* cris.h (R_CRIS_32_TPREL): Correct comment.
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
34
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
38 ((HTAB)->use_rel \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
41
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
45 ((HTAB)->use_rel \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
48
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
52 ((HTAB)->use_rel \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
55
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
58
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
61
62 static struct elf_backend_data elf32_arm_vxworks_bed;
63
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
66 in that slot. */
67
68 static reloc_howto_type elf32_arm_howto_table_1[] =
69 {
70 /* No relocation. */
71 HOWTO (R_ARM_NONE, /* type */
72 0, /* rightshift */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
74 0, /* bitsize */
75 FALSE, /* pc_relative */
76 0, /* bitpos */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
81 0, /* src_mask */
82 0, /* dst_mask */
83 FALSE), /* pcrel_offset */
84
85 HOWTO (R_ARM_PC24, /* type */
86 2, /* rightshift */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
88 24, /* bitsize */
89 TRUE, /* pc_relative */
90 0, /* bitpos */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
98
99 /* 32 bit absolute */
100 HOWTO (R_ARM_ABS32, /* type */
101 0, /* rightshift */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
103 32, /* bitsize */
104 FALSE, /* pc_relative */
105 0, /* bitpos */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
113
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
116 0, /* rightshift */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
118 32, /* bitsize */
119 TRUE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
128
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0, /* type */
131 0, /* rightshift */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 TRUE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_dont,/* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
143
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
146 0, /* rightshift */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
148 16, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 12, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_ARM_THM_ABS5, /* type */
175 6, /* rightshift */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
177 5, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 /* 8 bit absolute */
189 HOWTO (R_ARM_ABS8, /* type */
190 0, /* rightshift */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
192 8, /* bitsize */
193 FALSE, /* pc_relative */
194 0, /* bitpos */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
202
203 HOWTO (R_ARM_SBREL32, /* type */
204 0, /* rightshift */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
206 32, /* bitsize */
207 FALSE, /* pc_relative */
208 0, /* bitpos */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
216
217 HOWTO (R_ARM_THM_CALL, /* type */
218 1, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 25, /* bitsize */
221 TRUE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
230
231 HOWTO (R_ARM_THM_PC8, /* type */
232 1, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 8, /* bitsize */
235 TRUE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
244
245 HOWTO (R_ARM_BREL_ADJ, /* type */
246 1, /* rightshift */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 HOWTO (R_ARM_SWI24, /* type */
260 0, /* rightshift */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 HOWTO (R_ARM_THM_SWI8, /* type */
274 0, /* rightshift */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
276 0, /* bitsize */
277 FALSE, /* pc_relative */
278 0, /* bitpos */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
286
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
289 2, /* rightshift */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
291 25, /* bitsize */
292 TRUE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
301
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
304 2, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 22, /* bitsize */
307 TRUE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
316
317 /* Dynamic TLS relocations. */
318
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* Relocs used in ARM Linux */
362
363 HOWTO (R_ARM_COPY, /* type */
364 0, /* rightshift */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
366 32, /* bitsize */
367 FALSE, /* pc_relative */
368 0, /* bitpos */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376
377 HOWTO (R_ARM_GLOB_DAT, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 FALSE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
390
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
392 0, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 32, /* bitsize */
395 FALSE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
404
405 HOWTO (R_ARM_RELATIVE, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 32, /* bitsize */
409 FALSE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418
419 HOWTO (R_ARM_GOTOFF32, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 32, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432
433 HOWTO (R_ARM_GOTPC, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 HOWTO (R_ARM_GOT32, /* type */
448 0, /* rightshift */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
450 32, /* bitsize */
451 FALSE, /* pc_relative */
452 0, /* bitpos */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
460
461 HOWTO (R_ARM_PLT32, /* type */
462 2, /* rightshift */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
464 24, /* bitsize */
465 TRUE, /* pc_relative */
466 0, /* bitpos */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
474
475 HOWTO (R_ARM_CALL, /* type */
476 2, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 24, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 HOWTO (R_ARM_JUMP24, /* type */
490 2, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 24, /* bitsize */
493 TRUE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
502
503 HOWTO (R_ARM_THM_JUMP24, /* type */
504 1, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 24, /* bitsize */
507 TRUE, /* pc_relative */
508 0, /* bitpos */
509 complain_overflow_signed,/* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
516
517 HOWTO (R_ARM_BASE_ABS, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 12, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 12, /* bitsize */
549 TRUE, /* pc_relative */
550 8, /* bitpos */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
560 0, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 12, /* bitsize */
563 TRUE, /* pc_relative */
564 16, /* bitpos */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
572
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 12, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 8, /* bitsize */
591 FALSE, /* pc_relative */
592 12, /* bitpos */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
600
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 8, /* bitsize */
605 FALSE, /* pc_relative */
606 20, /* bitpos */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 HOWTO (R_ARM_TARGET1, /* type */
616 0, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 32, /* bitsize */
619 FALSE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
628
629 HOWTO (R_ARM_ROSEGREL32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 HOWTO (R_ARM_V4BX, /* type */
644 0, /* rightshift */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
646 32, /* bitsize */
647 FALSE, /* pc_relative */
648 0, /* bitpos */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
656
657 HOWTO (R_ARM_TARGET2, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
670
671 HOWTO (R_ARM_PREL31, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 31, /* bitsize */
675 TRUE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
684
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 HOWTO (R_ARM_MOVT_ABS, /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
714 0, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 HOWTO (R_ARM_MOVT_PREL, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 TRUE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE), /* pcrel_offset */
740
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
742 0, /* rightshift */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 FALSE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
768
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 TRUE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
796
797 HOWTO (R_ARM_THM_JUMP19, /* type */
798 1, /* rightshift */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
800 19, /* bitsize */
801 TRUE, /* pc_relative */
802 0, /* bitpos */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
810
811 HOWTO (R_ARM_THM_JUMP6, /* type */
812 1, /* rightshift */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
814 6, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
827 versa. */
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
829 0, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 13, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont,/* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 HOWTO (R_ARM_THM_PC12, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 13, /* bitsize */
846 TRUE, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont,/* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE), /* pcrel_offset */
855
856 HOWTO (R_ARM_ABS32_NOI, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 FALSE, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
869
870 HOWTO (R_ARM_REL32_NOI, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 TRUE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* Group relocations. */
885
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
887 0, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 32, /* bitsize */
890 TRUE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
899
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
901 0, /* rightshift */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
903 32, /* bitsize */
904 TRUE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
913
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
915 0, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 32, /* bitsize */
918 TRUE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
927
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
929 0, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 TRUE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
941
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
943 0, /* rightshift */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
945 32, /* bitsize */
946 TRUE, /* pc_relative */
947 0, /* bitpos */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
955
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 32, /* bitsize */
960 TRUE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
969
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 32, /* bitsize */
974 TRUE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
983
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 32, /* bitsize */
988 TRUE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
997
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
999 0, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 32, /* bitsize */
1002 TRUE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1011
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 32, /* bitsize */
1016 TRUE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1025
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 TRUE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1039
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1041 0, /* rightshift */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1043 32, /* bitsize */
1044 TRUE, /* pc_relative */
1045 0, /* bitpos */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1053
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1055 0, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 32, /* bitsize */
1058 TRUE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1067
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1069 0, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 32, /* bitsize */
1072 TRUE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1081
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1083 0, /* rightshift */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1085 32, /* bitsize */
1086 TRUE, /* pc_relative */
1087 0, /* bitpos */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1095
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1097 0, /* rightshift */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1099 32, /* bitsize */
1100 TRUE, /* pc_relative */
1101 0, /* bitpos */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1109
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1111 0, /* rightshift */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 32, /* bitsize */
1114 TRUE, /* pc_relative */
1115 0, /* bitpos */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1123
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1125 0, /* rightshift */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1127 32, /* bitsize */
1128 TRUE, /* pc_relative */
1129 0, /* bitpos */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1137
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1139 0, /* rightshift */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 32, /* bitsize */
1142 TRUE, /* pc_relative */
1143 0, /* bitpos */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1151
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 32, /* bitsize */
1156 TRUE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1165
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1167 0, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 32, /* bitsize */
1170 TRUE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1179
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 32, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 32, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 32, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 32, /* bitsize */
1226 TRUE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1235
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 32, /* bitsize */
1240 TRUE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1249
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 32, /* bitsize */
1254 TRUE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1263
1264 /* End of group relocations. */
1265
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1267 0, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 16, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 16, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1309 0, /* rightshift */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1311 16, /* bitsize */
1312 FALSE, /* pc_relative */
1313 0, /* bitpos */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1321
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1323 0, /* rightshift */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1325 16, /* bitsize */
1326 FALSE, /* pc_relative */
1327 0, /* bitpos */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1335
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
1350 EMPTY_HOWTO (90), /* Unallocated. */
1351 EMPTY_HOWTO (91),
1352 EMPTY_HOWTO (92),
1353 EMPTY_HOWTO (93),
1354
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 32, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 32, /* bitsize */
1387 TRUE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 12, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 12, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1426
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 0, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1438 0, /* src_mask */
1439 0, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 0, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1453 0, /* src_mask */
1454 0, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1458 1, /* rightshift */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1460 11, /* bitsize */
1461 TRUE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1472 1, /* rightshift */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1474 8, /* bitsize */
1475 TRUE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
1484
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 32, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_bitfield,/* complain_on_overflow */
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1499
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 32, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 HOWTO (R_ARM_TLS_LDO32, /* type */
1515 0, /* rightshift */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 32, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1529 0, /* rightshift */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1531 32, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 HOWTO (R_ARM_TLS_LE32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 12, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 12, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 12, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 bfd_elf_generic_reloc, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597 };
1598
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1602
1603 249-255 extended, currently unused, relocations: */
1604
1605 static reloc_howto_type elf32_arm_howto_table_2[4] =
1606 {
1607 HOWTO (R_ARM_RREL32, /* type */
1608 0, /* rightshift */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1610 0, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 HOWTO (R_ARM_RABS32, /* type */
1622 0, /* rightshift */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1624 0, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 HOWTO (R_ARM_RPC24, /* type */
1636 0, /* rightshift */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1638 0, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 HOWTO (R_ARM_RBASE, /* type */
1650 0, /* rightshift */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1652 0, /* bitsize */
1653 FALSE, /* pc_relative */
1654 0, /* bitpos */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1659 0, /* src_mask */
1660 0, /* dst_mask */
1661 FALSE) /* pcrel_offset */
1662 };
1663
1664 static reloc_howto_type *
1665 elf32_arm_howto_from_type (unsigned int r_type)
1666 {
1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1668 return &elf32_arm_howto_table_1[r_type];
1669
1670 if (r_type >= R_ARM_RREL32
1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1673
1674 return NULL;
1675 }
1676
1677 static void
1678 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1680 {
1681 unsigned int r_type;
1682
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1685 }
1686
1687 struct elf32_arm_reloc_map
1688 {
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1691 };
1692
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1695 {
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1774 };
1775
1776 static reloc_howto_type *
1777 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
1779 {
1780 unsigned int i;
1781
1782 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1783 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1784 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1785
1786 return NULL;
1787 }
1788
1789 static reloc_howto_type *
1790 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1791 const char *r_name)
1792 {
1793 unsigned int i;
1794
1795 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1796 if (elf32_arm_howto_table_1[i].name != NULL
1797 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1798 return &elf32_arm_howto_table_1[i];
1799
1800 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1801 if (elf32_arm_howto_table_2[i].name != NULL
1802 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1803 return &elf32_arm_howto_table_2[i];
1804
1805 return NULL;
1806 }
1807
1808 /* Support for core dump NOTE sections. */
1809
1810 static bfd_boolean
1811 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1812 {
1813 int offset;
1814 size_t size;
1815
1816 switch (note->descsz)
1817 {
1818 default:
1819 return FALSE;
1820
1821 case 148: /* Linux/ARM 32-bit. */
1822 /* pr_cursig */
1823 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1824
1825 /* pr_pid */
1826 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1827
1828 /* pr_reg */
1829 offset = 72;
1830 size = 72;
1831
1832 break;
1833 }
1834
1835 /* Make a ".reg/999" section. */
1836 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1837 size, note->descpos + offset);
1838 }
1839
1840 static bfd_boolean
1841 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1842 {
1843 switch (note->descsz)
1844 {
1845 default:
1846 return FALSE;
1847
1848 case 124: /* Linux/ARM elf_prpsinfo. */
1849 elf_tdata (abfd)->core_program
1850 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1851 elf_tdata (abfd)->core_command
1852 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1853 }
1854
1855 /* Note that for some reason, a spurious space is tacked
1856 onto the end of the args in some (at least one anyway)
1857 implementations, so strip it off if it exists. */
1858 {
1859 char *command = elf_tdata (abfd)->core_command;
1860 int n = strlen (command);
1861
1862 if (0 < n && command[n - 1] == ' ')
1863 command[n - 1] = '\0';
1864 }
1865
1866 return TRUE;
1867 }
1868
1869 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1870 #define TARGET_LITTLE_NAME "elf32-littlearm"
1871 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1872 #define TARGET_BIG_NAME "elf32-bigarm"
1873
1874 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1875 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1876
1877 typedef unsigned long int insn32;
1878 typedef unsigned short int insn16;
1879
1880 /* In lieu of proper flags, assume all EABIv4 or later objects are
1881 interworkable. */
1882 #define INTERWORK_FLAG(abfd) \
1883 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1884 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1885
1886 /* The linker script knows the section names for placement.
1887 The entry_names are used to do simple name mangling on the stubs.
1888 Given a function name, and its type, the stub can be found. The
1889 name can be changed. The only requirement is the %s be present. */
1890 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1891 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1892
1893 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1894 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1895
1896 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1897 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1898
1899 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1900 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1901
1902 #define STUB_ENTRY_NAME "__%s_veneer"
1903
1904 /* The name of the dynamic interpreter. This is put in the .interp
1905 section. */
1906 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1907
1908 #ifdef FOUR_WORD_PLT
1909
1910 /* The first entry in a procedure linkage table looks like
1911 this. It is set up so that any shared library function that is
1912 called before the relocation has been set up calls the dynamic
1913 linker first. */
1914 static const bfd_vma elf32_arm_plt0_entry [] =
1915 {
1916 0xe52de004, /* str lr, [sp, #-4]! */
1917 0xe59fe010, /* ldr lr, [pc, #16] */
1918 0xe08fe00e, /* add lr, pc, lr */
1919 0xe5bef008, /* ldr pc, [lr, #8]! */
1920 };
1921
1922 /* Subsequent entries in a procedure linkage table look like
1923 this. */
1924 static const bfd_vma elf32_arm_plt_entry [] =
1925 {
1926 0xe28fc600, /* add ip, pc, #NN */
1927 0xe28cca00, /* add ip, ip, #NN */
1928 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1929 0x00000000, /* unused */
1930 };
1931
1932 #else
1933
1934 /* The first entry in a procedure linkage table looks like
1935 this. It is set up so that any shared library function that is
1936 called before the relocation has been set up calls the dynamic
1937 linker first. */
1938 static const bfd_vma elf32_arm_plt0_entry [] =
1939 {
1940 0xe52de004, /* str lr, [sp, #-4]! */
1941 0xe59fe004, /* ldr lr, [pc, #4] */
1942 0xe08fe00e, /* add lr, pc, lr */
1943 0xe5bef008, /* ldr pc, [lr, #8]! */
1944 0x00000000, /* &GOT[0] - . */
1945 };
1946
1947 /* Subsequent entries in a procedure linkage table look like
1948 this. */
1949 static const bfd_vma elf32_arm_plt_entry [] =
1950 {
1951 0xe28fc600, /* add ip, pc, #0xNN00000 */
1952 0xe28cca00, /* add ip, ip, #0xNN000 */
1953 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1954 };
1955
1956 #endif
1957
1958 /* The format of the first entry in the procedure linkage table
1959 for a VxWorks executable. */
1960 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1961 {
1962 0xe52dc008, /* str ip,[sp,#-8]! */
1963 0xe59fc000, /* ldr ip,[pc] */
1964 0xe59cf008, /* ldr pc,[ip,#8] */
1965 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1966 };
1967
1968 /* The format of subsequent entries in a VxWorks executable. */
1969 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1970 {
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf000, /* ldr pc,[ip] */
1973 0x00000000, /* .long @got */
1974 0xe59fc000, /* ldr ip,[pc] */
1975 0xea000000, /* b _PLT */
1976 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1977 };
1978
1979 /* The format of entries in a VxWorks shared library. */
1980 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1981 {
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe79cf009, /* ldr pc,[ip,r9] */
1984 0x00000000, /* .long @got */
1985 0xe59fc000, /* ldr ip,[pc] */
1986 0xe599f008, /* ldr pc,[r9,#8] */
1987 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1988 };
1989
1990 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1991 #define PLT_THUMB_STUB_SIZE 4
1992 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1993 {
1994 0x4778, /* bx pc */
1995 0x46c0 /* nop */
1996 };
1997
1998 /* The entries in a PLT when using a DLL-based target with multiple
1999 address spaces. */
2000 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2001 {
2002 0xe51ff004, /* ldr pc, [pc, #-4] */
2003 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2004 };
2005
2006 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2007 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2008 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2009 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2010 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2011 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2012
2013 static const bfd_vma arm_long_branch_stub[] =
2014 {
2015 0xe51ff004, /* ldr pc, [pc, #-4] */
2016 0x00000000, /* dcd R_ARM_ABS32(X) */
2017 };
2018
2019 static const bfd_vma arm_thumb_v4t_long_branch_stub[] =
2020 {
2021 0xe59fc000, /* ldr ip, [pc, #0] */
2022 0xe12fff1c, /* bx ip */
2023 0x00000000, /* dcd R_ARM_ABS32(X) */
2024 };
2025
2026 static const bfd_vma arm_thumb_thumb_long_branch_stub[] =
2027 {
2028 0x4e02b540, /* push {r6, lr} */
2029 /* ldr r6, [pc, #8] */
2030 0x473046fe, /* mov lr, pc */
2031 /* bx r6 */
2032 0xbf00bd40, /* pop {r6, pc} */
2033 /* nop */
2034 0x00000000, /* dcd R_ARM_ABS32(X) */
2035 };
2036
2037 static const bfd_vma arm_thumb_arm_v4t_long_branch_stub[] =
2038 {
2039 0x4e03b540, /* push {r6, lr} */
2040 /* ldr r6, [pc, #12] */
2041 0x473046fe, /* mov lr, pc */
2042 /* bx r6 */
2043 0xe8bd4040, /* pop {r6, pc} */
2044 0xe12fff1e, /* bx lr */
2045 0x00000000, /* dcd R_ARM_ABS32(X) */
2046 };
2047
2048 static const bfd_vma arm_thumb_arm_v4t_short_branch_stub[] =
2049 {
2050 0x46c04778, /* bx pc */
2051 /* nop */
2052 0xea000000, /* b (X) */
2053 };
2054
2055 static const bfd_vma arm_pic_long_branch_stub[] =
2056 {
2057 0xe59fc000, /* ldr r12, [pc] */
2058 0xe08ff00c, /* add pc, pc, ip */
2059 0x00000000, /* dcd R_ARM_REL32(X) */
2060 };
2061
2062 /* Section name for stubs is the associated section name plus this
2063 string. */
2064 #define STUB_SUFFIX ".stub"
2065
2066 enum elf32_arm_stub_type
2067 {
2068 arm_stub_none,
2069 arm_stub_long_branch,
2070 arm_thumb_v4t_stub_long_branch,
2071 arm_thumb_thumb_stub_long_branch,
2072 arm_thumb_arm_v4t_stub_long_branch,
2073 arm_thumb_arm_v4t_stub_short_branch,
2074 arm_stub_pic_long_branch,
2075 };
2076
2077 struct elf32_arm_stub_hash_entry
2078 {
2079 /* Base hash table entry structure. */
2080 struct bfd_hash_entry root;
2081
2082 /* The stub section. */
2083 asection *stub_sec;
2084
2085 /* Offset within stub_sec of the beginning of this stub. */
2086 bfd_vma stub_offset;
2087
2088 /* Given the symbol's value and its section we can determine its final
2089 value when building the stubs (so the stub knows where to jump). */
2090 bfd_vma target_value;
2091 asection *target_section;
2092
2093 enum elf32_arm_stub_type stub_type;
2094
2095 /* The symbol table entry, if any, that this was derived from. */
2096 struct elf32_arm_link_hash_entry *h;
2097
2098 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2099 unsigned char st_type;
2100
2101 /* Where this stub is being called from, or, in the case of combined
2102 stub sections, the first input section in the group. */
2103 asection *id_sec;
2104
2105 /* The name for the local symbol at the start of this stub. The
2106 stub name in the hash table has to be unique; this does not, so
2107 it can be friendlier. */
2108 char *output_name;
2109 };
2110
2111 /* Used to build a map of a section. This is required for mixed-endian
2112 code/data. */
2113
2114 typedef struct elf32_elf_section_map
2115 {
2116 bfd_vma vma;
2117 char type;
2118 }
2119 elf32_arm_section_map;
2120
2121 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2122
2123 typedef enum
2124 {
2125 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2126 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2127 VFP11_ERRATUM_ARM_VENEER,
2128 VFP11_ERRATUM_THUMB_VENEER
2129 }
2130 elf32_vfp11_erratum_type;
2131
2132 typedef struct elf32_vfp11_erratum_list
2133 {
2134 struct elf32_vfp11_erratum_list *next;
2135 bfd_vma vma;
2136 union
2137 {
2138 struct
2139 {
2140 struct elf32_vfp11_erratum_list *veneer;
2141 unsigned int vfp_insn;
2142 } b;
2143 struct
2144 {
2145 struct elf32_vfp11_erratum_list *branch;
2146 unsigned int id;
2147 } v;
2148 } u;
2149 elf32_vfp11_erratum_type type;
2150 }
2151 elf32_vfp11_erratum_list;
2152
2153 typedef struct _arm_elf_section_data
2154 {
2155 struct bfd_elf_section_data elf;
2156 unsigned int mapcount;
2157 unsigned int mapsize;
2158 elf32_arm_section_map *map;
2159 unsigned int erratumcount;
2160 elf32_vfp11_erratum_list *erratumlist;
2161 }
2162 _arm_elf_section_data;
2163
2164 #define elf32_arm_section_data(sec) \
2165 ((_arm_elf_section_data *) elf_section_data (sec))
2166
2167 /* The size of the thread control block. */
2168 #define TCB_SIZE 8
2169
2170 struct elf_arm_obj_tdata
2171 {
2172 struct elf_obj_tdata root;
2173
2174 /* tls_type for each local got entry. */
2175 char *local_got_tls_type;
2176
2177 /* Zero to warn when linking objects with incompatible enum sizes. */
2178 int no_enum_size_warning;
2179
2180 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2181 int no_wchar_size_warning;
2182 };
2183
2184 #define elf_arm_tdata(bfd) \
2185 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2186
2187 #define elf32_arm_local_got_tls_type(bfd) \
2188 (elf_arm_tdata (bfd)->local_got_tls_type)
2189
2190 #define is_arm_elf(bfd) \
2191 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2192 && elf_tdata (bfd) != NULL \
2193 && elf_object_id (bfd) == ARM_ELF_TDATA)
2194
2195 static bfd_boolean
2196 elf32_arm_mkobject (bfd *abfd)
2197 {
2198 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2199 ARM_ELF_TDATA);
2200 }
2201
2202 /* The ARM linker needs to keep track of the number of relocs that it
2203 decides to copy in check_relocs for each symbol. This is so that
2204 it can discard PC relative relocs if it doesn't need them when
2205 linking with -Bsymbolic. We store the information in a field
2206 extending the regular ELF linker hash table. */
2207
2208 /* This structure keeps track of the number of relocs we have copied
2209 for a given symbol. */
2210 struct elf32_arm_relocs_copied
2211 {
2212 /* Next section. */
2213 struct elf32_arm_relocs_copied * next;
2214 /* A section in dynobj. */
2215 asection * section;
2216 /* Number of relocs copied in this section. */
2217 bfd_size_type count;
2218 /* Number of PC-relative relocs copied in this section. */
2219 bfd_size_type pc_count;
2220 };
2221
2222 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2223
2224 /* Arm ELF linker hash entry. */
2225 struct elf32_arm_link_hash_entry
2226 {
2227 struct elf_link_hash_entry root;
2228
2229 /* Number of PC relative relocs copied for this symbol. */
2230 struct elf32_arm_relocs_copied * relocs_copied;
2231
2232 /* We reference count Thumb references to a PLT entry separately,
2233 so that we can emit the Thumb trampoline only if needed. */
2234 bfd_signed_vma plt_thumb_refcount;
2235
2236 /* Some references from Thumb code may be eliminated by BL->BLX
2237 conversion, so record them separately. */
2238 bfd_signed_vma plt_maybe_thumb_refcount;
2239
2240 /* Since PLT entries have variable size if the Thumb prologue is
2241 used, we need to record the index into .got.plt instead of
2242 recomputing it from the PLT offset. */
2243 bfd_signed_vma plt_got_offset;
2244
2245 #define GOT_UNKNOWN 0
2246 #define GOT_NORMAL 1
2247 #define GOT_TLS_GD 2
2248 #define GOT_TLS_IE 4
2249 unsigned char tls_type;
2250
2251 /* The symbol marking the real symbol location for exported thumb
2252 symbols with Arm stubs. */
2253 struct elf_link_hash_entry *export_glue;
2254
2255 /* A pointer to the most recently used stub hash entry against this
2256 symbol. */
2257 struct elf32_arm_stub_hash_entry *stub_cache;
2258 };
2259
2260 /* Traverse an arm ELF linker hash table. */
2261 #define elf32_arm_link_hash_traverse(table, func, info) \
2262 (elf_link_hash_traverse \
2263 (&(table)->root, \
2264 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2265 (info)))
2266
2267 /* Get the ARM elf linker hash table from a link_info structure. */
2268 #define elf32_arm_hash_table(info) \
2269 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2270
2271 #define arm_stub_hash_lookup(table, string, create, copy) \
2272 ((struct elf32_arm_stub_hash_entry *) \
2273 bfd_hash_lookup ((table), (string), (create), (copy)))
2274
2275 /* ARM ELF linker hash table. */
2276 struct elf32_arm_link_hash_table
2277 {
2278 /* The main hash table. */
2279 struct elf_link_hash_table root;
2280
2281 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2282 bfd_size_type thumb_glue_size;
2283
2284 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2285 bfd_size_type arm_glue_size;
2286
2287 /* The size in bytes of section containing the ARMv4 BX veneers. */
2288 bfd_size_type bx_glue_size;
2289
2290 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2291 veneer has been populated. */
2292 bfd_vma bx_glue_offset[15];
2293
2294 /* The size in bytes of the section containing glue for VFP11 erratum
2295 veneers. */
2296 bfd_size_type vfp11_erratum_glue_size;
2297
2298 /* An arbitrary input BFD chosen to hold the glue sections. */
2299 bfd * bfd_of_glue_owner;
2300
2301 /* Nonzero to output a BE8 image. */
2302 int byteswap_code;
2303
2304 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2305 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2306 int target1_is_rel;
2307
2308 /* The relocation to use for R_ARM_TARGET2 relocations. */
2309 int target2_reloc;
2310
2311 /* 0 = Ignore R_ARM_V4BX.
2312 1 = Convert BX to MOV PC.
2313 2 = Generate v4 interworing stubs. */
2314 int fix_v4bx;
2315
2316 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2317 int use_blx;
2318
2319 /* What sort of code sequences we should look for which may trigger the
2320 VFP11 denorm erratum. */
2321 bfd_arm_vfp11_fix vfp11_fix;
2322
2323 /* Global counter for the number of fixes we have emitted. */
2324 int num_vfp11_fixes;
2325
2326 /* Nonzero to force PIC branch veneers. */
2327 int pic_veneer;
2328
2329 /* The number of bytes in the initial entry in the PLT. */
2330 bfd_size_type plt_header_size;
2331
2332 /* The number of bytes in the subsequent PLT etries. */
2333 bfd_size_type plt_entry_size;
2334
2335 /* True if the target system is VxWorks. */
2336 int vxworks_p;
2337
2338 /* True if the target system is Symbian OS. */
2339 int symbian_p;
2340
2341 /* True if the target uses REL relocations. */
2342 int use_rel;
2343
2344 /* Short-cuts to get to dynamic linker sections. */
2345 asection *sgot;
2346 asection *sgotplt;
2347 asection *srelgot;
2348 asection *splt;
2349 asection *srelplt;
2350 asection *sdynbss;
2351 asection *srelbss;
2352
2353 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2354 asection *srelplt2;
2355
2356 /* Data for R_ARM_TLS_LDM32 relocations. */
2357 union
2358 {
2359 bfd_signed_vma refcount;
2360 bfd_vma offset;
2361 } tls_ldm_got;
2362
2363 /* Small local sym to section mapping cache. */
2364 struct sym_sec_cache sym_sec;
2365
2366 /* For convenience in allocate_dynrelocs. */
2367 bfd * obfd;
2368
2369 /* The stub hash table. */
2370 struct bfd_hash_table stub_hash_table;
2371
2372 /* Linker stub bfd. */
2373 bfd *stub_bfd;
2374
2375 /* Linker call-backs. */
2376 asection * (*add_stub_section) (const char *, asection *);
2377 void (*layout_sections_again) (void);
2378
2379 /* Array to keep track of which stub sections have been created, and
2380 information on stub grouping. */
2381 struct map_stub
2382 {
2383 /* This is the section to which stubs in the group will be
2384 attached. */
2385 asection *link_sec;
2386 /* The stub section. */
2387 asection *stub_sec;
2388 } *stub_group;
2389
2390 /* Assorted information used by elf32_arm_size_stubs. */
2391 unsigned int bfd_count;
2392 int top_index;
2393 asection **input_list;
2394 };
2395
2396 /* Create an entry in an ARM ELF linker hash table. */
2397
2398 static struct bfd_hash_entry *
2399 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2400 struct bfd_hash_table * table,
2401 const char * string)
2402 {
2403 struct elf32_arm_link_hash_entry * ret =
2404 (struct elf32_arm_link_hash_entry *) entry;
2405
2406 /* Allocate the structure if it has not already been allocated by a
2407 subclass. */
2408 if (ret == NULL)
2409 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2410 if (ret == NULL)
2411 return (struct bfd_hash_entry *) ret;
2412
2413 /* Call the allocation method of the superclass. */
2414 ret = ((struct elf32_arm_link_hash_entry *)
2415 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2416 table, string));
2417 if (ret != NULL)
2418 {
2419 ret->relocs_copied = NULL;
2420 ret->tls_type = GOT_UNKNOWN;
2421 ret->plt_thumb_refcount = 0;
2422 ret->plt_maybe_thumb_refcount = 0;
2423 ret->plt_got_offset = -1;
2424 ret->export_glue = NULL;
2425
2426 ret->stub_cache = NULL;
2427 }
2428
2429 return (struct bfd_hash_entry *) ret;
2430 }
2431
2432 /* Initialize an entry in the stub hash table. */
2433
2434 static struct bfd_hash_entry *
2435 stub_hash_newfunc (struct bfd_hash_entry *entry,
2436 struct bfd_hash_table *table,
2437 const char *string)
2438 {
2439 /* Allocate the structure if it has not already been allocated by a
2440 subclass. */
2441 if (entry == NULL)
2442 {
2443 entry = bfd_hash_allocate (table,
2444 sizeof (struct elf32_arm_stub_hash_entry));
2445 if (entry == NULL)
2446 return entry;
2447 }
2448
2449 /* Call the allocation method of the superclass. */
2450 entry = bfd_hash_newfunc (entry, table, string);
2451 if (entry != NULL)
2452 {
2453 struct elf32_arm_stub_hash_entry *eh;
2454
2455 /* Initialize the local fields. */
2456 eh = (struct elf32_arm_stub_hash_entry *) entry;
2457 eh->stub_sec = NULL;
2458 eh->stub_offset = 0;
2459 eh->target_value = 0;
2460 eh->target_section = NULL;
2461 eh->stub_type = arm_stub_none;
2462 eh->h = NULL;
2463 eh->id_sec = NULL;
2464 }
2465
2466 return entry;
2467 }
2468
2469 /* Return true if NAME is the name of the relocation section associated
2470 with S. */
2471
2472 static bfd_boolean
2473 reloc_section_p (struct elf32_arm_link_hash_table *htab,
2474 const char *name, asection *s)
2475 {
2476 if (htab->use_rel)
2477 return CONST_STRNEQ (name, ".rel") && strcmp (s->name, name + 4) == 0;
2478 else
2479 return CONST_STRNEQ (name, ".rela") && strcmp (s->name, name + 5) == 0;
2480 }
2481
2482 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2483 shortcuts to them in our hash table. */
2484
2485 static bfd_boolean
2486 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2487 {
2488 struct elf32_arm_link_hash_table *htab;
2489
2490 htab = elf32_arm_hash_table (info);
2491 /* BPABI objects never have a GOT, or associated sections. */
2492 if (htab->symbian_p)
2493 return TRUE;
2494
2495 if (! _bfd_elf_create_got_section (dynobj, info))
2496 return FALSE;
2497
2498 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2499 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2500 if (!htab->sgot || !htab->sgotplt)
2501 abort ();
2502
2503 htab->srelgot = bfd_make_section_with_flags (dynobj,
2504 RELOC_SECTION (htab, ".got"),
2505 (SEC_ALLOC | SEC_LOAD
2506 | SEC_HAS_CONTENTS
2507 | SEC_IN_MEMORY
2508 | SEC_LINKER_CREATED
2509 | SEC_READONLY));
2510 if (htab->srelgot == NULL
2511 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2512 return FALSE;
2513 return TRUE;
2514 }
2515
2516 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2517 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2518 hash table. */
2519
2520 static bfd_boolean
2521 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2522 {
2523 struct elf32_arm_link_hash_table *htab;
2524
2525 htab = elf32_arm_hash_table (info);
2526 if (!htab->sgot && !create_got_section (dynobj, info))
2527 return FALSE;
2528
2529 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2530 return FALSE;
2531
2532 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2533 htab->srelplt = bfd_get_section_by_name (dynobj,
2534 RELOC_SECTION (htab, ".plt"));
2535 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2536 if (!info->shared)
2537 htab->srelbss = bfd_get_section_by_name (dynobj,
2538 RELOC_SECTION (htab, ".bss"));
2539
2540 if (htab->vxworks_p)
2541 {
2542 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2543 return FALSE;
2544
2545 if (info->shared)
2546 {
2547 htab->plt_header_size = 0;
2548 htab->plt_entry_size
2549 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2550 }
2551 else
2552 {
2553 htab->plt_header_size
2554 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2555 htab->plt_entry_size
2556 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2557 }
2558 }
2559
2560 if (!htab->splt
2561 || !htab->srelplt
2562 || !htab->sdynbss
2563 || (!info->shared && !htab->srelbss))
2564 abort ();
2565
2566 return TRUE;
2567 }
2568
2569 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2570
2571 static void
2572 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2573 struct elf_link_hash_entry *dir,
2574 struct elf_link_hash_entry *ind)
2575 {
2576 struct elf32_arm_link_hash_entry *edir, *eind;
2577
2578 edir = (struct elf32_arm_link_hash_entry *) dir;
2579 eind = (struct elf32_arm_link_hash_entry *) ind;
2580
2581 if (eind->relocs_copied != NULL)
2582 {
2583 if (edir->relocs_copied != NULL)
2584 {
2585 struct elf32_arm_relocs_copied **pp;
2586 struct elf32_arm_relocs_copied *p;
2587
2588 /* Add reloc counts against the indirect sym to the direct sym
2589 list. Merge any entries against the same section. */
2590 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2591 {
2592 struct elf32_arm_relocs_copied *q;
2593
2594 for (q = edir->relocs_copied; q != NULL; q = q->next)
2595 if (q->section == p->section)
2596 {
2597 q->pc_count += p->pc_count;
2598 q->count += p->count;
2599 *pp = p->next;
2600 break;
2601 }
2602 if (q == NULL)
2603 pp = &p->next;
2604 }
2605 *pp = edir->relocs_copied;
2606 }
2607
2608 edir->relocs_copied = eind->relocs_copied;
2609 eind->relocs_copied = NULL;
2610 }
2611
2612 if (ind->root.type == bfd_link_hash_indirect)
2613 {
2614 /* Copy over PLT info. */
2615 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2616 eind->plt_thumb_refcount = 0;
2617 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2618 eind->plt_maybe_thumb_refcount = 0;
2619
2620 if (dir->got.refcount <= 0)
2621 {
2622 edir->tls_type = eind->tls_type;
2623 eind->tls_type = GOT_UNKNOWN;
2624 }
2625 }
2626
2627 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2628 }
2629
2630 /* Create an ARM elf linker hash table. */
2631
2632 static struct bfd_link_hash_table *
2633 elf32_arm_link_hash_table_create (bfd *abfd)
2634 {
2635 struct elf32_arm_link_hash_table *ret;
2636 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2637
2638 ret = bfd_malloc (amt);
2639 if (ret == NULL)
2640 return NULL;
2641
2642 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2643 elf32_arm_link_hash_newfunc,
2644 sizeof (struct elf32_arm_link_hash_entry)))
2645 {
2646 free (ret);
2647 return NULL;
2648 }
2649
2650 ret->sgot = NULL;
2651 ret->sgotplt = NULL;
2652 ret->srelgot = NULL;
2653 ret->splt = NULL;
2654 ret->srelplt = NULL;
2655 ret->sdynbss = NULL;
2656 ret->srelbss = NULL;
2657 ret->srelplt2 = NULL;
2658 ret->thumb_glue_size = 0;
2659 ret->arm_glue_size = 0;
2660 ret->bx_glue_size = 0;
2661 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2662 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2663 ret->vfp11_erratum_glue_size = 0;
2664 ret->num_vfp11_fixes = 0;
2665 ret->bfd_of_glue_owner = NULL;
2666 ret->byteswap_code = 0;
2667 ret->target1_is_rel = 0;
2668 ret->target2_reloc = R_ARM_NONE;
2669 #ifdef FOUR_WORD_PLT
2670 ret->plt_header_size = 16;
2671 ret->plt_entry_size = 16;
2672 #else
2673 ret->plt_header_size = 20;
2674 ret->plt_entry_size = 12;
2675 #endif
2676 ret->fix_v4bx = 0;
2677 ret->use_blx = 0;
2678 ret->vxworks_p = 0;
2679 ret->symbian_p = 0;
2680 ret->use_rel = 1;
2681 ret->sym_sec.abfd = NULL;
2682 ret->obfd = abfd;
2683 ret->tls_ldm_got.refcount = 0;
2684 ret->stub_bfd = NULL;
2685 ret->add_stub_section = NULL;
2686 ret->layout_sections_again = NULL;
2687 ret->stub_group = NULL;
2688 ret->bfd_count = 0;
2689 ret->top_index = 0;
2690 ret->input_list = NULL;
2691
2692 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2693 sizeof (struct elf32_arm_stub_hash_entry)))
2694 {
2695 free (ret);
2696 return NULL;
2697 }
2698
2699 return &ret->root.root;
2700 }
2701
2702 /* Free the derived linker hash table. */
2703
2704 static void
2705 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2706 {
2707 struct elf32_arm_link_hash_table *ret
2708 = (struct elf32_arm_link_hash_table *) hash;
2709
2710 bfd_hash_table_free (&ret->stub_hash_table);
2711 _bfd_generic_link_hash_table_free (hash);
2712 }
2713
2714 /* Determine if we're dealing with a Thumb only architecture. */
2715
2716 static bfd_boolean
2717 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2718 {
2719 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2720 Tag_CPU_arch);
2721 int profile;
2722
2723 if (arch != TAG_CPU_ARCH_V7)
2724 return FALSE;
2725
2726 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2727 Tag_CPU_arch_profile);
2728
2729 return profile == 'M';
2730 }
2731
2732 /* Determine if we're dealing with a Thumb-2 object. */
2733
2734 static bfd_boolean
2735 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2736 {
2737 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2738 Tag_CPU_arch);
2739 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2740 }
2741
2742 static bfd_boolean
2743 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
2744 {
2745 switch (stub_type)
2746 {
2747 case arm_thumb_thumb_stub_long_branch:
2748 case arm_thumb_arm_v4t_stub_long_branch:
2749 case arm_thumb_arm_v4t_stub_short_branch:
2750 return TRUE;
2751 case arm_stub_none:
2752 BFD_FAIL ();
2753 return FALSE;
2754 break;
2755 default:
2756 return FALSE;
2757 }
2758 }
2759
2760 /* Determine the type of stub needed, if any, for a call. */
2761
2762 static enum elf32_arm_stub_type
2763 arm_type_of_stub (struct bfd_link_info *info,
2764 asection *input_sec,
2765 const Elf_Internal_Rela *rel,
2766 unsigned char st_type,
2767 struct elf32_arm_link_hash_entry *hash,
2768 bfd_vma destination,
2769 asection *sym_sec,
2770 bfd *input_bfd,
2771 const char *name)
2772 {
2773 bfd_vma location;
2774 bfd_signed_vma branch_offset;
2775 unsigned int r_type;
2776 struct elf32_arm_link_hash_table * globals;
2777 int thumb2;
2778 int thumb_only;
2779 enum elf32_arm_stub_type stub_type = arm_stub_none;
2780
2781 /* We don't know the actual type of destination in case it is of
2782 type STT_SECTION: give up. */
2783 if (st_type == STT_SECTION)
2784 return stub_type;
2785
2786 globals = elf32_arm_hash_table (info);
2787
2788 thumb_only = using_thumb_only (globals);
2789
2790 thumb2 = using_thumb2 (globals);
2791
2792 /* Determine where the call point is. */
2793 location = (input_sec->output_offset
2794 + input_sec->output_section->vma
2795 + rel->r_offset);
2796
2797 branch_offset = (bfd_signed_vma)(destination - location);
2798
2799 r_type = ELF32_R_TYPE (rel->r_info);
2800
2801 /* If the call will go through a PLT entry then we do not need
2802 glue. */
2803 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
2804 return stub_type;
2805
2806 if (r_type == R_ARM_THM_CALL)
2807 {
2808 if ((!thumb2
2809 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2810 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2811 || (thumb2
2812 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2813 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2814 || ((st_type != STT_ARM_TFUNC) && !globals->use_blx))
2815 {
2816 if (st_type == STT_ARM_TFUNC)
2817 {
2818 /* Thumb to thumb. */
2819 if (!thumb_only)
2820 {
2821 stub_type = (info->shared | globals->pic_veneer)
2822 ? ((globals->use_blx)
2823 ? arm_stub_pic_long_branch
2824 : arm_stub_none)
2825 : (globals->use_blx)
2826 ? arm_stub_long_branch
2827 : arm_stub_none;
2828 }
2829 else
2830 {
2831 stub_type = (info->shared | globals->pic_veneer)
2832 ? arm_stub_none
2833 : (globals->use_blx)
2834 ? arm_thumb_thumb_stub_long_branch
2835 : arm_stub_none;
2836 }
2837 }
2838 else
2839 {
2840 /* Thumb to arm. */
2841 if (sym_sec != NULL
2842 && sym_sec->owner != NULL
2843 && !INTERWORK_FLAG (sym_sec->owner))
2844 {
2845 (*_bfd_error_handler)
2846 (_("%B(%s): warning: interworking not enabled.\n"
2847 " first occurrence: %B: Thumb call to ARM"),
2848 sym_sec->owner, input_bfd, name);
2849 }
2850
2851 stub_type = (info->shared | globals->pic_veneer)
2852 ? ((globals->use_blx)
2853 ? arm_stub_pic_long_branch
2854 : arm_stub_none)
2855 : (globals->use_blx)
2856 ? arm_stub_long_branch
2857 : arm_thumb_arm_v4t_stub_long_branch;
2858
2859 /* Handle v4t short branches. */
2860 if ((stub_type == arm_thumb_arm_v4t_stub_long_branch)
2861 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
2862 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
2863 stub_type = arm_thumb_arm_v4t_stub_short_branch;
2864 }
2865 }
2866 }
2867 else if (r_type == R_ARM_CALL)
2868 {
2869 if (st_type == STT_ARM_TFUNC)
2870 {
2871 /* Arm to thumb. */
2872
2873 if (sym_sec != NULL
2874 && sym_sec->owner != NULL
2875 && !INTERWORK_FLAG (sym_sec->owner))
2876 {
2877 (*_bfd_error_handler)
2878 (_("%B(%s): warning: interworking not enabled.\n"
2879 " first occurrence: %B: Thumb call to ARM"),
2880 sym_sec->owner, input_bfd, name);
2881 }
2882
2883 /* We have an extra 2-bytes reach because of
2884 the mode change (bit 24 (H) of BLX encoding). */
2885 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2886 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
2887 || !globals->use_blx)
2888 {
2889 stub_type = (info->shared | globals->pic_veneer)
2890 ? arm_stub_pic_long_branch
2891 : (globals->use_blx)
2892 ? arm_stub_long_branch
2893 : arm_thumb_v4t_stub_long_branch;
2894 }
2895 }
2896 else
2897 {
2898 /* Arm to arm. */
2899 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
2900 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
2901 {
2902 stub_type = (info->shared | globals->pic_veneer)
2903 ? arm_stub_pic_long_branch
2904 : arm_stub_long_branch;
2905 }
2906 }
2907 }
2908
2909 return stub_type;
2910 }
2911
2912 /* Build a name for an entry in the stub hash table. */
2913
2914 static char *
2915 elf32_arm_stub_name (const asection *input_section,
2916 const asection *sym_sec,
2917 const struct elf32_arm_link_hash_entry *hash,
2918 const Elf_Internal_Rela *rel)
2919 {
2920 char *stub_name;
2921 bfd_size_type len;
2922
2923 if (hash)
2924 {
2925 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
2926 stub_name = bfd_malloc (len);
2927 if (stub_name != NULL)
2928 sprintf (stub_name, "%08x_%s+%x",
2929 input_section->id & 0xffffffff,
2930 hash->root.root.root.string,
2931 (int) rel->r_addend & 0xffffffff);
2932 }
2933 else
2934 {
2935 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
2936 stub_name = bfd_malloc (len);
2937 if (stub_name != NULL)
2938 sprintf (stub_name, "%08x_%x:%x+%x",
2939 input_section->id & 0xffffffff,
2940 sym_sec->id & 0xffffffff,
2941 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
2942 (int) rel->r_addend & 0xffffffff);
2943 }
2944
2945 return stub_name;
2946 }
2947
2948 /* Look up an entry in the stub hash. Stub entries are cached because
2949 creating the stub name takes a bit of time. */
2950
2951 static struct elf32_arm_stub_hash_entry *
2952 elf32_arm_get_stub_entry (const asection *input_section,
2953 const asection *sym_sec,
2954 struct elf_link_hash_entry *hash,
2955 const Elf_Internal_Rela *rel,
2956 struct elf32_arm_link_hash_table *htab)
2957 {
2958 struct elf32_arm_stub_hash_entry *stub_entry;
2959 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
2960 const asection *id_sec;
2961
2962 if ((input_section->flags & SEC_CODE) == 0)
2963 return NULL;
2964
2965 /* If this input section is part of a group of sections sharing one
2966 stub section, then use the id of the first section in the group.
