1356 0x040f70ff, /* src_mask */
1357 0x040f70ff, /* dst_mask */
1358 FALSE), /* pcrel_offset */
1359
1360 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 32, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_bitfield,/* complain_on_overflow */
1367 NULL, /* special_function */
1368 "R_ARM_TLS_GOTDESC", /* name */
1369 TRUE, /* partial_inplace */
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 HOWTO (R_ARM_TLS_CALL, /* type */
1375 0, /* rightshift */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 24, /* bitsize */
1378 FALSE, /* pc_relative */
1379 0, /* bitpos */
1380 complain_overflow_dont,/* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 "R_ARM_TLS_CALL", /* name */
1383 FALSE, /* partial_inplace */
1384 0x00ffffff, /* src_mask */
1385 0x00ffffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1387
1388 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1389 0, /* rightshift */
1390 2, /* size (0 = byte, 1 = short, 2 = long) */
1391 0, /* bitsize */
1392 FALSE, /* pc_relative */
1393 0, /* bitpos */
1394 complain_overflow_bitfield,/* complain_on_overflow */
1395 bfd_elf_generic_reloc, /* special_function */
1396 "R_ARM_TLS_DESCSEQ", /* name */
1397 FALSE, /* partial_inplace */
1398 0x00000000, /* src_mask */
1399 0x00000000, /* dst_mask */
1400 FALSE), /* pcrel_offset */
1401
1402 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1403 0, /* rightshift */
1404 2, /* size (0 = byte, 1 = short, 2 = long) */
1405 24, /* bitsize */
1406 FALSE, /* pc_relative */
1407 0, /* bitpos */
1408 complain_overflow_dont,/* complain_on_overflow */
1409 bfd_elf_generic_reloc, /* special_function */
1410 "R_ARM_THM_TLS_CALL", /* name */
1411 FALSE, /* partial_inplace */
1412 0x07ff07ff, /* src_mask */
1413 0x07ff07ff, /* dst_mask */
1414 FALSE), /* pcrel_offset */
1415
1416 HOWTO (R_ARM_PLT32_ABS, /* type */
1417 0, /* rightshift */
1418 2, /* size (0 = byte, 1 = short, 2 = long) */
1419 32, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_dont,/* complain_on_overflow */
1423 bfd_elf_generic_reloc, /* special_function */
1424 "R_ARM_PLT32_ABS", /* name */
1425 FALSE, /* partial_inplace */
1426 0xffffffff, /* src_mask */
1427 0xffffffff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 HOWTO (R_ARM_GOT_ABS, /* type */
1431 0, /* rightshift */
1432 2, /* size (0 = byte, 1 = short, 2 = long) */
1433 32, /* bitsize */
1434 FALSE, /* pc_relative */
1435 0, /* bitpos */
1436 complain_overflow_dont,/* complain_on_overflow */
1437 bfd_elf_generic_reloc, /* special_function */
1438 "R_ARM_GOT_ABS", /* name */
1439 FALSE, /* partial_inplace */
1440 0xffffffff, /* src_mask */
1441 0xffffffff, /* dst_mask */
1442 FALSE), /* pcrel_offset */
1443
1444 HOWTO (R_ARM_GOT_PREL, /* type */
1445 0, /* rightshift */
1446 2, /* size (0 = byte, 1 = short, 2 = long) */
1447 32, /* bitsize */
1448 TRUE, /* pc_relative */
1449 0, /* bitpos */
1450 complain_overflow_dont, /* complain_on_overflow */
1451 bfd_elf_generic_reloc, /* special_function */
1452 "R_ARM_GOT_PREL", /* name */
1453 FALSE, /* partial_inplace */
1454 0xffffffff, /* src_mask */
1455 0xffffffff, /* dst_mask */
1456 TRUE), /* pcrel_offset */
1457
1458 HOWTO (R_ARM_GOT_BREL12, /* type */
1459 0, /* rightshift */
1460 2, /* size (0 = byte, 1 = short, 2 = long) */
1461 12, /* bitsize */
1462 FALSE, /* pc_relative */
1463 0, /* bitpos */
1464 complain_overflow_bitfield,/* complain_on_overflow */
1465 bfd_elf_generic_reloc, /* special_function */
1466 "R_ARM_GOT_BREL12", /* name */
1467 FALSE, /* partial_inplace */
1468 0x00000fff, /* src_mask */
1469 0x00000fff, /* dst_mask */
1470 FALSE), /* pcrel_offset */
1471
1472 HOWTO (R_ARM_GOTOFF12, /* type */
1473 0, /* rightshift */
1474 2, /* size (0 = byte, 1 = short, 2 = long) */
1475 12, /* bitsize */
1476 FALSE, /* pc_relative */
1477 0, /* bitpos */
1478 complain_overflow_bitfield,/* complain_on_overflow */
1479 bfd_elf_generic_reloc, /* special_function */
1480 "R_ARM_GOTOFF12", /* name */
1481 FALSE, /* partial_inplace */
1482 0x00000fff, /* src_mask */
1483 0x00000fff, /* dst_mask */
1484 FALSE), /* pcrel_offset */
1485
1486 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1487
1488 /* GNU extension to record C++ vtable member usage */
1489 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1490 0, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 0, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_dont, /* complain_on_overflow */
1496 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1497 "R_ARM_GNU_VTENTRY", /* name */
1498 FALSE, /* partial_inplace */
1499 0, /* src_mask */
1500 0, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 /* GNU extension to record C++ vtable hierarchy */
1504 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1505 0, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 0, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_dont, /* complain_on_overflow */
1511 NULL, /* special_function */
1512 "R_ARM_GNU_VTINHERIT", /* name */
1513 FALSE, /* partial_inplace */
1514 0, /* src_mask */
1515 0, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 HOWTO (R_ARM_THM_JUMP11, /* type */
1519 1, /* rightshift */
1520 1, /* size (0 = byte, 1 = short, 2 = long) */
1521 11, /* bitsize */
1522 TRUE, /* pc_relative */
1523 0, /* bitpos */
1524 complain_overflow_signed, /* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 "R_ARM_THM_JUMP11", /* name */
1527 FALSE, /* partial_inplace */
1528 0x000007ff, /* src_mask */
1529 0x000007ff, /* dst_mask */
1530 TRUE), /* pcrel_offset */
1531
1532 HOWTO (R_ARM_THM_JUMP8, /* type */
1533 1, /* rightshift */
1534 1, /* size (0 = byte, 1 = short, 2 = long) */
1535 8, /* bitsize */
1536 TRUE, /* pc_relative */
1537 0, /* bitpos */
1538 complain_overflow_signed, /* complain_on_overflow */
1539 bfd_elf_generic_reloc, /* special_function */
1540 "R_ARM_THM_JUMP8", /* name */
1541 FALSE, /* partial_inplace */
1542 0x000000ff, /* src_mask */
1543 0x000000ff, /* dst_mask */
1544 TRUE), /* pcrel_offset */
1545
1546 /* TLS relocations */
1547 HOWTO (R_ARM_TLS_GD32, /* type */
1548 0, /* rightshift */
1549 2, /* size (0 = byte, 1 = short, 2 = long) */
1550 32, /* bitsize */
1551 FALSE, /* pc_relative */
1552 0, /* bitpos */
1553 complain_overflow_bitfield,/* complain_on_overflow */
1554 NULL, /* special_function */
1555 "R_ARM_TLS_GD32", /* name */
1556 TRUE, /* partial_inplace */
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
1559 FALSE), /* pcrel_offset */
1560
1561 HOWTO (R_ARM_TLS_LDM32, /* type */
1562 0, /* rightshift */
1563 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 32, /* bitsize */
1565 FALSE, /* pc_relative */
1566 0, /* bitpos */
1567 complain_overflow_bitfield,/* complain_on_overflow */
1568 bfd_elf_generic_reloc, /* special_function */
1569 "R_ARM_TLS_LDM32", /* name */
1570 TRUE, /* partial_inplace */
1571 0xffffffff, /* src_mask */
1572 0xffffffff, /* dst_mask */
1573 FALSE), /* pcrel_offset */
1574
1575 HOWTO (R_ARM_TLS_LDO32, /* type */
1576 0, /* rightshift */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 32, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_bitfield,/* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 "R_ARM_TLS_LDO32", /* name */
1584 TRUE, /* partial_inplace */
1585 0xffffffff, /* src_mask */
1586 0xffffffff, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 HOWTO (R_ARM_TLS_IE32, /* type */
1590 0, /* rightshift */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
1592 32, /* bitsize */
1593 FALSE, /* pc_relative */
1594 0, /* bitpos */
1595 complain_overflow_bitfield,/* complain_on_overflow */
1596 NULL, /* special_function */
1597 "R_ARM_TLS_IE32", /* name */
1598 TRUE, /* partial_inplace */
1599 0xffffffff, /* src_mask */
1600 0xffffffff, /* dst_mask */
1601 FALSE), /* pcrel_offset */
1602
1603 HOWTO (R_ARM_TLS_LE32, /* type */
1604 0, /* rightshift */
1605 2, /* size (0 = byte, 1 = short, 2 = long) */
1606 32, /* bitsize */
1607 FALSE, /* pc_relative */
1608 0, /* bitpos */
1609 complain_overflow_bitfield,/* complain_on_overflow */
1610 bfd_elf_generic_reloc, /* special_function */
1611 "R_ARM_TLS_LE32", /* name */
1612 TRUE, /* partial_inplace */
1613 0xffffffff, /* src_mask */
1614 0xffffffff, /* dst_mask */
1615 FALSE), /* pcrel_offset */
1616
1617 HOWTO (R_ARM_TLS_LDO12, /* type */
1618 0, /* rightshift */
1619 2, /* size (0 = byte, 1 = short, 2 = long) */
1620 12, /* bitsize */
1621 FALSE, /* pc_relative */
1622 0, /* bitpos */
1623 complain_overflow_bitfield,/* complain_on_overflow */
1624 bfd_elf_generic_reloc, /* special_function */
1625 "R_ARM_TLS_LDO12", /* name */
1626 FALSE, /* partial_inplace */
1627 0x00000fff, /* src_mask */
1628 0x00000fff, /* dst_mask */
1629 FALSE), /* pcrel_offset */
1630
1631 HOWTO (R_ARM_TLS_LE12, /* type */
1632 0, /* rightshift */
1633 2, /* size (0 = byte, 1 = short, 2 = long) */
1634 12, /* bitsize */
1635 FALSE, /* pc_relative */
1636 0, /* bitpos */
1637 complain_overflow_bitfield,/* complain_on_overflow */
1638 bfd_elf_generic_reloc, /* special_function */
1639 "R_ARM_TLS_LE12", /* name */
1640 FALSE, /* partial_inplace */
1641 0x00000fff, /* src_mask */
1642 0x00000fff, /* dst_mask */
1643 FALSE), /* pcrel_offset */
1644
1645 HOWTO (R_ARM_TLS_IE12GP, /* type */
1646 0, /* rightshift */
1647 2, /* size (0 = byte, 1 = short, 2 = long) */
1648 12, /* bitsize */
1649 FALSE, /* pc_relative */
1650 0, /* bitpos */
1651 complain_overflow_bitfield,/* complain_on_overflow */
1652 bfd_elf_generic_reloc, /* special_function */
1653 "R_ARM_TLS_IE12GP", /* name */
1654 FALSE, /* partial_inplace */
1655 0x00000fff, /* src_mask */
1656 0x00000fff, /* dst_mask */
1657 FALSE), /* pcrel_offset */
1658
1659 /* 112-127 private relocations. */
1660 EMPTY_HOWTO (112),
1661 EMPTY_HOWTO (113),
1662 EMPTY_HOWTO (114),
1663 EMPTY_HOWTO (115),
1664 EMPTY_HOWTO (116),
1665 EMPTY_HOWTO (117),
1666 EMPTY_HOWTO (118),
1667 EMPTY_HOWTO (119),
1668 EMPTY_HOWTO (120),
1669 EMPTY_HOWTO (121),
1670 EMPTY_HOWTO (122),
1671 EMPTY_HOWTO (123),
1672 EMPTY_HOWTO (124),
1673 EMPTY_HOWTO (125),
1674 EMPTY_HOWTO (126),
1675 EMPTY_HOWTO (127),
1676
1677 /* R_ARM_ME_TOO, obsolete. */
1678 EMPTY_HOWTO (128),
1679
1680 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1681 0, /* rightshift */
1682 1, /* size (0 = byte, 1 = short, 2 = long) */
1683 0, /* bitsize */
1684 FALSE, /* pc_relative */
1685 0, /* bitpos */
1686 complain_overflow_bitfield,/* complain_on_overflow */
1687 bfd_elf_generic_reloc, /* special_function */
1688 "R_ARM_THM_TLS_DESCSEQ",/* name */
1689 FALSE, /* partial_inplace */
1690 0x00000000, /* src_mask */
1691 0x00000000, /* dst_mask */
1692 FALSE), /* pcrel_offset */
1693 };
1694
1695 /* 160 onwards: */
1696 static reloc_howto_type elf32_arm_howto_table_2[1] =
1697 {
1698 HOWTO (R_ARM_IRELATIVE, /* type */
1699 0, /* rightshift */
1700 2, /* size (0 = byte, 1 = short, 2 = long) */
1701 32, /* bitsize */
1702 FALSE, /* pc_relative */
1703 0, /* bitpos */
1704 complain_overflow_bitfield,/* complain_on_overflow */
1705 bfd_elf_generic_reloc, /* special_function */
1706 "R_ARM_IRELATIVE", /* name */
1707 TRUE, /* partial_inplace */
1708 0xffffffff, /* src_mask */
1709 0xffffffff, /* dst_mask */
1710 FALSE) /* pcrel_offset */
1711 };
1712
1713 /* 249-255 extended, currently unused, relocations: */
1714 static reloc_howto_type elf32_arm_howto_table_3[4] =
1715 {
1716 HOWTO (R_ARM_RREL32, /* type */
1717 0, /* rightshift */
1718 0, /* size (0 = byte, 1 = short, 2 = long) */
1719 0, /* bitsize */
1720 FALSE, /* pc_relative */
1721 0, /* bitpos */
1722 complain_overflow_dont,/* complain_on_overflow */
1723 bfd_elf_generic_reloc, /* special_function */
1724 "R_ARM_RREL32", /* name */
1725 FALSE, /* partial_inplace */
1726 0, /* src_mask */
1727 0, /* dst_mask */
1728 FALSE), /* pcrel_offset */
1729
1730 HOWTO (R_ARM_RABS32, /* type */
1731 0, /* rightshift */
1732 0, /* size (0 = byte, 1 = short, 2 = long) */
1733 0, /* bitsize */
1734 FALSE, /* pc_relative */
1735 0, /* bitpos */
1736 complain_overflow_dont,/* complain_on_overflow */
1737 bfd_elf_generic_reloc, /* special_function */
1738 "R_ARM_RABS32", /* name */
1739 FALSE, /* partial_inplace */
1740 0, /* src_mask */
1741 0, /* dst_mask */
1742 FALSE), /* pcrel_offset */
1743
1744 HOWTO (R_ARM_RPC24, /* type */
1745 0, /* rightshift */
1746 0, /* size (0 = byte, 1 = short, 2 = long) */
1747 0, /* bitsize */
1748 FALSE, /* pc_relative */
1749 0, /* bitpos */
1750 complain_overflow_dont,/* complain_on_overflow */
1751 bfd_elf_generic_reloc, /* special_function */
1752 "R_ARM_RPC24", /* name */
1753 FALSE, /* partial_inplace */
1754 0, /* src_mask */
1755 0, /* dst_mask */
1756 FALSE), /* pcrel_offset */
1757
1758 HOWTO (R_ARM_RBASE, /* type */
1759 0, /* rightshift */
1760 0, /* size (0 = byte, 1 = short, 2 = long) */
1761 0, /* bitsize */
1762 FALSE, /* pc_relative */
1763 0, /* bitpos */
1764 complain_overflow_dont,/* complain_on_overflow */
1765 bfd_elf_generic_reloc, /* special_function */
1766 "R_ARM_RBASE", /* name */
1767 FALSE, /* partial_inplace */
1768 0, /* src_mask */
1769 0, /* dst_mask */
1770 FALSE) /* pcrel_offset */
1771 };
1772
1773 static reloc_howto_type *
1774 elf32_arm_howto_from_type (unsigned int r_type)
1775 {
1776 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1777 return &elf32_arm_howto_table_1[r_type];
1778
1779 if (r_type == R_ARM_IRELATIVE)
1780 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1781
1782 if (r_type >= R_ARM_RREL32
1783 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1784 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1785
1786 return NULL;
1787 }
1788
1789 static void
1790 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1791 Elf_Internal_Rela * elf_reloc)
1792 {
1793 unsigned int r_type;
1794
1795 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1796 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1797 }
1798
1799 struct elf32_arm_reloc_map
1800 {
1801 bfd_reloc_code_real_type bfd_reloc_val;
1802 unsigned char elf_reloc_val;
1803 };
1804
1805 /* All entries in this list must also be present in elf32_arm_howto_table. */
1806 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1807 {
1808 {BFD_RELOC_NONE, R_ARM_NONE},
1809 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1810 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1811 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1812 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1813 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1814 {BFD_RELOC_32, R_ARM_ABS32},
1815 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1816 {BFD_RELOC_8, R_ARM_ABS8},
1817 {BFD_RELOC_16, R_ARM_ABS16},
1818 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1819 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1821 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1822 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1823 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1824 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1825 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1826 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1827 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1828 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1829 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1830 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1831 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1832 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1833 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1834 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1835 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1836 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1837 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1838 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1839 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1840 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1841 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1842 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1843 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1844 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1845 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1846 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1847 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1848 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1849 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1850 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1851 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1852 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1853 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1854 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1855 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1856 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1857 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1858 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1859 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1860 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1861 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1862 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1863 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1864 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1865 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1866 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1867 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1868 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1869 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1870 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1871 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1872 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1873 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1874 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1875 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1876 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1877 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1878 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1879 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1880 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1881 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1882 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1883 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1884 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1885 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1886 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1887 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1888 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1889 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1890 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1891 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1892 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1893 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1894 };
1895
1896 static reloc_howto_type *
1897 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1898 bfd_reloc_code_real_type code)
1899 {
1900 unsigned int i;
1901
1902 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1903 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1904 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1905
1906 return NULL;
1907 }
1908
1909 static reloc_howto_type *
1910 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1911 const char *r_name)
1912 {
1913 unsigned int i;
1914
1915 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1916 if (elf32_arm_howto_table_1[i].name != NULL
1917 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1918 return &elf32_arm_howto_table_1[i];
1919
1920 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1921 if (elf32_arm_howto_table_2[i].name != NULL
1922 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1923 return &elf32_arm_howto_table_2[i];
1924
1925 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1926 if (elf32_arm_howto_table_3[i].name != NULL
1927 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1928 return &elf32_arm_howto_table_3[i];
1929
1930 return NULL;
1931 }
1932
1933 /* Support for core dump NOTE sections. */
1934
1935 static bfd_boolean
1936 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1937 {
1938 int offset;
1939 size_t size;
1940
1941 switch (note->descsz)
1942 {
1943 default:
1944 return FALSE;
1945
1946 case 148: /* Linux/ARM 32-bit. */
1947 /* pr_cursig */
1948 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
1949
1950 /* pr_pid */
1951 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
1952
1953 /* pr_reg */
1954 offset = 72;
1955 size = 72;
1956
1957 break;
1958 }
1959
1960 /* Make a ".reg/999" section. */
1961 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1962 size, note->descpos + offset);
1963 }
1964
1965 static bfd_boolean
1966 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1967 {
1968 switch (note->descsz)
1969 {
1970 default:
1971 return FALSE;
1972
1973 case 124: /* Linux/ARM elf_prpsinfo. */
1974 elf_tdata (abfd)->core->pid
1975 = bfd_get_32 (abfd, note->descdata + 12);
1976 elf_tdata (abfd)->core->program
1977 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1978 elf_tdata (abfd)->core->command
1979 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1980 }
1981
1982 /* Note that for some reason, a spurious space is tacked
1983 onto the end of the args in some (at least one anyway)
1984 implementations, so strip it off if it exists. */
1985 {
1986 char *command = elf_tdata (abfd)->core->command;
1987 int n = strlen (command);
1988
1989 if (0 < n && command[n - 1] == ' ')
1990 command[n - 1] = '\0';
1991 }
1992
1993 return TRUE;
1994 }
1995
1996 static char *
1997 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
1998 int note_type, ...)
1999 {
2000 switch (note_type)
2001 {
2002 default:
2003 return NULL;
2004
2005 case NT_PRPSINFO:
2006 {
2007 char data[124];
2008 va_list ap;
2009
2010 va_start (ap, note_type);
2011 memset (data, 0, sizeof (data));
2012 strncpy (data + 28, va_arg (ap, const char *), 16);
2013 strncpy (data + 44, va_arg (ap, const char *), 80);
2014 va_end (ap);
2015
2016 return elfcore_write_note (abfd, buf, bufsiz,
2017 "CORE", note_type, data, sizeof (data));
2018 }
2019
2020 case NT_PRSTATUS:
2021 {
2022 char data[148];
2023 va_list ap;
2024 long pid;
2025 int cursig;
2026 const void *greg;
2027
2028 va_start (ap, note_type);
2029 memset (data, 0, sizeof (data));
2030 pid = va_arg (ap, long);
2031 bfd_put_32 (abfd, pid, data + 24);
2032 cursig = va_arg (ap, int);
2033 bfd_put_16 (abfd, cursig, data + 12);
2034 greg = va_arg (ap, const void *);
2035 memcpy (data + 72, greg, 72);
2036 va_end (ap);
2037
2038 return elfcore_write_note (abfd, buf, bufsiz,
2039 "CORE", note_type, data, sizeof (data));
2040 }
2041 }
2042 }
2043
2044 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
2045 #define TARGET_LITTLE_NAME "elf32-littlearm"
2046 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
2047 #define TARGET_BIG_NAME "elf32-bigarm"
2048
2049 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2050 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2051 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2052
2053 typedef unsigned long int insn32;
2054 typedef unsigned short int insn16;
2055
2056 /* In lieu of proper flags, assume all EABIv4 or later objects are
2057 interworkable. */
2058 #define INTERWORK_FLAG(abfd) \
2059 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2060 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2061 || ((abfd)->flags & BFD_LINKER_CREATED))
2062
2063 /* The linker script knows the section names for placement.
2064 The entry_names are used to do simple name mangling on the stubs.
2065 Given a function name, and its type, the stub can be found. The
2066 name can be changed. The only requirement is the %s be present. */
2067 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2068 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2069
2070 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2071 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2072
2073 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2074 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2075
2076 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2077 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2078
2079 #define STUB_ENTRY_NAME "__%s_veneer"
2080
2081 /* The name of the dynamic interpreter. This is put in the .interp
2082 section. */
2083 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2084
2085 static const unsigned long tls_trampoline [] =
2086 {
2087 0xe08e0000, /* add r0, lr, r0 */
2088 0xe5901004, /* ldr r1, [r0,#4] */
2089 0xe12fff11, /* bx r1 */
2090 };
2091
2092 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2093 {
2094 0xe52d2004, /* push {r2} */
2095 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2096 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2097 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2098 0xe081100f, /* 2: add r1, pc */
2099 0xe12fff12, /* bx r2 */
2100 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2101 + dl_tlsdesc_lazy_resolver(GOT) */
2102 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2103 };
2104
2105 #ifdef FOUR_WORD_PLT
2106
2107 /* The first entry in a procedure linkage table looks like
2108 this. It is set up so that any shared library function that is
2109 called before the relocation has been set up calls the dynamic
2110 linker first. */
2111 static const bfd_vma elf32_arm_plt0_entry [] =
2112 {
2113 0xe52de004, /* str lr, [sp, #-4]! */
2114 0xe59fe010, /* ldr lr, [pc, #16] */
2115 0xe08fe00e, /* add lr, pc, lr */
2116 0xe5bef008, /* ldr pc, [lr, #8]! */
2117 };
2118
2119 /* Subsequent entries in a procedure linkage table look like
2120 this. */
2121 static const bfd_vma elf32_arm_plt_entry [] =
2122 {
2123 0xe28fc600, /* add ip, pc, #NN */
2124 0xe28cca00, /* add ip, ip, #NN */
2125 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2126 0x00000000, /* unused */
2127 };
2128
2129 #else
2130
2131 /* The first entry in a procedure linkage table looks like
2132 this. It is set up so that any shared library function that is
2133 called before the relocation has been set up calls the dynamic
2134 linker first. */
2135 static const bfd_vma elf32_arm_plt0_entry [] =
2136 {
2137 0xe52de004, /* str lr, [sp, #-4]! */
2138 0xe59fe004, /* ldr lr, [pc, #4] */
2139 0xe08fe00e, /* add lr, pc, lr */
2140 0xe5bef008, /* ldr pc, [lr, #8]! */
2141 0x00000000, /* &GOT[0] - . */
2142 };
2143
2144 /* Subsequent entries in a procedure linkage table look like
2145 this. */
2146 static const bfd_vma elf32_arm_plt_entry [] =
2147 {
2148 0xe28fc600, /* add ip, pc, #0xNN00000 */
2149 0xe28cca00, /* add ip, ip, #0xNN000 */
2150 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2151 };
2152
2153 #endif
2154
2155 /* The format of the first entry in the procedure linkage table
2156 for a VxWorks executable. */
2157 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2158 {
2159 0xe52dc008, /* str ip,[sp,#-8]! */
2160 0xe59fc000, /* ldr ip,[pc] */
2161 0xe59cf008, /* ldr pc,[ip,#8] */
2162 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2163 };
2164
2165 /* The format of subsequent entries in a VxWorks executable. */
2166 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2167 {
2168 0xe59fc000, /* ldr ip,[pc] */
2169 0xe59cf000, /* ldr pc,[ip] */
2170 0x00000000, /* .long @got */
2171 0xe59fc000, /* ldr ip,[pc] */
2172 0xea000000, /* b _PLT */
2173 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2174 };
2175
2176 /* The format of entries in a VxWorks shared library. */
2177 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2178 {
2179 0xe59fc000, /* ldr ip,[pc] */
2180 0xe79cf009, /* ldr pc,[ip,r9] */
2181 0x00000000, /* .long @got */
2182 0xe59fc000, /* ldr ip,[pc] */
2183 0xe599f008, /* ldr pc,[r9,#8] */
2184 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2185 };
2186
2187 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2188 #define PLT_THUMB_STUB_SIZE 4
2189 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2190 {
2191 0x4778, /* bx pc */
2192 0x46c0 /* nop */
2193 };
2194
2195 /* The entries in a PLT when using a DLL-based target with multiple
2196 address spaces. */
2197 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2198 {
2199 0xe51ff004, /* ldr pc, [pc, #-4] */
2200 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2201 };
2202
2203 /* The first entry in a procedure linkage table looks like
2204 this. It is set up so that any shared library function that is
2205 called before the relocation has been set up calls the dynamic
2206 linker first. */
2207 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2208 {
2209 /* First bundle: */
2210 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2211 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2212 0xe08cc00f, /* add ip, ip, pc */
2213 0xe52dc008, /* str ip, [sp, #-8]! */
2214 /* Second bundle: */
2215 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2216 0xe59cc000, /* ldr ip, [ip] */
2217 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2218 0xe12fff1c, /* bx ip */
2219 /* Third bundle: */
2220 0xe320f000, /* nop */
2221 0xe320f000, /* nop */
2222 0xe320f000, /* nop */
2223 /* .Lplt_tail: */
2224 0xe50dc004, /* str ip, [sp, #-4] */
2225 /* Fourth bundle: */
2226 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2227 0xe59cc000, /* ldr ip, [ip] */
2228 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2229 0xe12fff1c, /* bx ip */
2230 };
2231 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2232
2233 /* Subsequent entries in a procedure linkage table look like this. */
2234 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2235 {
2236 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2237 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2238 0xe08cc00f, /* add ip, ip, pc */
2239 0xea000000, /* b .Lplt_tail */
2240 };
2241
2242 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2243 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2244 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2245 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2246 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2247 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2248
2249 enum stub_insn_type
2250 {
2251 THUMB16_TYPE = 1,
2252 THUMB32_TYPE,
2253 ARM_TYPE,
2254 DATA_TYPE
2255 };
2256
2257 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2258 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2259 is inserted in arm_build_one_stub(). */
2260 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2261 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2262 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2263 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2264 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2265 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2266
2267 typedef struct
2268 {
2269 bfd_vma data;
2270 enum stub_insn_type type;
2271 unsigned int r_type;
2272 int reloc_addend;
2273 } insn_sequence;
2274
2275 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2276 to reach the stub if necessary. */
2277 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2278 {
2279 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2280 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2281 };
2282
2283 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2284 available. */
2285 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2286 {
2287 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2288 ARM_INSN (0xe12fff1c), /* bx ip */
2289 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2290 };
2291
2292 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2293 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2294 {
2295 THUMB16_INSN (0xb401), /* push {r0} */
2296 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2297 THUMB16_INSN (0x4684), /* mov ip, r0 */
2298 THUMB16_INSN (0xbc01), /* pop {r0} */
2299 THUMB16_INSN (0x4760), /* bx ip */
2300 THUMB16_INSN (0xbf00), /* nop */
2301 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2302 };
2303
2304 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2305 allowed. */
2306 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2307 {
2308 THUMB16_INSN (0x4778), /* bx pc */
2309 THUMB16_INSN (0x46c0), /* nop */
2310 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2311 ARM_INSN (0xe12fff1c), /* bx ip */
2312 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2313 };
2314
2315 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2316 available. */
2317 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2318 {
2319 THUMB16_INSN (0x4778), /* bx pc */
2320 THUMB16_INSN (0x46c0), /* nop */
2321 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2322 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2323 };
2324
2325 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2326 one, when the destination is close enough. */
2327 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2328 {
2329 THUMB16_INSN (0x4778), /* bx pc */
2330 THUMB16_INSN (0x46c0), /* nop */
2331 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2332 };
2333
2334 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2335 blx to reach the stub if necessary. */
2336 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2337 {
2338 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2339 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2340 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2341 };
2342
2343 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2344 blx to reach the stub if necessary. We can not add into pc;
2345 it is not guaranteed to mode switch (different in ARMv6 and
2346 ARMv7). */
2347 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2348 {
2349 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2350 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2351 ARM_INSN (0xe12fff1c), /* bx ip */
2352 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2353 };
2354
2355 /* V4T ARM -> ARM long branch stub, PIC. */
2356 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2357 {
2358 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2359 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2360 ARM_INSN (0xe12fff1c), /* bx ip */
2361 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2362 };
2363
2364 /* V4T Thumb -> ARM long branch stub, PIC. */
2365 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2366 {
2367 THUMB16_INSN (0x4778), /* bx pc */
2368 THUMB16_INSN (0x46c0), /* nop */
2369 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2370 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2371 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2372 };
2373
2374 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2375 architectures. */
2376 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2377 {
2378 THUMB16_INSN (0xb401), /* push {r0} */
2379 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2380 THUMB16_INSN (0x46fc), /* mov ip, pc */
2381 THUMB16_INSN (0x4484), /* add ip, r0 */
2382 THUMB16_INSN (0xbc01), /* pop {r0} */
2383 THUMB16_INSN (0x4760), /* bx ip */
2384 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2385 };
2386
2387 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2388 allowed. */
2389 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2390 {
2391 THUMB16_INSN (0x4778), /* bx pc */
2392 THUMB16_INSN (0x46c0), /* nop */
2393 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2394 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2395 ARM_INSN (0xe12fff1c), /* bx ip */
2396 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2397 };
2398
2399 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2400 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2401 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2402 {
2403 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2404 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2405 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2406 };
2407
2408 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2409 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2410 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2411 {
2412 THUMB16_INSN (0x4778), /* bx pc */
2413 THUMB16_INSN (0x46c0), /* nop */
2414 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2415 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2416 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2417 };
2418
2419 /* Cortex-A8 erratum-workaround stubs. */
2420
2421 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2422 can't use a conditional branch to reach this stub). */
2423
2424 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2425 {
2426 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2427 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2428 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2429 };
2430
2431 /* Stub used for b.w and bl.w instructions. */
2432
2433 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2434 {
2435 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2436 };
2437
2438 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2439 {
2440 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2441 };
2442
2443 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2444 instruction (which switches to ARM mode) to point to this stub. Jump to the
2445 real destination using an ARM-mode branch. */
2446
2447 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2448 {
2449 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2450 };
2451
2452 /* For each section group there can be a specially created linker section
2453 to hold the stubs for that group. The name of the stub section is based
2454 upon the name of another section within that group with the suffix below
2455 applied.
2456
2457 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2458 create what appeared to be a linker stub section when it actually
2459 contained user code/data. For example, consider this fragment:
2460
2461 const char * stubborn_problems[] = { "np" };
2462
2463 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2464 section called:
2465
2466 .data.rel.local.stubborn_problems
2467
2468 This then causes problems in arm32_arm_build_stubs() as it triggers:
2469
2470 // Ignore non-stub sections.
2471 if (!strstr (stub_sec->name, STUB_SUFFIX))
2472 continue;
2473
2474 And so the section would be ignored instead of being processed. Hence
2475 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2476 C identifier. */
2477 #define STUB_SUFFIX ".__stub"
2478
2479 /* One entry per long/short branch stub defined above. */
2480 #define DEF_STUBS \
2481 DEF_STUB(long_branch_any_any) \
2482 DEF_STUB(long_branch_v4t_arm_thumb) \
2483 DEF_STUB(long_branch_thumb_only) \
2484 DEF_STUB(long_branch_v4t_thumb_thumb) \
2485 DEF_STUB(long_branch_v4t_thumb_arm) \
2486 DEF_STUB(short_branch_v4t_thumb_arm) \
2487 DEF_STUB(long_branch_any_arm_pic) \
2488 DEF_STUB(long_branch_any_thumb_pic) \
2489 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2490 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2491 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2492 DEF_STUB(long_branch_thumb_only_pic) \
2493 DEF_STUB(long_branch_any_tls_pic) \
2494 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2495 DEF_STUB(a8_veneer_b_cond) \
2496 DEF_STUB(a8_veneer_b) \
2497 DEF_STUB(a8_veneer_bl) \
2498 DEF_STUB(a8_veneer_blx)
2499
2500 #define DEF_STUB(x) arm_stub_##x,
2501 enum elf32_arm_stub_type
2502 {
2503 arm_stub_none,
2504 DEF_STUBS
2505 /* Note the first a8_veneer type */
2506 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2507 };
2508 #undef DEF_STUB
2509
2510 typedef struct
2511 {
2512 const insn_sequence* template_sequence;
2513 int template_size;
2514 } stub_def;
2515
2516 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2517 static const stub_def stub_definitions[] =
2518 {
2519 {NULL, 0},
2520 DEF_STUBS
2521 };
2522
2523 struct elf32_arm_stub_hash_entry
2524 {
2525 /* Base hash table entry structure. */
2526 struct bfd_hash_entry root;
2527
2528 /* The stub section. */
2529 asection *stub_sec;
2530
2531 /* Offset within stub_sec of the beginning of this stub. */
2532 bfd_vma stub_offset;
2533
2534 /* Given the symbol's value and its section we can determine its final
2535 value when building the stubs (so the stub knows where to jump). */
2536 bfd_vma target_value;
2537 asection *target_section;
2538
2539 /* Offset to apply to relocation referencing target_value. */
2540 bfd_vma target_addend;
2541
2542 /* The instruction which caused this stub to be generated (only valid for
2543 Cortex-A8 erratum workaround stubs at present). */
2544 unsigned long orig_insn;
2545
2546 /* The stub type. */
2547 enum elf32_arm_stub_type stub_type;
2548 /* Its encoding size in bytes. */
2549 int stub_size;
2550 /* Its template. */
2551 const insn_sequence *stub_template;
2552 /* The size of the template (number of entries). */
2553 int stub_template_size;
2554
2555 /* The symbol table entry, if any, that this was derived from. */
2556 struct elf32_arm_link_hash_entry *h;
2557
2558 /* Type of branch. */
2559 enum arm_st_branch_type branch_type;
2560
2561 /* Where this stub is being called from, or, in the case of combined
2562 stub sections, the first input section in the group. */
2563 asection *id_sec;
2564
2565 /* The name for the local symbol at the start of this stub. The
2566 stub name in the hash table has to be unique; this does not, so
2567 it can be friendlier. */
2568 char *output_name;
2569 };
2570
2571 /* Used to build a map of a section. This is required for mixed-endian
2572 code/data. */
2573
2574 typedef struct elf32_elf_section_map
2575 {
2576 bfd_vma vma;
2577 char type;
2578 }
2579 elf32_arm_section_map;
2580
2581 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2582
2583 typedef enum
2584 {
2585 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2586 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2587 VFP11_ERRATUM_ARM_VENEER,
2588 VFP11_ERRATUM_THUMB_VENEER
2589 }
2590 elf32_vfp11_erratum_type;
2591
2592 typedef struct elf32_vfp11_erratum_list
2593 {
2594 struct elf32_vfp11_erratum_list *next;
2595 bfd_vma vma;
2596 union
2597 {
2598 struct
2599 {
2600 struct elf32_vfp11_erratum_list *veneer;
2601 unsigned int vfp_insn;
2602 } b;
2603 struct
2604 {
2605 struct elf32_vfp11_erratum_list *branch;
2606 unsigned int id;
2607 } v;
2608 } u;
2609 elf32_vfp11_erratum_type type;
2610 }
2611 elf32_vfp11_erratum_list;
2612
2613 typedef enum
2614 {
2615 DELETE_EXIDX_ENTRY,
2616 INSERT_EXIDX_CANTUNWIND_AT_END
2617 }
2618 arm_unwind_edit_type;
2619
2620 /* A (sorted) list of edits to apply to an unwind table. */
2621 typedef struct arm_unwind_table_edit
2622 {
2623 arm_unwind_edit_type type;
2624 /* Note: we sometimes want to insert an unwind entry corresponding to a
2625 section different from the one we're currently writing out, so record the
2626 (text) section this edit relates to here. */
2627 asection *linked_section;
2628 unsigned int index;
2629 struct arm_unwind_table_edit *next;
2630 }
2631 arm_unwind_table_edit;
2632
2633 typedef struct _arm_elf_section_data
2634 {
2635 /* Information about mapping symbols. */
2636 struct bfd_elf_section_data elf;
2637 unsigned int mapcount;
2638 unsigned int mapsize;
2639 elf32_arm_section_map *map;
2640 /* Information about CPU errata. */
2641 unsigned int erratumcount;
2642 elf32_vfp11_erratum_list *erratumlist;
2643 /* Information about unwind tables. */
2644 union
2645 {
2646 /* Unwind info attached to a text section. */
2647 struct
2648 {
2649 asection *arm_exidx_sec;
2650 } text;
2651
2652 /* Unwind info attached to an .ARM.exidx section. */
2653 struct
2654 {
2655 arm_unwind_table_edit *unwind_edit_list;
2656 arm_unwind_table_edit *unwind_edit_tail;
2657 } exidx;
2658 } u;
2659 }
2660 _arm_elf_section_data;
2661
2662 #define elf32_arm_section_data(sec) \
2663 ((_arm_elf_section_data *) elf_section_data (sec))
2664
2665 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2666 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2667 so may be created multiple times: we use an array of these entries whilst
2668 relaxing which we can refresh easily, then create stubs for each potentially
2669 erratum-triggering instruction once we've settled on a solution. */
2670
2671 struct a8_erratum_fix
2672 {
2673 bfd *input_bfd;
2674 asection *section;
2675 bfd_vma offset;
2676 bfd_vma addend;
2677 unsigned long orig_insn;
2678 char *stub_name;
2679 enum elf32_arm_stub_type stub_type;
2680 enum arm_st_branch_type branch_type;
2681 };
2682
2683 /* A table of relocs applied to branches which might trigger Cortex-A8
2684 erratum. */
2685
2686 struct a8_erratum_reloc
2687 {
2688 bfd_vma from;
2689 bfd_vma destination;
2690 struct elf32_arm_link_hash_entry *hash;
2691 const char *sym_name;
2692 unsigned int r_type;
2693 enum arm_st_branch_type branch_type;
2694 bfd_boolean non_a8_stub;
2695 };
2696
2697 /* The size of the thread control block. */
2698 #define TCB_SIZE 8
2699
2700 /* ARM-specific information about a PLT entry, over and above the usual
2701 gotplt_union. */
2702 struct arm_plt_info
2703 {
2704 /* We reference count Thumb references to a PLT entry separately,
2705 so that we can emit the Thumb trampoline only if needed. */
2706 bfd_signed_vma thumb_refcount;
2707
2708 /* Some references from Thumb code may be eliminated by BL->BLX
2709 conversion, so record them separately. */
2710 bfd_signed_vma maybe_thumb_refcount;
2711
2712 /* How many of the recorded PLT accesses were from non-call relocations.
2713 This information is useful when deciding whether anything takes the
2714 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2715 non-call references to the function should resolve directly to the
2716 real runtime target. */
2717 unsigned int noncall_refcount;
2718
2719 /* Since PLT entries have variable size if the Thumb prologue is
2720 used, we need to record the index into .got.plt instead of
2721 recomputing it from the PLT offset. */
2722 bfd_signed_vma got_offset;
2723 };
2724
2725 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2726 struct arm_local_iplt_info
2727 {
2728 /* The information that is usually found in the generic ELF part of
2729 the hash table entry. */
2730 union gotplt_union root;
2731
2732 /* The information that is usually found in the ARM-specific part of
2733 the hash table entry. */
2734 struct arm_plt_info arm;
2735
2736 /* A list of all potential dynamic relocations against this symbol. */
2737 struct elf_dyn_relocs *dyn_relocs;
2738 };
2739
2740 struct elf_arm_obj_tdata
2741 {
2742 struct elf_obj_tdata root;
2743
2744 /* tls_type for each local got entry. */
2745 char *local_got_tls_type;
2746
2747 /* GOTPLT entries for TLS descriptors. */
2748 bfd_vma *local_tlsdesc_gotent;
2749
2750 /* Information for local symbols that need entries in .iplt. */
2751 struct arm_local_iplt_info **local_iplt;
2752
2753 /* Zero to warn when linking objects with incompatible enum sizes. */
2754 int no_enum_size_warning;
2755
2756 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2757 int no_wchar_size_warning;
2758 };
2759
2760 #define elf_arm_tdata(bfd) \
2761 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2762
2763 #define elf32_arm_local_got_tls_type(bfd) \
2764 (elf_arm_tdata (bfd)->local_got_tls_type)
2765
2766 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2767 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2768
2769 #define elf32_arm_local_iplt(bfd) \
2770 (elf_arm_tdata (bfd)->local_iplt)
2771
2772 #define is_arm_elf(bfd) \
2773 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2774 && elf_tdata (bfd) != NULL \
2775 && elf_object_id (bfd) == ARM_ELF_DATA)
2776
2777 static bfd_boolean
2778 elf32_arm_mkobject (bfd *abfd)
2779 {
2780 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2781 ARM_ELF_DATA);
2782 }
2783
2784 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2785
2786 /* Arm ELF linker hash entry. */
2787 struct elf32_arm_link_hash_entry
2788 {
2789 struct elf_link_hash_entry root;
2790
2791 /* Track dynamic relocs copied for this symbol. */
2792 struct elf_dyn_relocs *dyn_relocs;
2793
2794 /* ARM-specific PLT information. */
2795 struct arm_plt_info plt;
2796
2797 #define GOT_UNKNOWN 0
2798 #define GOT_NORMAL 1
2799 #define GOT_TLS_GD 2
2800 #define GOT_TLS_IE 4
2801 #define GOT_TLS_GDESC 8
2802 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2803 unsigned int tls_type : 8;
2804
2805 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2806 unsigned int is_iplt : 1;
2807
2808 unsigned int unused : 23;
2809
2810 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2811 starting at the end of the jump table. */
2812 bfd_vma tlsdesc_got;
2813
2814 /* The symbol marking the real symbol location for exported thumb
2815 symbols with Arm stubs. */
2816 struct elf_link_hash_entry *export_glue;
2817
2818 /* A pointer to the most recently used stub hash entry against this
2819 symbol. */
2820 struct elf32_arm_stub_hash_entry *stub_cache;
2821 };
2822
2823 /* Traverse an arm ELF linker hash table. */
2824 #define elf32_arm_link_hash_traverse(table, func, info) \
2825 (elf_link_hash_traverse \
2826 (&(table)->root, \
2827 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2828 (info)))
2829
2830 /* Get the ARM elf linker hash table from a link_info structure. */
2831 #define elf32_arm_hash_table(info) \
2832 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2833 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2834
2835 #define arm_stub_hash_lookup(table, string, create, copy) \
2836 ((struct elf32_arm_stub_hash_entry *) \
2837 bfd_hash_lookup ((table), (string), (create), (copy)))
2838
2839 /* Array to keep track of which stub sections have been created, and
2840 information on stub grouping. */
2841 struct map_stub
2842 {
2843 /* This is the section to which stubs in the group will be
2844 attached. */
2845 asection *link_sec;
2846 /* The stub section. */
2847 asection *stub_sec;
2848 };
2849
2850 #define elf32_arm_compute_jump_table_size(htab) \
2851 ((htab)->next_tls_desc_index * 4)
2852
2853 /* ARM ELF linker hash table. */
2854 struct elf32_arm_link_hash_table
2855 {
2856 /* The main hash table. */
2857 struct elf_link_hash_table root;
2858
2859 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2860 bfd_size_type thumb_glue_size;
2861
2862 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2863 bfd_size_type arm_glue_size;
2864
2865 /* The size in bytes of section containing the ARMv4 BX veneers. */
2866 bfd_size_type bx_glue_size;
2867
2868 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2869 veneer has been populated. */
2870 bfd_vma bx_glue_offset[15];
2871
2872 /* The size in bytes of the section containing glue for VFP11 erratum
2873 veneers. */
2874 bfd_size_type vfp11_erratum_glue_size;
2875
2876 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2877 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2878 elf32_arm_write_section(). */
2879 struct a8_erratum_fix *a8_erratum_fixes;
2880 unsigned int num_a8_erratum_fixes;
2881
2882 /* An arbitrary input BFD chosen to hold the glue sections. */
2883 bfd * bfd_of_glue_owner;
2884
2885 /* Nonzero to output a BE8 image. */
2886 int byteswap_code;
2887
2888 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2889 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2890 int target1_is_rel;
2891
2892 /* The relocation to use for R_ARM_TARGET2 relocations. */
2893 int target2_reloc;
2894
2895 /* 0 = Ignore R_ARM_V4BX.
2896 1 = Convert BX to MOV PC.
2897 2 = Generate v4 interworing stubs. */
2898 int fix_v4bx;
2899
2900 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2901 int fix_cortex_a8;
2902
2903 /* Whether we should fix the ARM1176 BLX immediate issue. */
2904 int fix_arm1176;
2905
2906 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2907 int use_blx;
2908
2909 /* What sort of code sequences we should look for which may trigger the
2910 VFP11 denorm erratum. */
2911 bfd_arm_vfp11_fix vfp11_fix;
2912
2913 /* Global counter for the number of fixes we have emitted. */
2914 int num_vfp11_fixes;
2915
2916 /* Nonzero to force PIC branch veneers. */
2917 int pic_veneer;
2918
2919 /* The number of bytes in the initial entry in the PLT. */
2920 bfd_size_type plt_header_size;
2921
2922 /* The number of bytes in the subsequent PLT etries. */
2923 bfd_size_type plt_entry_size;
2924
2925 /* True if the target system is VxWorks. */
2926 int vxworks_p;
2927
2928 /* True if the target system is Symbian OS. */
2929 int symbian_p;
2930
2931 /* True if the target system is Native Client. */
2932 int nacl_p;
2933
2934 /* True if the target uses REL relocations. */
2935 int use_rel;
2936
2937 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
2938 bfd_vma next_tls_desc_index;
2939
2940 /* How many R_ARM_TLS_DESC relocations were generated so far. */
2941 bfd_vma num_tls_desc;
2942
2943 /* Short-cuts to get to dynamic linker sections. */
2944 asection *sdynbss;
2945 asection *srelbss;
2946
2947 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2948 asection *srelplt2;
2949
2950 /* The offset into splt of the PLT entry for the TLS descriptor
2951 resolver. Special values are 0, if not necessary (or not found
2952 to be necessary yet), and -1 if needed but not determined
2953 yet. */
2954 bfd_vma dt_tlsdesc_plt;
2955
2956 /* The offset into sgot of the GOT entry used by the PLT entry
2957 above. */
2958 bfd_vma dt_tlsdesc_got;
2959
2960 /* Offset in .plt section of tls_arm_trampoline. */
2961 bfd_vma tls_trampoline;
2962
2963 /* Data for R_ARM_TLS_LDM32 relocations. */
2964 union
2965 {
2966 bfd_signed_vma refcount;
2967 bfd_vma offset;
2968 } tls_ldm_got;
2969
2970 /* Small local sym cache. */
2971 struct sym_cache sym_cache;
2972
2973 /* For convenience in allocate_dynrelocs. */
2974 bfd * obfd;
2975
2976 /* The amount of space used by the reserved portion of the sgotplt
2977 section, plus whatever space is used by the jump slots. */
2978 bfd_vma sgotplt_jump_table_size;
2979
2980 /* The stub hash table. */
2981 struct bfd_hash_table stub_hash_table;
2982
2983 /* Linker stub bfd. */
2984 bfd *stub_bfd;
2985
2986 /* Linker call-backs. */
2987 asection * (*add_stub_section) (const char *, asection *);
2988 void (*layout_sections_again) (void);
2989
2990 /* Array to keep track of which stub sections have been created, and
2991 information on stub grouping. */
2992 struct map_stub *stub_group;
2993
2994 /* Number of elements in stub_group. */
2995 int top_id;
2996
2997 /* Assorted information used by elf32_arm_size_stubs. */
2998 unsigned int bfd_count;
2999 int top_index;
3000 asection **input_list;
3001 };
3002
3003 /* Create an entry in an ARM ELF linker hash table. */
3004
3005 static struct bfd_hash_entry *
3006 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3007 struct bfd_hash_table * table,
3008 const char * string)
3009 {
3010 struct elf32_arm_link_hash_entry * ret =
3011 (struct elf32_arm_link_hash_entry *) entry;
3012
3013 /* Allocate the structure if it has not already been allocated by a
3014 subclass. */
3015 if (ret == NULL)
3016 ret = (struct elf32_arm_link_hash_entry *)
3017 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3018 if (ret == NULL)
3019 return (struct bfd_hash_entry *) ret;
3020
3021 /* Call the allocation method of the superclass. */
3022 ret = ((struct elf32_arm_link_hash_entry *)
3023 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3024 table, string));
3025 if (ret != NULL)
3026 {
3027 ret->dyn_relocs = NULL;
3028 ret->tls_type = GOT_UNKNOWN;
3029 ret->tlsdesc_got = (bfd_vma) -1;
3030 ret->plt.thumb_refcount = 0;
3031 ret->plt.maybe_thumb_refcount = 0;
3032 ret->plt.noncall_refcount = 0;
3033 ret->plt.got_offset = -1;
3034 ret->is_iplt = FALSE;
3035 ret->export_glue = NULL;
3036
3037 ret->stub_cache = NULL;
3038 }
3039
3040 return (struct bfd_hash_entry *) ret;
3041 }
3042
3043 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3044 symbols. */
3045
3046 static bfd_boolean
3047 elf32_arm_allocate_local_sym_info (bfd *abfd)
3048 {
3049 if (elf_local_got_refcounts (abfd) == NULL)
3050 {
3051 bfd_size_type num_syms;
3052 bfd_size_type size;
3053 char *data;
3054
3055 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3056 size = num_syms * (sizeof (bfd_signed_vma)
3057 + sizeof (struct arm_local_iplt_info *)
3058 + sizeof (bfd_vma)
3059 + sizeof (char));
3060 data = bfd_zalloc (abfd, size);
3061 if (data == NULL)
3062 return FALSE;
3063
3064 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3065 data += num_syms * sizeof (bfd_signed_vma);
3066
3067 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3068 data += num_syms * sizeof (struct arm_local_iplt_info *);
3069
3070 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3071 data += num_syms * sizeof (bfd_vma);
3072
3073 elf32_arm_local_got_tls_type (abfd) = data;
3074 }
3075 return TRUE;
3076 }
3077
3078 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3079 to input bfd ABFD. Create the information if it doesn't already exist.
3080 Return null if an allocation fails. */
3081
3082 static struct arm_local_iplt_info *
3083 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3084 {
3085 struct arm_local_iplt_info **ptr;
3086
3087 if (!elf32_arm_allocate_local_sym_info (abfd))
3088 return NULL;
3089
3090 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3091 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3092 if (*ptr == NULL)
3093 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3094 return *ptr;
3095 }
3096
3097 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3098 in ABFD's symbol table. If the symbol is global, H points to its
3099 hash table entry, otherwise H is null.
3100
3101 Return true if the symbol does have PLT information. When returning
3102 true, point *ROOT_PLT at the target-independent reference count/offset
3103 union and *ARM_PLT at the ARM-specific information. */
3104
3105 static bfd_boolean
3106 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
3107 unsigned long r_symndx, union gotplt_union **root_plt,
3108 struct arm_plt_info **arm_plt)
3109 {
3110 struct arm_local_iplt_info *local_iplt;
3111
3112 if (h != NULL)
3113 {
3114 *root_plt = &h->root.plt;
3115 *arm_plt = &h->plt;
3116 return TRUE;
3117 }
3118
3119 if (elf32_arm_local_iplt (abfd) == NULL)
3120 return FALSE;
3121
3122 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3123 if (local_iplt == NULL)
3124 return FALSE;
3125
3126 *root_plt = &local_iplt->root;
3127 *arm_plt = &local_iplt->arm;
3128 return TRUE;
3129 }
3130
3131 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3132 before it. */
3133
3134 static bfd_boolean
3135 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3136 struct arm_plt_info *arm_plt)
3137 {
3138 struct elf32_arm_link_hash_table *htab;
3139
3140 htab = elf32_arm_hash_table (info);
3141 return (arm_plt->thumb_refcount != 0
3142 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3143 }
3144
3145 /* Return a pointer to the head of the dynamic reloc list that should
3146 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3147 ABFD's symbol table. Return null if an error occurs. */
3148
3149 static struct elf_dyn_relocs **
3150 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3151 Elf_Internal_Sym *isym)
3152 {
3153 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3154 {
3155 struct arm_local_iplt_info *local_iplt;
3156
3157 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3158 if (local_iplt == NULL)
3159 return NULL;
3160 return &local_iplt->dyn_relocs;
3161 }
3162 else
3163 {
3164 /* Track dynamic relocs needed for local syms too.
