dacbc16c60edd1c613640c9952fed4c6bd490bc2
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
34
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
38 ((HTAB)->use_rel \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
41
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
45 ((HTAB)->use_rel \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
48
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
52 ((HTAB)->use_rel \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
55
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
58
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
61
62 static struct elf_backend_data elf32_arm_vxworks_bed;
63
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
66 in that slot. */
67
68 static reloc_howto_type elf32_arm_howto_table_1[] =
69 {
70 /* No relocation. */
71 HOWTO (R_ARM_NONE, /* type */
72 0, /* rightshift */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
74 0, /* bitsize */
75 FALSE, /* pc_relative */
76 0, /* bitpos */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
81 0, /* src_mask */
82 0, /* dst_mask */
83 FALSE), /* pcrel_offset */
84
85 HOWTO (R_ARM_PC24, /* type */
86 2, /* rightshift */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
88 24, /* bitsize */
89 TRUE, /* pc_relative */
90 0, /* bitpos */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
98
99 /* 32 bit absolute */
100 HOWTO (R_ARM_ABS32, /* type */
101 0, /* rightshift */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
103 32, /* bitsize */
104 FALSE, /* pc_relative */
105 0, /* bitpos */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
113
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
116 0, /* rightshift */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
118 32, /* bitsize */
119 TRUE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
128
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0, /* type */
131 0, /* rightshift */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 TRUE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_dont,/* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
143
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
146 0, /* rightshift */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
148 16, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 12, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_ARM_THM_ABS5, /* type */
175 6, /* rightshift */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
177 5, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 /* 8 bit absolute */
189 HOWTO (R_ARM_ABS8, /* type */
190 0, /* rightshift */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
192 8, /* bitsize */
193 FALSE, /* pc_relative */
194 0, /* bitpos */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
202
203 HOWTO (R_ARM_SBREL32, /* type */
204 0, /* rightshift */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
206 32, /* bitsize */
207 FALSE, /* pc_relative */
208 0, /* bitpos */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
216
217 HOWTO (R_ARM_THM_CALL, /* type */
218 1, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 25, /* bitsize */
221 TRUE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
230
231 HOWTO (R_ARM_THM_PC8, /* type */
232 1, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 8, /* bitsize */
235 TRUE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
244
245 HOWTO (R_ARM_BREL_ADJ, /* type */
246 1, /* rightshift */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 HOWTO (R_ARM_SWI24, /* type */
260 0, /* rightshift */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 HOWTO (R_ARM_THM_SWI8, /* type */
274 0, /* rightshift */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
276 0, /* bitsize */
277 FALSE, /* pc_relative */
278 0, /* bitpos */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
286
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
289 2, /* rightshift */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
291 25, /* bitsize */
292 TRUE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
301
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
304 2, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 22, /* bitsize */
307 TRUE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
316
317 /* Dynamic TLS relocations. */
318
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* Relocs used in ARM Linux */
362
363 HOWTO (R_ARM_COPY, /* type */
364 0, /* rightshift */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
366 32, /* bitsize */
367 FALSE, /* pc_relative */
368 0, /* bitpos */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376
377 HOWTO (R_ARM_GLOB_DAT, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 FALSE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
390
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
392 0, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 32, /* bitsize */
395 FALSE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
404
405 HOWTO (R_ARM_RELATIVE, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 32, /* bitsize */
409 FALSE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418
419 HOWTO (R_ARM_GOTOFF32, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 32, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432
433 HOWTO (R_ARM_GOTPC, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 HOWTO (R_ARM_GOT32, /* type */
448 0, /* rightshift */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
450 32, /* bitsize */
451 FALSE, /* pc_relative */
452 0, /* bitpos */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
460
461 HOWTO (R_ARM_PLT32, /* type */
462 2, /* rightshift */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
464 24, /* bitsize */
465 TRUE, /* pc_relative */
466 0, /* bitpos */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
474
475 HOWTO (R_ARM_CALL, /* type */
476 2, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 24, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 HOWTO (R_ARM_JUMP24, /* type */
490 2, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 24, /* bitsize */
493 TRUE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
502
503 HOWTO (R_ARM_THM_JUMP24, /* type */
504 1, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 24, /* bitsize */
507 TRUE, /* pc_relative */
508 0, /* bitpos */
509 complain_overflow_signed,/* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
516
517 HOWTO (R_ARM_BASE_ABS, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 12, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 12, /* bitsize */
549 TRUE, /* pc_relative */
550 8, /* bitpos */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
560 0, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 12, /* bitsize */
563 TRUE, /* pc_relative */
564 16, /* bitpos */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
572
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 12, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 8, /* bitsize */
591 FALSE, /* pc_relative */
592 12, /* bitpos */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
600
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 8, /* bitsize */
605 FALSE, /* pc_relative */
606 20, /* bitpos */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 HOWTO (R_ARM_TARGET1, /* type */
616 0, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 32, /* bitsize */
619 FALSE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
628
629 HOWTO (R_ARM_ROSEGREL32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 HOWTO (R_ARM_V4BX, /* type */
644 0, /* rightshift */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
646 32, /* bitsize */
647 FALSE, /* pc_relative */
648 0, /* bitpos */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
656
657 HOWTO (R_ARM_TARGET2, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
670
671 HOWTO (R_ARM_PREL31, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 31, /* bitsize */
675 TRUE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
684
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 HOWTO (R_ARM_MOVT_ABS, /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
714 0, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 HOWTO (R_ARM_MOVT_PREL, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 TRUE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE), /* pcrel_offset */
740
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
742 0, /* rightshift */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 FALSE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
768
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 TRUE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
796
797 HOWTO (R_ARM_THM_JUMP19, /* type */
798 1, /* rightshift */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
800 19, /* bitsize */
801 TRUE, /* pc_relative */
802 0, /* bitpos */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
810
811 HOWTO (R_ARM_THM_JUMP6, /* type */
812 1, /* rightshift */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
814 6, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
827 versa. */
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
829 0, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 13, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont,/* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 HOWTO (R_ARM_THM_PC12, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 13, /* bitsize */
846 TRUE, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont,/* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE), /* pcrel_offset */
855
856 HOWTO (R_ARM_ABS32_NOI, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 FALSE, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
869
870 HOWTO (R_ARM_REL32_NOI, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 TRUE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* Group relocations. */
885
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
887 0, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 32, /* bitsize */
890 TRUE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
899
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
901 0, /* rightshift */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
903 32, /* bitsize */
904 TRUE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
913
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
915 0, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 32, /* bitsize */
918 TRUE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
927
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
929 0, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 TRUE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
941
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
943 0, /* rightshift */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
945 32, /* bitsize */
946 TRUE, /* pc_relative */
947 0, /* bitpos */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
955
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 32, /* bitsize */
960 TRUE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
969
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 32, /* bitsize */
974 TRUE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
983
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 32, /* bitsize */
988 TRUE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
997
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
999 0, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 32, /* bitsize */
1002 TRUE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1011
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 32, /* bitsize */
1016 TRUE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1025
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 TRUE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1039
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1041 0, /* rightshift */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1043 32, /* bitsize */
1044 TRUE, /* pc_relative */
1045 0, /* bitpos */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1053
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1055 0, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 32, /* bitsize */
1058 TRUE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1067
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1069 0, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 32, /* bitsize */
1072 TRUE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1081
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1083 0, /* rightshift */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1085 32, /* bitsize */
1086 TRUE, /* pc_relative */
1087 0, /* bitpos */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1095
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1097 0, /* rightshift */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1099 32, /* bitsize */
1100 TRUE, /* pc_relative */
1101 0, /* bitpos */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1109
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1111 0, /* rightshift */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 32, /* bitsize */
1114 TRUE, /* pc_relative */
1115 0, /* bitpos */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1123
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1125 0, /* rightshift */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1127 32, /* bitsize */
1128 TRUE, /* pc_relative */
1129 0, /* bitpos */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1137
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1139 0, /* rightshift */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 32, /* bitsize */
1142 TRUE, /* pc_relative */
1143 0, /* bitpos */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1151
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 32, /* bitsize */
1156 TRUE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1165
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1167 0, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 32, /* bitsize */
1170 TRUE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1179
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 32, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 32, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 32, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 32, /* bitsize */
1226 TRUE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1235
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 32, /* bitsize */
1240 TRUE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1249
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 32, /* bitsize */
1254 TRUE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1263
1264 /* End of group relocations. */
1265
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1267 0, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 16, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 16, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1309 0, /* rightshift */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1311 16, /* bitsize */
1312 FALSE, /* pc_relative */
1313 0, /* bitpos */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1321
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1323 0, /* rightshift */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1325 16, /* bitsize */
1326 FALSE, /* pc_relative */
1327 0, /* bitpos */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1335
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
1350 EMPTY_HOWTO (90), /* Unallocated. */
1351 EMPTY_HOWTO (91),
1352 EMPTY_HOWTO (92),
1353 EMPTY_HOWTO (93),
1354
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 32, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 32, /* bitsize */
1387 TRUE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 12, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 12, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1426
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 0, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1438 0, /* src_mask */
1439 0, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 0, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1453 0, /* src_mask */
1454 0, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1458 1, /* rightshift */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1460 11, /* bitsize */
1461 TRUE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1472 1, /* rightshift */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1474 8, /* bitsize */
1475 TRUE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
1484
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 32, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_bitfield,/* complain_on_overflow */
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1499
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 32, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 HOWTO (R_ARM_TLS_LDO32, /* type */
1515 0, /* rightshift */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 32, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1529 0, /* rightshift */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1531 32, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 HOWTO (R_ARM_TLS_LE32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 12, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 12, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 12, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 bfd_elf_generic_reloc, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597 };
1598
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1602
1603 249-255 extended, currently unused, relocations: */
1604
1605 static reloc_howto_type elf32_arm_howto_table_2[4] =
1606 {
1607 HOWTO (R_ARM_RREL32, /* type */
1608 0, /* rightshift */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1610 0, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 HOWTO (R_ARM_RABS32, /* type */
1622 0, /* rightshift */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1624 0, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 HOWTO (R_ARM_RPC24, /* type */
1636 0, /* rightshift */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1638 0, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 HOWTO (R_ARM_RBASE, /* type */
1650 0, /* rightshift */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1652 0, /* bitsize */
1653 FALSE, /* pc_relative */
1654 0, /* bitpos */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1659 0, /* src_mask */
1660 0, /* dst_mask */
1661 FALSE) /* pcrel_offset */
1662 };
1663
1664 static reloc_howto_type *
1665 elf32_arm_howto_from_type (unsigned int r_type)
1666 {
1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1668 return &elf32_arm_howto_table_1[r_type];
1669
1670 if (r_type >= R_ARM_RREL32
1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1673
1674 return NULL;
1675 }
1676
1677 static void
1678 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1680 {
1681 unsigned int r_type;
1682
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1685 }
1686
1687 struct elf32_arm_reloc_map
1688 {
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1691 };
1692
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1695 {
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1774 };
1775
1776 static reloc_howto_type *
1777 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
1779 {
1780 unsigned int i;
1781
1782 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1783 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1784 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1785
1786 return NULL;
1787 }
1788
1789 static reloc_howto_type *
1790 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1791 const char *r_name)
1792 {
1793 unsigned int i;
1794
1795 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1796 if (elf32_arm_howto_table_1[i].name != NULL
1797 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1798 return &elf32_arm_howto_table_1[i];
1799
1800 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1801 if (elf32_arm_howto_table_2[i].name != NULL
1802 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1803 return &elf32_arm_howto_table_2[i];
1804
1805 return NULL;
1806 }
1807
1808 /* Support for core dump NOTE sections. */
1809
1810 static bfd_boolean
1811 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1812 {
1813 int offset;
1814 size_t size;
1815
1816 switch (note->descsz)
1817 {
1818 default:
1819 return FALSE;
1820
1821 case 148: /* Linux/ARM 32-bit. */
1822 /* pr_cursig */
1823 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1824
1825 /* pr_pid */
1826 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1827
1828 /* pr_reg */
1829 offset = 72;
1830 size = 72;
1831
1832 break;
1833 }
1834
1835 /* Make a ".reg/999" section. */
1836 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1837 size, note->descpos + offset);
1838 }
1839
1840 static bfd_boolean
1841 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1842 {
1843 switch (note->descsz)
1844 {
1845 default:
1846 return FALSE;
1847
1848 case 124: /* Linux/ARM elf_prpsinfo. */
1849 elf_tdata (abfd)->core_program
1850 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1851 elf_tdata (abfd)->core_command
1852 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1853 }
1854
1855 /* Note that for some reason, a spurious space is tacked
1856 onto the end of the args in some (at least one anyway)
1857 implementations, so strip it off if it exists. */
1858 {
1859 char *command = elf_tdata (abfd)->core_command;
1860 int n = strlen (command);
1861
1862 if (0 < n && command[n - 1] == ' ')
1863 command[n - 1] = '\0';
1864 }
1865
1866 return TRUE;
1867 }
1868
1869 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1870 #define TARGET_LITTLE_NAME "elf32-littlearm"
1871 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1872 #define TARGET_BIG_NAME "elf32-bigarm"
1873
1874 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1875 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1876
1877 typedef unsigned long int insn32;
1878 typedef unsigned short int insn16;
1879
1880 /* In lieu of proper flags, assume all EABIv4 or later objects are
1881 interworkable. */
1882 #define INTERWORK_FLAG(abfd) \
1883 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1884 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1885
1886 /* The linker script knows the section names for placement.
1887 The entry_names are used to do simple name mangling on the stubs.
1888 Given a function name, and its type, the stub can be found. The
1889 name can be changed. The only requirement is the %s be present. */
1890 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1891 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1892
1893 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1894 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1895
1896 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1897 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1898
1899 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1900 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1901
1902 #define STUB_ENTRY_NAME "__%s_veneer"
1903
1904 /* The name of the dynamic interpreter. This is put in the .interp
1905 section. */
1906 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1907
1908 #ifdef FOUR_WORD_PLT
1909
1910 /* The first entry in a procedure linkage table looks like
1911 this. It is set up so that any shared library function that is
1912 called before the relocation has been set up calls the dynamic
1913 linker first. */
1914 static const bfd_vma elf32_arm_plt0_entry [] =
1915 {
1916 0xe52de004, /* str lr, [sp, #-4]! */
1917 0xe59fe010, /* ldr lr, [pc, #16] */
1918 0xe08fe00e, /* add lr, pc, lr */
1919 0xe5bef008, /* ldr pc, [lr, #8]! */
1920 };
1921
1922 /* Subsequent entries in a procedure linkage table look like
1923 this. */
1924 static const bfd_vma elf32_arm_plt_entry [] =
1925 {
1926 0xe28fc600, /* add ip, pc, #NN */
1927 0xe28cca00, /* add ip, ip, #NN */
1928 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1929 0x00000000, /* unused */
1930 };
1931
1932 #else
1933
1934 /* The first entry in a procedure linkage table looks like
1935 this. It is set up so that any shared library function that is
1936 called before the relocation has been set up calls the dynamic
1937 linker first. */
1938 static const bfd_vma elf32_arm_plt0_entry [] =
1939 {
1940 0xe52de004, /* str lr, [sp, #-4]! */
1941 0xe59fe004, /* ldr lr, [pc, #4] */
1942 0xe08fe00e, /* add lr, pc, lr */
1943 0xe5bef008, /* ldr pc, [lr, #8]! */
1944 0x00000000, /* &GOT[0] - . */
1945 };
1946
1947 /* Subsequent entries in a procedure linkage table look like
1948 this. */
1949 static const bfd_vma elf32_arm_plt_entry [] =
1950 {
1951 0xe28fc600, /* add ip, pc, #0xNN00000 */
1952 0xe28cca00, /* add ip, ip, #0xNN000 */
1953 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1954 };
1955
1956 #endif
1957
1958 /* The format of the first entry in the procedure linkage table
1959 for a VxWorks executable. */
1960 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1961 {
1962 0xe52dc008, /* str ip,[sp,#-8]! */
1963 0xe59fc000, /* ldr ip,[pc] */
1964 0xe59cf008, /* ldr pc,[ip,#8] */
1965 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1966 };
1967
1968 /* The format of subsequent entries in a VxWorks executable. */
1969 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1970 {
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf000, /* ldr pc,[ip] */
1973 0x00000000, /* .long @got */
1974 0xe59fc000, /* ldr ip,[pc] */
1975 0xea000000, /* b _PLT */
1976 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1977 };
1978
1979 /* The format of entries in a VxWorks shared library. */
1980 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1981 {
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe79cf009, /* ldr pc,[ip,r9] */
1984 0x00000000, /* .long @got */
1985 0xe59fc000, /* ldr ip,[pc] */
1986 0xe599f008, /* ldr pc,[r9,#8] */
1987 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1988 };
1989
1990 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1991 #define PLT_THUMB_STUB_SIZE 4
1992 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1993 {
1994 0x4778, /* bx pc */
1995 0x46c0 /* nop */
1996 };
1997
1998 /* The entries in a PLT when using a DLL-based target with multiple
1999 address spaces. */
2000 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2001 {
2002 0xe51ff004, /* ldr pc, [pc, #-4] */
2003 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2004 };
2005
2006 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2007 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2008 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2009 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2010 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2011 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2012
2013 static const bfd_vma arm_long_branch_stub[] =
2014 {
2015 0xe51ff004, /* ldr pc, [pc, #-4] */
2016 0x00000000, /* dcd R_ARM_ABS32(X) */
2017 };
2018
2019 static const bfd_vma arm_thumb_v4t_long_branch_stub[] =
2020 {
2021 0xe59fc000, /* ldr ip, [pc, #0] */
2022 0xe12fff1c, /* bx ip */
2023 0x00000000, /* dcd R_ARM_ABS32(X) */
2024 };
2025
2026 static const bfd_vma arm_thumb_thumb_long_branch_stub[] =
2027 {
2028 0x4e02b540, /* push {r6, lr} */
2029 /* ldr r6, [pc, #8] */
2030 0x473046fe, /* mov lr, pc */
2031 /* bx r6 */
2032 0xbf00bd40, /* pop {r6, pc} */
2033 /* nop */
2034 0x00000000, /* dcd R_ARM_ABS32(X) */
2035 };
2036
2037 static const bfd_vma arm_thumb_arm_v4t_long_branch_stub[] =
2038 {
2039 0x4e03b540, /* push {r6, lr} */
2040 /* ldr r6, [pc, #12] */
2041 0x473046fe, /* mov lr, pc */
2042 /* bx r6 */
2043 0xe8bd4040, /* pop {r6, pc} */
2044 0xe12fff1e, /* bx lr */
2045 0x00000000, /* dcd R_ARM_ABS32(X) */
2046 };
2047
2048 static const bfd_vma arm_thumb_arm_v4t_short_branch_stub[] =
2049 {
2050 0x46c04778, /* bx pc */
2051 /* nop */
2052 0xea000000, /* b (X) */
2053 };
2054
2055 static const bfd_vma arm_pic_long_branch_stub[] =
2056 {
2057 0xe59fc000, /* ldr r12, [pc] */
2058 0xe08ff00c, /* add pc, pc, ip */
2059 0x00000000, /* dcd R_ARM_REL32(X) */
2060 };
2061
2062 /* Section name for stubs is the associated section name plus this
2063 string. */
2064 #define STUB_SUFFIX ".stub"
2065
2066 enum elf32_arm_stub_type
2067 {
2068 arm_stub_none,
2069 arm_stub_long_branch,
2070 arm_thumb_v4t_stub_long_branch,
2071 arm_thumb_thumb_stub_long_branch,
2072 arm_thumb_arm_v4t_stub_long_branch,
2073 arm_thumb_arm_v4t_stub_short_branch,
2074 arm_stub_pic_long_branch,
2075 };
2076
2077 struct elf32_arm_stub_hash_entry
2078 {
2079 /* Base hash table entry structure. */
2080 struct bfd_hash_entry root;
2081
2082 /* The stub section. */
2083 asection *stub_sec;
2084
2085 /* Offset within stub_sec of the beginning of this stub. */
2086 bfd_vma stub_offset;
2087
2088 /* Given the symbol's value and its section we can determine its final
2089 value when building the stubs (so the stub knows where to jump). */
2090 bfd_vma target_value;
2091 asection *target_section;
2092
2093 enum elf32_arm_stub_type stub_type;
2094
2095 /* The symbol table entry, if any, that this was derived from. */
2096 struct elf32_arm_link_hash_entry *h;
2097
2098 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2099 unsigned char st_type;
2100
2101 /* Where this stub is being called from, or, in the case of combined
2102 stub sections, the first input section in the group. */
2103 asection *id_sec;
2104
2105 /* The name for the local symbol at the start of this stub. The
2106 stub name in the hash table has to be unique; this does not, so
2107 it can be friendlier. */
2108 char *output_name;
2109 };
2110
2111 /* Used to build a map of a section. This is required for mixed-endian
2112 code/data. */
2113
2114 typedef struct elf32_elf_section_map
2115 {
2116 bfd_vma vma;
2117 char type;
2118 }
2119 elf32_arm_section_map;
2120
2121 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2122
2123 typedef enum
2124 {
2125 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2126 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2127 VFP11_ERRATUM_ARM_VENEER,
2128 VFP11_ERRATUM_THUMB_VENEER
2129 }
2130 elf32_vfp11_erratum_type;
2131
2132 typedef struct elf32_vfp11_erratum_list
2133 {
2134 struct elf32_vfp11_erratum_list *next;
2135 bfd_vma vma;
2136 union
2137 {
2138 struct
2139 {
2140 struct elf32_vfp11_erratum_list *veneer;
2141 unsigned int vfp_insn;
2142 } b;
2143 struct
2144 {
2145 struct elf32_vfp11_erratum_list *branch;
2146 unsigned int id;
2147 } v;
2148 } u;
2149 elf32_vfp11_erratum_type type;
2150 }
2151 elf32_vfp11_erratum_list;
2152
2153 typedef struct _arm_elf_section_data
2154 {
2155 struct bfd_elf_section_data elf;
2156 unsigned int mapcount;
2157 unsigned int mapsize;
2158 elf32_arm_section_map *map;
2159 unsigned int erratumcount;
2160 elf32_vfp11_erratum_list *erratumlist;
2161 }
2162 _arm_elf_section_data;
2163
2164 #define elf32_arm_section_data(sec) \
2165 ((_arm_elf_section_data *) elf_section_data (sec))
2166
2167 /* The size of the thread control block. */
2168 #define TCB_SIZE 8
2169
2170 struct elf_arm_obj_tdata
2171 {
2172 struct elf_obj_tdata root;
2173
2174 /* tls_type for each local got entry. */
2175 char *local_got_tls_type;
2176
2177 /* Zero to warn when linking objects with incompatible enum sizes. */
2178 int no_enum_size_warning;
2179
2180 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2181 int no_wchar_size_warning;
2182 };
2183
2184 #define elf_arm_tdata(bfd) \
2185 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2186
2187 #define elf32_arm_local_got_tls_type(bfd) \
2188 (elf_arm_tdata (bfd)->local_got_tls_type)
2189
2190 #define is_arm_elf(bfd) \
2191 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2192 && elf_tdata (bfd) != NULL \
2193 && elf_object_id (bfd) == ARM_ELF_TDATA)
2194
2195 static bfd_boolean
2196 elf32_arm_mkobject (bfd *abfd)
2197 {
2198 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2199 ARM_ELF_TDATA);
2200 }
2201
2202 /* The ARM linker needs to keep track of the number of relocs that it
2203 decides to copy in check_relocs for each symbol. This is so that
2204 it can discard PC relative relocs if it doesn't need them when
2205 linking with -Bsymbolic. We store the information in a field
2206 extending the regular ELF linker hash table. */
2207
2208 /* This structure keeps track of the number of relocs we have copied
2209 for a given symbol. */
2210 struct elf32_arm_relocs_copied
2211 {
2212 /* Next section. */
2213 struct elf32_arm_relocs_copied * next;
2214 /* A section in dynobj. */
2215 asection * section;
2216 /* Number of relocs copied in this section. */
2217 bfd_size_type count;
2218 /* Number of PC-relative relocs copied in this section. */
2219 bfd_size_type pc_count;
2220 };
2221
2222 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2223
2224 /* Arm ELF linker hash entry. */
2225 struct elf32_arm_link_hash_entry
2226 {
2227 struct elf_link_hash_entry root;
2228
2229 /* Number of PC relative relocs copied for this symbol. */
2230 struct elf32_arm_relocs_copied * relocs_copied;
2231
2232 /* We reference count Thumb references to a PLT entry separately,
2233 so that we can emit the Thumb trampoline only if needed. */
2234 bfd_signed_vma plt_thumb_refcount;
2235
2236 /* Some references from Thumb code may be eliminated by BL->BLX
2237 conversion, so record them separately. */
2238 bfd_signed_vma plt_maybe_thumb_refcount;
2239
2240 /* Since PLT entries have variable size if the Thumb prologue is
2241 used, we need to record the index into .got.plt instead of
2242 recomputing it from the PLT offset. */
2243 bfd_signed_vma plt_got_offset;
2244
2245 #define GOT_UNKNOWN 0
2246 #define GOT_NORMAL 1
2247 #define GOT_TLS_GD 2
2248 #define GOT_TLS_IE 4
2249 unsigned char tls_type;
2250
2251 /* The symbol marking the real symbol location for exported thumb
2252 symbols with Arm stubs. */
2253 struct elf_link_hash_entry *export_glue;
2254
2255 /* A pointer to the most recently used stub hash entry against this
2256 symbol. */
2257 struct elf32_arm_stub_hash_entry *stub_cache;
2258 };
2259
2260 /* Traverse an arm ELF linker hash table. */
2261 #define elf32_arm_link_hash_traverse(table, func, info) \
2262 (elf_link_hash_traverse \
2263 (&(table)->root, \
2264 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2265 (info)))
2266
2267 /* Get the ARM elf linker hash table from a link_info structure. */
2268 #define elf32_arm_hash_table(info) \
2269 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2270
2271 #define arm_stub_hash_lookup(table, string, create, copy) \
2272 ((struct elf32_arm_stub_hash_entry *) \
2273 bfd_hash_lookup ((table), (string), (create), (copy)))
2274
2275 /* ARM ELF linker hash table. */
2276 struct elf32_arm_link_hash_table
2277 {
2278 /* The main hash table. */
2279 struct elf_link_hash_table root;
2280
2281 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2282 bfd_size_type thumb_glue_size;
2283
2284 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2285 bfd_size_type arm_glue_size;
2286
2287 /* The size in bytes of section containing the ARMv4 BX veneers. */
2288 bfd_size_type bx_glue_size;
2289
2290 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2291 veneer has been populated. */
2292 bfd_vma bx_glue_offset[15];
2293
2294 /* The size in bytes of the section containing glue for VFP11 erratum
2295 veneers. */
2296 bfd_size_type vfp11_erratum_glue_size;
2297
2298 /* An arbitrary input BFD chosen to hold the glue sections. */
2299 bfd * bfd_of_glue_owner;
2300
2301 /* Nonzero to output a BE8 image. */
2302 int byteswap_code;
2303
2304 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2305 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2306 int target1_is_rel;
2307
2308 /* The relocation to use for R_ARM_TARGET2 relocations. */
2309 int target2_reloc;
2310
2311 /* 0 = Ignore R_ARM_V4BX.
2312 1 = Convert BX to MOV PC.
2313 2 = Generate v4 interworing stubs. */
2314 int fix_v4bx;
2315
2316 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2317 int use_blx;
2318
2319 /* What sort of code sequences we should look for which may trigger the
2320 VFP11 denorm erratum. */
2321 bfd_arm_vfp11_fix vfp11_fix;
2322
2323 /* Global counter for the number of fixes we have emitted. */
2324 int num_vfp11_fixes;
2325
2326 /* Nonzero to force PIC branch veneers. */
2327 int pic_veneer;
2328
2329 /* The number of bytes in the initial entry in the PLT. */
2330 bfd_size_type plt_header_size;
2331
2332 /* The number of bytes in the subsequent PLT etries. */
2333 bfd_size_type plt_entry_size;
2334
2335 /* True if the target system is VxWorks. */
2336 int vxworks_p;
2337
2338 /* True if the target system is Symbian OS. */
2339 int symbian_p;
2340
2341 /* True if the target uses REL relocations. */
2342 int use_rel;
2343
2344 /* Short-cuts to get to dynamic linker sections. */
2345 asection *sgot;
2346 asection *sgotplt;
2347 asection *srelgot;
2348 asection *splt;
2349 asection *srelplt;
2350 asection *sdynbss;
2351 asection *srelbss;
2352
2353 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2354 asection *srelplt2;
2355
2356 /* Data for R_ARM_TLS_LDM32 relocations. */
2357 union
2358 {
2359 bfd_signed_vma refcount;
2360 bfd_vma offset;
2361 } tls_ldm_got;
2362
2363 /* Small local sym to section mapping cache. */
2364 struct sym_sec_cache sym_sec;
2365
2366 /* For convenience in allocate_dynrelocs. */
2367 bfd * obfd;
2368
2369 /* The stub hash table. */
2370 struct bfd_hash_table stub_hash_table;
2371
2372 /* Linker stub bfd. */
2373 bfd *stub_bfd;
2374
2375 /* Linker call-backs. */
2376 asection * (*add_stub_section) (const char *, asection *);
2377 void (*layout_sections_again) (void);
2378
2379 /* Array to keep track of which stub sections have been created, and
2380 information on stub grouping. */
2381 struct map_stub
2382 {
2383 /* This is the section to which stubs in the group will be
2384 attached. */
2385 asection *link_sec;
2386 /* The stub section. */
2387 asection *stub_sec;
2388 } *stub_group;
2389
2390 /* Assorted information used by elf32_arm_size_stubs. */
2391 unsigned int bfd_count;
2392 int top_index;
2393 asection **input_list;
2394 };
2395
2396 /* Create an entry in an ARM ELF linker hash table. */
2397
2398 static struct bfd_hash_entry *
2399 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2400 struct bfd_hash_table * table,
2401 const char * string)
2402 {
2403 struct elf32_arm_link_hash_entry * ret =
2404 (struct elf32_arm_link_hash_entry *) entry;
2405
2406 /* Allocate the structure if it has not already been allocated by a
2407 subclass. */
2408 if (ret == NULL)
2409 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2410 if (ret == NULL)
2411 return (struct bfd_hash_entry *) ret;
2412
2413 /* Call the allocation method of the superclass. */
2414 ret = ((struct elf32_arm_link_hash_entry *)
2415 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2416 table, string));
2417 if (ret != NULL)
2418 {
2419 ret->relocs_copied = NULL;
2420 ret->tls_type = GOT_UNKNOWN;
2421 ret->plt_thumb_refcount = 0;
2422 ret->plt_maybe_thumb_refcount = 0;
2423 ret->plt_got_offset = -1;
2424 ret->export_glue = NULL;
2425
2426 ret->stub_cache = NULL;
2427 }
2428
2429 return (struct bfd_hash_entry *) ret;
2430 }
2431
2432 /* Initialize an entry in the stub hash table. */
2433
2434 static struct bfd_hash_entry *
2435 stub_hash_newfunc (struct bfd_hash_entry *entry,
2436 struct bfd_hash_table *table,
2437 const char *string)
2438 {
2439 /* Allocate the structure if it has not already been allocated by a
2440 subclass. */
2441 if (entry == NULL)
2442 {
2443 entry = bfd_hash_allocate (table,
2444 sizeof (struct elf32_arm_stub_hash_entry));
2445 if (entry == NULL)
2446 return entry;
2447 }
2448
2449 /* Call the allocation method of the superclass. */
2450 entry = bfd_hash_newfunc (entry, table, string);
2451 if (entry != NULL)
2452 {
2453 struct elf32_arm_stub_hash_entry *eh;
2454
2455 /* Initialize the local fields. */
2456 eh = (struct elf32_arm_stub_hash_entry *) entry;
2457 eh->stub_sec = NULL;
2458 eh->stub_offset = 0;
2459 eh->target_value = 0;
2460 eh->target_section = NULL;
2461 eh->stub_type = arm_stub_none;
2462 eh->h = NULL;
2463 eh->id_sec = NULL;
2464 }
2465
2466 return entry;
2467 }
2468
2469 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2470 shortcuts to them in our hash table. */
2471
2472 static bfd_boolean
2473 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2474 {
2475 struct elf32_arm_link_hash_table *htab;
2476
2477 htab = elf32_arm_hash_table (info);
2478 /* BPABI objects never have a GOT, or associated sections. */
2479 if (htab->symbian_p)
2480 return TRUE;
2481
2482 if (! _bfd_elf_create_got_section (dynobj, info))
2483 return FALSE;
2484
2485 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2486 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2487 if (!htab->sgot || !htab->sgotplt)
2488 abort ();
2489
2490 htab->srelgot = bfd_make_section_with_flags (dynobj,
2491 RELOC_SECTION (htab, ".got"),
2492 (SEC_ALLOC | SEC_LOAD
2493 | SEC_HAS_CONTENTS
2494 | SEC_IN_MEMORY
2495 | SEC_LINKER_CREATED
2496 | SEC_READONLY));
2497 if (htab->srelgot == NULL
2498 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2499 return FALSE;
2500 return TRUE;
2501 }
2502
2503 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2504 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2505 hash table. */
2506
2507 static bfd_boolean
2508 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2509 {
2510 struct elf32_arm_link_hash_table *htab;
2511
2512 htab = elf32_arm_hash_table (info);
2513 if (!htab->sgot && !create_got_section (dynobj, info))
2514 return FALSE;
2515
2516 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2517 return FALSE;
2518
2519 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2520 htab->srelplt = bfd_get_section_by_name (dynobj,
2521 RELOC_SECTION (htab, ".plt"));
2522 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2523 if (!info->shared)
2524 htab->srelbss = bfd_get_section_by_name (dynobj,
2525 RELOC_SECTION (htab, ".bss"));
2526
2527 if (htab->vxworks_p)
2528 {
2529 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2530 return FALSE;
2531
2532 if (info->shared)
2533 {
2534 htab->plt_header_size = 0;
2535 htab->plt_entry_size
2536 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2537 }
2538 else
2539 {
2540 htab->plt_header_size
2541 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2542 htab->plt_entry_size
2543 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2544 }
2545 }
2546
2547 if (!htab->splt
2548 || !htab->srelplt
2549 || !htab->sdynbss
2550 || (!info->shared && !htab->srelbss))
2551 abort ();
2552
2553 return TRUE;
2554 }
2555
2556 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2557
2558 static void
2559 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2560 struct elf_link_hash_entry *dir,
2561 struct elf_link_hash_entry *ind)
2562 {
2563 struct elf32_arm_link_hash_entry *edir, *eind;
2564
2565 edir = (struct elf32_arm_link_hash_entry *) dir;
2566 eind = (struct elf32_arm_link_hash_entry *) ind;
2567
2568 if (eind->relocs_copied != NULL)
2569 {
2570 if (edir->relocs_copied != NULL)
2571 {
2572 struct elf32_arm_relocs_copied **pp;
2573 struct elf32_arm_relocs_copied *p;
2574
2575 /* Add reloc counts against the indirect sym to the direct sym
2576 list. Merge any entries against the same section. */
2577 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2578 {
2579 struct elf32_arm_relocs_copied *q;
2580
2581 for (q = edir->relocs_copied; q != NULL; q = q->next)
2582 if (q->section == p->section)
2583 {
2584 q->pc_count += p->pc_count;
2585 q->count += p->count;
2586 *pp = p->next;
2587 break;
2588 }
2589 if (q == NULL)
2590 pp = &p->next;
2591 }
2592 *pp = edir->relocs_copied;
2593 }
2594
2595 edir->relocs_copied = eind->relocs_copied;
2596 eind->relocs_copied = NULL;
2597 }
2598
2599 if (ind->root.type == bfd_link_hash_indirect)
2600 {
2601 /* Copy over PLT info. */
2602 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2603 eind->plt_thumb_refcount = 0;
2604 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2605 eind->plt_maybe_thumb_refcount = 0;
2606
2607 if (dir->got.refcount <= 0)
2608 {
2609 edir->tls_type = eind->tls_type;
2610 eind->tls_type = GOT_UNKNOWN;
2611 }
2612 }
2613
2614 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2615 }
2616
2617 /* Create an ARM elf linker hash table. */
2618
2619 static struct bfd_link_hash_table *
2620 elf32_arm_link_hash_table_create (bfd *abfd)
2621 {
2622 struct elf32_arm_link_hash_table *ret;
2623 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2624
2625 ret = bfd_malloc (amt);
2626 if (ret == NULL)
2627 return NULL;
2628
2629 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2630 elf32_arm_link_hash_newfunc,
2631 sizeof (struct elf32_arm_link_hash_entry)))
2632 {
2633 free (ret);
2634 return NULL;
2635 }
2636
2637 ret->sgot = NULL;
2638 ret->sgotplt = NULL;
2639 ret->srelgot = NULL;
2640 ret->splt = NULL;
2641 ret->srelplt = NULL;
2642 ret->sdynbss = NULL;
2643 ret->srelbss = NULL;
2644 ret->srelplt2 = NULL;
2645 ret->thumb_glue_size = 0;
2646 ret->arm_glue_size = 0;
2647 ret->bx_glue_size = 0;
2648 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2649 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2650 ret->vfp11_erratum_glue_size = 0;
2651 ret->num_vfp11_fixes = 0;
2652 ret->bfd_of_glue_owner = NULL;
2653 ret->byteswap_code = 0;
2654 ret->target1_is_rel = 0;
2655 ret->target2_reloc = R_ARM_NONE;
2656 #ifdef FOUR_WORD_PLT
2657 ret->plt_header_size = 16;
2658 ret->plt_entry_size = 16;
2659 #else
2660 ret->plt_header_size = 20;
2661 ret->plt_entry_size = 12;
2662 #endif
2663 ret->fix_v4bx = 0;
2664 ret->use_blx = 0;
2665 ret->vxworks_p = 0;
2666 ret->symbian_p = 0;
2667 ret->use_rel = 1;
2668 ret->sym_sec.abfd = NULL;
2669 ret->obfd = abfd;
2670 ret->tls_ldm_got.refcount = 0;
2671 ret->stub_bfd = NULL;
2672 ret->add_stub_section = NULL;
2673 ret->layout_sections_again = NULL;
2674 ret->stub_group = NULL;
2675 ret->bfd_count = 0;
2676 ret->top_index = 0;
2677 ret->input_list = NULL;
2678
2679 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2680 sizeof (struct elf32_arm_stub_hash_entry)))
2681 {
2682 free (ret);
2683 return NULL;
2684 }
2685
2686 return &ret->root.root;
2687 }
2688
2689 /* Free the derived linker hash table. */
2690
2691 static void
2692 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2693 {
2694 struct elf32_arm_link_hash_table *ret
2695 = (struct elf32_arm_link_hash_table *) hash;
2696
2697 bfd_hash_table_free (&ret->stub_hash_table);
2698 _bfd_generic_link_hash_table_free (hash);
2699 }
2700
2701 /* Determine if we're dealing with a Thumb only architecture. */
2702
2703 static bfd_boolean
2704 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2705 {
2706 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2707 Tag_CPU_arch);
2708 int profile;
2709
2710 if (arch != TAG_CPU_ARCH_V7)
2711 return FALSE;
2712
2713 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2714 Tag_CPU_arch_profile);
2715
2716 return profile == 'M';
2717 }
2718
2719 /* Determine if we're dealing with a Thumb-2 object. */
2720
2721 static bfd_boolean
2722 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2723 {
2724 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2725 Tag_CPU_arch);
2726 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2727 }
2728
2729 static bfd_boolean
2730 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
2731 {
2732 switch (stub_type)
2733 {
2734 case arm_thumb_thumb_stub_long_branch:
2735 case arm_thumb_arm_v4t_stub_long_branch:
2736 case arm_thumb_arm_v4t_stub_short_branch:
2737 return TRUE;
2738 case arm_stub_none:
2739 BFD_FAIL ();
2740 return FALSE;
2741 break;
2742 default:
2743 return FALSE;
2744 }
2745 }
2746
2747 /* Determine the type of stub needed, if any, for a call. */
2748
2749 static enum elf32_arm_stub_type
2750 arm_type_of_stub (struct bfd_link_info *info,
2751 asection *input_sec,
2752 const Elf_Internal_Rela *rel,
2753 unsigned char st_type,
2754 struct elf32_arm_link_hash_entry *hash,
2755 bfd_vma destination,
2756 asection *sym_sec,
2757 bfd *input_bfd,
2758 const char *name)
2759 {
2760 bfd_vma location;
2761 bfd_signed_vma branch_offset;
2762 unsigned int r_type;
2763 struct elf32_arm_link_hash_table * globals;
2764 int thumb2;
2765 int thumb_only;
2766 enum elf32_arm_stub_type stub_type = arm_stub_none;
2767
2768 /* We don't know the actual type of destination in case it is of
2769 type STT_SECTION: give up. */
2770 if (st_type == STT_SECTION)
2771 return stub_type;
2772
2773 globals = elf32_arm_hash_table (info);
2774
2775 thumb_only = using_thumb_only (globals);
2776
2777 thumb2 = using_thumb2 (globals);
2778
2779 /* Determine where the call point is. */
2780 location = (input_sec->output_offset
2781 + input_sec->output_section->vma
2782 + rel->r_offset);
2783
2784 branch_offset = (bfd_signed_vma)(destination - location);
2785
2786 r_type = ELF32_R_TYPE (rel->r_info);
2787
2788 /* If the call will go through a PLT entry then we do not need
2789 glue. */
2790 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
2791 return stub_type;
2792
2793 if (r_type == R_ARM_THM_CALL)
2794 {
2795 if ((!thumb2
2796 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2797 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2798 || (thumb2
2799 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2800 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2801 || ((st_type != STT_ARM_TFUNC) && !globals->use_blx))
2802 {
2803 if (st_type == STT_ARM_TFUNC)
2804 {
2805 /* Thumb to thumb. */
2806 if (!thumb_only)
2807 {
2808 stub_type = (info->shared | globals->pic_veneer)
2809 ? ((globals->use_blx)
2810 ? arm_stub_pic_long_branch
2811 : arm_stub_none)
2812 : (globals->use_blx)
2813 ? arm_stub_long_branch
2814 : arm_stub_none;
2815 }
2816 else
2817 {
2818 stub_type = (info->shared | globals->pic_veneer)
2819 ? arm_stub_none
2820 : (globals->use_blx)
2821 ? arm_thumb_thumb_stub_long_branch
2822 : arm_stub_none;
2823 }
2824 }
2825 else
2826 {
2827 /* Thumb to arm. */
2828 if (sym_sec != NULL
2829 && sym_sec->owner != NULL
2830 && !INTERWORK_FLAG (sym_sec->owner))
2831 {
2832 (*_bfd_error_handler)
2833 (_("%B(%s): warning: interworking not enabled.\n"
2834 " first occurrence: %B: Thumb call to ARM"),
2835 sym_sec->owner, input_bfd, name);
2836 }
2837
2838 stub_type = (info->shared | globals->pic_veneer)
2839 ? ((globals->use_blx)
2840 ? arm_stub_pic_long_branch
2841 : arm_stub_none)
2842 : (globals->use_blx)
2843 ? arm_stub_long_branch
2844 : arm_thumb_arm_v4t_stub_long_branch;
2845
2846 /* Handle v4t short branches. */
2847 if ((stub_type == arm_thumb_arm_v4t_stub_long_branch)
2848 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
2849 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
2850 stub_type = arm_thumb_arm_v4t_stub_short_branch;
2851 }
2852 }
2853 }
2854 else if (r_type == R_ARM_CALL)
2855 {
2856 if (st_type == STT_ARM_TFUNC)
2857 {
2858 /* Arm to thumb. */
2859
2860 if (sym_sec != NULL
2861 && sym_sec->owner != NULL
2862 && !INTERWORK_FLAG (sym_sec->owner))
2863 {
2864 (*_bfd_error_handler)
2865 (_("%B(%s): warning: interworking not enabled.\n"
2866 " first occurrence: %B: Thumb call to ARM"),
2867 sym_sec->owner, input_bfd, name);
2868 }
2869
2870 /* We have an extra 2-bytes reach because of
2871 the mode change (bit 24 (H) of BLX encoding). */
2872 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2873 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
2874 || !globals->use_blx)
2875 {
2876 stub_type = (info->shared | globals->pic_veneer)
2877 ? arm_stub_pic_long_branch
2878 : (globals->use_blx)
2879 ? arm_stub_long_branch
2880 : arm_thumb_v4t_stub_long_branch;
2881 }
2882 }
2883 else
2884 {
2885 /* Arm to arm. */
2886 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
2887 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
2888 {
2889 stub_type = (info->shared | globals->pic_veneer)
2890 ? arm_stub_pic_long_branch
2891 : arm_stub_long_branch;
2892 }
2893 }
2894 }
2895
2896 return stub_type;
2897 }
2898
2899 /* Build a name for an entry in the stub hash table. */
2900
2901 static char *
2902 elf32_arm_stub_name (const asection *input_section,
2903 const asection *sym_sec,
2904 const struct elf32_arm_link_hash_entry *hash,
2905 const Elf_Internal_Rela *rel)
2906 {
2907 char *stub_name;
2908 bfd_size_type len;
2909
2910 if (hash)
2911 {
2912 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
2913 stub_name = bfd_malloc (len);
2914 if (stub_name != NULL)
2915 sprintf (stub_name, "%08x_%s+%x",
2916 input_section->id & 0xffffffff,
2917 hash->root.root.root.string,
2918 (int) rel->r_addend & 0xffffffff);
2919 }
2920 else
2921 {
2922 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
2923 stub_name = bfd_malloc (len);
2924 if (stub_name != NULL)
2925 sprintf (stub_name, "%08x_%x:%x+%x",
2926 input_section->id & 0xffffffff,
2927 sym_sec->id & 0xffffffff,
2928 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
2929 (int) rel->r_addend & 0xffffffff);
2930 }
2931
2932 return stub_name;
2933 }
2934
2935 /* Look up an entry in the stub hash. Stub entries are cached because
2936 creating the stub name takes a bit of time. */
2937
2938 static struct elf32_arm_stub_hash_entry *
2939 elf32_arm_get_stub_entry (const asection *input_section,
2940 const asection *sym_sec,
2941 struct elf_link_hash_entry *hash,
2942 const Elf_Internal_Rela *rel,
2943 struct elf32_arm_link_hash_table *htab)
2944 {
2945 struct elf32_arm_stub_hash_entry *stub_entry;
2946 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
2947 const asection *id_sec;
2948
2949 if ((input_section->flags & SEC_CODE) == 0)
2950 return NULL;
2951
2952 /* If this input section is part of a group of sections sharing one
2953 stub section, then use the id of the first section in the group.
