daily update
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include <limits.h>
24
25 #include "bfd.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-vxworks.h"
30 #include "elf/arm.h"
31
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
40 ((HTAB)->use_rel \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
43
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
47 ((HTAB)->use_rel \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
50
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
54 ((HTAB)->use_rel \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
57
58 #define elf_info_to_howto 0
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
60
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
63
64 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
65 struct bfd_link_info *link_info,
66 asection *sec,
67 bfd_byte *contents);
68
69 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
71 in that slot. */
72
73 static reloc_howto_type elf32_arm_howto_table_1[] =
74 {
75 /* No relocation. */
76 HOWTO (R_ARM_NONE, /* type */
77 0, /* rightshift */
78 0, /* size (0 = byte, 1 = short, 2 = long) */
79 0, /* bitsize */
80 FALSE, /* pc_relative */
81 0, /* bitpos */
82 complain_overflow_dont,/* complain_on_overflow */
83 bfd_elf_generic_reloc, /* special_function */
84 "R_ARM_NONE", /* name */
85 FALSE, /* partial_inplace */
86 0, /* src_mask */
87 0, /* dst_mask */
88 FALSE), /* pcrel_offset */
89
90 HOWTO (R_ARM_PC24, /* type */
91 2, /* rightshift */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
93 24, /* bitsize */
94 TRUE, /* pc_relative */
95 0, /* bitpos */
96 complain_overflow_signed,/* complain_on_overflow */
97 bfd_elf_generic_reloc, /* special_function */
98 "R_ARM_PC24", /* name */
99 FALSE, /* partial_inplace */
100 0x00ffffff, /* src_mask */
101 0x00ffffff, /* dst_mask */
102 TRUE), /* pcrel_offset */
103
104 /* 32 bit absolute */
105 HOWTO (R_ARM_ABS32, /* type */
106 0, /* rightshift */
107 2, /* size (0 = byte, 1 = short, 2 = long) */
108 32, /* bitsize */
109 FALSE, /* pc_relative */
110 0, /* bitpos */
111 complain_overflow_bitfield,/* complain_on_overflow */
112 bfd_elf_generic_reloc, /* special_function */
113 "R_ARM_ABS32", /* name */
114 FALSE, /* partial_inplace */
115 0xffffffff, /* src_mask */
116 0xffffffff, /* dst_mask */
117 FALSE), /* pcrel_offset */
118
119 /* standard 32bit pc-relative reloc */
120 HOWTO (R_ARM_REL32, /* type */
121 0, /* rightshift */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
123 32, /* bitsize */
124 TRUE, /* pc_relative */
125 0, /* bitpos */
126 complain_overflow_bitfield,/* complain_on_overflow */
127 bfd_elf_generic_reloc, /* special_function */
128 "R_ARM_REL32", /* name */
129 FALSE, /* partial_inplace */
130 0xffffffff, /* src_mask */
131 0xffffffff, /* dst_mask */
132 TRUE), /* pcrel_offset */
133
134 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135 HOWTO (R_ARM_LDR_PC_G0, /* type */
136 0, /* rightshift */
137 0, /* size (0 = byte, 1 = short, 2 = long) */
138 32, /* bitsize */
139 TRUE, /* pc_relative */
140 0, /* bitpos */
141 complain_overflow_dont,/* complain_on_overflow */
142 bfd_elf_generic_reloc, /* special_function */
143 "R_ARM_LDR_PC_G0", /* name */
144 FALSE, /* partial_inplace */
145 0xffffffff, /* src_mask */
146 0xffffffff, /* dst_mask */
147 TRUE), /* pcrel_offset */
148
149 /* 16 bit absolute */
150 HOWTO (R_ARM_ABS16, /* type */
151 0, /* rightshift */
152 1, /* size (0 = byte, 1 = short, 2 = long) */
153 16, /* bitsize */
154 FALSE, /* pc_relative */
155 0, /* bitpos */
156 complain_overflow_bitfield,/* complain_on_overflow */
157 bfd_elf_generic_reloc, /* special_function */
158 "R_ARM_ABS16", /* name */
159 FALSE, /* partial_inplace */
160 0x0000ffff, /* src_mask */
161 0x0000ffff, /* dst_mask */
162 FALSE), /* pcrel_offset */
163
164 /* 12 bit absolute */
165 HOWTO (R_ARM_ABS12, /* type */
166 0, /* rightshift */
167 2, /* size (0 = byte, 1 = short, 2 = long) */
168 12, /* bitsize */
169 FALSE, /* pc_relative */
170 0, /* bitpos */
171 complain_overflow_bitfield,/* complain_on_overflow */
172 bfd_elf_generic_reloc, /* special_function */
173 "R_ARM_ABS12", /* name */
174 FALSE, /* partial_inplace */
175 0x00000fff, /* src_mask */
176 0x00000fff, /* dst_mask */
177 FALSE), /* pcrel_offset */
178
179 HOWTO (R_ARM_THM_ABS5, /* type */
180 6, /* rightshift */
181 1, /* size (0 = byte, 1 = short, 2 = long) */
182 5, /* bitsize */
183 FALSE, /* pc_relative */
184 0, /* bitpos */
185 complain_overflow_bitfield,/* complain_on_overflow */
186 bfd_elf_generic_reloc, /* special_function */
187 "R_ARM_THM_ABS5", /* name */
188 FALSE, /* partial_inplace */
189 0x000007e0, /* src_mask */
190 0x000007e0, /* dst_mask */
191 FALSE), /* pcrel_offset */
192
193 /* 8 bit absolute */
194 HOWTO (R_ARM_ABS8, /* type */
195 0, /* rightshift */
196 0, /* size (0 = byte, 1 = short, 2 = long) */
197 8, /* bitsize */
198 FALSE, /* pc_relative */
199 0, /* bitpos */
200 complain_overflow_bitfield,/* complain_on_overflow */
201 bfd_elf_generic_reloc, /* special_function */
202 "R_ARM_ABS8", /* name */
203 FALSE, /* partial_inplace */
204 0x000000ff, /* src_mask */
205 0x000000ff, /* dst_mask */
206 FALSE), /* pcrel_offset */
207
208 HOWTO (R_ARM_SBREL32, /* type */
209 0, /* rightshift */
210 2, /* size (0 = byte, 1 = short, 2 = long) */
211 32, /* bitsize */
212 FALSE, /* pc_relative */
213 0, /* bitpos */
214 complain_overflow_dont,/* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_ARM_SBREL32", /* name */
217 FALSE, /* partial_inplace */
218 0xffffffff, /* src_mask */
219 0xffffffff, /* dst_mask */
220 FALSE), /* pcrel_offset */
221
222 HOWTO (R_ARM_THM_CALL, /* type */
223 1, /* rightshift */
224 2, /* size (0 = byte, 1 = short, 2 = long) */
225 25, /* bitsize */
226 TRUE, /* pc_relative */
227 0, /* bitpos */
228 complain_overflow_signed,/* complain_on_overflow */
229 bfd_elf_generic_reloc, /* special_function */
230 "R_ARM_THM_CALL", /* name */
231 FALSE, /* partial_inplace */
232 0x07ff07ff, /* src_mask */
233 0x07ff07ff, /* dst_mask */
234 TRUE), /* pcrel_offset */
235
236 HOWTO (R_ARM_THM_PC8, /* type */
237 1, /* rightshift */
238 1, /* size (0 = byte, 1 = short, 2 = long) */
239 8, /* bitsize */
240 TRUE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_signed,/* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_ARM_THM_PC8", /* name */
245 FALSE, /* partial_inplace */
246 0x000000ff, /* src_mask */
247 0x000000ff, /* dst_mask */
248 TRUE), /* pcrel_offset */
249
250 HOWTO (R_ARM_BREL_ADJ, /* type */
251 1, /* rightshift */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
253 32, /* bitsize */
254 FALSE, /* pc_relative */
255 0, /* bitpos */
256 complain_overflow_signed,/* complain_on_overflow */
257 bfd_elf_generic_reloc, /* special_function */
258 "R_ARM_BREL_ADJ", /* name */
259 FALSE, /* partial_inplace */
260 0xffffffff, /* src_mask */
261 0xffffffff, /* dst_mask */
262 FALSE), /* pcrel_offset */
263
264 HOWTO (R_ARM_SWI24, /* type */
265 0, /* rightshift */
266 0, /* size (0 = byte, 1 = short, 2 = long) */
267 0, /* bitsize */
268 FALSE, /* pc_relative */
269 0, /* bitpos */
270 complain_overflow_signed,/* complain_on_overflow */
271 bfd_elf_generic_reloc, /* special_function */
272 "R_ARM_SWI24", /* name */
273 FALSE, /* partial_inplace */
274 0x00000000, /* src_mask */
275 0x00000000, /* dst_mask */
276 FALSE), /* pcrel_offset */
277
278 HOWTO (R_ARM_THM_SWI8, /* type */
279 0, /* rightshift */
280 0, /* size (0 = byte, 1 = short, 2 = long) */
281 0, /* bitsize */
282 FALSE, /* pc_relative */
283 0, /* bitpos */
284 complain_overflow_signed,/* complain_on_overflow */
285 bfd_elf_generic_reloc, /* special_function */
286 "R_ARM_SWI8", /* name */
287 FALSE, /* partial_inplace */
288 0x00000000, /* src_mask */
289 0x00000000, /* dst_mask */
290 FALSE), /* pcrel_offset */
291
292 /* BLX instruction for the ARM. */
293 HOWTO (R_ARM_XPC25, /* type */
294 2, /* rightshift */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
296 25, /* bitsize */
297 TRUE, /* pc_relative */
298 0, /* bitpos */
299 complain_overflow_signed,/* complain_on_overflow */
300 bfd_elf_generic_reloc, /* special_function */
301 "R_ARM_XPC25", /* name */
302 FALSE, /* partial_inplace */
303 0x00ffffff, /* src_mask */
304 0x00ffffff, /* dst_mask */
305 TRUE), /* pcrel_offset */
306
307 /* BLX instruction for the Thumb. */
308 HOWTO (R_ARM_THM_XPC22, /* type */
309 2, /* rightshift */
310 2, /* size (0 = byte, 1 = short, 2 = long) */
311 22, /* bitsize */
312 TRUE, /* pc_relative */
313 0, /* bitpos */
314 complain_overflow_signed,/* complain_on_overflow */
315 bfd_elf_generic_reloc, /* special_function */
316 "R_ARM_THM_XPC22", /* name */
317 FALSE, /* partial_inplace */
318 0x07ff07ff, /* src_mask */
319 0x07ff07ff, /* dst_mask */
320 TRUE), /* pcrel_offset */
321
322 /* Dynamic TLS relocations. */
323
324 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
325 0, /* rightshift */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
327 32, /* bitsize */
328 FALSE, /* pc_relative */
329 0, /* bitpos */
330 complain_overflow_bitfield,/* complain_on_overflow */
331 bfd_elf_generic_reloc, /* special_function */
332 "R_ARM_TLS_DTPMOD32", /* name */
333 TRUE, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE), /* pcrel_offset */
337
338 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 32, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield,/* complain_on_overflow */
345 bfd_elf_generic_reloc, /* special_function */
346 "R_ARM_TLS_DTPOFF32", /* name */
347 TRUE, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE), /* pcrel_offset */
351
352 HOWTO (R_ARM_TLS_TPOFF32, /* type */
353 0, /* rightshift */
354 2, /* size (0 = byte, 1 = short, 2 = long) */
355 32, /* bitsize */
356 FALSE, /* pc_relative */
357 0, /* bitpos */
358 complain_overflow_bitfield,/* complain_on_overflow */
359 bfd_elf_generic_reloc, /* special_function */
360 "R_ARM_TLS_TPOFF32", /* name */
361 TRUE, /* partial_inplace */
362 0xffffffff, /* src_mask */
363 0xffffffff, /* dst_mask */
364 FALSE), /* pcrel_offset */
365
366 /* Relocs used in ARM Linux */
367
368 HOWTO (R_ARM_COPY, /* type */
369 0, /* rightshift */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
371 32, /* bitsize */
372 FALSE, /* pc_relative */
373 0, /* bitpos */
374 complain_overflow_bitfield,/* complain_on_overflow */
375 bfd_elf_generic_reloc, /* special_function */
376 "R_ARM_COPY", /* name */
377 TRUE, /* partial_inplace */
378 0xffffffff, /* src_mask */
379 0xffffffff, /* dst_mask */
380 FALSE), /* pcrel_offset */
381
382 HOWTO (R_ARM_GLOB_DAT, /* type */
383 0, /* rightshift */
384 2, /* size (0 = byte, 1 = short, 2 = long) */
385 32, /* bitsize */
386 FALSE, /* pc_relative */
387 0, /* bitpos */
388 complain_overflow_bitfield,/* complain_on_overflow */
389 bfd_elf_generic_reloc, /* special_function */
390 "R_ARM_GLOB_DAT", /* name */
391 TRUE, /* partial_inplace */
392 0xffffffff, /* src_mask */
393 0xffffffff, /* dst_mask */
394 FALSE), /* pcrel_offset */
395
396 HOWTO (R_ARM_JUMP_SLOT, /* type */
397 0, /* rightshift */
398 2, /* size (0 = byte, 1 = short, 2 = long) */
399 32, /* bitsize */
400 FALSE, /* pc_relative */
401 0, /* bitpos */
402 complain_overflow_bitfield,/* complain_on_overflow */
403 bfd_elf_generic_reloc, /* special_function */
404 "R_ARM_JUMP_SLOT", /* name */
405 TRUE, /* partial_inplace */
406 0xffffffff, /* src_mask */
407 0xffffffff, /* dst_mask */
408 FALSE), /* pcrel_offset */
409
410 HOWTO (R_ARM_RELATIVE, /* type */
411 0, /* rightshift */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
413 32, /* bitsize */
414 FALSE, /* pc_relative */
415 0, /* bitpos */
416 complain_overflow_bitfield,/* complain_on_overflow */
417 bfd_elf_generic_reloc, /* special_function */
418 "R_ARM_RELATIVE", /* name */
419 TRUE, /* partial_inplace */
420 0xffffffff, /* src_mask */
421 0xffffffff, /* dst_mask */
422 FALSE), /* pcrel_offset */
423
424 HOWTO (R_ARM_GOTOFF32, /* type */
425 0, /* rightshift */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
427 32, /* bitsize */
428 FALSE, /* pc_relative */
429 0, /* bitpos */
430 complain_overflow_bitfield,/* complain_on_overflow */
431 bfd_elf_generic_reloc, /* special_function */
432 "R_ARM_GOTOFF32", /* name */
433 TRUE, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 FALSE), /* pcrel_offset */
437
438 HOWTO (R_ARM_GOTPC, /* type */
439 0, /* rightshift */
440 2, /* size (0 = byte, 1 = short, 2 = long) */
441 32, /* bitsize */
442 TRUE, /* pc_relative */
443 0, /* bitpos */
444 complain_overflow_bitfield,/* complain_on_overflow */
445 bfd_elf_generic_reloc, /* special_function */
446 "R_ARM_GOTPC", /* name */
447 TRUE, /* partial_inplace */
448 0xffffffff, /* src_mask */
449 0xffffffff, /* dst_mask */
450 TRUE), /* pcrel_offset */
451
452 HOWTO (R_ARM_GOT32, /* type */
453 0, /* rightshift */
454 2, /* size (0 = byte, 1 = short, 2 = long) */
455 32, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_bitfield,/* complain_on_overflow */
459 bfd_elf_generic_reloc, /* special_function */
460 "R_ARM_GOT32", /* name */
461 TRUE, /* partial_inplace */
462 0xffffffff, /* src_mask */
463 0xffffffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465
466 HOWTO (R_ARM_PLT32, /* type */
467 2, /* rightshift */
468 2, /* size (0 = byte, 1 = short, 2 = long) */
469 24, /* bitsize */
470 TRUE, /* pc_relative */
471 0, /* bitpos */
472 complain_overflow_bitfield,/* complain_on_overflow */
473 bfd_elf_generic_reloc, /* special_function */
474 "R_ARM_PLT32", /* name */
475 FALSE, /* partial_inplace */
476 0x00ffffff, /* src_mask */
477 0x00ffffff, /* dst_mask */
478 TRUE), /* pcrel_offset */
479
480 HOWTO (R_ARM_CALL, /* type */
481 2, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 24, /* bitsize */
484 TRUE, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_signed,/* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
488 "R_ARM_CALL", /* name */
489 FALSE, /* partial_inplace */
490 0x00ffffff, /* src_mask */
491 0x00ffffff, /* dst_mask */
492 TRUE), /* pcrel_offset */
493
494 HOWTO (R_ARM_JUMP24, /* type */
495 2, /* rightshift */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
497 24, /* bitsize */
498 TRUE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_signed,/* complain_on_overflow */
501 bfd_elf_generic_reloc, /* special_function */
502 "R_ARM_JUMP24", /* name */
503 FALSE, /* partial_inplace */
504 0x00ffffff, /* src_mask */
505 0x00ffffff, /* dst_mask */
506 TRUE), /* pcrel_offset */
507
508 HOWTO (R_ARM_THM_JUMP24, /* type */
509 1, /* rightshift */
510 2, /* size (0 = byte, 1 = short, 2 = long) */
511 24, /* bitsize */
512 TRUE, /* pc_relative */
513 0, /* bitpos */
514 complain_overflow_signed,/* complain_on_overflow */
515 bfd_elf_generic_reloc, /* special_function */
516 "R_ARM_THM_JUMP24", /* name */
517 FALSE, /* partial_inplace */
518 0x07ff2fff, /* src_mask */
519 0x07ff2fff, /* dst_mask */
520 TRUE), /* pcrel_offset */
521
522 HOWTO (R_ARM_BASE_ABS, /* type */
523 0, /* rightshift */
524 2, /* size (0 = byte, 1 = short, 2 = long) */
525 32, /* bitsize */
526 FALSE, /* pc_relative */
527 0, /* bitpos */
528 complain_overflow_dont,/* complain_on_overflow */
529 bfd_elf_generic_reloc, /* special_function */
530 "R_ARM_BASE_ABS", /* name */
531 FALSE, /* partial_inplace */
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
534 FALSE), /* pcrel_offset */
535
536 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
537 0, /* rightshift */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
539 12, /* bitsize */
540 TRUE, /* pc_relative */
541 0, /* bitpos */
542 complain_overflow_dont,/* complain_on_overflow */
543 bfd_elf_generic_reloc, /* special_function */
544 "R_ARM_ALU_PCREL_7_0", /* name */
545 FALSE, /* partial_inplace */
546 0x00000fff, /* src_mask */
547 0x00000fff, /* dst_mask */
548 TRUE), /* pcrel_offset */
549
550 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
551 0, /* rightshift */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
553 12, /* bitsize */
554 TRUE, /* pc_relative */
555 8, /* bitpos */
556 complain_overflow_dont,/* complain_on_overflow */
557 bfd_elf_generic_reloc, /* special_function */
558 "R_ARM_ALU_PCREL_15_8",/* name */
559 FALSE, /* partial_inplace */
560 0x00000fff, /* src_mask */
561 0x00000fff, /* dst_mask */
562 TRUE), /* pcrel_offset */
563
564 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 12, /* bitsize */
568 TRUE, /* pc_relative */
569 16, /* bitpos */
570 complain_overflow_dont,/* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 "R_ARM_ALU_PCREL_23_15",/* name */
573 FALSE, /* partial_inplace */
574 0x00000fff, /* src_mask */
575 0x00000fff, /* dst_mask */
576 TRUE), /* pcrel_offset */
577
578 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
579 0, /* rightshift */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
581 12, /* bitsize */
582 FALSE, /* pc_relative */
583 0, /* bitpos */
584 complain_overflow_dont,/* complain_on_overflow */
585 bfd_elf_generic_reloc, /* special_function */
586 "R_ARM_LDR_SBREL_11_0",/* name */
587 FALSE, /* partial_inplace */
588 0x00000fff, /* src_mask */
589 0x00000fff, /* dst_mask */
590 FALSE), /* pcrel_offset */
591
592 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
593 0, /* rightshift */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
595 8, /* bitsize */
596 FALSE, /* pc_relative */
597 12, /* bitpos */
598 complain_overflow_dont,/* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
600 "R_ARM_ALU_SBREL_19_12",/* name */
601 FALSE, /* partial_inplace */
602 0x000ff000, /* src_mask */
603 0x000ff000, /* dst_mask */
604 FALSE), /* pcrel_offset */
605
606 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
607 0, /* rightshift */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
609 8, /* bitsize */
610 FALSE, /* pc_relative */
611 20, /* bitpos */
612 complain_overflow_dont,/* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 "R_ARM_ALU_SBREL_27_20",/* name */
615 FALSE, /* partial_inplace */
616 0x0ff00000, /* src_mask */
617 0x0ff00000, /* dst_mask */
618 FALSE), /* pcrel_offset */
619
620 HOWTO (R_ARM_TARGET1, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 FALSE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_dont,/* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_ARM_TARGET1", /* name */
629 FALSE, /* partial_inplace */
630 0xffffffff, /* src_mask */
631 0xffffffff, /* dst_mask */
632 FALSE), /* pcrel_offset */
633
634 HOWTO (R_ARM_ROSEGREL32, /* type */
635 0, /* rightshift */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
637 32, /* bitsize */
638 FALSE, /* pc_relative */
639 0, /* bitpos */
640 complain_overflow_dont,/* complain_on_overflow */
641 bfd_elf_generic_reloc, /* special_function */
642 "R_ARM_ROSEGREL32", /* name */
643 FALSE, /* partial_inplace */
644 0xffffffff, /* src_mask */
645 0xffffffff, /* dst_mask */
646 FALSE), /* pcrel_offset */
647
648 HOWTO (R_ARM_V4BX, /* type */
649 0, /* rightshift */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
651 32, /* bitsize */
652 FALSE, /* pc_relative */
653 0, /* bitpos */
654 complain_overflow_dont,/* complain_on_overflow */
655 bfd_elf_generic_reloc, /* special_function */
656 "R_ARM_V4BX", /* name */
657 FALSE, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 FALSE), /* pcrel_offset */
661
662 HOWTO (R_ARM_TARGET2, /* type */
663 0, /* rightshift */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
665 32, /* bitsize */
666 FALSE, /* pc_relative */
667 0, /* bitpos */
668 complain_overflow_signed,/* complain_on_overflow */
669 bfd_elf_generic_reloc, /* special_function */
670 "R_ARM_TARGET2", /* name */
671 FALSE, /* partial_inplace */
672 0xffffffff, /* src_mask */
673 0xffffffff, /* dst_mask */
674 TRUE), /* pcrel_offset */
675
676 HOWTO (R_ARM_PREL31, /* type */
677 0, /* rightshift */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
679 31, /* bitsize */
680 TRUE, /* pc_relative */
681 0, /* bitpos */
682 complain_overflow_signed,/* complain_on_overflow */
683 bfd_elf_generic_reloc, /* special_function */
684 "R_ARM_PREL31", /* name */
685 FALSE, /* partial_inplace */
686 0x7fffffff, /* src_mask */
687 0x7fffffff, /* dst_mask */
688 TRUE), /* pcrel_offset */
689
690 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
691 0, /* rightshift */
692 2, /* size (0 = byte, 1 = short, 2 = long) */
693 16, /* bitsize */
694 FALSE, /* pc_relative */
695 0, /* bitpos */
696 complain_overflow_dont,/* complain_on_overflow */
697 bfd_elf_generic_reloc, /* special_function */
698 "R_ARM_MOVW_ABS_NC", /* name */
699 FALSE, /* partial_inplace */
700 0x000f0fff, /* src_mask */
701 0x000f0fff, /* dst_mask */
702 FALSE), /* pcrel_offset */
703
704 HOWTO (R_ARM_MOVT_ABS, /* type */
705 0, /* rightshift */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
707 16, /* bitsize */
708 FALSE, /* pc_relative */
709 0, /* bitpos */
710 complain_overflow_bitfield,/* complain_on_overflow */
711 bfd_elf_generic_reloc, /* special_function */
712 "R_ARM_MOVT_ABS", /* name */
713 FALSE, /* partial_inplace */
714 0x000f0fff, /* src_mask */
715 0x000f0fff, /* dst_mask */
716 FALSE), /* pcrel_offset */
717
718 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
719 0, /* rightshift */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
721 16, /* bitsize */
722 TRUE, /* pc_relative */
723 0, /* bitpos */
724 complain_overflow_dont,/* complain_on_overflow */
725 bfd_elf_generic_reloc, /* special_function */
726 "R_ARM_MOVW_PREL_NC", /* name */
727 FALSE, /* partial_inplace */
728 0x000f0fff, /* src_mask */
729 0x000f0fff, /* dst_mask */
730 TRUE), /* pcrel_offset */
731
732 HOWTO (R_ARM_MOVT_PREL, /* type */
733 0, /* rightshift */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
735 16, /* bitsize */
736 TRUE, /* pc_relative */
737 0, /* bitpos */
738 complain_overflow_bitfield,/* complain_on_overflow */
739 bfd_elf_generic_reloc, /* special_function */
740 "R_ARM_MOVT_PREL", /* name */
741 FALSE, /* partial_inplace */
742 0x000f0fff, /* src_mask */
743 0x000f0fff, /* dst_mask */
744 TRUE), /* pcrel_offset */
745
746 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
747 0, /* rightshift */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
749 16, /* bitsize */
750 FALSE, /* pc_relative */
751 0, /* bitpos */
752 complain_overflow_dont,/* complain_on_overflow */
753 bfd_elf_generic_reloc, /* special_function */
754 "R_ARM_THM_MOVW_ABS_NC",/* name */
755 FALSE, /* partial_inplace */
756 0x040f70ff, /* src_mask */
757 0x040f70ff, /* dst_mask */
758 FALSE), /* pcrel_offset */
759
760 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
761 0, /* rightshift */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
763 16, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_bitfield,/* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_ARM_THM_MOVT_ABS", /* name */
769 FALSE, /* partial_inplace */
770 0x040f70ff, /* src_mask */
771 0x040f70ff, /* dst_mask */
772 FALSE), /* pcrel_offset */
773
774 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
775 0, /* rightshift */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
777 16, /* bitsize */
778 TRUE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont,/* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
782 "R_ARM_THM_MOVW_PREL_NC",/* name */
783 FALSE, /* partial_inplace */
784 0x040f70ff, /* src_mask */
785 0x040f70ff, /* dst_mask */
786 TRUE), /* pcrel_offset */
787
788 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
789 0, /* rightshift */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
791 16, /* bitsize */
792 TRUE, /* pc_relative */
793 0, /* bitpos */
794 complain_overflow_bitfield,/* complain_on_overflow */
795 bfd_elf_generic_reloc, /* special_function */
796 "R_ARM_THM_MOVT_PREL", /* name */
797 FALSE, /* partial_inplace */
798 0x040f70ff, /* src_mask */
799 0x040f70ff, /* dst_mask */
800 TRUE), /* pcrel_offset */
801
802 HOWTO (R_ARM_THM_JUMP19, /* type */
803 1, /* rightshift */
804 2, /* size (0 = byte, 1 = short, 2 = long) */
805 19, /* bitsize */
806 TRUE, /* pc_relative */
807 0, /* bitpos */
808 complain_overflow_signed,/* complain_on_overflow */
809 bfd_elf_generic_reloc, /* special_function */
810 "R_ARM_THM_JUMP19", /* name */
811 FALSE, /* partial_inplace */
812 0x043f2fff, /* src_mask */
813 0x043f2fff, /* dst_mask */
814 TRUE), /* pcrel_offset */
815
816 HOWTO (R_ARM_THM_JUMP6, /* type */
817 1, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 6, /* bitsize */
820 TRUE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_unsigned,/* complain_on_overflow */
823 bfd_elf_generic_reloc, /* special_function */
824 "R_ARM_THM_JUMP6", /* name */
825 FALSE, /* partial_inplace */
826 0x02f8, /* src_mask */
827 0x02f8, /* dst_mask */
828 TRUE), /* pcrel_offset */
829
830 /* These are declared as 13-bit signed relocations because we can
831 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
832 versa. */
833 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
834 0, /* rightshift */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
836 13, /* bitsize */
837 TRUE, /* pc_relative */
838 0, /* bitpos */
839 complain_overflow_dont,/* complain_on_overflow */
840 bfd_elf_generic_reloc, /* special_function */
841 "R_ARM_THM_ALU_PREL_11_0",/* name */
842 FALSE, /* partial_inplace */
843 0xffffffff, /* src_mask */
844 0xffffffff, /* dst_mask */
845 TRUE), /* pcrel_offset */
846
847 HOWTO (R_ARM_THM_PC12, /* type */
848 0, /* rightshift */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
850 13, /* bitsize */
851 TRUE, /* pc_relative */
852 0, /* bitpos */
853 complain_overflow_dont,/* complain_on_overflow */
854 bfd_elf_generic_reloc, /* special_function */
855 "R_ARM_THM_PC12", /* name */
856 FALSE, /* partial_inplace */
857 0xffffffff, /* src_mask */
858 0xffffffff, /* dst_mask */
859 TRUE), /* pcrel_offset */
860
861 HOWTO (R_ARM_ABS32_NOI, /* type */
862 0, /* rightshift */
863 2, /* size (0 = byte, 1 = short, 2 = long) */
864 32, /* bitsize */
865 FALSE, /* pc_relative */
866 0, /* bitpos */
867 complain_overflow_dont,/* complain_on_overflow */
868 bfd_elf_generic_reloc, /* special_function */
869 "R_ARM_ABS32_NOI", /* name */
870 FALSE, /* partial_inplace */
871 0xffffffff, /* src_mask */
872 0xffffffff, /* dst_mask */
873 FALSE), /* pcrel_offset */
874
875 HOWTO (R_ARM_REL32_NOI, /* type */
876 0, /* rightshift */
877 2, /* size (0 = byte, 1 = short, 2 = long) */
878 32, /* bitsize */
879 TRUE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont,/* complain_on_overflow */
882 bfd_elf_generic_reloc, /* special_function */
883 "R_ARM_REL32_NOI", /* name */
884 FALSE, /* partial_inplace */
885 0xffffffff, /* src_mask */
886 0xffffffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
888
889 /* Group relocations. */
890
891 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
892 0, /* rightshift */
893 2, /* size (0 = byte, 1 = short, 2 = long) */
894 32, /* bitsize */
895 TRUE, /* pc_relative */
896 0, /* bitpos */
897 complain_overflow_dont,/* complain_on_overflow */
898 bfd_elf_generic_reloc, /* special_function */
899 "R_ARM_ALU_PC_G0_NC", /* name */
900 FALSE, /* partial_inplace */
901 0xffffffff, /* src_mask */
902 0xffffffff, /* dst_mask */
903 TRUE), /* pcrel_offset */
904
905 HOWTO (R_ARM_ALU_PC_G0, /* type */
906 0, /* rightshift */
907 2, /* size (0 = byte, 1 = short, 2 = long) */
908 32, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont,/* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_ARM_ALU_PC_G0", /* name */
914 FALSE, /* partial_inplace */
915 0xffffffff, /* src_mask */
916 0xffffffff, /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
920 0, /* rightshift */
921 2, /* size (0 = byte, 1 = short, 2 = long) */
922 32, /* bitsize */
923 TRUE, /* pc_relative */
924 0, /* bitpos */
925 complain_overflow_dont,/* complain_on_overflow */
926 bfd_elf_generic_reloc, /* special_function */
927 "R_ARM_ALU_PC_G1_NC", /* name */
928 FALSE, /* partial_inplace */
929 0xffffffff, /* src_mask */
930 0xffffffff, /* dst_mask */
931 TRUE), /* pcrel_offset */
932
933 HOWTO (R_ARM_ALU_PC_G1, /* type */
934 0, /* rightshift */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
936 32, /* bitsize */
937 TRUE, /* pc_relative */
938 0, /* bitpos */
939 complain_overflow_dont,/* complain_on_overflow */
940 bfd_elf_generic_reloc, /* special_function */
941 "R_ARM_ALU_PC_G1", /* name */
942 FALSE, /* partial_inplace */
943 0xffffffff, /* src_mask */
944 0xffffffff, /* dst_mask */
945 TRUE), /* pcrel_offset */
946
947 HOWTO (R_ARM_ALU_PC_G2, /* type */
948 0, /* rightshift */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
950 32, /* bitsize */
951 TRUE, /* pc_relative */
952 0, /* bitpos */
953 complain_overflow_dont,/* complain_on_overflow */
954 bfd_elf_generic_reloc, /* special_function */
955 "R_ARM_ALU_PC_G2", /* name */
956 FALSE, /* partial_inplace */
957 0xffffffff, /* src_mask */
958 0xffffffff, /* dst_mask */
959 TRUE), /* pcrel_offset */
960
961 HOWTO (R_ARM_LDR_PC_G1, /* type */
962 0, /* rightshift */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
964 32, /* bitsize */
965 TRUE, /* pc_relative */
966 0, /* bitpos */
967 complain_overflow_dont,/* complain_on_overflow */
968 bfd_elf_generic_reloc, /* special_function */
969 "R_ARM_LDR_PC_G1", /* name */
970 FALSE, /* partial_inplace */
971 0xffffffff, /* src_mask */
972 0xffffffff, /* dst_mask */
973 TRUE), /* pcrel_offset */
974
975 HOWTO (R_ARM_LDR_PC_G2, /* type */
976 0, /* rightshift */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
978 32, /* bitsize */
979 TRUE, /* pc_relative */
980 0, /* bitpos */
981 complain_overflow_dont,/* complain_on_overflow */
982 bfd_elf_generic_reloc, /* special_function */
983 "R_ARM_LDR_PC_G2", /* name */
984 FALSE, /* partial_inplace */
985 0xffffffff, /* src_mask */
986 0xffffffff, /* dst_mask */
987 TRUE), /* pcrel_offset */
988
989 HOWTO (R_ARM_LDRS_PC_G0, /* type */
990 0, /* rightshift */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
992 32, /* bitsize */
993 TRUE, /* pc_relative */
994 0, /* bitpos */
995 complain_overflow_dont,/* complain_on_overflow */
996 bfd_elf_generic_reloc, /* special_function */
997 "R_ARM_LDRS_PC_G0", /* name */
998 FALSE, /* partial_inplace */
999 0xffffffff, /* src_mask */
1000 0xffffffff, /* dst_mask */
1001 TRUE), /* pcrel_offset */
1002
1003 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1004 0, /* rightshift */
1005 2, /* size (0 = byte, 1 = short, 2 = long) */
1006 32, /* bitsize */
1007 TRUE, /* pc_relative */
1008 0, /* bitpos */
1009 complain_overflow_dont,/* complain_on_overflow */
1010 bfd_elf_generic_reloc, /* special_function */
1011 "R_ARM_LDRS_PC_G1", /* name */
1012 FALSE, /* partial_inplace */
1013 0xffffffff, /* src_mask */
1014 0xffffffff, /* dst_mask */
1015 TRUE), /* pcrel_offset */
1016
1017 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1018 0, /* rightshift */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1020 32, /* bitsize */
1021 TRUE, /* pc_relative */
1022 0, /* bitpos */
1023 complain_overflow_dont,/* complain_on_overflow */
1024 bfd_elf_generic_reloc, /* special_function */
1025 "R_ARM_LDRS_PC_G2", /* name */
1026 FALSE, /* partial_inplace */
1027 0xffffffff, /* src_mask */
1028 0xffffffff, /* dst_mask */
1029 TRUE), /* pcrel_offset */
1030
1031 HOWTO (R_ARM_LDC_PC_G0, /* type */
1032 0, /* rightshift */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1034 32, /* bitsize */
1035 TRUE, /* pc_relative */
1036 0, /* bitpos */
1037 complain_overflow_dont,/* complain_on_overflow */
1038 bfd_elf_generic_reloc, /* special_function */
1039 "R_ARM_LDC_PC_G0", /* name */
1040 FALSE, /* partial_inplace */
1041 0xffffffff, /* src_mask */
1042 0xffffffff, /* dst_mask */
1043 TRUE), /* pcrel_offset */
1044
1045 HOWTO (R_ARM_LDC_PC_G1, /* type */
1046 0, /* rightshift */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1048 32, /* bitsize */
1049 TRUE, /* pc_relative */
1050 0, /* bitpos */
1051 complain_overflow_dont,/* complain_on_overflow */
1052 bfd_elf_generic_reloc, /* special_function */
1053 "R_ARM_LDC_PC_G1", /* name */
1054 FALSE, /* partial_inplace */
1055 0xffffffff, /* src_mask */
1056 0xffffffff, /* dst_mask */
1057 TRUE), /* pcrel_offset */
1058
1059 HOWTO (R_ARM_LDC_PC_G2, /* type */
1060 0, /* rightshift */
1061 2, /* size (0 = byte, 1 = short, 2 = long) */
1062 32, /* bitsize */
1063 TRUE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_dont,/* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_ARM_LDC_PC_G2", /* name */
1068 FALSE, /* partial_inplace */
1069 0xffffffff, /* src_mask */
1070 0xffffffff, /* dst_mask */
1071 TRUE), /* pcrel_offset */
1072
1073 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1074 0, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 32, /* bitsize */
1077 TRUE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont,/* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 "R_ARM_ALU_SB_G0_NC", /* name */
1082 FALSE, /* partial_inplace */
1083 0xffffffff, /* src_mask */
1084 0xffffffff, /* dst_mask */
1085 TRUE), /* pcrel_offset */
1086
1087 HOWTO (R_ARM_ALU_SB_G0, /* type */
1088 0, /* rightshift */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1090 32, /* bitsize */
1091 TRUE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_dont,/* complain_on_overflow */
1094 bfd_elf_generic_reloc, /* special_function */
1095 "R_ARM_ALU_SB_G0", /* name */
1096 FALSE, /* partial_inplace */
1097 0xffffffff, /* src_mask */
1098 0xffffffff, /* dst_mask */
1099 TRUE), /* pcrel_offset */
1100
1101 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1102 0, /* rightshift */
1103 2, /* size (0 = byte, 1 = short, 2 = long) */
1104 32, /* bitsize */
1105 TRUE, /* pc_relative */
1106 0, /* bitpos */
1107 complain_overflow_dont,/* complain_on_overflow */
1108 bfd_elf_generic_reloc, /* special_function */
1109 "R_ARM_ALU_SB_G1_NC", /* name */
1110 FALSE, /* partial_inplace */
1111 0xffffffff, /* src_mask */
1112 0xffffffff, /* dst_mask */
1113 TRUE), /* pcrel_offset */
1114
1115 HOWTO (R_ARM_ALU_SB_G1, /* type */
1116 0, /* rightshift */
1117 2, /* size (0 = byte, 1 = short, 2 = long) */
1118 32, /* bitsize */
1119 TRUE, /* pc_relative */
1120 0, /* bitpos */
1121 complain_overflow_dont,/* complain_on_overflow */
1122 bfd_elf_generic_reloc, /* special_function */
1123 "R_ARM_ALU_SB_G1", /* name */
1124 FALSE, /* partial_inplace */
1125 0xffffffff, /* src_mask */
1126 0xffffffff, /* dst_mask */
1127 TRUE), /* pcrel_offset */
1128
1129 HOWTO (R_ARM_ALU_SB_G2, /* type */
1130 0, /* rightshift */
1131 2, /* size (0 = byte, 1 = short, 2 = long) */
1132 32, /* bitsize */
1133 TRUE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont,/* complain_on_overflow */
1136 bfd_elf_generic_reloc, /* special_function */
1137 "R_ARM_ALU_SB_G2", /* name */
1138 FALSE, /* partial_inplace */
1139 0xffffffff, /* src_mask */
1140 0xffffffff, /* dst_mask */
1141 TRUE), /* pcrel_offset */
1142
1143 HOWTO (R_ARM_LDR_SB_G0, /* type */
1144 0, /* rightshift */
1145 2, /* size (0 = byte, 1 = short, 2 = long) */
1146 32, /* bitsize */
1147 TRUE, /* pc_relative */
1148 0, /* bitpos */
1149 complain_overflow_dont,/* complain_on_overflow */
1150 bfd_elf_generic_reloc, /* special_function */
1151 "R_ARM_LDR_SB_G0", /* name */
1152 FALSE, /* partial_inplace */
1153 0xffffffff, /* src_mask */
1154 0xffffffff, /* dst_mask */
1155 TRUE), /* pcrel_offset */
1156
1157 HOWTO (R_ARM_LDR_SB_G1, /* type */
1158 0, /* rightshift */
1159 2, /* size (0 = byte, 1 = short, 2 = long) */
1160 32, /* bitsize */
1161 TRUE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont,/* complain_on_overflow */
1164 bfd_elf_generic_reloc, /* special_function */
1165 "R_ARM_LDR_SB_G1", /* name */
1166 FALSE, /* partial_inplace */
1167 0xffffffff, /* src_mask */
1168 0xffffffff, /* dst_mask */
1169 TRUE), /* pcrel_offset */
1170
1171 HOWTO (R_ARM_LDR_SB_G2, /* type */
1172 0, /* rightshift */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1174 32, /* bitsize */
1175 TRUE, /* pc_relative */
1176 0, /* bitpos */
1177 complain_overflow_dont,/* complain_on_overflow */
1178 bfd_elf_generic_reloc, /* special_function */
1179 "R_ARM_LDR_SB_G2", /* name */
1180 FALSE, /* partial_inplace */
1181 0xffffffff, /* src_mask */
1182 0xffffffff, /* dst_mask */
1183 TRUE), /* pcrel_offset */
1184
1185 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1186 0, /* rightshift */
1187 2, /* size (0 = byte, 1 = short, 2 = long) */
1188 32, /* bitsize */
1189 TRUE, /* pc_relative */
1190 0, /* bitpos */
1191 complain_overflow_dont,/* complain_on_overflow */
1192 bfd_elf_generic_reloc, /* special_function */
1193 "R_ARM_LDRS_SB_G0", /* name */
1194 FALSE, /* partial_inplace */
1195 0xffffffff, /* src_mask */
1196 0xffffffff, /* dst_mask */
1197 TRUE), /* pcrel_offset */
1198
1199 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1200 0, /* rightshift */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1202 32, /* bitsize */
1203 TRUE, /* pc_relative */
1204 0, /* bitpos */
1205 complain_overflow_dont,/* complain_on_overflow */
1206 bfd_elf_generic_reloc, /* special_function */
1207 "R_ARM_LDRS_SB_G1", /* name */
1208 FALSE, /* partial_inplace */
1209 0xffffffff, /* src_mask */
1210 0xffffffff, /* dst_mask */
1211 TRUE), /* pcrel_offset */
1212
1213 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1214 0, /* rightshift */
1215 2, /* size (0 = byte, 1 = short, 2 = long) */
1216 32, /* bitsize */
1217 TRUE, /* pc_relative */
1218 0, /* bitpos */
1219 complain_overflow_dont,/* complain_on_overflow */
1220 bfd_elf_generic_reloc, /* special_function */
1221 "R_ARM_LDRS_SB_G2", /* name */
1222 FALSE, /* partial_inplace */
1223 0xffffffff, /* src_mask */
1224 0xffffffff, /* dst_mask */
1225 TRUE), /* pcrel_offset */
1226
1227 HOWTO (R_ARM_LDC_SB_G0, /* type */
1228 0, /* rightshift */
1229 2, /* size (0 = byte, 1 = short, 2 = long) */
1230 32, /* bitsize */
1231 TRUE, /* pc_relative */
1232 0, /* bitpos */
1233 complain_overflow_dont,/* complain_on_overflow */
1234 bfd_elf_generic_reloc, /* special_function */
1235 "R_ARM_LDC_SB_G0", /* name */
1236 FALSE, /* partial_inplace */
1237 0xffffffff, /* src_mask */
1238 0xffffffff, /* dst_mask */
1239 TRUE), /* pcrel_offset */
1240
1241 HOWTO (R_ARM_LDC_SB_G1, /* type */
1242 0, /* rightshift */
1243 2, /* size (0 = byte, 1 = short, 2 = long) */
1244 32, /* bitsize */
1245 TRUE, /* pc_relative */
1246 0, /* bitpos */
1247 complain_overflow_dont,/* complain_on_overflow */
1248 bfd_elf_generic_reloc, /* special_function */
1249 "R_ARM_LDC_SB_G1", /* name */
1250 FALSE, /* partial_inplace */
1251 0xffffffff, /* src_mask */
1252 0xffffffff, /* dst_mask */
1253 TRUE), /* pcrel_offset */
1254
1255 HOWTO (R_ARM_LDC_SB_G2, /* type */
1256 0, /* rightshift */
1257 2, /* size (0 = byte, 1 = short, 2 = long) */
1258 32, /* bitsize */
1259 TRUE, /* pc_relative */
1260 0, /* bitpos */
1261 complain_overflow_dont,/* complain_on_overflow */
1262 bfd_elf_generic_reloc, /* special_function */
1263 "R_ARM_LDC_SB_G2", /* name */
1264 FALSE, /* partial_inplace */
1265 0xffffffff, /* src_mask */
1266 0xffffffff, /* dst_mask */
1267 TRUE), /* pcrel_offset */
1268
1269 /* End of group relocations. */
1270
1271 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1272 0, /* rightshift */
1273 2, /* size (0 = byte, 1 = short, 2 = long) */
1274 16, /* bitsize */
1275 FALSE, /* pc_relative */
1276 0, /* bitpos */
1277 complain_overflow_dont,/* complain_on_overflow */
1278 bfd_elf_generic_reloc, /* special_function */
1279 "R_ARM_MOVW_BREL_NC", /* name */
1280 FALSE, /* partial_inplace */
1281 0x0000ffff, /* src_mask */
1282 0x0000ffff, /* dst_mask */
1283 FALSE), /* pcrel_offset */
1284
1285 HOWTO (R_ARM_MOVT_BREL, /* type */
1286 0, /* rightshift */
1287 2, /* size (0 = byte, 1 = short, 2 = long) */
1288 16, /* bitsize */
1289 FALSE, /* pc_relative */
1290 0, /* bitpos */
1291 complain_overflow_bitfield,/* complain_on_overflow */
1292 bfd_elf_generic_reloc, /* special_function */
1293 "R_ARM_MOVT_BREL", /* name */
1294 FALSE, /* partial_inplace */
1295 0x0000ffff, /* src_mask */
1296 0x0000ffff, /* dst_mask */
1297 FALSE), /* pcrel_offset */
1298
1299 HOWTO (R_ARM_MOVW_BREL, /* type */
1300 0, /* rightshift */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1302 16, /* bitsize */
1303 FALSE, /* pc_relative */
1304 0, /* bitpos */
1305 complain_overflow_dont,/* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 "R_ARM_MOVW_BREL", /* name */
1308 FALSE, /* partial_inplace */
1309 0x0000ffff, /* src_mask */
1310 0x0000ffff, /* dst_mask */
1311 FALSE), /* pcrel_offset */
1312
1313 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1314 0, /* rightshift */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1316 16, /* bitsize */
1317 FALSE, /* pc_relative */
1318 0, /* bitpos */
1319 complain_overflow_dont,/* complain_on_overflow */
1320 bfd_elf_generic_reloc, /* special_function */
1321 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322 FALSE, /* partial_inplace */
1323 0x040f70ff, /* src_mask */
1324 0x040f70ff, /* dst_mask */
1325 FALSE), /* pcrel_offset */
1326
1327 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1328 0, /* rightshift */
1329 2, /* size (0 = byte, 1 = short, 2 = long) */
1330 16, /* bitsize */
1331 FALSE, /* pc_relative */
1332 0, /* bitpos */
1333 complain_overflow_bitfield,/* complain_on_overflow */
1334 bfd_elf_generic_reloc, /* special_function */
1335 "R_ARM_THM_MOVT_BREL", /* name */
1336 FALSE, /* partial_inplace */
1337 0x040f70ff, /* src_mask */
1338 0x040f70ff, /* dst_mask */
1339 FALSE), /* pcrel_offset */
1340
1341 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1342 0, /* rightshift */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_dont,/* complain_on_overflow */
1348 bfd_elf_generic_reloc, /* special_function */
1349 "R_ARM_THM_MOVW_BREL", /* name */
1350 FALSE, /* partial_inplace */
1351 0x040f70ff, /* src_mask */
1352 0x040f70ff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
1355 EMPTY_HOWTO (90), /* Unallocated. */
1356 EMPTY_HOWTO (91),
1357 EMPTY_HOWTO (92),
1358 EMPTY_HOWTO (93),
1359
1360 HOWTO (R_ARM_PLT32_ABS, /* type */
1361 0, /* rightshift */
1362 2, /* size (0 = byte, 1 = short, 2 = long) */
1363 32, /* bitsize */
1364 FALSE, /* pc_relative */
1365 0, /* bitpos */
1366 complain_overflow_dont,/* complain_on_overflow */
1367 bfd_elf_generic_reloc, /* special_function */
1368 "R_ARM_PLT32_ABS", /* name */
1369 FALSE, /* partial_inplace */
1370 0xffffffff, /* src_mask */
1371 0xffffffff, /* dst_mask */
1372 FALSE), /* pcrel_offset */
1373
1374 HOWTO (R_ARM_GOT_ABS, /* type */
1375 0, /* rightshift */
1376 2, /* size (0 = byte, 1 = short, 2 = long) */
1377 32, /* bitsize */
1378 FALSE, /* pc_relative */
1379 0, /* bitpos */
1380 complain_overflow_dont,/* complain_on_overflow */
1381 bfd_elf_generic_reloc, /* special_function */
1382 "R_ARM_GOT_ABS", /* name */
1383 FALSE, /* partial_inplace */
1384 0xffffffff, /* src_mask */
1385 0xffffffff, /* dst_mask */
1386 FALSE), /* pcrel_offset */
1387
1388 HOWTO (R_ARM_GOT_PREL, /* type */
1389 0, /* rightshift */
1390 2, /* size (0 = byte, 1 = short, 2 = long) */
1391 32, /* bitsize */
1392 TRUE, /* pc_relative */
1393 0, /* bitpos */
1394 complain_overflow_dont, /* complain_on_overflow */
1395 bfd_elf_generic_reloc, /* special_function */
1396 "R_ARM_GOT_PREL", /* name */
1397 FALSE, /* partial_inplace */
1398 0xffffffff, /* src_mask */
1399 0xffffffff, /* dst_mask */
1400 TRUE), /* pcrel_offset */
1401
1402 HOWTO (R_ARM_GOT_BREL12, /* type */
1403 0, /* rightshift */
1404 2, /* size (0 = byte, 1 = short, 2 = long) */
1405 12, /* bitsize */
1406 FALSE, /* pc_relative */
1407 0, /* bitpos */
1408 complain_overflow_bitfield,/* complain_on_overflow */
1409 bfd_elf_generic_reloc, /* special_function */
1410 "R_ARM_GOT_BREL12", /* name */
1411 FALSE, /* partial_inplace */
1412 0x00000fff, /* src_mask */
1413 0x00000fff, /* dst_mask */
1414 FALSE), /* pcrel_offset */
1415
1416 HOWTO (R_ARM_GOTOFF12, /* type */
1417 0, /* rightshift */
1418 2, /* size (0 = byte, 1 = short, 2 = long) */
1419 12, /* bitsize */
1420 FALSE, /* pc_relative */
1421 0, /* bitpos */
1422 complain_overflow_bitfield,/* complain_on_overflow */
1423 bfd_elf_generic_reloc, /* special_function */
1424 "R_ARM_GOTOFF12", /* name */
1425 FALSE, /* partial_inplace */
1426 0x00000fff, /* src_mask */
1427 0x00000fff, /* dst_mask */
1428 FALSE), /* pcrel_offset */
1429
1430 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1431
1432 /* GNU extension to record C++ vtable member usage */
1433 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1434 0, /* rightshift */
1435 2, /* size (0 = byte, 1 = short, 2 = long) */
1436 0, /* bitsize */
1437 FALSE, /* pc_relative */
1438 0, /* bitpos */
1439 complain_overflow_dont, /* complain_on_overflow */
1440 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1441 "R_ARM_GNU_VTENTRY", /* name */
1442 FALSE, /* partial_inplace */
1443 0, /* src_mask */
1444 0, /* dst_mask */
1445 FALSE), /* pcrel_offset */
1446
1447 /* GNU extension to record C++ vtable hierarchy */
1448 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1449 0, /* rightshift */
1450 2, /* size (0 = byte, 1 = short, 2 = long) */
1451 0, /* bitsize */
1452 FALSE, /* pc_relative */
1453 0, /* bitpos */
1454 complain_overflow_dont, /* complain_on_overflow */
1455 NULL, /* special_function */
1456 "R_ARM_GNU_VTINHERIT", /* name */
1457 FALSE, /* partial_inplace */
1458 0, /* src_mask */
1459 0, /* dst_mask */
1460 FALSE), /* pcrel_offset */
1461
1462 HOWTO (R_ARM_THM_JUMP11, /* type */
1463 1, /* rightshift */
1464 1, /* size (0 = byte, 1 = short, 2 = long) */
1465 11, /* bitsize */
1466 TRUE, /* pc_relative */
1467 0, /* bitpos */
1468 complain_overflow_signed, /* complain_on_overflow */
1469 bfd_elf_generic_reloc, /* special_function */
1470 "R_ARM_THM_JUMP11", /* name */
1471 FALSE, /* partial_inplace */
1472 0x000007ff, /* src_mask */
1473 0x000007ff, /* dst_mask */
1474 TRUE), /* pcrel_offset */
1475
1476 HOWTO (R_ARM_THM_JUMP8, /* type */
1477 1, /* rightshift */
1478 1, /* size (0 = byte, 1 = short, 2 = long) */
1479 8, /* bitsize */
1480 TRUE, /* pc_relative */
1481 0, /* bitpos */
1482 complain_overflow_signed, /* complain_on_overflow */
1483 bfd_elf_generic_reloc, /* special_function */
1484 "R_ARM_THM_JUMP8", /* name */
1485 FALSE, /* partial_inplace */
1486 0x000000ff, /* src_mask */
1487 0x000000ff, /* dst_mask */
1488 TRUE), /* pcrel_offset */
1489
1490 /* TLS relocations */
1491 HOWTO (R_ARM_TLS_GD32, /* type */
1492 0, /* rightshift */
1493 2, /* size (0 = byte, 1 = short, 2 = long) */
1494 32, /* bitsize */
1495 FALSE, /* pc_relative */
1496 0, /* bitpos */
1497 complain_overflow_bitfield,/* complain_on_overflow */
1498 NULL, /* special_function */
1499 "R_ARM_TLS_GD32", /* name */
1500 TRUE, /* partial_inplace */
1501 0xffffffff, /* src_mask */
1502 0xffffffff, /* dst_mask */
1503 FALSE), /* pcrel_offset */
1504
1505 HOWTO (R_ARM_TLS_LDM32, /* type */
1506 0, /* rightshift */
1507 2, /* size (0 = byte, 1 = short, 2 = long) */
1508 32, /* bitsize */
1509 FALSE, /* pc_relative */
1510 0, /* bitpos */
1511 complain_overflow_bitfield,/* complain_on_overflow */
1512 bfd_elf_generic_reloc, /* special_function */
1513 "R_ARM_TLS_LDM32", /* name */
1514 TRUE, /* partial_inplace */
1515 0xffffffff, /* src_mask */
1516 0xffffffff, /* dst_mask */
1517 FALSE), /* pcrel_offset */
1518
1519 HOWTO (R_ARM_TLS_LDO32, /* type */
1520 0, /* rightshift */
1521 2, /* size (0 = byte, 1 = short, 2 = long) */
1522 32, /* bitsize */
1523 FALSE, /* pc_relative */
1524 0, /* bitpos */
1525 complain_overflow_bitfield,/* complain_on_overflow */
1526 bfd_elf_generic_reloc, /* special_function */
1527 "R_ARM_TLS_LDO32", /* name */
1528 TRUE, /* partial_inplace */
1529 0xffffffff, /* src_mask */
1530 0xffffffff, /* dst_mask */
1531 FALSE), /* pcrel_offset */
1532
1533 HOWTO (R_ARM_TLS_IE32, /* type */
1534 0, /* rightshift */
1535 2, /* size (0 = byte, 1 = short, 2 = long) */
1536 32, /* bitsize */
1537 FALSE, /* pc_relative */
1538 0, /* bitpos */
1539 complain_overflow_bitfield,/* complain_on_overflow */
1540 NULL, /* special_function */
1541 "R_ARM_TLS_IE32", /* name */
1542 TRUE, /* partial_inplace */
1543 0xffffffff, /* src_mask */
1544 0xffffffff, /* dst_mask */
1545 FALSE), /* pcrel_offset */
1546
1547 HOWTO (R_ARM_TLS_LE32, /* type */
1548 0, /* rightshift */
1549 2, /* size (0 = byte, 1 = short, 2 = long) */
1550 32, /* bitsize */
1551 FALSE, /* pc_relative */
1552 0, /* bitpos */
1553 complain_overflow_bitfield,/* complain_on_overflow */
1554 bfd_elf_generic_reloc, /* special_function */
1555 "R_ARM_TLS_LE32", /* name */
1556 TRUE, /* partial_inplace */
1557 0xffffffff, /* src_mask */
1558 0xffffffff, /* dst_mask */
1559 FALSE), /* pcrel_offset */
1560
1561 HOWTO (R_ARM_TLS_LDO12, /* type */
1562 0, /* rightshift */
1563 2, /* size (0 = byte, 1 = short, 2 = long) */
1564 12, /* bitsize */
1565 FALSE, /* pc_relative */
1566 0, /* bitpos */
1567 complain_overflow_bitfield,/* complain_on_overflow */
1568 bfd_elf_generic_reloc, /* special_function */
1569 "R_ARM_TLS_LDO12", /* name */
1570 FALSE, /* partial_inplace */
1571 0x00000fff, /* src_mask */
1572 0x00000fff, /* dst_mask */
1573 FALSE), /* pcrel_offset */
1574
1575 HOWTO (R_ARM_TLS_LE12, /* type */
1576 0, /* rightshift */
1577 2, /* size (0 = byte, 1 = short, 2 = long) */
1578 12, /* bitsize */
1579 FALSE, /* pc_relative */
1580 0, /* bitpos */
1581 complain_overflow_bitfield,/* complain_on_overflow */
1582 bfd_elf_generic_reloc, /* special_function */
1583 "R_ARM_TLS_LE12", /* name */
1584 FALSE, /* partial_inplace */
1585 0x00000fff, /* src_mask */
1586 0x00000fff, /* dst_mask */
1587 FALSE), /* pcrel_offset */
1588
1589 HOWTO (R_ARM_TLS_IE12GP, /* type */
1590 0, /* rightshift */
1591 2, /* size (0 = byte, 1 = short, 2 = long) */
1592 12, /* bitsize */
1593 FALSE, /* pc_relative */
1594 0, /* bitpos */
1595 complain_overflow_bitfield,/* complain_on_overflow */
1596 bfd_elf_generic_reloc, /* special_function */
1597 "R_ARM_TLS_IE12GP", /* name */
1598 FALSE, /* partial_inplace */
1599 0x00000fff, /* src_mask */
1600 0x00000fff, /* dst_mask */
1601 FALSE), /* pcrel_offset */
1602 };
1603
1604 /* 112-127 private relocations
1605 128 R_ARM_ME_TOO, obsolete
1606 129-255 unallocated in AAELF.