3165 We really need local syms available to do this
3166 easily. Oh well. */
3167 asection *s;
3168 void *vpp;
3169
3170 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3171 if (s == NULL)
3172 abort ();
3173
3174 vpp = &elf_section_data (s)->local_dynrel;
3175 return (struct elf_dyn_relocs **) vpp;
3176 }
3177 }
3178
3179 /* Initialize an entry in the stub hash table. */
3180
3181 static struct bfd_hash_entry *
3182 stub_hash_newfunc (struct bfd_hash_entry *entry,
3183 struct bfd_hash_table *table,
3184 const char *string)
3185 {
3186 /* Allocate the structure if it has not already been allocated by a
3187 subclass. */
3188 if (entry == NULL)
3189 {
3190 entry = (struct bfd_hash_entry *)
3191 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3192 if (entry == NULL)
3193 return entry;
3194 }
3195
3196 /* Call the allocation method of the superclass. */
3197 entry = bfd_hash_newfunc (entry, table, string);
3198 if (entry != NULL)
3199 {
3200 struct elf32_arm_stub_hash_entry *eh;
3201
3202 /* Initialize the local fields. */
3203 eh = (struct elf32_arm_stub_hash_entry *) entry;
3204 eh->stub_sec = NULL;
3205 eh->stub_offset = 0;
3206 eh->target_value = 0;
3207 eh->target_section = NULL;
3208 eh->target_addend = 0;
3209 eh->orig_insn = 0;
3210 eh->stub_type = arm_stub_none;
3211 eh->stub_size = 0;
3212 eh->stub_template = NULL;
3213 eh->stub_template_size = 0;
3214 eh->h = NULL;
3215 eh->id_sec = NULL;
3216 eh->output_name = NULL;
3217 }
3218
3219 return entry;
3220 }
3221
3222 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3223 shortcuts to them in our hash table. */
3224
3225 static bfd_boolean
3226 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3227 {
3228 struct elf32_arm_link_hash_table *htab;
3229
3230 htab = elf32_arm_hash_table (info);
3231 if (htab == NULL)
3232 return FALSE;
3233
3234 /* BPABI objects never have a GOT, or associated sections. */
3235 if (htab->symbian_p)
3236 return TRUE;
3237
3238 if (! _bfd_elf_create_got_section (dynobj, info))
3239 return FALSE;
3240
3241 return TRUE;
3242 }
3243
3244 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3245
3246 static bfd_boolean
3247 create_ifunc_sections (struct bfd_link_info *info)
3248 {
3249 struct elf32_arm_link_hash_table *htab;
3250 const struct elf_backend_data *bed;
3251 bfd *dynobj;
3252 asection *s;
3253 flagword flags;
3254
3255 htab = elf32_arm_hash_table (info);
3256 dynobj = htab->root.dynobj;
3257 bed = get_elf_backend_data (dynobj);
3258 flags = bed->dynamic_sec_flags;
3259
3260 if (htab->root.iplt == NULL)
3261 {
3262 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3263 flags | SEC_READONLY | SEC_CODE);
3264 if (s == NULL
3265 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3266 return FALSE;
3267 htab->root.iplt = s;
3268 }
3269
3270 if (htab->root.irelplt == NULL)
3271 {
3272 s = bfd_make_section_anyway_with_flags (dynobj,
3273 RELOC_SECTION (htab, ".iplt"),
3274 flags | SEC_READONLY);
3275 if (s == NULL
3276 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3277 return FALSE;
3278 htab->root.irelplt = s;
3279 }
3280
3281 if (htab->root.igotplt == NULL)
3282 {
3283 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3284 if (s == NULL
3285 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3286 return FALSE;
3287 htab->root.igotplt = s;
3288 }
3289 return TRUE;
3290 }
3291
3292 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3293 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3294 hash table. */
3295
3296 static bfd_boolean
3297 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3298 {
3299 struct elf32_arm_link_hash_table *htab;
3300
3301 htab = elf32_arm_hash_table (info);
3302 if (htab == NULL)
3303 return FALSE;
3304
3305 if (!htab->root.sgot && !create_got_section (dynobj, info))
3306 return FALSE;
3307
3308 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3309 return FALSE;
3310
3311 htab->sdynbss = bfd_get_linker_section (dynobj, ".dynbss");
3312 if (!info->shared)
3313 htab->srelbss = bfd_get_linker_section (dynobj,
3314 RELOC_SECTION (htab, ".bss"));
3315
3316 if (htab->vxworks_p)
3317 {
3318 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3319 return FALSE;
3320
3321 if (info->shared)
3322 {
3323 htab->plt_header_size = 0;
3324 htab->plt_entry_size
3325 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3326 }
3327 else
3328 {
3329 htab->plt_header_size
3330 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3331 htab->plt_entry_size
3332 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3333 }
3334 }
3335
3336 if (!htab->root.splt
3337 || !htab->root.srelplt
3338 || !htab->sdynbss
3339 || (!info->shared && !htab->srelbss))
3340 abort ();
3341
3342 return TRUE;
3343 }
3344
3345 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3346
3347 static void
3348 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3349 struct elf_link_hash_entry *dir,
3350 struct elf_link_hash_entry *ind)
3351 {
3352 struct elf32_arm_link_hash_entry *edir, *eind;
3353
3354 edir = (struct elf32_arm_link_hash_entry *) dir;
3355 eind = (struct elf32_arm_link_hash_entry *) ind;
3356
3357 if (eind->dyn_relocs != NULL)
3358 {
3359 if (edir->dyn_relocs != NULL)
3360 {
3361 struct elf_dyn_relocs **pp;
3362 struct elf_dyn_relocs *p;
3363
3364 /* Add reloc counts against the indirect sym to the direct sym
3365 list. Merge any entries against the same section. */
3366 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3367 {
3368 struct elf_dyn_relocs *q;
3369
3370 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3371 if (q->sec == p->sec)
3372 {
3373 q->pc_count += p->pc_count;
3374 q->count += p->count;
3375 *pp = p->next;
3376 break;
3377 }
3378 if (q == NULL)
3379 pp = &p->next;
3380 }
3381 *pp = edir->dyn_relocs;
3382 }
3383
3384 edir->dyn_relocs = eind->dyn_relocs;
3385 eind->dyn_relocs = NULL;
3386 }
3387
3388 if (ind->root.type == bfd_link_hash_indirect)
3389 {
3390 /* Copy over PLT info. */
3391 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3392 eind->plt.thumb_refcount = 0;
3393 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3394 eind->plt.maybe_thumb_refcount = 0;
3395 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3396 eind->plt.noncall_refcount = 0;
3397
3398 /* We should only allocate a function to .iplt once the final
3399 symbol information is known. */
3400 BFD_ASSERT (!eind->is_iplt);
3401
3402 if (dir->got.refcount <= 0)
3403 {
3404 edir->tls_type = eind->tls_type;
3405 eind->tls_type = GOT_UNKNOWN;
3406 }
3407 }
3408
3409 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3410 }
3411
3412 /* Create an ARM elf linker hash table. */
3413
3414 static struct bfd_link_hash_table *
3415 elf32_arm_link_hash_table_create (bfd *abfd)
3416 {
3417 struct elf32_arm_link_hash_table *ret;
3418 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3419
3420 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
3421 if (ret == NULL)
3422 return NULL;
3423
3424 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3425 elf32_arm_link_hash_newfunc,
3426 sizeof (struct elf32_arm_link_hash_entry),
3427 ARM_ELF_DATA))
3428 {
3429 free (ret);
3430 return NULL;
3431 }
3432
3433 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3434 #ifdef FOUR_WORD_PLT
3435 ret->plt_header_size = 16;
3436 ret->plt_entry_size = 16;
3437 #else
3438 ret->plt_header_size = 20;
3439 ret->plt_entry_size = 12;
3440 #endif
3441 ret->use_rel = 1;
3442 ret->obfd = abfd;
3443
3444 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3445 sizeof (struct elf32_arm_stub_hash_entry)))
3446 {
3447 free (ret);
3448 return NULL;
3449 }
3450
3451 return &ret->root.root;
3452 }
3453
3454 /* Free the derived linker hash table. */
3455
3456 static void
3457 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
3458 {
3459 struct elf32_arm_link_hash_table *ret
3460 = (struct elf32_arm_link_hash_table *) hash;
3461
3462 bfd_hash_table_free (&ret->stub_hash_table);
3463 _bfd_elf_link_hash_table_free (hash);
3464 }
3465
3466 /* Determine if we're dealing with a Thumb only architecture. */
3467
3468 static bfd_boolean
3469 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3470 {
3471 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3472 Tag_CPU_arch);
3473 int profile;
3474
3475 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3476 return TRUE;
3477
3478 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
3479 return FALSE;
3480
3481 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3482 Tag_CPU_arch_profile);
3483
3484 return profile == 'M';
3485 }
3486
3487 /* Determine if we're dealing with a Thumb-2 object. */
3488
3489 static bfd_boolean
3490 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3491 {
3492 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3493 Tag_CPU_arch);
3494 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3495 }
3496
3497 /* Determine what kind of NOPs are available. */
3498
3499 static bfd_boolean
3500 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3501 {
3502 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3503 Tag_CPU_arch);
3504 return arch == TAG_CPU_ARCH_V6T2
3505 || arch == TAG_CPU_ARCH_V6K
3506 || arch == TAG_CPU_ARCH_V7
3507 || arch == TAG_CPU_ARCH_V7E_M;
3508 }
3509
3510 static bfd_boolean
3511 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3512 {
3513 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3514 Tag_CPU_arch);
3515 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3516 || arch == TAG_CPU_ARCH_V7E_M);
3517 }
3518
3519 static bfd_boolean
3520 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3521 {
3522 switch (stub_type)
3523 {
3524 case arm_stub_long_branch_thumb_only:
3525 case arm_stub_long_branch_v4t_thumb_arm:
3526 case arm_stub_short_branch_v4t_thumb_arm:
3527 case arm_stub_long_branch_v4t_thumb_arm_pic:
3528 case arm_stub_long_branch_v4t_thumb_tls_pic:
3529 case arm_stub_long_branch_thumb_only_pic:
3530 return TRUE;
3531 case arm_stub_none:
3532 BFD_FAIL ();
3533 return FALSE;
3534 break;
3535 default:
3536 return FALSE;
3537 }
3538 }
3539
3540 /* Determine the type of stub needed, if any, for a call. */
3541
3542 static enum elf32_arm_stub_type
3543 arm_type_of_stub (struct bfd_link_info *info,
3544 asection *input_sec,
3545 const Elf_Internal_Rela *rel,
3546 unsigned char st_type,
3547 enum arm_st_branch_type *actual_branch_type,
3548 struct elf32_arm_link_hash_entry *hash,
3549 bfd_vma destination,
3550 asection *sym_sec,
3551 bfd *input_bfd,
3552 const char *name)
3553 {
3554 bfd_vma location;
3555 bfd_signed_vma branch_offset;
3556 unsigned int r_type;
3557 struct elf32_arm_link_hash_table * globals;
3558 int thumb2;
3559 int thumb_only;
3560 enum elf32_arm_stub_type stub_type = arm_stub_none;
3561 int use_plt = 0;
3562 enum arm_st_branch_type branch_type = *actual_branch_type;
3563 union gotplt_union *root_plt;
3564 struct arm_plt_info *arm_plt;
3565
3566 if (branch_type == ST_BRANCH_LONG)
3567 return stub_type;
3568
3569 globals = elf32_arm_hash_table (info);
3570 if (globals == NULL)
3571 return stub_type;
3572
3573 thumb_only = using_thumb_only (globals);
3574
3575 thumb2 = using_thumb2 (globals);
3576
3577 /* Determine where the call point is. */
3578 location = (input_sec->output_offset
3579 + input_sec->output_section->vma
3580 + rel->r_offset);
3581
3582 r_type = ELF32_R_TYPE (rel->r_info);
3583
3584 /* For TLS call relocs, it is the caller's responsibility to provide
3585 the address of the appropriate trampoline. */
3586 if (r_type != R_ARM_TLS_CALL
3587 && r_type != R_ARM_THM_TLS_CALL
3588 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3589 &root_plt, &arm_plt)
3590 && root_plt->offset != (bfd_vma) -1)
3591 {
3592 asection *splt;
3593
3594 if (hash == NULL || hash->is_iplt)
3595 splt = globals->root.iplt;
3596 else
3597 splt = globals->root.splt;
3598 if (splt != NULL)
3599 {
3600 use_plt = 1;
3601
3602 /* Note when dealing with PLT entries: the main PLT stub is in
3603 ARM mode, so if the branch is in Thumb mode, another
3604 Thumb->ARM stub will be inserted later just before the ARM
3605 PLT stub. We don't take this extra distance into account
3606 here, because if a long branch stub is needed, we'll add a
3607 Thumb->Arm one and branch directly to the ARM PLT entry
3608 because it avoids spreading offset corrections in several
3609 places. */
3610
3611 destination = (splt->output_section->vma
3612 + splt->output_offset
3613 + root_plt->offset);
3614 st_type = STT_FUNC;
3615 branch_type = ST_BRANCH_TO_ARM;
3616 }
3617 }
3618 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3619 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3620
3621 branch_offset = (bfd_signed_vma)(destination - location);
3622
3623 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3624 || r_type == R_ARM_THM_TLS_CALL)
3625 {
3626 /* Handle cases where:
3627 - this call goes too far (different Thumb/Thumb2 max
3628 distance)
3629 - it's a Thumb->Arm call and blx is not available, or it's a
3630 Thumb->Arm branch (not bl). A stub is needed in this case,
3631 but only if this call is not through a PLT entry. Indeed,
3632 PLT stubs handle mode switching already.
3633 */
3634 if ((!thumb2
3635 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3636 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3637 || (thumb2
3638 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3639 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3640 || (branch_type == ST_BRANCH_TO_ARM
3641 && (((r_type == R_ARM_THM_CALL
3642 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3643 || (r_type == R_ARM_THM_JUMP24))
3644 && !use_plt))
3645 {
3646 if (branch_type == ST_BRANCH_TO_THUMB)
3647 {
3648 /* Thumb to thumb. */
3649 if (!thumb_only)
3650 {
3651 stub_type = (info->shared | globals->pic_veneer)
3652 /* PIC stubs. */
3653 ? ((globals->use_blx
3654 && (r_type == R_ARM_THM_CALL))
3655 /* V5T and above. Stub starts with ARM code, so
3656 we must be able to switch mode before
3657 reaching it, which is only possible for 'bl'
3658 (ie R_ARM_THM_CALL relocation). */
3659 ? arm_stub_long_branch_any_thumb_pic
3660 /* On V4T, use Thumb code only. */
3661 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3662
3663 /* non-PIC stubs. */
3664 : ((globals->use_blx
3665 && (r_type == R_ARM_THM_CALL))
3666 /* V5T and above. */
3667 ? arm_stub_long_branch_any_any
3668 /* V4T. */
3669 : arm_stub_long_branch_v4t_thumb_thumb);
3670 }
3671 else
3672 {
3673 stub_type = (info->shared | globals->pic_veneer)
3674 /* PIC stub. */
3675 ? arm_stub_long_branch_thumb_only_pic
3676 /* non-PIC stub. */
3677 : arm_stub_long_branch_thumb_only;
3678 }
3679 }
3680 else
3681 {
3682 /* Thumb to arm. */
3683 if (sym_sec != NULL
3684 && sym_sec->owner != NULL
3685 && !INTERWORK_FLAG (sym_sec->owner))
3686 {
3687 (*_bfd_error_handler)
3688 (_("%B(%s): warning: interworking not enabled.\n"
3689 " first occurrence: %B: Thumb call to ARM"),
3690 sym_sec->owner, input_bfd, name);
3691 }
3692
3693 stub_type =
3694 (info->shared | globals->pic_veneer)
3695 /* PIC stubs. */
3696 ? (r_type == R_ARM_THM_TLS_CALL
3697 /* TLS PIC stubs */
3698 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3699 : arm_stub_long_branch_v4t_thumb_tls_pic)
3700 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3701 /* V5T PIC and above. */
3702 ? arm_stub_long_branch_any_arm_pic
3703 /* V4T PIC stub. */
3704 : arm_stub_long_branch_v4t_thumb_arm_pic))
3705
3706 /* non-PIC stubs. */
3707 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3708 /* V5T and above. */
3709 ? arm_stub_long_branch_any_any
3710 /* V4T. */
3711 : arm_stub_long_branch_v4t_thumb_arm);
3712
3713 /* Handle v4t short branches. */
3714 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3715 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3716 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3717 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3718 }
3719 }
3720 }
3721 else if (r_type == R_ARM_CALL
3722 || r_type == R_ARM_JUMP24
3723 || r_type == R_ARM_PLT32
3724 || r_type == R_ARM_TLS_CALL)
3725 {
3726 if (branch_type == ST_BRANCH_TO_THUMB)
3727 {
3728 /* Arm to thumb. */
3729
3730 if (sym_sec != NULL
3731 && sym_sec->owner != NULL
3732 && !INTERWORK_FLAG (sym_sec->owner))
3733 {
3734 (*_bfd_error_handler)
3735 (_("%B(%s): warning: interworking not enabled.\n"
3736 " first occurrence: %B: ARM call to Thumb"),
3737 sym_sec->owner, input_bfd, name);
3738 }
3739
3740 /* We have an extra 2-bytes reach because of
3741 the mode change (bit 24 (H) of BLX encoding). */
3742 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3743 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3744 || (r_type == R_ARM_CALL && !globals->use_blx)
3745 || (r_type == R_ARM_JUMP24)
3746 || (r_type == R_ARM_PLT32))
3747 {
3748 stub_type = (info->shared | globals->pic_veneer)
3749 /* PIC stubs. */
3750 ? ((globals->use_blx)
3751 /* V5T and above. */
3752 ? arm_stub_long_branch_any_thumb_pic
3753 /* V4T stub. */
3754 : arm_stub_long_branch_v4t_arm_thumb_pic)
3755
3756 /* non-PIC stubs. */
3757 : ((globals->use_blx)
3758 /* V5T and above. */
3759 ? arm_stub_long_branch_any_any
3760 /* V4T. */
3761 : arm_stub_long_branch_v4t_arm_thumb);
3762 }
3763 }
3764 else
3765 {
3766 /* Arm to arm. */
3767 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3768 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3769 {
3770 stub_type =
3771 (info->shared | globals->pic_veneer)
3772 /* PIC stubs. */
3773 ? (r_type == R_ARM_TLS_CALL
3774 /* TLS PIC Stub */
3775 ? arm_stub_long_branch_any_tls_pic
3776 : arm_stub_long_branch_any_arm_pic)
3777 /* non-PIC stubs. */
3778 : arm_stub_long_branch_any_any;
3779 }
3780 }
3781 }
3782
3783 /* If a stub is needed, record the actual destination type. */
3784 if (stub_type != arm_stub_none)
3785 *actual_branch_type = branch_type;
3786
3787 return stub_type;
3788 }
3789
3790 /* Build a name for an entry in the stub hash table. */
3791
3792 static char *
3793 elf32_arm_stub_name (const asection *input_section,
3794 const asection *sym_sec,
3795 const struct elf32_arm_link_hash_entry *hash,
3796 const Elf_Internal_Rela *rel,
3797 enum elf32_arm_stub_type stub_type)
3798 {
3799 char *stub_name;
3800 bfd_size_type len;
3801
3802 if (hash)
3803 {
3804 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3805 stub_name = (char *) bfd_malloc (len);
3806 if (stub_name != NULL)
3807 sprintf (stub_name, "%08x_%s+%x_%d",
3808 input_section->id & 0xffffffff,
3809 hash->root.root.root.string,
3810 (int) rel->r_addend & 0xffffffff,
3811 (int) stub_type);
3812 }
3813 else
3814 {
3815 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3816 stub_name = (char *) bfd_malloc (len);
3817 if (stub_name != NULL)
3818 sprintf (stub_name, "%08x_%x:%x+%x_%d",
3819 input_section->id & 0xffffffff,
3820 sym_sec->id & 0xffffffff,
3821 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3822 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3823 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3824 (int) rel->r_addend & 0xffffffff,
3825 (int) stub_type);
3826 }
3827
3828 return stub_name;
3829 }
3830
3831 /* Look up an entry in the stub hash. Stub entries are cached because
3832 creating the stub name takes a bit of time. */
3833
3834 static struct elf32_arm_stub_hash_entry *
3835 elf32_arm_get_stub_entry (const asection *input_section,
3836 const asection *sym_sec,
3837 struct elf_link_hash_entry *hash,
3838 const Elf_Internal_Rela *rel,
3839 struct elf32_arm_link_hash_table *htab,
3840 enum elf32_arm_stub_type stub_type)
3841 {
3842 struct elf32_arm_stub_hash_entry *stub_entry;
3843 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3844 const asection *id_sec;
3845
3846 if ((input_section->flags & SEC_CODE) == 0)
3847 return NULL;
3848
3849 /* If this input section is part of a group of sections sharing one
3850 stub section, then use the id of the first section in the group.
3851 Stub names need to include a section id, as there may well be
3852 more than one stub used to reach say, printf, and we need to
3853 distinguish between them. */
3854 id_sec = htab->stub_group[input_section->id].link_sec;
3855
3856 if (h != NULL && h->stub_cache != NULL
3857 && h->stub_cache->h == h
3858 && h->stub_cache->id_sec == id_sec
3859 && h->stub_cache->stub_type == stub_type)
3860 {
3861 stub_entry = h->stub_cache;
3862 }
3863 else
3864 {
3865 char *stub_name;
3866
3867 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3868 if (stub_name == NULL)
3869 return NULL;
3870
3871 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3872 stub_name, FALSE, FALSE);
3873 if (h != NULL)
3874 h->stub_cache = stub_entry;
3875
3876 free (stub_name);
3877 }
3878
3879 return stub_entry;
3880 }
3881
3882 /* Find or create a stub section. Returns a pointer to the stub section, and
3883 the section to which the stub section will be attached (in *LINK_SEC_P).
3884 LINK_SEC_P may be NULL. */
3885
3886 static asection *
3887 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3888 struct elf32_arm_link_hash_table *htab)
3889 {
3890 asection *link_sec;
3891 asection *stub_sec;
3892
3893 link_sec = htab->stub_group[section->id].link_sec;
3894 BFD_ASSERT (link_sec != NULL);
3895 stub_sec = htab->stub_group[section->id].stub_sec;
3896
3897 if (stub_sec == NULL)
3898 {
3899 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3900 if (stub_sec == NULL)
3901 {
3902 size_t namelen;
3903 bfd_size_type len;
3904 char *s_name;
3905
3906 namelen = strlen (link_sec->name);
3907 len = namelen + sizeof (STUB_SUFFIX);
3908 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
3909 if (s_name == NULL)
3910 return NULL;
3911
3912 memcpy (s_name, link_sec->name, namelen);
3913 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3914 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3915 if (stub_sec == NULL)
3916 return NULL;
3917 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3918 }
3919 htab->stub_group[section->id].stub_sec = stub_sec;
3920 }
3921
3922 if (link_sec_p)
3923 *link_sec_p = link_sec;
3924
3925 return stub_sec;
3926 }
3927
3928 /* Add a new stub entry to the stub hash. Not all fields of the new
3929 stub entry are initialised. */
3930
3931 static struct elf32_arm_stub_hash_entry *
3932 elf32_arm_add_stub (const char *stub_name,
3933 asection *section,
3934 struct elf32_arm_link_hash_table *htab)
3935 {
3936 asection *link_sec;
3937 asection *stub_sec;
3938 struct elf32_arm_stub_hash_entry *stub_entry;
3939
3940 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3941 if (stub_sec == NULL)
3942 return NULL;
3943
3944 /* Enter this entry into the linker stub hash table. */
3945 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3946 TRUE, FALSE);
3947 if (stub_entry == NULL)
3948 {
3949 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3950 section->owner,
3951 stub_name);
3952 return NULL;
3953 }
3954
3955 stub_entry->stub_sec = stub_sec;
3956 stub_entry->stub_offset = 0;
3957 stub_entry->id_sec = link_sec;
3958
3959 return stub_entry;
3960 }
3961
3962 /* Store an Arm insn into an output section not processed by
3963 elf32_arm_write_section. */
3964
3965 static void
3966 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3967 bfd * output_bfd, bfd_vma val, void * ptr)
3968 {
3969 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3970 bfd_putl32 (val, ptr);
3971 else
3972 bfd_putb32 (val, ptr);
3973 }
3974
3975 /* Store a 16-bit Thumb insn into an output section not processed by
3976 elf32_arm_write_section. */
3977
3978 static void
3979 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3980 bfd * output_bfd, bfd_vma val, void * ptr)
3981 {
3982 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3983 bfd_putl16 (val, ptr);
3984 else
3985 bfd_putb16 (val, ptr);
3986 }
3987
3988 /* If it's possible to change R_TYPE to a more efficient access
3989 model, return the new reloc type. */
3990
3991 static unsigned
3992 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
3993 struct elf_link_hash_entry *h)
3994 {
3995 int is_local = (h == NULL);
3996
3997 if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
3998 return r_type;
3999
4000 /* We do not support relaxations for Old TLS models. */
4001 switch (r_type)
4002 {
4003 case R_ARM_TLS_GOTDESC:
4004 case R_ARM_TLS_CALL:
4005 case R_ARM_THM_TLS_CALL:
4006 case R_ARM_TLS_DESCSEQ:
4007 case R_ARM_THM_TLS_DESCSEQ:
4008 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4009 }
4010
4011 return r_type;
4012 }
4013
4014 static bfd_reloc_status_type elf32_arm_final_link_relocate
4015 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4016 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4017 const char *, unsigned char, enum arm_st_branch_type,
4018 struct elf_link_hash_entry *, bfd_boolean *, char **);
4019
4020 static unsigned int
4021 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4022 {
4023 switch (stub_type)
4024 {
4025 case arm_stub_a8_veneer_b_cond:
4026 case arm_stub_a8_veneer_b:
4027 case arm_stub_a8_veneer_bl:
4028 return 2;
4029
4030 case arm_stub_long_branch_any_any:
4031 case arm_stub_long_branch_v4t_arm_thumb:
4032 case arm_stub_long_branch_thumb_only:
4033 case arm_stub_long_branch_v4t_thumb_thumb:
4034 case arm_stub_long_branch_v4t_thumb_arm:
4035 case arm_stub_short_branch_v4t_thumb_arm:
4036 case arm_stub_long_branch_any_arm_pic:
4037 case arm_stub_long_branch_any_thumb_pic:
4038 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4039 case arm_stub_long_branch_v4t_arm_thumb_pic:
4040 case arm_stub_long_branch_v4t_thumb_arm_pic:
4041 case arm_stub_long_branch_thumb_only_pic:
4042 case arm_stub_long_branch_any_tls_pic:
4043 case arm_stub_long_branch_v4t_thumb_tls_pic:
4044 case arm_stub_a8_veneer_blx:
4045 return 4;
4046
4047 default:
4048 abort (); /* Should be unreachable. */
4049 }
4050 }
4051
4052 static bfd_boolean
4053 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
4054 void * in_arg)
4055 {
4056 #define MAXRELOCS 2
4057 struct elf32_arm_stub_hash_entry *stub_entry;
4058 struct elf32_arm_link_hash_table *globals;
4059 struct bfd_link_info *info;
4060 asection *stub_sec;
4061 bfd *stub_bfd;
4062 bfd_byte *loc;
4063 bfd_vma sym_value;
4064 int template_size;
4065 int size;
4066 const insn_sequence *template_sequence;
4067 int i;
4068 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
4069 int stub_reloc_offset[MAXRELOCS] = {0, 0};
4070 int nrelocs = 0;
4071
4072 /* Massage our args to the form they really have. */
4073 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4074 info = (struct bfd_link_info *) in_arg;
4075
4076 globals = elf32_arm_hash_table (info);
4077 if (globals == NULL)
4078 return FALSE;
4079
4080 stub_sec = stub_entry->stub_sec;
4081
4082 if ((globals->fix_cortex_a8 < 0)
4083 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
4084 /* We have to do less-strictly-aligned fixes last. */
4085 return TRUE;
4086
4087 /* Make a note of the offset within the stubs for this entry. */
4088 stub_entry->stub_offset = stub_sec->size;
4089 loc = stub_sec->contents + stub_entry->stub_offset;
4090
4091 stub_bfd = stub_sec->owner;
4092
4093 /* This is the address of the stub destination. */
4094 sym_value = (stub_entry->target_value
4095 + stub_entry->target_section->output_offset
4096 + stub_entry->target_section->output_section->vma);
4097
4098 template_sequence = stub_entry->stub_template;
4099 template_size = stub_entry->stub_template_size;
4100
4101 size = 0;
4102 for (i = 0; i < template_size; i++)
4103 {
4104 switch (template_sequence[i].type)
4105 {
4106 case THUMB16_TYPE:
4107 {
4108 bfd_vma data = (bfd_vma) template_sequence[i].data;
4109 if (template_sequence[i].reloc_addend != 0)
4110 {
4111 /* We've borrowed the reloc_addend field to mean we should
4112 insert a condition code into this (Thumb-1 branch)
4113 instruction. See THUMB16_BCOND_INSN. */
4114 BFD_ASSERT ((data & 0xff00) == 0xd000);
4115 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4116 }
4117 bfd_put_16 (stub_bfd, data, loc + size);
4118 size += 2;
4119 }
4120 break;
4121
4122 case THUMB32_TYPE:
4123 bfd_put_16 (stub_bfd,
4124 (template_sequence[i].data >> 16) & 0xffff,
4125 loc + size);
4126 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4127 loc + size + 2);
4128 if (template_sequence[i].r_type != R_ARM_NONE)
4129 {
4130 stub_reloc_idx[nrelocs] = i;
4131 stub_reloc_offset[nrelocs++] = size;
4132 }
4133 size += 4;
4134 break;
4135
4136 case ARM_TYPE:
4137 bfd_put_32 (stub_bfd, template_sequence[i].data,
4138 loc + size);
4139 /* Handle cases where the target is encoded within the
4140 instruction. */
4141 if (template_sequence[i].r_type == R_ARM_JUMP24)
4142 {
4143 stub_reloc_idx[nrelocs] = i;
4144 stub_reloc_offset[nrelocs++] = size;
4145 }
4146 size += 4;
4147 break;
4148
4149 case DATA_TYPE:
4150 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4151 stub_reloc_idx[nrelocs] = i;
4152 stub_reloc_offset[nrelocs++] = size;
4153 size += 4;
4154 break;
4155
4156 default:
4157 BFD_FAIL ();
4158 return FALSE;
4159 }
4160 }
4161
4162 stub_sec->size += size;
4163
4164 /* Stub size has already been computed in arm_size_one_stub. Check
4165 consistency. */
4166 BFD_ASSERT (size == stub_entry->stub_size);
4167
4168 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4169 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4170 sym_value |= 1;
4171
4172 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4173 in each stub. */
4174 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4175
4176 for (i = 0; i < nrelocs; i++)
4177 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4178 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4179 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4180 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
4181 {
4182 Elf_Internal_Rela rel;
4183 bfd_boolean unresolved_reloc;
4184 char *error_message;
4185 enum arm_st_branch_type branch_type
4186 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4187 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
4188 bfd_vma points_to = sym_value + stub_entry->target_addend;
4189
4190 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4191 rel.r_info = ELF32_R_INFO (0,
4192 template_sequence[stub_reloc_idx[i]].r_type);
4193 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
4194
4195 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4196 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4197 template should refer back to the instruction after the original
4198 branch. */
4199 points_to = sym_value;
4200
4201 /* There may be unintended consequences if this is not true. */
4202 BFD_ASSERT (stub_entry->h == NULL);
4203
4204 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4205 properly. We should probably use this function unconditionally,
4206 rather than only for certain relocations listed in the enclosing
4207 conditional, for the sake of consistency. */
4208 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4209 (template_sequence[stub_reloc_idx[i]].r_type),
4210 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4211 points_to, info, stub_entry->target_section, "", STT_FUNC,
4212 branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4213 &unresolved_reloc, &error_message);
4214 }
4215 else
4216 {
4217 Elf_Internal_Rela rel;
4218 bfd_boolean unresolved_reloc;
4219 char *error_message;
4220 bfd_vma points_to = sym_value + stub_entry->target_addend
4221 + template_sequence[stub_reloc_idx[i]].reloc_addend;
4222
4223 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4224 rel.r_info = ELF32_R_INFO (0,
4225 template_sequence[stub_reloc_idx[i]].r_type);
4226 rel.r_addend = 0;
4227
4228 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4229 (template_sequence[stub_reloc_idx[i]].r_type),
4230 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4231 points_to, info, stub_entry->target_section, "", STT_FUNC,
4232 stub_entry->branch_type,
4233 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4234 &error_message);
4235 }
4236
4237 return TRUE;
4238 #undef MAXRELOCS
4239 }
4240
4241 /* Calculate the template, template size and instruction size for a stub.
4242 Return value is the instruction size. */
4243
4244 static unsigned int
4245 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4246 const insn_sequence **stub_template,
4247 int *stub_template_size)
4248 {
4249 const insn_sequence *template_sequence = NULL;
4250 int template_size = 0, i;
4251 unsigned int size;
4252
4253 template_sequence = stub_definitions[stub_type].template_sequence;
4254 if (stub_template)
4255 *stub_template = template_sequence;
4256
4257 template_size = stub_definitions[stub_type].template_size;
4258 if (stub_template_size)
4259 *stub_template_size = template_size;
4260
4261 size = 0;
4262 for (i = 0; i < template_size; i++)
4263 {
4264 switch (template_sequence[i].type)
4265 {
4266 case THUMB16_TYPE:
4267 size += 2;
4268 break;
4269
4270 case ARM_TYPE:
4271 case THUMB32_TYPE:
4272 case DATA_TYPE:
4273 size += 4;
4274 break;
4275
4276 default:
4277 BFD_FAIL ();
4278 return 0;
4279 }
4280 }
4281
4282 return size;
4283 }
4284
4285 /* As above, but don't actually build the stub. Just bump offset so
4286 we know stub section sizes. */
4287
4288 static bfd_boolean
4289 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4290 void *in_arg ATTRIBUTE_UNUSED)
4291 {
4292 struct elf32_arm_stub_hash_entry *stub_entry;
4293 const insn_sequence *template_sequence;
4294 int template_size, size;
4295
4296 /* Massage our args to the form they really have. */
4297 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4298
4299 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4300 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4301
4302 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4303 &template_size);
4304
4305 stub_entry->stub_size = size;
4306 stub_entry->stub_template = template_sequence;
4307 stub_entry->stub_template_size = template_size;
4308
4309 size = (size + 7) & ~7;
4310 stub_entry->stub_sec->size += size;
4311
4312 return TRUE;
4313 }
4314
4315 /* External entry points for sizing and building linker stubs. */
4316
4317 /* Set up various things so that we can make a list of input sections
4318 for each output section included in the link. Returns -1 on error,
4319 0 when no stubs will be needed, and 1 on success. */
4320
4321 int
4322 elf32_arm_setup_section_lists (bfd *output_bfd,
4323 struct bfd_link_info *info)
4324 {
4325 bfd *input_bfd;
4326 unsigned int bfd_count;
4327 int top_id, top_index;
4328 asection *section;
4329 asection **input_list, **list;
4330 bfd_size_type amt;
4331 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4332
4333 if (htab == NULL)
4334 return 0;
4335 if (! is_elf_hash_table (htab))
4336 return 0;
4337
4338 /* Count the number of input BFDs and find the top input section id. */
4339 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4340 input_bfd != NULL;
4341 input_bfd = input_bfd->link_next)
4342 {
4343 bfd_count += 1;
4344 for (section = input_bfd->sections;
4345 section != NULL;
4346 section = section->next)
4347 {
4348 if (top_id < section->id)
4349 top_id = section->id;
4350 }
4351 }
4352 htab->bfd_count = bfd_count;
4353
4354 amt = sizeof (struct map_stub) * (top_id + 1);
4355 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4356 if (htab->stub_group == NULL)
4357 return -1;
4358 htab->top_id = top_id;
4359
4360 /* We can't use output_bfd->section_count here to find the top output
4361 section index as some sections may have been removed, and
4362 _bfd_strip_section_from_output doesn't renumber the indices. */
4363 for (section = output_bfd->sections, top_index = 0;
4364 section != NULL;
4365 section = section->next)
4366 {
4367 if (top_index < section->index)
4368 top_index = section->index;
4369 }
4370
4371 htab->top_index = top_index;
4372 amt = sizeof (asection *) * (top_index + 1);
4373 input_list = (asection **) bfd_malloc (amt);
4374 htab->input_list = input_list;
4375 if (input_list == NULL)
4376 return -1;
4377
4378 /* For sections we aren't interested in, mark their entries with a
4379 value we can check later. */
4380 list = input_list + top_index;
4381 do
4382 *list = bfd_abs_section_ptr;
4383 while (list-- != input_list);
4384
4385 for (section = output_bfd->sections;
4386 section != NULL;
4387 section = section->next)
4388 {
4389 if ((section->flags & SEC_CODE) != 0)
4390 input_list[section->index] = NULL;
4391 }
4392
4393 return 1;
4394 }
4395
4396 /* The linker repeatedly calls this function for each input section,
4397 in the order that input sections are linked into output sections.
4398 Build lists of input sections to determine groupings between which
4399 we may insert linker stubs. */
4400
4401 void
4402 elf32_arm_next_input_section (struct bfd_link_info *info,
4403 asection *isec)
4404 {
4405 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4406
4407 if (htab == NULL)
4408 return;
4409
4410 if (isec->output_section->index <= htab->top_index)
4411 {
4412 asection **list = htab->input_list + isec->output_section->index;
4413
4414 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4415 {
4416 /* Steal the link_sec pointer for our list. */
4417 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4418 /* This happens to make the list in reverse order,
4419 which we reverse later. */
4420 PREV_SEC (isec) = *list;
4421 *list = isec;
4422 }
4423 }
4424 }
4425
4426 /* See whether we can group stub sections together. Grouping stub
4427 sections may result in fewer stubs. More importantly, we need to
4428 put all .init* and .fini* stubs at the end of the .init or
4429 .fini output sections respectively, because glibc splits the
4430 _init and _fini functions into multiple parts. Putting a stub in
4431 the middle of a function is not a good idea. */
4432
4433 static void
4434 group_sections (struct elf32_arm_link_hash_table *htab,
4435 bfd_size_type stub_group_size,
4436 bfd_boolean stubs_always_after_branch)
4437 {
4438 asection **list = htab->input_list;
4439
4440 do
4441 {
4442 asection *tail = *list;
4443 asection *head;
4444
4445 if (tail == bfd_abs_section_ptr)
4446 continue;
4447
4448 /* Reverse the list: we must avoid placing stubs at the
4449 beginning of the section because the beginning of the text
4450 section may be required for an interrupt vector in bare metal
4451 code. */
4452 #define NEXT_SEC PREV_SEC
4453 head = NULL;
4454 while (tail != NULL)
4455 {
4456 /* Pop from tail. */
4457 asection *item = tail;
4458 tail = PREV_SEC (item);
4459
4460 /* Push on head. */
4461 NEXT_SEC (item) = head;
4462 head = item;
4463 }
4464
4465 while (head != NULL)
4466 {
4467 asection *curr;
4468 asection *next;
4469 bfd_vma stub_group_start = head->output_offset;
4470 bfd_vma end_of_next;
4471
4472 curr = head;
4473 while (NEXT_SEC (curr) != NULL)
4474 {
4475 next = NEXT_SEC (curr);
4476 end_of_next = next->output_offset + next->size;
4477 if (end_of_next - stub_group_start >= stub_group_size)
4478 /* End of NEXT is too far from start, so stop. */
4479 break;
4480 /* Add NEXT to the group. */
4481 curr = next;
4482 }
4483
4484 /* OK, the size from the start to the start of CURR is less
4485 than stub_group_size and thus can be handled by one stub
4486 section. (Or the head section is itself larger than
4487 stub_group_size, in which case we may be toast.)
4488 We should really be keeping track of the total size of
4489 stubs added here, as stubs contribute to the final output
4490 section size. */
4491 do
4492 {
4493 next = NEXT_SEC (head);
4494 /* Set up this stub group. */
4495 htab->stub_group[head->id].link_sec = curr;
4496 }
4497 while (head != curr && (head = next) != NULL);
4498
4499 /* But wait, there's more! Input sections up to stub_group_size
4500 bytes after the stub section can be handled by it too. */
4501 if (!stubs_always_after_branch)
4502 {
4503 stub_group_start = curr->output_offset + curr->size;
4504
4505 while (next != NULL)
4506 {
4507 end_of_next = next->output_offset + next->size;
4508 if (end_of_next - stub_group_start >= stub_group_size)
4509 /* End of NEXT is too far from stubs, so stop. */
4510 break;
4511 /* Add NEXT to the stub group. */
4512 head = next;
4513 next = NEXT_SEC (head);
4514 htab->stub_group[head->id].link_sec = curr;
4515 }
4516 }
4517 head = next;
4518 }
4519 }
4520 while (list++ != htab->input_list + htab->top_index);
4521
4522 free (htab->input_list);
4523 #undef PREV_SEC
4524 #undef NEXT_SEC
4525 }
4526
4527 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4528 erratum fix. */
4529
4530 static int
4531 a8_reloc_compare (const void *a, const void *b)
4532 {
4533 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4534 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4535
4536 if (ra->from < rb->from)
4537 return -1;
4538 else if (ra->from > rb->from)
4539 return 1;
4540 else
4541 return 0;
4542 }
4543
4544 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4545 const char *, char **);
4546
4547 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4548 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4549 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4550 otherwise. */
4551
4552 static bfd_boolean
4553 cortex_a8_erratum_scan (bfd *input_bfd,
4554 struct bfd_link_info *info,
4555 struct a8_erratum_fix **a8_fixes_p,
4556 unsigned int *num_a8_fixes_p,
4557 unsigned int *a8_fix_table_size_p,
4558 struct a8_erratum_reloc *a8_relocs,
4559 unsigned int num_a8_relocs,
4560 unsigned prev_num_a8_fixes,
4561 bfd_boolean *stub_changed_p)
4562 {
4563 asection *section;
4564 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4565 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4566 unsigned int num_a8_fixes = *num_a8_fixes_p;
4567 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4568
4569 if (htab == NULL)
4570 return FALSE;
4571
4572 for (section = input_bfd->sections;
4573 section != NULL;
4574 section = section->next)
4575 {
4576 bfd_byte *contents = NULL;
4577 struct _arm_elf_section_data *sec_data;
4578 unsigned int span;
4579 bfd_vma base_vma;
4580
4581 if (elf_section_type (section) != SHT_PROGBITS
4582 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4583 || (section->flags & SEC_EXCLUDE) != 0
4584 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4585 || (section->output_section == bfd_abs_section_ptr))
4586 continue;
4587
4588 base_vma = section->output_section->vma + section->output_offset;
4589
4590 if (elf_section_data (section)->this_hdr.contents != NULL)
4591 contents = elf_section_data (section)->this_hdr.contents;
4592 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4593 return TRUE;
4594
4595 sec_data = elf32_arm_section_data (section);
4596
4597 for (span = 0; span < sec_data->mapcount; span++)
4598 {
4599 unsigned int span_start = sec_data->map[span].vma;
4600 unsigned int span_end = (span == sec_data->mapcount - 1)
4601 ? section->size : sec_data->map[span + 1].vma;
4602 unsigned int i;
4603 char span_type = sec_data->map[span].type;
4604 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4605
4606 if (span_type != 't')
4607 continue;
4608
4609 /* Span is entirely within a single 4KB region: skip scanning. */
4610 if (((base_vma + span_start) & ~0xfff)
4611 == ((base_vma + span_end) & ~0xfff))
4612 continue;
4613
4614 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4615
4616 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4617 * The branch target is in the same 4KB region as the
4618 first half of the branch.
4619 * The instruction before the branch is a 32-bit
4620 length non-branch instruction. */
4621 for (i = span_start; i < span_end;)
4622 {
4623 unsigned int insn = bfd_getl16 (&contents[i]);
4624 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4625 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4626
4627 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4628 insn_32bit = TRUE;
4629
4630 if (insn_32bit)
4631 {
4632 /* Load the rest of the insn (in manual-friendly order). */
4633 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4634
4635 /* Encoding T4: B<c>.W. */
4636 is_b = (insn & 0xf800d000) == 0xf0009000;
4637 /* Encoding T1: BL<c>.W. */
4638 is_bl = (insn & 0xf800d000) == 0xf000d000;
4639 /* Encoding T2: BLX<c>.W. */
4640 is_blx = (insn & 0xf800d000) == 0xf000c000;
4641 /* Encoding T3: B<c>.W (not permitted in IT block). */
4642 is_bcc = (insn & 0xf800d000) == 0xf0008000
4643 && (insn & 0x07f00000) != 0x03800000;
4644 }
4645
4646 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4647
4648 if (((base_vma + i) & 0xfff) == 0xffe
4649 && insn_32bit
4650 && is_32bit_branch
4651 && last_was_32bit
4652 && ! last_was_branch)
4653 {
4654 bfd_signed_vma offset = 0;
4655 bfd_boolean force_target_arm = FALSE;
4656 bfd_boolean force_target_thumb = FALSE;
4657 bfd_vma target;
4658 enum elf32_arm_stub_type stub_type = arm_stub_none;
4659 struct a8_erratum_reloc key, *found;
4660 bfd_boolean use_plt = FALSE;
4661
4662 key.from = base_vma + i;
4663 found = (struct a8_erratum_reloc *)
4664 bsearch (&key, a8_relocs, num_a8_relocs,
4665 sizeof (struct a8_erratum_reloc),
4666 &a8_reloc_compare);
4667
4668 if (found)
4669 {
4670 char *error_message = NULL;
4671 struct elf_link_hash_entry *entry;
4672
4673 /* We don't care about the error returned from this
4674 function, only if there is glue or not. */
4675 entry = find_thumb_glue (info, found->sym_name,
4676 &error_message);
4677
4678 if (entry)
4679 found->non_a8_stub = TRUE;
4680
4681 /* Keep a simpler condition, for the sake of clarity. */
4682 if (htab->root.splt != NULL && found->hash != NULL
4683 && found->hash->root.plt.offset != (bfd_vma) -1)
4684 use_plt = TRUE;
4685
4686 if (found->r_type == R_ARM_THM_CALL)
4687 {
4688 if (found->branch_type == ST_BRANCH_TO_ARM
4689 || use_plt)
4690 force_target_arm = TRUE;
4691 else
4692 force_target_thumb = TRUE;
4693 }
4694 }
4695
4696 /* Check if we have an offending branch instruction. */
4697
4698 if (found && found->non_a8_stub)
4699 /* We've already made a stub for this instruction, e.g.
4700 it's a long branch or a Thumb->ARM stub. Assume that
4701 stub will suffice to work around the A8 erratum (see
4702 setting of always_after_branch above). */
4703 ;
4704 else if (is_bcc)
4705 {
4706 offset = (insn & 0x7ff) << 1;
4707 offset |= (insn & 0x3f0000) >> 4;
4708 offset |= (insn & 0x2000) ? 0x40000 : 0;
4709 offset |= (insn & 0x800) ? 0x80000 : 0;
4710 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4711 if (offset & 0x100000)
4712 offset |= ~ ((bfd_signed_vma) 0xfffff);
4713 stub_type = arm_stub_a8_veneer_b_cond;
4714 }
4715 else if (is_b || is_bl || is_blx)
4716 {
4717 int s = (insn & 0x4000000) != 0;
4718 int j1 = (insn & 0x2000) != 0;
4719 int j2 = (insn & 0x800) != 0;
4720 int i1 = !(j1 ^ s);
4721 int i2 = !(j2 ^ s);
4722
4723 offset = (insn & 0x7ff) << 1;
4724 offset |= (insn & 0x3ff0000) >> 4;
4725 offset |= i2 << 22;
4726 offset |= i1 << 23;
4727 offset |= s << 24;
4728 if (offset & 0x1000000)
4729 offset |= ~ ((bfd_signed_vma) 0xffffff);
4730
4731 if (is_blx)
4732 offset &= ~ ((bfd_signed_vma) 3);
4733
4734 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4735 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4736 }
4737
4738 if (stub_type != arm_stub_none)
4739 {
4740 bfd_vma pc_for_insn = base_vma + i + 4;
4741
4742 /* The original instruction is a BL, but the target is
4743 an ARM instruction. If we were not making a stub,
4744 the BL would have been converted to a BLX. Use the
4745 BLX stub instead in that case. */
4746 if (htab->use_blx && force_target_arm
4747 && stub_type == arm_stub_a8_veneer_bl)
4748 {
4749 stub_type = arm_stub_a8_veneer_blx;
4750 is_blx = TRUE;
4751 is_bl = FALSE;
4752 }
4753 /* Conversely, if the original instruction was
4754 BLX but the target is Thumb mode, use the BL
4755 stub. */
4756 else if (force_target_thumb
4757 && stub_type == arm_stub_a8_veneer_blx)
4758 {
4759 stub_type = arm_stub_a8_veneer_bl;
4760 is_blx = FALSE;
4761 is_bl = TRUE;
4762 }
4763
4764 if (is_blx)
4765 pc_for_insn &= ~ ((bfd_vma) 3);
4766
4767 /* If we found a relocation, use the proper destination,
4768 not the offset in the (unrelocated) instruction.
4769 Note this is always done if we switched the stub type
4770 above. */
4771 if (found)
4772 offset =
4773 (bfd_signed_vma) (found->destination - pc_for_insn);
4774
4775 /* If the stub will use a Thumb-mode branch to a
4776 PLT target, redirect it to the preceding Thumb
4777 entry point. */
4778 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4779 offset -= PLT_THUMB_STUB_SIZE;
4780
4781 target = pc_for_insn + offset;
4782
4783 /* The BLX stub is ARM-mode code. Adjust the offset to
4784 take the different PC value (+8 instead of +4) into
4785 account. */
4786 if (stub_type == arm_stub_a8_veneer_blx)
4787 offset += 4;
4788
4789 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4790 {
4791 char *stub_name = NULL;
4792
4793 if (num_a8_fixes == a8_fix_table_size)
4794 {
4795 a8_fix_table_size *= 2;
4796 a8_fixes = (struct a8_erratum_fix *)
4797 bfd_realloc (a8_fixes,
4798 sizeof (struct a8_erratum_fix)
4799 * a8_fix_table_size);
4800 }
4801
4802 if (num_a8_fixes < prev_num_a8_fixes)
4803 {
4804 /* If we're doing a subsequent scan,
4805 check if we've found the same fix as
4806 before, and try and reuse the stub
4807 name. */
4808 stub_name = a8_fixes[num_a8_fixes].stub_name;
4809 if ((a8_fixes[num_a8_fixes].section != section)
4810 || (a8_fixes[num_a8_fixes].offset != i))
4811 {
4812 free (stub_name);
4813 stub_name = NULL;
4814 *stub_changed_p = TRUE;
4815 }
4816 }
4817
4818 if (!stub_name)
4819 {
4820 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4821 if (stub_name != NULL)
4822 sprintf (stub_name, "%x:%x", section->id, i);
4823 }
4824
4825 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4826 a8_fixes[num_a8_fixes].section = section;
4827 a8_fixes[num_a8_fixes].offset = i;
4828 a8_fixes[num_a8_fixes].addend = offset;
4829 a8_fixes[num_a8_fixes].orig_insn = insn;
4830 a8_fixes[num_a8_fixes].stub_name = stub_name;
4831 a8_fixes[num_a8_fixes].stub_type = stub_type;
4832 a8_fixes[num_a8_fixes].branch_type =
4833 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
4834
4835 num_a8_fixes++;
4836 }
4837 }
4838 }
4839
4840 i += insn_32bit ? 4 : 2;
4841 last_was_32bit = insn_32bit;
4842 last_was_branch = is_32bit_branch;
4843 }
4844 }
4845
4846 if (elf_section_data (section)->this_hdr.contents == NULL)
4847 free (contents);
4848 }
4849
4850 *a8_fixes_p = a8_fixes;
4851 *num_a8_fixes_p = num_a8_fixes;
4852 *a8_fix_table_size_p = a8_fix_table_size;
4853
4854 return FALSE;
4855 }
4856
4857 /* Determine and set the size of the stub section for a final link.
4858
4859 The basic idea here is to examine all the relocations looking for
4860 PC-relative calls to a target that is unreachable with a "bl"
4861 instruction. */
4862
4863 bfd_boolean
4864 elf32_arm_size_stubs (bfd *output_bfd,
4865 bfd *stub_bfd,
4866 struct bfd_link_info *info,
4867 bfd_signed_vma group_size,
4868 asection * (*add_stub_section) (const char *, asection *),
4869 void (*layout_sections_again) (void))
4870 {
4871 bfd_size_type stub_group_size;
4872 bfd_boolean stubs_always_after_branch;
4873 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4874 struct a8_erratum_fix *a8_fixes = NULL;
4875 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4876 struct a8_erratum_reloc *a8_relocs = NULL;
4877 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4878
4879 if (htab == NULL)
4880 return FALSE;
4881
4882 if (htab->fix_cortex_a8)
4883 {
4884 a8_fixes = (struct a8_erratum_fix *)
4885 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4886 a8_relocs = (struct a8_erratum_reloc *)
4887 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4888 }
4889
4890 /* Propagate mach to stub bfd, because it may not have been
4891 finalized when we created stub_bfd. */
4892 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4893 bfd_get_mach (output_bfd));
4894
4895 /* Stash our params away. */
4896 htab->stub_bfd = stub_bfd;
4897 htab->add_stub_section = add_stub_section;
4898 htab->layout_sections_again = layout_sections_again;
4899 stubs_always_after_branch = group_size < 0;
4900
4901 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4902 as the first half of a 32-bit branch straddling two 4K pages. This is a
4903 crude way of enforcing that. */
4904 if (htab->fix_cortex_a8)
4905 stubs_always_after_branch = 1;
4906
4907 if (group_size < 0)
4908 stub_group_size = -group_size;
4909 else
4910 stub_group_size = group_size;
4911
4912 if (stub_group_size == 1)
4913 {
4914 /* Default values. */
4915 /* Thumb branch range is +-4MB has to be used as the default
4916 maximum size (a given section can contain both ARM and Thumb
4917 code, so the worst case has to be taken into account).
4918
4919 This value is 24K less than that, which allows for 2025
4920 12-byte stubs. If we exceed that, then we will fail to link.
4921 The user will have to relink with an explicit group size
4922 option. */
4923 stub_group_size = 4170000;
4924 }
4925
4926 group_sections (htab, stub_group_size, stubs_always_after_branch);
4927
4928 /* If we're applying the cortex A8 fix, we need to determine the
4929 program header size now, because we cannot change it later --
4930 that could alter section placements. Notice the A8 erratum fix
4931 ends up requiring the section addresses to remain unchanged
4932 modulo the page size. That's something we cannot represent
4933 inside BFD, and we don't want to force the section alignment to
4934 be the page size. */
4935 if (htab->fix_cortex_a8)
4936 (*htab->layout_sections_again) ();
4937
4938 while (1)
4939 {
4940 bfd *input_bfd;
4941 unsigned int bfd_indx;
4942 asection *stub_sec;
4943 bfd_boolean stub_changed = FALSE;
4944 unsigned prev_num_a8_fixes = num_a8_fixes;
4945
4946 num_a8_fixes = 0;
4947 for (input_bfd = info->input_bfds, bfd_indx = 0;
4948 input_bfd != NULL;
4949 input_bfd = input_bfd->link_next, bfd_indx++)
4950 {
4951 Elf_Internal_Shdr *symtab_hdr;
4952 asection *section;
4953 Elf_Internal_Sym *local_syms = NULL;
4954
4955 if (!is_arm_elf (input_bfd))
4956 continue;
4957
4958 num_a8_relocs = 0;
4959
4960 /* We'll need the symbol table in a second. */
4961 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4962 if (symtab_hdr->sh_info == 0)
4963 continue;
4964
4965 /* Walk over each section attached to the input bfd. */
4966 for (section = input_bfd->sections;
4967 section != NULL;
4968 section = section->next)
4969 {
4970 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4971
4972 /* If there aren't any relocs, then there's nothing more
4973 to do. */
4974 if ((section->flags & SEC_RELOC) == 0
4975 || section->reloc_count == 0
4976 || (section->flags & SEC_CODE) == 0)
4977 continue;
4978
4979 /* If this section is a link-once section that will be
4980 discarded, then don't create any stubs. */
4981 if (section->output_section == NULL
4982 || section->output_section->owner != output_bfd)
4983 continue;
4984
4985 /* Get the relocs. */
4986 internal_relocs
4987 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4988 NULL, info->keep_memory);
4989 if (internal_relocs == NULL)
4990 goto error_ret_free_local;
4991
4992 /* Now examine each relocation. */
4993 irela = internal_relocs;
4994 irelaend = irela + section->reloc_count;
4995 for (; irela < irelaend; irela++)
4996 {
4997 unsigned int r_type, r_indx;
4998 enum elf32_arm_stub_type stub_type;
4999 struct elf32_arm_stub_hash_entry *stub_entry;
5000 asection *sym_sec;
5001 bfd_vma sym_value;
5002 bfd_vma destination;
5003 struct elf32_arm_link_hash_entry *hash;
5004 const char *sym_name;
5005 char *stub_name;
5006 const asection *id_sec;
5007 unsigned char st_type;
5008 enum arm_st_branch_type branch_type;
5009 bfd_boolean created_stub = FALSE;
5010
5011 r_type = ELF32_R_TYPE (irela->r_info);
5012 r_indx = ELF32_R_SYM (irela->r_info);
5013
5014 if (r_type >= (unsigned int) R_ARM_max)
5015 {
5016 bfd_set_error (bfd_error_bad_value);
5017 error_ret_free_internal:
5018 if (elf_section_data (section)->relocs == NULL)
5019 free (internal_relocs);
5020 goto error_ret_free_local;
5021 }
5022
5023 hash = NULL;
5024 if (r_indx >= symtab_hdr->sh_info)
5025 hash = elf32_arm_hash_entry
5026 (elf_sym_hashes (input_bfd)
5027 [r_indx - symtab_hdr->sh_info]);
5028
5029 /* Only look for stubs on branch instructions, or
5030 non-relaxed TLSCALL */
5031 if ((r_type != (unsigned int) R_ARM_CALL)
5032 && (r_type != (unsigned int) R_ARM_THM_CALL)
5033 && (r_type != (unsigned int) R_ARM_JUMP24)
5034 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
5035 && (r_type != (unsigned int) R_ARM_THM_XPC22)
5036 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
5037 && (r_type != (unsigned int) R_ARM_PLT32)
5038 && !((r_type == (unsigned int) R_ARM_TLS_CALL
5039 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5040 && r_type == elf32_arm_tls_transition
5041 (info, r_type, &hash->root)
5042 && ((hash ? hash->tls_type
5043 : (elf32_arm_local_got_tls_type
5044 (input_bfd)[r_indx]))
5045 & GOT_TLS_GDESC) != 0))
5046 continue;
5047
5048 /* Now determine the call target, its name, value,
5049 section. */
5050 sym_sec = NULL;
5051 sym_value = 0;
5052 destination = 0;
5053 sym_name = NULL;
5054
5055 if (r_type == (unsigned int) R_ARM_TLS_CALL
5056 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
5057 {
5058 /* A non-relaxed TLS call. The target is the
5059 plt-resident trampoline and nothing to do
5060 with the symbol. */
5061 BFD_ASSERT (htab->tls_trampoline > 0);
5062 sym_sec = htab->root.splt;
5063 sym_value = htab->tls_trampoline;
5064 hash = 0;
5065 st_type = STT_FUNC;
5066 branch_type = ST_BRANCH_TO_ARM;
5067 }
5068 else if (!hash)
5069 {
5070 /* It's a local symbol. */
5071 Elf_Internal_Sym *sym;
5072
5073 if (local_syms == NULL)
5074 {
5075 local_syms
5076 = (Elf_Internal_Sym *) symtab_hdr->contents;
5077 if (local_syms == NULL)
5078 local_syms
5079 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5080 symtab_hdr->sh_info, 0,
5081 NULL, NULL, NULL);
5082 if (local_syms == NULL)
5083 goto error_ret_free_internal;
5084 }
5085
5086 sym = local_syms + r_indx;
5087 if (sym->st_shndx == SHN_UNDEF)
5088 sym_sec = bfd_und_section_ptr;
5089 else if (sym->st_shndx == SHN_ABS)
5090 sym_sec = bfd_abs_section_ptr;
5091 else if (sym->st_shndx == SHN_COMMON)
5092 sym_sec = bfd_com_section_ptr;
5093 else
5094 sym_sec =
5095 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
5096
5097 if (!sym_sec)
5098 /* This is an undefined symbol. It can never
5099 be resolved. */
5100 continue;
5101
5102 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5103 sym_value = sym->st_value;
5104 destination = (sym_value + irela->r_addend
5105 + sym_sec->output_offset
5106 + sym_sec->output_section->vma);
5107 st_type = ELF_ST_TYPE (sym->st_info);
5108 branch_type = ARM_SYM_BRANCH_TYPE (sym);
5109 sym_name
5110 = bfd_elf_string_from_elf_section (input_bfd,
5111 symtab_hdr->sh_link,
5112 sym->st_name);
5113 }
5114 else
5115 {
5116 /* It's an external symbol. */
5117 while (hash->root.root.type == bfd_link_hash_indirect
5118 || hash->root.root.type == bfd_link_hash_warning)
5119 hash = ((struct elf32_arm_link_hash_entry *)
5120 hash->root.root.u.i.link);
5121
5122 if (hash->root.root.type == bfd_link_hash_defined
5123 || hash->root.root.type == bfd_link_hash_defweak)
5124 {
5125 sym_sec = hash->root.root.u.def.section;
5126 sym_value = hash->root.root.u.def.value;
5127
5128 struct elf32_arm_link_hash_table *globals =
5129 elf32_arm_hash_table (info);
5130
5131 /* For a destination in a shared library,
5132 use the PLT stub as target address to
5133 decide whether a branch stub is
5134 needed. */
5135 if (globals != NULL
5136 && globals->root.splt != NULL
5137 && hash != NULL
5138 && hash->root.plt.offset != (bfd_vma) -1)
5139 {
5140 sym_sec = globals->root.splt;
5141 sym_value = hash->root.plt.offset;
5142 if (sym_sec->output_section != NULL)
5143 destination = (sym_value
5144 + sym_sec->output_offset
5145 + sym_sec->output_section->vma);
5146 }
5147 else if (sym_sec->output_section != NULL)
5148 destination = (sym_value + irela->r_addend
5149 + sym_sec->output_offset
5150 + sym_sec->output_section->vma);
5151 }
5152 else if ((hash->root.root.type == bfd_link_hash_undefined)
5153 || (hash->root.root.type == bfd_link_hash_undefweak))
5154 {
5155 /* For a shared library, use the PLT stub as
5156 target address to decide whether a long
5157 branch stub is needed.