2967 Stub names need to include a section id, as there may well be
2968 more than one stub used to reach say, printf, and we need to
2969 distinguish between them. */
2970 id_sec = htab->stub_group[input_section->id].link_sec;
2971
2972 if (h != NULL && h->stub_cache != NULL
2973 && h->stub_cache->h == h
2974 && h->stub_cache->id_sec == id_sec)
2975 {
2976 stub_entry = h->stub_cache;
2977 }
2978 else
2979 {
2980 char *stub_name;
2981
2982 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
2983 if (stub_name == NULL)
2984 return NULL;
2985
2986 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
2987 stub_name, FALSE, FALSE);
2988 if (h != NULL)
2989 h->stub_cache = stub_entry;
2990
2991 free (stub_name);
2992 }
2993
2994 return stub_entry;
2995 }
2996
2997 /* Add a new stub entry to the stub hash. Not all fields of the new
2998 stub entry are initialised. */
2999
3000 static struct elf32_arm_stub_hash_entry *
3001 elf32_arm_add_stub (const char *stub_name,
3002 asection *section,
3003 struct elf32_arm_link_hash_table *htab)
3004 {
3005 asection *link_sec;
3006 asection *stub_sec;
3007 struct elf32_arm_stub_hash_entry *stub_entry;
3008
3009 link_sec = htab->stub_group[section->id].link_sec;
3010 stub_sec = htab->stub_group[section->id].stub_sec;
3011 if (stub_sec == NULL)
3012 {
3013 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3014 if (stub_sec == NULL)
3015 {
3016 size_t namelen;
3017 bfd_size_type len;
3018 char *s_name;
3019
3020 namelen = strlen (link_sec->name);
3021 len = namelen + sizeof (STUB_SUFFIX);
3022 s_name = bfd_alloc (htab->stub_bfd, len);
3023 if (s_name == NULL)
3024 return NULL;
3025
3026 memcpy (s_name, link_sec->name, namelen);
3027 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3028 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3029 if (stub_sec == NULL)
3030 return NULL;
3031 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3032 }
3033 htab->stub_group[section->id].stub_sec = stub_sec;
3034 }
3035
3036 /* Enter this entry into the linker stub hash table. */
3037 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3038 TRUE, FALSE);
3039 if (stub_entry == NULL)
3040 {
3041 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3042 section->owner,
3043 stub_name);
3044 return NULL;
3045 }
3046
3047 stub_entry->stub_sec = stub_sec;
3048 stub_entry->stub_offset = 0;
3049 stub_entry->id_sec = link_sec;
3050
3051 return stub_entry;
3052 }
3053
3054 /* Store an Arm insn into an output section not processed by
3055 elf32_arm_write_section. */
3056
3057 static void
3058 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3059 bfd * output_bfd, bfd_vma val, void * ptr)
3060 {
3061 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3062 bfd_putl32 (val, ptr);
3063 else
3064 bfd_putb32 (val, ptr);
3065 }
3066
3067 /* Store a 16-bit Thumb insn into an output section not processed by
3068 elf32_arm_write_section. */
3069
3070 static void
3071 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3072 bfd * output_bfd, bfd_vma val, void * ptr)
3073 {
3074 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3075 bfd_putl16 (val, ptr);
3076 else
3077 bfd_putb16 (val, ptr);
3078 }
3079
3080 static bfd_boolean
3081 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3082 void * in_arg)
3083 {
3084 struct elf32_arm_stub_hash_entry *stub_entry;
3085 struct bfd_link_info *info;
3086 struct elf32_arm_link_hash_table *htab;
3087 asection *stub_sec;
3088 bfd *stub_bfd;
3089 bfd_vma stub_addr;
3090 bfd_byte *loc;
3091 bfd_vma sym_value;
3092 int template_size;
3093 int size;
3094 const bfd_vma *template;
3095 int i;
3096 struct elf32_arm_link_hash_table * globals;
3097
3098 /* Massage our args to the form they really have. */
3099 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3100 info = (struct bfd_link_info *) in_arg;
3101
3102 globals = elf32_arm_hash_table (info);
3103
3104 htab = elf32_arm_hash_table (info);
3105 stub_sec = stub_entry->stub_sec;
3106
3107 /* Make a note of the offset within the stubs for this entry. */
3108 stub_entry->stub_offset = stub_sec->size;
3109 loc = stub_sec->contents + stub_entry->stub_offset;
3110
3111 stub_bfd = stub_sec->owner;
3112
3113 /* This is the address of the start of the stub. */
3114 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3115 + stub_entry->stub_offset;
3116
3117 /* This is the address of the stub destination. */
3118 sym_value = (stub_entry->target_value
3119 + stub_entry->target_section->output_offset
3120 + stub_entry->target_section->output_section->vma);
3121
3122 switch (stub_entry->stub_type)
3123 {
3124 case arm_stub_long_branch:
3125 template = arm_long_branch_stub;
3126 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3127 break;
3128 case arm_thumb_v4t_stub_long_branch:
3129 template = arm_thumb_v4t_long_branch_stub;
3130 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3131 break;
3132 case arm_thumb_thumb_stub_long_branch:
3133 template = arm_thumb_thumb_long_branch_stub;
3134 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3135 break;
3136 case arm_thumb_arm_v4t_stub_long_branch:
3137 template = arm_thumb_arm_v4t_long_branch_stub;
3138 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3139 break;
3140 case arm_thumb_arm_v4t_stub_short_branch:
3141 template = arm_thumb_arm_v4t_short_branch_stub;
3142 template_size = (sizeof(arm_thumb_arm_v4t_short_branch_stub) / sizeof (bfd_vma)) * 4;
3143 break;
3144 case arm_stub_pic_long_branch:
3145 template = arm_pic_long_branch_stub;
3146 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3147 break;
3148 default:
3149 BFD_FAIL ();
3150 return FALSE;
3151 }
3152
3153 size = 0;
3154 for (i = 0; i < (template_size / 4); i++)
3155 {
3156 /* A 0 pattern is a placeholder, every other pattern is an
3157 instruction. */
3158 if (template[i] != 0)
3159 put_arm_insn (globals, stub_bfd, template[i], loc + size);
3160 else
3161 bfd_put_32 (stub_bfd, template[i], loc + size);
3162
3163 size += 4;
3164 }
3165 stub_sec->size += size;
3166
3167 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3168 if (stub_entry->st_type == STT_ARM_TFUNC)
3169 sym_value |= 1;
3170
3171 switch (stub_entry->stub_type)
3172 {
3173 case arm_stub_long_branch:
3174 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3175 stub_bfd, stub_sec, stub_sec->contents,
3176 stub_entry->stub_offset + 4, sym_value, 0);
3177 break;
3178 case arm_thumb_v4t_stub_long_branch:
3179 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3180 stub_bfd, stub_sec, stub_sec->contents,
3181 stub_entry->stub_offset + 8, sym_value, 0);
3182 break;
3183 case arm_thumb_thumb_stub_long_branch:
3184 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3185 stub_bfd, stub_sec, stub_sec->contents,
3186 stub_entry->stub_offset + 12, sym_value, 0);
3187 break;
3188 case arm_thumb_arm_v4t_stub_long_branch:
3189 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3190 stub_bfd, stub_sec, stub_sec->contents,
3191 stub_entry->stub_offset + 16, sym_value, 0);
3192 break;
3193 case arm_thumb_arm_v4t_stub_short_branch:
3194 {
3195 long int rel_offset;
3196 static const insn32 t2a3_b_insn = 0xea000000;
3197
3198 rel_offset = sym_value - (stub_addr + 8 + 4);
3199
3200 put_arm_insn (globals, stub_bfd,
3201 (bfd_vma) t2a3_b_insn | ((rel_offset >> 2) & 0x00FFFFFF),
3202 loc + 4);
3203 }
3204 break;
3205
3206 case arm_stub_pic_long_branch:
3207 /* We want the value relative to the address 8 bytes from the
3208 start of the stub. */
3209 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_REL32),
3210 stub_bfd, stub_sec, stub_sec->contents,
3211 stub_entry->stub_offset + 8, sym_value, 0);
3212 break;
3213 default:
3214 break;
3215 }
3216
3217 return TRUE;
3218 }
3219
3220 /* As above, but don't actually build the stub. Just bump offset so
3221 we know stub section sizes. */
3222
3223 static bfd_boolean
3224 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3225 void * in_arg)
3226 {
3227 struct elf32_arm_stub_hash_entry *stub_entry;
3228 struct elf32_arm_link_hash_table *htab;
3229 const bfd_vma *template;
3230 int template_size;
3231 int size;
3232 int i;
3233
3234 /* Massage our args to the form they really have. */
3235 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3236 htab = (struct elf32_arm_link_hash_table *) in_arg;
3237
3238 switch (stub_entry->stub_type)
3239 {
3240 case arm_stub_long_branch:
3241 template = arm_long_branch_stub;
3242 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3243 break;
3244 case arm_thumb_v4t_stub_long_branch:
3245 template = arm_thumb_v4t_long_branch_stub;
3246 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3247 break;
3248 case arm_thumb_thumb_stub_long_branch:
3249 template = arm_thumb_thumb_long_branch_stub;
3250 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3251 break;
3252 case arm_thumb_arm_v4t_stub_long_branch:
3253 template = arm_thumb_arm_v4t_long_branch_stub;
3254 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3255 break;
3256 case arm_thumb_arm_v4t_stub_short_branch:
3257 template = arm_thumb_arm_v4t_short_branch_stub;
3258 template_size = (sizeof(arm_thumb_arm_v4t_short_branch_stub) / sizeof (bfd_vma)) * 4;
3259 break;
3260 case arm_stub_pic_long_branch:
3261 template = arm_pic_long_branch_stub;
3262 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3263 break;
3264 default:
3265 BFD_FAIL ();
3266 return FALSE;
3267 break;
3268 }
3269
3270 size = 0;
3271 for (i = 0; i < (template_size / 4); i++)
3272 size += 4;
3273 size = (size + 7) & ~7;
3274 stub_entry->stub_sec->size += size;
3275 return TRUE;
3276 }
3277
3278 /* External entry points for sizing and building linker stubs. */
3279
3280 /* Set up various things so that we can make a list of input sections
3281 for each output section included in the link. Returns -1 on error,
3282 0 when no stubs will be needed, and 1 on success. */
3283
3284 int
3285 elf32_arm_setup_section_lists (bfd *output_bfd,
3286 struct bfd_link_info *info)
3287 {
3288 bfd *input_bfd;
3289 unsigned int bfd_count;
3290 int top_id, top_index;
3291 asection *section;
3292 asection **input_list, **list;
3293 bfd_size_type amt;
3294 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3295
3296 if (! is_elf_hash_table (htab))
3297 return 0;
3298
3299 /* Count the number of input BFDs and find the top input section id. */
3300 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3301 input_bfd != NULL;
3302 input_bfd = input_bfd->link_next)
3303 {
3304 bfd_count += 1;
3305 for (section = input_bfd->sections;
3306 section != NULL;
3307 section = section->next)
3308 {
3309 if (top_id < section->id)
3310 top_id = section->id;
3311 }
3312 }
3313 htab->bfd_count = bfd_count;
3314
3315 amt = sizeof (struct map_stub) * (top_id + 1);
3316 htab->stub_group = bfd_zmalloc (amt);
3317 if (htab->stub_group == NULL)
3318 return -1;
3319
3320 /* We can't use output_bfd->section_count here to find the top output
3321 section index as some sections may have been removed, and
3322 _bfd_strip_section_from_output doesn't renumber the indices. */
3323 for (section = output_bfd->sections, top_index = 0;
3324 section != NULL;
3325 section = section->next)
3326 {
3327 if (top_index < section->index)
3328 top_index = section->index;
3329 }
3330
3331 htab->top_index = top_index;
3332 amt = sizeof (asection *) * (top_index + 1);
3333 input_list = bfd_malloc (amt);
3334 htab->input_list = input_list;
3335 if (input_list == NULL)
3336 return -1;
3337
3338 /* For sections we aren't interested in, mark their entries with a
3339 value we can check later. */
3340 list = input_list + top_index;
3341 do
3342 *list = bfd_abs_section_ptr;
3343 while (list-- != input_list);
3344
3345 for (section = output_bfd->sections;
3346 section != NULL;
3347 section = section->next)
3348 {
3349 if ((section->flags & SEC_CODE) != 0)
3350 input_list[section->index] = NULL;
3351 }
3352
3353 return 1;
3354 }
3355
3356 /* The linker repeatedly calls this function for each input section,
3357 in the order that input sections are linked into output sections.
3358 Build lists of input sections to determine groupings between which
3359 we may insert linker stubs. */
3360
3361 void
3362 elf32_arm_next_input_section (struct bfd_link_info *info,
3363 asection *isec)
3364 {
3365 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3366
3367 if (isec->output_section->index <= htab->top_index)
3368 {
3369 asection **list = htab->input_list + isec->output_section->index;
3370
3371 if (*list != bfd_abs_section_ptr)
3372 {
3373 /* Steal the link_sec pointer for our list. */
3374 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3375 /* This happens to make the list in reverse order,
3376 which is what we want. */
3377 PREV_SEC (isec) = *list;
3378 *list = isec;
3379 }
3380 }
3381 }
3382
3383 /* See whether we can group stub sections together. Grouping stub
3384 sections may result in fewer stubs. More importantly, we need to
3385 put all .init* and .fini* stubs at the beginning of the .init or
3386 .fini output sections respectively, because glibc splits the
3387 _init and _fini functions into multiple parts. Putting a stub in
3388 the middle of a function is not a good idea. */
3389
3390 static void
3391 group_sections (struct elf32_arm_link_hash_table *htab,
3392 bfd_size_type stub_group_size,
3393 bfd_boolean stubs_always_before_branch)
3394 {
3395 asection **list = htab->input_list + htab->top_index;
3396
3397 do
3398 {
3399 asection *tail = *list;
3400
3401 if (tail == bfd_abs_section_ptr)
3402 continue;
3403
3404 while (tail != NULL)
3405 {
3406 asection *curr;
3407 asection *prev;
3408 bfd_size_type total;
3409
3410 curr = tail;
3411 total = tail->size;
3412 while ((prev = PREV_SEC (curr)) != NULL
3413 && ((total += curr->output_offset - prev->output_offset)
3414 < stub_group_size))
3415 curr = prev;
3416
3417 /* OK, the size from the start of CURR to the end is less
3418 than stub_group_size and thus can be handled by one stub
3419 section. (Or the tail section is itself larger than
3420 stub_group_size, in which case we may be toast.)
3421 We should really be keeping track of the total size of
3422 stubs added here, as stubs contribute to the final output
3423 section size. */
3424 do
3425 {
3426 prev = PREV_SEC (tail);
3427 /* Set up this stub group. */
3428 htab->stub_group[tail->id].link_sec = curr;
3429 }
3430 while (tail != curr && (tail = prev) != NULL);
3431
3432 /* But wait, there's more! Input sections up to stub_group_size
3433 bytes before the stub section can be handled by it too. */
3434 if (!stubs_always_before_branch)
3435 {
3436 total = 0;
3437 while (prev != NULL
3438 && ((total += tail->output_offset - prev->output_offset)
3439 < stub_group_size))
3440 {
3441 tail = prev;
3442 prev = PREV_SEC (tail);
3443 htab->stub_group[tail->id].link_sec = curr;
3444 }
3445 }
3446 tail = prev;
3447 }
3448 }
3449 while (list-- != htab->input_list);
3450
3451 free (htab->input_list);
3452 #undef PREV_SEC
3453 }
3454
3455 /* Determine and set the size of the stub section for a final link.
3456
3457 The basic idea here is to examine all the relocations looking for
3458 PC-relative calls to a target that is unreachable with a "bl"
3459 instruction. */
3460
3461 bfd_boolean
3462 elf32_arm_size_stubs (bfd *output_bfd,
3463 bfd *stub_bfd,
3464 struct bfd_link_info *info,
3465 bfd_signed_vma group_size,
3466 asection * (*add_stub_section) (const char *, asection *),
3467 void (*layout_sections_again) (void))
3468 {
3469 bfd_size_type stub_group_size;
3470 bfd_boolean stubs_always_before_branch;
3471 bfd_boolean stub_changed = 0;
3472 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3473
3474 /* Propagate mach to stub bfd, because it may not have been
3475 finalized when we created stub_bfd. */
3476 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3477 bfd_get_mach (output_bfd));
3478
3479 /* Stash our params away. */
3480 htab->stub_bfd = stub_bfd;
3481 htab->add_stub_section = add_stub_section;
3482 htab->layout_sections_again = layout_sections_again;
3483 stubs_always_before_branch = group_size < 0;
3484 if (group_size < 0)
3485 stub_group_size = -group_size;
3486 else
3487 stub_group_size = group_size;
3488
3489 if (stub_group_size == 1)
3490 {
3491 /* Default values. */
3492 /* Thumb branch range is +-4MB has to be used as the default
3493 maximum size (a given section can contain both ARM and Thumb
3494 code, so the worst case has to be taken into account).
3495
3496 This value is 24K less than that, which allows for 2025
3497 12-byte stubs. If we exceed that, then we will fail to link.
3498 The user will have to relink with an explicit group size
3499 option. */
3500 stub_group_size = 4170000;
3501 }
3502
3503 group_sections (htab, stub_group_size, stubs_always_before_branch);
3504
3505 while (1)
3506 {
3507 bfd *input_bfd;
3508 unsigned int bfd_indx;
3509 asection *stub_sec;
3510
3511 for (input_bfd = info->input_bfds, bfd_indx = 0;
3512 input_bfd != NULL;
3513 input_bfd = input_bfd->link_next, bfd_indx++)
3514 {
3515 Elf_Internal_Shdr *symtab_hdr;
3516 asection *section;
3517 Elf_Internal_Sym *local_syms = NULL;
3518
3519 /* We'll need the symbol table in a second. */
3520 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3521 if (symtab_hdr->sh_info == 0)
3522 continue;
3523
3524 /* Walk over each section attached to the input bfd. */
3525 for (section = input_bfd->sections;
3526 section != NULL;
3527 section = section->next)
3528 {
3529 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3530
3531 /* If there aren't any relocs, then there's nothing more
3532 to do. */
3533 if ((section->flags & SEC_RELOC) == 0
3534 || section->reloc_count == 0
3535 || (section->flags & SEC_CODE) == 0)
3536 continue;
3537
3538 /* If this section is a link-once section that will be
3539 discarded, then don't create any stubs. */
3540 if (section->output_section == NULL
3541 || section->output_section->owner != output_bfd)
3542 continue;
3543
3544 /* Get the relocs. */
3545 internal_relocs
3546 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3547 NULL, info->keep_memory);
3548 if (internal_relocs == NULL)
3549 goto error_ret_free_local;
3550
3551 /* Now examine each relocation. */
3552 irela = internal_relocs;
3553 irelaend = irela + section->reloc_count;
3554 for (; irela < irelaend; irela++)
3555 {
3556 unsigned int r_type, r_indx;
3557 enum elf32_arm_stub_type stub_type;
3558 struct elf32_arm_stub_hash_entry *stub_entry;
3559 asection *sym_sec;
3560 bfd_vma sym_value;
3561 bfd_vma destination;
3562 struct elf32_arm_link_hash_entry *hash;
3563 const char *sym_name;
3564 char *stub_name;
3565 const asection *id_sec;
3566 unsigned char st_type;
3567
3568 r_type = ELF32_R_TYPE (irela->r_info);
3569 r_indx = ELF32_R_SYM (irela->r_info);
3570
3571 if (r_type >= (unsigned int) R_ARM_max)
3572 {
3573 bfd_set_error (bfd_error_bad_value);
3574 error_ret_free_internal:
3575 if (elf_section_data (section)->relocs == NULL)
3576 free (internal_relocs);
3577 goto error_ret_free_local;
3578 }
3579
3580 /* Only look for stubs on call instructions. */
3581 if ((r_type != (unsigned int) R_ARM_CALL)
3582 && (r_type != (unsigned int) R_ARM_THM_CALL))
3583 continue;
3584
3585 /* Now determine the call target, its name, value,
3586 section. */
3587 sym_sec = NULL;
3588 sym_value = 0;
3589 destination = 0;
3590 hash = NULL;
3591 sym_name = NULL;
3592 if (r_indx < symtab_hdr->sh_info)
3593 {
3594 /* It's a local symbol. */
3595 Elf_Internal_Sym *sym;
3596 Elf_Internal_Shdr *hdr;
3597
3598 if (local_syms == NULL)
3599 {
3600 local_syms
3601 = (Elf_Internal_Sym *) symtab_hdr->contents;
3602 if (local_syms == NULL)
3603 local_syms
3604 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3605 symtab_hdr->sh_info, 0,
3606 NULL, NULL, NULL);
3607 if (local_syms == NULL)
3608 goto error_ret_free_internal;
3609 }
3610
3611 sym = local_syms + r_indx;
3612 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3613 sym_sec = hdr->bfd_section;
3614 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3615 sym_value = sym->st_value;
3616 destination = (sym_value + irela->r_addend
3617 + sym_sec->output_offset
3618 + sym_sec->output_section->vma);
3619 st_type = ELF_ST_TYPE (sym->st_info);
3620 sym_name
3621 = bfd_elf_string_from_elf_section (input_bfd,
3622 symtab_hdr->sh_link,
3623 sym->st_name);
3624 }
3625 else
3626 {
3627 /* It's an external symbol. */
3628 int e_indx;
3629
3630 e_indx = r_indx - symtab_hdr->sh_info;
3631 hash = ((struct elf32_arm_link_hash_entry *)
3632 elf_sym_hashes (input_bfd)[e_indx]);
3633
3634 while (hash->root.root.type == bfd_link_hash_indirect
3635 || hash->root.root.type == bfd_link_hash_warning)
3636 hash = ((struct elf32_arm_link_hash_entry *)
3637 hash->root.root.u.i.link);
3638
3639 if (hash->root.root.type == bfd_link_hash_defined
3640 || hash->root.root.type == bfd_link_hash_defweak)
3641 {
3642 sym_sec = hash->root.root.u.def.section;
3643 sym_value = hash->root.root.u.def.value;
3644 if (sym_sec->output_section != NULL)
3645 destination = (sym_value + irela->r_addend
3646 + sym_sec->output_offset
3647 + sym_sec->output_section->vma);
3648 }
3649 else if (hash->root.root.type == bfd_link_hash_undefweak
3650 || hash->root.root.type == bfd_link_hash_undefined)
3651 /* For a shared library, these will need a PLT stub,
3652 which is treated separately.
3653 For absolute code, they cannot be handled. */
3654 continue;
3655 else
3656 {
3657 bfd_set_error (bfd_error_bad_value);
3658 goto error_ret_free_internal;
3659 }
3660 st_type = ELF_ST_TYPE (hash->root.type);
3661 sym_name = hash->root.root.root.string;
3662 }
3663
3664 /* Determine what (if any) linker stub is needed. */
3665 stub_type = arm_type_of_stub (info, section, irela, st_type,
3666 hash, destination, sym_sec,
3667 input_bfd, sym_name);
3668 if (stub_type == arm_stub_none)
3669 continue;
3670
3671 /* Support for grouping stub sections. */
3672 id_sec = htab->stub_group[section->id].link_sec;
3673
3674 /* Get the name of this stub. */
3675 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3676 if (!stub_name)
3677 goto error_ret_free_internal;
3678
3679 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3680 stub_name,
3681 FALSE, FALSE);
3682 if (stub_entry != NULL)
3683 {
3684 /* The proper stub has already been created. */
3685 free (stub_name);
3686 continue;
3687 }
3688
3689 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
3690 if (stub_entry == NULL)
3691 {
3692 free (stub_name);
3693 goto error_ret_free_internal;
3694 }
3695
3696 stub_entry->target_value = sym_value;
3697 stub_entry->target_section = sym_sec;
3698 stub_entry->stub_type = stub_type;
3699 stub_entry->h = hash;
3700 stub_entry->st_type = st_type;
3701
3702 if (sym_name == NULL)
3703 sym_name = "unnamed";
3704 stub_entry->output_name
3705 = bfd_alloc (htab->stub_bfd,
3706 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
3707 + strlen (sym_name));
3708 if (stub_entry->output_name == NULL)
3709 {
3710 free (stub_name);
3711 goto error_ret_free_internal;
3712 }
3713
3714 /* For historical reasons, use the existing names for
3715 ARM-to-Thumb and Thumb-to-ARM stubs. */
3716 if (r_type == (unsigned int) R_ARM_THM_CALL
3717 && st_type != STT_ARM_TFUNC)
3718 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME,
3719 sym_name);
3720 else if (r_type == (unsigned int) R_ARM_CALL
3721 && st_type == STT_ARM_TFUNC)
3722 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME,
3723 sym_name);
3724 else
3725 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
3726 sym_name);
3727
3728 stub_changed = TRUE;
3729 }
3730
3731 /* We're done with the internal relocs, free them. */
3732 if (elf_section_data (section)->relocs == NULL)
3733 free (internal_relocs);
3734 }
3735 }
3736
3737 if (!stub_changed)
3738 break;
3739
3740 /* OK, we've added some stubs. Find out the new size of the
3741 stub sections. */
3742 for (stub_sec = htab->stub_bfd->sections;
3743 stub_sec != NULL;
3744 stub_sec = stub_sec->next)
3745 stub_sec->size = 0;
3746
3747 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3748
3749 /* Ask the linker to do its stuff. */
3750 (*htab->layout_sections_again) ();
3751 stub_changed = FALSE;
3752 }
3753
3754 return TRUE;
3755
3756 error_ret_free_local:
3757 return FALSE;
3758 }
3759
3760 /* Build all the stubs associated with the current output file. The
3761 stubs are kept in a hash table attached to the main linker hash
3762 table. We also set up the .plt entries for statically linked PIC
3763 functions here. This function is called via arm_elf_finish in the
3764 linker. */
3765
3766 bfd_boolean
3767 elf32_arm_build_stubs (struct bfd_link_info *info)
3768 {
3769 asection *stub_sec;
3770 struct bfd_hash_table *table;
3771 struct elf32_arm_link_hash_table *htab;
3772
3773 htab = elf32_arm_hash_table (info);
3774
3775 for (stub_sec = htab->stub_bfd->sections;
3776 stub_sec != NULL;
3777 stub_sec = stub_sec->next)
3778 {
3779 bfd_size_type size;
3780
3781 /* Ignore non-stub sections. */
3782 if (!strstr (stub_sec->name, STUB_SUFFIX))
3783 continue;
3784
3785 /* Allocate memory to hold the linker stubs. */
3786 size = stub_sec->size;
3787 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3788 if (stub_sec->contents == NULL && size != 0)
3789 return FALSE;
3790 stub_sec->size = 0;
3791 }
3792
3793 /* Build the stubs as directed by the stub hash table. */
3794 table = &htab->stub_hash_table;
3795 bfd_hash_traverse (table, arm_build_one_stub, info);
3796
3797 return TRUE;
3798 }
3799
3800 /* Locate the Thumb encoded calling stub for NAME. */
3801
3802 static struct elf_link_hash_entry *
3803 find_thumb_glue (struct bfd_link_info *link_info,
3804 const char *name,
3805 char **error_message)
3806 {
3807 char *tmp_name;
3808 struct elf_link_hash_entry *hash;
3809 struct elf32_arm_link_hash_table *hash_table;
3810
3811 /* We need a pointer to the armelf specific hash table. */
3812 hash_table = elf32_arm_hash_table (link_info);
3813
3814 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3815 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
3816
3817 BFD_ASSERT (tmp_name);
3818
3819 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
3820
3821 hash = elf_link_hash_lookup
3822 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3823
3824 if (hash == NULL
3825 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
3826 tmp_name, name) == -1)
3827 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3828
3829 free (tmp_name);
3830
3831 return hash;
3832 }
3833
3834 /* Locate the ARM encoded calling stub for NAME. */
3835
3836 static struct elf_link_hash_entry *
3837 find_arm_glue (struct bfd_link_info *link_info,
3838 const char *name,
3839 char **error_message)
3840 {
3841 char *tmp_name;
3842 struct elf_link_hash_entry *myh;
3843 struct elf32_arm_link_hash_table *hash_table;
3844
3845 /* We need a pointer to the elfarm specific hash table. */
3846 hash_table = elf32_arm_hash_table (link_info);
3847
3848 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3849 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3850
3851 BFD_ASSERT (tmp_name);
3852
3853 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3854
3855 myh = elf_link_hash_lookup
3856 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3857
3858 if (myh == NULL
3859 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
3860 tmp_name, name) == -1)
3861 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3862
3863 free (tmp_name);
3864
3865 return myh;
3866 }
3867
3868 /* ARM->Thumb glue (static images):
3869
3870 .arm
3871 __func_from_arm:
3872 ldr r12, __func_addr
3873 bx r12
3874 __func_addr:
3875 .word func @ behave as if you saw a ARM_32 reloc.
3876
3877 (v5t static images)
3878 .arm
3879 __func_from_arm:
3880 ldr pc, __func_addr
3881 __func_addr:
3882 .word func @ behave as if you saw a ARM_32 reloc.
3883
3884 (relocatable images)
3885 .arm
3886 __func_from_arm:
3887 ldr r12, __func_offset
3888 add r12, r12, pc
3889 bx r12
3890 __func_offset:
3891 .word func - . */
3892
3893 #define ARM2THUMB_STATIC_GLUE_SIZE 12
3894 static const insn32 a2t1_ldr_insn = 0xe59fc000;
3895 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
3896 static const insn32 a2t3_func_addr_insn = 0x00000001;
3897
3898 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
3899 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
3900 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
3901
3902 #define ARM2THUMB_PIC_GLUE_SIZE 16
3903 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
3904 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
3905 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
3906
3907 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
3908
3909 .thumb .thumb
3910 .align 2 .align 2
3911 __func_from_thumb: __func_from_thumb:
3912 bx pc push {r6, lr}
3913 nop ldr r6, __func_addr
3914 .arm mov lr, pc
3915 b func bx r6
3916 .arm
3917 ;; back_to_thumb
3918 ldmia r13! {r6, lr}
3919 bx lr
3920 __func_addr:
3921 .word func */
3922
3923 #define THUMB2ARM_GLUE_SIZE 8
3924 static const insn16 t2a1_bx_pc_insn = 0x4778;
3925 static const insn16 t2a2_noop_insn = 0x46c0;
3926 static const insn32 t2a3_b_insn = 0xea000000;
3927
3928 #define VFP11_ERRATUM_VENEER_SIZE 8
3929
3930 #define ARM_BX_VENEER_SIZE 12
3931 static const insn32 armbx1_tst_insn = 0xe3100001;
3932 static const insn32 armbx2_moveq_insn = 0x01a0f000;
3933 static const insn32 armbx3_bx_insn = 0xe12fff10;
3934
3935 #ifndef ELFARM_NABI_C_INCLUDED
3936 static void
3937 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
3938 {
3939 asection * s;
3940 bfd_byte * contents;
3941
3942 if (size == 0)
3943 return;
3944
3945 BFD_ASSERT (abfd != NULL);
3946
3947 s = bfd_get_section_by_name (abfd, name);
3948 BFD_ASSERT (s != NULL);
3949
3950 contents = bfd_alloc (abfd, size);
3951
3952 BFD_ASSERT (s->size == size);
3953 s->contents = contents;
3954 }
3955
3956 bfd_boolean
3957 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
3958 {
3959 struct elf32_arm_link_hash_table * globals;
3960
3961 globals = elf32_arm_hash_table (info);
3962 BFD_ASSERT (globals != NULL);
3963
3964 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3965 globals->arm_glue_size,
3966 ARM2THUMB_GLUE_SECTION_NAME);
3967
3968 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3969 globals->thumb_glue_size,
3970 THUMB2ARM_GLUE_SECTION_NAME);
3971
3972 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3973 globals->vfp11_erratum_glue_size,
3974 VFP11_ERRATUM_VENEER_SECTION_NAME);
3975
3976 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3977 globals->bx_glue_size,
3978 ARM_BX_GLUE_SECTION_NAME);
3979
3980 return TRUE;
3981 }
3982
3983 /* Allocate space and symbols for calling a Thumb function from Arm mode.
3984 returns the symbol identifying the stub. */
3985
3986 static struct elf_link_hash_entry *
3987 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
3988 struct elf_link_hash_entry * h)
3989 {
3990 const char * name = h->root.root.string;
3991 asection * s;
3992 char * tmp_name;
3993 struct elf_link_hash_entry * myh;
3994 struct bfd_link_hash_entry * bh;
3995 struct elf32_arm_link_hash_table * globals;
3996 bfd_vma val;
3997 bfd_size_type size;
3998
3999 globals = elf32_arm_hash_table (link_info);
4000
4001 BFD_ASSERT (globals != NULL);
4002 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4003
4004 s = bfd_get_section_by_name
4005 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
4006
4007 BFD_ASSERT (s != NULL);
4008
4009 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4010
4011 BFD_ASSERT (tmp_name);
4012
4013 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4014
4015 myh = elf_link_hash_lookup
4016 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
4017
4018 if (myh != NULL)
4019 {
4020 /* We've already seen this guy. */
4021 free (tmp_name);
4022 return myh;
4023 }
4024
4025 /* The only trick here is using hash_table->arm_glue_size as the value.
4026 Even though the section isn't allocated yet, this is where we will be
4027 putting it. The +1 on the value marks that the stub has not been
4028 output yet - not that it is a Thumb function. */
4029 bh = NULL;
4030 val = globals->arm_glue_size + 1;
4031 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4032 tmp_name, BSF_GLOBAL, s, val,
4033 NULL, TRUE, FALSE, &bh);
4034
4035 myh = (struct elf_link_hash_entry *) bh;
4036 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4037 myh->forced_local = 1;
4038
4039 free (tmp_name);
4040
4041 if (link_info->shared || globals->root.is_relocatable_executable
4042 || globals->pic_veneer)
4043 size = ARM2THUMB_PIC_GLUE_SIZE;
4044 else if (globals->use_blx)
4045 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
4046 else
4047 size = ARM2THUMB_STATIC_GLUE_SIZE;
4048
4049 s->size += size;
4050 globals->arm_glue_size += size;
4051
4052 return myh;
4053 }
4054
4055 static void
4056 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
4057 struct elf_link_hash_entry *h)
4058 {
4059 const char *name = h->root.root.string;
4060 asection *s;
4061 char *tmp_name;
4062 struct elf_link_hash_entry *myh;
4063 struct bfd_link_hash_entry *bh;
4064 struct elf32_arm_link_hash_table *hash_table;
4065 bfd_vma val;
4066
4067 hash_table = elf32_arm_hash_table (link_info);
4068
4069 BFD_ASSERT (hash_table != NULL);
4070 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4071
4072 s = bfd_get_section_by_name
4073 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
4074
4075 BFD_ASSERT (s != NULL);
4076
4077 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4078 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4079
4080 BFD_ASSERT (tmp_name);
4081
4082 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4083
4084 myh = elf_link_hash_lookup
4085 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4086
4087 if (myh != NULL)
4088 {
4089 /* We've already seen this guy. */
4090 free (tmp_name);
4091 return;
4092 }
4093
4094 /* The only trick here is using hash_table->thumb_glue_size as the value.