1607
1608 249-255 extended, currently unused, relocations: */
1609
1610 static reloc_howto_type elf32_arm_howto_table_2[4] =
1611 {
1612 HOWTO (R_ARM_RREL32, /* type */
1613 0, /* rightshift */
1614 0, /* size (0 = byte, 1 = short, 2 = long) */
1615 0, /* bitsize */
1616 FALSE, /* pc_relative */
1617 0, /* bitpos */
1618 complain_overflow_dont,/* complain_on_overflow */
1619 bfd_elf_generic_reloc, /* special_function */
1620 "R_ARM_RREL32", /* name */
1621 FALSE, /* partial_inplace */
1622 0, /* src_mask */
1623 0, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1625
1626 HOWTO (R_ARM_RABS32, /* type */
1627 0, /* rightshift */
1628 0, /* size (0 = byte, 1 = short, 2 = long) */
1629 0, /* bitsize */
1630 FALSE, /* pc_relative */
1631 0, /* bitpos */
1632 complain_overflow_dont,/* complain_on_overflow */
1633 bfd_elf_generic_reloc, /* special_function */
1634 "R_ARM_RABS32", /* name */
1635 FALSE, /* partial_inplace */
1636 0, /* src_mask */
1637 0, /* dst_mask */
1638 FALSE), /* pcrel_offset */
1639
1640 HOWTO (R_ARM_RPC24, /* type */
1641 0, /* rightshift */
1642 0, /* size (0 = byte, 1 = short, 2 = long) */
1643 0, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_dont,/* complain_on_overflow */
1647 bfd_elf_generic_reloc, /* special_function */
1648 "R_ARM_RPC24", /* name */
1649 FALSE, /* partial_inplace */
1650 0, /* src_mask */
1651 0, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1653
1654 HOWTO (R_ARM_RBASE, /* type */
1655 0, /* rightshift */
1656 0, /* size (0 = byte, 1 = short, 2 = long) */
1657 0, /* bitsize */
1658 FALSE, /* pc_relative */
1659 0, /* bitpos */
1660 complain_overflow_dont,/* complain_on_overflow */
1661 bfd_elf_generic_reloc, /* special_function */
1662 "R_ARM_RBASE", /* name */
1663 FALSE, /* partial_inplace */
1664 0, /* src_mask */
1665 0, /* dst_mask */
1666 FALSE) /* pcrel_offset */
1667 };
1668
1669 static reloc_howto_type *
1670 elf32_arm_howto_from_type (unsigned int r_type)
1671 {
1672 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1673 return &elf32_arm_howto_table_1[r_type];
1674
1675 if (r_type >= R_ARM_RREL32
1676 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1677 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1678
1679 return NULL;
1680 }
1681
1682 static void
1683 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1684 Elf_Internal_Rela * elf_reloc)
1685 {
1686 unsigned int r_type;
1687
1688 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1689 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1690 }
1691
1692 struct elf32_arm_reloc_map
1693 {
1694 bfd_reloc_code_real_type bfd_reloc_val;
1695 unsigned char elf_reloc_val;
1696 };
1697
1698 /* All entries in this list must also be present in elf32_arm_howto_table. */
1699 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1700 {
1701 {BFD_RELOC_NONE, R_ARM_NONE},
1702 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1703 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1704 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1705 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1706 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1707 {BFD_RELOC_32, R_ARM_ABS32},
1708 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1709 {BFD_RELOC_8, R_ARM_ABS8},
1710 {BFD_RELOC_16, R_ARM_ABS16},
1711 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1712 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1714 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1715 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1717 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1718 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1719 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1720 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1721 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1722 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1723 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1724 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1725 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1726 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1727 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1728 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1729 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1730 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1731 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1732 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1733 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1734 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1735 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1736 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1737 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1738 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1739 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1740 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1741 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1742 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1743 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1744 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1745 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1746 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1747 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1748 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1749 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1750 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1751 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1752 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1753 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1754 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1755 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1756 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1757 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1758 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1759 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1760 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1761 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1762 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1763 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1764 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1765 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1766 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1767 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1768 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1769 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1770 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1771 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1772 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1773 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1774 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1775 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1776 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1777 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1778 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1779 };
1780
1781 static reloc_howto_type *
1782 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1783 bfd_reloc_code_real_type code)
1784 {
1785 unsigned int i;
1786
1787 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1788 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1789 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1790
1791 return NULL;
1792 }
1793
1794 static reloc_howto_type *
1795 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1796 const char *r_name)
1797 {
1798 unsigned int i;
1799
1800 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1801 if (elf32_arm_howto_table_1[i].name != NULL
1802 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1803 return &elf32_arm_howto_table_1[i];
1804
1805 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1806 if (elf32_arm_howto_table_2[i].name != NULL
1807 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1808 return &elf32_arm_howto_table_2[i];
1809
1810 return NULL;
1811 }
1812
1813 /* Support for core dump NOTE sections. */
1814
1815 static bfd_boolean
1816 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1817 {
1818 int offset;
1819 size_t size;
1820
1821 switch (note->descsz)
1822 {
1823 default:
1824 return FALSE;
1825
1826 case 148: /* Linux/ARM 32-bit. */
1827 /* pr_cursig */
1828 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1829
1830 /* pr_pid */
1831 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1832
1833 /* pr_reg */
1834 offset = 72;
1835 size = 72;
1836
1837 break;
1838 }
1839
1840 /* Make a ".reg/999" section. */
1841 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1842 size, note->descpos + offset);
1843 }
1844
1845 static bfd_boolean
1846 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1847 {
1848 switch (note->descsz)
1849 {
1850 default:
1851 return FALSE;
1852
1853 case 124: /* Linux/ARM elf_prpsinfo. */
1854 elf_tdata (abfd)->core_program
1855 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1856 elf_tdata (abfd)->core_command
1857 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1858 }
1859
1860 /* Note that for some reason, a spurious space is tacked
1861 onto the end of the args in some (at least one anyway)
1862 implementations, so strip it off if it exists. */
1863 {
1864 char *command = elf_tdata (abfd)->core_command;
1865 int n = strlen (command);
1866
1867 if (0 < n && command[n - 1] == ' ')
1868 command[n - 1] = '\0';
1869 }
1870
1871 return TRUE;
1872 }
1873
1874 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1875 #define TARGET_LITTLE_NAME "elf32-littlearm"
1876 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1877 #define TARGET_BIG_NAME "elf32-bigarm"
1878
1879 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1880 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1881
1882 typedef unsigned long int insn32;
1883 typedef unsigned short int insn16;
1884
1885 /* In lieu of proper flags, assume all EABIv4 or later objects are
1886 interworkable. */
1887 #define INTERWORK_FLAG(abfd) \
1888 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1889 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
1890 || ((abfd)->flags & BFD_LINKER_CREATED))
1891
1892 /* The linker script knows the section names for placement.
1893 The entry_names are used to do simple name mangling on the stubs.
1894 Given a function name, and its type, the stub can be found. The
1895 name can be changed. The only requirement is the %s be present. */
1896 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1897 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1898
1899 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1900 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1901
1902 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1903 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1904
1905 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1906 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1907
1908 #define STUB_ENTRY_NAME "__%s_veneer"
1909
1910 /* The name of the dynamic interpreter. This is put in the .interp
1911 section. */
1912 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1913
1914 #ifdef FOUR_WORD_PLT
1915
1916 /* The first entry in a procedure linkage table looks like
1917 this. It is set up so that any shared library function that is
1918 called before the relocation has been set up calls the dynamic
1919 linker first. */
1920 static const bfd_vma elf32_arm_plt0_entry [] =
1921 {
1922 0xe52de004, /* str lr, [sp, #-4]! */
1923 0xe59fe010, /* ldr lr, [pc, #16] */
1924 0xe08fe00e, /* add lr, pc, lr */
1925 0xe5bef008, /* ldr pc, [lr, #8]! */
1926 };
1927
1928 /* Subsequent entries in a procedure linkage table look like
1929 this. */
1930 static const bfd_vma elf32_arm_plt_entry [] =
1931 {
1932 0xe28fc600, /* add ip, pc, #NN */
1933 0xe28cca00, /* add ip, ip, #NN */
1934 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1935 0x00000000, /* unused */
1936 };
1937
1938 #else
1939
1940 /* The first entry in a procedure linkage table looks like
1941 this. It is set up so that any shared library function that is
1942 called before the relocation has been set up calls the dynamic
1943 linker first. */
1944 static const bfd_vma elf32_arm_plt0_entry [] =
1945 {
1946 0xe52de004, /* str lr, [sp, #-4]! */
1947 0xe59fe004, /* ldr lr, [pc, #4] */
1948 0xe08fe00e, /* add lr, pc, lr */
1949 0xe5bef008, /* ldr pc, [lr, #8]! */
1950 0x00000000, /* &GOT[0] - . */
1951 };
1952
1953 /* Subsequent entries in a procedure linkage table look like
1954 this. */
1955 static const bfd_vma elf32_arm_plt_entry [] =
1956 {
1957 0xe28fc600, /* add ip, pc, #0xNN00000 */
1958 0xe28cca00, /* add ip, ip, #0xNN000 */
1959 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1960 };
1961
1962 #endif
1963
1964 /* The format of the first entry in the procedure linkage table
1965 for a VxWorks executable. */
1966 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1967 {
1968 0xe52dc008, /* str ip,[sp,#-8]! */
1969 0xe59fc000, /* ldr ip,[pc] */
1970 0xe59cf008, /* ldr pc,[ip,#8] */
1971 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1972 };
1973
1974 /* The format of subsequent entries in a VxWorks executable. */
1975 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1976 {
1977 0xe59fc000, /* ldr ip,[pc] */
1978 0xe59cf000, /* ldr pc,[ip] */
1979 0x00000000, /* .long @got */
1980 0xe59fc000, /* ldr ip,[pc] */
1981 0xea000000, /* b _PLT */
1982 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1983 };
1984
1985 /* The format of entries in a VxWorks shared library. */
1986 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1987 {
1988 0xe59fc000, /* ldr ip,[pc] */
1989 0xe79cf009, /* ldr pc,[ip,r9] */
1990 0x00000000, /* .long @got */
1991 0xe59fc000, /* ldr ip,[pc] */
1992 0xe599f008, /* ldr pc,[r9,#8] */
1993 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1994 };
1995
1996 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1997 #define PLT_THUMB_STUB_SIZE 4
1998 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1999 {
2000 0x4778, /* bx pc */
2001 0x46c0 /* nop */
2002 };
2003
2004 /* The entries in a PLT when using a DLL-based target with multiple
2005 address spaces. */
2006 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2007 {
2008 0xe51ff004, /* ldr pc, [pc, #-4] */
2009 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2010 };
2011
2012 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2013 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2014 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2015 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2016 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2017 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2018
2019 enum stub_insn_type
2020 {
2021 THUMB16_TYPE = 1,
2022 THUMB32_TYPE,
2023 ARM_TYPE,
2024 DATA_TYPE
2025 };
2026
2027 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2028 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2029 is inserted in arm_build_one_stub(). */
2030 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2031 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2032 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2033 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2034 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2035 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2036
2037 typedef struct
2038 {
2039 bfd_vma data;
2040 enum stub_insn_type type;
2041 unsigned int r_type;
2042 int reloc_addend;
2043 } insn_sequence;
2044
2045 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2046 to reach the stub if necessary. */
2047 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2048 {
2049 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2050 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2051 };
2052
2053 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2054 available. */
2055 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2056 {
2057 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2058 ARM_INSN(0xe12fff1c), /* bx ip */
2059 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2060 };
2061
2062 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2063 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2064 {
2065 THUMB16_INSN(0xb401), /* push {r0} */
2066 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2067 THUMB16_INSN(0x4684), /* mov ip, r0 */
2068 THUMB16_INSN(0xbc01), /* pop {r0} */
2069 THUMB16_INSN(0x4760), /* bx ip */
2070 THUMB16_INSN(0xbf00), /* nop */
2071 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2072 };
2073
2074 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2075 allowed. */
2076 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2077 {
2078 THUMB16_INSN(0x4778), /* bx pc */
2079 THUMB16_INSN(0x46c0), /* nop */
2080 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2081 ARM_INSN(0xe12fff1c), /* bx ip */
2082 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2083 };
2084
2085 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2086 available. */
2087 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2088 {
2089 THUMB16_INSN(0x4778), /* bx pc */
2090 THUMB16_INSN(0x46c0), /* nop */
2091 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2092 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2093 };
2094
2095 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2096 one, when the destination is close enough. */
2097 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2098 {
2099 THUMB16_INSN(0x4778), /* bx pc */
2100 THUMB16_INSN(0x46c0), /* nop */
2101 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2102 };
2103
2104 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2105 blx to reach the stub if necessary. */
2106 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2107 {
2108 ARM_INSN(0xe59fc000), /* ldr r12, [pc] */
2109 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2110 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2111 };
2112
2113 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2114 blx to reach the stub if necessary. We can not add into pc;
2115 it is not guaranteed to mode switch (different in ARMv6 and
2116 ARMv7). */
2117 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2118 {
2119 ARM_INSN(0xe59fc004), /* ldr r12, [pc, #4] */
2120 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2121 ARM_INSN(0xe12fff1c), /* bx ip */
2122 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2123 };
2124
2125 /* V4T ARM -> ARM long branch stub, PIC. */
2126 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2127 {
2128 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2129 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2130 ARM_INSN(0xe12fff1c), /* bx ip */
2131 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2132 };
2133
2134 /* V4T Thumb -> ARM long branch stub, PIC. */
2135 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2136 {
2137 THUMB16_INSN(0x4778), /* bx pc */
2138 THUMB16_INSN(0x46c0), /* nop */
2139 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2140 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2141 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2142 };
2143
2144 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2145 architectures. */
2146 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2147 {
2148 THUMB16_INSN(0xb401), /* push {r0} */
2149 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2150 THUMB16_INSN(0x46fc), /* mov ip, pc */
2151 THUMB16_INSN(0x4484), /* add ip, r0 */
2152 THUMB16_INSN(0xbc01), /* pop {r0} */
2153 THUMB16_INSN(0x4760), /* bx ip */
2154 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2155 };
2156
2157 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2158 allowed. */
2159 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2160 {
2161 THUMB16_INSN(0x4778), /* bx pc */
2162 THUMB16_INSN(0x46c0), /* nop */
2163 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2164 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2165 ARM_INSN(0xe12fff1c), /* bx ip */
2166 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2167 };
2168
2169 /* Cortex-A8 erratum-workaround stubs. */
2170
2171 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2172 can't use a conditional branch to reach this stub). */
2173
2174 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2175 {
2176 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2177 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2178 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2179 };
2180
2181 /* Stub used for b.w and bl.w instructions. */
2182
2183 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2184 {
2185 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2186 };
2187
2188 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2189 {
2190 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2191 };
2192
2193 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2194 instruction (which switches to ARM mode) to point to this stub. Jump to the
2195 real destination using an ARM-mode branch. */
2196
2197 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2198 {
2199 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2200 };
2201
2202 /* Section name for stubs is the associated section name plus this
2203 string. */
2204 #define STUB_SUFFIX ".stub"
2205
2206 /* One entry per long/short branch stub defined above. */
2207 #define DEF_STUBS \
2208 DEF_STUB(long_branch_any_any) \
2209 DEF_STUB(long_branch_v4t_arm_thumb) \
2210 DEF_STUB(long_branch_thumb_only) \
2211 DEF_STUB(long_branch_v4t_thumb_thumb) \
2212 DEF_STUB(long_branch_v4t_thumb_arm) \
2213 DEF_STUB(short_branch_v4t_thumb_arm) \
2214 DEF_STUB(long_branch_any_arm_pic) \
2215 DEF_STUB(long_branch_any_thumb_pic) \
2216 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2217 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2218 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2219 DEF_STUB(long_branch_thumb_only_pic) \
2220 DEF_STUB(a8_veneer_b_cond) \
2221 DEF_STUB(a8_veneer_b) \
2222 DEF_STUB(a8_veneer_bl) \
2223 DEF_STUB(a8_veneer_blx)
2224
2225 #define DEF_STUB(x) arm_stub_##x,
2226 enum elf32_arm_stub_type {
2227 arm_stub_none,
2228 DEF_STUBS
2229 /* Note the first a8_veneer type */
2230 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2231 };
2232 #undef DEF_STUB
2233
2234 typedef struct
2235 {
2236 const insn_sequence* template_sequence;
2237 int template_size;
2238 } stub_def;
2239
2240 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2241 static const stub_def stub_definitions[] = {
2242 {NULL, 0},
2243 DEF_STUBS
2244 };
2245
2246 struct elf32_arm_stub_hash_entry
2247 {
2248 /* Base hash table entry structure. */
2249 struct bfd_hash_entry root;
2250
2251 /* The stub section. */
2252 asection *stub_sec;
2253
2254 /* Offset within stub_sec of the beginning of this stub. */
2255 bfd_vma stub_offset;
2256
2257 /* Given the symbol's value and its section we can determine its final
2258 value when building the stubs (so the stub knows where to jump). */
2259 bfd_vma target_value;
2260 asection *target_section;
2261
2262 /* Offset to apply to relocation referencing target_value. */
2263 bfd_vma target_addend;
2264
2265 /* The instruction which caused this stub to be generated (only valid for
2266 Cortex-A8 erratum workaround stubs at present). */
2267 unsigned long orig_insn;
2268
2269 /* The stub type. */
2270 enum elf32_arm_stub_type stub_type;
2271 /* Its encoding size in bytes. */
2272 int stub_size;
2273 /* Its template. */
2274 const insn_sequence *stub_template;
2275 /* The size of the template (number of entries). */
2276 int stub_template_size;
2277
2278 /* The symbol table entry, if any, that this was derived from. */
2279 struct elf32_arm_link_hash_entry *h;
2280
2281 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2282 unsigned char st_type;
2283
2284 /* Where this stub is being called from, or, in the case of combined
2285 stub sections, the first input section in the group. */
2286 asection *id_sec;
2287
2288 /* The name for the local symbol at the start of this stub. The
2289 stub name in the hash table has to be unique; this does not, so
2290 it can be friendlier. */
2291 char *output_name;
2292 };
2293
2294 /* Used to build a map of a section. This is required for mixed-endian
2295 code/data. */
2296
2297 typedef struct elf32_elf_section_map
2298 {
2299 bfd_vma vma;
2300 char type;
2301 }
2302 elf32_arm_section_map;
2303
2304 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2305
2306 typedef enum
2307 {
2308 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2309 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2310 VFP11_ERRATUM_ARM_VENEER,
2311 VFP11_ERRATUM_THUMB_VENEER
2312 }
2313 elf32_vfp11_erratum_type;
2314
2315 typedef struct elf32_vfp11_erratum_list
2316 {
2317 struct elf32_vfp11_erratum_list *next;
2318 bfd_vma vma;
2319 union
2320 {
2321 struct
2322 {
2323 struct elf32_vfp11_erratum_list *veneer;
2324 unsigned int vfp_insn;
2325 } b;
2326 struct
2327 {
2328 struct elf32_vfp11_erratum_list *branch;
2329 unsigned int id;
2330 } v;
2331 } u;
2332 elf32_vfp11_erratum_type type;
2333 }
2334 elf32_vfp11_erratum_list;
2335
2336 typedef enum
2337 {
2338 DELETE_EXIDX_ENTRY,
2339 INSERT_EXIDX_CANTUNWIND_AT_END
2340 }
2341 arm_unwind_edit_type;
2342
2343 /* A (sorted) list of edits to apply to an unwind table. */
2344 typedef struct arm_unwind_table_edit
2345 {
2346 arm_unwind_edit_type type;
2347 /* Note: we sometimes want to insert an unwind entry corresponding to a
2348 section different from the one we're currently writing out, so record the
2349 (text) section this edit relates to here. */
2350 asection *linked_section;
2351 unsigned int index;
2352 struct arm_unwind_table_edit *next;
2353 }
2354 arm_unwind_table_edit;
2355
2356 typedef struct _arm_elf_section_data
2357 {
2358 /* Information about mapping symbols. */
2359 struct bfd_elf_section_data elf;
2360 unsigned int mapcount;
2361 unsigned int mapsize;
2362 elf32_arm_section_map *map;
2363 /* Information about CPU errata. */
2364 unsigned int erratumcount;
2365 elf32_vfp11_erratum_list *erratumlist;
2366 /* Information about unwind tables. */
2367 union
2368 {
2369 /* Unwind info attached to a text section. */
2370 struct
2371 {
2372 asection *arm_exidx_sec;
2373 } text;
2374
2375 /* Unwind info attached to an .ARM.exidx section. */
2376 struct
2377 {
2378 arm_unwind_table_edit *unwind_edit_list;
2379 arm_unwind_table_edit *unwind_edit_tail;
2380 } exidx;
2381 } u;
2382 }
2383 _arm_elf_section_data;
2384
2385 #define elf32_arm_section_data(sec) \
2386 ((_arm_elf_section_data *) elf_section_data (sec))
2387
2388 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2389 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2390 so may be created multiple times: we use an array of these entries whilst
2391 relaxing which we can refresh easily, then create stubs for each potentially
2392 erratum-triggering instruction once we've settled on a solution. */
2393
2394 struct a8_erratum_fix {
2395 bfd *input_bfd;
2396 asection *section;
2397 bfd_vma offset;
2398 bfd_vma addend;
2399 unsigned long orig_insn;
2400 char *stub_name;
2401 enum elf32_arm_stub_type stub_type;
2402 };
2403
2404 /* A table of relocs applied to branches which might trigger Cortex-A8
2405 erratum. */
2406
2407 struct a8_erratum_reloc {
2408 bfd_vma from;
2409 bfd_vma destination;
2410 unsigned int r_type;
2411 unsigned char st_type;
2412 const char *sym_name;
2413 bfd_boolean non_a8_stub;
2414 };
2415
2416 /* The size of the thread control block. */
2417 #define TCB_SIZE 8
2418
2419 struct elf_arm_obj_tdata
2420 {
2421 struct elf_obj_tdata root;
2422
2423 /* tls_type for each local got entry. */
2424 char *local_got_tls_type;
2425
2426 /* Zero to warn when linking objects with incompatible enum sizes. */
2427 int no_enum_size_warning;
2428
2429 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2430 int no_wchar_size_warning;
2431 };
2432
2433 #define elf_arm_tdata(bfd) \
2434 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2435
2436 #define elf32_arm_local_got_tls_type(bfd) \
2437 (elf_arm_tdata (bfd)->local_got_tls_type)
2438
2439 #define is_arm_elf(bfd) \
2440 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2441 && elf_tdata (bfd) != NULL \
2442 && elf_object_id (bfd) == ARM_ELF_TDATA)
2443
2444 static bfd_boolean
2445 elf32_arm_mkobject (bfd *abfd)
2446 {
2447 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2448 ARM_ELF_TDATA);
2449 }
2450
2451 /* The ARM linker needs to keep track of the number of relocs that it
2452 decides to copy in check_relocs for each symbol. This is so that
2453 it can discard PC relative relocs if it doesn't need them when
2454 linking with -Bsymbolic. We store the information in a field
2455 extending the regular ELF linker hash table. */
2456
2457 /* This structure keeps track of the number of relocs we have copied
2458 for a given symbol. */
2459 struct elf32_arm_relocs_copied
2460 {
2461 /* Next section. */
2462 struct elf32_arm_relocs_copied * next;
2463 /* A section in dynobj. */
2464 asection * section;
2465 /* Number of relocs copied in this section. */
2466 bfd_size_type count;
2467 /* Number of PC-relative relocs copied in this section. */
2468 bfd_size_type pc_count;
2469 };
2470
2471 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2472
2473 /* Arm ELF linker hash entry. */
2474 struct elf32_arm_link_hash_entry
2475 {
2476 struct elf_link_hash_entry root;
2477
2478 /* Number of PC relative relocs copied for this symbol. */
2479 struct elf32_arm_relocs_copied * relocs_copied;
2480
2481 /* We reference count Thumb references to a PLT entry separately,
2482 so that we can emit the Thumb trampoline only if needed. */
2483 bfd_signed_vma plt_thumb_refcount;
2484
2485 /* Some references from Thumb code may be eliminated by BL->BLX
2486 conversion, so record them separately. */
2487 bfd_signed_vma plt_maybe_thumb_refcount;
2488
2489 /* Since PLT entries have variable size if the Thumb prologue is
2490 used, we need to record the index into .got.plt instead of
2491 recomputing it from the PLT offset. */
2492 bfd_signed_vma plt_got_offset;
2493
2494 #define GOT_UNKNOWN 0
2495 #define GOT_NORMAL 1
2496 #define GOT_TLS_GD 2
2497 #define GOT_TLS_IE 4
2498 unsigned char tls_type;
2499
2500 /* The symbol marking the real symbol location for exported thumb
2501 symbols with Arm stubs. */
2502 struct elf_link_hash_entry *export_glue;
2503
2504 /* A pointer to the most recently used stub hash entry against this
2505 symbol. */
2506 struct elf32_arm_stub_hash_entry *stub_cache;
2507 };
2508
2509 /* Traverse an arm ELF linker hash table. */
2510 #define elf32_arm_link_hash_traverse(table, func, info) \
2511 (elf_link_hash_traverse \
2512 (&(table)->root, \
2513 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2514 (info)))
2515
2516 /* Get the ARM elf linker hash table from a link_info structure. */
2517 #define elf32_arm_hash_table(info) \
2518 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2519
2520 #define arm_stub_hash_lookup(table, string, create, copy) \
2521 ((struct elf32_arm_stub_hash_entry *) \
2522 bfd_hash_lookup ((table), (string), (create), (copy)))
2523
2524 /* Array to keep track of which stub sections have been created, and
2525 information on stub grouping. */
2526 struct map_stub
2527 {
2528 /* This is the section to which stubs in the group will be
2529 attached. */
2530 asection *link_sec;
2531 /* The stub section. */
2532 asection *stub_sec;
2533 };
2534
2535 /* ARM ELF linker hash table. */
2536 struct elf32_arm_link_hash_table
2537 {
2538 /* The main hash table. */
2539 struct elf_link_hash_table root;
2540
2541 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2542 bfd_size_type thumb_glue_size;
2543
2544 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2545 bfd_size_type arm_glue_size;
2546
2547 /* The size in bytes of section containing the ARMv4 BX veneers. */
2548 bfd_size_type bx_glue_size;
2549
2550 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2551 veneer has been populated. */
2552 bfd_vma bx_glue_offset[15];
2553
2554 /* The size in bytes of the section containing glue for VFP11 erratum
2555 veneers. */
2556 bfd_size_type vfp11_erratum_glue_size;
2557
2558 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2559 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2560 elf32_arm_write_section(). */
2561 struct a8_erratum_fix *a8_erratum_fixes;
2562 unsigned int num_a8_erratum_fixes;
2563
2564 /* An arbitrary input BFD chosen to hold the glue sections. */
2565 bfd * bfd_of_glue_owner;
2566
2567 /* Nonzero to output a BE8 image. */
2568 int byteswap_code;
2569
2570 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2571 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2572 int target1_is_rel;
2573
2574 /* The relocation to use for R_ARM_TARGET2 relocations. */
2575 int target2_reloc;
2576
2577 /* 0 = Ignore R_ARM_V4BX.
2578 1 = Convert BX to MOV PC.
2579 2 = Generate v4 interworing stubs. */
2580 int fix_v4bx;
2581
2582 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2583 int fix_cortex_a8;
2584
2585 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2586 int use_blx;
2587
2588 /* What sort of code sequences we should look for which may trigger the
2589 VFP11 denorm erratum. */
2590 bfd_arm_vfp11_fix vfp11_fix;
2591
2592 /* Global counter for the number of fixes we have emitted. */
2593 int num_vfp11_fixes;
2594
2595 /* Nonzero to force PIC branch veneers. */
2596 int pic_veneer;
2597
2598 /* The number of bytes in the initial entry in the PLT. */
2599 bfd_size_type plt_header_size;
2600
2601 /* The number of bytes in the subsequent PLT etries. */
2602 bfd_size_type plt_entry_size;
2603
2604 /* True if the target system is VxWorks. */
2605 int vxworks_p;
2606
2607 /* True if the target system is Symbian OS. */
2608 int symbian_p;
2609
2610 /* True if the target uses REL relocations. */
2611 int use_rel;
2612
2613 /* Short-cuts to get to dynamic linker sections. */
2614 asection *sgot;
2615 asection *sgotplt;
2616 asection *srelgot;
2617 asection *splt;
2618 asection *srelplt;
2619 asection *sdynbss;
2620 asection *srelbss;
2621
2622 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2623 asection *srelplt2;
2624
2625 /* Data for R_ARM_TLS_LDM32 relocations. */
2626 union
2627 {
2628 bfd_signed_vma refcount;
2629 bfd_vma offset;
2630 } tls_ldm_got;
2631
2632 /* Small local sym cache. */
2633 struct sym_cache sym_cache;
2634
2635 /* For convenience in allocate_dynrelocs. */
2636 bfd * obfd;
2637
2638 /* The stub hash table. */
2639 struct bfd_hash_table stub_hash_table;
2640
2641 /* Linker stub bfd. */
2642 bfd *stub_bfd;
2643
2644 /* Linker call-backs. */
2645 asection * (*add_stub_section) (const char *, asection *);
2646 void (*layout_sections_again) (void);
2647
2648 /* Array to keep track of which stub sections have been created, and
2649 information on stub grouping. */
2650 struct map_stub *stub_group;
2651
2652 /* Assorted information used by elf32_arm_size_stubs. */
2653 unsigned int bfd_count;
2654 int top_index;
2655 asection **input_list;
2656 };
2657
2658 /* Create an entry in an ARM ELF linker hash table. */
2659
2660 static struct bfd_hash_entry *
2661 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2662 struct bfd_hash_table * table,
2663 const char * string)
2664 {
2665 struct elf32_arm_link_hash_entry * ret =
2666 (struct elf32_arm_link_hash_entry *) entry;
2667
2668 /* Allocate the structure if it has not already been allocated by a
2669 subclass. */
2670 if (ret == NULL)
2671 ret = (struct elf32_arm_link_hash_entry *)
2672 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2673 if (ret == NULL)
2674 return (struct bfd_hash_entry *) ret;
2675
2676 /* Call the allocation method of the superclass. */
2677 ret = ((struct elf32_arm_link_hash_entry *)
2678 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2679 table, string));
2680 if (ret != NULL)
2681 {
2682 ret->relocs_copied = NULL;
2683 ret->tls_type = GOT_UNKNOWN;
2684 ret->plt_thumb_refcount = 0;
2685 ret->plt_maybe_thumb_refcount = 0;
2686 ret->plt_got_offset = -1;
2687 ret->export_glue = NULL;
2688
2689 ret->stub_cache = NULL;
2690 }
2691
2692 return (struct bfd_hash_entry *) ret;
2693 }
2694
2695 /* Initialize an entry in the stub hash table. */
2696
2697 static struct bfd_hash_entry *
2698 stub_hash_newfunc (struct bfd_hash_entry *entry,
2699 struct bfd_hash_table *table,
2700 const char *string)
2701 {
2702 /* Allocate the structure if it has not already been allocated by a
2703 subclass. */
2704 if (entry == NULL)
2705 {
2706 entry = (struct bfd_hash_entry *)
2707 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
2708 if (entry == NULL)
2709 return entry;
2710 }
2711
2712 /* Call the allocation method of the superclass. */
2713 entry = bfd_hash_newfunc (entry, table, string);
2714 if (entry != NULL)
2715 {
2716 struct elf32_arm_stub_hash_entry *eh;
2717
2718 /* Initialize the local fields. */
2719 eh = (struct elf32_arm_stub_hash_entry *) entry;
2720 eh->stub_sec = NULL;
2721 eh->stub_offset = 0;
2722 eh->target_value = 0;
2723 eh->target_section = NULL;
2724 eh->target_addend = 0;
2725 eh->orig_insn = 0;
2726 eh->stub_type = arm_stub_none;
2727 eh->stub_size = 0;
2728 eh->stub_template = NULL;
2729 eh->stub_template_size = 0;
2730 eh->h = NULL;
2731 eh->id_sec = NULL;
2732 eh->output_name = NULL;
2733 }
2734
2735 return entry;
2736 }
2737
2738 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2739 shortcuts to them in our hash table. */
2740
2741 static bfd_boolean
2742 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2743 {
2744 struct elf32_arm_link_hash_table *htab;
2745
2746 htab = elf32_arm_hash_table (info);
2747 /* BPABI objects never have a GOT, or associated sections. */
2748 if (htab->symbian_p)
2749 return TRUE;
2750
2751 if (! _bfd_elf_create_got_section (dynobj, info))
2752 return FALSE;
2753
2754 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2755 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2756 if (!htab->sgot || !htab->sgotplt)
2757 abort ();
2758
2759 htab->srelgot = bfd_get_section_by_name (dynobj,
2760 RELOC_SECTION (htab, ".got"));
2761 if (htab->srelgot == NULL)
2762 return FALSE;
2763 return TRUE;
2764 }
2765
2766 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2767 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2768 hash table. */
2769
2770 static bfd_boolean
2771 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2772 {
2773 struct elf32_arm_link_hash_table *htab;
2774
2775 htab = elf32_arm_hash_table (info);
2776 if (!htab->sgot && !create_got_section (dynobj, info))
2777 return FALSE;
2778
2779 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2780 return FALSE;
2781
2782 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2783 htab->srelplt = bfd_get_section_by_name (dynobj,
2784 RELOC_SECTION (htab, ".plt"));
2785 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2786 if (!info->shared)
2787 htab->srelbss = bfd_get_section_by_name (dynobj,
2788 RELOC_SECTION (htab, ".bss"));
2789
2790 if (htab->vxworks_p)
2791 {
2792 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2793 return FALSE;
2794
2795 if (info->shared)
2796 {
2797 htab->plt_header_size = 0;
2798 htab->plt_entry_size
2799 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2800 }
2801 else
2802 {
2803 htab->plt_header_size
2804 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2805 htab->plt_entry_size
2806 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2807 }
2808 }
2809
2810 if (!htab->splt
2811 || !htab->srelplt
2812 || !htab->sdynbss
2813 || (!info->shared && !htab->srelbss))
2814 abort ();
2815
2816 return TRUE;
2817 }
2818
2819 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2820
2821 static void
2822 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2823 struct elf_link_hash_entry *dir,
2824 struct elf_link_hash_entry *ind)
2825 {
2826 struct elf32_arm_link_hash_entry *edir, *eind;
2827
2828 edir = (struct elf32_arm_link_hash_entry *) dir;
2829 eind = (struct elf32_arm_link_hash_entry *) ind;
2830
2831 if (eind->relocs_copied != NULL)
2832 {
2833 if (edir->relocs_copied != NULL)
2834 {
2835 struct elf32_arm_relocs_copied **pp;
2836 struct elf32_arm_relocs_copied *p;
2837
2838 /* Add reloc counts against the indirect sym to the direct sym
2839 list. Merge any entries against the same section. */
2840 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2841 {
2842 struct elf32_arm_relocs_copied *q;
2843
2844 for (q = edir->relocs_copied; q != NULL; q = q->next)
2845 if (q->section == p->section)
2846 {
2847 q->pc_count += p->pc_count;
2848 q->count += p->count;
2849 *pp = p->next;
2850 break;
2851 }
2852 if (q == NULL)
2853 pp = &p->next;
2854 }
2855 *pp = edir->relocs_copied;
2856 }
2857
2858 edir->relocs_copied = eind->relocs_copied;
2859 eind->relocs_copied = NULL;
2860 }
2861
2862 if (ind->root.type == bfd_link_hash_indirect)
2863 {
2864 /* Copy over PLT info. */
2865 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2866 eind->plt_thumb_refcount = 0;
2867 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2868 eind->plt_maybe_thumb_refcount = 0;
2869
2870 if (dir->got.refcount <= 0)
2871 {
2872 edir->tls_type = eind->tls_type;
2873 eind->tls_type = GOT_UNKNOWN;
2874 }
2875 }
2876
2877 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2878 }
2879
2880 /* Create an ARM elf linker hash table. */
2881
2882 static struct bfd_link_hash_table *
2883 elf32_arm_link_hash_table_create (bfd *abfd)
2884 {
2885 struct elf32_arm_link_hash_table *ret;
2886 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2887
2888 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
2889 if (ret == NULL)
2890 return NULL;
2891
2892 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2893 elf32_arm_link_hash_newfunc,
2894 sizeof (struct elf32_arm_link_hash_entry)))
2895 {
2896 free (ret);
2897 return NULL;
2898 }
2899
2900 ret->sgot = NULL;
2901 ret->sgotplt = NULL;
2902 ret->srelgot = NULL;
2903 ret->splt = NULL;
2904 ret->srelplt = NULL;
2905 ret->sdynbss = NULL;
2906 ret->srelbss = NULL;
2907 ret->srelplt2 = NULL;
2908 ret->thumb_glue_size = 0;
2909 ret->arm_glue_size = 0;
2910 ret->bx_glue_size = 0;
2911 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2912 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2913 ret->vfp11_erratum_glue_size = 0;
2914 ret->num_vfp11_fixes = 0;
2915 ret->fix_cortex_a8 = 0;
2916 ret->bfd_of_glue_owner = NULL;
2917 ret->byteswap_code = 0;
2918 ret->target1_is_rel = 0;
2919 ret->target2_reloc = R_ARM_NONE;
2920 #ifdef FOUR_WORD_PLT
2921 ret->plt_header_size = 16;
2922 ret->plt_entry_size = 16;
2923 #else
2924 ret->plt_header_size = 20;
2925 ret->plt_entry_size = 12;
2926 #endif
2927 ret->fix_v4bx = 0;
2928 ret->use_blx = 0;
2929 ret->vxworks_p = 0;
2930 ret->symbian_p = 0;
2931 ret->use_rel = 1;
2932 ret->sym_cache.abfd = NULL;
2933 ret->obfd = abfd;
2934 ret->tls_ldm_got.refcount = 0;
2935 ret->stub_bfd = NULL;
2936 ret->add_stub_section = NULL;
2937 ret->layout_sections_again = NULL;
2938 ret->stub_group = NULL;
2939 ret->bfd_count = 0;
2940 ret->top_index = 0;
2941 ret->input_list = NULL;
2942
2943 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2944 sizeof (struct elf32_arm_stub_hash_entry)))
2945 {
2946 free (ret);
2947 return NULL;
2948 }
2949
2950 return &ret->root.root;
2951 }
2952
2953 /* Free the derived linker hash table. */
2954
2955 static void
2956 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2957 {
2958 struct elf32_arm_link_hash_table *ret
2959 = (struct elf32_arm_link_hash_table *) hash;
2960
2961 bfd_hash_table_free (&ret->stub_hash_table);
2962 _bfd_generic_link_hash_table_free (hash);
2963 }
2964
2965 /* Determine if we're dealing with a Thumb only architecture. */
2966
2967 static bfd_boolean
2968 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2969 {
2970 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2971 Tag_CPU_arch);
2972 int profile;
2973
2974 if (arch != TAG_CPU_ARCH_V7)
2975 return FALSE;
2976
2977 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2978 Tag_CPU_arch_profile);
2979
2980 return profile == 'M';
2981 }
2982
2983 /* Determine if we're dealing with a Thumb-2 object. */
2984
2985 static bfd_boolean
2986 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2987 {
2988 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2989 Tag_CPU_arch);
2990 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2991 }
2992
2993 /* Determine what kind of NOPs are available. */
2994
2995 static bfd_boolean
2996 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
2997 {
2998 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2999 Tag_CPU_arch);
3000 return arch == TAG_CPU_ARCH_V6T2
3001 || arch == TAG_CPU_ARCH_V6K
3002 || arch == TAG_CPU_ARCH_V7;
3003 }
3004
3005 static bfd_boolean
3006 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3007 {
3008 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3009 Tag_CPU_arch);
3010 return arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7;
3011 }
3012
3013 static bfd_boolean
3014 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3015 {
3016 switch (stub_type)
3017 {
3018 case arm_stub_long_branch_thumb_only:
3019 case arm_stub_long_branch_v4t_thumb_arm:
3020 case arm_stub_short_branch_v4t_thumb_arm:
3021 case arm_stub_long_branch_v4t_thumb_arm_pic:
3022 case arm_stub_long_branch_thumb_only_pic:
3023 return TRUE;
3024 case arm_stub_none:
3025 BFD_FAIL ();
3026 return FALSE;
3027 break;
3028 default:
3029 return FALSE;
3030 }
3031 }
3032
3033 /* Determine the type of stub needed, if any, for a call. */
3034
3035 static enum elf32_arm_stub_type
3036 arm_type_of_stub (struct bfd_link_info *info,
3037 asection *input_sec,
3038 const Elf_Internal_Rela *rel,
3039 unsigned char st_type,
3040 struct elf32_arm_link_hash_entry *hash,
3041 bfd_vma destination,
3042 asection *sym_sec,
3043 bfd *input_bfd,
3044 const char *name)
3045 {
3046 bfd_vma location;
3047 bfd_signed_vma branch_offset;
3048 unsigned int r_type;
3049 struct elf32_arm_link_hash_table * globals;
3050 int thumb2;
3051 int thumb_only;
3052 enum elf32_arm_stub_type stub_type = arm_stub_none;
3053 int use_plt = 0;
3054
3055 /* We don't know the actual type of destination in case it is of
3056 type STT_SECTION: give up. */
3057 if (st_type == STT_SECTION)
3058 return stub_type;
3059
3060 globals = elf32_arm_hash_table (info);
3061
3062 thumb_only = using_thumb_only (globals);
3063
3064 thumb2 = using_thumb2 (globals);
3065
3066 /* Determine where the call point is. */
3067 location = (input_sec->output_offset
3068 + input_sec->output_section->vma
3069 + rel->r_offset);
3070
3071 branch_offset = (bfd_signed_vma)(destination - location);
3072
3073 r_type = ELF32_R_TYPE (rel->r_info);
3074
3075 /* Keep a simpler condition, for the sake of clarity. */
3076 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
3077 {
3078 use_plt = 1;
3079 /* Note when dealing with PLT entries: the main PLT stub is in
3080 ARM mode, so if the branch is in Thumb mode, another
3081 Thumb->ARM stub will be inserted later just before the ARM
3082 PLT stub. We don't take this extra distance into account
3083 here, because if a long branch stub is needed, we'll add a
3084 Thumb->Arm one and branch directly to the ARM PLT entry
3085 because it avoids spreading offset corrections in several
3086 places. */
3087 }
3088
3089 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
3090 {
3091 /* Handle cases where:
3092 - this call goes too far (different Thumb/Thumb2 max
3093 distance)
3094 - it's a Thumb->Arm call and blx is not available, or it's a
3095 Thumb->Arm branch (not bl). A stub is needed in this case,
3096 but only if this call is not through a PLT entry. Indeed,
3097 PLT stubs handle mode switching already.
3098 */
3099 if ((!thumb2
3100 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3101 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3102 || (thumb2
3103 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3104 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3105 || ((st_type != STT_ARM_TFUNC)
3106 && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
3107 || (r_type == R_ARM_THM_JUMP24))
3108 && !use_plt))
3109 {
3110 if (st_type == STT_ARM_TFUNC)
3111 {
3112 /* Thumb to thumb. */
3113 if (!thumb_only)
3114 {
3115 stub_type = (info->shared | globals->pic_veneer)
3116 /* PIC stubs. */
3117 ? ((globals->use_blx
3118 && (r_type ==R_ARM_THM_CALL))
3119 /* V5T and above. Stub starts with ARM code, so
3120 we must be able to switch mode before
3121 reaching it, which is only possible for 'bl'
3122 (ie R_ARM_THM_CALL relocation). */
3123 ? arm_stub_long_branch_any_thumb_pic
3124 /* On V4T, use Thumb code only. */
3125 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3126
3127 /* non-PIC stubs. */
3128 : ((globals->use_blx
3129 && (r_type ==R_ARM_THM_CALL))
3130 /* V5T and above. */
3131 ? arm_stub_long_branch_any_any
3132 /* V4T. */
3133 : arm_stub_long_branch_v4t_thumb_thumb);
3134 }
3135 else
3136 {
3137 stub_type = (info->shared | globals->pic_veneer)
3138 /* PIC stub. */
3139 ? arm_stub_long_branch_thumb_only_pic
3140 /* non-PIC stub. */
3141 : arm_stub_long_branch_thumb_only;
3142 }
3143 }
3144 else
3145 {
3146 /* Thumb to arm. */
3147 if (sym_sec != NULL
3148 && sym_sec->owner != NULL
3149 && !INTERWORK_FLAG (sym_sec->owner))
3150 {
3151 (*_bfd_error_handler)
3152 (_("%B(%s): warning: interworking not enabled.\n"
3153 " first occurrence: %B: Thumb call to ARM"),
3154 sym_sec->owner, input_bfd, name);
3155 }
3156
3157 stub_type = (info->shared | globals->pic_veneer)
3158 /* PIC stubs. */
3159 ? ((globals->use_blx
3160 && (r_type ==R_ARM_THM_CALL))
3161 /* V5T and above. */
3162 ? arm_stub_long_branch_any_arm_pic
3163 /* V4T PIC stub. */
3164 : arm_stub_long_branch_v4t_thumb_arm_pic)
3165
3166 /* non-PIC stubs. */
3167 : ((globals->use_blx
3168 && (r_type ==R_ARM_THM_CALL))
3169 /* V5T and above. */
3170 ? arm_stub_long_branch_any_any
3171 /* V4T. */
3172 : arm_stub_long_branch_v4t_thumb_arm);
3173
3174 /* Handle v4t short branches. */
3175 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3176 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3177 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3178 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3179 }
3180 }
3181 }
3182 else if (r_type == R_ARM_CALL || r_type == R_ARM_JUMP24 || r_type == R_ARM_PLT32)
3183 {
3184 if (st_type == STT_ARM_TFUNC)
3185 {
3186 /* Arm to thumb. */
3187
3188 if (sym_sec != NULL
3189 && sym_sec->owner != NULL
3190 && !INTERWORK_FLAG (sym_sec->owner))
3191 {
3192 (*_bfd_error_handler)
3193 (_("%B(%s): warning: interworking not enabled.\n"
3194 " first occurrence: %B: ARM call to Thumb"),
3195 sym_sec->owner, input_bfd, name);
3196 }
3197
3198 /* We have an extra 2-bytes reach because of
3199 the mode change (bit 24 (H) of BLX encoding). */
3200 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3201 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3202 || ((r_type == R_ARM_CALL) && !globals->use_blx)
3203 || (r_type == R_ARM_JUMP24)
3204 || (r_type == R_ARM_PLT32))
3205 {
3206 stub_type = (info->shared | globals->pic_veneer)
3207 /* PIC stubs. */
3208 ? ((globals->use_blx)
3209 /* V5T and above. */
3210 ? arm_stub_long_branch_any_thumb_pic
3211 /* V4T stub. */
3212 : arm_stub_long_branch_v4t_arm_thumb_pic)
3213
3214 /* non-PIC stubs. */
3215 : ((globals->use_blx)
3216 /* V5T and above. */
3217 ? arm_stub_long_branch_any_any
3218 /* V4T. */
3219 : arm_stub_long_branch_v4t_arm_thumb);
3220 }
3221 }
3222 else
3223 {
3224 /* Arm to arm. */
3225 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3226 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3227 {
3228 stub_type = (info->shared | globals->pic_veneer)
3229 /* PIC stubs. */
3230 ? arm_stub_long_branch_any_arm_pic
3231 /* non-PIC stubs. */
3232 : arm_stub_long_branch_any_any;
3233 }
3234 }
3235 }
3236
3237 return stub_type;
3238 }
3239
3240 /* Build a name for an entry in the stub hash table. */
3241
3242 static char *
3243 elf32_arm_stub_name (const asection *input_section,
3244 const asection *sym_sec,
3245 const struct elf32_arm_link_hash_entry *hash,
3246 const Elf_Internal_Rela *rel)
3247 {
3248 char *stub_name;
3249 bfd_size_type len;
3250
3251 if (hash)
3252 {
3253 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
3254 stub_name = (char *) bfd_malloc (len);
3255 if (stub_name != NULL)
3256 sprintf (stub_name, "%08x_%s+%x",
3257 input_section->id & 0xffffffff,
3258 hash->root.root.root.string,
3259 (int) rel->r_addend & 0xffffffff);
3260 }
3261 else
3262 {
3263 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
3264 stub_name = (char *) bfd_malloc (len);
3265 if (stub_name != NULL)
3266 sprintf (stub_name, "%08x_%x:%x+%x",
3267 input_section->id & 0xffffffff,
3268 sym_sec->id & 0xffffffff,
3269 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3270 (int) rel->r_addend & 0xffffffff);
3271 }
3272
3273 return stub_name;
3274 }
3275
3276 /* Look up an entry in the stub hash. Stub entries are cached because
3277 creating the stub name takes a bit of time. */
3278
3279 static struct elf32_arm_stub_hash_entry *
3280 elf32_arm_get_stub_entry (const asection *input_section,
3281 const asection *sym_sec,
3282 struct elf_link_hash_entry *hash,
3283 const Elf_Internal_Rela *rel,
3284 struct elf32_arm_link_hash_table *htab)
3285 {
3286 struct elf32_arm_stub_hash_entry *stub_entry;
3287 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3288 const asection *id_sec;
3289
3290 if ((input_section->flags & SEC_CODE) == 0)
3291 return NULL;
3292
3293 /* If this input section is part of a group of sections sharing one
3294 stub section, then use the id of the first section in the group.
3295 Stub names need to include a section id, as there may well be
3296 more than one stub used to reach say, printf, and we need to
3297 distinguish between them. */
3298 id_sec = htab->stub_group[input_section->id].link_sec;
3299
3300 if (h != NULL && h->stub_cache != NULL
3301 && h->stub_cache->h == h
3302 && h->stub_cache->id_sec == id_sec)
3303 {
3304 stub_entry = h->stub_cache;
3305 }
3306 else
3307 {
3308 char *stub_name;
3309
3310 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
3311 if (stub_name == NULL)
3312 return NULL;
3313
3314 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3315 stub_name, FALSE, FALSE);
3316 if (h != NULL)
3317 h->stub_cache = stub_entry;
3318
3319 free (stub_name);
3320 }
3321
3322 return stub_entry;
3323 }
3324
3325 /* Find or create a stub section. Returns a pointer to the stub section, and
3326 the section to which the stub section will be attached (in *LINK_SEC_P).