5158 For absolute code, they cannot be handled. */
5159 struct elf32_arm_link_hash_table *globals =
5160 elf32_arm_hash_table (info);
5161
5162 if (globals != NULL
5163 && globals->root.splt != NULL
5164 && hash != NULL
5165 && hash->root.plt.offset != (bfd_vma) -1)
5166 {
5167 sym_sec = globals->root.splt;
5168 sym_value = hash->root.plt.offset;
5169 if (sym_sec->output_section != NULL)
5170 destination = (sym_value
5171 + sym_sec->output_offset
5172 + sym_sec->output_section->vma);
5173 }
5174 else
5175 continue;
5176 }
5177 else
5178 {
5179 bfd_set_error (bfd_error_bad_value);
5180 goto error_ret_free_internal;
5181 }
5182 st_type = hash->root.type;
5183 branch_type = hash->root.target_internal;
5184 sym_name = hash->root.root.root.string;
5185 }
5186
5187 do
5188 {
5189 /* Determine what (if any) linker stub is needed. */
5190 stub_type = arm_type_of_stub (info, section, irela,
5191 st_type, &branch_type,
5192 hash, destination, sym_sec,
5193 input_bfd, sym_name);
5194 if (stub_type == arm_stub_none)
5195 break;
5196
5197 /* Support for grouping stub sections. */
5198 id_sec = htab->stub_group[section->id].link_sec;
5199
5200 /* Get the name of this stub. */
5201 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
5202 irela, stub_type);
5203 if (!stub_name)
5204 goto error_ret_free_internal;
5205
5206 /* We've either created a stub for this reloc already,
5207 or we are about to. */
5208 created_stub = TRUE;
5209
5210 stub_entry = arm_stub_hash_lookup
5211 (&htab->stub_hash_table, stub_name,
5212 FALSE, FALSE);
5213 if (stub_entry != NULL)
5214 {
5215 /* The proper stub has already been created. */
5216 free (stub_name);
5217 stub_entry->target_value = sym_value;
5218 break;
5219 }
5220
5221 stub_entry = elf32_arm_add_stub (stub_name, section,
5222 htab);
5223 if (stub_entry == NULL)
5224 {
5225 free (stub_name);
5226 goto error_ret_free_internal;
5227 }
5228
5229 stub_entry->target_value = sym_value;
5230 stub_entry->target_section = sym_sec;
5231 stub_entry->stub_type = stub_type;
5232 stub_entry->h = hash;
5233 stub_entry->branch_type = branch_type;
5234
5235 if (sym_name == NULL)
5236 sym_name = "unnamed";
5237 stub_entry->output_name = (char *)
5238 bfd_alloc (htab->stub_bfd,
5239 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5240 + strlen (sym_name));
5241 if (stub_entry->output_name == NULL)
5242 {
5243 free (stub_name);
5244 goto error_ret_free_internal;
5245 }
5246
5247 /* For historical reasons, use the existing names for
5248 ARM-to-Thumb and Thumb-to-ARM stubs. */
5249 if ((r_type == (unsigned int) R_ARM_THM_CALL
5250 || r_type == (unsigned int) R_ARM_THM_JUMP24)
5251 && branch_type == ST_BRANCH_TO_ARM)
5252 sprintf (stub_entry->output_name,
5253 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5254 else if ((r_type == (unsigned int) R_ARM_CALL
5255 || r_type == (unsigned int) R_ARM_JUMP24)
5256 && branch_type == ST_BRANCH_TO_THUMB)
5257 sprintf (stub_entry->output_name,
5258 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5259 else
5260 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5261 sym_name);
5262
5263 stub_changed = TRUE;
5264 }
5265 while (0);
5266
5267 /* Look for relocations which might trigger Cortex-A8
5268 erratum. */
5269 if (htab->fix_cortex_a8
5270 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5271 || r_type == (unsigned int) R_ARM_THM_JUMP19
5272 || r_type == (unsigned int) R_ARM_THM_CALL
5273 || r_type == (unsigned int) R_ARM_THM_XPC22))
5274 {
5275 bfd_vma from = section->output_section->vma
5276 + section->output_offset
5277 + irela->r_offset;
5278
5279 if ((from & 0xfff) == 0xffe)
5280 {
5281 /* Found a candidate. Note we haven't checked the
5282 destination is within 4K here: if we do so (and
5283 don't create an entry in a8_relocs) we can't tell
5284 that a branch should have been relocated when
5285 scanning later. */
5286 if (num_a8_relocs == a8_reloc_table_size)
5287 {
5288 a8_reloc_table_size *= 2;
5289 a8_relocs = (struct a8_erratum_reloc *)
5290 bfd_realloc (a8_relocs,
5291 sizeof (struct a8_erratum_reloc)
5292 * a8_reloc_table_size);
5293 }
5294
5295 a8_relocs[num_a8_relocs].from = from;
5296 a8_relocs[num_a8_relocs].destination = destination;
5297 a8_relocs[num_a8_relocs].r_type = r_type;
5298 a8_relocs[num_a8_relocs].branch_type = branch_type;
5299 a8_relocs[num_a8_relocs].sym_name = sym_name;
5300 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5301 a8_relocs[num_a8_relocs].hash = hash;
5302
5303 num_a8_relocs++;
5304 }
5305 }
5306 }
5307
5308 /* We're done with the internal relocs, free them. */
5309 if (elf_section_data (section)->relocs == NULL)
5310 free (internal_relocs);
5311 }
5312
5313 if (htab->fix_cortex_a8)
5314 {
5315 /* Sort relocs which might apply to Cortex-A8 erratum. */
5316 qsort (a8_relocs, num_a8_relocs,
5317 sizeof (struct a8_erratum_reloc),
5318 &a8_reloc_compare);
5319
5320 /* Scan for branches which might trigger Cortex-A8 erratum. */
5321 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5322 &num_a8_fixes, &a8_fix_table_size,
5323 a8_relocs, num_a8_relocs,
5324 prev_num_a8_fixes, &stub_changed)
5325 != 0)
5326 goto error_ret_free_local;
5327 }
5328 }
5329
5330 if (prev_num_a8_fixes != num_a8_fixes)
5331 stub_changed = TRUE;
5332
5333 if (!stub_changed)
5334 break;
5335
5336 /* OK, we've added some stubs. Find out the new size of the
5337 stub sections. */
5338 for (stub_sec = htab->stub_bfd->sections;
5339 stub_sec != NULL;
5340 stub_sec = stub_sec->next)
5341 {
5342 /* Ignore non-stub sections. */
5343 if (!strstr (stub_sec->name, STUB_SUFFIX))
5344 continue;
5345
5346 stub_sec->size = 0;
5347 }
5348
5349 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5350
5351 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5352 if (htab->fix_cortex_a8)
5353 for (i = 0; i < num_a8_fixes; i++)
5354 {
5355 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5356 a8_fixes[i].section, htab);
5357
5358 if (stub_sec == NULL)
5359 goto error_ret_free_local;
5360
5361 stub_sec->size
5362 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5363 NULL);
5364 }
5365
5366
5367 /* Ask the linker to do its stuff. */
5368 (*htab->layout_sections_again) ();
5369 }
5370
5371 /* Add stubs for Cortex-A8 erratum fixes now. */
5372 if (htab->fix_cortex_a8)
5373 {
5374 for (i = 0; i < num_a8_fixes; i++)
5375 {
5376 struct elf32_arm_stub_hash_entry *stub_entry;
5377 char *stub_name = a8_fixes[i].stub_name;
5378 asection *section = a8_fixes[i].section;
5379 unsigned int section_id = a8_fixes[i].section->id;
5380 asection *link_sec = htab->stub_group[section_id].link_sec;
5381 asection *stub_sec = htab->stub_group[section_id].stub_sec;
5382 const insn_sequence *template_sequence;
5383 int template_size, size = 0;
5384
5385 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5386 TRUE, FALSE);
5387 if (stub_entry == NULL)
5388 {
5389 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5390 section->owner,
5391 stub_name);
5392 return FALSE;
5393 }
5394
5395 stub_entry->stub_sec = stub_sec;
5396 stub_entry->stub_offset = 0;
5397 stub_entry->id_sec = link_sec;
5398 stub_entry->stub_type = a8_fixes[i].stub_type;
5399 stub_entry->target_section = a8_fixes[i].section;
5400 stub_entry->target_value = a8_fixes[i].offset;
5401 stub_entry->target_addend = a8_fixes[i].addend;
5402 stub_entry->orig_insn = a8_fixes[i].orig_insn;
5403 stub_entry->branch_type = a8_fixes[i].branch_type;
5404
5405 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5406 &template_sequence,
5407 &template_size);
5408
5409 stub_entry->stub_size = size;
5410 stub_entry->stub_template = template_sequence;
5411 stub_entry->stub_template_size = template_size;
5412 }
5413
5414 /* Stash the Cortex-A8 erratum fix array for use later in
5415 elf32_arm_write_section(). */
5416 htab->a8_erratum_fixes = a8_fixes;
5417 htab->num_a8_erratum_fixes = num_a8_fixes;
5418 }
5419 else
5420 {
5421 htab->a8_erratum_fixes = NULL;
5422 htab->num_a8_erratum_fixes = 0;
5423 }
5424 return TRUE;
5425
5426 error_ret_free_local:
5427 return FALSE;
5428 }
5429
5430 /* Build all the stubs associated with the current output file. The
5431 stubs are kept in a hash table attached to the main linker hash
5432 table. We also set up the .plt entries for statically linked PIC
5433 functions here. This function is called via arm_elf_finish in the
5434 linker. */
5435
5436 bfd_boolean
5437 elf32_arm_build_stubs (struct bfd_link_info *info)
5438 {
5439 asection *stub_sec;
5440 struct bfd_hash_table *table;
5441 struct elf32_arm_link_hash_table *htab;
5442
5443 htab = elf32_arm_hash_table (info);
5444 if (htab == NULL)
5445 return FALSE;
5446
5447 for (stub_sec = htab->stub_bfd->sections;
5448 stub_sec != NULL;
5449 stub_sec = stub_sec->next)
5450 {
5451 bfd_size_type size;
5452
5453 /* Ignore non-stub sections. */
5454 if (!strstr (stub_sec->name, STUB_SUFFIX))
5455 continue;
5456
5457 /* Allocate memory to hold the linker stubs. */
5458 size = stub_sec->size;
5459 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5460 if (stub_sec->contents == NULL && size != 0)
5461 return FALSE;
5462 stub_sec->size = 0;
5463 }
5464
5465 /* Build the stubs as directed by the stub hash table. */
5466 table = &htab->stub_hash_table;
5467 bfd_hash_traverse (table, arm_build_one_stub, info);
5468 if (htab->fix_cortex_a8)
5469 {
5470 /* Place the cortex a8 stubs last. */
5471 htab->fix_cortex_a8 = -1;
5472 bfd_hash_traverse (table, arm_build_one_stub, info);
5473 }
5474
5475 return TRUE;
5476 }
5477
5478 /* Locate the Thumb encoded calling stub for NAME. */
5479
5480 static struct elf_link_hash_entry *
5481 find_thumb_glue (struct bfd_link_info *link_info,
5482 const char *name,
5483 char **error_message)
5484 {
5485 char *tmp_name;
5486 struct elf_link_hash_entry *hash;
5487 struct elf32_arm_link_hash_table *hash_table;
5488
5489 /* We need a pointer to the armelf specific hash table. */
5490 hash_table = elf32_arm_hash_table (link_info);
5491 if (hash_table == NULL)
5492 return NULL;
5493
5494 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5495 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5496
5497 BFD_ASSERT (tmp_name);
5498
5499 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5500
5501 hash = elf_link_hash_lookup
5502 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5503
5504 if (hash == NULL
5505 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5506 tmp_name, name) == -1)
5507 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5508
5509 free (tmp_name);
5510
5511 return hash;
5512 }
5513
5514 /* Locate the ARM encoded calling stub for NAME. */
5515
5516 static struct elf_link_hash_entry *
5517 find_arm_glue (struct bfd_link_info *link_info,
5518 const char *name,
5519 char **error_message)
5520 {
5521 char *tmp_name;
5522 struct elf_link_hash_entry *myh;
5523 struct elf32_arm_link_hash_table *hash_table;
5524
5525 /* We need a pointer to the elfarm specific hash table. */
5526 hash_table = elf32_arm_hash_table (link_info);
5527 if (hash_table == NULL)
5528 return NULL;
5529
5530 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5531 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5532
5533 BFD_ASSERT (tmp_name);
5534
5535 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5536
5537 myh = elf_link_hash_lookup
5538 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5539
5540 if (myh == NULL
5541 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5542 tmp_name, name) == -1)
5543 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5544
5545 free (tmp_name);
5546
5547 return myh;
5548 }
5549
5550 /* ARM->Thumb glue (static images):
5551
5552 .arm
5553 __func_from_arm:
5554 ldr r12, __func_addr
5555 bx r12
5556 __func_addr:
5557 .word func @ behave as if you saw a ARM_32 reloc.
5558
5559 (v5t static images)
5560 .arm
5561 __func_from_arm:
5562 ldr pc, __func_addr
5563 __func_addr:
5564 .word func @ behave as if you saw a ARM_32 reloc.
5565
5566 (relocatable images)
5567 .arm
5568 __func_from_arm:
5569 ldr r12, __func_offset
5570 add r12, r12, pc
5571 bx r12
5572 __func_offset:
5573 .word func - . */
5574
5575 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5576 static const insn32 a2t1_ldr_insn = 0xe59fc000;
5577 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5578 static const insn32 a2t3_func_addr_insn = 0x00000001;
5579
5580 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5581 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5582 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5583
5584 #define ARM2THUMB_PIC_GLUE_SIZE 16
5585 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5586 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5587 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5588
5589 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5590
5591 .thumb .thumb
5592 .align 2 .align 2
5593 __func_from_thumb: __func_from_thumb:
5594 bx pc push {r6, lr}
5595 nop ldr r6, __func_addr
5596 .arm mov lr, pc
5597 b func bx r6
5598 .arm
5599 ;; back_to_thumb
5600 ldmia r13! {r6, lr}
5601 bx lr
5602 __func_addr:
5603 .word func */
5604
5605 #define THUMB2ARM_GLUE_SIZE 8
5606 static const insn16 t2a1_bx_pc_insn = 0x4778;
5607 static const insn16 t2a2_noop_insn = 0x46c0;
5608 static const insn32 t2a3_b_insn = 0xea000000;
5609
5610 #define VFP11_ERRATUM_VENEER_SIZE 8
5611
5612 #define ARM_BX_VENEER_SIZE 12
5613 static const insn32 armbx1_tst_insn = 0xe3100001;
5614 static const insn32 armbx2_moveq_insn = 0x01a0f000;
5615 static const insn32 armbx3_bx_insn = 0xe12fff10;
5616
5617 #ifndef ELFARM_NABI_C_INCLUDED
5618 static void
5619 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5620 {
5621 asection * s;
5622 bfd_byte * contents;
5623
5624 if (size == 0)
5625 {
5626 /* Do not include empty glue sections in the output. */
5627 if (abfd != NULL)
5628 {
5629 s = bfd_get_linker_section (abfd, name);
5630 if (s != NULL)
5631 s->flags |= SEC_EXCLUDE;
5632 }
5633 return;
5634 }
5635
5636 BFD_ASSERT (abfd != NULL);
5637
5638 s = bfd_get_linker_section (abfd, name);
5639 BFD_ASSERT (s != NULL);
5640
5641 contents = (bfd_byte *) bfd_alloc (abfd, size);
5642
5643 BFD_ASSERT (s->size == size);
5644 s->contents = contents;
5645 }
5646
5647 bfd_boolean
5648 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5649 {
5650 struct elf32_arm_link_hash_table * globals;
5651
5652 globals = elf32_arm_hash_table (info);
5653 BFD_ASSERT (globals != NULL);
5654
5655 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5656 globals->arm_glue_size,
5657 ARM2THUMB_GLUE_SECTION_NAME);
5658
5659 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5660 globals->thumb_glue_size,
5661 THUMB2ARM_GLUE_SECTION_NAME);
5662
5663 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5664 globals->vfp11_erratum_glue_size,
5665 VFP11_ERRATUM_VENEER_SECTION_NAME);
5666
5667 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5668 globals->bx_glue_size,
5669 ARM_BX_GLUE_SECTION_NAME);
5670
5671 return TRUE;
5672 }
5673
5674 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5675 returns the symbol identifying the stub. */
5676
5677 static struct elf_link_hash_entry *
5678 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5679 struct elf_link_hash_entry * h)
5680 {
5681 const char * name = h->root.root.string;
5682 asection * s;
5683 char * tmp_name;
5684 struct elf_link_hash_entry * myh;
5685 struct bfd_link_hash_entry * bh;
5686 struct elf32_arm_link_hash_table * globals;
5687 bfd_vma val;
5688 bfd_size_type size;
5689
5690 globals = elf32_arm_hash_table (link_info);
5691 BFD_ASSERT (globals != NULL);
5692 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5693
5694 s = bfd_get_linker_section
5695 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5696
5697 BFD_ASSERT (s != NULL);
5698
5699 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5700 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5701
5702 BFD_ASSERT (tmp_name);
5703
5704 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5705
5706 myh = elf_link_hash_lookup
5707 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5708
5709 if (myh != NULL)
5710 {
5711 /* We've already seen this guy. */
5712 free (tmp_name);
5713 return myh;
5714 }
5715
5716 /* The only trick here is using hash_table->arm_glue_size as the value.
5717 Even though the section isn't allocated yet, this is where we will be
5718 putting it. The +1 on the value marks that the stub has not been
5719 output yet - not that it is a Thumb function. */
5720 bh = NULL;
5721 val = globals->arm_glue_size + 1;
5722 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5723 tmp_name, BSF_GLOBAL, s, val,
5724 NULL, TRUE, FALSE, &bh);
5725
5726 myh = (struct elf_link_hash_entry *) bh;
5727 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5728 myh->forced_local = 1;
5729
5730 free (tmp_name);
5731
5732 if (link_info->shared || globals->root.is_relocatable_executable
5733 || globals->pic_veneer)
5734 size = ARM2THUMB_PIC_GLUE_SIZE;
5735 else if (globals->use_blx)
5736 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5737 else
5738 size = ARM2THUMB_STATIC_GLUE_SIZE;
5739
5740 s->size += size;
5741 globals->arm_glue_size += size;
5742
5743 return myh;
5744 }
5745
5746 /* Allocate space for ARMv4 BX veneers. */
5747
5748 static void
5749 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5750 {
5751 asection * s;
5752 struct elf32_arm_link_hash_table *globals;
5753 char *tmp_name;
5754 struct elf_link_hash_entry *myh;
5755 struct bfd_link_hash_entry *bh;
5756 bfd_vma val;
5757
5758 /* BX PC does not need a veneer. */
5759 if (reg == 15)
5760 return;
5761
5762 globals = elf32_arm_hash_table (link_info);
5763 BFD_ASSERT (globals != NULL);
5764 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5765
5766 /* Check if this veneer has already been allocated. */
5767 if (globals->bx_glue_offset[reg])
5768 return;
5769
5770 s = bfd_get_linker_section
5771 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5772
5773 BFD_ASSERT (s != NULL);
5774
5775 /* Add symbol for veneer. */
5776 tmp_name = (char *)
5777 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5778
5779 BFD_ASSERT (tmp_name);
5780
5781 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5782
5783 myh = elf_link_hash_lookup
5784 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5785
5786 BFD_ASSERT (myh == NULL);
5787
5788 bh = NULL;
5789 val = globals->bx_glue_size;
5790 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5791 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5792 NULL, TRUE, FALSE, &bh);
5793
5794 myh = (struct elf_link_hash_entry *) bh;
5795 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5796 myh->forced_local = 1;
5797
5798 s->size += ARM_BX_VENEER_SIZE;
5799 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5800 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5801 }
5802
5803
5804 /* Add an entry to the code/data map for section SEC. */
5805
5806 static void
5807 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5808 {
5809 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5810 unsigned int newidx;
5811
5812 if (sec_data->map == NULL)
5813 {
5814 sec_data->map = (elf32_arm_section_map *)
5815 bfd_malloc (sizeof (elf32_arm_section_map));
5816 sec_data->mapcount = 0;
5817 sec_data->mapsize = 1;
5818 }
5819
5820 newidx = sec_data->mapcount++;
5821
5822 if (sec_data->mapcount > sec_data->mapsize)
5823 {
5824 sec_data->mapsize *= 2;
5825 sec_data->map = (elf32_arm_section_map *)
5826 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5827 * sizeof (elf32_arm_section_map));
5828 }
5829
5830 if (sec_data->map)
5831 {
5832 sec_data->map[newidx].vma = vma;
5833 sec_data->map[newidx].type = type;
5834 }
5835 }
5836
5837
5838 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5839 veneers are handled for now. */
5840
5841 static bfd_vma
5842 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5843 elf32_vfp11_erratum_list *branch,
5844 bfd *branch_bfd,
5845 asection *branch_sec,
5846 unsigned int offset)
5847 {
5848 asection *s;
5849 struct elf32_arm_link_hash_table *hash_table;
5850 char *tmp_name;
5851 struct elf_link_hash_entry *myh;
5852 struct bfd_link_hash_entry *bh;
5853 bfd_vma val;
5854 struct _arm_elf_section_data *sec_data;
5855 elf32_vfp11_erratum_list *newerr;
5856
5857 hash_table = elf32_arm_hash_table (link_info);
5858 BFD_ASSERT (hash_table != NULL);
5859 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5860
5861 s = bfd_get_linker_section
5862 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5863
5864 sec_data = elf32_arm_section_data (s);
5865
5866 BFD_ASSERT (s != NULL);
5867
5868 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5869 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5870
5871 BFD_ASSERT (tmp_name);
5872
5873 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5874 hash_table->num_vfp11_fixes);
5875
5876 myh = elf_link_hash_lookup
5877 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5878
5879 BFD_ASSERT (myh == NULL);
5880
5881 bh = NULL;
5882 val = hash_table->vfp11_erratum_glue_size;
5883 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5884 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5885 NULL, TRUE, FALSE, &bh);
5886
5887 myh = (struct elf_link_hash_entry *) bh;
5888 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5889 myh->forced_local = 1;
5890
5891 /* Link veneer back to calling location. */
5892 sec_data->erratumcount += 1;
5893 newerr = (elf32_vfp11_erratum_list *)
5894 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5895
5896 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5897 newerr->vma = -1;
5898 newerr->u.v.branch = branch;
5899 newerr->u.v.id = hash_table->num_vfp11_fixes;
5900 branch->u.b.veneer = newerr;
5901
5902 newerr->next = sec_data->erratumlist;
5903 sec_data->erratumlist = newerr;
5904
5905 /* A symbol for the return from the veneer. */
5906 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5907 hash_table->num_vfp11_fixes);
5908
5909 myh = elf_link_hash_lookup
5910 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5911
5912 if (myh != NULL)
5913 abort ();
5914
5915 bh = NULL;
5916 val = offset + 4;
5917 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5918 branch_sec, val, NULL, TRUE, FALSE, &bh);
5919
5920 myh = (struct elf_link_hash_entry *) bh;
5921 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5922 myh->forced_local = 1;
5923
5924 free (tmp_name);
5925
5926 /* Generate a mapping symbol for the veneer section, and explicitly add an
5927 entry for that symbol to the code/data map for the section. */
5928 if (hash_table->vfp11_erratum_glue_size == 0)
5929 {
5930 bh = NULL;
5931 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5932 ever requires this erratum fix. */
5933 _bfd_generic_link_add_one_symbol (link_info,
5934 hash_table->bfd_of_glue_owner, "$a",
5935 BSF_LOCAL, s, 0, NULL,
5936 TRUE, FALSE, &bh);
5937
5938 myh = (struct elf_link_hash_entry *) bh;
5939 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5940 myh->forced_local = 1;
5941
5942 /* The elf32_arm_init_maps function only cares about symbols from input
5943 BFDs. We must make a note of this generated mapping symbol
5944 ourselves so that code byteswapping works properly in
5945 elf32_arm_write_section. */
5946 elf32_arm_section_map_add (s, 'a', 0);
5947 }
5948
5949 s->size += VFP11_ERRATUM_VENEER_SIZE;
5950 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5951 hash_table->num_vfp11_fixes++;
5952
5953 /* The offset of the veneer. */
5954 return val;
5955 }
5956
5957 #define ARM_GLUE_SECTION_FLAGS \
5958 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5959 | SEC_READONLY | SEC_LINKER_CREATED)
5960
5961 /* Create a fake section for use by the ARM backend of the linker. */
5962
5963 static bfd_boolean
5964 arm_make_glue_section (bfd * abfd, const char * name)
5965 {
5966 asection * sec;
5967
5968 sec = bfd_get_linker_section (abfd, name);
5969 if (sec != NULL)
5970 /* Already made. */
5971 return TRUE;
5972
5973 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5974
5975 if (sec == NULL
5976 || !bfd_set_section_alignment (abfd, sec, 2))
5977 return FALSE;
5978
5979 /* Set the gc mark to prevent the section from being removed by garbage
5980 collection, despite the fact that no relocs refer to this section. */
5981 sec->gc_mark = 1;
5982
5983 return TRUE;
5984 }
5985
5986 /* Add the glue sections to ABFD. This function is called from the
5987 linker scripts in ld/emultempl/{armelf}.em. */
5988
5989 bfd_boolean
5990 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5991 struct bfd_link_info *info)
5992 {
5993 /* If we are only performing a partial
5994 link do not bother adding the glue. */
5995 if (info->relocatable)
5996 return TRUE;
5997
5998 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5999 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
6000 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
6001 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
6002 }
6003
6004 /* Select a BFD to be used to hold the sections used by the glue code.
6005 This function is called from the linker scripts in ld/emultempl/
6006 {armelf/pe}.em. */
6007
6008 bfd_boolean
6009 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
6010 {
6011 struct elf32_arm_link_hash_table *globals;
6012
6013 /* If we are only performing a partial link
6014 do not bother getting a bfd to hold the glue. */
6015 if (info->relocatable)
6016 return TRUE;
6017
6018 /* Make sure we don't attach the glue sections to a dynamic object. */
6019 BFD_ASSERT (!(abfd->flags & DYNAMIC));
6020
6021 globals = elf32_arm_hash_table (info);
6022 BFD_ASSERT (globals != NULL);
6023
6024 if (globals->bfd_of_glue_owner != NULL)
6025 return TRUE;
6026
6027 /* Save the bfd for later use. */
6028 globals->bfd_of_glue_owner = abfd;
6029
6030 return TRUE;
6031 }
6032
6033 static void
6034 check_use_blx (struct elf32_arm_link_hash_table *globals)
6035 {
6036 int cpu_arch;
6037
6038 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
6039 Tag_CPU_arch);
6040
6041 if (globals->fix_arm1176)
6042 {
6043 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
6044 globals->use_blx = 1;
6045 }
6046 else
6047 {
6048 if (cpu_arch > TAG_CPU_ARCH_V4T)
6049 globals->use_blx = 1;
6050 }
6051 }
6052
6053 bfd_boolean
6054 bfd_elf32_arm_process_before_allocation (bfd *abfd,
6055 struct bfd_link_info *link_info)
6056 {
6057 Elf_Internal_Shdr *symtab_hdr;
6058 Elf_Internal_Rela *internal_relocs = NULL;
6059 Elf_Internal_Rela *irel, *irelend;
6060 bfd_byte *contents = NULL;
6061
6062 asection *sec;
6063 struct elf32_arm_link_hash_table *globals;
6064
6065 /* If we are only performing a partial link do not bother
6066 to construct any glue. */
6067 if (link_info->relocatable)
6068 return TRUE;
6069
6070 /* Here we have a bfd that is to be included on the link. We have a
6071 hook to do reloc rummaging, before section sizes are nailed down. */
6072 globals = elf32_arm_hash_table (link_info);
6073 BFD_ASSERT (globals != NULL);
6074
6075 check_use_blx (globals);
6076
6077 if (globals->byteswap_code && !bfd_big_endian (abfd))
6078 {
6079 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
6080 abfd);
6081 return FALSE;
6082 }
6083
6084 /* PR 5398: If we have not decided to include any loadable sections in
6085 the output then we will not have a glue owner bfd. This is OK, it
6086 just means that there is nothing else for us to do here. */
6087 if (globals->bfd_of_glue_owner == NULL)
6088 return TRUE;
6089
6090 /* Rummage around all the relocs and map the glue vectors. */
6091 sec = abfd->sections;
6092
6093 if (sec == NULL)
6094 return TRUE;
6095
6096 for (; sec != NULL; sec = sec->next)
6097 {
6098 if (sec->reloc_count == 0)
6099 continue;
6100
6101 if ((sec->flags & SEC_EXCLUDE) != 0)
6102 continue;
6103
6104 symtab_hdr = & elf_symtab_hdr (abfd);
6105
6106 /* Load the relocs. */
6107 internal_relocs
6108 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
6109
6110 if (internal_relocs == NULL)
6111 goto error_return;
6112
6113 irelend = internal_relocs + sec->reloc_count;
6114 for (irel = internal_relocs; irel < irelend; irel++)
6115 {
6116 long r_type;
6117 unsigned long r_index;
6118
6119 struct elf_link_hash_entry *h;
6120
6121 r_type = ELF32_R_TYPE (irel->r_info);
6122 r_index = ELF32_R_SYM (irel->r_info);
6123
6124 /* These are the only relocation types we care about. */
6125 if ( r_type != R_ARM_PC24
6126 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6127 continue;
6128
6129 /* Get the section contents if we haven't done so already. */
6130 if (contents == NULL)
6131 {
6132 /* Get cached copy if it exists. */
6133 if (elf_section_data (sec)->this_hdr.contents != NULL)
6134 contents = elf_section_data (sec)->this_hdr.contents;
6135 else
6136 {
6137 /* Go get them off disk. */
6138 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6139 goto error_return;
6140 }
6141 }
6142
6143 if (r_type == R_ARM_V4BX)
6144 {
6145 int reg;
6146
6147 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6148 record_arm_bx_glue (link_info, reg);
6149 continue;
6150 }
6151
6152 /* If the relocation is not against a symbol it cannot concern us. */
6153 h = NULL;
6154
6155 /* We don't care about local symbols. */
6156 if (r_index < symtab_hdr->sh_info)
6157 continue;
6158
6159 /* This is an external symbol. */
6160 r_index -= symtab_hdr->sh_info;
6161 h = (struct elf_link_hash_entry *)
6162 elf_sym_hashes (abfd)[r_index];
6163
6164 /* If the relocation is against a static symbol it must be within
6165 the current section and so cannot be a cross ARM/Thumb relocation. */
6166 if (h == NULL)
6167 continue;
6168
6169 /* If the call will go through a PLT entry then we do not need
6170 glue. */
6171 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6172 continue;
6173
6174 switch (r_type)
6175 {
6176 case R_ARM_PC24:
6177 /* This one is a call from arm code. We need to look up
6178 the target of the call. If it is a thumb target, we
6179 insert glue. */
6180 if (h->target_internal == ST_BRANCH_TO_THUMB)
6181 record_arm_to_thumb_glue (link_info, h);
6182 break;
6183
6184 default:
6185 abort ();
6186 }
6187 }
6188
6189 if (contents != NULL
6190 && elf_section_data (sec)->this_hdr.contents != contents)
6191 free (contents);
6192 contents = NULL;
6193
6194 if (internal_relocs != NULL
6195 && elf_section_data (sec)->relocs != internal_relocs)
6196 free (internal_relocs);
6197 internal_relocs = NULL;
6198 }
6199
6200 return TRUE;
6201
6202 error_return:
6203 if (contents != NULL
6204 && elf_section_data (sec)->this_hdr.contents != contents)
6205 free (contents);
6206 if (internal_relocs != NULL
6207 && elf_section_data (sec)->relocs != internal_relocs)
6208 free (internal_relocs);
6209
6210 return FALSE;
6211 }
6212 #endif
6213
6214
6215 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6216
6217 void
6218 bfd_elf32_arm_init_maps (bfd *abfd)
6219 {
6220 Elf_Internal_Sym *isymbuf;
6221 Elf_Internal_Shdr *hdr;
6222 unsigned int i, localsyms;
6223
6224 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6225 if (! is_arm_elf (abfd))
6226 return;
6227
6228 if ((abfd->flags & DYNAMIC) != 0)
6229 return;
6230
6231 hdr = & elf_symtab_hdr (abfd);
6232 localsyms = hdr->sh_info;
6233
6234 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6235 should contain the number of local symbols, which should come before any
6236 global symbols. Mapping symbols are always local. */
6237 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6238 NULL);
6239
6240 /* No internal symbols read? Skip this BFD. */
6241 if (isymbuf == NULL)
6242 return;
6243
6244 for (i = 0; i < localsyms; i++)
6245 {
6246 Elf_Internal_Sym *isym = &isymbuf[i];
6247 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6248 const char *name;
6249
6250 if (sec != NULL
6251 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6252 {
6253 name = bfd_elf_string_from_elf_section (abfd,
6254 hdr->sh_link, isym->st_name);
6255
6256 if (bfd_is_arm_special_symbol_name (name,
6257 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6258 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6259 }
6260 }
6261 }
6262
6263
6264 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6265 say what they wanted. */
6266
6267 void
6268 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6269 {
6270 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6271 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6272
6273 if (globals == NULL)
6274 return;
6275
6276 if (globals->fix_cortex_a8 == -1)
6277 {
6278 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6279 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6280 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6281 || out_attr[Tag_CPU_arch_profile].i == 0))
6282 globals->fix_cortex_a8 = 1;
6283 else
6284 globals->fix_cortex_a8 = 0;
6285 }
6286 }
6287
6288
6289 void
6290 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6291 {
6292 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6293 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6294
6295 if (globals == NULL)
6296 return;
6297 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6298 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6299 {
6300 switch (globals->vfp11_fix)
6301 {
6302 case BFD_ARM_VFP11_FIX_DEFAULT:
6303 case BFD_ARM_VFP11_FIX_NONE:
6304 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6305 break;
6306
6307 default:
6308 /* Give a warning, but do as the user requests anyway. */
6309 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6310 "workaround is not necessary for target architecture"), obfd);
6311 }
6312 }
6313 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6314 /* For earlier architectures, we might need the workaround, but do not
6315 enable it by default. If users is running with broken hardware, they
6316 must enable the erratum fix explicitly. */
6317 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6318 }
6319
6320
6321 enum bfd_arm_vfp11_pipe
6322 {
6323 VFP11_FMAC,
6324 VFP11_LS,
6325 VFP11_DS,
6326 VFP11_BAD
6327 };
6328
6329 /* Return a VFP register number. This is encoded as RX:X for single-precision
6330 registers, or X:RX for double-precision registers, where RX is the group of
6331 four bits in the instruction encoding and X is the single extension bit.
6332 RX and X fields are specified using their lowest (starting) bit. The return
6333 value is:
6334
6335 0...31: single-precision registers s0...s31
6336 32...63: double-precision registers d0...d31.
6337
6338 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6339 encounter VFP3 instructions, so we allow the full range for DP registers. */
6340
6341 static unsigned int
6342 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6343 unsigned int x)
6344 {
6345 if (is_double)
6346 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6347 else
6348 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6349 }
6350
6351 /* Set bits in *WMASK according to a register number REG as encoded by
6352 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6353
6354 static void
6355 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6356 {
6357 if (reg < 32)
6358 *wmask |= 1 << reg;
6359 else if (reg < 48)
6360 *wmask |= 3 << ((reg - 32) * 2);
6361 }
6362
6363 /* Return TRUE if WMASK overwrites anything in REGS. */
6364
6365 static bfd_boolean
6366 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6367 {
6368 int i;
6369
6370 for (i = 0; i < numregs; i++)
6371 {
6372 unsigned int reg = regs[i];
6373
6374 if (reg < 32 && (wmask & (1 << reg)) != 0)
6375 return TRUE;
6376
6377 reg -= 32;
6378
6379 if (reg >= 16)
6380 continue;
6381
6382 if ((wmask & (3 << (reg * 2))) != 0)
6383 return TRUE;
6384 }
6385
6386 return FALSE;
6387 }
6388
6389 /* In this function, we're interested in two things: finding input registers
6390 for VFP data-processing instructions, and finding the set of registers which
6391 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6392 hold the written set, so FLDM etc. are easy to deal with (we're only
6393 interested in 32 SP registers or 16 dp registers, due to the VFP version
6394 implemented by the chip in question). DP registers are marked by setting
6395 both SP registers in the write mask). */
6396
6397 static enum bfd_arm_vfp11_pipe
6398 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6399 int *numregs)
6400 {
6401 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6402 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6403
6404 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6405 {
6406 unsigned int pqrs;
6407 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6408 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6409
6410 pqrs = ((insn & 0x00800000) >> 20)
6411 | ((insn & 0x00300000) >> 19)
6412 | ((insn & 0x00000040) >> 6);
6413
6414 switch (pqrs)
6415 {
6416 case 0: /* fmac[sd]. */
6417 case 1: /* fnmac[sd]. */
6418 case 2: /* fmsc[sd]. */
6419 case 3: /* fnmsc[sd]. */
6420 vpipe = VFP11_FMAC;
6421 bfd_arm_vfp11_write_mask (destmask, fd);
6422 regs[0] = fd;
6423 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6424 regs[2] = fm;
6425 *numregs = 3;
6426 break;
6427
6428 case 4: /* fmul[sd]. */
6429 case 5: /* fnmul[sd]. */
6430 case 6: /* fadd[sd]. */
6431 case 7: /* fsub[sd]. */
6432 vpipe = VFP11_FMAC;
6433 goto vfp_binop;
6434
6435 case 8: /* fdiv[sd]. */
6436 vpipe = VFP11_DS;
6437 vfp_binop:
6438 bfd_arm_vfp11_write_mask (destmask, fd);
6439 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6440 regs[1] = fm;
6441 *numregs = 2;
6442 break;
6443
6444 case 15: /* extended opcode. */
6445 {
6446 unsigned int extn = ((insn >> 15) & 0x1e)
6447 | ((insn >> 7) & 1);
6448
6449 switch (extn)
6450 {
6451 case 0: /* fcpy[sd]. */
6452 case 1: /* fabs[sd]. */
6453 case 2: /* fneg[sd]. */
6454 case 8: /* fcmp[sd]. */
6455 case 9: /* fcmpe[sd]. */
6456 case 10: /* fcmpz[sd]. */
6457 case 11: /* fcmpez[sd]. */
6458 case 16: /* fuito[sd]. */
6459 case 17: /* fsito[sd]. */
6460 case 24: /* ftoui[sd]. */
6461 case 25: /* ftouiz[sd]. */
6462 case 26: /* ftosi[sd]. */
6463 case 27: /* ftosiz[sd]. */
6464 /* These instructions will not bounce due to underflow. */
6465 *numregs = 0;
6466 vpipe = VFP11_FMAC;
6467 break;
6468
6469 case 3: /* fsqrt[sd]. */
6470 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6471 registers to cause the erratum in previous instructions. */
6472 bfd_arm_vfp11_write_mask (destmask, fd);
6473 vpipe = VFP11_DS;
6474 break;
6475
6476 case 15: /* fcvt{ds,sd}. */
6477 {
6478 int rnum = 0;
6479
6480 bfd_arm_vfp11_write_mask (destmask, fd);
6481
6482 /* Only FCVTSD can underflow. */
6483 if ((insn & 0x100) != 0)
6484 regs[rnum++] = fm;
6485
6486 *numregs = rnum;
6487
6488 vpipe = VFP11_FMAC;
6489 }
6490 break;
6491
6492 default:
6493 return VFP11_BAD;
6494 }
6495 }
6496 break;
6497
6498 default:
6499 return VFP11_BAD;
6500 }
6501 }
6502 /* Two-register transfer. */
6503 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6504 {
6505 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6506
6507 if ((insn & 0x100000) == 0)
6508 {
6509 if (is_double)
6510 bfd_arm_vfp11_write_mask (destmask, fm);
6511 else
6512 {
6513 bfd_arm_vfp11_write_mask (destmask, fm);
6514 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6515 }
6516 }
6517
6518 vpipe = VFP11_LS;
6519 }
6520 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6521 {
6522 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6523 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6524
6525 switch (puw)
6526 {
6527 case 0: /* Two-reg transfer. We should catch these above. */
6528 abort ();
6529
6530 case 2: /* fldm[sdx]. */
6531 case 3:
6532 case 5:
6533 {
6534 unsigned int i, offset = insn & 0xff;
6535
6536 if (is_double)
6537 offset >>= 1;
6538
6539 for (i = fd; i < fd + offset; i++)
6540 bfd_arm_vfp11_write_mask (destmask, i);
6541 }
6542 break;
6543
6544 case 4: /* fld[sd]. */
6545 case 6:
6546 bfd_arm_vfp11_write_mask (destmask, fd);
6547 break;
6548
6549 default:
6550 return VFP11_BAD;
6551 }
6552
6553 vpipe = VFP11_LS;
6554 }
6555 /* Single-register transfer. Note L==0. */
6556 else if ((insn & 0x0f100e10) == 0x0e000a10)
6557 {
6558 unsigned int opcode = (insn >> 21) & 7;
6559 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6560
6561 switch (opcode)
6562 {
6563 case 0: /* fmsr/fmdlr. */
6564 case 1: /* fmdhr. */
6565 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6566 destination register. I don't know if this is exactly right,
6567 but it is the conservative choice. */
6568 bfd_arm_vfp11_write_mask (destmask, fn);
6569 break;
6570
6571 case 7: /* fmxr. */
6572 break;
6573 }
6574
6575 vpipe = VFP11_LS;
6576 }
6577
6578 return vpipe;
6579 }
6580
6581
6582 static int elf32_arm_compare_mapping (const void * a, const void * b);
6583
6584
6585 /* Look for potentially-troublesome code sequences which might trigger the
6586 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6587 (available from ARM) for details of the erratum. A short version is
6588 described in ld.texinfo. */
6589
6590 bfd_boolean
6591 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6592 {
6593 asection *sec;
6594 bfd_byte *contents = NULL;
6595 int state = 0;
6596 int regs[3], numregs = 0;
6597 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6598 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
6599
6600 if (globals == NULL)
6601 return FALSE;
6602
6603 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6604 The states transition as follows:
6605
6606 0 -> 1 (vector) or 0 -> 2 (scalar)
6607 A VFP FMAC-pipeline instruction has been seen. Fill
6608 regs[0]..regs[numregs-1] with its input operands. Remember this
6609 instruction in 'first_fmac'.
6610
6611 1 -> 2
6612 Any instruction, except for a VFP instruction which overwrites
6613 regs[*].
6614
6615 1 -> 3 [ -> 0 ] or
6616 2 -> 3 [ -> 0 ]
6617 A VFP instruction has been seen which overwrites any of regs[*].
6618 We must make a veneer! Reset state to 0 before examining next
6619 instruction.
6620
6621 2 -> 0
6622 If we fail to match anything in state 2, reset to state 0 and reset
6623 the instruction pointer to the instruction after 'first_fmac'.
