Change int to bool for the relocate_* functions
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright (C) 1998-2019 Free Software Foundation, Inc.
3
4 This file is part of BFD, the Binary File Descriptor library.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include <limits.h>
23
24 #include "bfd.h"
25 #include "libiberty.h"
26 #include "libbfd.h"
27 #include "elf-bfd.h"
28 #include "elf-nacl.h"
29 #include "elf-vxworks.h"
30 #include "elf/arm.h"
31
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
40 ((HTAB)->use_rel \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
43
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
47 ((HTAB)->use_rel \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
50
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
54 ((HTAB)->use_rel \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
57
58 #define elf_info_to_howto NULL
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
60
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
63
64 /* The Adjusted Place, as defined by AAELF. */
65 #define Pa(X) ((X) & 0xfffffffc)
66
67 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
68 struct bfd_link_info *link_info,
69 asection *sec,
70 bfd_byte *contents);
71
72 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
73 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
74 in that slot. */
75
76 static reloc_howto_type elf32_arm_howto_table_1[] =
77 {
78 /* No relocation. */
79 HOWTO (R_ARM_NONE, /* type */
80 0, /* rightshift */
81 3, /* size (0 = byte, 1 = short, 2 = long) */
82 0, /* bitsize */
83 FALSE, /* pc_relative */
84 0, /* bitpos */
85 complain_overflow_dont,/* complain_on_overflow */
86 bfd_elf_generic_reloc, /* special_function */
87 "R_ARM_NONE", /* name */
88 FALSE, /* partial_inplace */
89 0, /* src_mask */
90 0, /* dst_mask */
91 FALSE), /* pcrel_offset */
92
93 HOWTO (R_ARM_PC24, /* type */
94 2, /* rightshift */
95 2, /* size (0 = byte, 1 = short, 2 = long) */
96 24, /* bitsize */
97 TRUE, /* pc_relative */
98 0, /* bitpos */
99 complain_overflow_signed,/* complain_on_overflow */
100 bfd_elf_generic_reloc, /* special_function */
101 "R_ARM_PC24", /* name */
102 FALSE, /* partial_inplace */
103 0x00ffffff, /* src_mask */
104 0x00ffffff, /* dst_mask */
105 TRUE), /* pcrel_offset */
106
107 /* 32 bit absolute */
108 HOWTO (R_ARM_ABS32, /* type */
109 0, /* rightshift */
110 2, /* size (0 = byte, 1 = short, 2 = long) */
111 32, /* bitsize */
112 FALSE, /* pc_relative */
113 0, /* bitpos */
114 complain_overflow_bitfield,/* complain_on_overflow */
115 bfd_elf_generic_reloc, /* special_function */
116 "R_ARM_ABS32", /* name */
117 FALSE, /* partial_inplace */
118 0xffffffff, /* src_mask */
119 0xffffffff, /* dst_mask */
120 FALSE), /* pcrel_offset */
121
122 /* standard 32bit pc-relative reloc */
123 HOWTO (R_ARM_REL32, /* type */
124 0, /* rightshift */
125 2, /* size (0 = byte, 1 = short, 2 = long) */
126 32, /* bitsize */
127 TRUE, /* pc_relative */
128 0, /* bitpos */
129 complain_overflow_bitfield,/* complain_on_overflow */
130 bfd_elf_generic_reloc, /* special_function */
131 "R_ARM_REL32", /* name */
132 FALSE, /* partial_inplace */
133 0xffffffff, /* src_mask */
134 0xffffffff, /* dst_mask */
135 TRUE), /* pcrel_offset */
136
137 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
138 HOWTO (R_ARM_LDR_PC_G0, /* type */
139 0, /* rightshift */
140 0, /* size (0 = byte, 1 = short, 2 = long) */
141 32, /* bitsize */
142 TRUE, /* pc_relative */
143 0, /* bitpos */
144 complain_overflow_dont,/* complain_on_overflow */
145 bfd_elf_generic_reloc, /* special_function */
146 "R_ARM_LDR_PC_G0", /* name */
147 FALSE, /* partial_inplace */
148 0xffffffff, /* src_mask */
149 0xffffffff, /* dst_mask */
150 TRUE), /* pcrel_offset */
151
152 /* 16 bit absolute */
153 HOWTO (R_ARM_ABS16, /* type */
154 0, /* rightshift */
155 1, /* size (0 = byte, 1 = short, 2 = long) */
156 16, /* bitsize */
157 FALSE, /* pc_relative */
158 0, /* bitpos */
159 complain_overflow_bitfield,/* complain_on_overflow */
160 bfd_elf_generic_reloc, /* special_function */
161 "R_ARM_ABS16", /* name */
162 FALSE, /* partial_inplace */
163 0x0000ffff, /* src_mask */
164 0x0000ffff, /* dst_mask */
165 FALSE), /* pcrel_offset */
166
167 /* 12 bit absolute */
168 HOWTO (R_ARM_ABS12, /* type */
169 0, /* rightshift */
170 2, /* size (0 = byte, 1 = short, 2 = long) */
171 12, /* bitsize */
172 FALSE, /* pc_relative */
173 0, /* bitpos */
174 complain_overflow_bitfield,/* complain_on_overflow */
175 bfd_elf_generic_reloc, /* special_function */
176 "R_ARM_ABS12", /* name */
177 FALSE, /* partial_inplace */
178 0x00000fff, /* src_mask */
179 0x00000fff, /* dst_mask */
180 FALSE), /* pcrel_offset */
181
182 HOWTO (R_ARM_THM_ABS5, /* type */
183 6, /* rightshift */
184 1, /* size (0 = byte, 1 = short, 2 = long) */
185 5, /* bitsize */
186 FALSE, /* pc_relative */
187 0, /* bitpos */
188 complain_overflow_bitfield,/* complain_on_overflow */
189 bfd_elf_generic_reloc, /* special_function */
190 "R_ARM_THM_ABS5", /* name */
191 FALSE, /* partial_inplace */
192 0x000007e0, /* src_mask */
193 0x000007e0, /* dst_mask */
194 FALSE), /* pcrel_offset */
195
196 /* 8 bit absolute */
197 HOWTO (R_ARM_ABS8, /* type */
198 0, /* rightshift */
199 0, /* size (0 = byte, 1 = short, 2 = long) */
200 8, /* bitsize */
201 FALSE, /* pc_relative */
202 0, /* bitpos */
203 complain_overflow_bitfield,/* complain_on_overflow */
204 bfd_elf_generic_reloc, /* special_function */
205 "R_ARM_ABS8", /* name */
206 FALSE, /* partial_inplace */
207 0x000000ff, /* src_mask */
208 0x000000ff, /* dst_mask */
209 FALSE), /* pcrel_offset */
210
211 HOWTO (R_ARM_SBREL32, /* type */
212 0, /* rightshift */
213 2, /* size (0 = byte, 1 = short, 2 = long) */
214 32, /* bitsize */
215 FALSE, /* pc_relative */
216 0, /* bitpos */
217 complain_overflow_dont,/* complain_on_overflow */
218 bfd_elf_generic_reloc, /* special_function */
219 "R_ARM_SBREL32", /* name */
220 FALSE, /* partial_inplace */
221 0xffffffff, /* src_mask */
222 0xffffffff, /* dst_mask */
223 FALSE), /* pcrel_offset */
224
225 HOWTO (R_ARM_THM_CALL, /* type */
226 1, /* rightshift */
227 2, /* size (0 = byte, 1 = short, 2 = long) */
228 24, /* bitsize */
229 TRUE, /* pc_relative */
230 0, /* bitpos */
231 complain_overflow_signed,/* complain_on_overflow */
232 bfd_elf_generic_reloc, /* special_function */
233 "R_ARM_THM_CALL", /* name */
234 FALSE, /* partial_inplace */
235 0x07ff2fff, /* src_mask */
236 0x07ff2fff, /* dst_mask */
237 TRUE), /* pcrel_offset */
238
239 HOWTO (R_ARM_THM_PC8, /* type */
240 1, /* rightshift */
241 1, /* size (0 = byte, 1 = short, 2 = long) */
242 8, /* bitsize */
243 TRUE, /* pc_relative */
244 0, /* bitpos */
245 complain_overflow_signed,/* complain_on_overflow */
246 bfd_elf_generic_reloc, /* special_function */
247 "R_ARM_THM_PC8", /* name */
248 FALSE, /* partial_inplace */
249 0x000000ff, /* src_mask */
250 0x000000ff, /* dst_mask */
251 TRUE), /* pcrel_offset */
252
253 HOWTO (R_ARM_BREL_ADJ, /* type */
254 1, /* rightshift */
255 1, /* size (0 = byte, 1 = short, 2 = long) */
256 32, /* bitsize */
257 FALSE, /* pc_relative */
258 0, /* bitpos */
259 complain_overflow_signed,/* complain_on_overflow */
260 bfd_elf_generic_reloc, /* special_function */
261 "R_ARM_BREL_ADJ", /* name */
262 FALSE, /* partial_inplace */
263 0xffffffff, /* src_mask */
264 0xffffffff, /* dst_mask */
265 FALSE), /* pcrel_offset */
266
267 HOWTO (R_ARM_TLS_DESC, /* type */
268 0, /* rightshift */
269 2, /* size (0 = byte, 1 = short, 2 = long) */
270 32, /* bitsize */
271 FALSE, /* pc_relative */
272 0, /* bitpos */
273 complain_overflow_bitfield,/* complain_on_overflow */
274 bfd_elf_generic_reloc, /* special_function */
275 "R_ARM_TLS_DESC", /* name */
276 FALSE, /* partial_inplace */
277 0xffffffff, /* src_mask */
278 0xffffffff, /* dst_mask */
279 FALSE), /* pcrel_offset */
280
281 HOWTO (R_ARM_THM_SWI8, /* type */
282 0, /* rightshift */
283 0, /* size (0 = byte, 1 = short, 2 = long) */
284 0, /* bitsize */
285 FALSE, /* pc_relative */
286 0, /* bitpos */
287 complain_overflow_signed,/* complain_on_overflow */
288 bfd_elf_generic_reloc, /* special_function */
289 "R_ARM_SWI8", /* name */
290 FALSE, /* partial_inplace */
291 0x00000000, /* src_mask */
292 0x00000000, /* dst_mask */
293 FALSE), /* pcrel_offset */
294
295 /* BLX instruction for the ARM. */
296 HOWTO (R_ARM_XPC25, /* type */
297 2, /* rightshift */
298 2, /* size (0 = byte, 1 = short, 2 = long) */
299 24, /* bitsize */
300 TRUE, /* pc_relative */
301 0, /* bitpos */
302 complain_overflow_signed,/* complain_on_overflow */
303 bfd_elf_generic_reloc, /* special_function */
304 "R_ARM_XPC25", /* name */
305 FALSE, /* partial_inplace */
306 0x00ffffff, /* src_mask */
307 0x00ffffff, /* dst_mask */
308 TRUE), /* pcrel_offset */
309
310 /* BLX instruction for the Thumb. */
311 HOWTO (R_ARM_THM_XPC22, /* type */
312 2, /* rightshift */
313 2, /* size (0 = byte, 1 = short, 2 = long) */
314 24, /* bitsize */
315 TRUE, /* pc_relative */
316 0, /* bitpos */
317 complain_overflow_signed,/* complain_on_overflow */
318 bfd_elf_generic_reloc, /* special_function */
319 "R_ARM_THM_XPC22", /* name */
320 FALSE, /* partial_inplace */
321 0x07ff2fff, /* src_mask */
322 0x07ff2fff, /* dst_mask */
323 TRUE), /* pcrel_offset */
324
325 /* Dynamic TLS relocations. */
326
327 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
328 0, /* rightshift */
329 2, /* size (0 = byte, 1 = short, 2 = long) */
330 32, /* bitsize */
331 FALSE, /* pc_relative */
332 0, /* bitpos */
333 complain_overflow_bitfield,/* complain_on_overflow */
334 bfd_elf_generic_reloc, /* special_function */
335 "R_ARM_TLS_DTPMOD32", /* name */
336 TRUE, /* partial_inplace */
337 0xffffffff, /* src_mask */
338 0xffffffff, /* dst_mask */
339 FALSE), /* pcrel_offset */
340
341 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
342 0, /* rightshift */
343 2, /* size (0 = byte, 1 = short, 2 = long) */
344 32, /* bitsize */
345 FALSE, /* pc_relative */
346 0, /* bitpos */
347 complain_overflow_bitfield,/* complain_on_overflow */
348 bfd_elf_generic_reloc, /* special_function */
349 "R_ARM_TLS_DTPOFF32", /* name */
350 TRUE, /* partial_inplace */
351 0xffffffff, /* src_mask */
352 0xffffffff, /* dst_mask */
353 FALSE), /* pcrel_offset */
354
355 HOWTO (R_ARM_TLS_TPOFF32, /* type */
356 0, /* rightshift */
357 2, /* size (0 = byte, 1 = short, 2 = long) */
358 32, /* bitsize */
359 FALSE, /* pc_relative */
360 0, /* bitpos */
361 complain_overflow_bitfield,/* complain_on_overflow */
362 bfd_elf_generic_reloc, /* special_function */
363 "R_ARM_TLS_TPOFF32", /* name */
364 TRUE, /* partial_inplace */
365 0xffffffff, /* src_mask */
366 0xffffffff, /* dst_mask */
367 FALSE), /* pcrel_offset */
368
369 /* Relocs used in ARM Linux */
370
371 HOWTO (R_ARM_COPY, /* type */
372 0, /* rightshift */
373 2, /* size (0 = byte, 1 = short, 2 = long) */
374 32, /* bitsize */
375 FALSE, /* pc_relative */
376 0, /* bitpos */
377 complain_overflow_bitfield,/* complain_on_overflow */
378 bfd_elf_generic_reloc, /* special_function */
379 "R_ARM_COPY", /* name */
380 TRUE, /* partial_inplace */
381 0xffffffff, /* src_mask */
382 0xffffffff, /* dst_mask */
383 FALSE), /* pcrel_offset */
384
385 HOWTO (R_ARM_GLOB_DAT, /* type */
386 0, /* rightshift */
387 2, /* size (0 = byte, 1 = short, 2 = long) */
388 32, /* bitsize */
389 FALSE, /* pc_relative */
390 0, /* bitpos */
391 complain_overflow_bitfield,/* complain_on_overflow */
392 bfd_elf_generic_reloc, /* special_function */
393 "R_ARM_GLOB_DAT", /* name */
394 TRUE, /* partial_inplace */
395 0xffffffff, /* src_mask */
396 0xffffffff, /* dst_mask */
397 FALSE), /* pcrel_offset */
398
399 HOWTO (R_ARM_JUMP_SLOT, /* type */
400 0, /* rightshift */
401 2, /* size (0 = byte, 1 = short, 2 = long) */
402 32, /* bitsize */
403 FALSE, /* pc_relative */
404 0, /* bitpos */
405 complain_overflow_bitfield,/* complain_on_overflow */
406 bfd_elf_generic_reloc, /* special_function */
407 "R_ARM_JUMP_SLOT", /* name */
408 TRUE, /* partial_inplace */
409 0xffffffff, /* src_mask */
410 0xffffffff, /* dst_mask */
411 FALSE), /* pcrel_offset */
412
413 HOWTO (R_ARM_RELATIVE, /* type */
414 0, /* rightshift */
415 2, /* size (0 = byte, 1 = short, 2 = long) */
416 32, /* bitsize */
417 FALSE, /* pc_relative */
418 0, /* bitpos */
419 complain_overflow_bitfield,/* complain_on_overflow */
420 bfd_elf_generic_reloc, /* special_function */
421 "R_ARM_RELATIVE", /* name */
422 TRUE, /* partial_inplace */
423 0xffffffff, /* src_mask */
424 0xffffffff, /* dst_mask */
425 FALSE), /* pcrel_offset */
426
427 HOWTO (R_ARM_GOTOFF32, /* type */
428 0, /* rightshift */
429 2, /* size (0 = byte, 1 = short, 2 = long) */
430 32, /* bitsize */
431 FALSE, /* pc_relative */
432 0, /* bitpos */
433 complain_overflow_bitfield,/* complain_on_overflow */
434 bfd_elf_generic_reloc, /* special_function */
435 "R_ARM_GOTOFF32", /* name */
436 TRUE, /* partial_inplace */
437 0xffffffff, /* src_mask */
438 0xffffffff, /* dst_mask */
439 FALSE), /* pcrel_offset */
440
441 HOWTO (R_ARM_GOTPC, /* type */
442 0, /* rightshift */
443 2, /* size (0 = byte, 1 = short, 2 = long) */
444 32, /* bitsize */
445 TRUE, /* pc_relative */
446 0, /* bitpos */
447 complain_overflow_bitfield,/* complain_on_overflow */
448 bfd_elf_generic_reloc, /* special_function */
449 "R_ARM_GOTPC", /* name */
450 TRUE, /* partial_inplace */
451 0xffffffff, /* src_mask */
452 0xffffffff, /* dst_mask */
453 TRUE), /* pcrel_offset */
454
455 HOWTO (R_ARM_GOT32, /* type */
456 0, /* rightshift */
457 2, /* size (0 = byte, 1 = short, 2 = long) */
458 32, /* bitsize */
459 FALSE, /* pc_relative */
460 0, /* bitpos */
461 complain_overflow_bitfield,/* complain_on_overflow */
462 bfd_elf_generic_reloc, /* special_function */
463 "R_ARM_GOT32", /* name */
464 TRUE, /* partial_inplace */
465 0xffffffff, /* src_mask */
466 0xffffffff, /* dst_mask */
467 FALSE), /* pcrel_offset */
468
469 HOWTO (R_ARM_PLT32, /* type */
470 2, /* rightshift */
471 2, /* size (0 = byte, 1 = short, 2 = long) */
472 24, /* bitsize */
473 TRUE, /* pc_relative */
474 0, /* bitpos */
475 complain_overflow_bitfield,/* complain_on_overflow */
476 bfd_elf_generic_reloc, /* special_function */
477 "R_ARM_PLT32", /* name */
478 FALSE, /* partial_inplace */
479 0x00ffffff, /* src_mask */
480 0x00ffffff, /* dst_mask */
481 TRUE), /* pcrel_offset */
482
483 HOWTO (R_ARM_CALL, /* type */
484 2, /* rightshift */
485 2, /* size (0 = byte, 1 = short, 2 = long) */
486 24, /* bitsize */
487 TRUE, /* pc_relative */
488 0, /* bitpos */
489 complain_overflow_signed,/* complain_on_overflow */
490 bfd_elf_generic_reloc, /* special_function */
491 "R_ARM_CALL", /* name */
492 FALSE, /* partial_inplace */
493 0x00ffffff, /* src_mask */
494 0x00ffffff, /* dst_mask */
495 TRUE), /* pcrel_offset */
496
497 HOWTO (R_ARM_JUMP24, /* type */
498 2, /* rightshift */
499 2, /* size (0 = byte, 1 = short, 2 = long) */
500 24, /* bitsize */
501 TRUE, /* pc_relative */
502 0, /* bitpos */
503 complain_overflow_signed,/* complain_on_overflow */
504 bfd_elf_generic_reloc, /* special_function */
505 "R_ARM_JUMP24", /* name */
506 FALSE, /* partial_inplace */
507 0x00ffffff, /* src_mask */
508 0x00ffffff, /* dst_mask */
509 TRUE), /* pcrel_offset */
510
511 HOWTO (R_ARM_THM_JUMP24, /* type */
512 1, /* rightshift */
513 2, /* size (0 = byte, 1 = short, 2 = long) */
514 24, /* bitsize */
515 TRUE, /* pc_relative */
516 0, /* bitpos */
517 complain_overflow_signed,/* complain_on_overflow */
518 bfd_elf_generic_reloc, /* special_function */
519 "R_ARM_THM_JUMP24", /* name */
520 FALSE, /* partial_inplace */
521 0x07ff2fff, /* src_mask */
522 0x07ff2fff, /* dst_mask */
523 TRUE), /* pcrel_offset */
524
525 HOWTO (R_ARM_BASE_ABS, /* type */
526 0, /* rightshift */
527 2, /* size (0 = byte, 1 = short, 2 = long) */
528 32, /* bitsize */
529 FALSE, /* pc_relative */
530 0, /* bitpos */
531 complain_overflow_dont,/* complain_on_overflow */
532 bfd_elf_generic_reloc, /* special_function */
533 "R_ARM_BASE_ABS", /* name */
534 FALSE, /* partial_inplace */
535 0xffffffff, /* src_mask */
536 0xffffffff, /* dst_mask */
537 FALSE), /* pcrel_offset */
538
539 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
540 0, /* rightshift */
541 2, /* size (0 = byte, 1 = short, 2 = long) */
542 12, /* bitsize */
543 TRUE, /* pc_relative */
544 0, /* bitpos */
545 complain_overflow_dont,/* complain_on_overflow */
546 bfd_elf_generic_reloc, /* special_function */
547 "R_ARM_ALU_PCREL_7_0", /* name */
548 FALSE, /* partial_inplace */
549 0x00000fff, /* src_mask */
550 0x00000fff, /* dst_mask */
551 TRUE), /* pcrel_offset */
552
553 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
554 0, /* rightshift */
555 2, /* size (0 = byte, 1 = short, 2 = long) */
556 12, /* bitsize */
557 TRUE, /* pc_relative */
558 8, /* bitpos */
559 complain_overflow_dont,/* complain_on_overflow */
560 bfd_elf_generic_reloc, /* special_function */
561 "R_ARM_ALU_PCREL_15_8",/* name */
562 FALSE, /* partial_inplace */
563 0x00000fff, /* src_mask */
564 0x00000fff, /* dst_mask */
565 TRUE), /* pcrel_offset */
566
567 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
568 0, /* rightshift */
569 2, /* size (0 = byte, 1 = short, 2 = long) */
570 12, /* bitsize */
571 TRUE, /* pc_relative */
572 16, /* bitpos */
573 complain_overflow_dont,/* complain_on_overflow */
574 bfd_elf_generic_reloc, /* special_function */
575 "R_ARM_ALU_PCREL_23_15",/* name */
576 FALSE, /* partial_inplace */
577 0x00000fff, /* src_mask */
578 0x00000fff, /* dst_mask */
579 TRUE), /* pcrel_offset */
580
581 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
582 0, /* rightshift */
583 2, /* size (0 = byte, 1 = short, 2 = long) */
584 12, /* bitsize */
585 FALSE, /* pc_relative */
586 0, /* bitpos */
587 complain_overflow_dont,/* complain_on_overflow */
588 bfd_elf_generic_reloc, /* special_function */
589 "R_ARM_LDR_SBREL_11_0",/* name */
590 FALSE, /* partial_inplace */
591 0x00000fff, /* src_mask */
592 0x00000fff, /* dst_mask */
593 FALSE), /* pcrel_offset */
594
595 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
596 0, /* rightshift */
597 2, /* size (0 = byte, 1 = short, 2 = long) */
598 8, /* bitsize */
599 FALSE, /* pc_relative */
600 12, /* bitpos */
601 complain_overflow_dont,/* complain_on_overflow */
602 bfd_elf_generic_reloc, /* special_function */
603 "R_ARM_ALU_SBREL_19_12",/* name */
604 FALSE, /* partial_inplace */
605 0x000ff000, /* src_mask */
606 0x000ff000, /* dst_mask */
607 FALSE), /* pcrel_offset */
608
609 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
610 0, /* rightshift */
611 2, /* size (0 = byte, 1 = short, 2 = long) */
612 8, /* bitsize */
613 FALSE, /* pc_relative */
614 20, /* bitpos */
615 complain_overflow_dont,/* complain_on_overflow */
616 bfd_elf_generic_reloc, /* special_function */
617 "R_ARM_ALU_SBREL_27_20",/* name */
618 FALSE, /* partial_inplace */
619 0x0ff00000, /* src_mask */
620 0x0ff00000, /* dst_mask */
621 FALSE), /* pcrel_offset */
622
623 HOWTO (R_ARM_TARGET1, /* type */
624 0, /* rightshift */
625 2, /* size (0 = byte, 1 = short, 2 = long) */
626 32, /* bitsize */
627 FALSE, /* pc_relative */
628 0, /* bitpos */
629 complain_overflow_dont,/* complain_on_overflow */
630 bfd_elf_generic_reloc, /* special_function */
631 "R_ARM_TARGET1", /* name */
632 FALSE, /* partial_inplace */
633 0xffffffff, /* src_mask */
634 0xffffffff, /* dst_mask */
635 FALSE), /* pcrel_offset */
636
637 HOWTO (R_ARM_ROSEGREL32, /* type */
638 0, /* rightshift */
639 2, /* size (0 = byte, 1 = short, 2 = long) */
640 32, /* bitsize */
641 FALSE, /* pc_relative */
642 0, /* bitpos */
643 complain_overflow_dont,/* complain_on_overflow */
644 bfd_elf_generic_reloc, /* special_function */
645 "R_ARM_ROSEGREL32", /* name */
646 FALSE, /* partial_inplace */
647 0xffffffff, /* src_mask */
648 0xffffffff, /* dst_mask */
649 FALSE), /* pcrel_offset */
650
651 HOWTO (R_ARM_V4BX, /* type */
652 0, /* rightshift */
653 2, /* size (0 = byte, 1 = short, 2 = long) */
654 32, /* bitsize */
655 FALSE, /* pc_relative */
656 0, /* bitpos */
657 complain_overflow_dont,/* complain_on_overflow */
658 bfd_elf_generic_reloc, /* special_function */
659 "R_ARM_V4BX", /* name */
660 FALSE, /* partial_inplace */
661 0xffffffff, /* src_mask */
662 0xffffffff, /* dst_mask */
663 FALSE), /* pcrel_offset */
664
665 HOWTO (R_ARM_TARGET2, /* type */
666 0, /* rightshift */
667 2, /* size (0 = byte, 1 = short, 2 = long) */
668 32, /* bitsize */
669 FALSE, /* pc_relative */
670 0, /* bitpos */
671 complain_overflow_signed,/* complain_on_overflow */
672 bfd_elf_generic_reloc, /* special_function */
673 "R_ARM_TARGET2", /* name */
674 FALSE, /* partial_inplace */
675 0xffffffff, /* src_mask */
676 0xffffffff, /* dst_mask */
677 TRUE), /* pcrel_offset */
678
679 HOWTO (R_ARM_PREL31, /* type */
680 0, /* rightshift */
681 2, /* size (0 = byte, 1 = short, 2 = long) */
682 31, /* bitsize */
683 TRUE, /* pc_relative */
684 0, /* bitpos */
685 complain_overflow_signed,/* complain_on_overflow */
686 bfd_elf_generic_reloc, /* special_function */
687 "R_ARM_PREL31", /* name */
688 FALSE, /* partial_inplace */
689 0x7fffffff, /* src_mask */
690 0x7fffffff, /* dst_mask */
691 TRUE), /* pcrel_offset */
692
693 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
694 0, /* rightshift */
695 2, /* size (0 = byte, 1 = short, 2 = long) */
696 16, /* bitsize */
697 FALSE, /* pc_relative */
698 0, /* bitpos */
699 complain_overflow_dont,/* complain_on_overflow */
700 bfd_elf_generic_reloc, /* special_function */
701 "R_ARM_MOVW_ABS_NC", /* name */
702 FALSE, /* partial_inplace */
703 0x000f0fff, /* src_mask */
704 0x000f0fff, /* dst_mask */
705 FALSE), /* pcrel_offset */
706
707 HOWTO (R_ARM_MOVT_ABS, /* type */
708 0, /* rightshift */
709 2, /* size (0 = byte, 1 = short, 2 = long) */
710 16, /* bitsize */
711 FALSE, /* pc_relative */
712 0, /* bitpos */
713 complain_overflow_bitfield,/* complain_on_overflow */
714 bfd_elf_generic_reloc, /* special_function */
715 "R_ARM_MOVT_ABS", /* name */
716 FALSE, /* partial_inplace */
717 0x000f0fff, /* src_mask */
718 0x000f0fff, /* dst_mask */
719 FALSE), /* pcrel_offset */
720
721 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
722 0, /* rightshift */
723 2, /* size (0 = byte, 1 = short, 2 = long) */
724 16, /* bitsize */
725 TRUE, /* pc_relative */
726 0, /* bitpos */
727 complain_overflow_dont,/* complain_on_overflow */
728 bfd_elf_generic_reloc, /* special_function */
729 "R_ARM_MOVW_PREL_NC", /* name */
730 FALSE, /* partial_inplace */
731 0x000f0fff, /* src_mask */
732 0x000f0fff, /* dst_mask */
733 TRUE), /* pcrel_offset */
734
735 HOWTO (R_ARM_MOVT_PREL, /* type */
736 0, /* rightshift */
737 2, /* size (0 = byte, 1 = short, 2 = long) */
738 16, /* bitsize */
739 TRUE, /* pc_relative */
740 0, /* bitpos */
741 complain_overflow_bitfield,/* complain_on_overflow */
742 bfd_elf_generic_reloc, /* special_function */
743 "R_ARM_MOVT_PREL", /* name */
744 FALSE, /* partial_inplace */
745 0x000f0fff, /* src_mask */
746 0x000f0fff, /* dst_mask */
747 TRUE), /* pcrel_offset */
748
749 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
750 0, /* rightshift */
751 2, /* size (0 = byte, 1 = short, 2 = long) */
752 16, /* bitsize */
753 FALSE, /* pc_relative */
754 0, /* bitpos */
755 complain_overflow_dont,/* complain_on_overflow */
756 bfd_elf_generic_reloc, /* special_function */
757 "R_ARM_THM_MOVW_ABS_NC",/* name */
758 FALSE, /* partial_inplace */
759 0x040f70ff, /* src_mask */
760 0x040f70ff, /* dst_mask */
761 FALSE), /* pcrel_offset */
762
763 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
764 0, /* rightshift */
765 2, /* size (0 = byte, 1 = short, 2 = long) */
766 16, /* bitsize */
767 FALSE, /* pc_relative */
768 0, /* bitpos */
769 complain_overflow_bitfield,/* complain_on_overflow */
770 bfd_elf_generic_reloc, /* special_function */
771 "R_ARM_THM_MOVT_ABS", /* name */
772 FALSE, /* partial_inplace */
773 0x040f70ff, /* src_mask */
774 0x040f70ff, /* dst_mask */
775 FALSE), /* pcrel_offset */
776
777 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
778 0, /* rightshift */
779 2, /* size (0 = byte, 1 = short, 2 = long) */
780 16, /* bitsize */
781 TRUE, /* pc_relative */
782 0, /* bitpos */
783 complain_overflow_dont,/* complain_on_overflow */
784 bfd_elf_generic_reloc, /* special_function */
785 "R_ARM_THM_MOVW_PREL_NC",/* name */
786 FALSE, /* partial_inplace */
787 0x040f70ff, /* src_mask */
788 0x040f70ff, /* dst_mask */
789 TRUE), /* pcrel_offset */
790
791 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
792 0, /* rightshift */
793 2, /* size (0 = byte, 1 = short, 2 = long) */
794 16, /* bitsize */
795 TRUE, /* pc_relative */
796 0, /* bitpos */
797 complain_overflow_bitfield,/* complain_on_overflow */
798 bfd_elf_generic_reloc, /* special_function */
799 "R_ARM_THM_MOVT_PREL", /* name */
800 FALSE, /* partial_inplace */
801 0x040f70ff, /* src_mask */
802 0x040f70ff, /* dst_mask */
803 TRUE), /* pcrel_offset */
804
805 HOWTO (R_ARM_THM_JUMP19, /* type */
806 1, /* rightshift */
807 2, /* size (0 = byte, 1 = short, 2 = long) */
808 19, /* bitsize */
809 TRUE, /* pc_relative */
810 0, /* bitpos */
811 complain_overflow_signed,/* complain_on_overflow */
812 bfd_elf_generic_reloc, /* special_function */
813 "R_ARM_THM_JUMP19", /* name */
814 FALSE, /* partial_inplace */
815 0x043f2fff, /* src_mask */
816 0x043f2fff, /* dst_mask */
817 TRUE), /* pcrel_offset */
818
819 HOWTO (R_ARM_THM_JUMP6, /* type */
820 1, /* rightshift */
821 1, /* size (0 = byte, 1 = short, 2 = long) */
822 6, /* bitsize */
823 TRUE, /* pc_relative */
824 0, /* bitpos */
825 complain_overflow_unsigned,/* complain_on_overflow */
826 bfd_elf_generic_reloc, /* special_function */
827 "R_ARM_THM_JUMP6", /* name */
828 FALSE, /* partial_inplace */
829 0x02f8, /* src_mask */
830 0x02f8, /* dst_mask */
831 TRUE), /* pcrel_offset */
832
833 /* These are declared as 13-bit signed relocations because we can
834 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
835 versa. */
836 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
837 0, /* rightshift */
838 2, /* size (0 = byte, 1 = short, 2 = long) */
839 13, /* bitsize */
840 TRUE, /* pc_relative */
841 0, /* bitpos */
842 complain_overflow_dont,/* complain_on_overflow */
843 bfd_elf_generic_reloc, /* special_function */
844 "R_ARM_THM_ALU_PREL_11_0",/* name */
845 FALSE, /* partial_inplace */
846 0xffffffff, /* src_mask */
847 0xffffffff, /* dst_mask */
848 TRUE), /* pcrel_offset */
849
850 HOWTO (R_ARM_THM_PC12, /* type */
851 0, /* rightshift */
852 2, /* size (0 = byte, 1 = short, 2 = long) */
853 13, /* bitsize */
854 TRUE, /* pc_relative */
855 0, /* bitpos */
856 complain_overflow_dont,/* complain_on_overflow */
857 bfd_elf_generic_reloc, /* special_function */
858 "R_ARM_THM_PC12", /* name */
859 FALSE, /* partial_inplace */
860 0xffffffff, /* src_mask */
861 0xffffffff, /* dst_mask */
862 TRUE), /* pcrel_offset */
863
864 HOWTO (R_ARM_ABS32_NOI, /* type */
865 0, /* rightshift */
866 2, /* size (0 = byte, 1 = short, 2 = long) */
867 32, /* bitsize */
868 FALSE, /* pc_relative */
869 0, /* bitpos */
870 complain_overflow_dont,/* complain_on_overflow */
871 bfd_elf_generic_reloc, /* special_function */
872 "R_ARM_ABS32_NOI", /* name */
873 FALSE, /* partial_inplace */
874 0xffffffff, /* src_mask */
875 0xffffffff, /* dst_mask */
876 FALSE), /* pcrel_offset */
877
878 HOWTO (R_ARM_REL32_NOI, /* type */
879 0, /* rightshift */
880 2, /* size (0 = byte, 1 = short, 2 = long) */
881 32, /* bitsize */
882 TRUE, /* pc_relative */
883 0, /* bitpos */
884 complain_overflow_dont,/* complain_on_overflow */
885 bfd_elf_generic_reloc, /* special_function */
886 "R_ARM_REL32_NOI", /* name */
887 FALSE, /* partial_inplace */
888 0xffffffff, /* src_mask */
889 0xffffffff, /* dst_mask */
890 FALSE), /* pcrel_offset */
891
892 /* Group relocations. */
893
894 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
895 0, /* rightshift */
896 2, /* size (0 = byte, 1 = short, 2 = long) */
897 32, /* bitsize */
898 TRUE, /* pc_relative */
899 0, /* bitpos */
900 complain_overflow_dont,/* complain_on_overflow */
901 bfd_elf_generic_reloc, /* special_function */
902 "R_ARM_ALU_PC_G0_NC", /* name */
903 FALSE, /* partial_inplace */
904 0xffffffff, /* src_mask */
905 0xffffffff, /* dst_mask */
906 TRUE), /* pcrel_offset */
907
908 HOWTO (R_ARM_ALU_PC_G0, /* type */
909 0, /* rightshift */
910 2, /* size (0 = byte, 1 = short, 2 = long) */
911 32, /* bitsize */
912 TRUE, /* pc_relative */
913 0, /* bitpos */
914 complain_overflow_dont,/* complain_on_overflow */
915 bfd_elf_generic_reloc, /* special_function */
916 "R_ARM_ALU_PC_G0", /* name */
917 FALSE, /* partial_inplace */
918 0xffffffff, /* src_mask */
919 0xffffffff, /* dst_mask */
920 TRUE), /* pcrel_offset */
921
922 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
923 0, /* rightshift */
924 2, /* size (0 = byte, 1 = short, 2 = long) */
925 32, /* bitsize */
926 TRUE, /* pc_relative */
927 0, /* bitpos */
928 complain_overflow_dont,/* complain_on_overflow */
929 bfd_elf_generic_reloc, /* special_function */
930 "R_ARM_ALU_PC_G1_NC", /* name */
931 FALSE, /* partial_inplace */
932 0xffffffff, /* src_mask */
933 0xffffffff, /* dst_mask */
934 TRUE), /* pcrel_offset */
935
936 HOWTO (R_ARM_ALU_PC_G1, /* type */
937 0, /* rightshift */
938 2, /* size (0 = byte, 1 = short, 2 = long) */
939 32, /* bitsize */
940 TRUE, /* pc_relative */
941 0, /* bitpos */
942 complain_overflow_dont,/* complain_on_overflow */
943 bfd_elf_generic_reloc, /* special_function */
944 "R_ARM_ALU_PC_G1", /* name */
945 FALSE, /* partial_inplace */
946 0xffffffff, /* src_mask */
947 0xffffffff, /* dst_mask */
948 TRUE), /* pcrel_offset */
949
950 HOWTO (R_ARM_ALU_PC_G2, /* type */
951 0, /* rightshift */
952 2, /* size (0 = byte, 1 = short, 2 = long) */
953 32, /* bitsize */
954 TRUE, /* pc_relative */
955 0, /* bitpos */
956 complain_overflow_dont,/* complain_on_overflow */
957 bfd_elf_generic_reloc, /* special_function */
958 "R_ARM_ALU_PC_G2", /* name */
959 FALSE, /* partial_inplace */
960 0xffffffff, /* src_mask */
961 0xffffffff, /* dst_mask */
962 TRUE), /* pcrel_offset */
963
964 HOWTO (R_ARM_LDR_PC_G1, /* type */
965 0, /* rightshift */
966 2, /* size (0 = byte, 1 = short, 2 = long) */
967 32, /* bitsize */
968 TRUE, /* pc_relative */
969 0, /* bitpos */
970 complain_overflow_dont,/* complain_on_overflow */
971 bfd_elf_generic_reloc, /* special_function */
972 "R_ARM_LDR_PC_G1", /* name */
973 FALSE, /* partial_inplace */
974 0xffffffff, /* src_mask */
975 0xffffffff, /* dst_mask */
976 TRUE), /* pcrel_offset */
977
978 HOWTO (R_ARM_LDR_PC_G2, /* type */
979 0, /* rightshift */
980 2, /* size (0 = byte, 1 = short, 2 = long) */
981 32, /* bitsize */
982 TRUE, /* pc_relative */
983 0, /* bitpos */
984 complain_overflow_dont,/* complain_on_overflow */
985 bfd_elf_generic_reloc, /* special_function */
986 "R_ARM_LDR_PC_G2", /* name */
987 FALSE, /* partial_inplace */
988 0xffffffff, /* src_mask */
989 0xffffffff, /* dst_mask */
990 TRUE), /* pcrel_offset */
991
992 HOWTO (R_ARM_LDRS_PC_G0, /* type */
993 0, /* rightshift */
994 2, /* size (0 = byte, 1 = short, 2 = long) */
995 32, /* bitsize */
996 TRUE, /* pc_relative */
997 0, /* bitpos */
998 complain_overflow_dont,/* complain_on_overflow */
999 bfd_elf_generic_reloc, /* special_function */
1000 "R_ARM_LDRS_PC_G0", /* name */
1001 FALSE, /* partial_inplace */
1002 0xffffffff, /* src_mask */
1003 0xffffffff, /* dst_mask */
1004 TRUE), /* pcrel_offset */
1005
1006 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1007 0, /* rightshift */
1008 2, /* size (0 = byte, 1 = short, 2 = long) */
1009 32, /* bitsize */
1010 TRUE, /* pc_relative */
1011 0, /* bitpos */
1012 complain_overflow_dont,/* complain_on_overflow */
1013 bfd_elf_generic_reloc, /* special_function */
1014 "R_ARM_LDRS_PC_G1", /* name */
1015 FALSE, /* partial_inplace */
1016 0xffffffff, /* src_mask */
1017 0xffffffff, /* dst_mask */
1018 TRUE), /* pcrel_offset */
1019
1020 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1021 0, /* rightshift */
1022 2, /* size (0 = byte, 1 = short, 2 = long) */
1023 32, /* bitsize */
1024 TRUE, /* pc_relative */
1025 0, /* bitpos */
1026 complain_overflow_dont,/* complain_on_overflow */
1027 bfd_elf_generic_reloc, /* special_function */
1028 "R_ARM_LDRS_PC_G2", /* name */
1029 FALSE, /* partial_inplace */
1030 0xffffffff, /* src_mask */
1031 0xffffffff, /* dst_mask */
1032 TRUE), /* pcrel_offset */
1033
1034 HOWTO (R_ARM_LDC_PC_G0, /* type */
1035 0, /* rightshift */
1036 2, /* size (0 = byte, 1 = short, 2 = long) */
1037 32, /* bitsize */
1038 TRUE, /* pc_relative */
1039 0, /* bitpos */
1040 complain_overflow_dont,/* complain_on_overflow */
1041 bfd_elf_generic_reloc, /* special_function */
1042 "R_ARM_LDC_PC_G0", /* name */
1043 FALSE, /* partial_inplace */
1044 0xffffffff, /* src_mask */
1045 0xffffffff, /* dst_mask */
1046 TRUE), /* pcrel_offset */
1047
1048 HOWTO (R_ARM_LDC_PC_G1, /* type */
1049 0, /* rightshift */
1050 2, /* size (0 = byte, 1 = short, 2 = long) */
1051 32, /* bitsize */
1052 TRUE, /* pc_relative */
1053 0, /* bitpos */
1054 complain_overflow_dont,/* complain_on_overflow */
1055 bfd_elf_generic_reloc, /* special_function */
1056 "R_ARM_LDC_PC_G1", /* name */
1057 FALSE, /* partial_inplace */
1058 0xffffffff, /* src_mask */
1059 0xffffffff, /* dst_mask */
1060 TRUE), /* pcrel_offset */
1061
1062 HOWTO (R_ARM_LDC_PC_G2, /* type */
1063 0, /* rightshift */
1064 2, /* size (0 = byte, 1 = short, 2 = long) */
1065 32, /* bitsize */
1066 TRUE, /* pc_relative */
1067 0, /* bitpos */
1068 complain_overflow_dont,/* complain_on_overflow */
1069 bfd_elf_generic_reloc, /* special_function */
1070 "R_ARM_LDC_PC_G2", /* name */
1071 FALSE, /* partial_inplace */
1072 0xffffffff, /* src_mask */
1073 0xffffffff, /* dst_mask */
1074 TRUE), /* pcrel_offset */
1075
1076 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1077 0, /* rightshift */
1078 2, /* size (0 = byte, 1 = short, 2 = long) */
1079 32, /* bitsize */
1080 TRUE, /* pc_relative */
1081 0, /* bitpos */
1082 complain_overflow_dont,/* complain_on_overflow */
1083 bfd_elf_generic_reloc, /* special_function */
1084 "R_ARM_ALU_SB_G0_NC", /* name */
1085 FALSE, /* partial_inplace */
1086 0xffffffff, /* src_mask */
1087 0xffffffff, /* dst_mask */
1088 TRUE), /* pcrel_offset */
1089
1090 HOWTO (R_ARM_ALU_SB_G0, /* type */
1091 0, /* rightshift */
1092 2, /* size (0 = byte, 1 = short, 2 = long) */
1093 32, /* bitsize */
1094 TRUE, /* pc_relative */
1095 0, /* bitpos */
1096 complain_overflow_dont,/* complain_on_overflow */
1097 bfd_elf_generic_reloc, /* special_function */
1098 "R_ARM_ALU_SB_G0", /* name */
1099 FALSE, /* partial_inplace */
1100 0xffffffff, /* src_mask */
1101 0xffffffff, /* dst_mask */
1102 TRUE), /* pcrel_offset */
1103
1104 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1105 0, /* rightshift */
1106 2, /* size (0 = byte, 1 = short, 2 = long) */
1107 32, /* bitsize */
1108 TRUE, /* pc_relative */
1109 0, /* bitpos */
1110 complain_overflow_dont,/* complain_on_overflow */
1111 bfd_elf_generic_reloc, /* special_function */
1112 "R_ARM_ALU_SB_G1_NC", /* name */
1113 FALSE, /* partial_inplace */
1114 0xffffffff, /* src_mask */
1115 0xffffffff, /* dst_mask */
1116 TRUE), /* pcrel_offset */
1117
1118 HOWTO (R_ARM_ALU_SB_G1, /* type */
1119 0, /* rightshift */
1120 2, /* size (0 = byte, 1 = short, 2 = long) */
1121 32, /* bitsize */
1122 TRUE, /* pc_relative */
1123 0, /* bitpos */
1124 complain_overflow_dont,/* complain_on_overflow */
1125 bfd_elf_generic_reloc, /* special_function */
1126 "R_ARM_ALU_SB_G1", /* name */
1127 FALSE, /* partial_inplace */
1128 0xffffffff, /* src_mask */
1129 0xffffffff, /* dst_mask */
1130 TRUE), /* pcrel_offset */
1131
1132 HOWTO (R_ARM_ALU_SB_G2, /* type */
1133 0, /* rightshift */
1134 2, /* size (0 = byte, 1 = short, 2 = long) */
1135 32, /* bitsize */
1136 TRUE, /* pc_relative */
1137 0, /* bitpos */
1138 complain_overflow_dont,/* complain_on_overflow */
1139 bfd_elf_generic_reloc, /* special_function */
1140 "R_ARM_ALU_SB_G2", /* name */
1141 FALSE, /* partial_inplace */
1142 0xffffffff, /* src_mask */
1143 0xffffffff, /* dst_mask */
1144 TRUE), /* pcrel_offset */
1145
1146 HOWTO (R_ARM_LDR_SB_G0, /* type */
1147 0, /* rightshift */
1148 2, /* size (0 = byte, 1 = short, 2 = long) */
1149 32, /* bitsize */
1150 TRUE, /* pc_relative */
1151 0, /* bitpos */
1152 complain_overflow_dont,/* complain_on_overflow */
1153 bfd_elf_generic_reloc, /* special_function */
1154 "R_ARM_LDR_SB_G0", /* name */
1155 FALSE, /* partial_inplace */
1156 0xffffffff, /* src_mask */
1157 0xffffffff, /* dst_mask */
1158 TRUE), /* pcrel_offset */
1159
1160 HOWTO (R_ARM_LDR_SB_G1, /* type */
1161 0, /* rightshift */
1162 2, /* size (0 = byte, 1 = short, 2 = long) */
1163 32, /* bitsize */
1164 TRUE, /* pc_relative */
1165 0, /* bitpos */
1166 complain_overflow_dont,/* complain_on_overflow */
1167 bfd_elf_generic_reloc, /* special_function */
1168 "R_ARM_LDR_SB_G1", /* name */
1169 FALSE, /* partial_inplace */
1170 0xffffffff, /* src_mask */
1171 0xffffffff, /* dst_mask */
1172 TRUE), /* pcrel_offset */
1173
1174 HOWTO (R_ARM_LDR_SB_G2, /* type */
1175 0, /* rightshift */
1176 2, /* size (0 = byte, 1 = short, 2 = long) */
1177 32, /* bitsize */
1178 TRUE, /* pc_relative */
1179 0, /* bitpos */
1180 complain_overflow_dont,/* complain_on_overflow */
1181 bfd_elf_generic_reloc, /* special_function */
1182 "R_ARM_LDR_SB_G2", /* name */
1183 FALSE, /* partial_inplace */
1184 0xffffffff, /* src_mask */
1185 0xffffffff, /* dst_mask */
1186 TRUE), /* pcrel_offset */
1187
1188 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1189 0, /* rightshift */
1190 2, /* size (0 = byte, 1 = short, 2 = long) */
1191 32, /* bitsize */
1192 TRUE, /* pc_relative */
1193 0, /* bitpos */
1194 complain_overflow_dont,/* complain_on_overflow */
1195 bfd_elf_generic_reloc, /* special_function */
1196 "R_ARM_LDRS_SB_G0", /* name */
1197 FALSE, /* partial_inplace */
1198 0xffffffff, /* src_mask */
1199 0xffffffff, /* dst_mask */
1200 TRUE), /* pcrel_offset */
1201
1202 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1203 0, /* rightshift */
1204 2, /* size (0 = byte, 1 = short, 2 = long) */
1205 32, /* bitsize */
1206 TRUE, /* pc_relative */
1207 0, /* bitpos */
1208 complain_overflow_dont,/* complain_on_overflow */
1209 bfd_elf_generic_reloc, /* special_function */
1210 "R_ARM_LDRS_SB_G1", /* name */
1211 FALSE, /* partial_inplace */
1212 0xffffffff, /* src_mask */
1213 0xffffffff, /* dst_mask */
1214 TRUE), /* pcrel_offset */
1215
1216 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1217 0, /* rightshift */
1218 2, /* size (0 = byte, 1 = short, 2 = long) */
1219 32, /* bitsize */
1220 TRUE, /* pc_relative */
1221 0, /* bitpos */
1222 complain_overflow_dont,/* complain_on_overflow */
1223 bfd_elf_generic_reloc, /* special_function */
1224 "R_ARM_LDRS_SB_G2", /* name */
1225 FALSE, /* partial_inplace */
1226 0xffffffff, /* src_mask */
1227 0xffffffff, /* dst_mask */
1228 TRUE), /* pcrel_offset */
1229
1230 HOWTO (R_ARM_LDC_SB_G0, /* type */
1231 0, /* rightshift */
1232 2, /* size (0 = byte, 1 = short, 2 = long) */
1233 32, /* bitsize */
1234 TRUE, /* pc_relative */
1235 0, /* bitpos */
1236 complain_overflow_dont,/* complain_on_overflow */
1237 bfd_elf_generic_reloc, /* special_function */
1238 "R_ARM_LDC_SB_G0", /* name */
1239 FALSE, /* partial_inplace */
1240 0xffffffff, /* src_mask */
1241 0xffffffff, /* dst_mask */
1242 TRUE), /* pcrel_offset */
1243
1244 HOWTO (R_ARM_LDC_SB_G1, /* type */
1245 0, /* rightshift */
1246 2, /* size (0 = byte, 1 = short, 2 = long) */
1247 32, /* bitsize */
1248 TRUE, /* pc_relative */
1249 0, /* bitpos */
1250 complain_overflow_dont,/* complain_on_overflow */
1251 bfd_elf_generic_reloc, /* special_function */
1252 "R_ARM_LDC_SB_G1", /* name */
1253 FALSE, /* partial_inplace */
1254 0xffffffff, /* src_mask */
1255 0xffffffff, /* dst_mask */
1256 TRUE), /* pcrel_offset */
1257
1258 HOWTO (R_ARM_LDC_SB_G2, /* type */
1259 0, /* rightshift */
1260 2, /* size (0 = byte, 1 = short, 2 = long) */
1261 32, /* bitsize */
1262 TRUE, /* pc_relative */
1263 0, /* bitpos */
1264 complain_overflow_dont,/* complain_on_overflow */
1265 bfd_elf_generic_reloc, /* special_function */
1266 "R_ARM_LDC_SB_G2", /* name */
1267 FALSE, /* partial_inplace */
1268 0xffffffff, /* src_mask */
1269 0xffffffff, /* dst_mask */
1270 TRUE), /* pcrel_offset */
1271
1272 /* End of group relocations. */
1273
1274 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1275 0, /* rightshift */
1276 2, /* size (0 = byte, 1 = short, 2 = long) */
1277 16, /* bitsize */
1278 FALSE, /* pc_relative */
1279 0, /* bitpos */
1280 complain_overflow_dont,/* complain_on_overflow */
1281 bfd_elf_generic_reloc, /* special_function */
1282 "R_ARM_MOVW_BREL_NC", /* name */
1283 FALSE, /* partial_inplace */
1284 0x0000ffff, /* src_mask */
1285 0x0000ffff, /* dst_mask */
1286 FALSE), /* pcrel_offset */
1287
1288 HOWTO (R_ARM_MOVT_BREL, /* type */
1289 0, /* rightshift */
1290 2, /* size (0 = byte, 1 = short, 2 = long) */
1291 16, /* bitsize */
1292 FALSE, /* pc_relative */
1293 0, /* bitpos */
1294 complain_overflow_bitfield,/* complain_on_overflow */
1295 bfd_elf_generic_reloc, /* special_function */
1296 "R_ARM_MOVT_BREL", /* name */
1297 FALSE, /* partial_inplace */
1298 0x0000ffff, /* src_mask */
1299 0x0000ffff, /* dst_mask */
1300 FALSE), /* pcrel_offset */
1301
1302 HOWTO (R_ARM_MOVW_BREL, /* type */
1303 0, /* rightshift */
1304 2, /* size (0 = byte, 1 = short, 2 = long) */
1305 16, /* bitsize */
1306 FALSE, /* pc_relative */
1307 0, /* bitpos */
1308 complain_overflow_dont,/* complain_on_overflow */
1309 bfd_elf_generic_reloc, /* special_function */
1310 "R_ARM_MOVW_BREL", /* name */
1311 FALSE, /* partial_inplace */
1312 0x0000ffff, /* src_mask */
1313 0x0000ffff, /* dst_mask */
1314 FALSE), /* pcrel_offset */
1315
1316 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1317 0, /* rightshift */
1318 2, /* size (0 = byte, 1 = short, 2 = long) */
1319 16, /* bitsize */
1320 FALSE, /* pc_relative */
1321 0, /* bitpos */
1322 complain_overflow_dont,/* complain_on_overflow */
1323 bfd_elf_generic_reloc, /* special_function */
1324 "R_ARM_THM_MOVW_BREL_NC",/* name */
1325 FALSE, /* partial_inplace */
1326 0x040f70ff, /* src_mask */
1327 0x040f70ff, /* dst_mask */
1328 FALSE), /* pcrel_offset */
1329
1330 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1331 0, /* rightshift */
1332 2, /* size (0 = byte, 1 = short, 2 = long) */
1333 16, /* bitsize */
1334 FALSE, /* pc_relative */
1335 0, /* bitpos */
1336 complain_overflow_bitfield,/* complain_on_overflow */
1337 bfd_elf_generic_reloc, /* special_function */
1338 "R_ARM_THM_MOVT_BREL", /* name */
1339 FALSE, /* partial_inplace */
1340 0x040f70ff, /* src_mask */
1341 0x040f70ff, /* dst_mask */
1342 FALSE), /* pcrel_offset */
1343
1344 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1345 0, /* rightshift */
1346 2, /* size (0 = byte, 1 = short, 2 = long) */
1347 16, /* bitsize */
1348 FALSE, /* pc_relative */
1349 0, /* bitpos */
1350 complain_overflow_dont,/* complain_on_overflow */
1351 bfd_elf_generic_reloc, /* special_function */
1352 "R_ARM_THM_MOVW_BREL", /* name */
1353 FALSE, /* partial_inplace */
1354 0x040f70ff, /* src_mask */
1355 0x040f70ff, /* dst_mask */
1356 FALSE), /* pcrel_offset */
1357
1358 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1359 0, /* rightshift */
1360 2, /* size (0 = byte, 1 = short, 2 = long) */
1361 32, /* bitsize */
1362 FALSE, /* pc_relative */
1363 0, /* bitpos */
1364 complain_overflow_bitfield,/* complain_on_overflow */
1365 NULL, /* special_function */
1366 "R_ARM_TLS_GOTDESC", /* name */
1367 TRUE, /* partial_inplace */
1368 0xffffffff, /* src_mask */
1369 0xffffffff, /* dst_mask */
1370 FALSE), /* pcrel_offset */
1371
1372 HOWTO (R_ARM_TLS_CALL, /* type */
1373 0, /* rightshift */
1374 2, /* size (0 = byte, 1 = short, 2 = long) */
1375 24, /* bitsize */
1376 FALSE, /* pc_relative */
1377 0, /* bitpos */
1378 complain_overflow_dont,/* complain_on_overflow */
1379 bfd_elf_generic_reloc, /* special_function */
1380 "R_ARM_TLS_CALL", /* name */
1381 FALSE, /* partial_inplace */
1382 0x00ffffff, /* src_mask */
1383 0x00ffffff, /* dst_mask */
1384 FALSE), /* pcrel_offset */
1385
1386 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1387 0, /* rightshift */
1388 2, /* size (0 = byte, 1 = short, 2 = long) */
1389 0, /* bitsize */
1390 FALSE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_bitfield,/* complain_on_overflow */
1393 bfd_elf_generic_reloc, /* special_function */
1394 "R_ARM_TLS_DESCSEQ", /* name */
1395 FALSE, /* partial_inplace */
1396 0x00000000, /* src_mask */
1397 0x00000000, /* dst_mask */
1398 FALSE), /* pcrel_offset */
1399
1400 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1401 0, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 24, /* bitsize */
1404 FALSE, /* pc_relative */
1405 0, /* bitpos */
1406 complain_overflow_dont,/* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 "R_ARM_THM_TLS_CALL", /* name */
1409 FALSE, /* partial_inplace */
1410 0x07ff07ff, /* src_mask */
1411 0x07ff07ff, /* dst_mask */
1412 FALSE), /* pcrel_offset */
1413
1414 HOWTO (R_ARM_PLT32_ABS, /* type */
1415 0, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 32, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_dont,/* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 "R_ARM_PLT32_ABS", /* name */
1423 FALSE, /* partial_inplace */
1424 0xffffffff, /* src_mask */
1425 0xffffffff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 HOWTO (R_ARM_GOT_ABS, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 32, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont,/* complain_on_overflow */
1435 bfd_elf_generic_reloc, /* special_function */
1436 "R_ARM_GOT_ABS", /* name */
1437 FALSE, /* partial_inplace */
1438 0xffffffff, /* src_mask */
1439 0xffffffff, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 HOWTO (R_ARM_GOT_PREL, /* type */
1443 0, /* rightshift */
1444 2, /* size (0 = byte, 1 = short, 2 = long) */
1445 32, /* bitsize */
1446 TRUE, /* pc_relative */
1447 0, /* bitpos */
1448 complain_overflow_dont, /* complain_on_overflow */
1449 bfd_elf_generic_reloc, /* special_function */
1450 "R_ARM_GOT_PREL", /* name */
1451 FALSE, /* partial_inplace */
1452 0xffffffff, /* src_mask */
1453 0xffffffff, /* dst_mask */
1454 TRUE), /* pcrel_offset */
1455
1456 HOWTO (R_ARM_GOT_BREL12, /* type */
1457 0, /* rightshift */
1458 2, /* size (0 = byte, 1 = short, 2 = long) */
1459 12, /* bitsize */
1460 FALSE, /* pc_relative */
1461 0, /* bitpos */
1462 complain_overflow_bitfield,/* complain_on_overflow */
1463 bfd_elf_generic_reloc, /* special_function */
1464 "R_ARM_GOT_BREL12", /* name */
1465 FALSE, /* partial_inplace */
1466 0x00000fff, /* src_mask */
1467 0x00000fff, /* dst_mask */
1468 FALSE), /* pcrel_offset */
1469
1470 HOWTO (R_ARM_GOTOFF12, /* type */
1471 0, /* rightshift */
1472 2, /* size (0 = byte, 1 = short, 2 = long) */
1473 12, /* bitsize */
1474 FALSE, /* pc_relative */
1475 0, /* bitpos */
1476 complain_overflow_bitfield,/* complain_on_overflow */
1477 bfd_elf_generic_reloc, /* special_function */
1478 "R_ARM_GOTOFF12", /* name */
1479 FALSE, /* partial_inplace */
1480 0x00000fff, /* src_mask */
1481 0x00000fff, /* dst_mask */
1482 FALSE), /* pcrel_offset */
1483
1484 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1485
1486 /* GNU extension to record C++ vtable member usage */
1487 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1488 0, /* rightshift */
1489 2, /* size (0 = byte, 1 = short, 2 = long) */
1490 0, /* bitsize */
1491 FALSE, /* pc_relative */
1492 0, /* bitpos */
1493 complain_overflow_dont, /* complain_on_overflow */
1494 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1495 "R_ARM_GNU_VTENTRY", /* name */
1496 FALSE, /* partial_inplace */
1497 0, /* src_mask */
1498 0, /* dst_mask */
1499 FALSE), /* pcrel_offset */
1500
1501 /* GNU extension to record C++ vtable hierarchy */
1502 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1503 0, /* rightshift */
1504 2, /* size (0 = byte, 1 = short, 2 = long) */
1505 0, /* bitsize */
1506 FALSE, /* pc_relative */
1507 0, /* bitpos */
1508 complain_overflow_dont, /* complain_on_overflow */
1509 NULL, /* special_function */
1510 "R_ARM_GNU_VTINHERIT", /* name */
1511 FALSE, /* partial_inplace */
1512 0, /* src_mask */
1513 0, /* dst_mask */
1514 FALSE), /* pcrel_offset */
1515
1516 HOWTO (R_ARM_THM_JUMP11, /* type */
1517 1, /* rightshift */
1518 1, /* size (0 = byte, 1 = short, 2 = long) */
1519 11, /* bitsize */
1520 TRUE, /* pc_relative */
1521 0, /* bitpos */
1522 complain_overflow_signed, /* complain_on_overflow */
1523 bfd_elf_generic_reloc, /* special_function */
1524 "R_ARM_THM_JUMP11", /* name */
1525 FALSE, /* partial_inplace */
1526 0x000007ff, /* src_mask */
1527 0x000007ff, /* dst_mask */
1528 TRUE), /* pcrel_offset */
1529
1530 HOWTO (R_ARM_THM_JUMP8, /* type */
1531 1, /* rightshift */
1532 1, /* size (0 = byte, 1 = short, 2 = long) */
1533 8, /* bitsize */
1534 TRUE, /* pc_relative */
1535 0, /* bitpos */
1536 complain_overflow_signed, /* complain_on_overflow */
1537 bfd_elf_generic_reloc, /* special_function */
1538 "R_ARM_THM_JUMP8", /* name */
1539 FALSE, /* partial_inplace */
1540 0x000000ff, /* src_mask */
1541 0x000000ff, /* dst_mask */
1542 TRUE), /* pcrel_offset */
1543
1544 /* TLS relocations */
1545 HOWTO (R_ARM_TLS_GD32, /* type */
1546 0, /* rightshift */
1547 2, /* size (0 = byte, 1 = short, 2 = long) */
1548 32, /* bitsize */
1549 FALSE, /* pc_relative */
1550 0, /* bitpos */
1551 complain_overflow_bitfield,/* complain_on_overflow */
1552 NULL, /* special_function */
1553 "R_ARM_TLS_GD32", /* name */
1554 TRUE, /* partial_inplace */
1555 0xffffffff, /* src_mask */
1556 0xffffffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1558
1559 HOWTO (R_ARM_TLS_LDM32, /* type */
1560 0, /* rightshift */
1561 2, /* size (0 = byte, 1 = short, 2 = long) */
1562 32, /* bitsize */
1563 FALSE, /* pc_relative */
1564 0, /* bitpos */
1565 complain_overflow_bitfield,/* complain_on_overflow */
1566 bfd_elf_generic_reloc, /* special_function */
1567 "R_ARM_TLS_LDM32", /* name */
1568 TRUE, /* partial_inplace */
1569 0xffffffff, /* src_mask */
1570 0xffffffff, /* dst_mask */
1571 FALSE), /* pcrel_offset */
1572
1573 HOWTO (R_ARM_TLS_LDO32, /* type */
1574 0, /* rightshift */
1575 2, /* size (0 = byte, 1 = short, 2 = long) */
1576 32, /* bitsize */
1577 FALSE, /* pc_relative */
1578 0, /* bitpos */
1579 complain_overflow_bitfield,/* complain_on_overflow */
1580 bfd_elf_generic_reloc, /* special_function */
1581 "R_ARM_TLS_LDO32", /* name */
1582 TRUE, /* partial_inplace */
1583 0xffffffff, /* src_mask */
1584 0xffffffff, /* dst_mask */
1585 FALSE), /* pcrel_offset */
1586
1587 HOWTO (R_ARM_TLS_IE32, /* type */
1588 0, /* rightshift */
1589 2, /* size (0 = byte, 1 = short, 2 = long) */
1590 32, /* bitsize */
1591 FALSE, /* pc_relative */
1592 0, /* bitpos */
1593 complain_overflow_bitfield,/* complain_on_overflow */
1594 NULL, /* special_function */
1595 "R_ARM_TLS_IE32", /* name */
1596 TRUE, /* partial_inplace */
1597 0xffffffff, /* src_mask */
1598 0xffffffff, /* dst_mask */
1599 FALSE), /* pcrel_offset */
1600
1601 HOWTO (R_ARM_TLS_LE32, /* type */
1602 0, /* rightshift */
1603 2, /* size (0 = byte, 1 = short, 2 = long) */
1604 32, /* bitsize */
1605 FALSE, /* pc_relative */
1606 0, /* bitpos */
1607 complain_overflow_bitfield,/* complain_on_overflow */
1608 NULL, /* special_function */
1609 "R_ARM_TLS_LE32", /* name */
1610 TRUE, /* partial_inplace */
1611 0xffffffff, /* src_mask */
1612 0xffffffff, /* dst_mask */
1613 FALSE), /* pcrel_offset */
1614
1615 HOWTO (R_ARM_TLS_LDO12, /* type */
1616 0, /* rightshift */
1617 2, /* size (0 = byte, 1 = short, 2 = long) */
1618 12, /* bitsize */
1619 FALSE, /* pc_relative */
1620 0, /* bitpos */
1621 complain_overflow_bitfield,/* complain_on_overflow */
1622 bfd_elf_generic_reloc, /* special_function */
1623 "R_ARM_TLS_LDO12", /* name */
1624 FALSE, /* partial_inplace */
1625 0x00000fff, /* src_mask */
1626 0x00000fff, /* dst_mask */
1627 FALSE), /* pcrel_offset */
1628
1629 HOWTO (R_ARM_TLS_LE12, /* type */
1630 0, /* rightshift */
1631 2, /* size (0 = byte, 1 = short, 2 = long) */
1632 12, /* bitsize */
1633 FALSE, /* pc_relative */
1634 0, /* bitpos */
1635 complain_overflow_bitfield,/* complain_on_overflow */
1636 bfd_elf_generic_reloc, /* special_function */
1637 "R_ARM_TLS_LE12", /* name */
1638 FALSE, /* partial_inplace */
1639 0x00000fff, /* src_mask */
1640 0x00000fff, /* dst_mask */
1641 FALSE), /* pcrel_offset */
1642
1643 HOWTO (R_ARM_TLS_IE12GP, /* type */
1644 0, /* rightshift */
1645 2, /* size (0 = byte, 1 = short, 2 = long) */
1646 12, /* bitsize */
1647 FALSE, /* pc_relative */
1648 0, /* bitpos */
1649 complain_overflow_bitfield,/* complain_on_overflow */
1650 bfd_elf_generic_reloc, /* special_function */
1651 "R_ARM_TLS_IE12GP", /* name */
1652 FALSE, /* partial_inplace */
1653 0x00000fff, /* src_mask */
1654 0x00000fff, /* dst_mask */
1655 FALSE), /* pcrel_offset */
1656
1657 /* 112-127 private relocations. */
1658 EMPTY_HOWTO (112),
1659 EMPTY_HOWTO (113),
1660 EMPTY_HOWTO (114),
1661 EMPTY_HOWTO (115),
1662 EMPTY_HOWTO (116),
1663 EMPTY_HOWTO (117),
1664 EMPTY_HOWTO (118),
1665 EMPTY_HOWTO (119),
1666 EMPTY_HOWTO (120),
1667 EMPTY_HOWTO (121),
1668 EMPTY_HOWTO (122),
1669 EMPTY_HOWTO (123),
1670 EMPTY_HOWTO (124),
1671 EMPTY_HOWTO (125),
1672 EMPTY_HOWTO (126),
1673 EMPTY_HOWTO (127),
1674
1675 /* R_ARM_ME_TOO, obsolete. */
1676 EMPTY_HOWTO (128),
1677
1678 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1679 0, /* rightshift */
1680 1, /* size (0 = byte, 1 = short, 2 = long) */
1681 0, /* bitsize */
1682 FALSE, /* pc_relative */
1683 0, /* bitpos */
1684 complain_overflow_bitfield,/* complain_on_overflow */
1685 bfd_elf_generic_reloc, /* special_function */
1686 "R_ARM_THM_TLS_DESCSEQ",/* name */
1687 FALSE, /* partial_inplace */
1688 0x00000000, /* src_mask */
1689 0x00000000, /* dst_mask */
1690 FALSE), /* pcrel_offset */
1691 EMPTY_HOWTO (130),
1692 EMPTY_HOWTO (131),
1693 HOWTO (R_ARM_THM_ALU_ABS_G0_NC,/* type. */
1694 0, /* rightshift. */
1695 1, /* size (0 = byte, 1 = short, 2 = long). */
1696 16, /* bitsize. */
1697 FALSE, /* pc_relative. */
1698 0, /* bitpos. */
1699 complain_overflow_bitfield,/* complain_on_overflow. */
1700 bfd_elf_generic_reloc, /* special_function. */
1701 "R_ARM_THM_ALU_ABS_G0_NC",/* name. */
1702 FALSE, /* partial_inplace. */
1703 0x00000000, /* src_mask. */
1704 0x00000000, /* dst_mask. */
1705 FALSE), /* pcrel_offset. */
1706 HOWTO (R_ARM_THM_ALU_ABS_G1_NC,/* type. */
1707 0, /* rightshift. */
1708 1, /* size (0 = byte, 1 = short, 2 = long). */
1709 16, /* bitsize. */
1710 FALSE, /* pc_relative. */
1711 0, /* bitpos. */
1712 complain_overflow_bitfield,/* complain_on_overflow. */
1713 bfd_elf_generic_reloc, /* special_function. */
1714 "R_ARM_THM_ALU_ABS_G1_NC",/* name. */
1715 FALSE, /* partial_inplace. */
1716 0x00000000, /* src_mask. */
1717 0x00000000, /* dst_mask. */
1718 FALSE), /* pcrel_offset. */
1719 HOWTO (R_ARM_THM_ALU_ABS_G2_NC,/* type. */
1720 0, /* rightshift. */
1721 1, /* size (0 = byte, 1 = short, 2 = long). */
1722 16, /* bitsize. */
1723 FALSE, /* pc_relative. */
1724 0, /* bitpos. */
1725 complain_overflow_bitfield,/* complain_on_overflow. */
1726 bfd_elf_generic_reloc, /* special_function. */
1727 "R_ARM_THM_ALU_ABS_G2_NC",/* name. */
1728 FALSE, /* partial_inplace. */
1729 0x00000000, /* src_mask. */
1730 0x00000000, /* dst_mask. */
1731 FALSE), /* pcrel_offset. */
1732 HOWTO (R_ARM_THM_ALU_ABS_G3_NC,/* type. */
1733 0, /* rightshift. */
1734 1, /* size (0 = byte, 1 = short, 2 = long). */
1735 16, /* bitsize. */
1736 FALSE, /* pc_relative. */
1737 0, /* bitpos. */
1738 complain_overflow_bitfield,/* complain_on_overflow. */
1739 bfd_elf_generic_reloc, /* special_function. */
1740 "R_ARM_THM_ALU_ABS_G3_NC",/* name. */
1741 FALSE, /* partial_inplace. */
1742 0x00000000, /* src_mask. */
1743 0x00000000, /* dst_mask. */
1744 FALSE), /* pcrel_offset. */
1745 /* Relocations for Armv8.1-M Mainline. */
1746 HOWTO (R_ARM_THM_BF16, /* type. */
1747 0, /* rightshift. */
1748 1, /* size (0 = byte, 1 = short, 2 = long). */
1749 16, /* bitsize. */
1750 TRUE, /* pc_relative. */
1751 0, /* bitpos. */
1752 complain_overflow_dont,/* do not complain_on_overflow. */
1753 bfd_elf_generic_reloc, /* special_function. */
1754 "R_ARM_THM_BF16", /* name. */
1755 FALSE, /* partial_inplace. */
1756 0x001f0ffe, /* src_mask. */
1757 0x001f0ffe, /* dst_mask. */
1758 TRUE), /* pcrel_offset. */
1759 HOWTO (R_ARM_THM_BF12, /* type. */
1760 0, /* rightshift. */
1761 1, /* size (0 = byte, 1 = short, 2 = long). */
1762 12, /* bitsize. */
1763 TRUE, /* pc_relative. */
1764 0, /* bitpos. */
1765 complain_overflow_dont,/* do not complain_on_overflow. */
1766 bfd_elf_generic_reloc, /* special_function. */
1767 "R_ARM_THM_BF12", /* name. */
1768 FALSE, /* partial_inplace. */
1769 0x00010ffe, /* src_mask. */
1770 0x00010ffe, /* dst_mask. */
1771 TRUE), /* pcrel_offset. */
1772 HOWTO (R_ARM_THM_BF18, /* type. */
1773 0, /* rightshift. */
1774 1, /* size (0 = byte, 1 = short, 2 = long). */
1775 18, /* bitsize. */
1776 TRUE, /* pc_relative. */
1777 0, /* bitpos. */
1778 complain_overflow_dont,/* do not complain_on_overflow. */
1779 bfd_elf_generic_reloc, /* special_function. */
1780 "R_ARM_THM_BF18", /* name. */
1781 FALSE, /* partial_inplace. */
1782 0x007f0ffe, /* src_mask. */
1783 0x007f0ffe, /* dst_mask. */
1784 TRUE), /* pcrel_offset. */
1785 };
1786
1787 /* 160 onwards: */
1788 static reloc_howto_type elf32_arm_howto_table_2[8] =
1789 {
1790 HOWTO (R_ARM_IRELATIVE, /* type */
1791 0, /* rightshift */
1792 2, /* size (0 = byte, 1 = short, 2 = long) */
1793 32, /* bitsize */
1794 FALSE, /* pc_relative */
1795 0, /* bitpos */
1796 complain_overflow_bitfield,/* complain_on_overflow */
1797 bfd_elf_generic_reloc, /* special_function */
1798 "R_ARM_IRELATIVE", /* name */
1799 TRUE, /* partial_inplace */
1800 0xffffffff, /* src_mask */
1801 0xffffffff, /* dst_mask */
1802 FALSE), /* pcrel_offset */
1803 HOWTO (R_ARM_GOTFUNCDESC, /* type */
1804 0, /* rightshift */
1805 2, /* size (0 = byte, 1 = short, 2 = long) */
1806 32, /* bitsize */
1807 FALSE, /* pc_relative */
1808 0, /* bitpos */
1809 complain_overflow_bitfield,/* complain_on_overflow */
1810 bfd_elf_generic_reloc, /* special_function */
1811 "R_ARM_GOTFUNCDESC", /* name */
1812 FALSE, /* partial_inplace */
1813 0, /* src_mask */
1814 0xffffffff, /* dst_mask */
1815 FALSE), /* pcrel_offset */
1816 HOWTO (R_ARM_GOTOFFFUNCDESC, /* type */
1817 0, /* rightshift */
1818 2, /* size (0 = byte, 1 = short, 2 = long) */
1819 32, /* bitsize */
1820 FALSE, /* pc_relative */
1821 0, /* bitpos */
1822 complain_overflow_bitfield,/* complain_on_overflow */
1823 bfd_elf_generic_reloc, /* special_function */
1824 "R_ARM_GOTOFFFUNCDESC",/* name */
1825 FALSE, /* partial_inplace */
1826 0, /* src_mask */
1827 0xffffffff, /* dst_mask */
1828 FALSE), /* pcrel_offset */
1829 HOWTO (R_ARM_FUNCDESC, /* type */
1830 0, /* rightshift */
1831 2, /* size (0 = byte, 1 = short, 2 = long) */
1832 32, /* bitsize */
1833 FALSE, /* pc_relative */
1834 0, /* bitpos */
1835 complain_overflow_bitfield,/* complain_on_overflow */
1836 bfd_elf_generic_reloc, /* special_function */
1837 "R_ARM_FUNCDESC", /* name */
1838 FALSE, /* partial_inplace */
1839 0, /* src_mask */
1840 0xffffffff, /* dst_mask */
1841 FALSE), /* pcrel_offset */
1842 HOWTO (R_ARM_FUNCDESC_VALUE, /* type */
1843 0, /* rightshift */
1844 2, /* size (0 = byte, 1 = short, 2 = long) */
1845 64, /* bitsize */
1846 FALSE, /* pc_relative */
1847 0, /* bitpos */
1848 complain_overflow_bitfield,/* complain_on_overflow */
1849 bfd_elf_generic_reloc, /* special_function */
1850 "R_ARM_FUNCDESC_VALUE",/* name */
1851 FALSE, /* partial_inplace */
1852 0, /* src_mask */
1853 0xffffffff, /* dst_mask */
1854 FALSE), /* pcrel_offset */
1855 HOWTO (R_ARM_TLS_GD32_FDPIC, /* type */
1856 0, /* rightshift */
1857 2, /* size (0 = byte, 1 = short, 2 = long) */
1858 32, /* bitsize */
1859 FALSE, /* pc_relative */
1860 0, /* bitpos */
1861 complain_overflow_bitfield,/* complain_on_overflow */
1862 bfd_elf_generic_reloc, /* special_function */
1863 "R_ARM_TLS_GD32_FDPIC",/* name */
1864 FALSE, /* partial_inplace */
1865 0, /* src_mask */
1866 0xffffffff, /* dst_mask */
1867 FALSE), /* pcrel_offset */
1868 HOWTO (R_ARM_TLS_LDM32_FDPIC, /* type */
1869 0, /* rightshift */
1870 2, /* size (0 = byte, 1 = short, 2 = long) */
1871 32, /* bitsize */
1872 FALSE, /* pc_relative */
1873 0, /* bitpos */
1874 complain_overflow_bitfield,/* complain_on_overflow */
1875 bfd_elf_generic_reloc, /* special_function */
1876 "R_ARM_TLS_LDM32_FDPIC",/* name */
1877 FALSE, /* partial_inplace */
1878 0, /* src_mask */
1879 0xffffffff, /* dst_mask */
1880 FALSE), /* pcrel_offset */
1881 HOWTO (R_ARM_TLS_IE32_FDPIC, /* type */
1882 0, /* rightshift */
1883 2, /* size (0 = byte, 1 = short, 2 = long) */
1884 32, /* bitsize */
1885 FALSE, /* pc_relative */
1886 0, /* bitpos */
1887 complain_overflow_bitfield,/* complain_on_overflow */
1888 bfd_elf_generic_reloc, /* special_function */
1889 "R_ARM_TLS_IE32_FDPIC",/* name */
1890 FALSE, /* partial_inplace */
1891 0, /* src_mask */
1892 0xffffffff, /* dst_mask */
1893 FALSE), /* pcrel_offset */
1894 };
1895
1896 /* 249-255 extended, currently unused, relocations: */
1897 static reloc_howto_type elf32_arm_howto_table_3[4] =
1898 {
1899 HOWTO (R_ARM_RREL32, /* type */
1900 0, /* rightshift */
1901 0, /* size (0 = byte, 1 = short, 2 = long) */
1902 0, /* bitsize */
1903 FALSE, /* pc_relative */
1904 0, /* bitpos */
1905 complain_overflow_dont,/* complain_on_overflow */
1906 bfd_elf_generic_reloc, /* special_function */
1907 "R_ARM_RREL32", /* name */
1908 FALSE, /* partial_inplace */
1909 0, /* src_mask */
1910 0, /* dst_mask */
1911 FALSE), /* pcrel_offset */
1912
1913 HOWTO (R_ARM_RABS32, /* type */
1914 0, /* rightshift */
1915 0, /* size (0 = byte, 1 = short, 2 = long) */
1916 0, /* bitsize */
1917 FALSE, /* pc_relative */
1918 0, /* bitpos */
1919 complain_overflow_dont,/* complain_on_overflow */
1920 bfd_elf_generic_reloc, /* special_function */
1921 "R_ARM_RABS32", /* name */
1922 FALSE, /* partial_inplace */
1923 0, /* src_mask */
1924 0, /* dst_mask */
1925 FALSE), /* pcrel_offset */
1926
1927 HOWTO (R_ARM_RPC24, /* type */
1928 0, /* rightshift */
1929 0, /* size (0 = byte, 1 = short, 2 = long) */
1930 0, /* bitsize */
1931 FALSE, /* pc_relative */
1932 0, /* bitpos */
1933 complain_overflow_dont,/* complain_on_overflow */
1934 bfd_elf_generic_reloc, /* special_function */
1935 "R_ARM_RPC24", /* name */
1936 FALSE, /* partial_inplace */
1937 0, /* src_mask */
1938 0, /* dst_mask */
1939 FALSE), /* pcrel_offset */
1940
1941 HOWTO (R_ARM_RBASE, /* type */
1942 0, /* rightshift */
1943 0, /* size (0 = byte, 1 = short, 2 = long) */
1944 0, /* bitsize */
1945 FALSE, /* pc_relative */
1946 0, /* bitpos */
1947 complain_overflow_dont,/* complain_on_overflow */
1948 bfd_elf_generic_reloc, /* special_function */
1949 "R_ARM_RBASE", /* name */
1950 FALSE, /* partial_inplace */
1951 0, /* src_mask */
1952 0, /* dst_mask */
1953 FALSE) /* pcrel_offset */
1954 };
1955
1956 static reloc_howto_type *
1957 elf32_arm_howto_from_type (unsigned int r_type)
1958 {
1959 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1960 return &elf32_arm_howto_table_1[r_type];
1961
1962 if (r_type >= R_ARM_IRELATIVE
1963 && r_type < R_ARM_IRELATIVE + ARRAY_SIZE (elf32_arm_howto_table_2))
1964 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1965
1966 if (r_type >= R_ARM_RREL32
1967 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1968 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1969
1970 return NULL;
1971 }
1972
1973 static bfd_boolean
1974 elf32_arm_info_to_howto (bfd * abfd, arelent * bfd_reloc,
1975 Elf_Internal_Rela * elf_reloc)
1976 {
1977 unsigned int r_type;
1978
1979 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1980 if ((bfd_reloc->howto = elf32_arm_howto_from_type (r_type)) == NULL)
1981 {
1982 /* xgettext:c-format */
1983 _bfd_error_handler (_("%pB: unsupported relocation type %#x"),
1984 abfd, r_type);
1985 bfd_set_error (bfd_error_bad_value);
1986 return FALSE;
1987 }
1988 return TRUE;
1989 }
1990
1991 struct elf32_arm_reloc_map
1992 {
1993 bfd_reloc_code_real_type bfd_reloc_val;
1994 unsigned char elf_reloc_val;
1995 };
1996
1997 /* All entries in this list must also be present in elf32_arm_howto_table. */
1998 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1999 {
2000 {BFD_RELOC_NONE, R_ARM_NONE},
2001 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
2002 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
2003 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
2004 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
2005 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
2006 {BFD_RELOC_32, R_ARM_ABS32},
2007 {BFD_RELOC_32_PCREL, R_ARM_REL32},
2008 {BFD_RELOC_8, R_ARM_ABS8},
2009 {BFD_RELOC_16, R_ARM_ABS16},
2010 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
2011 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
2012 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
2013 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
2014 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
2015 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
2016 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
2017 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
2018 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
2019 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
2020 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
2021 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
2022 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
2023 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
2024 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
2025 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2026 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
2027 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
2028 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
2029 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
2030 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
2031 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
2032 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
2033 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
2034 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
2035 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
2036 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
2037 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
2038 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
2039 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
2040 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
2041 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
2042 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
2043 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
2044 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
2045 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
2046 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
2047 {BFD_RELOC_ARM_GOTFUNCDESC, R_ARM_GOTFUNCDESC},
2048 {BFD_RELOC_ARM_GOTOFFFUNCDESC, R_ARM_GOTOFFFUNCDESC},
2049 {BFD_RELOC_ARM_FUNCDESC, R_ARM_FUNCDESC},
2050 {BFD_RELOC_ARM_FUNCDESC_VALUE, R_ARM_FUNCDESC_VALUE},
2051 {BFD_RELOC_ARM_TLS_GD32_FDPIC, R_ARM_TLS_GD32_FDPIC},
2052 {BFD_RELOC_ARM_TLS_LDM32_FDPIC, R_ARM_TLS_LDM32_FDPIC},
2053 {BFD_RELOC_ARM_TLS_IE32_FDPIC, R_ARM_TLS_IE32_FDPIC},
2054 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
2055 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
2056 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
2057 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
2058 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
2059 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
2060 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
2061 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
2062 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
2063 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
2064 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
2065 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
2066 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
2067 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
2068 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
2069 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
2070 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
2071 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
2072 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
2073 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
2074 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
2075 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
2076 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
2077 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
2078 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
2079 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
2080 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
2081 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
2082 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
2083 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
2084 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
2085 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
2086 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
2087 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
2088 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
2089 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
2090 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
2091 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
2092 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX},
2093 {BFD_RELOC_ARM_THUMB_ALU_ABS_G3_NC, R_ARM_THM_ALU_ABS_G3_NC},
2094 {BFD_RELOC_ARM_THUMB_ALU_ABS_G2_NC, R_ARM_THM_ALU_ABS_G2_NC},
2095 {BFD_RELOC_ARM_THUMB_ALU_ABS_G1_NC, R_ARM_THM_ALU_ABS_G1_NC},
2096 {BFD_RELOC_ARM_THUMB_ALU_ABS_G0_NC, R_ARM_THM_ALU_ABS_G0_NC},
2097 {BFD_RELOC_ARM_THUMB_BF17, R_ARM_THM_BF16},
2098 {BFD_RELOC_ARM_THUMB_BF13, R_ARM_THM_BF12},
2099 {BFD_RELOC_ARM_THUMB_BF19, R_ARM_THM_BF18}
2100 };
2101
2102 static reloc_howto_type *
2103 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2104 bfd_reloc_code_real_type code)
2105 {
2106 unsigned int i;
2107
2108 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
2109 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
2110 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
2111
2112 return NULL;
2113 }
2114
2115 static reloc_howto_type *
2116 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
2117 const char *r_name)
2118 {
2119 unsigned int i;
2120
2121 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
2122 if (elf32_arm_howto_table_1[i].name != NULL
2123 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
2124 return &elf32_arm_howto_table_1[i];
2125
2126 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
2127 if (elf32_arm_howto_table_2[i].name != NULL
2128 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
2129 return &elf32_arm_howto_table_2[i];
2130
2131 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
2132 if (elf32_arm_howto_table_3[i].name != NULL
2133 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
2134 return &elf32_arm_howto_table_3[i];
2135
2136 return NULL;
2137 }
2138
2139 /* Support for core dump NOTE sections. */
2140
2141 static bfd_boolean
2142 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
2143 {
2144 int offset;
2145 size_t size;
2146
2147 switch (note->descsz)
2148 {
2149 default:
2150 return FALSE;
2151
2152 case 148: /* Linux/ARM 32-bit. */
2153 /* pr_cursig */
2154 elf_tdata (abfd)->core->signal = bfd_get_16 (abfd, note->descdata + 12);
2155
2156 /* pr_pid */
2157 elf_tdata (abfd)->core->lwpid = bfd_get_32 (abfd, note->descdata + 24);
2158
2159 /* pr_reg */
2160 offset = 72;
2161 size = 72;
2162
2163 break;
2164 }
2165
2166 /* Make a ".reg/999" section. */
2167 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
2168 size, note->descpos + offset);
2169 }
2170
2171 static bfd_boolean
2172 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
2173 {
2174 switch (note->descsz)
2175 {
2176 default:
2177 return FALSE;
2178
2179 case 124: /* Linux/ARM elf_prpsinfo. */
2180 elf_tdata (abfd)->core->pid
2181 = bfd_get_32 (abfd, note->descdata + 12);
2182 elf_tdata (abfd)->core->program
2183 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
2184 elf_tdata (abfd)->core->command
2185 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
2186 }
2187
2188 /* Note that for some reason, a spurious space is tacked
2189 onto the end of the args in some (at least one anyway)
2190 implementations, so strip it off if it exists. */
2191 {
2192 char *command = elf_tdata (abfd)->core->command;
2193 int n = strlen (command);
2194
2195 if (0 < n && command[n - 1] == ' ')
2196 command[n - 1] = '\0';
2197 }
2198
2199 return TRUE;
2200 }
2201
2202 static char *
2203 elf32_arm_nabi_write_core_note (bfd *abfd, char *buf, int *bufsiz,
2204 int note_type, ...)
2205 {
2206 switch (note_type)
2207 {
2208 default:
2209 return NULL;
2210
2211 case NT_PRPSINFO:
2212 {
2213 char data[124] ATTRIBUTE_NONSTRING;
2214 va_list ap;
2215
2216 va_start (ap, note_type);
2217 memset (data, 0, sizeof (data));
2218 strncpy (data + 28, va_arg (ap, const char *), 16);
2219 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2220 DIAGNOSTIC_PUSH;
2221 /* GCC 8.0 and 8.1 warn about 80 equals destination size with
2222 -Wstringop-truncation:
2223 https://gcc.gnu.org/bugzilla/show_bug.cgi?id=85643
2224 */
2225 DIAGNOSTIC_IGNORE_STRINGOP_TRUNCATION;
2226 #endif
2227 strncpy (data + 44, va_arg (ap, const char *), 80);
2228 #if GCC_VERSION == 8000 || GCC_VERSION == 8001
2229 DIAGNOSTIC_POP;
2230 #endif
2231 va_end (ap);
2232
2233 return elfcore_write_note (abfd, buf, bufsiz,
2234 "CORE", note_type, data, sizeof (data));
2235 }
2236
2237 case NT_PRSTATUS:
2238 {
2239 char data[148];
2240 va_list ap;
2241 long pid;
2242 int cursig;
2243 const void *greg;
2244
2245 va_start (ap, note_type);
2246 memset (data, 0, sizeof (data));
2247 pid = va_arg (ap, long);
2248 bfd_put_32 (abfd, pid, data + 24);
2249 cursig = va_arg (ap, int);
2250 bfd_put_16 (abfd, cursig, data + 12);
2251 greg = va_arg (ap, const void *);
2252 memcpy (data + 72, greg, 72);
2253 va_end (ap);
2254
2255 return elfcore_write_note (abfd, buf, bufsiz,
2256 "CORE", note_type, data, sizeof (data));
2257 }
2258 }
2259 }
2260
2261 #define TARGET_LITTLE_SYM arm_elf32_le_vec
2262 #define TARGET_LITTLE_NAME "elf32-littlearm"
2263 #define TARGET_BIG_SYM arm_elf32_be_vec
2264 #define TARGET_BIG_NAME "elf32-bigarm"
2265
2266 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
2267 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
2268 #define elf_backend_write_core_note elf32_arm_nabi_write_core_note
2269
2270 typedef unsigned long int insn32;
2271 typedef unsigned short int insn16;
2272
2273 /* In lieu of proper flags, assume all EABIv4 or later objects are
2274 interworkable. */
2275 #define INTERWORK_FLAG(abfd) \
2276 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2277 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2278 || ((abfd)->flags & BFD_LINKER_CREATED))
2279
2280 /* The linker script knows the section names for placement.
