* cache.c (cache_bread): Set bfd_error_file_truncated if EOF
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 #ifndef NUM_ELEM
31 #define NUM_ELEM(a) (sizeof (a) / (sizeof (a)[0]))
32 #endif
33
34 /* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36 #define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38
39 /* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41 #define RELOC_SIZE(HTAB) \
42 ((HTAB)->use_rel \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
45
46 /* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48 #define SWAP_RELOC_IN(HTAB) \
49 ((HTAB)->use_rel \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
52
53 /* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55 #define SWAP_RELOC_OUT(HTAB) \
56 ((HTAB)->use_rel \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
59
60 #define elf_info_to_howto 0
61 #define elf_info_to_howto_rel elf32_arm_info_to_howto
62
63 #define ARM_ELF_ABI_VERSION 0
64 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65
66 static struct elf_backend_data elf32_arm_vxworks_bed;
67
68 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
69 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
70 in that slot. */
71
72 static reloc_howto_type elf32_arm_howto_table_1[] =
73 {
74 /* No relocation */
75 HOWTO (R_ARM_NONE, /* type */
76 0, /* rightshift */
77 0, /* size (0 = byte, 1 = short, 2 = long) */
78 0, /* bitsize */
79 FALSE, /* pc_relative */
80 0, /* bitpos */
81 complain_overflow_dont,/* complain_on_overflow */
82 bfd_elf_generic_reloc, /* special_function */
83 "R_ARM_NONE", /* name */
84 FALSE, /* partial_inplace */
85 0, /* src_mask */
86 0, /* dst_mask */
87 FALSE), /* pcrel_offset */
88
89 HOWTO (R_ARM_PC24, /* type */
90 2, /* rightshift */
91 2, /* size (0 = byte, 1 = short, 2 = long) */
92 24, /* bitsize */
93 TRUE, /* pc_relative */
94 0, /* bitpos */
95 complain_overflow_signed,/* complain_on_overflow */
96 bfd_elf_generic_reloc, /* special_function */
97 "R_ARM_PC24", /* name */
98 FALSE, /* partial_inplace */
99 0x00ffffff, /* src_mask */
100 0x00ffffff, /* dst_mask */
101 TRUE), /* pcrel_offset */
102
103 /* 32 bit absolute */
104 HOWTO (R_ARM_ABS32, /* type */
105 0, /* rightshift */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
107 32, /* bitsize */
108 FALSE, /* pc_relative */
109 0, /* bitpos */
110 complain_overflow_bitfield,/* complain_on_overflow */
111 bfd_elf_generic_reloc, /* special_function */
112 "R_ARM_ABS32", /* name */
113 FALSE, /* partial_inplace */
114 0xffffffff, /* src_mask */
115 0xffffffff, /* dst_mask */
116 FALSE), /* pcrel_offset */
117
118 /* standard 32bit pc-relative reloc */
119 HOWTO (R_ARM_REL32, /* type */
120 0, /* rightshift */
121 2, /* size (0 = byte, 1 = short, 2 = long) */
122 32, /* bitsize */
123 TRUE, /* pc_relative */
124 0, /* bitpos */
125 complain_overflow_bitfield,/* complain_on_overflow */
126 bfd_elf_generic_reloc, /* special_function */
127 "R_ARM_REL32", /* name */
128 FALSE, /* partial_inplace */
129 0xffffffff, /* src_mask */
130 0xffffffff, /* dst_mask */
131 TRUE), /* pcrel_offset */
132
133 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
134 HOWTO (R_ARM_LDR_PC_G0, /* type */
135 0, /* rightshift */
136 0, /* size (0 = byte, 1 = short, 2 = long) */
137 32, /* bitsize */
138 TRUE, /* pc_relative */
139 0, /* bitpos */
140 complain_overflow_dont,/* complain_on_overflow */
141 bfd_elf_generic_reloc, /* special_function */
142 "R_ARM_LDR_PC_G0", /* name */
143 FALSE, /* partial_inplace */
144 0xffffffff, /* src_mask */
145 0xffffffff, /* dst_mask */
146 TRUE), /* pcrel_offset */
147
148 /* 16 bit absolute */
149 HOWTO (R_ARM_ABS16, /* type */
150 0, /* rightshift */
151 1, /* size (0 = byte, 1 = short, 2 = long) */
152 16, /* bitsize */
153 FALSE, /* pc_relative */
154 0, /* bitpos */
155 complain_overflow_bitfield,/* complain_on_overflow */
156 bfd_elf_generic_reloc, /* special_function */
157 "R_ARM_ABS16", /* name */
158 FALSE, /* partial_inplace */
159 0x0000ffff, /* src_mask */
160 0x0000ffff, /* dst_mask */
161 FALSE), /* pcrel_offset */
162
163 /* 12 bit absolute */
164 HOWTO (R_ARM_ABS12, /* type */
165 0, /* rightshift */
166 2, /* size (0 = byte, 1 = short, 2 = long) */
167 12, /* bitsize */
168 FALSE, /* pc_relative */
169 0, /* bitpos */
170 complain_overflow_bitfield,/* complain_on_overflow */
171 bfd_elf_generic_reloc, /* special_function */
172 "R_ARM_ABS12", /* name */
173 FALSE, /* partial_inplace */
174 0x00000fff, /* src_mask */
175 0x00000fff, /* dst_mask */
176 FALSE), /* pcrel_offset */
177
178 HOWTO (R_ARM_THM_ABS5, /* type */
179 6, /* rightshift */
180 1, /* size (0 = byte, 1 = short, 2 = long) */
181 5, /* bitsize */
182 FALSE, /* pc_relative */
183 0, /* bitpos */
184 complain_overflow_bitfield,/* complain_on_overflow */
185 bfd_elf_generic_reloc, /* special_function */
186 "R_ARM_THM_ABS5", /* name */
187 FALSE, /* partial_inplace */
188 0x000007e0, /* src_mask */
189 0x000007e0, /* dst_mask */
190 FALSE), /* pcrel_offset */
191
192 /* 8 bit absolute */
193 HOWTO (R_ARM_ABS8, /* type */
194 0, /* rightshift */
195 0, /* size (0 = byte, 1 = short, 2 = long) */
196 8, /* bitsize */
197 FALSE, /* pc_relative */
198 0, /* bitpos */
199 complain_overflow_bitfield,/* complain_on_overflow */
200 bfd_elf_generic_reloc, /* special_function */
201 "R_ARM_ABS8", /* name */
202 FALSE, /* partial_inplace */
203 0x000000ff, /* src_mask */
204 0x000000ff, /* dst_mask */
205 FALSE), /* pcrel_offset */
206
207 HOWTO (R_ARM_SBREL32, /* type */
208 0, /* rightshift */
209 2, /* size (0 = byte, 1 = short, 2 = long) */
210 32, /* bitsize */
211 FALSE, /* pc_relative */
212 0, /* bitpos */
213 complain_overflow_dont,/* complain_on_overflow */
214 bfd_elf_generic_reloc, /* special_function */
215 "R_ARM_SBREL32", /* name */
216 FALSE, /* partial_inplace */
217 0xffffffff, /* src_mask */
218 0xffffffff, /* dst_mask */
219 FALSE), /* pcrel_offset */
220
221 HOWTO (R_ARM_THM_CALL, /* type */
222 1, /* rightshift */
223 2, /* size (0 = byte, 1 = short, 2 = long) */
224 25, /* bitsize */
225 TRUE, /* pc_relative */
226 0, /* bitpos */
227 complain_overflow_signed,/* complain_on_overflow */
228 bfd_elf_generic_reloc, /* special_function */
229 "R_ARM_THM_CALL", /* name */
230 FALSE, /* partial_inplace */
231 0x07ff07ff, /* src_mask */
232 0x07ff07ff, /* dst_mask */
233 TRUE), /* pcrel_offset */
234
235 HOWTO (R_ARM_THM_PC8, /* type */
236 1, /* rightshift */
237 1, /* size (0 = byte, 1 = short, 2 = long) */
238 8, /* bitsize */
239 TRUE, /* pc_relative */
240 0, /* bitpos */
241 complain_overflow_signed,/* complain_on_overflow */
242 bfd_elf_generic_reloc, /* special_function */
243 "R_ARM_THM_PC8", /* name */
244 FALSE, /* partial_inplace */
245 0x000000ff, /* src_mask */
246 0x000000ff, /* dst_mask */
247 TRUE), /* pcrel_offset */
248
249 HOWTO (R_ARM_BREL_ADJ, /* type */
250 1, /* rightshift */
251 1, /* size (0 = byte, 1 = short, 2 = long) */
252 32, /* bitsize */
253 FALSE, /* pc_relative */
254 0, /* bitpos */
255 complain_overflow_signed,/* complain_on_overflow */
256 bfd_elf_generic_reloc, /* special_function */
257 "R_ARM_BREL_ADJ", /* name */
258 FALSE, /* partial_inplace */
259 0xffffffff, /* src_mask */
260 0xffffffff, /* dst_mask */
261 FALSE), /* pcrel_offset */
262
263 HOWTO (R_ARM_SWI24, /* type */
264 0, /* rightshift */
265 0, /* size (0 = byte, 1 = short, 2 = long) */
266 0, /* bitsize */
267 FALSE, /* pc_relative */
268 0, /* bitpos */
269 complain_overflow_signed,/* complain_on_overflow */
270 bfd_elf_generic_reloc, /* special_function */
271 "R_ARM_SWI24", /* name */
272 FALSE, /* partial_inplace */
273 0x00000000, /* src_mask */
274 0x00000000, /* dst_mask */
275 FALSE), /* pcrel_offset */
276
277 HOWTO (R_ARM_THM_SWI8, /* type */
278 0, /* rightshift */
279 0, /* size (0 = byte, 1 = short, 2 = long) */
280 0, /* bitsize */
281 FALSE, /* pc_relative */
282 0, /* bitpos */
283 complain_overflow_signed,/* complain_on_overflow */
284 bfd_elf_generic_reloc, /* special_function */
285 "R_ARM_SWI8", /* name */
286 FALSE, /* partial_inplace */
287 0x00000000, /* src_mask */
288 0x00000000, /* dst_mask */
289 FALSE), /* pcrel_offset */
290
291 /* BLX instruction for the ARM. */
292 HOWTO (R_ARM_XPC25, /* type */
293 2, /* rightshift */
294 2, /* size (0 = byte, 1 = short, 2 = long) */
295 25, /* bitsize */
296 TRUE, /* pc_relative */
297 0, /* bitpos */
298 complain_overflow_signed,/* complain_on_overflow */
299 bfd_elf_generic_reloc, /* special_function */
300 "R_ARM_XPC25", /* name */
301 FALSE, /* partial_inplace */
302 0x00ffffff, /* src_mask */
303 0x00ffffff, /* dst_mask */
304 TRUE), /* pcrel_offset */
305
306 /* BLX instruction for the Thumb. */
307 HOWTO (R_ARM_THM_XPC22, /* type */
308 2, /* rightshift */
309 2, /* size (0 = byte, 1 = short, 2 = long) */
310 22, /* bitsize */
311 TRUE, /* pc_relative */
312 0, /* bitpos */
313 complain_overflow_signed,/* complain_on_overflow */
314 bfd_elf_generic_reloc, /* special_function */
315 "R_ARM_THM_XPC22", /* name */
316 FALSE, /* partial_inplace */
317 0x07ff07ff, /* src_mask */
318 0x07ff07ff, /* dst_mask */
319 TRUE), /* pcrel_offset */
320
321 /* Dynamic TLS relocations. */
322
323 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
324 0, /* rightshift */
325 2, /* size (0 = byte, 1 = short, 2 = long) */
326 32, /* bitsize */
327 FALSE, /* pc_relative */
328 0, /* bitpos */
329 complain_overflow_bitfield,/* complain_on_overflow */
330 bfd_elf_generic_reloc, /* special_function */
331 "R_ARM_TLS_DTPMOD32", /* name */
332 TRUE, /* partial_inplace */
333 0xffffffff, /* src_mask */
334 0xffffffff, /* dst_mask */
335 FALSE), /* pcrel_offset */
336
337 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
338 0, /* rightshift */
339 2, /* size (0 = byte, 1 = short, 2 = long) */
340 32, /* bitsize */
341 FALSE, /* pc_relative */
342 0, /* bitpos */
343 complain_overflow_bitfield,/* complain_on_overflow */
344 bfd_elf_generic_reloc, /* special_function */
345 "R_ARM_TLS_DTPOFF32", /* name */
346 TRUE, /* partial_inplace */
347 0xffffffff, /* src_mask */
348 0xffffffff, /* dst_mask */
349 FALSE), /* pcrel_offset */
350
351 HOWTO (R_ARM_TLS_TPOFF32, /* type */
352 0, /* rightshift */
353 2, /* size (0 = byte, 1 = short, 2 = long) */
354 32, /* bitsize */
355 FALSE, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_bitfield,/* complain_on_overflow */
358 bfd_elf_generic_reloc, /* special_function */
359 "R_ARM_TLS_TPOFF32", /* name */
360 TRUE, /* partial_inplace */
361 0xffffffff, /* src_mask */
362 0xffffffff, /* dst_mask */
363 FALSE), /* pcrel_offset */
364
365 /* Relocs used in ARM Linux */
366
367 HOWTO (R_ARM_COPY, /* type */
368 0, /* rightshift */
369 2, /* size (0 = byte, 1 = short, 2 = long) */
370 32, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_bitfield,/* complain_on_overflow */
374 bfd_elf_generic_reloc, /* special_function */
375 "R_ARM_COPY", /* name */
376 TRUE, /* partial_inplace */
377 0xffffffff, /* src_mask */
378 0xffffffff, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 HOWTO (R_ARM_GLOB_DAT, /* type */
382 0, /* rightshift */
383 2, /* size (0 = byte, 1 = short, 2 = long) */
384 32, /* bitsize */
385 FALSE, /* pc_relative */
386 0, /* bitpos */
387 complain_overflow_bitfield,/* complain_on_overflow */
388 bfd_elf_generic_reloc, /* special_function */
389 "R_ARM_GLOB_DAT", /* name */
390 TRUE, /* partial_inplace */
391 0xffffffff, /* src_mask */
392 0xffffffff, /* dst_mask */
393 FALSE), /* pcrel_offset */
394
395 HOWTO (R_ARM_JUMP_SLOT, /* type */
396 0, /* rightshift */
397 2, /* size (0 = byte, 1 = short, 2 = long) */
398 32, /* bitsize */
399 FALSE, /* pc_relative */
400 0, /* bitpos */
401 complain_overflow_bitfield,/* complain_on_overflow */
402 bfd_elf_generic_reloc, /* special_function */
403 "R_ARM_JUMP_SLOT", /* name */
404 TRUE, /* partial_inplace */
405 0xffffffff, /* src_mask */
406 0xffffffff, /* dst_mask */
407 FALSE), /* pcrel_offset */
408
409 HOWTO (R_ARM_RELATIVE, /* type */
410 0, /* rightshift */
411 2, /* size (0 = byte, 1 = short, 2 = long) */
412 32, /* bitsize */
413 FALSE, /* pc_relative */
414 0, /* bitpos */
415 complain_overflow_bitfield,/* complain_on_overflow */
416 bfd_elf_generic_reloc, /* special_function */
417 "R_ARM_RELATIVE", /* name */
418 TRUE, /* partial_inplace */
419 0xffffffff, /* src_mask */
420 0xffffffff, /* dst_mask */
421 FALSE), /* pcrel_offset */
422
423 HOWTO (R_ARM_GOTOFF32, /* type */
424 0, /* rightshift */
425 2, /* size (0 = byte, 1 = short, 2 = long) */
426 32, /* bitsize */
427 FALSE, /* pc_relative */
428 0, /* bitpos */
429 complain_overflow_bitfield,/* complain_on_overflow */
430 bfd_elf_generic_reloc, /* special_function */
431 "R_ARM_GOTOFF32", /* name */
432 TRUE, /* partial_inplace */
433 0xffffffff, /* src_mask */
434 0xffffffff, /* dst_mask */
435 FALSE), /* pcrel_offset */
436
437 HOWTO (R_ARM_GOTPC, /* type */
438 0, /* rightshift */
439 2, /* size (0 = byte, 1 = short, 2 = long) */
440 32, /* bitsize */
441 TRUE, /* pc_relative */
442 0, /* bitpos */
443 complain_overflow_bitfield,/* complain_on_overflow */
444 bfd_elf_generic_reloc, /* special_function */
445 "R_ARM_GOTPC", /* name */
446 TRUE, /* partial_inplace */
447 0xffffffff, /* src_mask */
448 0xffffffff, /* dst_mask */
449 TRUE), /* pcrel_offset */
450
451 HOWTO (R_ARM_GOT32, /* type */
452 0, /* rightshift */
453 2, /* size (0 = byte, 1 = short, 2 = long) */
454 32, /* bitsize */
455 FALSE, /* pc_relative */
456 0, /* bitpos */
457 complain_overflow_bitfield,/* complain_on_overflow */
458 bfd_elf_generic_reloc, /* special_function */
459 "R_ARM_GOT32", /* name */
460 TRUE, /* partial_inplace */
461 0xffffffff, /* src_mask */
462 0xffffffff, /* dst_mask */
463 FALSE), /* pcrel_offset */
464
465 HOWTO (R_ARM_PLT32, /* type */
466 2, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 24, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_bitfield,/* complain_on_overflow */
472 bfd_elf_generic_reloc, /* special_function */
473 "R_ARM_PLT32", /* name */
474 FALSE, /* partial_inplace */
475 0x00ffffff, /* src_mask */
476 0x00ffffff, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 HOWTO (R_ARM_CALL, /* type */
480 2, /* rightshift */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
482 24, /* bitsize */
483 TRUE, /* pc_relative */
484 0, /* bitpos */
485 complain_overflow_signed,/* complain_on_overflow */
486 bfd_elf_generic_reloc, /* special_function */
487 "R_ARM_CALL", /* name */
488 FALSE, /* partial_inplace */
489 0x00ffffff, /* src_mask */
490 0x00ffffff, /* dst_mask */
491 TRUE), /* pcrel_offset */
492
493 HOWTO (R_ARM_JUMP24, /* type */
494 2, /* rightshift */
495 2, /* size (0 = byte, 1 = short, 2 = long) */
496 24, /* bitsize */
497 TRUE, /* pc_relative */
498 0, /* bitpos */
499 complain_overflow_signed,/* complain_on_overflow */
500 bfd_elf_generic_reloc, /* special_function */
501 "R_ARM_JUMP24", /* name */
502 FALSE, /* partial_inplace */
503 0x00ffffff, /* src_mask */
504 0x00ffffff, /* dst_mask */
505 TRUE), /* pcrel_offset */
506
507 HOWTO (R_ARM_THM_JUMP24, /* type */
508 1, /* rightshift */
509 2, /* size (0 = byte, 1 = short, 2 = long) */
510 24, /* bitsize */
511 TRUE, /* pc_relative */
512 0, /* bitpos */
513 complain_overflow_signed,/* complain_on_overflow */
514 bfd_elf_generic_reloc, /* special_function */
515 "R_ARM_THM_JUMP24", /* name */
516 FALSE, /* partial_inplace */
517 0x07ff2fff, /* src_mask */
518 0x07ff2fff, /* dst_mask */
519 TRUE), /* pcrel_offset */
520
521 HOWTO (R_ARM_BASE_ABS, /* type */
522 0, /* rightshift */
523 2, /* size (0 = byte, 1 = short, 2 = long) */
524 32, /* bitsize */
525 FALSE, /* pc_relative */
526 0, /* bitpos */
527 complain_overflow_dont,/* complain_on_overflow */
528 bfd_elf_generic_reloc, /* special_function */
529 "R_ARM_BASE_ABS", /* name */
530 FALSE, /* partial_inplace */
531 0xffffffff, /* src_mask */
532 0xffffffff, /* dst_mask */
533 FALSE), /* pcrel_offset */
534
535 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
536 0, /* rightshift */
537 2, /* size (0 = byte, 1 = short, 2 = long) */
538 12, /* bitsize */
539 TRUE, /* pc_relative */
540 0, /* bitpos */
541 complain_overflow_dont,/* complain_on_overflow */
542 bfd_elf_generic_reloc, /* special_function */
543 "R_ARM_ALU_PCREL_7_0", /* name */
544 FALSE, /* partial_inplace */
545 0x00000fff, /* src_mask */
546 0x00000fff, /* dst_mask */
547 TRUE), /* pcrel_offset */
548
549 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
550 0, /* rightshift */
551 2, /* size (0 = byte, 1 = short, 2 = long) */
552 12, /* bitsize */
553 TRUE, /* pc_relative */
554 8, /* bitpos */
555 complain_overflow_dont,/* complain_on_overflow */
556 bfd_elf_generic_reloc, /* special_function */
557 "R_ARM_ALU_PCREL_15_8",/* name */
558 FALSE, /* partial_inplace */
559 0x00000fff, /* src_mask */
560 0x00000fff, /* dst_mask */
561 TRUE), /* pcrel_offset */
562
563 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
564 0, /* rightshift */
565 2, /* size (0 = byte, 1 = short, 2 = long) */
566 12, /* bitsize */
567 TRUE, /* pc_relative */
568 16, /* bitpos */
569 complain_overflow_dont,/* complain_on_overflow */
570 bfd_elf_generic_reloc, /* special_function */
571 "R_ARM_ALU_PCREL_23_15",/* name */
572 FALSE, /* partial_inplace */
573 0x00000fff, /* src_mask */
574 0x00000fff, /* dst_mask */
575 TRUE), /* pcrel_offset */
576
577 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
578 0, /* rightshift */
579 2, /* size (0 = byte, 1 = short, 2 = long) */
580 12, /* bitsize */
581 FALSE, /* pc_relative */
582 0, /* bitpos */
583 complain_overflow_dont,/* complain_on_overflow */
584 bfd_elf_generic_reloc, /* special_function */
585 "R_ARM_LDR_SBREL_11_0",/* name */
586 FALSE, /* partial_inplace */
587 0x00000fff, /* src_mask */
588 0x00000fff, /* dst_mask */
589 FALSE), /* pcrel_offset */
590
591 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
592 0, /* rightshift */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
594 8, /* bitsize */
595 FALSE, /* pc_relative */
596 12, /* bitpos */
597 complain_overflow_dont,/* complain_on_overflow */
598 bfd_elf_generic_reloc, /* special_function */
599 "R_ARM_ALU_SBREL_19_12",/* name */
600 FALSE, /* partial_inplace */
601 0x000ff000, /* src_mask */
602 0x000ff000, /* dst_mask */
603 FALSE), /* pcrel_offset */
604
605 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
606 0, /* rightshift */
607 2, /* size (0 = byte, 1 = short, 2 = long) */
608 8, /* bitsize */
609 FALSE, /* pc_relative */
610 20, /* bitpos */
611 complain_overflow_dont,/* complain_on_overflow */
612 bfd_elf_generic_reloc, /* special_function */
613 "R_ARM_ALU_SBREL_27_20",/* name */
614 FALSE, /* partial_inplace */
615 0x0ff00000, /* src_mask */
616 0x0ff00000, /* dst_mask */
617 FALSE), /* pcrel_offset */
618
619 HOWTO (R_ARM_TARGET1, /* type */
620 0, /* rightshift */
621 2, /* size (0 = byte, 1 = short, 2 = long) */
622 32, /* bitsize */
623 FALSE, /* pc_relative */
624 0, /* bitpos */
625 complain_overflow_dont,/* complain_on_overflow */
626 bfd_elf_generic_reloc, /* special_function */
627 "R_ARM_TARGET1", /* name */
628 FALSE, /* partial_inplace */
629 0xffffffff, /* src_mask */
630 0xffffffff, /* dst_mask */
631 FALSE), /* pcrel_offset */
632
633 HOWTO (R_ARM_ROSEGREL32, /* type */
634 0, /* rightshift */
635 2, /* size (0 = byte, 1 = short, 2 = long) */
636 32, /* bitsize */
637 FALSE, /* pc_relative */
638 0, /* bitpos */
639 complain_overflow_dont,/* complain_on_overflow */
640 bfd_elf_generic_reloc, /* special_function */
641 "R_ARM_ROSEGREL32", /* name */
642 FALSE, /* partial_inplace */
643 0xffffffff, /* src_mask */
644 0xffffffff, /* dst_mask */
645 FALSE), /* pcrel_offset */
646
647 HOWTO (R_ARM_V4BX, /* type */
648 0, /* rightshift */
649 2, /* size (0 = byte, 1 = short, 2 = long) */
650 32, /* bitsize */
651 FALSE, /* pc_relative */
652 0, /* bitpos */
653 complain_overflow_dont,/* complain_on_overflow */
654 bfd_elf_generic_reloc, /* special_function */
655 "R_ARM_V4BX", /* name */
656 FALSE, /* partial_inplace */
657 0xffffffff, /* src_mask */
658 0xffffffff, /* dst_mask */
659 FALSE), /* pcrel_offset */
660
661 HOWTO (R_ARM_TARGET2, /* type */
662 0, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 32, /* bitsize */
665 FALSE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_signed,/* complain_on_overflow */
668 bfd_elf_generic_reloc, /* special_function */
669 "R_ARM_TARGET2", /* name */
670 FALSE, /* partial_inplace */
671 0xffffffff, /* src_mask */
672 0xffffffff, /* dst_mask */
673 TRUE), /* pcrel_offset */
674
675 HOWTO (R_ARM_PREL31, /* type */
676 0, /* rightshift */
677 2, /* size (0 = byte, 1 = short, 2 = long) */
678 31, /* bitsize */
679 TRUE, /* pc_relative */
680 0, /* bitpos */
681 complain_overflow_signed,/* complain_on_overflow */
682 bfd_elf_generic_reloc, /* special_function */
683 "R_ARM_PREL31", /* name */
684 FALSE, /* partial_inplace */
685 0x7fffffff, /* src_mask */
686 0x7fffffff, /* dst_mask */
687 TRUE), /* pcrel_offset */
688
689 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
690 0, /* rightshift */
691 2, /* size (0 = byte, 1 = short, 2 = long) */
692 16, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont,/* complain_on_overflow */
696 bfd_elf_generic_reloc, /* special_function */
697 "R_ARM_MOVW_ABS_NC", /* name */
698 FALSE, /* partial_inplace */
699 0x0000ffff, /* src_mask */
700 0x0000ffff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 HOWTO (R_ARM_MOVT_ABS, /* type */
704 0, /* rightshift */
705 2, /* size (0 = byte, 1 = short, 2 = long) */
706 16, /* bitsize */
707 FALSE, /* pc_relative */
708 0, /* bitpos */
709 complain_overflow_bitfield,/* complain_on_overflow */
710 bfd_elf_generic_reloc, /* special_function */
711 "R_ARM_MOVT_ABS", /* name */
712 FALSE, /* partial_inplace */
713 0x0000ffff, /* src_mask */
714 0x0000ffff, /* dst_mask */
715 FALSE), /* pcrel_offset */
716
717 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
718 0, /* rightshift */
719 2, /* size (0 = byte, 1 = short, 2 = long) */
720 16, /* bitsize */
721 TRUE, /* pc_relative */
722 0, /* bitpos */
723 complain_overflow_dont,/* complain_on_overflow */
724 bfd_elf_generic_reloc, /* special_function */
725 "R_ARM_MOVW_PREL_NC", /* name */
726 FALSE, /* partial_inplace */
727 0x0000ffff, /* src_mask */
728 0x0000ffff, /* dst_mask */
729 TRUE), /* pcrel_offset */
730
731 HOWTO (R_ARM_MOVT_PREL, /* type */
732 0, /* rightshift */
733 2, /* size (0 = byte, 1 = short, 2 = long) */
734 16, /* bitsize */
735 TRUE, /* pc_relative */
736 0, /* bitpos */
737 complain_overflow_bitfield,/* complain_on_overflow */
738 bfd_elf_generic_reloc, /* special_function */
739 "R_ARM_MOVT_PREL", /* name */
740 FALSE, /* partial_inplace */
741 0x0000ffff, /* src_mask */
742 0x0000ffff, /* dst_mask */
743 TRUE), /* pcrel_offset */
744
745 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
746 0, /* rightshift */
747 2, /* size (0 = byte, 1 = short, 2 = long) */
748 16, /* bitsize */
749 FALSE, /* pc_relative */
750 0, /* bitpos */
751 complain_overflow_dont,/* complain_on_overflow */
752 bfd_elf_generic_reloc, /* special_function */
753 "R_ARM_THM_MOVW_ABS_NC",/* name */
754 FALSE, /* partial_inplace */
755 0x040f70ff, /* src_mask */
756 0x040f70ff, /* dst_mask */
757 FALSE), /* pcrel_offset */
758
759 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
760 0, /* rightshift */
761 2, /* size (0 = byte, 1 = short, 2 = long) */
762 16, /* bitsize */
763 FALSE, /* pc_relative */
764 0, /* bitpos */
765 complain_overflow_bitfield,/* complain_on_overflow */
766 bfd_elf_generic_reloc, /* special_function */
767 "R_ARM_THM_MOVT_ABS", /* name */
768 FALSE, /* partial_inplace */
769 0x040f70ff, /* src_mask */
770 0x040f70ff, /* dst_mask */
771 FALSE), /* pcrel_offset */
772
773 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
774 0, /* rightshift */
775 2, /* size (0 = byte, 1 = short, 2 = long) */
776 16, /* bitsize */
777 TRUE, /* pc_relative */
778 0, /* bitpos */
779 complain_overflow_dont,/* complain_on_overflow */
780 bfd_elf_generic_reloc, /* special_function */
781 "R_ARM_THM_MOVW_PREL_NC",/* name */
782 FALSE, /* partial_inplace */
783 0x040f70ff, /* src_mask */
784 0x040f70ff, /* dst_mask */
785 TRUE), /* pcrel_offset */
786
787 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
788 0, /* rightshift */
789 2, /* size (0 = byte, 1 = short, 2 = long) */
790 16, /* bitsize */
791 TRUE, /* pc_relative */
792 0, /* bitpos */
793 complain_overflow_bitfield,/* complain_on_overflow */
794 bfd_elf_generic_reloc, /* special_function */
795 "R_ARM_THM_MOVT_PREL", /* name */
796 FALSE, /* partial_inplace */
797 0x040f70ff, /* src_mask */
798 0x040f70ff, /* dst_mask */
799 TRUE), /* pcrel_offset */
800
801 HOWTO (R_ARM_THM_JUMP19, /* type */
802 1, /* rightshift */
803 2, /* size (0 = byte, 1 = short, 2 = long) */
804 19, /* bitsize */
805 TRUE, /* pc_relative */
806 0, /* bitpos */
807 complain_overflow_signed,/* complain_on_overflow */
808 bfd_elf_generic_reloc, /* special_function */
809 "R_ARM_THM_JUMP19", /* name */
810 FALSE, /* partial_inplace */
811 0x043f2fff, /* src_mask */
812 0x043f2fff, /* dst_mask */
813 TRUE), /* pcrel_offset */
814
815 HOWTO (R_ARM_THM_JUMP6, /* type */
816 1, /* rightshift */
817 1, /* size (0 = byte, 1 = short, 2 = long) */
818 6, /* bitsize */
819 TRUE, /* pc_relative */
820 0, /* bitpos */
821 complain_overflow_unsigned,/* complain_on_overflow */
822 bfd_elf_generic_reloc, /* special_function */
823 "R_ARM_THM_JUMP6", /* name */
824 FALSE, /* partial_inplace */
825 0x02f8, /* src_mask */
826 0x02f8, /* dst_mask */
827 TRUE), /* pcrel_offset */
828
829 /* These are declared as 13-bit signed relocations because we can
830 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
831 versa. */
832 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
833 0, /* rightshift */
834 2, /* size (0 = byte, 1 = short, 2 = long) */
835 13, /* bitsize */
836 TRUE, /* pc_relative */
837 0, /* bitpos */
838 complain_overflow_dont,/* complain_on_overflow */
839 bfd_elf_generic_reloc, /* special_function */
840 "R_ARM_THM_ALU_PREL_11_0",/* name */
841 FALSE, /* partial_inplace */
842 0xffffffff, /* src_mask */
843 0xffffffff, /* dst_mask */
844 TRUE), /* pcrel_offset */
845
846 HOWTO (R_ARM_THM_PC12, /* type */
847 0, /* rightshift */
848 2, /* size (0 = byte, 1 = short, 2 = long) */
849 13, /* bitsize */
850 TRUE, /* pc_relative */
851 0, /* bitpos */
852 complain_overflow_dont,/* complain_on_overflow */
853 bfd_elf_generic_reloc, /* special_function */
854 "R_ARM_THM_PC12", /* name */
855 FALSE, /* partial_inplace */
856 0xffffffff, /* src_mask */
857 0xffffffff, /* dst_mask */
858 TRUE), /* pcrel_offset */
859
860 HOWTO (R_ARM_ABS32_NOI, /* type */
861 0, /* rightshift */
862 2, /* size (0 = byte, 1 = short, 2 = long) */
863 32, /* bitsize */
864 FALSE, /* pc_relative */
865 0, /* bitpos */
866 complain_overflow_dont,/* complain_on_overflow */
867 bfd_elf_generic_reloc, /* special_function */
868 "R_ARM_ABS32_NOI", /* name */
869 FALSE, /* partial_inplace */
870 0xffffffff, /* src_mask */
871 0xffffffff, /* dst_mask */
872 FALSE), /* pcrel_offset */
873
874 HOWTO (R_ARM_REL32_NOI, /* type */
875 0, /* rightshift */
876 2, /* size (0 = byte, 1 = short, 2 = long) */
877 32, /* bitsize */
878 TRUE, /* pc_relative */
879 0, /* bitpos */
880 complain_overflow_dont,/* complain_on_overflow */
881 bfd_elf_generic_reloc, /* special_function */
882 "R_ARM_REL32_NOI", /* name */
883 FALSE, /* partial_inplace */
884 0xffffffff, /* src_mask */
885 0xffffffff, /* dst_mask */
886 FALSE), /* pcrel_offset */
887
888 /* Group relocations. */
889
890 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
891 0, /* rightshift */
892 2, /* size (0 = byte, 1 = short, 2 = long) */
893 32, /* bitsize */
894 TRUE, /* pc_relative */
895 0, /* bitpos */
896 complain_overflow_dont,/* complain_on_overflow */
897 bfd_elf_generic_reloc, /* special_function */
898 "R_ARM_ALU_PC_G0_NC", /* name */
899 FALSE, /* partial_inplace */
900 0xffffffff, /* src_mask */
901 0xffffffff, /* dst_mask */
902 TRUE), /* pcrel_offset */
903
904 HOWTO (R_ARM_ALU_PC_G0, /* type */
905 0, /* rightshift */
906 2, /* size (0 = byte, 1 = short, 2 = long) */
907 32, /* bitsize */
908 TRUE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_dont,/* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 "R_ARM_ALU_PC_G0", /* name */
913 FALSE, /* partial_inplace */
914 0xffffffff, /* src_mask */
915 0xffffffff, /* dst_mask */
916 TRUE), /* pcrel_offset */
917
918 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
919 0, /* rightshift */
920 2, /* size (0 = byte, 1 = short, 2 = long) */
921 32, /* bitsize */
922 TRUE, /* pc_relative */
923 0, /* bitpos */
924 complain_overflow_dont,/* complain_on_overflow */
925 bfd_elf_generic_reloc, /* special_function */
926 "R_ARM_ALU_PC_G1_NC", /* name */
927 FALSE, /* partial_inplace */
928 0xffffffff, /* src_mask */
929 0xffffffff, /* dst_mask */
930 TRUE), /* pcrel_offset */
931
932 HOWTO (R_ARM_ALU_PC_G1, /* type */
933 0, /* rightshift */
934 2, /* size (0 = byte, 1 = short, 2 = long) */
935 32, /* bitsize */
936 TRUE, /* pc_relative */
937 0, /* bitpos */
938 complain_overflow_dont,/* complain_on_overflow */
939 bfd_elf_generic_reloc, /* special_function */
940 "R_ARM_ALU_PC_G1", /* name */
941 FALSE, /* partial_inplace */
942 0xffffffff, /* src_mask */
943 0xffffffff, /* dst_mask */
944 TRUE), /* pcrel_offset */
945
946 HOWTO (R_ARM_ALU_PC_G2, /* type */
947 0, /* rightshift */
948 2, /* size (0 = byte, 1 = short, 2 = long) */
949 32, /* bitsize */
950 TRUE, /* pc_relative */
951 0, /* bitpos */
952 complain_overflow_dont,/* complain_on_overflow */
953 bfd_elf_generic_reloc, /* special_function */
954 "R_ARM_ALU_PC_G2", /* name */
955 FALSE, /* partial_inplace */
956 0xffffffff, /* src_mask */
957 0xffffffff, /* dst_mask */
958 TRUE), /* pcrel_offset */
959
960 HOWTO (R_ARM_LDR_PC_G1, /* type */
961 0, /* rightshift */
962 2, /* size (0 = byte, 1 = short, 2 = long) */
963 32, /* bitsize */
964 TRUE, /* pc_relative */
965 0, /* bitpos */
966 complain_overflow_dont,/* complain_on_overflow */
967 bfd_elf_generic_reloc, /* special_function */
968 "R_ARM_LDR_PC_G1", /* name */
969 FALSE, /* partial_inplace */
970 0xffffffff, /* src_mask */
971 0xffffffff, /* dst_mask */
972 TRUE), /* pcrel_offset */
973
974 HOWTO (R_ARM_LDR_PC_G2, /* type */
975 0, /* rightshift */
976 2, /* size (0 = byte, 1 = short, 2 = long) */
977 32, /* bitsize */
978 TRUE, /* pc_relative */
979 0, /* bitpos */
980 complain_overflow_dont,/* complain_on_overflow */
981 bfd_elf_generic_reloc, /* special_function */
982 "R_ARM_LDR_PC_G2", /* name */
983 FALSE, /* partial_inplace */
984 0xffffffff, /* src_mask */
985 0xffffffff, /* dst_mask */
986 TRUE), /* pcrel_offset */
987
988 HOWTO (R_ARM_LDRS_PC_G0, /* type */
989 0, /* rightshift */
990 2, /* size (0 = byte, 1 = short, 2 = long) */
991 32, /* bitsize */
992 TRUE, /* pc_relative */
993 0, /* bitpos */
994 complain_overflow_dont,/* complain_on_overflow */
995 bfd_elf_generic_reloc, /* special_function */
996 "R_ARM_LDRS_PC_G0", /* name */
997 FALSE, /* partial_inplace */
998 0xffffffff, /* src_mask */
999 0xffffffff, /* dst_mask */
1000 TRUE), /* pcrel_offset */
1001
1002 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1003 0, /* rightshift */
1004 2, /* size (0 = byte, 1 = short, 2 = long) */
1005 32, /* bitsize */
1006 TRUE, /* pc_relative */
1007 0, /* bitpos */
1008 complain_overflow_dont,/* complain_on_overflow */
1009 bfd_elf_generic_reloc, /* special_function */
1010 "R_ARM_LDRS_PC_G1", /* name */
1011 FALSE, /* partial_inplace */
1012 0xffffffff, /* src_mask */
1013 0xffffffff, /* dst_mask */
1014 TRUE), /* pcrel_offset */
1015
1016 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1017 0, /* rightshift */
1018 2, /* size (0 = byte, 1 = short, 2 = long) */
1019 32, /* bitsize */
1020 TRUE, /* pc_relative */
1021 0, /* bitpos */
1022 complain_overflow_dont,/* complain_on_overflow */
1023 bfd_elf_generic_reloc, /* special_function */
1024 "R_ARM_LDRS_PC_G2", /* name */
1025 FALSE, /* partial_inplace */
1026 0xffffffff, /* src_mask */
1027 0xffffffff, /* dst_mask */
1028 TRUE), /* pcrel_offset */
1029
1030 HOWTO (R_ARM_LDC_PC_G0, /* type */
1031 0, /* rightshift */
1032 2, /* size (0 = byte, 1 = short, 2 = long) */
1033 32, /* bitsize */
1034 TRUE, /* pc_relative */
1035 0, /* bitpos */
1036 complain_overflow_dont,/* complain_on_overflow */
1037 bfd_elf_generic_reloc, /* special_function */
1038 "R_ARM_LDC_PC_G0", /* name */
1039 FALSE, /* partial_inplace */
1040 0xffffffff, /* src_mask */
1041 0xffffffff, /* dst_mask */
1042 TRUE), /* pcrel_offset */
1043
1044 HOWTO (R_ARM_LDC_PC_G1, /* type */
1045 0, /* rightshift */
1046 2, /* size (0 = byte, 1 = short, 2 = long) */
1047 32, /* bitsize */
1048 TRUE, /* pc_relative */
1049 0, /* bitpos */
1050 complain_overflow_dont,/* complain_on_overflow */
1051 bfd_elf_generic_reloc, /* special_function */
1052 "R_ARM_LDC_PC_G1", /* name */
1053 FALSE, /* partial_inplace */
1054 0xffffffff, /* src_mask */
1055 0xffffffff, /* dst_mask */
1056 TRUE), /* pcrel_offset */
1057
1058 HOWTO (R_ARM_LDC_PC_G2, /* type */
1059 0, /* rightshift */
1060 2, /* size (0 = byte, 1 = short, 2 = long) */
1061 32, /* bitsize */
1062 TRUE, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_dont,/* complain_on_overflow */
1065 bfd_elf_generic_reloc, /* special_function */
1066 "R_ARM_LDC_PC_G2", /* name */
1067 FALSE, /* partial_inplace */
1068 0xffffffff, /* src_mask */
1069 0xffffffff, /* dst_mask */
1070 TRUE), /* pcrel_offset */
1071
1072 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1073 0, /* rightshift */
1074 2, /* size (0 = byte, 1 = short, 2 = long) */
1075 32, /* bitsize */
1076 TRUE, /* pc_relative */
1077 0, /* bitpos */
1078 complain_overflow_dont,/* complain_on_overflow */
1079 bfd_elf_generic_reloc, /* special_function */
1080 "R_ARM_ALU_SB_G0_NC", /* name */
1081 FALSE, /* partial_inplace */
1082 0xffffffff, /* src_mask */
1083 0xffffffff, /* dst_mask */
1084 TRUE), /* pcrel_offset */
1085
1086 HOWTO (R_ARM_ALU_SB_G0, /* type */
1087 0, /* rightshift */
1088 2, /* size (0 = byte, 1 = short, 2 = long) */
1089 32, /* bitsize */
1090 TRUE, /* pc_relative */
1091 0, /* bitpos */
1092 complain_overflow_dont,/* complain_on_overflow */
1093 bfd_elf_generic_reloc, /* special_function */
1094 "R_ARM_ALU_SB_G0", /* name */
1095 FALSE, /* partial_inplace */
1096 0xffffffff, /* src_mask */
1097 0xffffffff, /* dst_mask */
1098 TRUE), /* pcrel_offset */
1099
1100 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1101 0, /* rightshift */
1102 2, /* size (0 = byte, 1 = short, 2 = long) */
1103 32, /* bitsize */
1104 TRUE, /* pc_relative */
1105 0, /* bitpos */
1106 complain_overflow_dont,/* complain_on_overflow */
1107 bfd_elf_generic_reloc, /* special_function */
1108 "R_ARM_ALU_SB_G1_NC", /* name */
1109 FALSE, /* partial_inplace */
1110 0xffffffff, /* src_mask */
1111 0xffffffff, /* dst_mask */
1112 TRUE), /* pcrel_offset */
1113
1114 HOWTO (R_ARM_ALU_SB_G1, /* type */
1115 0, /* rightshift */
1116 2, /* size (0 = byte, 1 = short, 2 = long) */
1117 32, /* bitsize */
1118 TRUE, /* pc_relative */
1119 0, /* bitpos */
1120 complain_overflow_dont,/* complain_on_overflow */
1121 bfd_elf_generic_reloc, /* special_function */
1122 "R_ARM_ALU_SB_G1", /* name */
1123 FALSE, /* partial_inplace */
1124 0xffffffff, /* src_mask */
1125 0xffffffff, /* dst_mask */
1126 TRUE), /* pcrel_offset */
1127
1128 HOWTO (R_ARM_ALU_SB_G2, /* type */
1129 0, /* rightshift */
1130 2, /* size (0 = byte, 1 = short, 2 = long) */
1131 32, /* bitsize */
1132 TRUE, /* pc_relative */
1133 0, /* bitpos */
1134 complain_overflow_dont,/* complain_on_overflow */
1135 bfd_elf_generic_reloc, /* special_function */
1136 "R_ARM_ALU_SB_G2", /* name */
1137 FALSE, /* partial_inplace */
1138 0xffffffff, /* src_mask */
1139 0xffffffff, /* dst_mask */
1140 TRUE), /* pcrel_offset */
1141
1142 HOWTO (R_ARM_LDR_SB_G0, /* type */
1143 0, /* rightshift */
1144 2, /* size (0 = byte, 1 = short, 2 = long) */
1145 32, /* bitsize */
1146 TRUE, /* pc_relative */
1147 0, /* bitpos */
1148 complain_overflow_dont,/* complain_on_overflow */
1149 bfd_elf_generic_reloc, /* special_function */
1150 "R_ARM_LDR_SB_G0", /* name */
1151 FALSE, /* partial_inplace */
1152 0xffffffff, /* src_mask */
1153 0xffffffff, /* dst_mask */
1154 TRUE), /* pcrel_offset */
1155
1156 HOWTO (R_ARM_LDR_SB_G1, /* type */
1157 0, /* rightshift */
1158 2, /* size (0 = byte, 1 = short, 2 = long) */
1159 32, /* bitsize */
1160 TRUE, /* pc_relative */
1161 0, /* bitpos */
1162 complain_overflow_dont,/* complain_on_overflow */
1163 bfd_elf_generic_reloc, /* special_function */
1164 "R_ARM_LDR_SB_G1", /* name */
1165 FALSE, /* partial_inplace */
1166 0xffffffff, /* src_mask */
1167 0xffffffff, /* dst_mask */
1168 TRUE), /* pcrel_offset */
1169
1170 HOWTO (R_ARM_LDR_SB_G2, /* type */
1171 0, /* rightshift */
1172 2, /* size (0 = byte, 1 = short, 2 = long) */
1173 32, /* bitsize */
1174 TRUE, /* pc_relative */
1175 0, /* bitpos */
1176 complain_overflow_dont,/* complain_on_overflow */
1177 bfd_elf_generic_reloc, /* special_function */
1178 "R_ARM_LDR_SB_G2", /* name */
1179 FALSE, /* partial_inplace */
1180 0xffffffff, /* src_mask */
1181 0xffffffff, /* dst_mask */
1182 TRUE), /* pcrel_offset */
1183
1184 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1185 0, /* rightshift */
1186 2, /* size (0 = byte, 1 = short, 2 = long) */
1187 32, /* bitsize */
1188 TRUE, /* pc_relative */
1189 0, /* bitpos */
1190 complain_overflow_dont,/* complain_on_overflow */
1191 bfd_elf_generic_reloc, /* special_function */
1192 "R_ARM_LDRS_SB_G0", /* name */
1193 FALSE, /* partial_inplace */
1194 0xffffffff, /* src_mask */
1195 0xffffffff, /* dst_mask */
1196 TRUE), /* pcrel_offset */
1197
1198 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1199 0, /* rightshift */
1200 2, /* size (0 = byte, 1 = short, 2 = long) */
1201 32, /* bitsize */
1202 TRUE, /* pc_relative */
1203 0, /* bitpos */
1204 complain_overflow_dont,/* complain_on_overflow */
1205 bfd_elf_generic_reloc, /* special_function */
1206 "R_ARM_LDRS_SB_G1", /* name */
1207 FALSE, /* partial_inplace */
1208 0xffffffff, /* src_mask */
1209 0xffffffff, /* dst_mask */
1210 TRUE), /* pcrel_offset */
1211
1212 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1213 0, /* rightshift */
1214 2, /* size (0 = byte, 1 = short, 2 = long) */
1215 32, /* bitsize */
1216 TRUE, /* pc_relative */
1217 0, /* bitpos */
1218 complain_overflow_dont,/* complain_on_overflow */
1219 bfd_elf_generic_reloc, /* special_function */
1220 "R_ARM_LDRS_SB_G2", /* name */
1221 FALSE, /* partial_inplace */
1222 0xffffffff, /* src_mask */
1223 0xffffffff, /* dst_mask */
1224 TRUE), /* pcrel_offset */
1225
1226 HOWTO (R_ARM_LDC_SB_G0, /* type */
1227 0, /* rightshift */
1228 2, /* size (0 = byte, 1 = short, 2 = long) */
1229 32, /* bitsize */
1230 TRUE, /* pc_relative */
1231 0, /* bitpos */
1232 complain_overflow_dont,/* complain_on_overflow */
1233 bfd_elf_generic_reloc, /* special_function */
1234 "R_ARM_LDC_SB_G0", /* name */
1235 FALSE, /* partial_inplace */
1236 0xffffffff, /* src_mask */
1237 0xffffffff, /* dst_mask */
1238 TRUE), /* pcrel_offset */
1239
1240 HOWTO (R_ARM_LDC_SB_G1, /* type */
1241 0, /* rightshift */
1242 2, /* size (0 = byte, 1 = short, 2 = long) */
1243 32, /* bitsize */
1244 TRUE, /* pc_relative */
1245 0, /* bitpos */
1246 complain_overflow_dont,/* complain_on_overflow */
1247 bfd_elf_generic_reloc, /* special_function */
1248 "R_ARM_LDC_SB_G1", /* name */
1249 FALSE, /* partial_inplace */
1250 0xffffffff, /* src_mask */
1251 0xffffffff, /* dst_mask */
1252 TRUE), /* pcrel_offset */
1253
1254 HOWTO (R_ARM_LDC_SB_G2, /* type */
1255 0, /* rightshift */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1257 32, /* bitsize */
1258 TRUE, /* pc_relative */
1259 0, /* bitpos */
1260 complain_overflow_dont,/* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 "R_ARM_LDC_SB_G2", /* name */
1263 FALSE, /* partial_inplace */
1264 0xffffffff, /* src_mask */
1265 0xffffffff, /* dst_mask */
1266 TRUE), /* pcrel_offset */
1267