6624
6625 If the VFP11 vector mode is in use, there must be at least two unrelated
6626 instructions between anti-dependent VFP11 instructions to properly avoid
6627 triggering the erratum, hence the use of the extra state 1. */
6628
6629 /* If we are only performing a partial link do not bother
6630 to construct any glue. */
6631 if (link_info->relocatable)
6632 return TRUE;
6633
6634 /* Skip if this bfd does not correspond to an ELF image. */
6635 if (! is_arm_elf (abfd))
6636 return TRUE;
6637
6638 /* We should have chosen a fix type by the time we get here. */
6639 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6640
6641 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6642 return TRUE;
6643
6644 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6645 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6646 return TRUE;
6647
6648 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6649 {
6650 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6651 struct _arm_elf_section_data *sec_data;
6652
6653 /* If we don't have executable progbits, we're not interested in this
6654 section. Also skip if section is to be excluded. */
6655 if (elf_section_type (sec) != SHT_PROGBITS
6656 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6657 || (sec->flags & SEC_EXCLUDE) != 0
6658 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
6659 || sec->output_section == bfd_abs_section_ptr
6660 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6661 continue;
6662
6663 sec_data = elf32_arm_section_data (sec);
6664
6665 if (sec_data->mapcount == 0)
6666 continue;
6667
6668 if (elf_section_data (sec)->this_hdr.contents != NULL)
6669 contents = elf_section_data (sec)->this_hdr.contents;
6670 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6671 goto error_return;
6672
6673 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6674 elf32_arm_compare_mapping);
6675
6676 for (span = 0; span < sec_data->mapcount; span++)
6677 {
6678 unsigned int span_start = sec_data->map[span].vma;
6679 unsigned int span_end = (span == sec_data->mapcount - 1)
6680 ? sec->size : sec_data->map[span + 1].vma;
6681 char span_type = sec_data->map[span].type;
6682
6683 /* FIXME: Only ARM mode is supported at present. We may need to
6684 support Thumb-2 mode also at some point. */
6685 if (span_type != 'a')
6686 continue;
6687
6688 for (i = span_start; i < span_end;)
6689 {
6690 unsigned int next_i = i + 4;
6691 unsigned int insn = bfd_big_endian (abfd)
6692 ? (contents[i] << 24)
6693 | (contents[i + 1] << 16)
6694 | (contents[i + 2] << 8)
6695 | contents[i + 3]
6696 : (contents[i + 3] << 24)
6697 | (contents[i + 2] << 16)
6698 | (contents[i + 1] << 8)
6699 | contents[i];
6700 unsigned int writemask = 0;
6701 enum bfd_arm_vfp11_pipe vpipe;
6702
6703 switch (state)
6704 {
6705 case 0:
6706 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6707 &numregs);
6708 /* I'm assuming the VFP11 erratum can trigger with denorm
6709 operands on either the FMAC or the DS pipeline. This might
6710 lead to slightly overenthusiastic veneer insertion. */
6711 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6712 {
6713 state = use_vector ? 1 : 2;
6714 first_fmac = i;
6715 veneer_of_insn = insn;
6716 }
6717 break;
6718
6719 case 1:
6720 {
6721 int other_regs[3], other_numregs;
6722 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6723 other_regs,
6724 &other_numregs);
6725 if (vpipe != VFP11_BAD
6726 && bfd_arm_vfp11_antidependency (writemask, regs,
6727 numregs))
6728 state = 3;
6729 else
6730 state = 2;
6731 }
6732 break;
6733
6734 case 2:
6735 {
6736 int other_regs[3], other_numregs;
6737 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6738 other_regs,
6739 &other_numregs);
6740 if (vpipe != VFP11_BAD
6741 && bfd_arm_vfp11_antidependency (writemask, regs,
6742 numregs))
6743 state = 3;
6744 else
6745 {
6746 state = 0;
6747 next_i = first_fmac + 4;
6748 }
6749 }
6750 break;
6751
6752 case 3:
6753 abort (); /* Should be unreachable. */
6754 }
6755
6756 if (state == 3)
6757 {
6758 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6759 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6760
6761 elf32_arm_section_data (sec)->erratumcount += 1;
6762
6763 newerr->u.b.vfp_insn = veneer_of_insn;
6764
6765 switch (span_type)
6766 {
6767 case 'a':
6768 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6769 break;
6770
6771 default:
6772 abort ();
6773 }
6774
6775 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6776 first_fmac);
6777
6778 newerr->vma = -1;
6779
6780 newerr->next = sec_data->erratumlist;
6781 sec_data->erratumlist = newerr;
6782
6783 state = 0;
6784 }
6785
6786 i = next_i;
6787 }
6788 }
6789
6790 if (contents != NULL
6791 && elf_section_data (sec)->this_hdr.contents != contents)
6792 free (contents);
6793 contents = NULL;
6794 }
6795
6796 return TRUE;
6797
6798 error_return:
6799 if (contents != NULL
6800 && elf_section_data (sec)->this_hdr.contents != contents)
6801 free (contents);
6802
6803 return FALSE;
6804 }
6805
6806 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6807 after sections have been laid out, using specially-named symbols. */
6808
6809 void
6810 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6811 struct bfd_link_info *link_info)
6812 {
6813 asection *sec;
6814 struct elf32_arm_link_hash_table *globals;
6815 char *tmp_name;
6816
6817 if (link_info->relocatable)
6818 return;
6819
6820 /* Skip if this bfd does not correspond to an ELF image. */
6821 if (! is_arm_elf (abfd))
6822 return;
6823
6824 globals = elf32_arm_hash_table (link_info);
6825 if (globals == NULL)
6826 return;
6827
6828 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6829 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6830
6831 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6832 {
6833 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6834 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6835
6836 for (; errnode != NULL; errnode = errnode->next)
6837 {
6838 struct elf_link_hash_entry *myh;
6839 bfd_vma vma;
6840
6841 switch (errnode->type)
6842 {
6843 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6844 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6845 /* Find veneer symbol. */
6846 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6847 errnode->u.b.veneer->u.v.id);
6848
6849 myh = elf_link_hash_lookup
6850 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6851
6852 if (myh == NULL)
6853 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6854 "`%s'"), abfd, tmp_name);
6855
6856 vma = myh->root.u.def.section->output_section->vma
6857 + myh->root.u.def.section->output_offset
6858 + myh->root.u.def.value;
6859
6860 errnode->u.b.veneer->vma = vma;
6861 break;
6862
6863 case VFP11_ERRATUM_ARM_VENEER:
6864 case VFP11_ERRATUM_THUMB_VENEER:
6865 /* Find return location. */
6866 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6867 errnode->u.v.id);
6868
6869 myh = elf_link_hash_lookup
6870 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6871
6872 if (myh == NULL)
6873 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6874 "`%s'"), abfd, tmp_name);
6875
6876 vma = myh->root.u.def.section->output_section->vma
6877 + myh->root.u.def.section->output_offset
6878 + myh->root.u.def.value;
6879
6880 errnode->u.v.branch->vma = vma;
6881 break;
6882
6883 default:
6884 abort ();
6885 }
6886 }
6887 }
6888
6889 free (tmp_name);
6890 }
6891
6892
6893 /* Set target relocation values needed during linking. */
6894
6895 void
6896 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6897 struct bfd_link_info *link_info,
6898 int target1_is_rel,
6899 char * target2_type,
6900 int fix_v4bx,
6901 int use_blx,
6902 bfd_arm_vfp11_fix vfp11_fix,
6903 int no_enum_warn, int no_wchar_warn,
6904 int pic_veneer, int fix_cortex_a8,
6905 int fix_arm1176)
6906 {
6907 struct elf32_arm_link_hash_table *globals;
6908
6909 globals = elf32_arm_hash_table (link_info);
6910 if (globals == NULL)
6911 return;
6912
6913 globals->target1_is_rel = target1_is_rel;
6914 if (strcmp (target2_type, "rel") == 0)
6915 globals->target2_reloc = R_ARM_REL32;
6916 else if (strcmp (target2_type, "abs") == 0)
6917 globals->target2_reloc = R_ARM_ABS32;
6918 else if (strcmp (target2_type, "got-rel") == 0)
6919 globals->target2_reloc = R_ARM_GOT_PREL;
6920 else
6921 {
6922 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6923 target2_type);
6924 }
6925 globals->fix_v4bx = fix_v4bx;
6926 globals->use_blx |= use_blx;
6927 globals->vfp11_fix = vfp11_fix;
6928 globals->pic_veneer = pic_veneer;
6929 globals->fix_cortex_a8 = fix_cortex_a8;
6930 globals->fix_arm1176 = fix_arm1176;
6931
6932 BFD_ASSERT (is_arm_elf (output_bfd));
6933 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6934 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6935 }
6936
6937 /* Replace the target offset of a Thumb bl or b.w instruction. */
6938
6939 static void
6940 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6941 {
6942 bfd_vma upper;
6943 bfd_vma lower;
6944 int reloc_sign;
6945
6946 BFD_ASSERT ((offset & 1) == 0);
6947
6948 upper = bfd_get_16 (abfd, insn);
6949 lower = bfd_get_16 (abfd, insn + 2);
6950 reloc_sign = (offset < 0) ? 1 : 0;
6951 upper = (upper & ~(bfd_vma) 0x7ff)
6952 | ((offset >> 12) & 0x3ff)
6953 | (reloc_sign << 10);
6954 lower = (lower & ~(bfd_vma) 0x2fff)
6955 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6956 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6957 | ((offset >> 1) & 0x7ff);
6958 bfd_put_16 (abfd, upper, insn);
6959 bfd_put_16 (abfd, lower, insn + 2);
6960 }
6961
6962 /* Thumb code calling an ARM function. */
6963
6964 static int
6965 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6966 const char * name,
6967 bfd * input_bfd,
6968 bfd * output_bfd,
6969 asection * input_section,
6970 bfd_byte * hit_data,
6971 asection * sym_sec,
6972 bfd_vma offset,
6973 bfd_signed_vma addend,
6974 bfd_vma val,
6975 char **error_message)
6976 {
6977 asection * s = 0;
6978 bfd_vma my_offset;
6979 long int ret_offset;
6980 struct elf_link_hash_entry * myh;
6981 struct elf32_arm_link_hash_table * globals;
6982
6983 myh = find_thumb_glue (info, name, error_message);
6984 if (myh == NULL)
6985 return FALSE;
6986
6987 globals = elf32_arm_hash_table (info);
6988 BFD_ASSERT (globals != NULL);
6989 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6990
6991 my_offset = myh->root.u.def.value;
6992
6993 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
6994 THUMB2ARM_GLUE_SECTION_NAME);
6995
6996 BFD_ASSERT (s != NULL);
6997 BFD_ASSERT (s->contents != NULL);
6998 BFD_ASSERT (s->output_section != NULL);
6999
7000 if ((my_offset & 0x01) == 0x01)
7001 {
7002 if (sym_sec != NULL
7003 && sym_sec->owner != NULL
7004 && !INTERWORK_FLAG (sym_sec->owner))
7005 {
7006 (*_bfd_error_handler)
7007 (_("%B(%s): warning: interworking not enabled.\n"
7008 " first occurrence: %B: Thumb call to ARM"),
7009 sym_sec->owner, input_bfd, name);
7010
7011 return FALSE;
7012 }
7013
7014 --my_offset;
7015 myh->root.u.def.value = my_offset;
7016
7017 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
7018 s->contents + my_offset);
7019
7020 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
7021 s->contents + my_offset + 2);
7022
7023 ret_offset =
7024 /* Address of destination of the stub. */
7025 ((bfd_signed_vma) val)
7026 - ((bfd_signed_vma)
7027 /* Offset from the start of the current section
7028 to the start of the stubs. */
7029 (s->output_offset
7030 /* Offset of the start of this stub from the start of the stubs. */
7031 + my_offset
7032 /* Address of the start of the current section. */
7033 + s->output_section->vma)
7034 /* The branch instruction is 4 bytes into the stub. */
7035 + 4
7036 /* ARM branches work from the pc of the instruction + 8. */
7037 + 8);
7038
7039 put_arm_insn (globals, output_bfd,
7040 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
7041 s->contents + my_offset + 4);
7042 }
7043
7044 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
7045
7046 /* Now go back and fix up the original BL insn to point to here. */
7047 ret_offset =
7048 /* Address of where the stub is located. */
7049 (s->output_section->vma + s->output_offset + my_offset)
7050 /* Address of where the BL is located. */
7051 - (input_section->output_section->vma + input_section->output_offset
7052 + offset)
7053 /* Addend in the relocation. */
7054 - addend
7055 /* Biassing for PC-relative addressing. */
7056 - 8;
7057
7058 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
7059
7060 return TRUE;
7061 }
7062
7063 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
7064
7065 static struct elf_link_hash_entry *
7066 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
7067 const char * name,
7068 bfd * input_bfd,
7069 bfd * output_bfd,
7070 asection * sym_sec,
7071 bfd_vma val,
7072 asection * s,
7073 char ** error_message)
7074 {
7075 bfd_vma my_offset;
7076 long int ret_offset;
7077 struct elf_link_hash_entry * myh;
7078 struct elf32_arm_link_hash_table * globals;
7079
7080 myh = find_arm_glue (info, name, error_message);
7081 if (myh == NULL)
7082 return NULL;
7083
7084 globals = elf32_arm_hash_table (info);
7085 BFD_ASSERT (globals != NULL);
7086 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7087
7088 my_offset = myh->root.u.def.value;
7089
7090 if ((my_offset & 0x01) == 0x01)
7091 {
7092 if (sym_sec != NULL
7093 && sym_sec->owner != NULL
7094 && !INTERWORK_FLAG (sym_sec->owner))
7095 {
7096 (*_bfd_error_handler)
7097 (_("%B(%s): warning: interworking not enabled.\n"
7098 " first occurrence: %B: arm call to thumb"),
7099 sym_sec->owner, input_bfd, name);
7100 }
7101
7102 --my_offset;
7103 myh->root.u.def.value = my_offset;
7104
7105 if (info->shared || globals->root.is_relocatable_executable
7106 || globals->pic_veneer)
7107 {
7108 /* For relocatable objects we can't use absolute addresses,
7109 so construct the address from a relative offset. */
7110 /* TODO: If the offset is small it's probably worth
7111 constructing the address with adds. */
7112 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7113 s->contents + my_offset);
7114 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7115 s->contents + my_offset + 4);
7116 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7117 s->contents + my_offset + 8);
7118 /* Adjust the offset by 4 for the position of the add,
7119 and 8 for the pipeline offset. */
7120 ret_offset = (val - (s->output_offset
7121 + s->output_section->vma
7122 + my_offset + 12))
7123 | 1;
7124 bfd_put_32 (output_bfd, ret_offset,
7125 s->contents + my_offset + 12);
7126 }
7127 else if (globals->use_blx)
7128 {
7129 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7130 s->contents + my_offset);
7131
7132 /* It's a thumb address. Add the low order bit. */
7133 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7134 s->contents + my_offset + 4);
7135 }
7136 else
7137 {
7138 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7139 s->contents + my_offset);
7140
7141 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7142 s->contents + my_offset + 4);
7143
7144 /* It's a thumb address. Add the low order bit. */
7145 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7146 s->contents + my_offset + 8);
7147
7148 my_offset += 12;
7149 }
7150 }
7151
7152 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7153
7154 return myh;
7155 }
7156
7157 /* Arm code calling a Thumb function. */
7158
7159 static int
7160 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7161 const char * name,
7162 bfd * input_bfd,
7163 bfd * output_bfd,
7164 asection * input_section,
7165 bfd_byte * hit_data,
7166 asection * sym_sec,
7167 bfd_vma offset,
7168 bfd_signed_vma addend,
7169 bfd_vma val,
7170 char **error_message)
7171 {
7172 unsigned long int tmp;
7173 bfd_vma my_offset;
7174 asection * s;
7175 long int ret_offset;
7176 struct elf_link_hash_entry * myh;
7177 struct elf32_arm_link_hash_table * globals;
7178
7179 globals = elf32_arm_hash_table (info);
7180 BFD_ASSERT (globals != NULL);
7181 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7182
7183 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7184 ARM2THUMB_GLUE_SECTION_NAME);
7185 BFD_ASSERT (s != NULL);
7186 BFD_ASSERT (s->contents != NULL);
7187 BFD_ASSERT (s->output_section != NULL);
7188
7189 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
7190 sym_sec, val, s, error_message);
7191 if (!myh)
7192 return FALSE;
7193
7194 my_offset = myh->root.u.def.value;
7195 tmp = bfd_get_32 (input_bfd, hit_data);
7196 tmp = tmp & 0xFF000000;
7197
7198 /* Somehow these are both 4 too far, so subtract 8. */
7199 ret_offset = (s->output_offset
7200 + my_offset
7201 + s->output_section->vma
7202 - (input_section->output_offset
7203 + input_section->output_section->vma
7204 + offset + addend)
7205 - 8);
7206
7207 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7208
7209 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
7210
7211 return TRUE;
7212 }
7213
7214 /* Populate Arm stub for an exported Thumb function. */
7215
7216 static bfd_boolean
7217 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7218 {
7219 struct bfd_link_info * info = (struct bfd_link_info *) inf;
7220 asection * s;
7221 struct elf_link_hash_entry * myh;
7222 struct elf32_arm_link_hash_entry *eh;
7223 struct elf32_arm_link_hash_table * globals;
7224 asection *sec;
7225 bfd_vma val;
7226 char *error_message;
7227
7228 eh = elf32_arm_hash_entry (h);
7229 /* Allocate stubs for exported Thumb functions on v4t. */
7230 if (eh->export_glue == NULL)
7231 return TRUE;
7232
7233 globals = elf32_arm_hash_table (info);
7234 BFD_ASSERT (globals != NULL);
7235 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7236
7237 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7238 ARM2THUMB_GLUE_SECTION_NAME);
7239 BFD_ASSERT (s != NULL);
7240 BFD_ASSERT (s->contents != NULL);
7241 BFD_ASSERT (s->output_section != NULL);
7242
7243 sec = eh->export_glue->root.u.def.section;
7244
7245 BFD_ASSERT (sec->output_section != NULL);
7246
7247 val = eh->export_glue->root.u.def.value + sec->output_offset
7248 + sec->output_section->vma;
7249
7250 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7251 h->root.u.def.section->owner,
7252 globals->obfd, sec, val, s,
7253 &error_message);
7254 BFD_ASSERT (myh);
7255 return TRUE;
7256 }
7257
7258 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7259
7260 static bfd_vma
7261 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7262 {
7263 bfd_byte *p;
7264 bfd_vma glue_addr;
7265 asection *s;
7266 struct elf32_arm_link_hash_table *globals;
7267
7268 globals = elf32_arm_hash_table (info);
7269 BFD_ASSERT (globals != NULL);
7270 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7271
7272 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
7273 ARM_BX_GLUE_SECTION_NAME);
7274 BFD_ASSERT (s != NULL);
7275 BFD_ASSERT (s->contents != NULL);
7276 BFD_ASSERT (s->output_section != NULL);
7277
7278 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7279
7280 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7281
7282 if ((globals->bx_glue_offset[reg] & 1) == 0)
7283 {
7284 p = s->contents + glue_addr;
7285 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7286 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7287 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7288 globals->bx_glue_offset[reg] |= 1;
7289 }
7290
7291 return glue_addr + s->output_section->vma + s->output_offset;
7292 }
7293
7294 /* Generate Arm stubs for exported Thumb symbols. */
7295 static void
7296 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
7297 struct bfd_link_info *link_info)
7298 {
7299 struct elf32_arm_link_hash_table * globals;
7300
7301 if (link_info == NULL)
7302 /* Ignore this if we are not called by the ELF backend linker. */
7303 return;
7304
7305 globals = elf32_arm_hash_table (link_info);
7306 if (globals == NULL)
7307 return;
7308
7309 /* If blx is available then exported Thumb symbols are OK and there is
7310 nothing to do. */
7311 if (globals->use_blx)
7312 return;
7313
7314 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7315 link_info);
7316 }
7317
7318 /* Reserve space for COUNT dynamic relocations in relocation selection
7319 SRELOC. */
7320
7321 static void
7322 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7323 bfd_size_type count)
7324 {
7325 struct elf32_arm_link_hash_table *htab;
7326
7327 htab = elf32_arm_hash_table (info);
7328 BFD_ASSERT (htab->root.dynamic_sections_created);
7329 if (sreloc == NULL)
7330 abort ();
7331 sreloc->size += RELOC_SIZE (htab) * count;
7332 }
7333
7334 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7335 dynamic, the relocations should go in SRELOC, otherwise they should
7336 go in the special .rel.iplt section. */
7337
7338 static void
7339 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7340 bfd_size_type count)
7341 {
7342 struct elf32_arm_link_hash_table *htab;
7343
7344 htab = elf32_arm_hash_table (info);
7345 if (!htab->root.dynamic_sections_created)
7346 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7347 else
7348 {
7349 BFD_ASSERT (sreloc != NULL);
7350 sreloc->size += RELOC_SIZE (htab) * count;
7351 }
7352 }
7353
7354 /* Add relocation REL to the end of relocation section SRELOC. */
7355
7356 static void
7357 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7358 asection *sreloc, Elf_Internal_Rela *rel)
7359 {
7360 bfd_byte *loc;
7361 struct elf32_arm_link_hash_table *htab;
7362
7363 htab = elf32_arm_hash_table (info);
7364 if (!htab->root.dynamic_sections_created
7365 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7366 sreloc = htab->root.irelplt;
7367 if (sreloc == NULL)
7368 abort ();
7369 loc = sreloc->contents;
7370 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7371 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7372 abort ();
7373 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7374 }
7375
7376 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7377 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7378 to .plt. */
7379
7380 static void
7381 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7382 bfd_boolean is_iplt_entry,
7383 union gotplt_union *root_plt,
7384 struct arm_plt_info *arm_plt)
7385 {
7386 struct elf32_arm_link_hash_table *htab;
7387 asection *splt;
7388 asection *sgotplt;
7389
7390 htab = elf32_arm_hash_table (info);
7391
7392 if (is_iplt_entry)
7393 {
7394 splt = htab->root.iplt;
7395 sgotplt = htab->root.igotplt;
7396
7397 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7398 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7399 }
7400 else
7401 {
7402 splt = htab->root.splt;
7403 sgotplt = htab->root.sgotplt;
7404
7405 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7406 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7407
7408 /* If this is the first .plt entry, make room for the special
7409 first entry. */
7410 if (splt->size == 0)
7411 splt->size += htab->plt_header_size;
7412 }
7413
7414 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7415 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7416 splt->size += PLT_THUMB_STUB_SIZE;
7417 root_plt->offset = splt->size;
7418 splt->size += htab->plt_entry_size;
7419
7420 if (!htab->symbian_p)
7421 {
7422 /* We also need to make an entry in the .got.plt section, which
7423 will be placed in the .got section by the linker script. */
7424 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7425 sgotplt->size += 4;
7426 }
7427 }
7428
7429 static bfd_vma
7430 arm_movw_immediate (bfd_vma value)
7431 {
7432 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
7433 }
7434
7435 static bfd_vma
7436 arm_movt_immediate (bfd_vma value)
7437 {
7438 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
7439 }
7440
7441 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7442 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7443 Otherwise, DYNINDX is the index of the symbol in the dynamic
7444 symbol table and SYM_VALUE is undefined.
7445
7446 ROOT_PLT points to the offset of the PLT entry from the start of its
7447 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7448 bookkeeping information. */
7449
7450 static void
7451 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7452 union gotplt_union *root_plt,
7453 struct arm_plt_info *arm_plt,
7454 int dynindx, bfd_vma sym_value)
7455 {
7456 struct elf32_arm_link_hash_table *htab;
7457 asection *sgot;
7458 asection *splt;
7459 asection *srel;
7460 bfd_byte *loc;
7461 bfd_vma plt_index;
7462 Elf_Internal_Rela rel;
7463 bfd_vma plt_header_size;
7464 bfd_vma got_header_size;
7465
7466 htab = elf32_arm_hash_table (info);
7467
7468 /* Pick the appropriate sections and sizes. */
7469 if (dynindx == -1)
7470 {
7471 splt = htab->root.iplt;
7472 sgot = htab->root.igotplt;
7473 srel = htab->root.irelplt;
7474
7475 /* There are no reserved entries in .igot.plt, and no special
7476 first entry in .iplt. */
7477 got_header_size = 0;
7478 plt_header_size = 0;
7479 }
7480 else
7481 {
7482 splt = htab->root.splt;
7483 sgot = htab->root.sgotplt;
7484 srel = htab->root.srelplt;
7485
7486 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7487 plt_header_size = htab->plt_header_size;
7488 }
7489 BFD_ASSERT (splt != NULL && srel != NULL);
7490
7491 /* Fill in the entry in the procedure linkage table. */
7492 if (htab->symbian_p)
7493 {
7494 BFD_ASSERT (dynindx >= 0);
7495 put_arm_insn (htab, output_bfd,
7496 elf32_arm_symbian_plt_entry[0],
7497 splt->contents + root_plt->offset);
7498 bfd_put_32 (output_bfd,
7499 elf32_arm_symbian_plt_entry[1],
7500 splt->contents + root_plt->offset + 4);
7501
7502 /* Fill in the entry in the .rel.plt section. */
7503 rel.r_offset = (splt->output_section->vma
7504 + splt->output_offset
7505 + root_plt->offset + 4);
7506 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7507
7508 /* Get the index in the procedure linkage table which
7509 corresponds to this symbol. This is the index of this symbol
7510 in all the symbols for which we are making plt entries. The
7511 first entry in the procedure linkage table is reserved. */
7512 plt_index = ((root_plt->offset - plt_header_size)
7513 / htab->plt_entry_size);
7514 }
7515 else
7516 {
7517 bfd_vma got_offset, got_address, plt_address;
7518 bfd_vma got_displacement, initial_got_entry;
7519 bfd_byte * ptr;
7520
7521 BFD_ASSERT (sgot != NULL);
7522
7523 /* Get the offset into the .(i)got.plt table of the entry that
7524 corresponds to this function. */
7525 got_offset = (arm_plt->got_offset & -2);
7526
7527 /* Get the index in the procedure linkage table which
7528 corresponds to this symbol. This is the index of this symbol
7529 in all the symbols for which we are making plt entries.
7530 After the reserved .got.plt entries, all symbols appear in
7531 the same order as in .plt. */
7532 plt_index = (got_offset - got_header_size) / 4;
7533
7534 /* Calculate the address of the GOT entry. */
7535 got_address = (sgot->output_section->vma
7536 + sgot->output_offset
7537 + got_offset);
7538
7539 /* ...and the address of the PLT entry. */
7540 plt_address = (splt->output_section->vma
7541 + splt->output_offset
7542 + root_plt->offset);
7543
7544 ptr = splt->contents + root_plt->offset;
7545 if (htab->vxworks_p && info->shared)
7546 {
7547 unsigned int i;
7548 bfd_vma val;
7549
7550 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7551 {
7552 val = elf32_arm_vxworks_shared_plt_entry[i];
7553 if (i == 2)
7554 val |= got_address - sgot->output_section->vma;
7555 if (i == 5)
7556 val |= plt_index * RELOC_SIZE (htab);
7557 if (i == 2 || i == 5)
7558 bfd_put_32 (output_bfd, val, ptr);
7559 else
7560 put_arm_insn (htab, output_bfd, val, ptr);
7561 }
7562 }
7563 else if (htab->vxworks_p)
7564 {
7565 unsigned int i;
7566 bfd_vma val;
7567
7568 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7569 {
7570 val = elf32_arm_vxworks_exec_plt_entry[i];
7571 if (i == 2)
7572 val |= got_address;
7573 if (i == 4)
7574 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7575 if (i == 5)
7576 val |= plt_index * RELOC_SIZE (htab);
7577 if (i == 2 || i == 5)
7578 bfd_put_32 (output_bfd, val, ptr);
7579 else
7580 put_arm_insn (htab, output_bfd, val, ptr);
7581 }
7582
7583 loc = (htab->srelplt2->contents
7584 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7585
7586 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7587 referencing the GOT for this PLT entry. */
7588 rel.r_offset = plt_address + 8;
7589 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7590 rel.r_addend = got_offset;
7591 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7592 loc += RELOC_SIZE (htab);
7593
7594 /* Create the R_ARM_ABS32 relocation referencing the
7595 beginning of the PLT for this GOT entry. */
7596 rel.r_offset = got_address;
7597 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7598 rel.r_addend = 0;
7599 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7600 }
7601 else if (htab->nacl_p)
7602 {
7603 /* Calculate the displacement between the PLT slot and the
7604 common tail that's part of the special initial PLT slot. */
7605 int32_t tail_displacement
7606 = ((splt->output_section->vma + splt->output_offset
7607 + ARM_NACL_PLT_TAIL_OFFSET)
7608 - (plt_address + htab->plt_entry_size + 4));
7609 BFD_ASSERT ((tail_displacement & 3) == 0);
7610 tail_displacement >>= 2;
7611
7612 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
7613 || (-tail_displacement & 0xff000000) == 0);
7614
7615 /* Calculate the displacement between the PLT slot and the entry
7616 in the GOT. The offset accounts for the value produced by
7617 adding to pc in the penultimate instruction of the PLT stub. */
7618 got_displacement = (got_address
7619 - (plt_address + htab->plt_entry_size));
7620
7621 /* NaCl does not support interworking at all. */
7622 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
7623
7624 put_arm_insn (htab, output_bfd,
7625 elf32_arm_nacl_plt_entry[0]
7626 | arm_movw_immediate (got_displacement),
7627 ptr + 0);
7628 put_arm_insn (htab, output_bfd,
7629 elf32_arm_nacl_plt_entry[1]
7630 | arm_movt_immediate (got_displacement),
7631 ptr + 4);
7632 put_arm_insn (htab, output_bfd,
7633 elf32_arm_nacl_plt_entry[2],
7634 ptr + 8);
7635 put_arm_insn (htab, output_bfd,
7636 elf32_arm_nacl_plt_entry[3]
7637 | (tail_displacement & 0x00ffffff),
7638 ptr + 12);
7639 }
7640 else
7641 {
7642 /* Calculate the displacement between the PLT slot and the
7643 entry in the GOT. The eight-byte offset accounts for the
7644 value produced by adding to pc in the first instruction
7645 of the PLT stub. */
7646 got_displacement = got_address - (plt_address + 8);
7647
7648 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7649
7650 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7651 {
7652 put_thumb_insn (htab, output_bfd,
7653 elf32_arm_plt_thumb_stub[0], ptr - 4);
7654 put_thumb_insn (htab, output_bfd,
7655 elf32_arm_plt_thumb_stub[1], ptr - 2);
7656 }
7657
7658 put_arm_insn (htab, output_bfd,
7659 elf32_arm_plt_entry[0]
7660 | ((got_displacement & 0x0ff00000) >> 20),
7661 ptr + 0);
7662 put_arm_insn (htab, output_bfd,
7663 elf32_arm_plt_entry[1]
7664 | ((got_displacement & 0x000ff000) >> 12),
7665 ptr+ 4);
7666 put_arm_insn (htab, output_bfd,
7667 elf32_arm_plt_entry[2]
7668 | (got_displacement & 0x00000fff),
7669 ptr + 8);
7670 #ifdef FOUR_WORD_PLT
7671 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
7672 #endif
7673 }
7674
7675 /* Fill in the entry in the .rel(a).(i)plt section. */
7676 rel.r_offset = got_address;
7677 rel.r_addend = 0;
7678 if (dynindx == -1)
7679 {
7680 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7681 The dynamic linker or static executable then calls SYM_VALUE
7682 to determine the correct run-time value of the .igot.plt entry. */
7683 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7684 initial_got_entry = sym_value;
7685 }
7686 else
7687 {
7688 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7689 initial_got_entry = (splt->output_section->vma
7690 + splt->output_offset);
7691 }
7692
7693 /* Fill in the entry in the global offset table. */
7694 bfd_put_32 (output_bfd, initial_got_entry,
7695 sgot->contents + got_offset);
7696 }
7697
7698 loc = srel->contents + plt_index * RELOC_SIZE (htab);
7699 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7700 }
7701
7702 /* Some relocations map to different relocations depending on the
7703 target. Return the real relocation. */
7704
7705 static int
7706 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7707 int r_type)
7708 {
7709 switch (r_type)
7710 {
7711 case R_ARM_TARGET1:
7712 if (globals->target1_is_rel)
7713 return R_ARM_REL32;
7714 else
7715 return R_ARM_ABS32;
7716
7717 case R_ARM_TARGET2:
7718 return globals->target2_reloc;
7719
7720 default:
7721 return r_type;
7722 }
7723 }
7724
7725 /* Return the base VMA address which should be subtracted from real addresses
7726 when resolving @dtpoff relocation.
7727 This is PT_TLS segment p_vaddr. */
7728
7729 static bfd_vma
7730 dtpoff_base (struct bfd_link_info *info)
7731 {
7732 /* If tls_sec is NULL, we should have signalled an error already. */
7733 if (elf_hash_table (info)->tls_sec == NULL)
7734 return 0;
7735 return elf_hash_table (info)->tls_sec->vma;
7736 }
7737
7738 /* Return the relocation value for @tpoff relocation
7739 if STT_TLS virtual address is ADDRESS. */
7740
7741 static bfd_vma
7742 tpoff (struct bfd_link_info *info, bfd_vma address)
7743 {
7744 struct elf_link_hash_table *htab = elf_hash_table (info);
7745 bfd_vma base;
7746
7747 /* If tls_sec is NULL, we should have signalled an error already. */
7748 if (htab->tls_sec == NULL)
7749 return 0;
7750 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7751 return address - htab->tls_sec->vma + base;
7752 }
7753
7754 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7755 VALUE is the relocation value. */
7756
7757 static bfd_reloc_status_type
7758 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7759 {
7760 if (value > 0xfff)
7761 return bfd_reloc_overflow;
7762
7763 value |= bfd_get_32 (abfd, data) & 0xfffff000;
7764 bfd_put_32 (abfd, value, data);
7765 return bfd_reloc_ok;
7766 }
7767
7768 /* Handle TLS relaxations. Relaxing is possible for symbols that use
7769 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7770 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7771
7772 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7773 is to then call final_link_relocate. Return other values in the
7774 case of error.
7775
7776 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7777 the pre-relaxed code. It would be nice if the relocs were updated
7778 to match the optimization. */
7779
7780 static bfd_reloc_status_type
7781 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
7782 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
7783 Elf_Internal_Rela *rel, unsigned long is_local)
7784 {
7785 unsigned long insn;
7786
7787 switch (ELF32_R_TYPE (rel->r_info))
7788 {
7789 default:
7790 return bfd_reloc_notsupported;
7791
7792 case R_ARM_TLS_GOTDESC:
7793 if (is_local)
7794 insn = 0;
7795 else
7796 {
7797 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7798 if (insn & 1)
7799 insn -= 5; /* THUMB */
7800 else
7801 insn -= 8; /* ARM */
7802 }
7803 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7804 return bfd_reloc_continue;
7805
7806 case R_ARM_THM_TLS_DESCSEQ:
7807 /* Thumb insn. */
7808 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
7809 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
7810 {
7811 if (is_local)
7812 /* nop */
7813 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7814 }
7815 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
7816 {
7817 if (is_local)
7818 /* nop */
7819 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7820 else
7821 /* ldr rx,[ry] */
7822 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
7823 }
7824 else if ((insn & 0xff87) == 0x4780) /* blx rx */
7825 {
7826 if (is_local)
7827 /* nop */
7828 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7829 else
7830 /* mov r0, rx */
7831 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
7832 contents + rel->r_offset);
7833 }
7834 else
7835 {
7836 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
7837 /* It's a 32 bit instruction, fetch the rest of it for
7838 error generation. */
7839 insn = (insn << 16)
7840 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
7841 (*_bfd_error_handler)
7842 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7843 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7844 return bfd_reloc_notsupported;
7845 }
7846 break;
7847
7848 case R_ARM_TLS_DESCSEQ:
7849 /* arm insn. */
7850 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7851 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7852 {
7853 if (is_local)
7854 /* mov rx, ry */
7855 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
7856 contents + rel->r_offset);
7857 }
7858 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7859 {
7860 if (is_local)
7861 /* nop */
7862 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7863 else
7864 /* ldr rx,[ry] */
7865 bfd_put_32 (input_bfd, insn & 0xfffff000,
7866 contents + rel->r_offset);
7867 }
7868 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
7869 {
7870 if (is_local)
7871 /* nop */
7872 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7873 else
7874 /* mov r0, rx */
7875 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
7876 contents + rel->r_offset);
7877 }
7878 else
7879 {
7880 (*_bfd_error_handler)
7881 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7882 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7883 return bfd_reloc_notsupported;
7884 }
7885 break;
7886
7887 case R_ARM_TLS_CALL:
7888 /* GD->IE relaxation, turn the instruction into 'nop' or
7889 'ldr r0, [pc,r0]' */
7890 insn = is_local ? 0xe1a00000 : 0xe79f0000;
7891 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7892 break;
7893
7894 case R_ARM_THM_TLS_CALL:
7895 /* GD->IE relaxation */
7896 if (!is_local)
7897 /* add r0,pc; ldr r0, [r0] */
7898 insn = 0x44786800;
7899 else if (arch_has_thumb2_nop (globals))
7900 /* nop.w */
7901 insn = 0xf3af8000;
7902 else
7903 /* nop; nop */
7904 insn = 0xbf00bf00;
7905
7906 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
7907 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
7908 break;
7909 }
7910 return bfd_reloc_ok;
7911 }
7912
7913 /* For a given value of n, calculate the value of G_n as required to
7914 deal with group relocations. We return it in the form of an
7915 encoded constant-and-rotation, together with the final residual. If n is
7916 specified as less than zero, then final_residual is filled with the
7917 input value and no further action is performed. */
7918
7919 static bfd_vma
7920 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
7921 {
7922 int current_n;
7923 bfd_vma g_n;
7924 bfd_vma encoded_g_n = 0;
7925 bfd_vma residual = value; /* Also known as Y_n. */
7926
7927 for (current_n = 0; current_n <= n; current_n++)
7928 {
7929 int shift;
7930
7931 /* Calculate which part of the value to mask. */
7932 if (residual == 0)
7933 shift = 0;
7934 else
7935 {
7936 int msb;
7937
7938 /* Determine the most significant bit in the residual and
7939 align the resulting value to a 2-bit boundary. */
7940 for (msb = 30; msb >= 0; msb -= 2)
7941 if (residual & (3 << msb))
7942 break;
7943
7944 /* The desired shift is now (msb - 6), or zero, whichever
7945 is the greater. */
7946 shift = msb - 6;
7947 if (shift < 0)
7948 shift = 0;
7949 }
7950
7951 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
7952 g_n = residual & (0xff << shift);
7953 encoded_g_n = (g_n >> shift)
7954 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
7955
7956 /* Calculate the residual for the next time around. */
7957 residual &= ~g_n;
7958 }
7959
7960 *final_residual = residual;
7961
7962 return encoded_g_n;
7963 }
7964
7965 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
7966 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
7967
7968 static int
7969 identify_add_or_sub (bfd_vma insn)
7970 {
7971 int opcode = insn & 0x1e00000;
7972
7973 if (opcode == 1 << 23) /* ADD */
7974 return 1;
7975
7976 if (opcode == 1 << 22) /* SUB */
7977 return -1;
7978
7979 return 0;
7980 }
7981
7982 /* Perform a relocation as part of a final link. */
7983
7984 static bfd_reloc_status_type
7985 elf32_arm_final_link_relocate (reloc_howto_type * howto,
7986 bfd * input_bfd,
7987 bfd * output_bfd,
7988 asection * input_section,
7989 bfd_byte * contents,
7990 Elf_Internal_Rela * rel,
7991 bfd_vma value,
7992 struct bfd_link_info * info,
7993 asection * sym_sec,
7994 const char * sym_name,
7995 unsigned char st_type,
7996 enum arm_st_branch_type branch_type,
7997 struct elf_link_hash_entry * h,
7998 bfd_boolean * unresolved_reloc_p,
7999 char ** error_message)
8000 {
8001 unsigned long r_type = howto->type;
8002 unsigned long r_symndx;
8003 bfd_byte * hit_data = contents + rel->r_offset;
8004 bfd_vma * local_got_offsets;
8005 bfd_vma * local_tlsdesc_gotents;
8006 asection * sgot;
8007 asection * splt;
8008 asection * sreloc = NULL;
8009 asection * srelgot;
8010 bfd_vma addend;
8011 bfd_signed_vma signed_addend;
8012 unsigned char dynreloc_st_type;
8013 bfd_vma dynreloc_value;
8014 struct elf32_arm_link_hash_table * globals;
8015 struct elf32_arm_link_hash_entry *eh;
8016 union gotplt_union *root_plt;
8017 struct arm_plt_info *arm_plt;
8018 bfd_vma plt_offset;
8019 bfd_vma gotplt_offset;
8020 bfd_boolean has_iplt_entry;
8021
8022 globals = elf32_arm_hash_table (info);
8023 if (globals == NULL)
8024 return bfd_reloc_notsupported;
8025
8026 BFD_ASSERT (is_arm_elf (input_bfd));
8027
8028 /* Some relocation types map to different relocations depending on the
8029 target. We pick the right one here. */
8030 r_type = arm_real_reloc_type (globals, r_type);
8031
8032 /* It is possible to have linker relaxations on some TLS access
8033 models. Update our information here. */
8034 r_type = elf32_arm_tls_transition (info, r_type, h);
8035
8036 if (r_type != howto->type)
8037 howto = elf32_arm_howto_from_type (r_type);
8038
8039 /* If the start address has been set, then set the EF_ARM_HASENTRY
8040 flag. Setting this more than once is redundant, but the cost is
8041 not too high, and it keeps the code simple.
8042
8043 The test is done here, rather than somewhere else, because the
8044 start address is only set just before the final link commences.
8045
8046 Note - if the user deliberately sets a start address of 0, the
8047 flag will not be set. */
8048 if (bfd_get_start_address (output_bfd) != 0)
8049 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
8050
8051 eh = (struct elf32_arm_link_hash_entry *) h;
8052 sgot = globals->root.sgot;
8053 local_got_offsets = elf_local_got_offsets (input_bfd);
8054 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
8055
8056 if (globals->root.dynamic_sections_created)
8057 srelgot = globals->root.srelgot;
8058 else
8059 srelgot = NULL;
8060
8061 r_symndx = ELF32_R_SYM (rel->r_info);
8062
8063 if (globals->use_rel)
8064 {
8065 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
8066
8067 if (addend & ((howto->src_mask + 1) >> 1))
8068 {
8069 signed_addend = -1;
8070 signed_addend &= ~ howto->src_mask;
8071 signed_addend |= addend;
8072 }
8073 else
8074 signed_addend = addend;
8075 }
8076 else
8077 addend = signed_addend = rel->r_addend;
8078
8079 /* Record the symbol information that should be used in dynamic
8080 relocations. */
8081 dynreloc_st_type = st_type;
8082 dynreloc_value = value;
8083 if (branch_type == ST_BRANCH_TO_THUMB)
8084 dynreloc_value |= 1;
8085
8086 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
8087 VALUE appropriately for relocations that we resolve at link time. */
8088 has_iplt_entry = FALSE;
8089 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
8090 && root_plt->offset != (bfd_vma) -1)
8091 {
8092 plt_offset = root_plt->offset;
8093 gotplt_offset = arm_plt->got_offset;
8094
8095 if (h == NULL || eh->is_iplt)
8096 {
8097 has_iplt_entry = TRUE;
8098 splt = globals->root.iplt;
8099
8100 /* Populate .iplt entries here, because not all of them will
8101 be seen by finish_dynamic_symbol. The lower bit is set if
8102 we have already populated the entry. */
8103 if (plt_offset & 1)
8104 plt_offset--;
8105 else
8106 {
8107 elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
8108 -1, dynreloc_value);
8109 root_plt->offset |= 1;
8110 }
8111
8112 /* Static relocations always resolve to the .iplt entry. */
8113 st_type = STT_FUNC;
8114 value = (splt->output_section->vma
8115 + splt->output_offset
8116 + plt_offset);
8117 branch_type = ST_BRANCH_TO_ARM;
8118
8119 /* If there are non-call relocations that resolve to the .iplt
8120 entry, then all dynamic ones must too. */
8121 if (arm_plt->noncall_refcount != 0)
8122 {
8123 dynreloc_st_type = st_type;
8124 dynreloc_value = value;
8125 }
8126 }
8127 else
8128 /* We populate the .plt entry in finish_dynamic_symbol. */
8129 splt = globals->root.splt;
8130 }
8131 else
8132 {
8133 splt = NULL;
8134 plt_offset = (bfd_vma) -1;
8135 gotplt_offset = (bfd_vma) -1;
8136 }
8137
8138 switch (r_type)
8139 {
8140 case R_ARM_NONE:
8141 /* We don't need to find a value for this symbol. It's just a
8142 marker. */
8143 *unresolved_reloc_p = FALSE;
8144 return bfd_reloc_ok;
8145
8146 case R_ARM_ABS12:
8147 if (!globals->vxworks_p)
8148 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8149
8150 case R_ARM_PC24:
8151 case R_ARM_ABS32:
8152 case R_ARM_ABS32_NOI:
8153 case R_ARM_REL32:
8154 case R_ARM_REL32_NOI:
8155 case R_ARM_CALL:
8156 case R_ARM_JUMP24:
8157 case R_ARM_XPC25:
8158 case R_ARM_PREL31:
8159 case R_ARM_PLT32:
8160 /* Handle relocations which should use the PLT entry. ABS32/REL32
8161 will use the symbol's value, which may point to a PLT entry, but we
8162 don't need to handle that here. If we created a PLT entry, all
8163 branches in this object should go to it, except if the PLT is too
8164 far away, in which case a long branch stub should be inserted. */
8165 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
8166 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
8167 && r_type != R_ARM_CALL
8168 && r_type != R_ARM_JUMP24
8169 && r_type != R_ARM_PLT32)
8170 && plt_offset != (bfd_vma) -1)
8171 {
8172 /* If we've created a .plt section, and assigned a PLT entry
8173 to this function, it must either be a STT_GNU_IFUNC reference
8174 or not be known to bind locally. In other cases, we should
8175 have cleared the PLT entry by now. */
8176 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
8177
8178 value = (splt->output_section->vma
8179 + splt->output_offset
8180 + plt_offset);
8181 *unresolved_reloc_p = FALSE;
8182 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8183 contents, rel->r_offset, value,
8184 rel->r_addend);
8185 }
8186
8187 /* When generating a shared object or relocatable executable, these
8188 relocations are copied into the output file to be resolved at
8189 run time. */
8190 if ((info->shared || globals->root.is_relocatable_executable)
8191 && (input_section->flags & SEC_ALLOC)
8192 && !(globals->vxworks_p
8193 && strcmp (input_section->output_section->name,
8194 ".tls_vars") == 0)
8195 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
8196 || !SYMBOL_CALLS_LOCAL (info, h))
8197 && !(input_bfd == globals->stub_bfd
8198 && strstr (input_section->name, STUB_SUFFIX))
8199 && (h == NULL
8200 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8201 || h->root.type != bfd_link_hash_undefweak)
8202 && r_type != R_ARM_PC24
8203 && r_type != R_ARM_CALL
8204 && r_type != R_ARM_JUMP24
8205 && r_type != R_ARM_PREL31
8206 && r_type != R_ARM_PLT32)
8207 {
8208 Elf_Internal_Rela outrel;
8209 bfd_boolean skip, relocate;
8210
8211 *unresolved_reloc_p = FALSE;
8212
8213 if (sreloc == NULL && globals->root.dynamic_sections_created)
8214 {
8215 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8216 ! globals->use_rel);
8217
8218 if (sreloc == NULL)
8219 return bfd_reloc_notsupported;
8220 }
8221
8222 skip = FALSE;
8223 relocate = FALSE;
8224
8225 outrel.r_addend = addend;
8226 outrel.r_offset =
8227 _bfd_elf_section_offset (output_bfd, info, input_section,
8228 rel->r_offset);
8229 if (outrel.r_offset == (bfd_vma) -1)
8230 skip = TRUE;
8231 else if (outrel.r_offset == (bfd_vma) -2)
8232 skip = TRUE, relocate = TRUE;
8233 outrel.r_offset += (input_section->output_section->vma
8234 + input_section->output_offset);
8235
8236 if (skip)
8237 memset (&outrel, 0, sizeof outrel);
8238 else if (h != NULL
8239 && h->dynindx != -1
8240 && (!info->shared
8241 || !info->symbolic
8242 || !h->def_regular))
8243 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
8244 else
8245 {
8246 int symbol;
8247
8248 /* This symbol is local, or marked to become local. */
8249 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
8250 if (globals->symbian_p)
8251 {
8252 asection *osec;
8253
8254 /* On Symbian OS, the data segment and text segement
8255 can be relocated independently. Therefore, we
8256 must indicate the segment to which this
8257 relocation is relative. The BPABI allows us to
8258 use any symbol in the right segment; we just use
8259 the section symbol as it is convenient. (We
8260 cannot use the symbol given by "h" directly as it
8261 will not appear in the dynamic symbol table.)
8262
8263 Note that the dynamic linker ignores the section
8264 symbol value, so we don't subtract osec->vma
8265 from the emitted reloc addend. */
8266 if (sym_sec)
8267 osec = sym_sec->output_section;
8268 else
8269 osec = input_section->output_section;
8270 symbol = elf_section_data (osec)->dynindx;
8271 if (symbol == 0)
8272 {
8273 struct elf_link_hash_table *htab = elf_hash_table (info);
8274
8275 if ((osec->flags & SEC_READONLY) == 0
8276 && htab->data_index_section != NULL)
8277 osec = htab->data_index_section;
8278 else
8279 osec = htab->text_index_section;
8280 symbol = elf_section_data (osec)->dynindx;
8281 }
8282 BFD_ASSERT (symbol != 0);
8283 }
8284 else
8285 /* On SVR4-ish systems, the dynamic loader cannot
8286 relocate the text and data segments independently,
8287 so the symbol does not matter. */
8288 symbol = 0;
8289 if (dynreloc_st_type == STT_GNU_IFUNC)
8290 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8291 to the .iplt entry. Instead, every non-call reference
8292 must use an R_ARM_IRELATIVE relocation to obtain the
8293 correct run-time address. */
8294 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8295 else
8296 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
8297 if (globals->use_rel)
8298 relocate = TRUE;
8299 else
8300 outrel.r_addend += dynreloc_value;
8301 }
8302
8303 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
8304
8305 /* If this reloc is against an external symbol, we do not want to
8306 fiddle with the addend. Otherwise, we need to include the symbol
8307 value so that it becomes an addend for the dynamic reloc. */
8308 if (! relocate)
8309 return bfd_reloc_ok;
8310
8311 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8312 contents, rel->r_offset,
8313 dynreloc_value, (bfd_vma) 0);
8314 }
8315 else switch (r_type)
8316 {
8317 case R_ARM_ABS12:
8318 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8319
8320 case R_ARM_XPC25: /* Arm BLX instruction. */
8321 case R_ARM_CALL:
8322 case R_ARM_JUMP24:
8323 case R_ARM_PC24: /* Arm B/BL instruction. */
8324 case R_ARM_PLT32:
8325 {
8326 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8327
8328 if (r_type == R_ARM_XPC25)
8329 {
8330 /* Check for Arm calling Arm function. */
8331 /* FIXME: Should we translate the instruction into a BL
8332 instruction instead ? */
8333 if (branch_type != ST_BRANCH_TO_THUMB)
8334 (*_bfd_error_handler)
8335 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8336 input_bfd,
8337 h ? h->root.root.string : "(local)");
8338 }
8339 else if (r_type == R_ARM_PC24)
8340 {
8341 /* Check for Arm calling Thumb function. */
8342 if (branch_type == ST_BRANCH_TO_THUMB)
8343 {
8344 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8345 output_bfd, input_section,
8346 hit_data, sym_sec, rel->r_offset,
8347 signed_addend, value,
8348 error_message))
8349 return bfd_reloc_ok;
8350 else
8351 return bfd_reloc_dangerous;
8352 }
8353 }
8354
8355 /* Check if a stub has to be inserted because the
8356 destination is too far or we are changing mode. */
8357 if ( r_type == R_ARM_CALL
8358 || r_type == R_ARM_JUMP24
8359 || r_type == R_ARM_PLT32)
8360 {
8361 enum elf32_arm_stub_type stub_type = arm_stub_none;
8362 struct elf32_arm_link_hash_entry *hash;
8363
8364 hash = (struct elf32_arm_link_hash_entry *) h;
8365 stub_type = arm_type_of_stub (info, input_section, rel,
8366 st_type, &branch_type,
8367 hash, value, sym_sec,
8368 input_bfd, sym_name);
8369
8370 if (stub_type != arm_stub_none)
8371 {
8372 /* The target is out of reach, so redirect the
8373 branch to the local stub for this function. */
8374 stub_entry = elf32_arm_get_stub_entry (input_section,
8375 sym_sec, h,
8376 rel, globals,
8377 stub_type);
8378 {
8379 if (stub_entry != NULL)
8380 value = (stub_entry->stub_offset
8381 + stub_entry->stub_sec->output_offset
8382 + stub_entry->stub_sec->output_section->vma);
8383
8384 if (plt_offset != (bfd_vma) -1)
8385 *unresolved_reloc_p = FALSE;
8386 }
8387 }
8388 else
8389 {
8390 /* If the call goes through a PLT entry, make sure to
8391 check distance to the right destination address. */
8392 if (plt_offset != (bfd_vma) -1)
8393 {
8394 value = (splt->output_section->vma
8395 + splt->output_offset
8396 + plt_offset);
8397 *unresolved_reloc_p = FALSE;
8398 /* The PLT entry is in ARM mode, regardless of the
8399 target function. */
8400 branch_type = ST_BRANCH_TO_ARM;
8401 }
8402 }
8403 }
8404
8405 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8406 where:
8407 S is the address of the symbol in the relocation.
8408 P is address of the instruction being relocated.
8409 A is the addend (extracted from the instruction) in bytes.
8410
8411 S is held in 'value'.
8412 P is the base address of the section containing the
8413 instruction plus the offset of the reloc into that
8414 section, ie:
8415 (input_section->output_section->vma +
8416 input_section->output_offset +
8417 rel->r_offset).
8418 A is the addend, converted into bytes, ie:
8419 (signed_addend * 4)
8420
8421 Note: None of these operations have knowledge of the pipeline
8422 size of the processor, thus it is up to the assembler to
8423 encode this information into the addend. */
8424 value -= (input_section->output_section->vma
8425 + input_section->output_offset);
8426 value -= rel->r_offset;
8427 if (globals->use_rel)
8428 value += (signed_addend << howto->size);
8429 else
8430 /* RELA addends do not have to be adjusted by howto->size. */
8431 value += signed_addend;
8432
8433 signed_addend = value;
8434 signed_addend >>= howto->rightshift;
8435
8436 /* A branch to an undefined weak symbol is turned into a jump to
8437 the next instruction unless a PLT entry will be created.
8438 Do the same for local undefined symbols (but not for STN_UNDEF).
8439 The jump to the next instruction is optimized as a NOP depending
8440 on the architecture. */
8441 if (h ? (h->root.type == bfd_link_hash_undefweak
8442 && plt_offset == (bfd_vma) -1)
8443 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
8444 {
8445 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8446
8447 if (arch_has_arm_nop (globals))
8448 value |= 0x0320f000;
8449 else
8450 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
8451 }
8452 else
8453 {
8454 /* Perform a signed range check. */
8455 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
8456 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8457 return bfd_reloc_overflow;
8458
8459 addend = (value & 2);
8460
8461 value = (signed_addend & howto->dst_mask)
8462 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
8463
8464 if (r_type == R_ARM_CALL)
8465 {
8466 /* Set the H bit in the BLX instruction. */
8467 if (branch_type == ST_BRANCH_TO_THUMB)
8468 {
8469 if (addend)
8470 value |= (1 << 24);
8471 else
8472 value &= ~(bfd_vma)(1 << 24);
8473 }
8474
8475 /* Select the correct instruction (BL or BLX). */
8476 /* Only if we are not handling a BL to a stub. In this
8477 case, mode switching is performed by the stub. */
8478 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
8479 value |= (1 << 28);
8480 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
8481 {
8482 value &= ~(bfd_vma)(1 << 28);
8483 value |= (1 << 24);
8484 }
8485 }
8486 }
8487 }
8488 break;
8489
8490 case R_ARM_ABS32:
8491 value += addend;
8492 if (branch_type == ST_BRANCH_TO_THUMB)
8493 value |= 1;
8494 break;
8495
8496 case R_ARM_ABS32_NOI:
8497 value += addend;
8498 break;
8499
8500 case R_ARM_REL32:
8501 value += addend;
8502 if (branch_type == ST_BRANCH_TO_THUMB)
8503 value |= 1;
8504 value -= (input_section->output_section->vma
8505 + input_section->output_offset + rel->r_offset);
8506 break;
8507
8508 case R_ARM_REL32_NOI:
8509 value += addend;
8510 value -= (input_section->output_section->vma
8511 + input_section->output_offset + rel->r_offset);
8512 break;
8513
8514 case R_ARM_PREL31:
8515 value -= (input_section->output_section->vma
8516 + input_section->output_offset + rel->r_offset);
8517 value += signed_addend;
8518 if (! h || h->root.type != bfd_link_hash_undefweak)
8519 {
8520 /* Check for overflow. */
8521 if ((value ^ (value >> 1)) & (1 << 30))
8522 return bfd_reloc_overflow;
8523 }
8524 value &= 0x7fffffff;
8525 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
8526 if (branch_type == ST_BRANCH_TO_THUMB)
8527 value |= 1;
8528 break;
8529 }
8530
8531 bfd_put_32 (input_bfd, value, hit_data);
8532 return bfd_reloc_ok;
8533
8534 case R_ARM_ABS8:
8535 value += addend;
8536
8537 /* There is no way to tell whether the user intended to use a signed or
8538 unsigned addend. When checking for overflow we accept either,
8539 as specified by the AAELF. */
8540 if ((long) value > 0xff || (long) value < -0x80)
8541 return bfd_reloc_overflow;
8542
8543 bfd_put_8 (input_bfd, value, hit_data);
8544 return bfd_reloc_ok;
8545
8546 case R_ARM_ABS16:
8547 value += addend;
8548
8549 /* See comment for R_ARM_ABS8. */
8550 if ((long) value > 0xffff || (long) value < -0x8000)
8551 return bfd_reloc_overflow;
8552
8553 bfd_put_16 (input_bfd, value, hit_data);
8554 return bfd_reloc_ok;
8555
8556 case R_ARM_THM_ABS5:
8557 /* Support ldr and str instructions for the thumb. */
8558 if (globals->use_rel)
8559 {
8560 /* Need to refetch addend. */
8561 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8562 /* ??? Need to determine shift amount from operand size. */
8563 addend >>= howto->rightshift;
8564 }
8565 value += addend;
8566
8567 /* ??? Isn't value unsigned? */
8568 if ((long) value > 0x1f || (long) value < -0x10)
8569 return bfd_reloc_overflow;
8570
8571 /* ??? Value needs to be properly shifted into place first. */
8572 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8573 bfd_put_16 (input_bfd, value, hit_data);
8574 return bfd_reloc_ok;
8575
8576 case R_ARM_THM_ALU_PREL_11_0:
8577 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8578 {
8579 bfd_vma insn;
8580 bfd_signed_vma relocation;
8581
8582 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8583 | bfd_get_16 (input_bfd, hit_data + 2);
8584
8585 if (globals->use_rel)
8586 {
8587 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8588 | ((insn & (1 << 26)) >> 15);
8589 if (insn & 0xf00000)
8590 signed_addend = -signed_addend;
8591 }
8592
8593 relocation = value + signed_addend;
8594 relocation -= Pa (input_section->output_section->vma
8595 + input_section->output_offset
8596 + rel->r_offset);
8597
8598 value = abs (relocation);
8599
8600 if (value >= 0x1000)
8601 return bfd_reloc_overflow;
8602
8603 insn = (insn & 0xfb0f8f00) | (value & 0xff)
8604 | ((value & 0x700) << 4)
8605 | ((value & 0x800) << 15);
8606 if (relocation < 0)
8607 insn |= 0xa00000;
8608
8609 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8610 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8611
8612 return bfd_reloc_ok;
8613 }
8614
8615 case R_ARM_THM_PC8:
8616 /* PR 10073: This reloc is not generated by the GNU toolchain,
8617 but it is supported for compatibility with third party libraries
8618 generated by other compilers, specifically the ARM/IAR. */
8619 {
8620 bfd_vma insn;
8621 bfd_signed_vma relocation;
8622
8623 insn = bfd_get_16 (input_bfd, hit_data);
8624
8625 if (globals->use_rel)
8626 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
8627
8628 relocation = value + addend;
8629 relocation -= Pa (input_section->output_section->vma
8630 + input_section->output_offset
8631 + rel->r_offset);
8632
8633 value = abs (relocation);
8634
8635 /* We do not check for overflow of this reloc. Although strictly
8636 speaking this is incorrect, it appears to be necessary in order
8637 to work with IAR generated relocs. Since GCC and GAS do not
8638 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8639 a problem for them. */
8640 value &= 0x3fc;
8641
8642 insn = (insn & 0xff00) | (value >> 2);
8643
8644 bfd_put_16 (input_bfd, insn, hit_data);
8645
8646 return bfd_reloc_ok;
8647 }
8648
8649 case R_ARM_THM_PC12:
8650 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8651 {
8652 bfd_vma insn;
8653 bfd_signed_vma relocation;
8654
8655 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8656 | bfd_get_16 (input_bfd, hit_data + 2);
8657
8658 if (globals->use_rel)
8659 {
8660 signed_addend = insn & 0xfff;
8661 if (!(insn & (1 << 23)))
8662 signed_addend = -signed_addend;
8663 }
8664
8665 relocation = value + signed_addend;
8666 relocation -= Pa (input_section->output_section->vma
8667 + input_section->output_offset
8668 + rel->r_offset);
8669
8670 value = abs (relocation);
8671
8672 if (value >= 0x1000)
8673 return bfd_reloc_overflow;
8674
8675 insn = (insn & 0xff7ff000) | value;
8676 if (relocation >= 0)
8677 insn |= (1 << 23);
8678
8679 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8680 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8681
8682 return bfd_reloc_ok;
8683 }
8684
8685 case R_ARM_THM_XPC22:
8686 case R_ARM_THM_CALL:
8687 case R_ARM_THM_JUMP24:
8688 /* Thumb BL (branch long instruction). */
8689 {
8690 bfd_vma relocation;
8691 bfd_vma reloc_sign;
8692 bfd_boolean overflow = FALSE;
8693 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8694 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8695 bfd_signed_vma reloc_signed_max;
8696 bfd_signed_vma reloc_signed_min;
8697 bfd_vma check;
8698 bfd_signed_vma signed_check;
8699 int bitsize;
8700 const int thumb2 = using_thumb2 (globals);
8701
8702 /* A branch to an undefined weak symbol is turned into a jump to
8703 the next instruction unless a PLT entry will be created.
8704 The jump to the next instruction is optimized as a NOP.W for
8705 Thumb-2 enabled architectures. */
8706 if (h && h->root.type == bfd_link_hash_undefweak
8707 && plt_offset == (bfd_vma) -1)
8708 {
8709 if (arch_has_thumb2_nop (globals))
8710 {
8711 bfd_put_16 (input_bfd, 0xf3af, hit_data);
8712 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8713 }
8714 else
8715 {
8716 bfd_put_16 (input_bfd, 0xe000, hit_data);
8717 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8718 }
8719 return bfd_reloc_ok;
8720 }
8721
8722 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
8723 with Thumb-1) involving the J1 and J2 bits. */
8724 if (globals->use_rel)
8725 {
8726 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8727 bfd_vma upper = upper_insn & 0x3ff;
8728 bfd_vma lower = lower_insn & 0x7ff;
8729 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8730 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
8731 bfd_vma i1 = j1 ^ s ? 0 : 1;
8732 bfd_vma i2 = j2 ^ s ? 0 : 1;
8733
8734 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8735 /* Sign extend. */
8736 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
8737
8738 signed_addend = addend;
8739 }
8740
8741 if (r_type == R_ARM_THM_XPC22)
8742 {
8743 /* Check for Thumb to Thumb call. */
8744 /* FIXME: Should we translate the instruction into a BL
8745 instruction instead ? */
8746 if (branch_type == ST_BRANCH_TO_THUMB)
8747 (*_bfd_error_handler)
8748 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8749 input_bfd,
8750 h ? h->root.root.string : "(local)");
8751 }
8752 else
8753 {
8754 /* If it is not a call to Thumb, assume call to Arm.
8755 If it is a call relative to a section name, then it is not a
8756 function call at all, but rather a long jump. Calls through
8757 the PLT do not require stubs. */
8758 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
8759 {
8760 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8761 {
8762 /* Convert BL to BLX. */
8763 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8764 }
8765 else if (( r_type != R_ARM_THM_CALL)
8766 && (r_type != R_ARM_THM_JUMP24))
8767 {
8768 if (elf32_thumb_to_arm_stub
8769 (info, sym_name, input_bfd, output_bfd, input_section,
8770 hit_data, sym_sec, rel->r_offset, signed_addend, value,
8771 error_message))
8772 return bfd_reloc_ok;
8773 else
8774 return bfd_reloc_dangerous;
8775 }
8776 }
8777 else if (branch_type == ST_BRANCH_TO_THUMB
8778 && globals->use_blx
8779 && r_type == R_ARM_THM_CALL)
8780 {
8781 /* Make sure this is a BL. */
8782 lower_insn |= 0x1800;
8783 }
8784 }
8785
8786 enum elf32_arm_stub_type stub_type = arm_stub_none;
8787 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
8788 {
8789 /* Check if a stub has to be inserted because the destination
8790 is too far. */
8791 struct elf32_arm_stub_hash_entry *stub_entry;
8792 struct elf32_arm_link_hash_entry *hash;
8793
8794 hash = (struct elf32_arm_link_hash_entry *) h;
8795
8796 stub_type = arm_type_of_stub (info, input_section, rel,
8797 st_type, &branch_type,
8798 hash, value, sym_sec,
8799 input_bfd, sym_name);
8800
8801 if (stub_type != arm_stub_none)
8802 {
8803 /* The target is out of reach or we are changing modes, so
8804 redirect the branch to the local stub for this
8805 function. */
8806 stub_entry = elf32_arm_get_stub_entry (input_section,
8807 sym_sec, h,
8808 rel, globals,
8809 stub_type);
8810 if (stub_entry != NULL)
8811 {
8812 value = (stub_entry->stub_offset
8813 + stub_entry->stub_sec->output_offset
8814 + stub_entry->stub_sec->output_section->vma);
8815
8816 if (plt_offset != (bfd_vma) -1)
8817 *unresolved_reloc_p = FALSE;
8818 }
8819
8820 /* If this call becomes a call to Arm, force BLX. */
8821 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
8822 {
8823 if ((stub_entry
8824 && !arm_stub_is_thumb (stub_entry->stub_type))
8825 || branch_type != ST_BRANCH_TO_THUMB)
8826 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8827 }
8828 }
8829 }
8830
8831 /* Handle calls via the PLT. */
8832 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
8833 {
8834 value = (splt->output_section->vma
8835 + splt->output_offset
8836 + plt_offset);
8837
8838 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8839 {
8840 /* If the Thumb BLX instruction is available, convert
8841 the BL to a BLX instruction to call the ARM-mode
8842 PLT entry. */
8843 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8844 branch_type = ST_BRANCH_TO_ARM;
8845 }
8846 else
8847 {
8848 /* Target the Thumb stub before the ARM PLT entry. */
8849 value -= PLT_THUMB_STUB_SIZE;
8850 branch_type = ST_BRANCH_TO_THUMB;
8851 }
8852 *unresolved_reloc_p = FALSE;
8853 }
8854
8855 relocation = value + signed_addend;
8856
8857 relocation -= (input_section->output_section->vma
8858 + input_section->output_offset
8859 + rel->r_offset);
8860
8861 check = relocation >> howto->rightshift;
8862
8863 /* If this is a signed value, the rightshift just dropped
8864 leading 1 bits (assuming twos complement). */
8865 if ((bfd_signed_vma) relocation >= 0)
8866 signed_check = check;
8867 else
8868 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
8869
8870 /* Calculate the permissable maximum and minimum values for
8871 this relocation according to whether we're relocating for
8872 Thumb-2 or not. */
8873 bitsize = howto->bitsize;
8874 if (!thumb2)
8875 bitsize -= 2;
8876 reloc_signed_max = (1 << (bitsize - 1)) - 1;
8877 reloc_signed_min = ~reloc_signed_max;
8878
8879 /* Assumes two's complement. */
8880 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8881 overflow = TRUE;
8882
8883 if ((lower_insn & 0x5000) == 0x4000)
8884 /* For a BLX instruction, make sure that the relocation is rounded up
8885 to a word boundary. This follows the semantics of the instruction
8886 which specifies that bit 1 of the target address will come from bit
8887 1 of the base address. */
8888 relocation = (relocation + 2) & ~ 3;
8889
8890 /* Put RELOCATION back into the insn. Assumes two's complement.