2281 The entry_names are used to do simple name mangling on the stubs.
2282 Given a function name, and its type, the stub can be found. The
2283 name can be changed. The only requirement is the %s be present. */
2284 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2285 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2286
2287 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2288 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2289
2290 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2291 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2292
2293 #define STM32L4XX_ERRATUM_VENEER_SECTION_NAME ".text.stm32l4xx_veneer"
2294 #define STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "__stm32l4xx_veneer_%x"
2295
2296 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2297 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2298
2299 #define STUB_ENTRY_NAME "__%s_veneer"
2300
2301 #define CMSE_PREFIX "__acle_se_"
2302
2303 #define CMSE_STUB_NAME ".gnu.sgstubs"
2304
2305 /* The name of the dynamic interpreter. This is put in the .interp
2306 section. */
2307 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2308
2309 /* FDPIC default stack size. */
2310 #define DEFAULT_STACK_SIZE 0x8000
2311
2312 static const unsigned long tls_trampoline [] =
2313 {
2314 0xe08e0000, /* add r0, lr, r0 */
2315 0xe5901004, /* ldr r1, [r0,#4] */
2316 0xe12fff11, /* bx r1 */
2317 };
2318
2319 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2320 {
2321 0xe52d2004, /* push {r2} */
2322 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2323 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2324 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2325 0xe081100f, /* 2: add r1, pc */
2326 0xe12fff12, /* bx r2 */
2327 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2328 + dl_tlsdesc_lazy_resolver(GOT) */
2329 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2330 };
2331
2332 /* NOTE: [Thumb nop sequence]
2333 When adding code that transitions from Thumb to Arm the instruction that
2334 should be used for the alignment padding should be 0xe7fd (b .-2) instead of
2335 a nop for performance reasons. */
2336
2337 /* ARM FDPIC PLT entry. */
2338 /* The last 5 words contain PLT lazy fragment code and data. */
2339 static const bfd_vma elf32_arm_fdpic_plt_entry [] =
2340 {
2341 0xe59fc008, /* ldr r12, .L1 */
2342 0xe08cc009, /* add r12, r12, r9 */
2343 0xe59c9004, /* ldr r9, [r12, #4] */
2344 0xe59cf000, /* ldr pc, [r12] */
2345 0x00000000, /* L1. .word foo(GOTOFFFUNCDESC) */
2346 0x00000000, /* L1. .word foo(funcdesc_value_reloc_offset) */
2347 0xe51fc00c, /* ldr r12, [pc, #-12] */
2348 0xe92d1000, /* push {r12} */
2349 0xe599c004, /* ldr r12, [r9, #4] */
2350 0xe599f000, /* ldr pc, [r9] */
2351 };
2352
2353 /* Thumb FDPIC PLT entry. */
2354 /* The last 5 words contain PLT lazy fragment code and data. */
2355 static const bfd_vma elf32_arm_fdpic_thumb_plt_entry [] =
2356 {
2357 0xc00cf8df, /* ldr.w r12, .L1 */
2358 0x0c09eb0c, /* add.w r12, r12, r9 */
2359 0x9004f8dc, /* ldr.w r9, [r12, #4] */
2360 0xf000f8dc, /* ldr.w pc, [r12] */
2361 0x00000000, /* .L1 .word foo(GOTOFFFUNCDESC) */
2362 0x00000000, /* .L2 .word foo(funcdesc_value_reloc_offset) */
2363 0xc008f85f, /* ldr.w r12, .L2 */
2364 0xcd04f84d, /* push {r12} */
2365 0xc004f8d9, /* ldr.w r12, [r9, #4] */
2366 0xf000f8d9, /* ldr.w pc, [r9] */
2367 };
2368
2369 #ifdef FOUR_WORD_PLT
2370
2371 /* The first entry in a procedure linkage table looks like
2372 this. It is set up so that any shared library function that is
2373 called before the relocation has been set up calls the dynamic
2374 linker first. */
2375 static const bfd_vma elf32_arm_plt0_entry [] =
2376 {
2377 0xe52de004, /* str lr, [sp, #-4]! */
2378 0xe59fe010, /* ldr lr, [pc, #16] */
2379 0xe08fe00e, /* add lr, pc, lr */
2380 0xe5bef008, /* ldr pc, [lr, #8]! */
2381 };
2382
2383 /* Subsequent entries in a procedure linkage table look like
2384 this. */
2385 static const bfd_vma elf32_arm_plt_entry [] =
2386 {
2387 0xe28fc600, /* add ip, pc, #NN */
2388 0xe28cca00, /* add ip, ip, #NN */
2389 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2390 0x00000000, /* unused */
2391 };
2392
2393 #else /* not FOUR_WORD_PLT */
2394
2395 /* The first entry in a procedure linkage table looks like
2396 this. It is set up so that any shared library function that is
2397 called before the relocation has been set up calls the dynamic
2398 linker first. */
2399 static const bfd_vma elf32_arm_plt0_entry [] =
2400 {
2401 0xe52de004, /* str lr, [sp, #-4]! */
2402 0xe59fe004, /* ldr lr, [pc, #4] */
2403 0xe08fe00e, /* add lr, pc, lr */
2404 0xe5bef008, /* ldr pc, [lr, #8]! */
2405 0x00000000, /* &GOT[0] - . */
2406 };
2407
2408 /* By default subsequent entries in a procedure linkage table look like
2409 this. Offsets that don't fit into 28 bits will cause link error. */
2410 static const bfd_vma elf32_arm_plt_entry_short [] =
2411 {
2412 0xe28fc600, /* add ip, pc, #0xNN00000 */
2413 0xe28cca00, /* add ip, ip, #0xNN000 */
2414 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2415 };
2416
2417 /* When explicitly asked, we'll use this "long" entry format
2418 which can cope with arbitrary displacements. */
2419 static const bfd_vma elf32_arm_plt_entry_long [] =
2420 {
2421 0xe28fc200, /* add ip, pc, #0xN0000000 */
2422 0xe28cc600, /* add ip, ip, #0xNN00000 */
2423 0xe28cca00, /* add ip, ip, #0xNN000 */
2424 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2425 };
2426
2427 static bfd_boolean elf32_arm_use_long_plt_entry = FALSE;
2428
2429 #endif /* not FOUR_WORD_PLT */
2430
2431 /* The first entry in a procedure linkage table looks like this.
2432 It is set up so that any shared library function that is called before the
2433 relocation has been set up calls the dynamic linker first. */
2434 static const bfd_vma elf32_thumb2_plt0_entry [] =
2435 {
2436 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2437 an instruction maybe encoded to one or two array elements. */
2438 0xf8dfb500, /* push {lr} */
2439 0x44fee008, /* ldr.w lr, [pc, #8] */
2440 /* add lr, pc */
2441 0xff08f85e, /* ldr.w pc, [lr, #8]! */
2442 0x00000000, /* &GOT[0] - . */
2443 };
2444
2445 /* Subsequent entries in a procedure linkage table for thumb only target
2446 look like this. */
2447 static const bfd_vma elf32_thumb2_plt_entry [] =
2448 {
2449 /* NOTE: As this is a mixture of 16-bit and 32-bit instructions,
2450 an instruction maybe encoded to one or two array elements. */
2451 0x0c00f240, /* movw ip, #0xNNNN */
2452 0x0c00f2c0, /* movt ip, #0xNNNN */
2453 0xf8dc44fc, /* add ip, pc */
2454 0xe7fdf000 /* ldr.w pc, [ip] */
2455 /* b .-2 */
2456 };
2457
2458 /* The format of the first entry in the procedure linkage table
2459 for a VxWorks executable. */
2460 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2461 {
2462 0xe52dc008, /* str ip,[sp,#-8]! */
2463 0xe59fc000, /* ldr ip,[pc] */
2464 0xe59cf008, /* ldr pc,[ip,#8] */
2465 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2466 };
2467
2468 /* The format of subsequent entries in a VxWorks executable. */
2469 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2470 {
2471 0xe59fc000, /* ldr ip,[pc] */
2472 0xe59cf000, /* ldr pc,[ip] */
2473 0x00000000, /* .long @got */
2474 0xe59fc000, /* ldr ip,[pc] */
2475 0xea000000, /* b _PLT */
2476 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2477 };
2478
2479 /* The format of entries in a VxWorks shared library. */
2480 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2481 {
2482 0xe59fc000, /* ldr ip,[pc] */
2483 0xe79cf009, /* ldr pc,[ip,r9] */
2484 0x00000000, /* .long @got */
2485 0xe59fc000, /* ldr ip,[pc] */
2486 0xe599f008, /* ldr pc,[r9,#8] */
2487 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2488 };
2489
2490 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2491 #define PLT_THUMB_STUB_SIZE 4
2492 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2493 {
2494 0x4778, /* bx pc */
2495 0xe7fd /* b .-2 */
2496 };
2497
2498 /* The entries in a PLT when using a DLL-based target with multiple
2499 address spaces. */
2500 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2501 {
2502 0xe51ff004, /* ldr pc, [pc, #-4] */
2503 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2504 };
2505
2506 /* The first entry in a procedure linkage table looks like
2507 this. It is set up so that any shared library function that is
2508 called before the relocation has been set up calls the dynamic
2509 linker first. */
2510 static const bfd_vma elf32_arm_nacl_plt0_entry [] =
2511 {
2512 /* First bundle: */
2513 0xe300c000, /* movw ip, #:lower16:&GOT[2]-.+8 */
2514 0xe340c000, /* movt ip, #:upper16:&GOT[2]-.+8 */
2515 0xe08cc00f, /* add ip, ip, pc */
2516 0xe52dc008, /* str ip, [sp, #-8]! */
2517 /* Second bundle: */
2518 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2519 0xe59cc000, /* ldr ip, [ip] */
2520 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2521 0xe12fff1c, /* bx ip */
2522 /* Third bundle: */
2523 0xe320f000, /* nop */
2524 0xe320f000, /* nop */
2525 0xe320f000, /* nop */
2526 /* .Lplt_tail: */
2527 0xe50dc004, /* str ip, [sp, #-4] */
2528 /* Fourth bundle: */
2529 0xe3ccc103, /* bic ip, ip, #0xc0000000 */
2530 0xe59cc000, /* ldr ip, [ip] */
2531 0xe3ccc13f, /* bic ip, ip, #0xc000000f */
2532 0xe12fff1c, /* bx ip */
2533 };
2534 #define ARM_NACL_PLT_TAIL_OFFSET (11 * 4)
2535
2536 /* Subsequent entries in a procedure linkage table look like this. */
2537 static const bfd_vma elf32_arm_nacl_plt_entry [] =
2538 {
2539 0xe300c000, /* movw ip, #:lower16:&GOT[n]-.+8 */
2540 0xe340c000, /* movt ip, #:upper16:&GOT[n]-.+8 */
2541 0xe08cc00f, /* add ip, ip, pc */
2542 0xea000000, /* b .Lplt_tail */
2543 };
2544
2545 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2546 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2547 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2548 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2549 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2550 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2551 #define THM2_MAX_FWD_COND_BRANCH_OFFSET (((1 << 20) -2) + 4)
2552 #define THM2_MAX_BWD_COND_BRANCH_OFFSET (-(1 << 20) + 4)
2553
2554 enum stub_insn_type
2555 {
2556 THUMB16_TYPE = 1,
2557 THUMB32_TYPE,
2558 ARM_TYPE,
2559 DATA_TYPE
2560 };
2561
2562 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2563 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2564 is inserted in arm_build_one_stub(). */
2565 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2566 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2567 #define THUMB32_MOVT(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVT_ABS, 0}
2568 #define THUMB32_MOVW(X) {(X), THUMB32_TYPE, R_ARM_THM_MOVW_ABS_NC, 0}
2569 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2570 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2571 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2572 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2573
2574 typedef struct
2575 {
2576 bfd_vma data;
2577 enum stub_insn_type type;
2578 unsigned int r_type;
2579 int reloc_addend;
2580 } insn_sequence;
2581
2582 /* See note [Thumb nop sequence] when adding a veneer. */
2583
2584 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2585 to reach the stub if necessary. */
2586 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2587 {
2588 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2589 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2590 };
2591
2592 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2593 available. */
2594 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2595 {
2596 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2597 ARM_INSN (0xe12fff1c), /* bx ip */
2598 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2599 };
2600
2601 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2602 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2603 {
2604 THUMB16_INSN (0xb401), /* push {r0} */
2605 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2606 THUMB16_INSN (0x4684), /* mov ip, r0 */
2607 THUMB16_INSN (0xbc01), /* pop {r0} */
2608 THUMB16_INSN (0x4760), /* bx ip */
2609 THUMB16_INSN (0xbf00), /* nop */
2610 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2611 };
2612
2613 /* Thumb -> Thumb long branch stub in thumb2 encoding. Used on armv7. */
2614 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only[] =
2615 {
2616 THUMB32_INSN (0xf85ff000), /* ldr.w pc, [pc, #-0] */
2617 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(x) */
2618 };
2619
2620 /* Thumb -> Thumb long branch stub. Used for PureCode sections on Thumb2
2621 M-profile architectures. */
2622 static const insn_sequence elf32_arm_stub_long_branch_thumb2_only_pure[] =
2623 {
2624 THUMB32_MOVW (0xf2400c00), /* mov.w ip, R_ARM_MOVW_ABS_NC */
2625 THUMB32_MOVT (0xf2c00c00), /* movt ip, R_ARM_MOVT_ABS << 16 */
2626 THUMB16_INSN (0x4760), /* bx ip */
2627 };
2628
2629 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2630 allowed. */
2631 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2632 {
2633 THUMB16_INSN (0x4778), /* bx pc */
2634 THUMB16_INSN (0xe7fd), /* b .-2 */
2635 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2636 ARM_INSN (0xe12fff1c), /* bx ip */
2637 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2638 };
2639
2640 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2641 available. */
2642 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2643 {
2644 THUMB16_INSN (0x4778), /* bx pc */
2645 THUMB16_INSN (0xe7fd), /* b .-2 */
2646 ARM_INSN (0xe51ff004), /* ldr pc, [pc, #-4] */
2647 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2648 };
2649
2650 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2651 one, when the destination is close enough. */
2652 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2653 {
2654 THUMB16_INSN (0x4778), /* bx pc */
2655 THUMB16_INSN (0xe7fd), /* b .-2 */
2656 ARM_REL_INSN (0xea000000, -8), /* b (X-8) */
2657 };
2658
2659 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2660 blx to reach the stub if necessary. */
2661 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2662 {
2663 ARM_INSN (0xe59fc000), /* ldr ip, [pc] */
2664 ARM_INSN (0xe08ff00c), /* add pc, pc, ip */
2665 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2666 };
2667
2668 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2669 blx to reach the stub if necessary. We can not add into pc;
2670 it is not guaranteed to mode switch (different in ARMv6 and
2671 ARMv7). */
2672 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2673 {
2674 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2675 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2676 ARM_INSN (0xe12fff1c), /* bx ip */
2677 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2678 };
2679
2680 /* V4T ARM -> ARM long branch stub, PIC. */
2681 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2682 {
2683 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2684 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2685 ARM_INSN (0xe12fff1c), /* bx ip */
2686 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2687 };
2688
2689 /* V4T Thumb -> ARM long branch stub, PIC. */
2690 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2691 {
2692 THUMB16_INSN (0x4778), /* bx pc */
2693 THUMB16_INSN (0xe7fd), /* b .-2 */
2694 ARM_INSN (0xe59fc000), /* ldr ip, [pc, #0] */
2695 ARM_INSN (0xe08cf00f), /* add pc, ip, pc */
2696 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2697 };
2698
2699 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2700 architectures. */
2701 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2702 {
2703 THUMB16_INSN (0xb401), /* push {r0} */
2704 THUMB16_INSN (0x4802), /* ldr r0, [pc, #8] */
2705 THUMB16_INSN (0x46fc), /* mov ip, pc */
2706 THUMB16_INSN (0x4484), /* add ip, r0 */
2707 THUMB16_INSN (0xbc01), /* pop {r0} */
2708 THUMB16_INSN (0x4760), /* bx ip */
2709 DATA_WORD (0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2710 };
2711
2712 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2713 allowed. */
2714 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2715 {
2716 THUMB16_INSN (0x4778), /* bx pc */
2717 THUMB16_INSN (0xe7fd), /* b .-2 */
2718 ARM_INSN (0xe59fc004), /* ldr ip, [pc, #4] */
2719 ARM_INSN (0xe08fc00c), /* add ip, pc, ip */
2720 ARM_INSN (0xe12fff1c), /* bx ip */
2721 DATA_WORD (0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2722 };
2723
2724 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2725 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2726 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2727 {
2728 ARM_INSN (0xe59f1000), /* ldr r1, [pc] */
2729 ARM_INSN (0xe08ff001), /* add pc, pc, r1 */
2730 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2731 };
2732
2733 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2734 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2735 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2736 {
2737 THUMB16_INSN (0x4778), /* bx pc */
2738 THUMB16_INSN (0xe7fd), /* b .-2 */
2739 ARM_INSN (0xe59f1000), /* ldr r1, [pc, #0] */
2740 ARM_INSN (0xe081f00f), /* add pc, r1, pc */
2741 DATA_WORD (0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2742 };
2743
2744 /* NaCl ARM -> ARM long branch stub. */
2745 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl[] =
2746 {
2747 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2748 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2749 ARM_INSN (0xe12fff1c), /* bx ip */
2750 ARM_INSN (0xe320f000), /* nop */
2751 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2752 DATA_WORD (0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2753 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2754 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2755 };
2756
2757 /* NaCl ARM -> ARM long branch stub, PIC. */
2758 static const insn_sequence elf32_arm_stub_long_branch_arm_nacl_pic[] =
2759 {
2760 ARM_INSN (0xe59fc00c), /* ldr ip, [pc, #12] */
2761 ARM_INSN (0xe08cc00f), /* add ip, ip, pc */
2762 ARM_INSN (0xe3ccc13f), /* bic ip, ip, #0xc000000f */
2763 ARM_INSN (0xe12fff1c), /* bx ip */
2764 ARM_INSN (0xe125be70), /* bkpt 0x5be0 */
2765 DATA_WORD (0, R_ARM_REL32, 8), /* dcd R_ARM_REL32(X+8) */
2766 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2767 DATA_WORD (0, R_ARM_NONE, 0), /* .word 0 */
2768 };
2769
2770 /* Stub used for transition to secure state (aka SG veneer). */
2771 static const insn_sequence elf32_arm_stub_cmse_branch_thumb_only[] =
2772 {
2773 THUMB32_INSN (0xe97fe97f), /* sg. */
2774 THUMB32_B_INSN (0xf000b800, -4), /* b.w original_branch_dest. */
2775 };
2776
2777
2778 /* Cortex-A8 erratum-workaround stubs. */
2779
2780 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2781 can't use a conditional branch to reach this stub). */
2782
2783 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2784 {
2785 THUMB16_BCOND_INSN (0xd001), /* b<cond>.n true. */
2786 THUMB32_B_INSN (0xf000b800, -4), /* b.w insn_after_original_branch. */
2787 THUMB32_B_INSN (0xf000b800, -4) /* true: b.w original_branch_dest. */
2788 };
2789
2790 /* Stub used for b.w and bl.w instructions. */
2791
2792 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2793 {
2794 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2795 };
2796
2797 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2798 {
2799 THUMB32_B_INSN (0xf000b800, -4) /* b.w original_branch_dest. */
2800 };
2801
2802 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2803 instruction (which switches to ARM mode) to point to this stub. Jump to the
2804 real destination using an ARM-mode branch. */
2805
2806 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2807 {
2808 ARM_REL_INSN (0xea000000, -8) /* b original_branch_dest. */
2809 };
2810
2811 /* For each section group there can be a specially created linker section
2812 to hold the stubs for that group. The name of the stub section is based
2813 upon the name of another section within that group with the suffix below
2814 applied.
2815
2816 PR 13049: STUB_SUFFIX used to be ".stub", but this allowed the user to
2817 create what appeared to be a linker stub section when it actually
2818 contained user code/data. For example, consider this fragment:
2819
2820 const char * stubborn_problems[] = { "np" };
2821
2822 If this is compiled with "-fPIC -fdata-sections" then gcc produces a
2823 section called:
2824
2825 .data.rel.local.stubborn_problems
2826
2827 This then causes problems in arm32_arm_build_stubs() as it triggers:
2828
2829 // Ignore non-stub sections.
2830 if (!strstr (stub_sec->name, STUB_SUFFIX))
2831 continue;
2832
2833 And so the section would be ignored instead of being processed. Hence
2834 the change in definition of STUB_SUFFIX to a name that cannot be a valid
2835 C identifier. */
2836 #define STUB_SUFFIX ".__stub"
2837
2838 /* One entry per long/short branch stub defined above. */
2839 #define DEF_STUBS \
2840 DEF_STUB(long_branch_any_any) \
2841 DEF_STUB(long_branch_v4t_arm_thumb) \
2842 DEF_STUB(long_branch_thumb_only) \
2843 DEF_STUB(long_branch_v4t_thumb_thumb) \
2844 DEF_STUB(long_branch_v4t_thumb_arm) \
2845 DEF_STUB(short_branch_v4t_thumb_arm) \
2846 DEF_STUB(long_branch_any_arm_pic) \
2847 DEF_STUB(long_branch_any_thumb_pic) \
2848 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2849 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2850 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2851 DEF_STUB(long_branch_thumb_only_pic) \
2852 DEF_STUB(long_branch_any_tls_pic) \
2853 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2854 DEF_STUB(long_branch_arm_nacl) \
2855 DEF_STUB(long_branch_arm_nacl_pic) \
2856 DEF_STUB(cmse_branch_thumb_only) \
2857 DEF_STUB(a8_veneer_b_cond) \
2858 DEF_STUB(a8_veneer_b) \
2859 DEF_STUB(a8_veneer_bl) \
2860 DEF_STUB(a8_veneer_blx) \
2861 DEF_STUB(long_branch_thumb2_only) \
2862 DEF_STUB(long_branch_thumb2_only_pure)
2863
2864 #define DEF_STUB(x) arm_stub_##x,
2865 enum elf32_arm_stub_type
2866 {
2867 arm_stub_none,
2868 DEF_STUBS
2869 max_stub_type
2870 };
2871 #undef DEF_STUB
2872
2873 /* Note the first a8_veneer type. */
2874 const unsigned arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond;
2875
2876 typedef struct
2877 {
2878 const insn_sequence* template_sequence;
2879 int template_size;
2880 } stub_def;
2881
2882 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2883 static const stub_def stub_definitions[] =
2884 {
2885 {NULL, 0},
2886 DEF_STUBS
2887 };
2888
2889 struct elf32_arm_stub_hash_entry
2890 {
2891 /* Base hash table entry structure. */
2892 struct bfd_hash_entry root;
2893
2894 /* The stub section. */
2895 asection *stub_sec;
2896
2897 /* Offset within stub_sec of the beginning of this stub. */
2898 bfd_vma stub_offset;
2899
2900 /* Given the symbol's value and its section we can determine its final
2901 value when building the stubs (so the stub knows where to jump). */
2902 bfd_vma target_value;
2903 asection *target_section;
2904
2905 /* Same as above but for the source of the branch to the stub. Used for
2906 Cortex-A8 erratum workaround to patch it to branch to the stub. As
2907 such, source section does not need to be recorded since Cortex-A8 erratum
2908 workaround stubs are only generated when both source and target are in the
2909 same section. */
2910 bfd_vma source_value;
2911
2912 /* The instruction which caused this stub to be generated (only valid for
2913 Cortex-A8 erratum workaround stubs at present). */
2914 unsigned long orig_insn;
2915
2916 /* The stub type. */
2917 enum elf32_arm_stub_type stub_type;
2918 /* Its encoding size in bytes. */
2919 int stub_size;
2920 /* Its template. */
2921 const insn_sequence *stub_template;
2922 /* The size of the template (number of entries). */
2923 int stub_template_size;
2924
2925 /* The symbol table entry, if any, that this was derived from. */
2926 struct elf32_arm_link_hash_entry *h;
2927
2928 /* Type of branch. */
2929 enum arm_st_branch_type branch_type;
2930
2931 /* Where this stub is being called from, or, in the case of combined
2932 stub sections, the first input section in the group. */
2933 asection *id_sec;
2934
2935 /* The name for the local symbol at the start of this stub. The
2936 stub name in the hash table has to be unique; this does not, so
2937 it can be friendlier. */
2938 char *output_name;
2939 };
2940
2941 /* Used to build a map of a section. This is required for mixed-endian
2942 code/data. */
2943
2944 typedef struct elf32_elf_section_map
2945 {
2946 bfd_vma vma;
2947 char type;
2948 }
2949 elf32_arm_section_map;
2950
2951 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2952
2953 typedef enum
2954 {
2955 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2956 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2957 VFP11_ERRATUM_ARM_VENEER,
2958 VFP11_ERRATUM_THUMB_VENEER
2959 }
2960 elf32_vfp11_erratum_type;
2961
2962 typedef struct elf32_vfp11_erratum_list
2963 {
2964 struct elf32_vfp11_erratum_list *next;
2965 bfd_vma vma;
2966 union
2967 {
2968 struct
2969 {
2970 struct elf32_vfp11_erratum_list *veneer;
2971 unsigned int vfp_insn;
2972 } b;
2973 struct
2974 {
2975 struct elf32_vfp11_erratum_list *branch;
2976 unsigned int id;
2977 } v;
2978 } u;
2979 elf32_vfp11_erratum_type type;
2980 }
2981 elf32_vfp11_erratum_list;
2982
2983 /* Information about a STM32L4XX erratum veneer, or a branch to such a
2984 veneer. */
2985 typedef enum
2986 {
2987 STM32L4XX_ERRATUM_BRANCH_TO_VENEER,
2988 STM32L4XX_ERRATUM_VENEER
2989 }
2990 elf32_stm32l4xx_erratum_type;
2991
2992 typedef struct elf32_stm32l4xx_erratum_list
2993 {
2994 struct elf32_stm32l4xx_erratum_list *next;
2995 bfd_vma vma;
2996 union
2997 {
2998 struct
2999 {
3000 struct elf32_stm32l4xx_erratum_list *veneer;
3001 unsigned int insn;
3002 } b;
3003 struct
3004 {
3005 struct elf32_stm32l4xx_erratum_list *branch;
3006 unsigned int id;
3007 } v;
3008 } u;
3009 elf32_stm32l4xx_erratum_type type;
3010 }
3011 elf32_stm32l4xx_erratum_list;
3012
3013 typedef enum
3014 {
3015 DELETE_EXIDX_ENTRY,
3016 INSERT_EXIDX_CANTUNWIND_AT_END
3017 }
3018 arm_unwind_edit_type;
3019
3020 /* A (sorted) list of edits to apply to an unwind table. */
3021 typedef struct arm_unwind_table_edit
3022 {
3023 arm_unwind_edit_type type;
3024 /* Note: we sometimes want to insert an unwind entry corresponding to a
3025 section different from the one we're currently writing out, so record the
3026 (text) section this edit relates to here. */
3027 asection *linked_section;
3028 unsigned int index;
3029 struct arm_unwind_table_edit *next;
3030 }
3031 arm_unwind_table_edit;
3032
3033 typedef struct _arm_elf_section_data
3034 {
3035 /* Information about mapping symbols. */
3036 struct bfd_elf_section_data elf;
3037 unsigned int mapcount;
3038 unsigned int mapsize;
3039 elf32_arm_section_map *map;
3040 /* Information about CPU errata. */
3041 unsigned int erratumcount;
3042 elf32_vfp11_erratum_list *erratumlist;
3043 unsigned int stm32l4xx_erratumcount;
3044 elf32_stm32l4xx_erratum_list *stm32l4xx_erratumlist;
3045 unsigned int additional_reloc_count;
3046 /* Information about unwind tables. */
3047 union
3048 {
3049 /* Unwind info attached to a text section. */
3050 struct
3051 {
3052 asection *arm_exidx_sec;
3053 } text;
3054
3055 /* Unwind info attached to an .ARM.exidx section. */
3056 struct
3057 {
3058 arm_unwind_table_edit *unwind_edit_list;
3059 arm_unwind_table_edit *unwind_edit_tail;
3060 } exidx;
3061 } u;
3062 }
3063 _arm_elf_section_data;
3064
3065 #define elf32_arm_section_data(sec) \
3066 ((_arm_elf_section_data *) elf_section_data (sec))
3067
3068 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
3069 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
3070 so may be created multiple times: we use an array of these entries whilst
3071 relaxing which we can refresh easily, then create stubs for each potentially
3072 erratum-triggering instruction once we've settled on a solution. */
3073
3074 struct a8_erratum_fix
3075 {
3076 bfd *input_bfd;
3077 asection *section;
3078 bfd_vma offset;
3079 bfd_vma target_offset;
3080 unsigned long orig_insn;
3081 char *stub_name;
3082 enum elf32_arm_stub_type stub_type;
3083 enum arm_st_branch_type branch_type;
3084 };
3085
3086 /* A table of relocs applied to branches which might trigger Cortex-A8
3087 erratum. */
3088
3089 struct a8_erratum_reloc
3090 {
3091 bfd_vma from;
3092 bfd_vma destination;
3093 struct elf32_arm_link_hash_entry *hash;
3094 const char *sym_name;
3095 unsigned int r_type;
3096 enum arm_st_branch_type branch_type;
3097 bfd_boolean non_a8_stub;
3098 };
3099
3100 /* The size of the thread control block. */
3101 #define TCB_SIZE 8
3102
3103 /* ARM-specific information about a PLT entry, over and above the usual
3104 gotplt_union. */
3105 struct arm_plt_info
3106 {
3107 /* We reference count Thumb references to a PLT entry separately,
3108 so that we can emit the Thumb trampoline only if needed. */
3109 bfd_signed_vma thumb_refcount;
3110
3111 /* Some references from Thumb code may be eliminated by BL->BLX
3112 conversion, so record them separately. */
3113 bfd_signed_vma maybe_thumb_refcount;
3114
3115 /* How many of the recorded PLT accesses were from non-call relocations.
3116 This information is useful when deciding whether anything takes the
3117 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
3118 non-call references to the function should resolve directly to the
3119 real runtime target. */
3120 unsigned int noncall_refcount;
3121
3122 /* Since PLT entries have variable size if the Thumb prologue is
3123 used, we need to record the index into .got.plt instead of
3124 recomputing it from the PLT offset. */
3125 bfd_signed_vma got_offset;
3126 };
3127
3128 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
3129 struct arm_local_iplt_info
3130 {
3131 /* The information that is usually found in the generic ELF part of
3132 the hash table entry. */
3133 union gotplt_union root;
3134
3135 /* The information that is usually found in the ARM-specific part of
3136 the hash table entry. */
3137 struct arm_plt_info arm;
3138
3139 /* A list of all potential dynamic relocations against this symbol. */
3140 struct elf_dyn_relocs *dyn_relocs;
3141 };
3142
3143 /* Structure to handle FDPIC support for local functions. */
3144 struct fdpic_local {
3145 unsigned int funcdesc_cnt;
3146 unsigned int gotofffuncdesc_cnt;
3147 int funcdesc_offset;
3148 };
3149
3150 struct elf_arm_obj_tdata
3151 {
3152 struct elf_obj_tdata root;
3153
3154 /* tls_type for each local got entry. */
3155 char *local_got_tls_type;
3156
3157 /* GOTPLT entries for TLS descriptors. */
3158 bfd_vma *local_tlsdesc_gotent;
3159
3160 /* Information for local symbols that need entries in .iplt. */
3161 struct arm_local_iplt_info **local_iplt;
3162
3163 /* Zero to warn when linking objects with incompatible enum sizes. */
3164 int no_enum_size_warning;
3165
3166 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
3167 int no_wchar_size_warning;
3168
3169 /* Maintains FDPIC counters and funcdesc info. */
3170 struct fdpic_local *local_fdpic_cnts;
3171 };
3172
3173 #define elf_arm_tdata(bfd) \
3174 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
3175
3176 #define elf32_arm_local_got_tls_type(bfd) \
3177 (elf_arm_tdata (bfd)->local_got_tls_type)
3178
3179 #define elf32_arm_local_tlsdesc_gotent(bfd) \
3180 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
3181
3182 #define elf32_arm_local_iplt(bfd) \
3183 (elf_arm_tdata (bfd)->local_iplt)
3184
3185 #define elf32_arm_local_fdpic_cnts(bfd) \
3186 (elf_arm_tdata (bfd)->local_fdpic_cnts)
3187
3188 #define is_arm_elf(bfd) \
3189 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
3190 && elf_tdata (bfd) != NULL \
3191 && elf_object_id (bfd) == ARM_ELF_DATA)
3192
3193 static bfd_boolean
3194 elf32_arm_mkobject (bfd *abfd)
3195 {
3196 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
3197 ARM_ELF_DATA);
3198 }
3199
3200 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
3201
3202 /* Structure to handle FDPIC support for extern functions. */
3203 struct fdpic_global {
3204 unsigned int gotofffuncdesc_cnt;
3205 unsigned int gotfuncdesc_cnt;
3206 unsigned int funcdesc_cnt;
3207 int funcdesc_offset;
3208 int gotfuncdesc_offset;
3209 };
3210
3211 /* Arm ELF linker hash entry. */
3212 struct elf32_arm_link_hash_entry
3213 {
3214 struct elf_link_hash_entry root;
3215
3216 /* Track dynamic relocs copied for this symbol. */
3217 struct elf_dyn_relocs *dyn_relocs;
3218
3219 /* ARM-specific PLT information. */
3220 struct arm_plt_info plt;
3221
3222 #define GOT_UNKNOWN 0
3223 #define GOT_NORMAL 1
3224 #define GOT_TLS_GD 2
3225 #define GOT_TLS_IE 4
3226 #define GOT_TLS_GDESC 8
3227 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
3228 unsigned int tls_type : 8;
3229
3230 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
3231 unsigned int is_iplt : 1;
3232
3233 unsigned int unused : 23;
3234
3235 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
3236 starting at the end of the jump table. */
3237 bfd_vma tlsdesc_got;
3238
3239 /* The symbol marking the real symbol location for exported thumb
3240 symbols with Arm stubs. */
3241 struct elf_link_hash_entry *export_glue;
3242
3243 /* A pointer to the most recently used stub hash entry against this
3244 symbol. */
3245 struct elf32_arm_stub_hash_entry *stub_cache;
3246
3247 /* Counter for FDPIC relocations against this symbol. */
3248 struct fdpic_global fdpic_cnts;
3249 };
3250
3251 /* Traverse an arm ELF linker hash table. */
3252 #define elf32_arm_link_hash_traverse(table, func, info) \
3253 (elf_link_hash_traverse \
3254 (&(table)->root, \
3255 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
3256 (info)))
3257
3258 /* Get the ARM elf linker hash table from a link_info structure. */
3259 #define elf32_arm_hash_table(info) \
3260 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
3261 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
3262
3263 #define arm_stub_hash_lookup(table, string, create, copy) \
3264 ((struct elf32_arm_stub_hash_entry *) \
3265 bfd_hash_lookup ((table), (string), (create), (copy)))
3266
3267 /* Array to keep track of which stub sections have been created, and
3268 information on stub grouping. */
3269 struct map_stub
3270 {
3271 /* This is the section to which stubs in the group will be
3272 attached. */
3273 asection *link_sec;
3274 /* The stub section. */
3275 asection *stub_sec;
3276 };
3277
3278 #define elf32_arm_compute_jump_table_size(htab) \
3279 ((htab)->next_tls_desc_index * 4)
3280
3281 /* ARM ELF linker hash table. */
3282 struct elf32_arm_link_hash_table
3283 {
3284 /* The main hash table. */
3285 struct elf_link_hash_table root;
3286
3287 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
3288 bfd_size_type thumb_glue_size;
3289
3290 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
3291 bfd_size_type arm_glue_size;
3292
3293 /* The size in bytes of section containing the ARMv4 BX veneers. */
3294 bfd_size_type bx_glue_size;
3295
3296 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
3297 veneer has been populated. */
3298 bfd_vma bx_glue_offset[15];
3299
3300 /* The size in bytes of the section containing glue for VFP11 erratum
3301 veneers. */
3302 bfd_size_type vfp11_erratum_glue_size;
3303
3304 /* The size in bytes of the section containing glue for STM32L4XX erratum
3305 veneers. */
3306 bfd_size_type stm32l4xx_erratum_glue_size;
3307
3308 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
3309 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
3310 elf32_arm_write_section(). */
3311 struct a8_erratum_fix *a8_erratum_fixes;
3312 unsigned int num_a8_erratum_fixes;
3313
3314 /* An arbitrary input BFD chosen to hold the glue sections. */
3315 bfd * bfd_of_glue_owner;
3316
3317 /* Nonzero to output a BE8 image. */
3318 int byteswap_code;
3319
3320 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
3321 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
3322 int target1_is_rel;
3323
3324 /* The relocation to use for R_ARM_TARGET2 relocations. */
3325 int target2_reloc;
3326
3327 /* 0 = Ignore R_ARM_V4BX.
3328 1 = Convert BX to MOV PC.
3329 2 = Generate v4 interworing stubs. */
3330 int fix_v4bx;
3331
3332 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
3333 int fix_cortex_a8;
3334
3335 /* Whether we should fix the ARM1176 BLX immediate issue. */
3336 int fix_arm1176;
3337
3338 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
3339 int use_blx;
3340
3341 /* What sort of code sequences we should look for which may trigger the
3342 VFP11 denorm erratum. */
3343 bfd_arm_vfp11_fix vfp11_fix;
3344
3345 /* Global counter for the number of fixes we have emitted. */
3346 int num_vfp11_fixes;
3347
3348 /* What sort of code sequences we should look for which may trigger the
3349 STM32L4XX erratum. */
3350 bfd_arm_stm32l4xx_fix stm32l4xx_fix;
3351
3352 /* Global counter for the number of fixes we have emitted. */
3353 int num_stm32l4xx_fixes;
3354
3355 /* Nonzero to force PIC branch veneers. */
3356 int pic_veneer;
3357
3358 /* The number of bytes in the initial entry in the PLT. */
3359 bfd_size_type plt_header_size;
3360
3361 /* The number of bytes in the subsequent PLT etries. */
3362 bfd_size_type plt_entry_size;
3363
3364 /* True if the target system is VxWorks. */
3365 int vxworks_p;
3366
3367 /* True if the target system is Symbian OS. */
3368 int symbian_p;
3369
3370 /* True if the target system is Native Client. */
3371 int nacl_p;
3372
3373 /* True if the target uses REL relocations. */
3374 bfd_boolean use_rel;
3375
3376 /* Nonzero if import library must be a secure gateway import library
3377 as per ARMv8-M Security Extensions. */
3378 int cmse_implib;
3379
3380 /* The import library whose symbols' address must remain stable in
3381 the import library generated. */
3382 bfd *in_implib_bfd;
3383
3384 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
3385 bfd_vma next_tls_desc_index;
3386
3387 /* How many R_ARM_TLS_DESC relocations were generated so far. */
3388 bfd_vma num_tls_desc;
3389
3390 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
3391 asection *srelplt2;
3392
3393 /* The offset into splt of the PLT entry for the TLS descriptor
3394 resolver. Special values are 0, if not necessary (or not found
3395 to be necessary yet), and -1 if needed but not determined
3396 yet. */
3397 bfd_vma dt_tlsdesc_plt;
3398
3399 /* The offset into sgot of the GOT entry used by the PLT entry
3400 above. */
3401 bfd_vma dt_tlsdesc_got;
3402
3403 /* Offset in .plt section of tls_arm_trampoline. */
3404 bfd_vma tls_trampoline;
3405
3406 /* Data for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
3407 union
3408 {
3409 bfd_signed_vma refcount;
3410 bfd_vma offset;
3411 } tls_ldm_got;
3412
3413 /* Small local sym cache. */
3414 struct sym_cache sym_cache;
3415
3416 /* For convenience in allocate_dynrelocs. */
3417 bfd * obfd;
3418
3419 /* The amount of space used by the reserved portion of the sgotplt
3420 section, plus whatever space is used by the jump slots. */
3421 bfd_vma sgotplt_jump_table_size;
3422
3423 /* The stub hash table. */
3424 struct bfd_hash_table stub_hash_table;
3425
3426 /* Linker stub bfd. */
3427 bfd *stub_bfd;
3428
3429 /* Linker call-backs. */
3430 asection * (*add_stub_section) (const char *, asection *, asection *,
3431 unsigned int);
3432 void (*layout_sections_again) (void);
3433
3434 /* Array to keep track of which stub sections have been created, and
3435 information on stub grouping. */
3436 struct map_stub *stub_group;
3437
3438 /* Input stub section holding secure gateway veneers. */
3439 asection *cmse_stub_sec;
3440
3441 /* Offset in cmse_stub_sec where new SG veneers (not in input import library)
3442 start to be allocated. */
3443 bfd_vma new_cmse_stub_offset;
3444
3445 /* Number of elements in stub_group. */
3446 unsigned int top_id;
3447
3448 /* Assorted information used by elf32_arm_size_stubs. */
3449 unsigned int bfd_count;
3450 unsigned int top_index;
3451 asection **input_list;
3452
3453 /* True if the target system uses FDPIC. */
3454 int fdpic_p;
3455
3456 /* Fixup section. Used for FDPIC. */
3457 asection *srofixup;
3458 };
3459
3460 /* Add an FDPIC read-only fixup. */
3461 static void
3462 arm_elf_add_rofixup (bfd *output_bfd, asection *srofixup, bfd_vma offset)
3463 {
3464 bfd_vma fixup_offset;
3465
3466 fixup_offset = srofixup->reloc_count++ * 4;
3467 BFD_ASSERT (fixup_offset < srofixup->size);
3468 bfd_put_32 (output_bfd, offset, srofixup->contents + fixup_offset);
3469 }
3470
3471 static inline int
3472 ctz (unsigned int mask)
3473 {
3474 #if GCC_VERSION >= 3004
3475 return __builtin_ctz (mask);
3476 #else
3477 unsigned int i;
3478
3479 for (i = 0; i < 8 * sizeof (mask); i++)
3480 {
3481 if (mask & 0x1)
3482 break;
3483 mask = (mask >> 1);
3484 }
3485 return i;
3486 #endif
3487 }
3488
3489 static inline int
3490 elf32_arm_popcount (unsigned int mask)
3491 {
3492 #if GCC_VERSION >= 3004
3493 return __builtin_popcount (mask);
3494 #else
3495 unsigned int i;
3496 int sum = 0;
3497
3498 for (i = 0; i < 8 * sizeof (mask); i++)
3499 {
3500 if (mask & 0x1)
3501 sum++;
3502 mask = (mask >> 1);
3503 }
3504 return sum;
3505 #endif
3506 }
3507
3508 static void elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
3509 asection *sreloc, Elf_Internal_Rela *rel);
3510
3511 static void
3512 arm_elf_fill_funcdesc(bfd *output_bfd,
3513 struct bfd_link_info *info,
3514 int *funcdesc_offset,
3515 int dynindx,
3516 int offset,
3517 bfd_vma addr,
3518 bfd_vma dynreloc_value,
3519 bfd_vma seg)
3520 {
3521 if ((*funcdesc_offset & 1) == 0)
3522 {
3523 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
3524 asection *sgot = globals->root.sgot;
3525
3526 if (bfd_link_pic(info))
3527 {
3528 asection *srelgot = globals->root.srelgot;
3529 Elf_Internal_Rela outrel;
3530
3531 outrel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
3532 outrel.r_offset = sgot->output_section->vma + sgot->output_offset + offset;
3533 outrel.r_addend = 0;
3534
3535 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
3536 bfd_put_32 (output_bfd, addr, sgot->contents + offset);
3537 bfd_put_32 (output_bfd, seg, sgot->contents + offset + 4);
3538 }
3539 else
3540 {
3541 struct elf_link_hash_entry *hgot = globals->root.hgot;
3542 bfd_vma got_value = hgot->root.u.def.value
3543 + hgot->root.u.def.section->output_section->vma
3544 + hgot->root.u.def.section->output_offset;
3545
3546 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3547 sgot->output_section->vma + sgot->output_offset
3548 + offset);
3549 arm_elf_add_rofixup(output_bfd, globals->srofixup,
3550 sgot->output_section->vma + sgot->output_offset
3551 + offset + 4);
3552 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + offset);
3553 bfd_put_32 (output_bfd, got_value, sgot->contents + offset + 4);
3554 }
3555 *funcdesc_offset |= 1;
3556 }
3557 }
3558
3559 /* Create an entry in an ARM ELF linker hash table. */
3560
3561 static struct bfd_hash_entry *
3562 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
3563 struct bfd_hash_table * table,
3564 const char * string)
3565 {
3566 struct elf32_arm_link_hash_entry * ret =
3567 (struct elf32_arm_link_hash_entry *) entry;
3568
3569 /* Allocate the structure if it has not already been allocated by a
3570 subclass. */
3571 if (ret == NULL)
3572 ret = (struct elf32_arm_link_hash_entry *)
3573 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
3574 if (ret == NULL)
3575 return (struct bfd_hash_entry *) ret;
3576
3577 /* Call the allocation method of the superclass. */
3578 ret = ((struct elf32_arm_link_hash_entry *)
3579 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
3580 table, string));
3581 if (ret != NULL)
3582 {
3583 ret->dyn_relocs = NULL;
3584 ret->tls_type = GOT_UNKNOWN;
3585 ret->tlsdesc_got = (bfd_vma) -1;
3586 ret->plt.thumb_refcount = 0;
3587 ret->plt.maybe_thumb_refcount = 0;
3588 ret->plt.noncall_refcount = 0;
3589 ret->plt.got_offset = -1;
3590 ret->is_iplt = FALSE;
3591 ret->export_glue = NULL;
3592
3593 ret->stub_cache = NULL;
3594
3595 ret->fdpic_cnts.gotofffuncdesc_cnt = 0;
3596 ret->fdpic_cnts.gotfuncdesc_cnt = 0;
3597 ret->fdpic_cnts.funcdesc_cnt = 0;
3598 ret->fdpic_cnts.funcdesc_offset = -1;
3599 ret->fdpic_cnts.gotfuncdesc_offset = -1;
3600 }
3601
3602 return (struct bfd_hash_entry *) ret;
3603 }
3604
3605 /* Ensure that we have allocated bookkeeping structures for ABFD's local
3606 symbols. */
3607
3608 static bfd_boolean
3609 elf32_arm_allocate_local_sym_info (bfd *abfd)
3610 {
3611 if (elf_local_got_refcounts (abfd) == NULL)
3612 {
3613 bfd_size_type num_syms;
3614 bfd_size_type size;
3615 char *data;
3616
3617 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
3618 size = num_syms * (sizeof (bfd_signed_vma)
3619 + sizeof (struct arm_local_iplt_info *)
3620 + sizeof (bfd_vma)
3621 + sizeof (char)
3622 + sizeof (struct fdpic_local));
3623 data = bfd_zalloc (abfd, size);
3624 if (data == NULL)
3625 return FALSE;
3626
3627 elf32_arm_local_fdpic_cnts (abfd) = (struct fdpic_local *) data;
3628 data += num_syms * sizeof (struct fdpic_local);
3629
3630 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
3631 data += num_syms * sizeof (bfd_signed_vma);
3632
3633 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
3634 data += num_syms * sizeof (struct arm_local_iplt_info *);
3635
3636 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
3637 data += num_syms * sizeof (bfd_vma);
3638
3639 elf32_arm_local_got_tls_type (abfd) = data;
3640 }
3641 return TRUE;
3642 }
3643
3644 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
3645 to input bfd ABFD. Create the information if it doesn't already exist.
3646 Return null if an allocation fails. */
3647
3648 static struct arm_local_iplt_info *
3649 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
3650 {
3651 struct arm_local_iplt_info **ptr;
3652
3653 if (!elf32_arm_allocate_local_sym_info (abfd))
3654 return NULL;
3655
3656 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
3657 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
3658 if (*ptr == NULL)
3659 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
3660 return *ptr;
3661 }
3662
3663 /* Try to obtain PLT information for the symbol with index R_SYMNDX
3664 in ABFD's symbol table. If the symbol is global, H points to its
3665 hash table entry, otherwise H is null.
3666
3667 Return true if the symbol does have PLT information. When returning
3668 true, point *ROOT_PLT at the target-independent reference count/offset
3669 union and *ARM_PLT at the ARM-specific information. */
3670
3671 static bfd_boolean
3672 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_table *globals,
3673 struct elf32_arm_link_hash_entry *h,
3674 unsigned long r_symndx, union gotplt_union **root_plt,
3675 struct arm_plt_info **arm_plt)
3676 {
3677 struct arm_local_iplt_info *local_iplt;
3678
3679 if (globals->root.splt == NULL && globals->root.iplt == NULL)
3680 return FALSE;
3681
3682 if (h != NULL)
3683 {
3684 *root_plt = &h->root.plt;
3685 *arm_plt = &h->plt;
3686 return TRUE;
3687 }
3688
3689 if (elf32_arm_local_iplt (abfd) == NULL)
3690 return FALSE;
3691
3692 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
3693 if (local_iplt == NULL)
3694 return FALSE;
3695
3696 *root_plt = &local_iplt->root;
3697 *arm_plt = &local_iplt->arm;
3698 return TRUE;
3699 }
3700
3701 static bfd_boolean using_thumb_only (struct elf32_arm_link_hash_table *globals);
3702
3703 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3704 before it. */
3705
3706 static bfd_boolean
3707 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3708 struct arm_plt_info *arm_plt)
3709 {
3710 struct elf32_arm_link_hash_table *htab;
3711
3712 htab = elf32_arm_hash_table (info);
3713
3714 return (!using_thumb_only(htab) && (arm_plt->thumb_refcount != 0
3715 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0)));
3716 }
3717
3718 /* Return a pointer to the head of the dynamic reloc list that should
3719 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3720 ABFD's symbol table. Return null if an error occurs. */
3721
3722 static struct elf_dyn_relocs **
3723 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3724 Elf_Internal_Sym *isym)
3725 {
3726 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3727 {
3728 struct arm_local_iplt_info *local_iplt;
3729
3730 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3731 if (local_iplt == NULL)
3732 return NULL;
3733 return &local_iplt->dyn_relocs;
3734 }
3735 else
3736 {
3737 /* Track dynamic relocs needed for local syms too.
3738 We really need local syms available to do this
3739 easily. Oh well. */
3740 asection *s;
3741 void *vpp;
3742
3743 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3744 if (s == NULL)
3745 abort ();
3746
3747 vpp = &elf_section_data (s)->local_dynrel;
3748 return (struct elf_dyn_relocs **) vpp;
3749 }
3750 }
3751
3752 /* Initialize an entry in the stub hash table. */
3753
3754 static struct bfd_hash_entry *
3755 stub_hash_newfunc (struct bfd_hash_entry *entry,
3756 struct bfd_hash_table *table,
3757 const char *string)
3758 {
3759 /* Allocate the structure if it has not already been allocated by a
3760 subclass. */
3761 if (entry == NULL)
3762 {
3763 entry = (struct bfd_hash_entry *)
3764 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3765 if (entry == NULL)
3766 return entry;
3767 }
3768
3769 /* Call the allocation method of the superclass. */
3770 entry = bfd_hash_newfunc (entry, table, string);
3771 if (entry != NULL)
3772 {
3773 struct elf32_arm_stub_hash_entry *eh;
3774
3775 /* Initialize the local fields. */
3776 eh = (struct elf32_arm_stub_hash_entry *) entry;
3777 eh->stub_sec = NULL;
3778 eh->stub_offset = (bfd_vma) -1;
3779 eh->source_value = 0;
3780 eh->target_value = 0;
3781 eh->target_section = NULL;
3782 eh->orig_insn = 0;
3783 eh->stub_type = arm_stub_none;
3784 eh->stub_size = 0;
3785 eh->stub_template = NULL;
3786 eh->stub_template_size = -1;
3787 eh->h = NULL;
3788 eh->id_sec = NULL;
3789 eh->output_name = NULL;
3790 }
3791
3792 return entry;
3793 }
3794
3795 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3796 shortcuts to them in our hash table. */
3797
3798 static bfd_boolean
3799 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3800 {
3801 struct elf32_arm_link_hash_table *htab;
3802
3803 htab = elf32_arm_hash_table (info);
3804 if (htab == NULL)
3805 return FALSE;
3806
3807 /* BPABI objects never have a GOT, or associated sections. */
3808 if (htab->symbian_p)
3809 return TRUE;
3810
3811 if (! _bfd_elf_create_got_section (dynobj, info))
3812 return FALSE;
3813
3814 /* Also create .rofixup. */
3815 if (htab->fdpic_p)
3816 {
3817 htab->srofixup = bfd_make_section_with_flags (dynobj, ".rofixup",
3818 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS
3819 | SEC_IN_MEMORY | SEC_LINKER_CREATED | SEC_READONLY));
3820 if (htab->srofixup == NULL || ! bfd_set_section_alignment (dynobj, htab->srofixup, 2))
3821 return FALSE;
3822 }
3823
3824 return TRUE;
3825 }
3826
3827 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3828
3829 static bfd_boolean
3830 create_ifunc_sections (struct bfd_link_info *info)
3831 {
3832 struct elf32_arm_link_hash_table *htab;
3833 const struct elf_backend_data *bed;
3834 bfd *dynobj;
3835 asection *s;
3836 flagword flags;
3837
3838 htab = elf32_arm_hash_table (info);
3839 dynobj = htab->root.dynobj;
3840 bed = get_elf_backend_data (dynobj);
3841 flags = bed->dynamic_sec_flags;
3842
3843 if (htab->root.iplt == NULL)
3844 {
3845 s = bfd_make_section_anyway_with_flags (dynobj, ".iplt",
3846 flags | SEC_READONLY | SEC_CODE);
3847 if (s == NULL
3848 || !bfd_set_section_alignment (dynobj, s, bed->plt_alignment))
3849 return FALSE;
3850 htab->root.iplt = s;
3851 }
3852
3853 if (htab->root.irelplt == NULL)
3854 {
3855 s = bfd_make_section_anyway_with_flags (dynobj,
3856 RELOC_SECTION (htab, ".iplt"),
3857 flags | SEC_READONLY);
3858 if (s == NULL
3859 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3860 return FALSE;
3861 htab->root.irelplt = s;
3862 }
3863
3864 if (htab->root.igotplt == NULL)
3865 {
3866 s = bfd_make_section_anyway_with_flags (dynobj, ".igot.plt", flags);
3867 if (s == NULL
3868 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3869 return FALSE;
3870 htab->root.igotplt = s;
3871 }
3872 return TRUE;
3873 }
3874
3875 /* Determine if we're dealing with a Thumb only architecture. */
3876
3877 static bfd_boolean
3878 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3879 {
3880 int arch;
3881 int profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3882 Tag_CPU_arch_profile);
3883
3884 if (profile)
3885 return profile == 'M';
3886
3887 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3888
3889 /* Force return logic to be reviewed for each new architecture. */
3890 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3891
3892 if (arch == TAG_CPU_ARCH_V6_M
3893 || arch == TAG_CPU_ARCH_V6S_M
3894 || arch == TAG_CPU_ARCH_V7E_M
3895 || arch == TAG_CPU_ARCH_V8M_BASE
3896 || arch == TAG_CPU_ARCH_V8M_MAIN
3897 || arch == TAG_CPU_ARCH_V8_1M_MAIN)
3898 return TRUE;
3899
3900 return FALSE;
3901 }
3902
3903 /* Determine if we're dealing with a Thumb-2 object. */
3904
3905 static bfd_boolean
3906 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3907 {
3908 int arch;
3909 int thumb_isa = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3910 Tag_THUMB_ISA_use);
3911
3912 if (thumb_isa)
3913 return thumb_isa == 2;
3914
3915 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3916
3917 /* Force return logic to be reviewed for each new architecture. */
3918 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3919
3920 return (arch == TAG_CPU_ARCH_V6T2
3921 || arch == TAG_CPU_ARCH_V7
3922 || arch == TAG_CPU_ARCH_V7E_M
3923 || arch == TAG_CPU_ARCH_V8
3924 || arch == TAG_CPU_ARCH_V8R
3925 || arch == TAG_CPU_ARCH_V8M_MAIN
3926 || arch == TAG_CPU_ARCH_V8_1M_MAIN);
3927 }
3928
3929 /* Determine whether Thumb-2 BL instruction is available. */
3930
3931 static bfd_boolean
3932 using_thumb2_bl (struct elf32_arm_link_hash_table *globals)
3933 {
3934 int arch =
3935 bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
3936
3937 /* Force return logic to be reviewed for each new architecture. */
3938 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
3939
3940 /* Architecture was introduced after ARMv6T2 (eg. ARMv6-M). */
3941 return (arch == TAG_CPU_ARCH_V6T2
3942 || arch >= TAG_CPU_ARCH_V7);
3943 }
3944
3945 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3946 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3947 hash table. */
3948
3949 static bfd_boolean
3950 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3951 {
3952 struct elf32_arm_link_hash_table *htab;
3953
3954 htab = elf32_arm_hash_table (info);
3955 if (htab == NULL)
3956 return FALSE;
3957
3958 if (!htab->root.sgot && !create_got_section (dynobj, info))
3959 return FALSE;
3960
3961 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3962 return FALSE;
3963
3964 if (htab->vxworks_p)
3965 {
3966 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3967 return FALSE;
3968
3969 if (bfd_link_pic (info))
3970 {
3971 htab->plt_header_size = 0;
3972 htab->plt_entry_size
3973 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3974 }
3975 else
3976 {
3977 htab->plt_header_size
3978 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3979 htab->plt_entry_size
3980 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3981 }
3982
3983 if (elf_elfheader (dynobj))
3984 elf_elfheader (dynobj)->e_ident[EI_CLASS] = ELFCLASS32;
3985 }
3986 else
3987 {
3988 /* PR ld/16017
3989 Test for thumb only architectures. Note - we cannot just call
3990 using_thumb_only() as the attributes in the output bfd have not been
3991 initialised at this point, so instead we use the input bfd. */
3992 bfd * saved_obfd = htab->obfd;
3993
3994 htab->obfd = dynobj;
3995 if (using_thumb_only (htab))
3996 {
3997 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
3998 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
3999 }
4000 htab->obfd = saved_obfd;
4001 }
4002
4003 if (htab->fdpic_p) {
4004 htab->plt_header_size = 0;
4005 if (info->flags & DF_BIND_NOW)
4006 htab->plt_entry_size = 4 * (ARRAY_SIZE(elf32_arm_fdpic_plt_entry) - 5);
4007 else
4008 htab->plt_entry_size = 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry);
4009 }
4010
4011 if (!htab->root.splt
4012 || !htab->root.srelplt
4013 || !htab->root.sdynbss
4014 || (!bfd_link_pic (info) && !htab->root.srelbss))
4015 abort ();
4016
4017 return TRUE;
4018 }
4019
4020 /* Copy the extra info we tack onto an elf_link_hash_entry. */
4021
4022 static void
4023 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
4024 struct elf_link_hash_entry *dir,
4025 struct elf_link_hash_entry *ind)
4026 {
4027 struct elf32_arm_link_hash_entry *edir, *eind;
4028
4029 edir = (struct elf32_arm_link_hash_entry *) dir;
4030 eind = (struct elf32_arm_link_hash_entry *) ind;
4031
4032 if (eind->dyn_relocs != NULL)
4033 {
4034 if (edir->dyn_relocs != NULL)
4035 {
4036 struct elf_dyn_relocs **pp;
4037 struct elf_dyn_relocs *p;
4038
4039 /* Add reloc counts against the indirect sym to the direct sym
4040 list. Merge any entries against the same section. */
4041 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
4042 {
4043 struct elf_dyn_relocs *q;
4044
4045 for (q = edir->dyn_relocs; q != NULL; q = q->next)
4046 if (q->sec == p->sec)
4047 {
4048 q->pc_count += p->pc_count;
4049 q->count += p->count;
4050 *pp = p->next;
4051 break;
4052 }
4053 if (q == NULL)
4054 pp = &p->next;
4055 }
4056 *pp = edir->dyn_relocs;
4057 }
4058
4059 edir->dyn_relocs = eind->dyn_relocs;
4060 eind->dyn_relocs = NULL;
4061 }
4062
4063 if (ind->root.type == bfd_link_hash_indirect)
4064 {
4065 /* Copy over PLT info. */
4066 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
4067 eind->plt.thumb_refcount = 0;
4068 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
4069 eind->plt.maybe_thumb_refcount = 0;
4070 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
4071 eind->plt.noncall_refcount = 0;
4072
4073 /* Copy FDPIC counters. */
4074 edir->fdpic_cnts.gotofffuncdesc_cnt += eind->fdpic_cnts.gotofffuncdesc_cnt;
4075 edir->fdpic_cnts.gotfuncdesc_cnt += eind->fdpic_cnts.gotfuncdesc_cnt;
4076 edir->fdpic_cnts.funcdesc_cnt += eind->fdpic_cnts.funcdesc_cnt;
4077
4078 /* We should only allocate a function to .iplt once the final
4079 symbol information is known. */
4080 BFD_ASSERT (!eind->is_iplt);
4081
4082 if (dir->got.refcount <= 0)
4083 {
4084 edir->tls_type = eind->tls_type;
4085 eind->tls_type = GOT_UNKNOWN;
4086 }
4087 }
4088
4089 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
4090 }
4091
4092 /* Destroy an ARM elf linker hash table. */
4093
4094 static void
4095 elf32_arm_link_hash_table_free (bfd *obfd)
4096 {
4097 struct elf32_arm_link_hash_table *ret
4098 = (struct elf32_arm_link_hash_table *) obfd->link.hash;
4099
4100 bfd_hash_table_free (&ret->stub_hash_table);
4101 _bfd_elf_link_hash_table_free (obfd);
4102 }
4103
4104 /* Create an ARM elf linker hash table. */
4105
4106 static struct bfd_link_hash_table *
4107 elf32_arm_link_hash_table_create (bfd *abfd)
4108 {
4109 struct elf32_arm_link_hash_table *ret;
4110 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
4111
4112 ret = (struct elf32_arm_link_hash_table *) bfd_zmalloc (amt);
4113 if (ret == NULL)
4114 return NULL;
4115
4116 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
4117 elf32_arm_link_hash_newfunc,
4118 sizeof (struct elf32_arm_link_hash_entry),
4119 ARM_ELF_DATA))
4120 {
4121 free (ret);
4122 return NULL;
4123 }
4124
4125 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4126 ret->stm32l4xx_fix = BFD_ARM_STM32L4XX_FIX_NONE;
4127 #ifdef FOUR_WORD_PLT
4128 ret->plt_header_size = 16;
4129 ret->plt_entry_size = 16;
4130 #else
4131 ret->plt_header_size = 20;
4132 ret->plt_entry_size = elf32_arm_use_long_plt_entry ? 16 : 12;
4133 #endif
4134 ret->use_rel = TRUE;
4135 ret->obfd = abfd;
4136 ret->fdpic_p = 0;
4137
4138 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
4139 sizeof (struct elf32_arm_stub_hash_entry)))
4140 {
4141 _bfd_elf_link_hash_table_free (abfd);
4142 return NULL;
4143 }
4144 ret->root.root.hash_table_free = elf32_arm_link_hash_table_free;
4145
4146 return &ret->root.root;
4147 }
4148
4149 /* Determine what kind of NOPs are available. */
4150
4151 static bfd_boolean
4152 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
4153 {
4154 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4155 Tag_CPU_arch);
4156
4157 /* Force return logic to be reviewed for each new architecture. */
4158 BFD_ASSERT (arch <= TAG_CPU_ARCH_V8_1M_MAIN);
4159
4160 return (arch == TAG_CPU_ARCH_V6T2
4161 || arch == TAG_CPU_ARCH_V6K
4162 || arch == TAG_CPU_ARCH_V7
4163 || arch == TAG_CPU_ARCH_V8
4164 || arch == TAG_CPU_ARCH_V8R);
4165 }
4166
4167 static bfd_boolean
4168 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
4169 {
4170 switch (stub_type)
4171 {
4172 case arm_stub_long_branch_thumb_only:
4173 case arm_stub_long_branch_thumb2_only:
4174 case arm_stub_long_branch_thumb2_only_pure:
4175 case arm_stub_long_branch_v4t_thumb_arm:
4176 case arm_stub_short_branch_v4t_thumb_arm:
4177 case arm_stub_long_branch_v4t_thumb_arm_pic:
4178 case arm_stub_long_branch_v4t_thumb_tls_pic:
4179 case arm_stub_long_branch_thumb_only_pic:
4180 case arm_stub_cmse_branch_thumb_only:
4181 return TRUE;
4182 case arm_stub_none:
4183 BFD_FAIL ();
4184 return FALSE;
4185 break;
4186 default:
4187 return FALSE;
4188 }
4189 }
4190
4191 /* Determine the type of stub needed, if any, for a call. */
4192
4193 static enum elf32_arm_stub_type
4194 arm_type_of_stub (struct bfd_link_info *info,
4195 asection *input_sec,
4196 const Elf_Internal_Rela *rel,
4197 unsigned char st_type,
4198 enum arm_st_branch_type *actual_branch_type,
4199 struct elf32_arm_link_hash_entry *hash,
4200 bfd_vma destination,
4201 asection *sym_sec,
4202 bfd *input_bfd,
4203 const char *name)
4204 {
4205 bfd_vma location;
4206 bfd_signed_vma branch_offset;
4207 unsigned int r_type;
4208 struct elf32_arm_link_hash_table * globals;
4209 bfd_boolean thumb2, thumb2_bl, thumb_only;
4210 enum elf32_arm_stub_type stub_type = arm_stub_none;
4211 int use_plt = 0;
4212 enum arm_st_branch_type branch_type = *actual_branch_type;
4213 union gotplt_union *root_plt;
4214 struct arm_plt_info *arm_plt;
4215 int arch;
4216 int thumb2_movw;
4217
4218 if (branch_type == ST_BRANCH_LONG)
4219 return stub_type;
4220
4221 globals = elf32_arm_hash_table (info);
4222 if (globals == NULL)
4223 return stub_type;
4224
4225 thumb_only = using_thumb_only (globals);
4226 thumb2 = using_thumb2 (globals);
4227 thumb2_bl = using_thumb2_bl (globals);
4228
4229 arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC, Tag_CPU_arch);
4230
4231 /* True for architectures that implement the thumb2 movw instruction. */
4232 thumb2_movw = thumb2 || (arch == TAG_CPU_ARCH_V8M_BASE);
4233
4234 /* Determine where the call point is. */
4235 location = (input_sec->output_offset
4236 + input_sec->output_section->vma
4237 + rel->r_offset);
4238
4239 r_type = ELF32_R_TYPE (rel->r_info);
4240
4241 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
4242 are considering a function call relocation. */
4243 if (thumb_only && (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4244 || r_type == R_ARM_THM_JUMP19)
4245 && branch_type == ST_BRANCH_TO_ARM)
4246 branch_type = ST_BRANCH_TO_THUMB;
4247
4248 /* For TLS call relocs, it is the caller's responsibility to provide
4249 the address of the appropriate trampoline. */
4250 if (r_type != R_ARM_TLS_CALL
4251 && r_type != R_ARM_THM_TLS_CALL
4252 && elf32_arm_get_plt_info (input_bfd, globals, hash,
4253 ELF32_R_SYM (rel->r_info), &root_plt,
4254 &arm_plt)
4255 && root_plt->offset != (bfd_vma) -1)
4256 {
4257 asection *splt;
4258
4259 if (hash == NULL || hash->is_iplt)
4260 splt = globals->root.iplt;
4261 else
4262 splt = globals->root.splt;
4263 if (splt != NULL)
4264 {
4265 use_plt = 1;
4266
4267 /* Note when dealing with PLT entries: the main PLT stub is in
4268 ARM mode, so if the branch is in Thumb mode, another
4269 Thumb->ARM stub will be inserted later just before the ARM
4270 PLT stub. If a long branch stub is needed, we'll add a
4271 Thumb->Arm one and branch directly to the ARM PLT entry.
4272 Here, we have to check if a pre-PLT Thumb->ARM stub
4273 is needed and if it will be close enough. */
4274
4275 destination = (splt->output_section->vma
4276 + splt->output_offset
4277 + root_plt->offset);
4278 st_type = STT_FUNC;
4279
4280 /* Thumb branch/call to PLT: it can become a branch to ARM
4281 or to Thumb. We must perform the same checks and
4282 corrections as in elf32_arm_final_link_relocate. */
4283 if ((r_type == R_ARM_THM_CALL)
4284 || (r_type == R_ARM_THM_JUMP24))
4285 {
4286 if (globals->use_blx
4287 && r_type == R_ARM_THM_CALL
4288 && !thumb_only)
4289 {
4290 /* If the Thumb BLX instruction is available, convert
4291 the BL to a BLX instruction to call the ARM-mode
4292 PLT entry. */
4293 branch_type = ST_BRANCH_TO_ARM;
4294 }
4295 else
4296 {
4297 if (!thumb_only)
4298 /* Target the Thumb stub before the ARM PLT entry. */
4299 destination -= PLT_THUMB_STUB_SIZE;
4300 branch_type = ST_BRANCH_TO_THUMB;
4301 }
4302 }
4303 else
4304 {
4305 branch_type = ST_BRANCH_TO_ARM;
4306 }
4307 }
4308 }
4309 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
4310 BFD_ASSERT (st_type != STT_GNU_IFUNC);
4311
4312 branch_offset = (bfd_signed_vma)(destination - location);
4313
4314 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
4315 || r_type == R_ARM_THM_TLS_CALL || r_type == R_ARM_THM_JUMP19)
4316 {
4317 /* Handle cases where:
4318 - this call goes too far (different Thumb/Thumb2 max
4319 distance)
4320 - it's a Thumb->Arm call and blx is not available, or it's a
4321 Thumb->Arm branch (not bl). A stub is needed in this case,
4322 but only if this call is not through a PLT entry. Indeed,
4323 PLT stubs handle mode switching already. */
4324 if ((!thumb2_bl
4325 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
4326 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
4327 || (thumb2_bl
4328 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
4329 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
4330 || (thumb2
4331 && (branch_offset > THM2_MAX_FWD_COND_BRANCH_OFFSET
4332 || (branch_offset < THM2_MAX_BWD_COND_BRANCH_OFFSET))
4333 && (r_type == R_ARM_THM_JUMP19))
4334 || (branch_type == ST_BRANCH_TO_ARM
4335 && (((r_type == R_ARM_THM_CALL
4336 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
4337 || (r_type == R_ARM_THM_JUMP24)
4338 || (r_type == R_ARM_THM_JUMP19))
4339 && !use_plt))
4340 {
4341 /* If we need to insert a Thumb-Thumb long branch stub to a
4342 PLT, use one that branches directly to the ARM PLT
4343 stub. If we pretended we'd use the pre-PLT Thumb->ARM
4344 stub, undo this now. */
4345 if ((branch_type == ST_BRANCH_TO_THUMB) && use_plt && !thumb_only)
4346 {
4347 branch_type = ST_BRANCH_TO_ARM;
4348 branch_offset += PLT_THUMB_STUB_SIZE;
4349 }
4350
4351 if (branch_type == ST_BRANCH_TO_THUMB)
4352 {
4353 /* Thumb to thumb. */
4354 if (!thumb_only)
4355 {
4356 if (input_sec->flags & SEC_ELF_PURECODE)
4357 _bfd_error_handler
4358 (_("%pB(%pA): warning: long branch veneers used in"
4359 " section with SHF_ARM_PURECODE section"
4360 " attribute is only supported for M-profile"
4361 " targets that implement the movw instruction"),
4362 input_bfd, input_sec);
4363
4364 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4365 /* PIC stubs. */
4366 ? ((globals->use_blx
4367 && (r_type == R_ARM_THM_CALL))
4368 /* V5T and above. Stub starts with ARM code, so
4369 we must be able to switch mode before
4370 reaching it, which is only possible for 'bl'
4371 (ie R_ARM_THM_CALL relocation). */
4372 ? arm_stub_long_branch_any_thumb_pic
4373 /* On V4T, use Thumb code only. */
4374 : arm_stub_long_branch_v4t_thumb_thumb_pic)
4375
4376 /* non-PIC stubs. */
4377 : ((globals->use_blx
4378 && (r_type == R_ARM_THM_CALL))
4379 /* V5T and above. */
4380 ? arm_stub_long_branch_any_any
4381 /* V4T. */
4382 : arm_stub_long_branch_v4t_thumb_thumb);
4383 }
4384 else
4385 {
4386 if (thumb2_movw && (input_sec->flags & SEC_ELF_PURECODE))
4387 stub_type = arm_stub_long_branch_thumb2_only_pure;
4388 else
4389 {
4390 if (input_sec->flags & SEC_ELF_PURECODE)
4391 _bfd_error_handler
4392 (_("%pB(%pA): warning: long branch veneers used in"
4393 " section with SHF_ARM_PURECODE section"
4394 " attribute is only supported for M-profile"
4395 " targets that implement the movw instruction"),
4396 input_bfd, input_sec);
4397
4398 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4399 /* PIC stub. */
4400 ? arm_stub_long_branch_thumb_only_pic
4401 /* non-PIC stub. */
4402 : (thumb2 ? arm_stub_long_branch_thumb2_only
4403 : arm_stub_long_branch_thumb_only);
4404 }
4405 }
4406 }
4407 else
4408 {
4409 if (input_sec->flags & SEC_ELF_PURECODE)
4410 _bfd_error_handler
4411 (_("%pB(%pA): warning: long branch veneers used in"
4412 " section with SHF_ARM_PURECODE section"
4413 " attribute is only supported" " for M-profile"
4414 " targets that implement the movw instruction"),
4415 input_bfd, input_sec);
4416
4417 /* Thumb to arm. */
4418 if (sym_sec != NULL
4419 && sym_sec->owner != NULL
4420 && !INTERWORK_FLAG (sym_sec->owner))
4421 {
4422 _bfd_error_handler
4423 (_("%pB(%s): warning: interworking not enabled;"
4424 " first occurrence: %pB: %s call to %s"),
4425 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
4426 }
4427
4428 stub_type =
4429 (bfd_link_pic (info) | globals->pic_veneer)
4430 /* PIC stubs. */
4431 ? (r_type == R_ARM_THM_TLS_CALL
4432 /* TLS PIC stubs. */
4433 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
4434 : arm_stub_long_branch_v4t_thumb_tls_pic)
4435 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4436 /* V5T PIC and above. */
4437 ? arm_stub_long_branch_any_arm_pic
4438 /* V4T PIC stub. */
4439 : arm_stub_long_branch_v4t_thumb_arm_pic))
4440
4441 /* non-PIC stubs. */
4442 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
4443 /* V5T and above. */
4444 ? arm_stub_long_branch_any_any
4445 /* V4T. */
4446 : arm_stub_long_branch_v4t_thumb_arm);
4447
4448 /* Handle v4t short branches. */
4449 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
4450 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
4451 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
4452 stub_type = arm_stub_short_branch_v4t_thumb_arm;
4453 }
4454 }
4455 }
4456 else if (r_type == R_ARM_CALL
4457 || r_type == R_ARM_JUMP24
4458 || r_type == R_ARM_PLT32
4459 || r_type == R_ARM_TLS_CALL)
4460 {
4461 if (input_sec->flags & SEC_ELF_PURECODE)
4462 _bfd_error_handler
4463 (_("%pB(%pA): warning: long branch veneers used in"
4464 " section with SHF_ARM_PURECODE section"
4465 " attribute is only supported for M-profile"
4466 " targets that implement the movw instruction"),
4467 input_bfd, input_sec);
4468 if (branch_type == ST_BRANCH_TO_THUMB)
4469 {
4470 /* Arm to thumb. */
4471
4472 if (sym_sec != NULL
4473 && sym_sec->owner != NULL
4474 && !INTERWORK_FLAG (sym_sec->owner))
4475 {
4476 _bfd_error_handler
4477 (_("%pB(%s): warning: interworking not enabled;"
4478 " first occurrence: %pB: %s call to %s"),
4479 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
4480 }
4481
4482 /* We have an extra 2-bytes reach because of
4483 the mode change (bit 24 (H) of BLX encoding). */
4484 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
4485 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
4486 || (r_type == R_ARM_CALL && !globals->use_blx)
4487 || (r_type == R_ARM_JUMP24)
4488 || (r_type == R_ARM_PLT32))
4489 {
4490 stub_type = (bfd_link_pic (info) | globals->pic_veneer)
4491 /* PIC stubs. */
4492 ? ((globals->use_blx)
4493 /* V5T and above. */
4494 ? arm_stub_long_branch_any_thumb_pic
4495 /* V4T stub. */
4496 : arm_stub_long_branch_v4t_arm_thumb_pic)
4497
4498 /* non-PIC stubs. */
4499 : ((globals->use_blx)
4500 /* V5T and above. */
4501 ? arm_stub_long_branch_any_any
4502 /* V4T. */
4503 : arm_stub_long_branch_v4t_arm_thumb);
4504 }
4505 }
4506 else
4507 {
4508 /* Arm to arm. */
4509 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
4510 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
4511 {
4512 stub_type =
4513 (bfd_link_pic (info) | globals->pic_veneer)
4514 /* PIC stubs. */
4515 ? (r_type == R_ARM_TLS_CALL
4516 /* TLS PIC Stub. */
4517 ? arm_stub_long_branch_any_tls_pic
4518 : (globals->nacl_p
4519 ? arm_stub_long_branch_arm_nacl_pic
4520 : arm_stub_long_branch_any_arm_pic))
4521 /* non-PIC stubs. */
4522 : (globals->nacl_p
4523 ? arm_stub_long_branch_arm_nacl
4524 : arm_stub_long_branch_any_any);
4525 }
4526 }
4527 }
4528
4529 /* If a stub is needed, record the actual destination type. */
4530 if (stub_type != arm_stub_none)
4531 *actual_branch_type = branch_type;
4532
4533 return stub_type;
4534 }
4535
4536 /* Build a name for an entry in the stub hash table. */
4537
4538 static char *
4539 elf32_arm_stub_name (const asection *input_section,
4540 const asection *sym_sec,
4541 const struct elf32_arm_link_hash_entry *hash,
4542 const Elf_Internal_Rela *rel,
4543 enum elf32_arm_stub_type stub_type)
4544 {
4545 char *stub_name;
4546 bfd_size_type len;
4547
4548 if (hash)
4549 {
4550 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
4551 stub_name = (char *) bfd_malloc (len);
4552 if (stub_name != NULL)
4553 sprintf (stub_name, "%08x_%s+%x_%d",
4554 input_section->id & 0xffffffff,
4555 hash->root.root.root.string,
4556 (int) rel->r_addend & 0xffffffff,
4557 (int) stub_type);
4558 }
4559 else
4560 {
4561 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
4562 stub_name = (char *) bfd_malloc (len);
4563 if (stub_name != NULL)
4564 sprintf (stub_name, "%08x_%x:%x+%x_%d",
4565 input_section->id & 0xffffffff,
4566 sym_sec->id & 0xffffffff,
4567 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
4568 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
4569 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
4570 (int) rel->r_addend & 0xffffffff,
4571 (int) stub_type);
4572 }
4573
4574 return stub_name;
4575 }
4576
4577 /* Look up an entry in the stub hash. Stub entries are cached because
4578 creating the stub name takes a bit of time. */
4579
4580 static struct elf32_arm_stub_hash_entry *
4581 elf32_arm_get_stub_entry (const asection *input_section,
4582 const asection *sym_sec,
4583 struct elf_link_hash_entry *hash,
4584 const Elf_Internal_Rela *rel,
4585 struct elf32_arm_link_hash_table *htab,
4586 enum elf32_arm_stub_type stub_type)
4587 {
4588 struct elf32_arm_stub_hash_entry *stub_entry;
4589 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
4590 const asection *id_sec;
4591
4592 if ((input_section->flags & SEC_CODE) == 0)
4593 return NULL;
4594
4595 /* If the input section is the CMSE stubs one and it needs a long
4596 branch stub to reach it's final destination, give up with an
4597 error message: this is not supported. See PR ld/24709. */
4598 if (!strncmp (input_section->name, CMSE_STUB_NAME, strlen(CMSE_STUB_NAME)))
4599 {
4600 bfd *output_bfd = htab->obfd;
4601 asection *out_sec = bfd_get_section_by_name (output_bfd, CMSE_STUB_NAME);
4602
4603 _bfd_error_handler (_("ERROR: CMSE stub (%s section) too far "
4604 "(%#" PRIx64 ") from destination (%#" PRIx64 ")"),
4605 CMSE_STUB_NAME,
4606 (uint64_t)out_sec->output_section->vma
4607 + out_sec->output_offset,
4608 (uint64_t)sym_sec->output_section->vma
4609 + sym_sec->output_offset
4610 + h->root.root.u.def.value);
4611 /* Exit, rather than leave incompletely processed
4612 relocations. */
4613 xexit(1);
4614 }
4615
4616 /* If this input section is part of a group of sections sharing one
4617 stub section, then use the id of the first section in the group.
4618 Stub names need to include a section id, as there may well be
4619 more than one stub used to reach say, printf, and we need to
4620 distinguish between them. */
4621 BFD_ASSERT (input_section->id <= htab->top_id);
4622 id_sec = htab->stub_group[input_section->id].link_sec;
4623
4624 if (h != NULL && h->stub_cache != NULL
4625 && h->stub_cache->h == h
4626 && h->stub_cache->id_sec == id_sec
4627 && h->stub_cache->stub_type == stub_type)
4628 {
4629 stub_entry = h->stub_cache;
4630 }
4631 else
4632 {
4633 char *stub_name;
4634
4635 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
4636 if (stub_name == NULL)
4637 return NULL;
4638
4639 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
4640 stub_name, FALSE, FALSE);
4641 if (h != NULL)
4642 h->stub_cache = stub_entry;
4643
4644 free (stub_name);
4645 }
4646
4647 return stub_entry;
4648 }
4649
4650 /* Whether veneers of type STUB_TYPE require to be in a dedicated output
4651 section. */
4652
4653 static bfd_boolean
4654 arm_dedicated_stub_output_section_required (enum elf32_arm_stub_type stub_type)
4655 {
4656 if (stub_type >= max_stub_type)
4657 abort (); /* Should be unreachable. */
4658
4659 switch (stub_type)
4660 {
4661 case arm_stub_cmse_branch_thumb_only:
4662 return TRUE;
4663
4664 default:
4665 return FALSE;
4666 }
4667
4668 abort (); /* Should be unreachable. */
4669 }
4670
4671 /* Required alignment (as a power of 2) for the dedicated section holding
4672 veneers of type STUB_TYPE, or 0 if veneers of this type are interspersed
4673 with input sections. */
4674
4675 static int
4676 arm_dedicated_stub_output_section_required_alignment
4677 (enum elf32_arm_stub_type stub_type)
4678 {
4679 if (stub_type >= max_stub_type)
4680 abort (); /* Should be unreachable. */
4681
4682 switch (stub_type)
4683 {
4684 /* Vectors of Secure Gateway veneers must be aligned on 32byte
4685 boundary. */
4686 case arm_stub_cmse_branch_thumb_only:
4687 return 5;
4688
4689 default:
4690 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4691 return 0;
4692 }
4693
4694 abort (); /* Should be unreachable. */
4695 }
4696
4697 /* Name of the dedicated output section to put veneers of type STUB_TYPE, or
4698 NULL if veneers of this type are interspersed with input sections. */
4699
4700 static const char *
4701 arm_dedicated_stub_output_section_name (enum elf32_arm_stub_type stub_type)
4702 {
4703 if (stub_type >= max_stub_type)
4704 abort (); /* Should be unreachable. */
4705
4706 switch (stub_type)
4707 {
4708 case arm_stub_cmse_branch_thumb_only:
4709 return CMSE_STUB_NAME;
4710
4711 default:
4712 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4713 return NULL;
4714 }
4715
4716 abort (); /* Should be unreachable. */
4717 }
4718
4719 /* If veneers of type STUB_TYPE should go in a dedicated output section,
4720 returns the address of the hash table field in HTAB holding a pointer to the
4721 corresponding input section. Otherwise, returns NULL. */
4722
4723 static asection **
4724 arm_dedicated_stub_input_section_ptr (struct elf32_arm_link_hash_table *htab,
4725 enum elf32_arm_stub_type stub_type)
4726 {
4727 if (stub_type >= max_stub_type)
4728 abort (); /* Should be unreachable. */
4729
4730 switch (stub_type)
4731 {
4732 case arm_stub_cmse_branch_thumb_only:
4733 return &htab->cmse_stub_sec;
4734
4735 default:
4736 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
4737 return NULL;
4738 }
4739
4740 abort (); /* Should be unreachable. */
4741 }
4742
4743 /* Find or create a stub section to contain a stub of type STUB_TYPE. SECTION
4744 is the section that branch into veneer and can be NULL if stub should go in
4745 a dedicated output section. Returns a pointer to the stub section, and the
4746 section to which the stub section will be attached (in *LINK_SEC_P).