2954 Stub names need to include a section id, as there may well be
2955 more than one stub used to reach say, printf, and we need to
2956 distinguish between them. */
2957 id_sec = htab->stub_group[input_section->id].link_sec;
2958
2959 if (h != NULL && h->stub_cache != NULL
2960 && h->stub_cache->h == h
2961 && h->stub_cache->id_sec == id_sec)
2962 {
2963 stub_entry = h->stub_cache;
2964 }
2965 else
2966 {
2967 char *stub_name;
2968
2969 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
2970 if (stub_name == NULL)
2971 return NULL;
2972
2973 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
2974 stub_name, FALSE, FALSE);
2975 if (h != NULL)
2976 h->stub_cache = stub_entry;
2977
2978 free (stub_name);
2979 }
2980
2981 return stub_entry;
2982 }
2983
2984 /* Add a new stub entry to the stub hash. Not all fields of the new
2985 stub entry are initialised. */
2986
2987 static struct elf32_arm_stub_hash_entry *
2988 elf32_arm_add_stub (const char *stub_name,
2989 asection *section,
2990 struct elf32_arm_link_hash_table *htab)
2991 {
2992 asection *link_sec;
2993 asection *stub_sec;
2994 struct elf32_arm_stub_hash_entry *stub_entry;
2995
2996 link_sec = htab->stub_group[section->id].link_sec;
2997 stub_sec = htab->stub_group[section->id].stub_sec;
2998 if (stub_sec == NULL)
2999 {
3000 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3001 if (stub_sec == NULL)
3002 {
3003 size_t namelen;
3004 bfd_size_type len;
3005 char *s_name;
3006
3007 namelen = strlen (link_sec->name);
3008 len = namelen + sizeof (STUB_SUFFIX);
3009 s_name = bfd_alloc (htab->stub_bfd, len);
3010 if (s_name == NULL)
3011 return NULL;
3012
3013 memcpy (s_name, link_sec->name, namelen);
3014 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3015 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3016 if (stub_sec == NULL)
3017 return NULL;
3018 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3019 }
3020 htab->stub_group[section->id].stub_sec = stub_sec;
3021 }
3022
3023 /* Enter this entry into the linker stub hash table. */
3024 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3025 TRUE, FALSE);
3026 if (stub_entry == NULL)
3027 {
3028 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3029 section->owner,
3030 stub_name);
3031 return NULL;
3032 }
3033
3034 stub_entry->stub_sec = stub_sec;
3035 stub_entry->stub_offset = 0;
3036 stub_entry->id_sec = link_sec;
3037
3038 return stub_entry;
3039 }
3040
3041 /* Store an Arm insn into an output section not processed by
3042 elf32_arm_write_section. */
3043
3044 static void
3045 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3046 bfd * output_bfd, bfd_vma val, void * ptr)
3047 {
3048 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3049 bfd_putl32 (val, ptr);
3050 else
3051 bfd_putb32 (val, ptr);
3052 }
3053
3054 /* Store a 16-bit Thumb insn into an output section not processed by
3055 elf32_arm_write_section. */
3056
3057 static void
3058 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3059 bfd * output_bfd, bfd_vma val, void * ptr)
3060 {
3061 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3062 bfd_putl16 (val, ptr);
3063 else
3064 bfd_putb16 (val, ptr);
3065 }
3066
3067 static bfd_boolean
3068 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3069 void * in_arg)
3070 {
3071 struct elf32_arm_stub_hash_entry *stub_entry;
3072 struct bfd_link_info *info;
3073 struct elf32_arm_link_hash_table *htab;
3074 asection *stub_sec;
3075 bfd *stub_bfd;
3076 bfd_vma stub_addr;
3077 bfd_byte *loc;
3078 bfd_vma sym_value;
3079 int template_size;
3080 int size;
3081 const bfd_vma *template;
3082 int i;
3083 struct elf32_arm_link_hash_table * globals;
3084
3085 /* Massage our args to the form they really have. */
3086 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3087 info = (struct bfd_link_info *) in_arg;
3088
3089 globals = elf32_arm_hash_table (info);
3090
3091 htab = elf32_arm_hash_table (info);
3092 stub_sec = stub_entry->stub_sec;
3093
3094 /* Make a note of the offset within the stubs for this entry. */
3095 stub_entry->stub_offset = stub_sec->size;
3096 loc = stub_sec->contents + stub_entry->stub_offset;
3097
3098 stub_bfd = stub_sec->owner;
3099
3100 /* This is the address of the start of the stub. */
3101 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3102 + stub_entry->stub_offset;
3103
3104 /* This is the address of the stub destination. */
3105 sym_value = (stub_entry->target_value
3106 + stub_entry->target_section->output_offset
3107 + stub_entry->target_section->output_section->vma);
3108
3109 switch (stub_entry->stub_type)
3110 {
3111 case arm_stub_long_branch:
3112 template = arm_long_branch_stub;
3113 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3114 break;
3115 case arm_thumb_v4t_stub_long_branch:
3116 template = arm_thumb_v4t_long_branch_stub;
3117 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3118 break;
3119 case arm_thumb_thumb_stub_long_branch:
3120 template = arm_thumb_thumb_long_branch_stub;
3121 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3122 break;
3123 case arm_thumb_arm_v4t_stub_long_branch:
3124 template = arm_thumb_arm_v4t_long_branch_stub;
3125 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3126 break;
3127 case arm_thumb_arm_v4t_stub_short_branch:
3128 template = arm_thumb_arm_v4t_short_branch_stub;
3129 template_size = (sizeof(arm_thumb_arm_v4t_short_branch_stub) / sizeof (bfd_vma)) * 4;
3130 break;
3131 case arm_stub_pic_long_branch:
3132 template = arm_pic_long_branch_stub;
3133 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3134 break;
3135 default:
3136 BFD_FAIL ();
3137 return FALSE;
3138 }
3139
3140 size = 0;
3141 for (i = 0; i < (template_size / 4); i++)
3142 {
3143 /* A 0 pattern is a placeholder, every other pattern is an
3144 instruction. */
3145 if (template[i] != 0)
3146 put_arm_insn (globals, stub_bfd, template[i], loc + size);
3147 else
3148 bfd_put_32 (stub_bfd, template[i], loc + size);
3149
3150 size += 4;
3151 }
3152 stub_sec->size += size;
3153
3154 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3155 if (stub_entry->st_type == STT_ARM_TFUNC)
3156 sym_value |= 1;
3157
3158 switch (stub_entry->stub_type)
3159 {
3160 case arm_stub_long_branch:
3161 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3162 stub_bfd, stub_sec, stub_sec->contents,
3163 stub_entry->stub_offset + 4, sym_value, 0);
3164 break;
3165 case arm_thumb_v4t_stub_long_branch:
3166 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3167 stub_bfd, stub_sec, stub_sec->contents,
3168 stub_entry->stub_offset + 8, sym_value, 0);
3169 break;
3170 case arm_thumb_thumb_stub_long_branch:
3171 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3172 stub_bfd, stub_sec, stub_sec->contents,
3173 stub_entry->stub_offset + 12, sym_value, 0);
3174 break;
3175 case arm_thumb_arm_v4t_stub_long_branch:
3176 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3177 stub_bfd, stub_sec, stub_sec->contents,
3178 stub_entry->stub_offset + 16, sym_value, 0);
3179 break;
3180 case arm_thumb_arm_v4t_stub_short_branch:
3181 {
3182 long int rel_offset;
3183 static const insn32 t2a3_b_insn = 0xea000000;
3184
3185 rel_offset = sym_value - (stub_addr + 8 + 4);
3186
3187 put_arm_insn (globals, stub_bfd,
3188 (bfd_vma) t2a3_b_insn | ((rel_offset >> 2) & 0x00FFFFFF),
3189 loc + 4);
3190 }
3191 break;
3192
3193 case arm_stub_pic_long_branch:
3194 /* We want the value relative to the address 8 bytes from the
3195 start of the stub. */
3196 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_REL32),
3197 stub_bfd, stub_sec, stub_sec->contents,
3198 stub_entry->stub_offset + 8, sym_value, 0);
3199 break;
3200 default:
3201 break;
3202 }
3203
3204 return TRUE;
3205 }
3206
3207 /* As above, but don't actually build the stub. Just bump offset so
3208 we know stub section sizes. */
3209
3210 static bfd_boolean
3211 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3212 void * in_arg)
3213 {
3214 struct elf32_arm_stub_hash_entry *stub_entry;
3215 struct elf32_arm_link_hash_table *htab;
3216 const bfd_vma *template;
3217 int template_size;
3218 int size;
3219 int i;
3220
3221 /* Massage our args to the form they really have. */
3222 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3223 htab = (struct elf32_arm_link_hash_table *) in_arg;
3224
3225 switch (stub_entry->stub_type)
3226 {
3227 case arm_stub_long_branch:
3228 template = arm_long_branch_stub;
3229 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3230 break;
3231 case arm_thumb_v4t_stub_long_branch:
3232 template = arm_thumb_v4t_long_branch_stub;
3233 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3234 break;
3235 case arm_thumb_thumb_stub_long_branch:
3236 template = arm_thumb_thumb_long_branch_stub;
3237 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3238 break;
3239 case arm_thumb_arm_v4t_stub_long_branch:
3240 template = arm_thumb_arm_v4t_long_branch_stub;
3241 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3242 break;
3243 case arm_thumb_arm_v4t_stub_short_branch:
3244 template = arm_thumb_arm_v4t_short_branch_stub;
3245 template_size = (sizeof(arm_thumb_arm_v4t_short_branch_stub) / sizeof (bfd_vma)) * 4;
3246 break;
3247 case arm_stub_pic_long_branch:
3248 template = arm_pic_long_branch_stub;
3249 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3250 break;
3251 default:
3252 BFD_FAIL ();
3253 return FALSE;
3254 break;
3255 }
3256
3257 size = 0;
3258 for (i = 0; i < (template_size / 4); i++)
3259 size += 4;
3260 size = (size + 7) & ~7;
3261 stub_entry->stub_sec->size += size;
3262 return TRUE;
3263 }
3264
3265 /* External entry points for sizing and building linker stubs. */
3266
3267 /* Set up various things so that we can make a list of input sections
3268 for each output section included in the link. Returns -1 on error,
3269 0 when no stubs will be needed, and 1 on success. */
3270
3271 int
3272 elf32_arm_setup_section_lists (bfd *output_bfd,
3273 struct bfd_link_info *info)
3274 {
3275 bfd *input_bfd;
3276 unsigned int bfd_count;
3277 int top_id, top_index;
3278 asection *section;
3279 asection **input_list, **list;
3280 bfd_size_type amt;
3281 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3282
3283 if (! is_elf_hash_table (htab))
3284 return 0;
3285
3286 /* Count the number of input BFDs and find the top input section id. */
3287 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3288 input_bfd != NULL;
3289 input_bfd = input_bfd->link_next)
3290 {
3291 bfd_count += 1;
3292 for (section = input_bfd->sections;
3293 section != NULL;
3294 section = section->next)
3295 {
3296 if (top_id < section->id)
3297 top_id = section->id;
3298 }
3299 }
3300 htab->bfd_count = bfd_count;
3301
3302 amt = sizeof (struct map_stub) * (top_id + 1);
3303 htab->stub_group = bfd_zmalloc (amt);
3304 if (htab->stub_group == NULL)
3305 return -1;
3306
3307 /* We can't use output_bfd->section_count here to find the top output
3308 section index as some sections may have been removed, and
3309 _bfd_strip_section_from_output doesn't renumber the indices. */
3310 for (section = output_bfd->sections, top_index = 0;
3311 section != NULL;
3312 section = section->next)
3313 {
3314 if (top_index < section->index)
3315 top_index = section->index;
3316 }
3317
3318 htab->top_index = top_index;
3319 amt = sizeof (asection *) * (top_index + 1);
3320 input_list = bfd_malloc (amt);
3321 htab->input_list = input_list;
3322 if (input_list == NULL)
3323 return -1;
3324
3325 /* For sections we aren't interested in, mark their entries with a
3326 value we can check later. */
3327 list = input_list + top_index;
3328 do
3329 *list = bfd_abs_section_ptr;
3330 while (list-- != input_list);
3331
3332 for (section = output_bfd->sections;
3333 section != NULL;
3334 section = section->next)
3335 {
3336 if ((section->flags & SEC_CODE) != 0)
3337 input_list[section->index] = NULL;
3338 }
3339
3340 return 1;
3341 }
3342
3343 /* The linker repeatedly calls this function for each input section,
3344 in the order that input sections are linked into output sections.
3345 Build lists of input sections to determine groupings between which
3346 we may insert linker stubs. */
3347
3348 void
3349 elf32_arm_next_input_section (struct bfd_link_info *info,
3350 asection *isec)
3351 {
3352 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3353
3354 if (isec->output_section->index <= htab->top_index)
3355 {
3356 asection **list = htab->input_list + isec->output_section->index;
3357
3358 if (*list != bfd_abs_section_ptr)
3359 {
3360 /* Steal the link_sec pointer for our list. */
3361 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3362 /* This happens to make the list in reverse order,
3363 which is what we want. */
3364 PREV_SEC (isec) = *list;
3365 *list = isec;
3366 }
3367 }
3368 }
3369
3370 /* See whether we can group stub sections together. Grouping stub
3371 sections may result in fewer stubs. More importantly, we need to
3372 put all .init* and .fini* stubs at the beginning of the .init or
3373 .fini output sections respectively, because glibc splits the
3374 _init and _fini functions into multiple parts. Putting a stub in
3375 the middle of a function is not a good idea. */
3376
3377 static void
3378 group_sections (struct elf32_arm_link_hash_table *htab,
3379 bfd_size_type stub_group_size,
3380 bfd_boolean stubs_always_before_branch)
3381 {
3382 asection **list = htab->input_list + htab->top_index;
3383
3384 do
3385 {
3386 asection *tail = *list;
3387
3388 if (tail == bfd_abs_section_ptr)
3389 continue;
3390
3391 while (tail != NULL)
3392 {
3393 asection *curr;
3394 asection *prev;
3395 bfd_size_type total;
3396
3397 curr = tail;
3398 total = tail->size;
3399 while ((prev = PREV_SEC (curr)) != NULL
3400 && ((total += curr->output_offset - prev->output_offset)
3401 < stub_group_size))
3402 curr = prev;
3403
3404 /* OK, the size from the start of CURR to the end is less
3405 than stub_group_size and thus can be handled by one stub
3406 section. (Or the tail section is itself larger than
3407 stub_group_size, in which case we may be toast.)
3408 We should really be keeping track of the total size of
3409 stubs added here, as stubs contribute to the final output
3410 section size. */
3411 do
3412 {
3413 prev = PREV_SEC (tail);
3414 /* Set up this stub group. */
3415 htab->stub_group[tail->id].link_sec = curr;
3416 }
3417 while (tail != curr && (tail = prev) != NULL);
3418
3419 /* But wait, there's more! Input sections up to stub_group_size
3420 bytes before the stub section can be handled by it too. */
3421 if (!stubs_always_before_branch)
3422 {
3423 total = 0;
3424 while (prev != NULL
3425 && ((total += tail->output_offset - prev->output_offset)
3426 < stub_group_size))
3427 {
3428 tail = prev;
3429 prev = PREV_SEC (tail);
3430 htab->stub_group[tail->id].link_sec = curr;
3431 }
3432 }
3433 tail = prev;
3434 }
3435 }
3436 while (list-- != htab->input_list);
3437
3438 free (htab->input_list);
3439 #undef PREV_SEC
3440 }
3441
3442 /* Determine and set the size of the stub section for a final link.
3443
3444 The basic idea here is to examine all the relocations looking for
3445 PC-relative calls to a target that is unreachable with a "bl"
3446 instruction. */
3447
3448 bfd_boolean
3449 elf32_arm_size_stubs (bfd *output_bfd,
3450 bfd *stub_bfd,
3451 struct bfd_link_info *info,
3452 bfd_signed_vma group_size,
3453 asection * (*add_stub_section) (const char *, asection *),
3454 void (*layout_sections_again) (void))
3455 {
3456 bfd_size_type stub_group_size;
3457 bfd_boolean stubs_always_before_branch;
3458 bfd_boolean stub_changed = 0;
3459 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3460
3461 /* Propagate mach to stub bfd, because it may not have been
3462 finalized when we created stub_bfd. */
3463 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3464 bfd_get_mach (output_bfd));
3465
3466 /* Stash our params away. */
3467 htab->stub_bfd = stub_bfd;
3468 htab->add_stub_section = add_stub_section;
3469 htab->layout_sections_again = layout_sections_again;
3470 stubs_always_before_branch = group_size < 0;
3471 if (group_size < 0)
3472 stub_group_size = -group_size;
3473 else
3474 stub_group_size = group_size;
3475
3476 if (stub_group_size == 1)
3477 {
3478 /* Default values. */
3479 /* Thumb branch range is +-4MB has to be used as the default
3480 maximum size (a given section can contain both ARM and Thumb
3481 code, so the worst case has to be taken into account).
3482
3483 This value is 24K less than that, which allows for 2025
3484 12-byte stubs. If we exceed that, then we will fail to link.
3485 The user will have to relink with an explicit group size
3486 option. */
3487 stub_group_size = 4170000;
3488 }
3489
3490 group_sections (htab, stub_group_size, stubs_always_before_branch);
3491
3492 while (1)
3493 {
3494 bfd *input_bfd;
3495 unsigned int bfd_indx;
3496 asection *stub_sec;
3497
3498 for (input_bfd = info->input_bfds, bfd_indx = 0;
3499 input_bfd != NULL;
3500 input_bfd = input_bfd->link_next, bfd_indx++)
3501 {
3502 Elf_Internal_Shdr *symtab_hdr;
3503 asection *section;
3504 Elf_Internal_Sym *local_syms = NULL;
3505
3506 /* We'll need the symbol table in a second. */
3507 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3508 if (symtab_hdr->sh_info == 0)
3509 continue;
3510
3511 /* Walk over each section attached to the input bfd. */
3512 for (section = input_bfd->sections;
3513 section != NULL;
3514 section = section->next)
3515 {
3516 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3517
3518 /* If there aren't any relocs, then there's nothing more
3519 to do. */
3520 if ((section->flags & SEC_RELOC) == 0
3521 || section->reloc_count == 0
3522 || (section->flags & SEC_CODE) == 0)
3523 continue;
3524
3525 /* If this section is a link-once section that will be
3526 discarded, then don't create any stubs. */
3527 if (section->output_section == NULL
3528 || section->output_section->owner != output_bfd)
3529 continue;
3530
3531 /* Get the relocs. */
3532 internal_relocs
3533 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3534 NULL, info->keep_memory);
3535 if (internal_relocs == NULL)
3536 goto error_ret_free_local;
3537
3538 /* Now examine each relocation. */
3539 irela = internal_relocs;
3540 irelaend = irela + section->reloc_count;
3541 for (; irela < irelaend; irela++)
3542 {
3543 unsigned int r_type, r_indx;
3544 enum elf32_arm_stub_type stub_type;
3545 struct elf32_arm_stub_hash_entry *stub_entry;
3546 asection *sym_sec;
3547 bfd_vma sym_value;
3548 bfd_vma destination;
3549 struct elf32_arm_link_hash_entry *hash;
3550 const char *sym_name;
3551 char *stub_name;
3552 const asection *id_sec;
3553 unsigned char st_type;
3554
3555 r_type = ELF32_R_TYPE (irela->r_info);
3556 r_indx = ELF32_R_SYM (irela->r_info);
3557
3558 if (r_type >= (unsigned int) R_ARM_max)
3559 {
3560 bfd_set_error (bfd_error_bad_value);
3561 error_ret_free_internal:
3562 if (elf_section_data (section)->relocs == NULL)
3563 free (internal_relocs);
3564 goto error_ret_free_local;
3565 }
3566
3567 /* Only look for stubs on call instructions. */
3568 if ((r_type != (unsigned int) R_ARM_CALL)
3569 && (r_type != (unsigned int) R_ARM_THM_CALL))
3570 continue;
3571
3572 /* Now determine the call target, its name, value,
3573 section. */
3574 sym_sec = NULL;
3575 sym_value = 0;
3576 destination = 0;
3577 hash = NULL;
3578 sym_name = NULL;
3579 if (r_indx < symtab_hdr->sh_info)
3580 {
3581 /* It's a local symbol. */
3582 Elf_Internal_Sym *sym;
3583 Elf_Internal_Shdr *hdr;
3584
3585 if (local_syms == NULL)
3586 {
3587 local_syms
3588 = (Elf_Internal_Sym *) symtab_hdr->contents;
3589 if (local_syms == NULL)
3590 local_syms
3591 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3592 symtab_hdr->sh_info, 0,
3593 NULL, NULL, NULL);
3594 if (local_syms == NULL)
3595 goto error_ret_free_internal;
3596 }
3597
3598 sym = local_syms + r_indx;
3599 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3600 sym_sec = hdr->bfd_section;
3601 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3602 sym_value = sym->st_value;
3603 destination = (sym_value + irela->r_addend
3604 + sym_sec->output_offset
3605 + sym_sec->output_section->vma);
3606 st_type = ELF_ST_TYPE (sym->st_info);
3607 sym_name
3608 = bfd_elf_string_from_elf_section (input_bfd,
3609 symtab_hdr->sh_link,
3610 sym->st_name);
3611 }
3612 else
3613 {
3614 /* It's an external symbol. */
3615 int e_indx;
3616
3617 e_indx = r_indx - symtab_hdr->sh_info;
3618 hash = ((struct elf32_arm_link_hash_entry *)
3619 elf_sym_hashes (input_bfd)[e_indx]);
3620
3621 while (hash->root.root.type == bfd_link_hash_indirect
3622 || hash->root.root.type == bfd_link_hash_warning)
3623 hash = ((struct elf32_arm_link_hash_entry *)
3624 hash->root.root.u.i.link);
3625
3626 if (hash->root.root.type == bfd_link_hash_defined
3627 || hash->root.root.type == bfd_link_hash_defweak)
3628 {
3629 sym_sec = hash->root.root.u.def.section;
3630 sym_value = hash->root.root.u.def.value;
3631 if (sym_sec->output_section != NULL)
3632 destination = (sym_value + irela->r_addend
3633 + sym_sec->output_offset
3634 + sym_sec->output_section->vma);
3635 }
3636 else if (hash->root.root.type == bfd_link_hash_undefweak
3637 || hash->root.root.type == bfd_link_hash_undefined)
3638 /* For a shared library, these will need a PLT stub,
3639 which is treated separately.
3640 For absolute code, they cannot be handled. */
3641 continue;
3642 else
3643 {
3644 bfd_set_error (bfd_error_bad_value);
3645 goto error_ret_free_internal;
3646 }
3647 st_type = ELF_ST_TYPE (hash->root.type);
3648 sym_name = hash->root.root.root.string;
3649 }
3650
3651 /* Determine what (if any) linker stub is needed. */
3652 stub_type = arm_type_of_stub (info, section, irela, st_type,
3653 hash, destination, sym_sec,
3654 input_bfd, sym_name);
3655 if (stub_type == arm_stub_none)
3656 continue;
3657
3658 /* Support for grouping stub sections. */
3659 id_sec = htab->stub_group[section->id].link_sec;
3660
3661 /* Get the name of this stub. */
3662 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3663 if (!stub_name)
3664 goto error_ret_free_internal;
3665
3666 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3667 stub_name,
3668 FALSE, FALSE);
3669 if (stub_entry != NULL)
3670 {
3671 /* The proper stub has already been created. */
3672 free (stub_name);
3673 continue;
3674 }
3675
3676 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
3677 if (stub_entry == NULL)
3678 {
3679 free (stub_name);
3680 goto error_ret_free_internal;
3681 }
3682
3683 stub_entry->target_value = sym_value;
3684 stub_entry->target_section = sym_sec;
3685 stub_entry->stub_type = stub_type;
3686 stub_entry->h = hash;
3687 stub_entry->st_type = st_type;
3688
3689 if (sym_name == NULL)
3690 sym_name = "unnamed";
3691 stub_entry->output_name
3692 = bfd_alloc (htab->stub_bfd,
3693 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
3694 + strlen (sym_name));
3695 if (stub_entry->output_name == NULL)
3696 {
3697 free (stub_name);
3698 goto error_ret_free_internal;
3699 }
3700
3701 /* For historical reasons, use the existing names for
3702 ARM-to-Thumb and Thumb-to-ARM stubs. */
3703 if (r_type == (unsigned int) R_ARM_THM_CALL
3704 && st_type != STT_ARM_TFUNC)
3705 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME,
3706 sym_name);
3707 else if (r_type == (unsigned int) R_ARM_CALL
3708 && st_type == STT_ARM_TFUNC)
3709 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME,
3710 sym_name);
3711 else
3712 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
3713 sym_name);
3714
3715 stub_changed = TRUE;
3716 }
3717
3718 /* We're done with the internal relocs, free them. */
3719 if (elf_section_data (section)->relocs == NULL)
3720 free (internal_relocs);
3721 }
3722 }
3723
3724 if (!stub_changed)
3725 break;
3726
3727 /* OK, we've added some stubs. Find out the new size of the
3728 stub sections. */
3729 for (stub_sec = htab->stub_bfd->sections;
3730 stub_sec != NULL;
3731 stub_sec = stub_sec->next)
3732 stub_sec->size = 0;
3733
3734 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3735
3736 /* Ask the linker to do its stuff. */
3737 (*htab->layout_sections_again) ();
3738 stub_changed = FALSE;
3739 }
3740
3741 return TRUE;
3742
3743 error_ret_free_local:
3744 return FALSE;
3745 }
3746
3747 /* Build all the stubs associated with the current output file. The
3748 stubs are kept in a hash table attached to the main linker hash
3749 table. We also set up the .plt entries for statically linked PIC
3750 functions here. This function is called via arm_elf_finish in the
3751 linker. */
3752
3753 bfd_boolean
3754 elf32_arm_build_stubs (struct bfd_link_info *info)
3755 {
3756 asection *stub_sec;
3757 struct bfd_hash_table *table;
3758 struct elf32_arm_link_hash_table *htab;
3759
3760 htab = elf32_arm_hash_table (info);
3761
3762 for (stub_sec = htab->stub_bfd->sections;
3763 stub_sec != NULL;
3764 stub_sec = stub_sec->next)
3765 {
3766 bfd_size_type size;
3767
3768 /* Ignore non-stub sections. */
3769 if (!strstr (stub_sec->name, STUB_SUFFIX))
3770 continue;
3771
3772 /* Allocate memory to hold the linker stubs. */
3773 size = stub_sec->size;
3774 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3775 if (stub_sec->contents == NULL && size != 0)
3776 return FALSE;
3777 stub_sec->size = 0;
3778 }
3779
3780 /* Build the stubs as directed by the stub hash table. */
3781 table = &htab->stub_hash_table;
3782 bfd_hash_traverse (table, arm_build_one_stub, info);
3783
3784 return TRUE;
3785 }
3786
3787 /* Locate the Thumb encoded calling stub for NAME. */
3788
3789 static struct elf_link_hash_entry *
3790 find_thumb_glue (struct bfd_link_info *link_info,
3791 const char *name,
3792 char **error_message)
3793 {
3794 char *tmp_name;
3795 struct elf_link_hash_entry *hash;
3796 struct elf32_arm_link_hash_table *hash_table;
3797
3798 /* We need a pointer to the armelf specific hash table. */
3799 hash_table = elf32_arm_hash_table (link_info);
3800
3801 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3802 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
3803
3804 BFD_ASSERT (tmp_name);
3805
3806 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
3807
3808 hash = elf_link_hash_lookup
3809 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3810
3811 if (hash == NULL
3812 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
3813 tmp_name, name) == -1)
3814 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3815
3816 free (tmp_name);
3817
3818 return hash;
3819 }
3820
3821 /* Locate the ARM encoded calling stub for NAME. */
3822
3823 static struct elf_link_hash_entry *
3824 find_arm_glue (struct bfd_link_info *link_info,
3825 const char *name,
3826 char **error_message)
3827 {
3828 char *tmp_name;
3829 struct elf_link_hash_entry *myh;
3830 struct elf32_arm_link_hash_table *hash_table;
3831
3832 /* We need a pointer to the elfarm specific hash table. */
3833 hash_table = elf32_arm_hash_table (link_info);
3834
3835 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3836 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3837
3838 BFD_ASSERT (tmp_name);
3839
3840 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3841
3842 myh = elf_link_hash_lookup
3843 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3844
3845 if (myh == NULL
3846 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
3847 tmp_name, name) == -1)
3848 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3849
3850 free (tmp_name);
3851
3852 return myh;
3853 }
3854
3855 /* ARM->Thumb glue (static images):
3856
3857 .arm
3858 __func_from_arm:
3859 ldr r12, __func_addr
3860 bx r12
3861 __func_addr:
3862 .word func @ behave as if you saw a ARM_32 reloc.
3863
3864 (v5t static images)
3865 .arm
3866 __func_from_arm:
3867 ldr pc, __func_addr
3868 __func_addr:
3869 .word func @ behave as if you saw a ARM_32 reloc.
3870
3871 (relocatable images)
3872 .arm
3873 __func_from_arm:
3874 ldr r12, __func_offset
3875 add r12, r12, pc
3876 bx r12
3877 __func_offset:
3878 .word func - . */
3879
3880 #define ARM2THUMB_STATIC_GLUE_SIZE 12
3881 static const insn32 a2t1_ldr_insn = 0xe59fc000;
3882 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
3883 static const insn32 a2t3_func_addr_insn = 0x00000001;
3884
3885 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
3886 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
3887 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
3888
3889 #define ARM2THUMB_PIC_GLUE_SIZE 16
3890 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
3891 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
3892 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
3893
3894 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
3895
3896 .thumb .thumb
3897 .align 2 .align 2
3898 __func_from_thumb: __func_from_thumb:
3899 bx pc push {r6, lr}
3900 nop ldr r6, __func_addr
3901 .arm mov lr, pc
3902 b func bx r6
3903 .arm
3904 ;; back_to_thumb
3905 ldmia r13! {r6, lr}
3906 bx lr
3907 __func_addr:
3908 .word func */
3909
3910 #define THUMB2ARM_GLUE_SIZE 8
3911 static const insn16 t2a1_bx_pc_insn = 0x4778;
3912 static const insn16 t2a2_noop_insn = 0x46c0;
3913 static const insn32 t2a3_b_insn = 0xea000000;
3914
3915 #define VFP11_ERRATUM_VENEER_SIZE 8
3916
3917 #define ARM_BX_VENEER_SIZE 12
3918 static const insn32 armbx1_tst_insn = 0xe3100001;
3919 static const insn32 armbx2_moveq_insn = 0x01a0f000;
3920 static const insn32 armbx3_bx_insn = 0xe12fff10;
3921
3922 #ifndef ELFARM_NABI_C_INCLUDED
3923 static void
3924 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
3925 {
3926 asection * s;
3927 bfd_byte * contents;
3928
3929 if (size == 0)
3930 return;
3931
3932 BFD_ASSERT (abfd != NULL);
3933
3934 s = bfd_get_section_by_name (abfd, name);
3935 BFD_ASSERT (s != NULL);
3936
3937 contents = bfd_alloc (abfd, size);
3938
3939 BFD_ASSERT (s->size == size);
3940 s->contents = contents;
3941 }
3942
3943 bfd_boolean
3944 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
3945 {
3946 struct elf32_arm_link_hash_table * globals;
3947
3948 globals = elf32_arm_hash_table (info);
3949 BFD_ASSERT (globals != NULL);
3950
3951 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3952 globals->arm_glue_size,
3953 ARM2THUMB_GLUE_SECTION_NAME);
3954
3955 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3956 globals->thumb_glue_size,
3957 THUMB2ARM_GLUE_SECTION_NAME);
3958
3959 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3960 globals->vfp11_erratum_glue_size,
3961 VFP11_ERRATUM_VENEER_SECTION_NAME);
3962
3963 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3964 globals->bx_glue_size,
3965 ARM_BX_GLUE_SECTION_NAME);
3966
3967 return TRUE;
3968 }
3969
3970 /* Allocate space and symbols for calling a Thumb function from Arm mode.
3971 returns the symbol identifying the stub. */
3972
3973 static struct elf_link_hash_entry *
3974 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
3975 struct elf_link_hash_entry * h)
3976 {
3977 const char * name = h->root.root.string;
3978 asection * s;
3979 char * tmp_name;
3980 struct elf_link_hash_entry * myh;
3981 struct bfd_link_hash_entry * bh;
3982 struct elf32_arm_link_hash_table * globals;
3983 bfd_vma val;
3984 bfd_size_type size;
3985
3986 globals = elf32_arm_hash_table (link_info);
3987
3988 BFD_ASSERT (globals != NULL);
3989 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3990
3991 s = bfd_get_section_by_name
3992 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
3993
3994 BFD_ASSERT (s != NULL);
3995
3996 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3997
3998 BFD_ASSERT (tmp_name);
3999
4000 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4001
4002 myh = elf_link_hash_lookup
4003 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
4004
4005 if (myh != NULL)
4006 {
4007 /* We've already seen this guy. */
4008 free (tmp_name);
4009 return myh;
4010 }
4011
4012 /* The only trick here is using hash_table->arm_glue_size as the value.
4013 Even though the section isn't allocated yet, this is where we will be
4014 putting it. The +1 on the value marks that the stub has not been
4015 output yet - not that it is a Thumb function. */
4016 bh = NULL;
4017 val = globals->arm_glue_size + 1;
4018 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4019 tmp_name, BSF_GLOBAL, s, val,
4020 NULL, TRUE, FALSE, &bh);
4021
4022 myh = (struct elf_link_hash_entry *) bh;
4023 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4024 myh->forced_local = 1;
4025
4026 free (tmp_name);
4027
4028 if (link_info->shared || globals->root.is_relocatable_executable
4029 || globals->pic_veneer)
4030 size = ARM2THUMB_PIC_GLUE_SIZE;
4031 else if (globals->use_blx)
4032 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
4033 else
4034 size = ARM2THUMB_STATIC_GLUE_SIZE;
4035
4036 s->size += size;
4037 globals->arm_glue_size += size;
4038
4039 return myh;
4040 }
4041
4042 static void
4043 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
4044 struct elf_link_hash_entry *h)
4045 {
4046 const char *name = h->root.root.string;
4047 asection *s;
4048 char *tmp_name;
4049 struct elf_link_hash_entry *myh;
4050 struct bfd_link_hash_entry *bh;
4051 struct elf32_arm_link_hash_table *hash_table;
4052 bfd_vma val;
4053
4054 hash_table = elf32_arm_hash_table (link_info);
4055
4056 BFD_ASSERT (hash_table != NULL);
4057 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4058
4059 s = bfd_get_section_by_name
4060 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
4061
4062 BFD_ASSERT (s != NULL);
4063
4064 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4065 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4066
4067 BFD_ASSERT (tmp_name);
4068
4069 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4070
4071 myh = elf_link_hash_lookup
4072 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4073
4074 if (myh != NULL)
4075 {
4076 /* We've already seen this guy. */
4077 free (tmp_name);
4078 return;
4079 }
4080
4081 /* The only trick here is using hash_table->thumb_glue_size as the value.