4095 Even though the section isn't allocated yet, this is where we will be
4096 putting it. The +1 on the value marks that the stub has not been
4097 output yet - not that it is a Thumb function. */
4098 bh = NULL;
4099 val = hash_table->thumb_glue_size + 1;
4100 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4101 tmp_name, BSF_GLOBAL, s, val,
4102 NULL, TRUE, FALSE, &bh);
4103
4104 /* If we mark it 'Thumb', the disassembler will do a better job. */
4105 myh = (struct elf_link_hash_entry *) bh;
4106 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4107 myh->forced_local = 1;
4108
4109 free (tmp_name);
4110
4111 #define CHANGE_TO_ARM "__%s_change_to_arm"
4112 #define BACK_FROM_ARM "__%s_back_from_arm"
4113
4114 /* Allocate another symbol to mark where we switch to Arm mode. */
4115 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4116 + strlen (CHANGE_TO_ARM) + 1);
4117
4118 BFD_ASSERT (tmp_name);
4119
4120 sprintf (tmp_name, CHANGE_TO_ARM, name);
4121
4122 bh = NULL;
4123 val = hash_table->thumb_glue_size + 4,
4124 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4125 tmp_name, BSF_LOCAL, s, val,
4126 NULL, TRUE, FALSE, &bh);
4127
4128 free (tmp_name);
4129
4130 s->size += THUMB2ARM_GLUE_SIZE;
4131 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
4132 }
4133
4134
4135 /* Allocate space for ARMv4 BX veneers. */
4136
4137 static void
4138 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4139 {
4140 asection * s;
4141 struct elf32_arm_link_hash_table *globals;
4142 char *tmp_name;
4143 struct elf_link_hash_entry *myh;
4144 struct bfd_link_hash_entry *bh;
4145 bfd_vma val;
4146
4147 /* BX PC does not need a veneer. */
4148 if (reg == 15)
4149 return;
4150
4151 globals = elf32_arm_hash_table (link_info);
4152
4153 BFD_ASSERT (globals != NULL);
4154 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4155
4156 /* Check if this veneer has already been allocated. */
4157 if (globals->bx_glue_offset[reg])
4158 return;
4159
4160 s = bfd_get_section_by_name
4161 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4162
4163 BFD_ASSERT (s != NULL);
4164
4165 /* Add symbol for veneer. */
4166 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
4167
4168 BFD_ASSERT (tmp_name);
4169
4170 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
4171
4172 myh = elf_link_hash_lookup
4173 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
4174
4175 BFD_ASSERT (myh == NULL);
4176
4177 bh = NULL;
4178 val = globals->bx_glue_size;
4179 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4180 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4181 NULL, TRUE, FALSE, &bh);
4182
4183 myh = (struct elf_link_hash_entry *) bh;
4184 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4185 myh->forced_local = 1;
4186
4187 s->size += ARM_BX_VENEER_SIZE;
4188 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4189 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4190 }
4191
4192
4193 /* Add an entry to the code/data map for section SEC. */
4194
4195 static void
4196 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4197 {
4198 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4199 unsigned int newidx;
4200
4201 if (sec_data->map == NULL)
4202 {
4203 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4204 sec_data->mapcount = 0;
4205 sec_data->mapsize = 1;
4206 }
4207
4208 newidx = sec_data->mapcount++;
4209
4210 if (sec_data->mapcount > sec_data->mapsize)
4211 {
4212 sec_data->mapsize *= 2;
4213 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4214 * sizeof (elf32_arm_section_map));
4215 }
4216
4217 if (sec_data->map)
4218 {
4219 sec_data->map[newidx].vma = vma;
4220 sec_data->map[newidx].type = type;
4221 }
4222 }
4223
4224
4225 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4226 veneers are handled for now. */
4227
4228 static bfd_vma
4229 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4230 elf32_vfp11_erratum_list *branch,
4231 bfd *branch_bfd,
4232 asection *branch_sec,
4233 unsigned int offset)
4234 {
4235 asection *s;
4236 struct elf32_arm_link_hash_table *hash_table;
4237 char *tmp_name;
4238 struct elf_link_hash_entry *myh;
4239 struct bfd_link_hash_entry *bh;
4240 bfd_vma val;
4241 struct _arm_elf_section_data *sec_data;
4242 int errcount;
4243 elf32_vfp11_erratum_list *newerr;
4244
4245 hash_table = elf32_arm_hash_table (link_info);
4246
4247 BFD_ASSERT (hash_table != NULL);
4248 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4249
4250 s = bfd_get_section_by_name
4251 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
4252
4253 sec_data = elf32_arm_section_data (s);
4254
4255 BFD_ASSERT (s != NULL);
4256
4257 tmp_name = bfd_malloc ((bfd_size_type) strlen
4258 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
4259
4260 BFD_ASSERT (tmp_name);
4261
4262 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4263 hash_table->num_vfp11_fixes);
4264
4265 myh = elf_link_hash_lookup
4266 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4267
4268 BFD_ASSERT (myh == NULL);
4269
4270 bh = NULL;
4271 val = hash_table->vfp11_erratum_glue_size;
4272 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4273 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4274 NULL, TRUE, FALSE, &bh);
4275
4276 myh = (struct elf_link_hash_entry *) bh;
4277 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4278 myh->forced_local = 1;
4279
4280 /* Link veneer back to calling location. */
4281 errcount = ++(sec_data->erratumcount);
4282 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
4283
4284 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4285 newerr->vma = -1;
4286 newerr->u.v.branch = branch;
4287 newerr->u.v.id = hash_table->num_vfp11_fixes;
4288 branch->u.b.veneer = newerr;
4289
4290 newerr->next = sec_data->erratumlist;
4291 sec_data->erratumlist = newerr;
4292
4293 /* A symbol for the return from the veneer. */
4294 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4295 hash_table->num_vfp11_fixes);
4296
4297 myh = elf_link_hash_lookup
4298 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4299
4300 if (myh != NULL)
4301 abort ();
4302
4303 bh = NULL;
4304 val = offset + 4;
4305 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4306 branch_sec, val, NULL, TRUE, FALSE, &bh);
4307
4308 myh = (struct elf_link_hash_entry *) bh;
4309 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4310 myh->forced_local = 1;
4311
4312 free (tmp_name);
4313
4314 /* Generate a mapping symbol for the veneer section, and explicitly add an
4315 entry for that symbol to the code/data map for the section. */
4316 if (hash_table->vfp11_erratum_glue_size == 0)
4317 {
4318 bh = NULL;
4319 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4320 ever requires this erratum fix. */
4321 _bfd_generic_link_add_one_symbol (link_info,
4322 hash_table->bfd_of_glue_owner, "$a",
4323 BSF_LOCAL, s, 0, NULL,
4324 TRUE, FALSE, &bh);
4325
4326 myh = (struct elf_link_hash_entry *) bh;
4327 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4328 myh->forced_local = 1;
4329
4330 /* The elf32_arm_init_maps function only cares about symbols from input
4331 BFDs. We must make a note of this generated mapping symbol
4332 ourselves so that code byteswapping works properly in
4333 elf32_arm_write_section. */
4334 elf32_arm_section_map_add (s, 'a', 0);
4335 }
4336
4337 s->size += VFP11_ERRATUM_VENEER_SIZE;
4338 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4339 hash_table->num_vfp11_fixes++;
4340
4341 /* The offset of the veneer. */
4342 return val;
4343 }
4344
4345 /* Note: we do not include the flag SEC_LINKER_CREATED, as that
4346 would prevent elf_link_input_bfd() from processing the contents
4347 of the section. */
4348 #define ARM_GLUE_SECTION_FLAGS \
4349 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY)
4350
4351 /* Create a fake section for use by the ARM backend of the linker. */
4352
4353 static bfd_boolean
4354 arm_make_glue_section (bfd * abfd, const char * name)
4355 {
4356 asection * sec;
4357
4358 sec = bfd_get_section_by_name (abfd, name);
4359 if (sec != NULL)
4360 /* Already made. */
4361 return TRUE;
4362
4363 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
4364
4365 if (sec == NULL
4366 || !bfd_set_section_alignment (abfd, sec, 2))
4367 return FALSE;
4368
4369 /* Set the gc mark to prevent the section from being removed by garbage
4370 collection, despite the fact that no relocs refer to this section. */
4371 sec->gc_mark = 1;
4372
4373 return TRUE;
4374 }
4375
4376 /* Add the glue sections to ABFD. This function is called from the
4377 linker scripts in ld/emultempl/{armelf}.em. */
4378
4379 bfd_boolean
4380 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4381 struct bfd_link_info *info)
4382 {
4383 /* If we are only performing a partial
4384 link do not bother adding the glue. */
4385 if (info->relocatable)
4386 return TRUE;
4387
4388 /* Linker stubs don't need glue. */
4389 if (!strcmp (abfd->filename, "linker stubs"))
4390 return TRUE;
4391
4392 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
4393 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
4394 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
4395 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
4396 }
4397
4398 /* Select a BFD to be used to hold the sections used by the glue code.
4399 This function is called from the linker scripts in ld/emultempl/
4400 {armelf/pe}.em. */
4401
4402 bfd_boolean
4403 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
4404 {
4405 struct elf32_arm_link_hash_table *globals;
4406
4407 /* If we are only performing a partial link
4408 do not bother getting a bfd to hold the glue. */
4409 if (info->relocatable)
4410 return TRUE;
4411
4412 /* Make sure we don't attach the glue sections to a dynamic object. */
4413 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4414
4415 globals = elf32_arm_hash_table (info);
4416
4417 BFD_ASSERT (globals != NULL);
4418
4419 if (globals->bfd_of_glue_owner != NULL)
4420 return TRUE;
4421
4422 /* Save the bfd for later use. */
4423 globals->bfd_of_glue_owner = abfd;
4424
4425 return TRUE;
4426 }
4427
4428 static void
4429 check_use_blx (struct elf32_arm_link_hash_table *globals)
4430 {
4431 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4432 Tag_CPU_arch) > 2)
4433 globals->use_blx = 1;
4434 }
4435
4436 bfd_boolean
4437 bfd_elf32_arm_process_before_allocation (bfd *abfd,
4438 struct bfd_link_info *link_info)
4439 {
4440 Elf_Internal_Shdr *symtab_hdr;
4441 Elf_Internal_Rela *internal_relocs = NULL;
4442 Elf_Internal_Rela *irel, *irelend;
4443 bfd_byte *contents = NULL;
4444
4445 asection *sec;
4446 struct elf32_arm_link_hash_table *globals;
4447
4448 /* If we are only performing a partial link do not bother
4449 to construct any glue. */
4450 if (link_info->relocatable)
4451 return TRUE;
4452
4453 /* Here we have a bfd that is to be included on the link. We have a
4454 hook to do reloc rummaging, before section sizes are nailed down. */
4455 globals = elf32_arm_hash_table (link_info);
4456
4457 BFD_ASSERT (globals != NULL);
4458
4459 check_use_blx (globals);
4460
4461 if (globals->byteswap_code && !bfd_big_endian (abfd))
4462 {
4463 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4464 abfd);
4465 return FALSE;
4466 }
4467
4468 /* PR 5398: If we have not decided to include any loadable sections in
4469 the output then we will not have a glue owner bfd. This is OK, it
4470 just means that there is nothing else for us to do here. */
4471 if (globals->bfd_of_glue_owner == NULL)
4472 return TRUE;
4473
4474 /* Rummage around all the relocs and map the glue vectors. */
4475 sec = abfd->sections;
4476
4477 if (sec == NULL)
4478 return TRUE;
4479
4480 for (; sec != NULL; sec = sec->next)
4481 {
4482 if (sec->reloc_count == 0)
4483 continue;
4484
4485 if ((sec->flags & SEC_EXCLUDE) != 0)
4486 continue;
4487
4488 symtab_hdr = & elf_symtab_hdr (abfd);
4489
4490 /* Load the relocs. */
4491 internal_relocs
4492 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
4493
4494 if (internal_relocs == NULL)
4495 goto error_return;
4496
4497 irelend = internal_relocs + sec->reloc_count;
4498 for (irel = internal_relocs; irel < irelend; irel++)
4499 {
4500 long r_type;
4501 unsigned long r_index;
4502
4503 struct elf_link_hash_entry *h;
4504
4505 r_type = ELF32_R_TYPE (irel->r_info);
4506 r_index = ELF32_R_SYM (irel->r_info);
4507
4508 /* These are the only relocation types we care about. */
4509 if ( r_type != R_ARM_PC24
4510 && r_type != R_ARM_PLT32
4511 && r_type != R_ARM_JUMP24
4512 && r_type != R_ARM_THM_JUMP24
4513 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
4514 continue;
4515
4516 /* Get the section contents if we haven't done so already. */
4517 if (contents == NULL)
4518 {
4519 /* Get cached copy if it exists. */
4520 if (elf_section_data (sec)->this_hdr.contents != NULL)
4521 contents = elf_section_data (sec)->this_hdr.contents;
4522 else
4523 {
4524 /* Go get them off disk. */
4525 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4526 goto error_return;
4527 }
4528 }
4529
4530 if (r_type == R_ARM_V4BX)
4531 {
4532 int reg;
4533
4534 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4535 record_arm_bx_glue (link_info, reg);
4536 continue;
4537 }
4538
4539 /* If the relocation is not against a symbol it cannot concern us. */
4540 h = NULL;
4541
4542 /* We don't care about local symbols. */
4543 if (r_index < symtab_hdr->sh_info)
4544 continue;
4545
4546 /* This is an external symbol. */
4547 r_index -= symtab_hdr->sh_info;
4548 h = (struct elf_link_hash_entry *)
4549 elf_sym_hashes (abfd)[r_index];
4550
4551 /* If the relocation is against a static symbol it must be within
4552 the current section and so cannot be a cross ARM/Thumb relocation. */
4553 if (h == NULL)
4554 continue;
4555
4556 /* If the call will go through a PLT entry then we do not need
4557 glue. */
4558 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
4559 continue;
4560
4561 switch (r_type)
4562 {
4563 case R_ARM_PC24:
4564 case R_ARM_PLT32:
4565 case R_ARM_JUMP24:
4566 /* This one is a call from arm code. We need to look up
4567 the target of the call. If it is a thumb target, we
4568 insert glue. */
4569 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
4570 && !(r_type == R_ARM_CALL && globals->use_blx))
4571 record_arm_to_thumb_glue (link_info, h);
4572 break;
4573
4574 case R_ARM_THM_JUMP24:
4575 /* This one is a call from thumb code. We look
4576 up the target of the call. If it is not a thumb
4577 target, we insert glue. */
4578 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4579 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
4580 && h->root.type != bfd_link_hash_undefweak)
4581 record_thumb_to_arm_glue (link_info, h);
4582 break;
4583
4584 default:
4585 abort ();
4586 }
4587 }
4588
4589 if (contents != NULL
4590 && elf_section_data (sec)->this_hdr.contents != contents)
4591 free (contents);
4592 contents = NULL;
4593
4594 if (internal_relocs != NULL
4595 && elf_section_data (sec)->relocs != internal_relocs)
4596 free (internal_relocs);
4597 internal_relocs = NULL;
4598 }
4599
4600 return TRUE;
4601
4602 error_return:
4603 if (contents != NULL
4604 && elf_section_data (sec)->this_hdr.contents != contents)
4605 free (contents);
4606 if (internal_relocs != NULL
4607 && elf_section_data (sec)->relocs != internal_relocs)
4608 free (internal_relocs);
4609
4610 return FALSE;
4611 }
4612 #endif
4613
4614
4615 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4616
4617 void
4618 bfd_elf32_arm_init_maps (bfd *abfd)
4619 {
4620 Elf_Internal_Sym *isymbuf;
4621 Elf_Internal_Shdr *hdr;
4622 unsigned int i, localsyms;
4623
4624 if ((abfd->flags & DYNAMIC) != 0)
4625 return;
4626
4627 hdr = & elf_symtab_hdr (abfd);
4628 localsyms = hdr->sh_info;
4629
4630 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4631 should contain the number of local symbols, which should come before any
4632 global symbols. Mapping symbols are always local. */
4633 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4634 NULL);
4635
4636 /* No internal symbols read? Skip this BFD. */
4637 if (isymbuf == NULL)
4638 return;
4639
4640 for (i = 0; i < localsyms; i++)
4641 {
4642 Elf_Internal_Sym *isym = &isymbuf[i];
4643 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4644 const char *name;
4645
4646 if (sec != NULL
4647 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4648 {
4649 name = bfd_elf_string_from_elf_section (abfd,
4650 hdr->sh_link, isym->st_name);
4651
4652 if (bfd_is_arm_special_symbol_name (name,
4653 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4654 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4655 }
4656 }
4657 }
4658
4659
4660 void
4661 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4662 {
4663 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4664 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
4665
4666 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4667 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4668 {
4669 switch (globals->vfp11_fix)
4670 {
4671 case BFD_ARM_VFP11_FIX_DEFAULT:
4672 case BFD_ARM_VFP11_FIX_NONE:
4673 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4674 break;
4675
4676 default:
4677 /* Give a warning, but do as the user requests anyway. */
4678 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4679 "workaround is not necessary for target architecture"), obfd);
4680 }
4681 }
4682 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4683 /* For earlier architectures, we might need the workaround, but do not
4684 enable it by default. If users is running with broken hardware, they
4685 must enable the erratum fix explicitly. */
4686 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4687 }
4688
4689
4690 enum bfd_arm_vfp11_pipe
4691 {
4692 VFP11_FMAC,
4693 VFP11_LS,
4694 VFP11_DS,
4695 VFP11_BAD
4696 };
4697
4698 /* Return a VFP register number. This is encoded as RX:X for single-precision
4699 registers, or X:RX for double-precision registers, where RX is the group of
4700 four bits in the instruction encoding and X is the single extension bit.
4701 RX and X fields are specified using their lowest (starting) bit. The return
4702 value is:
4703
4704 0...31: single-precision registers s0...s31
4705 32...63: double-precision registers d0...d31.
4706
4707 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4708 encounter VFP3 instructions, so we allow the full range for DP registers. */
4709
4710 static unsigned int
4711 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4712 unsigned int x)
4713 {
4714 if (is_double)
4715 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4716 else
4717 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4718 }
4719
4720 /* Set bits in *WMASK according to a register number REG as encoded by
4721 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4722
4723 static void
4724 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4725 {
4726 if (reg < 32)
4727 *wmask |= 1 << reg;
4728 else if (reg < 48)
4729 *wmask |= 3 << ((reg - 32) * 2);
4730 }
4731
4732 /* Return TRUE if WMASK overwrites anything in REGS. */
4733
4734 static bfd_boolean
4735 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4736 {
4737 int i;
4738
4739 for (i = 0; i < numregs; i++)
4740 {
4741 unsigned int reg = regs[i];
4742
4743 if (reg < 32 && (wmask & (1 << reg)) != 0)
4744 return TRUE;
4745
4746 reg -= 32;
4747
4748 if (reg >= 16)
4749 continue;
4750
4751 if ((wmask & (3 << (reg * 2))) != 0)
4752 return TRUE;
4753 }
4754
4755 return FALSE;
4756 }
4757
4758 /* In this function, we're interested in two things: finding input registers
4759 for VFP data-processing instructions, and finding the set of registers which
4760 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4761 hold the written set, so FLDM etc. are easy to deal with (we're only
4762 interested in 32 SP registers or 16 dp registers, due to the VFP version
4763 implemented by the chip in question). DP registers are marked by setting
4764 both SP registers in the write mask). */
4765
4766 static enum bfd_arm_vfp11_pipe
4767 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4768 int *numregs)
4769 {
4770 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4771 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4772
4773 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4774 {
4775 unsigned int pqrs;
4776 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4777 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4778
4779 pqrs = ((insn & 0x00800000) >> 20)
4780 | ((insn & 0x00300000) >> 19)
4781 | ((insn & 0x00000040) >> 6);
4782
4783 switch (pqrs)
4784 {
4785 case 0: /* fmac[sd]. */
4786 case 1: /* fnmac[sd]. */
4787 case 2: /* fmsc[sd]. */
4788 case 3: /* fnmsc[sd]. */
4789 pipe = VFP11_FMAC;
4790 bfd_arm_vfp11_write_mask (destmask, fd);
4791 regs[0] = fd;
4792 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4793 regs[2] = fm;
4794 *numregs = 3;
4795 break;
4796
4797 case 4: /* fmul[sd]. */
4798 case 5: /* fnmul[sd]. */
4799 case 6: /* fadd[sd]. */
4800 case 7: /* fsub[sd]. */
4801 pipe = VFP11_FMAC;
4802 goto vfp_binop;
4803
4804 case 8: /* fdiv[sd]. */
4805 pipe = VFP11_DS;
4806 vfp_binop:
4807 bfd_arm_vfp11_write_mask (destmask, fd);
4808 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4809 regs[1] = fm;
4810 *numregs = 2;
4811 break;
4812
4813 case 15: /* extended opcode. */
4814 {
4815 unsigned int extn = ((insn >> 15) & 0x1e)
4816 | ((insn >> 7) & 1);
4817
4818 switch (extn)
4819 {
4820 case 0: /* fcpy[sd]. */
4821 case 1: /* fabs[sd]. */
4822 case 2: /* fneg[sd]. */
4823 case 8: /* fcmp[sd]. */
4824 case 9: /* fcmpe[sd]. */
4825 case 10: /* fcmpz[sd]. */
4826 case 11: /* fcmpez[sd]. */
4827 case 16: /* fuito[sd]. */
4828 case 17: /* fsito[sd]. */
4829 case 24: /* ftoui[sd]. */
4830 case 25: /* ftouiz[sd]. */
4831 case 26: /* ftosi[sd]. */
4832 case 27: /* ftosiz[sd]. */
4833 /* These instructions will not bounce due to underflow. */
4834 *numregs = 0;
4835 pipe = VFP11_FMAC;
4836 break;
4837
4838 case 3: /* fsqrt[sd]. */
4839 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4840 registers to cause the erratum in previous instructions. */
4841 bfd_arm_vfp11_write_mask (destmask, fd);
4842 pipe = VFP11_DS;
4843 break;
4844
4845 case 15: /* fcvt{ds,sd}. */
4846 {
4847 int rnum = 0;
4848
4849 bfd_arm_vfp11_write_mask (destmask, fd);
4850
4851 /* Only FCVTSD can underflow. */
4852 if ((insn & 0x100) != 0)
4853 regs[rnum++] = fm;
4854
4855 *numregs = rnum;
4856
4857 pipe = VFP11_FMAC;
4858 }
4859 break;
4860
4861 default:
4862 return VFP11_BAD;
4863 }
4864 }
4865 break;
4866
4867 default:
4868 return VFP11_BAD;
4869 }
4870 }
4871 /* Two-register transfer. */
4872 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
4873 {
4874 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4875
4876 if ((insn & 0x100000) == 0)
4877 {
4878 if (is_double)
4879 bfd_arm_vfp11_write_mask (destmask, fm);
4880 else
4881 {
4882 bfd_arm_vfp11_write_mask (destmask, fm);
4883 bfd_arm_vfp11_write_mask (destmask, fm + 1);
4884 }
4885 }
4886
4887 pipe = VFP11_LS;
4888 }
4889 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
4890 {
4891 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4892 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
4893
4894 switch (puw)
4895 {
4896 case 0: /* Two-reg transfer. We should catch these above. */
4897 abort ();
4898
4899 case 2: /* fldm[sdx]. */
4900 case 3:
4901 case 5:
4902 {
4903 unsigned int i, offset = insn & 0xff;
4904
4905 if (is_double)
4906 offset >>= 1;
4907
4908 for (i = fd; i < fd + offset; i++)
4909 bfd_arm_vfp11_write_mask (destmask, i);
4910 }
4911 break;
4912
4913 case 4: /* fld[sd]. */
4914 case 6:
4915 bfd_arm_vfp11_write_mask (destmask, fd);
4916 break;
4917
4918 default:
4919 return VFP11_BAD;
4920 }
4921
4922 pipe = VFP11_LS;
4923 }
4924 /* Single-register transfer. Note L==0. */
4925 else if ((insn & 0x0f100e10) == 0x0e000a10)
4926 {
4927 unsigned int opcode = (insn >> 21) & 7;
4928 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
4929
4930 switch (opcode)
4931 {
4932 case 0: /* fmsr/fmdlr. */
4933 case 1: /* fmdhr. */
4934 /* Mark fmdhr and fmdlr as writing to the whole of the DP
4935 destination register. I don't know if this is exactly right,
4936 but it is the conservative choice. */
4937 bfd_arm_vfp11_write_mask (destmask, fn);
4938 break;
4939
4940 case 7: /* fmxr. */
4941 break;
4942 }
4943
4944 pipe = VFP11_LS;
4945 }
4946
4947 return pipe;
4948 }
4949
4950
4951 static int elf32_arm_compare_mapping (const void * a, const void * b);
4952
4953
4954 /* Look for potentially-troublesome code sequences which might trigger the
4955 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
4956 (available from ARM) for details of the erratum. A short version is
4957 described in ld.texinfo. */
4958
4959 bfd_boolean
4960 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
4961 {
4962 asection *sec;
4963 bfd_byte *contents = NULL;
4964 int state = 0;
4965 int regs[3], numregs = 0;
4966 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4967 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
4968
4969 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
4970 The states transition as follows:
4971
4972 0 -> 1 (vector) or 0 -> 2 (scalar)
4973 A VFP FMAC-pipeline instruction has been seen. Fill
4974 regs[0]..regs[numregs-1] with its input operands. Remember this
4975 instruction in 'first_fmac'.
4976
4977 1 -> 2
4978 Any instruction, except for a VFP instruction which overwrites
4979 regs[*].
4980
4981 1 -> 3 [ -> 0 ] or
4982 2 -> 3 [ -> 0 ]
4983 A VFP instruction has been seen which overwrites any of regs[*].
4984 We must make a veneer! Reset state to 0 before examining next
4985 instruction.
4986
4987 2 -> 0
4988 If we fail to match anything in state 2, reset to state 0 and reset
4989 the instruction pointer to the instruction after 'first_fmac'.
4990
4991 If the VFP11 vector mode is in use, there must be at least two unrelated
4992 instructions between anti-dependent VFP11 instructions to properly avoid
4993 triggering the erratum, hence the use of the extra state 1. */
4994
4995 /* If we are only performing a partial link do not bother
4996 to construct any glue. */
4997 if (link_info->relocatable)
4998 return TRUE;
4999
5000 /* Skip if this bfd does not correspond to an ELF image. */
5001 if (! is_arm_elf (abfd))
5002 return TRUE;
5003
5004 /* We should have chosen a fix type by the time we get here. */
5005 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
5006
5007 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
5008 return TRUE;
5009
5010 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5011 {
5012 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5013 struct _arm_elf_section_data *sec_data;
5014
5015 /* If we don't have executable progbits, we're not interested in this
5016 section. Also skip if section is to be excluded. */
5017 if (elf_section_type (sec) != SHT_PROGBITS
5018 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5019 || (sec->flags & SEC_EXCLUDE) != 0
5020 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5021 continue;
5022
5023 sec_data = elf32_arm_section_data (sec);
5024
5025 if (sec_data->mapcount == 0)
5026 continue;
5027
5028 if (elf_section_data (sec)->this_hdr.contents != NULL)
5029 contents = elf_section_data (sec)->this_hdr.contents;
5030 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5031 goto error_return;
5032
5033 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5034 elf32_arm_compare_mapping);
5035
5036 for (span = 0; span < sec_data->mapcount; span++)
5037 {
5038 unsigned int span_start = sec_data->map[span].vma;
5039 unsigned int span_end = (span == sec_data->mapcount - 1)
5040 ? sec->size : sec_data->map[span + 1].vma;
5041 char span_type = sec_data->map[span].type;
5042
5043 /* FIXME: Only ARM mode is supported at present. We may need to
5044 support Thumb-2 mode also at some point. */
5045 if (span_type != 'a')
5046 continue;
5047
5048 for (i = span_start; i < span_end;)
5049 {
5050 unsigned int next_i = i + 4;
5051 unsigned int insn = bfd_big_endian (abfd)
5052 ? (contents[i] << 24)
5053 | (contents[i + 1] << 16)
5054 | (contents[i + 2] << 8)
5055 | contents[i + 3]
5056 : (contents[i + 3] << 24)
5057 | (contents[i + 2] << 16)
5058 | (contents[i + 1] << 8)
5059 | contents[i];
5060 unsigned int writemask = 0;
5061 enum bfd_arm_vfp11_pipe pipe;
5062
5063 switch (state)
5064 {
5065 case 0:
5066 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5067 &numregs);
5068 /* I'm assuming the VFP11 erratum can trigger with denorm
5069 operands on either the FMAC or the DS pipeline. This might
5070 lead to slightly overenthusiastic veneer insertion. */
5071 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5072 {
5073 state = use_vector ? 1 : 2;
5074 first_fmac = i;
5075 veneer_of_insn = insn;
5076 }
5077 break;
5078
5079 case 1:
5080 {
5081 int other_regs[3], other_numregs;
5082 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5083 other_regs,
5084 &other_numregs);
5085 if (pipe != VFP11_BAD
5086 && bfd_arm_vfp11_antidependency (writemask, regs,
5087 numregs))
5088 state = 3;
5089 else
5090 state = 2;
5091 }
5092 break;
5093
5094 case 2:
5095 {
5096 int other_regs[3], other_numregs;
5097 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5098 other_regs,
5099 &other_numregs);
5100 if (pipe != VFP11_BAD
5101 && bfd_arm_vfp11_antidependency (writemask, regs,
5102 numregs))
5103 state = 3;
5104 else
5105 {
5106 state = 0;
5107 next_i = first_fmac + 4;
5108 }
5109 }
5110 break;
5111
5112 case 3:
5113 abort (); /* Should be unreachable. */
5114 }
5115
5116 if (state == 3)
5117 {
5118 elf32_vfp11_erratum_list *newerr
5119 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5120 int errcount;
5121
5122 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5123
5124 newerr->u.b.vfp_insn = veneer_of_insn;
5125
5126 switch (span_type)
5127 {
5128 case 'a':
5129 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5130 break;
5131
5132 default:
5133 abort ();
5134 }
5135
5136 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5137 first_fmac);
5138
5139 newerr->vma = -1;
5140
5141 newerr->next = sec_data->erratumlist;
5142 sec_data->erratumlist = newerr;
5143
5144 state = 0;
5145 }
5146
5147 i = next_i;
5148 }
5149 }
5150
5151 if (contents != NULL
5152 && elf_section_data (sec)->this_hdr.contents != contents)
5153 free (contents);
5154 contents = NULL;
5155 }
5156
5157 return TRUE;
5158
5159 error_return:
5160 if (contents != NULL
5161 && elf_section_data (sec)->this_hdr.contents != contents)
5162 free (contents);
5163
5164 return FALSE;
5165 }
5166
5167 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5168 after sections have been laid out, using specially-named symbols. */
5169
5170 void
5171 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5172 struct bfd_link_info *link_info)
5173 {
5174 asection *sec;
5175 struct elf32_arm_link_hash_table *globals;
5176 char *tmp_name;
5177
5178 if (link_info->relocatable)
5179 return;
5180
5181 /* Skip if this bfd does not correspond to an ELF image. */
5182 if (! is_arm_elf (abfd))
5183 return;
5184
5185 globals = elf32_arm_hash_table (link_info);
5186
5187 tmp_name = bfd_malloc ((bfd_size_type) strlen
5188 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5189
5190 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5191 {
5192 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5193 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
5194
5195 for (; errnode != NULL; errnode = errnode->next)
5196 {
5197 struct elf_link_hash_entry *myh;
5198 bfd_vma vma;
5199
5200 switch (errnode->type)
5201 {
5202 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5203 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5204 /* Find veneer symbol. */
5205 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5206 errnode->u.b.veneer->u.v.id);
5207
5208 myh = elf_link_hash_lookup
5209 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5210
5211 if (myh == NULL)
5212 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5213 "`%s'"), abfd, tmp_name);
5214
5215 vma = myh->root.u.def.section->output_section->vma
5216 + myh->root.u.def.section->output_offset
5217 + myh->root.u.def.value;
5218
5219 errnode->u.b.veneer->vma = vma;
5220 break;
5221
5222 case VFP11_ERRATUM_ARM_VENEER:
5223 case VFP11_ERRATUM_THUMB_VENEER:
5224 /* Find return location. */
5225 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5226 errnode->u.v.id);
5227
5228 myh = elf_link_hash_lookup
5229 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5230
5231 if (myh == NULL)
5232 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5233 "`%s'"), abfd, tmp_name);
5234
5235 vma = myh->root.u.def.section->output_section->vma
5236 + myh->root.u.def.section->output_offset
5237 + myh->root.u.def.value;
5238
5239 errnode->u.v.branch->vma = vma;
5240 break;
5241
5242 default:
5243 abort ();
5244 }
5245 }
5246 }
5247
5248 free (tmp_name);
5249 }
5250
5251
5252 /* Set target relocation values needed during linking. */
5253
5254 void
5255 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5256 struct bfd_link_info *link_info,
5257 int target1_is_rel,
5258 char * target2_type,
5259 int fix_v4bx,
5260 int use_blx,
5261 bfd_arm_vfp11_fix vfp11_fix,
5262 int no_enum_warn, int no_wchar_warn,
5263 int pic_veneer)
5264 {
5265 struct elf32_arm_link_hash_table *globals;
5266
5267 globals = elf32_arm_hash_table (link_info);
5268
5269 globals->target1_is_rel = target1_is_rel;
5270 if (strcmp (target2_type, "rel") == 0)
5271 globals->target2_reloc = R_ARM_REL32;
5272 else if (strcmp (target2_type, "abs") == 0)
5273 globals->target2_reloc = R_ARM_ABS32;
5274 else if (strcmp (target2_type, "got-rel") == 0)
5275 globals->target2_reloc = R_ARM_GOT_PREL;
5276 else
5277 {
5278 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5279 target2_type);
5280 }
5281 globals->fix_v4bx = fix_v4bx;
5282 globals->use_blx |= use_blx;
5283 globals->vfp11_fix = vfp11_fix;
5284 globals->pic_veneer = pic_veneer;
5285
5286 BFD_ASSERT (is_arm_elf (output_bfd));
5287 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
5288 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
5289 }
5290
5291 /* Replace the target offset of a Thumb bl or b.w instruction. */
5292
5293 static void
5294 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5295 {
5296 bfd_vma upper;
5297 bfd_vma lower;
5298 int reloc_sign;
5299
5300 BFD_ASSERT ((offset & 1) == 0);
5301
5302 upper = bfd_get_16 (abfd, insn);
5303 lower = bfd_get_16 (abfd, insn + 2);
5304 reloc_sign = (offset < 0) ? 1 : 0;
5305 upper = (upper & ~(bfd_vma) 0x7ff)
5306 | ((offset >> 12) & 0x3ff)
5307 | (reloc_sign << 10);
5308 lower = (lower & ~(bfd_vma) 0x2fff)
5309 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5310 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5311 | ((offset >> 1) & 0x7ff);
5312 bfd_put_16 (abfd, upper, insn);
5313 bfd_put_16 (abfd, lower, insn + 2);
5314 }
5315
5316 /* Thumb code calling an ARM function. */
5317
5318 static int
5319 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5320 const char * name,
5321 bfd * input_bfd,
5322 bfd * output_bfd,
5323 asection * input_section,
5324 bfd_byte * hit_data,
5325 asection * sym_sec,
5326 bfd_vma offset,
5327 bfd_signed_vma addend,
5328 bfd_vma val,
5329 char **error_message)
5330 {
5331 asection * s = 0;
5332 bfd_vma my_offset;
5333 long int ret_offset;
5334 struct elf_link_hash_entry * myh;
5335 struct elf32_arm_link_hash_table * globals;
5336
5337 myh = find_thumb_glue (info, name, error_message);
5338 if (myh == NULL)
5339 return FALSE;
5340
5341 globals = elf32_arm_hash_table (info);
5342
5343 BFD_ASSERT (globals != NULL);
5344 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5345
5346 my_offset = myh->root.u.def.value;
5347
5348 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5349 THUMB2ARM_GLUE_SECTION_NAME);
5350
5351 BFD_ASSERT (s != NULL);
5352 BFD_ASSERT (s->contents != NULL);
5353 BFD_ASSERT (s->output_section != NULL);
5354
5355 if ((my_offset & 0x01) == 0x01)
5356 {
5357 if (sym_sec != NULL
5358 && sym_sec->owner != NULL
5359 && !INTERWORK_FLAG (sym_sec->owner))
5360 {
5361 (*_bfd_error_handler)
5362 (_("%B(%s): warning: interworking not enabled.\n"
5363 " first occurrence: %B: thumb call to arm"),
5364 sym_sec->owner, input_bfd, name);
5365
5366 return FALSE;
5367 }
5368
5369 --my_offset;
5370 myh->root.u.def.value = my_offset;
5371
5372 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5373 s->contents + my_offset);
5374
5375 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5376 s->contents + my_offset + 2);
5377
5378 ret_offset =
5379 /* Address of destination of the stub. */
5380 ((bfd_signed_vma) val)
5381 - ((bfd_signed_vma)
5382 /* Offset from the start of the current section
5383 to the start of the stubs. */
5384 (s->output_offset
5385 /* Offset of the start of this stub from the start of the stubs. */
5386 + my_offset
5387 /* Address of the start of the current section. */
5388 + s->output_section->vma)
5389 /* The branch instruction is 4 bytes into the stub. */
5390 + 4
5391 /* ARM branches work from the pc of the instruction + 8. */
5392 + 8);
5393
5394 put_arm_insn (globals, output_bfd,
5395 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5396 s->contents + my_offset + 4);
5397 }
5398
5399 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5400
5401 /* Now go back and fix up the original BL insn to point to here. */
5402 ret_offset =
5403 /* Address of where the stub is located. */
5404 (s->output_section->vma + s->output_offset + my_offset)
5405 /* Address of where the BL is located. */
5406 - (input_section->output_section->vma + input_section->output_offset
5407 + offset)
5408 /* Addend in the relocation. */
5409 - addend
5410 /* Biassing for PC-relative addressing. */
5411 - 8;
5412
5413 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
5414
5415 return TRUE;
5416 }
5417
5418 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5419
5420 static struct elf_link_hash_entry *
5421 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5422 const char * name,
5423 bfd * input_bfd,
5424 bfd * output_bfd,
5425 asection * sym_sec,
5426 bfd_vma val,
5427 asection * s,
5428 char ** error_message)
5429 {
5430 bfd_vma my_offset;
5431 long int ret_offset;
5432 struct elf_link_hash_entry * myh;
5433 struct elf32_arm_link_hash_table * globals;
5434
5435 myh = find_arm_glue (info, name, error_message);
5436 if (myh == NULL)
5437 return NULL;
5438
5439 globals = elf32_arm_hash_table (info);
5440
5441 BFD_ASSERT (globals != NULL);
5442 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5443
5444 my_offset = myh->root.u.def.value;
5445
5446 if ((my_offset & 0x01) == 0x01)
5447 {
5448 if (sym_sec != NULL
5449 && sym_sec->owner != NULL
5450 && !INTERWORK_FLAG (sym_sec->owner))
5451 {
5452 (*_bfd_error_handler)
5453 (_("%B(%s): warning: interworking not enabled.\n"
5454 " first occurrence: %B: arm call to thumb"),
5455 sym_sec->owner, input_bfd, name);
5456 }
5457
5458 --my_offset;
5459 myh->root.u.def.value = my_offset;
5460
5461 if (info->shared || globals->root.is_relocatable_executable
5462 || globals->pic_veneer)
5463 {
5464 /* For relocatable objects we can't use absolute addresses,
5465 so construct the address from a relative offset. */
5466 /* TODO: If the offset is small it's probably worth
5467 constructing the address with adds. */
5468 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5469 s->contents + my_offset);
5470 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5471 s->contents + my_offset + 4);
5472 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5473 s->contents + my_offset + 8);
5474 /* Adjust the offset by 4 for the position of the add,
5475 and 8 for the pipeline offset. */
5476 ret_offset = (val - (s->output_offset
5477 + s->output_section->vma
5478 + my_offset + 12))
5479 | 1;
5480 bfd_put_32 (output_bfd, ret_offset,
5481 s->contents + my_offset + 12);
5482 }
5483 else if (globals->use_blx)
5484 {
5485 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5486 s->contents + my_offset);
5487
5488 /* It's a thumb address. Add the low order bit. */
5489 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5490 s->contents + my_offset + 4);
5491 }
5492 else
5493 {
5494 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5495 s->contents + my_offset);
5496
5497 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5498 s->contents + my_offset + 4);
5499
5500 /* It's a thumb address. Add the low order bit. */
5501 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5502 s->contents + my_offset + 8);
5503
5504 my_offset += 12;
5505 }
5506 }
5507
5508 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5509
5510 return myh;
5511 }
5512
5513 /* Arm code calling a Thumb function. */
5514
5515 static int
5516 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5517 const char * name,
5518 bfd * input_bfd,
5519 bfd * output_bfd,
5520 asection * input_section,
5521 bfd_byte * hit_data,
5522 asection * sym_sec,
5523 bfd_vma offset,
5524 bfd_signed_vma addend,
5525 bfd_vma val,
5526 char **error_message)
5527 {
5528 unsigned long int tmp;
5529 bfd_vma my_offset;
5530 asection * s;
5531 long int ret_offset;
5532 struct elf_link_hash_entry * myh;
5533 struct elf32_arm_link_hash_table * globals;
5534
5535 globals = elf32_arm_hash_table (info);
5536
5537 BFD_ASSERT (globals != NULL);
5538 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5539
5540 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5541 ARM2THUMB_GLUE_SECTION_NAME);
5542 BFD_ASSERT (s != NULL);
5543 BFD_ASSERT (s->contents != NULL);
5544 BFD_ASSERT (s->output_section != NULL);
5545
5546 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
5547 sym_sec, val, s, error_message);
5548 if (!myh)
5549 return FALSE;
5550
5551 my_offset = myh->root.u.def.value;
5552 tmp = bfd_get_32 (input_bfd, hit_data);
5553 tmp = tmp & 0xFF000000;
5554
5555 /* Somehow these are both 4 too far, so subtract 8. */
5556 ret_offset = (s->output_offset
5557 + my_offset
5558 + s->output_section->vma
5559 - (input_section->output_offset
5560 + input_section->output_section->vma
5561 + offset + addend)
5562 - 8);
5563
5564 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5565
5566 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
5567
5568 return TRUE;
5569 }
5570
5571 /* Populate Arm stub for an exported Thumb function. */
5572
5573 static bfd_boolean
5574 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5575 {
5576 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5577 asection * s;
5578 struct elf_link_hash_entry * myh;
5579 struct elf32_arm_link_hash_entry *eh;
5580 struct elf32_arm_link_hash_table * globals;
5581 asection *sec;
5582 bfd_vma val;
5583 char *error_message;
5584
5585 eh = elf32_arm_hash_entry (h);
5586 /* Allocate stubs for exported Thumb functions on v4t. */
5587 if (eh->export_glue == NULL)
5588 return TRUE;
5589
5590 globals = elf32_arm_hash_table (info);
5591
5592 BFD_ASSERT (globals != NULL);
5593 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5594
5595 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5596 ARM2THUMB_GLUE_SECTION_NAME);
5597 BFD_ASSERT (s != NULL);
5598 BFD_ASSERT (s->contents != NULL);
5599 BFD_ASSERT (s->output_section != NULL);
5600
5601 sec = eh->export_glue->root.u.def.section;
5602
5603 BFD_ASSERT (sec->output_section != NULL);
5604
5605 val = eh->export_glue->root.u.def.value + sec->output_offset
5606 + sec->output_section->vma;
5607
5608 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5609 h->root.u.def.section->owner,
5610 globals->obfd, sec, val, s,
5611 &error_message);
5612 BFD_ASSERT (myh);
5613 return TRUE;
5614 }
5615
5616 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5617
5618 static bfd_vma
5619 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5620 {
5621 bfd_byte *p;
5622 bfd_vma glue_addr;
5623 asection *s;
5624 struct elf32_arm_link_hash_table *globals;
5625
5626 globals = elf32_arm_hash_table (info);
5627
5628 BFD_ASSERT (globals != NULL);
5629 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5630
5631 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5632 ARM_BX_GLUE_SECTION_NAME);
5633 BFD_ASSERT (s != NULL);
5634 BFD_ASSERT (s->contents != NULL);
5635 BFD_ASSERT (s->output_section != NULL);
5636
5637 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5638
5639 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5640
5641 if ((globals->bx_glue_offset[reg] & 1) == 0)
5642 {
5643 p = s->contents + glue_addr;
5644 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5645 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5646 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5647 globals->bx_glue_offset[reg] |= 1;
5648 }
5649
5650 return glue_addr + s->output_section->vma + s->output_offset;
5651 }
5652
5653 /* Generate Arm stubs for exported Thumb symbols. */
5654 static void
5655 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
5656 struct bfd_link_info *link_info)
5657 {
5658 struct elf32_arm_link_hash_table * globals;
5659
5660 if (link_info == NULL)
5661 /* Ignore this if we are not called by the ELF backend linker. */
5662 return;
5663
5664 globals = elf32_arm_hash_table (link_info);
5665 /* If blx is available then exported Thumb symbols are OK and there is
5666 nothing to do. */
5667 if (globals->use_blx)
5668 return;
5669
5670 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5671 link_info);
5672 }
5673
5674 /* Some relocations map to different relocations depending on the
5675 target. Return the real relocation. */
5676
5677 static int
5678 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5679 int r_type)
5680 {
5681 switch (r_type)
5682 {
5683 case R_ARM_TARGET1:
5684 if (globals->target1_is_rel)
5685 return R_ARM_REL32;
5686 else
5687 return R_ARM_ABS32;
5688
5689 case R_ARM_TARGET2:
5690 return globals->target2_reloc;
5691
5692 default:
5693 return r_type;
5694 }
5695 }
5696
5697 /* Return the base VMA address which should be subtracted from real addresses
5698 when resolving @dtpoff relocation.