4747 LINK_SEC_P may be NULL. */
4748
4749 static asection *
4750 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
4751 struct elf32_arm_link_hash_table *htab,
4752 enum elf32_arm_stub_type stub_type)
4753 {
4754 asection *link_sec, *out_sec, **stub_sec_p;
4755 const char *stub_sec_prefix;
4756 bfd_boolean dedicated_output_section =
4757 arm_dedicated_stub_output_section_required (stub_type);
4758 int align;
4759
4760 if (dedicated_output_section)
4761 {
4762 bfd *output_bfd = htab->obfd;
4763 const char *out_sec_name =
4764 arm_dedicated_stub_output_section_name (stub_type);
4765 link_sec = NULL;
4766 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
4767 stub_sec_prefix = out_sec_name;
4768 align = arm_dedicated_stub_output_section_required_alignment (stub_type);
4769 out_sec = bfd_get_section_by_name (output_bfd, out_sec_name);
4770 if (out_sec == NULL)
4771 {
4772 _bfd_error_handler (_("no address assigned to the veneers output "
4773 "section %s"), out_sec_name);
4774 return NULL;
4775 }
4776 }
4777 else
4778 {
4779 BFD_ASSERT (section->id <= htab->top_id);
4780 link_sec = htab->stub_group[section->id].link_sec;
4781 BFD_ASSERT (link_sec != NULL);
4782 stub_sec_p = &htab->stub_group[section->id].stub_sec;
4783 if (*stub_sec_p == NULL)
4784 stub_sec_p = &htab->stub_group[link_sec->id].stub_sec;
4785 stub_sec_prefix = link_sec->name;
4786 out_sec = link_sec->output_section;
4787 align = htab->nacl_p ? 4 : 3;
4788 }
4789
4790 if (*stub_sec_p == NULL)
4791 {
4792 size_t namelen;
4793 bfd_size_type len;
4794 char *s_name;
4795
4796 namelen = strlen (stub_sec_prefix);
4797 len = namelen + sizeof (STUB_SUFFIX);
4798 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
4799 if (s_name == NULL)
4800 return NULL;
4801
4802 memcpy (s_name, stub_sec_prefix, namelen);
4803 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
4804 *stub_sec_p = (*htab->add_stub_section) (s_name, out_sec, link_sec,
4805 align);
4806 if (*stub_sec_p == NULL)
4807 return NULL;
4808
4809 out_sec->flags |= SEC_ALLOC | SEC_LOAD | SEC_READONLY | SEC_CODE
4810 | SEC_HAS_CONTENTS | SEC_RELOC | SEC_IN_MEMORY
4811 | SEC_KEEP;
4812 }
4813
4814 if (!dedicated_output_section)
4815 htab->stub_group[section->id].stub_sec = *stub_sec_p;
4816
4817 if (link_sec_p)
4818 *link_sec_p = link_sec;
4819
4820 return *stub_sec_p;
4821 }
4822
4823 /* Add a new stub entry to the stub hash. Not all fields of the new
4824 stub entry are initialised. */
4825
4826 static struct elf32_arm_stub_hash_entry *
4827 elf32_arm_add_stub (const char *stub_name, asection *section,
4828 struct elf32_arm_link_hash_table *htab,
4829 enum elf32_arm_stub_type stub_type)
4830 {
4831 asection *link_sec;
4832 asection *stub_sec;
4833 struct elf32_arm_stub_hash_entry *stub_entry;
4834
4835 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab,
4836 stub_type);
4837 if (stub_sec == NULL)
4838 return NULL;
4839
4840 /* Enter this entry into the linker stub hash table. */
4841 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
4842 TRUE, FALSE);
4843 if (stub_entry == NULL)
4844 {
4845 if (section == NULL)
4846 section = stub_sec;
4847 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
4848 section->owner, stub_name);
4849 return NULL;
4850 }
4851
4852 stub_entry->stub_sec = stub_sec;
4853 stub_entry->stub_offset = (bfd_vma) -1;
4854 stub_entry->id_sec = link_sec;
4855
4856 return stub_entry;
4857 }
4858
4859 /* Store an Arm insn into an output section not processed by
4860 elf32_arm_write_section. */
4861
4862 static void
4863 put_arm_insn (struct elf32_arm_link_hash_table * htab,
4864 bfd * output_bfd, bfd_vma val, void * ptr)
4865 {
4866 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4867 bfd_putl32 (val, ptr);
4868 else
4869 bfd_putb32 (val, ptr);
4870 }
4871
4872 /* Store a 16-bit Thumb insn into an output section not processed by
4873 elf32_arm_write_section. */
4874
4875 static void
4876 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
4877 bfd * output_bfd, bfd_vma val, void * ptr)
4878 {
4879 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4880 bfd_putl16 (val, ptr);
4881 else
4882 bfd_putb16 (val, ptr);
4883 }
4884
4885 /* Store a Thumb2 insn into an output section not processed by
4886 elf32_arm_write_section. */
4887
4888 static void
4889 put_thumb2_insn (struct elf32_arm_link_hash_table * htab,
4890 bfd * output_bfd, bfd_vma val, bfd_byte * ptr)
4891 {
4892 /* T2 instructions are 16-bit streamed. */
4893 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4894 {
4895 bfd_putl16 ((val >> 16) & 0xffff, ptr);
4896 bfd_putl16 ((val & 0xffff), ptr + 2);
4897 }
4898 else
4899 {
4900 bfd_putb16 ((val >> 16) & 0xffff, ptr);
4901 bfd_putb16 ((val & 0xffff), ptr + 2);
4902 }
4903 }
4904
4905 /* If it's possible to change R_TYPE to a more efficient access
4906 model, return the new reloc type. */
4907
4908 static unsigned
4909 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
4910 struct elf_link_hash_entry *h)
4911 {
4912 int is_local = (h == NULL);
4913
4914 if (bfd_link_pic (info)
4915 || (h && h->root.type == bfd_link_hash_undefweak))
4916 return r_type;
4917
4918 /* We do not support relaxations for Old TLS models. */
4919 switch (r_type)
4920 {
4921 case R_ARM_TLS_GOTDESC:
4922 case R_ARM_TLS_CALL:
4923 case R_ARM_THM_TLS_CALL:
4924 case R_ARM_TLS_DESCSEQ:
4925 case R_ARM_THM_TLS_DESCSEQ:
4926 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
4927 }
4928
4929 return r_type;
4930 }
4931
4932 static bfd_reloc_status_type elf32_arm_final_link_relocate
4933 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
4934 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
4935 const char *, unsigned char, enum arm_st_branch_type,
4936 struct elf_link_hash_entry *, bfd_boolean *, char **);
4937
4938 static unsigned int
4939 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
4940 {
4941 switch (stub_type)
4942 {
4943 case arm_stub_a8_veneer_b_cond:
4944 case arm_stub_a8_veneer_b:
4945 case arm_stub_a8_veneer_bl:
4946 return 2;
4947
4948 case arm_stub_long_branch_any_any:
4949 case arm_stub_long_branch_v4t_arm_thumb:
4950 case arm_stub_long_branch_thumb_only:
4951 case arm_stub_long_branch_thumb2_only:
4952 case arm_stub_long_branch_thumb2_only_pure:
4953 case arm_stub_long_branch_v4t_thumb_thumb:
4954 case arm_stub_long_branch_v4t_thumb_arm:
4955 case arm_stub_short_branch_v4t_thumb_arm:
4956 case arm_stub_long_branch_any_arm_pic:
4957 case arm_stub_long_branch_any_thumb_pic:
4958 case arm_stub_long_branch_v4t_thumb_thumb_pic:
4959 case arm_stub_long_branch_v4t_arm_thumb_pic:
4960 case arm_stub_long_branch_v4t_thumb_arm_pic:
4961 case arm_stub_long_branch_thumb_only_pic:
4962 case arm_stub_long_branch_any_tls_pic:
4963 case arm_stub_long_branch_v4t_thumb_tls_pic:
4964 case arm_stub_cmse_branch_thumb_only:
4965 case arm_stub_a8_veneer_blx:
4966 return 4;
4967
4968 case arm_stub_long_branch_arm_nacl:
4969 case arm_stub_long_branch_arm_nacl_pic:
4970 return 16;
4971
4972 default:
4973 abort (); /* Should be unreachable. */
4974 }
4975 }
4976
4977 /* Returns whether stubs of type STUB_TYPE take over the symbol they are
4978 veneering (TRUE) or have their own symbol (FALSE). */
4979
4980 static bfd_boolean
4981 arm_stub_sym_claimed (enum elf32_arm_stub_type stub_type)
4982 {
4983 if (stub_type >= max_stub_type)
4984 abort (); /* Should be unreachable. */
4985
4986 switch (stub_type)
4987 {
4988 case arm_stub_cmse_branch_thumb_only:
4989 return TRUE;
4990
4991 default:
4992 return FALSE;
4993 }
4994
4995 abort (); /* Should be unreachable. */
4996 }
4997
4998 /* Returns the padding needed for the dedicated section used stubs of type
4999 STUB_TYPE. */
5000
5001 static int
5002 arm_dedicated_stub_section_padding (enum elf32_arm_stub_type stub_type)
5003 {
5004 if (stub_type >= max_stub_type)
5005 abort (); /* Should be unreachable. */
5006
5007 switch (stub_type)
5008 {
5009 case arm_stub_cmse_branch_thumb_only:
5010 return 32;
5011
5012 default:
5013 return 0;
5014 }
5015
5016 abort (); /* Should be unreachable. */
5017 }
5018
5019 /* If veneers of type STUB_TYPE should go in a dedicated output section,
5020 returns the address of the hash table field in HTAB holding the offset at
5021 which new veneers should be layed out in the stub section. */
5022
5023 static bfd_vma*
5024 arm_new_stubs_start_offset_ptr (struct elf32_arm_link_hash_table *htab,
5025 enum elf32_arm_stub_type stub_type)
5026 {
5027 switch (stub_type)
5028 {
5029 case arm_stub_cmse_branch_thumb_only:
5030 return &htab->new_cmse_stub_offset;
5031
5032 default:
5033 BFD_ASSERT (!arm_dedicated_stub_output_section_required (stub_type));
5034 return NULL;
5035 }
5036 }
5037
5038 static bfd_boolean
5039 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
5040 void * in_arg)
5041 {
5042 #define MAXRELOCS 3
5043 bfd_boolean removed_sg_veneer;
5044 struct elf32_arm_stub_hash_entry *stub_entry;
5045 struct elf32_arm_link_hash_table *globals;
5046 struct bfd_link_info *info;
5047 asection *stub_sec;
5048 bfd *stub_bfd;
5049 bfd_byte *loc;
5050 bfd_vma sym_value;
5051 int template_size;
5052 int size;
5053 const insn_sequence *template_sequence;
5054 int i;
5055 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
5056 int stub_reloc_offset[MAXRELOCS] = {0, 0};
5057 int nrelocs = 0;
5058 int just_allocated = 0;
5059
5060 /* Massage our args to the form they really have. */
5061 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5062 info = (struct bfd_link_info *) in_arg;
5063
5064 globals = elf32_arm_hash_table (info);
5065 if (globals == NULL)
5066 return FALSE;
5067
5068 stub_sec = stub_entry->stub_sec;
5069
5070 if ((globals->fix_cortex_a8 < 0)
5071 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
5072 /* We have to do less-strictly-aligned fixes last. */
5073 return TRUE;
5074
5075 /* Assign a slot at the end of section if none assigned yet. */
5076 if (stub_entry->stub_offset == (bfd_vma) -1)
5077 {
5078 stub_entry->stub_offset = stub_sec->size;
5079 just_allocated = 1;
5080 }
5081 loc = stub_sec->contents + stub_entry->stub_offset;
5082
5083 stub_bfd = stub_sec->owner;
5084
5085 /* This is the address of the stub destination. */
5086 sym_value = (stub_entry->target_value
5087 + stub_entry->target_section->output_offset
5088 + stub_entry->target_section->output_section->vma);
5089
5090 template_sequence = stub_entry->stub_template;
5091 template_size = stub_entry->stub_template_size;
5092
5093 size = 0;
5094 for (i = 0; i < template_size; i++)
5095 {
5096 switch (template_sequence[i].type)
5097 {
5098 case THUMB16_TYPE:
5099 {
5100 bfd_vma data = (bfd_vma) template_sequence[i].data;
5101 if (template_sequence[i].reloc_addend != 0)
5102 {
5103 /* We've borrowed the reloc_addend field to mean we should
5104 insert a condition code into this (Thumb-1 branch)
5105 instruction. See THUMB16_BCOND_INSN. */
5106 BFD_ASSERT ((data & 0xff00) == 0xd000);
5107 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
5108 }
5109 bfd_put_16 (stub_bfd, data, loc + size);
5110 size += 2;
5111 }
5112 break;
5113
5114 case THUMB32_TYPE:
5115 bfd_put_16 (stub_bfd,
5116 (template_sequence[i].data >> 16) & 0xffff,
5117 loc + size);
5118 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
5119 loc + size + 2);
5120 if (template_sequence[i].r_type != R_ARM_NONE)
5121 {
5122 stub_reloc_idx[nrelocs] = i;
5123 stub_reloc_offset[nrelocs++] = size;
5124 }
5125 size += 4;
5126 break;
5127
5128 case ARM_TYPE:
5129 bfd_put_32 (stub_bfd, template_sequence[i].data,
5130 loc + size);
5131 /* Handle cases where the target is encoded within the
5132 instruction. */
5133 if (template_sequence[i].r_type == R_ARM_JUMP24)
5134 {
5135 stub_reloc_idx[nrelocs] = i;
5136 stub_reloc_offset[nrelocs++] = size;
5137 }
5138 size += 4;
5139 break;
5140
5141 case DATA_TYPE:
5142 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
5143 stub_reloc_idx[nrelocs] = i;
5144 stub_reloc_offset[nrelocs++] = size;
5145 size += 4;
5146 break;
5147
5148 default:
5149 BFD_FAIL ();
5150 return FALSE;
5151 }
5152 }
5153
5154 if (just_allocated)
5155 stub_sec->size += size;
5156
5157 /* Stub size has already been computed in arm_size_one_stub. Check
5158 consistency. */
5159 BFD_ASSERT (size == stub_entry->stub_size);
5160
5161 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
5162 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
5163 sym_value |= 1;
5164
5165 /* Assume non empty slots have at least one and at most MAXRELOCS entries
5166 to relocate in each stub. */
5167 removed_sg_veneer =
5168 (size == 0 && stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
5169 BFD_ASSERT (removed_sg_veneer || (nrelocs != 0 && nrelocs <= MAXRELOCS));
5170
5171 for (i = 0; i < nrelocs; i++)
5172 {
5173 Elf_Internal_Rela rel;
5174 bfd_boolean unresolved_reloc;
5175 char *error_message;
5176 bfd_vma points_to =
5177 sym_value + template_sequence[stub_reloc_idx[i]].reloc_addend;
5178
5179 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
5180 rel.r_info = ELF32_R_INFO (0,
5181 template_sequence[stub_reloc_idx[i]].r_type);
5182 rel.r_addend = 0;
5183
5184 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
5185 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
5186 template should refer back to the instruction after the original
5187 branch. We use target_section as Cortex-A8 erratum workaround stubs
5188 are only generated when both source and target are in the same
5189 section. */
5190 points_to = stub_entry->target_section->output_section->vma
5191 + stub_entry->target_section->output_offset
5192 + stub_entry->source_value;
5193
5194 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
5195 (template_sequence[stub_reloc_idx[i]].r_type),
5196 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
5197 points_to, info, stub_entry->target_section, "", STT_FUNC,
5198 stub_entry->branch_type,
5199 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
5200 &error_message);
5201 }
5202
5203 return TRUE;
5204 #undef MAXRELOCS
5205 }
5206
5207 /* Calculate the template, template size and instruction size for a stub.
5208 Return value is the instruction size. */
5209
5210 static unsigned int
5211 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
5212 const insn_sequence **stub_template,
5213 int *stub_template_size)
5214 {
5215 const insn_sequence *template_sequence = NULL;
5216 int template_size = 0, i;
5217 unsigned int size;
5218
5219 template_sequence = stub_definitions[stub_type].template_sequence;
5220 if (stub_template)
5221 *stub_template = template_sequence;
5222
5223 template_size = stub_definitions[stub_type].template_size;
5224 if (stub_template_size)
5225 *stub_template_size = template_size;
5226
5227 size = 0;
5228 for (i = 0; i < template_size; i++)
5229 {
5230 switch (template_sequence[i].type)
5231 {
5232 case THUMB16_TYPE:
5233 size += 2;
5234 break;
5235
5236 case ARM_TYPE:
5237 case THUMB32_TYPE:
5238 case DATA_TYPE:
5239 size += 4;
5240 break;
5241
5242 default:
5243 BFD_FAIL ();
5244 return 0;
5245 }
5246 }
5247
5248 return size;
5249 }
5250
5251 /* As above, but don't actually build the stub. Just bump offset so
5252 we know stub section sizes. */
5253
5254 static bfd_boolean
5255 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
5256 void *in_arg ATTRIBUTE_UNUSED)
5257 {
5258 struct elf32_arm_stub_hash_entry *stub_entry;
5259 const insn_sequence *template_sequence;
5260 int template_size, size;
5261
5262 /* Massage our args to the form they really have. */
5263 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
5264
5265 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
5266 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
5267
5268 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
5269 &template_size);
5270
5271 /* Initialized to -1. Null size indicates an empty slot full of zeros. */
5272 if (stub_entry->stub_template_size)
5273 {
5274 stub_entry->stub_size = size;
5275 stub_entry->stub_template = template_sequence;
5276 stub_entry->stub_template_size = template_size;
5277 }
5278
5279 /* Already accounted for. */
5280 if (stub_entry->stub_offset != (bfd_vma) -1)
5281 return TRUE;
5282
5283 size = (size + 7) & ~7;
5284 stub_entry->stub_sec->size += size;
5285
5286 return TRUE;
5287 }
5288
5289 /* External entry points for sizing and building linker stubs. */
5290
5291 /* Set up various things so that we can make a list of input sections
5292 for each output section included in the link. Returns -1 on error,
5293 0 when no stubs will be needed, and 1 on success. */
5294
5295 int
5296 elf32_arm_setup_section_lists (bfd *output_bfd,
5297 struct bfd_link_info *info)
5298 {
5299 bfd *input_bfd;
5300 unsigned int bfd_count;
5301 unsigned int top_id, top_index;
5302 asection *section;
5303 asection **input_list, **list;
5304 bfd_size_type amt;
5305 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5306
5307 if (htab == NULL)
5308 return 0;
5309 if (! is_elf_hash_table (htab))
5310 return 0;
5311
5312 /* Count the number of input BFDs and find the top input section id. */
5313 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
5314 input_bfd != NULL;
5315 input_bfd = input_bfd->link.next)
5316 {
5317 bfd_count += 1;
5318 for (section = input_bfd->sections;
5319 section != NULL;
5320 section = section->next)
5321 {
5322 if (top_id < section->id)
5323 top_id = section->id;
5324 }
5325 }
5326 htab->bfd_count = bfd_count;
5327
5328 amt = sizeof (struct map_stub) * (top_id + 1);
5329 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
5330 if (htab->stub_group == NULL)
5331 return -1;
5332 htab->top_id = top_id;
5333
5334 /* We can't use output_bfd->section_count here to find the top output
5335 section index as some sections may have been removed, and
5336 _bfd_strip_section_from_output doesn't renumber the indices. */
5337 for (section = output_bfd->sections, top_index = 0;
5338 section != NULL;
5339 section = section->next)
5340 {
5341 if (top_index < section->index)
5342 top_index = section->index;
5343 }
5344
5345 htab->top_index = top_index;
5346 amt = sizeof (asection *) * (top_index + 1);
5347 input_list = (asection **) bfd_malloc (amt);
5348 htab->input_list = input_list;
5349 if (input_list == NULL)
5350 return -1;
5351
5352 /* For sections we aren't interested in, mark their entries with a
5353 value we can check later. */
5354 list = input_list + top_index;
5355 do
5356 *list = bfd_abs_section_ptr;
5357 while (list-- != input_list);
5358
5359 for (section = output_bfd->sections;
5360 section != NULL;
5361 section = section->next)
5362 {
5363 if ((section->flags & SEC_CODE) != 0)
5364 input_list[section->index] = NULL;
5365 }
5366
5367 return 1;
5368 }
5369
5370 /* The linker repeatedly calls this function for each input section,
5371 in the order that input sections are linked into output sections.
5372 Build lists of input sections to determine groupings between which
5373 we may insert linker stubs. */
5374
5375 void
5376 elf32_arm_next_input_section (struct bfd_link_info *info,
5377 asection *isec)
5378 {
5379 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5380
5381 if (htab == NULL)
5382 return;
5383
5384 if (isec->output_section->index <= htab->top_index)
5385 {
5386 asection **list = htab->input_list + isec->output_section->index;
5387
5388 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
5389 {
5390 /* Steal the link_sec pointer for our list. */
5391 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
5392 /* This happens to make the list in reverse order,
5393 which we reverse later. */
5394 PREV_SEC (isec) = *list;
5395 *list = isec;
5396 }
5397 }
5398 }
5399
5400 /* See whether we can group stub sections together. Grouping stub
5401 sections may result in fewer stubs. More importantly, we need to
5402 put all .init* and .fini* stubs at the end of the .init or
5403 .fini output sections respectively, because glibc splits the
5404 _init and _fini functions into multiple parts. Putting a stub in
5405 the middle of a function is not a good idea. */
5406
5407 static void
5408 group_sections (struct elf32_arm_link_hash_table *htab,
5409 bfd_size_type stub_group_size,
5410 bfd_boolean stubs_always_after_branch)
5411 {
5412 asection **list = htab->input_list;
5413
5414 do
5415 {
5416 asection *tail = *list;
5417 asection *head;
5418
5419 if (tail == bfd_abs_section_ptr)
5420 continue;
5421
5422 /* Reverse the list: we must avoid placing stubs at the
5423 beginning of the section because the beginning of the text
5424 section may be required for an interrupt vector in bare metal
5425 code. */
5426 #define NEXT_SEC PREV_SEC
5427 head = NULL;
5428 while (tail != NULL)
5429 {
5430 /* Pop from tail. */
5431 asection *item = tail;
5432 tail = PREV_SEC (item);
5433
5434 /* Push on head. */
5435 NEXT_SEC (item) = head;
5436 head = item;
5437 }
5438
5439 while (head != NULL)
5440 {
5441 asection *curr;
5442 asection *next;
5443 bfd_vma stub_group_start = head->output_offset;
5444 bfd_vma end_of_next;
5445
5446 curr = head;
5447 while (NEXT_SEC (curr) != NULL)
5448 {
5449 next = NEXT_SEC (curr);
5450 end_of_next = next->output_offset + next->size;
5451 if (end_of_next - stub_group_start >= stub_group_size)
5452 /* End of NEXT is too far from start, so stop. */
5453 break;
5454 /* Add NEXT to the group. */
5455 curr = next;
5456 }
5457
5458 /* OK, the size from the start to the start of CURR is less
5459 than stub_group_size and thus can be handled by one stub
5460 section. (Or the head section is itself larger than
5461 stub_group_size, in which case we may be toast.)
5462 We should really be keeping track of the total size of
5463 stubs added here, as stubs contribute to the final output
5464 section size. */
5465 do
5466 {
5467 next = NEXT_SEC (head);
5468 /* Set up this stub group. */
5469 htab->stub_group[head->id].link_sec = curr;
5470 }
5471 while (head != curr && (head = next) != NULL);
5472
5473 /* But wait, there's more! Input sections up to stub_group_size
5474 bytes after the stub section can be handled by it too. */
5475 if (!stubs_always_after_branch)
5476 {
5477 stub_group_start = curr->output_offset + curr->size;
5478
5479 while (next != NULL)
5480 {
5481 end_of_next = next->output_offset + next->size;
5482 if (end_of_next - stub_group_start >= stub_group_size)
5483 /* End of NEXT is too far from stubs, so stop. */
5484 break;
5485 /* Add NEXT to the stub group. */
5486 head = next;
5487 next = NEXT_SEC (head);
5488 htab->stub_group[head->id].link_sec = curr;
5489 }
5490 }
5491 head = next;
5492 }
5493 }
5494 while (list++ != htab->input_list + htab->top_index);
5495
5496 free (htab->input_list);
5497 #undef PREV_SEC
5498 #undef NEXT_SEC
5499 }
5500
5501 /* Comparison function for sorting/searching relocations relating to Cortex-A8
5502 erratum fix. */
5503
5504 static int
5505 a8_reloc_compare (const void *a, const void *b)
5506 {
5507 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
5508 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
5509
5510 if (ra->from < rb->from)
5511 return -1;
5512 else if (ra->from > rb->from)
5513 return 1;
5514 else
5515 return 0;
5516 }
5517
5518 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
5519 const char *, char **);
5520
5521 /* Helper function to scan code for sequences which might trigger the Cortex-A8
5522 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
5523 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
5524 otherwise. */
5525
5526 static bfd_boolean
5527 cortex_a8_erratum_scan (bfd *input_bfd,
5528 struct bfd_link_info *info,
5529 struct a8_erratum_fix **a8_fixes_p,
5530 unsigned int *num_a8_fixes_p,
5531 unsigned int *a8_fix_table_size_p,
5532 struct a8_erratum_reloc *a8_relocs,
5533 unsigned int num_a8_relocs,
5534 unsigned prev_num_a8_fixes,
5535 bfd_boolean *stub_changed_p)
5536 {
5537 asection *section;
5538 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
5539 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
5540 unsigned int num_a8_fixes = *num_a8_fixes_p;
5541 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
5542
5543 if (htab == NULL)
5544 return FALSE;
5545
5546 for (section = input_bfd->sections;
5547 section != NULL;
5548 section = section->next)
5549 {
5550 bfd_byte *contents = NULL;
5551 struct _arm_elf_section_data *sec_data;
5552 unsigned int span;
5553 bfd_vma base_vma;
5554
5555 if (elf_section_type (section) != SHT_PROGBITS
5556 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
5557 || (section->flags & SEC_EXCLUDE) != 0
5558 || (section->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
5559 || (section->output_section == bfd_abs_section_ptr))
5560 continue;
5561
5562 base_vma = section->output_section->vma + section->output_offset;
5563
5564 if (elf_section_data (section)->this_hdr.contents != NULL)
5565 contents = elf_section_data (section)->this_hdr.contents;
5566 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
5567 return TRUE;
5568
5569 sec_data = elf32_arm_section_data (section);
5570
5571 for (span = 0; span < sec_data->mapcount; span++)
5572 {
5573 unsigned int span_start = sec_data->map[span].vma;
5574 unsigned int span_end = (span == sec_data->mapcount - 1)
5575 ? section->size : sec_data->map[span + 1].vma;
5576 unsigned int i;
5577 char span_type = sec_data->map[span].type;
5578 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
5579
5580 if (span_type != 't')
5581 continue;
5582
5583 /* Span is entirely within a single 4KB region: skip scanning. */
5584 if (((base_vma + span_start) & ~0xfff)
5585 == ((base_vma + span_end) & ~0xfff))
5586 continue;
5587
5588 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
5589
5590 * The opcode is BLX.W, BL.W, B.W, Bcc.W
5591 * The branch target is in the same 4KB region as the
5592 first half of the branch.
5593 * The instruction before the branch is a 32-bit
5594 length non-branch instruction. */
5595 for (i = span_start; i < span_end;)
5596 {
5597 unsigned int insn = bfd_getl16 (&contents[i]);
5598 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
5599 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
5600
5601 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
5602 insn_32bit = TRUE;
5603
5604 if (insn_32bit)
5605 {
5606 /* Load the rest of the insn (in manual-friendly order). */
5607 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
5608
5609 /* Encoding T4: B<c>.W. */
5610 is_b = (insn & 0xf800d000) == 0xf0009000;
5611 /* Encoding T1: BL<c>.W. */
5612 is_bl = (insn & 0xf800d000) == 0xf000d000;
5613 /* Encoding T2: BLX<c>.W. */
5614 is_blx = (insn & 0xf800d000) == 0xf000c000;
5615 /* Encoding T3: B<c>.W (not permitted in IT block). */
5616 is_bcc = (insn & 0xf800d000) == 0xf0008000
5617 && (insn & 0x07f00000) != 0x03800000;
5618 }
5619
5620 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
5621
5622 if (((base_vma + i) & 0xfff) == 0xffe
5623 && insn_32bit
5624 && is_32bit_branch
5625 && last_was_32bit
5626 && ! last_was_branch)
5627 {
5628 bfd_signed_vma offset = 0;
5629 bfd_boolean force_target_arm = FALSE;
5630 bfd_boolean force_target_thumb = FALSE;
5631 bfd_vma target;
5632 enum elf32_arm_stub_type stub_type = arm_stub_none;
5633 struct a8_erratum_reloc key, *found;
5634 bfd_boolean use_plt = FALSE;
5635
5636 key.from = base_vma + i;
5637 found = (struct a8_erratum_reloc *)
5638 bsearch (&key, a8_relocs, num_a8_relocs,
5639 sizeof (struct a8_erratum_reloc),
5640 &a8_reloc_compare);
5641
5642 if (found)
5643 {
5644 char *error_message = NULL;
5645 struct elf_link_hash_entry *entry;
5646
5647 /* We don't care about the error returned from this
5648 function, only if there is glue or not. */
5649 entry = find_thumb_glue (info, found->sym_name,
5650 &error_message);
5651
5652 if (entry)
5653 found->non_a8_stub = TRUE;
5654
5655 /* Keep a simpler condition, for the sake of clarity. */
5656 if (htab->root.splt != NULL && found->hash != NULL
5657 && found->hash->root.plt.offset != (bfd_vma) -1)
5658 use_plt = TRUE;
5659
5660 if (found->r_type == R_ARM_THM_CALL)
5661 {
5662 if (found->branch_type == ST_BRANCH_TO_ARM
5663 || use_plt)
5664 force_target_arm = TRUE;
5665 else
5666 force_target_thumb = TRUE;
5667 }
5668 }
5669
5670 /* Check if we have an offending branch instruction. */
5671
5672 if (found && found->non_a8_stub)
5673 /* We've already made a stub for this instruction, e.g.
5674 it's a long branch or a Thumb->ARM stub. Assume that
5675 stub will suffice to work around the A8 erratum (see
5676 setting of always_after_branch above). */
5677 ;
5678 else if (is_bcc)
5679 {
5680 offset = (insn & 0x7ff) << 1;
5681 offset |= (insn & 0x3f0000) >> 4;
5682 offset |= (insn & 0x2000) ? 0x40000 : 0;
5683 offset |= (insn & 0x800) ? 0x80000 : 0;
5684 offset |= (insn & 0x4000000) ? 0x100000 : 0;
5685 if (offset & 0x100000)
5686 offset |= ~ ((bfd_signed_vma) 0xfffff);
5687 stub_type = arm_stub_a8_veneer_b_cond;
5688 }
5689 else if (is_b || is_bl || is_blx)
5690 {
5691 int s = (insn & 0x4000000) != 0;
5692 int j1 = (insn & 0x2000) != 0;
5693 int j2 = (insn & 0x800) != 0;
5694 int i1 = !(j1 ^ s);
5695 int i2 = !(j2 ^ s);
5696
5697 offset = (insn & 0x7ff) << 1;
5698 offset |= (insn & 0x3ff0000) >> 4;
5699 offset |= i2 << 22;
5700 offset |= i1 << 23;
5701 offset |= s << 24;
5702 if (offset & 0x1000000)
5703 offset |= ~ ((bfd_signed_vma) 0xffffff);
5704
5705 if (is_blx)
5706 offset &= ~ ((bfd_signed_vma) 3);
5707
5708 stub_type = is_blx ? arm_stub_a8_veneer_blx :
5709 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
5710 }
5711
5712 if (stub_type != arm_stub_none)
5713 {
5714 bfd_vma pc_for_insn = base_vma + i + 4;
5715
5716 /* The original instruction is a BL, but the target is
5717 an ARM instruction. If we were not making a stub,
5718 the BL would have been converted to a BLX. Use the
5719 BLX stub instead in that case. */
5720 if (htab->use_blx && force_target_arm
5721 && stub_type == arm_stub_a8_veneer_bl)
5722 {
5723 stub_type = arm_stub_a8_veneer_blx;
5724 is_blx = TRUE;
5725 is_bl = FALSE;
5726 }
5727 /* Conversely, if the original instruction was
5728 BLX but the target is Thumb mode, use the BL
5729 stub. */
5730 else if (force_target_thumb
5731 && stub_type == arm_stub_a8_veneer_blx)
5732 {
5733 stub_type = arm_stub_a8_veneer_bl;
5734 is_blx = FALSE;
5735 is_bl = TRUE;
5736 }
5737
5738 if (is_blx)
5739 pc_for_insn &= ~ ((bfd_vma) 3);
5740
5741 /* If we found a relocation, use the proper destination,
5742 not the offset in the (unrelocated) instruction.
5743 Note this is always done if we switched the stub type
5744 above. */
5745 if (found)
5746 offset =
5747 (bfd_signed_vma) (found->destination - pc_for_insn);
5748
5749 /* If the stub will use a Thumb-mode branch to a
5750 PLT target, redirect it to the preceding Thumb
5751 entry point. */
5752 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
5753 offset -= PLT_THUMB_STUB_SIZE;
5754
5755 target = pc_for_insn + offset;
5756
5757 /* The BLX stub is ARM-mode code. Adjust the offset to
5758 take the different PC value (+8 instead of +4) into
5759 account. */
5760 if (stub_type == arm_stub_a8_veneer_blx)
5761 offset += 4;
5762
5763 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
5764 {
5765 char *stub_name = NULL;
5766
5767 if (num_a8_fixes == a8_fix_table_size)
5768 {
5769 a8_fix_table_size *= 2;
5770 a8_fixes = (struct a8_erratum_fix *)
5771 bfd_realloc (a8_fixes,
5772 sizeof (struct a8_erratum_fix)
5773 * a8_fix_table_size);
5774 }
5775
5776 if (num_a8_fixes < prev_num_a8_fixes)
5777 {
5778 /* If we're doing a subsequent scan,
5779 check if we've found the same fix as
5780 before, and try and reuse the stub
5781 name. */
5782 stub_name = a8_fixes[num_a8_fixes].stub_name;
5783 if ((a8_fixes[num_a8_fixes].section != section)
5784 || (a8_fixes[num_a8_fixes].offset != i))
5785 {
5786 free (stub_name);
5787 stub_name = NULL;
5788 *stub_changed_p = TRUE;
5789 }
5790 }
5791
5792 if (!stub_name)
5793 {
5794 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
5795 if (stub_name != NULL)
5796 sprintf (stub_name, "%x:%x", section->id, i);
5797 }
5798
5799 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
5800 a8_fixes[num_a8_fixes].section = section;
5801 a8_fixes[num_a8_fixes].offset = i;
5802 a8_fixes[num_a8_fixes].target_offset =
5803 target - base_vma;
5804 a8_fixes[num_a8_fixes].orig_insn = insn;
5805 a8_fixes[num_a8_fixes].stub_name = stub_name;
5806 a8_fixes[num_a8_fixes].stub_type = stub_type;
5807 a8_fixes[num_a8_fixes].branch_type =
5808 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
5809
5810 num_a8_fixes++;
5811 }
5812 }
5813 }
5814
5815 i += insn_32bit ? 4 : 2;
5816 last_was_32bit = insn_32bit;
5817 last_was_branch = is_32bit_branch;
5818 }
5819 }
5820
5821 if (elf_section_data (section)->this_hdr.contents == NULL)
5822 free (contents);
5823 }
5824
5825 *a8_fixes_p = a8_fixes;
5826 *num_a8_fixes_p = num_a8_fixes;
5827 *a8_fix_table_size_p = a8_fix_table_size;
5828
5829 return FALSE;
5830 }
5831
5832 /* Create or update a stub entry depending on whether the stub can already be
5833 found in HTAB. The stub is identified by:
5834 - its type STUB_TYPE
5835 - its source branch (note that several can share the same stub) whose
5836 section and relocation (if any) are given by SECTION and IRELA
5837 respectively
5838 - its target symbol whose input section, hash, name, value and branch type
5839 are given in SYM_SEC, HASH, SYM_NAME, SYM_VALUE and BRANCH_TYPE
5840 respectively
5841
5842 If found, the value of the stub's target symbol is updated from SYM_VALUE
5843 and *NEW_STUB is set to FALSE. Otherwise, *NEW_STUB is set to
5844 TRUE and the stub entry is initialized.
5845
5846 Returns the stub that was created or updated, or NULL if an error
5847 occurred. */
5848
5849 static struct elf32_arm_stub_hash_entry *
5850 elf32_arm_create_stub (struct elf32_arm_link_hash_table *htab,
5851 enum elf32_arm_stub_type stub_type, asection *section,
5852 Elf_Internal_Rela *irela, asection *sym_sec,
5853 struct elf32_arm_link_hash_entry *hash, char *sym_name,
5854 bfd_vma sym_value, enum arm_st_branch_type branch_type,
5855 bfd_boolean *new_stub)
5856 {
5857 const asection *id_sec;
5858 char *stub_name;
5859 struct elf32_arm_stub_hash_entry *stub_entry;
5860 unsigned int r_type;
5861 bfd_boolean sym_claimed = arm_stub_sym_claimed (stub_type);
5862
5863 BFD_ASSERT (stub_type != arm_stub_none);
5864 *new_stub = FALSE;
5865
5866 if (sym_claimed)
5867 stub_name = sym_name;
5868 else
5869 {
5870 BFD_ASSERT (irela);
5871 BFD_ASSERT (section);
5872 BFD_ASSERT (section->id <= htab->top_id);
5873
5874 /* Support for grouping stub sections. */
5875 id_sec = htab->stub_group[section->id].link_sec;
5876
5877 /* Get the name of this stub. */
5878 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela,
5879 stub_type);
5880 if (!stub_name)
5881 return NULL;
5882 }
5883
5884 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name, FALSE,
5885 FALSE);
5886 /* The proper stub has already been created, just update its value. */
5887 if (stub_entry != NULL)
5888 {
5889 if (!sym_claimed)
5890 free (stub_name);
5891 stub_entry->target_value = sym_value;
5892 return stub_entry;
5893 }
5894
5895 stub_entry = elf32_arm_add_stub (stub_name, section, htab, stub_type);
5896 if (stub_entry == NULL)
5897 {
5898 if (!sym_claimed)
5899 free (stub_name);
5900 return NULL;
5901 }
5902
5903 stub_entry->target_value = sym_value;
5904 stub_entry->target_section = sym_sec;
5905 stub_entry->stub_type = stub_type;
5906 stub_entry->h = hash;
5907 stub_entry->branch_type = branch_type;
5908
5909 if (sym_claimed)
5910 stub_entry->output_name = sym_name;
5911 else
5912 {
5913 if (sym_name == NULL)
5914 sym_name = "unnamed";
5915 stub_entry->output_name = (char *)
5916 bfd_alloc (htab->stub_bfd, sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5917 + strlen (sym_name));
5918 if (stub_entry->output_name == NULL)
5919 {
5920 free (stub_name);
5921 return NULL;
5922 }
5923
5924 /* For historical reasons, use the existing names for ARM-to-Thumb and
5925 Thumb-to-ARM stubs. */
5926 r_type = ELF32_R_TYPE (irela->r_info);
5927 if ((r_type == (unsigned int) R_ARM_THM_CALL
5928 || r_type == (unsigned int) R_ARM_THM_JUMP24
5929 || r_type == (unsigned int) R_ARM_THM_JUMP19)
5930 && branch_type == ST_BRANCH_TO_ARM)
5931 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5932 else if ((r_type == (unsigned int) R_ARM_CALL
5933 || r_type == (unsigned int) R_ARM_JUMP24)
5934 && branch_type == ST_BRANCH_TO_THUMB)
5935 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5936 else
5937 sprintf (stub_entry->output_name, STUB_ENTRY_NAME, sym_name);
5938 }
5939
5940 *new_stub = TRUE;
5941 return stub_entry;
5942 }
5943
5944 /* Scan symbols in INPUT_BFD to identify secure entry functions needing a
5945 gateway veneer to transition from non secure to secure state and create them
5946 accordingly.
5947
5948 "ARMv8-M Security Extensions: Requirements on Development Tools" document
5949 defines the conditions that govern Secure Gateway veneer creation for a
5950 given symbol <SYM> as follows:
5951 - it has function type
5952 - it has non local binding
5953 - a symbol named __acle_se_<SYM> (called special symbol) exists with the
5954 same type, binding and value as <SYM> (called normal symbol).
5955 An entry function can handle secure state transition itself in which case
5956 its special symbol would have a different value from the normal symbol.
5957
5958 OUT_ATTR gives the output attributes, SYM_HASHES the symbol index to hash
5959 entry mapping while HTAB gives the name to hash entry mapping.
5960 *CMSE_STUB_CREATED is increased by the number of secure gateway veneer
5961 created.
5962
5963 The return value gives whether a stub failed to be allocated. */
5964
5965 static bfd_boolean
5966 cmse_scan (bfd *input_bfd, struct elf32_arm_link_hash_table *htab,
5967 obj_attribute *out_attr, struct elf_link_hash_entry **sym_hashes,
5968 int *cmse_stub_created)
5969 {
5970 const struct elf_backend_data *bed;
5971 Elf_Internal_Shdr *symtab_hdr;
5972 unsigned i, j, sym_count, ext_start;
5973 Elf_Internal_Sym *cmse_sym, *local_syms;
5974 struct elf32_arm_link_hash_entry *hash, *cmse_hash = NULL;
5975 enum arm_st_branch_type branch_type;
5976 char *sym_name, *lsym_name;
5977 bfd_vma sym_value;
5978 asection *section;
5979 struct elf32_arm_stub_hash_entry *stub_entry;
5980 bfd_boolean is_v8m, new_stub, cmse_invalid, ret = TRUE;
5981
5982 bed = get_elf_backend_data (input_bfd);
5983 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5984 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
5985 ext_start = symtab_hdr->sh_info;
5986 is_v8m = (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
5987 && out_attr[Tag_CPU_arch_profile].i == 'M');
5988
5989 local_syms = (Elf_Internal_Sym *) symtab_hdr->contents;
5990 if (local_syms == NULL)
5991 local_syms = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
5992 symtab_hdr->sh_info, 0, NULL, NULL,
5993 NULL);
5994 if (symtab_hdr->sh_info && local_syms == NULL)
5995 return FALSE;
5996
5997 /* Scan symbols. */
5998 for (i = 0; i < sym_count; i++)
5999 {
6000 cmse_invalid = FALSE;
6001
6002 if (i < ext_start)
6003 {
6004 cmse_sym = &local_syms[i];
6005 sym_name = bfd_elf_string_from_elf_section (input_bfd,
6006 symtab_hdr->sh_link,
6007 cmse_sym->st_name);
6008 if (!sym_name || !CONST_STRNEQ (sym_name, CMSE_PREFIX))
6009 continue;
6010
6011 /* Special symbol with local binding. */
6012 cmse_invalid = TRUE;
6013 }
6014 else
6015 {
6016 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
6017 sym_name = (char *) cmse_hash->root.root.root.string;
6018 if (!CONST_STRNEQ (sym_name, CMSE_PREFIX))
6019 continue;
6020
6021 /* Special symbol has incorrect binding or type. */
6022 if ((cmse_hash->root.root.type != bfd_link_hash_defined
6023 && cmse_hash->root.root.type != bfd_link_hash_defweak)
6024 || cmse_hash->root.type != STT_FUNC)
6025 cmse_invalid = TRUE;
6026 }
6027
6028 if (!is_v8m)
6029 {
6030 _bfd_error_handler (_("%pB: special symbol `%s' only allowed for "
6031 "ARMv8-M architecture or later"),
6032 input_bfd, sym_name);
6033 is_v8m = TRUE; /* Avoid multiple warning. */
6034 ret = FALSE;
6035 }
6036
6037 if (cmse_invalid)
6038 {
6039 _bfd_error_handler (_("%pB: invalid special symbol `%s'; it must be"
6040 " a global or weak function symbol"),
6041 input_bfd, sym_name);
6042 ret = FALSE;
6043 if (i < ext_start)
6044 continue;
6045 }
6046
6047 sym_name += strlen (CMSE_PREFIX);
6048 hash = (struct elf32_arm_link_hash_entry *)
6049 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6050
6051 /* No associated normal symbol or it is neither global nor weak. */
6052 if (!hash
6053 || (hash->root.root.type != bfd_link_hash_defined
6054 && hash->root.root.type != bfd_link_hash_defweak)
6055 || hash->root.type != STT_FUNC)
6056 {
6057 /* Initialize here to avoid warning about use of possibly
6058 uninitialized variable. */
6059 j = 0;
6060
6061 if (!hash)
6062 {
6063 /* Searching for a normal symbol with local binding. */
6064 for (; j < ext_start; j++)
6065 {
6066 lsym_name =
6067 bfd_elf_string_from_elf_section (input_bfd,
6068 symtab_hdr->sh_link,
6069 local_syms[j].st_name);
6070 if (!strcmp (sym_name, lsym_name))
6071 break;
6072 }
6073 }
6074
6075 if (hash || j < ext_start)
6076 {
6077 _bfd_error_handler
6078 (_("%pB: invalid standard symbol `%s'; it must be "
6079 "a global or weak function symbol"),
6080 input_bfd, sym_name);
6081 }
6082 else
6083 _bfd_error_handler
6084 (_("%pB: absent standard symbol `%s'"), input_bfd, sym_name);
6085 ret = FALSE;
6086 if (!hash)
6087 continue;
6088 }
6089
6090 sym_value = hash->root.root.u.def.value;
6091 section = hash->root.root.u.def.section;
6092
6093 if (cmse_hash->root.root.u.def.section != section)
6094 {
6095 _bfd_error_handler
6096 (_("%pB: `%s' and its special symbol are in different sections"),
6097 input_bfd, sym_name);
6098 ret = FALSE;
6099 }
6100 if (cmse_hash->root.root.u.def.value != sym_value)
6101 continue; /* Ignore: could be an entry function starting with SG. */
6102
6103 /* If this section is a link-once section that will be discarded, then
6104 don't create any stubs. */
6105 if (section->output_section == NULL)
6106 {
6107 _bfd_error_handler
6108 (_("%pB: entry function `%s' not output"), input_bfd, sym_name);
6109 continue;
6110 }
6111
6112 if (hash->root.size == 0)
6113 {
6114 _bfd_error_handler
6115 (_("%pB: entry function `%s' is empty"), input_bfd, sym_name);
6116 ret = FALSE;
6117 }
6118
6119 if (!ret)
6120 continue;
6121 branch_type = ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6122 stub_entry
6123 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6124 NULL, NULL, section, hash, sym_name,
6125 sym_value, branch_type, &new_stub);
6126
6127 if (stub_entry == NULL)
6128 ret = FALSE;
6129 else
6130 {
6131 BFD_ASSERT (new_stub);
6132 (*cmse_stub_created)++;
6133 }
6134 }
6135
6136 if (!symtab_hdr->contents)
6137 free (local_syms);
6138 return ret;
6139 }
6140
6141 /* Return TRUE iff a symbol identified by its linker HASH entry is a secure
6142 code entry function, ie can be called from non secure code without using a
6143 veneer. */
6144
6145 static bfd_boolean
6146 cmse_entry_fct_p (struct elf32_arm_link_hash_entry *hash)
6147 {
6148 bfd_byte contents[4];
6149 uint32_t first_insn;
6150 asection *section;
6151 file_ptr offset;
6152 bfd *abfd;
6153
6154 /* Defined symbol of function type. */
6155 if (hash->root.root.type != bfd_link_hash_defined
6156 && hash->root.root.type != bfd_link_hash_defweak)
6157 return FALSE;
6158 if (hash->root.type != STT_FUNC)
6159 return FALSE;
6160
6161 /* Read first instruction. */
6162 section = hash->root.root.u.def.section;
6163 abfd = section->owner;
6164 offset = hash->root.root.u.def.value - section->vma;
6165 if (!bfd_get_section_contents (abfd, section, contents, offset,
6166 sizeof (contents)))
6167 return FALSE;
6168
6169 first_insn = bfd_get_32 (abfd, contents);
6170
6171 /* Starts by SG instruction. */
6172 return first_insn == 0xe97fe97f;
6173 }
6174
6175 /* Output the name (in symbol table) of the veneer GEN_ENTRY if it is a new
6176 secure gateway veneers (ie. the veneers was not in the input import library)
6177 and there is no output import library (GEN_INFO->out_implib_bfd is NULL. */
6178
6179 static bfd_boolean
6180 arm_list_new_cmse_stub (struct bfd_hash_entry *gen_entry, void *gen_info)
6181 {
6182 struct elf32_arm_stub_hash_entry *stub_entry;
6183 struct bfd_link_info *info;
6184
6185 /* Massage our args to the form they really have. */
6186 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
6187 info = (struct bfd_link_info *) gen_info;
6188
6189 if (info->out_implib_bfd)
6190 return TRUE;
6191
6192 if (stub_entry->stub_type != arm_stub_cmse_branch_thumb_only)
6193 return TRUE;
6194
6195 if (stub_entry->stub_offset == (bfd_vma) -1)
6196 _bfd_error_handler (" %s", stub_entry->output_name);
6197
6198 return TRUE;
6199 }
6200
6201 /* Set offset of each secure gateway veneers so that its address remain
6202 identical to the one in the input import library referred by
6203 HTAB->in_implib_bfd. A warning is issued for veneers that disappeared
6204 (present in input import library but absent from the executable being
6205 linked) or if new veneers appeared and there is no output import library
6206 (INFO->out_implib_bfd is NULL and *CMSE_STUB_CREATED is bigger than the
6207 number of secure gateway veneers found in the input import library.
6208
6209 The function returns whether an error occurred. If no error occurred,
6210 *CMSE_STUB_CREATED gives the number of SG veneers created by both cmse_scan
6211 and this function and HTAB->new_cmse_stub_offset is set to the biggest
6212 veneer observed set for new veneers to be layed out after. */
6213
6214 static bfd_boolean
6215 set_cmse_veneer_addr_from_implib (struct bfd_link_info *info,
6216 struct elf32_arm_link_hash_table *htab,
6217 int *cmse_stub_created)
6218 {
6219 long symsize;
6220 char *sym_name;
6221 flagword flags;
6222 long i, symcount;
6223 bfd *in_implib_bfd;
6224 asection *stub_out_sec;
6225 bfd_boolean ret = TRUE;
6226 Elf_Internal_Sym *intsym;
6227 const char *out_sec_name;
6228 bfd_size_type cmse_stub_size;
6229 asymbol **sympp = NULL, *sym;
6230 struct elf32_arm_link_hash_entry *hash;
6231 const insn_sequence *cmse_stub_template;
6232 struct elf32_arm_stub_hash_entry *stub_entry;
6233 int cmse_stub_template_size, new_cmse_stubs_created = *cmse_stub_created;
6234 bfd_vma veneer_value, stub_offset, next_cmse_stub_offset;
6235 bfd_vma cmse_stub_array_start = (bfd_vma) -1, cmse_stub_sec_vma = 0;
6236
6237 /* No input secure gateway import library. */
6238 if (!htab->in_implib_bfd)
6239 return TRUE;
6240
6241 in_implib_bfd = htab->in_implib_bfd;
6242 if (!htab->cmse_implib)
6243 {
6244 _bfd_error_handler (_("%pB: --in-implib only supported for Secure "
6245 "Gateway import libraries"), in_implib_bfd);
6246 return FALSE;
6247 }
6248
6249 /* Get symbol table size. */
6250 symsize = bfd_get_symtab_upper_bound (in_implib_bfd);
6251 if (symsize < 0)
6252 return FALSE;
6253
6254 /* Read in the input secure gateway import library's symbol table. */
6255 sympp = (asymbol **) xmalloc (symsize);
6256 symcount = bfd_canonicalize_symtab (in_implib_bfd, sympp);
6257 if (symcount < 0)
6258 {
6259 ret = FALSE;
6260 goto free_sym_buf;
6261 }
6262
6263 htab->new_cmse_stub_offset = 0;
6264 cmse_stub_size =
6265 find_stub_size_and_template (arm_stub_cmse_branch_thumb_only,
6266 &cmse_stub_template,
6267 &cmse_stub_template_size);
6268 out_sec_name =
6269 arm_dedicated_stub_output_section_name (arm_stub_cmse_branch_thumb_only);
6270 stub_out_sec =
6271 bfd_get_section_by_name (htab->obfd, out_sec_name);
6272 if (stub_out_sec != NULL)
6273 cmse_stub_sec_vma = stub_out_sec->vma;
6274
6275 /* Set addresses of veneers mentionned in input secure gateway import
6276 library's symbol table. */
6277 for (i = 0; i < symcount; i++)
6278 {
6279 sym = sympp[i];
6280 flags = sym->flags;
6281 sym_name = (char *) bfd_asymbol_name (sym);
6282 intsym = &((elf_symbol_type *) sym)->internal_elf_sym;
6283
6284 if (sym->section != bfd_abs_section_ptr
6285 || !(flags & (BSF_GLOBAL | BSF_WEAK))
6286 || (flags & BSF_FUNCTION) != BSF_FUNCTION
6287 || (ARM_GET_SYM_BRANCH_TYPE (intsym->st_target_internal)
6288 != ST_BRANCH_TO_THUMB))
6289 {
6290 _bfd_error_handler (_("%pB: invalid import library entry: `%s'; "
6291 "symbol should be absolute, global and "
6292 "refer to Thumb functions"),
6293 in_implib_bfd, sym_name);
6294 ret = FALSE;
6295 continue;
6296 }
6297
6298 veneer_value = bfd_asymbol_value (sym);
6299 stub_offset = veneer_value - cmse_stub_sec_vma;
6300 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, sym_name,
6301 FALSE, FALSE);
6302 hash = (struct elf32_arm_link_hash_entry *)
6303 elf_link_hash_lookup (&(htab)->root, sym_name, FALSE, FALSE, TRUE);
6304
6305 /* Stub entry should have been created by cmse_scan or the symbol be of
6306 a secure function callable from non secure code. */
6307 if (!stub_entry && !hash)
6308 {
6309 bfd_boolean new_stub;
6310
6311 _bfd_error_handler
6312 (_("entry function `%s' disappeared from secure code"), sym_name);
6313 hash = (struct elf32_arm_link_hash_entry *)
6314 elf_link_hash_lookup (&(htab)->root, sym_name, TRUE, TRUE, TRUE);
6315 stub_entry
6316 = elf32_arm_create_stub (htab, arm_stub_cmse_branch_thumb_only,
6317 NULL, NULL, bfd_abs_section_ptr, hash,
6318 sym_name, veneer_value,
6319 ST_BRANCH_TO_THUMB, &new_stub);
6320 if (stub_entry == NULL)
6321 ret = FALSE;
6322 else
6323 {
6324 BFD_ASSERT (new_stub);
6325 new_cmse_stubs_created++;
6326 (*cmse_stub_created)++;
6327 }
6328 stub_entry->stub_template_size = stub_entry->stub_size = 0;
6329 stub_entry->stub_offset = stub_offset;
6330 }
6331 /* Symbol found is not callable from non secure code. */
6332 else if (!stub_entry)
6333 {
6334 if (!cmse_entry_fct_p (hash))
6335 {
6336 _bfd_error_handler (_("`%s' refers to a non entry function"),
6337 sym_name);
6338 ret = FALSE;
6339 }
6340 continue;
6341 }
6342 else
6343 {
6344 /* Only stubs for SG veneers should have been created. */
6345 BFD_ASSERT (stub_entry->stub_type == arm_stub_cmse_branch_thumb_only);
6346
6347 /* Check visibility hasn't changed. */
6348 if (!!(flags & BSF_GLOBAL)
6349 != (hash->root.root.type == bfd_link_hash_defined))
6350 _bfd_error_handler
6351 (_("%pB: visibility of symbol `%s' has changed"), in_implib_bfd,
6352 sym_name);
6353
6354 stub_entry->stub_offset = stub_offset;
6355 }
6356
6357 /* Size should match that of a SG veneer. */
6358 if (intsym->st_size != cmse_stub_size)
6359 {
6360 _bfd_error_handler (_("%pB: incorrect size for symbol `%s'"),
6361 in_implib_bfd, sym_name);
6362 ret = FALSE;
6363 }
6364
6365 /* Previous veneer address is before current SG veneer section. */
6366 if (veneer_value < cmse_stub_sec_vma)
6367 {
6368 /* Avoid offset underflow. */
6369 if (stub_entry)
6370 stub_entry->stub_offset = 0;
6371 stub_offset = 0;
6372 ret = FALSE;
6373 }
6374
6375 /* Complain if stub offset not a multiple of stub size. */
6376 if (stub_offset % cmse_stub_size)
6377 {
6378 _bfd_error_handler
6379 (_("offset of veneer for entry function `%s' not a multiple of "
6380 "its size"), sym_name);
6381 ret = FALSE;
6382 }
6383
6384 if (!ret)
6385 continue;
6386
6387 new_cmse_stubs_created--;
6388 if (veneer_value < cmse_stub_array_start)
6389 cmse_stub_array_start = veneer_value;
6390 next_cmse_stub_offset = stub_offset + ((cmse_stub_size + 7) & ~7);
6391 if (next_cmse_stub_offset > htab->new_cmse_stub_offset)
6392 htab->new_cmse_stub_offset = next_cmse_stub_offset;
6393 }
6394
6395 if (!info->out_implib_bfd && new_cmse_stubs_created != 0)
6396 {
6397 BFD_ASSERT (new_cmse_stubs_created > 0);
6398 _bfd_error_handler
6399 (_("new entry function(s) introduced but no output import library "
6400 "specified:"));
6401 bfd_hash_traverse (&htab->stub_hash_table, arm_list_new_cmse_stub, info);
6402 }
6403
6404 if (cmse_stub_array_start != cmse_stub_sec_vma)
6405 {
6406 _bfd_error_handler
6407 (_("start address of `%s' is different from previous link"),
6408 out_sec_name);
6409 ret = FALSE;
6410 }
6411
6412 free_sym_buf:
6413 free (sympp);
6414 return ret;
6415 }
6416
6417 /* Determine and set the size of the stub section for a final link.
6418
6419 The basic idea here is to examine all the relocations looking for
6420 PC-relative calls to a target that is unreachable with a "bl"
6421 instruction. */
6422
6423 bfd_boolean
6424 elf32_arm_size_stubs (bfd *output_bfd,
6425 bfd *stub_bfd,
6426 struct bfd_link_info *info,
6427 bfd_signed_vma group_size,
6428 asection * (*add_stub_section) (const char *, asection *,
6429 asection *,
6430 unsigned int),
6431 void (*layout_sections_again) (void))
6432 {
6433 bfd_boolean ret = TRUE;
6434 obj_attribute *out_attr;
6435 int cmse_stub_created = 0;
6436 bfd_size_type stub_group_size;
6437 bfd_boolean m_profile, stubs_always_after_branch, first_veneer_scan = TRUE;
6438 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
6439 struct a8_erratum_fix *a8_fixes = NULL;
6440 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
6441 struct a8_erratum_reloc *a8_relocs = NULL;
6442 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
6443
6444 if (htab == NULL)
6445 return FALSE;
6446
6447 if (htab->fix_cortex_a8)
6448 {
6449 a8_fixes = (struct a8_erratum_fix *)
6450 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
6451 a8_relocs = (struct a8_erratum_reloc *)
6452 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
6453 }
6454
6455 /* Propagate mach to stub bfd, because it may not have been
6456 finalized when we created stub_bfd. */
6457 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
6458 bfd_get_mach (output_bfd));
6459
6460 /* Stash our params away. */
6461 htab->stub_bfd = stub_bfd;
6462 htab->add_stub_section = add_stub_section;
6463 htab->layout_sections_again = layout_sections_again;
6464 stubs_always_after_branch = group_size < 0;
6465
6466 out_attr = elf_known_obj_attributes_proc (output_bfd);
6467 m_profile = out_attr[Tag_CPU_arch_profile].i == 'M';
6468
6469 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
6470 as the first half of a 32-bit branch straddling two 4K pages. This is a
6471 crude way of enforcing that. */
6472 if (htab->fix_cortex_a8)
6473 stubs_always_after_branch = 1;
6474
6475 if (group_size < 0)
6476 stub_group_size = -group_size;
6477 else
6478 stub_group_size = group_size;
6479
6480 if (stub_group_size == 1)
6481 {
6482 /* Default values. */
6483 /* Thumb branch range is +-4MB has to be used as the default
6484 maximum size (a given section can contain both ARM and Thumb
6485 code, so the worst case has to be taken into account).
6486
6487 This value is 24K less than that, which allows for 2025
6488 12-byte stubs. If we exceed that, then we will fail to link.
6489 The user will have to relink with an explicit group size
6490 option. */
6491 stub_group_size = 4170000;
6492 }
6493
6494 group_sections (htab, stub_group_size, stubs_always_after_branch);
6495
6496 /* If we're applying the cortex A8 fix, we need to determine the
6497 program header size now, because we cannot change it later --
6498 that could alter section placements. Notice the A8 erratum fix
6499 ends up requiring the section addresses to remain unchanged
6500 modulo the page size. That's something we cannot represent
6501 inside BFD, and we don't want to force the section alignment to
6502 be the page size. */
6503 if (htab->fix_cortex_a8)
6504 (*htab->layout_sections_again) ();
6505
6506 while (1)
6507 {
6508 bfd *input_bfd;
6509 unsigned int bfd_indx;
6510 asection *stub_sec;
6511 enum elf32_arm_stub_type stub_type;
6512 bfd_boolean stub_changed = FALSE;
6513 unsigned prev_num_a8_fixes = num_a8_fixes;
6514
6515 num_a8_fixes = 0;
6516 for (input_bfd = info->input_bfds, bfd_indx = 0;
6517 input_bfd != NULL;
6518 input_bfd = input_bfd->link.next, bfd_indx++)
6519 {
6520 Elf_Internal_Shdr *symtab_hdr;
6521 asection *section;
6522 Elf_Internal_Sym *local_syms = NULL;
6523
6524 if (!is_arm_elf (input_bfd)
6525 || (elf_dyn_lib_class (input_bfd) & DYN_AS_NEEDED) != 0)
6526 continue;
6527
6528 num_a8_relocs = 0;
6529
6530 /* We'll need the symbol table in a second. */
6531 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
6532 if (symtab_hdr->sh_info == 0)
6533 continue;
6534
6535 /* Limit scan of symbols to object file whose profile is
6536 Microcontroller to not hinder performance in the general case. */
6537 if (m_profile && first_veneer_scan)
6538 {
6539 struct elf_link_hash_entry **sym_hashes;
6540
6541 sym_hashes = elf_sym_hashes (input_bfd);
6542 if (!cmse_scan (input_bfd, htab, out_attr, sym_hashes,
6543 &cmse_stub_created))
6544 goto error_ret_free_local;
6545
6546 if (cmse_stub_created != 0)
6547 stub_changed = TRUE;
6548 }
6549
6550 /* Walk over each section attached to the input bfd. */
6551 for (section = input_bfd->sections;
6552 section != NULL;
6553 section = section->next)
6554 {
6555 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
6556
6557 /* If there aren't any relocs, then there's nothing more
6558 to do. */
6559 if ((section->flags & SEC_RELOC) == 0
6560 || section->reloc_count == 0
6561 || (section->flags & SEC_CODE) == 0)
6562 continue;
6563
6564 /* If this section is a link-once section that will be
6565 discarded, then don't create any stubs. */
6566 if (section->output_section == NULL
6567 || section->output_section->owner != output_bfd)
6568 continue;
6569
6570 /* Get the relocs. */
6571 internal_relocs
6572 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
6573 NULL, info->keep_memory);
6574 if (internal_relocs == NULL)
6575 goto error_ret_free_local;
6576
6577 /* Now examine each relocation. */
6578 irela = internal_relocs;
6579 irelaend = irela + section->reloc_count;
6580 for (; irela < irelaend; irela++)
6581 {
6582 unsigned int r_type, r_indx;
6583 asection *sym_sec;
6584 bfd_vma sym_value;
6585 bfd_vma destination;
6586 struct elf32_arm_link_hash_entry *hash;
6587 const char *sym_name;
6588 unsigned char st_type;
6589 enum arm_st_branch_type branch_type;
6590 bfd_boolean created_stub = FALSE;
6591
6592 r_type = ELF32_R_TYPE (irela->r_info);
6593 r_indx = ELF32_R_SYM (irela->r_info);
6594
6595 if (r_type >= (unsigned int) R_ARM_max)
6596 {
6597 bfd_set_error (bfd_error_bad_value);
6598 error_ret_free_internal:
6599 if (elf_section_data (section)->relocs == NULL)
6600 free (internal_relocs);
6601 /* Fall through. */
6602 error_ret_free_local:
6603 if (local_syms != NULL
6604 && (symtab_hdr->contents
6605 != (unsigned char *) local_syms))
6606 free (local_syms);
6607 return FALSE;
6608 }
6609
6610 hash = NULL;
6611 if (r_indx >= symtab_hdr->sh_info)
6612 hash = elf32_arm_hash_entry
6613 (elf_sym_hashes (input_bfd)
6614 [r_indx - symtab_hdr->sh_info]);
6615
6616 /* Only look for stubs on branch instructions, or
6617 non-relaxed TLSCALL */
6618 if ((r_type != (unsigned int) R_ARM_CALL)
6619 && (r_type != (unsigned int) R_ARM_THM_CALL)
6620 && (r_type != (unsigned int) R_ARM_JUMP24)
6621 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
6622 && (r_type != (unsigned int) R_ARM_THM_XPC22)
6623 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
6624 && (r_type != (unsigned int) R_ARM_PLT32)
6625 && !((r_type == (unsigned int) R_ARM_TLS_CALL
6626 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6627 && r_type == elf32_arm_tls_transition
6628 (info, r_type, &hash->root)
6629 && ((hash ? hash->tls_type
6630 : (elf32_arm_local_got_tls_type
6631 (input_bfd)[r_indx]))
6632 & GOT_TLS_GDESC) != 0))
6633 continue;
6634
6635 /* Now determine the call target, its name, value,
6636 section. */
6637 sym_sec = NULL;
6638 sym_value = 0;
6639 destination = 0;
6640 sym_name = NULL;
6641
6642 if (r_type == (unsigned int) R_ARM_TLS_CALL
6643 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
6644 {
6645 /* A non-relaxed TLS call. The target is the
6646 plt-resident trampoline and nothing to do
6647 with the symbol. */
6648 BFD_ASSERT (htab->tls_trampoline > 0);
6649 sym_sec = htab->root.splt;
6650 sym_value = htab->tls_trampoline;
6651 hash = 0;
6652 st_type = STT_FUNC;
6653 branch_type = ST_BRANCH_TO_ARM;
6654 }
6655 else if (!hash)
6656 {
6657 /* It's a local symbol. */
6658 Elf_Internal_Sym *sym;
6659
6660 if (local_syms == NULL)
6661 {
6662 local_syms
6663 = (Elf_Internal_Sym *) symtab_hdr->contents;
6664 if (local_syms == NULL)
6665 local_syms
6666 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
6667 symtab_hdr->sh_info, 0,
6668 NULL, NULL, NULL);
6669 if (local_syms == NULL)
6670 goto error_ret_free_internal;
6671 }
6672
6673 sym = local_syms + r_indx;
6674 if (sym->st_shndx == SHN_UNDEF)
6675 sym_sec = bfd_und_section_ptr;
6676 else if (sym->st_shndx == SHN_ABS)
6677 sym_sec = bfd_abs_section_ptr;
6678 else if (sym->st_shndx == SHN_COMMON)
6679 sym_sec = bfd_com_section_ptr;
6680 else
6681 sym_sec =
6682 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
6683
6684 if (!sym_sec)
6685 /* This is an undefined symbol. It can never
6686 be resolved. */
6687 continue;
6688
6689 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
6690 sym_value = sym->st_value;
6691 destination = (sym_value + irela->r_addend
6692 + sym_sec->output_offset
6693 + sym_sec->output_section->vma);
6694 st_type = ELF_ST_TYPE (sym->st_info);
6695 branch_type =
6696 ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
6697 sym_name
6698 = bfd_elf_string_from_elf_section (input_bfd,
6699 symtab_hdr->sh_link,
6700 sym->st_name);
6701 }
6702 else
6703 {
6704 /* It's an external symbol. */
6705 while (hash->root.root.type == bfd_link_hash_indirect
6706 || hash->root.root.type == bfd_link_hash_warning)
6707 hash = ((struct elf32_arm_link_hash_entry *)
6708 hash->root.root.u.i.link);
6709
6710 if (hash->root.root.type == bfd_link_hash_defined
6711 || hash->root.root.type == bfd_link_hash_defweak)
6712 {
6713 sym_sec = hash->root.root.u.def.section;
6714 sym_value = hash->root.root.u.def.value;
6715
6716 struct elf32_arm_link_hash_table *globals =
6717 elf32_arm_hash_table (info);
6718
6719 /* For a destination in a shared library,
6720 use the PLT stub as target address to
6721 decide whether a branch stub is
6722 needed. */
6723 if (globals != NULL
6724 && globals->root.splt != NULL
6725 && hash != NULL
6726 && hash->root.plt.offset != (bfd_vma) -1)
6727 {
6728 sym_sec = globals->root.splt;
6729 sym_value = hash->root.plt.offset;
6730 if (sym_sec->output_section != NULL)
6731 destination = (sym_value
6732 + sym_sec->output_offset
6733 + sym_sec->output_section->vma);
6734 }
6735 else if (sym_sec->output_section != NULL)
6736 destination = (sym_value + irela->r_addend
6737 + sym_sec->output_offset
6738 + sym_sec->output_section->vma);
6739 }
6740 else if ((hash->root.root.type == bfd_link_hash_undefined)
6741 || (hash->root.root.type == bfd_link_hash_undefweak))
6742 {
6743 /* For a shared library, use the PLT stub as
6744 target address to decide whether a long
6745 branch stub is needed.
6746 For absolute code, they cannot be handled. */
6747 struct elf32_arm_link_hash_table *globals =
6748 elf32_arm_hash_table (info);
6749
6750 if (globals != NULL
6751 && globals->root.splt != NULL
6752 && hash != NULL
6753 && hash->root.plt.offset != (bfd_vma) -1)
6754 {
6755 sym_sec = globals->root.splt;
6756 sym_value = hash->root.plt.offset;
6757 if (sym_sec->output_section != NULL)
6758 destination = (sym_value
6759 + sym_sec->output_offset
6760 + sym_sec->output_section->vma);
6761 }
6762 else
6763 continue;
6764 }
6765 else
6766 {
6767 bfd_set_error (bfd_error_bad_value);
6768 goto error_ret_free_internal;
6769 }
6770 st_type = hash->root.type;
6771 branch_type =
6772 ARM_GET_SYM_BRANCH_TYPE (hash->root.target_internal);
6773 sym_name = hash->root.root.root.string;
6774 }
6775
6776 do
6777 {
6778 bfd_boolean new_stub;
6779 struct elf32_arm_stub_hash_entry *stub_entry;
6780
6781 /* Determine what (if any) linker stub is needed. */
6782 stub_type = arm_type_of_stub (info, section, irela,
6783 st_type, &branch_type,
6784 hash, destination, sym_sec,
6785 input_bfd, sym_name);
6786 if (stub_type == arm_stub_none)
6787 break;
6788
6789 /* We've either created a stub for this reloc already,
6790 or we are about to. */
6791 stub_entry =
6792 elf32_arm_create_stub (htab, stub_type, section, irela,
6793 sym_sec, hash,
6794 (char *) sym_name, sym_value,
6795 branch_type, &new_stub);
6796
6797 created_stub = stub_entry != NULL;
6798 if (!created_stub)
6799 goto error_ret_free_internal;
6800 else if (!new_stub)
6801 break;
6802 else
6803 stub_changed = TRUE;
6804 }
6805 while (0);
6806
6807 /* Look for relocations which might trigger Cortex-A8
6808 erratum. */
6809 if (htab->fix_cortex_a8
6810 && (r_type == (unsigned int) R_ARM_THM_JUMP24
6811 || r_type == (unsigned int) R_ARM_THM_JUMP19
6812 || r_type == (unsigned int) R_ARM_THM_CALL
6813 || r_type == (unsigned int) R_ARM_THM_XPC22))
6814 {
6815 bfd_vma from = section->output_section->vma
6816 + section->output_offset
6817 + irela->r_offset;
6818
6819 if ((from & 0xfff) == 0xffe)
6820 {
6821 /* Found a candidate. Note we haven't checked the
6822 destination is within 4K here: if we do so (and
6823 don't create an entry in a8_relocs) we can't tell
6824 that a branch should have been relocated when
6825 scanning later. */
6826 if (num_a8_relocs == a8_reloc_table_size)
6827 {
6828 a8_reloc_table_size *= 2;
6829 a8_relocs = (struct a8_erratum_reloc *)
6830 bfd_realloc (a8_relocs,
6831 sizeof (struct a8_erratum_reloc)
6832 * a8_reloc_table_size);
6833 }
6834
6835 a8_relocs[num_a8_relocs].from = from;
6836 a8_relocs[num_a8_relocs].destination = destination;
6837 a8_relocs[num_a8_relocs].r_type = r_type;
6838 a8_relocs[num_a8_relocs].branch_type = branch_type;
6839 a8_relocs[num_a8_relocs].sym_name = sym_name;
6840 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
6841 a8_relocs[num_a8_relocs].hash = hash;
6842
6843 num_a8_relocs++;
6844 }
6845 }
6846 }
6847
6848 /* We're done with the internal relocs, free them. */
6849 if (elf_section_data (section)->relocs == NULL)
6850 free (internal_relocs);
6851 }
6852
6853 if (htab->fix_cortex_a8)
6854 {
6855 /* Sort relocs which might apply to Cortex-A8 erratum. */
6856 qsort (a8_relocs, num_a8_relocs,
6857 sizeof (struct a8_erratum_reloc),
6858 &a8_reloc_compare);
6859
6860 /* Scan for branches which might trigger Cortex-A8 erratum. */
6861 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
6862 &num_a8_fixes, &a8_fix_table_size,
6863 a8_relocs, num_a8_relocs,
6864 prev_num_a8_fixes, &stub_changed)
6865 != 0)
6866 goto error_ret_free_local;
6867 }
6868
6869 if (local_syms != NULL
6870 && symtab_hdr->contents != (unsigned char *) local_syms)
6871 {
6872 if (!info->keep_memory)
6873 free (local_syms);
6874 else
6875 symtab_hdr->contents = (unsigned char *) local_syms;
6876 }
6877 }
6878
6879 if (first_veneer_scan
6880 && !set_cmse_veneer_addr_from_implib (info, htab,
6881 &cmse_stub_created))
6882 ret = FALSE;
6883
6884 if (prev_num_a8_fixes != num_a8_fixes)
6885 stub_changed = TRUE;
6886
6887 if (!stub_changed)
6888 break;
6889
6890 /* OK, we've added some stubs. Find out the new size of the
6891 stub sections. */
6892 for (stub_sec = htab->stub_bfd->sections;
6893 stub_sec != NULL;
6894 stub_sec = stub_sec->next)
6895 {
6896 /* Ignore non-stub sections. */
6897 if (!strstr (stub_sec->name, STUB_SUFFIX))
6898 continue;
6899
6900 stub_sec->size = 0;
6901 }
6902
6903 /* Add new SG veneers after those already in the input import
6904 library. */
6905 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6906 stub_type++)
6907 {
6908 bfd_vma *start_offset_p;
6909 asection **stub_sec_p;
6910
6911 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
6912 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6913 if (start_offset_p == NULL)
6914 continue;
6915
6916 BFD_ASSERT (stub_sec_p != NULL);
6917 if (*stub_sec_p != NULL)
6918 (*stub_sec_p)->size = *start_offset_p;
6919 }
6920
6921 /* Compute stub section size, considering padding. */
6922 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
6923 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type;
6924 stub_type++)
6925 {
6926 int size, padding;
6927 asection **stub_sec_p;
6928
6929 padding = arm_dedicated_stub_section_padding (stub_type);
6930 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
6931 /* Skip if no stub input section or no stub section padding
6932 required. */
6933 if ((stub_sec_p != NULL && *stub_sec_p == NULL) || padding == 0)
6934 continue;
6935 /* Stub section padding required but no dedicated section. */
6936 BFD_ASSERT (stub_sec_p);
6937
6938 size = (*stub_sec_p)->size;
6939 size = (size + padding - 1) & ~(padding - 1);
6940 (*stub_sec_p)->size = size;
6941 }
6942
6943 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
6944 if (htab->fix_cortex_a8)
6945 for (i = 0; i < num_a8_fixes; i++)
6946 {
6947 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
6948 a8_fixes[i].section, htab, a8_fixes[i].stub_type);
6949
6950 if (stub_sec == NULL)
6951 return FALSE;
6952
6953 stub_sec->size
6954 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
6955 NULL);
6956 }
6957
6958
6959 /* Ask the linker to do its stuff. */
6960 (*htab->layout_sections_again) ();
6961 first_veneer_scan = FALSE;
6962 }
6963
6964 /* Add stubs for Cortex-A8 erratum fixes now. */
6965 if (htab->fix_cortex_a8)
6966 {
6967 for (i = 0; i < num_a8_fixes; i++)
6968 {
6969 struct elf32_arm_stub_hash_entry *stub_entry;
6970 char *stub_name = a8_fixes[i].stub_name;
6971 asection *section = a8_fixes[i].section;
6972 unsigned int section_id = a8_fixes[i].section->id;
6973 asection *link_sec = htab->stub_group[section_id].link_sec;
6974 asection *stub_sec = htab->stub_group[section_id].stub_sec;
6975 const insn_sequence *template_sequence;
6976 int template_size, size = 0;
6977
6978 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
6979 TRUE, FALSE);
6980 if (stub_entry == NULL)
6981 {
6982 _bfd_error_handler (_("%pB: cannot create stub entry %s"),
6983 section->owner, stub_name);
6984 return FALSE;
6985 }
6986
6987 stub_entry->stub_sec = stub_sec;
6988 stub_entry->stub_offset = (bfd_vma) -1;
6989 stub_entry->id_sec = link_sec;
6990 stub_entry->stub_type = a8_fixes[i].stub_type;
6991 stub_entry->source_value = a8_fixes[i].offset;
6992 stub_entry->target_section = a8_fixes[i].section;
6993 stub_entry->target_value = a8_fixes[i].target_offset;
6994 stub_entry->orig_insn = a8_fixes[i].orig_insn;
6995 stub_entry->branch_type = a8_fixes[i].branch_type;
6996
6997 size = find_stub_size_and_template (a8_fixes[i].stub_type,
6998 &template_sequence,
6999 &template_size);
7000
7001 stub_entry->stub_size = size;
7002 stub_entry->stub_template = template_sequence;
7003 stub_entry->stub_template_size = template_size;
7004 }
7005
7006 /* Stash the Cortex-A8 erratum fix array for use later in
7007 elf32_arm_write_section(). */
7008 htab->a8_erratum_fixes = a8_fixes;
7009 htab->num_a8_erratum_fixes = num_a8_fixes;
7010 }
7011 else
7012 {
7013 htab->a8_erratum_fixes = NULL;
7014 htab->num_a8_erratum_fixes = 0;
7015 }
7016 return ret;
7017 }
7018
7019 /* Build all the stubs associated with the current output file. The
7020 stubs are kept in a hash table attached to the main linker hash
7021 table. We also set up the .plt entries for statically linked PIC
7022 functions here. This function is called via arm_elf_finish in the
7023 linker. */
7024
7025 bfd_boolean
7026 elf32_arm_build_stubs (struct bfd_link_info *info)
7027 {
7028 asection *stub_sec;
7029 struct bfd_hash_table *table;
7030 enum elf32_arm_stub_type stub_type;
7031 struct elf32_arm_link_hash_table *htab;
7032
7033 htab = elf32_arm_hash_table (info);
7034 if (htab == NULL)
7035 return FALSE;
7036
7037 for (stub_sec = htab->stub_bfd->sections;
7038 stub_sec != NULL;
7039 stub_sec = stub_sec->next)
7040 {
7041 bfd_size_type size;
7042
7043 /* Ignore non-stub sections. */
7044 if (!strstr (stub_sec->name, STUB_SUFFIX))
7045 continue;
7046
7047 /* Allocate memory to hold the linker stubs. Zeroing the stub sections
7048 must at least be done for stub section requiring padding and for SG
7049 veneers to ensure that a non secure code branching to a removed SG
7050 veneer causes an error. */
7051 size = stub_sec->size;
7052 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
7053 if (stub_sec->contents == NULL && size != 0)
7054 return FALSE;
7055
7056 stub_sec->size = 0;
7057 }
7058
7059 /* Add new SG veneers after those already in the input import library. */
7060 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7061 {
7062 bfd_vma *start_offset_p;
7063 asection **stub_sec_p;
7064
7065 start_offset_p = arm_new_stubs_start_offset_ptr (htab, stub_type);
7066 stub_sec_p = arm_dedicated_stub_input_section_ptr (htab, stub_type);
7067 if (start_offset_p == NULL)
7068 continue;
7069
7070 BFD_ASSERT (stub_sec_p != NULL);
7071 if (*stub_sec_p != NULL)
7072 (*stub_sec_p)->size = *start_offset_p;
7073 }
7074
7075 /* Build the stubs as directed by the stub hash table. */
7076 table = &htab->stub_hash_table;
7077 bfd_hash_traverse (table, arm_build_one_stub, info);
7078 if (htab->fix_cortex_a8)
7079 {
7080 /* Place the cortex a8 stubs last. */
7081 htab->fix_cortex_a8 = -1;
7082 bfd_hash_traverse (table, arm_build_one_stub, info);
7083 }
7084
7085 return TRUE;
7086 }
7087
7088 /* Locate the Thumb encoded calling stub for NAME. */
7089
7090 static struct elf_link_hash_entry *
7091 find_thumb_glue (struct bfd_link_info *link_info,
7092 const char *name,
7093 char **error_message)
7094 {
7095 char *tmp_name;
7096 struct elf_link_hash_entry *hash;
7097 struct elf32_arm_link_hash_table *hash_table;
7098
7099 /* We need a pointer to the armelf specific hash table. */
7100 hash_table = elf32_arm_hash_table (link_info);
7101 if (hash_table == NULL)
7102 return NULL;
7103
7104 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7105 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
7106
7107 BFD_ASSERT (tmp_name);
7108
7109 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
7110
7111 hash = elf_link_hash_lookup
7112 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7113
7114 if (hash == NULL
7115 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7116 "Thumb", tmp_name, name) == -1)
7117 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7118
7119 free (tmp_name);
7120
7121 return hash;
7122 }
7123
7124 /* Locate the ARM encoded calling stub for NAME. */
7125
7126 static struct elf_link_hash_entry *
7127 find_arm_glue (struct bfd_link_info *link_info,
7128 const char *name,
7129 char **error_message)
7130 {
7131 char *tmp_name;
7132 struct elf_link_hash_entry *myh;
7133 struct elf32_arm_link_hash_table *hash_table;
7134
7135 /* We need a pointer to the elfarm specific hash table. */
7136 hash_table = elf32_arm_hash_table (link_info);
7137 if (hash_table == NULL)
7138 return NULL;
7139
7140 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7141 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7142
7143 BFD_ASSERT (tmp_name);
7144
7145 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7146
7147 myh = elf_link_hash_lookup
7148 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
7149
7150 if (myh == NULL
7151 && asprintf (error_message, _("unable to find %s glue '%s' for '%s'"),
7152 "ARM", tmp_name, name) == -1)
7153 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
7154
7155 free (tmp_name);
7156
7157 return myh;
7158 }
7159
7160 /* ARM->Thumb glue (static images):
7161
7162 .arm
7163 __func_from_arm:
7164 ldr r12, __func_addr
7165 bx r12
7166 __func_addr:
7167 .word func @ behave as if you saw a ARM_32 reloc.
7168
7169 (v5t static images)
7170 .arm
7171 __func_from_arm:
7172 ldr pc, __func_addr
7173 __func_addr:
7174 .word func @ behave as if you saw a ARM_32 reloc.
7175
7176 (relocatable images)
7177 .arm
7178 __func_from_arm:
7179 ldr r12, __func_offset
7180 add r12, r12, pc
7181 bx r12
7182 __func_offset:
7183 .word func - . */
7184
7185 #define ARM2THUMB_STATIC_GLUE_SIZE 12
7186 static const insn32 a2t1_ldr_insn = 0xe59fc000;
7187 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
7188 static const insn32 a2t3_func_addr_insn = 0x00000001;
7189
7190 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
7191 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
7192 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
7193
7194 #define ARM2THUMB_PIC_GLUE_SIZE 16
7195 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
7196 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
7197 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
7198
7199 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
7200
7201 .thumb .thumb
7202 .align 2 .align 2
7203 __func_from_thumb: __func_from_thumb:
7204 bx pc push {r6, lr}
7205 nop ldr r6, __func_addr
7206 .arm mov lr, pc
7207 b func bx r6
7208 .arm
7209 ;; back_to_thumb
7210 ldmia r13! {r6, lr}
7211 bx lr
7212 __func_addr:
7213 .word func */
7214
7215 #define THUMB2ARM_GLUE_SIZE 8
7216 static const insn16 t2a1_bx_pc_insn = 0x4778;
7217 static const insn16 t2a2_noop_insn = 0x46c0;
7218 static const insn32 t2a3_b_insn = 0xea000000;
7219
7220 #define VFP11_ERRATUM_VENEER_SIZE 8
7221 #define STM32L4XX_ERRATUM_LDM_VENEER_SIZE 16
7222 #define STM32L4XX_ERRATUM_VLDM_VENEER_SIZE 24
7223
7224 #define ARM_BX_VENEER_SIZE 12
7225 static const insn32 armbx1_tst_insn = 0xe3100001;
7226 static const insn32 armbx2_moveq_insn = 0x01a0f000;
7227 static const insn32 armbx3_bx_insn = 0xe12fff10;
7228
7229 #ifndef ELFARM_NABI_C_INCLUDED
7230 static void
7231 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
7232 {
7233 asection * s;
7234 bfd_byte * contents;
7235
7236 if (size == 0)
7237 {
7238 /* Do not include empty glue sections in the output. */
7239 if (abfd != NULL)
7240 {
7241 s = bfd_get_linker_section (abfd, name);
7242 if (s != NULL)
7243 s->flags |= SEC_EXCLUDE;
7244 }
7245 return;
7246 }
7247
7248 BFD_ASSERT (abfd != NULL);
7249
7250 s = bfd_get_linker_section (abfd, name);
7251 BFD_ASSERT (s != NULL);
7252
7253 contents = (bfd_byte *) bfd_zalloc (abfd, size);
7254
7255 BFD_ASSERT (s->size == size);
7256 s->contents = contents;
7257 }
7258
7259 bfd_boolean
7260 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
7261 {
7262 struct elf32_arm_link_hash_table * globals;
7263
7264 globals = elf32_arm_hash_table (info);
7265 BFD_ASSERT (globals != NULL);
7266
7267 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7268 globals->arm_glue_size,
7269 ARM2THUMB_GLUE_SECTION_NAME);
7270
7271 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7272 globals->thumb_glue_size,
7273 THUMB2ARM_GLUE_SECTION_NAME);
7274
7275 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7276 globals->vfp11_erratum_glue_size,
7277 VFP11_ERRATUM_VENEER_SECTION_NAME);
7278
7279 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7280 globals->stm32l4xx_erratum_glue_size,
7281 STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7282
7283 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
7284 globals->bx_glue_size,
7285 ARM_BX_GLUE_SECTION_NAME);
7286
7287 return TRUE;
7288 }
7289
7290 /* Allocate space and symbols for calling a Thumb function from Arm mode.
7291 returns the symbol identifying the stub. */
7292
7293 static struct elf_link_hash_entry *
7294 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
7295 struct elf_link_hash_entry * h)
7296 {
7297 const char * name = h->root.root.string;
7298 asection * s;
7299 char * tmp_name;
7300 struct elf_link_hash_entry * myh;
7301 struct bfd_link_hash_entry * bh;
7302 struct elf32_arm_link_hash_table * globals;
7303 bfd_vma val;
7304 bfd_size_type size;
7305
7306 globals = elf32_arm_hash_table (link_info);
7307 BFD_ASSERT (globals != NULL);
7308 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7309
7310 s = bfd_get_linker_section
7311 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
7312
7313 BFD_ASSERT (s != NULL);
7314
7315 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
7316 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
7317
7318 BFD_ASSERT (tmp_name);
7319
7320 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
7321
7322 myh = elf_link_hash_lookup
7323 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
7324
7325 if (myh != NULL)
7326 {
7327 /* We've already seen this guy. */
7328 free (tmp_name);
7329 return myh;
7330 }
7331
7332 /* The only trick here is using hash_table->arm_glue_size as the value.
7333 Even though the section isn't allocated yet, this is where we will be
7334 putting it. The +1 on the value marks that the stub has not been
7335 output yet - not that it is a Thumb function. */
7336 bh = NULL;
7337 val = globals->arm_glue_size + 1;
7338 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7339 tmp_name, BSF_GLOBAL, s, val,
7340 NULL, TRUE, FALSE, &bh);
7341
7342 myh = (struct elf_link_hash_entry *) bh;
7343 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7344 myh->forced_local = 1;
7345
7346 free (tmp_name);
7347
7348 if (bfd_link_pic (link_info)
7349 || globals->root.is_relocatable_executable
7350 || globals->pic_veneer)
7351 size = ARM2THUMB_PIC_GLUE_SIZE;
7352 else if (globals->use_blx)
7353 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
7354 else
7355 size = ARM2THUMB_STATIC_GLUE_SIZE;
7356
7357 s->size += size;
7358 globals->arm_glue_size += size;
7359
7360 return myh;
7361 }
7362
7363 /* Allocate space for ARMv4 BX veneers. */
7364
7365 static void
7366 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
7367 {
7368 asection * s;
7369 struct elf32_arm_link_hash_table *globals;
7370 char *tmp_name;
7371 struct elf_link_hash_entry *myh;
7372 struct bfd_link_hash_entry *bh;
7373 bfd_vma val;
7374
7375 /* BX PC does not need a veneer. */
7376 if (reg == 15)
7377 return;
7378
7379 globals = elf32_arm_hash_table (link_info);
7380 BFD_ASSERT (globals != NULL);
7381 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7382
7383 /* Check if this veneer has already been allocated. */
7384 if (globals->bx_glue_offset[reg])
7385 return;
7386
7387 s = bfd_get_linker_section
7388 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
7389
7390 BFD_ASSERT (s != NULL);
7391
7392 /* Add symbol for veneer. */
7393 tmp_name = (char *)
7394 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
7395
7396 BFD_ASSERT (tmp_name);
7397
7398 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
7399
7400 myh = elf_link_hash_lookup
7401 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
7402
7403 BFD_ASSERT (myh == NULL);
7404
7405 bh = NULL;
7406 val = globals->bx_glue_size;
7407 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
7408 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7409 NULL, TRUE, FALSE, &bh);
7410
7411 myh = (struct elf_link_hash_entry *) bh;
7412 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7413 myh->forced_local = 1;
7414
7415 s->size += ARM_BX_VENEER_SIZE;
7416 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
7417 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
7418 }
7419
7420
7421 /* Add an entry to the code/data map for section SEC. */
7422
7423 static void
7424 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
7425 {
7426 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
7427 unsigned int newidx;
7428
7429 if (sec_data->map == NULL)
7430 {
7431 sec_data->map = (elf32_arm_section_map *)
7432 bfd_malloc (sizeof (elf32_arm_section_map));
7433 sec_data->mapcount = 0;
7434 sec_data->mapsize = 1;
7435 }
7436
7437 newidx = sec_data->mapcount++;
7438
7439 if (sec_data->mapcount > sec_data->mapsize)
7440 {
7441 sec_data->mapsize *= 2;
7442 sec_data->map = (elf32_arm_section_map *)
7443 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
7444 * sizeof (elf32_arm_section_map));
7445 }
7446
7447 if (sec_data->map)
7448 {
7449 sec_data->map[newidx].vma = vma;
7450 sec_data->map[newidx].type = type;
7451 }
7452 }
7453
7454
7455 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
7456 veneers are handled for now. */
7457
7458 static bfd_vma
7459 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
7460 elf32_vfp11_erratum_list *branch,
7461 bfd *branch_bfd,
7462 asection *branch_sec,
7463 unsigned int offset)
7464 {
7465 asection *s;
7466 struct elf32_arm_link_hash_table *hash_table;
7467 char *tmp_name;
7468 struct elf_link_hash_entry *myh;
7469 struct bfd_link_hash_entry *bh;
7470 bfd_vma val;
7471 struct _arm_elf_section_data *sec_data;
7472 elf32_vfp11_erratum_list *newerr;
7473
7474 hash_table = elf32_arm_hash_table (link_info);
7475 BFD_ASSERT (hash_table != NULL);
7476 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7477
7478 s = bfd_get_linker_section
7479 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
7480
7481 sec_data = elf32_arm_section_data (s);
7482
7483 BFD_ASSERT (s != NULL);
7484
7485 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7486 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
7487
7488 BFD_ASSERT (tmp_name);
7489
7490 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
7491 hash_table->num_vfp11_fixes);
7492
7493 myh = elf_link_hash_lookup
7494 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7495
7496 BFD_ASSERT (myh == NULL);
7497
7498 bh = NULL;
7499 val = hash_table->vfp11_erratum_glue_size;
7500 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7501 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7502 NULL, TRUE, FALSE, &bh);
7503
7504 myh = (struct elf_link_hash_entry *) bh;
7505 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7506 myh->forced_local = 1;
7507
7508 /* Link veneer back to calling location. */
7509 sec_data->erratumcount += 1;
7510 newerr = (elf32_vfp11_erratum_list *)
7511 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
7512
7513 newerr->type = VFP11_ERRATUM_ARM_VENEER;
7514 newerr->vma = -1;
7515 newerr->u.v.branch = branch;
7516 newerr->u.v.id = hash_table->num_vfp11_fixes;
7517 branch->u.b.veneer = newerr;
7518
7519 newerr->next = sec_data->erratumlist;
7520 sec_data->erratumlist = newerr;
7521
7522 /* A symbol for the return from the veneer. */
7523 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
7524 hash_table->num_vfp11_fixes);
7525
7526 myh = elf_link_hash_lookup
7527 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7528
7529 if (myh != NULL)
7530 abort ();
7531
7532 bh = NULL;
7533 val = offset + 4;
7534 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7535 branch_sec, val, NULL, TRUE, FALSE, &bh);
7536
7537 myh = (struct elf_link_hash_entry *) bh;
7538 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7539 myh->forced_local = 1;
7540
7541 free (tmp_name);
7542
7543 /* Generate a mapping symbol for the veneer section, and explicitly add an
7544 entry for that symbol to the code/data map for the section. */
7545 if (hash_table->vfp11_erratum_glue_size == 0)
7546 {
7547 bh = NULL;
7548 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
7549 ever requires this erratum fix. */
7550 _bfd_generic_link_add_one_symbol (link_info,
7551 hash_table->bfd_of_glue_owner, "$a",
7552 BSF_LOCAL, s, 0, NULL,
7553 TRUE, FALSE, &bh);
7554
7555 myh = (struct elf_link_hash_entry *) bh;
7556 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7557 myh->forced_local = 1;
7558
7559 /* The elf32_arm_init_maps function only cares about symbols from input
7560 BFDs. We must make a note of this generated mapping symbol
7561 ourselves so that code byteswapping works properly in
7562 elf32_arm_write_section. */
7563 elf32_arm_section_map_add (s, 'a', 0);
7564 }
7565
7566 s->size += VFP11_ERRATUM_VENEER_SIZE;
7567 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
7568 hash_table->num_vfp11_fixes++;
7569
7570 /* The offset of the veneer. */
7571 return val;
7572 }
7573
7574 /* Record information about a STM32L4XX STM erratum veneer. Only THUMB-mode
7575 veneers need to be handled because used only in Cortex-M. */
7576
7577 static bfd_vma
7578 record_stm32l4xx_erratum_veneer (struct bfd_link_info *link_info,
7579 elf32_stm32l4xx_erratum_list *branch,
7580 bfd *branch_bfd,
7581 asection *branch_sec,
7582 unsigned int offset,
7583 bfd_size_type veneer_size)
7584 {
7585 asection *s;
7586 struct elf32_arm_link_hash_table *hash_table;
7587 char *tmp_name;
7588 struct elf_link_hash_entry *myh;
7589 struct bfd_link_hash_entry *bh;
7590 bfd_vma val;
7591 struct _arm_elf_section_data *sec_data;
7592 elf32_stm32l4xx_erratum_list *newerr;
7593
7594 hash_table = elf32_arm_hash_table (link_info);
7595 BFD_ASSERT (hash_table != NULL);
7596 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
7597
7598 s = bfd_get_linker_section
7599 (hash_table->bfd_of_glue_owner, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7600
7601 BFD_ASSERT (s != NULL);
7602
7603 sec_data = elf32_arm_section_data (s);
7604
7605 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
7606 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
7607
7608 BFD_ASSERT (tmp_name);
7609
7610 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
7611 hash_table->num_stm32l4xx_fixes);
7612
7613 myh = elf_link_hash_lookup
7614 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7615
7616 BFD_ASSERT (myh == NULL);
7617
7618 bh = NULL;
7619 val = hash_table->stm32l4xx_erratum_glue_size;
7620 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
7621 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
7622 NULL, TRUE, FALSE, &bh);
7623
7624 myh = (struct elf_link_hash_entry *) bh;
7625 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7626 myh->forced_local = 1;
7627
7628 /* Link veneer back to calling location. */
7629 sec_data->stm32l4xx_erratumcount += 1;
7630 newerr = (elf32_stm32l4xx_erratum_list *)
7631 bfd_zmalloc (sizeof (elf32_stm32l4xx_erratum_list));
7632
7633 newerr->type = STM32L4XX_ERRATUM_VENEER;
7634 newerr->vma = -1;
7635 newerr->u.v.branch = branch;
7636 newerr->u.v.id = hash_table->num_stm32l4xx_fixes;
7637 branch->u.b.veneer = newerr;
7638
7639 newerr->next = sec_data->stm32l4xx_erratumlist;
7640 sec_data->stm32l4xx_erratumlist = newerr;
7641
7642 /* A symbol for the return from the veneer. */
7643 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
7644 hash_table->num_stm32l4xx_fixes);
7645
7646 myh = elf_link_hash_lookup
7647 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
7648
7649 if (myh != NULL)
7650 abort ();
7651
7652 bh = NULL;
7653 val = offset + 4;
7654 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
7655 branch_sec, val, NULL, TRUE, FALSE, &bh);
7656
7657 myh = (struct elf_link_hash_entry *) bh;
7658 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
7659 myh->forced_local = 1;
7660
7661 free (tmp_name);
7662
7663 /* Generate a mapping symbol for the veneer section, and explicitly add an
7664 entry for that symbol to the code/data map for the section. */
7665 if (hash_table->stm32l4xx_erratum_glue_size == 0)
7666 {
7667 bh = NULL;
7668 /* Creates a THUMB symbol since there is no other choice. */
7669 _bfd_generic_link_add_one_symbol (link_info,
7670 hash_table->bfd_of_glue_owner, "$t",
7671 BSF_LOCAL, s, 0, NULL,
7672 TRUE, FALSE, &bh);
7673
7674 myh = (struct elf_link_hash_entry *) bh;
7675 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
7676 myh->forced_local = 1;
7677
7678 /* The elf32_arm_init_maps function only cares about symbols from input
7679 BFDs. We must make a note of this generated mapping symbol
7680 ourselves so that code byteswapping works properly in
7681 elf32_arm_write_section. */
7682 elf32_arm_section_map_add (s, 't', 0);
7683 }
7684
7685 s->size += veneer_size;
7686 hash_table->stm32l4xx_erratum_glue_size += veneer_size;
7687 hash_table->num_stm32l4xx_fixes++;
7688
7689 /* The offset of the veneer. */
7690 return val;
7691 }
7692
7693 #define ARM_GLUE_SECTION_FLAGS \
7694 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
7695 | SEC_READONLY | SEC_LINKER_CREATED)
7696
7697 /* Create a fake section for use by the ARM backend of the linker. */
7698
7699 static bfd_boolean
7700 arm_make_glue_section (bfd * abfd, const char * name)
7701 {
7702 asection * sec;
7703
7704 sec = bfd_get_linker_section (abfd, name);
7705 if (sec != NULL)
7706 /* Already made. */
7707 return TRUE;
7708
7709 sec = bfd_make_section_anyway_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
7710
7711 if (sec == NULL
7712 || !bfd_set_section_alignment (abfd, sec, 2))
7713 return FALSE;
7714
7715 /* Set the gc mark to prevent the section from being removed by garbage
7716 collection, despite the fact that no relocs refer to this section. */
7717 sec->gc_mark = 1;
7718
7719 return TRUE;
7720 }
7721
7722 /* Set size of .plt entries. This function is called from the
7723 linker scripts in ld/emultempl/{armelf}.em. */
7724
7725 void
7726 bfd_elf32_arm_use_long_plt (void)
7727 {
7728 elf32_arm_use_long_plt_entry = TRUE;
7729 }
7730
7731 /* Add the glue sections to ABFD. This function is called from the
7732 linker scripts in ld/emultempl/{armelf}.em. */
7733
7734 bfd_boolean
7735 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
7736 struct bfd_link_info *info)
7737 {
7738 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
7739 bfd_boolean dostm32l4xx = globals
7740 && globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE;
7741 bfd_boolean addglue;
7742
7743 /* If we are only performing a partial
7744 link do not bother adding the glue. */
7745 if (bfd_link_relocatable (info))
7746 return TRUE;
7747
7748 addglue = arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
7749 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
7750 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
7751 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
7752
7753 if (!dostm32l4xx)
7754 return addglue;
7755
7756 return addglue
7757 && arm_make_glue_section (abfd, STM32L4XX_ERRATUM_VENEER_SECTION_NAME);
7758 }
7759
7760 /* Mark output sections of veneers needing a dedicated one with SEC_KEEP. This
7761 ensures they are not marked for deletion by
7762 strip_excluded_output_sections () when veneers are going to be created
7763 later. Not doing so would trigger assert on empty section size in
7764 lang_size_sections_1 (). */
7765
7766 void
7767 bfd_elf32_arm_keep_private_stub_output_sections (struct bfd_link_info *info)
7768 {
7769 enum elf32_arm_stub_type stub_type;
7770
7771 /* If we are only performing a partial
7772 link do not bother adding the glue. */
7773 if (bfd_link_relocatable (info))
7774 return;
7775
7776 for (stub_type = arm_stub_none + 1; stub_type < max_stub_type; stub_type++)
7777 {
7778 asection *out_sec;
7779 const char *out_sec_name;
7780
7781 if (!arm_dedicated_stub_output_section_required (stub_type))
7782 continue;
7783
7784 out_sec_name = arm_dedicated_stub_output_section_name (stub_type);
7785 out_sec = bfd_get_section_by_name (info->output_bfd, out_sec_name);
7786 if (out_sec != NULL)
7787 out_sec->flags |= SEC_KEEP;
7788 }
7789 }
7790
7791 /* Select a BFD to be used to hold the sections used by the glue code.
