bcf0aac3196befd2b4668898fa457e8035c590dc
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008, 2009, 2010, 2011 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include <limits.h>
24
25 #include "bfd.h"
26 #include "libiberty.h"
27 #include "libbfd.h"
28 #include "elf-bfd.h"
29 #include "elf-vxworks.h"
30 #include "elf/arm.h"
31
32 /* Return the relocation section associated with NAME. HTAB is the
33 bfd's elf32_arm_link_hash_entry. */
34 #define RELOC_SECTION(HTAB, NAME) \
35 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
36
37 /* Return size of a relocation entry. HTAB is the bfd's
38 elf32_arm_link_hash_entry. */
39 #define RELOC_SIZE(HTAB) \
40 ((HTAB)->use_rel \
41 ? sizeof (Elf32_External_Rel) \
42 : sizeof (Elf32_External_Rela))
43
44 /* Return function to swap relocations in. HTAB is the bfd's
45 elf32_arm_link_hash_entry. */
46 #define SWAP_RELOC_IN(HTAB) \
47 ((HTAB)->use_rel \
48 ? bfd_elf32_swap_reloc_in \
49 : bfd_elf32_swap_reloca_in)
50
51 /* Return function to swap relocations out. HTAB is the bfd's
52 elf32_arm_link_hash_entry. */
53 #define SWAP_RELOC_OUT(HTAB) \
54 ((HTAB)->use_rel \
55 ? bfd_elf32_swap_reloc_out \
56 : bfd_elf32_swap_reloca_out)
57
58 #define elf_info_to_howto 0
59 #define elf_info_to_howto_rel elf32_arm_info_to_howto
60
61 #define ARM_ELF_ABI_VERSION 0
62 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
63
64 static bfd_boolean elf32_arm_write_section (bfd *output_bfd,
65 struct bfd_link_info *link_info,
66 asection *sec,
67 bfd_byte *contents);
68
69 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
70 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
71 in that slot. */
72
73 static reloc_howto_type elf32_arm_howto_table_1[] =
74 {
75 /* No relocation. */
76 HOWTO (R_ARM_NONE, /* type */
77 0, /* rightshift */
78 0, /* size (0 = byte, 1 = short, 2 = long) */
79 0, /* bitsize */
80 FALSE, /* pc_relative */
81 0, /* bitpos */
82 complain_overflow_dont,/* complain_on_overflow */
83 bfd_elf_generic_reloc, /* special_function */
84 "R_ARM_NONE", /* name */
85 FALSE, /* partial_inplace */
86 0, /* src_mask */
87 0, /* dst_mask */
88 FALSE), /* pcrel_offset */
89
90 HOWTO (R_ARM_PC24, /* type */
91 2, /* rightshift */
92 2, /* size (0 = byte, 1 = short, 2 = long) */
93 24, /* bitsize */
94 TRUE, /* pc_relative */
95 0, /* bitpos */
96 complain_overflow_signed,/* complain_on_overflow */
97 bfd_elf_generic_reloc, /* special_function */
98 "R_ARM_PC24", /* name */
99 FALSE, /* partial_inplace */
100 0x00ffffff, /* src_mask */
101 0x00ffffff, /* dst_mask */
102 TRUE), /* pcrel_offset */
103
104 /* 32 bit absolute */
105 HOWTO (R_ARM_ABS32, /* type */
106 0, /* rightshift */
107 2, /* size (0 = byte, 1 = short, 2 = long) */
108 32, /* bitsize */
109 FALSE, /* pc_relative */
110 0, /* bitpos */
111 complain_overflow_bitfield,/* complain_on_overflow */
112 bfd_elf_generic_reloc, /* special_function */
113 "R_ARM_ABS32", /* name */
114 FALSE, /* partial_inplace */
115 0xffffffff, /* src_mask */
116 0xffffffff, /* dst_mask */
117 FALSE), /* pcrel_offset */
118
119 /* standard 32bit pc-relative reloc */
120 HOWTO (R_ARM_REL32, /* type */
121 0, /* rightshift */
122 2, /* size (0 = byte, 1 = short, 2 = long) */
123 32, /* bitsize */
124 TRUE, /* pc_relative */
125 0, /* bitpos */
126 complain_overflow_bitfield,/* complain_on_overflow */
127 bfd_elf_generic_reloc, /* special_function */
128 "R_ARM_REL32", /* name */
129 FALSE, /* partial_inplace */
130 0xffffffff, /* src_mask */
131 0xffffffff, /* dst_mask */
132 TRUE), /* pcrel_offset */
133
134 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
135 HOWTO (R_ARM_LDR_PC_G0, /* type */
136 0, /* rightshift */
137 0, /* size (0 = byte, 1 = short, 2 = long) */
138 32, /* bitsize */
139 TRUE, /* pc_relative */
140 0, /* bitpos */
141 complain_overflow_dont,/* complain_on_overflow */
142 bfd_elf_generic_reloc, /* special_function */
143 "R_ARM_LDR_PC_G0", /* name */
144 FALSE, /* partial_inplace */
145 0xffffffff, /* src_mask */
146 0xffffffff, /* dst_mask */
147 TRUE), /* pcrel_offset */
148
149 /* 16 bit absolute */
150 HOWTO (R_ARM_ABS16, /* type */
151 0, /* rightshift */
152 1, /* size (0 = byte, 1 = short, 2 = long) */
153 16, /* bitsize */
154 FALSE, /* pc_relative */
155 0, /* bitpos */
156 complain_overflow_bitfield,/* complain_on_overflow */
157 bfd_elf_generic_reloc, /* special_function */
158 "R_ARM_ABS16", /* name */
159 FALSE, /* partial_inplace */
160 0x0000ffff, /* src_mask */
161 0x0000ffff, /* dst_mask */
162 FALSE), /* pcrel_offset */
163
164 /* 12 bit absolute */
165 HOWTO (R_ARM_ABS12, /* type */
166 0, /* rightshift */
167 2, /* size (0 = byte, 1 = short, 2 = long) */
168 12, /* bitsize */
169 FALSE, /* pc_relative */
170 0, /* bitpos */
171 complain_overflow_bitfield,/* complain_on_overflow */
172 bfd_elf_generic_reloc, /* special_function */
173 "R_ARM_ABS12", /* name */
174 FALSE, /* partial_inplace */
175 0x00000fff, /* src_mask */
176 0x00000fff, /* dst_mask */
177 FALSE), /* pcrel_offset */
178
179 HOWTO (R_ARM_THM_ABS5, /* type */
180 6, /* rightshift */
181 1, /* size (0 = byte, 1 = short, 2 = long) */
182 5, /* bitsize */
183 FALSE, /* pc_relative */
184 0, /* bitpos */
185 complain_overflow_bitfield,/* complain_on_overflow */
186 bfd_elf_generic_reloc, /* special_function */
187 "R_ARM_THM_ABS5", /* name */
188 FALSE, /* partial_inplace */
189 0x000007e0, /* src_mask */
190 0x000007e0, /* dst_mask */
191 FALSE), /* pcrel_offset */
192
193 /* 8 bit absolute */
194 HOWTO (R_ARM_ABS8, /* type */
195 0, /* rightshift */
196 0, /* size (0 = byte, 1 = short, 2 = long) */
197 8, /* bitsize */
198 FALSE, /* pc_relative */
199 0, /* bitpos */
200 complain_overflow_bitfield,/* complain_on_overflow */
201 bfd_elf_generic_reloc, /* special_function */
202 "R_ARM_ABS8", /* name */
203 FALSE, /* partial_inplace */
204 0x000000ff, /* src_mask */
205 0x000000ff, /* dst_mask */
206 FALSE), /* pcrel_offset */
207
208 HOWTO (R_ARM_SBREL32, /* type */
209 0, /* rightshift */
210 2, /* size (0 = byte, 1 = short, 2 = long) */
211 32, /* bitsize */
212 FALSE, /* pc_relative */
213 0, /* bitpos */
214 complain_overflow_dont,/* complain_on_overflow */
215 bfd_elf_generic_reloc, /* special_function */
216 "R_ARM_SBREL32", /* name */
217 FALSE, /* partial_inplace */
218 0xffffffff, /* src_mask */
219 0xffffffff, /* dst_mask */
220 FALSE), /* pcrel_offset */
221
222 HOWTO (R_ARM_THM_CALL, /* type */
223 1, /* rightshift */
224 2, /* size (0 = byte, 1 = short, 2 = long) */
225 24, /* bitsize */
226 TRUE, /* pc_relative */
227 0, /* bitpos */
228 complain_overflow_signed,/* complain_on_overflow */
229 bfd_elf_generic_reloc, /* special_function */
230 "R_ARM_THM_CALL", /* name */
231 FALSE, /* partial_inplace */
232 0x07ff2fff, /* src_mask */
233 0x07ff2fff, /* dst_mask */
234 TRUE), /* pcrel_offset */
235
236 HOWTO (R_ARM_THM_PC8, /* type */
237 1, /* rightshift */
238 1, /* size (0 = byte, 1 = short, 2 = long) */
239 8, /* bitsize */
240 TRUE, /* pc_relative */
241 0, /* bitpos */
242 complain_overflow_signed,/* complain_on_overflow */
243 bfd_elf_generic_reloc, /* special_function */
244 "R_ARM_THM_PC8", /* name */
245 FALSE, /* partial_inplace */
246 0x000000ff, /* src_mask */
247 0x000000ff, /* dst_mask */
248 TRUE), /* pcrel_offset */
249
250 HOWTO (R_ARM_BREL_ADJ, /* type */
251 1, /* rightshift */
252 1, /* size (0 = byte, 1 = short, 2 = long) */
253 32, /* bitsize */
254 FALSE, /* pc_relative */
255 0, /* bitpos */
256 complain_overflow_signed,/* complain_on_overflow */
257 bfd_elf_generic_reloc, /* special_function */
258 "R_ARM_BREL_ADJ", /* name */
259 FALSE, /* partial_inplace */
260 0xffffffff, /* src_mask */
261 0xffffffff, /* dst_mask */
262 FALSE), /* pcrel_offset */
263
264 HOWTO (R_ARM_TLS_DESC, /* type */
265 0, /* rightshift */
266 2, /* size (0 = byte, 1 = short, 2 = long) */
267 32, /* bitsize */
268 FALSE, /* pc_relative */
269 0, /* bitpos */
270 complain_overflow_bitfield,/* complain_on_overflow */
271 bfd_elf_generic_reloc, /* special_function */
272 "R_ARM_TLS_DESC", /* name */
273 FALSE, /* partial_inplace */
274 0xffffffff, /* src_mask */
275 0xffffffff, /* dst_mask */
276 FALSE), /* pcrel_offset */
277
278 HOWTO (R_ARM_THM_SWI8, /* type */
279 0, /* rightshift */
280 0, /* size (0 = byte, 1 = short, 2 = long) */
281 0, /* bitsize */
282 FALSE, /* pc_relative */
283 0, /* bitpos */
284 complain_overflow_signed,/* complain_on_overflow */
285 bfd_elf_generic_reloc, /* special_function */
286 "R_ARM_SWI8", /* name */
287 FALSE, /* partial_inplace */
288 0x00000000, /* src_mask */
289 0x00000000, /* dst_mask */
290 FALSE), /* pcrel_offset */
291
292 /* BLX instruction for the ARM. */
293 HOWTO (R_ARM_XPC25, /* type */
294 2, /* rightshift */
295 2, /* size (0 = byte, 1 = short, 2 = long) */
296 24, /* bitsize */
297 TRUE, /* pc_relative */
298 0, /* bitpos */
299 complain_overflow_signed,/* complain_on_overflow */
300 bfd_elf_generic_reloc, /* special_function */
301 "R_ARM_XPC25", /* name */
302 FALSE, /* partial_inplace */
303 0x00ffffff, /* src_mask */
304 0x00ffffff, /* dst_mask */
305 TRUE), /* pcrel_offset */
306
307 /* BLX instruction for the Thumb. */
308 HOWTO (R_ARM_THM_XPC22, /* type */
309 2, /* rightshift */
310 2, /* size (0 = byte, 1 = short, 2 = long) */
311 24, /* bitsize */
312 TRUE, /* pc_relative */
313 0, /* bitpos */
314 complain_overflow_signed,/* complain_on_overflow */
315 bfd_elf_generic_reloc, /* special_function */
316 "R_ARM_THM_XPC22", /* name */
317 FALSE, /* partial_inplace */
318 0x07ff2fff, /* src_mask */
319 0x07ff2fff, /* dst_mask */
320 TRUE), /* pcrel_offset */
321
322 /* Dynamic TLS relocations. */
323
324 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
325 0, /* rightshift */
326 2, /* size (0 = byte, 1 = short, 2 = long) */
327 32, /* bitsize */
328 FALSE, /* pc_relative */
329 0, /* bitpos */
330 complain_overflow_bitfield,/* complain_on_overflow */
331 bfd_elf_generic_reloc, /* special_function */
332 "R_ARM_TLS_DTPMOD32", /* name */
333 TRUE, /* partial_inplace */
334 0xffffffff, /* src_mask */
335 0xffffffff, /* dst_mask */
336 FALSE), /* pcrel_offset */
337
338 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
339 0, /* rightshift */
340 2, /* size (0 = byte, 1 = short, 2 = long) */
341 32, /* bitsize */
342 FALSE, /* pc_relative */
343 0, /* bitpos */
344 complain_overflow_bitfield,/* complain_on_overflow */
345 bfd_elf_generic_reloc, /* special_function */
346 "R_ARM_TLS_DTPOFF32", /* name */
347 TRUE, /* partial_inplace */
348 0xffffffff, /* src_mask */
349 0xffffffff, /* dst_mask */
350 FALSE), /* pcrel_offset */
351
352 HOWTO (R_ARM_TLS_TPOFF32, /* type */
353 0, /* rightshift */
354 2, /* size (0 = byte, 1 = short, 2 = long) */
355 32, /* bitsize */
356 FALSE, /* pc_relative */
357 0, /* bitpos */
358 complain_overflow_bitfield,/* complain_on_overflow */
359 bfd_elf_generic_reloc, /* special_function */
360 "R_ARM_TLS_TPOFF32", /* name */
361 TRUE, /* partial_inplace */
362 0xffffffff, /* src_mask */
363 0xffffffff, /* dst_mask */
364 FALSE), /* pcrel_offset */
365
366 /* Relocs used in ARM Linux */
367
368 HOWTO (R_ARM_COPY, /* type */
369 0, /* rightshift */
370 2, /* size (0 = byte, 1 = short, 2 = long) */
371 32, /* bitsize */
372 FALSE, /* pc_relative */
373 0, /* bitpos */
374 complain_overflow_bitfield,/* complain_on_overflow */
375 bfd_elf_generic_reloc, /* special_function */
376 "R_ARM_COPY", /* name */
377 TRUE, /* partial_inplace */
378 0xffffffff, /* src_mask */
379 0xffffffff, /* dst_mask */
380 FALSE), /* pcrel_offset */
381
382 HOWTO (R_ARM_GLOB_DAT, /* type */
383 0, /* rightshift */
384 2, /* size (0 = byte, 1 = short, 2 = long) */
385 32, /* bitsize */
386 FALSE, /* pc_relative */
387 0, /* bitpos */
388 complain_overflow_bitfield,/* complain_on_overflow */
389 bfd_elf_generic_reloc, /* special_function */
390 "R_ARM_GLOB_DAT", /* name */
391 TRUE, /* partial_inplace */
392 0xffffffff, /* src_mask */
393 0xffffffff, /* dst_mask */
394 FALSE), /* pcrel_offset */
395
396 HOWTO (R_ARM_JUMP_SLOT, /* type */
397 0, /* rightshift */
398 2, /* size (0 = byte, 1 = short, 2 = long) */
399 32, /* bitsize */
400 FALSE, /* pc_relative */
401 0, /* bitpos */
402 complain_overflow_bitfield,/* complain_on_overflow */
403 bfd_elf_generic_reloc, /* special_function */
404 "R_ARM_JUMP_SLOT", /* name */
405 TRUE, /* partial_inplace */
406 0xffffffff, /* src_mask */
407 0xffffffff, /* dst_mask */
408 FALSE), /* pcrel_offset */
409
410 HOWTO (R_ARM_RELATIVE, /* type */
411 0, /* rightshift */
412 2, /* size (0 = byte, 1 = short, 2 = long) */
413 32, /* bitsize */
414 FALSE, /* pc_relative */
415 0, /* bitpos */
416 complain_overflow_bitfield,/* complain_on_overflow */
417 bfd_elf_generic_reloc, /* special_function */
418 "R_ARM_RELATIVE", /* name */
419 TRUE, /* partial_inplace */
420 0xffffffff, /* src_mask */
421 0xffffffff, /* dst_mask */
422 FALSE), /* pcrel_offset */
423
424 HOWTO (R_ARM_GOTOFF32, /* type */
425 0, /* rightshift */
426 2, /* size (0 = byte, 1 = short, 2 = long) */
427 32, /* bitsize */
428 FALSE, /* pc_relative */
429 0, /* bitpos */
430 complain_overflow_bitfield,/* complain_on_overflow */
431 bfd_elf_generic_reloc, /* special_function */
432 "R_ARM_GOTOFF32", /* name */
433 TRUE, /* partial_inplace */
434 0xffffffff, /* src_mask */
435 0xffffffff, /* dst_mask */
436 FALSE), /* pcrel_offset */
437
438 HOWTO (R_ARM_GOTPC, /* type */
439 0, /* rightshift */
440 2, /* size (0 = byte, 1 = short, 2 = long) */
441 32, /* bitsize */
442 TRUE, /* pc_relative */
443 0, /* bitpos */
444 complain_overflow_bitfield,/* complain_on_overflow */
445 bfd_elf_generic_reloc, /* special_function */
446 "R_ARM_GOTPC", /* name */
447 TRUE, /* partial_inplace */
448 0xffffffff, /* src_mask */
449 0xffffffff, /* dst_mask */
450 TRUE), /* pcrel_offset */
451
452 HOWTO (R_ARM_GOT32, /* type */
453 0, /* rightshift */
454 2, /* size (0 = byte, 1 = short, 2 = long) */
455 32, /* bitsize */
456 FALSE, /* pc_relative */
457 0, /* bitpos */
458 complain_overflow_bitfield,/* complain_on_overflow */
459 bfd_elf_generic_reloc, /* special_function */
460 "R_ARM_GOT32", /* name */
461 TRUE, /* partial_inplace */
462 0xffffffff, /* src_mask */
463 0xffffffff, /* dst_mask */
464 FALSE), /* pcrel_offset */
465
466 HOWTO (R_ARM_PLT32, /* type */
467 2, /* rightshift */
468 2, /* size (0 = byte, 1 = short, 2 = long) */
469 24, /* bitsize */
470 TRUE, /* pc_relative */
471 0, /* bitpos */
472 complain_overflow_bitfield,/* complain_on_overflow */
473 bfd_elf_generic_reloc, /* special_function */
474 "R_ARM_PLT32", /* name */
475 FALSE, /* partial_inplace */
476 0x00ffffff, /* src_mask */
477 0x00ffffff, /* dst_mask */
478 TRUE), /* pcrel_offset */
479
480 HOWTO (R_ARM_CALL, /* type */
481 2, /* rightshift */
482 2, /* size (0 = byte, 1 = short, 2 = long) */
483 24, /* bitsize */
484 TRUE, /* pc_relative */
485 0, /* bitpos */
486 complain_overflow_signed,/* complain_on_overflow */
487 bfd_elf_generic_reloc, /* special_function */
488 "R_ARM_CALL", /* name */
489 FALSE, /* partial_inplace */
490 0x00ffffff, /* src_mask */
491 0x00ffffff, /* dst_mask */
492 TRUE), /* pcrel_offset */
493
494 HOWTO (R_ARM_JUMP24, /* type */
495 2, /* rightshift */
496 2, /* size (0 = byte, 1 = short, 2 = long) */
497 24, /* bitsize */
498 TRUE, /* pc_relative */
499 0, /* bitpos */
500 complain_overflow_signed,/* complain_on_overflow */
501 bfd_elf_generic_reloc, /* special_function */
502 "R_ARM_JUMP24", /* name */
503 FALSE, /* partial_inplace */
504 0x00ffffff, /* src_mask */
505 0x00ffffff, /* dst_mask */
506 TRUE), /* pcrel_offset */
507
508 HOWTO (R_ARM_THM_JUMP24, /* type */
509 1, /* rightshift */
510 2, /* size (0 = byte, 1 = short, 2 = long) */
511 24, /* bitsize */
512 TRUE, /* pc_relative */
513 0, /* bitpos */
514 complain_overflow_signed,/* complain_on_overflow */
515 bfd_elf_generic_reloc, /* special_function */
516 "R_ARM_THM_JUMP24", /* name */
517 FALSE, /* partial_inplace */
518 0x07ff2fff, /* src_mask */
519 0x07ff2fff, /* dst_mask */
520 TRUE), /* pcrel_offset */
521
522 HOWTO (R_ARM_BASE_ABS, /* type */
523 0, /* rightshift */
524 2, /* size (0 = byte, 1 = short, 2 = long) */
525 32, /* bitsize */
526 FALSE, /* pc_relative */
527 0, /* bitpos */
528 complain_overflow_dont,/* complain_on_overflow */
529 bfd_elf_generic_reloc, /* special_function */
530 "R_ARM_BASE_ABS", /* name */
531 FALSE, /* partial_inplace */
532 0xffffffff, /* src_mask */
533 0xffffffff, /* dst_mask */
534 FALSE), /* pcrel_offset */
535
536 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
537 0, /* rightshift */
538 2, /* size (0 = byte, 1 = short, 2 = long) */
539 12, /* bitsize */
540 TRUE, /* pc_relative */
541 0, /* bitpos */
542 complain_overflow_dont,/* complain_on_overflow */
543 bfd_elf_generic_reloc, /* special_function */
544 "R_ARM_ALU_PCREL_7_0", /* name */
545 FALSE, /* partial_inplace */
546 0x00000fff, /* src_mask */
547 0x00000fff, /* dst_mask */
548 TRUE), /* pcrel_offset */
549
550 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
551 0, /* rightshift */
552 2, /* size (0 = byte, 1 = short, 2 = long) */
553 12, /* bitsize */
554 TRUE, /* pc_relative */
555 8, /* bitpos */
556 complain_overflow_dont,/* complain_on_overflow */
557 bfd_elf_generic_reloc, /* special_function */
558 "R_ARM_ALU_PCREL_15_8",/* name */
559 FALSE, /* partial_inplace */
560 0x00000fff, /* src_mask */
561 0x00000fff, /* dst_mask */
562 TRUE), /* pcrel_offset */
563
564 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
565 0, /* rightshift */
566 2, /* size (0 = byte, 1 = short, 2 = long) */
567 12, /* bitsize */
568 TRUE, /* pc_relative */
569 16, /* bitpos */
570 complain_overflow_dont,/* complain_on_overflow */
571 bfd_elf_generic_reloc, /* special_function */
572 "R_ARM_ALU_PCREL_23_15",/* name */
573 FALSE, /* partial_inplace */
574 0x00000fff, /* src_mask */
575 0x00000fff, /* dst_mask */
576 TRUE), /* pcrel_offset */
577
578 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
579 0, /* rightshift */
580 2, /* size (0 = byte, 1 = short, 2 = long) */
581 12, /* bitsize */
582 FALSE, /* pc_relative */
583 0, /* bitpos */
584 complain_overflow_dont,/* complain_on_overflow */
585 bfd_elf_generic_reloc, /* special_function */
586 "R_ARM_LDR_SBREL_11_0",/* name */
587 FALSE, /* partial_inplace */
588 0x00000fff, /* src_mask */
589 0x00000fff, /* dst_mask */
590 FALSE), /* pcrel_offset */
591
592 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
593 0, /* rightshift */
594 2, /* size (0 = byte, 1 = short, 2 = long) */
595 8, /* bitsize */
596 FALSE, /* pc_relative */
597 12, /* bitpos */
598 complain_overflow_dont,/* complain_on_overflow */
599 bfd_elf_generic_reloc, /* special_function */
600 "R_ARM_ALU_SBREL_19_12",/* name */
601 FALSE, /* partial_inplace */
602 0x000ff000, /* src_mask */
603 0x000ff000, /* dst_mask */
604 FALSE), /* pcrel_offset */
605
606 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
607 0, /* rightshift */
608 2, /* size (0 = byte, 1 = short, 2 = long) */
609 8, /* bitsize */
610 FALSE, /* pc_relative */
611 20, /* bitpos */
612 complain_overflow_dont,/* complain_on_overflow */
613 bfd_elf_generic_reloc, /* special_function */
614 "R_ARM_ALU_SBREL_27_20",/* name */
615 FALSE, /* partial_inplace */
616 0x0ff00000, /* src_mask */
617 0x0ff00000, /* dst_mask */
618 FALSE), /* pcrel_offset */
619
620 HOWTO (R_ARM_TARGET1, /* type */
621 0, /* rightshift */
622 2, /* size (0 = byte, 1 = short, 2 = long) */
623 32, /* bitsize */
624 FALSE, /* pc_relative */
625 0, /* bitpos */
626 complain_overflow_dont,/* complain_on_overflow */
627 bfd_elf_generic_reloc, /* special_function */
628 "R_ARM_TARGET1", /* name */
629 FALSE, /* partial_inplace */
630 0xffffffff, /* src_mask */
631 0xffffffff, /* dst_mask */
632 FALSE), /* pcrel_offset */
633
634 HOWTO (R_ARM_ROSEGREL32, /* type */
635 0, /* rightshift */
636 2, /* size (0 = byte, 1 = short, 2 = long) */
637 32, /* bitsize */
638 FALSE, /* pc_relative */
639 0, /* bitpos */
640 complain_overflow_dont,/* complain_on_overflow */
641 bfd_elf_generic_reloc, /* special_function */
642 "R_ARM_ROSEGREL32", /* name */
643 FALSE, /* partial_inplace */
644 0xffffffff, /* src_mask */
645 0xffffffff, /* dst_mask */
646 FALSE), /* pcrel_offset */
647
648 HOWTO (R_ARM_V4BX, /* type */
649 0, /* rightshift */
650 2, /* size (0 = byte, 1 = short, 2 = long) */
651 32, /* bitsize */
652 FALSE, /* pc_relative */
653 0, /* bitpos */
654 complain_overflow_dont,/* complain_on_overflow */
655 bfd_elf_generic_reloc, /* special_function */
656 "R_ARM_V4BX", /* name */
657 FALSE, /* partial_inplace */
658 0xffffffff, /* src_mask */
659 0xffffffff, /* dst_mask */
660 FALSE), /* pcrel_offset */
661
662 HOWTO (R_ARM_TARGET2, /* type */
663 0, /* rightshift */
664 2, /* size (0 = byte, 1 = short, 2 = long) */
665 32, /* bitsize */
666 FALSE, /* pc_relative */
667 0, /* bitpos */
668 complain_overflow_signed,/* complain_on_overflow */
669 bfd_elf_generic_reloc, /* special_function */
670 "R_ARM_TARGET2", /* name */
671 FALSE, /* partial_inplace */
672 0xffffffff, /* src_mask */
673 0xffffffff, /* dst_mask */
674 TRUE), /* pcrel_offset */
675
676 HOWTO (R_ARM_PREL31, /* type */
677 0, /* rightshift */
678 2, /* size (0 = byte, 1 = short, 2 = long) */
679 31, /* bitsize */
680 TRUE, /* pc_relative */
681 0, /* bitpos */
682 complain_overflow_signed,/* complain_on_overflow */
683 bfd_elf_generic_reloc, /* special_function */
684 "R_ARM_PREL31", /* name */
685 FALSE, /* partial_inplace */
686 0x7fffffff, /* src_mask */
687 0x7fffffff, /* dst_mask */
688 TRUE), /* pcrel_offset */
689
690 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
691 0, /* rightshift */
692 2, /* size (0 = byte, 1 = short, 2 = long) */
693 16, /* bitsize */
694 FALSE, /* pc_relative */
695 0, /* bitpos */
696 complain_overflow_dont,/* complain_on_overflow */
697 bfd_elf_generic_reloc, /* special_function */
698 "R_ARM_MOVW_ABS_NC", /* name */
699 FALSE, /* partial_inplace */
700 0x000f0fff, /* src_mask */
701 0x000f0fff, /* dst_mask */
702 FALSE), /* pcrel_offset */
703
704 HOWTO (R_ARM_MOVT_ABS, /* type */
705 0, /* rightshift */
706 2, /* size (0 = byte, 1 = short, 2 = long) */
707 16, /* bitsize */
708 FALSE, /* pc_relative */
709 0, /* bitpos */
710 complain_overflow_bitfield,/* complain_on_overflow */
711 bfd_elf_generic_reloc, /* special_function */
712 "R_ARM_MOVT_ABS", /* name */
713 FALSE, /* partial_inplace */
714 0x000f0fff, /* src_mask */
715 0x000f0fff, /* dst_mask */
716 FALSE), /* pcrel_offset */
717
718 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
719 0, /* rightshift */
720 2, /* size (0 = byte, 1 = short, 2 = long) */
721 16, /* bitsize */
722 TRUE, /* pc_relative */
723 0, /* bitpos */
724 complain_overflow_dont,/* complain_on_overflow */
725 bfd_elf_generic_reloc, /* special_function */
726 "R_ARM_MOVW_PREL_NC", /* name */
727 FALSE, /* partial_inplace */
728 0x000f0fff, /* src_mask */
729 0x000f0fff, /* dst_mask */
730 TRUE), /* pcrel_offset */
731
732 HOWTO (R_ARM_MOVT_PREL, /* type */
733 0, /* rightshift */
734 2, /* size (0 = byte, 1 = short, 2 = long) */
735 16, /* bitsize */
736 TRUE, /* pc_relative */
737 0, /* bitpos */
738 complain_overflow_bitfield,/* complain_on_overflow */
739 bfd_elf_generic_reloc, /* special_function */
740 "R_ARM_MOVT_PREL", /* name */
741 FALSE, /* partial_inplace */
742 0x000f0fff, /* src_mask */
743 0x000f0fff, /* dst_mask */
744 TRUE), /* pcrel_offset */
745
746 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
747 0, /* rightshift */
748 2, /* size (0 = byte, 1 = short, 2 = long) */
749 16, /* bitsize */
750 FALSE, /* pc_relative */
751 0, /* bitpos */
752 complain_overflow_dont,/* complain_on_overflow */
753 bfd_elf_generic_reloc, /* special_function */
754 "R_ARM_THM_MOVW_ABS_NC",/* name */
755 FALSE, /* partial_inplace */
756 0x040f70ff, /* src_mask */
757 0x040f70ff, /* dst_mask */
758 FALSE), /* pcrel_offset */
759
760 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
761 0, /* rightshift */
762 2, /* size (0 = byte, 1 = short, 2 = long) */
763 16, /* bitsize */
764 FALSE, /* pc_relative */
765 0, /* bitpos */
766 complain_overflow_bitfield,/* complain_on_overflow */
767 bfd_elf_generic_reloc, /* special_function */
768 "R_ARM_THM_MOVT_ABS", /* name */
769 FALSE, /* partial_inplace */
770 0x040f70ff, /* src_mask */
771 0x040f70ff, /* dst_mask */
772 FALSE), /* pcrel_offset */
773
774 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
775 0, /* rightshift */
776 2, /* size (0 = byte, 1 = short, 2 = long) */
777 16, /* bitsize */
778 TRUE, /* pc_relative */
779 0, /* bitpos */
780 complain_overflow_dont,/* complain_on_overflow */
781 bfd_elf_generic_reloc, /* special_function */
782 "R_ARM_THM_MOVW_PREL_NC",/* name */
783 FALSE, /* partial_inplace */
784 0x040f70ff, /* src_mask */
785 0x040f70ff, /* dst_mask */
786 TRUE), /* pcrel_offset */
787
788 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
789 0, /* rightshift */
790 2, /* size (0 = byte, 1 = short, 2 = long) */
791 16, /* bitsize */
792 TRUE, /* pc_relative */
793 0, /* bitpos */
794 complain_overflow_bitfield,/* complain_on_overflow */
795 bfd_elf_generic_reloc, /* special_function */
796 "R_ARM_THM_MOVT_PREL", /* name */
797 FALSE, /* partial_inplace */
798 0x040f70ff, /* src_mask */
799 0x040f70ff, /* dst_mask */
800 TRUE), /* pcrel_offset */
801
802 HOWTO (R_ARM_THM_JUMP19, /* type */
803 1, /* rightshift */
804 2, /* size (0 = byte, 1 = short, 2 = long) */
805 19, /* bitsize */
806 TRUE, /* pc_relative */
807 0, /* bitpos */
808 complain_overflow_signed,/* complain_on_overflow */
809 bfd_elf_generic_reloc, /* special_function */
810 "R_ARM_THM_JUMP19", /* name */
811 FALSE, /* partial_inplace */
812 0x043f2fff, /* src_mask */
813 0x043f2fff, /* dst_mask */
814 TRUE), /* pcrel_offset */
815
816 HOWTO (R_ARM_THM_JUMP6, /* type */
817 1, /* rightshift */
818 1, /* size (0 = byte, 1 = short, 2 = long) */
819 6, /* bitsize */
820 TRUE, /* pc_relative */
821 0, /* bitpos */
822 complain_overflow_unsigned,/* complain_on_overflow */
823 bfd_elf_generic_reloc, /* special_function */
824 "R_ARM_THM_JUMP6", /* name */
825 FALSE, /* partial_inplace */
826 0x02f8, /* src_mask */
827 0x02f8, /* dst_mask */
828 TRUE), /* pcrel_offset */
829
830 /* These are declared as 13-bit signed relocations because we can
831 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
832 versa. */
833 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
834 0, /* rightshift */
835 2, /* size (0 = byte, 1 = short, 2 = long) */
836 13, /* bitsize */
837 TRUE, /* pc_relative */
838 0, /* bitpos */
839 complain_overflow_dont,/* complain_on_overflow */
840 bfd_elf_generic_reloc, /* special_function */
841 "R_ARM_THM_ALU_PREL_11_0",/* name */
842 FALSE, /* partial_inplace */
843 0xffffffff, /* src_mask */
844 0xffffffff, /* dst_mask */
845 TRUE), /* pcrel_offset */
846
847 HOWTO (R_ARM_THM_PC12, /* type */
848 0, /* rightshift */
849 2, /* size (0 = byte, 1 = short, 2 = long) */
850 13, /* bitsize */
851 TRUE, /* pc_relative */
852 0, /* bitpos */
853 complain_overflow_dont,/* complain_on_overflow */
854 bfd_elf_generic_reloc, /* special_function */
855 "R_ARM_THM_PC12", /* name */
856 FALSE, /* partial_inplace */
857 0xffffffff, /* src_mask */
858 0xffffffff, /* dst_mask */
859 TRUE), /* pcrel_offset */
860
861 HOWTO (R_ARM_ABS32_NOI, /* type */
862 0, /* rightshift */
863 2, /* size (0 = byte, 1 = short, 2 = long) */
864 32, /* bitsize */
865 FALSE, /* pc_relative */
866 0, /* bitpos */
867 complain_overflow_dont,/* complain_on_overflow */
868 bfd_elf_generic_reloc, /* special_function */
869 "R_ARM_ABS32_NOI", /* name */
870 FALSE, /* partial_inplace */
871 0xffffffff, /* src_mask */
872 0xffffffff, /* dst_mask */
873 FALSE), /* pcrel_offset */
874
875 HOWTO (R_ARM_REL32_NOI, /* type */
876 0, /* rightshift */
877 2, /* size (0 = byte, 1 = short, 2 = long) */
878 32, /* bitsize */
879 TRUE, /* pc_relative */
880 0, /* bitpos */
881 complain_overflow_dont,/* complain_on_overflow */
882 bfd_elf_generic_reloc, /* special_function */
883 "R_ARM_REL32_NOI", /* name */
884 FALSE, /* partial_inplace */
885 0xffffffff, /* src_mask */
886 0xffffffff, /* dst_mask */
887 FALSE), /* pcrel_offset */
888
889 /* Group relocations. */
890
891 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
892 0, /* rightshift */
893 2, /* size (0 = byte, 1 = short, 2 = long) */
894 32, /* bitsize */
895 TRUE, /* pc_relative */
896 0, /* bitpos */
897 complain_overflow_dont,/* complain_on_overflow */
898 bfd_elf_generic_reloc, /* special_function */
899 "R_ARM_ALU_PC_G0_NC", /* name */
900 FALSE, /* partial_inplace */
901 0xffffffff, /* src_mask */
902 0xffffffff, /* dst_mask */
903 TRUE), /* pcrel_offset */
904
905 HOWTO (R_ARM_ALU_PC_G0, /* type */
906 0, /* rightshift */
907 2, /* size (0 = byte, 1 = short, 2 = long) */
908 32, /* bitsize */
909 TRUE, /* pc_relative */
910 0, /* bitpos */
911 complain_overflow_dont,/* complain_on_overflow */
912 bfd_elf_generic_reloc, /* special_function */
913 "R_ARM_ALU_PC_G0", /* name */
914 FALSE, /* partial_inplace */
915 0xffffffff, /* src_mask */
916 0xffffffff, /* dst_mask */
917 TRUE), /* pcrel_offset */
918
919 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
920 0, /* rightshift */
921 2, /* size (0 = byte, 1 = short, 2 = long) */
922 32, /* bitsize */
923 TRUE, /* pc_relative */
924 0, /* bitpos */
925 complain_overflow_dont,/* complain_on_overflow */
926 bfd_elf_generic_reloc, /* special_function */
927 "R_ARM_ALU_PC_G1_NC", /* name */
928 FALSE, /* partial_inplace */
929 0xffffffff, /* src_mask */
930 0xffffffff, /* dst_mask */
931 TRUE), /* pcrel_offset */
932
933 HOWTO (R_ARM_ALU_PC_G1, /* type */
934 0, /* rightshift */
935 2, /* size (0 = byte, 1 = short, 2 = long) */
936 32, /* bitsize */
937 TRUE, /* pc_relative */
938 0, /* bitpos */
939 complain_overflow_dont,/* complain_on_overflow */
940 bfd_elf_generic_reloc, /* special_function */
941 "R_ARM_ALU_PC_G1", /* name */
942 FALSE, /* partial_inplace */
943 0xffffffff, /* src_mask */
944 0xffffffff, /* dst_mask */
945 TRUE), /* pcrel_offset */
946
947 HOWTO (R_ARM_ALU_PC_G2, /* type */
948 0, /* rightshift */
949 2, /* size (0 = byte, 1 = short, 2 = long) */
950 32, /* bitsize */
951 TRUE, /* pc_relative */
952 0, /* bitpos */
953 complain_overflow_dont,/* complain_on_overflow */
954 bfd_elf_generic_reloc, /* special_function */
955 "R_ARM_ALU_PC_G2", /* name */
956 FALSE, /* partial_inplace */
957 0xffffffff, /* src_mask */
958 0xffffffff, /* dst_mask */
959 TRUE), /* pcrel_offset */
960
961 HOWTO (R_ARM_LDR_PC_G1, /* type */
962 0, /* rightshift */
963 2, /* size (0 = byte, 1 = short, 2 = long) */
964 32, /* bitsize */
965 TRUE, /* pc_relative */
966 0, /* bitpos */
967 complain_overflow_dont,/* complain_on_overflow */
968 bfd_elf_generic_reloc, /* special_function */
969 "R_ARM_LDR_PC_G1", /* name */
970 FALSE, /* partial_inplace */
971 0xffffffff, /* src_mask */
972 0xffffffff, /* dst_mask */
973 TRUE), /* pcrel_offset */
974
975 HOWTO (R_ARM_LDR_PC_G2, /* type */
976 0, /* rightshift */
977 2, /* size (0 = byte, 1 = short, 2 = long) */
978 32, /* bitsize */
979 TRUE, /* pc_relative */
980 0, /* bitpos */
981 complain_overflow_dont,/* complain_on_overflow */
982 bfd_elf_generic_reloc, /* special_function */
983 "R_ARM_LDR_PC_G2", /* name */
984 FALSE, /* partial_inplace */
985 0xffffffff, /* src_mask */
986 0xffffffff, /* dst_mask */
987 TRUE), /* pcrel_offset */
988
989 HOWTO (R_ARM_LDRS_PC_G0, /* type */
990 0, /* rightshift */
991 2, /* size (0 = byte, 1 = short, 2 = long) */
992 32, /* bitsize */
993 TRUE, /* pc_relative */
994 0, /* bitpos */
995 complain_overflow_dont,/* complain_on_overflow */
996 bfd_elf_generic_reloc, /* special_function */
997 "R_ARM_LDRS_PC_G0", /* name */
998 FALSE, /* partial_inplace */
999 0xffffffff, /* src_mask */
1000 0xffffffff, /* dst_mask */
1001 TRUE), /* pcrel_offset */
1002
1003 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1004 0, /* rightshift */
1005 2, /* size (0 = byte, 1 = short, 2 = long) */
1006 32, /* bitsize */
1007 TRUE, /* pc_relative */
1008 0, /* bitpos */
1009 complain_overflow_dont,/* complain_on_overflow */
1010 bfd_elf_generic_reloc, /* special_function */
1011 "R_ARM_LDRS_PC_G1", /* name */
1012 FALSE, /* partial_inplace */
1013 0xffffffff, /* src_mask */
1014 0xffffffff, /* dst_mask */
1015 TRUE), /* pcrel_offset */
1016
1017 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1018 0, /* rightshift */
1019 2, /* size (0 = byte, 1 = short, 2 = long) */
1020 32, /* bitsize */
1021 TRUE, /* pc_relative */
1022 0, /* bitpos */
1023 complain_overflow_dont,/* complain_on_overflow */
1024 bfd_elf_generic_reloc, /* special_function */
1025 "R_ARM_LDRS_PC_G2", /* name */
1026 FALSE, /* partial_inplace */
1027 0xffffffff, /* src_mask */
1028 0xffffffff, /* dst_mask */
1029 TRUE), /* pcrel_offset */
1030
1031 HOWTO (R_ARM_LDC_PC_G0, /* type */
1032 0, /* rightshift */
1033 2, /* size (0 = byte, 1 = short, 2 = long) */
1034 32, /* bitsize */
1035 TRUE, /* pc_relative */
1036 0, /* bitpos */
1037 complain_overflow_dont,/* complain_on_overflow */
1038 bfd_elf_generic_reloc, /* special_function */
1039 "R_ARM_LDC_PC_G0", /* name */
1040 FALSE, /* partial_inplace */
1041 0xffffffff, /* src_mask */
1042 0xffffffff, /* dst_mask */
1043 TRUE), /* pcrel_offset */
1044
1045 HOWTO (R_ARM_LDC_PC_G1, /* type */
1046 0, /* rightshift */
1047 2, /* size (0 = byte, 1 = short, 2 = long) */
1048 32, /* bitsize */
1049 TRUE, /* pc_relative */
1050 0, /* bitpos */
1051 complain_overflow_dont,/* complain_on_overflow */
1052 bfd_elf_generic_reloc, /* special_function */
1053 "R_ARM_LDC_PC_G1", /* name */
1054 FALSE, /* partial_inplace */
1055 0xffffffff, /* src_mask */
1056 0xffffffff, /* dst_mask */
1057 TRUE), /* pcrel_offset */
1058
1059 HOWTO (R_ARM_LDC_PC_G2, /* type */
1060 0, /* rightshift */
1061 2, /* size (0 = byte, 1 = short, 2 = long) */
1062 32, /* bitsize */
1063 TRUE, /* pc_relative */
1064 0, /* bitpos */
1065 complain_overflow_dont,/* complain_on_overflow */
1066 bfd_elf_generic_reloc, /* special_function */
1067 "R_ARM_LDC_PC_G2", /* name */
1068 FALSE, /* partial_inplace */
1069 0xffffffff, /* src_mask */
1070 0xffffffff, /* dst_mask */
1071 TRUE), /* pcrel_offset */
1072
1073 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1074 0, /* rightshift */
1075 2, /* size (0 = byte, 1 = short, 2 = long) */
1076 32, /* bitsize */
1077 TRUE, /* pc_relative */
1078 0, /* bitpos */
1079 complain_overflow_dont,/* complain_on_overflow */
1080 bfd_elf_generic_reloc, /* special_function */
1081 "R_ARM_ALU_SB_G0_NC", /* name */
1082 FALSE, /* partial_inplace */
1083 0xffffffff, /* src_mask */
1084 0xffffffff, /* dst_mask */
1085 TRUE), /* pcrel_offset */
1086
1087 HOWTO (R_ARM_ALU_SB_G0, /* type */
1088 0, /* rightshift */
1089 2, /* size (0 = byte, 1 = short, 2 = long) */
1090 32, /* bitsize */
1091 TRUE, /* pc_relative */
1092 0, /* bitpos */
1093 complain_overflow_dont,/* complain_on_overflow */
1094 bfd_elf_generic_reloc, /* special_function */
1095 "R_ARM_ALU_SB_G0", /* name */
1096 FALSE, /* partial_inplace */
1097 0xffffffff, /* src_mask */
1098 0xffffffff, /* dst_mask */
1099 TRUE), /* pcrel_offset */
1100
1101 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1102 0, /* rightshift */
1103 2, /* size (0 = byte, 1 = short, 2 = long) */
1104 32, /* bitsize */
1105 TRUE, /* pc_relative */
1106 0, /* bitpos */
1107 complain_overflow_dont,/* complain_on_overflow */
1108 bfd_elf_generic_reloc, /* special_function */
1109 "R_ARM_ALU_SB_G1_NC", /* name */
1110 FALSE, /* partial_inplace */
1111 0xffffffff, /* src_mask */
1112 0xffffffff, /* dst_mask */
1113 TRUE), /* pcrel_offset */
1114
1115 HOWTO (R_ARM_ALU_SB_G1, /* type */
1116 0, /* rightshift */
1117 2, /* size (0 = byte, 1 = short, 2 = long) */
1118 32, /* bitsize */
1119 TRUE, /* pc_relative */
1120 0, /* bitpos */
1121 complain_overflow_dont,/* complain_on_overflow */
1122 bfd_elf_generic_reloc, /* special_function */
1123 "R_ARM_ALU_SB_G1", /* name */
1124 FALSE, /* partial_inplace */
1125 0xffffffff, /* src_mask */
1126 0xffffffff, /* dst_mask */
1127 TRUE), /* pcrel_offset */
1128
1129 HOWTO (R_ARM_ALU_SB_G2, /* type */
1130 0, /* rightshift */
1131 2, /* size (0 = byte, 1 = short, 2 = long) */
1132 32, /* bitsize */
1133 TRUE, /* pc_relative */
1134 0, /* bitpos */
1135 complain_overflow_dont,/* complain_on_overflow */
1136 bfd_elf_generic_reloc, /* special_function */
1137 "R_ARM_ALU_SB_G2", /* name */
1138 FALSE, /* partial_inplace */
1139 0xffffffff, /* src_mask */
1140 0xffffffff, /* dst_mask */
1141 TRUE), /* pcrel_offset */
1142
1143 HOWTO (R_ARM_LDR_SB_G0, /* type */
1144 0, /* rightshift */
1145 2, /* size (0 = byte, 1 = short, 2 = long) */
1146 32, /* bitsize */
1147 TRUE, /* pc_relative */
1148 0, /* bitpos */
1149 complain_overflow_dont,/* complain_on_overflow */
1150 bfd_elf_generic_reloc, /* special_function */
1151 "R_ARM_LDR_SB_G0", /* name */
1152 FALSE, /* partial_inplace */
1153 0xffffffff, /* src_mask */
1154 0xffffffff, /* dst_mask */
1155 TRUE), /* pcrel_offset */
1156
1157 HOWTO (R_ARM_LDR_SB_G1, /* type */
1158 0, /* rightshift */
1159 2, /* size (0 = byte, 1 = short, 2 = long) */
1160 32, /* bitsize */
1161 TRUE, /* pc_relative */
1162 0, /* bitpos */
1163 complain_overflow_dont,/* complain_on_overflow */
1164 bfd_elf_generic_reloc, /* special_function */
1165 "R_ARM_LDR_SB_G1", /* name */
1166 FALSE, /* partial_inplace */
1167 0xffffffff, /* src_mask */
1168 0xffffffff, /* dst_mask */
1169 TRUE), /* pcrel_offset */
1170
1171 HOWTO (R_ARM_LDR_SB_G2, /* type */
1172 0, /* rightshift */
1173 2, /* size (0 = byte, 1 = short, 2 = long) */
1174 32, /* bitsize */
1175 TRUE, /* pc_relative */
1176 0, /* bitpos */
1177 complain_overflow_dont,/* complain_on_overflow */
1178 bfd_elf_generic_reloc, /* special_function */
1179 "R_ARM_LDR_SB_G2", /* name */
1180 FALSE, /* partial_inplace */
1181 0xffffffff, /* src_mask */
1182 0xffffffff, /* dst_mask */
1183 TRUE), /* pcrel_offset */
1184
1185 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1186 0, /* rightshift */
1187 2, /* size (0 = byte, 1 = short, 2 = long) */
1188 32, /* bitsize */
1189 TRUE, /* pc_relative */
1190 0, /* bitpos */
1191 complain_overflow_dont,/* complain_on_overflow */
1192 bfd_elf_generic_reloc, /* special_function */
1193 "R_ARM_LDRS_SB_G0", /* name */
1194 FALSE, /* partial_inplace */
1195 0xffffffff, /* src_mask */
1196 0xffffffff, /* dst_mask */
1197 TRUE), /* pcrel_offset */
1198
1199 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1200 0, /* rightshift */
1201 2, /* size (0 = byte, 1 = short, 2 = long) */
1202 32, /* bitsize */
1203 TRUE, /* pc_relative */
1204 0, /* bitpos */
1205 complain_overflow_dont,/* complain_on_overflow */
1206 bfd_elf_generic_reloc, /* special_function */
1207 "R_ARM_LDRS_SB_G1", /* name */
1208 FALSE, /* partial_inplace */
1209 0xffffffff, /* src_mask */
1210 0xffffffff, /* dst_mask */
1211 TRUE), /* pcrel_offset */
1212
1213 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1214 0, /* rightshift */
1215 2, /* size (0 = byte, 1 = short, 2 = long) */
1216 32, /* bitsize */
1217 TRUE, /* pc_relative */
1218 0, /* bitpos */
1219 complain_overflow_dont,/* complain_on_overflow */
1220 bfd_elf_generic_reloc, /* special_function */
1221 "R_ARM_LDRS_SB_G2", /* name */
1222 FALSE, /* partial_inplace */
1223 0xffffffff, /* src_mask */
1224 0xffffffff, /* dst_mask */
1225 TRUE), /* pcrel_offset */
1226
1227 HOWTO (R_ARM_LDC_SB_G0, /* type */
1228 0, /* rightshift */
1229 2, /* size (0 = byte, 1 = short, 2 = long) */
1230 32, /* bitsize */
1231 TRUE, /* pc_relative */
1232 0, /* bitpos */
1233 complain_overflow_dont,/* complain_on_overflow */
1234 bfd_elf_generic_reloc, /* special_function */
1235 "R_ARM_LDC_SB_G0", /* name */
1236 FALSE, /* partial_inplace */
1237 0xffffffff, /* src_mask */
1238 0xffffffff, /* dst_mask */
1239 TRUE), /* pcrel_offset */
1240
1241 HOWTO (R_ARM_LDC_SB_G1, /* type */
1242 0, /* rightshift */
1243 2, /* size (0 = byte, 1 = short, 2 = long) */
1244 32, /* bitsize */
1245 TRUE, /* pc_relative */
1246 0, /* bitpos */
1247 complain_overflow_dont,/* complain_on_overflow */
1248 bfd_elf_generic_reloc, /* special_function */
1249 "R_ARM_LDC_SB_G1", /* name */
1250 FALSE, /* partial_inplace */
1251 0xffffffff, /* src_mask */
1252 0xffffffff, /* dst_mask */
1253 TRUE), /* pcrel_offset */
1254
1255 HOWTO (R_ARM_LDC_SB_G2, /* type */
1256 0, /* rightshift */
1257 2, /* size (0 = byte, 1 = short, 2 = long) */
1258 32, /* bitsize */
1259 TRUE, /* pc_relative */
1260 0, /* bitpos */
1261 complain_overflow_dont,/* complain_on_overflow */
1262 bfd_elf_generic_reloc, /* special_function */
1263 "R_ARM_LDC_SB_G2", /* name */
1264 FALSE, /* partial_inplace */
1265 0xffffffff, /* src_mask */
1266 0xffffffff, /* dst_mask */
1267 TRUE), /* pcrel_offset */
1268
1269 /* End of group relocations. */
1270
1271 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1272 0, /* rightshift */
1273 2, /* size (0 = byte, 1 = short, 2 = long) */
1274 16, /* bitsize */
1275 FALSE, /* pc_relative */
1276 0, /* bitpos */
1277 complain_overflow_dont,/* complain_on_overflow */
1278 bfd_elf_generic_reloc, /* special_function */
1279 "R_ARM_MOVW_BREL_NC", /* name */
1280 FALSE, /* partial_inplace */
1281 0x0000ffff, /* src_mask */
1282 0x0000ffff, /* dst_mask */
1283 FALSE), /* pcrel_offset */
1284
1285 HOWTO (R_ARM_MOVT_BREL, /* type */
1286 0, /* rightshift */
1287 2, /* size (0 = byte, 1 = short, 2 = long) */
1288 16, /* bitsize */
1289 FALSE, /* pc_relative */
1290 0, /* bitpos */
1291 complain_overflow_bitfield,/* complain_on_overflow */
1292 bfd_elf_generic_reloc, /* special_function */
1293 "R_ARM_MOVT_BREL", /* name */
1294 FALSE, /* partial_inplace */
1295 0x0000ffff, /* src_mask */
1296 0x0000ffff, /* dst_mask */
1297 FALSE), /* pcrel_offset */
1298
1299 HOWTO (R_ARM_MOVW_BREL, /* type */
1300 0, /* rightshift */
1301 2, /* size (0 = byte, 1 = short, 2 = long) */
1302 16, /* bitsize */
1303 FALSE, /* pc_relative */
1304 0, /* bitpos */
1305 complain_overflow_dont,/* complain_on_overflow */
1306 bfd_elf_generic_reloc, /* special_function */
1307 "R_ARM_MOVW_BREL", /* name */
1308 FALSE, /* partial_inplace */
1309 0x0000ffff, /* src_mask */
1310 0x0000ffff, /* dst_mask */
1311 FALSE), /* pcrel_offset */
1312
1313 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1314 0, /* rightshift */
1315 2, /* size (0 = byte, 1 = short, 2 = long) */
1316 16, /* bitsize */
1317 FALSE, /* pc_relative */
1318 0, /* bitpos */
1319 complain_overflow_dont,/* complain_on_overflow */
1320 bfd_elf_generic_reloc, /* special_function */
1321 "R_ARM_THM_MOVW_BREL_NC",/* name */
1322 FALSE, /* partial_inplace */
1323 0x040f70ff, /* src_mask */
1324 0x040f70ff, /* dst_mask */
1325 FALSE), /* pcrel_offset */
1326
1327 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1328 0, /* rightshift */
1329 2, /* size (0 = byte, 1 = short, 2 = long) */
1330 16, /* bitsize */
1331 FALSE, /* pc_relative */
1332 0, /* bitpos */
1333 complain_overflow_bitfield,/* complain_on_overflow */
1334 bfd_elf_generic_reloc, /* special_function */
1335 "R_ARM_THM_MOVT_BREL", /* name */
1336 FALSE, /* partial_inplace */
1337 0x040f70ff, /* src_mask */
1338 0x040f70ff, /* dst_mask */
1339 FALSE), /* pcrel_offset */
1340
1341 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1342 0, /* rightshift */
1343 2, /* size (0 = byte, 1 = short, 2 = long) */
1344 16, /* bitsize */
1345 FALSE, /* pc_relative */
1346 0, /* bitpos */
1347 complain_overflow_dont,/* complain_on_overflow */
1348 bfd_elf_generic_reloc, /* special_function */
1349 "R_ARM_THM_MOVW_BREL", /* name */
1350 FALSE, /* partial_inplace */
1351 0x040f70ff, /* src_mask */
1352 0x040f70ff, /* dst_mask */
1353 FALSE), /* pcrel_offset */
1354
1355 HOWTO (R_ARM_TLS_GOTDESC, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_bitfield,/* complain_on_overflow */
1362 NULL, /* special_function */
1363 "R_ARM_TLS_GOTDESC", /* name */
1364 TRUE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_TLS_CALL, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 24, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_TLS_CALL", /* name */
1378 FALSE, /* partial_inplace */
1379 0x00ffffff, /* src_mask */
1380 0x00ffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_TLS_DESCSEQ, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 0, /* bitsize */
1387 FALSE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_bitfield,/* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_TLS_DESCSEQ", /* name */
1392 FALSE, /* partial_inplace */
1393 0x00000000, /* src_mask */
1394 0x00000000, /* dst_mask */
1395 FALSE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_THM_TLS_CALL, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 24, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_dont,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_THM_TLS_CALL", /* name */
1406 FALSE, /* partial_inplace */
1407 0x07ff07ff, /* src_mask */
1408 0x07ff07ff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_PLT32_ABS, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 32, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_dont,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_PLT32_ABS", /* name */
1420 FALSE, /* partial_inplace */
1421 0xffffffff, /* src_mask */
1422 0xffffffff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 HOWTO (R_ARM_GOT_ABS, /* type */
1426 0, /* rightshift */
1427 2, /* size (0 = byte, 1 = short, 2 = long) */
1428 32, /* bitsize */
1429 FALSE, /* pc_relative */
1430 0, /* bitpos */
1431 complain_overflow_dont,/* complain_on_overflow */
1432 bfd_elf_generic_reloc, /* special_function */
1433 "R_ARM_GOT_ABS", /* name */
1434 FALSE, /* partial_inplace */
1435 0xffffffff, /* src_mask */
1436 0xffffffff, /* dst_mask */
1437 FALSE), /* pcrel_offset */
1438
1439 HOWTO (R_ARM_GOT_PREL, /* type */
1440 0, /* rightshift */
1441 2, /* size (0 = byte, 1 = short, 2 = long) */
1442 32, /* bitsize */
1443 TRUE, /* pc_relative */
1444 0, /* bitpos */
1445 complain_overflow_dont, /* complain_on_overflow */
1446 bfd_elf_generic_reloc, /* special_function */
1447 "R_ARM_GOT_PREL", /* name */
1448 FALSE, /* partial_inplace */
1449 0xffffffff, /* src_mask */
1450 0xffffffff, /* dst_mask */
1451 TRUE), /* pcrel_offset */
1452
1453 HOWTO (R_ARM_GOT_BREL12, /* type */
1454 0, /* rightshift */
1455 2, /* size (0 = byte, 1 = short, 2 = long) */
1456 12, /* bitsize */
1457 FALSE, /* pc_relative */
1458 0, /* bitpos */
1459 complain_overflow_bitfield,/* complain_on_overflow */
1460 bfd_elf_generic_reloc, /* special_function */
1461 "R_ARM_GOT_BREL12", /* name */
1462 FALSE, /* partial_inplace */
1463 0x00000fff, /* src_mask */
1464 0x00000fff, /* dst_mask */
1465 FALSE), /* pcrel_offset */
1466
1467 HOWTO (R_ARM_GOTOFF12, /* type */
1468 0, /* rightshift */
1469 2, /* size (0 = byte, 1 = short, 2 = long) */
1470 12, /* bitsize */
1471 FALSE, /* pc_relative */
1472 0, /* bitpos */
1473 complain_overflow_bitfield,/* complain_on_overflow */
1474 bfd_elf_generic_reloc, /* special_function */
1475 "R_ARM_GOTOFF12", /* name */
1476 FALSE, /* partial_inplace */
1477 0x00000fff, /* src_mask */
1478 0x00000fff, /* dst_mask */
1479 FALSE), /* pcrel_offset */
1480
1481 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1482
1483 /* GNU extension to record C++ vtable member usage */
1484 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1485 0, /* rightshift */
1486 2, /* size (0 = byte, 1 = short, 2 = long) */
1487 0, /* bitsize */
1488 FALSE, /* pc_relative */
1489 0, /* bitpos */
1490 complain_overflow_dont, /* complain_on_overflow */
1491 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1492 "R_ARM_GNU_VTENTRY", /* name */
1493 FALSE, /* partial_inplace */
1494 0, /* src_mask */
1495 0, /* dst_mask */
1496 FALSE), /* pcrel_offset */
1497
1498 /* GNU extension to record C++ vtable hierarchy */
1499 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1500 0, /* rightshift */
1501 2, /* size (0 = byte, 1 = short, 2 = long) */
1502 0, /* bitsize */
1503 FALSE, /* pc_relative */
1504 0, /* bitpos */
1505 complain_overflow_dont, /* complain_on_overflow */
1506 NULL, /* special_function */
1507 "R_ARM_GNU_VTINHERIT", /* name */
1508 FALSE, /* partial_inplace */
1509 0, /* src_mask */
1510 0, /* dst_mask */
1511 FALSE), /* pcrel_offset */
1512
1513 HOWTO (R_ARM_THM_JUMP11, /* type */
1514 1, /* rightshift */
1515 1, /* size (0 = byte, 1 = short, 2 = long) */
1516 11, /* bitsize */
1517 TRUE, /* pc_relative */
1518 0, /* bitpos */
1519 complain_overflow_signed, /* complain_on_overflow */
1520 bfd_elf_generic_reloc, /* special_function */
1521 "R_ARM_THM_JUMP11", /* name */
1522 FALSE, /* partial_inplace */
1523 0x000007ff, /* src_mask */
1524 0x000007ff, /* dst_mask */
1525 TRUE), /* pcrel_offset */
1526
1527 HOWTO (R_ARM_THM_JUMP8, /* type */
1528 1, /* rightshift */
1529 1, /* size (0 = byte, 1 = short, 2 = long) */
1530 8, /* bitsize */
1531 TRUE, /* pc_relative */
1532 0, /* bitpos */
1533 complain_overflow_signed, /* complain_on_overflow */
1534 bfd_elf_generic_reloc, /* special_function */
1535 "R_ARM_THM_JUMP8", /* name */
1536 FALSE, /* partial_inplace */
1537 0x000000ff, /* src_mask */
1538 0x000000ff, /* dst_mask */
1539 TRUE), /* pcrel_offset */
1540
1541 /* TLS relocations */
1542 HOWTO (R_ARM_TLS_GD32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 NULL, /* special_function */
1550 "R_ARM_TLS_GD32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDM32, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 32, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDM32", /* name */
1565 TRUE, /* partial_inplace */
1566 0xffffffff, /* src_mask */
1567 0xffffffff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LDO32, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 32, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LDO32", /* name */
1579 TRUE, /* partial_inplace */
1580 0xffffffff, /* src_mask */
1581 0xffffffff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE32, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 32, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 NULL, /* special_function */
1592 "R_ARM_TLS_IE32", /* name */
1593 TRUE, /* partial_inplace */
1594 0xffffffff, /* src_mask */
1595 0xffffffff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597
1598 HOWTO (R_ARM_TLS_LE32, /* type */
1599 0, /* rightshift */
1600 2, /* size (0 = byte, 1 = short, 2 = long) */
1601 32, /* bitsize */
1602 FALSE, /* pc_relative */
1603 0, /* bitpos */
1604 complain_overflow_bitfield,/* complain_on_overflow */
1605 bfd_elf_generic_reloc, /* special_function */
1606 "R_ARM_TLS_LE32", /* name */
1607 TRUE, /* partial_inplace */
1608 0xffffffff, /* src_mask */
1609 0xffffffff, /* dst_mask */
1610 FALSE), /* pcrel_offset */
1611
1612 HOWTO (R_ARM_TLS_LDO12, /* type */
1613 0, /* rightshift */
1614 2, /* size (0 = byte, 1 = short, 2 = long) */
1615 12, /* bitsize */
1616 FALSE, /* pc_relative */
1617 0, /* bitpos */
1618 complain_overflow_bitfield,/* complain_on_overflow */
1619 bfd_elf_generic_reloc, /* special_function */
1620 "R_ARM_TLS_LDO12", /* name */
1621 FALSE, /* partial_inplace */
1622 0x00000fff, /* src_mask */
1623 0x00000fff, /* dst_mask */
1624 FALSE), /* pcrel_offset */
1625
1626 HOWTO (R_ARM_TLS_LE12, /* type */
1627 0, /* rightshift */
1628 2, /* size (0 = byte, 1 = short, 2 = long) */
1629 12, /* bitsize */
1630 FALSE, /* pc_relative */
1631 0, /* bitpos */
1632 complain_overflow_bitfield,/* complain_on_overflow */
1633 bfd_elf_generic_reloc, /* special_function */
1634 "R_ARM_TLS_LE12", /* name */
1635 FALSE, /* partial_inplace */
1636 0x00000fff, /* src_mask */
1637 0x00000fff, /* dst_mask */
1638 FALSE), /* pcrel_offset */
1639
1640 HOWTO (R_ARM_TLS_IE12GP, /* type */
1641 0, /* rightshift */
1642 2, /* size (0 = byte, 1 = short, 2 = long) */
1643 12, /* bitsize */
1644 FALSE, /* pc_relative */
1645 0, /* bitpos */
1646 complain_overflow_bitfield,/* complain_on_overflow */
1647 bfd_elf_generic_reloc, /* special_function */
1648 "R_ARM_TLS_IE12GP", /* name */
1649 FALSE, /* partial_inplace */
1650 0x00000fff, /* src_mask */
1651 0x00000fff, /* dst_mask */
1652 FALSE), /* pcrel_offset */
1653
1654 /* 112-127 private relocations. */
1655 EMPTY_HOWTO (112),
1656 EMPTY_HOWTO (113),
1657 EMPTY_HOWTO (114),
1658 EMPTY_HOWTO (115),
1659 EMPTY_HOWTO (116),
1660 EMPTY_HOWTO (117),
1661 EMPTY_HOWTO (118),
1662 EMPTY_HOWTO (119),
1663 EMPTY_HOWTO (120),
1664 EMPTY_HOWTO (121),
1665 EMPTY_HOWTO (122),
1666 EMPTY_HOWTO (123),
1667 EMPTY_HOWTO (124),
1668 EMPTY_HOWTO (125),
1669 EMPTY_HOWTO (126),
1670 EMPTY_HOWTO (127),
1671
1672 /* R_ARM_ME_TOO, obsolete. */
1673 EMPTY_HOWTO (128),
1674
1675 HOWTO (R_ARM_THM_TLS_DESCSEQ, /* type */
1676 0, /* rightshift */
1677 1, /* size (0 = byte, 1 = short, 2 = long) */
1678 0, /* bitsize */
1679 FALSE, /* pc_relative */
1680 0, /* bitpos */
1681 complain_overflow_bitfield,/* complain_on_overflow */
1682 bfd_elf_generic_reloc, /* special_function */
1683 "R_ARM_THM_TLS_DESCSEQ",/* name */
1684 FALSE, /* partial_inplace */
1685 0x00000000, /* src_mask */
1686 0x00000000, /* dst_mask */
1687 FALSE), /* pcrel_offset */
1688 };
1689
1690 /* 160 onwards: */
1691 static reloc_howto_type elf32_arm_howto_table_2[1] =
1692 {
1693 HOWTO (R_ARM_IRELATIVE, /* type */
1694 0, /* rightshift */
1695 2, /* size (0 = byte, 1 = short, 2 = long) */
1696 32, /* bitsize */
1697 FALSE, /* pc_relative */
1698 0, /* bitpos */
1699 complain_overflow_bitfield,/* complain_on_overflow */
1700 bfd_elf_generic_reloc, /* special_function */
1701 "R_ARM_IRELATIVE", /* name */
1702 TRUE, /* partial_inplace */
1703 0xffffffff, /* src_mask */
1704 0xffffffff, /* dst_mask */
1705 FALSE) /* pcrel_offset */
1706 };
1707
1708 /* 249-255 extended, currently unused, relocations: */
1709 static reloc_howto_type elf32_arm_howto_table_3[4] =
1710 {
1711 HOWTO (R_ARM_RREL32, /* type */
1712 0, /* rightshift */
1713 0, /* size (0 = byte, 1 = short, 2 = long) */
1714 0, /* bitsize */
1715 FALSE, /* pc_relative */
1716 0, /* bitpos */
1717 complain_overflow_dont,/* complain_on_overflow */
1718 bfd_elf_generic_reloc, /* special_function */
1719 "R_ARM_RREL32", /* name */
1720 FALSE, /* partial_inplace */
1721 0, /* src_mask */
1722 0, /* dst_mask */
1723 FALSE), /* pcrel_offset */
1724
1725 HOWTO (R_ARM_RABS32, /* type */
1726 0, /* rightshift */
1727 0, /* size (0 = byte, 1 = short, 2 = long) */
1728 0, /* bitsize */
1729 FALSE, /* pc_relative */
1730 0, /* bitpos */
1731 complain_overflow_dont,/* complain_on_overflow */
1732 bfd_elf_generic_reloc, /* special_function */
1733 "R_ARM_RABS32", /* name */
1734 FALSE, /* partial_inplace */
1735 0, /* src_mask */
1736 0, /* dst_mask */
1737 FALSE), /* pcrel_offset */
1738
1739 HOWTO (R_ARM_RPC24, /* type */
1740 0, /* rightshift */
1741 0, /* size (0 = byte, 1 = short, 2 = long) */
1742 0, /* bitsize */
1743 FALSE, /* pc_relative */
1744 0, /* bitpos */
1745 complain_overflow_dont,/* complain_on_overflow */
1746 bfd_elf_generic_reloc, /* special_function */
1747 "R_ARM_RPC24", /* name */
1748 FALSE, /* partial_inplace */
1749 0, /* src_mask */
1750 0, /* dst_mask */
1751 FALSE), /* pcrel_offset */
1752
1753 HOWTO (R_ARM_RBASE, /* type */
1754 0, /* rightshift */
1755 0, /* size (0 = byte, 1 = short, 2 = long) */
1756 0, /* bitsize */
1757 FALSE, /* pc_relative */
1758 0, /* bitpos */
1759 complain_overflow_dont,/* complain_on_overflow */
1760 bfd_elf_generic_reloc, /* special_function */
1761 "R_ARM_RBASE", /* name */
1762 FALSE, /* partial_inplace */
1763 0, /* src_mask */
1764 0, /* dst_mask */
1765 FALSE) /* pcrel_offset */
1766 };
1767
1768 static reloc_howto_type *
1769 elf32_arm_howto_from_type (unsigned int r_type)
1770 {
1771 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1772 return &elf32_arm_howto_table_1[r_type];
1773
1774 if (r_type == R_ARM_IRELATIVE)
1775 return &elf32_arm_howto_table_2[r_type - R_ARM_IRELATIVE];
1776
1777 if (r_type >= R_ARM_RREL32
1778 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_3))
1779 return &elf32_arm_howto_table_3[r_type - R_ARM_RREL32];
1780
1781 return NULL;
1782 }
1783
1784 static void
1785 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1786 Elf_Internal_Rela * elf_reloc)
1787 {
1788 unsigned int r_type;
1789
1790 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1791 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1792 }
1793
1794 struct elf32_arm_reloc_map
1795 {
1796 bfd_reloc_code_real_type bfd_reloc_val;
1797 unsigned char elf_reloc_val;
1798 };
1799
1800 /* All entries in this list must also be present in elf32_arm_howto_table. */
1801 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1802 {
1803 {BFD_RELOC_NONE, R_ARM_NONE},
1804 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1805 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1806 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1807 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1808 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1809 {BFD_RELOC_32, R_ARM_ABS32},
1810 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1811 {BFD_RELOC_8, R_ARM_ABS8},
1812 {BFD_RELOC_16, R_ARM_ABS16},
1813 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1814 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1815 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1816 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1817 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1818 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1819 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1820 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1821 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1822 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1823 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1824 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1825 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1826 {BFD_RELOC_ARM_GOT_PREL, R_ARM_GOT_PREL},
1827 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1828 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1829 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1830 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1831 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1832 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1833 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1834 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1835 {BFD_RELOC_ARM_TLS_GOTDESC, R_ARM_TLS_GOTDESC},
1836 {BFD_RELOC_ARM_TLS_CALL, R_ARM_TLS_CALL},
1837 {BFD_RELOC_ARM_THM_TLS_CALL, R_ARM_THM_TLS_CALL},
1838 {BFD_RELOC_ARM_TLS_DESCSEQ, R_ARM_TLS_DESCSEQ},
1839 {BFD_RELOC_ARM_THM_TLS_DESCSEQ, R_ARM_THM_TLS_DESCSEQ},
1840 {BFD_RELOC_ARM_TLS_DESC, R_ARM_TLS_DESC},
1841 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1842 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1843 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1844 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1845 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1846 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1847 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1848 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1849 {BFD_RELOC_ARM_IRELATIVE, R_ARM_IRELATIVE},
1850 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1851 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1852 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1853 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1854 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1855 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1856 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1857 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1858 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1859 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1860 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1861 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1862 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1863 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1864 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1865 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1866 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1867 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1868 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1869 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1870 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1871 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1872 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1873 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1874 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1875 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1876 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1877 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1878 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1879 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1880 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1881 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1882 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1883 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1884 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1885 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1886 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1887 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1888 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1889 };
1890
1891 static reloc_howto_type *
1892 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1893 bfd_reloc_code_real_type code)
1894 {
1895 unsigned int i;
1896
1897 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1898 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1899 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1900
1901 return NULL;
1902 }
1903
1904 static reloc_howto_type *
1905 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1906 const char *r_name)
1907 {
1908 unsigned int i;
1909
1910 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1911 if (elf32_arm_howto_table_1[i].name != NULL
1912 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1913 return &elf32_arm_howto_table_1[i];
1914
1915 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1916 if (elf32_arm_howto_table_2[i].name != NULL
1917 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1918 return &elf32_arm_howto_table_2[i];
1919
1920 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_3); i++)
1921 if (elf32_arm_howto_table_3[i].name != NULL
1922 && strcasecmp (elf32_arm_howto_table_3[i].name, r_name) == 0)
1923 return &elf32_arm_howto_table_3[i];
1924
1925 return NULL;
1926 }
1927
1928 /* Support for core dump NOTE sections. */
1929
1930 static bfd_boolean
1931 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1932 {
1933 int offset;
1934 size_t size;
1935
1936 switch (note->descsz)
1937 {
1938 default:
1939 return FALSE;
1940
1941 case 148: /* Linux/ARM 32-bit. */
1942 /* pr_cursig */
1943 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1944
1945 /* pr_pid */
1946 elf_tdata (abfd)->core_lwpid = bfd_get_32 (abfd, note->descdata + 24);
1947
1948 /* pr_reg */
1949 offset = 72;
1950 size = 72;
1951
1952 break;
1953 }
1954
1955 /* Make a ".reg/999" section. */
1956 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1957 size, note->descpos + offset);
1958 }
1959
1960 static bfd_boolean
1961 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1962 {
1963 switch (note->descsz)
1964 {
1965 default:
1966 return FALSE;
1967
1968 case 124: /* Linux/ARM elf_prpsinfo. */
1969 elf_tdata (abfd)->core_program
1970 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1971 elf_tdata (abfd)->core_command
1972 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1973 }
1974
1975 /* Note that for some reason, a spurious space is tacked
1976 onto the end of the args in some (at least one anyway)
1977 implementations, so strip it off if it exists. */
1978 {
1979 char *command = elf_tdata (abfd)->core_command;
1980 int n = strlen (command);
1981
1982 if (0 < n && command[n - 1] == ' ')
1983 command[n - 1] = '\0';
1984 }
1985
1986 return TRUE;
1987 }
1988
1989 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1990 #define TARGET_LITTLE_NAME "elf32-littlearm"
1991 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1992 #define TARGET_BIG_NAME "elf32-bigarm"
1993
1994 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1995 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1996
1997 typedef unsigned long int insn32;
1998 typedef unsigned short int insn16;
1999
2000 /* In lieu of proper flags, assume all EABIv4 or later objects are
2001 interworkable. */
2002 #define INTERWORK_FLAG(abfd) \
2003 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
2004 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK) \
2005 || ((abfd)->flags & BFD_LINKER_CREATED))
2006
2007 /* The linker script knows the section names for placement.