5699 This is PT_TLS segment p_vaddr. */
5700
5701 static bfd_vma
5702 dtpoff_base (struct bfd_link_info *info)
5703 {
5704 /* If tls_sec is NULL, we should have signalled an error already. */
5705 if (elf_hash_table (info)->tls_sec == NULL)
5706 return 0;
5707 return elf_hash_table (info)->tls_sec->vma;
5708 }
5709
5710 /* Return the relocation value for @tpoff relocation
5711 if STT_TLS virtual address is ADDRESS. */
5712
5713 static bfd_vma
5714 tpoff (struct bfd_link_info *info, bfd_vma address)
5715 {
5716 struct elf_link_hash_table *htab = elf_hash_table (info);
5717 bfd_vma base;
5718
5719 /* If tls_sec is NULL, we should have signalled an error already. */
5720 if (htab->tls_sec == NULL)
5721 return 0;
5722 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5723 return address - htab->tls_sec->vma + base;
5724 }
5725
5726 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5727 VALUE is the relocation value. */
5728
5729 static bfd_reloc_status_type
5730 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5731 {
5732 if (value > 0xfff)
5733 return bfd_reloc_overflow;
5734
5735 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5736 bfd_put_32 (abfd, value, data);
5737 return bfd_reloc_ok;
5738 }
5739
5740 /* For a given value of n, calculate the value of G_n as required to
5741 deal with group relocations. We return it in the form of an
5742 encoded constant-and-rotation, together with the final residual. If n is
5743 specified as less than zero, then final_residual is filled with the
5744 input value and no further action is performed. */
5745
5746 static bfd_vma
5747 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5748 {
5749 int current_n;
5750 bfd_vma g_n;
5751 bfd_vma encoded_g_n = 0;
5752 bfd_vma residual = value; /* Also known as Y_n. */
5753
5754 for (current_n = 0; current_n <= n; current_n++)
5755 {
5756 int shift;
5757
5758 /* Calculate which part of the value to mask. */
5759 if (residual == 0)
5760 shift = 0;
5761 else
5762 {
5763 int msb;
5764
5765 /* Determine the most significant bit in the residual and
5766 align the resulting value to a 2-bit boundary. */
5767 for (msb = 30; msb >= 0; msb -= 2)
5768 if (residual & (3 << msb))
5769 break;
5770
5771 /* The desired shift is now (msb - 6), or zero, whichever
5772 is the greater. */
5773 shift = msb - 6;
5774 if (shift < 0)
5775 shift = 0;
5776 }
5777
5778 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5779 g_n = residual & (0xff << shift);
5780 encoded_g_n = (g_n >> shift)
5781 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5782
5783 /* Calculate the residual for the next time around. */
5784 residual &= ~g_n;
5785 }
5786
5787 *final_residual = residual;
5788
5789 return encoded_g_n;
5790 }
5791
5792 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5793 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5794
5795 static int
5796 identify_add_or_sub (bfd_vma insn)
5797 {
5798 int opcode = insn & 0x1e00000;
5799
5800 if (opcode == 1 << 23) /* ADD */
5801 return 1;
5802
5803 if (opcode == 1 << 22) /* SUB */
5804 return -1;
5805
5806 return 0;
5807 }
5808
5809 /* Perform a relocation as part of a final link. */
5810
5811 static bfd_reloc_status_type
5812 elf32_arm_final_link_relocate (reloc_howto_type * howto,
5813 bfd * input_bfd,
5814 bfd * output_bfd,
5815 asection * input_section,
5816 bfd_byte * contents,
5817 Elf_Internal_Rela * rel,
5818 bfd_vma value,
5819 struct bfd_link_info * info,
5820 asection * sym_sec,
5821 const char * sym_name,
5822 int sym_flags,
5823 struct elf_link_hash_entry * h,
5824 bfd_boolean * unresolved_reloc_p,
5825 char ** error_message)
5826 {
5827 unsigned long r_type = howto->type;
5828 unsigned long r_symndx;
5829 bfd_byte * hit_data = contents + rel->r_offset;
5830 bfd * dynobj = NULL;
5831 Elf_Internal_Shdr * symtab_hdr;
5832 struct elf_link_hash_entry ** sym_hashes;
5833 bfd_vma * local_got_offsets;
5834 asection * sgot = NULL;
5835 asection * splt = NULL;
5836 asection * sreloc = NULL;
5837 bfd_vma addend;
5838 bfd_signed_vma signed_addend;
5839 struct elf32_arm_link_hash_table * globals;
5840
5841 globals = elf32_arm_hash_table (info);
5842
5843 BFD_ASSERT (is_arm_elf (input_bfd));
5844
5845 /* Some relocation types map to different relocations depending on the
5846 target. We pick the right one here. */
5847 r_type = arm_real_reloc_type (globals, r_type);
5848 if (r_type != howto->type)
5849 howto = elf32_arm_howto_from_type (r_type);
5850
5851 /* If the start address has been set, then set the EF_ARM_HASENTRY
5852 flag. Setting this more than once is redundant, but the cost is
5853 not too high, and it keeps the code simple.
5854
5855 The test is done here, rather than somewhere else, because the
5856 start address is only set just before the final link commences.
5857
5858 Note - if the user deliberately sets a start address of 0, the
5859 flag will not be set. */
5860 if (bfd_get_start_address (output_bfd) != 0)
5861 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
5862
5863 dynobj = elf_hash_table (info)->dynobj;
5864 if (dynobj)
5865 {
5866 sgot = bfd_get_section_by_name (dynobj, ".got");
5867 splt = bfd_get_section_by_name (dynobj, ".plt");
5868 }
5869 symtab_hdr = & elf_symtab_hdr (input_bfd);
5870 sym_hashes = elf_sym_hashes (input_bfd);
5871 local_got_offsets = elf_local_got_offsets (input_bfd);
5872 r_symndx = ELF32_R_SYM (rel->r_info);
5873
5874 if (globals->use_rel)
5875 {
5876 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
5877
5878 if (addend & ((howto->src_mask + 1) >> 1))
5879 {
5880 signed_addend = -1;
5881 signed_addend &= ~ howto->src_mask;
5882 signed_addend |= addend;
5883 }
5884 else
5885 signed_addend = addend;
5886 }
5887 else
5888 addend = signed_addend = rel->r_addend;
5889
5890 switch (r_type)
5891 {
5892 case R_ARM_NONE:
5893 /* We don't need to find a value for this symbol. It's just a
5894 marker. */
5895 *unresolved_reloc_p = FALSE;
5896 return bfd_reloc_ok;
5897
5898 case R_ARM_ABS12:
5899 if (!globals->vxworks_p)
5900 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
5901
5902 case R_ARM_PC24:
5903 case R_ARM_ABS32:
5904 case R_ARM_ABS32_NOI:
5905 case R_ARM_REL32:
5906 case R_ARM_REL32_NOI:
5907 case R_ARM_CALL:
5908 case R_ARM_JUMP24:
5909 case R_ARM_XPC25:
5910 case R_ARM_PREL31:
5911 case R_ARM_PLT32:
5912 /* Handle relocations which should use the PLT entry. ABS32/REL32
5913 will use the symbol's value, which may point to a PLT entry, but we
5914 don't need to handle that here. If we created a PLT entry, all
5915 branches in this object should go to it. */
5916 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5917 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
5918 && h != NULL
5919 && splt != NULL
5920 && h->plt.offset != (bfd_vma) -1)
5921 {
5922 /* If we've created a .plt section, and assigned a PLT entry to
5923 this function, it should not be known to bind locally. If
5924 it were, we would have cleared the PLT entry. */
5925 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
5926
5927 value = (splt->output_section->vma
5928 + splt->output_offset
5929 + h->plt.offset);
5930 *unresolved_reloc_p = FALSE;
5931 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5932 contents, rel->r_offset, value,
5933 rel->r_addend);
5934 }
5935
5936 /* When generating a shared object or relocatable executable, these
5937 relocations are copied into the output file to be resolved at
5938 run time. */
5939 if ((info->shared || globals->root.is_relocatable_executable)
5940 && (input_section->flags & SEC_ALLOC)
5941 && !(elf32_arm_hash_table (info)->vxworks_p
5942 && strcmp (input_section->output_section->name,
5943 ".tls_vars") == 0)
5944 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
5945 || !SYMBOL_CALLS_LOCAL (info, h))
5946 && (h == NULL
5947 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5948 || h->root.type != bfd_link_hash_undefweak)
5949 && r_type != R_ARM_PC24
5950 && r_type != R_ARM_CALL
5951 && r_type != R_ARM_JUMP24
5952 && r_type != R_ARM_PREL31
5953 && r_type != R_ARM_PLT32)
5954 {
5955 Elf_Internal_Rela outrel;
5956 bfd_byte *loc;
5957 bfd_boolean skip, relocate;
5958
5959 *unresolved_reloc_p = FALSE;
5960
5961 if (sreloc == NULL)
5962 {
5963 const char * name;
5964
5965 name = (bfd_elf_string_from_elf_section
5966 (input_bfd,
5967 elf_elfheader (input_bfd)->e_shstrndx,
5968 elf_section_data (input_section)->rel_hdr.sh_name));
5969 if (name == NULL)
5970 return bfd_reloc_notsupported;
5971
5972 BFD_ASSERT (reloc_section_p (globals, name, input_section));
5973
5974 sreloc = bfd_get_section_by_name (dynobj, name);
5975 BFD_ASSERT (sreloc != NULL);
5976 }
5977
5978 skip = FALSE;
5979 relocate = FALSE;
5980
5981 outrel.r_addend = addend;
5982 outrel.r_offset =
5983 _bfd_elf_section_offset (output_bfd, info, input_section,
5984 rel->r_offset);
5985 if (outrel.r_offset == (bfd_vma) -1)
5986 skip = TRUE;
5987 else if (outrel.r_offset == (bfd_vma) -2)
5988 skip = TRUE, relocate = TRUE;
5989 outrel.r_offset += (input_section->output_section->vma
5990 + input_section->output_offset);
5991
5992 if (skip)
5993 memset (&outrel, 0, sizeof outrel);
5994 else if (h != NULL
5995 && h->dynindx != -1
5996 && (!info->shared
5997 || !info->symbolic
5998 || !h->def_regular))
5999 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
6000 else
6001 {
6002 int symbol;
6003
6004 /* This symbol is local, or marked to become local. */
6005 if (sym_flags == STT_ARM_TFUNC)
6006 value |= 1;
6007 if (globals->symbian_p)
6008 {
6009 asection *osec;
6010
6011 /* On Symbian OS, the data segment and text segement
6012 can be relocated independently. Therefore, we
6013 must indicate the segment to which this
6014 relocation is relative. The BPABI allows us to
6015 use any symbol in the right segment; we just use
6016 the section symbol as it is convenient. (We
6017 cannot use the symbol given by "h" directly as it
6018 will not appear in the dynamic symbol table.)
6019
6020 Note that the dynamic linker ignores the section
6021 symbol value, so we don't subtract osec->vma
6022 from the emitted reloc addend. */
6023 if (sym_sec)
6024 osec = sym_sec->output_section;
6025 else
6026 osec = input_section->output_section;
6027 symbol = elf_section_data (osec)->dynindx;
6028 if (symbol == 0)
6029 {
6030 struct elf_link_hash_table *htab = elf_hash_table (info);
6031
6032 if ((osec->flags & SEC_READONLY) == 0
6033 && htab->data_index_section != NULL)
6034 osec = htab->data_index_section;
6035 else
6036 osec = htab->text_index_section;
6037 symbol = elf_section_data (osec)->dynindx;
6038 }
6039 BFD_ASSERT (symbol != 0);
6040 }
6041 else
6042 /* On SVR4-ish systems, the dynamic loader cannot
6043 relocate the text and data segments independently,
6044 so the symbol does not matter. */
6045 symbol = 0;
6046 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6047 if (globals->use_rel)
6048 relocate = TRUE;
6049 else
6050 outrel.r_addend += value;
6051 }
6052
6053 loc = sreloc->contents;
6054 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6055 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6056
6057 /* If this reloc is against an external symbol, we do not want to
6058 fiddle with the addend. Otherwise, we need to include the symbol
6059 value so that it becomes an addend for the dynamic reloc. */
6060 if (! relocate)
6061 return bfd_reloc_ok;
6062
6063 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6064 contents, rel->r_offset, value,
6065 (bfd_vma) 0);
6066 }
6067 else switch (r_type)
6068 {
6069 case R_ARM_ABS12:
6070 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6071
6072 case R_ARM_XPC25: /* Arm BLX instruction. */
6073 case R_ARM_CALL:
6074 case R_ARM_JUMP24:
6075 case R_ARM_PC24: /* Arm B/BL instruction. */
6076 case R_ARM_PLT32:
6077 {
6078 bfd_vma from;
6079 bfd_signed_vma branch_offset;
6080 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6081
6082 from = (input_section->output_section->vma
6083 + input_section->output_offset
6084 + rel->r_offset);
6085 branch_offset = (bfd_signed_vma)(value - from);
6086
6087 if (r_type == R_ARM_XPC25)
6088 {
6089 /* Check for Arm calling Arm function. */
6090 /* FIXME: Should we translate the instruction into a BL
6091 instruction instead ? */
6092 if (sym_flags != STT_ARM_TFUNC)
6093 (*_bfd_error_handler)
6094 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6095 input_bfd,
6096 h ? h->root.root.string : "(local)");
6097 }
6098 else if (r_type != R_ARM_CALL)
6099 {
6100 /* Check for Arm calling Thumb function. */
6101 if (sym_flags == STT_ARM_TFUNC)
6102 {
6103 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6104 output_bfd, input_section,
6105 hit_data, sym_sec, rel->r_offset,
6106 signed_addend, value,
6107 error_message))
6108 return bfd_reloc_ok;
6109 else
6110 return bfd_reloc_dangerous;
6111 }
6112 }
6113
6114 /* Check if a stub has to be inserted because the
6115 destination is too far or we are changing mode. */
6116 if (r_type == R_ARM_CALL)
6117 {
6118 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6119 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6120 || sym_flags == STT_ARM_TFUNC)
6121 {
6122 /* The target is out of reach, so redirect the
6123 branch to the local stub for this function. */
6124
6125 stub_entry = elf32_arm_get_stub_entry (input_section,
6126 sym_sec, h,
6127 rel, globals);
6128 if (stub_entry != NULL)
6129 value = (stub_entry->stub_offset
6130 + stub_entry->stub_sec->output_offset
6131 + stub_entry->stub_sec->output_section->vma);
6132 }
6133 }
6134
6135 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6136 where:
6137 S is the address of the symbol in the relocation.
6138 P is address of the instruction being relocated.
6139 A is the addend (extracted from the instruction) in bytes.
6140
6141 S is held in 'value'.
6142 P is the base address of the section containing the
6143 instruction plus the offset of the reloc into that
6144 section, ie:
6145 (input_section->output_section->vma +
6146 input_section->output_offset +
6147 rel->r_offset).
6148 A is the addend, converted into bytes, ie:
6149 (signed_addend * 4)
6150
6151 Note: None of these operations have knowledge of the pipeline
6152 size of the processor, thus it is up to the assembler to
6153 encode this information into the addend. */
6154 value -= (input_section->output_section->vma
6155 + input_section->output_offset);
6156 value -= rel->r_offset;
6157 if (globals->use_rel)
6158 value += (signed_addend << howto->size);
6159 else
6160 /* RELA addends do not have to be adjusted by howto->size. */
6161 value += signed_addend;
6162
6163 signed_addend = value;
6164 signed_addend >>= howto->rightshift;
6165
6166 /* A branch to an undefined weak symbol is turned into a jump to
6167 the next instruction. */
6168 if (h && h->root.type == bfd_link_hash_undefweak)
6169 {
6170 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6171 | 0x0affffff;
6172 }
6173 else
6174 {
6175 /* Perform a signed range check. */
6176 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
6177 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6178 return bfd_reloc_overflow;
6179
6180 addend = (value & 2);
6181
6182 value = (signed_addend & howto->dst_mask)
6183 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
6184
6185 /* Set the H bit in the BLX instruction. */
6186 if (sym_flags == STT_ARM_TFUNC)
6187 {
6188 if (addend)
6189 value |= (1 << 24);
6190 else
6191 value &= ~(bfd_vma)(1 << 24);
6192 }
6193 if (r_type == R_ARM_CALL)
6194 {
6195 /* Select the correct instruction (BL or BLX). */
6196 /* Only if we are not handling a BL to a stub. In this
6197 case, mode switching is performed by the stub. */
6198 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
6199 value |= (1 << 28);
6200 else
6201 {
6202 value &= ~(bfd_vma)(1 << 28);
6203 value |= (1 << 24);
6204 }
6205 }
6206 }
6207 }
6208 break;
6209
6210 case R_ARM_ABS32:
6211 value += addend;
6212 if (sym_flags == STT_ARM_TFUNC)
6213 value |= 1;
6214 break;
6215
6216 case R_ARM_ABS32_NOI:
6217 value += addend;
6218 break;
6219
6220 case R_ARM_REL32:
6221 value += addend;
6222 if (sym_flags == STT_ARM_TFUNC)
6223 value |= 1;
6224 value -= (input_section->output_section->vma
6225 + input_section->output_offset + rel->r_offset);
6226 break;
6227
6228 case R_ARM_REL32_NOI:
6229 value += addend;
6230 value -= (input_section->output_section->vma
6231 + input_section->output_offset + rel->r_offset);
6232 break;
6233
6234 case R_ARM_PREL31:
6235 value -= (input_section->output_section->vma
6236 + input_section->output_offset + rel->r_offset);
6237 value += signed_addend;
6238 if (! h || h->root.type != bfd_link_hash_undefweak)
6239 {
6240 /* Check for overflow. */
6241 if ((value ^ (value >> 1)) & (1 << 30))
6242 return bfd_reloc_overflow;
6243 }
6244 value &= 0x7fffffff;
6245 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6246 if (sym_flags == STT_ARM_TFUNC)
6247 value |= 1;
6248 break;
6249 }
6250
6251 bfd_put_32 (input_bfd, value, hit_data);
6252 return bfd_reloc_ok;
6253
6254 case R_ARM_ABS8:
6255 value += addend;
6256 if ((long) value > 0x7f || (long) value < -0x80)
6257 return bfd_reloc_overflow;
6258
6259 bfd_put_8 (input_bfd, value, hit_data);
6260 return bfd_reloc_ok;
6261
6262 case R_ARM_ABS16:
6263 value += addend;
6264
6265 if ((long) value > 0x7fff || (long) value < -0x8000)
6266 return bfd_reloc_overflow;
6267
6268 bfd_put_16 (input_bfd, value, hit_data);
6269 return bfd_reloc_ok;
6270
6271 case R_ARM_THM_ABS5:
6272 /* Support ldr and str instructions for the thumb. */
6273 if (globals->use_rel)
6274 {
6275 /* Need to refetch addend. */
6276 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6277 /* ??? Need to determine shift amount from operand size. */
6278 addend >>= howto->rightshift;
6279 }
6280 value += addend;
6281
6282 /* ??? Isn't value unsigned? */
6283 if ((long) value > 0x1f || (long) value < -0x10)
6284 return bfd_reloc_overflow;
6285
6286 /* ??? Value needs to be properly shifted into place first. */
6287 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6288 bfd_put_16 (input_bfd, value, hit_data);
6289 return bfd_reloc_ok;
6290
6291 case R_ARM_THM_ALU_PREL_11_0:
6292 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6293 {
6294 bfd_vma insn;
6295 bfd_signed_vma relocation;
6296
6297 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6298 | bfd_get_16 (input_bfd, hit_data + 2);
6299
6300 if (globals->use_rel)
6301 {
6302 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6303 | ((insn & (1 << 26)) >> 15);
6304 if (insn & 0xf00000)
6305 signed_addend = -signed_addend;
6306 }
6307
6308 relocation = value + signed_addend;
6309 relocation -= (input_section->output_section->vma
6310 + input_section->output_offset
6311 + rel->r_offset);
6312
6313 value = abs (relocation);
6314
6315 if (value >= 0x1000)
6316 return bfd_reloc_overflow;
6317
6318 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6319 | ((value & 0x700) << 4)
6320 | ((value & 0x800) << 15);
6321 if (relocation < 0)
6322 insn |= 0xa00000;
6323
6324 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6325 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6326
6327 return bfd_reloc_ok;
6328 }
6329
6330 case R_ARM_THM_PC12:
6331 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6332 {
6333 bfd_vma insn;
6334 bfd_signed_vma relocation;
6335
6336 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6337 | bfd_get_16 (input_bfd, hit_data + 2);
6338
6339 if (globals->use_rel)
6340 {
6341 signed_addend = insn & 0xfff;
6342 if (!(insn & (1 << 23)))
6343 signed_addend = -signed_addend;
6344 }
6345
6346 relocation = value + signed_addend;
6347 relocation -= (input_section->output_section->vma
6348 + input_section->output_offset
6349 + rel->r_offset);
6350
6351 value = abs (relocation);
6352
6353 if (value >= 0x1000)
6354 return bfd_reloc_overflow;
6355
6356 insn = (insn & 0xff7ff000) | value;
6357 if (relocation >= 0)
6358 insn |= (1 << 23);
6359
6360 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6361 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6362
6363 return bfd_reloc_ok;
6364 }
6365
6366 case R_ARM_THM_XPC22:
6367 case R_ARM_THM_CALL:
6368 case R_ARM_THM_JUMP24:
6369 /* Thumb BL (branch long instruction). */
6370 {
6371 bfd_vma relocation;
6372 bfd_vma reloc_sign;
6373 bfd_boolean overflow = FALSE;
6374 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6375 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6376 bfd_signed_vma reloc_signed_max;
6377 bfd_signed_vma reloc_signed_min;
6378 bfd_vma check;
6379 bfd_signed_vma signed_check;
6380 int bitsize;
6381 int thumb2 = using_thumb2 (globals);
6382
6383 /* A branch to an undefined weak symbol is turned into a jump to
6384 the next instruction. */
6385 if (h && h->root.type == bfd_link_hash_undefweak)
6386 {
6387 bfd_put_16 (input_bfd, 0xe000, hit_data);
6388 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6389 return bfd_reloc_ok;
6390 }
6391
6392 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6393 with Thumb-1) involving the J1 and J2 bits. */
6394 if (globals->use_rel)
6395 {
6396 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6397 bfd_vma upper = upper_insn & 0x3ff;
6398 bfd_vma lower = lower_insn & 0x7ff;
6399 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6400 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6401 bfd_vma i1 = j1 ^ s ? 0 : 1;
6402 bfd_vma i2 = j2 ^ s ? 0 : 1;
6403
6404 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6405 /* Sign extend. */
6406 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6407
6408 signed_addend = addend;
6409 }
6410
6411 if (r_type == R_ARM_THM_XPC22)
6412 {
6413 /* Check for Thumb to Thumb call. */
6414 /* FIXME: Should we translate the instruction into a BL
6415 instruction instead ? */
6416 if (sym_flags == STT_ARM_TFUNC)
6417 (*_bfd_error_handler)
6418 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6419 input_bfd,
6420 h ? h->root.root.string : "(local)");
6421 }
6422 else
6423 {
6424 /* If it is not a call to Thumb, assume call to Arm.
6425 If it is a call relative to a section name, then it is not a
6426 function call at all, but rather a long jump. Calls through
6427 the PLT do not require stubs. */
6428 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6429 && (h == NULL || splt == NULL
6430 || h->plt.offset == (bfd_vma) -1))
6431 {
6432 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6433 {
6434 /* Convert BL to BLX. */
6435 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6436 }
6437 else if (r_type != R_ARM_THM_CALL)
6438 {
6439 if (elf32_thumb_to_arm_stub
6440 (info, sym_name, input_bfd, output_bfd, input_section,
6441 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6442 error_message))
6443 return bfd_reloc_ok;
6444 else
6445 return bfd_reloc_dangerous;
6446 }
6447 }
6448 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6449 && r_type == R_ARM_THM_CALL)
6450 {
6451 /* Make sure this is a BL. */
6452 lower_insn |= 0x1800;
6453 }
6454 }
6455
6456 /* Handle calls via the PLT. */
6457 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6458 {
6459 value = (splt->output_section->vma
6460 + splt->output_offset
6461 + h->plt.offset);
6462 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6463 {
6464 /* If the Thumb BLX instruction is available, convert the
6465 BL to a BLX instruction to call the ARM-mode PLT entry. */
6466 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6467 }
6468 else
6469 /* Target the Thumb stub before the ARM PLT entry. */
6470 value -= PLT_THUMB_STUB_SIZE;
6471 *unresolved_reloc_p = FALSE;
6472 }
6473
6474 if (r_type == R_ARM_THM_CALL)
6475 {
6476 /* Check if a stub has to be inserted because the destination
6477 is too far. */
6478 bfd_vma from;
6479 bfd_signed_vma branch_offset;
6480 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6481
6482 from = (input_section->output_section->vma
6483 + input_section->output_offset
6484 + rel->r_offset);
6485 branch_offset = (bfd_signed_vma)(value - from);
6486
6487 if ((!thumb2
6488 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6489 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6490 ||
6491 (thumb2
6492 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
6493 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
6494 || ((sym_flags != STT_ARM_TFUNC) && !globals->use_blx))
6495 {
6496 /* The target is out of reach or we are changing modes, so
6497 redirect the branch to the local stub for this
6498 function. */
6499 stub_entry = elf32_arm_get_stub_entry (input_section,
6500 sym_sec, h,
6501 rel, globals);
6502 if (stub_entry != NULL)
6503 value = (stub_entry->stub_offset
6504 + stub_entry->stub_sec->output_offset
6505 + stub_entry->stub_sec->output_section->vma);
6506
6507 /* If this call becomes a call to Arm, force BLX. */
6508 if (globals->use_blx)
6509 {
6510 if ((stub_entry
6511 && !arm_stub_is_thumb (stub_entry->stub_type))
6512 || (sym_flags != STT_ARM_TFUNC))
6513 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6514 }
6515 }
6516 }
6517
6518 relocation = value + signed_addend;
6519
6520 relocation -= (input_section->output_section->vma
6521 + input_section->output_offset
6522 + rel->r_offset);
6523
6524 check = relocation >> howto->rightshift;
6525
6526 /* If this is a signed value, the rightshift just dropped
6527 leading 1 bits (assuming twos complement). */
6528 if ((bfd_signed_vma) relocation >= 0)
6529 signed_check = check;
6530 else
6531 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6532
6533 /* Calculate the permissable maximum and minimum values for
6534 this relocation according to whether we're relocating for
6535 Thumb-2 or not. */
6536 bitsize = howto->bitsize;
6537 if (!thumb2)
6538 bitsize -= 2;
6539 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6540 reloc_signed_min = ~reloc_signed_max;
6541
6542 /* Assumes two's complement. */
6543 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6544 overflow = TRUE;
6545
6546 if ((lower_insn & 0x5000) == 0x4000)
6547 /* For a BLX instruction, make sure that the relocation is rounded up
6548 to a word boundary. This follows the semantics of the instruction
6549 which specifies that bit 1 of the target address will come from bit
6550 1 of the base address. */
6551 relocation = (relocation + 2) & ~ 3;
6552
6553 /* Put RELOCATION back into the insn. Assumes two's complement.
6554 We use the Thumb-2 encoding, which is safe even if dealing with
6555 a Thumb-1 instruction by virtue of our overflow check above. */
6556 reloc_sign = (signed_check < 0) ? 1 : 0;
6557 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6558 | ((relocation >> 12) & 0x3ff)
6559 | (reloc_sign << 10);
6560 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
6561 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6562 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6563 | ((relocation >> 1) & 0x7ff);
6564
6565 /* Put the relocated value back in the object file: */
6566 bfd_put_16 (input_bfd, upper_insn, hit_data);
6567 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6568
6569 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6570 }
6571 break;
6572
6573 case R_ARM_THM_JUMP19:
6574 /* Thumb32 conditional branch instruction. */
6575 {
6576 bfd_vma relocation;
6577 bfd_boolean overflow = FALSE;
6578 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6579 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6580 bfd_signed_vma reloc_signed_max = 0xffffe;
6581 bfd_signed_vma reloc_signed_min = -0x100000;
6582 bfd_signed_vma signed_check;
6583
6584 /* Need to refetch the addend, reconstruct the top three bits,
6585 and squish the two 11 bit pieces together. */
6586 if (globals->use_rel)
6587 {
6588 bfd_vma S = (upper_insn & 0x0400) >> 10;
6589 bfd_vma upper = (upper_insn & 0x003f);
6590 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6591 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6592 bfd_vma lower = (lower_insn & 0x07ff);
6593
6594 upper |= J1 << 6;
6595 upper |= J2 << 7;
6596 upper |= (!S) << 8;
6597 upper -= 0x0100; /* Sign extend. */
6598
6599 addend = (upper << 12) | (lower << 1);
6600 signed_addend = addend;
6601 }
6602
6603 /* Handle calls via the PLT. */
6604 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6605 {
6606 value = (splt->output_section->vma
6607 + splt->output_offset
6608 + h->plt.offset);
6609 /* Target the Thumb stub before the ARM PLT entry. */
6610 value -= PLT_THUMB_STUB_SIZE;
6611 *unresolved_reloc_p = FALSE;
6612 }
6613
6614 /* ??? Should handle interworking? GCC might someday try to
6615 use this for tail calls. */
6616
6617 relocation = value + signed_addend;
6618 relocation -= (input_section->output_section->vma
6619 + input_section->output_offset
6620 + rel->r_offset);
6621 signed_check = (bfd_signed_vma) relocation;
6622
6623 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6624 overflow = TRUE;
6625
6626 /* Put RELOCATION back into the insn. */
6627 {
6628 bfd_vma S = (relocation & 0x00100000) >> 20;
6629 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6630 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6631 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6632 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6633
6634 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
6635 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6636 }
6637
6638 /* Put the relocated value back in the object file: */
6639 bfd_put_16 (input_bfd, upper_insn, hit_data);
6640 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6641
6642 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6643 }
6644
6645 case R_ARM_THM_JUMP11:
6646 case R_ARM_THM_JUMP8:
6647 case R_ARM_THM_JUMP6:
6648 /* Thumb B (branch) instruction). */
6649 {
6650 bfd_signed_vma relocation;
6651 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6652 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
6653 bfd_signed_vma signed_check;
6654
6655 /* CZB cannot jump backward. */
6656 if (r_type == R_ARM_THM_JUMP6)
6657 reloc_signed_min = 0;
6658
6659 if (globals->use_rel)
6660 {
6661 /* Need to refetch addend. */
6662 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6663 if (addend & ((howto->src_mask + 1) >> 1))
6664 {
6665 signed_addend = -1;
6666 signed_addend &= ~ howto->src_mask;
6667 signed_addend |= addend;
6668 }
6669 else
6670 signed_addend = addend;
6671 /* The value in the insn has been right shifted. We need to
6672 undo this, so that we can perform the address calculation
6673 in terms of bytes. */
6674 signed_addend <<= howto->rightshift;
6675 }
6676 relocation = value + signed_addend;
6677
6678 relocation -= (input_section->output_section->vma
6679 + input_section->output_offset
6680 + rel->r_offset);
6681
6682 relocation >>= howto->rightshift;
6683 signed_check = relocation;
6684
6685 if (r_type == R_ARM_THM_JUMP6)
6686 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6687 else
6688 relocation &= howto->dst_mask;
6689 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
6690
6691 bfd_put_16 (input_bfd, relocation, hit_data);
6692
6693 /* Assumes two's complement. */
6694 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6695 return bfd_reloc_overflow;
6696
6697 return bfd_reloc_ok;
6698 }
6699
6700 case R_ARM_ALU_PCREL7_0:
6701 case R_ARM_ALU_PCREL15_8:
6702 case R_ARM_ALU_PCREL23_15:
6703 {
6704 bfd_vma insn;
6705 bfd_vma relocation;
6706
6707 insn = bfd_get_32 (input_bfd, hit_data);
6708 if (globals->use_rel)
6709 {
6710 /* Extract the addend. */
6711 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6712 signed_addend = addend;
6713 }
6714 relocation = value + signed_addend;
6715
6716 relocation -= (input_section->output_section->vma
6717 + input_section->output_offset
6718 + rel->r_offset);
6719 insn = (insn & ~0xfff)
6720 | ((howto->bitpos << 7) & 0xf00)
6721 | ((relocation >> howto->bitpos) & 0xff);
6722 bfd_put_32 (input_bfd, value, hit_data);
6723 }
6724 return bfd_reloc_ok;
6725
6726 case R_ARM_GNU_VTINHERIT:
6727 case R_ARM_GNU_VTENTRY:
6728 return bfd_reloc_ok;
6729
6730 case R_ARM_GOTOFF32:
6731 /* Relocation is relative to the start of the
6732 global offset table. */
6733
6734 BFD_ASSERT (sgot != NULL);
6735 if (sgot == NULL)
6736 return bfd_reloc_notsupported;
6737
6738 /* If we are addressing a Thumb function, we need to adjust the
6739 address by one, so that attempts to call the function pointer will
6740 correctly interpret it as Thumb code. */
6741 if (sym_flags == STT_ARM_TFUNC)
6742 value += 1;
6743
6744 /* Note that sgot->output_offset is not involved in this
6745 calculation. We always want the start of .got. If we
6746 define _GLOBAL_OFFSET_TABLE in a different way, as is
6747 permitted by the ABI, we might have to change this
6748 calculation. */
6749 value -= sgot->output_section->vma;
6750 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6751 contents, rel->r_offset, value,
6752 rel->r_addend);
6753
6754 case R_ARM_GOTPC:
6755 /* Use global offset table as symbol value. */
6756 BFD_ASSERT (sgot != NULL);
6757
6758 if (sgot == NULL)
6759 return bfd_reloc_notsupported;
6760
6761 *unresolved_reloc_p = FALSE;
6762 value = sgot->output_section->vma;
6763 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6764 contents, rel->r_offset, value,
6765 rel->r_addend);
6766
6767 case R_ARM_GOT32:
6768 case R_ARM_GOT_PREL:
6769 /* Relocation is to the entry for this symbol in the
6770 global offset table. */
6771 if (sgot == NULL)
6772 return bfd_reloc_notsupported;
6773
6774 if (h != NULL)
6775 {
6776 bfd_vma off;
6777 bfd_boolean dyn;
6778
6779 off = h->got.offset;
6780 BFD_ASSERT (off != (bfd_vma) -1);
6781 dyn = globals->root.dynamic_sections_created;
6782
6783 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6784 || (info->shared
6785 && SYMBOL_REFERENCES_LOCAL (info, h))
6786 || (ELF_ST_VISIBILITY (h->other)
6787 && h->root.type == bfd_link_hash_undefweak))
6788 {
6789 /* This is actually a static link, or it is a -Bsymbolic link
6790 and the symbol is defined locally. We must initialize this
6791 entry in the global offset table. Since the offset must
6792 always be a multiple of 4, we use the least significant bit
6793 to record whether we have initialized it already.