8891 We use the Thumb-2 encoding, which is safe even if dealing with
8892 a Thumb-1 instruction by virtue of our overflow check above. */
8893 reloc_sign = (signed_check < 0) ? 1 : 0;
8894 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
8895 | ((relocation >> 12) & 0x3ff)
8896 | (reloc_sign << 10);
8897 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
8898 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
8899 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
8900 | ((relocation >> 1) & 0x7ff);
8901
8902 /* Put the relocated value back in the object file: */
8903 bfd_put_16 (input_bfd, upper_insn, hit_data);
8904 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8905
8906 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8907 }
8908 break;
8909
8910 case R_ARM_THM_JUMP19:
8911 /* Thumb32 conditional branch instruction. */
8912 {
8913 bfd_vma relocation;
8914 bfd_boolean overflow = FALSE;
8915 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8916 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8917 bfd_signed_vma reloc_signed_max = 0xffffe;
8918 bfd_signed_vma reloc_signed_min = -0x100000;
8919 bfd_signed_vma signed_check;
8920
8921 /* Need to refetch the addend, reconstruct the top three bits,
8922 and squish the two 11 bit pieces together. */
8923 if (globals->use_rel)
8924 {
8925 bfd_vma S = (upper_insn & 0x0400) >> 10;
8926 bfd_vma upper = (upper_insn & 0x003f);
8927 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
8928 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
8929 bfd_vma lower = (lower_insn & 0x07ff);
8930
8931 upper |= J1 << 6;
8932 upper |= J2 << 7;
8933 upper |= (!S) << 8;
8934 upper -= 0x0100; /* Sign extend. */
8935
8936 addend = (upper << 12) | (lower << 1);
8937 signed_addend = addend;
8938 }
8939
8940 /* Handle calls via the PLT. */
8941 if (plt_offset != (bfd_vma) -1)
8942 {
8943 value = (splt->output_section->vma
8944 + splt->output_offset
8945 + plt_offset);
8946 /* Target the Thumb stub before the ARM PLT entry. */
8947 value -= PLT_THUMB_STUB_SIZE;
8948 *unresolved_reloc_p = FALSE;
8949 }
8950
8951 /* ??? Should handle interworking? GCC might someday try to
8952 use this for tail calls. */
8953
8954 relocation = value + signed_addend;
8955 relocation -= (input_section->output_section->vma
8956 + input_section->output_offset
8957 + rel->r_offset);
8958 signed_check = (bfd_signed_vma) relocation;
8959
8960 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8961 overflow = TRUE;
8962
8963 /* Put RELOCATION back into the insn. */
8964 {
8965 bfd_vma S = (relocation & 0x00100000) >> 20;
8966 bfd_vma J2 = (relocation & 0x00080000) >> 19;
8967 bfd_vma J1 = (relocation & 0x00040000) >> 18;
8968 bfd_vma hi = (relocation & 0x0003f000) >> 12;
8969 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
8970
8971 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
8972 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
8973 }
8974
8975 /* Put the relocated value back in the object file: */
8976 bfd_put_16 (input_bfd, upper_insn, hit_data);
8977 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8978
8979 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8980 }
8981
8982 case R_ARM_THM_JUMP11:
8983 case R_ARM_THM_JUMP8:
8984 case R_ARM_THM_JUMP6:
8985 /* Thumb B (branch) instruction). */
8986 {
8987 bfd_signed_vma relocation;
8988 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
8989 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
8990 bfd_signed_vma signed_check;
8991
8992 /* CZB cannot jump backward. */
8993 if (r_type == R_ARM_THM_JUMP6)
8994 reloc_signed_min = 0;
8995
8996 if (globals->use_rel)
8997 {
8998 /* Need to refetch addend. */
8999 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
9000 if (addend & ((howto->src_mask + 1) >> 1))
9001 {
9002 signed_addend = -1;
9003 signed_addend &= ~ howto->src_mask;
9004 signed_addend |= addend;
9005 }
9006 else
9007 signed_addend = addend;
9008 /* The value in the insn has been right shifted. We need to
9009 undo this, so that we can perform the address calculation
9010 in terms of bytes. */
9011 signed_addend <<= howto->rightshift;
9012 }
9013 relocation = value + signed_addend;
9014
9015 relocation -= (input_section->output_section->vma
9016 + input_section->output_offset
9017 + rel->r_offset);
9018
9019 relocation >>= howto->rightshift;
9020 signed_check = relocation;
9021
9022 if (r_type == R_ARM_THM_JUMP6)
9023 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
9024 else
9025 relocation &= howto->dst_mask;
9026 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
9027
9028 bfd_put_16 (input_bfd, relocation, hit_data);
9029
9030 /* Assumes two's complement. */
9031 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
9032 return bfd_reloc_overflow;
9033
9034 return bfd_reloc_ok;
9035 }
9036
9037 case R_ARM_ALU_PCREL7_0:
9038 case R_ARM_ALU_PCREL15_8:
9039 case R_ARM_ALU_PCREL23_15:
9040 {
9041 bfd_vma insn;
9042 bfd_vma relocation;
9043
9044 insn = bfd_get_32 (input_bfd, hit_data);
9045 if (globals->use_rel)
9046 {
9047 /* Extract the addend. */
9048 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
9049 signed_addend = addend;
9050 }
9051 relocation = value + signed_addend;
9052
9053 relocation -= (input_section->output_section->vma
9054 + input_section->output_offset
9055 + rel->r_offset);
9056 insn = (insn & ~0xfff)
9057 | ((howto->bitpos << 7) & 0xf00)
9058 | ((relocation >> howto->bitpos) & 0xff);
9059 bfd_put_32 (input_bfd, value, hit_data);
9060 }
9061 return bfd_reloc_ok;
9062
9063 case R_ARM_GNU_VTINHERIT:
9064 case R_ARM_GNU_VTENTRY:
9065 return bfd_reloc_ok;
9066
9067 case R_ARM_GOTOFF32:
9068 /* Relocation is relative to the start of the
9069 global offset table. */
9070
9071 BFD_ASSERT (sgot != NULL);
9072 if (sgot == NULL)
9073 return bfd_reloc_notsupported;
9074
9075 /* If we are addressing a Thumb function, we need to adjust the
9076 address by one, so that attempts to call the function pointer will
9077 correctly interpret it as Thumb code. */
9078 if (branch_type == ST_BRANCH_TO_THUMB)
9079 value += 1;
9080
9081 /* Note that sgot->output_offset is not involved in this
9082 calculation. We always want the start of .got. If we
9083 define _GLOBAL_OFFSET_TABLE in a different way, as is
9084 permitted by the ABI, we might have to change this
9085 calculation. */
9086 value -= sgot->output_section->vma;
9087 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9088 contents, rel->r_offset, value,
9089 rel->r_addend);
9090
9091 case R_ARM_GOTPC:
9092 /* Use global offset table as symbol value. */
9093 BFD_ASSERT (sgot != NULL);
9094
9095 if (sgot == NULL)
9096 return bfd_reloc_notsupported;
9097
9098 *unresolved_reloc_p = FALSE;
9099 value = sgot->output_section->vma;
9100 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9101 contents, rel->r_offset, value,
9102 rel->r_addend);
9103
9104 case R_ARM_GOT32:
9105 case R_ARM_GOT_PREL:
9106 /* Relocation is to the entry for this symbol in the
9107 global offset table. */
9108 if (sgot == NULL)
9109 return bfd_reloc_notsupported;
9110
9111 if (dynreloc_st_type == STT_GNU_IFUNC
9112 && plt_offset != (bfd_vma) -1
9113 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
9114 {
9115 /* We have a relocation against a locally-binding STT_GNU_IFUNC
9116 symbol, and the relocation resolves directly to the runtime
9117 target rather than to the .iplt entry. This means that any
9118 .got entry would be the same value as the .igot.plt entry,
9119 so there's no point creating both. */
9120 sgot = globals->root.igotplt;
9121 value = sgot->output_offset + gotplt_offset;
9122 }
9123 else if (h != NULL)
9124 {
9125 bfd_vma off;
9126
9127 off = h->got.offset;
9128 BFD_ASSERT (off != (bfd_vma) -1);
9129 if ((off & 1) != 0)
9130 {
9131 /* We have already processsed one GOT relocation against
9132 this symbol. */
9133 off &= ~1;
9134 if (globals->root.dynamic_sections_created
9135 && !SYMBOL_REFERENCES_LOCAL (info, h))
9136 *unresolved_reloc_p = FALSE;
9137 }
9138 else
9139 {
9140 Elf_Internal_Rela outrel;
9141
9142 if (h->dynindx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
9143 {
9144 /* If the symbol doesn't resolve locally in a static
9145 object, we have an undefined reference. If the
9146 symbol doesn't resolve locally in a dynamic object,
9147 it should be resolved by the dynamic linker. */
9148 if (globals->root.dynamic_sections_created)
9149 {
9150 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9151 *unresolved_reloc_p = FALSE;
9152 }
9153 else
9154 outrel.r_info = 0;
9155 outrel.r_addend = 0;
9156 }
9157 else
9158 {
9159 if (dynreloc_st_type == STT_GNU_IFUNC)
9160 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9161 else if (info->shared &&
9162 (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9163 || h->root.type != bfd_link_hash_undefweak))
9164 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9165 else
9166 outrel.r_info = 0;
9167 outrel.r_addend = dynreloc_value;
9168 }
9169
9170 /* The GOT entry is initialized to zero by default.
9171 See if we should install a different value. */
9172 if (outrel.r_addend != 0
9173 && (outrel.r_info == 0 || globals->use_rel))
9174 {
9175 bfd_put_32 (output_bfd, outrel.r_addend,
9176 sgot->contents + off);
9177 outrel.r_addend = 0;
9178 }
9179
9180 if (outrel.r_info != 0)
9181 {
9182 outrel.r_offset = (sgot->output_section->vma
9183 + sgot->output_offset
9184 + off);
9185 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9186 }
9187 h->got.offset |= 1;
9188 }
9189 value = sgot->output_offset + off;
9190 }
9191 else
9192 {
9193 bfd_vma off;
9194
9195 BFD_ASSERT (local_got_offsets != NULL &&
9196 local_got_offsets[r_symndx] != (bfd_vma) -1);
9197
9198 off = local_got_offsets[r_symndx];
9199
9200 /* The offset must always be a multiple of 4. We use the
9201 least significant bit to record whether we have already
9202 generated the necessary reloc. */
9203 if ((off & 1) != 0)
9204 off &= ~1;
9205 else
9206 {
9207 if (globals->use_rel)
9208 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
9209
9210 if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
9211 {
9212 Elf_Internal_Rela outrel;
9213
9214 outrel.r_addend = addend + dynreloc_value;
9215 outrel.r_offset = (sgot->output_section->vma
9216 + sgot->output_offset
9217 + off);
9218 if (dynreloc_st_type == STT_GNU_IFUNC)
9219 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9220 else
9221 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9222 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9223 }
9224
9225 local_got_offsets[r_symndx] |= 1;
9226 }
9227
9228 value = sgot->output_offset + off;
9229 }
9230 if (r_type != R_ARM_GOT32)
9231 value += sgot->output_section->vma;
9232
9233 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9234 contents, rel->r_offset, value,
9235 rel->r_addend);
9236
9237 case R_ARM_TLS_LDO32:
9238 value = value - dtpoff_base (info);
9239
9240 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9241 contents, rel->r_offset, value,
9242 rel->r_addend);
9243
9244 case R_ARM_TLS_LDM32:
9245 {
9246 bfd_vma off;
9247
9248 if (sgot == NULL)
9249 abort ();
9250
9251 off = globals->tls_ldm_got.offset;
9252
9253 if ((off & 1) != 0)
9254 off &= ~1;
9255 else
9256 {
9257 /* If we don't know the module number, create a relocation
9258 for it. */
9259 if (info->shared)
9260 {
9261 Elf_Internal_Rela outrel;
9262
9263 if (srelgot == NULL)
9264 abort ();
9265
9266 outrel.r_addend = 0;
9267 outrel.r_offset = (sgot->output_section->vma
9268 + sgot->output_offset + off);
9269 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9270
9271 if (globals->use_rel)
9272 bfd_put_32 (output_bfd, outrel.r_addend,
9273 sgot->contents + off);
9274
9275 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9276 }
9277 else
9278 bfd_put_32 (output_bfd, 1, sgot->contents + off);
9279
9280 globals->tls_ldm_got.offset |= 1;
9281 }
9282
9283 value = sgot->output_section->vma + sgot->output_offset + off
9284 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9285
9286 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9287 contents, rel->r_offset, value,
9288 rel->r_addend);
9289 }
9290
9291 case R_ARM_TLS_CALL:
9292 case R_ARM_THM_TLS_CALL:
9293 case R_ARM_TLS_GD32:
9294 case R_ARM_TLS_IE32:
9295 case R_ARM_TLS_GOTDESC:
9296 case R_ARM_TLS_DESCSEQ:
9297 case R_ARM_THM_TLS_DESCSEQ:
9298 {
9299 bfd_vma off, offplt;
9300 int indx = 0;
9301 char tls_type;
9302
9303 BFD_ASSERT (sgot != NULL);
9304
9305 if (h != NULL)
9306 {
9307 bfd_boolean dyn;
9308 dyn = globals->root.dynamic_sections_created;
9309 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9310 && (!info->shared
9311 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9312 {
9313 *unresolved_reloc_p = FALSE;
9314 indx = h->dynindx;
9315 }
9316 off = h->got.offset;
9317 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
9318 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9319 }
9320 else
9321 {
9322 BFD_ASSERT (local_got_offsets != NULL);
9323 off = local_got_offsets[r_symndx];
9324 offplt = local_tlsdesc_gotents[r_symndx];
9325 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9326 }
9327
9328 /* Linker relaxations happens from one of the
9329 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
9330 if (ELF32_R_TYPE(rel->r_info) != r_type)
9331 tls_type = GOT_TLS_IE;
9332
9333 BFD_ASSERT (tls_type != GOT_UNKNOWN);
9334
9335 if ((off & 1) != 0)
9336 off &= ~1;
9337 else
9338 {
9339 bfd_boolean need_relocs = FALSE;
9340 Elf_Internal_Rela outrel;
9341 int cur_off = off;
9342
9343 /* The GOT entries have not been initialized yet. Do it
9344 now, and emit any relocations. If both an IE GOT and a
9345 GD GOT are necessary, we emit the GD first. */
9346
9347 if ((info->shared || indx != 0)
9348 && (h == NULL
9349 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9350 || h->root.type != bfd_link_hash_undefweak))
9351 {
9352 need_relocs = TRUE;
9353 BFD_ASSERT (srelgot != NULL);
9354 }
9355
9356 if (tls_type & GOT_TLS_GDESC)
9357 {
9358 bfd_byte *loc;
9359
9360 /* We should have relaxed, unless this is an undefined
9361 weak symbol. */
9362 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9363 || info->shared);
9364 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
9365 <= globals->root.sgotplt->size);
9366
9367 outrel.r_addend = 0;
9368 outrel.r_offset = (globals->root.sgotplt->output_section->vma
9369 + globals->root.sgotplt->output_offset
9370 + offplt
9371 + globals->sgotplt_jump_table_size);
9372
9373 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9374 sreloc = globals->root.srelplt;
9375 loc = sreloc->contents;
9376 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9377 BFD_ASSERT (loc + RELOC_SIZE (globals)
9378 <= sreloc->contents + sreloc->size);
9379
9380 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9381
9382 /* For globals, the first word in the relocation gets
9383 the relocation index and the top bit set, or zero,
9384 if we're binding now. For locals, it gets the
9385 symbol's offset in the tls section. */
9386 bfd_put_32 (output_bfd,
9387 !h ? value - elf_hash_table (info)->tls_sec->vma
9388 : info->flags & DF_BIND_NOW ? 0
9389 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
9390 globals->root.sgotplt->contents + offplt
9391 + globals->sgotplt_jump_table_size);
9392
9393 /* Second word in the relocation is always zero. */
9394 bfd_put_32 (output_bfd, 0,
9395 globals->root.sgotplt->contents + offplt
9396 + globals->sgotplt_jump_table_size + 4);
9397 }
9398 if (tls_type & GOT_TLS_GD)
9399 {
9400 if (need_relocs)
9401 {
9402 outrel.r_addend = 0;
9403 outrel.r_offset = (sgot->output_section->vma
9404 + sgot->output_offset
9405 + cur_off);
9406 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
9407
9408 if (globals->use_rel)
9409 bfd_put_32 (output_bfd, outrel.r_addend,
9410 sgot->contents + cur_off);
9411
9412 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9413
9414 if (indx == 0)
9415 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9416 sgot->contents + cur_off + 4);
9417 else
9418 {
9419 outrel.r_addend = 0;
9420 outrel.r_info = ELF32_R_INFO (indx,
9421 R_ARM_TLS_DTPOFF32);
9422 outrel.r_offset += 4;
9423
9424 if (globals->use_rel)
9425 bfd_put_32 (output_bfd, outrel.r_addend,
9426 sgot->contents + cur_off + 4);
9427
9428 elf32_arm_add_dynreloc (output_bfd, info,
9429 srelgot, &outrel);
9430 }
9431 }
9432 else
9433 {
9434 /* If we are not emitting relocations for a
9435 general dynamic reference, then we must be in a
9436 static link or an executable link with the
9437 symbol binding locally. Mark it as belonging
9438 to module 1, the executable. */
9439 bfd_put_32 (output_bfd, 1,
9440 sgot->contents + cur_off);
9441 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9442 sgot->contents + cur_off + 4);
9443 }
9444
9445 cur_off += 8;
9446 }
9447
9448 if (tls_type & GOT_TLS_IE)
9449 {
9450 if (need_relocs)
9451 {
9452 if (indx == 0)
9453 outrel.r_addend = value - dtpoff_base (info);
9454 else
9455 outrel.r_addend = 0;
9456 outrel.r_offset = (sgot->output_section->vma
9457 + sgot->output_offset
9458 + cur_off);
9459 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9460
9461 if (globals->use_rel)
9462 bfd_put_32 (output_bfd, outrel.r_addend,
9463 sgot->contents + cur_off);
9464
9465 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9466 }
9467 else
9468 bfd_put_32 (output_bfd, tpoff (info, value),
9469 sgot->contents + cur_off);
9470 cur_off += 4;
9471 }
9472
9473 if (h != NULL)
9474 h->got.offset |= 1;
9475 else
9476 local_got_offsets[r_symndx] |= 1;
9477 }
9478
9479 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9480 off += 8;
9481 else if (tls_type & GOT_TLS_GDESC)
9482 off = offplt;
9483
9484 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9485 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9486 {
9487 bfd_signed_vma offset;
9488 /* TLS stubs are arm mode. The original symbol is a
9489 data object, so branch_type is bogus. */
9490 branch_type = ST_BRANCH_TO_ARM;
9491 enum elf32_arm_stub_type stub_type
9492 = arm_type_of_stub (info, input_section, rel,
9493 st_type, &branch_type,
9494 (struct elf32_arm_link_hash_entry *)h,
9495 globals->tls_trampoline, globals->root.splt,
9496 input_bfd, sym_name);
9497
9498 if (stub_type != arm_stub_none)
9499 {
9500 struct elf32_arm_stub_hash_entry *stub_entry
9501 = elf32_arm_get_stub_entry
9502 (input_section, globals->root.splt, 0, rel,
9503 globals, stub_type);
9504 offset = (stub_entry->stub_offset
9505 + stub_entry->stub_sec->output_offset
9506 + stub_entry->stub_sec->output_section->vma);
9507 }
9508 else
9509 offset = (globals->root.splt->output_section->vma
9510 + globals->root.splt->output_offset
9511 + globals->tls_trampoline);
9512
9513 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9514 {
9515 unsigned long inst;
9516
9517 offset -= (input_section->output_section->vma
9518 + input_section->output_offset
9519 + rel->r_offset + 8);
9520
9521 inst = offset >> 2;
9522 inst &= 0x00ffffff;
9523 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9524 }
9525 else
9526 {
9527 /* Thumb blx encodes the offset in a complicated
9528 fashion. */
9529 unsigned upper_insn, lower_insn;
9530 unsigned neg;
9531
9532 offset -= (input_section->output_section->vma
9533 + input_section->output_offset
9534 + rel->r_offset + 4);
9535
9536 if (stub_type != arm_stub_none
9537 && arm_stub_is_thumb (stub_type))
9538 {
9539 lower_insn = 0xd000;
9540 }
9541 else
9542 {
9543 lower_insn = 0xc000;
9544 /* Round up the offset to a word boundary */
9545 offset = (offset + 2) & ~2;
9546 }
9547
9548 neg = offset < 0;
9549 upper_insn = (0xf000
9550 | ((offset >> 12) & 0x3ff)
9551 | (neg << 10));
9552 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
9553 | (((!((offset >> 22) & 1)) ^ neg) << 11)
9554 | ((offset >> 1) & 0x7ff);
9555 bfd_put_16 (input_bfd, upper_insn, hit_data);
9556 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9557 return bfd_reloc_ok;
9558 }
9559 }
9560 /* These relocations needs special care, as besides the fact
9561 they point somewhere in .gotplt, the addend must be
9562 adjusted accordingly depending on the type of instruction
9563 we refer to */
9564 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9565 {
9566 unsigned long data, insn;
9567 unsigned thumb;
9568
9569 data = bfd_get_32 (input_bfd, hit_data);
9570 thumb = data & 1;
9571 data &= ~1u;
9572
9573 if (thumb)
9574 {
9575 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9576 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9577 insn = (insn << 16)
9578 | bfd_get_16 (input_bfd,
9579 contents + rel->r_offset - data + 2);
9580 if ((insn & 0xf800c000) == 0xf000c000)
9581 /* bl/blx */
9582 value = -6;
9583 else if ((insn & 0xffffff00) == 0x4400)
9584 /* add */
9585 value = -5;
9586 else
9587 {
9588 (*_bfd_error_handler)
9589 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9590 input_bfd, input_section,
9591 (unsigned long)rel->r_offset, insn);
9592 return bfd_reloc_notsupported;
9593 }
9594 }
9595 else
9596 {
9597 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9598
9599 switch (insn >> 24)
9600 {
9601 case 0xeb: /* bl */
9602 case 0xfa: /* blx */
9603 value = -4;
9604 break;
9605
9606 case 0xe0: /* add */
9607 value = -8;
9608 break;
9609
9610 default:
9611 (*_bfd_error_handler)
9612 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9613 input_bfd, input_section,
9614 (unsigned long)rel->r_offset, insn);
9615 return bfd_reloc_notsupported;
9616 }
9617 }
9618
9619 value += ((globals->root.sgotplt->output_section->vma
9620 + globals->root.sgotplt->output_offset + off)
9621 - (input_section->output_section->vma
9622 + input_section->output_offset
9623 + rel->r_offset)
9624 + globals->sgotplt_jump_table_size);
9625 }
9626 else
9627 value = ((globals->root.sgot->output_section->vma
9628 + globals->root.sgot->output_offset + off)
9629 - (input_section->output_section->vma
9630 + input_section->output_offset + rel->r_offset));
9631
9632 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9633 contents, rel->r_offset, value,
9634 rel->r_addend);
9635 }
9636
9637 case R_ARM_TLS_LE32:
9638 if (info->shared && !info->pie)
9639 {
9640 (*_bfd_error_handler)
9641 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9642 input_bfd, input_section,
9643 (long) rel->r_offset, howto->name);
9644 return bfd_reloc_notsupported;
9645 }
9646 else
9647 value = tpoff (info, value);
9648
9649 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9650 contents, rel->r_offset, value,
9651 rel->r_addend);
9652
9653 case R_ARM_V4BX:
9654 if (globals->fix_v4bx)
9655 {
9656 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9657
9658 /* Ensure that we have a BX instruction. */
9659 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
9660
9661 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9662 {
9663 /* Branch to veneer. */
9664 bfd_vma glue_addr;
9665 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9666 glue_addr -= input_section->output_section->vma
9667 + input_section->output_offset
9668 + rel->r_offset + 8;
9669 insn = (insn & 0xf0000000) | 0x0a000000
9670 | ((glue_addr >> 2) & 0x00ffffff);
9671 }
9672 else
9673 {
9674 /* Preserve Rm (lowest four bits) and the condition code
9675 (highest four bits). Other bits encode MOV PC,Rm. */
9676 insn = (insn & 0xf000000f) | 0x01a0f000;
9677 }
9678
9679 bfd_put_32 (input_bfd, insn, hit_data);
9680 }
9681 return bfd_reloc_ok;
9682
9683 case R_ARM_MOVW_ABS_NC:
9684 case R_ARM_MOVT_ABS:
9685 case R_ARM_MOVW_PREL_NC:
9686 case R_ARM_MOVT_PREL:
9687 /* Until we properly support segment-base-relative addressing then
9688 we assume the segment base to be zero, as for the group relocations.
9689 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9690 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9691 case R_ARM_MOVW_BREL_NC:
9692 case R_ARM_MOVW_BREL:
9693 case R_ARM_MOVT_BREL:
9694 {
9695 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9696
9697 if (globals->use_rel)
9698 {
9699 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
9700 signed_addend = (addend ^ 0x8000) - 0x8000;
9701 }
9702
9703 value += signed_addend;
9704
9705 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9706 value -= (input_section->output_section->vma
9707 + input_section->output_offset + rel->r_offset);
9708
9709 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
9710 return bfd_reloc_overflow;
9711
9712 if (branch_type == ST_BRANCH_TO_THUMB)
9713 value |= 1;
9714
9715 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
9716 || r_type == R_ARM_MOVT_BREL)
9717 value >>= 16;
9718
9719 insn &= 0xfff0f000;
9720 insn |= value & 0xfff;
9721 insn |= (value & 0xf000) << 4;
9722 bfd_put_32 (input_bfd, insn, hit_data);
9723 }
9724 return bfd_reloc_ok;
9725
9726 case R_ARM_THM_MOVW_ABS_NC:
9727 case R_ARM_THM_MOVT_ABS:
9728 case R_ARM_THM_MOVW_PREL_NC:
9729 case R_ARM_THM_MOVT_PREL:
9730 /* Until we properly support segment-base-relative addressing then
9731 we assume the segment base to be zero, as for the above relocations.
9732 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9733 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9734 as R_ARM_THM_MOVT_ABS. */
9735 case R_ARM_THM_MOVW_BREL_NC:
9736 case R_ARM_THM_MOVW_BREL:
9737 case R_ARM_THM_MOVT_BREL:
9738 {
9739 bfd_vma insn;
9740
9741 insn = bfd_get_16 (input_bfd, hit_data) << 16;
9742 insn |= bfd_get_16 (input_bfd, hit_data + 2);
9743
9744 if (globals->use_rel)
9745 {
9746 addend = ((insn >> 4) & 0xf000)
9747 | ((insn >> 15) & 0x0800)
9748 | ((insn >> 4) & 0x0700)
9749 | (insn & 0x00ff);
9750 signed_addend = (addend ^ 0x8000) - 0x8000;
9751 }
9752
9753 value += signed_addend;
9754
9755 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
9756 value -= (input_section->output_section->vma
9757 + input_section->output_offset + rel->r_offset);
9758
9759 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
9760 return bfd_reloc_overflow;
9761
9762 if (branch_type == ST_BRANCH_TO_THUMB)
9763 value |= 1;
9764
9765 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
9766 || r_type == R_ARM_THM_MOVT_BREL)
9767 value >>= 16;
9768
9769 insn &= 0xfbf08f00;
9770 insn |= (value & 0xf000) << 4;
9771 insn |= (value & 0x0800) << 15;
9772 insn |= (value & 0x0700) << 4;
9773 insn |= (value & 0x00ff);
9774
9775 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9776 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9777 }
9778 return bfd_reloc_ok;
9779
9780 case R_ARM_ALU_PC_G0_NC:
9781 case R_ARM_ALU_PC_G1_NC:
9782 case R_ARM_ALU_PC_G0:
9783 case R_ARM_ALU_PC_G1:
9784 case R_ARM_ALU_PC_G2:
9785 case R_ARM_ALU_SB_G0_NC:
9786 case R_ARM_ALU_SB_G1_NC:
9787 case R_ARM_ALU_SB_G0:
9788 case R_ARM_ALU_SB_G1:
9789 case R_ARM_ALU_SB_G2:
9790 {
9791 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9792 bfd_vma pc = input_section->output_section->vma
9793 + input_section->output_offset + rel->r_offset;
9794 /* sb should be the origin of the *segment* containing the symbol.
9795 It is not clear how to obtain this OS-dependent value, so we
9796 make an arbitrary choice of zero. */
9797 bfd_vma sb = 0;
9798 bfd_vma residual;
9799 bfd_vma g_n;
9800 bfd_signed_vma signed_value;
9801 int group = 0;
9802
9803 /* Determine which group of bits to select. */
9804 switch (r_type)
9805 {
9806 case R_ARM_ALU_PC_G0_NC:
9807 case R_ARM_ALU_PC_G0:
9808 case R_ARM_ALU_SB_G0_NC:
9809 case R_ARM_ALU_SB_G0:
9810 group = 0;
9811 break;
9812
9813 case R_ARM_ALU_PC_G1_NC:
9814 case R_ARM_ALU_PC_G1:
9815 case R_ARM_ALU_SB_G1_NC:
9816 case R_ARM_ALU_SB_G1:
9817 group = 1;
9818 break;
9819
9820 case R_ARM_ALU_PC_G2:
9821 case R_ARM_ALU_SB_G2:
9822 group = 2;
9823 break;
9824
9825 default:
9826 abort ();
9827 }
9828
9829 /* If REL, extract the addend from the insn. If RELA, it will
9830 have already been fetched for us. */
9831 if (globals->use_rel)
9832 {
9833 int negative;
9834 bfd_vma constant = insn & 0xff;
9835 bfd_vma rotation = (insn & 0xf00) >> 8;
9836
9837 if (rotation == 0)
9838 signed_addend = constant;
9839 else
9840 {
9841 /* Compensate for the fact that in the instruction, the
9842 rotation is stored in multiples of 2 bits. */
9843 rotation *= 2;
9844
9845 /* Rotate "constant" right by "rotation" bits. */
9846 signed_addend = (constant >> rotation) |
9847 (constant << (8 * sizeof (bfd_vma) - rotation));
9848 }
9849
9850 /* Determine if the instruction is an ADD or a SUB.
9851 (For REL, this determines the sign of the addend.) */
9852 negative = identify_add_or_sub (insn);
9853 if (negative == 0)
9854 {
9855 (*_bfd_error_handler)
9856 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9857 input_bfd, input_section,
9858 (long) rel->r_offset, howto->name);
9859 return bfd_reloc_overflow;
9860 }
9861
9862 signed_addend *= negative;
9863 }
9864
9865 /* Compute the value (X) to go in the place. */
9866 if (r_type == R_ARM_ALU_PC_G0_NC
9867 || r_type == R_ARM_ALU_PC_G1_NC
9868 || r_type == R_ARM_ALU_PC_G0
9869 || r_type == R_ARM_ALU_PC_G1
9870 || r_type == R_ARM_ALU_PC_G2)
9871 /* PC relative. */
9872 signed_value = value - pc + signed_addend;
9873 else
9874 /* Section base relative. */
9875 signed_value = value - sb + signed_addend;
9876
9877 /* If the target symbol is a Thumb function, then set the
9878 Thumb bit in the address. */
9879 if (branch_type == ST_BRANCH_TO_THUMB)
9880 signed_value |= 1;
9881
9882 /* Calculate the value of the relevant G_n, in encoded
9883 constant-with-rotation format. */
9884 g_n = calculate_group_reloc_mask (abs (signed_value), group,
9885 &residual);
9886
9887 /* Check for overflow if required. */
9888 if ((r_type == R_ARM_ALU_PC_G0
9889 || r_type == R_ARM_ALU_PC_G1
9890 || r_type == R_ARM_ALU_PC_G2
9891 || r_type == R_ARM_ALU_SB_G0
9892 || r_type == R_ARM_ALU_SB_G1
9893 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
9894 {
9895 (*_bfd_error_handler)
9896 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9897 input_bfd, input_section,
9898 (long) rel->r_offset, abs (signed_value), howto->name);
9899 return bfd_reloc_overflow;
9900 }
9901
9902 /* Mask out the value and the ADD/SUB part of the opcode; take care
9903 not to destroy the S bit. */
9904 insn &= 0xff1ff000;
9905
9906 /* Set the opcode according to whether the value to go in the
9907 place is negative. */
9908 if (signed_value < 0)
9909 insn |= 1 << 22;
9910 else
9911 insn |= 1 << 23;
9912
9913 /* Encode the offset. */
9914 insn |= g_n;
9915
9916 bfd_put_32 (input_bfd, insn, hit_data);
9917 }
9918 return bfd_reloc_ok;
9919
9920 case R_ARM_LDR_PC_G0:
9921 case R_ARM_LDR_PC_G1:
9922 case R_ARM_LDR_PC_G2:
9923 case R_ARM_LDR_SB_G0:
9924 case R_ARM_LDR_SB_G1:
9925 case R_ARM_LDR_SB_G2:
9926 {
9927 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9928 bfd_vma pc = input_section->output_section->vma
9929 + input_section->output_offset + rel->r_offset;
9930 bfd_vma sb = 0; /* See note above. */
9931 bfd_vma residual;
9932 bfd_signed_vma signed_value;
9933 int group = 0;
9934
9935 /* Determine which groups of bits to calculate. */
9936 switch (r_type)
9937 {
9938 case R_ARM_LDR_PC_G0:
9939 case R_ARM_LDR_SB_G0:
9940 group = 0;
9941 break;
9942
9943 case R_ARM_LDR_PC_G1:
9944 case R_ARM_LDR_SB_G1:
9945 group = 1;
9946 break;
9947
9948 case R_ARM_LDR_PC_G2:
9949 case R_ARM_LDR_SB_G2:
9950 group = 2;
9951 break;
9952
9953 default:
9954 abort ();
9955 }
9956
9957 /* If REL, extract the addend from the insn. If RELA, it will
9958 have already been fetched for us. */
9959 if (globals->use_rel)
9960 {
9961 int negative = (insn & (1 << 23)) ? 1 : -1;
9962 signed_addend = negative * (insn & 0xfff);
9963 }
9964
9965 /* Compute the value (X) to go in the place. */
9966 if (r_type == R_ARM_LDR_PC_G0
9967 || r_type == R_ARM_LDR_PC_G1
9968 || r_type == R_ARM_LDR_PC_G2)
9969 /* PC relative. */
9970 signed_value = value - pc + signed_addend;
9971 else
9972 /* Section base relative. */
9973 signed_value = value - sb + signed_addend;
9974
9975 /* Calculate the value of the relevant G_{n-1} to obtain
9976 the residual at that stage. */
9977 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9978
9979 /* Check for overflow. */
9980 if (residual >= 0x1000)
9981 {
9982 (*_bfd_error_handler)
9983 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9984 input_bfd, input_section,
9985 (long) rel->r_offset, abs (signed_value), howto->name);
9986 return bfd_reloc_overflow;
9987 }
9988
9989 /* Mask out the value and U bit. */
9990 insn &= 0xff7ff000;
9991
9992 /* Set the U bit if the value to go in the place is non-negative. */
9993 if (signed_value >= 0)
9994 insn |= 1 << 23;
9995
9996 /* Encode the offset. */
9997 insn |= residual;
9998
9999 bfd_put_32 (input_bfd, insn, hit_data);
10000 }
10001 return bfd_reloc_ok;
10002
10003 case R_ARM_LDRS_PC_G0:
10004 case R_ARM_LDRS_PC_G1:
10005 case R_ARM_LDRS_PC_G2:
10006 case R_ARM_LDRS_SB_G0:
10007 case R_ARM_LDRS_SB_G1:
10008 case R_ARM_LDRS_SB_G2:
10009 {
10010 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10011 bfd_vma pc = input_section->output_section->vma
10012 + input_section->output_offset + rel->r_offset;
10013 bfd_vma sb = 0; /* See note above. */
10014 bfd_vma residual;
10015 bfd_signed_vma signed_value;
10016 int group = 0;
10017
10018 /* Determine which groups of bits to calculate. */
10019 switch (r_type)
10020 {
10021 case R_ARM_LDRS_PC_G0:
10022 case R_ARM_LDRS_SB_G0:
10023 group = 0;
10024 break;
10025
10026 case R_ARM_LDRS_PC_G1:
10027 case R_ARM_LDRS_SB_G1:
10028 group = 1;
10029 break;
10030
10031 case R_ARM_LDRS_PC_G2:
10032 case R_ARM_LDRS_SB_G2:
10033 group = 2;
10034 break;
10035
10036 default:
10037 abort ();
10038 }
10039
10040 /* If REL, extract the addend from the insn. If RELA, it will
10041 have already been fetched for us. */
10042 if (globals->use_rel)
10043 {
10044 int negative = (insn & (1 << 23)) ? 1 : -1;
10045 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
10046 }
10047
10048 /* Compute the value (X) to go in the place. */
10049 if (r_type == R_ARM_LDRS_PC_G0
10050 || r_type == R_ARM_LDRS_PC_G1
10051 || r_type == R_ARM_LDRS_PC_G2)
10052 /* PC relative. */
10053 signed_value = value - pc + signed_addend;
10054 else
10055 /* Section base relative. */
10056 signed_value = value - sb + signed_addend;
10057
10058 /* Calculate the value of the relevant G_{n-1} to obtain
10059 the residual at that stage. */
10060 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10061
10062 /* Check for overflow. */
10063 if (residual >= 0x100)
10064 {
10065 (*_bfd_error_handler)
10066 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10067 input_bfd, input_section,
10068 (long) rel->r_offset, abs (signed_value), howto->name);
10069 return bfd_reloc_overflow;
10070 }
10071
10072 /* Mask out the value and U bit. */
10073 insn &= 0xff7ff0f0;
10074
10075 /* Set the U bit if the value to go in the place is non-negative. */
10076 if (signed_value >= 0)
10077 insn |= 1 << 23;
10078
10079 /* Encode the offset. */
10080 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
10081
10082 bfd_put_32 (input_bfd, insn, hit_data);
10083 }
10084 return bfd_reloc_ok;
10085
10086 case R_ARM_LDC_PC_G0:
10087 case R_ARM_LDC_PC_G1:
10088 case R_ARM_LDC_PC_G2:
10089 case R_ARM_LDC_SB_G0:
10090 case R_ARM_LDC_SB_G1:
10091 case R_ARM_LDC_SB_G2:
10092 {
10093 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
10094 bfd_vma pc = input_section->output_section->vma
10095 + input_section->output_offset + rel->r_offset;
10096 bfd_vma sb = 0; /* See note above. */
10097 bfd_vma residual;
10098 bfd_signed_vma signed_value;
10099 int group = 0;
10100
10101 /* Determine which groups of bits to calculate. */
10102 switch (r_type)
10103 {
10104 case R_ARM_LDC_PC_G0:
10105 case R_ARM_LDC_SB_G0:
10106 group = 0;
10107 break;
10108
10109 case R_ARM_LDC_PC_G1:
10110 case R_ARM_LDC_SB_G1:
10111 group = 1;
10112 break;
10113
10114 case R_ARM_LDC_PC_G2:
10115 case R_ARM_LDC_SB_G2:
10116 group = 2;
10117 break;
10118
10119 default:
10120 abort ();
10121 }
10122
10123 /* If REL, extract the addend from the insn. If RELA, it will
10124 have already been fetched for us. */
10125 if (globals->use_rel)
10126 {
10127 int negative = (insn & (1 << 23)) ? 1 : -1;
10128 signed_addend = negative * ((insn & 0xff) << 2);
10129 }
10130
10131 /* Compute the value (X) to go in the place. */
10132 if (r_type == R_ARM_LDC_PC_G0
10133 || r_type == R_ARM_LDC_PC_G1
10134 || r_type == R_ARM_LDC_PC_G2)
10135 /* PC relative. */
10136 signed_value = value - pc + signed_addend;
10137 else
10138 /* Section base relative. */
10139 signed_value = value - sb + signed_addend;
10140
10141 /* Calculate the value of the relevant G_{n-1} to obtain
10142 the residual at that stage. */
10143 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
10144
10145 /* Check for overflow. (The absolute value to go in the place must be
10146 divisible by four and, after having been divided by four, must
10147 fit in eight bits.) */
10148 if ((residual & 0x3) != 0 || residual >= 0x400)
10149 {
10150 (*_bfd_error_handler)
10151 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
10152 input_bfd, input_section,
10153 (long) rel->r_offset, abs (signed_value), howto->name);
10154 return bfd_reloc_overflow;
10155 }
10156
10157 /* Mask out the value and U bit. */
10158 insn &= 0xff7fff00;
10159
10160 /* Set the U bit if the value to go in the place is non-negative. */
10161 if (signed_value >= 0)
10162 insn |= 1 << 23;
10163
10164 /* Encode the offset. */
10165 insn |= residual >> 2;
10166
10167 bfd_put_32 (input_bfd, insn, hit_data);
10168 }
10169 return bfd_reloc_ok;
10170
10171 default:
10172 return bfd_reloc_notsupported;
10173 }
10174 }
10175
10176 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
10177 static void
10178 arm_add_to_rel (bfd * abfd,
10179 bfd_byte * address,
10180 reloc_howto_type * howto,
10181 bfd_signed_vma increment)
10182 {
10183 bfd_signed_vma addend;
10184
10185 if (howto->type == R_ARM_THM_CALL
10186 || howto->type == R_ARM_THM_JUMP24)
10187 {
10188 int upper_insn, lower_insn;
10189 int upper, lower;
10190
10191 upper_insn = bfd_get_16 (abfd, address);
10192 lower_insn = bfd_get_16 (abfd, address + 2);
10193 upper = upper_insn & 0x7ff;
10194 lower = lower_insn & 0x7ff;
10195
10196 addend = (upper << 12) | (lower << 1);
10197 addend += increment;
10198 addend >>= 1;
10199
10200 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10201 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10202
10203 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10204 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
10205 }
10206 else
10207 {
10208 bfd_vma contents;
10209
10210 contents = bfd_get_32 (abfd, address);
10211
10212 /* Get the (signed) value from the instruction. */
10213 addend = contents & howto->src_mask;
10214 if (addend & ((howto->src_mask + 1) >> 1))
10215 {
10216 bfd_signed_vma mask;
10217
10218 mask = -1;
10219 mask &= ~ howto->src_mask;
10220 addend |= mask;
10221 }
10222
10223 /* Add in the increment, (which is a byte value). */
10224 switch (howto->type)
10225 {
10226 default:
10227 addend += increment;
10228 break;
10229
10230 case R_ARM_PC24:
10231 case R_ARM_PLT32:
10232 case R_ARM_CALL:
10233 case R_ARM_JUMP24:
10234 addend <<= howto->size;
10235 addend += increment;
10236
10237 /* Should we check for overflow here ? */
10238
10239 /* Drop any undesired bits. */
10240 addend >>= howto->rightshift;
10241 break;
10242 }
10243
10244 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10245
10246 bfd_put_32 (abfd, contents, address);
10247 }
10248 }
10249
10250 #define IS_ARM_TLS_RELOC(R_TYPE) \
10251 ((R_TYPE) == R_ARM_TLS_GD32 \
10252 || (R_TYPE) == R_ARM_TLS_LDO32 \
10253 || (R_TYPE) == R_ARM_TLS_LDM32 \
10254 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10255 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10256 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10257 || (R_TYPE) == R_ARM_TLS_LE32 \
10258 || (R_TYPE) == R_ARM_TLS_IE32 \
10259 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10260
10261 /* Specific set of relocations for the gnu tls dialect. */
10262 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10263 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10264 || (R_TYPE) == R_ARM_TLS_CALL \
10265 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10266 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10267 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10268
10269 /* Relocate an ARM ELF section. */
10270
10271 static bfd_boolean
10272 elf32_arm_relocate_section (bfd * output_bfd,
10273 struct bfd_link_info * info,
10274 bfd * input_bfd,
10275 asection * input_section,
10276 bfd_byte * contents,
10277 Elf_Internal_Rela * relocs,
10278 Elf_Internal_Sym * local_syms,
10279 asection ** local_sections)
10280 {
10281 Elf_Internal_Shdr *symtab_hdr;
10282 struct elf_link_hash_entry **sym_hashes;
10283 Elf_Internal_Rela *rel;
10284 Elf_Internal_Rela *relend;
10285 const char *name;
10286 struct elf32_arm_link_hash_table * globals;
10287
10288 globals = elf32_arm_hash_table (info);
10289 if (globals == NULL)
10290 return FALSE;
10291
10292 symtab_hdr = & elf_symtab_hdr (input_bfd);
10293 sym_hashes = elf_sym_hashes (input_bfd);
10294
10295 rel = relocs;
10296 relend = relocs + input_section->reloc_count;
10297 for (; rel < relend; rel++)
10298 {
10299 int r_type;
10300 reloc_howto_type * howto;
10301 unsigned long r_symndx;
10302 Elf_Internal_Sym * sym;
10303 asection * sec;
10304 struct elf_link_hash_entry * h;
10305 bfd_vma relocation;
10306 bfd_reloc_status_type r;
10307 arelent bfd_reloc;
10308 char sym_type;
10309 bfd_boolean unresolved_reloc = FALSE;
10310 char *error_message = NULL;
10311
10312 r_symndx = ELF32_R_SYM (rel->r_info);
10313 r_type = ELF32_R_TYPE (rel->r_info);
10314 r_type = arm_real_reloc_type (globals, r_type);
10315
10316 if ( r_type == R_ARM_GNU_VTENTRY
10317 || r_type == R_ARM_GNU_VTINHERIT)
10318 continue;
10319
10320 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
10321 howto = bfd_reloc.howto;
10322
10323 h = NULL;
10324 sym = NULL;
10325 sec = NULL;
10326
10327 if (r_symndx < symtab_hdr->sh_info)
10328 {
10329 sym = local_syms + r_symndx;
10330 sym_type = ELF32_ST_TYPE (sym->st_info);
10331 sec = local_sections[r_symndx];
10332
10333 /* An object file might have a reference to a local
10334 undefined symbol. This is a daft object file, but we
10335 should at least do something about it. V4BX & NONE
10336 relocations do not use the symbol and are explicitly
10337 allowed to use the undefined symbol, so allow those.
10338 Likewise for relocations against STN_UNDEF. */
10339 if (r_type != R_ARM_V4BX
10340 && r_type != R_ARM_NONE
10341 && r_symndx != STN_UNDEF
10342 && bfd_is_und_section (sec)
10343 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10344 {
10345 if (!info->callbacks->undefined_symbol
10346 (info, bfd_elf_string_from_elf_section
10347 (input_bfd, symtab_hdr->sh_link, sym->st_name),
10348 input_bfd, input_section,
10349 rel->r_offset, TRUE))
10350 return FALSE;
10351 }
10352
10353 if (globals->use_rel)
10354 {
10355 relocation = (sec->output_section->vma
10356 + sec->output_offset
10357 + sym->st_value);
10358 if (!info->relocatable
10359 && (sec->flags & SEC_MERGE)
10360 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10361 {
10362 asection *msec;
10363 bfd_vma addend, value;
10364
10365 switch (r_type)
10366 {
10367 case R_ARM_MOVW_ABS_NC:
10368 case R_ARM_MOVT_ABS:
10369 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10370 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10371 addend = (addend ^ 0x8000) - 0x8000;
10372 break;
10373
10374 case R_ARM_THM_MOVW_ABS_NC:
10375 case R_ARM_THM_MOVT_ABS:
10376 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10377 << 16;
10378 value |= bfd_get_16 (input_bfd,
10379 contents + rel->r_offset + 2);
10380 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10381 | ((value & 0x04000000) >> 15);
10382 addend = (addend ^ 0x8000) - 0x8000;
10383 break;
10384
10385 default:
10386 if (howto->rightshift
10387 || (howto->src_mask & (howto->src_mask + 1)))
10388 {
10389 (*_bfd_error_handler)
10390 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10391 input_bfd, input_section,
10392 (long) rel->r_offset, howto->name);
10393 return FALSE;
10394 }
10395
10396 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10397
10398 /* Get the (signed) value from the instruction. */
10399 addend = value & howto->src_mask;
10400 if (addend & ((howto->src_mask + 1) >> 1))
10401 {
10402 bfd_signed_vma mask;
10403
10404 mask = -1;
10405 mask &= ~ howto->src_mask;
10406 addend |= mask;
10407 }
10408 break;
10409 }
10410
10411 msec = sec;
10412 addend =
10413 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10414 - relocation;
10415 addend += msec->output_section->vma + msec->output_offset;
10416
10417 /* Cases here must match those in the preceding
10418 switch statement. */
10419 switch (r_type)
10420 {
10421 case R_ARM_MOVW_ABS_NC:
10422 case R_ARM_MOVT_ABS:
10423 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10424 | (addend & 0xfff);
10425 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10426 break;
10427
10428 case R_ARM_THM_MOVW_ABS_NC:
10429 case R_ARM_THM_MOVT_ABS:
10430 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10431 | (addend & 0xff) | ((addend & 0x0800) << 15);
10432 bfd_put_16 (input_bfd, value >> 16,
10433 contents + rel->r_offset);
10434 bfd_put_16 (input_bfd, value,
10435 contents + rel->r_offset + 2);
10436 break;
10437
10438 default:
10439 value = (value & ~ howto->dst_mask)
10440 | (addend & howto->dst_mask);
10441 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10442 break;
10443 }
10444 }
10445 }
10446 else
10447 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10448 }
10449 else
10450 {
10451 bfd_boolean warned;
10452
10453 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10454 r_symndx, symtab_hdr, sym_hashes,
10455 h, sec, relocation,
10456 unresolved_reloc, warned);
10457
10458 sym_type = h->type;
10459 }
10460
10461 if (sec != NULL && discarded_section (sec))
10462 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10463 rel, 1, relend, howto, 0, contents);
10464
10465 if (info->relocatable)
10466 {
10467 /* This is a relocatable link. We don't have to change
10468 anything, unless the reloc is against a section symbol,
10469 in which case we have to adjust according to where the
10470 section symbol winds up in the output section. */
10471 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10472 {
10473 if (globals->use_rel)
10474 arm_add_to_rel (input_bfd, contents + rel->r_offset,
10475 howto, (bfd_signed_vma) sec->output_offset);
10476 else
10477 rel->r_addend += sec->output_offset;
10478 }
10479 continue;
10480 }
10481
10482 if (h != NULL)
10483 name = h->root.root.string;
10484 else
10485 {
10486 name = (bfd_elf_string_from_elf_section
10487 (input_bfd, symtab_hdr->sh_link, sym->st_name));
10488 if (name == NULL || *name == '\0')
10489 name = bfd_section_name (input_bfd, sec);
10490 }
10491
10492 if (r_symndx != STN_UNDEF
10493 && r_type != R_ARM_NONE
10494 && (h == NULL
10495 || h->root.type == bfd_link_hash_defined
10496 || h->root.type == bfd_link_hash_defweak)
10497 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10498 {
10499 (*_bfd_error_handler)
10500 ((sym_type == STT_TLS
10501 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10502 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10503 input_bfd,
10504 input_section,
10505 (long) rel->r_offset,
10506 howto->name,
10507 name);
10508 }
10509
10510 /* We call elf32_arm_final_link_relocate unless we're completely
10511 done, i.e., the relaxation produced the final output we want,
10512 and we won't let anybody mess with it. Also, we have to do
10513 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10514 both in relaxed and non-relaxed cases */
10515 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10516 || (IS_ARM_TLS_GNU_RELOC (r_type)
10517 && !((h ? elf32_arm_hash_entry (h)->tls_type :
10518 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10519 & GOT_TLS_GDESC)))
10520 {
10521 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10522 contents, rel, h == NULL);
10523 /* This may have been marked unresolved because it came from
10524 a shared library. But we've just dealt with that. */
10525 unresolved_reloc = 0;
10526 }
10527 else
10528 r = bfd_reloc_continue;
10529
10530 if (r == bfd_reloc_continue)
10531 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10532 input_section, contents, rel,
10533 relocation, info, sec, name, sym_type,
10534 (h ? h->target_internal
10535 : ARM_SYM_BRANCH_TYPE (sym)), h,
10536 &unresolved_reloc, &error_message);
10537
10538 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10539 because such sections are not SEC_ALLOC and thus ld.so will
10540 not process them. */
10541 if (unresolved_reloc
10542 && !((input_section->flags & SEC_DEBUGGING) != 0
10543 && h->def_dynamic)
10544 && _bfd_elf_section_offset (output_bfd, info, input_section,
10545 rel->r_offset) != (bfd_vma) -1)
10546 {
10547 (*_bfd_error_handler)
10548 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10549 input_bfd,
10550 input_section,
10551 (long) rel->r_offset,
10552 howto->name,
10553 h->root.root.string);
10554 return FALSE;
10555 }
10556
10557 if (r != bfd_reloc_ok)
10558 {
10559 switch (r)
10560 {
10561 case bfd_reloc_overflow:
10562 /* If the overflowing reloc was to an undefined symbol,
10563 we have already printed one error message and there
10564 is no point complaining again. */
10565 if ((! h ||
10566 h->root.type != bfd_link_hash_undefined)
10567 && (!((*info->callbacks->reloc_overflow)
10568 (info, (h ? &h->root : NULL), name, howto->name,
10569 (bfd_vma) 0, input_bfd, input_section,
10570 rel->r_offset))))
10571 return FALSE;
10572 break;
10573
10574 case bfd_reloc_undefined:
10575 if (!((*info->callbacks->undefined_symbol)
10576 (info, name, input_bfd, input_section,
10577 rel->r_offset, TRUE)))
10578 return FALSE;
10579 break;
10580
10581 case bfd_reloc_outofrange:
10582 error_message = _("out of range");
10583 goto common_error;
10584
10585 case bfd_reloc_notsupported:
10586 error_message = _("unsupported relocation");
10587 goto common_error;
10588
10589 case bfd_reloc_dangerous:
10590 /* error_message should already be set. */
10591 goto common_error;
10592
10593 default:
10594 error_message = _("unknown error");
10595 /* Fall through. */
10596
10597 common_error:
10598 BFD_ASSERT (error_message != NULL);
10599 if (!((*info->callbacks->reloc_dangerous)
10600 (info, error_message, input_bfd, input_section,
10601 rel->r_offset)))
10602 return FALSE;
10603 break;
10604 }
10605 }
10606 }
10607
10608 return TRUE;
10609 }
10610
10611 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
10612 adds the edit to the start of the list. (The list must be built in order of
10613 ascending TINDEX: the function's callers are primarily responsible for
10614 maintaining that condition). */
10615
10616 static void
10617 add_unwind_table_edit (arm_unwind_table_edit **head,
10618 arm_unwind_table_edit **tail,
10619 arm_unwind_edit_type type,
10620 asection *linked_section,
10621 unsigned int tindex)
10622 {
10623 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10624 xmalloc (sizeof (arm_unwind_table_edit));
10625
10626 new_edit->type = type;
10627 new_edit->linked_section = linked_section;
10628 new_edit->index = tindex;
10629
10630 if (tindex > 0)
10631 {
10632 new_edit->next = NULL;
10633
10634 if (*tail)
10635 (*tail)->next = new_edit;
10636
10637 (*tail) = new_edit;
10638
10639 if (!*head)
10640 (*head) = new_edit;
10641 }
10642 else
10643 {
10644 new_edit->next = *head;
10645
10646 if (!*tail)
10647 *tail = new_edit;
10648
10649 *head = new_edit;
10650 }
10651 }
10652
10653 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10654
10655 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10656 static void
10657 adjust_exidx_size(asection *exidx_sec, int adjust)
10658 {
10659 asection *out_sec;
10660
10661 if (!exidx_sec->rawsize)
10662 exidx_sec->rawsize = exidx_sec->size;
10663
10664 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10665 out_sec = exidx_sec->output_section;
10666 /* Adjust size of output section. */
10667 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10668 }
10669
10670 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10671 static void
10672 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10673 {
10674 struct _arm_elf_section_data *exidx_arm_data;
10675
10676 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10677 add_unwind_table_edit (
10678 &exidx_arm_data->u.exidx.unwind_edit_list,
10679 &exidx_arm_data->u.exidx.unwind_edit_tail,
10680 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10681
10682 adjust_exidx_size(exidx_sec, 8);
10683 }
10684
10685 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10686 made to those tables, such that:
10687
10688 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10689 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10690 codes which have been inlined into the index).
