bfd/
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 #ifndef NUM_ELEM
31 #define NUM_ELEM(a) (sizeof (a) / (sizeof (a)[0]))
32 #endif
33
34 /* Return the relocation section associated with NAME. HTAB is the
35 bfd's elf32_arm_link_hash_entry. */
36 #define RELOC_SECTION(HTAB, NAME) \
37 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
38
39 /* Return size of a relocation entry. HTAB is the bfd's
40 elf32_arm_link_hash_entry. */
41 #define RELOC_SIZE(HTAB) \
42 ((HTAB)->use_rel \
43 ? sizeof (Elf32_External_Rel) \
44 : sizeof (Elf32_External_Rela))
45
46 /* Return function to swap relocations in. HTAB is the bfd's
47 elf32_arm_link_hash_entry. */
48 #define SWAP_RELOC_IN(HTAB) \
49 ((HTAB)->use_rel \
50 ? bfd_elf32_swap_reloc_in \
51 : bfd_elf32_swap_reloca_in)
52
53 /* Return function to swap relocations out. HTAB is the bfd's
54 elf32_arm_link_hash_entry. */
55 #define SWAP_RELOC_OUT(HTAB) \
56 ((HTAB)->use_rel \
57 ? bfd_elf32_swap_reloc_out \
58 : bfd_elf32_swap_reloca_out)
59
60 #define elf_info_to_howto 0
61 #define elf_info_to_howto_rel elf32_arm_info_to_howto
62
63 #define ARM_ELF_ABI_VERSION 0
64 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
65
66 static struct elf_backend_data elf32_arm_vxworks_bed;
67
68 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
69 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
70 in that slot. */
71
72 static reloc_howto_type elf32_arm_howto_table_1[] =
73 {
74 /* No relocation */
75 HOWTO (R_ARM_NONE, /* type */
76 0, /* rightshift */
77 0, /* size (0 = byte, 1 = short, 2 = long) */
78 0, /* bitsize */
79 FALSE, /* pc_relative */
80 0, /* bitpos */
81 complain_overflow_dont,/* complain_on_overflow */
82 bfd_elf_generic_reloc, /* special_function */
83 "R_ARM_NONE", /* name */
84 FALSE, /* partial_inplace */
85 0, /* src_mask */
86 0, /* dst_mask */
87 FALSE), /* pcrel_offset */
88
89 HOWTO (R_ARM_PC24, /* type */
90 2, /* rightshift */
91 2, /* size (0 = byte, 1 = short, 2 = long) */
92 24, /* bitsize */
93 TRUE, /* pc_relative */
94 0, /* bitpos */
95 complain_overflow_signed,/* complain_on_overflow */
96 bfd_elf_generic_reloc, /* special_function */
97 "R_ARM_PC24", /* name */
98 FALSE, /* partial_inplace */
99 0x00ffffff, /* src_mask */
100 0x00ffffff, /* dst_mask */
101 TRUE), /* pcrel_offset */
102
103 /* 32 bit absolute */
104 HOWTO (R_ARM_ABS32, /* type */
105 0, /* rightshift */
106 2, /* size (0 = byte, 1 = short, 2 = long) */
107 32, /* bitsize */
108 FALSE, /* pc_relative */
109 0, /* bitpos */
110 complain_overflow_bitfield,/* complain_on_overflow */
111 bfd_elf_generic_reloc, /* special_function */
112 "R_ARM_ABS32", /* name */
113 FALSE, /* partial_inplace */
114 0xffffffff, /* src_mask */
115 0xffffffff, /* dst_mask */
116 FALSE), /* pcrel_offset */
117
118 /* standard 32bit pc-relative reloc */
119 HOWTO (R_ARM_REL32, /* type */
120 0, /* rightshift */
121 2, /* size (0 = byte, 1 = short, 2 = long) */
122 32, /* bitsize */
123 TRUE, /* pc_relative */
124 0, /* bitpos */
125 complain_overflow_bitfield,/* complain_on_overflow */
126 bfd_elf_generic_reloc, /* special_function */
127 "R_ARM_REL32", /* name */
128 FALSE, /* partial_inplace */
129 0xffffffff, /* src_mask */
130 0xffffffff, /* dst_mask */
131 TRUE), /* pcrel_offset */
132
133 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
134 HOWTO (R_ARM_LDR_PC_G0, /* type */
135 0, /* rightshift */
136 0, /* size (0 = byte, 1 = short, 2 = long) */
137 32, /* bitsize */
138 TRUE, /* pc_relative */
139 0, /* bitpos */
140 complain_overflow_dont,/* complain_on_overflow */
141 bfd_elf_generic_reloc, /* special_function */
142 "R_ARM_LDR_PC_G0", /* name */
143 FALSE, /* partial_inplace */
144 0xffffffff, /* src_mask */
145 0xffffffff, /* dst_mask */
146 TRUE), /* pcrel_offset */
147
148 /* 16 bit absolute */
149 HOWTO (R_ARM_ABS16, /* type */
150 0, /* rightshift */
151 1, /* size (0 = byte, 1 = short, 2 = long) */
152 16, /* bitsize */
153 FALSE, /* pc_relative */
154 0, /* bitpos */
155 complain_overflow_bitfield,/* complain_on_overflow */
156 bfd_elf_generic_reloc, /* special_function */
157 "R_ARM_ABS16", /* name */
158 FALSE, /* partial_inplace */
159 0x0000ffff, /* src_mask */
160 0x0000ffff, /* dst_mask */
161 FALSE), /* pcrel_offset */
162
163 /* 12 bit absolute */
164 HOWTO (R_ARM_ABS12, /* type */
165 0, /* rightshift */
166 2, /* size (0 = byte, 1 = short, 2 = long) */
167 12, /* bitsize */
168 FALSE, /* pc_relative */
169 0, /* bitpos */
170 complain_overflow_bitfield,/* complain_on_overflow */
171 bfd_elf_generic_reloc, /* special_function */
172 "R_ARM_ABS12", /* name */
173 FALSE, /* partial_inplace */
174 0x00000fff, /* src_mask */
175 0x00000fff, /* dst_mask */
176 FALSE), /* pcrel_offset */
177
178 HOWTO (R_ARM_THM_ABS5, /* type */
179 6, /* rightshift */
180 1, /* size (0 = byte, 1 = short, 2 = long) */
181 5, /* bitsize */
182 FALSE, /* pc_relative */
183 0, /* bitpos */
184 complain_overflow_bitfield,/* complain_on_overflow */
185 bfd_elf_generic_reloc, /* special_function */
186 "R_ARM_THM_ABS5", /* name */
187 FALSE, /* partial_inplace */
188 0x000007e0, /* src_mask */
189 0x000007e0, /* dst_mask */
190 FALSE), /* pcrel_offset */
191
192 /* 8 bit absolute */
193 HOWTO (R_ARM_ABS8, /* type */
194 0, /* rightshift */
195 0, /* size (0 = byte, 1 = short, 2 = long) */
196 8, /* bitsize */
197 FALSE, /* pc_relative */
198 0, /* bitpos */
199 complain_overflow_bitfield,/* complain_on_overflow */
200 bfd_elf_generic_reloc, /* special_function */
201 "R_ARM_ABS8", /* name */
202 FALSE, /* partial_inplace */
203 0x000000ff, /* src_mask */
204 0x000000ff, /* dst_mask */
205 FALSE), /* pcrel_offset */
206
207 HOWTO (R_ARM_SBREL32, /* type */
208 0, /* rightshift */
209 2, /* size (0 = byte, 1 = short, 2 = long) */
210 32, /* bitsize */
211 FALSE, /* pc_relative */
212 0, /* bitpos */
213 complain_overflow_dont,/* complain_on_overflow */
214 bfd_elf_generic_reloc, /* special_function */
215 "R_ARM_SBREL32", /* name */
216 FALSE, /* partial_inplace */
217 0xffffffff, /* src_mask */
218 0xffffffff, /* dst_mask */
219 FALSE), /* pcrel_offset */
220
221 HOWTO (R_ARM_THM_CALL, /* type */
222 1, /* rightshift */
223 2, /* size (0 = byte, 1 = short, 2 = long) */
224 25, /* bitsize */
225 TRUE, /* pc_relative */
226 0, /* bitpos */
227 complain_overflow_signed,/* complain_on_overflow */
228 bfd_elf_generic_reloc, /* special_function */
229 "R_ARM_THM_CALL", /* name */
230 FALSE, /* partial_inplace */
231 0x07ff07ff, /* src_mask */
232 0x07ff07ff, /* dst_mask */
233 TRUE), /* pcrel_offset */
234
235 HOWTO (R_ARM_THM_PC8, /* type */
236 1, /* rightshift */
237 1, /* size (0 = byte, 1 = short, 2 = long) */
238 8, /* bitsize */
239 TRUE, /* pc_relative */
240 0, /* bitpos */
241 complain_overflow_signed,/* complain_on_overflow */
242 bfd_elf_generic_reloc, /* special_function */
243 "R_ARM_THM_PC8", /* name */
244 FALSE, /* partial_inplace */
245 0x000000ff, /* src_mask */
246 0x000000ff, /* dst_mask */
247 TRUE), /* pcrel_offset */
248
249 HOWTO (R_ARM_BREL_ADJ, /* type */
250 1, /* rightshift */
251 1, /* size (0 = byte, 1 = short, 2 = long) */
252 32, /* bitsize */
253 FALSE, /* pc_relative */
254 0, /* bitpos */
255 complain_overflow_signed,/* complain_on_overflow */
256 bfd_elf_generic_reloc, /* special_function */
257 "R_ARM_BREL_ADJ", /* name */
258 FALSE, /* partial_inplace */
259 0xffffffff, /* src_mask */
260 0xffffffff, /* dst_mask */
261 FALSE), /* pcrel_offset */
262
263 HOWTO (R_ARM_SWI24, /* type */
264 0, /* rightshift */
265 0, /* size (0 = byte, 1 = short, 2 = long) */
266 0, /* bitsize */
267 FALSE, /* pc_relative */
268 0, /* bitpos */
269 complain_overflow_signed,/* complain_on_overflow */
270 bfd_elf_generic_reloc, /* special_function */
271 "R_ARM_SWI24", /* name */
272 FALSE, /* partial_inplace */
273 0x00000000, /* src_mask */
274 0x00000000, /* dst_mask */
275 FALSE), /* pcrel_offset */
276
277 HOWTO (R_ARM_THM_SWI8, /* type */
278 0, /* rightshift */
279 0, /* size (0 = byte, 1 = short, 2 = long) */
280 0, /* bitsize */
281 FALSE, /* pc_relative */
282 0, /* bitpos */
283 complain_overflow_signed,/* complain_on_overflow */
284 bfd_elf_generic_reloc, /* special_function */
285 "R_ARM_SWI8", /* name */
286 FALSE, /* partial_inplace */
287 0x00000000, /* src_mask */
288 0x00000000, /* dst_mask */
289 FALSE), /* pcrel_offset */
290
291 /* BLX instruction for the ARM. */
292 HOWTO (R_ARM_XPC25, /* type */
293 2, /* rightshift */
294 2, /* size (0 = byte, 1 = short, 2 = long) */
295 25, /* bitsize */
296 TRUE, /* pc_relative */
297 0, /* bitpos */
298 complain_overflow_signed,/* complain_on_overflow */
299 bfd_elf_generic_reloc, /* special_function */
300 "R_ARM_XPC25", /* name */
301 FALSE, /* partial_inplace */
302 0x00ffffff, /* src_mask */
303 0x00ffffff, /* dst_mask */
304 TRUE), /* pcrel_offset */
305
306 /* BLX instruction for the Thumb. */
307 HOWTO (R_ARM_THM_XPC22, /* type */
308 2, /* rightshift */
309 2, /* size (0 = byte, 1 = short, 2 = long) */
310 22, /* bitsize */
311 TRUE, /* pc_relative */
312 0, /* bitpos */
313 complain_overflow_signed,/* complain_on_overflow */
314 bfd_elf_generic_reloc, /* special_function */
315 "R_ARM_THM_XPC22", /* name */
316 FALSE, /* partial_inplace */
317 0x07ff07ff, /* src_mask */
318 0x07ff07ff, /* dst_mask */
319 TRUE), /* pcrel_offset */
320
321 /* Dynamic TLS relocations. */
322
323 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
324 0, /* rightshift */
325 2, /* size (0 = byte, 1 = short, 2 = long) */
326 32, /* bitsize */
327 FALSE, /* pc_relative */
328 0, /* bitpos */
329 complain_overflow_bitfield,/* complain_on_overflow */
330 bfd_elf_generic_reloc, /* special_function */
331 "R_ARM_TLS_DTPMOD32", /* name */
332 TRUE, /* partial_inplace */
333 0xffffffff, /* src_mask */
334 0xffffffff, /* dst_mask */
335 FALSE), /* pcrel_offset */
336
337 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
338 0, /* rightshift */
339 2, /* size (0 = byte, 1 = short, 2 = long) */
340 32, /* bitsize */
341 FALSE, /* pc_relative */
342 0, /* bitpos */
343 complain_overflow_bitfield,/* complain_on_overflow */
344 bfd_elf_generic_reloc, /* special_function */
345 "R_ARM_TLS_DTPOFF32", /* name */
346 TRUE, /* partial_inplace */
347 0xffffffff, /* src_mask */
348 0xffffffff, /* dst_mask */
349 FALSE), /* pcrel_offset */
350
351 HOWTO (R_ARM_TLS_TPOFF32, /* type */
352 0, /* rightshift */
353 2, /* size (0 = byte, 1 = short, 2 = long) */
354 32, /* bitsize */
355 FALSE, /* pc_relative */
356 0, /* bitpos */
357 complain_overflow_bitfield,/* complain_on_overflow */
358 bfd_elf_generic_reloc, /* special_function */
359 "R_ARM_TLS_TPOFF32", /* name */
360 TRUE, /* partial_inplace */
361 0xffffffff, /* src_mask */
362 0xffffffff, /* dst_mask */
363 FALSE), /* pcrel_offset */
364
365 /* Relocs used in ARM Linux */
366
367 HOWTO (R_ARM_COPY, /* type */
368 0, /* rightshift */
369 2, /* size (0 = byte, 1 = short, 2 = long) */
370 32, /* bitsize */
371 FALSE, /* pc_relative */
372 0, /* bitpos */
373 complain_overflow_bitfield,/* complain_on_overflow */
374 bfd_elf_generic_reloc, /* special_function */
375 "R_ARM_COPY", /* name */
376 TRUE, /* partial_inplace */
377 0xffffffff, /* src_mask */
378 0xffffffff, /* dst_mask */
379 FALSE), /* pcrel_offset */
380
381 HOWTO (R_ARM_GLOB_DAT, /* type */
382 0, /* rightshift */
383 2, /* size (0 = byte, 1 = short, 2 = long) */
384 32, /* bitsize */
385 FALSE, /* pc_relative */
386 0, /* bitpos */
387 complain_overflow_bitfield,/* complain_on_overflow */
388 bfd_elf_generic_reloc, /* special_function */
389 "R_ARM_GLOB_DAT", /* name */
390 TRUE, /* partial_inplace */
391 0xffffffff, /* src_mask */
392 0xffffffff, /* dst_mask */
393 FALSE), /* pcrel_offset */
394
395 HOWTO (R_ARM_JUMP_SLOT, /* type */
396 0, /* rightshift */
397 2, /* size (0 = byte, 1 = short, 2 = long) */
398 32, /* bitsize */
399 FALSE, /* pc_relative */
400 0, /* bitpos */
401 complain_overflow_bitfield,/* complain_on_overflow */
402 bfd_elf_generic_reloc, /* special_function */
403 "R_ARM_JUMP_SLOT", /* name */
404 TRUE, /* partial_inplace */
405 0xffffffff, /* src_mask */
406 0xffffffff, /* dst_mask */
407 FALSE), /* pcrel_offset */
408
409 HOWTO (R_ARM_RELATIVE, /* type */
410 0, /* rightshift */
411 2, /* size (0 = byte, 1 = short, 2 = long) */
412 32, /* bitsize */
413 FALSE, /* pc_relative */
414 0, /* bitpos */
415 complain_overflow_bitfield,/* complain_on_overflow */
416 bfd_elf_generic_reloc, /* special_function */
417 "R_ARM_RELATIVE", /* name */
418 TRUE, /* partial_inplace */
419 0xffffffff, /* src_mask */
420 0xffffffff, /* dst_mask */
421 FALSE), /* pcrel_offset */
422
423 HOWTO (R_ARM_GOTOFF32, /* type */
424 0, /* rightshift */
425 2, /* size (0 = byte, 1 = short, 2 = long) */
426 32, /* bitsize */
427 FALSE, /* pc_relative */
428 0, /* bitpos */
429 complain_overflow_bitfield,/* complain_on_overflow */
430 bfd_elf_generic_reloc, /* special_function */
431 "R_ARM_GOTOFF32", /* name */
432 TRUE, /* partial_inplace */
433 0xffffffff, /* src_mask */
434 0xffffffff, /* dst_mask */
435 FALSE), /* pcrel_offset */
436
437 HOWTO (R_ARM_GOTPC, /* type */
438 0, /* rightshift */
439 2, /* size (0 = byte, 1 = short, 2 = long) */
440 32, /* bitsize */
441 TRUE, /* pc_relative */
442 0, /* bitpos */
443 complain_overflow_bitfield,/* complain_on_overflow */
444 bfd_elf_generic_reloc, /* special_function */
445 "R_ARM_GOTPC", /* name */
446 TRUE, /* partial_inplace */
447 0xffffffff, /* src_mask */
448 0xffffffff, /* dst_mask */
449 TRUE), /* pcrel_offset */
450
451 HOWTO (R_ARM_GOT32, /* type */
452 0, /* rightshift */
453 2, /* size (0 = byte, 1 = short, 2 = long) */
454 32, /* bitsize */
455 FALSE, /* pc_relative */
456 0, /* bitpos */
457 complain_overflow_bitfield,/* complain_on_overflow */
458 bfd_elf_generic_reloc, /* special_function */
459 "R_ARM_GOT32", /* name */
460 TRUE, /* partial_inplace */
461 0xffffffff, /* src_mask */
462 0xffffffff, /* dst_mask */
463 FALSE), /* pcrel_offset */
464
465 HOWTO (R_ARM_PLT32, /* type */
466 2, /* rightshift */
467 2, /* size (0 = byte, 1 = short, 2 = long) */
468 24, /* bitsize */
469 TRUE, /* pc_relative */
470 0, /* bitpos */
471 complain_overflow_bitfield,/* complain_on_overflow */
472 bfd_elf_generic_reloc, /* special_function */
473 "R_ARM_PLT32", /* name */
474 FALSE, /* partial_inplace */
475 0x00ffffff, /* src_mask */
476 0x00ffffff, /* dst_mask */
477 TRUE), /* pcrel_offset */
478
479 HOWTO (R_ARM_CALL, /* type */
480 2, /* rightshift */
481 2, /* size (0 = byte, 1 = short, 2 = long) */
482 24, /* bitsize */
483 TRUE, /* pc_relative */
484 0, /* bitpos */
485 complain_overflow_signed,/* complain_on_overflow */
486 bfd_elf_generic_reloc, /* special_function */
487 "R_ARM_CALL", /* name */
488 FALSE, /* partial_inplace */
489 0x00ffffff, /* src_mask */
490 0x00ffffff, /* dst_mask */
491 TRUE), /* pcrel_offset */
492
493 HOWTO (R_ARM_JUMP24, /* type */
494 2, /* rightshift */
495 2, /* size (0 = byte, 1 = short, 2 = long) */
496 24, /* bitsize */
497 TRUE, /* pc_relative */
498 0, /* bitpos */
499 complain_overflow_signed,/* complain_on_overflow */
500 bfd_elf_generic_reloc, /* special_function */
501 "R_ARM_JUMP24", /* name */
502 FALSE, /* partial_inplace */
503 0x00ffffff, /* src_mask */
504 0x00ffffff, /* dst_mask */
505 TRUE), /* pcrel_offset */
506
507 HOWTO (R_ARM_THM_JUMP24, /* type */
508 1, /* rightshift */
509 2, /* size (0 = byte, 1 = short, 2 = long) */
510 24, /* bitsize */
511 TRUE, /* pc_relative */
512 0, /* bitpos */
513 complain_overflow_signed,/* complain_on_overflow */
514 bfd_elf_generic_reloc, /* special_function */
515 "R_ARM_THM_JUMP24", /* name */
516 FALSE, /* partial_inplace */
517 0x07ff2fff, /* src_mask */
518 0x07ff2fff, /* dst_mask */
519 TRUE), /* pcrel_offset */
520
521 HOWTO (R_ARM_BASE_ABS, /* type */
522 0, /* rightshift */
523 2, /* size (0 = byte, 1 = short, 2 = long) */
524 32, /* bitsize */
525 FALSE, /* pc_relative */
526 0, /* bitpos */
527 complain_overflow_dont,/* complain_on_overflow */
528 bfd_elf_generic_reloc, /* special_function */
529 "R_ARM_BASE_ABS", /* name */
530 FALSE, /* partial_inplace */
531 0xffffffff, /* src_mask */
532 0xffffffff, /* dst_mask */
533 FALSE), /* pcrel_offset */
534
535 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
536 0, /* rightshift */
537 2, /* size (0 = byte, 1 = short, 2 = long) */
538 12, /* bitsize */
539 TRUE, /* pc_relative */
540 0, /* bitpos */
541 complain_overflow_dont,/* complain_on_overflow */
542 bfd_elf_generic_reloc, /* special_function */
543 "R_ARM_ALU_PCREL_7_0", /* name */
544 FALSE, /* partial_inplace */
545 0x00000fff, /* src_mask */
546 0x00000fff, /* dst_mask */
547 TRUE), /* pcrel_offset */
548
549 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
550 0, /* rightshift */
551 2, /* size (0 = byte, 1 = short, 2 = long) */
552 12, /* bitsize */
553 TRUE, /* pc_relative */
554 8, /* bitpos */
555 complain_overflow_dont,/* complain_on_overflow */
556 bfd_elf_generic_reloc, /* special_function */
557 "R_ARM_ALU_PCREL_15_8",/* name */
558 FALSE, /* partial_inplace */
559 0x00000fff, /* src_mask */
560 0x00000fff, /* dst_mask */
561 TRUE), /* pcrel_offset */
562
563 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
564 0, /* rightshift */
565 2, /* size (0 = byte, 1 = short, 2 = long) */
566 12, /* bitsize */
567 TRUE, /* pc_relative */
568 16, /* bitpos */
569 complain_overflow_dont,/* complain_on_overflow */
570 bfd_elf_generic_reloc, /* special_function */
571 "R_ARM_ALU_PCREL_23_15",/* name */
572 FALSE, /* partial_inplace */
573 0x00000fff, /* src_mask */
574 0x00000fff, /* dst_mask */
575 TRUE), /* pcrel_offset */
576
577 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
578 0, /* rightshift */
579 2, /* size (0 = byte, 1 = short, 2 = long) */
580 12, /* bitsize */
581 FALSE, /* pc_relative */
582 0, /* bitpos */
583 complain_overflow_dont,/* complain_on_overflow */
584 bfd_elf_generic_reloc, /* special_function */
585 "R_ARM_LDR_SBREL_11_0",/* name */
586 FALSE, /* partial_inplace */
587 0x00000fff, /* src_mask */
588 0x00000fff, /* dst_mask */
589 FALSE), /* pcrel_offset */
590
591 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
592 0, /* rightshift */
593 2, /* size (0 = byte, 1 = short, 2 = long) */
594 8, /* bitsize */
595 FALSE, /* pc_relative */
596 12, /* bitpos */
597 complain_overflow_dont,/* complain_on_overflow */
598 bfd_elf_generic_reloc, /* special_function */
599 "R_ARM_ALU_SBREL_19_12",/* name */
600 FALSE, /* partial_inplace */
601 0x000ff000, /* src_mask */
602 0x000ff000, /* dst_mask */
603 FALSE), /* pcrel_offset */
604
605 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
606 0, /* rightshift */
607 2, /* size (0 = byte, 1 = short, 2 = long) */
608 8, /* bitsize */
609 FALSE, /* pc_relative */
610 20, /* bitpos */
611 complain_overflow_dont,/* complain_on_overflow */
612 bfd_elf_generic_reloc, /* special_function */
613 "R_ARM_ALU_SBREL_27_20",/* name */
614 FALSE, /* partial_inplace */
615 0x0ff00000, /* src_mask */
616 0x0ff00000, /* dst_mask */
617 FALSE), /* pcrel_offset */
618
619 HOWTO (R_ARM_TARGET1, /* type */
620 0, /* rightshift */
621 2, /* size (0 = byte, 1 = short, 2 = long) */
622 32, /* bitsize */
623 FALSE, /* pc_relative */
624 0, /* bitpos */
625 complain_overflow_dont,/* complain_on_overflow */
626 bfd_elf_generic_reloc, /* special_function */
627 "R_ARM_TARGET1", /* name */
628 FALSE, /* partial_inplace */
629 0xffffffff, /* src_mask */
630 0xffffffff, /* dst_mask */
631 FALSE), /* pcrel_offset */
632
633 HOWTO (R_ARM_ROSEGREL32, /* type */
634 0, /* rightshift */
635 2, /* size (0 = byte, 1 = short, 2 = long) */
636 32, /* bitsize */
637 FALSE, /* pc_relative */
638 0, /* bitpos */
639 complain_overflow_dont,/* complain_on_overflow */
640 bfd_elf_generic_reloc, /* special_function */
641 "R_ARM_ROSEGREL32", /* name */
642 FALSE, /* partial_inplace */
643 0xffffffff, /* src_mask */
644 0xffffffff, /* dst_mask */
645 FALSE), /* pcrel_offset */
646
647 HOWTO (R_ARM_V4BX, /* type */
648 0, /* rightshift */
649 2, /* size (0 = byte, 1 = short, 2 = long) */
650 32, /* bitsize */
651 FALSE, /* pc_relative */
652 0, /* bitpos */
653 complain_overflow_dont,/* complain_on_overflow */
654 bfd_elf_generic_reloc, /* special_function */
655 "R_ARM_V4BX", /* name */
656 FALSE, /* partial_inplace */
657 0xffffffff, /* src_mask */
658 0xffffffff, /* dst_mask */
659 FALSE), /* pcrel_offset */
660
661 HOWTO (R_ARM_TARGET2, /* type */
662 0, /* rightshift */
663 2, /* size (0 = byte, 1 = short, 2 = long) */
664 32, /* bitsize */
665 FALSE, /* pc_relative */
666 0, /* bitpos */
667 complain_overflow_signed,/* complain_on_overflow */
668 bfd_elf_generic_reloc, /* special_function */
669 "R_ARM_TARGET2", /* name */
670 FALSE, /* partial_inplace */
671 0xffffffff, /* src_mask */
672 0xffffffff, /* dst_mask */
673 TRUE), /* pcrel_offset */
674
675 HOWTO (R_ARM_PREL31, /* type */
676 0, /* rightshift */
677 2, /* size (0 = byte, 1 = short, 2 = long) */
678 31, /* bitsize */
679 TRUE, /* pc_relative */
680 0, /* bitpos */
681 complain_overflow_signed,/* complain_on_overflow */
682 bfd_elf_generic_reloc, /* special_function */
683 "R_ARM_PREL31", /* name */
684 FALSE, /* partial_inplace */
685 0x7fffffff, /* src_mask */
686 0x7fffffff, /* dst_mask */
687 TRUE), /* pcrel_offset */
688
689 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
690 0, /* rightshift */
691 2, /* size (0 = byte, 1 = short, 2 = long) */
692 16, /* bitsize */
693 FALSE, /* pc_relative */
694 0, /* bitpos */
695 complain_overflow_dont,/* complain_on_overflow */
696 bfd_elf_generic_reloc, /* special_function */
697 "R_ARM_MOVW_ABS_NC", /* name */
698 FALSE, /* partial_inplace */
699 0x000f0fff, /* src_mask */
700 0x000f0fff, /* dst_mask */
701 FALSE), /* pcrel_offset */
702
703 HOWTO (R_ARM_MOVT_ABS, /* type */
704 0, /* rightshift */
705 2, /* size (0 = byte, 1 = short, 2 = long) */
706 16, /* bitsize */
707 FALSE, /* pc_relative */
708 0, /* bitpos */
709 complain_overflow_bitfield,/* complain_on_overflow */
710 bfd_elf_generic_reloc, /* special_function */
711 "R_ARM_MOVT_ABS", /* name */
712 FALSE, /* partial_inplace */
713 0x000f0fff, /* src_mask */
714 0x000f0fff, /* dst_mask */
715 FALSE), /* pcrel_offset */
716
717 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
718 0, /* rightshift */
719 2, /* size (0 = byte, 1 = short, 2 = long) */
720 16, /* bitsize */
721 TRUE, /* pc_relative */
722 0, /* bitpos */
723 complain_overflow_dont,/* complain_on_overflow */
724 bfd_elf_generic_reloc, /* special_function */
725 "R_ARM_MOVW_PREL_NC", /* name */
726 FALSE, /* partial_inplace */
727 0x000f0fff, /* src_mask */
728 0x000f0fff, /* dst_mask */
729 TRUE), /* pcrel_offset */
730
731 HOWTO (R_ARM_MOVT_PREL, /* type */
732 0, /* rightshift */
733 2, /* size (0 = byte, 1 = short, 2 = long) */
734 16, /* bitsize */
735 TRUE, /* pc_relative */
736 0, /* bitpos */
737 complain_overflow_bitfield,/* complain_on_overflow */
738 bfd_elf_generic_reloc, /* special_function */
739 "R_ARM_MOVT_PREL", /* name */
740 FALSE, /* partial_inplace */
741 0x000f0fff, /* src_mask */
742 0x000f0fff, /* dst_mask */
743 TRUE), /* pcrel_offset */
744
745 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
746 0, /* rightshift */
747 2, /* size (0 = byte, 1 = short, 2 = long) */
748 16, /* bitsize */
749 FALSE, /* pc_relative */
750 0, /* bitpos */
751 complain_overflow_dont,/* complain_on_overflow */
752 bfd_elf_generic_reloc, /* special_function */
753 "R_ARM_THM_MOVW_ABS_NC",/* name */
754 FALSE, /* partial_inplace */
755 0x040f70ff, /* src_mask */
756 0x040f70ff, /* dst_mask */
757 FALSE), /* pcrel_offset */
758
759 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
760 0, /* rightshift */
761 2, /* size (0 = byte, 1 = short, 2 = long) */
762 16, /* bitsize */
763 FALSE, /* pc_relative */
764 0, /* bitpos */
765 complain_overflow_bitfield,/* complain_on_overflow */
766 bfd_elf_generic_reloc, /* special_function */
767 "R_ARM_THM_MOVT_ABS", /* name */
768 FALSE, /* partial_inplace */
769 0x040f70ff, /* src_mask */
770 0x040f70ff, /* dst_mask */
771 FALSE), /* pcrel_offset */
772
773 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
774 0, /* rightshift */
775 2, /* size (0 = byte, 1 = short, 2 = long) */
776 16, /* bitsize */
777 TRUE, /* pc_relative */
778 0, /* bitpos */
779 complain_overflow_dont,/* complain_on_overflow */
780 bfd_elf_generic_reloc, /* special_function */
781 "R_ARM_THM_MOVW_PREL_NC",/* name */
782 FALSE, /* partial_inplace */
783 0x040f70ff, /* src_mask */
784 0x040f70ff, /* dst_mask */
785 TRUE), /* pcrel_offset */
786
787 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
788 0, /* rightshift */
789 2, /* size (0 = byte, 1 = short, 2 = long) */
790 16, /* bitsize */
791 TRUE, /* pc_relative */
792 0, /* bitpos */
793 complain_overflow_bitfield,/* complain_on_overflow */
794 bfd_elf_generic_reloc, /* special_function */
795 "R_ARM_THM_MOVT_PREL", /* name */
796 FALSE, /* partial_inplace */
797 0x040f70ff, /* src_mask */
798 0x040f70ff, /* dst_mask */
799 TRUE), /* pcrel_offset */
800
801 HOWTO (R_ARM_THM_JUMP19, /* type */
802 1, /* rightshift */
803 2, /* size (0 = byte, 1 = short, 2 = long) */
804 19, /* bitsize */
805 TRUE, /* pc_relative */
806 0, /* bitpos */
807 complain_overflow_signed,/* complain_on_overflow */
808 bfd_elf_generic_reloc, /* special_function */
809 "R_ARM_THM_JUMP19", /* name */
810 FALSE, /* partial_inplace */
811 0x043f2fff, /* src_mask */
812 0x043f2fff, /* dst_mask */
813 TRUE), /* pcrel_offset */
814
815 HOWTO (R_ARM_THM_JUMP6, /* type */
816 1, /* rightshift */
817 1, /* size (0 = byte, 1 = short, 2 = long) */
818 6, /* bitsize */
819 TRUE, /* pc_relative */
820 0, /* bitpos */
821 complain_overflow_unsigned,/* complain_on_overflow */
822 bfd_elf_generic_reloc, /* special_function */
823 "R_ARM_THM_JUMP6", /* name */
824 FALSE, /* partial_inplace */
825 0x02f8, /* src_mask */
826 0x02f8, /* dst_mask */
827 TRUE), /* pcrel_offset */
828
829 /* These are declared as 13-bit signed relocations because we can
830 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
831 versa. */
832 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
833 0, /* rightshift */
834 2, /* size (0 = byte, 1 = short, 2 = long) */
835 13, /* bitsize */
836 TRUE, /* pc_relative */
837 0, /* bitpos */
838 complain_overflow_dont,/* complain_on_overflow */
839 bfd_elf_generic_reloc, /* special_function */
840 "R_ARM_THM_ALU_PREL_11_0",/* name */
841 FALSE, /* partial_inplace */
842 0xffffffff, /* src_mask */
843 0xffffffff, /* dst_mask */
844 TRUE), /* pcrel_offset */
845
846 HOWTO (R_ARM_THM_PC12, /* type */
847 0, /* rightshift */
848 2, /* size (0 = byte, 1 = short, 2 = long) */
849 13, /* bitsize */
850 TRUE, /* pc_relative */
851 0, /* bitpos */
852 complain_overflow_dont,/* complain_on_overflow */
853 bfd_elf_generic_reloc, /* special_function */
854 "R_ARM_THM_PC12", /* name */
855 FALSE, /* partial_inplace */
856 0xffffffff, /* src_mask */
857 0xffffffff, /* dst_mask */
858 TRUE), /* pcrel_offset */
859
860 HOWTO (R_ARM_ABS32_NOI, /* type */
861 0, /* rightshift */
862 2, /* size (0 = byte, 1 = short, 2 = long) */
863 32, /* bitsize */
864 FALSE, /* pc_relative */
865 0, /* bitpos */
866 complain_overflow_dont,/* complain_on_overflow */
867 bfd_elf_generic_reloc, /* special_function */
868 "R_ARM_ABS32_NOI", /* name */
869 FALSE, /* partial_inplace */
870 0xffffffff, /* src_mask */
871 0xffffffff, /* dst_mask */
872 FALSE), /* pcrel_offset */
873
874 HOWTO (R_ARM_REL32_NOI, /* type */
875 0, /* rightshift */
876 2, /* size (0 = byte, 1 = short, 2 = long) */
877 32, /* bitsize */
878 TRUE, /* pc_relative */
879 0, /* bitpos */
880 complain_overflow_dont,/* complain_on_overflow */
881 bfd_elf_generic_reloc, /* special_function */
882 "R_ARM_REL32_NOI", /* name */
883 FALSE, /* partial_inplace */
884 0xffffffff, /* src_mask */
885 0xffffffff, /* dst_mask */
886 FALSE), /* pcrel_offset */
887
888 /* Group relocations. */
889
890 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
891 0, /* rightshift */
892 2, /* size (0 = byte, 1 = short, 2 = long) */
893 32, /* bitsize */
894 TRUE, /* pc_relative */
895 0, /* bitpos */
896 complain_overflow_dont,/* complain_on_overflow */
897 bfd_elf_generic_reloc, /* special_function */
898 "R_ARM_ALU_PC_G0_NC", /* name */
899 FALSE, /* partial_inplace */
900 0xffffffff, /* src_mask */
901 0xffffffff, /* dst_mask */
902 TRUE), /* pcrel_offset */
903
904 HOWTO (R_ARM_ALU_PC_G0, /* type */
905 0, /* rightshift */
906 2, /* size (0 = byte, 1 = short, 2 = long) */
907 32, /* bitsize */
908 TRUE, /* pc_relative */
909 0, /* bitpos */
910 complain_overflow_dont,/* complain_on_overflow */
911 bfd_elf_generic_reloc, /* special_function */
912 "R_ARM_ALU_PC_G0", /* name */
913 FALSE, /* partial_inplace */
914 0xffffffff, /* src_mask */
915 0xffffffff, /* dst_mask */
916 TRUE), /* pcrel_offset */
917
918 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
919 0, /* rightshift */
920 2, /* size (0 = byte, 1 = short, 2 = long) */
921 32, /* bitsize */
922 TRUE, /* pc_relative */
923 0, /* bitpos */
924 complain_overflow_dont,/* complain_on_overflow */
925 bfd_elf_generic_reloc, /* special_function */
926 "R_ARM_ALU_PC_G1_NC", /* name */
927 FALSE, /* partial_inplace */
928 0xffffffff, /* src_mask */
929 0xffffffff, /* dst_mask */
930 TRUE), /* pcrel_offset */
931
932 HOWTO (R_ARM_ALU_PC_G1, /* type */
933 0, /* rightshift */
934 2, /* size (0 = byte, 1 = short, 2 = long) */
935 32, /* bitsize */
936 TRUE, /* pc_relative */
937 0, /* bitpos */
938 complain_overflow_dont,/* complain_on_overflow */
939 bfd_elf_generic_reloc, /* special_function */
940 "R_ARM_ALU_PC_G1", /* name */
941 FALSE, /* partial_inplace */
942 0xffffffff, /* src_mask */
943 0xffffffff, /* dst_mask */
944 TRUE), /* pcrel_offset */
945
946 HOWTO (R_ARM_ALU_PC_G2, /* type */
947 0, /* rightshift */
948 2, /* size (0 = byte, 1 = short, 2 = long) */
949 32, /* bitsize */
950 TRUE, /* pc_relative */
951 0, /* bitpos */
952 complain_overflow_dont,/* complain_on_overflow */
953 bfd_elf_generic_reloc, /* special_function */
954 "R_ARM_ALU_PC_G2", /* name */
955 FALSE, /* partial_inplace */
956 0xffffffff, /* src_mask */
957 0xffffffff, /* dst_mask */
958 TRUE), /* pcrel_offset */
959
960 HOWTO (R_ARM_LDR_PC_G1, /* type */
961 0, /* rightshift */
962 2, /* size (0 = byte, 1 = short, 2 = long) */
963 32, /* bitsize */
964 TRUE, /* pc_relative */
965 0, /* bitpos */
966 complain_overflow_dont,/* complain_on_overflow */
967 bfd_elf_generic_reloc, /* special_function */
968 "R_ARM_LDR_PC_G1", /* name */
969 FALSE, /* partial_inplace */
970 0xffffffff, /* src_mask */
971 0xffffffff, /* dst_mask */
972 TRUE), /* pcrel_offset */
973
974 HOWTO (R_ARM_LDR_PC_G2, /* type */
975 0, /* rightshift */
976 2, /* size (0 = byte, 1 = short, 2 = long) */
977 32, /* bitsize */
978 TRUE, /* pc_relative */
979 0, /* bitpos */
980 complain_overflow_dont,/* complain_on_overflow */
981 bfd_elf_generic_reloc, /* special_function */
982 "R_ARM_LDR_PC_G2", /* name */
983 FALSE, /* partial_inplace */