1268 /* End of group relocations. */
1269
1270 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1271 0, /* rightshift */
1272 2, /* size (0 = byte, 1 = short, 2 = long) */
1273 16, /* bitsize */
1274 FALSE, /* pc_relative */
1275 0, /* bitpos */
1276 complain_overflow_dont,/* complain_on_overflow */
1277 bfd_elf_generic_reloc, /* special_function */
1278 "R_ARM_MOVW_BREL_NC", /* name */
1279 FALSE, /* partial_inplace */
1280 0x0000ffff, /* src_mask */
1281 0x0000ffff, /* dst_mask */
1282 FALSE), /* pcrel_offset */
1283
1284 HOWTO (R_ARM_MOVT_BREL, /* type */
1285 0, /* rightshift */
1286 2, /* size (0 = byte, 1 = short, 2 = long) */
1287 16, /* bitsize */
1288 FALSE, /* pc_relative */
1289 0, /* bitpos */
1290 complain_overflow_bitfield,/* complain_on_overflow */
1291 bfd_elf_generic_reloc, /* special_function */
1292 "R_ARM_MOVT_BREL", /* name */
1293 FALSE, /* partial_inplace */
1294 0x0000ffff, /* src_mask */
1295 0x0000ffff, /* dst_mask */
1296 FALSE), /* pcrel_offset */
1297
1298 HOWTO (R_ARM_MOVW_BREL, /* type */
1299 0, /* rightshift */
1300 2, /* size (0 = byte, 1 = short, 2 = long) */
1301 16, /* bitsize */
1302 FALSE, /* pc_relative */
1303 0, /* bitpos */
1304 complain_overflow_dont,/* complain_on_overflow */
1305 bfd_elf_generic_reloc, /* special_function */
1306 "R_ARM_MOVW_BREL", /* name */
1307 FALSE, /* partial_inplace */
1308 0x0000ffff, /* src_mask */
1309 0x0000ffff, /* dst_mask */
1310 FALSE), /* pcrel_offset */
1311
1312 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1313 0, /* rightshift */
1314 2, /* size (0 = byte, 1 = short, 2 = long) */
1315 16, /* bitsize */
1316 FALSE, /* pc_relative */
1317 0, /* bitpos */
1318 complain_overflow_dont,/* complain_on_overflow */
1319 bfd_elf_generic_reloc, /* special_function */
1320 "R_ARM_THM_MOVW_BREL_NC",/* name */
1321 FALSE, /* partial_inplace */
1322 0x040f70ff, /* src_mask */
1323 0x040f70ff, /* dst_mask */
1324 FALSE), /* pcrel_offset */
1325
1326 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1327 0, /* rightshift */
1328 2, /* size (0 = byte, 1 = short, 2 = long) */
1329 16, /* bitsize */
1330 FALSE, /* pc_relative */
1331 0, /* bitpos */
1332 complain_overflow_bitfield,/* complain_on_overflow */
1333 bfd_elf_generic_reloc, /* special_function */
1334 "R_ARM_THM_MOVT_BREL", /* name */
1335 FALSE, /* partial_inplace */
1336 0x040f70ff, /* src_mask */
1337 0x040f70ff, /* dst_mask */
1338 FALSE), /* pcrel_offset */
1339
1340 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1341 0, /* rightshift */
1342 2, /* size (0 = byte, 1 = short, 2 = long) */
1343 16, /* bitsize */
1344 FALSE, /* pc_relative */
1345 0, /* bitpos */
1346 complain_overflow_dont,/* complain_on_overflow */
1347 bfd_elf_generic_reloc, /* special_function */
1348 "R_ARM_THM_MOVW_BREL", /* name */
1349 FALSE, /* partial_inplace */
1350 0x040f70ff, /* src_mask */
1351 0x040f70ff, /* dst_mask */
1352 FALSE), /* pcrel_offset */
1353
1354 EMPTY_HOWTO (90), /* unallocated */
1355 EMPTY_HOWTO (91),
1356 EMPTY_HOWTO (92),
1357 EMPTY_HOWTO (93),
1358
1359 HOWTO (R_ARM_PLT32_ABS, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_dont,/* complain_on_overflow */
1366 bfd_elf_generic_reloc, /* special_function */
1367 "R_ARM_PLT32_ABS", /* name */
1368 FALSE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_GOT_ABS, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 32, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_GOT_ABS", /* name */
1382 FALSE, /* partial_inplace */
1383 0xffffffff, /* src_mask */
1384 0xffffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_GOT_PREL, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 32, /* bitsize */
1391 TRUE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_dont, /* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_GOT_PREL", /* name */
1396 FALSE, /* partial_inplace */
1397 0xffffffff, /* src_mask */
1398 0xffffffff, /* dst_mask */
1399 TRUE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_GOT_BREL12, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 12, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_bitfield,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_GOT_BREL12", /* name */
1410 FALSE, /* partial_inplace */
1411 0x00000fff, /* src_mask */
1412 0x00000fff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_GOTOFF12, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 12, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_bitfield,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_GOTOFF12", /* name */
1424 FALSE, /* partial_inplace */
1425 0x00000fff, /* src_mask */
1426 0x00000fff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1430
1431 /* GNU extension to record C++ vtable member usage */
1432 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1433 0, /* rightshift */
1434 2, /* size (0 = byte, 1 = short, 2 = long) */
1435 0, /* bitsize */
1436 FALSE, /* pc_relative */
1437 0, /* bitpos */
1438 complain_overflow_dont, /* complain_on_overflow */
1439 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1440 "R_ARM_GNU_VTENTRY", /* name */
1441 FALSE, /* partial_inplace */
1442 0, /* src_mask */
1443 0, /* dst_mask */
1444 FALSE), /* pcrel_offset */
1445
1446 /* GNU extension to record C++ vtable hierarchy */
1447 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1448 0, /* rightshift */
1449 2, /* size (0 = byte, 1 = short, 2 = long) */
1450 0, /* bitsize */
1451 FALSE, /* pc_relative */
1452 0, /* bitpos */
1453 complain_overflow_dont, /* complain_on_overflow */
1454 NULL, /* special_function */
1455 "R_ARM_GNU_VTINHERIT", /* name */
1456 FALSE, /* partial_inplace */
1457 0, /* src_mask */
1458 0, /* dst_mask */
1459 FALSE), /* pcrel_offset */
1460
1461 HOWTO (R_ARM_THM_JUMP11, /* type */
1462 1, /* rightshift */
1463 1, /* size (0 = byte, 1 = short, 2 = long) */
1464 11, /* bitsize */
1465 TRUE, /* pc_relative */
1466 0, /* bitpos */
1467 complain_overflow_signed, /* complain_on_overflow */
1468 bfd_elf_generic_reloc, /* special_function */
1469 "R_ARM_THM_JUMP11", /* name */
1470 FALSE, /* partial_inplace */
1471 0x000007ff, /* src_mask */
1472 0x000007ff, /* dst_mask */
1473 TRUE), /* pcrel_offset */
1474
1475 HOWTO (R_ARM_THM_JUMP8, /* type */
1476 1, /* rightshift */
1477 1, /* size (0 = byte, 1 = short, 2 = long) */
1478 8, /* bitsize */
1479 TRUE, /* pc_relative */
1480 0, /* bitpos */
1481 complain_overflow_signed, /* complain_on_overflow */
1482 bfd_elf_generic_reloc, /* special_function */
1483 "R_ARM_THM_JUMP8", /* name */
1484 FALSE, /* partial_inplace */
1485 0x000000ff, /* src_mask */
1486 0x000000ff, /* dst_mask */
1487 TRUE), /* pcrel_offset */
1488
1489 /* TLS relocations */
1490 HOWTO (R_ARM_TLS_GD32, /* type */
1491 0, /* rightshift */
1492 2, /* size (0 = byte, 1 = short, 2 = long) */
1493 32, /* bitsize */
1494 FALSE, /* pc_relative */
1495 0, /* bitpos */
1496 complain_overflow_bitfield,/* complain_on_overflow */
1497 NULL, /* special_function */
1498 "R_ARM_TLS_GD32", /* name */
1499 TRUE, /* partial_inplace */
1500 0xffffffff, /* src_mask */
1501 0xffffffff, /* dst_mask */
1502 FALSE), /* pcrel_offset */
1503
1504 HOWTO (R_ARM_TLS_LDM32, /* type */
1505 0, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 32, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_bitfield,/* complain_on_overflow */
1511 bfd_elf_generic_reloc, /* special_function */
1512 "R_ARM_TLS_LDM32", /* name */
1513 TRUE, /* partial_inplace */
1514 0xffffffff, /* src_mask */
1515 0xffffffff, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 HOWTO (R_ARM_TLS_LDO32, /* type */
1519 0, /* rightshift */
1520 2, /* size (0 = byte, 1 = short, 2 = long) */
1521 32, /* bitsize */
1522 FALSE, /* pc_relative */
1523 0, /* bitpos */
1524 complain_overflow_bitfield,/* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 "R_ARM_TLS_LDO32", /* name */
1527 TRUE, /* partial_inplace */
1528 0xffffffff, /* src_mask */
1529 0xffffffff, /* dst_mask */
1530 FALSE), /* pcrel_offset */
1531
1532 HOWTO (R_ARM_TLS_IE32, /* type */
1533 0, /* rightshift */
1534 2, /* size (0 = byte, 1 = short, 2 = long) */
1535 32, /* bitsize */
1536 FALSE, /* pc_relative */
1537 0, /* bitpos */
1538 complain_overflow_bitfield,/* complain_on_overflow */
1539 NULL, /* special_function */
1540 "R_ARM_TLS_IE32", /* name */
1541 TRUE, /* partial_inplace */
1542 0xffffffff, /* src_mask */
1543 0xffffffff, /* dst_mask */
1544 FALSE), /* pcrel_offset */
1545
1546 HOWTO (R_ARM_TLS_LE32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 bfd_elf_generic_reloc, /* special_function */
1554 "R_ARM_TLS_LE32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDO12, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 12, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDO12", /* name */
1569 FALSE, /* partial_inplace */
1570 0x00000fff, /* src_mask */
1571 0x00000fff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LE12, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 12, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LE12", /* name */
1583 FALSE, /* partial_inplace */
1584 0x00000fff, /* src_mask */
1585 0x00000fff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE12GP, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 12, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 bfd_elf_generic_reloc, /* special_function */
1596 "R_ARM_TLS_IE12GP", /* name */
1597 FALSE, /* partial_inplace */
1598 0x00000fff, /* src_mask */
1599 0x00000fff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601 };
1602
1603 /* 112-127 private relocations
1604 128 R_ARM_ME_TOO, obsolete
1605 129-255 unallocated in AAELF.
1606
1607 249-255 extended, currently unused, relocations: */
1608
1609 static reloc_howto_type elf32_arm_howto_table_2[4] =
1610 {
1611 HOWTO (R_ARM_RREL32, /* type */
1612 0, /* rightshift */
1613 0, /* size (0 = byte, 1 = short, 2 = long) */
1614 0, /* bitsize */
1615 FALSE, /* pc_relative */
1616 0, /* bitpos */
1617 complain_overflow_dont,/* complain_on_overflow */
1618 bfd_elf_generic_reloc, /* special_function */
1619 "R_ARM_RREL32", /* name */
1620 FALSE, /* partial_inplace */
1621 0, /* src_mask */
1622 0, /* dst_mask */
1623 FALSE), /* pcrel_offset */
1624
1625 HOWTO (R_ARM_RABS32, /* type */
1626 0, /* rightshift */
1627 0, /* size (0 = byte, 1 = short, 2 = long) */
1628 0, /* bitsize */
1629 FALSE, /* pc_relative */
1630 0, /* bitpos */
1631 complain_overflow_dont,/* complain_on_overflow */
1632 bfd_elf_generic_reloc, /* special_function */
1633 "R_ARM_RABS32", /* name */
1634 FALSE, /* partial_inplace */
1635 0, /* src_mask */
1636 0, /* dst_mask */
1637 FALSE), /* pcrel_offset */
1638
1639 HOWTO (R_ARM_RPC24, /* type */
1640 0, /* rightshift */
1641 0, /* size (0 = byte, 1 = short, 2 = long) */
1642 0, /* bitsize */
1643 FALSE, /* pc_relative */
1644 0, /* bitpos */
1645 complain_overflow_dont,/* complain_on_overflow */
1646 bfd_elf_generic_reloc, /* special_function */
1647 "R_ARM_RPC24", /* name */
1648 FALSE, /* partial_inplace */
1649 0, /* src_mask */
1650 0, /* dst_mask */
1651 FALSE), /* pcrel_offset */
1652
1653 HOWTO (R_ARM_RBASE, /* type */
1654 0, /* rightshift */
1655 0, /* size (0 = byte, 1 = short, 2 = long) */
1656 0, /* bitsize */
1657 FALSE, /* pc_relative */
1658 0, /* bitpos */
1659 complain_overflow_dont,/* complain_on_overflow */
1660 bfd_elf_generic_reloc, /* special_function */
1661 "R_ARM_RBASE", /* name */
1662 FALSE, /* partial_inplace */
1663 0, /* src_mask */
1664 0, /* dst_mask */
1665 FALSE) /* pcrel_offset */
1666 };
1667
1668 static reloc_howto_type *
1669 elf32_arm_howto_from_type (unsigned int r_type)
1670 {
1671 if (r_type < NUM_ELEM (elf32_arm_howto_table_1))
1672 return &elf32_arm_howto_table_1[r_type];
1673
1674 if (r_type >= R_ARM_RREL32
1675 && r_type < R_ARM_RREL32 + NUM_ELEM (elf32_arm_howto_table_2))
1676 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1677
1678 return NULL;
1679 }
1680
1681 static void
1682 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1683 Elf_Internal_Rela * elf_reloc)
1684 {
1685 unsigned int r_type;
1686
1687 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1688 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1689 }
1690
1691 struct elf32_arm_reloc_map
1692 {
1693 bfd_reloc_code_real_type bfd_reloc_val;
1694 unsigned char elf_reloc_val;
1695 };
1696
1697 /* All entries in this list must also be present in elf32_arm_howto_table. */
1698 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1699 {
1700 {BFD_RELOC_NONE, R_ARM_NONE},
1701 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1702 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1703 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1704 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1705 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1706 {BFD_RELOC_32, R_ARM_ABS32},
1707 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1708 {BFD_RELOC_8, R_ARM_ABS8},
1709 {BFD_RELOC_16, R_ARM_ABS16},
1710 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1711 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1714 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1715 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1717 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1718 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1719 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1720 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1721 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1722 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1723 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1724 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1725 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1726 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1727 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1728 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1729 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1730 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1731 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1732 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1733 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1734 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1735 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1736 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1737 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1738 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1739 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1740 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1741 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1743 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1745 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1746 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1747 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1748 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1749 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1750 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1751 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1752 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1753 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1754 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1755 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1756 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1757 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1758 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1759 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1760 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1761 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1762 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1763 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1764 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1765 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1766 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1767 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1768 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1769 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1770 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1771 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1772 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1773 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1774 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1775 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1776 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2}
1777 };
1778
1779 static reloc_howto_type *
1780 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1781 bfd_reloc_code_real_type code)
1782 {
1783 unsigned int i;
1784 for (i = 0; i < NUM_ELEM (elf32_arm_reloc_map); i ++)
1785 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1786 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1787
1788 return NULL;
1789 }
1790
1791 static reloc_howto_type *
1792 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1793 const char *r_name)
1794 {
1795 unsigned int i;
1796
1797 for (i = 0;
1798 i < (sizeof (elf32_arm_howto_table_1)
1799 / sizeof (elf32_arm_howto_table_1[0]));
1800 i++)
1801 if (elf32_arm_howto_table_1[i].name != NULL
1802 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1803 return &elf32_arm_howto_table_1[i];
1804
1805 for (i = 0;
1806 i < (sizeof (elf32_arm_howto_table_2)
1807 / sizeof (elf32_arm_howto_table_2[0]));
1808 i++)
1809 if (elf32_arm_howto_table_2[i].name != NULL
1810 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1811 return &elf32_arm_howto_table_2[i];
1812
1813 return NULL;
1814 }
1815
1816 /* Support for core dump NOTE sections */
1817 static bfd_boolean
1818 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1819 {
1820 int offset;
1821 size_t size;
1822
1823 switch (note->descsz)
1824 {
1825 default:
1826 return FALSE;
1827
1828 case 148: /* Linux/ARM 32-bit*/
1829 /* pr_cursig */
1830 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1831
1832 /* pr_pid */
1833 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1834
1835 /* pr_reg */
1836 offset = 72;
1837 size = 72;
1838
1839 break;
1840 }
1841
1842 /* Make a ".reg/999" section. */
1843 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1844 size, note->descpos + offset);
1845 }
1846
1847 static bfd_boolean
1848 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1849 {
1850 switch (note->descsz)
1851 {
1852 default:
1853 return FALSE;
1854
1855 case 124: /* Linux/ARM elf_prpsinfo */
1856 elf_tdata (abfd)->core_program
1857 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1858 elf_tdata (abfd)->core_command
1859 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1860 }
1861
1862 /* Note that for some reason, a spurious space is tacked
1863 onto the end of the args in some (at least one anyway)
1864 implementations, so strip it off if it exists. */
1865
1866 {
1867 char *command = elf_tdata (abfd)->core_command;
1868 int n = strlen (command);
1869
1870 if (0 < n && command[n - 1] == ' ')
1871 command[n - 1] = '\0';
1872 }
1873
1874 return TRUE;
1875 }
1876
1877 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1878 #define TARGET_LITTLE_NAME "elf32-littlearm"
1879 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1880 #define TARGET_BIG_NAME "elf32-bigarm"
1881
1882 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1883 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1884
1885 typedef unsigned long int insn32;
1886 typedef unsigned short int insn16;
1887
1888 /* In lieu of proper flags, assume all EABIv4 or later objects are
1889 interworkable. */
1890 #define INTERWORK_FLAG(abfd) \
1891 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1892 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1893
1894 /* The linker script knows the section names for placement.
1895 The entry_names are used to do simple name mangling on the stubs.
1896 Given a function name, and its type, the stub can be found. The
1897 name can be changed. The only requirement is the %s be present. */
1898 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1899 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1900
1901 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1902 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1903
1904 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1905 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1906
1907 /* The name of the dynamic interpreter. This is put in the .interp
1908 section. */
1909 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1910
1911 #ifdef FOUR_WORD_PLT
1912
1913 /* The first entry in a procedure linkage table looks like
1914 this. It is set up so that any shared library function that is
1915 called before the relocation has been set up calls the dynamic
1916 linker first. */
1917 static const bfd_vma elf32_arm_plt0_entry [] =
1918 {
1919 0xe52de004, /* str lr, [sp, #-4]! */
1920 0xe59fe010, /* ldr lr, [pc, #16] */
1921 0xe08fe00e, /* add lr, pc, lr */
1922 0xe5bef008, /* ldr pc, [lr, #8]! */
1923 };
1924
1925 /* Subsequent entries in a procedure linkage table look like
1926 this. */
1927 static const bfd_vma elf32_arm_plt_entry [] =
1928 {
1929 0xe28fc600, /* add ip, pc, #NN */
1930 0xe28cca00, /* add ip, ip, #NN */
1931 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1932 0x00000000, /* unused */
1933 };
1934
1935 #else
1936
1937 /* The first entry in a procedure linkage table looks like
1938 this. It is set up so that any shared library function that is
1939 called before the relocation has been set up calls the dynamic
1940 linker first. */
1941 static const bfd_vma elf32_arm_plt0_entry [] =
1942 {
1943 0xe52de004, /* str lr, [sp, #-4]! */
1944 0xe59fe004, /* ldr lr, [pc, #4] */
1945 0xe08fe00e, /* add lr, pc, lr */
1946 0xe5bef008, /* ldr pc, [lr, #8]! */
1947 0x00000000, /* &GOT[0] - . */
1948 };
1949
1950 /* Subsequent entries in a procedure linkage table look like
1951 this. */
1952 static const bfd_vma elf32_arm_plt_entry [] =
1953 {
1954 0xe28fc600, /* add ip, pc, #0xNN00000 */
1955 0xe28cca00, /* add ip, ip, #0xNN000 */
1956 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1957 };
1958
1959 #endif
1960
1961 /* The format of the first entry in the procedure linkage table
1962 for a VxWorks executable. */
1963 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1964 {
1965 0xe52dc008, /* str ip,[sp,#-8]! */
1966 0xe59fc000, /* ldr ip,[pc] */
1967 0xe59cf008, /* ldr pc,[ip,#8] */
1968 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1969 };
1970
1971 /* The format of subsequent entries in a VxWorks executable. */
1972 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1973 {
1974 0xe59fc000, /* ldr ip,[pc] */
1975 0xe59cf000, /* ldr pc,[ip] */
1976 0x00000000, /* .long @got */
1977 0xe59fc000, /* ldr ip,[pc] */
1978 0xea000000, /* b _PLT */
1979 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1980 };
1981
1982 /* The format of entries in a VxWorks shared library. */
1983 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1984 {
1985 0xe59fc000, /* ldr ip,[pc] */
1986 0xe79cf009, /* ldr pc,[ip,r9] */
1987 0x00000000, /* .long @got */
1988 0xe59fc000, /* ldr ip,[pc] */
1989 0xe599f008, /* ldr pc,[r9,#8] */
1990 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1991 };
1992
1993 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1994 #define PLT_THUMB_STUB_SIZE 4
1995 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1996 {
1997 0x4778, /* bx pc */
1998 0x46c0 /* nop */
1999 };
2000
2001 /* The entries in a PLT when using a DLL-based target with multiple
2002 address spaces. */
2003 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2004 {
2005 0xe51ff004, /* ldr pc, [pc, #-4] */
2006 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2007 };
2008
2009 /* Used to build a map of a section. This is required for mixed-endian
2010 code/data. */
2011
2012 typedef struct elf32_elf_section_map
2013 {
2014 bfd_vma vma;
2015 char type;
2016 }
2017 elf32_arm_section_map;
2018
2019 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2020
2021 typedef enum
2022 {
2023 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2024 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2025 VFP11_ERRATUM_ARM_VENEER,
2026 VFP11_ERRATUM_THUMB_VENEER
2027 }
2028 elf32_vfp11_erratum_type;
2029
2030 typedef struct elf32_vfp11_erratum_list
2031 {
2032 struct elf32_vfp11_erratum_list *next;
2033 bfd_vma vma;
2034 union
2035 {
2036 struct
2037 {
2038 struct elf32_vfp11_erratum_list *veneer;
2039 unsigned int vfp_insn;
2040 } b;
2041 struct
2042 {
2043 struct elf32_vfp11_erratum_list *branch;
2044 unsigned int id;
2045 } v;
2046 } u;
2047 elf32_vfp11_erratum_type type;
2048 }
2049 elf32_vfp11_erratum_list;
2050
2051 typedef struct _arm_elf_section_data
2052 {
2053 struct bfd_elf_section_data elf;
2054 unsigned int mapcount;
2055 unsigned int mapsize;
2056 elf32_arm_section_map *map;
2057 unsigned int erratumcount;
2058 elf32_vfp11_erratum_list *erratumlist;
2059 }
2060 _arm_elf_section_data;
2061
2062 #define elf32_arm_section_data(sec) \
2063 ((_arm_elf_section_data *) elf_section_data (sec))
2064
2065 /* The size of the thread control block. */
2066 #define TCB_SIZE 8
2067
2068 struct elf32_arm_obj_tdata
2069 {
2070 struct elf_obj_tdata root;
2071
2072 /* tls_type for each local got entry. */
2073 char *local_got_tls_type;
2074
2075 /* Zero to warn when linking objects with incompatible enum sizes. */
2076 int no_enum_size_warning;
2077 };
2078
2079 #define elf32_arm_tdata(abfd) \
2080 ((struct elf32_arm_obj_tdata *) (abfd)->tdata.any)
2081
2082 #define elf32_arm_local_got_tls_type(abfd) \
2083 (elf32_arm_tdata (abfd)->local_got_tls_type)
2084
2085 static bfd_boolean
2086 elf32_arm_mkobject (bfd *abfd)
2087 {
2088 if (abfd->tdata.any == NULL)
2089 {
2090 bfd_size_type amt = sizeof (struct elf32_arm_obj_tdata);
2091 abfd->tdata.any = bfd_zalloc (abfd, amt);
2092 if (abfd->tdata.any == NULL)
2093 return FALSE;
2094 }
2095 return bfd_elf_mkobject (abfd);
2096 }
2097
2098 /* The ARM linker needs to keep track of the number of relocs that it
2099 decides to copy in check_relocs for each symbol. This is so that
2100 it can discard PC relative relocs if it doesn't need them when
2101 linking with -Bsymbolic. We store the information in a field
2102 extending the regular ELF linker hash table. */
2103
2104 /* This structure keeps track of the number of relocs we have copied
2105 for a given symbol. */
2106 struct elf32_arm_relocs_copied
2107 {
2108 /* Next section. */
2109 struct elf32_arm_relocs_copied * next;
2110 /* A section in dynobj. */
2111 asection * section;
2112 /* Number of relocs copied in this section. */
2113 bfd_size_type count;
2114 /* Number of PC-relative relocs copied in this section. */
2115 bfd_size_type pc_count;
2116 };
2117
2118 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2119
2120 /* Arm ELF linker hash entry. */
2121 struct elf32_arm_link_hash_entry
2122 {
2123 struct elf_link_hash_entry root;
2124
2125 /* Number of PC relative relocs copied for this symbol. */
2126 struct elf32_arm_relocs_copied * relocs_copied;
2127
2128 /* We reference count Thumb references to a PLT entry separately,
2129 so that we can emit the Thumb trampoline only if needed. */
2130 bfd_signed_vma plt_thumb_refcount;
2131
2132 /* Some references from Thumb code may be eliminated by BL->BLX
2133 conversion, so record them separately. */
2134 bfd_signed_vma plt_maybe_thumb_refcount;
2135
2136 /* Since PLT entries have variable size if the Thumb prologue is
2137 used, we need to record the index into .got.plt instead of
2138 recomputing it from the PLT offset. */
2139 bfd_signed_vma plt_got_offset;
2140
2141 #define GOT_UNKNOWN 0
2142 #define GOT_NORMAL 1
2143 #define GOT_TLS_GD 2
2144 #define GOT_TLS_IE 4
2145 unsigned char tls_type;
2146
2147 /* The symbol marking the real symbol location for exported thumb
2148 symbols with Arm stubs. */
2149 struct elf_link_hash_entry *export_glue;
2150 };
2151
2152 /* Traverse an arm ELF linker hash table. */
2153 #define elf32_arm_link_hash_traverse(table, func, info) \
2154 (elf_link_hash_traverse \
2155 (&(table)->root, \
2156 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2157 (info)))
2158
2159 /* Get the ARM elf linker hash table from a link_info structure. */
2160 #define elf32_arm_hash_table(info) \
2161 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2162
2163 /* ARM ELF linker hash table. */
2164 struct elf32_arm_link_hash_table
2165 {
2166 /* The main hash table. */
2167 struct elf_link_hash_table root;
2168
2169 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2170 bfd_size_type thumb_glue_size;
2171
2172 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2173 bfd_size_type arm_glue_size;
2174
2175 /* The size in bytes of the section containing glue for VFP11 erratum
2176 veneers. */
2177 bfd_size_type vfp11_erratum_glue_size;
2178
2179 /* An arbitrary input BFD chosen to hold the glue sections. */
2180 bfd * bfd_of_glue_owner;
2181
2182 /* Nonzero to output a BE8 image. */
2183 int byteswap_code;
2184
2185 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2186 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2187 int target1_is_rel;
2188
2189 /* The relocation to use for R_ARM_TARGET2 relocations. */
2190 int target2_reloc;
2191
2192 /* Nonzero to fix BX instructions for ARMv4 targets. */
2193 int fix_v4bx;
2194
2195 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2196 int use_blx;
2197
2198 /* What sort of code sequences we should look for which may trigger the
2199 VFP11 denorm erratum. */
2200 bfd_arm_vfp11_fix vfp11_fix;
2201
2202 /* Global counter for the number of fixes we have emitted. */
2203 int num_vfp11_fixes;
2204
2205 /* Nonzero to force PIC branch veneers. */
2206 int pic_veneer;
2207
2208 /* The number of bytes in the initial entry in the PLT. */
2209 bfd_size_type plt_header_size;
2210
2211 /* The number of bytes in the subsequent PLT etries. */
2212 bfd_size_type plt_entry_size;
2213
2214 /* True if the target system is VxWorks. */
2215 int vxworks_p;
2216
2217 /* True if the target system is Symbian OS. */
2218 int symbian_p;
2219
2220 /* True if the target uses REL relocations. */
2221 int use_rel;
2222
2223 /* Short-cuts to get to dynamic linker sections. */
2224 asection *sgot;
2225 asection *sgotplt;
2226 asection *srelgot;
2227 asection *splt;
2228 asection *srelplt;
2229 asection *sdynbss;
2230 asection *srelbss;
2231
2232 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2233 asection *srelplt2;
2234
2235 /* Data for R_ARM_TLS_LDM32 relocations. */
2236 union {
2237 bfd_signed_vma refcount;
2238 bfd_vma offset;
2239 } tls_ldm_got;
2240
2241 /* Small local sym to section mapping cache. */
2242 struct sym_sec_cache sym_sec;
2243
2244 /* For convenience in allocate_dynrelocs. */
2245 bfd * obfd;
2246 };
2247
2248 /* Create an entry in an ARM ELF linker hash table. */
2249
2250 static struct bfd_hash_entry *
2251 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2252 struct bfd_hash_table * table,
2253 const char * string)
2254 {
2255 struct elf32_arm_link_hash_entry * ret =
2256 (struct elf32_arm_link_hash_entry *) entry;
2257
2258 /* Allocate the structure if it has not already been allocated by a
2259 subclass. */
2260 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
2261 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2262 if (ret == NULL)
2263 return (struct bfd_hash_entry *) ret;
2264
2265 /* Call the allocation method of the superclass. */
2266 ret = ((struct elf32_arm_link_hash_entry *)
2267 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2268 table, string));
2269 if (ret != NULL)
2270 {
2271 ret->relocs_copied = NULL;
2272 ret->tls_type = GOT_UNKNOWN;
2273 ret->plt_thumb_refcount = 0;
2274 ret->plt_maybe_thumb_refcount = 0;
2275 ret->plt_got_offset = -1;
2276 ret->export_glue = NULL;
2277 }
2278
2279 return (struct bfd_hash_entry *) ret;
2280 }
2281
2282 /* Return true if NAME is the name of the relocation section associated
2283 with S. */
2284
2285 static bfd_boolean
2286 reloc_section_p (struct elf32_arm_link_hash_table *htab,
2287 const char *name, asection *s)
2288 {
2289 if (htab->use_rel)
2290 return CONST_STRNEQ (name, ".rel") && strcmp (s->name, name + 4) == 0;
2291 else
2292 return CONST_STRNEQ (name, ".rela") && strcmp (s->name, name + 5) == 0;
2293 }
2294
2295 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2296 shortcuts to them in our hash table. */
2297
2298 static bfd_boolean
2299 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2300 {
2301 struct elf32_arm_link_hash_table *htab;
2302
2303 htab = elf32_arm_hash_table (info);
2304 /* BPABI objects never have a GOT, or associated sections. */
2305 if (htab->symbian_p)
2306 return TRUE;
2307
2308 if (! _bfd_elf_create_got_section (dynobj, info))
2309 return FALSE;
2310
2311 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2312 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2313 if (!htab->sgot || !htab->sgotplt)
2314 abort ();
2315
2316 htab->srelgot = bfd_make_section_with_flags (dynobj,
2317 RELOC_SECTION (htab, ".got"),
2318 (SEC_ALLOC | SEC_LOAD
2319 | SEC_HAS_CONTENTS
2320 | SEC_IN_MEMORY
2321 | SEC_LINKER_CREATED
2322 | SEC_READONLY));
2323 if (htab->srelgot == NULL
2324 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2325 return FALSE;
2326 return TRUE;
2327 }
2328
2329 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2330 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2331 hash table. */
2332
2333 static bfd_boolean
2334 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2335 {
2336 struct elf32_arm_link_hash_table *htab;
2337
2338 htab = elf32_arm_hash_table (info);
2339 if (!htab->sgot && !create_got_section (dynobj, info))
2340 return FALSE;
2341
2342 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2343 return FALSE;
2344
2345 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2346 htab->srelplt = bfd_get_section_by_name (dynobj,
2347 RELOC_SECTION (htab, ".plt"));
2348 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2349 if (!info->shared)
2350 htab->srelbss = bfd_get_section_by_name (dynobj,
2351 RELOC_SECTION (htab, ".bss"));
2352
2353 if (htab->vxworks_p)
2354 {
2355 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2356 return FALSE;
2357
2358 if (info->shared)
2359 {
2360 htab->plt_header_size = 0;
2361 htab->plt_entry_size
2362 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2363 }
2364 else
2365 {
2366 htab->plt_header_size
2367 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2368 htab->plt_entry_size
2369 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2370 }
2371 }
2372
2373 if (!htab->splt
2374 || !htab->srelplt
2375 || !htab->sdynbss
2376 || (!info->shared && !htab->srelbss))
2377 abort ();
2378
2379 return TRUE;
2380 }
2381
2382 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2383
2384 static void
2385 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2386 struct elf_link_hash_entry *dir,
2387 struct elf_link_hash_entry *ind)
2388 {
2389 struct elf32_arm_link_hash_entry *edir, *eind;
2390
2391 edir = (struct elf32_arm_link_hash_entry *) dir;
2392 eind = (struct elf32_arm_link_hash_entry *) ind;
2393
2394 if (eind->relocs_copied != NULL)
2395 {
2396 if (edir->relocs_copied != NULL)
2397 {
2398 struct elf32_arm_relocs_copied **pp;
2399 struct elf32_arm_relocs_copied *p;
2400
2401 /* Add reloc counts against the indirect sym to the direct sym
2402 list. Merge any entries against the same section. */
2403 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2404 {
2405 struct elf32_arm_relocs_copied *q;
2406
2407 for (q = edir->relocs_copied; q != NULL; q = q->next)
2408 if (q->section == p->section)
2409 {
2410 q->pc_count += p->pc_count;
2411 q->count += p->count;
2412 *pp = p->next;
2413 break;
2414 }
2415 if (q == NULL)
2416 pp = &p->next;
2417 }
2418 *pp = edir->relocs_copied;
2419 }
2420
2421 edir->relocs_copied = eind->relocs_copied;
2422 eind->relocs_copied = NULL;
2423 }
2424
2425 if (ind->root.type == bfd_link_hash_indirect)
2426 {
2427 /* Copy over PLT info. */
2428 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2429 eind->plt_thumb_refcount = 0;
2430 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2431 eind->plt_maybe_thumb_refcount = 0;
2432
2433 if (dir->got.refcount <= 0)
2434 {
2435 edir->tls_type = eind->tls_type;
2436 eind->tls_type = GOT_UNKNOWN;
2437 }
2438 }
2439
2440 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2441 }
2442
2443 /* Create an ARM elf linker hash table. */
2444
2445 static struct bfd_link_hash_table *
2446 elf32_arm_link_hash_table_create (bfd *abfd)
2447 {
2448 struct elf32_arm_link_hash_table *ret;
2449 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2450
2451 ret = bfd_malloc (amt);
2452 if (ret == NULL)
2453 return NULL;
2454
2455 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2456 elf32_arm_link_hash_newfunc,
2457 sizeof (struct elf32_arm_link_hash_entry)))
2458 {
2459 free (ret);
2460 return NULL;
2461 }
2462
2463 ret->sgot = NULL;
2464 ret->sgotplt = NULL;
2465 ret->srelgot = NULL;
2466 ret->splt = NULL;
2467 ret->srelplt = NULL;
2468 ret->sdynbss = NULL;
2469 ret->srelbss = NULL;
2470 ret->srelplt2 = NULL;
2471 ret->thumb_glue_size = 0;
2472 ret->arm_glue_size = 0;
2473 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2474 ret->vfp11_erratum_glue_size = 0;
2475 ret->num_vfp11_fixes = 0;
2476 ret->bfd_of_glue_owner = NULL;
2477 ret->byteswap_code = 0;
2478 ret->target1_is_rel = 0;
2479 ret->target2_reloc = R_ARM_NONE;
2480 #ifdef FOUR_WORD_PLT
2481 ret->plt_header_size = 16;
2482 ret->plt_entry_size = 16;
2483 #else
2484 ret->plt_header_size = 20;
2485 ret->plt_entry_size = 12;
2486 #endif
2487 ret->fix_v4bx = 0;
2488 ret->use_blx = 0;
2489 ret->vxworks_p = 0;
2490 ret->symbian_p = 0;
2491 ret->use_rel = 1;
2492 ret->sym_sec.abfd = NULL;
2493 ret->obfd = abfd;
2494 ret->tls_ldm_got.refcount = 0;
2495
2496 return &ret->root.root;
2497 }
2498
2499 /* Locate the Thumb encoded calling stub for NAME. */
2500
2501 static struct elf_link_hash_entry *
2502 find_thumb_glue (struct bfd_link_info *link_info,
2503 const char *name,
2504 char **error_message)
2505 {
2506 char *tmp_name;
2507 struct elf_link_hash_entry *hash;
2508 struct elf32_arm_link_hash_table *hash_table;
2509
2510 /* We need a pointer to the armelf specific hash table. */
2511 hash_table = elf32_arm_hash_table (link_info);
2512
2513 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2514 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
2515
2516 BFD_ASSERT (tmp_name);
2517
2518 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
2519
2520 hash = elf_link_hash_lookup
2521 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2522
2523 if (hash == NULL
2524 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
2525 tmp_name, name) == -1)
2526 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
2527
2528 free (tmp_name);
2529
2530 return hash;
2531 }
2532
2533 /* Locate the ARM encoded calling stub for NAME. */
2534
2535 static struct elf_link_hash_entry *
2536 find_arm_glue (struct bfd_link_info *link_info,
2537 const char *name,
2538 char **error_message)
2539 {
2540 char *tmp_name;
2541 struct elf_link_hash_entry *myh;
2542 struct elf32_arm_link_hash_table *hash_table;
2543
2544 /* We need a pointer to the elfarm specific hash table. */
2545 hash_table = elf32_arm_hash_table (link_info);
2546
2547 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2548 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
2549
2550 BFD_ASSERT (tmp_name);
2551
2552 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
2553
2554 myh = elf_link_hash_lookup
2555 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2556
2557 if (myh == NULL
2558 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
2559 tmp_name, name) == -1)
2560 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
2561
2562 free (tmp_name);
2563
2564 return myh;
2565 }
2566
2567 /* ARM->Thumb glue (static images):
2568
2569 .arm
2570 __func_from_arm:
2571 ldr r12, __func_addr
2572 bx r12
2573 __func_addr:
2574 .word func @ behave as if you saw a ARM_32 reloc.