10691
10692 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10693
10694 The edits are applied when the tables are written
10695 (in elf32_arm_write_section). */
10696
10697 bfd_boolean
10698 elf32_arm_fix_exidx_coverage (asection **text_section_order,
10699 unsigned int num_text_sections,
10700 struct bfd_link_info *info,
10701 bfd_boolean merge_exidx_entries)
10702 {
10703 bfd *inp;
10704 unsigned int last_second_word = 0, i;
10705 asection *last_exidx_sec = NULL;
10706 asection *last_text_sec = NULL;
10707 int last_unwind_type = -1;
10708
10709 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10710 text sections. */
10711 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
10712 {
10713 asection *sec;
10714
10715 for (sec = inp->sections; sec != NULL; sec = sec->next)
10716 {
10717 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10718 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
10719
10720 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
10721 continue;
10722
10723 if (elf_sec->linked_to)
10724 {
10725 Elf_Internal_Shdr *linked_hdr
10726 = &elf_section_data (elf_sec->linked_to)->this_hdr;
10727 struct _arm_elf_section_data *linked_sec_arm_data
10728 = get_arm_elf_section_data (linked_hdr->bfd_section);
10729
10730 if (linked_sec_arm_data == NULL)
10731 continue;
10732
10733 /* Link this .ARM.exidx section back from the text section it
10734 describes. */
10735 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10736 }
10737 }
10738 }
10739
10740 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10741 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10742 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
10743
10744 for (i = 0; i < num_text_sections; i++)
10745 {
10746 asection *sec = text_section_order[i];
10747 asection *exidx_sec;
10748 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10749 struct _arm_elf_section_data *exidx_arm_data;
10750 bfd_byte *contents = NULL;
10751 int deleted_exidx_bytes = 0;
10752 bfd_vma j;
10753 arm_unwind_table_edit *unwind_edit_head = NULL;
10754 arm_unwind_table_edit *unwind_edit_tail = NULL;
10755 Elf_Internal_Shdr *hdr;
10756 bfd *ibfd;
10757
10758 if (arm_data == NULL)
10759 continue;
10760
10761 exidx_sec = arm_data->u.text.arm_exidx_sec;
10762 if (exidx_sec == NULL)
10763 {
10764 /* Section has no unwind data. */
10765 if (last_unwind_type == 0 || !last_exidx_sec)
10766 continue;
10767
10768 /* Ignore zero sized sections. */
10769 if (sec->size == 0)
10770 continue;
10771
10772 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10773 last_unwind_type = 0;
10774 continue;
10775 }
10776
10777 /* Skip /DISCARD/ sections. */
10778 if (bfd_is_abs_section (exidx_sec->output_section))
10779 continue;
10780
10781 hdr = &elf_section_data (exidx_sec)->this_hdr;
10782 if (hdr->sh_type != SHT_ARM_EXIDX)
10783 continue;
10784
10785 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10786 if (exidx_arm_data == NULL)
10787 continue;
10788
10789 ibfd = exidx_sec->owner;
10790
10791 if (hdr->contents != NULL)
10792 contents = hdr->contents;
10793 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
10794 /* An error? */
10795 continue;
10796
10797 for (j = 0; j < hdr->sh_size; j += 8)
10798 {
10799 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
10800 int unwind_type;
10801 int elide = 0;
10802
10803 /* An EXIDX_CANTUNWIND entry. */
10804 if (second_word == 1)
10805 {
10806 if (last_unwind_type == 0)
10807 elide = 1;
10808 unwind_type = 0;
10809 }
10810 /* Inlined unwinding data. Merge if equal to previous. */
10811 else if ((second_word & 0x80000000) != 0)
10812 {
10813 if (merge_exidx_entries
10814 && last_second_word == second_word && last_unwind_type == 1)
10815 elide = 1;
10816 unwind_type = 1;
10817 last_second_word = second_word;
10818 }
10819 /* Normal table entry. In theory we could merge these too,
10820 but duplicate entries are likely to be much less common. */
10821 else
10822 unwind_type = 2;
10823
10824 if (elide)
10825 {
10826 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
10827 DELETE_EXIDX_ENTRY, NULL, j / 8);
10828
10829 deleted_exidx_bytes += 8;
10830 }
10831
10832 last_unwind_type = unwind_type;
10833 }
10834
10835 /* Free contents if we allocated it ourselves. */
10836 if (contents != hdr->contents)
10837 free (contents);
10838
10839 /* Record edits to be applied later (in elf32_arm_write_section). */
10840 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
10841 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
10842
10843 if (deleted_exidx_bytes > 0)
10844 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
10845
10846 last_exidx_sec = exidx_sec;
10847 last_text_sec = sec;
10848 }
10849
10850 /* Add terminating CANTUNWIND entry. */
10851 if (last_exidx_sec && last_unwind_type != 0)
10852 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10853
10854 return TRUE;
10855 }
10856
10857 static bfd_boolean
10858 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
10859 bfd *ibfd, const char *name)
10860 {
10861 asection *sec, *osec;
10862
10863 sec = bfd_get_linker_section (ibfd, name);
10864 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
10865 return TRUE;
10866
10867 osec = sec->output_section;
10868 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
10869 return TRUE;
10870
10871 if (! bfd_set_section_contents (obfd, osec, sec->contents,
10872 sec->output_offset, sec->size))
10873 return FALSE;
10874
10875 return TRUE;
10876 }
10877
10878 static bfd_boolean
10879 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
10880 {
10881 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
10882 asection *sec, *osec;
10883
10884 if (globals == NULL)
10885 return FALSE;
10886
10887 /* Invoke the regular ELF backend linker to do all the work. */
10888 if (!bfd_elf_final_link (abfd, info))
10889 return FALSE;
10890
10891 /* Process stub sections (eg BE8 encoding, ...). */
10892 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
10893 int i;
10894 for (i=0; i<htab->top_id; i++)
10895 {
10896 sec = htab->stub_group[i].stub_sec;
10897 /* Only process it once, in its link_sec slot. */
10898 if (sec && i == htab->stub_group[i].link_sec->id)
10899 {
10900 osec = sec->output_section;
10901 elf32_arm_write_section (abfd, info, sec, sec->contents);
10902 if (! bfd_set_section_contents (abfd, osec, sec->contents,
10903 sec->output_offset, sec->size))
10904 return FALSE;
10905 }
10906 }
10907
10908 /* Write out any glue sections now that we have created all the
10909 stubs. */
10910 if (globals->bfd_of_glue_owner != NULL)
10911 {
10912 if (! elf32_arm_output_glue_section (info, abfd,
10913 globals->bfd_of_glue_owner,
10914 ARM2THUMB_GLUE_SECTION_NAME))
10915 return FALSE;
10916
10917 if (! elf32_arm_output_glue_section (info, abfd,
10918 globals->bfd_of_glue_owner,
10919 THUMB2ARM_GLUE_SECTION_NAME))
10920 return FALSE;
10921
10922 if (! elf32_arm_output_glue_section (info, abfd,
10923 globals->bfd_of_glue_owner,
10924 VFP11_ERRATUM_VENEER_SECTION_NAME))
10925 return FALSE;
10926
10927 if (! elf32_arm_output_glue_section (info, abfd,
10928 globals->bfd_of_glue_owner,
10929 ARM_BX_GLUE_SECTION_NAME))
10930 return FALSE;
10931 }
10932
10933 return TRUE;
10934 }
10935
10936 /* Return a best guess for the machine number based on the attributes. */
10937
10938 static unsigned int
10939 bfd_arm_get_mach_from_attributes (bfd * abfd)
10940 {
10941 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
10942
10943 switch (arch)
10944 {
10945 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
10946 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
10947 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
10948
10949 case TAG_CPU_ARCH_V5TE:
10950 {
10951 char * name;
10952
10953 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
10954 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
10955
10956 if (name)
10957 {
10958 if (strcmp (name, "IWMMXT2") == 0)
10959 return bfd_mach_arm_iWMMXt2;
10960
10961 if (strcmp (name, "IWMMXT") == 0)
10962 return bfd_mach_arm_iWMMXt;
10963
10964 if (strcmp (name, "XSCALE") == 0)
10965 {
10966 int wmmx;
10967
10968 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
10969 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
10970 switch (wmmx)
10971 {
10972 case 1: return bfd_mach_arm_iWMMXt;
10973 case 2: return bfd_mach_arm_iWMMXt2;
10974 default: return bfd_mach_arm_XScale;
10975 }
10976 }
10977 }
10978
10979 return bfd_mach_arm_5TE;
10980 }
10981
10982 default:
10983 return bfd_mach_arm_unknown;
10984 }
10985 }
10986
10987 /* Set the right machine number. */
10988
10989 static bfd_boolean
10990 elf32_arm_object_p (bfd *abfd)
10991 {
10992 unsigned int mach;
10993
10994 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
10995
10996 if (mach == bfd_mach_arm_unknown)
10997 {
10998 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
10999 mach = bfd_mach_arm_ep9312;
11000 else
11001 mach = bfd_arm_get_mach_from_attributes (abfd);
11002 }
11003
11004 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
11005 return TRUE;
11006 }
11007
11008 /* Function to keep ARM specific flags in the ELF header. */
11009
11010 static bfd_boolean
11011 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
11012 {
11013 if (elf_flags_init (abfd)
11014 && elf_elfheader (abfd)->e_flags != flags)
11015 {
11016 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
11017 {
11018 if (flags & EF_ARM_INTERWORK)
11019 (*_bfd_error_handler)
11020 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
11021 abfd);
11022 else
11023 _bfd_error_handler
11024 (_("Warning: Clearing the interworking flag of %B due to outside request"),
11025 abfd);
11026 }
11027 }
11028 else
11029 {
11030 elf_elfheader (abfd)->e_flags = flags;
11031 elf_flags_init (abfd) = TRUE;
11032 }
11033
11034 return TRUE;
11035 }
11036
11037 /* Copy backend specific data from one object module to another. */
11038
11039 static bfd_boolean
11040 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
11041 {
11042 flagword in_flags;
11043 flagword out_flags;
11044
11045 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
11046 return TRUE;
11047
11048 in_flags = elf_elfheader (ibfd)->e_flags;
11049 out_flags = elf_elfheader (obfd)->e_flags;
11050
11051 if (elf_flags_init (obfd)
11052 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
11053 && in_flags != out_flags)
11054 {
11055 /* Cannot mix APCS26 and APCS32 code. */
11056 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
11057 return FALSE;
11058
11059 /* Cannot mix float APCS and non-float APCS code. */
11060 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
11061 return FALSE;
11062
11063 /* If the src and dest have different interworking flags
11064 then turn off the interworking bit. */
11065 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
11066 {
11067 if (out_flags & EF_ARM_INTERWORK)
11068 _bfd_error_handler
11069 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
11070 obfd, ibfd);
11071
11072 in_flags &= ~EF_ARM_INTERWORK;
11073 }
11074
11075 /* Likewise for PIC, though don't warn for this case. */
11076 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
11077 in_flags &= ~EF_ARM_PIC;
11078 }
11079
11080 elf_elfheader (obfd)->e_flags = in_flags;
11081 elf_flags_init (obfd) = TRUE;
11082
11083 /* Also copy the EI_OSABI field. */
11084 elf_elfheader (obfd)->e_ident[EI_OSABI] =
11085 elf_elfheader (ibfd)->e_ident[EI_OSABI];
11086
11087 /* Copy object attributes. */
11088 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11089
11090 return TRUE;
11091 }
11092
11093 /* Values for Tag_ABI_PCS_R9_use. */
11094 enum
11095 {
11096 AEABI_R9_V6,
11097 AEABI_R9_SB,
11098 AEABI_R9_TLS,
11099 AEABI_R9_unused
11100 };
11101
11102 /* Values for Tag_ABI_PCS_RW_data. */
11103 enum
11104 {
11105 AEABI_PCS_RW_data_absolute,
11106 AEABI_PCS_RW_data_PCrel,
11107 AEABI_PCS_RW_data_SBrel,
11108 AEABI_PCS_RW_data_unused
11109 };
11110
11111 /* Values for Tag_ABI_enum_size. */
11112 enum
11113 {
11114 AEABI_enum_unused,
11115 AEABI_enum_short,
11116 AEABI_enum_wide,
11117 AEABI_enum_forced_wide
11118 };
11119
11120 /* Determine whether an object attribute tag takes an integer, a
11121 string or both. */
11122
11123 static int
11124 elf32_arm_obj_attrs_arg_type (int tag)
11125 {
11126 if (tag == Tag_compatibility)
11127 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
11128 else if (tag == Tag_nodefaults)
11129 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
11130 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
11131 return ATTR_TYPE_FLAG_STR_VAL;
11132 else if (tag < 32)
11133 return ATTR_TYPE_FLAG_INT_VAL;
11134 else
11135 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
11136 }
11137
11138 /* The ABI defines that Tag_conformance should be emitted first, and that
11139 Tag_nodefaults should be second (if either is defined). This sets those
11140 two positions, and bumps up the position of all the remaining tags to
11141 compensate. */
11142 static int
11143 elf32_arm_obj_attrs_order (int num)
11144 {
11145 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
11146 return Tag_conformance;
11147 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
11148 return Tag_nodefaults;
11149 if ((num - 2) < Tag_nodefaults)
11150 return num - 2;
11151 if ((num - 1) < Tag_conformance)
11152 return num - 1;
11153 return num;
11154 }
11155
11156 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
11157 static bfd_boolean
11158 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
11159 {
11160 if ((tag & 127) < 64)
11161 {
11162 _bfd_error_handler
11163 (_("%B: Unknown mandatory EABI object attribute %d"),
11164 abfd, tag);
11165 bfd_set_error (bfd_error_bad_value);
11166 return FALSE;
11167 }
11168 else
11169 {
11170 _bfd_error_handler
11171 (_("Warning: %B: Unknown EABI object attribute %d"),
11172 abfd, tag);
11173 return TRUE;
11174 }
11175 }
11176
11177 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
11178 Returns -1 if no architecture could be read. */
11179
11180 static int
11181 get_secondary_compatible_arch (bfd *abfd)
11182 {
11183 obj_attribute *attr =
11184 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11185
11186 /* Note: the tag and its argument below are uleb128 values, though
11187 currently-defined values fit in one byte for each. */
11188 if (attr->s
11189 && attr->s[0] == Tag_CPU_arch
11190 && (attr->s[1] & 128) != 128
11191 && attr->s[2] == 0)
11192 return attr->s[1];
11193
11194 /* This tag is "safely ignorable", so don't complain if it looks funny. */
11195 return -1;
11196 }
11197
11198 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
11199 The tag is removed if ARCH is -1. */
11200
11201 static void
11202 set_secondary_compatible_arch (bfd *abfd, int arch)
11203 {
11204 obj_attribute *attr =
11205 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11206
11207 if (arch == -1)
11208 {
11209 attr->s = NULL;
11210 return;
11211 }
11212
11213 /* Note: the tag and its argument below are uleb128 values, though
11214 currently-defined values fit in one byte for each. */
11215 if (!attr->s)
11216 attr->s = (char *) bfd_alloc (abfd, 3);
11217 attr->s[0] = Tag_CPU_arch;
11218 attr->s[1] = arch;
11219 attr->s[2] = '\0';
11220 }
11221
11222 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11223 into account. */
11224
11225 static int
11226 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
11227 int newtag, int secondary_compat)
11228 {
11229 #define T(X) TAG_CPU_ARCH_##X
11230 int tagl, tagh, result;
11231 const int v6t2[] =
11232 {
11233 T(V6T2), /* PRE_V4. */
11234 T(V6T2), /* V4. */
11235 T(V6T2), /* V4T. */
11236 T(V6T2), /* V5T. */
11237 T(V6T2), /* V5TE. */
11238 T(V6T2), /* V5TEJ. */
11239 T(V6T2), /* V6. */
11240 T(V7), /* V6KZ. */
11241 T(V6T2) /* V6T2. */
11242 };
11243 const int v6k[] =
11244 {
11245 T(V6K), /* PRE_V4. */
11246 T(V6K), /* V4. */
11247 T(V6K), /* V4T. */
11248 T(V6K), /* V5T. */
11249 T(V6K), /* V5TE. */
11250 T(V6K), /* V5TEJ. */
11251 T(V6K), /* V6. */
11252 T(V6KZ), /* V6KZ. */
11253 T(V7), /* V6T2. */
11254 T(V6K) /* V6K. */
11255 };
11256 const int v7[] =
11257 {
11258 T(V7), /* PRE_V4. */
11259 T(V7), /* V4. */
11260 T(V7), /* V4T. */
11261 T(V7), /* V5T. */
11262 T(V7), /* V5TE. */
11263 T(V7), /* V5TEJ. */
11264 T(V7), /* V6. */
11265 T(V7), /* V6KZ. */
11266 T(V7), /* V6T2. */
11267 T(V7), /* V6K. */
11268 T(V7) /* V7. */
11269 };
11270 const int v6_m[] =
11271 {
11272 -1, /* PRE_V4. */
11273 -1, /* V4. */
11274 T(V6K), /* V4T. */
11275 T(V6K), /* V5T. */
11276 T(V6K), /* V5TE. */
11277 T(V6K), /* V5TEJ. */
11278 T(V6K), /* V6. */
11279 T(V6KZ), /* V6KZ. */
11280 T(V7), /* V6T2. */
11281 T(V6K), /* V6K. */
11282 T(V7), /* V7. */
11283 T(V6_M) /* V6_M. */
11284 };
11285 const int v6s_m[] =
11286 {
11287 -1, /* PRE_V4. */
11288 -1, /* V4. */
11289 T(V6K), /* V4T. */
11290 T(V6K), /* V5T. */
11291 T(V6K), /* V5TE. */
11292 T(V6K), /* V5TEJ. */
11293 T(V6K), /* V6. */
11294 T(V6KZ), /* V6KZ. */
11295 T(V7), /* V6T2. */
11296 T(V6K), /* V6K. */
11297 T(V7), /* V7. */
11298 T(V6S_M), /* V6_M. */
11299 T(V6S_M) /* V6S_M. */
11300 };
11301 const int v7e_m[] =
11302 {
11303 -1, /* PRE_V4. */
11304 -1, /* V4. */
11305 T(V7E_M), /* V4T. */
11306 T(V7E_M), /* V5T. */
11307 T(V7E_M), /* V5TE. */
11308 T(V7E_M), /* V5TEJ. */
11309 T(V7E_M), /* V6. */
11310 T(V7E_M), /* V6KZ. */
11311 T(V7E_M), /* V6T2. */
11312 T(V7E_M), /* V6K. */
11313 T(V7E_M), /* V7. */
11314 T(V7E_M), /* V6_M. */
11315 T(V7E_M), /* V6S_M. */
11316 T(V7E_M) /* V7E_M. */
11317 };
11318 const int v8[] =
11319 {
11320 T(V8), /* PRE_V4. */
11321 T(V8), /* V4. */
11322 T(V8), /* V4T. */
11323 T(V8), /* V5T. */
11324 T(V8), /* V5TE. */
11325 T(V8), /* V5TEJ. */
11326 T(V8), /* V6. */
11327 T(V8), /* V6KZ. */
11328 T(V8), /* V6T2. */
11329 T(V8), /* V6K. */
11330 T(V8), /* V7. */
11331 T(V8), /* V6_M. */
11332 T(V8), /* V6S_M. */
11333 T(V8), /* V7E_M. */
11334 T(V8) /* V8. */
11335 };
11336 const int v4t_plus_v6_m[] =
11337 {
11338 -1, /* PRE_V4. */
11339 -1, /* V4. */
11340 T(V4T), /* V4T. */
11341 T(V5T), /* V5T. */
11342 T(V5TE), /* V5TE. */
11343 T(V5TEJ), /* V5TEJ. */
11344 T(V6), /* V6. */
11345 T(V6KZ), /* V6KZ. */
11346 T(V6T2), /* V6T2. */
11347 T(V6K), /* V6K. */
11348 T(V7), /* V7. */
11349 T(V6_M), /* V6_M. */
11350 T(V6S_M), /* V6S_M. */
11351 T(V7E_M), /* V7E_M. */
11352 T(V8), /* V8. */
11353 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
11354 };
11355 const int *comb[] =
11356 {
11357 v6t2,
11358 v6k,
11359 v7,
11360 v6_m,
11361 v6s_m,
11362 v7e_m,
11363 v8,
11364 /* Pseudo-architecture. */
11365 v4t_plus_v6_m
11366 };
11367
11368 /* Check we've not got a higher architecture than we know about. */
11369
11370 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
11371 {
11372 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
11373 return -1;
11374 }
11375
11376 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11377
11378 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11379 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11380 oldtag = T(V4T_PLUS_V6_M);
11381
11382 /* And override the new tag if we have a Tag_also_compatible_with on the
11383 input. */
11384
11385 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11386 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11387 newtag = T(V4T_PLUS_V6_M);
11388
11389 tagl = (oldtag < newtag) ? oldtag : newtag;
11390 result = tagh = (oldtag > newtag) ? oldtag : newtag;
11391
11392 /* Architectures before V6KZ add features monotonically. */
11393 if (tagh <= TAG_CPU_ARCH_V6KZ)
11394 return result;
11395
11396 result = comb[tagh - T(V6T2)][tagl];
11397
11398 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11399 as the canonical version. */
11400 if (result == T(V4T_PLUS_V6_M))
11401 {
11402 result = T(V4T);
11403 *secondary_compat_out = T(V6_M);
11404 }
11405 else
11406 *secondary_compat_out = -1;
11407
11408 if (result == -1)
11409 {
11410 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11411 ibfd, oldtag, newtag);
11412 return -1;
11413 }
11414
11415 return result;
11416 #undef T
11417 }
11418
11419 /* Query attributes object to see if integer divide instructions may be
11420 present in an object. */
11421 static bfd_boolean
11422 elf32_arm_attributes_accept_div (const obj_attribute *attr)
11423 {
11424 int arch = attr[Tag_CPU_arch].i;
11425 int profile = attr[Tag_CPU_arch_profile].i;
11426
11427 switch (attr[Tag_DIV_use].i)
11428 {
11429 case 0:
11430 /* Integer divide allowed if instruction contained in archetecture. */
11431 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
11432 return TRUE;
11433 else if (arch >= TAG_CPU_ARCH_V7E_M)
11434 return TRUE;
11435 else
11436 return FALSE;
11437
11438 case 1:
11439 /* Integer divide explicitly prohibited. */
11440 return FALSE;
11441
11442 default:
11443 /* Unrecognised case - treat as allowing divide everywhere. */
11444 case 2:
11445 /* Integer divide allowed in ARM state. */
11446 return TRUE;
11447 }
11448 }
11449
11450 /* Query attributes object to see if integer divide instructions are
11451 forbidden to be in the object. This is not the inverse of
11452 elf32_arm_attributes_accept_div. */
11453 static bfd_boolean
11454 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
11455 {
11456 return attr[Tag_DIV_use].i == 1;
11457 }
11458
11459 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11460 are conflicting attributes. */
11461
11462 static bfd_boolean
11463 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11464 {
11465 obj_attribute *in_attr;
11466 obj_attribute *out_attr;
11467 /* Some tags have 0 = don't care, 1 = strong requirement,
11468 2 = weak requirement. */
11469 static const int order_021[3] = {0, 2, 1};
11470 int i;
11471 bfd_boolean result = TRUE;
11472
11473 /* Skip the linker stubs file. This preserves previous behavior
11474 of accepting unknown attributes in the first input file - but
11475 is that a bug? */
11476 if (ibfd->flags & BFD_LINKER_CREATED)
11477 return TRUE;
11478
11479 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11480 {
11481 /* This is the first object. Copy the attributes. */
11482 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11483
11484 out_attr = elf_known_obj_attributes_proc (obfd);
11485
11486 /* Use the Tag_null value to indicate the attributes have been
11487 initialized. */
11488 out_attr[0].i = 1;
11489
11490 /* We do not output objects with Tag_MPextension_use_legacy - we move
11491 the attribute's value to Tag_MPextension_use. */
11492 if (out_attr[Tag_MPextension_use_legacy].i != 0)
11493 {
11494 if (out_attr[Tag_MPextension_use].i != 0
11495 && out_attr[Tag_MPextension_use_legacy].i
11496 != out_attr[Tag_MPextension_use].i)
11497 {
11498 _bfd_error_handler
11499 (_("Error: %B has both the current and legacy "
11500 "Tag_MPextension_use attributes"), ibfd);
11501 result = FALSE;
11502 }
11503
11504 out_attr[Tag_MPextension_use] =
11505 out_attr[Tag_MPextension_use_legacy];
11506 out_attr[Tag_MPextension_use_legacy].type = 0;
11507 out_attr[Tag_MPextension_use_legacy].i = 0;
11508 }
11509
11510 return result;
11511 }
11512
11513 in_attr = elf_known_obj_attributes_proc (ibfd);
11514 out_attr = elf_known_obj_attributes_proc (obfd);
11515 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11516 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11517 {
11518 /* Ignore mismatches if the object doesn't use floating point. */
11519 if (out_attr[Tag_ABI_FP_number_model].i == 0)
11520 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11521 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
11522 {
11523 _bfd_error_handler
11524 (_("error: %B uses VFP register arguments, %B does not"),
11525 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11526 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
11527 result = FALSE;
11528 }
11529 }
11530
11531 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
11532 {
11533 /* Merge this attribute with existing attributes. */
11534 switch (i)
11535 {
11536 case Tag_CPU_raw_name:
11537 case Tag_CPU_name:
11538 /* These are merged after Tag_CPU_arch. */
11539 break;
11540
11541 case Tag_ABI_optimization_goals:
11542 case Tag_ABI_FP_optimization_goals:
11543 /* Use the first value seen. */
11544 break;
11545
11546 case Tag_CPU_arch:
11547 {
11548 int secondary_compat = -1, secondary_compat_out = -1;
11549 unsigned int saved_out_attr = out_attr[i].i;
11550 static const char *name_table[] = {
11551 /* These aren't real CPU names, but we can't guess
11552 that from the architecture version alone. */
11553 "Pre v4",
11554 "ARM v4",
11555 "ARM v4T",
11556 "ARM v5T",
11557 "ARM v5TE",
11558 "ARM v5TEJ",
11559 "ARM v6",
11560 "ARM v6KZ",
11561 "ARM v6T2",
11562 "ARM v6K",
11563 "ARM v7",
11564 "ARM v6-M",
11565 "ARM v6S-M",
11566 "ARM v8"
11567 };
11568
11569 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11570 secondary_compat = get_secondary_compatible_arch (ibfd);
11571 secondary_compat_out = get_secondary_compatible_arch (obfd);
11572 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11573 &secondary_compat_out,
11574 in_attr[i].i,
11575 secondary_compat);
11576 set_secondary_compatible_arch (obfd, secondary_compat_out);
11577
11578 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11579 if (out_attr[i].i == saved_out_attr)
11580 ; /* Leave the names alone. */
11581 else if (out_attr[i].i == in_attr[i].i)
11582 {
11583 /* The output architecture has been changed to match the
11584 input architecture. Use the input names. */
11585 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11586 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11587 : NULL;
11588 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11589 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11590 : NULL;
11591 }
11592 else
11593 {
11594 out_attr[Tag_CPU_name].s = NULL;
11595 out_attr[Tag_CPU_raw_name].s = NULL;
11596 }
11597
11598 /* If we still don't have a value for Tag_CPU_name,
11599 make one up now. Tag_CPU_raw_name remains blank. */
11600 if (out_attr[Tag_CPU_name].s == NULL
11601 && out_attr[i].i < ARRAY_SIZE (name_table))
11602 out_attr[Tag_CPU_name].s =
11603 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11604 }
11605 break;
11606
11607 case Tag_ARM_ISA_use:
11608 case Tag_THUMB_ISA_use:
11609 case Tag_WMMX_arch:
11610 case Tag_Advanced_SIMD_arch:
11611 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
11612 case Tag_ABI_FP_rounding:
11613 case Tag_ABI_FP_exceptions:
11614 case Tag_ABI_FP_user_exceptions:
11615 case Tag_ABI_FP_number_model:
11616 case Tag_FP_HP_extension:
11617 case Tag_CPU_unaligned_access:
11618 case Tag_T2EE_use:
11619 case Tag_MPextension_use:
11620 /* Use the largest value specified. */
11621 if (in_attr[i].i > out_attr[i].i)
11622 out_attr[i].i = in_attr[i].i;
11623 break;
11624
11625 case Tag_ABI_align_preserved:
11626 case Tag_ABI_PCS_RO_data:
11627 /* Use the smallest value specified. */
11628 if (in_attr[i].i < out_attr[i].i)
11629 out_attr[i].i = in_attr[i].i;
11630 break;
11631
11632 case Tag_ABI_align_needed:
11633 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
11634 && (in_attr[Tag_ABI_align_preserved].i == 0
11635 || out_attr[Tag_ABI_align_preserved].i == 0))
11636 {
11637 /* This error message should be enabled once all non-conformant
11638 binaries in the toolchain have had the attributes set
11639 properly.
11640 _bfd_error_handler
11641 (_("error: %B: 8-byte data alignment conflicts with %B"),
11642 obfd, ibfd);
11643 result = FALSE; */
11644 }
11645 /* Fall through. */
11646 case Tag_ABI_FP_denormal:
11647 case Tag_ABI_PCS_GOT_use:
11648 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11649 value if greater than 2 (for future-proofing). */
11650 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11651 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11652 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
11653 out_attr[i].i = in_attr[i].i;
11654 break;
11655
11656 case Tag_Virtualization_use:
11657 /* The virtualization tag effectively stores two bits of
11658 information: the intended use of TrustZone (in bit 0), and the
11659 intended use of Virtualization (in bit 1). */
11660 if (out_attr[i].i == 0)
11661 out_attr[i].i = in_attr[i].i;
11662 else if (in_attr[i].i != 0
11663 && in_attr[i].i != out_attr[i].i)
11664 {
11665 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11666 out_attr[i].i = 3;
11667 else
11668 {
11669 _bfd_error_handler
11670 (_("error: %B: unable to merge virtualization attributes "
11671 "with %B"),
11672 obfd, ibfd);
11673 result = FALSE;
11674 }
11675 }
11676 break;
11677
11678 case Tag_CPU_arch_profile:
11679 if (out_attr[i].i != in_attr[i].i)
11680 {
11681 /* 0 will merge with anything.
11682 'A' and 'S' merge to 'A'.
11683 'R' and 'S' merge to 'R'.
11684 'M' and 'A|R|S' is an error. */
11685 if (out_attr[i].i == 0
11686 || (out_attr[i].i == 'S'
11687 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11688 out_attr[i].i = in_attr[i].i;
11689 else if (in_attr[i].i == 0
11690 || (in_attr[i].i == 'S'
11691 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
11692 ; /* Do nothing. */
11693 else
11694 {
11695 _bfd_error_handler
11696 (_("error: %B: Conflicting architecture profiles %c/%c"),
11697 ibfd,
11698 in_attr[i].i ? in_attr[i].i : '0',
11699 out_attr[i].i ? out_attr[i].i : '0');
11700 result = FALSE;
11701 }
11702 }
11703 break;
11704 case Tag_FP_arch:
11705 {
11706 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11707 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11708 when it's 0. It might mean absence of FP hardware if
11709 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11710
11711 #define VFP_VERSION_COUNT 8
11712 static const struct
11713 {
11714 int ver;
11715 int regs;
11716 } vfp_versions[VFP_VERSION_COUNT] =
11717 {
11718 {0, 0},
11719 {1, 16},
11720 {2, 16},
11721 {3, 32},
11722 {3, 16},
11723 {4, 32},
11724 {4, 16},
11725 {8, 32}
11726 };
11727 int ver;
11728 int regs;
11729 int newval;
11730
11731 /* If the output has no requirement about FP hardware,
11732 follow the requirement of the input. */
11733 if (out_attr[i].i == 0)
11734 {
11735 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11736 out_attr[i].i = in_attr[i].i;
11737 out_attr[Tag_ABI_HardFP_use].i
11738 = in_attr[Tag_ABI_HardFP_use].i;
11739 break;
11740 }
11741 /* If the input has no requirement about FP hardware, do
11742 nothing. */
11743 else if (in_attr[i].i == 0)
11744 {
11745 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
11746 break;
11747 }
11748
11749 /* Both the input and the output have nonzero Tag_FP_arch.
11750 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
11751
11752 /* If both the input and the output have zero Tag_ABI_HardFP_use,
11753 do nothing. */
11754 if (in_attr[Tag_ABI_HardFP_use].i == 0
11755 && out_attr[Tag_ABI_HardFP_use].i == 0)
11756 ;
11757 /* If the input and the output have different Tag_ABI_HardFP_use,
11758 the combination of them is 3 (SP & DP). */
11759 else if (in_attr[Tag_ABI_HardFP_use].i
11760 != out_attr[Tag_ABI_HardFP_use].i)
11761 out_attr[Tag_ABI_HardFP_use].i = 3;
11762
11763 /* Now we can handle Tag_FP_arch. */
11764
11765 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
11766 pick the biggest. */
11767 if (in_attr[i].i >= VFP_VERSION_COUNT
11768 && in_attr[i].i > out_attr[i].i)
11769 {
11770 out_attr[i] = in_attr[i];
11771 break;
11772 }
11773 /* The output uses the superset of input features
11774 (ISA version) and registers. */
11775 ver = vfp_versions[in_attr[i].i].ver;
11776 if (ver < vfp_versions[out_attr[i].i].ver)
11777 ver = vfp_versions[out_attr[i].i].ver;
11778 regs = vfp_versions[in_attr[i].i].regs;
11779 if (regs < vfp_versions[out_attr[i].i].regs)
11780 regs = vfp_versions[out_attr[i].i].regs;
11781 /* This assumes all possible supersets are also a valid
11782 options. */
11783 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
11784 {
11785 if (regs == vfp_versions[newval].regs
11786 && ver == vfp_versions[newval].ver)
11787 break;
11788 }
11789 out_attr[i].i = newval;
11790 }
11791 break;
11792 case Tag_PCS_config:
11793 if (out_attr[i].i == 0)
11794 out_attr[i].i = in_attr[i].i;
11795 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
11796 {
11797 /* It's sometimes ok to mix different configs, so this is only
11798 a warning. */
11799 _bfd_error_handler
11800 (_("Warning: %B: Conflicting platform configuration"), ibfd);
11801 }
11802 break;
11803 case Tag_ABI_PCS_R9_use:
11804 if (in_attr[i].i != out_attr[i].i
11805 && out_attr[i].i != AEABI_R9_unused
11806 && in_attr[i].i != AEABI_R9_unused)
11807 {
11808 _bfd_error_handler
11809 (_("error: %B: Conflicting use of R9"), ibfd);
11810 result = FALSE;
11811 }
11812 if (out_attr[i].i == AEABI_R9_unused)
11813 out_attr[i].i = in_attr[i].i;
11814 break;
11815 case Tag_ABI_PCS_RW_data:
11816 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
11817 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
11818 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
11819 {
11820 _bfd_error_handler
11821 (_("error: %B: SB relative addressing conflicts with use of R9"),
11822 ibfd);
11823 result = FALSE;
11824 }
11825 /* Use the smallest value specified. */
11826 if (in_attr[i].i < out_attr[i].i)
11827 out_attr[i].i = in_attr[i].i;
11828 break;
11829 case Tag_ABI_PCS_wchar_t:
11830 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
11831 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
11832 {
11833 _bfd_error_handler
11834 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11835 ibfd, in_attr[i].i, out_attr[i].i);
11836 }
11837 else if (in_attr[i].i && !out_attr[i].i)
11838 out_attr[i].i = in_attr[i].i;
11839 break;
11840 case Tag_ABI_enum_size:
11841 if (in_attr[i].i != AEABI_enum_unused)
11842 {
11843 if (out_attr[i].i == AEABI_enum_unused
11844 || out_attr[i].i == AEABI_enum_forced_wide)
11845 {
11846 /* The existing object is compatible with anything.
11847 Use whatever requirements the new object has. */
11848 out_attr[i].i = in_attr[i].i;
11849 }
11850 else if (in_attr[i].i != AEABI_enum_forced_wide
11851 && out_attr[i].i != in_attr[i].i
11852 && !elf_arm_tdata (obfd)->no_enum_size_warning)
11853 {
11854 static const char *aeabi_enum_names[] =
11855 { "", "variable-size", "32-bit", "" };
11856 const char *in_name =
11857 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11858 ? aeabi_enum_names[in_attr[i].i]
11859 : "<unknown>";
11860 const char *out_name =
11861 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11862 ? aeabi_enum_names[out_attr[i].i]
11863 : "<unknown>";
11864 _bfd_error_handler
11865 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
11866 ibfd, in_name, out_name);
11867 }
11868 }
11869 break;
11870 case Tag_ABI_VFP_args:
11871 /* Aready done. */
11872 break;
11873 case Tag_ABI_WMMX_args:
11874 if (in_attr[i].i != out_attr[i].i)
11875 {
11876 _bfd_error_handler
11877 (_("error: %B uses iWMMXt register arguments, %B does not"),
11878 ibfd, obfd);
11879 result = FALSE;
11880 }
11881 break;
11882 case Tag_compatibility:
11883 /* Merged in target-independent code. */
11884 break;
11885 case Tag_ABI_HardFP_use:
11886 /* This is handled along with Tag_FP_arch. */
11887 break;
11888 case Tag_ABI_FP_16bit_format:
11889 if (in_attr[i].i != 0 && out_attr[i].i != 0)
11890 {
11891 if (in_attr[i].i != out_attr[i].i)
11892 {
11893 _bfd_error_handler
11894 (_("error: fp16 format mismatch between %B and %B"),
11895 ibfd, obfd);
11896 result = FALSE;
11897 }
11898 }
11899 if (in_attr[i].i != 0)
11900 out_attr[i].i = in_attr[i].i;
11901 break;
11902
11903 case Tag_DIV_use:
11904 /* A value of zero on input means that the divide instruction may
11905 be used if available in the base architecture as specified via
11906 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
11907 the user did not want divide instructions. A value of 2
11908 explicitly means that divide instructions were allowed in ARM
11909 and Thumb state. */
11910 if (in_attr[i].i == out_attr[i].i)
11911 /* Do nothing. */ ;
11912 else if (elf32_arm_attributes_forbid_div (in_attr)
11913 && !elf32_arm_attributes_accept_div (out_attr))
11914 out_attr[i].i = 1;
11915 else if (elf32_arm_attributes_forbid_div (out_attr)
11916 && elf32_arm_attributes_accept_div (in_attr))
11917 out_attr[i].i = in_attr[i].i;
11918 else if (in_attr[i].i == 2)
11919 out_attr[i].i = in_attr[i].i;
11920 break;
11921
11922 case Tag_MPextension_use_legacy:
11923 /* We don't output objects with Tag_MPextension_use_legacy - we
11924 move the value to Tag_MPextension_use. */
11925 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
11926 {
11927 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
11928 {
11929 _bfd_error_handler
11930 (_("%B has has both the current and legacy "
11931 "Tag_MPextension_use attributes"),
11932 ibfd);
11933 result = FALSE;
11934 }
11935 }
11936
11937 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
11938 out_attr[Tag_MPextension_use] = in_attr[i];
11939
11940 break;
11941
11942 case Tag_nodefaults:
11943 /* This tag is set if it exists, but the value is unused (and is
11944 typically zero). We don't actually need to do anything here -
11945 the merge happens automatically when the type flags are merged
11946 below. */
11947 break;
11948 case Tag_also_compatible_with:
11949 /* Already done in Tag_CPU_arch. */
11950 break;
11951 case Tag_conformance:
11952 /* Keep the attribute if it matches. Throw it away otherwise.
11953 No attribute means no claim to conform. */
11954 if (!in_attr[i].s || !out_attr[i].s
11955 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
11956 out_attr[i].s = NULL;
11957 break;
11958
11959 default:
11960 result
11961 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
11962 }
11963
11964 /* If out_attr was copied from in_attr then it won't have a type yet. */
11965 if (in_attr[i].type && !out_attr[i].type)
11966 out_attr[i].type = in_attr[i].type;
11967 }
11968
11969 /* Merge Tag_compatibility attributes and any common GNU ones. */
11970 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
11971 return FALSE;
11972
11973 /* Check for any attributes not known on ARM. */
11974 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
11975
11976 return result;
11977 }
11978
11979
11980 /* Return TRUE if the two EABI versions are incompatible. */
11981
11982 static bfd_boolean
11983 elf32_arm_versions_compatible (unsigned iver, unsigned over)
11984 {
11985 /* v4 and v5 are the same spec before and after it was released,
11986 so allow mixing them. */
11987 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
11988 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
11989 return TRUE;
11990
11991 return (iver == over);
11992 }
11993
11994 /* Merge backend specific data from an object file to the output
11995 object file when linking. */
11996
11997 static bfd_boolean
11998 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
11999
12000 /* Display the flags field. */
12001
12002 static bfd_boolean
12003 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
12004 {
12005 FILE * file = (FILE *) ptr;
12006 unsigned long flags;
12007
12008 BFD_ASSERT (abfd != NULL && ptr != NULL);
12009
12010 /* Print normal ELF private data. */
12011 _bfd_elf_print_private_bfd_data (abfd, ptr);
12012
12013 flags = elf_elfheader (abfd)->e_flags;
12014 /* Ignore init flag - it may not be set, despite the flags field
12015 containing valid data. */
12016
12017 /* xgettext:c-format */
12018 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
12019
12020 switch (EF_ARM_EABI_VERSION (flags))
12021 {
12022 case EF_ARM_EABI_UNKNOWN:
12023 /* The following flag bits are GNU extensions and not part of the
12024 official ARM ELF extended ABI. Hence they are only decoded if
12025 the EABI version is not set. */
12026 if (flags & EF_ARM_INTERWORK)
12027 fprintf (file, _(" [interworking enabled]"));
12028
12029 if (flags & EF_ARM_APCS_26)
12030 fprintf (file, " [APCS-26]");
12031 else
12032 fprintf (file, " [APCS-32]");
12033
12034 if (flags & EF_ARM_VFP_FLOAT)
12035 fprintf (file, _(" [VFP float format]"));
12036 else if (flags & EF_ARM_MAVERICK_FLOAT)
12037 fprintf (file, _(" [Maverick float format]"));
12038 else
12039 fprintf (file, _(" [FPA float format]"));
12040
12041 if (flags & EF_ARM_APCS_FLOAT)
12042 fprintf (file, _(" [floats passed in float registers]"));
12043
12044 if (flags & EF_ARM_PIC)
12045 fprintf (file, _(" [position independent]"));
12046
12047 if (flags & EF_ARM_NEW_ABI)
12048 fprintf (file, _(" [new ABI]"));
12049
12050 if (flags & EF_ARM_OLD_ABI)
12051 fprintf (file, _(" [old ABI]"));
12052
12053 if (flags & EF_ARM_SOFT_FLOAT)
12054 fprintf (file, _(" [software FP]"));
12055
12056 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
12057 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
12058 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
12059 | EF_ARM_MAVERICK_FLOAT);
12060 break;
12061
12062 case EF_ARM_EABI_VER1:
12063 fprintf (file, _(" [Version1 EABI]"));
12064
12065 if (flags & EF_ARM_SYMSARESORTED)
12066 fprintf (file, _(" [sorted symbol table]"));
12067 else
12068 fprintf (file, _(" [unsorted symbol table]"));
12069
12070 flags &= ~ EF_ARM_SYMSARESORTED;
12071 break;
12072
12073 case EF_ARM_EABI_VER2:
12074 fprintf (file, _(" [Version2 EABI]"));
12075
12076 if (flags & EF_ARM_SYMSARESORTED)
12077 fprintf (file, _(" [sorted symbol table]"));
12078 else
12079 fprintf (file, _(" [unsorted symbol table]"));
12080
12081 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
12082 fprintf (file, _(" [dynamic symbols use segment index]"));
12083
12084 if (flags & EF_ARM_MAPSYMSFIRST)
12085 fprintf (file, _(" [mapping symbols precede others]"));
12086
12087 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
12088 | EF_ARM_MAPSYMSFIRST);
12089 break;
12090
12091 case EF_ARM_EABI_VER3:
12092 fprintf (file, _(" [Version3 EABI]"));
12093 break;
12094
12095 case EF_ARM_EABI_VER4:
12096 fprintf (file, _(" [Version4 EABI]"));
12097 goto eabi;
12098
12099 case EF_ARM_EABI_VER5:
12100 fprintf (file, _(" [Version5 EABI]"));
12101
12102 if (flags & EF_ARM_ABI_FLOAT_SOFT)
12103 fprintf (file, _(" [soft-float ABI]"));
12104
12105 if (flags & EF_ARM_ABI_FLOAT_HARD)
12106 fprintf (file, _(" [hard-float ABI]"));
12107
12108 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
12109
12110 eabi:
12111 if (flags & EF_ARM_BE8)
12112 fprintf (file, _(" [BE8]"));
12113
12114 if (flags & EF_ARM_LE8)
12115 fprintf (file, _(" [LE8]"));
12116
12117 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
12118 break;
12119
12120 default:
12121 fprintf (file, _(" <EABI version unrecognised>"));
12122 break;
12123 }
12124
12125 flags &= ~ EF_ARM_EABIMASK;
12126
12127 if (flags & EF_ARM_RELEXEC)
12128 fprintf (file, _(" [relocatable executable]"));
12129
12130 if (flags & EF_ARM_HASENTRY)
12131 fprintf (file, _(" [has entry point]"));
12132
12133 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
12134
12135 if (flags)
12136 fprintf (file, _("<Unrecognised flag bits set>"));
12137
12138 fputc ('\n', file);
12139
12140 return TRUE;
12141 }
12142
12143 static int
12144 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
12145 {
12146 switch (ELF_ST_TYPE (elf_sym->st_info))
12147 {
12148 case STT_ARM_TFUNC:
12149 return ELF_ST_TYPE (elf_sym->st_info);
12150
12151 case STT_ARM_16BIT:
12152 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
12153 This allows us to distinguish between data used by Thumb instructions
12154 and non-data (which is probably code) inside Thumb regions of an
12155 executable. */
12156 if (type != STT_OBJECT && type != STT_TLS)
12157 return ELF_ST_TYPE (elf_sym->st_info);
12158 break;
12159
12160 default:
12161 break;
12162 }
12163
12164 return type;
12165 }
12166
12167 static asection *
12168 elf32_arm_gc_mark_hook (asection *sec,
12169 struct bfd_link_info *info,
12170 Elf_Internal_Rela *rel,
12171 struct elf_link_hash_entry *h,
12172 Elf_Internal_Sym *sym)
12173 {
12174 if (h != NULL)
12175 switch (ELF32_R_TYPE (rel->r_info))
12176 {
12177 case R_ARM_GNU_VTINHERIT:
12178 case R_ARM_GNU_VTENTRY:
12179 return NULL;
12180 }
12181
12182 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12183 }
12184
12185 /* Update the got entry reference counts for the section being removed. */
12186
12187 static bfd_boolean
12188 elf32_arm_gc_sweep_hook (bfd * abfd,
12189 struct bfd_link_info * info,
12190 asection * sec,
12191 const Elf_Internal_Rela * relocs)
12192 {
12193 Elf_Internal_Shdr *symtab_hdr;
12194 struct elf_link_hash_entry **sym_hashes;
12195 bfd_signed_vma *local_got_refcounts;
12196 const Elf_Internal_Rela *rel, *relend;
12197 struct elf32_arm_link_hash_table * globals;
12198
12199 if (info->relocatable)
12200 return TRUE;
12201
12202 globals = elf32_arm_hash_table (info);
12203 if (globals == NULL)
12204 return FALSE;
12205
12206 elf_section_data (sec)->local_dynrel = NULL;
12207
12208 symtab_hdr = & elf_symtab_hdr (abfd);
12209 sym_hashes = elf_sym_hashes (abfd);
12210 local_got_refcounts = elf_local_got_refcounts (abfd);
12211
12212 check_use_blx (globals);
12213
12214 relend = relocs + sec->reloc_count;
12215 for (rel = relocs; rel < relend; rel++)
12216 {
12217 unsigned long r_symndx;
12218 struct elf_link_hash_entry *h = NULL;
12219 struct elf32_arm_link_hash_entry *eh;
12220 int r_type;
12221 bfd_boolean call_reloc_p;
12222 bfd_boolean may_become_dynamic_p;
12223 bfd_boolean may_need_local_target_p;
12224 union gotplt_union *root_plt;
12225 struct arm_plt_info *arm_plt;
12226
12227 r_symndx = ELF32_R_SYM (rel->r_info);
12228 if (r_symndx >= symtab_hdr->sh_info)
12229 {
12230 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12231 while (h->root.type == bfd_link_hash_indirect
12232 || h->root.type == bfd_link_hash_warning)
12233 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12234 }
12235 eh = (struct elf32_arm_link_hash_entry *) h;
12236
12237 call_reloc_p = FALSE;
12238 may_become_dynamic_p = FALSE;
12239 may_need_local_target_p = FALSE;
12240
12241 r_type = ELF32_R_TYPE (rel->r_info);
12242 r_type = arm_real_reloc_type (globals, r_type);
12243 switch (r_type)
12244 {
12245 case R_ARM_GOT32:
12246 case R_ARM_GOT_PREL:
12247 case R_ARM_TLS_GD32:
12248 case R_ARM_TLS_IE32:
12249 if (h != NULL)
12250 {
12251 if (h->got.refcount > 0)
12252 h->got.refcount -= 1;
12253 }
12254 else if (local_got_refcounts != NULL)
12255 {
12256 if (local_got_refcounts[r_symndx] > 0)
12257 local_got_refcounts[r_symndx] -= 1;
12258 }
12259 break;
12260
12261 case R_ARM_TLS_LDM32:
12262 globals->tls_ldm_got.refcount -= 1;
12263 break;
12264
12265 case R_ARM_PC24:
12266 case R_ARM_PLT32:
12267 case R_ARM_CALL:
12268 case R_ARM_JUMP24:
12269 case R_ARM_PREL31:
12270 case R_ARM_THM_CALL:
12271 case R_ARM_THM_JUMP24:
12272 case R_ARM_THM_JUMP19:
12273 call_reloc_p = TRUE;
12274 may_need_local_target_p = TRUE;
12275 break;
12276
12277 case R_ARM_ABS12:
12278 if (!globals->vxworks_p)
12279 {
12280 may_need_local_target_p = TRUE;
12281 break;
12282 }
12283 /* Fall through. */
12284 case R_ARM_ABS32:
12285 case R_ARM_ABS32_NOI:
12286 case R_ARM_REL32:
12287 case R_ARM_REL32_NOI:
12288 case R_ARM_MOVW_ABS_NC:
12289 case R_ARM_MOVT_ABS:
12290 case R_ARM_MOVW_PREL_NC:
12291 case R_ARM_MOVT_PREL:
12292 case R_ARM_THM_MOVW_ABS_NC:
12293 case R_ARM_THM_MOVT_ABS:
12294 case R_ARM_THM_MOVW_PREL_NC:
12295 case R_ARM_THM_MOVT_PREL:
12296 /* Should the interworking branches be here also? */
12297 if ((info->shared || globals->root.is_relocatable_executable)
12298 && (sec->flags & SEC_ALLOC) != 0)
12299 {
12300 if (h == NULL
12301 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12302 {
12303 call_reloc_p = TRUE;
12304 may_need_local_target_p = TRUE;
12305 }
12306 else
12307 may_become_dynamic_p = TRUE;
12308 }
12309 else
12310 may_need_local_target_p = TRUE;
12311 break;
12312
12313 default:
12314 break;
12315 }
12316
12317 if (may_need_local_target_p
12318 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
12319 {
12320 /* If PLT refcount book-keeping is wrong and too low, we'll
12321 see a zero value (going to -1) for the root PLT reference
12322 count. */
12323 if (root_plt->refcount >= 0)
12324 {
12325 BFD_ASSERT (root_plt->refcount != 0);
12326 root_plt->refcount -= 1;
12327 }
12328 else
12329 /* A value of -1 means the symbol has become local, forced
12330 or seeing a hidden definition. Any other negative value
12331 is an error. */
12332 BFD_ASSERT (root_plt->refcount == -1);
12333
12334 if (!call_reloc_p)
12335 arm_plt->noncall_refcount--;
12336
12337 if (r_type == R_ARM_THM_CALL)
12338 arm_plt->maybe_thumb_refcount--;
12339
12340 if (r_type == R_ARM_THM_JUMP24
12341 || r_type == R_ARM_THM_JUMP19)
12342 arm_plt->thumb_refcount--;
12343 }
12344
12345 if (may_become_dynamic_p)
12346 {
12347 struct elf_dyn_relocs **pp;
12348 struct elf_dyn_relocs *p;
12349
12350 if (h != NULL)
12351 pp = &(eh->dyn_relocs);
12352 else
12353 {
12354 Elf_Internal_Sym *isym;
12355
12356 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12357 abfd, r_symndx);
12358 if (isym == NULL)
12359 return FALSE;
12360 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12361 if (pp == NULL)
12362 return FALSE;
12363 }
12364 for (; (p = *pp) != NULL; pp = &p->next)
12365 if (p->sec == sec)
12366 {
12367 /* Everything must go for SEC. */
12368 *pp = p->next;
12369 break;
12370 }
12371 }
12372 }
12373
12374 return TRUE;
12375 }
12376
12377 /* Look through the relocs for a section during the first phase. */
12378
12379 static bfd_boolean
12380 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12381 asection *sec, const Elf_Internal_Rela *relocs)
12382 {
12383 Elf_Internal_Shdr *symtab_hdr;
12384 struct elf_link_hash_entry **sym_hashes;
12385 const Elf_Internal_Rela *rel;
12386 const Elf_Internal_Rela *rel_end;
12387 bfd *dynobj;
12388 asection *sreloc;
12389 struct elf32_arm_link_hash_table *htab;
12390 bfd_boolean call_reloc_p;
12391 bfd_boolean may_become_dynamic_p;
12392 bfd_boolean may_need_local_target_p;
12393 unsigned long nsyms;
12394
12395 if (info->relocatable)
12396 return TRUE;
12397
12398 BFD_ASSERT (is_arm_elf (abfd));
12399
12400 htab = elf32_arm_hash_table (info);
12401 if (htab == NULL)
12402 return FALSE;
12403
12404 sreloc = NULL;
12405
12406 /* Create dynamic sections for relocatable executables so that we can
12407 copy relocations. */
12408 if (htab->root.is_relocatable_executable
12409 && ! htab->root.dynamic_sections_created)
12410 {
12411 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12412 return FALSE;
12413 }
12414
12415 if (htab->root.dynobj == NULL)
12416 htab->root.dynobj = abfd;
12417 if (!create_ifunc_sections (info))
12418 return FALSE;
12419
12420 dynobj = htab->root.dynobj;
12421
12422 symtab_hdr = & elf_symtab_hdr (abfd);
12423 sym_hashes = elf_sym_hashes (abfd);
12424 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
12425
12426 rel_end = relocs + sec->reloc_count;
12427 for (rel = relocs; rel < rel_end; rel++)
12428 {
12429 Elf_Internal_Sym *isym;
12430 struct elf_link_hash_entry *h;
12431 struct elf32_arm_link_hash_entry *eh;
12432 unsigned long r_symndx;
12433 int r_type;
12434
12435 r_symndx = ELF32_R_SYM (rel->r_info);
12436 r_type = ELF32_R_TYPE (rel->r_info);
12437 r_type = arm_real_reloc_type (htab, r_type);
12438
12439 if (r_symndx >= nsyms
12440 /* PR 9934: It is possible to have relocations that do not
12441 refer to symbols, thus it is also possible to have an
12442 object file containing relocations but no symbol table. */
12443 && (r_symndx > STN_UNDEF || nsyms > 0))
12444 {
12445 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
12446 r_symndx);
12447 return FALSE;
12448 }
12449
12450 h = NULL;
12451 isym = NULL;
12452 if (nsyms > 0)
12453 {
12454 if (r_symndx < symtab_hdr->sh_info)
12455 {
12456 /* A local symbol. */
12457 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12458 abfd, r_symndx);
12459 if (isym == NULL)
12460 return FALSE;
12461 }
12462 else
12463 {
12464 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12465 while (h->root.type == bfd_link_hash_indirect
12466 || h->root.type == bfd_link_hash_warning)
12467 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12468 }
12469 }
12470
12471 eh = (struct elf32_arm_link_hash_entry *) h;
12472
12473 call_reloc_p = FALSE;
12474 may_become_dynamic_p = FALSE;
12475 may_need_local_target_p = FALSE;
12476
12477 /* Could be done earlier, if h were already available. */
12478 r_type = elf32_arm_tls_transition (info, r_type, h);
12479 switch (r_type)
12480 {
12481 case R_ARM_GOT32:
12482 case R_ARM_GOT_PREL:
12483 case R_ARM_TLS_GD32:
12484 case R_ARM_TLS_IE32:
12485 case R_ARM_TLS_GOTDESC:
12486 case R_ARM_TLS_DESCSEQ:
12487 case R_ARM_THM_TLS_DESCSEQ:
12488 case R_ARM_TLS_CALL:
12489 case R_ARM_THM_TLS_CALL:
12490 /* This symbol requires a global offset table entry. */
12491 {
12492 int tls_type, old_tls_type;
12493
12494 switch (r_type)
12495 {
12496 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
12497
12498 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
12499
12500 case R_ARM_TLS_GOTDESC:
12501 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12502 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12503 tls_type = GOT_TLS_GDESC; break;
12504
12505 default: tls_type = GOT_NORMAL; break;
12506 }
12507
12508 if (h != NULL)
12509 {
12510 h->got.refcount++;
12511 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12512 }
12513 else
12514 {
12515 /* This is a global offset table entry for a local symbol. */
12516 if (!elf32_arm_allocate_local_sym_info (abfd))
12517 return FALSE;
12518 elf_local_got_refcounts (abfd)[r_symndx] += 1;
12519 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12520 }
12521
12522 /* If a variable is accessed with both tls methods, two
12523 slots may be created. */
12524 if (GOT_TLS_GD_ANY_P (old_tls_type)
12525 && GOT_TLS_GD_ANY_P (tls_type))
12526 tls_type |= old_tls_type;
12527
12528 /* We will already have issued an error message if there
12529 is a TLS/non-TLS mismatch, based on the symbol
12530 type. So just combine any TLS types needed. */
12531 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12532 && tls_type != GOT_NORMAL)
12533 tls_type |= old_tls_type;
12534
12535 /* If the symbol is accessed in both IE and GDESC
12536 method, we're able to relax. Turn off the GDESC flag,
12537 without messing up with any other kind of tls types
12538 that may be involved */
12539 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12540 tls_type &= ~GOT_TLS_GDESC;
12541
12542 if (old_tls_type != tls_type)
12543 {
12544 if (h != NULL)
12545 elf32_arm_hash_entry (h)->tls_type = tls_type;
12546 else
12547 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12548 }
12549 }
12550 /* Fall through. */
12551
12552 case R_ARM_TLS_LDM32:
12553 if (r_type == R_ARM_TLS_LDM32)
12554 htab->tls_ldm_got.refcount++;
12555 /* Fall through. */
12556
12557 case R_ARM_GOTOFF32:
12558 case R_ARM_GOTPC:
12559 if (htab->root.sgot == NULL
12560 && !create_got_section (htab->root.dynobj, info))
12561 return FALSE;
12562 break;
12563
12564 case R_ARM_PC24:
12565 case R_ARM_PLT32:
12566 case R_ARM_CALL:
12567 case R_ARM_JUMP24:
12568 case R_ARM_PREL31:
12569 case R_ARM_THM_CALL:
12570 case R_ARM_THM_JUMP24:
12571 case R_ARM_THM_JUMP19:
12572 call_reloc_p = TRUE;
12573 may_need_local_target_p = TRUE;
12574 break;
12575
12576 case R_ARM_ABS12:
12577 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12578 ldr __GOTT_INDEX__ offsets. */
12579 if (!htab->vxworks_p)
12580 {
12581 may_need_local_target_p = TRUE;
12582 break;
12583 }
12584 /* Fall through. */
12585
12586 case R_ARM_MOVW_ABS_NC:
12587 case R_ARM_MOVT_ABS:
12588 case R_ARM_THM_MOVW_ABS_NC:
12589 case R_ARM_THM_MOVT_ABS:
12590 if (info->shared)
12591 {
12592 (*_bfd_error_handler)
12593 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12594 abfd, elf32_arm_howto_table_1[r_type].name,
12595 (h) ? h->root.root.string : "a local symbol");
12596 bfd_set_error (bfd_error_bad_value);
12597 return FALSE;
12598 }
12599
12600 /* Fall through. */
12601 case R_ARM_ABS32:
12602 case R_ARM_ABS32_NOI:
12603 case R_ARM_REL32:
12604 case R_ARM_REL32_NOI:
12605 case R_ARM_MOVW_PREL_NC:
12606 case R_ARM_MOVT_PREL:
12607 case R_ARM_THM_MOVW_PREL_NC:
12608 case R_ARM_THM_MOVT_PREL:
12609
12610 /* Should the interworking branches be listed here? */
12611 if ((info->shared || htab->root.is_relocatable_executable)
12612 && (sec->flags & SEC_ALLOC) != 0)
12613 {
12614 if (h == NULL
12615 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12616 {
12617 /* In shared libraries and relocatable executables,
12618 we treat local relative references as calls;
12619 see the related SYMBOL_CALLS_LOCAL code in
12620 allocate_dynrelocs. */
12621 call_reloc_p = TRUE;
12622 may_need_local_target_p = TRUE;
12623 }
12624 else
12625 /* We are creating a shared library or relocatable
12626 executable, and this is a reloc against a global symbol,
12627 or a non-PC-relative reloc against a local symbol.