984 0xffffffff, /* src_mask */
985 0xffffffff, /* dst_mask */
986 TRUE), /* pcrel_offset */
987
988 HOWTO (R_ARM_LDRS_PC_G0, /* type */
989 0, /* rightshift */
990 2, /* size (0 = byte, 1 = short, 2 = long) */
991 32, /* bitsize */
992 TRUE, /* pc_relative */
993 0, /* bitpos */
994 complain_overflow_dont,/* complain_on_overflow */
995 bfd_elf_generic_reloc, /* special_function */
996 "R_ARM_LDRS_PC_G0", /* name */
997 FALSE, /* partial_inplace */
998 0xffffffff, /* src_mask */
999 0xffffffff, /* dst_mask */
1000 TRUE), /* pcrel_offset */
1001
1002 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1003 0, /* rightshift */
1004 2, /* size (0 = byte, 1 = short, 2 = long) */
1005 32, /* bitsize */
1006 TRUE, /* pc_relative */
1007 0, /* bitpos */
1008 complain_overflow_dont,/* complain_on_overflow */
1009 bfd_elf_generic_reloc, /* special_function */
1010 "R_ARM_LDRS_PC_G1", /* name */
1011 FALSE, /* partial_inplace */
1012 0xffffffff, /* src_mask */
1013 0xffffffff, /* dst_mask */
1014 TRUE), /* pcrel_offset */
1015
1016 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1017 0, /* rightshift */
1018 2, /* size (0 = byte, 1 = short, 2 = long) */
1019 32, /* bitsize */
1020 TRUE, /* pc_relative */
1021 0, /* bitpos */
1022 complain_overflow_dont,/* complain_on_overflow */
1023 bfd_elf_generic_reloc, /* special_function */
1024 "R_ARM_LDRS_PC_G2", /* name */
1025 FALSE, /* partial_inplace */
1026 0xffffffff, /* src_mask */
1027 0xffffffff, /* dst_mask */
1028 TRUE), /* pcrel_offset */
1029
1030 HOWTO (R_ARM_LDC_PC_G0, /* type */
1031 0, /* rightshift */
1032 2, /* size (0 = byte, 1 = short, 2 = long) */
1033 32, /* bitsize */
1034 TRUE, /* pc_relative */
1035 0, /* bitpos */
1036 complain_overflow_dont,/* complain_on_overflow */
1037 bfd_elf_generic_reloc, /* special_function */
1038 "R_ARM_LDC_PC_G0", /* name */
1039 FALSE, /* partial_inplace */
1040 0xffffffff, /* src_mask */
1041 0xffffffff, /* dst_mask */
1042 TRUE), /* pcrel_offset */
1043
1044 HOWTO (R_ARM_LDC_PC_G1, /* type */
1045 0, /* rightshift */
1046 2, /* size (0 = byte, 1 = short, 2 = long) */
1047 32, /* bitsize */
1048 TRUE, /* pc_relative */
1049 0, /* bitpos */
1050 complain_overflow_dont,/* complain_on_overflow */
1051 bfd_elf_generic_reloc, /* special_function */
1052 "R_ARM_LDC_PC_G1", /* name */
1053 FALSE, /* partial_inplace */
1054 0xffffffff, /* src_mask */
1055 0xffffffff, /* dst_mask */
1056 TRUE), /* pcrel_offset */
1057
1058 HOWTO (R_ARM_LDC_PC_G2, /* type */
1059 0, /* rightshift */
1060 2, /* size (0 = byte, 1 = short, 2 = long) */
1061 32, /* bitsize */
1062 TRUE, /* pc_relative */
1063 0, /* bitpos */
1064 complain_overflow_dont,/* complain_on_overflow */
1065 bfd_elf_generic_reloc, /* special_function */
1066 "R_ARM_LDC_PC_G2", /* name */
1067 FALSE, /* partial_inplace */
1068 0xffffffff, /* src_mask */
1069 0xffffffff, /* dst_mask */
1070 TRUE), /* pcrel_offset */
1071
1072 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1073 0, /* rightshift */
1074 2, /* size (0 = byte, 1 = short, 2 = long) */
1075 32, /* bitsize */
1076 TRUE, /* pc_relative */
1077 0, /* bitpos */
1078 complain_overflow_dont,/* complain_on_overflow */
1079 bfd_elf_generic_reloc, /* special_function */
1080 "R_ARM_ALU_SB_G0_NC", /* name */
1081 FALSE, /* partial_inplace */
1082 0xffffffff, /* src_mask */
1083 0xffffffff, /* dst_mask */
1084 TRUE), /* pcrel_offset */
1085
1086 HOWTO (R_ARM_ALU_SB_G0, /* type */
1087 0, /* rightshift */
1088 2, /* size (0 = byte, 1 = short, 2 = long) */
1089 32, /* bitsize */
1090 TRUE, /* pc_relative */
1091 0, /* bitpos */
1092 complain_overflow_dont,/* complain_on_overflow */
1093 bfd_elf_generic_reloc, /* special_function */
1094 "R_ARM_ALU_SB_G0", /* name */
1095 FALSE, /* partial_inplace */
1096 0xffffffff, /* src_mask */
1097 0xffffffff, /* dst_mask */
1098 TRUE), /* pcrel_offset */
1099
1100 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1101 0, /* rightshift */
1102 2, /* size (0 = byte, 1 = short, 2 = long) */
1103 32, /* bitsize */
1104 TRUE, /* pc_relative */
1105 0, /* bitpos */
1106 complain_overflow_dont,/* complain_on_overflow */
1107 bfd_elf_generic_reloc, /* special_function */
1108 "R_ARM_ALU_SB_G1_NC", /* name */
1109 FALSE, /* partial_inplace */
1110 0xffffffff, /* src_mask */
1111 0xffffffff, /* dst_mask */
1112 TRUE), /* pcrel_offset */
1113
1114 HOWTO (R_ARM_ALU_SB_G1, /* type */
1115 0, /* rightshift */
1116 2, /* size (0 = byte, 1 = short, 2 = long) */
1117 32, /* bitsize */
1118 TRUE, /* pc_relative */
1119 0, /* bitpos */
1120 complain_overflow_dont,/* complain_on_overflow */
1121 bfd_elf_generic_reloc, /* special_function */
1122 "R_ARM_ALU_SB_G1", /* name */
1123 FALSE, /* partial_inplace */
1124 0xffffffff, /* src_mask */
1125 0xffffffff, /* dst_mask */
1126 TRUE), /* pcrel_offset */
1127
1128 HOWTO (R_ARM_ALU_SB_G2, /* type */
1129 0, /* rightshift */
1130 2, /* size (0 = byte, 1 = short, 2 = long) */
1131 32, /* bitsize */
1132 TRUE, /* pc_relative */
1133 0, /* bitpos */
1134 complain_overflow_dont,/* complain_on_overflow */
1135 bfd_elf_generic_reloc, /* special_function */
1136 "R_ARM_ALU_SB_G2", /* name */
1137 FALSE, /* partial_inplace */
1138 0xffffffff, /* src_mask */
1139 0xffffffff, /* dst_mask */
1140 TRUE), /* pcrel_offset */
1141
1142 HOWTO (R_ARM_LDR_SB_G0, /* type */
1143 0, /* rightshift */
1144 2, /* size (0 = byte, 1 = short, 2 = long) */
1145 32, /* bitsize */
1146 TRUE, /* pc_relative */
1147 0, /* bitpos */
1148 complain_overflow_dont,/* complain_on_overflow */
1149 bfd_elf_generic_reloc, /* special_function */
1150 "R_ARM_LDR_SB_G0", /* name */
1151 FALSE, /* partial_inplace */
1152 0xffffffff, /* src_mask */
1153 0xffffffff, /* dst_mask */
1154 TRUE), /* pcrel_offset */
1155
1156 HOWTO (R_ARM_LDR_SB_G1, /* type */
1157 0, /* rightshift */
1158 2, /* size (0 = byte, 1 = short, 2 = long) */
1159 32, /* bitsize */
1160 TRUE, /* pc_relative */
1161 0, /* bitpos */
1162 complain_overflow_dont,/* complain_on_overflow */
1163 bfd_elf_generic_reloc, /* special_function */
1164 "R_ARM_LDR_SB_G1", /* name */
1165 FALSE, /* partial_inplace */
1166 0xffffffff, /* src_mask */
1167 0xffffffff, /* dst_mask */
1168 TRUE), /* pcrel_offset */
1169
1170 HOWTO (R_ARM_LDR_SB_G2, /* type */
1171 0, /* rightshift */
1172 2, /* size (0 = byte, 1 = short, 2 = long) */
1173 32, /* bitsize */
1174 TRUE, /* pc_relative */
1175 0, /* bitpos */
1176 complain_overflow_dont,/* complain_on_overflow */
1177 bfd_elf_generic_reloc, /* special_function */
1178 "R_ARM_LDR_SB_G2", /* name */
1179 FALSE, /* partial_inplace */
1180 0xffffffff, /* src_mask */
1181 0xffffffff, /* dst_mask */
1182 TRUE), /* pcrel_offset */
1183
1184 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1185 0, /* rightshift */
1186 2, /* size (0 = byte, 1 = short, 2 = long) */
1187 32, /* bitsize */
1188 TRUE, /* pc_relative */
1189 0, /* bitpos */
1190 complain_overflow_dont,/* complain_on_overflow */
1191 bfd_elf_generic_reloc, /* special_function */
1192 "R_ARM_LDRS_SB_G0", /* name */
1193 FALSE, /* partial_inplace */
1194 0xffffffff, /* src_mask */
1195 0xffffffff, /* dst_mask */
1196 TRUE), /* pcrel_offset */
1197
1198 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1199 0, /* rightshift */
1200 2, /* size (0 = byte, 1 = short, 2 = long) */
1201 32, /* bitsize */
1202 TRUE, /* pc_relative */
1203 0, /* bitpos */
1204 complain_overflow_dont,/* complain_on_overflow */
1205 bfd_elf_generic_reloc, /* special_function */
1206 "R_ARM_LDRS_SB_G1", /* name */
1207 FALSE, /* partial_inplace */
1208 0xffffffff, /* src_mask */
1209 0xffffffff, /* dst_mask */
1210 TRUE), /* pcrel_offset */
1211
1212 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1213 0, /* rightshift */
1214 2, /* size (0 = byte, 1 = short, 2 = long) */
1215 32, /* bitsize */
1216 TRUE, /* pc_relative */
1217 0, /* bitpos */
1218 complain_overflow_dont,/* complain_on_overflow */
1219 bfd_elf_generic_reloc, /* special_function */
1220 "R_ARM_LDRS_SB_G2", /* name */
1221 FALSE, /* partial_inplace */
1222 0xffffffff, /* src_mask */
1223 0xffffffff, /* dst_mask */
1224 TRUE), /* pcrel_offset */
1225
1226 HOWTO (R_ARM_LDC_SB_G0, /* type */
1227 0, /* rightshift */
1228 2, /* size (0 = byte, 1 = short, 2 = long) */
1229 32, /* bitsize */
1230 TRUE, /* pc_relative */
1231 0, /* bitpos */
1232 complain_overflow_dont,/* complain_on_overflow */
1233 bfd_elf_generic_reloc, /* special_function */
1234 "R_ARM_LDC_SB_G0", /* name */
1235 FALSE, /* partial_inplace */
1236 0xffffffff, /* src_mask */
1237 0xffffffff, /* dst_mask */
1238 TRUE), /* pcrel_offset */
1239
1240 HOWTO (R_ARM_LDC_SB_G1, /* type */
1241 0, /* rightshift */
1242 2, /* size (0 = byte, 1 = short, 2 = long) */
1243 32, /* bitsize */
1244 TRUE, /* pc_relative */
1245 0, /* bitpos */
1246 complain_overflow_dont,/* complain_on_overflow */
1247 bfd_elf_generic_reloc, /* special_function */
1248 "R_ARM_LDC_SB_G1", /* name */
1249 FALSE, /* partial_inplace */
1250 0xffffffff, /* src_mask */
1251 0xffffffff, /* dst_mask */
1252 TRUE), /* pcrel_offset */
1253
1254 HOWTO (R_ARM_LDC_SB_G2, /* type */
1255 0, /* rightshift */
1256 2, /* size (0 = byte, 1 = short, 2 = long) */
1257 32, /* bitsize */
1258 TRUE, /* pc_relative */
1259 0, /* bitpos */
1260 complain_overflow_dont,/* complain_on_overflow */
1261 bfd_elf_generic_reloc, /* special_function */
1262 "R_ARM_LDC_SB_G2", /* name */
1263 FALSE, /* partial_inplace */
1264 0xffffffff, /* src_mask */
1265 0xffffffff, /* dst_mask */
1266 TRUE), /* pcrel_offset */
1267
1268 /* End of group relocations. */
1269
1270 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1271 0, /* rightshift */
1272 2, /* size (0 = byte, 1 = short, 2 = long) */
1273 16, /* bitsize */
1274 FALSE, /* pc_relative */
1275 0, /* bitpos */
1276 complain_overflow_dont,/* complain_on_overflow */
1277 bfd_elf_generic_reloc, /* special_function */
1278 "R_ARM_MOVW_BREL_NC", /* name */
1279 FALSE, /* partial_inplace */
1280 0x0000ffff, /* src_mask */
1281 0x0000ffff, /* dst_mask */
1282 FALSE), /* pcrel_offset */
1283
1284 HOWTO (R_ARM_MOVT_BREL, /* type */
1285 0, /* rightshift */
1286 2, /* size (0 = byte, 1 = short, 2 = long) */
1287 16, /* bitsize */
1288 FALSE, /* pc_relative */
1289 0, /* bitpos */
1290 complain_overflow_bitfield,/* complain_on_overflow */
1291 bfd_elf_generic_reloc, /* special_function */
1292 "R_ARM_MOVT_BREL", /* name */
1293 FALSE, /* partial_inplace */
1294 0x0000ffff, /* src_mask */
1295 0x0000ffff, /* dst_mask */
1296 FALSE), /* pcrel_offset */
1297
1298 HOWTO (R_ARM_MOVW_BREL, /* type */
1299 0, /* rightshift */
1300 2, /* size (0 = byte, 1 = short, 2 = long) */
1301 16, /* bitsize */
1302 FALSE, /* pc_relative */
1303 0, /* bitpos */
1304 complain_overflow_dont,/* complain_on_overflow */
1305 bfd_elf_generic_reloc, /* special_function */
1306 "R_ARM_MOVW_BREL", /* name */
1307 FALSE, /* partial_inplace */
1308 0x0000ffff, /* src_mask */
1309 0x0000ffff, /* dst_mask */
1310 FALSE), /* pcrel_offset */
1311
1312 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1313 0, /* rightshift */
1314 2, /* size (0 = byte, 1 = short, 2 = long) */
1315 16, /* bitsize */
1316 FALSE, /* pc_relative */
1317 0, /* bitpos */
1318 complain_overflow_dont,/* complain_on_overflow */
1319 bfd_elf_generic_reloc, /* special_function */
1320 "R_ARM_THM_MOVW_BREL_NC",/* name */
1321 FALSE, /* partial_inplace */
1322 0x040f70ff, /* src_mask */
1323 0x040f70ff, /* dst_mask */
1324 FALSE), /* pcrel_offset */
1325
1326 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1327 0, /* rightshift */
1328 2, /* size (0 = byte, 1 = short, 2 = long) */
1329 16, /* bitsize */
1330 FALSE, /* pc_relative */
1331 0, /* bitpos */
1332 complain_overflow_bitfield,/* complain_on_overflow */
1333 bfd_elf_generic_reloc, /* special_function */
1334 "R_ARM_THM_MOVT_BREL", /* name */
1335 FALSE, /* partial_inplace */
1336 0x040f70ff, /* src_mask */
1337 0x040f70ff, /* dst_mask */
1338 FALSE), /* pcrel_offset */
1339
1340 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1341 0, /* rightshift */
1342 2, /* size (0 = byte, 1 = short, 2 = long) */
1343 16, /* bitsize */
1344 FALSE, /* pc_relative */
1345 0, /* bitpos */
1346 complain_overflow_dont,/* complain_on_overflow */
1347 bfd_elf_generic_reloc, /* special_function */
1348 "R_ARM_THM_MOVW_BREL", /* name */
1349 FALSE, /* partial_inplace */
1350 0x040f70ff, /* src_mask */
1351 0x040f70ff, /* dst_mask */
1352 FALSE), /* pcrel_offset */
1353
1354 EMPTY_HOWTO (90), /* unallocated */
1355 EMPTY_HOWTO (91),
1356 EMPTY_HOWTO (92),
1357 EMPTY_HOWTO (93),
1358
1359 HOWTO (R_ARM_PLT32_ABS, /* type */
1360 0, /* rightshift */
1361 2, /* size (0 = byte, 1 = short, 2 = long) */
1362 32, /* bitsize */
1363 FALSE, /* pc_relative */
1364 0, /* bitpos */
1365 complain_overflow_dont,/* complain_on_overflow */
1366 bfd_elf_generic_reloc, /* special_function */
1367 "R_ARM_PLT32_ABS", /* name */
1368 FALSE, /* partial_inplace */
1369 0xffffffff, /* src_mask */
1370 0xffffffff, /* dst_mask */
1371 FALSE), /* pcrel_offset */
1372
1373 HOWTO (R_ARM_GOT_ABS, /* type */
1374 0, /* rightshift */
1375 2, /* size (0 = byte, 1 = short, 2 = long) */
1376 32, /* bitsize */
1377 FALSE, /* pc_relative */
1378 0, /* bitpos */
1379 complain_overflow_dont,/* complain_on_overflow */
1380 bfd_elf_generic_reloc, /* special_function */
1381 "R_ARM_GOT_ABS", /* name */
1382 FALSE, /* partial_inplace */
1383 0xffffffff, /* src_mask */
1384 0xffffffff, /* dst_mask */
1385 FALSE), /* pcrel_offset */
1386
1387 HOWTO (R_ARM_GOT_PREL, /* type */
1388 0, /* rightshift */
1389 2, /* size (0 = byte, 1 = short, 2 = long) */
1390 32, /* bitsize */
1391 TRUE, /* pc_relative */
1392 0, /* bitpos */
1393 complain_overflow_dont, /* complain_on_overflow */
1394 bfd_elf_generic_reloc, /* special_function */
1395 "R_ARM_GOT_PREL", /* name */
1396 FALSE, /* partial_inplace */
1397 0xffffffff, /* src_mask */
1398 0xffffffff, /* dst_mask */
1399 TRUE), /* pcrel_offset */
1400
1401 HOWTO (R_ARM_GOT_BREL12, /* type */
1402 0, /* rightshift */
1403 2, /* size (0 = byte, 1 = short, 2 = long) */
1404 12, /* bitsize */
1405 FALSE, /* pc_relative */
1406 0, /* bitpos */
1407 complain_overflow_bitfield,/* complain_on_overflow */
1408 bfd_elf_generic_reloc, /* special_function */
1409 "R_ARM_GOT_BREL12", /* name */
1410 FALSE, /* partial_inplace */
1411 0x00000fff, /* src_mask */
1412 0x00000fff, /* dst_mask */
1413 FALSE), /* pcrel_offset */
1414
1415 HOWTO (R_ARM_GOTOFF12, /* type */
1416 0, /* rightshift */
1417 2, /* size (0 = byte, 1 = short, 2 = long) */
1418 12, /* bitsize */
1419 FALSE, /* pc_relative */
1420 0, /* bitpos */
1421 complain_overflow_bitfield,/* complain_on_overflow */
1422 bfd_elf_generic_reloc, /* special_function */
1423 "R_ARM_GOTOFF12", /* name */
1424 FALSE, /* partial_inplace */
1425 0x00000fff, /* src_mask */
1426 0x00000fff, /* dst_mask */
1427 FALSE), /* pcrel_offset */
1428
1429 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1430
1431 /* GNU extension to record C++ vtable member usage */
1432 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1433 0, /* rightshift */
1434 2, /* size (0 = byte, 1 = short, 2 = long) */
1435 0, /* bitsize */
1436 FALSE, /* pc_relative */
1437 0, /* bitpos */
1438 complain_overflow_dont, /* complain_on_overflow */
1439 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1440 "R_ARM_GNU_VTENTRY", /* name */
1441 FALSE, /* partial_inplace */
1442 0, /* src_mask */
1443 0, /* dst_mask */
1444 FALSE), /* pcrel_offset */
1445
1446 /* GNU extension to record C++ vtable hierarchy */
1447 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1448 0, /* rightshift */
1449 2, /* size (0 = byte, 1 = short, 2 = long) */
1450 0, /* bitsize */
1451 FALSE, /* pc_relative */
1452 0, /* bitpos */
1453 complain_overflow_dont, /* complain_on_overflow */
1454 NULL, /* special_function */
1455 "R_ARM_GNU_VTINHERIT", /* name */
1456 FALSE, /* partial_inplace */
1457 0, /* src_mask */
1458 0, /* dst_mask */
1459 FALSE), /* pcrel_offset */
1460
1461 HOWTO (R_ARM_THM_JUMP11, /* type */
1462 1, /* rightshift */
1463 1, /* size (0 = byte, 1 = short, 2 = long) */
1464 11, /* bitsize */
1465 TRUE, /* pc_relative */
1466 0, /* bitpos */
1467 complain_overflow_signed, /* complain_on_overflow */
1468 bfd_elf_generic_reloc, /* special_function */
1469 "R_ARM_THM_JUMP11", /* name */
1470 FALSE, /* partial_inplace */
1471 0x000007ff, /* src_mask */
1472 0x000007ff, /* dst_mask */
1473 TRUE), /* pcrel_offset */
1474
1475 HOWTO (R_ARM_THM_JUMP8, /* type */
1476 1, /* rightshift */
1477 1, /* size (0 = byte, 1 = short, 2 = long) */
1478 8, /* bitsize */
1479 TRUE, /* pc_relative */
1480 0, /* bitpos */
1481 complain_overflow_signed, /* complain_on_overflow */
1482 bfd_elf_generic_reloc, /* special_function */
1483 "R_ARM_THM_JUMP8", /* name */
1484 FALSE, /* partial_inplace */
1485 0x000000ff, /* src_mask */
1486 0x000000ff, /* dst_mask */
1487 TRUE), /* pcrel_offset */
1488
1489 /* TLS relocations */
1490 HOWTO (R_ARM_TLS_GD32, /* type */
1491 0, /* rightshift */
1492 2, /* size (0 = byte, 1 = short, 2 = long) */
1493 32, /* bitsize */
1494 FALSE, /* pc_relative */
1495 0, /* bitpos */
1496 complain_overflow_bitfield,/* complain_on_overflow */
1497 NULL, /* special_function */
1498 "R_ARM_TLS_GD32", /* name */
1499 TRUE, /* partial_inplace */
1500 0xffffffff, /* src_mask */
1501 0xffffffff, /* dst_mask */
1502 FALSE), /* pcrel_offset */
1503
1504 HOWTO (R_ARM_TLS_LDM32, /* type */
1505 0, /* rightshift */
1506 2, /* size (0 = byte, 1 = short, 2 = long) */
1507 32, /* bitsize */
1508 FALSE, /* pc_relative */
1509 0, /* bitpos */
1510 complain_overflow_bitfield,/* complain_on_overflow */
1511 bfd_elf_generic_reloc, /* special_function */
1512 "R_ARM_TLS_LDM32", /* name */
1513 TRUE, /* partial_inplace */
1514 0xffffffff, /* src_mask */
1515 0xffffffff, /* dst_mask */
1516 FALSE), /* pcrel_offset */
1517
1518 HOWTO (R_ARM_TLS_LDO32, /* type */
1519 0, /* rightshift */
1520 2, /* size (0 = byte, 1 = short, 2 = long) */
1521 32, /* bitsize */
1522 FALSE, /* pc_relative */
1523 0, /* bitpos */
1524 complain_overflow_bitfield,/* complain_on_overflow */
1525 bfd_elf_generic_reloc, /* special_function */
1526 "R_ARM_TLS_LDO32", /* name */
1527 TRUE, /* partial_inplace */
1528 0xffffffff, /* src_mask */
1529 0xffffffff, /* dst_mask */
1530 FALSE), /* pcrel_offset */
1531
1532 HOWTO (R_ARM_TLS_IE32, /* type */
1533 0, /* rightshift */
1534 2, /* size (0 = byte, 1 = short, 2 = long) */
1535 32, /* bitsize */
1536 FALSE, /* pc_relative */
1537 0, /* bitpos */
1538 complain_overflow_bitfield,/* complain_on_overflow */
1539 NULL, /* special_function */
1540 "R_ARM_TLS_IE32", /* name */
1541 TRUE, /* partial_inplace */
1542 0xffffffff, /* src_mask */
1543 0xffffffff, /* dst_mask */
1544 FALSE), /* pcrel_offset */
1545
1546 HOWTO (R_ARM_TLS_LE32, /* type */
1547 0, /* rightshift */
1548 2, /* size (0 = byte, 1 = short, 2 = long) */
1549 32, /* bitsize */
1550 FALSE, /* pc_relative */
1551 0, /* bitpos */
1552 complain_overflow_bitfield,/* complain_on_overflow */
1553 bfd_elf_generic_reloc, /* special_function */
1554 "R_ARM_TLS_LE32", /* name */
1555 TRUE, /* partial_inplace */
1556 0xffffffff, /* src_mask */
1557 0xffffffff, /* dst_mask */
1558 FALSE), /* pcrel_offset */
1559
1560 HOWTO (R_ARM_TLS_LDO12, /* type */
1561 0, /* rightshift */
1562 2, /* size (0 = byte, 1 = short, 2 = long) */
1563 12, /* bitsize */
1564 FALSE, /* pc_relative */
1565 0, /* bitpos */
1566 complain_overflow_bitfield,/* complain_on_overflow */
1567 bfd_elf_generic_reloc, /* special_function */
1568 "R_ARM_TLS_LDO12", /* name */
1569 FALSE, /* partial_inplace */
1570 0x00000fff, /* src_mask */
1571 0x00000fff, /* dst_mask */
1572 FALSE), /* pcrel_offset */
1573
1574 HOWTO (R_ARM_TLS_LE12, /* type */
1575 0, /* rightshift */
1576 2, /* size (0 = byte, 1 = short, 2 = long) */
1577 12, /* bitsize */
1578 FALSE, /* pc_relative */
1579 0, /* bitpos */
1580 complain_overflow_bitfield,/* complain_on_overflow */
1581 bfd_elf_generic_reloc, /* special_function */
1582 "R_ARM_TLS_LE12", /* name */
1583 FALSE, /* partial_inplace */
1584 0x00000fff, /* src_mask */
1585 0x00000fff, /* dst_mask */
1586 FALSE), /* pcrel_offset */
1587
1588 HOWTO (R_ARM_TLS_IE12GP, /* type */
1589 0, /* rightshift */
1590 2, /* size (0 = byte, 1 = short, 2 = long) */
1591 12, /* bitsize */
1592 FALSE, /* pc_relative */
1593 0, /* bitpos */
1594 complain_overflow_bitfield,/* complain_on_overflow */
1595 bfd_elf_generic_reloc, /* special_function */
1596 "R_ARM_TLS_IE12GP", /* name */
1597 FALSE, /* partial_inplace */
1598 0x00000fff, /* src_mask */
1599 0x00000fff, /* dst_mask */
1600 FALSE), /* pcrel_offset */
1601 };
1602
1603 /* 112-127 private relocations
1604 128 R_ARM_ME_TOO, obsolete
1605 129-255 unallocated in AAELF.
1606
1607 249-255 extended, currently unused, relocations: */
1608
1609 static reloc_howto_type elf32_arm_howto_table_2[4] =
1610 {
1611 HOWTO (R_ARM_RREL32, /* type */
1612 0, /* rightshift */
1613 0, /* size (0 = byte, 1 = short, 2 = long) */
1614 0, /* bitsize */
1615 FALSE, /* pc_relative */
1616 0, /* bitpos */
1617 complain_overflow_dont,/* complain_on_overflow */
1618 bfd_elf_generic_reloc, /* special_function */
1619 "R_ARM_RREL32", /* name */
1620 FALSE, /* partial_inplace */
1621 0, /* src_mask */
1622 0, /* dst_mask */
1623 FALSE), /* pcrel_offset */
1624
1625 HOWTO (R_ARM_RABS32, /* type */
1626 0, /* rightshift */
1627 0, /* size (0 = byte, 1 = short, 2 = long) */
1628 0, /* bitsize */
1629 FALSE, /* pc_relative */
1630 0, /* bitpos */
1631 complain_overflow_dont,/* complain_on_overflow */
1632 bfd_elf_generic_reloc, /* special_function */
1633 "R_ARM_RABS32", /* name */
1634 FALSE, /* partial_inplace */
1635 0, /* src_mask */
1636 0, /* dst_mask */
1637 FALSE), /* pcrel_offset */
1638
1639 HOWTO (R_ARM_RPC24, /* type */
1640 0, /* rightshift */
1641 0, /* size (0 = byte, 1 = short, 2 = long) */
1642 0, /* bitsize */
1643 FALSE, /* pc_relative */
1644 0, /* bitpos */
1645 complain_overflow_dont,/* complain_on_overflow */
1646 bfd_elf_generic_reloc, /* special_function */
1647 "R_ARM_RPC24", /* name */
1648 FALSE, /* partial_inplace */
1649 0, /* src_mask */
1650 0, /* dst_mask */
1651 FALSE), /* pcrel_offset */
1652
1653 HOWTO (R_ARM_RBASE, /* type */
1654 0, /* rightshift */
1655 0, /* size (0 = byte, 1 = short, 2 = long) */
1656 0, /* bitsize */
1657 FALSE, /* pc_relative */
1658 0, /* bitpos */
1659 complain_overflow_dont,/* complain_on_overflow */
1660 bfd_elf_generic_reloc, /* special_function */
1661 "R_ARM_RBASE", /* name */
1662 FALSE, /* partial_inplace */
1663 0, /* src_mask */
1664 0, /* dst_mask */
1665 FALSE) /* pcrel_offset */
1666 };
1667
1668 static reloc_howto_type *
1669 elf32_arm_howto_from_type (unsigned int r_type)
1670 {
1671 if (r_type < NUM_ELEM (elf32_arm_howto_table_1))
1672 return &elf32_arm_howto_table_1[r_type];
1673
1674 if (r_type >= R_ARM_RREL32
1675 && r_type < R_ARM_RREL32 + NUM_ELEM (elf32_arm_howto_table_2))
1676 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1677
1678 return NULL;
1679 }
1680
1681 static void
1682 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1683 Elf_Internal_Rela * elf_reloc)
1684 {
1685 unsigned int r_type;
1686
1687 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1688 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1689 }
1690
1691 struct elf32_arm_reloc_map
1692 {
1693 bfd_reloc_code_real_type bfd_reloc_val;
1694 unsigned char elf_reloc_val;
1695 };
1696
1697 /* All entries in this list must also be present in elf32_arm_howto_table. */
1698 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1699 {
1700 {BFD_RELOC_NONE, R_ARM_NONE},
1701 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1702 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1703 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1704 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1705 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1706 {BFD_RELOC_32, R_ARM_ABS32},
1707 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1708 {BFD_RELOC_8, R_ARM_ABS8},
1709 {BFD_RELOC_16, R_ARM_ABS16},
1710 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1711 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1714 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1715 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1717 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1718 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1719 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1720 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1721 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1722 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1723 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1724 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1725 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1726 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1727 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1728 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1729 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1730 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1731 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1732 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1733 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1734 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1735 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1736 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1737 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1738 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1739 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1740 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1741 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1743 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1745 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1746 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1747 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1748 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1749 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1750 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1751 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1752 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1753 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1754 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1755 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1756 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1757 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1758 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1759 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1760 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1761 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1762 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1763 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1764 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1765 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1766 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1767 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1768 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1769 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1770 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1771 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1772 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1773 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1774 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1775 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1776 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1777 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1778 };
1779
1780 static reloc_howto_type *
1781 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1782 bfd_reloc_code_real_type code)
1783 {
1784 unsigned int i;
1785 for (i = 0; i < NUM_ELEM (elf32_arm_reloc_map); i ++)
1786 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1787 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1788
1789 return NULL;
1790 }
1791
1792 static reloc_howto_type *
1793 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1794 const char *r_name)
1795 {
1796 unsigned int i;
1797
1798 for (i = 0;
1799 i < (sizeof (elf32_arm_howto_table_1)
1800 / sizeof (elf32_arm_howto_table_1[0]));
1801 i++)
1802 if (elf32_arm_howto_table_1[i].name != NULL
1803 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1804 return &elf32_arm_howto_table_1[i];
1805
1806 for (i = 0;
1807 i < (sizeof (elf32_arm_howto_table_2)
1808 / sizeof (elf32_arm_howto_table_2[0]));
1809 i++)
1810 if (elf32_arm_howto_table_2[i].name != NULL
1811 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1812 return &elf32_arm_howto_table_2[i];
1813
1814 return NULL;
1815 }
1816
1817 /* Support for core dump NOTE sections */
1818 static bfd_boolean
1819 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1820 {
1821 int offset;
1822 size_t size;
1823
1824 switch (note->descsz)
1825 {
1826 default:
1827 return FALSE;
1828
1829 case 148: /* Linux/ARM 32-bit*/
1830 /* pr_cursig */
1831 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1832
1833 /* pr_pid */
1834 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1835
1836 /* pr_reg */
1837 offset = 72;
1838 size = 72;
1839
1840 break;
1841 }
1842
1843 /* Make a ".reg/999" section. */
1844 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1845 size, note->descpos + offset);
1846 }
1847
1848 static bfd_boolean
1849 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1850 {
1851 switch (note->descsz)
1852 {
1853 default:
1854 return FALSE;
1855
1856 case 124: /* Linux/ARM elf_prpsinfo */
1857 elf_tdata (abfd)->core_program
1858 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1859 elf_tdata (abfd)->core_command
1860 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1861 }
1862
1863 /* Note that for some reason, a spurious space is tacked
1864 onto the end of the args in some (at least one anyway)
1865 implementations, so strip it off if it exists. */
1866
1867 {
1868 char *command = elf_tdata (abfd)->core_command;
1869 int n = strlen (command);
1870
1871 if (0 < n && command[n - 1] == ' ')
1872 command[n - 1] = '\0';
1873 }
1874
1875 return TRUE;
1876 }
1877
1878 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1879 #define TARGET_LITTLE_NAME "elf32-littlearm"
1880 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1881 #define TARGET_BIG_NAME "elf32-bigarm"
1882
1883 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1884 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1885
1886 typedef unsigned long int insn32;
1887 typedef unsigned short int insn16;
1888
1889 /* In lieu of proper flags, assume all EABIv4 or later objects are
1890 interworkable. */
1891 #define INTERWORK_FLAG(abfd) \
1892 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1893 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1894
1895 /* The linker script knows the section names for placement.