4082 Even though the section isn't allocated yet, this is where we will be
4083 putting it. The +1 on the value marks that the stub has not been
4084 output yet - not that it is a Thumb function. */
4085 bh = NULL;
4086 val = hash_table->thumb_glue_size + 1;
4087 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4088 tmp_name, BSF_GLOBAL, s, val,
4089 NULL, TRUE, FALSE, &bh);
4090
4091 /* If we mark it 'Thumb', the disassembler will do a better job. */
4092 myh = (struct elf_link_hash_entry *) bh;
4093 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4094 myh->forced_local = 1;
4095
4096 free (tmp_name);
4097
4098 #define CHANGE_TO_ARM "__%s_change_to_arm"
4099 #define BACK_FROM_ARM "__%s_back_from_arm"
4100
4101 /* Allocate another symbol to mark where we switch to Arm mode. */
4102 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4103 + strlen (CHANGE_TO_ARM) + 1);
4104
4105 BFD_ASSERT (tmp_name);
4106
4107 sprintf (tmp_name, CHANGE_TO_ARM, name);
4108
4109 bh = NULL;
4110 val = hash_table->thumb_glue_size + 4,
4111 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4112 tmp_name, BSF_LOCAL, s, val,
4113 NULL, TRUE, FALSE, &bh);
4114
4115 free (tmp_name);
4116
4117 s->size += THUMB2ARM_GLUE_SIZE;
4118 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
4119 }
4120
4121
4122 /* Allocate space for ARMv4 BX veneers. */
4123
4124 static void
4125 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4126 {
4127 asection * s;
4128 struct elf32_arm_link_hash_table *globals;
4129 char *tmp_name;
4130 struct elf_link_hash_entry *myh;
4131 struct bfd_link_hash_entry *bh;
4132 bfd_vma val;
4133
4134 /* BX PC does not need a veneer. */
4135 if (reg == 15)
4136 return;
4137
4138 globals = elf32_arm_hash_table (link_info);
4139
4140 BFD_ASSERT (globals != NULL);
4141 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4142
4143 /* Check if this veneer has already been allocated. */
4144 if (globals->bx_glue_offset[reg])
4145 return;
4146
4147 s = bfd_get_section_by_name
4148 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4149
4150 BFD_ASSERT (s != NULL);
4151
4152 /* Add symbol for veneer. */
4153 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
4154
4155 BFD_ASSERT (tmp_name);
4156
4157 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
4158
4159 myh = elf_link_hash_lookup
4160 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
4161
4162 BFD_ASSERT (myh == NULL);
4163
4164 bh = NULL;
4165 val = globals->bx_glue_size;
4166 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4167 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4168 NULL, TRUE, FALSE, &bh);
4169
4170 myh = (struct elf_link_hash_entry *) bh;
4171 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4172 myh->forced_local = 1;
4173
4174 s->size += ARM_BX_VENEER_SIZE;
4175 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4176 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4177 }
4178
4179
4180 /* Add an entry to the code/data map for section SEC. */
4181
4182 static void
4183 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4184 {
4185 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4186 unsigned int newidx;
4187
4188 if (sec_data->map == NULL)
4189 {
4190 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4191 sec_data->mapcount = 0;
4192 sec_data->mapsize = 1;
4193 }
4194
4195 newidx = sec_data->mapcount++;
4196
4197 if (sec_data->mapcount > sec_data->mapsize)
4198 {
4199 sec_data->mapsize *= 2;
4200 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4201 * sizeof (elf32_arm_section_map));
4202 }
4203
4204 if (sec_data->map)
4205 {
4206 sec_data->map[newidx].vma = vma;
4207 sec_data->map[newidx].type = type;
4208 }
4209 }
4210
4211
4212 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4213 veneers are handled for now. */
4214
4215 static bfd_vma
4216 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4217 elf32_vfp11_erratum_list *branch,
4218 bfd *branch_bfd,
4219 asection *branch_sec,
4220 unsigned int offset)
4221 {
4222 asection *s;
4223 struct elf32_arm_link_hash_table *hash_table;
4224 char *tmp_name;
4225 struct elf_link_hash_entry *myh;
4226 struct bfd_link_hash_entry *bh;
4227 bfd_vma val;
4228 struct _arm_elf_section_data *sec_data;
4229 int errcount;
4230 elf32_vfp11_erratum_list *newerr;
4231
4232 hash_table = elf32_arm_hash_table (link_info);
4233
4234 BFD_ASSERT (hash_table != NULL);
4235 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4236
4237 s = bfd_get_section_by_name
4238 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
4239
4240 sec_data = elf32_arm_section_data (s);
4241
4242 BFD_ASSERT (s != NULL);
4243
4244 tmp_name = bfd_malloc ((bfd_size_type) strlen
4245 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
4246
4247 BFD_ASSERT (tmp_name);
4248
4249 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4250 hash_table->num_vfp11_fixes);
4251
4252 myh = elf_link_hash_lookup
4253 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4254
4255 BFD_ASSERT (myh == NULL);
4256
4257 bh = NULL;
4258 val = hash_table->vfp11_erratum_glue_size;
4259 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4260 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4261 NULL, TRUE, FALSE, &bh);
4262
4263 myh = (struct elf_link_hash_entry *) bh;
4264 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4265 myh->forced_local = 1;
4266
4267 /* Link veneer back to calling location. */
4268 errcount = ++(sec_data->erratumcount);
4269 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
4270
4271 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4272 newerr->vma = -1;
4273 newerr->u.v.branch = branch;
4274 newerr->u.v.id = hash_table->num_vfp11_fixes;
4275 branch->u.b.veneer = newerr;
4276
4277 newerr->next = sec_data->erratumlist;
4278 sec_data->erratumlist = newerr;
4279
4280 /* A symbol for the return from the veneer. */
4281 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4282 hash_table->num_vfp11_fixes);
4283
4284 myh = elf_link_hash_lookup
4285 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4286
4287 if (myh != NULL)
4288 abort ();
4289
4290 bh = NULL;
4291 val = offset + 4;
4292 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4293 branch_sec, val, NULL, TRUE, FALSE, &bh);
4294
4295 myh = (struct elf_link_hash_entry *) bh;
4296 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4297 myh->forced_local = 1;
4298
4299 free (tmp_name);
4300
4301 /* Generate a mapping symbol for the veneer section, and explicitly add an
4302 entry for that symbol to the code/data map for the section. */
4303 if (hash_table->vfp11_erratum_glue_size == 0)
4304 {
4305 bh = NULL;
4306 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4307 ever requires this erratum fix. */
4308 _bfd_generic_link_add_one_symbol (link_info,
4309 hash_table->bfd_of_glue_owner, "$a",
4310 BSF_LOCAL, s, 0, NULL,
4311 TRUE, FALSE, &bh);
4312
4313 myh = (struct elf_link_hash_entry *) bh;
4314 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4315 myh->forced_local = 1;
4316
4317 /* The elf32_arm_init_maps function only cares about symbols from input
4318 BFDs. We must make a note of this generated mapping symbol
4319 ourselves so that code byteswapping works properly in
4320 elf32_arm_write_section. */
4321 elf32_arm_section_map_add (s, 'a', 0);
4322 }
4323
4324 s->size += VFP11_ERRATUM_VENEER_SIZE;
4325 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4326 hash_table->num_vfp11_fixes++;
4327
4328 /* The offset of the veneer. */
4329 return val;
4330 }
4331
4332 /* Note: we do not include the flag SEC_LINKER_CREATED, as that
4333 would prevent elf_link_input_bfd() from processing the contents
4334 of the section. */
4335 #define ARM_GLUE_SECTION_FLAGS \
4336 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY)
4337
4338 /* Create a fake section for use by the ARM backend of the linker. */
4339
4340 static bfd_boolean
4341 arm_make_glue_section (bfd * abfd, const char * name)
4342 {
4343 asection * sec;
4344
4345 sec = bfd_get_section_by_name (abfd, name);
4346 if (sec != NULL)
4347 /* Already made. */
4348 return TRUE;
4349
4350 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
4351
4352 if (sec == NULL
4353 || !bfd_set_section_alignment (abfd, sec, 2))
4354 return FALSE;
4355
4356 /* Set the gc mark to prevent the section from being removed by garbage
4357 collection, despite the fact that no relocs refer to this section. */
4358 sec->gc_mark = 1;
4359
4360 return TRUE;
4361 }
4362
4363 /* Add the glue sections to ABFD. This function is called from the
4364 linker scripts in ld/emultempl/{armelf}.em. */
4365
4366 bfd_boolean
4367 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4368 struct bfd_link_info *info)
4369 {
4370 /* If we are only performing a partial
4371 link do not bother adding the glue. */
4372 if (info->relocatable)
4373 return TRUE;
4374
4375 /* Linker stubs don't need glue. */
4376 if (!strcmp (abfd->filename, "linker stubs"))
4377 return TRUE;
4378
4379 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
4380 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
4381 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
4382 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
4383 }
4384
4385 /* Select a BFD to be used to hold the sections used by the glue code.
4386 This function is called from the linker scripts in ld/emultempl/
4387 {armelf/pe}.em. */
4388
4389 bfd_boolean
4390 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
4391 {
4392 struct elf32_arm_link_hash_table *globals;
4393
4394 /* If we are only performing a partial link
4395 do not bother getting a bfd to hold the glue. */
4396 if (info->relocatable)
4397 return TRUE;
4398
4399 /* Make sure we don't attach the glue sections to a dynamic object. */
4400 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4401
4402 globals = elf32_arm_hash_table (info);
4403
4404 BFD_ASSERT (globals != NULL);
4405
4406 if (globals->bfd_of_glue_owner != NULL)
4407 return TRUE;
4408
4409 /* Save the bfd for later use. */
4410 globals->bfd_of_glue_owner = abfd;
4411
4412 return TRUE;
4413 }
4414
4415 static void
4416 check_use_blx (struct elf32_arm_link_hash_table *globals)
4417 {
4418 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4419 Tag_CPU_arch) > 2)
4420 globals->use_blx = 1;
4421 }
4422
4423 bfd_boolean
4424 bfd_elf32_arm_process_before_allocation (bfd *abfd,
4425 struct bfd_link_info *link_info)
4426 {
4427 Elf_Internal_Shdr *symtab_hdr;
4428 Elf_Internal_Rela *internal_relocs = NULL;
4429 Elf_Internal_Rela *irel, *irelend;
4430 bfd_byte *contents = NULL;
4431
4432 asection *sec;
4433 struct elf32_arm_link_hash_table *globals;
4434
4435 /* If we are only performing a partial link do not bother
4436 to construct any glue. */
4437 if (link_info->relocatable)
4438 return TRUE;
4439
4440 /* Here we have a bfd that is to be included on the link. We have a
4441 hook to do reloc rummaging, before section sizes are nailed down. */
4442 globals = elf32_arm_hash_table (link_info);
4443
4444 BFD_ASSERT (globals != NULL);
4445
4446 check_use_blx (globals);
4447
4448 if (globals->byteswap_code && !bfd_big_endian (abfd))
4449 {
4450 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4451 abfd);
4452 return FALSE;
4453 }
4454
4455 /* PR 5398: If we have not decided to include any loadable sections in
4456 the output then we will not have a glue owner bfd. This is OK, it
4457 just means that there is nothing else for us to do here. */
4458 if (globals->bfd_of_glue_owner == NULL)
4459 return TRUE;
4460
4461 /* Rummage around all the relocs and map the glue vectors. */
4462 sec = abfd->sections;
4463
4464 if (sec == NULL)
4465 return TRUE;
4466
4467 for (; sec != NULL; sec = sec->next)
4468 {
4469 if (sec->reloc_count == 0)
4470 continue;
4471
4472 if ((sec->flags & SEC_EXCLUDE) != 0)
4473 continue;
4474
4475 symtab_hdr = & elf_symtab_hdr (abfd);
4476
4477 /* Load the relocs. */
4478 internal_relocs
4479 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
4480
4481 if (internal_relocs == NULL)
4482 goto error_return;
4483
4484 irelend = internal_relocs + sec->reloc_count;
4485 for (irel = internal_relocs; irel < irelend; irel++)
4486 {
4487 long r_type;
4488 unsigned long r_index;
4489
4490 struct elf_link_hash_entry *h;
4491
4492 r_type = ELF32_R_TYPE (irel->r_info);
4493 r_index = ELF32_R_SYM (irel->r_info);
4494
4495 /* These are the only relocation types we care about. */
4496 if ( r_type != R_ARM_PC24
4497 && r_type != R_ARM_PLT32
4498 && r_type != R_ARM_JUMP24
4499 && r_type != R_ARM_THM_JUMP24
4500 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
4501 continue;
4502
4503 /* Get the section contents if we haven't done so already. */
4504 if (contents == NULL)
4505 {
4506 /* Get cached copy if it exists. */
4507 if (elf_section_data (sec)->this_hdr.contents != NULL)
4508 contents = elf_section_data (sec)->this_hdr.contents;
4509 else
4510 {
4511 /* Go get them off disk. */
4512 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4513 goto error_return;
4514 }
4515 }
4516
4517 if (r_type == R_ARM_V4BX)
4518 {
4519 int reg;
4520
4521 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4522 record_arm_bx_glue (link_info, reg);
4523 continue;
4524 }
4525
4526 /* If the relocation is not against a symbol it cannot concern us. */
4527 h = NULL;
4528
4529 /* We don't care about local symbols. */
4530 if (r_index < symtab_hdr->sh_info)
4531 continue;
4532
4533 /* This is an external symbol. */
4534 r_index -= symtab_hdr->sh_info;
4535 h = (struct elf_link_hash_entry *)
4536 elf_sym_hashes (abfd)[r_index];
4537
4538 /* If the relocation is against a static symbol it must be within
4539 the current section and so cannot be a cross ARM/Thumb relocation. */
4540 if (h == NULL)
4541 continue;
4542
4543 /* If the call will go through a PLT entry then we do not need
4544 glue. */
4545 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
4546 continue;
4547
4548 switch (r_type)
4549 {
4550 case R_ARM_PC24:
4551 case R_ARM_PLT32:
4552 case R_ARM_JUMP24:
4553 /* This one is a call from arm code. We need to look up
4554 the target of the call. If it is a thumb target, we
4555 insert glue. */
4556 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
4557 && !(r_type == R_ARM_CALL && globals->use_blx))
4558 record_arm_to_thumb_glue (link_info, h);
4559 break;
4560
4561 case R_ARM_THM_JUMP24:
4562 /* This one is a call from thumb code. We look
4563 up the target of the call. If it is not a thumb
4564 target, we insert glue. */
4565 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4566 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
4567 && h->root.type != bfd_link_hash_undefweak)
4568 record_thumb_to_arm_glue (link_info, h);
4569 break;
4570
4571 default:
4572 abort ();
4573 }
4574 }
4575
4576 if (contents != NULL
4577 && elf_section_data (sec)->this_hdr.contents != contents)
4578 free (contents);
4579 contents = NULL;
4580
4581 if (internal_relocs != NULL
4582 && elf_section_data (sec)->relocs != internal_relocs)
4583 free (internal_relocs);
4584 internal_relocs = NULL;
4585 }
4586
4587 return TRUE;
4588
4589 error_return:
4590 if (contents != NULL
4591 && elf_section_data (sec)->this_hdr.contents != contents)
4592 free (contents);
4593 if (internal_relocs != NULL
4594 && elf_section_data (sec)->relocs != internal_relocs)
4595 free (internal_relocs);
4596
4597 return FALSE;
4598 }
4599 #endif
4600
4601
4602 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4603
4604 void
4605 bfd_elf32_arm_init_maps (bfd *abfd)
4606 {
4607 Elf_Internal_Sym *isymbuf;
4608 Elf_Internal_Shdr *hdr;
4609 unsigned int i, localsyms;
4610
4611 if ((abfd->flags & DYNAMIC) != 0)
4612 return;
4613
4614 hdr = & elf_symtab_hdr (abfd);
4615 localsyms = hdr->sh_info;
4616
4617 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4618 should contain the number of local symbols, which should come before any
4619 global symbols. Mapping symbols are always local. */
4620 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4621 NULL);
4622
4623 /* No internal symbols read? Skip this BFD. */
4624 if (isymbuf == NULL)
4625 return;
4626
4627 for (i = 0; i < localsyms; i++)
4628 {
4629 Elf_Internal_Sym *isym = &isymbuf[i];
4630 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4631 const char *name;
4632
4633 if (sec != NULL
4634 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4635 {
4636 name = bfd_elf_string_from_elf_section (abfd,
4637 hdr->sh_link, isym->st_name);
4638
4639 if (bfd_is_arm_special_symbol_name (name,
4640 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4641 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4642 }
4643 }
4644 }
4645
4646
4647 void
4648 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4649 {
4650 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4651 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
4652
4653 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4654 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4655 {
4656 switch (globals->vfp11_fix)
4657 {
4658 case BFD_ARM_VFP11_FIX_DEFAULT:
4659 case BFD_ARM_VFP11_FIX_NONE:
4660 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4661 break;
4662
4663 default:
4664 /* Give a warning, but do as the user requests anyway. */
4665 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4666 "workaround is not necessary for target architecture"), obfd);
4667 }
4668 }
4669 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4670 /* For earlier architectures, we might need the workaround, but do not
4671 enable it by default. If users is running with broken hardware, they
4672 must enable the erratum fix explicitly. */
4673 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4674 }
4675
4676
4677 enum bfd_arm_vfp11_pipe
4678 {
4679 VFP11_FMAC,
4680 VFP11_LS,
4681 VFP11_DS,
4682 VFP11_BAD
4683 };
4684
4685 /* Return a VFP register number. This is encoded as RX:X for single-precision
4686 registers, or X:RX for double-precision registers, where RX is the group of
4687 four bits in the instruction encoding and X is the single extension bit.
4688 RX and X fields are specified using their lowest (starting) bit. The return
4689 value is:
4690
4691 0...31: single-precision registers s0...s31
4692 32...63: double-precision registers d0...d31.
4693
4694 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4695 encounter VFP3 instructions, so we allow the full range for DP registers. */
4696
4697 static unsigned int
4698 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4699 unsigned int x)
4700 {
4701 if (is_double)
4702 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4703 else
4704 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4705 }
4706
4707 /* Set bits in *WMASK according to a register number REG as encoded by
4708 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4709
4710 static void
4711 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4712 {
4713 if (reg < 32)
4714 *wmask |= 1 << reg;
4715 else if (reg < 48)
4716 *wmask |= 3 << ((reg - 32) * 2);
4717 }
4718
4719 /* Return TRUE if WMASK overwrites anything in REGS. */
4720
4721 static bfd_boolean
4722 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4723 {
4724 int i;
4725
4726 for (i = 0; i < numregs; i++)
4727 {
4728 unsigned int reg = regs[i];
4729
4730 if (reg < 32 && (wmask & (1 << reg)) != 0)
4731 return TRUE;
4732
4733 reg -= 32;
4734
4735 if (reg >= 16)
4736 continue;
4737
4738 if ((wmask & (3 << (reg * 2))) != 0)
4739 return TRUE;
4740 }
4741
4742 return FALSE;
4743 }
4744
4745 /* In this function, we're interested in two things: finding input registers
4746 for VFP data-processing instructions, and finding the set of registers which
4747 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4748 hold the written set, so FLDM etc. are easy to deal with (we're only
4749 interested in 32 SP registers or 16 dp registers, due to the VFP version
4750 implemented by the chip in question). DP registers are marked by setting
4751 both SP registers in the write mask). */
4752
4753 static enum bfd_arm_vfp11_pipe
4754 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4755 int *numregs)
4756 {
4757 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4758 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4759
4760 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4761 {
4762 unsigned int pqrs;
4763 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4764 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4765
4766 pqrs = ((insn & 0x00800000) >> 20)
4767 | ((insn & 0x00300000) >> 19)
4768 | ((insn & 0x00000040) >> 6);
4769
4770 switch (pqrs)
4771 {
4772 case 0: /* fmac[sd]. */
4773 case 1: /* fnmac[sd]. */
4774 case 2: /* fmsc[sd]. */
4775 case 3: /* fnmsc[sd]. */
4776 pipe = VFP11_FMAC;
4777 bfd_arm_vfp11_write_mask (destmask, fd);
4778 regs[0] = fd;
4779 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4780 regs[2] = fm;
4781 *numregs = 3;
4782 break;
4783
4784 case 4: /* fmul[sd]. */
4785 case 5: /* fnmul[sd]. */
4786 case 6: /* fadd[sd]. */
4787 case 7: /* fsub[sd]. */
4788 pipe = VFP11_FMAC;
4789 goto vfp_binop;
4790
4791 case 8: /* fdiv[sd]. */
4792 pipe = VFP11_DS;
4793 vfp_binop:
4794 bfd_arm_vfp11_write_mask (destmask, fd);
4795 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4796 regs[1] = fm;
4797 *numregs = 2;
4798 break;
4799
4800 case 15: /* extended opcode. */
4801 {
4802 unsigned int extn = ((insn >> 15) & 0x1e)
4803 | ((insn >> 7) & 1);
4804
4805 switch (extn)
4806 {
4807 case 0: /* fcpy[sd]. */
4808 case 1: /* fabs[sd]. */
4809 case 2: /* fneg[sd]. */
4810 case 8: /* fcmp[sd]. */
4811 case 9: /* fcmpe[sd]. */
4812 case 10: /* fcmpz[sd]. */
4813 case 11: /* fcmpez[sd]. */
4814 case 16: /* fuito[sd]. */
4815 case 17: /* fsito[sd]. */
4816 case 24: /* ftoui[sd]. */
4817 case 25: /* ftouiz[sd]. */
4818 case 26: /* ftosi[sd]. */
4819 case 27: /* ftosiz[sd]. */
4820 /* These instructions will not bounce due to underflow. */
4821 *numregs = 0;
4822 pipe = VFP11_FMAC;
4823 break;
4824
4825 case 3: /* fsqrt[sd]. */
4826 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4827 registers to cause the erratum in previous instructions. */
4828 bfd_arm_vfp11_write_mask (destmask, fd);
4829 pipe = VFP11_DS;
4830 break;
4831
4832 case 15: /* fcvt{ds,sd}. */
4833 {
4834 int rnum = 0;
4835
4836 bfd_arm_vfp11_write_mask (destmask, fd);
4837
4838 /* Only FCVTSD can underflow. */
4839 if ((insn & 0x100) != 0)
4840 regs[rnum++] = fm;
4841
4842 *numregs = rnum;
4843
4844 pipe = VFP11_FMAC;
4845 }
4846 break;
4847
4848 default:
4849 return VFP11_BAD;
4850 }
4851 }
4852 break;
4853
4854 default:
4855 return VFP11_BAD;
4856 }
4857 }
4858 /* Two-register transfer. */
4859 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
4860 {
4861 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4862
4863 if ((insn & 0x100000) == 0)
4864 {
4865 if (is_double)
4866 bfd_arm_vfp11_write_mask (destmask, fm);
4867 else
4868 {
4869 bfd_arm_vfp11_write_mask (destmask, fm);
4870 bfd_arm_vfp11_write_mask (destmask, fm + 1);
4871 }
4872 }
4873
4874 pipe = VFP11_LS;
4875 }
4876 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
4877 {
4878 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4879 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
4880
4881 switch (puw)
4882 {
4883 case 0: /* Two-reg transfer. We should catch these above. */
4884 abort ();
4885
4886 case 2: /* fldm[sdx]. */
4887 case 3:
4888 case 5:
4889 {
4890 unsigned int i, offset = insn & 0xff;
4891
4892 if (is_double)
4893 offset >>= 1;
4894
4895 for (i = fd; i < fd + offset; i++)
4896 bfd_arm_vfp11_write_mask (destmask, i);
4897 }
4898 break;
4899
4900 case 4: /* fld[sd]. */
4901 case 6:
4902 bfd_arm_vfp11_write_mask (destmask, fd);
4903 break;
4904
4905 default:
4906 return VFP11_BAD;
4907 }
4908
4909 pipe = VFP11_LS;
4910 }
4911 /* Single-register transfer. Note L==0. */
4912 else if ((insn & 0x0f100e10) == 0x0e000a10)
4913 {
4914 unsigned int opcode = (insn >> 21) & 7;
4915 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
4916
4917 switch (opcode)
4918 {
4919 case 0: /* fmsr/fmdlr. */
4920 case 1: /* fmdhr. */
4921 /* Mark fmdhr and fmdlr as writing to the whole of the DP
4922 destination register. I don't know if this is exactly right,
4923 but it is the conservative choice. */
4924 bfd_arm_vfp11_write_mask (destmask, fn);
4925 break;
4926
4927 case 7: /* fmxr. */
4928 break;
4929 }
4930
4931 pipe = VFP11_LS;
4932 }
4933
4934 return pipe;
4935 }
4936
4937
4938 static int elf32_arm_compare_mapping (const void * a, const void * b);
4939
4940
4941 /* Look for potentially-troublesome code sequences which might trigger the
4942 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
4943 (available from ARM) for details of the erratum. A short version is
4944 described in ld.texinfo. */
4945
4946 bfd_boolean
4947 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
4948 {
4949 asection *sec;
4950 bfd_byte *contents = NULL;
4951 int state = 0;
4952 int regs[3], numregs = 0;
4953 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4954 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
4955
4956 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
4957 The states transition as follows:
4958
4959 0 -> 1 (vector) or 0 -> 2 (scalar)
4960 A VFP FMAC-pipeline instruction has been seen. Fill
4961 regs[0]..regs[numregs-1] with its input operands. Remember this
4962 instruction in 'first_fmac'.
4963
4964 1 -> 2
4965 Any instruction, except for a VFP instruction which overwrites
4966 regs[*].
4967
4968 1 -> 3 [ -> 0 ] or
4969 2 -> 3 [ -> 0 ]
4970 A VFP instruction has been seen which overwrites any of regs[*].
4971 We must make a veneer! Reset state to 0 before examining next
4972 instruction.
4973
4974 2 -> 0
4975 If we fail to match anything in state 2, reset to state 0 and reset
4976 the instruction pointer to the instruction after 'first_fmac'.
4977
4978 If the VFP11 vector mode is in use, there must be at least two unrelated
4979 instructions between anti-dependent VFP11 instructions to properly avoid
4980 triggering the erratum, hence the use of the extra state 1. */
4981
4982 /* If we are only performing a partial link do not bother
4983 to construct any glue. */
4984 if (link_info->relocatable)
4985 return TRUE;
4986
4987 /* Skip if this bfd does not correspond to an ELF image. */
4988 if (! is_arm_elf (abfd))
4989 return TRUE;
4990
4991 /* We should have chosen a fix type by the time we get here. */
4992 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
4993
4994 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
4995 return TRUE;
4996
4997 for (sec = abfd->sections; sec != NULL; sec = sec->next)
4998 {
4999 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5000 struct _arm_elf_section_data *sec_data;
5001
5002 /* If we don't have executable progbits, we're not interested in this
5003 section. Also skip if section is to be excluded. */
5004 if (elf_section_type (sec) != SHT_PROGBITS
5005 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5006 || (sec->flags & SEC_EXCLUDE) != 0
5007 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5008 continue;
5009
5010 sec_data = elf32_arm_section_data (sec);
5011
5012 if (sec_data->mapcount == 0)
5013 continue;
5014
5015 if (elf_section_data (sec)->this_hdr.contents != NULL)
5016 contents = elf_section_data (sec)->this_hdr.contents;
5017 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5018 goto error_return;
5019
5020 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5021 elf32_arm_compare_mapping);
5022
5023 for (span = 0; span < sec_data->mapcount; span++)
5024 {
5025 unsigned int span_start = sec_data->map[span].vma;
5026 unsigned int span_end = (span == sec_data->mapcount - 1)
5027 ? sec->size : sec_data->map[span + 1].vma;
5028 char span_type = sec_data->map[span].type;
5029
5030 /* FIXME: Only ARM mode is supported at present. We may need to
5031 support Thumb-2 mode also at some point. */
5032 if (span_type != 'a')
5033 continue;
5034
5035 for (i = span_start; i < span_end;)
5036 {
5037 unsigned int next_i = i + 4;
5038 unsigned int insn = bfd_big_endian (abfd)
5039 ? (contents[i] << 24)
5040 | (contents[i + 1] << 16)
5041 | (contents[i + 2] << 8)
5042 | contents[i + 3]
5043 : (contents[i + 3] << 24)
5044 | (contents[i + 2] << 16)
5045 | (contents[i + 1] << 8)
5046 | contents[i];
5047 unsigned int writemask = 0;
5048 enum bfd_arm_vfp11_pipe pipe;
5049
5050 switch (state)
5051 {
5052 case 0:
5053 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5054 &numregs);
5055 /* I'm assuming the VFP11 erratum can trigger with denorm
5056 operands on either the FMAC or the DS pipeline. This might
5057 lead to slightly overenthusiastic veneer insertion. */
5058 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5059 {
5060 state = use_vector ? 1 : 2;
5061 first_fmac = i;
5062 veneer_of_insn = insn;
5063 }
5064 break;
5065
5066 case 1:
5067 {
5068 int other_regs[3], other_numregs;
5069 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5070 other_regs,
5071 &other_numregs);
5072 if (pipe != VFP11_BAD
5073 && bfd_arm_vfp11_antidependency (writemask, regs,
5074 numregs))
5075 state = 3;
5076 else
5077 state = 2;
5078 }
5079 break;
5080
5081 case 2:
5082 {
5083 int other_regs[3], other_numregs;
5084 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5085 other_regs,
5086 &other_numregs);
5087 if (pipe != VFP11_BAD
5088 && bfd_arm_vfp11_antidependency (writemask, regs,
5089 numregs))
5090 state = 3;
5091 else
5092 {
5093 state = 0;
5094 next_i = first_fmac + 4;
5095 }
5096 }
5097 break;
5098
5099 case 3:
5100 abort (); /* Should be unreachable. */
5101 }
5102
5103 if (state == 3)
5104 {
5105 elf32_vfp11_erratum_list *newerr
5106 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5107 int errcount;
5108
5109 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5110
5111 newerr->u.b.vfp_insn = veneer_of_insn;
5112
5113 switch (span_type)
5114 {
5115 case 'a':
5116 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5117 break;
5118
5119 default:
5120 abort ();
5121 }
5122
5123 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5124 first_fmac);
5125
5126 newerr->vma = -1;
5127
5128 newerr->next = sec_data->erratumlist;
5129 sec_data->erratumlist = newerr;
5130
5131 state = 0;
5132 }
5133
5134 i = next_i;
5135 }
5136 }
5137
5138 if (contents != NULL
5139 && elf_section_data (sec)->this_hdr.contents != contents)
5140 free (contents);
5141 contents = NULL;
5142 }
5143
5144 return TRUE;
5145
5146 error_return:
5147 if (contents != NULL
5148 && elf_section_data (sec)->this_hdr.contents != contents)
5149 free (contents);
5150
5151 return FALSE;
5152 }
5153
5154 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5155 after sections have been laid out, using specially-named symbols. */
5156
5157 void
5158 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5159 struct bfd_link_info *link_info)
5160 {
5161 asection *sec;
5162 struct elf32_arm_link_hash_table *globals;
5163 char *tmp_name;
5164
5165 if (link_info->relocatable)
5166 return;
5167
5168 /* Skip if this bfd does not correspond to an ELF image. */
5169 if (! is_arm_elf (abfd))
5170 return;
5171
5172 globals = elf32_arm_hash_table (link_info);
5173
5174 tmp_name = bfd_malloc ((bfd_size_type) strlen
5175 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5176
5177 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5178 {
5179 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5180 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
5181
5182 for (; errnode != NULL; errnode = errnode->next)
5183 {
5184 struct elf_link_hash_entry *myh;
5185 bfd_vma vma;
5186
5187 switch (errnode->type)
5188 {
5189 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5190 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5191 /* Find veneer symbol. */
5192 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5193 errnode->u.b.veneer->u.v.id);
5194
5195 myh = elf_link_hash_lookup
5196 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5197
5198 if (myh == NULL)
5199 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5200 "`%s'"), abfd, tmp_name);
5201
5202 vma = myh->root.u.def.section->output_section->vma
5203 + myh->root.u.def.section->output_offset
5204 + myh->root.u.def.value;
5205
5206 errnode->u.b.veneer->vma = vma;
5207 break;
5208
5209 case VFP11_ERRATUM_ARM_VENEER:
5210 case VFP11_ERRATUM_THUMB_VENEER:
5211 /* Find return location. */
5212 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5213 errnode->u.v.id);
5214
5215 myh = elf_link_hash_lookup
5216 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5217
5218 if (myh == NULL)
5219 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5220 "`%s'"), abfd, tmp_name);
5221
5222 vma = myh->root.u.def.section->output_section->vma
5223 + myh->root.u.def.section->output_offset
5224 + myh->root.u.def.value;
5225
5226 errnode->u.v.branch->vma = vma;
5227 break;
5228
5229 default:
5230 abort ();
5231 }
5232 }
5233 }
5234
5235 free (tmp_name);
5236 }
5237
5238
5239 /* Set target relocation values needed during linking. */
5240
5241 void
5242 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5243 struct bfd_link_info *link_info,
5244 int target1_is_rel,
5245 char * target2_type,
5246 int fix_v4bx,
5247 int use_blx,
5248 bfd_arm_vfp11_fix vfp11_fix,
5249 int no_enum_warn, int no_wchar_warn,
5250 int pic_veneer)
5251 {
5252 struct elf32_arm_link_hash_table *globals;
5253
5254 globals = elf32_arm_hash_table (link_info);
5255
5256 globals->target1_is_rel = target1_is_rel;
5257 if (strcmp (target2_type, "rel") == 0)
5258 globals->target2_reloc = R_ARM_REL32;
5259 else if (strcmp (target2_type, "abs") == 0)
5260 globals->target2_reloc = R_ARM_ABS32;
5261 else if (strcmp (target2_type, "got-rel") == 0)
5262 globals->target2_reloc = R_ARM_GOT_PREL;
5263 else
5264 {
5265 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5266 target2_type);
5267 }
5268 globals->fix_v4bx = fix_v4bx;
5269 globals->use_blx |= use_blx;
5270 globals->vfp11_fix = vfp11_fix;
5271 globals->pic_veneer = pic_veneer;
5272
5273 BFD_ASSERT (is_arm_elf (output_bfd));
5274 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
5275 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
5276 }
5277
5278 /* Replace the target offset of a Thumb bl or b.w instruction. */
5279
5280 static void
5281 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5282 {
5283 bfd_vma upper;
5284 bfd_vma lower;
5285 int reloc_sign;
5286
5287 BFD_ASSERT ((offset & 1) == 0);
5288
5289 upper = bfd_get_16 (abfd, insn);
5290 lower = bfd_get_16 (abfd, insn + 2);
5291 reloc_sign = (offset < 0) ? 1 : 0;
5292 upper = (upper & ~(bfd_vma) 0x7ff)
5293 | ((offset >> 12) & 0x3ff)
5294 | (reloc_sign << 10);
5295 lower = (lower & ~(bfd_vma) 0x2fff)
5296 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5297 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5298 | ((offset >> 1) & 0x7ff);
5299 bfd_put_16 (abfd, upper, insn);
5300 bfd_put_16 (abfd, lower, insn + 2);
5301 }
5302
5303 /* Thumb code calling an ARM function. */
5304
5305 static int
5306 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5307 const char * name,
5308 bfd * input_bfd,
5309 bfd * output_bfd,
5310 asection * input_section,
5311 bfd_byte * hit_data,
5312 asection * sym_sec,
5313 bfd_vma offset,
5314 bfd_signed_vma addend,
5315 bfd_vma val,
5316 char **error_message)
5317 {
5318 asection * s = 0;
5319 bfd_vma my_offset;
5320 long int ret_offset;
5321 struct elf_link_hash_entry * myh;
5322 struct elf32_arm_link_hash_table * globals;
5323
5324 myh = find_thumb_glue (info, name, error_message);
5325 if (myh == NULL)
5326 return FALSE;
5327
5328 globals = elf32_arm_hash_table (info);
5329
5330 BFD_ASSERT (globals != NULL);
5331 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5332
5333 my_offset = myh->root.u.def.value;
5334
5335 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5336 THUMB2ARM_GLUE_SECTION_NAME);
5337
5338 BFD_ASSERT (s != NULL);
5339 BFD_ASSERT (s->contents != NULL);
5340 BFD_ASSERT (s->output_section != NULL);
5341
5342 if ((my_offset & 0x01) == 0x01)
5343 {
5344 if (sym_sec != NULL
5345 && sym_sec->owner != NULL
5346 && !INTERWORK_FLAG (sym_sec->owner))
5347 {
5348 (*_bfd_error_handler)
5349 (_("%B(%s): warning: interworking not enabled.\n"
5350 " first occurrence: %B: thumb call to arm"),
5351 sym_sec->owner, input_bfd, name);
5352
5353 return FALSE;
5354 }
5355
5356 --my_offset;
5357 myh->root.u.def.value = my_offset;
5358
5359 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5360 s->contents + my_offset);
5361
5362 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5363 s->contents + my_offset + 2);
5364
5365 ret_offset =
5366 /* Address of destination of the stub. */
5367 ((bfd_signed_vma) val)
5368 - ((bfd_signed_vma)
5369 /* Offset from the start of the current section
5370 to the start of the stubs. */
5371 (s->output_offset
5372 /* Offset of the start of this stub from the start of the stubs. */
5373 + my_offset
5374 /* Address of the start of the current section. */
5375 + s->output_section->vma)
5376 /* The branch instruction is 4 bytes into the stub. */
5377 + 4
5378 /* ARM branches work from the pc of the instruction + 8. */
5379 + 8);
5380
5381 put_arm_insn (globals, output_bfd,
5382 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5383 s->contents + my_offset + 4);
5384 }
5385
5386 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5387
5388 /* Now go back and fix up the original BL insn to point to here. */
5389 ret_offset =
5390 /* Address of where the stub is located. */
5391 (s->output_section->vma + s->output_offset + my_offset)
5392 /* Address of where the BL is located. */
5393 - (input_section->output_section->vma + input_section->output_offset
5394 + offset)
5395 /* Addend in the relocation. */
5396 - addend
5397 /* Biassing for PC-relative addressing. */
5398 - 8;
5399
5400 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
5401
5402 return TRUE;
5403 }
5404
5405 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5406
5407 static struct elf_link_hash_entry *
5408 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5409 const char * name,
5410 bfd * input_bfd,
5411 bfd * output_bfd,
5412 asection * sym_sec,
5413 bfd_vma val,
5414 asection * s,
5415 char ** error_message)
5416 {
5417 bfd_vma my_offset;
5418 long int ret_offset;
5419 struct elf_link_hash_entry * myh;
5420 struct elf32_arm_link_hash_table * globals;
5421
5422 myh = find_arm_glue (info, name, error_message);
5423 if (myh == NULL)
5424 return NULL;
5425
5426 globals = elf32_arm_hash_table (info);
5427
5428 BFD_ASSERT (globals != NULL);
5429 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5430
5431 my_offset = myh->root.u.def.value;
5432
5433 if ((my_offset & 0x01) == 0x01)
5434 {
5435 if (sym_sec != NULL
5436 && sym_sec->owner != NULL
5437 && !INTERWORK_FLAG (sym_sec->owner))
5438 {
5439 (*_bfd_error_handler)
5440 (_("%B(%s): warning: interworking not enabled.\n"
5441 " first occurrence: %B: arm call to thumb"),
5442 sym_sec->owner, input_bfd, name);
5443 }
5444
5445 --my_offset;
5446 myh->root.u.def.value = my_offset;
5447
5448 if (info->shared || globals->root.is_relocatable_executable
5449 || globals->pic_veneer)
5450 {
5451 /* For relocatable objects we can't use absolute addresses,
5452 so construct the address from a relative offset. */
5453 /* TODO: If the offset is small it's probably worth
5454 constructing the address with adds. */
5455 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5456 s->contents + my_offset);
5457 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5458 s->contents + my_offset + 4);
5459 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5460 s->contents + my_offset + 8);
5461 /* Adjust the offset by 4 for the position of the add,
5462 and 8 for the pipeline offset. */
5463 ret_offset = (val - (s->output_offset
5464 + s->output_section->vma
5465 + my_offset + 12))
5466 | 1;
5467 bfd_put_32 (output_bfd, ret_offset,
5468 s->contents + my_offset + 12);
5469 }
5470 else if (globals->use_blx)
5471 {
5472 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5473 s->contents + my_offset);
5474
5475 /* It's a thumb address. Add the low order bit. */
5476 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5477 s->contents + my_offset + 4);
5478 }
5479 else
5480 {
5481 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5482 s->contents + my_offset);
5483
5484 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5485 s->contents + my_offset + 4);
5486
5487 /* It's a thumb address. Add the low order bit. */
5488 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5489 s->contents + my_offset + 8);
5490
5491 my_offset += 12;
5492 }
5493 }
5494
5495 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5496
5497 return myh;
5498 }
5499
5500 /* Arm code calling a Thumb function. */
5501
5502 static int
5503 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5504 const char * name,
5505 bfd * input_bfd,
5506 bfd * output_bfd,
5507 asection * input_section,
5508 bfd_byte * hit_data,
5509 asection * sym_sec,
5510 bfd_vma offset,
5511 bfd_signed_vma addend,
5512 bfd_vma val,
5513 char **error_message)
5514 {
5515 unsigned long int tmp;
5516 bfd_vma my_offset;
5517 asection * s;
5518 long int ret_offset;
5519 struct elf_link_hash_entry * myh;
5520 struct elf32_arm_link_hash_table * globals;
5521
5522 globals = elf32_arm_hash_table (info);
5523
5524 BFD_ASSERT (globals != NULL);
5525 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5526
5527 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5528 ARM2THUMB_GLUE_SECTION_NAME);
5529 BFD_ASSERT (s != NULL);
5530 BFD_ASSERT (s->contents != NULL);
5531 BFD_ASSERT (s->output_section != NULL);
5532
5533 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
5534 sym_sec, val, s, error_message);
5535 if (!myh)
5536 return FALSE;
5537
5538 my_offset = myh->root.u.def.value;
5539 tmp = bfd_get_32 (input_bfd, hit_data);
5540 tmp = tmp & 0xFF000000;
5541
5542 /* Somehow these are both 4 too far, so subtract 8. */
5543 ret_offset = (s->output_offset
5544 + my_offset
5545 + s->output_section->vma
5546 - (input_section->output_offset
5547 + input_section->output_section->vma
5548 + offset + addend)
5549 - 8);
5550
5551 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5552
5553 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
5554
5555 return TRUE;
5556 }
5557
5558 /* Populate Arm stub for an exported Thumb function. */
5559
5560 static bfd_boolean
5561 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5562 {
5563 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5564 asection * s;
5565 struct elf_link_hash_entry * myh;
5566 struct elf32_arm_link_hash_entry *eh;
5567 struct elf32_arm_link_hash_table * globals;
5568 asection *sec;
5569 bfd_vma val;
5570 char *error_message;
5571
5572 eh = elf32_arm_hash_entry (h);
5573 /* Allocate stubs for exported Thumb functions on v4t. */
5574 if (eh->export_glue == NULL)
5575 return TRUE;
5576
5577 globals = elf32_arm_hash_table (info);
5578
5579 BFD_ASSERT (globals != NULL);
5580 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5581
5582 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5583 ARM2THUMB_GLUE_SECTION_NAME);
5584 BFD_ASSERT (s != NULL);
5585 BFD_ASSERT (s->contents != NULL);
5586 BFD_ASSERT (s->output_section != NULL);
5587
5588 sec = eh->export_glue->root.u.def.section;
5589
5590 BFD_ASSERT (sec->output_section != NULL);
5591
5592 val = eh->export_glue->root.u.def.value + sec->output_offset
5593 + sec->output_section->vma;
5594
5595 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5596 h->root.u.def.section->owner,
5597 globals->obfd, sec, val, s,
5598 &error_message);
5599 BFD_ASSERT (myh);
5600 return TRUE;
5601 }
5602
5603 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5604
5605 static bfd_vma
5606 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5607 {
5608 bfd_byte *p;
5609 bfd_vma glue_addr;
5610 asection *s;
5611 struct elf32_arm_link_hash_table *globals;
5612
5613 globals = elf32_arm_hash_table (info);
5614
5615 BFD_ASSERT (globals != NULL);
5616 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5617
5618 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5619 ARM_BX_GLUE_SECTION_NAME);
5620 BFD_ASSERT (s != NULL);
5621 BFD_ASSERT (s->contents != NULL);
5622 BFD_ASSERT (s->output_section != NULL);
5623
5624 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5625
5626 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5627
5628 if ((globals->bx_glue_offset[reg] & 1) == 0)
5629 {
5630 p = s->contents + glue_addr;
5631 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5632 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5633 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5634 globals->bx_glue_offset[reg] |= 1;
5635 }
5636
5637 return glue_addr + s->output_section->vma + s->output_offset;
5638 }
5639
5640 /* Generate Arm stubs for exported Thumb symbols. */
5641 static void
5642 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
5643 struct bfd_link_info *link_info)
5644 {
5645 struct elf32_arm_link_hash_table * globals;
5646
5647 if (link_info == NULL)
5648 /* Ignore this if we are not called by the ELF backend linker. */
5649 return;
5650
5651 globals = elf32_arm_hash_table (link_info);
5652 /* If blx is available then exported Thumb symbols are OK and there is
5653 nothing to do. */
5654 if (globals->use_blx)
5655 return;
5656
5657 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5658 link_info);
5659 }
5660
5661 /* Some relocations map to different relocations depending on the
5662 target. Return the real relocation. */
5663
5664 static int
5665 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5666 int r_type)
5667 {
5668 switch (r_type)
5669 {
5670 case R_ARM_TARGET1:
5671 if (globals->target1_is_rel)
5672 return R_ARM_REL32;
5673 else
5674 return R_ARM_ABS32;
5675
5676 case R_ARM_TARGET2:
5677 return globals->target2_reloc;
5678
5679 default:
5680 return r_type;
5681 }
5682 }
5683
5684 /* Return the base VMA address which should be subtracted from real addresses
5685 when resolving @dtpoff relocation.