2008 The entry_names are used to do simple name mangling on the stubs.
2009 Given a function name, and its type, the stub can be found. The
2010 name can be changed. The only requirement is the %s be present. */
2011 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
2012 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
2013
2014 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
2015 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
2016
2017 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
2018 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
2019
2020 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
2021 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
2022
2023 #define STUB_ENTRY_NAME "__%s_veneer"
2024
2025 /* The name of the dynamic interpreter. This is put in the .interp
2026 section. */
2027 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
2028
2029 static const unsigned long tls_trampoline [] =
2030 {
2031 0xe08e0000, /* add r0, lr, r0 */
2032 0xe5901004, /* ldr r1, [r0,#4] */
2033 0xe12fff11, /* bx r1 */
2034 };
2035
2036 static const unsigned long dl_tlsdesc_lazy_trampoline [] =
2037 {
2038 0xe52d2004, /* push {r2} */
2039 0xe59f200c, /* ldr r2, [pc, #3f - . - 8] */
2040 0xe59f100c, /* ldr r1, [pc, #4f - . - 8] */
2041 0xe79f2002, /* 1: ldr r2, [pc, r2] */
2042 0xe081100f, /* 2: add r1, pc */
2043 0xe12fff12, /* bx r2 */
2044 0x00000014, /* 3: .word _GLOBAL_OFFSET_TABLE_ - 1b - 8
2045 + dl_tlsdesc_lazy_resolver(GOT) */
2046 0x00000018, /* 4: .word _GLOBAL_OFFSET_TABLE_ - 2b - 8 */
2047 };
2048
2049 #ifdef FOUR_WORD_PLT
2050
2051 /* The first entry in a procedure linkage table looks like
2052 this. It is set up so that any shared library function that is
2053 called before the relocation has been set up calls the dynamic
2054 linker first. */
2055 static const bfd_vma elf32_arm_plt0_entry [] =
2056 {
2057 0xe52de004, /* str lr, [sp, #-4]! */
2058 0xe59fe010, /* ldr lr, [pc, #16] */
2059 0xe08fe00e, /* add lr, pc, lr */
2060 0xe5bef008, /* ldr pc, [lr, #8]! */
2061 };
2062
2063 /* Subsequent entries in a procedure linkage table look like
2064 this. */
2065 static const bfd_vma elf32_arm_plt_entry [] =
2066 {
2067 0xe28fc600, /* add ip, pc, #NN */
2068 0xe28cca00, /* add ip, ip, #NN */
2069 0xe5bcf000, /* ldr pc, [ip, #NN]! */
2070 0x00000000, /* unused */
2071 };
2072
2073 #else
2074
2075 /* The first entry in a procedure linkage table looks like
2076 this. It is set up so that any shared library function that is
2077 called before the relocation has been set up calls the dynamic
2078 linker first. */
2079 static const bfd_vma elf32_arm_plt0_entry [] =
2080 {
2081 0xe52de004, /* str lr, [sp, #-4]! */
2082 0xe59fe004, /* ldr lr, [pc, #4] */
2083 0xe08fe00e, /* add lr, pc, lr */
2084 0xe5bef008, /* ldr pc, [lr, #8]! */
2085 0x00000000, /* &GOT[0] - . */
2086 };
2087
2088 /* Subsequent entries in a procedure linkage table look like
2089 this. */
2090 static const bfd_vma elf32_arm_plt_entry [] =
2091 {
2092 0xe28fc600, /* add ip, pc, #0xNN00000 */
2093 0xe28cca00, /* add ip, ip, #0xNN000 */
2094 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
2095 };
2096
2097 #endif
2098
2099 /* The format of the first entry in the procedure linkage table
2100 for a VxWorks executable. */
2101 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
2102 {
2103 0xe52dc008, /* str ip,[sp,#-8]! */
2104 0xe59fc000, /* ldr ip,[pc] */
2105 0xe59cf008, /* ldr pc,[ip,#8] */
2106 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
2107 };
2108
2109 /* The format of subsequent entries in a VxWorks executable. */
2110 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
2111 {
2112 0xe59fc000, /* ldr ip,[pc] */
2113 0xe59cf000, /* ldr pc,[ip] */
2114 0x00000000, /* .long @got */
2115 0xe59fc000, /* ldr ip,[pc] */
2116 0xea000000, /* b _PLT */
2117 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2118 };
2119
2120 /* The format of entries in a VxWorks shared library. */
2121 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
2122 {
2123 0xe59fc000, /* ldr ip,[pc] */
2124 0xe79cf009, /* ldr pc,[ip,r9] */
2125 0x00000000, /* .long @got */
2126 0xe59fc000, /* ldr ip,[pc] */
2127 0xe599f008, /* ldr pc,[r9,#8] */
2128 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
2129 };
2130
2131 /* An initial stub used if the PLT entry is referenced from Thumb code. */
2132 #define PLT_THUMB_STUB_SIZE 4
2133 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2134 {
2135 0x4778, /* bx pc */
2136 0x46c0 /* nop */
2137 };
2138
2139 /* The entries in a PLT when using a DLL-based target with multiple
2140 address spaces. */
2141 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2142 {
2143 0xe51ff004, /* ldr pc, [pc, #-4] */
2144 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2145 };
2146
2147 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2148 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2149 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2150 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2151 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2152 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2153
2154 enum stub_insn_type
2155 {
2156 THUMB16_TYPE = 1,
2157 THUMB32_TYPE,
2158 ARM_TYPE,
2159 DATA_TYPE
2160 };
2161
2162 #define THUMB16_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 0}
2163 /* A bit of a hack. A Thumb conditional branch, in which the proper condition
2164 is inserted in arm_build_one_stub(). */
2165 #define THUMB16_BCOND_INSN(X) {(X), THUMB16_TYPE, R_ARM_NONE, 1}
2166 #define THUMB32_INSN(X) {(X), THUMB32_TYPE, R_ARM_NONE, 0}
2167 #define THUMB32_B_INSN(X, Z) {(X), THUMB32_TYPE, R_ARM_THM_JUMP24, (Z)}
2168 #define ARM_INSN(X) {(X), ARM_TYPE, R_ARM_NONE, 0}
2169 #define ARM_REL_INSN(X, Z) {(X), ARM_TYPE, R_ARM_JUMP24, (Z)}
2170 #define DATA_WORD(X,Y,Z) {(X), DATA_TYPE, (Y), (Z)}
2171
2172 typedef struct
2173 {
2174 bfd_vma data;
2175 enum stub_insn_type type;
2176 unsigned int r_type;
2177 int reloc_addend;
2178 } insn_sequence;
2179
2180 /* Arm/Thumb -> Arm/Thumb long branch stub. On V5T and above, use blx
2181 to reach the stub if necessary. */
2182 static const insn_sequence elf32_arm_stub_long_branch_any_any[] =
2183 {
2184 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2185 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2186 };
2187
2188 /* V4T Arm -> Thumb long branch stub. Used on V4T where blx is not
2189 available. */
2190 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb[] =
2191 {
2192 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2193 ARM_INSN(0xe12fff1c), /* bx ip */
2194 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2195 };
2196
2197 /* Thumb -> Thumb long branch stub. Used on M-profile architectures. */
2198 static const insn_sequence elf32_arm_stub_long_branch_thumb_only[] =
2199 {
2200 THUMB16_INSN(0xb401), /* push {r0} */
2201 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2202 THUMB16_INSN(0x4684), /* mov ip, r0 */
2203 THUMB16_INSN(0xbc01), /* pop {r0} */
2204 THUMB16_INSN(0x4760), /* bx ip */
2205 THUMB16_INSN(0xbf00), /* nop */
2206 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2207 };
2208
2209 /* V4T Thumb -> Thumb long branch stub. Using the stack is not
2210 allowed. */
2211 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb[] =
2212 {
2213 THUMB16_INSN(0x4778), /* bx pc */
2214 THUMB16_INSN(0x46c0), /* nop */
2215 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2216 ARM_INSN(0xe12fff1c), /* bx ip */
2217 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2218 };
2219
2220 /* V4T Thumb -> ARM long branch stub. Used on V4T where blx is not
2221 available. */
2222 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm[] =
2223 {
2224 THUMB16_INSN(0x4778), /* bx pc */
2225 THUMB16_INSN(0x46c0), /* nop */
2226 ARM_INSN(0xe51ff004), /* ldr pc, [pc, #-4] */
2227 DATA_WORD(0, R_ARM_ABS32, 0), /* dcd R_ARM_ABS32(X) */
2228 };
2229
2230 /* V4T Thumb -> ARM short branch stub. Shorter variant of the above
2231 one, when the destination is close enough. */
2232 static const insn_sequence elf32_arm_stub_short_branch_v4t_thumb_arm[] =
2233 {
2234 THUMB16_INSN(0x4778), /* bx pc */
2235 THUMB16_INSN(0x46c0), /* nop */
2236 ARM_REL_INSN(0xea000000, -8), /* b (X-8) */
2237 };
2238
2239 /* ARM/Thumb -> ARM long branch stub, PIC. On V5T and above, use
2240 blx to reach the stub if necessary. */
2241 static const insn_sequence elf32_arm_stub_long_branch_any_arm_pic[] =
2242 {
2243 ARM_INSN(0xe59fc000), /* ldr ip, [pc] */
2244 ARM_INSN(0xe08ff00c), /* add pc, pc, ip */
2245 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2246 };
2247
2248 /* ARM/Thumb -> Thumb long branch stub, PIC. On V5T and above, use
2249 blx to reach the stub if necessary. We can not add into pc;
2250 it is not guaranteed to mode switch (different in ARMv6 and
2251 ARMv7). */
2252 static const insn_sequence elf32_arm_stub_long_branch_any_thumb_pic[] =
2253 {
2254 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2255 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2256 ARM_INSN(0xe12fff1c), /* bx ip */
2257 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2258 };
2259
2260 /* V4T ARM -> ARM long branch stub, PIC. */
2261 static const insn_sequence elf32_arm_stub_long_branch_v4t_arm_thumb_pic[] =
2262 {
2263 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2264 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2265 ARM_INSN(0xe12fff1c), /* bx ip */
2266 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2267 };
2268
2269 /* V4T Thumb -> ARM long branch stub, PIC. */
2270 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_arm_pic[] =
2271 {
2272 THUMB16_INSN(0x4778), /* bx pc */
2273 THUMB16_INSN(0x46c0), /* nop */
2274 ARM_INSN(0xe59fc000), /* ldr ip, [pc, #0] */
2275 ARM_INSN(0xe08cf00f), /* add pc, ip, pc */
2276 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2277 };
2278
2279 /* Thumb -> Thumb long branch stub, PIC. Used on M-profile
2280 architectures. */
2281 static const insn_sequence elf32_arm_stub_long_branch_thumb_only_pic[] =
2282 {
2283 THUMB16_INSN(0xb401), /* push {r0} */
2284 THUMB16_INSN(0x4802), /* ldr r0, [pc, #8] */
2285 THUMB16_INSN(0x46fc), /* mov ip, pc */
2286 THUMB16_INSN(0x4484), /* add ip, r0 */
2287 THUMB16_INSN(0xbc01), /* pop {r0} */
2288 THUMB16_INSN(0x4760), /* bx ip */
2289 DATA_WORD(0, R_ARM_REL32, 4), /* dcd R_ARM_REL32(X) */
2290 };
2291
2292 /* V4T Thumb -> Thumb long branch stub, PIC. Using the stack is not
2293 allowed. */
2294 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_thumb_pic[] =
2295 {
2296 THUMB16_INSN(0x4778), /* bx pc */
2297 THUMB16_INSN(0x46c0), /* nop */
2298 ARM_INSN(0xe59fc004), /* ldr ip, [pc, #4] */
2299 ARM_INSN(0xe08fc00c), /* add ip, pc, ip */
2300 ARM_INSN(0xe12fff1c), /* bx ip */
2301 DATA_WORD(0, R_ARM_REL32, 0), /* dcd R_ARM_REL32(X) */
2302 };
2303
2304 /* Thumb2/ARM -> TLS trampoline. Lowest common denominator, which is a
2305 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2306 static const insn_sequence elf32_arm_stub_long_branch_any_tls_pic[] =
2307 {
2308 ARM_INSN(0xe59f1000), /* ldr r1, [pc] */
2309 ARM_INSN(0xe08ff001), /* add pc, pc, r1 */
2310 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X-4) */
2311 };
2312
2313 /* V4T Thumb -> TLS trampoline. lowest common denominator, which is a
2314 long PIC stub. We can use r1 as a scratch -- and cannot use ip. */
2315 static const insn_sequence elf32_arm_stub_long_branch_v4t_thumb_tls_pic[] =
2316 {
2317 THUMB16_INSN(0x4778), /* bx pc */
2318 THUMB16_INSN(0x46c0), /* nop */
2319 ARM_INSN(0xe59f1000), /* ldr r1, [pc, #0] */
2320 ARM_INSN(0xe081f00f), /* add pc, r1, pc */
2321 DATA_WORD(0, R_ARM_REL32, -4), /* dcd R_ARM_REL32(X) */
2322 };
2323
2324 /* Cortex-A8 erratum-workaround stubs. */
2325
2326 /* Stub used for conditional branches (which may be beyond +/-1MB away, so we
2327 can't use a conditional branch to reach this stub). */
2328
2329 static const insn_sequence elf32_arm_stub_a8_veneer_b_cond[] =
2330 {
2331 THUMB16_BCOND_INSN(0xd001), /* b<cond>.n true. */
2332 THUMB32_B_INSN(0xf000b800, -4), /* b.w insn_after_original_branch. */
2333 THUMB32_B_INSN(0xf000b800, -4) /* true: b.w original_branch_dest. */
2334 };
2335
2336 /* Stub used for b.w and bl.w instructions. */
2337
2338 static const insn_sequence elf32_arm_stub_a8_veneer_b[] =
2339 {
2340 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2341 };
2342
2343 static const insn_sequence elf32_arm_stub_a8_veneer_bl[] =
2344 {
2345 THUMB32_B_INSN(0xf000b800, -4) /* b.w original_branch_dest. */
2346 };
2347
2348 /* Stub used for Thumb-2 blx.w instructions. We modified the original blx.w
2349 instruction (which switches to ARM mode) to point to this stub. Jump to the
2350 real destination using an ARM-mode branch. */
2351
2352 static const insn_sequence elf32_arm_stub_a8_veneer_blx[] =
2353 {
2354 ARM_REL_INSN(0xea000000, -8) /* b original_branch_dest. */
2355 };
2356
2357 /* Section name for stubs is the associated section name plus this
2358 string. */
2359 #define STUB_SUFFIX ".stub"
2360
2361 /* One entry per long/short branch stub defined above. */
2362 #define DEF_STUBS \
2363 DEF_STUB(long_branch_any_any) \
2364 DEF_STUB(long_branch_v4t_arm_thumb) \
2365 DEF_STUB(long_branch_thumb_only) \
2366 DEF_STUB(long_branch_v4t_thumb_thumb) \
2367 DEF_STUB(long_branch_v4t_thumb_arm) \
2368 DEF_STUB(short_branch_v4t_thumb_arm) \
2369 DEF_STUB(long_branch_any_arm_pic) \
2370 DEF_STUB(long_branch_any_thumb_pic) \
2371 DEF_STUB(long_branch_v4t_thumb_thumb_pic) \
2372 DEF_STUB(long_branch_v4t_arm_thumb_pic) \
2373 DEF_STUB(long_branch_v4t_thumb_arm_pic) \
2374 DEF_STUB(long_branch_thumb_only_pic) \
2375 DEF_STUB(long_branch_any_tls_pic) \
2376 DEF_STUB(long_branch_v4t_thumb_tls_pic) \
2377 DEF_STUB(a8_veneer_b_cond) \
2378 DEF_STUB(a8_veneer_b) \
2379 DEF_STUB(a8_veneer_bl) \
2380 DEF_STUB(a8_veneer_blx)
2381
2382 #define DEF_STUB(x) arm_stub_##x,
2383 enum elf32_arm_stub_type {
2384 arm_stub_none,
2385 DEF_STUBS
2386 /* Note the first a8_veneer type */
2387 arm_stub_a8_veneer_lwm = arm_stub_a8_veneer_b_cond
2388 };
2389 #undef DEF_STUB
2390
2391 typedef struct
2392 {
2393 const insn_sequence* template_sequence;
2394 int template_size;
2395 } stub_def;
2396
2397 #define DEF_STUB(x) {elf32_arm_stub_##x, ARRAY_SIZE(elf32_arm_stub_##x)},
2398 static const stub_def stub_definitions[] = {
2399 {NULL, 0},
2400 DEF_STUBS
2401 };
2402
2403 struct elf32_arm_stub_hash_entry
2404 {
2405 /* Base hash table entry structure. */
2406 struct bfd_hash_entry root;
2407
2408 /* The stub section. */
2409 asection *stub_sec;
2410
2411 /* Offset within stub_sec of the beginning of this stub. */
2412 bfd_vma stub_offset;
2413
2414 /* Given the symbol's value and its section we can determine its final
2415 value when building the stubs (so the stub knows where to jump). */
2416 bfd_vma target_value;
2417 asection *target_section;
2418
2419 /* Offset to apply to relocation referencing target_value. */
2420 bfd_vma target_addend;
2421
2422 /* The instruction which caused this stub to be generated (only valid for
2423 Cortex-A8 erratum workaround stubs at present). */
2424 unsigned long orig_insn;
2425
2426 /* The stub type. */
2427 enum elf32_arm_stub_type stub_type;
2428 /* Its encoding size in bytes. */
2429 int stub_size;
2430 /* Its template. */
2431 const insn_sequence *stub_template;
2432 /* The size of the template (number of entries). */
2433 int stub_template_size;
2434
2435 /* The symbol table entry, if any, that this was derived from. */
2436 struct elf32_arm_link_hash_entry *h;
2437
2438 /* Type of branch. */
2439 enum arm_st_branch_type branch_type;
2440
2441 /* Where this stub is being called from, or, in the case of combined
2442 stub sections, the first input section in the group. */
2443 asection *id_sec;
2444
2445 /* The name for the local symbol at the start of this stub. The
2446 stub name in the hash table has to be unique; this does not, so
2447 it can be friendlier. */
2448 char *output_name;
2449 };
2450
2451 /* Used to build a map of a section. This is required for mixed-endian
2452 code/data. */
2453
2454 typedef struct elf32_elf_section_map
2455 {
2456 bfd_vma vma;
2457 char type;
2458 }
2459 elf32_arm_section_map;
2460
2461 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2462
2463 typedef enum
2464 {
2465 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2466 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2467 VFP11_ERRATUM_ARM_VENEER,
2468 VFP11_ERRATUM_THUMB_VENEER
2469 }
2470 elf32_vfp11_erratum_type;
2471
2472 typedef struct elf32_vfp11_erratum_list
2473 {
2474 struct elf32_vfp11_erratum_list *next;
2475 bfd_vma vma;
2476 union
2477 {
2478 struct
2479 {
2480 struct elf32_vfp11_erratum_list *veneer;
2481 unsigned int vfp_insn;
2482 } b;
2483 struct
2484 {
2485 struct elf32_vfp11_erratum_list *branch;
2486 unsigned int id;
2487 } v;
2488 } u;
2489 elf32_vfp11_erratum_type type;
2490 }
2491 elf32_vfp11_erratum_list;
2492
2493 typedef enum
2494 {
2495 DELETE_EXIDX_ENTRY,
2496 INSERT_EXIDX_CANTUNWIND_AT_END
2497 }
2498 arm_unwind_edit_type;
2499
2500 /* A (sorted) list of edits to apply to an unwind table. */
2501 typedef struct arm_unwind_table_edit
2502 {
2503 arm_unwind_edit_type type;
2504 /* Note: we sometimes want to insert an unwind entry corresponding to a
2505 section different from the one we're currently writing out, so record the
2506 (text) section this edit relates to here. */
2507 asection *linked_section;
2508 unsigned int index;
2509 struct arm_unwind_table_edit *next;
2510 }
2511 arm_unwind_table_edit;
2512
2513 typedef struct _arm_elf_section_data
2514 {
2515 /* Information about mapping symbols. */
2516 struct bfd_elf_section_data elf;
2517 unsigned int mapcount;
2518 unsigned int mapsize;
2519 elf32_arm_section_map *map;
2520 /* Information about CPU errata. */
2521 unsigned int erratumcount;
2522 elf32_vfp11_erratum_list *erratumlist;
2523 /* Information about unwind tables. */
2524 union
2525 {
2526 /* Unwind info attached to a text section. */
2527 struct
2528 {
2529 asection *arm_exidx_sec;
2530 } text;
2531
2532 /* Unwind info attached to an .ARM.exidx section. */
2533 struct
2534 {
2535 arm_unwind_table_edit *unwind_edit_list;
2536 arm_unwind_table_edit *unwind_edit_tail;
2537 } exidx;
2538 } u;
2539 }
2540 _arm_elf_section_data;
2541
2542 #define elf32_arm_section_data(sec) \
2543 ((_arm_elf_section_data *) elf_section_data (sec))
2544
2545 /* A fix which might be required for Cortex-A8 Thumb-2 branch/TLB erratum.
2546 These fixes are subject to a relaxation procedure (in elf32_arm_size_stubs),
2547 so may be created multiple times: we use an array of these entries whilst
2548 relaxing which we can refresh easily, then create stubs for each potentially
2549 erratum-triggering instruction once we've settled on a solution. */
2550
2551 struct a8_erratum_fix {
2552 bfd *input_bfd;
2553 asection *section;
2554 bfd_vma offset;
2555 bfd_vma addend;
2556 unsigned long orig_insn;
2557 char *stub_name;
2558 enum elf32_arm_stub_type stub_type;
2559 enum arm_st_branch_type branch_type;
2560 };
2561
2562 /* A table of relocs applied to branches which might trigger Cortex-A8
2563 erratum. */
2564
2565 struct a8_erratum_reloc {
2566 bfd_vma from;
2567 bfd_vma destination;
2568 struct elf32_arm_link_hash_entry *hash;
2569 const char *sym_name;
2570 unsigned int r_type;
2571 enum arm_st_branch_type branch_type;
2572 bfd_boolean non_a8_stub;
2573 };
2574
2575 /* The size of the thread control block. */
2576 #define TCB_SIZE 8
2577
2578 /* ARM-specific information about a PLT entry, over and above the usual
2579 gotplt_union. */
2580 struct arm_plt_info {
2581 /* We reference count Thumb references to a PLT entry separately,
2582 so that we can emit the Thumb trampoline only if needed. */
2583 bfd_signed_vma thumb_refcount;
2584
2585 /* Some references from Thumb code may be eliminated by BL->BLX
2586 conversion, so record them separately. */
2587 bfd_signed_vma maybe_thumb_refcount;
2588
2589 /* How many of the recorded PLT accesses were from non-call relocations.
2590 This information is useful when deciding whether anything takes the
2591 address of an STT_GNU_IFUNC PLT. A value of 0 means that all
2592 non-call references to the function should resolve directly to the
2593 real runtime target. */
2594 unsigned int noncall_refcount;
2595
2596 /* Since PLT entries have variable size if the Thumb prologue is
2597 used, we need to record the index into .got.plt instead of
2598 recomputing it from the PLT offset. */
2599 bfd_signed_vma got_offset;
2600 };
2601
2602 /* Information about an .iplt entry for a local STT_GNU_IFUNC symbol. */
2603 struct arm_local_iplt_info {
2604 /* The information that is usually found in the generic ELF part of
2605 the hash table entry. */
2606 union gotplt_union root;
2607
2608 /* The information that is usually found in the ARM-specific part of
2609 the hash table entry. */
2610 struct arm_plt_info arm;
2611
2612 /* A list of all potential dynamic relocations against this symbol. */
2613 struct elf_dyn_relocs *dyn_relocs;
2614 };
2615
2616 struct elf_arm_obj_tdata
2617 {
2618 struct elf_obj_tdata root;
2619
2620 /* tls_type for each local got entry. */
2621 char *local_got_tls_type;
2622
2623 /* GOTPLT entries for TLS descriptors. */
2624 bfd_vma *local_tlsdesc_gotent;
2625
2626 /* Information for local symbols that need entries in .iplt. */
2627 struct arm_local_iplt_info **local_iplt;
2628
2629 /* Zero to warn when linking objects with incompatible enum sizes. */
2630 int no_enum_size_warning;
2631
2632 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2633 int no_wchar_size_warning;
2634 };
2635
2636 #define elf_arm_tdata(bfd) \
2637 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2638
2639 #define elf32_arm_local_got_tls_type(bfd) \
2640 (elf_arm_tdata (bfd)->local_got_tls_type)
2641
2642 #define elf32_arm_local_tlsdesc_gotent(bfd) \
2643 (elf_arm_tdata (bfd)->local_tlsdesc_gotent)
2644
2645 #define elf32_arm_local_iplt(bfd) \
2646 (elf_arm_tdata (bfd)->local_iplt)
2647
2648 #define is_arm_elf(bfd) \
2649 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2650 && elf_tdata (bfd) != NULL \
2651 && elf_object_id (bfd) == ARM_ELF_DATA)
2652
2653 static bfd_boolean
2654 elf32_arm_mkobject (bfd *abfd)
2655 {
2656 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2657 ARM_ELF_DATA);
2658 }
2659
2660 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2661
2662 /* Arm ELF linker hash entry. */
2663 struct elf32_arm_link_hash_entry
2664 {
2665 struct elf_link_hash_entry root;
2666
2667 /* Track dynamic relocs copied for this symbol. */
2668 struct elf_dyn_relocs *dyn_relocs;
2669
2670 /* ARM-specific PLT information. */
2671 struct arm_plt_info plt;
2672
2673 #define GOT_UNKNOWN 0
2674 #define GOT_NORMAL 1
2675 #define GOT_TLS_GD 2
2676 #define GOT_TLS_IE 4
2677 #define GOT_TLS_GDESC 8
2678 #define GOT_TLS_GD_ANY_P(type) ((type & GOT_TLS_GD) || (type & GOT_TLS_GDESC))
2679 unsigned int tls_type : 8;
2680
2681 /* True if the symbol's PLT entry is in .iplt rather than .plt. */
2682 unsigned int is_iplt : 1;
2683
2684 unsigned int unused : 23;
2685
2686 /* Offset of the GOTPLT entry reserved for the TLS descriptor,
2687 starting at the end of the jump table. */
2688 bfd_vma tlsdesc_got;
2689
2690 /* The symbol marking the real symbol location for exported thumb
2691 symbols with Arm stubs. */
2692 struct elf_link_hash_entry *export_glue;
2693
2694 /* A pointer to the most recently used stub hash entry against this
2695 symbol. */
2696 struct elf32_arm_stub_hash_entry *stub_cache;
2697 };
2698
2699 /* Traverse an arm ELF linker hash table. */
2700 #define elf32_arm_link_hash_traverse(table, func, info) \
2701 (elf_link_hash_traverse \
2702 (&(table)->root, \
2703 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2704 (info)))
2705
2706 /* Get the ARM elf linker hash table from a link_info structure. */
2707 #define elf32_arm_hash_table(info) \
2708 (elf_hash_table_id ((struct elf_link_hash_table *) ((info)->hash)) \
2709 == ARM_ELF_DATA ? ((struct elf32_arm_link_hash_table *) ((info)->hash)) : NULL)
2710
2711 #define arm_stub_hash_lookup(table, string, create, copy) \
2712 ((struct elf32_arm_stub_hash_entry *) \
2713 bfd_hash_lookup ((table), (string), (create), (copy)))
2714
2715 /* Array to keep track of which stub sections have been created, and
2716 information on stub grouping. */
2717 struct map_stub
2718 {
2719 /* This is the section to which stubs in the group will be
2720 attached. */
2721 asection *link_sec;
2722 /* The stub section. */
2723 asection *stub_sec;
2724 };
2725
2726 #define elf32_arm_compute_jump_table_size(htab) \
2727 ((htab)->next_tls_desc_index * 4)
2728
2729 /* ARM ELF linker hash table. */
2730 struct elf32_arm_link_hash_table
2731 {
2732 /* The main hash table. */
2733 struct elf_link_hash_table root;
2734
2735 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2736 bfd_size_type thumb_glue_size;
2737
2738 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2739 bfd_size_type arm_glue_size;
2740
2741 /* The size in bytes of section containing the ARMv4 BX veneers. */
2742 bfd_size_type bx_glue_size;
2743
2744 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2745 veneer has been populated. */
2746 bfd_vma bx_glue_offset[15];
2747
2748 /* The size in bytes of the section containing glue for VFP11 erratum
2749 veneers. */
2750 bfd_size_type vfp11_erratum_glue_size;
2751
2752 /* A table of fix locations for Cortex-A8 Thumb-2 branch/TLB erratum. This
2753 holds Cortex-A8 erratum fix locations between elf32_arm_size_stubs() and
2754 elf32_arm_write_section(). */
2755 struct a8_erratum_fix *a8_erratum_fixes;
2756 unsigned int num_a8_erratum_fixes;
2757
2758 /* An arbitrary input BFD chosen to hold the glue sections. */
2759 bfd * bfd_of_glue_owner;
2760
2761 /* Nonzero to output a BE8 image. */
2762 int byteswap_code;
2763
2764 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2765 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2766 int target1_is_rel;
2767
2768 /* The relocation to use for R_ARM_TARGET2 relocations. */
2769 int target2_reloc;
2770
2771 /* 0 = Ignore R_ARM_V4BX.
2772 1 = Convert BX to MOV PC.
2773 2 = Generate v4 interworing stubs. */
2774 int fix_v4bx;
2775
2776 /* Whether we should fix the Cortex-A8 Thumb-2 branch/TLB erratum. */
2777 int fix_cortex_a8;
2778
2779 /* Whether we should fix the ARM1176 BLX immediate issue. */
2780 int fix_arm1176;
2781
2782 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2783 int use_blx;
2784
2785 /* What sort of code sequences we should look for which may trigger the
2786 VFP11 denorm erratum. */
2787 bfd_arm_vfp11_fix vfp11_fix;
2788
2789 /* Global counter for the number of fixes we have emitted. */
2790 int num_vfp11_fixes;
2791
2792 /* Nonzero to force PIC branch veneers. */
2793 int pic_veneer;
2794
2795 /* The number of bytes in the initial entry in the PLT. */
2796 bfd_size_type plt_header_size;
2797
2798 /* The number of bytes in the subsequent PLT etries. */
2799 bfd_size_type plt_entry_size;
2800
2801 /* True if the target system is VxWorks. */
2802 int vxworks_p;
2803
2804 /* True if the target system is Symbian OS. */
2805 int symbian_p;
2806
2807 /* True if the target uses REL relocations. */
2808 int use_rel;
2809
2810 /* The index of the next unused R_ARM_TLS_DESC slot in .rel.plt. */
2811 bfd_vma next_tls_desc_index;
2812
2813 /* How many R_ARM_TLS_DESC relocations were generated so far. */
2814 bfd_vma num_tls_desc;
2815
2816 /* Short-cuts to get to dynamic linker sections. */
2817 asection *sdynbss;
2818 asection *srelbss;
2819
2820 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2821 asection *srelplt2;
2822
2823 /* The offset into splt of the PLT entry for the TLS descriptor
2824 resolver. Special values are 0, if not necessary (or not found
2825 to be necessary yet), and -1 if needed but not determined
2826 yet. */
2827 bfd_vma dt_tlsdesc_plt;
2828
2829 /* The offset into sgot of the GOT entry used by the PLT entry
2830 above. */
2831 bfd_vma dt_tlsdesc_got;
2832
2833 /* Offset in .plt section of tls_arm_trampoline. */
2834 bfd_vma tls_trampoline;
2835
2836 /* Data for R_ARM_TLS_LDM32 relocations. */
2837 union
2838 {
2839 bfd_signed_vma refcount;
2840 bfd_vma offset;
2841 } tls_ldm_got;
2842
2843 /* Small local sym cache. */
2844 struct sym_cache sym_cache;
2845
2846 /* For convenience in allocate_dynrelocs. */
2847 bfd * obfd;
2848
2849 /* The amount of space used by the reserved portion of the sgotplt
2850 section, plus whatever space is used by the jump slots. */
2851 bfd_vma sgotplt_jump_table_size;
2852
2853 /* The stub hash table. */
2854 struct bfd_hash_table stub_hash_table;
2855
2856 /* Linker stub bfd. */
2857 bfd *stub_bfd;
2858
2859 /* Linker call-backs. */
2860 asection * (*add_stub_section) (const char *, asection *);
2861 void (*layout_sections_again) (void);
2862
2863 /* Array to keep track of which stub sections have been created, and
2864 information on stub grouping. */
2865 struct map_stub *stub_group;
2866
2867 /* Number of elements in stub_group. */
2868 int top_id;
2869
2870 /* Assorted information used by elf32_arm_size_stubs. */
2871 unsigned int bfd_count;
2872 int top_index;
2873 asection **input_list;
2874 };
2875
2876 /* Create an entry in an ARM ELF linker hash table. */
2877
2878 static struct bfd_hash_entry *
2879 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2880 struct bfd_hash_table * table,
2881 const char * string)
2882 {
2883 struct elf32_arm_link_hash_entry * ret =
2884 (struct elf32_arm_link_hash_entry *) entry;
2885
2886 /* Allocate the structure if it has not already been allocated by a
2887 subclass. */
2888 if (ret == NULL)
2889 ret = (struct elf32_arm_link_hash_entry *)
2890 bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2891 if (ret == NULL)
2892 return (struct bfd_hash_entry *) ret;
2893
2894 /* Call the allocation method of the superclass. */
2895 ret = ((struct elf32_arm_link_hash_entry *)
2896 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2897 table, string));
2898 if (ret != NULL)
2899 {
2900 ret->dyn_relocs = NULL;
2901 ret->tls_type = GOT_UNKNOWN;
2902 ret->tlsdesc_got = (bfd_vma) -1;
2903 ret->plt.thumb_refcount = 0;
2904 ret->plt.maybe_thumb_refcount = 0;
2905 ret->plt.noncall_refcount = 0;
2906 ret->plt.got_offset = -1;
2907 ret->is_iplt = FALSE;
2908 ret->export_glue = NULL;
2909
2910 ret->stub_cache = NULL;
2911 }
2912
2913 return (struct bfd_hash_entry *) ret;
2914 }
2915
2916 /* Ensure that we have allocated bookkeeping structures for ABFD's local
2917 symbols. */
2918
2919 static bfd_boolean
2920 elf32_arm_allocate_local_sym_info (bfd *abfd)
2921 {
2922 if (elf_local_got_refcounts (abfd) == NULL)
2923 {
2924 bfd_size_type num_syms;
2925 bfd_size_type size;
2926 char *data;
2927
2928 num_syms = elf_tdata (abfd)->symtab_hdr.sh_info;
2929 size = num_syms * (sizeof (bfd_signed_vma)
2930 + sizeof (struct arm_local_iplt_info *)
2931 + sizeof (bfd_vma)
2932 + sizeof (char));
2933 data = bfd_zalloc (abfd, size);
2934 if (data == NULL)
2935 return FALSE;
2936
2937 elf_local_got_refcounts (abfd) = (bfd_signed_vma *) data;
2938 data += num_syms * sizeof (bfd_signed_vma);
2939
2940 elf32_arm_local_iplt (abfd) = (struct arm_local_iplt_info **) data;
2941 data += num_syms * sizeof (struct arm_local_iplt_info *);
2942
2943 elf32_arm_local_tlsdesc_gotent (abfd) = (bfd_vma *) data;
2944 data += num_syms * sizeof (bfd_vma);
2945
2946 elf32_arm_local_got_tls_type (abfd) = data;
2947 }
2948 return TRUE;
2949 }
2950
2951 /* Return the .iplt information for local symbol R_SYMNDX, which belongs
2952 to input bfd ABFD. Create the information if it doesn't already exist.
2953 Return null if an allocation fails. */
2954
2955 static struct arm_local_iplt_info *
2956 elf32_arm_create_local_iplt (bfd *abfd, unsigned long r_symndx)
2957 {
2958 struct arm_local_iplt_info **ptr;
2959
2960 if (!elf32_arm_allocate_local_sym_info (abfd))
2961 return NULL;
2962
2963 BFD_ASSERT (r_symndx < elf_tdata (abfd)->symtab_hdr.sh_info);
2964 ptr = &elf32_arm_local_iplt (abfd)[r_symndx];
2965 if (*ptr == NULL)
2966 *ptr = bfd_zalloc (abfd, sizeof (**ptr));
2967 return *ptr;
2968 }
2969
2970 /* Try to obtain PLT information for the symbol with index R_SYMNDX
2971 in ABFD's symbol table. If the symbol is global, H points to its
2972 hash table entry, otherwise H is null.
2973
2974 Return true if the symbol does have PLT information. When returning
2975 true, point *ROOT_PLT at the target-independent reference count/offset
2976 union and *ARM_PLT at the ARM-specific information. */
2977
2978 static bfd_boolean
2979 elf32_arm_get_plt_info (bfd *abfd, struct elf32_arm_link_hash_entry *h,
2980 unsigned long r_symndx, union gotplt_union **root_plt,
2981 struct arm_plt_info **arm_plt)
2982 {
2983 struct arm_local_iplt_info *local_iplt;
2984
2985 if (h != NULL)
2986 {
2987 *root_plt = &h->root.plt;
2988 *arm_plt = &h->plt;
2989 return TRUE;
2990 }
2991
2992 if (elf32_arm_local_iplt (abfd) == NULL)
2993 return FALSE;
2994
2995 local_iplt = elf32_arm_local_iplt (abfd)[r_symndx];
2996 if (local_iplt == NULL)
2997 return FALSE;
2998
2999 *root_plt = &local_iplt->root;
3000 *arm_plt = &local_iplt->arm;
3001 return TRUE;
3002 }
3003
3004 /* Return true if the PLT described by ARM_PLT requires a Thumb stub
3005 before it. */
3006
3007 static bfd_boolean
3008 elf32_arm_plt_needs_thumb_stub_p (struct bfd_link_info *info,
3009 struct arm_plt_info *arm_plt)
3010 {
3011 struct elf32_arm_link_hash_table *htab;
3012
3013 htab = elf32_arm_hash_table (info);
3014 return (arm_plt->thumb_refcount != 0
3015 || (!htab->use_blx && arm_plt->maybe_thumb_refcount != 0));
3016 }
3017
3018 /* Return a pointer to the head of the dynamic reloc list that should
3019 be used for local symbol ISYM, which is symbol number R_SYMNDX in
3020 ABFD's symbol table. Return null if an error occurs. */
3021
3022 static struct elf_dyn_relocs **
3023 elf32_arm_get_local_dynreloc_list (bfd *abfd, unsigned long r_symndx,
3024 Elf_Internal_Sym *isym)
3025 {
3026 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC)
3027 {
3028 struct arm_local_iplt_info *local_iplt;
3029
3030 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
3031 if (local_iplt == NULL)
3032 return NULL;
3033 return &local_iplt->dyn_relocs;
3034 }
3035 else
3036 {
3037 /* Track dynamic relocs needed for local syms too.
3038 We really need local syms available to do this
3039 easily. Oh well. */
3040 asection *s;
3041 void *vpp;
3042
3043 s = bfd_section_from_elf_index (abfd, isym->st_shndx);
3044 if (s == NULL)
3045 abort ();
3046
3047 vpp = &elf_section_data (s)->local_dynrel;
3048 return (struct elf_dyn_relocs **) vpp;
3049 }
3050 }
3051
3052 /* Initialize an entry in the stub hash table. */
3053
3054 static struct bfd_hash_entry *
3055 stub_hash_newfunc (struct bfd_hash_entry *entry,
3056 struct bfd_hash_table *table,
3057 const char *string)
3058 {
3059 /* Allocate the structure if it has not already been allocated by a
3060 subclass. */
3061 if (entry == NULL)
3062 {
3063 entry = (struct bfd_hash_entry *)
3064 bfd_hash_allocate (table, sizeof (struct elf32_arm_stub_hash_entry));
3065 if (entry == NULL)
3066 return entry;
3067 }
3068
3069 /* Call the allocation method of the superclass. */
3070 entry = bfd_hash_newfunc (entry, table, string);
3071 if (entry != NULL)
3072 {
3073 struct elf32_arm_stub_hash_entry *eh;
3074
3075 /* Initialize the local fields. */
3076 eh = (struct elf32_arm_stub_hash_entry *) entry;
3077 eh->stub_sec = NULL;
3078 eh->stub_offset = 0;
3079 eh->target_value = 0;
3080 eh->target_section = NULL;
3081 eh->target_addend = 0;
3082 eh->orig_insn = 0;
3083 eh->stub_type = arm_stub_none;
3084 eh->stub_size = 0;
3085 eh->stub_template = NULL;
3086 eh->stub_template_size = 0;
3087 eh->h = NULL;
3088 eh->id_sec = NULL;
3089 eh->output_name = NULL;
3090 }
3091
3092 return entry;
3093 }
3094
3095 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
3096 shortcuts to them in our hash table. */
3097
3098 static bfd_boolean
3099 create_got_section (bfd *dynobj, struct bfd_link_info *info)
3100 {
3101 struct elf32_arm_link_hash_table *htab;
3102
3103 htab = elf32_arm_hash_table (info);
3104 if (htab == NULL)
3105 return FALSE;
3106
3107 /* BPABI objects never have a GOT, or associated sections. */
3108 if (htab->symbian_p)
3109 return TRUE;
3110
3111 if (! _bfd_elf_create_got_section (dynobj, info))
3112 return FALSE;
3113
3114 return TRUE;
3115 }
3116
3117 /* Create the .iplt, .rel(a).iplt and .igot.plt sections. */
3118
3119 static bfd_boolean
3120 create_ifunc_sections (struct bfd_link_info *info)
3121 {
3122 struct elf32_arm_link_hash_table *htab;
3123 const struct elf_backend_data *bed;
3124 bfd *dynobj;
3125 asection *s;
3126 flagword flags;
3127
3128 htab = elf32_arm_hash_table (info);
3129 dynobj = htab->root.dynobj;
3130 bed = get_elf_backend_data (dynobj);
3131 flags = bed->dynamic_sec_flags;
3132
3133 if (htab->root.iplt == NULL)
3134 {
3135 s = bfd_make_section_with_flags (dynobj, ".iplt",
3136 flags | SEC_READONLY | SEC_CODE);
3137 if (s == NULL
3138 || !bfd_set_section_alignment (abfd, s, bed->plt_alignment))
3139 return FALSE;
3140 htab->root.iplt = s;
3141 }
3142
3143 if (htab->root.irelplt == NULL)
3144 {
3145 s = bfd_make_section_with_flags (dynobj, RELOC_SECTION (htab, ".iplt"),
3146 flags | SEC_READONLY);
3147 if (s == NULL
3148 || !bfd_set_section_alignment (abfd, s, bed->s->log_file_align))
3149 return FALSE;
3150 htab->root.irelplt = s;
3151 }
3152
3153 if (htab->root.igotplt == NULL)
3154 {
3155 s = bfd_make_section_with_flags (dynobj, ".igot.plt", flags);
3156 if (s == NULL
3157 || !bfd_set_section_alignment (dynobj, s, bed->s->log_file_align))
3158 return FALSE;
3159 htab->root.igotplt = s;
3160 }
3161 return TRUE;
3162 }
3163
3164 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
3165 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
3166 hash table. */
3167
3168 static bfd_boolean
3169 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
3170 {
3171 struct elf32_arm_link_hash_table *htab;
3172
3173 htab = elf32_arm_hash_table (info);
3174 if (htab == NULL)
3175 return FALSE;
3176
3177 if (!htab->root.sgot && !create_got_section (dynobj, info))
3178 return FALSE;
3179
3180 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
3181 return FALSE;
3182
3183 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
3184 if (!info->shared)
3185 htab->srelbss = bfd_get_section_by_name (dynobj,
3186 RELOC_SECTION (htab, ".bss"));
3187
3188 if (htab->vxworks_p)
3189 {
3190 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
3191 return FALSE;
3192
3193 if (info->shared)
3194 {
3195 htab->plt_header_size = 0;
3196 htab->plt_entry_size
3197 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
3198 }
3199 else
3200 {
3201 htab->plt_header_size
3202 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
3203 htab->plt_entry_size
3204 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
3205 }
3206 }
3207
3208 if (!htab->root.splt
3209 || !htab->root.srelplt
3210 || !htab->sdynbss
3211 || (!info->shared && !htab->srelbss))
3212 abort ();
3213
3214 return TRUE;
3215 }
3216
3217 /* Copy the extra info we tack onto an elf_link_hash_entry. */
3218
3219 static void
3220 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
3221 struct elf_link_hash_entry *dir,
3222 struct elf_link_hash_entry *ind)
3223 {
3224 struct elf32_arm_link_hash_entry *edir, *eind;
3225
3226 edir = (struct elf32_arm_link_hash_entry *) dir;
3227 eind = (struct elf32_arm_link_hash_entry *) ind;
3228
3229 if (eind->dyn_relocs != NULL)
3230 {
3231 if (edir->dyn_relocs != NULL)
3232 {
3233 struct elf_dyn_relocs **pp;
3234 struct elf_dyn_relocs *p;
3235
3236 /* Add reloc counts against the indirect sym to the direct sym
3237 list. Merge any entries against the same section. */
3238 for (pp = &eind->dyn_relocs; (p = *pp) != NULL; )
3239 {
3240 struct elf_dyn_relocs *q;
3241
3242 for (q = edir->dyn_relocs; q != NULL; q = q->next)
3243 if (q->sec == p->sec)
3244 {
3245 q->pc_count += p->pc_count;
3246 q->count += p->count;
3247 *pp = p->next;
3248 break;
3249 }
3250 if (q == NULL)
3251 pp = &p->next;
3252 }
3253 *pp = edir->dyn_relocs;
3254 }
3255
3256 edir->dyn_relocs = eind->dyn_relocs;
3257 eind->dyn_relocs = NULL;
3258 }
3259
3260 if (ind->root.type == bfd_link_hash_indirect)
3261 {
3262 /* Copy over PLT info. */
3263 edir->plt.thumb_refcount += eind->plt.thumb_refcount;
3264 eind->plt.thumb_refcount = 0;
3265 edir->plt.maybe_thumb_refcount += eind->plt.maybe_thumb_refcount;
3266 eind->plt.maybe_thumb_refcount = 0;
3267 edir->plt.noncall_refcount += eind->plt.noncall_refcount;
3268 eind->plt.noncall_refcount = 0;
3269
3270 /* We should only allocate a function to .iplt once the final
3271 symbol information is known. */
3272 BFD_ASSERT (!eind->is_iplt);
3273
3274 if (dir->got.refcount <= 0)
3275 {
3276 edir->tls_type = eind->tls_type;
3277 eind->tls_type = GOT_UNKNOWN;
3278 }
3279 }
3280
3281 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
3282 }
3283
3284 /* Create an ARM elf linker hash table. */
3285
3286 static struct bfd_link_hash_table *
3287 elf32_arm_link_hash_table_create (bfd *abfd)
3288 {
3289 struct elf32_arm_link_hash_table *ret;
3290 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
3291
3292 ret = (struct elf32_arm_link_hash_table *) bfd_malloc (amt);
3293 if (ret == NULL)
3294 return NULL;
3295
3296 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
3297 elf32_arm_link_hash_newfunc,
3298 sizeof (struct elf32_arm_link_hash_entry),
3299 ARM_ELF_DATA))
3300 {
3301 free (ret);
3302 return NULL;
3303 }
3304
3305 ret->sdynbss = NULL;
3306 ret->srelbss = NULL;
3307 ret->srelplt2 = NULL;
3308 ret->dt_tlsdesc_plt = 0;
3309 ret->dt_tlsdesc_got = 0;
3310 ret->tls_trampoline = 0;
3311 ret->next_tls_desc_index = 0;
3312 ret->num_tls_desc = 0;
3313 ret->thumb_glue_size = 0;
3314 ret->arm_glue_size = 0;
3315 ret->bx_glue_size = 0;
3316 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
3317 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3318 ret->vfp11_erratum_glue_size = 0;
3319 ret->num_vfp11_fixes = 0;
3320 ret->fix_cortex_a8 = 0;
3321 ret->fix_arm1176 = 0;
3322 ret->bfd_of_glue_owner = NULL;
3323 ret->byteswap_code = 0;
3324 ret->target1_is_rel = 0;
3325 ret->target2_reloc = R_ARM_NONE;
3326 #ifdef FOUR_WORD_PLT
3327 ret->plt_header_size = 16;
3328 ret->plt_entry_size = 16;
3329 #else
3330 ret->plt_header_size = 20;
3331 ret->plt_entry_size = 12;
3332 #endif
3333 ret->fix_v4bx = 0;
3334 ret->use_blx = 0;
3335 ret->vxworks_p = 0;
3336 ret->symbian_p = 0;
3337 ret->use_rel = 1;
3338 ret->sym_cache.abfd = NULL;
3339 ret->obfd = abfd;
3340 ret->tls_ldm_got.refcount = 0;
3341 ret->stub_bfd = NULL;
3342 ret->add_stub_section = NULL;
3343 ret->layout_sections_again = NULL;
3344 ret->stub_group = NULL;
3345 ret->top_id = 0;
3346 ret->bfd_count = 0;
3347 ret->top_index = 0;
3348 ret->input_list = NULL;
3349
3350 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
3351 sizeof (struct elf32_arm_stub_hash_entry)))
3352 {
3353 free (ret);
3354 return NULL;
3355 }
3356
3357 return &ret->root.root;
3358 }
3359
3360 /* Free the derived linker hash table. */
3361
3362 static void
3363 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
3364 {
3365 struct elf32_arm_link_hash_table *ret
3366 = (struct elf32_arm_link_hash_table *) hash;
3367
3368 bfd_hash_table_free (&ret->stub_hash_table);
3369 _bfd_generic_link_hash_table_free (hash);
3370 }
3371
3372 /* Determine if we're dealing with a Thumb only architecture. */
3373
3374 static bfd_boolean
3375 using_thumb_only (struct elf32_arm_link_hash_table *globals)
3376 {
3377 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3378 Tag_CPU_arch);
3379 int profile;
3380
3381 if (arch == TAG_CPU_ARCH_V6_M || arch == TAG_CPU_ARCH_V6S_M)
3382 return TRUE;
3383
3384 if (arch != TAG_CPU_ARCH_V7 && arch != TAG_CPU_ARCH_V7E_M)
3385 return FALSE;
3386
3387 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3388 Tag_CPU_arch_profile);
3389
3390 return profile == 'M';
3391 }
3392
3393 /* Determine if we're dealing with a Thumb-2 object. */
3394
3395 static bfd_boolean
3396 using_thumb2 (struct elf32_arm_link_hash_table *globals)
3397 {
3398 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3399 Tag_CPU_arch);
3400 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
3401 }
3402
3403 /* Determine what kind of NOPs are available. */
3404
3405 static bfd_boolean
3406 arch_has_arm_nop (struct elf32_arm_link_hash_table *globals)
3407 {
3408 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3409 Tag_CPU_arch);
3410 return arch == TAG_CPU_ARCH_V6T2
3411 || arch == TAG_CPU_ARCH_V6K
3412 || arch == TAG_CPU_ARCH_V7
3413 || arch == TAG_CPU_ARCH_V7E_M;
3414 }
3415
3416 static bfd_boolean
3417 arch_has_thumb2_nop (struct elf32_arm_link_hash_table *globals)
3418 {
3419 const int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3420 Tag_CPU_arch);
3421 return (arch == TAG_CPU_ARCH_V6T2 || arch == TAG_CPU_ARCH_V7
3422 || arch == TAG_CPU_ARCH_V7E_M);
3423 }
3424
3425 static bfd_boolean
3426 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
3427 {
3428 switch (stub_type)
3429 {
3430 case arm_stub_long_branch_thumb_only:
3431 case arm_stub_long_branch_v4t_thumb_arm:
3432 case arm_stub_short_branch_v4t_thumb_arm:
3433 case arm_stub_long_branch_v4t_thumb_arm_pic:
3434 case arm_stub_long_branch_v4t_thumb_tls_pic:
3435 case arm_stub_long_branch_thumb_only_pic:
3436 return TRUE;
3437 case arm_stub_none:
3438 BFD_FAIL ();
3439 return FALSE;
3440 break;
3441 default:
3442 return FALSE;
3443 }
3444 }
3445
3446 /* Determine the type of stub needed, if any, for a call. */
3447
3448 static enum elf32_arm_stub_type
3449 arm_type_of_stub (struct bfd_link_info *info,
3450 asection *input_sec,
3451 const Elf_Internal_Rela *rel,
3452 unsigned char st_type,
3453 enum arm_st_branch_type *actual_branch_type,
3454 struct elf32_arm_link_hash_entry *hash,
3455 bfd_vma destination,
3456 asection *sym_sec,
3457 bfd *input_bfd,
3458 const char *name)
3459 {
3460 bfd_vma location;
3461 bfd_signed_vma branch_offset;
3462 unsigned int r_type;
3463 struct elf32_arm_link_hash_table * globals;
3464 int thumb2;
3465 int thumb_only;
3466 enum elf32_arm_stub_type stub_type = arm_stub_none;
3467 int use_plt = 0;
3468 enum arm_st_branch_type branch_type = *actual_branch_type;
3469 union gotplt_union *root_plt;
3470 struct arm_plt_info *arm_plt;
3471
3472 if (branch_type == ST_BRANCH_LONG)
3473 return stub_type;
3474
3475 globals = elf32_arm_hash_table (info);
3476 if (globals == NULL)
3477 return stub_type;
3478
3479 thumb_only = using_thumb_only (globals);
3480
3481 thumb2 = using_thumb2 (globals);
3482
3483 /* Determine where the call point is. */
3484 location = (input_sec->output_offset
3485 + input_sec->output_section->vma
3486 + rel->r_offset);
3487
3488 r_type = ELF32_R_TYPE (rel->r_info);
3489
3490 /* For TLS call relocs, it is the caller's responsibility to provide
3491 the address of the appropriate trampoline. */
3492 if (r_type != R_ARM_TLS_CALL
3493 && r_type != R_ARM_THM_TLS_CALL
3494 && elf32_arm_get_plt_info (input_bfd, hash, ELF32_R_SYM (rel->r_info),
3495 &root_plt, &arm_plt)
3496 && root_plt->offset != (bfd_vma) -1)
3497 {
3498 asection *splt;
3499
3500 if (hash == NULL || hash->is_iplt)
3501 splt = globals->root.iplt;
3502 else
3503 splt = globals->root.splt;
3504 if (splt != NULL)
3505 {
3506 use_plt = 1;
3507
3508 /* Note when dealing with PLT entries: the main PLT stub is in
3509 ARM mode, so if the branch is in Thumb mode, another
3510 Thumb->ARM stub will be inserted later just before the ARM
3511 PLT stub. We don't take this extra distance into account
3512 here, because if a long branch stub is needed, we'll add a
3513 Thumb->Arm one and branch directly to the ARM PLT entry
3514 because it avoids spreading offset corrections in several
3515 places. */
3516
3517 destination = (splt->output_section->vma
3518 + splt->output_offset
3519 + root_plt->offset);
3520 st_type = STT_FUNC;
3521 branch_type = ST_BRANCH_TO_ARM;
3522 }
3523 }
3524 /* Calls to STT_GNU_IFUNC symbols should go through a PLT. */
3525 BFD_ASSERT (st_type != STT_GNU_IFUNC);
3526
3527 branch_offset = (bfd_signed_vma)(destination - location);
3528
3529 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24
3530 || r_type == R_ARM_THM_TLS_CALL)
3531 {
3532 /* Handle cases where:
3533 - this call goes too far (different Thumb/Thumb2 max
3534 distance)
3535 - it's a Thumb->Arm call and blx is not available, or it's a
3536 Thumb->Arm branch (not bl). A stub is needed in this case,
3537 but only if this call is not through a PLT entry. Indeed,
3538 PLT stubs handle mode switching already.
3539 */
3540 if ((!thumb2
3541 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
3542 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
3543 || (thumb2
3544 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
3545 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
3546 || (branch_type == ST_BRANCH_TO_ARM
3547 && (((r_type == R_ARM_THM_CALL
3548 || r_type == R_ARM_THM_TLS_CALL) && !globals->use_blx)
3549 || (r_type == R_ARM_THM_JUMP24))
3550 && !use_plt))
3551 {
3552 if (branch_type == ST_BRANCH_TO_THUMB)
3553 {
3554 /* Thumb to thumb. */
3555 if (!thumb_only)
3556 {
3557 stub_type = (info->shared | globals->pic_veneer)
3558 /* PIC stubs. */
3559 ? ((globals->use_blx
3560 && (r_type ==R_ARM_THM_CALL))
3561 /* V5T and above. Stub starts with ARM code, so
3562 we must be able to switch mode before
3563 reaching it, which is only possible for 'bl'
3564 (ie R_ARM_THM_CALL relocation). */
3565 ? arm_stub_long_branch_any_thumb_pic
3566 /* On V4T, use Thumb code only. */
3567 : arm_stub_long_branch_v4t_thumb_thumb_pic)
3568
3569 /* non-PIC stubs. */
3570 : ((globals->use_blx
3571 && (r_type ==R_ARM_THM_CALL))
3572 /* V5T and above. */
3573 ? arm_stub_long_branch_any_any
3574 /* V4T. */
3575 : arm_stub_long_branch_v4t_thumb_thumb);
3576 }
3577 else
3578 {
3579 stub_type = (info->shared | globals->pic_veneer)
3580 /* PIC stub. */
3581 ? arm_stub_long_branch_thumb_only_pic
3582 /* non-PIC stub. */
3583 : arm_stub_long_branch_thumb_only;
3584 }
3585 }
3586 else
3587 {
3588 /* Thumb to arm. */
3589 if (sym_sec != NULL
3590 && sym_sec->owner != NULL
3591 && !INTERWORK_FLAG (sym_sec->owner))
3592 {
3593 (*_bfd_error_handler)
3594 (_("%B(%s): warning: interworking not enabled.\n"
3595 " first occurrence: %B: Thumb call to ARM"),
3596 sym_sec->owner, input_bfd, name);
3597 }
3598
3599 stub_type =
3600 (info->shared | globals->pic_veneer)
3601 /* PIC stubs. */
3602 ? (r_type == R_ARM_THM_TLS_CALL
3603 /* TLS PIC stubs */
3604 ? (globals->use_blx ? arm_stub_long_branch_any_tls_pic
3605 : arm_stub_long_branch_v4t_thumb_tls_pic)
3606 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3607 /* V5T PIC and above. */
3608 ? arm_stub_long_branch_any_arm_pic
3609 /* V4T PIC stub. */
3610 : arm_stub_long_branch_v4t_thumb_arm_pic))
3611
3612 /* non-PIC stubs. */
3613 : ((globals->use_blx && r_type == R_ARM_THM_CALL)
3614 /* V5T and above. */
3615 ? arm_stub_long_branch_any_any
3616 /* V4T. */
3617 : arm_stub_long_branch_v4t_thumb_arm);
3618
3619 /* Handle v4t short branches. */
3620 if ((stub_type == arm_stub_long_branch_v4t_thumb_arm)
3621 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
3622 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
3623 stub_type = arm_stub_short_branch_v4t_thumb_arm;
3624 }
3625 }
3626 }
3627 else if (r_type == R_ARM_CALL
3628 || r_type == R_ARM_JUMP24
3629 || r_type == R_ARM_PLT32
3630 || r_type == R_ARM_TLS_CALL)
3631 {
3632 if (branch_type == ST_BRANCH_TO_THUMB)
3633 {
3634 /* Arm to thumb. */
3635
3636 if (sym_sec != NULL
3637 && sym_sec->owner != NULL
3638 && !INTERWORK_FLAG (sym_sec->owner))
3639 {
3640 (*_bfd_error_handler)
3641 (_("%B(%s): warning: interworking not enabled.\n"
3642 " first occurrence: %B: ARM call to Thumb"),
3643 sym_sec->owner, input_bfd, name);
3644 }
3645
3646 /* We have an extra 2-bytes reach because of
3647 the mode change (bit 24 (H) of BLX encoding). */
3648 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
3649 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
3650 || (r_type == R_ARM_CALL && !globals->use_blx)
3651 || (r_type == R_ARM_JUMP24)
3652 || (r_type == R_ARM_PLT32))
3653 {
3654 stub_type = (info->shared | globals->pic_veneer)
3655 /* PIC stubs. */
3656 ? ((globals->use_blx)
3657 /* V5T and above. */
3658 ? arm_stub_long_branch_any_thumb_pic
3659 /* V4T stub. */
3660 : arm_stub_long_branch_v4t_arm_thumb_pic)
3661
3662 /* non-PIC stubs. */
3663 : ((globals->use_blx)
3664 /* V5T and above. */
3665 ? arm_stub_long_branch_any_any
3666 /* V4T. */
3667 : arm_stub_long_branch_v4t_arm_thumb);
3668 }
3669 }
3670 else
3671 {
3672 /* Arm to arm. */
3673 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
3674 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
3675 {
3676 stub_type =
3677 (info->shared | globals->pic_veneer)
3678 /* PIC stubs. */
3679 ? (r_type == R_ARM_TLS_CALL
3680 /* TLS PIC Stub */
3681 ? arm_stub_long_branch_any_tls_pic
3682 : arm_stub_long_branch_any_arm_pic)
3683 /* non-PIC stubs. */
3684 : arm_stub_long_branch_any_any;
3685 }
3686 }
3687 }
3688
3689 /* If a stub is needed, record the actual destination type. */
3690 if (stub_type != arm_stub_none)
3691 *actual_branch_type = branch_type;
3692
3693 return stub_type;
3694 }
3695
3696 /* Build a name for an entry in the stub hash table. */
3697
3698 static char *
3699 elf32_arm_stub_name (const asection *input_section,
3700 const asection *sym_sec,
3701 const struct elf32_arm_link_hash_entry *hash,
3702 const Elf_Internal_Rela *rel,
3703 enum elf32_arm_stub_type stub_type)
3704 {
3705 char *stub_name;
3706 bfd_size_type len;
3707
3708 if (hash)
3709 {
3710 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1 + 2 + 1;
3711 stub_name = (char *) bfd_malloc (len);
3712 if (stub_name != NULL)
3713 sprintf (stub_name, "%08x_%s+%x_%d",
3714 input_section->id & 0xffffffff,
3715 hash->root.root.root.string,
3716 (int) rel->r_addend & 0xffffffff,
3717 (int) stub_type);
3718 }
3719 else
3720 {
3721 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1 + 2 + 1;
3722 stub_name = (char *) bfd_malloc (len);
3723 if (stub_name != NULL)
3724 sprintf (stub_name, "%08x_%x:%x+%x_%d",
3725 input_section->id & 0xffffffff,
3726 sym_sec->id & 0xffffffff,
3727 ELF32_R_TYPE (rel->r_info) == R_ARM_TLS_CALL
3728 || ELF32_R_TYPE (rel->r_info) == R_ARM_THM_TLS_CALL
3729 ? 0 : (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
3730 (int) rel->r_addend & 0xffffffff,
3731 (int) stub_type);
3732 }
3733
3734 return stub_name;
3735 }
3736
3737 /* Look up an entry in the stub hash. Stub entries are cached because
3738 creating the stub name takes a bit of time. */
3739
3740 static struct elf32_arm_stub_hash_entry *
3741 elf32_arm_get_stub_entry (const asection *input_section,
3742 const asection *sym_sec,
3743 struct elf_link_hash_entry *hash,
3744 const Elf_Internal_Rela *rel,
3745 struct elf32_arm_link_hash_table *htab,
3746 enum elf32_arm_stub_type stub_type)
3747 {
3748 struct elf32_arm_stub_hash_entry *stub_entry;
3749 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
3750 const asection *id_sec;
3751
3752 if ((input_section->flags & SEC_CODE) == 0)
3753 return NULL;
3754
3755 /* If this input section is part of a group of sections sharing one
3756 stub section, then use the id of the first section in the group.