6794
6795 When doing a dynamic link, we create a .rel(a).got relocation
6796 entry to initialize the value. This is done in the
6797 finish_dynamic_symbol routine. */
6798 if ((off & 1) != 0)
6799 off &= ~1;
6800 else
6801 {
6802 /* If we are addressing a Thumb function, we need to
6803 adjust the address by one, so that attempts to
6804 call the function pointer will correctly
6805 interpret it as Thumb code. */
6806 if (sym_flags == STT_ARM_TFUNC)
6807 value |= 1;
6808
6809 bfd_put_32 (output_bfd, value, sgot->contents + off);
6810 h->got.offset |= 1;
6811 }
6812 }
6813 else
6814 *unresolved_reloc_p = FALSE;
6815
6816 value = sgot->output_offset + off;
6817 }
6818 else
6819 {
6820 bfd_vma off;
6821
6822 BFD_ASSERT (local_got_offsets != NULL &&
6823 local_got_offsets[r_symndx] != (bfd_vma) -1);
6824
6825 off = local_got_offsets[r_symndx];
6826
6827 /* The offset must always be a multiple of 4. We use the
6828 least significant bit to record whether we have already
6829 generated the necessary reloc. */
6830 if ((off & 1) != 0)
6831 off &= ~1;
6832 else
6833 {
6834 /* If we are addressing a Thumb function, we need to
6835 adjust the address by one, so that attempts to
6836 call the function pointer will correctly
6837 interpret it as Thumb code. */
6838 if (sym_flags == STT_ARM_TFUNC)
6839 value |= 1;
6840
6841 if (globals->use_rel)
6842 bfd_put_32 (output_bfd, value, sgot->contents + off);
6843
6844 if (info->shared)
6845 {
6846 asection * srelgot;
6847 Elf_Internal_Rela outrel;
6848 bfd_byte *loc;
6849
6850 srelgot = (bfd_get_section_by_name
6851 (dynobj, RELOC_SECTION (globals, ".got")));
6852 BFD_ASSERT (srelgot != NULL);
6853
6854 outrel.r_addend = addend + value;
6855 outrel.r_offset = (sgot->output_section->vma
6856 + sgot->output_offset
6857 + off);
6858 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
6859 loc = srelgot->contents;
6860 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
6861 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6862 }
6863
6864 local_got_offsets[r_symndx] |= 1;
6865 }
6866
6867 value = sgot->output_offset + off;
6868 }
6869 if (r_type != R_ARM_GOT32)
6870 value += sgot->output_section->vma;
6871
6872 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6873 contents, rel->r_offset, value,
6874 rel->r_addend);
6875
6876 case R_ARM_TLS_LDO32:
6877 value = value - dtpoff_base (info);
6878
6879 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6880 contents, rel->r_offset, value,
6881 rel->r_addend);
6882
6883 case R_ARM_TLS_LDM32:
6884 {
6885 bfd_vma off;
6886
6887 if (globals->sgot == NULL)
6888 abort ();
6889
6890 off = globals->tls_ldm_got.offset;
6891
6892 if ((off & 1) != 0)
6893 off &= ~1;
6894 else
6895 {
6896 /* If we don't know the module number, create a relocation
6897 for it. */
6898 if (info->shared)
6899 {
6900 Elf_Internal_Rela outrel;
6901 bfd_byte *loc;
6902
6903 if (globals->srelgot == NULL)
6904 abort ();
6905
6906 outrel.r_addend = 0;
6907 outrel.r_offset = (globals->sgot->output_section->vma
6908 + globals->sgot->output_offset + off);
6909 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
6910
6911 if (globals->use_rel)
6912 bfd_put_32 (output_bfd, outrel.r_addend,
6913 globals->sgot->contents + off);
6914
6915 loc = globals->srelgot->contents;
6916 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
6917 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6918 }
6919 else
6920 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
6921
6922 globals->tls_ldm_got.offset |= 1;
6923 }
6924
6925 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
6926 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
6927
6928 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6929 contents, rel->r_offset, value,
6930 rel->r_addend);
6931 }
6932
6933 case R_ARM_TLS_GD32:
6934 case R_ARM_TLS_IE32:
6935 {
6936 bfd_vma off;
6937 int indx;
6938 char tls_type;
6939
6940 if (globals->sgot == NULL)
6941 abort ();
6942
6943 indx = 0;
6944 if (h != NULL)
6945 {
6946 bfd_boolean dyn;
6947 dyn = globals->root.dynamic_sections_created;
6948 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6949 && (!info->shared
6950 || !SYMBOL_REFERENCES_LOCAL (info, h)))
6951 {
6952 *unresolved_reloc_p = FALSE;
6953 indx = h->dynindx;
6954 }
6955 off = h->got.offset;
6956 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
6957 }
6958 else
6959 {
6960 if (local_got_offsets == NULL)
6961 abort ();
6962 off = local_got_offsets[r_symndx];
6963 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
6964 }
6965
6966 if (tls_type == GOT_UNKNOWN)
6967 abort ();
6968
6969 if ((off & 1) != 0)
6970 off &= ~1;
6971 else
6972 {
6973 bfd_boolean need_relocs = FALSE;
6974 Elf_Internal_Rela outrel;
6975 bfd_byte *loc = NULL;
6976 int cur_off = off;
6977
6978 /* The GOT entries have not been initialized yet. Do it
6979 now, and emit any relocations. If both an IE GOT and a
6980 GD GOT are necessary, we emit the GD first. */
6981
6982 if ((info->shared || indx != 0)
6983 && (h == NULL
6984 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6985 || h->root.type != bfd_link_hash_undefweak))
6986 {
6987 need_relocs = TRUE;
6988 if (globals->srelgot == NULL)
6989 abort ();
6990 loc = globals->srelgot->contents;
6991 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
6992 }
6993
6994 if (tls_type & GOT_TLS_GD)
6995 {
6996 if (need_relocs)
6997 {
6998 outrel.r_addend = 0;
6999 outrel.r_offset = (globals->sgot->output_section->vma
7000 + globals->sgot->output_offset
7001 + cur_off);
7002 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
7003
7004 if (globals->use_rel)
7005 bfd_put_32 (output_bfd, outrel.r_addend,
7006 globals->sgot->contents + cur_off);
7007
7008 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7009 globals->srelgot->reloc_count++;
7010 loc += RELOC_SIZE (globals);
7011
7012 if (indx == 0)
7013 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7014 globals->sgot->contents + cur_off + 4);
7015 else
7016 {
7017 outrel.r_addend = 0;
7018 outrel.r_info = ELF32_R_INFO (indx,
7019 R_ARM_TLS_DTPOFF32);
7020 outrel.r_offset += 4;
7021
7022 if (globals->use_rel)
7023 bfd_put_32 (output_bfd, outrel.r_addend,
7024 globals->sgot->contents + cur_off + 4);
7025
7026
7027 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7028 globals->srelgot->reloc_count++;
7029 loc += RELOC_SIZE (globals);
7030 }
7031 }
7032 else
7033 {
7034 /* If we are not emitting relocations for a
7035 general dynamic reference, then we must be in a
7036 static link or an executable link with the
7037 symbol binding locally. Mark it as belonging
7038 to module 1, the executable. */
7039 bfd_put_32 (output_bfd, 1,
7040 globals->sgot->contents + cur_off);
7041 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7042 globals->sgot->contents + cur_off + 4);
7043 }
7044
7045 cur_off += 8;
7046 }
7047
7048 if (tls_type & GOT_TLS_IE)
7049 {
7050 if (need_relocs)
7051 {
7052 if (indx == 0)
7053 outrel.r_addend = value - dtpoff_base (info);
7054 else
7055 outrel.r_addend = 0;
7056 outrel.r_offset = (globals->sgot->output_section->vma
7057 + globals->sgot->output_offset
7058 + cur_off);
7059 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7060
7061 if (globals->use_rel)
7062 bfd_put_32 (output_bfd, outrel.r_addend,
7063 globals->sgot->contents + cur_off);
7064
7065 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7066 globals->srelgot->reloc_count++;
7067 loc += RELOC_SIZE (globals);
7068 }
7069 else
7070 bfd_put_32 (output_bfd, tpoff (info, value),
7071 globals->sgot->contents + cur_off);
7072 cur_off += 4;
7073 }
7074
7075 if (h != NULL)
7076 h->got.offset |= 1;
7077 else
7078 local_got_offsets[r_symndx] |= 1;
7079 }
7080
7081 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7082 off += 8;
7083 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7084 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7085
7086 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7087 contents, rel->r_offset, value,
7088 rel->r_addend);
7089 }
7090
7091 case R_ARM_TLS_LE32:
7092 if (info->shared)
7093 {
7094 (*_bfd_error_handler)
7095 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7096 input_bfd, input_section,
7097 (long) rel->r_offset, howto->name);
7098 return FALSE;
7099 }
7100 else
7101 value = tpoff (info, value);
7102
7103 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7104 contents, rel->r_offset, value,
7105 rel->r_addend);
7106
7107 case R_ARM_V4BX:
7108 if (globals->fix_v4bx)
7109 {
7110 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7111
7112 /* Ensure that we have a BX instruction. */
7113 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
7114
7115 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7116 {
7117 /* Branch to veneer. */
7118 bfd_vma glue_addr;
7119 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7120 glue_addr -= input_section->output_section->vma
7121 + input_section->output_offset
7122 + rel->r_offset + 8;
7123 insn = (insn & 0xf0000000) | 0x0a000000
7124 | ((glue_addr >> 2) & 0x00ffffff);
7125 }
7126 else
7127 {
7128 /* Preserve Rm (lowest four bits) and the condition code
7129 (highest four bits). Other bits encode MOV PC,Rm. */
7130 insn = (insn & 0xf000000f) | 0x01a0f000;
7131 }
7132
7133 bfd_put_32 (input_bfd, insn, hit_data);
7134 }
7135 return bfd_reloc_ok;
7136
7137 case R_ARM_MOVW_ABS_NC:
7138 case R_ARM_MOVT_ABS:
7139 case R_ARM_MOVW_PREL_NC:
7140 case R_ARM_MOVT_PREL:
7141 /* Until we properly support segment-base-relative addressing then
7142 we assume the segment base to be zero, as for the group relocations.
7143 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7144 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7145 case R_ARM_MOVW_BREL_NC:
7146 case R_ARM_MOVW_BREL:
7147 case R_ARM_MOVT_BREL:
7148 {
7149 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7150
7151 if (globals->use_rel)
7152 {
7153 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
7154 signed_addend = (addend ^ 0x8000) - 0x8000;
7155 }
7156
7157 value += signed_addend;
7158
7159 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7160 value -= (input_section->output_section->vma
7161 + input_section->output_offset + rel->r_offset);
7162
7163 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7164 return bfd_reloc_overflow;
7165
7166 if (sym_flags == STT_ARM_TFUNC)
7167 value |= 1;
7168
7169 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7170 || r_type == R_ARM_MOVT_BREL)
7171 value >>= 16;
7172
7173 insn &= 0xfff0f000;
7174 insn |= value & 0xfff;
7175 insn |= (value & 0xf000) << 4;
7176 bfd_put_32 (input_bfd, insn, hit_data);
7177 }
7178 return bfd_reloc_ok;
7179
7180 case R_ARM_THM_MOVW_ABS_NC:
7181 case R_ARM_THM_MOVT_ABS:
7182 case R_ARM_THM_MOVW_PREL_NC:
7183 case R_ARM_THM_MOVT_PREL:
7184 /* Until we properly support segment-base-relative addressing then
7185 we assume the segment base to be zero, as for the above relocations.
7186 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7187 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7188 as R_ARM_THM_MOVT_ABS. */
7189 case R_ARM_THM_MOVW_BREL_NC:
7190 case R_ARM_THM_MOVW_BREL:
7191 case R_ARM_THM_MOVT_BREL:
7192 {
7193 bfd_vma insn;
7194
7195 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7196 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7197
7198 if (globals->use_rel)
7199 {
7200 addend = ((insn >> 4) & 0xf000)
7201 | ((insn >> 15) & 0x0800)
7202 | ((insn >> 4) & 0x0700)
7203 | (insn & 0x00ff);
7204 signed_addend = (addend ^ 0x8000) - 0x8000;
7205 }
7206
7207 value += signed_addend;
7208
7209 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7210 value -= (input_section->output_section->vma
7211 + input_section->output_offset + rel->r_offset);
7212
7213 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7214 return bfd_reloc_overflow;
7215
7216 if (sym_flags == STT_ARM_TFUNC)
7217 value |= 1;
7218
7219 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7220 || r_type == R_ARM_THM_MOVT_BREL)
7221 value >>= 16;
7222
7223 insn &= 0xfbf08f00;
7224 insn |= (value & 0xf000) << 4;
7225 insn |= (value & 0x0800) << 15;
7226 insn |= (value & 0x0700) << 4;
7227 insn |= (value & 0x00ff);
7228
7229 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7230 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7231 }
7232 return bfd_reloc_ok;
7233
7234 case R_ARM_ALU_PC_G0_NC:
7235 case R_ARM_ALU_PC_G1_NC:
7236 case R_ARM_ALU_PC_G0:
7237 case R_ARM_ALU_PC_G1:
7238 case R_ARM_ALU_PC_G2:
7239 case R_ARM_ALU_SB_G0_NC:
7240 case R_ARM_ALU_SB_G1_NC:
7241 case R_ARM_ALU_SB_G0:
7242 case R_ARM_ALU_SB_G1:
7243 case R_ARM_ALU_SB_G2:
7244 {
7245 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7246 bfd_vma pc = input_section->output_section->vma
7247 + input_section->output_offset + rel->r_offset;
7248 /* sb should be the origin of the *segment* containing the symbol.
7249 It is not clear how to obtain this OS-dependent value, so we
7250 make an arbitrary choice of zero. */
7251 bfd_vma sb = 0;
7252 bfd_vma residual;
7253 bfd_vma g_n;
7254 bfd_signed_vma signed_value;
7255 int group = 0;
7256
7257 /* Determine which group of bits to select. */
7258 switch (r_type)
7259 {
7260 case R_ARM_ALU_PC_G0_NC:
7261 case R_ARM_ALU_PC_G0:
7262 case R_ARM_ALU_SB_G0_NC:
7263 case R_ARM_ALU_SB_G0:
7264 group = 0;
7265 break;
7266
7267 case R_ARM_ALU_PC_G1_NC:
7268 case R_ARM_ALU_PC_G1:
7269 case R_ARM_ALU_SB_G1_NC:
7270 case R_ARM_ALU_SB_G1:
7271 group = 1;
7272 break;
7273
7274 case R_ARM_ALU_PC_G2:
7275 case R_ARM_ALU_SB_G2:
7276 group = 2;
7277 break;
7278
7279 default:
7280 abort ();
7281 }
7282
7283 /* If REL, extract the addend from the insn. If RELA, it will
7284 have already been fetched for us. */
7285 if (globals->use_rel)
7286 {
7287 int negative;
7288 bfd_vma constant = insn & 0xff;
7289 bfd_vma rotation = (insn & 0xf00) >> 8;
7290
7291 if (rotation == 0)
7292 signed_addend = constant;
7293 else
7294 {
7295 /* Compensate for the fact that in the instruction, the
7296 rotation is stored in multiples of 2 bits. */
7297 rotation *= 2;
7298
7299 /* Rotate "constant" right by "rotation" bits. */
7300 signed_addend = (constant >> rotation) |
7301 (constant << (8 * sizeof (bfd_vma) - rotation));
7302 }
7303
7304 /* Determine if the instruction is an ADD or a SUB.
7305 (For REL, this determines the sign of the addend.) */
7306 negative = identify_add_or_sub (insn);
7307 if (negative == 0)
7308 {
7309 (*_bfd_error_handler)
7310 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7311 input_bfd, input_section,
7312 (long) rel->r_offset, howto->name);
7313 return bfd_reloc_overflow;
7314 }
7315
7316 signed_addend *= negative;
7317 }
7318
7319 /* Compute the value (X) to go in the place. */
7320 if (r_type == R_ARM_ALU_PC_G0_NC
7321 || r_type == R_ARM_ALU_PC_G1_NC
7322 || r_type == R_ARM_ALU_PC_G0
7323 || r_type == R_ARM_ALU_PC_G1
7324 || r_type == R_ARM_ALU_PC_G2)
7325 /* PC relative. */
7326 signed_value = value - pc + signed_addend;
7327 else
7328 /* Section base relative. */
7329 signed_value = value - sb + signed_addend;
7330
7331 /* If the target symbol is a Thumb function, then set the
7332 Thumb bit in the address. */
7333 if (sym_flags == STT_ARM_TFUNC)
7334 signed_value |= 1;
7335
7336 /* Calculate the value of the relevant G_n, in encoded
7337 constant-with-rotation format. */
7338 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7339 &residual);
7340
7341 /* Check for overflow if required. */
7342 if ((r_type == R_ARM_ALU_PC_G0
7343 || r_type == R_ARM_ALU_PC_G1
7344 || r_type == R_ARM_ALU_PC_G2
7345 || r_type == R_ARM_ALU_SB_G0
7346 || r_type == R_ARM_ALU_SB_G1
7347 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7348 {
7349 (*_bfd_error_handler)
7350 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7351 input_bfd, input_section,
7352 (long) rel->r_offset, abs (signed_value), howto->name);
7353 return bfd_reloc_overflow;
7354 }
7355
7356 /* Mask out the value and the ADD/SUB part of the opcode; take care
7357 not to destroy the S bit. */
7358 insn &= 0xff1ff000;
7359
7360 /* Set the opcode according to whether the value to go in the
7361 place is negative. */
7362 if (signed_value < 0)
7363 insn |= 1 << 22;
7364 else
7365 insn |= 1 << 23;
7366
7367 /* Encode the offset. */
7368 insn |= g_n;
7369
7370 bfd_put_32 (input_bfd, insn, hit_data);
7371 }
7372 return bfd_reloc_ok;
7373
7374 case R_ARM_LDR_PC_G0:
7375 case R_ARM_LDR_PC_G1:
7376 case R_ARM_LDR_PC_G2:
7377 case R_ARM_LDR_SB_G0:
7378 case R_ARM_LDR_SB_G1:
7379 case R_ARM_LDR_SB_G2:
7380 {
7381 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7382 bfd_vma pc = input_section->output_section->vma
7383 + input_section->output_offset + rel->r_offset;
7384 bfd_vma sb = 0; /* See note above. */
7385 bfd_vma residual;
7386 bfd_signed_vma signed_value;
7387 int group = 0;
7388
7389 /* Determine which groups of bits to calculate. */
7390 switch (r_type)
7391 {
7392 case R_ARM_LDR_PC_G0:
7393 case R_ARM_LDR_SB_G0:
7394 group = 0;
7395 break;
7396
7397 case R_ARM_LDR_PC_G1:
7398 case R_ARM_LDR_SB_G1:
7399 group = 1;
7400 break;
7401
7402 case R_ARM_LDR_PC_G2:
7403 case R_ARM_LDR_SB_G2:
7404 group = 2;
7405 break;
7406
7407 default:
7408 abort ();
7409 }
7410
7411 /* If REL, extract the addend from the insn. If RELA, it will
7412 have already been fetched for us. */
7413 if (globals->use_rel)
7414 {
7415 int negative = (insn & (1 << 23)) ? 1 : -1;
7416 signed_addend = negative * (insn & 0xfff);
7417 }
7418
7419 /* Compute the value (X) to go in the place. */
7420 if (r_type == R_ARM_LDR_PC_G0
7421 || r_type == R_ARM_LDR_PC_G1
7422 || r_type == R_ARM_LDR_PC_G2)
7423 /* PC relative. */
7424 signed_value = value - pc + signed_addend;
7425 else
7426 /* Section base relative. */
7427 signed_value = value - sb + signed_addend;
7428
7429 /* Calculate the value of the relevant G_{n-1} to obtain
7430 the residual at that stage. */
7431 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7432
7433 /* Check for overflow. */
7434 if (residual >= 0x1000)
7435 {
7436 (*_bfd_error_handler)
7437 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7438 input_bfd, input_section,
7439 (long) rel->r_offset, abs (signed_value), howto->name);
7440 return bfd_reloc_overflow;
7441 }
7442
7443 /* Mask out the value and U bit. */
7444 insn &= 0xff7ff000;
7445
7446 /* Set the U bit if the value to go in the place is non-negative. */
7447 if (signed_value >= 0)
7448 insn |= 1 << 23;
7449
7450 /* Encode the offset. */
7451 insn |= residual;
7452
7453 bfd_put_32 (input_bfd, insn, hit_data);
7454 }
7455 return bfd_reloc_ok;
7456
7457 case R_ARM_LDRS_PC_G0:
7458 case R_ARM_LDRS_PC_G1:
7459 case R_ARM_LDRS_PC_G2:
7460 case R_ARM_LDRS_SB_G0:
7461 case R_ARM_LDRS_SB_G1:
7462 case R_ARM_LDRS_SB_G2:
7463 {
7464 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7465 bfd_vma pc = input_section->output_section->vma
7466 + input_section->output_offset + rel->r_offset;
7467 bfd_vma sb = 0; /* See note above. */
7468 bfd_vma residual;
7469 bfd_signed_vma signed_value;
7470 int group = 0;
7471
7472 /* Determine which groups of bits to calculate. */
7473 switch (r_type)
7474 {
7475 case R_ARM_LDRS_PC_G0:
7476 case R_ARM_LDRS_SB_G0:
7477 group = 0;
7478 break;
7479
7480 case R_ARM_LDRS_PC_G1:
7481 case R_ARM_LDRS_SB_G1:
7482 group = 1;
7483 break;
7484
7485 case R_ARM_LDRS_PC_G2:
7486 case R_ARM_LDRS_SB_G2:
7487 group = 2;
7488 break;
7489
7490 default:
7491 abort ();
7492 }
7493
7494 /* If REL, extract the addend from the insn. If RELA, it will
7495 have already been fetched for us. */
7496 if (globals->use_rel)
7497 {
7498 int negative = (insn & (1 << 23)) ? 1 : -1;
7499 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7500 }
7501
7502 /* Compute the value (X) to go in the place. */
7503 if (r_type == R_ARM_LDRS_PC_G0
7504 || r_type == R_ARM_LDRS_PC_G1
7505 || r_type == R_ARM_LDRS_PC_G2)
7506 /* PC relative. */
7507 signed_value = value - pc + signed_addend;
7508 else
7509 /* Section base relative. */
7510 signed_value = value - sb + signed_addend;
7511
7512 /* Calculate the value of the relevant G_{n-1} to obtain
7513 the residual at that stage. */
7514 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7515
7516 /* Check for overflow. */
7517 if (residual >= 0x100)
7518 {
7519 (*_bfd_error_handler)
7520 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7521 input_bfd, input_section,
7522 (long) rel->r_offset, abs (signed_value), howto->name);
7523 return bfd_reloc_overflow;
7524 }
7525
7526 /* Mask out the value and U bit. */
7527 insn &= 0xff7ff0f0;
7528
7529 /* Set the U bit if the value to go in the place is non-negative. */
7530 if (signed_value >= 0)
7531 insn |= 1 << 23;
7532
7533 /* Encode the offset. */
7534 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7535
7536 bfd_put_32 (input_bfd, insn, hit_data);
7537 }
7538 return bfd_reloc_ok;
7539
7540 case R_ARM_LDC_PC_G0:
7541 case R_ARM_LDC_PC_G1:
7542 case R_ARM_LDC_PC_G2:
7543 case R_ARM_LDC_SB_G0:
7544 case R_ARM_LDC_SB_G1:
7545 case R_ARM_LDC_SB_G2:
7546 {
7547 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7548 bfd_vma pc = input_section->output_section->vma
7549 + input_section->output_offset + rel->r_offset;
7550 bfd_vma sb = 0; /* See note above. */
7551 bfd_vma residual;
7552 bfd_signed_vma signed_value;
7553 int group = 0;
7554
7555 /* Determine which groups of bits to calculate. */
7556 switch (r_type)
7557 {
7558 case R_ARM_LDC_PC_G0:
7559 case R_ARM_LDC_SB_G0:
7560 group = 0;
7561 break;
7562
7563 case R_ARM_LDC_PC_G1:
7564 case R_ARM_LDC_SB_G1:
7565 group = 1;
7566 break;
7567
7568 case R_ARM_LDC_PC_G2:
7569 case R_ARM_LDC_SB_G2:
7570 group = 2;
7571 break;
7572
7573 default:
7574 abort ();
7575 }
7576
7577 /* If REL, extract the addend from the insn. If RELA, it will
7578 have already been fetched for us. */
7579 if (globals->use_rel)
7580 {
7581 int negative = (insn & (1 << 23)) ? 1 : -1;
7582 signed_addend = negative * ((insn & 0xff) << 2);
7583 }
7584
7585 /* Compute the value (X) to go in the place. */
7586 if (r_type == R_ARM_LDC_PC_G0
7587 || r_type == R_ARM_LDC_PC_G1
7588 || r_type == R_ARM_LDC_PC_G2)
7589 /* PC relative. */
7590 signed_value = value - pc + signed_addend;
7591 else
7592 /* Section base relative. */
7593 signed_value = value - sb + signed_addend;
7594
7595 /* Calculate the value of the relevant G_{n-1} to obtain
7596 the residual at that stage. */
7597 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7598
7599 /* Check for overflow. (The absolute value to go in the place must be
7600 divisible by four and, after having been divided by four, must
7601 fit in eight bits.) */
7602 if ((residual & 0x3) != 0 || residual >= 0x400)
7603 {
7604 (*_bfd_error_handler)
7605 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7606 input_bfd, input_section,
7607 (long) rel->r_offset, abs (signed_value), howto->name);
7608 return bfd_reloc_overflow;
7609 }
7610
7611 /* Mask out the value and U bit. */
7612 insn &= 0xff7fff00;
7613
7614 /* Set the U bit if the value to go in the place is non-negative. */
7615 if (signed_value >= 0)
7616 insn |= 1 << 23;
7617
7618 /* Encode the offset. */
7619 insn |= residual >> 2;
7620
7621 bfd_put_32 (input_bfd, insn, hit_data);
7622 }
7623 return bfd_reloc_ok;
7624
7625 default:
7626 return bfd_reloc_notsupported;
7627 }
7628 }
7629
7630 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7631 static void
7632 arm_add_to_rel (bfd * abfd,
7633 bfd_byte * address,
7634 reloc_howto_type * howto,
7635 bfd_signed_vma increment)
7636 {
7637 bfd_signed_vma addend;
7638
7639 if (howto->type == R_ARM_THM_CALL
7640 || howto->type == R_ARM_THM_JUMP24)
7641 {
7642 int upper_insn, lower_insn;
7643 int upper, lower;
7644
7645 upper_insn = bfd_get_16 (abfd, address);
7646 lower_insn = bfd_get_16 (abfd, address + 2);
7647 upper = upper_insn & 0x7ff;
7648 lower = lower_insn & 0x7ff;
7649
7650 addend = (upper << 12) | (lower << 1);
7651 addend += increment;
7652 addend >>= 1;
7653
7654 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7655 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7656
7657 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7658 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
7659 }
7660 else
7661 {
7662 bfd_vma contents;
7663
7664 contents = bfd_get_32 (abfd, address);
7665
7666 /* Get the (signed) value from the instruction. */
7667 addend = contents & howto->src_mask;
7668 if (addend & ((howto->src_mask + 1) >> 1))
7669 {
7670 bfd_signed_vma mask;
7671
7672 mask = -1;
7673 mask &= ~ howto->src_mask;
7674 addend |= mask;
7675 }
7676
7677 /* Add in the increment, (which is a byte value). */
7678 switch (howto->type)
7679 {
7680 default:
7681 addend += increment;
7682 break;
7683
7684 case R_ARM_PC24:
7685 case R_ARM_PLT32:
7686 case R_ARM_CALL:
7687 case R_ARM_JUMP24:
7688 addend <<= howto->size;
7689 addend += increment;
7690
7691 /* Should we check for overflow here ? */
7692
7693 /* Drop any undesired bits. */
7694 addend >>= howto->rightshift;
7695 break;
7696 }
7697
7698 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7699
7700 bfd_put_32 (abfd, contents, address);
7701 }
7702 }
7703
7704 #define IS_ARM_TLS_RELOC(R_TYPE) \
7705 ((R_TYPE) == R_ARM_TLS_GD32 \
7706 || (R_TYPE) == R_ARM_TLS_LDO32 \
7707 || (R_TYPE) == R_ARM_TLS_LDM32 \
7708 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7709 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7710 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7711 || (R_TYPE) == R_ARM_TLS_LE32 \
7712 || (R_TYPE) == R_ARM_TLS_IE32)
7713
7714 /* Relocate an ARM ELF section. */
7715
7716 static bfd_boolean
7717 elf32_arm_relocate_section (bfd * output_bfd,
7718 struct bfd_link_info * info,
7719 bfd * input_bfd,
7720 asection * input_section,
7721 bfd_byte * contents,
7722 Elf_Internal_Rela * relocs,
7723 Elf_Internal_Sym * local_syms,
7724 asection ** local_sections)
7725 {
7726 Elf_Internal_Shdr *symtab_hdr;
7727 struct elf_link_hash_entry **sym_hashes;
7728 Elf_Internal_Rela *rel;
7729 Elf_Internal_Rela *relend;
7730 const char *name;
7731 struct elf32_arm_link_hash_table * globals;
7732
7733 globals = elf32_arm_hash_table (info);
7734
7735 symtab_hdr = & elf_symtab_hdr (input_bfd);
7736 sym_hashes = elf_sym_hashes (input_bfd);
7737
7738 rel = relocs;
7739 relend = relocs + input_section->reloc_count;
7740 for (; rel < relend; rel++)
7741 {
7742 int r_type;
7743 reloc_howto_type * howto;
7744 unsigned long r_symndx;
7745 Elf_Internal_Sym * sym;
7746 asection * sec;
7747 struct elf_link_hash_entry * h;
7748 bfd_vma relocation;
7749 bfd_reloc_status_type r;
7750 arelent bfd_reloc;
7751 char sym_type;
7752 bfd_boolean unresolved_reloc = FALSE;
7753 char *error_message = NULL;
7754
7755 r_symndx = ELF32_R_SYM (rel->r_info);
7756 r_type = ELF32_R_TYPE (rel->r_info);
7757 r_type = arm_real_reloc_type (globals, r_type);
7758
7759 if ( r_type == R_ARM_GNU_VTENTRY
7760 || r_type == R_ARM_GNU_VTINHERIT)
7761 continue;
7762
7763 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
7764 howto = bfd_reloc.howto;
7765
7766 h = NULL;
7767 sym = NULL;
7768 sec = NULL;
7769
7770 if (r_symndx < symtab_hdr->sh_info)
7771 {
7772 sym = local_syms + r_symndx;
7773 sym_type = ELF32_ST_TYPE (sym->st_info);
7774 sec = local_sections[r_symndx];
7775 if (globals->use_rel)
7776 {
7777 relocation = (sec->output_section->vma
7778 + sec->output_offset
7779 + sym->st_value);
7780 if (!info->relocatable
7781 && (sec->flags & SEC_MERGE)
7782 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7783 {
7784 asection *msec;
7785 bfd_vma addend, value;
7786
7787 switch (r_type)
7788 {
7789 case R_ARM_MOVW_ABS_NC:
7790 case R_ARM_MOVT_ABS:
7791 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7792 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7793 addend = (addend ^ 0x8000) - 0x8000;
7794 break;
7795
7796 case R_ARM_THM_MOVW_ABS_NC:
7797 case R_ARM_THM_MOVT_ABS:
7798 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
7799 << 16;
7800 value |= bfd_get_16 (input_bfd,
7801 contents + rel->r_offset + 2);
7802 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
7803 | ((value & 0x04000000) >> 15);
7804 addend = (addend ^ 0x8000) - 0x8000;
7805 break;
7806
7807 default:
7808 if (howto->rightshift
7809 || (howto->src_mask & (howto->src_mask + 1)))
7810 {
7811 (*_bfd_error_handler)
7812 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7813 input_bfd, input_section,
7814 (long) rel->r_offset, howto->name);
7815 return FALSE;
7816 }
7817
7818 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7819
7820 /* Get the (signed) value from the instruction. */
7821 addend = value & howto->src_mask;
7822 if (addend & ((howto->src_mask + 1) >> 1))
7823 {
7824 bfd_signed_vma mask;
7825
7826 mask = -1;
7827 mask &= ~ howto->src_mask;
7828 addend |= mask;
7829 }
7830 break;
7831 }
7832
7833 msec = sec;
7834 addend =
7835 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
7836 - relocation;
7837 addend += msec->output_section->vma + msec->output_offset;
7838
7839 /* Cases here must match those in the preceeding
7840 switch statement. */
7841 switch (r_type)
7842 {
7843 case R_ARM_MOVW_ABS_NC:
7844 case R_ARM_MOVT_ABS:
7845 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
7846 | (addend & 0xfff);
7847 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7848 break;
7849
7850 case R_ARM_THM_MOVW_ABS_NC:
7851 case R_ARM_THM_MOVT_ABS:
7852 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
7853 | (addend & 0xff) | ((addend & 0x0800) << 15);
7854 bfd_put_16 (input_bfd, value >> 16,
7855 contents + rel->r_offset);
7856 bfd_put_16 (input_bfd, value,
7857 contents + rel->r_offset + 2);
7858 break;
7859
7860 default:
7861 value = (value & ~ howto->dst_mask)
7862 | (addend & howto->dst_mask);
7863 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7864 break;
7865 }
7866 }
7867 }
7868 else
7869 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7870 }
7871 else
7872 {
7873 bfd_boolean warned;
7874
7875 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
7876 r_symndx, symtab_hdr, sym_hashes,
7877 h, sec, relocation,
7878 unresolved_reloc, warned);
7879
7880 sym_type = h->type;
7881 }
7882
7883 if (sec != NULL && elf_discarded_section (sec))
7884 {
7885 /* For relocs against symbols from removed linkonce sections,
7886 or sections discarded by a linker script, we just want the
7887 section contents zeroed. Avoid any special processing. */
7888 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7889 rel->r_info = 0;
7890 rel->r_addend = 0;
7891 continue;
7892 }
7893
7894 if (info->relocatable)
7895 {
7896 /* This is a relocatable link. We don't have to change
7897 anything, unless the reloc is against a section symbol,
7898 in which case we have to adjust according to where the
7899 section symbol winds up in the output section. */
7900 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7901 {
7902 if (globals->use_rel)
7903 arm_add_to_rel (input_bfd, contents + rel->r_offset,
7904 howto, (bfd_signed_vma) sec->output_offset);
7905 else
7906 rel->r_addend += sec->output_offset;
7907 }
7908 continue;
7909 }
7910
7911 if (h != NULL)
7912 name = h->root.root.string;
7913 else
7914 {
7915 name = (bfd_elf_string_from_elf_section
7916 (input_bfd, symtab_hdr->sh_link, sym->st_name));
7917 if (name == NULL || *name == '\0')
7918 name = bfd_section_name (input_bfd, sec);
7919 }
7920
7921 if (r_symndx != 0
7922 && r_type != R_ARM_NONE
7923 && (h == NULL
7924 || h->root.type == bfd_link_hash_defined
7925 || h->root.type == bfd_link_hash_defweak)
7926 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
7927 {
7928 (*_bfd_error_handler)
7929 ((sym_type == STT_TLS
7930 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
7931 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
7932 input_bfd,
7933 input_section,
7934 (long) rel->r_offset,
7935 howto->name,
7936 name);
7937 }
7938
7939 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
7940 input_section, contents, rel,
7941 relocation, info, sec, name,
7942 (h ? ELF_ST_TYPE (h->type) :
7943 ELF_ST_TYPE (sym->st_info)), h,
7944 &unresolved_reloc, &error_message);
7945
7946 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7947 because such sections are not SEC_ALLOC and thus ld.so will
7948 not process them. */
7949 if (unresolved_reloc
7950 && !((input_section->flags & SEC_DEBUGGING) != 0
7951 && h->def_dynamic))
7952 {
7953 (*_bfd_error_handler)
7954 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
7955 input_bfd,
7956 input_section,
7957 (long) rel->r_offset,
7958 howto->name,
7959 h->root.root.string);
7960 return FALSE;
7961 }
7962
7963 if (r != bfd_reloc_ok)
7964 {
7965 switch (r)
7966 {
7967 case bfd_reloc_overflow:
7968 /* If the overflowing reloc was to an undefined symbol,
7969 we have already printed one error message and there
7970 is no point complaining again. */
7971 if ((! h ||
7972 h->root.type != bfd_link_hash_undefined)
7973 && (!((*info->callbacks->reloc_overflow)
7974 (info, (h ? &h->root : NULL), name, howto->name,
7975 (bfd_vma) 0, input_bfd, input_section,
7976 rel->r_offset))))
7977 return FALSE;
7978 break;
7979
7980 case bfd_reloc_undefined:
7981 if (!((*info->callbacks->undefined_symbol)
7982 (info, name, input_bfd, input_section,
7983 rel->r_offset, TRUE)))
7984 return FALSE;
7985 break;
7986
7987 case bfd_reloc_outofrange:
7988 error_message = _("out of range");
7989 goto common_error;
7990
7991 case bfd_reloc_notsupported:
7992 error_message = _("unsupported relocation");
7993 goto common_error;
7994
7995 case bfd_reloc_dangerous:
7996 /* error_message should already be set. */
7997 goto common_error;
7998
7999 default:
8000 error_message = _("unknown error");
8001 /* Fall through. */
8002
8003 common_error:
8004 BFD_ASSERT (error_message != NULL);
8005 if (!((*info->callbacks->reloc_dangerous)
8006 (info, error_message, input_bfd, input_section,
8007 rel->r_offset)))
8008 return FALSE;
8009 break;
8010 }
8011 }
8012 }
8013
8014 return TRUE;
8015 }
8016
8017 /* Set the right machine number. */
8018
8019 static bfd_boolean
8020 elf32_arm_object_p (bfd *abfd)
8021 {
8022 unsigned int mach;
8023
8024 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
8025
8026 if (mach != bfd_mach_arm_unknown)
8027 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8028
8029 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
8030 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
8031
8032 else
8033 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8034
8035 return TRUE;
8036 }
8037
8038 /* Function to keep ARM specific flags in the ELF header. */
8039
8040 static bfd_boolean
8041 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
8042 {
8043 if (elf_flags_init (abfd)
8044 && elf_elfheader (abfd)->e_flags != flags)
8045 {
8046 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8047 {
8048 if (flags & EF_ARM_INTERWORK)
8049 (*_bfd_error_handler)
8050 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8051 abfd);
8052 else
8053 _bfd_error_handler
8054 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8055 abfd);
8056 }
8057 }
8058 else
8059 {
8060 elf_elfheader (abfd)->e_flags = flags;
8061 elf_flags_init (abfd) = TRUE;
8062 }
8063
8064 return TRUE;
8065 }
8066
8067 /* Copy backend specific data from one object module to another. */
8068
8069 static bfd_boolean
8070 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
8071 {
8072 flagword in_flags;
8073 flagword out_flags;
8074
8075 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8076 return TRUE;
8077
8078 in_flags = elf_elfheader (ibfd)->e_flags;
8079 out_flags = elf_elfheader (obfd)->e_flags;
8080
8081 if (elf_flags_init (obfd)
8082 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8083 && in_flags != out_flags)
8084 {
8085 /* Cannot mix APCS26 and APCS32 code. */
8086 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8087 return FALSE;
8088
8089 /* Cannot mix float APCS and non-float APCS code. */
8090 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8091 return FALSE;
8092
8093 /* If the src and dest have different interworking flags
8094 then turn off the interworking bit. */
8095 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8096 {
8097 if (out_flags & EF_ARM_INTERWORK)
8098 _bfd_error_handler
8099 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8100 obfd, ibfd);
8101
8102 in_flags &= ~EF_ARM_INTERWORK;
8103 }
8104
8105 /* Likewise for PIC, though don't warn for this case. */
8106 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8107 in_flags &= ~EF_ARM_PIC;
8108 }
8109
8110 elf_elfheader (obfd)->e_flags = in_flags;
8111 elf_flags_init (obfd) = TRUE;
8112
8113 /* Also copy the EI_OSABI field. */
8114 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8115 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8116
8117 /* Copy object attributes. */
8118 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8119
8120 return TRUE;
8121 }
8122
8123 /* Values for Tag_ABI_PCS_R9_use. */
8124 enum
8125 {
8126 AEABI_R9_V6,
8127 AEABI_R9_SB,
8128 AEABI_R9_TLS,
8129 AEABI_R9_unused
8130 };
8131
8132 /* Values for Tag_ABI_PCS_RW_data. */
8133 enum
8134 {
8135 AEABI_PCS_RW_data_absolute,
8136 AEABI_PCS_RW_data_PCrel,
8137 AEABI_PCS_RW_data_SBrel,
8138 AEABI_PCS_RW_data_unused
8139 };
8140
8141 /* Values for Tag_ABI_enum_size. */
8142 enum
8143 {
8144 AEABI_enum_unused,
8145 AEABI_enum_short,
8146 AEABI_enum_wide,
8147 AEABI_enum_forced_wide
8148 };
8149
8150 /* Determine whether an object attribute tag takes an integer, a
8151 string or both. */
8152
8153 static int
8154 elf32_arm_obj_attrs_arg_type (int tag)
8155 {
8156 if (tag == Tag_compatibility)
8157 return 3;
8158 else if (tag == 4 || tag == 5)
8159 return 2;
8160 else if (tag < 32)
8161 return 1;
8162 else
8163 return (tag & 1) != 0 ? 2 : 1;
8164 }
8165
8166 static void
8167 elf32_arm_copy_one_eabi_other_attribute (bfd *ibfd, bfd *obfd, obj_attribute_list *in_list)
8168 {
8169 switch (in_list->tag)
8170 {
8171 case Tag_VFP_HP_extension:
8172 case Tag_ABI_FP_16bit_format:
8173 bfd_elf_add_obj_attr_int (obfd, OBJ_ATTR_PROC, in_list->tag, in_list->attr.i);
8174 break;
8175
8176 default:
8177 if ((in_list->tag & 127) < 64)
8178 {
8179 _bfd_error_handler
8180 (_("Warning: %B: Unknown EABI object attribute %d"), ibfd, in_list->tag);
8181 break;
8182 }
8183 }
8184 }
8185
8186 static void
8187 elf32_arm_copy_eabi_other_attribute_list (bfd *ibfd, bfd *obfd, obj_attribute_list *in_list)
8188 {
8189 for (; in_list; in_list = in_list->next )
8190 elf32_arm_copy_one_eabi_other_attribute (ibfd, obfd, in_list);
8191 }
8192
8193 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8194 are conflicting attributes. */
8195
8196 static bfd_boolean
8197 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8198 {
8199 obj_attribute *in_attr;
8200 obj_attribute *out_attr;
8201 obj_attribute_list *in_list;
8202 obj_attribute_list *out_list;
8203 /* Some tags have 0 = don't care, 1 = strong requirement,
8204 2 = weak requirement. */
8205 static const int order_312[3] = {3, 1, 2};
8206 /* For use with Tag_VFP_arch. */
8207 static const int order_01243[5] = {0, 1, 2, 4, 3};
8208 int i;
8209
8210 if (!elf_known_obj_attributes_proc (obfd)[0].i)
8211 {
8212 /* This is the first object. Copy the attributes. */
8213 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8214
8215 /* Use the Tag_null value to indicate the attributes have been
8216 initialized. */
8217 elf_known_obj_attributes_proc (obfd)[0].i = 1;
8218
8219 return TRUE;
8220 }
8221
8222 in_attr = elf_known_obj_attributes_proc (ibfd);
8223 out_attr = elf_known_obj_attributes_proc (obfd);
8224 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8225 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8226 {
8227 /* Ignore mismatches if the object doesn't use floating point. */
8228 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8229 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8230 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8231 {
8232 _bfd_error_handler
8233 (_("ERROR: %B uses VFP register arguments, %B does not"),
8234 ibfd, obfd);
8235 return FALSE;
8236 }
8237 }
8238
8239 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
8240 {
8241 /* Merge this attribute with existing attributes. */
8242 switch (i)
8243 {
8244 case Tag_CPU_raw_name:
8245 case Tag_CPU_name:
8246 /* Use whichever has the greatest architecture requirements. We
8247 won't necessarily have both the above tags, so make sure input
8248 name is non-NULL. */
8249 if (in_attr[Tag_CPU_arch].i > out_attr[Tag_CPU_arch].i
8250 && in_attr[i].s)
8251 out_attr[i].s = _bfd_elf_attr_strdup (obfd, in_attr[i].s);
8252 break;
8253
8254 case Tag_ABI_optimization_goals:
8255 case Tag_ABI_FP_optimization_goals:
8256 /* Use the first value seen. */
8257 break;
8258
8259 case Tag_CPU_arch:
8260 case Tag_ARM_ISA_use:
8261 case Tag_THUMB_ISA_use:
8262 case Tag_WMMX_arch:
8263 case Tag_NEON_arch:
8264 /* ??? Do NEON and WMMX conflict? */
8265 case Tag_ABI_FP_rounding:
8266 case Tag_ABI_FP_denormal:
8267 case Tag_ABI_FP_exceptions:
8268 case Tag_ABI_FP_user_exceptions:
8269 case Tag_ABI_FP_number_model:
8270 case Tag_ABI_align8_preserved:
8271 case Tag_ABI_HardFP_use:
8272 /* Use the largest value specified. */
8273 if (in_attr[i].i > out_attr[i].i)
8274 out_attr[i].i = in_attr[i].i;
8275 break;
8276
8277 case Tag_CPU_arch_profile:
8278 /* Warn if conflicting architecture profiles used. */
8279 if (out_attr[i].i && in_attr[i].i && in_attr[i].i != out_attr[i].i)
8280 {
8281 _bfd_error_handler
8282 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8283 ibfd, in_attr[i].i, out_attr[i].i);
8284 return FALSE;
8285 }
8286 if (in_attr[i].i)
8287 out_attr[i].i = in_attr[i].i;
8288 break;
8289 case Tag_VFP_arch:
8290 if (in_attr[i].i > 4 || out_attr[i].i > 4
8291 || order_01243[in_attr[i].i] > order_01243[out_attr[i].i])
8292 out_attr[i].i = in_attr[i].i;
8293 break;
8294 case Tag_PCS_config:
8295 if (out_attr[i].i == 0)
8296 out_attr[i].i = in_attr[i].i;
8297 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8298 {
8299 /* It's sometimes ok to mix different configs, so this is only
8300 a warning. */
8301 _bfd_error_handler
8302 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8303 }
8304 break;
8305 case Tag_ABI_PCS_R9_use:
8306 if (in_attr[i].i != out_attr[i].i
8307 && out_attr[i].i != AEABI_R9_unused
8308 && in_attr[i].i != AEABI_R9_unused)
8309 {
8310 _bfd_error_handler
8311 (_("ERROR: %B: Conflicting use of R9"), ibfd);
8312 return FALSE;
8313 }
8314 if (out_attr[i].i == AEABI_R9_unused)
8315 out_attr[i].i = in_attr[i].i;
8316 break;
8317 case Tag_ABI_PCS_RW_data:
8318 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8319 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8320 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8321 {
8322 _bfd_error_handler
8323 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8324 ibfd);
8325 return FALSE;
8326 }
8327 /* Use the smallest value specified. */
8328 if (in_attr[i].i < out_attr[i].i)
8329 out_attr[i].i = in_attr[i].i;
8330 break;
8331 case Tag_ABI_PCS_RO_data:
8332 /* Use the smallest value specified. */
8333 if (in_attr[i].i < out_attr[i].i)
8334 out_attr[i].i = in_attr[i].i;
8335 break;
8336 case Tag_ABI_PCS_GOT_use:
8337 if (in_attr[i].i > 2 || out_attr[i].i > 2
8338 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8339 out_attr[i].i = in_attr[i].i;
8340 break;
8341 case Tag_ABI_PCS_wchar_t:
8342 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
8343 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
8344 {
8345 _bfd_error_handler
8346 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
8347 ibfd, in_attr[i].i, out_attr[i].i);
8348 }
8349 else if (in_attr[i].i && !out_attr[i].i)
8350 out_attr[i].i = in_attr[i].i;
8351 break;
8352 case Tag_ABI_align8_needed:
8353 /* ??? Check against Tag_ABI_align8_preserved. */
8354 if (in_attr[i].i > 2 || out_attr[i].i > 2
8355 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8356 out_attr[i].i = in_attr[i].i;
8357 break;
8358 case Tag_ABI_enum_size:
8359 if (in_attr[i].i != AEABI_enum_unused)
8360 {
8361 if (out_attr[i].i == AEABI_enum_unused
8362 || out_attr[i].i == AEABI_enum_forced_wide)
8363 {
8364 /* The existing object is compatible with anything.