3327 LINK_SEC_P may be NULL. */
3328
3329 static asection *
3330 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3331 struct elf32_arm_link_hash_table *htab)
3332 {
3333 asection *link_sec;
3334 asection *stub_sec;
3335
3336 link_sec = htab->stub_group[section->id].link_sec;
3337 stub_sec = htab->stub_group[section->id].stub_sec;
3338 if (stub_sec == NULL)
3339 {
3340 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3341 if (stub_sec == NULL)
3342 {
3343 size_t namelen;
3344 bfd_size_type len;
3345 char *s_name;
3346
3347 namelen = strlen (link_sec->name);
3348 len = namelen + sizeof (STUB_SUFFIX);
3349 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
3350 if (s_name == NULL)
3351 return NULL;
3352
3353 memcpy (s_name, link_sec->name, namelen);
3354 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3355 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3356 if (stub_sec == NULL)
3357 return NULL;
3358 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3359 }
3360 htab->stub_group[section->id].stub_sec = stub_sec;
3361 }
3362
3363 if (link_sec_p)
3364 *link_sec_p = link_sec;
3365
3366 return stub_sec;
3367 }
3368
3369 /* Add a new stub entry to the stub hash. Not all fields of the new
3370 stub entry are initialised. */
3371
3372 static struct elf32_arm_stub_hash_entry *
3373 elf32_arm_add_stub (const char *stub_name,
3374 asection *section,
3375 struct elf32_arm_link_hash_table *htab)
3376 {
3377 asection *link_sec;
3378 asection *stub_sec;
3379 struct elf32_arm_stub_hash_entry *stub_entry;
3380
3381 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3382 if (stub_sec == NULL)
3383 return NULL;
3384
3385 /* Enter this entry into the linker stub hash table. */
3386 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3387 TRUE, FALSE);
3388 if (stub_entry == NULL)
3389 {
3390 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3391 section->owner,
3392 stub_name);
3393 return NULL;
3394 }
3395
3396 stub_entry->stub_sec = stub_sec;
3397 stub_entry->stub_offset = 0;
3398 stub_entry->id_sec = link_sec;
3399
3400 return stub_entry;
3401 }
3402
3403 /* Store an Arm insn into an output section not processed by
3404 elf32_arm_write_section. */
3405
3406 static void
3407 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3408 bfd * output_bfd, bfd_vma val, void * ptr)
3409 {
3410 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3411 bfd_putl32 (val, ptr);
3412 else
3413 bfd_putb32 (val, ptr);
3414 }
3415
3416 /* Store a 16-bit Thumb insn into an output section not processed by
3417 elf32_arm_write_section. */
3418
3419 static void
3420 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3421 bfd * output_bfd, bfd_vma val, void * ptr)
3422 {
3423 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3424 bfd_putl16 (val, ptr);
3425 else
3426 bfd_putb16 (val, ptr);
3427 }
3428
3429 static bfd_reloc_status_type elf32_arm_final_link_relocate
3430 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3431 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3432 const char *, int, struct elf_link_hash_entry *, bfd_boolean *, char **);
3433
3434 static bfd_boolean
3435 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3436 void * in_arg)
3437 {
3438 #define MAXRELOCS 2
3439 struct elf32_arm_stub_hash_entry *stub_entry;
3440 struct bfd_link_info *info;
3441 struct elf32_arm_link_hash_table *htab;
3442 asection *stub_sec;
3443 bfd *stub_bfd;
3444 bfd_vma stub_addr;
3445 bfd_byte *loc;
3446 bfd_vma sym_value;
3447 int template_size;
3448 int size;
3449 const insn_sequence *template_sequence;
3450 int i;
3451 struct elf32_arm_link_hash_table * globals;
3452 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
3453 int stub_reloc_offset[MAXRELOCS] = {0, 0};
3454 int nrelocs = 0;
3455
3456 /* Massage our args to the form they really have. */
3457 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3458 info = (struct bfd_link_info *) in_arg;
3459
3460 globals = elf32_arm_hash_table (info);
3461
3462 htab = elf32_arm_hash_table (info);
3463 stub_sec = stub_entry->stub_sec;
3464
3465 if ((htab->fix_cortex_a8 < 0)
3466 != (stub_entry->stub_type >= arm_stub_a8_veneer_lwm))
3467 /* We have to do the a8 fixes last, as they are less aligned than
3468 the other veneers. */
3469 return TRUE;
3470
3471 /* Make a note of the offset within the stubs for this entry. */
3472 stub_entry->stub_offset = stub_sec->size;
3473 loc = stub_sec->contents + stub_entry->stub_offset;
3474
3475 stub_bfd = stub_sec->owner;
3476
3477 /* This is the address of the start of the stub. */
3478 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3479 + stub_entry->stub_offset;
3480
3481 /* This is the address of the stub destination. */
3482 sym_value = (stub_entry->target_value
3483 + stub_entry->target_section->output_offset
3484 + stub_entry->target_section->output_section->vma);
3485
3486 template_sequence = stub_entry->stub_template;
3487 template_size = stub_entry->stub_template_size;
3488
3489 size = 0;
3490 for (i = 0; i < template_size; i++)
3491 {
3492 switch (template_sequence[i].type)
3493 {
3494 case THUMB16_TYPE:
3495 {
3496 bfd_vma data = (bfd_vma) template_sequence[i].data;
3497 if (template_sequence[i].reloc_addend != 0)
3498 {
3499 /* We've borrowed the reloc_addend field to mean we should
3500 insert a condition code into this (Thumb-1 branch)
3501 instruction. See THUMB16_BCOND_INSN. */
3502 BFD_ASSERT ((data & 0xff00) == 0xd000);
3503 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
3504 }
3505 put_thumb_insn (globals, stub_bfd, data, loc + size);
3506 size += 2;
3507 }
3508 break;
3509
3510 case THUMB32_TYPE:
3511 put_thumb_insn (globals, stub_bfd,
3512 (template_sequence[i].data >> 16) & 0xffff,
3513 loc + size);
3514 put_thumb_insn (globals, stub_bfd, template_sequence[i].data & 0xffff,
3515 loc + size + 2);
3516 if (template_sequence[i].r_type != R_ARM_NONE)
3517 {
3518 stub_reloc_idx[nrelocs] = i;
3519 stub_reloc_offset[nrelocs++] = size;
3520 }
3521 size += 4;
3522 break;
3523
3524 case ARM_TYPE:
3525 put_arm_insn (globals, stub_bfd, template_sequence[i].data,
3526 loc + size);
3527 /* Handle cases where the target is encoded within the
3528 instruction. */
3529 if (template_sequence[i].r_type == R_ARM_JUMP24)
3530 {
3531 stub_reloc_idx[nrelocs] = i;
3532 stub_reloc_offset[nrelocs++] = size;
3533 }
3534 size += 4;
3535 break;
3536
3537 case DATA_TYPE:
3538 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
3539 stub_reloc_idx[nrelocs] = i;
3540 stub_reloc_offset[nrelocs++] = size;
3541 size += 4;
3542 break;
3543
3544 default:
3545 BFD_FAIL ();
3546 return FALSE;
3547 }
3548 }
3549
3550 stub_sec->size += size;
3551
3552 /* Stub size has already been computed in arm_size_one_stub. Check
3553 consistency. */
3554 BFD_ASSERT (size == stub_entry->stub_size);
3555
3556 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3557 if (stub_entry->st_type == STT_ARM_TFUNC)
3558 sym_value |= 1;
3559
3560 /* Assume there is at least one and at most MAXRELOCS entries to relocate
3561 in each stub. */
3562 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
3563
3564 for (i = 0; i < nrelocs; i++)
3565 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
3566 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
3567 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
3568 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
3569 {
3570 Elf_Internal_Rela rel;
3571 bfd_boolean unresolved_reloc;
3572 char *error_message;
3573 int sym_flags
3574 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22)
3575 ? STT_ARM_TFUNC : 0;
3576 bfd_vma points_to = sym_value + stub_entry->target_addend;
3577
3578 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
3579 rel.r_info = ELF32_R_INFO (0,
3580 template_sequence[stub_reloc_idx[i]].r_type);
3581 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
3582
3583 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
3584 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
3585 template should refer back to the instruction after the original
3586 branch. */
3587 points_to = sym_value;
3588
3589 /* There may be unintended consequences if this is not true. */
3590 BFD_ASSERT (stub_entry->h == NULL);
3591
3592 /* Note: _bfd_final_link_relocate doesn't handle these relocations
3593 properly. We should probably use this function unconditionally,
3594 rather than only for certain relocations listed in the enclosing
3595 conditional, for the sake of consistency. */
3596 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
3597 (template_sequence[stub_reloc_idx[i]].r_type),
3598 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
3599 points_to, info, stub_entry->target_section, "", sym_flags,
3600 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
3601 &error_message);
3602 }
3603 else
3604 {
3605 _bfd_final_link_relocate (elf32_arm_howto_from_type
3606 (template_sequence[stub_reloc_idx[i]].r_type), stub_bfd, stub_sec,
3607 stub_sec->contents, stub_entry->stub_offset + stub_reloc_offset[i],
3608 sym_value + stub_entry->target_addend,
3609 template_sequence[stub_reloc_idx[i]].reloc_addend);
3610 }
3611
3612 return TRUE;
3613 #undef MAXRELOCS
3614 }
3615
3616 /* Calculate the template, template size and instruction size for a stub.
3617 Return value is the instruction size. */
3618
3619 static unsigned int
3620 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
3621 const insn_sequence **stub_template,
3622 int *stub_template_size)
3623 {
3624 const insn_sequence *template_sequence = NULL;
3625 int template_size = 0, i;
3626 unsigned int size;
3627
3628 template_sequence = stub_definitions[stub_type].template_sequence;
3629 template_size = stub_definitions[stub_type].template_size;
3630
3631 size = 0;
3632 for (i = 0; i < template_size; i++)
3633 {
3634 switch (template_sequence[i].type)
3635 {
3636 case THUMB16_TYPE:
3637 size += 2;
3638 break;
3639
3640 case ARM_TYPE:
3641 case THUMB32_TYPE:
3642 case DATA_TYPE:
3643 size += 4;
3644 break;
3645
3646 default:
3647 BFD_FAIL ();
3648 return FALSE;
3649 }
3650 }
3651
3652 if (stub_template)
3653 *stub_template = template_sequence;
3654
3655 if (stub_template_size)
3656 *stub_template_size = template_size;
3657
3658 return size;
3659 }
3660
3661 /* As above, but don't actually build the stub. Just bump offset so
3662 we know stub section sizes. */
3663
3664 static bfd_boolean
3665 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3666 void * in_arg)
3667 {
3668 struct elf32_arm_stub_hash_entry *stub_entry;
3669 struct elf32_arm_link_hash_table *htab;
3670 const insn_sequence *template_sequence;
3671 int template_size, size;
3672
3673 /* Massage our args to the form they really have. */
3674 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3675 htab = (struct elf32_arm_link_hash_table *) in_arg;
3676
3677 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
3678 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
3679
3680 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
3681 &template_size);
3682
3683 stub_entry->stub_size = size;
3684 stub_entry->stub_template = template_sequence;
3685 stub_entry->stub_template_size = template_size;
3686
3687 size = (size + 7) & ~7;
3688 stub_entry->stub_sec->size += size;
3689
3690 return TRUE;
3691 }
3692
3693 /* External entry points for sizing and building linker stubs. */
3694
3695 /* Set up various things so that we can make a list of input sections
3696 for each output section included in the link. Returns -1 on error,
3697 0 when no stubs will be needed, and 1 on success. */
3698
3699 int
3700 elf32_arm_setup_section_lists (bfd *output_bfd,
3701 struct bfd_link_info *info)
3702 {
3703 bfd *input_bfd;
3704 unsigned int bfd_count;
3705 int top_id, top_index;
3706 asection *section;
3707 asection **input_list, **list;
3708 bfd_size_type amt;
3709 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3710
3711 if (! is_elf_hash_table (htab))
3712 return 0;
3713
3714 /* Count the number of input BFDs and find the top input section id. */
3715 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3716 input_bfd != NULL;
3717 input_bfd = input_bfd->link_next)
3718 {
3719 bfd_count += 1;
3720 for (section = input_bfd->sections;
3721 section != NULL;
3722 section = section->next)
3723 {
3724 if (top_id < section->id)
3725 top_id = section->id;
3726 }
3727 }
3728 htab->bfd_count = bfd_count;
3729
3730 amt = sizeof (struct map_stub) * (top_id + 1);
3731 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
3732 if (htab->stub_group == NULL)
3733 return -1;
3734
3735 /* We can't use output_bfd->section_count here to find the top output
3736 section index as some sections may have been removed, and
3737 _bfd_strip_section_from_output doesn't renumber the indices. */
3738 for (section = output_bfd->sections, top_index = 0;
3739 section != NULL;
3740 section = section->next)
3741 {
3742 if (top_index < section->index)
3743 top_index = section->index;
3744 }
3745
3746 htab->top_index = top_index;
3747 amt = sizeof (asection *) * (top_index + 1);
3748 input_list = (asection **) bfd_malloc (amt);
3749 htab->input_list = input_list;
3750 if (input_list == NULL)
3751 return -1;
3752
3753 /* For sections we aren't interested in, mark their entries with a
3754 value we can check later. */
3755 list = input_list + top_index;
3756 do
3757 *list = bfd_abs_section_ptr;
3758 while (list-- != input_list);
3759
3760 for (section = output_bfd->sections;
3761 section != NULL;
3762 section = section->next)
3763 {
3764 if ((section->flags & SEC_CODE) != 0)
3765 input_list[section->index] = NULL;
3766 }
3767
3768 return 1;
3769 }
3770
3771 /* The linker repeatedly calls this function for each input section,
3772 in the order that input sections are linked into output sections.
3773 Build lists of input sections to determine groupings between which
3774 we may insert linker stubs. */
3775
3776 void
3777 elf32_arm_next_input_section (struct bfd_link_info *info,
3778 asection *isec)
3779 {
3780 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3781
3782 if (isec->output_section->index <= htab->top_index)
3783 {
3784 asection **list = htab->input_list + isec->output_section->index;
3785
3786 if (*list != bfd_abs_section_ptr)
3787 {
3788 /* Steal the link_sec pointer for our list. */
3789 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3790 /* This happens to make the list in reverse order,
3791 which we reverse later. */
3792 PREV_SEC (isec) = *list;
3793 *list = isec;
3794 }
3795 }
3796 }
3797
3798 /* See whether we can group stub sections together. Grouping stub
3799 sections may result in fewer stubs. More importantly, we need to
3800 put all .init* and .fini* stubs at the end of the .init or
3801 .fini output sections respectively, because glibc splits the
3802 _init and _fini functions into multiple parts. Putting a stub in
3803 the middle of a function is not a good idea. */
3804
3805 static void
3806 group_sections (struct elf32_arm_link_hash_table *htab,
3807 bfd_size_type stub_group_size,
3808 bfd_boolean stubs_always_after_branch)
3809 {
3810 asection **list = htab->input_list;
3811
3812 do
3813 {
3814 asection *tail = *list;
3815 asection *head;
3816
3817 if (tail == bfd_abs_section_ptr)
3818 continue;
3819
3820 /* Reverse the list: we must avoid placing stubs at the
3821 beginning of the section because the beginning of the text
3822 section may be required for an interrupt vector in bare metal
3823 code. */
3824 #define NEXT_SEC PREV_SEC
3825 head = NULL;
3826 while (tail != NULL)
3827 {
3828 /* Pop from tail. */
3829 asection *item = tail;
3830 tail = PREV_SEC (item);
3831
3832 /* Push on head. */
3833 NEXT_SEC (item) = head;
3834 head = item;
3835 }
3836
3837 while (head != NULL)
3838 {
3839 asection *curr;
3840 asection *next;
3841 bfd_vma stub_group_start = head->output_offset;
3842 bfd_vma end_of_next;
3843
3844 curr = head;
3845 while (NEXT_SEC (curr) != NULL)
3846 {
3847 next = NEXT_SEC (curr);
3848 end_of_next = next->output_offset + next->size;
3849 if (end_of_next - stub_group_start >= stub_group_size)
3850 /* End of NEXT is too far from start, so stop. */
3851 break;
3852 /* Add NEXT to the group. */
3853 curr = next;
3854 }
3855
3856 /* OK, the size from the start to the start of CURR is less
3857 than stub_group_size and thus can be handled by one stub
3858 section. (Or the head section is itself larger than
3859 stub_group_size, in which case we may be toast.)
3860 We should really be keeping track of the total size of
3861 stubs added here, as stubs contribute to the final output
3862 section size. */
3863 do
3864 {
3865 next = NEXT_SEC (head);
3866 /* Set up this stub group. */
3867 htab->stub_group[head->id].link_sec = curr;
3868 }
3869 while (head != curr && (head = next) != NULL);
3870
3871 /* But wait, there's more! Input sections up to stub_group_size
3872 bytes after the stub section can be handled by it too. */
3873 if (!stubs_always_after_branch)
3874 {
3875 stub_group_start = curr->output_offset + curr->size;
3876
3877 while (next != NULL)
3878 {
3879 end_of_next = next->output_offset + next->size;
3880 if (end_of_next - stub_group_start >= stub_group_size)
3881 /* End of NEXT is too far from stubs, so stop. */
3882 break;
3883 /* Add NEXT to the stub group. */
3884 head = next;
3885 next = NEXT_SEC (head);
3886 htab->stub_group[head->id].link_sec = curr;
3887 }
3888 }
3889 head = next;
3890 }
3891 }
3892 while (list++ != htab->input_list + htab->top_index);
3893
3894 free (htab->input_list);
3895 #undef PREV_SEC
3896 #undef NEXT_SEC
3897 }
3898
3899 /* Comparison function for sorting/searching relocations relating to Cortex-A8
3900 erratum fix. */
3901
3902 static int
3903 a8_reloc_compare (const void *a, const void *b)
3904 {
3905 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
3906 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
3907
3908 if (ra->from < rb->from)
3909 return -1;
3910 else if (ra->from > rb->from)
3911 return 1;
3912 else
3913 return 0;
3914 }
3915
3916 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
3917 const char *, char **);
3918
3919 /* Helper function to scan code for sequences which might trigger the Cortex-A8
3920 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
3921 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
3922 otherwise. */
3923
3924 static bfd_boolean
3925 cortex_a8_erratum_scan (bfd *input_bfd,
3926 struct bfd_link_info *info,
3927 struct a8_erratum_fix **a8_fixes_p,
3928 unsigned int *num_a8_fixes_p,
3929 unsigned int *a8_fix_table_size_p,
3930 struct a8_erratum_reloc *a8_relocs,
3931 unsigned int num_a8_relocs,
3932 unsigned prev_num_a8_fixes,
3933 bfd_boolean *stub_changed_p)
3934 {
3935 asection *section;
3936 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3937 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
3938 unsigned int num_a8_fixes = *num_a8_fixes_p;
3939 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
3940
3941 for (section = input_bfd->sections;
3942 section != NULL;
3943 section = section->next)
3944 {
3945 bfd_byte *contents = NULL;
3946 struct _arm_elf_section_data *sec_data;
3947 unsigned int span;
3948 bfd_vma base_vma;
3949
3950 if (elf_section_type (section) != SHT_PROGBITS
3951 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
3952 || (section->flags & SEC_EXCLUDE) != 0
3953 || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
3954 || (section->output_section == bfd_abs_section_ptr))
3955 continue;
3956
3957 base_vma = section->output_section->vma + section->output_offset;
3958
3959 if (elf_section_data (section)->this_hdr.contents != NULL)
3960 contents = elf_section_data (section)->this_hdr.contents;
3961 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
3962 return TRUE;
3963
3964 sec_data = elf32_arm_section_data (section);
3965
3966 for (span = 0; span < sec_data->mapcount; span++)
3967 {
3968 unsigned int span_start = sec_data->map[span].vma;
3969 unsigned int span_end = (span == sec_data->mapcount - 1)
3970 ? section->size : sec_data->map[span + 1].vma;
3971 unsigned int i;
3972 char span_type = sec_data->map[span].type;
3973 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
3974
3975 if (span_type != 't')
3976 continue;
3977
3978 /* Span is entirely within a single 4KB region: skip scanning. */
3979 if (((base_vma + span_start) & ~0xfff)
3980 == ((base_vma + span_end) & ~0xfff))
3981 continue;
3982
3983 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
3984
3985 * The opcode is BLX.W, BL.W, B.W, Bcc.W
3986 * The branch target is in the same 4KB region as the
3987 first half of the branch.
3988 * The instruction before the branch is a 32-bit
3989 length non-branch instruction. */
3990 for (i = span_start; i < span_end;)
3991 {
3992 unsigned int insn = bfd_getl16 (&contents[i]);
3993 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
3994 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
3995
3996 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
3997 insn_32bit = TRUE;
3998
3999 if (insn_32bit)
4000 {
4001 /* Load the rest of the insn (in manual-friendly order). */
4002 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4003
4004 /* Encoding T4: B<c>.W. */
4005 is_b = (insn & 0xf800d000) == 0xf0009000;
4006 /* Encoding T1: BL<c>.W. */
4007 is_bl = (insn & 0xf800d000) == 0xf000d000;
4008 /* Encoding T2: BLX<c>.W. */
4009 is_blx = (insn & 0xf800d000) == 0xf000c000;
4010 /* Encoding T3: B<c>.W (not permitted in IT block). */
4011 is_bcc = (insn & 0xf800d000) == 0xf0008000
4012 && (insn & 0x07f00000) != 0x03800000;
4013 }
4014
4015 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4016
4017 if (((base_vma + i) & 0xfff) == 0xffe
4018 && insn_32bit
4019 && is_32bit_branch
4020 && last_was_32bit
4021 && ! last_was_branch)
4022 {
4023 bfd_signed_vma offset;
4024 bfd_boolean force_target_arm = FALSE;
4025 bfd_boolean force_target_thumb = FALSE;
4026 bfd_vma target;
4027 enum elf32_arm_stub_type stub_type = arm_stub_none;
4028 struct a8_erratum_reloc key, *found;
4029
4030 key.from = base_vma + i;
4031 found = (struct a8_erratum_reloc *)
4032 bsearch (&key, a8_relocs, num_a8_relocs,
4033 sizeof (struct a8_erratum_reloc),
4034 &a8_reloc_compare);
4035
4036 if (found)
4037 {
4038 char *error_message = NULL;
4039 struct elf_link_hash_entry *entry;
4040
4041 /* We don't care about the error returned from this
4042 function, only if there is glue or not. */
4043 entry = find_thumb_glue (info, found->sym_name,
4044 &error_message);
4045
4046 if (entry)
4047 found->non_a8_stub = TRUE;
4048
4049 if (found->r_type == R_ARM_THM_CALL
4050 && found->st_type != STT_ARM_TFUNC)
4051 force_target_arm = TRUE;
4052 else if (found->r_type == R_ARM_THM_CALL
4053 && found->st_type == STT_ARM_TFUNC)
4054 force_target_thumb = TRUE;
4055 }
4056
4057 /* Check if we have an offending branch instruction. */
4058
4059 if (found && found->non_a8_stub)
4060 /* We've already made a stub for this instruction, e.g.
4061 it's a long branch or a Thumb->ARM stub. Assume that
4062 stub will suffice to work around the A8 erratum (see
4063 setting of always_after_branch above). */
4064 ;
4065 else if (is_bcc)
4066 {
4067 offset = (insn & 0x7ff) << 1;
4068 offset |= (insn & 0x3f0000) >> 4;
4069 offset |= (insn & 0x2000) ? 0x40000 : 0;
4070 offset |= (insn & 0x800) ? 0x80000 : 0;
4071 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4072 if (offset & 0x100000)
4073 offset |= ~ ((bfd_signed_vma) 0xfffff);
4074 stub_type = arm_stub_a8_veneer_b_cond;
4075 }
4076 else if (is_b || is_bl || is_blx)
4077 {
4078 int s = (insn & 0x4000000) != 0;
4079 int j1 = (insn & 0x2000) != 0;
4080 int j2 = (insn & 0x800) != 0;
4081 int i1 = !(j1 ^ s);
4082 int i2 = !(j2 ^ s);
4083
4084 offset = (insn & 0x7ff) << 1;
4085 offset |= (insn & 0x3ff0000) >> 4;
4086 offset |= i2 << 22;
4087 offset |= i1 << 23;
4088 offset |= s << 24;
4089 if (offset & 0x1000000)
4090 offset |= ~ ((bfd_signed_vma) 0xffffff);
4091
4092 if (is_blx)
4093 offset &= ~ ((bfd_signed_vma) 3);
4094
4095 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4096 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4097 }
4098
4099 if (stub_type != arm_stub_none)
4100 {
4101 bfd_vma pc_for_insn = base_vma + i + 4;
4102
4103 /* The original instruction is a BL, but the target is
4104 an ARM instruction. If we were not making a stub,
4105 the BL would have been converted to a BLX. Use the
4106 BLX stub instead in that case. */
4107 if (htab->use_blx && force_target_arm
4108 && stub_type == arm_stub_a8_veneer_bl)
4109 {
4110 stub_type = arm_stub_a8_veneer_blx;
4111 is_blx = TRUE;
4112 is_bl = FALSE;
4113 }
4114 /* Conversely, if the original instruction was
4115 BLX but the target is Thumb mode, use the BL
4116 stub. */
4117 else if (force_target_thumb
4118 && stub_type == arm_stub_a8_veneer_blx)
4119 {
4120 stub_type = arm_stub_a8_veneer_bl;
4121 is_blx = FALSE;
4122 is_bl = TRUE;
4123 }
4124
4125 if (is_blx)
4126 pc_for_insn &= ~ ((bfd_vma) 3);
4127
4128 /* If we found a relocation, use the proper destination,
4129 not the offset in the (unrelocated) instruction.
4130 Note this is always done if we switched the stub type
4131 above. */
4132 if (found)
4133 offset =
4134 (bfd_signed_vma) (found->destination - pc_for_insn);
4135
4136 target = pc_for_insn + offset;
4137
4138 /* The BLX stub is ARM-mode code. Adjust the offset to
4139 take the different PC value (+8 instead of +4) into
4140 account. */
4141 if (stub_type == arm_stub_a8_veneer_blx)
4142 offset += 4;
4143
4144 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4145 {
4146 char *stub_name = NULL;
4147
4148 if (num_a8_fixes == a8_fix_table_size)
4149 {
4150 a8_fix_table_size *= 2;
4151 a8_fixes = (struct a8_erratum_fix *)
4152 bfd_realloc (a8_fixes,
4153 sizeof (struct a8_erratum_fix)
4154 * a8_fix_table_size);
4155 }
4156
4157 if (num_a8_fixes < prev_num_a8_fixes)
4158 {
4159 /* If we're doing a subsequent scan,
4160 check if we've found the same fix as
4161 before, and try and reuse the stub
4162 name. */
4163 stub_name = a8_fixes[num_a8_fixes].stub_name;
4164 if ((a8_fixes[num_a8_fixes].section != section)
4165 || (a8_fixes[num_a8_fixes].offset != i))
4166 {
4167 free (stub_name);
4168 stub_name = NULL;
4169 *stub_changed_p = TRUE;
4170 }
4171 }
4172
4173 if (!stub_name)
4174 {
4175 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4176 if (stub_name != NULL)
4177 sprintf (stub_name, "%x:%x", section->id, i);
4178 }
4179
4180 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4181 a8_fixes[num_a8_fixes].section = section;
4182 a8_fixes[num_a8_fixes].offset = i;
4183 a8_fixes[num_a8_fixes].addend = offset;
4184 a8_fixes[num_a8_fixes].orig_insn = insn;
4185 a8_fixes[num_a8_fixes].stub_name = stub_name;
4186 a8_fixes[num_a8_fixes].stub_type = stub_type;
4187
4188 num_a8_fixes++;
4189 }
4190 }
4191 }
4192
4193 i += insn_32bit ? 4 : 2;
4194 last_was_32bit = insn_32bit;
4195 last_was_branch = is_32bit_branch;
4196 }
4197 }
4198
4199 if (elf_section_data (section)->this_hdr.contents == NULL)
4200 free (contents);
4201 }
4202
4203 *a8_fixes_p = a8_fixes;
4204 *num_a8_fixes_p = num_a8_fixes;
4205 *a8_fix_table_size_p = a8_fix_table_size;
4206
4207 return FALSE;
4208 }
4209
4210 /* Determine and set the size of the stub section for a final link.
4211
4212 The basic idea here is to examine all the relocations looking for
4213 PC-relative calls to a target that is unreachable with a "bl"
4214 instruction. */
4215
4216 bfd_boolean
4217 elf32_arm_size_stubs (bfd *output_bfd,
4218 bfd *stub_bfd,
4219 struct bfd_link_info *info,
4220 bfd_signed_vma group_size,
4221 asection * (*add_stub_section) (const char *, asection *),
4222 void (*layout_sections_again) (void))
4223 {
4224 bfd_size_type stub_group_size;
4225 bfd_boolean stubs_always_after_branch;
4226 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4227 struct a8_erratum_fix *a8_fixes = NULL;
4228 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4229 struct a8_erratum_reloc *a8_relocs = NULL;
4230 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4231
4232 if (htab->fix_cortex_a8)
4233 {
4234 a8_fixes = (struct a8_erratum_fix *)
4235 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4236 a8_relocs = (struct a8_erratum_reloc *)
4237 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4238 }
4239
4240 /* Propagate mach to stub bfd, because it may not have been
4241 finalized when we created stub_bfd. */
4242 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4243 bfd_get_mach (output_bfd));
4244
4245 /* Stash our params away. */
4246 htab->stub_bfd = stub_bfd;
4247 htab->add_stub_section = add_stub_section;
4248 htab->layout_sections_again = layout_sections_again;
4249 stubs_always_after_branch = group_size < 0;
4250
4251 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4252 as the first half of a 32-bit branch straddling two 4K pages. This is a
4253 crude way of enforcing that. */
4254 if (htab->fix_cortex_a8)
4255 stubs_always_after_branch = 1;
4256
4257 if (group_size < 0)
4258 stub_group_size = -group_size;
4259 else
4260 stub_group_size = group_size;
4261
4262 if (stub_group_size == 1)
4263 {
4264 /* Default values. */
4265 /* Thumb branch range is +-4MB has to be used as the default
4266 maximum size (a given section can contain both ARM and Thumb
4267 code, so the worst case has to be taken into account).
4268
4269 This value is 24K less than that, which allows for 2025
4270 12-byte stubs. If we exceed that, then we will fail to link.
4271 The user will have to relink with an explicit group size
4272 option. */
4273 stub_group_size = 4170000;
4274 }
4275
4276 group_sections (htab, stub_group_size, stubs_always_after_branch);
4277
4278 /* If we're applying the cortex A8 fix, we need to determine the
4279 program header size now, because we cannot change it later --
4280 that could alter section placements. Notice the A8 erratum fix
4281 ends up requiring the section addresses to remain unchanged
4282 modulo the page size. That's something we cannot represent
4283 inside BFD, and we don't want to force the section alignment to
4284 be the page size. */
4285 if (htab->fix_cortex_a8)
4286 (*htab->layout_sections_again) ();
4287
4288 while (1)
4289 {
4290 bfd *input_bfd;
4291 unsigned int bfd_indx;
4292 asection *stub_sec;
4293 bfd_boolean stub_changed = FALSE;
4294 unsigned prev_num_a8_fixes = num_a8_fixes;
4295
4296 num_a8_fixes = 0;
4297 for (input_bfd = info->input_bfds, bfd_indx = 0;
4298 input_bfd != NULL;
4299 input_bfd = input_bfd->link_next, bfd_indx++)
4300 {
4301 Elf_Internal_Shdr *symtab_hdr;
4302 asection *section;
4303 Elf_Internal_Sym *local_syms = NULL;
4304
4305 num_a8_relocs = 0;
4306
4307 /* We'll need the symbol table in a second. */
4308 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4309 if (symtab_hdr->sh_info == 0)
4310 continue;
4311
4312 /* Walk over each section attached to the input bfd. */
4313 for (section = input_bfd->sections;
4314 section != NULL;
4315 section = section->next)
4316 {
4317 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4318
4319 /* If there aren't any relocs, then there's nothing more
4320 to do. */
4321 if ((section->flags & SEC_RELOC) == 0
4322 || section->reloc_count == 0
4323 || (section->flags & SEC_CODE) == 0)
4324 continue;
4325
4326 /* If this section is a link-once section that will be
4327 discarded, then don't create any stubs. */
4328 if (section->output_section == NULL
4329 || section->output_section->owner != output_bfd)
4330 continue;
4331
4332 /* Get the relocs. */
4333 internal_relocs
4334 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4335 NULL, info->keep_memory);
4336 if (internal_relocs == NULL)
4337 goto error_ret_free_local;
4338
4339 /* Now examine each relocation. */
4340 irela = internal_relocs;
4341 irelaend = irela + section->reloc_count;
4342 for (; irela < irelaend; irela++)
4343 {
4344 unsigned int r_type, r_indx;
4345 enum elf32_arm_stub_type stub_type;
4346 struct elf32_arm_stub_hash_entry *stub_entry;
4347 asection *sym_sec;
4348 bfd_vma sym_value;
4349 bfd_vma destination;
4350 struct elf32_arm_link_hash_entry *hash;
4351 const char *sym_name;
4352 char *stub_name;
4353 const asection *id_sec;
4354 unsigned char st_type;
4355 bfd_boolean created_stub = FALSE;
4356
4357 r_type = ELF32_R_TYPE (irela->r_info);
4358 r_indx = ELF32_R_SYM (irela->r_info);
4359
4360 if (r_type >= (unsigned int) R_ARM_max)
4361 {
4362 bfd_set_error (bfd_error_bad_value);
4363 error_ret_free_internal:
4364 if (elf_section_data (section)->relocs == NULL)
4365 free (internal_relocs);
4366 goto error_ret_free_local;
4367 }
4368
4369 /* Only look for stubs on branch instructions. */
4370 if ((r_type != (unsigned int) R_ARM_CALL)
4371 && (r_type != (unsigned int) R_ARM_THM_CALL)
4372 && (r_type != (unsigned int) R_ARM_JUMP24)
4373 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
4374 && (r_type != (unsigned int) R_ARM_THM_XPC22)
4375 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
4376 && (r_type != (unsigned int) R_ARM_PLT32))
4377 continue;
4378
4379 /* Now determine the call target, its name, value,
4380 section. */
4381 sym_sec = NULL;
4382 sym_value = 0;
4383 destination = 0;
4384 hash = NULL;
4385 sym_name = NULL;
4386 if (r_indx < symtab_hdr->sh_info)
4387 {
4388 /* It's a local symbol. */
4389 Elf_Internal_Sym *sym;
4390 Elf_Internal_Shdr *hdr;
4391
4392 if (local_syms == NULL)
4393 {
4394 local_syms
4395 = (Elf_Internal_Sym *) symtab_hdr->contents;
4396 if (local_syms == NULL)
4397 local_syms
4398 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4399 symtab_hdr->sh_info, 0,
4400 NULL, NULL, NULL);
4401 if (local_syms == NULL)
4402 goto error_ret_free_internal;
4403 }
4404
4405 sym = local_syms + r_indx;
4406 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
4407 sym_sec = hdr->bfd_section;
4408 if (!sym_sec)
4409 /* This is an undefined symbol. It can never
4410 be resolved. */
4411 continue;
4412
4413 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
4414 sym_value = sym->st_value;
4415 destination = (sym_value + irela->r_addend
4416 + sym_sec->output_offset
4417 + sym_sec->output_section->vma);
4418 st_type = ELF_ST_TYPE (sym->st_info);
4419 sym_name
4420 = bfd_elf_string_from_elf_section (input_bfd,
4421 symtab_hdr->sh_link,
4422 sym->st_name);
4423 }
4424 else
4425 {
4426 /* It's an external symbol. */
4427 int e_indx;
4428
4429 e_indx = r_indx - symtab_hdr->sh_info;
4430 hash = ((struct elf32_arm_link_hash_entry *)
4431 elf_sym_hashes (input_bfd)[e_indx]);
4432
4433 while (hash->root.root.type == bfd_link_hash_indirect
4434 || hash->root.root.type == bfd_link_hash_warning)
4435 hash = ((struct elf32_arm_link_hash_entry *)
4436 hash->root.root.u.i.link);
4437
4438 if (hash->root.root.type == bfd_link_hash_defined
4439 || hash->root.root.type == bfd_link_hash_defweak)
4440 {
4441 sym_sec = hash->root.root.u.def.section;
4442 sym_value = hash->root.root.u.def.value;
4443
4444 struct elf32_arm_link_hash_table *globals =
4445 elf32_arm_hash_table (info);
4446
4447 /* For a destination in a shared library,
4448 use the PLT stub as target address to
4449 decide whether a branch stub is
4450 needed. */
4451 if (globals->splt != NULL && hash != NULL
4452 && hash->root.plt.offset != (bfd_vma) -1)
4453 {
4454 sym_sec = globals->splt;
4455 sym_value = hash->root.plt.offset;
4456 if (sym_sec->output_section != NULL)
4457 destination = (sym_value
4458 + sym_sec->output_offset
4459 + sym_sec->output_section->vma);
4460 }
4461 else if (sym_sec->output_section != NULL)
4462 destination = (sym_value + irela->r_addend
4463 + sym_sec->output_offset
4464 + sym_sec->output_section->vma);
4465 }
4466 else if ((hash->root.root.type == bfd_link_hash_undefined)
4467 || (hash->root.root.type == bfd_link_hash_undefweak))
4468 {
4469 /* For a shared library, use the PLT stub as
4470 target address to decide whether a long
4471 branch stub is needed.
4472 For absolute code, they cannot be handled. */
4473 struct elf32_arm_link_hash_table *globals =
4474 elf32_arm_hash_table (info);
4475
4476 if (globals->splt != NULL && hash != NULL
4477 && hash->root.plt.offset != (bfd_vma) -1)
4478 {
4479 sym_sec = globals->splt;
4480 sym_value = hash->root.plt.offset;
4481 if (sym_sec->output_section != NULL)
4482 destination = (sym_value
4483 + sym_sec->output_offset
4484 + sym_sec->output_section->vma);
4485 }
4486 else
4487 continue;
4488 }
4489 else
4490 {
4491 bfd_set_error (bfd_error_bad_value);
4492 goto error_ret_free_internal;
4493 }
4494 st_type = ELF_ST_TYPE (hash->root.type);
4495 sym_name = hash->root.root.root.string;
4496 }
4497
4498 do
4499 {
4500 /* Determine what (if any) linker stub is needed. */
4501 stub_type = arm_type_of_stub (info, section, irela,
4502 st_type, hash,
4503 destination, sym_sec,
4504 input_bfd, sym_name);
4505 if (stub_type == arm_stub_none)
4506 break;
4507
4508 /* Support for grouping stub sections. */
4509 id_sec = htab->stub_group[section->id].link_sec;
4510
4511 /* Get the name of this stub. */
4512 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
4513 irela);
4514 if (!stub_name)
4515 goto error_ret_free_internal;
4516
4517 /* We've either created a stub for this reloc already,
4518 or we are about to. */
4519 created_stub = TRUE;
4520
4521 stub_entry = arm_stub_hash_lookup
4522 (&htab->stub_hash_table, stub_name,
4523 FALSE, FALSE);
4524 if (stub_entry != NULL)
4525 {
4526 /* The proper stub has already been created. */
4527 free (stub_name);
4528 stub_entry->target_value = sym_value;
4529 break;
4530 }
4531
4532 stub_entry = elf32_arm_add_stub (stub_name, section,
4533 htab);
4534 if (stub_entry == NULL)
4535 {
4536 free (stub_name);
4537 goto error_ret_free_internal;
4538 }
4539
4540 stub_entry->target_value = sym_value;
4541 stub_entry->target_section = sym_sec;
4542 stub_entry->stub_type = stub_type;
4543 stub_entry->h = hash;
4544 stub_entry->st_type = st_type;
4545
4546 if (sym_name == NULL)
4547 sym_name = "unnamed";
4548 stub_entry->output_name = (char *)
4549 bfd_alloc (htab->stub_bfd,
4550 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
4551 + strlen (sym_name));
4552 if (stub_entry->output_name == NULL)
4553 {
4554 free (stub_name);
4555 goto error_ret_free_internal;
4556 }
4557
4558 /* For historical reasons, use the existing names for
4559 ARM-to-Thumb and Thumb-to-ARM stubs. */
4560 if ( ((r_type == (unsigned int) R_ARM_THM_CALL)
4561 || (r_type == (unsigned int) R_ARM_THM_JUMP24))
4562 && st_type != STT_ARM_TFUNC)
4563 sprintf (stub_entry->output_name,
4564 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
4565 else if ( ((r_type == (unsigned int) R_ARM_CALL)
4566 || (r_type == (unsigned int) R_ARM_JUMP24))
4567 && st_type == STT_ARM_TFUNC)
4568 sprintf (stub_entry->output_name,
4569 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
4570 else
4571 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
4572 sym_name);
4573
4574 stub_changed = TRUE;
4575 }
4576 while (0);
4577
4578 /* Look for relocations which might trigger Cortex-A8
4579 erratum. */
4580 if (htab->fix_cortex_a8
4581 && (r_type == (unsigned int) R_ARM_THM_JUMP24
4582 || r_type == (unsigned int) R_ARM_THM_JUMP19
4583 || r_type == (unsigned int) R_ARM_THM_CALL
4584 || r_type == (unsigned int) R_ARM_THM_XPC22))
4585 {
4586 bfd_vma from = section->output_section->vma
4587 + section->output_offset
4588 + irela->r_offset;
4589
4590 if ((from & 0xfff) == 0xffe)
4591 {
4592 /* Found a candidate. Note we haven't checked the
4593 destination is within 4K here: if we do so (and
4594 don't create an entry in a8_relocs) we can't tell
4595 that a branch should have been relocated when
4596 scanning later. */
4597 if (num_a8_relocs == a8_reloc_table_size)
4598 {
4599 a8_reloc_table_size *= 2;
4600 a8_relocs = (struct a8_erratum_reloc *)
4601 bfd_realloc (a8_relocs,
4602 sizeof (struct a8_erratum_reloc)
4603 * a8_reloc_table_size);
4604 }
4605
4606 a8_relocs[num_a8_relocs].from = from;
4607 a8_relocs[num_a8_relocs].destination = destination;
4608 a8_relocs[num_a8_relocs].r_type = r_type;
4609 a8_relocs[num_a8_relocs].st_type = st_type;
4610 a8_relocs[num_a8_relocs].sym_name = sym_name;
4611 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
4612
4613 num_a8_relocs++;
4614 }
4615 }
4616 }
4617
4618 /* We're done with the internal relocs, free them. */
4619 if (elf_section_data (section)->relocs == NULL)
4620 free (internal_relocs);
4621 }
4622
4623 if (htab->fix_cortex_a8)
4624 {
4625 /* Sort relocs which might apply to Cortex-A8 erratum. */
4626 qsort (a8_relocs, num_a8_relocs,
4627 sizeof (struct a8_erratum_reloc),
4628 &a8_reloc_compare);
4629
4630 /* Scan for branches which might trigger Cortex-A8 erratum. */
4631 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
4632 &num_a8_fixes, &a8_fix_table_size,
4633 a8_relocs, num_a8_relocs,
4634 prev_num_a8_fixes, &stub_changed)
4635 != 0)
4636 goto error_ret_free_local;
4637 }
4638 }
4639
4640 if (prev_num_a8_fixes != num_a8_fixes)
4641 stub_changed = TRUE;
4642
4643 if (!stub_changed)
4644 break;
4645
4646 /* OK, we've added some stubs. Find out the new size of the
4647 stub sections. */
4648 for (stub_sec = htab->stub_bfd->sections;
4649 stub_sec != NULL;
4650 stub_sec = stub_sec->next)
4651 {
4652 /* Ignore non-stub sections. */
4653 if (!strstr (stub_sec->name, STUB_SUFFIX))
4654 continue;
4655
4656 stub_sec->size = 0;
4657 }
4658
4659 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
4660
4661 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
4662 if (htab->fix_cortex_a8)
4663 for (i = 0; i < num_a8_fixes; i++)
4664 {
4665 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
4666 a8_fixes[i].section, htab);
4667
4668 if (stub_sec == NULL)
4669 goto error_ret_free_local;
4670
4671 stub_sec->size
4672 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
4673 NULL);
4674 }
4675
4676
4677 /* Ask the linker to do its stuff. */
4678 (*htab->layout_sections_again) ();
4679 }
4680
4681 /* Add stubs for Cortex-A8 erratum fixes now. */
4682 if (htab->fix_cortex_a8)
4683 {
4684 for (i = 0; i < num_a8_fixes; i++)
4685 {
4686 struct elf32_arm_stub_hash_entry *stub_entry;
4687 char *stub_name = a8_fixes[i].stub_name;
4688 asection *section = a8_fixes[i].section;
4689 unsigned int section_id = a8_fixes[i].section->id;
4690 asection *link_sec = htab->stub_group[section_id].link_sec;
4691 asection *stub_sec = htab->stub_group[section_id].stub_sec;
4692 const insn_sequence *template_sequence;
4693 int template_size, size = 0;
4694
4695 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4696 TRUE, FALSE);
4697 if (stub_entry == NULL)
4698 {
4699 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
4700 section->owner,
4701 stub_name);
4702 return FALSE;
4703 }
4704
4705 stub_entry->stub_sec = stub_sec;
4706 stub_entry->stub_offset = 0;
4707 stub_entry->id_sec = link_sec;
4708 stub_entry->stub_type = a8_fixes[i].stub_type;
4709 stub_entry->target_section = a8_fixes[i].section;
4710 stub_entry->target_value = a8_fixes[i].offset;
4711 stub_entry->target_addend = a8_fixes[i].addend;
4712 stub_entry->orig_insn = a8_fixes[i].orig_insn;
4713 stub_entry->st_type = STT_ARM_TFUNC;
4714
4715 size = find_stub_size_and_template (a8_fixes[i].stub_type,
4716 &template_sequence,
4717 &template_size);
4718
4719 stub_entry->stub_size = size;
4720 stub_entry->stub_template = template_sequence;
4721 stub_entry->stub_template_size = template_size;
4722 }
4723
4724 /* Stash the Cortex-A8 erratum fix array for use later in
4725 elf32_arm_write_section(). */
4726 htab->a8_erratum_fixes = a8_fixes;
4727 htab->num_a8_erratum_fixes = num_a8_fixes;
4728 }
4729 else
4730 {
4731 htab->a8_erratum_fixes = NULL;
4732 htab->num_a8_erratum_fixes = 0;
4733 }
4734 return TRUE;
4735
4736 error_ret_free_local:
4737 return FALSE;
4738 }
4739
4740 /* Build all the stubs associated with the current output file. The
4741 stubs are kept in a hash table attached to the main linker hash
4742 table. We also set up the .plt entries for statically linked PIC
4743 functions here. This function is called via arm_elf_finish in the
4744 linker. */
4745
4746 bfd_boolean
4747 elf32_arm_build_stubs (struct bfd_link_info *info)
4748 {
4749 asection *stub_sec;
4750 struct bfd_hash_table *table;
4751 struct elf32_arm_link_hash_table *htab;
4752
4753 htab = elf32_arm_hash_table (info);
4754
4755 for (stub_sec = htab->stub_bfd->sections;
4756 stub_sec != NULL;
4757 stub_sec = stub_sec->next)
4758 {
4759 bfd_size_type size;
4760
4761 /* Ignore non-stub sections. */
4762 if (!strstr (stub_sec->name, STUB_SUFFIX))
4763 continue;
4764
4765 /* Allocate memory to hold the linker stubs. */
4766 size = stub_sec->size;
4767 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
4768 if (stub_sec->contents == NULL && size != 0)
4769 return FALSE;
4770 stub_sec->size = 0;
4771 }
4772
4773 /* Build the stubs as directed by the stub hash table. */
4774 table = &htab->stub_hash_table;
4775 bfd_hash_traverse (table, arm_build_one_stub, info);
4776 if (htab->fix_cortex_a8)
4777 {
4778 /* Place the cortex a8 stubs last. */
4779 htab->fix_cortex_a8 = -1;
4780 bfd_hash_traverse (table, arm_build_one_stub, info);
4781 }
4782
4783 return TRUE;
4784 }
4785
4786 /* Locate the Thumb encoded calling stub for NAME. */
4787
4788 static struct elf_link_hash_entry *
4789 find_thumb_glue (struct bfd_link_info *link_info,
4790 const char *name,
4791 char **error_message)
4792 {
4793 char *tmp_name;
4794 struct elf_link_hash_entry *hash;
4795 struct elf32_arm_link_hash_table *hash_table;
4796
4797 /* We need a pointer to the armelf specific hash table. */
4798 hash_table = elf32_arm_hash_table (link_info);
4799
4800 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
4801 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4802
4803 BFD_ASSERT (tmp_name);
4804
4805 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4806
4807 hash = elf_link_hash_lookup
4808 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4809
4810 if (hash == NULL
4811 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
4812 tmp_name, name) == -1)
4813 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4814
4815 free (tmp_name);
4816
4817 return hash;
4818 }
4819
4820 /* Locate the ARM encoded calling stub for NAME. */
4821
4822 static struct elf_link_hash_entry *
4823 find_arm_glue (struct bfd_link_info *link_info,
4824 const char *name,
4825 char **error_message)
4826 {
4827 char *tmp_name;
4828 struct elf_link_hash_entry *myh;
4829 struct elf32_arm_link_hash_table *hash_table;
4830
4831 /* We need a pointer to the elfarm specific hash table. */
4832 hash_table = elf32_arm_hash_table (link_info);
4833
4834 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
4835 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
4836
4837 BFD_ASSERT (tmp_name);
4838
4839 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4840
4841 myh = elf_link_hash_lookup
4842 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4843
4844 if (myh == NULL
4845 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
4846 tmp_name, name) == -1)
4847 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
4848
4849 free (tmp_name);
4850
4851 return myh;
4852 }
4853
4854 /* ARM->Thumb glue (static images):
4855
4856 .arm
4857 __func_from_arm:
4858 ldr r12, __func_addr
4859 bx r12
4860 __func_addr:
4861 .word func @ behave as if you saw a ARM_32 reloc.
4862
4863 (v5t static images)
4864 .arm
4865 __func_from_arm:
4866 ldr pc, __func_addr
4867 __func_addr:
4868 .word func @ behave as if you saw a ARM_32 reloc.
4869
4870 (relocatable images)
4871 .arm
4872 __func_from_arm:
4873 ldr r12, __func_offset
4874 add r12, r12, pc
4875 bx r12
4876 __func_offset:
4877 .word func - . */
4878
4879 #define ARM2THUMB_STATIC_GLUE_SIZE 12
4880 static const insn32 a2t1_ldr_insn = 0xe59fc000;
4881 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
4882 static const insn32 a2t3_func_addr_insn = 0x00000001;
4883
4884 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
4885 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
4886 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
4887
4888 #define ARM2THUMB_PIC_GLUE_SIZE 16
4889 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
4890 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
4891 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
4892
4893 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
4894
4895 .thumb .thumb
4896 .align 2 .align 2
4897 __func_from_thumb: __func_from_thumb:
4898 bx pc push {r6, lr}
4899 nop ldr r6, __func_addr
4900 .arm mov lr, pc
4901 b func bx r6
4902 .arm
4903 ;; back_to_thumb
4904 ldmia r13! {r6, lr}
4905 bx lr
4906 __func_addr:
4907 .word func */
4908
4909 #define THUMB2ARM_GLUE_SIZE 8
4910 static const insn16 t2a1_bx_pc_insn = 0x4778;
4911 static const insn16 t2a2_noop_insn = 0x46c0;
4912 static const insn32 t2a3_b_insn = 0xea000000;
4913
4914 #define VFP11_ERRATUM_VENEER_SIZE 8
4915
4916 #define ARM_BX_VENEER_SIZE 12
4917 static const insn32 armbx1_tst_insn = 0xe3100001;
4918 static const insn32 armbx2_moveq_insn = 0x01a0f000;
4919 static const insn32 armbx3_bx_insn = 0xe12fff10;
4920
4921 #ifndef ELFARM_NABI_C_INCLUDED
4922 static void
4923 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
4924 {
4925 asection * s;
4926 bfd_byte * contents;
4927
4928 if (size == 0)
4929 {
4930 /* Do not include empty glue sections in the output. */
4931 if (abfd != NULL)
4932 {
4933 s = bfd_get_section_by_name (abfd, name);
4934 if (s != NULL)
4935 s->flags |= SEC_EXCLUDE;
4936 }
4937 return;
4938 }
4939
4940 BFD_ASSERT (abfd != NULL);
4941
4942 s = bfd_get_section_by_name (abfd, name);
4943 BFD_ASSERT (s != NULL);
4944
4945 contents = (bfd_byte *) bfd_alloc (abfd, size);
4946
4947 BFD_ASSERT (s->size == size);
4948 s->contents = contents;
4949 }
4950
4951 bfd_boolean
4952 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
4953 {
4954 struct elf32_arm_link_hash_table * globals;
4955
4956 globals = elf32_arm_hash_table (info);
4957 BFD_ASSERT (globals != NULL);
4958
4959 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4960 globals->arm_glue_size,
4961 ARM2THUMB_GLUE_SECTION_NAME);
4962
4963 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4964 globals->thumb_glue_size,
4965 THUMB2ARM_GLUE_SECTION_NAME);
4966
4967 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4968 globals->vfp11_erratum_glue_size,
4969 VFP11_ERRATUM_VENEER_SECTION_NAME);
4970
4971 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
4972 globals->bx_glue_size,
4973 ARM_BX_GLUE_SECTION_NAME);
4974
4975 return TRUE;
4976 }
4977
4978 /* Allocate space and symbols for calling a Thumb function from Arm mode.
4979 returns the symbol identifying the stub. */
4980
4981 static struct elf_link_hash_entry *
4982 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
4983 struct elf_link_hash_entry * h)
4984 {
4985 const char * name = h->root.root.string;
4986 asection * s;
4987 char * tmp_name;
4988 struct elf_link_hash_entry * myh;
4989 struct bfd_link_hash_entry * bh;
4990 struct elf32_arm_link_hash_table * globals;
4991 bfd_vma val;
4992 bfd_size_type size;
4993
4994 globals = elf32_arm_hash_table (link_info);
4995
4996 BFD_ASSERT (globals != NULL);
4997 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4998
4999 s = bfd_get_section_by_name
5000 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5001
5002 BFD_ASSERT (s != NULL);
5003
5004 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5005 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5006
5007 BFD_ASSERT (tmp_name);
5008
5009 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5010
5011 myh = elf_link_hash_lookup
5012 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5013
5014 if (myh != NULL)
5015 {
5016 /* We've already seen this guy. */
5017 free (tmp_name);
5018 return myh;
5019 }
5020
5021 /* The only trick here is using hash_table->arm_glue_size as the value.