2575
2576 (v5t static images)
2577 .arm
2578 __func_from_arm:
2579 ldr pc, __func_addr
2580 __func_addr:
2581 .word func @ behave as if you saw a ARM_32 reloc.
2582
2583 (relocatable images)
2584 .arm
2585 __func_from_arm:
2586 ldr r12, __func_offset
2587 add r12, r12, pc
2588 bx r12
2589 __func_offset:
2590 .word func - .
2591 */
2592
2593 #define ARM2THUMB_STATIC_GLUE_SIZE 12
2594 static const insn32 a2t1_ldr_insn = 0xe59fc000;
2595 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
2596 static const insn32 a2t3_func_addr_insn = 0x00000001;
2597
2598 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
2599 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
2600 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
2601
2602 #define ARM2THUMB_PIC_GLUE_SIZE 16
2603 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
2604 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
2605 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
2606
2607 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
2608
2609 .thumb .thumb
2610 .align 2 .align 2
2611 __func_from_thumb: __func_from_thumb:
2612 bx pc push {r6, lr}
2613 nop ldr r6, __func_addr
2614 .arm mov lr, pc
2615 __func_change_to_arm: bx r6
2616 b func .arm
2617 __func_back_to_thumb:
2618 ldmia r13! {r6, lr}
2619 bx lr
2620 __func_addr:
2621 .word func */
2622
2623 #define THUMB2ARM_GLUE_SIZE 8
2624 static const insn16 t2a1_bx_pc_insn = 0x4778;
2625 static const insn16 t2a2_noop_insn = 0x46c0;
2626 static const insn32 t2a3_b_insn = 0xea000000;
2627
2628 #define VFP11_ERRATUM_VENEER_SIZE 8
2629
2630 #ifndef ELFARM_NABI_C_INCLUDED
2631 bfd_boolean
2632 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
2633 {
2634 asection * s;
2635 bfd_byte * foo;
2636 struct elf32_arm_link_hash_table * globals;
2637
2638 globals = elf32_arm_hash_table (info);
2639
2640 BFD_ASSERT (globals != NULL);
2641
2642 if (globals->arm_glue_size != 0)
2643 {
2644 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2645
2646 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
2647 ARM2THUMB_GLUE_SECTION_NAME);
2648
2649 BFD_ASSERT (s != NULL);
2650
2651 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->arm_glue_size);
2652
2653 BFD_ASSERT (s->size == globals->arm_glue_size);
2654 s->contents = foo;
2655 }
2656
2657 if (globals->thumb_glue_size != 0)
2658 {
2659 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2660
2661 s = bfd_get_section_by_name
2662 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
2663
2664 BFD_ASSERT (s != NULL);
2665
2666 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->thumb_glue_size);
2667
2668 BFD_ASSERT (s->size == globals->thumb_glue_size);
2669 s->contents = foo;
2670 }
2671
2672 if (globals->vfp11_erratum_glue_size != 0)
2673 {
2674 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2675
2676 s = bfd_get_section_by_name
2677 (globals->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
2678
2679 BFD_ASSERT (s != NULL);
2680
2681 foo = bfd_alloc (globals->bfd_of_glue_owner,
2682 globals->vfp11_erratum_glue_size);
2683
2684 BFD_ASSERT (s->size == globals->vfp11_erratum_glue_size);
2685 s->contents = foo;
2686 }
2687
2688 return TRUE;
2689 }
2690
2691 /* Allocate space and symbols for calling a Thumb function from Arm mode.
2692 returns the symbol identifying teh stub. */
2693 static struct elf_link_hash_entry *
2694 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
2695 struct elf_link_hash_entry * h)
2696 {
2697 const char * name = h->root.root.string;
2698 asection * s;
2699 char * tmp_name;
2700 struct elf_link_hash_entry * myh;
2701 struct bfd_link_hash_entry * bh;
2702 struct elf32_arm_link_hash_table * globals;
2703 bfd_vma val;
2704 bfd_size_type size;
2705
2706 globals = elf32_arm_hash_table (link_info);
2707
2708 BFD_ASSERT (globals != NULL);
2709 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2710
2711 s = bfd_get_section_by_name
2712 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
2713
2714 BFD_ASSERT (s != NULL);
2715
2716 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
2717
2718 BFD_ASSERT (tmp_name);
2719
2720 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
2721
2722 myh = elf_link_hash_lookup
2723 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
2724
2725 if (myh != NULL)
2726 {
2727 /* We've already seen this guy. */
2728 free (tmp_name);
2729 return myh;
2730 }
2731
2732 /* The only trick here is using hash_table->arm_glue_size as the value.
2733 Even though the section isn't allocated yet, this is where we will be
2734 putting it. */
2735 bh = NULL;
2736 val = globals->arm_glue_size + 1;
2737 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
2738 tmp_name, BSF_GLOBAL, s, val,
2739 NULL, TRUE, FALSE, &bh);
2740
2741 myh = (struct elf_link_hash_entry *) bh;
2742 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
2743 myh->forced_local = 1;
2744
2745 free (tmp_name);
2746
2747 if (link_info->shared || globals->root.is_relocatable_executable
2748 || globals->pic_veneer)
2749 size = ARM2THUMB_PIC_GLUE_SIZE;
2750 else if (globals->use_blx)
2751 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
2752 else
2753 size = ARM2THUMB_STATIC_GLUE_SIZE;
2754
2755 s->size += size;
2756 globals->arm_glue_size += size;
2757
2758 return myh;
2759 }
2760
2761 static void
2762 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
2763 struct elf_link_hash_entry *h)
2764 {
2765 const char *name = h->root.root.string;
2766 asection *s;
2767 char *tmp_name;
2768 struct elf_link_hash_entry *myh;
2769 struct bfd_link_hash_entry *bh;
2770 struct elf32_arm_link_hash_table *hash_table;
2771 bfd_vma val;
2772
2773 hash_table = elf32_arm_hash_table (link_info);
2774
2775 BFD_ASSERT (hash_table != NULL);
2776 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
2777
2778 s = bfd_get_section_by_name
2779 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
2780
2781 BFD_ASSERT (s != NULL);
2782
2783 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2784 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
2785
2786 BFD_ASSERT (tmp_name);
2787
2788 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
2789
2790 myh = elf_link_hash_lookup
2791 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2792
2793 if (myh != NULL)
2794 {
2795 /* We've already seen this guy. */
2796 free (tmp_name);
2797 return;
2798 }
2799
2800 bh = NULL;
2801 val = hash_table->thumb_glue_size + 1;
2802 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
2803 tmp_name, BSF_GLOBAL, s, val,
2804 NULL, TRUE, FALSE, &bh);
2805
2806 /* If we mark it 'Thumb', the disassembler will do a better job. */
2807 myh = (struct elf_link_hash_entry *) bh;
2808 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
2809 myh->forced_local = 1;
2810
2811 free (tmp_name);
2812
2813 #define CHANGE_TO_ARM "__%s_change_to_arm"
2814 #define BACK_FROM_ARM "__%s_back_from_arm"
2815
2816 /* Allocate another symbol to mark where we switch to Arm mode. */
2817 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2818 + strlen (CHANGE_TO_ARM) + 1);
2819
2820 BFD_ASSERT (tmp_name);
2821
2822 sprintf (tmp_name, CHANGE_TO_ARM, name);
2823
2824 bh = NULL;
2825 val = hash_table->thumb_glue_size + 4,
2826 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
2827 tmp_name, BSF_LOCAL, s, val,
2828 NULL, TRUE, FALSE, &bh);
2829
2830 free (tmp_name);
2831
2832 s->size += THUMB2ARM_GLUE_SIZE;
2833 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
2834
2835 return;
2836 }
2837
2838
2839 /* Add an entry to the code/data map for section SEC. */
2840
2841 static void
2842 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
2843 {
2844 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
2845 unsigned int newidx;
2846
2847 if (sec_data->map == NULL)
2848 {
2849 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
2850 sec_data->mapcount = 0;
2851 sec_data->mapsize = 1;
2852 }
2853
2854 newidx = sec_data->mapcount++;
2855
2856 if (sec_data->mapcount > sec_data->mapsize)
2857 {
2858 sec_data->mapsize *= 2;
2859 sec_data->map = bfd_realloc (sec_data->map, sec_data->mapsize
2860 * sizeof (elf32_arm_section_map));
2861 }
2862
2863 sec_data->map[newidx].vma = vma;
2864 sec_data->map[newidx].type = type;
2865 }
2866
2867
2868 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
2869 veneers are handled for now. */
2870
2871 static bfd_vma
2872 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
2873 elf32_vfp11_erratum_list *branch,
2874 bfd *branch_bfd,
2875 asection *branch_sec,
2876 unsigned int offset)
2877 {
2878 asection *s;
2879 struct elf32_arm_link_hash_table *hash_table;
2880 char *tmp_name;
2881 struct elf_link_hash_entry *myh;
2882 struct bfd_link_hash_entry *bh;
2883 bfd_vma val;
2884 struct _arm_elf_section_data *sec_data;
2885 int errcount;
2886 elf32_vfp11_erratum_list *newerr;
2887
2888 hash_table = elf32_arm_hash_table (link_info);
2889
2890 BFD_ASSERT (hash_table != NULL);
2891 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
2892
2893 s = bfd_get_section_by_name
2894 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
2895
2896 sec_data = elf32_arm_section_data (s);
2897
2898 BFD_ASSERT (s != NULL);
2899
2900 tmp_name = bfd_malloc ((bfd_size_type) strlen
2901 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
2902
2903 BFD_ASSERT (tmp_name);
2904
2905 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
2906 hash_table->num_vfp11_fixes);
2907
2908 myh = elf_link_hash_lookup
2909 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
2910
2911 BFD_ASSERT (myh == NULL);
2912
2913 bh = NULL;
2914 val = hash_table->vfp11_erratum_glue_size;
2915 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
2916 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
2917 NULL, TRUE, FALSE, &bh);
2918
2919 myh = (struct elf_link_hash_entry *) bh;
2920 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
2921 myh->forced_local = 1;
2922
2923 /* Link veneer back to calling location. */
2924 errcount = ++(sec_data->erratumcount);
2925 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
2926
2927 newerr->type = VFP11_ERRATUM_ARM_VENEER;
2928 newerr->vma = -1;
2929 newerr->u.v.branch = branch;
2930 newerr->u.v.id = hash_table->num_vfp11_fixes;
2931 branch->u.b.veneer = newerr;
2932
2933 newerr->next = sec_data->erratumlist;
2934 sec_data->erratumlist = newerr;
2935
2936 /* A symbol for the return from the veneer. */
2937 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
2938 hash_table->num_vfp11_fixes);
2939
2940 myh = elf_link_hash_lookup
2941 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
2942
2943 if (myh != NULL)
2944 abort ();
2945
2946 bh = NULL;
2947 val = offset + 4;
2948 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
2949 branch_sec, val, NULL, TRUE, FALSE, &bh);
2950
2951 myh = (struct elf_link_hash_entry *) bh;
2952 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
2953 myh->forced_local = 1;
2954
2955 free (tmp_name);
2956
2957 /* Generate a mapping symbol for the veneer section, and explicitly add an
2958 entry for that symbol to the code/data map for the section. */
2959 if (hash_table->vfp11_erratum_glue_size == 0)
2960 {
2961 bh = NULL;
2962 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
2963 ever requires this erratum fix. */
2964 _bfd_generic_link_add_one_symbol (link_info,
2965 hash_table->bfd_of_glue_owner, "$a",
2966 BSF_LOCAL, s, 0, NULL,
2967 TRUE, FALSE, &bh);
2968
2969 myh = (struct elf_link_hash_entry *) bh;
2970 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
2971 myh->forced_local = 1;
2972
2973 /* The elf32_arm_init_maps function only cares about symbols from input
2974 BFDs. We must make a note of this generated mapping symbol
2975 ourselves so that code byteswapping works properly in
2976 elf32_arm_write_section. */
2977 elf32_arm_section_map_add (s, 'a', 0);
2978 }
2979
2980 s->size += VFP11_ERRATUM_VENEER_SIZE;
2981 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
2982 hash_table->num_vfp11_fixes++;
2983
2984 /* The offset of the veneer. */
2985 return val;
2986 }
2987
2988 /* Add the glue sections to ABFD. This function is called from the
2989 linker scripts in ld/emultempl/{armelf}.em. */
2990
2991 bfd_boolean
2992 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
2993 struct bfd_link_info *info)
2994 {
2995 flagword flags;
2996 asection *sec;
2997
2998 /* If we are only performing a partial
2999 link do not bother adding the glue. */
3000 if (info->relocatable)
3001 return TRUE;
3002
3003 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
3004
3005 if (sec == NULL)
3006 {
3007 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
3008 will prevent elf_link_input_bfd() from processing the contents
3009 of this section. */
3010 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3011 | SEC_CODE | SEC_READONLY);
3012
3013 sec = bfd_make_section_with_flags (abfd,
3014 ARM2THUMB_GLUE_SECTION_NAME,
3015 flags);
3016
3017 if (sec == NULL
3018 || !bfd_set_section_alignment (abfd, sec, 2))
3019 return FALSE;
3020
3021 /* Set the gc mark to prevent the section from being removed by garbage
3022 collection, despite the fact that no relocs refer to this section. */
3023 sec->gc_mark = 1;
3024 }
3025
3026 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
3027
3028 if (sec == NULL)
3029 {
3030 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3031 | SEC_CODE | SEC_READONLY);
3032
3033 sec = bfd_make_section_with_flags (abfd,
3034 THUMB2ARM_GLUE_SECTION_NAME,
3035 flags);
3036
3037 if (sec == NULL
3038 || !bfd_set_section_alignment (abfd, sec, 2))
3039 return FALSE;
3040
3041 sec->gc_mark = 1;
3042 }
3043
3044 sec = bfd_get_section_by_name (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME);
3045
3046 if (sec == NULL)
3047 {
3048 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3049 | SEC_CODE | SEC_READONLY);
3050
3051 sec = bfd_make_section_with_flags (abfd,
3052 VFP11_ERRATUM_VENEER_SECTION_NAME,
3053 flags);
3054
3055 if (sec == NULL
3056 || !bfd_set_section_alignment (abfd, sec, 2))
3057 return FALSE;
3058
3059 sec->gc_mark = 1;
3060 }
3061
3062 return TRUE;
3063 }
3064
3065 /* Select a BFD to be used to hold the sections used by the glue code.
3066 This function is called from the linker scripts in ld/emultempl/
3067 {armelf/pe}.em */
3068
3069 bfd_boolean
3070 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
3071 {
3072 struct elf32_arm_link_hash_table *globals;
3073
3074 /* If we are only performing a partial link
3075 do not bother getting a bfd to hold the glue. */
3076 if (info->relocatable)
3077 return TRUE;
3078
3079 /* Make sure we don't attach the glue sections to a dynamic object. */
3080 BFD_ASSERT (!(abfd->flags & DYNAMIC));
3081
3082 globals = elf32_arm_hash_table (info);
3083
3084 BFD_ASSERT (globals != NULL);
3085
3086 if (globals->bfd_of_glue_owner != NULL)
3087 return TRUE;
3088
3089 /* Save the bfd for later use. */
3090 globals->bfd_of_glue_owner = abfd;
3091
3092 return TRUE;
3093 }
3094
3095 static void check_use_blx(struct elf32_arm_link_hash_table *globals)
3096 {
3097 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3098 Tag_CPU_arch) > 2)
3099 globals->use_blx = 1;
3100 }
3101
3102 bfd_boolean
3103 bfd_elf32_arm_process_before_allocation (bfd *abfd,
3104 struct bfd_link_info *link_info)
3105 {
3106 Elf_Internal_Shdr *symtab_hdr;
3107 Elf_Internal_Rela *internal_relocs = NULL;
3108 Elf_Internal_Rela *irel, *irelend;
3109 bfd_byte *contents = NULL;
3110
3111 asection *sec;
3112 struct elf32_arm_link_hash_table *globals;
3113
3114 /* If we are only performing a partial link do not bother
3115 to construct any glue. */
3116 if (link_info->relocatable)
3117 return TRUE;
3118
3119 /* Here we have a bfd that is to be included on the link. We have a
3120 hook to do reloc rummaging, before section sizes are nailed down. */
3121 globals = elf32_arm_hash_table (link_info);
3122
3123 BFD_ASSERT (globals != NULL);
3124
3125 check_use_blx (globals);
3126
3127 if (globals->byteswap_code && !bfd_big_endian (abfd))
3128 {
3129 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
3130 abfd);
3131 return FALSE;
3132 }
3133
3134 /* PR 5398: If we have not decided to include any loadable sections in
3135 the output then we will not have a glue owner bfd. This is OK, it
3136 just means that there is nothing else for us to do here. */
3137 if (globals->bfd_of_glue_owner == NULL)
3138 return TRUE;
3139
3140 /* Rummage around all the relocs and map the glue vectors. */
3141 sec = abfd->sections;
3142
3143 if (sec == NULL)
3144 return TRUE;
3145
3146 for (; sec != NULL; sec = sec->next)
3147 {
3148 if (sec->reloc_count == 0)
3149 continue;
3150
3151 if ((sec->flags & SEC_EXCLUDE) != 0)
3152 continue;
3153
3154 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3155
3156 /* Load the relocs. */
3157 internal_relocs
3158 = _bfd_elf_link_read_relocs (abfd, sec, (void *) NULL,
3159 (Elf_Internal_Rela *) NULL, FALSE);
3160
3161 if (internal_relocs == NULL)
3162 goto error_return;
3163
3164 irelend = internal_relocs + sec->reloc_count;
3165 for (irel = internal_relocs; irel < irelend; irel++)
3166 {
3167 long r_type;
3168 unsigned long r_index;
3169
3170 struct elf_link_hash_entry *h;
3171
3172 r_type = ELF32_R_TYPE (irel->r_info);
3173 r_index = ELF32_R_SYM (irel->r_info);
3174
3175 /* These are the only relocation types we care about. */
3176 if ( r_type != R_ARM_PC24
3177 && r_type != R_ARM_PLT32
3178 && r_type != R_ARM_CALL
3179 && r_type != R_ARM_JUMP24
3180 && r_type != R_ARM_THM_CALL
3181 && r_type != R_ARM_THM_JUMP24)
3182 continue;
3183
3184 /* Get the section contents if we haven't done so already. */
3185 if (contents == NULL)
3186 {
3187 /* Get cached copy if it exists. */
3188 if (elf_section_data (sec)->this_hdr.contents != NULL)
3189 contents = elf_section_data (sec)->this_hdr.contents;
3190 else
3191 {
3192 /* Go get them off disk. */
3193 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
3194 goto error_return;
3195 }
3196 }
3197
3198 /* If the relocation is not against a symbol it cannot concern us. */
3199 h = NULL;
3200
3201 /* We don't care about local symbols. */
3202 if (r_index < symtab_hdr->sh_info)
3203 continue;
3204
3205 /* This is an external symbol. */
3206 r_index -= symtab_hdr->sh_info;
3207 h = (struct elf_link_hash_entry *)
3208 elf_sym_hashes (abfd)[r_index];
3209
3210 /* If the relocation is against a static symbol it must be within
3211 the current section and so cannot be a cross ARM/Thumb relocation. */
3212 if (h == NULL)
3213 continue;
3214
3215 /* If the call will go through a PLT entry then we do not need
3216 glue. */
3217 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
3218 continue;
3219
3220 switch (r_type)
3221 {
3222 case R_ARM_PC24:
3223 case R_ARM_PLT32:
3224 case R_ARM_CALL:
3225 case R_ARM_JUMP24:
3226 /* This one is a call from arm code. We need to look up
3227 the target of the call. If it is a thumb target, we
3228 insert glue. */
3229 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC
3230 && !(r_type == R_ARM_CALL && globals->use_blx))
3231 record_arm_to_thumb_glue (link_info, h);
3232 break;
3233
3234 case R_ARM_THM_CALL:
3235 case R_ARM_THM_JUMP24:
3236 /* This one is a call from thumb code. We look
3237 up the target of the call. If it is not a thumb
3238 target, we insert glue. */
3239 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
3240 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
3241 && h->root.type != bfd_link_hash_undefweak)
3242 record_thumb_to_arm_glue (link_info, h);
3243 break;
3244
3245 default:
3246 abort ();
3247 }
3248 }
3249
3250 if (contents != NULL
3251 && elf_section_data (sec)->this_hdr.contents != contents)
3252 free (contents);
3253 contents = NULL;
3254
3255 if (internal_relocs != NULL
3256 && elf_section_data (sec)->relocs != internal_relocs)
3257 free (internal_relocs);
3258 internal_relocs = NULL;
3259 }
3260
3261 return TRUE;
3262
3263 error_return:
3264 if (contents != NULL
3265 && elf_section_data (sec)->this_hdr.contents != contents)
3266 free (contents);
3267 if (internal_relocs != NULL
3268 && elf_section_data (sec)->relocs != internal_relocs)
3269 free (internal_relocs);
3270
3271 return FALSE;
3272 }
3273 #endif
3274
3275
3276 /* Initialise maps of ARM/Thumb/data for input BFDs. */
3277
3278 void
3279 bfd_elf32_arm_init_maps (bfd *abfd)
3280 {
3281 Elf_Internal_Sym *isymbuf;
3282 Elf_Internal_Shdr *hdr;
3283 unsigned int i, localsyms;
3284
3285 if ((abfd->flags & DYNAMIC) != 0)
3286 return;
3287
3288 hdr = &elf_tdata (abfd)->symtab_hdr;
3289 localsyms = hdr->sh_info;
3290
3291 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
3292 should contain the number of local symbols, which should come before any
3293 global symbols. Mapping symbols are always local. */
3294 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
3295 NULL);
3296
3297 /* No internal symbols read? Skip this BFD. */
3298 if (isymbuf == NULL)
3299 return;
3300
3301 for (i = 0; i < localsyms; i++)
3302 {
3303 Elf_Internal_Sym *isym = &isymbuf[i];
3304 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3305 const char *name;
3306
3307 if (sec != NULL
3308 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
3309 {
3310 name = bfd_elf_string_from_elf_section (abfd,
3311 hdr->sh_link, isym->st_name);
3312
3313 if (bfd_is_arm_special_symbol_name (name,
3314 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
3315 elf32_arm_section_map_add (sec, name[1], isym->st_value);
3316 }
3317 }
3318 }
3319
3320
3321 void
3322 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
3323 {
3324 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
3325 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
3326
3327 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
3328 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
3329 {
3330 switch (globals->vfp11_fix)
3331 {
3332 case BFD_ARM_VFP11_FIX_DEFAULT:
3333 case BFD_ARM_VFP11_FIX_NONE:
3334 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3335 break;
3336
3337 default:
3338 /* Give a warning, but do as the user requests anyway. */
3339 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
3340 "workaround is not necessary for target architecture"), obfd);
3341 }
3342 }
3343 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
3344 /* For earlier architectures, we might need the workaround, but do not
3345 enable it by default. If users is running with broken hardware, they
3346 must enable the erratum fix explicitly. */
3347 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3348 }
3349
3350
3351 enum bfd_arm_vfp11_pipe {
3352 VFP11_FMAC,
3353 VFP11_LS,
3354 VFP11_DS,
3355 VFP11_BAD
3356 };
3357
3358 /* Return a VFP register number. This is encoded as RX:X for single-precision
3359 registers, or X:RX for double-precision registers, where RX is the group of
3360 four bits in the instruction encoding and X is the single extension bit.
3361 RX and X fields are specified using their lowest (starting) bit. The return
3362 value is:
3363
3364 0...31: single-precision registers s0...s31
3365 32...63: double-precision registers d0...d31.
3366
3367 Although X should be zero for VFP11 (encoding d0...d15 only), we might
3368 encounter VFP3 instructions, so we allow the full range for DP registers. */
3369
3370 static unsigned int
3371 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
3372 unsigned int x)
3373 {
3374 if (is_double)
3375 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
3376 else
3377 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
3378 }
3379
3380 /* Set bits in *WMASK according to a register number REG as encoded by
3381 bfd_arm_vfp11_regno(). Ignore d16-d31. */
3382
3383 static void
3384 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
3385 {
3386 if (reg < 32)
3387 *wmask |= 1 << reg;
3388 else if (reg < 48)
3389 *wmask |= 3 << ((reg - 32) * 2);
3390 }
3391
3392 /* Return TRUE if WMASK overwrites anything in REGS. */
3393
3394 static bfd_boolean
3395 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
3396 {
3397 int i;
3398
3399 for (i = 0; i < numregs; i++)
3400 {
3401 unsigned int reg = regs[i];
3402
3403 if (reg < 32 && (wmask & (1 << reg)) != 0)
3404 return TRUE;
3405
3406 reg -= 32;
3407
3408 if (reg >= 16)
3409 continue;
3410
3411 if ((wmask & (3 << (reg * 2))) != 0)
3412 return TRUE;
3413 }
3414
3415 return FALSE;
3416 }
3417
3418 /* In this function, we're interested in two things: finding input registers
3419 for VFP data-processing instructions, and finding the set of registers which
3420 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
3421 hold the written set, so FLDM etc. are easy to deal with (we're only
3422 interested in 32 SP registers or 16 dp registers, due to the VFP version
3423 implemented by the chip in question). DP registers are marked by setting
3424 both SP registers in the write mask). */
3425
3426 static enum bfd_arm_vfp11_pipe
3427 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
3428 int *numregs)
3429 {
3430 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
3431 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
3432
3433 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
3434 {
3435 unsigned int pqrs;
3436 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
3437 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
3438
3439 pqrs = ((insn & 0x00800000) >> 20)
3440 | ((insn & 0x00300000) >> 19)
3441 | ((insn & 0x00000040) >> 6);
3442
3443 switch (pqrs)
3444 {
3445 case 0: /* fmac[sd]. */
3446 case 1: /* fnmac[sd]. */
3447 case 2: /* fmsc[sd]. */
3448 case 3: /* fnmsc[sd]. */
3449 pipe = VFP11_FMAC;
3450 bfd_arm_vfp11_write_mask (destmask, fd);
3451 regs[0] = fd;
3452 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
3453 regs[2] = fm;
3454 *numregs = 3;
3455 break;
3456
3457 case 4: /* fmul[sd]. */
3458 case 5: /* fnmul[sd]. */
3459 case 6: /* fadd[sd]. */
3460 case 7: /* fsub[sd]. */
3461 pipe = VFP11_FMAC;
3462 goto vfp_binop;
3463
3464 case 8: /* fdiv[sd]. */
3465 pipe = VFP11_DS;
3466 vfp_binop:
3467 bfd_arm_vfp11_write_mask (destmask, fd);
3468 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
3469 regs[1] = fm;
3470 *numregs = 2;
3471 break;
3472
3473 case 15: /* extended opcode. */
3474 {
3475 unsigned int extn = ((insn >> 15) & 0x1e)
3476 | ((insn >> 7) & 1);
3477
3478 switch (extn)
3479 {
3480 case 0: /* fcpy[sd]. */
3481 case 1: /* fabs[sd]. */
3482 case 2: /* fneg[sd]. */
3483 case 8: /* fcmp[sd]. */
3484 case 9: /* fcmpe[sd]. */
3485 case 10: /* fcmpz[sd]. */
3486 case 11: /* fcmpez[sd]. */
3487 case 16: /* fuito[sd]. */
3488 case 17: /* fsito[sd]. */
3489 case 24: /* ftoui[sd]. */
3490 case 25: /* ftouiz[sd]. */
3491 case 26: /* ftosi[sd]. */
3492 case 27: /* ftosiz[sd]. */
3493 /* These instructions will not bounce due to underflow. */
3494 *numregs = 0;
3495 pipe = VFP11_FMAC;
3496 break;
3497
3498 case 3: /* fsqrt[sd]. */
3499 /* fsqrt cannot underflow, but it can (perhaps) overwrite
3500 registers to cause the erratum in previous instructions. */
3501 bfd_arm_vfp11_write_mask (destmask, fd);
3502 pipe = VFP11_DS;
3503 break;
3504
3505 case 15: /* fcvt{ds,sd}. */
3506 {
3507 int rnum = 0;
3508
3509 bfd_arm_vfp11_write_mask (destmask, fd);
3510
3511 /* Only FCVTSD can underflow. */
3512 if ((insn & 0x100) != 0)
3513 regs[rnum++] = fm;
3514
3515 *numregs = rnum;
3516
3517 pipe = VFP11_FMAC;
3518 }
3519 break;
3520
3521 default:
3522 return VFP11_BAD;
3523 }
3524 }
3525 break;
3526
3527 default:
3528 return VFP11_BAD;
3529 }
3530 }
3531 /* Two-register transfer. */
3532 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
3533 {
3534 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
3535
3536 if ((insn & 0x100000) == 0)
3537 {
3538 if (is_double)
3539 bfd_arm_vfp11_write_mask (destmask, fm);
3540 else
3541 {
3542 bfd_arm_vfp11_write_mask (destmask, fm);
3543 bfd_arm_vfp11_write_mask (destmask, fm + 1);
3544 }
3545 }
3546
3547 pipe = VFP11_LS;
3548 }
3549 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
3550 {
3551 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
3552 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
3553
3554 switch (puw)
3555 {
3556 case 0: /* Two-reg transfer. We should catch these above. */
3557 abort ();
3558
3559 case 2: /* fldm[sdx]. */
3560 case 3:
3561 case 5:
3562 {
3563 unsigned int i, offset = insn & 0xff;
3564
3565 if (is_double)
3566 offset >>= 1;
3567
3568 for (i = fd; i < fd + offset; i++)
3569 bfd_arm_vfp11_write_mask (destmask, i);
3570 }
3571 break;
3572
3573 case 4: /* fld[sd]. */
3574 case 6:
3575 bfd_arm_vfp11_write_mask (destmask, fd);
3576 break;
3577
3578 default:
3579 return VFP11_BAD;
3580 }
3581
3582 pipe = VFP11_LS;
3583 }
3584 /* Single-register transfer. Note L==0. */
3585 else if ((insn & 0x0f100e10) == 0x0e000a10)
3586 {
3587 unsigned int opcode = (insn >> 21) & 7;
3588 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
3589
3590 switch (opcode)
3591 {
3592 case 0: /* fmsr/fmdlr. */
3593 case 1: /* fmdhr. */
3594 /* Mark fmdhr and fmdlr as writing to the whole of the DP
3595 destination register. I don't know if this is exactly right,
3596 but it is the conservative choice. */
3597 bfd_arm_vfp11_write_mask (destmask, fn);
3598 break;
3599
3600 case 7: /* fmxr. */
3601 break;
3602 }
3603
3604 pipe = VFP11_LS;
3605 }
3606
3607 return pipe;
3608 }
3609
3610
3611 static int elf32_arm_compare_mapping (const void * a, const void * b);
3612
3613
3614 /* Look for potentially-troublesome code sequences which might trigger the
3615 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
3616 (available from ARM) for details of the erratum. A short version is
3617 described in ld.texinfo. */
3618
3619 bfd_boolean
3620 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
3621 {
3622 asection *sec;
3623 bfd_byte *contents = NULL;
3624 int state = 0;
3625 int regs[3], numregs = 0;
3626 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
3627 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
3628
3629 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
3630 The states transition as follows:
3631
3632 0 -> 1 (vector) or 0 -> 2 (scalar)
3633 A VFP FMAC-pipeline instruction has been seen. Fill
3634 regs[0]..regs[numregs-1] with its input operands. Remember this
3635 instruction in 'first_fmac'.
3636
3637 1 -> 2
3638 Any instruction, except for a VFP instruction which overwrites
3639 regs[*].
3640
3641 1 -> 3 [ -> 0 ] or
3642 2 -> 3 [ -> 0 ]
3643 A VFP instruction has been seen which overwrites any of regs[*].
3644 We must make a veneer! Reset state to 0 before examining next
3645 instruction.
3646
3647 2 -> 0
3648 If we fail to match anything in state 2, reset to state 0 and reset
3649 the instruction pointer to the instruction after 'first_fmac'.
3650
3651 If the VFP11 vector mode is in use, there must be at least two unrelated
3652 instructions between anti-dependent VFP11 instructions to properly avoid
3653 triggering the erratum, hence the use of the extra state 1.
3654 */
3655
3656 /* If we are only performing a partial link do not bother
3657 to construct any glue. */
3658 if (link_info->relocatable)
3659 return TRUE;
3660
3661 /* We should have chosen a fix type by the time we get here. */
3662 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
3663
3664 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
3665 return TRUE;
3666
3667 /* Skip if this bfd does not correspond to an ELF image. */
3668 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
3669 return TRUE;
3670
3671 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3672 {
3673 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
3674 struct _arm_elf_section_data *sec_data;
3675
3676 /* If we don't have executable progbits, we're not interested in this
3677 section. Also skip if section is to be excluded. */
3678 if (elf_section_type (sec) != SHT_PROGBITS
3679 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
3680 || (sec->flags & SEC_EXCLUDE) != 0
3681 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
3682 continue;
3683
3684 sec_data = elf32_arm_section_data (sec);
3685
3686 if (sec_data->mapcount == 0)
3687 continue;
3688
3689 if (elf_section_data (sec)->this_hdr.contents != NULL)
3690 contents = elf_section_data (sec)->this_hdr.contents;
3691 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
3692 goto error_return;
3693
3694 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
3695 elf32_arm_compare_mapping);
3696
3697 for (span = 0; span < sec_data->mapcount; span++)
3698 {
3699 unsigned int span_start = sec_data->map[span].vma;
3700 unsigned int span_end = (span == sec_data->mapcount - 1)
3701 ? sec->size : sec_data->map[span + 1].vma;
3702 char span_type = sec_data->map[span].type;
3703
3704 /* FIXME: Only ARM mode is supported at present. We may need to
3705 support Thumb-2 mode also at some point. */
3706 if (span_type != 'a')
3707 continue;
3708
3709 for (i = span_start; i < span_end;)
3710 {
3711 unsigned int next_i = i + 4;
3712 unsigned int insn = bfd_big_endian (abfd)
3713 ? (contents[i] << 24)
3714 | (contents[i + 1] << 16)
3715 | (contents[i + 2] << 8)
3716 | contents[i + 3]
3717 : (contents[i + 3] << 24)
3718 | (contents[i + 2] << 16)
3719 | (contents[i + 1] << 8)
3720 | contents[i];
3721 unsigned int writemask = 0;
3722 enum bfd_arm_vfp11_pipe pipe;
3723
3724 switch (state)
3725 {
3726 case 0:
3727 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
3728 &numregs);
3729 /* I'm assuming the VFP11 erratum can trigger with denorm
3730 operands on either the FMAC or the DS pipeline. This might
3731 lead to slightly overenthusiastic veneer insertion. */
3732 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
3733 {
3734 state = use_vector ? 1 : 2;
3735 first_fmac = i;
3736 veneer_of_insn = insn;
3737 }
3738 break;
3739
3740 case 1:
3741 {
3742 int other_regs[3], other_numregs;
3743 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
3744 other_regs,
3745 &other_numregs);
3746 if (pipe != VFP11_BAD
3747 && bfd_arm_vfp11_antidependency (writemask, regs,
3748 numregs))
3749 state = 3;
3750 else
3751 state = 2;
3752 }
3753 break;
3754
3755 case 2:
3756 {
3757 int other_regs[3], other_numregs;
3758 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
3759 other_regs,
3760 &other_numregs);
3761 if (pipe != VFP11_BAD
3762 && bfd_arm_vfp11_antidependency (writemask, regs,
3763 numregs))
3764 state = 3;
3765 else
3766 {
3767 state = 0;
3768 next_i = first_fmac + 4;
3769 }
3770 }
3771 break;
3772
3773 case 3:
3774 abort (); /* Should be unreachable. */
3775 }
3776
3777 if (state == 3)
3778 {
3779 elf32_vfp11_erratum_list *newerr
3780 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
3781 int errcount;
3782
3783 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
3784
3785 newerr->u.b.vfp_insn = veneer_of_insn;
3786
3787 switch (span_type)
3788 {
3789 case 'a':
3790 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
3791 break;
3792
3793 default:
3794 abort ();
3795 }
3796
3797 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
3798 first_fmac);
3799
3800 newerr->vma = -1;
3801
3802 newerr->next = sec_data->erratumlist;
3803 sec_data->erratumlist = newerr;
3804
3805 state = 0;
3806 }
3807
3808 i = next_i;
3809 }
3810 }
3811
3812 if (contents != NULL
3813 && elf_section_data (sec)->this_hdr.contents != contents)
3814 free (contents);
3815 contents = NULL;
3816 }
3817
3818 return TRUE;
3819
3820 error_return:
3821 if (contents != NULL
3822 && elf_section_data (sec)->this_hdr.contents != contents)
3823 free (contents);
3824
3825 return FALSE;
3826 }
3827
3828 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
3829 after sections have been laid out, using specially-named symbols. */
3830
3831 void
3832 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
3833 struct bfd_link_info *link_info)
3834 {
3835 asection *sec;
3836 struct elf32_arm_link_hash_table *globals;
3837 char *tmp_name;
3838
3839 if (link_info->relocatable)
3840 return;
3841
3842 /* Skip if this bfd does not correspond to an ELF image. */
3843 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
3844 return;
3845
3846 globals = elf32_arm_hash_table (link_info);
3847
3848 tmp_name = bfd_malloc ((bfd_size_type) strlen
3849 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
3850
3851 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3852 {
3853 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
3854 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
3855
3856 for (; errnode != NULL; errnode = errnode->next)
3857 {
3858 struct elf_link_hash_entry *myh;
3859 bfd_vma vma;
3860
3861 switch (errnode->type)
3862 {
3863 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
3864 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
3865 /* Find veneer symbol. */
3866 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
3867 errnode->u.b.veneer->u.v.id);
3868
3869 myh = elf_link_hash_lookup
3870 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
3871
3872 if (myh == NULL)
3873 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
3874 "`%s'"), abfd, tmp_name);
3875
3876 vma = myh->root.u.def.section->output_section->vma
3877 + myh->root.u.def.section->output_offset
3878 + myh->root.u.def.value;
3879
3880 errnode->u.b.veneer->vma = vma;
3881 break;
3882
3883 case VFP11_ERRATUM_ARM_VENEER:
3884 case VFP11_ERRATUM_THUMB_VENEER:
3885 /* Find return location. */
3886 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
3887 errnode->u.v.id);
3888
3889 myh = elf_link_hash_lookup
3890 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
3891
3892 if (myh == NULL)
3893 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
3894 "`%s'"), abfd, tmp_name);
3895
3896 vma = myh->root.u.def.section->output_section->vma
3897 + myh->root.u.def.section->output_offset
3898 + myh->root.u.def.value;
3899
3900 errnode->u.v.branch->vma = vma;
3901 break;
3902
3903 default:
3904 abort ();
3905 }
3906 }
3907 }
3908
3909 free (tmp_name);
3910 }
3911
3912
3913 /* Set target relocation values needed during linking. */
3914
3915 void
3916 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
3917 struct bfd_link_info *link_info,
3918 int target1_is_rel,
3919 char * target2_type,
3920 int fix_v4bx,
3921 int use_blx,
3922 bfd_arm_vfp11_fix vfp11_fix,
3923 int no_enum_warn, int pic_veneer)
3924 {
3925 struct elf32_arm_link_hash_table *globals;
3926
3927 globals = elf32_arm_hash_table (link_info);
3928
3929 globals->target1_is_rel = target1_is_rel;
3930 if (strcmp (target2_type, "rel") == 0)
3931 globals->target2_reloc = R_ARM_REL32;
3932 else if (strcmp (target2_type, "abs") == 0)
3933 globals->target2_reloc = R_ARM_ABS32;
3934 else if (strcmp (target2_type, "got-rel") == 0)
3935 globals->target2_reloc = R_ARM_GOT_PREL;
3936 else
3937 {
3938 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
3939 target2_type);
3940 }
3941 globals->fix_v4bx = fix_v4bx;
3942 globals->use_blx |= use_blx;
3943 globals->vfp11_fix = vfp11_fix;
3944 globals->pic_veneer = pic_veneer;
3945
3946 elf32_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
3947 }
3948
3949 /* The thumb form of a long branch is a bit finicky, because the offset
3950 encoding is split over two fields, each in it's own instruction. They
3951 can occur in any order. So given a thumb form of long branch, and an
3952 offset, insert the offset into the thumb branch and return finished
3953 instruction.