5686 This is PT_TLS segment p_vaddr. */
5687
5688 static bfd_vma
5689 dtpoff_base (struct bfd_link_info *info)
5690 {
5691 /* If tls_sec is NULL, we should have signalled an error already. */
5692 if (elf_hash_table (info)->tls_sec == NULL)
5693 return 0;
5694 return elf_hash_table (info)->tls_sec->vma;
5695 }
5696
5697 /* Return the relocation value for @tpoff relocation
5698 if STT_TLS virtual address is ADDRESS. */
5699
5700 static bfd_vma
5701 tpoff (struct bfd_link_info *info, bfd_vma address)
5702 {
5703 struct elf_link_hash_table *htab = elf_hash_table (info);
5704 bfd_vma base;
5705
5706 /* If tls_sec is NULL, we should have signalled an error already. */
5707 if (htab->tls_sec == NULL)
5708 return 0;
5709 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5710 return address - htab->tls_sec->vma + base;
5711 }
5712
5713 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5714 VALUE is the relocation value. */
5715
5716 static bfd_reloc_status_type
5717 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5718 {
5719 if (value > 0xfff)
5720 return bfd_reloc_overflow;
5721
5722 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5723 bfd_put_32 (abfd, value, data);
5724 return bfd_reloc_ok;
5725 }
5726
5727 /* For a given value of n, calculate the value of G_n as required to
5728 deal with group relocations. We return it in the form of an
5729 encoded constant-and-rotation, together with the final residual. If n is
5730 specified as less than zero, then final_residual is filled with the
5731 input value and no further action is performed. */
5732
5733 static bfd_vma
5734 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5735 {
5736 int current_n;
5737 bfd_vma g_n;
5738 bfd_vma encoded_g_n = 0;
5739 bfd_vma residual = value; /* Also known as Y_n. */
5740
5741 for (current_n = 0; current_n <= n; current_n++)
5742 {
5743 int shift;
5744
5745 /* Calculate which part of the value to mask. */
5746 if (residual == 0)
5747 shift = 0;
5748 else
5749 {
5750 int msb;
5751
5752 /* Determine the most significant bit in the residual and
5753 align the resulting value to a 2-bit boundary. */
5754 for (msb = 30; msb >= 0; msb -= 2)
5755 if (residual & (3 << msb))
5756 break;
5757
5758 /* The desired shift is now (msb - 6), or zero, whichever
5759 is the greater. */
5760 shift = msb - 6;
5761 if (shift < 0)
5762 shift = 0;
5763 }
5764
5765 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5766 g_n = residual & (0xff << shift);
5767 encoded_g_n = (g_n >> shift)
5768 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5769
5770 /* Calculate the residual for the next time around. */
5771 residual &= ~g_n;
5772 }
5773
5774 *final_residual = residual;
5775
5776 return encoded_g_n;
5777 }
5778
5779 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5780 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5781
5782 static int
5783 identify_add_or_sub (bfd_vma insn)
5784 {
5785 int opcode = insn & 0x1e00000;
5786
5787 if (opcode == 1 << 23) /* ADD */
5788 return 1;
5789
5790 if (opcode == 1 << 22) /* SUB */
5791 return -1;
5792
5793 return 0;
5794 }
5795
5796 /* Perform a relocation as part of a final link. */
5797
5798 static bfd_reloc_status_type
5799 elf32_arm_final_link_relocate (reloc_howto_type * howto,
5800 bfd * input_bfd,
5801 bfd * output_bfd,
5802 asection * input_section,
5803 bfd_byte * contents,
5804 Elf_Internal_Rela * rel,
5805 bfd_vma value,
5806 struct bfd_link_info * info,
5807 asection * sym_sec,
5808 const char * sym_name,
5809 int sym_flags,
5810 struct elf_link_hash_entry * h,
5811 bfd_boolean * unresolved_reloc_p,
5812 char ** error_message)
5813 {
5814 unsigned long r_type = howto->type;
5815 unsigned long r_symndx;
5816 bfd_byte * hit_data = contents + rel->r_offset;
5817 bfd * dynobj = NULL;
5818 Elf_Internal_Shdr * symtab_hdr;
5819 struct elf_link_hash_entry ** sym_hashes;
5820 bfd_vma * local_got_offsets;
5821 asection * sgot = NULL;
5822 asection * splt = NULL;
5823 asection * sreloc = NULL;
5824 bfd_vma addend;
5825 bfd_signed_vma signed_addend;
5826 struct elf32_arm_link_hash_table * globals;
5827
5828 globals = elf32_arm_hash_table (info);
5829
5830 BFD_ASSERT (is_arm_elf (input_bfd));
5831
5832 /* Some relocation types map to different relocations depending on the
5833 target. We pick the right one here. */
5834 r_type = arm_real_reloc_type (globals, r_type);
5835 if (r_type != howto->type)
5836 howto = elf32_arm_howto_from_type (r_type);
5837
5838 /* If the start address has been set, then set the EF_ARM_HASENTRY
5839 flag. Setting this more than once is redundant, but the cost is
5840 not too high, and it keeps the code simple.
5841
5842 The test is done here, rather than somewhere else, because the
5843 start address is only set just before the final link commences.
5844
5845 Note - if the user deliberately sets a start address of 0, the
5846 flag will not be set. */
5847 if (bfd_get_start_address (output_bfd) != 0)
5848 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
5849
5850 dynobj = elf_hash_table (info)->dynobj;
5851 if (dynobj)
5852 {
5853 sgot = bfd_get_section_by_name (dynobj, ".got");
5854 splt = bfd_get_section_by_name (dynobj, ".plt");
5855 }
5856 symtab_hdr = & elf_symtab_hdr (input_bfd);
5857 sym_hashes = elf_sym_hashes (input_bfd);
5858 local_got_offsets = elf_local_got_offsets (input_bfd);
5859 r_symndx = ELF32_R_SYM (rel->r_info);
5860
5861 if (globals->use_rel)
5862 {
5863 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
5864
5865 if (addend & ((howto->src_mask + 1) >> 1))
5866 {
5867 signed_addend = -1;
5868 signed_addend &= ~ howto->src_mask;
5869 signed_addend |= addend;
5870 }
5871 else
5872 signed_addend = addend;
5873 }
5874 else
5875 addend = signed_addend = rel->r_addend;
5876
5877 switch (r_type)
5878 {
5879 case R_ARM_NONE:
5880 /* We don't need to find a value for this symbol. It's just a
5881 marker. */
5882 *unresolved_reloc_p = FALSE;
5883 return bfd_reloc_ok;
5884
5885 case R_ARM_ABS12:
5886 if (!globals->vxworks_p)
5887 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
5888
5889 case R_ARM_PC24:
5890 case R_ARM_ABS32:
5891 case R_ARM_ABS32_NOI:
5892 case R_ARM_REL32:
5893 case R_ARM_REL32_NOI:
5894 case R_ARM_CALL:
5895 case R_ARM_JUMP24:
5896 case R_ARM_XPC25:
5897 case R_ARM_PREL31:
5898 case R_ARM_PLT32:
5899 /* Handle relocations which should use the PLT entry. ABS32/REL32
5900 will use the symbol's value, which may point to a PLT entry, but we
5901 don't need to handle that here. If we created a PLT entry, all
5902 branches in this object should go to it. */
5903 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5904 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
5905 && h != NULL
5906 && splt != NULL
5907 && h->plt.offset != (bfd_vma) -1)
5908 {
5909 /* If we've created a .plt section, and assigned a PLT entry to
5910 this function, it should not be known to bind locally. If
5911 it were, we would have cleared the PLT entry. */
5912 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
5913
5914 value = (splt->output_section->vma
5915 + splt->output_offset
5916 + h->plt.offset);
5917 *unresolved_reloc_p = FALSE;
5918 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5919 contents, rel->r_offset, value,
5920 rel->r_addend);
5921 }
5922
5923 /* When generating a shared object or relocatable executable, these
5924 relocations are copied into the output file to be resolved at
5925 run time. */
5926 if ((info->shared || globals->root.is_relocatable_executable)
5927 && (input_section->flags & SEC_ALLOC)
5928 && !(elf32_arm_hash_table (info)->vxworks_p
5929 && strcmp (input_section->output_section->name,
5930 ".tls_vars") == 0)
5931 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
5932 || !SYMBOL_CALLS_LOCAL (info, h))
5933 && (h == NULL
5934 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5935 || h->root.type != bfd_link_hash_undefweak)
5936 && r_type != R_ARM_PC24
5937 && r_type != R_ARM_CALL
5938 && r_type != R_ARM_JUMP24
5939 && r_type != R_ARM_PREL31
5940 && r_type != R_ARM_PLT32)
5941 {
5942 Elf_Internal_Rela outrel;
5943 bfd_byte *loc;
5944 bfd_boolean skip, relocate;
5945
5946 *unresolved_reloc_p = FALSE;
5947
5948 if (sreloc == NULL)
5949 {
5950 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
5951 ! globals->use_rel);
5952
5953 if (sreloc == NULL)
5954 return bfd_reloc_notsupported;
5955 }
5956
5957 skip = FALSE;
5958 relocate = FALSE;
5959
5960 outrel.r_addend = addend;
5961 outrel.r_offset =
5962 _bfd_elf_section_offset (output_bfd, info, input_section,
5963 rel->r_offset);
5964 if (outrel.r_offset == (bfd_vma) -1)
5965 skip = TRUE;
5966 else if (outrel.r_offset == (bfd_vma) -2)
5967 skip = TRUE, relocate = TRUE;
5968 outrel.r_offset += (input_section->output_section->vma
5969 + input_section->output_offset);
5970
5971 if (skip)
5972 memset (&outrel, 0, sizeof outrel);
5973 else if (h != NULL
5974 && h->dynindx != -1
5975 && (!info->shared
5976 || !info->symbolic
5977 || !h->def_regular))
5978 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
5979 else
5980 {
5981 int symbol;
5982
5983 /* This symbol is local, or marked to become local. */
5984 if (sym_flags == STT_ARM_TFUNC)
5985 value |= 1;
5986 if (globals->symbian_p)
5987 {
5988 asection *osec;
5989
5990 /* On Symbian OS, the data segment and text segement
5991 can be relocated independently. Therefore, we
5992 must indicate the segment to which this
5993 relocation is relative. The BPABI allows us to
5994 use any symbol in the right segment; we just use
5995 the section symbol as it is convenient. (We
5996 cannot use the symbol given by "h" directly as it
5997 will not appear in the dynamic symbol table.)
5998
5999 Note that the dynamic linker ignores the section
6000 symbol value, so we don't subtract osec->vma
6001 from the emitted reloc addend. */
6002 if (sym_sec)
6003 osec = sym_sec->output_section;
6004 else
6005 osec = input_section->output_section;
6006 symbol = elf_section_data (osec)->dynindx;
6007 if (symbol == 0)
6008 {
6009 struct elf_link_hash_table *htab = elf_hash_table (info);
6010
6011 if ((osec->flags & SEC_READONLY) == 0
6012 && htab->data_index_section != NULL)
6013 osec = htab->data_index_section;
6014 else
6015 osec = htab->text_index_section;
6016 symbol = elf_section_data (osec)->dynindx;
6017 }
6018 BFD_ASSERT (symbol != 0);
6019 }
6020 else
6021 /* On SVR4-ish systems, the dynamic loader cannot
6022 relocate the text and data segments independently,
6023 so the symbol does not matter. */
6024 symbol = 0;
6025 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6026 if (globals->use_rel)
6027 relocate = TRUE;
6028 else
6029 outrel.r_addend += value;
6030 }
6031
6032 loc = sreloc->contents;
6033 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6034 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6035
6036 /* If this reloc is against an external symbol, we do not want to
6037 fiddle with the addend. Otherwise, we need to include the symbol
6038 value so that it becomes an addend for the dynamic reloc. */
6039 if (! relocate)
6040 return bfd_reloc_ok;
6041
6042 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6043 contents, rel->r_offset, value,
6044 (bfd_vma) 0);
6045 }
6046 else switch (r_type)
6047 {
6048 case R_ARM_ABS12:
6049 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6050
6051 case R_ARM_XPC25: /* Arm BLX instruction. */
6052 case R_ARM_CALL:
6053 case R_ARM_JUMP24:
6054 case R_ARM_PC24: /* Arm B/BL instruction. */
6055 case R_ARM_PLT32:
6056 {
6057 bfd_vma from;
6058 bfd_signed_vma branch_offset;
6059 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6060
6061 from = (input_section->output_section->vma
6062 + input_section->output_offset
6063 + rel->r_offset);
6064 branch_offset = (bfd_signed_vma)(value - from);
6065
6066 if (r_type == R_ARM_XPC25)
6067 {
6068 /* Check for Arm calling Arm function. */
6069 /* FIXME: Should we translate the instruction into a BL
6070 instruction instead ? */
6071 if (sym_flags != STT_ARM_TFUNC)
6072 (*_bfd_error_handler)
6073 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6074 input_bfd,
6075 h ? h->root.root.string : "(local)");
6076 }
6077 else if (r_type != R_ARM_CALL)
6078 {
6079 /* Check for Arm calling Thumb function. */
6080 if (sym_flags == STT_ARM_TFUNC)
6081 {
6082 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6083 output_bfd, input_section,
6084 hit_data, sym_sec, rel->r_offset,
6085 signed_addend, value,
6086 error_message))
6087 return bfd_reloc_ok;
6088 else
6089 return bfd_reloc_dangerous;
6090 }
6091 }
6092
6093 /* Check if a stub has to be inserted because the
6094 destination is too far or we are changing mode. */
6095 if (r_type == R_ARM_CALL)
6096 {
6097 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6098 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6099 || sym_flags == STT_ARM_TFUNC)
6100 {
6101 /* The target is out of reach, so redirect the
6102 branch to the local stub for this function. */
6103
6104 stub_entry = elf32_arm_get_stub_entry (input_section,
6105 sym_sec, h,
6106 rel, globals);
6107 if (stub_entry != NULL)
6108 value = (stub_entry->stub_offset
6109 + stub_entry->stub_sec->output_offset
6110 + stub_entry->stub_sec->output_section->vma);
6111 }
6112 }
6113
6114 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6115 where:
6116 S is the address of the symbol in the relocation.
6117 P is address of the instruction being relocated.
6118 A is the addend (extracted from the instruction) in bytes.
6119
6120 S is held in 'value'.
6121 P is the base address of the section containing the
6122 instruction plus the offset of the reloc into that
6123 section, ie:
6124 (input_section->output_section->vma +
6125 input_section->output_offset +
6126 rel->r_offset).
6127 A is the addend, converted into bytes, ie:
6128 (signed_addend * 4)
6129
6130 Note: None of these operations have knowledge of the pipeline
6131 size of the processor, thus it is up to the assembler to
6132 encode this information into the addend. */
6133 value -= (input_section->output_section->vma
6134 + input_section->output_offset);
6135 value -= rel->r_offset;
6136 if (globals->use_rel)
6137 value += (signed_addend << howto->size);
6138 else
6139 /* RELA addends do not have to be adjusted by howto->size. */
6140 value += signed_addend;
6141
6142 signed_addend = value;
6143 signed_addend >>= howto->rightshift;
6144
6145 /* A branch to an undefined weak symbol is turned into a jump to
6146 the next instruction. */
6147 if (h && h->root.type == bfd_link_hash_undefweak)
6148 {
6149 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6150 | 0x0affffff;
6151 }
6152 else
6153 {
6154 /* Perform a signed range check. */
6155 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
6156 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6157 return bfd_reloc_overflow;
6158
6159 addend = (value & 2);
6160
6161 value = (signed_addend & howto->dst_mask)
6162 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
6163
6164 /* Set the H bit in the BLX instruction. */
6165 if (sym_flags == STT_ARM_TFUNC)
6166 {
6167 if (addend)
6168 value |= (1 << 24);
6169 else
6170 value &= ~(bfd_vma)(1 << 24);
6171 }
6172 if (r_type == R_ARM_CALL)
6173 {
6174 /* Select the correct instruction (BL or BLX). */
6175 /* Only if we are not handling a BL to a stub. In this
6176 case, mode switching is performed by the stub. */
6177 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
6178 value |= (1 << 28);
6179 else
6180 {
6181 value &= ~(bfd_vma)(1 << 28);
6182 value |= (1 << 24);
6183 }
6184 }
6185 }
6186 }
6187 break;
6188
6189 case R_ARM_ABS32:
6190 value += addend;
6191 if (sym_flags == STT_ARM_TFUNC)
6192 value |= 1;
6193 break;
6194
6195 case R_ARM_ABS32_NOI:
6196 value += addend;
6197 break;
6198
6199 case R_ARM_REL32:
6200 value += addend;
6201 if (sym_flags == STT_ARM_TFUNC)
6202 value |= 1;
6203 value -= (input_section->output_section->vma
6204 + input_section->output_offset + rel->r_offset);
6205 break;
6206
6207 case R_ARM_REL32_NOI:
6208 value += addend;
6209 value -= (input_section->output_section->vma
6210 + input_section->output_offset + rel->r_offset);
6211 break;
6212
6213 case R_ARM_PREL31:
6214 value -= (input_section->output_section->vma
6215 + input_section->output_offset + rel->r_offset);
6216 value += signed_addend;
6217 if (! h || h->root.type != bfd_link_hash_undefweak)
6218 {
6219 /* Check for overflow. */
6220 if ((value ^ (value >> 1)) & (1 << 30))
6221 return bfd_reloc_overflow;
6222 }
6223 value &= 0x7fffffff;
6224 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6225 if (sym_flags == STT_ARM_TFUNC)
6226 value |= 1;
6227 break;
6228 }
6229
6230 bfd_put_32 (input_bfd, value, hit_data);
6231 return bfd_reloc_ok;
6232
6233 case R_ARM_ABS8:
6234 value += addend;
6235 if ((long) value > 0x7f || (long) value < -0x80)
6236 return bfd_reloc_overflow;
6237
6238 bfd_put_8 (input_bfd, value, hit_data);
6239 return bfd_reloc_ok;
6240
6241 case R_ARM_ABS16:
6242 value += addend;
6243
6244 if ((long) value > 0x7fff || (long) value < -0x8000)
6245 return bfd_reloc_overflow;
6246
6247 bfd_put_16 (input_bfd, value, hit_data);
6248 return bfd_reloc_ok;
6249
6250 case R_ARM_THM_ABS5:
6251 /* Support ldr and str instructions for the thumb. */
6252 if (globals->use_rel)
6253 {
6254 /* Need to refetch addend. */
6255 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6256 /* ??? Need to determine shift amount from operand size. */
6257 addend >>= howto->rightshift;
6258 }
6259 value += addend;
6260
6261 /* ??? Isn't value unsigned? */
6262 if ((long) value > 0x1f || (long) value < -0x10)
6263 return bfd_reloc_overflow;
6264
6265 /* ??? Value needs to be properly shifted into place first. */
6266 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6267 bfd_put_16 (input_bfd, value, hit_data);
6268 return bfd_reloc_ok;
6269
6270 case R_ARM_THM_ALU_PREL_11_0:
6271 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6272 {
6273 bfd_vma insn;
6274 bfd_signed_vma relocation;
6275
6276 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6277 | bfd_get_16 (input_bfd, hit_data + 2);
6278
6279 if (globals->use_rel)
6280 {
6281 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6282 | ((insn & (1 << 26)) >> 15);
6283 if (insn & 0xf00000)
6284 signed_addend = -signed_addend;
6285 }
6286
6287 relocation = value + signed_addend;
6288 relocation -= (input_section->output_section->vma
6289 + input_section->output_offset
6290 + rel->r_offset);
6291
6292 value = abs (relocation);
6293
6294 if (value >= 0x1000)
6295 return bfd_reloc_overflow;
6296
6297 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6298 | ((value & 0x700) << 4)
6299 | ((value & 0x800) << 15);
6300 if (relocation < 0)
6301 insn |= 0xa00000;
6302
6303 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6304 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6305
6306 return bfd_reloc_ok;
6307 }
6308
6309 case R_ARM_THM_PC12:
6310 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6311 {
6312 bfd_vma insn;
6313 bfd_signed_vma relocation;
6314
6315 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6316 | bfd_get_16 (input_bfd, hit_data + 2);
6317
6318 if (globals->use_rel)
6319 {
6320 signed_addend = insn & 0xfff;
6321 if (!(insn & (1 << 23)))
6322 signed_addend = -signed_addend;
6323 }
6324
6325 relocation = value + signed_addend;
6326 relocation -= (input_section->output_section->vma
6327 + input_section->output_offset
6328 + rel->r_offset);
6329
6330 value = abs (relocation);
6331
6332 if (value >= 0x1000)
6333 return bfd_reloc_overflow;
6334
6335 insn = (insn & 0xff7ff000) | value;
6336 if (relocation >= 0)
6337 insn |= (1 << 23);
6338
6339 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6340 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6341
6342 return bfd_reloc_ok;
6343 }
6344
6345 case R_ARM_THM_XPC22:
6346 case R_ARM_THM_CALL:
6347 case R_ARM_THM_JUMP24:
6348 /* Thumb BL (branch long instruction). */
6349 {
6350 bfd_vma relocation;
6351 bfd_vma reloc_sign;
6352 bfd_boolean overflow = FALSE;
6353 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6354 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6355 bfd_signed_vma reloc_signed_max;
6356 bfd_signed_vma reloc_signed_min;
6357 bfd_vma check;
6358 bfd_signed_vma signed_check;
6359 int bitsize;
6360 int thumb2 = using_thumb2 (globals);
6361
6362 /* A branch to an undefined weak symbol is turned into a jump to
6363 the next instruction unless a PLT entry will be created. */
6364 if (h && h->root.type == bfd_link_hash_undefweak
6365 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
6366 {
6367 bfd_put_16 (input_bfd, 0xe000, hit_data);
6368 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6369 return bfd_reloc_ok;
6370 }
6371
6372 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6373 with Thumb-1) involving the J1 and J2 bits. */
6374 if (globals->use_rel)
6375 {
6376 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6377 bfd_vma upper = upper_insn & 0x3ff;
6378 bfd_vma lower = lower_insn & 0x7ff;
6379 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6380 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6381 bfd_vma i1 = j1 ^ s ? 0 : 1;
6382 bfd_vma i2 = j2 ^ s ? 0 : 1;
6383
6384 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6385 /* Sign extend. */
6386 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6387
6388 signed_addend = addend;
6389 }
6390
6391 if (r_type == R_ARM_THM_XPC22)
6392 {
6393 /* Check for Thumb to Thumb call. */
6394 /* FIXME: Should we translate the instruction into a BL
6395 instruction instead ? */
6396 if (sym_flags == STT_ARM_TFUNC)
6397 (*_bfd_error_handler)
6398 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6399 input_bfd,
6400 h ? h->root.root.string : "(local)");
6401 }
6402 else
6403 {
6404 /* If it is not a call to Thumb, assume call to Arm.
6405 If it is a call relative to a section name, then it is not a
6406 function call at all, but rather a long jump. Calls through
6407 the PLT do not require stubs. */
6408 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6409 && (h == NULL || splt == NULL
6410 || h->plt.offset == (bfd_vma) -1))
6411 {
6412 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6413 {
6414 /* Convert BL to BLX. */
6415 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6416 }
6417 else if (r_type != R_ARM_THM_CALL)
6418 {
6419 if (elf32_thumb_to_arm_stub
6420 (info, sym_name, input_bfd, output_bfd, input_section,
6421 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6422 error_message))
6423 return bfd_reloc_ok;
6424 else
6425 return bfd_reloc_dangerous;
6426 }
6427 }
6428 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6429 && r_type == R_ARM_THM_CALL)
6430 {
6431 /* Make sure this is a BL. */
6432 lower_insn |= 0x1800;
6433 }
6434 }
6435
6436 /* Handle calls via the PLT. */
6437 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6438 {
6439 value = (splt->output_section->vma
6440 + splt->output_offset
6441 + h->plt.offset);
6442 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6443 {
6444 /* If the Thumb BLX instruction is available, convert the
6445 BL to a BLX instruction to call the ARM-mode PLT entry. */
6446 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6447 }
6448 else
6449 /* Target the Thumb stub before the ARM PLT entry. */
6450 value -= PLT_THUMB_STUB_SIZE;
6451 *unresolved_reloc_p = FALSE;
6452 }
6453
6454 if (r_type == R_ARM_THM_CALL)
6455 {
6456 /* Check if a stub has to be inserted because the destination
6457 is too far. */
6458 bfd_vma from;
6459 bfd_signed_vma branch_offset;
6460 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6461
6462 from = (input_section->output_section->vma
6463 + input_section->output_offset
6464 + rel->r_offset);
6465 branch_offset = (bfd_signed_vma)(value - from);
6466
6467 if ((!thumb2
6468 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6469 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6470 ||
6471 (thumb2
6472 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
6473 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
6474 || ((sym_flags != STT_ARM_TFUNC) && !globals->use_blx))
6475 {
6476 /* The target is out of reach or we are changing modes, so
6477 redirect the branch to the local stub for this
6478 function. */
6479 stub_entry = elf32_arm_get_stub_entry (input_section,
6480 sym_sec, h,
6481 rel, globals);
6482 if (stub_entry != NULL)
6483 value = (stub_entry->stub_offset
6484 + stub_entry->stub_sec->output_offset
6485 + stub_entry->stub_sec->output_section->vma);
6486
6487 /* If this call becomes a call to Arm, force BLX. */
6488 if (globals->use_blx)
6489 {
6490 if ((stub_entry
6491 && !arm_stub_is_thumb (stub_entry->stub_type))
6492 || (sym_flags != STT_ARM_TFUNC))
6493 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6494 }
6495 }
6496 }
6497
6498 relocation = value + signed_addend;
6499
6500 relocation -= (input_section->output_section->vma
6501 + input_section->output_offset
6502 + rel->r_offset);
6503
6504 check = relocation >> howto->rightshift;
6505
6506 /* If this is a signed value, the rightshift just dropped
6507 leading 1 bits (assuming twos complement). */
6508 if ((bfd_signed_vma) relocation >= 0)
6509 signed_check = check;
6510 else
6511 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6512
6513 /* Calculate the permissable maximum and minimum values for
6514 this relocation according to whether we're relocating for
6515 Thumb-2 or not. */
6516 bitsize = howto->bitsize;
6517 if (!thumb2)
6518 bitsize -= 2;
6519 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6520 reloc_signed_min = ~reloc_signed_max;
6521
6522 /* Assumes two's complement. */
6523 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6524 overflow = TRUE;
6525
6526 if ((lower_insn & 0x5000) == 0x4000)
6527 /* For a BLX instruction, make sure that the relocation is rounded up
6528 to a word boundary. This follows the semantics of the instruction
6529 which specifies that bit 1 of the target address will come from bit
6530 1 of the base address. */
6531 relocation = (relocation + 2) & ~ 3;
6532
6533 /* Put RELOCATION back into the insn. Assumes two's complement.
6534 We use the Thumb-2 encoding, which is safe even if dealing with
6535 a Thumb-1 instruction by virtue of our overflow check above. */
6536 reloc_sign = (signed_check < 0) ? 1 : 0;
6537 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6538 | ((relocation >> 12) & 0x3ff)
6539 | (reloc_sign << 10);
6540 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
6541 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6542 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6543 | ((relocation >> 1) & 0x7ff);
6544
6545 /* Put the relocated value back in the object file: */
6546 bfd_put_16 (input_bfd, upper_insn, hit_data);
6547 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6548
6549 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6550 }
6551 break;
6552
6553 case R_ARM_THM_JUMP19:
6554 /* Thumb32 conditional branch instruction. */
6555 {
6556 bfd_vma relocation;
6557 bfd_boolean overflow = FALSE;
6558 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6559 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6560 bfd_signed_vma reloc_signed_max = 0xffffe;
6561 bfd_signed_vma reloc_signed_min = -0x100000;
6562 bfd_signed_vma signed_check;
6563
6564 /* Need to refetch the addend, reconstruct the top three bits,
6565 and squish the two 11 bit pieces together. */
6566 if (globals->use_rel)
6567 {
6568 bfd_vma S = (upper_insn & 0x0400) >> 10;
6569 bfd_vma upper = (upper_insn & 0x003f);
6570 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6571 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6572 bfd_vma lower = (lower_insn & 0x07ff);
6573
6574 upper |= J1 << 6;
6575 upper |= J2 << 7;
6576 upper |= (!S) << 8;
6577 upper -= 0x0100; /* Sign extend. */
6578
6579 addend = (upper << 12) | (lower << 1);
6580 signed_addend = addend;
6581 }
6582
6583 /* Handle calls via the PLT. */
6584 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6585 {
6586 value = (splt->output_section->vma
6587 + splt->output_offset
6588 + h->plt.offset);
6589 /* Target the Thumb stub before the ARM PLT entry. */
6590 value -= PLT_THUMB_STUB_SIZE;
6591 *unresolved_reloc_p = FALSE;
6592 }
6593
6594 /* ??? Should handle interworking? GCC might someday try to
6595 use this for tail calls. */
6596
6597 relocation = value + signed_addend;
6598 relocation -= (input_section->output_section->vma
6599 + input_section->output_offset
6600 + rel->r_offset);
6601 signed_check = (bfd_signed_vma) relocation;
6602
6603 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6604 overflow = TRUE;
6605
6606 /* Put RELOCATION back into the insn. */
6607 {
6608 bfd_vma S = (relocation & 0x00100000) >> 20;
6609 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6610 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6611 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6612 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6613
6614 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
6615 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6616 }
6617
6618 /* Put the relocated value back in the object file: */
6619 bfd_put_16 (input_bfd, upper_insn, hit_data);
6620 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6621
6622 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6623 }
6624
6625 case R_ARM_THM_JUMP11:
6626 case R_ARM_THM_JUMP8:
6627 case R_ARM_THM_JUMP6:
6628 /* Thumb B (branch) instruction). */
6629 {
6630 bfd_signed_vma relocation;
6631 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6632 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
6633 bfd_signed_vma signed_check;
6634
6635 /* CZB cannot jump backward. */
6636 if (r_type == R_ARM_THM_JUMP6)
6637 reloc_signed_min = 0;
6638
6639 if (globals->use_rel)
6640 {
6641 /* Need to refetch addend. */
6642 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6643 if (addend & ((howto->src_mask + 1) >> 1))
6644 {
6645 signed_addend = -1;
6646 signed_addend &= ~ howto->src_mask;
6647 signed_addend |= addend;
6648 }
6649 else
6650 signed_addend = addend;
6651 /* The value in the insn has been right shifted. We need to
6652 undo this, so that we can perform the address calculation
6653 in terms of bytes. */
6654 signed_addend <<= howto->rightshift;
6655 }
6656 relocation = value + signed_addend;
6657
6658 relocation -= (input_section->output_section->vma
6659 + input_section->output_offset
6660 + rel->r_offset);
6661
6662 relocation >>= howto->rightshift;
6663 signed_check = relocation;
6664
6665 if (r_type == R_ARM_THM_JUMP6)
6666 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6667 else
6668 relocation &= howto->dst_mask;
6669 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
6670
6671 bfd_put_16 (input_bfd, relocation, hit_data);
6672
6673 /* Assumes two's complement. */
6674 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6675 return bfd_reloc_overflow;
6676
6677 return bfd_reloc_ok;
6678 }
6679
6680 case R_ARM_ALU_PCREL7_0:
6681 case R_ARM_ALU_PCREL15_8:
6682 case R_ARM_ALU_PCREL23_15:
6683 {
6684 bfd_vma insn;
6685 bfd_vma relocation;
6686
6687 insn = bfd_get_32 (input_bfd, hit_data);
6688 if (globals->use_rel)
6689 {
6690 /* Extract the addend. */
6691 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6692 signed_addend = addend;
6693 }
6694 relocation = value + signed_addend;
6695
6696 relocation -= (input_section->output_section->vma
6697 + input_section->output_offset
6698 + rel->r_offset);
6699 insn = (insn & ~0xfff)
6700 | ((howto->bitpos << 7) & 0xf00)
6701 | ((relocation >> howto->bitpos) & 0xff);
6702 bfd_put_32 (input_bfd, value, hit_data);
6703 }
6704 return bfd_reloc_ok;
6705
6706 case R_ARM_GNU_VTINHERIT:
6707 case R_ARM_GNU_VTENTRY:
6708 return bfd_reloc_ok;
6709
6710 case R_ARM_GOTOFF32:
6711 /* Relocation is relative to the start of the
6712 global offset table. */
6713
6714 BFD_ASSERT (sgot != NULL);
6715 if (sgot == NULL)
6716 return bfd_reloc_notsupported;
6717
6718 /* If we are addressing a Thumb function, we need to adjust the
6719 address by one, so that attempts to call the function pointer will
6720 correctly interpret it as Thumb code. */
6721 if (sym_flags == STT_ARM_TFUNC)
6722 value += 1;
6723
6724 /* Note that sgot->output_offset is not involved in this
6725 calculation. We always want the start of .got. If we
6726 define _GLOBAL_OFFSET_TABLE in a different way, as is
6727 permitted by the ABI, we might have to change this
6728 calculation. */
6729 value -= sgot->output_section->vma;
6730 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6731 contents, rel->r_offset, value,
6732 rel->r_addend);
6733
6734 case R_ARM_GOTPC:
6735 /* Use global offset table as symbol value. */
6736 BFD_ASSERT (sgot != NULL);
6737
6738 if (sgot == NULL)
6739 return bfd_reloc_notsupported;
6740
6741 *unresolved_reloc_p = FALSE;
6742 value = sgot->output_section->vma;
6743 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6744 contents, rel->r_offset, value,
6745 rel->r_addend);
6746
6747 case R_ARM_GOT32:
6748 case R_ARM_GOT_PREL:
6749 /* Relocation is to the entry for this symbol in the
6750 global offset table. */
6751 if (sgot == NULL)
6752 return bfd_reloc_notsupported;
6753
6754 if (h != NULL)
6755 {
6756 bfd_vma off;
6757 bfd_boolean dyn;
6758
6759 off = h->got.offset;
6760 BFD_ASSERT (off != (bfd_vma) -1);
6761 dyn = globals->root.dynamic_sections_created;
6762
6763 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6764 || (info->shared
6765 && SYMBOL_REFERENCES_LOCAL (info, h))
6766 || (ELF_ST_VISIBILITY (h->other)
6767 && h->root.type == bfd_link_hash_undefweak))
6768 {
6769 /* This is actually a static link, or it is a -Bsymbolic link
6770 and the symbol is defined locally. We must initialize this
6771 entry in the global offset table. Since the offset must
6772 always be a multiple of 4, we use the least significant bit
6773 to record whether we have initialized it already.