3757 Stub names need to include a section id, as there may well be
3758 more than one stub used to reach say, printf, and we need to
3759 distinguish between them. */
3760 id_sec = htab->stub_group[input_section->id].link_sec;
3761
3762 if (h != NULL && h->stub_cache != NULL
3763 && h->stub_cache->h == h
3764 && h->stub_cache->id_sec == id_sec
3765 && h->stub_cache->stub_type == stub_type)
3766 {
3767 stub_entry = h->stub_cache;
3768 }
3769 else
3770 {
3771 char *stub_name;
3772
3773 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel, stub_type);
3774 if (stub_name == NULL)
3775 return NULL;
3776
3777 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3778 stub_name, FALSE, FALSE);
3779 if (h != NULL)
3780 h->stub_cache = stub_entry;
3781
3782 free (stub_name);
3783 }
3784
3785 return stub_entry;
3786 }
3787
3788 /* Find or create a stub section. Returns a pointer to the stub section, and
3789 the section to which the stub section will be attached (in *LINK_SEC_P).
3790 LINK_SEC_P may be NULL. */
3791
3792 static asection *
3793 elf32_arm_create_or_find_stub_sec (asection **link_sec_p, asection *section,
3794 struct elf32_arm_link_hash_table *htab)
3795 {
3796 asection *link_sec;
3797 asection *stub_sec;
3798
3799 link_sec = htab->stub_group[section->id].link_sec;
3800 stub_sec = htab->stub_group[section->id].stub_sec;
3801 if (stub_sec == NULL)
3802 {
3803 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3804 if (stub_sec == NULL)
3805 {
3806 size_t namelen;
3807 bfd_size_type len;
3808 char *s_name;
3809
3810 namelen = strlen (link_sec->name);
3811 len = namelen + sizeof (STUB_SUFFIX);
3812 s_name = (char *) bfd_alloc (htab->stub_bfd, len);
3813 if (s_name == NULL)
3814 return NULL;
3815
3816 memcpy (s_name, link_sec->name, namelen);
3817 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3818 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3819 if (stub_sec == NULL)
3820 return NULL;
3821 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3822 }
3823 htab->stub_group[section->id].stub_sec = stub_sec;
3824 }
3825
3826 if (link_sec_p)
3827 *link_sec_p = link_sec;
3828
3829 return stub_sec;
3830 }
3831
3832 /* Add a new stub entry to the stub hash. Not all fields of the new
3833 stub entry are initialised. */
3834
3835 static struct elf32_arm_stub_hash_entry *
3836 elf32_arm_add_stub (const char *stub_name,
3837 asection *section,
3838 struct elf32_arm_link_hash_table *htab)
3839 {
3840 asection *link_sec;
3841 asection *stub_sec;
3842 struct elf32_arm_stub_hash_entry *stub_entry;
3843
3844 stub_sec = elf32_arm_create_or_find_stub_sec (&link_sec, section, htab);
3845 if (stub_sec == NULL)
3846 return NULL;
3847
3848 /* Enter this entry into the linker stub hash table. */
3849 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3850 TRUE, FALSE);
3851 if (stub_entry == NULL)
3852 {
3853 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3854 section->owner,
3855 stub_name);
3856 return NULL;
3857 }
3858
3859 stub_entry->stub_sec = stub_sec;
3860 stub_entry->stub_offset = 0;
3861 stub_entry->id_sec = link_sec;
3862
3863 return stub_entry;
3864 }
3865
3866 /* Store an Arm insn into an output section not processed by
3867 elf32_arm_write_section. */
3868
3869 static void
3870 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3871 bfd * output_bfd, bfd_vma val, void * ptr)
3872 {
3873 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3874 bfd_putl32 (val, ptr);
3875 else
3876 bfd_putb32 (val, ptr);
3877 }
3878
3879 /* Store a 16-bit Thumb insn into an output section not processed by
3880 elf32_arm_write_section. */
3881
3882 static void
3883 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3884 bfd * output_bfd, bfd_vma val, void * ptr)
3885 {
3886 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3887 bfd_putl16 (val, ptr);
3888 else
3889 bfd_putb16 (val, ptr);
3890 }
3891
3892 /* If it's possible to change R_TYPE to a more efficient access
3893 model, return the new reloc type. */
3894
3895 static unsigned
3896 elf32_arm_tls_transition (struct bfd_link_info *info, int r_type,
3897 struct elf_link_hash_entry *h)
3898 {
3899 int is_local = (h == NULL);
3900
3901 if (info->shared || (h && h->root.type == bfd_link_hash_undefweak))
3902 return r_type;
3903
3904 /* We do not support relaxations for Old TLS models. */
3905 switch (r_type)
3906 {
3907 case R_ARM_TLS_GOTDESC:
3908 case R_ARM_TLS_CALL:
3909 case R_ARM_THM_TLS_CALL:
3910 case R_ARM_TLS_DESCSEQ:
3911 case R_ARM_THM_TLS_DESCSEQ:
3912 return is_local ? R_ARM_TLS_LE32 : R_ARM_TLS_IE32;
3913 }
3914
3915 return r_type;
3916 }
3917
3918 static bfd_reloc_status_type elf32_arm_final_link_relocate
3919 (reloc_howto_type *, bfd *, bfd *, asection *, bfd_byte *,
3920 Elf_Internal_Rela *, bfd_vma, struct bfd_link_info *, asection *,
3921 const char *, unsigned char, enum arm_st_branch_type,
3922 struct elf_link_hash_entry *, bfd_boolean *, char **);
3923
3924 static unsigned int
3925 arm_stub_required_alignment (enum elf32_arm_stub_type stub_type)
3926 {
3927 switch (stub_type)
3928 {
3929 case arm_stub_a8_veneer_b_cond:
3930 case arm_stub_a8_veneer_b:
3931 case arm_stub_a8_veneer_bl:
3932 return 2;
3933
3934 case arm_stub_long_branch_any_any:
3935 case arm_stub_long_branch_v4t_arm_thumb:
3936 case arm_stub_long_branch_thumb_only:
3937 case arm_stub_long_branch_v4t_thumb_thumb:
3938 case arm_stub_long_branch_v4t_thumb_arm:
3939 case arm_stub_short_branch_v4t_thumb_arm:
3940 case arm_stub_long_branch_any_arm_pic:
3941 case arm_stub_long_branch_any_thumb_pic:
3942 case arm_stub_long_branch_v4t_thumb_thumb_pic:
3943 case arm_stub_long_branch_v4t_arm_thumb_pic:
3944 case arm_stub_long_branch_v4t_thumb_arm_pic:
3945 case arm_stub_long_branch_thumb_only_pic:
3946 case arm_stub_long_branch_any_tls_pic:
3947 case arm_stub_long_branch_v4t_thumb_tls_pic:
3948 case arm_stub_a8_veneer_blx:
3949 return 4;
3950
3951 default:
3952 abort (); /* Should be unreachable. */
3953 }
3954 }
3955
3956 static bfd_boolean
3957 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3958 void * in_arg)
3959 {
3960 #define MAXRELOCS 2
3961 struct elf32_arm_stub_hash_entry *stub_entry;
3962 struct elf32_arm_link_hash_table *globals;
3963 struct bfd_link_info *info;
3964 asection *stub_sec;
3965 bfd *stub_bfd;
3966 bfd_byte *loc;
3967 bfd_vma sym_value;
3968 int template_size;
3969 int size;
3970 const insn_sequence *template_sequence;
3971 int i;
3972 int stub_reloc_idx[MAXRELOCS] = {-1, -1};
3973 int stub_reloc_offset[MAXRELOCS] = {0, 0};
3974 int nrelocs = 0;
3975
3976 /* Massage our args to the form they really have. */
3977 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3978 info = (struct bfd_link_info *) in_arg;
3979
3980 globals = elf32_arm_hash_table (info);
3981 if (globals == NULL)
3982 return FALSE;
3983
3984 stub_sec = stub_entry->stub_sec;
3985
3986 if ((globals->fix_cortex_a8 < 0)
3987 != (arm_stub_required_alignment (stub_entry->stub_type) == 2))
3988 /* We have to do less-strictly-aligned fixes last. */
3989 return TRUE;
3990
3991 /* Make a note of the offset within the stubs for this entry. */
3992 stub_entry->stub_offset = stub_sec->size;
3993 loc = stub_sec->contents + stub_entry->stub_offset;
3994
3995 stub_bfd = stub_sec->owner;
3996
3997 /* This is the address of the stub destination. */
3998 sym_value = (stub_entry->target_value
3999 + stub_entry->target_section->output_offset
4000 + stub_entry->target_section->output_section->vma);
4001
4002 template_sequence = stub_entry->stub_template;
4003 template_size = stub_entry->stub_template_size;
4004
4005 size = 0;
4006 for (i = 0; i < template_size; i++)
4007 {
4008 switch (template_sequence[i].type)
4009 {
4010 case THUMB16_TYPE:
4011 {
4012 bfd_vma data = (bfd_vma) template_sequence[i].data;
4013 if (template_sequence[i].reloc_addend != 0)
4014 {
4015 /* We've borrowed the reloc_addend field to mean we should
4016 insert a condition code into this (Thumb-1 branch)
4017 instruction. See THUMB16_BCOND_INSN. */
4018 BFD_ASSERT ((data & 0xff00) == 0xd000);
4019 data |= ((stub_entry->orig_insn >> 22) & 0xf) << 8;
4020 }
4021 bfd_put_16 (stub_bfd, data, loc + size);
4022 size += 2;
4023 }
4024 break;
4025
4026 case THUMB32_TYPE:
4027 bfd_put_16 (stub_bfd,
4028 (template_sequence[i].data >> 16) & 0xffff,
4029 loc + size);
4030 bfd_put_16 (stub_bfd, template_sequence[i].data & 0xffff,
4031 loc + size + 2);
4032 if (template_sequence[i].r_type != R_ARM_NONE)
4033 {
4034 stub_reloc_idx[nrelocs] = i;
4035 stub_reloc_offset[nrelocs++] = size;
4036 }
4037 size += 4;
4038 break;
4039
4040 case ARM_TYPE:
4041 bfd_put_32 (stub_bfd, template_sequence[i].data,
4042 loc + size);
4043 /* Handle cases where the target is encoded within the
4044 instruction. */
4045 if (template_sequence[i].r_type == R_ARM_JUMP24)
4046 {
4047 stub_reloc_idx[nrelocs] = i;
4048 stub_reloc_offset[nrelocs++] = size;
4049 }
4050 size += 4;
4051 break;
4052
4053 case DATA_TYPE:
4054 bfd_put_32 (stub_bfd, template_sequence[i].data, loc + size);
4055 stub_reloc_idx[nrelocs] = i;
4056 stub_reloc_offset[nrelocs++] = size;
4057 size += 4;
4058 break;
4059
4060 default:
4061 BFD_FAIL ();
4062 return FALSE;
4063 }
4064 }
4065
4066 stub_sec->size += size;
4067
4068 /* Stub size has already been computed in arm_size_one_stub. Check
4069 consistency. */
4070 BFD_ASSERT (size == stub_entry->stub_size);
4071
4072 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
4073 if (stub_entry->branch_type == ST_BRANCH_TO_THUMB)
4074 sym_value |= 1;
4075
4076 /* Assume there is at least one and at most MAXRELOCS entries to relocate
4077 in each stub. */
4078 BFD_ASSERT (nrelocs != 0 && nrelocs <= MAXRELOCS);
4079
4080 for (i = 0; i < nrelocs; i++)
4081 if (template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP24
4082 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_JUMP19
4083 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_CALL
4084 || template_sequence[stub_reloc_idx[i]].r_type == R_ARM_THM_XPC22)
4085 {
4086 Elf_Internal_Rela rel;
4087 bfd_boolean unresolved_reloc;
4088 char *error_message;
4089 enum arm_st_branch_type branch_type
4090 = (template_sequence[stub_reloc_idx[i]].r_type != R_ARM_THM_XPC22
4091 ? ST_BRANCH_TO_THUMB : ST_BRANCH_TO_ARM);
4092 bfd_vma points_to = sym_value + stub_entry->target_addend;
4093
4094 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4095 rel.r_info = ELF32_R_INFO (0,
4096 template_sequence[stub_reloc_idx[i]].r_type);
4097 rel.r_addend = template_sequence[stub_reloc_idx[i]].reloc_addend;
4098
4099 if (stub_entry->stub_type == arm_stub_a8_veneer_b_cond && i == 0)
4100 /* The first relocation in the elf32_arm_stub_a8_veneer_b_cond[]
4101 template should refer back to the instruction after the original
4102 branch. */
4103 points_to = sym_value;
4104
4105 /* There may be unintended consequences if this is not true. */
4106 BFD_ASSERT (stub_entry->h == NULL);
4107
4108 /* Note: _bfd_final_link_relocate doesn't handle these relocations
4109 properly. We should probably use this function unconditionally,
4110 rather than only for certain relocations listed in the enclosing
4111 conditional, for the sake of consistency. */
4112 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4113 (template_sequence[stub_reloc_idx[i]].r_type),
4114 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4115 points_to, info, stub_entry->target_section, "", STT_FUNC,
4116 branch_type, (struct elf_link_hash_entry *) stub_entry->h,
4117 &unresolved_reloc, &error_message);
4118 }
4119 else
4120 {
4121 Elf_Internal_Rela rel;
4122 bfd_boolean unresolved_reloc;
4123 char *error_message;
4124 bfd_vma points_to = sym_value + stub_entry->target_addend
4125 + template_sequence[stub_reloc_idx[i]].reloc_addend;
4126
4127 rel.r_offset = stub_entry->stub_offset + stub_reloc_offset[i];
4128 rel.r_info = ELF32_R_INFO (0,
4129 template_sequence[stub_reloc_idx[i]].r_type);
4130 rel.r_addend = 0;
4131
4132 elf32_arm_final_link_relocate (elf32_arm_howto_from_type
4133 (template_sequence[stub_reloc_idx[i]].r_type),
4134 stub_bfd, info->output_bfd, stub_sec, stub_sec->contents, &rel,
4135 points_to, info, stub_entry->target_section, "", STT_FUNC,
4136 stub_entry->branch_type,
4137 (struct elf_link_hash_entry *) stub_entry->h, &unresolved_reloc,
4138 &error_message);
4139 }
4140
4141 return TRUE;
4142 #undef MAXRELOCS
4143 }
4144
4145 /* Calculate the template, template size and instruction size for a stub.
4146 Return value is the instruction size. */
4147
4148 static unsigned int
4149 find_stub_size_and_template (enum elf32_arm_stub_type stub_type,
4150 const insn_sequence **stub_template,
4151 int *stub_template_size)
4152 {
4153 const insn_sequence *template_sequence = NULL;
4154 int template_size = 0, i;
4155 unsigned int size;
4156
4157 template_sequence = stub_definitions[stub_type].template_sequence;
4158 if (stub_template)
4159 *stub_template = template_sequence;
4160
4161 template_size = stub_definitions[stub_type].template_size;
4162 if (stub_template_size)
4163 *stub_template_size = template_size;
4164
4165 size = 0;
4166 for (i = 0; i < template_size; i++)
4167 {
4168 switch (template_sequence[i].type)
4169 {
4170 case THUMB16_TYPE:
4171 size += 2;
4172 break;
4173
4174 case ARM_TYPE:
4175 case THUMB32_TYPE:
4176 case DATA_TYPE:
4177 size += 4;
4178 break;
4179
4180 default:
4181 BFD_FAIL ();
4182 return 0;
4183 }
4184 }
4185
4186 return size;
4187 }
4188
4189 /* As above, but don't actually build the stub. Just bump offset so
4190 we know stub section sizes. */
4191
4192 static bfd_boolean
4193 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
4194 void *in_arg ATTRIBUTE_UNUSED)
4195 {
4196 struct elf32_arm_stub_hash_entry *stub_entry;
4197 const insn_sequence *template_sequence;
4198 int template_size, size;
4199
4200 /* Massage our args to the form they really have. */
4201 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
4202
4203 BFD_ASSERT((stub_entry->stub_type > arm_stub_none)
4204 && stub_entry->stub_type < ARRAY_SIZE(stub_definitions));
4205
4206 size = find_stub_size_and_template (stub_entry->stub_type, &template_sequence,
4207 &template_size);
4208
4209 stub_entry->stub_size = size;
4210 stub_entry->stub_template = template_sequence;
4211 stub_entry->stub_template_size = template_size;
4212
4213 size = (size + 7) & ~7;
4214 stub_entry->stub_sec->size += size;
4215
4216 return TRUE;
4217 }
4218
4219 /* External entry points for sizing and building linker stubs. */
4220
4221 /* Set up various things so that we can make a list of input sections
4222 for each output section included in the link. Returns -1 on error,
4223 0 when no stubs will be needed, and 1 on success. */
4224
4225 int
4226 elf32_arm_setup_section_lists (bfd *output_bfd,
4227 struct bfd_link_info *info)
4228 {
4229 bfd *input_bfd;
4230 unsigned int bfd_count;
4231 int top_id, top_index;
4232 asection *section;
4233 asection **input_list, **list;
4234 bfd_size_type amt;
4235 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4236
4237 if (htab == NULL)
4238 return 0;
4239 if (! is_elf_hash_table (htab))
4240 return 0;
4241
4242 /* Count the number of input BFDs and find the top input section id. */
4243 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
4244 input_bfd != NULL;
4245 input_bfd = input_bfd->link_next)
4246 {
4247 bfd_count += 1;
4248 for (section = input_bfd->sections;
4249 section != NULL;
4250 section = section->next)
4251 {
4252 if (top_id < section->id)
4253 top_id = section->id;
4254 }
4255 }
4256 htab->bfd_count = bfd_count;
4257
4258 amt = sizeof (struct map_stub) * (top_id + 1);
4259 htab->stub_group = (struct map_stub *) bfd_zmalloc (amt);
4260 if (htab->stub_group == NULL)
4261 return -1;
4262 htab->top_id = top_id;
4263
4264 /* We can't use output_bfd->section_count here to find the top output
4265 section index as some sections may have been removed, and
4266 _bfd_strip_section_from_output doesn't renumber the indices. */
4267 for (section = output_bfd->sections, top_index = 0;
4268 section != NULL;
4269 section = section->next)
4270 {
4271 if (top_index < section->index)
4272 top_index = section->index;
4273 }
4274
4275 htab->top_index = top_index;
4276 amt = sizeof (asection *) * (top_index + 1);
4277 input_list = (asection **) bfd_malloc (amt);
4278 htab->input_list = input_list;
4279 if (input_list == NULL)
4280 return -1;
4281
4282 /* For sections we aren't interested in, mark their entries with a
4283 value we can check later. */
4284 list = input_list + top_index;
4285 do
4286 *list = bfd_abs_section_ptr;
4287 while (list-- != input_list);
4288
4289 for (section = output_bfd->sections;
4290 section != NULL;
4291 section = section->next)
4292 {
4293 if ((section->flags & SEC_CODE) != 0)
4294 input_list[section->index] = NULL;
4295 }
4296
4297 return 1;
4298 }
4299
4300 /* The linker repeatedly calls this function for each input section,
4301 in the order that input sections are linked into output sections.
4302 Build lists of input sections to determine groupings between which
4303 we may insert linker stubs. */
4304
4305 void
4306 elf32_arm_next_input_section (struct bfd_link_info *info,
4307 asection *isec)
4308 {
4309 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4310
4311 if (htab == NULL)
4312 return;
4313
4314 if (isec->output_section->index <= htab->top_index)
4315 {
4316 asection **list = htab->input_list + isec->output_section->index;
4317
4318 if (*list != bfd_abs_section_ptr && (isec->flags & SEC_CODE) != 0)
4319 {
4320 /* Steal the link_sec pointer for our list. */
4321 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
4322 /* This happens to make the list in reverse order,
4323 which we reverse later. */
4324 PREV_SEC (isec) = *list;
4325 *list = isec;
4326 }
4327 }
4328 }
4329
4330 /* See whether we can group stub sections together. Grouping stub
4331 sections may result in fewer stubs. More importantly, we need to
4332 put all .init* and .fini* stubs at the end of the .init or
4333 .fini output sections respectively, because glibc splits the
4334 _init and _fini functions into multiple parts. Putting a stub in
4335 the middle of a function is not a good idea. */
4336
4337 static void
4338 group_sections (struct elf32_arm_link_hash_table *htab,
4339 bfd_size_type stub_group_size,
4340 bfd_boolean stubs_always_after_branch)
4341 {
4342 asection **list = htab->input_list;
4343
4344 do
4345 {
4346 asection *tail = *list;
4347 asection *head;
4348
4349 if (tail == bfd_abs_section_ptr)
4350 continue;
4351
4352 /* Reverse the list: we must avoid placing stubs at the
4353 beginning of the section because the beginning of the text
4354 section may be required for an interrupt vector in bare metal
4355 code. */
4356 #define NEXT_SEC PREV_SEC
4357 head = NULL;
4358 while (tail != NULL)
4359 {
4360 /* Pop from tail. */
4361 asection *item = tail;
4362 tail = PREV_SEC (item);
4363
4364 /* Push on head. */
4365 NEXT_SEC (item) = head;
4366 head = item;
4367 }
4368
4369 while (head != NULL)
4370 {
4371 asection *curr;
4372 asection *next;
4373 bfd_vma stub_group_start = head->output_offset;
4374 bfd_vma end_of_next;
4375
4376 curr = head;
4377 while (NEXT_SEC (curr) != NULL)
4378 {
4379 next = NEXT_SEC (curr);
4380 end_of_next = next->output_offset + next->size;
4381 if (end_of_next - stub_group_start >= stub_group_size)
4382 /* End of NEXT is too far from start, so stop. */
4383 break;
4384 /* Add NEXT to the group. */
4385 curr = next;
4386 }
4387
4388 /* OK, the size from the start to the start of CURR is less
4389 than stub_group_size and thus can be handled by one stub
4390 section. (Or the head section is itself larger than
4391 stub_group_size, in which case we may be toast.)
4392 We should really be keeping track of the total size of
4393 stubs added here, as stubs contribute to the final output
4394 section size. */
4395 do
4396 {
4397 next = NEXT_SEC (head);
4398 /* Set up this stub group. */
4399 htab->stub_group[head->id].link_sec = curr;
4400 }
4401 while (head != curr && (head = next) != NULL);
4402
4403 /* But wait, there's more! Input sections up to stub_group_size
4404 bytes after the stub section can be handled by it too. */
4405 if (!stubs_always_after_branch)
4406 {
4407 stub_group_start = curr->output_offset + curr->size;
4408
4409 while (next != NULL)
4410 {
4411 end_of_next = next->output_offset + next->size;
4412 if (end_of_next - stub_group_start >= stub_group_size)
4413 /* End of NEXT is too far from stubs, so stop. */
4414 break;
4415 /* Add NEXT to the stub group. */
4416 head = next;
4417 next = NEXT_SEC (head);
4418 htab->stub_group[head->id].link_sec = curr;
4419 }
4420 }
4421 head = next;
4422 }
4423 }
4424 while (list++ != htab->input_list + htab->top_index);
4425
4426 free (htab->input_list);
4427 #undef PREV_SEC
4428 #undef NEXT_SEC
4429 }
4430
4431 /* Comparison function for sorting/searching relocations relating to Cortex-A8
4432 erratum fix. */
4433
4434 static int
4435 a8_reloc_compare (const void *a, const void *b)
4436 {
4437 const struct a8_erratum_reloc *ra = (const struct a8_erratum_reloc *) a;
4438 const struct a8_erratum_reloc *rb = (const struct a8_erratum_reloc *) b;
4439
4440 if (ra->from < rb->from)
4441 return -1;
4442 else if (ra->from > rb->from)
4443 return 1;
4444 else
4445 return 0;
4446 }
4447
4448 static struct elf_link_hash_entry *find_thumb_glue (struct bfd_link_info *,
4449 const char *, char **);
4450
4451 /* Helper function to scan code for sequences which might trigger the Cortex-A8
4452 branch/TLB erratum. Fill in the table described by A8_FIXES_P,
4453 NUM_A8_FIXES_P, A8_FIX_TABLE_SIZE_P. Returns true if an error occurs, false
4454 otherwise. */
4455
4456 static bfd_boolean
4457 cortex_a8_erratum_scan (bfd *input_bfd,
4458 struct bfd_link_info *info,
4459 struct a8_erratum_fix **a8_fixes_p,
4460 unsigned int *num_a8_fixes_p,
4461 unsigned int *a8_fix_table_size_p,
4462 struct a8_erratum_reloc *a8_relocs,
4463 unsigned int num_a8_relocs,
4464 unsigned prev_num_a8_fixes,
4465 bfd_boolean *stub_changed_p)
4466 {
4467 asection *section;
4468 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4469 struct a8_erratum_fix *a8_fixes = *a8_fixes_p;
4470 unsigned int num_a8_fixes = *num_a8_fixes_p;
4471 unsigned int a8_fix_table_size = *a8_fix_table_size_p;
4472
4473 if (htab == NULL)
4474 return FALSE;
4475
4476 for (section = input_bfd->sections;
4477 section != NULL;
4478 section = section->next)
4479 {
4480 bfd_byte *contents = NULL;
4481 struct _arm_elf_section_data *sec_data;
4482 unsigned int span;
4483 bfd_vma base_vma;
4484
4485 if (elf_section_type (section) != SHT_PROGBITS
4486 || (elf_section_flags (section) & SHF_EXECINSTR) == 0
4487 || (section->flags & SEC_EXCLUDE) != 0
4488 || (section->sec_info_type == ELF_INFO_TYPE_JUST_SYMS)
4489 || (section->output_section == bfd_abs_section_ptr))
4490 continue;
4491
4492 base_vma = section->output_section->vma + section->output_offset;
4493
4494 if (elf_section_data (section)->this_hdr.contents != NULL)
4495 contents = elf_section_data (section)->this_hdr.contents;
4496 else if (! bfd_malloc_and_get_section (input_bfd, section, &contents))
4497 return TRUE;
4498
4499 sec_data = elf32_arm_section_data (section);
4500
4501 for (span = 0; span < sec_data->mapcount; span++)
4502 {
4503 unsigned int span_start = sec_data->map[span].vma;
4504 unsigned int span_end = (span == sec_data->mapcount - 1)
4505 ? section->size : sec_data->map[span + 1].vma;
4506 unsigned int i;
4507 char span_type = sec_data->map[span].type;
4508 bfd_boolean last_was_32bit = FALSE, last_was_branch = FALSE;
4509
4510 if (span_type != 't')
4511 continue;
4512
4513 /* Span is entirely within a single 4KB region: skip scanning. */
4514 if (((base_vma + span_start) & ~0xfff)
4515 == ((base_vma + span_end) & ~0xfff))
4516 continue;
4517
4518 /* Scan for 32-bit Thumb-2 branches which span two 4K regions, where:
4519
4520 * The opcode is BLX.W, BL.W, B.W, Bcc.W
4521 * The branch target is in the same 4KB region as the
4522 first half of the branch.
4523 * The instruction before the branch is a 32-bit
4524 length non-branch instruction. */
4525 for (i = span_start; i < span_end;)
4526 {
4527 unsigned int insn = bfd_getl16 (&contents[i]);
4528 bfd_boolean insn_32bit = FALSE, is_blx = FALSE, is_b = FALSE;
4529 bfd_boolean is_bl = FALSE, is_bcc = FALSE, is_32bit_branch;
4530
4531 if ((insn & 0xe000) == 0xe000 && (insn & 0x1800) != 0x0000)
4532 insn_32bit = TRUE;
4533
4534 if (insn_32bit)
4535 {
4536 /* Load the rest of the insn (in manual-friendly order). */
4537 insn = (insn << 16) | bfd_getl16 (&contents[i + 2]);
4538
4539 /* Encoding T4: B<c>.W. */
4540 is_b = (insn & 0xf800d000) == 0xf0009000;
4541 /* Encoding T1: BL<c>.W. */
4542 is_bl = (insn & 0xf800d000) == 0xf000d000;
4543 /* Encoding T2: BLX<c>.W. */
4544 is_blx = (insn & 0xf800d000) == 0xf000c000;
4545 /* Encoding T3: B<c>.W (not permitted in IT block). */
4546 is_bcc = (insn & 0xf800d000) == 0xf0008000
4547 && (insn & 0x07f00000) != 0x03800000;
4548 }
4549
4550 is_32bit_branch = is_b || is_bl || is_blx || is_bcc;
4551
4552 if (((base_vma + i) & 0xfff) == 0xffe
4553 && insn_32bit
4554 && is_32bit_branch
4555 && last_was_32bit
4556 && ! last_was_branch)
4557 {
4558 bfd_signed_vma offset = 0;
4559 bfd_boolean force_target_arm = FALSE;
4560 bfd_boolean force_target_thumb = FALSE;
4561 bfd_vma target;
4562 enum elf32_arm_stub_type stub_type = arm_stub_none;
4563 struct a8_erratum_reloc key, *found;
4564 bfd_boolean use_plt = FALSE;
4565
4566 key.from = base_vma + i;
4567 found = (struct a8_erratum_reloc *)
4568 bsearch (&key, a8_relocs, num_a8_relocs,
4569 sizeof (struct a8_erratum_reloc),
4570 &a8_reloc_compare);
4571
4572 if (found)
4573 {
4574 char *error_message = NULL;
4575 struct elf_link_hash_entry *entry;
4576
4577 /* We don't care about the error returned from this
4578 function, only if there is glue or not. */
4579 entry = find_thumb_glue (info, found->sym_name,
4580 &error_message);
4581
4582 if (entry)
4583 found->non_a8_stub = TRUE;
4584
4585 /* Keep a simpler condition, for the sake of clarity. */
4586 if (htab->root.splt != NULL && found->hash != NULL
4587 && found->hash->root.plt.offset != (bfd_vma) -1)
4588 use_plt = TRUE;
4589
4590 if (found->r_type == R_ARM_THM_CALL)
4591 {
4592 if (found->branch_type == ST_BRANCH_TO_ARM
4593 || use_plt)
4594 force_target_arm = TRUE;
4595 else
4596 force_target_thumb = TRUE;
4597 }
4598 }
4599
4600 /* Check if we have an offending branch instruction. */
4601
4602 if (found && found->non_a8_stub)
4603 /* We've already made a stub for this instruction, e.g.
4604 it's a long branch or a Thumb->ARM stub. Assume that
4605 stub will suffice to work around the A8 erratum (see
4606 setting of always_after_branch above). */
4607 ;
4608 else if (is_bcc)
4609 {
4610 offset = (insn & 0x7ff) << 1;
4611 offset |= (insn & 0x3f0000) >> 4;
4612 offset |= (insn & 0x2000) ? 0x40000 : 0;
4613 offset |= (insn & 0x800) ? 0x80000 : 0;
4614 offset |= (insn & 0x4000000) ? 0x100000 : 0;
4615 if (offset & 0x100000)
4616 offset |= ~ ((bfd_signed_vma) 0xfffff);
4617 stub_type = arm_stub_a8_veneer_b_cond;
4618 }
4619 else if (is_b || is_bl || is_blx)
4620 {
4621 int s = (insn & 0x4000000) != 0;
4622 int j1 = (insn & 0x2000) != 0;
4623 int j2 = (insn & 0x800) != 0;
4624 int i1 = !(j1 ^ s);
4625 int i2 = !(j2 ^ s);
4626
4627 offset = (insn & 0x7ff) << 1;
4628 offset |= (insn & 0x3ff0000) >> 4;
4629 offset |= i2 << 22;
4630 offset |= i1 << 23;
4631 offset |= s << 24;
4632 if (offset & 0x1000000)
4633 offset |= ~ ((bfd_signed_vma) 0xffffff);
4634
4635 if (is_blx)
4636 offset &= ~ ((bfd_signed_vma) 3);
4637
4638 stub_type = is_blx ? arm_stub_a8_veneer_blx :
4639 is_bl ? arm_stub_a8_veneer_bl : arm_stub_a8_veneer_b;
4640 }
4641
4642 if (stub_type != arm_stub_none)
4643 {
4644 bfd_vma pc_for_insn = base_vma + i + 4;
4645
4646 /* The original instruction is a BL, but the target is
4647 an ARM instruction. If we were not making a stub,
4648 the BL would have been converted to a BLX. Use the
4649 BLX stub instead in that case. */
4650 if (htab->use_blx && force_target_arm
4651 && stub_type == arm_stub_a8_veneer_bl)
4652 {
4653 stub_type = arm_stub_a8_veneer_blx;
4654 is_blx = TRUE;
4655 is_bl = FALSE;
4656 }
4657 /* Conversely, if the original instruction was
4658 BLX but the target is Thumb mode, use the BL
4659 stub. */
4660 else if (force_target_thumb
4661 && stub_type == arm_stub_a8_veneer_blx)
4662 {
4663 stub_type = arm_stub_a8_veneer_bl;
4664 is_blx = FALSE;
4665 is_bl = TRUE;
4666 }
4667
4668 if (is_blx)
4669 pc_for_insn &= ~ ((bfd_vma) 3);
4670
4671 /* If we found a relocation, use the proper destination,
4672 not the offset in the (unrelocated) instruction.
4673 Note this is always done if we switched the stub type
4674 above. */
4675 if (found)
4676 offset =
4677 (bfd_signed_vma) (found->destination - pc_for_insn);
4678
4679 /* If the stub will use a Thumb-mode branch to a
4680 PLT target, redirect it to the preceding Thumb
4681 entry point. */
4682 if (stub_type != arm_stub_a8_veneer_blx && use_plt)
4683 offset -= PLT_THUMB_STUB_SIZE;
4684
4685 target = pc_for_insn + offset;
4686
4687 /* The BLX stub is ARM-mode code. Adjust the offset to
4688 take the different PC value (+8 instead of +4) into
4689 account. */
4690 if (stub_type == arm_stub_a8_veneer_blx)
4691 offset += 4;
4692
4693 if (((base_vma + i) & ~0xfff) == (target & ~0xfff))
4694 {
4695 char *stub_name = NULL;
4696
4697 if (num_a8_fixes == a8_fix_table_size)
4698 {
4699 a8_fix_table_size *= 2;
4700 a8_fixes = (struct a8_erratum_fix *)
4701 bfd_realloc (a8_fixes,
4702 sizeof (struct a8_erratum_fix)
4703 * a8_fix_table_size);
4704 }
4705
4706 if (num_a8_fixes < prev_num_a8_fixes)
4707 {
4708 /* If we're doing a subsequent scan,
4709 check if we've found the same fix as
4710 before, and try and reuse the stub
4711 name. */
4712 stub_name = a8_fixes[num_a8_fixes].stub_name;
4713 if ((a8_fixes[num_a8_fixes].section != section)
4714 || (a8_fixes[num_a8_fixes].offset != i))
4715 {
4716 free (stub_name);
4717 stub_name = NULL;
4718 *stub_changed_p = TRUE;
4719 }
4720 }
4721
4722 if (!stub_name)
4723 {
4724 stub_name = (char *) bfd_malloc (8 + 1 + 8 + 1);
4725 if (stub_name != NULL)
4726 sprintf (stub_name, "%x:%x", section->id, i);
4727 }
4728
4729 a8_fixes[num_a8_fixes].input_bfd = input_bfd;
4730 a8_fixes[num_a8_fixes].section = section;
4731 a8_fixes[num_a8_fixes].offset = i;
4732 a8_fixes[num_a8_fixes].addend = offset;
4733 a8_fixes[num_a8_fixes].orig_insn = insn;
4734 a8_fixes[num_a8_fixes].stub_name = stub_name;
4735 a8_fixes[num_a8_fixes].stub_type = stub_type;
4736 a8_fixes[num_a8_fixes].branch_type =
4737 is_blx ? ST_BRANCH_TO_ARM : ST_BRANCH_TO_THUMB;
4738
4739 num_a8_fixes++;
4740 }
4741 }
4742 }
4743
4744 i += insn_32bit ? 4 : 2;
4745 last_was_32bit = insn_32bit;
4746 last_was_branch = is_32bit_branch;
4747 }
4748 }
4749
4750 if (elf_section_data (section)->this_hdr.contents == NULL)
4751 free (contents);
4752 }
4753
4754 *a8_fixes_p = a8_fixes;
4755 *num_a8_fixes_p = num_a8_fixes;
4756 *a8_fix_table_size_p = a8_fix_table_size;
4757
4758 return FALSE;
4759 }
4760
4761 /* Determine and set the size of the stub section for a final link.
4762
4763 The basic idea here is to examine all the relocations looking for
4764 PC-relative calls to a target that is unreachable with a "bl"
4765 instruction. */
4766
4767 bfd_boolean
4768 elf32_arm_size_stubs (bfd *output_bfd,
4769 bfd *stub_bfd,
4770 struct bfd_link_info *info,
4771 bfd_signed_vma group_size,
4772 asection * (*add_stub_section) (const char *, asection *),
4773 void (*layout_sections_again) (void))
4774 {
4775 bfd_size_type stub_group_size;
4776 bfd_boolean stubs_always_after_branch;
4777 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
4778 struct a8_erratum_fix *a8_fixes = NULL;
4779 unsigned int num_a8_fixes = 0, a8_fix_table_size = 10;
4780 struct a8_erratum_reloc *a8_relocs = NULL;
4781 unsigned int num_a8_relocs = 0, a8_reloc_table_size = 10, i;
4782
4783 if (htab == NULL)
4784 return FALSE;
4785
4786 if (htab->fix_cortex_a8)
4787 {
4788 a8_fixes = (struct a8_erratum_fix *)
4789 bfd_zmalloc (sizeof (struct a8_erratum_fix) * a8_fix_table_size);
4790 a8_relocs = (struct a8_erratum_reloc *)
4791 bfd_zmalloc (sizeof (struct a8_erratum_reloc) * a8_reloc_table_size);
4792 }
4793
4794 /* Propagate mach to stub bfd, because it may not have been
4795 finalized when we created stub_bfd. */
4796 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
4797 bfd_get_mach (output_bfd));
4798
4799 /* Stash our params away. */
4800 htab->stub_bfd = stub_bfd;
4801 htab->add_stub_section = add_stub_section;
4802 htab->layout_sections_again = layout_sections_again;
4803 stubs_always_after_branch = group_size < 0;
4804
4805 /* The Cortex-A8 erratum fix depends on stubs not being in the same 4K page
4806 as the first half of a 32-bit branch straddling two 4K pages. This is a
4807 crude way of enforcing that. */
4808 if (htab->fix_cortex_a8)
4809 stubs_always_after_branch = 1;
4810
4811 if (group_size < 0)
4812 stub_group_size = -group_size;
4813 else
4814 stub_group_size = group_size;
4815
4816 if (stub_group_size == 1)
4817 {
4818 /* Default values. */
4819 /* Thumb branch range is +-4MB has to be used as the default
4820 maximum size (a given section can contain both ARM and Thumb
4821 code, so the worst case has to be taken into account).
4822
4823 This value is 24K less than that, which allows for 2025
4824 12-byte stubs. If we exceed that, then we will fail to link.
4825 The user will have to relink with an explicit group size
4826 option. */
4827 stub_group_size = 4170000;
4828 }
4829
4830 group_sections (htab, stub_group_size, stubs_always_after_branch);
4831
4832 /* If we're applying the cortex A8 fix, we need to determine the
4833 program header size now, because we cannot change it later --
4834 that could alter section placements. Notice the A8 erratum fix
4835 ends up requiring the section addresses to remain unchanged
4836 modulo the page size. That's something we cannot represent
4837 inside BFD, and we don't want to force the section alignment to
4838 be the page size. */
4839 if (htab->fix_cortex_a8)
4840 (*htab->layout_sections_again) ();
4841
4842 while (1)
4843 {
4844 bfd *input_bfd;
4845 unsigned int bfd_indx;
4846 asection *stub_sec;
4847 bfd_boolean stub_changed = FALSE;
4848 unsigned prev_num_a8_fixes = num_a8_fixes;
4849
4850 num_a8_fixes = 0;
4851 for (input_bfd = info->input_bfds, bfd_indx = 0;
4852 input_bfd != NULL;
4853 input_bfd = input_bfd->link_next, bfd_indx++)
4854 {
4855 Elf_Internal_Shdr *symtab_hdr;
4856 asection *section;
4857 Elf_Internal_Sym *local_syms = NULL;
4858
4859 num_a8_relocs = 0;
4860
4861 /* We'll need the symbol table in a second. */
4862 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
4863 if (symtab_hdr->sh_info == 0)
4864 continue;
4865
4866 /* Walk over each section attached to the input bfd. */
4867 for (section = input_bfd->sections;
4868 section != NULL;
4869 section = section->next)
4870 {
4871 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
4872
4873 /* If there aren't any relocs, then there's nothing more
4874 to do. */
4875 if ((section->flags & SEC_RELOC) == 0
4876 || section->reloc_count == 0
4877 || (section->flags & SEC_CODE) == 0)
4878 continue;
4879
4880 /* If this section is a link-once section that will be
4881 discarded, then don't create any stubs. */
4882 if (section->output_section == NULL
4883 || section->output_section->owner != output_bfd)
4884 continue;
4885
4886 /* Get the relocs. */
4887 internal_relocs
4888 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
4889 NULL, info->keep_memory);
4890 if (internal_relocs == NULL)
4891 goto error_ret_free_local;
4892
4893 /* Now examine each relocation. */
4894 irela = internal_relocs;
4895 irelaend = irela + section->reloc_count;
4896 for (; irela < irelaend; irela++)
4897 {
4898 unsigned int r_type, r_indx;
4899 enum elf32_arm_stub_type stub_type;
4900 struct elf32_arm_stub_hash_entry *stub_entry;
4901 asection *sym_sec;
4902 bfd_vma sym_value;
4903 bfd_vma destination;
4904 struct elf32_arm_link_hash_entry *hash;
4905 const char *sym_name;
4906 char *stub_name;
4907 const asection *id_sec;
4908 unsigned char st_type;
4909 enum arm_st_branch_type branch_type;
4910 bfd_boolean created_stub = FALSE;
4911
4912 r_type = ELF32_R_TYPE (irela->r_info);
4913 r_indx = ELF32_R_SYM (irela->r_info);
4914
4915 if (r_type >= (unsigned int) R_ARM_max)
4916 {
4917 bfd_set_error (bfd_error_bad_value);
4918 error_ret_free_internal:
4919 if (elf_section_data (section)->relocs == NULL)
4920 free (internal_relocs);
4921 goto error_ret_free_local;
4922 }
4923
4924 hash = NULL;
4925 if (r_indx >= symtab_hdr->sh_info)
4926 hash = elf32_arm_hash_entry
4927 (elf_sym_hashes (input_bfd)
4928 [r_indx - symtab_hdr->sh_info]);
4929
4930 /* Only look for stubs on branch instructions, or
4931 non-relaxed TLSCALL */
4932 if ((r_type != (unsigned int) R_ARM_CALL)
4933 && (r_type != (unsigned int) R_ARM_THM_CALL)
4934 && (r_type != (unsigned int) R_ARM_JUMP24)
4935 && (r_type != (unsigned int) R_ARM_THM_JUMP19)
4936 && (r_type != (unsigned int) R_ARM_THM_XPC22)
4937 && (r_type != (unsigned int) R_ARM_THM_JUMP24)
4938 && (r_type != (unsigned int) R_ARM_PLT32)
4939 && !((r_type == (unsigned int) R_ARM_TLS_CALL
4940 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
4941 && r_type == elf32_arm_tls_transition
4942 (info, r_type, &hash->root)
4943 && ((hash ? hash->tls_type
4944 : (elf32_arm_local_got_tls_type
4945 (input_bfd)[r_indx]))
4946 & GOT_TLS_GDESC) != 0))
4947 continue;
4948
4949 /* Now determine the call target, its name, value,
4950 section. */
4951 sym_sec = NULL;
4952 sym_value = 0;
4953 destination = 0;
4954 sym_name = NULL;
4955
4956 if (r_type == (unsigned int) R_ARM_TLS_CALL
4957 || r_type == (unsigned int) R_ARM_THM_TLS_CALL)
4958 {
4959 /* A non-relaxed TLS call. The target is the
4960 plt-resident trampoline and nothing to do
4961 with the symbol. */
4962 BFD_ASSERT (htab->tls_trampoline > 0);
4963 sym_sec = htab->root.splt;
4964 sym_value = htab->tls_trampoline;
4965 hash = 0;
4966 st_type = STT_FUNC;
4967 branch_type = ST_BRANCH_TO_ARM;
4968 }
4969 else if (!hash)
4970 {
4971 /* It's a local symbol. */
4972 Elf_Internal_Sym *sym;
4973
4974 if (local_syms == NULL)
4975 {
4976 local_syms
4977 = (Elf_Internal_Sym *) symtab_hdr->contents;
4978 if (local_syms == NULL)
4979 local_syms
4980 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
4981 symtab_hdr->sh_info, 0,
4982 NULL, NULL, NULL);
4983 if (local_syms == NULL)
4984 goto error_ret_free_internal;
4985 }
4986
4987 sym = local_syms + r_indx;
4988 if (sym->st_shndx == SHN_UNDEF)
4989 sym_sec = bfd_und_section_ptr;
4990 else if (sym->st_shndx == SHN_ABS)
4991 sym_sec = bfd_abs_section_ptr;
4992 else if (sym->st_shndx == SHN_COMMON)
4993 sym_sec = bfd_com_section_ptr;
4994 else
4995 sym_sec =
4996 bfd_section_from_elf_index (input_bfd, sym->st_shndx);
4997
4998 if (!sym_sec)
4999 /* This is an undefined symbol. It can never
5000 be resolved. */
5001 continue;
5002
5003 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
5004 sym_value = sym->st_value;
5005 destination = (sym_value + irela->r_addend
5006 + sym_sec->output_offset
5007 + sym_sec->output_section->vma);
5008 st_type = ELF_ST_TYPE (sym->st_info);
5009 branch_type = ARM_SYM_BRANCH_TYPE (sym);
5010 sym_name
5011 = bfd_elf_string_from_elf_section (input_bfd,
5012 symtab_hdr->sh_link,
5013 sym->st_name);
5014 }
5015 else
5016 {
5017 /* It's an external symbol. */
5018 while (hash->root.root.type == bfd_link_hash_indirect
5019 || hash->root.root.type == bfd_link_hash_warning)
5020 hash = ((struct elf32_arm_link_hash_entry *)
5021 hash->root.root.u.i.link);
5022
5023 if (hash->root.root.type == bfd_link_hash_defined
5024 || hash->root.root.type == bfd_link_hash_defweak)
5025 {
5026 sym_sec = hash->root.root.u.def.section;
5027 sym_value = hash->root.root.u.def.value;
5028
5029 struct elf32_arm_link_hash_table *globals =
5030 elf32_arm_hash_table (info);
5031
5032 /* For a destination in a shared library,
5033 use the PLT stub as target address to
5034 decide whether a branch stub is
5035 needed. */
5036 if (globals != NULL
5037 && globals->root.splt != NULL
5038 && hash != NULL
5039 && hash->root.plt.offset != (bfd_vma) -1)
5040 {
5041 sym_sec = globals->root.splt;
5042 sym_value = hash->root.plt.offset;
5043 if (sym_sec->output_section != NULL)
5044 destination = (sym_value
5045 + sym_sec->output_offset
5046 + sym_sec->output_section->vma);
5047 }
5048 else if (sym_sec->output_section != NULL)
5049 destination = (sym_value + irela->r_addend
5050 + sym_sec->output_offset
5051 + sym_sec->output_section->vma);
5052 }
5053 else if ((hash->root.root.type == bfd_link_hash_undefined)
5054 || (hash->root.root.type == bfd_link_hash_undefweak))
5055 {
5056 /* For a shared library, use the PLT stub as
5057 target address to decide whether a long
5058 branch stub is needed.
5059 For absolute code, they cannot be handled. */
5060 struct elf32_arm_link_hash_table *globals =
5061 elf32_arm_hash_table (info);
5062
5063 if (globals != NULL
5064 && globals->root.splt != NULL
5065 && hash != NULL
5066 && hash->root.plt.offset != (bfd_vma) -1)
5067 {
5068 sym_sec = globals->root.splt;
5069 sym_value = hash->root.plt.offset;
5070 if (sym_sec->output_section != NULL)
5071 destination = (sym_value
5072 + sym_sec->output_offset
5073 + sym_sec->output_section->vma);
5074 }
5075 else
5076 continue;
5077 }
5078 else
5079 {
5080 bfd_set_error (bfd_error_bad_value);
5081 goto error_ret_free_internal;
5082 }
5083 st_type = hash->root.type;
5084 branch_type = hash->root.target_internal;
5085 sym_name = hash->root.root.root.string;
5086 }
5087
5088 do
5089 {
5090 /* Determine what (if any) linker stub is needed. */
5091 stub_type = arm_type_of_stub (info, section, irela,
5092 st_type, &branch_type,
5093 hash, destination, sym_sec,
5094 input_bfd, sym_name);
5095 if (stub_type == arm_stub_none)
5096 break;
5097
5098 /* Support for grouping stub sections. */
5099 id_sec = htab->stub_group[section->id].link_sec;
5100
5101 /* Get the name of this stub. */
5102 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash,
5103 irela, stub_type);
5104 if (!stub_name)
5105 goto error_ret_free_internal;
5106
5107 /* We've either created a stub for this reloc already,
5108 or we are about to. */
5109 created_stub = TRUE;
5110
5111 stub_entry = arm_stub_hash_lookup
5112 (&htab->stub_hash_table, stub_name,
5113 FALSE, FALSE);
5114 if (stub_entry != NULL)
5115 {
5116 /* The proper stub has already been created. */
5117 free (stub_name);
5118 stub_entry->target_value = sym_value;
5119 break;
5120 }
5121
5122 stub_entry = elf32_arm_add_stub (stub_name, section,
5123 htab);
5124 if (stub_entry == NULL)
5125 {
5126 free (stub_name);
5127 goto error_ret_free_internal;
5128 }
5129
5130 stub_entry->target_value = sym_value;
5131 stub_entry->target_section = sym_sec;
5132 stub_entry->stub_type = stub_type;
5133 stub_entry->h = hash;
5134 stub_entry->branch_type = branch_type;
5135
5136 if (sym_name == NULL)
5137 sym_name = "unnamed";
5138 stub_entry->output_name = (char *)
5139 bfd_alloc (htab->stub_bfd,
5140 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
5141 + strlen (sym_name));
5142 if (stub_entry->output_name == NULL)
5143 {
5144 free (stub_name);
5145 goto error_ret_free_internal;
5146 }
5147
5148 /* For historical reasons, use the existing names for
5149 ARM-to-Thumb and Thumb-to-ARM stubs. */
5150 if ((r_type == (unsigned int) R_ARM_THM_CALL
5151 || r_type == (unsigned int) R_ARM_THM_JUMP24)
5152 && branch_type == ST_BRANCH_TO_ARM)
5153 sprintf (stub_entry->output_name,
5154 THUMB2ARM_GLUE_ENTRY_NAME, sym_name);
5155 else if ((r_type == (unsigned int) R_ARM_CALL
5156 || r_type == (unsigned int) R_ARM_JUMP24)
5157 && branch_type == ST_BRANCH_TO_THUMB)
5158 sprintf (stub_entry->output_name,
5159 ARM2THUMB_GLUE_ENTRY_NAME, sym_name);
5160 else
5161 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
5162 sym_name);
5163
5164 stub_changed = TRUE;
5165 }
5166 while (0);
5167
5168 /* Look for relocations which might trigger Cortex-A8
5169 erratum. */
5170 if (htab->fix_cortex_a8
5171 && (r_type == (unsigned int) R_ARM_THM_JUMP24
5172 || r_type == (unsigned int) R_ARM_THM_JUMP19
5173 || r_type == (unsigned int) R_ARM_THM_CALL
5174 || r_type == (unsigned int) R_ARM_THM_XPC22))
5175 {
5176 bfd_vma from = section->output_section->vma
5177 + section->output_offset
5178 + irela->r_offset;
5179
5180 if ((from & 0xfff) == 0xffe)
5181 {
5182 /* Found a candidate. Note we haven't checked the
5183 destination is within 4K here: if we do so (and
5184 don't create an entry in a8_relocs) we can't tell
5185 that a branch should have been relocated when
5186 scanning later. */
5187 if (num_a8_relocs == a8_reloc_table_size)
5188 {
5189 a8_reloc_table_size *= 2;
5190 a8_relocs = (struct a8_erratum_reloc *)
5191 bfd_realloc (a8_relocs,
5192 sizeof (struct a8_erratum_reloc)
5193 * a8_reloc_table_size);
5194 }
5195
5196 a8_relocs[num_a8_relocs].from = from;
5197 a8_relocs[num_a8_relocs].destination = destination;
5198 a8_relocs[num_a8_relocs].r_type = r_type;
5199 a8_relocs[num_a8_relocs].branch_type = branch_type;
5200 a8_relocs[num_a8_relocs].sym_name = sym_name;
5201 a8_relocs[num_a8_relocs].non_a8_stub = created_stub;
5202 a8_relocs[num_a8_relocs].hash = hash;
5203
5204 num_a8_relocs++;
5205 }
5206 }
5207 }
5208
5209 /* We're done with the internal relocs, free them. */
5210 if (elf_section_data (section)->relocs == NULL)
5211 free (internal_relocs);
5212 }
5213
5214 if (htab->fix_cortex_a8)
5215 {
5216 /* Sort relocs which might apply to Cortex-A8 erratum. */
5217 qsort (a8_relocs, num_a8_relocs,
5218 sizeof (struct a8_erratum_reloc),
5219 &a8_reloc_compare);
5220
5221 /* Scan for branches which might trigger Cortex-A8 erratum. */
5222 if (cortex_a8_erratum_scan (input_bfd, info, &a8_fixes,
5223 &num_a8_fixes, &a8_fix_table_size,
5224 a8_relocs, num_a8_relocs,
5225 prev_num_a8_fixes, &stub_changed)
5226 != 0)
5227 goto error_ret_free_local;
5228 }
5229 }
5230
5231 if (prev_num_a8_fixes != num_a8_fixes)
5232 stub_changed = TRUE;
5233
5234 if (!stub_changed)
5235 break;
5236
5237 /* OK, we've added some stubs. Find out the new size of the
5238 stub sections. */
5239 for (stub_sec = htab->stub_bfd->sections;
5240 stub_sec != NULL;
5241 stub_sec = stub_sec->next)
5242 {
5243 /* Ignore non-stub sections. */
5244 if (!strstr (stub_sec->name, STUB_SUFFIX))
5245 continue;
5246
5247 stub_sec->size = 0;
5248 }
5249
5250 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
5251
5252 /* Add Cortex-A8 erratum veneers to stub section sizes too. */
5253 if (htab->fix_cortex_a8)
5254 for (i = 0; i < num_a8_fixes; i++)
5255 {
5256 stub_sec = elf32_arm_create_or_find_stub_sec (NULL,
5257 a8_fixes[i].section, htab);
5258
5259 if (stub_sec == NULL)
5260 goto error_ret_free_local;
5261
5262 stub_sec->size
5263 += find_stub_size_and_template (a8_fixes[i].stub_type, NULL,
5264 NULL);
5265 }
5266
5267
5268 /* Ask the linker to do its stuff. */
5269 (*htab->layout_sections_again) ();
5270 }
5271
5272 /* Add stubs for Cortex-A8 erratum fixes now. */
5273 if (htab->fix_cortex_a8)
5274 {
5275 for (i = 0; i < num_a8_fixes; i++)
5276 {
5277 struct elf32_arm_stub_hash_entry *stub_entry;
5278 char *stub_name = a8_fixes[i].stub_name;
5279 asection *section = a8_fixes[i].section;
5280 unsigned int section_id = a8_fixes[i].section->id;
5281 asection *link_sec = htab->stub_group[section_id].link_sec;
5282 asection *stub_sec = htab->stub_group[section_id].stub_sec;
5283 const insn_sequence *template_sequence;
5284 int template_size, size = 0;
5285
5286 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
5287 TRUE, FALSE);
5288 if (stub_entry == NULL)
5289 {
5290 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
5291 section->owner,
5292 stub_name);
5293 return FALSE;
5294 }
5295
5296 stub_entry->stub_sec = stub_sec;
5297 stub_entry->stub_offset = 0;
5298 stub_entry->id_sec = link_sec;
5299 stub_entry->stub_type = a8_fixes[i].stub_type;
5300 stub_entry->target_section = a8_fixes[i].section;
5301 stub_entry->target_value = a8_fixes[i].offset;
5302 stub_entry->target_addend = a8_fixes[i].addend;
5303 stub_entry->orig_insn = a8_fixes[i].orig_insn;
5304 stub_entry->branch_type = a8_fixes[i].branch_type;
5305
5306 size = find_stub_size_and_template (a8_fixes[i].stub_type,
5307 &template_sequence,
5308 &template_size);
5309
5310 stub_entry->stub_size = size;
5311 stub_entry->stub_template = template_sequence;
5312 stub_entry->stub_template_size = template_size;
5313 }
5314
5315 /* Stash the Cortex-A8 erratum fix array for use later in
5316 elf32_arm_write_section(). */
5317 htab->a8_erratum_fixes = a8_fixes;
5318 htab->num_a8_erratum_fixes = num_a8_fixes;
5319 }
5320 else
5321 {
5322 htab->a8_erratum_fixes = NULL;
5323 htab->num_a8_erratum_fixes = 0;
5324 }
5325 return TRUE;
5326
5327 error_ret_free_local:
5328 return FALSE;
5329 }
5330
5331 /* Build all the stubs associated with the current output file. The
5332 stubs are kept in a hash table attached to the main linker hash
5333 table. We also set up the .plt entries for statically linked PIC
5334 functions here. This function is called via arm_elf_finish in the
5335 linker. */
5336
5337 bfd_boolean
5338 elf32_arm_build_stubs (struct bfd_link_info *info)
5339 {
5340 asection *stub_sec;
5341 struct bfd_hash_table *table;
5342 struct elf32_arm_link_hash_table *htab;
5343
5344 htab = elf32_arm_hash_table (info);
5345 if (htab == NULL)
5346 return FALSE;
5347
5348 for (stub_sec = htab->stub_bfd->sections;
5349 stub_sec != NULL;
5350 stub_sec = stub_sec->next)
5351 {
5352 bfd_size_type size;
5353
5354 /* Ignore non-stub sections. */
5355 if (!strstr (stub_sec->name, STUB_SUFFIX))
5356 continue;
5357
5358 /* Allocate memory to hold the linker stubs. */
5359 size = stub_sec->size;
5360 stub_sec->contents = (unsigned char *) bfd_zalloc (htab->stub_bfd, size);
5361 if (stub_sec->contents == NULL && size != 0)
5362 return FALSE;
5363 stub_sec->size = 0;
5364 }
5365
5366 /* Build the stubs as directed by the stub hash table. */
5367 table = &htab->stub_hash_table;
5368 bfd_hash_traverse (table, arm_build_one_stub, info);
5369 if (htab->fix_cortex_a8)
5370 {
5371 /* Place the cortex a8 stubs last. */
5372 htab->fix_cortex_a8 = -1;
5373 bfd_hash_traverse (table, arm_build_one_stub, info);
5374 }
5375
5376 return TRUE;
5377 }
5378
5379 /* Locate the Thumb encoded calling stub for NAME. */
5380
5381 static struct elf_link_hash_entry *
5382 find_thumb_glue (struct bfd_link_info *link_info,
5383 const char *name,
5384 char **error_message)
5385 {
5386 char *tmp_name;
5387 struct elf_link_hash_entry *hash;
5388 struct elf32_arm_link_hash_table *hash_table;
5389
5390 /* We need a pointer to the armelf specific hash table. */
5391 hash_table = elf32_arm_hash_table (link_info);
5392 if (hash_table == NULL)
5393 return NULL;
5394
5395 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5396 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
5397
5398 BFD_ASSERT (tmp_name);
5399
5400 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
5401
5402 hash = elf_link_hash_lookup
5403 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5404
5405 if (hash == NULL
5406 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
5407 tmp_name, name) == -1)
5408 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5409
5410 free (tmp_name);
5411
5412 return hash;
5413 }
5414
5415 /* Locate the ARM encoded calling stub for NAME. */
5416
5417 static struct elf_link_hash_entry *
5418 find_arm_glue (struct bfd_link_info *link_info,
5419 const char *name,
5420 char **error_message)
5421 {
5422 char *tmp_name;
5423 struct elf_link_hash_entry *myh;
5424 struct elf32_arm_link_hash_table *hash_table;
5425
5426 /* We need a pointer to the elfarm specific hash table. */
5427 hash_table = elf32_arm_hash_table (link_info);
5428 if (hash_table == NULL)
5429 return NULL;
5430
5431 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5432 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5433
5434 BFD_ASSERT (tmp_name);
5435
5436 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5437
5438 myh = elf_link_hash_lookup
5439 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
5440
5441 if (myh == NULL
5442 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
5443 tmp_name, name) == -1)
5444 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
5445
5446 free (tmp_name);
5447
5448 return myh;
5449 }
5450
5451 /* ARM->Thumb glue (static images):
5452
5453 .arm
5454 __func_from_arm:
5455 ldr r12, __func_addr
5456 bx r12
5457 __func_addr:
5458 .word func @ behave as if you saw a ARM_32 reloc.
5459
5460 (v5t static images)
5461 .arm
5462 __func_from_arm:
5463 ldr pc, __func_addr
5464 __func_addr:
5465 .word func @ behave as if you saw a ARM_32 reloc.
5466
5467 (relocatable images)
5468 .arm
5469 __func_from_arm:
5470 ldr r12, __func_offset
5471 add r12, r12, pc
5472 bx r12
5473 __func_offset:
5474 .word func - . */
5475
5476 #define ARM2THUMB_STATIC_GLUE_SIZE 12
5477 static const insn32 a2t1_ldr_insn = 0xe59fc000;
5478 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
5479 static const insn32 a2t3_func_addr_insn = 0x00000001;
5480
5481 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
5482 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
5483 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
5484
5485 #define ARM2THUMB_PIC_GLUE_SIZE 16
5486 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
5487 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
5488 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
5489
5490 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
5491
5492 .thumb .thumb
5493 .align 2 .align 2
5494 __func_from_thumb: __func_from_thumb:
5495 bx pc push {r6, lr}
5496 nop ldr r6, __func_addr
5497 .arm mov lr, pc
5498 b func bx r6
5499 .arm
5500 ;; back_to_thumb
5501 ldmia r13! {r6, lr}
5502 bx lr
5503 __func_addr:
5504 .word func */
5505
5506 #define THUMB2ARM_GLUE_SIZE 8
5507 static const insn16 t2a1_bx_pc_insn = 0x4778;
5508 static const insn16 t2a2_noop_insn = 0x46c0;
5509 static const insn32 t2a3_b_insn = 0xea000000;
5510
5511 #define VFP11_ERRATUM_VENEER_SIZE 8
5512
5513 #define ARM_BX_VENEER_SIZE 12
5514 static const insn32 armbx1_tst_insn = 0xe3100001;
5515 static const insn32 armbx2_moveq_insn = 0x01a0f000;
5516 static const insn32 armbx3_bx_insn = 0xe12fff10;
5517
5518 #ifndef ELFARM_NABI_C_INCLUDED
5519 static void
5520 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
5521 {
5522 asection * s;
5523 bfd_byte * contents;
5524
5525 if (size == 0)
5526 {
5527 /* Do not include empty glue sections in the output. */
5528 if (abfd != NULL)
5529 {
5530 s = bfd_get_section_by_name (abfd, name);
5531 if (s != NULL)
5532 s->flags |= SEC_EXCLUDE;
5533 }
5534 return;
5535 }
5536
5537 BFD_ASSERT (abfd != NULL);
5538
5539 s = bfd_get_section_by_name (abfd, name);
5540 BFD_ASSERT (s != NULL);
5541
5542 contents = (bfd_byte *) bfd_alloc (abfd, size);
5543
5544 BFD_ASSERT (s->size == size);
5545 s->contents = contents;
5546 }
5547
5548 bfd_boolean
5549 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
5550 {
5551 struct elf32_arm_link_hash_table * globals;
5552
5553 globals = elf32_arm_hash_table (info);
5554 BFD_ASSERT (globals != NULL);
5555
5556 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5557 globals->arm_glue_size,
5558 ARM2THUMB_GLUE_SECTION_NAME);
5559
5560 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5561 globals->thumb_glue_size,
5562 THUMB2ARM_GLUE_SECTION_NAME);
5563
5564 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5565 globals->vfp11_erratum_glue_size,
5566 VFP11_ERRATUM_VENEER_SECTION_NAME);
5567
5568 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
5569 globals->bx_glue_size,
5570 ARM_BX_GLUE_SECTION_NAME);
5571
5572 return TRUE;
5573 }
5574
5575 /* Allocate space and symbols for calling a Thumb function from Arm mode.