1896 The entry_names are used to do simple name mangling on the stubs.
1897 Given a function name, and its type, the stub can be found. The
1898 name can be changed. The only requirement is the %s be present. */
1899 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1900 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1901
1902 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1903 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1904
1905 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1906 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1907
1908 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1909 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1910
1911 /* The name of the dynamic interpreter. This is put in the .interp
1912 section. */
1913 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1914
1915 #ifdef FOUR_WORD_PLT
1916
1917 /* The first entry in a procedure linkage table looks like
1918 this. It is set up so that any shared library function that is
1919 called before the relocation has been set up calls the dynamic
1920 linker first. */
1921 static const bfd_vma elf32_arm_plt0_entry [] =
1922 {
1923 0xe52de004, /* str lr, [sp, #-4]! */
1924 0xe59fe010, /* ldr lr, [pc, #16] */
1925 0xe08fe00e, /* add lr, pc, lr */
1926 0xe5bef008, /* ldr pc, [lr, #8]! */
1927 };
1928
1929 /* Subsequent entries in a procedure linkage table look like
1930 this. */
1931 static const bfd_vma elf32_arm_plt_entry [] =
1932 {
1933 0xe28fc600, /* add ip, pc, #NN */
1934 0xe28cca00, /* add ip, ip, #NN */
1935 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1936 0x00000000, /* unused */
1937 };
1938
1939 #else
1940
1941 /* The first entry in a procedure linkage table looks like
1942 this. It is set up so that any shared library function that is
1943 called before the relocation has been set up calls the dynamic
1944 linker first. */
1945 static const bfd_vma elf32_arm_plt0_entry [] =
1946 {
1947 0xe52de004, /* str lr, [sp, #-4]! */
1948 0xe59fe004, /* ldr lr, [pc, #4] */
1949 0xe08fe00e, /* add lr, pc, lr */
1950 0xe5bef008, /* ldr pc, [lr, #8]! */
1951 0x00000000, /* &GOT[0] - . */
1952 };
1953
1954 /* Subsequent entries in a procedure linkage table look like
1955 this. */
1956 static const bfd_vma elf32_arm_plt_entry [] =
1957 {
1958 0xe28fc600, /* add ip, pc, #0xNN00000 */
1959 0xe28cca00, /* add ip, ip, #0xNN000 */
1960 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1961 };
1962
1963 #endif
1964
1965 /* The format of the first entry in the procedure linkage table
1966 for a VxWorks executable. */
1967 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1968 {
1969 0xe52dc008, /* str ip,[sp,#-8]! */
1970 0xe59fc000, /* ldr ip,[pc] */
1971 0xe59cf008, /* ldr pc,[ip,#8] */
1972 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1973 };
1974
1975 /* The format of subsequent entries in a VxWorks executable. */
1976 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1977 {
1978 0xe59fc000, /* ldr ip,[pc] */
1979 0xe59cf000, /* ldr pc,[ip] */
1980 0x00000000, /* .long @got */
1981 0xe59fc000, /* ldr ip,[pc] */
1982 0xea000000, /* b _PLT */
1983 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1984 };
1985
1986 /* The format of entries in a VxWorks shared library. */
1987 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1988 {
1989 0xe59fc000, /* ldr ip,[pc] */
1990 0xe79cf009, /* ldr pc,[ip,r9] */
1991 0x00000000, /* .long @got */
1992 0xe59fc000, /* ldr ip,[pc] */
1993 0xe599f008, /* ldr pc,[r9,#8] */
1994 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1995 };
1996
1997 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1998 #define PLT_THUMB_STUB_SIZE 4
1999 static const bfd_vma elf32_arm_plt_thumb_stub [] =
2000 {
2001 0x4778, /* bx pc */
2002 0x46c0 /* nop */
2003 };
2004
2005 /* The entries in a PLT when using a DLL-based target with multiple
2006 address spaces. */
2007 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2008 {
2009 0xe51ff004, /* ldr pc, [pc, #-4] */
2010 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2011 };
2012
2013 /* Used to build a map of a section. This is required for mixed-endian
2014 code/data. */
2015
2016 typedef struct elf32_elf_section_map
2017 {
2018 bfd_vma vma;
2019 char type;
2020 }
2021 elf32_arm_section_map;
2022
2023 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2024
2025 typedef enum
2026 {
2027 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2028 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2029 VFP11_ERRATUM_ARM_VENEER,
2030 VFP11_ERRATUM_THUMB_VENEER
2031 }
2032 elf32_vfp11_erratum_type;
2033
2034 typedef struct elf32_vfp11_erratum_list
2035 {
2036 struct elf32_vfp11_erratum_list *next;
2037 bfd_vma vma;
2038 union
2039 {
2040 struct
2041 {
2042 struct elf32_vfp11_erratum_list *veneer;
2043 unsigned int vfp_insn;
2044 } b;
2045 struct
2046 {
2047 struct elf32_vfp11_erratum_list *branch;
2048 unsigned int id;
2049 } v;
2050 } u;
2051 elf32_vfp11_erratum_type type;
2052 }
2053 elf32_vfp11_erratum_list;
2054
2055 typedef struct _arm_elf_section_data
2056 {
2057 struct bfd_elf_section_data elf;
2058 unsigned int mapcount;
2059 unsigned int mapsize;
2060 elf32_arm_section_map *map;
2061 unsigned int erratumcount;
2062 elf32_vfp11_erratum_list *erratumlist;
2063 }
2064 _arm_elf_section_data;
2065
2066 #define elf32_arm_section_data(sec) \
2067 ((_arm_elf_section_data *) elf_section_data (sec))
2068
2069 /* The size of the thread control block. */
2070 #define TCB_SIZE 8
2071
2072 struct elf_arm_obj_tdata
2073 {
2074 struct elf_obj_tdata root;
2075
2076 /* tls_type for each local got entry. */
2077 char *local_got_tls_type;
2078
2079 /* Zero to warn when linking objects with incompatible enum sizes. */
2080 int no_enum_size_warning;
2081 };
2082
2083 #define elf_arm_tdata(bfd) \
2084 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2085
2086 #define elf32_arm_local_got_tls_type(bfd) \
2087 (elf_arm_tdata (bfd)->local_got_tls_type)
2088
2089 #define is_arm_elf(bfd) \
2090 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2091 && elf_tdata (bfd) != NULL \
2092 && elf_object_id (bfd) == ARM_ELF_TDATA)
2093
2094 static bfd_boolean
2095 elf32_arm_mkobject (bfd *abfd)
2096 {
2097 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2098 ARM_ELF_TDATA);
2099 }
2100
2101 /* The ARM linker needs to keep track of the number of relocs that it
2102 decides to copy in check_relocs for each symbol. This is so that
2103 it can discard PC relative relocs if it doesn't need them when
2104 linking with -Bsymbolic. We store the information in a field
2105 extending the regular ELF linker hash table. */
2106
2107 /* This structure keeps track of the number of relocs we have copied
2108 for a given symbol. */
2109 struct elf32_arm_relocs_copied
2110 {
2111 /* Next section. */
2112 struct elf32_arm_relocs_copied * next;
2113 /* A section in dynobj. */
2114 asection * section;
2115 /* Number of relocs copied in this section. */
2116 bfd_size_type count;
2117 /* Number of PC-relative relocs copied in this section. */
2118 bfd_size_type pc_count;
2119 };
2120
2121 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2122
2123 /* Arm ELF linker hash entry. */
2124 struct elf32_arm_link_hash_entry
2125 {
2126 struct elf_link_hash_entry root;
2127
2128 /* Number of PC relative relocs copied for this symbol. */
2129 struct elf32_arm_relocs_copied * relocs_copied;
2130
2131 /* We reference count Thumb references to a PLT entry separately,
2132 so that we can emit the Thumb trampoline only if needed. */
2133 bfd_signed_vma plt_thumb_refcount;
2134
2135 /* Some references from Thumb code may be eliminated by BL->BLX
2136 conversion, so record them separately. */
2137 bfd_signed_vma plt_maybe_thumb_refcount;
2138
2139 /* Since PLT entries have variable size if the Thumb prologue is
2140 used, we need to record the index into .got.plt instead of
2141 recomputing it from the PLT offset. */
2142 bfd_signed_vma plt_got_offset;
2143
2144 #define GOT_UNKNOWN 0
2145 #define GOT_NORMAL 1
2146 #define GOT_TLS_GD 2
2147 #define GOT_TLS_IE 4
2148 unsigned char tls_type;
2149
2150 /* The symbol marking the real symbol location for exported thumb
2151 symbols with Arm stubs. */
2152 struct elf_link_hash_entry *export_glue;
2153 };
2154
2155 /* Traverse an arm ELF linker hash table. */
2156 #define elf32_arm_link_hash_traverse(table, func, info) \
2157 (elf_link_hash_traverse \
2158 (&(table)->root, \
2159 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2160 (info)))
2161
2162 /* Get the ARM elf linker hash table from a link_info structure. */
2163 #define elf32_arm_hash_table(info) \
2164 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2165
2166 /* ARM ELF linker hash table. */
2167 struct elf32_arm_link_hash_table
2168 {
2169 /* The main hash table. */
2170 struct elf_link_hash_table root;
2171
2172 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2173 bfd_size_type thumb_glue_size;
2174
2175 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2176 bfd_size_type arm_glue_size;
2177
2178 /* The size in bytes of section containing the ARMv4 BX veneers. */
2179 bfd_size_type bx_glue_size;
2180
2181 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2182 veneer has been populated. */
2183 bfd_vma bx_glue_offset[15];
2184
2185 /* The size in bytes of the section containing glue for VFP11 erratum
2186 veneers. */
2187 bfd_size_type vfp11_erratum_glue_size;
2188
2189 /* An arbitrary input BFD chosen to hold the glue sections. */
2190 bfd * bfd_of_glue_owner;
2191
2192 /* Nonzero to output a BE8 image. */
2193 int byteswap_code;
2194
2195 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2196 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2197 int target1_is_rel;
2198
2199 /* The relocation to use for R_ARM_TARGET2 relocations. */
2200 int target2_reloc;
2201
2202 /* 0 = Ignore R_ARM_V4BX.
2203 1 = Convert BX to MOV PC.
2204 2 = Generate v4 interworing stubs. */
2205 int fix_v4bx;
2206
2207 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2208 int use_blx;
2209
2210 /* What sort of code sequences we should look for which may trigger the
2211 VFP11 denorm erratum. */
2212 bfd_arm_vfp11_fix vfp11_fix;
2213
2214 /* Global counter for the number of fixes we have emitted. */
2215 int num_vfp11_fixes;
2216
2217 /* Nonzero to force PIC branch veneers. */
2218 int pic_veneer;
2219
2220 /* The number of bytes in the initial entry in the PLT. */
2221 bfd_size_type plt_header_size;
2222
2223 /* The number of bytes in the subsequent PLT etries. */
2224 bfd_size_type plt_entry_size;
2225
2226 /* True if the target system is VxWorks. */
2227 int vxworks_p;
2228
2229 /* True if the target system is Symbian OS. */
2230 int symbian_p;
2231
2232 /* True if the target uses REL relocations. */
2233 int use_rel;
2234
2235 /* Short-cuts to get to dynamic linker sections. */
2236 asection *sgot;
2237 asection *sgotplt;
2238 asection *srelgot;
2239 asection *splt;
2240 asection *srelplt;
2241 asection *sdynbss;
2242 asection *srelbss;
2243
2244 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2245 asection *srelplt2;
2246
2247 /* Data for R_ARM_TLS_LDM32 relocations. */
2248 union {
2249 bfd_signed_vma refcount;
2250 bfd_vma offset;
2251 } tls_ldm_got;
2252
2253 /* Small local sym to section mapping cache. */
2254 struct sym_sec_cache sym_sec;
2255
2256 /* For convenience in allocate_dynrelocs. */
2257 bfd * obfd;
2258 };
2259
2260 /* Create an entry in an ARM ELF linker hash table. */
2261
2262 static struct bfd_hash_entry *
2263 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2264 struct bfd_hash_table * table,
2265 const char * string)
2266 {
2267 struct elf32_arm_link_hash_entry * ret =
2268 (struct elf32_arm_link_hash_entry *) entry;
2269
2270 /* Allocate the structure if it has not already been allocated by a
2271 subclass. */
2272 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
2273 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2274 if (ret == NULL)
2275 return (struct bfd_hash_entry *) ret;
2276
2277 /* Call the allocation method of the superclass. */
2278 ret = ((struct elf32_arm_link_hash_entry *)
2279 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2280 table, string));
2281 if (ret != NULL)
2282 {
2283 ret->relocs_copied = NULL;
2284 ret->tls_type = GOT_UNKNOWN;
2285 ret->plt_thumb_refcount = 0;
2286 ret->plt_maybe_thumb_refcount = 0;
2287 ret->plt_got_offset = -1;
2288 ret->export_glue = NULL;
2289 }
2290
2291 return (struct bfd_hash_entry *) ret;
2292 }
2293
2294 /* Return true if NAME is the name of the relocation section associated
2295 with S. */
2296
2297 static bfd_boolean
2298 reloc_section_p (struct elf32_arm_link_hash_table *htab,
2299 const char *name, asection *s)
2300 {
2301 if (htab->use_rel)
2302 return CONST_STRNEQ (name, ".rel") && strcmp (s->name, name + 4) == 0;
2303 else
2304 return CONST_STRNEQ (name, ".rela") && strcmp (s->name, name + 5) == 0;
2305 }
2306
2307 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2308 shortcuts to them in our hash table. */
2309
2310 static bfd_boolean
2311 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2312 {
2313 struct elf32_arm_link_hash_table *htab;
2314
2315 htab = elf32_arm_hash_table (info);
2316 /* BPABI objects never have a GOT, or associated sections. */
2317 if (htab->symbian_p)
2318 return TRUE;
2319
2320 if (! _bfd_elf_create_got_section (dynobj, info))
2321 return FALSE;
2322
2323 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2324 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2325 if (!htab->sgot || !htab->sgotplt)
2326 abort ();
2327
2328 htab->srelgot = bfd_make_section_with_flags (dynobj,
2329 RELOC_SECTION (htab, ".got"),
2330 (SEC_ALLOC | SEC_LOAD
2331 | SEC_HAS_CONTENTS
2332 | SEC_IN_MEMORY
2333 | SEC_LINKER_CREATED
2334 | SEC_READONLY));
2335 if (htab->srelgot == NULL
2336 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2337 return FALSE;
2338 return TRUE;
2339 }
2340
2341 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2342 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2343 hash table. */
2344
2345 static bfd_boolean
2346 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2347 {
2348 struct elf32_arm_link_hash_table *htab;
2349
2350 htab = elf32_arm_hash_table (info);
2351 if (!htab->sgot && !create_got_section (dynobj, info))
2352 return FALSE;
2353
2354 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2355 return FALSE;
2356
2357 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2358 htab->srelplt = bfd_get_section_by_name (dynobj,
2359 RELOC_SECTION (htab, ".plt"));
2360 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2361 if (!info->shared)
2362 htab->srelbss = bfd_get_section_by_name (dynobj,
2363 RELOC_SECTION (htab, ".bss"));
2364
2365 if (htab->vxworks_p)
2366 {
2367 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2368 return FALSE;
2369
2370 if (info->shared)
2371 {
2372 htab->plt_header_size = 0;
2373 htab->plt_entry_size
2374 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2375 }
2376 else
2377 {
2378 htab->plt_header_size
2379 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2380 htab->plt_entry_size
2381 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2382 }
2383 }
2384
2385 if (!htab->splt
2386 || !htab->srelplt
2387 || !htab->sdynbss
2388 || (!info->shared && !htab->srelbss))
2389 abort ();
2390
2391 return TRUE;
2392 }
2393
2394 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2395
2396 static void
2397 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2398 struct elf_link_hash_entry *dir,
2399 struct elf_link_hash_entry *ind)
2400 {
2401 struct elf32_arm_link_hash_entry *edir, *eind;
2402
2403 edir = (struct elf32_arm_link_hash_entry *) dir;
2404 eind = (struct elf32_arm_link_hash_entry *) ind;
2405
2406 if (eind->relocs_copied != NULL)
2407 {
2408 if (edir->relocs_copied != NULL)
2409 {
2410 struct elf32_arm_relocs_copied **pp;
2411 struct elf32_arm_relocs_copied *p;
2412
2413 /* Add reloc counts against the indirect sym to the direct sym
2414 list. Merge any entries against the same section. */
2415 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2416 {
2417 struct elf32_arm_relocs_copied *q;
2418
2419 for (q = edir->relocs_copied; q != NULL; q = q->next)
2420 if (q->section == p->section)
2421 {
2422 q->pc_count += p->pc_count;
2423 q->count += p->count;
2424 *pp = p->next;
2425 break;
2426 }
2427 if (q == NULL)
2428 pp = &p->next;
2429 }
2430 *pp = edir->relocs_copied;
2431 }
2432
2433 edir->relocs_copied = eind->relocs_copied;
2434 eind->relocs_copied = NULL;
2435 }
2436
2437 if (ind->root.type == bfd_link_hash_indirect)
2438 {
2439 /* Copy over PLT info. */
2440 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2441 eind->plt_thumb_refcount = 0;
2442 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2443 eind->plt_maybe_thumb_refcount = 0;
2444
2445 if (dir->got.refcount <= 0)
2446 {
2447 edir->tls_type = eind->tls_type;
2448 eind->tls_type = GOT_UNKNOWN;
2449 }
2450 }
2451
2452 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2453 }
2454
2455 /* Create an ARM elf linker hash table. */
2456
2457 static struct bfd_link_hash_table *
2458 elf32_arm_link_hash_table_create (bfd *abfd)
2459 {
2460 struct elf32_arm_link_hash_table *ret;
2461 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2462
2463 ret = bfd_malloc (amt);
2464 if (ret == NULL)
2465 return NULL;
2466
2467 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2468 elf32_arm_link_hash_newfunc,
2469 sizeof (struct elf32_arm_link_hash_entry)))
2470 {
2471 free (ret);
2472 return NULL;
2473 }
2474
2475 ret->sgot = NULL;
2476 ret->sgotplt = NULL;
2477 ret->srelgot = NULL;
2478 ret->splt = NULL;
2479 ret->srelplt = NULL;
2480 ret->sdynbss = NULL;
2481 ret->srelbss = NULL;
2482 ret->srelplt2 = NULL;
2483 ret->thumb_glue_size = 0;
2484 ret->arm_glue_size = 0;
2485 ret->bx_glue_size = 0;
2486 memset (ret->bx_glue_offset, 0, sizeof(ret->bx_glue_offset));
2487 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2488 ret->vfp11_erratum_glue_size = 0;
2489 ret->num_vfp11_fixes = 0;
2490 ret->bfd_of_glue_owner = NULL;
2491 ret->byteswap_code = 0;
2492 ret->target1_is_rel = 0;
2493 ret->target2_reloc = R_ARM_NONE;
2494 #ifdef FOUR_WORD_PLT
2495 ret->plt_header_size = 16;
2496 ret->plt_entry_size = 16;
2497 #else
2498 ret->plt_header_size = 20;
2499 ret->plt_entry_size = 12;
2500 #endif
2501 ret->fix_v4bx = 0;
2502 ret->use_blx = 0;
2503 ret->vxworks_p = 0;
2504 ret->symbian_p = 0;
2505 ret->use_rel = 1;
2506 ret->sym_sec.abfd = NULL;
2507 ret->obfd = abfd;
2508 ret->tls_ldm_got.refcount = 0;
2509
2510 return &ret->root.root;
2511 }
2512
2513 /* Locate the Thumb encoded calling stub for NAME. */
2514
2515 static struct elf_link_hash_entry *
2516 find_thumb_glue (struct bfd_link_info *link_info,
2517 const char *name,
2518 char **error_message)
2519 {
2520 char *tmp_name;
2521 struct elf_link_hash_entry *hash;
2522 struct elf32_arm_link_hash_table *hash_table;
2523
2524 /* We need a pointer to the armelf specific hash table. */
2525 hash_table = elf32_arm_hash_table (link_info);
2526
2527 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2528 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
2529
2530 BFD_ASSERT (tmp_name);
2531
2532 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
2533
2534 hash = elf_link_hash_lookup
2535 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2536
2537 if (hash == NULL
2538 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
2539 tmp_name, name) == -1)
2540 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
2541
2542 free (tmp_name);
2543
2544 return hash;
2545 }
2546
2547 /* Locate the ARM encoded calling stub for NAME. */
2548
2549 static struct elf_link_hash_entry *
2550 find_arm_glue (struct bfd_link_info *link_info,
2551 const char *name,
2552 char **error_message)
2553 {
2554 char *tmp_name;
2555 struct elf_link_hash_entry *myh;
2556 struct elf32_arm_link_hash_table *hash_table;
2557
2558 /* We need a pointer to the elfarm specific hash table. */
2559 hash_table = elf32_arm_hash_table (link_info);
2560
2561 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2562 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
2563
2564 BFD_ASSERT (tmp_name);
2565
2566 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
2567
2568 myh = elf_link_hash_lookup
2569 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2570
2571 if (myh == NULL
2572 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
2573 tmp_name, name) == -1)
2574 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
2575
2576 free (tmp_name);
2577
2578 return myh;
2579 }
2580
2581 /* ARM->Thumb glue (static images):
2582
2583 .arm
2584 __func_from_arm:
2585 ldr r12, __func_addr
2586 bx r12
2587 __func_addr:
2588 .word func @ behave as if you saw a ARM_32 reloc.
2589
2590 (v5t static images)
2591 .arm
2592 __func_from_arm:
2593 ldr pc, __func_addr
2594 __func_addr:
2595 .word func @ behave as if you saw a ARM_32 reloc.
2596
2597 (relocatable images)
2598 .arm
2599 __func_from_arm:
2600 ldr r12, __func_offset
2601 add r12, r12, pc
2602 bx r12
2603 __func_offset:
2604 .word func - .
2605 */
2606
2607 #define ARM2THUMB_STATIC_GLUE_SIZE 12
2608 static const insn32 a2t1_ldr_insn = 0xe59fc000;
2609 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
2610 static const insn32 a2t3_func_addr_insn = 0x00000001;
2611
2612 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
2613 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
2614 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
2615
2616 #define ARM2THUMB_PIC_GLUE_SIZE 16
2617 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
2618 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
2619 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
2620
2621 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
2622
2623 .thumb .thumb
2624 .align 2 .align 2
2625 __func_from_thumb: __func_from_thumb:
2626 bx pc push {r6, lr}
2627 nop ldr r6, __func_addr
2628 .arm mov lr, pc
2629 __func_change_to_arm: bx r6
2630 b func .arm
2631 __func_back_to_thumb:
2632 ldmia r13! {r6, lr}
2633 bx lr
2634 __func_addr:
2635 .word func */
2636
2637 #define THUMB2ARM_GLUE_SIZE 8
2638 static const insn16 t2a1_bx_pc_insn = 0x4778;
2639 static const insn16 t2a2_noop_insn = 0x46c0;
2640 static const insn32 t2a3_b_insn = 0xea000000;
2641
2642 #define VFP11_ERRATUM_VENEER_SIZE 8
2643
2644 #define ARM_BX_VENEER_SIZE 12
2645 static const insn32 armbx1_tst_insn = 0xe3100001;
2646 static const insn32 armbx2_moveq_insn = 0x01a0f000;
2647 static const insn32 armbx3_bx_insn = 0xe12fff10;
2648
2649 #ifndef ELFARM_NABI_C_INCLUDED
2650 bfd_boolean
2651 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
2652 {
2653 asection * s;
2654 bfd_byte * foo;
2655 struct elf32_arm_link_hash_table * globals;
2656
2657 globals = elf32_arm_hash_table (info);
2658
2659 BFD_ASSERT (globals != NULL);
2660
2661 if (globals->arm_glue_size != 0)
2662 {
2663 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2664
2665 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
2666 ARM2THUMB_GLUE_SECTION_NAME);
2667
2668 BFD_ASSERT (s != NULL);
2669
2670 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->arm_glue_size);
2671
2672 BFD_ASSERT (s->size == globals->arm_glue_size);
2673 s->contents = foo;
2674 }
2675
2676 if (globals->thumb_glue_size != 0)
2677 {
2678 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2679
2680 s = bfd_get_section_by_name
2681 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
2682
2683 BFD_ASSERT (s != NULL);
2684
2685 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->thumb_glue_size);
2686
2687 BFD_ASSERT (s->size == globals->thumb_glue_size);
2688 s->contents = foo;
2689 }
2690
2691 if (globals->vfp11_erratum_glue_size != 0)
2692 {
2693 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2694
2695 s = bfd_get_section_by_name
2696 (globals->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
2697
2698 BFD_ASSERT (s != NULL);
2699
2700 foo = bfd_alloc (globals->bfd_of_glue_owner,
2701 globals->vfp11_erratum_glue_size);
2702
2703 BFD_ASSERT (s->size == globals->vfp11_erratum_glue_size);
2704 s->contents = foo;
2705 }
2706
2707 if (globals->bx_glue_size != 0)
2708 {
2709 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2710
2711 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
2712 ARM_BX_GLUE_SECTION_NAME);
2713
2714 BFD_ASSERT (s != NULL);
2715
2716 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->bx_glue_size);
2717
2718 BFD_ASSERT (s->size == globals->bx_glue_size);
2719 s->contents = foo;
2720 }
2721
2722 return TRUE;
2723 }
2724
2725 /* Allocate space and symbols for calling a Thumb function from Arm mode.
2726 returns the symbol identifying teh stub. */
2727 static struct elf_link_hash_entry *
2728 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
2729 struct elf_link_hash_entry * h)
2730 {
2731 const char * name = h->root.root.string;
2732 asection * s;
2733 char * tmp_name;
2734 struct elf_link_hash_entry * myh;
2735 struct bfd_link_hash_entry * bh;
2736 struct elf32_arm_link_hash_table * globals;
2737 bfd_vma val;
2738 bfd_size_type size;
2739
2740 globals = elf32_arm_hash_table (link_info);
2741
2742 BFD_ASSERT (globals != NULL);
2743 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2744
2745 s = bfd_get_section_by_name
2746 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
2747
2748 BFD_ASSERT (s != NULL);
2749
2750 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
2751
2752 BFD_ASSERT (tmp_name);
2753
2754 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
2755
2756 myh = elf_link_hash_lookup
2757 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
2758
2759 if (myh != NULL)
2760 {
2761 /* We've already seen this guy. */
2762 free (tmp_name);
2763 return myh;
2764 }
2765
2766 /* The only trick here is using hash_table->arm_glue_size as the value.
2767 Even though the section isn't allocated yet, this is where we will be
2768 putting it. */
2769 bh = NULL;
2770 val = globals->arm_glue_size + 1;
2771 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
2772 tmp_name, BSF_GLOBAL, s, val,
2773 NULL, TRUE, FALSE, &bh);
2774
2775 myh = (struct elf_link_hash_entry *) bh;
2776 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
2777 myh->forced_local = 1;
2778
2779 free (tmp_name);
2780
2781 if (link_info->shared || globals->root.is_relocatable_executable
2782 || globals->pic_veneer)
2783 size = ARM2THUMB_PIC_GLUE_SIZE;
2784 else if (globals->use_blx)
2785 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
2786 else
2787 size = ARM2THUMB_STATIC_GLUE_SIZE;
2788
2789 s->size += size;
2790 globals->arm_glue_size += size;
2791
2792 return myh;
2793 }
2794
2795 static void
2796 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
2797 struct elf_link_hash_entry *h)
2798 {
2799 const char *name = h->root.root.string;
2800 asection *s;
2801 char *tmp_name;
2802 struct elf_link_hash_entry *myh;
2803 struct bfd_link_hash_entry *bh;
2804 struct elf32_arm_link_hash_table *hash_table;
2805 bfd_vma val;
2806
2807 hash_table = elf32_arm_hash_table (link_info);
2808
2809 BFD_ASSERT (hash_table != NULL);
2810 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
2811
2812 s = bfd_get_section_by_name
2813 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
2814
2815 BFD_ASSERT (s != NULL);
2816
2817 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2818 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
2819
2820 BFD_ASSERT (tmp_name);
2821
2822 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
2823
2824 myh = elf_link_hash_lookup
2825 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2826
2827 if (myh != NULL)
2828 {
2829 /* We've already seen this guy. */
2830 free (tmp_name);
2831 return;
2832 }
2833
2834 bh = NULL;
2835 val = hash_table->thumb_glue_size + 1;
2836 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
2837 tmp_name, BSF_GLOBAL, s, val,
2838 NULL, TRUE, FALSE, &bh);
2839
2840 /* If we mark it 'Thumb', the disassembler will do a better job. */
2841 myh = (struct elf_link_hash_entry *) bh;
2842 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
2843 myh->forced_local = 1;
2844
2845 free (tmp_name);
2846
2847 #define CHANGE_TO_ARM "__%s_change_to_arm"
2848 #define BACK_FROM_ARM "__%s_back_from_arm"
2849
2850 /* Allocate another symbol to mark where we switch to Arm mode. */
2851 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2852 + strlen (CHANGE_TO_ARM) + 1);
2853
2854 BFD_ASSERT (tmp_name);
2855
2856 sprintf (tmp_name, CHANGE_TO_ARM, name);
2857
2858 bh = NULL;
2859 val = hash_table->thumb_glue_size + 4,
2860 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
2861 tmp_name, BSF_LOCAL, s, val,
2862 NULL, TRUE, FALSE, &bh);
2863
2864 free (tmp_name);
2865
2866 s->size += THUMB2ARM_GLUE_SIZE;
2867 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
2868
2869 return;
2870 }
2871
2872
2873 /* Allocate space for ARMv4 BX veneers. */
2874
2875 static void
2876 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
2877 {
2878 asection * s;
2879 struct elf32_arm_link_hash_table *globals;
2880 char *tmp_name;
2881 struct elf_link_hash_entry *myh;
2882 struct bfd_link_hash_entry *bh;
2883 bfd_vma val;
2884
2885 /* BX PC does not need a veneer. */
2886 if (reg == 15)
2887 return;
2888
2889 globals = elf32_arm_hash_table (link_info);
2890
2891 BFD_ASSERT (globals != NULL);
2892 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2893
2894 /* Check if this veneer has already been allocated. */
2895 if (globals->bx_glue_offset[reg])
2896 return;
2897
2898 s = bfd_get_section_by_name
2899 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
2900
2901 BFD_ASSERT (s != NULL);
2902
2903 /* Add symbol for veneer. */
2904 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
2905
2906 BFD_ASSERT (tmp_name);
2907
2908 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
2909
2910 myh = elf_link_hash_lookup
2911 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
2912
2913 BFD_ASSERT (myh == NULL);
2914
2915 bh = NULL;
2916 val = globals->bx_glue_size;
2917 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
2918 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
2919 NULL, TRUE, FALSE, &bh);
2920
2921 myh = (struct elf_link_hash_entry *) bh;
2922 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
2923 myh->forced_local = 1;
2924
2925 s->size += ARM_BX_VENEER_SIZE;
2926 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
2927 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
2928 }
2929
2930
2931 /* Add an entry to the code/data map for section SEC. */
2932
2933 static void
2934 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
2935 {
2936 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
2937 unsigned int newidx;
2938
2939 if (sec_data->map == NULL)
2940 {
2941 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
2942 sec_data->mapcount = 0;
2943 sec_data->mapsize = 1;
2944 }
2945
2946 newidx = sec_data->mapcount++;
2947
2948 if (sec_data->mapcount > sec_data->mapsize)
2949 {
2950 sec_data->mapsize *= 2;
2951 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
2952 * sizeof (elf32_arm_section_map));
2953 }
2954
2955 if (sec_data->map)
2956 {
2957 sec_data->map[newidx].vma = vma;
2958 sec_data->map[newidx].type = type;
2959 }
2960 }
2961
2962
2963 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
2964 veneers are handled for now. */
2965
2966 static bfd_vma
2967 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
2968 elf32_vfp11_erratum_list *branch,
2969 bfd *branch_bfd,
2970 asection *branch_sec,
2971 unsigned int offset)
2972 {
2973 asection *s;
2974 struct elf32_arm_link_hash_table *hash_table;
2975 char *tmp_name;
2976 struct elf_link_hash_entry *myh;
2977 struct bfd_link_hash_entry *bh;
2978 bfd_vma val;
2979 struct _arm_elf_section_data *sec_data;
2980 int errcount;
2981 elf32_vfp11_erratum_list *newerr;
2982
2983 hash_table = elf32_arm_hash_table (link_info);
2984
2985 BFD_ASSERT (hash_table != NULL);
2986 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
2987
2988 s = bfd_get_section_by_name
2989 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
2990
2991 sec_data = elf32_arm_section_data (s);
2992
2993 BFD_ASSERT (s != NULL);
2994
2995 tmp_name = bfd_malloc ((bfd_size_type) strlen
2996 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
2997
2998 BFD_ASSERT (tmp_name);
2999
3000 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
3001 hash_table->num_vfp11_fixes);
3002
3003 myh = elf_link_hash_lookup
3004 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
3005
3006 BFD_ASSERT (myh == NULL);
3007
3008 bh = NULL;
3009 val = hash_table->vfp11_erratum_glue_size;
3010 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
3011 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
3012 NULL, TRUE, FALSE, &bh);
3013
3014 myh = (struct elf_link_hash_entry *) bh;
3015 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
3016 myh->forced_local = 1;
3017
3018 /* Link veneer back to calling location. */
3019 errcount = ++(sec_data->erratumcount);
3020 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
3021
3022 newerr->type = VFP11_ERRATUM_ARM_VENEER;
3023 newerr->vma = -1;
3024 newerr->u.v.branch = branch;
3025 newerr->u.v.id = hash_table->num_vfp11_fixes;
3026 branch->u.b.veneer = newerr;
3027
3028 newerr->next = sec_data->erratumlist;
3029 sec_data->erratumlist = newerr;
3030
3031 /* A symbol for the return from the veneer. */
3032 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
3033 hash_table->num_vfp11_fixes);
3034
3035 myh = elf_link_hash_lookup
3036 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
3037
3038 if (myh != NULL)
3039 abort ();
3040
3041 bh = NULL;
3042 val = offset + 4;
3043 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
3044 branch_sec, val, NULL, TRUE, FALSE, &bh);
3045
3046 myh = (struct elf_link_hash_entry *) bh;
3047 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
3048 myh->forced_local = 1;
3049
3050 free (tmp_name);
3051
3052 /* Generate a mapping symbol for the veneer section, and explicitly add an
3053 entry for that symbol to the code/data map for the section. */
3054 if (hash_table->vfp11_erratum_glue_size == 0)
3055 {
3056 bh = NULL;
3057 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
3058 ever requires this erratum fix. */
3059 _bfd_generic_link_add_one_symbol (link_info,
3060 hash_table->bfd_of_glue_owner, "$a",
3061 BSF_LOCAL, s, 0, NULL,
3062 TRUE, FALSE, &bh);
3063
3064 myh = (struct elf_link_hash_entry *) bh;
3065 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
3066 myh->forced_local = 1;
3067
3068 /* The elf32_arm_init_maps function only cares about symbols from input
3069 BFDs. We must make a note of this generated mapping symbol
3070 ourselves so that code byteswapping works properly in
3071 elf32_arm_write_section. */
3072 elf32_arm_section_map_add (s, 'a', 0);
3073 }
3074
3075 s->size += VFP11_ERRATUM_VENEER_SIZE;
3076 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
3077 hash_table->num_vfp11_fixes++;
3078
3079 /* The offset of the veneer. */
3080 return val;
3081 }
3082
3083 /* Add the glue sections to ABFD. This function is called from the
3084 linker scripts in ld/emultempl/{armelf}.em. */
3085
3086 bfd_boolean
3087 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
3088 struct bfd_link_info *info)
3089 {
3090 flagword flags;
3091 asection *sec;
3092
3093 /* If we are only performing a partial
3094 link do not bother adding the glue. */
3095 if (info->relocatable)
3096 return TRUE;
3097
3098 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
3099
3100 if (sec == NULL)
3101 {
3102 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
3103 will prevent elf_link_input_bfd() from processing the contents
3104 of this section. */
3105 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3106 | SEC_CODE | SEC_READONLY);
3107
3108 sec = bfd_make_section_with_flags (abfd,
3109 ARM2THUMB_GLUE_SECTION_NAME,
3110 flags);
3111
3112 if (sec == NULL
3113 || !bfd_set_section_alignment (abfd, sec, 2))
3114 return FALSE;
3115
3116 /* Set the gc mark to prevent the section from being removed by garbage
3117 collection, despite the fact that no relocs refer to this section. */
3118 sec->gc_mark = 1;
3119 }
3120
3121 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
3122
3123 if (sec == NULL)
3124 {
3125 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3126 | SEC_CODE | SEC_READONLY);
3127
3128 sec = bfd_make_section_with_flags (abfd,
3129 THUMB2ARM_GLUE_SECTION_NAME,
3130 flags);
3131
3132 if (sec == NULL
3133 || !bfd_set_section_alignment (abfd, sec, 2))
3134 return FALSE;
3135
3136 sec->gc_mark = 1;
3137 }
3138
3139 sec = bfd_get_section_by_name (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME);
3140
3141 if (sec == NULL)
3142 {
3143 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3144 | SEC_CODE | SEC_READONLY);
3145
3146 sec = bfd_make_section_with_flags (abfd,
3147 VFP11_ERRATUM_VENEER_SECTION_NAME,
3148 flags);
3149
3150 if (sec == NULL
3151 || !bfd_set_section_alignment (abfd, sec, 2))
3152 return FALSE;
3153
3154 sec->gc_mark = 1;
3155 }
3156
3157 sec = bfd_get_section_by_name (abfd, ARM_BX_GLUE_SECTION_NAME);
3158
3159 if (sec == NULL)
3160 {
3161 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3162 | SEC_CODE | SEC_READONLY);
3163
3164 sec = bfd_make_section_with_flags (abfd,
3165 ARM_BX_GLUE_SECTION_NAME,
3166 flags);
3167
3168 if (sec == NULL
3169 || !bfd_set_section_alignment (abfd, sec, 2))
3170 return FALSE;
3171
3172 sec->gc_mark = 1;
3173 }
3174
3175 return TRUE;
3176 }
3177
3178 /* Select a BFD to be used to hold the sections used by the glue code.
3179 This function is called from the linker scripts in ld/emultempl/
3180 {armelf/pe}.em */
3181
3182 bfd_boolean
3183 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
3184 {
3185 struct elf32_arm_link_hash_table *globals;
3186
3187 /* If we are only performing a partial link
3188 do not bother getting a bfd to hold the glue. */
3189 if (info->relocatable)
3190 return TRUE;
3191
3192 /* Make sure we don't attach the glue sections to a dynamic object. */
3193 BFD_ASSERT (!(abfd->flags & DYNAMIC));
3194
3195 globals = elf32_arm_hash_table (info);
3196
3197 BFD_ASSERT (globals != NULL);
3198
3199 if (globals->bfd_of_glue_owner != NULL)
3200 return TRUE;
3201
3202 /* Save the bfd for later use. */
3203 globals->bfd_of_glue_owner = abfd;
3204
3205 return TRUE;
3206 }
3207
3208 static void check_use_blx(struct elf32_arm_link_hash_table *globals)
3209 {
3210 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
3211 Tag_CPU_arch) > 2)
3212 globals->use_blx = 1;
3213 }
3214
3215 bfd_boolean
3216 bfd_elf32_arm_process_before_allocation (bfd *abfd,
3217 struct bfd_link_info *link_info)
3218 {
3219 Elf_Internal_Shdr *symtab_hdr;
3220 Elf_Internal_Rela *internal_relocs = NULL;
3221 Elf_Internal_Rela *irel, *irelend;
3222 bfd_byte *contents = NULL;
3223
3224 asection *sec;
3225 struct elf32_arm_link_hash_table *globals;
3226
3227 /* If we are only performing a partial link do not bother
3228 to construct any glue. */
3229 if (link_info->relocatable)
3230 return TRUE;
3231
3232 /* Here we have a bfd that is to be included on the link. We have a
3233 hook to do reloc rummaging, before section sizes are nailed down. */
3234 globals = elf32_arm_hash_table (link_info);
3235
3236 BFD_ASSERT (globals != NULL);
3237
3238 check_use_blx (globals);
3239
3240 if (globals->byteswap_code && !bfd_big_endian (abfd))
3241 {
3242 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
3243 abfd);
3244 return FALSE;
3245 }
3246
3247 /* PR 5398: If we have not decided to include any loadable sections in
3248 the output then we will not have a glue owner bfd. This is OK, it
3249 just means that there is nothing else for us to do here. */
3250 if (globals->bfd_of_glue_owner == NULL)
3251 return TRUE;
3252
3253 /* Rummage around all the relocs and map the glue vectors. */
3254 sec = abfd->sections;
3255
3256 if (sec == NULL)
3257 return TRUE;
3258
3259 for (; sec != NULL; sec = sec->next)
3260 {
3261 if (sec->reloc_count == 0)
3262 continue;
3263
3264 if ((sec->flags & SEC_EXCLUDE) != 0)
3265 continue;
3266
3267 symtab_hdr = & elf_symtab_hdr (abfd);
3268
3269 /* Load the relocs. */
3270 internal_relocs
3271 = _bfd_elf_link_read_relocs (abfd, sec, (void *) NULL,
3272 (Elf_Internal_Rela *) NULL, FALSE);
3273
3274 if (internal_relocs == NULL)
3275 goto error_return;
3276
3277 irelend = internal_relocs + sec->reloc_count;
3278 for (irel = internal_relocs; irel < irelend; irel++)
3279 {
3280 long r_type;
3281 unsigned long r_index;
3282
3283 struct elf_link_hash_entry *h;
3284
3285 r_type = ELF32_R_TYPE (irel->r_info);
3286 r_index = ELF32_R_SYM (irel->r_info);
3287
3288 /* These are the only relocation types we care about. */
3289 if ( r_type != R_ARM_PC24
3290 && r_type != R_ARM_PLT32
3291 && r_type != R_ARM_CALL
3292 && r_type != R_ARM_JUMP24
3293 && r_type != R_ARM_THM_CALL
3294 && r_type != R_ARM_THM_JUMP24
3295 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
3296 continue;
3297
3298 /* Get the section contents if we haven't done so already. */
3299 if (contents == NULL)
3300 {
3301 /* Get cached copy if it exists. */
3302 if (elf_section_data (sec)->this_hdr.contents != NULL)
3303 contents = elf_section_data (sec)->this_hdr.contents;
3304 else
3305 {
3306 /* Go get them off disk. */
3307 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
3308 goto error_return;
3309 }
3310 }
3311
3312 if (r_type == R_ARM_V4BX)
3313 {
3314 int reg;
3315
3316 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
3317 record_arm_bx_glue (link_info, reg);
3318 continue;
3319 }
3320
3321 /* If the relocation is not against a symbol it cannot concern us. */
3322 h = NULL;
3323
3324 /* We don't care about local symbols. */
3325 if (r_index < symtab_hdr->sh_info)
3326 continue;
3327
3328 /* This is an external symbol. */
3329 r_index -= symtab_hdr->sh_info;
3330 h = (struct elf_link_hash_entry *)
3331 elf_sym_hashes (abfd)[r_index];
3332
3333 /* If the relocation is against a static symbol it must be within
3334 the current section and so cannot be a cross ARM/Thumb relocation. */
3335 if (h == NULL)
3336 continue;
3337
3338 /* If the call will go through a PLT entry then we do not need
3339 glue. */
3340 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
3341 continue;
3342
3343 switch (r_type)
3344 {
3345 case R_ARM_PC24:
3346 case R_ARM_PLT32:
3347 case R_ARM_CALL:
3348 case R_ARM_JUMP24:
3349 /* This one is a call from arm code. We need to look up
3350 the target of the call. If it is a thumb target, we
3351 insert glue. */
3352 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC
3353 && !(r_type == R_ARM_CALL && globals->use_blx))
3354 record_arm_to_thumb_glue (link_info, h);
3355 break;
3356
3357 case R_ARM_THM_CALL:
3358 case R_ARM_THM_JUMP24:
3359 /* This one is a call from thumb code. We look
3360 up the target of the call. If it is not a thumb
3361 target, we insert glue. */
3362 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
3363 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
3364 && h->root.type != bfd_link_hash_undefweak)
3365 record_thumb_to_arm_glue (link_info, h);
3366 break;
3367
3368 default:
3369 abort ();
3370 }
3371 }
3372
3373 if (contents != NULL
3374 && elf_section_data (sec)->this_hdr.contents != contents)
3375 free (contents);
3376 contents = NULL;
3377
3378 if (internal_relocs != NULL
3379 && elf_section_data (sec)->relocs != internal_relocs)
3380 free (internal_relocs);
3381 internal_relocs = NULL;
3382 }
3383
3384 return TRUE;
3385
3386 error_return:
3387 if (contents != NULL
3388 && elf_section_data (sec)->this_hdr.contents != contents)
3389 free (contents);
3390 if (internal_relocs != NULL
3391 && elf_section_data (sec)->relocs != internal_relocs)
3392 free (internal_relocs);
3393
3394 return FALSE;
3395 }
3396 #endif
3397
3398
3399 /* Initialise maps of ARM/Thumb/data for input BFDs. */
3400
3401 void
3402 bfd_elf32_arm_init_maps (bfd *abfd)
3403 {
3404 Elf_Internal_Sym *isymbuf;
3405 Elf_Internal_Shdr *hdr;
3406 unsigned int i, localsyms;
3407
3408 if ((abfd->flags & DYNAMIC) != 0)
3409 return;
3410
3411 hdr = & elf_symtab_hdr (abfd);
3412 localsyms = hdr->sh_info;
3413
3414 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
3415 should contain the number of local symbols, which should come before any
3416 global symbols. Mapping symbols are always local. */
3417 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
3418 NULL);
3419
3420 /* No internal symbols read? Skip this BFD. */
3421 if (isymbuf == NULL)
3422 return;
3423
3424 for (i = 0; i < localsyms; i++)
3425 {
3426 Elf_Internal_Sym *isym = &isymbuf[i];
3427 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3428 const char *name;
3429
3430 if (sec != NULL
3431 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
3432 {
3433 name = bfd_elf_string_from_elf_section (abfd,
3434 hdr->sh_link, isym->st_name);
3435
3436 if (bfd_is_arm_special_symbol_name (name,
3437 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
3438 elf32_arm_section_map_add (sec, name[1], isym->st_value);
3439 }
3440 }
3441 }
3442
3443
3444 void
3445 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
3446 {
3447 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
3448 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
3449
3450 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
3451 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
3452 {
3453 switch (globals->vfp11_fix)
3454 {
3455 case BFD_ARM_VFP11_FIX_DEFAULT:
3456 case BFD_ARM_VFP11_FIX_NONE:
3457 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3458 break;
3459
3460 default:
3461 /* Give a warning, but do as the user requests anyway. */
3462 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
3463 "workaround is not necessary for target architecture"), obfd);
3464 }
3465 }
3466 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
3467 /* For earlier architectures, we might need the workaround, but do not
3468 enable it by default. If users is running with broken hardware, they
3469 must enable the erratum fix explicitly. */
3470 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3471 }
3472
3473
3474 enum bfd_arm_vfp11_pipe {
3475 VFP11_FMAC,
3476 VFP11_LS,
3477 VFP11_DS,
3478 VFP11_BAD
3479 };
3480
3481 /* Return a VFP register number. This is encoded as RX:X for single-precision
3482 registers, or X:RX for double-precision registers, where RX is the group of
3483 four bits in the instruction encoding and X is the single extension bit.