6774
6775 When doing a dynamic link, we create a .rel(a).got relocation
6776 entry to initialize the value. This is done in the
6777 finish_dynamic_symbol routine. */
6778 if ((off & 1) != 0)
6779 off &= ~1;
6780 else
6781 {
6782 /* If we are addressing a Thumb function, we need to
6783 adjust the address by one, so that attempts to
6784 call the function pointer will correctly
6785 interpret it as Thumb code. */
6786 if (sym_flags == STT_ARM_TFUNC)
6787 value |= 1;
6788
6789 bfd_put_32 (output_bfd, value, sgot->contents + off);
6790 h->got.offset |= 1;
6791 }
6792 }
6793 else
6794 *unresolved_reloc_p = FALSE;
6795
6796 value = sgot->output_offset + off;
6797 }
6798 else
6799 {
6800 bfd_vma off;
6801
6802 BFD_ASSERT (local_got_offsets != NULL &&
6803 local_got_offsets[r_symndx] != (bfd_vma) -1);
6804
6805 off = local_got_offsets[r_symndx];
6806
6807 /* The offset must always be a multiple of 4. We use the
6808 least significant bit to record whether we have already
6809 generated the necessary reloc. */
6810 if ((off & 1) != 0)
6811 off &= ~1;
6812 else
6813 {
6814 /* If we are addressing a Thumb function, we need to
6815 adjust the address by one, so that attempts to
6816 call the function pointer will correctly
6817 interpret it as Thumb code. */
6818 if (sym_flags == STT_ARM_TFUNC)
6819 value |= 1;
6820
6821 if (globals->use_rel)
6822 bfd_put_32 (output_bfd, value, sgot->contents + off);
6823
6824 if (info->shared)
6825 {
6826 asection * srelgot;
6827 Elf_Internal_Rela outrel;
6828 bfd_byte *loc;
6829
6830 srelgot = (bfd_get_section_by_name
6831 (dynobj, RELOC_SECTION (globals, ".got")));
6832 BFD_ASSERT (srelgot != NULL);
6833
6834 outrel.r_addend = addend + value;
6835 outrel.r_offset = (sgot->output_section->vma
6836 + sgot->output_offset
6837 + off);
6838 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
6839 loc = srelgot->contents;
6840 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
6841 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6842 }
6843
6844 local_got_offsets[r_symndx] |= 1;
6845 }
6846
6847 value = sgot->output_offset + off;
6848 }
6849 if (r_type != R_ARM_GOT32)
6850 value += sgot->output_section->vma;
6851
6852 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6853 contents, rel->r_offset, value,
6854 rel->r_addend);
6855
6856 case R_ARM_TLS_LDO32:
6857 value = value - dtpoff_base (info);
6858
6859 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6860 contents, rel->r_offset, value,
6861 rel->r_addend);
6862
6863 case R_ARM_TLS_LDM32:
6864 {
6865 bfd_vma off;
6866
6867 if (globals->sgot == NULL)
6868 abort ();
6869
6870 off = globals->tls_ldm_got.offset;
6871
6872 if ((off & 1) != 0)
6873 off &= ~1;
6874 else
6875 {
6876 /* If we don't know the module number, create a relocation
6877 for it. */
6878 if (info->shared)
6879 {
6880 Elf_Internal_Rela outrel;
6881 bfd_byte *loc;
6882
6883 if (globals->srelgot == NULL)
6884 abort ();
6885
6886 outrel.r_addend = 0;
6887 outrel.r_offset = (globals->sgot->output_section->vma
6888 + globals->sgot->output_offset + off);
6889 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
6890
6891 if (globals->use_rel)
6892 bfd_put_32 (output_bfd, outrel.r_addend,
6893 globals->sgot->contents + off);
6894
6895 loc = globals->srelgot->contents;
6896 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
6897 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6898 }
6899 else
6900 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
6901
6902 globals->tls_ldm_got.offset |= 1;
6903 }
6904
6905 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
6906 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
6907
6908 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6909 contents, rel->r_offset, value,
6910 rel->r_addend);
6911 }
6912
6913 case R_ARM_TLS_GD32:
6914 case R_ARM_TLS_IE32:
6915 {
6916 bfd_vma off;
6917 int indx;
6918 char tls_type;
6919
6920 if (globals->sgot == NULL)
6921 abort ();
6922
6923 indx = 0;
6924 if (h != NULL)
6925 {
6926 bfd_boolean dyn;
6927 dyn = globals->root.dynamic_sections_created;
6928 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6929 && (!info->shared
6930 || !SYMBOL_REFERENCES_LOCAL (info, h)))
6931 {
6932 *unresolved_reloc_p = FALSE;
6933 indx = h->dynindx;
6934 }
6935 off = h->got.offset;
6936 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
6937 }
6938 else
6939 {
6940 if (local_got_offsets == NULL)
6941 abort ();
6942 off = local_got_offsets[r_symndx];
6943 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
6944 }
6945
6946 if (tls_type == GOT_UNKNOWN)
6947 abort ();
6948
6949 if ((off & 1) != 0)
6950 off &= ~1;
6951 else
6952 {
6953 bfd_boolean need_relocs = FALSE;
6954 Elf_Internal_Rela outrel;
6955 bfd_byte *loc = NULL;
6956 int cur_off = off;
6957
6958 /* The GOT entries have not been initialized yet. Do it
6959 now, and emit any relocations. If both an IE GOT and a
6960 GD GOT are necessary, we emit the GD first. */
6961
6962 if ((info->shared || indx != 0)
6963 && (h == NULL
6964 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6965 || h->root.type != bfd_link_hash_undefweak))
6966 {
6967 need_relocs = TRUE;
6968 if (globals->srelgot == NULL)
6969 abort ();
6970 loc = globals->srelgot->contents;
6971 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
6972 }
6973
6974 if (tls_type & GOT_TLS_GD)
6975 {
6976 if (need_relocs)
6977 {
6978 outrel.r_addend = 0;
6979 outrel.r_offset = (globals->sgot->output_section->vma
6980 + globals->sgot->output_offset
6981 + cur_off);
6982 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
6983
6984 if (globals->use_rel)
6985 bfd_put_32 (output_bfd, outrel.r_addend,
6986 globals->sgot->contents + cur_off);
6987
6988 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6989 globals->srelgot->reloc_count++;
6990 loc += RELOC_SIZE (globals);
6991
6992 if (indx == 0)
6993 bfd_put_32 (output_bfd, value - dtpoff_base (info),
6994 globals->sgot->contents + cur_off + 4);
6995 else
6996 {
6997 outrel.r_addend = 0;
6998 outrel.r_info = ELF32_R_INFO (indx,
6999 R_ARM_TLS_DTPOFF32);
7000 outrel.r_offset += 4;
7001
7002 if (globals->use_rel)
7003 bfd_put_32 (output_bfd, outrel.r_addend,
7004 globals->sgot->contents + cur_off + 4);
7005
7006
7007 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7008 globals->srelgot->reloc_count++;
7009 loc += RELOC_SIZE (globals);
7010 }
7011 }
7012 else
7013 {
7014 /* If we are not emitting relocations for a
7015 general dynamic reference, then we must be in a
7016 static link or an executable link with the
7017 symbol binding locally. Mark it as belonging
7018 to module 1, the executable. */
7019 bfd_put_32 (output_bfd, 1,
7020 globals->sgot->contents + cur_off);
7021 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7022 globals->sgot->contents + cur_off + 4);
7023 }
7024
7025 cur_off += 8;
7026 }
7027
7028 if (tls_type & GOT_TLS_IE)
7029 {
7030 if (need_relocs)
7031 {
7032 if (indx == 0)
7033 outrel.r_addend = value - dtpoff_base (info);
7034 else
7035 outrel.r_addend = 0;
7036 outrel.r_offset = (globals->sgot->output_section->vma
7037 + globals->sgot->output_offset
7038 + cur_off);
7039 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7040
7041 if (globals->use_rel)
7042 bfd_put_32 (output_bfd, outrel.r_addend,
7043 globals->sgot->contents + cur_off);
7044
7045 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7046 globals->srelgot->reloc_count++;
7047 loc += RELOC_SIZE (globals);
7048 }
7049 else
7050 bfd_put_32 (output_bfd, tpoff (info, value),
7051 globals->sgot->contents + cur_off);
7052 cur_off += 4;
7053 }
7054
7055 if (h != NULL)
7056 h->got.offset |= 1;
7057 else
7058 local_got_offsets[r_symndx] |= 1;
7059 }
7060
7061 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7062 off += 8;
7063 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7064 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7065
7066 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7067 contents, rel->r_offset, value,
7068 rel->r_addend);
7069 }
7070
7071 case R_ARM_TLS_LE32:
7072 if (info->shared)
7073 {
7074 (*_bfd_error_handler)
7075 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7076 input_bfd, input_section,
7077 (long) rel->r_offset, howto->name);
7078 return FALSE;
7079 }
7080 else
7081 value = tpoff (info, value);
7082
7083 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7084 contents, rel->r_offset, value,
7085 rel->r_addend);
7086
7087 case R_ARM_V4BX:
7088 if (globals->fix_v4bx)
7089 {
7090 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7091
7092 /* Ensure that we have a BX instruction. */
7093 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
7094
7095 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7096 {
7097 /* Branch to veneer. */
7098 bfd_vma glue_addr;
7099 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7100 glue_addr -= input_section->output_section->vma
7101 + input_section->output_offset
7102 + rel->r_offset + 8;
7103 insn = (insn & 0xf0000000) | 0x0a000000
7104 | ((glue_addr >> 2) & 0x00ffffff);
7105 }
7106 else
7107 {
7108 /* Preserve Rm (lowest four bits) and the condition code
7109 (highest four bits). Other bits encode MOV PC,Rm. */
7110 insn = (insn & 0xf000000f) | 0x01a0f000;
7111 }
7112
7113 bfd_put_32 (input_bfd, insn, hit_data);
7114 }
7115 return bfd_reloc_ok;
7116
7117 case R_ARM_MOVW_ABS_NC:
7118 case R_ARM_MOVT_ABS:
7119 case R_ARM_MOVW_PREL_NC:
7120 case R_ARM_MOVT_PREL:
7121 /* Until we properly support segment-base-relative addressing then
7122 we assume the segment base to be zero, as for the group relocations.
7123 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7124 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7125 case R_ARM_MOVW_BREL_NC:
7126 case R_ARM_MOVW_BREL:
7127 case R_ARM_MOVT_BREL:
7128 {
7129 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7130
7131 if (globals->use_rel)
7132 {
7133 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
7134 signed_addend = (addend ^ 0x8000) - 0x8000;
7135 }
7136
7137 value += signed_addend;
7138
7139 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7140 value -= (input_section->output_section->vma
7141 + input_section->output_offset + rel->r_offset);
7142
7143 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7144 return bfd_reloc_overflow;
7145
7146 if (sym_flags == STT_ARM_TFUNC)
7147 value |= 1;
7148
7149 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7150 || r_type == R_ARM_MOVT_BREL)
7151 value >>= 16;
7152
7153 insn &= 0xfff0f000;
7154 insn |= value & 0xfff;
7155 insn |= (value & 0xf000) << 4;
7156 bfd_put_32 (input_bfd, insn, hit_data);
7157 }
7158 return bfd_reloc_ok;
7159
7160 case R_ARM_THM_MOVW_ABS_NC:
7161 case R_ARM_THM_MOVT_ABS:
7162 case R_ARM_THM_MOVW_PREL_NC:
7163 case R_ARM_THM_MOVT_PREL:
7164 /* Until we properly support segment-base-relative addressing then
7165 we assume the segment base to be zero, as for the above relocations.
7166 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7167 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7168 as R_ARM_THM_MOVT_ABS. */
7169 case R_ARM_THM_MOVW_BREL_NC:
7170 case R_ARM_THM_MOVW_BREL:
7171 case R_ARM_THM_MOVT_BREL:
7172 {
7173 bfd_vma insn;
7174
7175 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7176 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7177
7178 if (globals->use_rel)
7179 {
7180 addend = ((insn >> 4) & 0xf000)
7181 | ((insn >> 15) & 0x0800)
7182 | ((insn >> 4) & 0x0700)
7183 | (insn & 0x00ff);
7184 signed_addend = (addend ^ 0x8000) - 0x8000;
7185 }
7186
7187 value += signed_addend;
7188
7189 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7190 value -= (input_section->output_section->vma
7191 + input_section->output_offset + rel->r_offset);
7192
7193 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7194 return bfd_reloc_overflow;
7195
7196 if (sym_flags == STT_ARM_TFUNC)
7197 value |= 1;
7198
7199 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7200 || r_type == R_ARM_THM_MOVT_BREL)
7201 value >>= 16;
7202
7203 insn &= 0xfbf08f00;
7204 insn |= (value & 0xf000) << 4;
7205 insn |= (value & 0x0800) << 15;
7206 insn |= (value & 0x0700) << 4;
7207 insn |= (value & 0x00ff);
7208
7209 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7210 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7211 }
7212 return bfd_reloc_ok;
7213
7214 case R_ARM_ALU_PC_G0_NC:
7215 case R_ARM_ALU_PC_G1_NC:
7216 case R_ARM_ALU_PC_G0:
7217 case R_ARM_ALU_PC_G1:
7218 case R_ARM_ALU_PC_G2:
7219 case R_ARM_ALU_SB_G0_NC:
7220 case R_ARM_ALU_SB_G1_NC:
7221 case R_ARM_ALU_SB_G0:
7222 case R_ARM_ALU_SB_G1:
7223 case R_ARM_ALU_SB_G2:
7224 {
7225 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7226 bfd_vma pc = input_section->output_section->vma
7227 + input_section->output_offset + rel->r_offset;
7228 /* sb should be the origin of the *segment* containing the symbol.
7229 It is not clear how to obtain this OS-dependent value, so we
7230 make an arbitrary choice of zero. */
7231 bfd_vma sb = 0;
7232 bfd_vma residual;
7233 bfd_vma g_n;
7234 bfd_signed_vma signed_value;
7235 int group = 0;
7236
7237 /* Determine which group of bits to select. */
7238 switch (r_type)
7239 {
7240 case R_ARM_ALU_PC_G0_NC:
7241 case R_ARM_ALU_PC_G0:
7242 case R_ARM_ALU_SB_G0_NC:
7243 case R_ARM_ALU_SB_G0:
7244 group = 0;
7245 break;
7246
7247 case R_ARM_ALU_PC_G1_NC:
7248 case R_ARM_ALU_PC_G1:
7249 case R_ARM_ALU_SB_G1_NC:
7250 case R_ARM_ALU_SB_G1:
7251 group = 1;
7252 break;
7253
7254 case R_ARM_ALU_PC_G2:
7255 case R_ARM_ALU_SB_G2:
7256 group = 2;
7257 break;
7258
7259 default:
7260 abort ();
7261 }
7262
7263 /* If REL, extract the addend from the insn. If RELA, it will
7264 have already been fetched for us. */
7265 if (globals->use_rel)
7266 {
7267 int negative;
7268 bfd_vma constant = insn & 0xff;
7269 bfd_vma rotation = (insn & 0xf00) >> 8;
7270
7271 if (rotation == 0)
7272 signed_addend = constant;
7273 else
7274 {
7275 /* Compensate for the fact that in the instruction, the
7276 rotation is stored in multiples of 2 bits. */
7277 rotation *= 2;
7278
7279 /* Rotate "constant" right by "rotation" bits. */
7280 signed_addend = (constant >> rotation) |
7281 (constant << (8 * sizeof (bfd_vma) - rotation));
7282 }
7283
7284 /* Determine if the instruction is an ADD or a SUB.
7285 (For REL, this determines the sign of the addend.) */
7286 negative = identify_add_or_sub (insn);
7287 if (negative == 0)
7288 {
7289 (*_bfd_error_handler)
7290 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7291 input_bfd, input_section,
7292 (long) rel->r_offset, howto->name);
7293 return bfd_reloc_overflow;
7294 }
7295
7296 signed_addend *= negative;
7297 }
7298
7299 /* Compute the value (X) to go in the place. */
7300 if (r_type == R_ARM_ALU_PC_G0_NC
7301 || r_type == R_ARM_ALU_PC_G1_NC
7302 || r_type == R_ARM_ALU_PC_G0
7303 || r_type == R_ARM_ALU_PC_G1
7304 || r_type == R_ARM_ALU_PC_G2)
7305 /* PC relative. */
7306 signed_value = value - pc + signed_addend;
7307 else
7308 /* Section base relative. */
7309 signed_value = value - sb + signed_addend;
7310
7311 /* If the target symbol is a Thumb function, then set the
7312 Thumb bit in the address. */
7313 if (sym_flags == STT_ARM_TFUNC)
7314 signed_value |= 1;
7315
7316 /* Calculate the value of the relevant G_n, in encoded
7317 constant-with-rotation format. */
7318 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7319 &residual);
7320
7321 /* Check for overflow if required. */
7322 if ((r_type == R_ARM_ALU_PC_G0
7323 || r_type == R_ARM_ALU_PC_G1
7324 || r_type == R_ARM_ALU_PC_G2
7325 || r_type == R_ARM_ALU_SB_G0
7326 || r_type == R_ARM_ALU_SB_G1
7327 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7328 {
7329 (*_bfd_error_handler)
7330 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7331 input_bfd, input_section,
7332 (long) rel->r_offset, abs (signed_value), howto->name);
7333 return bfd_reloc_overflow;
7334 }
7335
7336 /* Mask out the value and the ADD/SUB part of the opcode; take care
7337 not to destroy the S bit. */
7338 insn &= 0xff1ff000;
7339
7340 /* Set the opcode according to whether the value to go in the
7341 place is negative. */
7342 if (signed_value < 0)
7343 insn |= 1 << 22;
7344 else
7345 insn |= 1 << 23;
7346
7347 /* Encode the offset. */
7348 insn |= g_n;
7349
7350 bfd_put_32 (input_bfd, insn, hit_data);
7351 }
7352 return bfd_reloc_ok;
7353
7354 case R_ARM_LDR_PC_G0:
7355 case R_ARM_LDR_PC_G1:
7356 case R_ARM_LDR_PC_G2:
7357 case R_ARM_LDR_SB_G0:
7358 case R_ARM_LDR_SB_G1:
7359 case R_ARM_LDR_SB_G2:
7360 {
7361 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7362 bfd_vma pc = input_section->output_section->vma
7363 + input_section->output_offset + rel->r_offset;
7364 bfd_vma sb = 0; /* See note above. */
7365 bfd_vma residual;
7366 bfd_signed_vma signed_value;
7367 int group = 0;
7368
7369 /* Determine which groups of bits to calculate. */
7370 switch (r_type)
7371 {
7372 case R_ARM_LDR_PC_G0:
7373 case R_ARM_LDR_SB_G0:
7374 group = 0;
7375 break;
7376
7377 case R_ARM_LDR_PC_G1:
7378 case R_ARM_LDR_SB_G1:
7379 group = 1;
7380 break;
7381
7382 case R_ARM_LDR_PC_G2:
7383 case R_ARM_LDR_SB_G2:
7384 group = 2;
7385 break;
7386
7387 default:
7388 abort ();
7389 }
7390
7391 /* If REL, extract the addend from the insn. If RELA, it will
7392 have already been fetched for us. */
7393 if (globals->use_rel)
7394 {
7395 int negative = (insn & (1 << 23)) ? 1 : -1;
7396 signed_addend = negative * (insn & 0xfff);
7397 }
7398
7399 /* Compute the value (X) to go in the place. */
7400 if (r_type == R_ARM_LDR_PC_G0
7401 || r_type == R_ARM_LDR_PC_G1
7402 || r_type == R_ARM_LDR_PC_G2)
7403 /* PC relative. */
7404 signed_value = value - pc + signed_addend;
7405 else
7406 /* Section base relative. */
7407 signed_value = value - sb + signed_addend;
7408
7409 /* Calculate the value of the relevant G_{n-1} to obtain
7410 the residual at that stage. */
7411 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7412
7413 /* Check for overflow. */
7414 if (residual >= 0x1000)
7415 {
7416 (*_bfd_error_handler)
7417 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7418 input_bfd, input_section,
7419 (long) rel->r_offset, abs (signed_value), howto->name);
7420 return bfd_reloc_overflow;
7421 }
7422
7423 /* Mask out the value and U bit. */
7424 insn &= 0xff7ff000;
7425
7426 /* Set the U bit if the value to go in the place is non-negative. */
7427 if (signed_value >= 0)
7428 insn |= 1 << 23;
7429
7430 /* Encode the offset. */
7431 insn |= residual;
7432
7433 bfd_put_32 (input_bfd, insn, hit_data);
7434 }
7435 return bfd_reloc_ok;
7436
7437 case R_ARM_LDRS_PC_G0:
7438 case R_ARM_LDRS_PC_G1:
7439 case R_ARM_LDRS_PC_G2:
7440 case R_ARM_LDRS_SB_G0:
7441 case R_ARM_LDRS_SB_G1:
7442 case R_ARM_LDRS_SB_G2:
7443 {
7444 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7445 bfd_vma pc = input_section->output_section->vma
7446 + input_section->output_offset + rel->r_offset;
7447 bfd_vma sb = 0; /* See note above. */
7448 bfd_vma residual;
7449 bfd_signed_vma signed_value;
7450 int group = 0;
7451
7452 /* Determine which groups of bits to calculate. */
7453 switch (r_type)
7454 {
7455 case R_ARM_LDRS_PC_G0:
7456 case R_ARM_LDRS_SB_G0:
7457 group = 0;
7458 break;
7459
7460 case R_ARM_LDRS_PC_G1:
7461 case R_ARM_LDRS_SB_G1:
7462 group = 1;
7463 break;
7464
7465 case R_ARM_LDRS_PC_G2:
7466 case R_ARM_LDRS_SB_G2:
7467 group = 2;
7468 break;
7469
7470 default:
7471 abort ();
7472 }
7473
7474 /* If REL, extract the addend from the insn. If RELA, it will
7475 have already been fetched for us. */
7476 if (globals->use_rel)
7477 {
7478 int negative = (insn & (1 << 23)) ? 1 : -1;
7479 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7480 }
7481
7482 /* Compute the value (X) to go in the place. */
7483 if (r_type == R_ARM_LDRS_PC_G0
7484 || r_type == R_ARM_LDRS_PC_G1
7485 || r_type == R_ARM_LDRS_PC_G2)
7486 /* PC relative. */
7487 signed_value = value - pc + signed_addend;
7488 else
7489 /* Section base relative. */
7490 signed_value = value - sb + signed_addend;
7491
7492 /* Calculate the value of the relevant G_{n-1} to obtain
7493 the residual at that stage. */
7494 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7495
7496 /* Check for overflow. */
7497 if (residual >= 0x100)
7498 {
7499 (*_bfd_error_handler)
7500 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7501 input_bfd, input_section,
7502 (long) rel->r_offset, abs (signed_value), howto->name);
7503 return bfd_reloc_overflow;
7504 }
7505
7506 /* Mask out the value and U bit. */
7507 insn &= 0xff7ff0f0;
7508
7509 /* Set the U bit if the value to go in the place is non-negative. */
7510 if (signed_value >= 0)
7511 insn |= 1 << 23;
7512
7513 /* Encode the offset. */
7514 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7515
7516 bfd_put_32 (input_bfd, insn, hit_data);
7517 }
7518 return bfd_reloc_ok;
7519
7520 case R_ARM_LDC_PC_G0:
7521 case R_ARM_LDC_PC_G1:
7522 case R_ARM_LDC_PC_G2:
7523 case R_ARM_LDC_SB_G0:
7524 case R_ARM_LDC_SB_G1:
7525 case R_ARM_LDC_SB_G2:
7526 {
7527 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7528 bfd_vma pc = input_section->output_section->vma
7529 + input_section->output_offset + rel->r_offset;
7530 bfd_vma sb = 0; /* See note above. */
7531 bfd_vma residual;
7532 bfd_signed_vma signed_value;
7533 int group = 0;
7534
7535 /* Determine which groups of bits to calculate. */
7536 switch (r_type)
7537 {
7538 case R_ARM_LDC_PC_G0:
7539 case R_ARM_LDC_SB_G0:
7540 group = 0;
7541 break;
7542
7543 case R_ARM_LDC_PC_G1:
7544 case R_ARM_LDC_SB_G1:
7545 group = 1;
7546 break;
7547
7548 case R_ARM_LDC_PC_G2:
7549 case R_ARM_LDC_SB_G2:
7550 group = 2;
7551 break;
7552
7553 default:
7554 abort ();
7555 }
7556
7557 /* If REL, extract the addend from the insn. If RELA, it will
7558 have already been fetched for us. */
7559 if (globals->use_rel)
7560 {
7561 int negative = (insn & (1 << 23)) ? 1 : -1;
7562 signed_addend = negative * ((insn & 0xff) << 2);
7563 }
7564
7565 /* Compute the value (X) to go in the place. */
7566 if (r_type == R_ARM_LDC_PC_G0
7567 || r_type == R_ARM_LDC_PC_G1
7568 || r_type == R_ARM_LDC_PC_G2)
7569 /* PC relative. */
7570 signed_value = value - pc + signed_addend;
7571 else
7572 /* Section base relative. */
7573 signed_value = value - sb + signed_addend;
7574
7575 /* Calculate the value of the relevant G_{n-1} to obtain
7576 the residual at that stage. */
7577 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7578
7579 /* Check for overflow. (The absolute value to go in the place must be
7580 divisible by four and, after having been divided by four, must
7581 fit in eight bits.) */
7582 if ((residual & 0x3) != 0 || residual >= 0x400)
7583 {
7584 (*_bfd_error_handler)
7585 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7586 input_bfd, input_section,
7587 (long) rel->r_offset, abs (signed_value), howto->name);
7588 return bfd_reloc_overflow;
7589 }
7590
7591 /* Mask out the value and U bit. */
7592 insn &= 0xff7fff00;
7593
7594 /* Set the U bit if the value to go in the place is non-negative. */
7595 if (signed_value >= 0)
7596 insn |= 1 << 23;
7597
7598 /* Encode the offset. */
7599 insn |= residual >> 2;
7600
7601 bfd_put_32 (input_bfd, insn, hit_data);
7602 }
7603 return bfd_reloc_ok;
7604
7605 default:
7606 return bfd_reloc_notsupported;
7607 }
7608 }
7609
7610 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7611 static void
7612 arm_add_to_rel (bfd * abfd,
7613 bfd_byte * address,
7614 reloc_howto_type * howto,
7615 bfd_signed_vma increment)
7616 {
7617 bfd_signed_vma addend;
7618
7619 if (howto->type == R_ARM_THM_CALL
7620 || howto->type == R_ARM_THM_JUMP24)
7621 {
7622 int upper_insn, lower_insn;
7623 int upper, lower;
7624
7625 upper_insn = bfd_get_16 (abfd, address);
7626 lower_insn = bfd_get_16 (abfd, address + 2);
7627 upper = upper_insn & 0x7ff;
7628 lower = lower_insn & 0x7ff;
7629
7630 addend = (upper << 12) | (lower << 1);
7631 addend += increment;
7632 addend >>= 1;
7633
7634 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7635 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7636
7637 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7638 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
7639 }
7640 else
7641 {
7642 bfd_vma contents;
7643
7644 contents = bfd_get_32 (abfd, address);
7645
7646 /* Get the (signed) value from the instruction. */
7647 addend = contents & howto->src_mask;
7648 if (addend & ((howto->src_mask + 1) >> 1))
7649 {
7650 bfd_signed_vma mask;
7651
7652 mask = -1;
7653 mask &= ~ howto->src_mask;
7654 addend |= mask;
7655 }
7656
7657 /* Add in the increment, (which is a byte value). */
7658 switch (howto->type)
7659 {
7660 default:
7661 addend += increment;
7662 break;
7663
7664 case R_ARM_PC24:
7665 case R_ARM_PLT32:
7666 case R_ARM_CALL:
7667 case R_ARM_JUMP24:
7668 addend <<= howto->size;
7669 addend += increment;
7670
7671 /* Should we check for overflow here ? */
7672
7673 /* Drop any undesired bits. */
7674 addend >>= howto->rightshift;
7675 break;
7676 }
7677
7678 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7679
7680 bfd_put_32 (abfd, contents, address);
7681 }
7682 }
7683
7684 #define IS_ARM_TLS_RELOC(R_TYPE) \
7685 ((R_TYPE) == R_ARM_TLS_GD32 \
7686 || (R_TYPE) == R_ARM_TLS_LDO32 \
7687 || (R_TYPE) == R_ARM_TLS_LDM32 \
7688 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7689 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7690 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7691 || (R_TYPE) == R_ARM_TLS_LE32 \
7692 || (R_TYPE) == R_ARM_TLS_IE32)
7693
7694 /* Relocate an ARM ELF section. */
7695
7696 static bfd_boolean
7697 elf32_arm_relocate_section (bfd * output_bfd,
7698 struct bfd_link_info * info,
7699 bfd * input_bfd,
7700 asection * input_section,
7701 bfd_byte * contents,
7702 Elf_Internal_Rela * relocs,
7703 Elf_Internal_Sym * local_syms,
7704 asection ** local_sections)
7705 {
7706 Elf_Internal_Shdr *symtab_hdr;
7707 struct elf_link_hash_entry **sym_hashes;
7708 Elf_Internal_Rela *rel;
7709 Elf_Internal_Rela *relend;
7710 const char *name;
7711 struct elf32_arm_link_hash_table * globals;
7712
7713 globals = elf32_arm_hash_table (info);
7714
7715 symtab_hdr = & elf_symtab_hdr (input_bfd);
7716 sym_hashes = elf_sym_hashes (input_bfd);
7717
7718 rel = relocs;
7719 relend = relocs + input_section->reloc_count;
7720 for (; rel < relend; rel++)
7721 {
7722 int r_type;
7723 reloc_howto_type * howto;
7724 unsigned long r_symndx;
7725 Elf_Internal_Sym * sym;
7726 asection * sec;
7727 struct elf_link_hash_entry * h;
7728 bfd_vma relocation;
7729 bfd_reloc_status_type r;
7730 arelent bfd_reloc;
7731 char sym_type;
7732 bfd_boolean unresolved_reloc = FALSE;
7733 char *error_message = NULL;
7734
7735 r_symndx = ELF32_R_SYM (rel->r_info);
7736 r_type = ELF32_R_TYPE (rel->r_info);
7737 r_type = arm_real_reloc_type (globals, r_type);
7738
7739 if ( r_type == R_ARM_GNU_VTENTRY
7740 || r_type == R_ARM_GNU_VTINHERIT)
7741 continue;
7742
7743 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
7744 howto = bfd_reloc.howto;
7745
7746 h = NULL;
7747 sym = NULL;
7748 sec = NULL;
7749
7750 if (r_symndx < symtab_hdr->sh_info)
7751 {
7752 sym = local_syms + r_symndx;
7753 sym_type = ELF32_ST_TYPE (sym->st_info);
7754 sec = local_sections[r_symndx];
7755 if (globals->use_rel)
7756 {
7757 relocation = (sec->output_section->vma
7758 + sec->output_offset
7759 + sym->st_value);
7760 if (!info->relocatable
7761 && (sec->flags & SEC_MERGE)
7762 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7763 {
7764 asection *msec;
7765 bfd_vma addend, value;
7766
7767 switch (r_type)
7768 {
7769 case R_ARM_MOVW_ABS_NC:
7770 case R_ARM_MOVT_ABS:
7771 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7772 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7773 addend = (addend ^ 0x8000) - 0x8000;
7774 break;
7775
7776 case R_ARM_THM_MOVW_ABS_NC:
7777 case R_ARM_THM_MOVT_ABS:
7778 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
7779 << 16;
7780 value |= bfd_get_16 (input_bfd,
7781 contents + rel->r_offset + 2);
7782 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
7783 | ((value & 0x04000000) >> 15);
7784 addend = (addend ^ 0x8000) - 0x8000;
7785 break;
7786
7787 default:
7788 if (howto->rightshift
7789 || (howto->src_mask & (howto->src_mask + 1)))
7790 {
7791 (*_bfd_error_handler)
7792 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7793 input_bfd, input_section,
7794 (long) rel->r_offset, howto->name);
7795 return FALSE;
7796 }
7797
7798 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7799
7800 /* Get the (signed) value from the instruction. */
7801 addend = value & howto->src_mask;
7802 if (addend & ((howto->src_mask + 1) >> 1))
7803 {
7804 bfd_signed_vma mask;
7805
7806 mask = -1;
7807 mask &= ~ howto->src_mask;
7808 addend |= mask;
7809 }
7810 break;
7811 }
7812
7813 msec = sec;
7814 addend =
7815 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
7816 - relocation;
7817 addend += msec->output_section->vma + msec->output_offset;
7818
7819 /* Cases here must match those in the preceeding
7820 switch statement. */
7821 switch (r_type)
7822 {
7823 case R_ARM_MOVW_ABS_NC:
7824 case R_ARM_MOVT_ABS:
7825 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
7826 | (addend & 0xfff);
7827 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7828 break;
7829
7830 case R_ARM_THM_MOVW_ABS_NC:
7831 case R_ARM_THM_MOVT_ABS:
7832 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
7833 | (addend & 0xff) | ((addend & 0x0800) << 15);
7834 bfd_put_16 (input_bfd, value >> 16,
7835 contents + rel->r_offset);
7836 bfd_put_16 (input_bfd, value,
7837 contents + rel->r_offset + 2);
7838 break;
7839
7840 default:
7841 value = (value & ~ howto->dst_mask)
7842 | (addend & howto->dst_mask);
7843 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7844 break;
7845 }
7846 }
7847 }
7848 else
7849 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7850 }
7851 else
7852 {
7853 bfd_boolean warned;
7854
7855 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
7856 r_symndx, symtab_hdr, sym_hashes,
7857 h, sec, relocation,
7858 unresolved_reloc, warned);
7859
7860 sym_type = h->type;
7861 }
7862
7863 if (sec != NULL && elf_discarded_section (sec))
7864 {
7865 /* For relocs against symbols from removed linkonce sections,
7866 or sections discarded by a linker script, we just want the
7867 section contents zeroed. Avoid any special processing. */
7868 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7869 rel->r_info = 0;
7870 rel->r_addend = 0;
7871 continue;
7872 }
7873
7874 if (info->relocatable)
7875 {
7876 /* This is a relocatable link. We don't have to change
7877 anything, unless the reloc is against a section symbol,
7878 in which case we have to adjust according to where the
7879 section symbol winds up in the output section. */
7880 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7881 {
7882 if (globals->use_rel)
7883 arm_add_to_rel (input_bfd, contents + rel->r_offset,
7884 howto, (bfd_signed_vma) sec->output_offset);
7885 else
7886 rel->r_addend += sec->output_offset;
7887 }
7888 continue;
7889 }
7890
7891 if (h != NULL)
7892 name = h->root.root.string;
7893 else
7894 {
7895 name = (bfd_elf_string_from_elf_section
7896 (input_bfd, symtab_hdr->sh_link, sym->st_name));
7897 if (name == NULL || *name == '\0')
7898 name = bfd_section_name (input_bfd, sec);
7899 }
7900
7901 if (r_symndx != 0
7902 && r_type != R_ARM_NONE
7903 && (h == NULL
7904 || h->root.type == bfd_link_hash_defined
7905 || h->root.type == bfd_link_hash_defweak)
7906 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
7907 {
7908 (*_bfd_error_handler)
7909 ((sym_type == STT_TLS
7910 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
7911 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
7912 input_bfd,
7913 input_section,
7914 (long) rel->r_offset,
7915 howto->name,
7916 name);
7917 }
7918
7919 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
7920 input_section, contents, rel,
7921 relocation, info, sec, name,
7922 (h ? ELF_ST_TYPE (h->type) :
7923 ELF_ST_TYPE (sym->st_info)), h,
7924 &unresolved_reloc, &error_message);
7925
7926 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7927 because such sections are not SEC_ALLOC and thus ld.so will
7928 not process them. */
7929 if (unresolved_reloc
7930 && !((input_section->flags & SEC_DEBUGGING) != 0
7931 && h->def_dynamic))
7932 {
7933 (*_bfd_error_handler)
7934 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
7935 input_bfd,
7936 input_section,
7937 (long) rel->r_offset,
7938 howto->name,
7939 h->root.root.string);
7940 return FALSE;
7941 }
7942
7943 if (r != bfd_reloc_ok)
7944 {
7945 switch (r)
7946 {
7947 case bfd_reloc_overflow:
7948 /* If the overflowing reloc was to an undefined symbol,
7949 we have already printed one error message and there
7950 is no point complaining again. */
7951 if ((! h ||
7952 h->root.type != bfd_link_hash_undefined)
7953 && (!((*info->callbacks->reloc_overflow)
7954 (info, (h ? &h->root : NULL), name, howto->name,
7955 (bfd_vma) 0, input_bfd, input_section,
7956 rel->r_offset))))
7957 return FALSE;
7958 break;
7959
7960 case bfd_reloc_undefined:
7961 if (!((*info->callbacks->undefined_symbol)
7962 (info, name, input_bfd, input_section,
7963 rel->r_offset, TRUE)))
7964 return FALSE;
7965 break;
7966
7967 case bfd_reloc_outofrange:
7968 error_message = _("out of range");
7969 goto common_error;
7970
7971 case bfd_reloc_notsupported:
7972 error_message = _("unsupported relocation");
7973 goto common_error;
7974
7975 case bfd_reloc_dangerous:
7976 /* error_message should already be set. */
7977 goto common_error;
7978
7979 default:
7980 error_message = _("unknown error");
7981 /* Fall through. */
7982
7983 common_error:
7984 BFD_ASSERT (error_message != NULL);
7985 if (!((*info->callbacks->reloc_dangerous)
7986 (info, error_message, input_bfd, input_section,
7987 rel->r_offset)))
7988 return FALSE;
7989 break;
7990 }
7991 }
7992 }
7993
7994 return TRUE;
7995 }
7996
7997 /* Set the right machine number. */
7998
7999 static bfd_boolean
8000 elf32_arm_object_p (bfd *abfd)
8001 {
8002 unsigned int mach;
8003
8004 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
8005
8006 if (mach != bfd_mach_arm_unknown)
8007 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8008
8009 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
8010 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
8011
8012 else
8013 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8014
8015 return TRUE;
8016 }
8017
8018 /* Function to keep ARM specific flags in the ELF header. */
8019
8020 static bfd_boolean
8021 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
8022 {
8023 if (elf_flags_init (abfd)
8024 && elf_elfheader (abfd)->e_flags != flags)
8025 {
8026 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8027 {
8028 if (flags & EF_ARM_INTERWORK)
8029 (*_bfd_error_handler)
8030 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8031 abfd);
8032 else
8033 _bfd_error_handler
8034 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8035 abfd);
8036 }
8037 }
8038 else
8039 {
8040 elf_elfheader (abfd)->e_flags = flags;
8041 elf_flags_init (abfd) = TRUE;
8042 }
8043
8044 return TRUE;
8045 }
8046
8047 /* Copy backend specific data from one object module to another. */
8048
8049 static bfd_boolean
8050 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
8051 {
8052 flagword in_flags;
8053 flagword out_flags;
8054
8055 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8056 return TRUE;
8057
8058 in_flags = elf_elfheader (ibfd)->e_flags;
8059 out_flags = elf_elfheader (obfd)->e_flags;
8060
8061 if (elf_flags_init (obfd)
8062 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8063 && in_flags != out_flags)
8064 {
8065 /* Cannot mix APCS26 and APCS32 code. */
8066 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8067 return FALSE;
8068
8069 /* Cannot mix float APCS and non-float APCS code. */
8070 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8071 return FALSE;
8072
8073 /* If the src and dest have different interworking flags
8074 then turn off the interworking bit. */
8075 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8076 {
8077 if (out_flags & EF_ARM_INTERWORK)
8078 _bfd_error_handler
8079 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8080 obfd, ibfd);
8081
8082 in_flags &= ~EF_ARM_INTERWORK;
8083 }
8084
8085 /* Likewise for PIC, though don't warn for this case. */
8086 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8087 in_flags &= ~EF_ARM_PIC;
8088 }
8089
8090 elf_elfheader (obfd)->e_flags = in_flags;
8091 elf_flags_init (obfd) = TRUE;
8092
8093 /* Also copy the EI_OSABI field. */
8094 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8095 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8096
8097 /* Copy object attributes. */
8098 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8099
8100 return TRUE;
8101 }
8102
8103 /* Values for Tag_ABI_PCS_R9_use. */
8104 enum
8105 {
8106 AEABI_R9_V6,
8107 AEABI_R9_SB,
8108 AEABI_R9_TLS,
8109 AEABI_R9_unused
8110 };
8111
8112 /* Values for Tag_ABI_PCS_RW_data. */
8113 enum
8114 {
8115 AEABI_PCS_RW_data_absolute,
8116 AEABI_PCS_RW_data_PCrel,
8117 AEABI_PCS_RW_data_SBrel,
8118 AEABI_PCS_RW_data_unused
8119 };
8120
8121 /* Values for Tag_ABI_enum_size. */
8122 enum
8123 {
8124 AEABI_enum_unused,
8125 AEABI_enum_short,
8126 AEABI_enum_wide,
8127 AEABI_enum_forced_wide
8128 };
8129
8130 /* Determine whether an object attribute tag takes an integer, a
8131 string or both. */
8132
8133 static int
8134 elf32_arm_obj_attrs_arg_type (int tag)
8135 {
8136 if (tag == Tag_compatibility)
8137 return 3;
8138 else if (tag == 4 || tag == 5)
8139 return 2;
8140 else if (tag < 32)
8141 return 1;
8142 else
8143 return (tag & 1) != 0 ? 2 : 1;
8144 }
8145
8146 static void
8147 elf32_arm_copy_one_eabi_other_attribute (bfd *ibfd, bfd *obfd, obj_attribute_list *in_list)
8148 {
8149 switch (in_list->tag)
8150 {
8151 case Tag_VFP_HP_extension:
8152 case Tag_ABI_FP_16bit_format:
8153 bfd_elf_add_obj_attr_int (obfd, OBJ_ATTR_PROC, in_list->tag, in_list->attr.i);
8154 break;
8155
8156 default:
8157 if ((in_list->tag & 127) < 64)
8158 {
8159 _bfd_error_handler
8160 (_("Warning: %B: Unknown EABI object attribute %d"), ibfd, in_list->tag);
8161 break;
8162 }
8163 }
8164 }
8165
8166 static void
8167 elf32_arm_copy_eabi_other_attribute_list (bfd *ibfd, bfd *obfd, obj_attribute_list *in_list)
8168 {
8169 for (; in_list; in_list = in_list->next )
8170 elf32_arm_copy_one_eabi_other_attribute (ibfd, obfd, in_list);
8171 }
8172
8173 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8174 are conflicting attributes. */
8175
8176 static bfd_boolean
8177 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8178 {
8179 obj_attribute *in_attr;
8180 obj_attribute *out_attr;
8181 obj_attribute_list *in_list;
8182 obj_attribute_list *out_list;
8183 /* Some tags have 0 = don't care, 1 = strong requirement,
8184 2 = weak requirement. */
8185 static const int order_312[3] = {3, 1, 2};
8186 /* For use with Tag_VFP_arch. */
8187 static const int order_01243[5] = {0, 1, 2, 4, 3};
8188 int i;
8189
8190 if (!elf_known_obj_attributes_proc (obfd)[0].i)
8191 {
8192 /* This is the first object. Copy the attributes. */
8193 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8194
8195 /* Use the Tag_null value to indicate the attributes have been
8196 initialized. */
8197 elf_known_obj_attributes_proc (obfd)[0].i = 1;
8198
8199 return TRUE;
8200 }
8201
8202 in_attr = elf_known_obj_attributes_proc (ibfd);
8203 out_attr = elf_known_obj_attributes_proc (obfd);
8204 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8205 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8206 {
8207 /* Ignore mismatches if the object doesn't use floating point. */
8208 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8209 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8210 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8211 {
8212 _bfd_error_handler
8213 (_("ERROR: %B uses VFP register arguments, %B does not"),
8214 ibfd, obfd);
8215 return FALSE;
8216 }
8217 }
8218
8219 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
8220 {
8221 /* Merge this attribute with existing attributes. */
8222 switch (i)
8223 {
8224 case Tag_CPU_raw_name:
8225 case Tag_CPU_name:
8226 /* Use whichever has the greatest architecture requirements. We
8227 won't necessarily have both the above tags, so make sure input
8228 name is non-NULL. */
8229 if (in_attr[Tag_CPU_arch].i > out_attr[Tag_CPU_arch].i
8230 && in_attr[i].s)
8231 out_attr[i].s = _bfd_elf_attr_strdup (obfd, in_attr[i].s);
8232 break;
8233
8234 case Tag_ABI_optimization_goals:
8235 case Tag_ABI_FP_optimization_goals:
8236 /* Use the first value seen. */
8237 break;
8238
8239 case Tag_CPU_arch:
8240 case Tag_ARM_ISA_use:
8241 case Tag_THUMB_ISA_use:
8242 case Tag_WMMX_arch:
8243 case Tag_NEON_arch:
8244 /* ??? Do NEON and WMMX conflict? */
8245 case Tag_ABI_FP_rounding:
8246 case Tag_ABI_FP_denormal:
8247 case Tag_ABI_FP_exceptions:
8248 case Tag_ABI_FP_user_exceptions:
8249 case Tag_ABI_FP_number_model:
8250 case Tag_ABI_align8_preserved:
8251 case Tag_ABI_HardFP_use:
8252 /* Use the largest value specified. */
8253 if (in_attr[i].i > out_attr[i].i)
8254 out_attr[i].i = in_attr[i].i;
8255 break;
8256
8257 case Tag_CPU_arch_profile:
8258 /* Warn if conflicting architecture profiles used. */
8259 if (out_attr[i].i && in_attr[i].i && in_attr[i].i != out_attr[i].i)
8260 {
8261 _bfd_error_handler
8262 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8263 ibfd, in_attr[i].i, out_attr[i].i);
8264 return FALSE;
8265 }
8266 if (in_attr[i].i)
8267 out_attr[i].i = in_attr[i].i;
8268 break;
8269 case Tag_VFP_arch:
8270 if (in_attr[i].i > 4 || out_attr[i].i > 4
8271 || order_01243[in_attr[i].i] > order_01243[out_attr[i].i])
8272 out_attr[i].i = in_attr[i].i;
8273 break;
8274 case Tag_PCS_config:
8275 if (out_attr[i].i == 0)
8276 out_attr[i].i = in_attr[i].i;
8277 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8278 {
8279 /* It's sometimes ok to mix different configs, so this is only
8280 a warning. */
8281 _bfd_error_handler
8282 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8283 }
8284 break;
8285 case Tag_ABI_PCS_R9_use:
8286 if (in_attr[i].i != out_attr[i].i
8287 && out_attr[i].i != AEABI_R9_unused
8288 && in_attr[i].i != AEABI_R9_unused)
8289 {
8290 _bfd_error_handler
8291 (_("ERROR: %B: Conflicting use of R9"), ibfd);
8292 return FALSE;
8293 }
8294 if (out_attr[i].i == AEABI_R9_unused)
8295 out_attr[i].i = in_attr[i].i;
8296 break;
8297 case Tag_ABI_PCS_RW_data:
8298 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8299 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8300 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8301 {
8302 _bfd_error_handler
8303 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8304 ibfd);
8305 return FALSE;
8306 }
8307 /* Use the smallest value specified. */
8308 if (in_attr[i].i < out_attr[i].i)
8309 out_attr[i].i = in_attr[i].i;
8310 break;
8311 case Tag_ABI_PCS_RO_data:
8312 /* Use the smallest value specified. */
8313 if (in_attr[i].i < out_attr[i].i)
8314 out_attr[i].i = in_attr[i].i;
8315 break;
8316 case Tag_ABI_PCS_GOT_use:
8317 if (in_attr[i].i > 2 || out_attr[i].i > 2
8318 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8319 out_attr[i].i = in_attr[i].i;
8320 break;
8321 case Tag_ABI_PCS_wchar_t:
8322 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
8323 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
8324 {
8325 _bfd_error_handler
8326 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
8327 ibfd, in_attr[i].i, out_attr[i].i);
8328 }
8329 else if (in_attr[i].i && !out_attr[i].i)
8330 out_attr[i].i = in_attr[i].i;
8331 break;
8332 case Tag_ABI_align8_needed:
8333 /* ??? Check against Tag_ABI_align8_preserved. */
8334 if (in_attr[i].i > 2 || out_attr[i].i > 2
8335 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
8336 out_attr[i].i = in_attr[i].i;
8337 break;
8338 case Tag_ABI_enum_size:
8339 if (in_attr[i].i != AEABI_enum_unused)
8340 {
8341 if (out_attr[i].i == AEABI_enum_unused
8342 || out_attr[i].i == AEABI_enum_forced_wide)
8343 {
8344 /* The existing object is compatible with anything.