5576 returns the symbol identifying the stub. */
5577
5578 static struct elf_link_hash_entry *
5579 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
5580 struct elf_link_hash_entry * h)
5581 {
5582 const char * name = h->root.root.string;
5583 asection * s;
5584 char * tmp_name;
5585 struct elf_link_hash_entry * myh;
5586 struct bfd_link_hash_entry * bh;
5587 struct elf32_arm_link_hash_table * globals;
5588 bfd_vma val;
5589 bfd_size_type size;
5590
5591 globals = elf32_arm_hash_table (link_info);
5592 BFD_ASSERT (globals != NULL);
5593 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5594
5595 s = bfd_get_section_by_name
5596 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
5597
5598 BFD_ASSERT (s != NULL);
5599
5600 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen (name)
5601 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
5602
5603 BFD_ASSERT (tmp_name);
5604
5605 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
5606
5607 myh = elf_link_hash_lookup
5608 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5609
5610 if (myh != NULL)
5611 {
5612 /* We've already seen this guy. */
5613 free (tmp_name);
5614 return myh;
5615 }
5616
5617 /* The only trick here is using hash_table->arm_glue_size as the value.
5618 Even though the section isn't allocated yet, this is where we will be
5619 putting it. The +1 on the value marks that the stub has not been
5620 output yet - not that it is a Thumb function. */
5621 bh = NULL;
5622 val = globals->arm_glue_size + 1;
5623 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5624 tmp_name, BSF_GLOBAL, s, val,
5625 NULL, TRUE, FALSE, &bh);
5626
5627 myh = (struct elf_link_hash_entry *) bh;
5628 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5629 myh->forced_local = 1;
5630
5631 free (tmp_name);
5632
5633 if (link_info->shared || globals->root.is_relocatable_executable
5634 || globals->pic_veneer)
5635 size = ARM2THUMB_PIC_GLUE_SIZE;
5636 else if (globals->use_blx)
5637 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
5638 else
5639 size = ARM2THUMB_STATIC_GLUE_SIZE;
5640
5641 s->size += size;
5642 globals->arm_glue_size += size;
5643
5644 return myh;
5645 }
5646
5647 /* Allocate space for ARMv4 BX veneers. */
5648
5649 static void
5650 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
5651 {
5652 asection * s;
5653 struct elf32_arm_link_hash_table *globals;
5654 char *tmp_name;
5655 struct elf_link_hash_entry *myh;
5656 struct bfd_link_hash_entry *bh;
5657 bfd_vma val;
5658
5659 /* BX PC does not need a veneer. */
5660 if (reg == 15)
5661 return;
5662
5663 globals = elf32_arm_hash_table (link_info);
5664 BFD_ASSERT (globals != NULL);
5665 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5666
5667 /* Check if this veneer has already been allocated. */
5668 if (globals->bx_glue_offset[reg])
5669 return;
5670
5671 s = bfd_get_section_by_name
5672 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
5673
5674 BFD_ASSERT (s != NULL);
5675
5676 /* Add symbol for veneer. */
5677 tmp_name = (char *)
5678 bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
5679
5680 BFD_ASSERT (tmp_name);
5681
5682 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
5683
5684 myh = elf_link_hash_lookup
5685 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
5686
5687 BFD_ASSERT (myh == NULL);
5688
5689 bh = NULL;
5690 val = globals->bx_glue_size;
5691 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
5692 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5693 NULL, TRUE, FALSE, &bh);
5694
5695 myh = (struct elf_link_hash_entry *) bh;
5696 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5697 myh->forced_local = 1;
5698
5699 s->size += ARM_BX_VENEER_SIZE;
5700 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
5701 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
5702 }
5703
5704
5705 /* Add an entry to the code/data map for section SEC. */
5706
5707 static void
5708 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
5709 {
5710 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5711 unsigned int newidx;
5712
5713 if (sec_data->map == NULL)
5714 {
5715 sec_data->map = (elf32_arm_section_map *)
5716 bfd_malloc (sizeof (elf32_arm_section_map));
5717 sec_data->mapcount = 0;
5718 sec_data->mapsize = 1;
5719 }
5720
5721 newidx = sec_data->mapcount++;
5722
5723 if (sec_data->mapcount > sec_data->mapsize)
5724 {
5725 sec_data->mapsize *= 2;
5726 sec_data->map = (elf32_arm_section_map *)
5727 bfd_realloc_or_free (sec_data->map, sec_data->mapsize
5728 * sizeof (elf32_arm_section_map));
5729 }
5730
5731 if (sec_data->map)
5732 {
5733 sec_data->map[newidx].vma = vma;
5734 sec_data->map[newidx].type = type;
5735 }
5736 }
5737
5738
5739 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
5740 veneers are handled for now. */
5741
5742 static bfd_vma
5743 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
5744 elf32_vfp11_erratum_list *branch,
5745 bfd *branch_bfd,
5746 asection *branch_sec,
5747 unsigned int offset)
5748 {
5749 asection *s;
5750 struct elf32_arm_link_hash_table *hash_table;
5751 char *tmp_name;
5752 struct elf_link_hash_entry *myh;
5753 struct bfd_link_hash_entry *bh;
5754 bfd_vma val;
5755 struct _arm_elf_section_data *sec_data;
5756 elf32_vfp11_erratum_list *newerr;
5757
5758 hash_table = elf32_arm_hash_table (link_info);
5759 BFD_ASSERT (hash_table != NULL);
5760 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
5761
5762 s = bfd_get_section_by_name
5763 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
5764
5765 sec_data = elf32_arm_section_data (s);
5766
5767 BFD_ASSERT (s != NULL);
5768
5769 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
5770 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5771
5772 BFD_ASSERT (tmp_name);
5773
5774 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5775 hash_table->num_vfp11_fixes);
5776
5777 myh = elf_link_hash_lookup
5778 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5779
5780 BFD_ASSERT (myh == NULL);
5781
5782 bh = NULL;
5783 val = hash_table->vfp11_erratum_glue_size;
5784 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
5785 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
5786 NULL, TRUE, FALSE, &bh);
5787
5788 myh = (struct elf_link_hash_entry *) bh;
5789 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5790 myh->forced_local = 1;
5791
5792 /* Link veneer back to calling location. */
5793 sec_data->erratumcount += 1;
5794 newerr = (elf32_vfp11_erratum_list *)
5795 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5796
5797 newerr->type = VFP11_ERRATUM_ARM_VENEER;
5798 newerr->vma = -1;
5799 newerr->u.v.branch = branch;
5800 newerr->u.v.id = hash_table->num_vfp11_fixes;
5801 branch->u.b.veneer = newerr;
5802
5803 newerr->next = sec_data->erratumlist;
5804 sec_data->erratumlist = newerr;
5805
5806 /* A symbol for the return from the veneer. */
5807 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5808 hash_table->num_vfp11_fixes);
5809
5810 myh = elf_link_hash_lookup
5811 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
5812
5813 if (myh != NULL)
5814 abort ();
5815
5816 bh = NULL;
5817 val = offset + 4;
5818 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
5819 branch_sec, val, NULL, TRUE, FALSE, &bh);
5820
5821 myh = (struct elf_link_hash_entry *) bh;
5822 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
5823 myh->forced_local = 1;
5824
5825 free (tmp_name);
5826
5827 /* Generate a mapping symbol for the veneer section, and explicitly add an
5828 entry for that symbol to the code/data map for the section. */
5829 if (hash_table->vfp11_erratum_glue_size == 0)
5830 {
5831 bh = NULL;
5832 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
5833 ever requires this erratum fix. */
5834 _bfd_generic_link_add_one_symbol (link_info,
5835 hash_table->bfd_of_glue_owner, "$a",
5836 BSF_LOCAL, s, 0, NULL,
5837 TRUE, FALSE, &bh);
5838
5839 myh = (struct elf_link_hash_entry *) bh;
5840 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
5841 myh->forced_local = 1;
5842
5843 /* The elf32_arm_init_maps function only cares about symbols from input
5844 BFDs. We must make a note of this generated mapping symbol
5845 ourselves so that code byteswapping works properly in
5846 elf32_arm_write_section. */
5847 elf32_arm_section_map_add (s, 'a', 0);
5848 }
5849
5850 s->size += VFP11_ERRATUM_VENEER_SIZE;
5851 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
5852 hash_table->num_vfp11_fixes++;
5853
5854 /* The offset of the veneer. */
5855 return val;
5856 }
5857
5858 #define ARM_GLUE_SECTION_FLAGS \
5859 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE \
5860 | SEC_READONLY | SEC_LINKER_CREATED)
5861
5862 /* Create a fake section for use by the ARM backend of the linker. */
5863
5864 static bfd_boolean
5865 arm_make_glue_section (bfd * abfd, const char * name)
5866 {
5867 asection * sec;
5868
5869 sec = bfd_get_section_by_name (abfd, name);
5870 if (sec != NULL)
5871 /* Already made. */
5872 return TRUE;
5873
5874 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
5875
5876 if (sec == NULL
5877 || !bfd_set_section_alignment (abfd, sec, 2))
5878 return FALSE;
5879
5880 /* Set the gc mark to prevent the section from being removed by garbage
5881 collection, despite the fact that no relocs refer to this section. */
5882 sec->gc_mark = 1;
5883
5884 return TRUE;
5885 }
5886
5887 /* Add the glue sections to ABFD. This function is called from the
5888 linker scripts in ld/emultempl/{armelf}.em. */
5889
5890 bfd_boolean
5891 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
5892 struct bfd_link_info *info)
5893 {
5894 /* If we are only performing a partial
5895 link do not bother adding the glue. */
5896 if (info->relocatable)
5897 return TRUE;
5898
5899 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
5900 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
5901 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
5902 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
5903 }
5904
5905 /* Select a BFD to be used to hold the sections used by the glue code.
5906 This function is called from the linker scripts in ld/emultempl/
5907 {armelf/pe}.em. */
5908
5909 bfd_boolean
5910 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
5911 {
5912 struct elf32_arm_link_hash_table *globals;
5913
5914 /* If we are only performing a partial link
5915 do not bother getting a bfd to hold the glue. */
5916 if (info->relocatable)
5917 return TRUE;
5918
5919 /* Make sure we don't attach the glue sections to a dynamic object. */
5920 BFD_ASSERT (!(abfd->flags & DYNAMIC));
5921
5922 globals = elf32_arm_hash_table (info);
5923 BFD_ASSERT (globals != NULL);
5924
5925 if (globals->bfd_of_glue_owner != NULL)
5926 return TRUE;
5927
5928 /* Save the bfd for later use. */
5929 globals->bfd_of_glue_owner = abfd;
5930
5931 return TRUE;
5932 }
5933
5934 static void
5935 check_use_blx (struct elf32_arm_link_hash_table *globals)
5936 {
5937 int cpu_arch;
5938
5939 cpu_arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
5940 Tag_CPU_arch);
5941
5942 if (globals->fix_arm1176)
5943 {
5944 if (cpu_arch == TAG_CPU_ARCH_V6T2 || cpu_arch > TAG_CPU_ARCH_V6K)
5945 globals->use_blx = 1;
5946 }
5947 else
5948 {
5949 if (cpu_arch > TAG_CPU_ARCH_V4T)
5950 globals->use_blx = 1;
5951 }
5952 }
5953
5954 bfd_boolean
5955 bfd_elf32_arm_process_before_allocation (bfd *abfd,
5956 struct bfd_link_info *link_info)
5957 {
5958 Elf_Internal_Shdr *symtab_hdr;
5959 Elf_Internal_Rela *internal_relocs = NULL;
5960 Elf_Internal_Rela *irel, *irelend;
5961 bfd_byte *contents = NULL;
5962
5963 asection *sec;
5964 struct elf32_arm_link_hash_table *globals;
5965
5966 /* If we are only performing a partial link do not bother
5967 to construct any glue. */
5968 if (link_info->relocatable)
5969 return TRUE;
5970
5971 /* Here we have a bfd that is to be included on the link. We have a
5972 hook to do reloc rummaging, before section sizes are nailed down. */
5973 globals = elf32_arm_hash_table (link_info);
5974 BFD_ASSERT (globals != NULL);
5975
5976 check_use_blx (globals);
5977
5978 if (globals->byteswap_code && !bfd_big_endian (abfd))
5979 {
5980 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
5981 abfd);
5982 return FALSE;
5983 }
5984
5985 /* PR 5398: If we have not decided to include any loadable sections in
5986 the output then we will not have a glue owner bfd. This is OK, it
5987 just means that there is nothing else for us to do here. */
5988 if (globals->bfd_of_glue_owner == NULL)
5989 return TRUE;
5990
5991 /* Rummage around all the relocs and map the glue vectors. */
5992 sec = abfd->sections;
5993
5994 if (sec == NULL)
5995 return TRUE;
5996
5997 for (; sec != NULL; sec = sec->next)
5998 {
5999 if (sec->reloc_count == 0)
6000 continue;
6001
6002 if ((sec->flags & SEC_EXCLUDE) != 0)
6003 continue;
6004
6005 symtab_hdr = & elf_symtab_hdr (abfd);
6006
6007 /* Load the relocs. */
6008 internal_relocs
6009 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
6010
6011 if (internal_relocs == NULL)
6012 goto error_return;
6013
6014 irelend = internal_relocs + sec->reloc_count;
6015 for (irel = internal_relocs; irel < irelend; irel++)
6016 {
6017 long r_type;
6018 unsigned long r_index;
6019
6020 struct elf_link_hash_entry *h;
6021
6022 r_type = ELF32_R_TYPE (irel->r_info);
6023 r_index = ELF32_R_SYM (irel->r_info);
6024
6025 /* These are the only relocation types we care about. */
6026 if ( r_type != R_ARM_PC24
6027 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
6028 continue;
6029
6030 /* Get the section contents if we haven't done so already. */
6031 if (contents == NULL)
6032 {
6033 /* Get cached copy if it exists. */
6034 if (elf_section_data (sec)->this_hdr.contents != NULL)
6035 contents = elf_section_data (sec)->this_hdr.contents;
6036 else
6037 {
6038 /* Go get them off disk. */
6039 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6040 goto error_return;
6041 }
6042 }
6043
6044 if (r_type == R_ARM_V4BX)
6045 {
6046 int reg;
6047
6048 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
6049 record_arm_bx_glue (link_info, reg);
6050 continue;
6051 }
6052
6053 /* If the relocation is not against a symbol it cannot concern us. */
6054 h = NULL;
6055
6056 /* We don't care about local symbols. */
6057 if (r_index < symtab_hdr->sh_info)
6058 continue;
6059
6060 /* This is an external symbol. */
6061 r_index -= symtab_hdr->sh_info;
6062 h = (struct elf_link_hash_entry *)
6063 elf_sym_hashes (abfd)[r_index];
6064
6065 /* If the relocation is against a static symbol it must be within
6066 the current section and so cannot be a cross ARM/Thumb relocation. */
6067 if (h == NULL)
6068 continue;
6069
6070 /* If the call will go through a PLT entry then we do not need
6071 glue. */
6072 if (globals->root.splt != NULL && h->plt.offset != (bfd_vma) -1)
6073 continue;
6074
6075 switch (r_type)
6076 {
6077 case R_ARM_PC24:
6078 /* This one is a call from arm code. We need to look up
6079 the target of the call. If it is a thumb target, we
6080 insert glue. */
6081 if (h->target_internal == ST_BRANCH_TO_THUMB)
6082 record_arm_to_thumb_glue (link_info, h);
6083 break;
6084
6085 default:
6086 abort ();
6087 }
6088 }
6089
6090 if (contents != NULL
6091 && elf_section_data (sec)->this_hdr.contents != contents)
6092 free (contents);
6093 contents = NULL;
6094
6095 if (internal_relocs != NULL
6096 && elf_section_data (sec)->relocs != internal_relocs)
6097 free (internal_relocs);
6098 internal_relocs = NULL;
6099 }
6100
6101 return TRUE;
6102
6103 error_return:
6104 if (contents != NULL
6105 && elf_section_data (sec)->this_hdr.contents != contents)
6106 free (contents);
6107 if (internal_relocs != NULL
6108 && elf_section_data (sec)->relocs != internal_relocs)
6109 free (internal_relocs);
6110
6111 return FALSE;
6112 }
6113 #endif
6114
6115
6116 /* Initialise maps of ARM/Thumb/data for input BFDs. */
6117
6118 void
6119 bfd_elf32_arm_init_maps (bfd *abfd)
6120 {
6121 Elf_Internal_Sym *isymbuf;
6122 Elf_Internal_Shdr *hdr;
6123 unsigned int i, localsyms;
6124
6125 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
6126 if (! is_arm_elf (abfd))
6127 return;
6128
6129 if ((abfd->flags & DYNAMIC) != 0)
6130 return;
6131
6132 hdr = & elf_symtab_hdr (abfd);
6133 localsyms = hdr->sh_info;
6134
6135 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
6136 should contain the number of local symbols, which should come before any
6137 global symbols. Mapping symbols are always local. */
6138 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
6139 NULL);
6140
6141 /* No internal symbols read? Skip this BFD. */
6142 if (isymbuf == NULL)
6143 return;
6144
6145 for (i = 0; i < localsyms; i++)
6146 {
6147 Elf_Internal_Sym *isym = &isymbuf[i];
6148 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
6149 const char *name;
6150
6151 if (sec != NULL
6152 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
6153 {
6154 name = bfd_elf_string_from_elf_section (abfd,
6155 hdr->sh_link, isym->st_name);
6156
6157 if (bfd_is_arm_special_symbol_name (name,
6158 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
6159 elf32_arm_section_map_add (sec, name[1], isym->st_value);
6160 }
6161 }
6162 }
6163
6164
6165 /* Auto-select enabling of Cortex-A8 erratum fix if the user didn't explicitly
6166 say what they wanted. */
6167
6168 void
6169 bfd_elf32_arm_set_cortex_a8_fix (bfd *obfd, struct bfd_link_info *link_info)
6170 {
6171 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6172 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6173
6174 if (globals == NULL)
6175 return;
6176
6177 if (globals->fix_cortex_a8 == -1)
6178 {
6179 /* Turn on Cortex-A8 erratum workaround for ARMv7-A. */
6180 if (out_attr[Tag_CPU_arch].i == TAG_CPU_ARCH_V7
6181 && (out_attr[Tag_CPU_arch_profile].i == 'A'
6182 || out_attr[Tag_CPU_arch_profile].i == 0))
6183 globals->fix_cortex_a8 = 1;
6184 else
6185 globals->fix_cortex_a8 = 0;
6186 }
6187 }
6188
6189
6190 void
6191 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
6192 {
6193 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6194 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
6195
6196 if (globals == NULL)
6197 return;
6198 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
6199 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
6200 {
6201 switch (globals->vfp11_fix)
6202 {
6203 case BFD_ARM_VFP11_FIX_DEFAULT:
6204 case BFD_ARM_VFP11_FIX_NONE:
6205 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6206 break;
6207
6208 default:
6209 /* Give a warning, but do as the user requests anyway. */
6210 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
6211 "workaround is not necessary for target architecture"), obfd);
6212 }
6213 }
6214 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
6215 /* For earlier architectures, we might need the workaround, but do not
6216 enable it by default. If users is running with broken hardware, they
6217 must enable the erratum fix explicitly. */
6218 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
6219 }
6220
6221
6222 enum bfd_arm_vfp11_pipe
6223 {
6224 VFP11_FMAC,
6225 VFP11_LS,
6226 VFP11_DS,
6227 VFP11_BAD
6228 };
6229
6230 /* Return a VFP register number. This is encoded as RX:X for single-precision
6231 registers, or X:RX for double-precision registers, where RX is the group of
6232 four bits in the instruction encoding and X is the single extension bit.
6233 RX and X fields are specified using their lowest (starting) bit. The return
6234 value is:
6235
6236 0...31: single-precision registers s0...s31
6237 32...63: double-precision registers d0...d31.
6238
6239 Although X should be zero for VFP11 (encoding d0...d15 only), we might
6240 encounter VFP3 instructions, so we allow the full range for DP registers. */
6241
6242 static unsigned int
6243 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
6244 unsigned int x)
6245 {
6246 if (is_double)
6247 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
6248 else
6249 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
6250 }
6251
6252 /* Set bits in *WMASK according to a register number REG as encoded by
6253 bfd_arm_vfp11_regno(). Ignore d16-d31. */
6254
6255 static void
6256 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
6257 {
6258 if (reg < 32)
6259 *wmask |= 1 << reg;
6260 else if (reg < 48)
6261 *wmask |= 3 << ((reg - 32) * 2);
6262 }
6263
6264 /* Return TRUE if WMASK overwrites anything in REGS. */
6265
6266 static bfd_boolean
6267 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
6268 {
6269 int i;
6270
6271 for (i = 0; i < numregs; i++)
6272 {
6273 unsigned int reg = regs[i];
6274
6275 if (reg < 32 && (wmask & (1 << reg)) != 0)
6276 return TRUE;
6277
6278 reg -= 32;
6279
6280 if (reg >= 16)
6281 continue;
6282
6283 if ((wmask & (3 << (reg * 2))) != 0)
6284 return TRUE;
6285 }
6286
6287 return FALSE;
6288 }
6289
6290 /* In this function, we're interested in two things: finding input registers
6291 for VFP data-processing instructions, and finding the set of registers which
6292 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
6293 hold the written set, so FLDM etc. are easy to deal with (we're only
6294 interested in 32 SP registers or 16 dp registers, due to the VFP version
6295 implemented by the chip in question). DP registers are marked by setting
6296 both SP registers in the write mask). */
6297
6298 static enum bfd_arm_vfp11_pipe
6299 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
6300 int *numregs)
6301 {
6302 enum bfd_arm_vfp11_pipe vpipe = VFP11_BAD;
6303 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
6304
6305 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
6306 {
6307 unsigned int pqrs;
6308 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6309 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6310
6311 pqrs = ((insn & 0x00800000) >> 20)
6312 | ((insn & 0x00300000) >> 19)
6313 | ((insn & 0x00000040) >> 6);
6314
6315 switch (pqrs)
6316 {
6317 case 0: /* fmac[sd]. */
6318 case 1: /* fnmac[sd]. */
6319 case 2: /* fmsc[sd]. */
6320 case 3: /* fnmsc[sd]. */
6321 vpipe = VFP11_FMAC;
6322 bfd_arm_vfp11_write_mask (destmask, fd);
6323 regs[0] = fd;
6324 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6325 regs[2] = fm;
6326 *numregs = 3;
6327 break;
6328
6329 case 4: /* fmul[sd]. */
6330 case 5: /* fnmul[sd]. */
6331 case 6: /* fadd[sd]. */
6332 case 7: /* fsub[sd]. */
6333 vpipe = VFP11_FMAC;
6334 goto vfp_binop;
6335
6336 case 8: /* fdiv[sd]. */
6337 vpipe = VFP11_DS;
6338 vfp_binop:
6339 bfd_arm_vfp11_write_mask (destmask, fd);
6340 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
6341 regs[1] = fm;
6342 *numregs = 2;
6343 break;
6344
6345 case 15: /* extended opcode. */
6346 {
6347 unsigned int extn = ((insn >> 15) & 0x1e)
6348 | ((insn >> 7) & 1);
6349
6350 switch (extn)
6351 {
6352 case 0: /* fcpy[sd]. */
6353 case 1: /* fabs[sd]. */
6354 case 2: /* fneg[sd]. */
6355 case 8: /* fcmp[sd]. */
6356 case 9: /* fcmpe[sd]. */
6357 case 10: /* fcmpz[sd]. */
6358 case 11: /* fcmpez[sd]. */
6359 case 16: /* fuito[sd]. */
6360 case 17: /* fsito[sd]. */
6361 case 24: /* ftoui[sd]. */
6362 case 25: /* ftouiz[sd]. */
6363 case 26: /* ftosi[sd]. */
6364 case 27: /* ftosiz[sd]. */
6365 /* These instructions will not bounce due to underflow. */
6366 *numregs = 0;
6367 vpipe = VFP11_FMAC;
6368 break;
6369
6370 case 3: /* fsqrt[sd]. */
6371 /* fsqrt cannot underflow, but it can (perhaps) overwrite
6372 registers to cause the erratum in previous instructions. */
6373 bfd_arm_vfp11_write_mask (destmask, fd);
6374 vpipe = VFP11_DS;
6375 break;
6376
6377 case 15: /* fcvt{ds,sd}. */
6378 {
6379 int rnum = 0;
6380
6381 bfd_arm_vfp11_write_mask (destmask, fd);
6382
6383 /* Only FCVTSD can underflow. */
6384 if ((insn & 0x100) != 0)
6385 regs[rnum++] = fm;
6386
6387 *numregs = rnum;
6388
6389 vpipe = VFP11_FMAC;
6390 }
6391 break;
6392
6393 default:
6394 return VFP11_BAD;
6395 }
6396 }
6397 break;
6398
6399 default:
6400 return VFP11_BAD;
6401 }
6402 }
6403 /* Two-register transfer. */
6404 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
6405 {
6406 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
6407
6408 if ((insn & 0x100000) == 0)
6409 {
6410 if (is_double)
6411 bfd_arm_vfp11_write_mask (destmask, fm);
6412 else
6413 {
6414 bfd_arm_vfp11_write_mask (destmask, fm);
6415 bfd_arm_vfp11_write_mask (destmask, fm + 1);
6416 }
6417 }
6418
6419 vpipe = VFP11_LS;
6420 }
6421 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
6422 {
6423 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
6424 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
6425
6426 switch (puw)
6427 {
6428 case 0: /* Two-reg transfer. We should catch these above. */
6429 abort ();
6430
6431 case 2: /* fldm[sdx]. */
6432 case 3:
6433 case 5:
6434 {
6435 unsigned int i, offset = insn & 0xff;
6436
6437 if (is_double)
6438 offset >>= 1;
6439
6440 for (i = fd; i < fd + offset; i++)
6441 bfd_arm_vfp11_write_mask (destmask, i);
6442 }
6443 break;
6444
6445 case 4: /* fld[sd]. */
6446 case 6:
6447 bfd_arm_vfp11_write_mask (destmask, fd);
6448 break;
6449
6450 default:
6451 return VFP11_BAD;
6452 }
6453
6454 vpipe = VFP11_LS;
6455 }
6456 /* Single-register transfer. Note L==0. */
6457 else if ((insn & 0x0f100e10) == 0x0e000a10)
6458 {
6459 unsigned int opcode = (insn >> 21) & 7;
6460 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
6461
6462 switch (opcode)
6463 {
6464 case 0: /* fmsr/fmdlr. */
6465 case 1: /* fmdhr. */
6466 /* Mark fmdhr and fmdlr as writing to the whole of the DP
6467 destination register. I don't know if this is exactly right,
6468 but it is the conservative choice. */
6469 bfd_arm_vfp11_write_mask (destmask, fn);
6470 break;
6471
6472 case 7: /* fmxr. */
6473 break;
6474 }
6475
6476 vpipe = VFP11_LS;
6477 }
6478
6479 return vpipe;
6480 }
6481
6482
6483 static int elf32_arm_compare_mapping (const void * a, const void * b);
6484
6485
6486 /* Look for potentially-troublesome code sequences which might trigger the
6487 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
6488 (available from ARM) for details of the erratum. A short version is
6489 described in ld.texinfo. */
6490
6491 bfd_boolean
6492 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
6493 {
6494 asection *sec;
6495 bfd_byte *contents = NULL;
6496 int state = 0;
6497 int regs[3], numregs = 0;
6498 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
6499 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
6500
6501 if (globals == NULL)
6502 return FALSE;
6503
6504 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
6505 The states transition as follows:
6506
6507 0 -> 1 (vector) or 0 -> 2 (scalar)
6508 A VFP FMAC-pipeline instruction has been seen. Fill
6509 regs[0]..regs[numregs-1] with its input operands. Remember this
6510 instruction in 'first_fmac'.
6511
6512 1 -> 2
6513 Any instruction, except for a VFP instruction which overwrites
6514 regs[*].
6515
6516 1 -> 3 [ -> 0 ] or
6517 2 -> 3 [ -> 0 ]
6518 A VFP instruction has been seen which overwrites any of regs[*].
6519 We must make a veneer! Reset state to 0 before examining next
6520 instruction.
6521
6522 2 -> 0
6523 If we fail to match anything in state 2, reset to state 0 and reset
6524 the instruction pointer to the instruction after 'first_fmac'.
6525
6526 If the VFP11 vector mode is in use, there must be at least two unrelated
6527 instructions between anti-dependent VFP11 instructions to properly avoid
6528 triggering the erratum, hence the use of the extra state 1. */
6529
6530 /* If we are only performing a partial link do not bother
6531 to construct any glue. */
6532 if (link_info->relocatable)
6533 return TRUE;
6534
6535 /* Skip if this bfd does not correspond to an ELF image. */
6536 if (! is_arm_elf (abfd))
6537 return TRUE;
6538
6539 /* We should have chosen a fix type by the time we get here. */
6540 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
6541
6542 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
6543 return TRUE;
6544
6545 /* Skip this BFD if it corresponds to an executable or dynamic object. */
6546 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
6547 return TRUE;
6548
6549 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6550 {
6551 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
6552 struct _arm_elf_section_data *sec_data;
6553
6554 /* If we don't have executable progbits, we're not interested in this
6555 section. Also skip if section is to be excluded. */
6556 if (elf_section_type (sec) != SHT_PROGBITS
6557 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
6558 || (sec->flags & SEC_EXCLUDE) != 0
6559 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
6560 || sec->output_section == bfd_abs_section_ptr
6561 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
6562 continue;
6563
6564 sec_data = elf32_arm_section_data (sec);
6565
6566 if (sec_data->mapcount == 0)
6567 continue;
6568
6569 if (elf_section_data (sec)->this_hdr.contents != NULL)
6570 contents = elf_section_data (sec)->this_hdr.contents;
6571 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
6572 goto error_return;
6573
6574 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
6575 elf32_arm_compare_mapping);
6576
6577 for (span = 0; span < sec_data->mapcount; span++)
6578 {
6579 unsigned int span_start = sec_data->map[span].vma;
6580 unsigned int span_end = (span == sec_data->mapcount - 1)
6581 ? sec->size : sec_data->map[span + 1].vma;
6582 char span_type = sec_data->map[span].type;
6583
6584 /* FIXME: Only ARM mode is supported at present. We may need to
6585 support Thumb-2 mode also at some point. */
6586 if (span_type != 'a')
6587 continue;
6588
6589 for (i = span_start; i < span_end;)
6590 {
6591 unsigned int next_i = i + 4;
6592 unsigned int insn = bfd_big_endian (abfd)
6593 ? (contents[i] << 24)
6594 | (contents[i + 1] << 16)
6595 | (contents[i + 2] << 8)
6596 | contents[i + 3]
6597 : (contents[i + 3] << 24)
6598 | (contents[i + 2] << 16)
6599 | (contents[i + 1] << 8)
6600 | contents[i];
6601 unsigned int writemask = 0;
6602 enum bfd_arm_vfp11_pipe vpipe;
6603
6604 switch (state)
6605 {
6606 case 0:
6607 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
6608 &numregs);
6609 /* I'm assuming the VFP11 erratum can trigger with denorm
6610 operands on either the FMAC or the DS pipeline. This might
6611 lead to slightly overenthusiastic veneer insertion. */
6612 if (vpipe == VFP11_FMAC || vpipe == VFP11_DS)
6613 {
6614 state = use_vector ? 1 : 2;
6615 first_fmac = i;
6616 veneer_of_insn = insn;
6617 }
6618 break;
6619
6620 case 1:
6621 {
6622 int other_regs[3], other_numregs;
6623 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6624 other_regs,
6625 &other_numregs);
6626 if (vpipe != VFP11_BAD
6627 && bfd_arm_vfp11_antidependency (writemask, regs,
6628 numregs))
6629 state = 3;
6630 else
6631 state = 2;
6632 }
6633 break;
6634
6635 case 2:
6636 {
6637 int other_regs[3], other_numregs;
6638 vpipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
6639 other_regs,
6640 &other_numregs);
6641 if (vpipe != VFP11_BAD
6642 && bfd_arm_vfp11_antidependency (writemask, regs,
6643 numregs))
6644 state = 3;
6645 else
6646 {
6647 state = 0;
6648 next_i = first_fmac + 4;
6649 }
6650 }
6651 break;
6652
6653 case 3:
6654 abort (); /* Should be unreachable. */
6655 }
6656
6657 if (state == 3)
6658 {
6659 elf32_vfp11_erratum_list *newerr =(elf32_vfp11_erratum_list *)
6660 bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
6661
6662 elf32_arm_section_data (sec)->erratumcount += 1;
6663
6664 newerr->u.b.vfp_insn = veneer_of_insn;
6665
6666 switch (span_type)
6667 {
6668 case 'a':
6669 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
6670 break;
6671
6672 default:
6673 abort ();
6674 }
6675
6676 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
6677 first_fmac);
6678
6679 newerr->vma = -1;
6680
6681 newerr->next = sec_data->erratumlist;
6682 sec_data->erratumlist = newerr;
6683
6684 state = 0;
6685 }
6686
6687 i = next_i;
6688 }
6689 }
6690
6691 if (contents != NULL
6692 && elf_section_data (sec)->this_hdr.contents != contents)
6693 free (contents);
6694 contents = NULL;
6695 }
6696
6697 return TRUE;
6698
6699 error_return:
6700 if (contents != NULL
6701 && elf_section_data (sec)->this_hdr.contents != contents)
6702 free (contents);
6703
6704 return FALSE;
6705 }
6706
6707 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
6708 after sections have been laid out, using specially-named symbols. */
6709
6710 void
6711 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
6712 struct bfd_link_info *link_info)
6713 {
6714 asection *sec;
6715 struct elf32_arm_link_hash_table *globals;
6716 char *tmp_name;
6717
6718 if (link_info->relocatable)
6719 return;
6720
6721 /* Skip if this bfd does not correspond to an ELF image. */
6722 if (! is_arm_elf (abfd))
6723 return;
6724
6725 globals = elf32_arm_hash_table (link_info);
6726 if (globals == NULL)
6727 return;
6728
6729 tmp_name = (char *) bfd_malloc ((bfd_size_type) strlen
6730 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
6731
6732 for (sec = abfd->sections; sec != NULL; sec = sec->next)
6733 {
6734 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
6735 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
6736
6737 for (; errnode != NULL; errnode = errnode->next)
6738 {
6739 struct elf_link_hash_entry *myh;
6740 bfd_vma vma;
6741
6742 switch (errnode->type)
6743 {
6744 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
6745 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
6746 /* Find veneer symbol. */
6747 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
6748 errnode->u.b.veneer->u.v.id);
6749
6750 myh = elf_link_hash_lookup
6751 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6752
6753 if (myh == NULL)
6754 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6755 "`%s'"), abfd, tmp_name);
6756
6757 vma = myh->root.u.def.section->output_section->vma
6758 + myh->root.u.def.section->output_offset
6759 + myh->root.u.def.value;
6760
6761 errnode->u.b.veneer->vma = vma;
6762 break;
6763
6764 case VFP11_ERRATUM_ARM_VENEER:
6765 case VFP11_ERRATUM_THUMB_VENEER:
6766 /* Find return location. */
6767 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
6768 errnode->u.v.id);
6769
6770 myh = elf_link_hash_lookup
6771 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
6772
6773 if (myh == NULL)
6774 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
6775 "`%s'"), abfd, tmp_name);
6776
6777 vma = myh->root.u.def.section->output_section->vma
6778 + myh->root.u.def.section->output_offset
6779 + myh->root.u.def.value;
6780
6781 errnode->u.v.branch->vma = vma;
6782 break;
6783
6784 default:
6785 abort ();
6786 }
6787 }
6788 }
6789
6790 free (tmp_name);
6791 }
6792
6793
6794 /* Set target relocation values needed during linking. */
6795
6796 void
6797 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
6798 struct bfd_link_info *link_info,
6799 int target1_is_rel,
6800 char * target2_type,
6801 int fix_v4bx,
6802 int use_blx,
6803 bfd_arm_vfp11_fix vfp11_fix,
6804 int no_enum_warn, int no_wchar_warn,
6805 int pic_veneer, int fix_cortex_a8,
6806 int fix_arm1176)
6807 {
6808 struct elf32_arm_link_hash_table *globals;
6809
6810 globals = elf32_arm_hash_table (link_info);
6811 if (globals == NULL)
6812 return;
6813
6814 globals->target1_is_rel = target1_is_rel;
6815 if (strcmp (target2_type, "rel") == 0)
6816 globals->target2_reloc = R_ARM_REL32;
6817 else if (strcmp (target2_type, "abs") == 0)
6818 globals->target2_reloc = R_ARM_ABS32;
6819 else if (strcmp (target2_type, "got-rel") == 0)
6820 globals->target2_reloc = R_ARM_GOT_PREL;
6821 else
6822 {
6823 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
6824 target2_type);
6825 }
6826 globals->fix_v4bx = fix_v4bx;
6827 globals->use_blx |= use_blx;
6828 globals->vfp11_fix = vfp11_fix;
6829 globals->pic_veneer = pic_veneer;
6830 globals->fix_cortex_a8 = fix_cortex_a8;
6831 globals->fix_arm1176 = fix_arm1176;
6832
6833 BFD_ASSERT (is_arm_elf (output_bfd));
6834 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
6835 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
6836 }
6837
6838 /* Replace the target offset of a Thumb bl or b.w instruction. */
6839
6840 static void
6841 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
6842 {
6843 bfd_vma upper;
6844 bfd_vma lower;
6845 int reloc_sign;
6846
6847 BFD_ASSERT ((offset & 1) == 0);
6848
6849 upper = bfd_get_16 (abfd, insn);
6850 lower = bfd_get_16 (abfd, insn + 2);
6851 reloc_sign = (offset < 0) ? 1 : 0;
6852 upper = (upper & ~(bfd_vma) 0x7ff)
6853 | ((offset >> 12) & 0x3ff)
6854 | (reloc_sign << 10);
6855 lower = (lower & ~(bfd_vma) 0x2fff)
6856 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
6857 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
6858 | ((offset >> 1) & 0x7ff);
6859 bfd_put_16 (abfd, upper, insn);
6860 bfd_put_16 (abfd, lower, insn + 2);
6861 }
6862
6863 /* Thumb code calling an ARM function. */
6864
6865 static int
6866 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
6867 const char * name,
6868 bfd * input_bfd,
6869 bfd * output_bfd,
6870 asection * input_section,
6871 bfd_byte * hit_data,
6872 asection * sym_sec,
6873 bfd_vma offset,
6874 bfd_signed_vma addend,
6875 bfd_vma val,
6876 char **error_message)
6877 {
6878 asection * s = 0;
6879 bfd_vma my_offset;
6880 long int ret_offset;
6881 struct elf_link_hash_entry * myh;
6882 struct elf32_arm_link_hash_table * globals;
6883
6884 myh = find_thumb_glue (info, name, error_message);
6885 if (myh == NULL)
6886 return FALSE;
6887
6888 globals = elf32_arm_hash_table (info);
6889 BFD_ASSERT (globals != NULL);
6890 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6891
6892 my_offset = myh->root.u.def.value;
6893
6894 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
6895 THUMB2ARM_GLUE_SECTION_NAME);
6896
6897 BFD_ASSERT (s != NULL);
6898 BFD_ASSERT (s->contents != NULL);
6899 BFD_ASSERT (s->output_section != NULL);
6900
6901 if ((my_offset & 0x01) == 0x01)
6902 {
6903 if (sym_sec != NULL
6904 && sym_sec->owner != NULL
6905 && !INTERWORK_FLAG (sym_sec->owner))
6906 {
6907 (*_bfd_error_handler)
6908 (_("%B(%s): warning: interworking not enabled.\n"
6909 " first occurrence: %B: thumb call to arm"),
6910 sym_sec->owner, input_bfd, name);
6911
6912 return FALSE;
6913 }
6914
6915 --my_offset;
6916 myh->root.u.def.value = my_offset;
6917
6918 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
6919 s->contents + my_offset);
6920
6921 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
6922 s->contents + my_offset + 2);
6923
6924 ret_offset =
6925 /* Address of destination of the stub. */
6926 ((bfd_signed_vma) val)
6927 - ((bfd_signed_vma)
6928 /* Offset from the start of the current section
6929 to the start of the stubs. */
6930 (s->output_offset
6931 /* Offset of the start of this stub from the start of the stubs. */
6932 + my_offset
6933 /* Address of the start of the current section. */
6934 + s->output_section->vma)
6935 /* The branch instruction is 4 bytes into the stub. */
6936 + 4
6937 /* ARM branches work from the pc of the instruction + 8. */
6938 + 8);
6939
6940 put_arm_insn (globals, output_bfd,
6941 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
6942 s->contents + my_offset + 4);
6943 }
6944
6945 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
6946
6947 /* Now go back and fix up the original BL insn to point to here. */
6948 ret_offset =
6949 /* Address of where the stub is located. */
6950 (s->output_section->vma + s->output_offset + my_offset)
6951 /* Address of where the BL is located. */
6952 - (input_section->output_section->vma + input_section->output_offset
6953 + offset)
6954 /* Addend in the relocation. */
6955 - addend
6956 /* Biassing for PC-relative addressing. */
6957 - 8;
6958
6959 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
6960
6961 return TRUE;
6962 }
6963
6964 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
6965
6966 static struct elf_link_hash_entry *
6967 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
6968 const char * name,
6969 bfd * input_bfd,
6970 bfd * output_bfd,
6971 asection * sym_sec,
6972 bfd_vma val,
6973 asection * s,
6974 char ** error_message)
6975 {
6976 bfd_vma my_offset;
6977 long int ret_offset;
6978 struct elf_link_hash_entry * myh;
6979 struct elf32_arm_link_hash_table * globals;
6980
6981 myh = find_arm_glue (info, name, error_message);
6982 if (myh == NULL)
6983 return NULL;
6984
6985 globals = elf32_arm_hash_table (info);
6986 BFD_ASSERT (globals != NULL);
6987 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
6988
6989 my_offset = myh->root.u.def.value;
6990
6991 if ((my_offset & 0x01) == 0x01)
6992 {
6993 if (sym_sec != NULL
6994 && sym_sec->owner != NULL
6995 && !INTERWORK_FLAG (sym_sec->owner))
6996 {
6997 (*_bfd_error_handler)
6998 (_("%B(%s): warning: interworking not enabled.\n"
6999 " first occurrence: %B: arm call to thumb"),
7000 sym_sec->owner, input_bfd, name);
7001 }
7002
7003 --my_offset;
7004 myh->root.u.def.value = my_offset;
7005
7006 if (info->shared || globals->root.is_relocatable_executable
7007 || globals->pic_veneer)
7008 {
7009 /* For relocatable objects we can't use absolute addresses,
7010 so construct the address from a relative offset. */
7011 /* TODO: If the offset is small it's probably worth
7012 constructing the address with adds. */
7013 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
7014 s->contents + my_offset);
7015 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
7016 s->contents + my_offset + 4);
7017 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
7018 s->contents + my_offset + 8);
7019 /* Adjust the offset by 4 for the position of the add,
7020 and 8 for the pipeline offset. */
7021 ret_offset = (val - (s->output_offset
7022 + s->output_section->vma
7023 + my_offset + 12))
7024 | 1;
7025 bfd_put_32 (output_bfd, ret_offset,
7026 s->contents + my_offset + 12);
7027 }
7028 else if (globals->use_blx)
7029 {
7030 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
7031 s->contents + my_offset);
7032
7033 /* It's a thumb address. Add the low order bit. */
7034 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
7035 s->contents + my_offset + 4);
7036 }
7037 else
7038 {
7039 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
7040 s->contents + my_offset);
7041
7042 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
7043 s->contents + my_offset + 4);
7044
7045 /* It's a thumb address. Add the low order bit. */
7046 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
7047 s->contents + my_offset + 8);
7048
7049 my_offset += 12;
7050 }
7051 }
7052
7053 BFD_ASSERT (my_offset <= globals->arm_glue_size);
7054
7055 return myh;
7056 }
7057
7058 /* Arm code calling a Thumb function. */
7059
7060 static int
7061 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
7062 const char * name,
7063 bfd * input_bfd,
7064 bfd * output_bfd,
7065 asection * input_section,
7066 bfd_byte * hit_data,
7067 asection * sym_sec,
7068 bfd_vma offset,
7069 bfd_signed_vma addend,
7070 bfd_vma val,
7071 char **error_message)
7072 {
7073 unsigned long int tmp;
7074 bfd_vma my_offset;
7075 asection * s;
7076 long int ret_offset;
7077 struct elf_link_hash_entry * myh;
7078 struct elf32_arm_link_hash_table * globals;
7079
7080 globals = elf32_arm_hash_table (info);
7081 BFD_ASSERT (globals != NULL);
7082 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7083
7084 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7085 ARM2THUMB_GLUE_SECTION_NAME);
7086 BFD_ASSERT (s != NULL);
7087 BFD_ASSERT (s->contents != NULL);
7088 BFD_ASSERT (s->output_section != NULL);
7089
7090 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
7091 sym_sec, val, s, error_message);
7092 if (!myh)
7093 return FALSE;
7094
7095 my_offset = myh->root.u.def.value;
7096 tmp = bfd_get_32 (input_bfd, hit_data);
7097 tmp = tmp & 0xFF000000;
7098
7099 /* Somehow these are both 4 too far, so subtract 8. */
7100 ret_offset = (s->output_offset
7101 + my_offset
7102 + s->output_section->vma
7103 - (input_section->output_offset
7104 + input_section->output_section->vma
7105 + offset + addend)
7106 - 8);
7107
7108 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
7109
7110 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
7111
7112 return TRUE;
7113 }
7114
7115 /* Populate Arm stub for an exported Thumb function. */
7116
7117 static bfd_boolean
7118 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
7119 {
7120 struct bfd_link_info * info = (struct bfd_link_info *) inf;
7121 asection * s;
7122 struct elf_link_hash_entry * myh;
7123 struct elf32_arm_link_hash_entry *eh;
7124 struct elf32_arm_link_hash_table * globals;
7125 asection *sec;
7126 bfd_vma val;
7127 char *error_message;
7128
7129 eh = elf32_arm_hash_entry (h);
7130 /* Allocate stubs for exported Thumb functions on v4t. */
7131 if (eh->export_glue == NULL)
7132 return TRUE;
7133
7134 globals = elf32_arm_hash_table (info);
7135 BFD_ASSERT (globals != NULL);
7136 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7137
7138 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7139 ARM2THUMB_GLUE_SECTION_NAME);
7140 BFD_ASSERT (s != NULL);
7141 BFD_ASSERT (s->contents != NULL);
7142 BFD_ASSERT (s->output_section != NULL);
7143
7144 sec = eh->export_glue->root.u.def.section;
7145
7146 BFD_ASSERT (sec->output_section != NULL);
7147
7148 val = eh->export_glue->root.u.def.value + sec->output_offset
7149 + sec->output_section->vma;
7150
7151 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
7152 h->root.u.def.section->owner,
7153 globals->obfd, sec, val, s,
7154 &error_message);
7155 BFD_ASSERT (myh);
7156 return TRUE;
7157 }
7158
7159 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
7160
7161 static bfd_vma
7162 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
7163 {
7164 bfd_byte *p;
7165 bfd_vma glue_addr;
7166 asection *s;
7167 struct elf32_arm_link_hash_table *globals;
7168
7169 globals = elf32_arm_hash_table (info);
7170 BFD_ASSERT (globals != NULL);
7171 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
7172
7173 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
7174 ARM_BX_GLUE_SECTION_NAME);
7175 BFD_ASSERT (s != NULL);
7176 BFD_ASSERT (s->contents != NULL);
7177 BFD_ASSERT (s->output_section != NULL);
7178
7179 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
7180
7181 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
7182
7183 if ((globals->bx_glue_offset[reg] & 1) == 0)
7184 {
7185 p = s->contents + glue_addr;
7186 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
7187 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
7188 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
7189 globals->bx_glue_offset[reg] |= 1;
7190 }
7191
7192 return glue_addr + s->output_section->vma + s->output_offset;
7193 }
7194
7195 /* Generate Arm stubs for exported Thumb symbols. */
7196 static void
7197 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
7198 struct bfd_link_info *link_info)
7199 {
7200 struct elf32_arm_link_hash_table * globals;
7201
7202 if (link_info == NULL)
7203 /* Ignore this if we are not called by the ELF backend linker. */
7204 return;
7205
7206 globals = elf32_arm_hash_table (link_info);
7207 if (globals == NULL)
7208 return;
7209
7210 /* If blx is available then exported Thumb symbols are OK and there is
7211 nothing to do. */
7212 if (globals->use_blx)
7213 return;
7214
7215 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
7216 link_info);
7217 }
7218
7219 /* Reserve space for COUNT dynamic relocations in relocation selection
7220 SRELOC. */
7221
7222 static void
7223 elf32_arm_allocate_dynrelocs (struct bfd_link_info *info, asection *sreloc,
7224 bfd_size_type count)
7225 {
7226 struct elf32_arm_link_hash_table *htab;
7227
7228 htab = elf32_arm_hash_table (info);
7229 BFD_ASSERT (htab->root.dynamic_sections_created);
7230 if (sreloc == NULL)
7231 abort ();
7232 sreloc->size += RELOC_SIZE (htab) * count;
7233 }
7234
7235 /* Reserve space for COUNT R_ARM_IRELATIVE relocations. If the link is
7236 dynamic, the relocations should go in SRELOC, otherwise they should
7237 go in the special .rel.iplt section. */
7238
7239 static void
7240 elf32_arm_allocate_irelocs (struct bfd_link_info *info, asection *sreloc,
7241 bfd_size_type count)
7242 {
7243 struct elf32_arm_link_hash_table *htab;
7244
7245 htab = elf32_arm_hash_table (info);
7246 if (!htab->root.dynamic_sections_created)
7247 htab->root.irelplt->size += RELOC_SIZE (htab) * count;
7248 else
7249 {
7250 BFD_ASSERT (sreloc != NULL);
7251 sreloc->size += RELOC_SIZE (htab) * count;
7252 }
7253 }
7254
7255 /* Add relocation REL to the end of relocation section SRELOC. */
7256
7257 static void
7258 elf32_arm_add_dynreloc (bfd *output_bfd, struct bfd_link_info *info,
7259 asection *sreloc, Elf_Internal_Rela *rel)
7260 {
7261 bfd_byte *loc;
7262 struct elf32_arm_link_hash_table *htab;
7263
7264 htab = elf32_arm_hash_table (info);
7265 if (!htab->root.dynamic_sections_created
7266 && ELF32_R_TYPE (rel->r_info) == R_ARM_IRELATIVE)
7267 sreloc = htab->root.irelplt;
7268 if (sreloc == NULL)
7269 abort ();
7270 loc = sreloc->contents;
7271 loc += sreloc->reloc_count++ * RELOC_SIZE (htab);
7272 if (sreloc->reloc_count * RELOC_SIZE (htab) > sreloc->size)
7273 abort ();
7274 SWAP_RELOC_OUT (htab) (output_bfd, rel, loc);
7275 }
7276
7277 /* Allocate room for a PLT entry described by ROOT_PLT and ARM_PLT.
7278 IS_IPLT_ENTRY says whether the entry belongs to .iplt rather than
7279 to .plt. */
7280
7281 static void
7282 elf32_arm_allocate_plt_entry (struct bfd_link_info *info,
7283 bfd_boolean is_iplt_entry,
7284 union gotplt_union *root_plt,
7285 struct arm_plt_info *arm_plt)
7286 {
7287 struct elf32_arm_link_hash_table *htab;
7288 asection *splt;
7289 asection *sgotplt;
7290
7291 htab = elf32_arm_hash_table (info);
7292
7293 if (is_iplt_entry)
7294 {
7295 splt = htab->root.iplt;
7296 sgotplt = htab->root.igotplt;
7297
7298 /* Allocate room for an R_ARM_IRELATIVE relocation in .rel.iplt. */
7299 elf32_arm_allocate_irelocs (info, htab->root.irelplt, 1);
7300 }
7301 else
7302 {
7303 splt = htab->root.splt;
7304 sgotplt = htab->root.sgotplt;
7305
7306 /* Allocate room for an R_JUMP_SLOT relocation in .rel.plt. */
7307 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
7308
7309 /* If this is the first .plt entry, make room for the special
7310 first entry. */
7311 if (splt->size == 0)
7312 splt->size += htab->plt_header_size;
7313 }
7314
7315 /* Allocate the PLT entry itself, including any leading Thumb stub. */
7316 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7317 splt->size += PLT_THUMB_STUB_SIZE;
7318 root_plt->offset = splt->size;
7319 splt->size += htab->plt_entry_size;
7320
7321 if (!htab->symbian_p)
7322 {
7323 /* We also need to make an entry in the .got.plt section, which
7324 will be placed in the .got section by the linker script. */
7325 arm_plt->got_offset = sgotplt->size - 8 * htab->num_tls_desc;
7326 sgotplt->size += 4;
7327 }
7328 }
7329
7330 /* Fill in a PLT entry and its associated GOT slot. If DYNINDX == -1,
7331 the entry lives in .iplt and resolves to (*SYM_VALUE)().
7332 Otherwise, DYNINDX is the index of the symbol in the dynamic
7333 symbol table and SYM_VALUE is undefined.
7334
7335 ROOT_PLT points to the offset of the PLT entry from the start of its
7336 section (.iplt or .plt). ARM_PLT points to the symbol's ARM-specific
7337 bookkeeping information. */
7338
7339 static void
7340 elf32_arm_populate_plt_entry (bfd *output_bfd, struct bfd_link_info *info,
7341 union gotplt_union *root_plt,
7342 struct arm_plt_info *arm_plt,
7343 int dynindx, bfd_vma sym_value)
7344 {
7345 struct elf32_arm_link_hash_table *htab;
7346 asection *sgot;
7347 asection *splt;
7348 asection *srel;
7349 bfd_byte *loc;
7350 bfd_vma plt_index;
7351 Elf_Internal_Rela rel;
7352 bfd_vma plt_header_size;
7353 bfd_vma got_header_size;
7354
7355 htab = elf32_arm_hash_table (info);
7356
7357 /* Pick the appropriate sections and sizes. */
7358 if (dynindx == -1)
7359 {
7360 splt = htab->root.iplt;
7361 sgot = htab->root.igotplt;
7362 srel = htab->root.irelplt;
7363
7364 /* There are no reserved entries in .igot.plt, and no special
7365 first entry in .iplt. */
7366 got_header_size = 0;
7367 plt_header_size = 0;
7368 }
7369 else
7370 {
7371 splt = htab->root.splt;
7372 sgot = htab->root.sgotplt;
7373 srel = htab->root.srelplt;
7374
7375 got_header_size = get_elf_backend_data (output_bfd)->got_header_size;
7376 plt_header_size = htab->plt_header_size;
7377 }
7378 BFD_ASSERT (splt != NULL && srel != NULL);
7379
7380 /* Fill in the entry in the procedure linkage table. */
7381 if (htab->symbian_p)
7382 {
7383 BFD_ASSERT (dynindx >= 0);
7384 put_arm_insn (htab, output_bfd,
7385 elf32_arm_symbian_plt_entry[0],
7386 splt->contents + root_plt->offset);
7387 bfd_put_32 (output_bfd,
7388 elf32_arm_symbian_plt_entry[1],
7389 splt->contents + root_plt->offset + 4);
7390
7391 /* Fill in the entry in the .rel.plt section. */
7392 rel.r_offset = (splt->output_section->vma
7393 + splt->output_offset
7394 + root_plt->offset + 4);
7395 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_GLOB_DAT);
7396
7397 /* Get the index in the procedure linkage table which
7398 corresponds to this symbol. This is the index of this symbol
7399 in all the symbols for which we are making plt entries. The
7400 first entry in the procedure linkage table is reserved. */
7401 plt_index = ((root_plt->offset - plt_header_size)
7402 / htab->plt_entry_size);
7403 }
7404 else
7405 {
7406 bfd_vma got_offset, got_address, plt_address;
7407 bfd_vma got_displacement, initial_got_entry;
7408 bfd_byte * ptr;
7409
7410 BFD_ASSERT (sgot != NULL);
7411
7412 /* Get the offset into the .(i)got.plt table of the entry that
7413 corresponds to this function. */
7414 got_offset = (arm_plt->got_offset & -2);
7415
7416 /* Get the index in the procedure linkage table which
7417 corresponds to this symbol. This is the index of this symbol
7418 in all the symbols for which we are making plt entries.
7419 After the reserved .got.plt entries, all symbols appear in
7420 the same order as in .plt. */
7421 plt_index = (got_offset - got_header_size) / 4;
7422
7423 /* Calculate the address of the GOT entry. */
7424 got_address = (sgot->output_section->vma
7425 + sgot->output_offset
7426 + got_offset);
7427
7428 /* ...and the address of the PLT entry. */
7429 plt_address = (splt->output_section->vma
7430 + splt->output_offset
7431 + root_plt->offset);
7432
7433 ptr = splt->contents + root_plt->offset;
7434 if (htab->vxworks_p && info->shared)
7435 {
7436 unsigned int i;
7437 bfd_vma val;
7438
7439 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7440 {
7441 val = elf32_arm_vxworks_shared_plt_entry[i];
7442 if (i == 2)
7443 val |= got_address - sgot->output_section->vma;
7444 if (i == 5)
7445 val |= plt_index * RELOC_SIZE (htab);
7446 if (i == 2 || i == 5)
7447 bfd_put_32 (output_bfd, val, ptr);
7448 else
7449 put_arm_insn (htab, output_bfd, val, ptr);
7450 }
7451 }
7452 else if (htab->vxworks_p)
7453 {
7454 unsigned int i;
7455 bfd_vma val;
7456
7457 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
7458 {
7459 val = elf32_arm_vxworks_exec_plt_entry[i];
7460 if (i == 2)
7461 val |= got_address;
7462 if (i == 4)
7463 val |= 0xffffff & -((root_plt->offset + i * 4 + 8) >> 2);
7464 if (i == 5)
7465 val |= plt_index * RELOC_SIZE (htab);
7466 if (i == 2 || i == 5)
7467 bfd_put_32 (output_bfd, val, ptr);
7468 else
7469 put_arm_insn (htab, output_bfd, val, ptr);
7470 }
7471
7472 loc = (htab->srelplt2->contents
7473 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
7474
7475 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
7476 referencing the GOT for this PLT entry. */
7477 rel.r_offset = plt_address + 8;
7478 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
7479 rel.r_addend = got_offset;
7480 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7481 loc += RELOC_SIZE (htab);
7482
7483 /* Create the R_ARM_ABS32 relocation referencing the
7484 beginning of the PLT for this GOT entry. */
7485 rel.r_offset = got_address;
7486 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
7487 rel.r_addend = 0;
7488 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7489 }
7490 else
7491 {
7492 /* Calculate the displacement between the PLT slot and the
7493 entry in the GOT. The eight-byte offset accounts for the
7494 value produced by adding to pc in the first instruction
7495 of the PLT stub. */
7496 got_displacement = got_address - (plt_address + 8);
7497
7498 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
7499
7500 if (elf32_arm_plt_needs_thumb_stub_p (info, arm_plt))
7501 {
7502 put_thumb_insn (htab, output_bfd,
7503 elf32_arm_plt_thumb_stub[0], ptr - 4);
7504 put_thumb_insn (htab, output_bfd,
7505 elf32_arm_plt_thumb_stub[1], ptr - 2);
7506 }
7507
7508 put_arm_insn (htab, output_bfd,
7509 elf32_arm_plt_entry[0]
7510 | ((got_displacement & 0x0ff00000) >> 20),
7511 ptr + 0);
7512 put_arm_insn (htab, output_bfd,
7513 elf32_arm_plt_entry[1]
7514 | ((got_displacement & 0x000ff000) >> 12),
7515 ptr+ 4);
7516 put_arm_insn (htab, output_bfd,
7517 elf32_arm_plt_entry[2]
7518 | (got_displacement & 0x00000fff),
7519 ptr + 8);
7520 #ifdef FOUR_WORD_PLT
7521 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
7522 #endif
7523 }
7524
7525 /* Fill in the entry in the .rel(a).(i)plt section. */
7526 rel.r_offset = got_address;
7527 rel.r_addend = 0;
7528 if (dynindx == -1)
7529 {
7530 /* .igot.plt entries use IRELATIVE relocations against SYM_VALUE.
7531 The dynamic linker or static executable then calls SYM_VALUE
7532 to determine the correct run-time value of the .igot.plt entry. */
7533 rel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
7534 initial_got_entry = sym_value;
7535 }
7536 else
7537 {
7538 rel.r_info = ELF32_R_INFO (dynindx, R_ARM_JUMP_SLOT);
7539 initial_got_entry = (splt->output_section->vma
7540 + splt->output_offset);
7541 }
7542
7543 /* Fill in the entry in the global offset table. */
7544 bfd_put_32 (output_bfd, initial_got_entry,
7545 sgot->contents + got_offset);
7546 }
7547
7548 loc = srel->contents + plt_index * RELOC_SIZE (htab);
7549 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
7550 }
7551
7552 /* Some relocations map to different relocations depending on the
7553 target. Return the real relocation. */
7554
7555 static int
7556 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
7557 int r_type)
7558 {
7559 switch (r_type)
7560 {
7561 case R_ARM_TARGET1:
7562 if (globals->target1_is_rel)
7563 return R_ARM_REL32;
7564 else
7565 return R_ARM_ABS32;
7566
7567 case R_ARM_TARGET2:
7568 return globals->target2_reloc;
7569
7570 default:
7571 return r_type;
7572 }
7573 }
7574
7575 /* Return the base VMA address which should be subtracted from real addresses
7576 when resolving @dtpoff relocation.
7577 This is PT_TLS segment p_vaddr. */
7578
7579 static bfd_vma
7580 dtpoff_base (struct bfd_link_info *info)
7581 {
7582 /* If tls_sec is NULL, we should have signalled an error already. */
7583 if (elf_hash_table (info)->tls_sec == NULL)
7584 return 0;
7585 return elf_hash_table (info)->tls_sec->vma;
7586 }
7587
7588 /* Return the relocation value for @tpoff relocation
7589 if STT_TLS virtual address is ADDRESS. */
7590
7591 static bfd_vma
7592 tpoff (struct bfd_link_info *info, bfd_vma address)
7593 {
7594 struct elf_link_hash_table *htab = elf_hash_table (info);
7595 bfd_vma base;
7596
7597 /* If tls_sec is NULL, we should have signalled an error already. */
7598 if (htab->tls_sec == NULL)
7599 return 0;
7600 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
7601 return address - htab->tls_sec->vma + base;
7602 }
7603
7604 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
7605 VALUE is the relocation value. */
7606
7607 static bfd_reloc_status_type
7608 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
7609 {
7610 if (value > 0xfff)
7611 return bfd_reloc_overflow;
7612
7613 value |= bfd_get_32 (abfd, data) & 0xfffff000;
7614 bfd_put_32 (abfd, value, data);
7615 return bfd_reloc_ok;
7616 }
7617
7618 /* Handle TLS relaxations. Relaxing is possible for symbols that use
7619 R_ARM_GOTDESC, R_ARM_{,THM_}TLS_CALL or
7620 R_ARM_{,THM_}TLS_DESCSEQ relocations, during a static link.
7621
7622 Return bfd_reloc_ok if we're done, bfd_reloc_continue if the caller
7623 is to then call final_link_relocate. Return other values in the
7624 case of error.
7625
7626 FIXME:When --emit-relocs is in effect, we'll emit relocs describing
7627 the pre-relaxed code. It would be nice if the relocs were updated
7628 to match the optimization. */
7629
7630 static bfd_reloc_status_type
7631 elf32_arm_tls_relax (struct elf32_arm_link_hash_table *globals,
7632 bfd *input_bfd, asection *input_sec, bfd_byte *contents,
7633 Elf_Internal_Rela *rel, unsigned long is_local)
7634 {
7635 unsigned long insn;
7636
7637 switch (ELF32_R_TYPE (rel->r_info))
7638 {
7639 default:
7640 return bfd_reloc_notsupported;
7641
7642 case R_ARM_TLS_GOTDESC:
7643 if (is_local)
7644 insn = 0;
7645 else
7646 {
7647 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7648 if (insn & 1)
7649 insn -= 5; /* THUMB */
7650 else
7651 insn -= 8; /* ARM */
7652 }
7653 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7654 return bfd_reloc_continue;
7655
7656 case R_ARM_THM_TLS_DESCSEQ:
7657 /* Thumb insn. */
7658 insn = bfd_get_16 (input_bfd, contents + rel->r_offset);
7659 if ((insn & 0xff78) == 0x4478) /* add rx, pc */
7660 {
7661 if (is_local)
7662 /* nop */
7663 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7664 }
7665 else if ((insn & 0xffc0) == 0x6840) /* ldr rx,[ry,#4] */
7666 {
7667 if (is_local)
7668 /* nop */
7669 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7670 else
7671 /* ldr rx,[ry] */
7672 bfd_put_16 (input_bfd, insn & 0xf83f, contents + rel->r_offset);
7673 }
7674 else if ((insn & 0xff87) == 0x4780) /* blx rx */
7675 {
7676 if (is_local)
7677 /* nop */
7678 bfd_put_16 (input_bfd, 0x46c0, contents + rel->r_offset);
7679 else
7680 /* mov r0, rx */
7681 bfd_put_16 (input_bfd, 0x4600 | (insn & 0x78),
7682 contents + rel->r_offset);
7683 }
7684 else
7685 {
7686 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
7687 /* It's a 32 bit instruction, fetch the rest of it for
7688 error generation. */
7689 insn = (insn << 16)
7690 | bfd_get_16 (input_bfd, contents + rel->r_offset + 2);
7691 (*_bfd_error_handler)
7692 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' in TLS trampoline"),
7693 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7694 return bfd_reloc_notsupported;
7695 }
7696 break;
7697
7698 case R_ARM_TLS_DESCSEQ:
7699 /* arm insn. */
7700 insn = bfd_get_32 (input_bfd, contents + rel->r_offset);
7701 if ((insn & 0xffff0ff0) == 0xe08f0000) /* add rx,pc,ry */
7702 {
7703 if (is_local)
7704 /* mov rx, ry */
7705 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xffff),
7706 contents + rel->r_offset);
7707 }
7708 else if ((insn & 0xfff00fff) == 0xe5900004) /* ldr rx,[ry,#4]*/
7709 {
7710 if (is_local)
7711 /* nop */
7712 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7713 else
7714 /* ldr rx,[ry] */
7715 bfd_put_32 (input_bfd, insn & 0xfffff000,
7716 contents + rel->r_offset);
7717 }
7718 else if ((insn & 0xfffffff0) == 0xe12fff30) /* blx rx */
7719 {
7720 if (is_local)
7721 /* nop */
7722 bfd_put_32 (input_bfd, 0xe1a00000, contents + rel->r_offset);
7723 else
7724 /* mov r0, rx */
7725 bfd_put_32 (input_bfd, 0xe1a00000 | (insn & 0xf),
7726 contents + rel->r_offset);
7727 }
7728 else
7729 {
7730 (*_bfd_error_handler)
7731 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' in TLS trampoline"),
7732 input_bfd, input_sec, (unsigned long)rel->r_offset, insn);
7733 return bfd_reloc_notsupported;
7734 }
7735 break;
7736
7737 case R_ARM_TLS_CALL:
7738 /* GD->IE relaxation, turn the instruction into 'nop' or
7739 'ldr r0, [pc,r0]' */
7740 insn = is_local ? 0xe1a00000 : 0xe79f0000;
7741 bfd_put_32 (input_bfd, insn, contents + rel->r_offset);
7742 break;
7743
7744 case R_ARM_THM_TLS_CALL:
7745 /* GD->IE relaxation */
7746 if (!is_local)
7747 /* add r0,pc; ldr r0, [r0] */
7748 insn = 0x44786800;
7749 else if (arch_has_thumb2_nop (globals))
7750 /* nop.w */
7751 insn = 0xf3af8000;
7752 else
7753 /* nop; nop */
7754 insn = 0xbf00bf00;
7755
7756 bfd_put_16 (input_bfd, insn >> 16, contents + rel->r_offset);
7757 bfd_put_16 (input_bfd, insn & 0xffff, contents + rel->r_offset + 2);
7758 break;
7759 }
7760 return bfd_reloc_ok;
7761 }
7762
7763 /* For a given value of n, calculate the value of G_n as required to
7764 deal with group relocations. We return it in the form of an
7765 encoded constant-and-rotation, together with the final residual. If n is
7766 specified as less than zero, then final_residual is filled with the
7767 input value and no further action is performed. */
7768
7769 static bfd_vma
7770 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
7771 {
7772 int current_n;
7773 bfd_vma g_n;
7774 bfd_vma encoded_g_n = 0;
7775 bfd_vma residual = value; /* Also known as Y_n. */
7776
7777 for (current_n = 0; current_n <= n; current_n++)
7778 {
7779 int shift;
7780
7781 /* Calculate which part of the value to mask. */
7782 if (residual == 0)
7783 shift = 0;
7784 else
7785 {
7786 int msb;
7787
7788 /* Determine the most significant bit in the residual and
7789 align the resulting value to a 2-bit boundary. */
7790 for (msb = 30; msb >= 0; msb -= 2)
7791 if (residual & (3 << msb))
7792 break;
7793
7794 /* The desired shift is now (msb - 6), or zero, whichever
7795 is the greater. */
7796 shift = msb - 6;
7797 if (shift < 0)
7798 shift = 0;
7799 }
7800
7801 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
7802 g_n = residual & (0xff << shift);
7803 encoded_g_n = (g_n >> shift)
7804 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
7805
7806 /* Calculate the residual for the next time around. */
7807 residual &= ~g_n;
7808 }
7809
7810 *final_residual = residual;
7811
7812 return encoded_g_n;
7813 }
7814
7815 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
7816 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
7817
7818 static int
7819 identify_add_or_sub (bfd_vma insn)
7820 {
7821 int opcode = insn & 0x1e00000;
7822
7823 if (opcode == 1 << 23) /* ADD */
7824 return 1;
7825
7826 if (opcode == 1 << 22) /* SUB */
7827 return -1;
7828
7829 return 0;
7830 }
7831
7832 /* Perform a relocation as part of a final link. */
7833
7834 static bfd_reloc_status_type
7835 elf32_arm_final_link_relocate (reloc_howto_type * howto,
7836 bfd * input_bfd,
7837 bfd * output_bfd,
7838 asection * input_section,
7839 bfd_byte * contents,
7840 Elf_Internal_Rela * rel,
7841 bfd_vma value,
7842 struct bfd_link_info * info,
7843 asection * sym_sec,
7844 const char * sym_name,
7845 unsigned char st_type,
7846 enum arm_st_branch_type branch_type,
7847 struct elf_link_hash_entry * h,
7848 bfd_boolean * unresolved_reloc_p,
7849 char ** error_message)
7850 {
7851 unsigned long r_type = howto->type;
7852 unsigned long r_symndx;
7853 bfd_byte * hit_data = contents + rel->r_offset;
7854 bfd_vma * local_got_offsets;
7855 bfd_vma * local_tlsdesc_gotents;
7856 asection * sgot;
7857 asection * splt;
7858 asection * sreloc = NULL;
7859 asection * srelgot;
7860 bfd_vma addend;
7861 bfd_signed_vma signed_addend;
7862 unsigned char dynreloc_st_type;
7863 bfd_vma dynreloc_value;
7864 struct elf32_arm_link_hash_table * globals;
7865 struct elf32_arm_link_hash_entry *eh;
7866 union gotplt_union *root_plt;
7867 struct arm_plt_info *arm_plt;
7868 bfd_vma plt_offset;
7869 bfd_vma gotplt_offset;
7870 bfd_boolean has_iplt_entry;
7871
7872 globals = elf32_arm_hash_table (info);
7873 if (globals == NULL)
7874 return bfd_reloc_notsupported;
7875
7876 BFD_ASSERT (is_arm_elf (input_bfd));
7877
7878 /* Some relocation types map to different relocations depending on the
7879 target. We pick the right one here. */
7880 r_type = arm_real_reloc_type (globals, r_type);
7881
7882 /* It is possible to have linker relaxations on some TLS access
7883 models. Update our information here. */
7884 r_type = elf32_arm_tls_transition (info, r_type, h);
7885
7886 if (r_type != howto->type)
7887 howto = elf32_arm_howto_from_type (r_type);
7888
7889 /* If the start address has been set, then set the EF_ARM_HASENTRY
7890 flag. Setting this more than once is redundant, but the cost is
7891 not too high, and it keeps the code simple.