3954
3955 It takes two thumb instructions to encode the target address. Each has
3956 11 bits to invest. The upper 11 bits are stored in one (identified by
3957 H-0.. see below), the lower 11 bits are stored in the other (identified
3958 by H-1).
3959
3960 Combine together and shifted left by 1 (it's a half word address) and
3961 there you have it.
3962
3963 Op: 1111 = F,
3964 H-0, upper address-0 = 000
3965 Op: 1111 = F,
3966 H-1, lower address-0 = 800
3967
3968 They can be ordered either way, but the arm tools I've seen always put
3969 the lower one first. It probably doesn't matter. krk@cygnus.com
3970
3971 XXX: Actually the order does matter. The second instruction (H-1)
3972 moves the computed address into the PC, so it must be the second one
3973 in the sequence. The problem, however is that whilst little endian code
3974 stores the instructions in HI then LOW order, big endian code does the
3975 reverse. nickc@cygnus.com. */
3976
3977 #define LOW_HI_ORDER 0xF800F000
3978 #define HI_LOW_ORDER 0xF000F800
3979
3980 static insn32
3981 insert_thumb_branch (insn32 br_insn, int rel_off)
3982 {
3983 unsigned int low_bits;
3984 unsigned int high_bits;
3985
3986 BFD_ASSERT ((rel_off & 1) != 1);
3987
3988 rel_off >>= 1; /* Half word aligned address. */
3989 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
3990 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
3991
3992 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
3993 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
3994 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
3995 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
3996 else
3997 /* FIXME: abort is probably not the right call. krk@cygnus.com */
3998 abort (); /* Error - not a valid branch instruction form. */
3999
4000 return br_insn;
4001 }
4002
4003
4004 /* Store an Arm insn into an output section not processed by
4005 elf32_arm_write_section. */
4006
4007 static void
4008 put_arm_insn (struct elf32_arm_link_hash_table *htab,
4009 bfd * output_bfd, bfd_vma val, void * ptr)
4010 {
4011 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4012 bfd_putl32 (val, ptr);
4013 else
4014 bfd_putb32 (val, ptr);
4015 }
4016
4017
4018 /* Store a 16-bit Thumb insn into an output section not processed by
4019 elf32_arm_write_section. */
4020
4021 static void
4022 put_thumb_insn (struct elf32_arm_link_hash_table *htab,
4023 bfd * output_bfd, bfd_vma val, void * ptr)
4024 {
4025 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4026 bfd_putl16 (val, ptr);
4027 else
4028 bfd_putb16 (val, ptr);
4029 }
4030
4031
4032 /* Thumb code calling an ARM function. */
4033
4034 static int
4035 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
4036 const char * name,
4037 bfd * input_bfd,
4038 bfd * output_bfd,
4039 asection * input_section,
4040 bfd_byte * hit_data,
4041 asection * sym_sec,
4042 bfd_vma offset,
4043 bfd_signed_vma addend,
4044 bfd_vma val,
4045 char **error_message)
4046 {
4047 asection * s = 0;
4048 bfd_vma my_offset;
4049 unsigned long int tmp;
4050 long int ret_offset;
4051 struct elf_link_hash_entry * myh;
4052 struct elf32_arm_link_hash_table * globals;
4053
4054 myh = find_thumb_glue (info, name, error_message);
4055 if (myh == NULL)
4056 return FALSE;
4057
4058 globals = elf32_arm_hash_table (info);
4059
4060 BFD_ASSERT (globals != NULL);
4061 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4062
4063 my_offset = myh->root.u.def.value;
4064
4065 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4066 THUMB2ARM_GLUE_SECTION_NAME);
4067
4068 BFD_ASSERT (s != NULL);
4069 BFD_ASSERT (s->contents != NULL);
4070 BFD_ASSERT (s->output_section != NULL);
4071
4072 if ((my_offset & 0x01) == 0x01)
4073 {
4074 if (sym_sec != NULL
4075 && sym_sec->owner != NULL
4076 && !INTERWORK_FLAG (sym_sec->owner))
4077 {
4078 (*_bfd_error_handler)
4079 (_("%B(%s): warning: interworking not enabled.\n"
4080 " first occurrence: %B: thumb call to arm"),
4081 sym_sec->owner, input_bfd, name);
4082
4083 return FALSE;
4084 }
4085
4086 --my_offset;
4087 myh->root.u.def.value = my_offset;
4088
4089 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
4090 s->contents + my_offset);
4091
4092 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
4093 s->contents + my_offset + 2);
4094
4095 ret_offset =
4096 /* Address of destination of the stub. */
4097 ((bfd_signed_vma) val)
4098 - ((bfd_signed_vma)
4099 /* Offset from the start of the current section
4100 to the start of the stubs. */
4101 (s->output_offset
4102 /* Offset of the start of this stub from the start of the stubs. */
4103 + my_offset
4104 /* Address of the start of the current section. */
4105 + s->output_section->vma)
4106 /* The branch instruction is 4 bytes into the stub. */
4107 + 4
4108 /* ARM branches work from the pc of the instruction + 8. */
4109 + 8);
4110
4111 put_arm_insn (globals, output_bfd,
4112 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
4113 s->contents + my_offset + 4);
4114 }
4115
4116 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
4117
4118 /* Now go back and fix up the original BL insn to point to here. */
4119 ret_offset =
4120 /* Address of where the stub is located. */
4121 (s->output_section->vma + s->output_offset + my_offset)
4122 /* Address of where the BL is located. */
4123 - (input_section->output_section->vma + input_section->output_offset
4124 + offset)
4125 /* Addend in the relocation. */
4126 - addend
4127 /* Biassing for PC-relative addressing. */
4128 - 8;
4129
4130 tmp = bfd_get_32 (input_bfd, hit_data
4131 - input_section->vma);
4132
4133 bfd_put_32 (output_bfd,
4134 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
4135 hit_data - input_section->vma);
4136
4137 return TRUE;
4138 }
4139
4140 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
4141
4142 static struct elf_link_hash_entry *
4143 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
4144 const char * name,
4145 bfd * input_bfd,
4146 bfd * output_bfd,
4147 asection * sym_sec,
4148 bfd_vma val,
4149 asection *s,
4150 char **error_message)
4151 {
4152 bfd_vma my_offset;
4153 long int ret_offset;
4154 struct elf_link_hash_entry * myh;
4155 struct elf32_arm_link_hash_table * globals;
4156
4157 myh = find_arm_glue (info, name, error_message);
4158 if (myh == NULL)
4159 return NULL;
4160
4161 globals = elf32_arm_hash_table (info);
4162
4163 BFD_ASSERT (globals != NULL);
4164 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4165
4166 my_offset = myh->root.u.def.value;
4167
4168 if ((my_offset & 0x01) == 0x01)
4169 {
4170 if (sym_sec != NULL
4171 && sym_sec->owner != NULL
4172 && !INTERWORK_FLAG (sym_sec->owner))
4173 {
4174 (*_bfd_error_handler)
4175 (_("%B(%s): warning: interworking not enabled.\n"
4176 " first occurrence: %B: arm call to thumb"),
4177 sym_sec->owner, input_bfd, name);
4178 }
4179
4180 --my_offset;
4181 myh->root.u.def.value = my_offset;
4182
4183 if (info->shared || globals->root.is_relocatable_executable
4184 || globals->pic_veneer)
4185 {
4186 /* For relocatable objects we can't use absolute addresses,
4187 so construct the address from a relative offset. */
4188 /* TODO: If the offset is small it's probably worth
4189 constructing the address with adds. */
4190 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
4191 s->contents + my_offset);
4192 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
4193 s->contents + my_offset + 4);
4194 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
4195 s->contents + my_offset + 8);
4196 /* Adjust the offset by 4 for the position of the add,
4197 and 8 for the pipeline offset. */
4198 ret_offset = (val - (s->output_offset
4199 + s->output_section->vma
4200 + my_offset + 12))
4201 | 1;
4202 bfd_put_32 (output_bfd, ret_offset,
4203 s->contents + my_offset + 12);
4204 }
4205 else if (globals->use_blx)
4206 {
4207 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
4208 s->contents + my_offset);
4209
4210 /* It's a thumb address. Add the low order bit. */
4211 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
4212 s->contents + my_offset + 4);
4213 }
4214 else
4215 {
4216 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
4217 s->contents + my_offset);
4218
4219 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
4220 s->contents + my_offset + 4);
4221
4222 /* It's a thumb address. Add the low order bit. */
4223 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
4224 s->contents + my_offset + 8);
4225 }
4226 }
4227
4228 BFD_ASSERT (my_offset <= globals->arm_glue_size);
4229
4230 return myh;
4231 }
4232
4233 /* Arm code calling a Thumb function. */
4234
4235 static int
4236 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
4237 const char * name,
4238 bfd * input_bfd,
4239 bfd * output_bfd,
4240 asection * input_section,
4241 bfd_byte * hit_data,
4242 asection * sym_sec,
4243 bfd_vma offset,
4244 bfd_signed_vma addend,
4245 bfd_vma val,
4246 char **error_message)
4247 {
4248 unsigned long int tmp;
4249 bfd_vma my_offset;
4250 asection * s;
4251 long int ret_offset;
4252 struct elf_link_hash_entry * myh;
4253 struct elf32_arm_link_hash_table * globals;
4254
4255 globals = elf32_arm_hash_table (info);
4256
4257 BFD_ASSERT (globals != NULL);
4258 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4259
4260 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4261 ARM2THUMB_GLUE_SECTION_NAME);
4262 BFD_ASSERT (s != NULL);
4263 BFD_ASSERT (s->contents != NULL);
4264 BFD_ASSERT (s->output_section != NULL);
4265
4266 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
4267 sym_sec, val, s, error_message);
4268 if (!myh)
4269 return FALSE;
4270
4271 my_offset = myh->root.u.def.value;
4272 tmp = bfd_get_32 (input_bfd, hit_data);
4273 tmp = tmp & 0xFF000000;
4274
4275 /* Somehow these are both 4 too far, so subtract 8. */
4276 ret_offset = (s->output_offset
4277 + my_offset
4278 + s->output_section->vma
4279 - (input_section->output_offset
4280 + input_section->output_section->vma
4281 + offset + addend)
4282 - 8);
4283
4284 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
4285
4286 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
4287
4288 return TRUE;
4289 }
4290
4291 /* Populate Arm stub for an exported Thumb function. */
4292
4293 static bfd_boolean
4294 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
4295 {
4296 struct bfd_link_info * info = (struct bfd_link_info *) inf;
4297 asection * s;
4298 struct elf_link_hash_entry * myh;
4299 struct elf32_arm_link_hash_entry *eh;
4300 struct elf32_arm_link_hash_table * globals;
4301 asection *sec;
4302 bfd_vma val;
4303 char *error_message;
4304
4305 eh = elf32_arm_hash_entry(h);
4306 /* Allocate stubs for exported Thumb functions on v4t. */
4307 if (eh->export_glue == NULL)
4308 return TRUE;
4309
4310 globals = elf32_arm_hash_table (info);
4311
4312 BFD_ASSERT (globals != NULL);
4313 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4314
4315 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4316 ARM2THUMB_GLUE_SECTION_NAME);
4317 BFD_ASSERT (s != NULL);
4318 BFD_ASSERT (s->contents != NULL);
4319 BFD_ASSERT (s->output_section != NULL);
4320
4321 sec = eh->export_glue->root.u.def.section;
4322
4323 BFD_ASSERT (sec->output_section != NULL);
4324
4325 val = eh->export_glue->root.u.def.value + sec->output_offset
4326 + sec->output_section->vma;
4327 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
4328 h->root.u.def.section->owner,
4329 globals->obfd, sec, val, s,
4330 &error_message);
4331 BFD_ASSERT (myh);
4332 return TRUE;
4333 }
4334
4335 /* Generate Arm stubs for exported Thumb symbols. */
4336 static void
4337 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
4338 struct bfd_link_info *link_info)
4339 {
4340 struct elf32_arm_link_hash_table * globals;
4341
4342 if (!link_info)
4343 return;
4344
4345 globals = elf32_arm_hash_table (link_info);
4346 /* If blx is available then exported Thumb symbols are OK and there is
4347 nothing to do. */
4348 if (globals->use_blx)
4349 return;
4350
4351 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
4352 link_info);
4353 }
4354
4355 /* Some relocations map to different relocations depending on the
4356 target. Return the real relocation. */
4357 static int
4358 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
4359 int r_type)
4360 {
4361 switch (r_type)
4362 {
4363 case R_ARM_TARGET1:
4364 if (globals->target1_is_rel)
4365 return R_ARM_REL32;
4366 else
4367 return R_ARM_ABS32;
4368
4369 case R_ARM_TARGET2:
4370 return globals->target2_reloc;
4371
4372 default:
4373 return r_type;
4374 }
4375 }
4376
4377 /* Return the base VMA address which should be subtracted from real addresses
4378 when resolving @dtpoff relocation.
4379 This is PT_TLS segment p_vaddr. */
4380
4381 static bfd_vma
4382 dtpoff_base (struct bfd_link_info *info)
4383 {
4384 /* If tls_sec is NULL, we should have signalled an error already. */
4385 if (elf_hash_table (info)->tls_sec == NULL)
4386 return 0;
4387 return elf_hash_table (info)->tls_sec->vma;
4388 }
4389
4390 /* Return the relocation value for @tpoff relocation
4391 if STT_TLS virtual address is ADDRESS. */
4392
4393 static bfd_vma
4394 tpoff (struct bfd_link_info *info, bfd_vma address)
4395 {
4396 struct elf_link_hash_table *htab = elf_hash_table (info);
4397 bfd_vma base;
4398
4399 /* If tls_sec is NULL, we should have signalled an error already. */
4400 if (htab->tls_sec == NULL)
4401 return 0;
4402 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
4403 return address - htab->tls_sec->vma + base;
4404 }
4405
4406 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
4407 VALUE is the relocation value. */
4408
4409 static bfd_reloc_status_type
4410 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
4411 {
4412 if (value > 0xfff)
4413 return bfd_reloc_overflow;
4414
4415 value |= bfd_get_32 (abfd, data) & 0xfffff000;
4416 bfd_put_32 (abfd, value, data);
4417 return bfd_reloc_ok;
4418 }
4419
4420 /* For a given value of n, calculate the value of G_n as required to
4421 deal with group relocations. We return it in the form of an
4422 encoded constant-and-rotation, together with the final residual. If n is
4423 specified as less than zero, then final_residual is filled with the
4424 input value and no further action is performed. */
4425
4426 static bfd_vma
4427 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
4428 {
4429 int current_n;
4430 bfd_vma g_n;
4431 bfd_vma encoded_g_n = 0;
4432 bfd_vma residual = value; /* Also known as Y_n. */
4433
4434 for (current_n = 0; current_n <= n; current_n++)
4435 {
4436 int shift;
4437
4438 /* Calculate which part of the value to mask. */
4439 if (residual == 0)
4440 shift = 0;
4441 else
4442 {
4443 int msb;
4444
4445 /* Determine the most significant bit in the residual and
4446 align the resulting value to a 2-bit boundary. */
4447 for (msb = 30; msb >= 0; msb -= 2)
4448 if (residual & (3 << msb))
4449 break;
4450
4451 /* The desired shift is now (msb - 6), or zero, whichever
4452 is the greater. */
4453 shift = msb - 6;
4454 if (shift < 0)
4455 shift = 0;
4456 }
4457
4458 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
4459 g_n = residual & (0xff << shift);
4460 encoded_g_n = (g_n >> shift)
4461 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4462
4463 /* Calculate the residual for the next time around. */
4464 residual &= ~g_n;
4465 }
4466
4467 *final_residual = residual;
4468
4469 return encoded_g_n;
4470 }
4471
4472 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
4473 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
4474 static int
4475 identify_add_or_sub(bfd_vma insn)
4476 {
4477 int opcode = insn & 0x1e00000;
4478
4479 if (opcode == 1 << 23) /* ADD */
4480 return 1;
4481
4482 if (opcode == 1 << 22) /* SUB */
4483 return -1;
4484
4485 return 0;
4486 }
4487
4488 /* Determine if we're dealing with a Thumb-2 object. */
4489
4490 static int using_thumb2 (struct elf32_arm_link_hash_table *globals)
4491 {
4492 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4493 Tag_CPU_arch);
4494 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
4495 }
4496
4497 /* Perform a relocation as part of a final link. */
4498
4499 static bfd_reloc_status_type
4500 elf32_arm_final_link_relocate (reloc_howto_type * howto,
4501 bfd * input_bfd,
4502 bfd * output_bfd,
4503 asection * input_section,
4504 bfd_byte * contents,
4505 Elf_Internal_Rela * rel,
4506 bfd_vma value,
4507 struct bfd_link_info * info,
4508 asection * sym_sec,
4509 const char * sym_name,
4510 int sym_flags,
4511 struct elf_link_hash_entry * h,
4512 bfd_boolean * unresolved_reloc_p,
4513 char **error_message)
4514 {
4515 unsigned long r_type = howto->type;
4516 unsigned long r_symndx;
4517 bfd_byte * hit_data = contents + rel->r_offset;
4518 bfd * dynobj = NULL;
4519 Elf_Internal_Shdr * symtab_hdr;
4520 struct elf_link_hash_entry ** sym_hashes;
4521 bfd_vma * local_got_offsets;
4522 asection * sgot = NULL;
4523 asection * splt = NULL;
4524 asection * sreloc = NULL;
4525 bfd_vma addend;
4526 bfd_signed_vma signed_addend;
4527 struct elf32_arm_link_hash_table * globals;
4528
4529 globals = elf32_arm_hash_table (info);
4530
4531 /* Some relocation type map to different relocations depending on the
4532 target. We pick the right one here. */
4533 r_type = arm_real_reloc_type (globals, r_type);
4534 if (r_type != howto->type)
4535 howto = elf32_arm_howto_from_type (r_type);
4536
4537 /* If the start address has been set, then set the EF_ARM_HASENTRY
4538 flag. Setting this more than once is redundant, but the cost is
4539 not too high, and it keeps the code simple.
4540
4541 The test is done here, rather than somewhere else, because the
4542 start address is only set just before the final link commences.
4543
4544 Note - if the user deliberately sets a start address of 0, the
4545 flag will not be set. */
4546 if (bfd_get_start_address (output_bfd) != 0)
4547 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
4548
4549 dynobj = elf_hash_table (info)->dynobj;
4550 if (dynobj)
4551 {
4552 sgot = bfd_get_section_by_name (dynobj, ".got");
4553 splt = bfd_get_section_by_name (dynobj, ".plt");
4554 }
4555 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
4556 sym_hashes = elf_sym_hashes (input_bfd);
4557 local_got_offsets = elf_local_got_offsets (input_bfd);
4558 r_symndx = ELF32_R_SYM (rel->r_info);
4559
4560 if (globals->use_rel)
4561 {
4562 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
4563
4564 if (addend & ((howto->src_mask + 1) >> 1))
4565 {
4566 signed_addend = -1;
4567 signed_addend &= ~ howto->src_mask;
4568 signed_addend |= addend;
4569 }
4570 else
4571 signed_addend = addend;
4572 }
4573 else
4574 addend = signed_addend = rel->r_addend;
4575
4576 switch (r_type)
4577 {
4578 case R_ARM_NONE:
4579 /* We don't need to find a value for this symbol. It's just a
4580 marker. */
4581 *unresolved_reloc_p = FALSE;
4582 return bfd_reloc_ok;
4583
4584 case R_ARM_ABS12:
4585 if (!globals->vxworks_p)
4586 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
4587
4588 case R_ARM_PC24:
4589 case R_ARM_ABS32:
4590 case R_ARM_ABS32_NOI:
4591 case R_ARM_REL32:
4592 case R_ARM_REL32_NOI:
4593 case R_ARM_CALL:
4594 case R_ARM_JUMP24:
4595 case R_ARM_XPC25:
4596 case R_ARM_PREL31:
4597 case R_ARM_PLT32:
4598 /* Handle relocations which should use the PLT entry. ABS32/REL32
4599 will use the symbol's value, which may point to a PLT entry, but we
4600 don't need to handle that here. If we created a PLT entry, all
4601 branches in this object should go to it. */
4602 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
4603 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
4604 && h != NULL
4605 && splt != NULL
4606 && h->plt.offset != (bfd_vma) -1)
4607 {
4608 /* If we've created a .plt section, and assigned a PLT entry to
4609 this function, it should not be known to bind locally. If
4610 it were, we would have cleared the PLT entry. */
4611 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
4612
4613 value = (splt->output_section->vma
4614 + splt->output_offset
4615 + h->plt.offset);
4616 *unresolved_reloc_p = FALSE;
4617 return _bfd_final_link_relocate (howto, input_bfd, input_section,
4618 contents, rel->r_offset, value,
4619 rel->r_addend);
4620 }
4621
4622 /* When generating a shared object or relocatable executable, these
4623 relocations are copied into the output file to be resolved at
4624 run time. */
4625 if ((info->shared || globals->root.is_relocatable_executable)
4626 && (input_section->flags & SEC_ALLOC)
4627 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
4628 || !SYMBOL_CALLS_LOCAL (info, h))
4629 && (h == NULL
4630 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4631 || h->root.type != bfd_link_hash_undefweak)
4632 && r_type != R_ARM_PC24
4633 && r_type != R_ARM_CALL
4634 && r_type != R_ARM_JUMP24
4635 && r_type != R_ARM_PREL31
4636 && r_type != R_ARM_PLT32)
4637 {
4638 Elf_Internal_Rela outrel;
4639 bfd_byte *loc;
4640 bfd_boolean skip, relocate;
4641
4642 *unresolved_reloc_p = FALSE;
4643
4644 if (sreloc == NULL)
4645 {
4646 const char * name;
4647
4648 name = (bfd_elf_string_from_elf_section
4649 (input_bfd,
4650 elf_elfheader (input_bfd)->e_shstrndx,
4651 elf_section_data (input_section)->rel_hdr.sh_name));
4652 if (name == NULL)
4653 return bfd_reloc_notsupported;
4654
4655 BFD_ASSERT (reloc_section_p (globals, name, input_section));
4656
4657 sreloc = bfd_get_section_by_name (dynobj, name);
4658 BFD_ASSERT (sreloc != NULL);
4659 }
4660
4661 skip = FALSE;
4662 relocate = FALSE;
4663
4664 outrel.r_addend = addend;
4665 outrel.r_offset =
4666 _bfd_elf_section_offset (output_bfd, info, input_section,
4667 rel->r_offset);
4668 if (outrel.r_offset == (bfd_vma) -1)
4669 skip = TRUE;
4670 else if (outrel.r_offset == (bfd_vma) -2)
4671 skip = TRUE, relocate = TRUE;
4672 outrel.r_offset += (input_section->output_section->vma
4673 + input_section->output_offset);
4674
4675 if (skip)
4676 memset (&outrel, 0, sizeof outrel);
4677 else if (h != NULL
4678 && h->dynindx != -1
4679 && (!info->shared
4680 || !info->symbolic
4681 || !h->def_regular))
4682 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
4683 else
4684 {
4685 int symbol;
4686
4687 /* This symbol is local, or marked to become local. */
4688 if (sym_flags == STT_ARM_TFUNC)
4689 value |= 1;
4690 if (globals->symbian_p)
4691 {
4692 asection *osec;
4693
4694 /* On Symbian OS, the data segment and text segement
4695 can be relocated independently. Therefore, we
4696 must indicate the segment to which this
4697 relocation is relative. The BPABI allows us to
4698 use any symbol in the right segment; we just use
4699 the section symbol as it is convenient. (We
4700 cannot use the symbol given by "h" directly as it
4701 will not appear in the dynamic symbol table.)
4702
4703 Note that the dynamic linker ignores the section
4704 symbol value, so we don't subtract osec->vma
4705 from the emitted reloc addend. */
4706 if (sym_sec)
4707 osec = sym_sec->output_section;
4708 else
4709 osec = input_section->output_section;
4710 symbol = elf_section_data (osec)->dynindx;
4711 if (symbol == 0)
4712 {
4713 struct elf_link_hash_table *htab = elf_hash_table (info);
4714
4715 if ((osec->flags & SEC_READONLY) == 0
4716 && htab->data_index_section != NULL)
4717 osec = htab->data_index_section;
4718 else
4719 osec = htab->text_index_section;
4720 symbol = elf_section_data (osec)->dynindx;
4721 }
4722 BFD_ASSERT (symbol != 0);
4723 }
4724 else
4725 /* On SVR4-ish systems, the dynamic loader cannot
4726 relocate the text and data segments independently,
4727 so the symbol does not matter. */
4728 symbol = 0;
4729 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
4730 if (globals->use_rel)
4731 relocate = TRUE;
4732 else
4733 outrel.r_addend += value;
4734 }
4735
4736 loc = sreloc->contents;
4737 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
4738 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
4739
4740 /* If this reloc is against an external symbol, we do not want to
4741 fiddle with the addend. Otherwise, we need to include the symbol
4742 value so that it becomes an addend for the dynamic reloc. */
4743 if (! relocate)
4744 return bfd_reloc_ok;
4745
4746 return _bfd_final_link_relocate (howto, input_bfd, input_section,
4747 contents, rel->r_offset, value,
4748 (bfd_vma) 0);
4749 }
4750 else switch (r_type)
4751 {
4752 case R_ARM_ABS12:
4753 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
4754
4755 case R_ARM_XPC25: /* Arm BLX instruction. */
4756 case R_ARM_CALL:
4757 case R_ARM_JUMP24:
4758 case R_ARM_PC24: /* Arm B/BL instruction */
4759 case R_ARM_PLT32:
4760 if (r_type == R_ARM_XPC25)
4761 {
4762 /* Check for Arm calling Arm function. */
4763 /* FIXME: Should we translate the instruction into a BL
4764 instruction instead ? */
4765 if (sym_flags != STT_ARM_TFUNC)
4766 (*_bfd_error_handler)
4767 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
4768 input_bfd,
4769 h ? h->root.root.string : "(local)");
4770 }
4771 else if (r_type != R_ARM_CALL || !globals->use_blx)
4772 {
4773 /* Check for Arm calling Thumb function. */
4774 if (sym_flags == STT_ARM_TFUNC)
4775 {
4776 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
4777 output_bfd, input_section,
4778 hit_data, sym_sec, rel->r_offset,
4779 signed_addend, value,
4780 error_message))
4781 return bfd_reloc_ok;
4782 else
4783 return bfd_reloc_dangerous;
4784 }
4785 }
4786
4787 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
4788 where:
4789 S is the address of the symbol in the relocation.
4790 P is address of the instruction being relocated.
4791 A is the addend (extracted from the instruction) in bytes.
4792
4793 S is held in 'value'.
4794 P is the base address of the section containing the
4795 instruction plus the offset of the reloc into that
4796 section, ie:
4797 (input_section->output_section->vma +
4798 input_section->output_offset +
4799 rel->r_offset).
4800 A is the addend, converted into bytes, ie:
4801 (signed_addend * 4)
4802
4803 Note: None of these operations have knowledge of the pipeline
4804 size of the processor, thus it is up to the assembler to
4805 encode this information into the addend. */
4806 value -= (input_section->output_section->vma
4807 + input_section->output_offset);
4808 value -= rel->r_offset;
4809 if (globals->use_rel)
4810 value += (signed_addend << howto->size);
4811 else
4812 /* RELA addends do not have to be adjusted by howto->size. */
4813 value += signed_addend;
4814
4815 signed_addend = value;
4816 signed_addend >>= howto->rightshift;
4817
4818 /* A branch to an undefined weak symbol is turned into a jump to
4819 the next instruction. */
4820 if (h && h->root.type == bfd_link_hash_undefweak)
4821 {
4822 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
4823 | 0x0affffff;
4824 }
4825 else
4826 {
4827 /* Perform a signed range check. */
4828 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
4829 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
4830 return bfd_reloc_overflow;
4831
4832 addend = (value & 2);
4833
4834 value = (signed_addend & howto->dst_mask)
4835 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
4836
4837 /* Set the H bit in the BLX instruction. */
4838 if (sym_flags == STT_ARM_TFUNC)
4839 {
4840 if (addend)
4841 value |= (1 << 24);
4842 else
4843 value &= ~(bfd_vma)(1 << 24);
4844 }
4845 if (r_type == R_ARM_CALL)
4846 {
4847 /* Select the correct instruction (BL or BLX). */
4848 if (sym_flags == STT_ARM_TFUNC)
4849 value |= (1 << 28);
4850 else
4851 {
4852 value &= ~(bfd_vma)(1 << 28);
4853 value |= (1 << 24);
4854 }
4855 }
4856 }
4857 break;
4858
4859 case R_ARM_ABS32:
4860 value += addend;
4861 if (sym_flags == STT_ARM_TFUNC)
4862 value |= 1;
4863 break;
4864
4865 case R_ARM_ABS32_NOI:
4866 value += addend;
4867 break;
4868
4869 case R_ARM_REL32:
4870 value += addend;
4871 if (sym_flags == STT_ARM_TFUNC)
4872 value |= 1;
4873 value -= (input_section->output_section->vma
4874 + input_section->output_offset + rel->r_offset);
4875 break;
4876
4877 case R_ARM_REL32_NOI:
4878 value += addend;
4879 value -= (input_section->output_section->vma
4880 + input_section->output_offset + rel->r_offset);
4881 break;
4882
4883 case R_ARM_PREL31:
4884 value -= (input_section->output_section->vma
4885 + input_section->output_offset + rel->r_offset);
4886 value += signed_addend;
4887 if (! h || h->root.type != bfd_link_hash_undefweak)
4888 {
4889 /* Check for overflow */
4890 if ((value ^ (value >> 1)) & (1 << 30))
4891 return bfd_reloc_overflow;
4892 }
4893 value &= 0x7fffffff;
4894 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
4895 if (sym_flags == STT_ARM_TFUNC)
4896 value |= 1;
4897 break;
4898 }
4899
4900 bfd_put_32 (input_bfd, value, hit_data);
4901 return bfd_reloc_ok;
4902
4903 case R_ARM_ABS8:
4904 value += addend;
4905 if ((long) value > 0x7f || (long) value < -0x80)
4906 return bfd_reloc_overflow;
4907
4908 bfd_put_8 (input_bfd, value, hit_data);
4909 return bfd_reloc_ok;
4910
4911 case R_ARM_ABS16:
4912 value += addend;
4913
4914 if ((long) value > 0x7fff || (long) value < -0x8000)
4915 return bfd_reloc_overflow;
4916
4917 bfd_put_16 (input_bfd, value, hit_data);
4918 return bfd_reloc_ok;
4919
4920 case R_ARM_THM_ABS5:
4921 /* Support ldr and str instructions for the thumb. */
4922 if (globals->use_rel)
4923 {
4924 /* Need to refetch addend. */
4925 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
4926 /* ??? Need to determine shift amount from operand size. */
4927 addend >>= howto->rightshift;
4928 }
4929 value += addend;
4930
4931 /* ??? Isn't value unsigned? */
4932 if ((long) value > 0x1f || (long) value < -0x10)
4933 return bfd_reloc_overflow;
4934
4935 /* ??? Value needs to be properly shifted into place first. */
4936 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
4937 bfd_put_16 (input_bfd, value, hit_data);
4938 return bfd_reloc_ok;
4939
4940 case R_ARM_THM_ALU_PREL_11_0:
4941 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
4942 {
4943 bfd_vma insn;
4944 bfd_signed_vma relocation;
4945
4946 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
4947 | bfd_get_16 (input_bfd, hit_data + 2);
4948
4949 if (globals->use_rel)
4950 {
4951 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
4952 | ((insn & (1 << 26)) >> 15);
4953 if (insn & 0xf00000)
4954 signed_addend = -signed_addend;
4955 }
4956
4957 relocation = value + signed_addend;
4958 relocation -= (input_section->output_section->vma
4959 + input_section->output_offset
4960 + rel->r_offset);
4961
4962 value = abs (relocation);
4963
4964 if (value >= 0x1000)
4965 return bfd_reloc_overflow;
4966
4967 insn = (insn & 0xfb0f8f00) | (value & 0xff)
4968 | ((value & 0x700) << 4)
4969 | ((value & 0x800) << 15);
4970 if (relocation < 0)
4971 insn |= 0xa00000;
4972
4973 bfd_put_16 (input_bfd, insn >> 16, hit_data);
4974 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
4975
4976 return bfd_reloc_ok;
4977 }
4978
4979 case R_ARM_THM_PC12:
4980 /* Corresponds to: ldr.w reg, [pc, #offset]. */
4981 {
4982 bfd_vma insn;
4983 bfd_signed_vma relocation;
4984
4985 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
4986 | bfd_get_16 (input_bfd, hit_data + 2);
4987
4988 if (globals->use_rel)
4989 {
4990 signed_addend = insn & 0xfff;
4991 if (!(insn & (1 << 23)))
4992 signed_addend = -signed_addend;
4993 }
4994
4995 relocation = value + signed_addend;
4996 relocation -= (input_section->output_section->vma
4997 + input_section->output_offset
4998 + rel->r_offset);
4999
5000 value = abs (relocation);
5001
5002 if (value >= 0x1000)
5003 return bfd_reloc_overflow;
5004
5005 insn = (insn & 0xff7ff000) | value;
5006 if (relocation >= 0)
5007 insn |= (1 << 23);
5008
5009 bfd_put_16 (input_bfd, insn >> 16, hit_data);
5010 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
5011
5012 return bfd_reloc_ok;
5013 }
5014
5015 case R_ARM_THM_XPC22:
5016 case R_ARM_THM_CALL:
5017 case R_ARM_THM_JUMP24:
5018 /* Thumb BL (branch long instruction). */
5019 {
5020 bfd_vma relocation;
5021 bfd_vma reloc_sign;
5022 bfd_boolean overflow = FALSE;
5023 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
5024 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
5025 bfd_signed_vma reloc_signed_max;
5026 bfd_signed_vma reloc_signed_min;
5027 bfd_vma check;
5028 bfd_signed_vma signed_check;
5029 int bitsize;
5030 int thumb2 = using_thumb2 (globals);
5031
5032 /* A branch to an undefined weak symbol is turned into a jump to
5033 the next instruction. */
5034 if (h && h->root.type == bfd_link_hash_undefweak)
5035 {
5036 bfd_put_16 (input_bfd, 0xe000, hit_data);
5037 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
5038 return bfd_reloc_ok;
5039 }
5040
5041 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
5042 with Thumb-1) involving the J1 and J2 bits. */
5043 if (globals->use_rel)
5044 {
5045 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
5046 bfd_vma upper = upper_insn & 0x3ff;
5047 bfd_vma lower = lower_insn & 0x7ff;
5048 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
5049 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
5050 bfd_vma i1 = j1 ^ s ? 0 : 1;
5051 bfd_vma i2 = j2 ^ s ? 0 : 1;
5052
5053 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
5054 /* Sign extend. */
5055 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
5056
5057 signed_addend = addend;
5058 }
5059
5060 if (r_type == R_ARM_THM_XPC22)
5061 {
5062 /* Check for Thumb to Thumb call. */
5063 /* FIXME: Should we translate the instruction into a BL
5064 instruction instead ? */
5065 if (sym_flags == STT_ARM_TFUNC)
5066 (*_bfd_error_handler)
5067 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
5068 input_bfd,
5069 h ? h->root.root.string : "(local)");
5070 }
5071 else
5072 {
5073 /* If it is not a call to Thumb, assume call to Arm.
5074 If it is a call relative to a section name, then it is not a
5075 function call at all, but rather a long jump. Calls through
5076 the PLT do not require stubs. */
5077 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
5078 && (h == NULL || splt == NULL
5079 || h->plt.offset == (bfd_vma) -1))
5080 {
5081 if (globals->use_blx && r_type == R_ARM_THM_CALL)
5082 {
5083 /* Convert BL to BLX. */
5084 lower_insn = (lower_insn & ~0x1000) | 0x0800;
5085 }
5086 else if (elf32_thumb_to_arm_stub
5087 (info, sym_name, input_bfd, output_bfd, input_section,
5088 hit_data, sym_sec, rel->r_offset, signed_addend, value,
5089 error_message))
5090 return bfd_reloc_ok;
5091 else
5092 return bfd_reloc_dangerous;
5093 }
5094 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
5095 && r_type == R_ARM_THM_CALL)
5096 {
5097 /* Make sure this is a BL. */
5098 lower_insn |= 0x1800;
5099 }
5100 }
5101
5102 /* Handle calls via the PLT. */
5103 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
5104 {
5105 value = (splt->output_section->vma
5106 + splt->output_offset
5107 + h->plt.offset);
5108 if (globals->use_blx && r_type == R_ARM_THM_CALL)
5109 {
5110 /* If the Thumb BLX instruction is available, convert the
5111 BL to a BLX instruction to call the ARM-mode PLT entry. */
5112 lower_insn = (lower_insn & ~0x1000) | 0x0800;
5113 }
5114 else
5115 /* Target the Thumb stub before the ARM PLT entry. */
5116 value -= PLT_THUMB_STUB_SIZE;
5117 *unresolved_reloc_p = FALSE;
5118 }
5119
5120 relocation = value + signed_addend;
5121
5122 relocation -= (input_section->output_section->vma
5123 + input_section->output_offset
5124 + rel->r_offset);
5125
5126 check = relocation >> howto->rightshift;
5127
5128 /* If this is a signed value, the rightshift just dropped
5129 leading 1 bits (assuming twos complement). */
5130 if ((bfd_signed_vma) relocation >= 0)
5131 signed_check = check;
5132 else
5133 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
5134
5135 /* Calculate the permissable maximum and minimum values for
5136 this relocation according to whether we're relocating for
5137 Thumb-2 or not. */
5138 bitsize = howto->bitsize;
5139 if (!thumb2)
5140 bitsize -= 2;
5141 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
5142 reloc_signed_min = ~reloc_signed_max;
5143
5144 /* Assumes two's complement. */
5145 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5146 overflow = TRUE;
5147
5148 if ((lower_insn & 0x5000) == 0x4000)
5149 /* For a BLX instruction, make sure that the relocation is rounded up
5150 to a word boundary. This follows the semantics of the instruction
5151 which specifies that bit 1 of the target address will come from bit
5152 1 of the base address. */
5153 relocation = (relocation + 2) & ~ 3;
5154
5155 /* Put RELOCATION back into the insn. Assumes two's complement.