3484 RX and X fields are specified using their lowest (starting) bit. The return
3485 value is:
3486
3487 0...31: single-precision registers s0...s31
3488 32...63: double-precision registers d0...d31.
3489
3490 Although X should be zero for VFP11 (encoding d0...d15 only), we might
3491 encounter VFP3 instructions, so we allow the full range for DP registers. */
3492
3493 static unsigned int
3494 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
3495 unsigned int x)
3496 {
3497 if (is_double)
3498 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
3499 else
3500 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
3501 }
3502
3503 /* Set bits in *WMASK according to a register number REG as encoded by
3504 bfd_arm_vfp11_regno(). Ignore d16-d31. */
3505
3506 static void
3507 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
3508 {
3509 if (reg < 32)
3510 *wmask |= 1 << reg;
3511 else if (reg < 48)
3512 *wmask |= 3 << ((reg - 32) * 2);
3513 }
3514
3515 /* Return TRUE if WMASK overwrites anything in REGS. */
3516
3517 static bfd_boolean
3518 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
3519 {
3520 int i;
3521
3522 for (i = 0; i < numregs; i++)
3523 {
3524 unsigned int reg = regs[i];
3525
3526 if (reg < 32 && (wmask & (1 << reg)) != 0)
3527 return TRUE;
3528
3529 reg -= 32;
3530
3531 if (reg >= 16)
3532 continue;
3533
3534 if ((wmask & (3 << (reg * 2))) != 0)
3535 return TRUE;
3536 }
3537
3538 return FALSE;
3539 }
3540
3541 /* In this function, we're interested in two things: finding input registers
3542 for VFP data-processing instructions, and finding the set of registers which
3543 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
3544 hold the written set, so FLDM etc. are easy to deal with (we're only
3545 interested in 32 SP registers or 16 dp registers, due to the VFP version
3546 implemented by the chip in question). DP registers are marked by setting
3547 both SP registers in the write mask). */
3548
3549 static enum bfd_arm_vfp11_pipe
3550 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
3551 int *numregs)
3552 {
3553 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
3554 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
3555
3556 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
3557 {
3558 unsigned int pqrs;
3559 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
3560 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
3561
3562 pqrs = ((insn & 0x00800000) >> 20)
3563 | ((insn & 0x00300000) >> 19)
3564 | ((insn & 0x00000040) >> 6);
3565
3566 switch (pqrs)
3567 {
3568 case 0: /* fmac[sd]. */
3569 case 1: /* fnmac[sd]. */
3570 case 2: /* fmsc[sd]. */
3571 case 3: /* fnmsc[sd]. */
3572 pipe = VFP11_FMAC;
3573 bfd_arm_vfp11_write_mask (destmask, fd);
3574 regs[0] = fd;
3575 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
3576 regs[2] = fm;
3577 *numregs = 3;
3578 break;
3579
3580 case 4: /* fmul[sd]. */
3581 case 5: /* fnmul[sd]. */
3582 case 6: /* fadd[sd]. */
3583 case 7: /* fsub[sd]. */
3584 pipe = VFP11_FMAC;
3585 goto vfp_binop;
3586
3587 case 8: /* fdiv[sd]. */
3588 pipe = VFP11_DS;
3589 vfp_binop:
3590 bfd_arm_vfp11_write_mask (destmask, fd);
3591 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
3592 regs[1] = fm;
3593 *numregs = 2;
3594 break;
3595
3596 case 15: /* extended opcode. */
3597 {
3598 unsigned int extn = ((insn >> 15) & 0x1e)
3599 | ((insn >> 7) & 1);
3600
3601 switch (extn)
3602 {
3603 case 0: /* fcpy[sd]. */
3604 case 1: /* fabs[sd]. */
3605 case 2: /* fneg[sd]. */
3606 case 8: /* fcmp[sd]. */
3607 case 9: /* fcmpe[sd]. */
3608 case 10: /* fcmpz[sd]. */
3609 case 11: /* fcmpez[sd]. */
3610 case 16: /* fuito[sd]. */
3611 case 17: /* fsito[sd]. */
3612 case 24: /* ftoui[sd]. */
3613 case 25: /* ftouiz[sd]. */
3614 case 26: /* ftosi[sd]. */
3615 case 27: /* ftosiz[sd]. */
3616 /* These instructions will not bounce due to underflow. */
3617 *numregs = 0;
3618 pipe = VFP11_FMAC;
3619 break;
3620
3621 case 3: /* fsqrt[sd]. */
3622 /* fsqrt cannot underflow, but it can (perhaps) overwrite
3623 registers to cause the erratum in previous instructions. */
3624 bfd_arm_vfp11_write_mask (destmask, fd);
3625 pipe = VFP11_DS;
3626 break;
3627
3628 case 15: /* fcvt{ds,sd}. */
3629 {
3630 int rnum = 0;
3631
3632 bfd_arm_vfp11_write_mask (destmask, fd);
3633
3634 /* Only FCVTSD can underflow. */
3635 if ((insn & 0x100) != 0)
3636 regs[rnum++] = fm;
3637
3638 *numregs = rnum;
3639
3640 pipe = VFP11_FMAC;
3641 }
3642 break;
3643
3644 default:
3645 return VFP11_BAD;
3646 }
3647 }
3648 break;
3649
3650 default:
3651 return VFP11_BAD;
3652 }
3653 }
3654 /* Two-register transfer. */
3655 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
3656 {
3657 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
3658
3659 if ((insn & 0x100000) == 0)
3660 {
3661 if (is_double)
3662 bfd_arm_vfp11_write_mask (destmask, fm);
3663 else
3664 {
3665 bfd_arm_vfp11_write_mask (destmask, fm);
3666 bfd_arm_vfp11_write_mask (destmask, fm + 1);
3667 }
3668 }
3669
3670 pipe = VFP11_LS;
3671 }
3672 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
3673 {
3674 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
3675 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
3676
3677 switch (puw)
3678 {
3679 case 0: /* Two-reg transfer. We should catch these above. */
3680 abort ();
3681
3682 case 2: /* fldm[sdx]. */
3683 case 3:
3684 case 5:
3685 {
3686 unsigned int i, offset = insn & 0xff;
3687
3688 if (is_double)
3689 offset >>= 1;
3690
3691 for (i = fd; i < fd + offset; i++)
3692 bfd_arm_vfp11_write_mask (destmask, i);
3693 }
3694 break;
3695
3696 case 4: /* fld[sd]. */
3697 case 6:
3698 bfd_arm_vfp11_write_mask (destmask, fd);
3699 break;
3700
3701 default:
3702 return VFP11_BAD;
3703 }
3704
3705 pipe = VFP11_LS;
3706 }
3707 /* Single-register transfer. Note L==0. */
3708 else if ((insn & 0x0f100e10) == 0x0e000a10)
3709 {
3710 unsigned int opcode = (insn >> 21) & 7;
3711 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
3712
3713 switch (opcode)
3714 {
3715 case 0: /* fmsr/fmdlr. */
3716 case 1: /* fmdhr. */
3717 /* Mark fmdhr and fmdlr as writing to the whole of the DP
3718 destination register. I don't know if this is exactly right,
3719 but it is the conservative choice. */
3720 bfd_arm_vfp11_write_mask (destmask, fn);
3721 break;
3722
3723 case 7: /* fmxr. */
3724 break;
3725 }
3726
3727 pipe = VFP11_LS;
3728 }
3729
3730 return pipe;
3731 }
3732
3733
3734 static int elf32_arm_compare_mapping (const void * a, const void * b);
3735
3736
3737 /* Look for potentially-troublesome code sequences which might trigger the
3738 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
3739 (available from ARM) for details of the erratum. A short version is
3740 described in ld.texinfo. */
3741
3742 bfd_boolean
3743 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
3744 {
3745 asection *sec;
3746 bfd_byte *contents = NULL;
3747 int state = 0;
3748 int regs[3], numregs = 0;
3749 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
3750 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
3751
3752 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
3753 The states transition as follows:
3754
3755 0 -> 1 (vector) or 0 -> 2 (scalar)
3756 A VFP FMAC-pipeline instruction has been seen. Fill
3757 regs[0]..regs[numregs-1] with its input operands. Remember this
3758 instruction in 'first_fmac'.
3759
3760 1 -> 2
3761 Any instruction, except for a VFP instruction which overwrites
3762 regs[*].
3763
3764 1 -> 3 [ -> 0 ] or
3765 2 -> 3 [ -> 0 ]
3766 A VFP instruction has been seen which overwrites any of regs[*].
3767 We must make a veneer! Reset state to 0 before examining next
3768 instruction.
3769
3770 2 -> 0
3771 If we fail to match anything in state 2, reset to state 0 and reset
3772 the instruction pointer to the instruction after 'first_fmac'.
3773
3774 If the VFP11 vector mode is in use, there must be at least two unrelated
3775 instructions between anti-dependent VFP11 instructions to properly avoid
3776 triggering the erratum, hence the use of the extra state 1.
3777 */
3778
3779 /* If we are only performing a partial link do not bother
3780 to construct any glue. */
3781 if (link_info->relocatable)
3782 return TRUE;
3783
3784 /* Skip if this bfd does not correspond to an ELF image. */
3785 if (! is_arm_elf (abfd))
3786 return TRUE;
3787
3788 /* We should have chosen a fix type by the time we get here. */
3789 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
3790
3791 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
3792 return TRUE;
3793
3794 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3795 {
3796 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
3797 struct _arm_elf_section_data *sec_data;
3798
3799 /* If we don't have executable progbits, we're not interested in this
3800 section. Also skip if section is to be excluded. */
3801 if (elf_section_type (sec) != SHT_PROGBITS
3802 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
3803 || (sec->flags & SEC_EXCLUDE) != 0
3804 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
3805 continue;
3806
3807 sec_data = elf32_arm_section_data (sec);
3808
3809 if (sec_data->mapcount == 0)
3810 continue;
3811
3812 if (elf_section_data (sec)->this_hdr.contents != NULL)
3813 contents = elf_section_data (sec)->this_hdr.contents;
3814 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
3815 goto error_return;
3816
3817 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
3818 elf32_arm_compare_mapping);
3819
3820 for (span = 0; span < sec_data->mapcount; span++)
3821 {
3822 unsigned int span_start = sec_data->map[span].vma;
3823 unsigned int span_end = (span == sec_data->mapcount - 1)
3824 ? sec->size : sec_data->map[span + 1].vma;
3825 char span_type = sec_data->map[span].type;
3826
3827 /* FIXME: Only ARM mode is supported at present. We may need to
3828 support Thumb-2 mode also at some point. */
3829 if (span_type != 'a')
3830 continue;
3831
3832 for (i = span_start; i < span_end;)
3833 {
3834 unsigned int next_i = i + 4;
3835 unsigned int insn = bfd_big_endian (abfd)
3836 ? (contents[i] << 24)
3837 | (contents[i + 1] << 16)
3838 | (contents[i + 2] << 8)
3839 | contents[i + 3]
3840 : (contents[i + 3] << 24)
3841 | (contents[i + 2] << 16)
3842 | (contents[i + 1] << 8)
3843 | contents[i];
3844 unsigned int writemask = 0;
3845 enum bfd_arm_vfp11_pipe pipe;
3846
3847 switch (state)
3848 {
3849 case 0:
3850 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
3851 &numregs);
3852 /* I'm assuming the VFP11 erratum can trigger with denorm
3853 operands on either the FMAC or the DS pipeline. This might
3854 lead to slightly overenthusiastic veneer insertion. */
3855 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
3856 {
3857 state = use_vector ? 1 : 2;
3858 first_fmac = i;
3859 veneer_of_insn = insn;
3860 }
3861 break;
3862
3863 case 1:
3864 {
3865 int other_regs[3], other_numregs;
3866 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
3867 other_regs,
3868 &other_numregs);
3869 if (pipe != VFP11_BAD
3870 && bfd_arm_vfp11_antidependency (writemask, regs,
3871 numregs))
3872 state = 3;
3873 else
3874 state = 2;
3875 }
3876 break;
3877
3878 case 2:
3879 {
3880 int other_regs[3], other_numregs;
3881 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
3882 other_regs,
3883 &other_numregs);
3884 if (pipe != VFP11_BAD
3885 && bfd_arm_vfp11_antidependency (writemask, regs,
3886 numregs))
3887 state = 3;
3888 else
3889 {
3890 state = 0;
3891 next_i = first_fmac + 4;
3892 }
3893 }
3894 break;
3895
3896 case 3:
3897 abort (); /* Should be unreachable. */
3898 }
3899
3900 if (state == 3)
3901 {
3902 elf32_vfp11_erratum_list *newerr
3903 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
3904 int errcount;
3905
3906 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
3907
3908 newerr->u.b.vfp_insn = veneer_of_insn;
3909
3910 switch (span_type)
3911 {
3912 case 'a':
3913 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
3914 break;
3915
3916 default:
3917 abort ();
3918 }
3919
3920 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
3921 first_fmac);
3922
3923 newerr->vma = -1;
3924
3925 newerr->next = sec_data->erratumlist;
3926 sec_data->erratumlist = newerr;
3927
3928 state = 0;
3929 }
3930
3931 i = next_i;
3932 }
3933 }
3934
3935 if (contents != NULL
3936 && elf_section_data (sec)->this_hdr.contents != contents)
3937 free (contents);
3938 contents = NULL;
3939 }
3940
3941 return TRUE;
3942
3943 error_return:
3944 if (contents != NULL
3945 && elf_section_data (sec)->this_hdr.contents != contents)
3946 free (contents);
3947
3948 return FALSE;
3949 }
3950
3951 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
3952 after sections have been laid out, using specially-named symbols. */
3953
3954 void
3955 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
3956 struct bfd_link_info *link_info)
3957 {
3958 asection *sec;
3959 struct elf32_arm_link_hash_table *globals;
3960 char *tmp_name;
3961
3962 if (link_info->relocatable)
3963 return;
3964
3965 /* Skip if this bfd does not correspond to an ELF image. */
3966 if (! is_arm_elf (abfd))
3967 return;
3968
3969 globals = elf32_arm_hash_table (link_info);
3970
3971 tmp_name = bfd_malloc ((bfd_size_type) strlen
3972 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
3973
3974 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3975 {
3976 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
3977 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
3978
3979 for (; errnode != NULL; errnode = errnode->next)
3980 {
3981 struct elf_link_hash_entry *myh;
3982 bfd_vma vma;
3983
3984 switch (errnode->type)
3985 {
3986 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
3987 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
3988 /* Find veneer symbol. */
3989 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
3990 errnode->u.b.veneer->u.v.id);
3991
3992 myh = elf_link_hash_lookup
3993 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
3994
3995 if (myh == NULL)
3996 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
3997 "`%s'"), abfd, tmp_name);
3998
3999 vma = myh->root.u.def.section->output_section->vma
4000 + myh->root.u.def.section->output_offset
4001 + myh->root.u.def.value;
4002
4003 errnode->u.b.veneer->vma = vma;
4004 break;
4005
4006 case VFP11_ERRATUM_ARM_VENEER:
4007 case VFP11_ERRATUM_THUMB_VENEER:
4008 /* Find return location. */
4009 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4010 errnode->u.v.id);
4011
4012 myh = elf_link_hash_lookup
4013 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
4014
4015 if (myh == NULL)
4016 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
4017 "`%s'"), abfd, tmp_name);
4018
4019 vma = myh->root.u.def.section->output_section->vma
4020 + myh->root.u.def.section->output_offset
4021 + myh->root.u.def.value;
4022
4023 errnode->u.v.branch->vma = vma;
4024 break;
4025
4026 default:
4027 abort ();
4028 }
4029 }
4030 }
4031
4032 free (tmp_name);
4033 }
4034
4035
4036 /* Set target relocation values needed during linking. */
4037
4038 void
4039 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
4040 struct bfd_link_info *link_info,
4041 int target1_is_rel,
4042 char * target2_type,
4043 int fix_v4bx,
4044 int use_blx,
4045 bfd_arm_vfp11_fix vfp11_fix,
4046 int no_enum_warn, int pic_veneer)
4047 {
4048 struct elf32_arm_link_hash_table *globals;
4049
4050 globals = elf32_arm_hash_table (link_info);
4051
4052 globals->target1_is_rel = target1_is_rel;
4053 if (strcmp (target2_type, "rel") == 0)
4054 globals->target2_reloc = R_ARM_REL32;
4055 else if (strcmp (target2_type, "abs") == 0)
4056 globals->target2_reloc = R_ARM_ABS32;
4057 else if (strcmp (target2_type, "got-rel") == 0)
4058 globals->target2_reloc = R_ARM_GOT_PREL;
4059 else
4060 {
4061 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
4062 target2_type);
4063 }
4064 globals->fix_v4bx = fix_v4bx;
4065 globals->use_blx |= use_blx;
4066 globals->vfp11_fix = vfp11_fix;
4067 globals->pic_veneer = pic_veneer;
4068
4069 BFD_ASSERT (is_arm_elf (output_bfd));
4070 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
4071 }
4072
4073 /* Replace the target offset of a Thumb bl or b.w instruction. */
4074
4075 static void
4076 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
4077 {
4078 bfd_vma upper;
4079 bfd_vma lower;
4080 int reloc_sign;
4081
4082 BFD_ASSERT ((offset & 1) == 0);
4083
4084 upper = bfd_get_16 (abfd, insn);
4085 lower = bfd_get_16 (abfd, insn + 2);
4086 reloc_sign = (offset < 0) ? 1 : 0;
4087 upper = (upper & ~(bfd_vma) 0x7ff)
4088 | ((offset >> 12) & 0x3ff)
4089 | (reloc_sign << 10);
4090 lower = (lower & ~(bfd_vma) 0x2fff)
4091 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
4092 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
4093 | ((offset >> 1) & 0x7ff);
4094 bfd_put_16 (abfd, upper, insn);
4095 bfd_put_16 (abfd, lower, insn + 2);
4096 }
4097
4098
4099 /* Store an Arm insn into an output section not processed by
4100 elf32_arm_write_section. */
4101
4102 static void
4103 put_arm_insn (struct elf32_arm_link_hash_table *htab,
4104 bfd * output_bfd, bfd_vma val, void * ptr)
4105 {
4106 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4107 bfd_putl32 (val, ptr);
4108 else
4109 bfd_putb32 (val, ptr);
4110 }
4111
4112
4113 /* Store a 16-bit Thumb insn into an output section not processed by
4114 elf32_arm_write_section. */
4115
4116 static void
4117 put_thumb_insn (struct elf32_arm_link_hash_table *htab,
4118 bfd * output_bfd, bfd_vma val, void * ptr)
4119 {
4120 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4121 bfd_putl16 (val, ptr);
4122 else
4123 bfd_putb16 (val, ptr);
4124 }
4125
4126
4127 /* Thumb code calling an ARM function. */
4128
4129 static int
4130 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
4131 const char * name,
4132 bfd * input_bfd,
4133 bfd * output_bfd,
4134 asection * input_section,
4135 bfd_byte * hit_data,
4136 asection * sym_sec,
4137 bfd_vma offset,
4138 bfd_signed_vma addend,
4139 bfd_vma val,
4140 char **error_message)
4141 {
4142 asection * s = 0;
4143 bfd_vma my_offset;
4144 long int ret_offset;
4145 struct elf_link_hash_entry * myh;
4146 struct elf32_arm_link_hash_table * globals;
4147
4148 myh = find_thumb_glue (info, name, error_message);
4149 if (myh == NULL)
4150 return FALSE;
4151
4152 globals = elf32_arm_hash_table (info);
4153
4154 BFD_ASSERT (globals != NULL);
4155 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4156
4157 my_offset = myh->root.u.def.value;
4158
4159 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4160 THUMB2ARM_GLUE_SECTION_NAME);
4161
4162 BFD_ASSERT (s != NULL);
4163 BFD_ASSERT (s->contents != NULL);
4164 BFD_ASSERT (s->output_section != NULL);
4165
4166 if ((my_offset & 0x01) == 0x01)
4167 {
4168 if (sym_sec != NULL
4169 && sym_sec->owner != NULL
4170 && !INTERWORK_FLAG (sym_sec->owner))
4171 {
4172 (*_bfd_error_handler)
4173 (_("%B(%s): warning: interworking not enabled.\n"
4174 " first occurrence: %B: thumb call to arm"),
4175 sym_sec->owner, input_bfd, name);
4176
4177 return FALSE;
4178 }
4179
4180 --my_offset;
4181 myh->root.u.def.value = my_offset;
4182
4183 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
4184 s->contents + my_offset);
4185
4186 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
4187 s->contents + my_offset + 2);
4188
4189 ret_offset =
4190 /* Address of destination of the stub. */
4191 ((bfd_signed_vma) val)
4192 - ((bfd_signed_vma)
4193 /* Offset from the start of the current section
4194 to the start of the stubs. */
4195 (s->output_offset
4196 /* Offset of the start of this stub from the start of the stubs. */
4197 + my_offset
4198 /* Address of the start of the current section. */
4199 + s->output_section->vma)
4200 /* The branch instruction is 4 bytes into the stub. */
4201 + 4
4202 /* ARM branches work from the pc of the instruction + 8. */
4203 + 8);
4204
4205 put_arm_insn (globals, output_bfd,
4206 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
4207 s->contents + my_offset + 4);
4208 }
4209
4210 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
4211
4212 /* Now go back and fix up the original BL insn to point to here. */
4213 ret_offset =
4214 /* Address of where the stub is located. */
4215 (s->output_section->vma + s->output_offset + my_offset)
4216 /* Address of where the BL is located. */
4217 - (input_section->output_section->vma + input_section->output_offset
4218 + offset)
4219 /* Addend in the relocation. */
4220 - addend
4221 /* Biassing for PC-relative addressing. */
4222 - 8;
4223
4224 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
4225
4226 return TRUE;
4227 }
4228
4229 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
4230
4231 static struct elf_link_hash_entry *
4232 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
4233 const char * name,
4234 bfd * input_bfd,
4235 bfd * output_bfd,
4236 asection * sym_sec,
4237 bfd_vma val,
4238 asection *s,
4239 char **error_message)
4240 {
4241 bfd_vma my_offset;
4242 long int ret_offset;
4243 struct elf_link_hash_entry * myh;
4244 struct elf32_arm_link_hash_table * globals;
4245
4246 myh = find_arm_glue (info, name, error_message);
4247 if (myh == NULL)
4248 return NULL;
4249
4250 globals = elf32_arm_hash_table (info);
4251
4252 BFD_ASSERT (globals != NULL);
4253 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4254
4255 my_offset = myh->root.u.def.value;
4256
4257 if ((my_offset & 0x01) == 0x01)
4258 {
4259 if (sym_sec != NULL
4260 && sym_sec->owner != NULL
4261 && !INTERWORK_FLAG (sym_sec->owner))
4262 {
4263 (*_bfd_error_handler)
4264 (_("%B(%s): warning: interworking not enabled.\n"
4265 " first occurrence: %B: arm call to thumb"),
4266 sym_sec->owner, input_bfd, name);
4267 }
4268
4269 --my_offset;
4270 myh->root.u.def.value = my_offset;
4271
4272 if (info->shared || globals->root.is_relocatable_executable
4273 || globals->pic_veneer)
4274 {
4275 /* For relocatable objects we can't use absolute addresses,
4276 so construct the address from a relative offset. */
4277 /* TODO: If the offset is small it's probably worth
4278 constructing the address with adds. */
4279 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
4280 s->contents + my_offset);
4281 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
4282 s->contents + my_offset + 4);
4283 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
4284 s->contents + my_offset + 8);
4285 /* Adjust the offset by 4 for the position of the add,
4286 and 8 for the pipeline offset. */
4287 ret_offset = (val - (s->output_offset
4288 + s->output_section->vma
4289 + my_offset + 12))
4290 | 1;
4291 bfd_put_32 (output_bfd, ret_offset,
4292 s->contents + my_offset + 12);
4293 }
4294 else if (globals->use_blx)
4295 {
4296 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
4297 s->contents + my_offset);
4298
4299 /* It's a thumb address. Add the low order bit. */
4300 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
4301 s->contents + my_offset + 4);
4302 }
4303 else
4304 {
4305 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
4306 s->contents + my_offset);
4307
4308 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
4309 s->contents + my_offset + 4);
4310
4311 /* It's a thumb address. Add the low order bit. */
4312 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
4313 s->contents + my_offset + 8);
4314 }
4315 }
4316
4317 BFD_ASSERT (my_offset <= globals->arm_glue_size);
4318
4319 return myh;
4320 }
4321
4322 /* Arm code calling a Thumb function. */
4323
4324 static int
4325 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
4326 const char * name,
4327 bfd * input_bfd,
4328 bfd * output_bfd,
4329 asection * input_section,
4330 bfd_byte * hit_data,
4331 asection * sym_sec,
4332 bfd_vma offset,
4333 bfd_signed_vma addend,
4334 bfd_vma val,
4335 char **error_message)
4336 {
4337 unsigned long int tmp;
4338 bfd_vma my_offset;
4339 asection * s;
4340 long int ret_offset;
4341 struct elf_link_hash_entry * myh;
4342 struct elf32_arm_link_hash_table * globals;
4343
4344 globals = elf32_arm_hash_table (info);
4345
4346 BFD_ASSERT (globals != NULL);
4347 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4348
4349 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4350 ARM2THUMB_GLUE_SECTION_NAME);
4351 BFD_ASSERT (s != NULL);
4352 BFD_ASSERT (s->contents != NULL);
4353 BFD_ASSERT (s->output_section != NULL);
4354
4355 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
4356 sym_sec, val, s, error_message);
4357 if (!myh)
4358 return FALSE;
4359
4360 my_offset = myh->root.u.def.value;
4361 tmp = bfd_get_32 (input_bfd, hit_data);
4362 tmp = tmp & 0xFF000000;
4363
4364 /* Somehow these are both 4 too far, so subtract 8. */
4365 ret_offset = (s->output_offset
4366 + my_offset
4367 + s->output_section->vma
4368 - (input_section->output_offset
4369 + input_section->output_section->vma
4370 + offset + addend)
4371 - 8);
4372
4373 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
4374
4375 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
4376
4377 return TRUE;
4378 }
4379
4380 /* Populate Arm stub for an exported Thumb function. */
4381
4382 static bfd_boolean
4383 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
4384 {
4385 struct bfd_link_info * info = (struct bfd_link_info *) inf;
4386 asection * s;
4387 struct elf_link_hash_entry * myh;
4388 struct elf32_arm_link_hash_entry *eh;
4389 struct elf32_arm_link_hash_table * globals;
4390 asection *sec;
4391 bfd_vma val;
4392 char *error_message;
4393
4394 eh = elf32_arm_hash_entry(h);
4395 /* Allocate stubs for exported Thumb functions on v4t. */
4396 if (eh->export_glue == NULL)
4397 return TRUE;
4398
4399 globals = elf32_arm_hash_table (info);
4400
4401 BFD_ASSERT (globals != NULL);
4402 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4403
4404 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4405 ARM2THUMB_GLUE_SECTION_NAME);
4406 BFD_ASSERT (s != NULL);
4407 BFD_ASSERT (s->contents != NULL);
4408 BFD_ASSERT (s->output_section != NULL);
4409
4410 sec = eh->export_glue->root.u.def.section;
4411
4412 BFD_ASSERT (sec->output_section != NULL);
4413
4414 val = eh->export_glue->root.u.def.value + sec->output_offset
4415 + sec->output_section->vma;
4416 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
4417 h->root.u.def.section->owner,
4418 globals->obfd, sec, val, s,
4419 &error_message);
4420 BFD_ASSERT (myh);
4421 return TRUE;
4422 }
4423
4424 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
4425
4426 static bfd_vma
4427 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
4428 {
4429 bfd_byte *p;
4430 bfd_vma glue_addr;
4431 asection *s;
4432 struct elf32_arm_link_hash_table *globals;
4433
4434 globals = elf32_arm_hash_table (info);
4435
4436 BFD_ASSERT (globals != NULL);
4437 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4438
4439 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4440 ARM_BX_GLUE_SECTION_NAME);
4441 BFD_ASSERT (s != NULL);
4442 BFD_ASSERT (s->contents != NULL);
4443 BFD_ASSERT (s->output_section != NULL);
4444
4445 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
4446
4447 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
4448
4449 if ((globals->bx_glue_offset[reg] & 1) == 0)
4450 {
4451 p = s->contents + glue_addr;
4452 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
4453 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
4454 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
4455 globals->bx_glue_offset[reg] |= 1;
4456 }
4457
4458 return glue_addr + s->output_section->vma + s->output_offset;
4459 }
4460
4461 /* Generate Arm stubs for exported Thumb symbols. */
4462 static void
4463 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
4464 struct bfd_link_info *link_info)
4465 {
4466 struct elf32_arm_link_hash_table * globals;
4467
4468 if (!link_info)
4469 return;
4470
4471 globals = elf32_arm_hash_table (link_info);
4472 /* If blx is available then exported Thumb symbols are OK and there is
4473 nothing to do. */
4474 if (globals->use_blx)
4475 return;
4476
4477 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
4478 link_info);
4479 }
4480
4481 /* Some relocations map to different relocations depending on the
4482 target. Return the real relocation. */
4483 static int
4484 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
4485 int r_type)
4486 {
4487 switch (r_type)
4488 {
4489 case R_ARM_TARGET1:
4490 if (globals->target1_is_rel)
4491 return R_ARM_REL32;
4492 else
4493 return R_ARM_ABS32;
4494
4495 case R_ARM_TARGET2:
4496 return globals->target2_reloc;
4497
4498 default:
4499 return r_type;
4500 }
4501 }
4502
4503 /* Return the base VMA address which should be subtracted from real addresses
4504 when resolving @dtpoff relocation.
4505 This is PT_TLS segment p_vaddr. */
4506
4507 static bfd_vma
4508 dtpoff_base (struct bfd_link_info *info)
4509 {
4510 /* If tls_sec is NULL, we should have signalled an error already. */
4511 if (elf_hash_table (info)->tls_sec == NULL)
4512 return 0;
4513 return elf_hash_table (info)->tls_sec->vma;
4514 }
4515
4516 /* Return the relocation value for @tpoff relocation
4517 if STT_TLS virtual address is ADDRESS. */
4518
4519 static bfd_vma
4520 tpoff (struct bfd_link_info *info, bfd_vma address)
4521 {
4522 struct elf_link_hash_table *htab = elf_hash_table (info);
4523 bfd_vma base;
4524
4525 /* If tls_sec is NULL, we should have signalled an error already. */
4526 if (htab->tls_sec == NULL)
4527 return 0;
4528 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
4529 return address - htab->tls_sec->vma + base;
4530 }
4531
4532 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
4533 VALUE is the relocation value. */
4534
4535 static bfd_reloc_status_type
4536 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
4537 {
4538 if (value > 0xfff)
4539 return bfd_reloc_overflow;
4540
4541 value |= bfd_get_32 (abfd, data) & 0xfffff000;
4542 bfd_put_32 (abfd, value, data);
4543 return bfd_reloc_ok;
4544 }
4545
4546 /* For a given value of n, calculate the value of G_n as required to
4547 deal with group relocations. We return it in the form of an
4548 encoded constant-and-rotation, together with the final residual. If n is
4549 specified as less than zero, then final_residual is filled with the
4550 input value and no further action is performed. */
4551
4552 static bfd_vma
4553 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
4554 {
4555 int current_n;
4556 bfd_vma g_n;
4557 bfd_vma encoded_g_n = 0;
4558 bfd_vma residual = value; /* Also known as Y_n. */
4559
4560 for (current_n = 0; current_n <= n; current_n++)
4561 {
4562 int shift;
4563
4564 /* Calculate which part of the value to mask. */
4565 if (residual == 0)
4566 shift = 0;
4567 else
4568 {
4569 int msb;
4570
4571 /* Determine the most significant bit in the residual and
4572 align the resulting value to a 2-bit boundary. */
4573 for (msb = 30; msb >= 0; msb -= 2)
4574 if (residual & (3 << msb))
4575 break;
4576
4577 /* The desired shift is now (msb - 6), or zero, whichever
4578 is the greater. */
4579 shift = msb - 6;
4580 if (shift < 0)
4581 shift = 0;
4582 }
4583
4584 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
4585 g_n = residual & (0xff << shift);
4586 encoded_g_n = (g_n >> shift)
4587 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4588
4589 /* Calculate the residual for the next time around. */
4590 residual &= ~g_n;
4591 }
4592
4593 *final_residual = residual;
4594
4595 return encoded_g_n;
4596 }
4597
4598 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
4599 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
4600 static int
4601 identify_add_or_sub(bfd_vma insn)
4602 {
4603 int opcode = insn & 0x1e00000;
4604
4605 if (opcode == 1 << 23) /* ADD */
4606 return 1;
4607
4608 if (opcode == 1 << 22) /* SUB */
4609 return -1;
4610
4611 return 0;
4612 }
4613
4614 /* Determine if we're dealing with a Thumb-2 object. */
4615
4616 static int using_thumb2 (struct elf32_arm_link_hash_table *globals)
4617 {
4618 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4619 Tag_CPU_arch);
4620 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
4621 }
4622
4623 /* Perform a relocation as part of a final link. */
4624
4625 static bfd_reloc_status_type
4626 elf32_arm_final_link_relocate (reloc_howto_type * howto,
4627 bfd * input_bfd,
4628 bfd * output_bfd,
4629 asection * input_section,
4630 bfd_byte * contents,
4631 Elf_Internal_Rela * rel,
4632 bfd_vma value,
4633 struct bfd_link_info * info,
4634 asection * sym_sec,
4635 const char * sym_name,
4636 int sym_flags,
4637 struct elf_link_hash_entry * h,
4638 bfd_boolean * unresolved_reloc_p,
4639 char **error_message)
4640 {
4641 unsigned long r_type = howto->type;
4642 unsigned long r_symndx;
4643 bfd_byte * hit_data = contents + rel->r_offset;
4644 bfd * dynobj = NULL;
4645 Elf_Internal_Shdr * symtab_hdr;
4646 struct elf_link_hash_entry ** sym_hashes;
4647 bfd_vma * local_got_offsets;
4648 asection * sgot = NULL;
4649 asection * splt = NULL;
4650 asection * sreloc = NULL;
4651 bfd_vma addend;
4652 bfd_signed_vma signed_addend;
4653 struct elf32_arm_link_hash_table * globals;
4654
4655 globals = elf32_arm_hash_table (info);
4656
4657 BFD_ASSERT (is_arm_elf (input_bfd));
4658
4659 /* Some relocation types map to different relocations depending on the
4660 target. We pick the right one here. */
4661 r_type = arm_real_reloc_type (globals, r_type);
4662 if (r_type != howto->type)
4663 howto = elf32_arm_howto_from_type (r_type);
4664
4665 /* If the start address has been set, then set the EF_ARM_HASENTRY
4666 flag. Setting this more than once is redundant, but the cost is
4667 not too high, and it keeps the code simple.
4668
4669 The test is done here, rather than somewhere else, because the
4670 start address is only set just before the final link commences.