7892
7893 The test is done here, rather than somewhere else, because the
7894 start address is only set just before the final link commences.
7895
7896 Note - if the user deliberately sets a start address of 0, the
7897 flag will not be set. */
7898 if (bfd_get_start_address (output_bfd) != 0)
7899 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
7900
7901 eh = (struct elf32_arm_link_hash_entry *) h;
7902 sgot = globals->root.sgot;
7903 local_got_offsets = elf_local_got_offsets (input_bfd);
7904 local_tlsdesc_gotents = elf32_arm_local_tlsdesc_gotent (input_bfd);
7905
7906 if (globals->root.dynamic_sections_created)
7907 srelgot = globals->root.srelgot;
7908 else
7909 srelgot = NULL;
7910
7911 r_symndx = ELF32_R_SYM (rel->r_info);
7912
7913 if (globals->use_rel)
7914 {
7915 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
7916
7917 if (addend & ((howto->src_mask + 1) >> 1))
7918 {
7919 signed_addend = -1;
7920 signed_addend &= ~ howto->src_mask;
7921 signed_addend |= addend;
7922 }
7923 else
7924 signed_addend = addend;
7925 }
7926 else
7927 addend = signed_addend = rel->r_addend;
7928
7929 /* Record the symbol information that should be used in dynamic
7930 relocations. */
7931 dynreloc_st_type = st_type;
7932 dynreloc_value = value;
7933 if (branch_type == ST_BRANCH_TO_THUMB)
7934 dynreloc_value |= 1;
7935
7936 /* Find out whether the symbol has a PLT. Set ST_VALUE, BRANCH_TYPE and
7937 VALUE appropriately for relocations that we resolve at link time. */
7938 has_iplt_entry = FALSE;
7939 if (elf32_arm_get_plt_info (input_bfd, eh, r_symndx, &root_plt, &arm_plt)
7940 && root_plt->offset != (bfd_vma) -1)
7941 {
7942 plt_offset = root_plt->offset;
7943 gotplt_offset = arm_plt->got_offset;
7944
7945 if (h == NULL || eh->is_iplt)
7946 {
7947 has_iplt_entry = TRUE;
7948 splt = globals->root.iplt;
7949
7950 /* Populate .iplt entries here, because not all of them will
7951 be seen by finish_dynamic_symbol. The lower bit is set if
7952 we have already populated the entry. */
7953 if (plt_offset & 1)
7954 plt_offset--;
7955 else
7956 {
7957 elf32_arm_populate_plt_entry (output_bfd, info, root_plt, arm_plt,
7958 -1, dynreloc_value);
7959 root_plt->offset |= 1;
7960 }
7961
7962 /* Static relocations always resolve to the .iplt entry. */
7963 st_type = STT_FUNC;
7964 value = (splt->output_section->vma
7965 + splt->output_offset
7966 + plt_offset);
7967 branch_type = ST_BRANCH_TO_ARM;
7968
7969 /* If there are non-call relocations that resolve to the .iplt
7970 entry, then all dynamic ones must too. */
7971 if (arm_plt->noncall_refcount != 0)
7972 {
7973 dynreloc_st_type = st_type;
7974 dynreloc_value = value;
7975 }
7976 }
7977 else
7978 /* We populate the .plt entry in finish_dynamic_symbol. */
7979 splt = globals->root.splt;
7980 }
7981 else
7982 {
7983 splt = NULL;
7984 plt_offset = (bfd_vma) -1;
7985 gotplt_offset = (bfd_vma) -1;
7986 }
7987
7988 switch (r_type)
7989 {
7990 case R_ARM_NONE:
7991 /* We don't need to find a value for this symbol. It's just a
7992 marker. */
7993 *unresolved_reloc_p = FALSE;
7994 return bfd_reloc_ok;
7995
7996 case R_ARM_ABS12:
7997 if (!globals->vxworks_p)
7998 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
7999
8000 case R_ARM_PC24:
8001 case R_ARM_ABS32:
8002 case R_ARM_ABS32_NOI:
8003 case R_ARM_REL32:
8004 case R_ARM_REL32_NOI:
8005 case R_ARM_CALL:
8006 case R_ARM_JUMP24:
8007 case R_ARM_XPC25:
8008 case R_ARM_PREL31:
8009 case R_ARM_PLT32:
8010 /* Handle relocations which should use the PLT entry. ABS32/REL32
8011 will use the symbol's value, which may point to a PLT entry, but we
8012 don't need to handle that here. If we created a PLT entry, all
8013 branches in this object should go to it, except if the PLT is too
8014 far away, in which case a long branch stub should be inserted. */
8015 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
8016 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI
8017 && r_type != R_ARM_CALL
8018 && r_type != R_ARM_JUMP24
8019 && r_type != R_ARM_PLT32)
8020 && plt_offset != (bfd_vma) -1)
8021 {
8022 /* If we've created a .plt section, and assigned a PLT entry
8023 to this function, it must either be a STT_GNU_IFUNC reference
8024 or not be known to bind locally. In other cases, we should
8025 have cleared the PLT entry by now. */
8026 BFD_ASSERT (has_iplt_entry || !SYMBOL_CALLS_LOCAL (info, h));
8027
8028 value = (splt->output_section->vma
8029 + splt->output_offset
8030 + plt_offset);
8031 *unresolved_reloc_p = FALSE;
8032 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8033 contents, rel->r_offset, value,
8034 rel->r_addend);
8035 }
8036
8037 /* When generating a shared object or relocatable executable, these
8038 relocations are copied into the output file to be resolved at
8039 run time. */
8040 if ((info->shared || globals->root.is_relocatable_executable)
8041 && (input_section->flags & SEC_ALLOC)
8042 && !(globals->vxworks_p
8043 && strcmp (input_section->output_section->name,
8044 ".tls_vars") == 0)
8045 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
8046 || !SYMBOL_CALLS_LOCAL (info, h))
8047 && (!strstr (input_section->name, STUB_SUFFIX))
8048 && (h == NULL
8049 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8050 || h->root.type != bfd_link_hash_undefweak)
8051 && r_type != R_ARM_PC24
8052 && r_type != R_ARM_CALL
8053 && r_type != R_ARM_JUMP24
8054 && r_type != R_ARM_PREL31
8055 && r_type != R_ARM_PLT32)
8056 {
8057 Elf_Internal_Rela outrel;
8058 bfd_boolean skip, relocate;
8059
8060 *unresolved_reloc_p = FALSE;
8061
8062 if (sreloc == NULL && globals->root.dynamic_sections_created)
8063 {
8064 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
8065 ! globals->use_rel);
8066
8067 if (sreloc == NULL)
8068 return bfd_reloc_notsupported;
8069 }
8070
8071 skip = FALSE;
8072 relocate = FALSE;
8073
8074 outrel.r_addend = addend;
8075 outrel.r_offset =
8076 _bfd_elf_section_offset (output_bfd, info, input_section,
8077 rel->r_offset);
8078 if (outrel.r_offset == (bfd_vma) -1)
8079 skip = TRUE;
8080 else if (outrel.r_offset == (bfd_vma) -2)
8081 skip = TRUE, relocate = TRUE;
8082 outrel.r_offset += (input_section->output_section->vma
8083 + input_section->output_offset);
8084
8085 if (skip)
8086 memset (&outrel, 0, sizeof outrel);
8087 else if (h != NULL
8088 && h->dynindx != -1
8089 && (!info->shared
8090 || !info->symbolic
8091 || !h->def_regular))
8092 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
8093 else
8094 {
8095 int symbol;
8096
8097 /* This symbol is local, or marked to become local. */
8098 BFD_ASSERT (r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI);
8099 if (globals->symbian_p)
8100 {
8101 asection *osec;
8102
8103 /* On Symbian OS, the data segment and text segement
8104 can be relocated independently. Therefore, we
8105 must indicate the segment to which this
8106 relocation is relative. The BPABI allows us to
8107 use any symbol in the right segment; we just use
8108 the section symbol as it is convenient. (We
8109 cannot use the symbol given by "h" directly as it
8110 will not appear in the dynamic symbol table.)
8111
8112 Note that the dynamic linker ignores the section
8113 symbol value, so we don't subtract osec->vma
8114 from the emitted reloc addend. */
8115 if (sym_sec)
8116 osec = sym_sec->output_section;
8117 else
8118 osec = input_section->output_section;
8119 symbol = elf_section_data (osec)->dynindx;
8120 if (symbol == 0)
8121 {
8122 struct elf_link_hash_table *htab = elf_hash_table (info);
8123
8124 if ((osec->flags & SEC_READONLY) == 0
8125 && htab->data_index_section != NULL)
8126 osec = htab->data_index_section;
8127 else
8128 osec = htab->text_index_section;
8129 symbol = elf_section_data (osec)->dynindx;
8130 }
8131 BFD_ASSERT (symbol != 0);
8132 }
8133 else
8134 /* On SVR4-ish systems, the dynamic loader cannot
8135 relocate the text and data segments independently,
8136 so the symbol does not matter. */
8137 symbol = 0;
8138 if (dynreloc_st_type == STT_GNU_IFUNC)
8139 /* We have an STT_GNU_IFUNC symbol that doesn't resolve
8140 to the .iplt entry. Instead, every non-call reference
8141 must use an R_ARM_IRELATIVE relocation to obtain the
8142 correct run-time address. */
8143 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_IRELATIVE);
8144 else
8145 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
8146 if (globals->use_rel)
8147 relocate = TRUE;
8148 else
8149 outrel.r_addend += dynreloc_value;
8150 }
8151
8152 elf32_arm_add_dynreloc (output_bfd, info, sreloc, &outrel);
8153
8154 /* If this reloc is against an external symbol, we do not want to
8155 fiddle with the addend. Otherwise, we need to include the symbol
8156 value so that it becomes an addend for the dynamic reloc. */
8157 if (! relocate)
8158 return bfd_reloc_ok;
8159
8160 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8161 contents, rel->r_offset,
8162 dynreloc_value, (bfd_vma) 0);
8163 }
8164 else switch (r_type)
8165 {
8166 case R_ARM_ABS12:
8167 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
8168
8169 case R_ARM_XPC25: /* Arm BLX instruction. */
8170 case R_ARM_CALL:
8171 case R_ARM_JUMP24:
8172 case R_ARM_PC24: /* Arm B/BL instruction. */
8173 case R_ARM_PLT32:
8174 {
8175 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
8176
8177 if (r_type == R_ARM_XPC25)
8178 {
8179 /* Check for Arm calling Arm function. */
8180 /* FIXME: Should we translate the instruction into a BL
8181 instruction instead ? */
8182 if (branch_type != ST_BRANCH_TO_THUMB)
8183 (*_bfd_error_handler)
8184 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
8185 input_bfd,
8186 h ? h->root.root.string : "(local)");
8187 }
8188 else if (r_type == R_ARM_PC24)
8189 {
8190 /* Check for Arm calling Thumb function. */
8191 if (branch_type == ST_BRANCH_TO_THUMB)
8192 {
8193 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
8194 output_bfd, input_section,
8195 hit_data, sym_sec, rel->r_offset,
8196 signed_addend, value,
8197 error_message))
8198 return bfd_reloc_ok;
8199 else
8200 return bfd_reloc_dangerous;
8201 }
8202 }
8203
8204 /* Check if a stub has to be inserted because the
8205 destination is too far or we are changing mode. */
8206 if ( r_type == R_ARM_CALL
8207 || r_type == R_ARM_JUMP24
8208 || r_type == R_ARM_PLT32)
8209 {
8210 enum elf32_arm_stub_type stub_type = arm_stub_none;
8211 struct elf32_arm_link_hash_entry *hash;
8212
8213 hash = (struct elf32_arm_link_hash_entry *) h;
8214 stub_type = arm_type_of_stub (info, input_section, rel,
8215 st_type, &branch_type,
8216 hash, value, sym_sec,
8217 input_bfd, sym_name);
8218
8219 if (stub_type != arm_stub_none)
8220 {
8221 /* The target is out of reach, so redirect the
8222 branch to the local stub for this function. */
8223 stub_entry = elf32_arm_get_stub_entry (input_section,
8224 sym_sec, h,
8225 rel, globals,
8226 stub_type);
8227 {
8228 if (stub_entry != NULL)
8229 value = (stub_entry->stub_offset
8230 + stub_entry->stub_sec->output_offset
8231 + stub_entry->stub_sec->output_section->vma);
8232
8233 if (plt_offset != (bfd_vma) -1)
8234 *unresolved_reloc_p = FALSE;
8235 }
8236 }
8237 else
8238 {
8239 /* If the call goes through a PLT entry, make sure to
8240 check distance to the right destination address. */
8241 if (plt_offset != (bfd_vma) -1)
8242 {
8243 value = (splt->output_section->vma
8244 + splt->output_offset
8245 + plt_offset);
8246 *unresolved_reloc_p = FALSE;
8247 /* The PLT entry is in ARM mode, regardless of the
8248 target function. */
8249 branch_type = ST_BRANCH_TO_ARM;
8250 }
8251 }
8252 }
8253
8254 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
8255 where:
8256 S is the address of the symbol in the relocation.
8257 P is address of the instruction being relocated.
8258 A is the addend (extracted from the instruction) in bytes.
8259
8260 S is held in 'value'.
8261 P is the base address of the section containing the
8262 instruction plus the offset of the reloc into that
8263 section, ie:
8264 (input_section->output_section->vma +
8265 input_section->output_offset +
8266 rel->r_offset).
8267 A is the addend, converted into bytes, ie:
8268 (signed_addend * 4)
8269
8270 Note: None of these operations have knowledge of the pipeline
8271 size of the processor, thus it is up to the assembler to
8272 encode this information into the addend. */
8273 value -= (input_section->output_section->vma
8274 + input_section->output_offset);
8275 value -= rel->r_offset;
8276 if (globals->use_rel)
8277 value += (signed_addend << howto->size);
8278 else
8279 /* RELA addends do not have to be adjusted by howto->size. */
8280 value += signed_addend;
8281
8282 signed_addend = value;
8283 signed_addend >>= howto->rightshift;
8284
8285 /* A branch to an undefined weak symbol is turned into a jump to
8286 the next instruction unless a PLT entry will be created.
8287 Do the same for local undefined symbols (but not for STN_UNDEF).
8288 The jump to the next instruction is optimized as a NOP depending
8289 on the architecture. */
8290 if (h ? (h->root.type == bfd_link_hash_undefweak
8291 && plt_offset == (bfd_vma) -1)
8292 : r_symndx != STN_UNDEF && bfd_is_und_section (sym_sec))
8293 {
8294 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000);
8295
8296 if (arch_has_arm_nop (globals))
8297 value |= 0x0320f000;
8298 else
8299 value |= 0x01a00000; /* Using pre-UAL nop: mov r0, r0. */
8300 }
8301 else
8302 {
8303 /* Perform a signed range check. */
8304 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
8305 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
8306 return bfd_reloc_overflow;
8307
8308 addend = (value & 2);
8309
8310 value = (signed_addend & howto->dst_mask)
8311 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
8312
8313 if (r_type == R_ARM_CALL)
8314 {
8315 /* Set the H bit in the BLX instruction. */
8316 if (branch_type == ST_BRANCH_TO_THUMB)
8317 {
8318 if (addend)
8319 value |= (1 << 24);
8320 else
8321 value &= ~(bfd_vma)(1 << 24);
8322 }
8323
8324 /* Select the correct instruction (BL or BLX). */
8325 /* Only if we are not handling a BL to a stub. In this
8326 case, mode switching is performed by the stub. */
8327 if (branch_type == ST_BRANCH_TO_THUMB && !stub_entry)
8328 value |= (1 << 28);
8329 else if (stub_entry || branch_type != ST_BRANCH_UNKNOWN)
8330 {
8331 value &= ~(bfd_vma)(1 << 28);
8332 value |= (1 << 24);
8333 }
8334 }
8335 }
8336 }
8337 break;
8338
8339 case R_ARM_ABS32:
8340 value += addend;
8341 if (branch_type == ST_BRANCH_TO_THUMB)
8342 value |= 1;
8343 break;
8344
8345 case R_ARM_ABS32_NOI:
8346 value += addend;
8347 break;
8348
8349 case R_ARM_REL32:
8350 value += addend;
8351 if (branch_type == ST_BRANCH_TO_THUMB)
8352 value |= 1;
8353 value -= (input_section->output_section->vma
8354 + input_section->output_offset + rel->r_offset);
8355 break;
8356
8357 case R_ARM_REL32_NOI:
8358 value += addend;
8359 value -= (input_section->output_section->vma
8360 + input_section->output_offset + rel->r_offset);
8361 break;
8362
8363 case R_ARM_PREL31:
8364 value -= (input_section->output_section->vma
8365 + input_section->output_offset + rel->r_offset);
8366 value += signed_addend;
8367 if (! h || h->root.type != bfd_link_hash_undefweak)
8368 {
8369 /* Check for overflow. */
8370 if ((value ^ (value >> 1)) & (1 << 30))
8371 return bfd_reloc_overflow;
8372 }
8373 value &= 0x7fffffff;
8374 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
8375 if (branch_type == ST_BRANCH_TO_THUMB)
8376 value |= 1;
8377 break;
8378 }
8379
8380 bfd_put_32 (input_bfd, value, hit_data);
8381 return bfd_reloc_ok;
8382
8383 case R_ARM_ABS8:
8384 value += addend;
8385
8386 /* There is no way to tell whether the user intended to use a signed or
8387 unsigned addend. When checking for overflow we accept either,
8388 as specified by the AAELF. */
8389 if ((long) value > 0xff || (long) value < -0x80)
8390 return bfd_reloc_overflow;
8391
8392 bfd_put_8 (input_bfd, value, hit_data);
8393 return bfd_reloc_ok;
8394
8395 case R_ARM_ABS16:
8396 value += addend;
8397
8398 /* See comment for R_ARM_ABS8. */
8399 if ((long) value > 0xffff || (long) value < -0x8000)
8400 return bfd_reloc_overflow;
8401
8402 bfd_put_16 (input_bfd, value, hit_data);
8403 return bfd_reloc_ok;
8404
8405 case R_ARM_THM_ABS5:
8406 /* Support ldr and str instructions for the thumb. */
8407 if (globals->use_rel)
8408 {
8409 /* Need to refetch addend. */
8410 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8411 /* ??? Need to determine shift amount from operand size. */
8412 addend >>= howto->rightshift;
8413 }
8414 value += addend;
8415
8416 /* ??? Isn't value unsigned? */
8417 if ((long) value > 0x1f || (long) value < -0x10)
8418 return bfd_reloc_overflow;
8419
8420 /* ??? Value needs to be properly shifted into place first. */
8421 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
8422 bfd_put_16 (input_bfd, value, hit_data);
8423 return bfd_reloc_ok;
8424
8425 case R_ARM_THM_ALU_PREL_11_0:
8426 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
8427 {
8428 bfd_vma insn;
8429 bfd_signed_vma relocation;
8430
8431 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8432 | bfd_get_16 (input_bfd, hit_data + 2);
8433
8434 if (globals->use_rel)
8435 {
8436 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
8437 | ((insn & (1 << 26)) >> 15);
8438 if (insn & 0xf00000)
8439 signed_addend = -signed_addend;
8440 }
8441
8442 relocation = value + signed_addend;
8443 relocation -= (input_section->output_section->vma
8444 + input_section->output_offset
8445 + rel->r_offset);
8446
8447 value = abs (relocation);
8448
8449 if (value >= 0x1000)
8450 return bfd_reloc_overflow;
8451
8452 insn = (insn & 0xfb0f8f00) | (value & 0xff)
8453 | ((value & 0x700) << 4)
8454 | ((value & 0x800) << 15);
8455 if (relocation < 0)
8456 insn |= 0xa00000;
8457
8458 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8459 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8460
8461 return bfd_reloc_ok;
8462 }
8463
8464 case R_ARM_THM_PC8:
8465 /* PR 10073: This reloc is not generated by the GNU toolchain,
8466 but it is supported for compatibility with third party libraries
8467 generated by other compilers, specifically the ARM/IAR. */
8468 {
8469 bfd_vma insn;
8470 bfd_signed_vma relocation;
8471
8472 insn = bfd_get_16 (input_bfd, hit_data);
8473
8474 if (globals->use_rel)
8475 addend = (insn & 0x00ff) << 2;
8476
8477 relocation = value + addend;
8478 relocation -= (input_section->output_section->vma
8479 + input_section->output_offset
8480 + rel->r_offset);
8481
8482 value = abs (relocation);
8483
8484 /* We do not check for overflow of this reloc. Although strictly
8485 speaking this is incorrect, it appears to be necessary in order
8486 to work with IAR generated relocs. Since GCC and GAS do not
8487 generate R_ARM_THM_PC8 relocs, the lack of a check should not be
8488 a problem for them. */
8489 value &= 0x3fc;
8490
8491 insn = (insn & 0xff00) | (value >> 2);
8492
8493 bfd_put_16 (input_bfd, insn, hit_data);
8494
8495 return bfd_reloc_ok;
8496 }
8497
8498 case R_ARM_THM_PC12:
8499 /* Corresponds to: ldr.w reg, [pc, #offset]. */
8500 {
8501 bfd_vma insn;
8502 bfd_signed_vma relocation;
8503
8504 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
8505 | bfd_get_16 (input_bfd, hit_data + 2);
8506
8507 if (globals->use_rel)
8508 {
8509 signed_addend = insn & 0xfff;
8510 if (!(insn & (1 << 23)))
8511 signed_addend = -signed_addend;
8512 }
8513
8514 relocation = value + signed_addend;
8515 relocation -= (input_section->output_section->vma
8516 + input_section->output_offset
8517 + rel->r_offset);
8518
8519 value = abs (relocation);
8520
8521 if (value >= 0x1000)
8522 return bfd_reloc_overflow;
8523
8524 insn = (insn & 0xff7ff000) | value;
8525 if (relocation >= 0)
8526 insn |= (1 << 23);
8527
8528 bfd_put_16 (input_bfd, insn >> 16, hit_data);
8529 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
8530
8531 return bfd_reloc_ok;
8532 }
8533
8534 case R_ARM_THM_XPC22:
8535 case R_ARM_THM_CALL:
8536 case R_ARM_THM_JUMP24:
8537 /* Thumb BL (branch long instruction). */
8538 {
8539 bfd_vma relocation;
8540 bfd_vma reloc_sign;
8541 bfd_boolean overflow = FALSE;
8542 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8543 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8544 bfd_signed_vma reloc_signed_max;
8545 bfd_signed_vma reloc_signed_min;
8546 bfd_vma check;
8547 bfd_signed_vma signed_check;
8548 int bitsize;
8549 const int thumb2 = using_thumb2 (globals);
8550
8551 /* A branch to an undefined weak symbol is turned into a jump to
8552 the next instruction unless a PLT entry will be created.
8553 The jump to the next instruction is optimized as a NOP.W for
8554 Thumb-2 enabled architectures. */
8555 if (h && h->root.type == bfd_link_hash_undefweak
8556 && plt_offset == (bfd_vma) -1)
8557 {
8558 if (arch_has_thumb2_nop (globals))
8559 {
8560 bfd_put_16 (input_bfd, 0xf3af, hit_data);
8561 bfd_put_16 (input_bfd, 0x8000, hit_data + 2);
8562 }
8563 else
8564 {
8565 bfd_put_16 (input_bfd, 0xe000, hit_data);
8566 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
8567 }
8568 return bfd_reloc_ok;
8569 }
8570
8571 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
8572 with Thumb-1) involving the J1 and J2 bits. */
8573 if (globals->use_rel)
8574 {
8575 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
8576 bfd_vma upper = upper_insn & 0x3ff;
8577 bfd_vma lower = lower_insn & 0x7ff;
8578 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
8579 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
8580 bfd_vma i1 = j1 ^ s ? 0 : 1;
8581 bfd_vma i2 = j2 ^ s ? 0 : 1;
8582
8583 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
8584 /* Sign extend. */
8585 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
8586
8587 signed_addend = addend;
8588 }
8589
8590 if (r_type == R_ARM_THM_XPC22)
8591 {
8592 /* Check for Thumb to Thumb call. */
8593 /* FIXME: Should we translate the instruction into a BL
8594 instruction instead ? */
8595 if (branch_type == ST_BRANCH_TO_THUMB)
8596 (*_bfd_error_handler)
8597 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
8598 input_bfd,
8599 h ? h->root.root.string : "(local)");
8600 }
8601 else
8602 {
8603 /* If it is not a call to Thumb, assume call to Arm.
8604 If it is a call relative to a section name, then it is not a
8605 function call at all, but rather a long jump. Calls through
8606 the PLT do not require stubs. */
8607 if (branch_type == ST_BRANCH_TO_ARM && plt_offset == (bfd_vma) -1)
8608 {
8609 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8610 {
8611 /* Convert BL to BLX. */
8612 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8613 }
8614 else if (( r_type != R_ARM_THM_CALL)
8615 && (r_type != R_ARM_THM_JUMP24))
8616 {
8617 if (elf32_thumb_to_arm_stub
8618 (info, sym_name, input_bfd, output_bfd, input_section,
8619 hit_data, sym_sec, rel->r_offset, signed_addend, value,
8620 error_message))
8621 return bfd_reloc_ok;
8622 else
8623 return bfd_reloc_dangerous;
8624 }
8625 }
8626 else if (branch_type == ST_BRANCH_TO_THUMB
8627 && globals->use_blx
8628 && r_type == R_ARM_THM_CALL)
8629 {
8630 /* Make sure this is a BL. */
8631 lower_insn |= 0x1800;
8632 }
8633 }
8634
8635 enum elf32_arm_stub_type stub_type = arm_stub_none;
8636 if (r_type == R_ARM_THM_CALL || r_type == R_ARM_THM_JUMP24)
8637 {
8638 /* Check if a stub has to be inserted because the destination
8639 is too far. */
8640 struct elf32_arm_stub_hash_entry *stub_entry;
8641 struct elf32_arm_link_hash_entry *hash;
8642
8643 hash = (struct elf32_arm_link_hash_entry *) h;
8644
8645 stub_type = arm_type_of_stub (info, input_section, rel,
8646 st_type, &branch_type,
8647 hash, value, sym_sec,
8648 input_bfd, sym_name);
8649
8650 if (stub_type != arm_stub_none)
8651 {
8652 /* The target is out of reach or we are changing modes, so
8653 redirect the branch to the local stub for this
8654 function. */
8655 stub_entry = elf32_arm_get_stub_entry (input_section,
8656 sym_sec, h,
8657 rel, globals,
8658 stub_type);
8659 if (stub_entry != NULL)
8660 {
8661 value = (stub_entry->stub_offset
8662 + stub_entry->stub_sec->output_offset
8663 + stub_entry->stub_sec->output_section->vma);
8664
8665 if (plt_offset != (bfd_vma) -1)
8666 *unresolved_reloc_p = FALSE;
8667 }
8668
8669 /* If this call becomes a call to Arm, force BLX. */
8670 if (globals->use_blx && (r_type == R_ARM_THM_CALL))
8671 {
8672 if ((stub_entry
8673 && !arm_stub_is_thumb (stub_entry->stub_type))
8674 || branch_type != ST_BRANCH_TO_THUMB)
8675 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8676 }
8677 }
8678 }
8679
8680 /* Handle calls via the PLT. */
8681 if (stub_type == arm_stub_none && plt_offset != (bfd_vma) -1)
8682 {
8683 value = (splt->output_section->vma
8684 + splt->output_offset
8685 + plt_offset);
8686
8687 if (globals->use_blx && r_type == R_ARM_THM_CALL)
8688 {
8689 /* If the Thumb BLX instruction is available, convert
8690 the BL to a BLX instruction to call the ARM-mode
8691 PLT entry. */
8692 lower_insn = (lower_insn & ~0x1000) | 0x0800;
8693 branch_type = ST_BRANCH_TO_ARM;
8694 }
8695 else
8696 {
8697 /* Target the Thumb stub before the ARM PLT entry. */
8698 value -= PLT_THUMB_STUB_SIZE;
8699 branch_type = ST_BRANCH_TO_THUMB;
8700 }
8701 *unresolved_reloc_p = FALSE;
8702 }
8703
8704 relocation = value + signed_addend;
8705
8706 relocation -= (input_section->output_section->vma
8707 + input_section->output_offset
8708 + rel->r_offset);
8709
8710 check = relocation >> howto->rightshift;
8711
8712 /* If this is a signed value, the rightshift just dropped
8713 leading 1 bits (assuming twos complement). */
8714 if ((bfd_signed_vma) relocation >= 0)
8715 signed_check = check;
8716 else
8717 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
8718
8719 /* Calculate the permissable maximum and minimum values for
8720 this relocation according to whether we're relocating for
8721 Thumb-2 or not. */
8722 bitsize = howto->bitsize;
8723 if (!thumb2)
8724 bitsize -= 2;
8725 reloc_signed_max = (1 << (bitsize - 1)) - 1;
8726 reloc_signed_min = ~reloc_signed_max;
8727
8728 /* Assumes two's complement. */
8729 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8730 overflow = TRUE;
8731
8732 if ((lower_insn & 0x5000) == 0x4000)
8733 /* For a BLX instruction, make sure that the relocation is rounded up
8734 to a word boundary. This follows the semantics of the instruction
8735 which specifies that bit 1 of the target address will come from bit
8736 1 of the base address. */
8737 relocation = (relocation + 2) & ~ 3;
8738
8739 /* Put RELOCATION back into the insn. Assumes two's complement.
8740 We use the Thumb-2 encoding, which is safe even if dealing with
8741 a Thumb-1 instruction by virtue of our overflow check above. */
8742 reloc_sign = (signed_check < 0) ? 1 : 0;
8743 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
8744 | ((relocation >> 12) & 0x3ff)
8745 | (reloc_sign << 10);
8746 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
8747 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
8748 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
8749 | ((relocation >> 1) & 0x7ff);
8750
8751 /* Put the relocated value back in the object file: */
8752 bfd_put_16 (input_bfd, upper_insn, hit_data);
8753 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8754
8755 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8756 }
8757 break;
8758
8759 case R_ARM_THM_JUMP19:
8760 /* Thumb32 conditional branch instruction. */
8761 {
8762 bfd_vma relocation;
8763 bfd_boolean overflow = FALSE;
8764 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
8765 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
8766 bfd_signed_vma reloc_signed_max = 0xffffe;
8767 bfd_signed_vma reloc_signed_min = -0x100000;
8768 bfd_signed_vma signed_check;
8769
8770 /* Need to refetch the addend, reconstruct the top three bits,
8771 and squish the two 11 bit pieces together. */
8772 if (globals->use_rel)
8773 {
8774 bfd_vma S = (upper_insn & 0x0400) >> 10;
8775 bfd_vma upper = (upper_insn & 0x003f);
8776 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
8777 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
8778 bfd_vma lower = (lower_insn & 0x07ff);
8779
8780 upper |= J1 << 6;
8781 upper |= J2 << 7;
8782 upper |= (!S) << 8;
8783 upper -= 0x0100; /* Sign extend. */
8784
8785 addend = (upper << 12) | (lower << 1);
8786 signed_addend = addend;
8787 }
8788
8789 /* Handle calls via the PLT. */
8790 if (plt_offset != (bfd_vma) -1)
8791 {
8792 value = (splt->output_section->vma
8793 + splt->output_offset
8794 + plt_offset);
8795 /* Target the Thumb stub before the ARM PLT entry. */
8796 value -= PLT_THUMB_STUB_SIZE;
8797 *unresolved_reloc_p = FALSE;
8798 }
8799
8800 /* ??? Should handle interworking? GCC might someday try to
8801 use this for tail calls. */
8802
8803 relocation = value + signed_addend;
8804 relocation -= (input_section->output_section->vma
8805 + input_section->output_offset
8806 + rel->r_offset);
8807 signed_check = (bfd_signed_vma) relocation;
8808
8809 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8810 overflow = TRUE;
8811
8812 /* Put RELOCATION back into the insn. */
8813 {
8814 bfd_vma S = (relocation & 0x00100000) >> 20;
8815 bfd_vma J2 = (relocation & 0x00080000) >> 19;
8816 bfd_vma J1 = (relocation & 0x00040000) >> 18;
8817 bfd_vma hi = (relocation & 0x0003f000) >> 12;
8818 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
8819
8820 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
8821 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
8822 }
8823
8824 /* Put the relocated value back in the object file: */
8825 bfd_put_16 (input_bfd, upper_insn, hit_data);
8826 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
8827
8828 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
8829 }
8830
8831 case R_ARM_THM_JUMP11:
8832 case R_ARM_THM_JUMP8:
8833 case R_ARM_THM_JUMP6:
8834 /* Thumb B (branch) instruction). */
8835 {
8836 bfd_signed_vma relocation;
8837 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
8838 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
8839 bfd_signed_vma signed_check;
8840
8841 /* CZB cannot jump backward. */
8842 if (r_type == R_ARM_THM_JUMP6)
8843 reloc_signed_min = 0;
8844
8845 if (globals->use_rel)
8846 {
8847 /* Need to refetch addend. */
8848 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
8849 if (addend & ((howto->src_mask + 1) >> 1))
8850 {
8851 signed_addend = -1;
8852 signed_addend &= ~ howto->src_mask;
8853 signed_addend |= addend;
8854 }
8855 else
8856 signed_addend = addend;
8857 /* The value in the insn has been right shifted. We need to
8858 undo this, so that we can perform the address calculation
8859 in terms of bytes. */
8860 signed_addend <<= howto->rightshift;
8861 }
8862 relocation = value + signed_addend;
8863
8864 relocation -= (input_section->output_section->vma
8865 + input_section->output_offset
8866 + rel->r_offset);
8867
8868 relocation >>= howto->rightshift;
8869 signed_check = relocation;
8870
8871 if (r_type == R_ARM_THM_JUMP6)
8872 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
8873 else
8874 relocation &= howto->dst_mask;
8875 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
8876
8877 bfd_put_16 (input_bfd, relocation, hit_data);
8878
8879 /* Assumes two's complement. */
8880 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
8881 return bfd_reloc_overflow;
8882
8883 return bfd_reloc_ok;
8884 }
8885
8886 case R_ARM_ALU_PCREL7_0:
8887 case R_ARM_ALU_PCREL15_8:
8888 case R_ARM_ALU_PCREL23_15:
8889 {
8890 bfd_vma insn;
8891 bfd_vma relocation;
8892
8893 insn = bfd_get_32 (input_bfd, hit_data);
8894 if (globals->use_rel)
8895 {
8896 /* Extract the addend. */
8897 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
8898 signed_addend = addend;
8899 }
8900 relocation = value + signed_addend;
8901
8902 relocation -= (input_section->output_section->vma
8903 + input_section->output_offset
8904 + rel->r_offset);
8905 insn = (insn & ~0xfff)
8906 | ((howto->bitpos << 7) & 0xf00)
8907 | ((relocation >> howto->bitpos) & 0xff);
8908 bfd_put_32 (input_bfd, value, hit_data);
8909 }
8910 return bfd_reloc_ok;
8911
8912 case R_ARM_GNU_VTINHERIT:
8913 case R_ARM_GNU_VTENTRY:
8914 return bfd_reloc_ok;
8915
8916 case R_ARM_GOTOFF32:
8917 /* Relocation is relative to the start of the
8918 global offset table. */
8919
8920 BFD_ASSERT (sgot != NULL);
8921 if (sgot == NULL)
8922 return bfd_reloc_notsupported;
8923
8924 /* If we are addressing a Thumb function, we need to adjust the
8925 address by one, so that attempts to call the function pointer will
8926 correctly interpret it as Thumb code. */
8927 if (branch_type == ST_BRANCH_TO_THUMB)
8928 value += 1;
8929
8930 /* Note that sgot->output_offset is not involved in this
8931 calculation. We always want the start of .got. If we
8932 define _GLOBAL_OFFSET_TABLE in a different way, as is
8933 permitted by the ABI, we might have to change this
8934 calculation. */
8935 value -= sgot->output_section->vma;
8936 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8937 contents, rel->r_offset, value,
8938 rel->r_addend);
8939
8940 case R_ARM_GOTPC:
8941 /* Use global offset table as symbol value. */
8942 BFD_ASSERT (sgot != NULL);
8943
8944 if (sgot == NULL)
8945 return bfd_reloc_notsupported;
8946
8947 *unresolved_reloc_p = FALSE;
8948 value = sgot->output_section->vma;
8949 return _bfd_final_link_relocate (howto, input_bfd, input_section,
8950 contents, rel->r_offset, value,
8951 rel->r_addend);
8952
8953 case R_ARM_GOT32:
8954 case R_ARM_GOT_PREL:
8955 /* Relocation is to the entry for this symbol in the
8956 global offset table. */
8957 if (sgot == NULL)
8958 return bfd_reloc_notsupported;
8959
8960 if (dynreloc_st_type == STT_GNU_IFUNC
8961 && plt_offset != (bfd_vma) -1
8962 && (h == NULL || SYMBOL_REFERENCES_LOCAL (info, h)))
8963 {
8964 /* We have a relocation against a locally-binding STT_GNU_IFUNC
8965 symbol, and the relocation resolves directly to the runtime
8966 target rather than to the .iplt entry. This means that any
8967 .got entry would be the same value as the .igot.plt entry,
8968 so there's no point creating both. */
8969 sgot = globals->root.igotplt;
8970 value = sgot->output_offset + gotplt_offset;
8971 }
8972 else if (h != NULL)
8973 {
8974 bfd_vma off;
8975
8976 off = h->got.offset;
8977 BFD_ASSERT (off != (bfd_vma) -1);
8978 if ((off & 1) != 0)
8979 {
8980 /* We have already processsed one GOT relocation against
8981 this symbol. */
8982 off &= ~1;
8983 if (globals->root.dynamic_sections_created
8984 && !SYMBOL_REFERENCES_LOCAL (info, h))
8985 *unresolved_reloc_p = FALSE;
8986 }
8987 else
8988 {
8989 Elf_Internal_Rela outrel;
8990
8991 if (!SYMBOL_REFERENCES_LOCAL (info, h))
8992 {
8993 /* If the symbol doesn't resolve locally in a static
8994 object, we have an undefined reference. If the
8995 symbol doesn't resolve locally in a dynamic object,
8996 it should be resolved by the dynamic linker. */
8997 if (globals->root.dynamic_sections_created)
8998 {
8999 outrel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9000 *unresolved_reloc_p = FALSE;
9001 }
9002 else
9003 outrel.r_info = 0;
9004 outrel.r_addend = 0;
9005 }
9006 else
9007 {
9008 if (dynreloc_st_type == STT_GNU_IFUNC)
9009 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9010 else if (info->shared)
9011 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9012 else
9013 outrel.r_info = 0;
9014 outrel.r_addend = dynreloc_value;
9015 }
9016
9017 /* The GOT entry is initialized to zero by default.
9018 See if we should install a different value. */
9019 if (outrel.r_addend != 0
9020 && (outrel.r_info == 0 || globals->use_rel))
9021 {
9022 bfd_put_32 (output_bfd, outrel.r_addend,
9023 sgot->contents + off);
9024 outrel.r_addend = 0;
9025 }
9026
9027 if (outrel.r_info != 0)
9028 {
9029 outrel.r_offset = (sgot->output_section->vma
9030 + sgot->output_offset
9031 + off);
9032 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9033 }
9034 h->got.offset |= 1;
9035 }
9036 value = sgot->output_offset + off;
9037 }
9038 else
9039 {
9040 bfd_vma off;
9041
9042 BFD_ASSERT (local_got_offsets != NULL &&
9043 local_got_offsets[r_symndx] != (bfd_vma) -1);
9044
9045 off = local_got_offsets[r_symndx];
9046
9047 /* The offset must always be a multiple of 4. We use the
9048 least significant bit to record whether we have already
9049 generated the necessary reloc. */
9050 if ((off & 1) != 0)
9051 off &= ~1;
9052 else
9053 {
9054 if (globals->use_rel)
9055 bfd_put_32 (output_bfd, dynreloc_value, sgot->contents + off);
9056
9057 if (info->shared || dynreloc_st_type == STT_GNU_IFUNC)
9058 {
9059 Elf_Internal_Rela outrel;
9060
9061 outrel.r_addend = addend + dynreloc_value;
9062 outrel.r_offset = (sgot->output_section->vma
9063 + sgot->output_offset
9064 + off);
9065 if (dynreloc_st_type == STT_GNU_IFUNC)
9066 outrel.r_info = ELF32_R_INFO (0, R_ARM_IRELATIVE);
9067 else
9068 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9069 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9070 }
9071
9072 local_got_offsets[r_symndx] |= 1;
9073 }
9074
9075 value = sgot->output_offset + off;
9076 }
9077 if (r_type != R_ARM_GOT32)
9078 value += sgot->output_section->vma;
9079
9080 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9081 contents, rel->r_offset, value,
9082 rel->r_addend);
9083
9084 case R_ARM_TLS_LDO32:
9085 value = value - dtpoff_base (info);
9086
9087 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9088 contents, rel->r_offset, value,
9089 rel->r_addend);
9090
9091 case R_ARM_TLS_LDM32:
9092 {
9093 bfd_vma off;
9094
9095 if (sgot == NULL)
9096 abort ();
9097
9098 off = globals->tls_ldm_got.offset;
9099
9100 if ((off & 1) != 0)
9101 off &= ~1;
9102 else
9103 {
9104 /* If we don't know the module number, create a relocation
9105 for it. */
9106 if (info->shared)
9107 {
9108 Elf_Internal_Rela outrel;
9109
9110 if (srelgot == NULL)
9111 abort ();
9112
9113 outrel.r_addend = 0;
9114 outrel.r_offset = (sgot->output_section->vma
9115 + sgot->output_offset + off);
9116 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
9117
9118 if (globals->use_rel)
9119 bfd_put_32 (output_bfd, outrel.r_addend,
9120 sgot->contents + off);
9121
9122 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9123 }
9124 else
9125 bfd_put_32 (output_bfd, 1, sgot->contents + off);
9126
9127 globals->tls_ldm_got.offset |= 1;
9128 }
9129
9130 value = sgot->output_section->vma + sgot->output_offset + off
9131 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
9132
9133 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9134 contents, rel->r_offset, value,
9135 rel->r_addend);
9136 }
9137
9138 case R_ARM_TLS_CALL:
9139 case R_ARM_THM_TLS_CALL:
9140 case R_ARM_TLS_GD32:
9141 case R_ARM_TLS_IE32:
9142 case R_ARM_TLS_GOTDESC:
9143 case R_ARM_TLS_DESCSEQ:
9144 case R_ARM_THM_TLS_DESCSEQ:
9145 {
9146 bfd_vma off, offplt;
9147 int indx = 0;
9148 char tls_type;
9149
9150 BFD_ASSERT (sgot != NULL);
9151
9152 if (h != NULL)
9153 {
9154 bfd_boolean dyn;
9155 dyn = globals->root.dynamic_sections_created;
9156 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9157 && (!info->shared
9158 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9159 {
9160 *unresolved_reloc_p = FALSE;
9161 indx = h->dynindx;
9162 }
9163 off = h->got.offset;
9164 offplt = elf32_arm_hash_entry (h)->tlsdesc_got;
9165 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
9166 }
9167 else
9168 {
9169 BFD_ASSERT (local_got_offsets != NULL);
9170 off = local_got_offsets[r_symndx];
9171 offplt = local_tlsdesc_gotents[r_symndx];
9172 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
9173 }
9174
9175 /* Linker relaxations happens from one of the
9176 R_ARM_{GOTDESC,CALL,DESCSEQ} relocations to IE or LE. */
9177 if (ELF32_R_TYPE(rel->r_info) != r_type)
9178 tls_type = GOT_TLS_IE;
9179
9180 BFD_ASSERT (tls_type != GOT_UNKNOWN);
9181
9182 if ((off & 1) != 0)
9183 off &= ~1;
9184 else
9185 {
9186 bfd_boolean need_relocs = FALSE;
9187 Elf_Internal_Rela outrel;
9188 int cur_off = off;
9189
9190 /* The GOT entries have not been initialized yet. Do it
9191 now, and emit any relocations. If both an IE GOT and a
9192 GD GOT are necessary, we emit the GD first. */
9193
9194 if ((info->shared || indx != 0)
9195 && (h == NULL
9196 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9197 || h->root.type != bfd_link_hash_undefweak))
9198 {
9199 need_relocs = TRUE;
9200 BFD_ASSERT (srelgot != NULL);
9201 }
9202
9203 if (tls_type & GOT_TLS_GDESC)
9204 {
9205 bfd_byte *loc;
9206
9207 /* We should have relaxed, unless this is an undefined
9208 weak symbol. */
9209 BFD_ASSERT ((h && (h->root.type == bfd_link_hash_undefweak))
9210 || info->shared);
9211 BFD_ASSERT (globals->sgotplt_jump_table_size + offplt + 8
9212 <= globals->root.sgotplt->size);
9213
9214 outrel.r_addend = 0;
9215 outrel.r_offset = (globals->root.sgotplt->output_section->vma
9216 + globals->root.sgotplt->output_offset
9217 + offplt
9218 + globals->sgotplt_jump_table_size);
9219
9220 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DESC);
9221 sreloc = globals->root.srelplt;
9222 loc = sreloc->contents;
9223 loc += globals->next_tls_desc_index++ * RELOC_SIZE (globals);
9224 BFD_ASSERT (loc + RELOC_SIZE (globals)
9225 <= sreloc->contents + sreloc->size);
9226
9227 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
9228
9229 /* For globals, the first word in the relocation gets
9230 the relocation index and the top bit set, or zero,
9231 if we're binding now. For locals, it gets the
9232 symbol's offset in the tls section. */
9233 bfd_put_32 (output_bfd,
9234 !h ? value - elf_hash_table (info)->tls_sec->vma
9235 : info->flags & DF_BIND_NOW ? 0
9236 : 0x80000000 | ELF32_R_SYM (outrel.r_info),
9237 globals->root.sgotplt->contents + offplt +
9238 globals->sgotplt_jump_table_size);
9239
9240 /* Second word in the relocation is always zero. */
9241 bfd_put_32 (output_bfd, 0,
9242 globals->root.sgotplt->contents + offplt +
9243 globals->sgotplt_jump_table_size + 4);
9244 }
9245 if (tls_type & GOT_TLS_GD)
9246 {
9247 if (need_relocs)
9248 {
9249 outrel.r_addend = 0;
9250 outrel.r_offset = (sgot->output_section->vma
9251 + sgot->output_offset
9252 + cur_off);
9253 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
9254
9255 if (globals->use_rel)
9256 bfd_put_32 (output_bfd, outrel.r_addend,
9257 sgot->contents + cur_off);
9258
9259 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9260
9261 if (indx == 0)
9262 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9263 sgot->contents + cur_off + 4);
9264 else
9265 {
9266 outrel.r_addend = 0;
9267 outrel.r_info = ELF32_R_INFO (indx,
9268 R_ARM_TLS_DTPOFF32);
9269 outrel.r_offset += 4;
9270
9271 if (globals->use_rel)
9272 bfd_put_32 (output_bfd, outrel.r_addend,
9273 sgot->contents + cur_off + 4);
9274
9275 elf32_arm_add_dynreloc (output_bfd, info,
9276 srelgot, &outrel);
9277 }
9278 }
9279 else
9280 {
9281 /* If we are not emitting relocations for a
9282 general dynamic reference, then we must be in a
9283 static link or an executable link with the
9284 symbol binding locally. Mark it as belonging
9285 to module 1, the executable. */
9286 bfd_put_32 (output_bfd, 1,
9287 sgot->contents + cur_off);
9288 bfd_put_32 (output_bfd, value - dtpoff_base (info),
9289 sgot->contents + cur_off + 4);
9290 }
9291
9292 cur_off += 8;
9293 }
9294
9295 if (tls_type & GOT_TLS_IE)
9296 {
9297 if (need_relocs)
9298 {
9299 if (indx == 0)
9300 outrel.r_addend = value - dtpoff_base (info);
9301 else
9302 outrel.r_addend = 0;
9303 outrel.r_offset = (sgot->output_section->vma
9304 + sgot->output_offset
9305 + cur_off);
9306 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
9307
9308 if (globals->use_rel)
9309 bfd_put_32 (output_bfd, outrel.r_addend,
9310 sgot->contents + cur_off);
9311
9312 elf32_arm_add_dynreloc (output_bfd, info, srelgot, &outrel);
9313 }
9314 else
9315 bfd_put_32 (output_bfd, tpoff (info, value),
9316 sgot->contents + cur_off);
9317 cur_off += 4;
9318 }
9319
9320 if (h != NULL)
9321 h->got.offset |= 1;
9322 else
9323 local_got_offsets[r_symndx] |= 1;
9324 }
9325
9326 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
9327 off += 8;
9328 else if (tls_type & GOT_TLS_GDESC)
9329 off = offplt;
9330
9331 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL
9332 || ELF32_R_TYPE(rel->r_info) == R_ARM_THM_TLS_CALL)
9333 {
9334 bfd_signed_vma offset;
9335 /* TLS stubs are arm mode. The original symbol is a
9336 data object, so branch_type is bogus. */
9337 branch_type = ST_BRANCH_TO_ARM;
9338 enum elf32_arm_stub_type stub_type
9339 = arm_type_of_stub (info, input_section, rel,
9340 st_type, &branch_type,
9341 (struct elf32_arm_link_hash_entry *)h,
9342 globals->tls_trampoline, globals->root.splt,
9343 input_bfd, sym_name);
9344
9345 if (stub_type != arm_stub_none)
9346 {
9347 struct elf32_arm_stub_hash_entry *stub_entry
9348 = elf32_arm_get_stub_entry
9349 (input_section, globals->root.splt, 0, rel,
9350 globals, stub_type);
9351 offset = (stub_entry->stub_offset
9352 + stub_entry->stub_sec->output_offset
9353 + stub_entry->stub_sec->output_section->vma);
9354 }
9355 else
9356 offset = (globals->root.splt->output_section->vma
9357 + globals->root.splt->output_offset
9358 + globals->tls_trampoline);
9359
9360 if (ELF32_R_TYPE(rel->r_info) == R_ARM_TLS_CALL)
9361 {
9362 unsigned long inst;
9363
9364 offset -= (input_section->output_section->vma +
9365 input_section->output_offset + rel->r_offset + 8);
9366
9367 inst = offset >> 2;
9368 inst &= 0x00ffffff;
9369 value = inst | (globals->use_blx ? 0xfa000000 : 0xeb000000);
9370 }
9371 else
9372 {
9373 /* Thumb blx encodes the offset in a complicated
9374 fashion. */
9375 unsigned upper_insn, lower_insn;
9376 unsigned neg;
9377
9378 offset -= (input_section->output_section->vma +
9379 input_section->output_offset
9380 + rel->r_offset + 4);
9381
9382 if (stub_type != arm_stub_none
9383 && arm_stub_is_thumb (stub_type))
9384 {
9385 lower_insn = 0xd000;
9386 }
9387 else
9388 {
9389 lower_insn = 0xc000;
9390 /* Round up the offset to a word boundary */
9391 offset = (offset + 2) & ~2;
9392 }
9393
9394 neg = offset < 0;
9395 upper_insn = (0xf000
9396 | ((offset >> 12) & 0x3ff)
9397 | (neg << 10));
9398 lower_insn |= (((!((offset >> 23) & 1)) ^ neg) << 13)
9399 | (((!((offset >> 22) & 1)) ^ neg) << 11)
9400 | ((offset >> 1) & 0x7ff);
9401 bfd_put_16 (input_bfd, upper_insn, hit_data);
9402 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
9403 return bfd_reloc_ok;
9404 }
9405 }
9406 /* These relocations needs special care, as besides the fact
9407 they point somewhere in .gotplt, the addend must be
9408 adjusted accordingly depending on the type of instruction
9409 we refer to */
9410 else if ((r_type == R_ARM_TLS_GOTDESC) && (tls_type & GOT_TLS_GDESC))
9411 {
9412 unsigned long data, insn;
9413 unsigned thumb;
9414
9415 data = bfd_get_32 (input_bfd, hit_data);
9416 thumb = data & 1;
9417 data &= ~1u;
9418
9419 if (thumb)
9420 {
9421 insn = bfd_get_16 (input_bfd, contents + rel->r_offset - data);
9422 if ((insn & 0xf000) == 0xf000 || (insn & 0xf800) == 0xe800)
9423 insn = (insn << 16)
9424 | bfd_get_16 (input_bfd,
9425 contents + rel->r_offset - data + 2);
9426 if ((insn & 0xf800c000) == 0xf000c000)
9427 /* bl/blx */
9428 value = -6;
9429 else if ((insn & 0xffffff00) == 0x4400)
9430 /* add */
9431 value = -5;
9432 else
9433 {
9434 (*_bfd_error_handler)
9435 (_("%B(%A+0x%lx):unexpected Thumb instruction '0x%x' referenced by TLS_GOTDESC"),
9436 input_bfd, input_section,
9437 (unsigned long)rel->r_offset, insn);
9438 return bfd_reloc_notsupported;
9439 }
9440 }
9441 else
9442 {
9443 insn = bfd_get_32 (input_bfd, contents + rel->r_offset - data);
9444
9445 switch (insn >> 24)
9446 {
9447 case 0xeb: /* bl */
9448 case 0xfa: /* blx */
9449 value = -4;
9450 break;
9451
9452 case 0xe0: /* add */
9453 value = -8;
9454 break;
9455
9456 default:
9457 (*_bfd_error_handler)
9458 (_("%B(%A+0x%lx):unexpected ARM instruction '0x%x' referenced by TLS_GOTDESC"),
9459 input_bfd, input_section,
9460 (unsigned long)rel->r_offset, insn);
9461 return bfd_reloc_notsupported;
9462 }
9463 }
9464
9465 value += ((globals->root.sgotplt->output_section->vma
9466 + globals->root.sgotplt->output_offset + off)
9467 - (input_section->output_section->vma
9468 + input_section->output_offset
9469 + rel->r_offset)
9470 + globals->sgotplt_jump_table_size);
9471 }
9472 else
9473 value = ((globals->root.sgot->output_section->vma
9474 + globals->root.sgot->output_offset + off)
9475 - (input_section->output_section->vma
9476 + input_section->output_offset + rel->r_offset));
9477
9478 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9479 contents, rel->r_offset, value,
9480 rel->r_addend);
9481 }
9482
9483 case R_ARM_TLS_LE32:
9484 if (info->shared && !info->pie)
9485 {
9486 (*_bfd_error_handler)
9487 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
9488 input_bfd, input_section,
9489 (long) rel->r_offset, howto->name);
9490 return (bfd_reloc_status_type) FALSE;
9491 }
9492 else
9493 value = tpoff (info, value);
9494
9495 return _bfd_final_link_relocate (howto, input_bfd, input_section,
9496 contents, rel->r_offset, value,
9497 rel->r_addend);
9498
9499 case R_ARM_V4BX:
9500 if (globals->fix_v4bx)
9501 {
9502 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9503
9504 /* Ensure that we have a BX instruction. */
9505 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
9506
9507 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
9508 {
9509 /* Branch to veneer. */
9510 bfd_vma glue_addr;
9511 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
9512 glue_addr -= input_section->output_section->vma
9513 + input_section->output_offset
9514 + rel->r_offset + 8;
9515 insn = (insn & 0xf0000000) | 0x0a000000
9516 | ((glue_addr >> 2) & 0x00ffffff);
9517 }
9518 else
9519 {
9520 /* Preserve Rm (lowest four bits) and the condition code
9521 (highest four bits). Other bits encode MOV PC,Rm. */
9522 insn = (insn & 0xf000000f) | 0x01a0f000;
9523 }
9524
9525 bfd_put_32 (input_bfd, insn, hit_data);
9526 }
9527 return bfd_reloc_ok;
9528
9529 case R_ARM_MOVW_ABS_NC:
9530 case R_ARM_MOVT_ABS:
9531 case R_ARM_MOVW_PREL_NC:
9532 case R_ARM_MOVT_PREL:
9533 /* Until we properly support segment-base-relative addressing then
9534 we assume the segment base to be zero, as for the group relocations.
9535 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
9536 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
9537 case R_ARM_MOVW_BREL_NC:
9538 case R_ARM_MOVW_BREL:
9539 case R_ARM_MOVT_BREL:
9540 {
9541 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9542
9543 if (globals->use_rel)
9544 {
9545 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
9546 signed_addend = (addend ^ 0x8000) - 0x8000;
9547 }
9548
9549 value += signed_addend;
9550
9551 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
9552 value -= (input_section->output_section->vma
9553 + input_section->output_offset + rel->r_offset);
9554
9555 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
9556 return bfd_reloc_overflow;
9557
9558 if (branch_type == ST_BRANCH_TO_THUMB)
9559 value |= 1;
9560
9561 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
9562 || r_type == R_ARM_MOVT_BREL)
9563 value >>= 16;
9564
9565 insn &= 0xfff0f000;
9566 insn |= value & 0xfff;
9567 insn |= (value & 0xf000) << 4;
9568 bfd_put_32 (input_bfd, insn, hit_data);
9569 }
9570 return bfd_reloc_ok;
9571
9572 case R_ARM_THM_MOVW_ABS_NC:
9573 case R_ARM_THM_MOVT_ABS:
9574 case R_ARM_THM_MOVW_PREL_NC:
9575 case R_ARM_THM_MOVT_PREL:
9576 /* Until we properly support segment-base-relative addressing then
9577 we assume the segment base to be zero, as for the above relocations.
9578 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
9579 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
9580 as R_ARM_THM_MOVT_ABS. */
9581 case R_ARM_THM_MOVW_BREL_NC:
9582 case R_ARM_THM_MOVW_BREL:
9583 case R_ARM_THM_MOVT_BREL:
9584 {
9585 bfd_vma insn;
9586
9587 insn = bfd_get_16 (input_bfd, hit_data) << 16;
9588 insn |= bfd_get_16 (input_bfd, hit_data + 2);
9589
9590 if (globals->use_rel)
9591 {
9592 addend = ((insn >> 4) & 0xf000)
9593 | ((insn >> 15) & 0x0800)
9594 | ((insn >> 4) & 0x0700)
9595 | (insn & 0x00ff);
9596 signed_addend = (addend ^ 0x8000) - 0x8000;
9597 }
9598
9599 value += signed_addend;
9600
9601 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
9602 value -= (input_section->output_section->vma
9603 + input_section->output_offset + rel->r_offset);
9604
9605 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
9606 return bfd_reloc_overflow;
9607
9608 if (branch_type == ST_BRANCH_TO_THUMB)
9609 value |= 1;
9610
9611 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
9612 || r_type == R_ARM_THM_MOVT_BREL)
9613 value >>= 16;
9614
9615 insn &= 0xfbf08f00;
9616 insn |= (value & 0xf000) << 4;
9617 insn |= (value & 0x0800) << 15;
9618 insn |= (value & 0x0700) << 4;
9619 insn |= (value & 0x00ff);
9620
9621 bfd_put_16 (input_bfd, insn >> 16, hit_data);
9622 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
9623 }
9624 return bfd_reloc_ok;
9625
9626 case R_ARM_ALU_PC_G0_NC:
9627 case R_ARM_ALU_PC_G1_NC:
9628 case R_ARM_ALU_PC_G0:
9629 case R_ARM_ALU_PC_G1:
9630 case R_ARM_ALU_PC_G2:
9631 case R_ARM_ALU_SB_G0_NC:
9632 case R_ARM_ALU_SB_G1_NC:
9633 case R_ARM_ALU_SB_G0:
9634 case R_ARM_ALU_SB_G1:
9635 case R_ARM_ALU_SB_G2:
9636 {
9637 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9638 bfd_vma pc = input_section->output_section->vma
9639 + input_section->output_offset + rel->r_offset;
9640 /* sb should be the origin of the *segment* containing the symbol.
9641 It is not clear how to obtain this OS-dependent value, so we
9642 make an arbitrary choice of zero. */
9643 bfd_vma sb = 0;
9644 bfd_vma residual;
9645 bfd_vma g_n;
9646 bfd_signed_vma signed_value;
9647 int group = 0;
9648
9649 /* Determine which group of bits to select. */
9650 switch (r_type)
9651 {
9652 case R_ARM_ALU_PC_G0_NC:
9653 case R_ARM_ALU_PC_G0:
9654 case R_ARM_ALU_SB_G0_NC:
9655 case R_ARM_ALU_SB_G0:
9656 group = 0;
9657 break;
9658
9659 case R_ARM_ALU_PC_G1_NC:
9660 case R_ARM_ALU_PC_G1:
9661 case R_ARM_ALU_SB_G1_NC:
9662 case R_ARM_ALU_SB_G1:
9663 group = 1;
9664 break;
9665
9666 case R_ARM_ALU_PC_G2:
9667 case R_ARM_ALU_SB_G2:
9668 group = 2;
9669 break;
9670
9671 default:
9672 abort ();
9673 }
9674
9675 /* If REL, extract the addend from the insn. If RELA, it will
9676 have already been fetched for us. */
9677 if (globals->use_rel)
9678 {
9679 int negative;
9680 bfd_vma constant = insn & 0xff;
9681 bfd_vma rotation = (insn & 0xf00) >> 8;
9682
9683 if (rotation == 0)
9684 signed_addend = constant;
9685 else
9686 {
9687 /* Compensate for the fact that in the instruction, the
9688 rotation is stored in multiples of 2 bits. */
9689 rotation *= 2;
9690
9691 /* Rotate "constant" right by "rotation" bits. */
9692 signed_addend = (constant >> rotation) |
9693 (constant << (8 * sizeof (bfd_vma) - rotation));
9694 }
9695
9696 /* Determine if the instruction is an ADD or a SUB.