5022 Even though the section isn't allocated yet, this is where we will be
5023 putting it. The +1 on the value marks that the stub has not been
5024 output yet - not that it is a Thumb function. */
5025 bh = NULL;
5026 val = globals->arm_glue_size + 1;
5027 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5028 tmp_name, BSF_GLOBAL, s, val,
5029 NULL, TRUE, FALSE, &bh);
5030
5031 myh = (struct elf_link_hash_entry *) bh;
5032 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5033 myh->forced_local = 1;
5034
5035 free (tmp_name);
5036
5037 if (link_info->shared || globals->root.is_relocatable_executable
5038 || globals->pic_veneer)
5039 size = ARM2THUMB_PIC_GLUE_SIZE;
5040 else if (globals->use_blx)
5041 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5042 else
5043 size = ARM2THUMB_STATIC_GLUE_SIZE;
5044
5045 s->size += size;
5046 globals->arm_glue_size += size;
5047
5048 return myh;
5049 }
5050
5051 /* Allocate space for ARMv4 BX veneers. */
5052
5053 static void
5054 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5055 {
5056 asection * s;
5057 struct elf32_arm_link_hash_table *globals;
5058 char *tmp_name;
5059 struct elf_link_hash_entry *myh;
5060 struct bfd_link_hash_entry *bh;
5061 bfd_vma val;
5062
5063 /* BX PC does not need a veneer. */
5064 if (reg == 15)
5065 return;
5066
5067 globals = elf32_arm_hash_table (link_info);
5068
5069 BFD_ASSERT (globals != NULL);
5070 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5071
5072 /* Check if this veneer has already been allocated. */
5073 if (globals->bx_glue_offset[reg])
5074 return;
5075
5076 s = bfd_get_section_by_name
5077 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5078
5079 BFD_ASSERT (s != NULL);
5080
5081 /* Add symbol for veneer. */
5082 tmp_name = (char *)
5083 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5084
5085 BFD_ASSERT (tmp_name);
5086
5087 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5088
5089 myh = elf_link_hash_lookup
5090 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5091
5092 BFD_ASSERT (myh == NULL);
5093
5094 bh = NULL;
5095 val = globals->bx_glue_size;
5096 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5097 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5098 NULL, TRUE, FALSE, &bh);
5099
5100 myh = (struct elf_link_hash_entry *) bh;
5101 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5102 myh->forced_local = 1;
5103
5104 s->size += ARM_BX_VENEER_SIZE;
5105 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5106 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5107 }
5108
5109
5110 /* Add an entry to the code/data map for section SEC. */
5111
5112 static void
5113 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5114 {
5115 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5116 unsigned int newidx;
5117
5118 if (sec_data->map == NULL)
5119 {
5120 sec_data->map = (elf32_arm_section_map *)
5121 bfd_malloc (sizeof (elf32_arm_section_map));
5122 sec_data->mapcount = 0;
5123 sec_data->mapsize = 1;
5124 }
5125
5126 newidx = sec_data->mapcount++;
5127
5128 if (sec_data->mapcount > sec_data->mapsize)
5129 {
5130 sec_data->mapsize *= 2;
5131 sec_data->map = (elf32_arm_section_map *)
5132 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5133 * sizeof (elf32_arm_section_map));
5134 }
5135
5136 if (sec_data->map)
5137 {
5138 sec_data->map[newidx].vma = vma;
5139 sec_data->map[newidx].type = type;
5140 }
5141 }
5142
5143
5144 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5145 veneers are handled for now. */
5146
5147 static bfd_vma
5148 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5149 elf32_vfp11_erratum_list *branch,
5150 bfd *branch_bfd,
5151 asection *branch_sec,
5152 unsigned int offset)
5153 {
5154 asection *s;
5155 struct elf32_arm_link_hash_table *hash_table;
5156 char *tmp_name;
5157 struct elf_link_hash_entry *myh;
5158 struct bfd_link_hash_entry *bh;
5159 bfd_vma val;
5160 struct _arm_elf_section_data *sec_data;
5161 int errcount;
5162 elf32_vfp11_erratum_list *newerr;
5163
5164 hash_table = elf32_arm_hash_table (link_info);
5165
5166 BFD_ASSERT (hash_table != NULL);
5167 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5168
5169 s = bfd_get_section_by_name
5170 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5171
5172 sec_data = elf32_arm_section_data (s);
5173
5174 BFD_ASSERT (s != NULL);
5175
5176 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5177 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5178
5179 BFD_ASSERT (tmp_name);
5180
5181 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5182 hash_table->num_vfp11_fixes);
5183
5184 myh = elf_link_hash_lookup
5185 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5186
5187 BFD_ASSERT (myh == NULL);
5188
5189 bh = NULL;
5190 val = hash_table->vfp11_erratum_glue_size;
5191 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5192 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5193 NULL, TRUE, FALSE, &bh);
5194
5195 myh = (struct elf_link_hash_entry *) bh;
5196 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5197 myh->forced_local = 1;
5198
5199 /* Link veneer back to calling location. */
5200 errcount = ++(sec_data->erratumcount);
5201 newerr = (elf32_vfp11_erratum_list *)
5202 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5203
5204 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5205 newerr->vma = -1;
5206 newerr->u.v.branch = branch;
5207 newerr->u.v.id = hash_table->num_vfp11_fixes;
5208 branch->u.b.veneer = newerr;
5209
5210 newerr->next = sec_data->erratumlist;
5211 sec_data->erratumlist = newerr;
5212
5213 /* A symbol for the return from the veneer. */
5214 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5215 hash_table->num_vfp11_fixes);
5216
5217 myh = elf_link_hash_lookup
5218 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5219
5220 if (myh != NULL)
5221 abort ();
5222
5223 bh = NULL;
5224 val = offset + 4;
5225 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5226 branch_sec, val, NULL, TRUE, FALSE, &bh);
5227
5228 myh = (struct elf_link_hash_entry *) bh;
5229 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5230 myh->forced_local = 1;
5231
5232 free (tmp_name);
5233
5234 /* Generate a mapping symbol for the veneer section, and explicitly add an
5235 entry for that symbol to the code/data map for the section. */
5236 if (hash_table->vfp11_erratum_glue_size == 0)
5237 {
5238 bh = NULL;
5239 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5240 ever requires this erratum fix. */
5241 _bfd_generic_link_add_one_symbol (link_info,
5242 hash_table->bfd_of_glue_owner, "$a",
5243 BSF_LOCAL, s, 0, NULL,
5244 TRUE, FALSE, &bh);
5245
5246 myh = (struct elf_link_hash_entry *) bh;
5247 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5248 myh->forced_local = 1;
5249
5250 /* The elf32_arm_init_maps function only cares about symbols from input
5251 BFDs. We must make a note of this generated mapping symbol
5252 ourselves so that code byteswapping works properly in
5253 elf32_arm_write_section. */
5254 elf32_arm_section_map_add (s, 'a', 0);
5255 }
5256
5257 s->size += VFP11_ERRATUM_VENEER_SIZE;
5258 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5259 hash_table->num_vfp11_fixes++;
5260
5261 /* The offset of the veneer. */
5262 return val;
5263 }
5264
5265 #define ARM_GLUE_SECTION_FLAGS \
5266 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5267 | SEC_READONLY | SEC_LINKER_CREATED)
5268
5269 /* Create a fake section for use by the ARM backend of the linker. */
5270
5271 static bfd_boolean
5272 arm_make_glue_section (bfd * abfd, const char * name)
5273 {
5274 asection * sec;
5275
5276 sec = bfd_get_section_by_name (abfd, name);
5277 if (sec != NULL)
5278 /* Already made. */
5279 return TRUE;
5280
5281 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5282
5283 if (sec == NULL
5284 || !bfd_set_section_alignment (abfd, sec, 2))
5285 return FALSE;
5286
5287 /* Set the gc mark to prevent the section from being removed by garbage
5288 collection, despite the fact that no relocs refer to this section. */
5289 sec->gc_mark = 1;
5290
5291 return TRUE;
5292 }
5293
5294 /* Add the glue sections to ABFD. This function is called from the
5295 linker scripts in ld/emultempl/{armelf}.em. */
5296
5297 bfd_boolean
5298 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5299 struct bfd_link_info *info)
5300 {
5301 /* If we are only performing a partial
5302 link do not bother adding the glue. */
5303 if (info->relocatable)
5304 return TRUE;
5305
5306 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5307 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5308 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5309 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
5310 }
5311
5312 /* Select a BFD to be used to hold the sections used by the glue code.
5313 This function is called from the linker scripts in ld/emultempl/
5314 {armelf/pe}.em. */
5315
5316 bfd_boolean
5317 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
5318 {
5319 struct elf32_arm_link_hash_table *globals;
5320
5321 /* If we are only performing a partial link
5322 do not bother getting a bfd to hold the glue. */
5323 if (info->relocatable)
5324 return TRUE;
5325
5326 /* Make sure we don't attach the glue sections to a dynamic object. */
5327 BFD_ASSERT (!(abfd->flags & DYNAMIC));
5328
5329 globals = elf32_arm_hash_table (info);
5330
5331 BFD_ASSERT (globals != NULL);
5332
5333 if (globals->bfd_of_glue_owner != NULL)
5334 return TRUE;
5335
5336 /* Save the bfd for later use. */
5337 globals->bfd_of_glue_owner = abfd;
5338
5339 return TRUE;
5340 }
5341
5342 static void
5343 check_use_blx (struct elf32_arm_link_hash_table *globals)
5344 {
5345 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
5346 Tag_CPU_arch) > 2)
5347 globals->use_blx = 1;
5348 }
5349
5350 bfd_boolean
5351 bfd_elf32_arm_process_before_allocation (bfd *abfd,
5352 struct bfd_link_info *link_info)
5353 {
5354 Elf_Internal_Shdr *symtab_hdr;
5355 Elf_Internal_Rela *internal_relocs = NULL;
5356 Elf_Internal_Rela *irel, *irelend;
5357 bfd_byte *contents = NULL;
5358
5359 asection *sec;
5360 struct elf32_arm_link_hash_table *globals;
5361
5362 /* If we are only performing a partial link do not bother
5363 to construct any glue. */
5364 if (link_info->relocatable)
5365 return TRUE;
5366
5367 /* Here we have a bfd that is to be included on the link. We have a
5368 hook to do reloc rummaging, before section sizes are nailed down. */
5369 globals = elf32_arm_hash_table (link_info);
5370
5371 BFD_ASSERT (globals != NULL);
5372
5373 check_use_blx (globals);
5374
5375 if (globals->byteswap_code && !bfd_big_endian (abfd))
5376 {
5377 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5378 abfd);
5379 return FALSE;
5380 }
5381
5382 /* PR 5398: If we have not decided to include any loadable sections in
5383 the output then we will not have a glue owner bfd. This is OK, it
5384 just means that there is nothing else for us to do here. */
5385 if (globals->bfd_of_glue_owner == NULL)
5386 return TRUE;
5387
5388 /* Rummage around all the relocs and map the glue vectors. */
5389 sec = abfd->sections;
5390
5391 if (sec == NULL)
5392 return TRUE;
5393
5394 for (; sec != NULL; sec = sec->next)
5395 {
5396 if (sec->reloc_count == 0)
5397 continue;
5398
5399 if ((sec->flags & SEC_EXCLUDE) != 0)
5400 continue;
5401
5402 symtab_hdr = & elf_symtab_hdr (abfd);
5403
5404 /* Load the relocs. */
5405 internal_relocs
5406 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
5407
5408 if (internal_relocs == NULL)
5409 goto error_return;
5410
5411 irelend = internal_relocs + sec->reloc_count;
5412 for (irel = internal_relocs; irel < irelend; irel++)
5413 {
5414 long r_type;
5415 unsigned long r_index;
5416
5417 struct elf_link_hash_entry *h;
5418
5419 r_type = ELF32_R_TYPE (irel->r_info);
5420 r_index = ELF32_R_SYM (irel->r_info);
5421
5422 /* These are the only relocation types we care about. */
5423 if ( r_type != R_ARM_PC24
5424 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
5425 continue;
5426
5427 /* Get the section contents if we haven't done so already. */
5428 if (contents == NULL)
5429 {
5430 /* Get cached copy if it exists. */
5431 if (elf_section_data (sec)->this_hdr.contents != NULL)
5432 contents = elf_section_data (sec)->this_hdr.contents;
5433 else
5434 {
5435 /* Go get them off disk. */
5436 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5437 goto error_return;
5438 }
5439 }
5440
5441 if (r_type == R_ARM_V4BX)
5442 {
5443 int reg;
5444
5445 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
5446 record_arm_bx_glue (link_info, reg);
5447 continue;
5448 }
5449
5450 /* If the relocation is not against a symbol it cannot concern us. */
5451 h = NULL;
5452
5453 /* We don't care about local symbols. */
5454 if (r_index < symtab_hdr->sh_info)
5455 continue;
5456
5457 /* This is an external symbol. */
5458 r_index -= symtab_hdr->sh_info;
5459 h = (struct elf_link_hash_entry *)
5460 elf_sym_hashes (abfd)[r_index];
5461
5462 /* If the relocation is against a static symbol it must be within
5463 the current section and so cannot be a cross ARM/Thumb relocation. */
5464 if (h == NULL)
5465 continue;
5466
5467 /* If the call will go through a PLT entry then we do not need
5468 glue. */
5469 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
5470 continue;
5471
5472 switch (r_type)
5473 {
5474 case R_ARM_PC24:
5475 /* This one is a call from arm code. We need to look up
5476 the target of the call. If it is a thumb target, we
5477 insert glue. */
5478 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
5479 record_arm_to_thumb_glue (link_info, h);
5480 break;
5481
5482 default:
5483 abort ();
5484 }
5485 }
5486
5487 if (contents != NULL
5488 && elf_section_data (sec)->this_hdr.contents != contents)
5489 free (contents);
5490 contents = NULL;
5491
5492 if (internal_relocs != NULL
5493 && elf_section_data (sec)->relocs != internal_relocs)
5494 free (internal_relocs);
5495 internal_relocs = NULL;
5496 }
5497
5498 return TRUE;
5499
5500 error_return:
5501 if (contents != NULL
5502 && elf_section_data (sec)->this_hdr.contents != contents)
5503 free (contents);
5504 if (internal_relocs != NULL
5505 && elf_section_data (sec)->relocs != internal_relocs)
5506 free (internal_relocs);
5507
5508 return FALSE;
5509 }
5510 #endif
5511
5512
5513 /* Initialise maps of ARM/Thumb/data for input BFDs. */
5514
5515 void
5516 bfd_elf32_arm_init_maps (bfd *abfd)
5517 {
5518 Elf_Internal_Sym *isymbuf;
5519 Elf_Internal_Shdr *hdr;
5520 unsigned int i, localsyms;
5521
5522 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
5523 if (! is_arm_elf (abfd))
5524 return;
5525
5526 if ((abfd->flags & DYNAMIC) != 0)
5527 return;
5528
5529 hdr = & elf_symtab_hdr (abfd);
5530 localsyms = hdr->sh_info;
5531
5532 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
5533 should contain the number of local symbols, which should come before any
5534 global symbols. Mapping symbols are always local. */
5535 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
5536 NULL);
5537
5538 /* No internal symbols read? Skip this BFD. */
5539 if (isymbuf == NULL)
5540 return;
5541
5542 for (i = 0; i < localsyms; i++)
5543 {
5544 Elf_Internal_Sym *isym = &isymbuf[i];
5545 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
5546 const char *name;
5547
5548 if (sec != NULL
5549 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
5550 {
5551 name = bfd_elf_string_from_elf_section (abfd,
5552 hdr->sh_link, isym->st_name);
5553
5554 if (bfd_is_arm_special_symbol_name (name,
5555 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
5556 elf32_arm_section_map_add (sec, name[1], isym->st_value);
5557 }
5558 }
5559 }
5560
5561
5562 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
5563 say what they wanted. */
5564
5565 void
5566 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
5567 {
5568 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5569 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5570
5571 if (globals->fix_cortex_a8 == -1)
5572 {
5573 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
5574 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
5575 && (out_attr[Tag_CPU_arch_profile].i == 'A'
5576 || out_attr[Tag_CPU_arch_profile].i == 0))
5577 globals->fix_cortex_a8 = 1;
5578 else
5579 globals->fix_cortex_a8 = 0;
5580 }
5581 }
5582
5583
5584 void
5585 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
5586 {
5587 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5588 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
5589
5590 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
5591 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
5592 {
5593 switch (globals->vfp11_fix)
5594 {
5595 case BFD_ARM_VFP11_FIX_DEFAULT:
5596 case BFD_ARM_VFP11_FIX_NONE:
5597 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5598 break;
5599
5600 default:
5601 /* Give a warning, but do as the user requests anyway. */
5602 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
5603 "workaround is not necessary for target architecture"), obfd);
5604 }
5605 }
5606 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
5607 /* For earlier architectures, we might need the workaround, but do not
5608 enable it by default. If users is running with broken hardware, they
5609 must enable the erratum fix explicitly. */
5610 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
5611 }
5612
5613
5614 enum bfd_arm_vfp11_pipe
5615 {
5616 VFP11_FMAC,
5617 VFP11_LS,
5618 VFP11_DS,
5619 VFP11_BAD
5620 };
5621
5622 /* Return a VFP register number. This is encoded as RX:X for single-precision
5623 registers, or X:RX for double-precision registers, where RX is the group of
5624 four bits in the instruction encoding and X is the single extension bit.
5625 RX and X fields are specified using their lowest (starting) bit. The return
5626 value is:
5627
5628 0...31: single-precision registers s0...s31
5629 32...63: double-precision registers d0...d31.
5630
5631 Although X should be zero for VFP11 (encoding d0...d15 only), we might
5632 encounter VFP3 instructions, so we allow the full range for DP registers. */
5633
5634 static unsigned int
5635 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
5636 unsigned int x)
5637 {
5638 if (is_double)
5639 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
5640 else
5641 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
5642 }
5643
5644 /* Set bits in *WMASK according to a register number REG as encoded by
5645 bfd_arm_vfp11_regno(). Ignore d16-d31. */
5646
5647 static void
5648 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
5649 {
5650 if (reg < 32)
5651 *wmask |= 1 << reg;
5652 else if (reg < 48)
5653 *wmask |= 3 << ((reg - 32) * 2);
5654 }
5655
5656 /* Return TRUE if WMASK overwrites anything in REGS. */
5657
5658 static bfd_boolean
5659 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
5660 {
5661 int i;
5662
5663 for (i = 0; i < numregs; i++)
5664 {
5665 unsigned int reg = regs[i];
5666
5667 if (reg < 32 && (wmask & (1 << reg)) != 0)
5668 return TRUE;
5669
5670 reg -= 32;
5671
5672 if (reg >= 16)
5673 continue;
5674
5675 if ((wmask & (3 << (reg * 2))) != 0)
5676 return TRUE;
5677 }
5678
5679 return FALSE;
5680 }
5681
5682 /* In this function, we're interested in two things: finding input registers
5683 for VFP data-processing instructions, and finding the set of registers which
5684 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
5685 hold the written set, so FLDM etc. are easy to deal with (we're only
5686 interested in 32 SP registers or 16 dp registers, due to the VFP version
5687 implemented by the chip in question). DP registers are marked by setting
5688 both SP registers in the write mask). */
5689
5690 static enum bfd_arm_vfp11_pipe
5691 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
5692 int *numregs)
5693 {
5694 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
5695 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
5696
5697 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
5698 {
5699 unsigned int pqrs;
5700 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5701 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5702
5703 pqrs = ((insn & 0x00800000) >> 20)
5704 | ((insn & 0x00300000) >> 19)
5705 | ((insn & 0x00000040) >> 6);
5706
5707 switch (pqrs)
5708 {
5709 case 0: /* fmac[sd]. */
5710 case 1: /* fnmac[sd]. */
5711 case 2: /* fmsc[sd]. */
5712 case 3: /* fnmsc[sd]. */
5713 pipe = VFP11_FMAC;
5714 bfd_arm_vfp11_write_mask (destmask, fd);
5715 regs[0] = fd;
5716 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
5717 regs[2] = fm;
5718 *numregs = 3;
5719 break;
5720
5721 case 4: /* fmul[sd]. */
5722 case 5: /* fnmul[sd]. */
5723 case 6: /* fadd[sd]. */
5724 case 7: /* fsub[sd]. */
5725 pipe = VFP11_FMAC;
5726 goto vfp_binop;
5727
5728 case 8: /* fdiv[sd]. */
5729 pipe = VFP11_DS;
5730 vfp_binop:
5731 bfd_arm_vfp11_write_mask (destmask, fd);
5732 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
5733 regs[1] = fm;
5734 *numregs = 2;
5735 break;
5736
5737 case 15: /* extended opcode. */
5738 {
5739 unsigned int extn = ((insn >> 15) & 0x1e)
5740 | ((insn >> 7) & 1);
5741
5742 switch (extn)
5743 {
5744 case 0: /* fcpy[sd]. */
5745 case 1: /* fabs[sd]. */
5746 case 2: /* fneg[sd]. */
5747 case 8: /* fcmp[sd]. */
5748 case 9: /* fcmpe[sd]. */
5749 case 10: /* fcmpz[sd]. */
5750 case 11: /* fcmpez[sd]. */
5751 case 16: /* fuito[sd]. */
5752 case 17: /* fsito[sd]. */
5753 case 24: /* ftoui[sd]. */
5754 case 25: /* ftouiz[sd]. */
5755 case 26: /* ftosi[sd]. */
5756 case 27: /* ftosiz[sd]. */
5757 /* These instructions will not bounce due to underflow. */
5758 *numregs = 0;
5759 pipe = VFP11_FMAC;
5760 break;
5761
5762 case 3: /* fsqrt[sd]. */
5763 /* fsqrt cannot underflow, but it can (perhaps) overwrite
5764 registers to cause the erratum in previous instructions. */
5765 bfd_arm_vfp11_write_mask (destmask, fd);
5766 pipe = VFP11_DS;
5767 break;
5768
5769 case 15: /* fcvt{ds,sd}. */
5770 {
5771 int rnum = 0;
5772
5773 bfd_arm_vfp11_write_mask (destmask, fd);
5774
5775 /* Only FCVTSD can underflow. */
5776 if ((insn & 0x100) != 0)
5777 regs[rnum++] = fm;
5778
5779 *numregs = rnum;
5780
5781 pipe = VFP11_FMAC;
5782 }
5783 break;
5784
5785 default:
5786 return VFP11_BAD;
5787 }
5788 }
5789 break;
5790
5791 default:
5792 return VFP11_BAD;
5793 }
5794 }
5795 /* Two-register transfer. */
5796 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
5797 {
5798 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
5799
5800 if ((insn & 0x100000) == 0)
5801 {
5802 if (is_double)
5803 bfd_arm_vfp11_write_mask (destmask, fm);
5804 else
5805 {
5806 bfd_arm_vfp11_write_mask (destmask, fm);
5807 bfd_arm_vfp11_write_mask (destmask, fm + 1);
5808 }
5809 }
5810
5811 pipe = VFP11_LS;
5812 }
5813 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
5814 {
5815 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
5816 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
5817
5818 switch (puw)
5819 {
5820 case 0: /* Two-reg transfer. We should catch these above. */
5821 abort ();
5822
5823 case 2: /* fldm[sdx]. */
5824 case 3:
5825 case 5:
5826 {
5827 unsigned int i, offset = insn & 0xff;
5828
5829 if (is_double)
5830 offset >>= 1;
5831
5832 for (i = fd; i < fd + offset; i++)
5833 bfd_arm_vfp11_write_mask (destmask, i);
5834 }
5835 break;
5836
5837 case 4: /* fld[sd]. */
5838 case 6:
5839 bfd_arm_vfp11_write_mask (destmask, fd);
5840 break;
5841
5842 default:
5843 return VFP11_BAD;
5844 }
5845
5846 pipe = VFP11_LS;
5847 }
5848 /* Single-register transfer. Note L==0. */
5849 else if ((insn & 0x0f100e10) == 0x0e000a10)
5850 {
5851 unsigned int opcode = (insn >> 21) & 7;
5852 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
5853
5854 switch (opcode)
5855 {
5856 case 0: /* fmsr/fmdlr. */
5857 case 1: /* fmdhr. */
5858 /* Mark fmdhr and fmdlr as writing to the whole of the DP
5859 destination register. I don't know if this is exactly right,
5860 but it is the conservative choice. */
5861 bfd_arm_vfp11_write_mask (destmask, fn);
5862 break;
5863
5864 case 7: /* fmxr. */
5865 break;
5866 }
5867
5868 pipe = VFP11_LS;
5869 }
5870
5871 return pipe;
5872 }
5873
5874
5875 static int elf32_arm_compare_mapping (const void * a, const void * b);
5876
5877
5878 /* Look for potentially-troublesome code sequences which might trigger the
5879 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
5880 (available from ARM) for details of the erratum. A short version is
5881 described in ld.texinfo. */
5882
5883 bfd_boolean
5884 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
5885 {
5886 asection *sec;
5887 bfd_byte *contents = NULL;
5888 int state = 0;
5889 int regs[3], numregs = 0;
5890 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
5891 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
5892
5893 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
5894 The states transition as follows:
5895
5896 0 -> 1 (vector) or 0 -> 2 (scalar)
5897 A VFP FMAC-pipeline instruction has been seen. Fill
5898 regs[0]..regs[numregs-1] with its input operands. Remember this
5899 instruction in 'first_fmac'.
5900
5901 1 -> 2
5902 Any instruction, except for a VFP instruction which overwrites
5903 regs[*].
5904
5905 1 -> 3 [ -> 0 ] or
5906 2 -> 3 [ -> 0 ]
5907 A VFP instruction has been seen which overwrites any of regs[*].
5908 We must make a veneer! Reset state to 0 before examining next
5909 instruction.
5910
5911 2 -> 0
5912 If we fail to match anything in state 2, reset to state 0 and reset
5913 the instruction pointer to the instruction after 'first_fmac'.
5914
5915 If the VFP11 vector mode is in use, there must be at least two unrelated
5916 instructions between anti-dependent VFP11 instructions to properly avoid
5917 triggering the erratum, hence the use of the extra state 1. */
5918
5919 /* If we are only performing a partial link do not bother
5920 to construct any glue. */
5921 if (link_info->relocatable)
5922 return TRUE;
5923
5924 /* Skip if this bfd does not correspond to an ELF image. */
5925 if (! is_arm_elf (abfd))
5926 return TRUE;
5927
5928 /* We should have chosen a fix type by the time we get here. */
5929 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
5930
5931 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
5932 return TRUE;
5933
5934 /* Skip this BFD if it corresponds to an executable or dynamic object. */
5935 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
5936 return TRUE;
5937
5938 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5939 {
5940 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5941 struct _arm_elf_section_data *sec_data;
5942
5943 /* If we don't have executable progbits, we're not interested in this
5944 section. Also skip if section is to be excluded. */
5945 if (elf_section_type (sec) != SHT_PROGBITS
5946 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5947 || (sec->flags & SEC_EXCLUDE) != 0
5948 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
5949 || sec->output_section == bfd_abs_section_ptr
5950 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5951 continue;
5952
5953 sec_data = elf32_arm_section_data (sec);
5954
5955 if (sec_data->mapcount == 0)
5956 continue;
5957
5958 if (elf_section_data (sec)->this_hdr.contents != NULL)
5959 contents = elf_section_data (sec)->this_hdr.contents;
5960 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5961 goto error_return;
5962
5963 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5964 elf32_arm_compare_mapping);
5965
5966 for (span = 0; span < sec_data->mapcount; span++)
5967 {
5968 unsigned int span_start = sec_data->map[span].vma;
5969 unsigned int span_end = (span == sec_data->mapcount - 1)
5970 ? sec->size : sec_data->map[span + 1].vma;
5971 char span_type = sec_data->map[span].type;
5972
5973 /* FIXME: Only ARM mode is supported at present. We may need to
5974 support Thumb-2 mode also at some point. */
5975 if (span_type != 'a')
5976 continue;
5977
5978 for (i = span_start; i < span_end;)
5979 {
5980 unsigned int next_i = i + 4;
5981 unsigned int insn = bfd_big_endian (abfd)
5982 ? (contents[i] << 24)
5983 | (contents[i + 1] << 16)
5984 | (contents[i + 2] << 8)
5985 | contents[i + 3]
5986 : (contents[i + 3] << 24)
5987 | (contents[i + 2] << 16)
5988 | (contents[i + 1] << 8)
5989 | contents[i];
5990 unsigned int writemask = 0;
5991 enum bfd_arm_vfp11_pipe pipe;
5992
5993 switch (state)
5994 {
5995 case 0:
5996 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5997 &numregs);
5998 /* I'm assuming the VFP11 erratum can trigger with denorm
5999 operands on either the FMAC or the DS pipeline. This might
6000 lead to slightly overenthusiastic veneer insertion. */
6001 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
6002 {
6003 state = use_vector ? 1 : 2;
6004 first_fmac = i;
6005 veneer_of_insn = insn;
6006 }
6007 break;
6008
6009 case 1:
6010 {
6011 int other_regs[3], other_numregs;
6012 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6013 other_regs,
6014 &other_numregs);
6015 if (pipe != VFP11_BAD
6016 && bfd_arm_vfp11_antidependency (writemask, regs,
6017 numregs))
6018 state = 3;
6019 else
6020 state = 2;
6021 }
6022 break;
6023
6024 case 2:
6025 {
6026 int other_regs[3], other_numregs;
6027 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6028 other_regs,
6029 &other_numregs);
6030 if (pipe != VFP11_BAD
6031 && bfd_arm_vfp11_antidependency (writemask, regs,
6032 numregs))
6033 state = 3;
6034 else
6035 {
6036 state = 0;
6037 next_i = first_fmac + 4;
6038 }
6039 }
6040 break;
6041
6042 case 3:
6043 abort (); /* Should be unreachable. */
6044 }
6045
6046 if (state == 3)
6047 {
6048 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6049 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6050 int errcount;
6051
6052 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
6053
6054 newerr->u.b.vfp_insn = veneer_of_insn;
6055
6056 switch (span_type)
6057 {
6058 case 'a':
6059 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6060 break;
6061
6062 default:
6063 abort ();
6064 }
6065
6066 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6067 first_fmac);
6068
6069 newerr->vma = -1;
6070
6071 newerr->next = sec_data->erratumlist;
6072 sec_data->erratumlist = newerr;
6073
6074 state = 0;
6075 }
6076
6077 i = next_i;
6078 }
6079 }
6080
6081 if (contents != NULL
6082 && elf_section_data (sec)->this_hdr.contents != contents)
6083 free (contents);
6084 contents = NULL;
6085 }
6086
6087 return TRUE;
6088
6089 error_return:
6090 if (contents != NULL
6091 && elf_section_data (sec)->this_hdr.contents != contents)
6092 free (contents);
6093
6094 return FALSE;
6095 }
6096
6097 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6098 after sections have been laid out, using specially-named symbols. */
6099
6100 void
6101 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6102 struct bfd_link_info *link_info)
6103 {
6104 asection *sec;
6105 struct elf32_arm_link_hash_table *globals;
6106 char *tmp_name;
6107
6108 if (link_info->relocatable)
6109 return;
6110
6111 /* Skip if this bfd does not correspond to an ELF image. */
6112 if (! is_arm_elf (abfd))
6113 return;
6114
6115 globals = elf32_arm_hash_table (link_info);
6116
6117 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6118 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6119
6120 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6121 {
6122 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6123 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6124
6125 for (; errnode != NULL; errnode = errnode->next)
6126 {
6127 struct elf_link_hash_entry *myh;
6128 bfd_vma vma;
6129
6130 switch (errnode->type)
6131 {
6132 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6133 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6134 /* Find veneer symbol. */
6135 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6136 errnode->u.b.veneer->u.v.id);
6137
6138 myh = elf_link_hash_lookup
6139 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6140
6141 if (myh == NULL)
6142 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6143 "`%s'"), abfd, tmp_name);
6144
6145 vma = myh->root.u.def.section->output_section->vma
6146 + myh->root.u.def.section->output_offset
6147 + myh->root.u.def.value;
6148
6149 errnode->u.b.veneer->vma = vma;
6150 break;
6151
6152 case VFP11_ERRATUM_ARM_VENEER:
6153 case VFP11_ERRATUM_THUMB_VENEER:
6154 /* Find return location. */
6155 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6156 errnode->u.v.id);
6157
6158 myh = elf_link_hash_lookup
6159 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6160
6161 if (myh == NULL)
6162 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6163 "`%s'"), abfd, tmp_name);
6164
6165 vma = myh->root.u.def.section->output_section->vma
6166 + myh->root.u.def.section->output_offset
6167 + myh->root.u.def.value;
6168
6169 errnode->u.v.branch->vma = vma;
6170 break;
6171
6172 default:
6173 abort ();
6174 }
6175 }
6176 }
6177
6178 free (tmp_name);
6179 }
6180
6181
6182 /* Set target relocation values needed during linking. */
6183
6184 void
6185 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6186 struct bfd_link_info *link_info,
6187 int target1_is_rel,
6188 char * target2_type,
6189 int fix_v4bx,
6190 int use_blx,
6191 bfd_arm_vfp11_fix vfp11_fix,
6192 int no_enum_warn, int no_wchar_warn,
6193 int pic_veneer, int fix_cortex_a8)
6194 {
6195 struct elf32_arm_link_hash_table *globals;
6196
6197 globals = elf32_arm_hash_table (link_info);
6198
6199 globals->target1_is_rel = target1_is_rel;
6200 if (strcmp (target2_type, "rel") == 0)
6201 globals->target2_reloc = R_ARM_REL32;
6202 else if (strcmp (target2_type, "abs") == 0)
6203 globals->target2_reloc = R_ARM_ABS32;
6204 else if (strcmp (target2_type, "got-rel") == 0)
6205 globals->target2_reloc = R_ARM_GOT_PREL;
6206 else
6207 {
6208 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6209 target2_type);
6210 }
6211 globals->fix_v4bx = fix_v4bx;
6212 globals->use_blx |= use_blx;
6213 globals->vfp11_fix = vfp11_fix;
6214 globals->pic_veneer = pic_veneer;
6215 globals->fix_cortex_a8 = fix_cortex_a8;
6216
6217 BFD_ASSERT (is_arm_elf (output_bfd));
6218 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6219 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6220 }
6221
6222 /* Replace the target offset of a Thumb bl or b.w instruction. */
6223
6224 static void
6225 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6226 {
6227 bfd_vma upper;
6228 bfd_vma lower;
6229 int reloc_sign;
6230
6231 BFD_ASSERT ((offset & 1) == 0);
6232
6233 upper = bfd_get_16 (abfd, insn);
6234 lower = bfd_get_16 (abfd, insn + 2);
6235 reloc_sign = (offset < 0) ? 1 : 0;
6236 upper = (upper & ~(bfd_vma) 0x7ff)
6237 | ((offset >> 12) & 0x3ff)
6238 | (reloc_sign << 10);
6239 lower = (lower & ~(bfd_vma) 0x2fff)
6240 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6241 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6242 | ((offset >> 1) & 0x7ff);
6243 bfd_put_16 (abfd, upper, insn);
6244 bfd_put_16 (abfd, lower, insn + 2);
6245 }
6246
6247 /* Thumb code calling an ARM function. */
6248
6249 static int
6250 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6251 const char * name,
6252 bfd * input_bfd,
6253 bfd * output_bfd,
6254 asection * input_section,
6255 bfd_byte * hit_data,
6256 asection * sym_sec,
6257 bfd_vma offset,
6258 bfd_signed_vma addend,
6259 bfd_vma val,
6260 char **error_message)
6261 {
6262 asection * s = 0;
6263 bfd_vma my_offset;
6264 long int ret_offset;
6265 struct elf_link_hash_entry * myh;
6266 struct elf32_arm_link_hash_table * globals;
6267
6268 myh = find_thumb_glue (info, name, error_message);
6269 if (myh == NULL)
6270 return FALSE;
6271
6272 globals = elf32_arm_hash_table (info);
6273
6274 BFD_ASSERT (globals != NULL);
6275 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6276
6277 my_offset = myh->root.u.def.value;
6278
6279 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6280 THUMB2ARM_GLUE_SECTION_NAME);
6281
6282 BFD_ASSERT (s != NULL);
6283 BFD_ASSERT (s->contents != NULL);
6284 BFD_ASSERT (s->output_section != NULL);
6285
6286 if ((my_offset & 0x01) == 0x01)
6287 {
6288 if (sym_sec != NULL
6289 && sym_sec->owner != NULL
6290 && !INTERWORK_FLAG (sym_sec->owner))
6291 {
6292 (*_bfd_error_handler)
6293 (_("%B(%s): warning: interworking not enabled.\n"
6294 " first occurrence: %B: thumb call to arm"),
6295 sym_sec->owner, input_bfd, name);
6296
6297 return FALSE;
6298 }
6299
6300 --my_offset;
6301 myh->root.u.def.value = my_offset;
6302
6303 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6304 s->contents + my_offset);
6305
6306 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6307 s->contents + my_offset + 2);
6308
6309 ret_offset =
6310 /* Address of destination of the stub. */
6311 ((bfd_signed_vma) val)
6312 - ((bfd_signed_vma)
6313 /* Offset from the start of the current section
6314 to the start of the stubs. */
6315 (s->output_offset
6316 /* Offset of the start of this stub from the start of the stubs. */
6317 + my_offset
6318 /* Address of the start of the current section. */
6319 + s->output_section->vma)
6320 /* The branch instruction is 4 bytes into the stub. */
6321 + 4
6322 /* ARM branches work from the pc of the instruction + 8. */
6323 + 8);
6324
6325 put_arm_insn (globals, output_bfd,
6326 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
6327 s->contents + my_offset + 4);
6328 }
6329
6330 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
6331
6332 /* Now go back and fix up the original BL insn to point to here. */
6333 ret_offset =
6334 /* Address of where the stub is located. */
6335 (s->output_section->vma + s->output_offset + my_offset)
6336 /* Address of where the BL is located. */
6337 - (input_section->output_section->vma + input_section->output_offset
6338 + offset)
6339 /* Addend in the relocation. */
6340 - addend
6341 /* Biassing for PC-relative addressing. */
6342 - 8;
6343
6344 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
6345
6346 return TRUE;
6347 }
6348
6349 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
6350
6351 static struct elf_link_hash_entry *
6352 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
6353 const char * name,
6354 bfd * input_bfd,
6355 bfd * output_bfd,
6356 asection * sym_sec,
6357 bfd_vma val,
6358 asection * s,
6359 char ** error_message)
6360 {
6361 bfd_vma my_offset;
6362 long int ret_offset;
6363 struct elf_link_hash_entry * myh;
6364 struct elf32_arm_link_hash_table * globals;
6365
6366 myh = find_arm_glue (info, name, error_message);
6367 if (myh == NULL)
6368 return NULL;
6369
6370 globals = elf32_arm_hash_table (info);
6371
6372 BFD_ASSERT (globals != NULL);
6373 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6374
6375 my_offset = myh->root.u.def.value;
6376
6377 if ((my_offset & 0x01) == 0x01)
6378 {
6379 if (sym_sec != NULL
6380 && sym_sec->owner != NULL
6381 && !INTERWORK_FLAG (sym_sec->owner))
6382 {
6383 (*_bfd_error_handler)
6384 (_("%B(%s): warning: interworking not enabled.\n"
6385 " first occurrence: %B: arm call to thumb"),
6386 sym_sec->owner, input_bfd, name);
6387 }
6388
6389 --my_offset;
6390 myh->root.u.def.value = my_offset;
6391
6392 if (info->shared || globals->root.is_relocatable_executable
6393 || globals->pic_veneer)
6394 {
6395 /* For relocatable objects we can't use absolute addresses,
6396 so construct the address from a relative offset. */
6397 /* TODO: If the offset is small it's probably worth
6398 constructing the address with adds. */
6399 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
6400 s->contents + my_offset);
6401 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
6402 s->contents + my_offset + 4);
6403 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
6404 s->contents + my_offset + 8);
6405 /* Adjust the offset by 4 for the position of the add,
6406 and 8 for the pipeline offset. */
6407 ret_offset = (val - (s->output_offset
6408 + s->output_section->vma
6409 + my_offset + 12))
6410 | 1;
6411 bfd_put_32 (output_bfd, ret_offset,
6412 s->contents + my_offset + 12);
6413 }
6414 else if (globals->use_blx)
6415 {
6416 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
6417 s->contents + my_offset);
6418
6419 /* It's a thumb address. Add the low order bit. */
6420 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
6421 s->contents + my_offset + 4);
6422 }
6423 else
6424 {
6425 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
6426 s->contents + my_offset);
6427
6428 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
6429 s->contents + my_offset + 4);
6430
6431 /* It's a thumb address. Add the low order bit. */
6432 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
6433 s->contents + my_offset + 8);
6434
6435 my_offset += 12;
6436 }
6437 }
6438
6439 BFD_ASSERT (my_offset <= globals->arm_glue_size);
6440
6441 return myh;
6442 }
6443
6444 /* Arm code calling a Thumb function. */
6445
6446 static int
6447 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
6448 const char * name,
6449 bfd * input_bfd,
6450 bfd * output_bfd,
6451 asection * input_section,
6452 bfd_byte * hit_data,
6453 asection * sym_sec,
6454 bfd_vma offset,
6455 bfd_signed_vma addend,
6456 bfd_vma val,
6457 char **error_message)
6458 {
6459 unsigned long int tmp;
6460 bfd_vma my_offset;
6461 asection * s;
6462 long int ret_offset;
6463 struct elf_link_hash_entry * myh;
6464 struct elf32_arm_link_hash_table * globals;
6465
6466 globals = elf32_arm_hash_table (info);
6467
6468 BFD_ASSERT (globals != NULL);
6469 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6470
6471 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6472 ARM2THUMB_GLUE_SECTION_NAME);
6473 BFD_ASSERT (s != NULL);
6474 BFD_ASSERT (s->contents != NULL);
6475 BFD_ASSERT (s->output_section != NULL);
6476
6477 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
6478 sym_sec, val, s, error_message);
6479 if (!myh)
6480 return FALSE;
6481
6482 my_offset = myh->root.u.def.value;
6483 tmp = bfd_get_32 (input_bfd, hit_data);
6484 tmp = tmp & 0xFF000000;
6485
6486 /* Somehow these are both 4 too far, so subtract 8. */
6487 ret_offset = (s->output_offset
6488 + my_offset
6489 + s->output_section->vma
6490 - (input_section->output_offset
6491 + input_section->output_section->vma
6492 + offset + addend)
6493 - 8);
6494
6495 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
6496
6497 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
6498
6499 return TRUE;
6500 }
6501
6502 /* Populate Arm stub for an exported Thumb function. */
6503
6504 static bfd_boolean
6505 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
6506 {
6507 struct bfd_link_info * info = (struct bfd_link_info *) inf;
6508 asection * s;
6509 struct elf_link_hash_entry * myh;
6510 struct elf32_arm_link_hash_entry *eh;
6511 struct elf32_arm_link_hash_table * globals;
6512 asection *sec;
6513 bfd_vma val;
6514 char *error_message;
6515
6516 eh = elf32_arm_hash_entry (h);
6517 /* Allocate stubs for exported Thumb functions on v4t. */
6518 if (eh->export_glue == NULL)
6519 return TRUE;
6520
6521 globals = elf32_arm_hash_table (info);
6522
6523 BFD_ASSERT (globals != NULL);
6524 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6525
6526 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6527 ARM2THUMB_GLUE_SECTION_NAME);
6528 BFD_ASSERT (s != NULL);
6529 BFD_ASSERT (s->contents != NULL);
6530 BFD_ASSERT (s->output_section != NULL);
6531
6532 sec = eh->export_glue->root.u.def.section;
6533
6534 BFD_ASSERT (sec->output_section != NULL);
6535
6536 val = eh->export_glue->root.u.def.value + sec->output_offset
6537 + sec->output_section->vma;
6538
6539 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
6540 h->root.u.def.section->owner,
6541 globals->obfd, sec, val, s,
6542 &error_message);
6543 BFD_ASSERT (myh);
6544 return TRUE;
6545 }
6546
6547 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
6548
6549 static bfd_vma
6550 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
6551 {
6552 bfd_byte *p;
6553 bfd_vma glue_addr;
6554 asection *s;
6555 struct elf32_arm_link_hash_table *globals;
6556
6557 globals = elf32_arm_hash_table (info);
6558
6559 BFD_ASSERT (globals != NULL);
6560 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6561
6562 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6563 ARM_BX_GLUE_SECTION_NAME);
6564 BFD_ASSERT (s != NULL);
6565 BFD_ASSERT (s->contents != NULL);
6566 BFD_ASSERT (s->output_section != NULL);
6567
6568 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
6569
6570 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
6571
6572 if ((globals->bx_glue_offset[reg] & 1) == 0)
6573 {
6574 p = s->contents + glue_addr;
6575 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
6576 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
6577 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
6578 globals->bx_glue_offset[reg] |= 1;
6579 }
6580
6581 return glue_addr + s->output_section->vma + s->output_offset;
6582 }
6583
6584 /* Generate Arm stubs for exported Thumb symbols. */
6585 static void
6586 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
6587 struct bfd_link_info *link_info)
6588 {
6589 struct elf32_arm_link_hash_table * globals;
6590
6591 if (link_info == NULL)
6592 /* Ignore this if we are not called by the ELF backend linker. */
6593 return;
6594
6595 globals = elf32_arm_hash_table (link_info);
6596 /* If blx is available then exported Thumb symbols are OK and there is
6597 nothing to do. */
6598 if (globals->use_blx)
6599 return;
6600
6601 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
6602 link_info);
6603 }
6604
6605 /* Some relocations map to different relocations depending on the
6606 target. Return the real relocation. */
6607
6608 static int
6609 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
6610 int r_type)
6611 {
6612 switch (r_type)
6613 {
6614 case R_ARM_TARGET1:
6615 if (globals->target1_is_rel)
6616 return R_ARM_REL32;
6617 else
6618 return R_ARM_ABS32;
6619
6620 case R_ARM_TARGET2:
6621 return globals->target2_reloc;
6622
6623 default:
6624 return r_type;
6625 }
6626 }
6627
6628 /* Return the base VMA address which should be subtracted from real addresses
6629 when resolving @dtpoff relocation.
6630 This is PT_TLS segment p_vaddr. */
6631
6632 static bfd_vma
6633 dtpoff_base (struct bfd_link_info *info)
6634 {
6635 /* If tls_sec is NULL, we should have signalled an error already. */
6636 if (elf_hash_table (info)->tls_sec == NULL)
6637 return 0;
6638 return elf_hash_table (info)->tls_sec->vma;
6639 }
6640
6641 /* Return the relocation value for @tpoff relocation
6642 if STT_TLS virtual address is ADDRESS. */
6643
6644 static bfd_vma
6645 tpoff (struct bfd_link_info *info, bfd_vma address)
6646 {
6647 struct elf_link_hash_table *htab = elf_hash_table (info);
6648 bfd_vma base;
6649
6650 /* If tls_sec is NULL, we should have signalled an error already. */
6651 if (htab->tls_sec == NULL)
6652 return 0;
6653 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
6654 return address - htab->tls_sec->vma + base;
6655 }
6656
6657 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
6658 VALUE is the relocation value. */
6659
6660 static bfd_reloc_status_type
6661 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
6662 {
6663 if (value > 0xfff)
6664 return bfd_reloc_overflow;
6665
6666 value |= bfd_get_32 (abfd, data) & 0xfffff000;
6667 bfd_put_32 (abfd, value, data);
6668 return bfd_reloc_ok;
6669 }
6670
6671 /* For a given value of n, calculate the value of G_n as required to
6672 deal with group relocations. We return it in the form of an
6673 encoded constant-and-rotation, together with the final residual. If n is
6674 specified as less than zero, then final_residual is filled with the
6675 input value and no further action is performed. */
6676
6677 static bfd_vma
6678 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
6679 {
6680 int current_n;
6681 bfd_vma g_n;
6682 bfd_vma encoded_g_n = 0;
6683 bfd_vma residual = value; /* Also known as Y_n. */
6684
6685 for (current_n = 0; current_n <= n; current_n++)
6686 {
6687 int shift;
6688
6689 /* Calculate which part of the value to mask. */
6690 if (residual == 0)
6691 shift = 0;
6692 else
6693 {
6694 int msb;
6695
6696 /* Determine the most significant bit in the residual and
6697 align the resulting value to a 2-bit boundary. */
6698 for (msb = 30; msb >= 0; msb -= 2)
6699 if (residual & (3 << msb))
6700 break;
6701
6702 /* The desired shift is now (msb - 6), or zero, whichever
6703 is the greater. */
6704 shift = msb - 6;
6705 if (shift < 0)
6706 shift = 0;
6707 }
6708
6709 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
6710 g_n = residual & (0xff << shift);
6711 encoded_g_n = (g_n >> shift)
6712 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
6713
6714 /* Calculate the residual for the next time around. */
6715 residual &= ~g_n;
6716 }
6717
6718 *final_residual = residual;
6719
6720 return encoded_g_n;
6721 }
6722
6723 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
6724 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
6725
6726 static int
6727 identify_add_or_sub (bfd_vma insn)
6728 {
6729 int opcode = insn & 0x1e00000;
6730
6731 if (opcode == 1 << 23) /* ADD */
6732 return 1;
6733
6734 if (opcode == 1 << 22) /* SUB */
6735 return -1;
6736
6737 return 0;
6738 }
6739
6740 /* Perform a relocation as part of a final link. */
6741
6742 static bfd_reloc_status_type
6743 elf32_arm_final_link_relocate (reloc_howto_type * howto,
6744 bfd * input_bfd,
6745 bfd * output_bfd,
6746 asection * input_section,
6747 bfd_byte * contents,
6748 Elf_Internal_Rela * rel,
6749 bfd_vma value,
6750 struct bfd_link_info * info,
6751 asection * sym_sec,
6752 const char * sym_name,
6753 int sym_flags,
6754 struct elf_link_hash_entry * h,
6755 bfd_boolean * unresolved_reloc_p,
6756 char ** error_message)
6757 {
6758 unsigned long r_type = howto->type;
6759 unsigned long r_symndx;
6760 bfd_byte * hit_data = contents + rel->r_offset;
6761 bfd * dynobj = NULL;
6762 Elf_Internal_Shdr * symtab_hdr;
6763 struct elf_link_hash_entry ** sym_hashes;
6764 bfd_vma * local_got_offsets;
6765 asection * sgot = NULL;
6766 asection * splt = NULL;
6767 asection * sreloc = NULL;
6768 bfd_vma addend;
6769 bfd_signed_vma signed_addend;
6770 struct elf32_arm_link_hash_table * globals;
6771
6772 globals = elf32_arm_hash_table (info);
6773
6774 BFD_ASSERT (is_arm_elf (input_bfd));
6775
6776 /* Some relocation types map to different relocations depending on the
6777 target. We pick the right one here. */
6778 r_type = arm_real_reloc_type (globals, r_type);
6779 if (r_type != howto->type)
6780 howto = elf32_arm_howto_from_type (r_type);
6781
6782 /* If the start address has been set, then set the EF_ARM_HASENTRY
6783 flag. Setting this more than once is redundant, but the cost is
6784 not too high, and it keeps the code simple.
6785
6786 The test is done here, rather than somewhere else, because the
6787 start address is only set just before the final link commences.
6788
6789 Note - if the user deliberately sets a start address of 0, the
6790 flag will not be set. */
6791 if (bfd_get_start_address (output_bfd) != 0)
6792 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
6793
6794 dynobj = elf_hash_table (info)->dynobj;
6795 if (dynobj)
6796 {
6797 sgot = bfd_get_section_by_name (dynobj, ".got");
6798 splt = bfd_get_section_by_name (dynobj, ".plt");
6799 }
6800 symtab_hdr = & elf_symtab_hdr (input_bfd);
6801 sym_hashes = elf_sym_hashes (input_bfd);
6802 local_got_offsets = elf_local_got_offsets (input_bfd);
6803 r_symndx = ELF32_R_SYM (rel->r_info);
6804
6805 if (globals->use_rel)
6806 {
6807 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
6808
6809 if (addend & ((howto->src_mask + 1) >> 1))
6810 {
6811 signed_addend = -1;
6812 signed_addend &= ~ howto->src_mask;
6813 signed_addend |= addend;
6814 }
6815 else
6816 signed_addend = addend;
6817 }
6818 else
6819 addend = signed_addend = rel->r_addend;
6820
6821 switch (r_type)
6822 {
6823 case R_ARM_NONE:
6824 /* We don't need to find a value for this symbol. It's just a
6825 marker. */
6826 *unresolved_reloc_p = FALSE;
6827 return bfd_reloc_ok;
6828
6829 case R_ARM_ABS12:
6830 if (!globals->vxworks_p)
6831 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6832
6833 case R_ARM_PC24:
6834 case R_ARM_ABS32:
6835 case R_ARM_ABS32_NOI:
6836 case R_ARM_REL32:
6837 case R_ARM_REL32_NOI:
6838 case R_ARM_CALL:
6839 case R_ARM_JUMP24:
6840 case R_ARM_XPC25:
6841 case R_ARM_PREL31:
6842 case R_ARM_PLT32:
6843 /* Handle relocations which should use the PLT entry. ABS32/REL32
6844 will use the symbol's value, which may point to a PLT entry, but we
6845 don't need to handle that here. If we created a PLT entry, all
6846 branches in this object should go to it, except if the PLT is too
6847 far away, in which case a long branch stub should be inserted. */
6848 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
6849 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
6850 && r_type != R_ARM_CALL
6851 && r_type != R_ARM_JUMP24
6852 && r_type != R_ARM_PLT32)
6853 && h != NULL
6854 && splt != NULL
6855 && h->plt.offset != (bfd_vma) -1)
6856 {
6857 /* If we've created a .plt section, and assigned a PLT entry to
6858 this function, it should not be known to bind locally. If
6859 it were, we would have cleared the PLT entry. */
6860 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
6861
6862 value = (splt->output_section->vma
6863 + splt->output_offset
6864 + h->plt.offset);
6865 *unresolved_reloc_p = FALSE;
6866 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6867 contents, rel->r_offset, value,
6868 rel->r_addend);
6869 }
6870
6871 /* When generating a shared object or relocatable executable, these
6872 relocations are copied into the output file to be resolved at
6873 run time. */
6874 if ((info->shared || globals->root.is_relocatable_executable)
6875 && (input_section->flags & SEC_ALLOC)
6876 && !(elf32_arm_hash_table (info)->vxworks_p
6877 && strcmp (input_section->output_section->name,
6878 ".tls_vars") == 0)
6879 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
6880 || !SYMBOL_CALLS_LOCAL (info, h))
6881 && (h == NULL
6882 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6883 || h->root.type != bfd_link_hash_undefweak)
6884 && r_type != R_ARM_PC24
6885 && r_type != R_ARM_CALL
6886 && r_type != R_ARM_JUMP24
6887 && r_type != R_ARM_PREL31
6888 && r_type != R_ARM_PLT32)
6889 {
6890 Elf_Internal_Rela outrel;
6891 bfd_byte *loc;
6892 bfd_boolean skip, relocate;
6893
6894 *unresolved_reloc_p = FALSE;
6895
6896 if (sreloc == NULL)
6897 {
6898 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
6899 ! globals->use_rel);
6900
6901 if (sreloc == NULL)
6902 return bfd_reloc_notsupported;
6903 }
6904
6905 skip = FALSE;
6906 relocate = FALSE;
6907
6908 outrel.r_addend = addend;
6909 outrel.r_offset =
6910 _bfd_elf_section_offset (output_bfd, info, input_section,
6911 rel->r_offset);
6912 if (outrel.r_offset == (bfd_vma) -1)
6913 skip = TRUE;
6914 else if (outrel.r_offset == (bfd_vma) -2)
6915 skip = TRUE, relocate = TRUE;
6916 outrel.r_offset += (input_section->output_section->vma
6917 + input_section->output_offset);
6918
6919 if (skip)
6920 memset (&outrel, 0, sizeof outrel);
6921 else if (h != NULL
6922 && h->dynindx != -1
6923 && (!info->shared
6924 || !info->symbolic
6925 || !h->def_regular))
6926 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
6927 else
6928 {
6929 int symbol;
6930
6931 /* This symbol is local, or marked to become local. */
6932 if (sym_flags == STT_ARM_TFUNC)
6933 value |= 1;
6934 if (globals->symbian_p)
6935 {
6936 asection *osec;
6937
6938 /* On Symbian OS, the data segment and text segement
6939 can be relocated independently. Therefore, we
6940 must indicate the segment to which this
6941 relocation is relative. The BPABI allows us to
6942 use any symbol in the right segment; we just use
6943 the section symbol as it is convenient. (We
6944 cannot use the symbol given by "h" directly as it
6945 will not appear in the dynamic symbol table.)
6946
6947 Note that the dynamic linker ignores the section
6948 symbol value, so we don't subtract osec->vma
6949 from the emitted reloc addend. */
6950 if (sym_sec)
6951 osec = sym_sec->output_section;
6952 else
6953 osec = input_section->output_section;
6954 symbol = elf_section_data (osec)->dynindx;
6955 if (symbol == 0)
6956 {
6957 struct elf_link_hash_table *htab = elf_hash_table (info);
6958
6959 if ((osec->flags & SEC_READONLY) == 0
6960 && htab->data_index_section != NULL)
6961 osec = htab->data_index_section;
6962 else
6963 osec = htab->text_index_section;
6964 symbol = elf_section_data (osec)->dynindx;
6965 }
6966 BFD_ASSERT (symbol != 0);
6967 }
6968 else
6969 /* On SVR4-ish systems, the dynamic loader cannot
6970 relocate the text and data segments independently,
6971 so the symbol does not matter. */
6972 symbol = 0;
6973 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6974 if (globals->use_rel)
6975 relocate = TRUE;
6976 else
6977 outrel.r_addend += value;
6978 }
6979
6980 loc = sreloc->contents;
6981 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6982 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6983
6984 /* If this reloc is against an external symbol, we do not want to
6985 fiddle with the addend. Otherwise, we need to include the symbol
6986 value so that it becomes an addend for the dynamic reloc. */
6987 if (! relocate)
6988 return bfd_reloc_ok;
6989
6990 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6991 contents, rel->r_offset, value,
6992 (bfd_vma) 0);
6993 }
6994 else switch (r_type)
6995 {
6996 case R_ARM_ABS12:
6997 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6998
6999 case R_ARM_XPC25: /* Arm BLX instruction. */
7000 case R_ARM_CALL:
7001 case R_ARM_JUMP24:
7002 case R_ARM_PC24: /* Arm B/BL instruction. */
7003 case R_ARM_PLT32:
7004 {
7005 bfd_signed_vma branch_offset;
7006 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
7007
7008 if (r_type == R_ARM_XPC25)
7009 {
7010 /* Check for Arm calling Arm function. */
7011 /* FIXME: Should we translate the instruction into a BL
7012 instruction instead ? */
7013 if (sym_flags != STT_ARM_TFUNC)
7014 (*_bfd_error_handler)
7015 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
7016 input_bfd,
7017 h ? h->root.root.string : "(local)");
7018 }
7019 else if (r_type == R_ARM_PC24)
7020 {
7021 /* Check for Arm calling Thumb function. */
7022 if (sym_flags == STT_ARM_TFUNC)
7023 {
7024 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
7025 output_bfd, input_section,
7026 hit_data, sym_sec, rel->r_offset,
7027 signed_addend, value,
7028 error_message))
7029 return bfd_reloc_ok;
7030 else
7031 return bfd_reloc_dangerous;
7032 }
7033 }
7034
7035 /* Check if a stub has to be inserted because the
7036 destination is too far or we are changing mode. */
7037 if ( r_type == R_ARM_CALL
7038 || r_type == R_ARM_JUMP24
7039 || r_type == R_ARM_PLT32)
7040 {
7041 bfd_vma from;
7042
7043 /* If the call goes through a PLT entry, make sure to
7044 check distance to the right destination address. */
7045 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7046 {
7047 value = (splt->output_section->vma
7048 + splt->output_offset
7049 + h->plt.offset);
7050 *unresolved_reloc_p = FALSE;
7051 /* The PLT entry is in ARM mode, regardless of the
7052 target function. */
7053 sym_flags = STT_FUNC;
7054 }
7055
7056 from = (input_section->output_section->vma
7057 + input_section->output_offset
7058 + rel->r_offset);
7059 branch_offset = (bfd_signed_vma)(value - from);
7060
7061 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
7062 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
7063 || ((sym_flags == STT_ARM_TFUNC)
7064 && (((r_type == R_ARM_CALL) && !globals->use_blx)
7065 || (r_type == R_ARM_JUMP24)
7066 || (r_type == R_ARM_PLT32) ))
7067 )
7068 {
7069 /* The target is out of reach, so redirect the
7070 branch to the local stub for this function. */
7071
7072 stub_entry = elf32_arm_get_stub_entry (input_section,
7073 sym_sec, h,
7074 rel, globals);
7075 if (stub_entry != NULL)
7076 value = (stub_entry->stub_offset
7077 + stub_entry->stub_sec->output_offset
7078 + stub_entry->stub_sec->output_section->vma);
7079 }
7080 }
7081
7082 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
7083 where:
7084 S is the address of the symbol in the relocation.
7085 P is address of the instruction being relocated.
7086 A is the addend (extracted from the instruction) in bytes.
7087
7088 S is held in 'value'.
7089 P is the base address of the section containing the
7090 instruction plus the offset of the reloc into that
7091 section, ie:
7092 (input_section->output_section->vma +
7093 input_section->output_offset +
7094 rel->r_offset).