4671
4672 Note - if the user deliberately sets a start address of 0, the
4673 flag will not be set. */
4674 if (bfd_get_start_address (output_bfd) != 0)
4675 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
4676
4677 dynobj = elf_hash_table (info)->dynobj;
4678 if (dynobj)
4679 {
4680 sgot = bfd_get_section_by_name (dynobj, ".got");
4681 splt = bfd_get_section_by_name (dynobj, ".plt");
4682 }
4683 symtab_hdr = & elf_symtab_hdr (input_bfd);
4684 sym_hashes = elf_sym_hashes (input_bfd);
4685 local_got_offsets = elf_local_got_offsets (input_bfd);
4686 r_symndx = ELF32_R_SYM (rel->r_info);
4687
4688 if (globals->use_rel)
4689 {
4690 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
4691
4692 if (addend & ((howto->src_mask + 1) >> 1))
4693 {
4694 signed_addend = -1;
4695 signed_addend &= ~ howto->src_mask;
4696 signed_addend |= addend;
4697 }
4698 else
4699 signed_addend = addend;
4700 }
4701 else
4702 addend = signed_addend = rel->r_addend;
4703
4704 switch (r_type)
4705 {
4706 case R_ARM_NONE:
4707 /* We don't need to find a value for this symbol. It's just a
4708 marker. */
4709 *unresolved_reloc_p = FALSE;
4710 return bfd_reloc_ok;
4711
4712 case R_ARM_ABS12:
4713 if (!globals->vxworks_p)
4714 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
4715
4716 case R_ARM_PC24:
4717 case R_ARM_ABS32:
4718 case R_ARM_ABS32_NOI:
4719 case R_ARM_REL32:
4720 case R_ARM_REL32_NOI:
4721 case R_ARM_CALL:
4722 case R_ARM_JUMP24:
4723 case R_ARM_XPC25:
4724 case R_ARM_PREL31:
4725 case R_ARM_PLT32:
4726 /* Handle relocations which should use the PLT entry. ABS32/REL32
4727 will use the symbol's value, which may point to a PLT entry, but we
4728 don't need to handle that here. If we created a PLT entry, all
4729 branches in this object should go to it. */
4730 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
4731 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
4732 && h != NULL
4733 && splt != NULL
4734 && h->plt.offset != (bfd_vma) -1)
4735 {
4736 /* If we've created a .plt section, and assigned a PLT entry to
4737 this function, it should not be known to bind locally. If
4738 it were, we would have cleared the PLT entry. */
4739 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
4740
4741 value = (splt->output_section->vma
4742 + splt->output_offset
4743 + h->plt.offset);
4744 *unresolved_reloc_p = FALSE;
4745 return _bfd_final_link_relocate (howto, input_bfd, input_section,
4746 contents, rel->r_offset, value,
4747 rel->r_addend);
4748 }
4749
4750 /* When generating a shared object or relocatable executable, these
4751 relocations are copied into the output file to be resolved at
4752 run time. */
4753 if ((info->shared || globals->root.is_relocatable_executable)
4754 && (input_section->flags & SEC_ALLOC)
4755 && !(elf32_arm_hash_table (info)->vxworks_p
4756 && strcmp (input_section->output_section->name,
4757 ".tls_vars") == 0)
4758 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
4759 || !SYMBOL_CALLS_LOCAL (info, h))
4760 && (h == NULL
4761 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4762 || h->root.type != bfd_link_hash_undefweak)
4763 && r_type != R_ARM_PC24
4764 && r_type != R_ARM_CALL
4765 && r_type != R_ARM_JUMP24
4766 && r_type != R_ARM_PREL31
4767 && r_type != R_ARM_PLT32)
4768 {
4769 Elf_Internal_Rela outrel;
4770 bfd_byte *loc;
4771 bfd_boolean skip, relocate;
4772
4773 *unresolved_reloc_p = FALSE;
4774
4775 if (sreloc == NULL)
4776 {
4777 const char * name;
4778
4779 name = (bfd_elf_string_from_elf_section
4780 (input_bfd,
4781 elf_elfheader (input_bfd)->e_shstrndx,
4782 elf_section_data (input_section)->rel_hdr.sh_name));
4783 if (name == NULL)
4784 return bfd_reloc_notsupported;
4785
4786 BFD_ASSERT (reloc_section_p (globals, name, input_section));
4787
4788 sreloc = bfd_get_section_by_name (dynobj, name);
4789 BFD_ASSERT (sreloc != NULL);
4790 }
4791
4792 skip = FALSE;
4793 relocate = FALSE;
4794
4795 outrel.r_addend = addend;
4796 outrel.r_offset =
4797 _bfd_elf_section_offset (output_bfd, info, input_section,
4798 rel->r_offset);
4799 if (outrel.r_offset == (bfd_vma) -1)
4800 skip = TRUE;
4801 else if (outrel.r_offset == (bfd_vma) -2)
4802 skip = TRUE, relocate = TRUE;
4803 outrel.r_offset += (input_section->output_section->vma
4804 + input_section->output_offset);
4805
4806 if (skip)
4807 memset (&outrel, 0, sizeof outrel);
4808 else if (h != NULL
4809 && h->dynindx != -1
4810 && (!info->shared
4811 || !info->symbolic
4812 || !h->def_regular))
4813 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
4814 else
4815 {
4816 int symbol;
4817
4818 /* This symbol is local, or marked to become local. */
4819 if (sym_flags == STT_ARM_TFUNC)
4820 value |= 1;
4821 if (globals->symbian_p)
4822 {
4823 asection *osec;
4824
4825 /* On Symbian OS, the data segment and text segement
4826 can be relocated independently. Therefore, we
4827 must indicate the segment to which this
4828 relocation is relative. The BPABI allows us to
4829 use any symbol in the right segment; we just use
4830 the section symbol as it is convenient. (We
4831 cannot use the symbol given by "h" directly as it
4832 will not appear in the dynamic symbol table.)
4833
4834 Note that the dynamic linker ignores the section
4835 symbol value, so we don't subtract osec->vma
4836 from the emitted reloc addend. */
4837 if (sym_sec)
4838 osec = sym_sec->output_section;
4839 else
4840 osec = input_section->output_section;
4841 symbol = elf_section_data (osec)->dynindx;
4842 if (symbol == 0)
4843 {
4844 struct elf_link_hash_table *htab = elf_hash_table (info);
4845
4846 if ((osec->flags & SEC_READONLY) == 0
4847 && htab->data_index_section != NULL)
4848 osec = htab->data_index_section;
4849 else
4850 osec = htab->text_index_section;
4851 symbol = elf_section_data (osec)->dynindx;
4852 }
4853 BFD_ASSERT (symbol != 0);
4854 }
4855 else
4856 /* On SVR4-ish systems, the dynamic loader cannot
4857 relocate the text and data segments independently,
4858 so the symbol does not matter. */
4859 symbol = 0;
4860 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
4861 if (globals->use_rel)
4862 relocate = TRUE;
4863 else
4864 outrel.r_addend += value;
4865 }
4866
4867 loc = sreloc->contents;
4868 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
4869 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
4870
4871 /* If this reloc is against an external symbol, we do not want to
4872 fiddle with the addend. Otherwise, we need to include the symbol
4873 value so that it becomes an addend for the dynamic reloc. */
4874 if (! relocate)
4875 return bfd_reloc_ok;
4876
4877 return _bfd_final_link_relocate (howto, input_bfd, input_section,
4878 contents, rel->r_offset, value,
4879 (bfd_vma) 0);
4880 }
4881 else switch (r_type)
4882 {
4883 case R_ARM_ABS12:
4884 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
4885
4886 case R_ARM_XPC25: /* Arm BLX instruction. */
4887 case R_ARM_CALL:
4888 case R_ARM_JUMP24:
4889 case R_ARM_PC24: /* Arm B/BL instruction */
4890 case R_ARM_PLT32:
4891 if (r_type == R_ARM_XPC25)
4892 {
4893 /* Check for Arm calling Arm function. */
4894 /* FIXME: Should we translate the instruction into a BL
4895 instruction instead ? */
4896 if (sym_flags != STT_ARM_TFUNC)
4897 (*_bfd_error_handler)
4898 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
4899 input_bfd,
4900 h ? h->root.root.string : "(local)");
4901 }
4902 else if (r_type != R_ARM_CALL || !globals->use_blx)
4903 {
4904 /* Check for Arm calling Thumb function. */
4905 if (sym_flags == STT_ARM_TFUNC)
4906 {
4907 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
4908 output_bfd, input_section,
4909 hit_data, sym_sec, rel->r_offset,
4910 signed_addend, value,
4911 error_message))
4912 return bfd_reloc_ok;
4913 else
4914 return bfd_reloc_dangerous;
4915 }
4916 }
4917
4918 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
4919 where:
4920 S is the address of the symbol in the relocation.
4921 P is address of the instruction being relocated.
4922 A is the addend (extracted from the instruction) in bytes.
4923
4924 S is held in 'value'.
4925 P is the base address of the section containing the
4926 instruction plus the offset of the reloc into that
4927 section, ie:
4928 (input_section->output_section->vma +
4929 input_section->output_offset +
4930 rel->r_offset).
4931 A is the addend, converted into bytes, ie:
4932 (signed_addend * 4)
4933
4934 Note: None of these operations have knowledge of the pipeline
4935 size of the processor, thus it is up to the assembler to
4936 encode this information into the addend. */
4937 value -= (input_section->output_section->vma
4938 + input_section->output_offset);
4939 value -= rel->r_offset;
4940 if (globals->use_rel)
4941 value += (signed_addend << howto->size);
4942 else
4943 /* RELA addends do not have to be adjusted by howto->size. */
4944 value += signed_addend;
4945
4946 signed_addend = value;
4947 signed_addend >>= howto->rightshift;
4948
4949 /* A branch to an undefined weak symbol is turned into a jump to
4950 the next instruction. */
4951 if (h && h->root.type == bfd_link_hash_undefweak)
4952 {
4953 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
4954 | 0x0affffff;
4955 }
4956 else
4957 {
4958 /* Perform a signed range check. */
4959 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
4960 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
4961 return bfd_reloc_overflow;
4962
4963 addend = (value & 2);
4964
4965 value = (signed_addend & howto->dst_mask)
4966 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
4967
4968 /* Set the H bit in the BLX instruction. */
4969 if (sym_flags == STT_ARM_TFUNC)
4970 {
4971 if (addend)
4972 value |= (1 << 24);
4973 else
4974 value &= ~(bfd_vma)(1 << 24);
4975 }
4976 if (r_type == R_ARM_CALL)
4977 {
4978 /* Select the correct instruction (BL or BLX). */
4979 if (sym_flags == STT_ARM_TFUNC)
4980 value |= (1 << 28);
4981 else
4982 {
4983 value &= ~(bfd_vma)(1 << 28);
4984 value |= (1 << 24);
4985 }
4986 }
4987 }
4988 break;
4989
4990 case R_ARM_ABS32:
4991 value += addend;
4992 if (sym_flags == STT_ARM_TFUNC)
4993 value |= 1;
4994 break;
4995
4996 case R_ARM_ABS32_NOI:
4997 value += addend;
4998 break;
4999
5000 case R_ARM_REL32:
5001 value += addend;
5002 if (sym_flags == STT_ARM_TFUNC)
5003 value |= 1;
5004 value -= (input_section->output_section->vma
5005 + input_section->output_offset + rel->r_offset);
5006 break;
5007
5008 case R_ARM_REL32_NOI:
5009 value += addend;
5010 value -= (input_section->output_section->vma
5011 + input_section->output_offset + rel->r_offset);
5012 break;
5013
5014 case R_ARM_PREL31:
5015 value -= (input_section->output_section->vma
5016 + input_section->output_offset + rel->r_offset);
5017 value += signed_addend;
5018 if (! h || h->root.type != bfd_link_hash_undefweak)
5019 {
5020 /* Check for overflow */
5021 if ((value ^ (value >> 1)) & (1 << 30))
5022 return bfd_reloc_overflow;
5023 }
5024 value &= 0x7fffffff;
5025 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
5026 if (sym_flags == STT_ARM_TFUNC)
5027 value |= 1;
5028 break;
5029 }
5030
5031 bfd_put_32 (input_bfd, value, hit_data);
5032 return bfd_reloc_ok;
5033
5034 case R_ARM_ABS8:
5035 value += addend;
5036 if ((long) value > 0x7f || (long) value < -0x80)
5037 return bfd_reloc_overflow;
5038
5039 bfd_put_8 (input_bfd, value, hit_data);
5040 return bfd_reloc_ok;
5041
5042 case R_ARM_ABS16:
5043 value += addend;
5044
5045 if ((long) value > 0x7fff || (long) value < -0x8000)
5046 return bfd_reloc_overflow;
5047
5048 bfd_put_16 (input_bfd, value, hit_data);
5049 return bfd_reloc_ok;
5050
5051 case R_ARM_THM_ABS5:
5052 /* Support ldr and str instructions for the thumb. */
5053 if (globals->use_rel)
5054 {
5055 /* Need to refetch addend. */
5056 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
5057 /* ??? Need to determine shift amount from operand size. */
5058 addend >>= howto->rightshift;
5059 }
5060 value += addend;
5061
5062 /* ??? Isn't value unsigned? */
5063 if ((long) value > 0x1f || (long) value < -0x10)
5064 return bfd_reloc_overflow;
5065
5066 /* ??? Value needs to be properly shifted into place first. */
5067 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
5068 bfd_put_16 (input_bfd, value, hit_data);
5069 return bfd_reloc_ok;
5070
5071 case R_ARM_THM_ALU_PREL_11_0:
5072 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
5073 {
5074 bfd_vma insn;
5075 bfd_signed_vma relocation;
5076
5077 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
5078 | bfd_get_16 (input_bfd, hit_data + 2);
5079
5080 if (globals->use_rel)
5081 {
5082 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
5083 | ((insn & (1 << 26)) >> 15);
5084 if (insn & 0xf00000)
5085 signed_addend = -signed_addend;
5086 }
5087
5088 relocation = value + signed_addend;
5089 relocation -= (input_section->output_section->vma
5090 + input_section->output_offset
5091 + rel->r_offset);
5092
5093 value = abs (relocation);
5094
5095 if (value >= 0x1000)
5096 return bfd_reloc_overflow;
5097
5098 insn = (insn & 0xfb0f8f00) | (value & 0xff)
5099 | ((value & 0x700) << 4)
5100 | ((value & 0x800) << 15);
5101 if (relocation < 0)
5102 insn |= 0xa00000;
5103
5104 bfd_put_16 (input_bfd, insn >> 16, hit_data);
5105 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
5106
5107 return bfd_reloc_ok;
5108 }
5109
5110 case R_ARM_THM_PC12:
5111 /* Corresponds to: ldr.w reg, [pc, #offset]. */
5112 {
5113 bfd_vma insn;
5114 bfd_signed_vma relocation;
5115
5116 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
5117 | bfd_get_16 (input_bfd, hit_data + 2);
5118
5119 if (globals->use_rel)
5120 {
5121 signed_addend = insn & 0xfff;
5122 if (!(insn & (1 << 23)))
5123 signed_addend = -signed_addend;
5124 }
5125
5126 relocation = value + signed_addend;
5127 relocation -= (input_section->output_section->vma
5128 + input_section->output_offset
5129 + rel->r_offset);
5130
5131 value = abs (relocation);
5132
5133 if (value >= 0x1000)
5134 return bfd_reloc_overflow;
5135
5136 insn = (insn & 0xff7ff000) | value;
5137 if (relocation >= 0)
5138 insn |= (1 << 23);
5139
5140 bfd_put_16 (input_bfd, insn >> 16, hit_data);
5141 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
5142
5143 return bfd_reloc_ok;
5144 }
5145
5146 case R_ARM_THM_XPC22:
5147 case R_ARM_THM_CALL:
5148 case R_ARM_THM_JUMP24:
5149 /* Thumb BL (branch long instruction). */
5150 {
5151 bfd_vma relocation;
5152 bfd_vma reloc_sign;
5153 bfd_boolean overflow = FALSE;
5154 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
5155 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
5156 bfd_signed_vma reloc_signed_max;
5157 bfd_signed_vma reloc_signed_min;
5158 bfd_vma check;
5159 bfd_signed_vma signed_check;
5160 int bitsize;
5161 int thumb2 = using_thumb2 (globals);
5162
5163 /* A branch to an undefined weak symbol is turned into a jump to
5164 the next instruction. */
5165 if (h && h->root.type == bfd_link_hash_undefweak)
5166 {
5167 bfd_put_16 (input_bfd, 0xe000, hit_data);
5168 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
5169 return bfd_reloc_ok;
5170 }
5171
5172 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
5173 with Thumb-1) involving the J1 and J2 bits. */
5174 if (globals->use_rel)
5175 {
5176 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
5177 bfd_vma upper = upper_insn & 0x3ff;
5178 bfd_vma lower = lower_insn & 0x7ff;
5179 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
5180 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
5181 bfd_vma i1 = j1 ^ s ? 0 : 1;
5182 bfd_vma i2 = j2 ^ s ? 0 : 1;
5183
5184 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
5185 /* Sign extend. */
5186 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
5187
5188 signed_addend = addend;
5189 }
5190
5191 if (r_type == R_ARM_THM_XPC22)
5192 {
5193 /* Check for Thumb to Thumb call. */
5194 /* FIXME: Should we translate the instruction into a BL
5195 instruction instead ? */
5196 if (sym_flags == STT_ARM_TFUNC)
5197 (*_bfd_error_handler)
5198 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
5199 input_bfd,
5200 h ? h->root.root.string : "(local)");
5201 }
5202 else
5203 {
5204 /* If it is not a call to Thumb, assume call to Arm.
5205 If it is a call relative to a section name, then it is not a
5206 function call at all, but rather a long jump. Calls through
5207 the PLT do not require stubs. */
5208 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
5209 && (h == NULL || splt == NULL
5210 || h->plt.offset == (bfd_vma) -1))
5211 {
5212 if (globals->use_blx && r_type == R_ARM_THM_CALL)
5213 {
5214 /* Convert BL to BLX. */
5215 lower_insn = (lower_insn & ~0x1000) | 0x0800;
5216 }
5217 else if (elf32_thumb_to_arm_stub
5218 (info, sym_name, input_bfd, output_bfd, input_section,
5219 hit_data, sym_sec, rel->r_offset, signed_addend, value,
5220 error_message))
5221 return bfd_reloc_ok;
5222 else
5223 return bfd_reloc_dangerous;
5224 }
5225 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
5226 && r_type == R_ARM_THM_CALL)
5227 {
5228 /* Make sure this is a BL. */
5229 lower_insn |= 0x1800;
5230 }
5231 }
5232
5233 /* Handle calls via the PLT. */
5234 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
5235 {
5236 value = (splt->output_section->vma
5237 + splt->output_offset
5238 + h->plt.offset);
5239 if (globals->use_blx && r_type == R_ARM_THM_CALL)
5240 {
5241 /* If the Thumb BLX instruction is available, convert the
5242 BL to a BLX instruction to call the ARM-mode PLT entry. */
5243 lower_insn = (lower_insn & ~0x1000) | 0x0800;
5244 }
5245 else
5246 /* Target the Thumb stub before the ARM PLT entry. */
5247 value -= PLT_THUMB_STUB_SIZE;
5248 *unresolved_reloc_p = FALSE;
5249 }
5250
5251 relocation = value + signed_addend;
5252
5253 relocation -= (input_section->output_section->vma
5254 + input_section->output_offset
5255 + rel->r_offset);
5256
5257 check = relocation >> howto->rightshift;
5258
5259 /* If this is a signed value, the rightshift just dropped
5260 leading 1 bits (assuming twos complement). */
5261 if ((bfd_signed_vma) relocation >= 0)
5262 signed_check = check;
5263 else
5264 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
5265
5266 /* Calculate the permissable maximum and minimum values for
5267 this relocation according to whether we're relocating for
5268 Thumb-2 or not. */
5269 bitsize = howto->bitsize;
5270 if (!thumb2)
5271 bitsize -= 2;
5272 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
5273 reloc_signed_min = ~reloc_signed_max;
5274
5275 /* Assumes two's complement. */
5276 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5277 overflow = TRUE;
5278
5279 if ((lower_insn & 0x5000) == 0x4000)
5280 /* For a BLX instruction, make sure that the relocation is rounded up
5281 to a word boundary. This follows the semantics of the instruction
5282 which specifies that bit 1 of the target address will come from bit
5283 1 of the base address. */
5284 relocation = (relocation + 2) & ~ 3;
5285
5286 /* Put RELOCATION back into the insn. Assumes two's complement.
5287 We use the Thumb-2 encoding, which is safe even if dealing with
5288 a Thumb-1 instruction by virtue of our overflow check above. */
5289 reloc_sign = (signed_check < 0) ? 1 : 0;
5290 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
5291 | ((relocation >> 12) & 0x3ff)
5292 | (reloc_sign << 10);
5293 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
5294 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
5295 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
5296 | ((relocation >> 1) & 0x7ff);
5297
5298 /* Put the relocated value back in the object file: */
5299 bfd_put_16 (input_bfd, upper_insn, hit_data);
5300 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
5301
5302 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
5303 }
5304 break;
5305
5306 case R_ARM_THM_JUMP19:
5307 /* Thumb32 conditional branch instruction. */
5308 {
5309 bfd_vma relocation;
5310 bfd_boolean overflow = FALSE;
5311 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
5312 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
5313 bfd_signed_vma reloc_signed_max = 0xffffe;
5314 bfd_signed_vma reloc_signed_min = -0x100000;
5315 bfd_signed_vma signed_check;
5316
5317 /* Need to refetch the addend, reconstruct the top three bits,
5318 and squish the two 11 bit pieces together. */
5319 if (globals->use_rel)
5320 {
5321 bfd_vma S = (upper_insn & 0x0400) >> 10;
5322 bfd_vma upper = (upper_insn & 0x003f);
5323 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
5324 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
5325 bfd_vma lower = (lower_insn & 0x07ff);
5326
5327 upper |= J1 << 6;
5328 upper |= J2 << 7;
5329 upper |= (!S) << 8;
5330 upper -= 0x0100; /* Sign extend. */
5331
5332 addend = (upper << 12) | (lower << 1);
5333 signed_addend = addend;
5334 }
5335
5336 /* Handle calls via the PLT. */
5337 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
5338 {
5339 value = (splt->output_section->vma
5340 + splt->output_offset
5341 + h->plt.offset);
5342 /* Target the Thumb stub before the ARM PLT entry. */
5343 value -= PLT_THUMB_STUB_SIZE;
5344 *unresolved_reloc_p = FALSE;
5345 }
5346
5347 /* ??? Should handle interworking? GCC might someday try to
5348 use this for tail calls. */
5349
5350 relocation = value + signed_addend;
5351 relocation -= (input_section->output_section->vma
5352 + input_section->output_offset
5353 + rel->r_offset);
5354 signed_check = (bfd_signed_vma) relocation;
5355
5356 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5357 overflow = TRUE;
5358
5359 /* Put RELOCATION back into the insn. */
5360 {
5361 bfd_vma S = (relocation & 0x00100000) >> 20;
5362 bfd_vma J2 = (relocation & 0x00080000) >> 19;
5363 bfd_vma J1 = (relocation & 0x00040000) >> 18;
5364 bfd_vma hi = (relocation & 0x0003f000) >> 12;
5365 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
5366
5367 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
5368 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
5369 }
5370
5371 /* Put the relocated value back in the object file: */
5372 bfd_put_16 (input_bfd, upper_insn, hit_data);
5373 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
5374
5375 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
5376 }
5377
5378 case R_ARM_THM_JUMP11:
5379 case R_ARM_THM_JUMP8:
5380 case R_ARM_THM_JUMP6:
5381 /* Thumb B (branch) instruction). */
5382 {
5383 bfd_signed_vma relocation;
5384 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
5385 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
5386 bfd_signed_vma signed_check;
5387
5388 /* CZB cannot jump backward. */
5389 if (r_type == R_ARM_THM_JUMP6)
5390 reloc_signed_min = 0;
5391
5392 if (globals->use_rel)
5393 {
5394 /* Need to refetch addend. */
5395 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
5396 if (addend & ((howto->src_mask + 1) >> 1))
5397 {
5398 signed_addend = -1;
5399 signed_addend &= ~ howto->src_mask;
5400 signed_addend |= addend;
5401 }
5402 else
5403 signed_addend = addend;
5404 /* The value in the insn has been right shifted. We need to
5405 undo this, so that we can perform the address calculation
5406 in terms of bytes. */
5407 signed_addend <<= howto->rightshift;
5408 }
5409 relocation = value + signed_addend;
5410
5411 relocation -= (input_section->output_section->vma
5412 + input_section->output_offset
5413 + rel->r_offset);
5414
5415 relocation >>= howto->rightshift;
5416 signed_check = relocation;
5417
5418 if (r_type == R_ARM_THM_JUMP6)
5419 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
5420 else
5421 relocation &= howto->dst_mask;
5422 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
5423
5424 bfd_put_16 (input_bfd, relocation, hit_data);
5425
5426 /* Assumes two's complement. */
5427 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5428 return bfd_reloc_overflow;
5429
5430 return bfd_reloc_ok;
5431 }
5432
5433 case R_ARM_ALU_PCREL7_0:
5434 case R_ARM_ALU_PCREL15_8:
5435 case R_ARM_ALU_PCREL23_15:
5436 {
5437 bfd_vma insn;
5438 bfd_vma relocation;
5439
5440 insn = bfd_get_32 (input_bfd, hit_data);
5441 if (globals->use_rel)
5442 {
5443 /* Extract the addend. */
5444 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
5445 signed_addend = addend;
5446 }
5447 relocation = value + signed_addend;
5448
5449 relocation -= (input_section->output_section->vma
5450 + input_section->output_offset
5451 + rel->r_offset);
5452 insn = (insn & ~0xfff)
5453 | ((howto->bitpos << 7) & 0xf00)
5454 | ((relocation >> howto->bitpos) & 0xff);
5455 bfd_put_32 (input_bfd, value, hit_data);
5456 }
5457 return bfd_reloc_ok;
5458
5459 case R_ARM_GNU_VTINHERIT:
5460 case R_ARM_GNU_VTENTRY:
5461 return bfd_reloc_ok;
5462
5463 case R_ARM_GOTOFF32:
5464 /* Relocation is relative to the start of the
5465 global offset table. */
5466
5467 BFD_ASSERT (sgot != NULL);
5468 if (sgot == NULL)
5469 return bfd_reloc_notsupported;
5470
5471 /* If we are addressing a Thumb function, we need to adjust the
5472 address by one, so that attempts to call the function pointer will
5473 correctly interpret it as Thumb code. */
5474 if (sym_flags == STT_ARM_TFUNC)
5475 value += 1;
5476
5477 /* Note that sgot->output_offset is not involved in this
5478 calculation. We always want the start of .got. If we
5479 define _GLOBAL_OFFSET_TABLE in a different way, as is
5480 permitted by the ABI, we might have to change this
5481 calculation. */
5482 value -= sgot->output_section->vma;
5483 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5484 contents, rel->r_offset, value,
5485 rel->r_addend);
5486
5487 case R_ARM_GOTPC:
5488 /* Use global offset table as symbol value. */
5489 BFD_ASSERT (sgot != NULL);
5490
5491 if (sgot == NULL)
5492 return bfd_reloc_notsupported;
5493
5494 *unresolved_reloc_p = FALSE;
5495 value = sgot->output_section->vma;
5496 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5497 contents, rel->r_offset, value,
5498 rel->r_addend);
5499
5500 case R_ARM_GOT32:
5501 case R_ARM_GOT_PREL:
5502 /* Relocation is to the entry for this symbol in the
5503 global offset table. */
5504 if (sgot == NULL)
5505 return bfd_reloc_notsupported;
5506
5507 if (h != NULL)
5508 {
5509 bfd_vma off;
5510 bfd_boolean dyn;
5511
5512 off = h->got.offset;
5513 BFD_ASSERT (off != (bfd_vma) -1);
5514 dyn = globals->root.dynamic_sections_created;
5515
5516 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
5517 || (info->shared
5518 && SYMBOL_REFERENCES_LOCAL (info, h))
5519 || (ELF_ST_VISIBILITY (h->other)
5520 && h->root.type == bfd_link_hash_undefweak))
5521 {
5522 /* This is actually a static link, or it is a -Bsymbolic link
5523 and the symbol is defined locally. We must initialize this
5524 entry in the global offset table. Since the offset must
5525 always be a multiple of 4, we use the least significant bit
5526 to record whether we have initialized it already.
5527
5528 When doing a dynamic link, we create a .rel(a).got relocation
5529 entry to initialize the value. This is done in the
5530 finish_dynamic_symbol routine. */
5531 if ((off & 1) != 0)
5532 off &= ~1;
5533 else
5534 {
5535 /* If we are addressing a Thumb function, we need to
5536 adjust the address by one, so that attempts to
5537 call the function pointer will correctly
5538 interpret it as Thumb code. */
5539 if (sym_flags == STT_ARM_TFUNC)
5540 value |= 1;
5541
5542 bfd_put_32 (output_bfd, value, sgot->contents + off);
5543 h->got.offset |= 1;
5544 }
5545 }
5546 else
5547 *unresolved_reloc_p = FALSE;
5548
5549 value = sgot->output_offset + off;
5550 }
5551 else
5552 {
5553 bfd_vma off;
5554
5555 BFD_ASSERT (local_got_offsets != NULL &&
5556 local_got_offsets[r_symndx] != (bfd_vma) -1);
5557
5558 off = local_got_offsets[r_symndx];
5559
5560 /* The offset must always be a multiple of 4. We use the
5561 least significant bit to record whether we have already
5562 generated the necessary reloc. */
5563 if ((off & 1) != 0)
5564 off &= ~1;
5565 else
5566 {
5567 /* If we are addressing a Thumb function, we need to
5568 adjust the address by one, so that attempts to
5569 call the function pointer will correctly
5570 interpret it as Thumb code. */
5571 if (sym_flags == STT_ARM_TFUNC)
5572 value |= 1;
5573
5574 if (globals->use_rel)
5575 bfd_put_32 (output_bfd, value, sgot->contents + off);
5576
5577 if (info->shared)
5578 {
5579 asection * srelgot;
5580 Elf_Internal_Rela outrel;
5581 bfd_byte *loc;
5582
5583 srelgot = (bfd_get_section_by_name
5584 (dynobj, RELOC_SECTION (globals, ".got")));
5585 BFD_ASSERT (srelgot != NULL);
5586
5587 outrel.r_addend = addend + value;
5588 outrel.r_offset = (sgot->output_section->vma
5589 + sgot->output_offset
5590 + off);
5591 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
5592 loc = srelgot->contents;
5593 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
5594 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5595 }
5596
5597 local_got_offsets[r_symndx] |= 1;
5598 }
5599
5600 value = sgot->output_offset + off;
5601 }
5602 if (r_type != R_ARM_GOT32)
5603 value += sgot->output_section->vma;
5604
5605 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5606 contents, rel->r_offset, value,
5607 rel->r_addend);
5608
5609 case R_ARM_TLS_LDO32:
5610 value = value - dtpoff_base (info);
5611
5612 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5613 contents, rel->r_offset, value,
5614 rel->r_addend);
5615
5616 case R_ARM_TLS_LDM32:
5617 {
5618 bfd_vma off;
5619
5620 if (globals->sgot == NULL)
5621 abort ();
5622
5623 off = globals->tls_ldm_got.offset;
5624
5625 if ((off & 1) != 0)
5626 off &= ~1;
5627 else
5628 {
5629 /* If we don't know the module number, create a relocation
5630 for it. */
5631 if (info->shared)
5632 {
5633 Elf_Internal_Rela outrel;
5634 bfd_byte *loc;
5635
5636 if (globals->srelgot == NULL)
5637 abort ();
5638
5639 outrel.r_addend = 0;
5640 outrel.r_offset = (globals->sgot->output_section->vma
5641 + globals->sgot->output_offset + off);
5642 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
5643
5644 if (globals->use_rel)
5645 bfd_put_32 (output_bfd, outrel.r_addend,
5646 globals->sgot->contents + off);
5647
5648 loc = globals->srelgot->contents;
5649 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
5650 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5651 }
5652 else
5653 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
5654
5655 globals->tls_ldm_got.offset |= 1;
5656 }
5657
5658 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
5659 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
5660
5661 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5662 contents, rel->r_offset, value,
5663 rel->r_addend);
5664 }
5665
5666 case R_ARM_TLS_GD32:
5667 case R_ARM_TLS_IE32:
5668 {
5669 bfd_vma off;
5670 int indx;
5671 char tls_type;
5672
5673 if (globals->sgot == NULL)
5674 abort ();
5675
5676 indx = 0;
5677 if (h != NULL)
5678 {
5679 bfd_boolean dyn;
5680 dyn = globals->root.dynamic_sections_created;
5681 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
5682 && (!info->shared
5683 || !SYMBOL_REFERENCES_LOCAL (info, h)))
5684 {
5685 *unresolved_reloc_p = FALSE;
5686 indx = h->dynindx;
5687 }
5688 off = h->got.offset;
5689 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
5690 }
5691 else
5692 {
5693 if (local_got_offsets == NULL)
5694 abort ();
5695 off = local_got_offsets[r_symndx];
5696 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
5697 }
5698
5699 if (tls_type == GOT_UNKNOWN)
5700 abort ();
5701
5702 if ((off & 1) != 0)
5703 off &= ~1;
5704 else
5705 {
5706 bfd_boolean need_relocs = FALSE;
5707 Elf_Internal_Rela outrel;
5708 bfd_byte *loc = NULL;
5709 int cur_off = off;
5710
5711 /* The GOT entries have not been initialized yet. Do it
5712 now, and emit any relocations. If both an IE GOT and a
5713 GD GOT are necessary, we emit the GD first. */
5714
5715 if ((info->shared || indx != 0)
5716 && (h == NULL
5717 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5718 || h->root.type != bfd_link_hash_undefweak))
5719 {
5720 need_relocs = TRUE;
5721 if (globals->srelgot == NULL)
5722 abort ();
5723 loc = globals->srelgot->contents;
5724 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
5725 }
5726
5727 if (tls_type & GOT_TLS_GD)
5728 {
5729 if (need_relocs)
5730 {
5731 outrel.r_addend = 0;
5732 outrel.r_offset = (globals->sgot->output_section->vma
5733 + globals->sgot->output_offset
5734 + cur_off);
5735 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
5736
5737 if (globals->use_rel)
5738 bfd_put_32 (output_bfd, outrel.r_addend,
5739 globals->sgot->contents + cur_off);
5740
5741 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5742 globals->srelgot->reloc_count++;
5743 loc += RELOC_SIZE (globals);
5744
5745 if (indx == 0)
5746 bfd_put_32 (output_bfd, value - dtpoff_base (info),
5747 globals->sgot->contents + cur_off + 4);
5748 else
5749 {
5750 outrel.r_addend = 0;
5751 outrel.r_info = ELF32_R_INFO (indx,
5752 R_ARM_TLS_DTPOFF32);
5753 outrel.r_offset += 4;
5754
5755 if (globals->use_rel)
5756 bfd_put_32 (output_bfd, outrel.r_addend,
5757 globals->sgot->contents + cur_off + 4);
5758
5759
5760 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5761 globals->srelgot->reloc_count++;
5762 loc += RELOC_SIZE (globals);
5763 }
5764 }
5765 else
5766 {
5767 /* If we are not emitting relocations for a
5768 general dynamic reference, then we must be in a
5769 static link or an executable link with the
5770 symbol binding locally. Mark it as belonging
5771 to module 1, the executable. */
5772 bfd_put_32 (output_bfd, 1,
5773 globals->sgot->contents + cur_off);
5774 bfd_put_32 (output_bfd, value - dtpoff_base (info),
5775 globals->sgot->contents + cur_off + 4);
5776 }
5777
5778 cur_off += 8;
5779 }
5780
5781 if (tls_type & GOT_TLS_IE)
5782 {
5783 if (need_relocs)
5784 {
5785 if (indx == 0)
5786 outrel.r_addend = value - dtpoff_base (info);
5787 else
5788 outrel.r_addend = 0;
5789 outrel.r_offset = (globals->sgot->output_section->vma
5790 + globals->sgot->output_offset
5791 + cur_off);
5792 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
5793
5794 if (globals->use_rel)
5795 bfd_put_32 (output_bfd, outrel.r_addend,
5796 globals->sgot->contents + cur_off);
5797
5798 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5799 globals->srelgot->reloc_count++;
5800 loc += RELOC_SIZE (globals);
5801 }
5802 else
5803 bfd_put_32 (output_bfd, tpoff (info, value),
5804 globals->sgot->contents + cur_off);
5805 cur_off += 4;
5806 }
5807
5808 if (h != NULL)
5809 h->got.offset |= 1;
5810 else
5811 local_got_offsets[r_symndx] |= 1;
5812 }
5813
5814 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
5815 off += 8;
5816 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
5817 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
5818
5819 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5820 contents, rel->r_offset, value,
5821 rel->r_addend);
5822 }
5823
5824 case R_ARM_TLS_LE32:
5825 if (info->shared)
5826 {
5827 (*_bfd_error_handler)
5828 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
5829 input_bfd, input_section,
5830 (long) rel->r_offset, howto->name);
5831 return FALSE;
5832 }
5833 else
5834 value = tpoff (info, value);
5835
5836 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5837 contents, rel->r_offset, value,
5838 rel->r_addend);
5839
5840 case R_ARM_V4BX:
5841 if (globals->fix_v4bx)
5842 {
5843 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
5844
5845 /* Ensure that we have a BX instruction. */
5846 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
5847
5848 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
5849 {
5850 /* Branch to veneer. */
5851 bfd_vma glue_addr;
5852 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
5853 glue_addr -= input_section->output_section->vma
5854 + input_section->output_offset
5855 + rel->r_offset + 8;
5856 insn = (insn & 0xf0000000) | 0x0a000000
5857 | ((glue_addr >> 2) & 0x00ffffff);
5858 }
5859 else
5860 {
5861 /* Preserve Rm (lowest four bits) and the condition code
5862 (highest four bits). Other bits encode MOV PC,Rm. */
5863 insn = (insn & 0xf000000f) | 0x01a0f000;
5864 }
5865
5866 bfd_put_32 (input_bfd, insn, hit_data);
5867 }
5868 return bfd_reloc_ok;
5869
5870 case R_ARM_MOVW_ABS_NC:
5871 case R_ARM_MOVT_ABS:
5872 case R_ARM_MOVW_PREL_NC:
5873 case R_ARM_MOVT_PREL:
5874 /* Until we properly support segment-base-relative addressing then
5875 we assume the segment base to be zero, as for the group relocations.
5876 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
5877 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
5878 case R_ARM_MOVW_BREL_NC:
5879 case R_ARM_MOVW_BREL:
5880 case R_ARM_MOVT_BREL:
5881 {
5882 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
5883
5884 if (globals->use_rel)
5885 {
5886 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
5887 signed_addend = (addend ^ 0x8000) - 0x8000;
5888 }
5889
5890 value += signed_addend;
5891
5892 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
5893 value -= (input_section->output_section->vma
5894 + input_section->output_offset + rel->r_offset);
5895
5896 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
5897 return bfd_reloc_overflow;
5898
5899 if (sym_flags == STT_ARM_TFUNC)
5900 value |= 1;
5901
5902 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
5903 || r_type == R_ARM_MOVT_BREL)
5904 value >>= 16;
5905
5906 insn &= 0xfff0f000;
5907 insn |= value & 0xfff;
5908 insn |= (value & 0xf000) << 4;
5909 bfd_put_32 (input_bfd, insn, hit_data);
5910 }
5911 return bfd_reloc_ok;
5912
5913 case R_ARM_THM_MOVW_ABS_NC:
5914 case R_ARM_THM_MOVT_ABS:
5915 case R_ARM_THM_MOVW_PREL_NC:
5916 case R_ARM_THM_MOVT_PREL:
5917 /* Until we properly support segment-base-relative addressing then
5918 we assume the segment base to be zero, as for the above relocations.