12628 We may need to copy the reloc into the output. */
12629 may_become_dynamic_p = TRUE;
12630 }
12631 else
12632 may_need_local_target_p = TRUE;
12633 break;
12634
12635 /* This relocation describes the C++ object vtable hierarchy.
12636 Reconstruct it for later use during GC. */
12637 case R_ARM_GNU_VTINHERIT:
12638 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12639 return FALSE;
12640 break;
12641
12642 /* This relocation describes which C++ vtable entries are actually
12643 used. Record for later use during GC. */
12644 case R_ARM_GNU_VTENTRY:
12645 BFD_ASSERT (h != NULL);
12646 if (h != NULL
12647 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12648 return FALSE;
12649 break;
12650 }
12651
12652 if (h != NULL)
12653 {
12654 if (call_reloc_p)
12655 /* We may need a .plt entry if the function this reloc
12656 refers to is in a different object, regardless of the
12657 symbol's type. We can't tell for sure yet, because
12658 something later might force the symbol local. */
12659 h->needs_plt = 1;
12660 else if (may_need_local_target_p)
12661 /* If this reloc is in a read-only section, we might
12662 need a copy reloc. We can't check reliably at this
12663 stage whether the section is read-only, as input
12664 sections have not yet been mapped to output sections.
12665 Tentatively set the flag for now, and correct in
12666 adjust_dynamic_symbol. */
12667 h->non_got_ref = 1;
12668 }
12669
12670 if (may_need_local_target_p
12671 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
12672 {
12673 union gotplt_union *root_plt;
12674 struct arm_plt_info *arm_plt;
12675 struct arm_local_iplt_info *local_iplt;
12676
12677 if (h != NULL)
12678 {
12679 root_plt = &h->plt;
12680 arm_plt = &eh->plt;
12681 }
12682 else
12683 {
12684 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12685 if (local_iplt == NULL)
12686 return FALSE;
12687 root_plt = &local_iplt->root;
12688 arm_plt = &local_iplt->arm;
12689 }
12690
12691 /* If the symbol is a function that doesn't bind locally,
12692 this relocation will need a PLT entry. */
12693 if (root_plt->refcount != -1)
12694 root_plt->refcount += 1;
12695
12696 if (!call_reloc_p)
12697 arm_plt->noncall_refcount++;
12698
12699 /* It's too early to use htab->use_blx here, so we have to
12700 record possible blx references separately from
12701 relocs that definitely need a thumb stub. */
12702
12703 if (r_type == R_ARM_THM_CALL)
12704 arm_plt->maybe_thumb_refcount += 1;
12705
12706 if (r_type == R_ARM_THM_JUMP24
12707 || r_type == R_ARM_THM_JUMP19)
12708 arm_plt->thumb_refcount += 1;
12709 }
12710
12711 if (may_become_dynamic_p)
12712 {
12713 struct elf_dyn_relocs *p, **head;
12714
12715 /* Create a reloc section in dynobj. */
12716 if (sreloc == NULL)
12717 {
12718 sreloc = _bfd_elf_make_dynamic_reloc_section
12719 (sec, dynobj, 2, abfd, ! htab->use_rel);
12720
12721 if (sreloc == NULL)
12722 return FALSE;
12723
12724 /* BPABI objects never have dynamic relocations mapped. */
12725 if (htab->symbian_p)
12726 {
12727 flagword flags;
12728
12729 flags = bfd_get_section_flags (dynobj, sreloc);
12730 flags &= ~(SEC_LOAD | SEC_ALLOC);
12731 bfd_set_section_flags (dynobj, sreloc, flags);
12732 }
12733 }
12734
12735 /* If this is a global symbol, count the number of
12736 relocations we need for this symbol. */
12737 if (h != NULL)
12738 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12739 else
12740 {
12741 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12742 if (head == NULL)
12743 return FALSE;
12744 }
12745
12746 p = *head;
12747 if (p == NULL || p->sec != sec)
12748 {
12749 bfd_size_type amt = sizeof *p;
12750
12751 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
12752 if (p == NULL)
12753 return FALSE;
12754 p->next = *head;
12755 *head = p;
12756 p->sec = sec;
12757 p->count = 0;
12758 p->pc_count = 0;
12759 }
12760
12761 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
12762 p->pc_count += 1;
12763 p->count += 1;
12764 }
12765 }
12766
12767 return TRUE;
12768 }
12769
12770 /* Unwinding tables are not referenced directly. This pass marks them as
12771 required if the corresponding code section is marked. */
12772
12773 static bfd_boolean
12774 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
12775 elf_gc_mark_hook_fn gc_mark_hook)
12776 {
12777 bfd *sub;
12778 Elf_Internal_Shdr **elf_shdrp;
12779 bfd_boolean again;
12780
12781 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12782
12783 /* Marking EH data may cause additional code sections to be marked,
12784 requiring multiple passes. */
12785 again = TRUE;
12786 while (again)
12787 {
12788 again = FALSE;
12789 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12790 {
12791 asection *o;
12792
12793 if (! is_arm_elf (sub))
12794 continue;
12795
12796 elf_shdrp = elf_elfsections (sub);
12797 for (o = sub->sections; o != NULL; o = o->next)
12798 {
12799 Elf_Internal_Shdr *hdr;
12800
12801 hdr = &elf_section_data (o)->this_hdr;
12802 if (hdr->sh_type == SHT_ARM_EXIDX
12803 && hdr->sh_link
12804 && hdr->sh_link < elf_numsections (sub)
12805 && !o->gc_mark
12806 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
12807 {
12808 again = TRUE;
12809 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12810 return FALSE;
12811 }
12812 }
12813 }
12814 }
12815
12816 return TRUE;
12817 }
12818
12819 /* Treat mapping symbols as special target symbols. */
12820
12821 static bfd_boolean
12822 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
12823 {
12824 return bfd_is_arm_special_symbol_name (sym->name,
12825 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
12826 }
12827
12828 /* This is a copy of elf_find_function() from elf.c except that
12829 ARM mapping symbols are ignored when looking for function names
12830 and STT_ARM_TFUNC is considered to a function type. */
12831
12832 static bfd_boolean
12833 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
12834 asection * section,
12835 asymbol ** symbols,
12836 bfd_vma offset,
12837 const char ** filename_ptr,
12838 const char ** functionname_ptr)
12839 {
12840 const char * filename = NULL;
12841 asymbol * func = NULL;
12842 bfd_vma low_func = 0;
12843 asymbol ** p;
12844
12845 for (p = symbols; *p != NULL; p++)
12846 {
12847 elf_symbol_type *q;
12848
12849 q = (elf_symbol_type *) *p;
12850
12851 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
12852 {
12853 default:
12854 break;
12855 case STT_FILE:
12856 filename = bfd_asymbol_name (&q->symbol);
12857 break;
12858 case STT_FUNC:
12859 case STT_ARM_TFUNC:
12860 case STT_NOTYPE:
12861 /* Skip mapping symbols. */
12862 if ((q->symbol.flags & BSF_LOCAL)
12863 && bfd_is_arm_special_symbol_name (q->symbol.name,
12864 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
12865 continue;
12866 /* Fall through. */
12867 if (bfd_get_section (&q->symbol) == section
12868 && q->symbol.value >= low_func
12869 && q->symbol.value <= offset)
12870 {
12871 func = (asymbol *) q;
12872 low_func = q->symbol.value;
12873 }
12874 break;
12875 }
12876 }
12877
12878 if (func == NULL)
12879 return FALSE;
12880
12881 if (filename_ptr)
12882 *filename_ptr = filename;
12883 if (functionname_ptr)
12884 *functionname_ptr = bfd_asymbol_name (func);
12885
12886 return TRUE;
12887 }
12888
12889
12890 /* Find the nearest line to a particular section and offset, for error
12891 reporting. This code is a duplicate of the code in elf.c, except
12892 that it uses arm_elf_find_function. */
12893
12894 static bfd_boolean
12895 elf32_arm_find_nearest_line (bfd * abfd,
12896 asection * section,
12897 asymbol ** symbols,
12898 bfd_vma offset,
12899 const char ** filename_ptr,
12900 const char ** functionname_ptr,
12901 unsigned int * line_ptr)
12902 {
12903 bfd_boolean found = FALSE;
12904
12905 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
12906
12907 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
12908 section, symbols, offset,
12909 filename_ptr, functionname_ptr,
12910 line_ptr, NULL, 0,
12911 & elf_tdata (abfd)->dwarf2_find_line_info))
12912 {
12913 if (!*functionname_ptr)
12914 arm_elf_find_function (abfd, section, symbols, offset,
12915 *filename_ptr ? NULL : filename_ptr,
12916 functionname_ptr);
12917
12918 return TRUE;
12919 }
12920
12921 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
12922 & found, filename_ptr,
12923 functionname_ptr, line_ptr,
12924 & elf_tdata (abfd)->line_info))
12925 return FALSE;
12926
12927 if (found && (*functionname_ptr || *line_ptr))
12928 return TRUE;
12929
12930 if (symbols == NULL)
12931 return FALSE;
12932
12933 if (! arm_elf_find_function (abfd, section, symbols, offset,
12934 filename_ptr, functionname_ptr))
12935 return FALSE;
12936
12937 *line_ptr = 0;
12938 return TRUE;
12939 }
12940
12941 static bfd_boolean
12942 elf32_arm_find_inliner_info (bfd * abfd,
12943 const char ** filename_ptr,
12944 const char ** functionname_ptr,
12945 unsigned int * line_ptr)
12946 {
12947 bfd_boolean found;
12948 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12949 functionname_ptr, line_ptr,
12950 & elf_tdata (abfd)->dwarf2_find_line_info);
12951 return found;
12952 }
12953
12954 /* Adjust a symbol defined by a dynamic object and referenced by a
12955 regular object. The current definition is in some section of the
12956 dynamic object, but we're not including those sections. We have to
12957 change the definition to something the rest of the link can
12958 understand. */
12959
12960 static bfd_boolean
12961 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
12962 struct elf_link_hash_entry * h)
12963 {
12964 bfd * dynobj;
12965 asection * s;
12966 struct elf32_arm_link_hash_entry * eh;
12967 struct elf32_arm_link_hash_table *globals;
12968
12969 globals = elf32_arm_hash_table (info);
12970 if (globals == NULL)
12971 return FALSE;
12972
12973 dynobj = elf_hash_table (info)->dynobj;
12974
12975 /* Make sure we know what is going on here. */
12976 BFD_ASSERT (dynobj != NULL
12977 && (h->needs_plt
12978 || h->type == STT_GNU_IFUNC
12979 || h->u.weakdef != NULL
12980 || (h->def_dynamic
12981 && h->ref_regular
12982 && !h->def_regular)));
12983
12984 eh = (struct elf32_arm_link_hash_entry *) h;
12985
12986 /* If this is a function, put it in the procedure linkage table. We
12987 will fill in the contents of the procedure linkage table later,
12988 when we know the address of the .got section. */
12989 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
12990 {
12991 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
12992 symbol binds locally. */
12993 if (h->plt.refcount <= 0
12994 || (h->type != STT_GNU_IFUNC
12995 && (SYMBOL_CALLS_LOCAL (info, h)
12996 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
12997 && h->root.type == bfd_link_hash_undefweak))))
12998 {
12999 /* This case can occur if we saw a PLT32 reloc in an input
13000 file, but the symbol was never referred to by a dynamic
13001 object, or if all references were garbage collected. In
13002 such a case, we don't actually need to build a procedure
13003 linkage table, and we can just do a PC24 reloc instead. */
13004 h->plt.offset = (bfd_vma) -1;
13005 eh->plt.thumb_refcount = 0;
13006 eh->plt.maybe_thumb_refcount = 0;
13007 eh->plt.noncall_refcount = 0;
13008 h->needs_plt = 0;
13009 }
13010
13011 return TRUE;
13012 }
13013 else
13014 {
13015 /* It's possible that we incorrectly decided a .plt reloc was
13016 needed for an R_ARM_PC24 or similar reloc to a non-function sym
13017 in check_relocs. We can't decide accurately between function
13018 and non-function syms in check-relocs; Objects loaded later in
13019 the link may change h->type. So fix it now. */
13020 h->plt.offset = (bfd_vma) -1;
13021 eh->plt.thumb_refcount = 0;
13022 eh->plt.maybe_thumb_refcount = 0;
13023 eh->plt.noncall_refcount = 0;
13024 }
13025
13026 /* If this is a weak symbol, and there is a real definition, the
13027 processor independent code will have arranged for us to see the
13028 real definition first, and we can just use the same value. */
13029 if (h->u.weakdef != NULL)
13030 {
13031 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
13032 || h->u.weakdef->root.type == bfd_link_hash_defweak);
13033 h->root.u.def.section = h->u.weakdef->root.u.def.section;
13034 h->root.u.def.value = h->u.weakdef->root.u.def.value;
13035 return TRUE;
13036 }
13037
13038 /* If there are no non-GOT references, we do not need a copy
13039 relocation. */
13040 if (!h->non_got_ref)
13041 return TRUE;
13042
13043 /* This is a reference to a symbol defined by a dynamic object which
13044 is not a function. */
13045
13046 /* If we are creating a shared library, we must presume that the
13047 only references to the symbol are via the global offset table.
13048 For such cases we need not do anything here; the relocations will
13049 be handled correctly by relocate_section. Relocatable executables
13050 can reference data in shared objects directly, so we don't need to
13051 do anything here. */
13052 if (info->shared || globals->root.is_relocatable_executable)
13053 return TRUE;
13054
13055 /* We must allocate the symbol in our .dynbss section, which will
13056 become part of the .bss section of the executable. There will be
13057 an entry for this symbol in the .dynsym section. The dynamic
13058 object will contain position independent code, so all references
13059 from the dynamic object to this symbol will go through the global
13060 offset table. The dynamic linker will use the .dynsym entry to
13061 determine the address it must put in the global offset table, so
13062 both the dynamic object and the regular object will refer to the
13063 same memory location for the variable. */
13064 s = bfd_get_linker_section (dynobj, ".dynbss");
13065 BFD_ASSERT (s != NULL);
13066
13067 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
13068 copy the initial value out of the dynamic object and into the
13069 runtime process image. We need to remember the offset into the
13070 .rel(a).bss section we are going to use. */
13071 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0 && h->size != 0)
13072 {
13073 asection *srel;
13074
13075 srel = bfd_get_linker_section (dynobj, RELOC_SECTION (globals, ".bss"));
13076 elf32_arm_allocate_dynrelocs (info, srel, 1);
13077 h->needs_copy = 1;
13078 }
13079
13080 return _bfd_elf_adjust_dynamic_copy (h, s);
13081 }
13082
13083 /* Allocate space in .plt, .got and associated reloc sections for
13084 dynamic relocs. */
13085
13086 static bfd_boolean
13087 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
13088 {
13089 struct bfd_link_info *info;
13090 struct elf32_arm_link_hash_table *htab;
13091 struct elf32_arm_link_hash_entry *eh;
13092 struct elf_dyn_relocs *p;
13093
13094 if (h->root.type == bfd_link_hash_indirect)
13095 return TRUE;
13096
13097 eh = (struct elf32_arm_link_hash_entry *) h;
13098
13099 info = (struct bfd_link_info *) inf;
13100 htab = elf32_arm_hash_table (info);
13101 if (htab == NULL)
13102 return FALSE;
13103
13104 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
13105 && h->plt.refcount > 0)
13106 {
13107 /* Make sure this symbol is output as a dynamic symbol.
13108 Undefined weak syms won't yet be marked as dynamic. */
13109 if (h->dynindx == -1
13110 && !h->forced_local)
13111 {
13112 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13113 return FALSE;
13114 }
13115
13116 /* If the call in the PLT entry binds locally, the associated
13117 GOT entry should use an R_ARM_IRELATIVE relocation instead of
13118 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
13119 than the .plt section. */
13120 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
13121 {
13122 eh->is_iplt = 1;
13123 if (eh->plt.noncall_refcount == 0
13124 && SYMBOL_REFERENCES_LOCAL (info, h))
13125 /* All non-call references can be resolved directly.
13126 This means that they can (and in some cases, must)
13127 resolve directly to the run-time target, rather than
13128 to the PLT. That in turns means that any .got entry
13129 would be equal to the .igot.plt entry, so there's
13130 no point having both. */
13131 h->got.refcount = 0;
13132 }
13133
13134 if (info->shared
13135 || eh->is_iplt
13136 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
13137 {
13138 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
13139
13140 /* If this symbol is not defined in a regular file, and we are
13141 not generating a shared library, then set the symbol to this
13142 location in the .plt. This is required to make function
13143 pointers compare as equal between the normal executable and
13144 the shared library. */
13145 if (! info->shared
13146 && !h->def_regular)
13147 {
13148 h->root.u.def.section = htab->root.splt;
13149 h->root.u.def.value = h->plt.offset;
13150
13151 /* Make sure the function is not marked as Thumb, in case
13152 it is the target of an ABS32 relocation, which will
13153 point to the PLT entry. */
13154 h->target_internal = ST_BRANCH_TO_ARM;
13155 }
13156
13157 htab->next_tls_desc_index++;
13158
13159 /* VxWorks executables have a second set of relocations for
13160 each PLT entry. They go in a separate relocation section,
13161 which is processed by the kernel loader. */
13162 if (htab->vxworks_p && !info->shared)
13163 {
13164 /* There is a relocation for the initial PLT entry:
13165 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
13166 if (h->plt.offset == htab->plt_header_size)
13167 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
13168
13169 /* There are two extra relocations for each subsequent
13170 PLT entry: an R_ARM_32 relocation for the GOT entry,
13171 and an R_ARM_32 relocation for the PLT entry. */
13172 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
13173 }
13174 }
13175 else
13176 {
13177 h->plt.offset = (bfd_vma) -1;
13178 h->needs_plt = 0;
13179 }
13180 }
13181 else
13182 {
13183 h->plt.offset = (bfd_vma) -1;
13184 h->needs_plt = 0;
13185 }
13186
13187 eh = (struct elf32_arm_link_hash_entry *) h;
13188 eh->tlsdesc_got = (bfd_vma) -1;
13189
13190 if (h->got.refcount > 0)
13191 {
13192 asection *s;
13193 bfd_boolean dyn;
13194 int tls_type = elf32_arm_hash_entry (h)->tls_type;
13195 int indx;
13196
13197 /* Make sure this symbol is output as a dynamic symbol.
13198 Undefined weak syms won't yet be marked as dynamic. */
13199 if (h->dynindx == -1
13200 && !h->forced_local)
13201 {
13202 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13203 return FALSE;
13204 }
13205
13206 if (!htab->symbian_p)
13207 {
13208 s = htab->root.sgot;
13209 h->got.offset = s->size;
13210
13211 if (tls_type == GOT_UNKNOWN)
13212 abort ();
13213
13214 if (tls_type == GOT_NORMAL)
13215 /* Non-TLS symbols need one GOT slot. */
13216 s->size += 4;
13217 else
13218 {
13219 if (tls_type & GOT_TLS_GDESC)
13220 {
13221 /* R_ARM_TLS_DESC needs 2 GOT slots. */
13222 eh->tlsdesc_got
13223 = (htab->root.sgotplt->size
13224 - elf32_arm_compute_jump_table_size (htab));
13225 htab->root.sgotplt->size += 8;
13226 h->got.offset = (bfd_vma) -2;
13227 /* plt.got_offset needs to know there's a TLS_DESC
13228 reloc in the middle of .got.plt. */
13229 htab->num_tls_desc++;
13230 }
13231
13232 if (tls_type & GOT_TLS_GD)
13233 {
13234 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
13235 the symbol is both GD and GDESC, got.offset may
13236 have been overwritten. */
13237 h->got.offset = s->size;
13238 s->size += 8;
13239 }
13240
13241 if (tls_type & GOT_TLS_IE)
13242 /* R_ARM_TLS_IE32 needs one GOT slot. */
13243 s->size += 4;
13244 }
13245
13246 dyn = htab->root.dynamic_sections_created;
13247
13248 indx = 0;
13249 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
13250 && (!info->shared
13251 || !SYMBOL_REFERENCES_LOCAL (info, h)))
13252 indx = h->dynindx;
13253
13254 if (tls_type != GOT_NORMAL
13255 && (info->shared || indx != 0)
13256 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13257 || h->root.type != bfd_link_hash_undefweak))
13258 {
13259 if (tls_type & GOT_TLS_IE)
13260 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13261
13262 if (tls_type & GOT_TLS_GD)
13263 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13264
13265 if (tls_type & GOT_TLS_GDESC)
13266 {
13267 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13268 /* GDESC needs a trampoline to jump to. */
13269 htab->tls_trampoline = -1;
13270 }
13271
13272 /* Only GD needs it. GDESC just emits one relocation per
13273 2 entries. */
13274 if ((tls_type & GOT_TLS_GD) && indx != 0)
13275 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13276 }
13277 else if (indx != -1 && !SYMBOL_REFERENCES_LOCAL (info, h))
13278 {
13279 if (htab->root.dynamic_sections_created)
13280 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
13281 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13282 }
13283 else if (h->type == STT_GNU_IFUNC
13284 && eh->plt.noncall_refcount == 0)
13285 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13286 they all resolve dynamically instead. Reserve room for the
13287 GOT entry's R_ARM_IRELATIVE relocation. */
13288 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
13289 else if (info->shared && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
13290 || h->root.type != bfd_link_hash_undefweak))
13291 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
13292 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13293 }
13294 }
13295 else
13296 h->got.offset = (bfd_vma) -1;
13297
13298 /* Allocate stubs for exported Thumb functions on v4t. */
13299 if (!htab->use_blx && h->dynindx != -1
13300 && h->def_regular
13301 && h->target_internal == ST_BRANCH_TO_THUMB
13302 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
13303 {
13304 struct elf_link_hash_entry * th;
13305 struct bfd_link_hash_entry * bh;
13306 struct elf_link_hash_entry * myh;
13307 char name[1024];
13308 asection *s;
13309 bh = NULL;
13310 /* Create a new symbol to regist the real location of the function. */
13311 s = h->root.u.def.section;
13312 sprintf (name, "__real_%s", h->root.root.string);
13313 _bfd_generic_link_add_one_symbol (info, s->owner,
13314 name, BSF_GLOBAL, s,
13315 h->root.u.def.value,
13316 NULL, TRUE, FALSE, &bh);
13317
13318 myh = (struct elf_link_hash_entry *) bh;
13319 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
13320 myh->forced_local = 1;
13321 myh->target_internal = ST_BRANCH_TO_THUMB;
13322 eh->export_glue = myh;
13323 th = record_arm_to_thumb_glue (info, h);
13324 /* Point the symbol at the stub. */
13325 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
13326 h->target_internal = ST_BRANCH_TO_ARM;
13327 h->root.u.def.section = th->root.u.def.section;
13328 h->root.u.def.value = th->root.u.def.value & ~1;
13329 }
13330
13331 if (eh->dyn_relocs == NULL)
13332 return TRUE;
13333
13334 /* In the shared -Bsymbolic case, discard space allocated for
13335 dynamic pc-relative relocs against symbols which turn out to be
13336 defined in regular objects. For the normal shared case, discard
13337 space for pc-relative relocs that have become local due to symbol
13338 visibility changes. */
13339
13340 if (info->shared || htab->root.is_relocatable_executable)
13341 {
13342 /* The only relocs that use pc_count are R_ARM_REL32 and
13343 R_ARM_REL32_NOI, which will appear on something like
13344 ".long foo - .". We want calls to protected symbols to resolve
13345 directly to the function rather than going via the plt. If people
13346 want function pointer comparisons to work as expected then they
13347 should avoid writing assembly like ".long foo - .". */
13348 if (SYMBOL_CALLS_LOCAL (info, h))
13349 {
13350 struct elf_dyn_relocs **pp;
13351
13352 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13353 {
13354 p->count -= p->pc_count;
13355 p->pc_count = 0;
13356 if (p->count == 0)
13357 *pp = p->next;
13358 else
13359 pp = &p->next;
13360 }
13361 }
13362
13363 if (htab->vxworks_p)
13364 {
13365 struct elf_dyn_relocs **pp;
13366
13367 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13368 {
13369 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
13370 *pp = p->next;
13371 else
13372 pp = &p->next;
13373 }
13374 }
13375
13376 /* Also discard relocs on undefined weak syms with non-default
13377 visibility. */
13378 if (eh->dyn_relocs != NULL
13379 && h->root.type == bfd_link_hash_undefweak)
13380 {
13381 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
13382 eh->dyn_relocs = NULL;
13383
13384 /* Make sure undefined weak symbols are output as a dynamic
13385 symbol in PIEs. */
13386 else if (h->dynindx == -1
13387 && !h->forced_local)
13388 {
13389 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13390 return FALSE;
13391 }
13392 }
13393
13394 else if (htab->root.is_relocatable_executable && h->dynindx == -1
13395 && h->root.type == bfd_link_hash_new)
13396 {
13397 /* Output absolute symbols so that we can create relocations
13398 against them. For normal symbols we output a relocation
13399 against the section that contains them. */
13400 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13401 return FALSE;
13402 }
13403
13404 }
13405 else
13406 {
13407 /* For the non-shared case, discard space for relocs against
13408 symbols which turn out to need copy relocs or are not
13409 dynamic. */
13410
13411 if (!h->non_got_ref
13412 && ((h->def_dynamic
13413 && !h->def_regular)
13414 || (htab->root.dynamic_sections_created
13415 && (h->root.type == bfd_link_hash_undefweak
13416 || h->root.type == bfd_link_hash_undefined))))
13417 {
13418 /* Make sure this symbol is output as a dynamic symbol.
13419 Undefined weak syms won't yet be marked as dynamic. */
13420 if (h->dynindx == -1
13421 && !h->forced_local)
13422 {
13423 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13424 return FALSE;
13425 }
13426
13427 /* If that succeeded, we know we'll be keeping all the
13428 relocs. */
13429 if (h->dynindx != -1)
13430 goto keep;
13431 }
13432
13433 eh->dyn_relocs = NULL;
13434
13435 keep: ;
13436 }
13437
13438 /* Finally, allocate space. */
13439 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13440 {
13441 asection *sreloc = elf_section_data (p->sec)->sreloc;
13442 if (h->type == STT_GNU_IFUNC
13443 && eh->plt.noncall_refcount == 0
13444 && SYMBOL_REFERENCES_LOCAL (info, h))
13445 elf32_arm_allocate_irelocs (info, sreloc, p->count);
13446 else
13447 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
13448 }
13449
13450 return TRUE;
13451 }
13452
13453 /* Find any dynamic relocs that apply to read-only sections. */
13454
13455 static bfd_boolean
13456 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
13457 {
13458 struct elf32_arm_link_hash_entry * eh;
13459 struct elf_dyn_relocs * p;
13460
13461 eh = (struct elf32_arm_link_hash_entry *) h;
13462 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13463 {
13464 asection *s = p->sec;
13465
13466 if (s != NULL && (s->flags & SEC_READONLY) != 0)
13467 {
13468 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13469
13470 info->flags |= DF_TEXTREL;
13471
13472 /* Not an error, just cut short the traversal. */
13473 return FALSE;
13474 }
13475 }
13476 return TRUE;
13477 }
13478
13479 void
13480 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13481 int byteswap_code)
13482 {
13483 struct elf32_arm_link_hash_table *globals;
13484
13485 globals = elf32_arm_hash_table (info);
13486 if (globals == NULL)
13487 return;
13488
13489 globals->byteswap_code = byteswap_code;
13490 }
13491
13492 /* Set the sizes of the dynamic sections. */
13493
13494 static bfd_boolean
13495 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13496 struct bfd_link_info * info)
13497 {
13498 bfd * dynobj;
13499 asection * s;
13500 bfd_boolean plt;
13501 bfd_boolean relocs;
13502 bfd *ibfd;
13503 struct elf32_arm_link_hash_table *htab;
13504
13505 htab = elf32_arm_hash_table (info);
13506 if (htab == NULL)
13507 return FALSE;
13508
13509 dynobj = elf_hash_table (info)->dynobj;
13510 BFD_ASSERT (dynobj != NULL);
13511 check_use_blx (htab);
13512
13513 if (elf_hash_table (info)->dynamic_sections_created)
13514 {
13515 /* Set the contents of the .interp section to the interpreter. */
13516 if (info->executable)
13517 {
13518 s = bfd_get_linker_section (dynobj, ".interp");
13519 BFD_ASSERT (s != NULL);
13520 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
13521 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13522 }
13523 }
13524
13525 /* Set up .got offsets for local syms, and space for local dynamic
13526 relocs. */
13527 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13528 {
13529 bfd_signed_vma *local_got;
13530 bfd_signed_vma *end_local_got;
13531 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
13532 char *local_tls_type;
13533 bfd_vma *local_tlsdesc_gotent;
13534 bfd_size_type locsymcount;
13535 Elf_Internal_Shdr *symtab_hdr;
13536 asection *srel;
13537 bfd_boolean is_vxworks = htab->vxworks_p;
13538 unsigned int symndx;
13539
13540 if (! is_arm_elf (ibfd))
13541 continue;
13542
13543 for (s = ibfd->sections; s != NULL; s = s->next)
13544 {
13545 struct elf_dyn_relocs *p;
13546
13547 for (p = (struct elf_dyn_relocs *)
13548 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
13549 {
13550 if (!bfd_is_abs_section (p->sec)
13551 && bfd_is_abs_section (p->sec->output_section))
13552 {
13553 /* Input section has been discarded, either because
13554 it is a copy of a linkonce section or due to
13555 linker script /DISCARD/, so we'll be discarding
13556 the relocs too. */
13557 }
13558 else if (is_vxworks
13559 && strcmp (p->sec->output_section->name,
13560 ".tls_vars") == 0)
13561 {
13562 /* Relocations in vxworks .tls_vars sections are
13563 handled specially by the loader. */
13564 }
13565 else if (p->count != 0)
13566 {
13567 srel = elf_section_data (p->sec)->sreloc;
13568 elf32_arm_allocate_dynrelocs (info, srel, p->count);
13569 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
13570 info->flags |= DF_TEXTREL;
13571 }
13572 }
13573 }
13574
13575 local_got = elf_local_got_refcounts (ibfd);
13576 if (!local_got)
13577 continue;
13578
13579 symtab_hdr = & elf_symtab_hdr (ibfd);
13580 locsymcount = symtab_hdr->sh_info;
13581 end_local_got = local_got + locsymcount;
13582 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
13583 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
13584 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
13585 symndx = 0;
13586 s = htab->root.sgot;
13587 srel = htab->root.srelgot;
13588 for (; local_got < end_local_got;
13589 ++local_got, ++local_iplt_ptr, ++local_tls_type,
13590 ++local_tlsdesc_gotent, ++symndx)
13591 {
13592 *local_tlsdesc_gotent = (bfd_vma) -1;
13593 local_iplt = *local_iplt_ptr;
13594 if (local_iplt != NULL)
13595 {
13596 struct elf_dyn_relocs *p;
13597
13598 if (local_iplt->root.refcount > 0)
13599 {
13600 elf32_arm_allocate_plt_entry (info, TRUE,
13601 &local_iplt->root,
13602 &local_iplt->arm);
13603 if (local_iplt->arm.noncall_refcount == 0)
13604 /* All references to the PLT are calls, so all
13605 non-call references can resolve directly to the
13606 run-time target. This means that the .got entry
13607 would be the same as the .igot.plt entry, so there's
13608 no point creating both. */
13609 *local_got = 0;
13610 }
13611 else
13612 {
13613 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13614 local_iplt->root.offset = (bfd_vma) -1;
13615 }
13616
13617 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13618 {
13619 asection *psrel;
13620
13621 psrel = elf_section_data (p->sec)->sreloc;
13622 if (local_iplt->arm.noncall_refcount == 0)
13623 elf32_arm_allocate_irelocs (info, psrel, p->count);
13624 else
13625 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13626 }
13627 }
13628 if (*local_got > 0)
13629 {
13630 Elf_Internal_Sym *isym;
13631
13632 *local_got = s->size;
13633 if (*local_tls_type & GOT_TLS_GD)
13634 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13635 s->size += 8;
13636 if (*local_tls_type & GOT_TLS_GDESC)
13637 {
13638 *local_tlsdesc_gotent = htab->root.sgotplt->size
13639 - elf32_arm_compute_jump_table_size (htab);
13640 htab->root.sgotplt->size += 8;
13641 *local_got = (bfd_vma) -2;
13642 /* plt.got_offset needs to know there's a TLS_DESC
13643 reloc in the middle of .got.plt. */
13644 htab->num_tls_desc++;
13645 }
13646 if (*local_tls_type & GOT_TLS_IE)
13647 s->size += 4;
13648
13649 if (*local_tls_type & GOT_NORMAL)
13650 {
13651 /* If the symbol is both GD and GDESC, *local_got
13652 may have been overwritten. */
13653 *local_got = s->size;
13654 s->size += 4;
13655 }
13656
13657 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13658 if (isym == NULL)
13659 return FALSE;
13660
13661 /* If all references to an STT_GNU_IFUNC PLT are calls,
13662 then all non-call references, including this GOT entry,
13663 resolve directly to the run-time target. */
13664 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13665 && (local_iplt == NULL
13666 || local_iplt->arm.noncall_refcount == 0))
13667 elf32_arm_allocate_irelocs (info, srel, 1);
13668 else if (info->shared || output_bfd->flags & DYNAMIC)
13669 {
13670 if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13671 || *local_tls_type & GOT_TLS_GD)
13672 elf32_arm_allocate_dynrelocs (info, srel, 1);
13673
13674 if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13675 {
13676 elf32_arm_allocate_dynrelocs (info,
13677 htab->root.srelplt, 1);
13678 htab->tls_trampoline = -1;
13679 }
13680 }
13681 }
13682 else
13683 *local_got = (bfd_vma) -1;
13684 }
13685 }
13686
13687 if (htab->tls_ldm_got.refcount > 0)
13688 {
13689 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13690 for R_ARM_TLS_LDM32 relocations. */
13691 htab->tls_ldm_got.offset = htab->root.sgot->size;
13692 htab->root.sgot->size += 8;
13693 if (info->shared)
13694 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13695 }
13696 else
13697 htab->tls_ldm_got.offset = -1;
13698
13699 /* Allocate global sym .plt and .got entries, and space for global
13700 sym dynamic relocs. */
13701 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
13702
13703 /* Here we rummage through the found bfds to collect glue information. */
13704 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13705 {
13706 if (! is_arm_elf (ibfd))
13707 continue;
13708
13709 /* Initialise mapping tables for code/data. */
13710 bfd_elf32_arm_init_maps (ibfd);
13711
13712 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13713 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
13714 /* xgettext:c-format */
13715 _bfd_error_handler (_("Errors encountered processing file %s"),
13716 ibfd->filename);
13717 }
13718
13719 /* Allocate space for the glue sections now that we've sized them. */
13720 bfd_elf32_arm_allocate_interworking_sections (info);
13721
13722 /* For every jump slot reserved in the sgotplt, reloc_count is
13723 incremented. However, when we reserve space for TLS descriptors,
13724 it's not incremented, so in order to compute the space reserved
13725 for them, it suffices to multiply the reloc count by the jump
13726 slot size. */
13727 if (htab->root.srelplt)
13728 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
13729
13730 if (htab->tls_trampoline)
13731 {
13732 if (htab->root.splt->size == 0)
13733 htab->root.splt->size += htab->plt_header_size;
13734
13735 htab->tls_trampoline = htab->root.splt->size;
13736 htab->root.splt->size += htab->plt_entry_size;
13737
13738 /* If we're not using lazy TLS relocations, don't generate the
13739 PLT and GOT entries they require. */
13740 if (!(info->flags & DF_BIND_NOW))
13741 {
13742 htab->dt_tlsdesc_got = htab->root.sgot->size;
13743 htab->root.sgot->size += 4;
13744
13745 htab->dt_tlsdesc_plt = htab->root.splt->size;
13746 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
13747 }
13748 }
13749
13750 /* The check_relocs and adjust_dynamic_symbol entry points have
13751 determined the sizes of the various dynamic sections. Allocate
13752 memory for them. */
13753 plt = FALSE;
13754 relocs = FALSE;
13755 for (s = dynobj->sections; s != NULL; s = s->next)
13756 {
13757 const char * name;
13758
13759 if ((s->flags & SEC_LINKER_CREATED) == 0)
13760 continue;
13761
13762 /* It's OK to base decisions on the section name, because none
13763 of the dynobj section names depend upon the input files. */
13764 name = bfd_get_section_name (dynobj, s);
13765
13766 if (s == htab->root.splt)
13767 {
13768 /* Remember whether there is a PLT. */
13769 plt = s->size != 0;
13770 }
13771 else if (CONST_STRNEQ (name, ".rel"))
13772 {
13773 if (s->size != 0)
13774 {
13775 /* Remember whether there are any reloc sections other
13776 than .rel(a).plt and .rela.plt.unloaded. */
13777 if (s != htab->root.srelplt && s != htab->srelplt2)
13778 relocs = TRUE;
13779
13780 /* We use the reloc_count field as a counter if we need
13781 to copy relocs into the output file. */
13782 s->reloc_count = 0;
13783 }
13784 }
13785 else if (s != htab->root.sgot
13786 && s != htab->root.sgotplt
13787 && s != htab->root.iplt
13788 && s != htab->root.igotplt
13789 && s != htab->sdynbss)
13790 {
13791 /* It's not one of our sections, so don't allocate space. */
13792 continue;
13793 }
13794
13795 if (s->size == 0)
13796 {
13797 /* If we don't need this section, strip it from the
13798 output file. This is mostly to handle .rel(a).bss and
13799 .rel(a).plt. We must create both sections in
13800 create_dynamic_sections, because they must be created
13801 before the linker maps input sections to output
13802 sections. The linker does that before
13803 adjust_dynamic_symbol is called, and it is that
13804 function which decides whether anything needs to go
13805 into these sections. */
13806 s->flags |= SEC_EXCLUDE;
13807 continue;
13808 }
13809
13810 if ((s->flags & SEC_HAS_CONTENTS) == 0)
13811 continue;
13812
13813 /* Allocate memory for the section contents. */
13814 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
13815 if (s->contents == NULL)
13816 return FALSE;
13817 }
13818
13819 if (elf_hash_table (info)->dynamic_sections_created)
13820 {
13821 /* Add some entries to the .dynamic section. We fill in the
13822 values later, in elf32_arm_finish_dynamic_sections, but we
13823 must add the entries now so that we get the correct size for
13824 the .dynamic section. The DT_DEBUG entry is filled in by the
13825 dynamic linker and used by the debugger. */
13826 #define add_dynamic_entry(TAG, VAL) \
13827 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
13828
13829 if (info->executable)
13830 {
13831 if (!add_dynamic_entry (DT_DEBUG, 0))
13832 return FALSE;
13833 }
13834
13835 if (plt)
13836 {
13837 if ( !add_dynamic_entry (DT_PLTGOT, 0)
13838 || !add_dynamic_entry (DT_PLTRELSZ, 0)
13839 || !add_dynamic_entry (DT_PLTREL,
13840 htab->use_rel ? DT_REL : DT_RELA)
13841 || !add_dynamic_entry (DT_JMPREL, 0))
13842 return FALSE;
13843
13844 if (htab->dt_tlsdesc_plt &&
13845 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
13846 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
13847 return FALSE;
13848 }
13849
13850 if (relocs)
13851 {
13852 if (htab->use_rel)
13853 {
13854 if (!add_dynamic_entry (DT_REL, 0)
13855 || !add_dynamic_entry (DT_RELSZ, 0)
13856 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
13857 return FALSE;
13858 }
13859 else
13860 {
13861 if (!add_dynamic_entry (DT_RELA, 0)
13862 || !add_dynamic_entry (DT_RELASZ, 0)
13863 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
13864 return FALSE;
13865 }
13866 }
13867
13868 /* If any dynamic relocs apply to a read-only section,
13869 then we need a DT_TEXTREL entry. */
13870 if ((info->flags & DF_TEXTREL) == 0)
13871 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
13872 info);
13873
13874 if ((info->flags & DF_TEXTREL) != 0)
13875 {
13876 if (!add_dynamic_entry (DT_TEXTREL, 0))
13877 return FALSE;
13878 }
13879 if (htab->vxworks_p
13880 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
13881 return FALSE;
13882 }
13883 #undef add_dynamic_entry
13884
13885 return TRUE;
13886 }
13887
13888 /* Size sections even though they're not dynamic. We use it to setup
13889 _TLS_MODULE_BASE_, if needed. */
13890
13891 static bfd_boolean
13892 elf32_arm_always_size_sections (bfd *output_bfd,
13893 struct bfd_link_info *info)
13894 {
13895 asection *tls_sec;
13896
13897 if (info->relocatable)
13898 return TRUE;
13899
13900 tls_sec = elf_hash_table (info)->tls_sec;
13901
13902 if (tls_sec)
13903 {
13904 struct elf_link_hash_entry *tlsbase;
13905
13906 tlsbase = elf_link_hash_lookup
13907 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
13908
13909 if (tlsbase)
13910 {
13911 struct bfd_link_hash_entry *bh = NULL;
13912 const struct elf_backend_data *bed
13913 = get_elf_backend_data (output_bfd);
13914
13915 if (!(_bfd_generic_link_add_one_symbol
13916 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
13917 tls_sec, 0, NULL, FALSE,
13918 bed->collect, &bh)))
13919 return FALSE;
13920
13921 tlsbase->type = STT_TLS;
13922 tlsbase = (struct elf_link_hash_entry *)bh;
13923 tlsbase->def_regular = 1;
13924 tlsbase->other = STV_HIDDEN;
13925 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
13926 }
13927 }
13928 return TRUE;
13929 }
13930
13931 /* Finish up dynamic symbol handling. We set the contents of various
13932 dynamic sections here. */
13933
13934 static bfd_boolean
13935 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
13936 struct bfd_link_info * info,
13937 struct elf_link_hash_entry * h,
13938 Elf_Internal_Sym * sym)
13939 {
13940 struct elf32_arm_link_hash_table *htab;
13941 struct elf32_arm_link_hash_entry *eh;
13942
13943 htab = elf32_arm_hash_table (info);
13944 if (htab == NULL)
13945 return FALSE;
13946
13947 eh = (struct elf32_arm_link_hash_entry *) h;
13948
13949 if (h->plt.offset != (bfd_vma) -1)
13950 {
13951 if (!eh->is_iplt)
13952 {
13953 BFD_ASSERT (h->dynindx != -1);
13954 elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
13955 h->dynindx, 0);
13956 }
13957
13958 if (!h->def_regular)
13959 {
13960 /* Mark the symbol as undefined, rather than as defined in
13961 the .plt section. Leave the value alone. */
13962 sym->st_shndx = SHN_UNDEF;
13963 /* If the symbol is weak, we do need to clear the value.
13964 Otherwise, the PLT entry would provide a definition for
13965 the symbol even if the symbol wasn't defined anywhere,
13966 and so the symbol would never be NULL. */
13967 if (!h->ref_regular_nonweak)
13968 sym->st_value = 0;
13969 }
13970 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
13971 {
13972 /* At least one non-call relocation references this .iplt entry,
13973 so the .iplt entry is the function's canonical address. */
13974 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
13975 sym->st_target_internal = ST_BRANCH_TO_ARM;
13976 sym->st_shndx = (_bfd_elf_section_from_bfd_section
13977 (output_bfd, htab->root.iplt->output_section));
13978 sym->st_value = (h->plt.offset
13979 + htab->root.iplt->output_section->vma
13980 + htab->root.iplt->output_offset);
13981 }
13982 }
13983
13984 if (h->needs_copy)
13985 {
13986 asection * s;
13987 Elf_Internal_Rela rel;
13988
13989 /* This symbol needs a copy reloc. Set it up. */
13990 BFD_ASSERT (h->dynindx != -1
13991 && (h->root.type == bfd_link_hash_defined
13992 || h->root.type == bfd_link_hash_defweak));
13993
13994 s = htab->srelbss;
13995 BFD_ASSERT (s != NULL);
13996
13997 rel.r_addend = 0;
13998 rel.r_offset = (h->root.u.def.value
13999 + h->root.u.def.section->output_section->vma
14000 + h->root.u.def.section->output_offset);
14001 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
14002 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
14003 }
14004
14005 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
14006 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
14007 to the ".got" section. */
14008 if (h == htab->root.hdynamic
14009 || (!htab->vxworks_p && h == htab->root.hgot))
14010 sym->st_shndx = SHN_ABS;
14011
14012 return TRUE;
14013 }
14014
14015 static void
14016 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
14017 void *contents,
14018 const unsigned long *template, unsigned count)
14019 {
14020 unsigned ix;
14021
14022 for (ix = 0; ix != count; ix++)
14023 {
14024 unsigned long insn = template[ix];
14025
14026 /* Emit mov pc,rx if bx is not permitted. */
14027 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
14028 insn = (insn & 0xf000000f) | 0x01a0f000;
14029 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
14030 }
14031 }
14032
14033 /* Finish up the dynamic sections. */
14034
14035 static bfd_boolean
14036 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
14037 {
14038 bfd * dynobj;
14039 asection * sgot;
14040 asection * sdyn;
14041 struct elf32_arm_link_hash_table *htab;
14042
14043 htab = elf32_arm_hash_table (info);
14044 if (htab == NULL)
14045 return FALSE;
14046
14047 dynobj = elf_hash_table (info)->dynobj;
14048
14049 sgot = htab->root.sgotplt;
14050 /* A broken linker script might have discarded the dynamic sections.
14051 Catch this here so that we do not seg-fault later on. */
14052 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
14053 return FALSE;
14054 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
14055
14056 if (elf_hash_table (info)->dynamic_sections_created)
14057 {
14058 asection *splt;
14059 Elf32_External_Dyn *dyncon, *dynconend;
14060
14061 splt = htab->root.splt;
14062 BFD_ASSERT (splt != NULL && sdyn != NULL);
14063 BFD_ASSERT (htab->symbian_p || sgot != NULL);
14064
14065 dyncon = (Elf32_External_Dyn *) sdyn->contents;
14066 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
14067
14068 for (; dyncon < dynconend; dyncon++)
14069 {
14070 Elf_Internal_Dyn dyn;
14071 const char * name;
14072 asection * s;
14073
14074 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
14075
14076 switch (dyn.d_tag)
14077 {
14078 unsigned int type;
14079
14080 default:
14081 if (htab->vxworks_p
14082 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
14083 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14084 break;
14085
14086 case DT_HASH:
14087 name = ".hash";
14088 goto get_vma_if_bpabi;
14089 case DT_STRTAB:
14090 name = ".dynstr";
14091 goto get_vma_if_bpabi;
14092 case DT_SYMTAB:
14093 name = ".dynsym";
14094 goto get_vma_if_bpabi;
14095 case DT_VERSYM:
14096 name = ".gnu.version";
14097 goto get_vma_if_bpabi;
14098 case DT_VERDEF:
14099 name = ".gnu.version_d";
14100 goto get_vma_if_bpabi;
14101 case DT_VERNEED:
14102 name = ".gnu.version_r";
14103 goto get_vma_if_bpabi;
14104
14105 case DT_PLTGOT:
14106 name = ".got";
14107 goto get_vma;
14108 case DT_JMPREL:
14109 name = RELOC_SECTION (htab, ".plt");
14110 get_vma:
14111 s = bfd_get_section_by_name (output_bfd, name);
14112 if (s == NULL)
14113 {
14114 /* PR ld/14397: Issue an error message if a required section is missing. */
14115 (*_bfd_error_handler)
14116 (_("error: required section '%s' not found in the linker script"), name);
14117 bfd_set_error (bfd_error_invalid_operation);
14118 return FALSE;
14119 }
14120 if (!htab->symbian_p)
14121 dyn.d_un.d_ptr = s->vma;
14122 else
14123 /* In the BPABI, tags in the PT_DYNAMIC section point
14124 at the file offset, not the memory address, for the
14125 convenience of the post linker. */
14126 dyn.d_un.d_ptr = s->filepos;
14127 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14128 break;
14129
14130 get_vma_if_bpabi:
14131 if (htab->symbian_p)
14132 goto get_vma;
14133 break;
14134
14135 case DT_PLTRELSZ:
14136 s = htab->root.srelplt;
14137 BFD_ASSERT (s != NULL);
14138 dyn.d_un.d_val = s->size;
14139 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14140 break;
14141
14142 case DT_RELSZ:
14143 case DT_RELASZ:
14144 if (!htab->symbian_p)
14145 {
14146 /* My reading of the SVR4 ABI indicates that the
14147 procedure linkage table relocs (DT_JMPREL) should be
14148 included in the overall relocs (DT_REL). This is
14149 what Solaris does. However, UnixWare can not handle
14150 that case. Therefore, we override the DT_RELSZ entry
14151 here to make it not include the JMPREL relocs. Since
14152 the linker script arranges for .rel(a).plt to follow all
14153 other relocation sections, we don't have to worry
14154 about changing the DT_REL entry. */
14155 s = htab->root.srelplt;
14156 if (s != NULL)
14157 dyn.d_un.d_val -= s->size;
14158 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14159 break;
14160 }
14161 /* Fall through. */
14162
14163 case DT_REL:
14164 case DT_RELA:
14165 /* In the BPABI, the DT_REL tag must point at the file
14166 offset, not the VMA, of the first relocation
14167 section. So, we use code similar to that in
14168 elflink.c, but do not check for SHF_ALLOC on the
14169 relcoation section, since relocations sections are
14170 never allocated under the BPABI. The comments above
14171 about Unixware notwithstanding, we include all of the
14172 relocations here. */
14173 if (htab->symbian_p)
14174 {
14175 unsigned int i;
14176 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
14177 ? SHT_REL : SHT_RELA);
14178 dyn.d_un.d_val = 0;
14179 for (i = 1; i < elf_numsections (output_bfd); i++)
14180 {
14181 Elf_Internal_Shdr *hdr
14182 = elf_elfsections (output_bfd)[i];
14183 if (hdr->sh_type == type)
14184 {
14185 if (dyn.d_tag == DT_RELSZ
14186 || dyn.d_tag == DT_RELASZ)
14187 dyn.d_un.d_val += hdr->sh_size;
14188 else if ((ufile_ptr) hdr->sh_offset
14189 <= dyn.d_un.d_val - 1)
14190 dyn.d_un.d_val = hdr->sh_offset;
14191 }
14192 }
14193 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14194 }
14195 break;
14196
14197 case DT_TLSDESC_PLT:
14198 s = htab->root.splt;
14199 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14200 + htab->dt_tlsdesc_plt);
14201 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14202 break;
14203
14204 case DT_TLSDESC_GOT:
14205 s = htab->root.sgot;
14206 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
14207 + htab->dt_tlsdesc_got);
14208 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14209 break;
14210
14211 /* Set the bottom bit of DT_INIT/FINI if the
14212 corresponding function is Thumb. */
14213 case DT_INIT:
14214 name = info->init_function;
14215 goto get_sym;
14216 case DT_FINI:
14217 name = info->fini_function;
14218 get_sym:
14219 /* If it wasn't set by elf_bfd_final_link
14220 then there is nothing to adjust. */
14221 if (dyn.d_un.d_val != 0)
14222 {
14223 struct elf_link_hash_entry * eh;
14224
14225 eh = elf_link_hash_lookup (elf_hash_table (info), name,
14226 FALSE, FALSE, TRUE);
14227 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
14228 {
14229 dyn.d_un.d_val |= 1;
14230 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
14231 }
14232 }
14233 break;
14234 }
14235 }
14236
14237 /* Fill in the first entry in the procedure linkage table. */
14238 if (splt->size > 0 && htab->plt_header_size)
14239 {
14240 const bfd_vma *plt0_entry;
14241 bfd_vma got_address, plt_address, got_displacement;
14242
14243 /* Calculate the addresses of the GOT and PLT. */
14244 got_address = sgot->output_section->vma + sgot->output_offset;
14245 plt_address = splt->output_section->vma + splt->output_offset;
14246
14247 if (htab->vxworks_p)
14248 {
14249 /* The VxWorks GOT is relocated by the dynamic linker.