7792 This function is called from the linker scripts in ld/emultempl/
7793 {armelf/pe}.em. */
7794
7795 bfd_boolean
7796 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
7797 {
7798 struct elf32_arm_link_hash_table *globals;
7799
7800 /* If we are only performing a partial link
7801 do not bother getting a bfd to hold the glue. */
7802 if (bfd_link_relocatable (info))
7803 return TRUE;
7804
7805 /* Make sure we don't attach the glue sections to a dynamic object. */
7806 BFD_ASSERT (!(abfd->flags & DYNAMIC));
7807
7808 globals = elf32_arm_hash_table (info);
7809 BFD_ASSERT (globals != NULL);
7810
7811 if (globals->bfd_of_glue_owner != NULL)
7812 return TRUE;
7813
7814 /* Save the bfd for later use. */
7815 globals->bfd_of_glue_owner = abfd;
7816
7817 return TRUE;
7818 }
7819
7820 static void
7821 check_use_blx (struct elf32_arm_link_hash_table *globals)
7822 {
7823 int cpu_arch;
7824
7825 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
7826 Tag_CPU_arch);
7827
7828 if (globals->fix_arm1176)
7829 {
7830 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
7831 globals->use_blx = 1;
7832 }
7833 else
7834 {
7835 if (cpu_arch > TAG_CPU_ARCH_V4T)
7836 globals->use_blx = 1;
7837 }
7838 }
7839
7840 bfd_boolean
7841 bfd_elf32_arm_process_before_allocation (bfd *abfd,
7842 struct bfd_link_info *link_info)
7843 {
7844 Elf_Internal_Shdr *symtab_hdr;
7845 Elf_Internal_Rela *internal_relocs = NULL;
7846 Elf_Internal_Rela *irel, *irelend;
7847 bfd_byte *contents = NULL;
7848
7849 asection *sec;
7850 struct elf32_arm_link_hash_table *globals;
7851
7852 /* If we are only performing a partial link do not bother
7853 to construct any glue. */
7854 if (bfd_link_relocatable (link_info))
7855 return TRUE;
7856
7857 /* Here we have a bfd that is to be included on the link. We have a
7858 hook to do reloc rummaging, before section sizes are nailed down. */
7859 globals = elf32_arm_hash_table (link_info);
7860 BFD_ASSERT (globals != NULL);
7861
7862 check_use_blx (globals);
7863
7864 if (globals->byteswap_code && !bfd_big_endian (abfd))
7865 {
7866 _bfd_error_handler (_("%pB: BE8 images only valid in big-endian mode"),
7867 abfd);
7868 return FALSE;
7869 }
7870
7871 /* PR 5398: If we have not decided to include any loadable sections in
7872 the output then we will not have a glue owner bfd. This is OK, it
7873 just means that there is nothing else for us to do here. */
7874 if (globals->bfd_of_glue_owner == NULL)
7875 return TRUE;
7876
7877 /* Rummage around all the relocs and map the glue vectors. */
7878 sec = abfd->sections;
7879
7880 if (sec == NULL)
7881 return TRUE;
7882
7883 for (; sec != NULL; sec = sec->next)
7884 {
7885 if (sec->reloc_count == 0)
7886 continue;
7887
7888 if ((sec->flags & SEC_EXCLUDE) != 0)
7889 continue;
7890
7891 symtab_hdr = & elf_symtab_hdr (abfd);
7892
7893 /* Load the relocs. */
7894 internal_relocs
7895 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
7896
7897 if (internal_relocs == NULL)
7898 goto error_return;
7899
7900 irelend = internal_relocs + sec->reloc_count;
7901 for (irel = internal_relocs; irel < irelend; irel++)
7902 {
7903 long r_type;
7904 unsigned long r_index;
7905
7906 struct elf_link_hash_entry *h;
7907
7908 r_type = ELF32_R_TYPE (irel->r_info);
7909 r_index = ELF32_R_SYM (irel->r_info);
7910
7911 /* These are the only relocation types we care about. */
7912 if ( r_type != R_ARM_PC24
7913 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
7914 continue;
7915
7916 /* Get the section contents if we haven't done so already. */
7917 if (contents == NULL)
7918 {
7919 /* Get cached copy if it exists. */
7920 if (elf_section_data (sec)->this_hdr.contents != NULL)
7921 contents = elf_section_data (sec)->this_hdr.contents;
7922 else
7923 {
7924 /* Go get them off disk. */
7925 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
7926 goto error_return;
7927 }
7928 }
7929
7930 if (r_type == R_ARM_V4BX)
7931 {
7932 int reg;
7933
7934 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
7935 record_arm_bx_glue (link_info, reg);
7936 continue;
7937 }
7938
7939 /* If the relocation is not against a symbol it cannot concern us. */
7940 h = NULL;
7941
7942 /* We don't care about local symbols. */
7943 if (r_index < symtab_hdr->sh_info)
7944 continue;
7945
7946 /* This is an external symbol. */
7947 r_index -= symtab_hdr->sh_info;
7948 h = (struct elf_link_hash_entry *)
7949 elf_sym_hashes (abfd)[r_index];
7950
7951 /* If the relocation is against a static symbol it must be within
7952 the current section and so cannot be a cross ARM/Thumb relocation. */
7953 if (h == NULL)
7954 continue;
7955
7956 /* If the call will go through a PLT entry then we do not need
7957 glue. */
7958 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
7959 continue;
7960
7961 switch (r_type)
7962 {
7963 case R_ARM_PC24:
7964 /* This one is a call from arm code. We need to look up
7965 the target of the call. If it is a thumb target, we
7966 insert glue. */
7967 if (ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
7968 == ST_BRANCH_TO_THUMB)
7969 record_arm_to_thumb_glue (link_info, h);
7970 break;
7971
7972 default:
7973 abort ();
7974 }
7975 }
7976
7977 if (contents != NULL
7978 && elf_section_data (sec)->this_hdr.contents != contents)
7979 free (contents);
7980 contents = NULL;
7981
7982 if (internal_relocs != NULL
7983 && elf_section_data (sec)->relocs != internal_relocs)
7984 free (internal_relocs);
7985 internal_relocs = NULL;
7986 }
7987
7988 return TRUE;
7989
7990 error_return:
7991 if (contents != NULL
7992 && elf_section_data (sec)->this_hdr.contents != contents)
7993 free (contents);
7994 if (internal_relocs != NULL
7995 && elf_section_data (sec)->relocs != internal_relocs)
7996 free (internal_relocs);
7997
7998 return FALSE;
7999 }
8000 #endif
8001
8002
8003 /* Initialise maps of ARM/Thumb/data for input BFDs. */
8004
8005 void
8006 bfd_elf32_arm_init_maps (bfd *abfd)
8007 {
8008 Elf_Internal_Sym *isymbuf;
8009 Elf_Internal_Shdr *hdr;
8010 unsigned int i, localsyms;
8011
8012 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
8013 if (! is_arm_elf (abfd))
8014 return;
8015
8016 if ((abfd->flags & DYNAMIC) != 0)
8017 return;
8018
8019 hdr = & elf_symtab_hdr (abfd);
8020 localsyms = hdr->sh_info;
8021
8022 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
8023 should contain the number of local symbols, which should come before any
8024 global symbols. Mapping symbols are always local. */
8025 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
8026 NULL);
8027
8028 /* No internal symbols read? Skip this BFD. */
8029 if (isymbuf == NULL)
8030 return;
8031
8032 for (i = 0; i < localsyms; i++)
8033 {
8034 Elf_Internal_Sym *isym = &isymbuf[i];
8035 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
8036 const char *name;
8037
8038 if (sec != NULL
8039 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
8040 {
8041 name = bfd_elf_string_from_elf_section (abfd,
8042 hdr->sh_link, isym->st_name);
8043
8044 if (bfd_is_arm_special_symbol_name (name,
8045 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
8046 elf32_arm_section_map_add (sec, name[1], isym->st_value);
8047 }
8048 }
8049 }
8050
8051
8052 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
8053 say what they wanted. */
8054
8055 void
8056 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
8057 {
8058 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8059 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8060
8061 if (globals == NULL)
8062 return;
8063
8064 if (globals->fix_cortex_a8 == -1)
8065 {
8066 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
8067 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
8068 && (out_attr[Tag_CPU_arch_profile].i == 'A'
8069 || out_attr[Tag_CPU_arch_profile].i == 0))
8070 globals->fix_cortex_a8 = 1;
8071 else
8072 globals->fix_cortex_a8 = 0;
8073 }
8074 }
8075
8076
8077 void
8078 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
8079 {
8080 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8081 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8082
8083 if (globals == NULL)
8084 return;
8085 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
8086 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
8087 {
8088 switch (globals->vfp11_fix)
8089 {
8090 case BFD_ARM_VFP11_FIX_DEFAULT:
8091 case BFD_ARM_VFP11_FIX_NONE:
8092 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8093 break;
8094
8095 default:
8096 /* Give a warning, but do as the user requests anyway. */
8097 _bfd_error_handler (_("%pB: warning: selected VFP11 erratum "
8098 "workaround is not necessary for target architecture"), obfd);
8099 }
8100 }
8101 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
8102 /* For earlier architectures, we might need the workaround, but do not
8103 enable it by default. If users is running with broken hardware, they
8104 must enable the erratum fix explicitly. */
8105 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
8106 }
8107
8108 void
8109 bfd_elf32_arm_set_stm32l4xx_fix (bfd *obfd, struct bfd_link_info *link_info)
8110 {
8111 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8112 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
8113
8114 if (globals == NULL)
8115 return;
8116
8117 /* We assume only Cortex-M4 may require the fix. */
8118 if (out_attr[Tag_CPU_arch].i != TAG_CPU_ARCH_V7E_M
8119 || out_attr[Tag_CPU_arch_profile].i != 'M')
8120 {
8121 if (globals->stm32l4xx_fix != BFD_ARM_STM32L4XX_FIX_NONE)
8122 /* Give a warning, but do as the user requests anyway. */
8123 _bfd_error_handler
8124 (_("%pB: warning: selected STM32L4XX erratum "
8125 "workaround is not necessary for target architecture"), obfd);
8126 }
8127 }
8128
8129 enum bfd_arm_vfp11_pipe
8130 {
8131 VFP11_FMAC,
8132 VFP11_LS,
8133 VFP11_DS,
8134 VFP11_BAD
8135 };
8136
8137 /* Return a VFP register number. This is encoded as RX:X for single-precision
8138 registers, or X:RX for double-precision registers, where RX is the group of
8139 four bits in the instruction encoding and X is the single extension bit.
8140 RX and X fields are specified using their lowest (starting) bit. The return
8141 value is:
8142
8143 0...31: single-precision registers s0...s31
8144 32...63: double-precision registers d0...d31.
8145
8146 Although X should be zero for VFP11 (encoding d0...d15 only), we might
8147 encounter VFP3 instructions, so we allow the full range for DP registers. */
8148
8149 static unsigned int
8150 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
8151 unsigned int x)
8152 {
8153 if (is_double)
8154 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
8155 else
8156 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
8157 }
8158
8159 /* Set bits in *WMASK according to a register number REG as encoded by
8160 bfd_arm_vfp11_regno(). Ignore d16-d31. */
8161
8162 static void
8163 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
8164 {
8165 if (reg < 32)
8166 *wmask |= 1 << reg;
8167 else if (reg < 48)
8168 *wmask |= 3 << ((reg - 32) * 2);
8169 }
8170
8171 /* Return TRUE if WMASK overwrites anything in REGS. */
8172
8173 static bfd_boolean
8174 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
8175 {
8176 int i;
8177
8178 for (i = 0; i < numregs; i++)
8179 {
8180 unsigned int reg = regs[i];
8181
8182 if (reg < 32 && (wmask & (1 << reg)) != 0)
8183 return TRUE;
8184
8185 reg -= 32;
8186
8187 if (reg >= 16)
8188 continue;
8189
8190 if ((wmask & (3 << (reg * 2))) != 0)
8191 return TRUE;
8192 }
8193
8194 return FALSE;
8195 }
8196
8197 /* In this function, we're interested in two things: finding input registers
8198 for VFP data-processing instructions, and finding the set of registers which
8199 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
8200 hold the written set, so FLDM etc. are easy to deal with (we're only
8201 interested in 32 SP registers or 16 dp registers, due to the VFP version
8202 implemented by the chip in question). DP registers are marked by setting
8203 both SP registers in the write mask). */
8204
8205 static enum bfd_arm_vfp11_pipe
8206 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
8207 int *numregs)
8208 {
8209 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
8210 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
8211
8212 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
8213 {
8214 unsigned int pqrs;
8215 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8216 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8217
8218 pqrs = ((insn & 0x00800000) >> 20)
8219 | ((insn & 0x00300000) >> 19)
8220 | ((insn & 0x00000040) >> 6);
8221
8222 switch (pqrs)
8223 {
8224 case 0: /* fmac[sd]. */
8225 case 1: /* fnmac[sd]. */
8226 case 2: /* fmsc[sd]. */
8227 case 3: /* fnmsc[sd]. */
8228 vpipe = VFP11_FMAC;
8229 bfd_arm_vfp11_write_mask (destmask, fd);
8230 regs[0] = fd;
8231 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8232 regs[2] = fm;
8233 *numregs = 3;
8234 break;
8235
8236 case 4: /* fmul[sd]. */
8237 case 5: /* fnmul[sd]. */
8238 case 6: /* fadd[sd]. */
8239 case 7: /* fsub[sd]. */
8240 vpipe = VFP11_FMAC;
8241 goto vfp_binop;
8242
8243 case 8: /* fdiv[sd]. */
8244 vpipe = VFP11_DS;
8245 vfp_binop:
8246 bfd_arm_vfp11_write_mask (destmask, fd);
8247 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
8248 regs[1] = fm;
8249 *numregs = 2;
8250 break;
8251
8252 case 15: /* extended opcode. */
8253 {
8254 unsigned int extn = ((insn >> 15) & 0x1e)
8255 | ((insn >> 7) & 1);
8256
8257 switch (extn)
8258 {
8259 case 0: /* fcpy[sd]. */
8260 case 1: /* fabs[sd]. */
8261 case 2: /* fneg[sd]. */
8262 case 8: /* fcmp[sd]. */
8263 case 9: /* fcmpe[sd]. */
8264 case 10: /* fcmpz[sd]. */
8265 case 11: /* fcmpez[sd]. */
8266 case 16: /* fuito[sd]. */
8267 case 17: /* fsito[sd]. */
8268 case 24: /* ftoui[sd]. */
8269 case 25: /* ftouiz[sd]. */
8270 case 26: /* ftosi[sd]. */
8271 case 27: /* ftosiz[sd]. */
8272 /* These instructions will not bounce due to underflow. */
8273 *numregs = 0;
8274 vpipe = VFP11_FMAC;
8275 break;
8276
8277 case 3: /* fsqrt[sd]. */
8278 /* fsqrt cannot underflow, but it can (perhaps) overwrite
8279 registers to cause the erratum in previous instructions. */
8280 bfd_arm_vfp11_write_mask (destmask, fd);
8281 vpipe = VFP11_DS;
8282 break;
8283
8284 case 15: /* fcvt{ds,sd}. */
8285 {
8286 int rnum = 0;
8287
8288 bfd_arm_vfp11_write_mask (destmask, fd);
8289
8290 /* Only FCVTSD can underflow. */
8291 if ((insn & 0x100) != 0)
8292 regs[rnum++] = fm;
8293
8294 *numregs = rnum;
8295
8296 vpipe = VFP11_FMAC;
8297 }
8298 break;
8299
8300 default:
8301 return VFP11_BAD;
8302 }
8303 }
8304 break;
8305
8306 default:
8307 return VFP11_BAD;
8308 }
8309 }
8310 /* Two-register transfer. */
8311 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
8312 {
8313 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
8314
8315 if ((insn & 0x100000) == 0)
8316 {
8317 if (is_double)
8318 bfd_arm_vfp11_write_mask (destmask, fm);
8319 else
8320 {
8321 bfd_arm_vfp11_write_mask (destmask, fm);
8322 bfd_arm_vfp11_write_mask (destmask, fm + 1);
8323 }
8324 }
8325
8326 vpipe = VFP11_LS;
8327 }
8328 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
8329 {
8330 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
8331 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
8332
8333 switch (puw)
8334 {
8335 case 0: /* Two-reg transfer. We should catch these above. */
8336 abort ();
8337
8338 case 2: /* fldm[sdx]. */
8339 case 3:
8340 case 5:
8341 {
8342 unsigned int i, offset = insn & 0xff;
8343
8344 if (is_double)
8345 offset >>= 1;
8346
8347 for (i = fd; i < fd + offset; i++)
8348 bfd_arm_vfp11_write_mask (destmask, i);
8349 }
8350 break;
8351
8352 case 4: /* fld[sd]. */
8353 case 6:
8354 bfd_arm_vfp11_write_mask (destmask, fd);
8355 break;
8356
8357 default:
8358 return VFP11_BAD;
8359 }
8360
8361 vpipe = VFP11_LS;
8362 }
8363 /* Single-register transfer. Note L==0. */
8364 else if ((insn & 0x0f100e10) == 0x0e000a10)
8365 {
8366 unsigned int opcode = (insn >> 21) & 7;
8367 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
8368
8369 switch (opcode)
8370 {
8371 case 0: /* fmsr/fmdlr. */
8372 case 1: /* fmdhr. */
8373 /* Mark fmdhr and fmdlr as writing to the whole of the DP
8374 destination register. I don't know if this is exactly right,
8375 but it is the conservative choice. */
8376 bfd_arm_vfp11_write_mask (destmask, fn);
8377 break;
8378
8379 case 7: /* fmxr. */
8380 break;
8381 }
8382
8383 vpipe = VFP11_LS;
8384 }
8385
8386 return vpipe;
8387 }
8388
8389
8390 static int elf32_arm_compare_mapping (const void * a, const void * b);
8391
8392
8393 /* Look for potentially-troublesome code sequences which might trigger the
8394 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
8395 (available from ARM) for details of the erratum. A short version is
8396 described in ld.texinfo. */
8397
8398 bfd_boolean
8399 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
8400 {
8401 asection *sec;
8402 bfd_byte *contents = NULL;
8403 int state = 0;
8404 int regs[3], numregs = 0;
8405 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8406 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
8407
8408 if (globals == NULL)
8409 return FALSE;
8410
8411 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
8412 The states transition as follows:
8413
8414 0 -> 1 (vector) or 0 -> 2 (scalar)
8415 A VFP FMAC-pipeline instruction has been seen. Fill
8416 regs[0]..regs[numregs-1] with its input operands. Remember this
8417 instruction in 'first_fmac'.
8418
8419 1 -> 2
8420 Any instruction, except for a VFP instruction which overwrites
8421 regs[*].
8422
8423 1 -> 3 [ -> 0 ] or
8424 2 -> 3 [ -> 0 ]
8425 A VFP instruction has been seen which overwrites any of regs[*].
8426 We must make a veneer! Reset state to 0 before examining next
8427 instruction.
8428
8429 2 -> 0
8430 If we fail to match anything in state 2, reset to state 0 and reset
8431 the instruction pointer to the instruction after 'first_fmac'.
8432
8433 If the VFP11 vector mode is in use, there must be at least two unrelated
8434 instructions between anti-dependent VFP11 instructions to properly avoid
8435 triggering the erratum, hence the use of the extra state 1. */
8436
8437 /* If we are only performing a partial link do not bother
8438 to construct any glue. */
8439 if (bfd_link_relocatable (link_info))
8440 return TRUE;
8441
8442 /* Skip if this bfd does not correspond to an ELF image. */
8443 if (! is_arm_elf (abfd))
8444 return TRUE;
8445
8446 /* We should have chosen a fix type by the time we get here. */
8447 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
8448
8449 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
8450 return TRUE;
8451
8452 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8453 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8454 return TRUE;
8455
8456 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8457 {
8458 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
8459 struct _arm_elf_section_data *sec_data;
8460
8461 /* If we don't have executable progbits, we're not interested in this
8462 section. Also skip if section is to be excluded. */
8463 if (elf_section_type (sec) != SHT_PROGBITS
8464 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8465 || (sec->flags & SEC_EXCLUDE) != 0
8466 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8467 || sec->output_section == bfd_abs_section_ptr
8468 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
8469 continue;
8470
8471 sec_data = elf32_arm_section_data (sec);
8472
8473 if (sec_data->mapcount == 0)
8474 continue;
8475
8476 if (elf_section_data (sec)->this_hdr.contents != NULL)
8477 contents = elf_section_data (sec)->this_hdr.contents;
8478 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8479 goto error_return;
8480
8481 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8482 elf32_arm_compare_mapping);
8483
8484 for (span = 0; span < sec_data->mapcount; span++)
8485 {
8486 unsigned int span_start = sec_data->map[span].vma;
8487 unsigned int span_end = (span == sec_data->mapcount - 1)
8488 ? sec->size : sec_data->map[span + 1].vma;
8489 char span_type = sec_data->map[span].type;
8490
8491 /* FIXME: Only ARM mode is supported at present. We may need to
8492 support Thumb-2 mode also at some point. */
8493 if (span_type != 'a')
8494 continue;
8495
8496 for (i = span_start; i < span_end;)
8497 {
8498 unsigned int next_i = i + 4;
8499 unsigned int insn = bfd_big_endian (abfd)
8500 ? (contents[i] << 24)
8501 | (contents[i + 1] << 16)
8502 | (contents[i + 2] << 8)
8503 | contents[i + 3]
8504 : (contents[i + 3] << 24)
8505 | (contents[i + 2] << 16)
8506 | (contents[i + 1] << 8)
8507 | contents[i];
8508 unsigned int writemask = 0;
8509 enum bfd_arm_vfp11_pipe vpipe;
8510
8511 switch (state)
8512 {
8513 case 0:
8514 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
8515 &numregs);
8516 /* I'm assuming the VFP11 erratum can trigger with denorm
8517 operands on either the FMAC or the DS pipeline. This might
8518 lead to slightly overenthusiastic veneer insertion. */
8519 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
8520 {
8521 state = use_vector ? 1 : 2;
8522 first_fmac = i;
8523 veneer_of_insn = insn;
8524 }
8525 break;
8526
8527 case 1:
8528 {
8529 int other_regs[3], other_numregs;
8530 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8531 other_regs,
8532 &other_numregs);
8533 if (vpipe != VFP11_BAD
8534 && bfd_arm_vfp11_antidependency (writemask, regs,
8535 numregs))
8536 state = 3;
8537 else
8538 state = 2;
8539 }
8540 break;
8541
8542 case 2:
8543 {
8544 int other_regs[3], other_numregs;
8545 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
8546 other_regs,
8547 &other_numregs);
8548 if (vpipe != VFP11_BAD
8549 && bfd_arm_vfp11_antidependency (writemask, regs,
8550 numregs))
8551 state = 3;
8552 else
8553 {
8554 state = 0;
8555 next_i = first_fmac + 4;
8556 }
8557 }
8558 break;
8559
8560 case 3:
8561 abort (); /* Should be unreachable. */
8562 }
8563
8564 if (state == 3)
8565 {
8566 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
8567 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
8568
8569 elf32_arm_section_data (sec)->erratumcount += 1;
8570
8571 newerr->u.b.vfp_insn = veneer_of_insn;
8572
8573 switch (span_type)
8574 {
8575 case 'a':
8576 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
8577 break;
8578
8579 default:
8580 abort ();
8581 }
8582
8583 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
8584 first_fmac);
8585
8586 newerr->vma = -1;
8587
8588 newerr->next = sec_data->erratumlist;
8589 sec_data->erratumlist = newerr;
8590
8591 state = 0;
8592 }
8593
8594 i = next_i;
8595 }
8596 }
8597
8598 if (contents != NULL
8599 && elf_section_data (sec)->this_hdr.contents != contents)
8600 free (contents);
8601 contents = NULL;
8602 }
8603
8604 return TRUE;
8605
8606 error_return:
8607 if (contents != NULL
8608 && elf_section_data (sec)->this_hdr.contents != contents)
8609 free (contents);
8610
8611 return FALSE;
8612 }
8613
8614 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
8615 after sections have been laid out, using specially-named symbols. */
8616
8617 void
8618 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
8619 struct bfd_link_info *link_info)
8620 {
8621 asection *sec;
8622 struct elf32_arm_link_hash_table *globals;
8623 char *tmp_name;
8624
8625 if (bfd_link_relocatable (link_info))
8626 return;
8627
8628 /* Skip if this bfd does not correspond to an ELF image. */
8629 if (! is_arm_elf (abfd))
8630 return;
8631
8632 globals = elf32_arm_hash_table (link_info);
8633 if (globals == NULL)
8634 return;
8635
8636 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8637 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
8638
8639 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8640 {
8641 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8642 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
8643
8644 for (; errnode != NULL; errnode = errnode->next)
8645 {
8646 struct elf_link_hash_entry *myh;
8647 bfd_vma vma;
8648
8649 switch (errnode->type)
8650 {
8651 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
8652 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
8653 /* Find veneer symbol. */
8654 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
8655 errnode->u.b.veneer->u.v.id);
8656
8657 myh = elf_link_hash_lookup
8658 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8659
8660 if (myh == NULL)
8661 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8662 abfd, "VFP11", tmp_name);
8663
8664 vma = myh->root.u.def.section->output_section->vma
8665 + myh->root.u.def.section->output_offset
8666 + myh->root.u.def.value;
8667
8668 errnode->u.b.veneer->vma = vma;
8669 break;
8670
8671 case VFP11_ERRATUM_ARM_VENEER:
8672 case VFP11_ERRATUM_THUMB_VENEER:
8673 /* Find return location. */
8674 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
8675 errnode->u.v.id);
8676
8677 myh = elf_link_hash_lookup
8678 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8679
8680 if (myh == NULL)
8681 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8682 abfd, "VFP11", tmp_name);
8683
8684 vma = myh->root.u.def.section->output_section->vma
8685 + myh->root.u.def.section->output_offset
8686 + myh->root.u.def.value;
8687
8688 errnode->u.v.branch->vma = vma;
8689 break;
8690
8691 default:
8692 abort ();
8693 }
8694 }
8695 }
8696
8697 free (tmp_name);
8698 }
8699
8700 /* Find virtual-memory addresses for STM32L4XX erratum veneers and
8701 return locations after sections have been laid out, using
8702 specially-named symbols. */
8703
8704 void
8705 bfd_elf32_arm_stm32l4xx_fix_veneer_locations (bfd *abfd,
8706 struct bfd_link_info *link_info)
8707 {
8708 asection *sec;
8709 struct elf32_arm_link_hash_table *globals;
8710 char *tmp_name;
8711
8712 if (bfd_link_relocatable (link_info))
8713 return;
8714
8715 /* Skip if this bfd does not correspond to an ELF image. */
8716 if (! is_arm_elf (abfd))
8717 return;
8718
8719 globals = elf32_arm_hash_table (link_info);
8720 if (globals == NULL)
8721 return;
8722
8723 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
8724 (STM32L4XX_ERRATUM_VENEER_ENTRY_NAME) + 10);
8725
8726 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8727 {
8728 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
8729 elf32_stm32l4xx_erratum_list *errnode = sec_data->stm32l4xx_erratumlist;
8730
8731 for (; errnode != NULL; errnode = errnode->next)
8732 {
8733 struct elf_link_hash_entry *myh;
8734 bfd_vma vma;
8735
8736 switch (errnode->type)
8737 {
8738 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
8739 /* Find veneer symbol. */
8740 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME,
8741 errnode->u.b.veneer->u.v.id);
8742
8743 myh = elf_link_hash_lookup
8744 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8745
8746 if (myh == NULL)
8747 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8748 abfd, "STM32L4XX", tmp_name);
8749
8750 vma = myh->root.u.def.section->output_section->vma
8751 + myh->root.u.def.section->output_offset
8752 + myh->root.u.def.value;
8753
8754 errnode->u.b.veneer->vma = vma;
8755 break;
8756
8757 case STM32L4XX_ERRATUM_VENEER:
8758 /* Find return location. */
8759 sprintf (tmp_name, STM32L4XX_ERRATUM_VENEER_ENTRY_NAME "_r",
8760 errnode->u.v.id);
8761
8762 myh = elf_link_hash_lookup
8763 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
8764
8765 if (myh == NULL)
8766 _bfd_error_handler (_("%pB: unable to find %s veneer `%s'"),
8767 abfd, "STM32L4XX", tmp_name);
8768
8769 vma = myh->root.u.def.section->output_section->vma
8770 + myh->root.u.def.section->output_offset
8771 + myh->root.u.def.value;
8772
8773 errnode->u.v.branch->vma = vma;
8774 break;
8775
8776 default:
8777 abort ();
8778 }
8779 }
8780 }
8781
8782 free (tmp_name);
8783 }
8784
8785 static inline bfd_boolean
8786 is_thumb2_ldmia (const insn32 insn)
8787 {
8788 /* Encoding T2: LDM<c>.W <Rn>{!},<registers>
8789 1110 - 1000 - 10W1 - rrrr - PM (0) l - llll - llll - llll. */
8790 return (insn & 0xffd02000) == 0xe8900000;
8791 }
8792
8793 static inline bfd_boolean
8794 is_thumb2_ldmdb (const insn32 insn)
8795 {
8796 /* Encoding T1: LDMDB<c> <Rn>{!},<registers>
8797 1110 - 1001 - 00W1 - rrrr - PM (0) l - llll - llll - llll. */
8798 return (insn & 0xffd02000) == 0xe9100000;
8799 }
8800
8801 static inline bfd_boolean
8802 is_thumb2_vldm (const insn32 insn)
8803 {
8804 /* A6.5 Extension register load or store instruction
8805 A7.7.229
8806 We look for SP 32-bit and DP 64-bit registers.
8807 Encoding T1 VLDM{mode}<c> <Rn>{!}, <list>
8808 <list> is consecutive 64-bit registers
8809 1110 - 110P - UDW1 - rrrr - vvvv - 1011 - iiii - iiii
8810 Encoding T2 VLDM{mode}<c> <Rn>{!}, <list>
8811 <list> is consecutive 32-bit registers
8812 1110 - 110P - UDW1 - rrrr - vvvv - 1010 - iiii - iiii
8813 if P==0 && U==1 && W==1 && Rn=1101 VPOP
8814 if PUW=010 || PUW=011 || PUW=101 VLDM. */
8815 return
8816 (((insn & 0xfe100f00) == 0xec100b00) ||
8817 ((insn & 0xfe100f00) == 0xec100a00))
8818 && /* (IA without !). */
8819 (((((insn << 7) >> 28) & 0xd) == 0x4)
8820 /* (IA with !), includes VPOP (when reg number is SP). */
8821 || ((((insn << 7) >> 28) & 0xd) == 0x5)
8822 /* (DB with !). */
8823 || ((((insn << 7) >> 28) & 0xd) == 0x9));
8824 }
8825
8826 /* STM STM32L4XX erratum : This function assumes that it receives an LDM or
8827 VLDM opcode and:
8828 - computes the number and the mode of memory accesses
8829 - decides if the replacement should be done:
8830 . replaces only if > 8-word accesses
8831 . or (testing purposes only) replaces all accesses. */
8832
8833 static bfd_boolean
8834 stm32l4xx_need_create_replacing_stub (const insn32 insn,
8835 bfd_arm_stm32l4xx_fix stm32l4xx_fix)
8836 {
8837 int nb_words = 0;
8838
8839 /* The field encoding the register list is the same for both LDMIA
8840 and LDMDB encodings. */
8841 if (is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn))
8842 nb_words = elf32_arm_popcount (insn & 0x0000ffff);
8843 else if (is_thumb2_vldm (insn))
8844 nb_words = (insn & 0xff);
8845
8846 /* DEFAULT mode accounts for the real bug condition situation,
8847 ALL mode inserts stubs for each LDM/VLDM instruction (testing). */
8848 return
8849 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_DEFAULT) ? nb_words > 8 :
8850 (stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_ALL) ? TRUE : FALSE;
8851 }
8852
8853 /* Look for potentially-troublesome code sequences which might trigger
8854 the STM STM32L4XX erratum. */
8855
8856 bfd_boolean
8857 bfd_elf32_arm_stm32l4xx_erratum_scan (bfd *abfd,
8858 struct bfd_link_info *link_info)
8859 {
8860 asection *sec;
8861 bfd_byte *contents = NULL;
8862 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
8863
8864 if (globals == NULL)
8865 return FALSE;
8866
8867 /* If we are only performing a partial link do not bother
8868 to construct any glue. */
8869 if (bfd_link_relocatable (link_info))
8870 return TRUE;
8871
8872 /* Skip if this bfd does not correspond to an ELF image. */
8873 if (! is_arm_elf (abfd))
8874 return TRUE;
8875
8876 if (globals->stm32l4xx_fix == BFD_ARM_STM32L4XX_FIX_NONE)
8877 return TRUE;
8878
8879 /* Skip this BFD if it corresponds to an executable or dynamic object. */
8880 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
8881 return TRUE;
8882
8883 for (sec = abfd->sections; sec != NULL; sec = sec->next)
8884 {
8885 unsigned int i, span;
8886 struct _arm_elf_section_data *sec_data;
8887
8888 /* If we don't have executable progbits, we're not interested in this
8889 section. Also skip if section is to be excluded. */
8890 if (elf_section_type (sec) != SHT_PROGBITS
8891 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
8892 || (sec->flags & SEC_EXCLUDE) != 0
8893 || sec->sec_info_type == SEC_INFO_TYPE_JUST_SYMS
8894 || sec->output_section == bfd_abs_section_ptr
8895 || strcmp (sec->name, STM32L4XX_ERRATUM_VENEER_SECTION_NAME) == 0)
8896 continue;
8897
8898 sec_data = elf32_arm_section_data (sec);
8899
8900 if (sec_data->mapcount == 0)
8901 continue;
8902
8903 if (elf_section_data (sec)->this_hdr.contents != NULL)
8904 contents = elf_section_data (sec)->this_hdr.contents;
8905 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
8906 goto error_return;
8907
8908 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
8909 elf32_arm_compare_mapping);
8910
8911 for (span = 0; span < sec_data->mapcount; span++)
8912 {
8913 unsigned int span_start = sec_data->map[span].vma;
8914 unsigned int span_end = (span == sec_data->mapcount - 1)
8915 ? sec->size : sec_data->map[span + 1].vma;
8916 char span_type = sec_data->map[span].type;
8917 int itblock_current_pos = 0;
8918
8919 /* Only Thumb2 mode need be supported with this CM4 specific
8920 code, we should not encounter any arm mode eg span_type
8921 != 'a'. */
8922 if (span_type != 't')
8923 continue;
8924
8925 for (i = span_start; i < span_end;)
8926 {
8927 unsigned int insn = bfd_get_16 (abfd, &contents[i]);
8928 bfd_boolean insn_32bit = FALSE;
8929 bfd_boolean is_ldm = FALSE;
8930 bfd_boolean is_vldm = FALSE;
8931 bfd_boolean is_not_last_in_it_block = FALSE;
8932
8933 /* The first 16-bits of all 32-bit thumb2 instructions start
8934 with opcode[15..13]=0b111 and the encoded op1 can be anything
8935 except opcode[12..11]!=0b00.
8936 See 32-bit Thumb instruction encoding. */
8937 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
8938 insn_32bit = TRUE;
8939
8940 /* Compute the predicate that tells if the instruction
8941 is concerned by the IT block
8942 - Creates an error if there is a ldm that is not
8943 last in the IT block thus cannot be replaced
8944 - Otherwise we can create a branch at the end of the
8945 IT block, it will be controlled naturally by IT
8946 with the proper pseudo-predicate
8947 - So the only interesting predicate is the one that
8948 tells that we are not on the last item of an IT
8949 block. */
8950 if (itblock_current_pos != 0)
8951 is_not_last_in_it_block = !!--itblock_current_pos;
8952
8953 if (insn_32bit)
8954 {
8955 /* Load the rest of the insn (in manual-friendly order). */
8956 insn = (insn << 16) | bfd_get_16 (abfd, &contents[i + 2]);
8957 is_ldm = is_thumb2_ldmia (insn) || is_thumb2_ldmdb (insn);
8958 is_vldm = is_thumb2_vldm (insn);
8959
8960 /* Veneers are created for (v)ldm depending on
8961 option flags and memory accesses conditions; but
8962 if the instruction is not the last instruction of
8963 an IT block, we cannot create a jump there, so we
8964 bail out. */
8965 if ((is_ldm || is_vldm)
8966 && stm32l4xx_need_create_replacing_stub
8967 (insn, globals->stm32l4xx_fix))
8968 {
8969 if (is_not_last_in_it_block)
8970 {
8971 _bfd_error_handler
8972 /* xgettext:c-format */
8973 (_("%pB(%pA+%#x): error: multiple load detected"
8974 " in non-last IT block instruction:"
8975 " STM32L4XX veneer cannot be generated; "
8976 "use gcc option -mrestrict-it to generate"
8977 " only one instruction per IT block"),
8978 abfd, sec, i);
8979 }
8980 else
8981 {
8982 elf32_stm32l4xx_erratum_list *newerr =
8983 (elf32_stm32l4xx_erratum_list *)
8984 bfd_zmalloc
8985 (sizeof (elf32_stm32l4xx_erratum_list));
8986
8987 elf32_arm_section_data (sec)
8988 ->stm32l4xx_erratumcount += 1;
8989 newerr->u.b.insn = insn;
8990 /* We create only thumb branches. */
8991 newerr->type =
8992 STM32L4XX_ERRATUM_BRANCH_TO_VENEER;
8993 record_stm32l4xx_erratum_veneer
8994 (link_info, newerr, abfd, sec,
8995 i,
8996 is_ldm ?
8997 STM32L4XX_ERRATUM_LDM_VENEER_SIZE:
8998 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
8999 newerr->vma = -1;
9000 newerr->next = sec_data->stm32l4xx_erratumlist;
9001 sec_data->stm32l4xx_erratumlist = newerr;
9002 }
9003 }
9004 }
9005 else
9006 {
9007 /* A7.7.37 IT p208
9008 IT blocks are only encoded in T1
9009 Encoding T1: IT{x{y{z}}} <firstcond>
9010 1 0 1 1 - 1 1 1 1 - firstcond - mask
9011 if mask = '0000' then see 'related encodings'
9012 We don't deal with UNPREDICTABLE, just ignore these.
9013 There can be no nested IT blocks so an IT block
9014 is naturally a new one for which it is worth
9015 computing its size. */
9016 bfd_boolean is_newitblock = ((insn & 0xff00) == 0xbf00)
9017 && ((insn & 0x000f) != 0x0000);
9018 /* If we have a new IT block we compute its size. */
9019 if (is_newitblock)
9020 {
9021 /* Compute the number of instructions controlled
9022 by the IT block, it will be used to decide
9023 whether we are inside an IT block or not. */
9024 unsigned int mask = insn & 0x000f;
9025 itblock_current_pos = 4 - ctz (mask);
9026 }
9027 }
9028
9029 i += insn_32bit ? 4 : 2;
9030 }
9031 }
9032
9033 if (contents != NULL
9034 && elf_section_data (sec)->this_hdr.contents != contents)
9035 free (contents);
9036 contents = NULL;
9037 }
9038
9039 return TRUE;
9040
9041 error_return:
9042 if (contents != NULL
9043 && elf_section_data (sec)->this_hdr.contents != contents)
9044 free (contents);
9045
9046 return FALSE;
9047 }
9048
9049 /* Set target relocation values needed during linking. */
9050
9051 void
9052 bfd_elf32_arm_set_target_params (struct bfd *output_bfd,
9053 struct bfd_link_info *link_info,
9054 struct elf32_arm_params *params)
9055 {
9056 struct elf32_arm_link_hash_table *globals;
9057
9058 globals = elf32_arm_hash_table (link_info);
9059 if (globals == NULL)
9060 return;
9061
9062 globals->target1_is_rel = params->target1_is_rel;
9063 if (globals->fdpic_p)
9064 globals->target2_reloc = R_ARM_GOT32;
9065 else if (strcmp (params->target2_type, "rel") == 0)
9066 globals->target2_reloc = R_ARM_REL32;
9067 else if (strcmp (params->target2_type, "abs") == 0)
9068 globals->target2_reloc = R_ARM_ABS32;
9069 else if (strcmp (params->target2_type, "got-rel") == 0)
9070 globals->target2_reloc = R_ARM_GOT_PREL;
9071 else
9072 {
9073 _bfd_error_handler (_("invalid TARGET2 relocation type '%s'"),
9074 params->target2_type);
9075 }
9076 globals->fix_v4bx = params->fix_v4bx;
9077 globals->use_blx |= params->use_blx;
9078 globals->vfp11_fix = params->vfp11_denorm_fix;
9079 globals->stm32l4xx_fix = params->stm32l4xx_fix;
9080 if (globals->fdpic_p)
9081 globals->pic_veneer = 1;
9082 else
9083 globals->pic_veneer = params->pic_veneer;
9084 globals->fix_cortex_a8 = params->fix_cortex_a8;
9085 globals->fix_arm1176 = params->fix_arm1176;
9086 globals->cmse_implib = params->cmse_implib;
9087 globals->in_implib_bfd = params->in_implib_bfd;
9088
9089 BFD_ASSERT (is_arm_elf (output_bfd));
9090 elf_arm_tdata (output_bfd)->no_enum_size_warning
9091 = params->no_enum_size_warning;
9092 elf_arm_tdata (output_bfd)->no_wchar_size_warning
9093 = params->no_wchar_size_warning;
9094 }
9095
9096 /* Replace the target offset of a Thumb bl or b.w instruction. */
9097
9098 static void
9099 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
9100 {
9101 bfd_vma upper;
9102 bfd_vma lower;
9103 int reloc_sign;
9104
9105 BFD_ASSERT ((offset & 1) == 0);
9106
9107 upper = bfd_get_16 (abfd, insn);
9108 lower = bfd_get_16 (abfd, insn + 2);
9109 reloc_sign = (offset < 0) ? 1 : 0;
9110 upper = (upper & ~(bfd_vma) 0x7ff)
9111 | ((offset >> 12) & 0x3ff)
9112 | (reloc_sign << 10);
9113 lower = (lower & ~(bfd_vma) 0x2fff)
9114 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
9115 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
9116 | ((offset >> 1) & 0x7ff);
9117 bfd_put_16 (abfd, upper, insn);
9118 bfd_put_16 (abfd, lower, insn + 2);
9119 }
9120
9121 /* Thumb code calling an ARM function. */
9122
9123 static int
9124 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
9125 const char * name,
9126 bfd * input_bfd,
9127 bfd * output_bfd,
9128 asection * input_section,
9129 bfd_byte * hit_data,
9130 asection * sym_sec,
9131 bfd_vma offset,
9132 bfd_signed_vma addend,
9133 bfd_vma val,
9134 char **error_message)
9135 {
9136 asection * s = 0;
9137 bfd_vma my_offset;
9138 long int ret_offset;
9139 struct elf_link_hash_entry * myh;
9140 struct elf32_arm_link_hash_table * globals;
9141
9142 myh = find_thumb_glue (info, name, error_message);
9143 if (myh == NULL)
9144 return FALSE;
9145
9146 globals = elf32_arm_hash_table (info);
9147 BFD_ASSERT (globals != NULL);
9148 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9149
9150 my_offset = myh->root.u.def.value;
9151
9152 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9153 THUMB2ARM_GLUE_SECTION_NAME);
9154
9155 BFD_ASSERT (s != NULL);
9156 BFD_ASSERT (s->contents != NULL);
9157 BFD_ASSERT (s->output_section != NULL);
9158
9159 if ((my_offset & 0x01) == 0x01)
9160 {
9161 if (sym_sec != NULL
9162 && sym_sec->owner != NULL
9163 && !INTERWORK_FLAG (sym_sec->owner))
9164 {
9165 _bfd_error_handler
9166 (_("%pB(%s): warning: interworking not enabled;"
9167 " first occurrence: %pB: %s call to %s"),
9168 sym_sec->owner, name, input_bfd, "Thumb", "ARM");
9169
9170 return FALSE;
9171 }
9172
9173 --my_offset;
9174 myh->root.u.def.value = my_offset;
9175
9176 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
9177 s->contents + my_offset);
9178
9179 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
9180 s->contents + my_offset + 2);
9181
9182 ret_offset =
9183 /* Address of destination of the stub. */
9184 ((bfd_signed_vma) val)
9185 - ((bfd_signed_vma)
9186 /* Offset from the start of the current section
9187 to the start of the stubs. */
9188 (s->output_offset
9189 /* Offset of the start of this stub from the start of the stubs. */
9190 + my_offset
9191 /* Address of the start of the current section. */
9192 + s->output_section->vma)
9193 /* The branch instruction is 4 bytes into the stub. */
9194 + 4
9195 /* ARM branches work from the pc of the instruction + 8. */
9196 + 8);
9197
9198 put_arm_insn (globals, output_bfd,
9199 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
9200 s->contents + my_offset + 4);
9201 }
9202
9203 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
9204
9205 /* Now go back and fix up the original BL insn to point to here. */
9206 ret_offset =
9207 /* Address of where the stub is located. */
9208 (s->output_section->vma + s->output_offset + my_offset)
9209 /* Address of where the BL is located. */
9210 - (input_section->output_section->vma + input_section->output_offset
9211 + offset)
9212 /* Addend in the relocation. */
9213 - addend
9214 /* Biassing for PC-relative addressing. */
9215 - 8;
9216
9217 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
9218
9219 return TRUE;
9220 }
9221
9222 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
9223
9224 static struct elf_link_hash_entry *
9225 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
9226 const char * name,
9227 bfd * input_bfd,
9228 bfd * output_bfd,
9229 asection * sym_sec,
9230 bfd_vma val,
9231 asection * s,
9232 char ** error_message)
9233 {
9234 bfd_vma my_offset;
9235 long int ret_offset;
9236 struct elf_link_hash_entry * myh;
9237 struct elf32_arm_link_hash_table * globals;
9238
9239 myh = find_arm_glue (info, name, error_message);
9240 if (myh == NULL)
9241 return NULL;
9242
9243 globals = elf32_arm_hash_table (info);
9244 BFD_ASSERT (globals != NULL);
9245 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9246
9247 my_offset = myh->root.u.def.value;
9248
9249 if ((my_offset & 0x01) == 0x01)
9250 {
9251 if (sym_sec != NULL
9252 && sym_sec->owner != NULL
9253 && !INTERWORK_FLAG (sym_sec->owner))
9254 {
9255 _bfd_error_handler
9256 (_("%pB(%s): warning: interworking not enabled;"
9257 " first occurrence: %pB: %s call to %s"),
9258 sym_sec->owner, name, input_bfd, "ARM", "Thumb");
9259 }
9260
9261 --my_offset;
9262 myh->root.u.def.value = my_offset;
9263
9264 if (bfd_link_pic (info)
9265 || globals->root.is_relocatable_executable
9266 || globals->pic_veneer)
9267 {
9268 /* For relocatable objects we can't use absolute addresses,
9269 so construct the address from a relative offset. */
9270 /* TODO: If the offset is small it's probably worth
9271 constructing the address with adds. */
9272 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
9273 s->contents + my_offset);
9274 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
9275 s->contents + my_offset + 4);
9276 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
9277 s->contents + my_offset + 8);
9278 /* Adjust the offset by 4 for the position of the add,
9279 and 8 for the pipeline offset. */
9280 ret_offset = (val - (s->output_offset
9281 + s->output_section->vma
9282 + my_offset + 12))
9283 | 1;
9284 bfd_put_32 (output_bfd, ret_offset,
9285 s->contents + my_offset + 12);
9286 }
9287 else if (globals->use_blx)
9288 {
9289 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
9290 s->contents + my_offset);
9291
9292 /* It's a thumb address. Add the low order bit. */
9293 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
9294 s->contents + my_offset + 4);
9295 }
9296 else
9297 {
9298 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
9299 s->contents + my_offset);
9300
9301 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
9302 s->contents + my_offset + 4);
9303
9304 /* It's a thumb address. Add the low order bit. */
9305 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
9306 s->contents + my_offset + 8);
9307
9308 my_offset += 12;
9309 }
9310 }
9311
9312 BFD_ASSERT (my_offset <= globals->arm_glue_size);
9313
9314 return myh;
9315 }
9316
9317 /* Arm code calling a Thumb function. */
9318
9319 static int
9320 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
9321 const char * name,
9322 bfd * input_bfd,
9323 bfd * output_bfd,
9324 asection * input_section,
9325 bfd_byte * hit_data,
9326 asection * sym_sec,
9327 bfd_vma offset,
9328 bfd_signed_vma addend,
9329 bfd_vma val,
9330 char **error_message)
9331 {
9332 unsigned long int tmp;
9333 bfd_vma my_offset;
9334 asection * s;
9335 long int ret_offset;
9336 struct elf_link_hash_entry * myh;
9337 struct elf32_arm_link_hash_table * globals;
9338
9339 globals = elf32_arm_hash_table (info);
9340 BFD_ASSERT (globals != NULL);
9341 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9342
9343 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9344 ARM2THUMB_GLUE_SECTION_NAME);
9345 BFD_ASSERT (s != NULL);
9346 BFD_ASSERT (s->contents != NULL);
9347 BFD_ASSERT (s->output_section != NULL);
9348
9349 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
9350 sym_sec, val, s, error_message);
9351 if (!myh)
9352 return FALSE;
9353
9354 my_offset = myh->root.u.def.value;
9355 tmp = bfd_get_32 (input_bfd, hit_data);
9356 tmp = tmp & 0xFF000000;
9357
9358 /* Somehow these are both 4 too far, so subtract 8. */
9359 ret_offset = (s->output_offset
9360 + my_offset
9361 + s->output_section->vma
9362 - (input_section->output_offset
9363 + input_section->output_section->vma
9364 + offset + addend)
9365 - 8);
9366
9367 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
9368
9369 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
9370
9371 return TRUE;
9372 }
9373
9374 /* Populate Arm stub for an exported Thumb function. */
9375
9376 static bfd_boolean
9377 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
9378 {
9379 struct bfd_link_info * info = (struct bfd_link_info *) inf;
9380 asection * s;
9381 struct elf_link_hash_entry * myh;
9382 struct elf32_arm_link_hash_entry *eh;
9383 struct elf32_arm_link_hash_table * globals;
9384 asection *sec;
9385 bfd_vma val;
9386 char *error_message;
9387
9388 eh = elf32_arm_hash_entry (h);
9389 /* Allocate stubs for exported Thumb functions on v4t. */
9390 if (eh->export_glue == NULL)
9391 return TRUE;
9392
9393 globals = elf32_arm_hash_table (info);
9394 BFD_ASSERT (globals != NULL);
9395 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9396
9397 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9398 ARM2THUMB_GLUE_SECTION_NAME);
9399 BFD_ASSERT (s != NULL);
9400 BFD_ASSERT (s->contents != NULL);
9401 BFD_ASSERT (s->output_section != NULL);
9402
9403 sec = eh->export_glue->root.u.def.section;
9404
9405 BFD_ASSERT (sec->output_section != NULL);
9406
9407 val = eh->export_glue->root.u.def.value + sec->output_offset
9408 + sec->output_section->vma;
9409
9410 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
9411 h->root.u.def.section->owner,
9412 globals->obfd, sec, val, s,
9413 &error_message);
9414 BFD_ASSERT (myh);
9415 return TRUE;
9416 }
9417
9418 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
9419
9420 static bfd_vma
9421 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
9422 {
9423 bfd_byte *p;
9424 bfd_vma glue_addr;
9425 asection *s;
9426 struct elf32_arm_link_hash_table *globals;
9427
9428 globals = elf32_arm_hash_table (info);
9429 BFD_ASSERT (globals != NULL);
9430 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
9431
9432 s = bfd_get_linker_section (globals->bfd_of_glue_owner,
9433 ARM_BX_GLUE_SECTION_NAME);
9434 BFD_ASSERT (s != NULL);
9435 BFD_ASSERT (s->contents != NULL);
9436 BFD_ASSERT (s->output_section != NULL);
9437
9438 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
9439
9440 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
9441
9442 if ((globals->bx_glue_offset[reg] & 1) == 0)
9443 {
9444 p = s->contents + glue_addr;
9445 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
9446 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
9447 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
9448 globals->bx_glue_offset[reg] |= 1;
9449 }
9450
9451 return glue_addr + s->output_section->vma + s->output_offset;
9452 }
9453
9454 /* Generate Arm stubs for exported Thumb symbols. */
9455 static void
9456 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
9457 struct bfd_link_info *link_info)
9458 {
9459 struct elf32_arm_link_hash_table * globals;
9460
9461 if (link_info == NULL)
9462 /* Ignore this if we are not called by the ELF backend linker. */
9463 return;
9464
9465 globals = elf32_arm_hash_table (link_info);
9466 if (globals == NULL)
9467 return;
9468
9469 /* If blx is available then exported Thumb symbols are OK and there is
9470 nothing to do. */
9471 if (globals->use_blx)
9472 return;
9473
9474 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
9475 link_info);
9476 }
9477
9478 /* Reserve space for COUNT dynamic relocations in relocation selection
9479 SRELOC. */
9480
9481 static void
9482 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
9483 bfd_size_type count)
9484 {
9485 struct elf32_arm_link_hash_table *htab;
9486
9487 htab = elf32_arm_hash_table (info);
9488 BFD_ASSERT (htab->root.dynamic_sections_created);
9489 if (sreloc == NULL)
9490 abort ();
9491 sreloc->size += RELOC_SIZE (htab) * count;
9492 }
9493
9494 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
9495 dynamic, the relocations should go in SRELOC, otherwise they should
9496 go in the special .rel.iplt section. */
9497
9498 static void
9499 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
9500 bfd_size_type count)
9501 {
9502 struct elf32_arm_link_hash_table *htab;
9503
9504 htab = elf32_arm_hash_table (info);
9505 if (!htab->root.dynamic_sections_created)
9506 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
9507 else
9508 {
9509 BFD_ASSERT (sreloc != NULL);
9510 sreloc->size += RELOC_SIZE (htab) * count;
9511 }
9512 }
9513
9514 /* Add relocation REL to the end of relocation section SRELOC. */
9515
9516 static void
9517 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
9518 asection *sreloc, Elf_Internal_Rela *rel)
9519 {
9520 bfd_byte *loc;
9521 struct elf32_arm_link_hash_table *htab;
9522
9523 htab = elf32_arm_hash_table (info);
9524 if (!htab->root.dynamic_sections_created
9525 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
9526 sreloc = htab->root.irelplt;
9527 if (sreloc == NULL)
9528 abort ();
9529 loc = sreloc->contents;
9530 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
9531 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
9532 abort ();
9533 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
9534 }
9535
9536 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
9537 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
9538 to .plt. */
9539
9540 static void
9541 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
9542 bfd_boolean is_iplt_entry,
9543 union gotplt_union *root_plt,
9544 struct arm_plt_info *arm_plt)
9545 {
9546 struct elf32_arm_link_hash_table *htab;
9547 asection *splt;
9548 asection *sgotplt;
9549
9550 htab = elf32_arm_hash_table (info);
9551
9552 if (is_iplt_entry)
9553 {
9554 splt = htab->root.iplt;
9555 sgotplt = htab->root.igotplt;
9556
9557 /* NaCl uses a special first entry in .iplt too. */
9558 if (htab->nacl_p && splt->size == 0)
9559 splt->size += htab->plt_header_size;
9560
9561 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
9562 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
9563 }
9564 else
9565 {
9566 splt = htab->root.splt;
9567 sgotplt = htab->root.sgotplt;
9568
9569 if (htab->fdpic_p)
9570 {
9571 /* Allocate room for R_ARM_FUNCDESC_VALUE. */
9572 /* For lazy binding, relocations will be put into .rel.plt, in
9573 .rel.got otherwise. */
9574 /* FIXME: today we don't support lazy binding so put it in .rel.got */
9575 if (info->flags & DF_BIND_NOW)
9576 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
9577 else
9578 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9579 }
9580 else
9581 {
9582 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
9583 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
9584 }
9585
9586 /* If this is the first .plt entry, make room for the special
9587 first entry. */
9588 if (splt->size == 0)
9589 splt->size += htab->plt_header_size;
9590
9591 htab->next_tls_desc_index++;
9592 }
9593
9594 /* Allocate the PLT entry itself, including any leading Thumb stub. */
9595 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9596 splt->size += PLT_THUMB_STUB_SIZE;
9597 root_plt->offset = splt->size;
9598 splt->size += htab->plt_entry_size;
9599
9600 if (!htab->symbian_p)
9601 {
9602 /* We also need to make an entry in the .got.plt section, which
9603 will be placed in the .got section by the linker script. */
9604 if (is_iplt_entry)
9605 arm_plt->got_offset = sgotplt->size;
9606 else
9607 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
9608 if (htab->fdpic_p)
9609 /* Function descriptor takes 64 bits in GOT. */
9610 sgotplt->size += 8;
9611 else
9612 sgotplt->size += 4;
9613 }
9614 }
9615
9616 static bfd_vma
9617 arm_movw_immediate (bfd_vma value)
9618 {
9619 return (value & 0x00000fff) | ((value & 0x0000f000) << 4);
9620 }
9621
9622 static bfd_vma
9623 arm_movt_immediate (bfd_vma value)
9624 {
9625 return ((value & 0x0fff0000) >> 16) | ((value & 0xf0000000) >> 12);
9626 }
9627
9628 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
9629 the entry lives in .iplt and resolves to (*SYM_VALUE)().
9630 Otherwise, DYNINDX is the index of the symbol in the dynamic
9631 symbol table and SYM_VALUE is undefined.
9632
9633 ROOT_PLT points to the offset of the PLT entry from the start of its
9634 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
9635 bookkeeping information.
9636
9637 Returns FALSE if there was a problem. */
9638
9639 static bfd_boolean
9640 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
9641 union gotplt_union *root_plt,
9642 struct arm_plt_info *arm_plt,
9643 int dynindx, bfd_vma sym_value)
9644 {
9645 struct elf32_arm_link_hash_table *htab;
9646 asection *sgot;
9647 asection *splt;
9648 asection *srel;
9649 bfd_byte *loc;
9650 bfd_vma plt_index;
9651 Elf_Internal_Rela rel;
9652 bfd_vma plt_header_size;
9653 bfd_vma got_header_size;
9654
9655 htab = elf32_arm_hash_table (info);
9656
9657 /* Pick the appropriate sections and sizes. */
9658 if (dynindx == -1)
9659 {
9660 splt = htab->root.iplt;
9661 sgot = htab->root.igotplt;
9662 srel = htab->root.irelplt;
9663
9664 /* There are no reserved entries in .igot.plt, and no special
9665 first entry in .iplt. */
9666 got_header_size = 0;
9667 plt_header_size = 0;
9668 }
9669 else
9670 {
9671 splt = htab->root.splt;
9672 sgot = htab->root.sgotplt;
9673 srel = htab->root.srelplt;
9674
9675 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
9676 plt_header_size = htab->plt_header_size;
9677 }
9678 BFD_ASSERT (splt != NULL && srel != NULL);
9679
9680 /* Fill in the entry in the procedure linkage table. */
9681 if (htab->symbian_p)
9682 {
9683 BFD_ASSERT (dynindx >= 0);
9684 put_arm_insn (htab, output_bfd,
9685 elf32_arm_symbian_plt_entry[0],
9686 splt->contents + root_plt->offset);
9687 bfd_put_32 (output_bfd,
9688 elf32_arm_symbian_plt_entry[1],
9689 splt->contents + root_plt->offset + 4);
9690
9691 /* Fill in the entry in the .rel.plt section. */
9692 rel.r_offset = (splt->output_section->vma
9693 + splt->output_offset
9694 + root_plt->offset + 4);
9695 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
9696
9697 /* Get the index in the procedure linkage table which
9698 corresponds to this symbol. This is the index of this symbol
9699 in all the symbols for which we are making plt entries. The
9700 first entry in the procedure linkage table is reserved. */
9701 plt_index = ((root_plt->offset - plt_header_size)
9702 / htab->plt_entry_size);
9703 }
9704 else
9705 {
9706 bfd_vma got_offset, got_address, plt_address;
9707 bfd_vma got_displacement, initial_got_entry;
9708 bfd_byte * ptr;
9709
9710 BFD_ASSERT (sgot != NULL);
9711
9712 /* Get the offset into the .(i)got.plt table of the entry that
9713 corresponds to this function. */
9714 got_offset = (arm_plt->got_offset & -2);
9715
9716 /* Get the index in the procedure linkage table which
9717 corresponds to this symbol. This is the index of this symbol
9718 in all the symbols for which we are making plt entries.
9719 After the reserved .got.plt entries, all symbols appear in
9720 the same order as in .plt. */
9721 if (htab->fdpic_p)
9722 /* Function descriptor takes 8 bytes. */
9723 plt_index = (got_offset - got_header_size) / 8;
9724 else
9725 plt_index = (got_offset - got_header_size) / 4;
9726
9727 /* Calculate the address of the GOT entry. */
9728 got_address = (sgot->output_section->vma
9729 + sgot->output_offset
9730 + got_offset);
9731
9732 /* ...and the address of the PLT entry. */
9733 plt_address = (splt->output_section->vma
9734 + splt->output_offset
9735 + root_plt->offset);
9736
9737 ptr = splt->contents + root_plt->offset;
9738 if (htab->vxworks_p && bfd_link_pic (info))
9739 {
9740 unsigned int i;
9741 bfd_vma val;
9742
9743 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9744 {
9745 val = elf32_arm_vxworks_shared_plt_entry[i];
9746 if (i == 2)
9747 val |= got_address - sgot->output_section->vma;
9748 if (i == 5)
9749 val |= plt_index * RELOC_SIZE (htab);
9750 if (i == 2 || i == 5)
9751 bfd_put_32 (output_bfd, val, ptr);
9752 else
9753 put_arm_insn (htab, output_bfd, val, ptr);
9754 }
9755 }
9756 else if (htab->vxworks_p)
9757 {
9758 unsigned int i;
9759 bfd_vma val;
9760
9761 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9762 {
9763 val = elf32_arm_vxworks_exec_plt_entry[i];
9764 if (i == 2)
9765 val |= got_address;
9766 if (i == 4)
9767 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
9768 if (i == 5)
9769 val |= plt_index * RELOC_SIZE (htab);
9770 if (i == 2 || i == 5)
9771 bfd_put_32 (output_bfd, val, ptr);
9772 else
9773 put_arm_insn (htab, output_bfd, val, ptr);
9774 }
9775
9776 loc = (htab->srelplt2->contents
9777 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9778
9779 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9780 referencing the GOT for this PLT entry. */
9781 rel.r_offset = plt_address + 8;
9782 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9783 rel.r_addend = got_offset;
9784 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9785 loc += RELOC_SIZE (htab);
9786
9787 /* Create the R_ARM_ABS32 relocation referencing the
9788 beginning of the PLT for this GOT entry. */
9789 rel.r_offset = got_address;
9790 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9791 rel.r_addend = 0;
9792 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9793 }
9794 else if (htab->nacl_p)
9795 {
9796 /* Calculate the displacement between the PLT slot and the
9797 common tail that's part of the special initial PLT slot. */
9798 int32_t tail_displacement
9799 = ((splt->output_section->vma + splt->output_offset
9800 + ARM_NACL_PLT_TAIL_OFFSET)
9801 - (plt_address + htab->plt_entry_size + 4));
9802 BFD_ASSERT ((tail_displacement & 3) == 0);
9803 tail_displacement >>= 2;
9804
9805 BFD_ASSERT ((tail_displacement & 0xff000000) == 0
9806 || (-tail_displacement & 0xff000000) == 0);
9807
9808 /* Calculate the displacement between the PLT slot and the entry
9809 in the GOT. The offset accounts for the value produced by
9810 adding to pc in the penultimate instruction of the PLT stub. */
9811 got_displacement = (got_address
9812 - (plt_address + htab->plt_entry_size));
9813
9814 /* NaCl does not support interworking at all. */
9815 BFD_ASSERT (!elf32_arm_plt_needs_thumb_stub_p (info, arm_plt));
9816
9817 put_arm_insn (htab, output_bfd,
9818 elf32_arm_nacl_plt_entry[0]
9819 | arm_movw_immediate (got_displacement),
9820 ptr + 0);
9821 put_arm_insn (htab, output_bfd,
9822 elf32_arm_nacl_plt_entry[1]
9823 | arm_movt_immediate (got_displacement),
9824 ptr + 4);
9825 put_arm_insn (htab, output_bfd,
9826 elf32_arm_nacl_plt_entry[2],
9827 ptr + 8);
9828 put_arm_insn (htab, output_bfd,
9829 elf32_arm_nacl_plt_entry[3]
9830 | (tail_displacement & 0x00ffffff),
9831 ptr + 12);
9832 }
9833 else if (htab->fdpic_p)
9834 {
9835 const bfd_vma *plt_entry = using_thumb_only(htab)
9836 ? elf32_arm_fdpic_thumb_plt_entry
9837 : elf32_arm_fdpic_plt_entry;
9838
9839 /* Fill-up Thumb stub if needed. */
9840 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9841 {
9842 put_thumb_insn (htab, output_bfd,
9843 elf32_arm_plt_thumb_stub[0], ptr - 4);
9844 put_thumb_insn (htab, output_bfd,
9845 elf32_arm_plt_thumb_stub[1], ptr - 2);
9846 }
9847 /* As we are using 32 bit instructions even for the Thumb
9848 version, we have to use 'put_arm_insn' instead of
9849 'put_thumb_insn'. */
9850 put_arm_insn(htab, output_bfd, plt_entry[0], ptr + 0);
9851 put_arm_insn(htab, output_bfd, plt_entry[1], ptr + 4);
9852 put_arm_insn(htab, output_bfd, plt_entry[2], ptr + 8);
9853 put_arm_insn(htab, output_bfd, plt_entry[3], ptr + 12);
9854 bfd_put_32 (output_bfd, got_offset, ptr + 16);
9855
9856 if (!(info->flags & DF_BIND_NOW))
9857 {
9858 /* funcdesc_value_reloc_offset. */
9859 bfd_put_32 (output_bfd,
9860 htab->root.srelplt->reloc_count * RELOC_SIZE (htab),
9861 ptr + 20);
9862 put_arm_insn(htab, output_bfd, plt_entry[6], ptr + 24);
9863 put_arm_insn(htab, output_bfd, plt_entry[7], ptr + 28);
9864 put_arm_insn(htab, output_bfd, plt_entry[8], ptr + 32);
9865 put_arm_insn(htab, output_bfd, plt_entry[9], ptr + 36);
9866 }
9867 }
9868 else if (using_thumb_only (htab))
9869 {
9870 /* PR ld/16017: Generate thumb only PLT entries. */
9871 if (!using_thumb2 (htab))
9872 {
9873 /* FIXME: We ought to be able to generate thumb-1 PLT
9874 instructions... */
9875 _bfd_error_handler (_("%pB: warning: thumb-1 mode PLT generation not currently supported"),
9876 output_bfd);
9877 return FALSE;
9878 }
9879
9880 /* Calculate the displacement between the PLT slot and the entry in
9881 the GOT. The 12-byte offset accounts for the value produced by
9882 adding to pc in the 3rd instruction of the PLT stub. */
9883 got_displacement = got_address - (plt_address + 12);
9884
9885 /* As we are using 32 bit instructions we have to use 'put_arm_insn'
9886 instead of 'put_thumb_insn'. */
9887 put_arm_insn (htab, output_bfd,
9888 elf32_thumb2_plt_entry[0]
9889 | ((got_displacement & 0x000000ff) << 16)
9890 | ((got_displacement & 0x00000700) << 20)
9891 | ((got_displacement & 0x00000800) >> 1)
9892 | ((got_displacement & 0x0000f000) >> 12),
9893 ptr + 0);
9894 put_arm_insn (htab, output_bfd,
9895 elf32_thumb2_plt_entry[1]
9896 | ((got_displacement & 0x00ff0000) )
9897 | ((got_displacement & 0x07000000) << 4)
9898 | ((got_displacement & 0x08000000) >> 17)
9899 | ((got_displacement & 0xf0000000) >> 28),
9900 ptr + 4);
9901 put_arm_insn (htab, output_bfd,
9902 elf32_thumb2_plt_entry[2],
9903 ptr + 8);
9904 put_arm_insn (htab, output_bfd,
9905 elf32_thumb2_plt_entry[3],
9906 ptr + 12);
9907 }
9908 else
9909 {
9910 /* Calculate the displacement between the PLT slot and the
9911 entry in the GOT. The eight-byte offset accounts for the
9912 value produced by adding to pc in the first instruction
9913 of the PLT stub. */
9914 got_displacement = got_address - (plt_address + 8);
9915
9916 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
9917 {
9918 put_thumb_insn (htab, output_bfd,
9919 elf32_arm_plt_thumb_stub[0], ptr - 4);
9920 put_thumb_insn (htab, output_bfd,
9921 elf32_arm_plt_thumb_stub[1], ptr - 2);
9922 }
9923
9924 if (!elf32_arm_use_long_plt_entry)
9925 {
9926 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9927
9928 put_arm_insn (htab, output_bfd,
9929 elf32_arm_plt_entry_short[0]
9930 | ((got_displacement & 0x0ff00000) >> 20),
9931 ptr + 0);
9932 put_arm_insn (htab, output_bfd,
9933 elf32_arm_plt_entry_short[1]
9934 | ((got_displacement & 0x000ff000) >> 12),
9935 ptr+ 4);
9936 put_arm_insn (htab, output_bfd,
9937 elf32_arm_plt_entry_short[2]
9938 | (got_displacement & 0x00000fff),
9939 ptr + 8);
9940 #ifdef FOUR_WORD_PLT
9941 bfd_put_32 (output_bfd, elf32_arm_plt_entry_short[3], ptr + 12);
9942 #endif
9943 }
9944 else
9945 {
9946 put_arm_insn (htab, output_bfd,
9947 elf32_arm_plt_entry_long[0]
9948 | ((got_displacement & 0xf0000000) >> 28),
9949 ptr + 0);
9950 put_arm_insn (htab, output_bfd,
9951 elf32_arm_plt_entry_long[1]
9952 | ((got_displacement & 0x0ff00000) >> 20),
9953 ptr + 4);
9954 put_arm_insn (htab, output_bfd,
9955 elf32_arm_plt_entry_long[2]
9956 | ((got_displacement & 0x000ff000) >> 12),
9957 ptr+ 8);
9958 put_arm_insn (htab, output_bfd,
9959 elf32_arm_plt_entry_long[3]
9960 | (got_displacement & 0x00000fff),
9961 ptr + 12);
9962 }
9963 }
9964
9965 /* Fill in the entry in the .rel(a).(i)plt section. */
9966 rel.r_offset = got_address;
9967 rel.r_addend = 0;
9968 if (dynindx == -1)
9969 {
9970 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
9971 The dynamic linker or static executable then calls SYM_VALUE
9972 to determine the correct run-time value of the .igot.plt entry. */
9973 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9974 initial_got_entry = sym_value;
9975 }
9976 else
9977 {
9978 /* For FDPIC we will have to resolve a R_ARM_FUNCDESC_VALUE
9979 used by PLT entry. */
9980 if (htab->fdpic_p)
9981 {
9982 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_FUNCDESC_VALUE);
9983 initial_got_entry = 0;
9984 }
9985 else
9986 {
9987 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
9988 initial_got_entry = (splt->output_section->vma
9989 + splt->output_offset);
9990 }
9991 }
9992
9993 /* Fill in the entry in the global offset table. */
9994 bfd_put_32 (output_bfd, initial_got_entry,
9995 sgot->contents + got_offset);
9996
9997 if (htab->fdpic_p && !(info->flags & DF_BIND_NOW))
9998 {
9999 /* Setup initial funcdesc value. */
10000 /* FIXME: we don't support lazy binding because there is a
10001 race condition between both words getting written and
10002 some other thread attempting to read them. The ARM
10003 architecture does not have an atomic 64 bit load/store
10004 instruction that could be used to prevent it; it is
10005 recommended that threaded FDPIC applications run with the
10006 LD_BIND_NOW environment variable set. */
10007 bfd_put_32(output_bfd, plt_address + 0x18,
10008 sgot->contents + got_offset);
10009 bfd_put_32(output_bfd, -1 /*TODO*/,
10010 sgot->contents + got_offset + 4);
10011 }
10012 }
10013
10014 if (dynindx == -1)
10015 elf32_arm_add_dynreloc (output_bfd, info, srel, &rel);
10016 else
10017 {
10018 if (htab->fdpic_p)
10019 {
10020 /* For FDPIC we put PLT relocationss into .rel.got when not
10021 lazy binding otherwise we put them in .rel.plt. For now,
10022 we don't support lazy binding so put it in .rel.got. */
10023 if (info->flags & DF_BIND_NOW)
10024 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelgot, &rel);
10025 else
10026 elf32_arm_add_dynreloc(output_bfd, info, htab->root.srelplt, &rel);
10027 }
10028 else
10029 {
10030 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10031 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10032 }
10033 }
10034
10035 return TRUE;
10036 }
10037
10038 /* Some relocations map to different relocations depending on the
10039 target. Return the real relocation. */
10040
10041 static int
10042 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
10043 int r_type)
10044 {
10045 switch (r_type)
10046 {
10047 case R_ARM_TARGET1:
10048 if (globals->target1_is_rel)
10049 return R_ARM_REL32;
10050 else
10051 return R_ARM_ABS32;
10052
10053 case R_ARM_TARGET2:
10054 return globals->target2_reloc;
10055
10056 default:
10057 return r_type;
10058 }
10059 }
10060
10061 /* Return the base VMA address which should be subtracted from real addresses
10062 when resolving @dtpoff relocation.
10063 This is PT_TLS segment p_vaddr. */
10064
10065 static bfd_vma
10066 dtpoff_base (struct bfd_link_info *info)
10067 {
10068 /* If tls_sec is NULL, we should have signalled an error already. */
10069 if (elf_hash_table (info)->tls_sec == NULL)
10070 return 0;
10071 return elf_hash_table (info)->tls_sec->vma;
10072 }
10073
10074 /* Return the relocation value for @tpoff relocation
10075 if STT_TLS virtual address is ADDRESS. */
10076
10077 static bfd_vma
10078 tpoff (struct bfd_link_info *info, bfd_vma address)
10079 {
10080 struct elf_link_hash_table *htab = elf_hash_table (info);
10081 bfd_vma base;
10082
10083 /* If tls_sec is NULL, we should have signalled an error already. */
10084 if (htab->tls_sec == NULL)
10085 return 0;
10086 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
10087 return address - htab->tls_sec->vma + base;
10088 }
10089
10090 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
10091 VALUE is the relocation value. */
10092
10093 static bfd_reloc_status_type
10094 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
10095 {
10096 if (value > 0xfff)
10097 return bfd_reloc_overflow;
10098
10099 value |= bfd_get_32 (abfd, data) & 0xfffff000;
10100 bfd_put_32 (abfd, value, data);
10101 return bfd_reloc_ok;
10102 }
10103
10104 /* Handle TLS relaxations. Relaxing is possible for symbols that use
10105 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
10106 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
10107
10108 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
10109 is to then call final_link_relocate. Return other values in the
10110 case of error.
10111
10112 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
10113 the pre-relaxed code. It would be nice if the relocs were updated
10114 to match the optimization. */
10115
10116 static bfd_reloc_status_type
10117 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
10118 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
10119 Elf_Internal_Rela *rel, unsigned long is_local)
10120 {
10121 unsigned long insn;
10122
10123 switch (ELF32_R_TYPE (rel->r_info))
10124 {
10125 default:
10126 return bfd_reloc_notsupported;
10127
10128 case R_ARM_TLS_GOTDESC:
10129 if (is_local)
10130 insn = 0;
10131 else
10132 {
10133 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10134 if (insn & 1)
10135 insn -= 5; /* THUMB */
10136 else
10137 insn -= 8; /* ARM */
10138 }
10139 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10140 return bfd_reloc_continue;
10141
10142 case R_ARM_THM_TLS_DESCSEQ:
10143 /* Thumb insn. */
10144 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
10145 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
10146 {
10147 if (is_local)
10148 /* nop */
10149 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10150 }
10151 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
10152 {
10153 if (is_local)
10154 /* nop */
10155 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10156 else
10157 /* ldr rx,[ry] */
10158 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
10159 }
10160 else if ((insn & 0xff87) == 0x4780) /* blx rx */
10161 {
10162 if (is_local)
10163 /* nop */
10164 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
10165 else
10166 /* mov r0, rx */
10167 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
10168 contents + rel->r_offset);
10169 }
10170 else
10171 {
10172 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
10173 /* It's a 32 bit instruction, fetch the rest of it for
10174 error generation. */
10175 insn = (insn << 16)
10176 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
10177 _bfd_error_handler
10178 /* xgettext:c-format */
10179 (_("%pB(%pA+%#" PRIx64 "): "
10180 "unexpected %s instruction '%#lx' in TLS trampoline"),
10181 input_bfd, input_sec, (uint64_t) rel->r_offset,
10182 "Thumb", insn);
10183 return bfd_reloc_notsupported;
10184 }
10185 break;
10186
10187 case R_ARM_TLS_DESCSEQ:
10188 /* arm insn. */
10189 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
10190 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
10191 {
10192 if (is_local)
10193 /* mov rx, ry */
10194 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
10195 contents + rel->r_offset);
10196 }
10197 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
10198 {
10199 if (is_local)
10200 /* nop */
10201 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10202 else
10203 /* ldr rx,[ry] */
10204 bfd_put_32 (input_bfd, insn & 0xfffff000,
10205 contents + rel->r_offset);
10206 }
10207 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
10208 {
10209 if (is_local)
10210 /* nop */
10211 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
10212 else
10213 /* mov r0, rx */
10214 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
10215 contents + rel->r_offset);
10216 }
10217 else
10218 {
10219 _bfd_error_handler
10220 /* xgettext:c-format */
10221 (_("%pB(%pA+%#" PRIx64 "): "
10222 "unexpected %s instruction '%#lx' in TLS trampoline"),
10223 input_bfd, input_sec, (uint64_t) rel->r_offset,
10224 "ARM", insn);
10225 return bfd_reloc_notsupported;
10226 }
10227 break;
10228
10229 case R_ARM_TLS_CALL:
10230 /* GD->IE relaxation, turn the instruction into 'nop' or
10231 'ldr r0, [pc,r0]' */
10232 insn = is_local ? 0xe1a00000 : 0xe79f0000;
10233 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
10234 break;
10235
10236 case R_ARM_THM_TLS_CALL:
10237 /* GD->IE relaxation. */
10238 if (!is_local)
10239 /* add r0,pc; ldr r0, [r0] */
10240 insn = 0x44786800;
10241 else if (using_thumb2 (globals))
10242 /* nop.w */
10243 insn = 0xf3af8000;
10244 else
10245 /* nop; nop */
10246 insn = 0xbf00bf00;
10247
10248 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
10249 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
10250 break;
10251 }
10252 return bfd_reloc_ok;
10253 }
10254
10255 /* For a given value of n, calculate the value of G_n as required to
10256 deal with group relocations. We return it in the form of an
10257 encoded constant-and-rotation, together with the final residual. If n is
10258 specified as less than zero, then final_residual is filled with the
10259 input value and no further action is performed. */
10260
10261 static bfd_vma
10262 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
10263 {
10264 int current_n;
10265 bfd_vma g_n;
10266 bfd_vma encoded_g_n = 0;
10267 bfd_vma residual = value; /* Also known as Y_n. */
10268
10269 for (current_n = 0; current_n <= n; current_n++)
10270 {
10271 int shift;
10272
10273 /* Calculate which part of the value to mask. */
10274 if (residual == 0)
10275 shift = 0;
10276 else
10277 {
10278 int msb;
10279
10280 /* Determine the most significant bit in the residual and
10281 align the resulting value to a 2-bit boundary. */
10282 for (msb = 30; msb >= 0; msb -= 2)
10283 if (residual & (3 << msb))
10284 break;
10285
10286 /* The desired shift is now (msb - 6), or zero, whichever
10287 is the greater. */
10288 shift = msb - 6;
10289 if (shift < 0)
10290 shift = 0;
10291 }
10292
10293 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
10294 g_n = residual & (0xff << shift);
10295 encoded_g_n = (g_n >> shift)
10296 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
10297
10298 /* Calculate the residual for the next time around. */
10299 residual &= ~g_n;
10300 }
10301
10302 *final_residual = residual;
10303
10304 return encoded_g_n;
10305 }
10306
10307 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
10308 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
10309
10310 static int
10311 identify_add_or_sub (bfd_vma insn)
10312 {
10313 int opcode = insn & 0x1e00000;
10314
10315 if (opcode == 1 << 23) /* ADD */
10316 return 1;
10317
10318 if (opcode == 1 << 22) /* SUB */
10319 return -1;
10320
10321 return 0;
10322 }
10323
10324 /* Perform a relocation as part of a final link. */
10325
10326 static bfd_reloc_status_type
10327 elf32_arm_final_link_relocate (reloc_howto_type * howto,
10328 bfd * input_bfd,
10329 bfd * output_bfd,
10330 asection * input_section,
10331 bfd_byte * contents,
10332 Elf_Internal_Rela * rel,
10333 bfd_vma value,
10334 struct bfd_link_info * info,
10335 asection * sym_sec,
10336 const char * sym_name,
10337 unsigned char st_type,
10338 enum arm_st_branch_type branch_type,
10339 struct elf_link_hash_entry * h,
10340 bfd_boolean * unresolved_reloc_p,
10341 char ** error_message)
10342 {
10343 unsigned long r_type = howto->type;
10344 unsigned long r_symndx;
10345 bfd_byte * hit_data = contents + rel->r_offset;
10346 bfd_vma * local_got_offsets;
10347 bfd_vma * local_tlsdesc_gotents;
10348 asection * sgot;
10349 asection * splt;
10350 asection * sreloc = NULL;
10351 asection * srelgot;
10352 bfd_vma addend;
10353 bfd_signed_vma signed_addend;
10354 unsigned char dynreloc_st_type;
10355 bfd_vma dynreloc_value;
10356 struct elf32_arm_link_hash_table * globals;
10357 struct elf32_arm_link_hash_entry *eh;
10358 union gotplt_union *root_plt;
10359 struct arm_plt_info *arm_plt;
10360 bfd_vma plt_offset;
10361 bfd_vma gotplt_offset;
10362 bfd_boolean has_iplt_entry;
10363 bfd_boolean resolved_to_zero;
10364
10365 globals = elf32_arm_hash_table (info);
10366 if (globals == NULL)
10367 return bfd_reloc_notsupported;
10368
10369 BFD_ASSERT (is_arm_elf (input_bfd));
10370 BFD_ASSERT (howto != NULL);
10371
10372 /* Some relocation types map to different relocations depending on the
10373 target. We pick the right one here. */
10374 r_type = arm_real_reloc_type (globals, r_type);
10375
10376 /* It is possible to have linker relaxations on some TLS access
10377 models. Update our information here. */
10378 r_type = elf32_arm_tls_transition (info, r_type, h);
10379
10380 if (r_type != howto->type)
10381 howto = elf32_arm_howto_from_type (r_type);
10382
10383 eh = (struct elf32_arm_link_hash_entry *) h;
10384 sgot = globals->root.sgot;
10385 local_got_offsets = elf_local_got_offsets (input_bfd);
10386 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
10387
10388 if (globals->root.dynamic_sections_created)
10389 srelgot = globals->root.srelgot;
10390 else
10391 srelgot = NULL;
10392
10393 r_symndx = ELF32_R_SYM (rel->r_info);
10394
10395 if (globals->use_rel)
10396 {
10397 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
10398
10399 if (addend & ((howto->src_mask + 1) >> 1))
10400 {
10401 signed_addend = -1;
10402 signed_addend &= ~ howto->src_mask;
10403 signed_addend |= addend;
10404 }
10405 else
10406 signed_addend = addend;
10407 }
10408 else
10409 addend = signed_addend = rel->r_addend;
10410
10411 /* ST_BRANCH_TO_ARM is nonsense to thumb-only targets when we
10412 are resolving a function call relocation. */
10413 if (using_thumb_only (globals)
10414 && (r_type == R_ARM_THM_CALL
10415 || r_type == R_ARM_THM_JUMP24)
10416 && branch_type == ST_BRANCH_TO_ARM)
10417 branch_type = ST_BRANCH_TO_THUMB;
10418
10419 /* Record the symbol information that should be used in dynamic
10420 relocations. */
10421 dynreloc_st_type = st_type;
10422 dynreloc_value = value;
10423 if (branch_type == ST_BRANCH_TO_THUMB)
10424 dynreloc_value |= 1;
10425
10426 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
10427 VALUE appropriately for relocations that we resolve at link time. */
10428 has_iplt_entry = FALSE;
10429 if (elf32_arm_get_plt_info (input_bfd, globals, eh, r_symndx, &root_plt,
10430 &arm_plt)
10431 && root_plt->offset != (bfd_vma) -1)
10432 {
10433 plt_offset = root_plt->offset;
10434 gotplt_offset = arm_plt->got_offset;
10435
10436 if (h == NULL || eh->is_iplt)
10437 {
10438 has_iplt_entry = TRUE;
10439 splt = globals->root.iplt;
10440
10441 /* Populate .iplt entries here, because not all of them will
10442 be seen by finish_dynamic_symbol. The lower bit is set if
10443 we have already populated the entry. */
10444 if (plt_offset & 1)
10445 plt_offset--;
10446 else
10447 {
10448 if (elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
10449 -1, dynreloc_value))
10450 root_plt->offset |= 1;
10451 else
10452 return bfd_reloc_notsupported;
10453 }
10454
10455 /* Static relocations always resolve to the .iplt entry. */
10456 st_type = STT_FUNC;
10457 value = (splt->output_section->vma
10458 + splt->output_offset
10459 + plt_offset);
10460 branch_type = ST_BRANCH_TO_ARM;
10461
10462 /* If there are non-call relocations that resolve to the .iplt
10463 entry, then all dynamic ones must too. */
10464 if (arm_plt->noncall_refcount != 0)
10465 {
10466 dynreloc_st_type = st_type;
10467 dynreloc_value = value;
10468 }
10469 }
10470 else
10471 /* We populate the .plt entry in finish_dynamic_symbol. */
10472 splt = globals->root.splt;
10473 }
10474 else
10475 {
10476 splt = NULL;
10477 plt_offset = (bfd_vma) -1;
10478 gotplt_offset = (bfd_vma) -1;
10479 }
10480
10481 resolved_to_zero = (h != NULL
10482 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h));
10483
10484 switch (r_type)
10485 {
10486 case R_ARM_NONE:
10487 /* We don't need to find a value for this symbol. It's just a
10488 marker. */
10489 *unresolved_reloc_p = FALSE;
10490 return bfd_reloc_ok;
10491
10492 case R_ARM_ABS12:
10493 if (!globals->vxworks_p)
10494 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10495 /* Fall through. */
10496
10497 case R_ARM_PC24:
10498 case R_ARM_ABS32:
10499 case R_ARM_ABS32_NOI:
10500 case R_ARM_REL32:
10501 case R_ARM_REL32_NOI:
10502 case R_ARM_CALL:
10503 case R_ARM_JUMP24:
10504 case R_ARM_XPC25:
10505 case R_ARM_PREL31:
10506 case R_ARM_PLT32:
10507 /* Handle relocations which should use the PLT entry. ABS32/REL32
10508 will use the symbol's value, which may point to a PLT entry, but we
10509 don't need to handle that here. If we created a PLT entry, all
10510 branches in this object should go to it, except if the PLT is too
10511 far away, in which case a long branch stub should be inserted. */
10512 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
10513 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
10514 && r_type != R_ARM_CALL
10515 && r_type != R_ARM_JUMP24
10516 && r_type != R_ARM_PLT32)
10517 && plt_offset != (bfd_vma) -1)
10518 {
10519 /* If we've created a .plt section, and assigned a PLT entry
10520 to this function, it must either be a STT_GNU_IFUNC reference
10521 or not be known to bind locally. In other cases, we should
10522 have cleared the PLT entry by now. */
10523 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
10524
10525 value = (splt->output_section->vma
10526 + splt->output_offset
10527 + plt_offset);
10528 *unresolved_reloc_p = FALSE;
10529 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10530 contents, rel->r_offset, value,
10531 rel->r_addend);
10532 }
10533
10534 /* When generating a shared object or relocatable executable, these
10535 relocations are copied into the output file to be resolved at
10536 run time. */
10537 if ((bfd_link_pic (info)
10538 || globals->root.is_relocatable_executable
10539 || globals->fdpic_p)
10540 && (input_section->flags & SEC_ALLOC)
10541 && !(globals->vxworks_p
10542 && strcmp (input_section->output_section->name,
10543 ".tls_vars") == 0)
10544 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
10545 || !SYMBOL_CALLS_LOCAL (info, h))
10546 && !(input_bfd == globals->stub_bfd
10547 && strstr (input_section->name, STUB_SUFFIX))
10548 && (h == NULL
10549 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10550 && !resolved_to_zero)
10551 || h->root.type != bfd_link_hash_undefweak)
10552 && r_type != R_ARM_PC24
10553 && r_type != R_ARM_CALL
10554 && r_type != R_ARM_JUMP24
10555 && r_type != R_ARM_PREL31
10556 && r_type != R_ARM_PLT32)
10557 {
10558 Elf_Internal_Rela outrel;
10559 bfd_boolean skip, relocate;
10560 int isrofixup = 0;
10561
10562 if ((r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
10563 && !h->def_regular)
10564 {
10565 char *v = _("shared object");
10566
10567 if (bfd_link_executable (info))
10568 v = _("PIE executable");
10569
10570 _bfd_error_handler
10571 (_("%pB: relocation %s against external or undefined symbol `%s'"
10572 " can not be used when making a %s; recompile with -fPIC"), input_bfd,
10573 elf32_arm_howto_table_1[r_type].name, h->root.root.string, v);
10574 return bfd_reloc_notsupported;
10575 }
10576
10577 *unresolved_reloc_p = FALSE;
10578
10579 if (sreloc == NULL && globals->root.dynamic_sections_created)
10580 {
10581 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
10582 ! globals->use_rel);
10583
10584 if (sreloc == NULL)
10585 return bfd_reloc_notsupported;
10586 }
10587
10588 skip = FALSE;
10589 relocate = FALSE;
10590
10591 outrel.r_addend = addend;
10592 outrel.r_offset =
10593 _bfd_elf_section_offset (output_bfd, info, input_section,
10594 rel->r_offset);
10595 if (outrel.r_offset == (bfd_vma) -1)
10596 skip = TRUE;
10597 else if (outrel.r_offset == (bfd_vma) -2)
10598 skip = TRUE, relocate = TRUE;
10599 outrel.r_offset += (input_section->output_section->vma
10600 + input_section->output_offset);
10601
10602 if (skip)
10603 memset (&outrel, 0, sizeof outrel);
10604 else if (h != NULL
10605 && h->dynindx != -1
10606 && (!bfd_link_pic (info)
10607 || !(bfd_link_pie (info)
10608 || SYMBOLIC_BIND (info, h))
10609 || !h->def_regular))
10610 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
10611 else
10612 {
10613 int symbol;
10614
10615 /* This symbol is local, or marked to become local. */
10616 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI
10617 || (globals->fdpic_p && !bfd_link_pic(info)));
10618 if (globals->symbian_p)
10619 {
10620 asection *osec;
10621
10622 /* On Symbian OS, the data segment and text segement
10623 can be relocated independently. Therefore, we
10624 must indicate the segment to which this
10625 relocation is relative. The BPABI allows us to
10626 use any symbol in the right segment; we just use
10627 the section symbol as it is convenient. (We
10628 cannot use the symbol given by "h" directly as it
10629 will not appear in the dynamic symbol table.)