8345 Use whatever requirements the new object has. */
8346 out_attr[i].i = in_attr[i].i;
8347 }
8348 else if (in_attr[i].i != AEABI_enum_forced_wide
8349 && out_attr[i].i != in_attr[i].i
8350 && !elf_arm_tdata (obfd)->no_enum_size_warning)
8351 {
8352 const char *aeabi_enum_names[] =
8353 { "", "variable-size", "32-bit", "" };
8354 _bfd_error_handler
8355 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8356 ibfd, aeabi_enum_names[in_attr[i].i],
8357 aeabi_enum_names[out_attr[i].i]);
8358 }
8359 }
8360 break;
8361 case Tag_ABI_VFP_args:
8362 /* Aready done. */
8363 break;
8364 case Tag_ABI_WMMX_args:
8365 if (in_attr[i].i != out_attr[i].i)
8366 {
8367 _bfd_error_handler
8368 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8369 ibfd, obfd);
8370 return FALSE;
8371 }
8372 break;
8373
8374 default: /* All known attributes should be explicitly covered. */
8375 abort ();
8376 }
8377
8378 if (in_attr[i].type && !out_attr[i].type)
8379 switch (in_attr[i].type)
8380 {
8381 case 1:
8382 if (out_attr[i].i)
8383 out_attr[i].type = 1;
8384 break;
8385
8386 case 2:
8387 if (out_attr[i].s)
8388 out_attr[i].type = 2;
8389 break;
8390
8391 default:
8392 abort ();
8393 }
8394 }
8395
8396 /* Merge Tag_compatibility attributes and any common GNU ones. */
8397 _bfd_elf_merge_object_attributes (ibfd, obfd);
8398
8399 /* Check for any attributes not known on ARM. */
8400 in_list = elf_other_obj_attributes_proc (ibfd);
8401 while (in_list && in_list->tag == Tag_compatibility)
8402 in_list = in_list->next;
8403
8404 out_list = elf_other_obj_attributes_proc (obfd);
8405 while (out_list && out_list->tag == Tag_compatibility)
8406 out_list = out_list->next;
8407
8408 for (; in_list != NULL; )
8409 {
8410 if (out_list == NULL)
8411 {
8412 elf32_arm_copy_eabi_other_attribute_list (ibfd, obfd, in_list);
8413 return TRUE;
8414 }
8415
8416 /* The tags for each list are in numerical order. */
8417 /* If the tags are equal, then merge. */
8418 if (in_list->tag == out_list->tag)
8419 {
8420 switch (in_list->tag)
8421 {
8422 case Tag_VFP_HP_extension:
8423 if (out_list->attr.i == 0)
8424 out_list->attr.i = in_list->attr.i;
8425 break;
8426
8427 case Tag_ABI_FP_16bit_format:
8428 if (in_list->attr.i != 0 && out_list->attr.i != 0)
8429 {
8430 if (in_list->attr.i != out_list->attr.i)
8431 {
8432 _bfd_error_handler
8433 (_("ERROR: fp16 format mismatch between %B and %B"),
8434 ibfd, obfd);
8435 return FALSE;
8436 }
8437 }
8438 if (in_list->attr.i != 0)
8439 out_list->attr.i = in_list->attr.i;
8440 break;
8441
8442 default:
8443 if ((in_list->tag & 127) < 64)
8444 {
8445 _bfd_error_handler
8446 (_("Warning: %B: Unknown EABI object attribute %d"), ibfd, in_list->tag);
8447 break;
8448 }
8449 }
8450 }
8451 else if (in_list->tag < out_list->tag)
8452 {
8453 /* This attribute is in ibfd, but not obfd. Copy to obfd and advance to
8454 next input attribute. */
8455 elf32_arm_copy_one_eabi_other_attribute (ibfd, obfd, in_list);
8456 }
8457 if (in_list->tag <= out_list->tag)
8458 {
8459 in_list = in_list->next;
8460 if (in_list == NULL)
8461 continue;
8462 }
8463 while (out_list && out_list->tag < in_list->tag)
8464 out_list = out_list->next;
8465 }
8466 return TRUE;
8467 }
8468
8469
8470 /* Return TRUE if the two EABI versions are incompatible. */
8471
8472 static bfd_boolean
8473 elf32_arm_versions_compatible (unsigned iver, unsigned over)
8474 {
8475 /* v4 and v5 are the same spec before and after it was released,
8476 so allow mixing them. */
8477 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
8478 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
8479 return TRUE;
8480
8481 return (iver == over);
8482 }
8483
8484 /* Merge backend specific data from an object file to the output
8485 object file when linking. */
8486
8487 static bfd_boolean
8488 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
8489 {
8490 flagword out_flags;
8491 flagword in_flags;
8492 bfd_boolean flags_compatible = TRUE;
8493 asection *sec;
8494
8495 /* Check if we have the same endianess. */
8496 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8497 return FALSE;
8498
8499 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8500 return TRUE;
8501
8502 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
8503 return FALSE;
8504
8505 /* The input BFD must have had its flags initialised. */
8506 /* The following seems bogus to me -- The flags are initialized in
8507 the assembler but I don't think an elf_flags_init field is
8508 written into the object. */
8509 /* BFD_ASSERT (elf_flags_init (ibfd)); */
8510
8511 in_flags = elf_elfheader (ibfd)->e_flags;
8512 out_flags = elf_elfheader (obfd)->e_flags;
8513
8514 /* In theory there is no reason why we couldn't handle this. However
8515 in practice it isn't even close to working and there is no real
8516 reason to want it. */
8517 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
8518 && !(ibfd->flags & DYNAMIC)
8519 && (in_flags & EF_ARM_BE8))
8520 {
8521 _bfd_error_handler (_("ERROR: %B is already in final BE8 format"),
8522 ibfd);
8523 return FALSE;
8524 }
8525
8526 if (!elf_flags_init (obfd))
8527 {
8528 /* If the input is the default architecture and had the default
8529 flags then do not bother setting the flags for the output
8530 architecture, instead allow future merges to do this. If no
8531 future merges ever set these flags then they will retain their
8532 uninitialised values, which surprise surprise, correspond
8533 to the default values. */
8534 if (bfd_get_arch_info (ibfd)->the_default
8535 && elf_elfheader (ibfd)->e_flags == 0)
8536 return TRUE;
8537
8538 elf_flags_init (obfd) = TRUE;
8539 elf_elfheader (obfd)->e_flags = in_flags;
8540
8541 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8542 && bfd_get_arch_info (obfd)->the_default)
8543 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
8544
8545 return TRUE;
8546 }
8547
8548 /* Determine what should happen if the input ARM architecture
8549 does not match the output ARM architecture. */
8550 if (! bfd_arm_merge_machines (ibfd, obfd))
8551 return FALSE;
8552
8553 /* Identical flags must be compatible. */
8554 if (in_flags == out_flags)
8555 return TRUE;
8556
8557 /* Check to see if the input BFD actually contains any sections. If
8558 not, its flags may not have been initialised either, but it
8559 cannot actually cause any incompatiblity. Do not short-circuit
8560 dynamic objects; their section list may be emptied by
8561 elf_link_add_object_symbols.
8562
8563 Also check to see if there are no code sections in the input.
8564 In this case there is no need to check for code specific flags.
8565 XXX - do we need to worry about floating-point format compatability
8566 in data sections ? */
8567 if (!(ibfd->flags & DYNAMIC))
8568 {
8569 bfd_boolean null_input_bfd = TRUE;
8570 bfd_boolean only_data_sections = TRUE;
8571
8572 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8573 {
8574 /* Ignore synthetic glue sections. */
8575 if (strcmp (sec->name, ".glue_7")
8576 && strcmp (sec->name, ".glue_7t"))
8577 {
8578 if ((bfd_get_section_flags (ibfd, sec)
8579 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8580 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8581 only_data_sections = FALSE;
8582
8583 null_input_bfd = FALSE;
8584 break;
8585 }
8586 }
8587
8588 if (null_input_bfd || only_data_sections)
8589 return TRUE;
8590 }
8591
8592 /* Complain about various flag mismatches. */
8593 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
8594 EF_ARM_EABI_VERSION (out_flags)))
8595 {
8596 _bfd_error_handler
8597 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
8598 ibfd, obfd,
8599 (in_flags & EF_ARM_EABIMASK) >> 24,
8600 (out_flags & EF_ARM_EABIMASK) >> 24);
8601 return FALSE;
8602 }
8603
8604 /* Not sure what needs to be checked for EABI versions >= 1. */
8605 /* VxWorks libraries do not use these flags. */
8606 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
8607 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
8608 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
8609 {
8610 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8611 {
8612 _bfd_error_handler
8613 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
8614 ibfd, obfd,
8615 in_flags & EF_ARM_APCS_26 ? 26 : 32,
8616 out_flags & EF_ARM_APCS_26 ? 26 : 32);
8617 flags_compatible = FALSE;
8618 }
8619
8620 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8621 {
8622 if (in_flags & EF_ARM_APCS_FLOAT)
8623 _bfd_error_handler
8624 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
8625 ibfd, obfd);
8626 else
8627 _bfd_error_handler
8628 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
8629 ibfd, obfd);
8630
8631 flags_compatible = FALSE;
8632 }
8633
8634 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
8635 {
8636 if (in_flags & EF_ARM_VFP_FLOAT)
8637 _bfd_error_handler
8638 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
8639 ibfd, obfd);
8640 else
8641 _bfd_error_handler
8642 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
8643 ibfd, obfd);
8644
8645 flags_compatible = FALSE;
8646 }
8647
8648 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
8649 {
8650 if (in_flags & EF_ARM_MAVERICK_FLOAT)
8651 _bfd_error_handler
8652 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
8653 ibfd, obfd);
8654 else
8655 _bfd_error_handler
8656 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
8657 ibfd, obfd);
8658
8659 flags_compatible = FALSE;
8660 }
8661
8662 #ifdef EF_ARM_SOFT_FLOAT
8663 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
8664 {
8665 /* We can allow interworking between code that is VFP format
8666 layout, and uses either soft float or integer regs for
8667 passing floating point arguments and results. We already
8668 know that the APCS_FLOAT flags match; similarly for VFP
8669 flags. */
8670 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
8671 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
8672 {
8673 if (in_flags & EF_ARM_SOFT_FLOAT)
8674 _bfd_error_handler
8675 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
8676 ibfd, obfd);
8677 else
8678 _bfd_error_handler
8679 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
8680 ibfd, obfd);
8681
8682 flags_compatible = FALSE;
8683 }
8684 }
8685 #endif
8686
8687 /* Interworking mismatch is only a warning. */
8688 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8689 {
8690 if (in_flags & EF_ARM_INTERWORK)
8691 {
8692 _bfd_error_handler
8693 (_("Warning: %B supports interworking, whereas %B does not"),
8694 ibfd, obfd);
8695 }
8696 else
8697 {
8698 _bfd_error_handler
8699 (_("Warning: %B does not support interworking, whereas %B does"),
8700 ibfd, obfd);
8701 }
8702 }
8703 }
8704
8705 return flags_compatible;
8706 }
8707
8708 /* Display the flags field. */
8709
8710 static bfd_boolean
8711 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
8712 {
8713 FILE * file = (FILE *) ptr;
8714 unsigned long flags;
8715
8716 BFD_ASSERT (abfd != NULL && ptr != NULL);
8717
8718 /* Print normal ELF private data. */
8719 _bfd_elf_print_private_bfd_data (abfd, ptr);
8720
8721 flags = elf_elfheader (abfd)->e_flags;
8722 /* Ignore init flag - it may not be set, despite the flags field
8723 containing valid data. */
8724
8725 /* xgettext:c-format */
8726 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
8727
8728 switch (EF_ARM_EABI_VERSION (flags))
8729 {
8730 case EF_ARM_EABI_UNKNOWN:
8731 /* The following flag bits are GNU extensions and not part of the
8732 official ARM ELF extended ABI. Hence they are only decoded if
8733 the EABI version is not set. */
8734 if (flags & EF_ARM_INTERWORK)
8735 fprintf (file, _(" [interworking enabled]"));
8736
8737 if (flags & EF_ARM_APCS_26)
8738 fprintf (file, " [APCS-26]");
8739 else
8740 fprintf (file, " [APCS-32]");
8741
8742 if (flags & EF_ARM_VFP_FLOAT)
8743 fprintf (file, _(" [VFP float format]"));
8744 else if (flags & EF_ARM_MAVERICK_FLOAT)
8745 fprintf (file, _(" [Maverick float format]"));
8746 else
8747 fprintf (file, _(" [FPA float format]"));
8748
8749 if (flags & EF_ARM_APCS_FLOAT)
8750 fprintf (file, _(" [floats passed in float registers]"));
8751
8752 if (flags & EF_ARM_PIC)
8753 fprintf (file, _(" [position independent]"));
8754
8755 if (flags & EF_ARM_NEW_ABI)
8756 fprintf (file, _(" [new ABI]"));
8757
8758 if (flags & EF_ARM_OLD_ABI)
8759 fprintf (file, _(" [old ABI]"));
8760
8761 if (flags & EF_ARM_SOFT_FLOAT)
8762 fprintf (file, _(" [software FP]"));
8763
8764 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
8765 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
8766 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
8767 | EF_ARM_MAVERICK_FLOAT);
8768 break;
8769
8770 case EF_ARM_EABI_VER1:
8771 fprintf (file, _(" [Version1 EABI]"));
8772
8773 if (flags & EF_ARM_SYMSARESORTED)
8774 fprintf (file, _(" [sorted symbol table]"));
8775 else
8776 fprintf (file, _(" [unsorted symbol table]"));
8777
8778 flags &= ~ EF_ARM_SYMSARESORTED;
8779 break;
8780
8781 case EF_ARM_EABI_VER2:
8782 fprintf (file, _(" [Version2 EABI]"));
8783
8784 if (flags & EF_ARM_SYMSARESORTED)
8785 fprintf (file, _(" [sorted symbol table]"));
8786 else
8787 fprintf (file, _(" [unsorted symbol table]"));
8788
8789 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
8790 fprintf (file, _(" [dynamic symbols use segment index]"));
8791
8792 if (flags & EF_ARM_MAPSYMSFIRST)
8793 fprintf (file, _(" [mapping symbols precede others]"));
8794
8795 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
8796 | EF_ARM_MAPSYMSFIRST);
8797 break;
8798
8799 case EF_ARM_EABI_VER3:
8800 fprintf (file, _(" [Version3 EABI]"));
8801 break;
8802
8803 case EF_ARM_EABI_VER4:
8804 fprintf (file, _(" [Version4 EABI]"));
8805 goto eabi;
8806
8807 case EF_ARM_EABI_VER5:
8808 fprintf (file, _(" [Version5 EABI]"));
8809 eabi:
8810 if (flags & EF_ARM_BE8)
8811 fprintf (file, _(" [BE8]"));
8812
8813 if (flags & EF_ARM_LE8)
8814 fprintf (file, _(" [LE8]"));
8815
8816 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
8817 break;
8818
8819 default:
8820 fprintf (file, _(" <EABI version unrecognised>"));
8821 break;
8822 }
8823
8824 flags &= ~ EF_ARM_EABIMASK;
8825
8826 if (flags & EF_ARM_RELEXEC)
8827 fprintf (file, _(" [relocatable executable]"));
8828
8829 if (flags & EF_ARM_HASENTRY)
8830 fprintf (file, _(" [has entry point]"));
8831
8832 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
8833
8834 if (flags)
8835 fprintf (file, _("<Unrecognised flag bits set>"));
8836
8837 fputc ('\n', file);
8838
8839 return TRUE;
8840 }
8841
8842 static int
8843 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
8844 {
8845 switch (ELF_ST_TYPE (elf_sym->st_info))
8846 {
8847 case STT_ARM_TFUNC:
8848 return ELF_ST_TYPE (elf_sym->st_info);
8849
8850 case STT_ARM_16BIT:
8851 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
8852 This allows us to distinguish between data used by Thumb instructions
8853 and non-data (which is probably code) inside Thumb regions of an
8854 executable. */
8855 if (type != STT_OBJECT && type != STT_TLS)
8856 return ELF_ST_TYPE (elf_sym->st_info);
8857 break;
8858
8859 default:
8860 break;
8861 }
8862
8863 return type;
8864 }
8865
8866 static asection *
8867 elf32_arm_gc_mark_hook (asection *sec,
8868 struct bfd_link_info *info,
8869 Elf_Internal_Rela *rel,
8870 struct elf_link_hash_entry *h,
8871 Elf_Internal_Sym *sym)
8872 {
8873 if (h != NULL)
8874 switch (ELF32_R_TYPE (rel->r_info))
8875 {
8876 case R_ARM_GNU_VTINHERIT:
8877 case R_ARM_GNU_VTENTRY:
8878 return NULL;
8879 }
8880
8881 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
8882 }
8883
8884 /* Update the got entry reference counts for the section being removed. */
8885
8886 static bfd_boolean
8887 elf32_arm_gc_sweep_hook (bfd * abfd,
8888 struct bfd_link_info * info,
8889 asection * sec,
8890 const Elf_Internal_Rela * relocs)
8891 {
8892 Elf_Internal_Shdr *symtab_hdr;
8893 struct elf_link_hash_entry **sym_hashes;
8894 bfd_signed_vma *local_got_refcounts;
8895 const Elf_Internal_Rela *rel, *relend;
8896 struct elf32_arm_link_hash_table * globals;
8897
8898 if (info->relocatable)
8899 return TRUE;
8900
8901 globals = elf32_arm_hash_table (info);
8902
8903 elf_section_data (sec)->local_dynrel = NULL;
8904
8905 symtab_hdr = & elf_symtab_hdr (abfd);
8906 sym_hashes = elf_sym_hashes (abfd);
8907 local_got_refcounts = elf_local_got_refcounts (abfd);
8908
8909 check_use_blx (globals);
8910
8911 relend = relocs + sec->reloc_count;
8912 for (rel = relocs; rel < relend; rel++)
8913 {
8914 unsigned long r_symndx;
8915 struct elf_link_hash_entry *h = NULL;
8916 int r_type;
8917
8918 r_symndx = ELF32_R_SYM (rel->r_info);
8919 if (r_symndx >= symtab_hdr->sh_info)
8920 {
8921 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
8922 while (h->root.type == bfd_link_hash_indirect
8923 || h->root.type == bfd_link_hash_warning)
8924 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8925 }
8926
8927 r_type = ELF32_R_TYPE (rel->r_info);
8928 r_type = arm_real_reloc_type (globals, r_type);
8929 switch (r_type)
8930 {
8931 case R_ARM_GOT32:
8932 case R_ARM_GOT_PREL:
8933 case R_ARM_TLS_GD32:
8934 case R_ARM_TLS_IE32:
8935 if (h != NULL)
8936 {
8937 if (h->got.refcount > 0)
8938 h->got.refcount -= 1;
8939 }
8940 else if (local_got_refcounts != NULL)
8941 {
8942 if (local_got_refcounts[r_symndx] > 0)
8943 local_got_refcounts[r_symndx] -= 1;
8944 }
8945 break;
8946
8947 case R_ARM_TLS_LDM32:
8948 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
8949 break;
8950
8951 case R_ARM_ABS32:
8952 case R_ARM_ABS32_NOI:
8953 case R_ARM_REL32:
8954 case R_ARM_REL32_NOI:
8955 case R_ARM_PC24:
8956 case R_ARM_PLT32:
8957 case R_ARM_CALL:
8958 case R_ARM_JUMP24:
8959 case R_ARM_PREL31:
8960 case R_ARM_THM_CALL:
8961 case R_ARM_THM_JUMP24:
8962 case R_ARM_THM_JUMP19:
8963 case R_ARM_MOVW_ABS_NC:
8964 case R_ARM_MOVT_ABS:
8965 case R_ARM_MOVW_PREL_NC:
8966 case R_ARM_MOVT_PREL:
8967 case R_ARM_THM_MOVW_ABS_NC:
8968 case R_ARM_THM_MOVT_ABS:
8969 case R_ARM_THM_MOVW_PREL_NC:
8970 case R_ARM_THM_MOVT_PREL:
8971 /* Should the interworking branches be here also? */
8972
8973 if (h != NULL)
8974 {
8975 struct elf32_arm_link_hash_entry *eh;
8976 struct elf32_arm_relocs_copied **pp;
8977 struct elf32_arm_relocs_copied *p;
8978
8979 eh = (struct elf32_arm_link_hash_entry *) h;
8980
8981 if (h->plt.refcount > 0)
8982 {
8983 h->plt.refcount -= 1;
8984 if (r_type == R_ARM_THM_CALL)
8985 eh->plt_maybe_thumb_refcount--;
8986
8987 if (r_type == R_ARM_THM_JUMP24
8988 || r_type == R_ARM_THM_JUMP19)
8989 eh->plt_thumb_refcount--;
8990 }
8991
8992 if (r_type == R_ARM_ABS32
8993 || r_type == R_ARM_REL32
8994 || r_type == R_ARM_ABS32_NOI
8995 || r_type == R_ARM_REL32_NOI)
8996 {
8997 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
8998 pp = &p->next)
8999 if (p->section == sec)
9000 {
9001 p->count -= 1;
9002 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
9003 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
9004 p->pc_count -= 1;
9005 if (p->count == 0)
9006 *pp = p->next;
9007 break;
9008 }
9009 }
9010 }
9011 break;
9012
9013 default:
9014 break;
9015 }
9016 }
9017
9018 return TRUE;
9019 }
9020
9021 /* Look through the relocs for a section during the first phase. */
9022
9023 static bfd_boolean
9024 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
9025 asection *sec, const Elf_Internal_Rela *relocs)
9026 {
9027 Elf_Internal_Shdr *symtab_hdr;
9028 struct elf_link_hash_entry **sym_hashes;
9029 const Elf_Internal_Rela *rel;
9030 const Elf_Internal_Rela *rel_end;
9031 bfd *dynobj;
9032 asection *sreloc;
9033 bfd_vma *local_got_offsets;
9034 struct elf32_arm_link_hash_table *htab;
9035 bfd_boolean needs_plt;
9036
9037 if (info->relocatable)
9038 return TRUE;
9039
9040 BFD_ASSERT (is_arm_elf (abfd));
9041
9042 htab = elf32_arm_hash_table (info);
9043 sreloc = NULL;
9044
9045 /* Create dynamic sections for relocatable executables so that we can
9046 copy relocations. */
9047 if (htab->root.is_relocatable_executable
9048 && ! htab->root.dynamic_sections_created)
9049 {
9050 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
9051 return FALSE;
9052 }
9053
9054 dynobj = elf_hash_table (info)->dynobj;
9055 local_got_offsets = elf_local_got_offsets (abfd);
9056
9057 symtab_hdr = & elf_symtab_hdr (abfd);
9058 sym_hashes = elf_sym_hashes (abfd);
9059
9060 rel_end = relocs + sec->reloc_count;
9061 for (rel = relocs; rel < rel_end; rel++)
9062 {
9063 struct elf_link_hash_entry *h;
9064 struct elf32_arm_link_hash_entry *eh;
9065 unsigned long r_symndx;
9066 int r_type;
9067
9068 r_symndx = ELF32_R_SYM (rel->r_info);
9069 r_type = ELF32_R_TYPE (rel->r_info);
9070 r_type = arm_real_reloc_type (htab, r_type);
9071
9072 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
9073 {
9074 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
9075 r_symndx);
9076 return FALSE;
9077 }
9078
9079 if (r_symndx < symtab_hdr->sh_info)
9080 h = NULL;
9081 else
9082 {
9083 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9084 while (h->root.type == bfd_link_hash_indirect
9085 || h->root.type == bfd_link_hash_warning)
9086 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9087 }
9088
9089 eh = (struct elf32_arm_link_hash_entry *) h;
9090
9091 switch (r_type)
9092 {
9093 case R_ARM_GOT32:
9094 case R_ARM_GOT_PREL:
9095 case R_ARM_TLS_GD32:
9096 case R_ARM_TLS_IE32:
9097 /* This symbol requires a global offset table entry. */
9098 {
9099 int tls_type, old_tls_type;
9100
9101 switch (r_type)
9102 {
9103 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
9104 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
9105 default: tls_type = GOT_NORMAL; break;
9106 }
9107
9108 if (h != NULL)
9109 {
9110 h->got.refcount++;
9111 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9112 }
9113 else
9114 {
9115 bfd_signed_vma *local_got_refcounts;
9116
9117 /* This is a global offset table entry for a local symbol. */
9118 local_got_refcounts = elf_local_got_refcounts (abfd);
9119 if (local_got_refcounts == NULL)
9120 {
9121 bfd_size_type size;
9122
9123 size = symtab_hdr->sh_info;
9124 size *= (sizeof (bfd_signed_vma) + sizeof (char));
9125 local_got_refcounts = bfd_zalloc (abfd, size);
9126 if (local_got_refcounts == NULL)
9127 return FALSE;
9128 elf_local_got_refcounts (abfd) = local_got_refcounts;
9129 elf32_arm_local_got_tls_type (abfd)
9130 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
9131 }
9132 local_got_refcounts[r_symndx] += 1;
9133 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
9134 }
9135
9136 /* We will already have issued an error message if there is a
9137 TLS / non-TLS mismatch, based on the symbol type. We don't
9138 support any linker relaxations. So just combine any TLS
9139 types needed. */
9140 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
9141 && tls_type != GOT_NORMAL)
9142 tls_type |= old_tls_type;
9143
9144 if (old_tls_type != tls_type)
9145 {
9146 if (h != NULL)
9147 elf32_arm_hash_entry (h)->tls_type = tls_type;
9148 else
9149 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9150 }
9151 }
9152 /* Fall through. */
9153
9154 case R_ARM_TLS_LDM32:
9155 if (r_type == R_ARM_TLS_LDM32)
9156 htab->tls_ldm_got.refcount++;
9157 /* Fall through. */
9158
9159 case R_ARM_GOTOFF32:
9160 case R_ARM_GOTPC:
9161 if (htab->sgot == NULL)
9162 {
9163 if (htab->root.dynobj == NULL)
9164 htab->root.dynobj = abfd;
9165 if (!create_got_section (htab->root.dynobj, info))
9166 return FALSE;
9167 }
9168 break;
9169
9170 case R_ARM_ABS12:
9171 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9172 ldr __GOTT_INDEX__ offsets. */
9173 if (!htab->vxworks_p)
9174 break;
9175 /* Fall through. */
9176
9177 case R_ARM_PC24:
9178 case R_ARM_PLT32:
9179 case R_ARM_CALL:
9180 case R_ARM_JUMP24:
9181 case R_ARM_PREL31:
9182 case R_ARM_THM_CALL:
9183 case R_ARM_THM_JUMP24:
9184 case R_ARM_THM_JUMP19:
9185 needs_plt = 1;
9186 goto normal_reloc;
9187
9188 case R_ARM_ABS32:
9189 case R_ARM_ABS32_NOI:
9190 case R_ARM_REL32:
9191 case R_ARM_REL32_NOI:
9192 case R_ARM_MOVW_ABS_NC:
9193 case R_ARM_MOVT_ABS:
9194 case R_ARM_MOVW_PREL_NC:
9195 case R_ARM_MOVT_PREL:
9196 case R_ARM_THM_MOVW_ABS_NC:
9197 case R_ARM_THM_MOVT_ABS:
9198 case R_ARM_THM_MOVW_PREL_NC:
9199 case R_ARM_THM_MOVT_PREL:
9200 needs_plt = 0;
9201 normal_reloc:
9202
9203 /* Should the interworking branches be listed here? */
9204 if (h != NULL)
9205 {
9206 /* If this reloc is in a read-only section, we might
9207 need a copy reloc. We can't check reliably at this
9208 stage whether the section is read-only, as input
9209 sections have not yet been mapped to output sections.
9210 Tentatively set the flag for now, and correct in
9211 adjust_dynamic_symbol. */
9212 if (!info->shared)
9213 h->non_got_ref = 1;
9214
9215 /* We may need a .plt entry if the function this reloc
9216 refers to is in a different object. We can't tell for
9217 sure yet, because something later might force the
9218 symbol local. */
9219 if (needs_plt)
9220 h->needs_plt = 1;
9221
9222 /* If we create a PLT entry, this relocation will reference
9223 it, even if it's an ABS32 relocation. */
9224 h->plt.refcount += 1;
9225
9226 /* It's too early to use htab->use_blx here, so we have to
9227 record possible blx references separately from
9228 relocs that definitely need a thumb stub. */
9229
9230 if (r_type == R_ARM_THM_CALL)
9231 eh->plt_maybe_thumb_refcount += 1;
9232
9233 if (r_type == R_ARM_THM_JUMP24
9234 || r_type == R_ARM_THM_JUMP19)
9235 eh->plt_thumb_refcount += 1;
9236 }
9237
9238 /* If we are creating a shared library or relocatable executable,
9239 and this is a reloc against a global symbol, or a non PC
9240 relative reloc against a local symbol, then we need to copy
9241 the reloc into the shared library. However, if we are linking
9242 with -Bsymbolic, we do not need to copy a reloc against a
9243 global symbol which is defined in an object we are
9244 including in the link (i.e., DEF_REGULAR is set). At
9245 this point we have not seen all the input files, so it is
9246 possible that DEF_REGULAR is not set now but will be set
9247 later (it is never cleared). We account for that
9248 possibility below by storing information in the
9249 relocs_copied field of the hash table entry. */
9250 if ((info->shared || htab->root.is_relocatable_executable)
9251 && (sec->flags & SEC_ALLOC) != 0
9252 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
9253 || (h != NULL && ! h->needs_plt
9254 && (! info->symbolic || ! h->def_regular))))
9255 {
9256 struct elf32_arm_relocs_copied *p, **head;
9257
9258 /* When creating a shared object, we must copy these
9259 reloc types into the output file. We create a reloc
9260 section in dynobj and make room for this reloc. */
9261 if (sreloc == NULL)
9262 {
9263 sreloc = _bfd_elf_make_dynamic_reloc_section
9264 (sec, dynobj, 2, abfd, ! htab->use_rel);
9265
9266 if (sreloc == NULL)
9267 return FALSE;
9268
9269 /* BPABI objects never have dynamic relocations mapped. */
9270 if (! htab->symbian_p)
9271 {
9272 flagword flags;
9273
9274 flags = bfd_get_section_flags (dynobj, sreloc);
9275 flags &= ~(SEC_LOAD | SEC_ALLOC);
9276 bfd_set_section_flags (dynobj, sreloc, flags);
9277 }
9278 }
9279
9280 /* If this is a global symbol, we count the number of
9281 relocations we need for this symbol. */
9282 if (h != NULL)
9283 {
9284 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9285 }
9286 else
9287 {
9288 /* Track dynamic relocs needed for local syms too.
9289 We really need local syms available to do this
9290 easily. Oh well. */
9291
9292 asection *s;
9293 void *vpp;
9294
9295 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9296 sec, r_symndx);
9297 if (s == NULL)
9298 return FALSE;
9299
9300 vpp = &elf_section_data (s)->local_dynrel;
9301 head = (struct elf32_arm_relocs_copied **) vpp;
9302 }
9303
9304 p = *head;
9305 if (p == NULL || p->section != sec)
9306 {
9307 bfd_size_type amt = sizeof *p;
9308
9309 p = bfd_alloc (htab->root.dynobj, amt);
9310 if (p == NULL)
9311 return FALSE;
9312 p->next = *head;
9313 *head = p;
9314 p->section = sec;
9315 p->count = 0;
9316 p->pc_count = 0;
9317 }
9318
9319 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9320 p->pc_count += 1;
9321 p->count += 1;
9322 }
9323 break;
9324
9325 /* This relocation describes the C++ object vtable hierarchy.
9326 Reconstruct it for later use during GC. */
9327 case R_ARM_GNU_VTINHERIT:
9328 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9329 return FALSE;
9330 break;
9331
9332 /* This relocation describes which C++ vtable entries are actually
9333 used. Record for later use during GC. */
9334 case R_ARM_GNU_VTENTRY:
9335 BFD_ASSERT (h != NULL);
9336 if (h != NULL
9337 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9338 return FALSE;
9339 break;
9340 }
9341 }
9342
9343 return TRUE;
9344 }
9345
9346 /* Unwinding tables are not referenced directly. This pass marks them as
9347 required if the corresponding code section is marked. */
9348
9349 static bfd_boolean
9350 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9351 elf_gc_mark_hook_fn gc_mark_hook)
9352 {
9353 bfd *sub;
9354 Elf_Internal_Shdr **elf_shdrp;
9355 bfd_boolean again;
9356
9357 /* Marking EH data may cause additional code sections to be marked,
9358 requiring multiple passes. */
9359 again = TRUE;
9360 while (again)
9361 {
9362 again = FALSE;
9363 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9364 {
9365 asection *o;
9366
9367 if (! is_arm_elf (sub))
9368 continue;
9369
9370 elf_shdrp = elf_elfsections (sub);
9371 for (o = sub->sections; o != NULL; o = o->next)
9372 {
9373 Elf_Internal_Shdr *hdr;
9374
9375 hdr = &elf_section_data (o)->this_hdr;
9376 if (hdr->sh_type == SHT_ARM_EXIDX
9377 && hdr->sh_link
9378 && hdr->sh_link < elf_numsections (sub)
9379 && !o->gc_mark
9380 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9381 {
9382 again = TRUE;
9383 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9384 return FALSE;
9385 }
9386 }
9387 }
9388 }
9389
9390 return TRUE;
9391 }
9392
9393 /* Treat mapping symbols as special target symbols. */
9394
9395 static bfd_boolean
9396 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
9397 {
9398 return bfd_is_arm_special_symbol_name (sym->name,
9399 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
9400 }
9401
9402 /* This is a copy of elf_find_function() from elf.c except that
9403 ARM mapping symbols are ignored when looking for function names
9404 and STT_ARM_TFUNC is considered to a function type. */
9405
9406 static bfd_boolean
9407 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
9408 asection * section,
9409 asymbol ** symbols,
9410 bfd_vma offset,
9411 const char ** filename_ptr,
9412 const char ** functionname_ptr)
9413 {
9414 const char * filename = NULL;
9415 asymbol * func = NULL;
9416 bfd_vma low_func = 0;
9417 asymbol ** p;
9418
9419 for (p = symbols; *p != NULL; p++)
9420 {
9421 elf_symbol_type *q;
9422
9423 q = (elf_symbol_type *) *p;
9424
9425 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
9426 {
9427 default:
9428 break;
9429 case STT_FILE:
9430 filename = bfd_asymbol_name (&q->symbol);
9431 break;
9432 case STT_FUNC:
9433 case STT_IFUNC:
9434 case STT_ARM_TFUNC:
9435 case STT_NOTYPE:
9436 /* Skip mapping symbols. */
9437 if ((q->symbol.flags & BSF_LOCAL)
9438 && bfd_is_arm_special_symbol_name (q->symbol.name,
9439 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
9440 continue;
9441 /* Fall through. */
9442 if (bfd_get_section (&q->symbol) == section
9443 && q->symbol.value >= low_func
9444 && q->symbol.value <= offset)
9445 {
9446 func = (asymbol *) q;
9447 low_func = q->symbol.value;
9448 }
9449 break;
9450 }
9451 }
9452
9453 if (func == NULL)
9454 return FALSE;
9455
9456 if (filename_ptr)
9457 *filename_ptr = filename;
9458 if (functionname_ptr)
9459 *functionname_ptr = bfd_asymbol_name (func);
9460
9461 return TRUE;
9462 }
9463
9464
9465 /* Find the nearest line to a particular section and offset, for error
9466 reporting. This code is a duplicate of the code in elf.c, except
9467 that it uses arm_elf_find_function. */
9468
9469 static bfd_boolean
9470 elf32_arm_find_nearest_line (bfd * abfd,
9471 asection * section,
9472 asymbol ** symbols,
9473 bfd_vma offset,
9474 const char ** filename_ptr,
9475 const char ** functionname_ptr,
9476 unsigned int * line_ptr)
9477 {
9478 bfd_boolean found = FALSE;
9479
9480 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
9481
9482 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9483 filename_ptr, functionname_ptr,
9484 line_ptr, 0,
9485 & elf_tdata (abfd)->dwarf2_find_line_info))
9486 {
9487 if (!*functionname_ptr)
9488 arm_elf_find_function (abfd, section, symbols, offset,
9489 *filename_ptr ? NULL : filename_ptr,
9490 functionname_ptr);
9491
9492 return TRUE;
9493 }
9494
9495 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9496 & found, filename_ptr,
9497 functionname_ptr, line_ptr,
9498 & elf_tdata (abfd)->line_info))
9499 return FALSE;
9500
9501 if (found && (*functionname_ptr || *line_ptr))
9502 return TRUE;
9503
9504 if (symbols == NULL)
9505 return FALSE;
9506
9507 if (! arm_elf_find_function (abfd, section, symbols, offset,
9508 filename_ptr, functionname_ptr))
9509 return FALSE;
9510
9511 *line_ptr = 0;
9512 return TRUE;
9513 }
9514
9515 static bfd_boolean
9516 elf32_arm_find_inliner_info (bfd * abfd,
9517 const char ** filename_ptr,
9518 const char ** functionname_ptr,
9519 unsigned int * line_ptr)
9520 {
9521 bfd_boolean found;
9522 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9523 functionname_ptr, line_ptr,
9524 & elf_tdata (abfd)->dwarf2_find_line_info);
9525 return found;
9526 }
9527
9528 /* Adjust a symbol defined by a dynamic object and referenced by a
9529 regular object. The current definition is in some section of the
9530 dynamic object, but we're not including those sections. We have to
9531 change the definition to something the rest of the link can
9532 understand. */
9533
9534 static bfd_boolean
9535 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
9536 struct elf_link_hash_entry * h)
9537 {
9538 bfd * dynobj;
9539 asection * s;
9540 struct elf32_arm_link_hash_entry * eh;
9541 struct elf32_arm_link_hash_table *globals;
9542
9543 globals = elf32_arm_hash_table (info);
9544 dynobj = elf_hash_table (info)->dynobj;
9545
9546 /* Make sure we know what is going on here. */
9547 BFD_ASSERT (dynobj != NULL
9548 && (h->needs_plt
9549 || h->u.weakdef != NULL
9550 || (h->def_dynamic
9551 && h->ref_regular
9552 && !h->def_regular)));
9553
9554 eh = (struct elf32_arm_link_hash_entry *) h;
9555
9556 /* If this is a function, put it in the procedure linkage table. We
9557 will fill in the contents of the procedure linkage table later,
9558 when we know the address of the .got section. */
9559 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC || h->type == STT_IFUNC
9560 || h->needs_plt)
9561 {
9562 if (h->plt.refcount <= 0
9563 || SYMBOL_CALLS_LOCAL (info, h)
9564 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9565 && h->root.type == bfd_link_hash_undefweak))
9566 {
9567 /* This case can occur if we saw a PLT32 reloc in an input
9568 file, but the symbol was never referred to by a dynamic
9569 object, or if all references were garbage collected. In
9570 such a case, we don't actually need to build a procedure
9571 linkage table, and we can just do a PC24 reloc instead. */
9572 h->plt.offset = (bfd_vma) -1;
9573 eh->plt_thumb_refcount = 0;
9574 eh->plt_maybe_thumb_refcount = 0;
9575 h->needs_plt = 0;
9576 }
9577
9578 return TRUE;
9579 }
9580 else
9581 {
9582 /* It's possible that we incorrectly decided a .plt reloc was
9583 needed for an R_ARM_PC24 or similar reloc to a non-function sym
9584 in check_relocs. We can't decide accurately between function
9585 and non-function syms in check-relocs; Objects loaded later in
9586 the link may change h->type. So fix it now. */
9587 h->plt.offset = (bfd_vma) -1;
9588 eh->plt_thumb_refcount = 0;
9589 eh->plt_maybe_thumb_refcount = 0;
9590 }
9591
9592 /* If this is a weak symbol, and there is a real definition, the
9593 processor independent code will have arranged for us to see the
9594 real definition first, and we can just use the same value. */
9595 if (h->u.weakdef != NULL)
9596 {
9597 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9598 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9599 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9600 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9601 return TRUE;
9602 }
9603
9604 /* If there are no non-GOT references, we do not need a copy
9605 relocation. */
9606 if (!h->non_got_ref)
9607 return TRUE;
9608
9609 /* This is a reference to a symbol defined by a dynamic object which
9610 is not a function. */
9611
9612 /* If we are creating a shared library, we must presume that the
9613 only references to the symbol are via the global offset table.