14250 Therefore, we must emit relocations rather than simply
14251 computing the values now. */
14252 Elf_Internal_Rela rel;
14253
14254 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
14255 put_arm_insn (htab, output_bfd, plt0_entry[0],
14256 splt->contents + 0);
14257 put_arm_insn (htab, output_bfd, plt0_entry[1],
14258 splt->contents + 4);
14259 put_arm_insn (htab, output_bfd, plt0_entry[2],
14260 splt->contents + 8);
14261 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
14262
14263 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
14264 rel.r_offset = plt_address + 12;
14265 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14266 rel.r_addend = 0;
14267 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
14268 htab->srelplt2->contents);
14269 }
14270 else if (htab->nacl_p)
14271 {
14272 unsigned int i;
14273
14274 got_displacement = got_address + 8 - (plt_address + 16);
14275
14276 put_arm_insn (htab, output_bfd,
14277 elf32_arm_nacl_plt0_entry[0]
14278 | arm_movw_immediate (got_displacement),
14279 splt->contents + 0);
14280 put_arm_insn (htab, output_bfd,
14281 elf32_arm_nacl_plt0_entry[1]
14282 | arm_movt_immediate (got_displacement),
14283 splt->contents + 4);
14284 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
14285 put_arm_insn (htab, output_bfd,
14286 elf32_arm_nacl_plt0_entry[i],
14287 splt->contents + (i * 4));
14288 }
14289 else
14290 {
14291 got_displacement = got_address - (plt_address + 16);
14292
14293 plt0_entry = elf32_arm_plt0_entry;
14294 put_arm_insn (htab, output_bfd, plt0_entry[0],
14295 splt->contents + 0);
14296 put_arm_insn (htab, output_bfd, plt0_entry[1],
14297 splt->contents + 4);
14298 put_arm_insn (htab, output_bfd, plt0_entry[2],
14299 splt->contents + 8);
14300 put_arm_insn (htab, output_bfd, plt0_entry[3],
14301 splt->contents + 12);
14302
14303 #ifdef FOUR_WORD_PLT
14304 /* The displacement value goes in the otherwise-unused
14305 last word of the second entry. */
14306 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
14307 #else
14308 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
14309 #endif
14310 }
14311 }
14312
14313 /* UnixWare sets the entsize of .plt to 4, although that doesn't
14314 really seem like the right value. */
14315 if (splt->output_section->owner == output_bfd)
14316 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
14317
14318 if (htab->dt_tlsdesc_plt)
14319 {
14320 bfd_vma got_address
14321 = sgot->output_section->vma + sgot->output_offset;
14322 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
14323 + htab->root.sgot->output_offset);
14324 bfd_vma plt_address
14325 = splt->output_section->vma + splt->output_offset;
14326
14327 arm_put_trampoline (htab, output_bfd,
14328 splt->contents + htab->dt_tlsdesc_plt,
14329 dl_tlsdesc_lazy_trampoline, 6);
14330
14331 bfd_put_32 (output_bfd,
14332 gotplt_address + htab->dt_tlsdesc_got
14333 - (plt_address + htab->dt_tlsdesc_plt)
14334 - dl_tlsdesc_lazy_trampoline[6],
14335 splt->contents + htab->dt_tlsdesc_plt + 24);
14336 bfd_put_32 (output_bfd,
14337 got_address - (plt_address + htab->dt_tlsdesc_plt)
14338 - dl_tlsdesc_lazy_trampoline[7],
14339 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
14340 }
14341
14342 if (htab->tls_trampoline)
14343 {
14344 arm_put_trampoline (htab, output_bfd,
14345 splt->contents + htab->tls_trampoline,
14346 tls_trampoline, 3);
14347 #ifdef FOUR_WORD_PLT
14348 bfd_put_32 (output_bfd, 0x00000000,
14349 splt->contents + htab->tls_trampoline + 12);
14350 #endif
14351 }
14352
14353 if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
14354 {
14355 /* Correct the .rel(a).plt.unloaded relocations. They will have
14356 incorrect symbol indexes. */
14357 int num_plts;
14358 unsigned char *p;
14359
14360 num_plts = ((htab->root.splt->size - htab->plt_header_size)
14361 / htab->plt_entry_size);
14362 p = htab->srelplt2->contents + RELOC_SIZE (htab);
14363
14364 for (; num_plts; num_plts--)
14365 {
14366 Elf_Internal_Rela rel;
14367
14368 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14369 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14370 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14371 p += RELOC_SIZE (htab);
14372
14373 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14374 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14375 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14376 p += RELOC_SIZE (htab);
14377 }
14378 }
14379 }
14380
14381 /* Fill in the first three entries in the global offset table. */
14382 if (sgot)
14383 {
14384 if (sgot->size > 0)
14385 {
14386 if (sdyn == NULL)
14387 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14388 else
14389 bfd_put_32 (output_bfd,
14390 sdyn->output_section->vma + sdyn->output_offset,
14391 sgot->contents);
14392 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14393 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14394 }
14395
14396 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14397 }
14398
14399 return TRUE;
14400 }
14401
14402 static void
14403 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
14404 {
14405 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
14406 struct elf32_arm_link_hash_table *globals;
14407
14408 i_ehdrp = elf_elfheader (abfd);
14409
14410 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14411 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14412 else
14413 i_ehdrp->e_ident[EI_OSABI] = 0;
14414 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
14415
14416 if (link_info)
14417 {
14418 globals = elf32_arm_hash_table (link_info);
14419 if (globals != NULL && globals->byteswap_code)
14420 i_ehdrp->e_flags |= EF_ARM_BE8;
14421 }
14422
14423 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
14424 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
14425 {
14426 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
14427 if (abi)
14428 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
14429 else
14430 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
14431 }
14432 }
14433
14434 static enum elf_reloc_type_class
14435 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
14436 const asection *rel_sec ATTRIBUTE_UNUSED,
14437 const Elf_Internal_Rela *rela)
14438 {
14439 switch ((int) ELF32_R_TYPE (rela->r_info))
14440 {
14441 case R_ARM_RELATIVE:
14442 return reloc_class_relative;
14443 case R_ARM_JUMP_SLOT:
14444 return reloc_class_plt;
14445 case R_ARM_COPY:
14446 return reloc_class_copy;
14447 default:
14448 return reloc_class_normal;
14449 }
14450 }
14451
14452 static void
14453 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
14454 {
14455 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
14456 }
14457
14458 /* Return TRUE if this is an unwinding table entry. */
14459
14460 static bfd_boolean
14461 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14462 {
14463 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14464 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
14465 }
14466
14467
14468 /* Set the type and flags for an ARM section. We do this by
14469 the section name, which is a hack, but ought to work. */
14470
14471 static bfd_boolean
14472 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14473 {
14474 const char * name;
14475
14476 name = bfd_get_section_name (abfd, sec);
14477
14478 if (is_arm_elf_unwind_section_name (abfd, name))
14479 {
14480 hdr->sh_type = SHT_ARM_EXIDX;
14481 hdr->sh_flags |= SHF_LINK_ORDER;
14482 }
14483 return TRUE;
14484 }
14485
14486 /* Handle an ARM specific section when reading an object file. This is
14487 called when bfd_section_from_shdr finds a section with an unknown
14488 type. */
14489
14490 static bfd_boolean
14491 elf32_arm_section_from_shdr (bfd *abfd,
14492 Elf_Internal_Shdr * hdr,
14493 const char *name,
14494 int shindex)
14495 {
14496 /* There ought to be a place to keep ELF backend specific flags, but
14497 at the moment there isn't one. We just keep track of the
14498 sections by their name, instead. Fortunately, the ABI gives
14499 names for all the ARM specific sections, so we will probably get
14500 away with this. */
14501 switch (hdr->sh_type)
14502 {
14503 case SHT_ARM_EXIDX:
14504 case SHT_ARM_PREEMPTMAP:
14505 case SHT_ARM_ATTRIBUTES:
14506 break;
14507
14508 default:
14509 return FALSE;
14510 }
14511
14512 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
14513 return FALSE;
14514
14515 return TRUE;
14516 }
14517
14518 static _arm_elf_section_data *
14519 get_arm_elf_section_data (asection * sec)
14520 {
14521 if (sec && sec->owner && is_arm_elf (sec->owner))
14522 return elf32_arm_section_data (sec);
14523 else
14524 return NULL;
14525 }
14526
14527 typedef struct
14528 {
14529 void *flaginfo;
14530 struct bfd_link_info *info;
14531 asection *sec;
14532 int sec_shndx;
14533 int (*func) (void *, const char *, Elf_Internal_Sym *,
14534 asection *, struct elf_link_hash_entry *);
14535 } output_arch_syminfo;
14536
14537 enum map_symbol_type
14538 {
14539 ARM_MAP_ARM,
14540 ARM_MAP_THUMB,
14541 ARM_MAP_DATA
14542 };
14543
14544
14545 /* Output a single mapping symbol. */
14546
14547 static bfd_boolean
14548 elf32_arm_output_map_sym (output_arch_syminfo *osi,
14549 enum map_symbol_type type,
14550 bfd_vma offset)
14551 {
14552 static const char *names[3] = {"$a", "$t", "$d"};
14553 Elf_Internal_Sym sym;
14554
14555 sym.st_value = osi->sec->output_section->vma
14556 + osi->sec->output_offset
14557 + offset;
14558 sym.st_size = 0;
14559 sym.st_other = 0;
14560 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
14561 sym.st_shndx = osi->sec_shndx;
14562 sym.st_target_internal = 0;
14563 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
14564 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
14565 }
14566
14567 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14568 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
14569
14570 static bfd_boolean
14571 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14572 bfd_boolean is_iplt_entry_p,
14573 union gotplt_union *root_plt,
14574 struct arm_plt_info *arm_plt)
14575 {
14576 struct elf32_arm_link_hash_table *htab;
14577 bfd_vma addr, plt_header_size;
14578
14579 if (root_plt->offset == (bfd_vma) -1)
14580 return TRUE;
14581
14582 htab = elf32_arm_hash_table (osi->info);
14583 if (htab == NULL)
14584 return FALSE;
14585
14586 if (is_iplt_entry_p)
14587 {
14588 osi->sec = htab->root.iplt;
14589 plt_header_size = 0;
14590 }
14591 else
14592 {
14593 osi->sec = htab->root.splt;
14594 plt_header_size = htab->plt_header_size;
14595 }
14596 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14597 (osi->info->output_bfd, osi->sec->output_section));
14598
14599 addr = root_plt->offset & -2;
14600 if (htab->symbian_p)
14601 {
14602 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14603 return FALSE;
14604 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
14605 return FALSE;
14606 }
14607 else if (htab->vxworks_p)
14608 {
14609 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14610 return FALSE;
14611 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
14612 return FALSE;
14613 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
14614 return FALSE;
14615 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
14616 return FALSE;
14617 }
14618 else if (htab->nacl_p)
14619 {
14620 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14621 return FALSE;
14622 }
14623 else
14624 {
14625 bfd_boolean thumb_stub_p;
14626
14627 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14628 if (thumb_stub_p)
14629 {
14630 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
14631 return FALSE;
14632 }
14633 #ifdef FOUR_WORD_PLT
14634 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14635 return FALSE;
14636 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
14637 return FALSE;
14638 #else
14639 /* A three-word PLT with no Thumb thunk contains only Arm code,
14640 so only need to output a mapping symbol for the first PLT entry and
14641 entries with thumb thunks. */
14642 if (thumb_stub_p || addr == plt_header_size)
14643 {
14644 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14645 return FALSE;
14646 }
14647 #endif
14648 }
14649
14650 return TRUE;
14651 }
14652
14653 /* Output mapping symbols for PLT entries associated with H. */
14654
14655 static bfd_boolean
14656 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14657 {
14658 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14659 struct elf32_arm_link_hash_entry *eh;
14660
14661 if (h->root.type == bfd_link_hash_indirect)
14662 return TRUE;
14663
14664 if (h->root.type == bfd_link_hash_warning)
14665 /* When warning symbols are created, they **replace** the "real"
14666 entry in the hash table, thus we never get to see the real
14667 symbol in a hash traversal. So look at it now. */
14668 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14669
14670 eh = (struct elf32_arm_link_hash_entry *) h;
14671 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14672 &h->plt, &eh->plt);
14673 }
14674
14675 /* Output a single local symbol for a generated stub. */
14676
14677 static bfd_boolean
14678 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14679 bfd_vma offset, bfd_vma size)
14680 {
14681 Elf_Internal_Sym sym;
14682
14683 sym.st_value = osi->sec->output_section->vma
14684 + osi->sec->output_offset
14685 + offset;
14686 sym.st_size = size;
14687 sym.st_other = 0;
14688 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14689 sym.st_shndx = osi->sec_shndx;
14690 sym.st_target_internal = 0;
14691 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
14692 }
14693
14694 static bfd_boolean
14695 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
14696 void * in_arg)
14697 {
14698 struct elf32_arm_stub_hash_entry *stub_entry;
14699 asection *stub_sec;
14700 bfd_vma addr;
14701 char *stub_name;
14702 output_arch_syminfo *osi;
14703 const insn_sequence *template_sequence;
14704 enum stub_insn_type prev_type;
14705 int size;
14706 int i;
14707 enum map_symbol_type sym_type;
14708
14709 /* Massage our args to the form they really have. */
14710 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14711 osi = (output_arch_syminfo *) in_arg;
14712
14713 stub_sec = stub_entry->stub_sec;
14714
14715 /* Ensure this stub is attached to the current section being
14716 processed. */
14717 if (stub_sec != osi->sec)
14718 return TRUE;
14719
14720 addr = (bfd_vma) stub_entry->stub_offset;
14721 stub_name = stub_entry->output_name;
14722
14723 template_sequence = stub_entry->stub_template;
14724 switch (template_sequence[0].type)
14725 {
14726 case ARM_TYPE:
14727 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
14728 return FALSE;
14729 break;
14730 case THUMB16_TYPE:
14731 case THUMB32_TYPE:
14732 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
14733 stub_entry->stub_size))
14734 return FALSE;
14735 break;
14736 default:
14737 BFD_FAIL ();
14738 return 0;
14739 }
14740
14741 prev_type = DATA_TYPE;
14742 size = 0;
14743 for (i = 0; i < stub_entry->stub_template_size; i++)
14744 {
14745 switch (template_sequence[i].type)
14746 {
14747 case ARM_TYPE:
14748 sym_type = ARM_MAP_ARM;
14749 break;
14750
14751 case THUMB16_TYPE:
14752 case THUMB32_TYPE:
14753 sym_type = ARM_MAP_THUMB;
14754 break;
14755
14756 case DATA_TYPE:
14757 sym_type = ARM_MAP_DATA;
14758 break;
14759
14760 default:
14761 BFD_FAIL ();
14762 return FALSE;
14763 }
14764
14765 if (template_sequence[i].type != prev_type)
14766 {
14767 prev_type = template_sequence[i].type;
14768 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
14769 return FALSE;
14770 }
14771
14772 switch (template_sequence[i].type)
14773 {
14774 case ARM_TYPE:
14775 case THUMB32_TYPE:
14776 size += 4;
14777 break;
14778
14779 case THUMB16_TYPE:
14780 size += 2;
14781 break;
14782
14783 case DATA_TYPE:
14784 size += 4;
14785 break;
14786
14787 default:
14788 BFD_FAIL ();
14789 return FALSE;
14790 }
14791 }
14792
14793 return TRUE;
14794 }
14795
14796 /* Output mapping symbols for linker generated sections,
14797 and for those data-only sections that do not have a
14798 $d. */
14799
14800 static bfd_boolean
14801 elf32_arm_output_arch_local_syms (bfd *output_bfd,
14802 struct bfd_link_info *info,
14803 void *flaginfo,
14804 int (*func) (void *, const char *,
14805 Elf_Internal_Sym *,
14806 asection *,
14807 struct elf_link_hash_entry *))
14808 {
14809 output_arch_syminfo osi;
14810 struct elf32_arm_link_hash_table *htab;
14811 bfd_vma offset;
14812 bfd_size_type size;
14813 bfd *input_bfd;
14814
14815 htab = elf32_arm_hash_table (info);
14816 if (htab == NULL)
14817 return FALSE;
14818
14819 check_use_blx (htab);
14820
14821 osi.flaginfo = flaginfo;
14822 osi.info = info;
14823 osi.func = func;
14824
14825 /* Add a $d mapping symbol to data-only sections that
14826 don't have any mapping symbol. This may result in (harmless) redundant
14827 mapping symbols. */
14828 for (input_bfd = info->input_bfds;
14829 input_bfd != NULL;
14830 input_bfd = input_bfd->link_next)
14831 {
14832 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
14833 for (osi.sec = input_bfd->sections;
14834 osi.sec != NULL;
14835 osi.sec = osi.sec->next)
14836 {
14837 if (osi.sec->output_section != NULL
14838 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
14839 != 0)
14840 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
14841 == SEC_HAS_CONTENTS
14842 && get_arm_elf_section_data (osi.sec) != NULL
14843 && get_arm_elf_section_data (osi.sec)->mapcount == 0
14844 && osi.sec->size > 0
14845 && (osi.sec->flags & SEC_EXCLUDE) == 0)
14846 {
14847 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14848 (output_bfd, osi.sec->output_section);
14849 if (osi.sec_shndx != (int)SHN_BAD)
14850 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
14851 }
14852 }
14853 }
14854
14855 /* ARM->Thumb glue. */
14856 if (htab->arm_glue_size > 0)
14857 {
14858 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14859 ARM2THUMB_GLUE_SECTION_NAME);
14860
14861 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14862 (output_bfd, osi.sec->output_section);
14863 if (info->shared || htab->root.is_relocatable_executable
14864 || htab->pic_veneer)
14865 size = ARM2THUMB_PIC_GLUE_SIZE;
14866 else if (htab->use_blx)
14867 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
14868 else
14869 size = ARM2THUMB_STATIC_GLUE_SIZE;
14870
14871 for (offset = 0; offset < htab->arm_glue_size; offset += size)
14872 {
14873 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
14874 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
14875 }
14876 }
14877
14878 /* Thumb->ARM glue. */
14879 if (htab->thumb_glue_size > 0)
14880 {
14881 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14882 THUMB2ARM_GLUE_SECTION_NAME);
14883
14884 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14885 (output_bfd, osi.sec->output_section);
14886 size = THUMB2ARM_GLUE_SIZE;
14887
14888 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
14889 {
14890 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
14891 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
14892 }
14893 }
14894
14895 /* ARMv4 BX veneers. */
14896 if (htab->bx_glue_size > 0)
14897 {
14898 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
14899 ARM_BX_GLUE_SECTION_NAME);
14900
14901 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14902 (output_bfd, osi.sec->output_section);
14903
14904 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
14905 }
14906
14907 /* Long calls stubs. */
14908 if (htab->stub_bfd && htab->stub_bfd->sections)
14909 {
14910 asection* stub_sec;
14911
14912 for (stub_sec = htab->stub_bfd->sections;
14913 stub_sec != NULL;
14914 stub_sec = stub_sec->next)
14915 {
14916 /* Ignore non-stub sections. */
14917 if (!strstr (stub_sec->name, STUB_SUFFIX))
14918 continue;
14919
14920 osi.sec = stub_sec;
14921
14922 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14923 (output_bfd, osi.sec->output_section);
14924
14925 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
14926 }
14927 }
14928
14929 /* Finally, output mapping symbols for the PLT. */
14930 if (htab->root.splt && htab->root.splt->size > 0)
14931 {
14932 osi.sec = htab->root.splt;
14933 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
14934 (output_bfd, osi.sec->output_section));
14935
14936 /* Output mapping symbols for the plt header. SymbianOS does not have a
14937 plt header. */
14938 if (htab->vxworks_p)
14939 {
14940 /* VxWorks shared libraries have no PLT header. */
14941 if (!info->shared)
14942 {
14943 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14944 return FALSE;
14945 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
14946 return FALSE;
14947 }
14948 }
14949 else if (htab->nacl_p)
14950 {
14951 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14952 return FALSE;
14953 }
14954 else if (!htab->symbian_p)
14955 {
14956 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14957 return FALSE;
14958 #ifndef FOUR_WORD_PLT
14959 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
14960 return FALSE;
14961 #endif
14962 }
14963 }
14964 if ((htab->root.splt && htab->root.splt->size > 0)
14965 || (htab->root.iplt && htab->root.iplt->size > 0))
14966 {
14967 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
14968 for (input_bfd = info->input_bfds;
14969 input_bfd != NULL;
14970 input_bfd = input_bfd->link_next)
14971 {
14972 struct arm_local_iplt_info **local_iplt;
14973 unsigned int i, num_syms;
14974
14975 local_iplt = elf32_arm_local_iplt (input_bfd);
14976 if (local_iplt != NULL)
14977 {
14978 num_syms = elf_symtab_hdr (input_bfd).sh_info;
14979 for (i = 0; i < num_syms; i++)
14980 if (local_iplt[i] != NULL
14981 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
14982 &local_iplt[i]->root,
14983 &local_iplt[i]->arm))
14984 return FALSE;
14985 }
14986 }
14987 }
14988 if (htab->dt_tlsdesc_plt != 0)
14989 {
14990 /* Mapping symbols for the lazy tls trampoline. */
14991 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
14992 return FALSE;
14993
14994 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
14995 htab->dt_tlsdesc_plt + 24))
14996 return FALSE;
14997 }
14998 if (htab->tls_trampoline != 0)
14999 {
15000 /* Mapping symbols for the tls trampoline. */
15001 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
15002 return FALSE;
15003 #ifdef FOUR_WORD_PLT
15004 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
15005 htab->tls_trampoline + 12))
15006 return FALSE;
15007 #endif
15008 }
15009
15010 return TRUE;
15011 }
15012
15013 /* Allocate target specific section data. */
15014
15015 static bfd_boolean
15016 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
15017 {
15018 if (!sec->used_by_bfd)
15019 {
15020 _arm_elf_section_data *sdata;
15021 bfd_size_type amt = sizeof (*sdata);
15022
15023 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
15024 if (sdata == NULL)
15025 return FALSE;
15026 sec->used_by_bfd = sdata;
15027 }
15028
15029 return _bfd_elf_new_section_hook (abfd, sec);
15030 }
15031
15032
15033 /* Used to order a list of mapping symbols by address. */
15034
15035 static int
15036 elf32_arm_compare_mapping (const void * a, const void * b)
15037 {
15038 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
15039 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
15040
15041 if (amap->vma > bmap->vma)
15042 return 1;
15043 else if (amap->vma < bmap->vma)
15044 return -1;
15045 else if (amap->type > bmap->type)
15046 /* Ensure results do not depend on the host qsort for objects with
15047 multiple mapping symbols at the same address by sorting on type
15048 after vma. */
15049 return 1;
15050 else if (amap->type < bmap->type)
15051 return -1;
15052 else
15053 return 0;
15054 }
15055
15056 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
15057
15058 static unsigned long
15059 offset_prel31 (unsigned long addr, bfd_vma offset)
15060 {
15061 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
15062 }
15063
15064 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
15065 relocations. */
15066
15067 static void
15068 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
15069 {
15070 unsigned long first_word = bfd_get_32 (output_bfd, from);
15071 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
15072
15073 /* High bit of first word is supposed to be zero. */
15074 if ((first_word & 0x80000000ul) == 0)
15075 first_word = offset_prel31 (first_word, offset);
15076
15077 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
15078 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
15079 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
15080 second_word = offset_prel31 (second_word, offset);
15081
15082 bfd_put_32 (output_bfd, first_word, to);
15083 bfd_put_32 (output_bfd, second_word, to + 4);
15084 }
15085
15086 /* Data for make_branch_to_a8_stub(). */
15087
15088 struct a8_branch_to_stub_data
15089 {
15090 asection *writing_section;
15091 bfd_byte *contents;
15092 };
15093
15094
15095 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
15096 places for a particular section. */
15097
15098 static bfd_boolean
15099 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
15100 void *in_arg)
15101 {
15102 struct elf32_arm_stub_hash_entry *stub_entry;
15103 struct a8_branch_to_stub_data *data;
15104 bfd_byte *contents;
15105 unsigned long branch_insn;
15106 bfd_vma veneered_insn_loc, veneer_entry_loc;
15107 bfd_signed_vma branch_offset;
15108 bfd *abfd;
15109 unsigned int target;
15110
15111 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
15112 data = (struct a8_branch_to_stub_data *) in_arg;
15113
15114 if (stub_entry->target_section != data->writing_section
15115 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
15116 return TRUE;
15117
15118 contents = data->contents;
15119
15120 veneered_insn_loc = stub_entry->target_section->output_section->vma
15121 + stub_entry->target_section->output_offset
15122 + stub_entry->target_value;
15123
15124 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
15125 + stub_entry->stub_sec->output_offset
15126 + stub_entry->stub_offset;
15127
15128 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
15129 veneered_insn_loc &= ~3u;
15130
15131 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
15132
15133 abfd = stub_entry->target_section->owner;
15134 target = stub_entry->target_value;
15135
15136 /* We attempt to avoid this condition by setting stubs_always_after_branch
15137 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
15138 This check is just to be on the safe side... */
15139 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
15140 {
15141 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
15142 "allocated in unsafe location"), abfd);
15143 return FALSE;
15144 }
15145
15146 switch (stub_entry->stub_type)
15147 {
15148 case arm_stub_a8_veneer_b:
15149 case arm_stub_a8_veneer_b_cond:
15150 branch_insn = 0xf0009000;
15151 goto jump24;
15152
15153 case arm_stub_a8_veneer_blx:
15154 branch_insn = 0xf000e800;
15155 goto jump24;
15156
15157 case arm_stub_a8_veneer_bl:
15158 {
15159 unsigned int i1, j1, i2, j2, s;
15160
15161 branch_insn = 0xf000d000;
15162
15163 jump24:
15164 if (branch_offset < -16777216 || branch_offset > 16777214)
15165 {
15166 /* There's not much we can do apart from complain if this
15167 happens. */
15168 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
15169 "of range (input file too large)"), abfd);
15170 return FALSE;
15171 }
15172
15173 /* i1 = not(j1 eor s), so:
15174 not i1 = j1 eor s
15175 j1 = (not i1) eor s. */
15176
15177 branch_insn |= (branch_offset >> 1) & 0x7ff;
15178 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
15179 i2 = (branch_offset >> 22) & 1;
15180 i1 = (branch_offset >> 23) & 1;
15181 s = (branch_offset >> 24) & 1;
15182 j1 = (!i1) ^ s;
15183 j2 = (!i2) ^ s;
15184 branch_insn |= j2 << 11;
15185 branch_insn |= j1 << 13;
15186 branch_insn |= s << 26;
15187 }
15188 break;
15189
15190 default:
15191 BFD_FAIL ();
15192 return FALSE;
15193 }
15194
15195 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
15196 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
15197
15198 return TRUE;
15199 }
15200
15201 /* Do code byteswapping. Return FALSE afterwards so that the section is
15202 written out as normal. */
15203
15204 static bfd_boolean
15205 elf32_arm_write_section (bfd *output_bfd,
15206 struct bfd_link_info *link_info,
15207 asection *sec,
15208 bfd_byte *contents)
15209 {
15210 unsigned int mapcount, errcount;
15211 _arm_elf_section_data *arm_data;
15212 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
15213 elf32_arm_section_map *map;
15214 elf32_vfp11_erratum_list *errnode;
15215 bfd_vma ptr;
15216 bfd_vma end;
15217 bfd_vma offset = sec->output_section->vma + sec->output_offset;
15218 bfd_byte tmp;
15219 unsigned int i;
15220
15221 if (globals == NULL)
15222 return FALSE;
15223
15224 /* If this section has not been allocated an _arm_elf_section_data
15225 structure then we cannot record anything. */
15226 arm_data = get_arm_elf_section_data (sec);
15227 if (arm_data == NULL)
15228 return FALSE;
15229
15230 mapcount = arm_data->mapcount;
15231 map = arm_data->map;
15232 errcount = arm_data->erratumcount;
15233
15234 if (errcount != 0)
15235 {
15236 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
15237
15238 for (errnode = arm_data->erratumlist; errnode != 0;
15239 errnode = errnode->next)
15240 {
15241 bfd_vma target = errnode->vma - offset;
15242
15243 switch (errnode->type)
15244 {
15245 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
15246 {
15247 bfd_vma branch_to_veneer;
15248 /* Original condition code of instruction, plus bit mask for
15249 ARM B instruction. */
15250 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
15251 | 0x0a000000;
15252
15253 /* The instruction is before the label. */
15254 target -= 4;
15255
15256 /* Above offset included in -4 below. */
15257 branch_to_veneer = errnode->u.b.veneer->vma
15258 - errnode->vma - 4;
15259
15260 if ((signed) branch_to_veneer < -(1 << 25)
15261 || (signed) branch_to_veneer >= (1 << 25))
15262 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15263 "range"), output_bfd);
15264
15265 insn |= (branch_to_veneer >> 2) & 0xffffff;
15266 contents[endianflip ^ target] = insn & 0xff;
15267 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15268 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15269 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15270 }
15271 break;
15272
15273 case VFP11_ERRATUM_ARM_VENEER:
15274 {
15275 bfd_vma branch_from_veneer;
15276 unsigned int insn;
15277
15278 /* Take size of veneer into account. */
15279 branch_from_veneer = errnode->u.v.branch->vma
15280 - errnode->vma - 12;
15281
15282 if ((signed) branch_from_veneer < -(1 << 25)
15283 || (signed) branch_from_veneer >= (1 << 25))
15284 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
15285 "range"), output_bfd);
15286
15287 /* Original instruction. */
15288 insn = errnode->u.v.branch->u.b.vfp_insn;
15289 contents[endianflip ^ target] = insn & 0xff;
15290 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
15291 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
15292 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
15293
15294 /* Branch back to insn after original insn. */
15295 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
15296 contents[endianflip ^ (target + 4)] = insn & 0xff;
15297 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
15298 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
15299 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
15300 }
15301 break;
15302
15303 default:
15304 abort ();
15305 }
15306 }
15307 }
15308
15309 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
15310 {
15311 arm_unwind_table_edit *edit_node
15312 = arm_data->u.exidx.unwind_edit_list;
15313 /* Now, sec->size is the size of the section we will write. The original
15314 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
15315 markers) was sec->rawsize. (This isn't the case if we perform no
15316 edits, then rawsize will be zero and we should use size). */
15317 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
15318 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
15319 unsigned int in_index, out_index;
15320 bfd_vma add_to_offsets = 0;
15321
15322 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
15323 {
15324 if (edit_node)
15325 {
15326 unsigned int edit_index = edit_node->index;
15327
15328 if (in_index < edit_index && in_index * 8 < input_size)
15329 {
15330 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15331 contents + in_index * 8, add_to_offsets);
15332 out_index++;
15333 in_index++;
15334 }
15335 else if (in_index == edit_index
15336 || (in_index * 8 >= input_size
15337 && edit_index == UINT_MAX))
15338 {
15339 switch (edit_node->type)
15340 {
15341 case DELETE_EXIDX_ENTRY:
15342 in_index++;
15343 add_to_offsets += 8;
15344 break;
15345
15346 case INSERT_EXIDX_CANTUNWIND_AT_END:
15347 {
15348 asection *text_sec = edit_node->linked_section;
15349 bfd_vma text_offset = text_sec->output_section->vma
15350 + text_sec->output_offset
15351 + text_sec->size;
15352 bfd_vma exidx_offset = offset + out_index * 8;
15353 unsigned long prel31_offset;
15354
15355 /* Note: this is meant to be equivalent to an
15356 R_ARM_PREL31 relocation. These synthetic
15357 EXIDX_CANTUNWIND markers are not relocated by the
15358 usual BFD method. */
15359 prel31_offset = (text_offset - exidx_offset)
15360 & 0x7ffffffful;
15361
15362 /* First address we can't unwind. */
15363 bfd_put_32 (output_bfd, prel31_offset,
15364 &edited_contents[out_index * 8]);
15365
15366 /* Code for EXIDX_CANTUNWIND. */
15367 bfd_put_32 (output_bfd, 0x1,
15368 &edited_contents[out_index * 8 + 4]);
15369
15370 out_index++;
15371 add_to_offsets -= 8;
15372 }
15373 break;
15374 }
15375
15376 edit_node = edit_node->next;
15377 }
15378 }
15379 else
15380 {
15381 /* No more edits, copy remaining entries verbatim. */
15382 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15383 contents + in_index * 8, add_to_offsets);
15384 out_index++;
15385 in_index++;
15386 }
15387 }
15388
15389 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15390 bfd_set_section_contents (output_bfd, sec->output_section,
15391 edited_contents,
15392 (file_ptr) sec->output_offset, sec->size);
15393
15394 return TRUE;
15395 }
15396
15397 /* Fix code to point to Cortex-A8 erratum stubs. */
15398 if (globals->fix_cortex_a8)
15399 {
15400 struct a8_branch_to_stub_data data;
15401
15402 data.writing_section = sec;
15403 data.contents = contents;
15404
15405 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15406 &data);
15407 }
15408
15409 if (mapcount == 0)
15410 return FALSE;
15411
15412 if (globals->byteswap_code)
15413 {
15414 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
15415
15416 ptr = map[0].vma;
15417 for (i = 0; i < mapcount; i++)
15418 {
15419 if (i == mapcount - 1)
15420 end = sec->size;
15421 else
15422 end = map[i + 1].vma;
15423
15424 switch (map[i].type)
15425 {
15426 case 'a':
15427 /* Byte swap code words. */
15428 while (ptr + 3 < end)
15429 {
15430 tmp = contents[ptr];
15431 contents[ptr] = contents[ptr + 3];
15432 contents[ptr + 3] = tmp;
15433 tmp = contents[ptr + 1];
15434 contents[ptr + 1] = contents[ptr + 2];
15435 contents[ptr + 2] = tmp;
15436 ptr += 4;
15437 }
15438 break;
15439
15440 case 't':
15441 /* Byte swap code halfwords. */
15442 while (ptr + 1 < end)
15443 {
15444 tmp = contents[ptr];
15445 contents[ptr] = contents[ptr + 1];
15446 contents[ptr + 1] = tmp;
15447 ptr += 2;
15448 }
15449 break;
15450
15451 case 'd':
15452 /* Leave data alone. */
15453 break;
15454 }
15455 ptr = end;
15456 }
15457 }
15458
15459 free (map);
15460 arm_data->mapcount = -1;
15461 arm_data->mapsize = 0;
15462 arm_data->map = NULL;
15463
15464 return FALSE;
15465 }
15466
15467 /* Mangle thumb function symbols as we read them in. */
15468
15469 static bfd_boolean
15470 elf32_arm_swap_symbol_in (bfd * abfd,
15471 const void *psrc,
15472 const void *pshn,
15473 Elf_Internal_Sym *dst)
15474 {
15475 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15476 return FALSE;
15477
15478 /* New EABI objects mark thumb function symbols by setting the low bit of
15479 the address. */
15480 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
15481 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
15482 {
15483 if (dst->st_value & 1)
15484 {
15485 dst->st_value &= ~(bfd_vma) 1;
15486 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15487 }
15488 else
15489 dst->st_target_internal = ST_BRANCH_TO_ARM;
15490 }
15491 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15492 {
15493 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15494 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15495 }
15496 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15497 dst->st_target_internal = ST_BRANCH_LONG;
15498 else
15499 dst->st_target_internal = ST_BRANCH_UNKNOWN;
15500
15501 return TRUE;
15502 }
15503
15504
15505 /* Mangle thumb function symbols as we write them out. */
15506
15507 static void
15508 elf32_arm_swap_symbol_out (bfd *abfd,
15509 const Elf_Internal_Sym *src,
15510 void *cdst,
15511 void *shndx)
15512 {
15513 Elf_Internal_Sym newsym;
15514
15515 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15516 of the address set, as per the new EABI. We do this unconditionally
15517 because objcopy does not set the elf header flags until after
15518 it writes out the symbol table. */
15519 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
15520 {
15521 newsym = *src;
15522 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15523 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
15524 if (newsym.st_shndx != SHN_UNDEF)
15525 {
15526 /* Do this only for defined symbols. At link type, the static
15527 linker will simulate the work of dynamic linker of resolving
15528 symbols and will carry over the thumbness of found symbols to
15529 the output symbol table. It's not clear how it happens, but
15530 the thumbness of undefined symbols can well be different at
15531 runtime, and writing '1' for them will be confusing for users
15532 and possibly for dynamic linker itself.
15533 */
15534 newsym.st_value |= 1;
15535 }
15536
15537 src = &newsym;
15538 }
15539 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15540 }
15541
15542 /* Add the PT_ARM_EXIDX program header. */
15543
15544 static bfd_boolean
15545 elf32_arm_modify_segment_map (bfd *abfd,
15546 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15547 {
15548 struct elf_segment_map *m;
15549 asection *sec;
15550
15551 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15552 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15553 {
15554 /* If there is already a PT_ARM_EXIDX header, then we do not
15555 want to add another one. This situation arises when running
15556 "strip"; the input binary already has the header. */
15557 m = elf_seg_map (abfd);
15558 while (m && m->p_type != PT_ARM_EXIDX)
15559 m = m->next;
15560 if (!m)
15561 {
15562 m = (struct elf_segment_map *)
15563 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
15564 if (m == NULL)
15565 return FALSE;
15566 m->p_type = PT_ARM_EXIDX;
15567 m->count = 1;
15568 m->sections[0] = sec;
15569
15570 m->next = elf_seg_map (abfd);
15571 elf_seg_map (abfd) = m;
15572 }
15573 }
15574
15575 return TRUE;
15576 }
15577
15578 /* We may add a PT_ARM_EXIDX program header. */
15579
15580 static int
15581 elf32_arm_additional_program_headers (bfd *abfd,
15582 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15583 {
15584 asection *sec;
15585
15586 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15587 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15588 return 1;
15589 else
15590 return 0;
15591 }
15592
15593 /* Hook called by the linker routine which adds symbols from an object
15594 file. */
15595
15596 static bfd_boolean
15597 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15598 Elf_Internal_Sym *sym, const char **namep,
15599 flagword *flagsp, asection **secp, bfd_vma *valp)
15600 {
15601 if ((abfd->flags & DYNAMIC) == 0
15602 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
15603 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
15604 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
15605
15606 if (elf32_arm_hash_table (info)->vxworks_p
15607 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15608 flagsp, secp, valp))
15609 return FALSE;
15610
15611 return TRUE;
15612 }
15613
15614 /* We use this to override swap_symbol_in and swap_symbol_out. */
15615 const struct elf_size_info elf32_arm_size_info =
15616 {
15617 sizeof (Elf32_External_Ehdr),
15618 sizeof (Elf32_External_Phdr),
15619 sizeof (Elf32_External_Shdr),
15620 sizeof (Elf32_External_Rel),
15621 sizeof (Elf32_External_Rela),
15622 sizeof (Elf32_External_Sym),
15623 sizeof (Elf32_External_Dyn),
15624 sizeof (Elf_External_Note),
15625 4,
15626 1,
15627 32, 2,
15628 ELFCLASS32, EV_CURRENT,
15629 bfd_elf32_write_out_phdrs,
15630 bfd_elf32_write_shdrs_and_ehdr,
15631 bfd_elf32_checksum_contents,
15632 bfd_elf32_write_relocs,
15633 elf32_arm_swap_symbol_in,
15634 elf32_arm_swap_symbol_out,
15635 bfd_elf32_slurp_reloc_table,
15636 bfd_elf32_slurp_symbol_table,
15637 bfd_elf32_swap_dyn_in,
15638 bfd_elf32_swap_dyn_out,
15639 bfd_elf32_swap_reloc_in,
15640 bfd_elf32_swap_reloc_out,
15641 bfd_elf32_swap_reloca_in,
15642 bfd_elf32_swap_reloca_out
15643 };
15644
15645 #define ELF_ARCH bfd_arch_arm
15646 #define ELF_TARGET_ID ARM_ELF_DATA
15647 #define ELF_MACHINE_CODE EM_ARM
15648 #ifdef __QNXTARGET__
15649 #define ELF_MAXPAGESIZE 0x1000
15650 #else
15651 #define ELF_MAXPAGESIZE 0x8000
15652 #endif
15653 #define ELF_MINPAGESIZE 0x1000
15654 #define ELF_COMMONPAGESIZE 0x1000
15655
15656 #define bfd_elf32_mkobject elf32_arm_mkobject
15657
15658 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
15659 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
15660 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
15661 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
15662 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
15663 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
15664 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
15665 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
15666 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
15667 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
15668 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
15669 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
15670 #define bfd_elf32_bfd_final_link elf32_arm_final_link
15671
15672 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
15673 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
15674 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
15675 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
15676 #define elf_backend_check_relocs elf32_arm_check_relocs
15677 #define elf_backend_relocate_section elf32_arm_relocate_section
15678 #define elf_backend_write_section elf32_arm_write_section
15679 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
15680 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
15681 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
15682 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
15683 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
15684 #define elf_backend_always_size_sections elf32_arm_always_size_sections
15685 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
15686 #define elf_backend_post_process_headers elf32_arm_post_process_headers
15687 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
15688 #define elf_backend_object_p elf32_arm_object_p
15689 #define elf_backend_fake_sections elf32_arm_fake_sections
15690 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
15691 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15692 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
15693 #define elf_backend_size_info elf32_arm_size_info
15694 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15695 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
15696 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
15697 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
15698 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
15699
15700 #define elf_backend_can_refcount 1
15701 #define elf_backend_can_gc_sections 1
15702 #define elf_backend_plt_readonly 1
15703 #define elf_backend_want_got_plt 1
15704 #define elf_backend_want_plt_sym 0
15705 #define elf_backend_may_use_rel_p 1
15706 #define elf_backend_may_use_rela_p 0
15707 #define elf_backend_default_use_rela_p 0
15708
15709 #define elf_backend_got_header_size 12
15710
15711 #undef elf_backend_obj_attrs_vendor
15712 #define elf_backend_obj_attrs_vendor "aeabi"
15713 #undef elf_backend_obj_attrs_section
15714 #define elf_backend_obj_attrs_section ".ARM.attributes"
15715 #undef elf_backend_obj_attrs_arg_type
15716 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
15717 #undef elf_backend_obj_attrs_section_type
15718 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
15719 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
15720 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
15721
15722 #include "elf32-target.h"
15723
15724 /* Native Client targets. */
15725
15726 #undef TARGET_LITTLE_SYM
15727 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_nacl_vec
15728 #undef TARGET_LITTLE_NAME
15729 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
15730 #undef TARGET_BIG_SYM
15731 #define TARGET_BIG_SYM bfd_elf32_bigarm_nacl_vec
15732 #undef TARGET_BIG_NAME
15733 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
15734
15735 /* Like elf32_arm_link_hash_table_create -- but overrides
15736 appropriately for NaCl. */
15737
15738 static struct bfd_link_hash_table *
15739 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
15740 {
15741 struct bfd_link_hash_table *ret;
15742
15743 ret = elf32_arm_link_hash_table_create (abfd);
15744 if (ret)
15745 {
15746 struct elf32_arm_link_hash_table *htab
15747 = (struct elf32_arm_link_hash_table *) ret;
15748
15749 htab->nacl_p = 1;
15750
15751 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
15752 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
15753 }
15754 return ret;
15755 }
15756
15757 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
15758 really need to use elf32_arm_modify_segment_map. But we do it
15759 anyway just to reduce gratuitous differences with the stock ARM backend. */
15760
15761 static bfd_boolean
15762 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
15763 {
15764 return (elf32_arm_modify_segment_map (abfd, info)
15765 && nacl_modify_segment_map (abfd, info));
15766 }
15767
15768 #undef elf32_bed
15769 #define elf32_bed elf32_arm_nacl_bed
15770 #undef bfd_elf32_bfd_link_hash_table_create
15771 #define bfd_elf32_bfd_link_hash_table_create \
15772 elf32_arm_nacl_link_hash_table_create
15773 #undef elf_backend_plt_alignment
15774 #define elf_backend_plt_alignment 4
15775 #undef elf_backend_modify_segment_map
15776 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
15777 #undef elf_backend_modify_program_headers
15778 #define elf_backend_modify_program_headers nacl_modify_program_headers
15779
15780 #undef ELF_MAXPAGESIZE
15781 #define ELF_MAXPAGESIZE 0x10000
15782
15783 #include "elf32-target.h"
15784
15785 /* Reset to defaults. */
15786 #undef elf_backend_plt_alignment
15787 #undef elf_backend_modify_segment_map
15788 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15789 #undef elf_backend_modify_program_headers
15790
15791 /* VxWorks Targets. */
15792
15793 #undef TARGET_LITTLE_SYM
15794 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
15795 #undef TARGET_LITTLE_NAME
15796 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
15797 #undef TARGET_BIG_SYM
15798 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
15799 #undef TARGET_BIG_NAME
15800 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
15801
15802 /* Like elf32_arm_link_hash_table_create -- but overrides
15803 appropriately for VxWorks. */
15804
15805 static struct bfd_link_hash_table *
15806 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
15807 {
15808 struct bfd_link_hash_table *ret;
15809
15810 ret = elf32_arm_link_hash_table_create (abfd);
15811 if (ret)
15812 {
15813 struct elf32_arm_link_hash_table *htab
15814 = (struct elf32_arm_link_hash_table *) ret;
15815 htab->use_rel = 0;
15816 htab->vxworks_p = 1;
15817 }
15818 return ret;
15819 }
15820
15821 static void
15822 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
15823 {
15824 elf32_arm_final_write_processing (abfd, linker);
15825 elf_vxworks_final_write_processing (abfd, linker);
15826 }
15827
15828 #undef elf32_bed
15829 #define elf32_bed elf32_arm_vxworks_bed
15830
15831 #undef bfd_elf32_bfd_link_hash_table_create
15832 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
15833 #undef elf_backend_final_write_processing
15834 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
15835 #undef elf_backend_emit_relocs
15836 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
15837
15838 #undef elf_backend_may_use_rel_p
15839 #define elf_backend_may_use_rel_p 0
15840 #undef elf_backend_may_use_rela_p
15841 #define elf_backend_may_use_rela_p 1
15842 #undef elf_backend_default_use_rela_p
15843 #define elf_backend_default_use_rela_p 1
15844 #undef elf_backend_want_plt_sym
15845 #define elf_backend_want_plt_sym 1
15846 #undef ELF_MAXPAGESIZE
15847 #define ELF_MAXPAGESIZE 0x1000
15848
15849 #include "elf32-target.h"
15850
15851
15852 /* Merge backend specific data from an object file to the output
15853 object file when linking. */
15854
15855 static bfd_boolean
15856 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
15857 {
15858 flagword out_flags;
15859 flagword in_flags;
15860 bfd_boolean flags_compatible = TRUE;
15861 asection *sec;
15862
15863 /* Check if we have the same endianness. */
15864 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15865 return FALSE;
15866
15867 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
15868 return TRUE;
15869
15870 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
15871 return FALSE;
15872
15873 /* The input BFD must have had its flags initialised. */
15874 /* The following seems bogus to me -- The flags are initialized in
15875 the assembler but I don't think an elf_flags_init field is
15876 written into the object. */
15877 /* BFD_ASSERT (elf_flags_init (ibfd)); */
15878
15879 in_flags = elf_elfheader (ibfd)->e_flags;
15880 out_flags = elf_elfheader (obfd)->e_flags;
15881
15882 /* In theory there is no reason why we couldn't handle this. However
15883 in practice it isn't even close to working and there is no real
15884 reason to want it. */
15885 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
15886 && !(ibfd->flags & DYNAMIC)
15887 && (in_flags & EF_ARM_BE8))
15888 {
15889 _bfd_error_handler (_("error: %B is already in final BE8 format"),
15890 ibfd);
15891 return FALSE;
15892 }
15893
15894 if (!elf_flags_init (obfd))
15895 {
15896 /* If the input is the default architecture and had the default
15897 flags then do not bother setting the flags for the output
15898 architecture, instead allow future merges to do this. If no
15899 future merges ever set these flags then they will retain their
15900 uninitialised values, which surprise surprise, correspond
15901 to the default values. */
15902 if (bfd_get_arch_info (ibfd)->the_default
15903 && elf_elfheader (ibfd)->e_flags == 0)
15904 return TRUE;
15905
15906 elf_flags_init (obfd) = TRUE;
15907 elf_elfheader (obfd)->e_flags = in_flags;
15908
15909 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15910 && bfd_get_arch_info (obfd)->the_default)
15911 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
15912
15913 return TRUE;
15914 }
15915
15916 /* Determine what should happen if the input ARM architecture
15917 does not match the output ARM architecture. */
15918 if (! bfd_arm_merge_machines (ibfd, obfd))
15919 return FALSE;
15920
15921 /* Identical flags must be compatible. */
15922 if (in_flags == out_flags)
15923 return TRUE;
15924
15925 /* Check to see if the input BFD actually contains any sections. If
15926 not, its flags may not have been initialised either, but it
15927 cannot actually cause any incompatiblity. Do not short-circuit
15928 dynamic objects; their section list may be emptied by
15929 elf_link_add_object_symbols.
15930
15931 Also check to see if there are no code sections in the input.
15932 In this case there is no need to check for code specific flags.
15933 XXX - do we need to worry about floating-point format compatability
15934 in data sections ? */
15935 if (!(ibfd->flags & DYNAMIC))
15936 {
15937 bfd_boolean null_input_bfd = TRUE;
15938 bfd_boolean only_data_sections = TRUE;
15939
15940 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15941 {
15942 /* Ignore synthetic glue sections. */
15943 if (strcmp (sec->name, ".glue_7")
15944 && strcmp (sec->name, ".glue_7t"))
15945 {
15946 if ((bfd_get_section_flags (ibfd, sec)
15947 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15948 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15949 only_data_sections = FALSE;
15950
15951 null_input_bfd = FALSE;
15952 break;
15953 }
15954 }
15955
15956 if (null_input_bfd || only_data_sections)
15957 return TRUE;
15958 }
15959
15960 /* Complain about various flag mismatches. */
15961 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
15962 EF_ARM_EABI_VERSION (out_flags)))
15963 {
15964 _bfd_error_handler
15965 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
15966 ibfd, obfd,
15967 (in_flags & EF_ARM_EABIMASK) >> 24,
15968 (out_flags & EF_ARM_EABIMASK) >> 24);
15969 return FALSE;
15970 }
15971
15972 /* Not sure what needs to be checked for EABI versions >= 1. */
15973 /* VxWorks libraries do not use these flags. */
15974 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
15975 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
15976 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
15977 {
15978 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
15979 {
15980 _bfd_error_handler
15981 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
15982 ibfd, obfd,
15983 in_flags & EF_ARM_APCS_26 ? 26 : 32,
15984 out_flags & EF_ARM_APCS_26 ? 26 : 32);
15985 flags_compatible = FALSE;
15986 }
15987
15988 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
15989 {
15990 if (in_flags & EF_ARM_APCS_FLOAT)
15991 _bfd_error_handler
15992 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
15993 ibfd, obfd);
15994 else
15995 _bfd_error_handler
15996 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
15997 ibfd, obfd);
15998
15999 flags_compatible = FALSE;
16000 }
16001
16002 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
16003 {
16004 if (in_flags & EF_ARM_VFP_FLOAT)
16005 _bfd_error_handler
16006 (_("error: %B uses VFP instructions, whereas %B does not"),
16007 ibfd, obfd);
16008 else
16009 _bfd_error_handler
16010 (_("error: %B uses FPA instructions, whereas %B does not"),
16011 ibfd, obfd);
16012
16013 flags_compatible = FALSE;
16014 }
16015
16016 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
16017 {
16018 if (in_flags & EF_ARM_MAVERICK_FLOAT)
16019 _bfd_error_handler
16020 (_("error: %B uses Maverick instructions, whereas %B does not"),
16021 ibfd, obfd);
16022 else
16023 _bfd_error_handler
16024 (_("error: %B does not use Maverick instructions, whereas %B does"),
16025 ibfd, obfd);
16026
16027 flags_compatible = FALSE;
16028 }
16029
16030 #ifdef EF_ARM_SOFT_FLOAT
16031 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
16032 {
16033 /* We can allow interworking between code that is VFP format
16034 layout, and uses either soft float or integer regs for
16035 passing floating point arguments and results. We already
16036 know that the APCS_FLOAT flags match; similarly for VFP
16037 flags. */
16038 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
16039 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
16040 {
16041 if (in_flags & EF_ARM_SOFT_FLOAT)
16042 _bfd_error_handler
16043 (_("error: %B uses software FP, whereas %B uses hardware FP"),
16044 ibfd, obfd);
16045 else
16046 _bfd_error_handler
16047 (_("error: %B uses hardware FP, whereas %B uses software FP"),
16048 ibfd, obfd);
16049
16050 flags_compatible = FALSE;
16051 }
16052 }
16053 #endif
16054
16055 /* Interworking mismatch is only a warning. */
16056 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
16057 {
16058 if (in_flags & EF_ARM_INTERWORK)
16059 {
16060 _bfd_error_handler
16061 (_("Warning: %B supports interworking, whereas %B does not"),
16062 ibfd, obfd);
16063 }
16064 else
16065 {
16066 _bfd_error_handler
16067 (_("Warning: %B does not support interworking, whereas %B does"),
16068 ibfd, obfd);
16069 }
16070 }
16071 }
16072
16073 return flags_compatible;
16074 }
16075
16076
16077 /* Symbian OS Targets. */
16078
16079 #undef TARGET_LITTLE_SYM
16080 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
16081 #undef TARGET_LITTLE_NAME
16082 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
16083 #undef TARGET_BIG_SYM
16084 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
16085 #undef TARGET_BIG_NAME
16086 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
16087
16088 /* Like elf32_arm_link_hash_table_create -- but overrides
16089 appropriately for Symbian OS. */
16090
16091 static struct bfd_link_hash_table *
16092 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
16093 {
16094 struct bfd_link_hash_table *ret;
16095
16096 ret = elf32_arm_link_hash_table_create (abfd);
16097 if (ret)
16098 {
16099 struct elf32_arm_link_hash_table *htab
16100 = (struct elf32_arm_link_hash_table *)ret;
16101 /* There is no PLT header for Symbian OS. */
16102 htab->plt_header_size = 0;
16103 /* The PLT entries are each one instruction and one word. */
16104 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
16105 htab->symbian_p = 1;
16106 /* Symbian uses armv5t or above, so use_blx is always true. */
16107 htab->use_blx = 1;
16108 htab->root.is_relocatable_executable = 1;
16109 }
16110 return ret;
16111 }
16112
16113 static const struct bfd_elf_special_section
16114 elf32_arm_symbian_special_sections[] =
16115 {
16116 /* In a BPABI executable, the dynamic linking sections do not go in
16117 the loadable read-only segment. The post-linker may wish to
16118 refer to these sections, but they are not part of the final
16119 program image. */
16120 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
16121 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
16122 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
16123 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
16124 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
16125 /* These sections do not need to be writable as the SymbianOS
16126 postlinker will arrange things so that no dynamic relocation is
16127 required. */
16128 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
16129 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
16130 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
16131 { NULL, 0, 0, 0, 0 }
16132 };
16133
16134 static void
16135 elf32_arm_symbian_begin_write_processing (bfd *abfd,
16136 struct bfd_link_info *link_info)
16137 {
16138 /* BPABI objects are never loaded directly by an OS kernel; they are
16139 processed by a postlinker first, into an OS-specific format. If
16140 the D_PAGED bit is set on the file, BFD will align segments on
16141 page boundaries, so that an OS can directly map the file. With
16142 BPABI objects, that just results in wasted space. In addition,
16143 because we clear the D_PAGED bit, map_sections_to_segments will
16144 recognize that the program headers should not be mapped into any
16145 loadable segment. */
16146 abfd->flags &= ~D_PAGED;
16147 elf32_arm_begin_write_processing (abfd, link_info);
16148 }
16149
16150 static bfd_boolean
16151 elf32_arm_symbian_modify_segment_map (bfd *abfd,
16152 struct bfd_link_info *info)
16153 {
16154 struct elf_segment_map *m;
16155 asection *dynsec;
16156
16157 /* BPABI shared libraries and executables should have a PT_DYNAMIC
16158 segment. However, because the .dynamic section is not marked
16159 with SEC_LOAD, the generic ELF code will not create such a
16160 segment. */
16161 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
16162 if (dynsec)
16163 {
16164 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
16165 if (m->p_type == PT_DYNAMIC)
16166 break;
16167
16168 if (m == NULL)
16169 {
16170 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
16171 m->next = elf_seg_map (abfd);
16172 elf_seg_map (abfd) = m;
16173 }
16174 }
16175
16176 /* Also call the generic arm routine. */
16177 return elf32_arm_modify_segment_map (abfd, info);
16178 }
16179
16180 /* Return address for Ith PLT stub in section PLT, for relocation REL
16181 or (bfd_vma) -1 if it should not be included. */
16182
16183 static bfd_vma
16184 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
16185 const arelent *rel ATTRIBUTE_UNUSED)
16186 {
16187 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
16188 }
16189
16190
16191 #undef elf32_bed
16192 #define elf32_bed elf32_arm_symbian_bed
16193
16194 /* The dynamic sections are not allocated on SymbianOS; the postlinker
16195 will process them and then discard them. */
16196 #undef ELF_DYNAMIC_SEC_FLAGS
16197 #define ELF_DYNAMIC_SEC_FLAGS \
16198 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
16199
16200 #undef elf_backend_emit_relocs
16201
16202 #undef bfd_elf32_bfd_link_hash_table_create
16203 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
16204 #undef elf_backend_special_sections
16205 #define elf_backend_special_sections elf32_arm_symbian_special_sections
16206 #undef elf_backend_begin_write_processing
16207 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
16208 #undef elf_backend_final_write_processing
16209 #define elf_backend_final_write_processing elf32_arm_final_write_processing
16210
16211 #undef elf_backend_modify_segment_map
16212 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
16213
16214 /* There is no .got section for BPABI objects, and hence no header. */
16215 #undef elf_backend_got_header_size
16216 #define elf_backend_got_header_size 0
16217
16218 /* Similarly, there is no .got.plt section. */
16219 #undef elf_backend_want_got_plt
16220 #define elf_backend_want_got_plt 0
16221
16222 #undef elf_backend_plt_sym_val
16223 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
16224
16225 #undef elf_backend_may_use_rel_p
16226 #define elf_backend_may_use_rel_p 1
16227 #undef elf_backend_may_use_rela_p
16228 #define elf_backend_may_use_rela_p 0
16229 #undef elf_backend_default_use_rela_p
16230 #define elf_backend_default_use_rela_p 0
16231 #undef elf_backend_want_plt_sym
16232 #define elf_backend_want_plt_sym 0
16233 #undef ELF_MAXPAGESIZE
16234 #define ELF_MAXPAGESIZE 0x8000
16235
16236 #include "elf32-target.h"
This page took 0.406822 seconds and 4 git commands to generate.