5156 We use the Thumb-2 encoding, which is safe even if dealing with
5157 a Thumb-1 instruction by virtue of our overflow check above. */
5158 reloc_sign = (signed_check < 0) ? 1 : 0;
5159 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
5160 | ((relocation >> 12) & 0x3ff)
5161 | (reloc_sign << 10);
5162 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
5163 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
5164 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
5165 | ((relocation >> 1) & 0x7ff);
5166
5167 /* Put the relocated value back in the object file: */
5168 bfd_put_16 (input_bfd, upper_insn, hit_data);
5169 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
5170
5171 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
5172 }
5173 break;
5174
5175 case R_ARM_THM_JUMP19:
5176 /* Thumb32 conditional branch instruction. */
5177 {
5178 bfd_vma relocation;
5179 bfd_boolean overflow = FALSE;
5180 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
5181 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
5182 bfd_signed_vma reloc_signed_max = 0xffffe;
5183 bfd_signed_vma reloc_signed_min = -0x100000;
5184 bfd_signed_vma signed_check;
5185
5186 /* Need to refetch the addend, reconstruct the top three bits,
5187 and squish the two 11 bit pieces together. */
5188 if (globals->use_rel)
5189 {
5190 bfd_vma S = (upper_insn & 0x0400) >> 10;
5191 bfd_vma upper = (upper_insn & 0x003f);
5192 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
5193 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
5194 bfd_vma lower = (lower_insn & 0x07ff);
5195
5196 upper |= J1 << 6;
5197 upper |= J2 << 7;
5198 upper |= (!S) << 8;
5199 upper -= 0x0100; /* Sign extend. */
5200
5201 addend = (upper << 12) | (lower << 1);
5202 signed_addend = addend;
5203 }
5204
5205 /* Handle calls via the PLT. */
5206 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
5207 {
5208 value = (splt->output_section->vma
5209 + splt->output_offset
5210 + h->plt.offset);
5211 /* Target the Thumb stub before the ARM PLT entry. */
5212 value -= PLT_THUMB_STUB_SIZE;
5213 *unresolved_reloc_p = FALSE;
5214 }
5215
5216 /* ??? Should handle interworking? GCC might someday try to
5217 use this for tail calls. */
5218
5219 relocation = value + signed_addend;
5220 relocation -= (input_section->output_section->vma
5221 + input_section->output_offset
5222 + rel->r_offset);
5223 signed_check = (bfd_signed_vma) relocation;
5224
5225 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5226 overflow = TRUE;
5227
5228 /* Put RELOCATION back into the insn. */
5229 {
5230 bfd_vma S = (relocation & 0x00100000) >> 20;
5231 bfd_vma J2 = (relocation & 0x00080000) >> 19;
5232 bfd_vma J1 = (relocation & 0x00040000) >> 18;
5233 bfd_vma hi = (relocation & 0x0003f000) >> 12;
5234 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
5235
5236 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
5237 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
5238 }
5239
5240 /* Put the relocated value back in the object file: */
5241 bfd_put_16 (input_bfd, upper_insn, hit_data);
5242 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
5243
5244 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
5245 }
5246
5247 case R_ARM_THM_JUMP11:
5248 case R_ARM_THM_JUMP8:
5249 case R_ARM_THM_JUMP6:
5250 /* Thumb B (branch) instruction). */
5251 {
5252 bfd_signed_vma relocation;
5253 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
5254 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
5255 bfd_signed_vma signed_check;
5256
5257 /* CZB cannot jump backward. */
5258 if (r_type == R_ARM_THM_JUMP6)
5259 reloc_signed_min = 0;
5260
5261 if (globals->use_rel)
5262 {
5263 /* Need to refetch addend. */
5264 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
5265 if (addend & ((howto->src_mask + 1) >> 1))
5266 {
5267 signed_addend = -1;
5268 signed_addend &= ~ howto->src_mask;
5269 signed_addend |= addend;
5270 }
5271 else
5272 signed_addend = addend;
5273 /* The value in the insn has been right shifted. We need to
5274 undo this, so that we can perform the address calculation
5275 in terms of bytes. */
5276 signed_addend <<= howto->rightshift;
5277 }
5278 relocation = value + signed_addend;
5279
5280 relocation -= (input_section->output_section->vma
5281 + input_section->output_offset
5282 + rel->r_offset);
5283
5284 relocation >>= howto->rightshift;
5285 signed_check = relocation;
5286
5287 if (r_type == R_ARM_THM_JUMP6)
5288 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
5289 else
5290 relocation &= howto->dst_mask;
5291 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
5292
5293 bfd_put_16 (input_bfd, relocation, hit_data);
5294
5295 /* Assumes two's complement. */
5296 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5297 return bfd_reloc_overflow;
5298
5299 return bfd_reloc_ok;
5300 }
5301
5302 case R_ARM_ALU_PCREL7_0:
5303 case R_ARM_ALU_PCREL15_8:
5304 case R_ARM_ALU_PCREL23_15:
5305 {
5306 bfd_vma insn;
5307 bfd_vma relocation;
5308
5309 insn = bfd_get_32 (input_bfd, hit_data);
5310 if (globals->use_rel)
5311 {
5312 /* Extract the addend. */
5313 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
5314 signed_addend = addend;
5315 }
5316 relocation = value + signed_addend;
5317
5318 relocation -= (input_section->output_section->vma
5319 + input_section->output_offset
5320 + rel->r_offset);
5321 insn = (insn & ~0xfff)
5322 | ((howto->bitpos << 7) & 0xf00)
5323 | ((relocation >> howto->bitpos) & 0xff);
5324 bfd_put_32 (input_bfd, value, hit_data);
5325 }
5326 return bfd_reloc_ok;
5327
5328 case R_ARM_GNU_VTINHERIT:
5329 case R_ARM_GNU_VTENTRY:
5330 return bfd_reloc_ok;
5331
5332 case R_ARM_GOTOFF32:
5333 /* Relocation is relative to the start of the
5334 global offset table. */
5335
5336 BFD_ASSERT (sgot != NULL);
5337 if (sgot == NULL)
5338 return bfd_reloc_notsupported;
5339
5340 /* If we are addressing a Thumb function, we need to adjust the
5341 address by one, so that attempts to call the function pointer will
5342 correctly interpret it as Thumb code. */
5343 if (sym_flags == STT_ARM_TFUNC)
5344 value += 1;
5345
5346 /* Note that sgot->output_offset is not involved in this
5347 calculation. We always want the start of .got. If we
5348 define _GLOBAL_OFFSET_TABLE in a different way, as is
5349 permitted by the ABI, we might have to change this
5350 calculation. */
5351 value -= sgot->output_section->vma;
5352 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5353 contents, rel->r_offset, value,
5354 rel->r_addend);
5355
5356 case R_ARM_GOTPC:
5357 /* Use global offset table as symbol value. */
5358 BFD_ASSERT (sgot != NULL);
5359
5360 if (sgot == NULL)
5361 return bfd_reloc_notsupported;
5362
5363 *unresolved_reloc_p = FALSE;
5364 value = sgot->output_section->vma;
5365 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5366 contents, rel->r_offset, value,
5367 rel->r_addend);
5368
5369 case R_ARM_GOT32:
5370 case R_ARM_GOT_PREL:
5371 /* Relocation is to the entry for this symbol in the
5372 global offset table. */
5373 if (sgot == NULL)
5374 return bfd_reloc_notsupported;
5375
5376 if (h != NULL)
5377 {
5378 bfd_vma off;
5379 bfd_boolean dyn;
5380
5381 off = h->got.offset;
5382 BFD_ASSERT (off != (bfd_vma) -1);
5383 dyn = globals->root.dynamic_sections_created;
5384
5385 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
5386 || (info->shared
5387 && SYMBOL_REFERENCES_LOCAL (info, h))
5388 || (ELF_ST_VISIBILITY (h->other)
5389 && h->root.type == bfd_link_hash_undefweak))
5390 {
5391 /* This is actually a static link, or it is a -Bsymbolic link
5392 and the symbol is defined locally. We must initialize this
5393 entry in the global offset table. Since the offset must
5394 always be a multiple of 4, we use the least significant bit
5395 to record whether we have initialized it already.
5396
5397 When doing a dynamic link, we create a .rel(a).got relocation
5398 entry to initialize the value. This is done in the
5399 finish_dynamic_symbol routine. */
5400 if ((off & 1) != 0)
5401 off &= ~1;
5402 else
5403 {
5404 /* If we are addressing a Thumb function, we need to
5405 adjust the address by one, so that attempts to
5406 call the function pointer will correctly
5407 interpret it as Thumb code. */
5408 if (sym_flags == STT_ARM_TFUNC)
5409 value |= 1;
5410
5411 bfd_put_32 (output_bfd, value, sgot->contents + off);
5412 h->got.offset |= 1;
5413 }
5414 }
5415 else
5416 *unresolved_reloc_p = FALSE;
5417
5418 value = sgot->output_offset + off;
5419 }
5420 else
5421 {
5422 bfd_vma off;
5423
5424 BFD_ASSERT (local_got_offsets != NULL &&
5425 local_got_offsets[r_symndx] != (bfd_vma) -1);
5426
5427 off = local_got_offsets[r_symndx];
5428
5429 /* The offset must always be a multiple of 4. We use the
5430 least significant bit to record whether we have already
5431 generated the necessary reloc. */
5432 if ((off & 1) != 0)
5433 off &= ~1;
5434 else
5435 {
5436 /* If we are addressing a Thumb function, we need to
5437 adjust the address by one, so that attempts to
5438 call the function pointer will correctly
5439 interpret it as Thumb code. */
5440 if (sym_flags == STT_ARM_TFUNC)
5441 value |= 1;
5442
5443 if (globals->use_rel)
5444 bfd_put_32 (output_bfd, value, sgot->contents + off);
5445
5446 if (info->shared)
5447 {
5448 asection * srelgot;
5449 Elf_Internal_Rela outrel;
5450 bfd_byte *loc;
5451
5452 srelgot = (bfd_get_section_by_name
5453 (dynobj, RELOC_SECTION (globals, ".got")));
5454 BFD_ASSERT (srelgot != NULL);
5455
5456 outrel.r_addend = addend + value;
5457 outrel.r_offset = (sgot->output_section->vma
5458 + sgot->output_offset
5459 + off);
5460 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
5461 loc = srelgot->contents;
5462 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
5463 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5464 }
5465
5466 local_got_offsets[r_symndx] |= 1;
5467 }
5468
5469 value = sgot->output_offset + off;
5470 }
5471 if (r_type != R_ARM_GOT32)
5472 value += sgot->output_section->vma;
5473
5474 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5475 contents, rel->r_offset, value,
5476 rel->r_addend);
5477
5478 case R_ARM_TLS_LDO32:
5479 value = value - dtpoff_base (info);
5480
5481 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5482 contents, rel->r_offset, value,
5483 rel->r_addend);
5484
5485 case R_ARM_TLS_LDM32:
5486 {
5487 bfd_vma off;
5488
5489 if (globals->sgot == NULL)
5490 abort ();
5491
5492 off = globals->tls_ldm_got.offset;
5493
5494 if ((off & 1) != 0)
5495 off &= ~1;
5496 else
5497 {
5498 /* If we don't know the module number, create a relocation
5499 for it. */
5500 if (info->shared)
5501 {
5502 Elf_Internal_Rela outrel;
5503 bfd_byte *loc;
5504
5505 if (globals->srelgot == NULL)
5506 abort ();
5507
5508 outrel.r_addend = 0;
5509 outrel.r_offset = (globals->sgot->output_section->vma
5510 + globals->sgot->output_offset + off);
5511 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
5512
5513 if (globals->use_rel)
5514 bfd_put_32 (output_bfd, outrel.r_addend,
5515 globals->sgot->contents + off);
5516
5517 loc = globals->srelgot->contents;
5518 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
5519 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5520 }
5521 else
5522 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
5523
5524 globals->tls_ldm_got.offset |= 1;
5525 }
5526
5527 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
5528 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
5529
5530 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5531 contents, rel->r_offset, value,
5532 rel->r_addend);
5533 }
5534
5535 case R_ARM_TLS_GD32:
5536 case R_ARM_TLS_IE32:
5537 {
5538 bfd_vma off;
5539 int indx;
5540 char tls_type;
5541
5542 if (globals->sgot == NULL)
5543 abort ();
5544
5545 indx = 0;
5546 if (h != NULL)
5547 {
5548 bfd_boolean dyn;
5549 dyn = globals->root.dynamic_sections_created;
5550 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
5551 && (!info->shared
5552 || !SYMBOL_REFERENCES_LOCAL (info, h)))
5553 {
5554 *unresolved_reloc_p = FALSE;
5555 indx = h->dynindx;
5556 }
5557 off = h->got.offset;
5558 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
5559 }
5560 else
5561 {
5562 if (local_got_offsets == NULL)
5563 abort ();
5564 off = local_got_offsets[r_symndx];
5565 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
5566 }
5567
5568 if (tls_type == GOT_UNKNOWN)
5569 abort ();
5570
5571 if ((off & 1) != 0)
5572 off &= ~1;
5573 else
5574 {
5575 bfd_boolean need_relocs = FALSE;
5576 Elf_Internal_Rela outrel;
5577 bfd_byte *loc = NULL;
5578 int cur_off = off;
5579
5580 /* The GOT entries have not been initialized yet. Do it
5581 now, and emit any relocations. If both an IE GOT and a
5582 GD GOT are necessary, we emit the GD first. */
5583
5584 if ((info->shared || indx != 0)
5585 && (h == NULL
5586 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5587 || h->root.type != bfd_link_hash_undefweak))
5588 {
5589 need_relocs = TRUE;
5590 if (globals->srelgot == NULL)
5591 abort ();
5592 loc = globals->srelgot->contents;
5593 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
5594 }
5595
5596 if (tls_type & GOT_TLS_GD)
5597 {
5598 if (need_relocs)
5599 {
5600 outrel.r_addend = 0;
5601 outrel.r_offset = (globals->sgot->output_section->vma
5602 + globals->sgot->output_offset
5603 + cur_off);
5604 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
5605
5606 if (globals->use_rel)
5607 bfd_put_32 (output_bfd, outrel.r_addend,
5608 globals->sgot->contents + cur_off);
5609
5610 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5611 globals->srelgot->reloc_count++;
5612 loc += RELOC_SIZE (globals);
5613
5614 if (indx == 0)
5615 bfd_put_32 (output_bfd, value - dtpoff_base (info),
5616 globals->sgot->contents + cur_off + 4);
5617 else
5618 {
5619 outrel.r_addend = 0;
5620 outrel.r_info = ELF32_R_INFO (indx,
5621 R_ARM_TLS_DTPOFF32);
5622 outrel.r_offset += 4;
5623
5624 if (globals->use_rel)
5625 bfd_put_32 (output_bfd, outrel.r_addend,
5626 globals->sgot->contents + cur_off + 4);
5627
5628
5629 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5630 globals->srelgot->reloc_count++;
5631 loc += RELOC_SIZE (globals);
5632 }
5633 }
5634 else
5635 {
5636 /* If we are not emitting relocations for a
5637 general dynamic reference, then we must be in a
5638 static link or an executable link with the
5639 symbol binding locally. Mark it as belonging
5640 to module 1, the executable. */
5641 bfd_put_32 (output_bfd, 1,
5642 globals->sgot->contents + cur_off);
5643 bfd_put_32 (output_bfd, value - dtpoff_base (info),
5644 globals->sgot->contents + cur_off + 4);
5645 }
5646
5647 cur_off += 8;
5648 }
5649
5650 if (tls_type & GOT_TLS_IE)
5651 {
5652 if (need_relocs)
5653 {
5654 if (indx == 0)
5655 outrel.r_addend = value - dtpoff_base (info);
5656 else
5657 outrel.r_addend = 0;
5658 outrel.r_offset = (globals->sgot->output_section->vma
5659 + globals->sgot->output_offset
5660 + cur_off);
5661 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
5662
5663 if (globals->use_rel)
5664 bfd_put_32 (output_bfd, outrel.r_addend,
5665 globals->sgot->contents + cur_off);
5666
5667 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5668 globals->srelgot->reloc_count++;
5669 loc += RELOC_SIZE (globals);
5670 }
5671 else
5672 bfd_put_32 (output_bfd, tpoff (info, value),
5673 globals->sgot->contents + cur_off);
5674 cur_off += 4;
5675 }
5676
5677 if (h != NULL)
5678 h->got.offset |= 1;
5679 else
5680 local_got_offsets[r_symndx] |= 1;
5681 }
5682
5683 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
5684 off += 8;
5685 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
5686 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
5687
5688 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5689 contents, rel->r_offset, value,
5690 rel->r_addend);
5691 }
5692
5693 case R_ARM_TLS_LE32:
5694 if (info->shared)
5695 {
5696 (*_bfd_error_handler)
5697 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
5698 input_bfd, input_section,
5699 (long) rel->r_offset, howto->name);
5700 return FALSE;
5701 }
5702 else
5703 value = tpoff (info, value);
5704
5705 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5706 contents, rel->r_offset, value,
5707 rel->r_addend);
5708
5709 case R_ARM_V4BX:
5710 if (globals->fix_v4bx)
5711 {
5712 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
5713
5714 /* Ensure that we have a BX instruction. */
5715 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
5716
5717 /* Preserve Rm (lowest four bits) and the condition code
5718 (highest four bits). Other bits encode MOV PC,Rm. */
5719 insn = (insn & 0xf000000f) | 0x01a0f000;
5720
5721 bfd_put_32 (input_bfd, insn, hit_data);
5722 }
5723 return bfd_reloc_ok;
5724
5725 case R_ARM_MOVW_ABS_NC:
5726 case R_ARM_MOVT_ABS:
5727 case R_ARM_MOVW_PREL_NC:
5728 case R_ARM_MOVT_PREL:
5729 /* Until we properly support segment-base-relative addressing then
5730 we assume the segment base to be zero, as for the group relocations.
5731 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
5732 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
5733 case R_ARM_MOVW_BREL_NC:
5734 case R_ARM_MOVW_BREL:
5735 case R_ARM_MOVT_BREL:
5736 {
5737 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
5738
5739 if (globals->use_rel)
5740 {
5741 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
5742 signed_addend = (addend ^ 0x10000) - 0x10000;
5743 }
5744
5745 value += signed_addend;
5746
5747 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
5748 value -= (input_section->output_section->vma
5749 + input_section->output_offset + rel->r_offset);
5750
5751 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
5752 return bfd_reloc_overflow;
5753
5754 if (sym_flags == STT_ARM_TFUNC)
5755 value |= 1;
5756
5757 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
5758 || r_type == R_ARM_MOVT_BREL)
5759 value >>= 16;
5760
5761 insn &= 0xfff0f000;
5762 insn |= value & 0xfff;
5763 insn |= (value & 0xf000) << 4;
5764 bfd_put_32 (input_bfd, insn, hit_data);
5765 }
5766 return bfd_reloc_ok;
5767
5768 case R_ARM_THM_MOVW_ABS_NC:
5769 case R_ARM_THM_MOVT_ABS:
5770 case R_ARM_THM_MOVW_PREL_NC:
5771 case R_ARM_THM_MOVT_PREL:
5772 /* Until we properly support segment-base-relative addressing then
5773 we assume the segment base to be zero, as for the above relocations.
5774 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
5775 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
5776 as R_ARM_THM_MOVT_ABS. */
5777 case R_ARM_THM_MOVW_BREL_NC:
5778 case R_ARM_THM_MOVW_BREL:
5779 case R_ARM_THM_MOVT_BREL:
5780 {
5781 bfd_vma insn;
5782
5783 insn = bfd_get_16 (input_bfd, hit_data) << 16;
5784 insn |= bfd_get_16 (input_bfd, hit_data + 2);
5785
5786 if (globals->use_rel)
5787 {
5788 addend = ((insn >> 4) & 0xf000)
5789 | ((insn >> 15) & 0x0800)
5790 | ((insn >> 4) & 0x0700)
5791 | (insn & 0x00ff);
5792 signed_addend = (addend ^ 0x10000) - 0x10000;
5793 }
5794
5795 value += signed_addend;
5796
5797 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
5798 value -= (input_section->output_section->vma
5799 + input_section->output_offset + rel->r_offset);
5800
5801 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
5802 return bfd_reloc_overflow;
5803
5804 if (sym_flags == STT_ARM_TFUNC)
5805 value |= 1;
5806
5807 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
5808 || r_type == R_ARM_THM_MOVT_BREL)
5809 value >>= 16;
5810
5811 insn &= 0xfbf08f00;
5812 insn |= (value & 0xf000) << 4;
5813 insn |= (value & 0x0800) << 15;
5814 insn |= (value & 0x0700) << 4;
5815 insn |= (value & 0x00ff);
5816
5817 bfd_put_16 (input_bfd, insn >> 16, hit_data);
5818 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
5819 }
5820 return bfd_reloc_ok;
5821
5822 case R_ARM_ALU_PC_G0_NC:
5823 case R_ARM_ALU_PC_G1_NC:
5824 case R_ARM_ALU_PC_G0:
5825 case R_ARM_ALU_PC_G1:
5826 case R_ARM_ALU_PC_G2:
5827 case R_ARM_ALU_SB_G0_NC:
5828 case R_ARM_ALU_SB_G1_NC:
5829 case R_ARM_ALU_SB_G0:
5830 case R_ARM_ALU_SB_G1:
5831 case R_ARM_ALU_SB_G2:
5832 {
5833 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
5834 bfd_vma pc = input_section->output_section->vma
5835 + input_section->output_offset + rel->r_offset;
5836 /* sb should be the origin of the *segment* containing the symbol.
5837 It is not clear how to obtain this OS-dependent value, so we
5838 make an arbitrary choice of zero. */
5839 bfd_vma sb = 0;
5840 bfd_vma residual;
5841 bfd_vma g_n;
5842 bfd_signed_vma signed_value;
5843 int group = 0;
5844
5845 /* Determine which group of bits to select. */
5846 switch (r_type)
5847 {
5848 case R_ARM_ALU_PC_G0_NC:
5849 case R_ARM_ALU_PC_G0:
5850 case R_ARM_ALU_SB_G0_NC:
5851 case R_ARM_ALU_SB_G0:
5852 group = 0;
5853 break;
5854
5855 case R_ARM_ALU_PC_G1_NC:
5856 case R_ARM_ALU_PC_G1:
5857 case R_ARM_ALU_SB_G1_NC:
5858 case R_ARM_ALU_SB_G1:
5859 group = 1;
5860 break;
5861
5862 case R_ARM_ALU_PC_G2:
5863 case R_ARM_ALU_SB_G2:
5864 group = 2;
5865 break;
5866
5867 default:
5868 abort();
5869 }
5870
5871 /* If REL, extract the addend from the insn. If RELA, it will
5872 have already been fetched for us. */
5873 if (globals->use_rel)
5874 {
5875 int negative;
5876 bfd_vma constant = insn & 0xff;
5877 bfd_vma rotation = (insn & 0xf00) >> 8;
5878
5879 if (rotation == 0)
5880 signed_addend = constant;
5881 else
5882 {
5883 /* Compensate for the fact that in the instruction, the
5884 rotation is stored in multiples of 2 bits. */
5885 rotation *= 2;
5886
5887 /* Rotate "constant" right by "rotation" bits. */
5888 signed_addend = (constant >> rotation) |
5889 (constant << (8 * sizeof (bfd_vma) - rotation));
5890 }
5891
5892 /* Determine if the instruction is an ADD or a SUB.
5893 (For REL, this determines the sign of the addend.) */
5894 negative = identify_add_or_sub (insn);
5895 if (negative == 0)
5896 {
5897 (*_bfd_error_handler)
5898 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
5899 input_bfd, input_section,
5900 (long) rel->r_offset, howto->name);
5901 return bfd_reloc_overflow;
5902 }
5903
5904 signed_addend *= negative;
5905 }
5906
5907 /* Compute the value (X) to go in the place. */
5908 if (r_type == R_ARM_ALU_PC_G0_NC
5909 || r_type == R_ARM_ALU_PC_G1_NC
5910 || r_type == R_ARM_ALU_PC_G0
5911 || r_type == R_ARM_ALU_PC_G1
5912 || r_type == R_ARM_ALU_PC_G2)
5913 /* PC relative. */
5914 signed_value = value - pc + signed_addend;
5915 else
5916 /* Section base relative. */
5917 signed_value = value - sb + signed_addend;
5918
5919 /* If the target symbol is a Thumb function, then set the
5920 Thumb bit in the address. */
5921 if (sym_flags == STT_ARM_TFUNC)
5922 signed_value |= 1;
5923
5924 /* Calculate the value of the relevant G_n, in encoded
5925 constant-with-rotation format. */
5926 g_n = calculate_group_reloc_mask (abs (signed_value), group,
5927 &residual);
5928
5929 /* Check for overflow if required. */
5930 if ((r_type == R_ARM_ALU_PC_G0
5931 || r_type == R_ARM_ALU_PC_G1
5932 || r_type == R_ARM_ALU_PC_G2
5933 || r_type == R_ARM_ALU_SB_G0
5934 || r_type == R_ARM_ALU_SB_G1
5935 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
5936 {
5937 (*_bfd_error_handler)
5938 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
5939 input_bfd, input_section,
5940 (long) rel->r_offset, abs (signed_value), howto->name);
5941 return bfd_reloc_overflow;
5942 }
5943
5944 /* Mask out the value and the ADD/SUB part of the opcode; take care
5945 not to destroy the S bit. */
5946 insn &= 0xff1ff000;
5947
5948 /* Set the opcode according to whether the value to go in the
5949 place is negative. */
5950 if (signed_value < 0)
5951 insn |= 1 << 22;
5952 else
5953 insn |= 1 << 23;
5954
5955 /* Encode the offset. */
5956 insn |= g_n;
5957
5958 bfd_put_32 (input_bfd, insn, hit_data);
5959 }
5960 return bfd_reloc_ok;
5961
5962 case R_ARM_LDR_PC_G0:
5963 case R_ARM_LDR_PC_G1:
5964 case R_ARM_LDR_PC_G2:
5965 case R_ARM_LDR_SB_G0:
5966 case R_ARM_LDR_SB_G1:
5967 case R_ARM_LDR_SB_G2:
5968 {
5969 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
5970 bfd_vma pc = input_section->output_section->vma
5971 + input_section->output_offset + rel->r_offset;
5972 bfd_vma sb = 0; /* See note above. */
5973 bfd_vma residual;
5974 bfd_signed_vma signed_value;
5975 int group = 0;
5976
5977 /* Determine which groups of bits to calculate. */
5978 switch (r_type)
5979 {
5980 case R_ARM_LDR_PC_G0:
5981 case R_ARM_LDR_SB_G0:
5982 group = 0;
5983 break;
5984
5985 case R_ARM_LDR_PC_G1:
5986 case R_ARM_LDR_SB_G1:
5987 group = 1;
5988 break;
5989
5990 case R_ARM_LDR_PC_G2:
5991 case R_ARM_LDR_SB_G2:
5992 group = 2;
5993 break;
5994
5995 default:
5996 abort();
5997 }
5998
5999 /* If REL, extract the addend from the insn. If RELA, it will
6000 have already been fetched for us. */
6001 if (globals->use_rel)
6002 {
6003 int negative = (insn & (1 << 23)) ? 1 : -1;
6004 signed_addend = negative * (insn & 0xfff);
6005 }
6006
6007 /* Compute the value (X) to go in the place. */
6008 if (r_type == R_ARM_LDR_PC_G0
6009 || r_type == R_ARM_LDR_PC_G1
6010 || r_type == R_ARM_LDR_PC_G2)
6011 /* PC relative. */
6012 signed_value = value - pc + signed_addend;
6013 else
6014 /* Section base relative. */
6015 signed_value = value - sb + signed_addend;
6016
6017 /* Calculate the value of the relevant G_{n-1} to obtain
6018 the residual at that stage. */
6019 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6020
6021 /* Check for overflow. */
6022 if (residual >= 0x1000)
6023 {
6024 (*_bfd_error_handler)
6025 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6026 input_bfd, input_section,
6027 (long) rel->r_offset, abs (signed_value), howto->name);
6028 return bfd_reloc_overflow;
6029 }
6030
6031 /* Mask out the value and U bit. */
6032 insn &= 0xff7ff000;
6033
6034 /* Set the U bit if the value to go in the place is non-negative. */
6035 if (signed_value >= 0)
6036 insn |= 1 << 23;
6037
6038 /* Encode the offset. */
6039 insn |= residual;
6040
6041 bfd_put_32 (input_bfd, insn, hit_data);
6042 }
6043 return bfd_reloc_ok;
6044
6045 case R_ARM_LDRS_PC_G0:
6046 case R_ARM_LDRS_PC_G1:
6047 case R_ARM_LDRS_PC_G2:
6048 case R_ARM_LDRS_SB_G0:
6049 case R_ARM_LDRS_SB_G1:
6050 case R_ARM_LDRS_SB_G2:
6051 {
6052 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6053 bfd_vma pc = input_section->output_section->vma
6054 + input_section->output_offset + rel->r_offset;
6055 bfd_vma sb = 0; /* See note above. */
6056 bfd_vma residual;
6057 bfd_signed_vma signed_value;
6058 int group = 0;
6059
6060 /* Determine which groups of bits to calculate. */
6061 switch (r_type)
6062 {
6063 case R_ARM_LDRS_PC_G0:
6064 case R_ARM_LDRS_SB_G0:
6065 group = 0;
6066 break;
6067
6068 case R_ARM_LDRS_PC_G1:
6069 case R_ARM_LDRS_SB_G1:
6070 group = 1;
6071 break;
6072
6073 case R_ARM_LDRS_PC_G2:
6074 case R_ARM_LDRS_SB_G2:
6075 group = 2;
6076 break;
6077
6078 default:
6079 abort();
6080 }
6081
6082 /* If REL, extract the addend from the insn. If RELA, it will
6083 have already been fetched for us. */
6084 if (globals->use_rel)
6085 {
6086 int negative = (insn & (1 << 23)) ? 1 : -1;
6087 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
6088 }
6089
6090 /* Compute the value (X) to go in the place. */
6091 if (r_type == R_ARM_LDRS_PC_G0
6092 || r_type == R_ARM_LDRS_PC_G1
6093 || r_type == R_ARM_LDRS_PC_G2)
6094 /* PC relative. */
6095 signed_value = value - pc + signed_addend;
6096 else
6097 /* Section base relative. */
6098 signed_value = value - sb + signed_addend;
6099
6100 /* Calculate the value of the relevant G_{n-1} to obtain
6101 the residual at that stage. */
6102 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6103
6104 /* Check for overflow. */
6105 if (residual >= 0x100)
6106 {
6107 (*_bfd_error_handler)
6108 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6109 input_bfd, input_section,
6110 (long) rel->r_offset, abs (signed_value), howto->name);
6111 return bfd_reloc_overflow;
6112 }
6113
6114 /* Mask out the value and U bit. */
6115 insn &= 0xff7ff0f0;
6116
6117 /* Set the U bit if the value to go in the place is non-negative. */
6118 if (signed_value >= 0)
6119 insn |= 1 << 23;
6120
6121 /* Encode the offset. */
6122 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
6123
6124 bfd_put_32 (input_bfd, insn, hit_data);
6125 }
6126 return bfd_reloc_ok;
6127
6128 case R_ARM_LDC_PC_G0:
6129 case R_ARM_LDC_PC_G1:
6130 case R_ARM_LDC_PC_G2:
6131 case R_ARM_LDC_SB_G0:
6132 case R_ARM_LDC_SB_G1:
6133 case R_ARM_LDC_SB_G2:
6134 {
6135 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6136 bfd_vma pc = input_section->output_section->vma
6137 + input_section->output_offset + rel->r_offset;
6138 bfd_vma sb = 0; /* See note above. */
6139 bfd_vma residual;
6140 bfd_signed_vma signed_value;
6141 int group = 0;
6142
6143 /* Determine which groups of bits to calculate. */
6144 switch (r_type)
6145 {
6146 case R_ARM_LDC_PC_G0:
6147 case R_ARM_LDC_SB_G0:
6148 group = 0;
6149 break;
6150
6151 case R_ARM_LDC_PC_G1:
6152 case R_ARM_LDC_SB_G1:
6153 group = 1;
6154 break;
6155
6156 case R_ARM_LDC_PC_G2:
6157 case R_ARM_LDC_SB_G2:
6158 group = 2;
6159 break;
6160
6161 default:
6162 abort();
6163 }
6164
6165 /* If REL, extract the addend from the insn. If RELA, it will
6166 have already been fetched for us. */
6167 if (globals->use_rel)
6168 {
6169 int negative = (insn & (1 << 23)) ? 1 : -1;
6170 signed_addend = negative * ((insn & 0xff) << 2);
6171 }
6172
6173 /* Compute the value (X) to go in the place. */
6174 if (r_type == R_ARM_LDC_PC_G0
6175 || r_type == R_ARM_LDC_PC_G1
6176 || r_type == R_ARM_LDC_PC_G2)
6177 /* PC relative. */
6178 signed_value = value - pc + signed_addend;
6179 else
6180 /* Section base relative. */
6181 signed_value = value - sb + signed_addend;
6182
6183 /* Calculate the value of the relevant G_{n-1} to obtain
6184 the residual at that stage. */
6185 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6186
6187 /* Check for overflow. (The absolute value to go in the place must be
6188 divisible by four and, after having been divided by four, must
6189 fit in eight bits.) */
6190 if ((residual & 0x3) != 0 || residual >= 0x400)
6191 {
6192 (*_bfd_error_handler)
6193 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6194 input_bfd, input_section,
6195 (long) rel->r_offset, abs (signed_value), howto->name);
6196 return bfd_reloc_overflow;
6197 }
6198
6199 /* Mask out the value and U bit. */
6200 insn &= 0xff7fff00;
6201
6202 /* Set the U bit if the value to go in the place is non-negative. */
6203 if (signed_value >= 0)
6204 insn |= 1 << 23;
6205
6206 /* Encode the offset. */
6207 insn |= residual >> 2;
6208
6209 bfd_put_32 (input_bfd, insn, hit_data);
6210 }
6211 return bfd_reloc_ok;
6212
6213 default:
6214 return bfd_reloc_notsupported;
6215 }
6216 }
6217
6218 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
6219 static void
6220 arm_add_to_rel (bfd * abfd,
6221 bfd_byte * address,
6222 reloc_howto_type * howto,
6223 bfd_signed_vma increment)
6224 {
6225 bfd_signed_vma addend;
6226
6227 if (howto->type == R_ARM_THM_CALL
6228 || howto->type == R_ARM_THM_JUMP24)
6229 {
6230 int upper_insn, lower_insn;
6231 int upper, lower;
6232
6233 upper_insn = bfd_get_16 (abfd, address);
6234 lower_insn = bfd_get_16 (abfd, address + 2);
6235 upper = upper_insn & 0x7ff;
6236 lower = lower_insn & 0x7ff;
6237
6238 addend = (upper << 12) | (lower << 1);
6239 addend += increment;
6240 addend >>= 1;
6241
6242 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
6243 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
6244
6245 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
6246 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
6247 }
6248 else
6249 {
6250 bfd_vma contents;
6251
6252 contents = bfd_get_32 (abfd, address);
6253
6254 /* Get the (signed) value from the instruction. */
6255 addend = contents & howto->src_mask;
6256 if (addend & ((howto->src_mask + 1) >> 1))
6257 {
6258 bfd_signed_vma mask;
6259
6260 mask = -1;
6261 mask &= ~ howto->src_mask;
6262 addend |= mask;
6263 }
6264
6265 /* Add in the increment, (which is a byte value). */
6266 switch (howto->type)
6267 {
6268 default:
6269 addend += increment;
6270 break;
6271
6272 case R_ARM_PC24:
6273 case R_ARM_PLT32:
6274 case R_ARM_CALL:
6275 case R_ARM_JUMP24:
6276 addend <<= howto->size;
6277 addend += increment;
6278
6279 /* Should we check for overflow here ? */
6280
6281 /* Drop any undesired bits. */
6282 addend >>= howto->rightshift;
6283 break;
6284 }
6285
6286 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
6287
6288 bfd_put_32 (abfd, contents, address);
6289 }
6290 }
6291
6292 #define IS_ARM_TLS_RELOC(R_TYPE) \
6293 ((R_TYPE) == R_ARM_TLS_GD32 \
6294 || (R_TYPE) == R_ARM_TLS_LDO32 \
6295 || (R_TYPE) == R_ARM_TLS_LDM32 \
6296 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
6297 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
6298 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
6299 || (R_TYPE) == R_ARM_TLS_LE32 \
6300 || (R_TYPE) == R_ARM_TLS_IE32)
6301
6302 /* Relocate an ARM ELF section. */
6303 static bfd_boolean
6304 elf32_arm_relocate_section (bfd * output_bfd,
6305 struct bfd_link_info * info,
6306 bfd * input_bfd,
6307 asection * input_section,
6308 bfd_byte * contents,
6309 Elf_Internal_Rela * relocs,
6310 Elf_Internal_Sym * local_syms,
6311 asection ** local_sections)
6312 {
6313 Elf_Internal_Shdr *symtab_hdr;
6314 struct elf_link_hash_entry **sym_hashes;
6315 Elf_Internal_Rela *rel;
6316 Elf_Internal_Rela *relend;
6317 const char *name;
6318 struct elf32_arm_link_hash_table * globals;
6319
6320 globals = elf32_arm_hash_table (info);
6321
6322 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
6323 sym_hashes = elf_sym_hashes (input_bfd);
6324
6325 rel = relocs;
6326 relend = relocs + input_section->reloc_count;
6327 for (; rel < relend; rel++)
6328 {
6329 int r_type;
6330 reloc_howto_type * howto;
6331 unsigned long r_symndx;
6332 Elf_Internal_Sym * sym;
6333 asection * sec;
6334 struct elf_link_hash_entry * h;
6335 bfd_vma relocation;
6336 bfd_reloc_status_type r;
6337 arelent bfd_reloc;
6338 char sym_type;
6339 bfd_boolean unresolved_reloc = FALSE;
6340 char *error_message = NULL;
6341
6342 r_symndx = ELF32_R_SYM (rel->r_info);
6343 r_type = ELF32_R_TYPE (rel->r_info);
6344 r_type = arm_real_reloc_type (globals, r_type);
6345
6346 if ( r_type == R_ARM_GNU_VTENTRY
6347 || r_type == R_ARM_GNU_VTINHERIT)
6348 continue;
6349
6350 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
6351 howto = bfd_reloc.howto;
6352
6353 h = NULL;
6354 sym = NULL;
6355 sec = NULL;
6356
6357 if (r_symndx < symtab_hdr->sh_info)
6358 {
6359 sym = local_syms + r_symndx;
6360 sym_type = ELF32_ST_TYPE (sym->st_info);
6361 sec = local_sections[r_symndx];
6362 if (globals->use_rel)
6363 {
6364 relocation = (sec->output_section->vma
6365 + sec->output_offset
6366 + sym->st_value);
6367 if (!info->relocatable
6368 && (sec->flags & SEC_MERGE)
6369 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6370 {
6371 asection *msec;
6372 bfd_vma addend, value;
6373
6374 if (howto->rightshift)
6375 {
6376 (*_bfd_error_handler)
6377 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
6378 input_bfd, input_section,
6379 (long) rel->r_offset, howto->name);
6380 return FALSE;
6381 }
6382
6383 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
6384
6385 /* Get the (signed) value from the instruction. */
6386 addend = value & howto->src_mask;
6387 if (addend & ((howto->src_mask + 1) >> 1))
6388 {
6389 bfd_signed_vma mask;
6390
6391 mask = -1;
6392 mask &= ~ howto->src_mask;
6393 addend |= mask;
6394 }
6395 msec = sec;
6396 addend =
6397 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
6398 - relocation;
6399 addend += msec->output_section->vma + msec->output_offset;
6400 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
6401 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
6402 }
6403 }
6404 else
6405 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6406 }
6407 else
6408 {
6409 bfd_boolean warned;
6410
6411 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6412 r_symndx, symtab_hdr, sym_hashes,
6413 h, sec, relocation,
6414 unresolved_reloc, warned);
6415
6416 sym_type = h->type;
6417 }
6418
6419 if (sec != NULL && elf_discarded_section (sec))
6420 {
6421 /* For relocs against symbols from removed linkonce sections,
6422 or sections discarded by a linker script, we just want the
6423 section contents zeroed. Avoid any special processing. */
6424 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
6425 rel->r_info = 0;
6426 rel->r_addend = 0;
6427 continue;
6428 }
6429
6430 if (info->relocatable)
6431 {
6432 /* This is a relocatable link. We don't have to change
6433 anything, unless the reloc is against a section symbol,
6434 in which case we have to adjust according to where the
6435 section symbol winds up in the output section. */
6436 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6437 {
6438 if (globals->use_rel)
6439 arm_add_to_rel (input_bfd, contents + rel->r_offset,
6440 howto, (bfd_signed_vma) sec->output_offset);
6441 else
6442 rel->r_addend += sec->output_offset;
6443 }
6444 continue;
6445 }
6446
6447 if (h != NULL)
6448 name = h->root.root.string;
6449 else
6450 {
6451 name = (bfd_elf_string_from_elf_section
6452 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6453 if (name == NULL || *name == '\0')
6454 name = bfd_section_name (input_bfd, sec);
6455 }
6456
6457 if (r_symndx != 0
6458 && r_type != R_ARM_NONE
6459 && (h == NULL
6460 || h->root.type == bfd_link_hash_defined
6461 || h->root.type == bfd_link_hash_defweak)
6462 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
6463 {
6464 (*_bfd_error_handler)
6465 ((sym_type == STT_TLS
6466 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
6467 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
6468 input_bfd,
6469 input_section,
6470 (long) rel->r_offset,
6471 howto->name,
6472 name);
6473 }
6474
6475 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
6476 input_section, contents, rel,
6477 relocation, info, sec, name,
6478 (h ? ELF_ST_TYPE (h->type) :
6479 ELF_ST_TYPE (sym->st_info)), h,
6480 &unresolved_reloc, &error_message);
6481
6482 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6483 because such sections are not SEC_ALLOC and thus ld.so will
6484 not process them. */
6485 if (unresolved_reloc
6486 && !((input_section->flags & SEC_DEBUGGING) != 0
6487 && h->def_dynamic))
6488 {
6489 (*_bfd_error_handler)
6490 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
6491 input_bfd,
6492 input_section,
6493 (long) rel->r_offset,
6494 howto->name,
6495 h->root.root.string);
6496 return FALSE;
6497 }
6498
6499 if (r != bfd_reloc_ok)
6500 {
6501 switch (r)
6502 {
6503 case bfd_reloc_overflow:
6504 /* If the overflowing reloc was to an undefined symbol,
6505 we have already printed one error message and there
6506 is no point complaining again. */
6507 if ((! h ||
6508 h->root.type != bfd_link_hash_undefined)
6509 && (!((*info->callbacks->reloc_overflow)
6510 (info, (h ? &h->root : NULL), name, howto->name,
6511 (bfd_vma) 0, input_bfd, input_section,
6512 rel->r_offset))))
6513 return FALSE;
6514 break;
6515
6516 case bfd_reloc_undefined:
6517 if (!((*info->callbacks->undefined_symbol)
6518 (info, name, input_bfd, input_section,
6519 rel->r_offset, TRUE)))
6520 return FALSE;
6521 break;
6522
6523 case bfd_reloc_outofrange:
6524 error_message = _("out of range");
6525 goto common_error;
6526
6527 case bfd_reloc_notsupported:
6528 error_message = _("unsupported relocation");
6529 goto common_error;
6530
6531 case bfd_reloc_dangerous:
6532 /* error_message should already be set. */
6533 goto common_error;
6534
6535 default:
6536 error_message = _("unknown error");
6537 /* fall through */
6538
6539 common_error:
6540 BFD_ASSERT (error_message != NULL);
6541 if (!((*info->callbacks->reloc_dangerous)
6542 (info, error_message, input_bfd, input_section,
6543 rel->r_offset)))
6544 return FALSE;
6545 break;
6546 }
6547 }
6548 }
6549
6550 return TRUE;
6551 }
6552
6553 /* Set the right machine number. */
6554
6555 static bfd_boolean
6556 elf32_arm_object_p (bfd *abfd)
6557 {
6558 unsigned int mach;
6559
6560 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
6561
6562 if (mach != bfd_mach_arm_unknown)
6563 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
6564
6565 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
6566 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
6567
6568 else
6569 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
6570
6571 return TRUE;
6572 }
6573
6574 /* Function to keep ARM specific flags in the ELF header. */
6575
6576 static bfd_boolean
6577 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
6578 {
6579 if (elf_flags_init (abfd)
6580 && elf_elfheader (abfd)->e_flags != flags)
6581 {
6582 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
6583 {
6584 if (flags & EF_ARM_INTERWORK)
6585 (*_bfd_error_handler)
6586 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
6587 abfd);
6588 else
6589 _bfd_error_handler
6590 (_("Warning: Clearing the interworking flag of %B due to outside request"),
6591 abfd);
6592 }
6593 }
6594 else
6595 {
6596 elf_elfheader (abfd)->e_flags = flags;
6597 elf_flags_init (abfd) = TRUE;
6598 }
6599
6600 return TRUE;
6601 }
6602
6603 /* Copy backend specific data from one object module to another. */
6604
6605 static bfd_boolean
6606 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6607 {
6608 flagword in_flags;
6609 flagword out_flags;
6610
6611 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6612 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6613 return TRUE;
6614
6615 in_flags = elf_elfheader (ibfd)->e_flags;
6616 out_flags = elf_elfheader (obfd)->e_flags;
6617
6618 if (elf_flags_init (obfd)
6619 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
6620 && in_flags != out_flags)
6621 {
6622 /* Cannot mix APCS26 and APCS32 code. */
6623 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
6624 return FALSE;
6625
6626 /* Cannot mix float APCS and non-float APCS code. */
6627 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
6628 return FALSE;
6629
6630 /* If the src and dest have different interworking flags
6631 then turn off the interworking bit. */
6632 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
6633 {
6634 if (out_flags & EF_ARM_INTERWORK)
6635 _bfd_error_handler
6636 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
6637 obfd, ibfd);
6638
6639 in_flags &= ~EF_ARM_INTERWORK;
6640 }
6641
6642 /* Likewise for PIC, though don't warn for this case. */
6643 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
6644 in_flags &= ~EF_ARM_PIC;
6645 }
6646
6647 elf_elfheader (obfd)->e_flags = in_flags;
6648 elf_flags_init (obfd) = TRUE;
6649
6650 /* Also copy the EI_OSABI field. */
6651 elf_elfheader (obfd)->e_ident[EI_OSABI] =
6652 elf_elfheader (ibfd)->e_ident[EI_OSABI];
6653
6654 /* Copy object attributes. */
6655 _bfd_elf_copy_obj_attributes (ibfd, obfd);
6656
6657 return TRUE;
6658 }
6659
6660 /* Values for Tag_ABI_PCS_R9_use. */
6661 enum
6662 {
6663 AEABI_R9_V6,
6664 AEABI_R9_SB,
6665 AEABI_R9_TLS,
6666 AEABI_R9_unused
6667 };
6668
6669 /* Values for Tag_ABI_PCS_RW_data. */
6670 enum
6671 {
6672 AEABI_PCS_RW_data_absolute,
6673 AEABI_PCS_RW_data_PCrel,
6674 AEABI_PCS_RW_data_SBrel,
6675 AEABI_PCS_RW_data_unused
6676 };
6677
6678 /* Values for Tag_ABI_enum_size. */
6679 enum
6680 {
6681 AEABI_enum_unused,
6682 AEABI_enum_short,
6683 AEABI_enum_wide,
6684 AEABI_enum_forced_wide
6685 };
6686
6687 /* Determine whether an object attribute tag takes an integer, a
6688 string or both. */
6689 static int
6690 elf32_arm_obj_attrs_arg_type (int tag)
6691 {
6692 if (tag == Tag_compatibility)
6693 return 3;
6694 else if (tag == 4 || tag == 5)
6695 return 2;
6696 else if (tag < 32)
6697 return 1;
6698 else
6699 return (tag & 1) != 0 ? 2 : 1;
6700 }
6701
6702 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
6703 are conflicting attributes. */
6704 static bfd_boolean
6705 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
6706 {
6707 obj_attribute *in_attr;
6708 obj_attribute *out_attr;
6709 obj_attribute_list *in_list;
6710 /* Some tags have 0 = don't care, 1 = strong requirement,
6711 2 = weak requirement. */
6712 static const int order_312[3] = {3, 1, 2};
6713 int i;
6714
6715 if (!elf_known_obj_attributes_proc (obfd)[0].i)
6716 {
6717 /* This is the first object. Copy the attributes. */
6718 _bfd_elf_copy_obj_attributes (ibfd, obfd);
6719
6720 /* Use the Tag_null value to indicate the attributes have been
6721 initialized. */
6722 elf_known_obj_attributes_proc (obfd)[0].i = 1;
6723
6724 return TRUE;
6725 }
6726
6727 in_attr = elf_known_obj_attributes_proc (ibfd);
6728 out_attr = elf_known_obj_attributes_proc (obfd);
6729 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
6730 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
6731 {
6732 /* Ignore mismatches if teh object doesn't use floating point. */
6733 if (out_attr[Tag_ABI_FP_number_model].i == 0)
6734 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
6735 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
6736 {
6737 _bfd_error_handler
6738 (_("ERROR: %B uses VFP register arguments, %B does not"),
6739 ibfd, obfd);
6740 return FALSE;
6741 }
6742 }
6743
6744 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
6745 {
6746 /* Merge this attribute with existing attributes. */
6747 switch (i)
6748 {
6749 case Tag_CPU_raw_name:
6750 case Tag_CPU_name:
6751 /* Use whichever has the greatest architecture requirements. We
6752 won't necessarily have both the above tags, so make sure input
6753 name is non-NULL. */
6754 if (in_attr[Tag_CPU_arch].i > out_attr[Tag_CPU_arch].i
6755 && in_attr[i].s)
6756 out_attr[i].s = _bfd_elf_attr_strdup (obfd, in_attr[i].s);
6757 break;
6758
6759 case Tag_ABI_optimization_goals:
6760 case Tag_ABI_FP_optimization_goals:
6761 /* Use the first value seen. */
6762 break;
6763
6764 case Tag_CPU_arch:
6765 case Tag_ARM_ISA_use:
6766 case Tag_THUMB_ISA_use:
6767 case Tag_VFP_arch:
6768 case Tag_WMMX_arch:
6769 case Tag_NEON_arch:
6770 /* ??? Do NEON and WMMX conflict? */
6771 case Tag_ABI_FP_rounding:
6772 case Tag_ABI_FP_denormal:
6773 case Tag_ABI_FP_exceptions:
6774 case Tag_ABI_FP_user_exceptions:
6775 case Tag_ABI_FP_number_model:
6776 case Tag_ABI_align8_preserved:
6777 case Tag_ABI_HardFP_use:
6778 /* Use the largest value specified. */
6779 if (in_attr[i].i > out_attr[i].i)
6780 out_attr[i].i = in_attr[i].i;
6781 break;
6782
6783 case Tag_CPU_arch_profile:
6784 /* Warn if conflicting architecture profiles used. */
6785 if (out_attr[i].i && in_attr[i].i && in_attr[i].i != out_attr[i].i)
6786 {
6787 _bfd_error_handler
6788 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
6789 ibfd, in_attr[i].i, out_attr[i].i);
6790 return FALSE;
6791 }
6792 if (in_attr[i].i)
6793 out_attr[i].i = in_attr[i].i;
6794 break;
6795 case Tag_PCS_config:
6796 if (out_attr[i].i == 0)
6797 out_attr[i].i = in_attr[i].i;
6798 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
6799 {
6800 /* It's sometimes ok to mix different configs, so this is only
6801 a warning. */
6802 _bfd_error_handler
6803 (_("Warning: %B: Conflicting platform configuration"), ibfd);
6804 }
6805 break;
6806 case Tag_ABI_PCS_R9_use:
6807 if (in_attr[i].i != out_attr[i].i
6808 && out_attr[i].i != AEABI_R9_unused
6809 && in_attr[i].i != AEABI_R9_unused)
6810 {
6811 _bfd_error_handler
6812 (_("ERROR: %B: Conflicting use of R9"), ibfd);
6813 return FALSE;
6814 }
6815 if (out_attr[i].i == AEABI_R9_unused)
6816 out_attr[i].i = in_attr[i].i;
6817 break;
6818 case Tag_ABI_PCS_RW_data:
6819 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
6820 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
6821 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
6822 {
6823 _bfd_error_handler
6824 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
6825 ibfd);
6826 return FALSE;
6827 }
6828 /* Use the smallest value specified. */
6829 if (in_attr[i].i < out_attr[i].i)
6830 out_attr[i].i = in_attr[i].i;
6831 break;
6832 case Tag_ABI_PCS_RO_data:
6833 /* Use the smallest value specified. */
6834 if (in_attr[i].i < out_attr[i].i)
6835 out_attr[i].i = in_attr[i].i;
6836 break;
6837 case Tag_ABI_PCS_GOT_use:
6838 if (in_attr[i].i > 2 || out_attr[i].i > 2
6839 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
6840 out_attr[i].i = in_attr[i].i;
6841 break;
6842 case Tag_ABI_PCS_wchar_t:
6843 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i)
6844 {
6845 _bfd_error_handler
6846 (_("ERROR: %B: Conflicting definitions of wchar_t"), ibfd);
6847 return FALSE;
6848 }
6849 if (in_attr[i].i)
6850 out_attr[i].i = in_attr[i].i;
6851 break;
6852 case Tag_ABI_align8_needed:
6853 /* ??? Check against Tag_ABI_align8_preserved. */
6854 if (in_attr[i].i > 2 || out_attr[i].i > 2
6855 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
6856 out_attr[i].i = in_attr[i].i;
6857 break;
6858 case Tag_ABI_enum_size:
6859 if (in_attr[i].i != AEABI_enum_unused)
6860 {
6861 if (out_attr[i].i == AEABI_enum_unused
6862 || out_attr[i].i == AEABI_enum_forced_wide)
6863 {
6864 /* The existing object is compatible with anything.