9614 For such cases we need not do anything here; the relocations will
9615 be handled correctly by relocate_section. Relocatable executables
9616 can reference data in shared objects directly, so we don't need to
9617 do anything here. */
9618 if (info->shared || globals->root.is_relocatable_executable)
9619 return TRUE;
9620
9621 if (h->size == 0)
9622 {
9623 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
9624 h->root.root.string);
9625 return TRUE;
9626 }
9627
9628 /* We must allocate the symbol in our .dynbss section, which will
9629 become part of the .bss section of the executable. There will be
9630 an entry for this symbol in the .dynsym section. The dynamic
9631 object will contain position independent code, so all references
9632 from the dynamic object to this symbol will go through the global
9633 offset table. The dynamic linker will use the .dynsym entry to
9634 determine the address it must put in the global offset table, so
9635 both the dynamic object and the regular object will refer to the
9636 same memory location for the variable. */
9637 s = bfd_get_section_by_name (dynobj, ".dynbss");
9638 BFD_ASSERT (s != NULL);
9639
9640 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
9641 copy the initial value out of the dynamic object and into the
9642 runtime process image. We need to remember the offset into the
9643 .rel(a).bss section we are going to use. */
9644 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9645 {
9646 asection *srel;
9647
9648 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
9649 BFD_ASSERT (srel != NULL);
9650 srel->size += RELOC_SIZE (globals);
9651 h->needs_copy = 1;
9652 }
9653
9654 return _bfd_elf_adjust_dynamic_copy (h, s);
9655 }
9656
9657 /* Allocate space in .plt, .got and associated reloc sections for
9658 dynamic relocs. */
9659
9660 static bfd_boolean
9661 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
9662 {
9663 struct bfd_link_info *info;
9664 struct elf32_arm_link_hash_table *htab;
9665 struct elf32_arm_link_hash_entry *eh;
9666 struct elf32_arm_relocs_copied *p;
9667 bfd_signed_vma thumb_refs;
9668
9669 eh = (struct elf32_arm_link_hash_entry *) h;
9670
9671 if (h->root.type == bfd_link_hash_indirect)
9672 return TRUE;
9673
9674 if (h->root.type == bfd_link_hash_warning)
9675 /* When warning symbols are created, they **replace** the "real"
9676 entry in the hash table, thus we never get to see the real
9677 symbol in a hash traversal. So look at it now. */
9678 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9679
9680 info = (struct bfd_link_info *) inf;
9681 htab = elf32_arm_hash_table (info);
9682
9683 if (htab->root.dynamic_sections_created
9684 && h->plt.refcount > 0)
9685 {
9686 /* Make sure this symbol is output as a dynamic symbol.
9687 Undefined weak syms won't yet be marked as dynamic. */
9688 if (h->dynindx == -1
9689 && !h->forced_local)
9690 {
9691 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9692 return FALSE;
9693 }
9694
9695 if (info->shared
9696 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
9697 {
9698 asection *s = htab->splt;
9699
9700 /* If this is the first .plt entry, make room for the special
9701 first entry. */
9702 if (s->size == 0)
9703 s->size += htab->plt_header_size;
9704
9705 h->plt.offset = s->size;
9706
9707 /* If we will insert a Thumb trampoline before this PLT, leave room
9708 for it. */
9709 thumb_refs = eh->plt_thumb_refcount;
9710 if (!htab->use_blx)
9711 thumb_refs += eh->plt_maybe_thumb_refcount;
9712
9713 if (thumb_refs > 0)
9714 {
9715 h->plt.offset += PLT_THUMB_STUB_SIZE;
9716 s->size += PLT_THUMB_STUB_SIZE;
9717 }
9718
9719 /* If this symbol is not defined in a regular file, and we are
9720 not generating a shared library, then set the symbol to this
9721 location in the .plt. This is required to make function
9722 pointers compare as equal between the normal executable and
9723 the shared library. */
9724 if (! info->shared
9725 && !h->def_regular)
9726 {
9727 h->root.u.def.section = s;
9728 h->root.u.def.value = h->plt.offset;
9729
9730 /* Make sure the function is not marked as Thumb, in case
9731 it is the target of an ABS32 relocation, which will
9732 point to the PLT entry. */
9733 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
9734 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9735 }
9736
9737 /* Make room for this entry. */
9738 s->size += htab->plt_entry_size;
9739
9740 if (!htab->symbian_p)
9741 {
9742 /* We also need to make an entry in the .got.plt section, which
9743 will be placed in the .got section by the linker script. */
9744 eh->plt_got_offset = htab->sgotplt->size;
9745 htab->sgotplt->size += 4;
9746 }
9747
9748 /* We also need to make an entry in the .rel(a).plt section. */
9749 htab->srelplt->size += RELOC_SIZE (htab);
9750
9751 /* VxWorks executables have a second set of relocations for
9752 each PLT entry. They go in a separate relocation section,
9753 which is processed by the kernel loader. */
9754 if (htab->vxworks_p && !info->shared)
9755 {
9756 /* There is a relocation for the initial PLT entry:
9757 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
9758 if (h->plt.offset == htab->plt_header_size)
9759 htab->srelplt2->size += RELOC_SIZE (htab);
9760
9761 /* There are two extra relocations for each subsequent
9762 PLT entry: an R_ARM_32 relocation for the GOT entry,
9763 and an R_ARM_32 relocation for the PLT entry. */
9764 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
9765 }
9766 }
9767 else
9768 {
9769 h->plt.offset = (bfd_vma) -1;
9770 h->needs_plt = 0;
9771 }
9772 }
9773 else
9774 {
9775 h->plt.offset = (bfd_vma) -1;
9776 h->needs_plt = 0;
9777 }
9778
9779 if (h->got.refcount > 0)
9780 {
9781 asection *s;
9782 bfd_boolean dyn;
9783 int tls_type = elf32_arm_hash_entry (h)->tls_type;
9784 int indx;
9785
9786 /* Make sure this symbol is output as a dynamic symbol.
9787 Undefined weak syms won't yet be marked as dynamic. */
9788 if (h->dynindx == -1
9789 && !h->forced_local)
9790 {
9791 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9792 return FALSE;
9793 }
9794
9795 if (!htab->symbian_p)
9796 {
9797 s = htab->sgot;
9798 h->got.offset = s->size;
9799
9800 if (tls_type == GOT_UNKNOWN)
9801 abort ();
9802
9803 if (tls_type == GOT_NORMAL)
9804 /* Non-TLS symbols need one GOT slot. */
9805 s->size += 4;
9806 else
9807 {
9808 if (tls_type & GOT_TLS_GD)
9809 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
9810 s->size += 8;
9811 if (tls_type & GOT_TLS_IE)
9812 /* R_ARM_TLS_IE32 needs one GOT slot. */
9813 s->size += 4;
9814 }
9815
9816 dyn = htab->root.dynamic_sections_created;
9817
9818 indx = 0;
9819 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
9820 && (!info->shared
9821 || !SYMBOL_REFERENCES_LOCAL (info, h)))
9822 indx = h->dynindx;
9823
9824 if (tls_type != GOT_NORMAL
9825 && (info->shared || indx != 0)
9826 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9827 || h->root.type != bfd_link_hash_undefweak))
9828 {
9829 if (tls_type & GOT_TLS_IE)
9830 htab->srelgot->size += RELOC_SIZE (htab);
9831
9832 if (tls_type & GOT_TLS_GD)
9833 htab->srelgot->size += RELOC_SIZE (htab);
9834
9835 if ((tls_type & GOT_TLS_GD) && indx != 0)
9836 htab->srelgot->size += RELOC_SIZE (htab);
9837 }
9838 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
9839 || h->root.type != bfd_link_hash_undefweak)
9840 && (info->shared
9841 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
9842 htab->srelgot->size += RELOC_SIZE (htab);
9843 }
9844 }
9845 else
9846 h->got.offset = (bfd_vma) -1;
9847
9848 /* Allocate stubs for exported Thumb functions on v4t. */
9849 if (!htab->use_blx && h->dynindx != -1
9850 && h->def_regular
9851 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
9852 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
9853 {
9854 struct elf_link_hash_entry * th;
9855 struct bfd_link_hash_entry * bh;
9856 struct elf_link_hash_entry * myh;
9857 char name[1024];
9858 asection *s;
9859 bh = NULL;
9860 /* Create a new symbol to regist the real location of the function. */
9861 s = h->root.u.def.section;
9862 sprintf (name, "__real_%s", h->root.root.string);
9863 _bfd_generic_link_add_one_symbol (info, s->owner,
9864 name, BSF_GLOBAL, s,
9865 h->root.u.def.value,
9866 NULL, TRUE, FALSE, &bh);
9867
9868 myh = (struct elf_link_hash_entry *) bh;
9869 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
9870 myh->forced_local = 1;
9871 eh->export_glue = myh;
9872 th = record_arm_to_thumb_glue (info, h);
9873 /* Point the symbol at the stub. */
9874 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
9875 h->root.u.def.section = th->root.u.def.section;
9876 h->root.u.def.value = th->root.u.def.value & ~1;
9877 }
9878
9879 if (eh->relocs_copied == NULL)
9880 return TRUE;
9881
9882 /* In the shared -Bsymbolic case, discard space allocated for
9883 dynamic pc-relative relocs against symbols which turn out to be
9884 defined in regular objects. For the normal shared case, discard
9885 space for pc-relative relocs that have become local due to symbol
9886 visibility changes. */
9887
9888 if (info->shared || htab->root.is_relocatable_executable)
9889 {
9890 /* The only relocs that use pc_count are R_ARM_REL32 and
9891 R_ARM_REL32_NOI, which will appear on something like
9892 ".long foo - .". We want calls to protected symbols to resolve
9893 directly to the function rather than going via the plt. If people
9894 want function pointer comparisons to work as expected then they
9895 should avoid writing assembly like ".long foo - .". */
9896 if (SYMBOL_CALLS_LOCAL (info, h))
9897 {
9898 struct elf32_arm_relocs_copied **pp;
9899
9900 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9901 {
9902 p->count -= p->pc_count;
9903 p->pc_count = 0;
9904 if (p->count == 0)
9905 *pp = p->next;
9906 else
9907 pp = &p->next;
9908 }
9909 }
9910
9911 if (elf32_arm_hash_table (info)->vxworks_p)
9912 {
9913 struct elf32_arm_relocs_copied **pp;
9914
9915 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
9916 {
9917 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
9918 *pp = p->next;
9919 else
9920 pp = &p->next;
9921 }
9922 }
9923
9924 /* Also discard relocs on undefined weak syms with non-default
9925 visibility. */
9926 if (eh->relocs_copied != NULL
9927 && h->root.type == bfd_link_hash_undefweak)
9928 {
9929 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
9930 eh->relocs_copied = NULL;
9931
9932 /* Make sure undefined weak symbols are output as a dynamic
9933 symbol in PIEs. */
9934 else if (h->dynindx == -1
9935 && !h->forced_local)
9936 {
9937 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9938 return FALSE;
9939 }
9940 }
9941
9942 else if (htab->root.is_relocatable_executable && h->dynindx == -1
9943 && h->root.type == bfd_link_hash_new)
9944 {
9945 /* Output absolute symbols so that we can create relocations
9946 against them. For normal symbols we output a relocation
9947 against the section that contains them. */
9948 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9949 return FALSE;
9950 }
9951
9952 }
9953 else
9954 {
9955 /* For the non-shared case, discard space for relocs against
9956 symbols which turn out to need copy relocs or are not
9957 dynamic. */
9958
9959 if (!h->non_got_ref
9960 && ((h->def_dynamic
9961 && !h->def_regular)
9962 || (htab->root.dynamic_sections_created
9963 && (h->root.type == bfd_link_hash_undefweak
9964 || h->root.type == bfd_link_hash_undefined))))
9965 {
9966 /* Make sure this symbol is output as a dynamic symbol.
9967 Undefined weak syms won't yet be marked as dynamic. */
9968 if (h->dynindx == -1
9969 && !h->forced_local)
9970 {
9971 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9972 return FALSE;
9973 }
9974
9975 /* If that succeeded, we know we'll be keeping all the
9976 relocs. */
9977 if (h->dynindx != -1)
9978 goto keep;
9979 }
9980
9981 eh->relocs_copied = NULL;
9982
9983 keep: ;
9984 }
9985
9986 /* Finally, allocate space. */
9987 for (p = eh->relocs_copied; p != NULL; p = p->next)
9988 {
9989 asection *sreloc = elf_section_data (p->section)->sreloc;
9990 sreloc->size += p->count * RELOC_SIZE (htab);
9991 }
9992
9993 return TRUE;
9994 }
9995
9996 /* Find any dynamic relocs that apply to read-only sections. */
9997
9998 static bfd_boolean
9999 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
10000 {
10001 struct elf32_arm_link_hash_entry * eh;
10002 struct elf32_arm_relocs_copied * p;
10003
10004 if (h->root.type == bfd_link_hash_warning)
10005 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10006
10007 eh = (struct elf32_arm_link_hash_entry *) h;
10008 for (p = eh->relocs_copied; p != NULL; p = p->next)
10009 {
10010 asection *s = p->section;
10011
10012 if (s != NULL && (s->flags & SEC_READONLY) != 0)
10013 {
10014 struct bfd_link_info *info = (struct bfd_link_info *) inf;
10015
10016 info->flags |= DF_TEXTREL;
10017
10018 /* Not an error, just cut short the traversal. */
10019 return FALSE;
10020 }
10021 }
10022 return TRUE;
10023 }
10024
10025 void
10026 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
10027 int byteswap_code)
10028 {
10029 struct elf32_arm_link_hash_table *globals;
10030
10031 globals = elf32_arm_hash_table (info);
10032 globals->byteswap_code = byteswap_code;
10033 }
10034
10035 /* Set the sizes of the dynamic sections. */
10036
10037 static bfd_boolean
10038 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
10039 struct bfd_link_info * info)
10040 {
10041 bfd * dynobj;
10042 asection * s;
10043 bfd_boolean plt;
10044 bfd_boolean relocs;
10045 bfd *ibfd;
10046 struct elf32_arm_link_hash_table *htab;
10047
10048 htab = elf32_arm_hash_table (info);
10049 dynobj = elf_hash_table (info)->dynobj;
10050 BFD_ASSERT (dynobj != NULL);
10051 check_use_blx (htab);
10052
10053 if (elf_hash_table (info)->dynamic_sections_created)
10054 {
10055 /* Set the contents of the .interp section to the interpreter. */
10056 if (info->executable)
10057 {
10058 s = bfd_get_section_by_name (dynobj, ".interp");
10059 BFD_ASSERT (s != NULL);
10060 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
10061 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
10062 }
10063 }
10064
10065 /* Set up .got offsets for local syms, and space for local dynamic
10066 relocs. */
10067 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10068 {
10069 bfd_signed_vma *local_got;
10070 bfd_signed_vma *end_local_got;
10071 char *local_tls_type;
10072 bfd_size_type locsymcount;
10073 Elf_Internal_Shdr *symtab_hdr;
10074 asection *srel;
10075 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
10076
10077 if (! is_arm_elf (ibfd))
10078 continue;
10079
10080 for (s = ibfd->sections; s != NULL; s = s->next)
10081 {
10082 struct elf32_arm_relocs_copied *p;
10083
10084 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
10085 {
10086 if (!bfd_is_abs_section (p->section)
10087 && bfd_is_abs_section (p->section->output_section))
10088 {
10089 /* Input section has been discarded, either because
10090 it is a copy of a linkonce section or due to
10091 linker script /DISCARD/, so we'll be discarding
10092 the relocs too. */
10093 }
10094 else if (is_vxworks
10095 && strcmp (p->section->output_section->name,
10096 ".tls_vars") == 0)
10097 {
10098 /* Relocations in vxworks .tls_vars sections are
10099 handled specially by the loader. */
10100 }
10101 else if (p->count != 0)
10102 {
10103 srel = elf_section_data (p->section)->sreloc;
10104 srel->size += p->count * RELOC_SIZE (htab);
10105 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10106 info->flags |= DF_TEXTREL;
10107 }
10108 }
10109 }
10110
10111 local_got = elf_local_got_refcounts (ibfd);
10112 if (!local_got)
10113 continue;
10114
10115 symtab_hdr = & elf_symtab_hdr (ibfd);
10116 locsymcount = symtab_hdr->sh_info;
10117 end_local_got = local_got + locsymcount;
10118 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
10119 s = htab->sgot;
10120 srel = htab->srelgot;
10121 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
10122 {
10123 if (*local_got > 0)
10124 {
10125 *local_got = s->size;
10126 if (*local_tls_type & GOT_TLS_GD)
10127 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10128 s->size += 8;
10129 if (*local_tls_type & GOT_TLS_IE)
10130 s->size += 4;
10131 if (*local_tls_type == GOT_NORMAL)
10132 s->size += 4;
10133
10134 if (info->shared || *local_tls_type == GOT_TLS_GD)
10135 srel->size += RELOC_SIZE (htab);
10136 }
10137 else
10138 *local_got = (bfd_vma) -1;
10139 }
10140 }
10141
10142 if (htab->tls_ldm_got.refcount > 0)
10143 {
10144 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10145 for R_ARM_TLS_LDM32 relocations. */
10146 htab->tls_ldm_got.offset = htab->sgot->size;
10147 htab->sgot->size += 8;
10148 if (info->shared)
10149 htab->srelgot->size += RELOC_SIZE (htab);
10150 }
10151 else
10152 htab->tls_ldm_got.offset = -1;
10153
10154 /* Allocate global sym .plt and .got entries, and space for global
10155 sym dynamic relocs. */
10156 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
10157
10158 /* Here we rummage through the found bfds to collect glue information. */
10159 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10160 {
10161 if (! is_arm_elf (ibfd))
10162 continue;
10163
10164 /* Initialise mapping tables for code/data. */
10165 bfd_elf32_arm_init_maps (ibfd);
10166
10167 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10168 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10169 /* xgettext:c-format */
10170 _bfd_error_handler (_("Errors encountered processing file %s"),
10171 ibfd->filename);
10172 }
10173
10174 /* The check_relocs and adjust_dynamic_symbol entry points have
10175 determined the sizes of the various dynamic sections. Allocate
10176 memory for them. */
10177 plt = FALSE;
10178 relocs = FALSE;
10179 for (s = dynobj->sections; s != NULL; s = s->next)
10180 {
10181 const char * name;
10182
10183 if ((s->flags & SEC_LINKER_CREATED) == 0)
10184 continue;
10185
10186 /* It's OK to base decisions on the section name, because none
10187 of the dynobj section names depend upon the input files. */
10188 name = bfd_get_section_name (dynobj, s);
10189
10190 if (strcmp (name, ".plt") == 0)
10191 {
10192 /* Remember whether there is a PLT. */
10193 plt = s->size != 0;
10194 }
10195 else if (CONST_STRNEQ (name, ".rel"))
10196 {
10197 if (s->size != 0)
10198 {
10199 /* Remember whether there are any reloc sections other
10200 than .rel(a).plt and .rela.plt.unloaded. */
10201 if (s != htab->srelplt && s != htab->srelplt2)
10202 relocs = TRUE;
10203
10204 /* We use the reloc_count field as a counter if we need
10205 to copy relocs into the output file. */
10206 s->reloc_count = 0;
10207 }
10208 }
10209 else if (! CONST_STRNEQ (name, ".got")
10210 && strcmp (name, ".dynbss") != 0)
10211 {
10212 /* It's not one of our sections, so don't allocate space. */
10213 continue;
10214 }
10215
10216 if (s->size == 0)
10217 {
10218 /* If we don't need this section, strip it from the
10219 output file. This is mostly to handle .rel(a).bss and
10220 .rel(a).plt. We must create both sections in
10221 create_dynamic_sections, because they must be created
10222 before the linker maps input sections to output
10223 sections. The linker does that before
10224 adjust_dynamic_symbol is called, and it is that
10225 function which decides whether anything needs to go
10226 into these sections. */
10227 s->flags |= SEC_EXCLUDE;
10228 continue;
10229 }
10230
10231 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10232 continue;
10233
10234 /* Allocate memory for the section contents. */
10235 s->contents = bfd_zalloc (dynobj, s->size);
10236 if (s->contents == NULL)
10237 return FALSE;
10238 }
10239
10240 if (elf_hash_table (info)->dynamic_sections_created)
10241 {
10242 /* Add some entries to the .dynamic section. We fill in the
10243 values later, in elf32_arm_finish_dynamic_sections, but we
10244 must add the entries now so that we get the correct size for
10245 the .dynamic section. The DT_DEBUG entry is filled in by the
10246 dynamic linker and used by the debugger. */
10247 #define add_dynamic_entry(TAG, VAL) \
10248 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10249
10250 if (info->executable)
10251 {
10252 if (!add_dynamic_entry (DT_DEBUG, 0))
10253 return FALSE;
10254 }
10255
10256 if (plt)
10257 {
10258 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10259 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10260 || !add_dynamic_entry (DT_PLTREL,
10261 htab->use_rel ? DT_REL : DT_RELA)
10262 || !add_dynamic_entry (DT_JMPREL, 0))
10263 return FALSE;
10264 }
10265
10266 if (relocs)
10267 {
10268 if (htab->use_rel)
10269 {
10270 if (!add_dynamic_entry (DT_REL, 0)
10271 || !add_dynamic_entry (DT_RELSZ, 0)
10272 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10273 return FALSE;
10274 }
10275 else
10276 {
10277 if (!add_dynamic_entry (DT_RELA, 0)
10278 || !add_dynamic_entry (DT_RELASZ, 0)
10279 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10280 return FALSE;
10281 }
10282 }
10283
10284 /* If any dynamic relocs apply to a read-only section,
10285 then we need a DT_TEXTREL entry. */
10286 if ((info->flags & DF_TEXTREL) == 0)
10287 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
10288 info);
10289
10290 if ((info->flags & DF_TEXTREL) != 0)
10291 {
10292 if (!add_dynamic_entry (DT_TEXTREL, 0))
10293 return FALSE;
10294 }
10295 if (htab->vxworks_p
10296 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10297 return FALSE;
10298 }
10299 #undef add_dynamic_entry
10300
10301 return TRUE;
10302 }
10303
10304 /* Finish up dynamic symbol handling. We set the contents of various
10305 dynamic sections here. */
10306
10307 static bfd_boolean
10308 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10309 struct bfd_link_info * info,
10310 struct elf_link_hash_entry * h,
10311 Elf_Internal_Sym * sym)
10312 {
10313 bfd * dynobj;
10314 struct elf32_arm_link_hash_table *htab;
10315 struct elf32_arm_link_hash_entry *eh;
10316
10317 dynobj = elf_hash_table (info)->dynobj;
10318 htab = elf32_arm_hash_table (info);
10319 eh = (struct elf32_arm_link_hash_entry *) h;
10320
10321 if (h->plt.offset != (bfd_vma) -1)
10322 {
10323 asection * splt;
10324 asection * srel;
10325 bfd_byte *loc;
10326 bfd_vma plt_index;
10327 Elf_Internal_Rela rel;
10328
10329 /* This symbol has an entry in the procedure linkage table. Set
10330 it up. */
10331
10332 BFD_ASSERT (h->dynindx != -1);
10333
10334 splt = bfd_get_section_by_name (dynobj, ".plt");
10335 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
10336 BFD_ASSERT (splt != NULL && srel != NULL);
10337
10338 /* Fill in the entry in the procedure linkage table. */
10339 if (htab->symbian_p)
10340 {
10341 put_arm_insn (htab, output_bfd,
10342 elf32_arm_symbian_plt_entry[0],
10343 splt->contents + h->plt.offset);
10344 bfd_put_32 (output_bfd,
10345 elf32_arm_symbian_plt_entry[1],
10346 splt->contents + h->plt.offset + 4);
10347
10348 /* Fill in the entry in the .rel.plt section. */
10349 rel.r_offset = (splt->output_section->vma
10350 + splt->output_offset
10351 + h->plt.offset + 4);
10352 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10353
10354 /* Get the index in the procedure linkage table which
10355 corresponds to this symbol. This is the index of this symbol
10356 in all the symbols for which we are making plt entries. The
10357 first entry in the procedure linkage table is reserved. */
10358 plt_index = ((h->plt.offset - htab->plt_header_size)
10359 / htab->plt_entry_size);
10360 }
10361 else
10362 {
10363 bfd_vma got_offset, got_address, plt_address;
10364 bfd_vma got_displacement;
10365 asection * sgot;
10366 bfd_byte * ptr;
10367
10368 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10369 BFD_ASSERT (sgot != NULL);
10370
10371 /* Get the offset into the .got.plt table of the entry that
10372 corresponds to this function. */
10373 got_offset = eh->plt_got_offset;
10374
10375 /* Get the index in the procedure linkage table which
10376 corresponds to this symbol. This is the index of this symbol
10377 in all the symbols for which we are making plt entries. The
10378 first three entries in .got.plt are reserved; after that
10379 symbols appear in the same order as in .plt. */
10380 plt_index = (got_offset - 12) / 4;
10381
10382 /* Calculate the address of the GOT entry. */
10383 got_address = (sgot->output_section->vma
10384 + sgot->output_offset
10385 + got_offset);
10386
10387 /* ...and the address of the PLT entry. */
10388 plt_address = (splt->output_section->vma
10389 + splt->output_offset
10390 + h->plt.offset);
10391
10392 ptr = htab->splt->contents + h->plt.offset;
10393 if (htab->vxworks_p && info->shared)
10394 {
10395 unsigned int i;
10396 bfd_vma val;
10397
10398 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10399 {
10400 val = elf32_arm_vxworks_shared_plt_entry[i];
10401 if (i == 2)
10402 val |= got_address - sgot->output_section->vma;
10403 if (i == 5)
10404 val |= plt_index * RELOC_SIZE (htab);
10405 if (i == 2 || i == 5)
10406 bfd_put_32 (output_bfd, val, ptr);
10407 else
10408 put_arm_insn (htab, output_bfd, val, ptr);
10409 }
10410 }
10411 else if (htab->vxworks_p)
10412 {
10413 unsigned int i;
10414 bfd_vma val;
10415
10416 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10417 {
10418 val = elf32_arm_vxworks_exec_plt_entry[i];
10419 if (i == 2)
10420 val |= got_address;
10421 if (i == 4)
10422 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
10423 if (i == 5)
10424 val |= plt_index * RELOC_SIZE (htab);
10425 if (i == 2 || i == 5)
10426 bfd_put_32 (output_bfd, val, ptr);
10427 else
10428 put_arm_insn (htab, output_bfd, val, ptr);
10429 }
10430
10431 loc = (htab->srelplt2->contents
10432 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
10433
10434 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10435 referencing the GOT for this PLT entry. */
10436 rel.r_offset = plt_address + 8;
10437 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10438 rel.r_addend = got_offset;
10439 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10440 loc += RELOC_SIZE (htab);
10441
10442 /* Create the R_ARM_ABS32 relocation referencing the
10443 beginning of the PLT for this GOT entry. */
10444 rel.r_offset = got_address;
10445 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10446 rel.r_addend = 0;
10447 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10448 }
10449 else
10450 {
10451 bfd_signed_vma thumb_refs;
10452 /* Calculate the displacement between the PLT slot and the
10453 entry in the GOT. The eight-byte offset accounts for the
10454 value produced by adding to pc in the first instruction
10455 of the PLT stub. */
10456 got_displacement = got_address - (plt_address + 8);
10457
10458 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
10459
10460 thumb_refs = eh->plt_thumb_refcount;
10461 if (!htab->use_blx)
10462 thumb_refs += eh->plt_maybe_thumb_refcount;
10463
10464 if (thumb_refs > 0)
10465 {
10466 put_thumb_insn (htab, output_bfd,
10467 elf32_arm_plt_thumb_stub[0], ptr - 4);
10468 put_thumb_insn (htab, output_bfd,
10469 elf32_arm_plt_thumb_stub[1], ptr - 2);
10470 }
10471
10472 put_arm_insn (htab, output_bfd,
10473 elf32_arm_plt_entry[0]
10474 | ((got_displacement & 0x0ff00000) >> 20),
10475 ptr + 0);
10476 put_arm_insn (htab, output_bfd,
10477 elf32_arm_plt_entry[1]
10478 | ((got_displacement & 0x000ff000) >> 12),
10479 ptr+ 4);
10480 put_arm_insn (htab, output_bfd,
10481 elf32_arm_plt_entry[2]
10482 | (got_displacement & 0x00000fff),
10483 ptr + 8);
10484 #ifdef FOUR_WORD_PLT
10485 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
10486 #endif
10487 }
10488
10489 /* Fill in the entry in the global offset table. */
10490 bfd_put_32 (output_bfd,
10491 (splt->output_section->vma
10492 + splt->output_offset),
10493 sgot->contents + got_offset);
10494
10495 /* Fill in the entry in the .rel(a).plt section. */
10496 rel.r_addend = 0;
10497 rel.r_offset = got_address;
10498 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
10499 }
10500
10501 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10502 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10503
10504 if (!h->def_regular)
10505 {
10506 /* Mark the symbol as undefined, rather than as defined in
10507 the .plt section. Leave the value alone. */
10508 sym->st_shndx = SHN_UNDEF;
10509 /* If the symbol is weak, we do need to clear the value.
10510 Otherwise, the PLT entry would provide a definition for
10511 the symbol even if the symbol wasn't defined anywhere,
10512 and so the symbol would never be NULL. */
10513 if (!h->ref_regular_nonweak)
10514 sym->st_value = 0;
10515 }
10516 }
10517
10518 if (h->got.offset != (bfd_vma) -1
10519 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
10520 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
10521 {
10522 asection * sgot;
10523 asection * srel;
10524 Elf_Internal_Rela rel;
10525 bfd_byte *loc;
10526 bfd_vma offset;
10527
10528 /* This symbol has an entry in the global offset table. Set it
10529 up. */
10530 sgot = bfd_get_section_by_name (dynobj, ".got");
10531 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
10532 BFD_ASSERT (sgot != NULL && srel != NULL);
10533
10534 offset = (h->got.offset & ~(bfd_vma) 1);
10535 rel.r_addend = 0;
10536 rel.r_offset = (sgot->output_section->vma
10537 + sgot->output_offset
10538 + offset);
10539
10540 /* If this is a static link, or it is a -Bsymbolic link and the
10541 symbol is defined locally or was forced to be local because
10542 of a version file, we just want to emit a RELATIVE reloc.
10543 The entry in the global offset table will already have been
10544 initialized in the relocate_section function. */
10545 if (info->shared
10546 && SYMBOL_REFERENCES_LOCAL (info, h))
10547 {
10548 BFD_ASSERT ((h->got.offset & 1) != 0);
10549 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10550 if (!htab->use_rel)
10551 {
10552 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
10553 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10554 }
10555 }
10556 else
10557 {
10558 BFD_ASSERT ((h->got.offset & 1) == 0);
10559 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10560 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10561 }
10562
10563 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
10564 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10565 }
10566
10567 if (h->needs_copy)
10568 {
10569 asection * s;
10570 Elf_Internal_Rela rel;
10571 bfd_byte *loc;
10572
10573 /* This symbol needs a copy reloc. Set it up. */
10574 BFD_ASSERT (h->dynindx != -1
10575 && (h->root.type == bfd_link_hash_defined
10576 || h->root.type == bfd_link_hash_defweak));
10577
10578 s = bfd_get_section_by_name (h->root.u.def.section->owner,
10579 RELOC_SECTION (htab, ".bss"));
10580 BFD_ASSERT (s != NULL);
10581
10582 rel.r_addend = 0;
10583 rel.r_offset = (h->root.u.def.value
10584 + h->root.u.def.section->output_section->vma
10585 + h->root.u.def.section->output_offset);
10586 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
10587 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
10588 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10589 }
10590
10591 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
10592 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
10593 to the ".got" section. */
10594 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
10595 || (!htab->vxworks_p && h == htab->root.hgot))
10596 sym->st_shndx = SHN_ABS;
10597
10598 return TRUE;
10599 }
10600
10601 /* Finish up the dynamic sections. */
10602
10603 static bfd_boolean
10604 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
10605 {
10606 bfd * dynobj;
10607 asection * sgot;
10608 asection * sdyn;
10609
10610 dynobj = elf_hash_table (info)->dynobj;
10611
10612 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10613 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
10614 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10615
10616 if (elf_hash_table (info)->dynamic_sections_created)
10617 {
10618 asection *splt;
10619 Elf32_External_Dyn *dyncon, *dynconend;
10620 struct elf32_arm_link_hash_table *htab;
10621
10622 htab = elf32_arm_hash_table (info);
10623 splt = bfd_get_section_by_name (dynobj, ".plt");
10624 BFD_ASSERT (splt != NULL && sdyn != NULL);
10625
10626 dyncon = (Elf32_External_Dyn *) sdyn->contents;
10627 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
10628
10629 for (; dyncon < dynconend; dyncon++)
10630 {
10631 Elf_Internal_Dyn dyn;
10632 const char * name;
10633 asection * s;
10634
10635 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
10636
10637 switch (dyn.d_tag)
10638 {
10639 unsigned int type;
10640
10641 default:
10642 if (htab->vxworks_p
10643 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
10644 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10645 break;
10646
10647 case DT_HASH:
10648 name = ".hash";
10649 goto get_vma_if_bpabi;
10650 case DT_STRTAB:
10651 name = ".dynstr";
10652 goto get_vma_if_bpabi;
10653 case DT_SYMTAB:
10654 name = ".dynsym";
10655 goto get_vma_if_bpabi;
10656 case DT_VERSYM:
10657 name = ".gnu.version";
10658 goto get_vma_if_bpabi;
10659 case DT_VERDEF:
10660 name = ".gnu.version_d";
10661 goto get_vma_if_bpabi;
10662 case DT_VERNEED:
10663 name = ".gnu.version_r";
10664 goto get_vma_if_bpabi;
10665
10666 case DT_PLTGOT:
10667 name = ".got";
10668 goto get_vma;
10669 case DT_JMPREL:
10670 name = RELOC_SECTION (htab, ".plt");
10671 get_vma:
10672 s = bfd_get_section_by_name (output_bfd, name);
10673 BFD_ASSERT (s != NULL);
10674 if (!htab->symbian_p)
10675 dyn.d_un.d_ptr = s->vma;
10676 else
10677 /* In the BPABI, tags in the PT_DYNAMIC section point
10678 at the file offset, not the memory address, for the
10679 convenience of the post linker. */
10680 dyn.d_un.d_ptr = s->filepos;
10681 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10682 break;
10683
10684 get_vma_if_bpabi:
10685 if (htab->symbian_p)
10686 goto get_vma;
10687 break;
10688
10689 case DT_PLTRELSZ:
10690 s = bfd_get_section_by_name (output_bfd,
10691 RELOC_SECTION (htab, ".plt"));
10692 BFD_ASSERT (s != NULL);
10693 dyn.d_un.d_val = s->size;
10694 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10695 break;
10696
10697 case DT_RELSZ:
10698 case DT_RELASZ:
10699 if (!htab->symbian_p)
10700 {
10701 /* My reading of the SVR4 ABI indicates that the
10702 procedure linkage table relocs (DT_JMPREL) should be
10703 included in the overall relocs (DT_REL). This is
10704 what Solaris does. However, UnixWare can not handle
10705 that case. Therefore, we override the DT_RELSZ entry
10706 here to make it not include the JMPREL relocs. Since
10707 the linker script arranges for .rel(a).plt to follow all
10708 other relocation sections, we don't have to worry
10709 about changing the DT_REL entry. */
10710 s = bfd_get_section_by_name (output_bfd,
10711 RELOC_SECTION (htab, ".plt"));
10712 if (s != NULL)
10713 dyn.d_un.d_val -= s->size;
10714 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10715 break;
10716 }
10717 /* Fall through. */
10718
10719 case DT_REL:
10720 case DT_RELA:
10721 /* In the BPABI, the DT_REL tag must point at the file
10722 offset, not the VMA, of the first relocation
10723 section. So, we use code similar to that in
10724 elflink.c, but do not check for SHF_ALLOC on the
10725 relcoation section, since relocations sections are
10726 never allocated under the BPABI. The comments above
10727 about Unixware notwithstanding, we include all of the
10728 relocations here. */
10729 if (htab->symbian_p)
10730 {
10731 unsigned int i;
10732 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
10733 ? SHT_REL : SHT_RELA);
10734 dyn.d_un.d_val = 0;
10735 for (i = 1; i < elf_numsections (output_bfd); i++)
10736 {
10737 Elf_Internal_Shdr *hdr
10738 = elf_elfsections (output_bfd)[i];
10739 if (hdr->sh_type == type)
10740 {
10741 if (dyn.d_tag == DT_RELSZ
10742 || dyn.d_tag == DT_RELASZ)
10743 dyn.d_un.d_val += hdr->sh_size;
10744 else if ((ufile_ptr) hdr->sh_offset
10745 <= dyn.d_un.d_val - 1)
10746 dyn.d_un.d_val = hdr->sh_offset;
10747 }
10748 }
10749 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10750 }
10751 break;
10752
10753 /* Set the bottom bit of DT_INIT/FINI if the
10754 corresponding function is Thumb. */
10755 case DT_INIT:
10756 name = info->init_function;
10757 goto get_sym;
10758 case DT_FINI:
10759 name = info->fini_function;
10760 get_sym:
10761 /* If it wasn't set by elf_bfd_final_link
10762 then there is nothing to adjust. */
10763 if (dyn.d_un.d_val != 0)
10764 {
10765 struct elf_link_hash_entry * eh;
10766
10767 eh = elf_link_hash_lookup (elf_hash_table (info), name,
10768 FALSE, FALSE, TRUE);
10769 if (eh != NULL
10770 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
10771 {
10772 dyn.d_un.d_val |= 1;
10773 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
10774 }
10775 }
10776 break;
10777 }
10778 }
10779
10780 /* Fill in the first entry in the procedure linkage table. */
10781 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
10782 {
10783 const bfd_vma *plt0_entry;
10784 bfd_vma got_address, plt_address, got_displacement;
10785
10786 /* Calculate the addresses of the GOT and PLT. */
10787 got_address = sgot->output_section->vma + sgot->output_offset;
10788 plt_address = splt->output_section->vma + splt->output_offset;
10789
10790 if (htab->vxworks_p)
10791 {
10792 /* The VxWorks GOT is relocated by the dynamic linker.