10630
10631 Note that the dynamic linker ignores the section
10632 symbol value, so we don't subtract osec->vma
10633 from the emitted reloc addend. */
10634 if (sym_sec)
10635 osec = sym_sec->output_section;
10636 else
10637 osec = input_section->output_section;
10638 symbol = elf_section_data (osec)->dynindx;
10639 if (symbol == 0)
10640 {
10641 struct elf_link_hash_table *htab = elf_hash_table (info);
10642
10643 if ((osec->flags & SEC_READONLY) == 0
10644 && htab->data_index_section != NULL)
10645 osec = htab->data_index_section;
10646 else
10647 osec = htab->text_index_section;
10648 symbol = elf_section_data (osec)->dynindx;
10649 }
10650 BFD_ASSERT (symbol != 0);
10651 }
10652 else
10653 /* On SVR4-ish systems, the dynamic loader cannot
10654 relocate the text and data segments independently,
10655 so the symbol does not matter. */
10656 symbol = 0;
10657 if (dynreloc_st_type == STT_GNU_IFUNC)
10658 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
10659 to the .iplt entry. Instead, every non-call reference
10660 must use an R_ARM_IRELATIVE relocation to obtain the
10661 correct run-time address. */
10662 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
10663 else if (globals->fdpic_p && !bfd_link_pic(info))
10664 isrofixup = 1;
10665 else
10666 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
10667 if (globals->use_rel)
10668 relocate = TRUE;
10669 else
10670 outrel.r_addend += dynreloc_value;
10671 }
10672
10673 if (isrofixup)
10674 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
10675 else
10676 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
10677
10678 /* If this reloc is against an external symbol, we do not want to
10679 fiddle with the addend. Otherwise, we need to include the symbol
10680 value so that it becomes an addend for the dynamic reloc. */
10681 if (! relocate)
10682 return bfd_reloc_ok;
10683
10684 return _bfd_final_link_relocate (howto, input_bfd, input_section,
10685 contents, rel->r_offset,
10686 dynreloc_value, (bfd_vma) 0);
10687 }
10688 else switch (r_type)
10689 {
10690 case R_ARM_ABS12:
10691 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
10692
10693 case R_ARM_XPC25: /* Arm BLX instruction. */
10694 case R_ARM_CALL:
10695 case R_ARM_JUMP24:
10696 case R_ARM_PC24: /* Arm B/BL instruction. */
10697 case R_ARM_PLT32:
10698 {
10699 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
10700
10701 if (r_type == R_ARM_XPC25)
10702 {
10703 /* Check for Arm calling Arm function. */
10704 /* FIXME: Should we translate the instruction into a BL
10705 instruction instead ? */
10706 if (branch_type != ST_BRANCH_TO_THUMB)
10707 _bfd_error_handler
10708 (_("\%pB: warning: %s BLX instruction targets"
10709 " %s function '%s'"),
10710 input_bfd, "ARM",
10711 "ARM", h ? h->root.root.string : "(local)");
10712 }
10713 else if (r_type == R_ARM_PC24)
10714 {
10715 /* Check for Arm calling Thumb function. */
10716 if (branch_type == ST_BRANCH_TO_THUMB)
10717 {
10718 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
10719 output_bfd, input_section,
10720 hit_data, sym_sec, rel->r_offset,
10721 signed_addend, value,
10722 error_message))
10723 return bfd_reloc_ok;
10724 else
10725 return bfd_reloc_dangerous;
10726 }
10727 }
10728
10729 /* Check if a stub has to be inserted because the
10730 destination is too far or we are changing mode. */
10731 if ( r_type == R_ARM_CALL
10732 || r_type == R_ARM_JUMP24
10733 || r_type == R_ARM_PLT32)
10734 {
10735 enum elf32_arm_stub_type stub_type = arm_stub_none;
10736 struct elf32_arm_link_hash_entry *hash;
10737
10738 hash = (struct elf32_arm_link_hash_entry *) h;
10739 stub_type = arm_type_of_stub (info, input_section, rel,
10740 st_type, &branch_type,
10741 hash, value, sym_sec,
10742 input_bfd, sym_name);
10743
10744 if (stub_type != arm_stub_none)
10745 {
10746 /* The target is out of reach, so redirect the
10747 branch to the local stub for this function. */
10748 stub_entry = elf32_arm_get_stub_entry (input_section,
10749 sym_sec, h,
10750 rel, globals,
10751 stub_type);
10752 {
10753 if (stub_entry != NULL)
10754 value = (stub_entry->stub_offset
10755 + stub_entry->stub_sec->output_offset
10756 + stub_entry->stub_sec->output_section->vma);
10757
10758 if (plt_offset != (bfd_vma) -1)
10759 *unresolved_reloc_p = FALSE;
10760 }
10761 }
10762 else
10763 {
10764 /* If the call goes through a PLT entry, make sure to
10765 check distance to the right destination address. */
10766 if (plt_offset != (bfd_vma) -1)
10767 {
10768 value = (splt->output_section->vma
10769 + splt->output_offset
10770 + plt_offset);
10771 *unresolved_reloc_p = FALSE;
10772 /* The PLT entry is in ARM mode, regardless of the
10773 target function. */
10774 branch_type = ST_BRANCH_TO_ARM;
10775 }
10776 }
10777 }
10778
10779 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
10780 where:
10781 S is the address of the symbol in the relocation.
10782 P is address of the instruction being relocated.
10783 A is the addend (extracted from the instruction) in bytes.
10784
10785 S is held in 'value'.
10786 P is the base address of the section containing the
10787 instruction plus the offset of the reloc into that
10788 section, ie:
10789 (input_section->output_section->vma +
10790 input_section->output_offset +
10791 rel->r_offset).
10792 A is the addend, converted into bytes, ie:
10793 (signed_addend * 4)
10794
10795 Note: None of these operations have knowledge of the pipeline
10796 size of the processor, thus it is up to the assembler to
10797 encode this information into the addend. */
10798 value -= (input_section->output_section->vma
10799 + input_section->output_offset);
10800 value -= rel->r_offset;
10801 if (globals->use_rel)
10802 value += (signed_addend << howto->size);
10803 else
10804 /* RELA addends do not have to be adjusted by howto->size. */
10805 value += signed_addend;
10806
10807 signed_addend = value;
10808 signed_addend >>= howto->rightshift;
10809
10810 /* A branch to an undefined weak symbol is turned into a jump to
10811 the next instruction unless a PLT entry will be created.
10812 Do the same for local undefined symbols (but not for STN_UNDEF).
10813 The jump to the next instruction is optimized as a NOP depending
10814 on the architecture. */
10815 if (h ? (h->root.type == bfd_link_hash_undefweak
10816 && plt_offset == (bfd_vma) -1)
10817 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
10818 {
10819 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
10820
10821 if (arch_has_arm_nop (globals))
10822 value |= 0x0320f000;
10823 else
10824 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
10825 }
10826 else
10827 {
10828 /* Perform a signed range check. */
10829 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
10830 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
10831 return bfd_reloc_overflow;
10832
10833 addend = (value & 2);
10834
10835 value = (signed_addend & howto->dst_mask)
10836 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
10837
10838 if (r_type == R_ARM_CALL)
10839 {
10840 /* Set the H bit in the BLX instruction. */
10841 if (branch_type == ST_BRANCH_TO_THUMB)
10842 {
10843 if (addend)
10844 value |= (1 << 24);
10845 else
10846 value &= ~(bfd_vma)(1 << 24);
10847 }
10848
10849 /* Select the correct instruction (BL or BLX). */
10850 /* Only if we are not handling a BL to a stub. In this
10851 case, mode switching is performed by the stub. */
10852 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
10853 value |= (1 << 28);
10854 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
10855 {
10856 value &= ~(bfd_vma)(1 << 28);
10857 value |= (1 << 24);
10858 }
10859 }
10860 }
10861 }
10862 break;
10863
10864 case R_ARM_ABS32:
10865 value += addend;
10866 if (branch_type == ST_BRANCH_TO_THUMB)
10867 value |= 1;
10868 break;
10869
10870 case R_ARM_ABS32_NOI:
10871 value += addend;
10872 break;
10873
10874 case R_ARM_REL32:
10875 value += addend;
10876 if (branch_type == ST_BRANCH_TO_THUMB)
10877 value |= 1;
10878 value -= (input_section->output_section->vma
10879 + input_section->output_offset + rel->r_offset);
10880 break;
10881
10882 case R_ARM_REL32_NOI:
10883 value += addend;
10884 value -= (input_section->output_section->vma
10885 + input_section->output_offset + rel->r_offset);
10886 break;
10887
10888 case R_ARM_PREL31:
10889 value -= (input_section->output_section->vma
10890 + input_section->output_offset + rel->r_offset);
10891 value += signed_addend;
10892 if (! h || h->root.type != bfd_link_hash_undefweak)
10893 {
10894 /* Check for overflow. */
10895 if ((value ^ (value >> 1)) & (1 << 30))
10896 return bfd_reloc_overflow;
10897 }
10898 value &= 0x7fffffff;
10899 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
10900 if (branch_type == ST_BRANCH_TO_THUMB)
10901 value |= 1;
10902 break;
10903 }
10904
10905 bfd_put_32 (input_bfd, value, hit_data);
10906 return bfd_reloc_ok;
10907
10908 case R_ARM_ABS8:
10909 /* PR 16202: Refectch the addend using the correct size. */
10910 if (globals->use_rel)
10911 addend = bfd_get_8 (input_bfd, hit_data);
10912 value += addend;
10913
10914 /* There is no way to tell whether the user intended to use a signed or
10915 unsigned addend. When checking for overflow we accept either,
10916 as specified by the AAELF. */
10917 if ((long) value > 0xff || (long) value < -0x80)
10918 return bfd_reloc_overflow;
10919
10920 bfd_put_8 (input_bfd, value, hit_data);
10921 return bfd_reloc_ok;
10922
10923 case R_ARM_ABS16:
10924 /* PR 16202: Refectch the addend using the correct size. */
10925 if (globals->use_rel)
10926 addend = bfd_get_16 (input_bfd, hit_data);
10927 value += addend;
10928
10929 /* See comment for R_ARM_ABS8. */
10930 if ((long) value > 0xffff || (long) value < -0x8000)
10931 return bfd_reloc_overflow;
10932
10933 bfd_put_16 (input_bfd, value, hit_data);
10934 return bfd_reloc_ok;
10935
10936 case R_ARM_THM_ABS5:
10937 /* Support ldr and str instructions for the thumb. */
10938 if (globals->use_rel)
10939 {
10940 /* Need to refetch addend. */
10941 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
10942 /* ??? Need to determine shift amount from operand size. */
10943 addend >>= howto->rightshift;
10944 }
10945 value += addend;
10946
10947 /* ??? Isn't value unsigned? */
10948 if ((long) value > 0x1f || (long) value < -0x10)
10949 return bfd_reloc_overflow;
10950
10951 /* ??? Value needs to be properly shifted into place first. */
10952 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
10953 bfd_put_16 (input_bfd, value, hit_data);
10954 return bfd_reloc_ok;
10955
10956 case R_ARM_THM_ALU_PREL_11_0:
10957 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
10958 {
10959 bfd_vma insn;
10960 bfd_signed_vma relocation;
10961
10962 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
10963 | bfd_get_16 (input_bfd, hit_data + 2);
10964
10965 if (globals->use_rel)
10966 {
10967 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
10968 | ((insn & (1 << 26)) >> 15);
10969 if (insn & 0xf00000)
10970 signed_addend = -signed_addend;
10971 }
10972
10973 relocation = value + signed_addend;
10974 relocation -= Pa (input_section->output_section->vma
10975 + input_section->output_offset
10976 + rel->r_offset);
10977
10978 /* PR 21523: Use an absolute value. The user of this reloc will
10979 have already selected an ADD or SUB insn appropriately. */
10980 value = llabs (relocation);
10981
10982 if (value >= 0x1000)
10983 return bfd_reloc_overflow;
10984
10985 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
10986 if (branch_type == ST_BRANCH_TO_THUMB)
10987 value |= 1;
10988
10989 insn = (insn & 0xfb0f8f00) | (value & 0xff)
10990 | ((value & 0x700) << 4)
10991 | ((value & 0x800) << 15);
10992 if (relocation < 0)
10993 insn |= 0xa00000;
10994
10995 bfd_put_16 (input_bfd, insn >> 16, hit_data);
10996 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
10997
10998 return bfd_reloc_ok;
10999 }
11000
11001 case R_ARM_THM_PC8:
11002 /* PR 10073: This reloc is not generated by the GNU toolchain,
11003 but it is supported for compatibility with third party libraries
11004 generated by other compilers, specifically the ARM/IAR. */
11005 {
11006 bfd_vma insn;
11007 bfd_signed_vma relocation;
11008
11009 insn = bfd_get_16 (input_bfd, hit_data);
11010
11011 if (globals->use_rel)
11012 addend = ((((insn & 0x00ff) << 2) + 4) & 0x3ff) -4;
11013
11014 relocation = value + addend;
11015 relocation -= Pa (input_section->output_section->vma
11016 + input_section->output_offset
11017 + rel->r_offset);
11018
11019 value = relocation;
11020
11021 /* We do not check for overflow of this reloc. Although strictly
11022 speaking this is incorrect, it appears to be necessary in order
11023 to work with IAR generated relocs. Since GCC and GAS do not
11024 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
11025 a problem for them. */
11026 value &= 0x3fc;
11027
11028 insn = (insn & 0xff00) | (value >> 2);
11029
11030 bfd_put_16 (input_bfd, insn, hit_data);
11031
11032 return bfd_reloc_ok;
11033 }
11034
11035 case R_ARM_THM_PC12:
11036 /* Corresponds to: ldr.w reg, [pc, #offset]. */
11037 {
11038 bfd_vma insn;
11039 bfd_signed_vma relocation;
11040
11041 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
11042 | bfd_get_16 (input_bfd, hit_data + 2);
11043
11044 if (globals->use_rel)
11045 {
11046 signed_addend = insn & 0xfff;
11047 if (!(insn & (1 << 23)))
11048 signed_addend = -signed_addend;
11049 }
11050
11051 relocation = value + signed_addend;
11052 relocation -= Pa (input_section->output_section->vma
11053 + input_section->output_offset
11054 + rel->r_offset);
11055
11056 value = relocation;
11057
11058 if (value >= 0x1000)
11059 return bfd_reloc_overflow;
11060
11061 insn = (insn & 0xff7ff000) | value;
11062 if (relocation >= 0)
11063 insn |= (1 << 23);
11064
11065 bfd_put_16 (input_bfd, insn >> 16, hit_data);
11066 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
11067
11068 return bfd_reloc_ok;
11069 }
11070
11071 case R_ARM_THM_XPC22:
11072 case R_ARM_THM_CALL:
11073 case R_ARM_THM_JUMP24:
11074 /* Thumb BL (branch long instruction). */
11075 {
11076 bfd_vma relocation;
11077 bfd_vma reloc_sign;
11078 bfd_boolean overflow = FALSE;
11079 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11080 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11081 bfd_signed_vma reloc_signed_max;
11082 bfd_signed_vma reloc_signed_min;
11083 bfd_vma check;
11084 bfd_signed_vma signed_check;
11085 int bitsize;
11086 const int thumb2 = using_thumb2 (globals);
11087 const int thumb2_bl = using_thumb2_bl (globals);
11088
11089 /* A branch to an undefined weak symbol is turned into a jump to
11090 the next instruction unless a PLT entry will be created.
11091 The jump to the next instruction is optimized as a NOP.W for
11092 Thumb-2 enabled architectures. */
11093 if (h && h->root.type == bfd_link_hash_undefweak
11094 && plt_offset == (bfd_vma) -1)
11095 {
11096 if (thumb2)
11097 {
11098 bfd_put_16 (input_bfd, 0xf3af, hit_data);
11099 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
11100 }
11101 else
11102 {
11103 bfd_put_16 (input_bfd, 0xe000, hit_data);
11104 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
11105 }
11106 return bfd_reloc_ok;
11107 }
11108
11109 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
11110 with Thumb-1) involving the J1 and J2 bits. */
11111 if (globals->use_rel)
11112 {
11113 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
11114 bfd_vma upper = upper_insn & 0x3ff;
11115 bfd_vma lower = lower_insn & 0x7ff;
11116 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
11117 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
11118 bfd_vma i1 = j1 ^ s ? 0 : 1;
11119 bfd_vma i2 = j2 ^ s ? 0 : 1;
11120
11121 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
11122 /* Sign extend. */
11123 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
11124
11125 signed_addend = addend;
11126 }
11127
11128 if (r_type == R_ARM_THM_XPC22)
11129 {
11130 /* Check for Thumb to Thumb call. */
11131 /* FIXME: Should we translate the instruction into a BL
11132 instruction instead ? */
11133 if (branch_type == ST_BRANCH_TO_THUMB)
11134 _bfd_error_handler
11135 (_("%pB: warning: %s BLX instruction targets"
11136 " %s function '%s'"),
11137 input_bfd, "Thumb",
11138 "Thumb", h ? h->root.root.string : "(local)");
11139 }
11140 else
11141 {
11142 /* If it is not a call to Thumb, assume call to Arm.
11143 If it is a call relative to a section name, then it is not a
11144 function call at all, but rather a long jump. Calls through
11145 the PLT do not require stubs. */
11146 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
11147 {
11148 if (globals->use_blx && r_type == R_ARM_THM_CALL)
11149 {
11150 /* Convert BL to BLX. */
11151 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11152 }
11153 else if (( r_type != R_ARM_THM_CALL)
11154 && (r_type != R_ARM_THM_JUMP24))
11155 {
11156 if (elf32_thumb_to_arm_stub
11157 (info, sym_name, input_bfd, output_bfd, input_section,
11158 hit_data, sym_sec, rel->r_offset, signed_addend, value,
11159 error_message))
11160 return bfd_reloc_ok;
11161 else
11162 return bfd_reloc_dangerous;
11163 }
11164 }
11165 else if (branch_type == ST_BRANCH_TO_THUMB
11166 && globals->use_blx
11167 && r_type == R_ARM_THM_CALL)
11168 {
11169 /* Make sure this is a BL. */
11170 lower_insn |= 0x1800;
11171 }
11172 }
11173
11174 enum elf32_arm_stub_type stub_type = arm_stub_none;
11175 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
11176 {
11177 /* Check if a stub has to be inserted because the destination
11178 is too far. */
11179 struct elf32_arm_stub_hash_entry *stub_entry;
11180 struct elf32_arm_link_hash_entry *hash;
11181
11182 hash = (struct elf32_arm_link_hash_entry *) h;
11183
11184 stub_type = arm_type_of_stub (info, input_section, rel,
11185 st_type, &branch_type,
11186 hash, value, sym_sec,
11187 input_bfd, sym_name);
11188
11189 if (stub_type != arm_stub_none)
11190 {
11191 /* The target is out of reach or we are changing modes, so
11192 redirect the branch to the local stub for this
11193 function. */
11194 stub_entry = elf32_arm_get_stub_entry (input_section,
11195 sym_sec, h,
11196 rel, globals,
11197 stub_type);
11198 if (stub_entry != NULL)
11199 {
11200 value = (stub_entry->stub_offset
11201 + stub_entry->stub_sec->output_offset
11202 + stub_entry->stub_sec->output_section->vma);
11203
11204 if (plt_offset != (bfd_vma) -1)
11205 *unresolved_reloc_p = FALSE;
11206 }
11207
11208 /* If this call becomes a call to Arm, force BLX. */
11209 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
11210 {
11211 if ((stub_entry
11212 && !arm_stub_is_thumb (stub_entry->stub_type))
11213 || branch_type != ST_BRANCH_TO_THUMB)
11214 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11215 }
11216 }
11217 }
11218
11219 /* Handle calls via the PLT. */
11220 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
11221 {
11222 value = (splt->output_section->vma
11223 + splt->output_offset
11224 + plt_offset);
11225
11226 if (globals->use_blx
11227 && r_type == R_ARM_THM_CALL
11228 && ! using_thumb_only (globals))
11229 {
11230 /* If the Thumb BLX instruction is available, convert
11231 the BL to a BLX instruction to call the ARM-mode
11232 PLT entry. */
11233 lower_insn = (lower_insn & ~0x1000) | 0x0800;
11234 branch_type = ST_BRANCH_TO_ARM;
11235 }
11236 else
11237 {
11238 if (! using_thumb_only (globals))
11239 /* Target the Thumb stub before the ARM PLT entry. */
11240 value -= PLT_THUMB_STUB_SIZE;
11241 branch_type = ST_BRANCH_TO_THUMB;
11242 }
11243 *unresolved_reloc_p = FALSE;
11244 }
11245
11246 relocation = value + signed_addend;
11247
11248 relocation -= (input_section->output_section->vma
11249 + input_section->output_offset
11250 + rel->r_offset);
11251
11252 check = relocation >> howto->rightshift;
11253
11254 /* If this is a signed value, the rightshift just dropped
11255 leading 1 bits (assuming twos complement). */
11256 if ((bfd_signed_vma) relocation >= 0)
11257 signed_check = check;
11258 else
11259 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
11260
11261 /* Calculate the permissable maximum and minimum values for
11262 this relocation according to whether we're relocating for
11263 Thumb-2 or not. */
11264 bitsize = howto->bitsize;
11265 if (!thumb2_bl)
11266 bitsize -= 2;
11267 reloc_signed_max = (1 << (bitsize - 1)) - 1;
11268 reloc_signed_min = ~reloc_signed_max;
11269
11270 /* Assumes two's complement. */
11271 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11272 overflow = TRUE;
11273
11274 if ((lower_insn & 0x5000) == 0x4000)
11275 /* For a BLX instruction, make sure that the relocation is rounded up
11276 to a word boundary. This follows the semantics of the instruction
11277 which specifies that bit 1 of the target address will come from bit
11278 1 of the base address. */
11279 relocation = (relocation + 2) & ~ 3;
11280
11281 /* Put RELOCATION back into the insn. Assumes two's complement.
11282 We use the Thumb-2 encoding, which is safe even if dealing with
11283 a Thumb-1 instruction by virtue of our overflow check above. */
11284 reloc_sign = (signed_check < 0) ? 1 : 0;
11285 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
11286 | ((relocation >> 12) & 0x3ff)
11287 | (reloc_sign << 10);
11288 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
11289 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
11290 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
11291 | ((relocation >> 1) & 0x7ff);
11292
11293 /* Put the relocated value back in the object file: */
11294 bfd_put_16 (input_bfd, upper_insn, hit_data);
11295 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11296
11297 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11298 }
11299 break;
11300
11301 case R_ARM_THM_JUMP19:
11302 /* Thumb32 conditional branch instruction. */
11303 {
11304 bfd_vma relocation;
11305 bfd_boolean overflow = FALSE;
11306 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
11307 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
11308 bfd_signed_vma reloc_signed_max = 0xffffe;
11309 bfd_signed_vma reloc_signed_min = -0x100000;
11310 bfd_signed_vma signed_check;
11311 enum elf32_arm_stub_type stub_type = arm_stub_none;
11312 struct elf32_arm_stub_hash_entry *stub_entry;
11313 struct elf32_arm_link_hash_entry *hash;
11314
11315 /* Need to refetch the addend, reconstruct the top three bits,
11316 and squish the two 11 bit pieces together. */
11317 if (globals->use_rel)
11318 {
11319 bfd_vma S = (upper_insn & 0x0400) >> 10;
11320 bfd_vma upper = (upper_insn & 0x003f);
11321 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
11322 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
11323 bfd_vma lower = (lower_insn & 0x07ff);
11324
11325 upper |= J1 << 6;
11326 upper |= J2 << 7;
11327 upper |= (!S) << 8;
11328 upper -= 0x0100; /* Sign extend. */
11329
11330 addend = (upper << 12) | (lower << 1);
11331 signed_addend = addend;
11332 }
11333
11334 /* Handle calls via the PLT. */
11335 if (plt_offset != (bfd_vma) -1)
11336 {
11337 value = (splt->output_section->vma
11338 + splt->output_offset
11339 + plt_offset);
11340 /* Target the Thumb stub before the ARM PLT entry. */
11341 value -= PLT_THUMB_STUB_SIZE;
11342 *unresolved_reloc_p = FALSE;
11343 }
11344
11345 hash = (struct elf32_arm_link_hash_entry *)h;
11346
11347 stub_type = arm_type_of_stub (info, input_section, rel,
11348 st_type, &branch_type,
11349 hash, value, sym_sec,
11350 input_bfd, sym_name);
11351 if (stub_type != arm_stub_none)
11352 {
11353 stub_entry = elf32_arm_get_stub_entry (input_section,
11354 sym_sec, h,
11355 rel, globals,
11356 stub_type);
11357 if (stub_entry != NULL)
11358 {
11359 value = (stub_entry->stub_offset
11360 + stub_entry->stub_sec->output_offset
11361 + stub_entry->stub_sec->output_section->vma);
11362 }
11363 }
11364
11365 relocation = value + signed_addend;
11366 relocation -= (input_section->output_section->vma
11367 + input_section->output_offset
11368 + rel->r_offset);
11369 signed_check = (bfd_signed_vma) relocation;
11370
11371 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11372 overflow = TRUE;
11373
11374 /* Put RELOCATION back into the insn. */
11375 {
11376 bfd_vma S = (relocation & 0x00100000) >> 20;
11377 bfd_vma J2 = (relocation & 0x00080000) >> 19;
11378 bfd_vma J1 = (relocation & 0x00040000) >> 18;
11379 bfd_vma hi = (relocation & 0x0003f000) >> 12;
11380 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
11381
11382 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
11383 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
11384 }
11385
11386 /* Put the relocated value back in the object file: */
11387 bfd_put_16 (input_bfd, upper_insn, hit_data);
11388 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
11389
11390 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
11391 }
11392
11393 case R_ARM_THM_JUMP11:
11394 case R_ARM_THM_JUMP8:
11395 case R_ARM_THM_JUMP6:
11396 /* Thumb B (branch) instruction). */
11397 {
11398 bfd_signed_vma relocation;
11399 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
11400 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
11401 bfd_signed_vma signed_check;
11402
11403 /* CZB cannot jump backward. */
11404 if (r_type == R_ARM_THM_JUMP6)
11405 reloc_signed_min = 0;
11406
11407 if (globals->use_rel)
11408 {
11409 /* Need to refetch addend. */
11410 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
11411 if (addend & ((howto->src_mask + 1) >> 1))
11412 {
11413 signed_addend = -1;
11414 signed_addend &= ~ howto->src_mask;
11415 signed_addend |= addend;
11416 }
11417 else
11418 signed_addend = addend;
11419 /* The value in the insn has been right shifted. We need to
11420 undo this, so that we can perform the address calculation
11421 in terms of bytes. */
11422 signed_addend <<= howto->rightshift;
11423 }
11424 relocation = value + signed_addend;
11425
11426 relocation -= (input_section->output_section->vma
11427 + input_section->output_offset
11428 + rel->r_offset);
11429
11430 relocation >>= howto->rightshift;
11431 signed_check = relocation;
11432
11433 if (r_type == R_ARM_THM_JUMP6)
11434 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
11435 else
11436 relocation &= howto->dst_mask;
11437 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
11438
11439 bfd_put_16 (input_bfd, relocation, hit_data);
11440
11441 /* Assumes two's complement. */
11442 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
11443 return bfd_reloc_overflow;
11444
11445 return bfd_reloc_ok;
11446 }
11447
11448 case R_ARM_ALU_PCREL7_0:
11449 case R_ARM_ALU_PCREL15_8:
11450 case R_ARM_ALU_PCREL23_15:
11451 {
11452 bfd_vma insn;
11453 bfd_vma relocation;
11454
11455 insn = bfd_get_32 (input_bfd, hit_data);
11456 if (globals->use_rel)
11457 {
11458 /* Extract the addend. */
11459 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
11460 signed_addend = addend;
11461 }
11462 relocation = value + signed_addend;
11463
11464 relocation -= (input_section->output_section->vma
11465 + input_section->output_offset
11466 + rel->r_offset);
11467 insn = (insn & ~0xfff)
11468 | ((howto->bitpos << 7) & 0xf00)
11469 | ((relocation >> howto->bitpos) & 0xff);
11470 bfd_put_32 (input_bfd, value, hit_data);
11471 }
11472 return bfd_reloc_ok;
11473
11474 case R_ARM_GNU_VTINHERIT:
11475 case R_ARM_GNU_VTENTRY:
11476 return bfd_reloc_ok;
11477
11478 case R_ARM_GOTOFF32:
11479 /* Relocation is relative to the start of the
11480 global offset table. */
11481
11482 BFD_ASSERT (sgot != NULL);
11483 if (sgot == NULL)
11484 return bfd_reloc_notsupported;
11485
11486 /* If we are addressing a Thumb function, we need to adjust the
11487 address by one, so that attempts to call the function pointer will
11488 correctly interpret it as Thumb code. */
11489 if (branch_type == ST_BRANCH_TO_THUMB)
11490 value += 1;
11491
11492 /* Note that sgot->output_offset is not involved in this
11493 calculation. We always want the start of .got. If we
11494 define _GLOBAL_OFFSET_TABLE in a different way, as is
11495 permitted by the ABI, we might have to change this
11496 calculation. */
11497 value -= sgot->output_section->vma;
11498 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11499 contents, rel->r_offset, value,
11500 rel->r_addend);
11501
11502 case R_ARM_GOTPC:
11503 /* Use global offset table as symbol value. */
11504 BFD_ASSERT (sgot != NULL);
11505
11506 if (sgot == NULL)
11507 return bfd_reloc_notsupported;
11508
11509 *unresolved_reloc_p = FALSE;
11510 value = sgot->output_section->vma;
11511 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11512 contents, rel->r_offset, value,
11513 rel->r_addend);
11514
11515 case R_ARM_GOT32:
11516 case R_ARM_GOT_PREL:
11517 /* Relocation is to the entry for this symbol in the
11518 global offset table. */
11519 if (sgot == NULL)
11520 return bfd_reloc_notsupported;
11521
11522 if (dynreloc_st_type == STT_GNU_IFUNC
11523 && plt_offset != (bfd_vma) -1
11524 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
11525 {
11526 /* We have a relocation against a locally-binding STT_GNU_IFUNC
11527 symbol, and the relocation resolves directly to the runtime
11528 target rather than to the .iplt entry. This means that any
11529 .got entry would be the same value as the .igot.plt entry,
11530 so there's no point creating both. */
11531 sgot = globals->root.igotplt;
11532 value = sgot->output_offset + gotplt_offset;
11533 }
11534 else if (h != NULL)
11535 {
11536 bfd_vma off;
11537
11538 off = h->got.offset;
11539 BFD_ASSERT (off != (bfd_vma) -1);
11540 if ((off & 1) != 0)
11541 {
11542 /* We have already processsed one GOT relocation against
11543 this symbol. */
11544 off &= ~1;
11545 if (globals->root.dynamic_sections_created
11546 && !SYMBOL_REFERENCES_LOCAL (info, h))
11547 *unresolved_reloc_p = FALSE;
11548 }
11549 else
11550 {
11551 Elf_Internal_Rela outrel;
11552 int isrofixup = 0;
11553
11554 if (((h->dynindx != -1) || globals->fdpic_p)
11555 && !SYMBOL_REFERENCES_LOCAL (info, h))
11556 {
11557 /* If the symbol doesn't resolve locally in a static
11558 object, we have an undefined reference. If the
11559 symbol doesn't resolve locally in a dynamic object,
11560 it should be resolved by the dynamic linker. */
11561 if (globals->root.dynamic_sections_created)
11562 {
11563 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
11564 *unresolved_reloc_p = FALSE;
11565 }
11566 else
11567 outrel.r_info = 0;
11568 outrel.r_addend = 0;
11569 }
11570 else
11571 {
11572 if (dynreloc_st_type == STT_GNU_IFUNC)
11573 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11574 else if (bfd_link_pic (info)
11575 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11576 || h->root.type != bfd_link_hash_undefweak))
11577 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11578 else
11579 {
11580 outrel.r_info = 0;
11581 if (globals->fdpic_p)
11582 isrofixup = 1;
11583 }
11584 outrel.r_addend = dynreloc_value;
11585 }
11586
11587 /* The GOT entry is initialized to zero by default.
11588 See if we should install a different value. */
11589 if (outrel.r_addend != 0
11590 && (globals->use_rel || outrel.r_info == 0))
11591 {
11592 bfd_put_32 (output_bfd, outrel.r_addend,
11593 sgot->contents + off);
11594 outrel.r_addend = 0;
11595 }
11596
11597 if (isrofixup)
11598 arm_elf_add_rofixup (output_bfd,
11599 elf32_arm_hash_table(info)->srofixup,
11600 sgot->output_section->vma
11601 + sgot->output_offset + off);
11602
11603 else if (outrel.r_info != 0)
11604 {
11605 outrel.r_offset = (sgot->output_section->vma
11606 + sgot->output_offset
11607 + off);
11608 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11609 }
11610
11611 h->got.offset |= 1;
11612 }
11613 value = sgot->output_offset + off;
11614 }
11615 else
11616 {
11617 bfd_vma off;
11618
11619 BFD_ASSERT (local_got_offsets != NULL
11620 && local_got_offsets[r_symndx] != (bfd_vma) -1);
11621
11622 off = local_got_offsets[r_symndx];
11623
11624 /* The offset must always be a multiple of 4. We use the
11625 least significant bit to record whether we have already
11626 generated the necessary reloc. */
11627 if ((off & 1) != 0)
11628 off &= ~1;
11629 else
11630 {
11631 Elf_Internal_Rela outrel;
11632 int isrofixup = 0;
11633
11634 if (dynreloc_st_type == STT_GNU_IFUNC)
11635 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
11636 else if (bfd_link_pic (info))
11637 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
11638 else
11639 {
11640 outrel.r_info = 0;
11641 if (globals->fdpic_p)
11642 isrofixup = 1;
11643 }
11644
11645 /* The GOT entry is initialized to zero by default.
11646 See if we should install a different value. */
11647 if (globals->use_rel || outrel.r_info == 0)
11648 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
11649
11650 if (isrofixup)
11651 arm_elf_add_rofixup (output_bfd,
11652 globals->srofixup,
11653 sgot->output_section->vma
11654 + sgot->output_offset + off);
11655
11656 else if (outrel.r_info != 0)
11657 {
11658 outrel.r_addend = addend + dynreloc_value;
11659 outrel.r_offset = (sgot->output_section->vma
11660 + sgot->output_offset
11661 + off);
11662 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11663 }
11664
11665 local_got_offsets[r_symndx] |= 1;
11666 }
11667
11668 value = sgot->output_offset + off;
11669 }
11670 if (r_type != R_ARM_GOT32)
11671 value += sgot->output_section->vma;
11672
11673 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11674 contents, rel->r_offset, value,
11675 rel->r_addend);
11676
11677 case R_ARM_TLS_LDO32:
11678 value = value - dtpoff_base (info);
11679
11680 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11681 contents, rel->r_offset, value,
11682 rel->r_addend);
11683
11684 case R_ARM_TLS_LDM32:
11685 case R_ARM_TLS_LDM32_FDPIC:
11686 {
11687 bfd_vma off;
11688
11689 if (sgot == NULL)
11690 abort ();
11691
11692 off = globals->tls_ldm_got.offset;
11693
11694 if ((off & 1) != 0)
11695 off &= ~1;
11696 else
11697 {
11698 /* If we don't know the module number, create a relocation
11699 for it. */
11700 if (bfd_link_pic (info))
11701 {
11702 Elf_Internal_Rela outrel;
11703
11704 if (srelgot == NULL)
11705 abort ();
11706
11707 outrel.r_addend = 0;
11708 outrel.r_offset = (sgot->output_section->vma
11709 + sgot->output_offset + off);
11710 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
11711
11712 if (globals->use_rel)
11713 bfd_put_32 (output_bfd, outrel.r_addend,
11714 sgot->contents + off);
11715
11716 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11717 }
11718 else
11719 bfd_put_32 (output_bfd, 1, sgot->contents + off);
11720
11721 globals->tls_ldm_got.offset |= 1;
11722 }
11723
11724 if (r_type == R_ARM_TLS_LDM32_FDPIC)
11725 {
11726 bfd_put_32(output_bfd,
11727 globals->root.sgot->output_offset + off,
11728 contents + rel->r_offset);
11729
11730 return bfd_reloc_ok;
11731 }
11732 else
11733 {
11734 value = sgot->output_section->vma + sgot->output_offset + off
11735 - (input_section->output_section->vma
11736 + input_section->output_offset + rel->r_offset);
11737
11738 return _bfd_final_link_relocate (howto, input_bfd, input_section,
11739 contents, rel->r_offset, value,
11740 rel->r_addend);
11741 }
11742 }
11743
11744 case R_ARM_TLS_CALL:
11745 case R_ARM_THM_TLS_CALL:
11746 case R_ARM_TLS_GD32:
11747 case R_ARM_TLS_GD32_FDPIC:
11748 case R_ARM_TLS_IE32:
11749 case R_ARM_TLS_IE32_FDPIC:
11750 case R_ARM_TLS_GOTDESC:
11751 case R_ARM_TLS_DESCSEQ:
11752 case R_ARM_THM_TLS_DESCSEQ:
11753 {
11754 bfd_vma off, offplt;
11755 int indx = 0;
11756 char tls_type;
11757
11758 BFD_ASSERT (sgot != NULL);
11759
11760 if (h != NULL)
11761 {
11762 bfd_boolean dyn;
11763 dyn = globals->root.dynamic_sections_created;
11764 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
11765 bfd_link_pic (info),
11766 h)
11767 && (!bfd_link_pic (info)
11768 || !SYMBOL_REFERENCES_LOCAL (info, h)))
11769 {
11770 *unresolved_reloc_p = FALSE;
11771 indx = h->dynindx;
11772 }
11773 off = h->got.offset;
11774 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
11775 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
11776 }
11777 else
11778 {
11779 BFD_ASSERT (local_got_offsets != NULL);
11780 off = local_got_offsets[r_symndx];
11781 offplt = local_tlsdesc_gotents[r_symndx];
11782 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
11783 }
11784
11785 /* Linker relaxations happens from one of the
11786 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
11787 if (ELF32_R_TYPE(rel->r_info) != r_type)
11788 tls_type = GOT_TLS_IE;
11789
11790 BFD_ASSERT (tls_type != GOT_UNKNOWN);
11791
11792 if ((off & 1) != 0)
11793 off &= ~1;
11794 else
11795 {
11796 bfd_boolean need_relocs = FALSE;
11797 Elf_Internal_Rela outrel;
11798 int cur_off = off;
11799
11800 /* The GOT entries have not been initialized yet. Do it
11801 now, and emit any relocations. If both an IE GOT and a
11802 GD GOT are necessary, we emit the GD first. */
11803
11804 if ((bfd_link_pic (info) || indx != 0)
11805 && (h == NULL
11806 || (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
11807 && !resolved_to_zero)
11808 || h->root.type != bfd_link_hash_undefweak))
11809 {
11810 need_relocs = TRUE;
11811 BFD_ASSERT (srelgot != NULL);
11812 }
11813
11814 if (tls_type & GOT_TLS_GDESC)
11815 {
11816 bfd_byte *loc;
11817
11818 /* We should have relaxed, unless this is an undefined
11819 weak symbol. */
11820 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
11821 || bfd_link_pic (info));
11822 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
11823 <= globals->root.sgotplt->size);
11824
11825 outrel.r_addend = 0;
11826 outrel.r_offset = (globals->root.sgotplt->output_section->vma
11827 + globals->root.sgotplt->output_offset
11828 + offplt
11829 + globals->sgotplt_jump_table_size);
11830
11831 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
11832 sreloc = globals->root.srelplt;
11833 loc = sreloc->contents;
11834 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
11835 BFD_ASSERT (loc + RELOC_SIZE (globals)
11836 <= sreloc->contents + sreloc->size);
11837
11838 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
11839
11840 /* For globals, the first word in the relocation gets
11841 the relocation index and the top bit set, or zero,
11842 if we're binding now. For locals, it gets the
11843 symbol's offset in the tls section. */
11844 bfd_put_32 (output_bfd,
11845 !h ? value - elf_hash_table (info)->tls_sec->vma
11846 : info->flags & DF_BIND_NOW ? 0
11847 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
11848 globals->root.sgotplt->contents + offplt
11849 + globals->sgotplt_jump_table_size);
11850
11851 /* Second word in the relocation is always zero. */
11852 bfd_put_32 (output_bfd, 0,
11853 globals->root.sgotplt->contents + offplt
11854 + globals->sgotplt_jump_table_size + 4);
11855 }
11856 if (tls_type & GOT_TLS_GD)
11857 {
11858 if (need_relocs)
11859 {
11860 outrel.r_addend = 0;
11861 outrel.r_offset = (sgot->output_section->vma
11862 + sgot->output_offset
11863 + cur_off);
11864 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
11865
11866 if (globals->use_rel)
11867 bfd_put_32 (output_bfd, outrel.r_addend,
11868 sgot->contents + cur_off);
11869
11870 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11871
11872 if (indx == 0)
11873 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11874 sgot->contents + cur_off + 4);
11875 else
11876 {
11877 outrel.r_addend = 0;
11878 outrel.r_info = ELF32_R_INFO (indx,
11879 R_ARM_TLS_DTPOFF32);
11880 outrel.r_offset += 4;
11881
11882 if (globals->use_rel)
11883 bfd_put_32 (output_bfd, outrel.r_addend,
11884 sgot->contents + cur_off + 4);
11885
11886 elf32_arm_add_dynreloc (output_bfd, info,
11887 srelgot, &outrel);
11888 }
11889 }
11890 else
11891 {
11892 /* If we are not emitting relocations for a
11893 general dynamic reference, then we must be in a
11894 static link or an executable link with the
11895 symbol binding locally. Mark it as belonging
11896 to module 1, the executable. */
11897 bfd_put_32 (output_bfd, 1,
11898 sgot->contents + cur_off);
11899 bfd_put_32 (output_bfd, value - dtpoff_base (info),
11900 sgot->contents + cur_off + 4);
11901 }
11902
11903 cur_off += 8;
11904 }
11905
11906 if (tls_type & GOT_TLS_IE)
11907 {
11908 if (need_relocs)
11909 {
11910 if (indx == 0)
11911 outrel.r_addend = value - dtpoff_base (info);
11912 else
11913 outrel.r_addend = 0;
11914 outrel.r_offset = (sgot->output_section->vma
11915 + sgot->output_offset
11916 + cur_off);
11917 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
11918
11919 if (globals->use_rel)
11920 bfd_put_32 (output_bfd, outrel.r_addend,
11921 sgot->contents + cur_off);
11922
11923 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
11924 }
11925 else
11926 bfd_put_32 (output_bfd, tpoff (info, value),
11927 sgot->contents + cur_off);
11928 cur_off += 4;
11929 }
11930
11931 if (h != NULL)
11932 h->got.offset |= 1;
11933 else
11934 local_got_offsets[r_symndx] |= 1;
11935 }
11936
11937 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32 && r_type != R_ARM_TLS_GD32_FDPIC)
11938 off += 8;
11939 else if (tls_type & GOT_TLS_GDESC)
11940 off = offplt;
11941
11942 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
11943 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
11944 {
11945 bfd_signed_vma offset;
11946 /* TLS stubs are arm mode. The original symbol is a
11947 data object, so branch_type is bogus. */
11948 branch_type = ST_BRANCH_TO_ARM;
11949 enum elf32_arm_stub_type stub_type
11950 = arm_type_of_stub (info, input_section, rel,
11951 st_type, &branch_type,
11952 (struct elf32_arm_link_hash_entry *)h,
11953 globals->tls_trampoline, globals->root.splt,
11954 input_bfd, sym_name);
11955
11956 if (stub_type != arm_stub_none)
11957 {
11958 struct elf32_arm_stub_hash_entry *stub_entry
11959 = elf32_arm_get_stub_entry
11960 (input_section, globals->root.splt, 0, rel,
11961 globals, stub_type);
11962 offset = (stub_entry->stub_offset
11963 + stub_entry->stub_sec->output_offset
11964 + stub_entry->stub_sec->output_section->vma);
11965 }
11966 else
11967 offset = (globals->root.splt->output_section->vma
11968 + globals->root.splt->output_offset
11969 + globals->tls_trampoline);
11970
11971 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
11972 {
11973 unsigned long inst;
11974
11975 offset -= (input_section->output_section->vma
11976 + input_section->output_offset
11977 + rel->r_offset + 8);
11978
11979 inst = offset >> 2;
11980 inst &= 0x00ffffff;
11981 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
11982 }
11983 else
11984 {
11985 /* Thumb blx encodes the offset in a complicated
11986 fashion. */
11987 unsigned upper_insn, lower_insn;
11988 unsigned neg;
11989
11990 offset -= (input_section->output_section->vma
11991 + input_section->output_offset
11992 + rel->r_offset + 4);
11993
11994 if (stub_type != arm_stub_none
11995 && arm_stub_is_thumb (stub_type))
11996 {
11997 lower_insn = 0xd000;
11998 }
11999 else
12000 {
12001 lower_insn = 0xc000;
12002 /* Round up the offset to a word boundary. */
12003 offset = (offset + 2) & ~2;
12004 }
12005
12006 neg = offset < 0;
12007 upper_insn = (0xf000
12008 | ((offset >> 12) & 0x3ff)
12009 | (neg << 10));
12010 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
12011 | (((!((offset >> 22) & 1)) ^ neg) << 11)
12012 | ((offset >> 1) & 0x7ff);
12013 bfd_put_16 (input_bfd, upper_insn, hit_data);
12014 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12015 return bfd_reloc_ok;
12016 }
12017 }
12018 /* These relocations needs special care, as besides the fact
12019 they point somewhere in .gotplt, the addend must be
12020 adjusted accordingly depending on the type of instruction
12021 we refer to. */
12022 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
12023 {
12024 unsigned long data, insn;
12025 unsigned thumb;
12026
12027 data = bfd_get_32 (input_bfd, hit_data);
12028 thumb = data & 1;
12029 data &= ~1u;
12030
12031 if (thumb)
12032 {
12033 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
12034 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
12035 insn = (insn << 16)
12036 | bfd_get_16 (input_bfd,
12037 contents + rel->r_offset - data + 2);
12038 if ((insn & 0xf800c000) == 0xf000c000)
12039 /* bl/blx */
12040 value = -6;
12041 else if ((insn & 0xffffff00) == 0x4400)
12042 /* add */
12043 value = -5;
12044 else
12045 {
12046 _bfd_error_handler
12047 /* xgettext:c-format */
12048 (_("%pB(%pA+%#" PRIx64 "): "
12049 "unexpected %s instruction '%#lx' "
12050 "referenced by TLS_GOTDESC"),
12051 input_bfd, input_section, (uint64_t) rel->r_offset,
12052 "Thumb", insn);
12053 return bfd_reloc_notsupported;
12054 }
12055 }
12056 else
12057 {
12058 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
12059
12060 switch (insn >> 24)
12061 {
12062 case 0xeb: /* bl */
12063 case 0xfa: /* blx */
12064 value = -4;
12065 break;
12066
12067 case 0xe0: /* add */
12068 value = -8;
12069 break;
12070
12071 default:
12072 _bfd_error_handler
12073 /* xgettext:c-format */
12074 (_("%pB(%pA+%#" PRIx64 "): "
12075 "unexpected %s instruction '%#lx' "
12076 "referenced by TLS_GOTDESC"),
12077 input_bfd, input_section, (uint64_t) rel->r_offset,
12078 "ARM", insn);
12079 return bfd_reloc_notsupported;
12080 }
12081 }
12082
12083 value += ((globals->root.sgotplt->output_section->vma
12084 + globals->root.sgotplt->output_offset + off)
12085 - (input_section->output_section->vma
12086 + input_section->output_offset
12087 + rel->r_offset)
12088 + globals->sgotplt_jump_table_size);
12089 }
12090 else
12091 value = ((globals->root.sgot->output_section->vma
12092 + globals->root.sgot->output_offset + off)
12093 - (input_section->output_section->vma
12094 + input_section->output_offset + rel->r_offset));
12095
12096 if (globals->fdpic_p && (r_type == R_ARM_TLS_GD32_FDPIC ||
12097 r_type == R_ARM_TLS_IE32_FDPIC))
12098 {
12099 /* For FDPIC relocations, resolve to the offset of the GOT
12100 entry from the start of GOT. */
12101 bfd_put_32(output_bfd,
12102 globals->root.sgot->output_offset + off,
12103 contents + rel->r_offset);
12104
12105 return bfd_reloc_ok;
12106 }
12107 else
12108 {
12109 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12110 contents, rel->r_offset, value,
12111 rel->r_addend);
12112 }
12113 }
12114
12115 case R_ARM_TLS_LE32:
12116 if (bfd_link_dll (info))
12117 {
12118 _bfd_error_handler
12119 /* xgettext:c-format */
12120 (_("%pB(%pA+%#" PRIx64 "): %s relocation not permitted "
12121 "in shared object"),
12122 input_bfd, input_section, (uint64_t) rel->r_offset, howto->name);
12123 return bfd_reloc_notsupported;
12124 }
12125 else
12126 value = tpoff (info, value);
12127
12128 return _bfd_final_link_relocate (howto, input_bfd, input_section,
12129 contents, rel->r_offset, value,
12130 rel->r_addend);
12131
12132 case R_ARM_V4BX:
12133 if (globals->fix_v4bx)
12134 {
12135 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12136
12137 /* Ensure that we have a BX instruction. */
12138 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
12139
12140 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
12141 {
12142 /* Branch to veneer. */
12143 bfd_vma glue_addr;
12144 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
12145 glue_addr -= input_section->output_section->vma
12146 + input_section->output_offset
12147 + rel->r_offset + 8;
12148 insn = (insn & 0xf0000000) | 0x0a000000
12149 | ((glue_addr >> 2) & 0x00ffffff);
12150 }
12151 else
12152 {
12153 /* Preserve Rm (lowest four bits) and the condition code
12154 (highest four bits). Other bits encode MOV PC,Rm. */
12155 insn = (insn & 0xf000000f) | 0x01a0f000;
12156 }
12157
12158 bfd_put_32 (input_bfd, insn, hit_data);
12159 }
12160 return bfd_reloc_ok;
12161
12162 case R_ARM_MOVW_ABS_NC:
12163 case R_ARM_MOVT_ABS:
12164 case R_ARM_MOVW_PREL_NC:
12165 case R_ARM_MOVT_PREL:
12166 /* Until we properly support segment-base-relative addressing then
12167 we assume the segment base to be zero, as for the group relocations.
12168 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
12169 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
12170 case R_ARM_MOVW_BREL_NC:
12171 case R_ARM_MOVW_BREL:
12172 case R_ARM_MOVT_BREL:
12173 {
12174 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12175
12176 if (globals->use_rel)
12177 {
12178 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
12179 signed_addend = (addend ^ 0x8000) - 0x8000;
12180 }
12181
12182 value += signed_addend;
12183
12184 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
12185 value -= (input_section->output_section->vma
12186 + input_section->output_offset + rel->r_offset);
12187
12188 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
12189 return bfd_reloc_overflow;
12190
12191 if (branch_type == ST_BRANCH_TO_THUMB)
12192 value |= 1;
12193
12194 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
12195 || r_type == R_ARM_MOVT_BREL)
12196 value >>= 16;
12197
12198 insn &= 0xfff0f000;
12199 insn |= value & 0xfff;
12200 insn |= (value & 0xf000) << 4;
12201 bfd_put_32 (input_bfd, insn, hit_data);
12202 }
12203 return bfd_reloc_ok;
12204
12205 case R_ARM_THM_MOVW_ABS_NC:
12206 case R_ARM_THM_MOVT_ABS:
12207 case R_ARM_THM_MOVW_PREL_NC:
12208 case R_ARM_THM_MOVT_PREL:
12209 /* Until we properly support segment-base-relative addressing then
12210 we assume the segment base to be zero, as for the above relocations.
12211 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
12212 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
12213 as R_ARM_THM_MOVT_ABS. */
12214 case R_ARM_THM_MOVW_BREL_NC:
12215 case R_ARM_THM_MOVW_BREL:
12216 case R_ARM_THM_MOVT_BREL:
12217 {
12218 bfd_vma insn;
12219
12220 insn = bfd_get_16 (input_bfd, hit_data) << 16;
12221 insn |= bfd_get_16 (input_bfd, hit_data + 2);
12222
12223 if (globals->use_rel)
12224 {
12225 addend = ((insn >> 4) & 0xf000)
12226 | ((insn >> 15) & 0x0800)
12227 | ((insn >> 4) & 0x0700)
12228 | (insn & 0x00ff);
12229 signed_addend = (addend ^ 0x8000) - 0x8000;
12230 }
12231
12232 value += signed_addend;
12233
12234 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
12235 value -= (input_section->output_section->vma
12236 + input_section->output_offset + rel->r_offset);
12237
12238 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
12239 return bfd_reloc_overflow;
12240
12241 if (branch_type == ST_BRANCH_TO_THUMB)
12242 value |= 1;
12243
12244 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
12245 || r_type == R_ARM_THM_MOVT_BREL)
12246 value >>= 16;
12247
12248 insn &= 0xfbf08f00;
12249 insn |= (value & 0xf000) << 4;
12250 insn |= (value & 0x0800) << 15;
12251 insn |= (value & 0x0700) << 4;
12252 insn |= (value & 0x00ff);
12253
12254 bfd_put_16 (input_bfd, insn >> 16, hit_data);
12255 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
12256 }
12257 return bfd_reloc_ok;
12258
12259 case R_ARM_ALU_PC_G0_NC:
12260 case R_ARM_ALU_PC_G1_NC:
12261 case R_ARM_ALU_PC_G0:
12262 case R_ARM_ALU_PC_G1:
12263 case R_ARM_ALU_PC_G2:
12264 case R_ARM_ALU_SB_G0_NC:
12265 case R_ARM_ALU_SB_G1_NC:
12266 case R_ARM_ALU_SB_G0:
12267 case R_ARM_ALU_SB_G1:
12268 case R_ARM_ALU_SB_G2:
12269 {
12270 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12271 bfd_vma pc = input_section->output_section->vma
12272 + input_section->output_offset + rel->r_offset;
12273 /* sb is the origin of the *segment* containing the symbol. */
12274 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12275 bfd_vma residual;
12276 bfd_vma g_n;
12277 bfd_signed_vma signed_value;
12278 int group = 0;
12279
12280 /* Determine which group of bits to select. */
12281 switch (r_type)
12282 {
12283 case R_ARM_ALU_PC_G0_NC:
12284 case R_ARM_ALU_PC_G0:
12285 case R_ARM_ALU_SB_G0_NC:
12286 case R_ARM_ALU_SB_G0:
12287 group = 0;
12288 break;
12289
12290 case R_ARM_ALU_PC_G1_NC:
12291 case R_ARM_ALU_PC_G1:
12292 case R_ARM_ALU_SB_G1_NC:
12293 case R_ARM_ALU_SB_G1:
12294 group = 1;
12295 break;
12296
12297 case R_ARM_ALU_PC_G2:
12298 case R_ARM_ALU_SB_G2:
12299 group = 2;
12300 break;
12301
12302 default:
12303 abort ();
12304 }
12305
12306 /* If REL, extract the addend from the insn. If RELA, it will
12307 have already been fetched for us. */
12308 if (globals->use_rel)
12309 {
12310 int negative;
12311 bfd_vma constant = insn & 0xff;
12312 bfd_vma rotation = (insn & 0xf00) >> 8;
12313
12314 if (rotation == 0)
12315 signed_addend = constant;
12316 else
12317 {
12318 /* Compensate for the fact that in the instruction, the
12319 rotation is stored in multiples of 2 bits. */
12320 rotation *= 2;
12321
12322 /* Rotate "constant" right by "rotation" bits. */
12323 signed_addend = (constant >> rotation) |
12324 (constant << (8 * sizeof (bfd_vma) - rotation));
12325 }
12326
12327 /* Determine if the instruction is an ADD or a SUB.
12328 (For REL, this determines the sign of the addend.) */
12329 negative = identify_add_or_sub (insn);
12330 if (negative == 0)
12331 {
12332 _bfd_error_handler
12333 /* xgettext:c-format */
12334 (_("%pB(%pA+%#" PRIx64 "): only ADD or SUB instructions "
12335 "are allowed for ALU group relocations"),
12336 input_bfd, input_section, (uint64_t) rel->r_offset);
12337 return bfd_reloc_overflow;
12338 }
12339
12340 signed_addend *= negative;
12341 }
12342
12343 /* Compute the value (X) to go in the place. */
12344 if (r_type == R_ARM_ALU_PC_G0_NC
12345 || r_type == R_ARM_ALU_PC_G1_NC
12346 || r_type == R_ARM_ALU_PC_G0
12347 || r_type == R_ARM_ALU_PC_G1
12348 || r_type == R_ARM_ALU_PC_G2)
12349 /* PC relative. */
12350 signed_value = value - pc + signed_addend;
12351 else
12352 /* Section base relative. */
12353 signed_value = value - sb + signed_addend;
12354
12355 /* If the target symbol is a Thumb function, then set the
12356 Thumb bit in the address. */
12357 if (branch_type == ST_BRANCH_TO_THUMB)
12358 signed_value |= 1;
12359
12360 /* Calculate the value of the relevant G_n, in encoded
12361 constant-with-rotation format. */
12362 g_n = calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12363 group, &residual);
12364
12365 /* Check for overflow if required. */
12366 if ((r_type == R_ARM_ALU_PC_G0
12367 || r_type == R_ARM_ALU_PC_G1
12368 || r_type == R_ARM_ALU_PC_G2
12369 || r_type == R_ARM_ALU_SB_G0
12370 || r_type == R_ARM_ALU_SB_G1
12371 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
12372 {
12373 _bfd_error_handler
12374 /* xgettext:c-format */
12375 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12376 "splitting %#" PRIx64 " for group relocation %s"),
12377 input_bfd, input_section, (uint64_t) rel->r_offset,
12378 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12379 howto->name);
12380 return bfd_reloc_overflow;
12381 }
12382
12383 /* Mask out the value and the ADD/SUB part of the opcode; take care
12384 not to destroy the S bit. */
12385 insn &= 0xff1ff000;
12386
12387 /* Set the opcode according to whether the value to go in the
12388 place is negative. */
12389 if (signed_value < 0)
12390 insn |= 1 << 22;
12391 else
12392 insn |= 1 << 23;
12393
12394 /* Encode the offset. */
12395 insn |= g_n;
12396
12397 bfd_put_32 (input_bfd, insn, hit_data);
12398 }
12399 return bfd_reloc_ok;
12400
12401 case R_ARM_LDR_PC_G0:
12402 case R_ARM_LDR_PC_G1:
12403 case R_ARM_LDR_PC_G2:
12404 case R_ARM_LDR_SB_G0:
12405 case R_ARM_LDR_SB_G1:
12406 case R_ARM_LDR_SB_G2:
12407 {
12408 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12409 bfd_vma pc = input_section->output_section->vma
12410 + input_section->output_offset + rel->r_offset;
12411 /* sb is the origin of the *segment* containing the symbol. */
12412 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12413 bfd_vma residual;
12414 bfd_signed_vma signed_value;
12415 int group = 0;
12416
12417 /* Determine which groups of bits to calculate. */
12418 switch (r_type)
12419 {
12420 case R_ARM_LDR_PC_G0:
12421 case R_ARM_LDR_SB_G0:
12422 group = 0;
12423 break;
12424
12425 case R_ARM_LDR_PC_G1:
12426 case R_ARM_LDR_SB_G1:
12427 group = 1;
12428 break;
12429
12430 case R_ARM_LDR_PC_G2:
12431 case R_ARM_LDR_SB_G2:
12432 group = 2;
12433 break;
12434
12435 default:
12436 abort ();
12437 }
12438
12439 /* If REL, extract the addend from the insn. If RELA, it will
12440 have already been fetched for us. */
12441 if (globals->use_rel)
12442 {
12443 int negative = (insn & (1 << 23)) ? 1 : -1;
12444 signed_addend = negative * (insn & 0xfff);
12445 }
12446
12447 /* Compute the value (X) to go in the place. */
12448 if (r_type == R_ARM_LDR_PC_G0
12449 || r_type == R_ARM_LDR_PC_G1
12450 || r_type == R_ARM_LDR_PC_G2)
12451 /* PC relative. */
12452 signed_value = value - pc + signed_addend;
12453 else
12454 /* Section base relative. */
12455 signed_value = value - sb + signed_addend;
12456
12457 /* Calculate the value of the relevant G_{n-1} to obtain
12458 the residual at that stage. */
12459 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12460 group - 1, &residual);
12461
12462 /* Check for overflow. */
12463 if (residual >= 0x1000)
12464 {
12465 _bfd_error_handler
12466 /* xgettext:c-format */
12467 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12468 "splitting %#" PRIx64 " for group relocation %s"),
12469 input_bfd, input_section, (uint64_t) rel->r_offset,
12470 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12471 howto->name);
12472 return bfd_reloc_overflow;
12473 }
12474
12475 /* Mask out the value and U bit. */
12476 insn &= 0xff7ff000;
12477
12478 /* Set the U bit if the value to go in the place is non-negative. */
12479 if (signed_value >= 0)
12480 insn |= 1 << 23;
12481
12482 /* Encode the offset. */
12483 insn |= residual;
12484
12485 bfd_put_32 (input_bfd, insn, hit_data);
12486 }
12487 return bfd_reloc_ok;
12488
12489 case R_ARM_LDRS_PC_G0:
12490 case R_ARM_LDRS_PC_G1:
12491 case R_ARM_LDRS_PC_G2:
12492 case R_ARM_LDRS_SB_G0:
12493 case R_ARM_LDRS_SB_G1:
12494 case R_ARM_LDRS_SB_G2:
12495 {
12496 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12497 bfd_vma pc = input_section->output_section->vma
12498 + input_section->output_offset + rel->r_offset;
12499 /* sb is the origin of the *segment* containing the symbol. */
12500 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12501 bfd_vma residual;
12502 bfd_signed_vma signed_value;
12503 int group = 0;
12504
12505 /* Determine which groups of bits to calculate. */
12506 switch (r_type)
12507 {
12508 case R_ARM_LDRS_PC_G0:
12509 case R_ARM_LDRS_SB_G0:
12510 group = 0;
12511 break;
12512
12513 case R_ARM_LDRS_PC_G1:
12514 case R_ARM_LDRS_SB_G1:
12515 group = 1;
12516 break;
12517
12518 case R_ARM_LDRS_PC_G2:
12519 case R_ARM_LDRS_SB_G2:
12520 group = 2;
12521 break;
12522
12523 default:
12524 abort ();
12525 }
12526
12527 /* If REL, extract the addend from the insn. If RELA, it will
12528 have already been fetched for us. */
12529 if (globals->use_rel)
12530 {
12531 int negative = (insn & (1 << 23)) ? 1 : -1;
12532 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
12533 }
12534
12535 /* Compute the value (X) to go in the place. */
12536 if (r_type == R_ARM_LDRS_PC_G0
12537 || r_type == R_ARM_LDRS_PC_G1
12538 || r_type == R_ARM_LDRS_PC_G2)
12539 /* PC relative. */
12540 signed_value = value - pc + signed_addend;
12541 else
12542 /* Section base relative. */
12543 signed_value = value - sb + signed_addend;
12544
12545 /* Calculate the value of the relevant G_{n-1} to obtain
12546 the residual at that stage. */
12547 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12548 group - 1, &residual);
12549
12550 /* Check for overflow. */
12551 if (residual >= 0x100)
12552 {
12553 _bfd_error_handler
12554 /* xgettext:c-format */
12555 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12556 "splitting %#" PRIx64 " for group relocation %s"),
12557 input_bfd, input_section, (uint64_t) rel->r_offset,
12558 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12559 howto->name);
12560 return bfd_reloc_overflow;
12561 }
12562
12563 /* Mask out the value and U bit. */
12564 insn &= 0xff7ff0f0;
12565
12566 /* Set the U bit if the value to go in the place is non-negative. */
12567 if (signed_value >= 0)
12568 insn |= 1 << 23;
12569
12570 /* Encode the offset. */
12571 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
12572
12573 bfd_put_32 (input_bfd, insn, hit_data);
12574 }
12575 return bfd_reloc_ok;
12576
12577 case R_ARM_LDC_PC_G0:
12578 case R_ARM_LDC_PC_G1:
12579 case R_ARM_LDC_PC_G2:
12580 case R_ARM_LDC_SB_G0:
12581 case R_ARM_LDC_SB_G1:
12582 case R_ARM_LDC_SB_G2:
12583 {
12584 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
12585 bfd_vma pc = input_section->output_section->vma
12586 + input_section->output_offset + rel->r_offset;
12587 /* sb is the origin of the *segment* containing the symbol. */
12588 bfd_vma sb = sym_sec ? sym_sec->output_section->vma : 0;
12589 bfd_vma residual;
12590 bfd_signed_vma signed_value;
12591 int group = 0;
12592
12593 /* Determine which groups of bits to calculate. */
12594 switch (r_type)
12595 {
12596 case R_ARM_LDC_PC_G0:
12597 case R_ARM_LDC_SB_G0:
12598 group = 0;
12599 break;
12600
12601 case R_ARM_LDC_PC_G1:
12602 case R_ARM_LDC_SB_G1:
12603 group = 1;
12604 break;
12605
12606 case R_ARM_LDC_PC_G2:
12607 case R_ARM_LDC_SB_G2:
12608 group = 2;
12609 break;
12610
12611 default:
12612 abort ();
12613 }
12614
12615 /* If REL, extract the addend from the insn. If RELA, it will
12616 have already been fetched for us. */
12617 if (globals->use_rel)
12618 {
12619 int negative = (insn & (1 << 23)) ? 1 : -1;
12620 signed_addend = negative * ((insn & 0xff) << 2);
12621 }
12622
12623 /* Compute the value (X) to go in the place. */
12624 if (r_type == R_ARM_LDC_PC_G0
12625 || r_type == R_ARM_LDC_PC_G1
12626 || r_type == R_ARM_LDC_PC_G2)
12627 /* PC relative. */
12628 signed_value = value - pc + signed_addend;
12629 else
12630 /* Section base relative. */
12631 signed_value = value - sb + signed_addend;
12632
12633 /* Calculate the value of the relevant G_{n-1} to obtain
12634 the residual at that stage. */
12635 calculate_group_reloc_mask (signed_value < 0 ? - signed_value : signed_value,
12636 group - 1, &residual);
12637
12638 /* Check for overflow. (The absolute value to go in the place must be
12639 divisible by four and, after having been divided by four, must
12640 fit in eight bits.) */
12641 if ((residual & 0x3) != 0 || residual >= 0x400)
12642 {
12643 _bfd_error_handler
12644 /* xgettext:c-format */
12645 (_("%pB(%pA+%#" PRIx64 "): overflow whilst "
12646 "splitting %#" PRIx64 " for group relocation %s"),
12647 input_bfd, input_section, (uint64_t) rel->r_offset,
12648 (uint64_t) (signed_value < 0 ? -signed_value : signed_value),
12649 howto->name);
12650 return bfd_reloc_overflow;
12651 }
12652
12653 /* Mask out the value and U bit. */
12654 insn &= 0xff7fff00;
12655
12656 /* Set the U bit if the value to go in the place is non-negative. */
12657 if (signed_value >= 0)
12658 insn |= 1 << 23;
12659
12660 /* Encode the offset. */
12661 insn |= residual >> 2;
12662
12663 bfd_put_32 (input_bfd, insn, hit_data);
12664 }
12665 return bfd_reloc_ok;
12666
12667 case R_ARM_THM_ALU_ABS_G0_NC:
12668 case R_ARM_THM_ALU_ABS_G1_NC:
12669 case R_ARM_THM_ALU_ABS_G2_NC:
12670 case R_ARM_THM_ALU_ABS_G3_NC:
12671 {
12672 const int shift_array[4] = {0, 8, 16, 24};
12673 bfd_vma insn = bfd_get_16 (input_bfd, hit_data);
12674 bfd_vma addr = value;
12675 int shift = shift_array[r_type - R_ARM_THM_ALU_ABS_G0_NC];
12676
12677 /* Compute address. */
12678 if (globals->use_rel)
12679 signed_addend = insn & 0xff;
12680 addr += signed_addend;
12681 if (branch_type == ST_BRANCH_TO_THUMB)
12682 addr |= 1;
12683 /* Clean imm8 insn. */
12684 insn &= 0xff00;
12685 /* And update with correct part of address. */
12686 insn |= (addr >> shift) & 0xff;
12687 /* Update insn. */
12688 bfd_put_16 (input_bfd, insn, hit_data);
12689 }
12690
12691 *unresolved_reloc_p = FALSE;
12692 return bfd_reloc_ok;
12693
12694 case R_ARM_GOTOFFFUNCDESC:
12695 {
12696 if (h == NULL)
12697 {
12698 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12699 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12700 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12701 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12702 bfd_vma seg = -1;
12703
12704 if (bfd_link_pic(info) && dynindx == 0)
12705 abort();
12706
12707 /* Resolve relocation. */
12708 bfd_put_32(output_bfd, (offset + sgot->output_offset)
12709 , contents + rel->r_offset);
12710 /* Emit R_ARM_FUNCDESC_VALUE or two fixups on funcdesc if
12711 not done yet. */
12712 arm_elf_fill_funcdesc(output_bfd, info,
12713 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12714 dynindx, offset, addr, dynreloc_value, seg);
12715 }
12716 else
12717 {
12718 int dynindx;
12719 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12720 bfd_vma addr;
12721 bfd_vma seg = -1;
12722
12723 /* For static binaries, sym_sec can be null. */
12724 if (sym_sec)
12725 {
12726 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12727 addr = dynreloc_value - sym_sec->output_section->vma;
12728 }
12729 else
12730 {
12731 dynindx = 0;
12732 addr = 0;
12733 }
12734
12735 if (bfd_link_pic(info) && dynindx == 0)
12736 abort();
12737
12738 /* This case cannot occur since funcdesc is allocated by
12739 the dynamic loader so we cannot resolve the relocation. */
12740 if (h->dynindx != -1)
12741 abort();
12742
12743 /* Resolve relocation. */
12744 bfd_put_32(output_bfd, (offset + sgot->output_offset),
12745 contents + rel->r_offset);
12746 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12747 arm_elf_fill_funcdesc(output_bfd, info,
12748 &eh->fdpic_cnts.funcdesc_offset,
12749 dynindx, offset, addr, dynreloc_value, seg);
12750 }
12751 }
12752 *unresolved_reloc_p = FALSE;
12753 return bfd_reloc_ok;
12754
12755 case R_ARM_GOTFUNCDESC:
12756 {
12757 if (h != NULL)
12758 {
12759 Elf_Internal_Rela outrel;
12760
12761 /* Resolve relocation. */
12762 bfd_put_32(output_bfd, ((eh->fdpic_cnts.gotfuncdesc_offset & ~1)
12763 + sgot->output_offset),
12764 contents + rel->r_offset);
12765 /* Add funcdesc and associated R_ARM_FUNCDESC_VALUE. */
12766 if(h->dynindx == -1)
12767 {
12768 int dynindx;
12769 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12770 bfd_vma addr;
12771 bfd_vma seg = -1;
12772
12773 /* For static binaries sym_sec can be null. */
12774 if (sym_sec)
12775 {
12776 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12777 addr = dynreloc_value - sym_sec->output_section->vma;
12778 }
12779 else
12780 {
12781 dynindx = 0;
12782 addr = 0;
12783 }
12784
12785 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12786 arm_elf_fill_funcdesc(output_bfd, info,
12787 &eh->fdpic_cnts.funcdesc_offset,
12788 dynindx, offset, addr, dynreloc_value, seg);
12789 }
12790
12791 /* Add a dynamic relocation on GOT entry if not already done. */
12792 if ((eh->fdpic_cnts.gotfuncdesc_offset & 1) == 0)
12793 {
12794 if (h->dynindx == -1)
12795 {
12796 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12797 if (h->root.type == bfd_link_hash_undefweak)
12798 bfd_put_32(output_bfd, 0, sgot->contents
12799 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12800 else
12801 bfd_put_32(output_bfd, sgot->output_section->vma
12802 + sgot->output_offset
12803 + (eh->fdpic_cnts.funcdesc_offset & ~1),
12804 sgot->contents
12805 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1));
12806 }
12807 else
12808 {
12809 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12810 }
12811 outrel.r_offset = sgot->output_section->vma
12812 + sgot->output_offset
12813 + (eh->fdpic_cnts.gotfuncdesc_offset & ~1);
12814 outrel.r_addend = 0;
12815 if (h->dynindx == -1 && !bfd_link_pic(info))
12816 if (h->root.type == bfd_link_hash_undefweak)
12817 arm_elf_add_rofixup(output_bfd, globals->srofixup, -1);
12818 else
12819 arm_elf_add_rofixup(output_bfd, globals->srofixup,
12820 outrel.r_offset);
12821 else
12822 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12823 eh->fdpic_cnts.gotfuncdesc_offset |= 1;
12824 }
12825 }
12826 else
12827 {
12828 /* Such relocation on static function should not have been
12829 emitted by the compiler. */
12830 abort();
12831 }
12832 }
12833 *unresolved_reloc_p = FALSE;
12834 return bfd_reloc_ok;
12835
12836 case R_ARM_FUNCDESC:
12837 {
12838 if (h == NULL)
12839 {
12840 struct fdpic_local *local_fdpic_cnts = elf32_arm_local_fdpic_cnts(input_bfd);
12841 Elf_Internal_Rela outrel;
12842 int dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12843 int offset = local_fdpic_cnts[r_symndx].funcdesc_offset & ~1;
12844 bfd_vma addr = dynreloc_value - sym_sec->output_section->vma;
12845 bfd_vma seg = -1;
12846
12847 if (bfd_link_pic(info) && dynindx == 0)
12848 abort();
12849
12850 /* Replace static FUNCDESC relocation with a
12851 R_ARM_RELATIVE dynamic relocation or with a rofixup for
12852 executable. */
12853 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12854 outrel.r_offset = input_section->output_section->vma
12855 + input_section->output_offset + rel->r_offset;
12856 outrel.r_addend = 0;
12857 if (bfd_link_pic(info))
12858 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12859 else
12860 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12861
12862 bfd_put_32 (input_bfd, sgot->output_section->vma
12863 + sgot->output_offset + offset, hit_data);
12864
12865 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12866 arm_elf_fill_funcdesc(output_bfd, info,
12867 &local_fdpic_cnts[r_symndx].funcdesc_offset,
12868 dynindx, offset, addr, dynreloc_value, seg);
12869 }
12870 else
12871 {
12872 if (h->dynindx == -1)
12873 {
12874 int dynindx;
12875 int offset = eh->fdpic_cnts.funcdesc_offset & ~1;
12876 bfd_vma addr;
12877 bfd_vma seg = -1;
12878 Elf_Internal_Rela outrel;
12879
12880 /* For static binaries sym_sec can be null. */
12881 if (sym_sec)
12882 {
12883 dynindx = elf_section_data (sym_sec->output_section)->dynindx;
12884 addr = dynreloc_value - sym_sec->output_section->vma;
12885 }
12886 else
12887 {
12888 dynindx = 0;
12889 addr = 0;
12890 }
12891
12892 if (bfd_link_pic(info) && dynindx == 0)
12893 abort();
12894
12895 /* Replace static FUNCDESC relocation with a
12896 R_ARM_RELATIVE dynamic relocation. */
12897 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
12898 outrel.r_offset = input_section->output_section->vma
12899 + input_section->output_offset + rel->r_offset;
12900 outrel.r_addend = 0;
12901 if (bfd_link_pic(info))
12902 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12903 else
12904 arm_elf_add_rofixup(output_bfd, globals->srofixup, outrel.r_offset);
12905
12906 bfd_put_32 (input_bfd, sgot->output_section->vma
12907 + sgot->output_offset + offset, hit_data);
12908
12909 /* Emit R_ARM_FUNCDESC_VALUE on funcdesc if not done yet. */
12910 arm_elf_fill_funcdesc(output_bfd, info,
12911 &eh->fdpic_cnts.funcdesc_offset,
12912 dynindx, offset, addr, dynreloc_value, seg);
12913 }
12914 else
12915 {
12916 Elf_Internal_Rela outrel;
12917
12918 /* Add a dynamic relocation. */
12919 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_FUNCDESC);
12920 outrel.r_offset = input_section->output_section->vma
12921 + input_section->output_offset + rel->r_offset;
12922 outrel.r_addend = 0;
12923 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
12924 }
12925 }
12926 }
12927 *unresolved_reloc_p = FALSE;
12928 return bfd_reloc_ok;
12929
12930 case R_ARM_THM_BF16:
12931 {
12932 bfd_vma relocation;
12933 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12934 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12935
12936 if (globals->use_rel)
12937 {
12938 bfd_vma immA = (upper_insn & 0x001f);
12939 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12940 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12941 addend = (immA << 12);
12942 addend |= (immB << 2);
12943 addend |= (immC << 1);
12944 addend |= 1;
12945 /* Sign extend. */
12946 signed_addend = (addend & 0x10000) ? addend - (1 << 17) : addend;
12947 }
12948
12949 relocation = value + signed_addend;
12950 relocation -= (input_section->output_section->vma
12951 + input_section->output_offset
12952 + rel->r_offset);
12953
12954 /* Put RELOCATION back into the insn. */
12955 {
12956 bfd_vma immA = (relocation & 0x0001f000) >> 12;
12957 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
12958 bfd_vma immC = (relocation & 0x00000002) >> 1;
12959
12960 upper_insn = (upper_insn & 0xffe0) | immA;
12961 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
12962 }
12963
12964 /* Put the relocated value back in the object file: */
12965 bfd_put_16 (input_bfd, upper_insn, hit_data);
12966 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
12967
12968 return bfd_reloc_ok;
12969 }
12970
12971 case R_ARM_THM_BF12:
12972 {
12973 bfd_vma relocation;
12974 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
12975 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
12976
12977 if (globals->use_rel)
12978 {
12979 bfd_vma immA = (upper_insn & 0x0001);
12980 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
12981 bfd_vma immC = (lower_insn & 0x0800) >> 11;
12982 addend = (immA << 12);
12983 addend |= (immB << 2);
12984 addend |= (immC << 1);
12985 addend |= 1;
12986 /* Sign extend. */
12987 addend = (addend & 0x1000) ? addend - (1 << 13) : addend;
12988 signed_addend = addend;
12989 }
12990
12991 relocation = value + signed_addend;
12992 relocation -= (input_section->output_section->vma
12993 + input_section->output_offset
12994 + rel->r_offset);
12995
12996 /* Put RELOCATION back into the insn. */
12997 {
12998 bfd_vma immA = (relocation & 0x00001000) >> 12;
12999 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
13000 bfd_vma immC = (relocation & 0x00000002) >> 1;
13001
13002 upper_insn = (upper_insn & 0xfffe) | immA;
13003 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
13004 }
13005
13006 /* Put the relocated value back in the object file: */
13007 bfd_put_16 (input_bfd, upper_insn, hit_data);
13008 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13009
13010 return bfd_reloc_ok;
13011 }
13012
13013 case R_ARM_THM_BF18:
13014 {
13015 bfd_vma relocation;
13016 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
13017 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
13018
13019 if (globals->use_rel)
13020 {
13021 bfd_vma immA = (upper_insn & 0x007f);
13022 bfd_vma immB = (lower_insn & 0x07fe) >> 1;
13023 bfd_vma immC = (lower_insn & 0x0800) >> 11;
13024 addend = (immA << 12);
13025 addend |= (immB << 2);
13026 addend |= (immC << 1);
13027 addend |= 1;
13028 /* Sign extend. */
13029 addend = (addend & 0x40000) ? addend - (1 << 19) : addend;
13030 signed_addend = addend;
13031 }
13032
13033 relocation = value + signed_addend;
13034 relocation -= (input_section->output_section->vma
13035 + input_section->output_offset
13036 + rel->r_offset);
13037
13038 /* Put RELOCATION back into the insn. */
13039 {
13040 bfd_vma immA = (relocation & 0x0007f000) >> 12;
13041 bfd_vma immB = (relocation & 0x00000ffc) >> 2;
13042 bfd_vma immC = (relocation & 0x00000002) >> 1;
13043
13044 upper_insn = (upper_insn & 0xff80) | immA;
13045 lower_insn = (lower_insn & 0xf001) | (immC << 11) | (immB << 1);
13046 }
13047
13048 /* Put the relocated value back in the object file: */
13049 bfd_put_16 (input_bfd, upper_insn, hit_data);
13050 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
13051
13052 return bfd_reloc_ok;
13053 }
13054
13055 default:
13056 return bfd_reloc_notsupported;
13057 }
13058 }
13059
13060 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
13061 static void
13062 arm_add_to_rel (bfd * abfd,
13063 bfd_byte * address,
13064 reloc_howto_type * howto,
13065 bfd_signed_vma increment)
13066 {
13067 bfd_signed_vma addend;
13068
13069 if (howto->type == R_ARM_THM_CALL
13070 || howto->type == R_ARM_THM_JUMP24)
13071 {
13072 int upper_insn, lower_insn;
13073 int upper, lower;
13074
13075 upper_insn = bfd_get_16 (abfd, address);
13076 lower_insn = bfd_get_16 (abfd, address + 2);
13077 upper = upper_insn & 0x7ff;
13078 lower = lower_insn & 0x7ff;
13079
13080 addend = (upper << 12) | (lower << 1);
13081 addend += increment;
13082 addend >>= 1;
13083
13084 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
13085 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
13086
13087 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
13088 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
13089 }
13090 else
13091 {
13092 bfd_vma contents;
13093
13094 contents = bfd_get_32 (abfd, address);
13095
13096 /* Get the (signed) value from the instruction. */
13097 addend = contents & howto->src_mask;
13098 if (addend & ((howto->src_mask + 1) >> 1))
13099 {
13100 bfd_signed_vma mask;
13101
13102 mask = -1;
13103 mask &= ~ howto->src_mask;
13104 addend |= mask;
13105 }
13106
13107 /* Add in the increment, (which is a byte value). */
13108 switch (howto->type)
13109 {
13110 default:
13111 addend += increment;
13112 break;
13113
13114 case R_ARM_PC24:
13115 case R_ARM_PLT32:
13116 case R_ARM_CALL:
13117 case R_ARM_JUMP24:
13118 addend <<= howto->size;
13119 addend += increment;
13120
13121 /* Should we check for overflow here ? */
13122
13123 /* Drop any undesired bits. */
13124 addend >>= howto->rightshift;
13125 break;
13126 }
13127
13128 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
13129
13130 bfd_put_32 (abfd, contents, address);
13131 }
13132 }
13133
13134 #define IS_ARM_TLS_RELOC(R_TYPE) \
13135 ((R_TYPE) == R_ARM_TLS_GD32 \
13136 || (R_TYPE) == R_ARM_TLS_GD32_FDPIC \
13137 || (R_TYPE) == R_ARM_TLS_LDO32 \
13138 || (R_TYPE) == R_ARM_TLS_LDM32 \
13139 || (R_TYPE) == R_ARM_TLS_LDM32_FDPIC \
13140 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
13141 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
13142 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
13143 || (R_TYPE) == R_ARM_TLS_LE32 \
13144 || (R_TYPE) == R_ARM_TLS_IE32 \
13145 || (R_TYPE) == R_ARM_TLS_IE32_FDPIC \
13146 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
13147
13148 /* Specific set of relocations for the gnu tls dialect. */
13149 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
13150 ((R_TYPE) == R_ARM_TLS_GOTDESC \
13151 || (R_TYPE) == R_ARM_TLS_CALL \
13152 || (R_TYPE) == R_ARM_THM_TLS_CALL \
13153 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
13154 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
13155
13156 /* Relocate an ARM ELF section. */
13157
13158 static bfd_boolean
13159 elf32_arm_relocate_section (bfd * output_bfd,
13160 struct bfd_link_info * info,
13161 bfd * input_bfd,
13162 asection * input_section,
13163 bfd_byte * contents,
13164 Elf_Internal_Rela * relocs,
13165 Elf_Internal_Sym * local_syms,
13166 asection ** local_sections)
13167 {
13168 Elf_Internal_Shdr *symtab_hdr;
13169 struct elf_link_hash_entry **sym_hashes;
13170 Elf_Internal_Rela *rel;
13171 Elf_Internal_Rela *relend;
13172 const char *name;
13173 struct elf32_arm_link_hash_table * globals;
13174
13175 globals = elf32_arm_hash_table (info);
13176 if (globals == NULL)
13177 return FALSE;
13178
13179 symtab_hdr = & elf_symtab_hdr (input_bfd);
13180 sym_hashes = elf_sym_hashes (input_bfd);
13181
13182 rel = relocs;
13183 relend = relocs + input_section->reloc_count;
13184 for (; rel < relend; rel++)
13185 {
13186 int r_type;
13187 reloc_howto_type * howto;
13188 unsigned long r_symndx;
13189 Elf_Internal_Sym * sym;
13190 asection * sec;
13191 struct elf_link_hash_entry * h;
13192 bfd_vma relocation;
13193 bfd_reloc_status_type r;
13194 arelent bfd_reloc;
13195 char sym_type;
13196 bfd_boolean unresolved_reloc = FALSE;
13197 char *error_message = NULL;
13198
13199 r_symndx = ELF32_R_SYM (rel->r_info);
13200 r_type = ELF32_R_TYPE (rel->r_info);
13201 r_type = arm_real_reloc_type (globals, r_type);
13202
13203 if ( r_type == R_ARM_GNU_VTENTRY
13204 || r_type == R_ARM_GNU_VTINHERIT)
13205 continue;
13206
13207 howto = bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
13208
13209 if (howto == NULL)
13210 return _bfd_unrecognized_reloc (input_bfd, input_section, r_type);
13211
13212 h = NULL;
13213 sym = NULL;
13214 sec = NULL;
13215
13216 if (r_symndx < symtab_hdr->sh_info)
13217 {
13218 sym = local_syms + r_symndx;
13219 sym_type = ELF32_ST_TYPE (sym->st_info);
13220 sec = local_sections[r_symndx];
13221
13222 /* An object file might have a reference to a local
13223 undefined symbol. This is a daft object file, but we
13224 should at least do something about it. V4BX & NONE
13225 relocations do not use the symbol and are explicitly
13226 allowed to use the undefined symbol, so allow those.