7095 A is the addend, converted into bytes, ie:
7096 (signed_addend * 4)
7097
7098 Note: None of these operations have knowledge of the pipeline
7099 size of the processor, thus it is up to the assembler to
7100 encode this information into the addend. */
7101 value -= (input_section->output_section->vma
7102 + input_section->output_offset);
7103 value -= rel->r_offset;
7104 if (globals->use_rel)
7105 value += (signed_addend << howto->size);
7106 else
7107 /* RELA addends do not have to be adjusted by howto->size. */
7108 value += signed_addend;
7109
7110 signed_addend = value;
7111 signed_addend >>= howto->rightshift;
7112
7113 /* A branch to an undefined weak symbol is turned into a jump to
7114 the next instruction unless a PLT entry will be created.
7115 Do the same for local undefined symbols.
7116 The jump to the next instruction is optimized as a NOP depending
7117 on the architecture. */
7118 if (h ? (h->root.type == bfd_link_hash_undefweak
7119 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
7120 : bfd_is_und_section (sym_sec))
7121 {
7122 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
7123
7124 if (arch_has_arm_nop (globals))
7125 value |= 0x0320f000;
7126 else
7127 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
7128 }
7129 else
7130 {
7131 /* Perform a signed range check. */
7132 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
7133 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
7134 return bfd_reloc_overflow;
7135
7136 addend = (value & 2);
7137
7138 value = (signed_addend & howto->dst_mask)
7139 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
7140
7141 if (r_type == R_ARM_CALL)
7142 {
7143 /* Set the H bit in the BLX instruction. */
7144 if (sym_flags == STT_ARM_TFUNC)
7145 {
7146 if (addend)
7147 value |= (1 << 24);
7148 else
7149 value &= ~(bfd_vma)(1 << 24);
7150 }
7151
7152 /* Select the correct instruction (BL or BLX). */
7153 /* Only if we are not handling a BL to a stub. In this
7154 case, mode switching is performed by the stub. */
7155 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
7156 value |= (1 << 28);
7157 else
7158 {
7159 value &= ~(bfd_vma)(1 << 28);
7160 value |= (1 << 24);
7161 }
7162 }
7163 }
7164 }
7165 break;
7166
7167 case R_ARM_ABS32:
7168 value += addend;
7169 if (sym_flags == STT_ARM_TFUNC)
7170 value |= 1;
7171 break;
7172
7173 case R_ARM_ABS32_NOI:
7174 value += addend;
7175 break;
7176
7177 case R_ARM_REL32:
7178 value += addend;
7179 if (sym_flags == STT_ARM_TFUNC)
7180 value |= 1;
7181 value -= (input_section->output_section->vma
7182 + input_section->output_offset + rel->r_offset);
7183 break;
7184
7185 case R_ARM_REL32_NOI:
7186 value += addend;
7187 value -= (input_section->output_section->vma
7188 + input_section->output_offset + rel->r_offset);
7189 break;
7190
7191 case R_ARM_PREL31:
7192 value -= (input_section->output_section->vma
7193 + input_section->output_offset + rel->r_offset);
7194 value += signed_addend;
7195 if (! h || h->root.type != bfd_link_hash_undefweak)
7196 {
7197 /* Check for overflow. */
7198 if ((value ^ (value >> 1)) & (1 << 30))
7199 return bfd_reloc_overflow;
7200 }
7201 value &= 0x7fffffff;
7202 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
7203 if (sym_flags == STT_ARM_TFUNC)
7204 value |= 1;
7205 break;
7206 }
7207
7208 bfd_put_32 (input_bfd, value, hit_data);
7209 return bfd_reloc_ok;
7210
7211 case R_ARM_ABS8:
7212 value += addend;
7213 if ((long) value > 0x7f || (long) value < -0x80)
7214 return bfd_reloc_overflow;
7215
7216 bfd_put_8 (input_bfd, value, hit_data);
7217 return bfd_reloc_ok;
7218
7219 case R_ARM_ABS16:
7220 value += addend;
7221
7222 if ((long) value > 0x7fff || (long) value < -0x8000)
7223 return bfd_reloc_overflow;
7224
7225 bfd_put_16 (input_bfd, value, hit_data);
7226 return bfd_reloc_ok;
7227
7228 case R_ARM_THM_ABS5:
7229 /* Support ldr and str instructions for the thumb. */
7230 if (globals->use_rel)
7231 {
7232 /* Need to refetch addend. */
7233 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7234 /* ??? Need to determine shift amount from operand size. */
7235 addend >>= howto->rightshift;
7236 }
7237 value += addend;
7238
7239 /* ??? Isn't value unsigned? */
7240 if ((long) value > 0x1f || (long) value < -0x10)
7241 return bfd_reloc_overflow;
7242
7243 /* ??? Value needs to be properly shifted into place first. */
7244 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
7245 bfd_put_16 (input_bfd, value, hit_data);
7246 return bfd_reloc_ok;
7247
7248 case R_ARM_THM_ALU_PREL_11_0:
7249 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
7250 {
7251 bfd_vma insn;
7252 bfd_signed_vma relocation;
7253
7254 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7255 | bfd_get_16 (input_bfd, hit_data + 2);
7256
7257 if (globals->use_rel)
7258 {
7259 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
7260 | ((insn & (1 << 26)) >> 15);
7261 if (insn & 0xf00000)
7262 signed_addend = -signed_addend;
7263 }
7264
7265 relocation = value + signed_addend;
7266 relocation -= (input_section->output_section->vma
7267 + input_section->output_offset
7268 + rel->r_offset);
7269
7270 value = abs (relocation);
7271
7272 if (value >= 0x1000)
7273 return bfd_reloc_overflow;
7274
7275 insn = (insn & 0xfb0f8f00) | (value & 0xff)
7276 | ((value & 0x700) << 4)
7277 | ((value & 0x800) << 15);
7278 if (relocation < 0)
7279 insn |= 0xa00000;
7280
7281 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7282 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7283
7284 return bfd_reloc_ok;
7285 }
7286
7287 case R_ARM_THM_PC8:
7288 /* PR 10073: This reloc is not generated by the GNU toolchain,
7289 but it is supported for compatibility with third party libraries
7290 generated by other compilers, specifically the ARM/IAR. */
7291 {
7292 bfd_vma insn;
7293 bfd_signed_vma relocation;
7294
7295 insn = bfd_get_16 (input_bfd, hit_data);
7296
7297 if (globals->use_rel)
7298 addend = (insn & 0x00ff) << 2;
7299
7300 relocation = value + addend;
7301 relocation -= (input_section->output_section->vma
7302 + input_section->output_offset
7303 + rel->r_offset);
7304
7305 value = abs (relocation);
7306
7307 /* We do not check for overflow of this reloc. Although strictly
7308 speaking this is incorrect, it appears to be necessary in order
7309 to work with IAR generated relocs. Since GCC and GAS do not
7310 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
7311 a problem for them. */
7312 value &= 0x3fc;
7313
7314 insn = (insn & 0xff00) | (value >> 2);
7315
7316 bfd_put_16 (input_bfd, insn, hit_data);
7317
7318 return bfd_reloc_ok;
7319 }
7320
7321 case R_ARM_THM_PC12:
7322 /* Corresponds to: ldr.w reg, [pc, #offset]. */
7323 {
7324 bfd_vma insn;
7325 bfd_signed_vma relocation;
7326
7327 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
7328 | bfd_get_16 (input_bfd, hit_data + 2);
7329
7330 if (globals->use_rel)
7331 {
7332 signed_addend = insn & 0xfff;
7333 if (!(insn & (1 << 23)))
7334 signed_addend = -signed_addend;
7335 }
7336
7337 relocation = value + signed_addend;
7338 relocation -= (input_section->output_section->vma
7339 + input_section->output_offset
7340 + rel->r_offset);
7341
7342 value = abs (relocation);
7343
7344 if (value >= 0x1000)
7345 return bfd_reloc_overflow;
7346
7347 insn = (insn & 0xff7ff000) | value;
7348 if (relocation >= 0)
7349 insn |= (1 << 23);
7350
7351 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7352 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7353
7354 return bfd_reloc_ok;
7355 }
7356
7357 case R_ARM_THM_XPC22:
7358 case R_ARM_THM_CALL:
7359 case R_ARM_THM_JUMP24:
7360 /* Thumb BL (branch long instruction). */
7361 {
7362 bfd_vma relocation;
7363 bfd_vma reloc_sign;
7364 bfd_boolean overflow = FALSE;
7365 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7366 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
7367 bfd_signed_vma reloc_signed_max;
7368 bfd_signed_vma reloc_signed_min;
7369 bfd_vma check;
7370 bfd_signed_vma signed_check;
7371 int bitsize;
7372 const int thumb2 = using_thumb2 (globals);
7373
7374 /* A branch to an undefined weak symbol is turned into a jump to
7375 the next instruction unless a PLT entry will be created.
7376 The jump to the next instruction is optimized as a NOP.W for
7377 Thumb-2 enabled architectures. */
7378 if (h && h->root.type == bfd_link_hash_undefweak
7379 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
7380 {
7381 if (arch_has_thumb2_nop (globals))
7382 {
7383 bfd_put_16 (input_bfd, 0xf3af, hit_data);
7384 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
7385 }
7386 else
7387 {
7388 bfd_put_16 (input_bfd, 0xe000, hit_data);
7389 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
7390 }
7391 return bfd_reloc_ok;
7392 }
7393
7394 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
7395 with Thumb-1) involving the J1 and J2 bits. */
7396 if (globals->use_rel)
7397 {
7398 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
7399 bfd_vma upper = upper_insn & 0x3ff;
7400 bfd_vma lower = lower_insn & 0x7ff;
7401 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
7402 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
7403 bfd_vma i1 = j1 ^ s ? 0 : 1;
7404 bfd_vma i2 = j2 ^ s ? 0 : 1;
7405
7406 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
7407 /* Sign extend. */
7408 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
7409
7410 signed_addend = addend;
7411 }
7412
7413 if (r_type == R_ARM_THM_XPC22)
7414 {
7415 /* Check for Thumb to Thumb call. */
7416 /* FIXME: Should we translate the instruction into a BL
7417 instruction instead ? */
7418 if (sym_flags == STT_ARM_TFUNC)
7419 (*_bfd_error_handler)
7420 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
7421 input_bfd,
7422 h ? h->root.root.string : "(local)");
7423 }
7424 else
7425 {
7426 /* If it is not a call to Thumb, assume call to Arm.
7427 If it is a call relative to a section name, then it is not a
7428 function call at all, but rather a long jump. Calls through
7429 the PLT do not require stubs. */
7430 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
7431 && (h == NULL || splt == NULL
7432 || h->plt.offset == (bfd_vma) -1))
7433 {
7434 if (globals->use_blx && r_type == R_ARM_THM_CALL)
7435 {
7436 /* Convert BL to BLX. */
7437 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7438 }
7439 else if (( r_type != R_ARM_THM_CALL)
7440 && (r_type != R_ARM_THM_JUMP24))
7441 {
7442 if (elf32_thumb_to_arm_stub
7443 (info, sym_name, input_bfd, output_bfd, input_section,
7444 hit_data, sym_sec, rel->r_offset, signed_addend, value,
7445 error_message))
7446 return bfd_reloc_ok;
7447 else
7448 return bfd_reloc_dangerous;
7449 }
7450 }
7451 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
7452 && r_type == R_ARM_THM_CALL)
7453 {
7454 /* Make sure this is a BL. */
7455 lower_insn |= 0x1800;
7456 }
7457 }
7458
7459 /* Handle calls via the PLT. */
7460 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7461 {
7462 value = (splt->output_section->vma
7463 + splt->output_offset
7464 + h->plt.offset);
7465 if (globals->use_blx && r_type == R_ARM_THM_CALL)
7466 {
7467 /* If the Thumb BLX instruction is available, convert the
7468 BL to a BLX instruction to call the ARM-mode PLT entry. */
7469 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7470 sym_flags = STT_FUNC;
7471 }
7472 else
7473 {
7474 /* Target the Thumb stub before the ARM PLT entry. */
7475 value -= PLT_THUMB_STUB_SIZE;
7476 sym_flags = STT_ARM_TFUNC;
7477 }
7478 *unresolved_reloc_p = FALSE;
7479 }
7480
7481 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
7482 {
7483 /* Check if a stub has to be inserted because the destination
7484 is too far. */
7485 bfd_vma from;
7486 bfd_signed_vma branch_offset;
7487 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
7488
7489 from = (input_section->output_section->vma
7490 + input_section->output_offset
7491 + rel->r_offset);
7492 branch_offset = (bfd_signed_vma)(value - from);
7493
7494 if ((!thumb2
7495 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
7496 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
7497 ||
7498 (thumb2
7499 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
7500 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
7501 || ((sym_flags != STT_ARM_TFUNC)
7502 && (((r_type == R_ARM_THM_CALL) && !globals->use_blx)
7503 || r_type == R_ARM_THM_JUMP24)))
7504 {
7505 /* The target is out of reach or we are changing modes, so
7506 redirect the branch to the local stub for this
7507 function. */
7508 stub_entry = elf32_arm_get_stub_entry (input_section,
7509 sym_sec, h,
7510 rel, globals);
7511 if (stub_entry != NULL)
7512 value = (stub_entry->stub_offset
7513 + stub_entry->stub_sec->output_offset
7514 + stub_entry->stub_sec->output_section->vma);
7515
7516 /* If this call becomes a call to Arm, force BLX. */
7517 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
7518 {
7519 if ((stub_entry
7520 && !arm_stub_is_thumb (stub_entry->stub_type))
7521 || (sym_flags != STT_ARM_TFUNC))
7522 lower_insn = (lower_insn & ~0x1000) | 0x0800;
7523 }
7524 }
7525 }
7526
7527 relocation = value + signed_addend;
7528
7529 relocation -= (input_section->output_section->vma
7530 + input_section->output_offset
7531 + rel->r_offset);
7532
7533 check = relocation >> howto->rightshift;
7534
7535 /* If this is a signed value, the rightshift just dropped
7536 leading 1 bits (assuming twos complement). */
7537 if ((bfd_signed_vma) relocation >= 0)
7538 signed_check = check;
7539 else
7540 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
7541
7542 /* Calculate the permissable maximum and minimum values for
7543 this relocation according to whether we're relocating for
7544 Thumb-2 or not. */
7545 bitsize = howto->bitsize;
7546 if (!thumb2)
7547 bitsize -= 2;
7548 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
7549 reloc_signed_min = ~reloc_signed_max;
7550
7551 /* Assumes two's complement. */
7552 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7553 overflow = TRUE;
7554
7555 if ((lower_insn & 0x5000) == 0x4000)
7556 /* For a BLX instruction, make sure that the relocation is rounded up
7557 to a word boundary. This follows the semantics of the instruction
7558 which specifies that bit 1 of the target address will come from bit
7559 1 of the base address. */
7560 relocation = (relocation + 2) & ~ 3;
7561
7562 /* Put RELOCATION back into the insn. Assumes two's complement.
7563 We use the Thumb-2 encoding, which is safe even if dealing with
7564 a Thumb-1 instruction by virtue of our overflow check above. */
7565 reloc_sign = (signed_check < 0) ? 1 : 0;
7566 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
7567 | ((relocation >> 12) & 0x3ff)
7568 | (reloc_sign << 10);
7569 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
7570 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
7571 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
7572 | ((relocation >> 1) & 0x7ff);
7573
7574 /* Put the relocated value back in the object file: */
7575 bfd_put_16 (input_bfd, upper_insn, hit_data);
7576 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7577
7578 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7579 }
7580 break;
7581
7582 case R_ARM_THM_JUMP19:
7583 /* Thumb32 conditional branch instruction. */
7584 {
7585 bfd_vma relocation;
7586 bfd_boolean overflow = FALSE;
7587 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
7588 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
7589 bfd_signed_vma reloc_signed_max = 0xffffe;
7590 bfd_signed_vma reloc_signed_min = -0x100000;
7591 bfd_signed_vma signed_check;
7592
7593 /* Need to refetch the addend, reconstruct the top three bits,
7594 and squish the two 11 bit pieces together. */
7595 if (globals->use_rel)
7596 {
7597 bfd_vma S = (upper_insn & 0x0400) >> 10;
7598 bfd_vma upper = (upper_insn & 0x003f);
7599 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
7600 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
7601 bfd_vma lower = (lower_insn & 0x07ff);
7602
7603 upper |= J1 << 6;
7604 upper |= J2 << 7;
7605 upper |= (!S) << 8;
7606 upper -= 0x0100; /* Sign extend. */
7607
7608 addend = (upper << 12) | (lower << 1);
7609 signed_addend = addend;
7610 }
7611
7612 /* Handle calls via the PLT. */
7613 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
7614 {
7615 value = (splt->output_section->vma
7616 + splt->output_offset
7617 + h->plt.offset);
7618 /* Target the Thumb stub before the ARM PLT entry. */
7619 value -= PLT_THUMB_STUB_SIZE;
7620 *unresolved_reloc_p = FALSE;
7621 }
7622
7623 /* ??? Should handle interworking? GCC might someday try to
7624 use this for tail calls. */
7625
7626 relocation = value + signed_addend;
7627 relocation -= (input_section->output_section->vma
7628 + input_section->output_offset
7629 + rel->r_offset);
7630 signed_check = (bfd_signed_vma) relocation;
7631
7632 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7633 overflow = TRUE;
7634
7635 /* Put RELOCATION back into the insn. */
7636 {
7637 bfd_vma S = (relocation & 0x00100000) >> 20;
7638 bfd_vma J2 = (relocation & 0x00080000) >> 19;
7639 bfd_vma J1 = (relocation & 0x00040000) >> 18;
7640 bfd_vma hi = (relocation & 0x0003f000) >> 12;
7641 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
7642
7643 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
7644 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
7645 }
7646
7647 /* Put the relocated value back in the object file: */
7648 bfd_put_16 (input_bfd, upper_insn, hit_data);
7649 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
7650
7651 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
7652 }
7653
7654 case R_ARM_THM_JUMP11:
7655 case R_ARM_THM_JUMP8:
7656 case R_ARM_THM_JUMP6:
7657 /* Thumb B (branch) instruction). */
7658 {
7659 bfd_signed_vma relocation;
7660 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
7661 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
7662 bfd_signed_vma signed_check;
7663
7664 /* CZB cannot jump backward. */
7665 if (r_type == R_ARM_THM_JUMP6)
7666 reloc_signed_min = 0;
7667
7668 if (globals->use_rel)
7669 {
7670 /* Need to refetch addend. */
7671 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
7672 if (addend & ((howto->src_mask + 1) >> 1))
7673 {
7674 signed_addend = -1;
7675 signed_addend &= ~ howto->src_mask;
7676 signed_addend |= addend;
7677 }
7678 else
7679 signed_addend = addend;
7680 /* The value in the insn has been right shifted. We need to
7681 undo this, so that we can perform the address calculation
7682 in terms of bytes. */
7683 signed_addend <<= howto->rightshift;
7684 }
7685 relocation = value + signed_addend;
7686
7687 relocation -= (input_section->output_section->vma
7688 + input_section->output_offset
7689 + rel->r_offset);
7690
7691 relocation >>= howto->rightshift;
7692 signed_check = relocation;
7693
7694 if (r_type == R_ARM_THM_JUMP6)
7695 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
7696 else
7697 relocation &= howto->dst_mask;
7698 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
7699
7700 bfd_put_16 (input_bfd, relocation, hit_data);
7701
7702 /* Assumes two's complement. */
7703 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
7704 return bfd_reloc_overflow;
7705
7706 return bfd_reloc_ok;
7707 }
7708
7709 case R_ARM_ALU_PCREL7_0:
7710 case R_ARM_ALU_PCREL15_8:
7711 case R_ARM_ALU_PCREL23_15:
7712 {
7713 bfd_vma insn;
7714 bfd_vma relocation;
7715
7716 insn = bfd_get_32 (input_bfd, hit_data);
7717 if (globals->use_rel)
7718 {
7719 /* Extract the addend. */
7720 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
7721 signed_addend = addend;
7722 }
7723 relocation = value + signed_addend;
7724
7725 relocation -= (input_section->output_section->vma
7726 + input_section->output_offset
7727 + rel->r_offset);
7728 insn = (insn & ~0xfff)
7729 | ((howto->bitpos << 7) & 0xf00)
7730 | ((relocation >> howto->bitpos) & 0xff);
7731 bfd_put_32 (input_bfd, value, hit_data);
7732 }
7733 return bfd_reloc_ok;
7734
7735 case R_ARM_GNU_VTINHERIT:
7736 case R_ARM_GNU_VTENTRY:
7737 return bfd_reloc_ok;
7738
7739 case R_ARM_GOTOFF32:
7740 /* Relocation is relative to the start of the
7741 global offset table. */
7742
7743 BFD_ASSERT (sgot != NULL);
7744 if (sgot == NULL)
7745 return bfd_reloc_notsupported;
7746
7747 /* If we are addressing a Thumb function, we need to adjust the
7748 address by one, so that attempts to call the function pointer will
7749 correctly interpret it as Thumb code. */
7750 if (sym_flags == STT_ARM_TFUNC)
7751 value += 1;
7752
7753 /* Note that sgot->output_offset is not involved in this
7754 calculation. We always want the start of .got. If we
7755 define _GLOBAL_OFFSET_TABLE in a different way, as is
7756 permitted by the ABI, we might have to change this
7757 calculation. */
7758 value -= sgot->output_section->vma;
7759 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7760 contents, rel->r_offset, value,
7761 rel->r_addend);
7762
7763 case R_ARM_GOTPC:
7764 /* Use global offset table as symbol value. */
7765 BFD_ASSERT (sgot != NULL);
7766
7767 if (sgot == NULL)
7768 return bfd_reloc_notsupported;
7769
7770 *unresolved_reloc_p = FALSE;
7771 value = sgot->output_section->vma;
7772 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7773 contents, rel->r_offset, value,
7774 rel->r_addend);
7775
7776 case R_ARM_GOT32:
7777 case R_ARM_GOT_PREL:
7778 /* Relocation is to the entry for this symbol in the
7779 global offset table. */
7780 if (sgot == NULL)
7781 return bfd_reloc_notsupported;
7782
7783 if (h != NULL)
7784 {
7785 bfd_vma off;
7786 bfd_boolean dyn;
7787
7788 off = h->got.offset;
7789 BFD_ASSERT (off != (bfd_vma) -1);
7790 dyn = globals->root.dynamic_sections_created;
7791
7792 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7793 || (info->shared
7794 && SYMBOL_REFERENCES_LOCAL (info, h))
7795 || (ELF_ST_VISIBILITY (h->other)
7796 && h->root.type == bfd_link_hash_undefweak))
7797 {
7798 /* This is actually a static link, or it is a -Bsymbolic link
7799 and the symbol is defined locally. We must initialize this
7800 entry in the global offset table. Since the offset must
7801 always be a multiple of 4, we use the least significant bit
7802 to record whether we have initialized it already.
7803
7804 When doing a dynamic link, we create a .rel(a).got relocation
7805 entry to initialize the value. This is done in the
7806 finish_dynamic_symbol routine. */
7807 if ((off & 1) != 0)
7808 off &= ~1;
7809 else
7810 {
7811 /* If we are addressing a Thumb function, we need to
7812 adjust the address by one, so that attempts to
7813 call the function pointer will correctly
7814 interpret it as Thumb code. */
7815 if (sym_flags == STT_ARM_TFUNC)
7816 value |= 1;
7817
7818 bfd_put_32 (output_bfd, value, sgot->contents + off);
7819 h->got.offset |= 1;
7820 }
7821 }
7822 else
7823 *unresolved_reloc_p = FALSE;
7824
7825 value = sgot->output_offset + off;
7826 }
7827 else
7828 {
7829 bfd_vma off;
7830
7831 BFD_ASSERT (local_got_offsets != NULL &&
7832 local_got_offsets[r_symndx] != (bfd_vma) -1);
7833
7834 off = local_got_offsets[r_symndx];
7835
7836 /* The offset must always be a multiple of 4. We use the
7837 least significant bit to record whether we have already
7838 generated the necessary reloc. */
7839 if ((off & 1) != 0)
7840 off &= ~1;
7841 else
7842 {
7843 /* If we are addressing a Thumb function, we need to
7844 adjust the address by one, so that attempts to
7845 call the function pointer will correctly
7846 interpret it as Thumb code. */
7847 if (sym_flags == STT_ARM_TFUNC)
7848 value |= 1;
7849
7850 if (globals->use_rel)
7851 bfd_put_32 (output_bfd, value, sgot->contents + off);
7852
7853 if (info->shared)
7854 {
7855 asection * srelgot;
7856 Elf_Internal_Rela outrel;
7857 bfd_byte *loc;
7858
7859 srelgot = (bfd_get_section_by_name
7860 (dynobj, RELOC_SECTION (globals, ".got")));
7861 BFD_ASSERT (srelgot != NULL);
7862
7863 outrel.r_addend = addend + value;
7864 outrel.r_offset = (sgot->output_section->vma
7865 + sgot->output_offset
7866 + off);
7867 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
7868 loc = srelgot->contents;
7869 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
7870 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7871 }
7872
7873 local_got_offsets[r_symndx] |= 1;
7874 }
7875
7876 value = sgot->output_offset + off;
7877 }
7878 if (r_type != R_ARM_GOT32)
7879 value += sgot->output_section->vma;
7880
7881 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7882 contents, rel->r_offset, value,
7883 rel->r_addend);
7884
7885 case R_ARM_TLS_LDO32:
7886 value = value - dtpoff_base (info);
7887
7888 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7889 contents, rel->r_offset, value,
7890 rel->r_addend);
7891
7892 case R_ARM_TLS_LDM32:
7893 {
7894 bfd_vma off;
7895
7896 if (globals->sgot == NULL)
7897 abort ();
7898
7899 off = globals->tls_ldm_got.offset;
7900
7901 if ((off & 1) != 0)
7902 off &= ~1;
7903 else
7904 {
7905 /* If we don't know the module number, create a relocation
7906 for it. */
7907 if (info->shared)
7908 {
7909 Elf_Internal_Rela outrel;
7910 bfd_byte *loc;
7911
7912 if (globals->srelgot == NULL)
7913 abort ();
7914
7915 outrel.r_addend = 0;
7916 outrel.r_offset = (globals->sgot->output_section->vma
7917 + globals->sgot->output_offset + off);
7918 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
7919
7920 if (globals->use_rel)
7921 bfd_put_32 (output_bfd, outrel.r_addend,
7922 globals->sgot->contents + off);
7923
7924 loc = globals->srelgot->contents;
7925 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
7926 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7927 }
7928 else
7929 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
7930
7931 globals->tls_ldm_got.offset |= 1;
7932 }
7933
7934 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7935 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7936
7937 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7938 contents, rel->r_offset, value,
7939 rel->r_addend);
7940 }
7941
7942 case R_ARM_TLS_GD32:
7943 case R_ARM_TLS_IE32:
7944 {
7945 bfd_vma off;
7946 int indx;
7947 char tls_type;
7948
7949 if (globals->sgot == NULL)
7950 abort ();
7951
7952 indx = 0;
7953 if (h != NULL)
7954 {
7955 bfd_boolean dyn;
7956 dyn = globals->root.dynamic_sections_created;
7957 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
7958 && (!info->shared
7959 || !SYMBOL_REFERENCES_LOCAL (info, h)))
7960 {
7961 *unresolved_reloc_p = FALSE;
7962 indx = h->dynindx;
7963 }
7964 off = h->got.offset;
7965 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
7966 }
7967 else
7968 {
7969 if (local_got_offsets == NULL)
7970 abort ();
7971 off = local_got_offsets[r_symndx];
7972 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
7973 }
7974
7975 if (tls_type == GOT_UNKNOWN)
7976 abort ();
7977
7978 if ((off & 1) != 0)
7979 off &= ~1;
7980 else
7981 {
7982 bfd_boolean need_relocs = FALSE;
7983 Elf_Internal_Rela outrel;
7984 bfd_byte *loc = NULL;
7985 int cur_off = off;
7986
7987 /* The GOT entries have not been initialized yet. Do it
7988 now, and emit any relocations. If both an IE GOT and a
7989 GD GOT are necessary, we emit the GD first. */
7990
7991 if ((info->shared || indx != 0)
7992 && (h == NULL
7993 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
7994 || h->root.type != bfd_link_hash_undefweak))
7995 {
7996 need_relocs = TRUE;
7997 if (globals->srelgot == NULL)
7998 abort ();
7999 loc = globals->srelgot->contents;
8000 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
8001 }
8002
8003 if (tls_type & GOT_TLS_GD)
8004 {
8005 if (need_relocs)
8006 {
8007 outrel.r_addend = 0;
8008 outrel.r_offset = (globals->sgot->output_section->vma
8009 + globals->sgot->output_offset
8010 + cur_off);
8011 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
8012
8013 if (globals->use_rel)
8014 bfd_put_32 (output_bfd, outrel.r_addend,
8015 globals->sgot->contents + cur_off);
8016
8017 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8018 globals->srelgot->reloc_count++;
8019 loc += RELOC_SIZE (globals);
8020
8021 if (indx == 0)
8022 bfd_put_32 (output_bfd, value - dtpoff_base (info),
8023 globals->sgot->contents + cur_off + 4);
8024 else
8025 {
8026 outrel.r_addend = 0;
8027 outrel.r_info = ELF32_R_INFO (indx,
8028 R_ARM_TLS_DTPOFF32);
8029 outrel.r_offset += 4;
8030
8031 if (globals->use_rel)
8032 bfd_put_32 (output_bfd, outrel.r_addend,
8033 globals->sgot->contents + cur_off + 4);
8034
8035
8036 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8037 globals->srelgot->reloc_count++;
8038 loc += RELOC_SIZE (globals);
8039 }
8040 }
8041 else
8042 {
8043 /* If we are not emitting relocations for a
8044 general dynamic reference, then we must be in a
8045 static link or an executable link with the
8046 symbol binding locally. Mark it as belonging
8047 to module 1, the executable. */
8048 bfd_put_32 (output_bfd, 1,
8049 globals->sgot->contents + cur_off);
8050 bfd_put_32 (output_bfd, value - dtpoff_base (info),
8051 globals->sgot->contents + cur_off + 4);
8052 }
8053
8054 cur_off += 8;
8055 }
8056
8057 if (tls_type & GOT_TLS_IE)
8058 {
8059 if (need_relocs)
8060 {
8061 if (indx == 0)
8062 outrel.r_addend = value - dtpoff_base (info);
8063 else
8064 outrel.r_addend = 0;
8065 outrel.r_offset = (globals->sgot->output_section->vma
8066 + globals->sgot->output_offset
8067 + cur_off);
8068 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
8069
8070 if (globals->use_rel)
8071 bfd_put_32 (output_bfd, outrel.r_addend,
8072 globals->sgot->contents + cur_off);
8073
8074 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
8075 globals->srelgot->reloc_count++;
8076 loc += RELOC_SIZE (globals);
8077 }
8078 else
8079 bfd_put_32 (output_bfd, tpoff (info, value),
8080 globals->sgot->contents + cur_off);
8081 cur_off += 4;
8082 }
8083
8084 if (h != NULL)
8085 h->got.offset |= 1;
8086 else
8087 local_got_offsets[r_symndx] |= 1;
8088 }
8089
8090 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
8091 off += 8;
8092 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
8093 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
8094
8095 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8096 contents, rel->r_offset, value,
8097 rel->r_addend);
8098 }
8099
8100 case R_ARM_TLS_LE32:
8101 if (info->shared)
8102 {
8103 (*_bfd_error_handler)
8104 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
8105 input_bfd, input_section,
8106 (long) rel->r_offset, howto->name);
8107 return (bfd_reloc_status_type) FALSE;
8108 }
8109 else
8110 value = tpoff (info, value);
8111
8112 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8113 contents, rel->r_offset, value,
8114 rel->r_addend);
8115
8116 case R_ARM_V4BX:
8117 if (globals->fix_v4bx)
8118 {
8119 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8120
8121 /* Ensure that we have a BX instruction. */
8122 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
8123
8124 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
8125 {
8126 /* Branch to veneer. */
8127 bfd_vma glue_addr;
8128 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
8129 glue_addr -= input_section->output_section->vma
8130 + input_section->output_offset
8131 + rel->r_offset + 8;
8132 insn = (insn & 0xf0000000) | 0x0a000000
8133 | ((glue_addr >> 2) & 0x00ffffff);
8134 }
8135 else
8136 {
8137 /* Preserve Rm (lowest four bits) and the condition code
8138 (highest four bits). Other bits encode MOV PC,Rm. */
8139 insn = (insn & 0xf000000f) | 0x01a0f000;
8140 }
8141
8142 bfd_put_32 (input_bfd, insn, hit_data);
8143 }
8144 return bfd_reloc_ok;
8145
8146 case R_ARM_MOVW_ABS_NC:
8147 case R_ARM_MOVT_ABS:
8148 case R_ARM_MOVW_PREL_NC:
8149 case R_ARM_MOVT_PREL:
8150 /* Until we properly support segment-base-relative addressing then
8151 we assume the segment base to be zero, as for the group relocations.
8152 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
8153 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
8154 case R_ARM_MOVW_BREL_NC:
8155 case R_ARM_MOVW_BREL:
8156 case R_ARM_MOVT_BREL:
8157 {
8158 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8159
8160 if (globals->use_rel)
8161 {
8162 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
8163 signed_addend = (addend ^ 0x8000) - 0x8000;
8164 }
8165
8166 value += signed_addend;
8167
8168 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
8169 value -= (input_section->output_section->vma
8170 + input_section->output_offset + rel->r_offset);
8171
8172 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
8173 return bfd_reloc_overflow;
8174
8175 if (sym_flags == STT_ARM_TFUNC)
8176 value |= 1;
8177
8178 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
8179 || r_type == R_ARM_MOVT_BREL)
8180 value >>= 16;
8181
8182 insn &= 0xfff0f000;
8183 insn |= value & 0xfff;
8184 insn |= (value & 0xf000) << 4;
8185 bfd_put_32 (input_bfd, insn, hit_data);
8186 }
8187 return bfd_reloc_ok;
8188
8189 case R_ARM_THM_MOVW_ABS_NC:
8190 case R_ARM_THM_MOVT_ABS:
8191 case R_ARM_THM_MOVW_PREL_NC:
8192 case R_ARM_THM_MOVT_PREL:
8193 /* Until we properly support segment-base-relative addressing then
8194 we assume the segment base to be zero, as for the above relocations.
8195 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
8196 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
8197 as R_ARM_THM_MOVT_ABS. */
8198 case R_ARM_THM_MOVW_BREL_NC:
8199 case R_ARM_THM_MOVW_BREL:
8200 case R_ARM_THM_MOVT_BREL:
8201 {
8202 bfd_vma insn;
8203
8204 insn = bfd_get_16 (input_bfd, hit_data) << 16;
8205 insn |= bfd_get_16 (input_bfd, hit_data + 2);
8206
8207 if (globals->use_rel)
8208 {
8209 addend = ((insn >> 4) & 0xf000)
8210 | ((insn >> 15) & 0x0800)
8211 | ((insn >> 4) & 0x0700)
8212 | (insn & 0x00ff);
8213 signed_addend = (addend ^ 0x8000) - 0x8000;
8214 }
8215
8216 value += signed_addend;
8217
8218 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
8219 value -= (input_section->output_section->vma
8220 + input_section->output_offset + rel->r_offset);
8221
8222 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
8223 return bfd_reloc_overflow;
8224
8225 if (sym_flags == STT_ARM_TFUNC)
8226 value |= 1;
8227
8228 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
8229 || r_type == R_ARM_THM_MOVT_BREL)
8230 value >>= 16;
8231
8232 insn &= 0xfbf08f00;
8233 insn |= (value & 0xf000) << 4;
8234 insn |= (value & 0x0800) << 15;
8235 insn |= (value & 0x0700) << 4;
8236 insn |= (value & 0x00ff);
8237
8238 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8239 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8240 }
8241 return bfd_reloc_ok;
8242
8243 case R_ARM_ALU_PC_G0_NC:
8244 case R_ARM_ALU_PC_G1_NC:
8245 case R_ARM_ALU_PC_G0:
8246 case R_ARM_ALU_PC_G1:
8247 case R_ARM_ALU_PC_G2:
8248 case R_ARM_ALU_SB_G0_NC:
8249 case R_ARM_ALU_SB_G1_NC:
8250 case R_ARM_ALU_SB_G0:
8251 case R_ARM_ALU_SB_G1:
8252 case R_ARM_ALU_SB_G2:
8253 {
8254 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8255 bfd_vma pc = input_section->output_section->vma
8256 + input_section->output_offset + rel->r_offset;
8257 /* sb should be the origin of the *segment* containing the symbol.
8258 It is not clear how to obtain this OS-dependent value, so we
8259 make an arbitrary choice of zero. */
8260 bfd_vma sb = 0;
8261 bfd_vma residual;
8262 bfd_vma g_n;
8263 bfd_signed_vma signed_value;
8264 int group = 0;
8265
8266 /* Determine which group of bits to select. */
8267 switch (r_type)
8268 {
8269 case R_ARM_ALU_PC_G0_NC:
8270 case R_ARM_ALU_PC_G0:
8271 case R_ARM_ALU_SB_G0_NC:
8272 case R_ARM_ALU_SB_G0:
8273 group = 0;
8274 break;
8275
8276 case R_ARM_ALU_PC_G1_NC:
8277 case R_ARM_ALU_PC_G1:
8278 case R_ARM_ALU_SB_G1_NC:
8279 case R_ARM_ALU_SB_G1:
8280 group = 1;
8281 break;
8282
8283 case R_ARM_ALU_PC_G2:
8284 case R_ARM_ALU_SB_G2:
8285 group = 2;
8286 break;
8287
8288 default:
8289 abort ();
8290 }
8291
8292 /* If REL, extract the addend from the insn. If RELA, it will
8293 have already been fetched for us. */
8294 if (globals->use_rel)
8295 {
8296 int negative;
8297 bfd_vma constant = insn & 0xff;
8298 bfd_vma rotation = (insn & 0xf00) >> 8;
8299
8300 if (rotation == 0)
8301 signed_addend = constant;
8302 else
8303 {
8304 /* Compensate for the fact that in the instruction, the
8305 rotation is stored in multiples of 2 bits. */
8306 rotation *= 2;
8307
8308 /* Rotate "constant" right by "rotation" bits. */
8309 signed_addend = (constant >> rotation) |
8310 (constant << (8 * sizeof (bfd_vma) - rotation));
8311 }
8312
8313 /* Determine if the instruction is an ADD or a SUB.
8314 (For REL, this determines the sign of the addend.) */
8315 negative = identify_add_or_sub (insn);
8316 if (negative == 0)
8317 {
8318 (*_bfd_error_handler)
8319 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
8320 input_bfd, input_section,
8321 (long) rel->r_offset, howto->name);
8322 return bfd_reloc_overflow;
8323 }
8324
8325 signed_addend *= negative;
8326 }
8327
8328 /* Compute the value (X) to go in the place. */
8329 if (r_type == R_ARM_ALU_PC_G0_NC
8330 || r_type == R_ARM_ALU_PC_G1_NC
8331 || r_type == R_ARM_ALU_PC_G0
8332 || r_type == R_ARM_ALU_PC_G1
8333 || r_type == R_ARM_ALU_PC_G2)
8334 /* PC relative. */
8335 signed_value = value - pc + signed_addend;
8336 else
8337 /* Section base relative. */
8338 signed_value = value - sb + signed_addend;
8339
8340 /* If the target symbol is a Thumb function, then set the
8341 Thumb bit in the address. */
8342 if (sym_flags == STT_ARM_TFUNC)
8343 signed_value |= 1;
8344
8345 /* Calculate the value of the relevant G_n, in encoded
8346 constant-with-rotation format. */
8347 g_n = calculate_group_reloc_mask (abs (signed_value), group,
8348 &residual);
8349
8350 /* Check for overflow if required. */
8351 if ((r_type == R_ARM_ALU_PC_G0
8352 || r_type == R_ARM_ALU_PC_G1
8353 || r_type == R_ARM_ALU_PC_G2
8354 || r_type == R_ARM_ALU_SB_G0
8355 || r_type == R_ARM_ALU_SB_G1
8356 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
8357 {
8358 (*_bfd_error_handler)
8359 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8360 input_bfd, input_section,
8361 (long) rel->r_offset, abs (signed_value), howto->name);
8362 return bfd_reloc_overflow;
8363 }
8364
8365 /* Mask out the value and the ADD/SUB part of the opcode; take care
8366 not to destroy the S bit. */
8367 insn &= 0xff1ff000;
8368
8369 /* Set the opcode according to whether the value to go in the
8370 place is negative. */
8371 if (signed_value < 0)
8372 insn |= 1 << 22;
8373 else
8374 insn |= 1 << 23;
8375
8376 /* Encode the offset. */
8377 insn |= g_n;
8378
8379 bfd_put_32 (input_bfd, insn, hit_data);
8380 }
8381 return bfd_reloc_ok;
8382
8383 case R_ARM_LDR_PC_G0:
8384 case R_ARM_LDR_PC_G1:
8385 case R_ARM_LDR_PC_G2:
8386 case R_ARM_LDR_SB_G0:
8387 case R_ARM_LDR_SB_G1:
8388 case R_ARM_LDR_SB_G2:
8389 {
8390 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8391 bfd_vma pc = input_section->output_section->vma
8392 + input_section->output_offset + rel->r_offset;
8393 bfd_vma sb = 0; /* See note above. */
8394 bfd_vma residual;
8395 bfd_signed_vma signed_value;
8396 int group = 0;
8397
8398 /* Determine which groups of bits to calculate. */
8399 switch (r_type)
8400 {
8401 case R_ARM_LDR_PC_G0:
8402 case R_ARM_LDR_SB_G0:
8403 group = 0;
8404 break;
8405
8406 case R_ARM_LDR_PC_G1:
8407 case R_ARM_LDR_SB_G1:
8408 group = 1;
8409 break;
8410
8411 case R_ARM_LDR_PC_G2:
8412 case R_ARM_LDR_SB_G2:
8413 group = 2;
8414 break;
8415
8416 default:
8417 abort ();
8418 }
8419
8420 /* If REL, extract the addend from the insn. If RELA, it will
8421 have already been fetched for us. */
8422 if (globals->use_rel)
8423 {
8424 int negative = (insn & (1 << 23)) ? 1 : -1;
8425 signed_addend = negative * (insn & 0xfff);
8426 }
8427
8428 /* Compute the value (X) to go in the place. */
8429 if (r_type == R_ARM_LDR_PC_G0
8430 || r_type == R_ARM_LDR_PC_G1
8431 || r_type == R_ARM_LDR_PC_G2)
8432 /* PC relative. */
8433 signed_value = value - pc + signed_addend;
8434 else
8435 /* Section base relative. */
8436 signed_value = value - sb + signed_addend;
8437
8438 /* Calculate the value of the relevant G_{n-1} to obtain
8439 the residual at that stage. */
8440 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8441
8442 /* Check for overflow. */
8443 if (residual >= 0x1000)
8444 {
8445 (*_bfd_error_handler)
8446 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8447 input_bfd, input_section,
8448 (long) rel->r_offset, abs (signed_value), howto->name);
8449 return bfd_reloc_overflow;
8450 }
8451
8452 /* Mask out the value and U bit. */
8453 insn &= 0xff7ff000;
8454
8455 /* Set the U bit if the value to go in the place is non-negative. */
8456 if (signed_value >= 0)
8457 insn |= 1 << 23;
8458
8459 /* Encode the offset. */
8460 insn |= residual;
8461
8462 bfd_put_32 (input_bfd, insn, hit_data);
8463 }
8464 return bfd_reloc_ok;
8465
8466 case R_ARM_LDRS_PC_G0:
8467 case R_ARM_LDRS_PC_G1:
8468 case R_ARM_LDRS_PC_G2:
8469 case R_ARM_LDRS_SB_G0:
8470 case R_ARM_LDRS_SB_G1:
8471 case R_ARM_LDRS_SB_G2:
8472 {
8473 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8474 bfd_vma pc = input_section->output_section->vma
8475 + input_section->output_offset + rel->r_offset;
8476 bfd_vma sb = 0; /* See note above. */
8477 bfd_vma residual;
8478 bfd_signed_vma signed_value;
8479 int group = 0;
8480
8481 /* Determine which groups of bits to calculate. */
8482 switch (r_type)
8483 {
8484 case R_ARM_LDRS_PC_G0:
8485 case R_ARM_LDRS_SB_G0:
8486 group = 0;
8487 break;
8488
8489 case R_ARM_LDRS_PC_G1:
8490 case R_ARM_LDRS_SB_G1:
8491 group = 1;
8492 break;
8493
8494 case R_ARM_LDRS_PC_G2:
8495 case R_ARM_LDRS_SB_G2:
8496 group = 2;
8497 break;
8498
8499 default:
8500 abort ();
8501 }
8502
8503 /* If REL, extract the addend from the insn. If RELA, it will
8504 have already been fetched for us. */
8505 if (globals->use_rel)
8506 {
8507 int negative = (insn & (1 << 23)) ? 1 : -1;
8508 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
8509 }
8510
8511 /* Compute the value (X) to go in the place. */
8512 if (r_type == R_ARM_LDRS_PC_G0
8513 || r_type == R_ARM_LDRS_PC_G1
8514 || r_type == R_ARM_LDRS_PC_G2)
8515 /* PC relative. */
8516 signed_value = value - pc + signed_addend;
8517 else
8518 /* Section base relative. */
8519 signed_value = value - sb + signed_addend;
8520
8521 /* Calculate the value of the relevant G_{n-1} to obtain
8522 the residual at that stage. */
8523 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8524
8525 /* Check for overflow. */
8526 if (residual >= 0x100)
8527 {
8528 (*_bfd_error_handler)
8529 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8530 input_bfd, input_section,
8531 (long) rel->r_offset, abs (signed_value), howto->name);
8532 return bfd_reloc_overflow;
8533 }
8534
8535 /* Mask out the value and U bit. */
8536 insn &= 0xff7ff0f0;
8537
8538 /* Set the U bit if the value to go in the place is non-negative. */
8539 if (signed_value >= 0)
8540 insn |= 1 << 23;
8541
8542 /* Encode the offset. */
8543 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
8544
8545 bfd_put_32 (input_bfd, insn, hit_data);
8546 }
8547 return bfd_reloc_ok;
8548
8549 case R_ARM_LDC_PC_G0:
8550 case R_ARM_LDC_PC_G1:
8551 case R_ARM_LDC_PC_G2:
8552 case R_ARM_LDC_SB_G0:
8553 case R_ARM_LDC_SB_G1:
8554 case R_ARM_LDC_SB_G2:
8555 {
8556 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
8557 bfd_vma pc = input_section->output_section->vma
8558 + input_section->output_offset + rel->r_offset;
8559 bfd_vma sb = 0; /* See note above. */
8560 bfd_vma residual;
8561 bfd_signed_vma signed_value;
8562 int group = 0;
8563
8564 /* Determine which groups of bits to calculate. */
8565 switch (r_type)
8566 {
8567 case R_ARM_LDC_PC_G0:
8568 case R_ARM_LDC_SB_G0:
8569 group = 0;
8570 break;
8571
8572 case R_ARM_LDC_PC_G1:
8573 case R_ARM_LDC_SB_G1:
8574 group = 1;
8575 break;
8576
8577 case R_ARM_LDC_PC_G2:
8578 case R_ARM_LDC_SB_G2:
8579 group = 2;
8580 break;
8581
8582 default:
8583 abort ();
8584 }
8585
8586 /* If REL, extract the addend from the insn. If RELA, it will
8587 have already been fetched for us. */
8588 if (globals->use_rel)
8589 {
8590 int negative = (insn & (1 << 23)) ? 1 : -1;
8591 signed_addend = negative * ((insn & 0xff) << 2);
8592 }
8593
8594 /* Compute the value (X) to go in the place. */
8595 if (r_type == R_ARM_LDC_PC_G0
8596 || r_type == R_ARM_LDC_PC_G1
8597 || r_type == R_ARM_LDC_PC_G2)
8598 /* PC relative. */
8599 signed_value = value - pc + signed_addend;
8600 else
8601 /* Section base relative. */
8602 signed_value = value - sb + signed_addend;
8603
8604 /* Calculate the value of the relevant G_{n-1} to obtain
8605 the residual at that stage. */
8606 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
8607
8608 /* Check for overflow. (The absolute value to go in the place must be
8609 divisible by four and, after having been divided by four, must
8610 fit in eight bits.) */
8611 if ((residual & 0x3) != 0 || residual >= 0x400)
8612 {
8613 (*_bfd_error_handler)
8614 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
8615 input_bfd, input_section,
8616 (long) rel->r_offset, abs (signed_value), howto->name);
8617 return bfd_reloc_overflow;
8618 }
8619
8620 /* Mask out the value and U bit. */
8621 insn &= 0xff7fff00;
8622
8623 /* Set the U bit if the value to go in the place is non-negative. */
8624 if (signed_value >= 0)
8625 insn |= 1 << 23;
8626
8627 /* Encode the offset. */
8628 insn |= residual >> 2;
8629
8630 bfd_put_32 (input_bfd, insn, hit_data);
8631 }
8632 return bfd_reloc_ok;
8633
8634 default:
8635 return bfd_reloc_notsupported;
8636 }
8637 }
8638
8639 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
8640 static void
8641 arm_add_to_rel (bfd * abfd,
8642 bfd_byte * address,
8643 reloc_howto_type * howto,
8644 bfd_signed_vma increment)
8645 {
8646 bfd_signed_vma addend;
8647
8648 if (howto->type == R_ARM_THM_CALL
8649 || howto->type == R_ARM_THM_JUMP24)
8650 {
8651 int upper_insn, lower_insn;
8652 int upper, lower;
8653
8654 upper_insn = bfd_get_16 (abfd, address);
8655 lower_insn = bfd_get_16 (abfd, address + 2);
8656 upper = upper_insn & 0x7ff;
8657 lower = lower_insn & 0x7ff;
8658
8659 addend = (upper << 12) | (lower << 1);
8660 addend += increment;
8661 addend >>= 1;
8662
8663 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
8664 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
8665
8666 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
8667 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
8668 }
8669 else
8670 {
8671 bfd_vma contents;
8672
8673 contents = bfd_get_32 (abfd, address);
8674
8675 /* Get the (signed) value from the instruction. */
8676 addend = contents & howto->src_mask;
8677 if (addend & ((howto->src_mask + 1) >> 1))
8678 {
8679 bfd_signed_vma mask;
8680
8681 mask = -1;
8682 mask &= ~ howto->src_mask;
8683 addend |= mask;
8684 }
8685
8686 /* Add in the increment, (which is a byte value). */
8687 switch (howto->type)
8688 {
8689 default:
8690 addend += increment;
8691 break;
8692
8693 case R_ARM_PC24:
8694 case R_ARM_PLT32:
8695 case R_ARM_CALL:
8696 case R_ARM_JUMP24:
8697 addend <<= howto->size;
8698 addend += increment;
8699
8700 /* Should we check for overflow here ? */
8701
8702 /* Drop any undesired bits. */
8703 addend >>= howto->rightshift;
8704 break;
8705 }
8706
8707 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
8708
8709 bfd_put_32 (abfd, contents, address);
8710 }
8711 }
8712
8713 #define IS_ARM_TLS_RELOC(R_TYPE) \
8714 ((R_TYPE) == R_ARM_TLS_GD32 \
8715 || (R_TYPE) == R_ARM_TLS_LDO32 \
8716 || (R_TYPE) == R_ARM_TLS_LDM32 \
8717 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
8718 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
8719 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
8720 || (R_TYPE) == R_ARM_TLS_LE32 \
8721 || (R_TYPE) == R_ARM_TLS_IE32)
8722
8723 /* Relocate an ARM ELF section. */
8724
8725 static bfd_boolean
8726 elf32_arm_relocate_section (bfd * output_bfd,
8727 struct bfd_link_info * info,
8728 bfd * input_bfd,
8729 asection * input_section,
8730 bfd_byte * contents,
8731 Elf_Internal_Rela * relocs,
8732 Elf_Internal_Sym * local_syms,
8733 asection ** local_sections)
8734 {
8735 Elf_Internal_Shdr *symtab_hdr;
8736 struct elf_link_hash_entry **sym_hashes;
8737 Elf_Internal_Rela *rel;
8738 Elf_Internal_Rela *relend;
8739 const char *name;
8740 struct elf32_arm_link_hash_table * globals;
8741
8742 globals = elf32_arm_hash_table (info);
8743
8744 symtab_hdr = & elf_symtab_hdr (input_bfd);
8745 sym_hashes = elf_sym_hashes (input_bfd);
8746
8747 rel = relocs;
8748 relend = relocs + input_section->reloc_count;
8749 for (; rel < relend; rel++)
8750 {
8751 int r_type;
8752 reloc_howto_type * howto;
8753 unsigned long r_symndx;
8754 Elf_Internal_Sym * sym;
8755 asection * sec;
8756 struct elf_link_hash_entry * h;
8757 bfd_vma relocation;
8758 bfd_reloc_status_type r;
8759 arelent bfd_reloc;
8760 char sym_type;
8761 bfd_boolean unresolved_reloc = FALSE;
8762 char *error_message = NULL;
8763
8764 r_symndx = ELF32_R_SYM (rel->r_info);
8765 r_type = ELF32_R_TYPE (rel->r_info);
8766 r_type = arm_real_reloc_type (globals, r_type);
8767
8768 if ( r_type == R_ARM_GNU_VTENTRY
8769 || r_type == R_ARM_GNU_VTINHERIT)
8770 continue;
8771
8772 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
8773 howto = bfd_reloc.howto;
8774
8775 h = NULL;
8776 sym = NULL;
8777 sec = NULL;
8778
8779 if (r_symndx < symtab_hdr->sh_info)
8780 {
8781 sym = local_syms + r_symndx;
8782 sym_type = ELF32_ST_TYPE (sym->st_info);
8783 sec = local_sections[r_symndx];
8784
8785 /* An object file might have a reference to a local
8786 undefined symbol. This is a daft object file, but we
8787 should at least do something about it. V4BX & NONE
8788 relocations do not use the symbol and are explicitly
8789 allowed to use the undefined symbol, so allow those. */
8790 if (r_type != R_ARM_V4BX
8791 && r_type != R_ARM_NONE
8792 && bfd_is_und_section (sec)
8793 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
8794 {
8795 if (!info->callbacks->undefined_symbol
8796 (info, bfd_elf_string_from_elf_section
8797 (input_bfd, symtab_hdr->sh_link, sym->st_name),
8798 input_bfd, input_section,
8799 rel->r_offset, TRUE))
8800 return FALSE;
8801 }
8802
8803 if (globals->use_rel)
8804 {
8805 relocation = (sec->output_section->vma
8806 + sec->output_offset
8807 + sym->st_value);
8808 if (!info->relocatable
8809 && (sec->flags & SEC_MERGE)
8810 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8811 {
8812 asection *msec;
8813 bfd_vma addend, value;
8814
8815 switch (r_type)
8816 {
8817 case R_ARM_MOVW_ABS_NC:
8818 case R_ARM_MOVT_ABS:
8819 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8820 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
8821 addend = (addend ^ 0x8000) - 0x8000;
8822 break;
8823
8824 case R_ARM_THM_MOVW_ABS_NC:
8825 case R_ARM_THM_MOVT_ABS:
8826 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
8827 << 16;
8828 value |= bfd_get_16 (input_bfd,
8829 contents + rel->r_offset + 2);
8830 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
8831 | ((value & 0x04000000) >> 15);
8832 addend = (addend ^ 0x8000) - 0x8000;
8833 break;
8834
8835 default:
8836 if (howto->rightshift
8837 || (howto->src_mask & (howto->src_mask + 1)))
8838 {
8839 (*_bfd_error_handler)
8840 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
8841 input_bfd, input_section,
8842 (long) rel->r_offset, howto->name);
8843 return FALSE;
8844 }
8845
8846 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
8847
8848 /* Get the (signed) value from the instruction. */
8849 addend = value & howto->src_mask;
8850 if (addend & ((howto->src_mask + 1) >> 1))
8851 {
8852 bfd_signed_vma mask;
8853
8854 mask = -1;
8855 mask &= ~ howto->src_mask;
8856 addend |= mask;
8857 }
8858 break;
8859 }
8860
8861 msec = sec;
8862 addend =
8863 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
8864 - relocation;
8865 addend += msec->output_section->vma + msec->output_offset;
8866
8867 /* Cases here must match those in the preceeding
8868 switch statement. */
8869 switch (r_type)
8870 {
8871 case R_ARM_MOVW_ABS_NC:
8872 case R_ARM_MOVT_ABS:
8873 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
8874 | (addend & 0xfff);
8875 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8876 break;
8877
8878 case R_ARM_THM_MOVW_ABS_NC:
8879 case R_ARM_THM_MOVT_ABS:
8880 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
8881 | (addend & 0xff) | ((addend & 0x0800) << 15);
8882 bfd_put_16 (input_bfd, value >> 16,
8883 contents + rel->r_offset);
8884 bfd_put_16 (input_bfd, value,
8885 contents + rel->r_offset + 2);
8886 break;
8887
8888 default:
8889 value = (value & ~ howto->dst_mask)
8890 | (addend & howto->dst_mask);
8891 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
8892 break;
8893 }
8894 }
8895 }
8896 else
8897 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
8898 }
8899 else
8900 {
8901 bfd_boolean warned;
8902
8903 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
8904 r_symndx, symtab_hdr, sym_hashes,
8905 h, sec, relocation,
8906 unresolved_reloc, warned);
8907
8908 sym_type = h->type;
8909 }
8910
8911 if (sec != NULL && elf_discarded_section (sec))
8912 {
8913 /* For relocs against symbols from removed linkonce sections,
8914 or sections discarded by a linker script, we just want the
8915 section contents zeroed. Avoid any special processing. */
8916 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
8917 rel->r_info = 0;
8918 rel->r_addend = 0;
8919 continue;
8920 }
8921
8922 if (info->relocatable)
8923 {
8924 /* This is a relocatable link. We don't have to change
8925 anything, unless the reloc is against a section symbol,
8926 in which case we have to adjust according to where the
8927 section symbol winds up in the output section. */
8928 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
8929 {
8930 if (globals->use_rel)
8931 arm_add_to_rel (input_bfd, contents + rel->r_offset,
8932 howto, (bfd_signed_vma) sec->output_offset);
8933 else
8934 rel->r_addend += sec->output_offset;
8935 }
8936 continue;
8937 }
8938
8939 if (h != NULL)
8940 name = h->root.root.string;
8941 else
8942 {
8943 name = (bfd_elf_string_from_elf_section
8944 (input_bfd, symtab_hdr->sh_link, sym->st_name));
8945 if (name == NULL || *name == '\0')
8946 name = bfd_section_name (input_bfd, sec);
8947 }
8948
8949 if (r_symndx != 0
8950 && r_type != R_ARM_NONE
8951 && (h == NULL
8952 || h->root.type == bfd_link_hash_defined
8953 || h->root.type == bfd_link_hash_defweak)
8954 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
8955 {
8956 (*_bfd_error_handler)
8957 ((sym_type == STT_TLS
8958 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
8959 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
8960 input_bfd,
8961 input_section,
8962 (long) rel->r_offset,
8963 howto->name,
8964 name);
8965 }
8966
8967 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
8968 input_section, contents, rel,
8969 relocation, info, sec, name,
8970 (h ? ELF_ST_TYPE (h->type) :
8971 ELF_ST_TYPE (sym->st_info)), h,
8972 &unresolved_reloc, &error_message);
8973
8974 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
8975 because such sections are not SEC_ALLOC and thus ld.so will
8976 not process them. */
8977 if (unresolved_reloc
8978 && !((input_section->flags & SEC_DEBUGGING) != 0
8979 && h->def_dynamic))
8980 {
8981 (*_bfd_error_handler)
8982 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
8983 input_bfd,
8984 input_section,
8985 (long) rel->r_offset,
8986 howto->name,
8987 h->root.root.string);
8988 return FALSE;
8989 }
8990
8991 if (r != bfd_reloc_ok)
8992 {
8993 switch (r)
8994 {
8995 case bfd_reloc_overflow:
8996 /* If the overflowing reloc was to an undefined symbol,
8997 we have already printed one error message and there
8998 is no point complaining again. */
8999 if ((! h ||
9000 h->root.type != bfd_link_hash_undefined)
9001 && (!((*info->callbacks->reloc_overflow)
9002 (info, (h ? &h->root : NULL), name, howto->name,
9003 (bfd_vma) 0, input_bfd, input_section,
9004 rel->r_offset))))
9005 return FALSE;
9006 break;
9007
9008 case bfd_reloc_undefined:
9009 if (!((*info->callbacks->undefined_symbol)
9010 (info, name, input_bfd, input_section,
9011 rel->r_offset, TRUE)))
9012 return FALSE;
9013 break;
9014
9015 case bfd_reloc_outofrange:
9016 error_message = _("out of range");
9017 goto common_error;
9018
9019 case bfd_reloc_notsupported:
9020 error_message = _("unsupported relocation");
9021 goto common_error;
9022
9023 case bfd_reloc_dangerous:
9024 /* error_message should already be set. */
9025 goto common_error;
9026
9027 default:
9028 error_message = _("unknown error");
9029 /* Fall through. */
9030
9031 common_error:
9032 BFD_ASSERT (error_message != NULL);
9033 if (!((*info->callbacks->reloc_dangerous)
9034 (info, error_message, input_bfd, input_section,
9035 rel->r_offset)))
9036 return FALSE;
9037 break;
9038 }
9039 }
9040 }
9041
9042 return TRUE;
9043 }
9044
9045 /* Add a new unwind edit to the list described by HEAD, TAIL. If INDEX is zero,
9046 adds the edit to the start of the list. (The list must be built in order of
9047 ascending INDEX: the function's callers are primarily responsible for
9048 maintaining that condition). */
9049
9050 static void
9051 add_unwind_table_edit (arm_unwind_table_edit **head,
9052 arm_unwind_table_edit **tail,
9053 arm_unwind_edit_type type,
9054 asection *linked_section,
9055 unsigned int index)
9056 {
9057 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
9058 xmalloc (sizeof (arm_unwind_table_edit));
9059
9060 new_edit->type = type;
9061 new_edit->linked_section = linked_section;
9062 new_edit->index = index;
9063
9064 if (index > 0)
9065 {
9066 new_edit->next = NULL;
9067
9068 if (*tail)
9069 (*tail)->next = new_edit;
9070
9071 (*tail) = new_edit;
9072
9073 if (!*head)
9074 (*head) = new_edit;
9075 }
9076 else
9077 {
9078 new_edit->next = *head;
9079
9080 if (!*tail)
9081 *tail = new_edit;
9082
9083 *head = new_edit;
9084 }
9085 }
9086
9087 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
9088
9089 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
9090 static void
9091 adjust_exidx_size(asection *exidx_sec, int adjust)
9092 {
9093 asection *out_sec;
9094
9095 if (!exidx_sec->rawsize)
9096 exidx_sec->rawsize = exidx_sec->size;
9097
9098 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
9099 out_sec = exidx_sec->output_section;
9100 /* Adjust size of output section. */
9101 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
9102 }
9103
9104 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
9105 static void
9106 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
9107 {
9108 struct _arm_elf_section_data *exidx_arm_data;
9109
9110 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9111 add_unwind_table_edit (
9112 &exidx_arm_data->u.exidx.unwind_edit_list,
9113 &exidx_arm_data->u.exidx.unwind_edit_tail,
9114 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
9115
9116 adjust_exidx_size(exidx_sec, 8);
9117 }
9118
9119 /* Scan .ARM.exidx tables, and create a list describing edits which should be
9120 made to those tables, such that:
9121
9122 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
9123 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
9124 codes which have been inlined into the index).