6865 Use whatever requirements the new object has. */
6866 out_attr[i].i = in_attr[i].i;
6867 }
6868 else if (in_attr[i].i != AEABI_enum_forced_wide
6869 && out_attr[i].i != in_attr[i].i
6870 && !elf32_arm_tdata (obfd)->no_enum_size_warning)
6871 {
6872 const char *aeabi_enum_names[] =
6873 { "", "variable-size", "32-bit", "" };
6874 _bfd_error_handler
6875 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
6876 ibfd, aeabi_enum_names[in_attr[i].i],
6877 aeabi_enum_names[out_attr[i].i]);
6878 }
6879 }
6880 break;
6881 case Tag_ABI_VFP_args:
6882 /* Aready done. */
6883 break;
6884 case Tag_ABI_WMMX_args:
6885 if (in_attr[i].i != out_attr[i].i)
6886 {
6887 _bfd_error_handler
6888 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
6889 ibfd, obfd);
6890 return FALSE;
6891 }
6892 break;
6893 default: /* All known attributes should be explicitly covered. */
6894 abort ();
6895 }
6896
6897 if (in_attr[i].type && !out_attr[i].type)
6898 switch (in_attr[i].type)
6899 {
6900 case 1:
6901 if (out_attr[i].i)
6902 out_attr[i].type = 1;
6903 break;
6904
6905 case 2:
6906 if (out_attr[i].s)
6907 out_attr[i].type = 2;
6908 break;
6909
6910 default:
6911 abort ();
6912 }
6913 }
6914
6915 /* Merge Tag_compatibility attributes and any common GNU ones. */
6916 _bfd_elf_merge_object_attributes (ibfd, obfd);
6917
6918 /* Check for any attributes not known on ARM. */
6919 in_list = elf_other_obj_attributes_proc (ibfd);
6920 while (in_list && in_list->tag == Tag_compatibility)
6921 in_list = in_list->next;
6922
6923 for (; in_list; in_list = in_list->next)
6924 {
6925 if ((in_list->tag & 128) < 64)
6926 {
6927 _bfd_error_handler
6928 (_("Warning: %B: Unknown EABI object attribute %d"),
6929 ibfd, in_list->tag);
6930 break;
6931 }
6932 }
6933 return TRUE;
6934 }
6935
6936
6937 /* Return TRUE if the two EABI versions are incompatible. */
6938
6939 static bfd_boolean
6940 elf32_arm_versions_compatible (unsigned iver, unsigned over)
6941 {
6942 /* v4 and v5 are the same spec before and after it was released,
6943 so allow mixing them. */
6944 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
6945 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
6946 return TRUE;
6947
6948 return (iver == over);
6949 }
6950
6951 /* Merge backend specific data from an object file to the output
6952 object file when linking. */
6953
6954 static bfd_boolean
6955 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
6956 {
6957 flagword out_flags;
6958 flagword in_flags;
6959 bfd_boolean flags_compatible = TRUE;
6960 asection *sec;
6961
6962 /* Check if we have the same endianess. */
6963 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
6964 return FALSE;
6965
6966 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
6967 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
6968 return TRUE;
6969
6970 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
6971 return FALSE;
6972
6973 /* The input BFD must have had its flags initialised. */
6974 /* The following seems bogus to me -- The flags are initialized in
6975 the assembler but I don't think an elf_flags_init field is
6976 written into the object. */
6977 /* BFD_ASSERT (elf_flags_init (ibfd)); */
6978
6979 in_flags = elf_elfheader (ibfd)->e_flags;
6980 out_flags = elf_elfheader (obfd)->e_flags;
6981
6982 if (!elf_flags_init (obfd))
6983 {
6984 /* If the input is the default architecture and had the default
6985 flags then do not bother setting the flags for the output
6986 architecture, instead allow future merges to do this. If no
6987 future merges ever set these flags then they will retain their
6988 uninitialised values, which surprise surprise, correspond
6989 to the default values. */
6990 if (bfd_get_arch_info (ibfd)->the_default
6991 && elf_elfheader (ibfd)->e_flags == 0)
6992 return TRUE;
6993
6994 elf_flags_init (obfd) = TRUE;
6995 elf_elfheader (obfd)->e_flags = in_flags;
6996
6997 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
6998 && bfd_get_arch_info (obfd)->the_default)
6999 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
7000
7001 return TRUE;
7002 }
7003
7004 /* Determine what should happen if the input ARM architecture
7005 does not match the output ARM architecture. */
7006 if (! bfd_arm_merge_machines (ibfd, obfd))
7007 return FALSE;
7008
7009 /* Identical flags must be compatible. */
7010 if (in_flags == out_flags)
7011 return TRUE;
7012
7013 /* Check to see if the input BFD actually contains any sections. If
7014 not, its flags may not have been initialised either, but it
7015 cannot actually cause any incompatiblity. Do not short-circuit
7016 dynamic objects; their section list may be emptied by
7017 elf_link_add_object_symbols.
7018
7019 Also check to see if there are no code sections in the input.
7020 In this case there is no need to check for code specific flags.
7021 XXX - do we need to worry about floating-point format compatability
7022 in data sections ? */
7023 if (!(ibfd->flags & DYNAMIC))
7024 {
7025 bfd_boolean null_input_bfd = TRUE;
7026 bfd_boolean only_data_sections = TRUE;
7027
7028 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7029 {
7030 /* Ignore synthetic glue sections. */
7031 if (strcmp (sec->name, ".glue_7")
7032 && strcmp (sec->name, ".glue_7t"))
7033 {
7034 if ((bfd_get_section_flags (ibfd, sec)
7035 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7036 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7037 only_data_sections = FALSE;
7038
7039 null_input_bfd = FALSE;
7040 break;
7041 }
7042 }
7043
7044 if (null_input_bfd || only_data_sections)
7045 return TRUE;
7046 }
7047
7048 /* Complain about various flag mismatches. */
7049 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
7050 EF_ARM_EABI_VERSION (out_flags)))
7051 {
7052 _bfd_error_handler
7053 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
7054 ibfd, obfd,
7055 (in_flags & EF_ARM_EABIMASK) >> 24,
7056 (out_flags & EF_ARM_EABIMASK) >> 24);
7057 return FALSE;
7058 }
7059
7060 /* Not sure what needs to be checked for EABI versions >= 1. */
7061 /* VxWorks libraries do not use these flags. */
7062 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
7063 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
7064 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
7065 {
7066 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
7067 {
7068 _bfd_error_handler
7069 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
7070 ibfd, obfd,
7071 in_flags & EF_ARM_APCS_26 ? 26 : 32,
7072 out_flags & EF_ARM_APCS_26 ? 26 : 32);
7073 flags_compatible = FALSE;
7074 }
7075
7076 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
7077 {
7078 if (in_flags & EF_ARM_APCS_FLOAT)
7079 _bfd_error_handler
7080 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
7081 ibfd, obfd);
7082 else
7083 _bfd_error_handler
7084 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
7085 ibfd, obfd);
7086
7087 flags_compatible = FALSE;
7088 }
7089
7090 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
7091 {
7092 if (in_flags & EF_ARM_VFP_FLOAT)
7093 _bfd_error_handler
7094 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
7095 ibfd, obfd);
7096 else
7097 _bfd_error_handler
7098 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
7099 ibfd, obfd);
7100
7101 flags_compatible = FALSE;
7102 }
7103
7104 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
7105 {
7106 if (in_flags & EF_ARM_MAVERICK_FLOAT)
7107 _bfd_error_handler
7108 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
7109 ibfd, obfd);
7110 else
7111 _bfd_error_handler
7112 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
7113 ibfd, obfd);
7114
7115 flags_compatible = FALSE;
7116 }
7117
7118 #ifdef EF_ARM_SOFT_FLOAT
7119 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
7120 {
7121 /* We can allow interworking between code that is VFP format
7122 layout, and uses either soft float or integer regs for
7123 passing floating point arguments and results. We already
7124 know that the APCS_FLOAT flags match; similarly for VFP
7125 flags. */
7126 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
7127 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
7128 {
7129 if (in_flags & EF_ARM_SOFT_FLOAT)
7130 _bfd_error_handler
7131 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
7132 ibfd, obfd);
7133 else
7134 _bfd_error_handler
7135 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
7136 ibfd, obfd);
7137
7138 flags_compatible = FALSE;
7139 }
7140 }
7141 #endif
7142
7143 /* Interworking mismatch is only a warning. */
7144 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
7145 {
7146 if (in_flags & EF_ARM_INTERWORK)
7147 {
7148 _bfd_error_handler
7149 (_("Warning: %B supports interworking, whereas %B does not"),
7150 ibfd, obfd);
7151 }
7152 else
7153 {
7154 _bfd_error_handler
7155 (_("Warning: %B does not support interworking, whereas %B does"),
7156 ibfd, obfd);
7157 }
7158 }
7159 }
7160
7161 return flags_compatible;
7162 }
7163
7164 /* Display the flags field. */
7165
7166 static bfd_boolean
7167 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
7168 {
7169 FILE * file = (FILE *) ptr;
7170 unsigned long flags;
7171
7172 BFD_ASSERT (abfd != NULL && ptr != NULL);
7173
7174 /* Print normal ELF private data. */
7175 _bfd_elf_print_private_bfd_data (abfd, ptr);
7176
7177 flags = elf_elfheader (abfd)->e_flags;
7178 /* Ignore init flag - it may not be set, despite the flags field
7179 containing valid data. */
7180
7181 /* xgettext:c-format */
7182 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7183
7184 switch (EF_ARM_EABI_VERSION (flags))
7185 {
7186 case EF_ARM_EABI_UNKNOWN:
7187 /* The following flag bits are GNU extensions and not part of the
7188 official ARM ELF extended ABI. Hence they are only decoded if
7189 the EABI version is not set. */
7190 if (flags & EF_ARM_INTERWORK)
7191 fprintf (file, _(" [interworking enabled]"));
7192
7193 if (flags & EF_ARM_APCS_26)
7194 fprintf (file, " [APCS-26]");
7195 else
7196 fprintf (file, " [APCS-32]");
7197
7198 if (flags & EF_ARM_VFP_FLOAT)
7199 fprintf (file, _(" [VFP float format]"));
7200 else if (flags & EF_ARM_MAVERICK_FLOAT)
7201 fprintf (file, _(" [Maverick float format]"));
7202 else
7203 fprintf (file, _(" [FPA float format]"));
7204
7205 if (flags & EF_ARM_APCS_FLOAT)
7206 fprintf (file, _(" [floats passed in float registers]"));
7207
7208 if (flags & EF_ARM_PIC)
7209 fprintf (file, _(" [position independent]"));
7210
7211 if (flags & EF_ARM_NEW_ABI)
7212 fprintf (file, _(" [new ABI]"));
7213
7214 if (flags & EF_ARM_OLD_ABI)
7215 fprintf (file, _(" [old ABI]"));
7216
7217 if (flags & EF_ARM_SOFT_FLOAT)
7218 fprintf (file, _(" [software FP]"));
7219
7220 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
7221 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
7222 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
7223 | EF_ARM_MAVERICK_FLOAT);
7224 break;
7225
7226 case EF_ARM_EABI_VER1:
7227 fprintf (file, _(" [Version1 EABI]"));
7228
7229 if (flags & EF_ARM_SYMSARESORTED)
7230 fprintf (file, _(" [sorted symbol table]"));
7231 else
7232 fprintf (file, _(" [unsorted symbol table]"));
7233
7234 flags &= ~ EF_ARM_SYMSARESORTED;
7235 break;
7236
7237 case EF_ARM_EABI_VER2:
7238 fprintf (file, _(" [Version2 EABI]"));
7239
7240 if (flags & EF_ARM_SYMSARESORTED)
7241 fprintf (file, _(" [sorted symbol table]"));
7242 else
7243 fprintf (file, _(" [unsorted symbol table]"));
7244
7245 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
7246 fprintf (file, _(" [dynamic symbols use segment index]"));
7247
7248 if (flags & EF_ARM_MAPSYMSFIRST)
7249 fprintf (file, _(" [mapping symbols precede others]"));
7250
7251 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
7252 | EF_ARM_MAPSYMSFIRST);
7253 break;
7254
7255 case EF_ARM_EABI_VER3:
7256 fprintf (file, _(" [Version3 EABI]"));
7257 break;
7258
7259 case EF_ARM_EABI_VER4:
7260 fprintf (file, _(" [Version4 EABI]"));
7261 goto eabi;
7262
7263 case EF_ARM_EABI_VER5:
7264 fprintf (file, _(" [Version5 EABI]"));
7265 eabi:
7266 if (flags & EF_ARM_BE8)
7267 fprintf (file, _(" [BE8]"));
7268
7269 if (flags & EF_ARM_LE8)
7270 fprintf (file, _(" [LE8]"));
7271
7272 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
7273 break;
7274
7275 default:
7276 fprintf (file, _(" <EABI version unrecognised>"));
7277 break;
7278 }
7279
7280 flags &= ~ EF_ARM_EABIMASK;
7281
7282 if (flags & EF_ARM_RELEXEC)
7283 fprintf (file, _(" [relocatable executable]"));
7284
7285 if (flags & EF_ARM_HASENTRY)
7286 fprintf (file, _(" [has entry point]"));
7287
7288 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
7289
7290 if (flags)
7291 fprintf (file, _("<Unrecognised flag bits set>"));
7292
7293 fputc ('\n', file);
7294
7295 return TRUE;
7296 }
7297
7298 static int
7299 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
7300 {
7301 switch (ELF_ST_TYPE (elf_sym->st_info))
7302 {
7303 case STT_ARM_TFUNC:
7304 return ELF_ST_TYPE (elf_sym->st_info);
7305
7306 case STT_ARM_16BIT:
7307 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
7308 This allows us to distinguish between data used by Thumb instructions
7309 and non-data (which is probably code) inside Thumb regions of an
7310 executable. */
7311 if (type != STT_OBJECT && type != STT_TLS)
7312 return ELF_ST_TYPE (elf_sym->st_info);
7313 break;
7314
7315 default:
7316 break;
7317 }
7318
7319 return type;
7320 }
7321
7322 static asection *
7323 elf32_arm_gc_mark_hook (asection *sec,
7324 struct bfd_link_info *info,
7325 Elf_Internal_Rela *rel,
7326 struct elf_link_hash_entry *h,
7327 Elf_Internal_Sym *sym)
7328 {
7329 if (h != NULL)
7330 switch (ELF32_R_TYPE (rel->r_info))
7331 {
7332 case R_ARM_GNU_VTINHERIT:
7333 case R_ARM_GNU_VTENTRY:
7334 return NULL;
7335 }
7336
7337 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
7338 }
7339
7340 /* Update the got entry reference counts for the section being removed. */
7341
7342 static bfd_boolean
7343 elf32_arm_gc_sweep_hook (bfd * abfd,
7344 struct bfd_link_info * info,
7345 asection * sec,
7346 const Elf_Internal_Rela * relocs)
7347 {
7348 Elf_Internal_Shdr *symtab_hdr;
7349 struct elf_link_hash_entry **sym_hashes;
7350 bfd_signed_vma *local_got_refcounts;
7351 const Elf_Internal_Rela *rel, *relend;
7352 struct elf32_arm_link_hash_table * globals;
7353
7354 if (info->relocatable)
7355 return TRUE;
7356
7357 globals = elf32_arm_hash_table (info);
7358
7359 elf_section_data (sec)->local_dynrel = NULL;
7360
7361 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7362 sym_hashes = elf_sym_hashes (abfd);
7363 local_got_refcounts = elf_local_got_refcounts (abfd);
7364
7365 check_use_blx(globals);
7366
7367 relend = relocs + sec->reloc_count;
7368 for (rel = relocs; rel < relend; rel++)
7369 {
7370 unsigned long r_symndx;
7371 struct elf_link_hash_entry *h = NULL;
7372 int r_type;
7373
7374 r_symndx = ELF32_R_SYM (rel->r_info);
7375 if (r_symndx >= symtab_hdr->sh_info)
7376 {
7377 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7378 while (h->root.type == bfd_link_hash_indirect
7379 || h->root.type == bfd_link_hash_warning)
7380 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7381 }
7382
7383 r_type = ELF32_R_TYPE (rel->r_info);
7384 r_type = arm_real_reloc_type (globals, r_type);
7385 switch (r_type)
7386 {
7387 case R_ARM_GOT32:
7388 case R_ARM_GOT_PREL:
7389 case R_ARM_TLS_GD32:
7390 case R_ARM_TLS_IE32:
7391 if (h != NULL)
7392 {
7393 if (h->got.refcount > 0)
7394 h->got.refcount -= 1;
7395 }
7396 else if (local_got_refcounts != NULL)
7397 {
7398 if (local_got_refcounts[r_symndx] > 0)
7399 local_got_refcounts[r_symndx] -= 1;
7400 }
7401 break;
7402
7403 case R_ARM_TLS_LDM32:
7404 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
7405 break;
7406
7407 case R_ARM_ABS32:
7408 case R_ARM_ABS32_NOI:
7409 case R_ARM_REL32:
7410 case R_ARM_REL32_NOI:
7411 case R_ARM_PC24:
7412 case R_ARM_PLT32:
7413 case R_ARM_CALL:
7414 case R_ARM_JUMP24:
7415 case R_ARM_PREL31:
7416 case R_ARM_THM_CALL:
7417 case R_ARM_THM_JUMP24:
7418 case R_ARM_THM_JUMP19:
7419 case R_ARM_MOVW_ABS_NC:
7420 case R_ARM_MOVT_ABS:
7421 case R_ARM_MOVW_PREL_NC:
7422 case R_ARM_MOVT_PREL:
7423 case R_ARM_THM_MOVW_ABS_NC:
7424 case R_ARM_THM_MOVT_ABS:
7425 case R_ARM_THM_MOVW_PREL_NC:
7426 case R_ARM_THM_MOVT_PREL:
7427 /* Should the interworking branches be here also? */
7428
7429 if (h != NULL)
7430 {
7431 struct elf32_arm_link_hash_entry *eh;
7432 struct elf32_arm_relocs_copied **pp;
7433 struct elf32_arm_relocs_copied *p;
7434
7435 eh = (struct elf32_arm_link_hash_entry *) h;
7436
7437 if (h->plt.refcount > 0)
7438 {
7439 h->plt.refcount -= 1;
7440 if (r_type == R_ARM_THM_CALL)
7441 eh->plt_maybe_thumb_refcount--;
7442
7443 if (r_type == R_ARM_THM_JUMP24
7444 || r_type == R_ARM_THM_JUMP19)
7445 eh->plt_thumb_refcount--;
7446 }
7447
7448 if (r_type == R_ARM_ABS32
7449 || r_type == R_ARM_REL32
7450 || r_type == R_ARM_ABS32_NOI
7451 || r_type == R_ARM_REL32_NOI)
7452 {
7453 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
7454 pp = &p->next)
7455 if (p->section == sec)
7456 {
7457 p->count -= 1;
7458 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
7459 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
7460 p->pc_count -= 1;
7461 if (p->count == 0)
7462 *pp = p->next;
7463 break;
7464 }
7465 }
7466 }
7467 break;
7468
7469 default:
7470 break;
7471 }
7472 }
7473
7474 return TRUE;
7475 }
7476
7477 /* Look through the relocs for a section during the first phase. */
7478
7479 static bfd_boolean
7480 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
7481 asection *sec, const Elf_Internal_Rela *relocs)
7482 {
7483 Elf_Internal_Shdr *symtab_hdr;
7484 struct elf_link_hash_entry **sym_hashes;
7485 const Elf_Internal_Rela *rel;
7486 const Elf_Internal_Rela *rel_end;
7487 bfd *dynobj;
7488 asection *sreloc;
7489 bfd_vma *local_got_offsets;
7490 struct elf32_arm_link_hash_table *htab;
7491
7492 if (info->relocatable)
7493 return TRUE;
7494
7495 htab = elf32_arm_hash_table (info);
7496 sreloc = NULL;
7497
7498 /* Create dynamic sections for relocatable executables so that we can
7499 copy relocations. */
7500 if (htab->root.is_relocatable_executable
7501 && ! htab->root.dynamic_sections_created)
7502 {
7503 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
7504 return FALSE;
7505 }
7506
7507 dynobj = elf_hash_table (info)->dynobj;
7508 local_got_offsets = elf_local_got_offsets (abfd);
7509
7510 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7511 sym_hashes = elf_sym_hashes (abfd);
7512
7513 rel_end = relocs + sec->reloc_count;
7514 for (rel = relocs; rel < rel_end; rel++)
7515 {
7516 struct elf_link_hash_entry *h;
7517 struct elf32_arm_link_hash_entry *eh;
7518 unsigned long r_symndx;
7519 int r_type;
7520
7521 r_symndx = ELF32_R_SYM (rel->r_info);
7522 r_type = ELF32_R_TYPE (rel->r_info);
7523 r_type = arm_real_reloc_type (htab, r_type);
7524
7525 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7526 {
7527 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
7528 r_symndx);
7529 return FALSE;
7530 }
7531
7532 if (r_symndx < symtab_hdr->sh_info)
7533 h = NULL;
7534 else
7535 {
7536 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7537 while (h->root.type == bfd_link_hash_indirect
7538 || h->root.type == bfd_link_hash_warning)
7539 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7540 }
7541
7542 eh = (struct elf32_arm_link_hash_entry *) h;
7543
7544 switch (r_type)
7545 {
7546 case R_ARM_GOT32:
7547 case R_ARM_GOT_PREL:
7548 case R_ARM_TLS_GD32:
7549 case R_ARM_TLS_IE32:
7550 /* This symbol requires a global offset table entry. */
7551 {
7552 int tls_type, old_tls_type;
7553
7554 switch (r_type)
7555 {
7556 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
7557 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
7558 default: tls_type = GOT_NORMAL; break;
7559 }
7560
7561 if (h != NULL)
7562 {
7563 h->got.refcount++;
7564 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
7565 }
7566 else
7567 {
7568 bfd_signed_vma *local_got_refcounts;
7569
7570 /* This is a global offset table entry for a local symbol. */
7571 local_got_refcounts = elf_local_got_refcounts (abfd);
7572 if (local_got_refcounts == NULL)
7573 {
7574 bfd_size_type size;
7575
7576 size = symtab_hdr->sh_info;
7577 size *= (sizeof (bfd_signed_vma) + sizeof(char));
7578 local_got_refcounts = bfd_zalloc (abfd, size);
7579 if (local_got_refcounts == NULL)
7580 return FALSE;
7581 elf_local_got_refcounts (abfd) = local_got_refcounts;
7582 elf32_arm_local_got_tls_type (abfd)
7583 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
7584 }
7585 local_got_refcounts[r_symndx] += 1;
7586 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
7587 }
7588
7589 /* We will already have issued an error message if there is a
7590 TLS / non-TLS mismatch, based on the symbol type. We don't
7591 support any linker relaxations. So just combine any TLS
7592 types needed. */
7593 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
7594 && tls_type != GOT_NORMAL)
7595 tls_type |= old_tls_type;
7596
7597 if (old_tls_type != tls_type)
7598 {
7599 if (h != NULL)
7600 elf32_arm_hash_entry (h)->tls_type = tls_type;
7601 else
7602 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
7603 }
7604 }
7605 /* Fall through */
7606
7607 case R_ARM_TLS_LDM32:
7608 if (r_type == R_ARM_TLS_LDM32)
7609 htab->tls_ldm_got.refcount++;
7610 /* Fall through */
7611
7612 case R_ARM_GOTOFF32:
7613 case R_ARM_GOTPC:
7614 if (htab->sgot == NULL)
7615 {
7616 if (htab->root.dynobj == NULL)
7617 htab->root.dynobj = abfd;
7618 if (!create_got_section (htab->root.dynobj, info))
7619 return FALSE;
7620 }
7621 break;
7622
7623 case R_ARM_ABS12:
7624 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
7625 ldr __GOTT_INDEX__ offsets. */
7626 if (!htab->vxworks_p)
7627 break;
7628 /* Fall through */
7629
7630 case R_ARM_ABS32:
7631 case R_ARM_ABS32_NOI:
7632 case R_ARM_REL32:
7633 case R_ARM_REL32_NOI:
7634 case R_ARM_PC24:
7635 case R_ARM_PLT32:
7636 case R_ARM_CALL:
7637 case R_ARM_JUMP24:
7638 case R_ARM_PREL31:
7639 case R_ARM_THM_CALL:
7640 case R_ARM_THM_JUMP24:
7641 case R_ARM_THM_JUMP19:
7642 case R_ARM_MOVW_ABS_NC:
7643 case R_ARM_MOVT_ABS:
7644 case R_ARM_MOVW_PREL_NC:
7645 case R_ARM_MOVT_PREL:
7646 case R_ARM_THM_MOVW_ABS_NC:
7647 case R_ARM_THM_MOVT_ABS:
7648 case R_ARM_THM_MOVW_PREL_NC:
7649 case R_ARM_THM_MOVT_PREL:
7650 /* Should the interworking branches be listed here? */
7651 if (h != NULL)
7652 {
7653 /* If this reloc is in a read-only section, we might
7654 need a copy reloc. We can't check reliably at this
7655 stage whether the section is read-only, as input
7656 sections have not yet been mapped to output sections.
7657 Tentatively set the flag for now, and correct in
7658 adjust_dynamic_symbol. */
7659 if (!info->shared)
7660 h->non_got_ref = 1;
7661
7662 /* We may need a .plt entry if the function this reloc
7663 refers to is in a different object. We can't tell for
7664 sure yet, because something later might force the
7665 symbol local. */
7666 if (r_type != R_ARM_ABS32
7667 && r_type != R_ARM_REL32
7668 && r_type != R_ARM_ABS32_NOI
7669 && r_type != R_ARM_REL32_NOI
7670 && r_type != R_ARM_ABS12)
7671 h->needs_plt = 1;
7672
7673 /* If we create a PLT entry, this relocation will reference
7674 it, even if it's an ABS32 relocation. */
7675 h->plt.refcount += 1;
7676
7677 /* It's too early to use htab->use_blx here, so we have to
7678 record possible blx references separately from
7679 relocs that definitely need a thumb stub. */
7680
7681 if (r_type == R_ARM_THM_CALL)
7682 eh->plt_maybe_thumb_refcount += 1;
7683
7684 if (r_type == R_ARM_THM_JUMP24
7685 || r_type == R_ARM_THM_JUMP19)
7686 eh->plt_thumb_refcount += 1;
7687 }
7688
7689 /* If we are creating a shared library or relocatable executable,
7690 and this is a reloc against a global symbol, or a non PC
7691 relative reloc against a local symbol, then we need to copy
7692 the reloc into the shared library. However, if we are linking
7693 with -Bsymbolic, we do not need to copy a reloc against a
7694 global symbol which is defined in an object we are
7695 including in the link (i.e., DEF_REGULAR is set). At
7696 this point we have not seen all the input files, so it is
7697 possible that DEF_REGULAR is not set now but will be set
7698 later (it is never cleared). We account for that
7699 possibility below by storing information in the
7700 relocs_copied field of the hash table entry. */
7701 if ((info->shared || htab->root.is_relocatable_executable)
7702 && (sec->flags & SEC_ALLOC) != 0
7703 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
7704 || (h != NULL && ! h->needs_plt
7705 && (! info->symbolic || ! h->def_regular))))
7706 {
7707 struct elf32_arm_relocs_copied *p, **head;
7708
7709 /* When creating a shared object, we must copy these
7710 reloc types into the output file. We create a reloc
7711 section in dynobj and make room for this reloc. */
7712 if (sreloc == NULL)
7713 {
7714 const char * name;
7715
7716 name = (bfd_elf_string_from_elf_section
7717 (abfd,
7718 elf_elfheader (abfd)->e_shstrndx,
7719 elf_section_data (sec)->rel_hdr.sh_name));
7720 if (name == NULL)
7721 return FALSE;
7722
7723 BFD_ASSERT (reloc_section_p (htab, name, sec));
7724
7725 sreloc = bfd_get_section_by_name (dynobj, name);
7726 if (sreloc == NULL)
7727 {
7728 flagword flags;
7729
7730 flags = (SEC_HAS_CONTENTS | SEC_READONLY
7731 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
7732 if ((sec->flags & SEC_ALLOC) != 0
7733 /* BPABI objects never have dynamic
7734 relocations mapped. */
7735 && !htab->symbian_p)
7736 flags |= SEC_ALLOC | SEC_LOAD;
7737 sreloc = bfd_make_section_with_flags (dynobj,
7738 name,
7739 flags);
7740 if (sreloc == NULL
7741 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
7742 return FALSE;
7743 }
7744
7745 elf_section_data (sec)->sreloc = sreloc;
7746 }
7747
7748 /* If this is a global symbol, we count the number of
7749 relocations we need for this symbol. */
7750 if (h != NULL)
7751 {
7752 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
7753 }
7754 else
7755 {
7756 /* Track dynamic relocs needed for local syms too.
7757 We really need local syms available to do this
7758 easily. Oh well. */
7759
7760 asection *s;
7761 void *vpp;
7762
7763 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
7764 sec, r_symndx);
7765 if (s == NULL)
7766 return FALSE;
7767
7768 vpp = &elf_section_data (s)->local_dynrel;
7769 head = (struct elf32_arm_relocs_copied **) vpp;
7770 }
7771
7772 p = *head;
7773 if (p == NULL || p->section != sec)
7774 {
7775 bfd_size_type amt = sizeof *p;
7776
7777 p = bfd_alloc (htab->root.dynobj, amt);
7778 if (p == NULL)
7779 return FALSE;
7780 p->next = *head;
7781 *head = p;
7782 p->section = sec;
7783 p->count = 0;
7784 p->pc_count = 0;
7785 }
7786
7787 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
7788 p->pc_count += 1;
7789 p->count += 1;
7790 }
7791 break;
7792
7793 /* This relocation describes the C++ object vtable hierarchy.