5919 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
5920 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
5921 as R_ARM_THM_MOVT_ABS. */
5922 case R_ARM_THM_MOVW_BREL_NC:
5923 case R_ARM_THM_MOVW_BREL:
5924 case R_ARM_THM_MOVT_BREL:
5925 {
5926 bfd_vma insn;
5927
5928 insn = bfd_get_16 (input_bfd, hit_data) << 16;
5929 insn |= bfd_get_16 (input_bfd, hit_data + 2);
5930
5931 if (globals->use_rel)
5932 {
5933 addend = ((insn >> 4) & 0xf000)
5934 | ((insn >> 15) & 0x0800)
5935 | ((insn >> 4) & 0x0700)
5936 | (insn & 0x00ff);
5937 signed_addend = (addend ^ 0x8000) - 0x8000;
5938 }
5939
5940 value += signed_addend;
5941
5942 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
5943 value -= (input_section->output_section->vma
5944 + input_section->output_offset + rel->r_offset);
5945
5946 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
5947 return bfd_reloc_overflow;
5948
5949 if (sym_flags == STT_ARM_TFUNC)
5950 value |= 1;
5951
5952 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
5953 || r_type == R_ARM_THM_MOVT_BREL)
5954 value >>= 16;
5955
5956 insn &= 0xfbf08f00;
5957 insn |= (value & 0xf000) << 4;
5958 insn |= (value & 0x0800) << 15;
5959 insn |= (value & 0x0700) << 4;
5960 insn |= (value & 0x00ff);
5961
5962 bfd_put_16 (input_bfd, insn >> 16, hit_data);
5963 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
5964 }
5965 return bfd_reloc_ok;
5966
5967 case R_ARM_ALU_PC_G0_NC:
5968 case R_ARM_ALU_PC_G1_NC:
5969 case R_ARM_ALU_PC_G0:
5970 case R_ARM_ALU_PC_G1:
5971 case R_ARM_ALU_PC_G2:
5972 case R_ARM_ALU_SB_G0_NC:
5973 case R_ARM_ALU_SB_G1_NC:
5974 case R_ARM_ALU_SB_G0:
5975 case R_ARM_ALU_SB_G1:
5976 case R_ARM_ALU_SB_G2:
5977 {
5978 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
5979 bfd_vma pc = input_section->output_section->vma
5980 + input_section->output_offset + rel->r_offset;
5981 /* sb should be the origin of the *segment* containing the symbol.
5982 It is not clear how to obtain this OS-dependent value, so we
5983 make an arbitrary choice of zero. */
5984 bfd_vma sb = 0;
5985 bfd_vma residual;
5986 bfd_vma g_n;
5987 bfd_signed_vma signed_value;
5988 int group = 0;
5989
5990 /* Determine which group of bits to select. */
5991 switch (r_type)
5992 {
5993 case R_ARM_ALU_PC_G0_NC:
5994 case R_ARM_ALU_PC_G0:
5995 case R_ARM_ALU_SB_G0_NC:
5996 case R_ARM_ALU_SB_G0:
5997 group = 0;
5998 break;
5999
6000 case R_ARM_ALU_PC_G1_NC:
6001 case R_ARM_ALU_PC_G1:
6002 case R_ARM_ALU_SB_G1_NC:
6003 case R_ARM_ALU_SB_G1:
6004 group = 1;
6005 break;
6006
6007 case R_ARM_ALU_PC_G2:
6008 case R_ARM_ALU_SB_G2:
6009 group = 2;
6010 break;
6011
6012 default:
6013 abort();
6014 }
6015
6016 /* If REL, extract the addend from the insn. If RELA, it will
6017 have already been fetched for us. */
6018 if (globals->use_rel)
6019 {
6020 int negative;
6021 bfd_vma constant = insn & 0xff;
6022 bfd_vma rotation = (insn & 0xf00) >> 8;
6023
6024 if (rotation == 0)
6025 signed_addend = constant;
6026 else
6027 {
6028 /* Compensate for the fact that in the instruction, the
6029 rotation is stored in multiples of 2 bits. */
6030 rotation *= 2;
6031
6032 /* Rotate "constant" right by "rotation" bits. */
6033 signed_addend = (constant >> rotation) |
6034 (constant << (8 * sizeof (bfd_vma) - rotation));
6035 }
6036
6037 /* Determine if the instruction is an ADD or a SUB.
6038 (For REL, this determines the sign of the addend.) */
6039 negative = identify_add_or_sub (insn);
6040 if (negative == 0)
6041 {
6042 (*_bfd_error_handler)
6043 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
6044 input_bfd, input_section,
6045 (long) rel->r_offset, howto->name);
6046 return bfd_reloc_overflow;
6047 }
6048
6049 signed_addend *= negative;
6050 }
6051
6052 /* Compute the value (X) to go in the place. */
6053 if (r_type == R_ARM_ALU_PC_G0_NC
6054 || r_type == R_ARM_ALU_PC_G1_NC
6055 || r_type == R_ARM_ALU_PC_G0
6056 || r_type == R_ARM_ALU_PC_G1
6057 || r_type == R_ARM_ALU_PC_G2)
6058 /* PC relative. */
6059 signed_value = value - pc + signed_addend;
6060 else
6061 /* Section base relative. */
6062 signed_value = value - sb + signed_addend;
6063
6064 /* If the target symbol is a Thumb function, then set the
6065 Thumb bit in the address. */
6066 if (sym_flags == STT_ARM_TFUNC)
6067 signed_value |= 1;
6068
6069 /* Calculate the value of the relevant G_n, in encoded
6070 constant-with-rotation format. */
6071 g_n = calculate_group_reloc_mask (abs (signed_value), group,
6072 &residual);
6073
6074 /* Check for overflow if required. */
6075 if ((r_type == R_ARM_ALU_PC_G0
6076 || r_type == R_ARM_ALU_PC_G1
6077 || r_type == R_ARM_ALU_PC_G2
6078 || r_type == R_ARM_ALU_SB_G0
6079 || r_type == R_ARM_ALU_SB_G1
6080 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
6081 {
6082 (*_bfd_error_handler)
6083 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6084 input_bfd, input_section,
6085 (long) rel->r_offset, abs (signed_value), howto->name);
6086 return bfd_reloc_overflow;
6087 }
6088
6089 /* Mask out the value and the ADD/SUB part of the opcode; take care
6090 not to destroy the S bit. */
6091 insn &= 0xff1ff000;
6092
6093 /* Set the opcode according to whether the value to go in the
6094 place is negative. */
6095 if (signed_value < 0)
6096 insn |= 1 << 22;
6097 else
6098 insn |= 1 << 23;
6099
6100 /* Encode the offset. */
6101 insn |= g_n;
6102
6103 bfd_put_32 (input_bfd, insn, hit_data);
6104 }
6105 return bfd_reloc_ok;
6106
6107 case R_ARM_LDR_PC_G0:
6108 case R_ARM_LDR_PC_G1:
6109 case R_ARM_LDR_PC_G2:
6110 case R_ARM_LDR_SB_G0:
6111 case R_ARM_LDR_SB_G1:
6112 case R_ARM_LDR_SB_G2:
6113 {
6114 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6115 bfd_vma pc = input_section->output_section->vma
6116 + input_section->output_offset + rel->r_offset;
6117 bfd_vma sb = 0; /* See note above. */
6118 bfd_vma residual;
6119 bfd_signed_vma signed_value;
6120 int group = 0;
6121
6122 /* Determine which groups of bits to calculate. */
6123 switch (r_type)
6124 {
6125 case R_ARM_LDR_PC_G0:
6126 case R_ARM_LDR_SB_G0:
6127 group = 0;
6128 break;
6129
6130 case R_ARM_LDR_PC_G1:
6131 case R_ARM_LDR_SB_G1:
6132 group = 1;
6133 break;
6134
6135 case R_ARM_LDR_PC_G2:
6136 case R_ARM_LDR_SB_G2:
6137 group = 2;
6138 break;
6139
6140 default:
6141 abort();
6142 }
6143
6144 /* If REL, extract the addend from the insn. If RELA, it will
6145 have already been fetched for us. */
6146 if (globals->use_rel)
6147 {
6148 int negative = (insn & (1 << 23)) ? 1 : -1;
6149 signed_addend = negative * (insn & 0xfff);
6150 }
6151
6152 /* Compute the value (X) to go in the place. */
6153 if (r_type == R_ARM_LDR_PC_G0
6154 || r_type == R_ARM_LDR_PC_G1
6155 || r_type == R_ARM_LDR_PC_G2)
6156 /* PC relative. */
6157 signed_value = value - pc + signed_addend;
6158 else
6159 /* Section base relative. */
6160 signed_value = value - sb + signed_addend;
6161
6162 /* Calculate the value of the relevant G_{n-1} to obtain
6163 the residual at that stage. */
6164 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6165
6166 /* Check for overflow. */
6167 if (residual >= 0x1000)
6168 {
6169 (*_bfd_error_handler)
6170 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6171 input_bfd, input_section,
6172 (long) rel->r_offset, abs (signed_value), howto->name);
6173 return bfd_reloc_overflow;
6174 }
6175
6176 /* Mask out the value and U bit. */
6177 insn &= 0xff7ff000;
6178
6179 /* Set the U bit if the value to go in the place is non-negative. */
6180 if (signed_value >= 0)
6181 insn |= 1 << 23;
6182
6183 /* Encode the offset. */
6184 insn |= residual;
6185
6186 bfd_put_32 (input_bfd, insn, hit_data);
6187 }
6188 return bfd_reloc_ok;
6189
6190 case R_ARM_LDRS_PC_G0:
6191 case R_ARM_LDRS_PC_G1:
6192 case R_ARM_LDRS_PC_G2:
6193 case R_ARM_LDRS_SB_G0:
6194 case R_ARM_LDRS_SB_G1:
6195 case R_ARM_LDRS_SB_G2:
6196 {
6197 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6198 bfd_vma pc = input_section->output_section->vma
6199 + input_section->output_offset + rel->r_offset;
6200 bfd_vma sb = 0; /* See note above. */
6201 bfd_vma residual;
6202 bfd_signed_vma signed_value;
6203 int group = 0;
6204
6205 /* Determine which groups of bits to calculate. */
6206 switch (r_type)
6207 {
6208 case R_ARM_LDRS_PC_G0:
6209 case R_ARM_LDRS_SB_G0:
6210 group = 0;
6211 break;
6212
6213 case R_ARM_LDRS_PC_G1:
6214 case R_ARM_LDRS_SB_G1:
6215 group = 1;
6216 break;
6217
6218 case R_ARM_LDRS_PC_G2:
6219 case R_ARM_LDRS_SB_G2:
6220 group = 2;
6221 break;
6222
6223 default:
6224 abort();
6225 }
6226
6227 /* If REL, extract the addend from the insn. If RELA, it will
6228 have already been fetched for us. */
6229 if (globals->use_rel)
6230 {
6231 int negative = (insn & (1 << 23)) ? 1 : -1;
6232 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
6233 }
6234
6235 /* Compute the value (X) to go in the place. */
6236 if (r_type == R_ARM_LDRS_PC_G0
6237 || r_type == R_ARM_LDRS_PC_G1
6238 || r_type == R_ARM_LDRS_PC_G2)
6239 /* PC relative. */
6240 signed_value = value - pc + signed_addend;
6241 else
6242 /* Section base relative. */
6243 signed_value = value - sb + signed_addend;
6244
6245 /* Calculate the value of the relevant G_{n-1} to obtain
6246 the residual at that stage. */
6247 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6248
6249 /* Check for overflow. */
6250 if (residual >= 0x100)
6251 {
6252 (*_bfd_error_handler)
6253 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6254 input_bfd, input_section,
6255 (long) rel->r_offset, abs (signed_value), howto->name);
6256 return bfd_reloc_overflow;
6257 }
6258
6259 /* Mask out the value and U bit. */
6260 insn &= 0xff7ff0f0;
6261
6262 /* Set the U bit if the value to go in the place is non-negative. */
6263 if (signed_value >= 0)
6264 insn |= 1 << 23;
6265
6266 /* Encode the offset. */
6267 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
6268
6269 bfd_put_32 (input_bfd, insn, hit_data);
6270 }
6271 return bfd_reloc_ok;
6272
6273 case R_ARM_LDC_PC_G0:
6274 case R_ARM_LDC_PC_G1:
6275 case R_ARM_LDC_PC_G2:
6276 case R_ARM_LDC_SB_G0:
6277 case R_ARM_LDC_SB_G1:
6278 case R_ARM_LDC_SB_G2:
6279 {
6280 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6281 bfd_vma pc = input_section->output_section->vma
6282 + input_section->output_offset + rel->r_offset;
6283 bfd_vma sb = 0; /* See note above. */
6284 bfd_vma residual;
6285 bfd_signed_vma signed_value;
6286 int group = 0;
6287
6288 /* Determine which groups of bits to calculate. */
6289 switch (r_type)
6290 {
6291 case R_ARM_LDC_PC_G0:
6292 case R_ARM_LDC_SB_G0:
6293 group = 0;
6294 break;
6295
6296 case R_ARM_LDC_PC_G1:
6297 case R_ARM_LDC_SB_G1:
6298 group = 1;
6299 break;
6300
6301 case R_ARM_LDC_PC_G2:
6302 case R_ARM_LDC_SB_G2:
6303 group = 2;
6304 break;
6305
6306 default:
6307 abort();
6308 }
6309
6310 /* If REL, extract the addend from the insn. If RELA, it will
6311 have already been fetched for us. */
6312 if (globals->use_rel)
6313 {
6314 int negative = (insn & (1 << 23)) ? 1 : -1;
6315 signed_addend = negative * ((insn & 0xff) << 2);
6316 }
6317
6318 /* Compute the value (X) to go in the place. */
6319 if (r_type == R_ARM_LDC_PC_G0
6320 || r_type == R_ARM_LDC_PC_G1
6321 || r_type == R_ARM_LDC_PC_G2)
6322 /* PC relative. */
6323 signed_value = value - pc + signed_addend;
6324 else
6325 /* Section base relative. */
6326 signed_value = value - sb + signed_addend;
6327
6328 /* Calculate the value of the relevant G_{n-1} to obtain
6329 the residual at that stage. */
6330 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6331
6332 /* Check for overflow. (The absolute value to go in the place must be
6333 divisible by four and, after having been divided by four, must
6334 fit in eight bits.) */
6335 if ((residual & 0x3) != 0 || residual >= 0x400)
6336 {
6337 (*_bfd_error_handler)
6338 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6339 input_bfd, input_section,
6340 (long) rel->r_offset, abs (signed_value), howto->name);
6341 return bfd_reloc_overflow;
6342 }
6343
6344 /* Mask out the value and U bit. */
6345 insn &= 0xff7fff00;
6346
6347 /* Set the U bit if the value to go in the place is non-negative. */
6348 if (signed_value >= 0)
6349 insn |= 1 << 23;
6350
6351 /* Encode the offset. */
6352 insn |= residual >> 2;
6353
6354 bfd_put_32 (input_bfd, insn, hit_data);
6355 }
6356 return bfd_reloc_ok;
6357
6358 default:
6359 return bfd_reloc_notsupported;
6360 }
6361 }
6362
6363 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
6364 static void
6365 arm_add_to_rel (bfd * abfd,
6366 bfd_byte * address,
6367 reloc_howto_type * howto,
6368 bfd_signed_vma increment)
6369 {
6370 bfd_signed_vma addend;
6371
6372 if (howto->type == R_ARM_THM_CALL
6373 || howto->type == R_ARM_THM_JUMP24)
6374 {
6375 int upper_insn, lower_insn;
6376 int upper, lower;
6377
6378 upper_insn = bfd_get_16 (abfd, address);
6379 lower_insn = bfd_get_16 (abfd, address + 2);
6380 upper = upper_insn & 0x7ff;
6381 lower = lower_insn & 0x7ff;
6382
6383 addend = (upper << 12) | (lower << 1);
6384 addend += increment;
6385 addend >>= 1;
6386
6387 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
6388 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
6389
6390 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
6391 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
6392 }
6393 else
6394 {
6395 bfd_vma contents;
6396
6397 contents = bfd_get_32 (abfd, address);
6398
6399 /* Get the (signed) value from the instruction. */
6400 addend = contents & howto->src_mask;
6401 if (addend & ((howto->src_mask + 1) >> 1))
6402 {
6403 bfd_signed_vma mask;
6404
6405 mask = -1;
6406 mask &= ~ howto->src_mask;
6407 addend |= mask;
6408 }
6409
6410 /* Add in the increment, (which is a byte value). */
6411 switch (howto->type)
6412 {
6413 default:
6414 addend += increment;
6415 break;
6416
6417 case R_ARM_PC24:
6418 case R_ARM_PLT32:
6419 case R_ARM_CALL:
6420 case R_ARM_JUMP24:
6421 addend <<= howto->size;
6422 addend += increment;
6423
6424 /* Should we check for overflow here ? */
6425
6426 /* Drop any undesired bits. */
6427 addend >>= howto->rightshift;
6428 break;
6429 }
6430
6431 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
6432
6433 bfd_put_32 (abfd, contents, address);
6434 }
6435 }
6436
6437 #define IS_ARM_TLS_RELOC(R_TYPE) \
6438 ((R_TYPE) == R_ARM_TLS_GD32 \
6439 || (R_TYPE) == R_ARM_TLS_LDO32 \
6440 || (R_TYPE) == R_ARM_TLS_LDM32 \
6441 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
6442 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
6443 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
6444 || (R_TYPE) == R_ARM_TLS_LE32 \
6445 || (R_TYPE) == R_ARM_TLS_IE32)
6446
6447 /* Relocate an ARM ELF section. */
6448 static bfd_boolean
6449 elf32_arm_relocate_section (bfd * output_bfd,
6450 struct bfd_link_info * info,
6451 bfd * input_bfd,
6452 asection * input_section,
6453 bfd_byte * contents,
6454 Elf_Internal_Rela * relocs,
6455 Elf_Internal_Sym * local_syms,
6456 asection ** local_sections)
6457 {
6458 Elf_Internal_Shdr *symtab_hdr;
6459 struct elf_link_hash_entry **sym_hashes;
6460 Elf_Internal_Rela *rel;
6461 Elf_Internal_Rela *relend;
6462 const char *name;
6463 struct elf32_arm_link_hash_table * globals;
6464
6465 globals = elf32_arm_hash_table (info);
6466
6467 symtab_hdr = & elf_symtab_hdr (input_bfd);
6468 sym_hashes = elf_sym_hashes (input_bfd);
6469
6470 rel = relocs;
6471 relend = relocs + input_section->reloc_count;
6472 for (; rel < relend; rel++)
6473 {
6474 int r_type;
6475 reloc_howto_type * howto;
6476 unsigned long r_symndx;
6477 Elf_Internal_Sym * sym;
6478 asection * sec;
6479 struct elf_link_hash_entry * h;
6480 bfd_vma relocation;
6481 bfd_reloc_status_type r;
6482 arelent bfd_reloc;
6483 char sym_type;
6484 bfd_boolean unresolved_reloc = FALSE;
6485 char *error_message = NULL;
6486
6487 r_symndx = ELF32_R_SYM (rel->r_info);
6488 r_type = ELF32_R_TYPE (rel->r_info);
6489 r_type = arm_real_reloc_type (globals, r_type);
6490
6491 if ( r_type == R_ARM_GNU_VTENTRY
6492 || r_type == R_ARM_GNU_VTINHERIT)
6493 continue;
6494
6495 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
6496 howto = bfd_reloc.howto;
6497
6498 h = NULL;
6499 sym = NULL;
6500 sec = NULL;
6501
6502 if (r_symndx < symtab_hdr->sh_info)
6503 {
6504 sym = local_syms + r_symndx;
6505 sym_type = ELF32_ST_TYPE (sym->st_info);
6506 sec = local_sections[r_symndx];
6507 if (globals->use_rel)
6508 {
6509 relocation = (sec->output_section->vma
6510 + sec->output_offset
6511 + sym->st_value);
6512 if (!info->relocatable
6513 && (sec->flags & SEC_MERGE)
6514 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6515 {
6516 asection *msec;
6517 bfd_vma addend, value;
6518
6519 switch (r_type)
6520 {
6521 case R_ARM_MOVW_ABS_NC:
6522 case R_ARM_MOVT_ABS:
6523 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
6524 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
6525 addend = (addend ^ 0x8000) - 0x8000;
6526 break;
6527
6528 case R_ARM_THM_MOVW_ABS_NC:
6529 case R_ARM_THM_MOVT_ABS:
6530 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
6531 << 16;
6532 value |= bfd_get_16 (input_bfd,
6533 contents + rel->r_offset + 2);
6534 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
6535 | ((value & 0x04000000) >> 15);
6536 addend = (addend ^ 0x8000) - 0x8000;
6537 break;
6538
6539 default:
6540 if (howto->rightshift
6541 || (howto->src_mask & (howto->src_mask + 1)))
6542 {
6543 (*_bfd_error_handler)
6544 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
6545 input_bfd, input_section,
6546 (long) rel->r_offset, howto->name);
6547 return FALSE;
6548 }
6549
6550 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
6551
6552 /* Get the (signed) value from the instruction. */
6553 addend = value & howto->src_mask;
6554 if (addend & ((howto->src_mask + 1) >> 1))
6555 {
6556 bfd_signed_vma mask;
6557
6558 mask = -1;
6559 mask &= ~ howto->src_mask;
6560 addend |= mask;
6561 }
6562 break;
6563 }
6564
6565 msec = sec;
6566 addend =
6567 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
6568 - relocation;
6569 addend += msec->output_section->vma + msec->output_offset;
6570
6571 /* Cases here must match those in the preceeding
6572 switch statement. */
6573 switch (r_type)
6574 {
6575 case R_ARM_MOVW_ABS_NC:
6576 case R_ARM_MOVT_ABS:
6577 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
6578 | (addend & 0xfff);
6579 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
6580 break;
6581
6582 case R_ARM_THM_MOVW_ABS_NC:
6583 case R_ARM_THM_MOVT_ABS:
6584 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
6585 | (addend & 0xff) | ((addend & 0x0800) << 15);
6586 bfd_put_16 (input_bfd, value >> 16,
6587 contents + rel->r_offset);
6588 bfd_put_16 (input_bfd, value,
6589 contents + rel->r_offset + 2);
6590 break;
6591
6592 default:
6593 value = (value & ~ howto->dst_mask)
6594 | (addend & howto->dst_mask);
6595 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
6596 break;
6597 }
6598 }
6599 }
6600 else
6601 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6602 }
6603 else
6604 {
6605 bfd_boolean warned;
6606
6607 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6608 r_symndx, symtab_hdr, sym_hashes,
6609 h, sec, relocation,
6610 unresolved_reloc, warned);
6611
6612 sym_type = h->type;
6613 }
6614
6615 if (sec != NULL && elf_discarded_section (sec))
6616 {
6617 /* For relocs against symbols from removed linkonce sections,
6618 or sections discarded by a linker script, we just want the
6619 section contents zeroed. Avoid any special processing. */
6620 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
6621 rel->r_info = 0;
6622 rel->r_addend = 0;
6623 continue;
6624 }
6625
6626 if (info->relocatable)
6627 {
6628 /* This is a relocatable link. We don't have to change
6629 anything, unless the reloc is against a section symbol,
6630 in which case we have to adjust according to where the
6631 section symbol winds up in the output section. */
6632 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6633 {
6634 if (globals->use_rel)
6635 arm_add_to_rel (input_bfd, contents + rel->r_offset,
6636 howto, (bfd_signed_vma) sec->output_offset);
6637 else
6638 rel->r_addend += sec->output_offset;
6639 }
6640 continue;
6641 }
6642
6643 if (h != NULL)
6644 name = h->root.root.string;
6645 else
6646 {
6647 name = (bfd_elf_string_from_elf_section
6648 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6649 if (name == NULL || *name == '\0')
6650 name = bfd_section_name (input_bfd, sec);
6651 }
6652
6653 if (r_symndx != 0
6654 && r_type != R_ARM_NONE
6655 && (h == NULL
6656 || h->root.type == bfd_link_hash_defined
6657 || h->root.type == bfd_link_hash_defweak)
6658 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
6659 {
6660 (*_bfd_error_handler)
6661 ((sym_type == STT_TLS
6662 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
6663 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
6664 input_bfd,
6665 input_section,
6666 (long) rel->r_offset,
6667 howto->name,
6668 name);
6669 }
6670
6671 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
6672 input_section, contents, rel,
6673 relocation, info, sec, name,
6674 (h ? ELF_ST_TYPE (h->type) :
6675 ELF_ST_TYPE (sym->st_info)), h,
6676 &unresolved_reloc, &error_message);
6677
6678 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6679 because such sections are not SEC_ALLOC and thus ld.so will
6680 not process them. */
6681 if (unresolved_reloc
6682 && !((input_section->flags & SEC_DEBUGGING) != 0
6683 && h->def_dynamic))
6684 {
6685 (*_bfd_error_handler)
6686 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
6687 input_bfd,
6688 input_section,
6689 (long) rel->r_offset,
6690 howto->name,
6691 h->root.root.string);
6692 return FALSE;
6693 }
6694
6695 if (r != bfd_reloc_ok)
6696 {
6697 switch (r)
6698 {
6699 case bfd_reloc_overflow:
6700 /* If the overflowing reloc was to an undefined symbol,
6701 we have already printed one error message and there
6702 is no point complaining again. */
6703 if ((! h ||
6704 h->root.type != bfd_link_hash_undefined)
6705 && (!((*info->callbacks->reloc_overflow)
6706 (info, (h ? &h->root : NULL), name, howto->name,
6707 (bfd_vma) 0, input_bfd, input_section,
6708 rel->r_offset))))
6709 return FALSE;
6710 break;
6711
6712 case bfd_reloc_undefined:
6713 if (!((*info->callbacks->undefined_symbol)
6714 (info, name, input_bfd, input_section,
6715 rel->r_offset, TRUE)))
6716 return FALSE;
6717 break;
6718
6719 case bfd_reloc_outofrange:
6720 error_message = _("out of range");
6721 goto common_error;
6722
6723 case bfd_reloc_notsupported:
6724 error_message = _("unsupported relocation");
6725 goto common_error;
6726
6727 case bfd_reloc_dangerous:
6728 /* error_message should already be set. */
6729 goto common_error;
6730
6731 default:
6732 error_message = _("unknown error");
6733 /* fall through */
6734
6735 common_error:
6736 BFD_ASSERT (error_message != NULL);
6737 if (!((*info->callbacks->reloc_dangerous)
6738 (info, error_message, input_bfd, input_section,
6739 rel->r_offset)))
6740 return FALSE;
6741 break;
6742 }
6743 }
6744 }
6745
6746 return TRUE;
6747 }
6748
6749 /* Set the right machine number. */
6750
6751 static bfd_boolean
6752 elf32_arm_object_p (bfd *abfd)
6753 {
6754 unsigned int mach;
6755
6756 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
6757
6758 if (mach != bfd_mach_arm_unknown)
6759 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
6760
6761 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
6762 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
6763
6764 else
6765 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
6766
6767 return TRUE;
6768 }
6769
6770 /* Function to keep ARM specific flags in the ELF header. */
6771
6772 static bfd_boolean
6773 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
6774 {
6775 if (elf_flags_init (abfd)
6776 && elf_elfheader (abfd)->e_flags != flags)
6777 {
6778 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
6779 {
6780 if (flags & EF_ARM_INTERWORK)
6781 (*_bfd_error_handler)
6782 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
6783 abfd);
6784 else
6785 _bfd_error_handler
6786 (_("Warning: Clearing the interworking flag of %B due to outside request"),
6787 abfd);
6788 }
6789 }
6790 else
6791 {
6792 elf_elfheader (abfd)->e_flags = flags;
6793 elf_flags_init (abfd) = TRUE;
6794 }
6795
6796 return TRUE;
6797 }
6798
6799 /* Copy backend specific data from one object module to another. */
6800
6801 static bfd_boolean
6802 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
6803 {
6804 flagword in_flags;
6805 flagword out_flags;
6806
6807 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
6808 return TRUE;
6809
6810 in_flags = elf_elfheader (ibfd)->e_flags;
6811 out_flags = elf_elfheader (obfd)->e_flags;
6812
6813 if (elf_flags_init (obfd)
6814 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
6815 && in_flags != out_flags)
6816 {
6817 /* Cannot mix APCS26 and APCS32 code. */
6818 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
6819 return FALSE;
6820
6821 /* Cannot mix float APCS and non-float APCS code. */
6822 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
6823 return FALSE;
6824
6825 /* If the src and dest have different interworking flags
6826 then turn off the interworking bit. */
6827 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
6828 {
6829 if (out_flags & EF_ARM_INTERWORK)
6830 _bfd_error_handler
6831 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
6832 obfd, ibfd);
6833
6834 in_flags &= ~EF_ARM_INTERWORK;
6835 }
6836
6837 /* Likewise for PIC, though don't warn for this case. */
6838 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
6839 in_flags &= ~EF_ARM_PIC;
6840 }
6841
6842 elf_elfheader (obfd)->e_flags = in_flags;
6843 elf_flags_init (obfd) = TRUE;
6844
6845 /* Also copy the EI_OSABI field. */
6846 elf_elfheader (obfd)->e_ident[EI_OSABI] =
6847 elf_elfheader (ibfd)->e_ident[EI_OSABI];
6848
6849 /* Copy object attributes. */
6850 _bfd_elf_copy_obj_attributes (ibfd, obfd);
6851
6852 return TRUE;
6853 }
6854
6855 /* Values for Tag_ABI_PCS_R9_use. */
6856 enum
6857 {
6858 AEABI_R9_V6,
6859 AEABI_R9_SB,
6860 AEABI_R9_TLS,
6861 AEABI_R9_unused
6862 };
6863
6864 /* Values for Tag_ABI_PCS_RW_data. */
6865 enum
6866 {
6867 AEABI_PCS_RW_data_absolute,
6868 AEABI_PCS_RW_data_PCrel,
6869 AEABI_PCS_RW_data_SBrel,
6870 AEABI_PCS_RW_data_unused
6871 };
6872
6873 /* Values for Tag_ABI_enum_size. */
6874 enum
6875 {
6876 AEABI_enum_unused,
6877 AEABI_enum_short,
6878 AEABI_enum_wide,
6879 AEABI_enum_forced_wide
6880 };
6881
6882 /* Determine whether an object attribute tag takes an integer, a
6883 string or both. */
6884 static int
6885 elf32_arm_obj_attrs_arg_type (int tag)
6886 {
6887 if (tag == Tag_compatibility)
6888 return 3;
6889 else if (tag == 4 || tag == 5)
6890 return 2;
6891 else if (tag < 32)
6892 return 1;
6893 else
6894 return (tag & 1) != 0 ? 2 : 1;
6895 }
6896
6897 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
6898 are conflicting attributes. */
6899 static bfd_boolean
6900 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
6901 {
6902 obj_attribute *in_attr;
6903 obj_attribute *out_attr;
6904 obj_attribute_list *in_list;
6905 /* Some tags have 0 = don't care, 1 = strong requirement,
6906 2 = weak requirement. */
6907 static const int order_312[3] = {3, 1, 2};
6908 /* For use with Tag_VFP_arch. */
6909 static const int order_01243[5] = {0, 1, 2, 4, 3};
6910 int i;
6911
6912 if (!elf_known_obj_attributes_proc (obfd)[0].i)
6913 {
6914 /* This is the first object. Copy the attributes. */
6915 _bfd_elf_copy_obj_attributes (ibfd, obfd);
6916
6917 /* Use the Tag_null value to indicate the attributes have been
6918 initialized. */
6919 elf_known_obj_attributes_proc (obfd)[0].i = 1;
6920
6921 return TRUE;
6922 }
6923
6924 in_attr = elf_known_obj_attributes_proc (ibfd);
6925 out_attr = elf_known_obj_attributes_proc (obfd);
6926 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
6927 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
6928 {
6929 /* Ignore mismatches if teh object doesn't use floating point. */
6930 if (out_attr[Tag_ABI_FP_number_model].i == 0)
6931 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
6932 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
6933 {
6934 _bfd_error_handler
6935 (_("ERROR: %B uses VFP register arguments, %B does not"),
6936 ibfd, obfd);
6937 return FALSE;
6938 }
6939 }
6940
6941 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
6942 {
6943 /* Merge this attribute with existing attributes. */
6944 switch (i)
6945 {
6946 case Tag_CPU_raw_name:
6947 case Tag_CPU_name:
6948 /* Use whichever has the greatest architecture requirements. We
6949 won't necessarily have both the above tags, so make sure input
6950 name is non-NULL. */
6951 if (in_attr[Tag_CPU_arch].i > out_attr[Tag_CPU_arch].i
6952 && in_attr[i].s)
6953 out_attr[i].s = _bfd_elf_attr_strdup (obfd, in_attr[i].s);
6954 break;
6955
6956 case Tag_ABI_optimization_goals:
6957 case Tag_ABI_FP_optimization_goals:
6958 /* Use the first value seen. */
6959 break;
6960
6961 case Tag_CPU_arch:
6962 case Tag_ARM_ISA_use:
6963 case Tag_THUMB_ISA_use:
6964 case Tag_WMMX_arch:
6965 case Tag_NEON_arch:
6966 /* ??? Do NEON and WMMX conflict? */
6967 case Tag_ABI_FP_rounding:
6968 case Tag_ABI_FP_denormal:
6969 case Tag_ABI_FP_exceptions:
6970 case Tag_ABI_FP_user_exceptions:
6971 case Tag_ABI_FP_number_model:
6972 case Tag_ABI_align8_preserved:
6973 case Tag_ABI_HardFP_use:
6974 /* Use the largest value specified. */
6975 if (in_attr[i].i > out_attr[i].i)
6976 out_attr[i].i = in_attr[i].i;
6977 break;
6978
6979 case Tag_CPU_arch_profile:
6980 /* Warn if conflicting architecture profiles used. */
6981 if (out_attr[i].i && in_attr[i].i && in_attr[i].i != out_attr[i].i)
6982 {
6983 _bfd_error_handler
6984 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
6985 ibfd, in_attr[i].i, out_attr[i].i);
6986 return FALSE;
6987 }
6988 if (in_attr[i].i)
6989 out_attr[i].i = in_attr[i].i;
6990 break;
6991 case Tag_VFP_arch:
6992 if (in_attr[i].i > 4 || out_attr[i].i > 4
6993 || order_01243[in_attr[i].i] > order_01243[out_attr[i].i])
6994 out_attr[i].i = in_attr[i].i;
6995 break;
6996 case Tag_PCS_config:
6997 if (out_attr[i].i == 0)
6998 out_attr[i].i = in_attr[i].i;
6999 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
7000 {
7001 /* It's sometimes ok to mix different configs, so this is only
7002 a warning. */
7003 _bfd_error_handler
7004 (_("Warning: %B: Conflicting platform configuration"), ibfd);
7005 }
7006 break;
7007 case Tag_ABI_PCS_R9_use:
7008 if (in_attr[i].i != out_attr[i].i
7009 && out_attr[i].i != AEABI_R9_unused
7010 && in_attr[i].i != AEABI_R9_unused)
7011 {
7012 _bfd_error_handler
7013 (_("ERROR: %B: Conflicting use of R9"), ibfd);
7014 return FALSE;
7015 }
7016 if (out_attr[i].i == AEABI_R9_unused)
7017 out_attr[i].i = in_attr[i].i;
7018 break;
7019 case Tag_ABI_PCS_RW_data:
7020 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
7021 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
7022 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
7023 {
7024 _bfd_error_handler
7025 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
7026 ibfd);
7027 return FALSE;
7028 }
7029 /* Use the smallest value specified. */
7030 if (in_attr[i].i < out_attr[i].i)
7031 out_attr[i].i = in_attr[i].i;
7032 break;
7033 case Tag_ABI_PCS_RO_data:
7034 /* Use the smallest value specified. */
7035 if (in_attr[i].i < out_attr[i].i)
7036 out_attr[i].i = in_attr[i].i;
7037 break;
7038 case Tag_ABI_PCS_GOT_use:
7039 if (in_attr[i].i > 2 || out_attr[i].i > 2
7040 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
7041 out_attr[i].i = in_attr[i].i;
7042 break;
7043 case Tag_ABI_PCS_wchar_t:
7044 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i)
7045 {
7046 _bfd_error_handler
7047 (_("ERROR: %B: Conflicting definitions of wchar_t"), ibfd);
7048 return FALSE;
7049 }
7050 if (in_attr[i].i)
7051 out_attr[i].i = in_attr[i].i;
7052 break;
7053 case Tag_ABI_align8_needed:
7054 /* ??? Check against Tag_ABI_align8_preserved. */
7055 if (in_attr[i].i > 2 || out_attr[i].i > 2
7056 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
7057 out_attr[i].i = in_attr[i].i;
7058 break;
7059 case Tag_ABI_enum_size:
7060 if (in_attr[i].i != AEABI_enum_unused)
7061 {
7062 if (out_attr[i].i == AEABI_enum_unused
7063 || out_attr[i].i == AEABI_enum_forced_wide)
7064 {
7065 /* The existing object is compatible with anything.
7066 Use whatever requirements the new object has. */
7067 out_attr[i].i = in_attr[i].i;
7068 }
7069 else if (in_attr[i].i != AEABI_enum_forced_wide
7070 && out_attr[i].i != in_attr[i].i
7071 && !elf_arm_tdata (obfd)->no_enum_size_warning)
7072 {
7073 const char *aeabi_enum_names[] =
7074 { "", "variable-size", "32-bit", "" };
7075 _bfd_error_handler
7076 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
7077 ibfd, aeabi_enum_names[in_attr[i].i],
7078 aeabi_enum_names[out_attr[i].i]);
7079 }
7080 }
7081 break;
7082 case Tag_ABI_VFP_args:
7083 /* Aready done. */
7084 break;
7085 case Tag_ABI_WMMX_args:
7086 if (in_attr[i].i != out_attr[i].i)
7087 {
7088 _bfd_error_handler
7089 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
7090 ibfd, obfd);
7091 return FALSE;
7092 }
7093 break;
7094 default: /* All known attributes should be explicitly covered. */
7095 abort ();
7096 }
7097
7098 if (in_attr[i].type && !out_attr[i].type)
7099 switch (in_attr[i].type)
7100 {
7101 case 1:
7102 if (out_attr[i].i)
7103 out_attr[i].type = 1;
7104 break;
7105
7106 case 2:
7107 if (out_attr[i].s)
7108 out_attr[i].type = 2;
7109 break;
7110
7111 default:
7112 abort ();
7113 }
7114 }
7115
7116 /* Merge Tag_compatibility attributes and any common GNU ones. */
7117 _bfd_elf_merge_object_attributes (ibfd, obfd);
7118
7119 /* Check for any attributes not known on ARM. */
7120 in_list = elf_other_obj_attributes_proc (ibfd);
7121 while (in_list && in_list->tag == Tag_compatibility)
7122 in_list = in_list->next;
7123
7124 for (; in_list; in_list = in_list->next)
7125 {
7126 if ((in_list->tag & 128) < 64)
7127 {
7128 _bfd_error_handler
7129 (_("Warning: %B: Unknown EABI object attribute %d"),
7130 ibfd, in_list->tag);
7131 break;
7132 }
7133 }
7134 return TRUE;
7135 }
7136
7137
7138 /* Return TRUE if the two EABI versions are incompatible. */
7139
7140 static bfd_boolean
7141 elf32_arm_versions_compatible (unsigned iver, unsigned over)
7142 {
7143 /* v4 and v5 are the same spec before and after it was released,
7144 so allow mixing them. */
7145 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
7146 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
7147 return TRUE;
7148
7149 return (iver == over);
7150 }
7151
7152 /* Merge backend specific data from an object file to the output
7153 object file when linking. */
7154
7155 static bfd_boolean
7156 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
7157 {
7158 flagword out_flags;
7159 flagword in_flags;
7160 bfd_boolean flags_compatible = TRUE;
7161 asection *sec;
7162
7163 /* Check if we have the same endianess. */
7164 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
7165 return FALSE;
7166
7167 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
7168 return TRUE;
7169
7170 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
7171 return FALSE;
7172
7173 /* The input BFD must have had its flags initialised. */
7174 /* The following seems bogus to me -- The flags are initialized in
7175 the assembler but I don't think an elf_flags_init field is
7176 written into the object. */
7177 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7178
7179 in_flags = elf_elfheader (ibfd)->e_flags;
7180 out_flags = elf_elfheader (obfd)->e_flags;
7181
7182 if (!elf_flags_init (obfd))
7183 {
7184 /* If the input is the default architecture and had the default
7185 flags then do not bother setting the flags for the output
7186 architecture, instead allow future merges to do this. If no
7187 future merges ever set these flags then they will retain their
7188 uninitialised values, which surprise surprise, correspond
7189 to the default values. */
7190 if (bfd_get_arch_info (ibfd)->the_default
7191 && elf_elfheader (ibfd)->e_flags == 0)
7192 return TRUE;
7193
7194 elf_flags_init (obfd) = TRUE;
7195 elf_elfheader (obfd)->e_flags = in_flags;
7196
7197 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7198 && bfd_get_arch_info (obfd)->the_default)
7199 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
7200
7201 return TRUE;
7202 }
7203
7204 /* Determine what should happen if the input ARM architecture
7205 does not match the output ARM architecture. */
7206 if (! bfd_arm_merge_machines (ibfd, obfd))
7207 return FALSE;
7208
7209 /* Identical flags must be compatible. */
7210 if (in_flags == out_flags)
7211 return TRUE;
7212
7213 /* Check to see if the input BFD actually contains any sections. If
7214 not, its flags may not have been initialised either, but it
7215 cannot actually cause any incompatiblity. Do not short-circuit
7216 dynamic objects; their section list may be emptied by
7217 elf_link_add_object_symbols.