13227 Likewise for relocations against STN_UNDEF. */
13228 if (r_type != R_ARM_V4BX
13229 && r_type != R_ARM_NONE
13230 && r_symndx != STN_UNDEF
13231 && bfd_is_und_section (sec)
13232 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
13233 (*info->callbacks->undefined_symbol)
13234 (info, bfd_elf_string_from_elf_section
13235 (input_bfd, symtab_hdr->sh_link, sym->st_name),
13236 input_bfd, input_section,
13237 rel->r_offset, TRUE);
13238
13239 if (globals->use_rel)
13240 {
13241 relocation = (sec->output_section->vma
13242 + sec->output_offset
13243 + sym->st_value);
13244 if (!bfd_link_relocatable (info)
13245 && (sec->flags & SEC_MERGE)
13246 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13247 {
13248 asection *msec;
13249 bfd_vma addend, value;
13250
13251 switch (r_type)
13252 {
13253 case R_ARM_MOVW_ABS_NC:
13254 case R_ARM_MOVT_ABS:
13255 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13256 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
13257 addend = (addend ^ 0x8000) - 0x8000;
13258 break;
13259
13260 case R_ARM_THM_MOVW_ABS_NC:
13261 case R_ARM_THM_MOVT_ABS:
13262 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
13263 << 16;
13264 value |= bfd_get_16 (input_bfd,
13265 contents + rel->r_offset + 2);
13266 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
13267 | ((value & 0x04000000) >> 15);
13268 addend = (addend ^ 0x8000) - 0x8000;
13269 break;
13270
13271 default:
13272 if (howto->rightshift
13273 || (howto->src_mask & (howto->src_mask + 1)))
13274 {
13275 _bfd_error_handler
13276 /* xgettext:c-format */
13277 (_("%pB(%pA+%#" PRIx64 "): "
13278 "%s relocation against SEC_MERGE section"),
13279 input_bfd, input_section,
13280 (uint64_t) rel->r_offset, howto->name);
13281 return FALSE;
13282 }
13283
13284 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
13285
13286 /* Get the (signed) value from the instruction. */
13287 addend = value & howto->src_mask;
13288 if (addend & ((howto->src_mask + 1) >> 1))
13289 {
13290 bfd_signed_vma mask;
13291
13292 mask = -1;
13293 mask &= ~ howto->src_mask;
13294 addend |= mask;
13295 }
13296 break;
13297 }
13298
13299 msec = sec;
13300 addend =
13301 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
13302 - relocation;
13303 addend += msec->output_section->vma + msec->output_offset;
13304
13305 /* Cases here must match those in the preceding
13306 switch statement. */
13307 switch (r_type)
13308 {
13309 case R_ARM_MOVW_ABS_NC:
13310 case R_ARM_MOVT_ABS:
13311 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
13312 | (addend & 0xfff);
13313 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13314 break;
13315
13316 case R_ARM_THM_MOVW_ABS_NC:
13317 case R_ARM_THM_MOVT_ABS:
13318 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
13319 | (addend & 0xff) | ((addend & 0x0800) << 15);
13320 bfd_put_16 (input_bfd, value >> 16,
13321 contents + rel->r_offset);
13322 bfd_put_16 (input_bfd, value,
13323 contents + rel->r_offset + 2);
13324 break;
13325
13326 default:
13327 value = (value & ~ howto->dst_mask)
13328 | (addend & howto->dst_mask);
13329 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
13330 break;
13331 }
13332 }
13333 }
13334 else
13335 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
13336 }
13337 else
13338 {
13339 bfd_boolean warned, ignored;
13340
13341 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
13342 r_symndx, symtab_hdr, sym_hashes,
13343 h, sec, relocation,
13344 unresolved_reloc, warned, ignored);
13345
13346 sym_type = h->type;
13347 }
13348
13349 if (sec != NULL && discarded_section (sec))
13350 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
13351 rel, 1, relend, howto, 0, contents);
13352
13353 if (bfd_link_relocatable (info))
13354 {
13355 /* This is a relocatable link. We don't have to change
13356 anything, unless the reloc is against a section symbol,
13357 in which case we have to adjust according to where the
13358 section symbol winds up in the output section. */
13359 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
13360 {
13361 if (globals->use_rel)
13362 arm_add_to_rel (input_bfd, contents + rel->r_offset,
13363 howto, (bfd_signed_vma) sec->output_offset);
13364 else
13365 rel->r_addend += sec->output_offset;
13366 }
13367 continue;
13368 }
13369
13370 if (h != NULL)
13371 name = h->root.root.string;
13372 else
13373 {
13374 name = (bfd_elf_string_from_elf_section
13375 (input_bfd, symtab_hdr->sh_link, sym->st_name));
13376 if (name == NULL || *name == '\0')
13377 name = bfd_section_name (input_bfd, sec);
13378 }
13379
13380 if (r_symndx != STN_UNDEF
13381 && r_type != R_ARM_NONE
13382 && (h == NULL
13383 || h->root.type == bfd_link_hash_defined
13384 || h->root.type == bfd_link_hash_defweak)
13385 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
13386 {
13387 _bfd_error_handler
13388 ((sym_type == STT_TLS
13389 /* xgettext:c-format */
13390 ? _("%pB(%pA+%#" PRIx64 "): %s used with TLS symbol %s")
13391 /* xgettext:c-format */
13392 : _("%pB(%pA+%#" PRIx64 "): %s used with non-TLS symbol %s")),
13393 input_bfd,
13394 input_section,
13395 (uint64_t) rel->r_offset,
13396 howto->name,
13397 name);
13398 }
13399
13400 /* We call elf32_arm_final_link_relocate unless we're completely
13401 done, i.e., the relaxation produced the final output we want,
13402 and we won't let anybody mess with it. Also, we have to do
13403 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
13404 both in relaxed and non-relaxed cases. */
13405 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
13406 || (IS_ARM_TLS_GNU_RELOC (r_type)
13407 && !((h ? elf32_arm_hash_entry (h)->tls_type :
13408 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
13409 & GOT_TLS_GDESC)))
13410 {
13411 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
13412 contents, rel, h == NULL);
13413 /* This may have been marked unresolved because it came from
13414 a shared library. But we've just dealt with that. */
13415 unresolved_reloc = 0;
13416 }
13417 else
13418 r = bfd_reloc_continue;
13419
13420 if (r == bfd_reloc_continue)
13421 {
13422 unsigned char branch_type =
13423 h ? ARM_GET_SYM_BRANCH_TYPE (h->target_internal)
13424 : ARM_GET_SYM_BRANCH_TYPE (sym->st_target_internal);
13425
13426 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
13427 input_section, contents, rel,
13428 relocation, info, sec, name,
13429 sym_type, branch_type, h,
13430 &unresolved_reloc,
13431 &error_message);
13432 }
13433
13434 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
13435 because such sections are not SEC_ALLOC and thus ld.so will
13436 not process them. */
13437 if (unresolved_reloc
13438 && !((input_section->flags & SEC_DEBUGGING) != 0
13439 && h->def_dynamic)
13440 && _bfd_elf_section_offset (output_bfd, info, input_section,
13441 rel->r_offset) != (bfd_vma) -1)
13442 {
13443 _bfd_error_handler
13444 /* xgettext:c-format */
13445 (_("%pB(%pA+%#" PRIx64 "): "
13446 "unresolvable %s relocation against symbol `%s'"),
13447 input_bfd,
13448 input_section,
13449 (uint64_t) rel->r_offset,
13450 howto->name,
13451 h->root.root.string);
13452 return FALSE;
13453 }
13454
13455 if (r != bfd_reloc_ok)
13456 {
13457 switch (r)
13458 {
13459 case bfd_reloc_overflow:
13460 /* If the overflowing reloc was to an undefined symbol,
13461 we have already printed one error message and there
13462 is no point complaining again. */
13463 if (!h || h->root.type != bfd_link_hash_undefined)
13464 (*info->callbacks->reloc_overflow)
13465 (info, (h ? &h->root : NULL), name, howto->name,
13466 (bfd_vma) 0, input_bfd, input_section, rel->r_offset);
13467 break;
13468
13469 case bfd_reloc_undefined:
13470 (*info->callbacks->undefined_symbol)
13471 (info, name, input_bfd, input_section, rel->r_offset, TRUE);
13472 break;
13473
13474 case bfd_reloc_outofrange:
13475 error_message = _("out of range");
13476 goto common_error;
13477
13478 case bfd_reloc_notsupported:
13479 error_message = _("unsupported relocation");
13480 goto common_error;
13481
13482 case bfd_reloc_dangerous:
13483 /* error_message should already be set. */
13484 goto common_error;
13485
13486 default:
13487 error_message = _("unknown error");
13488 /* Fall through. */
13489
13490 common_error:
13491 BFD_ASSERT (error_message != NULL);
13492 (*info->callbacks->reloc_dangerous)
13493 (info, error_message, input_bfd, input_section, rel->r_offset);
13494 break;
13495 }
13496 }
13497 }
13498
13499 return TRUE;
13500 }
13501
13502 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
13503 adds the edit to the start of the list. (The list must be built in order of
13504 ascending TINDEX: the function's callers are primarily responsible for
13505 maintaining that condition). */
13506
13507 static void
13508 add_unwind_table_edit (arm_unwind_table_edit **head,
13509 arm_unwind_table_edit **tail,
13510 arm_unwind_edit_type type,
13511 asection *linked_section,
13512 unsigned int tindex)
13513 {
13514 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
13515 xmalloc (sizeof (arm_unwind_table_edit));
13516
13517 new_edit->type = type;
13518 new_edit->linked_section = linked_section;
13519 new_edit->index = tindex;
13520
13521 if (tindex > 0)
13522 {
13523 new_edit->next = NULL;
13524
13525 if (*tail)
13526 (*tail)->next = new_edit;
13527
13528 (*tail) = new_edit;
13529
13530 if (!*head)
13531 (*head) = new_edit;
13532 }
13533 else
13534 {
13535 new_edit->next = *head;
13536
13537 if (!*tail)
13538 *tail = new_edit;
13539
13540 *head = new_edit;
13541 }
13542 }
13543
13544 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
13545
13546 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
13547 static void
13548 adjust_exidx_size(asection *exidx_sec, int adjust)
13549 {
13550 asection *out_sec;
13551
13552 if (!exidx_sec->rawsize)
13553 exidx_sec->rawsize = exidx_sec->size;
13554
13555 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
13556 out_sec = exidx_sec->output_section;
13557 /* Adjust size of output section. */
13558 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
13559 }
13560
13561 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
13562 static void
13563 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
13564 {
13565 struct _arm_elf_section_data *exidx_arm_data;
13566
13567 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13568 add_unwind_table_edit (
13569 &exidx_arm_data->u.exidx.unwind_edit_list,
13570 &exidx_arm_data->u.exidx.unwind_edit_tail,
13571 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
13572
13573 exidx_arm_data->additional_reloc_count++;
13574
13575 adjust_exidx_size(exidx_sec, 8);
13576 }
13577
13578 /* Scan .ARM.exidx tables, and create a list describing edits which should be
13579 made to those tables, such that:
13580
13581 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
13582 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
13583 codes which have been inlined into the index).
13584
13585 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
13586
13587 The edits are applied when the tables are written
13588 (in elf32_arm_write_section). */
13589
13590 bfd_boolean
13591 elf32_arm_fix_exidx_coverage (asection **text_section_order,
13592 unsigned int num_text_sections,
13593 struct bfd_link_info *info,
13594 bfd_boolean merge_exidx_entries)
13595 {
13596 bfd *inp;
13597 unsigned int last_second_word = 0, i;
13598 asection *last_exidx_sec = NULL;
13599 asection *last_text_sec = NULL;
13600 int last_unwind_type = -1;
13601
13602 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
13603 text sections. */
13604 for (inp = info->input_bfds; inp != NULL; inp = inp->link.next)
13605 {
13606 asection *sec;
13607
13608 for (sec = inp->sections; sec != NULL; sec = sec->next)
13609 {
13610 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
13611 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
13612
13613 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
13614 continue;
13615
13616 if (elf_sec->linked_to)
13617 {
13618 Elf_Internal_Shdr *linked_hdr
13619 = &elf_section_data (elf_sec->linked_to)->this_hdr;
13620 struct _arm_elf_section_data *linked_sec_arm_data
13621 = get_arm_elf_section_data (linked_hdr->bfd_section);
13622
13623 if (linked_sec_arm_data == NULL)
13624 continue;
13625
13626 /* Link this .ARM.exidx section back from the text section it
13627 describes. */
13628 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
13629 }
13630 }
13631 }
13632
13633 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
13634 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
13635 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
13636
13637 for (i = 0; i < num_text_sections; i++)
13638 {
13639 asection *sec = text_section_order[i];
13640 asection *exidx_sec;
13641 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
13642 struct _arm_elf_section_data *exidx_arm_data;
13643 bfd_byte *contents = NULL;
13644 int deleted_exidx_bytes = 0;
13645 bfd_vma j;
13646 arm_unwind_table_edit *unwind_edit_head = NULL;
13647 arm_unwind_table_edit *unwind_edit_tail = NULL;
13648 Elf_Internal_Shdr *hdr;
13649 bfd *ibfd;
13650
13651 if (arm_data == NULL)
13652 continue;
13653
13654 exidx_sec = arm_data->u.text.arm_exidx_sec;
13655 if (exidx_sec == NULL)
13656 {
13657 /* Section has no unwind data. */
13658 if (last_unwind_type == 0 || !last_exidx_sec)
13659 continue;
13660
13661 /* Ignore zero sized sections. */
13662 if (sec->size == 0)
13663 continue;
13664
13665 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13666 last_unwind_type = 0;
13667 continue;
13668 }
13669
13670 /* Skip /DISCARD/ sections. */
13671 if (bfd_is_abs_section (exidx_sec->output_section))
13672 continue;
13673
13674 hdr = &elf_section_data (exidx_sec)->this_hdr;
13675 if (hdr->sh_type != SHT_ARM_EXIDX)
13676 continue;
13677
13678 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
13679 if (exidx_arm_data == NULL)
13680 continue;
13681
13682 ibfd = exidx_sec->owner;
13683
13684 if (hdr->contents != NULL)
13685 contents = hdr->contents;
13686 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
13687 /* An error? */
13688 continue;
13689
13690 if (last_unwind_type > 0)
13691 {
13692 unsigned int first_word = bfd_get_32 (ibfd, contents);
13693 /* Add cantunwind if first unwind item does not match section
13694 start. */
13695 if (first_word != sec->vma)
13696 {
13697 insert_cantunwind_after (last_text_sec, last_exidx_sec);
13698 last_unwind_type = 0;
13699 }
13700 }
13701
13702 for (j = 0; j < hdr->sh_size; j += 8)
13703 {
13704 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
13705 int unwind_type;
13706 int elide = 0;
13707
13708 /* An EXIDX_CANTUNWIND entry. */
13709 if (second_word == 1)
13710 {
13711 if (last_unwind_type == 0)
13712 elide = 1;
13713 unwind_type = 0;
13714 }
13715 /* Inlined unwinding data. Merge if equal to previous. */
13716 else if ((second_word & 0x80000000) != 0)
13717 {
13718 if (merge_exidx_entries
13719 && last_second_word == second_word && last_unwind_type == 1)
13720 elide = 1;
13721 unwind_type = 1;
13722 last_second_word = second_word;
13723 }
13724 /* Normal table entry. In theory we could merge these too,
13725 but duplicate entries are likely to be much less common. */
13726 else
13727 unwind_type = 2;
13728
13729 if (elide && !bfd_link_relocatable (info))
13730 {
13731 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
13732 DELETE_EXIDX_ENTRY, NULL, j / 8);
13733
13734 deleted_exidx_bytes += 8;
13735 }
13736
13737 last_unwind_type = unwind_type;
13738 }
13739
13740 /* Free contents if we allocated it ourselves. */
13741 if (contents != hdr->contents)
13742 free (contents);
13743
13744 /* Record edits to be applied later (in elf32_arm_write_section). */
13745 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
13746 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
13747
13748 if (deleted_exidx_bytes > 0)
13749 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
13750
13751 last_exidx_sec = exidx_sec;
13752 last_text_sec = sec;
13753 }
13754
13755 /* Add terminating CANTUNWIND entry. */
13756 if (!bfd_link_relocatable (info) && last_exidx_sec
13757 && last_unwind_type != 0)
13758 insert_cantunwind_after(last_text_sec, last_exidx_sec);
13759
13760 return TRUE;
13761 }
13762
13763 static bfd_boolean
13764 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
13765 bfd *ibfd, const char *name)
13766 {
13767 asection *sec, *osec;
13768
13769 sec = bfd_get_linker_section (ibfd, name);
13770 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
13771 return TRUE;
13772
13773 osec = sec->output_section;
13774 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
13775 return TRUE;
13776
13777 if (! bfd_set_section_contents (obfd, osec, sec->contents,
13778 sec->output_offset, sec->size))
13779 return FALSE;
13780
13781 return TRUE;
13782 }
13783
13784 static bfd_boolean
13785 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
13786 {
13787 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
13788 asection *sec, *osec;
13789
13790 if (globals == NULL)
13791 return FALSE;
13792
13793 /* Invoke the regular ELF backend linker to do all the work. */
13794 if (!bfd_elf_final_link (abfd, info))
13795 return FALSE;
13796
13797 /* Process stub sections (eg BE8 encoding, ...). */
13798 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
13799 unsigned int i;
13800 for (i=0; i<htab->top_id; i++)
13801 {
13802 sec = htab->stub_group[i].stub_sec;
13803 /* Only process it once, in its link_sec slot. */
13804 if (sec && i == htab->stub_group[i].link_sec->id)
13805 {
13806 osec = sec->output_section;
13807 elf32_arm_write_section (abfd, info, sec, sec->contents);
13808 if (! bfd_set_section_contents (abfd, osec, sec->contents,
13809 sec->output_offset, sec->size))
13810 return FALSE;
13811 }
13812 }
13813
13814 /* Write out any glue sections now that we have created all the
13815 stubs. */
13816 if (globals->bfd_of_glue_owner != NULL)
13817 {
13818 if (! elf32_arm_output_glue_section (info, abfd,
13819 globals->bfd_of_glue_owner,
13820 ARM2THUMB_GLUE_SECTION_NAME))
13821 return FALSE;
13822
13823 if (! elf32_arm_output_glue_section (info, abfd,
13824 globals->bfd_of_glue_owner,
13825 THUMB2ARM_GLUE_SECTION_NAME))
13826 return FALSE;
13827
13828 if (! elf32_arm_output_glue_section (info, abfd,
13829 globals->bfd_of_glue_owner,
13830 VFP11_ERRATUM_VENEER_SECTION_NAME))
13831 return FALSE;
13832
13833 if (! elf32_arm_output_glue_section (info, abfd,
13834 globals->bfd_of_glue_owner,
13835 STM32L4XX_ERRATUM_VENEER_SECTION_NAME))
13836 return FALSE;
13837
13838 if (! elf32_arm_output_glue_section (info, abfd,
13839 globals->bfd_of_glue_owner,
13840 ARM_BX_GLUE_SECTION_NAME))
13841 return FALSE;
13842 }
13843
13844 return TRUE;
13845 }
13846
13847 /* Return a best guess for the machine number based on the attributes. */
13848
13849 static unsigned int
13850 bfd_arm_get_mach_from_attributes (bfd * abfd)
13851 {
13852 int arch = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_CPU_arch);
13853
13854 switch (arch)
13855 {
13856 case TAG_CPU_ARCH_PRE_V4: return bfd_mach_arm_3M;
13857 case TAG_CPU_ARCH_V4: return bfd_mach_arm_4;
13858 case TAG_CPU_ARCH_V4T: return bfd_mach_arm_4T;
13859 case TAG_CPU_ARCH_V5T: return bfd_mach_arm_5T;
13860
13861 case TAG_CPU_ARCH_V5TE:
13862 {
13863 char * name;
13864
13865 BFD_ASSERT (Tag_CPU_name < NUM_KNOWN_OBJ_ATTRIBUTES);
13866 name = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_CPU_name].s;
13867
13868 if (name)
13869 {
13870 if (strcmp (name, "IWMMXT2") == 0)
13871 return bfd_mach_arm_iWMMXt2;
13872
13873 if (strcmp (name, "IWMMXT") == 0)
13874 return bfd_mach_arm_iWMMXt;
13875
13876 if (strcmp (name, "XSCALE") == 0)
13877 {
13878 int wmmx;
13879
13880 BFD_ASSERT (Tag_WMMX_arch < NUM_KNOWN_OBJ_ATTRIBUTES);
13881 wmmx = elf_known_obj_attributes (abfd) [OBJ_ATTR_PROC][Tag_WMMX_arch].i;
13882 switch (wmmx)
13883 {
13884 case 1: return bfd_mach_arm_iWMMXt;
13885 case 2: return bfd_mach_arm_iWMMXt2;
13886 default: return bfd_mach_arm_XScale;
13887 }
13888 }
13889 }
13890
13891 return bfd_mach_arm_5TE;
13892 }
13893
13894 case TAG_CPU_ARCH_V5TEJ:
13895 return bfd_mach_arm_5TEJ;
13896 case TAG_CPU_ARCH_V6:
13897 return bfd_mach_arm_6;
13898 case TAG_CPU_ARCH_V6KZ:
13899 return bfd_mach_arm_6KZ;
13900 case TAG_CPU_ARCH_V6T2:
13901 return bfd_mach_arm_6T2;
13902 case TAG_CPU_ARCH_V6K:
13903 return bfd_mach_arm_6K;
13904 case TAG_CPU_ARCH_V7:
13905 return bfd_mach_arm_7;
13906 case TAG_CPU_ARCH_V6_M:
13907 return bfd_mach_arm_6M;
13908 case TAG_CPU_ARCH_V6S_M:
13909 return bfd_mach_arm_6SM;
13910 case TAG_CPU_ARCH_V7E_M:
13911 return bfd_mach_arm_7EM;
13912 case TAG_CPU_ARCH_V8:
13913 return bfd_mach_arm_8;
13914 case TAG_CPU_ARCH_V8R:
13915 return bfd_mach_arm_8R;
13916 case TAG_CPU_ARCH_V8M_BASE:
13917 return bfd_mach_arm_8M_BASE;
13918 case TAG_CPU_ARCH_V8M_MAIN:
13919 return bfd_mach_arm_8M_MAIN;
13920 case TAG_CPU_ARCH_V8_1M_MAIN:
13921 return bfd_mach_arm_8_1M_MAIN;
13922
13923 default:
13924 /* Force entry to be added for any new known Tag_CPU_arch value. */
13925 BFD_ASSERT (arch > MAX_TAG_CPU_ARCH);
13926
13927 /* Unknown Tag_CPU_arch value. */
13928 return bfd_mach_arm_unknown;
13929 }
13930 }
13931
13932 /* Set the right machine number. */
13933
13934 static bfd_boolean
13935 elf32_arm_object_p (bfd *abfd)
13936 {
13937 unsigned int mach;
13938
13939 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
13940
13941 if (mach == bfd_mach_arm_unknown)
13942 {
13943 if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
13944 mach = bfd_mach_arm_ep9312;
13945 else
13946 mach = bfd_arm_get_mach_from_attributes (abfd);
13947 }
13948
13949 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
13950 return TRUE;
13951 }
13952
13953 /* Function to keep ARM specific flags in the ELF header. */
13954
13955 static bfd_boolean
13956 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
13957 {
13958 if (elf_flags_init (abfd)
13959 && elf_elfheader (abfd)->e_flags != flags)
13960 {
13961 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
13962 {
13963 if (flags & EF_ARM_INTERWORK)
13964 _bfd_error_handler
13965 (_("warning: not setting interworking flag of %pB since it has already been specified as non-interworking"),
13966 abfd);
13967 else
13968 _bfd_error_handler
13969 (_("warning: clearing the interworking flag of %pB due to outside request"),
13970 abfd);
13971 }
13972 }
13973 else
13974 {
13975 elf_elfheader (abfd)->e_flags = flags;
13976 elf_flags_init (abfd) = TRUE;
13977 }
13978
13979 return TRUE;
13980 }
13981
13982 /* Copy backend specific data from one object module to another. */
13983
13984 static bfd_boolean
13985 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
13986 {
13987 flagword in_flags;
13988 flagword out_flags;
13989
13990 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
13991 return TRUE;
13992
13993 in_flags = elf_elfheader (ibfd)->e_flags;
13994 out_flags = elf_elfheader (obfd)->e_flags;
13995
13996 if (elf_flags_init (obfd)
13997 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
13998 && in_flags != out_flags)
13999 {
14000 /* Cannot mix APCS26 and APCS32 code. */
14001 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
14002 return FALSE;
14003
14004 /* Cannot mix float APCS and non-float APCS code. */
14005 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
14006 return FALSE;
14007
14008 /* If the src and dest have different interworking flags
14009 then turn off the interworking bit. */
14010 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
14011 {
14012 if (out_flags & EF_ARM_INTERWORK)
14013 _bfd_error_handler
14014 (_("warning: clearing the interworking flag of %pB because non-interworking code in %pB has been linked with it"),
14015 obfd, ibfd);
14016
14017 in_flags &= ~EF_ARM_INTERWORK;
14018 }
14019
14020 /* Likewise for PIC, though don't warn for this case. */
14021 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
14022 in_flags &= ~EF_ARM_PIC;
14023 }
14024
14025 elf_elfheader (obfd)->e_flags = in_flags;
14026 elf_flags_init (obfd) = TRUE;
14027
14028 return _bfd_elf_copy_private_bfd_data (ibfd, obfd);
14029 }
14030
14031 /* Values for Tag_ABI_PCS_R9_use. */
14032 enum
14033 {
14034 AEABI_R9_V6,
14035 AEABI_R9_SB,
14036 AEABI_R9_TLS,
14037 AEABI_R9_unused
14038 };
14039
14040 /* Values for Tag_ABI_PCS_RW_data. */
14041 enum
14042 {
14043 AEABI_PCS_RW_data_absolute,
14044 AEABI_PCS_RW_data_PCrel,
14045 AEABI_PCS_RW_data_SBrel,
14046 AEABI_PCS_RW_data_unused
14047 };
14048
14049 /* Values for Tag_ABI_enum_size. */
14050 enum
14051 {
14052 AEABI_enum_unused,
14053 AEABI_enum_short,
14054 AEABI_enum_wide,
14055 AEABI_enum_forced_wide
14056 };
14057
14058 /* Determine whether an object attribute tag takes an integer, a
14059 string or both. */
14060
14061 static int
14062 elf32_arm_obj_attrs_arg_type (int tag)
14063 {
14064 if (tag == Tag_compatibility)
14065 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
14066 else if (tag == Tag_nodefaults)
14067 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
14068 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
14069 return ATTR_TYPE_FLAG_STR_VAL;
14070 else if (tag < 32)
14071 return ATTR_TYPE_FLAG_INT_VAL;
14072 else
14073 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
14074 }
14075
14076 /* The ABI defines that Tag_conformance should be emitted first, and that
14077 Tag_nodefaults should be second (if either is defined). This sets those
14078 two positions, and bumps up the position of all the remaining tags to
14079 compensate. */
14080 static int
14081 elf32_arm_obj_attrs_order (int num)
14082 {
14083 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
14084 return Tag_conformance;
14085 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
14086 return Tag_nodefaults;
14087 if ((num - 2) < Tag_nodefaults)
14088 return num - 2;
14089 if ((num - 1) < Tag_conformance)
14090 return num - 1;
14091 return num;
14092 }
14093
14094 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
14095 static bfd_boolean
14096 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
14097 {
14098 if ((tag & 127) < 64)
14099 {
14100 _bfd_error_handler
14101 (_("%pB: unknown mandatory EABI object attribute %d"),
14102 abfd, tag);
14103 bfd_set_error (bfd_error_bad_value);
14104 return FALSE;
14105 }
14106 else
14107 {
14108 _bfd_error_handler
14109 (_("warning: %pB: unknown EABI object attribute %d"),
14110 abfd, tag);
14111 return TRUE;
14112 }
14113 }
14114
14115 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
14116 Returns -1 if no architecture could be read. */
14117
14118 static int
14119 get_secondary_compatible_arch (bfd *abfd)
14120 {
14121 obj_attribute *attr =
14122 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14123
14124 /* Note: the tag and its argument below are uleb128 values, though
14125 currently-defined values fit in one byte for each. */
14126 if (attr->s
14127 && attr->s[0] == Tag_CPU_arch
14128 && (attr->s[1] & 128) != 128
14129 && attr->s[2] == 0)
14130 return attr->s[1];
14131
14132 /* This tag is "safely ignorable", so don't complain if it looks funny. */
14133 return -1;
14134 }
14135
14136 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
14137 The tag is removed if ARCH is -1. */
14138
14139 static void
14140 set_secondary_compatible_arch (bfd *abfd, int arch)
14141 {
14142 obj_attribute *attr =
14143 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
14144
14145 if (arch == -1)
14146 {
14147 attr->s = NULL;
14148 return;
14149 }
14150
14151 /* Note: the tag and its argument below are uleb128 values, though
14152 currently-defined values fit in one byte for each. */
14153 if (!attr->s)
14154 attr->s = (char *) bfd_alloc (abfd, 3);
14155 attr->s[0] = Tag_CPU_arch;
14156 attr->s[1] = arch;
14157 attr->s[2] = '\0';
14158 }
14159
14160 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
14161 into account. */
14162
14163 static int
14164 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
14165 int newtag, int secondary_compat)
14166 {
14167 #define T(X) TAG_CPU_ARCH_##X
14168 int tagl, tagh, result;
14169 const int v6t2[] =
14170 {
14171 T(V6T2), /* PRE_V4. */
14172 T(V6T2), /* V4. */
14173 T(V6T2), /* V4T. */
14174 T(V6T2), /* V5T. */
14175 T(V6T2), /* V5TE. */
14176 T(V6T2), /* V5TEJ. */
14177 T(V6T2), /* V6. */
14178 T(V7), /* V6KZ. */
14179 T(V6T2) /* V6T2. */
14180 };
14181 const int v6k[] =
14182 {
14183 T(V6K), /* PRE_V4. */
14184 T(V6K), /* V4. */
14185 T(V6K), /* V4T. */
14186 T(V6K), /* V5T. */
14187 T(V6K), /* V5TE. */
14188 T(V6K), /* V5TEJ. */
14189 T(V6K), /* V6. */
14190 T(V6KZ), /* V6KZ. */
14191 T(V7), /* V6T2. */
14192 T(V6K) /* V6K. */
14193 };
14194 const int v7[] =
14195 {
14196 T(V7), /* PRE_V4. */
14197 T(V7), /* V4. */
14198 T(V7), /* V4T. */
14199 T(V7), /* V5T. */
14200 T(V7), /* V5TE. */
14201 T(V7), /* V5TEJ. */
14202 T(V7), /* V6. */
14203 T(V7), /* V6KZ. */
14204 T(V7), /* V6T2. */
14205 T(V7), /* V6K. */
14206 T(V7) /* V7. */
14207 };
14208 const int v6_m[] =
14209 {
14210 -1, /* PRE_V4. */
14211 -1, /* V4. */
14212 T(V6K), /* V4T. */
14213 T(V6K), /* V5T. */
14214 T(V6K), /* V5TE. */
14215 T(V6K), /* V5TEJ. */
14216 T(V6K), /* V6. */
14217 T(V6KZ), /* V6KZ. */
14218 T(V7), /* V6T2. */
14219 T(V6K), /* V6K. */
14220 T(V7), /* V7. */
14221 T(V6_M) /* V6_M. */
14222 };
14223 const int v6s_m[] =
14224 {
14225 -1, /* PRE_V4. */
14226 -1, /* V4. */
14227 T(V6K), /* V4T. */
14228 T(V6K), /* V5T. */
14229 T(V6K), /* V5TE. */
14230 T(V6K), /* V5TEJ. */
14231 T(V6K), /* V6. */
14232 T(V6KZ), /* V6KZ. */
14233 T(V7), /* V6T2. */
14234 T(V6K), /* V6K. */
14235 T(V7), /* V7. */
14236 T(V6S_M), /* V6_M. */
14237 T(V6S_M) /* V6S_M. */
14238 };
14239 const int v7e_m[] =
14240 {
14241 -1, /* PRE_V4. */
14242 -1, /* V4. */
14243 T(V7E_M), /* V4T. */
14244 T(V7E_M), /* V5T. */
14245 T(V7E_M), /* V5TE. */
14246 T(V7E_M), /* V5TEJ. */
14247 T(V7E_M), /* V6. */
14248 T(V7E_M), /* V6KZ. */
14249 T(V7E_M), /* V6T2. */
14250 T(V7E_M), /* V6K. */
14251 T(V7E_M), /* V7. */
14252 T(V7E_M), /* V6_M. */
14253 T(V7E_M), /* V6S_M. */
14254 T(V7E_M) /* V7E_M. */
14255 };
14256 const int v8[] =
14257 {
14258 T(V8), /* PRE_V4. */
14259 T(V8), /* V4. */
14260 T(V8), /* V4T. */
14261 T(V8), /* V5T. */
14262 T(V8), /* V5TE. */
14263 T(V8), /* V5TEJ. */
14264 T(V8), /* V6. */
14265 T(V8), /* V6KZ. */
14266 T(V8), /* V6T2. */
14267 T(V8), /* V6K. */
14268 T(V8), /* V7. */
14269 T(V8), /* V6_M. */
14270 T(V8), /* V6S_M. */
14271 T(V8), /* V7E_M. */
14272 T(V8) /* V8. */
14273 };
14274 const int v8r[] =
14275 {
14276 T(V8R), /* PRE_V4. */
14277 T(V8R), /* V4. */
14278 T(V8R), /* V4T. */
14279 T(V8R), /* V5T. */
14280 T(V8R), /* V5TE. */
14281 T(V8R), /* V5TEJ. */
14282 T(V8R), /* V6. */
14283 T(V8R), /* V6KZ. */
14284 T(V8R), /* V6T2. */
14285 T(V8R), /* V6K. */
14286 T(V8R), /* V7. */
14287 T(V8R), /* V6_M. */
14288 T(V8R), /* V6S_M. */
14289 T(V8R), /* V7E_M. */
14290 T(V8), /* V8. */
14291 T(V8R), /* V8R. */
14292 };
14293 const int v8m_baseline[] =
14294 {
14295 -1, /* PRE_V4. */
14296 -1, /* V4. */
14297 -1, /* V4T. */
14298 -1, /* V5T. */
14299 -1, /* V5TE. */
14300 -1, /* V5TEJ. */
14301 -1, /* V6. */
14302 -1, /* V6KZ. */
14303 -1, /* V6T2. */
14304 -1, /* V6K. */
14305 -1, /* V7. */
14306 T(V8M_BASE), /* V6_M. */
14307 T(V8M_BASE), /* V6S_M. */
14308 -1, /* V7E_M. */
14309 -1, /* V8. */
14310 -1, /* V8R. */
14311 T(V8M_BASE) /* V8-M BASELINE. */
14312 };
14313 const int v8m_mainline[] =
14314 {
14315 -1, /* PRE_V4. */
14316 -1, /* V4. */
14317 -1, /* V4T. */
14318 -1, /* V5T. */
14319 -1, /* V5TE. */
14320 -1, /* V5TEJ. */
14321 -1, /* V6. */
14322 -1, /* V6KZ. */
14323 -1, /* V6T2. */
14324 -1, /* V6K. */
14325 T(V8M_MAIN), /* V7. */
14326 T(V8M_MAIN), /* V6_M. */
14327 T(V8M_MAIN), /* V6S_M. */
14328 T(V8M_MAIN), /* V7E_M. */
14329 -1, /* V8. */
14330 -1, /* V8R. */
14331 T(V8M_MAIN), /* V8-M BASELINE. */
14332 T(V8M_MAIN) /* V8-M MAINLINE. */
14333 };
14334 const int v8_1m_mainline[] =
14335 {
14336 -1, /* PRE_V4. */
14337 -1, /* V4. */
14338 -1, /* V4T. */
14339 -1, /* V5T. */
14340 -1, /* V5TE. */
14341 -1, /* V5TEJ. */
14342 -1, /* V6. */
14343 -1, /* V6KZ. */
14344 -1, /* V6T2. */
14345 -1, /* V6K. */
14346 T(V8_1M_MAIN), /* V7. */
14347 T(V8_1M_MAIN), /* V6_M. */
14348 T(V8_1M_MAIN), /* V6S_M. */
14349 T(V8_1M_MAIN), /* V7E_M. */
14350 -1, /* V8. */
14351 -1, /* V8R. */
14352 T(V8_1M_MAIN), /* V8-M BASELINE. */
14353 T(V8_1M_MAIN), /* V8-M MAINLINE. */
14354 -1, /* Unused (18). */
14355 -1, /* Unused (19). */
14356 -1, /* Unused (20). */
14357 T(V8_1M_MAIN) /* V8.1-M MAINLINE. */
14358 };
14359 const int v4t_plus_v6_m[] =
14360 {
14361 -1, /* PRE_V4. */
14362 -1, /* V4. */
14363 T(V4T), /* V4T. */
14364 T(V5T), /* V5T. */
14365 T(V5TE), /* V5TE. */
14366 T(V5TEJ), /* V5TEJ. */
14367 T(V6), /* V6. */
14368 T(V6KZ), /* V6KZ. */
14369 T(V6T2), /* V6T2. */
14370 T(V6K), /* V6K. */
14371 T(V7), /* V7. */
14372 T(V6_M), /* V6_M. */
14373 T(V6S_M), /* V6S_M. */
14374 T(V7E_M), /* V7E_M. */
14375 T(V8), /* V8. */
14376 -1, /* V8R. */
14377 T(V8M_BASE), /* V8-M BASELINE. */
14378 T(V8M_MAIN), /* V8-M MAINLINE. */
14379 -1, /* Unused (18). */
14380 -1, /* Unused (19). */
14381 -1, /* Unused (20). */
14382 T(V8_1M_MAIN), /* V8.1-M MAINLINE. */
14383 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
14384 };
14385 const int *comb[] =
14386 {
14387 v6t2,
14388 v6k,
14389 v7,
14390 v6_m,
14391 v6s_m,
14392 v7e_m,
14393 v8,
14394 v8r,
14395 v8m_baseline,
14396 v8m_mainline,
14397 NULL,
14398 NULL,
14399 NULL,
14400 v8_1m_mainline,
14401 /* Pseudo-architecture. */
14402 v4t_plus_v6_m
14403 };
14404
14405 /* Check we've not got a higher architecture than we know about. */
14406
14407 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
14408 {
14409 _bfd_error_handler (_("error: %pB: unknown CPU architecture"), ibfd);
14410 return -1;
14411 }
14412
14413 /* Override old tag if we have a Tag_also_compatible_with on the output. */
14414
14415 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
14416 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
14417 oldtag = T(V4T_PLUS_V6_M);
14418
14419 /* And override the new tag if we have a Tag_also_compatible_with on the
14420 input. */
14421
14422 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
14423 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
14424 newtag = T(V4T_PLUS_V6_M);
14425
14426 tagl = (oldtag < newtag) ? oldtag : newtag;
14427 result = tagh = (oldtag > newtag) ? oldtag : newtag;
14428
14429 /* Architectures before V6KZ add features monotonically. */
14430 if (tagh <= TAG_CPU_ARCH_V6KZ)
14431 return result;
14432
14433 result = comb[tagh - T(V6T2)] ? comb[tagh - T(V6T2)][tagl] : -1;
14434
14435 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
14436 as the canonical version. */
14437 if (result == T(V4T_PLUS_V6_M))
14438 {
14439 result = T(V4T);
14440 *secondary_compat_out = T(V6_M);
14441 }
14442 else
14443 *secondary_compat_out = -1;
14444
14445 if (result == -1)
14446 {
14447 _bfd_error_handler (_("error: %pB: conflicting CPU architectures %d/%d"),
14448 ibfd, oldtag, newtag);
14449 return -1;
14450 }
14451
14452 return result;
14453 #undef T
14454 }
14455
14456 /* Query attributes object to see if integer divide instructions may be
14457 present in an object. */
14458 static bfd_boolean
14459 elf32_arm_attributes_accept_div (const obj_attribute *attr)
14460 {
14461 int arch = attr[Tag_CPU_arch].i;
14462 int profile = attr[Tag_CPU_arch_profile].i;
14463
14464 switch (attr[Tag_DIV_use].i)
14465 {
14466 case 0:
14467 /* Integer divide allowed if instruction contained in archetecture. */
14468 if (arch == TAG_CPU_ARCH_V7 && (profile == 'R' || profile == 'M'))
14469 return TRUE;
14470 else if (arch >= TAG_CPU_ARCH_V7E_M)
14471 return TRUE;
14472 else
14473 return FALSE;
14474
14475 case 1:
14476 /* Integer divide explicitly prohibited. */
14477 return FALSE;
14478
14479 default:
14480 /* Unrecognised case - treat as allowing divide everywhere. */
14481 case 2:
14482 /* Integer divide allowed in ARM state. */
14483 return TRUE;
14484 }
14485 }
14486
14487 /* Query attributes object to see if integer divide instructions are
14488 forbidden to be in the object. This is not the inverse of
14489 elf32_arm_attributes_accept_div. */
14490 static bfd_boolean
14491 elf32_arm_attributes_forbid_div (const obj_attribute *attr)
14492 {
14493 return attr[Tag_DIV_use].i == 1;
14494 }
14495
14496 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
14497 are conflicting attributes. */
14498
14499 static bfd_boolean
14500 elf32_arm_merge_eabi_attributes (bfd *ibfd, struct bfd_link_info *info)
14501 {
14502 bfd *obfd = info->output_bfd;
14503 obj_attribute *in_attr;
14504 obj_attribute *out_attr;
14505 /* Some tags have 0 = don't care, 1 = strong requirement,
14506 2 = weak requirement. */
14507 static const int order_021[3] = {0, 2, 1};
14508 int i;
14509 bfd_boolean result = TRUE;
14510 const char *sec_name = get_elf_backend_data (ibfd)->obj_attrs_section;
14511
14512 /* Skip the linker stubs file. This preserves previous behavior
14513 of accepting unknown attributes in the first input file - but
14514 is that a bug? */
14515 if (ibfd->flags & BFD_LINKER_CREATED)
14516 return TRUE;
14517
14518 /* Skip any input that hasn't attribute section.
14519 This enables to link object files without attribute section with
14520 any others. */
14521 if (bfd_get_section_by_name (ibfd, sec_name) == NULL)
14522 return TRUE;
14523
14524 if (!elf_known_obj_attributes_proc (obfd)[0].i)
14525 {
14526 /* This is the first object. Copy the attributes. */
14527 _bfd_elf_copy_obj_attributes (ibfd, obfd);
14528
14529 out_attr = elf_known_obj_attributes_proc (obfd);
14530
14531 /* Use the Tag_null value to indicate the attributes have been
14532 initialized. */
14533 out_attr[0].i = 1;
14534
14535 /* We do not output objects with Tag_MPextension_use_legacy - we move
14536 the attribute's value to Tag_MPextension_use. */
14537 if (out_attr[Tag_MPextension_use_legacy].i != 0)
14538 {
14539 if (out_attr[Tag_MPextension_use].i != 0
14540 && out_attr[Tag_MPextension_use_legacy].i
14541 != out_attr[Tag_MPextension_use].i)
14542 {
14543 _bfd_error_handler
14544 (_("Error: %pB has both the current and legacy "
14545 "Tag_MPextension_use attributes"), ibfd);
14546 result = FALSE;
14547 }
14548
14549 out_attr[Tag_MPextension_use] =
14550 out_attr[Tag_MPextension_use_legacy];
14551 out_attr[Tag_MPextension_use_legacy].type = 0;
14552 out_attr[Tag_MPextension_use_legacy].i = 0;
14553 }
14554
14555 return result;
14556 }
14557
14558 in_attr = elf_known_obj_attributes_proc (ibfd);
14559 out_attr = elf_known_obj_attributes_proc (obfd);
14560 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
14561 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
14562 {
14563 /* Ignore mismatches if the object doesn't use floating point or is
14564 floating point ABI independent. */
14565 if (out_attr[Tag_ABI_FP_number_model].i == AEABI_FP_number_model_none
14566 || (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14567 && out_attr[Tag_ABI_VFP_args].i == AEABI_VFP_args_compatible))
14568 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
14569 else if (in_attr[Tag_ABI_FP_number_model].i != AEABI_FP_number_model_none
14570 && in_attr[Tag_ABI_VFP_args].i != AEABI_VFP_args_compatible)
14571 {
14572 _bfd_error_handler
14573 (_("error: %pB uses VFP register arguments, %pB does not"),
14574 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
14575 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
14576 result = FALSE;
14577 }
14578 }
14579
14580 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
14581 {
14582 /* Merge this attribute with existing attributes. */
14583 switch (i)
14584 {
14585 case Tag_CPU_raw_name:
14586 case Tag_CPU_name:
14587 /* These are merged after Tag_CPU_arch. */
14588 break;
14589
14590 case Tag_ABI_optimization_goals:
14591 case Tag_ABI_FP_optimization_goals:
14592 /* Use the first value seen. */
14593 break;
14594
14595 case Tag_CPU_arch:
14596 {
14597 int secondary_compat = -1, secondary_compat_out = -1;
14598 unsigned int saved_out_attr = out_attr[i].i;
14599 int arch_attr;
14600 static const char *name_table[] =
14601 {
14602 /* These aren't real CPU names, but we can't guess
14603 that from the architecture version alone. */
14604 "Pre v4",
14605 "ARM v4",
14606 "ARM v4T",
14607 "ARM v5T",
14608 "ARM v5TE",
14609 "ARM v5TEJ",
14610 "ARM v6",
14611 "ARM v6KZ",
14612 "ARM v6T2",
14613 "ARM v6K",
14614 "ARM v7",
14615 "ARM v6-M",
14616 "ARM v6S-M",
14617 "ARM v8",
14618 "",
14619 "ARM v8-M.baseline",
14620 "ARM v8-M.mainline",
14621 };
14622
14623 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
14624 secondary_compat = get_secondary_compatible_arch (ibfd);
14625 secondary_compat_out = get_secondary_compatible_arch (obfd);
14626 arch_attr = tag_cpu_arch_combine (ibfd, out_attr[i].i,
14627 &secondary_compat_out,
14628 in_attr[i].i,
14629 secondary_compat);
14630
14631 /* Return with error if failed to merge. */
14632 if (arch_attr == -1)
14633 return FALSE;
14634
14635 out_attr[i].i = arch_attr;
14636
14637 set_secondary_compatible_arch (obfd, secondary_compat_out);
14638
14639 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
14640 if (out_attr[i].i == saved_out_attr)
14641 ; /* Leave the names alone. */
14642 else if (out_attr[i].i == in_attr[i].i)
14643 {
14644 /* The output architecture has been changed to match the
14645 input architecture. Use the input names. */
14646 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
14647 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
14648 : NULL;
14649 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
14650 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
14651 : NULL;
14652 }
14653 else
14654 {
14655 out_attr[Tag_CPU_name].s = NULL;
14656 out_attr[Tag_CPU_raw_name].s = NULL;
14657 }
14658
14659 /* If we still don't have a value for Tag_CPU_name,
14660 make one up now. Tag_CPU_raw_name remains blank. */
14661 if (out_attr[Tag_CPU_name].s == NULL
14662 && out_attr[i].i < ARRAY_SIZE (name_table))
14663 out_attr[Tag_CPU_name].s =
14664 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
14665 }
14666 break;
14667
14668 case Tag_ARM_ISA_use:
14669 case Tag_THUMB_ISA_use:
14670 case Tag_WMMX_arch:
14671 case Tag_Advanced_SIMD_arch:
14672 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
14673 case Tag_ABI_FP_rounding:
14674 case Tag_ABI_FP_exceptions:
14675 case Tag_ABI_FP_user_exceptions:
14676 case Tag_ABI_FP_number_model:
14677 case Tag_FP_HP_extension:
14678 case Tag_CPU_unaligned_access:
14679 case Tag_T2EE_use:
14680 case Tag_MPextension_use:
14681 case Tag_MVE_arch:
14682 /* Use the largest value specified. */
14683 if (in_attr[i].i > out_attr[i].i)
14684 out_attr[i].i = in_attr[i].i;
14685 break;
14686
14687 case Tag_ABI_align_preserved:
14688 case Tag_ABI_PCS_RO_data:
14689 /* Use the smallest value specified. */
14690 if (in_attr[i].i < out_attr[i].i)
14691 out_attr[i].i = in_attr[i].i;
14692 break;
14693
14694 case Tag_ABI_align_needed:
14695 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
14696 && (in_attr[Tag_ABI_align_preserved].i == 0
14697 || out_attr[Tag_ABI_align_preserved].i == 0))
14698 {
14699 /* This error message should be enabled once all non-conformant
14700 binaries in the toolchain have had the attributes set
14701 properly.
14702 _bfd_error_handler
14703 (_("error: %pB: 8-byte data alignment conflicts with %pB"),
14704 obfd, ibfd);
14705 result = FALSE; */
14706 }
14707 /* Fall through. */
14708 case Tag_ABI_FP_denormal:
14709 case Tag_ABI_PCS_GOT_use:
14710 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
14711 value if greater than 2 (for future-proofing). */
14712 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
14713 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
14714 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
14715 out_attr[i].i = in_attr[i].i;
14716 break;
14717
14718 case Tag_Virtualization_use:
14719 /* The virtualization tag effectively stores two bits of
14720 information: the intended use of TrustZone (in bit 0), and the
14721 intended use of Virtualization (in bit 1). */
14722 if (out_attr[i].i == 0)
14723 out_attr[i].i = in_attr[i].i;
14724 else if (in_attr[i].i != 0
14725 && in_attr[i].i != out_attr[i].i)
14726 {
14727 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
14728 out_attr[i].i = 3;
14729 else
14730 {
14731 _bfd_error_handler
14732 (_("error: %pB: unable to merge virtualization attributes "
14733 "with %pB"),
14734 obfd, ibfd);
14735 result = FALSE;
14736 }
14737 }
14738 break;
14739
14740 case Tag_CPU_arch_profile:
14741 if (out_attr[i].i != in_attr[i].i)
14742 {
14743 /* 0 will merge with anything.
14744 'A' and 'S' merge to 'A'.
14745 'R' and 'S' merge to 'R'.
14746 'M' and 'A|R|S' is an error. */
14747 if (out_attr[i].i == 0
14748 || (out_attr[i].i == 'S'
14749 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
14750 out_attr[i].i = in_attr[i].i;
14751 else if (in_attr[i].i == 0
14752 || (in_attr[i].i == 'S'
14753 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
14754 ; /* Do nothing. */
14755 else
14756 {
14757 _bfd_error_handler
14758 (_("error: %pB: conflicting architecture profiles %c/%c"),
14759 ibfd,
14760 in_attr[i].i ? in_attr[i].i : '0',
14761 out_attr[i].i ? out_attr[i].i : '0');
14762 result = FALSE;
14763 }
14764 }
14765 break;
14766
14767 case Tag_DSP_extension:
14768 /* No need to change output value if any of:
14769 - pre (<=) ARMv5T input architecture (do not have DSP)
14770 - M input profile not ARMv7E-M and do not have DSP. */
14771 if (in_attr[Tag_CPU_arch].i <= 3
14772 || (in_attr[Tag_CPU_arch_profile].i == 'M'
14773 && in_attr[Tag_CPU_arch].i != 13
14774 && in_attr[i].i == 0))
14775 ; /* Do nothing. */
14776 /* Output value should be 0 if DSP part of architecture, ie.
14777 - post (>=) ARMv5te architecture output
14778 - A, R or S profile output or ARMv7E-M output architecture. */
14779 else if (out_attr[Tag_CPU_arch].i >= 4
14780 && (out_attr[Tag_CPU_arch_profile].i == 'A'
14781 || out_attr[Tag_CPU_arch_profile].i == 'R'
14782 || out_attr[Tag_CPU_arch_profile].i == 'S'
14783 || out_attr[Tag_CPU_arch].i == 13))
14784 out_attr[i].i = 0;
14785 /* Otherwise, DSP instructions are added and not part of output
14786 architecture. */
14787 else
14788 out_attr[i].i = 1;
14789 break;
14790
14791 case Tag_FP_arch:
14792 {
14793 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
14794 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
14795 when it's 0. It might mean absence of FP hardware if
14796 Tag_FP_arch is zero. */
14797
14798 #define VFP_VERSION_COUNT 9
14799 static const struct
14800 {
14801 int ver;
14802 int regs;
14803 } vfp_versions[VFP_VERSION_COUNT] =
14804 {
14805 {0, 0},
14806 {1, 16},
14807 {2, 16},
14808 {3, 32},
14809 {3, 16},
14810 {4, 32},
14811 {4, 16},
14812 {8, 32},
14813 {8, 16}
14814 };
14815 int ver;
14816 int regs;
14817 int newval;
14818
14819 /* If the output has no requirement about FP hardware,
14820 follow the requirement of the input. */
14821 if (out_attr[i].i == 0)
14822 {
14823 /* This assert is still reasonable, we shouldn't
14824 produce the suspicious build attribute
14825 combination (See below for in_attr). */
14826 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
14827 out_attr[i].i = in_attr[i].i;
14828 out_attr[Tag_ABI_HardFP_use].i
14829 = in_attr[Tag_ABI_HardFP_use].i;
14830 break;
14831 }
14832 /* If the input has no requirement about FP hardware, do
14833 nothing. */
14834 else if (in_attr[i].i == 0)
14835 {
14836 /* We used to assert that Tag_ABI_HardFP_use was
14837 zero here, but we should never assert when
14838 consuming an object file that has suspicious
14839 build attributes. The single precision variant
14840 of 'no FP architecture' is still 'no FP
14841 architecture', so we just ignore the tag in this
14842 case. */
14843 break;
14844 }
14845
14846 /* Both the input and the output have nonzero Tag_FP_arch.
14847 So Tag_ABI_HardFP_use is implied by Tag_FP_arch when it's zero. */
14848
14849 /* If both the input and the output have zero Tag_ABI_HardFP_use,
14850 do nothing. */
14851 if (in_attr[Tag_ABI_HardFP_use].i == 0
14852 && out_attr[Tag_ABI_HardFP_use].i == 0)
14853 ;
14854 /* If the input and the output have different Tag_ABI_HardFP_use,
14855 the combination of them is 0 (implied by Tag_FP_arch). */
14856 else if (in_attr[Tag_ABI_HardFP_use].i
14857 != out_attr[Tag_ABI_HardFP_use].i)
14858 out_attr[Tag_ABI_HardFP_use].i = 0;
14859
14860 /* Now we can handle Tag_FP_arch. */
14861
14862 /* Values of VFP_VERSION_COUNT or more aren't defined, so just
14863 pick the biggest. */
14864 if (in_attr[i].i >= VFP_VERSION_COUNT
14865 && in_attr[i].i > out_attr[i].i)
14866 {
14867 out_attr[i] = in_attr[i];
14868 break;
14869 }
14870 /* The output uses the superset of input features
14871 (ISA version) and registers. */
14872 ver = vfp_versions[in_attr[i].i].ver;
14873 if (ver < vfp_versions[out_attr[i].i].ver)
14874 ver = vfp_versions[out_attr[i].i].ver;
14875 regs = vfp_versions[in_attr[i].i].regs;
14876 if (regs < vfp_versions[out_attr[i].i].regs)
14877 regs = vfp_versions[out_attr[i].i].regs;
14878 /* This assumes all possible supersets are also a valid
14879 options. */
14880 for (newval = VFP_VERSION_COUNT - 1; newval > 0; newval--)
14881 {
14882 if (regs == vfp_versions[newval].regs
14883 && ver == vfp_versions[newval].ver)
14884 break;
14885 }
14886 out_attr[i].i = newval;
14887 }
14888 break;
14889 case Tag_PCS_config:
14890 if (out_attr[i].i == 0)
14891 out_attr[i].i = in_attr[i].i;
14892 else if (in_attr[i].i != 0 && out_attr[i].i != in_attr[i].i)
14893 {
14894 /* It's sometimes ok to mix different configs, so this is only
14895 a warning. */
14896 _bfd_error_handler
14897 (_("warning: %pB: conflicting platform configuration"), ibfd);
14898 }
14899 break;
14900 case Tag_ABI_PCS_R9_use:
14901 if (in_attr[i].i != out_attr[i].i
14902 && out_attr[i].i != AEABI_R9_unused
14903 && in_attr[i].i != AEABI_R9_unused)
14904 {
14905 _bfd_error_handler
14906 (_("error: %pB: conflicting use of R9"), ibfd);
14907 result = FALSE;
14908 }
14909 if (out_attr[i].i == AEABI_R9_unused)
14910 out_attr[i].i = in_attr[i].i;
14911 break;
14912 case Tag_ABI_PCS_RW_data:
14913 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
14914 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
14915 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
14916 {
14917 _bfd_error_handler
14918 (_("error: %pB: SB relative addressing conflicts with use of R9"),
14919 ibfd);
14920 result = FALSE;
14921 }
14922 /* Use the smallest value specified. */
14923 if (in_attr[i].i < out_attr[i].i)
14924 out_attr[i].i = in_attr[i].i;
14925 break;
14926 case Tag_ABI_PCS_wchar_t:
14927 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
14928 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
14929 {
14930 _bfd_error_handler
14931 (_("warning: %pB uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
14932 ibfd, in_attr[i].i, out_attr[i].i);
14933 }
14934 else if (in_attr[i].i && !out_attr[i].i)
14935 out_attr[i].i = in_attr[i].i;
14936 break;
14937 case Tag_ABI_enum_size:
14938 if (in_attr[i].i != AEABI_enum_unused)
14939 {
14940 if (out_attr[i].i == AEABI_enum_unused
14941 || out_attr[i].i == AEABI_enum_forced_wide)
14942 {
14943 /* The existing object is compatible with anything.
14944 Use whatever requirements the new object has. */
14945 out_attr[i].i = in_attr[i].i;
14946 }
14947 else if (in_attr[i].i != AEABI_enum_forced_wide
14948 && out_attr[i].i != in_attr[i].i
14949 && !elf_arm_tdata (obfd)->no_enum_size_warning)
14950 {
14951 static const char *aeabi_enum_names[] =
14952 { "", "variable-size", "32-bit", "" };
14953 const char *in_name =
14954 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14955 ? aeabi_enum_names[in_attr[i].i]
14956 : "<unknown>";
14957 const char *out_name =
14958 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
14959 ? aeabi_enum_names[out_attr[i].i]
14960 : "<unknown>";
14961 _bfd_error_handler
14962 (_("warning: %pB uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
14963 ibfd, in_name, out_name);
14964 }
14965 }
14966 break;
14967 case Tag_ABI_VFP_args:
14968 /* Aready done. */
14969 break;
14970 case Tag_ABI_WMMX_args:
14971 if (in_attr[i].i != out_attr[i].i)
14972 {
14973 _bfd_error_handler
14974 (_("error: %pB uses iWMMXt register arguments, %pB does not"),
14975 ibfd, obfd);
14976 result = FALSE;
14977 }
14978 break;
14979 case Tag_compatibility:
14980 /* Merged in target-independent code. */
14981 break;
14982 case Tag_ABI_HardFP_use:
14983 /* This is handled along with Tag_FP_arch. */
14984 break;
14985 case Tag_ABI_FP_16bit_format:
14986 if (in_attr[i].i != 0 && out_attr[i].i != 0)
14987 {
14988 if (in_attr[i].i != out_attr[i].i)
14989 {
14990 _bfd_error_handler
14991 (_("error: fp16 format mismatch between %pB and %pB"),
14992 ibfd, obfd);
14993 result = FALSE;
14994 }
14995 }
14996 if (in_attr[i].i != 0)
14997 out_attr[i].i = in_attr[i].i;
14998 break;
14999
15000 case Tag_DIV_use:
15001 /* A value of zero on input means that the divide instruction may
15002 be used if available in the base architecture as specified via
15003 Tag_CPU_arch and Tag_CPU_arch_profile. A value of 1 means that
15004 the user did not want divide instructions. A value of 2
15005 explicitly means that divide instructions were allowed in ARM
15006 and Thumb state. */
15007 if (in_attr[i].i == out_attr[i].i)
15008 /* Do nothing. */ ;
15009 else if (elf32_arm_attributes_forbid_div (in_attr)
15010 && !elf32_arm_attributes_accept_div (out_attr))
15011 out_attr[i].i = 1;
15012 else if (elf32_arm_attributes_forbid_div (out_attr)
15013 && elf32_arm_attributes_accept_div (in_attr))
15014 out_attr[i].i = in_attr[i].i;
15015 else if (in_attr[i].i == 2)
15016 out_attr[i].i = in_attr[i].i;
15017 break;
15018
15019 case Tag_MPextension_use_legacy:
15020 /* We don't output objects with Tag_MPextension_use_legacy - we
15021 move the value to Tag_MPextension_use. */
15022 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
15023 {
15024 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
15025 {
15026 _bfd_error_handler
15027 (_("%pB has both the current and legacy "
15028 "Tag_MPextension_use attributes"),
15029 ibfd);
15030 result = FALSE;
15031 }
15032 }
15033
15034 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
15035 out_attr[Tag_MPextension_use] = in_attr[i];
15036
15037 break;
15038
15039 case Tag_nodefaults:
15040 /* This tag is set if it exists, but the value is unused (and is
15041 typically zero). We don't actually need to do anything here -
15042 the merge happens automatically when the type flags are merged
15043 below. */
15044 break;
15045 case Tag_also_compatible_with:
15046 /* Already done in Tag_CPU_arch. */
15047 break;
15048 case Tag_conformance:
15049 /* Keep the attribute if it matches. Throw it away otherwise.
15050 No attribute means no claim to conform. */
15051 if (!in_attr[i].s || !out_attr[i].s
15052 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
15053 out_attr[i].s = NULL;
15054 break;
15055
15056 default:
15057 result
15058 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
15059 }
15060
15061 /* If out_attr was copied from in_attr then it won't have a type yet. */
15062 if (in_attr[i].type && !out_attr[i].type)
15063 out_attr[i].type = in_attr[i].type;
15064 }
15065
15066 /* Merge Tag_compatibility attributes and any common GNU ones. */
15067 if (!_bfd_elf_merge_object_attributes (ibfd, info))
15068 return FALSE;
15069
15070 /* Check for any attributes not known on ARM. */
15071 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
15072
15073 return result;
15074 }
15075
15076
15077 /* Return TRUE if the two EABI versions are incompatible. */
15078
15079 static bfd_boolean
15080 elf32_arm_versions_compatible (unsigned iver, unsigned over)
15081 {
15082 /* v4 and v5 are the same spec before and after it was released,
15083 so allow mixing them. */
15084 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
15085 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
15086 return TRUE;
15087
15088 return (iver == over);
15089 }
15090
15091 /* Merge backend specific data from an object file to the output
15092 object file when linking. */
15093
15094 static bfd_boolean
15095 elf32_arm_merge_private_bfd_data (bfd *, struct bfd_link_info *);
15096
15097 /* Display the flags field. */
15098
15099 static bfd_boolean
15100 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
15101 {
15102 FILE * file = (FILE *) ptr;
15103 unsigned long flags;
15104
15105 BFD_ASSERT (abfd != NULL && ptr != NULL);
15106
15107 /* Print normal ELF private data. */
15108 _bfd_elf_print_private_bfd_data (abfd, ptr);
15109
15110 flags = elf_elfheader (abfd)->e_flags;
15111 /* Ignore init flag - it may not be set, despite the flags field
15112 containing valid data. */
15113
15114 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
15115
15116 switch (EF_ARM_EABI_VERSION (flags))
15117 {
15118 case EF_ARM_EABI_UNKNOWN:
15119 /* The following flag bits are GNU extensions and not part of the
15120 official ARM ELF extended ABI. Hence they are only decoded if
15121 the EABI version is not set. */
15122 if (flags & EF_ARM_INTERWORK)
15123 fprintf (file, _(" [interworking enabled]"));
15124
15125 if (flags & EF_ARM_APCS_26)
15126 fprintf (file, " [APCS-26]");
15127 else
15128 fprintf (file, " [APCS-32]");
15129
15130 if (flags & EF_ARM_VFP_FLOAT)
15131 fprintf (file, _(" [VFP float format]"));
15132 else if (flags & EF_ARM_MAVERICK_FLOAT)
15133 fprintf (file, _(" [Maverick float format]"));
15134 else
15135 fprintf (file, _(" [FPA float format]"));
15136
15137 if (flags & EF_ARM_APCS_FLOAT)
15138 fprintf (file, _(" [floats passed in float registers]"));
15139
15140 if (flags & EF_ARM_PIC)
15141 fprintf (file, _(" [position independent]"));
15142
15143 if (flags & EF_ARM_NEW_ABI)
15144 fprintf (file, _(" [new ABI]"));
15145
15146 if (flags & EF_ARM_OLD_ABI)
15147 fprintf (file, _(" [old ABI]"));
15148
15149 if (flags & EF_ARM_SOFT_FLOAT)
15150 fprintf (file, _(" [software FP]"));
15151
15152 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
15153 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
15154 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
15155 | EF_ARM_MAVERICK_FLOAT);
15156 break;
15157
15158 case EF_ARM_EABI_VER1:
15159 fprintf (file, _(" [Version1 EABI]"));
15160
15161 if (flags & EF_ARM_SYMSARESORTED)
15162 fprintf (file, _(" [sorted symbol table]"));
15163 else
15164 fprintf (file, _(" [unsorted symbol table]"));
15165
15166 flags &= ~ EF_ARM_SYMSARESORTED;
15167 break;
15168
15169 case EF_ARM_EABI_VER2:
15170 fprintf (file, _(" [Version2 EABI]"));
15171
15172 if (flags & EF_ARM_SYMSARESORTED)
15173 fprintf (file, _(" [sorted symbol table]"));
15174 else
15175 fprintf (file, _(" [unsorted symbol table]"));
15176
15177 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
15178 fprintf (file, _(" [dynamic symbols use segment index]"));
15179
15180 if (flags & EF_ARM_MAPSYMSFIRST)
15181 fprintf (file, _(" [mapping symbols precede others]"));
15182
15183 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
15184 | EF_ARM_MAPSYMSFIRST);
15185 break;
15186
15187 case EF_ARM_EABI_VER3:
15188 fprintf (file, _(" [Version3 EABI]"));
15189 break;
15190
15191 case EF_ARM_EABI_VER4:
15192 fprintf (file, _(" [Version4 EABI]"));
15193 goto eabi;
15194
15195 case EF_ARM_EABI_VER5:
15196 fprintf (file, _(" [Version5 EABI]"));
15197
15198 if (flags & EF_ARM_ABI_FLOAT_SOFT)
15199 fprintf (file, _(" [soft-float ABI]"));
15200
15201 if (flags & EF_ARM_ABI_FLOAT_HARD)
15202 fprintf (file, _(" [hard-float ABI]"));
15203
15204 flags &= ~(EF_ARM_ABI_FLOAT_SOFT | EF_ARM_ABI_FLOAT_HARD);
15205
15206 eabi:
15207 if (flags & EF_ARM_BE8)
15208 fprintf (file, _(" [BE8]"));
15209
15210 if (flags & EF_ARM_LE8)
15211 fprintf (file, _(" [LE8]"));
15212
15213 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
15214 break;
15215
15216 default:
15217 fprintf (file, _(" <EABI version unrecognised>"));
15218 break;
15219 }
15220
15221 flags &= ~ EF_ARM_EABIMASK;
15222
15223 if (flags & EF_ARM_RELEXEC)
15224 fprintf (file, _(" [relocatable executable]"));
15225
15226 if (flags & EF_ARM_PIC)
15227 fprintf (file, _(" [position independent]"));
15228
15229 if (elf_elfheader (abfd)->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC)
15230 fprintf (file, _(" [FDPIC ABI supplement]"));
15231
15232 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_PIC);
15233
15234 if (flags)
15235 fprintf (file, _("<Unrecognised flag bits set>"));
15236
15237 fputc ('\n', file);
15238
15239 return TRUE;
15240 }
15241
15242 static int
15243 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
15244 {
15245 switch (ELF_ST_TYPE (elf_sym->st_info))
15246 {
15247 case STT_ARM_TFUNC:
15248 return ELF_ST_TYPE (elf_sym->st_info);
15249
15250 case STT_ARM_16BIT:
15251 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
15252 This allows us to distinguish between data used by Thumb instructions
15253 and non-data (which is probably code) inside Thumb regions of an
15254 executable. */
15255 if (type != STT_OBJECT && type != STT_TLS)
15256 return ELF_ST_TYPE (elf_sym->st_info);
15257 break;
15258
15259 default:
15260 break;
15261 }
15262
15263 return type;
15264 }
15265
15266 static asection *
15267 elf32_arm_gc_mark_hook (asection *sec,
15268 struct bfd_link_info *info,
15269 Elf_Internal_Rela *rel,
15270 struct elf_link_hash_entry *h,
15271 Elf_Internal_Sym *sym)
15272 {
15273 if (h != NULL)
15274 switch (ELF32_R_TYPE (rel->r_info))
15275 {
15276 case R_ARM_GNU_VTINHERIT:
15277 case R_ARM_GNU_VTENTRY:
15278 return NULL;
15279 }
15280
15281 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
15282 }
15283
15284 /* Look through the relocs for a section during the first phase. */
15285
15286 static bfd_boolean
15287 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
15288 asection *sec, const Elf_Internal_Rela *relocs)
15289 {
15290 Elf_Internal_Shdr *symtab_hdr;
15291 struct elf_link_hash_entry **sym_hashes;
15292 const Elf_Internal_Rela *rel;
15293 const Elf_Internal_Rela *rel_end;
15294 bfd *dynobj;
15295 asection *sreloc;
15296 struct elf32_arm_link_hash_table *htab;
15297 bfd_boolean call_reloc_p;
15298 bfd_boolean may_become_dynamic_p;
15299 bfd_boolean may_need_local_target_p;
15300 unsigned long nsyms;
15301
15302 if (bfd_link_relocatable (info))
15303 return TRUE;
15304
15305 BFD_ASSERT (is_arm_elf (abfd));
15306
15307 htab = elf32_arm_hash_table (info);
15308 if (htab == NULL)
15309 return FALSE;
15310
15311 sreloc = NULL;
15312
15313 /* Create dynamic sections for relocatable executables so that we can
15314 copy relocations. */
15315 if (htab->root.is_relocatable_executable
15316 && ! htab->root.dynamic_sections_created)
15317 {
15318 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
15319 return FALSE;
15320 }
15321
15322 if (htab->root.dynobj == NULL)
15323 htab->root.dynobj = abfd;
15324 if (!create_ifunc_sections (info))
15325 return FALSE;
15326
15327 dynobj = htab->root.dynobj;
15328
15329 symtab_hdr = & elf_symtab_hdr (abfd);
15330 sym_hashes = elf_sym_hashes (abfd);
15331 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
15332
15333 rel_end = relocs + sec->reloc_count;
15334 for (rel = relocs; rel < rel_end; rel++)
15335 {
15336 Elf_Internal_Sym *isym;
15337 struct elf_link_hash_entry *h;
15338 struct elf32_arm_link_hash_entry *eh;
15339 unsigned int r_symndx;
15340 int r_type;
15341
15342 r_symndx = ELF32_R_SYM (rel->r_info);
15343 r_type = ELF32_R_TYPE (rel->r_info);
15344 r_type = arm_real_reloc_type (htab, r_type);
15345
15346 if (r_symndx >= nsyms
15347 /* PR 9934: It is possible to have relocations that do not
15348 refer to symbols, thus it is also possible to have an
15349 object file containing relocations but no symbol table. */
15350 && (r_symndx > STN_UNDEF || nsyms > 0))
15351 {
15352 _bfd_error_handler (_("%pB: bad symbol index: %d"), abfd,
15353 r_symndx);
15354 return FALSE;
15355 }
15356
15357 h = NULL;
15358 isym = NULL;
15359 if (nsyms > 0)
15360 {
15361 if (r_symndx < symtab_hdr->sh_info)
15362 {
15363 /* A local symbol. */
15364 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
15365 abfd, r_symndx);
15366 if (isym == NULL)
15367 return FALSE;
15368 }
15369 else
15370 {
15371 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
15372 while (h->root.type == bfd_link_hash_indirect
15373 || h->root.type == bfd_link_hash_warning)
15374 h = (struct elf_link_hash_entry *) h->root.u.i.link;
15375 }
15376 }
15377
15378 eh = (struct elf32_arm_link_hash_entry *) h;
15379
15380 call_reloc_p = FALSE;
15381 may_become_dynamic_p = FALSE;
15382 may_need_local_target_p = FALSE;
15383
15384 /* Could be done earlier, if h were already available. */
15385 r_type = elf32_arm_tls_transition (info, r_type, h);
15386 switch (r_type)
15387 {
15388 case R_ARM_GOTOFFFUNCDESC:
15389 {
15390 if (h == NULL)
15391 {
15392 if (!elf32_arm_allocate_local_sym_info (abfd))
15393 return FALSE;
15394 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].gotofffuncdesc_cnt += 1;
15395 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15396 }
15397 else
15398 {
15399 eh->fdpic_cnts.gotofffuncdesc_cnt++;
15400 }
15401 }
15402 break;
15403
15404 case R_ARM_GOTFUNCDESC:
15405 {
15406 if (h == NULL)
15407 {
15408 /* Such a relocation is not supposed to be generated
15409 by gcc on a static function. */
15410 /* Anyway if needed it could be handled. */
15411 abort();
15412 }
15413 else
15414 {
15415 eh->fdpic_cnts.gotfuncdesc_cnt++;
15416 }
15417 }
15418 break;
15419
15420 case R_ARM_FUNCDESC:
15421 {
15422 if (h == NULL)
15423 {
15424 if (!elf32_arm_allocate_local_sym_info (abfd))
15425 return FALSE;
15426 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_cnt += 1;
15427 elf32_arm_local_fdpic_cnts(abfd)[r_symndx].funcdesc_offset = -1;
15428 }
15429 else
15430 {
15431 eh->fdpic_cnts.funcdesc_cnt++;
15432 }
15433 }
15434 break;
15435
15436 case R_ARM_GOT32:
15437 case R_ARM_GOT_PREL:
15438 case R_ARM_TLS_GD32:
15439 case R_ARM_TLS_GD32_FDPIC:
15440 case R_ARM_TLS_IE32:
15441 case R_ARM_TLS_IE32_FDPIC:
15442 case R_ARM_TLS_GOTDESC:
15443 case R_ARM_TLS_DESCSEQ:
15444 case R_ARM_THM_TLS_DESCSEQ:
15445 case R_ARM_TLS_CALL:
15446 case R_ARM_THM_TLS_CALL:
15447 /* This symbol requires a global offset table entry. */
15448 {
15449 int tls_type, old_tls_type;
15450
15451 switch (r_type)
15452 {
15453 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
15454 case R_ARM_TLS_GD32_FDPIC: tls_type = GOT_TLS_GD; break;
15455
15456 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
15457 case R_ARM_TLS_IE32_FDPIC: tls_type = GOT_TLS_IE; break;
15458
15459 case R_ARM_TLS_GOTDESC:
15460 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
15461 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
15462 tls_type = GOT_TLS_GDESC; break;
15463
15464 default: tls_type = GOT_NORMAL; break;
15465 }
15466
15467 if (!bfd_link_executable (info) && (tls_type & GOT_TLS_IE))
15468 info->flags |= DF_STATIC_TLS;
15469
15470 if (h != NULL)
15471 {
15472 h->got.refcount++;
15473 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
15474 }
15475 else
15476 {
15477 /* This is a global offset table entry for a local symbol. */
15478 if (!elf32_arm_allocate_local_sym_info (abfd))
15479 return FALSE;
15480 elf_local_got_refcounts (abfd)[r_symndx] += 1;
15481 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
15482 }
15483
15484 /* If a variable is accessed with both tls methods, two
15485 slots may be created. */
15486 if (GOT_TLS_GD_ANY_P (old_tls_type)
15487 && GOT_TLS_GD_ANY_P (tls_type))
15488 tls_type |= old_tls_type;
15489
15490 /* We will already have issued an error message if there
15491 is a TLS/non-TLS mismatch, based on the symbol
15492 type. So just combine any TLS types needed. */
15493 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
15494 && tls_type != GOT_NORMAL)
15495 tls_type |= old_tls_type;
15496
15497 /* If the symbol is accessed in both IE and GDESC
15498 method, we're able to relax. Turn off the GDESC flag,
15499 without messing up with any other kind of tls types
15500 that may be involved. */
15501 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
15502 tls_type &= ~GOT_TLS_GDESC;
15503
15504 if (old_tls_type != tls_type)
15505 {
15506 if (h != NULL)
15507 elf32_arm_hash_entry (h)->tls_type = tls_type;
15508 else
15509 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
15510 }
15511 }
15512 /* Fall through. */
15513
15514 case R_ARM_TLS_LDM32:
15515 case R_ARM_TLS_LDM32_FDPIC:
15516 if (r_type == R_ARM_TLS_LDM32 || r_type == R_ARM_TLS_LDM32_FDPIC)
15517 htab->tls_ldm_got.refcount++;
15518 /* Fall through. */
15519
15520 case R_ARM_GOTOFF32:
15521 case R_ARM_GOTPC:
15522 if (htab->root.sgot == NULL
15523 && !create_got_section (htab->root.dynobj, info))
15524 return FALSE;
15525 break;
15526
15527 case R_ARM_PC24:
15528 case R_ARM_PLT32:
15529 case R_ARM_CALL:
15530 case R_ARM_JUMP24:
15531 case R_ARM_PREL31:
15532 case R_ARM_THM_CALL:
15533 case R_ARM_THM_JUMP24:
15534 case R_ARM_THM_JUMP19:
15535 call_reloc_p = TRUE;
15536 may_need_local_target_p = TRUE;
15537 break;
15538
15539 case R_ARM_ABS12:
15540 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
15541 ldr __GOTT_INDEX__ offsets. */
15542 if (!htab->vxworks_p)
15543 {
15544 may_need_local_target_p = TRUE;
15545 break;
15546 }
15547 else goto jump_over;
15548
15549 /* Fall through. */
15550
15551 case R_ARM_MOVW_ABS_NC:
15552 case R_ARM_MOVT_ABS:
15553 case R_ARM_THM_MOVW_ABS_NC:
15554 case R_ARM_THM_MOVT_ABS:
15555 if (bfd_link_pic (info))
15556 {
15557 _bfd_error_handler
15558 (_("%pB: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
15559 abfd, elf32_arm_howto_table_1[r_type].name,
15560 (h) ? h->root.root.string : "a local symbol");
15561 bfd_set_error (bfd_error_bad_value);
15562 return FALSE;
15563 }
15564
15565 /* Fall through. */
15566 case R_ARM_ABS32:
15567 case R_ARM_ABS32_NOI:
15568 jump_over:
15569 if (h != NULL && bfd_link_executable (info))
15570 {
15571 h->pointer_equality_needed = 1;
15572 }
15573 /* Fall through. */
15574 case R_ARM_REL32:
15575 case R_ARM_REL32_NOI:
15576 case R_ARM_MOVW_PREL_NC:
15577 case R_ARM_MOVT_PREL:
15578 case R_ARM_THM_MOVW_PREL_NC:
15579 case R_ARM_THM_MOVT_PREL:
15580
15581 /* Should the interworking branches be listed here? */
15582 if ((bfd_link_pic (info) || htab->root.is_relocatable_executable
15583 || htab->fdpic_p)
15584 && (sec->flags & SEC_ALLOC) != 0)
15585 {
15586 if (h == NULL
15587 && elf32_arm_howto_from_type (r_type)->pc_relative)
15588 {
15589 /* In shared libraries and relocatable executables,
15590 we treat local relative references as calls;
15591 see the related SYMBOL_CALLS_LOCAL code in
15592 allocate_dynrelocs. */
15593 call_reloc_p = TRUE;
15594 may_need_local_target_p = TRUE;
15595 }
15596 else
15597 /* We are creating a shared library or relocatable
15598 executable, and this is a reloc against a global symbol,
15599 or a non-PC-relative reloc against a local symbol.
15600 We may need to copy the reloc into the output. */
15601 may_become_dynamic_p = TRUE;
15602 }
15603 else
15604 may_need_local_target_p = TRUE;
15605 break;
15606
15607 /* This relocation describes the C++ object vtable hierarchy.
15608 Reconstruct it for later use during GC. */
15609 case R_ARM_GNU_VTINHERIT:
15610 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
15611 return FALSE;
15612 break;
15613
15614 /* This relocation describes which C++ vtable entries are actually
15615 used. Record for later use during GC. */
15616 case R_ARM_GNU_VTENTRY:
15617 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
15618 return FALSE;
15619 break;
15620 }
15621
15622 if (h != NULL)
15623 {
15624 if (call_reloc_p)
15625 /* We may need a .plt entry if the function this reloc
15626 refers to is in a different object, regardless of the
15627 symbol's type. We can't tell for sure yet, because
15628 something later might force the symbol local. */
15629 h->needs_plt = 1;
15630 else if (may_need_local_target_p)
15631 /* If this reloc is in a read-only section, we might
15632 need a copy reloc. We can't check reliably at this
15633 stage whether the section is read-only, as input
15634 sections have not yet been mapped to output sections.