8365 Use whatever requirements the new object has. */
8366 out_attr[i].i = in_attr[i].i;
8367 }
8368 else if (in_attr[i].i != AEABI_enum_forced_wide
8369 && out_attr[i].i != in_attr[i].i
8370 && !elf_arm_tdata (obfd)->no_enum_size_warning)
8371 {
8372 const char *aeabi_enum_names[] =
8373 { "", "variable-size", "32-bit", "" };
8374 _bfd_error_handler
8375 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8376 ibfd, aeabi_enum_names[in_attr[i].i],
8377 aeabi_enum_names[out_attr[i].i]);
8378 }
8379 }
8380 break;
8381 case Tag_ABI_VFP_args:
8382 /* Aready done. */
8383 break;
8384 case Tag_ABI_WMMX_args:
8385 if (in_attr[i].i != out_attr[i].i)
8386 {
8387 _bfd_error_handler
8388 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8389 ibfd, obfd);
8390 return FALSE;
8391 }
8392 break;
8393
8394 default: /* All known attributes should be explicitly covered. */
8395 abort ();
8396 }
8397
8398 if (in_attr[i].type && !out_attr[i].type)
8399 switch (in_attr[i].type)
8400 {
8401 case 1:
8402 if (out_attr[i].i)
8403 out_attr[i].type = 1;
8404 break;
8405
8406 case 2:
8407 if (out_attr[i].s)
8408 out_attr[i].type = 2;
8409 break;
8410
8411 default:
8412 abort ();
8413 }
8414 }
8415
8416 /* Merge Tag_compatibility attributes and any common GNU ones. */
8417 _bfd_elf_merge_object_attributes (ibfd, obfd);
8418
8419 /* Check for any attributes not known on ARM. */
8420 in_list = elf_other_obj_attributes_proc (ibfd);
8421 while (in_list && in_list->tag == Tag_compatibility)
8422 in_list = in_list->next;
8423
8424 out_list = elf_other_obj_attributes_proc (obfd);
8425 while (out_list && out_list->tag == Tag_compatibility)
8426 out_list = out_list->next;
8427
8428 for (; in_list != NULL; )
8429 {
8430 if (out_list == NULL)
8431 {
8432 elf32_arm_copy_eabi_other_attribute_list (ibfd, obfd, in_list);
8433 return TRUE;
8434 }
8435
8436 /* The tags for each list are in numerical order. */
8437 /* If the tags are equal, then merge. */
8438 if (in_list->tag == out_list->tag)
8439 {
8440 switch (in_list->tag)
8441 {
8442 case Tag_VFP_HP_extension:
8443 if (out_list->attr.i == 0)
8444 out_list->attr.i = in_list->attr.i;
8445 break;
8446
8447 case Tag_ABI_FP_16bit_format:
8448 if (in_list->attr.i != 0 && out_list->attr.i != 0)
8449 {
8450 if (in_list->attr.i != out_list->attr.i)
8451 {
8452 _bfd_error_handler
8453 (_("ERROR: fp16 format mismatch between %B and %B"),
8454 ibfd, obfd);
8455 return FALSE;
8456 }
8457 }
8458 if (in_list->attr.i != 0)
8459 out_list->attr.i = in_list->attr.i;
8460 break;
8461
8462 default:
8463 if ((in_list->tag & 127) < 64)
8464 {
8465 _bfd_error_handler
8466 (_("Warning: %B: Unknown EABI object attribute %d"), ibfd, in_list->tag);
8467 break;
8468 }
8469 }
8470 }
8471 else if (in_list->tag < out_list->tag)
8472 {
8473 /* This attribute is in ibfd, but not obfd. Copy to obfd and advance to
8474 next input attribute. */
8475 elf32_arm_copy_one_eabi_other_attribute (ibfd, obfd, in_list);
8476 }
8477 if (in_list->tag <= out_list->tag)
8478 {
8479 in_list = in_list->next;
8480 if (in_list == NULL)
8481 continue;
8482 }
8483 while (out_list && out_list->tag < in_list->tag)
8484 out_list = out_list->next;
8485 }
8486 return TRUE;
8487 }
8488
8489
8490 /* Return TRUE if the two EABI versions are incompatible. */
8491
8492 static bfd_boolean
8493 elf32_arm_versions_compatible (unsigned iver, unsigned over)
8494 {
8495 /* v4 and v5 are the same spec before and after it was released,
8496 so allow mixing them. */
8497 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
8498 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
8499 return TRUE;
8500
8501 return (iver == over);
8502 }
8503
8504 /* Merge backend specific data from an object file to the output
8505 object file when linking. */
8506
8507 static bfd_boolean
8508 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
8509 {
8510 flagword out_flags;
8511 flagword in_flags;
8512 bfd_boolean flags_compatible = TRUE;
8513 asection *sec;
8514
8515 /* Check if we have the same endianess. */
8516 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8517 return FALSE;
8518
8519 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8520 return TRUE;
8521
8522 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
8523 return FALSE;
8524
8525 /* The input BFD must have had its flags initialised. */
8526 /* The following seems bogus to me -- The flags are initialized in
8527 the assembler but I don't think an elf_flags_init field is
8528 written into the object. */
8529 /* BFD_ASSERT (elf_flags_init (ibfd)); */
8530
8531 in_flags = elf_elfheader (ibfd)->e_flags;
8532 out_flags = elf_elfheader (obfd)->e_flags;
8533
8534 /* In theory there is no reason why we couldn't handle this. However
8535 in practice it isn't even close to working and there is no real
8536 reason to want it. */
8537 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
8538 && !(ibfd->flags & DYNAMIC)
8539 && (in_flags & EF_ARM_BE8))
8540 {
8541 _bfd_error_handler (_("ERROR: %B is already in final BE8 format"),
8542 ibfd);
8543 return FALSE;
8544 }
8545
8546 if (!elf_flags_init (obfd))
8547 {
8548 /* If the input is the default architecture and had the default
8549 flags then do not bother setting the flags for the output
8550 architecture, instead allow future merges to do this. If no
8551 future merges ever set these flags then they will retain their
8552 uninitialised values, which surprise surprise, correspond
8553 to the default values. */
8554 if (bfd_get_arch_info (ibfd)->the_default
8555 && elf_elfheader (ibfd)->e_flags == 0)
8556 return TRUE;
8557
8558 elf_flags_init (obfd) = TRUE;
8559 elf_elfheader (obfd)->e_flags = in_flags;
8560
8561 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8562 && bfd_get_arch_info (obfd)->the_default)
8563 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
8564
8565 return TRUE;
8566 }
8567
8568 /* Determine what should happen if the input ARM architecture
8569 does not match the output ARM architecture. */
8570 if (! bfd_arm_merge_machines (ibfd, obfd))
8571 return FALSE;
8572
8573 /* Identical flags must be compatible. */
8574 if (in_flags == out_flags)
8575 return TRUE;
8576
8577 /* Check to see if the input BFD actually contains any sections. If
8578 not, its flags may not have been initialised either, but it
8579 cannot actually cause any incompatiblity. Do not short-circuit
8580 dynamic objects; their section list may be emptied by
8581 elf_link_add_object_symbols.
8582
8583 Also check to see if there are no code sections in the input.
8584 In this case there is no need to check for code specific flags.
8585 XXX - do we need to worry about floating-point format compatability
8586 in data sections ? */
8587 if (!(ibfd->flags & DYNAMIC))
8588 {
8589 bfd_boolean null_input_bfd = TRUE;
8590 bfd_boolean only_data_sections = TRUE;
8591
8592 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8593 {
8594 /* Ignore synthetic glue sections. */
8595 if (strcmp (sec->name, ".glue_7")
8596 && strcmp (sec->name, ".glue_7t"))
8597 {
8598 if ((bfd_get_section_flags (ibfd, sec)
8599 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8600 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8601 only_data_sections = FALSE;
8602
8603 null_input_bfd = FALSE;
8604 break;
8605 }
8606 }
8607
8608 if (null_input_bfd || only_data_sections)
8609 return TRUE;
8610 }
8611
8612 /* Complain about various flag mismatches. */
8613 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
8614 EF_ARM_EABI_VERSION (out_flags)))
8615 {
8616 _bfd_error_handler
8617 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
8618 ibfd, obfd,
8619 (in_flags & EF_ARM_EABIMASK) >> 24,
8620 (out_flags & EF_ARM_EABIMASK) >> 24);
8621 return FALSE;
8622 }
8623
8624 /* Not sure what needs to be checked for EABI versions >= 1. */
8625 /* VxWorks libraries do not use these flags. */
8626 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
8627 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
8628 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
8629 {
8630 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8631 {
8632 _bfd_error_handler
8633 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
8634 ibfd, obfd,
8635 in_flags & EF_ARM_APCS_26 ? 26 : 32,
8636 out_flags & EF_ARM_APCS_26 ? 26 : 32);
8637 flags_compatible = FALSE;
8638 }
8639
8640 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8641 {
8642 if (in_flags & EF_ARM_APCS_FLOAT)
8643 _bfd_error_handler
8644 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
8645 ibfd, obfd);
8646 else
8647 _bfd_error_handler
8648 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
8649 ibfd, obfd);
8650
8651 flags_compatible = FALSE;
8652 }
8653
8654 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
8655 {
8656 if (in_flags & EF_ARM_VFP_FLOAT)
8657 _bfd_error_handler
8658 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
8659 ibfd, obfd);
8660 else
8661 _bfd_error_handler
8662 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
8663 ibfd, obfd);
8664
8665 flags_compatible = FALSE;
8666 }
8667
8668 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
8669 {
8670 if (in_flags & EF_ARM_MAVERICK_FLOAT)
8671 _bfd_error_handler
8672 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
8673 ibfd, obfd);
8674 else
8675 _bfd_error_handler
8676 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
8677 ibfd, obfd);
8678
8679 flags_compatible = FALSE;
8680 }
8681
8682 #ifdef EF_ARM_SOFT_FLOAT
8683 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
8684 {
8685 /* We can allow interworking between code that is VFP format
8686 layout, and uses either soft float or integer regs for
8687 passing floating point arguments and results. We already
8688 know that the APCS_FLOAT flags match; similarly for VFP
8689 flags. */
8690 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
8691 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
8692 {
8693 if (in_flags & EF_ARM_SOFT_FLOAT)
8694 _bfd_error_handler
8695 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
8696 ibfd, obfd);
8697 else
8698 _bfd_error_handler
8699 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
8700 ibfd, obfd);
8701
8702 flags_compatible = FALSE;
8703 }
8704 }
8705 #endif
8706
8707 /* Interworking mismatch is only a warning. */
8708 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8709 {
8710 if (in_flags & EF_ARM_INTERWORK)
8711 {
8712 _bfd_error_handler
8713 (_("Warning: %B supports interworking, whereas %B does not"),
8714 ibfd, obfd);
8715 }
8716 else
8717 {
8718 _bfd_error_handler
8719 (_("Warning: %B does not support interworking, whereas %B does"),
8720 ibfd, obfd);
8721 }
8722 }
8723 }
8724
8725 return flags_compatible;
8726 }
8727
8728 /* Display the flags field. */
8729
8730 static bfd_boolean
8731 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
8732 {
8733 FILE * file = (FILE *) ptr;
8734 unsigned long flags;
8735
8736 BFD_ASSERT (abfd != NULL && ptr != NULL);
8737
8738 /* Print normal ELF private data. */
8739 _bfd_elf_print_private_bfd_data (abfd, ptr);
8740
8741 flags = elf_elfheader (abfd)->e_flags;
8742 /* Ignore init flag - it may not be set, despite the flags field
8743 containing valid data. */
8744
8745 /* xgettext:c-format */
8746 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
8747
8748 switch (EF_ARM_EABI_VERSION (flags))
8749 {
8750 case EF_ARM_EABI_UNKNOWN:
8751 /* The following flag bits are GNU extensions and not part of the
8752 official ARM ELF extended ABI. Hence they are only decoded if
8753 the EABI version is not set. */
8754 if (flags & EF_ARM_INTERWORK)
8755 fprintf (file, _(" [interworking enabled]"));
8756
8757 if (flags & EF_ARM_APCS_26)
8758 fprintf (file, " [APCS-26]");
8759 else
8760 fprintf (file, " [APCS-32]");
8761
8762 if (flags & EF_ARM_VFP_FLOAT)
8763 fprintf (file, _(" [VFP float format]"));
8764 else if (flags & EF_ARM_MAVERICK_FLOAT)
8765 fprintf (file, _(" [Maverick float format]"));
8766 else
8767 fprintf (file, _(" [FPA float format]"));
8768
8769 if (flags & EF_ARM_APCS_FLOAT)
8770 fprintf (file, _(" [floats passed in float registers]"));
8771
8772 if (flags & EF_ARM_PIC)
8773 fprintf (file, _(" [position independent]"));
8774
8775 if (flags & EF_ARM_NEW_ABI)
8776 fprintf (file, _(" [new ABI]"));
8777
8778 if (flags & EF_ARM_OLD_ABI)
8779 fprintf (file, _(" [old ABI]"));
8780
8781 if (flags & EF_ARM_SOFT_FLOAT)
8782 fprintf (file, _(" [software FP]"));
8783
8784 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
8785 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
8786 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
8787 | EF_ARM_MAVERICK_FLOAT);
8788 break;
8789
8790 case EF_ARM_EABI_VER1:
8791 fprintf (file, _(" [Version1 EABI]"));
8792
8793 if (flags & EF_ARM_SYMSARESORTED)
8794 fprintf (file, _(" [sorted symbol table]"));
8795 else
8796 fprintf (file, _(" [unsorted symbol table]"));
8797
8798 flags &= ~ EF_ARM_SYMSARESORTED;
8799 break;
8800
8801 case EF_ARM_EABI_VER2:
8802 fprintf (file, _(" [Version2 EABI]"));
8803
8804 if (flags & EF_ARM_SYMSARESORTED)
8805 fprintf (file, _(" [sorted symbol table]"));
8806 else
8807 fprintf (file, _(" [unsorted symbol table]"));
8808
8809 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
8810 fprintf (file, _(" [dynamic symbols use segment index]"));
8811
8812 if (flags & EF_ARM_MAPSYMSFIRST)
8813 fprintf (file, _(" [mapping symbols precede others]"));
8814
8815 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
8816 | EF_ARM_MAPSYMSFIRST);
8817 break;
8818
8819 case EF_ARM_EABI_VER3:
8820 fprintf (file, _(" [Version3 EABI]"));
8821 break;
8822
8823 case EF_ARM_EABI_VER4:
8824 fprintf (file, _(" [Version4 EABI]"));
8825 goto eabi;
8826
8827 case EF_ARM_EABI_VER5:
8828 fprintf (file, _(" [Version5 EABI]"));
8829 eabi:
8830 if (flags & EF_ARM_BE8)
8831 fprintf (file, _(" [BE8]"));
8832
8833 if (flags & EF_ARM_LE8)
8834 fprintf (file, _(" [LE8]"));
8835
8836 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
8837 break;
8838
8839 default:
8840 fprintf (file, _(" <EABI version unrecognised>"));
8841 break;
8842 }
8843
8844 flags &= ~ EF_ARM_EABIMASK;
8845
8846 if (flags & EF_ARM_RELEXEC)
8847 fprintf (file, _(" [relocatable executable]"));
8848
8849 if (flags & EF_ARM_HASENTRY)
8850 fprintf (file, _(" [has entry point]"));
8851
8852 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
8853
8854 if (flags)
8855 fprintf (file, _("<Unrecognised flag bits set>"));
8856
8857 fputc ('\n', file);
8858
8859 return TRUE;
8860 }
8861
8862 static int
8863 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
8864 {
8865 switch (ELF_ST_TYPE (elf_sym->st_info))
8866 {
8867 case STT_ARM_TFUNC:
8868 return ELF_ST_TYPE (elf_sym->st_info);
8869
8870 case STT_ARM_16BIT:
8871 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
8872 This allows us to distinguish between data used by Thumb instructions
8873 and non-data (which is probably code) inside Thumb regions of an
8874 executable. */
8875 if (type != STT_OBJECT && type != STT_TLS)
8876 return ELF_ST_TYPE (elf_sym->st_info);
8877 break;
8878
8879 default:
8880 break;
8881 }
8882
8883 return type;
8884 }
8885
8886 static asection *
8887 elf32_arm_gc_mark_hook (asection *sec,
8888 struct bfd_link_info *info,
8889 Elf_Internal_Rela *rel,
8890 struct elf_link_hash_entry *h,
8891 Elf_Internal_Sym *sym)
8892 {
8893 if (h != NULL)
8894 switch (ELF32_R_TYPE (rel->r_info))
8895 {
8896 case R_ARM_GNU_VTINHERIT:
8897 case R_ARM_GNU_VTENTRY:
8898 return NULL;
8899 }
8900
8901 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
8902 }
8903
8904 /* Update the got entry reference counts for the section being removed. */
8905
8906 static bfd_boolean
8907 elf32_arm_gc_sweep_hook (bfd * abfd,
8908 struct bfd_link_info * info,
8909 asection * sec,
8910 const Elf_Internal_Rela * relocs)
8911 {
8912 Elf_Internal_Shdr *symtab_hdr;
8913 struct elf_link_hash_entry **sym_hashes;
8914 bfd_signed_vma *local_got_refcounts;
8915 const Elf_Internal_Rela *rel, *relend;
8916 struct elf32_arm_link_hash_table * globals;
8917
8918 if (info->relocatable)
8919 return TRUE;
8920
8921 globals = elf32_arm_hash_table (info);
8922
8923 elf_section_data (sec)->local_dynrel = NULL;
8924
8925 symtab_hdr = & elf_symtab_hdr (abfd);
8926 sym_hashes = elf_sym_hashes (abfd);
8927 local_got_refcounts = elf_local_got_refcounts (abfd);
8928
8929 check_use_blx (globals);
8930
8931 relend = relocs + sec->reloc_count;
8932 for (rel = relocs; rel < relend; rel++)
8933 {
8934 unsigned long r_symndx;
8935 struct elf_link_hash_entry *h = NULL;
8936 int r_type;
8937
8938 r_symndx = ELF32_R_SYM (rel->r_info);
8939 if (r_symndx >= symtab_hdr->sh_info)
8940 {
8941 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8942 while (h->root.type == bfd_link_hash_indirect
8943 || h->root.type == bfd_link_hash_warning)
8944 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8945 }
8946
8947 r_type = ELF32_R_TYPE (rel->r_info);
8948 r_type = arm_real_reloc_type (globals, r_type);
8949 switch (r_type)
8950 {
8951 case R_ARM_GOT32:
8952 case R_ARM_GOT_PREL:
8953 case R_ARM_TLS_GD32:
8954 case R_ARM_TLS_IE32:
8955 if (h != NULL)
8956 {
8957 if (h->got.refcount > 0)
8958 h->got.refcount -= 1;
8959 }
8960 else if (local_got_refcounts != NULL)
8961 {
8962 if (local_got_refcounts[r_symndx] > 0)
8963 local_got_refcounts[r_symndx] -= 1;
8964 }
8965 break;
8966
8967 case R_ARM_TLS_LDM32:
8968 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
8969 break;
8970
8971 case R_ARM_ABS32:
8972 case R_ARM_ABS32_NOI:
8973 case R_ARM_REL32:
8974 case R_ARM_REL32_NOI:
8975 case R_ARM_PC24:
8976 case R_ARM_PLT32:
8977 case R_ARM_CALL:
8978 case R_ARM_JUMP24:
8979 case R_ARM_PREL31:
8980 case R_ARM_THM_CALL:
8981 case R_ARM_THM_JUMP24:
8982 case R_ARM_THM_JUMP19:
8983 case R_ARM_MOVW_ABS_NC:
8984 case R_ARM_MOVT_ABS:
8985 case R_ARM_MOVW_PREL_NC:
8986 case R_ARM_MOVT_PREL:
8987 case R_ARM_THM_MOVW_ABS_NC:
8988 case R_ARM_THM_MOVT_ABS:
8989 case R_ARM_THM_MOVW_PREL_NC:
8990 case R_ARM_THM_MOVT_PREL:
8991 /* Should the interworking branches be here also? */
8992
8993 if (h != NULL)
8994 {
8995 struct elf32_arm_link_hash_entry *eh;
8996 struct elf32_arm_relocs_copied **pp;
8997 struct elf32_arm_relocs_copied *p;
8998
8999 eh = (struct elf32_arm_link_hash_entry *) h;
9000
9001 if (h->plt.refcount > 0)
9002 {
9003 h->plt.refcount -= 1;
9004 if (r_type == R_ARM_THM_CALL)
9005 eh->plt_maybe_thumb_refcount--;
9006
9007 if (r_type == R_ARM_THM_JUMP24
9008 || r_type == R_ARM_THM_JUMP19)
9009 eh->plt_thumb_refcount--;
9010 }
9011
9012 if (r_type == R_ARM_ABS32
9013 || r_type == R_ARM_REL32
9014 || r_type == R_ARM_ABS32_NOI
9015 || r_type == R_ARM_REL32_NOI)
9016 {
9017 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
9018 pp = &p->next)
9019 if (p->section == sec)
9020 {
9021 p->count -= 1;
9022 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
9023 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
9024 p->pc_count -= 1;
9025 if (p->count == 0)
9026 *pp = p->next;
9027 break;
9028 }
9029 }
9030 }
9031 break;
9032
9033 default:
9034 break;
9035 }
9036 }
9037
9038 return TRUE;
9039 }
9040
9041 /* Look through the relocs for a section during the first phase. */
9042
9043 static bfd_boolean
9044 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
9045 asection *sec, const Elf_Internal_Rela *relocs)
9046 {
9047 Elf_Internal_Shdr *symtab_hdr;
9048 struct elf_link_hash_entry **sym_hashes;
9049 const Elf_Internal_Rela *rel;
9050 const Elf_Internal_Rela *rel_end;
9051 bfd *dynobj;
9052 asection *sreloc;
9053 bfd_vma *local_got_offsets;
9054 struct elf32_arm_link_hash_table *htab;
9055 bfd_boolean needs_plt;
9056
9057 if (info->relocatable)
9058 return TRUE;
9059
9060 BFD_ASSERT (is_arm_elf (abfd));
9061
9062 htab = elf32_arm_hash_table (info);
9063 sreloc = NULL;
9064
9065 /* Create dynamic sections for relocatable executables so that we can
9066 copy relocations. */
9067 if (htab->root.is_relocatable_executable
9068 && ! htab->root.dynamic_sections_created)
9069 {
9070 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
9071 return FALSE;
9072 }
9073
9074 dynobj = elf_hash_table (info)->dynobj;
9075 local_got_offsets = elf_local_got_offsets (abfd);
9076
9077 symtab_hdr = & elf_symtab_hdr (abfd);
9078 sym_hashes = elf_sym_hashes (abfd);
9079
9080 rel_end = relocs + sec->reloc_count;
9081 for (rel = relocs; rel < rel_end; rel++)
9082 {
9083 struct elf_link_hash_entry *h;
9084 struct elf32_arm_link_hash_entry *eh;
9085 unsigned long r_symndx;
9086 int r_type;
9087
9088 r_symndx = ELF32_R_SYM (rel->r_info);
9089 r_type = ELF32_R_TYPE (rel->r_info);
9090 r_type = arm_real_reloc_type (htab, r_type);
9091
9092 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
9093 {
9094 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
9095 r_symndx);
9096 return FALSE;
9097 }
9098
9099 if (r_symndx < symtab_hdr->sh_info)
9100 h = NULL;
9101 else
9102 {
9103 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9104 while (h->root.type == bfd_link_hash_indirect
9105 || h->root.type == bfd_link_hash_warning)
9106 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9107 }
9108
9109 eh = (struct elf32_arm_link_hash_entry *) h;
9110
9111 switch (r_type)
9112 {
9113 case R_ARM_GOT32:
9114 case R_ARM_GOT_PREL:
9115 case R_ARM_TLS_GD32:
9116 case R_ARM_TLS_IE32:
9117 /* This symbol requires a global offset table entry. */
9118 {
9119 int tls_type, old_tls_type;
9120
9121 switch (r_type)
9122 {
9123 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
9124 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
9125 default: tls_type = GOT_NORMAL; break;
9126 }
9127
9128 if (h != NULL)
9129 {
9130 h->got.refcount++;
9131 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9132 }
9133 else
9134 {
9135 bfd_signed_vma *local_got_refcounts;
9136
9137 /* This is a global offset table entry for a local symbol. */
9138 local_got_refcounts = elf_local_got_refcounts (abfd);
9139 if (local_got_refcounts == NULL)
9140 {
9141 bfd_size_type size;
9142
9143 size = symtab_hdr->sh_info;
9144 size *= (sizeof (bfd_signed_vma) + sizeof (char));
9145 local_got_refcounts = bfd_zalloc (abfd, size);
9146 if (local_got_refcounts == NULL)
9147 return FALSE;
9148 elf_local_got_refcounts (abfd) = local_got_refcounts;
9149 elf32_arm_local_got_tls_type (abfd)
9150 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
9151 }
9152 local_got_refcounts[r_symndx] += 1;
9153 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
9154 }
9155
9156 /* We will already have issued an error message if there is a
9157 TLS / non-TLS mismatch, based on the symbol type. We don't
9158 support any linker relaxations. So just combine any TLS
9159 types needed. */
9160 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
9161 && tls_type != GOT_NORMAL)
9162 tls_type |= old_tls_type;
9163
9164 if (old_tls_type != tls_type)
9165 {
9166 if (h != NULL)
9167 elf32_arm_hash_entry (h)->tls_type = tls_type;
9168 else
9169 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9170 }
9171 }
9172 /* Fall through. */
9173
9174 case R_ARM_TLS_LDM32:
9175 if (r_type == R_ARM_TLS_LDM32)
9176 htab->tls_ldm_got.refcount++;
9177 /* Fall through. */
9178
9179 case R_ARM_GOTOFF32:
9180 case R_ARM_GOTPC:
9181 if (htab->sgot == NULL)
9182 {
9183 if (htab->root.dynobj == NULL)
9184 htab->root.dynobj = abfd;
9185 if (!create_got_section (htab->root.dynobj, info))
9186 return FALSE;
9187 }
9188 break;
9189
9190 case R_ARM_ABS12:
9191 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9192 ldr __GOTT_INDEX__ offsets. */
9193 if (!htab->vxworks_p)
9194 break;
9195 /* Fall through. */
9196
9197 case R_ARM_PC24:
9198 case R_ARM_PLT32:
9199 case R_ARM_CALL:
9200 case R_ARM_JUMP24:
9201 case R_ARM_PREL31:
9202 case R_ARM_THM_CALL:
9203 case R_ARM_THM_JUMP24:
9204 case R_ARM_THM_JUMP19:
9205 needs_plt = 1;
9206 goto normal_reloc;
9207
9208 case R_ARM_ABS32:
9209 case R_ARM_ABS32_NOI:
9210 case R_ARM_REL32:
9211 case R_ARM_REL32_NOI:
9212 case R_ARM_MOVW_ABS_NC:
9213 case R_ARM_MOVT_ABS:
9214 case R_ARM_MOVW_PREL_NC:
9215 case R_ARM_MOVT_PREL:
9216 case R_ARM_THM_MOVW_ABS_NC:
9217 case R_ARM_THM_MOVT_ABS:
9218 case R_ARM_THM_MOVW_PREL_NC:
9219 case R_ARM_THM_MOVT_PREL:
9220 needs_plt = 0;
9221 normal_reloc:
9222
9223 /* Should the interworking branches be listed here? */
9224 if (h != NULL)
9225 {
9226 /* If this reloc is in a read-only section, we might
9227 need a copy reloc. We can't check reliably at this
9228 stage whether the section is read-only, as input
9229 sections have not yet been mapped to output sections.
9230 Tentatively set the flag for now, and correct in
9231 adjust_dynamic_symbol. */
9232 if (!info->shared)
9233 h->non_got_ref = 1;
9234
9235 /* We may need a .plt entry if the function this reloc
9236 refers to is in a different object. We can't tell for
9237 sure yet, because something later might force the
9238 symbol local. */
9239 if (needs_plt)
9240 h->needs_plt = 1;
9241
9242 /* If we create a PLT entry, this relocation will reference
9243 it, even if it's an ABS32 relocation. */
9244 h->plt.refcount += 1;
9245
9246 /* It's too early to use htab->use_blx here, so we have to
9247 record possible blx references separately from
9248 relocs that definitely need a thumb stub. */
9249
9250 if (r_type == R_ARM_THM_CALL)
9251 eh->plt_maybe_thumb_refcount += 1;
9252
9253 if (r_type == R_ARM_THM_JUMP24
9254 || r_type == R_ARM_THM_JUMP19)
9255 eh->plt_thumb_refcount += 1;
9256 }
9257
9258 /* If we are creating a shared library or relocatable executable,
9259 and this is a reloc against a global symbol, or a non PC
9260 relative reloc against a local symbol, then we need to copy
9261 the reloc into the shared library. However, if we are linking
9262 with -Bsymbolic, we do not need to copy a reloc against a
9263 global symbol which is defined in an object we are
9264 including in the link (i.e., DEF_REGULAR is set). At
9265 this point we have not seen all the input files, so it is
9266 possible that DEF_REGULAR is not set now but will be set
9267 later (it is never cleared). We account for that
9268 possibility below by storing information in the
9269 relocs_copied field of the hash table entry. */
9270 if ((info->shared || htab->root.is_relocatable_executable)
9271 && (sec->flags & SEC_ALLOC) != 0
9272 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
9273 || (h != NULL && ! h->needs_plt
9274 && (! info->symbolic || ! h->def_regular))))
9275 {
9276 struct elf32_arm_relocs_copied *p, **head;
9277
9278 /* When creating a shared object, we must copy these
9279 reloc types into the output file. We create a reloc
9280 section in dynobj and make room for this reloc. */
9281 if (sreloc == NULL)
9282 {
9283 const char * name;
9284
9285 name = (bfd_elf_string_from_elf_section
9286 (abfd,
9287 elf_elfheader (abfd)->e_shstrndx,
9288 elf_section_data (sec)->rel_hdr.sh_name));
9289 if (name == NULL)
9290 return FALSE;
9291
9292 BFD_ASSERT (reloc_section_p (htab, name, sec));
9293
9294 sreloc = bfd_get_section_by_name (dynobj, name);
9295 if (sreloc == NULL)
9296 {
9297 flagword flags;
9298
9299 flags = (SEC_HAS_CONTENTS | SEC_READONLY
9300 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
9301 if ((sec->flags & SEC_ALLOC) != 0
9302 /* BPABI objects never have dynamic
9303 relocations mapped. */
9304 && !htab->symbian_p)
9305 flags |= SEC_ALLOC | SEC_LOAD;
9306 sreloc = bfd_make_section_with_flags (dynobj,
9307 name,
9308 flags);
9309 if (sreloc == NULL
9310 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
9311 return FALSE;
9312 }
9313
9314 elf_section_data (sec)->sreloc = sreloc;
9315 }
9316
9317 /* If this is a global symbol, we count the number of
9318 relocations we need for this symbol. */
9319 if (h != NULL)
9320 {
9321 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9322 }
9323 else
9324 {
9325 /* Track dynamic relocs needed for local syms too.
9326 We really need local syms available to do this
9327 easily. Oh well. */
9328
9329 asection *s;
9330 void *vpp;
9331
9332 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9333 sec, r_symndx);
9334 if (s == NULL)
9335 return FALSE;
9336
9337 vpp = &elf_section_data (s)->local_dynrel;
9338 head = (struct elf32_arm_relocs_copied **) vpp;
9339 }
9340
9341 p = *head;
9342 if (p == NULL || p->section != sec)
9343 {
9344 bfd_size_type amt = sizeof *p;
9345
9346 p = bfd_alloc (htab->root.dynobj, amt);
9347 if (p == NULL)
9348 return FALSE;
9349 p->next = *head;
9350 *head = p;
9351 p->section = sec;
9352 p->count = 0;
9353 p->pc_count = 0;
9354 }
9355
9356 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9357 p->pc_count += 1;
9358 p->count += 1;
9359 }
9360 break;
9361
9362 /* This relocation describes the C++ object vtable hierarchy.
9363 Reconstruct it for later use during GC. */
9364 case R_ARM_GNU_VTINHERIT:
9365 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9366 return FALSE;
9367 break;
9368
9369 /* This relocation describes which C++ vtable entries are actually
9370 used. Record for later use during GC. */
9371 case R_ARM_GNU_VTENTRY:
9372 BFD_ASSERT (h != NULL);
9373 if (h != NULL
9374 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9375 return FALSE;
9376 break;
9377 }
9378 }
9379
9380 return TRUE;
9381 }
9382
9383 /* Unwinding tables are not referenced directly. This pass marks them as
9384 required if the corresponding code section is marked. */
9385
9386 static bfd_boolean
9387 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9388 elf_gc_mark_hook_fn gc_mark_hook)
9389 {
9390 bfd *sub;
9391 Elf_Internal_Shdr **elf_shdrp;
9392 bfd_boolean again;
9393
9394 /* Marking EH data may cause additional code sections to be marked,
9395 requiring multiple passes. */
9396 again = TRUE;
9397 while (again)
9398 {
9399 again = FALSE;
9400 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9401 {
9402 asection *o;
9403
9404 if (! is_arm_elf (sub))
9405 continue;
9406
9407 elf_shdrp = elf_elfsections (sub);
9408 for (o = sub->sections; o != NULL; o = o->next)
9409 {
9410 Elf_Internal_Shdr *hdr;
9411
9412 hdr = &elf_section_data (o)->this_hdr;
9413 if (hdr->sh_type == SHT_ARM_EXIDX
9414 && hdr->sh_link
9415 && hdr->sh_link < elf_numsections (sub)
9416 && !o->gc_mark
9417 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9418 {
9419 again = TRUE;
9420 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9421 return FALSE;
9422 }
9423 }
9424 }
9425 }
9426
9427 return TRUE;
9428 }
9429
9430 /* Treat mapping symbols as special target symbols. */
9431
9432 static bfd_boolean
9433 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
9434 {
9435 return bfd_is_arm_special_symbol_name (sym->name,
9436 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
9437 }
9438
9439 /* This is a copy of elf_find_function() from elf.c except that
9440 ARM mapping symbols are ignored when looking for function names
9441 and STT_ARM_TFUNC is considered to a function type. */
9442
9443 static bfd_boolean
9444 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
9445 asection * section,
9446 asymbol ** symbols,
9447 bfd_vma offset,
9448 const char ** filename_ptr,
9449 const char ** functionname_ptr)
9450 {
9451 const char * filename = NULL;
9452 asymbol * func = NULL;
9453 bfd_vma low_func = 0;
9454 asymbol ** p;
9455
9456 for (p = symbols; *p != NULL; p++)
9457 {
9458 elf_symbol_type *q;
9459
9460 q = (elf_symbol_type *) *p;
9461
9462 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
9463 {
9464 default:
9465 break;
9466 case STT_FILE:
9467 filename = bfd_asymbol_name (&q->symbol);
9468 break;
9469 case STT_FUNC:
9470 case STT_ARM_TFUNC:
9471 case STT_NOTYPE:
9472 /* Skip mapping symbols. */
9473 if ((q->symbol.flags & BSF_LOCAL)
9474 && bfd_is_arm_special_symbol_name (q->symbol.name,
9475 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
9476 continue;
9477 /* Fall through. */
9478 if (bfd_get_section (&q->symbol) == section
9479 && q->symbol.value >= low_func
9480 && q->symbol.value <= offset)
9481 {
9482 func = (asymbol *) q;
9483 low_func = q->symbol.value;
9484 }
9485 break;
9486 }
9487 }
9488
9489 if (func == NULL)
9490 return FALSE;
9491
9492 if (filename_ptr)
9493 *filename_ptr = filename;
9494 if (functionname_ptr)
9495 *functionname_ptr = bfd_asymbol_name (func);
9496
9497 return TRUE;
9498 }
9499
9500
9501 /* Find the nearest line to a particular section and offset, for error
9502 reporting. This code is a duplicate of the code in elf.c, except
9503 that it uses arm_elf_find_function. */
9504
9505 static bfd_boolean
9506 elf32_arm_find_nearest_line (bfd * abfd,
9507 asection * section,
9508 asymbol ** symbols,
9509 bfd_vma offset,
9510 const char ** filename_ptr,
9511 const char ** functionname_ptr,
9512 unsigned int * line_ptr)
9513 {
9514 bfd_boolean found = FALSE;
9515
9516 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
9517
9518 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9519 filename_ptr, functionname_ptr,
9520 line_ptr, 0,
9521 & elf_tdata (abfd)->dwarf2_find_line_info))
9522 {
9523 if (!*functionname_ptr)
9524 arm_elf_find_function (abfd, section, symbols, offset,
9525 *filename_ptr ? NULL : filename_ptr,
9526 functionname_ptr);
9527
9528 return TRUE;
9529 }
9530
9531 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9532 & found, filename_ptr,
9533 functionname_ptr, line_ptr,
9534 & elf_tdata (abfd)->line_info))
9535 return FALSE;
9536
9537 if (found && (*functionname_ptr || *line_ptr))
9538 return TRUE;
9539
9540 if (symbols == NULL)
9541 return FALSE;
9542
9543 if (! arm_elf_find_function (abfd, section, symbols, offset,
9544 filename_ptr, functionname_ptr))
9545 return FALSE;
9546
9547 *line_ptr = 0;
9548 return TRUE;
9549 }
9550
9551 static bfd_boolean
9552 elf32_arm_find_inliner_info (bfd * abfd,
9553 const char ** filename_ptr,
9554 const char ** functionname_ptr,
9555 unsigned int * line_ptr)
9556 {
9557 bfd_boolean found;
9558 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9559 functionname_ptr, line_ptr,
9560 & elf_tdata (abfd)->dwarf2_find_line_info);
9561 return found;
9562 }
9563
9564 /* Adjust a symbol defined by a dynamic object and referenced by a
9565 regular object. The current definition is in some section of the
9566 dynamic object, but we're not including those sections. We have to
9567 change the definition to something the rest of the link can
9568 understand. */
9569
9570 static bfd_boolean
9571 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
9572 struct elf_link_hash_entry * h)
9573 {
9574 bfd * dynobj;
9575 asection * s;
9576 struct elf32_arm_link_hash_entry * eh;
9577 struct elf32_arm_link_hash_table *globals;
9578
9579 globals = elf32_arm_hash_table (info);
9580 dynobj = elf_hash_table (info)->dynobj;
9581
9582 /* Make sure we know what is going on here. */
9583 BFD_ASSERT (dynobj != NULL
9584 && (h->needs_plt
9585 || h->u.weakdef != NULL
9586 || (h->def_dynamic
9587 && h->ref_regular
9588 && !h->def_regular)));
9589
9590 eh = (struct elf32_arm_link_hash_entry *) h;
9591
9592 /* If this is a function, put it in the procedure linkage table. We
9593 will fill in the contents of the procedure linkage table later,
9594 when we know the address of the .got section. */
9595 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
9596 || h->needs_plt)
9597 {
9598 if (h->plt.refcount <= 0
9599 || SYMBOL_CALLS_LOCAL (info, h)
9600 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9601 && h->root.type == bfd_link_hash_undefweak))
9602 {
9603 /* This case can occur if we saw a PLT32 reloc in an input
9604 file, but the symbol was never referred to by a dynamic
9605 object, or if all references were garbage collected. In
9606 such a case, we don't actually need to build a procedure
9607 linkage table, and we can just do a PC24 reloc instead. */
9608 h->plt.offset = (bfd_vma) -1;
9609 eh->plt_thumb_refcount = 0;
9610 eh->plt_maybe_thumb_refcount = 0;
9611 h->needs_plt = 0;
9612 }
9613
9614 return TRUE;
9615 }
9616 else
9617 {
9618 /* It's possible that we incorrectly decided a .plt reloc was
9619 needed for an R_ARM_PC24 or similar reloc to a non-function sym
9620 in check_relocs. We can't decide accurately between function
9621 and non-function syms in check-relocs; Objects loaded later in
9622 the link may change h->type. So fix it now. */
9623 h->plt.offset = (bfd_vma) -1;
9624 eh->plt_thumb_refcount = 0;
9625 eh->plt_maybe_thumb_refcount = 0;
9626 }
9627
9628 /* If this is a weak symbol, and there is a real definition, the
9629 processor independent code will have arranged for us to see the
9630 real definition first, and we can just use the same value. */
9631 if (h->u.weakdef != NULL)
9632 {
9633 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9634 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9635 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9636 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9637 return TRUE;
9638 }
9639
9640 /* If there are no non-GOT references, we do not need a copy
9641 relocation. */
9642 if (!h->non_got_ref)
9643 return TRUE;
9644
9645 /* This is a reference to a symbol defined by a dynamic object which
9646 is not a function. */
9647
9648 /* If we are creating a shared library, we must presume that the
9649 only references to the symbol are via the global offset table.