9125
9126 The edits are applied when the tables are written
9127 (in elf32_arm_write_section).
9128 */
9129
9130 bfd_boolean
9131 elf32_arm_fix_exidx_coverage (asection **text_section_order,
9132 unsigned int num_text_sections,
9133 struct bfd_link_info *info)
9134 {
9135 bfd *inp;
9136 unsigned int last_second_word = 0, i;
9137 asection *last_exidx_sec = NULL;
9138 asection *last_text_sec = NULL;
9139 int last_unwind_type = -1;
9140
9141 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
9142 text sections. */
9143 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
9144 {
9145 asection *sec;
9146
9147 for (sec = inp->sections; sec != NULL; sec = sec->next)
9148 {
9149 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
9150 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
9151
9152 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
9153 continue;
9154
9155 if (elf_sec->linked_to)
9156 {
9157 Elf_Internal_Shdr *linked_hdr
9158 = &elf_section_data (elf_sec->linked_to)->this_hdr;
9159 struct _arm_elf_section_data *linked_sec_arm_data
9160 = get_arm_elf_section_data (linked_hdr->bfd_section);
9161
9162 if (linked_sec_arm_data == NULL)
9163 continue;
9164
9165 /* Link this .ARM.exidx section back from the text section it
9166 describes. */
9167 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
9168 }
9169 }
9170 }
9171
9172 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
9173 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
9174 and add EXIDX_CANTUNWIND entries for sections with no unwind table data.
9175 */
9176
9177 for (i = 0; i < num_text_sections; i++)
9178 {
9179 asection *sec = text_section_order[i];
9180 asection *exidx_sec;
9181 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
9182 struct _arm_elf_section_data *exidx_arm_data;
9183 bfd_byte *contents = NULL;
9184 int deleted_exidx_bytes = 0;
9185 bfd_vma j;
9186 arm_unwind_table_edit *unwind_edit_head = NULL;
9187 arm_unwind_table_edit *unwind_edit_tail = NULL;
9188 Elf_Internal_Shdr *hdr;
9189 bfd *ibfd;
9190
9191 if (arm_data == NULL)
9192 continue;
9193
9194 exidx_sec = arm_data->u.text.arm_exidx_sec;
9195 if (exidx_sec == NULL)
9196 {
9197 /* Section has no unwind data. */
9198 if (last_unwind_type == 0 || !last_exidx_sec)
9199 continue;
9200
9201 /* Ignore zero sized sections. */
9202 if (sec->size == 0)
9203 continue;
9204
9205 insert_cantunwind_after(last_text_sec, last_exidx_sec);
9206 last_unwind_type = 0;
9207 continue;
9208 }
9209
9210 /* Skip /DISCARD/ sections. */
9211 if (bfd_is_abs_section (exidx_sec->output_section))
9212 continue;
9213
9214 hdr = &elf_section_data (exidx_sec)->this_hdr;
9215 if (hdr->sh_type != SHT_ARM_EXIDX)
9216 continue;
9217
9218 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
9219 if (exidx_arm_data == NULL)
9220 continue;
9221
9222 ibfd = exidx_sec->owner;
9223
9224 if (hdr->contents != NULL)
9225 contents = hdr->contents;
9226 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
9227 /* An error? */
9228 continue;
9229
9230 for (j = 0; j < hdr->sh_size; j += 8)
9231 {
9232 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
9233 int unwind_type;
9234 int elide = 0;
9235
9236 /* An EXIDX_CANTUNWIND entry. */
9237 if (second_word == 1)
9238 {
9239 if (last_unwind_type == 0)
9240 elide = 1;
9241 unwind_type = 0;
9242 }
9243 /* Inlined unwinding data. Merge if equal to previous. */
9244 else if ((second_word & 0x80000000) != 0)
9245 {
9246 if (last_second_word == second_word && last_unwind_type == 1)
9247 elide = 1;
9248 unwind_type = 1;
9249 last_second_word = second_word;
9250 }
9251 /* Normal table entry. In theory we could merge these too,
9252 but duplicate entries are likely to be much less common. */
9253 else
9254 unwind_type = 2;
9255
9256 if (elide)
9257 {
9258 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
9259 DELETE_EXIDX_ENTRY, NULL, j / 8);
9260
9261 deleted_exidx_bytes += 8;
9262 }
9263
9264 last_unwind_type = unwind_type;
9265 }
9266
9267 /* Free contents if we allocated it ourselves. */
9268 if (contents != hdr->contents)
9269 free (contents);
9270
9271 /* Record edits to be applied later (in elf32_arm_write_section). */
9272 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
9273 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
9274
9275 if (deleted_exidx_bytes > 0)
9276 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
9277
9278 last_exidx_sec = exidx_sec;
9279 last_text_sec = sec;
9280 }
9281
9282 /* Add terminating CANTUNWIND entry. */
9283 if (last_exidx_sec && last_unwind_type != 0)
9284 insert_cantunwind_after(last_text_sec, last_exidx_sec);
9285
9286 return TRUE;
9287 }
9288
9289 static bfd_boolean
9290 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
9291 bfd *ibfd, const char *name)
9292 {
9293 asection *sec, *osec;
9294
9295 sec = bfd_get_section_by_name (ibfd, name);
9296 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
9297 return TRUE;
9298
9299 osec = sec->output_section;
9300 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
9301 return TRUE;
9302
9303 if (! bfd_set_section_contents (obfd, osec, sec->contents,
9304 sec->output_offset, sec->size))
9305 return FALSE;
9306
9307 return TRUE;
9308 }
9309
9310 static bfd_boolean
9311 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
9312 {
9313 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
9314
9315 /* Invoke the regular ELF backend linker to do all the work. */
9316 if (!bfd_elf_final_link (abfd, info))
9317 return FALSE;
9318
9319 /* Write out any glue sections now that we have created all the
9320 stubs. */
9321 if (globals->bfd_of_glue_owner != NULL)
9322 {
9323 if (! elf32_arm_output_glue_section (info, abfd,
9324 globals->bfd_of_glue_owner,
9325 ARM2THUMB_GLUE_SECTION_NAME))
9326 return FALSE;
9327
9328 if (! elf32_arm_output_glue_section (info, abfd,
9329 globals->bfd_of_glue_owner,
9330 THUMB2ARM_GLUE_SECTION_NAME))
9331 return FALSE;
9332
9333 if (! elf32_arm_output_glue_section (info, abfd,
9334 globals->bfd_of_glue_owner,
9335 VFP11_ERRATUM_VENEER_SECTION_NAME))
9336 return FALSE;
9337
9338 if (! elf32_arm_output_glue_section (info, abfd,
9339 globals->bfd_of_glue_owner,
9340 ARM_BX_GLUE_SECTION_NAME))
9341 return FALSE;
9342 }
9343
9344 return TRUE;
9345 }
9346
9347 /* Set the right machine number. */
9348
9349 static bfd_boolean
9350 elf32_arm_object_p (bfd *abfd)
9351 {
9352 unsigned int mach;
9353
9354 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
9355
9356 if (mach != bfd_mach_arm_unknown)
9357 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
9358
9359 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
9360 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
9361
9362 else
9363 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
9364
9365 return TRUE;
9366 }
9367
9368 /* Function to keep ARM specific flags in the ELF header. */
9369
9370 static bfd_boolean
9371 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
9372 {
9373 if (elf_flags_init (abfd)
9374 && elf_elfheader (abfd)->e_flags != flags)
9375 {
9376 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
9377 {
9378 if (flags & EF_ARM_INTERWORK)
9379 (*_bfd_error_handler)
9380 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
9381 abfd);
9382 else
9383 _bfd_error_handler
9384 (_("Warning: Clearing the interworking flag of %B due to outside request"),
9385 abfd);
9386 }
9387 }
9388 else
9389 {
9390 elf_elfheader (abfd)->e_flags = flags;
9391 elf_flags_init (abfd) = TRUE;
9392 }
9393
9394 return TRUE;
9395 }
9396
9397 /* Copy backend specific data from one object module to another. */
9398
9399 static bfd_boolean
9400 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
9401 {
9402 flagword in_flags;
9403 flagword out_flags;
9404
9405 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
9406 return TRUE;
9407
9408 in_flags = elf_elfheader (ibfd)->e_flags;
9409 out_flags = elf_elfheader (obfd)->e_flags;
9410
9411 if (elf_flags_init (obfd)
9412 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
9413 && in_flags != out_flags)
9414 {
9415 /* Cannot mix APCS26 and APCS32 code. */
9416 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
9417 return FALSE;
9418
9419 /* Cannot mix float APCS and non-float APCS code. */
9420 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
9421 return FALSE;
9422
9423 /* If the src and dest have different interworking flags
9424 then turn off the interworking bit. */
9425 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
9426 {
9427 if (out_flags & EF_ARM_INTERWORK)
9428 _bfd_error_handler
9429 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
9430 obfd, ibfd);
9431
9432 in_flags &= ~EF_ARM_INTERWORK;
9433 }
9434
9435 /* Likewise for PIC, though don't warn for this case. */
9436 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
9437 in_flags &= ~EF_ARM_PIC;
9438 }
9439
9440 elf_elfheader (obfd)->e_flags = in_flags;
9441 elf_flags_init (obfd) = TRUE;
9442
9443 /* Also copy the EI_OSABI field. */
9444 elf_elfheader (obfd)->e_ident[EI_OSABI] =
9445 elf_elfheader (ibfd)->e_ident[EI_OSABI];
9446
9447 /* Copy object attributes. */
9448 _bfd_elf_copy_obj_attributes (ibfd, obfd);
9449
9450 return TRUE;
9451 }
9452
9453 /* Values for Tag_ABI_PCS_R9_use. */
9454 enum
9455 {
9456 AEABI_R9_V6,
9457 AEABI_R9_SB,
9458 AEABI_R9_TLS,
9459 AEABI_R9_unused
9460 };
9461
9462 /* Values for Tag_ABI_PCS_RW_data. */
9463 enum
9464 {
9465 AEABI_PCS_RW_data_absolute,
9466 AEABI_PCS_RW_data_PCrel,
9467 AEABI_PCS_RW_data_SBrel,
9468 AEABI_PCS_RW_data_unused
9469 };
9470
9471 /* Values for Tag_ABI_enum_size. */
9472 enum
9473 {
9474 AEABI_enum_unused,
9475 AEABI_enum_short,
9476 AEABI_enum_wide,
9477 AEABI_enum_forced_wide
9478 };
9479
9480 /* Determine whether an object attribute tag takes an integer, a
9481 string or both. */
9482
9483 static int
9484 elf32_arm_obj_attrs_arg_type (int tag)
9485 {
9486 if (tag == Tag_compatibility)
9487 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
9488 else if (tag == Tag_nodefaults)
9489 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
9490 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
9491 return ATTR_TYPE_FLAG_STR_VAL;
9492 else if (tag < 32)
9493 return ATTR_TYPE_FLAG_INT_VAL;
9494 else
9495 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
9496 }
9497
9498 /* The ABI defines that Tag_conformance should be emitted first, and that
9499 Tag_nodefaults should be second (if either is defined). This sets those
9500 two positions, and bumps up the position of all the remaining tags to
9501 compensate. */
9502 static int
9503 elf32_arm_obj_attrs_order (int num)
9504 {
9505 if (num == 4)
9506 return Tag_conformance;
9507 if (num == 5)
9508 return Tag_nodefaults;
9509 if ((num - 2) < Tag_nodefaults)
9510 return num - 2;
9511 if ((num - 1) < Tag_conformance)
9512 return num - 1;
9513 return num;
9514 }
9515
9516 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
9517 Returns -1 if no architecture could be read. */
9518
9519 static int
9520 get_secondary_compatible_arch (bfd *abfd)
9521 {
9522 obj_attribute *attr =
9523 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
9524
9525 /* Note: the tag and its argument below are uleb128 values, though
9526 currently-defined values fit in one byte for each. */
9527 if (attr->s
9528 && attr->s[0] == Tag_CPU_arch
9529 && (attr->s[1] & 128) != 128
9530 && attr->s[2] == 0)
9531 return attr->s[1];
9532
9533 /* This tag is "safely ignorable", so don't complain if it looks funny. */
9534 return -1;
9535 }
9536
9537 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
9538 The tag is removed if ARCH is -1. */
9539
9540 static void
9541 set_secondary_compatible_arch (bfd *abfd, int arch)
9542 {
9543 obj_attribute *attr =
9544 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
9545
9546 if (arch == -1)
9547 {
9548 attr->s = NULL;
9549 return;
9550 }
9551
9552 /* Note: the tag and its argument below are uleb128 values, though
9553 currently-defined values fit in one byte for each. */
9554 if (!attr->s)
9555 attr->s = (char *) bfd_alloc (abfd, 3);
9556 attr->s[0] = Tag_CPU_arch;
9557 attr->s[1] = arch;
9558 attr->s[2] = '\0';
9559 }
9560
9561 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
9562 into account. */
9563
9564 static int
9565 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
9566 int newtag, int secondary_compat)
9567 {
9568 #define T(X) TAG_CPU_ARCH_##X
9569 int tagl, tagh, result;
9570 const int v6t2[] =
9571 {
9572 T(V6T2), /* PRE_V4. */
9573 T(V6T2), /* V4. */
9574 T(V6T2), /* V4T. */
9575 T(V6T2), /* V5T. */
9576 T(V6T2), /* V5TE. */
9577 T(V6T2), /* V5TEJ. */
9578 T(V6T2), /* V6. */
9579 T(V7), /* V6KZ. */
9580 T(V6T2) /* V6T2. */
9581 };
9582 const int v6k[] =
9583 {
9584 T(V6K), /* PRE_V4. */
9585 T(V6K), /* V4. */
9586 T(V6K), /* V4T. */
9587 T(V6K), /* V5T. */
9588 T(V6K), /* V5TE. */
9589 T(V6K), /* V5TEJ. */
9590 T(V6K), /* V6. */
9591 T(V6KZ), /* V6KZ. */
9592 T(V7), /* V6T2. */
9593 T(V6K) /* V6K. */
9594 };
9595 const int v7[] =
9596 {
9597 T(V7), /* PRE_V4. */
9598 T(V7), /* V4. */
9599 T(V7), /* V4T. */
9600 T(V7), /* V5T. */
9601 T(V7), /* V5TE. */
9602 T(V7), /* V5TEJ. */
9603 T(V7), /* V6. */
9604 T(V7), /* V6KZ. */
9605 T(V7), /* V6T2. */
9606 T(V7), /* V6K. */
9607 T(V7) /* V7. */
9608 };
9609 const int v6_m[] =
9610 {
9611 -1, /* PRE_V4. */
9612 -1, /* V4. */
9613 T(V6K), /* V4T. */
9614 T(V6K), /* V5T. */
9615 T(V6K), /* V5TE. */
9616 T(V6K), /* V5TEJ. */
9617 T(V6K), /* V6. */
9618 T(V6KZ), /* V6KZ. */
9619 T(V7), /* V6T2. */
9620 T(V6K), /* V6K. */
9621 T(V7), /* V7. */
9622 T(V6_M) /* V6_M. */
9623 };
9624 const int v6s_m[] =
9625 {
9626 -1, /* PRE_V4. */
9627 -1, /* V4. */
9628 T(V6K), /* V4T. */
9629 T(V6K), /* V5T. */
9630 T(V6K), /* V5TE. */
9631 T(V6K), /* V5TEJ. */
9632 T(V6K), /* V6. */
9633 T(V6KZ), /* V6KZ. */
9634 T(V7), /* V6T2. */
9635 T(V6K), /* V6K. */
9636 T(V7), /* V7. */
9637 T(V6S_M), /* V6_M. */
9638 T(V6S_M) /* V6S_M. */
9639 };
9640 const int v4t_plus_v6_m[] =
9641 {
9642 -1, /* PRE_V4. */
9643 -1, /* V4. */
9644 T(V4T), /* V4T. */
9645 T(V5T), /* V5T. */
9646 T(V5TE), /* V5TE. */
9647 T(V5TEJ), /* V5TEJ. */
9648 T(V6), /* V6. */
9649 T(V6KZ), /* V6KZ. */
9650 T(V6T2), /* V6T2. */
9651 T(V6K), /* V6K. */
9652 T(V7), /* V7. */
9653 T(V6_M), /* V6_M. */
9654 T(V6S_M), /* V6S_M. */
9655 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
9656 };
9657 const int *comb[] =
9658 {
9659 v6t2,
9660 v6k,
9661 v7,
9662 v6_m,
9663 v6s_m,
9664 /* Pseudo-architecture. */
9665 v4t_plus_v6_m
9666 };
9667
9668 /* Check we've not got a higher architecture than we know about. */
9669
9670 if (oldtag >= MAX_TAG_CPU_ARCH || newtag >= MAX_TAG_CPU_ARCH)
9671 {
9672 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
9673 return -1;
9674 }
9675
9676 /* Override old tag if we have a Tag_also_compatible_with on the output. */
9677
9678 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
9679 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
9680 oldtag = T(V4T_PLUS_V6_M);
9681
9682 /* And override the new tag if we have a Tag_also_compatible_with on the
9683 input. */
9684
9685 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
9686 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
9687 newtag = T(V4T_PLUS_V6_M);
9688
9689 tagl = (oldtag < newtag) ? oldtag : newtag;
9690 result = tagh = (oldtag > newtag) ? oldtag : newtag;
9691
9692 /* Architectures before V6KZ add features monotonically. */
9693 if (tagh <= TAG_CPU_ARCH_V6KZ)
9694 return result;
9695
9696 result = comb[tagh - T(V6T2)][tagl];
9697
9698 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
9699 as the canonical version. */
9700 if (result == T(V4T_PLUS_V6_M))
9701 {
9702 result = T(V4T);
9703 *secondary_compat_out = T(V6_M);
9704 }
9705 else
9706 *secondary_compat_out = -1;
9707
9708 if (result == -1)
9709 {
9710 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
9711 ibfd, oldtag, newtag);
9712 return -1;
9713 }
9714
9715 return result;
9716 #undef T
9717 }
9718
9719 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
9720 are conflicting attributes. */
9721
9722 static bfd_boolean
9723 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
9724 {
9725 obj_attribute *in_attr;
9726 obj_attribute *out_attr;
9727 obj_attribute_list *in_list;
9728 obj_attribute_list *out_list;
9729 obj_attribute_list **out_listp;
9730 /* Some tags have 0 = don't care, 1 = strong requirement,
9731 2 = weak requirement. */
9732 static const int order_021[3] = {0, 2, 1};
9733 /* For use with Tag_VFP_arch. */
9734 static const int order_01243[5] = {0, 1, 2, 4, 3};
9735 int i;
9736 bfd_boolean result = TRUE;
9737
9738 /* Skip the linker stubs file. This preserves previous behavior
9739 of accepting unknown attributes in the first input file - but
9740 is that a bug? */
9741 if (ibfd->flags & BFD_LINKER_CREATED)
9742 return TRUE;
9743
9744 if (!elf_known_obj_attributes_proc (obfd)[0].i)
9745 {
9746 /* This is the first object. Copy the attributes. */
9747 _bfd_elf_copy_obj_attributes (ibfd, obfd);
9748
9749 /* Use the Tag_null value to indicate the attributes have been
9750 initialized. */
9751 elf_known_obj_attributes_proc (obfd)[0].i = 1;
9752
9753 return TRUE;
9754 }
9755
9756 in_attr = elf_known_obj_attributes_proc (ibfd);
9757 out_attr = elf_known_obj_attributes_proc (obfd);
9758 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
9759 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
9760 {
9761 /* Ignore mismatches if the object doesn't use floating point. */
9762 if (out_attr[Tag_ABI_FP_number_model].i == 0)
9763 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
9764 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
9765 {
9766 _bfd_error_handler
9767 (_("error: %B uses VFP register arguments, %B does not"),
9768 ibfd, obfd);
9769 result = FALSE;
9770 }
9771 }
9772
9773 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
9774 {
9775 /* Merge this attribute with existing attributes. */
9776 switch (i)
9777 {
9778 case Tag_CPU_raw_name:
9779 case Tag_CPU_name:
9780 /* These are merged after Tag_CPU_arch. */
9781 break;
9782
9783 case Tag_ABI_optimization_goals:
9784 case Tag_ABI_FP_optimization_goals:
9785 /* Use the first value seen. */
9786 break;
9787
9788 case Tag_CPU_arch:
9789 {
9790 int secondary_compat = -1, secondary_compat_out = -1;
9791 unsigned int saved_out_attr = out_attr[i].i;
9792 static const char *name_table[] = {
9793 /* These aren't real CPU names, but we can't guess
9794 that from the architecture version alone. */
9795 "Pre v4",
9796 "ARM v4",
9797 "ARM v4T",
9798 "ARM v5T",
9799 "ARM v5TE",
9800 "ARM v5TEJ",
9801 "ARM v6",
9802 "ARM v6KZ",
9803 "ARM v6T2",
9804 "ARM v6K",
9805 "ARM v7",
9806 "ARM v6-M",
9807 "ARM v6S-M"
9808 };
9809
9810 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
9811 secondary_compat = get_secondary_compatible_arch (ibfd);
9812 secondary_compat_out = get_secondary_compatible_arch (obfd);
9813 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
9814 &secondary_compat_out,
9815 in_attr[i].i,
9816 secondary_compat);
9817 set_secondary_compatible_arch (obfd, secondary_compat_out);
9818
9819 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
9820 if (out_attr[i].i == saved_out_attr)
9821 ; /* Leave the names alone. */
9822 else if (out_attr[i].i == in_attr[i].i)
9823 {
9824 /* The output architecture has been changed to match the
9825 input architecture. Use the input names. */
9826 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
9827 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
9828 : NULL;
9829 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
9830 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
9831 : NULL;
9832 }
9833 else
9834 {
9835 out_attr[Tag_CPU_name].s = NULL;
9836 out_attr[Tag_CPU_raw_name].s = NULL;
9837 }
9838
9839 /* If we still don't have a value for Tag_CPU_name,
9840 make one up now. Tag_CPU_raw_name remains blank. */
9841 if (out_attr[Tag_CPU_name].s == NULL
9842 && out_attr[i].i < ARRAY_SIZE (name_table))
9843 out_attr[Tag_CPU_name].s =
9844 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
9845 }
9846 break;
9847
9848 case Tag_ARM_ISA_use:
9849 case Tag_THUMB_ISA_use:
9850 case Tag_WMMX_arch:
9851 case Tag_Advanced_SIMD_arch:
9852 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
9853 case Tag_ABI_FP_rounding:
9854 case Tag_ABI_FP_exceptions:
9855 case Tag_ABI_FP_user_exceptions:
9856 case Tag_ABI_FP_number_model:
9857 case Tag_VFP_HP_extension:
9858 case Tag_CPU_unaligned_access:
9859 case Tag_T2EE_use:
9860 case Tag_Virtualization_use:
9861 case Tag_MPextension_use:
9862 /* Use the largest value specified. */
9863 if (in_attr[i].i > out_attr[i].i)
9864 out_attr[i].i = in_attr[i].i;
9865 break;
9866
9867 case Tag_ABI_align8_preserved:
9868 case Tag_ABI_PCS_RO_data:
9869 /* Use the smallest value specified. */
9870 if (in_attr[i].i < out_attr[i].i)
9871 out_attr[i].i = in_attr[i].i;
9872 break;
9873
9874 case Tag_ABI_align8_needed:
9875 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
9876 && (in_attr[Tag_ABI_align8_preserved].i == 0
9877 || out_attr[Tag_ABI_align8_preserved].i == 0))
9878 {
9879 /* This error message should be enabled once all non-conformant
9880 binaries in the toolchain have had the attributes set
9881 properly.
9882 _bfd_error_handler
9883 (_("error: %B: 8-byte data alignment conflicts with %B"),
9884 obfd, ibfd);
9885 result = FALSE; */
9886 }
9887 /* Fall through. */
9888 case Tag_ABI_FP_denormal:
9889 case Tag_ABI_PCS_GOT_use:
9890 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
9891 value if greater than 2 (for future-proofing). */
9892 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
9893 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
9894 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
9895 out_attr[i].i = in_attr[i].i;
9896 break;
9897
9898
9899 case Tag_CPU_arch_profile:
9900 if (out_attr[i].i != in_attr[i].i)
9901 {
9902 /* 0 will merge with anything.
9903 'A' and 'S' merge to 'A'.
9904 'R' and 'S' merge to 'R'.
9905 'M' and 'A|R|S' is an error. */
9906 if (out_attr[i].i == 0
9907 || (out_attr[i].i == 'S'
9908 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
9909 out_attr[i].i = in_attr[i].i;
9910 else if (in_attr[i].i == 0
9911 || (in_attr[i].i == 'S'
9912 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
9913 ; /* Do nothing. */
9914 else
9915 {
9916 _bfd_error_handler
9917 (_("error: %B: Conflicting architecture profiles %c/%c"),
9918 ibfd,
9919 in_attr[i].i ? in_attr[i].i : '0',
9920 out_attr[i].i ? out_attr[i].i : '0');
9921 result = FALSE;
9922 }
9923 }
9924 break;
9925 case Tag_VFP_arch:
9926 /* Use the "greatest" from the sequence 0, 1, 2, 4, 3, or the
9927 largest value if greater than 4 (for future-proofing). */
9928 if ((in_attr[i].i > 4 && in_attr[i].i > out_attr[i].i)
9929 || (in_attr[i].i <= 4 && out_attr[i].i <= 4
9930 && order_01243[in_attr[i].i] > order_01243[out_attr[i].i]))
9931 out_attr[i].i = in_attr[i].i;
9932 break;
9933 case Tag_PCS_config:
9934 if (out_attr[i].i == 0)
9935 out_attr[i].i = in_attr[i].i;
9936 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
9937 {
9938 /* It's sometimes ok to mix different configs, so this is only
9939 a warning. */
9940 _bfd_error_handler
9941 (_("Warning: %B: Conflicting platform configuration"), ibfd);
9942 }
9943 break;
9944 case Tag_ABI_PCS_R9_use:
9945 if (in_attr[i].i != out_attr[i].i
9946 && out_attr[i].i != AEABI_R9_unused
9947 && in_attr[i].i != AEABI_R9_unused)
9948 {
9949 _bfd_error_handler
9950 (_("error: %B: Conflicting use of R9"), ibfd);
9951 result = FALSE;
9952 }
9953 if (out_attr[i].i == AEABI_R9_unused)
9954 out_attr[i].i = in_attr[i].i;
9955 break;
9956 case Tag_ABI_PCS_RW_data:
9957 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
9958 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
9959 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
9960 {
9961 _bfd_error_handler
9962 (_("error: %B: SB relative addressing conflicts with use of R9"),
9963 ibfd);
9964 result = FALSE;
9965 }
9966 /* Use the smallest value specified. */
9967 if (in_attr[i].i < out_attr[i].i)
9968 out_attr[i].i = in_attr[i].i;
9969 break;
9970 case Tag_ABI_PCS_wchar_t:
9971 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
9972 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
9973 {
9974 _bfd_error_handler
9975 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
9976 ibfd, in_attr[i].i, out_attr[i].i);
9977 }
9978 else if (in_attr[i].i && !out_attr[i].i)
9979 out_attr[i].i = in_attr[i].i;
9980 break;
9981 case Tag_ABI_enum_size:
9982 if (in_attr[i].i != AEABI_enum_unused)
9983 {
9984 if (out_attr[i].i == AEABI_enum_unused
9985 || out_attr[i].i == AEABI_enum_forced_wide)
9986 {
9987 /* The existing object is compatible with anything.
9988 Use whatever requirements the new object has. */
9989 out_attr[i].i = in_attr[i].i;
9990 }
9991 else if (in_attr[i].i != AEABI_enum_forced_wide
9992 && out_attr[i].i != in_attr[i].i
9993 && !elf_arm_tdata (obfd)->no_enum_size_warning)
9994 {
9995 static const char *aeabi_enum_names[] =
9996 { "", "variable-size", "32-bit", "" };
9997 const char *in_name =
9998 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
9999 ? aeabi_enum_names[in_attr[i].i]
10000 : "<unknown>";
10001 const char *out_name =
10002 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
10003 ? aeabi_enum_names[out_attr[i].i]
10004 : "<unknown>";
10005 _bfd_error_handler
10006 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
10007 ibfd, in_name, out_name);
10008 }
10009 }
10010 break;
10011 case Tag_ABI_VFP_args:
10012 /* Aready done. */
10013 break;
10014 case Tag_ABI_WMMX_args:
10015 if (in_attr[i].i != out_attr[i].i)
10016 {
10017 _bfd_error_handler
10018 (_("error: %B uses iWMMXt register arguments, %B does not"),
10019 ibfd, obfd);
10020 result = FALSE;
10021 }
10022 break;
10023 case Tag_compatibility:
10024 /* Merged in target-independent code. */
10025 break;
10026 case Tag_ABI_HardFP_use:
10027 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
10028 if ((in_attr[i].i == 1 && out_attr[i].i == 2)
10029 || (in_attr[i].i == 2 && out_attr[i].i == 1))
10030 out_attr[i].i = 3;
10031 else if (in_attr[i].i > out_attr[i].i)
10032 out_attr[i].i = in_attr[i].i;
10033 break;
10034 case Tag_ABI_FP_16bit_format:
10035 if (in_attr[i].i != 0 && out_attr[i].i != 0)
10036 {
10037 if (in_attr[i].i != out_attr[i].i)
10038 {
10039 _bfd_error_handler
10040 (_("error: fp16 format mismatch between %B and %B"),
10041 ibfd, obfd);
10042 result = FALSE;
10043 }
10044 }
10045 if (in_attr[i].i != 0)
10046 out_attr[i].i = in_attr[i].i;
10047 break;
10048
10049 case Tag_nodefaults:
10050 /* This tag is set if it exists, but the value is unused (and is
10051 typically zero). We don't actually need to do anything here -
10052 the merge happens automatically when the type flags are merged
10053 below. */
10054 break;
10055 case Tag_also_compatible_with:
10056 /* Already done in Tag_CPU_arch. */
10057 break;
10058 case Tag_conformance:
10059 /* Keep the attribute if it matches. Throw it away otherwise.
10060 No attribute means no claim to conform. */
10061 if (!in_attr[i].s || !out_attr[i].s
10062 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
10063 out_attr[i].s = NULL;
10064 break;
10065
10066 default:
10067 {
10068 bfd *err_bfd = NULL;
10069
10070 /* The "known_obj_attributes" table does contain some undefined
10071 attributes. Ensure that there are unused. */
10072 if (out_attr[i].i != 0 || out_attr[i].s != NULL)
10073 err_bfd = obfd;
10074 else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
10075 err_bfd = ibfd;
10076
10077 if (err_bfd != NULL)
10078 {
10079 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10080 if ((i & 127) < 64)
10081 {
10082 _bfd_error_handler
10083 (_("%B: Unknown mandatory EABI object attribute %d"),
10084 err_bfd, i);
10085 bfd_set_error (bfd_error_bad_value);
10086 result = FALSE;
10087 }
10088 else
10089 {
10090 _bfd_error_handler
10091 (_("Warning: %B: Unknown EABI object attribute %d"),
10092 err_bfd, i);
10093 }
10094 }
10095
10096 /* Only pass on attributes that match in both inputs. */
10097 if (in_attr[i].i != out_attr[i].i
10098 || in_attr[i].s != out_attr[i].s
10099 || (in_attr[i].s != NULL && out_attr[i].s != NULL
10100 && strcmp (in_attr[i].s, out_attr[i].s) != 0))
10101 {
10102 out_attr[i].i = 0;
10103 out_attr[i].s = NULL;
10104 }
10105 }
10106 }
10107
10108 /* If out_attr was copied from in_attr then it won't have a type yet. */
10109 if (in_attr[i].type && !out_attr[i].type)
10110 out_attr[i].type = in_attr[i].type;
10111 }
10112
10113 /* Merge Tag_compatibility attributes and any common GNU ones. */
10114 _bfd_elf_merge_object_attributes (ibfd, obfd);
10115
10116 /* Check for any attributes not known on ARM. */
10117 in_list = elf_other_obj_attributes_proc (ibfd);
10118 out_listp = &elf_other_obj_attributes_proc (obfd);
10119 out_list = *out_listp;
10120
10121 for (; in_list || out_list; )
10122 {
10123 bfd *err_bfd = NULL;
10124 int err_tag = 0;
10125
10126 /* The tags for each list are in numerical order. */
10127 /* If the tags are equal, then merge. */
10128 if (out_list && (!in_list || in_list->tag > out_list->tag))
10129 {
10130 /* This attribute only exists in obfd. We can't merge, and we don't
10131 know what the tag means, so delete it. */
10132 err_bfd = obfd;
10133 err_tag = out_list->tag;
10134 *out_listp = out_list->next;
10135 out_list = *out_listp;
10136 }
10137 else if (in_list && (!out_list || in_list->tag < out_list->tag))
10138 {
10139 /* This attribute only exists in ibfd. We can't merge, and we don't
10140 know what the tag means, so ignore it. */
10141 err_bfd = ibfd;
10142 err_tag = in_list->tag;
10143 in_list = in_list->next;
10144 }
10145 else /* The tags are equal. */
10146 {
10147 /* As present, all attributes in the list are unknown, and
10148 therefore can't be merged meaningfully. */
10149 err_bfd = obfd;
10150 err_tag = out_list->tag;
10151
10152 /* Only pass on attributes that match in both inputs. */
10153 if (in_list->attr.i != out_list->attr.i
10154 || in_list->attr.s != out_list->attr.s
10155 || (in_list->attr.s && out_list->attr.s
10156 && strcmp (in_list->attr.s, out_list->attr.s) != 0))
10157 {
10158 /* No match. Delete the attribute. */
10159 *out_listp = out_list->next;
10160 out_list = *out_listp;
10161 }
10162 else
10163 {
10164 /* Matched. Keep the attribute and move to the next. */
10165 out_list = out_list->next;
10166 in_list = in_list->next;
10167 }
10168 }
10169
10170 if (err_bfd)
10171 {
10172 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10173 if ((err_tag & 127) < 64)
10174 {
10175 _bfd_error_handler
10176 (_("%B: Unknown mandatory EABI object attribute %d"),
10177 err_bfd, err_tag);
10178 bfd_set_error (bfd_error_bad_value);
10179 result = FALSE;
10180 }
10181 else
10182 {
10183 _bfd_error_handler
10184 (_("Warning: %B: Unknown EABI object attribute %d"),
10185 err_bfd, err_tag);
10186 }
10187 }
10188 }
10189 return result;
10190 }
10191
10192
10193 /* Return TRUE if the two EABI versions are incompatible. */
10194
10195 static bfd_boolean
10196 elf32_arm_versions_compatible (unsigned iver, unsigned over)
10197 {
10198 /* v4 and v5 are the same spec before and after it was released,
10199 so allow mixing them. */
10200 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
10201 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
10202 return TRUE;
10203
10204 return (iver == over);
10205 }
10206
10207 /* Merge backend specific data from an object file to the output
10208 object file when linking. */
10209
10210 static bfd_boolean
10211 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
10212
10213 /* Display the flags field. */
10214
10215 static bfd_boolean
10216 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
10217 {
10218 FILE * file = (FILE *) ptr;
10219 unsigned long flags;
10220
10221 BFD_ASSERT (abfd != NULL && ptr != NULL);
10222
10223 /* Print normal ELF private data. */
10224 _bfd_elf_print_private_bfd_data (abfd, ptr);
10225
10226 flags = elf_elfheader (abfd)->e_flags;
10227 /* Ignore init flag - it may not be set, despite the flags field
10228 containing valid data. */
10229
10230 /* xgettext:c-format */
10231 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
10232
10233 switch (EF_ARM_EABI_VERSION (flags))
10234 {
10235 case EF_ARM_EABI_UNKNOWN:
10236 /* The following flag bits are GNU extensions and not part of the
10237 official ARM ELF extended ABI. Hence they are only decoded if
10238 the EABI version is not set. */
10239 if (flags & EF_ARM_INTERWORK)
10240 fprintf (file, _(" [interworking enabled]"));
10241
10242 if (flags & EF_ARM_APCS_26)
10243 fprintf (file, " [APCS-26]");
10244 else
10245 fprintf (file, " [APCS-32]");
10246
10247 if (flags & EF_ARM_VFP_FLOAT)
10248 fprintf (file, _(" [VFP float format]"));
10249 else if (flags & EF_ARM_MAVERICK_FLOAT)
10250 fprintf (file, _(" [Maverick float format]"));
10251 else
10252 fprintf (file, _(" [FPA float format]"));
10253
10254 if (flags & EF_ARM_APCS_FLOAT)
10255 fprintf (file, _(" [floats passed in float registers]"));
10256
10257 if (flags & EF_ARM_PIC)
10258 fprintf (file, _(" [position independent]"));
10259
10260 if (flags & EF_ARM_NEW_ABI)
10261 fprintf (file, _(" [new ABI]"));
10262
10263 if (flags & EF_ARM_OLD_ABI)
10264 fprintf (file, _(" [old ABI]"));
10265
10266 if (flags & EF_ARM_SOFT_FLOAT)
10267 fprintf (file, _(" [software FP]"));
10268
10269 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
10270 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
10271 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
10272 | EF_ARM_MAVERICK_FLOAT);
10273 break;
10274
10275 case EF_ARM_EABI_VER1:
10276 fprintf (file, _(" [Version1 EABI]"));
10277
10278 if (flags & EF_ARM_SYMSARESORTED)
10279 fprintf (file, _(" [sorted symbol table]"));
10280 else
10281 fprintf (file, _(" [unsorted symbol table]"));
10282
10283 flags &= ~ EF_ARM_SYMSARESORTED;
10284 break;
10285
10286 case EF_ARM_EABI_VER2:
10287 fprintf (file, _(" [Version2 EABI]"));
10288
10289 if (flags & EF_ARM_SYMSARESORTED)
10290 fprintf (file, _(" [sorted symbol table]"));
10291 else
10292 fprintf (file, _(" [unsorted symbol table]"));
10293
10294 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
10295 fprintf (file, _(" [dynamic symbols use segment index]"));
10296
10297 if (flags & EF_ARM_MAPSYMSFIRST)
10298 fprintf (file, _(" [mapping symbols precede others]"));
10299
10300 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
10301 | EF_ARM_MAPSYMSFIRST);
10302 break;
10303
10304 case EF_ARM_EABI_VER3:
10305 fprintf (file, _(" [Version3 EABI]"));
10306 break;
10307
10308 case EF_ARM_EABI_VER4:
10309 fprintf (file, _(" [Version4 EABI]"));
10310 goto eabi;
10311
10312 case EF_ARM_EABI_VER5:
10313 fprintf (file, _(" [Version5 EABI]"));
10314 eabi:
10315 if (flags & EF_ARM_BE8)
10316 fprintf (file, _(" [BE8]"));
10317
10318 if (flags & EF_ARM_LE8)
10319 fprintf (file, _(" [LE8]"));
10320
10321 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
10322 break;
10323
10324 default:
10325 fprintf (file, _(" <EABI version unrecognised>"));
10326 break;
10327 }
10328
10329 flags &= ~ EF_ARM_EABIMASK;
10330
10331 if (flags & EF_ARM_RELEXEC)
10332 fprintf (file, _(" [relocatable executable]"));
10333
10334 if (flags & EF_ARM_HASENTRY)
10335 fprintf (file, _(" [has entry point]"));
10336
10337 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
10338
10339 if (flags)
10340 fprintf (file, _("<Unrecognised flag bits set>"));
10341
10342 fputc ('\n', file);
10343
10344 return TRUE;
10345 }
10346
10347 static int
10348 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
10349 {
10350 switch (ELF_ST_TYPE (elf_sym->st_info))
10351 {
10352 case STT_ARM_TFUNC:
10353 return ELF_ST_TYPE (elf_sym->st_info);
10354
10355 case STT_ARM_16BIT:
10356 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
10357 This allows us to distinguish between data used by Thumb instructions
10358 and non-data (which is probably code) inside Thumb regions of an
10359 executable. */
10360 if (type != STT_OBJECT && type != STT_TLS)
10361 return ELF_ST_TYPE (elf_sym->st_info);
10362 break;
10363
10364 default:
10365 break;
10366 }
10367
10368 return type;
10369 }
10370
10371 static asection *
10372 elf32_arm_gc_mark_hook (asection *sec,
10373 struct bfd_link_info *info,
10374 Elf_Internal_Rela *rel,
10375 struct elf_link_hash_entry *h,
10376 Elf_Internal_Sym *sym)
10377 {
10378 if (h != NULL)
10379 switch (ELF32_R_TYPE (rel->r_info))
10380 {
10381 case R_ARM_GNU_VTINHERIT:
10382 case R_ARM_GNU_VTENTRY:
10383 return NULL;
10384 }
10385
10386 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
10387 }
10388
10389 /* Update the got entry reference counts for the section being removed. */
10390
10391 static bfd_boolean
10392 elf32_arm_gc_sweep_hook (bfd * abfd,
10393 struct bfd_link_info * info,
10394 asection * sec,
10395 const Elf_Internal_Rela * relocs)
10396 {
10397 Elf_Internal_Shdr *symtab_hdr;
10398 struct elf_link_hash_entry **sym_hashes;
10399 bfd_signed_vma *local_got_refcounts;
10400 const Elf_Internal_Rela *rel, *relend;
10401 struct elf32_arm_link_hash_table * globals;
10402
10403 if (info->relocatable)
10404 return TRUE;
10405
10406 globals = elf32_arm_hash_table (info);
10407
10408 elf_section_data (sec)->local_dynrel = NULL;
10409
10410 symtab_hdr = & elf_symtab_hdr (abfd);
10411 sym_hashes = elf_sym_hashes (abfd);
10412 local_got_refcounts = elf_local_got_refcounts (abfd);
10413
10414 check_use_blx (globals);
10415
10416 relend = relocs + sec->reloc_count;
10417 for (rel = relocs; rel < relend; rel++)
10418 {
10419 unsigned long r_symndx;
10420 struct elf_link_hash_entry *h = NULL;
10421 int r_type;
10422
10423 r_symndx = ELF32_R_SYM (rel->r_info);
10424 if (r_symndx >= symtab_hdr->sh_info)
10425 {
10426 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10427 while (h->root.type == bfd_link_hash_indirect
10428 || h->root.type == bfd_link_hash_warning)
10429 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10430 }
10431
10432 r_type = ELF32_R_TYPE (rel->r_info);
10433 r_type = arm_real_reloc_type (globals, r_type);
10434 switch (r_type)
10435 {
10436 case R_ARM_GOT32:
10437 case R_ARM_GOT_PREL:
10438 case R_ARM_TLS_GD32:
10439 case R_ARM_TLS_IE32:
10440 if (h != NULL)
10441 {
10442 if (h->got.refcount > 0)
10443 h->got.refcount -= 1;
10444 }
10445 else if (local_got_refcounts != NULL)
10446 {
10447 if (local_got_refcounts[r_symndx] > 0)
10448 local_got_refcounts[r_symndx] -= 1;
10449 }
10450 break;
10451
10452 case R_ARM_TLS_LDM32:
10453 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
10454 break;
10455
10456 case R_ARM_ABS32:
10457 case R_ARM_ABS32_NOI:
10458 case R_ARM_REL32:
10459 case R_ARM_REL32_NOI:
10460 case R_ARM_PC24:
10461 case R_ARM_PLT32:
10462 case R_ARM_CALL:
10463 case R_ARM_JUMP24:
10464 case R_ARM_PREL31:
10465 case R_ARM_THM_CALL:
10466 case R_ARM_THM_JUMP24:
10467 case R_ARM_THM_JUMP19:
10468 case R_ARM_MOVW_ABS_NC:
10469 case R_ARM_MOVT_ABS:
10470 case R_ARM_MOVW_PREL_NC:
10471 case R_ARM_MOVT_PREL:
10472 case R_ARM_THM_MOVW_ABS_NC:
10473 case R_ARM_THM_MOVT_ABS:
10474 case R_ARM_THM_MOVW_PREL_NC:
10475 case R_ARM_THM_MOVT_PREL:
10476 /* Should the interworking branches be here also? */
10477
10478 if (h != NULL)
10479 {
10480 struct elf32_arm_link_hash_entry *eh;
10481 struct elf32_arm_relocs_copied **pp;
10482 struct elf32_arm_relocs_copied *p;
10483
10484 eh = (struct elf32_arm_link_hash_entry *) h;
10485
10486 if (h->plt.refcount > 0)
10487 {
10488 h->plt.refcount -= 1;
10489 if (r_type == R_ARM_THM_CALL)
10490 eh->plt_maybe_thumb_refcount--;
10491
10492 if (r_type == R_ARM_THM_JUMP24
10493 || r_type == R_ARM_THM_JUMP19)
10494 eh->plt_thumb_refcount--;
10495 }
10496
10497 if (r_type == R_ARM_ABS32
10498 || r_type == R_ARM_REL32
10499 || r_type == R_ARM_ABS32_NOI
10500 || r_type == R_ARM_REL32_NOI)
10501 {
10502 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
10503 pp = &p->next)
10504 if (p->section == sec)
10505 {
10506 p->count -= 1;
10507 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
10508 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
10509 p->pc_count -= 1;
10510 if (p->count == 0)
10511 *pp = p->next;
10512 break;
10513 }
10514 }
10515 }
10516 break;
10517
10518 default:
10519 break;
10520 }
10521 }
10522
10523 return TRUE;
10524 }
10525
10526 /* Look through the relocs for a section during the first phase. */
10527
10528 static bfd_boolean
10529 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
10530 asection *sec, const Elf_Internal_Rela *relocs)
10531 {
10532 Elf_Internal_Shdr *symtab_hdr;
10533 struct elf_link_hash_entry **sym_hashes;
10534 const Elf_Internal_Rela *rel;
10535 const Elf_Internal_Rela *rel_end;
10536 bfd *dynobj;
10537 asection *sreloc;
10538 bfd_vma *local_got_offsets;
10539 struct elf32_arm_link_hash_table *htab;
10540 bfd_boolean needs_plt;
10541 unsigned long nsyms;
10542
10543 if (info->relocatable)
10544 return TRUE;
10545
10546 BFD_ASSERT (is_arm_elf (abfd));
10547
10548 htab = elf32_arm_hash_table (info);
10549 sreloc = NULL;
10550
10551 /* Create dynamic sections for relocatable executables so that we can
10552 copy relocations. */
10553 if (htab->root.is_relocatable_executable
10554 && ! htab->root.dynamic_sections_created)
10555 {
10556 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
10557 return FALSE;
10558 }
10559
10560 dynobj = elf_hash_table (info)->dynobj;
10561 local_got_offsets = elf_local_got_offsets (abfd);
10562
10563 symtab_hdr = & elf_symtab_hdr (abfd);
10564 sym_hashes = elf_sym_hashes (abfd);
10565 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
10566
10567 rel_end = relocs + sec->reloc_count;
10568 for (rel = relocs; rel < rel_end; rel++)
10569 {
10570 struct elf_link_hash_entry *h;
10571 struct elf32_arm_link_hash_entry *eh;
10572 unsigned long r_symndx;
10573 int r_type;
10574
10575 r_symndx = ELF32_R_SYM (rel->r_info);
10576 r_type = ELF32_R_TYPE (rel->r_info);
10577 r_type = arm_real_reloc_type (htab, r_type);
10578
10579 if (r_symndx >= nsyms
10580 /* PR 9934: It is possible to have relocations that do not
10581 refer to symbols, thus it is also possible to have an
10582 object file containing relocations but no symbol table. */
10583 && (r_symndx > 0 || nsyms > 0))
10584 {
10585 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
10586 r_symndx);
10587 return FALSE;
10588 }
10589
10590 if (nsyms == 0 || r_symndx < symtab_hdr->sh_info)
10591 h = NULL;
10592 else
10593 {
10594 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
10595 while (h->root.type == bfd_link_hash_indirect
10596 || h->root.type == bfd_link_hash_warning)
10597 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10598 }
10599
10600 eh = (struct elf32_arm_link_hash_entry *) h;
10601
10602 switch (r_type)
10603 {
10604 case R_ARM_GOT32:
10605 case R_ARM_GOT_PREL:
10606 case R_ARM_TLS_GD32:
10607 case R_ARM_TLS_IE32:
10608 /* This symbol requires a global offset table entry. */
10609 {
10610 int tls_type, old_tls_type;
10611
10612 switch (r_type)
10613 {
10614 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
10615 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
10616 default: tls_type = GOT_NORMAL; break;
10617 }
10618
10619 if (h != NULL)
10620 {
10621 h->got.refcount++;
10622 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
10623 }
10624 else
10625 {
10626 bfd_signed_vma *local_got_refcounts;
10627
10628 /* This is a global offset table entry for a local symbol. */
10629 local_got_refcounts = elf_local_got_refcounts (abfd);
10630 if (local_got_refcounts == NULL)
10631 {
10632 bfd_size_type size;
10633
10634 size = symtab_hdr->sh_info;
10635 size *= (sizeof (bfd_signed_vma) + sizeof (char));
10636 local_got_refcounts = (bfd_signed_vma *)
10637 bfd_zalloc (abfd, size);
10638 if (local_got_refcounts == NULL)
10639 return FALSE;
10640 elf_local_got_refcounts (abfd) = local_got_refcounts;
10641 elf32_arm_local_got_tls_type (abfd)
10642 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
10643 }
10644 local_got_refcounts[r_symndx] += 1;
10645 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
10646 }
10647
10648 /* We will already have issued an error message if there is a
10649 TLS / non-TLS mismatch, based on the symbol type. We don't
10650 support any linker relaxations. So just combine any TLS
10651 types needed. */
10652 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
10653 && tls_type != GOT_NORMAL)
10654 tls_type |= old_tls_type;
10655
10656 if (old_tls_type != tls_type)
10657 {
10658 if (h != NULL)
10659 elf32_arm_hash_entry (h)->tls_type = tls_type;
10660 else
10661 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
10662 }
10663 }
10664 /* Fall through. */
10665
10666 case R_ARM_TLS_LDM32:
10667 if (r_type == R_ARM_TLS_LDM32)
10668 htab->tls_ldm_got.refcount++;
10669 /* Fall through. */
10670
10671 case R_ARM_GOTOFF32:
10672 case R_ARM_GOTPC:
10673 if (htab->sgot == NULL)
10674 {
10675 if (htab->root.dynobj == NULL)
10676 htab->root.dynobj = abfd;
10677 if (!create_got_section (htab->root.dynobj, info))
10678 return FALSE;
10679 }
10680 break;
10681
10682 case R_ARM_ABS12:
10683 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
10684 ldr __GOTT_INDEX__ offsets. */
10685 if (!htab->vxworks_p)
10686 break;
10687 /* Fall through. */
10688
10689 case R_ARM_PC24:
10690 case R_ARM_PLT32:
10691 case R_ARM_CALL:
10692 case R_ARM_JUMP24:
10693 case R_ARM_PREL31:
10694 case R_ARM_THM_CALL:
10695 case R_ARM_THM_JUMP24:
10696 case R_ARM_THM_JUMP19:
10697 needs_plt = 1;
10698 goto normal_reloc;
10699
10700 case R_ARM_MOVW_ABS_NC:
10701 case R_ARM_MOVT_ABS:
10702 case R_ARM_THM_MOVW_ABS_NC:
10703 case R_ARM_THM_MOVT_ABS:
10704 if (info->shared)
10705 {
10706 (*_bfd_error_handler)
10707 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
10708 abfd, elf32_arm_howto_table_1[r_type].name,
10709 (h) ? h->root.root.string : "a local symbol");
10710 bfd_set_error (bfd_error_bad_value);
10711 return FALSE;
10712 }
10713
10714 /* Fall through. */
10715 case R_ARM_ABS32:
10716 case R_ARM_ABS32_NOI:
10717 case R_ARM_REL32:
10718 case R_ARM_REL32_NOI:
10719 case R_ARM_MOVW_PREL_NC:
10720 case R_ARM_MOVT_PREL:
10721 case R_ARM_THM_MOVW_PREL_NC:
10722 case R_ARM_THM_MOVT_PREL:
10723 needs_plt = 0;
10724 normal_reloc:
10725
10726 /* Should the interworking branches be listed here? */
10727 if (h != NULL)
10728 {
10729 /* If this reloc is in a read-only section, we might
10730 need a copy reloc. We can't check reliably at this
10731 stage whether the section is read-only, as input
10732 sections have not yet been mapped to output sections.