9697 (For REL, this determines the sign of the addend.) */
9698 negative = identify_add_or_sub (insn);
9699 if (negative == 0)
9700 {
9701 (*_bfd_error_handler)
9702 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
9703 input_bfd, input_section,
9704 (long) rel->r_offset, howto->name);
9705 return bfd_reloc_overflow;
9706 }
9707
9708 signed_addend *= negative;
9709 }
9710
9711 /* Compute the value (X) to go in the place. */
9712 if (r_type == R_ARM_ALU_PC_G0_NC
9713 || r_type == R_ARM_ALU_PC_G1_NC
9714 || r_type == R_ARM_ALU_PC_G0
9715 || r_type == R_ARM_ALU_PC_G1
9716 || r_type == R_ARM_ALU_PC_G2)
9717 /* PC relative. */
9718 signed_value = value - pc + signed_addend;
9719 else
9720 /* Section base relative. */
9721 signed_value = value - sb + signed_addend;
9722
9723 /* If the target symbol is a Thumb function, then set the
9724 Thumb bit in the address. */
9725 if (branch_type == ST_BRANCH_TO_THUMB)
9726 signed_value |= 1;
9727
9728 /* Calculate the value of the relevant G_n, in encoded
9729 constant-with-rotation format. */
9730 g_n = calculate_group_reloc_mask (abs (signed_value), group,
9731 &residual);
9732
9733 /* Check for overflow if required. */
9734 if ((r_type == R_ARM_ALU_PC_G0
9735 || r_type == R_ARM_ALU_PC_G1
9736 || r_type == R_ARM_ALU_PC_G2
9737 || r_type == R_ARM_ALU_SB_G0
9738 || r_type == R_ARM_ALU_SB_G1
9739 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
9740 {
9741 (*_bfd_error_handler)
9742 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9743 input_bfd, input_section,
9744 (long) rel->r_offset, abs (signed_value), howto->name);
9745 return bfd_reloc_overflow;
9746 }
9747
9748 /* Mask out the value and the ADD/SUB part of the opcode; take care
9749 not to destroy the S bit. */
9750 insn &= 0xff1ff000;
9751
9752 /* Set the opcode according to whether the value to go in the
9753 place is negative. */
9754 if (signed_value < 0)
9755 insn |= 1 << 22;
9756 else
9757 insn |= 1 << 23;
9758
9759 /* Encode the offset. */
9760 insn |= g_n;
9761
9762 bfd_put_32 (input_bfd, insn, hit_data);
9763 }
9764 return bfd_reloc_ok;
9765
9766 case R_ARM_LDR_PC_G0:
9767 case R_ARM_LDR_PC_G1:
9768 case R_ARM_LDR_PC_G2:
9769 case R_ARM_LDR_SB_G0:
9770 case R_ARM_LDR_SB_G1:
9771 case R_ARM_LDR_SB_G2:
9772 {
9773 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9774 bfd_vma pc = input_section->output_section->vma
9775 + input_section->output_offset + rel->r_offset;
9776 bfd_vma sb = 0; /* See note above. */
9777 bfd_vma residual;
9778 bfd_signed_vma signed_value;
9779 int group = 0;
9780
9781 /* Determine which groups of bits to calculate. */
9782 switch (r_type)
9783 {
9784 case R_ARM_LDR_PC_G0:
9785 case R_ARM_LDR_SB_G0:
9786 group = 0;
9787 break;
9788
9789 case R_ARM_LDR_PC_G1:
9790 case R_ARM_LDR_SB_G1:
9791 group = 1;
9792 break;
9793
9794 case R_ARM_LDR_PC_G2:
9795 case R_ARM_LDR_SB_G2:
9796 group = 2;
9797 break;
9798
9799 default:
9800 abort ();
9801 }
9802
9803 /* If REL, extract the addend from the insn. If RELA, it will
9804 have already been fetched for us. */
9805 if (globals->use_rel)
9806 {
9807 int negative = (insn & (1 << 23)) ? 1 : -1;
9808 signed_addend = negative * (insn & 0xfff);
9809 }
9810
9811 /* Compute the value (X) to go in the place. */
9812 if (r_type == R_ARM_LDR_PC_G0
9813 || r_type == R_ARM_LDR_PC_G1
9814 || r_type == R_ARM_LDR_PC_G2)
9815 /* PC relative. */
9816 signed_value = value - pc + signed_addend;
9817 else
9818 /* Section base relative. */
9819 signed_value = value - sb + signed_addend;
9820
9821 /* Calculate the value of the relevant G_{n-1} to obtain
9822 the residual at that stage. */
9823 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9824
9825 /* Check for overflow. */
9826 if (residual >= 0x1000)
9827 {
9828 (*_bfd_error_handler)
9829 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9830 input_bfd, input_section,
9831 (long) rel->r_offset, abs (signed_value), howto->name);
9832 return bfd_reloc_overflow;
9833 }
9834
9835 /* Mask out the value and U bit. */
9836 insn &= 0xff7ff000;
9837
9838 /* Set the U bit if the value to go in the place is non-negative. */
9839 if (signed_value >= 0)
9840 insn |= 1 << 23;
9841
9842 /* Encode the offset. */
9843 insn |= residual;
9844
9845 bfd_put_32 (input_bfd, insn, hit_data);
9846 }
9847 return bfd_reloc_ok;
9848
9849 case R_ARM_LDRS_PC_G0:
9850 case R_ARM_LDRS_PC_G1:
9851 case R_ARM_LDRS_PC_G2:
9852 case R_ARM_LDRS_SB_G0:
9853 case R_ARM_LDRS_SB_G1:
9854 case R_ARM_LDRS_SB_G2:
9855 {
9856 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9857 bfd_vma pc = input_section->output_section->vma
9858 + input_section->output_offset + rel->r_offset;
9859 bfd_vma sb = 0; /* See note above. */
9860 bfd_vma residual;
9861 bfd_signed_vma signed_value;
9862 int group = 0;
9863
9864 /* Determine which groups of bits to calculate. */
9865 switch (r_type)
9866 {
9867 case R_ARM_LDRS_PC_G0:
9868 case R_ARM_LDRS_SB_G0:
9869 group = 0;
9870 break;
9871
9872 case R_ARM_LDRS_PC_G1:
9873 case R_ARM_LDRS_SB_G1:
9874 group = 1;
9875 break;
9876
9877 case R_ARM_LDRS_PC_G2:
9878 case R_ARM_LDRS_SB_G2:
9879 group = 2;
9880 break;
9881
9882 default:
9883 abort ();
9884 }
9885
9886 /* If REL, extract the addend from the insn. If RELA, it will
9887 have already been fetched for us. */
9888 if (globals->use_rel)
9889 {
9890 int negative = (insn & (1 << 23)) ? 1 : -1;
9891 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
9892 }
9893
9894 /* Compute the value (X) to go in the place. */
9895 if (r_type == R_ARM_LDRS_PC_G0
9896 || r_type == R_ARM_LDRS_PC_G1
9897 || r_type == R_ARM_LDRS_PC_G2)
9898 /* PC relative. */
9899 signed_value = value - pc + signed_addend;
9900 else
9901 /* Section base relative. */
9902 signed_value = value - sb + signed_addend;
9903
9904 /* Calculate the value of the relevant G_{n-1} to obtain
9905 the residual at that stage. */
9906 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9907
9908 /* Check for overflow. */
9909 if (residual >= 0x100)
9910 {
9911 (*_bfd_error_handler)
9912 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9913 input_bfd, input_section,
9914 (long) rel->r_offset, abs (signed_value), howto->name);
9915 return bfd_reloc_overflow;
9916 }
9917
9918 /* Mask out the value and U bit. */
9919 insn &= 0xff7ff0f0;
9920
9921 /* Set the U bit if the value to go in the place is non-negative. */
9922 if (signed_value >= 0)
9923 insn |= 1 << 23;
9924
9925 /* Encode the offset. */
9926 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
9927
9928 bfd_put_32 (input_bfd, insn, hit_data);
9929 }
9930 return bfd_reloc_ok;
9931
9932 case R_ARM_LDC_PC_G0:
9933 case R_ARM_LDC_PC_G1:
9934 case R_ARM_LDC_PC_G2:
9935 case R_ARM_LDC_SB_G0:
9936 case R_ARM_LDC_SB_G1:
9937 case R_ARM_LDC_SB_G2:
9938 {
9939 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
9940 bfd_vma pc = input_section->output_section->vma
9941 + input_section->output_offset + rel->r_offset;
9942 bfd_vma sb = 0; /* See note above. */
9943 bfd_vma residual;
9944 bfd_signed_vma signed_value;
9945 int group = 0;
9946
9947 /* Determine which groups of bits to calculate. */
9948 switch (r_type)
9949 {
9950 case R_ARM_LDC_PC_G0:
9951 case R_ARM_LDC_SB_G0:
9952 group = 0;
9953 break;
9954
9955 case R_ARM_LDC_PC_G1:
9956 case R_ARM_LDC_SB_G1:
9957 group = 1;
9958 break;
9959
9960 case R_ARM_LDC_PC_G2:
9961 case R_ARM_LDC_SB_G2:
9962 group = 2;
9963 break;
9964
9965 default:
9966 abort ();
9967 }
9968
9969 /* If REL, extract the addend from the insn. If RELA, it will
9970 have already been fetched for us. */
9971 if (globals->use_rel)
9972 {
9973 int negative = (insn & (1 << 23)) ? 1 : -1;
9974 signed_addend = negative * ((insn & 0xff) << 2);
9975 }
9976
9977 /* Compute the value (X) to go in the place. */
9978 if (r_type == R_ARM_LDC_PC_G0
9979 || r_type == R_ARM_LDC_PC_G1
9980 || r_type == R_ARM_LDC_PC_G2)
9981 /* PC relative. */
9982 signed_value = value - pc + signed_addend;
9983 else
9984 /* Section base relative. */
9985 signed_value = value - sb + signed_addend;
9986
9987 /* Calculate the value of the relevant G_{n-1} to obtain
9988 the residual at that stage. */
9989 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
9990
9991 /* Check for overflow. (The absolute value to go in the place must be
9992 divisible by four and, after having been divided by four, must
9993 fit in eight bits.) */
9994 if ((residual & 0x3) != 0 || residual >= 0x400)
9995 {
9996 (*_bfd_error_handler)
9997 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
9998 input_bfd, input_section,
9999 (long) rel->r_offset, abs (signed_value), howto->name);
10000 return bfd_reloc_overflow;
10001 }
10002
10003 /* Mask out the value and U bit. */
10004 insn &= 0xff7fff00;
10005
10006 /* Set the U bit if the value to go in the place is non-negative. */
10007 if (signed_value >= 0)
10008 insn |= 1 << 23;
10009
10010 /* Encode the offset. */
10011 insn |= residual >> 2;
10012
10013 bfd_put_32 (input_bfd, insn, hit_data);
10014 }
10015 return bfd_reloc_ok;
10016
10017 default:
10018 return bfd_reloc_notsupported;
10019 }
10020 }
10021
10022 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
10023 static void
10024 arm_add_to_rel (bfd * abfd,
10025 bfd_byte * address,
10026 reloc_howto_type * howto,
10027 bfd_signed_vma increment)
10028 {
10029 bfd_signed_vma addend;
10030
10031 if (howto->type == R_ARM_THM_CALL
10032 || howto->type == R_ARM_THM_JUMP24)
10033 {
10034 int upper_insn, lower_insn;
10035 int upper, lower;
10036
10037 upper_insn = bfd_get_16 (abfd, address);
10038 lower_insn = bfd_get_16 (abfd, address + 2);
10039 upper = upper_insn & 0x7ff;
10040 lower = lower_insn & 0x7ff;
10041
10042 addend = (upper << 12) | (lower << 1);
10043 addend += increment;
10044 addend >>= 1;
10045
10046 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
10047 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
10048
10049 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
10050 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
10051 }
10052 else
10053 {
10054 bfd_vma contents;
10055
10056 contents = bfd_get_32 (abfd, address);
10057
10058 /* Get the (signed) value from the instruction. */
10059 addend = contents & howto->src_mask;
10060 if (addend & ((howto->src_mask + 1) >> 1))
10061 {
10062 bfd_signed_vma mask;
10063
10064 mask = -1;
10065 mask &= ~ howto->src_mask;
10066 addend |= mask;
10067 }
10068
10069 /* Add in the increment, (which is a byte value). */
10070 switch (howto->type)
10071 {
10072 default:
10073 addend += increment;
10074 break;
10075
10076 case R_ARM_PC24:
10077 case R_ARM_PLT32:
10078 case R_ARM_CALL:
10079 case R_ARM_JUMP24:
10080 addend <<= howto->size;
10081 addend += increment;
10082
10083 /* Should we check for overflow here ? */
10084
10085 /* Drop any undesired bits. */
10086 addend >>= howto->rightshift;
10087 break;
10088 }
10089
10090 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
10091
10092 bfd_put_32 (abfd, contents, address);
10093 }
10094 }
10095
10096 #define IS_ARM_TLS_RELOC(R_TYPE) \
10097 ((R_TYPE) == R_ARM_TLS_GD32 \
10098 || (R_TYPE) == R_ARM_TLS_LDO32 \
10099 || (R_TYPE) == R_ARM_TLS_LDM32 \
10100 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
10101 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
10102 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
10103 || (R_TYPE) == R_ARM_TLS_LE32 \
10104 || (R_TYPE) == R_ARM_TLS_IE32 \
10105 || IS_ARM_TLS_GNU_RELOC (R_TYPE))
10106
10107 /* Specific set of relocations for the gnu tls dialect. */
10108 #define IS_ARM_TLS_GNU_RELOC(R_TYPE) \
10109 ((R_TYPE) == R_ARM_TLS_GOTDESC \
10110 || (R_TYPE) == R_ARM_TLS_CALL \
10111 || (R_TYPE) == R_ARM_THM_TLS_CALL \
10112 || (R_TYPE) == R_ARM_TLS_DESCSEQ \
10113 || (R_TYPE) == R_ARM_THM_TLS_DESCSEQ)
10114
10115 /* Relocate an ARM ELF section. */
10116
10117 static bfd_boolean
10118 elf32_arm_relocate_section (bfd * output_bfd,
10119 struct bfd_link_info * info,
10120 bfd * input_bfd,
10121 asection * input_section,
10122 bfd_byte * contents,
10123 Elf_Internal_Rela * relocs,
10124 Elf_Internal_Sym * local_syms,
10125 asection ** local_sections)
10126 {
10127 Elf_Internal_Shdr *symtab_hdr;
10128 struct elf_link_hash_entry **sym_hashes;
10129 Elf_Internal_Rela *rel;
10130 Elf_Internal_Rela *relend;
10131 const char *name;
10132 struct elf32_arm_link_hash_table * globals;
10133
10134 globals = elf32_arm_hash_table (info);
10135 if (globals == NULL)
10136 return FALSE;
10137
10138 symtab_hdr = & elf_symtab_hdr (input_bfd);
10139 sym_hashes = elf_sym_hashes (input_bfd);
10140
10141 rel = relocs;
10142 relend = relocs + input_section->reloc_count;
10143 for (; rel < relend; rel++)
10144 {
10145 int r_type;
10146 reloc_howto_type * howto;
10147 unsigned long r_symndx;
10148 Elf_Internal_Sym * sym;
10149 asection * sec;
10150 struct elf_link_hash_entry * h;
10151 bfd_vma relocation;
10152 bfd_reloc_status_type r;
10153 arelent bfd_reloc;
10154 char sym_type;
10155 bfd_boolean unresolved_reloc = FALSE;
10156 char *error_message = NULL;
10157
10158 r_symndx = ELF32_R_SYM (rel->r_info);
10159 r_type = ELF32_R_TYPE (rel->r_info);
10160 r_type = arm_real_reloc_type (globals, r_type);
10161
10162 if ( r_type == R_ARM_GNU_VTENTRY
10163 || r_type == R_ARM_GNU_VTINHERIT)
10164 continue;
10165
10166 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
10167 howto = bfd_reloc.howto;
10168
10169 h = NULL;
10170 sym = NULL;
10171 sec = NULL;
10172
10173 if (r_symndx < symtab_hdr->sh_info)
10174 {
10175 sym = local_syms + r_symndx;
10176 sym_type = ELF32_ST_TYPE (sym->st_info);
10177 sec = local_sections[r_symndx];
10178
10179 /* An object file might have a reference to a local
10180 undefined symbol. This is a daft object file, but we
10181 should at least do something about it. V4BX & NONE
10182 relocations do not use the symbol and are explicitly
10183 allowed to use the undefined symbol, so allow those.
10184 Likewise for relocations against STN_UNDEF. */
10185 if (r_type != R_ARM_V4BX
10186 && r_type != R_ARM_NONE
10187 && r_symndx != STN_UNDEF
10188 && bfd_is_und_section (sec)
10189 && ELF_ST_BIND (sym->st_info) != STB_WEAK)
10190 {
10191 if (!info->callbacks->undefined_symbol
10192 (info, bfd_elf_string_from_elf_section
10193 (input_bfd, symtab_hdr->sh_link, sym->st_name),
10194 input_bfd, input_section,
10195 rel->r_offset, TRUE))
10196 return FALSE;
10197 }
10198
10199 if (globals->use_rel)
10200 {
10201 relocation = (sec->output_section->vma
10202 + sec->output_offset
10203 + sym->st_value);
10204 if (!info->relocatable
10205 && (sec->flags & SEC_MERGE)
10206 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10207 {
10208 asection *msec;
10209 bfd_vma addend, value;
10210
10211 switch (r_type)
10212 {
10213 case R_ARM_MOVW_ABS_NC:
10214 case R_ARM_MOVT_ABS:
10215 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10216 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
10217 addend = (addend ^ 0x8000) - 0x8000;
10218 break;
10219
10220 case R_ARM_THM_MOVW_ABS_NC:
10221 case R_ARM_THM_MOVT_ABS:
10222 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
10223 << 16;
10224 value |= bfd_get_16 (input_bfd,
10225 contents + rel->r_offset + 2);
10226 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
10227 | ((value & 0x04000000) >> 15);
10228 addend = (addend ^ 0x8000) - 0x8000;
10229 break;
10230
10231 default:
10232 if (howto->rightshift
10233 || (howto->src_mask & (howto->src_mask + 1)))
10234 {
10235 (*_bfd_error_handler)
10236 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
10237 input_bfd, input_section,
10238 (long) rel->r_offset, howto->name);
10239 return FALSE;
10240 }
10241
10242 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
10243
10244 /* Get the (signed) value from the instruction. */
10245 addend = value & howto->src_mask;
10246 if (addend & ((howto->src_mask + 1) >> 1))
10247 {
10248 bfd_signed_vma mask;
10249
10250 mask = -1;
10251 mask &= ~ howto->src_mask;
10252 addend |= mask;
10253 }
10254 break;
10255 }
10256
10257 msec = sec;
10258 addend =
10259 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
10260 - relocation;
10261 addend += msec->output_section->vma + msec->output_offset;
10262
10263 /* Cases here must match those in the preceding
10264 switch statement. */
10265 switch (r_type)
10266 {
10267 case R_ARM_MOVW_ABS_NC:
10268 case R_ARM_MOVT_ABS:
10269 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
10270 | (addend & 0xfff);
10271 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10272 break;
10273
10274 case R_ARM_THM_MOVW_ABS_NC:
10275 case R_ARM_THM_MOVT_ABS:
10276 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
10277 | (addend & 0xff) | ((addend & 0x0800) << 15);
10278 bfd_put_16 (input_bfd, value >> 16,
10279 contents + rel->r_offset);
10280 bfd_put_16 (input_bfd, value,
10281 contents + rel->r_offset + 2);
10282 break;
10283
10284 default:
10285 value = (value & ~ howto->dst_mask)
10286 | (addend & howto->dst_mask);
10287 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
10288 break;
10289 }
10290 }
10291 }
10292 else
10293 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10294 }
10295 else
10296 {
10297 bfd_boolean warned;
10298
10299 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
10300 r_symndx, symtab_hdr, sym_hashes,
10301 h, sec, relocation,
10302 unresolved_reloc, warned);
10303
10304 sym_type = h->type;
10305 }
10306
10307 if (sec != NULL && elf_discarded_section (sec))
10308 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10309 rel, relend, howto, contents);
10310
10311 if (info->relocatable)
10312 {
10313 /* This is a relocatable link. We don't have to change
10314 anything, unless the reloc is against a section symbol,
10315 in which case we have to adjust according to where the
10316 section symbol winds up in the output section. */
10317 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10318 {
10319 if (globals->use_rel)
10320 arm_add_to_rel (input_bfd, contents + rel->r_offset,
10321 howto, (bfd_signed_vma) sec->output_offset);
10322 else
10323 rel->r_addend += sec->output_offset;
10324 }
10325 continue;
10326 }
10327
10328 if (h != NULL)
10329 name = h->root.root.string;
10330 else
10331 {
10332 name = (bfd_elf_string_from_elf_section
10333 (input_bfd, symtab_hdr->sh_link, sym->st_name));
10334 if (name == NULL || *name == '\0')
10335 name = bfd_section_name (input_bfd, sec);
10336 }
10337
10338 if (r_symndx != STN_UNDEF
10339 && r_type != R_ARM_NONE
10340 && (h == NULL
10341 || h->root.type == bfd_link_hash_defined
10342 || h->root.type == bfd_link_hash_defweak)
10343 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
10344 {
10345 (*_bfd_error_handler)
10346 ((sym_type == STT_TLS
10347 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
10348 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
10349 input_bfd,
10350 input_section,
10351 (long) rel->r_offset,
10352 howto->name,
10353 name);
10354 }
10355
10356 /* We call elf32_arm_final_link_relocate unless we're completely
10357 done, i.e., the relaxation produced the final output we want,
10358 and we won't let anybody mess with it. Also, we have to do
10359 addend adjustments in case of a R_ARM_TLS_GOTDESC relocation
10360 both in relaxed and non-relaxed cases */
10361 if ((elf32_arm_tls_transition (info, r_type, h) != (unsigned)r_type)
10362 || (IS_ARM_TLS_GNU_RELOC (r_type)
10363 && !((h ? elf32_arm_hash_entry (h)->tls_type :
10364 elf32_arm_local_got_tls_type (input_bfd)[r_symndx])
10365 & GOT_TLS_GDESC)))
10366 {
10367 r = elf32_arm_tls_relax (globals, input_bfd, input_section,
10368 contents, rel, h == NULL);
10369 /* This may have been marked unresolved because it came from
10370 a shared library. But we've just dealt with that. */
10371 unresolved_reloc = 0;
10372 }
10373 else
10374 r = bfd_reloc_continue;
10375
10376 if (r == bfd_reloc_continue)
10377 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
10378 input_section, contents, rel,
10379 relocation, info, sec, name, sym_type,
10380 (h ? h->target_internal
10381 : ARM_SYM_BRANCH_TYPE (sym)), h,
10382 &unresolved_reloc, &error_message);
10383
10384 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
10385 because such sections are not SEC_ALLOC and thus ld.so will
10386 not process them. */
10387 if (unresolved_reloc
10388 && !((input_section->flags & SEC_DEBUGGING) != 0
10389 && h->def_dynamic))
10390 {
10391 (*_bfd_error_handler)
10392 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
10393 input_bfd,
10394 input_section,
10395 (long) rel->r_offset,
10396 howto->name,
10397 h->root.root.string);
10398 return FALSE;
10399 }
10400
10401 if (r != bfd_reloc_ok)
10402 {
10403 switch (r)
10404 {
10405 case bfd_reloc_overflow:
10406 /* If the overflowing reloc was to an undefined symbol,
10407 we have already printed one error message and there
10408 is no point complaining again. */
10409 if ((! h ||
10410 h->root.type != bfd_link_hash_undefined)
10411 && (!((*info->callbacks->reloc_overflow)
10412 (info, (h ? &h->root : NULL), name, howto->name,
10413 (bfd_vma) 0, input_bfd, input_section,
10414 rel->r_offset))))
10415 return FALSE;
10416 break;
10417
10418 case bfd_reloc_undefined:
10419 if (!((*info->callbacks->undefined_symbol)
10420 (info, name, input_bfd, input_section,
10421 rel->r_offset, TRUE)))
10422 return FALSE;
10423 break;
10424
10425 case bfd_reloc_outofrange:
10426 error_message = _("out of range");
10427 goto common_error;
10428
10429 case bfd_reloc_notsupported:
10430 error_message = _("unsupported relocation");
10431 goto common_error;
10432
10433 case bfd_reloc_dangerous:
10434 /* error_message should already be set. */
10435 goto common_error;
10436
10437 default:
10438 error_message = _("unknown error");
10439 /* Fall through. */
10440
10441 common_error:
10442 BFD_ASSERT (error_message != NULL);
10443 if (!((*info->callbacks->reloc_dangerous)
10444 (info, error_message, input_bfd, input_section,
10445 rel->r_offset)))
10446 return FALSE;
10447 break;
10448 }
10449 }
10450 }
10451
10452 return TRUE;
10453 }
10454
10455 /* Add a new unwind edit to the list described by HEAD, TAIL. If TINDEX is zero,
10456 adds the edit to the start of the list. (The list must be built in order of
10457 ascending TINDEX: the function's callers are primarily responsible for
10458 maintaining that condition). */
10459
10460 static void
10461 add_unwind_table_edit (arm_unwind_table_edit **head,
10462 arm_unwind_table_edit **tail,
10463 arm_unwind_edit_type type,
10464 asection *linked_section,
10465 unsigned int tindex)
10466 {
10467 arm_unwind_table_edit *new_edit = (arm_unwind_table_edit *)
10468 xmalloc (sizeof (arm_unwind_table_edit));
10469
10470 new_edit->type = type;
10471 new_edit->linked_section = linked_section;
10472 new_edit->index = tindex;
10473
10474 if (tindex > 0)
10475 {
10476 new_edit->next = NULL;
10477
10478 if (*tail)
10479 (*tail)->next = new_edit;
10480
10481 (*tail) = new_edit;
10482
10483 if (!*head)
10484 (*head) = new_edit;
10485 }
10486 else
10487 {
10488 new_edit->next = *head;
10489
10490 if (!*tail)
10491 *tail = new_edit;
10492
10493 *head = new_edit;
10494 }
10495 }
10496
10497 static _arm_elf_section_data *get_arm_elf_section_data (asection *);
10498
10499 /* Increase the size of EXIDX_SEC by ADJUST bytes. ADJUST mau be negative. */
10500 static void
10501 adjust_exidx_size(asection *exidx_sec, int adjust)
10502 {
10503 asection *out_sec;
10504
10505 if (!exidx_sec->rawsize)
10506 exidx_sec->rawsize = exidx_sec->size;
10507
10508 bfd_set_section_size (exidx_sec->owner, exidx_sec, exidx_sec->size + adjust);
10509 out_sec = exidx_sec->output_section;
10510 /* Adjust size of output section. */
10511 bfd_set_section_size (out_sec->owner, out_sec, out_sec->size +adjust);
10512 }
10513
10514 /* Insert an EXIDX_CANTUNWIND marker at the end of a section. */
10515 static void
10516 insert_cantunwind_after(asection *text_sec, asection *exidx_sec)
10517 {
10518 struct _arm_elf_section_data *exidx_arm_data;
10519
10520 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10521 add_unwind_table_edit (
10522 &exidx_arm_data->u.exidx.unwind_edit_list,
10523 &exidx_arm_data->u.exidx.unwind_edit_tail,
10524 INSERT_EXIDX_CANTUNWIND_AT_END, text_sec, UINT_MAX);
10525
10526 adjust_exidx_size(exidx_sec, 8);
10527 }
10528
10529 /* Scan .ARM.exidx tables, and create a list describing edits which should be
10530 made to those tables, such that:
10531
10532 1. Regions without unwind data are marked with EXIDX_CANTUNWIND entries.
10533 2. Duplicate entries are merged together (EXIDX_CANTUNWIND, or unwind
10534 codes which have been inlined into the index).
10535
10536 If MERGE_EXIDX_ENTRIES is false, duplicate entries are not merged.
10537
10538 The edits are applied when the tables are written
10539 (in elf32_arm_write_section).
10540 */
10541
10542 bfd_boolean
10543 elf32_arm_fix_exidx_coverage (asection **text_section_order,
10544 unsigned int num_text_sections,
10545 struct bfd_link_info *info,
10546 bfd_boolean merge_exidx_entries)
10547 {
10548 bfd *inp;
10549 unsigned int last_second_word = 0, i;
10550 asection *last_exidx_sec = NULL;
10551 asection *last_text_sec = NULL;
10552 int last_unwind_type = -1;
10553
10554 /* Walk over all EXIDX sections, and create backlinks from the corrsponding
10555 text sections. */
10556 for (inp = info->input_bfds; inp != NULL; inp = inp->link_next)
10557 {
10558 asection *sec;
10559
10560 for (sec = inp->sections; sec != NULL; sec = sec->next)
10561 {
10562 struct bfd_elf_section_data *elf_sec = elf_section_data (sec);
10563 Elf_Internal_Shdr *hdr = &elf_sec->this_hdr;
10564
10565 if (!hdr || hdr->sh_type != SHT_ARM_EXIDX)
10566 continue;
10567
10568 if (elf_sec->linked_to)
10569 {
10570 Elf_Internal_Shdr *linked_hdr
10571 = &elf_section_data (elf_sec->linked_to)->this_hdr;
10572 struct _arm_elf_section_data *linked_sec_arm_data
10573 = get_arm_elf_section_data (linked_hdr->bfd_section);
10574
10575 if (linked_sec_arm_data == NULL)
10576 continue;
10577
10578 /* Link this .ARM.exidx section back from the text section it
10579 describes. */
10580 linked_sec_arm_data->u.text.arm_exidx_sec = sec;
10581 }
10582 }
10583 }
10584
10585 /* Walk all text sections in order of increasing VMA. Eilminate duplicate
10586 index table entries (EXIDX_CANTUNWIND and inlined unwind opcodes),
10587 and add EXIDX_CANTUNWIND entries for sections with no unwind table data. */
10588
10589 for (i = 0; i < num_text_sections; i++)
10590 {
10591 asection *sec = text_section_order[i];
10592 asection *exidx_sec;
10593 struct _arm_elf_section_data *arm_data = get_arm_elf_section_data (sec);
10594 struct _arm_elf_section_data *exidx_arm_data;
10595 bfd_byte *contents = NULL;
10596 int deleted_exidx_bytes = 0;
10597 bfd_vma j;
10598 arm_unwind_table_edit *unwind_edit_head = NULL;
10599 arm_unwind_table_edit *unwind_edit_tail = NULL;
10600 Elf_Internal_Shdr *hdr;
10601 bfd *ibfd;
10602
10603 if (arm_data == NULL)
10604 continue;
10605
10606 exidx_sec = arm_data->u.text.arm_exidx_sec;
10607 if (exidx_sec == NULL)
10608 {
10609 /* Section has no unwind data. */
10610 if (last_unwind_type == 0 || !last_exidx_sec)
10611 continue;
10612
10613 /* Ignore zero sized sections. */
10614 if (sec->size == 0)
10615 continue;
10616
10617 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10618 last_unwind_type = 0;
10619 continue;
10620 }
10621
10622 /* Skip /DISCARD/ sections. */
10623 if (bfd_is_abs_section (exidx_sec->output_section))
10624 continue;
10625
10626 hdr = &elf_section_data (exidx_sec)->this_hdr;
10627 if (hdr->sh_type != SHT_ARM_EXIDX)
10628 continue;
10629
10630 exidx_arm_data = get_arm_elf_section_data (exidx_sec);
10631 if (exidx_arm_data == NULL)
10632 continue;
10633
10634 ibfd = exidx_sec->owner;
10635
10636 if (hdr->contents != NULL)
10637 contents = hdr->contents;
10638 else if (! bfd_malloc_and_get_section (ibfd, exidx_sec, &contents))
10639 /* An error? */
10640 continue;
10641
10642 for (j = 0; j < hdr->sh_size; j += 8)
10643 {
10644 unsigned int second_word = bfd_get_32 (ibfd, contents + j + 4);
10645 int unwind_type;
10646 int elide = 0;
10647
10648 /* An EXIDX_CANTUNWIND entry. */
10649 if (second_word == 1)
10650 {
10651 if (last_unwind_type == 0)
10652 elide = 1;
10653 unwind_type = 0;
10654 }
10655 /* Inlined unwinding data. Merge if equal to previous. */
10656 else if ((second_word & 0x80000000) != 0)
10657 {
10658 if (merge_exidx_entries
10659 && last_second_word == second_word && last_unwind_type == 1)
10660 elide = 1;
10661 unwind_type = 1;
10662 last_second_word = second_word;
10663 }
10664 /* Normal table entry. In theory we could merge these too,
10665 but duplicate entries are likely to be much less common. */
10666 else
10667 unwind_type = 2;
10668
10669 if (elide)
10670 {
10671 add_unwind_table_edit (&unwind_edit_head, &unwind_edit_tail,
10672 DELETE_EXIDX_ENTRY, NULL, j / 8);
10673
10674 deleted_exidx_bytes += 8;
10675 }
10676
10677 last_unwind_type = unwind_type;
10678 }
10679
10680 /* Free contents if we allocated it ourselves. */
10681 if (contents != hdr->contents)
10682 free (contents);
10683
10684 /* Record edits to be applied later (in elf32_arm_write_section). */
10685 exidx_arm_data->u.exidx.unwind_edit_list = unwind_edit_head;
10686 exidx_arm_data->u.exidx.unwind_edit_tail = unwind_edit_tail;
10687
10688 if (deleted_exidx_bytes > 0)
10689 adjust_exidx_size(exidx_sec, -deleted_exidx_bytes);
10690
10691 last_exidx_sec = exidx_sec;
10692 last_text_sec = sec;
10693 }
10694
10695 /* Add terminating CANTUNWIND entry. */
10696 if (last_exidx_sec && last_unwind_type != 0)
10697 insert_cantunwind_after(last_text_sec, last_exidx_sec);
10698
10699 return TRUE;
10700 }
10701
10702 static bfd_boolean
10703 elf32_arm_output_glue_section (struct bfd_link_info *info, bfd *obfd,
10704 bfd *ibfd, const char *name)
10705 {
10706 asection *sec, *osec;
10707
10708 sec = bfd_get_section_by_name (ibfd, name);
10709 if (sec == NULL || (sec->flags & SEC_EXCLUDE) != 0)
10710 return TRUE;
10711
10712 osec = sec->output_section;
10713 if (elf32_arm_write_section (obfd, info, sec, sec->contents))
10714 return TRUE;
10715
10716 if (! bfd_set_section_contents (obfd, osec, sec->contents,
10717 sec->output_offset, sec->size))
10718 return FALSE;
10719
10720 return TRUE;
10721 }
10722
10723 static bfd_boolean
10724 elf32_arm_final_link (bfd *abfd, struct bfd_link_info *info)
10725 {
10726 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (info);
10727 asection *sec, *osec;
10728
10729 if (globals == NULL)
10730 return FALSE;
10731
10732 /* Invoke the regular ELF backend linker to do all the work. */
10733 if (!bfd_elf_final_link (abfd, info))
10734 return FALSE;
10735
10736 /* Process stub sections (eg BE8 encoding, ...). */
10737 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
10738 int i;
10739 for (i=0; i<htab->top_id; i++)
10740 {
10741 sec = htab->stub_group[i].stub_sec;
10742 /* Only process it once, in its link_sec slot. */
10743 if (sec && i == htab->stub_group[i].link_sec->id)
10744 {
10745 osec = sec->output_section;
10746 elf32_arm_write_section (abfd, info, sec, sec->contents);
10747 if (! bfd_set_section_contents (abfd, osec, sec->contents,
10748 sec->output_offset, sec->size))
10749 return FALSE;
10750 }
10751 }
10752
10753 /* Write out any glue sections now that we have created all the
10754 stubs. */
10755 if (globals->bfd_of_glue_owner != NULL)
10756 {
10757 if (! elf32_arm_output_glue_section (info, abfd,
10758 globals->bfd_of_glue_owner,
10759 ARM2THUMB_GLUE_SECTION_NAME))
10760 return FALSE;
10761
10762 if (! elf32_arm_output_glue_section (info, abfd,
10763 globals->bfd_of_glue_owner,
10764 THUMB2ARM_GLUE_SECTION_NAME))
10765 return FALSE;
10766
10767 if (! elf32_arm_output_glue_section (info, abfd,
10768 globals->bfd_of_glue_owner,
10769 VFP11_ERRATUM_VENEER_SECTION_NAME))
10770 return FALSE;
10771
10772 if (! elf32_arm_output_glue_section (info, abfd,
10773 globals->bfd_of_glue_owner,
10774 ARM_BX_GLUE_SECTION_NAME))
10775 return FALSE;
10776 }
10777
10778 return TRUE;
10779 }
10780
10781 /* Set the right machine number. */
10782
10783 static bfd_boolean
10784 elf32_arm_object_p (bfd *abfd)
10785 {
10786 unsigned int mach;
10787
10788 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
10789
10790 if (mach != bfd_mach_arm_unknown)
10791 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
10792
10793 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
10794 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
10795
10796 else
10797 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
10798
10799 return TRUE;
10800 }
10801
10802 /* Function to keep ARM specific flags in the ELF header. */
10803
10804 static bfd_boolean
10805 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
10806 {
10807 if (elf_flags_init (abfd)
10808 && elf_elfheader (abfd)->e_flags != flags)
10809 {
10810 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
10811 {
10812 if (flags & EF_ARM_INTERWORK)
10813 (*_bfd_error_handler)
10814 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
10815 abfd);
10816 else
10817 _bfd_error_handler
10818 (_("Warning: Clearing the interworking flag of %B due to outside request"),
10819 abfd);
10820 }
10821 }
10822 else
10823 {
10824 elf_elfheader (abfd)->e_flags = flags;
10825 elf_flags_init (abfd) = TRUE;
10826 }
10827
10828 return TRUE;
10829 }
10830
10831 /* Copy backend specific data from one object module to another. */
10832
10833 static bfd_boolean
10834 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
10835 {
10836 flagword in_flags;
10837 flagword out_flags;
10838
10839 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
10840 return TRUE;
10841
10842 in_flags = elf_elfheader (ibfd)->e_flags;
10843 out_flags = elf_elfheader (obfd)->e_flags;
10844
10845 if (elf_flags_init (obfd)
10846 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
10847 && in_flags != out_flags)
10848 {
10849 /* Cannot mix APCS26 and APCS32 code. */
10850 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
10851 return FALSE;
10852
10853 /* Cannot mix float APCS and non-float APCS code. */
10854 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
10855 return FALSE;
10856
10857 /* If the src and dest have different interworking flags
10858 then turn off the interworking bit. */
10859 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
10860 {
10861 if (out_flags & EF_ARM_INTERWORK)
10862 _bfd_error_handler
10863 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
10864 obfd, ibfd);
10865
10866 in_flags &= ~EF_ARM_INTERWORK;
10867 }
10868
10869 /* Likewise for PIC, though don't warn for this case. */
10870 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
10871 in_flags &= ~EF_ARM_PIC;
10872 }
10873
10874 elf_elfheader (obfd)->e_flags = in_flags;
10875 elf_flags_init (obfd) = TRUE;
10876
10877 /* Also copy the EI_OSABI field. */
10878 elf_elfheader (obfd)->e_ident[EI_OSABI] =
10879 elf_elfheader (ibfd)->e_ident[EI_OSABI];
10880
10881 /* Copy object attributes. */
10882 _bfd_elf_copy_obj_attributes (ibfd, obfd);
10883
10884 return TRUE;
10885 }
10886
10887 /* Values for Tag_ABI_PCS_R9_use. */
10888 enum
10889 {
10890 AEABI_R9_V6,
10891 AEABI_R9_SB,
10892 AEABI_R9_TLS,
10893 AEABI_R9_unused
10894 };
10895
10896 /* Values for Tag_ABI_PCS_RW_data. */
10897 enum
10898 {
10899 AEABI_PCS_RW_data_absolute,
10900 AEABI_PCS_RW_data_PCrel,
10901 AEABI_PCS_RW_data_SBrel,
10902 AEABI_PCS_RW_data_unused
10903 };
10904
10905 /* Values for Tag_ABI_enum_size. */
10906 enum
10907 {
10908 AEABI_enum_unused,
10909 AEABI_enum_short,
10910 AEABI_enum_wide,
10911 AEABI_enum_forced_wide
10912 };
10913
10914 /* Determine whether an object attribute tag takes an integer, a
10915 string or both. */
10916
10917 static int
10918 elf32_arm_obj_attrs_arg_type (int tag)
10919 {
10920 if (tag == Tag_compatibility)
10921 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
10922 else if (tag == Tag_nodefaults)
10923 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
10924 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
10925 return ATTR_TYPE_FLAG_STR_VAL;
10926 else if (tag < 32)
10927 return ATTR_TYPE_FLAG_INT_VAL;
10928 else
10929 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
10930 }
10931
10932 /* The ABI defines that Tag_conformance should be emitted first, and that
10933 Tag_nodefaults should be second (if either is defined). This sets those
10934 two positions, and bumps up the position of all the remaining tags to
10935 compensate. */
10936 static int
10937 elf32_arm_obj_attrs_order (int num)
10938 {
10939 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE)
10940 return Tag_conformance;
10941 if (num == LEAST_KNOWN_OBJ_ATTRIBUTE + 1)
10942 return Tag_nodefaults;
10943 if ((num - 2) < Tag_nodefaults)
10944 return num - 2;
10945 if ((num - 1) < Tag_conformance)
10946 return num - 1;
10947 return num;
10948 }
10949
10950 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
10951 static bfd_boolean
10952 elf32_arm_obj_attrs_handle_unknown (bfd *abfd, int tag)
10953 {
10954 if ((tag & 127) < 64)
10955 {
10956 _bfd_error_handler
10957 (_("%B: Unknown mandatory EABI object attribute %d"),
10958 abfd, tag);
10959 bfd_set_error (bfd_error_bad_value);
10960 return FALSE;
10961 }
10962 else
10963 {
10964 _bfd_error_handler
10965 (_("Warning: %B: Unknown EABI object attribute %d"),
10966 abfd, tag);
10967 return TRUE;
10968 }
10969 }
10970
10971 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
10972 Returns -1 if no architecture could be read. */
10973
10974 static int
10975 get_secondary_compatible_arch (bfd *abfd)
10976 {
10977 obj_attribute *attr =
10978 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
10979
10980 /* Note: the tag and its argument below are uleb128 values, though
10981 currently-defined values fit in one byte for each. */
10982 if (attr->s
10983 && attr->s[0] == Tag_CPU_arch
10984 && (attr->s[1] & 128) != 128
10985 && attr->s[2] == 0)
10986 return attr->s[1];
10987
10988 /* This tag is "safely ignorable", so don't complain if it looks funny. */
10989 return -1;
10990 }
10991
10992 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
10993 The tag is removed if ARCH is -1. */
10994
10995 static void
10996 set_secondary_compatible_arch (bfd *abfd, int arch)
10997 {
10998 obj_attribute *attr =
10999 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
11000
11001 if (arch == -1)
11002 {
11003 attr->s = NULL;
11004 return;
11005 }
11006
11007 /* Note: the tag and its argument below are uleb128 values, though
11008 currently-defined values fit in one byte for each. */
11009 if (!attr->s)
11010 attr->s = (char *) bfd_alloc (abfd, 3);
11011 attr->s[0] = Tag_CPU_arch;
11012 attr->s[1] = arch;
11013 attr->s[2] = '\0';
11014 }
11015
11016 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
11017 into account. */
11018
11019 static int
11020 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
11021 int newtag, int secondary_compat)
11022 {
11023 #define T(X) TAG_CPU_ARCH_##X
11024 int tagl, tagh, result;
11025 const int v6t2[] =
11026 {
11027 T(V6T2), /* PRE_V4. */
11028 T(V6T2), /* V4. */
11029 T(V6T2), /* V4T. */
11030 T(V6T2), /* V5T. */
11031 T(V6T2), /* V5TE. */
11032 T(V6T2), /* V5TEJ. */
11033 T(V6T2), /* V6. */
11034 T(V7), /* V6KZ. */
11035 T(V6T2) /* V6T2. */
11036 };
11037 const int v6k[] =
11038 {
11039 T(V6K), /* PRE_V4. */
11040 T(V6K), /* V4. */
11041 T(V6K), /* V4T. */
11042 T(V6K), /* V5T. */
11043 T(V6K), /* V5TE. */
11044 T(V6K), /* V5TEJ. */
11045 T(V6K), /* V6. */
11046 T(V6KZ), /* V6KZ. */
11047 T(V7), /* V6T2. */
11048 T(V6K) /* V6K. */
11049 };
11050 const int v7[] =
11051 {
11052 T(V7), /* PRE_V4. */
11053 T(V7), /* V4. */
11054 T(V7), /* V4T. */
11055 T(V7), /* V5T. */
11056 T(V7), /* V5TE. */
11057 T(V7), /* V5TEJ. */
11058 T(V7), /* V6. */
11059 T(V7), /* V6KZ. */
11060 T(V7), /* V6T2. */
11061 T(V7), /* V6K. */
11062 T(V7) /* V7. */
11063 };
11064 const int v6_m[] =
11065 {
11066 -1, /* PRE_V4. */
11067 -1, /* V4. */
11068 T(V6K), /* V4T. */
11069 T(V6K), /* V5T. */
11070 T(V6K), /* V5TE. */
11071 T(V6K), /* V5TEJ. */
11072 T(V6K), /* V6. */
11073 T(V6KZ), /* V6KZ. */
11074 T(V7), /* V6T2. */
11075 T(V6K), /* V6K. */
11076 T(V7), /* V7. */
11077 T(V6_M) /* V6_M. */
11078 };
11079 const int v6s_m[] =
11080 {
11081 -1, /* PRE_V4. */
11082 -1, /* V4. */
11083 T(V6K), /* V4T. */
11084 T(V6K), /* V5T. */
11085 T(V6K), /* V5TE. */
11086 T(V6K), /* V5TEJ. */
11087 T(V6K), /* V6. */
11088 T(V6KZ), /* V6KZ. */
11089 T(V7), /* V6T2. */
11090 T(V6K), /* V6K. */
11091 T(V7), /* V7. */
11092 T(V6S_M), /* V6_M. */
11093 T(V6S_M) /* V6S_M. */
11094 };
11095 const int v7e_m[] =
11096 {
11097 -1, /* PRE_V4. */
11098 -1, /* V4. */
11099 T(V7E_M), /* V4T. */
11100 T(V7E_M), /* V5T. */
11101 T(V7E_M), /* V5TE. */
11102 T(V7E_M), /* V5TEJ. */
11103 T(V7E_M), /* V6. */
11104 T(V7E_M), /* V6KZ. */
11105 T(V7E_M), /* V6T2. */
11106 T(V7E_M), /* V6K. */
11107 T(V7E_M), /* V7. */
11108 T(V7E_M), /* V6_M. */
11109 T(V7E_M), /* V6S_M. */
11110 T(V7E_M) /* V7E_M. */
11111 };
11112 const int v4t_plus_v6_m[] =
11113 {
11114 -1, /* PRE_V4. */
11115 -1, /* V4. */
11116 T(V4T), /* V4T. */
11117 T(V5T), /* V5T. */
11118 T(V5TE), /* V5TE. */
11119 T(V5TEJ), /* V5TEJ. */
11120 T(V6), /* V6. */
11121 T(V6KZ), /* V6KZ. */
11122 T(V6T2), /* V6T2. */
11123 T(V6K), /* V6K. */
11124 T(V7), /* V7. */
11125 T(V6_M), /* V6_M. */
11126 T(V6S_M), /* V6S_M. */
11127 T(V7E_M), /* V7E_M. */
11128 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
11129 };
11130 const int *comb[] =
11131 {
11132 v6t2,
11133 v6k,
11134 v7,
11135 v6_m,
11136 v6s_m,
11137 v7e_m,
11138 /* Pseudo-architecture. */
11139 v4t_plus_v6_m
11140 };
11141
11142 /* Check we've not got a higher architecture than we know about. */
11143
11144 if (oldtag > MAX_TAG_CPU_ARCH || newtag > MAX_TAG_CPU_ARCH)
11145 {
11146 _bfd_error_handler (_("error: %B: Unknown CPU architecture"), ibfd);
11147 return -1;
11148 }
11149
11150 /* Override old tag if we have a Tag_also_compatible_with on the output. */
11151
11152 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
11153 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
11154 oldtag = T(V4T_PLUS_V6_M);
11155
11156 /* And override the new tag if we have a Tag_also_compatible_with on the
11157 input. */
11158
11159 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
11160 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
11161 newtag = T(V4T_PLUS_V6_M);
11162
11163 tagl = (oldtag < newtag) ? oldtag : newtag;
11164 result = tagh = (oldtag > newtag) ? oldtag : newtag;
11165
11166 /* Architectures before V6KZ add features monotonically. */
11167 if (tagh <= TAG_CPU_ARCH_V6KZ)
11168 return result;
11169
11170 result = comb[tagh - T(V6T2)][tagl];
11171
11172 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
11173 as the canonical version. */
11174 if (result == T(V4T_PLUS_V6_M))
11175 {
11176 result = T(V4T);
11177 *secondary_compat_out = T(V6_M);
11178 }
11179 else
11180 *secondary_compat_out = -1;
11181
11182 if (result == -1)
11183 {
11184 _bfd_error_handler (_("error: %B: Conflicting CPU architectures %d/%d"),
11185 ibfd, oldtag, newtag);
11186 return -1;
11187 }
11188
11189 return result;
11190 #undef T
11191 }
11192
11193 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
11194 are conflicting attributes. */
11195
11196 static bfd_boolean
11197 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
11198 {
11199 obj_attribute *in_attr;
11200 obj_attribute *out_attr;
11201 /* Some tags have 0 = don't care, 1 = strong requirement,
11202 2 = weak requirement. */
11203 static const int order_021[3] = {0, 2, 1};
11204 int i;
11205 bfd_boolean result = TRUE;
11206
11207 /* Skip the linker stubs file. This preserves previous behavior
11208 of accepting unknown attributes in the first input file - but
11209 is that a bug? */
11210 if (ibfd->flags & BFD_LINKER_CREATED)
11211 return TRUE;
11212
11213 if (!elf_known_obj_attributes_proc (obfd)[0].i)
11214 {
11215 /* This is the first object. Copy the attributes. */
11216 _bfd_elf_copy_obj_attributes (ibfd, obfd);
11217
11218 out_attr = elf_known_obj_attributes_proc (obfd);
11219
11220 /* Use the Tag_null value to indicate the attributes have been
11221 initialized. */
11222 out_attr[0].i = 1;
11223
11224 /* We do not output objects with Tag_MPextension_use_legacy - we move
11225 the attribute's value to Tag_MPextension_use. */
11226 if (out_attr[Tag_MPextension_use_legacy].i != 0)
11227 {
11228 if (out_attr[Tag_MPextension_use].i != 0
11229 && out_attr[Tag_MPextension_use_legacy].i
11230 != out_attr[Tag_MPextension_use].i)
11231 {
11232 _bfd_error_handler
11233 (_("Error: %B has both the current and legacy "
11234 "Tag_MPextension_use attributes"), ibfd);
11235 result = FALSE;
11236 }
11237
11238 out_attr[Tag_MPextension_use] =
11239 out_attr[Tag_MPextension_use_legacy];
11240 out_attr[Tag_MPextension_use_legacy].type = 0;
11241 out_attr[Tag_MPextension_use_legacy].i = 0;
11242 }
11243
11244 return result;
11245 }
11246
11247 in_attr = elf_known_obj_attributes_proc (ibfd);
11248 out_attr = elf_known_obj_attributes_proc (obfd);
11249 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
11250 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
11251 {
11252 /* Ignore mismatches if the object doesn't use floating point. */
11253 if (out_attr[Tag_ABI_FP_number_model].i == 0)
11254 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
11255 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
11256 {
11257 _bfd_error_handler
11258 (_("error: %B uses VFP register arguments, %B does not"),
11259 in_attr[Tag_ABI_VFP_args].i ? ibfd : obfd,
11260 in_attr[Tag_ABI_VFP_args].i ? obfd : ibfd);
11261 result = FALSE;
11262 }
11263 }
11264
11265 for (i = LEAST_KNOWN_OBJ_ATTRIBUTE; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
11266 {
11267 /* Merge this attribute with existing attributes. */
11268 switch (i)
11269 {
11270 case Tag_CPU_raw_name:
11271 case Tag_CPU_name:
11272 /* These are merged after Tag_CPU_arch. */
11273 break;
11274
11275 case Tag_ABI_optimization_goals:
11276 case Tag_ABI_FP_optimization_goals:
11277 /* Use the first value seen. */
11278 break;
11279
11280 case Tag_CPU_arch:
11281 {
11282 int secondary_compat = -1, secondary_compat_out = -1;
11283 unsigned int saved_out_attr = out_attr[i].i;
11284 static const char *name_table[] = {
11285 /* These aren't real CPU names, but we can't guess
11286 that from the architecture version alone. */
11287 "Pre v4",
11288 "ARM v4",
11289 "ARM v4T",
11290 "ARM v5T",
11291 "ARM v5TE",
11292 "ARM v5TEJ",
11293 "ARM v6",
11294 "ARM v6KZ",
11295 "ARM v6T2",
11296 "ARM v6K",
11297 "ARM v7",
11298 "ARM v6-M",
11299 "ARM v6S-M"
11300 };
11301
11302 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
11303 secondary_compat = get_secondary_compatible_arch (ibfd);
11304 secondary_compat_out = get_secondary_compatible_arch (obfd);
11305 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
11306 &secondary_compat_out,
11307 in_attr[i].i,
11308 secondary_compat);
11309 set_secondary_compatible_arch (obfd, secondary_compat_out);
11310
11311 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
11312 if (out_attr[i].i == saved_out_attr)
11313 ; /* Leave the names alone. */
11314 else if (out_attr[i].i == in_attr[i].i)
11315 {
11316 /* The output architecture has been changed to match the
11317 input architecture. Use the input names. */
11318 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
11319 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
11320 : NULL;
11321 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
11322 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
11323 : NULL;
11324 }
11325 else
11326 {
11327 out_attr[Tag_CPU_name].s = NULL;
11328 out_attr[Tag_CPU_raw_name].s = NULL;
11329 }
11330
11331 /* If we still don't have a value for Tag_CPU_name,
11332 make one up now. Tag_CPU_raw_name remains blank. */
11333 if (out_attr[Tag_CPU_name].s == NULL
11334 && out_attr[i].i < ARRAY_SIZE (name_table))
11335 out_attr[Tag_CPU_name].s =
11336 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
11337 }
11338 break;
11339
11340 case Tag_ARM_ISA_use:
11341 case Tag_THUMB_ISA_use:
11342 case Tag_WMMX_arch:
11343 case Tag_Advanced_SIMD_arch:
11344 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
11345 case Tag_ABI_FP_rounding:
11346 case Tag_ABI_FP_exceptions:
11347 case Tag_ABI_FP_user_exceptions:
11348 case Tag_ABI_FP_number_model:
11349 case Tag_FP_HP_extension:
11350 case Tag_CPU_unaligned_access:
11351 case Tag_T2EE_use:
11352 case Tag_MPextension_use:
11353 /* Use the largest value specified. */
11354 if (in_attr[i].i > out_attr[i].i)
11355 out_attr[i].i = in_attr[i].i;
11356 break;
11357
11358 case Tag_ABI_align_preserved:
11359 case Tag_ABI_PCS_RO_data:
11360 /* Use the smallest value specified. */
11361 if (in_attr[i].i < out_attr[i].i)
11362 out_attr[i].i = in_attr[i].i;
11363 break;
11364
11365 case Tag_ABI_align_needed:
11366 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
11367 && (in_attr[Tag_ABI_align_preserved].i == 0
11368 || out_attr[Tag_ABI_align_preserved].i == 0))
11369 {
11370 /* This error message should be enabled once all non-conformant
11371 binaries in the toolchain have had the attributes set
11372 properly.
11373 _bfd_error_handler
11374 (_("error: %B: 8-byte data alignment conflicts with %B"),
11375 obfd, ibfd);
11376 result = FALSE; */
11377 }
11378 /* Fall through. */
11379 case Tag_ABI_FP_denormal:
11380 case Tag_ABI_PCS_GOT_use:
11381 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
11382 value if greater than 2 (for future-proofing). */
11383 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
11384 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
11385 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
11386 out_attr[i].i = in_attr[i].i;
11387 break;
11388
11389 case Tag_Virtualization_use:
11390 /* The virtualization tag effectively stores two bits of
11391 information: the intended use of TrustZone (in bit 0), and the
11392 intended use of Virtualization (in bit 1). */
11393 if (out_attr[i].i == 0)
11394 out_attr[i].i = in_attr[i].i;
11395 else if (in_attr[i].i != 0
11396 && in_attr[i].i != out_attr[i].i)
11397 {
11398 if (in_attr[i].i <= 3 && out_attr[i].i <= 3)
11399 out_attr[i].i = 3;
11400 else
11401 {
11402 _bfd_error_handler
11403 (_("error: %B: unable to merge virtualization attributes "
11404 "with %B"),
11405 obfd, ibfd);
11406 result = FALSE;
11407 }
11408 }
11409 break;
11410
11411 case Tag_CPU_arch_profile:
11412 if (out_attr[i].i != in_attr[i].i)
11413 {
11414 /* 0 will merge with anything.
11415 'A' and 'S' merge to 'A'.
11416 'R' and 'S' merge to 'R'.
11417 'M' and 'A|R|S' is an error. */
11418 if (out_attr[i].i == 0
11419 || (out_attr[i].i == 'S'
11420 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
11421 out_attr[i].i = in_attr[i].i;
11422 else if (in_attr[i].i == 0
11423 || (in_attr[i].i == 'S'
11424 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
11425 ; /* Do nothing. */
11426 else
11427 {
11428 _bfd_error_handler
11429 (_("error: %B: Conflicting architecture profiles %c/%c"),
11430 ibfd,
11431 in_attr[i].i ? in_attr[i].i : '0',
11432 out_attr[i].i ? out_attr[i].i : '0');
11433 result = FALSE;
11434 }
11435 }
11436 break;
11437 case Tag_FP_arch:
11438 {
11439 /* Tag_ABI_HardFP_use is handled along with Tag_FP_arch since
11440 the meaning of Tag_ABI_HardFP_use depends on Tag_FP_arch
11441 when it's 0. It might mean absence of FP hardware if
11442 Tag_FP_arch is zero, otherwise it is effectively SP + DP. */
11443
11444 static const struct
11445 {
11446 int ver;
11447 int regs;
11448 } vfp_versions[7] =
11449 {
11450 {0, 0},
11451 {1, 16},
11452 {2, 16},
11453 {3, 32},
11454 {3, 16},
11455 {4, 32},
11456 {4, 16}
11457 };
11458 int ver;
11459 int regs;
11460 int newval;
11461
11462 /* If the output has no requirement about FP hardware,
11463 follow the requirement of the input. */
11464 if (out_attr[i].i == 0)
11465 {
11466 BFD_ASSERT (out_attr[Tag_ABI_HardFP_use].i == 0);
11467 out_attr[i].i = in_attr[i].i;
11468 out_attr[Tag_ABI_HardFP_use].i
11469 = in_attr[Tag_ABI_HardFP_use].i;
11470 break;
11471 }
11472 /* If the input has no requirement about FP hardware, do
11473 nothing. */
11474 else if (in_attr[i].i == 0)
11475 {
11476 BFD_ASSERT (in_attr[Tag_ABI_HardFP_use].i == 0);
11477 break;
11478 }
11479
11480 /* Both the input and the output have nonzero Tag_FP_arch.
11481 So Tag_ABI_HardFP_use is (SP & DP) when it's zero. */
11482
11483 /* If both the input and the output have zero Tag_ABI_HardFP_use,
11484 do nothing. */
11485 if (in_attr[Tag_ABI_HardFP_use].i == 0
11486 && out_attr[Tag_ABI_HardFP_use].i == 0)
11487 ;
11488 /* If the input and the output have different Tag_ABI_HardFP_use,
11489 the combination of them is 3 (SP & DP). */
11490 else if (in_attr[Tag_ABI_HardFP_use].i
11491 != out_attr[Tag_ABI_HardFP_use].i)
11492 out_attr[Tag_ABI_HardFP_use].i = 3;
11493
11494 /* Now we can handle Tag_FP_arch. */
11495
11496 /* Values greater than 6 aren't defined, so just pick the
11497 biggest */
11498 if (in_attr[i].i > 6 && in_attr[i].i > out_attr[i].i)
11499 {
11500 out_attr[i] = in_attr[i];
11501 break;
11502 }
11503 /* The output uses the superset of input features
11504 (ISA version) and registers. */
11505 ver = vfp_versions[in_attr[i].i].ver;
11506 if (ver < vfp_versions[out_attr[i].i].ver)
11507 ver = vfp_versions[out_attr[i].i].ver;
11508 regs = vfp_versions[in_attr[i].i].regs;
11509 if (regs < vfp_versions[out_attr[i].i].regs)
11510 regs = vfp_versions[out_attr[i].i].regs;
11511 /* This assumes all possible supersets are also a valid
11512 options. */
11513 for (newval = 6; newval > 0; newval--)
11514 {
11515 if (regs == vfp_versions[newval].regs
11516 && ver == vfp_versions[newval].ver)
11517 break;
11518 }
11519 out_attr[i].i = newval;
11520 }
11521 break;
11522 case Tag_PCS_config:
11523 if (out_attr[i].i == 0)
11524 out_attr[i].i = in_attr[i].i;
11525 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
11526 {
11527 /* It's sometimes ok to mix different configs, so this is only
11528 a warning. */
11529 _bfd_error_handler
11530 (_("Warning: %B: Conflicting platform configuration"), ibfd);
11531 }
11532 break;
11533 case Tag_ABI_PCS_R9_use:
11534 if (in_attr[i].i != out_attr[i].i
11535 && out_attr[i].i != AEABI_R9_unused
11536 && in_attr[i].i != AEABI_R9_unused)
11537 {
11538 _bfd_error_handler
11539 (_("error: %B: Conflicting use of R9"), ibfd);
11540 result = FALSE;
11541 }
11542 if (out_attr[i].i == AEABI_R9_unused)
11543 out_attr[i].i = in_attr[i].i;
11544 break;
11545 case Tag_ABI_PCS_RW_data:
11546 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
11547 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
11548 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
11549 {
11550 _bfd_error_handler
11551 (_("error: %B: SB relative addressing conflicts with use of R9"),
11552 ibfd);
11553 result = FALSE;
11554 }
11555 /* Use the smallest value specified. */
11556 if (in_attr[i].i < out_attr[i].i)
11557 out_attr[i].i = in_attr[i].i;
11558 break;
11559 case Tag_ABI_PCS_wchar_t:
11560 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
11561 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
11562 {
11563 _bfd_error_handler
11564 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
11565 ibfd, in_attr[i].i, out_attr[i].i);
11566 }
11567 else if (in_attr[i].i && !out_attr[i].i)
11568 out_attr[i].i = in_attr[i].i;
11569 break;
11570 case Tag_ABI_enum_size:
11571 if (in_attr[i].i != AEABI_enum_unused)
11572 {
11573 if (out_attr[i].i == AEABI_enum_unused
11574 || out_attr[i].i == AEABI_enum_forced_wide)
11575 {
11576 /* The existing object is compatible with anything.
11577 Use whatever requirements the new object has. */
11578 out_attr[i].i = in_attr[i].i;
11579 }
11580 else if (in_attr[i].i != AEABI_enum_forced_wide
11581 && out_attr[i].i != in_attr[i].i
11582 && !elf_arm_tdata (obfd)->no_enum_size_warning)
11583 {
11584 static const char *aeabi_enum_names[] =
11585 { "", "variable-size", "32-bit", "" };
11586 const char *in_name =
11587 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11588 ? aeabi_enum_names[in_attr[i].i]
11589 : "<unknown>";
11590 const char *out_name =
11591 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
11592 ? aeabi_enum_names[out_attr[i].i]
11593 : "<unknown>";
11594 _bfd_error_handler
11595 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
11596 ibfd, in_name, out_name);
11597 }
11598 }
11599 break;
11600 case Tag_ABI_VFP_args:
11601 /* Aready done. */
11602 break;
11603 case Tag_ABI_WMMX_args:
11604 if (in_attr[i].i != out_attr[i].i)
11605 {
11606 _bfd_error_handler
11607 (_("error: %B uses iWMMXt register arguments, %B does not"),
11608 ibfd, obfd);
11609 result = FALSE;
11610 }
11611 break;
11612 case Tag_compatibility:
11613 /* Merged in target-independent code. */
11614 break;
11615 case Tag_ABI_HardFP_use:
11616 /* This is handled along with Tag_FP_arch. */
11617 break;
11618 case Tag_ABI_FP_16bit_format:
11619 if (in_attr[i].i != 0 && out_attr[i].i != 0)
11620 {
11621 if (in_attr[i].i != out_attr[i].i)
11622 {
11623 _bfd_error_handler
11624 (_("error: fp16 format mismatch between %B and %B"),
11625 ibfd, obfd);
11626 result = FALSE;
11627 }
11628 }
11629 if (in_attr[i].i != 0)
11630 out_attr[i].i = in_attr[i].i;
11631 break;
11632
11633 case Tag_DIV_use:
11634 /* This tag is set to zero if we can use UDIV and SDIV in Thumb
11635 mode on a v7-M or v7-R CPU; to one if we can not use UDIV or
11636 SDIV at all; and to two if we can use UDIV or SDIV on a v7-A
11637 CPU. We will merge as follows: If the input attribute's value
11638 is one then the output attribute's value remains unchanged. If
11639 the input attribute's value is zero or two then if the output
11640 attribute's value is one the output value is set to the input
11641 value, otherwise the output value must be the same as the
11642 inputs. */
11643 if (in_attr[i].i != 1 && out_attr[i].i != 1)
11644 {
11645 if (in_attr[i].i != out_attr[i].i)
11646 {
11647 _bfd_error_handler
11648 (_("DIV usage mismatch between %B and %B"),
11649 ibfd, obfd);
11650 result = FALSE;
11651 }
11652 }
11653
11654 if (in_attr[i].i != 1)
11655 out_attr[i].i = in_attr[i].i;
11656
11657 break;
11658
11659 case Tag_MPextension_use_legacy:
11660 /* We don't output objects with Tag_MPextension_use_legacy - we
11661 move the value to Tag_MPextension_use. */
11662 if (in_attr[i].i != 0 && in_attr[Tag_MPextension_use].i != 0)
11663 {
11664 if (in_attr[Tag_MPextension_use].i != in_attr[i].i)
11665 {
11666 _bfd_error_handler
11667 (_("%B has has both the current and legacy "
11668 "Tag_MPextension_use attributes"),
11669 ibfd);
11670 result = FALSE;
11671 }
11672 }
11673
11674 if (in_attr[i].i > out_attr[Tag_MPextension_use].i)
11675 out_attr[Tag_MPextension_use] = in_attr[i];
11676
11677 break;
11678
11679 case Tag_nodefaults:
11680 /* This tag is set if it exists, but the value is unused (and is
11681 typically zero). We don't actually need to do anything here -
11682 the merge happens automatically when the type flags are merged
11683 below. */
11684 break;
11685 case Tag_also_compatible_with:
11686 /* Already done in Tag_CPU_arch. */
11687 break;
11688 case Tag_conformance:
11689 /* Keep the attribute if it matches. Throw it away otherwise.