9650 For such cases we need not do anything here; the relocations will
9651 be handled correctly by relocate_section. Relocatable executables
9652 can reference data in shared objects directly, so we don't need to
9653 do anything here. */
9654 if (info->shared || globals->root.is_relocatable_executable)
9655 return TRUE;
9656
9657 if (h->size == 0)
9658 {
9659 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
9660 h->root.root.string);
9661 return TRUE;
9662 }
9663
9664 /* We must allocate the symbol in our .dynbss section, which will
9665 become part of the .bss section of the executable. There will be
9666 an entry for this symbol in the .dynsym section. The dynamic
9667 object will contain position independent code, so all references
9668 from the dynamic object to this symbol will go through the global
9669 offset table. The dynamic linker will use the .dynsym entry to
9670 determine the address it must put in the global offset table, so
9671 both the dynamic object and the regular object will refer to the
9672 same memory location for the variable. */
9673 s = bfd_get_section_by_name (dynobj, ".dynbss");
9674 BFD_ASSERT (s != NULL);
9675
9676 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
9677 copy the initial value out of the dynamic object and into the
9678 runtime process image. We need to remember the offset into the
9679 .rel(a).bss section we are going to use. */
9680 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9681 {
9682 asection *srel;
9683
9684 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
9685 BFD_ASSERT (srel != NULL);
9686 srel->size += RELOC_SIZE (globals);
9687 h->needs_copy = 1;
9688 }
9689
9690 return _bfd_elf_adjust_dynamic_copy (h, s);
9691 }
9692
9693 /* Allocate space in .plt, .got and associated reloc sections for
9694 dynamic relocs. */
9695
9696 static bfd_boolean
9697 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
9698 {
9699 struct bfd_link_info *info;
9700 struct elf32_arm_link_hash_table *htab;
9701 struct elf32_arm_link_hash_entry *eh;
9702 struct elf32_arm_relocs_copied *p;
9703 bfd_signed_vma thumb_refs;
9704
9705 eh = (struct elf32_arm_link_hash_entry *) h;
9706
9707 if (h->root.type == bfd_link_hash_indirect)
9708 return TRUE;
9709
9710 if (h->root.type == bfd_link_hash_warning)
9711 /* When warning symbols are created, they **replace** the "real"
9712 entry in the hash table, thus we never get to see the real
9713 symbol in a hash traversal. So look at it now. */
9714 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9715
9716 info = (struct bfd_link_info *) inf;
9717 htab = elf32_arm_hash_table (info);
9718
9719 if (htab->root.dynamic_sections_created
9720 && h->plt.refcount > 0)
9721 {
9722 /* Make sure this symbol is output as a dynamic symbol.
9723 Undefined weak syms won't yet be marked as dynamic. */
9724 if (h->dynindx == -1
9725 && !h->forced_local)
9726 {
9727 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9728 return FALSE;
9729 }
9730
9731 if (info->shared
9732 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
9733 {
9734 asection *s = htab->splt;
9735
9736 /* If this is the first .plt entry, make room for the special
9737 first entry. */
9738 if (s->size == 0)
9739 s->size += htab->plt_header_size;
9740
9741 h->plt.offset = s->size;
9742
9743 /* If we will insert a Thumb trampoline before this PLT, leave room
9744 for it. */
9745 thumb_refs = eh->plt_thumb_refcount;
9746 if (!htab->use_blx)
9747 thumb_refs += eh->plt_maybe_thumb_refcount;
9748
9749 if (thumb_refs > 0)
9750 {
9751 h->plt.offset += PLT_THUMB_STUB_SIZE;
9752 s->size += PLT_THUMB_STUB_SIZE;
9753 }
9754
9755 /* If this symbol is not defined in a regular file, and we are
9756 not generating a shared library, then set the symbol to this
9757 location in the .plt. This is required to make function
9758 pointers compare as equal between the normal executable and
9759 the shared library. */
9760 if (! info->shared
9761 && !h->def_regular)
9762 {
9763 h->root.u.def.section = s;
9764 h->root.u.def.value = h->plt.offset;
9765
9766 /* Make sure the function is not marked as Thumb, in case
9767 it is the target of an ABS32 relocation, which will
9768 point to the PLT entry. */
9769 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
9770 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9771 }
9772
9773 /* Make room for this entry. */
9774 s->size += htab->plt_entry_size;
9775
9776 if (!htab->symbian_p)
9777 {
9778 /* We also need to make an entry in the .got.plt section, which
9779 will be placed in the .got section by the linker script. */
9780 eh->plt_got_offset = htab->sgotplt->size;
9781 htab->sgotplt->size += 4;
9782 }
9783
9784 /* We also need to make an entry in the .rel(a).plt section. */
9785 htab->srelplt->size += RELOC_SIZE (htab);
9786
9787 /* VxWorks executables have a second set of relocations for
9788 each PLT entry. They go in a separate relocation section,
9789 which is processed by the kernel loader. */
9790 if (htab->vxworks_p && !info->shared)
9791 {
9792 /* There is a relocation for the initial PLT entry:
9793 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
9794 if (h->plt.offset == htab->plt_header_size)
9795 htab->srelplt2->size += RELOC_SIZE (htab);
9796
9797 /* There are two extra relocations for each subsequent
9798 PLT entry: an R_ARM_32 relocation for the GOT entry,
9799 and an R_ARM_32 relocation for the PLT entry. */
9800 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
9801 }
9802 }
9803 else
9804 {
9805 h->plt.offset = (bfd_vma) -1;
9806 h->needs_plt = 0;
9807 }
9808 }
9809 else
9810 {
9811 h->plt.offset = (bfd_vma) -1;
9812 h->needs_plt = 0;
9813 }
9814
9815 if (h->got.refcount > 0)
9816 {
9817 asection *s;
9818 bfd_boolean dyn;
9819 int tls_type = elf32_arm_hash_entry (h)->tls_type;
9820 int indx;
9821
9822 /* Make sure this symbol is output as a dynamic symbol.
9823 Undefined weak syms won't yet be marked as dynamic. */
9824 if (h->dynindx == -1
9825 && !h->forced_local)
9826 {
9827 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9828 return FALSE;
9829 }
9830
9831 if (!htab->symbian_p)
9832 {
9833 s = htab->sgot;
9834 h->got.offset = s->size;
9835
9836 if (tls_type == GOT_UNKNOWN)
9837 abort ();
9838
9839 if (tls_type == GOT_NORMAL)
9840 /* Non-TLS symbols need one GOT slot. */
9841 s->size += 4;
9842 else
9843 {
9844 if (tls_type & GOT_TLS_GD)
9845 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
9846 s->size += 8;
9847 if (tls_type & GOT_TLS_IE)
9848 /* R_ARM_TLS_IE32 needs one GOT slot. */
9849 s->size += 4;
9850 }
9851
9852 dyn = htab->root.dynamic_sections_created;
9853
9854 indx = 0;
9855 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9856 && (!info->shared
9857 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9858 indx = h->dynindx;
9859
9860 if (tls_type != GOT_NORMAL
9861 && (info->shared || indx != 0)
9862 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9863 || h->root.type != bfd_link_hash_undefweak))
9864 {
9865 if (tls_type & GOT_TLS_IE)
9866 htab->srelgot->size += RELOC_SIZE (htab);
9867
9868 if (tls_type & GOT_TLS_GD)
9869 htab->srelgot->size += RELOC_SIZE (htab);
9870
9871 if ((tls_type & GOT_TLS_GD) && indx != 0)
9872 htab->srelgot->size += RELOC_SIZE (htab);
9873 }
9874 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9875 || h->root.type != bfd_link_hash_undefweak)
9876 && (info->shared
9877 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
9878 htab->srelgot->size += RELOC_SIZE (htab);
9879 }
9880 }
9881 else
9882 h->got.offset = (bfd_vma) -1;
9883
9884 /* Allocate stubs for exported Thumb functions on v4t. */
9885 if (!htab->use_blx && h->dynindx != -1
9886 && h->def_regular
9887 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
9888 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9889 {
9890 struct elf_link_hash_entry * th;
9891 struct bfd_link_hash_entry * bh;
9892 struct elf_link_hash_entry * myh;
9893 char name[1024];
9894 asection *s;
9895 bh = NULL;
9896 /* Create a new symbol to regist the real location of the function. */
9897 s = h->root.u.def.section;
9898 sprintf (name, "__real_%s", h->root.root.string);
9899 _bfd_generic_link_add_one_symbol (info, s->owner,
9900 name, BSF_GLOBAL, s,
9901 h->root.u.def.value,
9902 NULL, TRUE, FALSE, &bh);
9903
9904 myh = (struct elf_link_hash_entry *) bh;
9905 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
9906 myh->forced_local = 1;
9907 eh->export_glue = myh;
9908 th = record_arm_to_thumb_glue (info, h);
9909 /* Point the symbol at the stub. */
9910 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9911 h->root.u.def.section = th->root.u.def.section;
9912 h->root.u.def.value = th->root.u.def.value & ~1;
9913 }
9914
9915 if (eh->relocs_copied == NULL)
9916 return TRUE;
9917
9918 /* In the shared -Bsymbolic case, discard space allocated for
9919 dynamic pc-relative relocs against symbols which turn out to be
9920 defined in regular objects. For the normal shared case, discard
9921 space for pc-relative relocs that have become local due to symbol
9922 visibility changes. */
9923
9924 if (info->shared || htab->root.is_relocatable_executable)
9925 {
9926 /* The only relocs that use pc_count are R_ARM_REL32 and
9927 R_ARM_REL32_NOI, which will appear on something like
9928 ".long foo - .". We want calls to protected symbols to resolve
9929 directly to the function rather than going via the plt. If people
9930 want function pointer comparisons to work as expected then they
9931 should avoid writing assembly like ".long foo - .". */
9932 if (SYMBOL_CALLS_LOCAL (info, h))
9933 {
9934 struct elf32_arm_relocs_copied **pp;
9935
9936 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9937 {
9938 p->count -= p->pc_count;
9939 p->pc_count = 0;
9940 if (p->count == 0)
9941 *pp = p->next;
9942 else
9943 pp = &p->next;
9944 }
9945 }
9946
9947 if (elf32_arm_hash_table (info)->vxworks_p)
9948 {
9949 struct elf32_arm_relocs_copied **pp;
9950
9951 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9952 {
9953 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
9954 *pp = p->next;
9955 else
9956 pp = &p->next;
9957 }
9958 }
9959
9960 /* Also discard relocs on undefined weak syms with non-default
9961 visibility. */
9962 if (eh->relocs_copied != NULL
9963 && h->root.type == bfd_link_hash_undefweak)
9964 {
9965 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9966 eh->relocs_copied = NULL;
9967
9968 /* Make sure undefined weak symbols are output as a dynamic
9969 symbol in PIEs. */
9970 else if (h->dynindx == -1
9971 && !h->forced_local)
9972 {
9973 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9974 return FALSE;
9975 }
9976 }
9977
9978 else if (htab->root.is_relocatable_executable && h->dynindx == -1
9979 && h->root.type == bfd_link_hash_new)
9980 {
9981 /* Output absolute symbols so that we can create relocations
9982 against them. For normal symbols we output a relocation
9983 against the section that contains them. */
9984 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9985 return FALSE;
9986 }
9987
9988 }
9989 else
9990 {
9991 /* For the non-shared case, discard space for relocs against
9992 symbols which turn out to need copy relocs or are not
9993 dynamic. */
9994
9995 if (!h->non_got_ref
9996 && ((h->def_dynamic
9997 && !h->def_regular)
9998 || (htab->root.dynamic_sections_created
9999 && (h->root.type == bfd_link_hash_undefweak
10000 || h->root.type == bfd_link_hash_undefined))))
10001 {
10002 /* Make sure this symbol is output as a dynamic symbol.
10003 Undefined weak syms won't yet be marked as dynamic. */
10004 if (h->dynindx == -1
10005 && !h->forced_local)
10006 {
10007 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10008 return FALSE;
10009 }
10010
10011 /* If that succeeded, we know we'll be keeping all the
10012 relocs. */
10013 if (h->dynindx != -1)
10014 goto keep;
10015 }
10016
10017 eh->relocs_copied = NULL;
10018
10019 keep: ;
10020 }
10021
10022 /* Finally, allocate space. */
10023 for (p = eh->relocs_copied; p != NULL; p = p->next)
10024 {
10025 asection *sreloc = elf_section_data (p->section)->sreloc;
10026 sreloc->size += p->count * RELOC_SIZE (htab);
10027 }
10028
10029 return TRUE;
10030 }
10031
10032 /* Find any dynamic relocs that apply to read-only sections. */
10033
10034 static bfd_boolean
10035 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
10036 {
10037 struct elf32_arm_link_hash_entry * eh;
10038 struct elf32_arm_relocs_copied * p;
10039
10040 if (h->root.type == bfd_link_hash_warning)
10041 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10042
10043 eh = (struct elf32_arm_link_hash_entry *) h;
10044 for (p = eh->relocs_copied; p != NULL; p = p->next)
10045 {
10046 asection *s = p->section;
10047
10048 if (s != NULL && (s->flags & SEC_READONLY) != 0)
10049 {
10050 struct bfd_link_info *info = (struct bfd_link_info *) inf;
10051
10052 info->flags |= DF_TEXTREL;
10053
10054 /* Not an error, just cut short the traversal. */
10055 return FALSE;
10056 }
10057 }
10058 return TRUE;
10059 }
10060
10061 void
10062 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
10063 int byteswap_code)
10064 {
10065 struct elf32_arm_link_hash_table *globals;
10066
10067 globals = elf32_arm_hash_table (info);
10068 globals->byteswap_code = byteswap_code;
10069 }
10070
10071 /* Set the sizes of the dynamic sections. */
10072
10073 static bfd_boolean
10074 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
10075 struct bfd_link_info * info)
10076 {
10077 bfd * dynobj;
10078 asection * s;
10079 bfd_boolean plt;
10080 bfd_boolean relocs;
10081 bfd *ibfd;
10082 struct elf32_arm_link_hash_table *htab;
10083
10084 htab = elf32_arm_hash_table (info);
10085 dynobj = elf_hash_table (info)->dynobj;
10086 BFD_ASSERT (dynobj != NULL);
10087 check_use_blx (htab);
10088
10089 if (elf_hash_table (info)->dynamic_sections_created)
10090 {
10091 /* Set the contents of the .interp section to the interpreter. */
10092 if (info->executable)
10093 {
10094 s = bfd_get_section_by_name (dynobj, ".interp");
10095 BFD_ASSERT (s != NULL);
10096 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
10097 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
10098 }
10099 }
10100
10101 /* Set up .got offsets for local syms, and space for local dynamic
10102 relocs. */
10103 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10104 {
10105 bfd_signed_vma *local_got;
10106 bfd_signed_vma *end_local_got;
10107 char *local_tls_type;
10108 bfd_size_type locsymcount;
10109 Elf_Internal_Shdr *symtab_hdr;
10110 asection *srel;
10111 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
10112
10113 if (! is_arm_elf (ibfd))
10114 continue;
10115
10116 for (s = ibfd->sections; s != NULL; s = s->next)
10117 {
10118 struct elf32_arm_relocs_copied *p;
10119
10120 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
10121 {
10122 if (!bfd_is_abs_section (p->section)
10123 && bfd_is_abs_section (p->section->output_section))
10124 {
10125 /* Input section has been discarded, either because
10126 it is a copy of a linkonce section or due to
10127 linker script /DISCARD/, so we'll be discarding
10128 the relocs too. */
10129 }
10130 else if (is_vxworks
10131 && strcmp (p->section->output_section->name,
10132 ".tls_vars") == 0)
10133 {
10134 /* Relocations in vxworks .tls_vars sections are
10135 handled specially by the loader. */
10136 }
10137 else if (p->count != 0)
10138 {
10139 srel = elf_section_data (p->section)->sreloc;
10140 srel->size += p->count * RELOC_SIZE (htab);
10141 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10142 info->flags |= DF_TEXTREL;
10143 }
10144 }
10145 }
10146
10147 local_got = elf_local_got_refcounts (ibfd);
10148 if (!local_got)
10149 continue;
10150
10151 symtab_hdr = & elf_symtab_hdr (ibfd);
10152 locsymcount = symtab_hdr->sh_info;
10153 end_local_got = local_got + locsymcount;
10154 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
10155 s = htab->sgot;
10156 srel = htab->srelgot;
10157 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
10158 {
10159 if (*local_got > 0)
10160 {
10161 *local_got = s->size;
10162 if (*local_tls_type & GOT_TLS_GD)
10163 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10164 s->size += 8;
10165 if (*local_tls_type & GOT_TLS_IE)
10166 s->size += 4;
10167 if (*local_tls_type == GOT_NORMAL)
10168 s->size += 4;
10169
10170 if (info->shared || *local_tls_type == GOT_TLS_GD)
10171 srel->size += RELOC_SIZE (htab);
10172 }
10173 else
10174 *local_got = (bfd_vma) -1;
10175 }
10176 }
10177
10178 if (htab->tls_ldm_got.refcount > 0)
10179 {
10180 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10181 for R_ARM_TLS_LDM32 relocations. */
10182 htab->tls_ldm_got.offset = htab->sgot->size;
10183 htab->sgot->size += 8;
10184 if (info->shared)
10185 htab->srelgot->size += RELOC_SIZE (htab);
10186 }
10187 else
10188 htab->tls_ldm_got.offset = -1;
10189
10190 /* Allocate global sym .plt and .got entries, and space for global
10191 sym dynamic relocs. */
10192 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
10193
10194 /* Here we rummage through the found bfds to collect glue information. */
10195 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10196 {
10197 if (! is_arm_elf (ibfd))
10198 continue;
10199
10200 /* Initialise mapping tables for code/data. */
10201 bfd_elf32_arm_init_maps (ibfd);
10202
10203 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10204 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10205 /* xgettext:c-format */
10206 _bfd_error_handler (_("Errors encountered processing file %s"),
10207 ibfd->filename);
10208 }
10209
10210 /* The check_relocs and adjust_dynamic_symbol entry points have
10211 determined the sizes of the various dynamic sections. Allocate
10212 memory for them. */
10213 plt = FALSE;
10214 relocs = FALSE;
10215 for (s = dynobj->sections; s != NULL; s = s->next)
10216 {
10217 const char * name;
10218
10219 if ((s->flags & SEC_LINKER_CREATED) == 0)
10220 continue;
10221
10222 /* It's OK to base decisions on the section name, because none
10223 of the dynobj section names depend upon the input files. */
10224 name = bfd_get_section_name (dynobj, s);
10225
10226 if (strcmp (name, ".plt") == 0)
10227 {
10228 /* Remember whether there is a PLT. */
10229 plt = s->size != 0;
10230 }
10231 else if (CONST_STRNEQ (name, ".rel"))
10232 {
10233 if (s->size != 0)
10234 {
10235 /* Remember whether there are any reloc sections other
10236 than .rel(a).plt and .rela.plt.unloaded. */
10237 if (s != htab->srelplt && s != htab->srelplt2)
10238 relocs = TRUE;
10239
10240 /* We use the reloc_count field as a counter if we need
10241 to copy relocs into the output file. */
10242 s->reloc_count = 0;
10243 }
10244 }
10245 else if (! CONST_STRNEQ (name, ".got")
10246 && strcmp (name, ".dynbss") != 0)
10247 {
10248 /* It's not one of our sections, so don't allocate space. */
10249 continue;
10250 }
10251
10252 if (s->size == 0)
10253 {
10254 /* If we don't need this section, strip it from the
10255 output file. This is mostly to handle .rel(a).bss and
10256 .rel(a).plt. We must create both sections in
10257 create_dynamic_sections, because they must be created
10258 before the linker maps input sections to output
10259 sections. The linker does that before
10260 adjust_dynamic_symbol is called, and it is that
10261 function which decides whether anything needs to go
10262 into these sections. */
10263 s->flags |= SEC_EXCLUDE;
10264 continue;
10265 }
10266
10267 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10268 continue;
10269
10270 /* Allocate memory for the section contents. */
10271 s->contents = bfd_zalloc (dynobj, s->size);
10272 if (s->contents == NULL)
10273 return FALSE;
10274 }
10275
10276 if (elf_hash_table (info)->dynamic_sections_created)
10277 {
10278 /* Add some entries to the .dynamic section. We fill in the
10279 values later, in elf32_arm_finish_dynamic_sections, but we
10280 must add the entries now so that we get the correct size for
10281 the .dynamic section. The DT_DEBUG entry is filled in by the
10282 dynamic linker and used by the debugger. */
10283 #define add_dynamic_entry(TAG, VAL) \
10284 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10285
10286 if (info->executable)
10287 {
10288 if (!add_dynamic_entry (DT_DEBUG, 0))
10289 return FALSE;
10290 }
10291
10292 if (plt)
10293 {
10294 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10295 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10296 || !add_dynamic_entry (DT_PLTREL,
10297 htab->use_rel ? DT_REL : DT_RELA)
10298 || !add_dynamic_entry (DT_JMPREL, 0))
10299 return FALSE;
10300 }
10301
10302 if (relocs)
10303 {
10304 if (htab->use_rel)
10305 {
10306 if (!add_dynamic_entry (DT_REL, 0)
10307 || !add_dynamic_entry (DT_RELSZ, 0)
10308 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10309 return FALSE;
10310 }
10311 else
10312 {
10313 if (!add_dynamic_entry (DT_RELA, 0)
10314 || !add_dynamic_entry (DT_RELASZ, 0)
10315 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10316 return FALSE;
10317 }
10318 }
10319
10320 /* If any dynamic relocs apply to a read-only section,
10321 then we need a DT_TEXTREL entry. */
10322 if ((info->flags & DF_TEXTREL) == 0)
10323 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
10324 info);
10325
10326 if ((info->flags & DF_TEXTREL) != 0)
10327 {
10328 if (!add_dynamic_entry (DT_TEXTREL, 0))
10329 return FALSE;
10330 }
10331 if (htab->vxworks_p
10332 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10333 return FALSE;
10334 }
10335 #undef add_dynamic_entry
10336
10337 return TRUE;
10338 }
10339
10340 /* Finish up dynamic symbol handling. We set the contents of various
10341 dynamic sections here. */
10342
10343 static bfd_boolean
10344 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10345 struct bfd_link_info * info,
10346 struct elf_link_hash_entry * h,
10347 Elf_Internal_Sym * sym)
10348 {
10349 bfd * dynobj;
10350 struct elf32_arm_link_hash_table *htab;
10351 struct elf32_arm_link_hash_entry *eh;
10352
10353 dynobj = elf_hash_table (info)->dynobj;
10354 htab = elf32_arm_hash_table (info);
10355 eh = (struct elf32_arm_link_hash_entry *) h;
10356
10357 if (h->plt.offset != (bfd_vma) -1)
10358 {
10359 asection * splt;
10360 asection * srel;
10361 bfd_byte *loc;
10362 bfd_vma plt_index;
10363 Elf_Internal_Rela rel;
10364
10365 /* This symbol has an entry in the procedure linkage table. Set
10366 it up. */
10367
10368 BFD_ASSERT (h->dynindx != -1);
10369
10370 splt = bfd_get_section_by_name (dynobj, ".plt");
10371 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
10372 BFD_ASSERT (splt != NULL && srel != NULL);
10373
10374 /* Fill in the entry in the procedure linkage table. */
10375 if (htab->symbian_p)
10376 {
10377 put_arm_insn (htab, output_bfd,
10378 elf32_arm_symbian_plt_entry[0],
10379 splt->contents + h->plt.offset);
10380 bfd_put_32 (output_bfd,
10381 elf32_arm_symbian_plt_entry[1],
10382 splt->contents + h->plt.offset + 4);
10383
10384 /* Fill in the entry in the .rel.plt section. */
10385 rel.r_offset = (splt->output_section->vma
10386 + splt->output_offset
10387 + h->plt.offset + 4);
10388 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10389
10390 /* Get the index in the procedure linkage table which
10391 corresponds to this symbol. This is the index of this symbol
10392 in all the symbols for which we are making plt entries. The
10393 first entry in the procedure linkage table is reserved. */
10394 plt_index = ((h->plt.offset - htab->plt_header_size)
10395 / htab->plt_entry_size);
10396 }
10397 else
10398 {
10399 bfd_vma got_offset, got_address, plt_address;
10400 bfd_vma got_displacement;
10401 asection * sgot;
10402 bfd_byte * ptr;
10403
10404 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10405 BFD_ASSERT (sgot != NULL);
10406
10407 /* Get the offset into the .got.plt table of the entry that
10408 corresponds to this function. */
10409 got_offset = eh->plt_got_offset;
10410
10411 /* Get the index in the procedure linkage table which
10412 corresponds to this symbol. This is the index of this symbol
10413 in all the symbols for which we are making plt entries. The
10414 first three entries in .got.plt are reserved; after that
10415 symbols appear in the same order as in .plt. */
10416 plt_index = (got_offset - 12) / 4;
10417
10418 /* Calculate the address of the GOT entry. */
10419 got_address = (sgot->output_section->vma
10420 + sgot->output_offset
10421 + got_offset);
10422
10423 /* ...and the address of the PLT entry. */
10424 plt_address = (splt->output_section->vma
10425 + splt->output_offset
10426 + h->plt.offset);
10427
10428 ptr = htab->splt->contents + h->plt.offset;
10429 if (htab->vxworks_p && info->shared)
10430 {
10431 unsigned int i;
10432 bfd_vma val;
10433
10434 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10435 {
10436 val = elf32_arm_vxworks_shared_plt_entry[i];
10437 if (i == 2)
10438 val |= got_address - sgot->output_section->vma;
10439 if (i == 5)
10440 val |= plt_index * RELOC_SIZE (htab);
10441 if (i == 2 || i == 5)
10442 bfd_put_32 (output_bfd, val, ptr);
10443 else
10444 put_arm_insn (htab, output_bfd, val, ptr);
10445 }
10446 }
10447 else if (htab->vxworks_p)
10448 {
10449 unsigned int i;
10450 bfd_vma val;
10451
10452 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10453 {
10454 val = elf32_arm_vxworks_exec_plt_entry[i];
10455 if (i == 2)
10456 val |= got_address;
10457 if (i == 4)
10458 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
10459 if (i == 5)
10460 val |= plt_index * RELOC_SIZE (htab);
10461 if (i == 2 || i == 5)
10462 bfd_put_32 (output_bfd, val, ptr);
10463 else
10464 put_arm_insn (htab, output_bfd, val, ptr);
10465 }
10466
10467 loc = (htab->srelplt2->contents
10468 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
10469
10470 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10471 referencing the GOT for this PLT entry. */
10472 rel.r_offset = plt_address + 8;
10473 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10474 rel.r_addend = got_offset;
10475 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10476 loc += RELOC_SIZE (htab);
10477
10478 /* Create the R_ARM_ABS32 relocation referencing the
10479 beginning of the PLT for this GOT entry. */
10480 rel.r_offset = got_address;
10481 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10482 rel.r_addend = 0;
10483 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10484 }
10485 else
10486 {
10487 bfd_signed_vma thumb_refs;
10488 /* Calculate the displacement between the PLT slot and the
10489 entry in the GOT. The eight-byte offset accounts for the
10490 value produced by adding to pc in the first instruction
10491 of the PLT stub. */
10492 got_displacement = got_address - (plt_address + 8);
10493
10494 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
10495
10496 thumb_refs = eh->plt_thumb_refcount;
10497 if (!htab->use_blx)
10498 thumb_refs += eh->plt_maybe_thumb_refcount;
10499
10500 if (thumb_refs > 0)
10501 {
10502 put_thumb_insn (htab, output_bfd,
10503 elf32_arm_plt_thumb_stub[0], ptr - 4);
10504 put_thumb_insn (htab, output_bfd,
10505 elf32_arm_plt_thumb_stub[1], ptr - 2);
10506 }
10507
10508 put_arm_insn (htab, output_bfd,
10509 elf32_arm_plt_entry[0]
10510 | ((got_displacement & 0x0ff00000) >> 20),
10511 ptr + 0);
10512 put_arm_insn (htab, output_bfd,
10513 elf32_arm_plt_entry[1]
10514 | ((got_displacement & 0x000ff000) >> 12),
10515 ptr+ 4);
10516 put_arm_insn (htab, output_bfd,
10517 elf32_arm_plt_entry[2]
10518 | (got_displacement & 0x00000fff),
10519 ptr + 8);
10520 #ifdef FOUR_WORD_PLT
10521 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
10522 #endif
10523 }
10524
10525 /* Fill in the entry in the global offset table. */
10526 bfd_put_32 (output_bfd,
10527 (splt->output_section->vma
10528 + splt->output_offset),
10529 sgot->contents + got_offset);
10530
10531 /* Fill in the entry in the .rel(a).plt section. */
10532 rel.r_addend = 0;
10533 rel.r_offset = got_address;
10534 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
10535 }
10536
10537 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10538 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10539
10540 if (!h->def_regular)
10541 {
10542 /* Mark the symbol as undefined, rather than as defined in
10543 the .plt section. Leave the value alone. */
10544 sym->st_shndx = SHN_UNDEF;
10545 /* If the symbol is weak, we do need to clear the value.
10546 Otherwise, the PLT entry would provide a definition for
10547 the symbol even if the symbol wasn't defined anywhere,
10548 and so the symbol would never be NULL. */
10549 if (!h->ref_regular_nonweak)
10550 sym->st_value = 0;
10551 }
10552 }
10553
10554 if (h->got.offset != (bfd_vma) -1
10555 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
10556 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
10557 {
10558 asection * sgot;
10559 asection * srel;
10560 Elf_Internal_Rela rel;
10561 bfd_byte *loc;
10562 bfd_vma offset;
10563
10564 /* This symbol has an entry in the global offset table. Set it
10565 up. */
10566 sgot = bfd_get_section_by_name (dynobj, ".got");
10567 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
10568 BFD_ASSERT (sgot != NULL && srel != NULL);
10569
10570 offset = (h->got.offset & ~(bfd_vma) 1);
10571 rel.r_addend = 0;
10572 rel.r_offset = (sgot->output_section->vma
10573 + sgot->output_offset
10574 + offset);
10575
10576 /* If this is a static link, or it is a -Bsymbolic link and the
10577 symbol is defined locally or was forced to be local because
10578 of a version file, we just want to emit a RELATIVE reloc.
10579 The entry in the global offset table will already have been
10580 initialized in the relocate_section function. */
10581 if (info->shared
10582 && SYMBOL_REFERENCES_LOCAL (info, h))
10583 {
10584 BFD_ASSERT ((h->got.offset & 1) != 0);
10585 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10586 if (!htab->use_rel)
10587 {
10588 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
10589 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10590 }
10591 }
10592 else
10593 {
10594 BFD_ASSERT ((h->got.offset & 1) == 0);
10595 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10596 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10597 }
10598
10599 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
10600 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10601 }
10602
10603 if (h->needs_copy)
10604 {
10605 asection * s;
10606 Elf_Internal_Rela rel;
10607 bfd_byte *loc;
10608
10609 /* This symbol needs a copy reloc. Set it up. */
10610 BFD_ASSERT (h->dynindx != -1
10611 && (h->root.type == bfd_link_hash_defined
10612 || h->root.type == bfd_link_hash_defweak));
10613
10614 s = bfd_get_section_by_name (h->root.u.def.section->owner,
10615 RELOC_SECTION (htab, ".bss"));
10616 BFD_ASSERT (s != NULL);
10617
10618 rel.r_addend = 0;
10619 rel.r_offset = (h->root.u.def.value
10620 + h->root.u.def.section->output_section->vma
10621 + h->root.u.def.section->output_offset);
10622 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
10623 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
10624 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10625 }
10626
10627 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
10628 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
10629 to the ".got" section. */
10630 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
10631 || (!htab->vxworks_p && h == htab->root.hgot))
10632 sym->st_shndx = SHN_ABS;
10633
10634 return TRUE;
10635 }
10636
10637 /* Finish up the dynamic sections. */
10638
10639 static bfd_boolean
10640 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
10641 {
10642 bfd * dynobj;
10643 asection * sgot;
10644 asection * sdyn;
10645
10646 dynobj = elf_hash_table (info)->dynobj;
10647
10648 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10649 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
10650 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10651
10652 if (elf_hash_table (info)->dynamic_sections_created)
10653 {
10654 asection *splt;
10655 Elf32_External_Dyn *dyncon, *dynconend;
10656 struct elf32_arm_link_hash_table *htab;
10657
10658 htab = elf32_arm_hash_table (info);
10659 splt = bfd_get_section_by_name (dynobj, ".plt");
10660 BFD_ASSERT (splt != NULL && sdyn != NULL);
10661
10662 dyncon = (Elf32_External_Dyn *) sdyn->contents;
10663 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
10664
10665 for (; dyncon < dynconend; dyncon++)
10666 {
10667 Elf_Internal_Dyn dyn;
10668 const char * name;
10669 asection * s;
10670
10671 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
10672
10673 switch (dyn.d_tag)
10674 {
10675 unsigned int type;
10676
10677 default:
10678 if (htab->vxworks_p
10679 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10680 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10681 break;
10682
10683 case DT_HASH:
10684 name = ".hash";
10685 goto get_vma_if_bpabi;
10686 case DT_STRTAB:
10687 name = ".dynstr";
10688 goto get_vma_if_bpabi;
10689 case DT_SYMTAB:
10690 name = ".dynsym";
10691 goto get_vma_if_bpabi;
10692 case DT_VERSYM:
10693 name = ".gnu.version";
10694 goto get_vma_if_bpabi;
10695 case DT_VERDEF:
10696 name = ".gnu.version_d";
10697 goto get_vma_if_bpabi;
10698 case DT_VERNEED:
10699 name = ".gnu.version_r";
10700 goto get_vma_if_bpabi;
10701
10702 case DT_PLTGOT:
10703 name = ".got";
10704 goto get_vma;
10705 case DT_JMPREL:
10706 name = RELOC_SECTION (htab, ".plt");
10707 get_vma:
10708 s = bfd_get_section_by_name (output_bfd, name);
10709 BFD_ASSERT (s != NULL);
10710 if (!htab->symbian_p)
10711 dyn.d_un.d_ptr = s->vma;
10712 else
10713 /* In the BPABI, tags in the PT_DYNAMIC section point
10714 at the file offset, not the memory address, for the
10715 convenience of the post linker. */
10716 dyn.d_un.d_ptr = s->filepos;
10717 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10718 break;
10719
10720 get_vma_if_bpabi:
10721 if (htab->symbian_p)
10722 goto get_vma;
10723 break;
10724
10725 case DT_PLTRELSZ:
10726 s = bfd_get_section_by_name (output_bfd,
10727 RELOC_SECTION (htab, ".plt"));
10728 BFD_ASSERT (s != NULL);
10729 dyn.d_un.d_val = s->size;
10730 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10731 break;
10732
10733 case DT_RELSZ:
10734 case DT_RELASZ:
10735 if (!htab->symbian_p)
10736 {
10737 /* My reading of the SVR4 ABI indicates that the
10738 procedure linkage table relocs (DT_JMPREL) should be
10739 included in the overall relocs (DT_REL). This is
10740 what Solaris does. However, UnixWare can not handle
10741 that case. Therefore, we override the DT_RELSZ entry
10742 here to make it not include the JMPREL relocs. Since
10743 the linker script arranges for .rel(a).plt to follow all
10744 other relocation sections, we don't have to worry
10745 about changing the DT_REL entry. */
10746 s = bfd_get_section_by_name (output_bfd,
10747 RELOC_SECTION (htab, ".plt"));
10748 if (s != NULL)
10749 dyn.d_un.d_val -= s->size;
10750 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10751 break;
10752 }
10753 /* Fall through. */
10754
10755 case DT_REL:
10756 case DT_RELA:
10757 /* In the BPABI, the DT_REL tag must point at the file
10758 offset, not the VMA, of the first relocation
10759 section. So, we use code similar to that in
10760 elflink.c, but do not check for SHF_ALLOC on the
10761 relcoation section, since relocations sections are
10762 never allocated under the BPABI. The comments above
10763 about Unixware notwithstanding, we include all of the
10764 relocations here. */
10765 if (htab->symbian_p)
10766 {
10767 unsigned int i;
10768 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10769 ? SHT_REL : SHT_RELA);
10770 dyn.d_un.d_val = 0;
10771 for (i = 1; i < elf_numsections (output_bfd); i++)
10772 {
10773 Elf_Internal_Shdr *hdr
10774 = elf_elfsections (output_bfd)[i];
10775 if (hdr->sh_type == type)
10776 {
10777 if (dyn.d_tag == DT_RELSZ
10778 || dyn.d_tag == DT_RELASZ)
10779 dyn.d_un.d_val += hdr->sh_size;
10780 else if ((ufile_ptr) hdr->sh_offset
10781 <= dyn.d_un.d_val - 1)
10782 dyn.d_un.d_val = hdr->sh_offset;
10783 }
10784 }
10785 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10786 }
10787 break;
10788
10789 /* Set the bottom bit of DT_INIT/FINI if the
10790 corresponding function is Thumb. */
10791 case DT_INIT:
10792 name = info->init_function;
10793 goto get_sym;
10794 case DT_FINI:
10795 name = info->fini_function;
10796 get_sym:
10797 /* If it wasn't set by elf_bfd_final_link
10798 then there is nothing to adjust. */
10799 if (dyn.d_un.d_val != 0)
10800 {
10801 struct elf_link_hash_entry * eh;
10802
10803 eh = elf_link_hash_lookup (elf_hash_table (info), name,
10804 FALSE, FALSE, TRUE);
10805 if (eh != NULL
10806 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
10807 {
10808 dyn.d_un.d_val |= 1;
10809 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10810 }
10811 }
10812 break;
10813 }
10814 }
10815
10816 /* Fill in the first entry in the procedure linkage table. */
10817 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
10818 {
10819 const bfd_vma *plt0_entry;
10820 bfd_vma got_address, plt_address, got_displacement;
10821
10822 /* Calculate the addresses of the GOT and PLT. */
10823 got_address = sgot->output_section->vma + sgot->output_offset;
10824 plt_address = splt->output_section->vma + splt->output_offset;
10825
10826 if (htab->vxworks_p)
10827 {
10828 /* The VxWorks GOT is relocated by the dynamic linker.