15635 Tentatively set the flag for now, and correct in
15636 adjust_dynamic_symbol. */
15637 h->non_got_ref = 1;
15638 }
15639
15640 if (may_need_local_target_p
15641 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
15642 {
15643 union gotplt_union *root_plt;
15644 struct arm_plt_info *arm_plt;
15645 struct arm_local_iplt_info *local_iplt;
15646
15647 if (h != NULL)
15648 {
15649 root_plt = &h->plt;
15650 arm_plt = &eh->plt;
15651 }
15652 else
15653 {
15654 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
15655 if (local_iplt == NULL)
15656 return FALSE;
15657 root_plt = &local_iplt->root;
15658 arm_plt = &local_iplt->arm;
15659 }
15660
15661 /* If the symbol is a function that doesn't bind locally,
15662 this relocation will need a PLT entry. */
15663 if (root_plt->refcount != -1)
15664 root_plt->refcount += 1;
15665
15666 if (!call_reloc_p)
15667 arm_plt->noncall_refcount++;
15668
15669 /* It's too early to use htab->use_blx here, so we have to
15670 record possible blx references separately from
15671 relocs that definitely need a thumb stub. */
15672
15673 if (r_type == R_ARM_THM_CALL)
15674 arm_plt->maybe_thumb_refcount += 1;
15675
15676 if (r_type == R_ARM_THM_JUMP24
15677 || r_type == R_ARM_THM_JUMP19)
15678 arm_plt->thumb_refcount += 1;
15679 }
15680
15681 if (may_become_dynamic_p)
15682 {
15683 struct elf_dyn_relocs *p, **head;
15684
15685 /* Create a reloc section in dynobj. */
15686 if (sreloc == NULL)
15687 {
15688 sreloc = _bfd_elf_make_dynamic_reloc_section
15689 (sec, dynobj, 2, abfd, ! htab->use_rel);
15690
15691 if (sreloc == NULL)
15692 return FALSE;
15693
15694 /* BPABI objects never have dynamic relocations mapped. */
15695 if (htab->symbian_p)
15696 {
15697 flagword flags;
15698
15699 flags = bfd_get_section_flags (dynobj, sreloc);
15700 flags &= ~(SEC_LOAD | SEC_ALLOC);
15701 bfd_set_section_flags (dynobj, sreloc, flags);
15702 }
15703 }
15704
15705 /* If this is a global symbol, count the number of
15706 relocations we need for this symbol. */
15707 if (h != NULL)
15708 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
15709 else
15710 {
15711 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
15712 if (head == NULL)
15713 return FALSE;
15714 }
15715
15716 p = *head;
15717 if (p == NULL || p->sec != sec)
15718 {
15719 bfd_size_type amt = sizeof *p;
15720
15721 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
15722 if (p == NULL)
15723 return FALSE;
15724 p->next = *head;
15725 *head = p;
15726 p->sec = sec;
15727 p->count = 0;
15728 p->pc_count = 0;
15729 }
15730
15731 if (elf32_arm_howto_from_type (r_type)->pc_relative)
15732 p->pc_count += 1;
15733 p->count += 1;
15734 if (h == NULL && htab->fdpic_p && !bfd_link_pic(info)
15735 && r_type != R_ARM_ABS32 && r_type != R_ARM_ABS32_NOI) {
15736 /* Here we only support R_ARM_ABS32 and R_ARM_ABS32_NOI
15737 that will become rofixup. */
15738 /* This is due to the fact that we suppose all will become rofixup. */
15739 fprintf(stderr, "FDPIC does not yet support %d relocation to become dynamic for executable\n", r_type);
15740 _bfd_error_handler
15741 (_("FDPIC does not yet support %s relocation"
15742 " to become dynamic for executable"),
15743 elf32_arm_howto_table_1[r_type].name);
15744 abort();
15745 }
15746 }
15747 }
15748
15749 return TRUE;
15750 }
15751
15752 static void
15753 elf32_arm_update_relocs (asection *o,
15754 struct bfd_elf_section_reloc_data *reldata)
15755 {
15756 void (*swap_in) (bfd *, const bfd_byte *, Elf_Internal_Rela *);
15757 void (*swap_out) (bfd *, const Elf_Internal_Rela *, bfd_byte *);
15758 const struct elf_backend_data *bed;
15759 _arm_elf_section_data *eado;
15760 struct bfd_link_order *p;
15761 bfd_byte *erela_head, *erela;
15762 Elf_Internal_Rela *irela_head, *irela;
15763 Elf_Internal_Shdr *rel_hdr;
15764 bfd *abfd;
15765 unsigned int count;
15766
15767 eado = get_arm_elf_section_data (o);
15768
15769 if (!eado || eado->elf.this_hdr.sh_type != SHT_ARM_EXIDX)
15770 return;
15771
15772 abfd = o->owner;
15773 bed = get_elf_backend_data (abfd);
15774 rel_hdr = reldata->hdr;
15775
15776 if (rel_hdr->sh_entsize == bed->s->sizeof_rel)
15777 {
15778 swap_in = bed->s->swap_reloc_in;
15779 swap_out = bed->s->swap_reloc_out;
15780 }
15781 else if (rel_hdr->sh_entsize == bed->s->sizeof_rela)
15782 {
15783 swap_in = bed->s->swap_reloca_in;
15784 swap_out = bed->s->swap_reloca_out;
15785 }
15786 else
15787 abort ();
15788
15789 erela_head = rel_hdr->contents;
15790 irela_head = (Elf_Internal_Rela *) bfd_zmalloc
15791 ((NUM_SHDR_ENTRIES (rel_hdr) + 1) * sizeof (*irela_head));
15792
15793 erela = erela_head;
15794 irela = irela_head;
15795 count = 0;
15796
15797 for (p = o->map_head.link_order; p; p = p->next)
15798 {
15799 if (p->type == bfd_section_reloc_link_order
15800 || p->type == bfd_symbol_reloc_link_order)
15801 {
15802 (*swap_in) (abfd, erela, irela);
15803 erela += rel_hdr->sh_entsize;
15804 irela++;
15805 count++;
15806 }
15807 else if (p->type == bfd_indirect_link_order)
15808 {
15809 struct bfd_elf_section_reloc_data *input_reldata;
15810 arm_unwind_table_edit *edit_list, *edit_tail;
15811 _arm_elf_section_data *eadi;
15812 bfd_size_type j;
15813 bfd_vma offset;
15814 asection *i;
15815
15816 i = p->u.indirect.section;
15817
15818 eadi = get_arm_elf_section_data (i);
15819 edit_list = eadi->u.exidx.unwind_edit_list;
15820 edit_tail = eadi->u.exidx.unwind_edit_tail;
15821 offset = i->output_offset;
15822
15823 if (eadi->elf.rel.hdr &&
15824 eadi->elf.rel.hdr->sh_entsize == rel_hdr->sh_entsize)
15825 input_reldata = &eadi->elf.rel;
15826 else if (eadi->elf.rela.hdr &&
15827 eadi->elf.rela.hdr->sh_entsize == rel_hdr->sh_entsize)
15828 input_reldata = &eadi->elf.rela;
15829 else
15830 abort ();
15831
15832 if (edit_list)
15833 {
15834 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15835 {
15836 arm_unwind_table_edit *edit_node, *edit_next;
15837 bfd_vma bias;
15838 bfd_vma reloc_index;
15839
15840 (*swap_in) (abfd, erela, irela);
15841 reloc_index = (irela->r_offset - offset) / 8;
15842
15843 bias = 0;
15844 edit_node = edit_list;
15845 for (edit_next = edit_list;
15846 edit_next && edit_next->index <= reloc_index;
15847 edit_next = edit_node->next)
15848 {
15849 bias++;
15850 edit_node = edit_next;
15851 }
15852
15853 if (edit_node->type != DELETE_EXIDX_ENTRY
15854 || edit_node->index != reloc_index)
15855 {
15856 irela->r_offset -= bias * 8;
15857 irela++;
15858 count++;
15859 }
15860
15861 erela += rel_hdr->sh_entsize;
15862 }
15863
15864 if (edit_tail->type == INSERT_EXIDX_CANTUNWIND_AT_END)
15865 {
15866 /* New relocation entity. */
15867 asection *text_sec = edit_tail->linked_section;
15868 asection *text_out = text_sec->output_section;
15869 bfd_vma exidx_offset = offset + i->size - 8;
15870
15871 irela->r_addend = 0;
15872 irela->r_offset = exidx_offset;
15873 irela->r_info = ELF32_R_INFO
15874 (text_out->target_index, R_ARM_PREL31);
15875 irela++;
15876 count++;
15877 }
15878 }
15879 else
15880 {
15881 for (j = 0; j < NUM_SHDR_ENTRIES (input_reldata->hdr); j++)
15882 {
15883 (*swap_in) (abfd, erela, irela);
15884 erela += rel_hdr->sh_entsize;
15885 irela++;
15886 }
15887
15888 count += NUM_SHDR_ENTRIES (input_reldata->hdr);
15889 }
15890 }
15891 }
15892
15893 reldata->count = count;
15894 rel_hdr->sh_size = count * rel_hdr->sh_entsize;
15895
15896 erela = erela_head;
15897 irela = irela_head;
15898 while (count > 0)
15899 {
15900 (*swap_out) (abfd, irela, erela);
15901 erela += rel_hdr->sh_entsize;
15902 irela++;
15903 count--;
15904 }
15905
15906 free (irela_head);
15907
15908 /* Hashes are no longer valid. */
15909 free (reldata->hashes);
15910 reldata->hashes = NULL;
15911 }
15912
15913 /* Unwinding tables are not referenced directly. This pass marks them as
15914 required if the corresponding code section is marked. Similarly, ARMv8-M
15915 secure entry functions can only be referenced by SG veneers which are
15916 created after the GC process. They need to be marked in case they reside in
15917 their own section (as would be the case if code was compiled with
15918 -ffunction-sections). */
15919
15920 static bfd_boolean
15921 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
15922 elf_gc_mark_hook_fn gc_mark_hook)
15923 {
15924 bfd *sub;
15925 Elf_Internal_Shdr **elf_shdrp;
15926 asection *cmse_sec;
15927 obj_attribute *out_attr;
15928 Elf_Internal_Shdr *symtab_hdr;
15929 unsigned i, sym_count, ext_start;
15930 const struct elf_backend_data *bed;
15931 struct elf_link_hash_entry **sym_hashes;
15932 struct elf32_arm_link_hash_entry *cmse_hash;
15933 bfd_boolean again, is_v8m, first_bfd_browse = TRUE;
15934 bfd_boolean debug_sec_need_to_be_marked = FALSE;
15935 asection *isec;
15936
15937 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
15938
15939 out_attr = elf_known_obj_attributes_proc (info->output_bfd);
15940 is_v8m = out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V8M_BASE
15941 && out_attr[Tag_CPU_arch_profile].i == 'M';
15942
15943 /* Marking EH data may cause additional code sections to be marked,
15944 requiring multiple passes. */
15945 again = TRUE;
15946 while (again)
15947 {
15948 again = FALSE;
15949 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
15950 {
15951 asection *o;
15952
15953 if (! is_arm_elf (sub))
15954 continue;
15955
15956 elf_shdrp = elf_elfsections (sub);
15957 for (o = sub->sections; o != NULL; o = o->next)
15958 {
15959 Elf_Internal_Shdr *hdr;
15960
15961 hdr = &elf_section_data (o)->this_hdr;
15962 if (hdr->sh_type == SHT_ARM_EXIDX
15963 && hdr->sh_link
15964 && hdr->sh_link < elf_numsections (sub)
15965 && !o->gc_mark
15966 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
15967 {
15968 again = TRUE;
15969 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
15970 return FALSE;
15971 }
15972 }
15973
15974 /* Mark section holding ARMv8-M secure entry functions. We mark all
15975 of them so no need for a second browsing. */
15976 if (is_v8m && first_bfd_browse)
15977 {
15978 sym_hashes = elf_sym_hashes (sub);
15979 bed = get_elf_backend_data (sub);
15980 symtab_hdr = &elf_tdata (sub)->symtab_hdr;
15981 sym_count = symtab_hdr->sh_size / bed->s->sizeof_sym;
15982 ext_start = symtab_hdr->sh_info;
15983
15984 /* Scan symbols. */
15985 for (i = ext_start; i < sym_count; i++)
15986 {
15987 cmse_hash = elf32_arm_hash_entry (sym_hashes[i - ext_start]);
15988
15989 /* Assume it is a special symbol. If not, cmse_scan will
15990 warn about it and user can do something about it. */
15991 if (CONST_STRNEQ (cmse_hash->root.root.root.string,
15992 CMSE_PREFIX))
15993 {
15994 cmse_sec = cmse_hash->root.root.u.def.section;
15995 if (!cmse_sec->gc_mark
15996 && !_bfd_elf_gc_mark (info, cmse_sec, gc_mark_hook))
15997 return FALSE;
15998 /* The debug sections related to these secure entry
15999 functions are marked on enabling below flag. */
16000 debug_sec_need_to_be_marked = TRUE;
16001 }
16002 }
16003
16004 if (debug_sec_need_to_be_marked)
16005 {
16006 /* Looping over all the sections of the object file containing
16007 Armv8-M secure entry functions and marking all the debug
16008 sections. */
16009 for (isec = sub->sections; isec != NULL; isec = isec->next)
16010 {
16011 /* If not a debug sections, skip it. */
16012 if (!isec->gc_mark && (isec->flags & SEC_DEBUGGING))
16013 isec->gc_mark = 1 ;
16014 }
16015 debug_sec_need_to_be_marked = FALSE;
16016 }
16017 }
16018 }
16019 first_bfd_browse = FALSE;
16020 }
16021
16022 return TRUE;
16023 }
16024
16025 /* Treat mapping symbols as special target symbols. */
16026
16027 static bfd_boolean
16028 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
16029 {
16030 return bfd_is_arm_special_symbol_name (sym->name,
16031 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
16032 }
16033
16034 /* This is a version of _bfd_elf_find_function() from dwarf2.c except that
16035 ARM mapping symbols are ignored when looking for function names
16036 and STT_ARM_TFUNC is considered to a function type. */
16037
16038 static bfd_boolean
16039 arm_elf_find_function (bfd * abfd,
16040 asymbol ** symbols,
16041 asection * section,
16042 bfd_vma offset,
16043 const char ** filename_ptr,
16044 const char ** functionname_ptr)
16045 {
16046 const char * filename = NULL;
16047 asymbol * func = NULL;
16048 bfd_vma low_func = 0;
16049 asymbol ** p;
16050
16051 if (symbols == NULL)
16052 return FALSE;
16053
16054 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
16055 return FALSE;
16056
16057 for (p = symbols; *p != NULL; p++)
16058 {
16059 elf_symbol_type *q;
16060
16061 q = (elf_symbol_type *) *p;
16062
16063 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
16064 {
16065 default:
16066 break;
16067 case STT_FILE:
16068 filename = bfd_asymbol_name (&q->symbol);
16069 break;
16070 case STT_FUNC:
16071 case STT_ARM_TFUNC:
16072 case STT_NOTYPE:
16073 /* Skip mapping symbols. */
16074 if ((q->symbol.flags & BSF_LOCAL)
16075 && bfd_is_arm_special_symbol_name (q->symbol.name,
16076 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
16077 continue;
16078 /* Fall through. */
16079 if (bfd_get_section (&q->symbol) == section
16080 && q->symbol.value >= low_func
16081 && q->symbol.value <= offset)
16082 {
16083 func = (asymbol *) q;
16084 low_func = q->symbol.value;
16085 }
16086 break;
16087 }
16088 }
16089
16090 if (func == NULL)
16091 return FALSE;
16092
16093 if (filename_ptr)
16094 *filename_ptr = filename;
16095 if (functionname_ptr)
16096 *functionname_ptr = bfd_asymbol_name (func);
16097
16098 return TRUE;
16099 }
16100
16101
16102 /* Find the nearest line to a particular section and offset, for error
16103 reporting. This code is a duplicate of the code in elf.c, except
16104 that it uses arm_elf_find_function. */
16105
16106 static bfd_boolean
16107 elf32_arm_find_nearest_line (bfd * abfd,
16108 asymbol ** symbols,
16109 asection * section,
16110 bfd_vma offset,
16111 const char ** filename_ptr,
16112 const char ** functionname_ptr,
16113 unsigned int * line_ptr,
16114 unsigned int * discriminator_ptr)
16115 {
16116 bfd_boolean found = FALSE;
16117
16118 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
16119 filename_ptr, functionname_ptr,
16120 line_ptr, discriminator_ptr,
16121 dwarf_debug_sections,
16122 & elf_tdata (abfd)->dwarf2_find_line_info))
16123 {
16124 if (!*functionname_ptr)
16125 arm_elf_find_function (abfd, symbols, section, offset,
16126 *filename_ptr ? NULL : filename_ptr,
16127 functionname_ptr);
16128
16129 return TRUE;
16130 }
16131
16132 /* Skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain
16133 uses DWARF1. */
16134
16135 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
16136 & found, filename_ptr,
16137 functionname_ptr, line_ptr,
16138 & elf_tdata (abfd)->line_info))
16139 return FALSE;
16140
16141 if (found && (*functionname_ptr || *line_ptr))
16142 return TRUE;
16143
16144 if (symbols == NULL)
16145 return FALSE;
16146
16147 if (! arm_elf_find_function (abfd, symbols, section, offset,
16148 filename_ptr, functionname_ptr))
16149 return FALSE;
16150
16151 *line_ptr = 0;
16152 return TRUE;
16153 }
16154
16155 static bfd_boolean
16156 elf32_arm_find_inliner_info (bfd * abfd,
16157 const char ** filename_ptr,
16158 const char ** functionname_ptr,
16159 unsigned int * line_ptr)
16160 {
16161 bfd_boolean found;
16162 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
16163 functionname_ptr, line_ptr,
16164 & elf_tdata (abfd)->dwarf2_find_line_info);
16165 return found;
16166 }
16167
16168 /* Find dynamic relocs for H that apply to read-only sections. */
16169
16170 static asection *
16171 readonly_dynrelocs (struct elf_link_hash_entry *h)
16172 {
16173 struct elf_dyn_relocs *p;
16174
16175 for (p = elf32_arm_hash_entry (h)->dyn_relocs; p != NULL; p = p->next)
16176 {
16177 asection *s = p->sec->output_section;
16178
16179 if (s != NULL && (s->flags & SEC_READONLY) != 0)
16180 return p->sec;
16181 }
16182 return NULL;
16183 }
16184
16185 /* Adjust a symbol defined by a dynamic object and referenced by a
16186 regular object. The current definition is in some section of the
16187 dynamic object, but we're not including those sections. We have to
16188 change the definition to something the rest of the link can
16189 understand. */
16190
16191 static bfd_boolean
16192 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
16193 struct elf_link_hash_entry * h)
16194 {
16195 bfd * dynobj;
16196 asection *s, *srel;
16197 struct elf32_arm_link_hash_entry * eh;
16198 struct elf32_arm_link_hash_table *globals;
16199
16200 globals = elf32_arm_hash_table (info);
16201 if (globals == NULL)
16202 return FALSE;
16203
16204 dynobj = elf_hash_table (info)->dynobj;
16205
16206 /* Make sure we know what is going on here. */
16207 BFD_ASSERT (dynobj != NULL
16208 && (h->needs_plt
16209 || h->type == STT_GNU_IFUNC
16210 || h->is_weakalias
16211 || (h->def_dynamic
16212 && h->ref_regular
16213 && !h->def_regular)));
16214
16215 eh = (struct elf32_arm_link_hash_entry *) h;
16216
16217 /* If this is a function, put it in the procedure linkage table. We
16218 will fill in the contents of the procedure linkage table later,
16219 when we know the address of the .got section. */
16220 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
16221 {
16222 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
16223 symbol binds locally. */
16224 if (h->plt.refcount <= 0
16225 || (h->type != STT_GNU_IFUNC
16226 && (SYMBOL_CALLS_LOCAL (info, h)
16227 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16228 && h->root.type == bfd_link_hash_undefweak))))
16229 {
16230 /* This case can occur if we saw a PLT32 reloc in an input
16231 file, but the symbol was never referred to by a dynamic
16232 object, or if all references were garbage collected. In
16233 such a case, we don't actually need to build a procedure
16234 linkage table, and we can just do a PC24 reloc instead. */
16235 h->plt.offset = (bfd_vma) -1;
16236 eh->plt.thumb_refcount = 0;
16237 eh->plt.maybe_thumb_refcount = 0;
16238 eh->plt.noncall_refcount = 0;
16239 h->needs_plt = 0;
16240 }
16241
16242 return TRUE;
16243 }
16244 else
16245 {
16246 /* It's possible that we incorrectly decided a .plt reloc was
16247 needed for an R_ARM_PC24 or similar reloc to a non-function sym
16248 in check_relocs. We can't decide accurately between function
16249 and non-function syms in check-relocs; Objects loaded later in
16250 the link may change h->type. So fix it now. */
16251 h->plt.offset = (bfd_vma) -1;
16252 eh->plt.thumb_refcount = 0;
16253 eh->plt.maybe_thumb_refcount = 0;
16254 eh->plt.noncall_refcount = 0;
16255 }
16256
16257 /* If this is a weak symbol, and there is a real definition, the
16258 processor independent code will have arranged for us to see the
16259 real definition first, and we can just use the same value. */
16260 if (h->is_weakalias)
16261 {
16262 struct elf_link_hash_entry *def = weakdef (h);
16263 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
16264 h->root.u.def.section = def->root.u.def.section;
16265 h->root.u.def.value = def->root.u.def.value;
16266 return TRUE;
16267 }
16268
16269 /* If there are no non-GOT references, we do not need a copy
16270 relocation. */
16271 if (!h->non_got_ref)
16272 return TRUE;
16273
16274 /* This is a reference to a symbol defined by a dynamic object which
16275 is not a function. */
16276
16277 /* If we are creating a shared library, we must presume that the
16278 only references to the symbol are via the global offset table.
16279 For such cases we need not do anything here; the relocations will
16280 be handled correctly by relocate_section. Relocatable executables
16281 can reference data in shared objects directly, so we don't need to
16282 do anything here. */
16283 if (bfd_link_pic (info) || globals->root.is_relocatable_executable)
16284 return TRUE;
16285
16286 /* We must allocate the symbol in our .dynbss section, which will
16287 become part of the .bss section of the executable. There will be
16288 an entry for this symbol in the .dynsym section. The dynamic
16289 object will contain position independent code, so all references
16290 from the dynamic object to this symbol will go through the global
16291 offset table. The dynamic linker will use the .dynsym entry to
16292 determine the address it must put in the global offset table, so
16293 both the dynamic object and the regular object will refer to the
16294 same memory location for the variable. */
16295 /* If allowed, we must generate a R_ARM_COPY reloc to tell the dynamic
16296 linker to copy the initial value out of the dynamic object and into
16297 the runtime process image. We need to remember the offset into the
16298 .rel(a).bss section we are going to use. */
16299 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
16300 {
16301 s = globals->root.sdynrelro;
16302 srel = globals->root.sreldynrelro;
16303 }
16304 else
16305 {
16306 s = globals->root.sdynbss;
16307 srel = globals->root.srelbss;
16308 }
16309 if (info->nocopyreloc == 0
16310 && (h->root.u.def.section->flags & SEC_ALLOC) != 0
16311 && h->size != 0)
16312 {
16313 elf32_arm_allocate_dynrelocs (info, srel, 1);
16314 h->needs_copy = 1;
16315 }
16316
16317 return _bfd_elf_adjust_dynamic_copy (info, h, s);
16318 }
16319
16320 /* Allocate space in .plt, .got and associated reloc sections for
16321 dynamic relocs. */
16322
16323 static bfd_boolean
16324 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
16325 {
16326 struct bfd_link_info *info;
16327 struct elf32_arm_link_hash_table *htab;
16328 struct elf32_arm_link_hash_entry *eh;
16329 struct elf_dyn_relocs *p;
16330
16331 if (h->root.type == bfd_link_hash_indirect)
16332 return TRUE;
16333
16334 eh = (struct elf32_arm_link_hash_entry *) h;
16335
16336 info = (struct bfd_link_info *) inf;
16337 htab = elf32_arm_hash_table (info);
16338 if (htab == NULL)
16339 return FALSE;
16340
16341 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
16342 && h->plt.refcount > 0)
16343 {
16344 /* Make sure this symbol is output as a dynamic symbol.
16345 Undefined weak syms won't yet be marked as dynamic. */
16346 if (h->dynindx == -1 && !h->forced_local
16347 && h->root.type == bfd_link_hash_undefweak)
16348 {
16349 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16350 return FALSE;
16351 }
16352
16353 /* If the call in the PLT entry binds locally, the associated
16354 GOT entry should use an R_ARM_IRELATIVE relocation instead of
16355 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
16356 than the .plt section. */
16357 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
16358 {
16359 eh->is_iplt = 1;
16360 if (eh->plt.noncall_refcount == 0
16361 && SYMBOL_REFERENCES_LOCAL (info, h))
16362 /* All non-call references can be resolved directly.
16363 This means that they can (and in some cases, must)
16364 resolve directly to the run-time target, rather than
16365 to the PLT. That in turns means that any .got entry
16366 would be equal to the .igot.plt entry, so there's
16367 no point having both. */
16368 h->got.refcount = 0;
16369 }
16370
16371 if (bfd_link_pic (info)
16372 || eh->is_iplt
16373 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
16374 {
16375 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
16376
16377 /* If this symbol is not defined in a regular file, and we are
16378 not generating a shared library, then set the symbol to this
16379 location in the .plt. This is required to make function
16380 pointers compare as equal between the normal executable and
16381 the shared library. */
16382 if (! bfd_link_pic (info)
16383 && !h->def_regular)
16384 {
16385 h->root.u.def.section = htab->root.splt;
16386 h->root.u.def.value = h->plt.offset;
16387
16388 /* Make sure the function is not marked as Thumb, in case
16389 it is the target of an ABS32 relocation, which will
16390 point to the PLT entry. */
16391 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16392 }
16393
16394 /* VxWorks executables have a second set of relocations for
16395 each PLT entry. They go in a separate relocation section,
16396 which is processed by the kernel loader. */
16397 if (htab->vxworks_p && !bfd_link_pic (info))
16398 {
16399 /* There is a relocation for the initial PLT entry:
16400 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
16401 if (h->plt.offset == htab->plt_header_size)
16402 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
16403
16404 /* There are two extra relocations for each subsequent
16405 PLT entry: an R_ARM_32 relocation for the GOT entry,
16406 and an R_ARM_32 relocation for the PLT entry. */
16407 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
16408 }
16409 }
16410 else
16411 {
16412 h->plt.offset = (bfd_vma) -1;
16413 h->needs_plt = 0;
16414 }
16415 }
16416 else
16417 {
16418 h->plt.offset = (bfd_vma) -1;
16419 h->needs_plt = 0;
16420 }
16421
16422 eh = (struct elf32_arm_link_hash_entry *) h;
16423 eh->tlsdesc_got = (bfd_vma) -1;
16424
16425 if (h->got.refcount > 0)
16426 {
16427 asection *s;
16428 bfd_boolean dyn;
16429 int tls_type = elf32_arm_hash_entry (h)->tls_type;
16430 int indx;
16431
16432 /* Make sure this symbol is output as a dynamic symbol.
16433 Undefined weak syms won't yet be marked as dynamic. */
16434 if (htab->root.dynamic_sections_created && h->dynindx == -1 && !h->forced_local
16435 && h->root.type == bfd_link_hash_undefweak)
16436 {
16437 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16438 return FALSE;
16439 }
16440
16441 if (!htab->symbian_p)
16442 {
16443 s = htab->root.sgot;
16444 h->got.offset = s->size;
16445
16446 if (tls_type == GOT_UNKNOWN)
16447 abort ();
16448
16449 if (tls_type == GOT_NORMAL)
16450 /* Non-TLS symbols need one GOT slot. */
16451 s->size += 4;
16452 else
16453 {
16454 if (tls_type & GOT_TLS_GDESC)
16455 {
16456 /* R_ARM_TLS_DESC needs 2 GOT slots. */
16457 eh->tlsdesc_got
16458 = (htab->root.sgotplt->size
16459 - elf32_arm_compute_jump_table_size (htab));
16460 htab->root.sgotplt->size += 8;
16461 h->got.offset = (bfd_vma) -2;
16462 /* plt.got_offset needs to know there's a TLS_DESC
16463 reloc in the middle of .got.plt. */
16464 htab->num_tls_desc++;
16465 }
16466
16467 if (tls_type & GOT_TLS_GD)
16468 {
16469 /* R_ARM_TLS_GD32 and R_ARM_TLS_GD32_FDPIC need two
16470 consecutive GOT slots. If the symbol is both GD
16471 and GDESC, got.offset may have been
16472 overwritten. */
16473 h->got.offset = s->size;
16474 s->size += 8;
16475 }
16476
16477 if (tls_type & GOT_TLS_IE)
16478 /* R_ARM_TLS_IE32/R_ARM_TLS_IE32_FDPIC need one GOT
16479 slot. */
16480 s->size += 4;
16481 }
16482
16483 dyn = htab->root.dynamic_sections_created;
16484
16485 indx = 0;
16486 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn,
16487 bfd_link_pic (info),
16488 h)
16489 && (!bfd_link_pic (info)
16490 || !SYMBOL_REFERENCES_LOCAL (info, h)))
16491 indx = h->dynindx;
16492
16493 if (tls_type != GOT_NORMAL
16494 && (bfd_link_pic (info) || indx != 0)
16495 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16496 || h->root.type != bfd_link_hash_undefweak))
16497 {
16498 if (tls_type & GOT_TLS_IE)
16499 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16500
16501 if (tls_type & GOT_TLS_GD)
16502 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16503
16504 if (tls_type & GOT_TLS_GDESC)
16505 {
16506 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
16507 /* GDESC needs a trampoline to jump to. */
16508 htab->tls_trampoline = -1;
16509 }
16510
16511 /* Only GD needs it. GDESC just emits one relocation per
16512 2 entries. */
16513 if ((tls_type & GOT_TLS_GD) && indx != 0)
16514 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16515 }
16516 else if (((indx != -1) || htab->fdpic_p)
16517 && !SYMBOL_REFERENCES_LOCAL (info, h))
16518 {
16519 if (htab->root.dynamic_sections_created)
16520 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
16521 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16522 }
16523 else if (h->type == STT_GNU_IFUNC
16524 && eh->plt.noncall_refcount == 0)
16525 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
16526 they all resolve dynamically instead. Reserve room for the
16527 GOT entry's R_ARM_IRELATIVE relocation. */
16528 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
16529 else if (bfd_link_pic (info)
16530 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
16531 || h->root.type != bfd_link_hash_undefweak))
16532 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
16533 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16534 else if (htab->fdpic_p && tls_type == GOT_NORMAL)
16535 /* Reserve room for rofixup for FDPIC executable. */
16536 /* TLS relocs do not need space since they are completely
16537 resolved. */
16538 htab->srofixup->size += 4;
16539 }
16540 }
16541 else
16542 h->got.offset = (bfd_vma) -1;
16543
16544 /* FDPIC support. */
16545 if (eh->fdpic_cnts.gotofffuncdesc_cnt > 0)
16546 {
16547 /* Symbol musn't be exported. */
16548 if (h->dynindx != -1)
16549 abort();
16550
16551 /* We only allocate one function descriptor with its associated relocation. */
16552 if (eh->fdpic_cnts.funcdesc_offset == -1)
16553 {
16554 asection *s = htab->root.sgot;
16555
16556 eh->fdpic_cnts.funcdesc_offset = s->size;
16557 s->size += 8;
16558 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16559 if (bfd_link_pic(info))
16560 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16561 else
16562 htab->srofixup->size += 8;
16563 }
16564 }
16565
16566 if (eh->fdpic_cnts.gotfuncdesc_cnt > 0)
16567 {
16568 asection *s = htab->root.sgot;
16569
16570 if (htab->root.dynamic_sections_created && h->dynindx == -1
16571 && !h->forced_local)
16572 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16573 return FALSE;
16574
16575 if (h->dynindx == -1)
16576 {
16577 /* We only allocate one function descriptor with its associated relocation. q */
16578 if (eh->fdpic_cnts.funcdesc_offset == -1)
16579 {
16580
16581 eh->fdpic_cnts.funcdesc_offset = s->size;
16582 s->size += 8;
16583 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16584 if (bfd_link_pic(info))
16585 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16586 else
16587 htab->srofixup->size += 8;
16588 }
16589 }
16590
16591 /* Add one entry into the GOT and a R_ARM_FUNCDESC or
16592 R_ARM_RELATIVE/rofixup relocation on it. */
16593 eh->fdpic_cnts.gotfuncdesc_offset = s->size;
16594 s->size += 4;
16595 if (h->dynindx == -1 && !bfd_link_pic(info))
16596 htab->srofixup->size += 4;
16597 else
16598 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16599 }
16600
16601 if (eh->fdpic_cnts.funcdesc_cnt > 0)
16602 {
16603 if (htab->root.dynamic_sections_created && h->dynindx == -1
16604 && !h->forced_local)
16605 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16606 return FALSE;
16607
16608 if (h->dynindx == -1)
16609 {
16610 /* We only allocate one function descriptor with its associated relocation. */
16611 if (eh->fdpic_cnts.funcdesc_offset == -1)
16612 {
16613 asection *s = htab->root.sgot;
16614
16615 eh->fdpic_cnts.funcdesc_offset = s->size;
16616 s->size += 8;
16617 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16618 if (bfd_link_pic(info))
16619 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
16620 else
16621 htab->srofixup->size += 8;
16622 }
16623 }
16624 if (h->dynindx == -1 && !bfd_link_pic(info))
16625 {
16626 /* For FDPIC executable we replace R_ARM_RELATIVE with a rofixup. */
16627 htab->srofixup->size += 4 * eh->fdpic_cnts.funcdesc_cnt;
16628 }
16629 else
16630 {
16631 /* Will need one dynamic reloc per reference. will be either
16632 R_ARM_FUNCDESC or R_ARM_RELATIVE for hidden symbols. */
16633 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot,
16634 eh->fdpic_cnts.funcdesc_cnt);
16635 }
16636 }
16637
16638 /* Allocate stubs for exported Thumb functions on v4t. */
16639 if (!htab->use_blx && h->dynindx != -1
16640 && h->def_regular
16641 && ARM_GET_SYM_BRANCH_TYPE (h->target_internal) == ST_BRANCH_TO_THUMB
16642 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
16643 {
16644 struct elf_link_hash_entry * th;
16645 struct bfd_link_hash_entry * bh;
16646 struct elf_link_hash_entry * myh;
16647 char name[1024];
16648 asection *s;
16649 bh = NULL;
16650 /* Create a new symbol to regist the real location of the function. */
16651 s = h->root.u.def.section;
16652 sprintf (name, "__real_%s", h->root.root.string);
16653 _bfd_generic_link_add_one_symbol (info, s->owner,
16654 name, BSF_GLOBAL, s,
16655 h->root.u.def.value,
16656 NULL, TRUE, FALSE, &bh);
16657
16658 myh = (struct elf_link_hash_entry *) bh;
16659 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
16660 myh->forced_local = 1;
16661 ARM_SET_SYM_BRANCH_TYPE (myh->target_internal, ST_BRANCH_TO_THUMB);
16662 eh->export_glue = myh;
16663 th = record_arm_to_thumb_glue (info, h);
16664 /* Point the symbol at the stub. */
16665 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
16666 ARM_SET_SYM_BRANCH_TYPE (h->target_internal, ST_BRANCH_TO_ARM);
16667 h->root.u.def.section = th->root.u.def.section;
16668 h->root.u.def.value = th->root.u.def.value & ~1;
16669 }
16670
16671 if (eh->dyn_relocs == NULL)
16672 return TRUE;
16673
16674 /* In the shared -Bsymbolic case, discard space allocated for
16675 dynamic pc-relative relocs against symbols which turn out to be
16676 defined in regular objects. For the normal shared case, discard
16677 space for pc-relative relocs that have become local due to symbol
16678 visibility changes. */
16679
16680 if (bfd_link_pic (info) || htab->root.is_relocatable_executable || htab->fdpic_p)
16681 {
16682 /* Relocs that use pc_count are PC-relative forms, which will appear
16683 on something like ".long foo - ." or "movw REG, foo - .". We want
16684 calls to protected symbols to resolve directly to the function
16685 rather than going via the plt. If people want function pointer
16686 comparisons to work as expected then they should avoid writing
16687 assembly like ".long foo - .". */
16688 if (SYMBOL_CALLS_LOCAL (info, h))
16689 {
16690 struct elf_dyn_relocs **pp;
16691
16692 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16693 {
16694 p->count -= p->pc_count;
16695 p->pc_count = 0;
16696 if (p->count == 0)
16697 *pp = p->next;
16698 else
16699 pp = &p->next;
16700 }
16701 }
16702
16703 if (htab->vxworks_p)
16704 {
16705 struct elf_dyn_relocs **pp;
16706
16707 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
16708 {
16709 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
16710 *pp = p->next;
16711 else
16712 pp = &p->next;
16713 }
16714 }
16715
16716 /* Also discard relocs on undefined weak syms with non-default
16717 visibility. */
16718 if (eh->dyn_relocs != NULL
16719 && h->root.type == bfd_link_hash_undefweak)
16720 {
16721 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
16722 || UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
16723 eh->dyn_relocs = NULL;
16724
16725 /* Make sure undefined weak symbols are output as a dynamic
16726 symbol in PIEs. */
16727 else if (htab->root.dynamic_sections_created && h->dynindx == -1
16728 && !h->forced_local)
16729 {
16730 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16731 return FALSE;
16732 }
16733 }
16734
16735 else if (htab->root.is_relocatable_executable && h->dynindx == -1
16736 && h->root.type == bfd_link_hash_new)
16737 {
16738 /* Output absolute symbols so that we can create relocations
16739 against them. For normal symbols we output a relocation
16740 against the section that contains them. */
16741 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16742 return FALSE;
16743 }
16744
16745 }
16746 else
16747 {
16748 /* For the non-shared case, discard space for relocs against
16749 symbols which turn out to need copy relocs or are not
16750 dynamic. */
16751
16752 if (!h->non_got_ref
16753 && ((h->def_dynamic
16754 && !h->def_regular)
16755 || (htab->root.dynamic_sections_created
16756 && (h->root.type == bfd_link_hash_undefweak
16757 || h->root.type == bfd_link_hash_undefined))))
16758 {
16759 /* Make sure this symbol is output as a dynamic symbol.
16760 Undefined weak syms won't yet be marked as dynamic. */
16761 if (h->dynindx == -1 && !h->forced_local
16762 && h->root.type == bfd_link_hash_undefweak)
16763 {
16764 if (! bfd_elf_link_record_dynamic_symbol (info, h))
16765 return FALSE;
16766 }
16767
16768 /* If that succeeded, we know we'll be keeping all the
16769 relocs. */
16770 if (h->dynindx != -1)
16771 goto keep;
16772 }
16773
16774 eh->dyn_relocs = NULL;
16775
16776 keep: ;
16777 }
16778
16779 /* Finally, allocate space. */
16780 for (p = eh->dyn_relocs; p != NULL; p = p->next)
16781 {
16782 asection *sreloc = elf_section_data (p->sec)->sreloc;
16783
16784 if (h->type == STT_GNU_IFUNC
16785 && eh->plt.noncall_refcount == 0
16786 && SYMBOL_REFERENCES_LOCAL (info, h))
16787 elf32_arm_allocate_irelocs (info, sreloc, p->count);
16788 else if (h->dynindx != -1 && (!bfd_link_pic(info) || !info->symbolic || !h->def_regular))
16789 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16790 else if (htab->fdpic_p && !bfd_link_pic(info))
16791 htab->srofixup->size += 4 * p->count;
16792 else
16793 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
16794 }
16795
16796 return TRUE;
16797 }
16798
16799 /* Set DF_TEXTREL if we find any dynamic relocs that apply to
16800 read-only sections. */
16801
16802 static bfd_boolean
16803 maybe_set_textrel (struct elf_link_hash_entry *h, void *info_p)
16804 {
16805 asection *sec;
16806
16807 if (h->root.type == bfd_link_hash_indirect)
16808 return TRUE;
16809
16810 sec = readonly_dynrelocs (h);
16811 if (sec != NULL)
16812 {
16813 struct bfd_link_info *info = (struct bfd_link_info *) info_p;
16814
16815 info->flags |= DF_TEXTREL;
16816 info->callbacks->minfo
16817 (_("%pB: dynamic relocation against `%pT' in read-only section `%pA'\n"),
16818 sec->owner, h->root.root.string, sec);
16819
16820 /* Not an error, just cut short the traversal. */
16821 return FALSE;
16822 }
16823
16824 return TRUE;
16825 }
16826
16827 void
16828 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
16829 int byteswap_code)
16830 {
16831 struct elf32_arm_link_hash_table *globals;
16832
16833 globals = elf32_arm_hash_table (info);
16834 if (globals == NULL)
16835 return;
16836
16837 globals->byteswap_code = byteswap_code;
16838 }
16839
16840 /* Set the sizes of the dynamic sections. */
16841
16842 static bfd_boolean
16843 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
16844 struct bfd_link_info * info)
16845 {
16846 bfd * dynobj;
16847 asection * s;
16848 bfd_boolean plt;
16849 bfd_boolean relocs;
16850 bfd *ibfd;
16851 struct elf32_arm_link_hash_table *htab;
16852
16853 htab = elf32_arm_hash_table (info);
16854 if (htab == NULL)
16855 return FALSE;
16856
16857 dynobj = elf_hash_table (info)->dynobj;
16858 BFD_ASSERT (dynobj != NULL);
16859 check_use_blx (htab);
16860
16861 if (elf_hash_table (info)->dynamic_sections_created)
16862 {
16863 /* Set the contents of the .interp section to the interpreter. */
16864 if (bfd_link_executable (info) && !info->nointerp)
16865 {
16866 s = bfd_get_linker_section (dynobj, ".interp");
16867 BFD_ASSERT (s != NULL);
16868 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
16869 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
16870 }
16871 }
16872
16873 /* Set up .got offsets for local syms, and space for local dynamic
16874 relocs. */
16875 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
16876 {
16877 bfd_signed_vma *local_got;
16878 bfd_signed_vma *end_local_got;
16879 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
16880 char *local_tls_type;
16881 bfd_vma *local_tlsdesc_gotent;
16882 bfd_size_type locsymcount;
16883 Elf_Internal_Shdr *symtab_hdr;
16884 asection *srel;
16885 bfd_boolean is_vxworks = htab->vxworks_p;
16886 unsigned int symndx;
16887 struct fdpic_local *local_fdpic_cnts;
16888
16889 if (! is_arm_elf (ibfd))
16890 continue;
16891
16892 for (s = ibfd->sections; s != NULL; s = s->next)
16893 {
16894 struct elf_dyn_relocs *p;
16895
16896 for (p = (struct elf_dyn_relocs *)
16897 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
16898 {
16899 if (!bfd_is_abs_section (p->sec)
16900 && bfd_is_abs_section (p->sec->output_section))
16901 {
16902 /* Input section has been discarded, either because
16903 it is a copy of a linkonce section or due to
16904 linker script /DISCARD/, so we'll be discarding
16905 the relocs too. */
16906 }
16907 else if (is_vxworks
16908 && strcmp (p->sec->output_section->name,
16909 ".tls_vars") == 0)
16910 {
16911 /* Relocations in vxworks .tls_vars sections are
16912 handled specially by the loader. */
16913 }
16914 else if (p->count != 0)
16915 {
16916 srel = elf_section_data (p->sec)->sreloc;
16917 if (htab->fdpic_p && !bfd_link_pic(info))
16918 htab->srofixup->size += 4 * p->count;
16919 else
16920 elf32_arm_allocate_dynrelocs (info, srel, p->count);
16921 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
16922 info->flags |= DF_TEXTREL;
16923 }
16924 }
16925 }
16926
16927 local_got = elf_local_got_refcounts (ibfd);
16928 if (!local_got)
16929 continue;
16930
16931 symtab_hdr = & elf_symtab_hdr (ibfd);
16932 locsymcount = symtab_hdr->sh_info;
16933 end_local_got = local_got + locsymcount;
16934 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
16935 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
16936 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
16937 local_fdpic_cnts = elf32_arm_local_fdpic_cnts (ibfd);
16938 symndx = 0;
16939 s = htab->root.sgot;
16940 srel = htab->root.srelgot;
16941 for (; local_got < end_local_got;
16942 ++local_got, ++local_iplt_ptr, ++local_tls_type,
16943 ++local_tlsdesc_gotent, ++symndx, ++local_fdpic_cnts)
16944 {
16945 *local_tlsdesc_gotent = (bfd_vma) -1;
16946 local_iplt = *local_iplt_ptr;
16947
16948 /* FDPIC support. */
16949 if (local_fdpic_cnts->gotofffuncdesc_cnt > 0)
16950 {
16951 if (local_fdpic_cnts->funcdesc_offset == -1)
16952 {
16953 local_fdpic_cnts->funcdesc_offset = s->size;
16954 s->size += 8;
16955
16956 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16957 if (bfd_link_pic(info))
16958 elf32_arm_allocate_dynrelocs (info, srel, 1);
16959 else
16960 htab->srofixup->size += 8;
16961 }
16962 }
16963
16964 if (local_fdpic_cnts->funcdesc_cnt > 0)
16965 {
16966 if (local_fdpic_cnts->funcdesc_offset == -1)
16967 {
16968 local_fdpic_cnts->funcdesc_offset = s->size;
16969 s->size += 8;
16970
16971 /* We will add an R_ARM_FUNCDESC_VALUE relocation or two rofixups. */
16972 if (bfd_link_pic(info))
16973 elf32_arm_allocate_dynrelocs (info, srel, 1);
16974 else
16975 htab->srofixup->size += 8;
16976 }
16977
16978 /* We will add n R_ARM_RELATIVE relocations or n rofixups. */
16979 if (bfd_link_pic(info))
16980 elf32_arm_allocate_dynrelocs (info, srel, local_fdpic_cnts->funcdesc_cnt);
16981 else
16982 htab->srofixup->size += 4 * local_fdpic_cnts->funcdesc_cnt;
16983 }
16984
16985 if (local_iplt != NULL)
16986 {
16987 struct elf_dyn_relocs *p;
16988
16989 if (local_iplt->root.refcount > 0)
16990 {
16991 elf32_arm_allocate_plt_entry (info, TRUE,
16992 &local_iplt->root,
16993 &local_iplt->arm);
16994 if (local_iplt->arm.noncall_refcount == 0)
16995 /* All references to the PLT are calls, so all
16996 non-call references can resolve directly to the
16997 run-time target. This means that the .got entry
16998 would be the same as the .igot.plt entry, so there's
16999 no point creating both. */
17000 *local_got = 0;
17001 }
17002 else
17003 {
17004 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
17005 local_iplt->root.offset = (bfd_vma) -1;
17006 }
17007
17008 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
17009 {
17010 asection *psrel;
17011
17012 psrel = elf_section_data (p->sec)->sreloc;
17013 if (local_iplt->arm.noncall_refcount == 0)
17014 elf32_arm_allocate_irelocs (info, psrel, p->count);
17015 else
17016 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
17017 }
17018 }
17019 if (*local_got > 0)
17020 {
17021 Elf_Internal_Sym *isym;
17022
17023 *local_got = s->size;
17024 if (*local_tls_type & GOT_TLS_GD)
17025 /* TLS_GD relocs need an 8-byte structure in the GOT. */
17026 s->size += 8;
17027 if (*local_tls_type & GOT_TLS_GDESC)
17028 {
17029 *local_tlsdesc_gotent = htab->root.sgotplt->size
17030 - elf32_arm_compute_jump_table_size (htab);
17031 htab->root.sgotplt->size += 8;
17032 *local_got = (bfd_vma) -2;
17033 /* plt.got_offset needs to know there's a TLS_DESC
17034 reloc in the middle of .got.plt. */
17035 htab->num_tls_desc++;
17036 }
17037 if (*local_tls_type & GOT_TLS_IE)
17038 s->size += 4;
17039
17040 if (*local_tls_type & GOT_NORMAL)
17041 {
17042 /* If the symbol is both GD and GDESC, *local_got
17043 may have been overwritten. */
17044 *local_got = s->size;
17045 s->size += 4;
17046 }
17047
17048 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
17049 if (isym == NULL)
17050 return FALSE;
17051
17052 /* If all references to an STT_GNU_IFUNC PLT are calls,
17053 then all non-call references, including this GOT entry,
17054 resolve directly to the run-time target. */
17055 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
17056 && (local_iplt == NULL
17057 || local_iplt->arm.noncall_refcount == 0))
17058 elf32_arm_allocate_irelocs (info, srel, 1);
17059 else if (bfd_link_pic (info) || output_bfd->flags & DYNAMIC || htab->fdpic_p)
17060 {
17061 if ((bfd_link_pic (info) && !(*local_tls_type & GOT_TLS_GDESC)))
17062 elf32_arm_allocate_dynrelocs (info, srel, 1);
17063 else if (htab->fdpic_p && *local_tls_type & GOT_NORMAL)
17064 htab->srofixup->size += 4;
17065
17066 if ((bfd_link_pic (info) || htab->fdpic_p)
17067 && *local_tls_type & GOT_TLS_GDESC)
17068 {
17069 elf32_arm_allocate_dynrelocs (info,
17070 htab->root.srelplt, 1);
17071 htab->tls_trampoline = -1;
17072 }
17073 }
17074 }
17075 else
17076 *local_got = (bfd_vma) -1;
17077 }
17078 }
17079
17080 if (htab->tls_ldm_got.refcount > 0)
17081 {
17082 /* Allocate two GOT entries and one dynamic relocation (if necessary)
17083 for R_ARM_TLS_LDM32/R_ARM_TLS_LDM32_FDPIC relocations. */
17084 htab->tls_ldm_got.offset = htab->root.sgot->size;
17085 htab->root.sgot->size += 8;
17086 if (bfd_link_pic (info))
17087 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
17088 }
17089 else
17090 htab->tls_ldm_got.offset = -1;
17091
17092 /* At the very end of the .rofixup section is a pointer to the GOT,
17093 reserve space for it. */
17094 if (htab->fdpic_p && htab->srofixup != NULL)
17095 htab->srofixup->size += 4;
17096
17097 /* Allocate global sym .plt and .got entries, and space for global
17098 sym dynamic relocs. */
17099 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
17100
17101 /* Here we rummage through the found bfds to collect glue information. */
17102 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link.next)
17103 {
17104 if (! is_arm_elf (ibfd))
17105 continue;
17106
17107 /* Initialise mapping tables for code/data. */
17108 bfd_elf32_arm_init_maps (ibfd);
17109
17110 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
17111 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info)
17112 || !bfd_elf32_arm_stm32l4xx_erratum_scan (ibfd, info))
17113 _bfd_error_handler (_("errors encountered processing file %pB"), ibfd);
17114 }
17115
17116 /* Allocate space for the glue sections now that we've sized them. */
17117 bfd_elf32_arm_allocate_interworking_sections (info);
17118
17119 /* For every jump slot reserved in the sgotplt, reloc_count is
17120 incremented. However, when we reserve space for TLS descriptors,
17121 it's not incremented, so in order to compute the space reserved
17122 for them, it suffices to multiply the reloc count by the jump
17123 slot size. */
17124 if (htab->root.srelplt)
17125 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
17126
17127 if (htab->tls_trampoline)
17128 {
17129 if (htab->root.splt->size == 0)
17130 htab->root.splt->size += htab->plt_header_size;
17131
17132 htab->tls_trampoline = htab->root.splt->size;
17133 htab->root.splt->size += htab->plt_entry_size;
17134
17135 /* If we're not using lazy TLS relocations, don't generate the
17136 PLT and GOT entries they require. */
17137 if (!(info->flags & DF_BIND_NOW))
17138 {
17139 htab->dt_tlsdesc_got = htab->root.sgot->size;
17140 htab->root.sgot->size += 4;
17141
17142 htab->dt_tlsdesc_plt = htab->root.splt->size;
17143 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
17144 }
17145 }
17146
17147 /* The check_relocs and adjust_dynamic_symbol entry points have
17148 determined the sizes of the various dynamic sections. Allocate
17149 memory for them. */
17150 plt = FALSE;
17151 relocs = FALSE;
17152 for (s = dynobj->sections; s != NULL; s = s->next)
17153 {
17154 const char * name;
17155
17156 if ((s->flags & SEC_LINKER_CREATED) == 0)
17157 continue;
17158
17159 /* It's OK to base decisions on the section name, because none
17160 of the dynobj section names depend upon the input files. */
17161 name = bfd_get_section_name (dynobj, s);
17162
17163 if (s == htab->root.splt)
17164 {
17165 /* Remember whether there is a PLT. */
17166 plt = s->size != 0;
17167 }
17168 else if (CONST_STRNEQ (name, ".rel"))
17169 {
17170 if (s->size != 0)
17171 {
17172 /* Remember whether there are any reloc sections other
17173 than .rel(a).plt and .rela.plt.unloaded. */
17174 if (s != htab->root.srelplt && s != htab->srelplt2)
17175 relocs = TRUE;
17176
17177 /* We use the reloc_count field as a counter if we need
17178 to copy relocs into the output file. */
17179 s->reloc_count = 0;
17180 }
17181 }
17182 else if (s != htab->root.sgot
17183 && s != htab->root.sgotplt
17184 && s != htab->root.iplt
17185 && s != htab->root.igotplt
17186 && s != htab->root.sdynbss
17187 && s != htab->root.sdynrelro
17188 && s != htab->srofixup)
17189 {
17190 /* It's not one of our sections, so don't allocate space. */
17191 continue;
17192 }
17193
17194 if (s->size == 0)
17195 {
17196 /* If we don't need this section, strip it from the
17197 output file. This is mostly to handle .rel(a).bss and
17198 .rel(a).plt. We must create both sections in
17199 create_dynamic_sections, because they must be created
17200 before the linker maps input sections to output
17201 sections. The linker does that before
17202 adjust_dynamic_symbol is called, and it is that
17203 function which decides whether anything needs to go
17204 into these sections. */
17205 s->flags |= SEC_EXCLUDE;
17206 continue;
17207 }
17208
17209 if ((s->flags & SEC_HAS_CONTENTS) == 0)
17210 continue;
17211
17212 /* Allocate memory for the section contents. */
17213 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
17214 if (s->contents == NULL)
17215 return FALSE;
17216 }
17217
17218 if (elf_hash_table (info)->dynamic_sections_created)
17219 {
17220 /* Add some entries to the .dynamic section. We fill in the
17221 values later, in elf32_arm_finish_dynamic_sections, but we
17222 must add the entries now so that we get the correct size for
17223 the .dynamic section. The DT_DEBUG entry is filled in by the
17224 dynamic linker and used by the debugger. */
17225 #define add_dynamic_entry(TAG, VAL) \
17226 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
17227
17228 if (bfd_link_executable (info))
17229 {
17230 if (!add_dynamic_entry (DT_DEBUG, 0))
17231 return FALSE;
17232 }
17233
17234 if (plt)
17235 {
17236 if ( !add_dynamic_entry (DT_PLTGOT, 0)
17237 || !add_dynamic_entry (DT_PLTRELSZ, 0)
17238 || !add_dynamic_entry (DT_PLTREL,
17239 htab->use_rel ? DT_REL : DT_RELA)
17240 || !add_dynamic_entry (DT_JMPREL, 0))
17241 return FALSE;
17242
17243 if (htab->dt_tlsdesc_plt
17244 && (!add_dynamic_entry (DT_TLSDESC_PLT,0)
17245 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
17246 return FALSE;
17247 }
17248
17249 if (relocs)
17250 {
17251 if (htab->use_rel)
17252 {
17253 if (!add_dynamic_entry (DT_REL, 0)
17254 || !add_dynamic_entry (DT_RELSZ, 0)
17255 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
17256 return FALSE;
17257 }
17258 else
17259 {
17260 if (!add_dynamic_entry (DT_RELA, 0)
17261 || !add_dynamic_entry (DT_RELASZ, 0)
17262 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
17263 return FALSE;
17264 }
17265 }
17266
17267 /* If any dynamic relocs apply to a read-only section,
17268 then we need a DT_TEXTREL entry. */
17269 if ((info->flags & DF_TEXTREL) == 0)
17270 elf_link_hash_traverse (&htab->root, maybe_set_textrel, info);
17271
17272 if ((info->flags & DF_TEXTREL) != 0)
17273 {
17274 if (!add_dynamic_entry (DT_TEXTREL, 0))
17275 return FALSE;
17276 }
17277 if (htab->vxworks_p
17278 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
17279 return FALSE;
17280 }
17281 #undef add_dynamic_entry
17282
17283 return TRUE;
17284 }
17285
17286 /* Size sections even though they're not dynamic. We use it to setup
17287 _TLS_MODULE_BASE_, if needed. */
17288
17289 static bfd_boolean
17290 elf32_arm_always_size_sections (bfd *output_bfd,
17291 struct bfd_link_info *info)
17292 {
17293 asection *tls_sec;
17294 struct elf32_arm_link_hash_table *htab;
17295
17296 htab = elf32_arm_hash_table (info);
17297
17298 if (bfd_link_relocatable (info))
17299 return TRUE;
17300
17301 tls_sec = elf_hash_table (info)->tls_sec;
17302
17303 if (tls_sec)
17304 {
17305 struct elf_link_hash_entry *tlsbase;
17306
17307 tlsbase = elf_link_hash_lookup
17308 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
17309
17310 if (tlsbase)
17311 {
17312 struct bfd_link_hash_entry *bh = NULL;
17313 const struct elf_backend_data *bed
17314 = get_elf_backend_data (output_bfd);
17315
17316 if (!(_bfd_generic_link_add_one_symbol
17317 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
17318 tls_sec, 0, NULL, FALSE,
17319 bed->collect, &bh)))
17320 return FALSE;
17321
17322 tlsbase->type = STT_TLS;
17323 tlsbase = (struct elf_link_hash_entry *)bh;
17324 tlsbase->def_regular = 1;
17325 tlsbase->other = STV_HIDDEN;
17326 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
17327 }
17328 }
17329
17330 if (htab->fdpic_p && !bfd_link_relocatable (info)
17331 && !bfd_elf_stack_segment_size (output_bfd, info,
17332 "__stacksize", DEFAULT_STACK_SIZE))
17333 return FALSE;
17334
17335 return TRUE;
17336 }
17337
17338 /* Finish up dynamic symbol handling. We set the contents of various
17339 dynamic sections here. */
17340
17341 static bfd_boolean
17342 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
17343 struct bfd_link_info * info,
17344 struct elf_link_hash_entry * h,
17345 Elf_Internal_Sym * sym)
17346 {
17347 struct elf32_arm_link_hash_table *htab;
17348 struct elf32_arm_link_hash_entry *eh;
17349
17350 htab = elf32_arm_hash_table (info);
17351 if (htab == NULL)
17352 return FALSE;
17353
17354 eh = (struct elf32_arm_link_hash_entry *) h;
17355
17356 if (h->plt.offset != (bfd_vma) -1)
17357 {
17358 if (!eh->is_iplt)
17359 {
17360 BFD_ASSERT (h->dynindx != -1);
17361 if (! elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
17362 h->dynindx, 0))
17363 return FALSE;
17364 }
17365
17366 if (!h->def_regular)
17367 {
17368 /* Mark the symbol as undefined, rather than as defined in
17369 the .plt section. */
17370 sym->st_shndx = SHN_UNDEF;
17371 /* If the symbol is weak we need to clear the value.
17372 Otherwise, the PLT entry would provide a definition for
17373 the symbol even if the symbol wasn't defined anywhere,
17374 and so the symbol would never be NULL. Leave the value if
17375 there were any relocations where pointer equality matters
17376 (this is a clue for the dynamic linker, to make function
17377 pointer comparisons work between an application and shared
17378 library). */
17379 if (!h->ref_regular_nonweak || !h->pointer_equality_needed)
17380 sym->st_value = 0;
17381 }
17382 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
17383 {
17384 /* At least one non-call relocation references this .iplt entry,
17385 so the .iplt entry is the function's canonical address. */
17386 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
17387 ARM_SET_SYM_BRANCH_TYPE (sym->st_target_internal, ST_BRANCH_TO_ARM);
17388 sym->st_shndx = (_bfd_elf_section_from_bfd_section
17389 (output_bfd, htab->root.iplt->output_section));
17390 sym->st_value = (h->plt.offset
17391 + htab->root.iplt->output_section->vma
17392 + htab->root.iplt->output_offset);
17393 }
17394 }
17395
17396 if (h->needs_copy)
17397 {
17398 asection * s;
17399 Elf_Internal_Rela rel;
17400
17401 /* This symbol needs a copy reloc. Set it up. */
17402 BFD_ASSERT (h->dynindx != -1
17403 && (h->root.type == bfd_link_hash_defined
17404 || h->root.type == bfd_link_hash_defweak));
17405
17406 rel.r_addend = 0;
17407 rel.r_offset = (h->root.u.def.value
17408 + h->root.u.def.section->output_section->vma
17409 + h->root.u.def.section->output_offset);
17410 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
17411 if (h->root.u.def.section == htab->root.sdynrelro)
17412 s = htab->root.sreldynrelro;
17413 else
17414 s = htab->root.srelbss;
17415 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
17416 }
17417
17418 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
17419 and for FDPIC, the _GLOBAL_OFFSET_TABLE_ symbol is not absolute:
17420 it is relative to the ".got" section. */
17421 if (h == htab->root.hdynamic
17422 || (!htab->fdpic_p && !htab->vxworks_p && h == htab->root.hgot))
17423 sym->st_shndx = SHN_ABS;
17424
17425 return TRUE;
17426 }
17427
17428 static void
17429 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17430 void *contents,
17431 const unsigned long *template, unsigned count)
17432 {
17433 unsigned ix;
17434
17435 for (ix = 0; ix != count; ix++)
17436 {
17437 unsigned long insn = template[ix];
17438
17439 /* Emit mov pc,rx if bx is not permitted. */
17440 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
17441 insn = (insn & 0xf000000f) | 0x01a0f000;
17442 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
17443 }
17444 }
17445
17446 /* Install the special first PLT entry for elf32-arm-nacl. Unlike
17447 other variants, NaCl needs this entry in a static executable's
17448 .iplt too. When we're handling that case, GOT_DISPLACEMENT is
17449 zero. For .iplt really only the last bundle is useful, and .iplt
17450 could have a shorter first entry, with each individual PLT entry's
17451 relative branch calculated differently so it targets the last
17452 bundle instead of the instruction before it (labelled .Lplt_tail
17453 above). But it's simpler to keep the size and layout of PLT0
17454 consistent with the dynamic case, at the cost of some dead code at
17455 the start of .iplt and the one dead store to the stack at the start
17456 of .Lplt_tail. */
17457 static void
17458 arm_nacl_put_plt0 (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
17459 asection *plt, bfd_vma got_displacement)
17460 {
17461 unsigned int i;
17462
17463 put_arm_insn (htab, output_bfd,
17464 elf32_arm_nacl_plt0_entry[0]
17465 | arm_movw_immediate (got_displacement),
17466 plt->contents + 0);
17467 put_arm_insn (htab, output_bfd,
17468 elf32_arm_nacl_plt0_entry[1]
17469 | arm_movt_immediate (got_displacement),
17470 plt->contents + 4);
17471
17472 for (i = 2; i < ARRAY_SIZE (elf32_arm_nacl_plt0_entry); ++i)
17473 put_arm_insn (htab, output_bfd,
17474 elf32_arm_nacl_plt0_entry[i],
17475 plt->contents + (i * 4));
17476 }
17477
17478 /* Finish up the dynamic sections. */
17479
17480 static bfd_boolean
17481 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
17482 {
17483 bfd * dynobj;
17484 asection * sgot;
17485 asection * sdyn;
17486 struct elf32_arm_link_hash_table *htab;
17487
17488 htab = elf32_arm_hash_table (info);
17489 if (htab == NULL)
17490 return FALSE;
17491
17492 dynobj = elf_hash_table (info)->dynobj;
17493
17494 sgot = htab->root.sgotplt;
17495 /* A broken linker script might have discarded the dynamic sections.
17496 Catch this here so that we do not seg-fault later on. */
17497 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
17498 return FALSE;
17499 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
17500
17501 if (elf_hash_table (info)->dynamic_sections_created)
17502 {
17503 asection *splt;
17504 Elf32_External_Dyn *dyncon, *dynconend;
17505
17506 splt = htab->root.splt;
17507 BFD_ASSERT (splt != NULL && sdyn != NULL);
17508 BFD_ASSERT (htab->symbian_p || sgot != NULL);
17509
17510 dyncon = (Elf32_External_Dyn *) sdyn->contents;
17511 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
17512
17513 for (; dyncon < dynconend; dyncon++)
17514 {
17515 Elf_Internal_Dyn dyn;
17516 const char * name;
17517 asection * s;
17518
17519 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
17520
17521 switch (dyn.d_tag)
17522 {
17523 unsigned int type;
17524
17525 default:
17526 if (htab->vxworks_p
17527 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
17528 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17529 break;
17530
17531 case DT_HASH:
17532 name = ".hash";
17533 goto get_vma_if_bpabi;
17534 case DT_STRTAB:
17535 name = ".dynstr";
17536 goto get_vma_if_bpabi;
17537 case DT_SYMTAB:
17538 name = ".dynsym";
17539 goto get_vma_if_bpabi;
17540 case DT_VERSYM:
17541 name = ".gnu.version";
17542 goto get_vma_if_bpabi;
17543 case DT_VERDEF:
17544 name = ".gnu.version_d";
17545 goto get_vma_if_bpabi;
17546 case DT_VERNEED:
17547 name = ".gnu.version_r";
17548 goto get_vma_if_bpabi;
17549
17550 case DT_PLTGOT:
17551 name = htab->symbian_p ? ".got" : ".got.plt";
17552 goto get_vma;
17553 case DT_JMPREL:
17554 name = RELOC_SECTION (htab, ".plt");
17555 get_vma:
17556 s = bfd_get_linker_section (dynobj, name);
17557 if (s == NULL)
17558 {
17559 _bfd_error_handler
17560 (_("could not find section %s"), name);
17561 bfd_set_error (bfd_error_invalid_operation);
17562 return FALSE;
17563 }
17564 if (!htab->symbian_p)
17565 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
17566 else
17567 /* In the BPABI, tags in the PT_DYNAMIC section point
17568 at the file offset, not the memory address, for the
17569 convenience of the post linker. */
17570 dyn.d_un.d_ptr = s->output_section->filepos + s->output_offset;
17571 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17572 break;
17573
17574 get_vma_if_bpabi:
17575 if (htab->symbian_p)
17576 goto get_vma;
17577 break;
17578
17579 case DT_PLTRELSZ:
17580 s = htab->root.srelplt;
17581 BFD_ASSERT (s != NULL);
17582 dyn.d_un.d_val = s->size;
17583 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17584 break;
17585
17586 case DT_RELSZ:
17587 case DT_RELASZ:
17588 case DT_REL:
17589 case DT_RELA:
17590 /* In the BPABI, the DT_REL tag must point at the file
17591 offset, not the VMA, of the first relocation
17592 section. So, we use code similar to that in
17593 elflink.c, but do not check for SHF_ALLOC on the
17594 relocation section, since relocation sections are
17595 never allocated under the BPABI. PLT relocs are also
17596 included. */
17597 if (htab->symbian_p)
17598 {
17599 unsigned int i;
17600 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
17601 ? SHT_REL : SHT_RELA);
17602 dyn.d_un.d_val = 0;
17603 for (i = 1; i < elf_numsections (output_bfd); i++)
17604 {
17605 Elf_Internal_Shdr *hdr
17606 = elf_elfsections (output_bfd)[i];
17607 if (hdr->sh_type == type)
17608 {
17609 if (dyn.d_tag == DT_RELSZ
17610 || dyn.d_tag == DT_RELASZ)
17611 dyn.d_un.d_val += hdr->sh_size;
17612 else if ((ufile_ptr) hdr->sh_offset
17613 <= dyn.d_un.d_val - 1)
17614 dyn.d_un.d_val = hdr->sh_offset;
17615 }
17616 }
17617 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17618 }
17619 break;
17620
17621 case DT_TLSDESC_PLT:
17622 s = htab->root.splt;
17623 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17624 + htab->dt_tlsdesc_plt);
17625 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17626 break;
17627
17628 case DT_TLSDESC_GOT:
17629 s = htab->root.sgot;
17630 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
17631 + htab->dt_tlsdesc_got);
17632 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17633 break;
17634
17635 /* Set the bottom bit of DT_INIT/FINI if the
17636 corresponding function is Thumb. */
17637 case DT_INIT:
17638 name = info->init_function;
17639 goto get_sym;
17640 case DT_FINI:
17641 name = info->fini_function;
17642 get_sym:
17643 /* If it wasn't set by elf_bfd_final_link
17644 then there is nothing to adjust. */
17645 if (dyn.d_un.d_val != 0)
17646 {
17647 struct elf_link_hash_entry * eh;
17648
17649 eh = elf_link_hash_lookup (elf_hash_table (info), name,
17650 FALSE, FALSE, TRUE);
17651 if (eh != NULL
17652 && ARM_GET_SYM_BRANCH_TYPE (eh->target_internal)
17653 == ST_BRANCH_TO_THUMB)
17654 {
17655 dyn.d_un.d_val |= 1;
17656 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
17657 }
17658 }
17659 break;
17660 }
17661 }
17662
17663 /* Fill in the first entry in the procedure linkage table. */
17664 if (splt->size > 0 && htab->plt_header_size)
17665 {
17666 const bfd_vma *plt0_entry;
17667 bfd_vma got_address, plt_address, got_displacement;
17668
17669 /* Calculate the addresses of the GOT and PLT. */
17670 got_address = sgot->output_section->vma + sgot->output_offset;
17671 plt_address = splt->output_section->vma + splt->output_offset;
17672
17673 if (htab->vxworks_p)
17674 {
17675 /* The VxWorks GOT is relocated by the dynamic linker.
17676 Therefore, we must emit relocations rather than simply
17677 computing the values now. */
17678 Elf_Internal_Rela rel;
17679
17680 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
17681 put_arm_insn (htab, output_bfd, plt0_entry[0],
17682 splt->contents + 0);
17683 put_arm_insn (htab, output_bfd, plt0_entry[1],
17684 splt->contents + 4);
17685 put_arm_insn (htab, output_bfd, plt0_entry[2],
17686 splt->contents + 8);
17687 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
17688
17689 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
17690 rel.r_offset = plt_address + 12;
17691 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17692 rel.r_addend = 0;
17693 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
17694 htab->srelplt2->contents);
17695 }
17696 else if (htab->nacl_p)
17697 arm_nacl_put_plt0 (htab, output_bfd, splt,
17698 got_address + 8 - (plt_address + 16));
17699 else if (using_thumb_only (htab))
17700 {
17701 got_displacement = got_address - (plt_address + 12);
17702
17703 plt0_entry = elf32_thumb2_plt0_entry;
17704 put_arm_insn (htab, output_bfd, plt0_entry[0],
17705 splt->contents + 0);
17706 put_arm_insn (htab, output_bfd, plt0_entry[1],
17707 splt->contents + 4);
17708 put_arm_insn (htab, output_bfd, plt0_entry[2],
17709 splt->contents + 8);
17710
17711 bfd_put_32 (output_bfd, got_displacement, splt->contents + 12);
17712 }
17713 else
17714 {
17715 got_displacement = got_address - (plt_address + 16);
17716
17717 plt0_entry = elf32_arm_plt0_entry;
17718 put_arm_insn (htab, output_bfd, plt0_entry[0],
17719 splt->contents + 0);
17720 put_arm_insn (htab, output_bfd, plt0_entry[1],
17721 splt->contents + 4);
17722 put_arm_insn (htab, output_bfd, plt0_entry[2],
17723 splt->contents + 8);
17724 put_arm_insn (htab, output_bfd, plt0_entry[3],
17725 splt->contents + 12);
17726
17727 #ifdef FOUR_WORD_PLT
17728 /* The displacement value goes in the otherwise-unused
17729 last word of the second entry. */
17730 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
17731 #else
17732 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
17733 #endif
17734 }
17735 }
17736
17737 /* UnixWare sets the entsize of .plt to 4, although that doesn't
17738 really seem like the right value. */
17739 if (splt->output_section->owner == output_bfd)
17740 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
17741
17742 if (htab->dt_tlsdesc_plt)
17743 {
17744 bfd_vma got_address
17745 = sgot->output_section->vma + sgot->output_offset;
17746 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
17747 + htab->root.sgot->output_offset);
17748 bfd_vma plt_address
17749 = splt->output_section->vma + splt->output_offset;
17750
17751 arm_put_trampoline (htab, output_bfd,
17752 splt->contents + htab->dt_tlsdesc_plt,
17753 dl_tlsdesc_lazy_trampoline, 6);
17754
17755 bfd_put_32 (output_bfd,
17756 gotplt_address + htab->dt_tlsdesc_got
17757 - (plt_address + htab->dt_tlsdesc_plt)
17758 - dl_tlsdesc_lazy_trampoline[6],
17759 splt->contents + htab->dt_tlsdesc_plt + 24);
17760 bfd_put_32 (output_bfd,
17761 got_address - (plt_address + htab->dt_tlsdesc_plt)
17762 - dl_tlsdesc_lazy_trampoline[7],
17763 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
17764 }
17765
17766 if (htab->tls_trampoline)
17767 {
17768 arm_put_trampoline (htab, output_bfd,
17769 splt->contents + htab->tls_trampoline,
17770 tls_trampoline, 3);
17771 #ifdef FOUR_WORD_PLT
17772 bfd_put_32 (output_bfd, 0x00000000,
17773 splt->contents + htab->tls_trampoline + 12);
17774 #endif
17775 }
17776
17777 if (htab->vxworks_p
17778 && !bfd_link_pic (info)
17779 && htab->root.splt->size > 0)
17780 {
17781 /* Correct the .rel(a).plt.unloaded relocations. They will have
17782 incorrect symbol indexes. */
17783 int num_plts;
17784 unsigned char *p;
17785
17786 num_plts = ((htab->root.splt->size - htab->plt_header_size)
17787 / htab->plt_entry_size);
17788 p = htab->srelplt2->contents + RELOC_SIZE (htab);
17789
17790 for (; num_plts; num_plts--)
17791 {
17792 Elf_Internal_Rela rel;
17793
17794 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17795 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
17796 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17797 p += RELOC_SIZE (htab);
17798
17799 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
17800 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
17801 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
17802 p += RELOC_SIZE (htab);
17803 }
17804 }
17805 }
17806
17807 if (htab->nacl_p && htab->root.iplt != NULL && htab->root.iplt->size > 0)
17808 /* NaCl uses a special first entry in .iplt too. */
17809 arm_nacl_put_plt0 (htab, output_bfd, htab->root.iplt, 0);
17810
17811 /* Fill in the first three entries in the global offset table. */
17812 if (sgot)
17813 {
17814 if (sgot->size > 0)
17815 {
17816 if (sdyn == NULL)
17817 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
17818 else
17819 bfd_put_32 (output_bfd,
17820 sdyn->output_section->vma + sdyn->output_offset,
17821 sgot->contents);
17822 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
17823 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
17824 }
17825
17826 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
17827 }
17828
17829 /* At the very end of the .rofixup section is a pointer to the GOT. */
17830 if (htab->fdpic_p && htab->srofixup != NULL)
17831 {
17832 struct elf_link_hash_entry *hgot = htab->root.hgot;
17833
17834 bfd_vma got_value = hgot->root.u.def.value
17835 + hgot->root.u.def.section->output_section->vma
17836 + hgot->root.u.def.section->output_offset;
17837
17838 arm_elf_add_rofixup(output_bfd, htab->srofixup, got_value);
17839
17840 /* Make sure we allocated and generated the same number of fixups. */
17841 BFD_ASSERT (htab->srofixup->reloc_count * 4 == htab->srofixup->size);
17842 }
17843
17844 return TRUE;
17845 }
17846
17847 static void
17848 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
17849 {
17850 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
17851 struct elf32_arm_link_hash_table *globals;
17852 struct elf_segment_map *m;
17853
17854 i_ehdrp = elf_elfheader (abfd);
17855
17856 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
17857 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
17858 else
17859 _bfd_elf_post_process_headers (abfd, link_info);
17860 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
17861
17862 if (link_info)
17863 {
17864 globals = elf32_arm_hash_table (link_info);
17865 if (globals != NULL && globals->byteswap_code)
17866 i_ehdrp->e_flags |= EF_ARM_BE8;
17867
17868 if (globals->fdpic_p)
17869 i_ehdrp->e_ident[EI_OSABI] |= ELFOSABI_ARM_FDPIC;
17870 }
17871
17872 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_VER5
17873 && ((i_ehdrp->e_type == ET_DYN) || (i_ehdrp->e_type == ET_EXEC)))
17874 {
17875 int abi = bfd_elf_get_obj_attr_int (abfd, OBJ_ATTR_PROC, Tag_ABI_VFP_args);
17876 if (abi == AEABI_VFP_args_vfp)
17877 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_HARD;
17878 else
17879 i_ehdrp->e_flags |= EF_ARM_ABI_FLOAT_SOFT;
17880 }
17881
17882 /* Scan segment to set p_flags attribute if it contains only sections with
17883 SHF_ARM_PURECODE flag. */
17884 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
17885 {
17886 unsigned int j;
17887
17888 if (m->count == 0)
17889 continue;
17890 for (j = 0; j < m->count; j++)
17891 {
17892 if (!(elf_section_flags (m->sections[j]) & SHF_ARM_PURECODE))
17893 break;
17894 }
17895 if (j == m->count)
17896 {
17897 m->p_flags = PF_X;
17898 m->p_flags_valid = 1;
17899 }
17900 }
17901 }
17902
17903 static enum elf_reloc_type_class
17904 elf32_arm_reloc_type_class (const struct bfd_link_info *info ATTRIBUTE_UNUSED,
17905 const asection *rel_sec ATTRIBUTE_UNUSED,
17906 const Elf_Internal_Rela *rela)
17907 {
17908 switch ((int) ELF32_R_TYPE (rela->r_info))
17909 {
17910 case R_ARM_RELATIVE:
17911 return reloc_class_relative;
17912 case R_ARM_JUMP_SLOT:
17913 return reloc_class_plt;
17914 case R_ARM_COPY:
17915 return reloc_class_copy;
17916 case R_ARM_IRELATIVE:
17917 return reloc_class_ifunc;
17918 default:
17919 return reloc_class_normal;
17920 }
17921 }
17922
17923 static void
17924 arm_final_write_processing (bfd *abfd)
17925 {
17926 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
17927 }
17928
17929 static bfd_boolean
17930 elf32_arm_final_write_processing (bfd *abfd)
17931 {
17932 arm_final_write_processing (abfd);
17933 return _bfd_elf_final_write_processing (abfd);
17934 }
17935
17936 /* Return TRUE if this is an unwinding table entry. */
17937
17938 static bfd_boolean
17939 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
17940 {
17941 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
17942 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
17943 }
17944
17945
17946 /* Set the type and flags for an ARM section. We do this by
17947 the section name, which is a hack, but ought to work. */
17948
17949 static bfd_boolean
17950 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
17951 {
17952 const char * name;
17953
17954 name = bfd_get_section_name (abfd, sec);
17955
17956 if (is_arm_elf_unwind_section_name (abfd, name))
17957 {
17958 hdr->sh_type = SHT_ARM_EXIDX;
17959 hdr->sh_flags |= SHF_LINK_ORDER;
17960 }
17961
17962 if (sec->flags & SEC_ELF_PURECODE)
17963 hdr->sh_flags |= SHF_ARM_PURECODE;
17964
17965 return TRUE;
17966 }
17967
17968 /* Handle an ARM specific section when reading an object file. This is
17969 called when bfd_section_from_shdr finds a section with an unknown
17970 type. */
17971
17972 static bfd_boolean
17973 elf32_arm_section_from_shdr (bfd *abfd,
17974 Elf_Internal_Shdr * hdr,
17975 const char *name,
17976 int shindex)
17977 {
17978 /* There ought to be a place to keep ELF backend specific flags, but
17979 at the moment there isn't one. We just keep track of the
17980 sections by their name, instead. Fortunately, the ABI gives
17981 names for all the ARM specific sections, so we will probably get
17982 away with this. */
17983 switch (hdr->sh_type)
17984 {
17985 case SHT_ARM_EXIDX:
17986 case SHT_ARM_PREEMPTMAP:
17987 case SHT_ARM_ATTRIBUTES:
17988 break;
17989
17990 default:
17991 return FALSE;
17992 }
17993
17994 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
17995 return FALSE;
17996
17997 return TRUE;
17998 }
17999
18000 static _arm_elf_section_data *
18001 get_arm_elf_section_data (asection * sec)
18002 {
18003 if (sec && sec->owner && is_arm_elf (sec->owner))
18004 return elf32_arm_section_data (sec);
18005 else
18006 return NULL;
18007 }
18008
18009 typedef struct
18010 {
18011 void *flaginfo;
18012 struct bfd_link_info *info;
18013 asection *sec;
18014 int sec_shndx;
18015 int (*func) (void *, const char *, Elf_Internal_Sym *,
18016 asection *, struct elf_link_hash_entry *);
18017 } output_arch_syminfo;
18018
18019 enum map_symbol_type
18020 {
18021 ARM_MAP_ARM,
18022 ARM_MAP_THUMB,
18023 ARM_MAP_DATA
18024 };
18025
18026
18027 /* Output a single mapping symbol. */
18028
18029 static bfd_boolean
18030 elf32_arm_output_map_sym (output_arch_syminfo *osi,
18031 enum map_symbol_type type,
18032 bfd_vma offset)
18033 {
18034 static const char *names[3] = {"$a", "$t", "$d"};
18035 Elf_Internal_Sym sym;
18036
18037 sym.st_value = osi->sec->output_section->vma
18038 + osi->sec->output_offset
18039 + offset;
18040 sym.st_size = 0;
18041 sym.st_other = 0;
18042 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
18043 sym.st_shndx = osi->sec_shndx;
18044 sym.st_target_internal = 0;
18045 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
18046 return osi->func (osi->flaginfo, names[type], &sym, osi->sec, NULL) == 1;
18047 }
18048
18049 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
18050 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
18051
18052 static bfd_boolean
18053 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
18054 bfd_boolean is_iplt_entry_p,
18055 union gotplt_union *root_plt,
18056 struct arm_plt_info *arm_plt)
18057 {
18058 struct elf32_arm_link_hash_table *htab;
18059 bfd_vma addr, plt_header_size;
18060
18061 if (root_plt->offset == (bfd_vma) -1)
18062 return TRUE;
18063
18064 htab = elf32_arm_hash_table (osi->info);
18065 if (htab == NULL)
18066 return FALSE;
18067
18068 if (is_iplt_entry_p)
18069 {
18070 osi->sec = htab->root.iplt;
18071 plt_header_size = 0;
18072 }
18073 else
18074 {
18075 osi->sec = htab->root.splt;
18076 plt_header_size = htab->plt_header_size;
18077 }
18078 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
18079 (osi->info->output_bfd, osi->sec->output_section));
18080
18081 addr = root_plt->offset & -2;
18082 if (htab->symbian_p)
18083 {
18084 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18085 return FALSE;
18086 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
18087 return FALSE;
18088 }
18089 else if (htab->vxworks_p)
18090 {
18091 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18092 return FALSE;
18093 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
18094 return FALSE;
18095 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
18096 return FALSE;
18097 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
18098 return FALSE;
18099 }
18100 else if (htab->nacl_p)
18101 {
18102 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18103 return FALSE;
18104 }
18105 else if (htab->fdpic_p)
18106 {
18107 enum map_symbol_type type = using_thumb_only(htab)
18108 ? ARM_MAP_THUMB
18109 : ARM_MAP_ARM;
18110
18111 if (elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt))
18112 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
18113 return FALSE;
18114 if (!elf32_arm_output_map_sym (osi, type, addr))
18115 return FALSE;
18116 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
18117 return FALSE;
18118 if (htab->plt_entry_size == 4 * ARRAY_SIZE(elf32_arm_fdpic_plt_entry))
18119 if (!elf32_arm_output_map_sym (osi, type, addr + 24))
18120 return FALSE;
18121 }
18122 else if (using_thumb_only (htab))
18123 {
18124 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
18125 return FALSE;
18126 }
18127 else
18128 {
18129 bfd_boolean thumb_stub_p;
18130
18131 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
18132 if (thumb_stub_p)
18133 {
18134 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
18135 return FALSE;
18136 }
18137 #ifdef FOUR_WORD_PLT
18138 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18139 return FALSE;
18140 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
18141 return FALSE;
18142 #else
18143 /* A three-word PLT with no Thumb thunk contains only Arm code,
18144 so only need to output a mapping symbol for the first PLT entry and
18145 entries with thumb thunks. */
18146 if (thumb_stub_p || addr == plt_header_size)
18147 {
18148 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
18149 return FALSE;
18150 }
18151 #endif
18152 }
18153
18154 return TRUE;
18155 }
18156
18157 /* Output mapping symbols for PLT entries associated with H. */
18158
18159 static bfd_boolean
18160 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
18161 {
18162 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
18163 struct elf32_arm_link_hash_entry *eh;
18164
18165 if (h->root.type == bfd_link_hash_indirect)
18166 return TRUE;
18167
18168 if (h->root.type == bfd_link_hash_warning)
18169 /* When warning symbols are created, they **replace** the "real"
18170 entry in the hash table, thus we never get to see the real
18171 symbol in a hash traversal. So look at it now. */
18172 h = (struct elf_link_hash_entry *) h->root.u.i.link;
18173
18174 eh = (struct elf32_arm_link_hash_entry *) h;
18175 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
18176 &h->plt, &eh->plt);
18177 }
18178
18179 /* Bind a veneered symbol to its veneer identified by its hash entry
18180 STUB_ENTRY. The veneered location thus loose its symbol. */
18181
18182 static void
18183 arm_stub_claim_sym (struct elf32_arm_stub_hash_entry *stub_entry)
18184 {
18185 struct elf32_arm_link_hash_entry *hash = stub_entry->h;
18186
18187 BFD_ASSERT (hash);
18188 hash->root.root.u.def.section = stub_entry->stub_sec;
18189 hash->root.root.u.def.value = stub_entry->stub_offset;
18190 hash->root.size = stub_entry->stub_size;
18191 }
18192
18193 /* Output a single local symbol for a generated stub. */
18194
18195 static bfd_boolean
18196 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
18197 bfd_vma offset, bfd_vma size)
18198 {
18199 Elf_Internal_Sym sym;
18200
18201 sym.st_value = osi->sec->output_section->vma
18202 + osi->sec->output_offset
18203 + offset;
18204 sym.st_size = size;
18205 sym.st_other = 0;
18206 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
18207 sym.st_shndx = osi->sec_shndx;
18208 sym.st_target_internal = 0;
18209 return osi->func (osi->flaginfo, name, &sym, osi->sec, NULL) == 1;
18210 }
18211
18212 static bfd_boolean
18213 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
18214 void * in_arg)
18215 {
18216 struct elf32_arm_stub_hash_entry *stub_entry;
18217 asection *stub_sec;
18218 bfd_vma addr;
18219 char *stub_name;
18220 output_arch_syminfo *osi;
18221 const insn_sequence *template_sequence;
18222 enum stub_insn_type prev_type;
18223 int size;
18224 int i;
18225 enum map_symbol_type sym_type;
18226
18227 /* Massage our args to the form they really have. */
18228 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18229 osi = (output_arch_syminfo *) in_arg;
18230
18231 stub_sec = stub_entry->stub_sec;
18232
18233 /* Ensure this stub is attached to the current section being
18234 processed. */
18235 if (stub_sec != osi->sec)
18236 return TRUE;
18237
18238 addr = (bfd_vma) stub_entry->stub_offset;
18239 template_sequence = stub_entry->stub_template;
18240
18241 if (arm_stub_sym_claimed (stub_entry->stub_type))
18242 arm_stub_claim_sym (stub_entry);
18243 else
18244 {
18245 stub_name = stub_entry->output_name;
18246 switch (template_sequence[0].type)
18247 {
18248 case ARM_TYPE:
18249 if (!elf32_arm_output_stub_sym (osi, stub_name, addr,
18250 stub_entry->stub_size))
18251 return FALSE;
18252 break;
18253 case THUMB16_TYPE:
18254 case THUMB32_TYPE:
18255 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
18256 stub_entry->stub_size))
18257 return FALSE;
18258 break;
18259 default:
18260 BFD_FAIL ();
18261 return 0;
18262 }
18263 }
18264
18265 prev_type = DATA_TYPE;
18266 size = 0;
18267 for (i = 0; i < stub_entry->stub_template_size; i++)
18268 {
18269 switch (template_sequence[i].type)
18270 {
18271 case ARM_TYPE:
18272 sym_type = ARM_MAP_ARM;
18273 break;
18274
18275 case THUMB16_TYPE:
18276 case THUMB32_TYPE:
18277 sym_type = ARM_MAP_THUMB;
18278 break;
18279
18280 case DATA_TYPE:
18281 sym_type = ARM_MAP_DATA;
18282 break;
18283
18284 default:
18285 BFD_FAIL ();
18286 return FALSE;
18287 }
18288
18289 if (template_sequence[i].type != prev_type)
18290 {
18291 prev_type = template_sequence[i].type;
18292 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
18293 return FALSE;
18294 }
18295
18296 switch (template_sequence[i].type)
18297 {
18298 case ARM_TYPE:
18299 case THUMB32_TYPE:
18300 size += 4;
18301 break;
18302
18303 case THUMB16_TYPE:
18304 size += 2;
18305 break;
18306
18307 case DATA_TYPE:
18308 size += 4;
18309 break;
18310
18311 default:
18312 BFD_FAIL ();
18313 return FALSE;
18314 }
18315 }
18316
18317 return TRUE;
18318 }
18319
18320 /* Output mapping symbols for linker generated sections,
18321 and for those data-only sections that do not have a
18322 $d. */
18323
18324 static bfd_boolean
18325 elf32_arm_output_arch_local_syms (bfd *output_bfd,
18326 struct bfd_link_info *info,
18327 void *flaginfo,
18328 int (*func) (void *, const char *,
18329 Elf_Internal_Sym *,
18330 asection *,
18331 struct elf_link_hash_entry *))
18332 {
18333 output_arch_syminfo osi;
18334 struct elf32_arm_link_hash_table *htab;
18335 bfd_vma offset;
18336 bfd_size_type size;
18337 bfd *input_bfd;
18338
18339 htab = elf32_arm_hash_table (info);
18340 if (htab == NULL)
18341 return FALSE;
18342
18343 check_use_blx (htab);
18344
18345 osi.flaginfo = flaginfo;
18346 osi.info = info;
18347 osi.func = func;
18348
18349 /* Add a $d mapping symbol to data-only sections that
18350 don't have any mapping symbol. This may result in (harmless) redundant
18351 mapping symbols. */
18352 for (input_bfd = info->input_bfds;
18353 input_bfd != NULL;
18354 input_bfd = input_bfd->link.next)
18355 {
18356 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
18357 for (osi.sec = input_bfd->sections;
18358 osi.sec != NULL;
18359 osi.sec = osi.sec->next)
18360 {
18361 if (osi.sec->output_section != NULL
18362 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
18363 != 0)
18364 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
18365 == SEC_HAS_CONTENTS
18366 && get_arm_elf_section_data (osi.sec) != NULL
18367 && get_arm_elf_section_data (osi.sec)->mapcount == 0
18368 && osi.sec->size > 0
18369 && (osi.sec->flags & SEC_EXCLUDE) == 0)
18370 {
18371 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18372 (output_bfd, osi.sec->output_section);
18373 if (osi.sec_shndx != (int)SHN_BAD)
18374 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
18375 }
18376 }
18377 }
18378
18379 /* ARM->Thumb glue. */
18380 if (htab->arm_glue_size > 0)
18381 {
18382 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18383 ARM2THUMB_GLUE_SECTION_NAME);
18384
18385 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18386 (output_bfd, osi.sec->output_section);
18387 if (bfd_link_pic (info) || htab->root.is_relocatable_executable
18388 || htab->pic_veneer)
18389 size = ARM2THUMB_PIC_GLUE_SIZE;
18390 else if (htab->use_blx)
18391 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
18392 else
18393 size = ARM2THUMB_STATIC_GLUE_SIZE;
18394
18395 for (offset = 0; offset < htab->arm_glue_size; offset += size)
18396 {
18397 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
18398 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
18399 }
18400 }
18401
18402 /* Thumb->ARM glue. */
18403 if (htab->thumb_glue_size > 0)
18404 {
18405 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18406 THUMB2ARM_GLUE_SECTION_NAME);
18407
18408 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18409 (output_bfd, osi.sec->output_section);
18410 size = THUMB2ARM_GLUE_SIZE;
18411
18412 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
18413 {
18414 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
18415 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
18416 }
18417 }
18418
18419 /* ARMv4 BX veneers. */
18420 if (htab->bx_glue_size > 0)
18421 {
18422 osi.sec = bfd_get_linker_section (htab->bfd_of_glue_owner,
18423 ARM_BX_GLUE_SECTION_NAME);
18424
18425 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18426 (output_bfd, osi.sec->output_section);
18427
18428 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
18429 }
18430
18431 /* Long calls stubs. */
18432 if (htab->stub_bfd && htab->stub_bfd->sections)
18433 {
18434 asection* stub_sec;
18435
18436 for (stub_sec = htab->stub_bfd->sections;
18437 stub_sec != NULL;
18438 stub_sec = stub_sec->next)
18439 {
18440 /* Ignore non-stub sections. */
18441 if (!strstr (stub_sec->name, STUB_SUFFIX))
18442 continue;
18443
18444 osi.sec = stub_sec;
18445
18446 osi.sec_shndx = _bfd_elf_section_from_bfd_section
18447 (output_bfd, osi.sec->output_section);
18448
18449 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
18450 }
18451 }
18452
18453 /* Finally, output mapping symbols for the PLT. */
18454 if (htab->root.splt && htab->root.splt->size > 0)
18455 {
18456 osi.sec = htab->root.splt;
18457 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18458 (output_bfd, osi.sec->output_section));
18459
18460 /* Output mapping symbols for the plt header. SymbianOS does not have a
18461 plt header. */
18462 if (htab->vxworks_p)
18463 {
18464 /* VxWorks shared libraries have no PLT header. */
18465 if (!bfd_link_pic (info))
18466 {
18467 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18468 return FALSE;
18469 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18470 return FALSE;
18471 }
18472 }
18473 else if (htab->nacl_p)
18474 {
18475 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18476 return FALSE;
18477 }
18478 else if (using_thumb_only (htab) && !htab->fdpic_p)
18479 {
18480 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 0))
18481 return FALSE;
18482 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
18483 return FALSE;
18484 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, 16))
18485 return FALSE;
18486 }
18487 else if (!htab->symbian_p && !htab->fdpic_p)
18488 {
18489 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18490 return FALSE;
18491 #ifndef FOUR_WORD_PLT
18492 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
18493 return FALSE;
18494 #endif
18495 }
18496 }
18497 if (htab->nacl_p && htab->root.iplt && htab->root.iplt->size > 0)
18498 {
18499 /* NaCl uses a special first entry in .iplt too. */
18500 osi.sec = htab->root.iplt;
18501 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
18502 (output_bfd, osi.sec->output_section));
18503 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
18504 return FALSE;
18505 }
18506 if ((htab->root.splt && htab->root.splt->size > 0)
18507 || (htab->root.iplt && htab->root.iplt->size > 0))
18508 {
18509 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
18510 for (input_bfd = info->input_bfds;
18511 input_bfd != NULL;
18512 input_bfd = input_bfd->link.next)
18513 {
18514 struct arm_local_iplt_info **local_iplt;
18515 unsigned int i, num_syms;
18516
18517 local_iplt = elf32_arm_local_iplt (input_bfd);
18518 if (local_iplt != NULL)
18519 {
18520 num_syms = elf_symtab_hdr (input_bfd).sh_info;
18521 for (i = 0; i < num_syms; i++)
18522 if (local_iplt[i] != NULL
18523 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
18524 &local_iplt[i]->root,
18525 &local_iplt[i]->arm))
18526 return FALSE;
18527 }
18528 }
18529 }
18530 if (htab->dt_tlsdesc_plt != 0)
18531 {
18532 /* Mapping symbols for the lazy tls trampoline. */
18533 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
18534 return FALSE;
18535
18536 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18537 htab->dt_tlsdesc_plt + 24))
18538 return FALSE;
18539 }
18540 if (htab->tls_trampoline != 0)
18541 {
18542 /* Mapping symbols for the tls trampoline. */
18543 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
18544 return FALSE;
18545 #ifdef FOUR_WORD_PLT
18546 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
18547 htab->tls_trampoline + 12))
18548 return FALSE;
18549 #endif
18550 }
18551
18552 return TRUE;
18553 }
18554
18555 /* Filter normal symbols of CMSE entry functions of ABFD to include in
18556 the import library. All SYMCOUNT symbols of ABFD can be examined
18557 from their pointers in SYMS. Pointers of symbols to keep should be
18558 stored continuously at the beginning of that array.
18559
18560 Returns the number of symbols to keep. */
18561
18562 static unsigned int
18563 elf32_arm_filter_cmse_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18564 struct bfd_link_info *info,
18565 asymbol **syms, long symcount)
18566 {
18567 size_t maxnamelen;
18568 char *cmse_name;
18569 long src_count, dst_count = 0;
18570 struct elf32_arm_link_hash_table *htab;
18571
18572 htab = elf32_arm_hash_table (info);
18573 if (!htab->stub_bfd || !htab->stub_bfd->sections)
18574 symcount = 0;
18575
18576 maxnamelen = 128;
18577 cmse_name = (char *) bfd_malloc (maxnamelen);
18578 for (src_count = 0; src_count < symcount; src_count++)
18579 {
18580 struct elf32_arm_link_hash_entry *cmse_hash;
18581 asymbol *sym;
18582 flagword flags;
18583 char *name;
18584 size_t namelen;
18585
18586 sym = syms[src_count];
18587 flags = sym->flags;
18588 name = (char *) bfd_asymbol_name (sym);
18589
18590 if ((flags & BSF_FUNCTION) != BSF_FUNCTION)
18591 continue;
18592 if (!(flags & (BSF_GLOBAL | BSF_WEAK)))
18593 continue;
18594
18595 namelen = strlen (name) + sizeof (CMSE_PREFIX) + 1;
18596 if (namelen > maxnamelen)
18597 {
18598 cmse_name = (char *)
18599 bfd_realloc (cmse_name, namelen);
18600 maxnamelen = namelen;
18601 }
18602 snprintf (cmse_name, maxnamelen, "%s%s", CMSE_PREFIX, name);
18603 cmse_hash = (struct elf32_arm_link_hash_entry *)
18604 elf_link_hash_lookup (&(htab)->root, cmse_name, FALSE, FALSE, TRUE);
18605
18606 if (!cmse_hash
18607 || (cmse_hash->root.root.type != bfd_link_hash_defined
18608 && cmse_hash->root.root.type != bfd_link_hash_defweak)
18609 || cmse_hash->root.type != STT_FUNC)
18610 continue;
18611
18612 syms[dst_count++] = sym;
18613 }
18614 free (cmse_name);
18615
18616 syms[dst_count] = NULL;
18617
18618 return dst_count;
18619 }
18620
18621 /* Filter symbols of ABFD to include in the import library. All
18622 SYMCOUNT symbols of ABFD can be examined from their pointers in
18623 SYMS. Pointers of symbols to keep should be stored continuously at
18624 the beginning of that array.