11690 No attribute means no claim to conform. */
11691 if (!in_attr[i].s || !out_attr[i].s
11692 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
11693 out_attr[i].s = NULL;
11694 break;
11695
11696 default:
11697 result
11698 = result && _bfd_elf_merge_unknown_attribute_low (ibfd, obfd, i);
11699 }
11700
11701 /* If out_attr was copied from in_attr then it won't have a type yet. */
11702 if (in_attr[i].type && !out_attr[i].type)
11703 out_attr[i].type = in_attr[i].type;
11704 }
11705
11706 /* Merge Tag_compatibility attributes and any common GNU ones. */
11707 if (!_bfd_elf_merge_object_attributes (ibfd, obfd))
11708 return FALSE;
11709
11710 /* Check for any attributes not known on ARM. */
11711 result &= _bfd_elf_merge_unknown_attribute_list (ibfd, obfd);
11712
11713 return result;
11714 }
11715
11716
11717 /* Return TRUE if the two EABI versions are incompatible. */
11718
11719 static bfd_boolean
11720 elf32_arm_versions_compatible (unsigned iver, unsigned over)
11721 {
11722 /* v4 and v5 are the same spec before and after it was released,
11723 so allow mixing them. */
11724 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
11725 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
11726 return TRUE;
11727
11728 return (iver == over);
11729 }
11730
11731 /* Merge backend specific data from an object file to the output
11732 object file when linking. */
11733
11734 static bfd_boolean
11735 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd);
11736
11737 /* Display the flags field. */
11738
11739 static bfd_boolean
11740 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
11741 {
11742 FILE * file = (FILE *) ptr;
11743 unsigned long flags;
11744
11745 BFD_ASSERT (abfd != NULL && ptr != NULL);
11746
11747 /* Print normal ELF private data. */
11748 _bfd_elf_print_private_bfd_data (abfd, ptr);
11749
11750 flags = elf_elfheader (abfd)->e_flags;
11751 /* Ignore init flag - it may not be set, despite the flags field
11752 containing valid data. */
11753
11754 /* xgettext:c-format */
11755 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
11756
11757 switch (EF_ARM_EABI_VERSION (flags))
11758 {
11759 case EF_ARM_EABI_UNKNOWN:
11760 /* The following flag bits are GNU extensions and not part of the
11761 official ARM ELF extended ABI. Hence they are only decoded if
11762 the EABI version is not set. */
11763 if (flags & EF_ARM_INTERWORK)
11764 fprintf (file, _(" [interworking enabled]"));
11765
11766 if (flags & EF_ARM_APCS_26)
11767 fprintf (file, " [APCS-26]");
11768 else
11769 fprintf (file, " [APCS-32]");
11770
11771 if (flags & EF_ARM_VFP_FLOAT)
11772 fprintf (file, _(" [VFP float format]"));
11773 else if (flags & EF_ARM_MAVERICK_FLOAT)
11774 fprintf (file, _(" [Maverick float format]"));
11775 else
11776 fprintf (file, _(" [FPA float format]"));
11777
11778 if (flags & EF_ARM_APCS_FLOAT)
11779 fprintf (file, _(" [floats passed in float registers]"));
11780
11781 if (flags & EF_ARM_PIC)
11782 fprintf (file, _(" [position independent]"));
11783
11784 if (flags & EF_ARM_NEW_ABI)
11785 fprintf (file, _(" [new ABI]"));
11786
11787 if (flags & EF_ARM_OLD_ABI)
11788 fprintf (file, _(" [old ABI]"));
11789
11790 if (flags & EF_ARM_SOFT_FLOAT)
11791 fprintf (file, _(" [software FP]"));
11792
11793 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
11794 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
11795 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
11796 | EF_ARM_MAVERICK_FLOAT);
11797 break;
11798
11799 case EF_ARM_EABI_VER1:
11800 fprintf (file, _(" [Version1 EABI]"));
11801
11802 if (flags & EF_ARM_SYMSARESORTED)
11803 fprintf (file, _(" [sorted symbol table]"));
11804 else
11805 fprintf (file, _(" [unsorted symbol table]"));
11806
11807 flags &= ~ EF_ARM_SYMSARESORTED;
11808 break;
11809
11810 case EF_ARM_EABI_VER2:
11811 fprintf (file, _(" [Version2 EABI]"));
11812
11813 if (flags & EF_ARM_SYMSARESORTED)
11814 fprintf (file, _(" [sorted symbol table]"));
11815 else
11816 fprintf (file, _(" [unsorted symbol table]"));
11817
11818 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
11819 fprintf (file, _(" [dynamic symbols use segment index]"));
11820
11821 if (flags & EF_ARM_MAPSYMSFIRST)
11822 fprintf (file, _(" [mapping symbols precede others]"));
11823
11824 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
11825 | EF_ARM_MAPSYMSFIRST);
11826 break;
11827
11828 case EF_ARM_EABI_VER3:
11829 fprintf (file, _(" [Version3 EABI]"));
11830 break;
11831
11832 case EF_ARM_EABI_VER4:
11833 fprintf (file, _(" [Version4 EABI]"));
11834 goto eabi;
11835
11836 case EF_ARM_EABI_VER5:
11837 fprintf (file, _(" [Version5 EABI]"));
11838 eabi:
11839 if (flags & EF_ARM_BE8)
11840 fprintf (file, _(" [BE8]"));
11841
11842 if (flags & EF_ARM_LE8)
11843 fprintf (file, _(" [LE8]"));
11844
11845 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
11846 break;
11847
11848 default:
11849 fprintf (file, _(" <EABI version unrecognised>"));
11850 break;
11851 }
11852
11853 flags &= ~ EF_ARM_EABIMASK;
11854
11855 if (flags & EF_ARM_RELEXEC)
11856 fprintf (file, _(" [relocatable executable]"));
11857
11858 if (flags & EF_ARM_HASENTRY)
11859 fprintf (file, _(" [has entry point]"));
11860
11861 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
11862
11863 if (flags)
11864 fprintf (file, _("<Unrecognised flag bits set>"));
11865
11866 fputc ('\n', file);
11867
11868 return TRUE;
11869 }
11870
11871 static int
11872 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
11873 {
11874 switch (ELF_ST_TYPE (elf_sym->st_info))
11875 {
11876 case STT_ARM_TFUNC:
11877 return ELF_ST_TYPE (elf_sym->st_info);
11878
11879 case STT_ARM_16BIT:
11880 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
11881 This allows us to distinguish between data used by Thumb instructions
11882 and non-data (which is probably code) inside Thumb regions of an
11883 executable. */
11884 if (type != STT_OBJECT && type != STT_TLS)
11885 return ELF_ST_TYPE (elf_sym->st_info);
11886 break;
11887
11888 default:
11889 break;
11890 }
11891
11892 return type;
11893 }
11894
11895 static asection *
11896 elf32_arm_gc_mark_hook (asection *sec,
11897 struct bfd_link_info *info,
11898 Elf_Internal_Rela *rel,
11899 struct elf_link_hash_entry *h,
11900 Elf_Internal_Sym *sym)
11901 {
11902 if (h != NULL)
11903 switch (ELF32_R_TYPE (rel->r_info))
11904 {
11905 case R_ARM_GNU_VTINHERIT:
11906 case R_ARM_GNU_VTENTRY:
11907 return NULL;
11908 }
11909
11910 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
11911 }
11912
11913 /* Update the got entry reference counts for the section being removed. */
11914
11915 static bfd_boolean
11916 elf32_arm_gc_sweep_hook (bfd * abfd,
11917 struct bfd_link_info * info,
11918 asection * sec,
11919 const Elf_Internal_Rela * relocs)
11920 {
11921 Elf_Internal_Shdr *symtab_hdr;
11922 struct elf_link_hash_entry **sym_hashes;
11923 bfd_signed_vma *local_got_refcounts;
11924 const Elf_Internal_Rela *rel, *relend;
11925 struct elf32_arm_link_hash_table * globals;
11926
11927 if (info->relocatable)
11928 return TRUE;
11929
11930 globals = elf32_arm_hash_table (info);
11931 if (globals == NULL)
11932 return FALSE;
11933
11934 elf_section_data (sec)->local_dynrel = NULL;
11935
11936 symtab_hdr = & elf_symtab_hdr (abfd);
11937 sym_hashes = elf_sym_hashes (abfd);
11938 local_got_refcounts = elf_local_got_refcounts (abfd);
11939
11940 check_use_blx (globals);
11941
11942 relend = relocs + sec->reloc_count;
11943 for (rel = relocs; rel < relend; rel++)
11944 {
11945 unsigned long r_symndx;
11946 struct elf_link_hash_entry *h = NULL;
11947 struct elf32_arm_link_hash_entry *eh;
11948 int r_type;
11949 bfd_boolean call_reloc_p;
11950 bfd_boolean may_become_dynamic_p;
11951 bfd_boolean may_need_local_target_p;
11952 union gotplt_union *root_plt;
11953 struct arm_plt_info *arm_plt;
11954
11955 r_symndx = ELF32_R_SYM (rel->r_info);
11956 if (r_symndx >= symtab_hdr->sh_info)
11957 {
11958 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
11959 while (h->root.type == bfd_link_hash_indirect
11960 || h->root.type == bfd_link_hash_warning)
11961 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11962 }
11963 eh = (struct elf32_arm_link_hash_entry *) h;
11964
11965 call_reloc_p = FALSE;
11966 may_become_dynamic_p = FALSE;
11967 may_need_local_target_p = FALSE;
11968
11969 r_type = ELF32_R_TYPE (rel->r_info);
11970 r_type = arm_real_reloc_type (globals, r_type);
11971 switch (r_type)
11972 {
11973 case R_ARM_GOT32:
11974 case R_ARM_GOT_PREL:
11975 case R_ARM_TLS_GD32:
11976 case R_ARM_TLS_IE32:
11977 if (h != NULL)
11978 {
11979 if (h->got.refcount > 0)
11980 h->got.refcount -= 1;
11981 }
11982 else if (local_got_refcounts != NULL)
11983 {
11984 if (local_got_refcounts[r_symndx] > 0)
11985 local_got_refcounts[r_symndx] -= 1;
11986 }
11987 break;
11988
11989 case R_ARM_TLS_LDM32:
11990 globals->tls_ldm_got.refcount -= 1;
11991 break;
11992
11993 case R_ARM_PC24:
11994 case R_ARM_PLT32:
11995 case R_ARM_CALL:
11996 case R_ARM_JUMP24:
11997 case R_ARM_PREL31:
11998 case R_ARM_THM_CALL:
11999 case R_ARM_THM_JUMP24:
12000 case R_ARM_THM_JUMP19:
12001 call_reloc_p = TRUE;
12002 may_need_local_target_p = TRUE;
12003 break;
12004
12005 case R_ARM_ABS12:
12006 if (!globals->vxworks_p)
12007 {
12008 may_need_local_target_p = TRUE;
12009 break;
12010 }
12011 /* Fall through. */
12012 case R_ARM_ABS32:
12013 case R_ARM_ABS32_NOI:
12014 case R_ARM_REL32:
12015 case R_ARM_REL32_NOI:
12016 case R_ARM_MOVW_ABS_NC:
12017 case R_ARM_MOVT_ABS:
12018 case R_ARM_MOVW_PREL_NC:
12019 case R_ARM_MOVT_PREL:
12020 case R_ARM_THM_MOVW_ABS_NC:
12021 case R_ARM_THM_MOVT_ABS:
12022 case R_ARM_THM_MOVW_PREL_NC:
12023 case R_ARM_THM_MOVT_PREL:
12024 /* Should the interworking branches be here also? */
12025 if ((info->shared || globals->root.is_relocatable_executable)
12026 && (sec->flags & SEC_ALLOC) != 0)
12027 {
12028 if (h == NULL
12029 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12030 {
12031 call_reloc_p = TRUE;
12032 may_need_local_target_p = TRUE;
12033 }
12034 else
12035 may_become_dynamic_p = TRUE;
12036 }
12037 else
12038 may_need_local_target_p = TRUE;
12039 break;
12040
12041 default:
12042 break;
12043 }
12044
12045 if (may_need_local_target_p
12046 && elf32_arm_get_plt_info (abfd, eh, r_symndx, &root_plt, &arm_plt))
12047 {
12048 BFD_ASSERT (root_plt->refcount > 0);
12049 root_plt->refcount -= 1;
12050
12051 if (!call_reloc_p)
12052 arm_plt->noncall_refcount--;
12053
12054 if (r_type == R_ARM_THM_CALL)
12055 arm_plt->maybe_thumb_refcount--;
12056
12057 if (r_type == R_ARM_THM_JUMP24
12058 || r_type == R_ARM_THM_JUMP19)
12059 arm_plt->thumb_refcount--;
12060 }
12061
12062 if (may_become_dynamic_p)
12063 {
12064 struct elf_dyn_relocs **pp;
12065 struct elf_dyn_relocs *p;
12066
12067 if (h != NULL)
12068 pp = &(eh->dyn_relocs);
12069 else
12070 {
12071 Elf_Internal_Sym *isym;
12072
12073 isym = bfd_sym_from_r_symndx (&globals->sym_cache,
12074 abfd, r_symndx);
12075 if (isym == NULL)
12076 return FALSE;
12077 pp = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12078 if (pp == NULL)
12079 return FALSE;
12080 }
12081 for (; (p = *pp) != NULL; pp = &p->next)
12082 if (p->sec == sec)
12083 {
12084 /* Everything must go for SEC. */
12085 *pp = p->next;
12086 break;
12087 }
12088 }
12089 }
12090
12091 return TRUE;
12092 }
12093
12094 /* Look through the relocs for a section during the first phase. */
12095
12096 static bfd_boolean
12097 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
12098 asection *sec, const Elf_Internal_Rela *relocs)
12099 {
12100 Elf_Internal_Shdr *symtab_hdr;
12101 struct elf_link_hash_entry **sym_hashes;
12102 const Elf_Internal_Rela *rel;
12103 const Elf_Internal_Rela *rel_end;
12104 bfd *dynobj;
12105 asection *sreloc;
12106 struct elf32_arm_link_hash_table *htab;
12107 bfd_boolean call_reloc_p;
12108 bfd_boolean may_become_dynamic_p;
12109 bfd_boolean may_need_local_target_p;
12110 unsigned long nsyms;
12111
12112 if (info->relocatable)
12113 return TRUE;
12114
12115 BFD_ASSERT (is_arm_elf (abfd));
12116
12117 htab = elf32_arm_hash_table (info);
12118 if (htab == NULL)
12119 return FALSE;
12120
12121 sreloc = NULL;
12122
12123 /* Create dynamic sections for relocatable executables so that we can
12124 copy relocations. */
12125 if (htab->root.is_relocatable_executable
12126 && ! htab->root.dynamic_sections_created)
12127 {
12128 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
12129 return FALSE;
12130 }
12131
12132 if (htab->root.dynobj == NULL)
12133 htab->root.dynobj = abfd;
12134 if (!create_ifunc_sections (info))
12135 return FALSE;
12136
12137 dynobj = htab->root.dynobj;
12138
12139 symtab_hdr = & elf_symtab_hdr (abfd);
12140 sym_hashes = elf_sym_hashes (abfd);
12141 nsyms = NUM_SHDR_ENTRIES (symtab_hdr);
12142
12143 rel_end = relocs + sec->reloc_count;
12144 for (rel = relocs; rel < rel_end; rel++)
12145 {
12146 Elf_Internal_Sym *isym;
12147 struct elf_link_hash_entry *h;
12148 struct elf32_arm_link_hash_entry *eh;
12149 unsigned long r_symndx;
12150 int r_type;
12151
12152 r_symndx = ELF32_R_SYM (rel->r_info);
12153 r_type = ELF32_R_TYPE (rel->r_info);
12154 r_type = arm_real_reloc_type (htab, r_type);
12155
12156 if (r_symndx >= nsyms
12157 /* PR 9934: It is possible to have relocations that do not
12158 refer to symbols, thus it is also possible to have an
12159 object file containing relocations but no symbol table. */
12160 && (r_symndx > STN_UNDEF || nsyms > 0))
12161 {
12162 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
12163 r_symndx);
12164 return FALSE;
12165 }
12166
12167 h = NULL;
12168 isym = NULL;
12169 if (nsyms > 0)
12170 {
12171 if (r_symndx < symtab_hdr->sh_info)
12172 {
12173 /* A local symbol. */
12174 isym = bfd_sym_from_r_symndx (&htab->sym_cache,
12175 abfd, r_symndx);
12176 if (isym == NULL)
12177 return FALSE;
12178 }
12179 else
12180 {
12181 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
12182 while (h->root.type == bfd_link_hash_indirect
12183 || h->root.type == bfd_link_hash_warning)
12184 h = (struct elf_link_hash_entry *) h->root.u.i.link;
12185 }
12186 }
12187
12188 eh = (struct elf32_arm_link_hash_entry *) h;
12189
12190 call_reloc_p = FALSE;
12191 may_become_dynamic_p = FALSE;
12192 may_need_local_target_p = FALSE;
12193
12194 /* Could be done earlier, if h were already available. */
12195 r_type = elf32_arm_tls_transition (info, r_type, h);
12196 switch (r_type)
12197 {
12198 case R_ARM_GOT32:
12199 case R_ARM_GOT_PREL:
12200 case R_ARM_TLS_GD32:
12201 case R_ARM_TLS_IE32:
12202 case R_ARM_TLS_GOTDESC:
12203 case R_ARM_TLS_DESCSEQ:
12204 case R_ARM_THM_TLS_DESCSEQ:
12205 case R_ARM_TLS_CALL:
12206 case R_ARM_THM_TLS_CALL:
12207 /* This symbol requires a global offset table entry. */
12208 {
12209 int tls_type, old_tls_type;
12210
12211 switch (r_type)
12212 {
12213 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
12214
12215 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
12216
12217 case R_ARM_TLS_GOTDESC:
12218 case R_ARM_TLS_CALL: case R_ARM_THM_TLS_CALL:
12219 case R_ARM_TLS_DESCSEQ: case R_ARM_THM_TLS_DESCSEQ:
12220 tls_type = GOT_TLS_GDESC; break;
12221
12222 default: tls_type = GOT_NORMAL; break;
12223 }
12224
12225 if (h != NULL)
12226 {
12227 h->got.refcount++;
12228 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
12229 }
12230 else
12231 {
12232 /* This is a global offset table entry for a local symbol. */
12233 if (!elf32_arm_allocate_local_sym_info (abfd))
12234 return FALSE;
12235 elf_local_got_refcounts (abfd)[r_symndx] += 1;
12236 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
12237 }
12238
12239 /* If a variable is accessed with both tls methods, two
12240 slots may be created. */
12241 if (GOT_TLS_GD_ANY_P (old_tls_type)
12242 && GOT_TLS_GD_ANY_P (tls_type))
12243 tls_type |= old_tls_type;
12244
12245 /* We will already have issued an error message if there
12246 is a TLS/non-TLS mismatch, based on the symbol
12247 type. So just combine any TLS types needed. */
12248 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
12249 && tls_type != GOT_NORMAL)
12250 tls_type |= old_tls_type;
12251
12252 /* If the symbol is accessed in both IE and GDESC
12253 method, we're able to relax. Turn off the GDESC flag,
12254 without messing up with any other kind of tls types
12255 that may be involved */
12256 if ((tls_type & GOT_TLS_IE) && (tls_type & GOT_TLS_GDESC))
12257 tls_type &= ~GOT_TLS_GDESC;
12258
12259 if (old_tls_type != tls_type)
12260 {
12261 if (h != NULL)
12262 elf32_arm_hash_entry (h)->tls_type = tls_type;
12263 else
12264 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
12265 }
12266 }
12267 /* Fall through. */
12268
12269 case R_ARM_TLS_LDM32:
12270 if (r_type == R_ARM_TLS_LDM32)
12271 htab->tls_ldm_got.refcount++;
12272 /* Fall through. */
12273
12274 case R_ARM_GOTOFF32:
12275 case R_ARM_GOTPC:
12276 if (htab->root.sgot == NULL
12277 && !create_got_section (htab->root.dynobj, info))
12278 return FALSE;
12279 break;
12280
12281 case R_ARM_PC24:
12282 case R_ARM_PLT32:
12283 case R_ARM_CALL:
12284 case R_ARM_JUMP24:
12285 case R_ARM_PREL31:
12286 case R_ARM_THM_CALL:
12287 case R_ARM_THM_JUMP24:
12288 case R_ARM_THM_JUMP19:
12289 call_reloc_p = TRUE;
12290 may_need_local_target_p = TRUE;
12291 break;
12292
12293 case R_ARM_ABS12:
12294 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
12295 ldr __GOTT_INDEX__ offsets. */
12296 if (!htab->vxworks_p)
12297 {
12298 may_need_local_target_p = TRUE;
12299 break;
12300 }
12301 /* Fall through. */
12302
12303 case R_ARM_MOVW_ABS_NC:
12304 case R_ARM_MOVT_ABS:
12305 case R_ARM_THM_MOVW_ABS_NC:
12306 case R_ARM_THM_MOVT_ABS:
12307 if (info->shared)
12308 {
12309 (*_bfd_error_handler)
12310 (_("%B: relocation %s against `%s' can not be used when making a shared object; recompile with -fPIC"),
12311 abfd, elf32_arm_howto_table_1[r_type].name,
12312 (h) ? h->root.root.string : "a local symbol");
12313 bfd_set_error (bfd_error_bad_value);
12314 return FALSE;
12315 }
12316
12317 /* Fall through. */
12318 case R_ARM_ABS32:
12319 case R_ARM_ABS32_NOI:
12320 case R_ARM_REL32:
12321 case R_ARM_REL32_NOI:
12322 case R_ARM_MOVW_PREL_NC:
12323 case R_ARM_MOVT_PREL:
12324 case R_ARM_THM_MOVW_PREL_NC:
12325 case R_ARM_THM_MOVT_PREL:
12326
12327 /* Should the interworking branches be listed here? */
12328 if ((info->shared || htab->root.is_relocatable_executable)
12329 && (sec->flags & SEC_ALLOC) != 0)
12330 {
12331 if (h == NULL
12332 && (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI))
12333 {
12334 /* In shared libraries and relocatable executables,
12335 we treat local relative references as calls;
12336 see the related SYMBOL_CALLS_LOCAL code in
12337 allocate_dynrelocs. */
12338 call_reloc_p = TRUE;
12339 may_need_local_target_p = TRUE;
12340 }
12341 else
12342 /* We are creating a shared library or relocatable
12343 executable, and this is a reloc against a global symbol,
12344 or a non-PC-relative reloc against a local symbol.
12345 We may need to copy the reloc into the output. */
12346 may_become_dynamic_p = TRUE;
12347 }
12348 else
12349 may_need_local_target_p = TRUE;
12350 break;
12351
12352 /* This relocation describes the C++ object vtable hierarchy.
12353 Reconstruct it for later use during GC. */
12354 case R_ARM_GNU_VTINHERIT:
12355 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
12356 return FALSE;
12357 break;
12358
12359 /* This relocation describes which C++ vtable entries are actually
12360 used. Record for later use during GC. */
12361 case R_ARM_GNU_VTENTRY:
12362 BFD_ASSERT (h != NULL);
12363 if (h != NULL
12364 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
12365 return FALSE;
12366 break;
12367 }
12368
12369 if (h != NULL)
12370 {
12371 if (call_reloc_p)
12372 /* We may need a .plt entry if the function this reloc
12373 refers to is in a different object, regardless of the
12374 symbol's type. We can't tell for sure yet, because
12375 something later might force the symbol local. */
12376 h->needs_plt = 1;
12377 else if (may_need_local_target_p)
12378 /* If this reloc is in a read-only section, we might
12379 need a copy reloc. We can't check reliably at this
12380 stage whether the section is read-only, as input
12381 sections have not yet been mapped to output sections.
12382 Tentatively set the flag for now, and correct in
12383 adjust_dynamic_symbol. */
12384 h->non_got_ref = 1;
12385 }
12386
12387 if (may_need_local_target_p
12388 && (h != NULL || ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC))
12389 {
12390 union gotplt_union *root_plt;
12391 struct arm_plt_info *arm_plt;
12392 struct arm_local_iplt_info *local_iplt;
12393
12394 if (h != NULL)
12395 {
12396 root_plt = &h->plt;
12397 arm_plt = &eh->plt;
12398 }
12399 else
12400 {
12401 local_iplt = elf32_arm_create_local_iplt (abfd, r_symndx);
12402 if (local_iplt == NULL)
12403 return FALSE;
12404 root_plt = &local_iplt->root;
12405 arm_plt = &local_iplt->arm;
12406 }
12407
12408 /* If the symbol is a function that doesn't bind locally,
12409 this relocation will need a PLT entry. */
12410 root_plt->refcount += 1;
12411
12412 if (!call_reloc_p)
12413 arm_plt->noncall_refcount++;
12414
12415 /* It's too early to use htab->use_blx here, so we have to
12416 record possible blx references separately from
12417 relocs that definitely need a thumb stub. */
12418
12419 if (r_type == R_ARM_THM_CALL)
12420 arm_plt->maybe_thumb_refcount += 1;
12421
12422 if (r_type == R_ARM_THM_JUMP24
12423 || r_type == R_ARM_THM_JUMP19)
12424 arm_plt->thumb_refcount += 1;
12425 }
12426
12427 if (may_become_dynamic_p)
12428 {
12429 struct elf_dyn_relocs *p, **head;
12430
12431 /* Create a reloc section in dynobj. */
12432 if (sreloc == NULL)
12433 {
12434 sreloc = _bfd_elf_make_dynamic_reloc_section
12435 (sec, dynobj, 2, abfd, ! htab->use_rel);
12436
12437 if (sreloc == NULL)
12438 return FALSE;
12439
12440 /* BPABI objects never have dynamic relocations mapped. */
12441 if (htab->symbian_p)
12442 {
12443 flagword flags;
12444
12445 flags = bfd_get_section_flags (dynobj, sreloc);
12446 flags &= ~(SEC_LOAD | SEC_ALLOC);
12447 bfd_set_section_flags (dynobj, sreloc, flags);
12448 }
12449 }
12450
12451 /* If this is a global symbol, count the number of
12452 relocations we need for this symbol. */
12453 if (h != NULL)
12454 head = &((struct elf32_arm_link_hash_entry *) h)->dyn_relocs;
12455 else
12456 {
12457 head = elf32_arm_get_local_dynreloc_list (abfd, r_symndx, isym);
12458 if (head == NULL)
12459 return FALSE;
12460 }
12461
12462 p = *head;
12463 if (p == NULL || p->sec != sec)
12464 {
12465 bfd_size_type amt = sizeof *p;
12466
12467 p = (struct elf_dyn_relocs *) bfd_alloc (htab->root.dynobj, amt);
12468 if (p == NULL)
12469 return FALSE;
12470 p->next = *head;
12471 *head = p;
12472 p->sec = sec;
12473 p->count = 0;
12474 p->pc_count = 0;
12475 }
12476
12477 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
12478 p->pc_count += 1;
12479 p->count += 1;
12480 }
12481 }
12482
12483 return TRUE;
12484 }
12485
12486 /* Unwinding tables are not referenced directly. This pass marks them as
12487 required if the corresponding code section is marked. */
12488
12489 static bfd_boolean
12490 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
12491 elf_gc_mark_hook_fn gc_mark_hook)
12492 {
12493 bfd *sub;
12494 Elf_Internal_Shdr **elf_shdrp;
12495 bfd_boolean again;
12496
12497 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12498
12499 /* Marking EH data may cause additional code sections to be marked,
12500 requiring multiple passes. */
12501 again = TRUE;
12502 while (again)
12503 {
12504 again = FALSE;
12505 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
12506 {
12507 asection *o;
12508
12509 if (! is_arm_elf (sub))
12510 continue;
12511
12512 elf_shdrp = elf_elfsections (sub);
12513 for (o = sub->sections; o != NULL; o = o->next)
12514 {
12515 Elf_Internal_Shdr *hdr;
12516
12517 hdr = &elf_section_data (o)->this_hdr;
12518 if (hdr->sh_type == SHT_ARM_EXIDX
12519 && hdr->sh_link
12520 && hdr->sh_link < elf_numsections (sub)
12521 && !o->gc_mark
12522 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
12523 {
12524 again = TRUE;
12525 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12526 return FALSE;
12527 }
12528 }
12529 }
12530 }
12531
12532 return TRUE;
12533 }
12534
12535 /* Treat mapping symbols as special target symbols. */
12536
12537 static bfd_boolean
12538 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
12539 {
12540 return bfd_is_arm_special_symbol_name (sym->name,
12541 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
12542 }
12543
12544 /* This is a copy of elf_find_function() from elf.c except that
12545 ARM mapping symbols are ignored when looking for function names
12546 and STT_ARM_TFUNC is considered to a function type. */
12547
12548 static bfd_boolean
12549 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
12550 asection * section,
12551 asymbol ** symbols,
12552 bfd_vma offset,
12553 const char ** filename_ptr,
12554 const char ** functionname_ptr)
12555 {
12556 const char * filename = NULL;
12557 asymbol * func = NULL;
12558 bfd_vma low_func = 0;
12559 asymbol ** p;
12560
12561 for (p = symbols; *p != NULL; p++)
12562 {
12563 elf_symbol_type *q;
12564
12565 q = (elf_symbol_type *) *p;
12566
12567 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
12568 {
12569 default:
12570 break;
12571 case STT_FILE:
12572 filename = bfd_asymbol_name (&q->symbol);
12573 break;
12574 case STT_FUNC:
12575 case STT_ARM_TFUNC:
12576 case STT_NOTYPE:
12577 /* Skip mapping symbols. */
12578 if ((q->symbol.flags & BSF_LOCAL)
12579 && bfd_is_arm_special_symbol_name (q->symbol.name,
12580 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
12581 continue;
12582 /* Fall through. */
12583 if (bfd_get_section (&q->symbol) == section
12584 && q->symbol.value >= low_func
12585 && q->symbol.value <= offset)
12586 {
12587 func = (asymbol *) q;
12588 low_func = q->symbol.value;
12589 }
12590 break;
12591 }
12592 }
12593
12594 if (func == NULL)
12595 return FALSE;
12596
12597 if (filename_ptr)
12598 *filename_ptr = filename;
12599 if (functionname_ptr)
12600 *functionname_ptr = bfd_asymbol_name (func);
12601
12602 return TRUE;
12603 }
12604
12605
12606 /* Find the nearest line to a particular section and offset, for error
12607 reporting. This code is a duplicate of the code in elf.c, except
12608 that it uses arm_elf_find_function. */
12609
12610 static bfd_boolean
12611 elf32_arm_find_nearest_line (bfd * abfd,
12612 asection * section,
12613 asymbol ** symbols,
12614 bfd_vma offset,
12615 const char ** filename_ptr,
12616 const char ** functionname_ptr,
12617 unsigned int * line_ptr)
12618 {
12619 bfd_boolean found = FALSE;
12620
12621 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
12622
12623 if (_bfd_dwarf2_find_nearest_line (abfd, dwarf_debug_sections,
12624 section, symbols, offset,
12625 filename_ptr, functionname_ptr,
12626 line_ptr, 0,
12627 & elf_tdata (abfd)->dwarf2_find_line_info))
12628 {
12629 if (!*functionname_ptr)
12630 arm_elf_find_function (abfd, section, symbols, offset,
12631 *filename_ptr ? NULL : filename_ptr,
12632 functionname_ptr);
12633
12634 return TRUE;
12635 }
12636
12637 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
12638 & found, filename_ptr,
12639 functionname_ptr, line_ptr,
12640 & elf_tdata (abfd)->line_info))
12641 return FALSE;
12642
12643 if (found && (*functionname_ptr || *line_ptr))
12644 return TRUE;
12645
12646 if (symbols == NULL)
12647 return FALSE;
12648
12649 if (! arm_elf_find_function (abfd, section, symbols, offset,
12650 filename_ptr, functionname_ptr))
12651 return FALSE;
12652
12653 *line_ptr = 0;
12654 return TRUE;
12655 }
12656
12657 static bfd_boolean
12658 elf32_arm_find_inliner_info (bfd * abfd,
12659 const char ** filename_ptr,
12660 const char ** functionname_ptr,
12661 unsigned int * line_ptr)
12662 {
12663 bfd_boolean found;
12664 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
12665 functionname_ptr, line_ptr,
12666 & elf_tdata (abfd)->dwarf2_find_line_info);
12667 return found;
12668 }
12669
12670 /* Adjust a symbol defined by a dynamic object and referenced by a
12671 regular object. The current definition is in some section of the
12672 dynamic object, but we're not including those sections. We have to
12673 change the definition to something the rest of the link can
12674 understand. */
12675
12676 static bfd_boolean
12677 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
12678 struct elf_link_hash_entry * h)
12679 {
12680 bfd * dynobj;
12681 asection * s;
12682 struct elf32_arm_link_hash_entry * eh;
12683 struct elf32_arm_link_hash_table *globals;
12684
12685 globals = elf32_arm_hash_table (info);
12686 if (globals == NULL)
12687 return FALSE;
12688
12689 dynobj = elf_hash_table (info)->dynobj;
12690
12691 /* Make sure we know what is going on here. */
12692 BFD_ASSERT (dynobj != NULL
12693 && (h->needs_plt
12694 || h->type == STT_GNU_IFUNC
12695 || h->u.weakdef != NULL
12696 || (h->def_dynamic
12697 && h->ref_regular
12698 && !h->def_regular)));
12699
12700 eh = (struct elf32_arm_link_hash_entry *) h;
12701
12702 /* If this is a function, put it in the procedure linkage table. We
12703 will fill in the contents of the procedure linkage table later,
12704 when we know the address of the .got section. */
12705 if (h->type == STT_FUNC || h->type == STT_GNU_IFUNC || h->needs_plt)
12706 {
12707 /* Calls to STT_GNU_IFUNC symbols always use a PLT, even if the
12708 symbol binds locally. */
12709 if (h->plt.refcount <= 0
12710 || (h->type != STT_GNU_IFUNC
12711 && (SYMBOL_CALLS_LOCAL (info, h)
12712 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
12713 && h->root.type == bfd_link_hash_undefweak))))
12714 {
12715 /* This case can occur if we saw a PLT32 reloc in an input
12716 file, but the symbol was never referred to by a dynamic
12717 object, or if all references were garbage collected. In
12718 such a case, we don't actually need to build a procedure
12719 linkage table, and we can just do a PC24 reloc instead. */
12720 h->plt.offset = (bfd_vma) -1;
12721 eh->plt.thumb_refcount = 0;
12722 eh->plt.maybe_thumb_refcount = 0;
12723 eh->plt.noncall_refcount = 0;
12724 h->needs_plt = 0;
12725 }
12726
12727 return TRUE;
12728 }
12729 else
12730 {
12731 /* It's possible that we incorrectly decided a .plt reloc was
12732 needed for an R_ARM_PC24 or similar reloc to a non-function sym
12733 in check_relocs. We can't decide accurately between function
12734 and non-function syms in check-relocs; Objects loaded later in
12735 the link may change h->type. So fix it now. */
12736 h->plt.offset = (bfd_vma) -1;
12737 eh->plt.thumb_refcount = 0;
12738 eh->plt.maybe_thumb_refcount = 0;
12739 eh->plt.noncall_refcount = 0;
12740 }
12741
12742 /* If this is a weak symbol, and there is a real definition, the
12743 processor independent code will have arranged for us to see the
12744 real definition first, and we can just use the same value. */
12745 if (h->u.weakdef != NULL)
12746 {
12747 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
12748 || h->u.weakdef->root.type == bfd_link_hash_defweak);
12749 h->root.u.def.section = h->u.weakdef->root.u.def.section;
12750 h->root.u.def.value = h->u.weakdef->root.u.def.value;
12751 return TRUE;
12752 }
12753
12754 /* If there are no non-GOT references, we do not need a copy
12755 relocation. */
12756 if (!h->non_got_ref)
12757 return TRUE;
12758
12759 /* This is a reference to a symbol defined by a dynamic object which
12760 is not a function. */
12761
12762 /* If we are creating a shared library, we must presume that the
12763 only references to the symbol are via the global offset table.
12764 For such cases we need not do anything here; the relocations will
12765 be handled correctly by relocate_section. Relocatable executables
12766 can reference data in shared objects directly, so we don't need to
12767 do anything here. */
12768 if (info->shared || globals->root.is_relocatable_executable)
12769 return TRUE;
12770
12771 if (h->size == 0)
12772 {
12773 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
12774 h->root.root.string);
12775 return TRUE;
12776 }
12777
12778 /* We must allocate the symbol in our .dynbss section, which will
12779 become part of the .bss section of the executable. There will be
12780 an entry for this symbol in the .dynsym section. The dynamic
12781 object will contain position independent code, so all references
12782 from the dynamic object to this symbol will go through the global
12783 offset table. The dynamic linker will use the .dynsym entry to
12784 determine the address it must put in the global offset table, so
12785 both the dynamic object and the regular object will refer to the
12786 same memory location for the variable. */
12787 s = bfd_get_section_by_name (dynobj, ".dynbss");
12788 BFD_ASSERT (s != NULL);
12789
12790 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
12791 copy the initial value out of the dynamic object and into the
12792 runtime process image. We need to remember the offset into the
12793 .rel(a).bss section we are going to use. */
12794 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
12795 {
12796 asection *srel;
12797
12798 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
12799 elf32_arm_allocate_dynrelocs (info, srel, 1);
12800 h->needs_copy = 1;
12801 }
12802
12803 return _bfd_elf_adjust_dynamic_copy (h, s);
12804 }
12805
12806 /* Allocate space in .plt, .got and associated reloc sections for
12807 dynamic relocs. */
12808
12809 static bfd_boolean
12810 allocate_dynrelocs_for_symbol (struct elf_link_hash_entry *h, void * inf)
12811 {
12812 struct bfd_link_info *info;
12813 struct elf32_arm_link_hash_table *htab;
12814 struct elf32_arm_link_hash_entry *eh;
12815 struct elf_dyn_relocs *p;
12816
12817 if (h->root.type == bfd_link_hash_indirect)
12818 return TRUE;
12819
12820 eh = (struct elf32_arm_link_hash_entry *) h;
12821
12822 info = (struct bfd_link_info *) inf;
12823 htab = elf32_arm_hash_table (info);
12824 if (htab == NULL)
12825 return FALSE;
12826
12827 if ((htab->root.dynamic_sections_created || h->type == STT_GNU_IFUNC)
12828 && h->plt.refcount > 0)
12829 {
12830 /* Make sure this symbol is output as a dynamic symbol.
12831 Undefined weak syms won't yet be marked as dynamic. */
12832 if (h->dynindx == -1
12833 && !h->forced_local)
12834 {
12835 if (! bfd_elf_link_record_dynamic_symbol (info, h))
12836 return FALSE;
12837 }
12838
12839 /* If the call in the PLT entry binds locally, the associated
12840 GOT entry should use an R_ARM_IRELATIVE relocation instead of
12841 the usual R_ARM_JUMP_SLOT. Put it in the .iplt section rather
12842 than the .plt section. */
12843 if (h->type == STT_GNU_IFUNC && SYMBOL_CALLS_LOCAL (info, h))
12844 {
12845 eh->is_iplt = 1;
12846 if (eh->plt.noncall_refcount == 0
12847 && SYMBOL_REFERENCES_LOCAL (info, h))
12848 /* All non-call references can be resolved directly.
12849 This means that they can (and in some cases, must)
12850 resolve directly to the run-time target, rather than
12851 to the PLT. That in turns means that any .got entry
12852 would be equal to the .igot.plt entry, so there's
12853 no point having both. */
12854 h->got.refcount = 0;
12855 }
12856
12857 if (info->shared
12858 || eh->is_iplt
12859 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
12860 {
12861 elf32_arm_allocate_plt_entry (info, eh->is_iplt, &h->plt, &eh->plt);
12862
12863 /* If this symbol is not defined in a regular file, and we are
12864 not generating a shared library, then set the symbol to this
12865 location in the .plt. This is required to make function
12866 pointers compare as equal between the normal executable and
12867 the shared library. */
12868 if (! info->shared
12869 && !h->def_regular)
12870 {
12871 h->root.u.def.section = htab->root.splt;
12872 h->root.u.def.value = h->plt.offset;
12873
12874 /* Make sure the function is not marked as Thumb, in case
12875 it is the target of an ABS32 relocation, which will
12876 point to the PLT entry. */
12877 h->target_internal = ST_BRANCH_TO_ARM;
12878 }
12879
12880 htab->next_tls_desc_index++;
12881
12882 /* VxWorks executables have a second set of relocations for
12883 each PLT entry. They go in a separate relocation section,
12884 which is processed by the kernel loader. */
12885 if (htab->vxworks_p && !info->shared)
12886 {
12887 /* There is a relocation for the initial PLT entry:
12888 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
12889 if (h->plt.offset == htab->plt_header_size)
12890 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 1);
12891
12892 /* There are two extra relocations for each subsequent
12893 PLT entry: an R_ARM_32 relocation for the GOT entry,
12894 and an R_ARM_32 relocation for the PLT entry. */
12895 elf32_arm_allocate_dynrelocs (info, htab->srelplt2, 2);
12896 }
12897 }
12898 else
12899 {
12900 h->plt.offset = (bfd_vma) -1;
12901 h->needs_plt = 0;
12902 }
12903 }
12904 else
12905 {
12906 h->plt.offset = (bfd_vma) -1;
12907 h->needs_plt = 0;
12908 }
12909
12910 eh = (struct elf32_arm_link_hash_entry *) h;
12911 eh->tlsdesc_got = (bfd_vma) -1;
12912
12913 if (h->got.refcount > 0)
12914 {
12915 asection *s;
12916 bfd_boolean dyn;
12917 int tls_type = elf32_arm_hash_entry (h)->tls_type;
12918 int indx;
12919
12920 /* Make sure this symbol is output as a dynamic symbol.
12921 Undefined weak syms won't yet be marked as dynamic. */
12922 if (h->dynindx == -1
12923 && !h->forced_local)
12924 {
12925 if (! bfd_elf_link_record_dynamic_symbol (info, h))
12926 return FALSE;
12927 }
12928
12929 if (!htab->symbian_p)
12930 {
12931 s = htab->root.sgot;
12932 h->got.offset = s->size;
12933
12934 if (tls_type == GOT_UNKNOWN)
12935 abort ();
12936
12937 if (tls_type == GOT_NORMAL)
12938 /* Non-TLS symbols need one GOT slot. */
12939 s->size += 4;
12940 else
12941 {
12942 if (tls_type & GOT_TLS_GDESC)
12943 {
12944 /* R_ARM_TLS_DESC needs 2 GOT slots. */
12945 eh->tlsdesc_got
12946 = (htab->root.sgotplt->size
12947 - elf32_arm_compute_jump_table_size (htab));
12948 htab->root.sgotplt->size += 8;
12949 h->got.offset = (bfd_vma) -2;
12950 /* plt.got_offset needs to know there's a TLS_DESC
12951 reloc in the middle of .got.plt. */
12952 htab->num_tls_desc++;
12953 }
12954
12955 if (tls_type & GOT_TLS_GD)
12956 {
12957 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. If
12958 the symbol is both GD and GDESC, got.offset may
12959 have been overwritten. */
12960 h->got.offset = s->size;
12961 s->size += 8;
12962 }
12963
12964 if (tls_type & GOT_TLS_IE)
12965 /* R_ARM_TLS_IE32 needs one GOT slot. */
12966 s->size += 4;
12967 }
12968
12969 dyn = htab->root.dynamic_sections_created;
12970
12971 indx = 0;
12972 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
12973 && (!info->shared
12974 || !SYMBOL_REFERENCES_LOCAL (info, h)))
12975 indx = h->dynindx;
12976
12977 if (tls_type != GOT_NORMAL
12978 && (info->shared || indx != 0)
12979 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
12980 || h->root.type != bfd_link_hash_undefweak))
12981 {
12982 if (tls_type & GOT_TLS_IE)
12983 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12984
12985 if (tls_type & GOT_TLS_GD)
12986 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12987
12988 if (tls_type & GOT_TLS_GDESC)
12989 {
12990 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
12991 /* GDESC needs a trampoline to jump to. */
12992 htab->tls_trampoline = -1;
12993 }
12994
12995 /* Only GD needs it. GDESC just emits one relocation per
12996 2 entries. */
12997 if ((tls_type & GOT_TLS_GD) && indx != 0)
12998 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
12999 }
13000 else if (!SYMBOL_REFERENCES_LOCAL (info, h))
13001 {
13002 if (htab->root.dynamic_sections_created)
13003 /* Reserve room for the GOT entry's R_ARM_GLOB_DAT relocation. */
13004 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13005 }
13006 else if (h->type == STT_GNU_IFUNC
13007 && eh->plt.noncall_refcount == 0)
13008 /* No non-call references resolve the STT_GNU_IFUNC's PLT entry;
13009 they all resolve dynamically instead. Reserve room for the
13010 GOT entry's R_ARM_IRELATIVE relocation. */
13011 elf32_arm_allocate_irelocs (info, htab->root.srelgot, 1);
13012 else if (info->shared)
13013 /* Reserve room for the GOT entry's R_ARM_RELATIVE relocation. */
13014 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13015 }
13016 }
13017 else
13018 h->got.offset = (bfd_vma) -1;
13019
13020 /* Allocate stubs for exported Thumb functions on v4t. */
13021 if (!htab->use_blx && h->dynindx != -1
13022 && h->def_regular
13023 && h->target_internal == ST_BRANCH_TO_THUMB
13024 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
13025 {
13026 struct elf_link_hash_entry * th;
13027 struct bfd_link_hash_entry * bh;
13028 struct elf_link_hash_entry * myh;
13029 char name[1024];
13030 asection *s;
13031 bh = NULL;
13032 /* Create a new symbol to regist the real location of the function. */
13033 s = h->root.u.def.section;
13034 sprintf (name, "__real_%s", h->root.root.string);
13035 _bfd_generic_link_add_one_symbol (info, s->owner,
13036 name, BSF_GLOBAL, s,
13037 h->root.u.def.value,
13038 NULL, TRUE, FALSE, &bh);
13039
13040 myh = (struct elf_link_hash_entry *) bh;
13041 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
13042 myh->forced_local = 1;
13043 myh->target_internal = ST_BRANCH_TO_THUMB;
13044 eh->export_glue = myh;
13045 th = record_arm_to_thumb_glue (info, h);
13046 /* Point the symbol at the stub. */
13047 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
13048 h->target_internal = ST_BRANCH_TO_ARM;
13049 h->root.u.def.section = th->root.u.def.section;
13050 h->root.u.def.value = th->root.u.def.value & ~1;
13051 }
13052
13053 if (eh->dyn_relocs == NULL)
13054 return TRUE;
13055
13056 /* In the shared -Bsymbolic case, discard space allocated for
13057 dynamic pc-relative relocs against symbols which turn out to be
13058 defined in regular objects. For the normal shared case, discard
13059 space for pc-relative relocs that have become local due to symbol
13060 visibility changes. */
13061
13062 if (info->shared || htab->root.is_relocatable_executable)
13063 {
13064 /* The only relocs that use pc_count are R_ARM_REL32 and
13065 R_ARM_REL32_NOI, which will appear on something like
13066 ".long foo - .". We want calls to protected symbols to resolve
13067 directly to the function rather than going via the plt. If people
13068 want function pointer comparisons to work as expected then they
13069 should avoid writing assembly like ".long foo - .". */
13070 if (SYMBOL_CALLS_LOCAL (info, h))
13071 {
13072 struct elf_dyn_relocs **pp;
13073
13074 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13075 {
13076 p->count -= p->pc_count;
13077 p->pc_count = 0;
13078 if (p->count == 0)
13079 *pp = p->next;
13080 else
13081 pp = &p->next;
13082 }
13083 }
13084
13085 if (htab->vxworks_p)
13086 {
13087 struct elf_dyn_relocs **pp;
13088
13089 for (pp = &eh->dyn_relocs; (p = *pp) != NULL; )
13090 {
13091 if (strcmp (p->sec->output_section->name, ".tls_vars") == 0)
13092 *pp = p->next;
13093 else
13094 pp = &p->next;
13095 }
13096 }
13097
13098 /* Also discard relocs on undefined weak syms with non-default
13099 visibility. */
13100 if (eh->dyn_relocs != NULL
13101 && h->root.type == bfd_link_hash_undefweak)
13102 {
13103 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
13104 eh->dyn_relocs = NULL;
13105
13106 /* Make sure undefined weak symbols are output as a dynamic
13107 symbol in PIEs. */
13108 else if (h->dynindx == -1
13109 && !h->forced_local)
13110 {
13111 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13112 return FALSE;
13113 }
13114 }
13115
13116 else if (htab->root.is_relocatable_executable && h->dynindx == -1
13117 && h->root.type == bfd_link_hash_new)
13118 {
13119 /* Output absolute symbols so that we can create relocations
13120 against them. For normal symbols we output a relocation
13121 against the section that contains them. */
13122 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13123 return FALSE;
13124 }
13125
13126 }
13127 else
13128 {
13129 /* For the non-shared case, discard space for relocs against
13130 symbols which turn out to need copy relocs or are not
13131 dynamic. */
13132
13133 if (!h->non_got_ref
13134 && ((h->def_dynamic
13135 && !h->def_regular)
13136 || (htab->root.dynamic_sections_created
13137 && (h->root.type == bfd_link_hash_undefweak
13138 || h->root.type == bfd_link_hash_undefined))))
13139 {
13140 /* Make sure this symbol is output as a dynamic symbol.
13141 Undefined weak syms won't yet be marked as dynamic. */
13142 if (h->dynindx == -1
13143 && !h->forced_local)
13144 {
13145 if (! bfd_elf_link_record_dynamic_symbol (info, h))
13146 return FALSE;
13147 }
13148
13149 /* If that succeeded, we know we'll be keeping all the
13150 relocs. */
13151 if (h->dynindx != -1)
13152 goto keep;
13153 }
13154
13155 eh->dyn_relocs = NULL;
13156
13157 keep: ;
13158 }
13159
13160 /* Finally, allocate space. */
13161 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13162 {
13163 asection *sreloc = elf_section_data (p->sec)->sreloc;
13164 if (h->type == STT_GNU_IFUNC
13165 && eh->plt.noncall_refcount == 0
13166 && SYMBOL_REFERENCES_LOCAL (info, h))
13167 elf32_arm_allocate_irelocs (info, sreloc, p->count);
13168 else
13169 elf32_arm_allocate_dynrelocs (info, sreloc, p->count);
13170 }
13171
13172 return TRUE;
13173 }
13174
13175 /* Find any dynamic relocs that apply to read-only sections. */
13176
13177 static bfd_boolean
13178 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
13179 {
13180 struct elf32_arm_link_hash_entry * eh;
13181 struct elf_dyn_relocs * p;
13182
13183 eh = (struct elf32_arm_link_hash_entry *) h;
13184 for (p = eh->dyn_relocs; p != NULL; p = p->next)
13185 {
13186 asection *s = p->sec;
13187
13188 if (s != NULL && (s->flags & SEC_READONLY) != 0)
13189 {
13190 struct bfd_link_info *info = (struct bfd_link_info *) inf;
13191
13192 info->flags |= DF_TEXTREL;
13193
13194 /* Not an error, just cut short the traversal. */
13195 return FALSE;
13196 }
13197 }
13198 return TRUE;
13199 }
13200
13201 void
13202 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
13203 int byteswap_code)
13204 {
13205 struct elf32_arm_link_hash_table *globals;
13206
13207 globals = elf32_arm_hash_table (info);
13208 if (globals == NULL)
13209 return;
13210
13211 globals->byteswap_code = byteswap_code;
13212 }
13213
13214 /* Set the sizes of the dynamic sections. */
13215
13216 static bfd_boolean
13217 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
13218 struct bfd_link_info * info)
13219 {
13220 bfd * dynobj;
13221 asection * s;
13222 bfd_boolean plt;
13223 bfd_boolean relocs;
13224 bfd *ibfd;
13225 struct elf32_arm_link_hash_table *htab;
13226
13227 htab = elf32_arm_hash_table (info);
13228 if (htab == NULL)
13229 return FALSE;
13230
13231 dynobj = elf_hash_table (info)->dynobj;
13232 BFD_ASSERT (dynobj != NULL);
13233 check_use_blx (htab);
13234
13235 if (elf_hash_table (info)->dynamic_sections_created)
13236 {
13237 /* Set the contents of the .interp section to the interpreter. */
13238 if (info->executable)
13239 {
13240 s = bfd_get_section_by_name (dynobj, ".interp");
13241 BFD_ASSERT (s != NULL);
13242 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
13243 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
13244 }
13245 }
13246
13247 /* Set up .got offsets for local syms, and space for local dynamic
13248 relocs. */
13249 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13250 {
13251 bfd_signed_vma *local_got;
13252 bfd_signed_vma *end_local_got;
13253 struct arm_local_iplt_info **local_iplt_ptr, *local_iplt;
13254 char *local_tls_type;
13255 bfd_vma *local_tlsdesc_gotent;
13256 bfd_size_type locsymcount;
13257 Elf_Internal_Shdr *symtab_hdr;
13258 asection *srel;
13259 bfd_boolean is_vxworks = htab->vxworks_p;
13260 unsigned int symndx;
13261
13262 if (! is_arm_elf (ibfd))
13263 continue;
13264
13265 for (s = ibfd->sections; s != NULL; s = s->next)
13266 {
13267 struct elf_dyn_relocs *p;
13268
13269 for (p = (struct elf_dyn_relocs *)
13270 elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
13271 {
13272 if (!bfd_is_abs_section (p->sec)
13273 && bfd_is_abs_section (p->sec->output_section))
13274 {
13275 /* Input section has been discarded, either because
13276 it is a copy of a linkonce section or due to
13277 linker script /DISCARD/, so we'll be discarding
13278 the relocs too. */
13279 }
13280 else if (is_vxworks
13281 && strcmp (p->sec->output_section->name,
13282 ".tls_vars") == 0)
13283 {
13284 /* Relocations in vxworks .tls_vars sections are
13285 handled specially by the loader. */
13286 }
13287 else if (p->count != 0)
13288 {
13289 srel = elf_section_data (p->sec)->sreloc;
13290 elf32_arm_allocate_dynrelocs (info, srel, p->count);
13291 if ((p->sec->output_section->flags & SEC_READONLY) != 0)
13292 info->flags |= DF_TEXTREL;
13293 }
13294 }
13295 }
13296
13297 local_got = elf_local_got_refcounts (ibfd);
13298 if (!local_got)
13299 continue;
13300
13301 symtab_hdr = & elf_symtab_hdr (ibfd);
13302 locsymcount = symtab_hdr->sh_info;
13303 end_local_got = local_got + locsymcount;
13304 local_iplt_ptr = elf32_arm_local_iplt (ibfd);
13305 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
13306 local_tlsdesc_gotent = elf32_arm_local_tlsdesc_gotent (ibfd);
13307 symndx = 0;
13308 s = htab->root.sgot;
13309 srel = htab->root.srelgot;
13310 for (; local_got < end_local_got;
13311 ++local_got, ++local_iplt_ptr, ++local_tls_type,
13312 ++local_tlsdesc_gotent, ++symndx)
13313 {
13314 *local_tlsdesc_gotent = (bfd_vma) -1;
13315 local_iplt = *local_iplt_ptr;
13316 if (local_iplt != NULL)
13317 {
13318 struct elf_dyn_relocs *p;
13319
13320 if (local_iplt->root.refcount > 0)
13321 {
13322 elf32_arm_allocate_plt_entry (info, TRUE,
13323 &local_iplt->root,
13324 &local_iplt->arm);
13325 if (local_iplt->arm.noncall_refcount == 0)
13326 /* All references to the PLT are calls, so all
13327 non-call references can resolve directly to the
13328 run-time target. This means that the .got entry
13329 would be the same as the .igot.plt entry, so there's
13330 no point creating both. */
13331 *local_got = 0;
13332 }
13333 else
13334 {
13335 BFD_ASSERT (local_iplt->arm.noncall_refcount == 0);
13336 local_iplt->root.offset = (bfd_vma) -1;
13337 }
13338
13339 for (p = local_iplt->dyn_relocs; p != NULL; p = p->next)
13340 {
13341 asection *psrel;
13342
13343 psrel = elf_section_data (p->sec)->sreloc;
13344 if (local_iplt->arm.noncall_refcount == 0)
13345 elf32_arm_allocate_irelocs (info, psrel, p->count);
13346 else
13347 elf32_arm_allocate_dynrelocs (info, psrel, p->count);
13348 }
13349 }
13350 if (*local_got > 0)
13351 {
13352 Elf_Internal_Sym *isym;
13353
13354 *local_got = s->size;
13355 if (*local_tls_type & GOT_TLS_GD)
13356 /* TLS_GD relocs need an 8-byte structure in the GOT. */
13357 s->size += 8;
13358 if (*local_tls_type & GOT_TLS_GDESC)
13359 {
13360 *local_tlsdesc_gotent = htab->root.sgotplt->size
13361 - elf32_arm_compute_jump_table_size (htab);
13362 htab->root.sgotplt->size += 8;
13363 *local_got = (bfd_vma) -2;
13364 /* plt.got_offset needs to know there's a TLS_DESC
13365 reloc in the middle of .got.plt. */
13366 htab->num_tls_desc++;
13367 }
13368 if (*local_tls_type & GOT_TLS_IE)
13369 s->size += 4;
13370
13371 if (*local_tls_type & GOT_NORMAL)
13372 {
13373 /* If the symbol is both GD and GDESC, *local_got
13374 may have been overwritten. */
13375 *local_got = s->size;
13376 s->size += 4;
13377 }
13378
13379 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ibfd, symndx);
13380 if (isym == NULL)
13381 return FALSE;
13382
13383 /* If all references to an STT_GNU_IFUNC PLT are calls,
13384 then all non-call references, including this GOT entry,
13385 resolve directly to the run-time target. */
13386 if (ELF32_ST_TYPE (isym->st_info) == STT_GNU_IFUNC
13387 && (local_iplt == NULL
13388 || local_iplt->arm.noncall_refcount == 0))
13389 elf32_arm_allocate_irelocs (info, srel, 1);
13390 else if ((info->shared && !(*local_tls_type & GOT_TLS_GDESC))
13391 || *local_tls_type & GOT_TLS_GD)
13392 elf32_arm_allocate_dynrelocs (info, srel, 1);
13393
13394 if (info->shared && *local_tls_type & GOT_TLS_GDESC)
13395 {
13396 elf32_arm_allocate_dynrelocs (info, htab->root.srelplt, 1);
13397 htab->tls_trampoline = -1;
13398 }
13399 }
13400 else
13401 *local_got = (bfd_vma) -1;
13402 }
13403 }
13404
13405 if (htab->tls_ldm_got.refcount > 0)
13406 {
13407 /* Allocate two GOT entries and one dynamic relocation (if necessary)
13408 for R_ARM_TLS_LDM32 relocations. */
13409 htab->tls_ldm_got.offset = htab->root.sgot->size;
13410 htab->root.sgot->size += 8;
13411 if (info->shared)
13412 elf32_arm_allocate_dynrelocs (info, htab->root.srelgot, 1);
13413 }
13414 else
13415 htab->tls_ldm_got.offset = -1;
13416
13417 /* Allocate global sym .plt and .got entries, and space for global
13418 sym dynamic relocs. */
13419 elf_link_hash_traverse (& htab->root, allocate_dynrelocs_for_symbol, info);
13420
13421 /* Here we rummage through the found bfds to collect glue information. */
13422 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
13423 {
13424 if (! is_arm_elf (ibfd))
13425 continue;
13426
13427 /* Initialise mapping tables for code/data. */
13428 bfd_elf32_arm_init_maps (ibfd);
13429
13430 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
13431 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
13432 /* xgettext:c-format */
13433 _bfd_error_handler (_("Errors encountered processing file %s"),
13434 ibfd->filename);
13435 }
13436
13437 /* Allocate space for the glue sections now that we've sized them. */
13438 bfd_elf32_arm_allocate_interworking_sections (info);
13439
13440 /* For every jump slot reserved in the sgotplt, reloc_count is
13441 incremented. However, when we reserve space for TLS descriptors,
13442 it's not incremented, so in order to compute the space reserved
13443 for them, it suffices to multiply the reloc count by the jump
13444 slot size. */
13445 if (htab->root.srelplt)
13446 htab->sgotplt_jump_table_size = elf32_arm_compute_jump_table_size(htab);
13447
13448 if (htab->tls_trampoline)
13449 {
13450 if (htab->root.splt->size == 0)
13451 htab->root.splt->size += htab->plt_header_size;
13452
13453 htab->tls_trampoline = htab->root.splt->size;
13454 htab->root.splt->size += htab->plt_entry_size;
13455
13456 /* If we're not using lazy TLS relocations, don't generate the
13457 PLT and GOT entries they require. */
13458 if (!(info->flags & DF_BIND_NOW))
13459 {
13460 htab->dt_tlsdesc_got = htab->root.sgot->size;
13461 htab->root.sgot->size += 4;
13462
13463 htab->dt_tlsdesc_plt = htab->root.splt->size;
13464 htab->root.splt->size += 4 * ARRAY_SIZE (dl_tlsdesc_lazy_trampoline);
13465 }
13466 }
13467
13468 /* The check_relocs and adjust_dynamic_symbol entry points have
13469 determined the sizes of the various dynamic sections. Allocate
13470 memory for them. */
13471 plt = FALSE;
13472 relocs = FALSE;
13473 for (s = dynobj->sections; s != NULL; s = s->next)
13474 {
13475 const char * name;
13476
13477 if ((s->flags & SEC_LINKER_CREATED) == 0)
13478 continue;
13479
13480 /* It's OK to base decisions on the section name, because none
13481 of the dynobj section names depend upon the input files. */
13482 name = bfd_get_section_name (dynobj, s);
13483
13484 if (s == htab->root.splt)
13485 {
13486 /* Remember whether there is a PLT. */
13487 plt = s->size != 0;
13488 }
13489 else if (CONST_STRNEQ (name, ".rel"))
13490 {
13491 if (s->size != 0)
13492 {
13493 /* Remember whether there are any reloc sections other
13494 than .rel(a).plt and .rela.plt.unloaded. */
13495 if (s != htab->root.srelplt && s != htab->srelplt2)
13496 relocs = TRUE;
13497
13498 /* We use the reloc_count field as a counter if we need
13499 to copy relocs into the output file. */
13500 s->reloc_count = 0;
13501 }
13502 }
13503 else if (s != htab->root.sgot
13504 && s != htab->root.sgotplt
13505 && s != htab->root.iplt
13506 && s != htab->root.igotplt
13507 && s != htab->sdynbss)
13508 {
13509 /* It's not one of our sections, so don't allocate space. */
13510 continue;
13511 }
13512
13513 if (s->size == 0)
13514 {
13515 /* If we don't need this section, strip it from the
13516 output file. This is mostly to handle .rel(a).bss and
13517 .rel(a).plt. We must create both sections in
13518 create_dynamic_sections, because they must be created
13519 before the linker maps input sections to output
13520 sections. The linker does that before
13521 adjust_dynamic_symbol is called, and it is that
13522 function which decides whether anything needs to go
13523 into these sections. */
13524 s->flags |= SEC_EXCLUDE;
13525 continue;
13526 }
13527
13528 if ((s->flags & SEC_HAS_CONTENTS) == 0)
13529 continue;
13530
13531 /* Allocate memory for the section contents. */
13532 s->contents = (unsigned char *) bfd_zalloc (dynobj, s->size);
13533 if (s->contents == NULL)
13534 return FALSE;
13535 }
13536
13537 if (elf_hash_table (info)->dynamic_sections_created)
13538 {
13539 /* Add some entries to the .dynamic section. We fill in the
13540 values later, in elf32_arm_finish_dynamic_sections, but we
13541 must add the entries now so that we get the correct size for
13542 the .dynamic section. The DT_DEBUG entry is filled in by the
13543 dynamic linker and used by the debugger. */
13544 #define add_dynamic_entry(TAG, VAL) \
13545 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
13546
13547 if (info->executable)
13548 {
13549 if (!add_dynamic_entry (DT_DEBUG, 0))
13550 return FALSE;
13551 }
13552
13553 if (plt)
13554 {
13555 if ( !add_dynamic_entry (DT_PLTGOT, 0)
13556 || !add_dynamic_entry (DT_PLTRELSZ, 0)
13557 || !add_dynamic_entry (DT_PLTREL,
13558 htab->use_rel ? DT_REL : DT_RELA)
13559 || !add_dynamic_entry (DT_JMPREL, 0))
13560 return FALSE;
13561
13562 if (htab->dt_tlsdesc_plt &&
13563 (!add_dynamic_entry (DT_TLSDESC_PLT,0)
13564 || !add_dynamic_entry (DT_TLSDESC_GOT,0)))
13565 return FALSE;
13566 }
13567
13568 if (relocs)
13569 {
13570 if (htab->use_rel)
13571 {
13572 if (!add_dynamic_entry (DT_REL, 0)
13573 || !add_dynamic_entry (DT_RELSZ, 0)
13574 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
13575 return FALSE;
13576 }
13577 else
13578 {
13579 if (!add_dynamic_entry (DT_RELA, 0)
13580 || !add_dynamic_entry (DT_RELASZ, 0)
13581 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
13582 return FALSE;
13583 }
13584 }
13585
13586 /* If any dynamic relocs apply to a read-only section,
13587 then we need a DT_TEXTREL entry. */
13588 if ((info->flags & DF_TEXTREL) == 0)
13589 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
13590 info);
13591
13592 if ((info->flags & DF_TEXTREL) != 0)
13593 {
13594 if (!add_dynamic_entry (DT_TEXTREL, 0))
13595 return FALSE;
13596 }
13597 if (htab->vxworks_p
13598 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
13599 return FALSE;
13600 }
13601 #undef add_dynamic_entry
13602
13603 return TRUE;
13604 }
13605
13606 /* Size sections even though they're not dynamic. We use it to setup
13607 _TLS_MODULE_BASE_, if needed. */
13608
13609 static bfd_boolean
13610 elf32_arm_always_size_sections (bfd *output_bfd,
13611 struct bfd_link_info *info)
13612 {
13613 asection *tls_sec;
13614
13615 if (info->relocatable)
13616 return TRUE;
13617
13618 tls_sec = elf_hash_table (info)->tls_sec;
13619
13620 if (tls_sec)
13621 {
13622 struct elf_link_hash_entry *tlsbase;
13623
13624 tlsbase = elf_link_hash_lookup
13625 (elf_hash_table (info), "_TLS_MODULE_BASE_", TRUE, TRUE, FALSE);
13626
13627 if (tlsbase)
13628 {
13629 struct bfd_link_hash_entry *bh = NULL;
13630 const struct elf_backend_data *bed
13631 = get_elf_backend_data (output_bfd);
13632
13633 if (!(_bfd_generic_link_add_one_symbol
13634 (info, output_bfd, "_TLS_MODULE_BASE_", BSF_LOCAL,
13635 tls_sec, 0, NULL, FALSE,
13636 bed->collect, &bh)))
13637 return FALSE;
13638
13639 tlsbase->type = STT_TLS;
13640 tlsbase = (struct elf_link_hash_entry *)bh;
13641 tlsbase->def_regular = 1;
13642 tlsbase->other = STV_HIDDEN;
13643 (*bed->elf_backend_hide_symbol) (info, tlsbase, TRUE);
13644 }
13645 }
13646 return TRUE;
13647 }
13648
13649 /* Finish up dynamic symbol handling. We set the contents of various
13650 dynamic sections here. */
13651
13652 static bfd_boolean
13653 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
13654 struct bfd_link_info * info,
13655 struct elf_link_hash_entry * h,
13656 Elf_Internal_Sym * sym)
13657 {
13658 struct elf32_arm_link_hash_table *htab;
13659 struct elf32_arm_link_hash_entry *eh;
13660
13661 htab = elf32_arm_hash_table (info);
13662 if (htab == NULL)
13663 return FALSE;
13664
13665 eh = (struct elf32_arm_link_hash_entry *) h;
13666
13667 if (h->plt.offset != (bfd_vma) -1)
13668 {
13669 if (!eh->is_iplt)
13670 {
13671 BFD_ASSERT (h->dynindx != -1);
13672 elf32_arm_populate_plt_entry (output_bfd, info, &h->plt, &eh->plt,
13673 h->dynindx, 0);
13674 }
13675
13676 if (!h->def_regular)
13677 {
13678 /* Mark the symbol as undefined, rather than as defined in
13679 the .plt section. Leave the value alone. */
13680 sym->st_shndx = SHN_UNDEF;
13681 /* If the symbol is weak, we do need to clear the value.
13682 Otherwise, the PLT entry would provide a definition for
13683 the symbol even if the symbol wasn't defined anywhere,
13684 and so the symbol would never be NULL. */
13685 if (!h->ref_regular_nonweak)
13686 sym->st_value = 0;
13687 }
13688 else if (eh->is_iplt && eh->plt.noncall_refcount != 0)
13689 {
13690 /* At least one non-call relocation references this .iplt entry,
13691 so the .iplt entry is the function's canonical address. */
13692 sym->st_info = ELF_ST_INFO (ELF_ST_BIND (sym->st_info), STT_FUNC);
13693 sym->st_target_internal = ST_BRANCH_TO_ARM;
13694 sym->st_shndx = (_bfd_elf_section_from_bfd_section
13695 (output_bfd, htab->root.iplt->output_section));
13696 sym->st_value = (h->plt.offset
13697 + htab->root.iplt->output_section->vma
13698 + htab->root.iplt->output_offset);
13699 }
13700 }
13701
13702 if (h->needs_copy)
13703 {
13704 asection * s;
13705 Elf_Internal_Rela rel;
13706
13707 /* This symbol needs a copy reloc. Set it up. */
13708 BFD_ASSERT (h->dynindx != -1
13709 && (h->root.type == bfd_link_hash_defined
13710 || h->root.type == bfd_link_hash_defweak));
13711
13712 s = htab->srelbss;
13713 BFD_ASSERT (s != NULL);
13714
13715 rel.r_addend = 0;
13716 rel.r_offset = (h->root.u.def.value
13717 + h->root.u.def.section->output_section->vma
13718 + h->root.u.def.section->output_offset);
13719 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
13720 elf32_arm_add_dynreloc (output_bfd, info, s, &rel);
13721 }
13722
13723 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
13724 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
13725 to the ".got" section. */
13726 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
13727 || (!htab->vxworks_p && h == htab->root.hgot))
13728 sym->st_shndx = SHN_ABS;
13729
13730 return TRUE;
13731 }
13732
13733 static void
13734 arm_put_trampoline (struct elf32_arm_link_hash_table *htab, bfd *output_bfd,
13735 void *contents,
13736 const unsigned long *template, unsigned count)
13737 {
13738 unsigned ix;
13739
13740 for (ix = 0; ix != count; ix++)
13741 {
13742 unsigned long insn = template[ix];
13743
13744 /* Emit mov pc,rx if bx is not permitted. */
13745 if (htab->fix_v4bx == 1 && (insn & 0x0ffffff0) == 0x012fff10)
13746 insn = (insn & 0xf000000f) | 0x01a0f000;
13747 put_arm_insn (htab, output_bfd, insn, (char *)contents + ix*4);
13748 }
13749 }
13750
13751 /* Finish up the dynamic sections. */
13752
13753 static bfd_boolean
13754 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
13755 {
13756 bfd * dynobj;
13757 asection * sgot;
13758 asection * sdyn;
13759 struct elf32_arm_link_hash_table *htab;
13760
13761 htab = elf32_arm_hash_table (info);
13762 if (htab == NULL)
13763 return FALSE;
13764
13765 dynobj = elf_hash_table (info)->dynobj;
13766
13767 sgot = htab->root.sgotplt;
13768 /* A broken linker script might have discarded the dynamic sections.