10829 Therefore, we must emit relocations rather than simply
10830 computing the values now. */
10831 Elf_Internal_Rela rel;
10832
10833 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
10834 put_arm_insn (htab, output_bfd, plt0_entry[0],
10835 splt->contents + 0);
10836 put_arm_insn (htab, output_bfd, plt0_entry[1],
10837 splt->contents + 4);
10838 put_arm_insn (htab, output_bfd, plt0_entry[2],
10839 splt->contents + 8);
10840 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
10841
10842 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
10843 rel.r_offset = plt_address + 12;
10844 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10845 rel.r_addend = 0;
10846 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
10847 htab->srelplt2->contents);
10848 }
10849 else
10850 {
10851 got_displacement = got_address - (plt_address + 16);
10852
10853 plt0_entry = elf32_arm_plt0_entry;
10854 put_arm_insn (htab, output_bfd, plt0_entry[0],
10855 splt->contents + 0);
10856 put_arm_insn (htab, output_bfd, plt0_entry[1],
10857 splt->contents + 4);
10858 put_arm_insn (htab, output_bfd, plt0_entry[2],
10859 splt->contents + 8);
10860 put_arm_insn (htab, output_bfd, plt0_entry[3],
10861 splt->contents + 12);
10862
10863 #ifdef FOUR_WORD_PLT
10864 /* The displacement value goes in the otherwise-unused
10865 last word of the second entry. */
10866 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
10867 #else
10868 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
10869 #endif
10870 }
10871 }
10872
10873 /* UnixWare sets the entsize of .plt to 4, although that doesn't
10874 really seem like the right value. */
10875 if (splt->output_section->owner == output_bfd)
10876 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
10877
10878 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
10879 {
10880 /* Correct the .rel(a).plt.unloaded relocations. They will have
10881 incorrect symbol indexes. */
10882 int num_plts;
10883 unsigned char *p;
10884
10885 num_plts = ((htab->splt->size - htab->plt_header_size)
10886 / htab->plt_entry_size);
10887 p = htab->srelplt2->contents + RELOC_SIZE (htab);
10888
10889 for (; num_plts; num_plts--)
10890 {
10891 Elf_Internal_Rela rel;
10892
10893 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10894 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10895 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10896 p += RELOC_SIZE (htab);
10897
10898 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10899 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10900 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10901 p += RELOC_SIZE (htab);
10902 }
10903 }
10904 }
10905
10906 /* Fill in the first three entries in the global offset table. */
10907 if (sgot)
10908 {
10909 if (sgot->size > 0)
10910 {
10911 if (sdyn == NULL)
10912 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
10913 else
10914 bfd_put_32 (output_bfd,
10915 sdyn->output_section->vma + sdyn->output_offset,
10916 sgot->contents);
10917 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
10918 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
10919 }
10920
10921 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
10922 }
10923
10924 return TRUE;
10925 }
10926
10927 static void
10928 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10929 {
10930 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10931 struct elf32_arm_link_hash_table *globals;
10932
10933 i_ehdrp = elf_elfheader (abfd);
10934
10935 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
10936 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
10937 else
10938 i_ehdrp->e_ident[EI_OSABI] = 0;
10939 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
10940
10941 if (link_info)
10942 {
10943 globals = elf32_arm_hash_table (link_info);
10944 if (globals->byteswap_code)
10945 i_ehdrp->e_flags |= EF_ARM_BE8;
10946 }
10947 }
10948
10949 static enum elf_reloc_type_class
10950 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
10951 {
10952 switch ((int) ELF32_R_TYPE (rela->r_info))
10953 {
10954 case R_ARM_RELATIVE:
10955 return reloc_class_relative;
10956 case R_ARM_JUMP_SLOT:
10957 return reloc_class_plt;
10958 case R_ARM_COPY:
10959 return reloc_class_copy;
10960 default:
10961 return reloc_class_normal;
10962 }
10963 }
10964
10965 /* Set the right machine number for an Arm ELF file. */
10966
10967 static bfd_boolean
10968 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
10969 {
10970 if (hdr->sh_type == SHT_NOTE)
10971 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
10972
10973 return TRUE;
10974 }
10975
10976 static void
10977 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
10978 {
10979 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
10980 }
10981
10982 /* Return TRUE if this is an unwinding table entry. */
10983
10984 static bfd_boolean
10985 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
10986 {
10987 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
10988 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
10989 }
10990
10991
10992 /* Set the type and flags for an ARM section. We do this by
10993 the section name, which is a hack, but ought to work. */
10994
10995 static bfd_boolean
10996 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
10997 {
10998 const char * name;
10999
11000 name = bfd_get_section_name (abfd, sec);
11001
11002 if (is_arm_elf_unwind_section_name (abfd, name))
11003 {
11004 hdr->sh_type = SHT_ARM_EXIDX;
11005 hdr->sh_flags |= SHF_LINK_ORDER;
11006 }
11007 return TRUE;
11008 }
11009
11010 /* Handle an ARM specific section when reading an object file. This is
11011 called when bfd_section_from_shdr finds a section with an unknown
11012 type. */
11013
11014 static bfd_boolean
11015 elf32_arm_section_from_shdr (bfd *abfd,
11016 Elf_Internal_Shdr * hdr,
11017 const char *name,
11018 int shindex)
11019 {
11020 /* There ought to be a place to keep ELF backend specific flags, but
11021 at the moment there isn't one. We just keep track of the
11022 sections by their name, instead. Fortunately, the ABI gives
11023 names for all the ARM specific sections, so we will probably get
11024 away with this. */
11025 switch (hdr->sh_type)
11026 {
11027 case SHT_ARM_EXIDX:
11028 case SHT_ARM_PREEMPTMAP:
11029 case SHT_ARM_ATTRIBUTES:
11030 break;
11031
11032 default:
11033 return FALSE;
11034 }
11035
11036 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
11037 return FALSE;
11038
11039 return TRUE;
11040 }
11041
11042 /* A structure used to record a list of sections, independently
11043 of the next and prev fields in the asection structure. */
11044 typedef struct section_list
11045 {
11046 asection * sec;
11047 struct section_list * next;
11048 struct section_list * prev;
11049 }
11050 section_list;
11051
11052 /* Unfortunately we need to keep a list of sections for which
11053 an _arm_elf_section_data structure has been allocated. This
11054 is because it is possible for functions like elf32_arm_write_section
11055 to be called on a section which has had an elf_data_structure
11056 allocated for it (and so the used_by_bfd field is valid) but
11057 for which the ARM extended version of this structure - the
11058 _arm_elf_section_data structure - has not been allocated. */
11059 static section_list * sections_with_arm_elf_section_data = NULL;
11060
11061 static void
11062 record_section_with_arm_elf_section_data (asection * sec)
11063 {
11064 struct section_list * entry;
11065
11066 entry = bfd_malloc (sizeof (* entry));
11067 if (entry == NULL)
11068 return;
11069 entry->sec = sec;
11070 entry->next = sections_with_arm_elf_section_data;
11071 entry->prev = NULL;
11072 if (entry->next != NULL)
11073 entry->next->prev = entry;
11074 sections_with_arm_elf_section_data = entry;
11075 }
11076
11077 static struct section_list *
11078 find_arm_elf_section_entry (asection * sec)
11079 {
11080 struct section_list * entry;
11081 static struct section_list * last_entry = NULL;
11082
11083 /* This is a short cut for the typical case where the sections are added
11084 to the sections_with_arm_elf_section_data list in forward order and
11085 then looked up here in backwards order. This makes a real difference
11086 to the ld-srec/sec64k.exp linker test. */
11087 entry = sections_with_arm_elf_section_data;
11088 if (last_entry != NULL)
11089 {
11090 if (last_entry->sec == sec)
11091 entry = last_entry;
11092 else if (last_entry->next != NULL
11093 && last_entry->next->sec == sec)
11094 entry = last_entry->next;
11095 }
11096
11097 for (; entry; entry = entry->next)
11098 if (entry->sec == sec)
11099 break;
11100
11101 if (entry)
11102 /* Record the entry prior to this one - it is the entry we are most
11103 likely to want to locate next time. Also this way if we have been
11104 called from unrecord_section_with_arm_elf_section_data() we will not
11105 be caching a pointer that is about to be freed. */
11106 last_entry = entry->prev;
11107
11108 return entry;
11109 }
11110
11111 static _arm_elf_section_data *
11112 get_arm_elf_section_data (asection * sec)
11113 {
11114 struct section_list * entry;
11115
11116 entry = find_arm_elf_section_entry (sec);
11117
11118 if (entry)
11119 return elf32_arm_section_data (entry->sec);
11120 else
11121 return NULL;
11122 }
11123
11124 static void
11125 unrecord_section_with_arm_elf_section_data (asection * sec)
11126 {
11127 struct section_list * entry;
11128
11129 entry = find_arm_elf_section_entry (sec);
11130
11131 if (entry)
11132 {
11133 if (entry->prev != NULL)
11134 entry->prev->next = entry->next;
11135 if (entry->next != NULL)
11136 entry->next->prev = entry->prev;
11137 if (entry == sections_with_arm_elf_section_data)
11138 sections_with_arm_elf_section_data = entry->next;
11139 free (entry);
11140 }
11141 }
11142
11143
11144 typedef struct
11145 {
11146 void *finfo;
11147 struct bfd_link_info *info;
11148 asection *sec;
11149 int sec_shndx;
11150 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11151 asection *, struct elf_link_hash_entry *);
11152 } output_arch_syminfo;
11153
11154 enum map_symbol_type
11155 {
11156 ARM_MAP_ARM,
11157 ARM_MAP_THUMB,
11158 ARM_MAP_DATA
11159 };
11160
11161
11162 /* Output a single mapping symbol. */
11163
11164 static bfd_boolean
11165 elf32_arm_output_map_sym (output_arch_syminfo *osi,
11166 enum map_symbol_type type,
11167 bfd_vma offset)
11168 {
11169 static const char *names[3] = {"$a", "$t", "$d"};
11170 struct elf32_arm_link_hash_table *htab;
11171 Elf_Internal_Sym sym;
11172
11173 htab = elf32_arm_hash_table (osi->info);
11174 sym.st_value = osi->sec->output_section->vma
11175 + osi->sec->output_offset
11176 + offset;
11177 sym.st_size = 0;
11178 sym.st_other = 0;
11179 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
11180 sym.st_shndx = osi->sec_shndx;
11181 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
11182 return FALSE;
11183 return TRUE;
11184 }
11185
11186
11187 /* Output mapping symbols for PLT entries associated with H. */
11188
11189 static bfd_boolean
11190 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11191 {
11192 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11193 struct elf32_arm_link_hash_table *htab;
11194 struct elf32_arm_link_hash_entry *eh;
11195 bfd_vma addr;
11196
11197 htab = elf32_arm_hash_table (osi->info);
11198
11199 if (h->root.type == bfd_link_hash_indirect)
11200 return TRUE;
11201
11202 if (h->root.type == bfd_link_hash_warning)
11203 /* When warning symbols are created, they **replace** the "real"
11204 entry in the hash table, thus we never get to see the real
11205 symbol in a hash traversal. So look at it now. */
11206 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11207
11208 if (h->plt.offset == (bfd_vma) -1)
11209 return TRUE;
11210
11211 eh = (struct elf32_arm_link_hash_entry *) h;
11212 addr = h->plt.offset;
11213 if (htab->symbian_p)
11214 {
11215 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11216 return FALSE;
11217 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11218 return FALSE;
11219 }
11220 else if (htab->vxworks_p)
11221 {
11222 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11223 return FALSE;
11224 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11225 return FALSE;
11226 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
11227 return FALSE;
11228 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
11229 return FALSE;
11230 }
11231 else
11232 {
11233 bfd_signed_vma thumb_refs;
11234
11235 thumb_refs = eh->plt_thumb_refcount;
11236 if (!htab->use_blx)
11237 thumb_refs += eh->plt_maybe_thumb_refcount;
11238
11239 if (thumb_refs > 0)
11240 {
11241 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
11242 return FALSE;
11243 }
11244 #ifdef FOUR_WORD_PLT
11245 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11246 return FALSE;
11247 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11248 return FALSE;
11249 #else
11250 /* A three-word PLT with no Thumb thunk contains only Arm code,
11251 so only need to output a mapping symbol for the first PLT entry and
11252 entries with thumb thunks. */
11253 if (thumb_refs > 0 || addr == 20)
11254 {
11255 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11256 return FALSE;
11257 }
11258 #endif
11259 }
11260
11261 return TRUE;
11262 }
11263
11264 /* Output a single local symbol for a generated stub. */
11265
11266 static bfd_boolean
11267 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
11268 bfd_vma offset, bfd_vma size)
11269 {
11270 struct elf32_arm_link_hash_table *htab;
11271 Elf_Internal_Sym sym;
11272
11273 htab = elf32_arm_hash_table (osi->info);
11274 sym.st_value = osi->sec->output_section->vma
11275 + osi->sec->output_offset
11276 + offset;
11277 sym.st_size = size;
11278 sym.st_other = 0;
11279 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
11280 sym.st_shndx = osi->sec_shndx;
11281 if (!osi->func (osi->finfo, name, &sym, osi->sec, NULL))
11282 return FALSE;
11283 return TRUE;
11284 }
11285
11286 static bfd_boolean
11287 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
11288 void * in_arg)
11289 {
11290 struct elf32_arm_stub_hash_entry *stub_entry;
11291 struct bfd_link_info *info;
11292 struct elf32_arm_link_hash_table *htab;
11293 asection *stub_sec;
11294 bfd_vma addr;
11295 char *stub_name;
11296 output_arch_syminfo *osi;
11297
11298 /* Massage our args to the form they really have. */
11299 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
11300 osi = (output_arch_syminfo *) in_arg;
11301
11302 info = osi->info;
11303
11304 htab = elf32_arm_hash_table (info);
11305 stub_sec = stub_entry->stub_sec;
11306
11307 /* Ensure this stub is attached to the current section being
11308 processed. */
11309 if (stub_sec != osi->sec)
11310 return TRUE;
11311
11312 addr = (bfd_vma) stub_entry->stub_offset;
11313 stub_name = stub_entry->output_name;
11314
11315 switch (stub_entry->stub_type)
11316 {
11317 case arm_stub_long_branch:
11318 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 8))
11319 return FALSE;
11320 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11321 return FALSE;
11322 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11323 return FALSE;
11324 break;
11325 case arm_thumb_v4t_stub_long_branch:
11326 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 12))
11327 return FALSE;
11328 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11329 return FALSE;
11330 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11331 return FALSE;
11332 break;
11333 case arm_thumb_thumb_stub_long_branch:
11334 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 16))
11335 return FALSE;
11336 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
11337 return FALSE;
11338 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11339 return FALSE;
11340 break;
11341 case arm_thumb_arm_v4t_stub_long_branch:
11342 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 20))
11343 return FALSE;
11344 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
11345 return FALSE;
11346 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 8))
11347 return FALSE;
11348 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
11349 return FALSE;
11350 break;
11351 case arm_thumb_arm_v4t_stub_short_branch:
11352 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 8))
11353 return FALSE;
11354 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 4))
11355 return FALSE;
11356 break;
11357 case arm_stub_pic_long_branch:
11358 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 12))
11359 return FALSE;
11360 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11361 return FALSE;
11362 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11363 return FALSE;
11364 break;
11365 default:
11366 BFD_FAIL ();
11367 }
11368
11369 return TRUE;
11370 }
11371
11372 /* Output mapping symbols for linker generated sections. */
11373
11374 static bfd_boolean
11375 elf32_arm_output_arch_local_syms (bfd *output_bfd,
11376 struct bfd_link_info *info,
11377 void *finfo,
11378 bfd_boolean (*func) (void *, const char *,
11379 Elf_Internal_Sym *,
11380 asection *,
11381 struct elf_link_hash_entry *))
11382 {
11383 output_arch_syminfo osi;
11384 struct elf32_arm_link_hash_table *htab;
11385 bfd_vma offset;
11386 bfd_size_type size;
11387
11388 htab = elf32_arm_hash_table (info);
11389 check_use_blx (htab);
11390
11391 osi.finfo = finfo;
11392 osi.info = info;
11393 osi.func = func;
11394
11395 /* ARM->Thumb glue. */
11396 if (htab->arm_glue_size > 0)
11397 {
11398 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11399 ARM2THUMB_GLUE_SECTION_NAME);
11400
11401 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11402 (output_bfd, osi.sec->output_section);
11403 if (info->shared || htab->root.is_relocatable_executable
11404 || htab->pic_veneer)
11405 size = ARM2THUMB_PIC_GLUE_SIZE;
11406 else if (htab->use_blx)
11407 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
11408 else
11409 size = ARM2THUMB_STATIC_GLUE_SIZE;
11410
11411 for (offset = 0; offset < htab->arm_glue_size; offset += size)
11412 {
11413 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
11414 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
11415 }
11416 }
11417
11418 /* Thumb->ARM glue. */
11419 if (htab->thumb_glue_size > 0)
11420 {
11421 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11422 THUMB2ARM_GLUE_SECTION_NAME);
11423
11424 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11425 (output_bfd, osi.sec->output_section);
11426 size = THUMB2ARM_GLUE_SIZE;
11427
11428 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
11429 {
11430 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
11431 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
11432 }
11433 }
11434
11435 /* ARMv4 BX veneers. */
11436 if (htab->bx_glue_size > 0)
11437 {
11438 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11439 ARM_BX_GLUE_SECTION_NAME);
11440
11441 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11442 (output_bfd, osi.sec->output_section);
11443
11444 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
11445 }
11446
11447 /* Long calls stubs. */
11448 if (htab->stub_bfd && htab->stub_bfd->sections)
11449 {
11450 asection* stub_sec;
11451
11452 for (stub_sec = htab->stub_bfd->sections;
11453 stub_sec != NULL;
11454 stub_sec = stub_sec->next)
11455 {
11456 /* Ignore non-stub sections. */
11457 if (!strstr (stub_sec->name, STUB_SUFFIX))
11458 continue;
11459
11460 osi.sec = stub_sec;
11461
11462 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11463 (output_bfd, osi.sec->output_section);
11464
11465 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
11466 }
11467 }
11468
11469 /* Finally, output mapping symbols for the PLT. */
11470 if (!htab->splt || htab->splt->size == 0)
11471 return TRUE;
11472
11473 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11474 htab->splt->output_section);
11475 osi.sec = htab->splt;
11476 /* Output mapping symbols for the plt header. SymbianOS does not have a
11477 plt header. */
11478 if (htab->vxworks_p)
11479 {
11480 /* VxWorks shared libraries have no PLT header. */
11481 if (!info->shared)
11482 {
11483 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11484 return FALSE;
11485 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
11486 return FALSE;
11487 }
11488 }
11489 else if (!htab->symbian_p)
11490 {
11491 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11492 return FALSE;
11493 #ifndef FOUR_WORD_PLT
11494 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
11495 return FALSE;
11496 #endif
11497 }
11498
11499 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
11500 return TRUE;
11501 }
11502
11503 /* Allocate target specific section data. */
11504
11505 static bfd_boolean
11506 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
11507 {
11508 if (!sec->used_by_bfd)
11509 {
11510 _arm_elf_section_data *sdata;
11511 bfd_size_type amt = sizeof (*sdata);
11512
11513 sdata = bfd_zalloc (abfd, amt);
11514 if (sdata == NULL)
11515 return FALSE;
11516 sec->used_by_bfd = sdata;
11517 }
11518
11519 record_section_with_arm_elf_section_data (sec);
11520
11521 return _bfd_elf_new_section_hook (abfd, sec);
11522 }
11523
11524
11525 /* Used to order a list of mapping symbols by address. */
11526
11527 static int
11528 elf32_arm_compare_mapping (const void * a, const void * b)
11529 {
11530 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
11531 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
11532
11533 if (amap->vma > bmap->vma)
11534 return 1;
11535 else if (amap->vma < bmap->vma)
11536 return -1;
11537 else if (amap->type > bmap->type)
11538 /* Ensure results do not depend on the host qsort for objects with
11539 multiple mapping symbols at the same address by sorting on type
11540 after vma. */
11541 return 1;
11542 else if (amap->type < bmap->type)
11543 return -1;
11544 else
11545 return 0;
11546 }
11547
11548
11549 /* Do code byteswapping. Return FALSE afterwards so that the section is
11550 written out as normal. */
11551
11552 static bfd_boolean
11553 elf32_arm_write_section (bfd *output_bfd,
11554 struct bfd_link_info *link_info,
11555 asection *sec,
11556 bfd_byte *contents)
11557 {
11558 int mapcount, errcount;
11559 _arm_elf_section_data *arm_data;
11560 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
11561 elf32_arm_section_map *map;
11562 elf32_vfp11_erratum_list *errnode;
11563 bfd_vma ptr;
11564 bfd_vma end;
11565 bfd_vma offset = sec->output_section->vma + sec->output_offset;
11566 bfd_byte tmp;
11567 int i;
11568
11569 /* If this section has not been allocated an _arm_elf_section_data
11570 structure then we cannot record anything. */
11571 arm_data = get_arm_elf_section_data (sec);
11572 if (arm_data == NULL)
11573 return FALSE;
11574
11575 mapcount = arm_data->mapcount;
11576 map = arm_data->map;
11577 errcount = arm_data->erratumcount;
11578
11579 if (errcount != 0)
11580 {
11581 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
11582
11583 for (errnode = arm_data->erratumlist; errnode != 0;
11584 errnode = errnode->next)
11585 {
11586 bfd_vma index = errnode->vma - offset;
11587
11588 switch (errnode->type)
11589 {
11590 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
11591 {
11592 bfd_vma branch_to_veneer;
11593 /* Original condition code of instruction, plus bit mask for
11594 ARM B instruction. */
11595 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
11596 | 0x0a000000;
11597
11598 /* The instruction is before the label. */
11599 index -= 4;
11600
11601 /* Above offset included in -4 below. */
11602 branch_to_veneer = errnode->u.b.veneer->vma
11603 - errnode->vma - 4;
11604
11605 if ((signed) branch_to_veneer < -(1 << 25)
11606 || (signed) branch_to_veneer >= (1 << 25))
11607 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11608 "range"), output_bfd);
11609
11610 insn |= (branch_to_veneer >> 2) & 0xffffff;
11611 contents[endianflip ^ index] = insn & 0xff;
11612 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11613 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11614 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11615 }
11616 break;
11617
11618 case VFP11_ERRATUM_ARM_VENEER:
11619 {
11620 bfd_vma branch_from_veneer;
11621 unsigned int insn;
11622
11623 /* Take size of veneer into account. */
11624 branch_from_veneer = errnode->u.v.branch->vma
11625 - errnode->vma - 12;
11626
11627 if ((signed) branch_from_veneer < -(1 << 25)
11628 || (signed) branch_from_veneer >= (1 << 25))
11629 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11630 "range"), output_bfd);
11631
11632 /* Original instruction. */
11633 insn = errnode->u.v.branch->u.b.vfp_insn;
11634 contents[endianflip ^ index] = insn & 0xff;
11635 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11636 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11637 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11638
11639 /* Branch back to insn after original insn. */
11640 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
11641 contents[endianflip ^ (index + 4)] = insn & 0xff;
11642 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
11643 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
11644 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
11645 }
11646 break;
11647
11648 default:
11649 abort ();
11650 }
11651 }
11652 }
11653
11654 if (mapcount == 0)
11655 return FALSE;
11656
11657 if (globals->byteswap_code)
11658 {
11659 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
11660
11661 ptr = map[0].vma;
11662 for (i = 0; i < mapcount; i++)
11663 {
11664 if (i == mapcount - 1)
11665 end = sec->size;
11666 else
11667 end = map[i + 1].vma;
11668
11669 switch (map[i].type)
11670 {
11671 case 'a':
11672 /* Byte swap code words. */
11673 while (ptr + 3 < end)
11674 {
11675 tmp = contents[ptr];
11676 contents[ptr] = contents[ptr + 3];
11677 contents[ptr + 3] = tmp;
11678 tmp = contents[ptr + 1];
11679 contents[ptr + 1] = contents[ptr + 2];
11680 contents[ptr + 2] = tmp;
11681 ptr += 4;
11682 }
11683 break;
11684
11685 case 't':
11686 /* Byte swap code halfwords. */
11687 while (ptr + 1 < end)
11688 {
11689 tmp = contents[ptr];
11690 contents[ptr] = contents[ptr + 1];
11691 contents[ptr + 1] = tmp;
11692 ptr += 2;
11693 }
11694 break;
11695
11696 case 'd':
11697 /* Leave data alone. */
11698 break;
11699 }
11700 ptr = end;
11701 }
11702 }
11703
11704 free (map);
11705 arm_data->mapcount = 0;
11706 arm_data->mapsize = 0;
11707 arm_data->map = NULL;
11708 unrecord_section_with_arm_elf_section_data (sec);
11709
11710 return FALSE;
11711 }
11712
11713 static void
11714 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
11715 asection * sec,
11716 void * ignore ATTRIBUTE_UNUSED)
11717 {
11718 unrecord_section_with_arm_elf_section_data (sec);
11719 }
11720
11721 static bfd_boolean
11722 elf32_arm_close_and_cleanup (bfd * abfd)
11723 {
11724 if (abfd->sections)
11725 bfd_map_over_sections (abfd,
11726 unrecord_section_via_map_over_sections,
11727 NULL);
11728
11729 return _bfd_elf_close_and_cleanup (abfd);
11730 }
11731
11732 static bfd_boolean
11733 elf32_arm_bfd_free_cached_info (bfd * abfd)
11734 {
11735 if (abfd->sections)
11736 bfd_map_over_sections (abfd,
11737 unrecord_section_via_map_over_sections,
11738 NULL);
11739
11740 return _bfd_free_cached_info (abfd);
11741 }
11742
11743 /* Display STT_ARM_TFUNC symbols as functions. */
11744
11745 static void
11746 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
11747 asymbol *asym)
11748 {
11749 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
11750
11751 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
11752 elfsym->symbol.flags |= BSF_FUNCTION;
11753 }
11754
11755
11756 /* Mangle thumb function symbols as we read them in. */
11757
11758 static bfd_boolean
11759 elf32_arm_swap_symbol_in (bfd * abfd,
11760 const void *psrc,
11761 const void *pshn,
11762 Elf_Internal_Sym *dst)
11763 {
11764 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
11765 return FALSE;
11766
11767 /* New EABI objects mark thumb function symbols by setting the low bit of
11768 the address. Turn these into STT_ARM_TFUNC. */
11769 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
11770 && (dst->st_value & 1))
11771 {
11772 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
11773 dst->st_value &= ~(bfd_vma) 1;
11774 }
11775 return TRUE;
11776 }
11777
11778
11779 /* Mangle thumb function symbols as we write them out. */
11780
11781 static void
11782 elf32_arm_swap_symbol_out (bfd *abfd,
11783 const Elf_Internal_Sym *src,
11784 void *cdst,
11785 void *shndx)
11786 {
11787 Elf_Internal_Sym newsym;
11788
11789 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
11790 of the address set, as per the new EABI. We do this unconditionally
11791 because objcopy does not set the elf header flags until after
11792 it writes out the symbol table. */
11793 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
11794 {
11795 newsym = *src;
11796 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
11797 if (newsym.st_shndx != SHN_UNDEF)
11798 {
11799 /* Do this only for defined symbols. At link type, the static
11800 linker will simulate the work of dynamic linker of resolving
11801 symbols and will carry over the thumbness of found symbols to
11802 the output symbol table. It's not clear how it happens, but
11803 the thumbness of undefined symbols can well be different at
11804 runtime, and writing '1' for them will be confusing for users
11805 and possibly for dynamic linker itself.
11806 */
11807 newsym.st_value |= 1;
11808 }
11809
11810 src = &newsym;
11811 }
11812 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
11813 }
11814
11815 /* Add the PT_ARM_EXIDX program header. */
11816
11817 static bfd_boolean
11818 elf32_arm_modify_segment_map (bfd *abfd,
11819 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11820 {
11821 struct elf_segment_map *m;
11822 asection *sec;
11823
11824 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11825 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11826 {
11827 /* If there is already a PT_ARM_EXIDX header, then we do not
11828 want to add another one. This situation arises when running
11829 "strip"; the input binary already has the header. */
11830 m = elf_tdata (abfd)->segment_map;
11831 while (m && m->p_type != PT_ARM_EXIDX)
11832 m = m->next;
11833 if (!m)
11834 {
11835 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
11836 if (m == NULL)
11837 return FALSE;
11838 m->p_type = PT_ARM_EXIDX;
11839 m->count = 1;
11840 m->sections[0] = sec;
11841
11842 m->next = elf_tdata (abfd)->segment_map;
11843 elf_tdata (abfd)->segment_map = m;
11844 }
11845 }
11846
11847 return TRUE;
11848 }
11849
11850 /* We may add a PT_ARM_EXIDX program header. */
11851
11852 static int
11853 elf32_arm_additional_program_headers (bfd *abfd,
11854 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11855 {
11856 asection *sec;
11857
11858 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11859 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11860 return 1;
11861 else
11862 return 0;
11863 }
11864
11865 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
11866
11867 static bfd_boolean
11868 elf32_arm_is_function_type (unsigned int type)
11869 {
11870 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
11871 }
11872
11873 /* We use this to override swap_symbol_in and swap_symbol_out. */
11874 const struct elf_size_info elf32_arm_size_info =
11875 {
11876 sizeof (Elf32_External_Ehdr),
11877 sizeof (Elf32_External_Phdr),
11878 sizeof (Elf32_External_Shdr),
11879 sizeof (Elf32_External_Rel),
11880 sizeof (Elf32_External_Rela),
11881 sizeof (Elf32_External_Sym),
11882 sizeof (Elf32_External_Dyn),
11883 sizeof (Elf_External_Note),
11884 4,
11885 1,
11886 32, 2,
11887 ELFCLASS32, EV_CURRENT,
11888 bfd_elf32_write_out_phdrs,
11889 bfd_elf32_write_shdrs_and_ehdr,
11890 bfd_elf32_checksum_contents,
11891 bfd_elf32_write_relocs,
11892 elf32_arm_swap_symbol_in,
11893 elf32_arm_swap_symbol_out,
11894 bfd_elf32_slurp_reloc_table,
11895 bfd_elf32_slurp_symbol_table,
11896 bfd_elf32_swap_dyn_in,
11897 bfd_elf32_swap_dyn_out,
11898 bfd_elf32_swap_reloc_in,
11899 bfd_elf32_swap_reloc_out,
11900 bfd_elf32_swap_reloca_in,
11901 bfd_elf32_swap_reloca_out
11902 };
11903
11904 #define ELF_ARCH bfd_arch_arm
11905 #define ELF_MACHINE_CODE EM_ARM
11906 #ifdef __QNXTARGET__
11907 #define ELF_MAXPAGESIZE 0x1000
11908 #else
11909 #define ELF_MAXPAGESIZE 0x8000
11910 #endif
11911 #define ELF_MINPAGESIZE 0x1000
11912 #define ELF_COMMONPAGESIZE 0x1000
11913
11914 #define bfd_elf32_mkobject elf32_arm_mkobject
11915
11916 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
11917 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
11918 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
11919 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
11920 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
11921 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
11922 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
11923 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
11924 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
11925 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
11926 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
11927 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
11928 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
11929 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
11930
11931 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
11932 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
11933 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
11934 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
11935 #define elf_backend_check_relocs elf32_arm_check_relocs
11936 #define elf_backend_relocate_section elf32_arm_relocate_section
11937 #define elf_backend_write_section elf32_arm_write_section
11938 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
11939 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
11940 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
11941 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
11942 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
11943 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
11944 #define elf_backend_post_process_headers elf32_arm_post_process_headers
11945 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
11946 #define elf_backend_object_p elf32_arm_object_p
11947 #define elf_backend_section_flags elf32_arm_section_flags
11948 #define elf_backend_fake_sections elf32_arm_fake_sections
11949 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
11950 #define elf_backend_final_write_processing elf32_arm_final_write_processing
11951 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
11952 #define elf_backend_symbol_processing elf32_arm_symbol_processing
11953 #define elf_backend_size_info elf32_arm_size_info
11954 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
11955 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
11956 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
11957 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
11958 #define elf_backend_is_function_type elf32_arm_is_function_type
11959
11960 #define elf_backend_can_refcount 1
11961 #define elf_backend_can_gc_sections 1
11962 #define elf_backend_plt_readonly 1
11963 #define elf_backend_want_got_plt 1
11964 #define elf_backend_want_plt_sym 0
11965 #define elf_backend_may_use_rel_p 1
11966 #define elf_backend_may_use_rela_p 0
11967 #define elf_backend_default_use_rela_p 0
11968
11969 #define elf_backend_got_header_size 12
11970
11971 #undef elf_backend_obj_attrs_vendor
11972 #define elf_backend_obj_attrs_vendor "aeabi"
11973 #undef elf_backend_obj_attrs_section
11974 #define elf_backend_obj_attrs_section ".ARM.attributes"
11975 #undef elf_backend_obj_attrs_arg_type
11976 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
11977 #undef elf_backend_obj_attrs_section_type
11978 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
11979
11980 #include "elf32-target.h"
11981
11982 /* VxWorks Targets. */
11983
11984 #undef TARGET_LITTLE_SYM
11985 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
11986 #undef TARGET_LITTLE_NAME
11987 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
11988 #undef TARGET_BIG_SYM
11989 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
11990 #undef TARGET_BIG_NAME
11991 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
11992
11993 /* Like elf32_arm_link_hash_table_create -- but overrides
11994 appropriately for VxWorks. */
11995
11996 static struct bfd_link_hash_table *
11997 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
11998 {
11999 struct bfd_link_hash_table *ret;
12000
12001 ret = elf32_arm_link_hash_table_create (abfd);
12002 if (ret)
12003 {
12004 struct elf32_arm_link_hash_table *htab
12005 = (struct elf32_arm_link_hash_table *) ret;
12006 htab->use_rel = 0;
12007 htab->vxworks_p = 1;
12008 }
12009 return ret;
12010 }
12011
12012 static void
12013 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
12014 {
12015 elf32_arm_final_write_processing (abfd, linker);
12016 elf_vxworks_final_write_processing (abfd, linker);
12017 }
12018
12019 #undef elf32_bed
12020 #define elf32_bed elf32_arm_vxworks_bed
12021
12022 #undef bfd_elf32_bfd_link_hash_table_create
12023 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
12024 #undef elf_backend_add_symbol_hook
12025 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
12026 #undef elf_backend_final_write_processing
12027 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
12028 #undef elf_backend_emit_relocs
12029 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
12030
12031 #undef elf_backend_may_use_rel_p
12032 #define elf_backend_may_use_rel_p 0
12033 #undef elf_backend_may_use_rela_p
12034 #define elf_backend_may_use_rela_p 1
12035 #undef elf_backend_default_use_rela_p
12036 #define elf_backend_default_use_rela_p 1
12037 #undef elf_backend_want_plt_sym
12038 #define elf_backend_want_plt_sym 1
12039 #undef ELF_MAXPAGESIZE
12040 #define ELF_MAXPAGESIZE 0x1000
12041
12042 #include "elf32-target.h"
12043
12044
12045 /* Symbian OS Targets. */
12046
12047 #undef TARGET_LITTLE_SYM
12048 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
12049 #undef TARGET_LITTLE_NAME
12050 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
12051 #undef TARGET_BIG_SYM
12052 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
12053 #undef TARGET_BIG_NAME
12054 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
12055
12056 /* Like elf32_arm_link_hash_table_create -- but overrides
12057 appropriately for Symbian OS. */
12058
12059 static struct bfd_link_hash_table *
12060 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
12061 {
12062 struct bfd_link_hash_table *ret;
12063
12064 ret = elf32_arm_link_hash_table_create (abfd);
12065 if (ret)
12066 {
12067 struct elf32_arm_link_hash_table *htab
12068 = (struct elf32_arm_link_hash_table *)ret;
12069 /* There is no PLT header for Symbian OS. */
12070 htab->plt_header_size = 0;
12071 /* The PLT entries are each one instruction and one word. */
12072 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
12073 htab->symbian_p = 1;
12074 /* Symbian uses armv5t or above, so use_blx is always true. */
12075 htab->use_blx = 1;
12076 htab->root.is_relocatable_executable = 1;
12077 }
12078 return ret;
12079 }
12080
12081 static const struct bfd_elf_special_section
12082 elf32_arm_symbian_special_sections[] =
12083 {
12084 /* In a BPABI executable, the dynamic linking sections do not go in
12085 the loadable read-only segment. The post-linker may wish to
12086 refer to these sections, but they are not part of the final
12087 program image. */
12088 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
12089 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
12090 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
12091 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
12092 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
12093 /* These sections do not need to be writable as the SymbianOS
12094 postlinker will arrange things so that no dynamic relocation is
12095 required. */
12096 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
12097 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
12098 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
12099 { NULL, 0, 0, 0, 0 }
12100 };
12101
12102 static void
12103 elf32_arm_symbian_begin_write_processing (bfd *abfd,
12104 struct bfd_link_info *link_info)
12105 {
12106 /* BPABI objects are never loaded directly by an OS kernel; they are
12107 processed by a postlinker first, into an OS-specific format. If
12108 the D_PAGED bit is set on the file, BFD will align segments on
12109 page boundaries, so that an OS can directly map the file. With
12110 BPABI objects, that just results in wasted space. In addition,
12111 because we clear the D_PAGED bit, map_sections_to_segments will
12112 recognize that the program headers should not be mapped into any
12113 loadable segment. */
12114 abfd->flags &= ~D_PAGED;
12115 elf32_arm_begin_write_processing (abfd, link_info);
12116 }
12117
12118 static bfd_boolean
12119 elf32_arm_symbian_modify_segment_map (bfd *abfd,
12120 struct bfd_link_info *info)
12121 {
12122 struct elf_segment_map *m;
12123 asection *dynsec;
12124
12125 /* BPABI shared libraries and executables should have a PT_DYNAMIC
12126 segment. However, because the .dynamic section is not marked
12127 with SEC_LOAD, the generic ELF code will not create such a
12128 segment. */
12129 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
12130 if (dynsec)
12131 {
12132 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
12133 if (m->p_type == PT_DYNAMIC)
12134 break;
12135
12136 if (m == NULL)
12137 {
12138 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12139 m->next = elf_tdata (abfd)->segment_map;
12140 elf_tdata (abfd)->segment_map = m;
12141 }
12142 }
12143
12144 /* Also call the generic arm routine. */
12145 return elf32_arm_modify_segment_map (abfd, info);
12146 }
12147
12148 /* Return address for Ith PLT stub in section PLT, for relocation REL
12149 or (bfd_vma) -1 if it should not be included. */
12150
12151 static bfd_vma
12152 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
12153 const arelent *rel ATTRIBUTE_UNUSED)
12154 {
12155 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
12156 }
12157
12158
12159 #undef elf32_bed
12160 #define elf32_bed elf32_arm_symbian_bed
12161
12162 /* The dynamic sections are not allocated on SymbianOS; the postlinker
12163 will process them and then discard them. */
12164 #undef ELF_DYNAMIC_SEC_FLAGS
12165 #define ELF_DYNAMIC_SEC_FLAGS \
12166 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
12167
12168 #undef elf_backend_add_symbol_hook
12169 #undef elf_backend_emit_relocs
12170
12171 #undef bfd_elf32_bfd_link_hash_table_create
12172 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
12173 #undef elf_backend_special_sections
12174 #define elf_backend_special_sections elf32_arm_symbian_special_sections
12175 #undef elf_backend_begin_write_processing
12176 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12177 #undef elf_backend_final_write_processing
12178 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12179
12180 #undef elf_backend_modify_segment_map
12181 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12182
12183 /* There is no .got section for BPABI objects, and hence no header. */
12184 #undef elf_backend_got_header_size
12185 #define elf_backend_got_header_size 0
12186
12187 /* Similarly, there is no .got.plt section. */
12188 #undef elf_backend_want_got_plt
12189 #define elf_backend_want_got_plt 0
12190
12191 #undef elf_backend_plt_sym_val
12192 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12193
12194 #undef elf_backend_may_use_rel_p
12195 #define elf_backend_may_use_rel_p 1
12196 #undef elf_backend_may_use_rela_p
12197 #define elf_backend_may_use_rela_p 0
12198 #undef elf_backend_default_use_rela_p
12199 #define elf_backend_default_use_rela_p 0
12200 #undef elf_backend_want_plt_sym
12201 #define elf_backend_want_plt_sym 0
12202 #undef ELF_MAXPAGESIZE
12203 #define ELF_MAXPAGESIZE 0x8000
12204
12205 #include "elf32-target.h"
This page took 0.331233 seconds and 4 git commands to generate.