18625
18626 Returns the number of symbols to keep. */
18627
18628 static unsigned int
18629 elf32_arm_filter_implib_symbols (bfd *abfd ATTRIBUTE_UNUSED,
18630 struct bfd_link_info *info,
18631 asymbol **syms, long symcount)
18632 {
18633 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
18634
18635 /* Requirement 8 of "ARM v8-M Security Extensions: Requirements on
18636 Development Tools" (ARM-ECM-0359818) mandates Secure Gateway import
18637 library to be a relocatable object file. */
18638 BFD_ASSERT (!(bfd_get_file_flags (info->out_implib_bfd) & EXEC_P));
18639 if (globals->cmse_implib)
18640 return elf32_arm_filter_cmse_symbols (abfd, info, syms, symcount);
18641 else
18642 return _bfd_elf_filter_global_symbols (abfd, info, syms, symcount);
18643 }
18644
18645 /* Allocate target specific section data. */
18646
18647 static bfd_boolean
18648 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
18649 {
18650 if (!sec->used_by_bfd)
18651 {
18652 _arm_elf_section_data *sdata;
18653 bfd_size_type amt = sizeof (*sdata);
18654
18655 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
18656 if (sdata == NULL)
18657 return FALSE;
18658 sec->used_by_bfd = sdata;
18659 }
18660
18661 return _bfd_elf_new_section_hook (abfd, sec);
18662 }
18663
18664
18665 /* Used to order a list of mapping symbols by address. */
18666
18667 static int
18668 elf32_arm_compare_mapping (const void * a, const void * b)
18669 {
18670 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
18671 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
18672
18673 if (amap->vma > bmap->vma)
18674 return 1;
18675 else if (amap->vma < bmap->vma)
18676 return -1;
18677 else if (amap->type > bmap->type)
18678 /* Ensure results do not depend on the host qsort for objects with
18679 multiple mapping symbols at the same address by sorting on type
18680 after vma. */
18681 return 1;
18682 else if (amap->type < bmap->type)
18683 return -1;
18684 else
18685 return 0;
18686 }
18687
18688 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
18689
18690 static unsigned long
18691 offset_prel31 (unsigned long addr, bfd_vma offset)
18692 {
18693 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
18694 }
18695
18696 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
18697 relocations. */
18698
18699 static void
18700 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
18701 {
18702 unsigned long first_word = bfd_get_32 (output_bfd, from);
18703 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
18704
18705 /* High bit of first word is supposed to be zero. */
18706 if ((first_word & 0x80000000ul) == 0)
18707 first_word = offset_prel31 (first_word, offset);
18708
18709 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
18710 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
18711 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
18712 second_word = offset_prel31 (second_word, offset);
18713
18714 bfd_put_32 (output_bfd, first_word, to);
18715 bfd_put_32 (output_bfd, second_word, to + 4);
18716 }
18717
18718 /* Data for make_branch_to_a8_stub(). */
18719
18720 struct a8_branch_to_stub_data
18721 {
18722 asection *writing_section;
18723 bfd_byte *contents;
18724 };
18725
18726
18727 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
18728 places for a particular section. */
18729
18730 static bfd_boolean
18731 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
18732 void *in_arg)
18733 {
18734 struct elf32_arm_stub_hash_entry *stub_entry;
18735 struct a8_branch_to_stub_data *data;
18736 bfd_byte *contents;
18737 unsigned long branch_insn;
18738 bfd_vma veneered_insn_loc, veneer_entry_loc;
18739 bfd_signed_vma branch_offset;
18740 bfd *abfd;
18741 unsigned int loc;
18742
18743 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
18744 data = (struct a8_branch_to_stub_data *) in_arg;
18745
18746 if (stub_entry->target_section != data->writing_section
18747 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
18748 return TRUE;
18749
18750 contents = data->contents;
18751
18752 /* We use target_section as Cortex-A8 erratum workaround stubs are only
18753 generated when both source and target are in the same section. */
18754 veneered_insn_loc = stub_entry->target_section->output_section->vma
18755 + stub_entry->target_section->output_offset
18756 + stub_entry->source_value;
18757
18758 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
18759 + stub_entry->stub_sec->output_offset
18760 + stub_entry->stub_offset;
18761
18762 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
18763 veneered_insn_loc &= ~3u;
18764
18765 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
18766
18767 abfd = stub_entry->target_section->owner;
18768 loc = stub_entry->source_value;
18769
18770 /* We attempt to avoid this condition by setting stubs_always_after_branch
18771 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
18772 This check is just to be on the safe side... */
18773 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
18774 {
18775 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub is "
18776 "allocated in unsafe location"), abfd);
18777 return FALSE;
18778 }
18779
18780 switch (stub_entry->stub_type)
18781 {
18782 case arm_stub_a8_veneer_b:
18783 case arm_stub_a8_veneer_b_cond:
18784 branch_insn = 0xf0009000;
18785 goto jump24;
18786
18787 case arm_stub_a8_veneer_blx:
18788 branch_insn = 0xf000e800;
18789 goto jump24;
18790
18791 case arm_stub_a8_veneer_bl:
18792 {
18793 unsigned int i1, j1, i2, j2, s;
18794
18795 branch_insn = 0xf000d000;
18796
18797 jump24:
18798 if (branch_offset < -16777216 || branch_offset > 16777214)
18799 {
18800 /* There's not much we can do apart from complain if this
18801 happens. */
18802 _bfd_error_handler (_("%pB: error: Cortex-A8 erratum stub out "
18803 "of range (input file too large)"), abfd);
18804 return FALSE;
18805 }
18806
18807 /* i1 = not(j1 eor s), so:
18808 not i1 = j1 eor s
18809 j1 = (not i1) eor s. */
18810
18811 branch_insn |= (branch_offset >> 1) & 0x7ff;
18812 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
18813 i2 = (branch_offset >> 22) & 1;
18814 i1 = (branch_offset >> 23) & 1;
18815 s = (branch_offset >> 24) & 1;
18816 j1 = (!i1) ^ s;
18817 j2 = (!i2) ^ s;
18818 branch_insn |= j2 << 11;
18819 branch_insn |= j1 << 13;
18820 branch_insn |= s << 26;
18821 }
18822 break;
18823
18824 default:
18825 BFD_FAIL ();
18826 return FALSE;
18827 }
18828
18829 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[loc]);
18830 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[loc + 2]);
18831
18832 return TRUE;
18833 }
18834
18835 /* Beginning of stm32l4xx work-around. */
18836
18837 /* Functions encoding instructions necessary for the emission of the
18838 fix-stm32l4xx-629360.
18839 Encoding is extracted from the
18840 ARM (C) Architecture Reference Manual
18841 ARMv7-A and ARMv7-R edition
18842 ARM DDI 0406C.b (ID072512). */
18843
18844 static inline bfd_vma
18845 create_instruction_branch_absolute (int branch_offset)
18846 {
18847 /* A8.8.18 B (A8-334)
18848 B target_address (Encoding T4). */
18849 /* 1111 - 0Sii - iiii - iiii - 10J1 - Jiii - iiii - iiii. */
18850 /* jump offset is: S:I1:I2:imm10:imm11:0. */
18851 /* with : I1 = NOT (J1 EOR S) I2 = NOT (J2 EOR S). */
18852
18853 int s = ((branch_offset & 0x1000000) >> 24);
18854 int j1 = s ^ !((branch_offset & 0x800000) >> 23);
18855 int j2 = s ^ !((branch_offset & 0x400000) >> 22);
18856
18857 if (branch_offset < -(1 << 24) || branch_offset >= (1 << 24))
18858 BFD_ASSERT (0 && "Error: branch out of range. Cannot create branch.");
18859
18860 bfd_vma patched_inst = 0xf0009000
18861 | s << 26 /* S. */
18862 | (((unsigned long) (branch_offset) >> 12) & 0x3ff) << 16 /* imm10. */
18863 | j1 << 13 /* J1. */
18864 | j2 << 11 /* J2. */
18865 | (((unsigned long) (branch_offset) >> 1) & 0x7ff); /* imm11. */
18866
18867 return patched_inst;
18868 }
18869
18870 static inline bfd_vma
18871 create_instruction_ldmia (int base_reg, int wback, int reg_mask)
18872 {
18873 /* A8.8.57 LDM/LDMIA/LDMFD (A8-396)
18874 LDMIA Rn!, {Ra, Rb, Rc, ...} (Encoding T2). */
18875 bfd_vma patched_inst = 0xe8900000
18876 | (/*W=*/wback << 21)
18877 | (base_reg << 16)
18878 | (reg_mask & 0x0000ffff);
18879
18880 return patched_inst;
18881 }
18882
18883 static inline bfd_vma
18884 create_instruction_ldmdb (int base_reg, int wback, int reg_mask)
18885 {
18886 /* A8.8.60 LDMDB/LDMEA (A8-402)
18887 LDMDB Rn!, {Ra, Rb, Rc, ...} (Encoding T1). */
18888 bfd_vma patched_inst = 0xe9100000
18889 | (/*W=*/wback << 21)
18890 | (base_reg << 16)
18891 | (reg_mask & 0x0000ffff);
18892
18893 return patched_inst;
18894 }
18895
18896 static inline bfd_vma
18897 create_instruction_mov (int target_reg, int source_reg)
18898 {
18899 /* A8.8.103 MOV (register) (A8-486)
18900 MOV Rd, Rm (Encoding T1). */
18901 bfd_vma patched_inst = 0x4600
18902 | (target_reg & 0x7)
18903 | ((target_reg & 0x8) >> 3) << 7
18904 | (source_reg << 3);
18905
18906 return patched_inst;
18907 }
18908
18909 static inline bfd_vma
18910 create_instruction_sub (int target_reg, int source_reg, int value)
18911 {
18912 /* A8.8.221 SUB (immediate) (A8-708)
18913 SUB Rd, Rn, #value (Encoding T3). */
18914 bfd_vma patched_inst = 0xf1a00000
18915 | (target_reg << 8)
18916 | (source_reg << 16)
18917 | (/*S=*/0 << 20)
18918 | ((value & 0x800) >> 11) << 26
18919 | ((value & 0x700) >> 8) << 12
18920 | (value & 0x0ff);
18921
18922 return patched_inst;
18923 }
18924
18925 static inline bfd_vma
18926 create_instruction_vldmia (int base_reg, int is_dp, int wback, int num_words,
18927 int first_reg)
18928 {
18929 /* A8.8.332 VLDM (A8-922)
18930 VLMD{MODE} Rn{!}, {list} (Encoding T1 or T2). */
18931 bfd_vma patched_inst = (is_dp ? 0xec900b00 : 0xec900a00)
18932 | (/*W=*/wback << 21)
18933 | (base_reg << 16)
18934 | (num_words & 0x000000ff)
18935 | (((unsigned)first_reg >> 1) & 0x0000000f) << 12
18936 | (first_reg & 0x00000001) << 22;
18937
18938 return patched_inst;
18939 }
18940
18941 static inline bfd_vma
18942 create_instruction_vldmdb (int base_reg, int is_dp, int num_words,
18943 int first_reg)
18944 {
18945 /* A8.8.332 VLDM (A8-922)
18946 VLMD{MODE} Rn!, {} (Encoding T1 or T2). */
18947 bfd_vma patched_inst = (is_dp ? 0xed300b00 : 0xed300a00)
18948 | (base_reg << 16)
18949 | (num_words & 0x000000ff)
18950 | (((unsigned)first_reg >>1 ) & 0x0000000f) << 12
18951 | (first_reg & 0x00000001) << 22;
18952
18953 return patched_inst;
18954 }
18955
18956 static inline bfd_vma
18957 create_instruction_udf_w (int value)
18958 {
18959 /* A8.8.247 UDF (A8-758)
18960 Undefined (Encoding T2). */
18961 bfd_vma patched_inst = 0xf7f0a000
18962 | (value & 0x00000fff)
18963 | (value & 0x000f0000) << 16;
18964
18965 return patched_inst;
18966 }
18967
18968 static inline bfd_vma
18969 create_instruction_udf (int value)
18970 {
18971 /* A8.8.247 UDF (A8-758)
18972 Undefined (Encoding T1). */
18973 bfd_vma patched_inst = 0xde00
18974 | (value & 0xff);
18975
18976 return patched_inst;
18977 }
18978
18979 /* Functions writing an instruction in memory, returning the next
18980 memory position to write to. */
18981
18982 static inline bfd_byte *
18983 push_thumb2_insn32 (struct elf32_arm_link_hash_table * htab,
18984 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18985 {
18986 put_thumb2_insn (htab, output_bfd, insn, pt);
18987 return pt + 4;
18988 }
18989
18990 static inline bfd_byte *
18991 push_thumb2_insn16 (struct elf32_arm_link_hash_table * htab,
18992 bfd * output_bfd, bfd_byte *pt, insn32 insn)
18993 {
18994 put_thumb_insn (htab, output_bfd, insn, pt);
18995 return pt + 2;
18996 }
18997
18998 /* Function filling up a region in memory with T1 and T2 UDFs taking
18999 care of alignment. */
19000
19001 static bfd_byte *
19002 stm32l4xx_fill_stub_udf (struct elf32_arm_link_hash_table * htab,
19003 bfd * output_bfd,
19004 const bfd_byte * const base_stub_contents,
19005 bfd_byte * const from_stub_contents,
19006 const bfd_byte * const end_stub_contents)
19007 {
19008 bfd_byte *current_stub_contents = from_stub_contents;
19009
19010 /* Fill the remaining of the stub with deterministic contents : UDF
19011 instructions.
19012 Check if realignment is needed on modulo 4 frontier using T1, to
19013 further use T2. */
19014 if ((current_stub_contents < end_stub_contents)
19015 && !((current_stub_contents - base_stub_contents) % 2)
19016 && ((current_stub_contents - base_stub_contents) % 4))
19017 current_stub_contents =
19018 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19019 create_instruction_udf (0));
19020
19021 for (; current_stub_contents < end_stub_contents;)
19022 current_stub_contents =
19023 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19024 create_instruction_udf_w (0));
19025
19026 return current_stub_contents;
19027 }
19028
19029 /* Functions writing the stream of instructions equivalent to the
19030 derived sequence for ldmia, ldmdb, vldm respectively. */
19031
19032 static void
19033 stm32l4xx_create_replacing_stub_ldmia (struct elf32_arm_link_hash_table * htab,
19034 bfd * output_bfd,
19035 const insn32 initial_insn,
19036 const bfd_byte *const initial_insn_addr,
19037 bfd_byte *const base_stub_contents)
19038 {
19039 int wback = (initial_insn & 0x00200000) >> 21;
19040 int ri, rn = (initial_insn & 0x000F0000) >> 16;
19041 int insn_all_registers = initial_insn & 0x0000ffff;
19042 int insn_low_registers, insn_high_registers;
19043 int usable_register_mask;
19044 int nb_registers = elf32_arm_popcount (insn_all_registers);
19045 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
19046 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
19047 bfd_byte *current_stub_contents = base_stub_contents;
19048
19049 BFD_ASSERT (is_thumb2_ldmia (initial_insn));
19050
19051 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19052 smaller than 8 registers load sequences that do not cause the
19053 hardware issue. */
19054 if (nb_registers <= 8)
19055 {
19056 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19057 current_stub_contents =
19058 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19059 initial_insn);
19060
19061 /* B initial_insn_addr+4. */
19062 if (!restore_pc)
19063 current_stub_contents =
19064 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19065 create_instruction_branch_absolute
19066 (initial_insn_addr - current_stub_contents));
19067
19068 /* Fill the remaining of the stub with deterministic contents. */
19069 current_stub_contents =
19070 stm32l4xx_fill_stub_udf (htab, output_bfd,
19071 base_stub_contents, current_stub_contents,
19072 base_stub_contents +
19073 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19074
19075 return;
19076 }
19077
19078 /* - reg_list[13] == 0. */
19079 BFD_ASSERT ((insn_all_registers & (1 << 13))==0);
19080
19081 /* - reg_list[14] & reg_list[15] != 1. */
19082 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19083
19084 /* - if (wback==1) reg_list[rn] == 0. */
19085 BFD_ASSERT (!wback || !restore_rn);
19086
19087 /* - nb_registers > 8. */
19088 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
19089
19090 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19091
19092 /* In the following algorithm, we split this wide LDM using 2 LDM insns:
19093 - One with the 7 lowest registers (register mask 0x007F)
19094 This LDM will finally contain between 2 and 7 registers
19095 - One with the 7 highest registers (register mask 0xDF80)
19096 This ldm will finally contain between 2 and 7 registers. */
19097 insn_low_registers = insn_all_registers & 0x007F;
19098 insn_high_registers = insn_all_registers & 0xDF80;
19099
19100 /* A spare register may be needed during this veneer to temporarily
19101 handle the base register. This register will be restored with the
19102 last LDM operation.
19103 The usable register may be any general purpose register (that
19104 excludes PC, SP, LR : register mask is 0x1FFF). */
19105 usable_register_mask = 0x1FFF;
19106
19107 /* Generate the stub function. */
19108 if (wback)
19109 {
19110 /* LDMIA Rn!, {R-low-register-list} : (Encoding T2). */
19111 current_stub_contents =
19112 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19113 create_instruction_ldmia
19114 (rn, /*wback=*/1, insn_low_registers));
19115
19116 /* LDMIA Rn!, {R-high-register-list} : (Encoding T2). */
19117 current_stub_contents =
19118 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19119 create_instruction_ldmia
19120 (rn, /*wback=*/1, insn_high_registers));
19121 if (!restore_pc)
19122 {
19123 /* B initial_insn_addr+4. */
19124 current_stub_contents =
19125 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19126 create_instruction_branch_absolute
19127 (initial_insn_addr - current_stub_contents));
19128 }
19129 }
19130 else /* if (!wback). */
19131 {
19132 ri = rn;
19133
19134 /* If Rn is not part of the high-register-list, move it there. */
19135 if (!(insn_high_registers & (1 << rn)))
19136 {
19137 /* Choose a Ri in the high-register-list that will be restored. */
19138 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19139
19140 /* MOV Ri, Rn. */
19141 current_stub_contents =
19142 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19143 create_instruction_mov (ri, rn));
19144 }
19145
19146 /* LDMIA Ri!, {R-low-register-list} : (Encoding T2). */
19147 current_stub_contents =
19148 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19149 create_instruction_ldmia
19150 (ri, /*wback=*/1, insn_low_registers));
19151
19152 /* LDMIA Ri, {R-high-register-list} : (Encoding T2). */
19153 current_stub_contents =
19154 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19155 create_instruction_ldmia
19156 (ri, /*wback=*/0, insn_high_registers));
19157
19158 if (!restore_pc)
19159 {
19160 /* B initial_insn_addr+4. */
19161 current_stub_contents =
19162 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19163 create_instruction_branch_absolute
19164 (initial_insn_addr - current_stub_contents));
19165 }
19166 }
19167
19168 /* Fill the remaining of the stub with deterministic contents. */
19169 current_stub_contents =
19170 stm32l4xx_fill_stub_udf (htab, output_bfd,
19171 base_stub_contents, current_stub_contents,
19172 base_stub_contents +
19173 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19174 }
19175
19176 static void
19177 stm32l4xx_create_replacing_stub_ldmdb (struct elf32_arm_link_hash_table * htab,
19178 bfd * output_bfd,
19179 const insn32 initial_insn,
19180 const bfd_byte *const initial_insn_addr,
19181 bfd_byte *const base_stub_contents)
19182 {
19183 int wback = (initial_insn & 0x00200000) >> 21;
19184 int ri, rn = (initial_insn & 0x000f0000) >> 16;
19185 int insn_all_registers = initial_insn & 0x0000ffff;
19186 int insn_low_registers, insn_high_registers;
19187 int usable_register_mask;
19188 int restore_pc = (insn_all_registers & (1 << 15)) ? 1 : 0;
19189 int restore_rn = (insn_all_registers & (1 << rn)) ? 1 : 0;
19190 int nb_registers = elf32_arm_popcount (insn_all_registers);
19191 bfd_byte *current_stub_contents = base_stub_contents;
19192
19193 BFD_ASSERT (is_thumb2_ldmdb (initial_insn));
19194
19195 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19196 smaller than 8 registers load sequences that do not cause the
19197 hardware issue. */
19198 if (nb_registers <= 8)
19199 {
19200 /* UNTOUCHED : LDMIA Rn{!}, {R-all-register-list}. */
19201 current_stub_contents =
19202 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19203 initial_insn);
19204
19205 /* B initial_insn_addr+4. */
19206 current_stub_contents =
19207 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19208 create_instruction_branch_absolute
19209 (initial_insn_addr - current_stub_contents));
19210
19211 /* Fill the remaining of the stub with deterministic contents. */
19212 current_stub_contents =
19213 stm32l4xx_fill_stub_udf (htab, output_bfd,
19214 base_stub_contents, current_stub_contents,
19215 base_stub_contents +
19216 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19217
19218 return;
19219 }
19220
19221 /* - reg_list[13] == 0. */
19222 BFD_ASSERT ((insn_all_registers & (1 << 13)) == 0);
19223
19224 /* - reg_list[14] & reg_list[15] != 1. */
19225 BFD_ASSERT ((insn_all_registers & 0xC000) != 0xC000);
19226
19227 /* - if (wback==1) reg_list[rn] == 0. */
19228 BFD_ASSERT (!wback || !restore_rn);
19229
19230 /* - nb_registers > 8. */
19231 BFD_ASSERT (elf32_arm_popcount (insn_all_registers) > 8);
19232
19233 /* At this point, LDMxx initial insn loads between 9 and 14 registers. */
19234
19235 /* In the following algorithm, we split this wide LDM using 2 LDM insn:
19236 - One with the 7 lowest registers (register mask 0x007F)
19237 This LDM will finally contain between 2 and 7 registers
19238 - One with the 7 highest registers (register mask 0xDF80)
19239 This ldm will finally contain between 2 and 7 registers. */
19240 insn_low_registers = insn_all_registers & 0x007F;
19241 insn_high_registers = insn_all_registers & 0xDF80;
19242
19243 /* A spare register may be needed during this veneer to temporarily
19244 handle the base register. This register will be restored with
19245 the last LDM operation.
19246 The usable register may be any general purpose register (that excludes
19247 PC, SP, LR : register mask is 0x1FFF). */
19248 usable_register_mask = 0x1FFF;
19249
19250 /* Generate the stub function. */
19251 if (!wback && !restore_pc && !restore_rn)
19252 {
19253 /* Choose a Ri in the low-register-list that will be restored. */
19254 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19255
19256 /* MOV Ri, Rn. */
19257 current_stub_contents =
19258 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19259 create_instruction_mov (ri, rn));
19260
19261 /* LDMDB Ri!, {R-high-register-list}. */
19262 current_stub_contents =
19263 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19264 create_instruction_ldmdb
19265 (ri, /*wback=*/1, insn_high_registers));
19266
19267 /* LDMDB Ri, {R-low-register-list}. */
19268 current_stub_contents =
19269 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19270 create_instruction_ldmdb
19271 (ri, /*wback=*/0, insn_low_registers));
19272
19273 /* B initial_insn_addr+4. */
19274 current_stub_contents =
19275 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19276 create_instruction_branch_absolute
19277 (initial_insn_addr - current_stub_contents));
19278 }
19279 else if (wback && !restore_pc && !restore_rn)
19280 {
19281 /* LDMDB Rn!, {R-high-register-list}. */
19282 current_stub_contents =
19283 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19284 create_instruction_ldmdb
19285 (rn, /*wback=*/1, insn_high_registers));
19286
19287 /* LDMDB Rn!, {R-low-register-list}. */
19288 current_stub_contents =
19289 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19290 create_instruction_ldmdb
19291 (rn, /*wback=*/1, insn_low_registers));
19292
19293 /* B initial_insn_addr+4. */
19294 current_stub_contents =
19295 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19296 create_instruction_branch_absolute
19297 (initial_insn_addr - current_stub_contents));
19298 }
19299 else if (!wback && restore_pc && !restore_rn)
19300 {
19301 /* Choose a Ri in the high-register-list that will be restored. */
19302 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19303
19304 /* SUB Ri, Rn, #(4*nb_registers). */
19305 current_stub_contents =
19306 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19307 create_instruction_sub (ri, rn, (4 * nb_registers)));
19308
19309 /* LDMIA Ri!, {R-low-register-list}. */
19310 current_stub_contents =
19311 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19312 create_instruction_ldmia
19313 (ri, /*wback=*/1, insn_low_registers));
19314
19315 /* LDMIA Ri, {R-high-register-list}. */
19316 current_stub_contents =
19317 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19318 create_instruction_ldmia
19319 (ri, /*wback=*/0, insn_high_registers));
19320 }
19321 else if (wback && restore_pc && !restore_rn)
19322 {
19323 /* Choose a Ri in the high-register-list that will be restored. */
19324 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19325
19326 /* SUB Rn, Rn, #(4*nb_registers) */
19327 current_stub_contents =
19328 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19329 create_instruction_sub (rn, rn, (4 * nb_registers)));
19330
19331 /* MOV Ri, Rn. */
19332 current_stub_contents =
19333 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19334 create_instruction_mov (ri, rn));
19335
19336 /* LDMIA Ri!, {R-low-register-list}. */
19337 current_stub_contents =
19338 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19339 create_instruction_ldmia
19340 (ri, /*wback=*/1, insn_low_registers));
19341
19342 /* LDMIA Ri, {R-high-register-list}. */
19343 current_stub_contents =
19344 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19345 create_instruction_ldmia
19346 (ri, /*wback=*/0, insn_high_registers));
19347 }
19348 else if (!wback && !restore_pc && restore_rn)
19349 {
19350 ri = rn;
19351 if (!(insn_low_registers & (1 << rn)))
19352 {
19353 /* Choose a Ri in the low-register-list that will be restored. */
19354 ri = ctz (insn_low_registers & usable_register_mask & ~(1 << rn));
19355
19356 /* MOV Ri, Rn. */
19357 current_stub_contents =
19358 push_thumb2_insn16 (htab, output_bfd, current_stub_contents,
19359 create_instruction_mov (ri, rn));
19360 }
19361
19362 /* LDMDB Ri!, {R-high-register-list}. */
19363 current_stub_contents =
19364 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19365 create_instruction_ldmdb
19366 (ri, /*wback=*/1, insn_high_registers));
19367
19368 /* LDMDB Ri, {R-low-register-list}. */
19369 current_stub_contents =
19370 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19371 create_instruction_ldmdb
19372 (ri, /*wback=*/0, insn_low_registers));
19373
19374 /* B initial_insn_addr+4. */
19375 current_stub_contents =
19376 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19377 create_instruction_branch_absolute
19378 (initial_insn_addr - current_stub_contents));
19379 }
19380 else if (!wback && restore_pc && restore_rn)
19381 {
19382 ri = rn;
19383 if (!(insn_high_registers & (1 << rn)))
19384 {
19385 /* Choose a Ri in the high-register-list that will be restored. */
19386 ri = ctz (insn_high_registers & usable_register_mask & ~(1 << rn));
19387 }
19388
19389 /* SUB Ri, Rn, #(4*nb_registers). */
19390 current_stub_contents =
19391 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19392 create_instruction_sub (ri, rn, (4 * nb_registers)));
19393
19394 /* LDMIA Ri!, {R-low-register-list}. */
19395 current_stub_contents =
19396 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19397 create_instruction_ldmia
19398 (ri, /*wback=*/1, insn_low_registers));
19399
19400 /* LDMIA Ri, {R-high-register-list}. */
19401 current_stub_contents =
19402 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19403 create_instruction_ldmia
19404 (ri, /*wback=*/0, insn_high_registers));
19405 }
19406 else if (wback && restore_rn)
19407 {
19408 /* The assembler should not have accepted to encode this. */
19409 BFD_ASSERT (0 && "Cannot patch an instruction that has an "
19410 "undefined behavior.\n");
19411 }
19412
19413 /* Fill the remaining of the stub with deterministic contents. */
19414 current_stub_contents =
19415 stm32l4xx_fill_stub_udf (htab, output_bfd,
19416 base_stub_contents, current_stub_contents,
19417 base_stub_contents +
19418 STM32L4XX_ERRATUM_LDM_VENEER_SIZE);
19419
19420 }
19421
19422 static void
19423 stm32l4xx_create_replacing_stub_vldm (struct elf32_arm_link_hash_table * htab,
19424 bfd * output_bfd,
19425 const insn32 initial_insn,
19426 const bfd_byte *const initial_insn_addr,
19427 bfd_byte *const base_stub_contents)
19428 {
19429 int num_words = ((unsigned int) initial_insn << 24) >> 24;
19430 bfd_byte *current_stub_contents = base_stub_contents;
19431
19432 BFD_ASSERT (is_thumb2_vldm (initial_insn));
19433
19434 /* In BFD_ARM_STM32L4XX_FIX_ALL mode we may have to deal with
19435 smaller than 8 words load sequences that do not cause the
19436 hardware issue. */
19437 if (num_words <= 8)
19438 {
19439 /* Untouched instruction. */
19440 current_stub_contents =
19441 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19442 initial_insn);
19443
19444 /* B initial_insn_addr+4. */
19445 current_stub_contents =
19446 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19447 create_instruction_branch_absolute
19448 (initial_insn_addr - current_stub_contents));
19449 }
19450 else
19451 {
19452 bfd_boolean is_dp = /* DP encoding. */
19453 (initial_insn & 0xfe100f00) == 0xec100b00;
19454 bfd_boolean is_ia_nobang = /* (IA without !). */
19455 (((initial_insn << 7) >> 28) & 0xd) == 0x4;
19456 bfd_boolean is_ia_bang = /* (IA with !) - includes VPOP. */
19457 (((initial_insn << 7) >> 28) & 0xd) == 0x5;
19458 bfd_boolean is_db_bang = /* (DB with !). */
19459 (((initial_insn << 7) >> 28) & 0xd) == 0x9;
19460 int base_reg = ((unsigned int) initial_insn << 12) >> 28;
19461 /* d = UInt (Vd:D);. */
19462 int first_reg = ((((unsigned int) initial_insn << 16) >> 28) << 1)
19463 | (((unsigned int)initial_insn << 9) >> 31);
19464
19465 /* Compute the number of 8-words chunks needed to split. */
19466 int chunks = (num_words % 8) ? (num_words / 8 + 1) : (num_words / 8);
19467 int chunk;
19468
19469 /* The test coverage has been done assuming the following
19470 hypothesis that exactly one of the previous is_ predicates is
19471 true. */
19472 BFD_ASSERT ( (is_ia_nobang ^ is_ia_bang ^ is_db_bang)
19473 && !(is_ia_nobang & is_ia_bang & is_db_bang));
19474
19475 /* We treat the cutting of the words in one pass for all
19476 cases, then we emit the adjustments:
19477
19478 vldm rx, {...}
19479 -> vldm rx!, {8_words_or_less} for each needed 8_word
19480 -> sub rx, rx, #size (list)
19481
19482 vldm rx!, {...}
19483 -> vldm rx!, {8_words_or_less} for each needed 8_word
19484 This also handles vpop instruction (when rx is sp)
19485
19486 vldmd rx!, {...}
19487 -> vldmb rx!, {8_words_or_less} for each needed 8_word. */
19488 for (chunk = 0; chunk < chunks; ++chunk)
19489 {
19490 bfd_vma new_insn = 0;
19491
19492 if (is_ia_nobang || is_ia_bang)
19493 {
19494 new_insn = create_instruction_vldmia
19495 (base_reg,
19496 is_dp,
19497 /*wback= . */1,
19498 chunks - (chunk + 1) ?
19499 8 : num_words - chunk * 8,
19500 first_reg + chunk * 8);
19501 }
19502 else if (is_db_bang)
19503 {
19504 new_insn = create_instruction_vldmdb
19505 (base_reg,
19506 is_dp,
19507 chunks - (chunk + 1) ?
19508 8 : num_words - chunk * 8,
19509 first_reg + chunk * 8);
19510 }
19511
19512 if (new_insn)
19513 current_stub_contents =
19514 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19515 new_insn);
19516 }
19517
19518 /* Only this case requires the base register compensation
19519 subtract. */
19520 if (is_ia_nobang)
19521 {
19522 current_stub_contents =
19523 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19524 create_instruction_sub
19525 (base_reg, base_reg, 4*num_words));
19526 }
19527
19528 /* B initial_insn_addr+4. */
19529 current_stub_contents =
19530 push_thumb2_insn32 (htab, output_bfd, current_stub_contents,
19531 create_instruction_branch_absolute
19532 (initial_insn_addr - current_stub_contents));
19533 }
19534
19535 /* Fill the remaining of the stub with deterministic contents. */
19536 current_stub_contents =
19537 stm32l4xx_fill_stub_udf (htab, output_bfd,
19538 base_stub_contents, current_stub_contents,
19539 base_stub_contents +
19540 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE);
19541 }
19542
19543 static void
19544 stm32l4xx_create_replacing_stub (struct elf32_arm_link_hash_table * htab,
19545 bfd * output_bfd,
19546 const insn32 wrong_insn,
19547 const bfd_byte *const wrong_insn_addr,
19548 bfd_byte *const stub_contents)
19549 {
19550 if (is_thumb2_ldmia (wrong_insn))
19551 stm32l4xx_create_replacing_stub_ldmia (htab, output_bfd,
19552 wrong_insn, wrong_insn_addr,
19553 stub_contents);
19554 else if (is_thumb2_ldmdb (wrong_insn))
19555 stm32l4xx_create_replacing_stub_ldmdb (htab, output_bfd,
19556 wrong_insn, wrong_insn_addr,
19557 stub_contents);
19558 else if (is_thumb2_vldm (wrong_insn))
19559 stm32l4xx_create_replacing_stub_vldm (htab, output_bfd,
19560 wrong_insn, wrong_insn_addr,
19561 stub_contents);
19562 }
19563
19564 /* End of stm32l4xx work-around. */
19565
19566
19567 /* Do code byteswapping. Return FALSE afterwards so that the section is
19568 written out as normal. */
19569
19570 static bfd_boolean
19571 elf32_arm_write_section (bfd *output_bfd,
19572 struct bfd_link_info *link_info,
19573 asection *sec,
19574 bfd_byte *contents)
19575 {
19576 unsigned int mapcount, errcount;
19577 _arm_elf_section_data *arm_data;
19578 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
19579 elf32_arm_section_map *map;
19580 elf32_vfp11_erratum_list *errnode;
19581 elf32_stm32l4xx_erratum_list *stm32l4xx_errnode;
19582 bfd_vma ptr;
19583 bfd_vma end;
19584 bfd_vma offset = sec->output_section->vma + sec->output_offset;
19585 bfd_byte tmp;
19586 unsigned int i;
19587
19588 if (globals == NULL)
19589 return FALSE;
19590
19591 /* If this section has not been allocated an _arm_elf_section_data
19592 structure then we cannot record anything. */
19593 arm_data = get_arm_elf_section_data (sec);
19594 if (arm_data == NULL)
19595 return FALSE;
19596
19597 mapcount = arm_data->mapcount;
19598 map = arm_data->map;
19599 errcount = arm_data->erratumcount;
19600
19601 if (errcount != 0)
19602 {
19603 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
19604
19605 for (errnode = arm_data->erratumlist; errnode != 0;
19606 errnode = errnode->next)
19607 {
19608 bfd_vma target = errnode->vma - offset;
19609
19610 switch (errnode->type)
19611 {
19612 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
19613 {
19614 bfd_vma branch_to_veneer;
19615 /* Original condition code of instruction, plus bit mask for
19616 ARM B instruction. */
19617 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
19618 | 0x0a000000;
19619
19620 /* The instruction is before the label. */
19621 target -= 4;
19622
19623 /* Above offset included in -4 below. */
19624 branch_to_veneer = errnode->u.b.veneer->vma
19625 - errnode->vma - 4;
19626
19627 if ((signed) branch_to_veneer < -(1 << 25)
19628 || (signed) branch_to_veneer >= (1 << 25))
19629 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19630 "range"), output_bfd);
19631
19632 insn |= (branch_to_veneer >> 2) & 0xffffff;
19633 contents[endianflip ^ target] = insn & 0xff;
19634 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19635 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19636 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19637 }
19638 break;
19639
19640 case VFP11_ERRATUM_ARM_VENEER:
19641 {
19642 bfd_vma branch_from_veneer;
19643 unsigned int insn;
19644
19645 /* Take size of veneer into account. */
19646 branch_from_veneer = errnode->u.v.branch->vma
19647 - errnode->vma - 12;
19648
19649 if ((signed) branch_from_veneer < -(1 << 25)
19650 || (signed) branch_from_veneer >= (1 << 25))
19651 _bfd_error_handler (_("%pB: error: VFP11 veneer out of "
19652 "range"), output_bfd);
19653
19654 /* Original instruction. */
19655 insn = errnode->u.v.branch->u.b.vfp_insn;
19656 contents[endianflip ^ target] = insn & 0xff;
19657 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
19658 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
19659 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
19660
19661 /* Branch back to insn after original insn. */
19662 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
19663 contents[endianflip ^ (target + 4)] = insn & 0xff;
19664 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
19665 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
19666 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
19667 }
19668 break;
19669
19670 default:
19671 abort ();
19672 }
19673 }
19674 }
19675
19676 if (arm_data->stm32l4xx_erratumcount != 0)
19677 {
19678 for (stm32l4xx_errnode = arm_data->stm32l4xx_erratumlist;
19679 stm32l4xx_errnode != 0;
19680 stm32l4xx_errnode = stm32l4xx_errnode->next)
19681 {
19682 bfd_vma target = stm32l4xx_errnode->vma - offset;
19683
19684 switch (stm32l4xx_errnode->type)
19685 {
19686 case STM32L4XX_ERRATUM_BRANCH_TO_VENEER:
19687 {
19688 unsigned int insn;
19689 bfd_vma branch_to_veneer =
19690 stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma;
19691
19692 if ((signed) branch_to_veneer < -(1 << 24)
19693 || (signed) branch_to_veneer >= (1 << 24))
19694 {
19695 bfd_vma out_of_range =
19696 ((signed) branch_to_veneer < -(1 << 24)) ?
19697 - branch_to_veneer - (1 << 24) :
19698 ((signed) branch_to_veneer >= (1 << 24)) ?
19699 branch_to_veneer - (1 << 24) : 0;
19700
19701 _bfd_error_handler
19702 (_("%pB(%#" PRIx64 "): error: "
19703 "cannot create STM32L4XX veneer; "
19704 "jump out of range by %" PRId64 " bytes; "
19705 "cannot encode branch instruction"),
19706 output_bfd,
19707 (uint64_t) (stm32l4xx_errnode->vma - 4),
19708 (int64_t) out_of_range);
19709 continue;
19710 }
19711
19712 insn = create_instruction_branch_absolute
19713 (stm32l4xx_errnode->u.b.veneer->vma - stm32l4xx_errnode->vma);
19714
19715 /* The instruction is before the label. */
19716 target -= 4;
19717
19718 put_thumb2_insn (globals, output_bfd,
19719 (bfd_vma) insn, contents + target);
19720 }
19721 break;
19722
19723 case STM32L4XX_ERRATUM_VENEER:
19724 {
19725 bfd_byte * veneer;
19726 bfd_byte * veneer_r;
19727 unsigned int insn;
19728
19729 veneer = contents + target;
19730 veneer_r = veneer
19731 + stm32l4xx_errnode->u.b.veneer->vma
19732 - stm32l4xx_errnode->vma - 4;
19733
19734 if ((signed) (veneer_r - veneer -
19735 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE >
19736 STM32L4XX_ERRATUM_LDM_VENEER_SIZE ?
19737 STM32L4XX_ERRATUM_VLDM_VENEER_SIZE :
19738 STM32L4XX_ERRATUM_LDM_VENEER_SIZE) < -(1 << 24)
19739 || (signed) (veneer_r - veneer) >= (1 << 24))
19740 {
19741 _bfd_error_handler (_("%pB: error: cannot create STM32L4XX "
19742 "veneer"), output_bfd);
19743 continue;
19744 }
19745
19746 /* Original instruction. */
19747 insn = stm32l4xx_errnode->u.v.branch->u.b.insn;
19748
19749 stm32l4xx_create_replacing_stub
19750 (globals, output_bfd, insn, (void*)veneer_r, (void*)veneer);
19751 }
19752 break;
19753
19754 default:
19755 abort ();
19756 }
19757 }
19758 }
19759
19760 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
19761 {
19762 arm_unwind_table_edit *edit_node
19763 = arm_data->u.exidx.unwind_edit_list;
19764 /* Now, sec->size is the size of the section we will write. The original
19765 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
19766 markers) was sec->rawsize. (This isn't the case if we perform no
19767 edits, then rawsize will be zero and we should use size). */
19768 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
19769 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
19770 unsigned int in_index, out_index;
19771 bfd_vma add_to_offsets = 0;
19772
19773 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
19774 {
19775 if (edit_node)
19776 {
19777 unsigned int edit_index = edit_node->index;
19778
19779 if (in_index < edit_index && in_index * 8 < input_size)
19780 {
19781 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19782 contents + in_index * 8, add_to_offsets);
19783 out_index++;
19784 in_index++;
19785 }
19786 else if (in_index == edit_index
19787 || (in_index * 8 >= input_size
19788 && edit_index == UINT_MAX))
19789 {
19790 switch (edit_node->type)
19791 {
19792 case DELETE_EXIDX_ENTRY:
19793 in_index++;
19794 add_to_offsets += 8;
19795 break;
19796
19797 case INSERT_EXIDX_CANTUNWIND_AT_END:
19798 {
19799 asection *text_sec = edit_node->linked_section;
19800 bfd_vma text_offset = text_sec->output_section->vma
19801 + text_sec->output_offset
19802 + text_sec->size;
19803 bfd_vma exidx_offset = offset + out_index * 8;
19804 unsigned long prel31_offset;
19805
19806 /* Note: this is meant to be equivalent to an
19807 R_ARM_PREL31 relocation. These synthetic
19808 EXIDX_CANTUNWIND markers are not relocated by the
19809 usual BFD method. */
19810 prel31_offset = (text_offset - exidx_offset)
19811 & 0x7ffffffful;
19812 if (bfd_link_relocatable (link_info))
19813 {
19814 /* Here relocation for new EXIDX_CANTUNWIND is
19815 created, so there is no need to
19816 adjust offset by hand. */
19817 prel31_offset = text_sec->output_offset
19818 + text_sec->size;
19819 }
19820
19821 /* First address we can't unwind. */
19822 bfd_put_32 (output_bfd, prel31_offset,
19823 &edited_contents[out_index * 8]);
19824
19825 /* Code for EXIDX_CANTUNWIND. */
19826 bfd_put_32 (output_bfd, 0x1,
19827 &edited_contents[out_index * 8 + 4]);
19828
19829 out_index++;
19830 add_to_offsets -= 8;
19831 }
19832 break;
19833 }
19834
19835 edit_node = edit_node->next;
19836 }
19837 }
19838 else
19839 {
19840 /* No more edits, copy remaining entries verbatim. */
19841 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
19842 contents + in_index * 8, add_to_offsets);
19843 out_index++;
19844 in_index++;
19845 }
19846 }
19847
19848 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
19849 bfd_set_section_contents (output_bfd, sec->output_section,
19850 edited_contents,
19851 (file_ptr) sec->output_offset, sec->size);
19852
19853 return TRUE;
19854 }
19855
19856 /* Fix code to point to Cortex-A8 erratum stubs. */
19857 if (globals->fix_cortex_a8)
19858 {
19859 struct a8_branch_to_stub_data data;
19860
19861 data.writing_section = sec;
19862 data.contents = contents;
19863
19864 bfd_hash_traverse (& globals->stub_hash_table, make_branch_to_a8_stub,
19865 & data);
19866 }
19867
19868 if (mapcount == 0)
19869 return FALSE;
19870
19871 if (globals->byteswap_code)
19872 {
19873 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
19874
19875 ptr = map[0].vma;
19876 for (i = 0; i < mapcount; i++)
19877 {
19878 if (i == mapcount - 1)
19879 end = sec->size;
19880 else
19881 end = map[i + 1].vma;
19882
19883 switch (map[i].type)
19884 {
19885 case 'a':
19886 /* Byte swap code words. */
19887 while (ptr + 3 < end)
19888 {
19889 tmp = contents[ptr];
19890 contents[ptr] = contents[ptr + 3];
19891 contents[ptr + 3] = tmp;
19892 tmp = contents[ptr + 1];
19893 contents[ptr + 1] = contents[ptr + 2];
19894 contents[ptr + 2] = tmp;
19895 ptr += 4;
19896 }
19897 break;
19898
19899 case 't':
19900 /* Byte swap code halfwords. */
19901 while (ptr + 1 < end)
19902 {
19903 tmp = contents[ptr];
19904 contents[ptr] = contents[ptr + 1];
19905 contents[ptr + 1] = tmp;
19906 ptr += 2;
19907 }
19908 break;
19909
19910 case 'd':
19911 /* Leave data alone. */
19912 break;
19913 }
19914 ptr = end;
19915 }
19916 }
19917
19918 free (map);
19919 arm_data->mapcount = -1;
19920 arm_data->mapsize = 0;
19921 arm_data->map = NULL;
19922
19923 return FALSE;
19924 }
19925
19926 /* Mangle thumb function symbols as we read them in. */
19927
19928 static bfd_boolean
19929 elf32_arm_swap_symbol_in (bfd * abfd,
19930 const void *psrc,
19931 const void *pshn,
19932 Elf_Internal_Sym *dst)
19933 {
19934 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
19935 return FALSE;
19936 dst->st_target_internal = 0;
19937
19938 /* New EABI objects mark thumb function symbols by setting the low bit of
19939 the address. */
19940 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
19941 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
19942 {
19943 if (dst->st_value & 1)
19944 {
19945 dst->st_value &= ~(bfd_vma) 1;
19946 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal,
19947 ST_BRANCH_TO_THUMB);
19948 }
19949 else
19950 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_ARM);
19951 }
19952 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
19953 {
19954 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
19955 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_TO_THUMB);
19956 }
19957 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
19958 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_LONG);
19959 else
19960 ARM_SET_SYM_BRANCH_TYPE (dst->st_target_internal, ST_BRANCH_UNKNOWN);
19961
19962 return TRUE;
19963 }
19964
19965
19966 /* Mangle thumb function symbols as we write them out. */
19967
19968 static void
19969 elf32_arm_swap_symbol_out (bfd *abfd,
19970 const Elf_Internal_Sym *src,
19971 void *cdst,
19972 void *shndx)
19973 {
19974 Elf_Internal_Sym newsym;
19975
19976 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
19977 of the address set, as per the new EABI. We do this unconditionally
19978 because objcopy does not set the elf header flags until after
19979 it writes out the symbol table. */
19980 if (ARM_GET_SYM_BRANCH_TYPE (src->st_target_internal) == ST_BRANCH_TO_THUMB)
19981 {
19982 newsym = *src;
19983 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
19984 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
19985 if (newsym.st_shndx != SHN_UNDEF)
19986 {
19987 /* Do this only for defined symbols. At link type, the static
19988 linker will simulate the work of dynamic linker of resolving
19989 symbols and will carry over the thumbness of found symbols to
19990 the output symbol table. It's not clear how it happens, but
19991 the thumbness of undefined symbols can well be different at
19992 runtime, and writing '1' for them will be confusing for users
19993 and possibly for dynamic linker itself.
19994 */
19995 newsym.st_value |= 1;
19996 }
19997
19998 src = &newsym;
19999 }
20000 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
20001 }
20002
20003 /* Add the PT_ARM_EXIDX program header. */
20004
20005 static bfd_boolean
20006 elf32_arm_modify_segment_map (bfd *abfd,
20007 struct bfd_link_info *info ATTRIBUTE_UNUSED)
20008 {
20009 struct elf_segment_map *m;
20010 asection *sec;
20011
20012 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
20013 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
20014 {
20015 /* If there is already a PT_ARM_EXIDX header, then we do not
20016 want to add another one. This situation arises when running
20017 "strip"; the input binary already has the header. */
20018 m = elf_seg_map (abfd);
20019 while (m && m->p_type != PT_ARM_EXIDX)
20020 m = m->next;
20021 if (!m)
20022 {
20023 m = (struct elf_segment_map *)
20024 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
20025 if (m == NULL)
20026 return FALSE;
20027 m->p_type = PT_ARM_EXIDX;
20028 m->count = 1;
20029 m->sections[0] = sec;
20030
20031 m->next = elf_seg_map (abfd);
20032 elf_seg_map (abfd) = m;
20033 }
20034 }
20035
20036 return TRUE;
20037 }
20038
20039 /* We may add a PT_ARM_EXIDX program header. */
20040
20041 static int
20042 elf32_arm_additional_program_headers (bfd *abfd,
20043 struct bfd_link_info *info ATTRIBUTE_UNUSED)
20044 {
20045 asection *sec;
20046
20047 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
20048 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
20049 return 1;
20050 else
20051 return 0;
20052 }
20053
20054 /* Hook called by the linker routine which adds symbols from an object
20055 file. */
20056
20057 static bfd_boolean
20058 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
20059 Elf_Internal_Sym *sym, const char **namep,
20060 flagword *flagsp, asection **secp, bfd_vma *valp)
20061 {
20062 if (elf32_arm_hash_table (info) == NULL)
20063 return FALSE;
20064
20065 if (elf32_arm_hash_table (info)->vxworks_p
20066 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
20067 flagsp, secp, valp))
20068 return FALSE;
20069
20070 return TRUE;
20071 }
20072
20073 /* We use this to override swap_symbol_in and swap_symbol_out. */
20074 const struct elf_size_info elf32_arm_size_info =
20075 {
20076 sizeof (Elf32_External_Ehdr),
20077 sizeof (Elf32_External_Phdr),
20078 sizeof (Elf32_External_Shdr),
20079 sizeof (Elf32_External_Rel),
20080 sizeof (Elf32_External_Rela),
20081 sizeof (Elf32_External_Sym),
20082 sizeof (Elf32_External_Dyn),
20083 sizeof (Elf_External_Note),
20084 4,
20085 1,
20086 32, 2,
20087 ELFCLASS32, EV_CURRENT,
20088 bfd_elf32_write_out_phdrs,
20089 bfd_elf32_write_shdrs_and_ehdr,
20090 bfd_elf32_checksum_contents,
20091 bfd_elf32_write_relocs,
20092 elf32_arm_swap_symbol_in,
20093 elf32_arm_swap_symbol_out,
20094 bfd_elf32_slurp_reloc_table,
20095 bfd_elf32_slurp_symbol_table,
20096 bfd_elf32_swap_dyn_in,
20097 bfd_elf32_swap_dyn_out,
20098 bfd_elf32_swap_reloc_in,
20099 bfd_elf32_swap_reloc_out,
20100 bfd_elf32_swap_reloca_in,
20101 bfd_elf32_swap_reloca_out
20102 };
20103
20104 static bfd_vma
20105 read_code32 (const bfd *abfd, const bfd_byte *addr)
20106 {
20107 /* V7 BE8 code is always little endian. */
20108 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
20109 return bfd_getl32 (addr);
20110
20111 return bfd_get_32 (abfd, addr);
20112 }
20113
20114 static bfd_vma
20115 read_code16 (const bfd *abfd, const bfd_byte *addr)
20116 {
20117 /* V7 BE8 code is always little endian. */
20118 if ((elf_elfheader (abfd)->e_flags & EF_ARM_BE8) != 0)
20119 return bfd_getl16 (addr);
20120
20121 return bfd_get_16 (abfd, addr);
20122 }
20123
20124 /* Return size of plt0 entry starting at ADDR
20125 or (bfd_vma) -1 if size can not be determined. */
20126
20127 static bfd_vma
20128 elf32_arm_plt0_size (const bfd *abfd, const bfd_byte *addr)
20129 {
20130 bfd_vma first_word;
20131 bfd_vma plt0_size;
20132
20133 first_word = read_code32 (abfd, addr);
20134
20135 if (first_word == elf32_arm_plt0_entry[0])
20136 plt0_size = 4 * ARRAY_SIZE (elf32_arm_plt0_entry);
20137 else if (first_word == elf32_thumb2_plt0_entry[0])
20138 plt0_size = 4 * ARRAY_SIZE (elf32_thumb2_plt0_entry);
20139 else
20140 /* We don't yet handle this PLT format. */
20141 return (bfd_vma) -1;
20142
20143 return plt0_size;
20144 }
20145
20146 /* Return size of plt entry starting at offset OFFSET
20147 of plt section located at address START
20148 or (bfd_vma) -1 if size can not be determined. */
20149
20150 static bfd_vma
20151 elf32_arm_plt_size (const bfd *abfd, const bfd_byte *start, bfd_vma offset)
20152 {
20153 bfd_vma first_insn;
20154 bfd_vma plt_size = 0;
20155 const bfd_byte *addr = start + offset;
20156
20157 /* PLT entry size if fixed on Thumb-only platforms. */
20158 if (read_code32 (abfd, start) == elf32_thumb2_plt0_entry[0])
20159 return 4 * ARRAY_SIZE (elf32_thumb2_plt_entry);
20160
20161 /* Respect Thumb stub if necessary. */
20162 if (read_code16 (abfd, addr) == elf32_arm_plt_thumb_stub[0])
20163 {
20164 plt_size += 2 * ARRAY_SIZE(elf32_arm_plt_thumb_stub);
20165 }
20166
20167 /* Strip immediate from first add. */
20168 first_insn = read_code32 (abfd, addr + plt_size) & 0xffffff00;
20169
20170 #ifdef FOUR_WORD_PLT
20171 if (first_insn == elf32_arm_plt_entry[0])
20172 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry);
20173 #else
20174 if (first_insn == elf32_arm_plt_entry_long[0])
20175 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_long);
20176 else if (first_insn == elf32_arm_plt_entry_short[0])
20177 plt_size += 4 * ARRAY_SIZE (elf32_arm_plt_entry_short);
20178 #endif
20179 else
20180 /* We don't yet handle this PLT format. */
20181 return (bfd_vma) -1;
20182
20183 return plt_size;
20184 }
20185
20186 /* Implementation is shamelessly borrowed from _bfd_elf_get_synthetic_symtab. */
20187
20188 static long
20189 elf32_arm_get_synthetic_symtab (bfd *abfd,
20190 long symcount ATTRIBUTE_UNUSED,
20191 asymbol **syms ATTRIBUTE_UNUSED,
20192 long dynsymcount,
20193 asymbol **dynsyms,
20194 asymbol **ret)
20195 {
20196 asection *relplt;
20197 asymbol *s;
20198 arelent *p;
20199 long count, i, n;
20200 size_t size;
20201 Elf_Internal_Shdr *hdr;
20202 char *names;
20203 asection *plt;
20204 bfd_vma offset;
20205 bfd_byte *data;
20206
20207 *ret = NULL;
20208
20209 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0)
20210 return 0;
20211
20212 if (dynsymcount <= 0)
20213 return 0;
20214
20215 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
20216 if (relplt == NULL)
20217 return 0;
20218
20219 hdr = &elf_section_data (relplt)->this_hdr;
20220 if (hdr->sh_link != elf_dynsymtab (abfd)
20221 || (hdr->sh_type != SHT_REL && hdr->sh_type != SHT_RELA))
20222 return 0;
20223
20224 plt = bfd_get_section_by_name (abfd, ".plt");
20225 if (plt == NULL)
20226 return 0;
20227
20228 if (!elf32_arm_size_info.slurp_reloc_table (abfd, relplt, dynsyms, TRUE))
20229 return -1;
20230
20231 data = plt->contents;
20232 if (data == NULL)
20233 {
20234 if (!bfd_get_full_section_contents(abfd, (asection *) plt, &data) || data == NULL)
20235 return -1;
20236 bfd_cache_section_contents((asection *) plt, data);
20237 }
20238
20239 count = relplt->size / hdr->sh_entsize;
20240 size = count * sizeof (asymbol);
20241 p = relplt->relocation;
20242 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20243 {
20244 size += strlen ((*p->sym_ptr_ptr)->name) + sizeof ("@plt");
20245 if (p->addend != 0)
20246 size += sizeof ("+0x") - 1 + 8;
20247 }
20248
20249 s = *ret = (asymbol *) bfd_malloc (size);
20250 if (s == NULL)
20251 return -1;
20252
20253 offset = elf32_arm_plt0_size (abfd, data);
20254 if (offset == (bfd_vma) -1)
20255 return -1;
20256
20257 names = (char *) (s + count);
20258 p = relplt->relocation;
20259 n = 0;
20260 for (i = 0; i < count; i++, p += elf32_arm_size_info.int_rels_per_ext_rel)
20261 {
20262 size_t len;
20263
20264 bfd_vma plt_size = elf32_arm_plt_size (abfd, data, offset);
20265 if (plt_size == (bfd_vma) -1)
20266 break;
20267
20268 *s = **p->sym_ptr_ptr;
20269 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
20270 we are defining a symbol, ensure one of them is set. */
20271 if ((s->flags & BSF_LOCAL) == 0)
20272 s->flags |= BSF_GLOBAL;
20273 s->flags |= BSF_SYNTHETIC;
20274 s->section = plt;
20275 s->value = offset;
20276 s->name = names;
20277 s->udata.p = NULL;
20278 len = strlen ((*p->sym_ptr_ptr)->name);
20279 memcpy (names, (*p->sym_ptr_ptr)->name, len);
20280 names += len;
20281 if (p->addend != 0)
20282 {
20283 char buf[30], *a;
20284
20285 memcpy (names, "+0x", sizeof ("+0x") - 1);
20286 names += sizeof ("+0x") - 1;
20287 bfd_sprintf_vma (abfd, buf, p->addend);
20288 for (a = buf; *a == '0'; ++a)
20289 ;
20290 len = strlen (a);
20291 memcpy (names, a, len);
20292 names += len;
20293 }
20294 memcpy (names, "@plt", sizeof ("@plt"));
20295 names += sizeof ("@plt");
20296 ++s, ++n;
20297 offset += plt_size;
20298 }
20299
20300 return n;
20301 }
20302
20303 static bfd_boolean
20304 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr * hdr)
20305 {
20306 if (hdr->sh_flags & SHF_ARM_PURECODE)
20307 *flags |= SEC_ELF_PURECODE;
20308 return TRUE;
20309 }
20310
20311 static flagword
20312 elf32_arm_lookup_section_flags (char *flag_name)
20313 {
20314 if (!strcmp (flag_name, "SHF_ARM_PURECODE"))
20315 return SHF_ARM_PURECODE;
20316
20317 return SEC_NO_FLAGS;
20318 }
20319
20320 static unsigned int
20321 elf32_arm_count_additional_relocs (asection *sec)
20322 {
20323 struct _arm_elf_section_data *arm_data;
20324 arm_data = get_arm_elf_section_data (sec);
20325
20326 return arm_data == NULL ? 0 : arm_data->additional_reloc_count;
20327 }
20328
20329 /* Called to set the sh_flags, sh_link and sh_info fields of OSECTION which
20330 has a type >= SHT_LOOS. Returns TRUE if these fields were initialised
20331 FALSE otherwise. ISECTION is the best guess matching section from the
20332 input bfd IBFD, but it might be NULL. */
20333
20334 static bfd_boolean
20335 elf32_arm_copy_special_section_fields (const bfd *ibfd ATTRIBUTE_UNUSED,
20336 bfd *obfd ATTRIBUTE_UNUSED,
20337 const Elf_Internal_Shdr *isection ATTRIBUTE_UNUSED,
20338 Elf_Internal_Shdr *osection)
20339 {
20340 switch (osection->sh_type)
20341 {
20342 case SHT_ARM_EXIDX:
20343 {
20344 Elf_Internal_Shdr **oheaders = elf_elfsections (obfd);
20345 Elf_Internal_Shdr **iheaders = elf_elfsections (ibfd);
20346 unsigned i = 0;
20347
20348 osection->sh_flags = SHF_ALLOC | SHF_LINK_ORDER;
20349 osection->sh_info = 0;
20350
20351 /* The sh_link field must be set to the text section associated with
20352 this index section. Unfortunately the ARM EHABI does not specify
20353 exactly how to determine this association. Our caller does try
20354 to match up OSECTION with its corresponding input section however
20355 so that is a good first guess. */
20356 if (isection != NULL
20357 && osection->bfd_section != NULL
20358 && isection->bfd_section != NULL
20359 && isection->bfd_section->output_section != NULL
20360 && isection->bfd_section->output_section == osection->bfd_section
20361 && iheaders != NULL
20362 && isection->sh_link > 0
20363 && isection->sh_link < elf_numsections (ibfd)
20364 && iheaders[isection->sh_link]->bfd_section != NULL
20365 && iheaders[isection->sh_link]->bfd_section->output_section != NULL
20366 )
20367 {
20368 for (i = elf_numsections (obfd); i-- > 0;)
20369 if (oheaders[i]->bfd_section
20370 == iheaders[isection->sh_link]->bfd_section->output_section)
20371 break;
20372 }
20373
20374 if (i == 0)
20375 {
20376 /* Failing that we have to find a matching section ourselves. If
20377 we had the output section name available we could compare that
20378 with input section names. Unfortunately we don't. So instead
20379 we use a simple heuristic and look for the nearest executable
20380 section before this one. */
20381 for (i = elf_numsections (obfd); i-- > 0;)
20382 if (oheaders[i] == osection)
20383 break;
20384 if (i == 0)
20385 break;
20386
20387 while (i-- > 0)
20388 if (oheaders[i]->sh_type == SHT_PROGBITS
20389 && (oheaders[i]->sh_flags & (SHF_ALLOC | SHF_EXECINSTR))
20390 == (SHF_ALLOC | SHF_EXECINSTR))
20391 break;
20392 }
20393
20394 if (i)
20395 {
20396 osection->sh_link = i;
20397 /* If the text section was part of a group
20398 then the index section should be too. */
20399 if (oheaders[i]->sh_flags & SHF_GROUP)
20400 osection->sh_flags |= SHF_GROUP;
20401 return TRUE;
20402 }
20403 }
20404 break;
20405
20406 case SHT_ARM_PREEMPTMAP:
20407 osection->sh_flags = SHF_ALLOC;
20408 break;
20409
20410 case SHT_ARM_ATTRIBUTES:
20411 case SHT_ARM_DEBUGOVERLAY:
20412 case SHT_ARM_OVERLAYSECTION:
20413 default:
20414 break;
20415 }
20416
20417 return FALSE;
20418 }
20419
20420 /* Returns TRUE if NAME is an ARM mapping symbol.
20421 Traditionally the symbols $a, $d and $t have been used.
20422 The ARM ELF standard also defines $x (for A64 code). It also allows a
20423 period initiated suffix to be added to the symbol: "$[adtx]\.[:sym_char]+".
20424 Other tools might also produce $b (Thumb BL), $f, $p, $m and $v, but we do
20425 not support them here. $t.x indicates the start of ThumbEE instructions. */
20426
20427 static bfd_boolean
20428 is_arm_mapping_symbol (const char * name)
20429 {
20430 return name != NULL /* Paranoia. */
20431 && name[0] == '$' /* Note: if objcopy --prefix-symbols has been used then
20432 the mapping symbols could have acquired a prefix.
20433 We do not support this here, since such symbols no
20434 longer conform to the ARM ELF ABI. */
20435 && (name[1] == 'a' || name[1] == 'd' || name[1] == 't' || name[1] == 'x')
20436 && (name[2] == 0 || name[2] == '.');
20437 /* FIXME: Strictly speaking the symbol is only a valid mapping symbol if
20438 any characters that follow the period are legal characters for the body
20439 of a symbol's name. For now we just assume that this is the case. */
20440 }
20441
20442 /* Make sure that mapping symbols in object files are not removed via the
20443 "strip --strip-unneeded" tool. These symbols are needed in order to
20444 correctly generate interworking veneers, and for byte swapping code
20445 regions. Once an object file has been linked, it is safe to remove the
20446 symbols as they will no longer be needed. */
20447
20448 static void
20449 elf32_arm_backend_symbol_processing (bfd *abfd, asymbol *sym)
20450 {
20451 if (((abfd->flags & (EXEC_P | DYNAMIC)) == 0)
20452 && sym->section != bfd_abs_section_ptr
20453 && is_arm_mapping_symbol (sym->name))
20454 sym->flags |= BSF_KEEP;
20455 }
20456
20457 #undef elf_backend_copy_special_section_fields
20458 #define elf_backend_copy_special_section_fields elf32_arm_copy_special_section_fields
20459
20460 #define ELF_ARCH bfd_arch_arm
20461 #define ELF_TARGET_ID ARM_ELF_DATA
20462 #define ELF_MACHINE_CODE EM_ARM
20463 #ifdef __QNXTARGET__
20464 #define ELF_MAXPAGESIZE 0x1000
20465 #else
20466 #define ELF_MAXPAGESIZE 0x10000
20467 #endif
20468 #define ELF_MINPAGESIZE 0x1000
20469 #define ELF_COMMONPAGESIZE 0x1000
20470
20471 #define bfd_elf32_mkobject elf32_arm_mkobject
20472
20473 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
20474 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
20475 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
20476 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
20477 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
20478 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
20479 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
20480 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
20481 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
20482 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
20483 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
20484 #define bfd_elf32_bfd_final_link elf32_arm_final_link
20485 #define bfd_elf32_get_synthetic_symtab elf32_arm_get_synthetic_symtab
20486
20487 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
20488 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
20489 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
20490 #define elf_backend_check_relocs elf32_arm_check_relocs
20491 #define elf_backend_update_relocs elf32_arm_update_relocs
20492 #define elf_backend_relocate_section elf32_arm_relocate_section
20493 #define elf_backend_write_section elf32_arm_write_section
20494 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
20495 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
20496 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
20497 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
20498 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
20499 #define elf_backend_always_size_sections elf32_arm_always_size_sections
20500 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
20501 #define elf_backend_post_process_headers elf32_arm_post_process_headers
20502 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
20503 #define elf_backend_object_p elf32_arm_object_p
20504 #define elf_backend_fake_sections elf32_arm_fake_sections
20505 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
20506 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20507 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
20508 #define elf_backend_size_info elf32_arm_size_info
20509 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20510 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
20511 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
20512 #define elf_backend_filter_implib_symbols elf32_arm_filter_implib_symbols
20513 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
20514 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
20515 #define elf_backend_count_additional_relocs elf32_arm_count_additional_relocs
20516 #define elf_backend_symbol_processing elf32_arm_backend_symbol_processing
20517
20518 #define elf_backend_can_refcount 1
20519 #define elf_backend_can_gc_sections 1
20520 #define elf_backend_plt_readonly 1
20521 #define elf_backend_want_got_plt 1
20522 #define elf_backend_want_plt_sym 0
20523 #define elf_backend_want_dynrelro 1
20524 #define elf_backend_may_use_rel_p 1
20525 #define elf_backend_may_use_rela_p 0
20526 #define elf_backend_default_use_rela_p 0
20527 #define elf_backend_dtrel_excludes_plt 1
20528
20529 #define elf_backend_got_header_size 12
20530 #define elf_backend_extern_protected_data 1
20531
20532 #undef elf_backend_obj_attrs_vendor
20533 #define elf_backend_obj_attrs_vendor "aeabi"
20534 #undef elf_backend_obj_attrs_section
20535 #define elf_backend_obj_attrs_section ".ARM.attributes"
20536 #undef elf_backend_obj_attrs_arg_type
20537 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
20538 #undef elf_backend_obj_attrs_section_type
20539 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
20540 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
20541 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
20542
20543 #undef elf_backend_section_flags
20544 #define elf_backend_section_flags elf32_arm_section_flags
20545 #undef elf_backend_lookup_section_flags_hook
20546 #define elf_backend_lookup_section_flags_hook elf32_arm_lookup_section_flags
20547
20548 #define elf_backend_linux_prpsinfo32_ugid16 TRUE
20549
20550 #include "elf32-target.h"
20551
20552 /* Native Client targets. */
20553
20554 #undef TARGET_LITTLE_SYM
20555 #define TARGET_LITTLE_SYM arm_elf32_nacl_le_vec
20556 #undef TARGET_LITTLE_NAME
20557 #define TARGET_LITTLE_NAME "elf32-littlearm-nacl"
20558 #undef TARGET_BIG_SYM
20559 #define TARGET_BIG_SYM arm_elf32_nacl_be_vec
20560 #undef TARGET_BIG_NAME
20561 #define TARGET_BIG_NAME "elf32-bigarm-nacl"
20562
20563 /* Like elf32_arm_link_hash_table_create -- but overrides
20564 appropriately for NaCl. */
20565
20566 static struct bfd_link_hash_table *
20567 elf32_arm_nacl_link_hash_table_create (bfd *abfd)
20568 {
20569 struct bfd_link_hash_table *ret;
20570
20571 ret = elf32_arm_link_hash_table_create (abfd);
20572 if (ret)
20573 {
20574 struct elf32_arm_link_hash_table *htab
20575 = (struct elf32_arm_link_hash_table *) ret;
20576
20577 htab->nacl_p = 1;
20578
20579 htab->plt_header_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt0_entry);
20580 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_nacl_plt_entry);
20581 }
20582 return ret;
20583 }
20584
20585 /* Since NaCl doesn't use the ARM-specific unwind format, we don't
20586 really need to use elf32_arm_modify_segment_map. But we do it
20587 anyway just to reduce gratuitous differences with the stock ARM backend. */
20588
20589 static bfd_boolean
20590 elf32_arm_nacl_modify_segment_map (bfd *abfd, struct bfd_link_info *info)
20591 {
20592 return (elf32_arm_modify_segment_map (abfd, info)
20593 && nacl_modify_segment_map (abfd, info));
20594 }
20595
20596 static bfd_boolean
20597 elf32_arm_nacl_final_write_processing (bfd *abfd)
20598 {
20599 arm_final_write_processing (abfd);
20600 return nacl_final_write_processing (abfd);
20601 }
20602
20603 static bfd_vma
20604 elf32_arm_nacl_plt_sym_val (bfd_vma i, const asection *plt,
20605 const arelent *rel ATTRIBUTE_UNUSED)
20606 {
20607 return plt->vma
20608 + 4 * (ARRAY_SIZE (elf32_arm_nacl_plt0_entry) +
20609 i * ARRAY_SIZE (elf32_arm_nacl_plt_entry));
20610 }
20611
20612 #undef elf32_bed
20613 #define elf32_bed elf32_arm_nacl_bed
20614 #undef bfd_elf32_bfd_link_hash_table_create
20615 #define bfd_elf32_bfd_link_hash_table_create \
20616 elf32_arm_nacl_link_hash_table_create
20617 #undef elf_backend_plt_alignment
20618 #define elf_backend_plt_alignment 4
20619 #undef elf_backend_modify_segment_map
20620 #define elf_backend_modify_segment_map elf32_arm_nacl_modify_segment_map
20621 #undef elf_backend_modify_program_headers
20622 #define elf_backend_modify_program_headers nacl_modify_program_headers
20623 #undef elf_backend_final_write_processing
20624 #define elf_backend_final_write_processing elf32_arm_nacl_final_write_processing
20625 #undef bfd_elf32_get_synthetic_symtab
20626 #undef elf_backend_plt_sym_val
20627 #define elf_backend_plt_sym_val elf32_arm_nacl_plt_sym_val
20628 #undef elf_backend_copy_special_section_fields
20629
20630 #undef ELF_MINPAGESIZE
20631 #undef ELF_COMMONPAGESIZE
20632
20633
20634 #include "elf32-target.h"
20635
20636 /* Reset to defaults. */
20637 #undef elf_backend_plt_alignment
20638 #undef elf_backend_modify_segment_map
20639 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
20640 #undef elf_backend_modify_program_headers
20641 #undef elf_backend_final_write_processing
20642 #define elf_backend_final_write_processing elf32_arm_final_write_processing
20643 #undef ELF_MINPAGESIZE
20644 #define ELF_MINPAGESIZE 0x1000
20645 #undef ELF_COMMONPAGESIZE
20646 #define ELF_COMMONPAGESIZE 0x1000
20647
20648
20649 /* FDPIC Targets. */
20650
20651 #undef TARGET_LITTLE_SYM
20652 #define TARGET_LITTLE_SYM arm_elf32_fdpic_le_vec
20653 #undef TARGET_LITTLE_NAME
20654 #define TARGET_LITTLE_NAME "elf32-littlearm-fdpic"
20655 #undef TARGET_BIG_SYM
20656 #define TARGET_BIG_SYM arm_elf32_fdpic_be_vec
20657 #undef TARGET_BIG_NAME
20658 #define TARGET_BIG_NAME "elf32-bigarm-fdpic"
20659 #undef elf_match_priority
20660 #define elf_match_priority 128
20661 #undef ELF_OSABI
20662 #define ELF_OSABI ELFOSABI_ARM_FDPIC
20663
20664 /* Like elf32_arm_link_hash_table_create -- but overrides
20665 appropriately for FDPIC. */
20666
20667 static struct bfd_link_hash_table *
20668 elf32_arm_fdpic_link_hash_table_create (bfd *abfd)
20669 {
20670 struct bfd_link_hash_table *ret;
20671
20672 ret = elf32_arm_link_hash_table_create (abfd);
20673 if (ret)
20674 {
20675 struct elf32_arm_link_hash_table *htab = (struct elf32_arm_link_hash_table *) ret;
20676
20677 htab->fdpic_p = 1;
20678 }
20679 return ret;
20680 }
20681
20682 /* We need dynamic symbols for every section, since segments can
20683 relocate independently. */
20684 static bfd_boolean
20685 elf32_arm_fdpic_omit_section_dynsym (bfd *output_bfd ATTRIBUTE_UNUSED,
20686 struct bfd_link_info *info
20687 ATTRIBUTE_UNUSED,
20688 asection *p ATTRIBUTE_UNUSED)
20689 {
20690 switch (elf_section_data (p)->this_hdr.sh_type)
20691 {
20692 case SHT_PROGBITS:
20693 case SHT_NOBITS:
20694 /* If sh_type is yet undecided, assume it could be
20695 SHT_PROGBITS/SHT_NOBITS. */
20696 case SHT_NULL:
20697 return FALSE;
20698
20699 /* There shouldn't be section relative relocations
20700 against any other section. */
20701 default:
20702 return TRUE;
20703 }
20704 }
20705
20706 #undef elf32_bed
20707 #define elf32_bed elf32_arm_fdpic_bed
20708
20709 #undef bfd_elf32_bfd_link_hash_table_create
20710 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_fdpic_link_hash_table_create
20711
20712 #undef elf_backend_omit_section_dynsym
20713 #define elf_backend_omit_section_dynsym elf32_arm_fdpic_omit_section_dynsym
20714
20715 #include "elf32-target.h"
20716
20717 #undef elf_match_priority
20718 #undef ELF_OSABI
20719 #undef elf_backend_omit_section_dynsym
20720
20721 /* VxWorks Targets. */
20722
20723 #undef TARGET_LITTLE_SYM
20724 #define TARGET_LITTLE_SYM arm_elf32_vxworks_le_vec
20725 #undef TARGET_LITTLE_NAME
20726 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
20727 #undef TARGET_BIG_SYM
20728 #define TARGET_BIG_SYM arm_elf32_vxworks_be_vec
20729 #undef TARGET_BIG_NAME
20730 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
20731
20732 /* Like elf32_arm_link_hash_table_create -- but overrides
20733 appropriately for VxWorks. */
20734
20735 static struct bfd_link_hash_table *
20736 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
20737 {
20738 struct bfd_link_hash_table *ret;
20739
20740 ret = elf32_arm_link_hash_table_create (abfd);
20741 if (ret)
20742 {
20743 struct elf32_arm_link_hash_table *htab
20744 = (struct elf32_arm_link_hash_table *) ret;
20745 htab->use_rel = 0;
20746 htab->vxworks_p = 1;
20747 }
20748 return ret;
20749 }
20750
20751 static bfd_boolean
20752 elf32_arm_vxworks_final_write_processing (bfd *abfd)
20753 {
20754 arm_final_write_processing (abfd);
20755 return elf_vxworks_final_write_processing (abfd);
20756 }
20757
20758 #undef elf32_bed
20759 #define elf32_bed elf32_arm_vxworks_bed
20760
20761 #undef bfd_elf32_bfd_link_hash_table_create
20762 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
20763 #undef elf_backend_final_write_processing
20764 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
20765 #undef elf_backend_emit_relocs
20766 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
20767
20768 #undef elf_backend_may_use_rel_p
20769 #define elf_backend_may_use_rel_p 0
20770 #undef elf_backend_may_use_rela_p
20771 #define elf_backend_may_use_rela_p 1
20772 #undef elf_backend_default_use_rela_p
20773 #define elf_backend_default_use_rela_p 1
20774 #undef elf_backend_want_plt_sym
20775 #define elf_backend_want_plt_sym 1
20776 #undef ELF_MAXPAGESIZE
20777 #define ELF_MAXPAGESIZE 0x1000
20778
20779 #include "elf32-target.h"
20780
20781
20782 /* Merge backend specific data from an object file to the output
20783 object file when linking. */
20784
20785 static bfd_boolean
20786 elf32_arm_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
20787 {
20788 bfd *obfd = info->output_bfd;
20789 flagword out_flags;
20790 flagword in_flags;
20791 bfd_boolean flags_compatible = TRUE;
20792 asection *sec;
20793
20794 /* Check if we have the same endianness. */
20795 if (! _bfd_generic_verify_endian_match (ibfd, info))
20796 return FALSE;
20797
20798 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
20799 return TRUE;
20800
20801 if (!elf32_arm_merge_eabi_attributes (ibfd, info))
20802 return FALSE;
20803
20804 /* The input BFD must have had its flags initialised. */
20805 /* The following seems bogus to me -- The flags are initialized in
20806 the assembler but I don't think an elf_flags_init field is
20807 written into the object. */
20808 /* BFD_ASSERT (elf_flags_init (ibfd)); */
20809
20810 in_flags = elf_elfheader (ibfd)->e_flags;
20811 out_flags = elf_elfheader (obfd)->e_flags;
20812
20813 /* In theory there is no reason why we couldn't handle this. However
20814 in practice it isn't even close to working and there is no real
20815 reason to want it. */
20816 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
20817 && !(ibfd->flags & DYNAMIC)
20818 && (in_flags & EF_ARM_BE8))
20819 {
20820 _bfd_error_handler (_("error: %pB is already in final BE8 format"),
20821 ibfd);
20822 return FALSE;
20823 }
20824
20825 if (!elf_flags_init (obfd))
20826 {
20827 /* If the input is the default architecture and had the default
20828 flags then do not bother setting the flags for the output
20829 architecture, instead allow future merges to do this. If no
20830 future merges ever set these flags then they will retain their
20831 uninitialised values, which surprise surprise, correspond
20832 to the default values. */
20833 if (bfd_get_arch_info (ibfd)->the_default
20834 && elf_elfheader (ibfd)->e_flags == 0)
20835 return TRUE;
20836
20837 elf_flags_init (obfd) = TRUE;
20838 elf_elfheader (obfd)->e_flags = in_flags;
20839
20840 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
20841 && bfd_get_arch_info (obfd)->the_default)
20842 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
20843
20844 return TRUE;
20845 }
20846
20847 /* Determine what should happen if the input ARM architecture
20848 does not match the output ARM architecture. */
20849 if (! bfd_arm_merge_machines (ibfd, obfd))
20850 return FALSE;
20851
20852 /* Identical flags must be compatible. */
20853 if (in_flags == out_flags)
20854 return TRUE;
20855
20856 /* Check to see if the input BFD actually contains any sections. If
20857 not, its flags may not have been initialised either, but it
20858 cannot actually cause any incompatiblity. Do not short-circuit
20859 dynamic objects; their section list may be emptied by
20860 elf_link_add_object_symbols.
20861
20862 Also check to see if there are no code sections in the input.
20863 In this case there is no need to check for code specific flags.
20864 XXX - do we need to worry about floating-point format compatability
20865 in data sections ? */
20866 if (!(ibfd->flags & DYNAMIC))
20867 {
20868 bfd_boolean null_input_bfd = TRUE;
20869 bfd_boolean only_data_sections = TRUE;
20870
20871 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
20872 {
20873 /* Ignore synthetic glue sections. */
20874 if (strcmp (sec->name, ".glue_7")
20875 && strcmp (sec->name, ".glue_7t"))
20876 {
20877 if ((bfd_get_section_flags (ibfd, sec)
20878 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20879 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
20880 only_data_sections = FALSE;
20881
20882 null_input_bfd = FALSE;
20883 break;
20884 }
20885 }
20886
20887 if (null_input_bfd || only_data_sections)
20888 return TRUE;
20889 }
20890
20891 /* Complain about various flag mismatches. */
20892 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
20893 EF_ARM_EABI_VERSION (out_flags)))
20894 {
20895 _bfd_error_handler
20896 (_("error: source object %pB has EABI version %d, but target %pB has EABI version %d"),
20897 ibfd, (in_flags & EF_ARM_EABIMASK) >> 24,
20898 obfd, (out_flags & EF_ARM_EABIMASK) >> 24);
20899 return FALSE;
20900 }
20901
20902 /* Not sure what needs to be checked for EABI versions >= 1. */
20903 /* VxWorks libraries do not use these flags. */
20904 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
20905 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
20906 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
20907 {
20908 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
20909 {
20910 _bfd_error_handler
20911 (_("error: %pB is compiled for APCS-%d, whereas target %pB uses APCS-%d"),
20912 ibfd, in_flags & EF_ARM_APCS_26 ? 26 : 32,
20913 obfd, out_flags & EF_ARM_APCS_26 ? 26 : 32);
20914 flags_compatible = FALSE;
20915 }
20916
20917 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
20918 {
20919 if (in_flags & EF_ARM_APCS_FLOAT)
20920 _bfd_error_handler
20921 (_("error: %pB passes floats in float registers, whereas %pB passes them in integer registers"),
20922 ibfd, obfd);
20923 else
20924 _bfd_error_handler
20925 (_("error: %pB passes floats in integer registers, whereas %pB passes them in float registers"),
20926 ibfd, obfd);
20927
20928 flags_compatible = FALSE;
20929 }
20930
20931 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
20932 {
20933 if (in_flags & EF_ARM_VFP_FLOAT)
20934 _bfd_error_handler
20935 (_("error: %pB uses %s instructions, whereas %pB does not"),
20936 ibfd, "VFP", obfd);
20937 else
20938 _bfd_error_handler
20939 (_("error: %pB uses %s instructions, whereas %pB does not"),
20940 ibfd, "FPA", obfd);
20941
20942 flags_compatible = FALSE;
20943 }
20944
20945 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
20946 {
20947 if (in_flags & EF_ARM_MAVERICK_FLOAT)
20948 _bfd_error_handler
20949 (_("error: %pB uses %s instructions, whereas %pB does not"),
20950 ibfd, "Maverick", obfd);
20951 else
20952 _bfd_error_handler
20953 (_("error: %pB does not use %s instructions, whereas %pB does"),
20954 ibfd, "Maverick", obfd);
20955
20956 flags_compatible = FALSE;
20957 }
20958
20959 #ifdef EF_ARM_SOFT_FLOAT
20960 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
20961 {
20962 /* We can allow interworking between code that is VFP format
20963 layout, and uses either soft float or integer regs for
20964 passing floating point arguments and results. We already
20965 know that the APCS_FLOAT flags match; similarly for VFP
20966 flags. */
20967 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
20968 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
20969 {
20970 if (in_flags & EF_ARM_SOFT_FLOAT)
20971 _bfd_error_handler
20972 (_("error: %pB uses software FP, whereas %pB uses hardware FP"),
20973 ibfd, obfd);
20974 else
20975 _bfd_error_handler
20976 (_("error: %pB uses hardware FP, whereas %pB uses software FP"),
20977 ibfd, obfd);
20978
20979 flags_compatible = FALSE;
20980 }
20981 }
20982 #endif
20983
20984 /* Interworking mismatch is only a warning. */
20985 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
20986 {
20987 if (in_flags & EF_ARM_INTERWORK)
20988 {
20989 _bfd_error_handler
20990 (_("warning: %pB supports interworking, whereas %pB does not"),
20991 ibfd, obfd);
20992 }
20993 else
20994 {
20995 _bfd_error_handler
20996 (_("warning: %pB does not support interworking, whereas %pB does"),
20997 ibfd, obfd);
20998 }
20999 }
21000 }
21001
21002 return flags_compatible;
21003 }
21004
21005
21006 /* Symbian OS Targets. */
21007
21008 #undef TARGET_LITTLE_SYM
21009 #define TARGET_LITTLE_SYM arm_elf32_symbian_le_vec
21010 #undef TARGET_LITTLE_NAME
21011 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
21012 #undef TARGET_BIG_SYM
21013 #define TARGET_BIG_SYM arm_elf32_symbian_be_vec
21014 #undef TARGET_BIG_NAME
21015 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
21016
21017 /* Like elf32_arm_link_hash_table_create -- but overrides
21018 appropriately for Symbian OS. */
21019
21020 static struct bfd_link_hash_table *
21021 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
21022 {
21023 struct bfd_link_hash_table *ret;
21024
21025 ret = elf32_arm_link_hash_table_create (abfd);
21026 if (ret)
21027 {
21028 struct elf32_arm_link_hash_table *htab
21029 = (struct elf32_arm_link_hash_table *)ret;
21030 /* There is no PLT header for Symbian OS. */
21031 htab->plt_header_size = 0;
21032 /* The PLT entries are each one instruction and one word. */
21033 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
21034 htab->symbian_p = 1;
21035 /* Symbian uses armv5t or above, so use_blx is always true. */
21036 htab->use_blx = 1;
21037 htab->root.is_relocatable_executable = 1;
21038 }
21039 return ret;
21040 }
21041
21042 static const struct bfd_elf_special_section
21043 elf32_arm_symbian_special_sections[] =
21044 {
21045 /* In a BPABI executable, the dynamic linking sections do not go in
21046 the loadable read-only segment. The post-linker may wish to
21047 refer to these sections, but they are not part of the final
21048 program image. */
21049 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
21050 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
21051 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
21052 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
21053 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
21054 /* These sections do not need to be writable as the SymbianOS
21055 postlinker will arrange things so that no dynamic relocation is
21056 required. */
21057 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
21058 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
21059 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
21060 { NULL, 0, 0, 0, 0 }
21061 };
21062
21063 static void
21064 elf32_arm_symbian_begin_write_processing (bfd *abfd,
21065 struct bfd_link_info *link_info)
21066 {
21067 /* BPABI objects are never loaded directly by an OS kernel; they are
21068 processed by a postlinker first, into an OS-specific format. If
21069 the D_PAGED bit is set on the file, BFD will align segments on
21070 page boundaries, so that an OS can directly map the file. With
21071 BPABI objects, that just results in wasted space. In addition,
21072 because we clear the D_PAGED bit, map_sections_to_segments will
21073 recognize that the program headers should not be mapped into any
21074 loadable segment. */
21075 abfd->flags &= ~D_PAGED;
21076 elf32_arm_begin_write_processing (abfd, link_info);
21077 }
21078
21079 static bfd_boolean
21080 elf32_arm_symbian_modify_segment_map (bfd *abfd,
21081 struct bfd_link_info *info)
21082 {
21083 struct elf_segment_map *m;
21084 asection *dynsec;
21085
21086 /* BPABI shared libraries and executables should have a PT_DYNAMIC
21087 segment. However, because the .dynamic section is not marked
21088 with SEC_LOAD, the generic ELF code will not create such a
21089 segment. */
21090 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
21091 if (dynsec)
21092 {
21093 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
21094 if (m->p_type == PT_DYNAMIC)
21095 break;
21096
21097 if (m == NULL)
21098 {
21099 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
21100 m->next = elf_seg_map (abfd);
21101 elf_seg_map (abfd) = m;
21102 }
21103 }
21104
21105 /* Also call the generic arm routine. */
21106 return elf32_arm_modify_segment_map (abfd, info);
21107 }
21108
21109 /* Return address for Ith PLT stub in section PLT, for relocation REL
21110 or (bfd_vma) -1 if it should not be included. */
21111
21112 static bfd_vma
21113 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
21114 const arelent *rel ATTRIBUTE_UNUSED)
21115 {
21116 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
21117 }
21118
21119 #undef elf32_bed
21120 #define elf32_bed elf32_arm_symbian_bed
21121
21122 /* The dynamic sections are not allocated on SymbianOS; the postlinker
21123 will process them and then discard them. */
21124 #undef ELF_DYNAMIC_SEC_FLAGS
21125 #define ELF_DYNAMIC_SEC_FLAGS \
21126 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
21127
21128 #undef elf_backend_emit_relocs
21129
21130 #undef bfd_elf32_bfd_link_hash_table_create
21131 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
21132 #undef elf_backend_special_sections
21133 #define elf_backend_special_sections elf32_arm_symbian_special_sections
21134 #undef elf_backend_begin_write_processing
21135 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
21136 #undef elf_backend_final_write_processing
21137 #define elf_backend_final_write_processing elf32_arm_final_write_processing
21138
21139 #undef elf_backend_modify_segment_map
21140 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
21141
21142 /* There is no .got section for BPABI objects, and hence no header. */
21143 #undef elf_backend_got_header_size
21144 #define elf_backend_got_header_size 0
21145
21146 /* Similarly, there is no .got.plt section. */
21147 #undef elf_backend_want_got_plt
21148 #define elf_backend_want_got_plt 0
21149
21150 #undef elf_backend_plt_sym_val
21151 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
21152
21153 #undef elf_backend_may_use_rel_p
21154 #define elf_backend_may_use_rel_p 1
21155 #undef elf_backend_may_use_rela_p
21156 #define elf_backend_may_use_rela_p 0
21157 #undef elf_backend_default_use_rela_p
21158 #define elf_backend_default_use_rela_p 0
21159 #undef elf_backend_want_plt_sym
21160 #define elf_backend_want_plt_sym 0
21161 #undef elf_backend_dtrel_excludes_plt
21162 #define elf_backend_dtrel_excludes_plt 0
21163 #undef ELF_MAXPAGESIZE
21164 #define ELF_MAXPAGESIZE 0x8000
21165
21166 #include "elf32-target.h"
This page took 0.517915 seconds and 4 git commands to generate.