10733 Tentatively set the flag for now, and correct in
10734 adjust_dynamic_symbol. */
10735 if (!info->shared)
10736 h->non_got_ref = 1;
10737
10738 /* We may need a .plt entry if the function this reloc
10739 refers to is in a different object. We can't tell for
10740 sure yet, because something later might force the
10741 symbol local. */
10742 if (needs_plt)
10743 h->needs_plt = 1;
10744
10745 /* If we create a PLT entry, this relocation will reference
10746 it, even if it's an ABS32 relocation. */
10747 h->plt.refcount += 1;
10748
10749 /* It's too early to use htab->use_blx here, so we have to
10750 record possible blx references separately from
10751 relocs that definitely need a thumb stub. */
10752
10753 if (r_type == R_ARM_THM_CALL)
10754 eh->plt_maybe_thumb_refcount += 1;
10755
10756 if (r_type == R_ARM_THM_JUMP24
10757 || r_type == R_ARM_THM_JUMP19)
10758 eh->plt_thumb_refcount += 1;
10759 }
10760
10761 /* If we are creating a shared library or relocatable executable,
10762 and this is a reloc against a global symbol, or a non PC
10763 relative reloc against a local symbol, then we need to copy
10764 the reloc into the shared library. However, if we are linking
10765 with -Bsymbolic, we do not need to copy a reloc against a
10766 global symbol which is defined in an object we are
10767 including in the link (i.e., DEF_REGULAR is set). At
10768 this point we have not seen all the input files, so it is
10769 possible that DEF_REGULAR is not set now but will be set
10770 later (it is never cleared). We account for that
10771 possibility below by storing information in the
10772 relocs_copied field of the hash table entry. */
10773 if ((info->shared || htab->root.is_relocatable_executable)
10774 && (sec->flags & SEC_ALLOC) != 0
10775 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
10776 || (h != NULL && ! h->needs_plt
10777 && (! info->symbolic || ! h->def_regular))))
10778 {
10779 struct elf32_arm_relocs_copied *p, **head;
10780
10781 /* When creating a shared object, we must copy these
10782 reloc types into the output file. We create a reloc
10783 section in dynobj and make room for this reloc. */
10784 if (sreloc == NULL)
10785 {
10786 sreloc = _bfd_elf_make_dynamic_reloc_section
10787 (sec, dynobj, 2, abfd, ! htab->use_rel);
10788
10789 if (sreloc == NULL)
10790 return FALSE;
10791
10792 /* BPABI objects never have dynamic relocations mapped. */
10793 if (htab->symbian_p)
10794 {
10795 flagword flags;
10796
10797 flags = bfd_get_section_flags (dynobj, sreloc);
10798 flags &= ~(SEC_LOAD | SEC_ALLOC);
10799 bfd_set_section_flags (dynobj, sreloc, flags);
10800 }
10801 }
10802
10803 /* If this is a global symbol, we count the number of
10804 relocations we need for this symbol. */
10805 if (h != NULL)
10806 {
10807 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
10808 }
10809 else
10810 {
10811 /* Track dynamic relocs needed for local syms too.
10812 We really need local syms available to do this
10813 easily. Oh well. */
10814 asection *s;
10815 void *vpp;
10816 Elf_Internal_Sym *isym;
10817
10818 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
10819 abfd, r_symndx);
10820 if (isym == NULL)
10821 return FALSE;
10822
10823 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
10824 if (s == NULL)
10825 s = sec;
10826
10827 vpp = &elf_section_data (s)->local_dynrel;
10828 head = (struct elf32_arm_relocs_copied **) vpp;
10829 }
10830
10831 p = *head;
10832 if (p == NULL || p->section != sec)
10833 {
10834 bfd_size_type amt = sizeof *p;
10835
10836 p = (struct elf32_arm_relocs_copied *)
10837 bfd_alloc (htab->root.dynobj, amt);
10838 if (p == NULL)
10839 return FALSE;
10840 p->next = *head;
10841 *head = p;
10842 p->section = sec;
10843 p->count = 0;
10844 p->pc_count = 0;
10845 }
10846
10847 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10848 p->pc_count += 1;
10849 p->count += 1;
10850 }
10851 break;
10852
10853 /* This relocation describes the C++ object vtable hierarchy.
10854 Reconstruct it for later use during GC. */
10855 case R_ARM_GNU_VTINHERIT:
10856 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
10857 return FALSE;
10858 break;
10859
10860 /* This relocation describes which C++ vtable entries are actually
10861 used. Record for later use during GC. */
10862 case R_ARM_GNU_VTENTRY:
10863 BFD_ASSERT (h != NULL);
10864 if (h != NULL
10865 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
10866 return FALSE;
10867 break;
10868 }
10869 }
10870
10871 return TRUE;
10872 }
10873
10874 /* Unwinding tables are not referenced directly. This pass marks them as
10875 required if the corresponding code section is marked. */
10876
10877 static bfd_boolean
10878 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
10879 elf_gc_mark_hook_fn gc_mark_hook)
10880 {
10881 bfd *sub;
10882 Elf_Internal_Shdr **elf_shdrp;
10883 bfd_boolean again;
10884
10885 /* Marking EH data may cause additional code sections to be marked,
10886 requiring multiple passes. */
10887 again = TRUE;
10888 while (again)
10889 {
10890 again = FALSE;
10891 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
10892 {
10893 asection *o;
10894
10895 if (! is_arm_elf (sub))
10896 continue;
10897
10898 elf_shdrp = elf_elfsections (sub);
10899 for (o = sub->sections; o != NULL; o = o->next)
10900 {
10901 Elf_Internal_Shdr *hdr;
10902
10903 hdr = &elf_section_data (o)->this_hdr;
10904 if (hdr->sh_type == SHT_ARM_EXIDX
10905 && hdr->sh_link
10906 && hdr->sh_link < elf_numsections (sub)
10907 && !o->gc_mark
10908 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
10909 {
10910 again = TRUE;
10911 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
10912 return FALSE;
10913 }
10914 }
10915 }
10916 }
10917
10918 return TRUE;
10919 }
10920
10921 /* Treat mapping symbols as special target symbols. */
10922
10923 static bfd_boolean
10924 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
10925 {
10926 return bfd_is_arm_special_symbol_name (sym->name,
10927 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
10928 }
10929
10930 /* This is a copy of elf_find_function() from elf.c except that
10931 ARM mapping symbols are ignored when looking for function names
10932 and STT_ARM_TFUNC is considered to a function type. */
10933
10934 static bfd_boolean
10935 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
10936 asection * section,
10937 asymbol ** symbols,
10938 bfd_vma offset,
10939 const char ** filename_ptr,
10940 const char ** functionname_ptr)
10941 {
10942 const char * filename = NULL;
10943 asymbol * func = NULL;
10944 bfd_vma low_func = 0;
10945 asymbol ** p;
10946
10947 for (p = symbols; *p != NULL; p++)
10948 {
10949 elf_symbol_type *q;
10950
10951 q = (elf_symbol_type *) *p;
10952
10953 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
10954 {
10955 default:
10956 break;
10957 case STT_FILE:
10958 filename = bfd_asymbol_name (&q->symbol);
10959 break;
10960 case STT_FUNC:
10961 case STT_ARM_TFUNC:
10962 case STT_NOTYPE:
10963 /* Skip mapping symbols. */
10964 if ((q->symbol.flags & BSF_LOCAL)
10965 && bfd_is_arm_special_symbol_name (q->symbol.name,
10966 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
10967 continue;
10968 /* Fall through. */
10969 if (bfd_get_section (&q->symbol) == section
10970 && q->symbol.value >= low_func
10971 && q->symbol.value <= offset)
10972 {
10973 func = (asymbol *) q;
10974 low_func = q->symbol.value;
10975 }
10976 break;
10977 }
10978 }
10979
10980 if (func == NULL)
10981 return FALSE;
10982
10983 if (filename_ptr)
10984 *filename_ptr = filename;
10985 if (functionname_ptr)
10986 *functionname_ptr = bfd_asymbol_name (func);
10987
10988 return TRUE;
10989 }
10990
10991
10992 /* Find the nearest line to a particular section and offset, for error
10993 reporting. This code is a duplicate of the code in elf.c, except
10994 that it uses arm_elf_find_function. */
10995
10996 static bfd_boolean
10997 elf32_arm_find_nearest_line (bfd * abfd,
10998 asection * section,
10999 asymbol ** symbols,
11000 bfd_vma offset,
11001 const char ** filename_ptr,
11002 const char ** functionname_ptr,
11003 unsigned int * line_ptr)
11004 {
11005 bfd_boolean found = FALSE;
11006
11007 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
11008
11009 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
11010 filename_ptr, functionname_ptr,
11011 line_ptr, 0,
11012 & elf_tdata (abfd)->dwarf2_find_line_info))
11013 {
11014 if (!*functionname_ptr)
11015 arm_elf_find_function (abfd, section, symbols, offset,
11016 *filename_ptr ? NULL : filename_ptr,
11017 functionname_ptr);
11018
11019 return TRUE;
11020 }
11021
11022 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
11023 & found, filename_ptr,
11024 functionname_ptr, line_ptr,
11025 & elf_tdata (abfd)->line_info))
11026 return FALSE;
11027
11028 if (found && (*functionname_ptr || *line_ptr))
11029 return TRUE;
11030
11031 if (symbols == NULL)
11032 return FALSE;
11033
11034 if (! arm_elf_find_function (abfd, section, symbols, offset,
11035 filename_ptr, functionname_ptr))
11036 return FALSE;
11037
11038 *line_ptr = 0;
11039 return TRUE;
11040 }
11041
11042 static bfd_boolean
11043 elf32_arm_find_inliner_info (bfd * abfd,
11044 const char ** filename_ptr,
11045 const char ** functionname_ptr,
11046 unsigned int * line_ptr)
11047 {
11048 bfd_boolean found;
11049 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
11050 functionname_ptr, line_ptr,
11051 & elf_tdata (abfd)->dwarf2_find_line_info);
11052 return found;
11053 }
11054
11055 /* Adjust a symbol defined by a dynamic object and referenced by a
11056 regular object. The current definition is in some section of the
11057 dynamic object, but we're not including those sections. We have to
11058 change the definition to something the rest of the link can
11059 understand. */
11060
11061 static bfd_boolean
11062 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
11063 struct elf_link_hash_entry * h)
11064 {
11065 bfd * dynobj;
11066 asection * s;
11067 struct elf32_arm_link_hash_entry * eh;
11068 struct elf32_arm_link_hash_table *globals;
11069
11070 globals = elf32_arm_hash_table (info);
11071 dynobj = elf_hash_table (info)->dynobj;
11072
11073 /* Make sure we know what is going on here. */
11074 BFD_ASSERT (dynobj != NULL
11075 && (h->needs_plt
11076 || h->u.weakdef != NULL
11077 || (h->def_dynamic
11078 && h->ref_regular
11079 && !h->def_regular)));
11080
11081 eh = (struct elf32_arm_link_hash_entry *) h;
11082
11083 /* If this is a function, put it in the procedure linkage table. We
11084 will fill in the contents of the procedure linkage table later,
11085 when we know the address of the .got section. */
11086 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
11087 || h->needs_plt)
11088 {
11089 if (h->plt.refcount <= 0
11090 || SYMBOL_CALLS_LOCAL (info, h)
11091 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
11092 && h->root.type == bfd_link_hash_undefweak))
11093 {
11094 /* This case can occur if we saw a PLT32 reloc in an input
11095 file, but the symbol was never referred to by a dynamic
11096 object, or if all references were garbage collected. In
11097 such a case, we don't actually need to build a procedure
11098 linkage table, and we can just do a PC24 reloc instead. */
11099 h->plt.offset = (bfd_vma) -1;
11100 eh->plt_thumb_refcount = 0;
11101 eh->plt_maybe_thumb_refcount = 0;
11102 h->needs_plt = 0;
11103 }
11104
11105 return TRUE;
11106 }
11107 else
11108 {
11109 /* It's possible that we incorrectly decided a .plt reloc was
11110 needed for an R_ARM_PC24 or similar reloc to a non-function sym
11111 in check_relocs. We can't decide accurately between function
11112 and non-function syms in check-relocs; Objects loaded later in
11113 the link may change h->type. So fix it now. */
11114 h->plt.offset = (bfd_vma) -1;
11115 eh->plt_thumb_refcount = 0;
11116 eh->plt_maybe_thumb_refcount = 0;
11117 }
11118
11119 /* If this is a weak symbol, and there is a real definition, the
11120 processor independent code will have arranged for us to see the
11121 real definition first, and we can just use the same value. */
11122 if (h->u.weakdef != NULL)
11123 {
11124 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
11125 || h->u.weakdef->root.type == bfd_link_hash_defweak);
11126 h->root.u.def.section = h->u.weakdef->root.u.def.section;
11127 h->root.u.def.value = h->u.weakdef->root.u.def.value;
11128 return TRUE;
11129 }
11130
11131 /* If there are no non-GOT references, we do not need a copy
11132 relocation. */
11133 if (!h->non_got_ref)
11134 return TRUE;
11135
11136 /* This is a reference to a symbol defined by a dynamic object which
11137 is not a function. */
11138
11139 /* If we are creating a shared library, we must presume that the
11140 only references to the symbol are via the global offset table.
11141 For such cases we need not do anything here; the relocations will
11142 be handled correctly by relocate_section. Relocatable executables
11143 can reference data in shared objects directly, so we don't need to
11144 do anything here. */
11145 if (info->shared || globals->root.is_relocatable_executable)
11146 return TRUE;
11147
11148 if (h->size == 0)
11149 {
11150 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
11151 h->root.root.string);
11152 return TRUE;
11153 }
11154
11155 /* We must allocate the symbol in our .dynbss section, which will
11156 become part of the .bss section of the executable. There will be
11157 an entry for this symbol in the .dynsym section. The dynamic
11158 object will contain position independent code, so all references
11159 from the dynamic object to this symbol will go through the global
11160 offset table. The dynamic linker will use the .dynsym entry to
11161 determine the address it must put in the global offset table, so
11162 both the dynamic object and the regular object will refer to the
11163 same memory location for the variable. */
11164 s = bfd_get_section_by_name (dynobj, ".dynbss");
11165 BFD_ASSERT (s != NULL);
11166
11167 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
11168 copy the initial value out of the dynamic object and into the
11169 runtime process image. We need to remember the offset into the
11170 .rel(a).bss section we are going to use. */
11171 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
11172 {
11173 asection *srel;
11174
11175 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
11176 BFD_ASSERT (srel != NULL);
11177 srel->size += RELOC_SIZE (globals);
11178 h->needs_copy = 1;
11179 }
11180
11181 return _bfd_elf_adjust_dynamic_copy (h, s);
11182 }
11183
11184 /* Allocate space in .plt, .got and associated reloc sections for
11185 dynamic relocs. */
11186
11187 static bfd_boolean
11188 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
11189 {
11190 struct bfd_link_info *info;
11191 struct elf32_arm_link_hash_table *htab;
11192 struct elf32_arm_link_hash_entry *eh;
11193 struct elf32_arm_relocs_copied *p;
11194 bfd_signed_vma thumb_refs;
11195
11196 eh = (struct elf32_arm_link_hash_entry *) h;
11197
11198 if (h->root.type == bfd_link_hash_indirect)
11199 return TRUE;
11200
11201 if (h->root.type == bfd_link_hash_warning)
11202 /* When warning symbols are created, they **replace** the "real"
11203 entry in the hash table, thus we never get to see the real
11204 symbol in a hash traversal. So look at it now. */
11205 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11206
11207 info = (struct bfd_link_info *) inf;
11208 htab = elf32_arm_hash_table (info);
11209
11210 if (htab->root.dynamic_sections_created
11211 && h->plt.refcount > 0)
11212 {
11213 /* Make sure this symbol is output as a dynamic symbol.
11214 Undefined weak syms won't yet be marked as dynamic. */
11215 if (h->dynindx == -1
11216 && !h->forced_local)
11217 {
11218 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11219 return FALSE;
11220 }
11221
11222 if (info->shared
11223 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
11224 {
11225 asection *s = htab->splt;
11226
11227 /* If this is the first .plt entry, make room for the special
11228 first entry. */
11229 if (s->size == 0)
11230 s->size += htab->plt_header_size;
11231
11232 h->plt.offset = s->size;
11233
11234 /* If we will insert a Thumb trampoline before this PLT, leave room
11235 for it. */
11236 thumb_refs = eh->plt_thumb_refcount;
11237 if (!htab->use_blx)
11238 thumb_refs += eh->plt_maybe_thumb_refcount;
11239
11240 if (thumb_refs > 0)
11241 {
11242 h->plt.offset += PLT_THUMB_STUB_SIZE;
11243 s->size += PLT_THUMB_STUB_SIZE;
11244 }
11245
11246 /* If this symbol is not defined in a regular file, and we are
11247 not generating a shared library, then set the symbol to this
11248 location in the .plt. This is required to make function
11249 pointers compare as equal between the normal executable and
11250 the shared library. */
11251 if (! info->shared
11252 && !h->def_regular)
11253 {
11254 h->root.u.def.section = s;
11255 h->root.u.def.value = h->plt.offset;
11256
11257 /* Make sure the function is not marked as Thumb, in case
11258 it is the target of an ABS32 relocation, which will
11259 point to the PLT entry. */
11260 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
11261 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11262 }
11263
11264 /* Make room for this entry. */
11265 s->size += htab->plt_entry_size;
11266
11267 if (!htab->symbian_p)
11268 {
11269 /* We also need to make an entry in the .got.plt section, which
11270 will be placed in the .got section by the linker script. */
11271 eh->plt_got_offset = htab->sgotplt->size;
11272 htab->sgotplt->size += 4;
11273 }
11274
11275 /* We also need to make an entry in the .rel(a).plt section. */
11276 htab->srelplt->size += RELOC_SIZE (htab);
11277
11278 /* VxWorks executables have a second set of relocations for
11279 each PLT entry. They go in a separate relocation section,
11280 which is processed by the kernel loader. */
11281 if (htab->vxworks_p && !info->shared)
11282 {
11283 /* There is a relocation for the initial PLT entry:
11284 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
11285 if (h->plt.offset == htab->plt_header_size)
11286 htab->srelplt2->size += RELOC_SIZE (htab);
11287
11288 /* There are two extra relocations for each subsequent
11289 PLT entry: an R_ARM_32 relocation for the GOT entry,
11290 and an R_ARM_32 relocation for the PLT entry. */
11291 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
11292 }
11293 }
11294 else
11295 {
11296 h->plt.offset = (bfd_vma) -1;
11297 h->needs_plt = 0;
11298 }
11299 }
11300 else
11301 {
11302 h->plt.offset = (bfd_vma) -1;
11303 h->needs_plt = 0;
11304 }
11305
11306 if (h->got.refcount > 0)
11307 {
11308 asection *s;
11309 bfd_boolean dyn;
11310 int tls_type = elf32_arm_hash_entry (h)->tls_type;
11311 int indx;
11312
11313 /* Make sure this symbol is output as a dynamic symbol.
11314 Undefined weak syms won't yet be marked as dynamic. */
11315 if (h->dynindx == -1
11316 && !h->forced_local)
11317 {
11318 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11319 return FALSE;
11320 }
11321
11322 if (!htab->symbian_p)
11323 {
11324 s = htab->sgot;
11325 h->got.offset = s->size;
11326
11327 if (tls_type == GOT_UNKNOWN)
11328 abort ();
11329
11330 if (tls_type == GOT_NORMAL)
11331 /* Non-TLS symbols need one GOT slot. */
11332 s->size += 4;
11333 else
11334 {
11335 if (tls_type & GOT_TLS_GD)
11336 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
11337 s->size += 8;
11338 if (tls_type & GOT_TLS_IE)
11339 /* R_ARM_TLS_IE32 needs one GOT slot. */
11340 s->size += 4;
11341 }
11342
11343 dyn = htab->root.dynamic_sections_created;
11344
11345 indx = 0;
11346 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
11347 && (!info->shared
11348 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11349 indx = h->dynindx;
11350
11351 if (tls_type != GOT_NORMAL
11352 && (info->shared || indx != 0)
11353 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11354 || h->root.type != bfd_link_hash_undefweak))
11355 {
11356 if (tls_type & GOT_TLS_IE)
11357 htab->srelgot->size += RELOC_SIZE (htab);
11358
11359 if (tls_type & GOT_TLS_GD)
11360 htab->srelgot->size += RELOC_SIZE (htab);
11361
11362 if ((tls_type & GOT_TLS_GD) && indx != 0)
11363 htab->srelgot->size += RELOC_SIZE (htab);
11364 }
11365 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11366 || h->root.type != bfd_link_hash_undefweak)
11367 && (info->shared
11368 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
11369 htab->srelgot->size += RELOC_SIZE (htab);
11370 }
11371 }
11372 else
11373 h->got.offset = (bfd_vma) -1;
11374
11375 /* Allocate stubs for exported Thumb functions on v4t. */
11376 if (!htab->use_blx && h->dynindx != -1
11377 && h->def_regular
11378 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
11379 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
11380 {
11381 struct elf_link_hash_entry * th;
11382 struct bfd_link_hash_entry * bh;
11383 struct elf_link_hash_entry * myh;
11384 char name[1024];
11385 asection *s;
11386 bh = NULL;
11387 /* Create a new symbol to regist the real location of the function. */
11388 s = h->root.u.def.section;
11389 sprintf (name, "__real_%s", h->root.root.string);
11390 _bfd_generic_link_add_one_symbol (info, s->owner,
11391 name, BSF_GLOBAL, s,
11392 h->root.u.def.value,
11393 NULL, TRUE, FALSE, &bh);
11394
11395 myh = (struct elf_link_hash_entry *) bh;
11396 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
11397 myh->forced_local = 1;
11398 eh->export_glue = myh;
11399 th = record_arm_to_thumb_glue (info, h);
11400 /* Point the symbol at the stub. */
11401 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
11402 h->root.u.def.section = th->root.u.def.section;
11403 h->root.u.def.value = th->root.u.def.value & ~1;
11404 }
11405
11406 if (eh->relocs_copied == NULL)
11407 return TRUE;
11408
11409 /* In the shared -Bsymbolic case, discard space allocated for
11410 dynamic pc-relative relocs against symbols which turn out to be
11411 defined in regular objects. For the normal shared case, discard
11412 space for pc-relative relocs that have become local due to symbol
11413 visibility changes. */
11414
11415 if (info->shared || htab->root.is_relocatable_executable)
11416 {
11417 /* The only relocs that use pc_count are R_ARM_REL32 and
11418 R_ARM_REL32_NOI, which will appear on something like
11419 ".long foo - .". We want calls to protected symbols to resolve
11420 directly to the function rather than going via the plt. If people
11421 want function pointer comparisons to work as expected then they
11422 should avoid writing assembly like ".long foo - .". */
11423 if (SYMBOL_CALLS_LOCAL (info, h))
11424 {
11425 struct elf32_arm_relocs_copied **pp;
11426
11427 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11428 {
11429 p->count -= p->pc_count;
11430 p->pc_count = 0;
11431 if (p->count == 0)
11432 *pp = p->next;
11433 else
11434 pp = &p->next;
11435 }
11436 }
11437
11438 if (elf32_arm_hash_table (info)->vxworks_p)
11439 {
11440 struct elf32_arm_relocs_copied **pp;
11441
11442 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
11443 {
11444 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
11445 *pp = p->next;
11446 else
11447 pp = &p->next;
11448 }
11449 }
11450
11451 /* Also discard relocs on undefined weak syms with non-default
11452 visibility. */
11453 if (eh->relocs_copied != NULL
11454 && h->root.type == bfd_link_hash_undefweak)
11455 {
11456 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
11457 eh->relocs_copied = NULL;
11458
11459 /* Make sure undefined weak symbols are output as a dynamic
11460 symbol in PIEs. */
11461 else if (h->dynindx == -1
11462 && !h->forced_local)
11463 {
11464 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11465 return FALSE;
11466 }
11467 }
11468
11469 else if (htab->root.is_relocatable_executable && h->dynindx == -1
11470 && h->root.type == bfd_link_hash_new)
11471 {
11472 /* Output absolute symbols so that we can create relocations
11473 against them. For normal symbols we output a relocation
11474 against the section that contains them. */
11475 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11476 return FALSE;
11477 }
11478
11479 }
11480 else
11481 {
11482 /* For the non-shared case, discard space for relocs against
11483 symbols which turn out to need copy relocs or are not
11484 dynamic. */
11485
11486 if (!h->non_got_ref
11487 && ((h->def_dynamic
11488 && !h->def_regular)
11489 || (htab->root.dynamic_sections_created
11490 && (h->root.type == bfd_link_hash_undefweak
11491 || h->root.type == bfd_link_hash_undefined))))
11492 {
11493 /* Make sure this symbol is output as a dynamic symbol.
11494 Undefined weak syms won't yet be marked as dynamic. */
11495 if (h->dynindx == -1
11496 && !h->forced_local)
11497 {
11498 if (! bfd_elf_link_record_dynamic_symbol (info, h))
11499 return FALSE;
11500 }
11501
11502 /* If that succeeded, we know we'll be keeping all the
11503 relocs. */
11504 if (h->dynindx != -1)
11505 goto keep;
11506 }
11507
11508 eh->relocs_copied = NULL;
11509
11510 keep: ;
11511 }
11512
11513 /* Finally, allocate space. */
11514 for (p = eh->relocs_copied; p != NULL; p = p->next)
11515 {
11516 asection *sreloc = elf_section_data (p->section)->sreloc;
11517 sreloc->size += p->count * RELOC_SIZE (htab);
11518 }
11519
11520 return TRUE;
11521 }
11522
11523 /* Find any dynamic relocs that apply to read-only sections. */
11524
11525 static bfd_boolean
11526 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
11527 {
11528 struct elf32_arm_link_hash_entry * eh;
11529 struct elf32_arm_relocs_copied * p;
11530
11531 if (h->root.type == bfd_link_hash_warning)
11532 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11533
11534 eh = (struct elf32_arm_link_hash_entry *) h;
11535 for (p = eh->relocs_copied; p != NULL; p = p->next)
11536 {
11537 asection *s = p->section;
11538
11539 if (s != NULL && (s->flags & SEC_READONLY) != 0)
11540 {
11541 struct bfd_link_info *info = (struct bfd_link_info *) inf;
11542
11543 info->flags |= DF_TEXTREL;
11544
11545 /* Not an error, just cut short the traversal. */
11546 return FALSE;
11547 }
11548 }
11549 return TRUE;
11550 }
11551
11552 void
11553 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
11554 int byteswap_code)
11555 {
11556 struct elf32_arm_link_hash_table *globals;
11557
11558 globals = elf32_arm_hash_table (info);
11559 globals->byteswap_code = byteswap_code;
11560 }
11561
11562 /* Set the sizes of the dynamic sections. */
11563
11564 static bfd_boolean
11565 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
11566 struct bfd_link_info * info)
11567 {
11568 bfd * dynobj;
11569 asection * s;
11570 bfd_boolean plt;
11571 bfd_boolean relocs;
11572 bfd *ibfd;
11573 struct elf32_arm_link_hash_table *htab;
11574
11575 htab = elf32_arm_hash_table (info);
11576 dynobj = elf_hash_table (info)->dynobj;
11577 BFD_ASSERT (dynobj != NULL);
11578 check_use_blx (htab);
11579
11580 if (elf_hash_table (info)->dynamic_sections_created)
11581 {
11582 /* Set the contents of the .interp section to the interpreter. */
11583 if (info->executable)
11584 {
11585 s = bfd_get_section_by_name (dynobj, ".interp");
11586 BFD_ASSERT (s != NULL);
11587 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
11588 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
11589 }
11590 }
11591
11592 /* Set up .got offsets for local syms, and space for local dynamic
11593 relocs. */
11594 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11595 {
11596 bfd_signed_vma *local_got;
11597 bfd_signed_vma *end_local_got;
11598 char *local_tls_type;
11599 bfd_size_type locsymcount;
11600 Elf_Internal_Shdr *symtab_hdr;
11601 asection *srel;
11602 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
11603
11604 if (! is_arm_elf (ibfd))
11605 continue;
11606
11607 for (s = ibfd->sections; s != NULL; s = s->next)
11608 {
11609 struct elf32_arm_relocs_copied *p;
11610
11611 for (p = (struct elf32_arm_relocs_copied *)
11612 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
11613 {
11614 if (!bfd_is_abs_section (p->section)
11615 && bfd_is_abs_section (p->section->output_section))
11616 {
11617 /* Input section has been discarded, either because
11618 it is a copy of a linkonce section or due to
11619 linker script /DISCARD/, so we'll be discarding
11620 the relocs too. */
11621 }
11622 else if (is_vxworks
11623 && strcmp (p->section->output_section->name,
11624 ".tls_vars") == 0)
11625 {
11626 /* Relocations in vxworks .tls_vars sections are
11627 handled specially by the loader. */
11628 }
11629 else if (p->count != 0)
11630 {
11631 srel = elf_section_data (p->section)->sreloc;
11632 srel->size += p->count * RELOC_SIZE (htab);
11633 if ((p->section->output_section->flags & SEC_READONLY) != 0)
11634 info->flags |= DF_TEXTREL;
11635 }
11636 }
11637 }
11638
11639 local_got = elf_local_got_refcounts (ibfd);
11640 if (!local_got)
11641 continue;
11642
11643 symtab_hdr = & elf_symtab_hdr (ibfd);
11644 locsymcount = symtab_hdr->sh_info;
11645 end_local_got = local_got + locsymcount;
11646 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
11647 s = htab->sgot;
11648 srel = htab->srelgot;
11649 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
11650 {
11651 if (*local_got > 0)
11652 {
11653 *local_got = s->size;
11654 if (*local_tls_type & GOT_TLS_GD)
11655 /* TLS_GD relocs need an 8-byte structure in the GOT. */
11656 s->size += 8;
11657 if (*local_tls_type & GOT_TLS_IE)
11658 s->size += 4;
11659 if (*local_tls_type == GOT_NORMAL)
11660 s->size += 4;
11661
11662 if (info->shared || *local_tls_type == GOT_TLS_GD)
11663 srel->size += RELOC_SIZE (htab);
11664 }
11665 else
11666 *local_got = (bfd_vma) -1;
11667 }
11668 }
11669
11670 if (htab->tls_ldm_got.refcount > 0)
11671 {
11672 /* Allocate two GOT entries and one dynamic relocation (if necessary)
11673 for R_ARM_TLS_LDM32 relocations. */
11674 htab->tls_ldm_got.offset = htab->sgot->size;
11675 htab->sgot->size += 8;
11676 if (info->shared)
11677 htab->srelgot->size += RELOC_SIZE (htab);
11678 }
11679 else
11680 htab->tls_ldm_got.offset = -1;
11681
11682 /* Allocate global sym .plt and .got entries, and space for global
11683 sym dynamic relocs. */
11684 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
11685
11686 /* Here we rummage through the found bfds to collect glue information. */
11687 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
11688 {
11689 if (! is_arm_elf (ibfd))
11690 continue;
11691
11692 /* Initialise mapping tables for code/data. */
11693 bfd_elf32_arm_init_maps (ibfd);
11694
11695 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
11696 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
11697 /* xgettext:c-format */
11698 _bfd_error_handler (_("Errors encountered processing file %s"),
11699 ibfd->filename);
11700 }
11701
11702 /* Allocate space for the glue sections now that we've sized them. */
11703 bfd_elf32_arm_allocate_interworking_sections (info);
11704
11705 /* The check_relocs and adjust_dynamic_symbol entry points have
11706 determined the sizes of the various dynamic sections. Allocate
11707 memory for them. */
11708 plt = FALSE;
11709 relocs = FALSE;
11710 for (s = dynobj->sections; s != NULL; s = s->next)
11711 {
11712 const char * name;
11713
11714 if ((s->flags & SEC_LINKER_CREATED) == 0)
11715 continue;
11716
11717 /* It's OK to base decisions on the section name, because none
11718 of the dynobj section names depend upon the input files. */
11719 name = bfd_get_section_name (dynobj, s);
11720
11721 if (strcmp (name, ".plt") == 0)
11722 {
11723 /* Remember whether there is a PLT. */
11724 plt = s->size != 0;
11725 }
11726 else if (CONST_STRNEQ (name, ".rel"))
11727 {
11728 if (s->size != 0)
11729 {
11730 /* Remember whether there are any reloc sections other
11731 than .rel(a).plt and .rela.plt.unloaded. */
11732 if (s != htab->srelplt && s != htab->srelplt2)
11733 relocs = TRUE;
11734
11735 /* We use the reloc_count field as a counter if we need
11736 to copy relocs into the output file. */
11737 s->reloc_count = 0;
11738 }
11739 }
11740 else if (! CONST_STRNEQ (name, ".got")
11741 && strcmp (name, ".dynbss") != 0)
11742 {
11743 /* It's not one of our sections, so don't allocate space. */
11744 continue;
11745 }
11746
11747 if (s->size == 0)
11748 {
11749 /* If we don't need this section, strip it from the
11750 output file. This is mostly to handle .rel(a).bss and
11751 .rel(a).plt. We must create both sections in
11752 create_dynamic_sections, because they must be created
11753 before the linker maps input sections to output
11754 sections. The linker does that before
11755 adjust_dynamic_symbol is called, and it is that
11756 function which decides whether anything needs to go
11757 into these sections. */
11758 s->flags |= SEC_EXCLUDE;
11759 continue;
11760 }
11761
11762 if ((s->flags & SEC_HAS_CONTENTS) == 0)
11763 continue;
11764
11765 /* Allocate memory for the section contents. */
11766 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
11767 if (s->contents == NULL)
11768 return FALSE;
11769 }
11770
11771 if (elf_hash_table (info)->dynamic_sections_created)
11772 {
11773 /* Add some entries to the .dynamic section. We fill in the
11774 values later, in elf32_arm_finish_dynamic_sections, but we
11775 must add the entries now so that we get the correct size for
11776 the .dynamic section. The DT_DEBUG entry is filled in by the
11777 dynamic linker and used by the debugger. */
11778 #define add_dynamic_entry(TAG, VAL) \
11779 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
11780
11781 if (info->executable)
11782 {
11783 if (!add_dynamic_entry (DT_DEBUG, 0))
11784 return FALSE;
11785 }
11786
11787 if (plt)
11788 {
11789 if ( !add_dynamic_entry (DT_PLTGOT, 0)
11790 || !add_dynamic_entry (DT_PLTRELSZ, 0)
11791 || !add_dynamic_entry (DT_PLTREL,
11792 htab->use_rel ? DT_REL : DT_RELA)
11793 || !add_dynamic_entry (DT_JMPREL, 0))
11794 return FALSE;
11795 }
11796
11797 if (relocs)
11798 {
11799 if (htab->use_rel)
11800 {
11801 if (!add_dynamic_entry (DT_REL, 0)
11802 || !add_dynamic_entry (DT_RELSZ, 0)
11803 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
11804 return FALSE;
11805 }
11806 else
11807 {
11808 if (!add_dynamic_entry (DT_RELA, 0)
11809 || !add_dynamic_entry (DT_RELASZ, 0)
11810 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
11811 return FALSE;
11812 }
11813 }
11814
11815 /* If any dynamic relocs apply to a read-only section,
11816 then we need a DT_TEXTREL entry. */
11817 if ((info->flags & DF_TEXTREL) == 0)
11818 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
11819 info);
11820
11821 if ((info->flags & DF_TEXTREL) != 0)
11822 {
11823 if (!add_dynamic_entry (DT_TEXTREL, 0))
11824 return FALSE;
11825 }
11826 if (htab->vxworks_p
11827 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
11828 return FALSE;
11829 }
11830 #undef add_dynamic_entry
11831
11832 return TRUE;
11833 }
11834
11835 /* Finish up dynamic symbol handling. We set the contents of various
11836 dynamic sections here. */
11837
11838 static bfd_boolean
11839 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
11840 struct bfd_link_info * info,
11841 struct elf_link_hash_entry * h,
11842 Elf_Internal_Sym * sym)
11843 {
11844 bfd * dynobj;
11845 struct elf32_arm_link_hash_table *htab;
11846 struct elf32_arm_link_hash_entry *eh;
11847
11848 dynobj = elf_hash_table (info)->dynobj;
11849 htab = elf32_arm_hash_table (info);
11850 eh = (struct elf32_arm_link_hash_entry *) h;
11851
11852 if (h->plt.offset != (bfd_vma) -1)
11853 {
11854 asection * splt;
11855 asection * srel;
11856 bfd_byte *loc;
11857 bfd_vma plt_index;
11858 Elf_Internal_Rela rel;
11859
11860 /* This symbol has an entry in the procedure linkage table. Set
11861 it up. */
11862
11863 BFD_ASSERT (h->dynindx != -1);
11864
11865 splt = bfd_get_section_by_name (dynobj, ".plt");
11866 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
11867 BFD_ASSERT (splt != NULL && srel != NULL);
11868
11869 /* Fill in the entry in the procedure linkage table. */
11870 if (htab->symbian_p)
11871 {
11872 put_arm_insn (htab, output_bfd,
11873 elf32_arm_symbian_plt_entry[0],
11874 splt->contents + h->plt.offset);
11875 bfd_put_32 (output_bfd,
11876 elf32_arm_symbian_plt_entry[1],
11877 splt->contents + h->plt.offset + 4);
11878
11879 /* Fill in the entry in the .rel.plt section. */
11880 rel.r_offset = (splt->output_section->vma
11881 + splt->output_offset
11882 + h->plt.offset + 4);
11883 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11884
11885 /* Get the index in the procedure linkage table which
11886 corresponds to this symbol. This is the index of this symbol
11887 in all the symbols for which we are making plt entries. The
11888 first entry in the procedure linkage table is reserved. */
11889 plt_index = ((h->plt.offset - htab->plt_header_size)
11890 / htab->plt_entry_size);
11891 }
11892 else
11893 {
11894 bfd_vma got_offset, got_address, plt_address;
11895 bfd_vma got_displacement;
11896 asection * sgot;
11897 bfd_byte * ptr;
11898
11899 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
11900 BFD_ASSERT (sgot != NULL);
11901
11902 /* Get the offset into the .got.plt table of the entry that
11903 corresponds to this function. */
11904 got_offset = eh->plt_got_offset;
11905
11906 /* Get the index in the procedure linkage table which
11907 corresponds to this symbol. This is the index of this symbol
11908 in all the symbols for which we are making plt entries. The
11909 first three entries in .got.plt are reserved; after that
11910 symbols appear in the same order as in .plt. */
11911 plt_index = (got_offset - 12) / 4;
11912
11913 /* Calculate the address of the GOT entry. */
11914 got_address = (sgot->output_section->vma
11915 + sgot->output_offset
11916 + got_offset);
11917
11918 /* ...and the address of the PLT entry. */
11919 plt_address = (splt->output_section->vma
11920 + splt->output_offset
11921 + h->plt.offset);
11922
11923 ptr = htab->splt->contents + h->plt.offset;
11924 if (htab->vxworks_p && info->shared)
11925 {
11926 unsigned int i;
11927 bfd_vma val;
11928
11929 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
11930 {
11931 val = elf32_arm_vxworks_shared_plt_entry[i];
11932 if (i == 2)
11933 val |= got_address - sgot->output_section->vma;
11934 if (i == 5)
11935 val |= plt_index * RELOC_SIZE (htab);
11936 if (i == 2 || i == 5)
11937 bfd_put_32 (output_bfd, val, ptr);
11938 else
11939 put_arm_insn (htab, output_bfd, val, ptr);
11940 }
11941 }
11942 else if (htab->vxworks_p)
11943 {
11944 unsigned int i;
11945 bfd_vma val;
11946
11947 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
11948 {
11949 val = elf32_arm_vxworks_exec_plt_entry[i];
11950 if (i == 2)
11951 val |= got_address;
11952 if (i == 4)
11953 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
11954 if (i == 5)
11955 val |= plt_index * RELOC_SIZE (htab);
11956 if (i == 2 || i == 5)
11957 bfd_put_32 (output_bfd, val, ptr);
11958 else
11959 put_arm_insn (htab, output_bfd, val, ptr);
11960 }
11961
11962 loc = (htab->srelplt2->contents
11963 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
11964
11965 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
11966 referencing the GOT for this PLT entry. */
11967 rel.r_offset = plt_address + 8;
11968 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11969 rel.r_addend = got_offset;
11970 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11971 loc += RELOC_SIZE (htab);
11972
11973 /* Create the R_ARM_ABS32 relocation referencing the
11974 beginning of the PLT for this GOT entry. */
11975 rel.r_offset = got_address;
11976 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
11977 rel.r_addend = 0;
11978 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
11979 }
11980 else
11981 {
11982 bfd_signed_vma thumb_refs;
11983 /* Calculate the displacement between the PLT slot and the
11984 entry in the GOT. The eight-byte offset accounts for the
11985 value produced by adding to pc in the first instruction
11986 of the PLT stub. */
11987 got_displacement = got_address - (plt_address + 8);
11988
11989 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
11990
11991 thumb_refs = eh->plt_thumb_refcount;
11992 if (!htab->use_blx)
11993 thumb_refs += eh->plt_maybe_thumb_refcount;
11994
11995 if (thumb_refs > 0)
11996 {
11997 put_thumb_insn (htab, output_bfd,
11998 elf32_arm_plt_thumb_stub[0], ptr - 4);
11999 put_thumb_insn (htab, output_bfd,
12000 elf32_arm_plt_thumb_stub[1], ptr - 2);
12001 }
12002
12003 put_arm_insn (htab, output_bfd,
12004 elf32_arm_plt_entry[0]
12005 | ((got_displacement & 0x0ff00000) >> 20),
12006 ptr + 0);
12007 put_arm_insn (htab, output_bfd,
12008 elf32_arm_plt_entry[1]
12009 | ((got_displacement & 0x000ff000) >> 12),
12010 ptr+ 4);
12011 put_arm_insn (htab, output_bfd,
12012 elf32_arm_plt_entry[2]
12013 | (got_displacement & 0x00000fff),
12014 ptr + 8);
12015 #ifdef FOUR_WORD_PLT
12016 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
12017 #endif
12018 }
12019
12020 /* Fill in the entry in the global offset table. */
12021 bfd_put_32 (output_bfd,
12022 (splt->output_section->vma
12023 + splt->output_offset),
12024 sgot->contents + got_offset);
12025
12026 /* Fill in the entry in the .rel(a).plt section. */
12027 rel.r_addend = 0;
12028 rel.r_offset = got_address;
12029 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
12030 }
12031
12032 loc = srel->contents + plt_index * RELOC_SIZE (htab);
12033 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12034
12035 if (!h->def_regular)
12036 {
12037 /* Mark the symbol as undefined, rather than as defined in
12038 the .plt section. Leave the value alone. */
12039 sym->st_shndx = SHN_UNDEF;
12040 /* If the symbol is weak, we do need to clear the value.
12041 Otherwise, the PLT entry would provide a definition for
12042 the symbol even if the symbol wasn't defined anywhere,
12043 and so the symbol would never be NULL. */
12044 if (!h->ref_regular_nonweak)
12045 sym->st_value = 0;
12046 }
12047 }
12048
12049 if (h->got.offset != (bfd_vma) -1
12050 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
12051 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
12052 {
12053 asection * sgot;
12054 asection * srel;
12055 Elf_Internal_Rela rel;
12056 bfd_byte *loc;
12057 bfd_vma offset;
12058
12059 /* This symbol has an entry in the global offset table. Set it
12060 up. */
12061 sgot = bfd_get_section_by_name (dynobj, ".got");
12062 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
12063 BFD_ASSERT (sgot != NULL && srel != NULL);
12064
12065 offset = (h->got.offset & ~(bfd_vma) 1);
12066 rel.r_addend = 0;
12067 rel.r_offset = (sgot->output_section->vma
12068 + sgot->output_offset
12069 + offset);
12070
12071 /* If this is a static link, or it is a -Bsymbolic link and the
12072 symbol is defined locally or was forced to be local because
12073 of a version file, we just want to emit a RELATIVE reloc.
12074 The entry in the global offset table will already have been
12075 initialized in the relocate_section function. */
12076 if (info->shared
12077 && SYMBOL_REFERENCES_LOCAL (info, h))
12078 {
12079 BFD_ASSERT ((h->got.offset & 1) != 0);
12080 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12081 if (!htab->use_rel)
12082 {
12083 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
12084 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
12085 }
12086 }
12087 else
12088 {
12089 BFD_ASSERT ((h->got.offset & 1) == 0);
12090 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
12091 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
12092 }
12093
12094 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
12095 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12096 }
12097
12098 if (h->needs_copy)
12099 {
12100 asection * s;
12101 Elf_Internal_Rela rel;
12102 bfd_byte *loc;
12103
12104 /* This symbol needs a copy reloc. Set it up. */
12105 BFD_ASSERT (h->dynindx != -1
12106 && (h->root.type == bfd_link_hash_defined
12107 || h->root.type == bfd_link_hash_defweak));
12108
12109 s = bfd_get_section_by_name (h->root.u.def.section->owner,
12110 RELOC_SECTION (htab, ".bss"));
12111 BFD_ASSERT (s != NULL);
12112
12113 rel.r_addend = 0;
12114 rel.r_offset = (h->root.u.def.value
12115 + h->root.u.def.section->output_section->vma
12116 + h->root.u.def.section->output_offset);
12117 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
12118 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
12119 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
12120 }
12121
12122 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
12123 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
12124 to the ".got" section. */
12125 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
12126 || (!htab->vxworks_p && h == htab->root.hgot))
12127 sym->st_shndx = SHN_ABS;
12128
12129 return TRUE;
12130 }
12131
12132 /* Finish up the dynamic sections. */
12133
12134 static bfd_boolean
12135 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
12136 {
12137 bfd * dynobj;
12138 asection * sgot;
12139 asection * sdyn;
12140
12141 dynobj = elf_hash_table (info)->dynobj;
12142
12143 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
12144 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
12145 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
12146
12147 if (elf_hash_table (info)->dynamic_sections_created)
12148 {
12149 asection *splt;
12150 Elf32_External_Dyn *dyncon, *dynconend;
12151 struct elf32_arm_link_hash_table *htab;
12152
12153 htab = elf32_arm_hash_table (info);
12154 splt = bfd_get_section_by_name (dynobj, ".plt");
12155 BFD_ASSERT (splt != NULL && sdyn != NULL);
12156
12157 dyncon = (Elf32_External_Dyn *) sdyn->contents;
12158 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
12159
12160 for (; dyncon < dynconend; dyncon++)
12161 {
12162 Elf_Internal_Dyn dyn;
12163 const char * name;
12164 asection * s;
12165
12166 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
12167
12168 switch (dyn.d_tag)
12169 {
12170 unsigned int type;
12171
12172 default:
12173 if (htab->vxworks_p
12174 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12175 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12176 break;
12177
12178 case DT_HASH:
12179 name = ".hash";
12180 goto get_vma_if_bpabi;
12181 case DT_STRTAB:
12182 name = ".dynstr";
12183 goto get_vma_if_bpabi;
12184 case DT_SYMTAB:
12185 name = ".dynsym";
12186 goto get_vma_if_bpabi;
12187 case DT_VERSYM:
12188 name = ".gnu.version";
12189 goto get_vma_if_bpabi;
12190 case DT_VERDEF:
12191 name = ".gnu.version_d";
12192 goto get_vma_if_bpabi;
12193 case DT_VERNEED:
12194 name = ".gnu.version_r";
12195 goto get_vma_if_bpabi;
12196
12197 case DT_PLTGOT:
12198 name = ".got";
12199 goto get_vma;
12200 case DT_JMPREL:
12201 name = RELOC_SECTION (htab, ".plt");
12202 get_vma:
12203 s = bfd_get_section_by_name (output_bfd, name);
12204 BFD_ASSERT (s != NULL);
12205 if (!htab->symbian_p)
12206 dyn.d_un.d_ptr = s->vma;
12207 else
12208 /* In the BPABI, tags in the PT_DYNAMIC section point
12209 at the file offset, not the memory address, for the
12210 convenience of the post linker. */
12211 dyn.d_un.d_ptr = s->filepos;
12212 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12213 break;
12214
12215 get_vma_if_bpabi:
12216 if (htab->symbian_p)
12217 goto get_vma;
12218 break;
12219
12220 case DT_PLTRELSZ:
12221 s = bfd_get_section_by_name (output_bfd,
12222 RELOC_SECTION (htab, ".plt"));
12223 BFD_ASSERT (s != NULL);
12224 dyn.d_un.d_val = s->size;
12225 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12226 break;
12227
12228 case DT_RELSZ:
12229 case DT_RELASZ:
12230 if (!htab->symbian_p)
12231 {
12232 /* My reading of the SVR4 ABI indicates that the
12233 procedure linkage table relocs (DT_JMPREL) should be
12234 included in the overall relocs (DT_REL). This is
12235 what Solaris does. However, UnixWare can not handle
12236 that case. Therefore, we override the DT_RELSZ entry
12237 here to make it not include the JMPREL relocs. Since
12238 the linker script arranges for .rel(a).plt to follow all
12239 other relocation sections, we don't have to worry
12240 about changing the DT_REL entry. */
12241 s = bfd_get_section_by_name (output_bfd,
12242 RELOC_SECTION (htab, ".plt"));
12243 if (s != NULL)
12244 dyn.d_un.d_val -= s->size;
12245 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12246 break;
12247 }
12248 /* Fall through. */
12249
12250 case DT_REL:
12251 case DT_RELA:
12252 /* In the BPABI, the DT_REL tag must point at the file
12253 offset, not the VMA, of the first relocation
12254 section. So, we use code similar to that in
12255 elflink.c, but do not check for SHF_ALLOC on the
12256 relcoation section, since relocations sections are
12257 never allocated under the BPABI. The comments above
12258 about Unixware notwithstanding, we include all of the
12259 relocations here. */
12260 if (htab->symbian_p)
12261 {
12262 unsigned int i;
12263 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
12264 ? SHT_REL : SHT_RELA);
12265 dyn.d_un.d_val = 0;
12266 for (i = 1; i < elf_numsections (output_bfd); i++)
12267 {
12268 Elf_Internal_Shdr *hdr
12269 = elf_elfsections (output_bfd)[i];
12270 if (hdr->sh_type == type)
12271 {
12272 if (dyn.d_tag == DT_RELSZ
12273 || dyn.d_tag == DT_RELASZ)
12274 dyn.d_un.d_val += hdr->sh_size;
12275 else if ((ufile_ptr) hdr->sh_offset
12276 <= dyn.d_un.d_val - 1)
12277 dyn.d_un.d_val = hdr->sh_offset;
12278 }
12279 }
12280 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12281 }
12282 break;
12283
12284 /* Set the bottom bit of DT_INIT/FINI if the
12285 corresponding function is Thumb. */
12286 case DT_INIT:
12287 name = info->init_function;
12288 goto get_sym;
12289 case DT_FINI:
12290 name = info->fini_function;
12291 get_sym:
12292 /* If it wasn't set by elf_bfd_final_link
12293 then there is nothing to adjust. */
12294 if (dyn.d_un.d_val != 0)
12295 {
12296 struct elf_link_hash_entry * eh;
12297
12298 eh = elf_link_hash_lookup (elf_hash_table (info), name,
12299 FALSE, FALSE, TRUE);
12300 if (eh != NULL
12301 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
12302 {
12303 dyn.d_un.d_val |= 1;
12304 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
12305 }
12306 }
12307 break;
12308 }
12309 }
12310
12311 /* Fill in the first entry in the procedure linkage table. */
12312 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
12313 {
12314 const bfd_vma *plt0_entry;
12315 bfd_vma got_address, plt_address, got_displacement;
12316
12317 /* Calculate the addresses of the GOT and PLT. */
12318 got_address = sgot->output_section->vma + sgot->output_offset;
12319 plt_address = splt->output_section->vma + splt->output_offset;
12320
12321 if (htab->vxworks_p)
12322 {
12323 /* The VxWorks GOT is relocated by the dynamic linker.