13769 Catch this here so that we do not seg-fault later on. */
13770 if (sgot != NULL && bfd_is_abs_section (sgot->output_section))
13771 return FALSE;
13772 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
13773
13774 if (elf_hash_table (info)->dynamic_sections_created)
13775 {
13776 asection *splt;
13777 Elf32_External_Dyn *dyncon, *dynconend;
13778
13779 splt = htab->root.splt;
13780 BFD_ASSERT (splt != NULL && sdyn != NULL);
13781 BFD_ASSERT (htab->symbian_p || sgot != NULL);
13782
13783 dyncon = (Elf32_External_Dyn *) sdyn->contents;
13784 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
13785
13786 for (; dyncon < dynconend; dyncon++)
13787 {
13788 Elf_Internal_Dyn dyn;
13789 const char * name;
13790 asection * s;
13791
13792 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
13793
13794 switch (dyn.d_tag)
13795 {
13796 unsigned int type;
13797
13798 default:
13799 if (htab->vxworks_p
13800 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
13801 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13802 break;
13803
13804 case DT_HASH:
13805 name = ".hash";
13806 goto get_vma_if_bpabi;
13807 case DT_STRTAB:
13808 name = ".dynstr";
13809 goto get_vma_if_bpabi;
13810 case DT_SYMTAB:
13811 name = ".dynsym";
13812 goto get_vma_if_bpabi;
13813 case DT_VERSYM:
13814 name = ".gnu.version";
13815 goto get_vma_if_bpabi;
13816 case DT_VERDEF:
13817 name = ".gnu.version_d";
13818 goto get_vma_if_bpabi;
13819 case DT_VERNEED:
13820 name = ".gnu.version_r";
13821 goto get_vma_if_bpabi;
13822
13823 case DT_PLTGOT:
13824 name = ".got";
13825 goto get_vma;
13826 case DT_JMPREL:
13827 name = RELOC_SECTION (htab, ".plt");
13828 get_vma:
13829 s = bfd_get_section_by_name (output_bfd, name);
13830 BFD_ASSERT (s != NULL);
13831 if (!htab->symbian_p)
13832 dyn.d_un.d_ptr = s->vma;
13833 else
13834 /* In the BPABI, tags in the PT_DYNAMIC section point
13835 at the file offset, not the memory address, for the
13836 convenience of the post linker. */
13837 dyn.d_un.d_ptr = s->filepos;
13838 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13839 break;
13840
13841 get_vma_if_bpabi:
13842 if (htab->symbian_p)
13843 goto get_vma;
13844 break;
13845
13846 case DT_PLTRELSZ:
13847 s = htab->root.srelplt;
13848 BFD_ASSERT (s != NULL);
13849 dyn.d_un.d_val = s->size;
13850 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13851 break;
13852
13853 case DT_RELSZ:
13854 case DT_RELASZ:
13855 if (!htab->symbian_p)
13856 {
13857 /* My reading of the SVR4 ABI indicates that the
13858 procedure linkage table relocs (DT_JMPREL) should be
13859 included in the overall relocs (DT_REL). This is
13860 what Solaris does. However, UnixWare can not handle
13861 that case. Therefore, we override the DT_RELSZ entry
13862 here to make it not include the JMPREL relocs. Since
13863 the linker script arranges for .rel(a).plt to follow all
13864 other relocation sections, we don't have to worry
13865 about changing the DT_REL entry. */
13866 s = htab->root.srelplt;
13867 if (s != NULL)
13868 dyn.d_un.d_val -= s->size;
13869 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13870 break;
13871 }
13872 /* Fall through. */
13873
13874 case DT_REL:
13875 case DT_RELA:
13876 /* In the BPABI, the DT_REL tag must point at the file
13877 offset, not the VMA, of the first relocation
13878 section. So, we use code similar to that in
13879 elflink.c, but do not check for SHF_ALLOC on the
13880 relcoation section, since relocations sections are
13881 never allocated under the BPABI. The comments above
13882 about Unixware notwithstanding, we include all of the
13883 relocations here. */
13884 if (htab->symbian_p)
13885 {
13886 unsigned int i;
13887 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
13888 ? SHT_REL : SHT_RELA);
13889 dyn.d_un.d_val = 0;
13890 for (i = 1; i < elf_numsections (output_bfd); i++)
13891 {
13892 Elf_Internal_Shdr *hdr
13893 = elf_elfsections (output_bfd)[i];
13894 if (hdr->sh_type == type)
13895 {
13896 if (dyn.d_tag == DT_RELSZ
13897 || dyn.d_tag == DT_RELASZ)
13898 dyn.d_un.d_val += hdr->sh_size;
13899 else if ((ufile_ptr) hdr->sh_offset
13900 <= dyn.d_un.d_val - 1)
13901 dyn.d_un.d_val = hdr->sh_offset;
13902 }
13903 }
13904 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13905 }
13906 break;
13907
13908 case DT_TLSDESC_PLT:
13909 s = htab->root.splt;
13910 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
13911 + htab->dt_tlsdesc_plt);
13912 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13913 break;
13914
13915 case DT_TLSDESC_GOT:
13916 s = htab->root.sgot;
13917 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
13918 + htab->dt_tlsdesc_got);
13919 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13920 break;
13921
13922 /* Set the bottom bit of DT_INIT/FINI if the
13923 corresponding function is Thumb. */
13924 case DT_INIT:
13925 name = info->init_function;
13926 goto get_sym;
13927 case DT_FINI:
13928 name = info->fini_function;
13929 get_sym:
13930 /* If it wasn't set by elf_bfd_final_link
13931 then there is nothing to adjust. */
13932 if (dyn.d_un.d_val != 0)
13933 {
13934 struct elf_link_hash_entry * eh;
13935
13936 eh = elf_link_hash_lookup (elf_hash_table (info), name,
13937 FALSE, FALSE, TRUE);
13938 if (eh != NULL && eh->target_internal == ST_BRANCH_TO_THUMB)
13939 {
13940 dyn.d_un.d_val |= 1;
13941 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
13942 }
13943 }
13944 break;
13945 }
13946 }
13947
13948 /* Fill in the first entry in the procedure linkage table. */
13949 if (splt->size > 0 && htab->plt_header_size)
13950 {
13951 const bfd_vma *plt0_entry;
13952 bfd_vma got_address, plt_address, got_displacement;
13953
13954 /* Calculate the addresses of the GOT and PLT. */
13955 got_address = sgot->output_section->vma + sgot->output_offset;
13956 plt_address = splt->output_section->vma + splt->output_offset;
13957
13958 if (htab->vxworks_p)
13959 {
13960 /* The VxWorks GOT is relocated by the dynamic linker.
13961 Therefore, we must emit relocations rather than simply
13962 computing the values now. */
13963 Elf_Internal_Rela rel;
13964
13965 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
13966 put_arm_insn (htab, output_bfd, plt0_entry[0],
13967 splt->contents + 0);
13968 put_arm_insn (htab, output_bfd, plt0_entry[1],
13969 splt->contents + 4);
13970 put_arm_insn (htab, output_bfd, plt0_entry[2],
13971 splt->contents + 8);
13972 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
13973
13974 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
13975 rel.r_offset = plt_address + 12;
13976 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
13977 rel.r_addend = 0;
13978 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
13979 htab->srelplt2->contents);
13980 }
13981 else
13982 {
13983 got_displacement = got_address - (plt_address + 16);
13984
13985 plt0_entry = elf32_arm_plt0_entry;
13986 put_arm_insn (htab, output_bfd, plt0_entry[0],
13987 splt->contents + 0);
13988 put_arm_insn (htab, output_bfd, plt0_entry[1],
13989 splt->contents + 4);
13990 put_arm_insn (htab, output_bfd, plt0_entry[2],
13991 splt->contents + 8);
13992 put_arm_insn (htab, output_bfd, plt0_entry[3],
13993 splt->contents + 12);
13994
13995 #ifdef FOUR_WORD_PLT
13996 /* The displacement value goes in the otherwise-unused
13997 last word of the second entry. */
13998 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
13999 #else
14000 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
14001 #endif
14002 }
14003 }
14004
14005 /* UnixWare sets the entsize of .plt to 4, although that doesn't
14006 really seem like the right value. */
14007 if (splt->output_section->owner == output_bfd)
14008 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
14009
14010 if (htab->dt_tlsdesc_plt)
14011 {
14012 bfd_vma got_address
14013 = sgot->output_section->vma + sgot->output_offset;
14014 bfd_vma gotplt_address = (htab->root.sgot->output_section->vma
14015 + htab->root.sgot->output_offset);
14016 bfd_vma plt_address
14017 = splt->output_section->vma + splt->output_offset;
14018
14019 arm_put_trampoline (htab, output_bfd,
14020 splt->contents + htab->dt_tlsdesc_plt,
14021 dl_tlsdesc_lazy_trampoline, 6);
14022
14023 bfd_put_32 (output_bfd,
14024 gotplt_address + htab->dt_tlsdesc_got
14025 - (plt_address + htab->dt_tlsdesc_plt)
14026 - dl_tlsdesc_lazy_trampoline[6],
14027 splt->contents + htab->dt_tlsdesc_plt + 24);
14028 bfd_put_32 (output_bfd,
14029 got_address - (plt_address + htab->dt_tlsdesc_plt)
14030 - dl_tlsdesc_lazy_trampoline[7],
14031 splt->contents + htab->dt_tlsdesc_plt + 24 + 4);
14032 }
14033
14034 if (htab->tls_trampoline)
14035 {
14036 arm_put_trampoline (htab, output_bfd,
14037 splt->contents + htab->tls_trampoline,
14038 tls_trampoline, 3);
14039 #ifdef FOUR_WORD_PLT
14040 bfd_put_32 (output_bfd, 0x00000000,
14041 splt->contents + htab->tls_trampoline + 12);
14042 #endif
14043 }
14044
14045 if (htab->vxworks_p && !info->shared && htab->root.splt->size > 0)
14046 {
14047 /* Correct the .rel(a).plt.unloaded relocations. They will have
14048 incorrect symbol indexes. */
14049 int num_plts;
14050 unsigned char *p;
14051
14052 num_plts = ((htab->root.splt->size - htab->plt_header_size)
14053 / htab->plt_entry_size);
14054 p = htab->srelplt2->contents + RELOC_SIZE (htab);
14055
14056 for (; num_plts; num_plts--)
14057 {
14058 Elf_Internal_Rela rel;
14059
14060 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14061 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
14062 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14063 p += RELOC_SIZE (htab);
14064
14065 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
14066 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
14067 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
14068 p += RELOC_SIZE (htab);
14069 }
14070 }
14071 }
14072
14073 /* Fill in the first three entries in the global offset table. */
14074 if (sgot)
14075 {
14076 if (sgot->size > 0)
14077 {
14078 if (sdyn == NULL)
14079 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
14080 else
14081 bfd_put_32 (output_bfd,
14082 sdyn->output_section->vma + sdyn->output_offset,
14083 sgot->contents);
14084 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
14085 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
14086 }
14087
14088 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
14089 }
14090
14091 return TRUE;
14092 }
14093
14094 static void
14095 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
14096 {
14097 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
14098 struct elf32_arm_link_hash_table *globals;
14099
14100 i_ehdrp = elf_elfheader (abfd);
14101
14102 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
14103 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
14104 else
14105 i_ehdrp->e_ident[EI_OSABI] = 0;
14106 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
14107
14108 if (link_info)
14109 {
14110 globals = elf32_arm_hash_table (link_info);
14111 if (globals != NULL && globals->byteswap_code)
14112 i_ehdrp->e_flags |= EF_ARM_BE8;
14113 }
14114 }
14115
14116 static enum elf_reloc_type_class
14117 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
14118 {
14119 switch ((int) ELF32_R_TYPE (rela->r_info))
14120 {
14121 case R_ARM_RELATIVE:
14122 return reloc_class_relative;
14123 case R_ARM_JUMP_SLOT:
14124 return reloc_class_plt;
14125 case R_ARM_COPY:
14126 return reloc_class_copy;
14127 default:
14128 return reloc_class_normal;
14129 }
14130 }
14131
14132 static void
14133 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
14134 {
14135 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
14136 }
14137
14138 /* Return TRUE if this is an unwinding table entry. */
14139
14140 static bfd_boolean
14141 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
14142 {
14143 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
14144 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
14145 }
14146
14147
14148 /* Set the type and flags for an ARM section. We do this by
14149 the section name, which is a hack, but ought to work. */
14150
14151 static bfd_boolean
14152 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
14153 {
14154 const char * name;
14155
14156 name = bfd_get_section_name (abfd, sec);
14157
14158 if (is_arm_elf_unwind_section_name (abfd, name))
14159 {
14160 hdr->sh_type = SHT_ARM_EXIDX;
14161 hdr->sh_flags |= SHF_LINK_ORDER;
14162 }
14163 return TRUE;
14164 }
14165
14166 /* Handle an ARM specific section when reading an object file. This is
14167 called when bfd_section_from_shdr finds a section with an unknown
14168 type. */
14169
14170 static bfd_boolean
14171 elf32_arm_section_from_shdr (bfd *abfd,
14172 Elf_Internal_Shdr * hdr,
14173 const char *name,
14174 int shindex)
14175 {
14176 /* There ought to be a place to keep ELF backend specific flags, but
14177 at the moment there isn't one. We just keep track of the
14178 sections by their name, instead. Fortunately, the ABI gives
14179 names for all the ARM specific sections, so we will probably get
14180 away with this. */
14181 switch (hdr->sh_type)
14182 {
14183 case SHT_ARM_EXIDX:
14184 case SHT_ARM_PREEMPTMAP:
14185 case SHT_ARM_ATTRIBUTES:
14186 break;
14187
14188 default:
14189 return FALSE;
14190 }
14191
14192 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
14193 return FALSE;
14194
14195 return TRUE;
14196 }
14197
14198 static _arm_elf_section_data *
14199 get_arm_elf_section_data (asection * sec)
14200 {
14201 if (sec && sec->owner && is_arm_elf (sec->owner))
14202 return elf32_arm_section_data (sec);
14203 else
14204 return NULL;
14205 }
14206
14207 typedef struct
14208 {
14209 void *finfo;
14210 struct bfd_link_info *info;
14211 asection *sec;
14212 int sec_shndx;
14213 int (*func) (void *, const char *, Elf_Internal_Sym *,
14214 asection *, struct elf_link_hash_entry *);
14215 } output_arch_syminfo;
14216
14217 enum map_symbol_type
14218 {
14219 ARM_MAP_ARM,
14220 ARM_MAP_THUMB,
14221 ARM_MAP_DATA
14222 };
14223
14224
14225 /* Output a single mapping symbol. */
14226
14227 static bfd_boolean
14228 elf32_arm_output_map_sym (output_arch_syminfo *osi,
14229 enum map_symbol_type type,
14230 bfd_vma offset)
14231 {
14232 static const char *names[3] = {"$a", "$t", "$d"};
14233 Elf_Internal_Sym sym;
14234
14235 sym.st_value = osi->sec->output_section->vma
14236 + osi->sec->output_offset
14237 + offset;
14238 sym.st_size = 0;
14239 sym.st_other = 0;
14240 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
14241 sym.st_shndx = osi->sec_shndx;
14242 sym.st_target_internal = 0;
14243 elf32_arm_section_map_add (osi->sec, names[type][1], offset);
14244 return osi->func (osi->finfo, names[type], &sym, osi->sec, NULL) == 1;
14245 }
14246
14247 /* Output mapping symbols for the PLT entry described by ROOT_PLT and ARM_PLT.
14248 IS_IPLT_ENTRY_P says whether the PLT is in .iplt rather than .plt. */
14249
14250 static bfd_boolean
14251 elf32_arm_output_plt_map_1 (output_arch_syminfo *osi,
14252 bfd_boolean is_iplt_entry_p,
14253 union gotplt_union *root_plt,
14254 struct arm_plt_info *arm_plt)
14255 {
14256 struct elf32_arm_link_hash_table *htab;
14257 bfd_vma addr, plt_header_size;
14258
14259 if (root_plt->offset == (bfd_vma) -1)
14260 return TRUE;
14261
14262 htab = elf32_arm_hash_table (osi->info);
14263 if (htab == NULL)
14264 return FALSE;
14265
14266 if (is_iplt_entry_p)
14267 {
14268 osi->sec = htab->root.iplt;
14269 plt_header_size = 0;
14270 }
14271 else
14272 {
14273 osi->sec = htab->root.splt;
14274 plt_header_size = htab->plt_header_size;
14275 }
14276 osi->sec_shndx = (_bfd_elf_section_from_bfd_section
14277 (osi->info->output_bfd, osi->sec->output_section));
14278
14279 addr = root_plt->offset & -2;
14280 if (htab->symbian_p)
14281 {
14282 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14283 return FALSE;
14284 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
14285 return FALSE;
14286 }
14287 else if (htab->vxworks_p)
14288 {
14289 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14290 return FALSE;
14291 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
14292 return FALSE;
14293 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
14294 return FALSE;
14295 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
14296 return FALSE;
14297 }
14298 else
14299 {
14300 bfd_boolean thumb_stub_p;
14301
14302 thumb_stub_p = elf32_arm_plt_needs_thumb_stub_p (osi->info, arm_plt);
14303 if (thumb_stub_p)
14304 {
14305 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
14306 return FALSE;
14307 }
14308 #ifdef FOUR_WORD_PLT
14309 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14310 return FALSE;
14311 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
14312 return FALSE;
14313 #else
14314 /* A three-word PLT with no Thumb thunk contains only Arm code,
14315 so only need to output a mapping symbol for the first PLT entry and
14316 entries with thumb thunks. */
14317 if (thumb_stub_p || addr == plt_header_size)
14318 {
14319 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
14320 return FALSE;
14321 }
14322 #endif
14323 }
14324
14325 return TRUE;
14326 }
14327
14328 /* Output mapping symbols for PLT entries associated with H. */
14329
14330 static bfd_boolean
14331 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
14332 {
14333 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
14334 struct elf32_arm_link_hash_entry *eh;
14335
14336 if (h->root.type == bfd_link_hash_indirect)
14337 return TRUE;
14338
14339 if (h->root.type == bfd_link_hash_warning)
14340 /* When warning symbols are created, they **replace** the "real"
14341 entry in the hash table, thus we never get to see the real
14342 symbol in a hash traversal. So look at it now. */
14343 h = (struct elf_link_hash_entry *) h->root.u.i.link;
14344
14345 eh = (struct elf32_arm_link_hash_entry *) h;
14346 return elf32_arm_output_plt_map_1 (osi, SYMBOL_CALLS_LOCAL (osi->info, h),
14347 &h->plt, &eh->plt);
14348 }
14349
14350 /* Output a single local symbol for a generated stub. */
14351
14352 static bfd_boolean
14353 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
14354 bfd_vma offset, bfd_vma size)
14355 {
14356 Elf_Internal_Sym sym;
14357
14358 sym.st_value = osi->sec->output_section->vma
14359 + osi->sec->output_offset
14360 + offset;
14361 sym.st_size = size;
14362 sym.st_other = 0;
14363 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
14364 sym.st_shndx = osi->sec_shndx;
14365 sym.st_target_internal = 0;
14366 return osi->func (osi->finfo, name, &sym, osi->sec, NULL) == 1;
14367 }
14368
14369 static bfd_boolean
14370 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
14371 void * in_arg)
14372 {
14373 struct elf32_arm_stub_hash_entry *stub_entry;
14374 asection *stub_sec;
14375 bfd_vma addr;
14376 char *stub_name;
14377 output_arch_syminfo *osi;
14378 const insn_sequence *template_sequence;
14379 enum stub_insn_type prev_type;
14380 int size;
14381 int i;
14382 enum map_symbol_type sym_type;
14383
14384 /* Massage our args to the form they really have. */
14385 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14386 osi = (output_arch_syminfo *) in_arg;
14387
14388 stub_sec = stub_entry->stub_sec;
14389
14390 /* Ensure this stub is attached to the current section being
14391 processed. */
14392 if (stub_sec != osi->sec)
14393 return TRUE;
14394
14395 addr = (bfd_vma) stub_entry->stub_offset;
14396 stub_name = stub_entry->output_name;
14397
14398 template_sequence = stub_entry->stub_template;
14399 switch (template_sequence[0].type)
14400 {
14401 case ARM_TYPE:
14402 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, stub_entry->stub_size))
14403 return FALSE;
14404 break;
14405 case THUMB16_TYPE:
14406 case THUMB32_TYPE:
14407 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1,
14408 stub_entry->stub_size))
14409 return FALSE;
14410 break;
14411 default:
14412 BFD_FAIL ();
14413 return 0;
14414 }
14415
14416 prev_type = DATA_TYPE;
14417 size = 0;
14418 for (i = 0; i < stub_entry->stub_template_size; i++)
14419 {
14420 switch (template_sequence[i].type)
14421 {
14422 case ARM_TYPE:
14423 sym_type = ARM_MAP_ARM;
14424 break;
14425
14426 case THUMB16_TYPE:
14427 case THUMB32_TYPE:
14428 sym_type = ARM_MAP_THUMB;
14429 break;
14430
14431 case DATA_TYPE:
14432 sym_type = ARM_MAP_DATA;
14433 break;
14434
14435 default:
14436 BFD_FAIL ();
14437 return FALSE;
14438 }
14439
14440 if (template_sequence[i].type != prev_type)
14441 {
14442 prev_type = template_sequence[i].type;
14443 if (!elf32_arm_output_map_sym (osi, sym_type, addr + size))
14444 return FALSE;
14445 }
14446
14447 switch (template_sequence[i].type)
14448 {
14449 case ARM_TYPE:
14450 case THUMB32_TYPE:
14451 size += 4;
14452 break;
14453
14454 case THUMB16_TYPE:
14455 size += 2;
14456 break;
14457
14458 case DATA_TYPE:
14459 size += 4;
14460 break;
14461
14462 default:
14463 BFD_FAIL ();
14464 return FALSE;
14465 }
14466 }
14467
14468 return TRUE;
14469 }
14470
14471 /* Output mapping symbols for linker generated sections,
14472 and for those data-only sections that do not have a
14473 $d. */
14474
14475 static bfd_boolean
14476 elf32_arm_output_arch_local_syms (bfd *output_bfd,
14477 struct bfd_link_info *info,
14478 void *finfo,
14479 int (*func) (void *, const char *,
14480 Elf_Internal_Sym *,
14481 asection *,
14482 struct elf_link_hash_entry *))
14483 {
14484 output_arch_syminfo osi;
14485 struct elf32_arm_link_hash_table *htab;
14486 bfd_vma offset;
14487 bfd_size_type size;
14488 bfd *input_bfd;
14489
14490 htab = elf32_arm_hash_table (info);
14491 if (htab == NULL)
14492 return FALSE;
14493
14494 check_use_blx (htab);
14495
14496 osi.finfo = finfo;
14497 osi.info = info;
14498 osi.func = func;
14499
14500 /* Add a $d mapping symbol to data-only sections that
14501 don't have any mapping symbol. This may result in (harmless) redundant
14502 mapping symbols. */
14503 for (input_bfd = info->input_bfds;
14504 input_bfd != NULL;
14505 input_bfd = input_bfd->link_next)
14506 {
14507 if ((input_bfd->flags & (BFD_LINKER_CREATED | HAS_SYMS)) == HAS_SYMS)
14508 for (osi.sec = input_bfd->sections;
14509 osi.sec != NULL;
14510 osi.sec = osi.sec->next)
14511 {
14512 if (osi.sec->output_section != NULL
14513 && ((osi.sec->output_section->flags & (SEC_ALLOC | SEC_CODE))
14514 != 0)
14515 && (osi.sec->flags & (SEC_HAS_CONTENTS | SEC_LINKER_CREATED))
14516 == SEC_HAS_CONTENTS
14517 && get_arm_elf_section_data (osi.sec) != NULL
14518 && get_arm_elf_section_data (osi.sec)->mapcount == 0
14519 && osi.sec->size > 0
14520 && (osi.sec->flags & SEC_EXCLUDE) == 0)
14521 {
14522 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14523 (output_bfd, osi.sec->output_section);
14524 if (osi.sec_shndx != (int)SHN_BAD)
14525 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 0);
14526 }
14527 }
14528 }
14529
14530 /* ARM->Thumb glue. */
14531 if (htab->arm_glue_size > 0)
14532 {
14533 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14534 ARM2THUMB_GLUE_SECTION_NAME);
14535
14536 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14537 (output_bfd, osi.sec->output_section);
14538 if (info->shared || htab->root.is_relocatable_executable
14539 || htab->pic_veneer)
14540 size = ARM2THUMB_PIC_GLUE_SIZE;
14541 else if (htab->use_blx)
14542 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
14543 else
14544 size = ARM2THUMB_STATIC_GLUE_SIZE;
14545
14546 for (offset = 0; offset < htab->arm_glue_size; offset += size)
14547 {
14548 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
14549 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
14550 }
14551 }
14552
14553 /* Thumb->ARM glue. */
14554 if (htab->thumb_glue_size > 0)
14555 {
14556 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14557 THUMB2ARM_GLUE_SECTION_NAME);
14558
14559 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14560 (output_bfd, osi.sec->output_section);
14561 size = THUMB2ARM_GLUE_SIZE;
14562
14563 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
14564 {
14565 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
14566 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
14567 }
14568 }
14569
14570 /* ARMv4 BX veneers. */
14571 if (htab->bx_glue_size > 0)
14572 {
14573 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
14574 ARM_BX_GLUE_SECTION_NAME);
14575
14576 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14577 (output_bfd, osi.sec->output_section);
14578
14579 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
14580 }
14581
14582 /* Long calls stubs. */
14583 if (htab->stub_bfd && htab->stub_bfd->sections)
14584 {
14585 asection* stub_sec;
14586
14587 for (stub_sec = htab->stub_bfd->sections;
14588 stub_sec != NULL;
14589 stub_sec = stub_sec->next)
14590 {
14591 /* Ignore non-stub sections. */
14592 if (!strstr (stub_sec->name, STUB_SUFFIX))
14593 continue;
14594
14595 osi.sec = stub_sec;
14596
14597 osi.sec_shndx = _bfd_elf_section_from_bfd_section
14598 (output_bfd, osi.sec->output_section);
14599
14600 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
14601 }
14602 }
14603
14604 /* Finally, output mapping symbols for the PLT. */
14605 if (htab->root.splt && htab->root.splt->size > 0)
14606 {
14607 osi.sec = htab->root.splt;
14608 osi.sec_shndx = (_bfd_elf_section_from_bfd_section
14609 (output_bfd, osi.sec->output_section));
14610
14611 /* Output mapping symbols for the plt header. SymbianOS does not have a
14612 plt header. */
14613 if (htab->vxworks_p)
14614 {
14615 /* VxWorks shared libraries have no PLT header. */
14616 if (!info->shared)
14617 {
14618 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14619 return FALSE;
14620 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
14621 return FALSE;
14622 }
14623 }
14624 else if (!htab->symbian_p)
14625 {
14626 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
14627 return FALSE;
14628 #ifndef FOUR_WORD_PLT
14629 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
14630 return FALSE;
14631 #endif
14632 }
14633 }
14634 if ((htab->root.splt && htab->root.splt->size > 0)
14635 || (htab->root.iplt && htab->root.iplt->size > 0))
14636 {
14637 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, &osi);
14638 for (input_bfd = info->input_bfds;
14639 input_bfd != NULL;
14640 input_bfd = input_bfd->link_next)
14641 {
14642 struct arm_local_iplt_info **local_iplt;
14643 unsigned int i, num_syms;
14644
14645 local_iplt = elf32_arm_local_iplt (input_bfd);
14646 if (local_iplt != NULL)
14647 {
14648 num_syms = elf_symtab_hdr (input_bfd).sh_info;
14649 for (i = 0; i < num_syms; i++)
14650 if (local_iplt[i] != NULL
14651 && !elf32_arm_output_plt_map_1 (&osi, TRUE,
14652 &local_iplt[i]->root,
14653 &local_iplt[i]->arm))
14654 return FALSE;
14655 }
14656 }
14657 }
14658 if (htab->dt_tlsdesc_plt != 0)
14659 {
14660 /* Mapping symbols for the lazy tls trampoline. */
14661 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->dt_tlsdesc_plt))
14662 return FALSE;
14663
14664 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
14665 htab->dt_tlsdesc_plt + 24))
14666 return FALSE;
14667 }
14668 if (htab->tls_trampoline != 0)
14669 {
14670 /* Mapping symbols for the tls trampoline. */
14671 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, htab->tls_trampoline))
14672 return FALSE;
14673 #ifdef FOUR_WORD_PLT
14674 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA,
14675 htab->tls_trampoline + 12))
14676 return FALSE;
14677 #endif
14678 }
14679
14680 return TRUE;
14681 }
14682
14683 /* Allocate target specific section data. */
14684
14685 static bfd_boolean
14686 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
14687 {
14688 if (!sec->used_by_bfd)
14689 {
14690 _arm_elf_section_data *sdata;
14691 bfd_size_type amt = sizeof (*sdata);
14692
14693 sdata = (_arm_elf_section_data *) bfd_zalloc (abfd, amt);
14694 if (sdata == NULL)
14695 return FALSE;
14696 sec->used_by_bfd = sdata;
14697 }
14698
14699 return _bfd_elf_new_section_hook (abfd, sec);
14700 }
14701
14702
14703 /* Used to order a list of mapping symbols by address. */
14704
14705 static int
14706 elf32_arm_compare_mapping (const void * a, const void * b)
14707 {
14708 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
14709 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
14710
14711 if (amap->vma > bmap->vma)
14712 return 1;
14713 else if (amap->vma < bmap->vma)
14714 return -1;
14715 else if (amap->type > bmap->type)
14716 /* Ensure results do not depend on the host qsort for objects with
14717 multiple mapping symbols at the same address by sorting on type
14718 after vma. */
14719 return 1;
14720 else if (amap->type < bmap->type)
14721 return -1;
14722 else
14723 return 0;
14724 }
14725
14726 /* Add OFFSET to lower 31 bits of ADDR, leaving other bits unmodified. */
14727
14728 static unsigned long
14729 offset_prel31 (unsigned long addr, bfd_vma offset)
14730 {
14731 return (addr & ~0x7ffffffful) | ((addr + offset) & 0x7ffffffful);
14732 }
14733
14734 /* Copy an .ARM.exidx table entry, adding OFFSET to (applied) PREL31
14735 relocations. */
14736
14737 static void
14738 copy_exidx_entry (bfd *output_bfd, bfd_byte *to, bfd_byte *from, bfd_vma offset)
14739 {
14740 unsigned long first_word = bfd_get_32 (output_bfd, from);
14741 unsigned long second_word = bfd_get_32 (output_bfd, from + 4);
14742
14743 /* High bit of first word is supposed to be zero. */
14744 if ((first_word & 0x80000000ul) == 0)
14745 first_word = offset_prel31 (first_word, offset);
14746
14747 /* If the high bit of the first word is clear, and the bit pattern is not 0x1
14748 (EXIDX_CANTUNWIND), this is an offset to an .ARM.extab entry. */
14749 if ((second_word != 0x1) && ((second_word & 0x80000000ul) == 0))
14750 second_word = offset_prel31 (second_word, offset);
14751
14752 bfd_put_32 (output_bfd, first_word, to);
14753 bfd_put_32 (output_bfd, second_word, to + 4);
14754 }
14755
14756 /* Data for make_branch_to_a8_stub(). */
14757
14758 struct a8_branch_to_stub_data {
14759 asection *writing_section;
14760 bfd_byte *contents;
14761 };
14762
14763
14764 /* Helper to insert branches to Cortex-A8 erratum stubs in the right
14765 places for a particular section. */
14766
14767 static bfd_boolean
14768 make_branch_to_a8_stub (struct bfd_hash_entry *gen_entry,
14769 void *in_arg)
14770 {
14771 struct elf32_arm_stub_hash_entry *stub_entry;
14772 struct a8_branch_to_stub_data *data;
14773 bfd_byte *contents;
14774 unsigned long branch_insn;
14775 bfd_vma veneered_insn_loc, veneer_entry_loc;
14776 bfd_signed_vma branch_offset;
14777 bfd *abfd;
14778 unsigned int target;
14779
14780 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
14781 data = (struct a8_branch_to_stub_data *) in_arg;
14782
14783 if (stub_entry->target_section != data->writing_section
14784 || stub_entry->stub_type < arm_stub_a8_veneer_lwm)
14785 return TRUE;
14786
14787 contents = data->contents;
14788
14789 veneered_insn_loc = stub_entry->target_section->output_section->vma
14790 + stub_entry->target_section->output_offset
14791 + stub_entry->target_value;
14792
14793 veneer_entry_loc = stub_entry->stub_sec->output_section->vma
14794 + stub_entry->stub_sec->output_offset
14795 + stub_entry->stub_offset;
14796
14797 if (stub_entry->stub_type == arm_stub_a8_veneer_blx)
14798 veneered_insn_loc &= ~3u;
14799
14800 branch_offset = veneer_entry_loc - veneered_insn_loc - 4;
14801
14802 abfd = stub_entry->target_section->owner;
14803 target = stub_entry->target_value;
14804
14805 /* We attempt to avoid this condition by setting stubs_always_after_branch
14806 in elf32_arm_size_stubs if we've enabled the Cortex-A8 erratum workaround.
14807 This check is just to be on the safe side... */
14808 if ((veneered_insn_loc & ~0xfff) == (veneer_entry_loc & ~0xfff))
14809 {
14810 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub is "
14811 "allocated in unsafe location"), abfd);
14812 return FALSE;
14813 }
14814
14815 switch (stub_entry->stub_type)
14816 {
14817 case arm_stub_a8_veneer_b:
14818 case arm_stub_a8_veneer_b_cond:
14819 branch_insn = 0xf0009000;
14820 goto jump24;
14821
14822 case arm_stub_a8_veneer_blx:
14823 branch_insn = 0xf000e800;
14824 goto jump24;
14825
14826 case arm_stub_a8_veneer_bl:
14827 {
14828 unsigned int i1, j1, i2, j2, s;
14829
14830 branch_insn = 0xf000d000;
14831
14832 jump24:
14833 if (branch_offset < -16777216 || branch_offset > 16777214)
14834 {
14835 /* There's not much we can do apart from complain if this
14836 happens. */
14837 (*_bfd_error_handler) (_("%B: error: Cortex-A8 erratum stub out "
14838 "of range (input file too large)"), abfd);
14839 return FALSE;
14840 }
14841
14842 /* i1 = not(j1 eor s), so:
14843 not i1 = j1 eor s
14844 j1 = (not i1) eor s. */
14845
14846 branch_insn |= (branch_offset >> 1) & 0x7ff;
14847 branch_insn |= ((branch_offset >> 12) & 0x3ff) << 16;
14848 i2 = (branch_offset >> 22) & 1;
14849 i1 = (branch_offset >> 23) & 1;
14850 s = (branch_offset >> 24) & 1;
14851 j1 = (!i1) ^ s;
14852 j2 = (!i2) ^ s;
14853 branch_insn |= j2 << 11;
14854 branch_insn |= j1 << 13;
14855 branch_insn |= s << 26;
14856 }
14857 break;
14858
14859 default:
14860 BFD_FAIL ();
14861 return FALSE;
14862 }
14863
14864 bfd_put_16 (abfd, (branch_insn >> 16) & 0xffff, &contents[target]);
14865 bfd_put_16 (abfd, branch_insn & 0xffff, &contents[target + 2]);
14866
14867 return TRUE;
14868 }
14869
14870 /* Do code byteswapping. Return FALSE afterwards so that the section is
14871 written out as normal. */
14872
14873 static bfd_boolean
14874 elf32_arm_write_section (bfd *output_bfd,
14875 struct bfd_link_info *link_info,
14876 asection *sec,
14877 bfd_byte *contents)
14878 {
14879 unsigned int mapcount, errcount;
14880 _arm_elf_section_data *arm_data;
14881 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
14882 elf32_arm_section_map *map;
14883 elf32_vfp11_erratum_list *errnode;
14884 bfd_vma ptr;
14885 bfd_vma end;
14886 bfd_vma offset = sec->output_section->vma + sec->output_offset;
14887 bfd_byte tmp;
14888 unsigned int i;
14889
14890 if (globals == NULL)
14891 return FALSE;
14892
14893 /* If this section has not been allocated an _arm_elf_section_data
14894 structure then we cannot record anything. */
14895 arm_data = get_arm_elf_section_data (sec);
14896 if (arm_data == NULL)
14897 return FALSE;
14898
14899 mapcount = arm_data->mapcount;
14900 map = arm_data->map;
14901 errcount = arm_data->erratumcount;
14902
14903 if (errcount != 0)
14904 {
14905 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
14906
14907 for (errnode = arm_data->erratumlist; errnode != 0;
14908 errnode = errnode->next)
14909 {
14910 bfd_vma target = errnode->vma - offset;
14911
14912 switch (errnode->type)
14913 {
14914 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
14915 {
14916 bfd_vma branch_to_veneer;
14917 /* Original condition code of instruction, plus bit mask for
14918 ARM B instruction. */
14919 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
14920 | 0x0a000000;
14921
14922 /* The instruction is before the label. */
14923 target -= 4;
14924
14925 /* Above offset included in -4 below. */
14926 branch_to_veneer = errnode->u.b.veneer->vma
14927 - errnode->vma - 4;
14928
14929 if ((signed) branch_to_veneer < -(1 << 25)
14930 || (signed) branch_to_veneer >= (1 << 25))
14931 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
14932 "range"), output_bfd);
14933
14934 insn |= (branch_to_veneer >> 2) & 0xffffff;
14935 contents[endianflip ^ target] = insn & 0xff;
14936 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
14937 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
14938 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
14939 }
14940 break;
14941
14942 case VFP11_ERRATUM_ARM_VENEER:
14943 {
14944 bfd_vma branch_from_veneer;
14945 unsigned int insn;
14946
14947 /* Take size of veneer into account. */
14948 branch_from_veneer = errnode->u.v.branch->vma
14949 - errnode->vma - 12;
14950
14951 if ((signed) branch_from_veneer < -(1 << 25)
14952 || (signed) branch_from_veneer >= (1 << 25))
14953 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
14954 "range"), output_bfd);
14955
14956 /* Original instruction. */
14957 insn = errnode->u.v.branch->u.b.vfp_insn;
14958 contents[endianflip ^ target] = insn & 0xff;
14959 contents[endianflip ^ (target + 1)] = (insn >> 8) & 0xff;
14960 contents[endianflip ^ (target + 2)] = (insn >> 16) & 0xff;
14961 contents[endianflip ^ (target + 3)] = (insn >> 24) & 0xff;
14962
14963 /* Branch back to insn after original insn. */
14964 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
14965 contents[endianflip ^ (target + 4)] = insn & 0xff;
14966 contents[endianflip ^ (target + 5)] = (insn >> 8) & 0xff;
14967 contents[endianflip ^ (target + 6)] = (insn >> 16) & 0xff;
14968 contents[endianflip ^ (target + 7)] = (insn >> 24) & 0xff;
14969 }
14970 break;
14971
14972 default:
14973 abort ();
14974 }
14975 }
14976 }
14977
14978 if (arm_data->elf.this_hdr.sh_type == SHT_ARM_EXIDX)
14979 {
14980 arm_unwind_table_edit *edit_node
14981 = arm_data->u.exidx.unwind_edit_list;
14982 /* Now, sec->size is the size of the section we will write. The original
14983 size (before we merged duplicate entries and inserted EXIDX_CANTUNWIND
14984 markers) was sec->rawsize. (This isn't the case if we perform no
14985 edits, then rawsize will be zero and we should use size). */
14986 bfd_byte *edited_contents = (bfd_byte *) bfd_malloc (sec->size);
14987 unsigned int input_size = sec->rawsize ? sec->rawsize : sec->size;
14988 unsigned int in_index, out_index;
14989 bfd_vma add_to_offsets = 0;
14990
14991 for (in_index = 0, out_index = 0; in_index * 8 < input_size || edit_node;)
14992 {
14993 if (edit_node)
14994 {
14995 unsigned int edit_index = edit_node->index;
14996
14997 if (in_index < edit_index && in_index * 8 < input_size)
14998 {
14999 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15000 contents + in_index * 8, add_to_offsets);
15001 out_index++;
15002 in_index++;
15003 }
15004 else if (in_index == edit_index
15005 || (in_index * 8 >= input_size
15006 && edit_index == UINT_MAX))
15007 {
15008 switch (edit_node->type)
15009 {
15010 case DELETE_EXIDX_ENTRY:
15011 in_index++;
15012 add_to_offsets += 8;
15013 break;
15014
15015 case INSERT_EXIDX_CANTUNWIND_AT_END:
15016 {
15017 asection *text_sec = edit_node->linked_section;
15018 bfd_vma text_offset = text_sec->output_section->vma
15019 + text_sec->output_offset
15020 + text_sec->size;
15021 bfd_vma exidx_offset = offset + out_index * 8;
15022 unsigned long prel31_offset;
15023
15024 /* Note: this is meant to be equivalent to an
15025 R_ARM_PREL31 relocation. These synthetic
15026 EXIDX_CANTUNWIND markers are not relocated by the
15027 usual BFD method. */
15028 prel31_offset = (text_offset - exidx_offset)
15029 & 0x7ffffffful;
15030
15031 /* First address we can't unwind. */
15032 bfd_put_32 (output_bfd, prel31_offset,
15033 &edited_contents[out_index * 8]);
15034
15035 /* Code for EXIDX_CANTUNWIND. */
15036 bfd_put_32 (output_bfd, 0x1,
15037 &edited_contents[out_index * 8 + 4]);
15038
15039 out_index++;
15040 add_to_offsets -= 8;
15041 }
15042 break;
15043 }
15044
15045 edit_node = edit_node->next;
15046 }
15047 }
15048 else
15049 {
15050 /* No more edits, copy remaining entries verbatim. */
15051 copy_exidx_entry (output_bfd, edited_contents + out_index * 8,
15052 contents + in_index * 8, add_to_offsets);
15053 out_index++;
15054 in_index++;
15055 }
15056 }
15057
15058 if (!(sec->flags & SEC_EXCLUDE) && !(sec->flags & SEC_NEVER_LOAD))
15059 bfd_set_section_contents (output_bfd, sec->output_section,
15060 edited_contents,
15061 (file_ptr) sec->output_offset, sec->size);
15062
15063 return TRUE;
15064 }
15065
15066 /* Fix code to point to Cortex-A8 erratum stubs. */
15067 if (globals->fix_cortex_a8)
15068 {
15069 struct a8_branch_to_stub_data data;
15070
15071 data.writing_section = sec;
15072 data.contents = contents;
15073
15074 bfd_hash_traverse (&globals->stub_hash_table, make_branch_to_a8_stub,
15075 &data);
15076 }
15077
15078 if (mapcount == 0)
15079 return FALSE;
15080
15081 if (globals->byteswap_code)
15082 {
15083 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
15084
15085 ptr = map[0].vma;
15086 for (i = 0; i < mapcount; i++)
15087 {
15088 if (i == mapcount - 1)
15089 end = sec->size;
15090 else
15091 end = map[i + 1].vma;
15092
15093 switch (map[i].type)
15094 {
15095 case 'a':
15096 /* Byte swap code words. */
15097 while (ptr + 3 < end)
15098 {
15099 tmp = contents[ptr];
15100 contents[ptr] = contents[ptr + 3];
15101 contents[ptr + 3] = tmp;
15102 tmp = contents[ptr + 1];
15103 contents[ptr + 1] = contents[ptr + 2];
15104 contents[ptr + 2] = tmp;
15105 ptr += 4;
15106 }
15107 break;
15108
15109 case 't':
15110 /* Byte swap code halfwords. */
15111 while (ptr + 1 < end)
15112 {
15113 tmp = contents[ptr];
15114 contents[ptr] = contents[ptr + 1];
15115 contents[ptr + 1] = tmp;
15116 ptr += 2;
15117 }
15118 break;
15119
15120 case 'd':
15121 /* Leave data alone. */
15122 break;
15123 }
15124 ptr = end;
15125 }
15126 }
15127
15128 free (map);
15129 arm_data->mapcount = -1;
15130 arm_data->mapsize = 0;
15131 arm_data->map = NULL;
15132
15133 return FALSE;
15134 }
15135
15136 /* Mangle thumb function symbols as we read them in. */
15137
15138 static bfd_boolean
15139 elf32_arm_swap_symbol_in (bfd * abfd,
15140 const void *psrc,
15141 const void *pshn,
15142 Elf_Internal_Sym *dst)
15143 {
15144 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
15145 return FALSE;
15146
15147 /* New EABI objects mark thumb function symbols by setting the low bit of
15148 the address. */
15149 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
15150 || ELF_ST_TYPE (dst->st_info) == STT_GNU_IFUNC)
15151 {
15152 if (dst->st_value & 1)
15153 {
15154 dst->st_value &= ~(bfd_vma) 1;
15155 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15156 }
15157 else
15158 dst->st_target_internal = ST_BRANCH_TO_ARM;
15159 }
15160 else if (ELF_ST_TYPE (dst->st_info) == STT_ARM_TFUNC)
15161 {
15162 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_FUNC);
15163 dst->st_target_internal = ST_BRANCH_TO_THUMB;
15164 }
15165 else if (ELF_ST_TYPE (dst->st_info) == STT_SECTION)
15166 dst->st_target_internal = ST_BRANCH_LONG;
15167 else
15168 dst->st_target_internal = ST_BRANCH_UNKNOWN;
15169
15170 return TRUE;
15171 }
15172
15173
15174 /* Mangle thumb function symbols as we write them out. */
15175
15176 static void
15177 elf32_arm_swap_symbol_out (bfd *abfd,
15178 const Elf_Internal_Sym *src,
15179 void *cdst,
15180 void *shndx)
15181 {
15182 Elf_Internal_Sym newsym;
15183
15184 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
15185 of the address set, as per the new EABI. We do this unconditionally
15186 because objcopy does not set the elf header flags until after
15187 it writes out the symbol table. */
15188 if (src->st_target_internal == ST_BRANCH_TO_THUMB)
15189 {
15190 newsym = *src;
15191 if (ELF_ST_TYPE (src->st_info) != STT_GNU_IFUNC)
15192 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
15193 if (newsym.st_shndx != SHN_UNDEF)
15194 {
15195 /* Do this only for defined symbols. At link type, the static
15196 linker will simulate the work of dynamic linker of resolving
15197 symbols and will carry over the thumbness of found symbols to
15198 the output symbol table. It's not clear how it happens, but
15199 the thumbness of undefined symbols can well be different at
15200 runtime, and writing '1' for them will be confusing for users
15201 and possibly for dynamic linker itself.
15202 */
15203 newsym.st_value |= 1;
15204 }
15205
15206 src = &newsym;
15207 }
15208 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
15209 }
15210
15211 /* Add the PT_ARM_EXIDX program header. */
15212
15213 static bfd_boolean
15214 elf32_arm_modify_segment_map (bfd *abfd,
15215 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15216 {
15217 struct elf_segment_map *m;
15218 asection *sec;
15219
15220 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15221 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15222 {
15223 /* If there is already a PT_ARM_EXIDX header, then we do not
15224 want to add another one. This situation arises when running
15225 "strip"; the input binary already has the header. */
15226 m = elf_tdata (abfd)->segment_map;
15227 while (m && m->p_type != PT_ARM_EXIDX)
15228 m = m->next;
15229 if (!m)
15230 {
15231 m = (struct elf_segment_map *)
15232 bfd_zalloc (abfd, sizeof (struct elf_segment_map));
15233 if (m == NULL)
15234 return FALSE;
15235 m->p_type = PT_ARM_EXIDX;
15236 m->count = 1;
15237 m->sections[0] = sec;
15238
15239 m->next = elf_tdata (abfd)->segment_map;
15240 elf_tdata (abfd)->segment_map = m;
15241 }
15242 }
15243
15244 return TRUE;
15245 }
15246
15247 /* We may add a PT_ARM_EXIDX program header. */
15248
15249 static int
15250 elf32_arm_additional_program_headers (bfd *abfd,
15251 struct bfd_link_info *info ATTRIBUTE_UNUSED)
15252 {
15253 asection *sec;
15254
15255 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
15256 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
15257 return 1;
15258 else
15259 return 0;
15260 }
15261
15262 /* Hook called by the linker routine which adds symbols from an object
15263 file. */
15264
15265 static bfd_boolean
15266 elf32_arm_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
15267 Elf_Internal_Sym *sym, const char **namep,
15268 flagword *flagsp, asection **secp, bfd_vma *valp)
15269 {
15270 if ((abfd->flags & DYNAMIC) == 0
15271 && (ELF_ST_TYPE (sym->st_info) == STT_GNU_IFUNC
15272 || ELF_ST_BIND (sym->st_info) == STB_GNU_UNIQUE))
15273 elf_tdata (info->output_bfd)->has_gnu_symbols = TRUE;
15274
15275 if (elf32_arm_hash_table (info)->vxworks_p
15276 && !elf_vxworks_add_symbol_hook (abfd, info, sym, namep,
15277 flagsp, secp, valp))
15278 return FALSE;
15279
15280 return TRUE;
15281 }
15282
15283 /* We use this to override swap_symbol_in and swap_symbol_out. */
15284 const struct elf_size_info elf32_arm_size_info =
15285 {
15286 sizeof (Elf32_External_Ehdr),
15287 sizeof (Elf32_External_Phdr),
15288 sizeof (Elf32_External_Shdr),
15289 sizeof (Elf32_External_Rel),
15290 sizeof (Elf32_External_Rela),
15291 sizeof (Elf32_External_Sym),
15292 sizeof (Elf32_External_Dyn),
15293 sizeof (Elf_External_Note),
15294 4,
15295 1,
15296 32, 2,
15297 ELFCLASS32, EV_CURRENT,
15298 bfd_elf32_write_out_phdrs,
15299 bfd_elf32_write_shdrs_and_ehdr,
15300 bfd_elf32_checksum_contents,
15301 bfd_elf32_write_relocs,
15302 elf32_arm_swap_symbol_in,
15303 elf32_arm_swap_symbol_out,
15304 bfd_elf32_slurp_reloc_table,
15305 bfd_elf32_slurp_symbol_table,
15306 bfd_elf32_swap_dyn_in,
15307 bfd_elf32_swap_dyn_out,
15308 bfd_elf32_swap_reloc_in,
15309 bfd_elf32_swap_reloc_out,
15310 bfd_elf32_swap_reloca_in,
15311 bfd_elf32_swap_reloca_out
15312 };
15313
15314 #define ELF_ARCH bfd_arch_arm
15315 #define ELF_TARGET_ID ARM_ELF_DATA
15316 #define ELF_MACHINE_CODE EM_ARM
15317 #ifdef __QNXTARGET__
15318 #define ELF_MAXPAGESIZE 0x1000
15319 #else
15320 #define ELF_MAXPAGESIZE 0x8000
15321 #endif
15322 #define ELF_MINPAGESIZE 0x1000
15323 #define ELF_COMMONPAGESIZE 0x1000
15324
15325 #define bfd_elf32_mkobject elf32_arm_mkobject
15326
15327 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
15328 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
15329 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
15330 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
15331 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
15332 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
15333 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
15334 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
15335 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
15336 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
15337 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
15338 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
15339 #define bfd_elf32_bfd_final_link elf32_arm_final_link
15340
15341 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
15342 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
15343 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
15344 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
15345 #define elf_backend_check_relocs elf32_arm_check_relocs
15346 #define elf_backend_relocate_section elf32_arm_relocate_section
15347 #define elf_backend_write_section elf32_arm_write_section
15348 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
15349 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
15350 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
15351 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
15352 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
15353 #define elf_backend_always_size_sections elf32_arm_always_size_sections
15354 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
15355 #define elf_backend_post_process_headers elf32_arm_post_process_headers
15356 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
15357 #define elf_backend_object_p elf32_arm_object_p
15358 #define elf_backend_fake_sections elf32_arm_fake_sections
15359 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
15360 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15361 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
15362 #define elf_backend_size_info elf32_arm_size_info
15363 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
15364 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
15365 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
15366 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
15367 #define elf_backend_add_symbol_hook elf32_arm_add_symbol_hook
15368
15369 #define elf_backend_can_refcount 1
15370 #define elf_backend_can_gc_sections 1
15371 #define elf_backend_plt_readonly 1
15372 #define elf_backend_want_got_plt 1
15373 #define elf_backend_want_plt_sym 0
15374 #define elf_backend_may_use_rel_p 1
15375 #define elf_backend_may_use_rela_p 0
15376 #define elf_backend_default_use_rela_p 0
15377
15378 #define elf_backend_got_header_size 12
15379
15380 #undef elf_backend_obj_attrs_vendor
15381 #define elf_backend_obj_attrs_vendor "aeabi"
15382 #undef elf_backend_obj_attrs_section
15383 #define elf_backend_obj_attrs_section ".ARM.attributes"
15384 #undef elf_backend_obj_attrs_arg_type
15385 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
15386 #undef elf_backend_obj_attrs_section_type
15387 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
15388 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
15389 #define elf_backend_obj_attrs_handle_unknown elf32_arm_obj_attrs_handle_unknown
15390
15391 #include "elf32-target.h"
15392
15393 /* VxWorks Targets. */
15394
15395 #undef TARGET_LITTLE_SYM
15396 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
15397 #undef TARGET_LITTLE_NAME
15398 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
15399 #undef TARGET_BIG_SYM
15400 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
15401 #undef TARGET_BIG_NAME
15402 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
15403
15404 /* Like elf32_arm_link_hash_table_create -- but overrides
15405 appropriately for VxWorks. */
15406
15407 static struct bfd_link_hash_table *
15408 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
15409 {
15410 struct bfd_link_hash_table *ret;
15411
15412 ret = elf32_arm_link_hash_table_create (abfd);
15413 if (ret)
15414 {
15415 struct elf32_arm_link_hash_table *htab
15416 = (struct elf32_arm_link_hash_table *) ret;
15417 htab->use_rel = 0;
15418 htab->vxworks_p = 1;
15419 }
15420 return ret;
15421 }
15422
15423 static void
15424 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
15425 {
15426 elf32_arm_final_write_processing (abfd, linker);
15427 elf_vxworks_final_write_processing (abfd, linker);
15428 }
15429
15430 #undef elf32_bed
15431 #define elf32_bed elf32_arm_vxworks_bed
15432
15433 #undef bfd_elf32_bfd_link_hash_table_create
15434 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
15435 #undef elf_backend_final_write_processing
15436 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
15437 #undef elf_backend_emit_relocs
15438 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
15439
15440 #undef elf_backend_may_use_rel_p
15441 #define elf_backend_may_use_rel_p 0
15442 #undef elf_backend_may_use_rela_p
15443 #define elf_backend_may_use_rela_p 1
15444 #undef elf_backend_default_use_rela_p
15445 #define elf_backend_default_use_rela_p 1
15446 #undef elf_backend_want_plt_sym
15447 #define elf_backend_want_plt_sym 1
15448 #undef ELF_MAXPAGESIZE
15449 #define ELF_MAXPAGESIZE 0x1000
15450
15451 #include "elf32-target.h"
15452
15453
15454 /* Merge backend specific data from an object file to the output
15455 object file when linking. */
15456
15457 static bfd_boolean
15458 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
15459 {
15460 flagword out_flags;
15461 flagword in_flags;
15462 bfd_boolean flags_compatible = TRUE;
15463 asection *sec;
15464
15465 /* Check if we have the same endianness. */
15466 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
15467 return FALSE;
15468
15469 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
15470 return TRUE;
15471
15472 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
15473 return FALSE;
15474
15475 /* The input BFD must have had its flags initialised. */
15476 /* The following seems bogus to me -- The flags are initialized in
15477 the assembler but I don't think an elf_flags_init field is
15478 written into the object. */
15479 /* BFD_ASSERT (elf_flags_init (ibfd)); */
15480
15481 in_flags = elf_elfheader (ibfd)->e_flags;
15482 out_flags = elf_elfheader (obfd)->e_flags;
15483
15484 /* In theory there is no reason why we couldn't handle this. However
15485 in practice it isn't even close to working and there is no real
15486 reason to want it. */
15487 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
15488 && !(ibfd->flags & DYNAMIC)
15489 && (in_flags & EF_ARM_BE8))
15490 {
15491 _bfd_error_handler (_("error: %B is already in final BE8 format"),
15492 ibfd);
15493 return FALSE;
15494 }
15495
15496 if (!elf_flags_init (obfd))
15497 {
15498 /* If the input is the default architecture and had the default
15499 flags then do not bother setting the flags for the output
15500 architecture, instead allow future merges to do this. If no
15501 future merges ever set these flags then they will retain their
15502 uninitialised values, which surprise surprise, correspond
15503 to the default values. */
15504 if (bfd_get_arch_info (ibfd)->the_default
15505 && elf_elfheader (ibfd)->e_flags == 0)
15506 return TRUE;
15507
15508 elf_flags_init (obfd) = TRUE;
15509 elf_elfheader (obfd)->e_flags = in_flags;
15510
15511 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15512 && bfd_get_arch_info (obfd)->the_default)
15513 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
15514
15515 return TRUE;
15516 }
15517
15518 /* Determine what should happen if the input ARM architecture
15519 does not match the output ARM architecture. */
15520 if (! bfd_arm_merge_machines (ibfd, obfd))
15521 return FALSE;
15522
15523 /* Identical flags must be compatible. */
15524 if (in_flags == out_flags)
15525 return TRUE;
15526
15527 /* Check to see if the input BFD actually contains any sections. If
15528 not, its flags may not have been initialised either, but it
15529 cannot actually cause any incompatiblity. Do not short-circuit
15530 dynamic objects; their section list may be emptied by
15531 elf_link_add_object_symbols.
15532
15533 Also check to see if there are no code sections in the input.
15534 In this case there is no need to check for code specific flags.
15535 XXX - do we need to worry about floating-point format compatability
15536 in data sections ? */
15537 if (!(ibfd->flags & DYNAMIC))
15538 {
15539 bfd_boolean null_input_bfd = TRUE;
15540 bfd_boolean only_data_sections = TRUE;
15541
15542 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15543 {
15544 /* Ignore synthetic glue sections. */
15545 if (strcmp (sec->name, ".glue_7")
15546 && strcmp (sec->name, ".glue_7t"))
15547 {
15548 if ((bfd_get_section_flags (ibfd, sec)
15549 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15550 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
15551 only_data_sections = FALSE;
15552
15553 null_input_bfd = FALSE;
15554 break;
15555 }
15556 }
15557
15558 if (null_input_bfd || only_data_sections)
15559 return TRUE;
15560 }
15561
15562 /* Complain about various flag mismatches. */
15563 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
15564 EF_ARM_EABI_VERSION (out_flags)))
15565 {
15566 _bfd_error_handler
15567 (_("error: Source object %B has EABI version %d, but target %B has EABI version %d"),
15568 ibfd, obfd,
15569 (in_flags & EF_ARM_EABIMASK) >> 24,
15570 (out_flags & EF_ARM_EABIMASK) >> 24);
15571 return FALSE;
15572 }
15573
15574 /* Not sure what needs to be checked for EABI versions >= 1. */
15575 /* VxWorks libraries do not use these flags. */
15576 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
15577 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
15578 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
15579 {
15580 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
15581 {
15582 _bfd_error_handler
15583 (_("error: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
15584 ibfd, obfd,
15585 in_flags & EF_ARM_APCS_26 ? 26 : 32,
15586 out_flags & EF_ARM_APCS_26 ? 26 : 32);
15587 flags_compatible = FALSE;
15588 }
15589
15590 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
15591 {
15592 if (in_flags & EF_ARM_APCS_FLOAT)
15593 _bfd_error_handler
15594 (_("error: %B passes floats in float registers, whereas %B passes them in integer registers"),
15595 ibfd, obfd);
15596 else
15597 _bfd_error_handler
15598 (_("error: %B passes floats in integer registers, whereas %B passes them in float registers"),
15599 ibfd, obfd);
15600
15601 flags_compatible = FALSE;
15602 }
15603
15604 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
15605 {
15606 if (in_flags & EF_ARM_VFP_FLOAT)
15607 _bfd_error_handler
15608 (_("error: %B uses VFP instructions, whereas %B does not"),
15609 ibfd, obfd);
15610 else
15611 _bfd_error_handler
15612 (_("error: %B uses FPA instructions, whereas %B does not"),
15613 ibfd, obfd);
15614
15615 flags_compatible = FALSE;
15616 }
15617
15618 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
15619 {
15620 if (in_flags & EF_ARM_MAVERICK_FLOAT)
15621 _bfd_error_handler
15622 (_("error: %B uses Maverick instructions, whereas %B does not"),
15623 ibfd, obfd);
15624 else
15625 _bfd_error_handler
15626 (_("error: %B does not use Maverick instructions, whereas %B does"),
15627 ibfd, obfd);
15628
15629 flags_compatible = FALSE;
15630 }
15631
15632 #ifdef EF_ARM_SOFT_FLOAT
15633 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
15634 {
15635 /* We can allow interworking between code that is VFP format
15636 layout, and uses either soft float or integer regs for
15637 passing floating point arguments and results. We already
15638 know that the APCS_FLOAT flags match; similarly for VFP
15639 flags. */
15640 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
15641 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
15642 {
15643 if (in_flags & EF_ARM_SOFT_FLOAT)
15644 _bfd_error_handler
15645 (_("error: %B uses software FP, whereas %B uses hardware FP"),
15646 ibfd, obfd);
15647 else
15648 _bfd_error_handler
15649 (_("error: %B uses hardware FP, whereas %B uses software FP"),
15650 ibfd, obfd);
15651
15652 flags_compatible = FALSE;
15653 }
15654 }
15655 #endif
15656
15657 /* Interworking mismatch is only a warning. */
15658 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
15659 {
15660 if (in_flags & EF_ARM_INTERWORK)
15661 {
15662 _bfd_error_handler
15663 (_("Warning: %B supports interworking, whereas %B does not"),
15664 ibfd, obfd);
15665 }
15666 else
15667 {
15668 _bfd_error_handler
15669 (_("Warning: %B does not support interworking, whereas %B does"),
15670 ibfd, obfd);
15671 }
15672 }
15673 }
15674
15675 return flags_compatible;
15676 }
15677
15678
15679 /* Symbian OS Targets. */
15680
15681 #undef TARGET_LITTLE_SYM
15682 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
15683 #undef TARGET_LITTLE_NAME
15684 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
15685 #undef TARGET_BIG_SYM
15686 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
15687 #undef TARGET_BIG_NAME
15688 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
15689
15690 /* Like elf32_arm_link_hash_table_create -- but overrides
15691 appropriately for Symbian OS. */
15692
15693 static struct bfd_link_hash_table *
15694 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
15695 {
15696 struct bfd_link_hash_table *ret;
15697
15698 ret = elf32_arm_link_hash_table_create (abfd);
15699 if (ret)
15700 {
15701 struct elf32_arm_link_hash_table *htab
15702 = (struct elf32_arm_link_hash_table *)ret;
15703 /* There is no PLT header for Symbian OS. */
15704 htab->plt_header_size = 0;
15705 /* The PLT entries are each one instruction and one word. */
15706 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
15707 htab->symbian_p = 1;
15708 /* Symbian uses armv5t or above, so use_blx is always true. */
15709 htab->use_blx = 1;
15710 htab->root.is_relocatable_executable = 1;
15711 }
15712 return ret;
15713 }
15714
15715 static const struct bfd_elf_special_section
15716 elf32_arm_symbian_special_sections[] =
15717 {
15718 /* In a BPABI executable, the dynamic linking sections do not go in
15719 the loadable read-only segment. The post-linker may wish to
15720 refer to these sections, but they are not part of the final
15721 program image. */
15722 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
15723 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
15724 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
15725 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
15726 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
15727 /* These sections do not need to be writable as the SymbianOS
15728 postlinker will arrange things so that no dynamic relocation is
15729 required. */
15730 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
15731 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
15732 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
15733 { NULL, 0, 0, 0, 0 }
15734 };
15735
15736 static void
15737 elf32_arm_symbian_begin_write_processing (bfd *abfd,
15738 struct bfd_link_info *link_info)
15739 {
15740 /* BPABI objects are never loaded directly by an OS kernel; they are
15741 processed by a postlinker first, into an OS-specific format. If
15742 the D_PAGED bit is set on the file, BFD will align segments on
15743 page boundaries, so that an OS can directly map the file. With
15744 BPABI objects, that just results in wasted space. In addition,
15745 because we clear the D_PAGED bit, map_sections_to_segments will
15746 recognize that the program headers should not be mapped into any
15747 loadable segment. */
15748 abfd->flags &= ~D_PAGED;
15749 elf32_arm_begin_write_processing (abfd, link_info);
15750 }
15751
15752 static bfd_boolean
15753 elf32_arm_symbian_modify_segment_map (bfd *abfd,
15754 struct bfd_link_info *info)
15755 {
15756 struct elf_segment_map *m;
15757 asection *dynsec;
15758
15759 /* BPABI shared libraries and executables should have a PT_DYNAMIC
15760 segment. However, because the .dynamic section is not marked
15761 with SEC_LOAD, the generic ELF code will not create such a
15762 segment. */
15763 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
15764 if (dynsec)
15765 {
15766 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
15767 if (m->p_type == PT_DYNAMIC)
15768 break;
15769
15770 if (m == NULL)
15771 {
15772 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
15773 m->next = elf_tdata (abfd)->segment_map;
15774 elf_tdata (abfd)->segment_map = m;
15775 }
15776 }
15777
15778 /* Also call the generic arm routine. */
15779 return elf32_arm_modify_segment_map (abfd, info);
15780 }
15781
15782 /* Return address for Ith PLT stub in section PLT, for relocation REL
15783 or (bfd_vma) -1 if it should not be included. */
15784
15785 static bfd_vma
15786 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
15787 const arelent *rel ATTRIBUTE_UNUSED)
15788 {
15789 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
15790 }
15791
15792
15793 #undef elf32_bed
15794 #define elf32_bed elf32_arm_symbian_bed
15795
15796 /* The dynamic sections are not allocated on SymbianOS; the postlinker
15797 will process them and then discard them. */
15798 #undef ELF_DYNAMIC_SEC_FLAGS
15799 #define ELF_DYNAMIC_SEC_FLAGS \
15800 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
15801
15802 #undef elf_backend_emit_relocs
15803
15804 #undef bfd_elf32_bfd_link_hash_table_create
15805 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
15806 #undef elf_backend_special_sections
15807 #define elf_backend_special_sections elf32_arm_symbian_special_sections
15808 #undef elf_backend_begin_write_processing
15809 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
15810 #undef elf_backend_final_write_processing
15811 #define elf_backend_final_write_processing elf32_arm_final_write_processing
15812
15813 #undef elf_backend_modify_segment_map
15814 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
15815
15816 /* There is no .got section for BPABI objects, and hence no header. */
15817 #undef elf_backend_got_header_size
15818 #define elf_backend_got_header_size 0
15819
15820 /* Similarly, there is no .got.plt section. */
15821 #undef elf_backend_want_got_plt
15822 #define elf_backend_want_got_plt 0
15823
15824 #undef elf_backend_plt_sym_val
15825 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
15826
15827 #undef elf_backend_may_use_rel_p
15828 #define elf_backend_may_use_rel_p 1
15829 #undef elf_backend_may_use_rela_p
15830 #define elf_backend_may_use_rela_p 0
15831 #undef elf_backend_default_use_rela_p
15832 #define elf_backend_default_use_rela_p 0
15833 #undef elf_backend_want_plt_sym
15834 #define elf_backend_want_plt_sym 0
15835 #undef ELF_MAXPAGESIZE
15836 #define ELF_MAXPAGESIZE 0x8000
15837
15838 #include "elf32-target.h"
This page took 0.68824 seconds and 3 git commands to generate.