10793 Therefore, we must emit relocations rather than simply
10794 computing the values now. */
10795 Elf_Internal_Rela rel;
10796
10797 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
10798 put_arm_insn (htab, output_bfd, plt0_entry[0],
10799 splt->contents + 0);
10800 put_arm_insn (htab, output_bfd, plt0_entry[1],
10801 splt->contents + 4);
10802 put_arm_insn (htab, output_bfd, plt0_entry[2],
10803 splt->contents + 8);
10804 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
10805
10806 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
10807 rel.r_offset = plt_address + 12;
10808 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10809 rel.r_addend = 0;
10810 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
10811 htab->srelplt2->contents);
10812 }
10813 else
10814 {
10815 got_displacement = got_address - (plt_address + 16);
10816
10817 plt0_entry = elf32_arm_plt0_entry;
10818 put_arm_insn (htab, output_bfd, plt0_entry[0],
10819 splt->contents + 0);
10820 put_arm_insn (htab, output_bfd, plt0_entry[1],
10821 splt->contents + 4);
10822 put_arm_insn (htab, output_bfd, plt0_entry[2],
10823 splt->contents + 8);
10824 put_arm_insn (htab, output_bfd, plt0_entry[3],
10825 splt->contents + 12);
10826
10827 #ifdef FOUR_WORD_PLT
10828 /* The displacement value goes in the otherwise-unused
10829 last word of the second entry. */
10830 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
10831 #else
10832 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
10833 #endif
10834 }
10835 }
10836
10837 /* UnixWare sets the entsize of .plt to 4, although that doesn't
10838 really seem like the right value. */
10839 if (splt->output_section->owner == output_bfd)
10840 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
10841
10842 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
10843 {
10844 /* Correct the .rel(a).plt.unloaded relocations. They will have
10845 incorrect symbol indexes. */
10846 int num_plts;
10847 unsigned char *p;
10848
10849 num_plts = ((htab->splt->size - htab->plt_header_size)
10850 / htab->plt_entry_size);
10851 p = htab->srelplt2->contents + RELOC_SIZE (htab);
10852
10853 for (; num_plts; num_plts--)
10854 {
10855 Elf_Internal_Rela rel;
10856
10857 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10858 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10859 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10860 p += RELOC_SIZE (htab);
10861
10862 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
10863 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10864 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
10865 p += RELOC_SIZE (htab);
10866 }
10867 }
10868 }
10869
10870 /* Fill in the first three entries in the global offset table. */
10871 if (sgot)
10872 {
10873 if (sgot->size > 0)
10874 {
10875 if (sdyn == NULL)
10876 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
10877 else
10878 bfd_put_32 (output_bfd,
10879 sdyn->output_section->vma + sdyn->output_offset,
10880 sgot->contents);
10881 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
10882 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
10883 }
10884
10885 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
10886 }
10887
10888 return TRUE;
10889 }
10890
10891 static void
10892 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
10893 {
10894 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
10895 struct elf32_arm_link_hash_table *globals;
10896
10897 i_ehdrp = elf_elfheader (abfd);
10898
10899 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
10900 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
10901 else
10902 i_ehdrp->e_ident[EI_OSABI] = 0;
10903 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
10904
10905 if (link_info)
10906 {
10907 globals = elf32_arm_hash_table (link_info);
10908 if (globals->byteswap_code)
10909 i_ehdrp->e_flags |= EF_ARM_BE8;
10910 }
10911 }
10912
10913 static enum elf_reloc_type_class
10914 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
10915 {
10916 switch ((int) ELF32_R_TYPE (rela->r_info))
10917 {
10918 case R_ARM_RELATIVE:
10919 return reloc_class_relative;
10920 case R_ARM_JUMP_SLOT:
10921 return reloc_class_plt;
10922 case R_ARM_COPY:
10923 return reloc_class_copy;
10924 default:
10925 return reloc_class_normal;
10926 }
10927 }
10928
10929 /* Set the right machine number for an Arm ELF file. */
10930
10931 static bfd_boolean
10932 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
10933 {
10934 if (hdr->sh_type == SHT_NOTE)
10935 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
10936
10937 return TRUE;
10938 }
10939
10940 static void
10941 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
10942 {
10943 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
10944 }
10945
10946 /* Return TRUE if this is an unwinding table entry. */
10947
10948 static bfd_boolean
10949 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
10950 {
10951 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
10952 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
10953 }
10954
10955
10956 /* Set the type and flags for an ARM section. We do this by
10957 the section name, which is a hack, but ought to work. */
10958
10959 static bfd_boolean
10960 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
10961 {
10962 const char * name;
10963
10964 name = bfd_get_section_name (abfd, sec);
10965
10966 if (is_arm_elf_unwind_section_name (abfd, name))
10967 {
10968 hdr->sh_type = SHT_ARM_EXIDX;
10969 hdr->sh_flags |= SHF_LINK_ORDER;
10970 }
10971 return TRUE;
10972 }
10973
10974 /* Handle an ARM specific section when reading an object file. This is
10975 called when bfd_section_from_shdr finds a section with an unknown
10976 type. */
10977
10978 static bfd_boolean
10979 elf32_arm_section_from_shdr (bfd *abfd,
10980 Elf_Internal_Shdr * hdr,
10981 const char *name,
10982 int shindex)
10983 {
10984 /* There ought to be a place to keep ELF backend specific flags, but
10985 at the moment there isn't one. We just keep track of the
10986 sections by their name, instead. Fortunately, the ABI gives
10987 names for all the ARM specific sections, so we will probably get
10988 away with this. */
10989 switch (hdr->sh_type)
10990 {
10991 case SHT_ARM_EXIDX:
10992 case SHT_ARM_PREEMPTMAP:
10993 case SHT_ARM_ATTRIBUTES:
10994 break;
10995
10996 default:
10997 return FALSE;
10998 }
10999
11000 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
11001 return FALSE;
11002
11003 return TRUE;
11004 }
11005
11006 /* A structure used to record a list of sections, independently
11007 of the next and prev fields in the asection structure. */
11008 typedef struct section_list
11009 {
11010 asection * sec;
11011 struct section_list * next;
11012 struct section_list * prev;
11013 }
11014 section_list;
11015
11016 /* Unfortunately we need to keep a list of sections for which
11017 an _arm_elf_section_data structure has been allocated. This
11018 is because it is possible for functions like elf32_arm_write_section
11019 to be called on a section which has had an elf_data_structure
11020 allocated for it (and so the used_by_bfd field is valid) but
11021 for which the ARM extended version of this structure - the
11022 _arm_elf_section_data structure - has not been allocated. */
11023 static section_list * sections_with_arm_elf_section_data = NULL;
11024
11025 static void
11026 record_section_with_arm_elf_section_data (asection * sec)
11027 {
11028 struct section_list * entry;
11029
11030 entry = bfd_malloc (sizeof (* entry));
11031 if (entry == NULL)
11032 return;
11033 entry->sec = sec;
11034 entry->next = sections_with_arm_elf_section_data;
11035 entry->prev = NULL;
11036 if (entry->next != NULL)
11037 entry->next->prev = entry;
11038 sections_with_arm_elf_section_data = entry;
11039 }
11040
11041 static struct section_list *
11042 find_arm_elf_section_entry (asection * sec)
11043 {
11044 struct section_list * entry;
11045 static struct section_list * last_entry = NULL;
11046
11047 /* This is a short cut for the typical case where the sections are added
11048 to the sections_with_arm_elf_section_data list in forward order and
11049 then looked up here in backwards order. This makes a real difference
11050 to the ld-srec/sec64k.exp linker test. */
11051 entry = sections_with_arm_elf_section_data;
11052 if (last_entry != NULL)
11053 {
11054 if (last_entry->sec == sec)
11055 entry = last_entry;
11056 else if (last_entry->next != NULL
11057 && last_entry->next->sec == sec)
11058 entry = last_entry->next;
11059 }
11060
11061 for (; entry; entry = entry->next)
11062 if (entry->sec == sec)
11063 break;
11064
11065 if (entry)
11066 /* Record the entry prior to this one - it is the entry we are most
11067 likely to want to locate next time. Also this way if we have been
11068 called from unrecord_section_with_arm_elf_section_data() we will not
11069 be caching a pointer that is about to be freed. */
11070 last_entry = entry->prev;
11071
11072 return entry;
11073 }
11074
11075 static _arm_elf_section_data *
11076 get_arm_elf_section_data (asection * sec)
11077 {
11078 struct section_list * entry;
11079
11080 entry = find_arm_elf_section_entry (sec);
11081
11082 if (entry)
11083 return elf32_arm_section_data (entry->sec);
11084 else
11085 return NULL;
11086 }
11087
11088 static void
11089 unrecord_section_with_arm_elf_section_data (asection * sec)
11090 {
11091 struct section_list * entry;
11092
11093 entry = find_arm_elf_section_entry (sec);
11094
11095 if (entry)
11096 {
11097 if (entry->prev != NULL)
11098 entry->prev->next = entry->next;
11099 if (entry->next != NULL)
11100 entry->next->prev = entry->prev;
11101 if (entry == sections_with_arm_elf_section_data)
11102 sections_with_arm_elf_section_data = entry->next;
11103 free (entry);
11104 }
11105 }
11106
11107
11108 typedef struct
11109 {
11110 void *finfo;
11111 struct bfd_link_info *info;
11112 asection *sec;
11113 int sec_shndx;
11114 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11115 asection *, struct elf_link_hash_entry *);
11116 } output_arch_syminfo;
11117
11118 enum map_symbol_type
11119 {
11120 ARM_MAP_ARM,
11121 ARM_MAP_THUMB,
11122 ARM_MAP_DATA
11123 };
11124
11125
11126 /* Output a single mapping symbol. */
11127
11128 static bfd_boolean
11129 elf32_arm_output_map_sym (output_arch_syminfo *osi,
11130 enum map_symbol_type type,
11131 bfd_vma offset)
11132 {
11133 static const char *names[3] = {"$a", "$t", "$d"};
11134 struct elf32_arm_link_hash_table *htab;
11135 Elf_Internal_Sym sym;
11136
11137 htab = elf32_arm_hash_table (osi->info);
11138 sym.st_value = osi->sec->output_section->vma
11139 + osi->sec->output_offset
11140 + offset;
11141 sym.st_size = 0;
11142 sym.st_other = 0;
11143 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
11144 sym.st_shndx = osi->sec_shndx;
11145 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
11146 return FALSE;
11147 return TRUE;
11148 }
11149
11150
11151 /* Output mapping symbols for PLT entries associated with H. */
11152
11153 static bfd_boolean
11154 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11155 {
11156 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11157 struct elf32_arm_link_hash_table *htab;
11158 struct elf32_arm_link_hash_entry *eh;
11159 bfd_vma addr;
11160
11161 htab = elf32_arm_hash_table (osi->info);
11162
11163 if (h->root.type == bfd_link_hash_indirect)
11164 return TRUE;
11165
11166 if (h->root.type == bfd_link_hash_warning)
11167 /* When warning symbols are created, they **replace** the "real"
11168 entry in the hash table, thus we never get to see the real
11169 symbol in a hash traversal. So look at it now. */
11170 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11171
11172 if (h->plt.offset == (bfd_vma) -1)
11173 return TRUE;
11174
11175 eh = (struct elf32_arm_link_hash_entry *) h;
11176 addr = h->plt.offset;
11177 if (htab->symbian_p)
11178 {
11179 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11180 return FALSE;
11181 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11182 return FALSE;
11183 }
11184 else if (htab->vxworks_p)
11185 {
11186 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11187 return FALSE;
11188 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11189 return FALSE;
11190 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
11191 return FALSE;
11192 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
11193 return FALSE;
11194 }
11195 else
11196 {
11197 bfd_signed_vma thumb_refs;
11198
11199 thumb_refs = eh->plt_thumb_refcount;
11200 if (!htab->use_blx)
11201 thumb_refs += eh->plt_maybe_thumb_refcount;
11202
11203 if (thumb_refs > 0)
11204 {
11205 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
11206 return FALSE;
11207 }
11208 #ifdef FOUR_WORD_PLT
11209 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11210 return FALSE;
11211 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11212 return FALSE;
11213 #else
11214 /* A three-word PLT with no Thumb thunk contains only Arm code,
11215 so only need to output a mapping symbol for the first PLT entry and
11216 entries with thumb thunks. */
11217 if (thumb_refs > 0 || addr == 20)
11218 {
11219 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11220 return FALSE;
11221 }
11222 #endif
11223 }
11224
11225 return TRUE;
11226 }
11227
11228 /* Output a single local symbol for a generated stub. */
11229
11230 static bfd_boolean
11231 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
11232 bfd_vma offset, bfd_vma size)
11233 {
11234 struct elf32_arm_link_hash_table *htab;
11235 Elf_Internal_Sym sym;
11236
11237 htab = elf32_arm_hash_table (osi->info);
11238 sym.st_value = osi->sec->output_section->vma
11239 + osi->sec->output_offset
11240 + offset;
11241 sym.st_size = size;
11242 sym.st_other = 0;
11243 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
11244 sym.st_shndx = osi->sec_shndx;
11245 if (!osi->func (osi->finfo, name, &sym, osi->sec, NULL))
11246 return FALSE;
11247 return TRUE;
11248 }
11249
11250 static bfd_boolean
11251 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
11252 void * in_arg)
11253 {
11254 struct elf32_arm_stub_hash_entry *stub_entry;
11255 struct bfd_link_info *info;
11256 struct elf32_arm_link_hash_table *htab;
11257 asection *stub_sec;
11258 bfd_vma addr;
11259 char *stub_name;
11260 output_arch_syminfo *osi;
11261
11262 /* Massage our args to the form they really have. */
11263 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
11264 osi = (output_arch_syminfo *) in_arg;
11265
11266 info = osi->info;
11267
11268 htab = elf32_arm_hash_table (info);
11269 stub_sec = stub_entry->stub_sec;
11270
11271 /* Ensure this stub is attached to the current section being
11272 processed. */
11273 if (stub_sec != osi->sec)
11274 return TRUE;
11275
11276 addr = (bfd_vma) stub_entry->stub_offset;
11277 stub_name = stub_entry->output_name;
11278
11279 switch (stub_entry->stub_type)
11280 {
11281 case arm_stub_long_branch:
11282 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 8))
11283 return FALSE;
11284 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11285 return FALSE;
11286 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11287 return FALSE;
11288 break;
11289 case arm_thumb_v4t_stub_long_branch:
11290 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 12))
11291 return FALSE;
11292 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11293 return FALSE;
11294 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11295 return FALSE;
11296 break;
11297 case arm_thumb_thumb_stub_long_branch:
11298 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 16))
11299 return FALSE;
11300 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
11301 return FALSE;
11302 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11303 return FALSE;
11304 break;
11305 case arm_thumb_arm_v4t_stub_long_branch:
11306 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 20))
11307 return FALSE;
11308 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
11309 return FALSE;
11310 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 8))
11311 return FALSE;
11312 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
11313 return FALSE;
11314 break;
11315 case arm_thumb_arm_v4t_stub_short_branch:
11316 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 8))
11317 return FALSE;
11318 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 4))
11319 return FALSE;
11320 break;
11321 case arm_stub_pic_long_branch:
11322 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 12))
11323 return FALSE;
11324 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11325 return FALSE;
11326 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11327 return FALSE;
11328 break;
11329 default:
11330 BFD_FAIL ();
11331 }
11332
11333 return TRUE;
11334 }
11335
11336 /* Output mapping symbols for linker generated sections. */
11337
11338 static bfd_boolean
11339 elf32_arm_output_arch_local_syms (bfd *output_bfd,
11340 struct bfd_link_info *info,
11341 void *finfo,
11342 bfd_boolean (*func) (void *, const char *,
11343 Elf_Internal_Sym *,
11344 asection *,
11345 struct elf_link_hash_entry *))
11346 {
11347 output_arch_syminfo osi;
11348 struct elf32_arm_link_hash_table *htab;
11349 bfd_vma offset;
11350 bfd_size_type size;
11351
11352 htab = elf32_arm_hash_table (info);
11353 check_use_blx (htab);
11354
11355 osi.finfo = finfo;
11356 osi.info = info;
11357 osi.func = func;
11358
11359 /* ARM->Thumb glue. */
11360 if (htab->arm_glue_size > 0)
11361 {
11362 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11363 ARM2THUMB_GLUE_SECTION_NAME);
11364
11365 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11366 (output_bfd, osi.sec->output_section);
11367 if (info->shared || htab->root.is_relocatable_executable
11368 || htab->pic_veneer)
11369 size = ARM2THUMB_PIC_GLUE_SIZE;
11370 else if (htab->use_blx)
11371 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
11372 else
11373 size = ARM2THUMB_STATIC_GLUE_SIZE;
11374
11375 for (offset = 0; offset < htab->arm_glue_size; offset += size)
11376 {
11377 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
11378 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
11379 }
11380 }
11381
11382 /* Thumb->ARM glue. */
11383 if (htab->thumb_glue_size > 0)
11384 {
11385 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11386 THUMB2ARM_GLUE_SECTION_NAME);
11387
11388 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11389 (output_bfd, osi.sec->output_section);
11390 size = THUMB2ARM_GLUE_SIZE;
11391
11392 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
11393 {
11394 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
11395 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
11396 }
11397 }
11398
11399 /* ARMv4 BX veneers. */
11400 if (htab->bx_glue_size > 0)
11401 {
11402 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11403 ARM_BX_GLUE_SECTION_NAME);
11404
11405 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11406 (output_bfd, osi.sec->output_section);
11407
11408 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
11409 }
11410
11411 /* Long calls stubs. */
11412 if (htab->stub_bfd && htab->stub_bfd->sections)
11413 {
11414 asection* stub_sec;
11415
11416 for (stub_sec = htab->stub_bfd->sections;
11417 stub_sec != NULL;
11418 stub_sec = stub_sec->next)
11419 {
11420 /* Ignore non-stub sections. */
11421 if (!strstr (stub_sec->name, STUB_SUFFIX))
11422 continue;
11423
11424 osi.sec = stub_sec;
11425
11426 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11427 (output_bfd, osi.sec->output_section);
11428
11429 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
11430 }
11431 }
11432
11433 /* Finally, output mapping symbols for the PLT. */
11434 if (!htab->splt || htab->splt->size == 0)
11435 return TRUE;
11436
11437 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11438 htab->splt->output_section);
11439 osi.sec = htab->splt;
11440 /* Output mapping symbols for the plt header. SymbianOS does not have a
11441 plt header. */
11442 if (htab->vxworks_p)
11443 {
11444 /* VxWorks shared libraries have no PLT header. */
11445 if (!info->shared)
11446 {
11447 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11448 return FALSE;
11449 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
11450 return FALSE;
11451 }
11452 }
11453 else if (!htab->symbian_p)
11454 {
11455 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11456 return FALSE;
11457 #ifndef FOUR_WORD_PLT
11458 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
11459 return FALSE;
11460 #endif
11461 }
11462
11463 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
11464 return TRUE;
11465 }
11466
11467 /* Allocate target specific section data. */
11468
11469 static bfd_boolean
11470 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
11471 {
11472 if (!sec->used_by_bfd)
11473 {
11474 _arm_elf_section_data *sdata;
11475 bfd_size_type amt = sizeof (*sdata);
11476
11477 sdata = bfd_zalloc (abfd, amt);
11478 if (sdata == NULL)
11479 return FALSE;
11480 sec->used_by_bfd = sdata;
11481 }
11482
11483 record_section_with_arm_elf_section_data (sec);
11484
11485 return _bfd_elf_new_section_hook (abfd, sec);
11486 }
11487
11488
11489 /* Used to order a list of mapping symbols by address. */
11490
11491 static int
11492 elf32_arm_compare_mapping (const void * a, const void * b)
11493 {
11494 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
11495 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
11496
11497 if (amap->vma > bmap->vma)
11498 return 1;
11499 else if (amap->vma < bmap->vma)
11500 return -1;
11501 else if (amap->type > bmap->type)
11502 /* Ensure results do not depend on the host qsort for objects with
11503 multiple mapping symbols at the same address by sorting on type
11504 after vma. */
11505 return 1;
11506 else if (amap->type < bmap->type)
11507 return -1;
11508 else
11509 return 0;
11510 }
11511
11512
11513 /* Do code byteswapping. Return FALSE afterwards so that the section is
11514 written out as normal. */
11515
11516 static bfd_boolean
11517 elf32_arm_write_section (bfd *output_bfd,
11518 struct bfd_link_info *link_info,
11519 asection *sec,
11520 bfd_byte *contents)
11521 {
11522 int mapcount, errcount;
11523 _arm_elf_section_data *arm_data;
11524 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
11525 elf32_arm_section_map *map;
11526 elf32_vfp11_erratum_list *errnode;
11527 bfd_vma ptr;
11528 bfd_vma end;
11529 bfd_vma offset = sec->output_section->vma + sec->output_offset;
11530 bfd_byte tmp;
11531 int i;
11532
11533 /* If this section has not been allocated an _arm_elf_section_data
11534 structure then we cannot record anything. */
11535 arm_data = get_arm_elf_section_data (sec);
11536 if (arm_data == NULL)
11537 return FALSE;
11538
11539 mapcount = arm_data->mapcount;
11540 map = arm_data->map;
11541 errcount = arm_data->erratumcount;
11542
11543 if (errcount != 0)
11544 {
11545 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
11546
11547 for (errnode = arm_data->erratumlist; errnode != 0;
11548 errnode = errnode->next)
11549 {
11550 bfd_vma index = errnode->vma - offset;
11551
11552 switch (errnode->type)
11553 {
11554 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
11555 {
11556 bfd_vma branch_to_veneer;
11557 /* Original condition code of instruction, plus bit mask for
11558 ARM B instruction. */
11559 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
11560 | 0x0a000000;
11561
11562 /* The instruction is before the label. */
11563 index -= 4;
11564
11565 /* Above offset included in -4 below. */
11566 branch_to_veneer = errnode->u.b.veneer->vma
11567 - errnode->vma - 4;
11568
11569 if ((signed) branch_to_veneer < -(1 << 25)
11570 || (signed) branch_to_veneer >= (1 << 25))
11571 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11572 "range"), output_bfd);
11573
11574 insn |= (branch_to_veneer >> 2) & 0xffffff;
11575 contents[endianflip ^ index] = insn & 0xff;
11576 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11577 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11578 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11579 }
11580 break;
11581
11582 case VFP11_ERRATUM_ARM_VENEER:
11583 {
11584 bfd_vma branch_from_veneer;
11585 unsigned int insn;
11586
11587 /* Take size of veneer into account. */
11588 branch_from_veneer = errnode->u.v.branch->vma
11589 - errnode->vma - 12;
11590
11591 if ((signed) branch_from_veneer < -(1 << 25)
11592 || (signed) branch_from_veneer >= (1 << 25))
11593 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11594 "range"), output_bfd);
11595
11596 /* Original instruction. */
11597 insn = errnode->u.v.branch->u.b.vfp_insn;
11598 contents[endianflip ^ index] = insn & 0xff;
11599 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11600 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11601 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11602
11603 /* Branch back to insn after original insn. */
11604 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
11605 contents[endianflip ^ (index + 4)] = insn & 0xff;
11606 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
11607 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
11608 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
11609 }
11610 break;
11611
11612 default:
11613 abort ();
11614 }
11615 }
11616 }
11617
11618 if (mapcount == 0)
11619 return FALSE;
11620
11621 if (globals->byteswap_code)
11622 {
11623 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
11624
11625 ptr = map[0].vma;
11626 for (i = 0; i < mapcount; i++)
11627 {
11628 if (i == mapcount - 1)
11629 end = sec->size;
11630 else
11631 end = map[i + 1].vma;
11632
11633 switch (map[i].type)
11634 {
11635 case 'a':
11636 /* Byte swap code words. */
11637 while (ptr + 3 < end)
11638 {
11639 tmp = contents[ptr];
11640 contents[ptr] = contents[ptr + 3];
11641 contents[ptr + 3] = tmp;
11642 tmp = contents[ptr + 1];
11643 contents[ptr + 1] = contents[ptr + 2];
11644 contents[ptr + 2] = tmp;
11645 ptr += 4;
11646 }
11647 break;
11648
11649 case 't':
11650 /* Byte swap code halfwords. */
11651 while (ptr + 1 < end)
11652 {
11653 tmp = contents[ptr];
11654 contents[ptr] = contents[ptr + 1];
11655 contents[ptr + 1] = tmp;
11656 ptr += 2;
11657 }
11658 break;
11659
11660 case 'd':
11661 /* Leave data alone. */
11662 break;
11663 }
11664 ptr = end;
11665 }
11666 }
11667
11668 free (map);
11669 arm_data->mapcount = 0;
11670 arm_data->mapsize = 0;
11671 arm_data->map = NULL;
11672 unrecord_section_with_arm_elf_section_data (sec);
11673
11674 return FALSE;
11675 }
11676
11677 static void
11678 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
11679 asection * sec,
11680 void * ignore ATTRIBUTE_UNUSED)
11681 {
11682 unrecord_section_with_arm_elf_section_data (sec);
11683 }
11684
11685 static bfd_boolean
11686 elf32_arm_close_and_cleanup (bfd * abfd)
11687 {
11688 if (abfd->sections)
11689 bfd_map_over_sections (abfd,
11690 unrecord_section_via_map_over_sections,
11691 NULL);
11692
11693 return _bfd_elf_close_and_cleanup (abfd);
11694 }
11695
11696 static bfd_boolean
11697 elf32_arm_bfd_free_cached_info (bfd * abfd)
11698 {
11699 if (abfd->sections)
11700 bfd_map_over_sections (abfd,
11701 unrecord_section_via_map_over_sections,
11702 NULL);
11703
11704 return _bfd_free_cached_info (abfd);
11705 }
11706
11707 /* Display STT_ARM_TFUNC symbols as functions. */
11708
11709 static void
11710 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
11711 asymbol *asym)
11712 {
11713 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
11714
11715 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
11716 elfsym->symbol.flags |= BSF_FUNCTION;
11717 }
11718
11719
11720 /* Mangle thumb function symbols as we read them in. */
11721
11722 static bfd_boolean
11723 elf32_arm_swap_symbol_in (bfd * abfd,
11724 const void *psrc,
11725 const void *pshn,
11726 Elf_Internal_Sym *dst)
11727 {
11728 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
11729 return FALSE;
11730
11731 /* New EABI objects mark thumb function symbols by setting the low bit of
11732 the address. Turn these into STT_ARM_TFUNC. */
11733 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC
11734 || ELF_ST_TYPE (dst->st_info) == STT_IFUNC)
11735 && (dst->st_value & 1))
11736 {
11737 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
11738 dst->st_value &= ~(bfd_vma) 1;
11739 }
11740 return TRUE;
11741 }
11742
11743
11744 /* Mangle thumb function symbols as we write them out. */
11745
11746 static void
11747 elf32_arm_swap_symbol_out (bfd *abfd,
11748 const Elf_Internal_Sym *src,
11749 void *cdst,
11750 void *shndx)
11751 {
11752 Elf_Internal_Sym newsym;
11753
11754 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
11755 of the address set, as per the new EABI. We do this unconditionally
11756 because objcopy does not set the elf header flags until after
11757 it writes out the symbol table. */
11758 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
11759 {
11760 newsym = *src;
11761 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
11762 if (newsym.st_shndx != SHN_UNDEF)
11763 {
11764 /* Do this only for defined symbols. At link type, the static
11765 linker will simulate the work of dynamic linker of resolving
11766 symbols and will carry over the thumbness of found symbols to
11767 the output symbol table. It's not clear how it happens, but
11768 the thumbness of undefined symbols can well be different at
11769 runtime, and writing '1' for them will be confusing for users
11770 and possibly for dynamic linker itself.
11771 */
11772 newsym.st_value |= 1;
11773 }
11774
11775 src = &newsym;
11776 }
11777 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
11778 }
11779
11780 /* Add the PT_ARM_EXIDX program header. */
11781
11782 static bfd_boolean
11783 elf32_arm_modify_segment_map (bfd *abfd,
11784 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11785 {
11786 struct elf_segment_map *m;
11787 asection *sec;
11788
11789 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11790 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11791 {
11792 /* If there is already a PT_ARM_EXIDX header, then we do not
11793 want to add another one. This situation arises when running
11794 "strip"; the input binary already has the header. */
11795 m = elf_tdata (abfd)->segment_map;
11796 while (m && m->p_type != PT_ARM_EXIDX)
11797 m = m->next;
11798 if (!m)
11799 {
11800 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
11801 if (m == NULL)
11802 return FALSE;
11803 m->p_type = PT_ARM_EXIDX;
11804 m->count = 1;
11805 m->sections[0] = sec;
11806
11807 m->next = elf_tdata (abfd)->segment_map;
11808 elf_tdata (abfd)->segment_map = m;
11809 }
11810 }
11811
11812 return TRUE;
11813 }
11814
11815 /* We may add a PT_ARM_EXIDX program header. */
11816
11817 static int
11818 elf32_arm_additional_program_headers (bfd *abfd,
11819 struct bfd_link_info *info ATTRIBUTE_UNUSED)
11820 {
11821 asection *sec;
11822
11823 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
11824 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
11825 return 1;
11826 else
11827 return 0;
11828 }
11829
11830 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
11831
11832 static bfd_boolean
11833 elf32_arm_is_function_type (unsigned int type)
11834 {
11835 return (type == STT_FUNC) || (type == STT_ARM_TFUNC) || (type == STT_IFUNC);
11836 }
11837
11838 /* We use this to override swap_symbol_in and swap_symbol_out. */
11839 const struct elf_size_info elf32_arm_size_info =
11840 {
11841 sizeof (Elf32_External_Ehdr),
11842 sizeof (Elf32_External_Phdr),
11843 sizeof (Elf32_External_Shdr),
11844 sizeof (Elf32_External_Rel),
11845 sizeof (Elf32_External_Rela),
11846 sizeof (Elf32_External_Sym),
11847 sizeof (Elf32_External_Dyn),
11848 sizeof (Elf_External_Note),
11849 4,
11850 1,
11851 32, 2,
11852 ELFCLASS32, EV_CURRENT,
11853 bfd_elf32_write_out_phdrs,
11854 bfd_elf32_write_shdrs_and_ehdr,
11855 bfd_elf32_checksum_contents,
11856 bfd_elf32_write_relocs,
11857 elf32_arm_swap_symbol_in,
11858 elf32_arm_swap_symbol_out,
11859 bfd_elf32_slurp_reloc_table,
11860 bfd_elf32_slurp_symbol_table,
11861 bfd_elf32_swap_dyn_in,
11862 bfd_elf32_swap_dyn_out,
11863 bfd_elf32_swap_reloc_in,
11864 bfd_elf32_swap_reloc_out,
11865 bfd_elf32_swap_reloca_in,
11866 bfd_elf32_swap_reloca_out
11867 };
11868
11869 #define ELF_ARCH bfd_arch_arm
11870 #define ELF_MACHINE_CODE EM_ARM
11871 #ifdef __QNXTARGET__
11872 #define ELF_MAXPAGESIZE 0x1000
11873 #else
11874 #define ELF_MAXPAGESIZE 0x8000
11875 #endif
11876 #define ELF_MINPAGESIZE 0x1000
11877 #define ELF_COMMONPAGESIZE 0x1000
11878
11879 #define bfd_elf32_mkobject elf32_arm_mkobject
11880
11881 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
11882 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
11883 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
11884 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
11885 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
11886 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
11887 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
11888 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
11889 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
11890 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
11891 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
11892 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
11893 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
11894 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
11895
11896 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
11897 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
11898 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
11899 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
11900 #define elf_backend_check_relocs elf32_arm_check_relocs
11901 #define elf_backend_relocate_section elf32_arm_relocate_section
11902 #define elf_backend_write_section elf32_arm_write_section
11903 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
11904 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
11905 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
11906 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
11907 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
11908 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
11909 #define elf_backend_post_process_headers elf32_arm_post_process_headers
11910 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
11911 #define elf_backend_object_p elf32_arm_object_p
11912 #define elf_backend_section_flags elf32_arm_section_flags
11913 #define elf_backend_fake_sections elf32_arm_fake_sections
11914 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
11915 #define elf_backend_final_write_processing elf32_arm_final_write_processing
11916 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
11917 #define elf_backend_symbol_processing elf32_arm_symbol_processing
11918 #define elf_backend_size_info elf32_arm_size_info
11919 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
11920 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
11921 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
11922 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
11923 #define elf_backend_is_function_type elf32_arm_is_function_type
11924
11925 #define elf_backend_can_refcount 1
11926 #define elf_backend_can_gc_sections 1
11927 #define elf_backend_plt_readonly 1
11928 #define elf_backend_want_got_plt 1
11929 #define elf_backend_want_plt_sym 0
11930 #define elf_backend_may_use_rel_p 1
11931 #define elf_backend_may_use_rela_p 0
11932 #define elf_backend_default_use_rela_p 0
11933
11934 #define elf_backend_got_header_size 12
11935
11936 #undef elf_backend_obj_attrs_vendor
11937 #define elf_backend_obj_attrs_vendor "aeabi"
11938 #undef elf_backend_obj_attrs_section
11939 #define elf_backend_obj_attrs_section ".ARM.attributes"
11940 #undef elf_backend_obj_attrs_arg_type
11941 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
11942 #undef elf_backend_obj_attrs_section_type
11943 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
11944
11945 #include "elf32-target.h"
11946
11947 /* VxWorks Targets. */
11948
11949 #undef TARGET_LITTLE_SYM
11950 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
11951 #undef TARGET_LITTLE_NAME
11952 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
11953 #undef TARGET_BIG_SYM
11954 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
11955 #undef TARGET_BIG_NAME
11956 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
11957
11958 /* Like elf32_arm_link_hash_table_create -- but overrides
11959 appropriately for VxWorks. */
11960
11961 static struct bfd_link_hash_table *
11962 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
11963 {
11964 struct bfd_link_hash_table *ret;
11965
11966 ret = elf32_arm_link_hash_table_create (abfd);
11967 if (ret)
11968 {
11969 struct elf32_arm_link_hash_table *htab
11970 = (struct elf32_arm_link_hash_table *) ret;
11971 htab->use_rel = 0;
11972 htab->vxworks_p = 1;
11973 }
11974 return ret;
11975 }
11976
11977 static void
11978 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
11979 {
11980 elf32_arm_final_write_processing (abfd, linker);
11981 elf_vxworks_final_write_processing (abfd, linker);
11982 }
11983
11984 #undef elf32_bed
11985 #define elf32_bed elf32_arm_vxworks_bed
11986
11987 #undef bfd_elf32_bfd_link_hash_table_create
11988 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
11989 #undef elf_backend_add_symbol_hook
11990 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
11991 #undef elf_backend_final_write_processing
11992 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
11993 #undef elf_backend_emit_relocs
11994 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
11995
11996 #undef elf_backend_may_use_rel_p
11997 #define elf_backend_may_use_rel_p 0
11998 #undef elf_backend_may_use_rela_p
11999 #define elf_backend_may_use_rela_p 1
12000 #undef elf_backend_default_use_rela_p
12001 #define elf_backend_default_use_rela_p 1
12002 #undef elf_backend_want_plt_sym
12003 #define elf_backend_want_plt_sym 1
12004 #undef ELF_MAXPAGESIZE
12005 #define ELF_MAXPAGESIZE 0x1000
12006
12007 #include "elf32-target.h"
12008
12009
12010 /* Symbian OS Targets. */
12011
12012 #undef TARGET_LITTLE_SYM
12013 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
12014 #undef TARGET_LITTLE_NAME
12015 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
12016 #undef TARGET_BIG_SYM
12017 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
12018 #undef TARGET_BIG_NAME
12019 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
12020
12021 /* Like elf32_arm_link_hash_table_create -- but overrides
12022 appropriately for Symbian OS. */
12023
12024 static struct bfd_link_hash_table *
12025 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
12026 {
12027 struct bfd_link_hash_table *ret;
12028
12029 ret = elf32_arm_link_hash_table_create (abfd);
12030 if (ret)
12031 {
12032 struct elf32_arm_link_hash_table *htab
12033 = (struct elf32_arm_link_hash_table *)ret;
12034 /* There is no PLT header for Symbian OS. */
12035 htab->plt_header_size = 0;
12036 /* The PLT entries are each one instruction and one word. */
12037 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
12038 htab->symbian_p = 1;
12039 /* Symbian uses armv5t or above, so use_blx is always true. */
12040 htab->use_blx = 1;
12041 htab->root.is_relocatable_executable = 1;
12042 }
12043 return ret;
12044 }
12045
12046 static const struct bfd_elf_special_section
12047 elf32_arm_symbian_special_sections[] =
12048 {
12049 /* In a BPABI executable, the dynamic linking sections do not go in
12050 the loadable read-only segment. The post-linker may wish to
12051 refer to these sections, but they are not part of the final
12052 program image. */
12053 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
12054 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
12055 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
12056 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
12057 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
12058 /* These sections do not need to be writable as the SymbianOS
12059 postlinker will arrange things so that no dynamic relocation is
12060 required. */
12061 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
12062 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
12063 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
12064 { NULL, 0, 0, 0, 0 }
12065 };
12066
12067 static void
12068 elf32_arm_symbian_begin_write_processing (bfd *abfd,
12069 struct bfd_link_info *link_info)
12070 {
12071 /* BPABI objects are never loaded directly by an OS kernel; they are
12072 processed by a postlinker first, into an OS-specific format. If
12073 the D_PAGED bit is set on the file, BFD will align segments on
12074 page boundaries, so that an OS can directly map the file. With
12075 BPABI objects, that just results in wasted space. In addition,
12076 because we clear the D_PAGED bit, map_sections_to_segments will
12077 recognize that the program headers should not be mapped into any
12078 loadable segment. */
12079 abfd->flags &= ~D_PAGED;
12080 elf32_arm_begin_write_processing (abfd, link_info);
12081 }
12082
12083 static bfd_boolean
12084 elf32_arm_symbian_modify_segment_map (bfd *abfd,
12085 struct bfd_link_info *info)
12086 {
12087 struct elf_segment_map *m;
12088 asection *dynsec;
12089
12090 /* BPABI shared libraries and executables should have a PT_DYNAMIC
12091 segment. However, because the .dynamic section is not marked
12092 with SEC_LOAD, the generic ELF code will not create such a
12093 segment. */
12094 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
12095 if (dynsec)
12096 {
12097 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
12098 if (m->p_type == PT_DYNAMIC)
12099 break;
12100
12101 if (m == NULL)
12102 {
12103 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12104 m->next = elf_tdata (abfd)->segment_map;
12105 elf_tdata (abfd)->segment_map = m;
12106 }
12107 }
12108
12109 /* Also call the generic arm routine. */
12110 return elf32_arm_modify_segment_map (abfd, info);
12111 }
12112
12113 /* Return address for Ith PLT stub in section PLT, for relocation REL
12114 or (bfd_vma) -1 if it should not be included. */
12115
12116 static bfd_vma
12117 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
12118 const arelent *rel ATTRIBUTE_UNUSED)
12119 {
12120 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
12121 }
12122
12123
12124 #undef elf32_bed
12125 #define elf32_bed elf32_arm_symbian_bed
12126
12127 /* The dynamic sections are not allocated on SymbianOS; the postlinker
12128 will process them and then discard them. */
12129 #undef ELF_DYNAMIC_SEC_FLAGS
12130 #define ELF_DYNAMIC_SEC_FLAGS \
12131 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
12132
12133 #undef elf_backend_add_symbol_hook
12134 #undef elf_backend_emit_relocs
12135
12136 #undef bfd_elf32_bfd_link_hash_table_create
12137 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
12138 #undef elf_backend_special_sections
12139 #define elf_backend_special_sections elf32_arm_symbian_special_sections
12140 #undef elf_backend_begin_write_processing
12141 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12142 #undef elf_backend_final_write_processing
12143 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12144
12145 #undef elf_backend_modify_segment_map
12146 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12147
12148 /* There is no .got section for BPABI objects, and hence no header. */
12149 #undef elf_backend_got_header_size
12150 #define elf_backend_got_header_size 0
12151
12152 /* Similarly, there is no .got.plt section. */
12153 #undef elf_backend_want_got_plt
12154 #define elf_backend_want_got_plt 0
12155
12156 #undef elf_backend_plt_sym_val
12157 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12158
12159 #undef elf_backend_may_use_rel_p
12160 #define elf_backend_may_use_rel_p 1
12161 #undef elf_backend_may_use_rela_p
12162 #define elf_backend_may_use_rela_p 0
12163 #undef elf_backend_default_use_rela_p
12164 #define elf_backend_default_use_rela_p 0
12165 #undef elf_backend_want_plt_sym
12166 #define elf_backend_want_plt_sym 0
12167 #undef ELF_MAXPAGESIZE
12168 #define ELF_MAXPAGESIZE 0x8000
12169
12170 #include "elf32-target.h"
This page took 0.417991 seconds and 3 git commands to generate.