12324 Therefore, we must emit relocations rather than simply
12325 computing the values now. */
12326 Elf_Internal_Rela rel;
12327
12328 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
12329 put_arm_insn (htab, output_bfd, plt0_entry[0],
12330 splt->contents + 0);
12331 put_arm_insn (htab, output_bfd, plt0_entry[1],
12332 splt->contents + 4);
12333 put_arm_insn (htab, output_bfd, plt0_entry[2],
12334 splt->contents + 8);
12335 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
12336
12337 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
12338 rel.r_offset = plt_address + 12;
12339 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12340 rel.r_addend = 0;
12341 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
12342 htab->srelplt2->contents);
12343 }
12344 else
12345 {
12346 got_displacement = got_address - (plt_address + 16);
12347
12348 plt0_entry = elf32_arm_plt0_entry;
12349 put_arm_insn (htab, output_bfd, plt0_entry[0],
12350 splt->contents + 0);
12351 put_arm_insn (htab, output_bfd, plt0_entry[1],
12352 splt->contents + 4);
12353 put_arm_insn (htab, output_bfd, plt0_entry[2],
12354 splt->contents + 8);
12355 put_arm_insn (htab, output_bfd, plt0_entry[3],
12356 splt->contents + 12);
12357
12358 #ifdef FOUR_WORD_PLT
12359 /* The displacement value goes in the otherwise-unused
12360 last word of the second entry. */
12361 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
12362 #else
12363 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
12364 #endif
12365 }
12366 }
12367
12368 /* UnixWare sets the entsize of .plt to 4, although that doesn't
12369 really seem like the right value. */
12370 if (splt->output_section->owner == output_bfd)
12371 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
12372
12373 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
12374 {
12375 /* Correct the .rel(a).plt.unloaded relocations. They will have
12376 incorrect symbol indexes. */
12377 int num_plts;
12378 unsigned char *p;
12379
12380 num_plts = ((htab->splt->size - htab->plt_header_size)
12381 / htab->plt_entry_size);
12382 p = htab->srelplt2->contents + RELOC_SIZE (htab);
12383
12384 for (; num_plts; num_plts--)
12385 {
12386 Elf_Internal_Rela rel;
12387
12388 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12389 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
12390 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12391 p += RELOC_SIZE (htab);
12392
12393 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
12394 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
12395 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
12396 p += RELOC_SIZE (htab);
12397 }
12398 }
12399 }
12400
12401 /* Fill in the first three entries in the global offset table. */
12402 if (sgot)
12403 {
12404 if (sgot->size > 0)
12405 {
12406 if (sdyn == NULL)
12407 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
12408 else
12409 bfd_put_32 (output_bfd,
12410 sdyn->output_section->vma + sdyn->output_offset,
12411 sgot->contents);
12412 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
12413 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
12414 }
12415
12416 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
12417 }
12418
12419 return TRUE;
12420 }
12421
12422 static void
12423 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
12424 {
12425 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
12426 struct elf32_arm_link_hash_table *globals;
12427
12428 i_ehdrp = elf_elfheader (abfd);
12429
12430 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
12431 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
12432 else
12433 i_ehdrp->e_ident[EI_OSABI] = 0;
12434 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
12435
12436 if (link_info)
12437 {
12438 globals = elf32_arm_hash_table (link_info);
12439 if (globals->byteswap_code)
12440 i_ehdrp->e_flags |= EF_ARM_BE8;
12441 }
12442 }
12443
12444 static enum elf_reloc_type_class
12445 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
12446 {
12447 switch ((int) ELF32_R_TYPE (rela->r_info))
12448 {
12449 case R_ARM_RELATIVE:
12450 return reloc_class_relative;
12451 case R_ARM_JUMP_SLOT:
12452 return reloc_class_plt;
12453 case R_ARM_COPY:
12454 return reloc_class_copy;
12455 default:
12456 return reloc_class_normal;
12457 }
12458 }
12459
12460 /* Set the right machine number for an Arm ELF file. */
12461
12462 static bfd_boolean
12463 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
12464 {
12465 if (hdr->sh_type == SHT_NOTE)
12466 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
12467
12468 return TRUE;
12469 }
12470
12471 static void
12472 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
12473 {
12474 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
12475 }
12476
12477 /* Return TRUE if this is an unwinding table entry. */
12478
12479 static bfd_boolean
12480 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
12481 {
12482 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
12483 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
12484 }
12485
12486
12487 /* Set the type and flags for an ARM section. We do this by
12488 the section name, which is a hack, but ought to work. */
12489
12490 static bfd_boolean
12491 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
12492 {
12493 const char * name;
12494
12495 name = bfd_get_section_name (abfd, sec);
12496
12497 if (is_arm_elf_unwind_section_name (abfd, name))
12498 {
12499 hdr->sh_type = SHT_ARM_EXIDX;
12500 hdr->sh_flags |= SHF_LINK_ORDER;
12501 }
12502 return TRUE;
12503 }
12504
12505 /* Handle an ARM specific section when reading an object file. This is
12506 called when bfd_section_from_shdr finds a section with an unknown
12507 type. */
12508
12509 static bfd_boolean
12510 elf32_arm_section_from_shdr (bfd *abfd,
12511 Elf_Internal_Shdr * hdr,
12512 const char *name,
12513 int shindex)
12514 {
12515 /* There ought to be a place to keep ELF backend specific flags, but
12516 at the moment there isn't one. We just keep track of the
12517 sections by their name, instead. Fortunately, the ABI gives
12518 names for all the ARM specific sections, so we will probably get
12519 away with this. */
12520 switch (hdr->sh_type)
12521 {
12522 case SHT_ARM_EXIDX:
12523 case SHT_ARM_PREEMPTMAP:
12524 case SHT_ARM_ATTRIBUTES:
12525 break;
12526
12527 default:
12528 return FALSE;
12529 }
12530
12531 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
12532 return FALSE;
12533
12534 return TRUE;
12535 }
12536
12537 /* A structure used to record a list of sections, independently
12538 of the next and prev fields in the asection structure. */
12539 typedef struct section_list
12540 {
12541 asection * sec;
12542 struct section_list * next;
12543 struct section_list * prev;
12544 }
12545 section_list;
12546
12547 /* Unfortunately we need to keep a list of sections for which
12548 an _arm_elf_section_data structure has been allocated. This
12549 is because it is possible for functions like elf32_arm_write_section
12550 to be called on a section which has had an elf_data_structure
12551 allocated for it (and so the used_by_bfd field is valid) but
12552 for which the ARM extended version of this structure - the
12553 _arm_elf_section_data structure - has not been allocated. */
12554 static section_list * sections_with_arm_elf_section_data = NULL;
12555
12556 static void
12557 record_section_with_arm_elf_section_data (asection * sec)
12558 {
12559 struct section_list * entry;
12560
12561 entry = (struct section_list *) bfd_malloc (sizeof (* entry));
12562 if (entry == NULL)
12563 return;
12564 entry->sec = sec;
12565 entry->next = sections_with_arm_elf_section_data;
12566 entry->prev = NULL;
12567 if (entry->next != NULL)
12568 entry->next->prev = entry;
12569 sections_with_arm_elf_section_data = entry;
12570 }
12571
12572 static struct section_list *
12573 find_arm_elf_section_entry (asection * sec)
12574 {
12575 struct section_list * entry;
12576 static struct section_list * last_entry = NULL;
12577
12578 /* This is a short cut for the typical case where the sections are added
12579 to the sections_with_arm_elf_section_data list in forward order and
12580 then looked up here in backwards order. This makes a real difference
12581 to the ld-srec/sec64k.exp linker test. */
12582 entry = sections_with_arm_elf_section_data;
12583 if (last_entry != NULL)
12584 {
12585 if (last_entry->sec == sec)
12586 entry = last_entry;
12587 else if (last_entry->next != NULL
12588 && last_entry->next->sec == sec)
12589 entry = last_entry->next;
12590 }
12591
12592 for (; entry; entry = entry->next)
12593 if (entry->sec == sec)
12594 break;
12595
12596 if (entry)
12597 /* Record the entry prior to this one - it is the entry we are most
12598 likely to want to locate next time. Also this way if we have been
12599 called from unrecord_section_with_arm_elf_section_data() we will not
12600 be caching a pointer that is about to be freed. */
12601 last_entry = entry->prev;
12602
12603 return entry;
12604 }
12605
12606 static _arm_elf_section_data *
12607 get_arm_elf_section_data (asection * sec)
12608 {
12609 struct section_list * entry;
12610
12611 entry = find_arm_elf_section_entry (sec);
12612
12613 if (entry)
12614 return elf32_arm_section_data (entry->sec);
12615 else
12616 return NULL;
12617 }
12618
12619 static void
12620 unrecord_section_with_arm_elf_section_data (asection * sec)
12621 {
12622 struct section_list * entry;
12623
12624 entry = find_arm_elf_section_entry (sec);
12625
12626 if (entry)
12627 {
12628 if (entry->prev != NULL)
12629 entry->prev->next = entry->next;
12630 if (entry->next != NULL)
12631 entry->next->prev = entry->prev;
12632 if (entry == sections_with_arm_elf_section_data)
12633 sections_with_arm_elf_section_data = entry->next;
12634 free (entry);
12635 }
12636 }
12637
12638
12639 typedef struct
12640 {
12641 void *finfo;
12642 struct bfd_link_info *info;
12643 asection *sec;
12644 int sec_shndx;
12645 int (*func) (void *, const char *, Elf_Internal_Sym *,
12646 asection *, struct elf_link_hash_entry *);
12647 } output_arch_syminfo;
12648
12649 enum map_symbol_type
12650 {
12651 ARM_MAP_ARM,
12652 ARM_MAP_THUMB,
12653 ARM_MAP_DATA
12654 };
12655
12656
12657 /* Output a single mapping symbol. */
12658
12659 static bfd_boolean
12660 elf32_arm_output_map_sym (output_arch_syminfo *osi,
12661 enum map_symbol_type type,
12662 bfd_vma offset)
12663 {
12664 static const char *names[3] = {"$a", "$t", "$d"};
12665 struct elf32_arm_link_hash_table *htab;
12666 Elf_Internal_Sym sym;
12667
12668 htab = elf32_arm_hash_table (osi->info);
12669 sym.st_value = osi->sec->output_section->vma
12670 + osi->sec->output_offset
12671 + offset;
12672 sym.st_size = 0;
12673 sym.st_other = 0;
12674 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
12675 sym.st_shndx = osi->sec_shndx;
12676 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
12677 }
12678
12679
12680 /* Output mapping symbols for PLT entries associated with H. */
12681
12682 static bfd_boolean
12683 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
12684 {
12685 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
12686 struct elf32_arm_link_hash_table *htab;
12687 struct elf32_arm_link_hash_entry *eh;
12688 bfd_vma addr;
12689
12690 htab = elf32_arm_hash_table (osi->info);
12691
12692 if (h->root.type == bfd_link_hash_indirect)
12693 return TRUE;
12694
12695 if (h->root.type == bfd_link_hash_warning)
12696 /* When warning symbols are created, they **replace** the "real"
12697 entry in the hash table, thus we never get to see the real
12698 symbol in a hash traversal. So look at it now. */
12699 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12700
12701 if (h->plt.offset == (bfd_vma) -1)
12702 return TRUE;
12703
12704 eh = (struct elf32_arm_link_hash_entry *) h;
12705 addr = h->plt.offset;
12706 if (htab->symbian_p)
12707 {
12708 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12709 return FALSE;
12710 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
12711 return FALSE;
12712 }
12713 else if (htab->vxworks_p)
12714 {
12715 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12716 return FALSE;
12717 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
12718 return FALSE;
12719 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
12720 return FALSE;
12721 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
12722 return FALSE;
12723 }
12724 else
12725 {
12726 bfd_signed_vma thumb_refs;
12727
12728 thumb_refs = eh->plt_thumb_refcount;
12729 if (!htab->use_blx)
12730 thumb_refs += eh->plt_maybe_thumb_refcount;
12731
12732 if (thumb_refs > 0)
12733 {
12734 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
12735 return FALSE;
12736 }
12737 #ifdef FOUR_WORD_PLT
12738 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12739 return FALSE;
12740 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
12741 return FALSE;
12742 #else
12743 /* A three-word PLT with no Thumb thunk contains only Arm code,
12744 so only need to output a mapping symbol for the first PLT entry and
12745 entries with thumb thunks. */
12746 if (thumb_refs > 0 || addr == 20)
12747 {
12748 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
12749 return FALSE;
12750 }
12751 #endif
12752 }
12753
12754 return TRUE;
12755 }
12756
12757 /* Output a single local symbol for a generated stub. */
12758
12759 static bfd_boolean
12760 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
12761 bfd_vma offset, bfd_vma size)
12762 {
12763 struct elf32_arm_link_hash_table *htab;
12764 Elf_Internal_Sym sym;
12765
12766 htab = elf32_arm_hash_table (osi->info);
12767 sym.st_value = osi->sec->output_section->vma
12768 + osi->sec->output_offset
12769 + offset;
12770 sym.st_size = size;
12771 sym.st_other = 0;
12772 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
12773 sym.st_shndx = osi->sec_shndx;
12774 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
12775 }
12776
12777 static bfd_boolean
12778 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
12779 void * in_arg)
12780 {
12781 struct elf32_arm_stub_hash_entry *stub_entry;
12782 struct bfd_link_info *info;
12783 struct elf32_arm_link_hash_table *htab;
12784 asection *stub_sec;
12785 bfd_vma addr;
12786 char *stub_name;
12787 output_arch_syminfo *osi;
12788 const insn_sequence *template_sequence;
12789 enum stub_insn_type prev_type;
12790 int size;
12791 int i;
12792 enum map_symbol_type sym_type;
12793
12794 /* Massage our args to the form they really have. */
12795 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
12796 osi = (output_arch_syminfo *) in_arg;
12797
12798 info = osi->info;
12799
12800 htab = elf32_arm_hash_table (info);
12801 stub_sec = stub_entry->stub_sec;
12802
12803 /* Ensure this stub is attached to the current section being
12804 processed. */
12805 if (stub_sec != osi->sec)
12806 return TRUE;
12807
12808 addr = (bfd_vma) stub_entry->stub_offset;
12809 stub_name = stub_entry->output_name;
12810
12811 template_sequence = stub_entry->stub_template;
12812 switch (template_sequence[0].type)
12813 {
12814 case ARM_TYPE:
12815 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
12816 return FALSE;
12817 break;
12818 case THUMB16_TYPE:
12819 case THUMB32_TYPE:
12820 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
12821 stub_entry->stub_size))
12822 return FALSE;
12823 break;
12824 default:
12825 BFD_FAIL ();
12826 return 0;
12827 }
12828
12829 prev_type = DATA_TYPE;
12830 size = 0;
12831 for (i = 0; i < stub_entry->stub_template_size; i++)
12832 {
12833 switch (template_sequence[i].type)
12834 {
12835 case ARM_TYPE:
12836 sym_type = ARM_MAP_ARM;
12837 break;
12838
12839 case THUMB16_TYPE:
12840 case THUMB32_TYPE:
12841 sym_type = ARM_MAP_THUMB;
12842 break;
12843
12844 case DATA_TYPE:
12845 sym_type = ARM_MAP_DATA;
12846 break;
12847
12848 default:
12849 BFD_FAIL ();
12850 return FALSE;
12851 }
12852
12853 if (template_sequence[i].type != prev_type)
12854 {
12855 prev_type = template_sequence[i].type;
12856 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
12857 return FALSE;
12858 }
12859
12860 switch (template_sequence[i].type)
12861 {
12862 case ARM_TYPE:
12863 case THUMB32_TYPE:
12864 size += 4;
12865 break;
12866
12867 case THUMB16_TYPE:
12868 size += 2;
12869 break;
12870
12871 case DATA_TYPE:
12872 size += 4;
12873 break;
12874
12875 default:
12876 BFD_FAIL ();
12877 return FALSE;
12878 }
12879 }
12880
12881 return TRUE;
12882 }
12883
12884 /* Output mapping symbols for linker generated sections. */
12885
12886 static bfd_boolean
12887 elf32_arm_output_arch_local_syms (bfd *output_bfd,
12888 struct bfd_link_info *info,
12889 void *finfo,
12890 int (*func) (void *, const char *,
12891 Elf_Internal_Sym *,
12892 asection *,
12893 struct elf_link_hash_entry *))
12894 {
12895 output_arch_syminfo osi;
12896 struct elf32_arm_link_hash_table *htab;
12897 bfd_vma offset;
12898 bfd_size_type size;
12899
12900 htab = elf32_arm_hash_table (info);
12901 check_use_blx (htab);
12902
12903 osi.finfo = finfo;
12904 osi.info = info;
12905 osi.func = func;
12906
12907 /* ARM->Thumb glue. */
12908 if (htab->arm_glue_size > 0)
12909 {
12910 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
12911 ARM2THUMB_GLUE_SECTION_NAME);
12912
12913 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12914 (output_bfd, osi.sec->output_section);
12915 if (info->shared || htab->root.is_relocatable_executable
12916 || htab->pic_veneer)
12917 size = ARM2THUMB_PIC_GLUE_SIZE;
12918 else if (htab->use_blx)
12919 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
12920 else
12921 size = ARM2THUMB_STATIC_GLUE_SIZE;
12922
12923 for (offset = 0; offset < htab->arm_glue_size; offset += size)
12924 {
12925 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
12926 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
12927 }
12928 }
12929
12930 /* Thumb->ARM glue. */
12931 if (htab->thumb_glue_size > 0)
12932 {
12933 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
12934 THUMB2ARM_GLUE_SECTION_NAME);
12935
12936 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12937 (output_bfd, osi.sec->output_section);
12938 size = THUMB2ARM_GLUE_SIZE;
12939
12940 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
12941 {
12942 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
12943 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
12944 }
12945 }
12946
12947 /* ARMv4 BX veneers. */
12948 if (htab->bx_glue_size > 0)
12949 {
12950 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
12951 ARM_BX_GLUE_SECTION_NAME);
12952
12953 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12954 (output_bfd, osi.sec->output_section);
12955
12956 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
12957 }
12958
12959 /* Long calls stubs. */
12960 if (htab->stub_bfd && htab->stub_bfd->sections)
12961 {
12962 asection* stub_sec;
12963
12964 for (stub_sec = htab->stub_bfd->sections;
12965 stub_sec != NULL;
12966 stub_sec = stub_sec->next)
12967 {
12968 /* Ignore non-stub sections. */
12969 if (!strstr (stub_sec->name, STUB_SUFFIX))
12970 continue;
12971
12972 osi.sec = stub_sec;
12973
12974 osi.sec_shndx = _bfd_elf_section_from_bfd_section
12975 (output_bfd, osi.sec->output_section);
12976
12977 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
12978 }
12979 }
12980
12981 /* Finally, output mapping symbols for the PLT. */
12982 if (!htab->splt || htab->splt->size == 0)
12983 return TRUE;
12984
12985 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
12986 htab->splt->output_section);
12987 osi.sec = htab->splt;
12988 /* Output mapping symbols for the plt header. SymbianOS does not have a
12989 plt header. */
12990 if (htab->vxworks_p)
12991 {
12992 /* VxWorks shared libraries have no PLT header. */
12993 if (!info->shared)
12994 {
12995 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
12996 return FALSE;
12997 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
12998 return FALSE;
12999 }
13000 }
13001 else if (!htab->symbian_p)
13002 {
13003 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
13004 return FALSE;
13005 #ifndef FOUR_WORD_PLT
13006 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
13007 return FALSE;
13008 #endif
13009 }
13010
13011 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
13012 return TRUE;
13013 }
13014
13015 /* Allocate target specific section data. */
13016
13017 static bfd_boolean
13018 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
13019 {
13020 if (!sec->used_by_bfd)
13021 {
13022 _arm_elf_section_data *sdata;
13023 bfd_size_type amt = sizeof (*sdata);
13024
13025 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
13026 if (sdata == NULL)
13027 return FALSE;
13028 sec->used_by_bfd = sdata;
13029 }
13030
13031 record_section_with_arm_elf_section_data (sec);
13032
13033 return _bfd_elf_new_section_hook (abfd, sec);
13034 }
13035
13036
13037 /* Used to order a list of mapping symbols by address. */
13038
13039 static int
13040 elf32_arm_compare_mapping (const void * a, const void * b)
13041 {
13042 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
13043 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
13044
13045 if (amap->vma > bmap->vma)
13046 return 1;
13047 else if (amap->vma < bmap->vma)
13048 return -1;
13049 else if (amap->type > bmap->type)
13050 /* Ensure results do not depend on the host qsort for objects with
13051 multiple mapping symbols at the same address by sorting on type
13052 after vma. */
13053 return 1;
13054 else if (amap->type < bmap->type)
13055 return -1;
13056 else
13057 return 0;
13058 }
13059
13060 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
13061
13062 static unsigned long
13063 offset_prel31 (unsigned long addr, bfd_vma offset)
13064 {
13065 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
13066 }
13067
13068 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
13069 relocations. */
13070
13071 static void
13072 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
13073 {
13074 unsigned long first_word = bfd_get_32 (output_bfd, from);
13075 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
13076
13077 /* High bit of first word is supposed to be zero. */
13078 if ((first_word & 0x80000000ul) == 0)
13079 first_word = offset_prel31 (first_word, offset);
13080
13081 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
13082 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
13083 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
13084 second_word = offset_prel31 (second_word, offset);
13085
13086 bfd_put_32 (output_bfd, first_word, to);
13087 bfd_put_32 (output_bfd, second_word, to + 4);
13088 }
13089
13090 /* Data for make_branch_to_a8_stub(). */
13091
13092 struct a8_branch_to_stub_data {
13093 asection *writing_section;
13094 bfd_byte *contents;
13095 };
13096
13097
13098 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
13099 places for a particular section. */
13100
13101 static bfd_boolean
13102 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
13103 void *in_arg)
13104 {
13105 struct elf32_arm_stub_hash_entry *stub_entry;
13106 struct a8_branch_to_stub_data *data;
13107 bfd_byte *contents;
13108 unsigned long branch_insn;
13109 bfd_vma veneered_insn_loc, veneer_entry_loc;
13110 bfd_signed_vma branch_offset;
13111 bfd *abfd;
13112 unsigned int index;
13113
13114 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
13115 data = (struct a8_branch_to_stub_data *) in_arg;
13116
13117 if (stub_entry->target_section != data->writing_section
13118 || stub_entry->stub_type < arm_stub_a8_veneer_b_cond)
13119 return TRUE;
13120
13121 contents = data->contents;
13122
13123 veneered_insn_loc = stub_entry->target_section->output_section->vma
13124 + stub_entry->target_section->output_offset
13125 + stub_entry->target_value;
13126
13127 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
13128 + stub_entry->stub_sec->output_offset
13129 + stub_entry->stub_offset;
13130
13131 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
13132 veneered_insn_loc &= ~3u;
13133
13134 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
13135
13136 abfd = stub_entry->target_section->owner;
13137 index = stub_entry->target_value;
13138
13139 /* We attempt to avoid this condition by setting stubs_always_after_branch
13140 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
13141 This check is just to be on the safe side... */
13142 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
13143 {
13144 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
13145 "allocated in unsafe location"), abfd);
13146 return FALSE;
13147 }
13148
13149 switch (stub_entry->stub_type)
13150 {
13151 case arm_stub_a8_veneer_b:
13152 case arm_stub_a8_veneer_b_cond:
13153 branch_insn = 0xf0009000;
13154 goto jump24;
13155
13156 case arm_stub_a8_veneer_blx:
13157 branch_insn = 0xf000e800;
13158 goto jump24;
13159
13160 case arm_stub_a8_veneer_bl:
13161 {
13162 unsigned int i1, j1, i2, j2, s;
13163
13164 branch_insn = 0xf000d000;
13165
13166 jump24:
13167 if (branch_offset < -16777216 || branch_offset > 16777214)
13168 {
13169 /* There's not much we can do apart from complain if this
13170 happens. */
13171 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
13172 "of range (input file too large)"), abfd);
13173 return FALSE;
13174 }
13175
13176 /* i1 = not(j1 eor s), so:
13177 not i1 = j1 eor s
13178 j1 = (not i1) eor s. */
13179
13180 branch_insn |= (branch_offset >> 1) & 0x7ff;
13181 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
13182 i2 = (branch_offset >> 22) & 1;
13183 i1 = (branch_offset >> 23) & 1;
13184 s = (branch_offset >> 24) & 1;
13185 j1 = (!i1) ^ s;
13186 j2 = (!i2) ^ s;
13187 branch_insn |= j2 << 11;
13188 branch_insn |= j1 << 13;
13189 branch_insn |= s << 26;
13190 }
13191 break;
13192
13193 default:
13194 BFD_FAIL ();
13195 return FALSE;
13196 }
13197
13198 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[index]);
13199 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[index + 2]);
13200
13201 return TRUE;
13202 }
13203
13204 /* Do code byteswapping. Return FALSE afterwards so that the section is
13205 written out as normal. */
13206
13207 static bfd_boolean
13208 elf32_arm_write_section (bfd *output_bfd,
13209 struct bfd_link_info *link_info,
13210 asection *sec,
13211 bfd_byte *contents)
13212 {
13213 unsigned int mapcount, errcount;
13214 _arm_elf_section_data *arm_data;
13215 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
13216 elf32_arm_section_map *map;
13217 elf32_vfp11_erratum_list *errnode;
13218 bfd_vma ptr;
13219 bfd_vma end;
13220 bfd_vma offset = sec->output_section->vma + sec->output_offset;
13221 bfd_byte tmp;
13222 unsigned int i;
13223
13224 /* If this section has not been allocated an _arm_elf_section_data
13225 structure then we cannot record anything. */
13226 arm_data = get_arm_elf_section_data (sec);
13227 if (arm_data == NULL)
13228 return FALSE;
13229
13230 mapcount = arm_data->mapcount;
13231 map = arm_data->map;
13232 errcount = arm_data->erratumcount;
13233
13234 if (errcount != 0)
13235 {
13236 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
13237
13238 for (errnode = arm_data->erratumlist; errnode != 0;
13239 errnode = errnode->next)
13240 {
13241 bfd_vma index = errnode->vma - offset;
13242
13243 switch (errnode->type)
13244 {
13245 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
13246 {
13247 bfd_vma branch_to_veneer;
13248 /* Original condition code of instruction, plus bit mask for
13249 ARM B instruction. */
13250 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
13251 | 0x0a000000;
13252
13253 /* The instruction is before the label. */
13254 index -= 4;
13255
13256 /* Above offset included in -4 below. */
13257 branch_to_veneer = errnode->u.b.veneer->vma
13258 - errnode->vma - 4;
13259
13260 if ((signed) branch_to_veneer < -(1 << 25)
13261 || (signed) branch_to_veneer >= (1 << 25))
13262 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13263 "range"), output_bfd);
13264
13265 insn |= (branch_to_veneer >> 2) & 0xffffff;
13266 contents[endianflip ^ index] = insn & 0xff;
13267 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
13268 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
13269 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
13270 }
13271 break;
13272
13273 case VFP11_ERRATUM_ARM_VENEER:
13274 {
13275 bfd_vma branch_from_veneer;
13276 unsigned int insn;
13277
13278 /* Take size of veneer into account. */
13279 branch_from_veneer = errnode->u.v.branch->vma
13280 - errnode->vma - 12;
13281
13282 if ((signed) branch_from_veneer < -(1 << 25)
13283 || (signed) branch_from_veneer >= (1 << 25))
13284 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
13285 "range"), output_bfd);
13286
13287 /* Original instruction. */
13288 insn = errnode->u.v.branch->u.b.vfp_insn;
13289 contents[endianflip ^ index] = insn & 0xff;
13290 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
13291 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
13292 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
13293
13294 /* Branch back to insn after original insn. */
13295 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
13296 contents[endianflip ^ (index + 4)] = insn & 0xff;
13297 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
13298 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
13299 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
13300 }
13301 break;
13302
13303 default:
13304 abort ();
13305 }
13306 }
13307 }
13308
13309 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
13310 {
13311 arm_unwind_table_edit *edit_node
13312 = arm_data->u.exidx.unwind_edit_list;
13313 /* Now, sec->size is the size of the section we will write. The original
13314 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
13315 markers) was sec->rawsize. (This isn't the case if we perform no
13316 edits, then rawsize will be zero and we should use size). */
13317 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
13318 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
13319 unsigned int in_index, out_index;
13320 bfd_vma add_to_offsets = 0;
13321
13322 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
13323 {
13324 if (edit_node)
13325 {
13326 unsigned int edit_index = edit_node->index;
13327
13328 if (in_index < edit_index && in_index * 8 < input_size)
13329 {
13330 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13331 contents + in_index * 8, add_to_offsets);
13332 out_index++;
13333 in_index++;
13334 }
13335 else if (in_index == edit_index
13336 || (in_index * 8 >= input_size
13337 && edit_index == UINT_MAX))
13338 {
13339 switch (edit_node->type)
13340 {
13341 case DELETE_EXIDX_ENTRY:
13342 in_index++;
13343 add_to_offsets += 8;
13344 break;
13345
13346 case INSERT_EXIDX_CANTUNWIND_AT_END:
13347 {
13348 asection *text_sec = edit_node->linked_section;
13349 bfd_vma text_offset = text_sec->output_section->vma
13350 + text_sec->output_offset
13351 + text_sec->size;
13352 bfd_vma exidx_offset = offset + out_index * 8;
13353 unsigned long prel31_offset;
13354
13355 /* Note: this is meant to be equivalent to an
13356 R_ARM_PREL31 relocation. These synthetic
13357 EXIDX_CANTUNWIND markers are not relocated by the
13358 usual BFD method. */
13359 prel31_offset = (text_offset - exidx_offset)
13360 & 0x7ffffffful;
13361
13362 /* First address we can't unwind. */
13363 bfd_put_32 (output_bfd, prel31_offset,
13364 &edited_contents[out_index * 8]);
13365
13366 /* Code for EXIDX_CANTUNWIND. */
13367 bfd_put_32 (output_bfd, 0x1,
13368 &edited_contents[out_index * 8 + 4]);
13369
13370 out_index++;
13371 add_to_offsets -= 8;
13372 }
13373 break;
13374 }
13375
13376 edit_node = edit_node->next;
13377 }
13378 }
13379 else
13380 {
13381 /* No more edits, copy remaining entries verbatim. */
13382 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
13383 contents + in_index * 8, add_to_offsets);
13384 out_index++;
13385 in_index++;
13386 }
13387 }
13388
13389 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
13390 bfd_set_section_contents (output_bfd, sec->output_section,
13391 edited_contents,
13392 (file_ptr) sec->output_offset, sec->size);
13393
13394 return TRUE;
13395 }
13396
13397 /* Fix code to point to Cortex-A8 erratum stubs. */
13398 if (globals->fix_cortex_a8)
13399 {
13400 struct a8_branch_to_stub_data data;
13401
13402 data.writing_section = sec;
13403 data.contents = contents;
13404
13405 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
13406 &data);
13407 }
13408
13409 if (mapcount == 0)
13410 return FALSE;
13411
13412 if (globals->byteswap_code)
13413 {
13414 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
13415
13416 ptr = map[0].vma;
13417 for (i = 0; i < mapcount; i++)
13418 {
13419 if (i == mapcount - 1)
13420 end = sec->size;
13421 else
13422 end = map[i + 1].vma;
13423
13424 switch (map[i].type)
13425 {
13426 case 'a':
13427 /* Byte swap code words. */
13428 while (ptr + 3 < end)
13429 {
13430 tmp = contents[ptr];
13431 contents[ptr] = contents[ptr + 3];
13432 contents[ptr + 3] = tmp;
13433 tmp = contents[ptr + 1];
13434 contents[ptr + 1] = contents[ptr + 2];
13435 contents[ptr + 2] = tmp;
13436 ptr += 4;
13437 }
13438 break;
13439
13440 case 't':
13441 /* Byte swap code halfwords. */
13442 while (ptr + 1 < end)
13443 {
13444 tmp = contents[ptr];
13445 contents[ptr] = contents[ptr + 1];
13446 contents[ptr + 1] = tmp;
13447 ptr += 2;
13448 }
13449 break;
13450
13451 case 'd':
13452 /* Leave data alone. */
13453 break;
13454 }
13455 ptr = end;
13456 }
13457 }
13458
13459 free (map);
13460 arm_data->mapcount = 0;
13461 arm_data->mapsize = 0;
13462 arm_data->map = NULL;
13463 unrecord_section_with_arm_elf_section_data (sec);
13464
13465 return FALSE;
13466 }
13467
13468 static void
13469 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
13470 asection * sec,
13471 void * ignore ATTRIBUTE_UNUSED)
13472 {
13473 unrecord_section_with_arm_elf_section_data (sec);
13474 }
13475
13476 static bfd_boolean
13477 elf32_arm_close_and_cleanup (bfd * abfd)
13478 {
13479 if (abfd->sections)
13480 bfd_map_over_sections (abfd,
13481 unrecord_section_via_map_over_sections,
13482 NULL);
13483
13484 return _bfd_elf_close_and_cleanup (abfd);
13485 }
13486
13487 static bfd_boolean
13488 elf32_arm_bfd_free_cached_info (bfd * abfd)
13489 {
13490 if (abfd->sections)
13491 bfd_map_over_sections (abfd,
13492 unrecord_section_via_map_over_sections,
13493 NULL);
13494
13495 return _bfd_free_cached_info (abfd);
13496 }
13497
13498 /* Display STT_ARM_TFUNC symbols as functions. */
13499
13500 static void
13501 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
13502 asymbol *asym)
13503 {
13504 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
13505
13506 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
13507 elfsym->symbol.flags |= BSF_FUNCTION;
13508 }
13509
13510
13511 /* Mangle thumb function symbols as we read them in. */
13512
13513 static bfd_boolean
13514 elf32_arm_swap_symbol_in (bfd * abfd,
13515 const void *psrc,
13516 const void *pshn,
13517 Elf_Internal_Sym *dst)
13518 {
13519 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
13520 return FALSE;
13521
13522 /* New EABI objects mark thumb function symbols by setting the low bit of
13523 the address. Turn these into STT_ARM_TFUNC. */
13524 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
13525 && (dst->st_value & 1))
13526 {
13527 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
13528 dst->st_value &= ~(bfd_vma) 1;
13529 }
13530 return TRUE;
13531 }
13532
13533
13534 /* Mangle thumb function symbols as we write them out. */
13535
13536 static void
13537 elf32_arm_swap_symbol_out (bfd *abfd,
13538 const Elf_Internal_Sym *src,
13539 void *cdst,
13540 void *shndx)
13541 {
13542 Elf_Internal_Sym newsym;
13543
13544 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
13545 of the address set, as per the new EABI. We do this unconditionally
13546 because objcopy does not set the elf header flags until after
13547 it writes out the symbol table. */
13548 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
13549 {
13550 newsym = *src;
13551 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
13552 if (newsym.st_shndx != SHN_UNDEF)
13553 {
13554 /* Do this only for defined symbols. At link type, the static
13555 linker will simulate the work of dynamic linker of resolving
13556 symbols and will carry over the thumbness of found symbols to
13557 the output symbol table. It's not clear how it happens, but
13558 the thumbness of undefined symbols can well be different at
13559 runtime, and writing '1' for them will be confusing for users
13560 and possibly for dynamic linker itself.
13561 */
13562 newsym.st_value |= 1;
13563 }
13564
13565 src = &newsym;
13566 }
13567 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
13568 }
13569
13570 /* Add the PT_ARM_EXIDX program header. */
13571
13572 static bfd_boolean
13573 elf32_arm_modify_segment_map (bfd *abfd,
13574 struct bfd_link_info *info ATTRIBUTE_UNUSED)
13575 {
13576 struct elf_segment_map *m;
13577 asection *sec;
13578
13579 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13580 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13581 {
13582 /* If there is already a PT_ARM_EXIDX header, then we do not
13583 want to add another one. This situation arises when running
13584 "strip"; the input binary already has the header. */
13585 m = elf_tdata (abfd)->segment_map;
13586 while (m && m->p_type != PT_ARM_EXIDX)
13587 m = m->next;
13588 if (!m)
13589 {
13590 m = (struct elf_segment_map *)
13591 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
13592 if (m == NULL)
13593 return FALSE;
13594 m->p_type = PT_ARM_EXIDX;
13595 m->count = 1;
13596 m->sections[0] = sec;
13597
13598 m->next = elf_tdata (abfd)->segment_map;
13599 elf_tdata (abfd)->segment_map = m;
13600 }
13601 }
13602
13603 return TRUE;
13604 }
13605
13606 /* We may add a PT_ARM_EXIDX program header. */
13607
13608 static int
13609 elf32_arm_additional_program_headers (bfd *abfd,
13610 struct bfd_link_info *info ATTRIBUTE_UNUSED)
13611 {
13612 asection *sec;
13613
13614 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
13615 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
13616 return 1;
13617 else
13618 return 0;
13619 }
13620
13621 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
13622
13623 static bfd_boolean
13624 elf32_arm_is_function_type (unsigned int type)
13625 {
13626 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
13627 }
13628
13629 /* We use this to override swap_symbol_in and swap_symbol_out. */
13630 const struct elf_size_info elf32_arm_size_info =
13631 {
13632 sizeof (Elf32_External_Ehdr),
13633 sizeof (Elf32_External_Phdr),
13634 sizeof (Elf32_External_Shdr),
13635 sizeof (Elf32_External_Rel),
13636 sizeof (Elf32_External_Rela),
13637 sizeof (Elf32_External_Sym),
13638 sizeof (Elf32_External_Dyn),
13639 sizeof (Elf_External_Note),
13640 4,
13641 1,
13642 32, 2,
13643 ELFCLASS32, EV_CURRENT,
13644 bfd_elf32_write_out_phdrs,
13645 bfd_elf32_write_shdrs_and_ehdr,
13646 bfd_elf32_checksum_contents,
13647 bfd_elf32_write_relocs,
13648 elf32_arm_swap_symbol_in,
13649 elf32_arm_swap_symbol_out,
13650 bfd_elf32_slurp_reloc_table,
13651 bfd_elf32_slurp_symbol_table,
13652 bfd_elf32_swap_dyn_in,
13653 bfd_elf32_swap_dyn_out,
13654 bfd_elf32_swap_reloc_in,
13655 bfd_elf32_swap_reloc_out,
13656 bfd_elf32_swap_reloca_in,
13657 bfd_elf32_swap_reloca_out
13658 };
13659
13660 #define ELF_ARCH bfd_arch_arm
13661 #define ELF_MACHINE_CODE EM_ARM
13662 #ifdef __QNXTARGET__
13663 #define ELF_MAXPAGESIZE 0x1000
13664 #else
13665 #define ELF_MAXPAGESIZE 0x8000
13666 #endif
13667 #define ELF_MINPAGESIZE 0x1000
13668 #define ELF_COMMONPAGESIZE 0x1000
13669
13670 #define bfd_elf32_mkobject elf32_arm_mkobject
13671
13672 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
13673 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
13674 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
13675 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
13676 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
13677 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
13678 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
13679 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
13680 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
13681 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
13682 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
13683 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
13684 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
13685 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
13686 #define bfd_elf32_bfd_final_link elf32_arm_final_link
13687
13688 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
13689 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
13690 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
13691 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
13692 #define elf_backend_check_relocs elf32_arm_check_relocs
13693 #define elf_backend_relocate_section elf32_arm_relocate_section
13694 #define elf_backend_write_section elf32_arm_write_section
13695 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
13696 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
13697 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
13698 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
13699 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
13700 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
13701 #define elf_backend_post_process_headers elf32_arm_post_process_headers
13702 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
13703 #define elf_backend_object_p elf32_arm_object_p
13704 #define elf_backend_section_flags elf32_arm_section_flags
13705 #define elf_backend_fake_sections elf32_arm_fake_sections
13706 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
13707 #define elf_backend_final_write_processing elf32_arm_final_write_processing
13708 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
13709 #define elf_backend_symbol_processing elf32_arm_symbol_processing
13710 #define elf_backend_size_info elf32_arm_size_info
13711 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
13712 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
13713 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
13714 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
13715 #define elf_backend_is_function_type elf32_arm_is_function_type
13716
13717 #define elf_backend_can_refcount 1
13718 #define elf_backend_can_gc_sections 1
13719 #define elf_backend_plt_readonly 1
13720 #define elf_backend_want_got_plt 1
13721 #define elf_backend_want_plt_sym 0
13722 #define elf_backend_may_use_rel_p 1
13723 #define elf_backend_may_use_rela_p 0
13724 #define elf_backend_default_use_rela_p 0
13725
13726 #define elf_backend_got_header_size 12
13727
13728 #undef elf_backend_obj_attrs_vendor
13729 #define elf_backend_obj_attrs_vendor "aeabi"
13730 #undef elf_backend_obj_attrs_section
13731 #define elf_backend_obj_attrs_section ".ARM.attributes"
13732 #undef elf_backend_obj_attrs_arg_type
13733 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
13734 #undef elf_backend_obj_attrs_section_type
13735 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
13736 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
13737
13738 #include "elf32-target.h"
13739
13740 /* VxWorks Targets. */
13741
13742 #undef TARGET_LITTLE_SYM
13743 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
13744 #undef TARGET_LITTLE_NAME
13745 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
13746 #undef TARGET_BIG_SYM
13747 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
13748 #undef TARGET_BIG_NAME
13749 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
13750
13751 /* Like elf32_arm_link_hash_table_create -- but overrides
13752 appropriately for VxWorks. */
13753
13754 static struct bfd_link_hash_table *
13755 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
13756 {
13757 struct bfd_link_hash_table *ret;
13758
13759 ret = elf32_arm_link_hash_table_create (abfd);
13760 if (ret)
13761 {
13762 struct elf32_arm_link_hash_table *htab
13763 = (struct elf32_arm_link_hash_table *) ret;
13764 htab->use_rel = 0;
13765 htab->vxworks_p = 1;
13766 }
13767 return ret;
13768 }
13769
13770 static void
13771 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
13772 {
13773 elf32_arm_final_write_processing (abfd, linker);
13774 elf_vxworks_final_write_processing (abfd, linker);
13775 }
13776
13777 #undef elf32_bed
13778 #define elf32_bed elf32_arm_vxworks_bed
13779
13780 #undef bfd_elf32_bfd_link_hash_table_create
13781 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
13782 #undef elf_backend_add_symbol_hook
13783 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
13784 #undef elf_backend_final_write_processing
13785 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
13786 #undef elf_backend_emit_relocs
13787 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
13788
13789 #undef elf_backend_may_use_rel_p
13790 #define elf_backend_may_use_rel_p 0
13791 #undef elf_backend_may_use_rela_p
13792 #define elf_backend_may_use_rela_p 1
13793 #undef elf_backend_default_use_rela_p
13794 #define elf_backend_default_use_rela_p 1
13795 #undef elf_backend_want_plt_sym
13796 #define elf_backend_want_plt_sym 1
13797 #undef ELF_MAXPAGESIZE
13798 #define ELF_MAXPAGESIZE 0x1000
13799
13800 #include "elf32-target.h"
13801
13802
13803 /* Merge backend specific data from an object file to the output
13804 object file when linking. */
13805
13806 static bfd_boolean
13807 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
13808 {
13809 flagword out_flags;
13810 flagword in_flags;
13811 bfd_boolean flags_compatible = TRUE;
13812 asection *sec;
13813
13814 /* Check if we have the same endianess. */
13815 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
13816 return FALSE;
13817
13818 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13819 return TRUE;
13820
13821 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
13822 return FALSE;
13823
13824 /* The input BFD must have had its flags initialised. */
13825 /* The following seems bogus to me -- The flags are initialized in
13826 the assembler but I don't think an elf_flags_init field is
13827 written into the object. */
13828 /* BFD_ASSERT (elf_flags_init (ibfd)); */
13829
13830 in_flags = elf_elfheader (ibfd)->e_flags;
13831 out_flags = elf_elfheader (obfd)->e_flags;
13832
13833 /* In theory there is no reason why we couldn't handle this. However
13834 in practice it isn't even close to working and there is no real
13835 reason to want it. */
13836 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
13837 && !(ibfd->flags & DYNAMIC)
13838 && (in_flags & EF_ARM_BE8))
13839 {
13840 _bfd_error_handler (_("error: %B is already in final BE8 format"),
13841 ibfd);
13842 return FALSE;
13843 }
13844
13845 if (!elf_flags_init (obfd))
13846 {
13847 /* If the input is the default architecture and had the default
13848 flags then do not bother setting the flags for the output
13849 architecture, instead allow future merges to do this. If no
13850 future merges ever set these flags then they will retain their
13851 uninitialised values, which surprise surprise, correspond
13852 to the default values. */
13853 if (bfd_get_arch_info (ibfd)->the_default
13854 && elf_elfheader (ibfd)->e_flags == 0)
13855 return TRUE;
13856
13857 elf_flags_init (obfd) = TRUE;
13858 elf_elfheader (obfd)->e_flags = in_flags;
13859
13860 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
13861 && bfd_get_arch_info (obfd)->the_default)
13862 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
13863
13864 return TRUE;
13865 }
13866
13867 /* Determine what should happen if the input ARM architecture
13868 does not match the output ARM architecture. */
13869 if (! bfd_arm_merge_machines (ibfd, obfd))
13870 return FALSE;
13871
13872 /* Identical flags must be compatible. */
13873 if (in_flags == out_flags)
13874 return TRUE;
13875
13876 /* Check to see if the input BFD actually contains any sections. If
13877 not, its flags may not have been initialised either, but it
13878 cannot actually cause any incompatiblity. Do not short-circuit
13879 dynamic objects; their section list may be emptied by
13880 elf_link_add_object_symbols.
13881
13882 Also check to see if there are no code sections in the input.
13883 In this case there is no need to check for code specific flags.
13884 XXX - do we need to worry about floating-point format compatability
13885 in data sections ? */
13886 if (!(ibfd->flags & DYNAMIC))
13887 {
13888 bfd_boolean null_input_bfd = TRUE;
13889 bfd_boolean only_data_sections = TRUE;
13890
13891 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
13892 {
13893 /* Ignore synthetic glue sections. */
13894 if (strcmp (sec->name, ".glue_7")
13895 && strcmp (sec->name, ".glue_7t"))
13896 {
13897 if ((bfd_get_section_flags (ibfd, sec)
13898 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
13899 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
13900 only_data_sections = FALSE;
13901
13902 null_input_bfd = FALSE;
13903 break;
13904 }
13905 }
13906
13907 if (null_input_bfd || only_data_sections)
13908 return TRUE;
13909 }
13910
13911 /* Complain about various flag mismatches. */
13912 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
13913 EF_ARM_EABI_VERSION (out_flags)))
13914 {
13915 _bfd_error_handler
13916 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
13917 ibfd, obfd,
13918 (in_flags & EF_ARM_EABIMASK) >> 24,
13919 (out_flags & EF_ARM_EABIMASK) >> 24);
13920 return FALSE;
13921 }
13922
13923 /* Not sure what needs to be checked for EABI versions >= 1. */
13924 /* VxWorks libraries do not use these flags. */
13925 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
13926 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
13927 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
13928 {
13929 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
13930 {
13931 _bfd_error_handler
13932 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
13933 ibfd, obfd,
13934 in_flags & EF_ARM_APCS_26 ? 26 : 32,
13935 out_flags & EF_ARM_APCS_26 ? 26 : 32);
13936 flags_compatible = FALSE;
13937 }
13938
13939 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
13940 {
13941 if (in_flags & EF_ARM_APCS_FLOAT)
13942 _bfd_error_handler
13943 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
13944 ibfd, obfd);
13945 else
13946 _bfd_error_handler
13947 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
13948 ibfd, obfd);
13949
13950 flags_compatible = FALSE;
13951 }
13952
13953 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
13954 {
13955 if (in_flags & EF_ARM_VFP_FLOAT)
13956 _bfd_error_handler
13957 (_("error: %B uses VFP instructions, whereas %B does not"),
13958 ibfd, obfd);
13959 else
13960 _bfd_error_handler
13961 (_("error: %B uses FPA instructions, whereas %B does not"),
13962 ibfd, obfd);
13963
13964 flags_compatible = FALSE;
13965 }
13966
13967 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
13968 {
13969 if (in_flags & EF_ARM_MAVERICK_FLOAT)
13970 _bfd_error_handler
13971 (_("error: %B uses Maverick instructions, whereas %B does not"),
13972 ibfd, obfd);
13973 else
13974 _bfd_error_handler
13975 (_("error: %B does not use Maverick instructions, whereas %B does"),
13976 ibfd, obfd);
13977
13978 flags_compatible = FALSE;
13979 }
13980
13981 #ifdef EF_ARM_SOFT_FLOAT
13982 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
13983 {
13984 /* We can allow interworking between code that is VFP format
13985 layout, and uses either soft float or integer regs for
13986 passing floating point arguments and results. We already
13987 know that the APCS_FLOAT flags match; similarly for VFP
13988 flags. */
13989 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
13990 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
13991 {
13992 if (in_flags & EF_ARM_SOFT_FLOAT)
13993 _bfd_error_handler
13994 (_("error: %B uses software FP, whereas %B uses hardware FP"),
13995 ibfd, obfd);
13996 else
13997 _bfd_error_handler
13998 (_("error: %B uses hardware FP, whereas %B uses software FP"),
13999 ibfd, obfd);
14000
14001 flags_compatible = FALSE;
14002 }
14003 }
14004 #endif
14005
14006 /* Interworking mismatch is only a warning. */
14007 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
14008 {
14009 if (in_flags & EF_ARM_INTERWORK)
14010 {
14011 _bfd_error_handler
14012 (_("Warning: %B supports interworking, whereas %B does not"),
14013 ibfd, obfd);
14014 }
14015 else
14016 {
14017 _bfd_error_handler
14018 (_("Warning: %B does not support interworking, whereas %B does"),
14019 ibfd, obfd);
14020 }
14021 }
14022 }
14023
14024 return flags_compatible;
14025 }
14026
14027
14028 /* Symbian OS Targets. */
14029
14030 #undef TARGET_LITTLE_SYM
14031 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
14032 #undef TARGET_LITTLE_NAME
14033 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
14034 #undef TARGET_BIG_SYM
14035 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
14036 #undef TARGET_BIG_NAME
14037 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
14038
14039 /* Like elf32_arm_link_hash_table_create -- but overrides
14040 appropriately for Symbian OS. */
14041
14042 static struct bfd_link_hash_table *
14043 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
14044 {
14045 struct bfd_link_hash_table *ret;
14046
14047 ret = elf32_arm_link_hash_table_create (abfd);
14048 if (ret)
14049 {
14050 struct elf32_arm_link_hash_table *htab
14051 = (struct elf32_arm_link_hash_table *)ret;
14052 /* There is no PLT header for Symbian OS. */
14053 htab->plt_header_size = 0;
14054 /* The PLT entries are each one instruction and one word. */
14055 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
14056 htab->symbian_p = 1;
14057 /* Symbian uses armv5t or above, so use_blx is always true. */
14058 htab->use_blx = 1;
14059 htab->root.is_relocatable_executable = 1;
14060 }
14061 return ret;
14062 }
14063
14064 static const struct bfd_elf_special_section
14065 elf32_arm_symbian_special_sections[] =
14066 {
14067 /* In a BPABI executable, the dynamic linking sections do not go in
14068 the loadable read-only segment. The post-linker may wish to
14069 refer to these sections, but they are not part of the final
14070 program image. */
14071 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
14072 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
14073 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
14074 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
14075 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
14076 /* These sections do not need to be writable as the SymbianOS
14077 postlinker will arrange things so that no dynamic relocation is
14078 required. */
14079 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
14080 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
14081 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
14082 { NULL, 0, 0, 0, 0 }
14083 };
14084
14085 static void
14086 elf32_arm_symbian_begin_write_processing (bfd *abfd,
14087 struct bfd_link_info *link_info)
14088 {
14089 /* BPABI objects are never loaded directly by an OS kernel; they are
14090 processed by a postlinker first, into an OS-specific format. If
14091 the D_PAGED bit is set on the file, BFD will align segments on
14092 page boundaries, so that an OS can directly map the file. With
14093 BPABI objects, that just results in wasted space. In addition,
14094 because we clear the D_PAGED bit, map_sections_to_segments will
14095 recognize that the program headers should not be mapped into any
14096 loadable segment. */
14097 abfd->flags &= ~D_PAGED;
14098 elf32_arm_begin_write_processing (abfd, link_info);
14099 }
14100
14101 static bfd_boolean
14102 elf32_arm_symbian_modify_segment_map (bfd *abfd,
14103 struct bfd_link_info *info)
14104 {
14105 struct elf_segment_map *m;
14106 asection *dynsec;
14107
14108 /* BPABI shared libraries and executables should have a PT_DYNAMIC
14109 segment. However, because the .dynamic section is not marked
14110 with SEC_LOAD, the generic ELF code will not create such a
14111 segment. */
14112 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
14113 if (dynsec)
14114 {
14115 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
14116 if (m->p_type == PT_DYNAMIC)
14117 break;
14118
14119 if (m == NULL)
14120 {
14121 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
14122 m->next = elf_tdata (abfd)->segment_map;
14123 elf_tdata (abfd)->segment_map = m;
14124 }
14125 }
14126
14127 /* Also call the generic arm routine. */
14128 return elf32_arm_modify_segment_map (abfd, info);
14129 }
14130
14131 /* Return address for Ith PLT stub in section PLT, for relocation REL
14132 or (bfd_vma) -1 if it should not be included. */
14133
14134 static bfd_vma
14135 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
14136 const arelent *rel ATTRIBUTE_UNUSED)
14137 {
14138 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
14139 }
14140
14141
14142 #undef elf32_bed
14143 #define elf32_bed elf32_arm_symbian_bed
14144
14145 /* The dynamic sections are not allocated on SymbianOS; the postlinker
14146 will process them and then discard them. */
14147 #undef ELF_DYNAMIC_SEC_FLAGS
14148 #define ELF_DYNAMIC_SEC_FLAGS \
14149 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
14150
14151 #undef elf_backend_add_symbol_hook
14152 #undef elf_backend_emit_relocs
14153
14154 #undef bfd_elf32_bfd_link_hash_table_create
14155 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
14156 #undef elf_backend_special_sections
14157 #define elf_backend_special_sections elf32_arm_symbian_special_sections
14158 #undef elf_backend_begin_write_processing
14159 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
14160 #undef elf_backend_final_write_processing
14161 #define elf_backend_final_write_processing elf32_arm_final_write_processing
14162
14163 #undef elf_backend_modify_segment_map
14164 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
14165
14166 /* There is no .got section for BPABI objects, and hence no header. */
14167 #undef elf_backend_got_header_size
14168 #define elf_backend_got_header_size 0
14169
14170 /* Similarly, there is no .got.plt section. */
14171 #undef elf_backend_want_got_plt
14172 #define elf_backend_want_got_plt 0
14173
14174 #undef elf_backend_plt_sym_val
14175 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
14176
14177 #undef elf_backend_may_use_rel_p
14178 #define elf_backend_may_use_rel_p 1
14179 #undef elf_backend_may_use_rela_p
14180 #define elf_backend_may_use_rela_p 0
14181 #undef elf_backend_default_use_rela_p
14182 #define elf_backend_default_use_rela_p 0
14183 #undef elf_backend_want_plt_sym
14184 #define elf_backend_want_plt_sym 0
14185 #undef ELF_MAXPAGESIZE
14186 #define ELF_MAXPAGESIZE 0x8000
14187
14188 #include "elf32-target.h"
This page took 0.326401 seconds and 4 git commands to generate.