7218
7219 Also check to see if there are no code sections in the input.
7220 In this case there is no need to check for code specific flags.
7221 XXX - do we need to worry about floating-point format compatability
7222 in data sections ? */
7223 if (!(ibfd->flags & DYNAMIC))
7224 {
7225 bfd_boolean null_input_bfd = TRUE;
7226 bfd_boolean only_data_sections = TRUE;
7227
7228 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7229 {
7230 /* Ignore synthetic glue sections. */
7231 if (strcmp (sec->name, ".glue_7")
7232 && strcmp (sec->name, ".glue_7t"))
7233 {
7234 if ((bfd_get_section_flags (ibfd, sec)
7235 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7236 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7237 only_data_sections = FALSE;
7238
7239 null_input_bfd = FALSE;
7240 break;
7241 }
7242 }
7243
7244 if (null_input_bfd || only_data_sections)
7245 return TRUE;
7246 }
7247
7248 /* Complain about various flag mismatches. */
7249 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
7250 EF_ARM_EABI_VERSION (out_flags)))
7251 {
7252 _bfd_error_handler
7253 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
7254 ibfd, obfd,
7255 (in_flags & EF_ARM_EABIMASK) >> 24,
7256 (out_flags & EF_ARM_EABIMASK) >> 24);
7257 return FALSE;
7258 }
7259
7260 /* Not sure what needs to be checked for EABI versions >= 1. */
7261 /* VxWorks libraries do not use these flags. */
7262 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
7263 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
7264 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
7265 {
7266 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
7267 {
7268 _bfd_error_handler
7269 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
7270 ibfd, obfd,
7271 in_flags & EF_ARM_APCS_26 ? 26 : 32,
7272 out_flags & EF_ARM_APCS_26 ? 26 : 32);
7273 flags_compatible = FALSE;
7274 }
7275
7276 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
7277 {
7278 if (in_flags & EF_ARM_APCS_FLOAT)
7279 _bfd_error_handler
7280 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
7281 ibfd, obfd);
7282 else
7283 _bfd_error_handler
7284 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
7285 ibfd, obfd);
7286
7287 flags_compatible = FALSE;
7288 }
7289
7290 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
7291 {
7292 if (in_flags & EF_ARM_VFP_FLOAT)
7293 _bfd_error_handler
7294 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
7295 ibfd, obfd);
7296 else
7297 _bfd_error_handler
7298 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
7299 ibfd, obfd);
7300
7301 flags_compatible = FALSE;
7302 }
7303
7304 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
7305 {
7306 if (in_flags & EF_ARM_MAVERICK_FLOAT)
7307 _bfd_error_handler
7308 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
7309 ibfd, obfd);
7310 else
7311 _bfd_error_handler
7312 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
7313 ibfd, obfd);
7314
7315 flags_compatible = FALSE;
7316 }
7317
7318 #ifdef EF_ARM_SOFT_FLOAT
7319 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
7320 {
7321 /* We can allow interworking between code that is VFP format
7322 layout, and uses either soft float or integer regs for
7323 passing floating point arguments and results. We already
7324 know that the APCS_FLOAT flags match; similarly for VFP
7325 flags. */
7326 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
7327 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
7328 {
7329 if (in_flags & EF_ARM_SOFT_FLOAT)
7330 _bfd_error_handler
7331 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
7332 ibfd, obfd);
7333 else
7334 _bfd_error_handler
7335 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
7336 ibfd, obfd);
7337
7338 flags_compatible = FALSE;
7339 }
7340 }
7341 #endif
7342
7343 /* Interworking mismatch is only a warning. */
7344 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
7345 {
7346 if (in_flags & EF_ARM_INTERWORK)
7347 {
7348 _bfd_error_handler
7349 (_("Warning: %B supports interworking, whereas %B does not"),
7350 ibfd, obfd);
7351 }
7352 else
7353 {
7354 _bfd_error_handler
7355 (_("Warning: %B does not support interworking, whereas %B does"),
7356 ibfd, obfd);
7357 }
7358 }
7359 }
7360
7361 return flags_compatible;
7362 }
7363
7364 /* Display the flags field. */
7365
7366 static bfd_boolean
7367 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
7368 {
7369 FILE * file = (FILE *) ptr;
7370 unsigned long flags;
7371
7372 BFD_ASSERT (abfd != NULL && ptr != NULL);
7373
7374 /* Print normal ELF private data. */
7375 _bfd_elf_print_private_bfd_data (abfd, ptr);
7376
7377 flags = elf_elfheader (abfd)->e_flags;
7378 /* Ignore init flag - it may not be set, despite the flags field
7379 containing valid data. */
7380
7381 /* xgettext:c-format */
7382 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7383
7384 switch (EF_ARM_EABI_VERSION (flags))
7385 {
7386 case EF_ARM_EABI_UNKNOWN:
7387 /* The following flag bits are GNU extensions and not part of the
7388 official ARM ELF extended ABI. Hence they are only decoded if
7389 the EABI version is not set. */
7390 if (flags & EF_ARM_INTERWORK)
7391 fprintf (file, _(" [interworking enabled]"));
7392
7393 if (flags & EF_ARM_APCS_26)
7394 fprintf (file, " [APCS-26]");
7395 else
7396 fprintf (file, " [APCS-32]");
7397
7398 if (flags & EF_ARM_VFP_FLOAT)
7399 fprintf (file, _(" [VFP float format]"));
7400 else if (flags & EF_ARM_MAVERICK_FLOAT)
7401 fprintf (file, _(" [Maverick float format]"));
7402 else
7403 fprintf (file, _(" [FPA float format]"));
7404
7405 if (flags & EF_ARM_APCS_FLOAT)
7406 fprintf (file, _(" [floats passed in float registers]"));
7407
7408 if (flags & EF_ARM_PIC)
7409 fprintf (file, _(" [position independent]"));
7410
7411 if (flags & EF_ARM_NEW_ABI)
7412 fprintf (file, _(" [new ABI]"));
7413
7414 if (flags & EF_ARM_OLD_ABI)
7415 fprintf (file, _(" [old ABI]"));
7416
7417 if (flags & EF_ARM_SOFT_FLOAT)
7418 fprintf (file, _(" [software FP]"));
7419
7420 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
7421 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
7422 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
7423 | EF_ARM_MAVERICK_FLOAT);
7424 break;
7425
7426 case EF_ARM_EABI_VER1:
7427 fprintf (file, _(" [Version1 EABI]"));
7428
7429 if (flags & EF_ARM_SYMSARESORTED)
7430 fprintf (file, _(" [sorted symbol table]"));
7431 else
7432 fprintf (file, _(" [unsorted symbol table]"));
7433
7434 flags &= ~ EF_ARM_SYMSARESORTED;
7435 break;
7436
7437 case EF_ARM_EABI_VER2:
7438 fprintf (file, _(" [Version2 EABI]"));
7439
7440 if (flags & EF_ARM_SYMSARESORTED)
7441 fprintf (file, _(" [sorted symbol table]"));
7442 else
7443 fprintf (file, _(" [unsorted symbol table]"));
7444
7445 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
7446 fprintf (file, _(" [dynamic symbols use segment index]"));
7447
7448 if (flags & EF_ARM_MAPSYMSFIRST)
7449 fprintf (file, _(" [mapping symbols precede others]"));
7450
7451 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
7452 | EF_ARM_MAPSYMSFIRST);
7453 break;
7454
7455 case EF_ARM_EABI_VER3:
7456 fprintf (file, _(" [Version3 EABI]"));
7457 break;
7458
7459 case EF_ARM_EABI_VER4:
7460 fprintf (file, _(" [Version4 EABI]"));
7461 goto eabi;
7462
7463 case EF_ARM_EABI_VER5:
7464 fprintf (file, _(" [Version5 EABI]"));
7465 eabi:
7466 if (flags & EF_ARM_BE8)
7467 fprintf (file, _(" [BE8]"));
7468
7469 if (flags & EF_ARM_LE8)
7470 fprintf (file, _(" [LE8]"));
7471
7472 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
7473 break;
7474
7475 default:
7476 fprintf (file, _(" <EABI version unrecognised>"));
7477 break;
7478 }
7479
7480 flags &= ~ EF_ARM_EABIMASK;
7481
7482 if (flags & EF_ARM_RELEXEC)
7483 fprintf (file, _(" [relocatable executable]"));
7484
7485 if (flags & EF_ARM_HASENTRY)
7486 fprintf (file, _(" [has entry point]"));
7487
7488 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
7489
7490 if (flags)
7491 fprintf (file, _("<Unrecognised flag bits set>"));
7492
7493 fputc ('\n', file);
7494
7495 return TRUE;
7496 }
7497
7498 static int
7499 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
7500 {
7501 switch (ELF_ST_TYPE (elf_sym->st_info))
7502 {
7503 case STT_ARM_TFUNC:
7504 return ELF_ST_TYPE (elf_sym->st_info);
7505
7506 case STT_ARM_16BIT:
7507 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
7508 This allows us to distinguish between data used by Thumb instructions
7509 and non-data (which is probably code) inside Thumb regions of an
7510 executable. */
7511 if (type != STT_OBJECT && type != STT_TLS)
7512 return ELF_ST_TYPE (elf_sym->st_info);
7513 break;
7514
7515 default:
7516 break;
7517 }
7518
7519 return type;
7520 }
7521
7522 static asection *
7523 elf32_arm_gc_mark_hook (asection *sec,
7524 struct bfd_link_info *info,
7525 Elf_Internal_Rela *rel,
7526 struct elf_link_hash_entry *h,
7527 Elf_Internal_Sym *sym)
7528 {
7529 if (h != NULL)
7530 switch (ELF32_R_TYPE (rel->r_info))
7531 {
7532 case R_ARM_GNU_VTINHERIT:
7533 case R_ARM_GNU_VTENTRY:
7534 return NULL;
7535 }
7536
7537 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
7538 }
7539
7540 /* Update the got entry reference counts for the section being removed. */
7541
7542 static bfd_boolean
7543 elf32_arm_gc_sweep_hook (bfd * abfd,
7544 struct bfd_link_info * info,
7545 asection * sec,
7546 const Elf_Internal_Rela * relocs)
7547 {
7548 Elf_Internal_Shdr *symtab_hdr;
7549 struct elf_link_hash_entry **sym_hashes;
7550 bfd_signed_vma *local_got_refcounts;
7551 const Elf_Internal_Rela *rel, *relend;
7552 struct elf32_arm_link_hash_table * globals;
7553
7554 if (info->relocatable)
7555 return TRUE;
7556
7557 globals = elf32_arm_hash_table (info);
7558
7559 elf_section_data (sec)->local_dynrel = NULL;
7560
7561 symtab_hdr = & elf_symtab_hdr (abfd);
7562 sym_hashes = elf_sym_hashes (abfd);
7563 local_got_refcounts = elf_local_got_refcounts (abfd);
7564
7565 check_use_blx(globals);
7566
7567 relend = relocs + sec->reloc_count;
7568 for (rel = relocs; rel < relend; rel++)
7569 {
7570 unsigned long r_symndx;
7571 struct elf_link_hash_entry *h = NULL;
7572 int r_type;
7573
7574 r_symndx = ELF32_R_SYM (rel->r_info);
7575 if (r_symndx >= symtab_hdr->sh_info)
7576 {
7577 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7578 while (h->root.type == bfd_link_hash_indirect
7579 || h->root.type == bfd_link_hash_warning)
7580 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7581 }
7582
7583 r_type = ELF32_R_TYPE (rel->r_info);
7584 r_type = arm_real_reloc_type (globals, r_type);
7585 switch (r_type)
7586 {
7587 case R_ARM_GOT32:
7588 case R_ARM_GOT_PREL:
7589 case R_ARM_TLS_GD32:
7590 case R_ARM_TLS_IE32:
7591 if (h != NULL)
7592 {
7593 if (h->got.refcount > 0)
7594 h->got.refcount -= 1;
7595 }
7596 else if (local_got_refcounts != NULL)
7597 {
7598 if (local_got_refcounts[r_symndx] > 0)
7599 local_got_refcounts[r_symndx] -= 1;
7600 }
7601 break;
7602
7603 case R_ARM_TLS_LDM32:
7604 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
7605 break;
7606
7607 case R_ARM_ABS32:
7608 case R_ARM_ABS32_NOI:
7609 case R_ARM_REL32:
7610 case R_ARM_REL32_NOI:
7611 case R_ARM_PC24:
7612 case R_ARM_PLT32:
7613 case R_ARM_CALL:
7614 case R_ARM_JUMP24:
7615 case R_ARM_PREL31:
7616 case R_ARM_THM_CALL:
7617 case R_ARM_THM_JUMP24:
7618 case R_ARM_THM_JUMP19:
7619 case R_ARM_MOVW_ABS_NC:
7620 case R_ARM_MOVT_ABS:
7621 case R_ARM_MOVW_PREL_NC:
7622 case R_ARM_MOVT_PREL:
7623 case R_ARM_THM_MOVW_ABS_NC:
7624 case R_ARM_THM_MOVT_ABS:
7625 case R_ARM_THM_MOVW_PREL_NC:
7626 case R_ARM_THM_MOVT_PREL:
7627 /* Should the interworking branches be here also? */
7628
7629 if (h != NULL)
7630 {
7631 struct elf32_arm_link_hash_entry *eh;
7632 struct elf32_arm_relocs_copied **pp;
7633 struct elf32_arm_relocs_copied *p;
7634
7635 eh = (struct elf32_arm_link_hash_entry *) h;
7636
7637 if (h->plt.refcount > 0)
7638 {
7639 h->plt.refcount -= 1;
7640 if (r_type == R_ARM_THM_CALL)
7641 eh->plt_maybe_thumb_refcount--;
7642
7643 if (r_type == R_ARM_THM_JUMP24
7644 || r_type == R_ARM_THM_JUMP19)
7645 eh->plt_thumb_refcount--;
7646 }
7647
7648 if (r_type == R_ARM_ABS32
7649 || r_type == R_ARM_REL32
7650 || r_type == R_ARM_ABS32_NOI
7651 || r_type == R_ARM_REL32_NOI)
7652 {
7653 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
7654 pp = &p->next)
7655 if (p->section == sec)
7656 {
7657 p->count -= 1;
7658 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
7659 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
7660 p->pc_count -= 1;
7661 if (p->count == 0)
7662 *pp = p->next;
7663 break;
7664 }
7665 }
7666 }
7667 break;
7668
7669 default:
7670 break;
7671 }
7672 }
7673
7674 return TRUE;
7675 }
7676
7677 /* Look through the relocs for a section during the first phase. */
7678
7679 static bfd_boolean
7680 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
7681 asection *sec, const Elf_Internal_Rela *relocs)
7682 {
7683 Elf_Internal_Shdr *symtab_hdr;
7684 struct elf_link_hash_entry **sym_hashes;
7685 const Elf_Internal_Rela *rel;
7686 const Elf_Internal_Rela *rel_end;
7687 bfd *dynobj;
7688 asection *sreloc;
7689 bfd_vma *local_got_offsets;
7690 struct elf32_arm_link_hash_table *htab;
7691 bfd_boolean needs_plt;
7692
7693 if (info->relocatable)
7694 return TRUE;
7695
7696 BFD_ASSERT (is_arm_elf (abfd));
7697
7698 htab = elf32_arm_hash_table (info);
7699 sreloc = NULL;
7700
7701 /* Create dynamic sections for relocatable executables so that we can
7702 copy relocations. */
7703 if (htab->root.is_relocatable_executable
7704 && ! htab->root.dynamic_sections_created)
7705 {
7706 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
7707 return FALSE;
7708 }
7709
7710 dynobj = elf_hash_table (info)->dynobj;
7711 local_got_offsets = elf_local_got_offsets (abfd);
7712
7713 symtab_hdr = & elf_symtab_hdr (abfd);
7714 sym_hashes = elf_sym_hashes (abfd);
7715
7716 rel_end = relocs + sec->reloc_count;
7717 for (rel = relocs; rel < rel_end; rel++)
7718 {
7719 struct elf_link_hash_entry *h;
7720 struct elf32_arm_link_hash_entry *eh;
7721 unsigned long r_symndx;
7722 int r_type;
7723
7724 r_symndx = ELF32_R_SYM (rel->r_info);
7725 r_type = ELF32_R_TYPE (rel->r_info);
7726 r_type = arm_real_reloc_type (htab, r_type);
7727
7728 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7729 {
7730 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
7731 r_symndx);
7732 return FALSE;
7733 }
7734
7735 if (r_symndx < symtab_hdr->sh_info)
7736 h = NULL;
7737 else
7738 {
7739 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7740 while (h->root.type == bfd_link_hash_indirect
7741 || h->root.type == bfd_link_hash_warning)
7742 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7743 }
7744
7745 eh = (struct elf32_arm_link_hash_entry *) h;
7746
7747 switch (r_type)
7748 {
7749 case R_ARM_GOT32:
7750 case R_ARM_GOT_PREL:
7751 case R_ARM_TLS_GD32:
7752 case R_ARM_TLS_IE32:
7753 /* This symbol requires a global offset table entry. */
7754 {
7755 int tls_type, old_tls_type;
7756
7757 switch (r_type)
7758 {
7759 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
7760 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
7761 default: tls_type = GOT_NORMAL; break;
7762 }
7763
7764 if (h != NULL)
7765 {
7766 h->got.refcount++;
7767 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
7768 }
7769 else
7770 {
7771 bfd_signed_vma *local_got_refcounts;
7772
7773 /* This is a global offset table entry for a local symbol. */
7774 local_got_refcounts = elf_local_got_refcounts (abfd);
7775 if (local_got_refcounts == NULL)
7776 {
7777 bfd_size_type size;
7778
7779 size = symtab_hdr->sh_info;
7780 size *= (sizeof (bfd_signed_vma) + sizeof(char));
7781 local_got_refcounts = bfd_zalloc (abfd, size);
7782 if (local_got_refcounts == NULL)
7783 return FALSE;
7784 elf_local_got_refcounts (abfd) = local_got_refcounts;
7785 elf32_arm_local_got_tls_type (abfd)
7786 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
7787 }
7788 local_got_refcounts[r_symndx] += 1;
7789 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
7790 }
7791
7792 /* We will already have issued an error message if there is a
7793 TLS / non-TLS mismatch, based on the symbol type. We don't
7794 support any linker relaxations. So just combine any TLS
7795 types needed. */
7796 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
7797 && tls_type != GOT_NORMAL)
7798 tls_type |= old_tls_type;
7799
7800 if (old_tls_type != tls_type)
7801 {
7802 if (h != NULL)
7803 elf32_arm_hash_entry (h)->tls_type = tls_type;
7804 else
7805 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
7806 }
7807 }
7808 /* Fall through */
7809
7810 case R_ARM_TLS_LDM32:
7811 if (r_type == R_ARM_TLS_LDM32)
7812 htab->tls_ldm_got.refcount++;
7813 /* Fall through */
7814
7815 case R_ARM_GOTOFF32:
7816 case R_ARM_GOTPC:
7817 if (htab->sgot == NULL)
7818 {
7819 if (htab->root.dynobj == NULL)
7820 htab->root.dynobj = abfd;
7821 if (!create_got_section (htab->root.dynobj, info))
7822 return FALSE;
7823 }
7824 break;
7825
7826 case R_ARM_ABS12:
7827 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
7828 ldr __GOTT_INDEX__ offsets. */
7829 if (!htab->vxworks_p)
7830 break;
7831 /* Fall through */
7832
7833 case R_ARM_PC24:
7834 case R_ARM_PLT32:
7835 case R_ARM_CALL:
7836 case R_ARM_JUMP24:
7837 case R_ARM_PREL31:
7838 case R_ARM_THM_CALL:
7839 case R_ARM_THM_JUMP24:
7840 case R_ARM_THM_JUMP19:
7841 needs_plt = 1;
7842 goto normal_reloc;
7843
7844 case R_ARM_ABS32:
7845 case R_ARM_ABS32_NOI:
7846 case R_ARM_REL32:
7847 case R_ARM_REL32_NOI:
7848 case R_ARM_MOVW_ABS_NC:
7849 case R_ARM_MOVT_ABS:
7850 case R_ARM_MOVW_PREL_NC:
7851 case R_ARM_MOVT_PREL:
7852 case R_ARM_THM_MOVW_ABS_NC:
7853 case R_ARM_THM_MOVT_ABS:
7854 case R_ARM_THM_MOVW_PREL_NC:
7855 case R_ARM_THM_MOVT_PREL:
7856 needs_plt = 0;
7857 normal_reloc:
7858
7859 /* Should the interworking branches be listed here? */
7860 if (h != NULL)
7861 {
7862 /* If this reloc is in a read-only section, we might
7863 need a copy reloc. We can't check reliably at this
7864 stage whether the section is read-only, as input
7865 sections have not yet been mapped to output sections.
7866 Tentatively set the flag for now, and correct in
7867 adjust_dynamic_symbol. */
7868 if (!info->shared)
7869 h->non_got_ref = 1;
7870
7871 /* We may need a .plt entry if the function this reloc
7872 refers to is in a different object. We can't tell for
7873 sure yet, because something later might force the
7874 symbol local. */
7875 if (needs_plt)
7876 h->needs_plt = 1;
7877
7878 /* If we create a PLT entry, this relocation will reference
7879 it, even if it's an ABS32 relocation. */
7880 h->plt.refcount += 1;
7881
7882 /* It's too early to use htab->use_blx here, so we have to
7883 record possible blx references separately from
7884 relocs that definitely need a thumb stub. */
7885
7886 if (r_type == R_ARM_THM_CALL)
7887 eh->plt_maybe_thumb_refcount += 1;
7888
7889 if (r_type == R_ARM_THM_JUMP24
7890 || r_type == R_ARM_THM_JUMP19)
7891 eh->plt_thumb_refcount += 1;
7892 }
7893
7894 /* If we are creating a shared library or relocatable executable,
7895 and this is a reloc against a global symbol, or a non PC
7896 relative reloc against a local symbol, then we need to copy
7897 the reloc into the shared library. However, if we are linking
7898 with -Bsymbolic, we do not need to copy a reloc against a
7899 global symbol which is defined in an object we are
7900 including in the link (i.e., DEF_REGULAR is set). At
7901 this point we have not seen all the input files, so it is
7902 possible that DEF_REGULAR is not set now but will be set
7903 later (it is never cleared). We account for that
7904 possibility below by storing information in the
7905 relocs_copied field of the hash table entry. */
7906 if ((info->shared || htab->root.is_relocatable_executable)
7907 && (sec->flags & SEC_ALLOC) != 0
7908 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
7909 || (h != NULL && ! h->needs_plt
7910 && (! info->symbolic || ! h->def_regular))))
7911 {
7912 struct elf32_arm_relocs_copied *p, **head;
7913
7914 /* When creating a shared object, we must copy these
7915 reloc types into the output file. We create a reloc
7916 section in dynobj and make room for this reloc. */
7917 if (sreloc == NULL)
7918 {
7919 const char * name;
7920
7921 name = (bfd_elf_string_from_elf_section
7922 (abfd,
7923 elf_elfheader (abfd)->e_shstrndx,
7924 elf_section_data (sec)->rel_hdr.sh_name));
7925 if (name == NULL)
7926 return FALSE;
7927
7928 BFD_ASSERT (reloc_section_p (htab, name, sec));
7929
7930 sreloc = bfd_get_section_by_name (dynobj, name);
7931 if (sreloc == NULL)
7932 {
7933 flagword flags;
7934
7935 flags = (SEC_HAS_CONTENTS | SEC_READONLY
7936 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
7937 if ((sec->flags & SEC_ALLOC) != 0
7938 /* BPABI objects never have dynamic
7939 relocations mapped. */
7940 && !htab->symbian_p)
7941 flags |= SEC_ALLOC | SEC_LOAD;
7942 sreloc = bfd_make_section_with_flags (dynobj,
7943 name,
7944 flags);
7945 if (sreloc == NULL
7946 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
7947 return FALSE;
7948 }
7949
7950 elf_section_data (sec)->sreloc = sreloc;
7951 }
7952
7953 /* If this is a global symbol, we count the number of
7954 relocations we need for this symbol. */
7955 if (h != NULL)
7956 {
7957 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
7958 }
7959 else
7960 {
7961 /* Track dynamic relocs needed for local syms too.
7962 We really need local syms available to do this
7963 easily. Oh well. */
7964
7965 asection *s;
7966 void *vpp;
7967
7968 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
7969 sec, r_symndx);
7970 if (s == NULL)
7971 return FALSE;
7972
7973 vpp = &elf_section_data (s)->local_dynrel;
7974 head = (struct elf32_arm_relocs_copied **) vpp;
7975 }
7976
7977 p = *head;
7978 if (p == NULL || p->section != sec)
7979 {
7980 bfd_size_type amt = sizeof *p;
7981
7982 p = bfd_alloc (htab->root.dynobj, amt);
7983 if (p == NULL)
7984 return FALSE;
7985 p->next = *head;
7986 *head = p;
7987 p->section = sec;
7988 p->count = 0;
7989 p->pc_count = 0;
7990 }
7991
7992 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
7993 p->pc_count += 1;
7994 p->count += 1;
7995 }
7996 break;
7997
7998 /* This relocation describes the C++ object vtable hierarchy.
7999 Reconstruct it for later use during GC. */
8000 case R_ARM_GNU_VTINHERIT:
8001 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8002 return FALSE;
8003 break;
8004
8005 /* This relocation describes which C++ vtable entries are actually
8006 used. Record for later use during GC. */
8007 case R_ARM_GNU_VTENTRY:
8008 BFD_ASSERT (h != NULL);
8009 if (h != NULL
8010 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8011 return FALSE;
8012 break;
8013 }
8014 }
8015
8016 return TRUE;
8017 }
8018
8019 /* Unwinding tables are not referenced directly. This pass marks them as
8020 required if the corresponding code section is marked. */
8021
8022 static bfd_boolean
8023 elf32_arm_gc_mark_extra_sections(struct bfd_link_info *info,
8024 elf_gc_mark_hook_fn gc_mark_hook)
8025 {
8026 bfd *sub;
8027 Elf_Internal_Shdr **elf_shdrp;
8028 bfd_boolean again;
8029
8030 /* Marking EH data may cause additional code sections to be marked,
8031 requiring multiple passes. */
8032 again = TRUE;
8033 while (again)
8034 {
8035 again = FALSE;
8036 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8037 {
8038 asection *o;
8039
8040 if (! is_arm_elf (sub))
8041 continue;
8042
8043 elf_shdrp = elf_elfsections (sub);
8044 for (o = sub->sections; o != NULL; o = o->next)
8045 {
8046 Elf_Internal_Shdr *hdr;
8047
8048 hdr = &elf_section_data (o)->this_hdr;
8049 if (hdr->sh_type == SHT_ARM_EXIDX
8050 && hdr->sh_link
8051 && hdr->sh_link < elf_numsections (sub)
8052 && !o->gc_mark
8053 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
8054 {
8055 again = TRUE;
8056 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
8057 return FALSE;
8058 }
8059 }
8060 }
8061 }
8062
8063 return TRUE;
8064 }
8065
8066 /* Treat mapping symbols as special target symbols. */
8067
8068 static bfd_boolean
8069 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
8070 {
8071 return bfd_is_arm_special_symbol_name (sym->name,
8072 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
8073 }
8074
8075 /* This is a copy of elf_find_function() from elf.c except that
8076 ARM mapping symbols are ignored when looking for function names
8077 and STT_ARM_TFUNC is considered to a function type. */
8078
8079 static bfd_boolean
8080 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
8081 asection * section,
8082 asymbol ** symbols,
8083 bfd_vma offset,
8084 const char ** filename_ptr,
8085 const char ** functionname_ptr)
8086 {
8087 const char * filename = NULL;
8088 asymbol * func = NULL;
8089 bfd_vma low_func = 0;
8090 asymbol ** p;
8091
8092 for (p = symbols; *p != NULL; p++)
8093 {
8094 elf_symbol_type *q;
8095
8096 q = (elf_symbol_type *) *p;
8097
8098 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
8099 {
8100 default:
8101 break;
8102 case STT_FILE:
8103 filename = bfd_asymbol_name (&q->symbol);
8104 break;
8105 case STT_FUNC:
8106 case STT_ARM_TFUNC:
8107 case STT_NOTYPE:
8108 /* Skip mapping symbols. */
8109 if ((q->symbol.flags & BSF_LOCAL)
8110 && bfd_is_arm_special_symbol_name (q->symbol.name,
8111 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
8112 continue;
8113 /* Fall through. */
8114 if (bfd_get_section (&q->symbol) == section
8115 && q->symbol.value >= low_func
8116 && q->symbol.value <= offset)
8117 {
8118 func = (asymbol *) q;
8119 low_func = q->symbol.value;
8120 }
8121 break;
8122 }
8123 }
8124
8125 if (func == NULL)
8126 return FALSE;
8127
8128 if (filename_ptr)
8129 *filename_ptr = filename;
8130 if (functionname_ptr)
8131 *functionname_ptr = bfd_asymbol_name (func);
8132
8133 return TRUE;
8134 }
8135
8136
8137 /* Find the nearest line to a particular section and offset, for error
8138 reporting. This code is a duplicate of the code in elf.c, except
8139 that it uses arm_elf_find_function. */
8140
8141 static bfd_boolean
8142 elf32_arm_find_nearest_line (bfd * abfd,
8143 asection * section,
8144 asymbol ** symbols,
8145 bfd_vma offset,
8146 const char ** filename_ptr,
8147 const char ** functionname_ptr,
8148 unsigned int * line_ptr)
8149 {
8150 bfd_boolean found = FALSE;
8151
8152 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
8153
8154 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
8155 filename_ptr, functionname_ptr,
8156 line_ptr, 0,
8157 & elf_tdata (abfd)->dwarf2_find_line_info))
8158 {
8159 if (!*functionname_ptr)
8160 arm_elf_find_function (abfd, section, symbols, offset,
8161 *filename_ptr ? NULL : filename_ptr,
8162 functionname_ptr);
8163
8164 return TRUE;
8165 }
8166
8167 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8168 & found, filename_ptr,
8169 functionname_ptr, line_ptr,
8170 & elf_tdata (abfd)->line_info))
8171 return FALSE;
8172
8173 if (found && (*functionname_ptr || *line_ptr))
8174 return TRUE;
8175
8176 if (symbols == NULL)
8177 return FALSE;
8178
8179 if (! arm_elf_find_function (abfd, section, symbols, offset,
8180 filename_ptr, functionname_ptr))
8181 return FALSE;
8182
8183 *line_ptr = 0;
8184 return TRUE;
8185 }
8186
8187 static bfd_boolean
8188 elf32_arm_find_inliner_info (bfd * abfd,
8189 const char ** filename_ptr,
8190 const char ** functionname_ptr,
8191 unsigned int * line_ptr)
8192 {
8193 bfd_boolean found;
8194 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8195 functionname_ptr, line_ptr,
8196 & elf_tdata (abfd)->dwarf2_find_line_info);
8197 return found;
8198 }
8199
8200 /* Adjust a symbol defined by a dynamic object and referenced by a
8201 regular object. The current definition is in some section of the
8202 dynamic object, but we're not including those sections. We have to
8203 change the definition to something the rest of the link can
8204 understand. */
8205
8206 static bfd_boolean
8207 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
8208 struct elf_link_hash_entry * h)
8209 {
8210 bfd * dynobj;
8211 asection * s;
8212 struct elf32_arm_link_hash_entry * eh;
8213 struct elf32_arm_link_hash_table *globals;
8214
8215 globals = elf32_arm_hash_table (info);
8216 dynobj = elf_hash_table (info)->dynobj;
8217
8218 /* Make sure we know what is going on here. */
8219 BFD_ASSERT (dynobj != NULL
8220 && (h->needs_plt
8221 || h->u.weakdef != NULL
8222 || (h->def_dynamic
8223 && h->ref_regular
8224 && !h->def_regular)));
8225
8226 eh = (struct elf32_arm_link_hash_entry *) h;
8227
8228 /* If this is a function, put it in the procedure linkage table. We
8229 will fill in the contents of the procedure linkage table later,
8230 when we know the address of the .got section. */
8231 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
8232 || h->needs_plt)
8233 {
8234 if (h->plt.refcount <= 0
8235 || SYMBOL_CALLS_LOCAL (info, h)
8236 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8237 && h->root.type == bfd_link_hash_undefweak))
8238 {
8239 /* This case can occur if we saw a PLT32 reloc in an input
8240 file, but the symbol was never referred to by a dynamic
8241 object, or if all references were garbage collected. In
8242 such a case, we don't actually need to build a procedure
8243 linkage table, and we can just do a PC24 reloc instead. */
8244 h->plt.offset = (bfd_vma) -1;
8245 eh->plt_thumb_refcount = 0;
8246 eh->plt_maybe_thumb_refcount = 0;
8247 h->needs_plt = 0;
8248 }
8249
8250 return TRUE;
8251 }
8252 else
8253 {
8254 /* It's possible that we incorrectly decided a .plt reloc was
8255 needed for an R_ARM_PC24 or similar reloc to a non-function sym
8256 in check_relocs. We can't decide accurately between function
8257 and non-function syms in check-relocs; Objects loaded later in
8258 the link may change h->type. So fix it now. */
8259 h->plt.offset = (bfd_vma) -1;
8260 eh->plt_thumb_refcount = 0;
8261 eh->plt_maybe_thumb_refcount = 0;
8262 }
8263
8264 /* If this is a weak symbol, and there is a real definition, the
8265 processor independent code will have arranged for us to see the
8266 real definition first, and we can just use the same value. */
8267 if (h->u.weakdef != NULL)
8268 {
8269 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8270 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8271 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8272 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8273 return TRUE;
8274 }
8275
8276 /* If there are no non-GOT references, we do not need a copy
8277 relocation. */
8278 if (!h->non_got_ref)
8279 return TRUE;
8280
8281 /* This is a reference to a symbol defined by a dynamic object which
8282 is not a function. */
8283
8284 /* If we are creating a shared library, we must presume that the
8285 only references to the symbol are via the global offset table.
8286 For such cases we need not do anything here; the relocations will
8287 be handled correctly by relocate_section. Relocatable executables
8288 can reference data in shared objects directly, so we don't need to
8289 do anything here. */
8290 if (info->shared || globals->root.is_relocatable_executable)
8291 return TRUE;
8292
8293 if (h->size == 0)
8294 {
8295 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
8296 h->root.root.string);
8297 return TRUE;
8298 }
8299
8300 /* We must allocate the symbol in our .dynbss section, which will
8301 become part of the .bss section of the executable. There will be
8302 an entry for this symbol in the .dynsym section. The dynamic
8303 object will contain position independent code, so all references
8304 from the dynamic object to this symbol will go through the global
8305 offset table. The dynamic linker will use the .dynsym entry to
8306 determine the address it must put in the global offset table, so
8307 both the dynamic object and the regular object will refer to the
8308 same memory location for the variable. */
8309 s = bfd_get_section_by_name (dynobj, ".dynbss");
8310 BFD_ASSERT (s != NULL);
8311
8312 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
8313 copy the initial value out of the dynamic object and into the
8314 runtime process image. We need to remember the offset into the
8315 .rel(a).bss section we are going to use. */
8316 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8317 {
8318 asection *srel;
8319
8320 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
8321 BFD_ASSERT (srel != NULL);
8322 srel->size += RELOC_SIZE (globals);
8323 h->needs_copy = 1;
8324 }
8325
8326 return _bfd_elf_adjust_dynamic_copy (h, s);
8327 }
8328
8329 /* Allocate space in .plt, .got and associated reloc sections for
8330 dynamic relocs. */
8331
8332 static bfd_boolean
8333 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
8334 {
8335 struct bfd_link_info *info;
8336 struct elf32_arm_link_hash_table *htab;
8337 struct elf32_arm_link_hash_entry *eh;
8338 struct elf32_arm_relocs_copied *p;
8339 bfd_signed_vma thumb_refs;
8340
8341 eh = (struct elf32_arm_link_hash_entry *) h;
8342
8343 if (h->root.type == bfd_link_hash_indirect)
8344 return TRUE;
8345
8346 if (h->root.type == bfd_link_hash_warning)
8347 /* When warning symbols are created, they **replace** the "real"
8348 entry in the hash table, thus we never get to see the real
8349 symbol in a hash traversal. So look at it now. */
8350 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8351
8352 info = (struct bfd_link_info *) inf;
8353 htab = elf32_arm_hash_table (info);
8354
8355 if (htab->root.dynamic_sections_created
8356 && h->plt.refcount > 0)
8357 {
8358 /* Make sure this symbol is output as a dynamic symbol.