7794 Reconstruct it for later use during GC. */
7795 case R_ARM_GNU_VTINHERIT:
7796 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
7797 return FALSE;
7798 break;
7799
7800 /* This relocation describes which C++ vtable entries are actually
7801 used. Record for later use during GC. */
7802 case R_ARM_GNU_VTENTRY:
7803 BFD_ASSERT (h != NULL);
7804 if (h != NULL
7805 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
7806 return FALSE;
7807 break;
7808 }
7809 }
7810
7811 return TRUE;
7812 }
7813
7814 /* Unwinding tables are not referenced directly. This pass marks them as
7815 required if the corresponding code section is marked. */
7816
7817 static bfd_boolean
7818 elf32_arm_gc_mark_extra_sections(struct bfd_link_info *info,
7819 elf_gc_mark_hook_fn gc_mark_hook)
7820 {
7821 bfd *sub;
7822 Elf_Internal_Shdr **elf_shdrp;
7823 bfd_boolean again;
7824
7825 /* Marking EH data may cause additional code sections to be marked,
7826 requiring multiple passes. */
7827 again = TRUE;
7828 while (again)
7829 {
7830 again = FALSE;
7831 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
7832 {
7833 asection *o;
7834
7835 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
7836 continue;
7837
7838 elf_shdrp = elf_elfsections (sub);
7839 for (o = sub->sections; o != NULL; o = o->next)
7840 {
7841 Elf_Internal_Shdr *hdr;
7842 hdr = &elf_section_data (o)->this_hdr;
7843 if (hdr->sh_type == SHT_ARM_EXIDX && hdr->sh_link
7844 && !o->gc_mark
7845 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
7846 {
7847 again = TRUE;
7848 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
7849 return FALSE;
7850 }
7851 }
7852 }
7853 }
7854
7855 return TRUE;
7856 }
7857
7858 /* Treat mapping symbols as special target symbols. */
7859
7860 static bfd_boolean
7861 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
7862 {
7863 return bfd_is_arm_special_symbol_name (sym->name,
7864 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
7865 }
7866
7867 /* This is a copy of elf_find_function() from elf.c except that
7868 ARM mapping symbols are ignored when looking for function names
7869 and STT_ARM_TFUNC is considered to a function type. */
7870
7871 static bfd_boolean
7872 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
7873 asection * section,
7874 asymbol ** symbols,
7875 bfd_vma offset,
7876 const char ** filename_ptr,
7877 const char ** functionname_ptr)
7878 {
7879 const char * filename = NULL;
7880 asymbol * func = NULL;
7881 bfd_vma low_func = 0;
7882 asymbol ** p;
7883
7884 for (p = symbols; *p != NULL; p++)
7885 {
7886 elf_symbol_type *q;
7887
7888 q = (elf_symbol_type *) *p;
7889
7890 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
7891 {
7892 default:
7893 break;
7894 case STT_FILE:
7895 filename = bfd_asymbol_name (&q->symbol);
7896 break;
7897 case STT_FUNC:
7898 case STT_ARM_TFUNC:
7899 case STT_NOTYPE:
7900 /* Skip mapping symbols. */
7901 if ((q->symbol.flags & BSF_LOCAL)
7902 && bfd_is_arm_special_symbol_name (q->symbol.name,
7903 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
7904 continue;
7905 /* Fall through. */
7906 if (bfd_get_section (&q->symbol) == section
7907 && q->symbol.value >= low_func
7908 && q->symbol.value <= offset)
7909 {
7910 func = (asymbol *) q;
7911 low_func = q->symbol.value;
7912 }
7913 break;
7914 }
7915 }
7916
7917 if (func == NULL)
7918 return FALSE;
7919
7920 if (filename_ptr)
7921 *filename_ptr = filename;
7922 if (functionname_ptr)
7923 *functionname_ptr = bfd_asymbol_name (func);
7924
7925 return TRUE;
7926 }
7927
7928
7929 /* Find the nearest line to a particular section and offset, for error
7930 reporting. This code is a duplicate of the code in elf.c, except
7931 that it uses arm_elf_find_function. */
7932
7933 static bfd_boolean
7934 elf32_arm_find_nearest_line (bfd * abfd,
7935 asection * section,
7936 asymbol ** symbols,
7937 bfd_vma offset,
7938 const char ** filename_ptr,
7939 const char ** functionname_ptr,
7940 unsigned int * line_ptr)
7941 {
7942 bfd_boolean found = FALSE;
7943
7944 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
7945
7946 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
7947 filename_ptr, functionname_ptr,
7948 line_ptr, 0,
7949 & elf_tdata (abfd)->dwarf2_find_line_info))
7950 {
7951 if (!*functionname_ptr)
7952 arm_elf_find_function (abfd, section, symbols, offset,
7953 *filename_ptr ? NULL : filename_ptr,
7954 functionname_ptr);
7955
7956 return TRUE;
7957 }
7958
7959 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
7960 & found, filename_ptr,
7961 functionname_ptr, line_ptr,
7962 & elf_tdata (abfd)->line_info))
7963 return FALSE;
7964
7965 if (found && (*functionname_ptr || *line_ptr))
7966 return TRUE;
7967
7968 if (symbols == NULL)
7969 return FALSE;
7970
7971 if (! arm_elf_find_function (abfd, section, symbols, offset,
7972 filename_ptr, functionname_ptr))
7973 return FALSE;
7974
7975 *line_ptr = 0;
7976 return TRUE;
7977 }
7978
7979 static bfd_boolean
7980 elf32_arm_find_inliner_info (bfd * abfd,
7981 const char ** filename_ptr,
7982 const char ** functionname_ptr,
7983 unsigned int * line_ptr)
7984 {
7985 bfd_boolean found;
7986 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
7987 functionname_ptr, line_ptr,
7988 & elf_tdata (abfd)->dwarf2_find_line_info);
7989 return found;
7990 }
7991
7992 /* Adjust a symbol defined by a dynamic object and referenced by a
7993 regular object. The current definition is in some section of the
7994 dynamic object, but we're not including those sections. We have to
7995 change the definition to something the rest of the link can
7996 understand. */
7997
7998 static bfd_boolean
7999 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
8000 struct elf_link_hash_entry * h)
8001 {
8002 bfd * dynobj;
8003 asection * s;
8004 struct elf32_arm_link_hash_entry * eh;
8005 struct elf32_arm_link_hash_table *globals;
8006
8007 globals = elf32_arm_hash_table (info);
8008 dynobj = elf_hash_table (info)->dynobj;
8009
8010 /* Make sure we know what is going on here. */
8011 BFD_ASSERT (dynobj != NULL
8012 && (h->needs_plt
8013 || h->u.weakdef != NULL
8014 || (h->def_dynamic
8015 && h->ref_regular
8016 && !h->def_regular)));
8017
8018 eh = (struct elf32_arm_link_hash_entry *) h;
8019
8020 /* If this is a function, put it in the procedure linkage table. We
8021 will fill in the contents of the procedure linkage table later,
8022 when we know the address of the .got section. */
8023 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
8024 || h->needs_plt)
8025 {
8026 if (h->plt.refcount <= 0
8027 || SYMBOL_CALLS_LOCAL (info, h)
8028 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8029 && h->root.type == bfd_link_hash_undefweak))
8030 {
8031 /* This case can occur if we saw a PLT32 reloc in an input
8032 file, but the symbol was never referred to by a dynamic
8033 object, or if all references were garbage collected. In
8034 such a case, we don't actually need to build a procedure
8035 linkage table, and we can just do a PC24 reloc instead. */
8036 h->plt.offset = (bfd_vma) -1;
8037 eh->plt_thumb_refcount = 0;
8038 eh->plt_maybe_thumb_refcount = 0;
8039 h->needs_plt = 0;
8040 }
8041
8042 return TRUE;
8043 }
8044 else
8045 {
8046 /* It's possible that we incorrectly decided a .plt reloc was
8047 needed for an R_ARM_PC24 or similar reloc to a non-function sym
8048 in check_relocs. We can't decide accurately between function
8049 and non-function syms in check-relocs; Objects loaded later in
8050 the link may change h->type. So fix it now. */
8051 h->plt.offset = (bfd_vma) -1;
8052 eh->plt_thumb_refcount = 0;
8053 eh->plt_maybe_thumb_refcount = 0;
8054 }
8055
8056 /* If this is a weak symbol, and there is a real definition, the
8057 processor independent code will have arranged for us to see the
8058 real definition first, and we can just use the same value. */
8059 if (h->u.weakdef != NULL)
8060 {
8061 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8062 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8063 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8064 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8065 return TRUE;
8066 }
8067
8068 /* If there are no non-GOT references, we do not need a copy
8069 relocation. */
8070 if (!h->non_got_ref)
8071 return TRUE;
8072
8073 /* This is a reference to a symbol defined by a dynamic object which
8074 is not a function. */
8075
8076 /* If we are creating a shared library, we must presume that the
8077 only references to the symbol are via the global offset table.
8078 For such cases we need not do anything here; the relocations will
8079 be handled correctly by relocate_section. Relocatable executables
8080 can reference data in shared objects directly, so we don't need to
8081 do anything here. */
8082 if (info->shared || globals->root.is_relocatable_executable)
8083 return TRUE;
8084
8085 if (h->size == 0)
8086 {
8087 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
8088 h->root.root.string);
8089 return TRUE;
8090 }
8091
8092 /* We must allocate the symbol in our .dynbss section, which will
8093 become part of the .bss section of the executable. There will be
8094 an entry for this symbol in the .dynsym section. The dynamic
8095 object will contain position independent code, so all references
8096 from the dynamic object to this symbol will go through the global
8097 offset table. The dynamic linker will use the .dynsym entry to
8098 determine the address it must put in the global offset table, so
8099 both the dynamic object and the regular object will refer to the
8100 same memory location for the variable. */
8101 s = bfd_get_section_by_name (dynobj, ".dynbss");
8102 BFD_ASSERT (s != NULL);
8103
8104 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
8105 copy the initial value out of the dynamic object and into the
8106 runtime process image. We need to remember the offset into the
8107 .rel(a).bss section we are going to use. */
8108 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8109 {
8110 asection *srel;
8111
8112 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
8113 BFD_ASSERT (srel != NULL);
8114 srel->size += RELOC_SIZE (globals);
8115 h->needs_copy = 1;
8116 }
8117
8118 return _bfd_elf_adjust_dynamic_copy (h, s);
8119 }
8120
8121 /* Allocate space in .plt, .got and associated reloc sections for
8122 dynamic relocs. */
8123
8124 static bfd_boolean
8125 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
8126 {
8127 struct bfd_link_info *info;
8128 struct elf32_arm_link_hash_table *htab;
8129 struct elf32_arm_link_hash_entry *eh;
8130 struct elf32_arm_relocs_copied *p;
8131 bfd_signed_vma thumb_refs;
8132
8133 eh = (struct elf32_arm_link_hash_entry *) h;
8134
8135 if (h->root.type == bfd_link_hash_indirect)
8136 return TRUE;
8137
8138 if (h->root.type == bfd_link_hash_warning)
8139 /* When warning symbols are created, they **replace** the "real"
8140 entry in the hash table, thus we never get to see the real
8141 symbol in a hash traversal. So look at it now. */
8142 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8143
8144 info = (struct bfd_link_info *) inf;
8145 htab = elf32_arm_hash_table (info);
8146
8147 if (htab->root.dynamic_sections_created
8148 && h->plt.refcount > 0)
8149 {
8150 /* Make sure this symbol is output as a dynamic symbol.
8151 Undefined weak syms won't yet be marked as dynamic. */
8152 if (h->dynindx == -1
8153 && !h->forced_local)
8154 {
8155 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8156 return FALSE;
8157 }
8158
8159 if (info->shared
8160 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8161 {
8162 asection *s = htab->splt;
8163
8164 /* If this is the first .plt entry, make room for the special
8165 first entry. */
8166 if (s->size == 0)
8167 s->size += htab->plt_header_size;
8168
8169 h->plt.offset = s->size;
8170
8171 /* If we will insert a Thumb trampoline before this PLT, leave room
8172 for it. */
8173 thumb_refs = eh->plt_thumb_refcount;
8174 if (!htab->use_blx)
8175 thumb_refs += eh->plt_maybe_thumb_refcount;
8176
8177 if (thumb_refs > 0)
8178 {
8179 h->plt.offset += PLT_THUMB_STUB_SIZE;
8180 s->size += PLT_THUMB_STUB_SIZE;
8181 }
8182
8183 /* If this symbol is not defined in a regular file, and we are
8184 not generating a shared library, then set the symbol to this
8185 location in the .plt. This is required to make function
8186 pointers compare as equal between the normal executable and
8187 the shared library. */
8188 if (! info->shared
8189 && !h->def_regular)
8190 {
8191 h->root.u.def.section = s;
8192 h->root.u.def.value = h->plt.offset;
8193
8194 /* Make sure the function is not marked as Thumb, in case
8195 it is the target of an ABS32 relocation, which will
8196 point to the PLT entry. */
8197 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
8198 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
8199 }
8200
8201 /* Make room for this entry. */
8202 s->size += htab->plt_entry_size;
8203
8204 if (!htab->symbian_p)
8205 {
8206 /* We also need to make an entry in the .got.plt section, which
8207 will be placed in the .got section by the linker script. */
8208 eh->plt_got_offset = htab->sgotplt->size;
8209 htab->sgotplt->size += 4;
8210 }
8211
8212 /* We also need to make an entry in the .rel(a).plt section. */
8213 htab->srelplt->size += RELOC_SIZE (htab);
8214
8215 /* VxWorks executables have a second set of relocations for
8216 each PLT entry. They go in a separate relocation section,
8217 which is processed by the kernel loader. */
8218 if (htab->vxworks_p && !info->shared)
8219 {
8220 /* There is a relocation for the initial PLT entry:
8221 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
8222 if (h->plt.offset == htab->plt_header_size)
8223 htab->srelplt2->size += RELOC_SIZE (htab);
8224
8225 /* There are two extra relocations for each subsequent
8226 PLT entry: an R_ARM_32 relocation for the GOT entry,
8227 and an R_ARM_32 relocation for the PLT entry. */
8228 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
8229 }
8230 }
8231 else
8232 {
8233 h->plt.offset = (bfd_vma) -1;
8234 h->needs_plt = 0;
8235 }
8236 }
8237 else
8238 {
8239 h->plt.offset = (bfd_vma) -1;
8240 h->needs_plt = 0;
8241 }
8242
8243 if (h->got.refcount > 0)
8244 {
8245 asection *s;
8246 bfd_boolean dyn;
8247 int tls_type = elf32_arm_hash_entry (h)->tls_type;
8248 int indx;
8249
8250 /* Make sure this symbol is output as a dynamic symbol.
8251 Undefined weak syms won't yet be marked as dynamic. */
8252 if (h->dynindx == -1
8253 && !h->forced_local)
8254 {
8255 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8256 return FALSE;
8257 }
8258
8259 if (!htab->symbian_p)
8260 {
8261 s = htab->sgot;
8262 h->got.offset = s->size;
8263
8264 if (tls_type == GOT_UNKNOWN)
8265 abort ();
8266
8267 if (tls_type == GOT_NORMAL)
8268 /* Non-TLS symbols need one GOT slot. */
8269 s->size += 4;
8270 else
8271 {
8272 if (tls_type & GOT_TLS_GD)
8273 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
8274 s->size += 8;
8275 if (tls_type & GOT_TLS_IE)
8276 /* R_ARM_TLS_IE32 needs one GOT slot. */
8277 s->size += 4;
8278 }
8279
8280 dyn = htab->root.dynamic_sections_created;
8281
8282 indx = 0;
8283 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
8284 && (!info->shared
8285 || !SYMBOL_REFERENCES_LOCAL (info, h)))
8286 indx = h->dynindx;
8287
8288 if (tls_type != GOT_NORMAL
8289 && (info->shared || indx != 0)
8290 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8291 || h->root.type != bfd_link_hash_undefweak))
8292 {
8293 if (tls_type & GOT_TLS_IE)
8294 htab->srelgot->size += RELOC_SIZE (htab);
8295
8296 if (tls_type & GOT_TLS_GD)
8297 htab->srelgot->size += RELOC_SIZE (htab);
8298
8299 if ((tls_type & GOT_TLS_GD) && indx != 0)
8300 htab->srelgot->size += RELOC_SIZE (htab);
8301 }
8302 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8303 || h->root.type != bfd_link_hash_undefweak)
8304 && (info->shared
8305 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8306 htab->srelgot->size += RELOC_SIZE (htab);
8307 }
8308 }
8309 else
8310 h->got.offset = (bfd_vma) -1;
8311
8312 /* Allocate stubs for exported Thumb functions on v4t. */
8313 if (!htab->use_blx && h->dynindx != -1
8314 && h->def_regular
8315 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
8316 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
8317 {
8318 struct elf_link_hash_entry * th;
8319 struct bfd_link_hash_entry * bh;
8320 struct elf_link_hash_entry * myh;
8321 char name[1024];
8322 asection *s;
8323 bh = NULL;
8324 /* Create a new symbol to regist the real location of the function. */
8325 s = h->root.u.def.section;
8326 sprintf(name, "__real_%s", h->root.root.string);
8327 _bfd_generic_link_add_one_symbol (info, s->owner,
8328 name, BSF_GLOBAL, s,
8329 h->root.u.def.value,
8330 NULL, TRUE, FALSE, &bh);
8331
8332 myh = (struct elf_link_hash_entry *) bh;
8333 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
8334 myh->forced_local = 1;
8335 eh->export_glue = myh;
8336 th = record_arm_to_thumb_glue (info, h);
8337 /* Point the symbol at the stub. */
8338 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
8339 h->root.u.def.section = th->root.u.def.section;
8340 h->root.u.def.value = th->root.u.def.value & ~1;
8341 }
8342
8343 if (eh->relocs_copied == NULL)
8344 return TRUE;
8345
8346 /* In the shared -Bsymbolic case, discard space allocated for
8347 dynamic pc-relative relocs against symbols which turn out to be
8348 defined in regular objects. For the normal shared case, discard
8349 space for pc-relative relocs that have become local due to symbol
8350 visibility changes. */
8351
8352 if (info->shared || htab->root.is_relocatable_executable)
8353 {
8354 /* The only relocs that use pc_count are R_ARM_REL32 and
8355 R_ARM_REL32_NOI, which will appear on something like
8356 ".long foo - .". We want calls to protected symbols to resolve
8357 directly to the function rather than going via the plt. If people
8358 want function pointer comparisons to work as expected then they
8359 should avoid writing assembly like ".long foo - .". */
8360 if (SYMBOL_CALLS_LOCAL (info, h))
8361 {
8362 struct elf32_arm_relocs_copied **pp;
8363
8364 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
8365 {
8366 p->count -= p->pc_count;
8367 p->pc_count = 0;
8368 if (p->count == 0)
8369 *pp = p->next;
8370 else
8371 pp = &p->next;
8372 }
8373 }
8374
8375 /* Also discard relocs on undefined weak syms with non-default
8376 visibility. */
8377 if (eh->relocs_copied != NULL
8378 && h->root.type == bfd_link_hash_undefweak)
8379 {
8380 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8381 eh->relocs_copied = NULL;
8382
8383 /* Make sure undefined weak symbols are output as a dynamic
8384 symbol in PIEs. */
8385 else if (h->dynindx == -1
8386 && !h->forced_local)
8387 {
8388 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8389 return FALSE;
8390 }
8391 }
8392
8393 else if (htab->root.is_relocatable_executable && h->dynindx == -1
8394 && h->root.type == bfd_link_hash_new)
8395 {
8396 /* Output absolute symbols so that we can create relocations
8397 against them. For normal symbols we output a relocation
8398 against the section that contains them. */
8399 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8400 return FALSE;
8401 }
8402
8403 }
8404 else
8405 {
8406 /* For the non-shared case, discard space for relocs against
8407 symbols which turn out to need copy relocs or are not
8408 dynamic. */
8409
8410 if (!h->non_got_ref
8411 && ((h->def_dynamic
8412 && !h->def_regular)
8413 || (htab->root.dynamic_sections_created
8414 && (h->root.type == bfd_link_hash_undefweak
8415 || h->root.type == bfd_link_hash_undefined))))
8416 {
8417 /* Make sure this symbol is output as a dynamic symbol.
8418 Undefined weak syms won't yet be marked as dynamic. */
8419 if (h->dynindx == -1
8420 && !h->forced_local)
8421 {
8422 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8423 return FALSE;
8424 }
8425
8426 /* If that succeeded, we know we'll be keeping all the
8427 relocs. */
8428 if (h->dynindx != -1)
8429 goto keep;
8430 }
8431
8432 eh->relocs_copied = NULL;
8433
8434 keep: ;
8435 }
8436
8437 /* Finally, allocate space. */
8438 for (p = eh->relocs_copied; p != NULL; p = p->next)
8439 {
8440 asection *sreloc = elf_section_data (p->section)->sreloc;
8441 sreloc->size += p->count * RELOC_SIZE (htab);
8442 }
8443
8444 return TRUE;
8445 }
8446
8447 /* Find any dynamic relocs that apply to read-only sections. */
8448
8449 static bfd_boolean
8450 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
8451 {
8452 struct elf32_arm_link_hash_entry *eh;
8453 struct elf32_arm_relocs_copied *p;
8454
8455 if (h->root.type == bfd_link_hash_warning)
8456 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8457
8458 eh = (struct elf32_arm_link_hash_entry *) h;
8459 for (p = eh->relocs_copied; p != NULL; p = p->next)
8460 {
8461 asection *s = p->section;
8462
8463 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8464 {
8465 struct bfd_link_info *info = (struct bfd_link_info *) inf;
8466
8467 info->flags |= DF_TEXTREL;
8468
8469 /* Not an error, just cut short the traversal. */
8470 return FALSE;
8471 }
8472 }
8473 return TRUE;
8474 }
8475
8476 void
8477 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
8478 int byteswap_code)
8479 {
8480 struct elf32_arm_link_hash_table *globals;
8481
8482 globals = elf32_arm_hash_table (info);
8483 globals->byteswap_code = byteswap_code;
8484 }
8485
8486 /* Set the sizes of the dynamic sections. */
8487
8488 static bfd_boolean
8489 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
8490 struct bfd_link_info * info)
8491 {
8492 bfd * dynobj;
8493 asection * s;
8494 bfd_boolean plt;
8495 bfd_boolean relocs;
8496 bfd *ibfd;
8497 struct elf32_arm_link_hash_table *htab;
8498
8499 htab = elf32_arm_hash_table (info);
8500 dynobj = elf_hash_table (info)->dynobj;
8501 BFD_ASSERT (dynobj != NULL);
8502 check_use_blx (htab);
8503
8504 if (elf_hash_table (info)->dynamic_sections_created)
8505 {
8506 /* Set the contents of the .interp section to the interpreter. */
8507 if (info->executable)
8508 {
8509 s = bfd_get_section_by_name (dynobj, ".interp");
8510 BFD_ASSERT (s != NULL);
8511 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8512 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8513 }
8514 }
8515
8516 /* Set up .got offsets for local syms, and space for local dynamic
8517 relocs. */
8518 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8519 {
8520 bfd_signed_vma *local_got;
8521 bfd_signed_vma *end_local_got;
8522 char *local_tls_type;
8523 bfd_size_type locsymcount;
8524 Elf_Internal_Shdr *symtab_hdr;
8525 asection *srel;
8526
8527 /* FIXME: Here and elsewhere the test for an ELF input BFD is
8528 not sufficiently strict. Since we use elf32_arm_tdata and
8529 elf32_arm_section_data, we should only allow those targets
8530 that in fact have such data. This of course is the set of
8531 targets defined in this file. */
8532 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
8533 continue;
8534
8535 for (s = ibfd->sections; s != NULL; s = s->next)
8536 {
8537 struct elf32_arm_relocs_copied *p;
8538
8539 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
8540 {
8541 if (!bfd_is_abs_section (p->section)
8542 && bfd_is_abs_section (p->section->output_section))
8543 {
8544 /* Input section has been discarded, either because
8545 it is a copy of a linkonce section or due to
8546 linker script /DISCARD/, so we'll be discarding
8547 the relocs too. */
8548 }
8549 else if (p->count != 0)
8550 {
8551 srel = elf_section_data (p->section)->sreloc;
8552 srel->size += p->count * RELOC_SIZE (htab);
8553 if ((p->section->output_section->flags & SEC_READONLY) != 0)
8554 info->flags |= DF_TEXTREL;
8555 }
8556 }
8557 }
8558
8559 local_got = elf_local_got_refcounts (ibfd);
8560 if (!local_got)
8561 continue;
8562
8563 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
8564 locsymcount = symtab_hdr->sh_info;
8565 end_local_got = local_got + locsymcount;
8566 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
8567 s = htab->sgot;
8568 srel = htab->srelgot;
8569 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
8570 {
8571 if (*local_got > 0)
8572 {
8573 *local_got = s->size;
8574 if (*local_tls_type & GOT_TLS_GD)
8575 /* TLS_GD relocs need an 8-byte structure in the GOT. */
8576 s->size += 8;
8577 if (*local_tls_type & GOT_TLS_IE)
8578 s->size += 4;
8579 if (*local_tls_type == GOT_NORMAL)
8580 s->size += 4;
8581
8582 if (info->shared || *local_tls_type == GOT_TLS_GD)
8583 srel->size += RELOC_SIZE (htab);
8584 }
8585 else
8586 *local_got = (bfd_vma) -1;
8587 }
8588 }
8589
8590 if (htab->tls_ldm_got.refcount > 0)
8591 {
8592 /* Allocate two GOT entries and one dynamic relocation (if necessary)
8593 for R_ARM_TLS_LDM32 relocations. */
8594 htab->tls_ldm_got.offset = htab->sgot->size;
8595 htab->sgot->size += 8;
8596 if (info->shared)
8597 htab->srelgot->size += RELOC_SIZE (htab);
8598 }
8599 else
8600 htab->tls_ldm_got.offset = -1;
8601
8602 /* Allocate global sym .plt and .got entries, and space for global
8603 sym dynamic relocs. */
8604 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
8605
8606 /* Here we rummage through the found bfds to collect glue information. */
8607 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8608 {
8609 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
8610 continue;
8611
8612 /* Initialise mapping tables for code/data. */
8613 bfd_elf32_arm_init_maps (ibfd);
8614
8615 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
8616 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
8617 /* xgettext:c-format */
8618 _bfd_error_handler (_("Errors encountered processing file %s"),
8619 ibfd->filename);
8620 }
8621
8622 /* The check_relocs and adjust_dynamic_symbol entry points have
8623 determined the sizes of the various dynamic sections. Allocate
8624 memory for them. */
8625 plt = FALSE;
8626 relocs = FALSE;
8627 for (s = dynobj->sections; s != NULL; s = s->next)
8628 {
8629 const char * name;
8630
8631 if ((s->flags & SEC_LINKER_CREATED) == 0)
8632 continue;
8633
8634 /* It's OK to base decisions on the section name, because none
8635 of the dynobj section names depend upon the input files. */
8636 name = bfd_get_section_name (dynobj, s);
8637
8638 if (strcmp (name, ".plt") == 0)
8639 {
8640 /* Remember whether there is a PLT. */
8641 plt = s->size != 0;
8642 }
8643 else if (CONST_STRNEQ (name, ".rel"))
8644 {
8645 if (s->size != 0)
8646 {
8647 /* Remember whether there are any reloc sections other
8648 than .rel(a).plt and .rela.plt.unloaded. */
8649 if (s != htab->srelplt && s != htab->srelplt2)
8650 relocs = TRUE;
8651
8652 /* We use the reloc_count field as a counter if we need
8653 to copy relocs into the output file. */
8654 s->reloc_count = 0;
8655 }
8656 }
8657 else if (! CONST_STRNEQ (name, ".got")
8658 && strcmp (name, ".dynbss") != 0)
8659 {
8660 /* It's not one of our sections, so don't allocate space. */
8661 continue;
8662 }
8663
8664 if (s->size == 0)
8665 {
8666 /* If we don't need this section, strip it from the
8667 output file. This is mostly to handle .rel(a).bss and
8668 .rel(a).plt. We must create both sections in
8669 create_dynamic_sections, because they must be created
8670 before the linker maps input sections to output
8671 sections. The linker does that before
8672 adjust_dynamic_symbol is called, and it is that
8673 function which decides whether anything needs to go
8674 into these sections. */
8675 s->flags |= SEC_EXCLUDE;
8676 continue;
8677 }
8678
8679 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8680 continue;
8681
8682 /* Allocate memory for the section contents. */
8683 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8684 if (s->contents == NULL)
8685 return FALSE;
8686 }
8687
8688 if (elf_hash_table (info)->dynamic_sections_created)
8689 {
8690 /* Add some entries to the .dynamic section. We fill in the
8691 values later, in elf32_arm_finish_dynamic_sections, but we
8692 must add the entries now so that we get the correct size for
8693 the .dynamic section. The DT_DEBUG entry is filled in by the
8694 dynamic linker and used by the debugger. */
8695 #define add_dynamic_entry(TAG, VAL) \
8696 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8697
8698 if (info->executable)
8699 {
8700 if (!add_dynamic_entry (DT_DEBUG, 0))
8701 return FALSE;
8702 }
8703
8704 if (plt)
8705 {
8706 if ( !add_dynamic_entry (DT_PLTGOT, 0)
8707 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8708 || !add_dynamic_entry (DT_PLTREL,
8709 htab->use_rel ? DT_REL : DT_RELA)
8710 || !add_dynamic_entry (DT_JMPREL, 0))
8711 return FALSE;
8712 }
8713
8714 if (relocs)
8715 {
8716 if (htab->use_rel)
8717 {
8718 if (!add_dynamic_entry (DT_REL, 0)
8719 || !add_dynamic_entry (DT_RELSZ, 0)
8720 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
8721 return FALSE;
8722 }
8723 else
8724 {
8725 if (!add_dynamic_entry (DT_RELA, 0)
8726 || !add_dynamic_entry (DT_RELASZ, 0)
8727 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8728 return FALSE;
8729 }
8730 }
8731
8732 /* If any dynamic relocs apply to a read-only section,
8733 then we need a DT_TEXTREL entry. */
8734 if ((info->flags & DF_TEXTREL) == 0)
8735 elf_link_hash_traverse (&htab->root, elf32_arm_readonly_dynrelocs,
8736 (PTR) info);
8737
8738 if ((info->flags & DF_TEXTREL) != 0)
8739 {
8740 if (!add_dynamic_entry (DT_TEXTREL, 0))
8741 return FALSE;
8742 }
8743 if (htab->vxworks_p
8744 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8745 return FALSE;
8746 }
8747 #undef add_dynamic_entry
8748
8749 return TRUE;
8750 }
8751
8752 /* Finish up dynamic symbol handling. We set the contents of various
8753 dynamic sections here. */
8754
8755 static bfd_boolean
8756 elf32_arm_finish_dynamic_symbol (bfd * output_bfd, struct bfd_link_info * info,
8757 struct elf_link_hash_entry * h, Elf_Internal_Sym * sym)
8758 {
8759 bfd * dynobj;
8760 struct elf32_arm_link_hash_table *htab;
8761 struct elf32_arm_link_hash_entry *eh;
8762
8763 dynobj = elf_hash_table (info)->dynobj;
8764 htab = elf32_arm_hash_table (info);
8765 eh = (struct elf32_arm_link_hash_entry *) h;
8766
8767 if (h->plt.offset != (bfd_vma) -1)
8768 {
8769 asection * splt;
8770 asection * srel;
8771 bfd_byte *loc;
8772 bfd_vma plt_index;
8773 Elf_Internal_Rela rel;
8774
8775 /* This symbol has an entry in the procedure linkage table. Set
8776 it up. */
8777
8778 BFD_ASSERT (h->dynindx != -1);
8779
8780 splt = bfd_get_section_by_name (dynobj, ".plt");
8781 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
8782 BFD_ASSERT (splt != NULL && srel != NULL);
8783
8784 /* Fill in the entry in the procedure linkage table. */
8785 if (htab->symbian_p)
8786 {
8787 put_arm_insn (htab, output_bfd,
8788 elf32_arm_symbian_plt_entry[0],
8789 splt->contents + h->plt.offset);
8790 bfd_put_32 (output_bfd,
8791 elf32_arm_symbian_plt_entry[1],
8792 splt->contents + h->plt.offset + 4);
8793
8794 /* Fill in the entry in the .rel.plt section. */
8795 rel.r_offset = (splt->output_section->vma
8796 + splt->output_offset
8797 + h->plt.offset + 4);
8798 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
8799
8800 /* Get the index in the procedure linkage table which
8801 corresponds to this symbol. This is the index of this symbol
8802 in all the symbols for which we are making plt entries. The
8803 first entry in the procedure linkage table is reserved. */
8804 plt_index = ((h->plt.offset - htab->plt_header_size)
8805 / htab->plt_entry_size);
8806 }
8807 else
8808 {
8809 bfd_vma got_offset, got_address, plt_address;
8810 bfd_vma got_displacement;
8811 asection * sgot;
8812 bfd_byte * ptr;
8813
8814 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
8815 BFD_ASSERT (sgot != NULL);
8816
8817 /* Get the offset into the .got.plt table of the entry that
8818 corresponds to this function. */
8819 got_offset = eh->plt_got_offset;
8820
8821 /* Get the index in the procedure linkage table which
8822 corresponds to this symbol. This is the index of this symbol
8823 in all the symbols for which we are making plt entries. The
8824 first three entries in .got.plt are reserved; after that
8825 symbols appear in the same order as in .plt. */
8826 plt_index = (got_offset - 12) / 4;
8827
8828 /* Calculate the address of the GOT entry. */
8829 got_address = (sgot->output_section->vma
8830 + sgot->output_offset
8831 + got_offset);
8832
8833 /* ...and the address of the PLT entry. */
8834 plt_address = (splt->output_section->vma
8835 + splt->output_offset
8836 + h->plt.offset);
8837
8838 ptr = htab->splt->contents + h->plt.offset;
8839 if (htab->vxworks_p && info->shared)
8840 {
8841 unsigned int i;
8842 bfd_vma val;
8843
8844 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
8845 {
8846 val = elf32_arm_vxworks_shared_plt_entry[i];
8847 if (i == 2)
8848 val |= got_address - sgot->output_section->vma;
8849 if (i == 5)
8850 val |= plt_index * RELOC_SIZE (htab);
8851 if (i == 2 || i == 5)
8852 bfd_put_32 (output_bfd, val, ptr);
8853 else
8854 put_arm_insn (htab, output_bfd, val, ptr);
8855 }
8856 }
8857 else if (htab->vxworks_p)
8858 {
8859 unsigned int i;
8860 bfd_vma val;
8861
8862 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
8863 {
8864 val = elf32_arm_vxworks_exec_plt_entry[i];
8865 if (i == 2)
8866 val |= got_address;
8867 if (i == 4)
8868 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
8869 if (i == 5)
8870 val |= plt_index * RELOC_SIZE (htab);
8871 if (i == 2 || i == 5)
8872 bfd_put_32 (output_bfd, val, ptr);
8873 else
8874 put_arm_insn (htab, output_bfd, val, ptr);
8875 }
8876
8877 loc = (htab->srelplt2->contents
8878 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
8879
8880 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
8881 referencing the GOT for this PLT entry. */
8882 rel.r_offset = plt_address + 8;
8883 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
8884 rel.r_addend = got_offset;
8885 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
8886 loc += RELOC_SIZE (htab);
8887
8888 /* Create the R_ARM_ABS32 relocation referencing the
8889 beginning of the PLT for this GOT entry. */
8890 rel.r_offset = got_address;
8891 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
8892 rel.r_addend = 0;
8893 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
8894 }
8895 else
8896 {
8897 bfd_signed_vma thumb_refs;
8898 /* Calculate the displacement between the PLT slot and the
8899 entry in the GOT. The eight-byte offset accounts for the
8900 value produced by adding to pc in the first instruction
8901 of the PLT stub. */
8902 got_displacement = got_address - (plt_address + 8);
8903
8904 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
8905
8906 thumb_refs = eh->plt_thumb_refcount;
8907 if (!htab->use_blx)
8908 thumb_refs += eh->plt_maybe_thumb_refcount;
8909
8910 if (thumb_refs > 0)
8911 {
8912 put_thumb_insn (htab, output_bfd,
8913 elf32_arm_plt_thumb_stub[0], ptr - 4);
8914 put_thumb_insn (htab, output_bfd,
8915 elf32_arm_plt_thumb_stub[1], ptr - 2);
8916 }
8917
8918 put_arm_insn (htab, output_bfd,
8919 elf32_arm_plt_entry[0]
8920 | ((got_displacement & 0x0ff00000) >> 20),
8921 ptr + 0);
8922 put_arm_insn (htab, output_bfd,
8923 elf32_arm_plt_entry[1]
8924 | ((got_displacement & 0x000ff000) >> 12),
8925 ptr+ 4);
8926 put_arm_insn (htab, output_bfd,
8927 elf32_arm_plt_entry[2]
8928 | (got_displacement & 0x00000fff),
8929 ptr + 8);
8930 #ifdef FOUR_WORD_PLT
8931 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
8932 #endif
8933 }
8934
8935 /* Fill in the entry in the global offset table. */
8936 bfd_put_32 (output_bfd,
8937 (splt->output_section->vma
8938 + splt->output_offset),
8939 sgot->contents + got_offset);
8940
8941 /* Fill in the entry in the .rel(a).plt section. */
8942 rel.r_addend = 0;
8943 rel.r_offset = got_address;
8944 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
8945 }
8946
8947 loc = srel->contents + plt_index * RELOC_SIZE (htab);
8948 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
8949
8950 if (!h->def_regular)
8951 {
8952 /* Mark the symbol as undefined, rather than as defined in
8953 the .plt section. Leave the value alone. */
8954 sym->st_shndx = SHN_UNDEF;
8955 /* If the symbol is weak, we do need to clear the value.
8956 Otherwise, the PLT entry would provide a definition for
8957 the symbol even if the symbol wasn't defined anywhere,
8958 and so the symbol would never be NULL. */
8959 if (!h->ref_regular_nonweak)
8960 sym->st_value = 0;
8961 }
8962 }
8963
8964 if (h->got.offset != (bfd_vma) -1
8965 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
8966 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
8967 {
8968 asection * sgot;
8969 asection * srel;
8970 Elf_Internal_Rela rel;
8971 bfd_byte *loc;
8972 bfd_vma offset;
8973
8974 /* This symbol has an entry in the global offset table. Set it
8975 up. */
8976 sgot = bfd_get_section_by_name (dynobj, ".got");
8977 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
8978 BFD_ASSERT (sgot != NULL && srel != NULL);
8979
8980 offset = (h->got.offset & ~(bfd_vma) 1);
8981 rel.r_addend = 0;
8982 rel.r_offset = (sgot->output_section->vma
8983 + sgot->output_offset
8984 + offset);
8985
8986 /* If this is a static link, or it is a -Bsymbolic link and the
8987 symbol is defined locally or was forced to be local because
8988 of a version file, we just want to emit a RELATIVE reloc.
8989 The entry in the global offset table will already have been
8990 initialized in the relocate_section function. */
8991 if (info->shared
8992 && SYMBOL_REFERENCES_LOCAL (info, h))
8993 {
8994 BFD_ASSERT((h->got.offset & 1) != 0);
8995 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
8996 if (!htab->use_rel)
8997 {
8998 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
8999 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
9000 }
9001 }
9002 else
9003 {
9004 BFD_ASSERT((h->got.offset & 1) == 0);
9005 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
9006 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9007 }
9008
9009 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
9010 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9011 }
9012
9013 if (h->needs_copy)
9014 {
9015 asection * s;
9016 Elf_Internal_Rela rel;
9017 bfd_byte *loc;
9018
9019 /* This symbol needs a copy reloc. Set it up. */
9020 BFD_ASSERT (h->dynindx != -1
9021 && (h->root.type == bfd_link_hash_defined
9022 || h->root.type == bfd_link_hash_defweak));
9023
9024 s = bfd_get_section_by_name (h->root.u.def.section->owner,
9025 RELOC_SECTION (htab, ".bss"));
9026 BFD_ASSERT (s != NULL);
9027
9028 rel.r_addend = 0;
9029 rel.r_offset = (h->root.u.def.value
9030 + h->root.u.def.section->output_section->vma
9031 + h->root.u.def.section->output_offset);
9032 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
9033 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9034 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9035 }
9036
9037 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
9038 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
9039 to the ".got" section. */
9040 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
9041 || (!htab->vxworks_p && h == htab->root.hgot))
9042 sym->st_shndx = SHN_ABS;
9043
9044 return TRUE;
9045 }
9046
9047 /* Finish up the dynamic sections. */
9048
9049 static bfd_boolean
9050 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
9051 {
9052 bfd * dynobj;
9053 asection * sgot;
9054 asection * sdyn;
9055
9056 dynobj = elf_hash_table (info)->dynobj;
9057
9058 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
9059 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
9060 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9061
9062 if (elf_hash_table (info)->dynamic_sections_created)
9063 {
9064 asection *splt;
9065 Elf32_External_Dyn *dyncon, *dynconend;
9066 struct elf32_arm_link_hash_table *htab;
9067
9068 htab = elf32_arm_hash_table (info);
9069 splt = bfd_get_section_by_name (dynobj, ".plt");
9070 BFD_ASSERT (splt != NULL && sdyn != NULL);
9071
9072 dyncon = (Elf32_External_Dyn *) sdyn->contents;
9073 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9074
9075 for (; dyncon < dynconend; dyncon++)
9076 {
9077 Elf_Internal_Dyn dyn;
9078 const char * name;
9079 asection * s;
9080
9081 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
9082
9083 switch (dyn.d_tag)
9084 {
9085 unsigned int type;
9086
9087 default:
9088 if (htab->vxworks_p
9089 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
9090 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9091 break;
9092
9093 case DT_HASH:
9094 name = ".hash";
9095 goto get_vma_if_bpabi;
9096 case DT_STRTAB:
9097 name = ".dynstr";
9098 goto get_vma_if_bpabi;
9099 case DT_SYMTAB:
9100 name = ".dynsym";
9101 goto get_vma_if_bpabi;
9102 case DT_VERSYM:
9103 name = ".gnu.version";
9104 goto get_vma_if_bpabi;
9105 case DT_VERDEF:
9106 name = ".gnu.version_d";
9107 goto get_vma_if_bpabi;
9108 case DT_VERNEED:
9109 name = ".gnu.version_r";
9110 goto get_vma_if_bpabi;
9111
9112 case DT_PLTGOT:
9113 name = ".got";
9114 goto get_vma;
9115 case DT_JMPREL:
9116 name = RELOC_SECTION (htab, ".plt");
9117 get_vma:
9118 s = bfd_get_section_by_name (output_bfd, name);
9119 BFD_ASSERT (s != NULL);
9120 if (!htab->symbian_p)
9121 dyn.d_un.d_ptr = s->vma;
9122 else
9123 /* In the BPABI, tags in the PT_DYNAMIC section point
9124 at the file offset, not the memory address, for the
9125 convenience of the post linker. */
9126 dyn.d_un.d_ptr = s->filepos;
9127 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9128 break;
9129
9130 get_vma_if_bpabi:
9131 if (htab->symbian_p)
9132 goto get_vma;
9133 break;
9134
9135 case DT_PLTRELSZ:
9136 s = bfd_get_section_by_name (output_bfd,
9137 RELOC_SECTION (htab, ".plt"));
9138 BFD_ASSERT (s != NULL);
9139 dyn.d_un.d_val = s->size;
9140 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9141 break;
9142
9143 case DT_RELSZ:
9144 case DT_RELASZ:
9145 if (!htab->symbian_p)
9146 {
9147 /* My reading of the SVR4 ABI indicates that the
9148 procedure linkage table relocs (DT_JMPREL) should be
9149 included in the overall relocs (DT_REL). This is
9150 what Solaris does. However, UnixWare can not handle
9151 that case. Therefore, we override the DT_RELSZ entry
9152 here to make it not include the JMPREL relocs. Since
9153 the linker script arranges for .rel(a).plt to follow all
9154 other relocation sections, we don't have to worry
9155 about changing the DT_REL entry. */
9156 s = bfd_get_section_by_name (output_bfd,
9157 RELOC_SECTION (htab, ".plt"));
9158 if (s != NULL)
9159 dyn.d_un.d_val -= s->size;
9160 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9161 break;
9162 }
9163 /* Fall through */
9164
9165 case DT_REL:
9166 case DT_RELA:
9167 /* In the BPABI, the DT_REL tag must point at the file
9168 offset, not the VMA, of the first relocation
9169 section. So, we use code similar to that in
9170 elflink.c, but do not check for SHF_ALLOC on the
9171 relcoation section, since relocations sections are
9172 never allocated under the BPABI. The comments above
9173 about Unixware notwithstanding, we include all of the
9174 relocations here. */
9175 if (htab->symbian_p)
9176 {
9177 unsigned int i;
9178 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
9179 ? SHT_REL : SHT_RELA);
9180 dyn.d_un.d_val = 0;
9181 for (i = 1; i < elf_numsections (output_bfd); i++)
9182 {
9183 Elf_Internal_Shdr *hdr
9184 = elf_elfsections (output_bfd)[i];
9185 if (hdr->sh_type == type)
9186 {
9187 if (dyn.d_tag == DT_RELSZ
9188 || dyn.d_tag == DT_RELASZ)
9189 dyn.d_un.d_val += hdr->sh_size;
9190 else if ((ufile_ptr) hdr->sh_offset
9191 <= dyn.d_un.d_val - 1)
9192 dyn.d_un.d_val = hdr->sh_offset;
9193 }
9194 }
9195 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9196 }
9197 break;
9198
9199 /* Set the bottom bit of DT_INIT/FINI if the
9200 corresponding function is Thumb. */
9201 case DT_INIT:
9202 name = info->init_function;
9203 goto get_sym;
9204 case DT_FINI:
9205 name = info->fini_function;
9206 get_sym:
9207 /* If it wasn't set by elf_bfd_final_link
9208 then there is nothing to adjust. */
9209 if (dyn.d_un.d_val != 0)
9210 {
9211 struct elf_link_hash_entry * eh;
9212
9213 eh = elf_link_hash_lookup (elf_hash_table (info), name,
9214 FALSE, FALSE, TRUE);
9215 if (eh != (struct elf_link_hash_entry *) NULL
9216 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
9217 {
9218 dyn.d_un.d_val |= 1;
9219 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9220 }
9221 }
9222 break;
9223 }
9224 }
9225
9226 /* Fill in the first entry in the procedure linkage table. */
9227 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
9228 {
9229 const bfd_vma *plt0_entry;
9230 bfd_vma got_address, plt_address, got_displacement;
9231
9232 /* Calculate the addresses of the GOT and PLT. */
9233 got_address = sgot->output_section->vma + sgot->output_offset;
9234 plt_address = splt->output_section->vma + splt->output_offset;
9235
9236 if (htab->vxworks_p)
9237 {
9238 /* The VxWorks GOT is relocated by the dynamic linker.
9239 Therefore, we must emit relocations rather than simply
9240 computing the values now. */
9241 Elf_Internal_Rela rel;
9242
9243 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
9244 put_arm_insn (htab, output_bfd, plt0_entry[0],
9245 splt->contents + 0);
9246 put_arm_insn (htab, output_bfd, plt0_entry[1],
9247 splt->contents + 4);
9248 put_arm_insn (htab, output_bfd, plt0_entry[2],
9249 splt->contents + 8);
9250 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
9251
9252 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
9253 rel.r_offset = plt_address + 12;
9254 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9255 rel.r_addend = 0;
9256 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
9257 htab->srelplt2->contents);
9258 }
9259 else
9260 {
9261 got_displacement = got_address - (plt_address + 16);
9262
9263 plt0_entry = elf32_arm_plt0_entry;
9264 put_arm_insn (htab, output_bfd, plt0_entry[0],
9265 splt->contents + 0);
9266 put_arm_insn (htab, output_bfd, plt0_entry[1],
9267 splt->contents + 4);
9268 put_arm_insn (htab, output_bfd, plt0_entry[2],
9269 splt->contents + 8);
9270 put_arm_insn (htab, output_bfd, plt0_entry[3],
9271 splt->contents + 12);
9272
9273 #ifdef FOUR_WORD_PLT
9274 /* The displacement value goes in the otherwise-unused
9275 last word of the second entry. */
9276 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
9277 #else
9278 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
9279 #endif
9280 }
9281 }
9282
9283 /* UnixWare sets the entsize of .plt to 4, although that doesn't
9284 really seem like the right value. */
9285 if (splt->output_section->owner == output_bfd)
9286 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
9287
9288 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
9289 {
9290 /* Correct the .rel(a).plt.unloaded relocations. They will have
9291 incorrect symbol indexes. */
9292 int num_plts;
9293 unsigned char *p;
9294
9295 num_plts = ((htab->splt->size - htab->plt_header_size)
9296 / htab->plt_entry_size);
9297 p = htab->srelplt2->contents + RELOC_SIZE (htab);
9298
9299 for (; num_plts; num_plts--)
9300 {
9301 Elf_Internal_Rela rel;
9302
9303 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
9304 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9305 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
9306 p += RELOC_SIZE (htab);
9307
9308 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
9309 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9310 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
9311 p += RELOC_SIZE (htab);
9312 }
9313 }
9314 }
9315
9316 /* Fill in the first three entries in the global offset table. */
9317 if (sgot)
9318 {
9319 if (sgot->size > 0)
9320 {
9321 if (sdyn == NULL)
9322 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
9323 else
9324 bfd_put_32 (output_bfd,
9325 sdyn->output_section->vma + sdyn->output_offset,
9326 sgot->contents);
9327 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
9328 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
9329 }
9330
9331 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
9332 }
9333
9334 return TRUE;
9335 }
9336
9337 static void
9338 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9339 {
9340 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9341 struct elf32_arm_link_hash_table *globals;
9342
9343 i_ehdrp = elf_elfheader (abfd);
9344
9345 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
9346 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
9347 else
9348 i_ehdrp->e_ident[EI_OSABI] = 0;
9349 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
9350
9351 if (link_info)
9352 {
9353 globals = elf32_arm_hash_table (link_info);
9354 if (globals->byteswap_code)
9355 i_ehdrp->e_flags |= EF_ARM_BE8;
9356 }
9357 }
9358
9359 static enum elf_reloc_type_class
9360 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
9361 {
9362 switch ((int) ELF32_R_TYPE (rela->r_info))
9363 {
9364 case R_ARM_RELATIVE:
9365 return reloc_class_relative;
9366 case R_ARM_JUMP_SLOT:
9367 return reloc_class_plt;
9368 case R_ARM_COPY:
9369 return reloc_class_copy;
9370 default:
9371 return reloc_class_normal;
9372 }
9373 }
9374
9375 /* Set the right machine number for an Arm ELF file. */
9376
9377 static bfd_boolean
9378 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
9379 {
9380 if (hdr->sh_type == SHT_NOTE)
9381 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
9382
9383 return TRUE;
9384 }
9385
9386 static void
9387 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
9388 {
9389 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
9390 }
9391
9392 /* Return TRUE if this is an unwinding table entry. */
9393
9394 static bfd_boolean
9395 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
9396 {
9397 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
9398 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
9399 }
9400
9401
9402 /* Set the type and flags for an ARM section. We do this by
9403 the section name, which is a hack, but ought to work. */
9404
9405 static bfd_boolean
9406 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
9407 {
9408 const char * name;
9409
9410 name = bfd_get_section_name (abfd, sec);
9411
9412 if (is_arm_elf_unwind_section_name (abfd, name))
9413 {
9414 hdr->sh_type = SHT_ARM_EXIDX;
9415 hdr->sh_flags |= SHF_LINK_ORDER;
9416 }
9417 return TRUE;
9418 }
9419
9420 /* Handle an ARM specific section when reading an object file. This is
9421 called when bfd_section_from_shdr finds a section with an unknown
9422 type. */
9423
9424 static bfd_boolean
9425 elf32_arm_section_from_shdr (bfd *abfd,
9426 Elf_Internal_Shdr * hdr,
9427 const char *name,
9428 int shindex)
9429 {
9430 /* There ought to be a place to keep ELF backend specific flags, but
9431 at the moment there isn't one. We just keep track of the
9432 sections by their name, instead. Fortunately, the ABI gives
9433 names for all the ARM specific sections, so we will probably get
9434 away with this. */
9435 switch (hdr->sh_type)
9436 {
9437 case SHT_ARM_EXIDX:
9438 case SHT_ARM_PREEMPTMAP:
9439 case SHT_ARM_ATTRIBUTES:
9440 break;
9441
9442 default:
9443 return FALSE;
9444 }
9445
9446 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
9447 return FALSE;
9448
9449 return TRUE;
9450 }
9451
9452 /* A structure used to record a list of sections, independently
9453 of the next and prev fields in the asection structure. */
9454 typedef struct section_list
9455 {
9456 asection * sec;
9457 struct section_list * next;
9458 struct section_list * prev;
9459 }
9460 section_list;
9461
9462 /* Unfortunately we need to keep a list of sections for which
9463 an _arm_elf_section_data structure has been allocated. This
9464 is because it is possible for functions like elf32_arm_write_section
9465 to be called on a section which has had an elf_data_structure
9466 allocated for it (and so the used_by_bfd field is valid) but
9467 for which the ARM extended version of this structure - the
9468 _arm_elf_section_data structure - has not been allocated. */
9469 static section_list * sections_with_arm_elf_section_data = NULL;
9470
9471 static void
9472 record_section_with_arm_elf_section_data (asection * sec)
9473 {
9474 struct section_list * entry;
9475
9476 entry = bfd_malloc (sizeof (* entry));
9477 if (entry == NULL)
9478 return;
9479 entry->sec = sec;
9480 entry->next = sections_with_arm_elf_section_data;
9481 entry->prev = NULL;
9482 if (entry->next != NULL)
9483 entry->next->prev = entry;
9484 sections_with_arm_elf_section_data = entry;
9485 }
9486
9487 static struct section_list *
9488 find_arm_elf_section_entry (asection * sec)
9489 {
9490 struct section_list * entry;
9491 static struct section_list * last_entry = NULL;
9492
9493 /* This is a short cut for the typical case where the sections are added
9494 to the sections_with_arm_elf_section_data list in forward order and
9495 then looked up here in backwards order. This makes a real difference
9496 to the ld-srec/sec64k.exp linker test. */
9497 entry = sections_with_arm_elf_section_data;
9498 if (last_entry != NULL)
9499 {
9500 if (last_entry->sec == sec)
9501 entry = last_entry;
9502 else if (last_entry->next != NULL
9503 && last_entry->next->sec == sec)
9504 entry = last_entry->next;
9505 }
9506
9507 for (; entry; entry = entry->next)
9508 if (entry->sec == sec)
9509 break;
9510
9511 if (entry)
9512 /* Record the entry prior to this one - it is the entry we are most
9513 likely to want to locate next time. Also this way if we have been
9514 called from unrecord_section_with_arm_elf_section_data() we will not
9515 be caching a pointer that is about to be freed. */
9516 last_entry = entry->prev;
9517
9518 return entry;
9519 }
9520
9521 static _arm_elf_section_data *
9522 get_arm_elf_section_data (asection * sec)
9523 {
9524 struct section_list * entry;
9525
9526 entry = find_arm_elf_section_entry (sec);
9527
9528 if (entry)
9529 return elf32_arm_section_data (entry->sec);
9530 else
9531 return NULL;
9532 }
9533
9534 static void
9535 unrecord_section_with_arm_elf_section_data (asection * sec)
9536 {
9537 struct section_list * entry;
9538
9539 entry = find_arm_elf_section_entry (sec);
9540
9541 if (entry)
9542 {
9543 if (entry->prev != NULL)
9544 entry->prev->next = entry->next;
9545 if (entry->next != NULL)
9546 entry->next->prev = entry->prev;
9547 if (entry == sections_with_arm_elf_section_data)
9548 sections_with_arm_elf_section_data = entry->next;
9549 free (entry);
9550 }
9551 }
9552
9553
9554 typedef struct
9555 {
9556 void *finfo;
9557 struct bfd_link_info *info;
9558 asection *sec;
9559 int sec_shndx;
9560 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
9561 asection *, struct elf_link_hash_entry *);
9562 } output_arch_syminfo;
9563
9564 enum map_symbol_type
9565 {
9566 ARM_MAP_ARM,
9567 ARM_MAP_THUMB,
9568 ARM_MAP_DATA
9569 };
9570
9571
9572 /* Output a single PLT mapping symbol. */
9573
9574 static bfd_boolean
9575 elf32_arm_ouput_plt_map_sym (output_arch_syminfo *osi,
9576 enum map_symbol_type type,
9577 bfd_vma offset)
9578 {
9579 static const char *names[3] = {"$a", "$t", "$d"};
9580 struct elf32_arm_link_hash_table *htab;
9581 Elf_Internal_Sym sym;
9582
9583 htab = elf32_arm_hash_table (osi->info);
9584 sym.st_value = osi->sec->output_section->vma
9585 + osi->sec->output_offset
9586 + offset;
9587 sym.st_size = 0;
9588 sym.st_other = 0;
9589 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
9590 sym.st_shndx = osi->sec_shndx;
9591 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
9592 return FALSE;
9593 return TRUE;
9594 }
9595
9596
9597 /* Output mapping symbols for PLT entries associated with H. */
9598
9599 static bfd_boolean
9600 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
9601 {
9602 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
9603 struct elf32_arm_link_hash_table *htab;
9604 struct elf32_arm_link_hash_entry *eh;
9605 bfd_vma addr;
9606
9607 htab = elf32_arm_hash_table (osi->info);
9608
9609 if (h->root.type == bfd_link_hash_indirect)
9610 return TRUE;
9611
9612 if (h->root.type == bfd_link_hash_warning)
9613 /* When warning symbols are created, they **replace** the "real"
9614 entry in the hash table, thus we never get to see the real
9615 symbol in a hash traversal. So look at it now. */
9616 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9617
9618 if (h->plt.offset == (bfd_vma) -1)
9619 return TRUE;
9620
9621 eh = (struct elf32_arm_link_hash_entry *) h;
9622 addr = h->plt.offset;
9623 if (htab->symbian_p)
9624 {
9625 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
9626 return FALSE;
9627 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 4))
9628 return FALSE;
9629 }
9630 else if (htab->vxworks_p)
9631 {
9632 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
9633 return FALSE;
9634 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 8))
9635 return FALSE;
9636 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr + 12))
9637 return FALSE;
9638 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 20))
9639 return FALSE;
9640 }
9641 else
9642 {
9643 bfd_signed_vma thumb_refs;
9644
9645 thumb_refs = eh->plt_thumb_refcount;
9646 if (!htab->use_blx)
9647 thumb_refs += eh->plt_maybe_thumb_refcount;
9648
9649 if (thumb_refs > 0)
9650 {
9651 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_THUMB, addr - 4))
9652 return FALSE;
9653 }
9654 #ifdef FOUR_WORD_PLT
9655 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
9656 return FALSE;
9657 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 12))
9658 return FALSE;
9659 #else
9660 /* A three-word PLT with no Thumb thunk contains only Arm code,
9661 so only need to output a mapping symbol for the first PLT entry and
9662 entries with thumb thunks. */
9663 if (thumb_refs > 0 || addr == 20)
9664 {
9665 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
9666 return FALSE;
9667 }
9668 #endif
9669 }
9670
9671 return TRUE;
9672 }
9673
9674
9675 /* Output mapping symbols for linker generated sections. */
9676
9677 static bfd_boolean
9678 elf32_arm_output_arch_local_syms (bfd *output_bfd,
9679 struct bfd_link_info *info,
9680 void *finfo, bfd_boolean (*func) (void *, const char *,
9681 Elf_Internal_Sym *,
9682 asection *,
9683 struct elf_link_hash_entry *))
9684 {
9685 output_arch_syminfo osi;
9686 struct elf32_arm_link_hash_table *htab;
9687 bfd_vma offset;
9688 bfd_size_type size;
9689
9690 htab = elf32_arm_hash_table (info);
9691 check_use_blx(htab);
9692
9693 osi.finfo = finfo;
9694 osi.info = info;
9695 osi.func = func;
9696
9697 /* ARM->Thumb glue. */
9698 if (htab->arm_glue_size > 0)
9699 {
9700 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
9701 ARM2THUMB_GLUE_SECTION_NAME);
9702
9703 osi.sec_shndx = _bfd_elf_section_from_bfd_section
9704 (output_bfd, osi.sec->output_section);
9705 if (info->shared || htab->root.is_relocatable_executable
9706 || htab->pic_veneer)
9707 size = ARM2THUMB_PIC_GLUE_SIZE;
9708 else if (htab->use_blx)
9709 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
9710 else
9711 size = ARM2THUMB_STATIC_GLUE_SIZE;
9712
9713 for (offset = 0; offset < htab->arm_glue_size; offset += size)
9714 {
9715 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset);
9716 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
9717 }
9718 }
9719
9720 /* Thumb->ARM glue. */
9721 if (htab->thumb_glue_size > 0)
9722 {
9723 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
9724 THUMB2ARM_GLUE_SECTION_NAME);
9725
9726 osi.sec_shndx = _bfd_elf_section_from_bfd_section
9727 (output_bfd, osi.sec->output_section);
9728 size = THUMB2ARM_GLUE_SIZE;
9729
9730 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
9731 {
9732 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_THUMB, offset);
9733 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset + 4);
9734 }
9735 }
9736
9737 /* Finally, output mapping symbols for the PLT. */
9738 if (!htab->splt || htab->splt->size == 0)
9739 return TRUE;
9740
9741 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9742 htab->splt->output_section);
9743 osi.sec = htab->splt;
9744 /* Output mapping symbols for the plt header. SymbianOS does not have a
9745 plt header. */
9746 if (htab->vxworks_p)
9747 {
9748 /* VxWorks shared libraries have no PLT header. */
9749 if (!info->shared)
9750 {
9751 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
9752 return FALSE;
9753 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 12))
9754 return FALSE;
9755 }
9756 }
9757 else if (!htab->symbian_p)
9758 {
9759 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
9760 return FALSE;
9761 #ifndef FOUR_WORD_PLT
9762 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 16))
9763 return FALSE;
9764 #endif
9765 }
9766
9767 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
9768 return TRUE;
9769 }
9770
9771 /* Allocate target specific section data. */
9772
9773 static bfd_boolean
9774 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
9775 {
9776 if (!sec->used_by_bfd)
9777 {
9778 _arm_elf_section_data *sdata;
9779 bfd_size_type amt = sizeof (*sdata);
9780
9781 sdata = bfd_zalloc (abfd, amt);
9782 if (sdata == NULL)
9783 return FALSE;
9784 sec->used_by_bfd = sdata;
9785 }
9786
9787 record_section_with_arm_elf_section_data (sec);
9788
9789 return _bfd_elf_new_section_hook (abfd, sec);
9790 }
9791
9792
9793 /* Used to order a list of mapping symbols by address. */
9794
9795 static int
9796 elf32_arm_compare_mapping (const void * a, const void * b)
9797 {
9798 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
9799 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
9800
9801 if (amap->vma > bmap->vma)
9802 return 1;
9803 else if (amap->vma < bmap->vma)
9804 return -1;
9805 else if (amap->type > bmap->type)
9806 /* Ensure results do not depend on the host qsort for objects with
9807 multiple mapping symbols at the same address by sorting on type
9808 after vma. */
9809 return 1;
9810 else if (amap->type < bmap->type)
9811 return -1;
9812 else
9813 return 0;
9814 }
9815
9816
9817 /* Do code byteswapping. Return FALSE afterwards so that the section is
9818 written out as normal. */
9819
9820 static bfd_boolean
9821 elf32_arm_write_section (bfd *output_bfd,
9822 struct bfd_link_info *link_info, asection *sec,
9823 bfd_byte *contents)
9824 {
9825 int mapcount, errcount;
9826 _arm_elf_section_data *arm_data;
9827 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
9828 elf32_arm_section_map *map;
9829 elf32_vfp11_erratum_list *errnode;
9830 bfd_vma ptr;
9831 bfd_vma end;
9832 bfd_vma offset = sec->output_section->vma + sec->output_offset;
9833 bfd_byte tmp;
9834 int i;
9835
9836 /* If this section has not been allocated an _arm_elf_section_data
9837 structure then we cannot record anything. */
9838 arm_data = get_arm_elf_section_data (sec);
9839 if (arm_data == NULL)
9840 return FALSE;
9841
9842 mapcount = arm_data->mapcount;
9843 map = arm_data->map;
9844 errcount = arm_data->erratumcount;
9845
9846 if (errcount != 0)
9847 {
9848 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
9849
9850 for (errnode = arm_data->erratumlist; errnode != 0;
9851 errnode = errnode->next)
9852 {
9853 bfd_vma index = errnode->vma - offset;
9854
9855 switch (errnode->type)
9856 {
9857 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
9858 {
9859 bfd_vma branch_to_veneer;
9860 /* Original condition code of instruction, plus bit mask for
9861 ARM B instruction. */
9862 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
9863 | 0x0a000000;
9864
9865 /* The instruction is before the label. */
9866 index -= 4;
9867
9868 /* Above offset included in -4 below. */
9869 branch_to_veneer = errnode->u.b.veneer->vma
9870 - errnode->vma - 4;
9871
9872 if ((signed) branch_to_veneer < -(1 << 25)
9873 || (signed) branch_to_veneer >= (1 << 25))
9874 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
9875 "range"), output_bfd);
9876
9877 insn |= (branch_to_veneer >> 2) & 0xffffff;
9878 contents[endianflip ^ index] = insn & 0xff;
9879 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
9880 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
9881 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
9882 }
9883 break;
9884
9885 case VFP11_ERRATUM_ARM_VENEER:
9886 {
9887 bfd_vma branch_from_veneer;
9888 unsigned int insn;
9889
9890 /* Take size of veneer into account. */
9891 branch_from_veneer = errnode->u.v.branch->vma
9892 - errnode->vma - 12;
9893
9894 if ((signed) branch_from_veneer < -(1 << 25)
9895 || (signed) branch_from_veneer >= (1 << 25))
9896 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
9897 "range"), output_bfd);
9898
9899 /* Original instruction. */
9900 insn = errnode->u.v.branch->u.b.vfp_insn;
9901 contents[endianflip ^ index] = insn & 0xff;
9902 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
9903 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
9904 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
9905
9906 /* Branch back to insn after original insn. */
9907 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
9908 contents[endianflip ^ (index + 4)] = insn & 0xff;
9909 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
9910 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
9911 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
9912 }
9913 break;
9914
9915 default:
9916 abort ();
9917 }
9918 }
9919 }
9920
9921 if (mapcount == 0)
9922 return FALSE;
9923
9924 if (globals->byteswap_code)
9925 {
9926 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
9927
9928 ptr = map[0].vma;
9929 for (i = 0; i < mapcount; i++)
9930 {
9931 if (i == mapcount - 1)
9932 end = sec->size;
9933 else
9934 end = map[i + 1].vma;
9935
9936 switch (map[i].type)
9937 {
9938 case 'a':
9939 /* Byte swap code words. */
9940 while (ptr + 3 < end)
9941 {
9942 tmp = contents[ptr];
9943 contents[ptr] = contents[ptr + 3];
9944 contents[ptr + 3] = tmp;
9945 tmp = contents[ptr + 1];
9946 contents[ptr + 1] = contents[ptr + 2];
9947 contents[ptr + 2] = tmp;
9948 ptr += 4;
9949 }
9950 break;
9951
9952 case 't':
9953 /* Byte swap code halfwords. */
9954 while (ptr + 1 < end)
9955 {
9956 tmp = contents[ptr];
9957 contents[ptr] = contents[ptr + 1];
9958 contents[ptr + 1] = tmp;
9959 ptr += 2;
9960 }
9961 break;
9962
9963 case 'd':
9964 /* Leave data alone. */
9965 break;
9966 }
9967 ptr = end;
9968 }
9969 }
9970
9971 free (map);
9972 arm_data->mapcount = 0;
9973 arm_data->mapsize = 0;
9974 arm_data->map = NULL;
9975 unrecord_section_with_arm_elf_section_data (sec);
9976
9977 return FALSE;
9978 }
9979
9980 static void
9981 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
9982 asection * sec,
9983 void * ignore ATTRIBUTE_UNUSED)
9984 {
9985 unrecord_section_with_arm_elf_section_data (sec);
9986 }
9987
9988 static bfd_boolean
9989 elf32_arm_close_and_cleanup (bfd * abfd)
9990 {
9991 if (abfd->sections)
9992 bfd_map_over_sections (abfd,
9993 unrecord_section_via_map_over_sections,
9994 NULL);
9995
9996 return _bfd_elf_close_and_cleanup (abfd);
9997 }
9998
9999 static bfd_boolean
10000 elf32_arm_bfd_free_cached_info (bfd * abfd)
10001 {
10002 if (abfd->sections)
10003 bfd_map_over_sections (abfd,
10004 unrecord_section_via_map_over_sections,
10005 NULL);
10006
10007 return _bfd_free_cached_info (abfd);
10008 }
10009
10010 /* Display STT_ARM_TFUNC symbols as functions. */
10011
10012 static void
10013 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
10014 asymbol *asym)
10015 {
10016 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
10017
10018 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
10019 elfsym->symbol.flags |= BSF_FUNCTION;
10020 }
10021
10022
10023 /* Mangle thumb function symbols as we read them in. */
10024
10025 static bfd_boolean
10026 elf32_arm_swap_symbol_in (bfd * abfd,
10027 const void *psrc,
10028 const void *pshn,
10029 Elf_Internal_Sym *dst)
10030 {
10031 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
10032 return FALSE;
10033
10034 /* New EABI objects mark thumb function symbols by setting the low bit of
10035 the address. Turn these into STT_ARM_TFUNC. */
10036 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
10037 && (dst->st_value & 1))
10038 {
10039 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
10040 dst->st_value &= ~(bfd_vma) 1;
10041 }
10042 return TRUE;
10043 }
10044
10045
10046 /* Mangle thumb function symbols as we write them out. */
10047
10048 static void
10049 elf32_arm_swap_symbol_out (bfd *abfd,
10050 const Elf_Internal_Sym *src,
10051 void *cdst,
10052 void *shndx)
10053 {
10054 Elf_Internal_Sym newsym;
10055
10056 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
10057 of the address set, as per the new EABI. We do this unconditionally
10058 because objcopy does not set the elf header flags until after
10059 it writes out the symbol table. */
10060 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
10061 {
10062 newsym = *src;
10063 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
10064 if (newsym.st_shndx != SHN_UNDEF)
10065 {
10066 /* Do this only for defined symbols. At link type, the static
10067 linker will simulate the work of dynamic linker of resolving
10068 symbols and will carry over the thumbness of found symbols to
10069 the output symbol table. It's not clear how it happens, but
10070 the thumbness of undefined symbols can well be different at
10071 runtime, and writing '1' for them will be confusing for users
10072 and possibly for dynamic linker itself.
10073 */
10074 newsym.st_value |= 1;
10075 }
10076
10077 src = &newsym;
10078 }
10079 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
10080 }
10081
10082 /* Add the PT_ARM_EXIDX program header. */
10083
10084 static bfd_boolean
10085 elf32_arm_modify_segment_map (bfd *abfd,
10086 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10087 {
10088 struct elf_segment_map *m;
10089 asection *sec;
10090
10091 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
10092 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
10093 {
10094 /* If there is already a PT_ARM_EXIDX header, then we do not
10095 want to add another one. This situation arises when running
10096 "strip"; the input binary already has the header. */
10097 m = elf_tdata (abfd)->segment_map;
10098 while (m && m->p_type != PT_ARM_EXIDX)
10099 m = m->next;
10100 if (!m)
10101 {
10102 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
10103 if (m == NULL)
10104 return FALSE;
10105 m->p_type = PT_ARM_EXIDX;
10106 m->count = 1;
10107 m->sections[0] = sec;
10108
10109 m->next = elf_tdata (abfd)->segment_map;
10110 elf_tdata (abfd)->segment_map = m;
10111 }
10112 }
10113
10114 return TRUE;
10115 }
10116
10117 /* We may add a PT_ARM_EXIDX program header. */
10118
10119 static int
10120 elf32_arm_additional_program_headers (bfd *abfd,
10121 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10122 {
10123 asection *sec;
10124
10125 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
10126 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
10127 return 1;
10128 else
10129 return 0;
10130 }
10131
10132 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
10133 static bfd_boolean
10134 elf32_arm_is_function_type (unsigned int type)
10135 {
10136 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
10137 }
10138
10139 /* We use this to override swap_symbol_in and swap_symbol_out. */
10140 const struct elf_size_info elf32_arm_size_info = {
10141 sizeof (Elf32_External_Ehdr),
10142 sizeof (Elf32_External_Phdr),
10143 sizeof (Elf32_External_Shdr),
10144 sizeof (Elf32_External_Rel),
10145 sizeof (Elf32_External_Rela),
10146 sizeof (Elf32_External_Sym),
10147 sizeof (Elf32_External_Dyn),
10148 sizeof (Elf_External_Note),
10149 4,
10150 1,
10151 32, 2,
10152 ELFCLASS32, EV_CURRENT,
10153 bfd_elf32_write_out_phdrs,
10154 bfd_elf32_write_shdrs_and_ehdr,
10155 bfd_elf32_checksum_contents,
10156 bfd_elf32_write_relocs,
10157 elf32_arm_swap_symbol_in,
10158 elf32_arm_swap_symbol_out,
10159 bfd_elf32_slurp_reloc_table,
10160 bfd_elf32_slurp_symbol_table,
10161 bfd_elf32_swap_dyn_in,
10162 bfd_elf32_swap_dyn_out,
10163 bfd_elf32_swap_reloc_in,
10164 bfd_elf32_swap_reloc_out,
10165 bfd_elf32_swap_reloca_in,
10166 bfd_elf32_swap_reloca_out
10167 };
10168
10169 #define ELF_ARCH bfd_arch_arm
10170 #define ELF_MACHINE_CODE EM_ARM
10171 #ifdef __QNXTARGET__
10172 #define ELF_MAXPAGESIZE 0x1000
10173 #else
10174 #define ELF_MAXPAGESIZE 0x8000
10175 #endif
10176 #define ELF_MINPAGESIZE 0x1000
10177 #define ELF_COMMONPAGESIZE 0x1000
10178
10179 #define bfd_elf32_mkobject elf32_arm_mkobject
10180
10181 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
10182 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
10183 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
10184 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
10185 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
10186 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
10187 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
10188 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
10189 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
10190 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
10191 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
10192 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
10193 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
10194
10195 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
10196 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
10197 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
10198 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
10199 #define elf_backend_check_relocs elf32_arm_check_relocs
10200 #define elf_backend_relocate_section elf32_arm_relocate_section
10201 #define elf_backend_write_section elf32_arm_write_section
10202 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
10203 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
10204 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
10205 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
10206 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
10207 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
10208 #define elf_backend_post_process_headers elf32_arm_post_process_headers
10209 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
10210 #define elf_backend_object_p elf32_arm_object_p
10211 #define elf_backend_section_flags elf32_arm_section_flags
10212 #define elf_backend_fake_sections elf32_arm_fake_sections
10213 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
10214 #define elf_backend_final_write_processing elf32_arm_final_write_processing
10215 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
10216 #define elf_backend_symbol_processing elf32_arm_symbol_processing
10217 #define elf_backend_size_info elf32_arm_size_info
10218 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
10219 #define elf_backend_additional_program_headers \
10220 elf32_arm_additional_program_headers
10221 #define elf_backend_output_arch_local_syms \
10222 elf32_arm_output_arch_local_syms
10223 #define elf_backend_begin_write_processing \
10224 elf32_arm_begin_write_processing
10225 #define elf_backend_is_function_type elf32_arm_is_function_type
10226
10227 #define elf_backend_can_refcount 1
10228 #define elf_backend_can_gc_sections 1
10229 #define elf_backend_plt_readonly 1
10230 #define elf_backend_want_got_plt 1
10231 #define elf_backend_want_plt_sym 0
10232 #define elf_backend_may_use_rel_p 1
10233 #define elf_backend_may_use_rela_p 0
10234 #define elf_backend_default_use_rela_p 0
10235
10236 #define elf_backend_got_header_size 12
10237
10238 #undef elf_backend_obj_attrs_vendor
10239 #define elf_backend_obj_attrs_vendor "aeabi"
10240 #undef elf_backend_obj_attrs_section
10241 #define elf_backend_obj_attrs_section ".ARM.attributes"
10242 #undef elf_backend_obj_attrs_arg_type
10243 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
10244 #undef elf_backend_obj_attrs_section_type
10245 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
10246
10247 #include "elf32-target.h"
10248
10249 /* VxWorks Targets */
10250
10251 #undef TARGET_LITTLE_SYM
10252 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
10253 #undef TARGET_LITTLE_NAME
10254 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
10255 #undef TARGET_BIG_SYM
10256 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
10257 #undef TARGET_BIG_NAME
10258 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
10259
10260 /* Like elf32_arm_link_hash_table_create -- but overrides
10261 appropriately for VxWorks. */
10262 static struct bfd_link_hash_table *
10263 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
10264 {
10265 struct bfd_link_hash_table *ret;
10266
10267 ret = elf32_arm_link_hash_table_create (abfd);
10268 if (ret)
10269 {
10270 struct elf32_arm_link_hash_table *htab
10271 = (struct elf32_arm_link_hash_table *) ret;
10272 htab->use_rel = 0;
10273 htab->vxworks_p = 1;
10274 }
10275 return ret;
10276 }
10277
10278 static void
10279 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
10280 {
10281 elf32_arm_final_write_processing (abfd, linker);
10282 elf_vxworks_final_write_processing (abfd, linker);
10283 }
10284
10285 #undef elf32_bed
10286 #define elf32_bed elf32_arm_vxworks_bed
10287
10288 #undef bfd_elf32_bfd_link_hash_table_create
10289 #define bfd_elf32_bfd_link_hash_table_create \
10290 elf32_arm_vxworks_link_hash_table_create
10291 #undef elf_backend_add_symbol_hook
10292 #define elf_backend_add_symbol_hook \
10293 elf_vxworks_add_symbol_hook
10294 #undef elf_backend_final_write_processing
10295 #define elf_backend_final_write_processing \
10296 elf32_arm_vxworks_final_write_processing
10297 #undef elf_backend_emit_relocs
10298 #define elf_backend_emit_relocs \
10299 elf_vxworks_emit_relocs
10300
10301 #undef elf_backend_may_use_rel_p
10302 #define elf_backend_may_use_rel_p 0
10303 #undef elf_backend_may_use_rela_p
10304 #define elf_backend_may_use_rela_p 1
10305 #undef elf_backend_default_use_rela_p
10306 #define elf_backend_default_use_rela_p 1
10307 #undef elf_backend_want_plt_sym
10308 #define elf_backend_want_plt_sym 1
10309 #undef ELF_MAXPAGESIZE
10310 #define ELF_MAXPAGESIZE 0x1000
10311
10312 #include "elf32-target.h"
10313
10314
10315 /* Symbian OS Targets */
10316
10317 #undef TARGET_LITTLE_SYM
10318 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
10319 #undef TARGET_LITTLE_NAME
10320 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
10321 #undef TARGET_BIG_SYM
10322 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
10323 #undef TARGET_BIG_NAME
10324 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
10325
10326 /* Like elf32_arm_link_hash_table_create -- but overrides
10327 appropriately for Symbian OS. */
10328 static struct bfd_link_hash_table *
10329 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
10330 {
10331 struct bfd_link_hash_table *ret;
10332
10333 ret = elf32_arm_link_hash_table_create (abfd);
10334 if (ret)
10335 {
10336 struct elf32_arm_link_hash_table *htab
10337 = (struct elf32_arm_link_hash_table *)ret;
10338 /* There is no PLT header for Symbian OS. */
10339 htab->plt_header_size = 0;
10340 /* The PLT entries are each three instructions. */
10341 htab->plt_entry_size = 4 * NUM_ELEM (elf32_arm_symbian_plt_entry);
10342 htab->symbian_p = 1;
10343 /* Symbian uses armv5t or above, so use_blx is always true. */
10344 htab->use_blx = 1;
10345 htab->root.is_relocatable_executable = 1;
10346 }
10347 return ret;
10348 }
10349
10350 static const struct bfd_elf_special_section
10351 elf32_arm_symbian_special_sections[] =
10352 {
10353 /* In a BPABI executable, the dynamic linking sections do not go in
10354 the loadable read-only segment. The post-linker may wish to
10355 refer to these sections, but they are not part of the final
10356 program image. */
10357 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
10358 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
10359 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
10360 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
10361 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
10362 /* These sections do not need to be writable as the SymbianOS
10363 postlinker will arrange things so that no dynamic relocation is
10364 required. */
10365 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
10366 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
10367 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
10368 { NULL, 0, 0, 0, 0 }
10369 };
10370
10371 static void
10372 elf32_arm_symbian_begin_write_processing (bfd *abfd,
10373 struct bfd_link_info *link_info)
10374 {
10375 /* BPABI objects are never loaded directly by an OS kernel; they are
10376 processed by a postlinker first, into an OS-specific format. If
10377 the D_PAGED bit is set on the file, BFD will align segments on
10378 page boundaries, so that an OS can directly map the file. With
10379 BPABI objects, that just results in wasted space. In addition,
10380 because we clear the D_PAGED bit, map_sections_to_segments will
10381 recognize that the program headers should not be mapped into any
10382 loadable segment. */
10383 abfd->flags &= ~D_PAGED;
10384 elf32_arm_begin_write_processing(abfd, link_info);
10385 }
10386
10387 static bfd_boolean
10388 elf32_arm_symbian_modify_segment_map (bfd *abfd,
10389 struct bfd_link_info *info)
10390 {
10391 struct elf_segment_map *m;
10392 asection *dynsec;
10393
10394 /* BPABI shared libraries and executables should have a PT_DYNAMIC
10395 segment. However, because the .dynamic section is not marked
10396 with SEC_LOAD, the generic ELF code will not create such a
10397 segment. */
10398 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
10399 if (dynsec)
10400 {
10401 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10402 if (m->p_type == PT_DYNAMIC)
10403 break;
10404
10405 if (m == NULL)
10406 {
10407 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
10408 m->next = elf_tdata (abfd)->segment_map;
10409 elf_tdata (abfd)->segment_map = m;
10410 }
10411 }
10412
10413 /* Also call the generic arm routine. */
10414 return elf32_arm_modify_segment_map (abfd, info);
10415 }
10416
10417 #undef elf32_bed
10418 #define elf32_bed elf32_arm_symbian_bed
10419
10420 /* The dynamic sections are not allocated on SymbianOS; the postlinker
10421 will process them and then discard them. */
10422 #undef ELF_DYNAMIC_SEC_FLAGS
10423 #define ELF_DYNAMIC_SEC_FLAGS \
10424 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
10425
10426 #undef bfd_elf32_bfd_link_hash_table_create
10427 #define bfd_elf32_bfd_link_hash_table_create \
10428 elf32_arm_symbian_link_hash_table_create
10429 #undef elf_backend_add_symbol_hook
10430
10431 #undef elf_backend_special_sections
10432 #define elf_backend_special_sections elf32_arm_symbian_special_sections
10433
10434 #undef elf_backend_begin_write_processing
10435 #define elf_backend_begin_write_processing \
10436 elf32_arm_symbian_begin_write_processing
10437 #undef elf_backend_final_write_processing
10438 #define elf_backend_final_write_processing \
10439 elf32_arm_final_write_processing
10440 #undef elf_backend_emit_relocs
10441
10442 #undef elf_backend_modify_segment_map
10443 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
10444
10445 /* There is no .got section for BPABI objects, and hence no header. */
10446 #undef elf_backend_got_header_size
10447 #define elf_backend_got_header_size 0
10448
10449 /* Similarly, there is no .got.plt section. */
10450 #undef elf_backend_want_got_plt
10451 #define elf_backend_want_got_plt 0
10452
10453 #undef elf_backend_may_use_rel_p
10454 #define elf_backend_may_use_rel_p 1
10455 #undef elf_backend_may_use_rela_p
10456 #define elf_backend_may_use_rela_p 0
10457 #undef elf_backend_default_use_rela_p
10458 #define elf_backend_default_use_rela_p 0
10459 #undef elf_backend_want_plt_sym
10460 #define elf_backend_want_plt_sym 0
10461 #undef ELF_MAXPAGESIZE
10462 #define ELF_MAXPAGESIZE 0x8000
10463
10464 #include "elf32-target.h"
This page took 0.272899 seconds and 4 git commands to generate.