8359 Undefined weak syms won't yet be marked as dynamic. */
8360 if (h->dynindx == -1
8361 && !h->forced_local)
8362 {
8363 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8364 return FALSE;
8365 }
8366
8367 if (info->shared
8368 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8369 {
8370 asection *s = htab->splt;
8371
8372 /* If this is the first .plt entry, make room for the special
8373 first entry. */
8374 if (s->size == 0)
8375 s->size += htab->plt_header_size;
8376
8377 h->plt.offset = s->size;
8378
8379 /* If we will insert a Thumb trampoline before this PLT, leave room
8380 for it. */
8381 thumb_refs = eh->plt_thumb_refcount;
8382 if (!htab->use_blx)
8383 thumb_refs += eh->plt_maybe_thumb_refcount;
8384
8385 if (thumb_refs > 0)
8386 {
8387 h->plt.offset += PLT_THUMB_STUB_SIZE;
8388 s->size += PLT_THUMB_STUB_SIZE;
8389 }
8390
8391 /* If this symbol is not defined in a regular file, and we are
8392 not generating a shared library, then set the symbol to this
8393 location in the .plt. This is required to make function
8394 pointers compare as equal between the normal executable and
8395 the shared library. */
8396 if (! info->shared
8397 && !h->def_regular)
8398 {
8399 h->root.u.def.section = s;
8400 h->root.u.def.value = h->plt.offset;
8401
8402 /* Make sure the function is not marked as Thumb, in case
8403 it is the target of an ABS32 relocation, which will
8404 point to the PLT entry. */
8405 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
8406 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
8407 }
8408
8409 /* Make room for this entry. */
8410 s->size += htab->plt_entry_size;
8411
8412 if (!htab->symbian_p)
8413 {
8414 /* We also need to make an entry in the .got.plt section, which
8415 will be placed in the .got section by the linker script. */
8416 eh->plt_got_offset = htab->sgotplt->size;
8417 htab->sgotplt->size += 4;
8418 }
8419
8420 /* We also need to make an entry in the .rel(a).plt section. */
8421 htab->srelplt->size += RELOC_SIZE (htab);
8422
8423 /* VxWorks executables have a second set of relocations for
8424 each PLT entry. They go in a separate relocation section,
8425 which is processed by the kernel loader. */
8426 if (htab->vxworks_p && !info->shared)
8427 {
8428 /* There is a relocation for the initial PLT entry:
8429 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
8430 if (h->plt.offset == htab->plt_header_size)
8431 htab->srelplt2->size += RELOC_SIZE (htab);
8432
8433 /* There are two extra relocations for each subsequent
8434 PLT entry: an R_ARM_32 relocation for the GOT entry,
8435 and an R_ARM_32 relocation for the PLT entry. */
8436 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
8437 }
8438 }
8439 else
8440 {
8441 h->plt.offset = (bfd_vma) -1;
8442 h->needs_plt = 0;
8443 }
8444 }
8445 else
8446 {
8447 h->plt.offset = (bfd_vma) -1;
8448 h->needs_plt = 0;
8449 }
8450
8451 if (h->got.refcount > 0)
8452 {
8453 asection *s;
8454 bfd_boolean dyn;
8455 int tls_type = elf32_arm_hash_entry (h)->tls_type;
8456 int indx;
8457
8458 /* Make sure this symbol is output as a dynamic symbol.
8459 Undefined weak syms won't yet be marked as dynamic. */
8460 if (h->dynindx == -1
8461 && !h->forced_local)
8462 {
8463 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8464 return FALSE;
8465 }
8466
8467 if (!htab->symbian_p)
8468 {
8469 s = htab->sgot;
8470 h->got.offset = s->size;
8471
8472 if (tls_type == GOT_UNKNOWN)
8473 abort ();
8474
8475 if (tls_type == GOT_NORMAL)
8476 /* Non-TLS symbols need one GOT slot. */
8477 s->size += 4;
8478 else
8479 {
8480 if (tls_type & GOT_TLS_GD)
8481 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
8482 s->size += 8;
8483 if (tls_type & GOT_TLS_IE)
8484 /* R_ARM_TLS_IE32 needs one GOT slot. */
8485 s->size += 4;
8486 }
8487
8488 dyn = htab->root.dynamic_sections_created;
8489
8490 indx = 0;
8491 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
8492 && (!info->shared
8493 || !SYMBOL_REFERENCES_LOCAL (info, h)))
8494 indx = h->dynindx;
8495
8496 if (tls_type != GOT_NORMAL
8497 && (info->shared || indx != 0)
8498 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8499 || h->root.type != bfd_link_hash_undefweak))
8500 {
8501 if (tls_type & GOT_TLS_IE)
8502 htab->srelgot->size += RELOC_SIZE (htab);
8503
8504 if (tls_type & GOT_TLS_GD)
8505 htab->srelgot->size += RELOC_SIZE (htab);
8506
8507 if ((tls_type & GOT_TLS_GD) && indx != 0)
8508 htab->srelgot->size += RELOC_SIZE (htab);
8509 }
8510 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8511 || h->root.type != bfd_link_hash_undefweak)
8512 && (info->shared
8513 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8514 htab->srelgot->size += RELOC_SIZE (htab);
8515 }
8516 }
8517 else
8518 h->got.offset = (bfd_vma) -1;
8519
8520 /* Allocate stubs for exported Thumb functions on v4t. */
8521 if (!htab->use_blx && h->dynindx != -1
8522 && h->def_regular
8523 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
8524 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
8525 {
8526 struct elf_link_hash_entry * th;
8527 struct bfd_link_hash_entry * bh;
8528 struct elf_link_hash_entry * myh;
8529 char name[1024];
8530 asection *s;
8531 bh = NULL;
8532 /* Create a new symbol to regist the real location of the function. */
8533 s = h->root.u.def.section;
8534 sprintf(name, "__real_%s", h->root.root.string);
8535 _bfd_generic_link_add_one_symbol (info, s->owner,
8536 name, BSF_GLOBAL, s,
8537 h->root.u.def.value,
8538 NULL, TRUE, FALSE, &bh);
8539
8540 myh = (struct elf_link_hash_entry *) bh;
8541 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
8542 myh->forced_local = 1;
8543 eh->export_glue = myh;
8544 th = record_arm_to_thumb_glue (info, h);
8545 /* Point the symbol at the stub. */
8546 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
8547 h->root.u.def.section = th->root.u.def.section;
8548 h->root.u.def.value = th->root.u.def.value & ~1;
8549 }
8550
8551 if (eh->relocs_copied == NULL)
8552 return TRUE;
8553
8554 /* In the shared -Bsymbolic case, discard space allocated for
8555 dynamic pc-relative relocs against symbols which turn out to be
8556 defined in regular objects. For the normal shared case, discard
8557 space for pc-relative relocs that have become local due to symbol
8558 visibility changes. */
8559
8560 if (info->shared || htab->root.is_relocatable_executable)
8561 {
8562 /* The only relocs that use pc_count are R_ARM_REL32 and
8563 R_ARM_REL32_NOI, which will appear on something like
8564 ".long foo - .". We want calls to protected symbols to resolve
8565 directly to the function rather than going via the plt. If people
8566 want function pointer comparisons to work as expected then they
8567 should avoid writing assembly like ".long foo - .". */
8568 if (SYMBOL_CALLS_LOCAL (info, h))
8569 {
8570 struct elf32_arm_relocs_copied **pp;
8571
8572 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
8573 {
8574 p->count -= p->pc_count;
8575 p->pc_count = 0;
8576 if (p->count == 0)
8577 *pp = p->next;
8578 else
8579 pp = &p->next;
8580 }
8581 }
8582
8583 if (elf32_arm_hash_table (info)->vxworks_p)
8584 {
8585 struct elf32_arm_relocs_copied **pp;
8586
8587 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
8588 {
8589 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
8590 *pp = p->next;
8591 else
8592 pp = &p->next;
8593 }
8594 }
8595
8596 /* Also discard relocs on undefined weak syms with non-default
8597 visibility. */
8598 if (eh->relocs_copied != NULL
8599 && h->root.type == bfd_link_hash_undefweak)
8600 {
8601 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8602 eh->relocs_copied = NULL;
8603
8604 /* Make sure undefined weak symbols are output as a dynamic
8605 symbol in PIEs. */
8606 else if (h->dynindx == -1
8607 && !h->forced_local)
8608 {
8609 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8610 return FALSE;
8611 }
8612 }
8613
8614 else if (htab->root.is_relocatable_executable && h->dynindx == -1
8615 && h->root.type == bfd_link_hash_new)
8616 {
8617 /* Output absolute symbols so that we can create relocations
8618 against them. For normal symbols we output a relocation
8619 against the section that contains them. */
8620 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8621 return FALSE;
8622 }
8623
8624 }
8625 else
8626 {
8627 /* For the non-shared case, discard space for relocs against
8628 symbols which turn out to need copy relocs or are not
8629 dynamic. */
8630
8631 if (!h->non_got_ref
8632 && ((h->def_dynamic
8633 && !h->def_regular)
8634 || (htab->root.dynamic_sections_created
8635 && (h->root.type == bfd_link_hash_undefweak
8636 || h->root.type == bfd_link_hash_undefined))))
8637 {
8638 /* Make sure this symbol is output as a dynamic symbol.
8639 Undefined weak syms won't yet be marked as dynamic. */
8640 if (h->dynindx == -1
8641 && !h->forced_local)
8642 {
8643 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8644 return FALSE;
8645 }
8646
8647 /* If that succeeded, we know we'll be keeping all the
8648 relocs. */
8649 if (h->dynindx != -1)
8650 goto keep;
8651 }
8652
8653 eh->relocs_copied = NULL;
8654
8655 keep: ;
8656 }
8657
8658 /* Finally, allocate space. */
8659 for (p = eh->relocs_copied; p != NULL; p = p->next)
8660 {
8661 asection *sreloc = elf_section_data (p->section)->sreloc;
8662 sreloc->size += p->count * RELOC_SIZE (htab);
8663 }
8664
8665 return TRUE;
8666 }
8667
8668 /* Find any dynamic relocs that apply to read-only sections. */
8669
8670 static bfd_boolean
8671 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
8672 {
8673 struct elf32_arm_link_hash_entry *eh;
8674 struct elf32_arm_relocs_copied *p;
8675
8676 if (h->root.type == bfd_link_hash_warning)
8677 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8678
8679 eh = (struct elf32_arm_link_hash_entry *) h;
8680 for (p = eh->relocs_copied; p != NULL; p = p->next)
8681 {
8682 asection *s = p->section;
8683
8684 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8685 {
8686 struct bfd_link_info *info = (struct bfd_link_info *) inf;
8687
8688 info->flags |= DF_TEXTREL;
8689
8690 /* Not an error, just cut short the traversal. */
8691 return FALSE;
8692 }
8693 }
8694 return TRUE;
8695 }
8696
8697 void
8698 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
8699 int byteswap_code)
8700 {
8701 struct elf32_arm_link_hash_table *globals;
8702
8703 globals = elf32_arm_hash_table (info);
8704 globals->byteswap_code = byteswap_code;
8705 }
8706
8707 /* Set the sizes of the dynamic sections. */
8708
8709 static bfd_boolean
8710 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
8711 struct bfd_link_info * info)
8712 {
8713 bfd * dynobj;
8714 asection * s;
8715 bfd_boolean plt;
8716 bfd_boolean relocs;
8717 bfd *ibfd;
8718 struct elf32_arm_link_hash_table *htab;
8719
8720 htab = elf32_arm_hash_table (info);
8721 dynobj = elf_hash_table (info)->dynobj;
8722 BFD_ASSERT (dynobj != NULL);
8723 check_use_blx (htab);
8724
8725 if (elf_hash_table (info)->dynamic_sections_created)
8726 {
8727 /* Set the contents of the .interp section to the interpreter. */
8728 if (info->executable)
8729 {
8730 s = bfd_get_section_by_name (dynobj, ".interp");
8731 BFD_ASSERT (s != NULL);
8732 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8733 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8734 }
8735 }
8736
8737 /* Set up .got offsets for local syms, and space for local dynamic
8738 relocs. */
8739 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8740 {
8741 bfd_signed_vma *local_got;
8742 bfd_signed_vma *end_local_got;
8743 char *local_tls_type;
8744 bfd_size_type locsymcount;
8745 Elf_Internal_Shdr *symtab_hdr;
8746 asection *srel;
8747 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
8748
8749 if (! is_arm_elf (ibfd))
8750 continue;
8751
8752 for (s = ibfd->sections; s != NULL; s = s->next)
8753 {
8754 struct elf32_arm_relocs_copied *p;
8755
8756 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
8757 {
8758 if (!bfd_is_abs_section (p->section)
8759 && bfd_is_abs_section (p->section->output_section))
8760 {
8761 /* Input section has been discarded, either because
8762 it is a copy of a linkonce section or due to
8763 linker script /DISCARD/, so we'll be discarding
8764 the relocs too. */
8765 }
8766 else if (is_vxworks
8767 && strcmp (p->section->output_section->name,
8768 ".tls_vars") == 0)
8769 {
8770 /* Relocations in vxworks .tls_vars sections are
8771 handled specially by the loader. */
8772 }
8773 else if (p->count != 0)
8774 {
8775 srel = elf_section_data (p->section)->sreloc;
8776 srel->size += p->count * RELOC_SIZE (htab);
8777 if ((p->section->output_section->flags & SEC_READONLY) != 0)
8778 info->flags |= DF_TEXTREL;
8779 }
8780 }
8781 }
8782
8783 local_got = elf_local_got_refcounts (ibfd);
8784 if (!local_got)
8785 continue;
8786
8787 symtab_hdr = & elf_symtab_hdr (ibfd);
8788 locsymcount = symtab_hdr->sh_info;
8789 end_local_got = local_got + locsymcount;
8790 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
8791 s = htab->sgot;
8792 srel = htab->srelgot;
8793 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
8794 {
8795 if (*local_got > 0)
8796 {
8797 *local_got = s->size;
8798 if (*local_tls_type & GOT_TLS_GD)
8799 /* TLS_GD relocs need an 8-byte structure in the GOT. */
8800 s->size += 8;
8801 if (*local_tls_type & GOT_TLS_IE)
8802 s->size += 4;
8803 if (*local_tls_type == GOT_NORMAL)
8804 s->size += 4;
8805
8806 if (info->shared || *local_tls_type == GOT_TLS_GD)
8807 srel->size += RELOC_SIZE (htab);
8808 }
8809 else
8810 *local_got = (bfd_vma) -1;
8811 }
8812 }
8813
8814 if (htab->tls_ldm_got.refcount > 0)
8815 {
8816 /* Allocate two GOT entries and one dynamic relocation (if necessary)
8817 for R_ARM_TLS_LDM32 relocations. */
8818 htab->tls_ldm_got.offset = htab->sgot->size;
8819 htab->sgot->size += 8;
8820 if (info->shared)
8821 htab->srelgot->size += RELOC_SIZE (htab);
8822 }
8823 else
8824 htab->tls_ldm_got.offset = -1;
8825
8826 /* Allocate global sym .plt and .got entries, and space for global
8827 sym dynamic relocs. */
8828 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
8829
8830 /* Here we rummage through the found bfds to collect glue information. */
8831 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8832 {
8833 if (! is_arm_elf (ibfd))
8834 continue;
8835
8836 /* Initialise mapping tables for code/data. */
8837 bfd_elf32_arm_init_maps (ibfd);
8838
8839 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
8840 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
8841 /* xgettext:c-format */
8842 _bfd_error_handler (_("Errors encountered processing file %s"),
8843 ibfd->filename);
8844 }
8845
8846 /* The check_relocs and adjust_dynamic_symbol entry points have
8847 determined the sizes of the various dynamic sections. Allocate
8848 memory for them. */
8849 plt = FALSE;
8850 relocs = FALSE;
8851 for (s = dynobj->sections; s != NULL; s = s->next)
8852 {
8853 const char * name;
8854
8855 if ((s->flags & SEC_LINKER_CREATED) == 0)
8856 continue;
8857
8858 /* It's OK to base decisions on the section name, because none
8859 of the dynobj section names depend upon the input files. */
8860 name = bfd_get_section_name (dynobj, s);
8861
8862 if (strcmp (name, ".plt") == 0)
8863 {
8864 /* Remember whether there is a PLT. */
8865 plt = s->size != 0;
8866 }
8867 else if (CONST_STRNEQ (name, ".rel"))
8868 {
8869 if (s->size != 0)
8870 {
8871 /* Remember whether there are any reloc sections other
8872 than .rel(a).plt and .rela.plt.unloaded. */
8873 if (s != htab->srelplt && s != htab->srelplt2)
8874 relocs = TRUE;
8875
8876 /* We use the reloc_count field as a counter if we need
8877 to copy relocs into the output file. */
8878 s->reloc_count = 0;
8879 }
8880 }
8881 else if (! CONST_STRNEQ (name, ".got")
8882 && strcmp (name, ".dynbss") != 0)
8883 {
8884 /* It's not one of our sections, so don't allocate space. */
8885 continue;
8886 }
8887
8888 if (s->size == 0)
8889 {
8890 /* If we don't need this section, strip it from the
8891 output file. This is mostly to handle .rel(a).bss and
8892 .rel(a).plt. We must create both sections in
8893 create_dynamic_sections, because they must be created
8894 before the linker maps input sections to output
8895 sections. The linker does that before
8896 adjust_dynamic_symbol is called, and it is that
8897 function which decides whether anything needs to go
8898 into these sections. */
8899 s->flags |= SEC_EXCLUDE;
8900 continue;
8901 }
8902
8903 if ((s->flags & SEC_HAS_CONTENTS) == 0)
8904 continue;
8905
8906 /* Allocate memory for the section contents. */
8907 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
8908 if (s->contents == NULL)
8909 return FALSE;
8910 }
8911
8912 if (elf_hash_table (info)->dynamic_sections_created)
8913 {
8914 /* Add some entries to the .dynamic section. We fill in the
8915 values later, in elf32_arm_finish_dynamic_sections, but we
8916 must add the entries now so that we get the correct size for
8917 the .dynamic section. The DT_DEBUG entry is filled in by the
8918 dynamic linker and used by the debugger. */
8919 #define add_dynamic_entry(TAG, VAL) \
8920 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
8921
8922 if (info->executable)
8923 {
8924 if (!add_dynamic_entry (DT_DEBUG, 0))
8925 return FALSE;
8926 }
8927
8928 if (plt)
8929 {
8930 if ( !add_dynamic_entry (DT_PLTGOT, 0)
8931 || !add_dynamic_entry (DT_PLTRELSZ, 0)
8932 || !add_dynamic_entry (DT_PLTREL,
8933 htab->use_rel ? DT_REL : DT_RELA)
8934 || !add_dynamic_entry (DT_JMPREL, 0))
8935 return FALSE;
8936 }
8937
8938 if (relocs)
8939 {
8940 if (htab->use_rel)
8941 {
8942 if (!add_dynamic_entry (DT_REL, 0)
8943 || !add_dynamic_entry (DT_RELSZ, 0)
8944 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
8945 return FALSE;
8946 }
8947 else
8948 {
8949 if (!add_dynamic_entry (DT_RELA, 0)
8950 || !add_dynamic_entry (DT_RELASZ, 0)
8951 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
8952 return FALSE;
8953 }
8954 }
8955
8956 /* If any dynamic relocs apply to a read-only section,
8957 then we need a DT_TEXTREL entry. */
8958 if ((info->flags & DF_TEXTREL) == 0)
8959 elf_link_hash_traverse (&htab->root, elf32_arm_readonly_dynrelocs,
8960 (PTR) info);
8961
8962 if ((info->flags & DF_TEXTREL) != 0)
8963 {
8964 if (!add_dynamic_entry (DT_TEXTREL, 0))
8965 return FALSE;
8966 }
8967 if (htab->vxworks_p
8968 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
8969 return FALSE;
8970 }
8971 #undef add_dynamic_entry
8972
8973 return TRUE;
8974 }
8975
8976 /* Finish up dynamic symbol handling. We set the contents of various
8977 dynamic sections here. */
8978
8979 static bfd_boolean
8980 elf32_arm_finish_dynamic_symbol (bfd * output_bfd, struct bfd_link_info * info,
8981 struct elf_link_hash_entry * h, Elf_Internal_Sym * sym)
8982 {
8983 bfd * dynobj;
8984 struct elf32_arm_link_hash_table *htab;
8985 struct elf32_arm_link_hash_entry *eh;
8986
8987 dynobj = elf_hash_table (info)->dynobj;
8988 htab = elf32_arm_hash_table (info);
8989 eh = (struct elf32_arm_link_hash_entry *) h;
8990
8991 if (h->plt.offset != (bfd_vma) -1)
8992 {
8993 asection * splt;
8994 asection * srel;
8995 bfd_byte *loc;
8996 bfd_vma plt_index;
8997 Elf_Internal_Rela rel;
8998
8999 /* This symbol has an entry in the procedure linkage table. Set
9000 it up. */
9001
9002 BFD_ASSERT (h->dynindx != -1);
9003
9004 splt = bfd_get_section_by_name (dynobj, ".plt");
9005 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
9006 BFD_ASSERT (splt != NULL && srel != NULL);
9007
9008 /* Fill in the entry in the procedure linkage table. */
9009 if (htab->symbian_p)
9010 {
9011 put_arm_insn (htab, output_bfd,
9012 elf32_arm_symbian_plt_entry[0],
9013 splt->contents + h->plt.offset);
9014 bfd_put_32 (output_bfd,
9015 elf32_arm_symbian_plt_entry[1],
9016 splt->contents + h->plt.offset + 4);
9017
9018 /* Fill in the entry in the .rel.plt section. */
9019 rel.r_offset = (splt->output_section->vma
9020 + splt->output_offset
9021 + h->plt.offset + 4);
9022 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9023
9024 /* Get the index in the procedure linkage table which
9025 corresponds to this symbol. This is the index of this symbol
9026 in all the symbols for which we are making plt entries. The
9027 first entry in the procedure linkage table is reserved. */
9028 plt_index = ((h->plt.offset - htab->plt_header_size)
9029 / htab->plt_entry_size);
9030 }
9031 else
9032 {
9033 bfd_vma got_offset, got_address, plt_address;
9034 bfd_vma got_displacement;
9035 asection * sgot;
9036 bfd_byte * ptr;
9037
9038 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
9039 BFD_ASSERT (sgot != NULL);
9040
9041 /* Get the offset into the .got.plt table of the entry that
9042 corresponds to this function. */
9043 got_offset = eh->plt_got_offset;
9044
9045 /* Get the index in the procedure linkage table which
9046 corresponds to this symbol. This is the index of this symbol
9047 in all the symbols for which we are making plt entries. The
9048 first three entries in .got.plt are reserved; after that
9049 symbols appear in the same order as in .plt. */
9050 plt_index = (got_offset - 12) / 4;
9051
9052 /* Calculate the address of the GOT entry. */
9053 got_address = (sgot->output_section->vma
9054 + sgot->output_offset
9055 + got_offset);
9056
9057 /* ...and the address of the PLT entry. */
9058 plt_address = (splt->output_section->vma
9059 + splt->output_offset
9060 + h->plt.offset);
9061
9062 ptr = htab->splt->contents + h->plt.offset;
9063 if (htab->vxworks_p && info->shared)
9064 {
9065 unsigned int i;
9066 bfd_vma val;
9067
9068 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9069 {
9070 val = elf32_arm_vxworks_shared_plt_entry[i];
9071 if (i == 2)
9072 val |= got_address - sgot->output_section->vma;
9073 if (i == 5)
9074 val |= plt_index * RELOC_SIZE (htab);
9075 if (i == 2 || i == 5)
9076 bfd_put_32 (output_bfd, val, ptr);
9077 else
9078 put_arm_insn (htab, output_bfd, val, ptr);
9079 }
9080 }
9081 else if (htab->vxworks_p)
9082 {
9083 unsigned int i;
9084 bfd_vma val;
9085
9086 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9087 {
9088 val = elf32_arm_vxworks_exec_plt_entry[i];
9089 if (i == 2)
9090 val |= got_address;
9091 if (i == 4)
9092 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
9093 if (i == 5)
9094 val |= plt_index * RELOC_SIZE (htab);
9095 if (i == 2 || i == 5)
9096 bfd_put_32 (output_bfd, val, ptr);
9097 else
9098 put_arm_insn (htab, output_bfd, val, ptr);
9099 }
9100
9101 loc = (htab->srelplt2->contents
9102 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9103
9104 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9105 referencing the GOT for this PLT entry. */
9106 rel.r_offset = plt_address + 8;
9107 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9108 rel.r_addend = got_offset;
9109 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9110 loc += RELOC_SIZE (htab);
9111
9112 /* Create the R_ARM_ABS32 relocation referencing the
9113 beginning of the PLT for this GOT entry. */
9114 rel.r_offset = got_address;
9115 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9116 rel.r_addend = 0;
9117 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9118 }
9119 else
9120 {
9121 bfd_signed_vma thumb_refs;
9122 /* Calculate the displacement between the PLT slot and the
9123 entry in the GOT. The eight-byte offset accounts for the
9124 value produced by adding to pc in the first instruction
9125 of the PLT stub. */
9126 got_displacement = got_address - (plt_address + 8);
9127
9128 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9129
9130 thumb_refs = eh->plt_thumb_refcount;
9131 if (!htab->use_blx)
9132 thumb_refs += eh->plt_maybe_thumb_refcount;
9133
9134 if (thumb_refs > 0)
9135 {
9136 put_thumb_insn (htab, output_bfd,
9137 elf32_arm_plt_thumb_stub[0], ptr - 4);
9138 put_thumb_insn (htab, output_bfd,
9139 elf32_arm_plt_thumb_stub[1], ptr - 2);
9140 }
9141
9142 put_arm_insn (htab, output_bfd,
9143 elf32_arm_plt_entry[0]
9144 | ((got_displacement & 0x0ff00000) >> 20),
9145 ptr + 0);
9146 put_arm_insn (htab, output_bfd,
9147 elf32_arm_plt_entry[1]
9148 | ((got_displacement & 0x000ff000) >> 12),
9149 ptr+ 4);
9150 put_arm_insn (htab, output_bfd,
9151 elf32_arm_plt_entry[2]
9152 | (got_displacement & 0x00000fff),
9153 ptr + 8);
9154 #ifdef FOUR_WORD_PLT
9155 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
9156 #endif
9157 }
9158
9159 /* Fill in the entry in the global offset table. */
9160 bfd_put_32 (output_bfd,
9161 (splt->output_section->vma
9162 + splt->output_offset),
9163 sgot->contents + got_offset);
9164
9165 /* Fill in the entry in the .rel(a).plt section. */
9166 rel.r_addend = 0;
9167 rel.r_offset = got_address;
9168 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
9169 }
9170
9171 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9172 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9173
9174 if (!h->def_regular)
9175 {
9176 /* Mark the symbol as undefined, rather than as defined in
9177 the .plt section. Leave the value alone. */
9178 sym->st_shndx = SHN_UNDEF;
9179 /* If the symbol is weak, we do need to clear the value.
9180 Otherwise, the PLT entry would provide a definition for
9181 the symbol even if the symbol wasn't defined anywhere,
9182 and so the symbol would never be NULL. */
9183 if (!h->ref_regular_nonweak)
9184 sym->st_value = 0;
9185 }
9186 }
9187
9188 if (h->got.offset != (bfd_vma) -1
9189 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
9190 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
9191 {
9192 asection * sgot;
9193 asection * srel;
9194 Elf_Internal_Rela rel;
9195 bfd_byte *loc;
9196 bfd_vma offset;
9197
9198 /* This symbol has an entry in the global offset table. Set it
9199 up. */
9200 sgot = bfd_get_section_by_name (dynobj, ".got");
9201 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
9202 BFD_ASSERT (sgot != NULL && srel != NULL);
9203
9204 offset = (h->got.offset & ~(bfd_vma) 1);
9205 rel.r_addend = 0;
9206 rel.r_offset = (sgot->output_section->vma
9207 + sgot->output_offset
9208 + offset);
9209
9210 /* If this is a static link, or it is a -Bsymbolic link and the
9211 symbol is defined locally or was forced to be local because
9212 of a version file, we just want to emit a RELATIVE reloc.
9213 The entry in the global offset table will already have been
9214 initialized in the relocate_section function. */
9215 if (info->shared
9216 && SYMBOL_REFERENCES_LOCAL (info, h))
9217 {
9218 BFD_ASSERT((h->got.offset & 1) != 0);
9219 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9220 if (!htab->use_rel)
9221 {
9222 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
9223 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
9224 }
9225 }
9226 else
9227 {
9228 BFD_ASSERT((h->got.offset & 1) == 0);
9229 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
9230 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9231 }
9232
9233 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
9234 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9235 }
9236
9237 if (h->needs_copy)
9238 {
9239 asection * s;
9240 Elf_Internal_Rela rel;
9241 bfd_byte *loc;
9242
9243 /* This symbol needs a copy reloc. Set it up. */
9244 BFD_ASSERT (h->dynindx != -1
9245 && (h->root.type == bfd_link_hash_defined
9246 || h->root.type == bfd_link_hash_defweak));
9247
9248 s = bfd_get_section_by_name (h->root.u.def.section->owner,
9249 RELOC_SECTION (htab, ".bss"));
9250 BFD_ASSERT (s != NULL);
9251
9252 rel.r_addend = 0;
9253 rel.r_offset = (h->root.u.def.value
9254 + h->root.u.def.section->output_section->vma
9255 + h->root.u.def.section->output_offset);
9256 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
9257 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9258 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9259 }
9260
9261 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
9262 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
9263 to the ".got" section. */
9264 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
9265 || (!htab->vxworks_p && h == htab->root.hgot))
9266 sym->st_shndx = SHN_ABS;
9267
9268 return TRUE;
9269 }
9270
9271 /* Finish up the dynamic sections. */
9272
9273 static bfd_boolean
9274 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
9275 {
9276 bfd * dynobj;
9277 asection * sgot;
9278 asection * sdyn;
9279
9280 dynobj = elf_hash_table (info)->dynobj;
9281
9282 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
9283 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
9284 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9285
9286 if (elf_hash_table (info)->dynamic_sections_created)
9287 {
9288 asection *splt;
9289 Elf32_External_Dyn *dyncon, *dynconend;
9290 struct elf32_arm_link_hash_table *htab;
9291
9292 htab = elf32_arm_hash_table (info);
9293 splt = bfd_get_section_by_name (dynobj, ".plt");
9294 BFD_ASSERT (splt != NULL && sdyn != NULL);
9295
9296 dyncon = (Elf32_External_Dyn *) sdyn->contents;
9297 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9298
9299 for (; dyncon < dynconend; dyncon++)
9300 {
9301 Elf_Internal_Dyn dyn;
9302 const char * name;
9303 asection * s;
9304
9305 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
9306
9307 switch (dyn.d_tag)
9308 {
9309 unsigned int type;
9310
9311 default:
9312 if (htab->vxworks_p
9313 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
9314 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9315 break;
9316
9317 case DT_HASH:
9318 name = ".hash";
9319 goto get_vma_if_bpabi;
9320 case DT_STRTAB:
9321 name = ".dynstr";
9322 goto get_vma_if_bpabi;
9323 case DT_SYMTAB:
9324 name = ".dynsym";
9325 goto get_vma_if_bpabi;
9326 case DT_VERSYM:
9327 name = ".gnu.version";
9328 goto get_vma_if_bpabi;
9329 case DT_VERDEF:
9330 name = ".gnu.version_d";
9331 goto get_vma_if_bpabi;
9332 case DT_VERNEED:
9333 name = ".gnu.version_r";
9334 goto get_vma_if_bpabi;
9335
9336 case DT_PLTGOT:
9337 name = ".got";
9338 goto get_vma;
9339 case DT_JMPREL:
9340 name = RELOC_SECTION (htab, ".plt");
9341 get_vma:
9342 s = bfd_get_section_by_name (output_bfd, name);
9343 BFD_ASSERT (s != NULL);
9344 if (!htab->symbian_p)
9345 dyn.d_un.d_ptr = s->vma;
9346 else
9347 /* In the BPABI, tags in the PT_DYNAMIC section point
9348 at the file offset, not the memory address, for the
9349 convenience of the post linker. */
9350 dyn.d_un.d_ptr = s->filepos;
9351 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9352 break;
9353
9354 get_vma_if_bpabi:
9355 if (htab->symbian_p)
9356 goto get_vma;
9357 break;
9358
9359 case DT_PLTRELSZ:
9360 s = bfd_get_section_by_name (output_bfd,
9361 RELOC_SECTION (htab, ".plt"));
9362 BFD_ASSERT (s != NULL);
9363 dyn.d_un.d_val = s->size;
9364 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9365 break;
9366
9367 case DT_RELSZ:
9368 case DT_RELASZ:
9369 if (!htab->symbian_p)
9370 {
9371 /* My reading of the SVR4 ABI indicates that the
9372 procedure linkage table relocs (DT_JMPREL) should be
9373 included in the overall relocs (DT_REL). This is
9374 what Solaris does. However, UnixWare can not handle
9375 that case. Therefore, we override the DT_RELSZ entry
9376 here to make it not include the JMPREL relocs. Since
9377 the linker script arranges for .rel(a).plt to follow all
9378 other relocation sections, we don't have to worry
9379 about changing the DT_REL entry. */
9380 s = bfd_get_section_by_name (output_bfd,
9381 RELOC_SECTION (htab, ".plt"));
9382 if (s != NULL)
9383 dyn.d_un.d_val -= s->size;
9384 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9385 break;
9386 }
9387 /* Fall through */
9388
9389 case DT_REL:
9390 case DT_RELA:
9391 /* In the BPABI, the DT_REL tag must point at the file
9392 offset, not the VMA, of the first relocation
9393 section. So, we use code similar to that in
9394 elflink.c, but do not check for SHF_ALLOC on the
9395 relcoation section, since relocations sections are
9396 never allocated under the BPABI. The comments above
9397 about Unixware notwithstanding, we include all of the
9398 relocations here. */
9399 if (htab->symbian_p)
9400 {
9401 unsigned int i;
9402 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
9403 ? SHT_REL : SHT_RELA);
9404 dyn.d_un.d_val = 0;
9405 for (i = 1; i < elf_numsections (output_bfd); i++)
9406 {
9407 Elf_Internal_Shdr *hdr
9408 = elf_elfsections (output_bfd)[i];
9409 if (hdr->sh_type == type)
9410 {
9411 if (dyn.d_tag == DT_RELSZ
9412 || dyn.d_tag == DT_RELASZ)
9413 dyn.d_un.d_val += hdr->sh_size;
9414 else if ((ufile_ptr) hdr->sh_offset
9415 <= dyn.d_un.d_val - 1)
9416 dyn.d_un.d_val = hdr->sh_offset;
9417 }
9418 }
9419 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9420 }
9421 break;
9422
9423 /* Set the bottom bit of DT_INIT/FINI if the
9424 corresponding function is Thumb. */
9425 case DT_INIT:
9426 name = info->init_function;
9427 goto get_sym;
9428 case DT_FINI:
9429 name = info->fini_function;
9430 get_sym:
9431 /* If it wasn't set by elf_bfd_final_link
9432 then there is nothing to adjust. */
9433 if (dyn.d_un.d_val != 0)
9434 {
9435 struct elf_link_hash_entry * eh;
9436
9437 eh = elf_link_hash_lookup (elf_hash_table (info), name,
9438 FALSE, FALSE, TRUE);
9439 if (eh != (struct elf_link_hash_entry *) NULL
9440 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
9441 {
9442 dyn.d_un.d_val |= 1;
9443 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9444 }
9445 }
9446 break;
9447 }
9448 }
9449
9450 /* Fill in the first entry in the procedure linkage table. */
9451 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
9452 {
9453 const bfd_vma *plt0_entry;
9454 bfd_vma got_address, plt_address, got_displacement;
9455
9456 /* Calculate the addresses of the GOT and PLT. */
9457 got_address = sgot->output_section->vma + sgot->output_offset;
9458 plt_address = splt->output_section->vma + splt->output_offset;
9459
9460 if (htab->vxworks_p)
9461 {
9462 /* The VxWorks GOT is relocated by the dynamic linker.
9463 Therefore, we must emit relocations rather than simply
9464 computing the values now. */
9465 Elf_Internal_Rela rel;
9466
9467 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
9468 put_arm_insn (htab, output_bfd, plt0_entry[0],
9469 splt->contents + 0);
9470 put_arm_insn (htab, output_bfd, plt0_entry[1],
9471 splt->contents + 4);
9472 put_arm_insn (htab, output_bfd, plt0_entry[2],
9473 splt->contents + 8);
9474 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
9475
9476 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
9477 rel.r_offset = plt_address + 12;
9478 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9479 rel.r_addend = 0;
9480 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
9481 htab->srelplt2->contents);
9482 }
9483 else
9484 {
9485 got_displacement = got_address - (plt_address + 16);
9486
9487 plt0_entry = elf32_arm_plt0_entry;
9488 put_arm_insn (htab, output_bfd, plt0_entry[0],
9489 splt->contents + 0);
9490 put_arm_insn (htab, output_bfd, plt0_entry[1],
9491 splt->contents + 4);
9492 put_arm_insn (htab, output_bfd, plt0_entry[2],
9493 splt->contents + 8);
9494 put_arm_insn (htab, output_bfd, plt0_entry[3],
9495 splt->contents + 12);
9496
9497 #ifdef FOUR_WORD_PLT
9498 /* The displacement value goes in the otherwise-unused
9499 last word of the second entry. */
9500 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
9501 #else
9502 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
9503 #endif
9504 }
9505 }
9506
9507 /* UnixWare sets the entsize of .plt to 4, although that doesn't
9508 really seem like the right value. */
9509 if (splt->output_section->owner == output_bfd)
9510 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
9511
9512 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
9513 {
9514 /* Correct the .rel(a).plt.unloaded relocations. They will have
9515 incorrect symbol indexes. */
9516 int num_plts;
9517 unsigned char *p;
9518
9519 num_plts = ((htab->splt->size - htab->plt_header_size)
9520 / htab->plt_entry_size);
9521 p = htab->srelplt2->contents + RELOC_SIZE (htab);
9522
9523 for (; num_plts; num_plts--)
9524 {
9525 Elf_Internal_Rela rel;
9526
9527 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
9528 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9529 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
9530 p += RELOC_SIZE (htab);
9531
9532 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
9533 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9534 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
9535 p += RELOC_SIZE (htab);
9536 }
9537 }
9538 }
9539
9540 /* Fill in the first three entries in the global offset table. */
9541 if (sgot)
9542 {
9543 if (sgot->size > 0)
9544 {
9545 if (sdyn == NULL)
9546 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
9547 else
9548 bfd_put_32 (output_bfd,
9549 sdyn->output_section->vma + sdyn->output_offset,
9550 sgot->contents);
9551 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
9552 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
9553 }
9554
9555 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
9556 }
9557
9558 return TRUE;
9559 }
9560
9561 static void
9562 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9563 {
9564 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9565 struct elf32_arm_link_hash_table *globals;
9566
9567 i_ehdrp = elf_elfheader (abfd);
9568
9569 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
9570 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
9571 else
9572 i_ehdrp->e_ident[EI_OSABI] = 0;
9573 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
9574
9575 if (link_info)
9576 {
9577 globals = elf32_arm_hash_table (link_info);
9578 if (globals->byteswap_code)
9579 i_ehdrp->e_flags |= EF_ARM_BE8;
9580 }
9581 }
9582
9583 static enum elf_reloc_type_class
9584 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
9585 {
9586 switch ((int) ELF32_R_TYPE (rela->r_info))
9587 {
9588 case R_ARM_RELATIVE:
9589 return reloc_class_relative;
9590 case R_ARM_JUMP_SLOT:
9591 return reloc_class_plt;
9592 case R_ARM_COPY:
9593 return reloc_class_copy;
9594 default:
9595 return reloc_class_normal;
9596 }
9597 }
9598
9599 /* Set the right machine number for an Arm ELF file. */
9600
9601 static bfd_boolean
9602 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
9603 {
9604 if (hdr->sh_type == SHT_NOTE)
9605 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
9606
9607 return TRUE;
9608 }
9609
9610 static void
9611 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
9612 {
9613 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
9614 }
9615
9616 /* Return TRUE if this is an unwinding table entry. */
9617
9618 static bfd_boolean
9619 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
9620 {
9621 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
9622 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
9623 }
9624
9625
9626 /* Set the type and flags for an ARM section. We do this by
9627 the section name, which is a hack, but ought to work. */
9628
9629 static bfd_boolean
9630 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
9631 {
9632 const char * name;
9633
9634 name = bfd_get_section_name (abfd, sec);
9635
9636 if (is_arm_elf_unwind_section_name (abfd, name))
9637 {
9638 hdr->sh_type = SHT_ARM_EXIDX;
9639 hdr->sh_flags |= SHF_LINK_ORDER;
9640 }
9641 return TRUE;
9642 }
9643
9644 /* Handle an ARM specific section when reading an object file. This is
9645 called when bfd_section_from_shdr finds a section with an unknown
9646 type. */
9647
9648 static bfd_boolean
9649 elf32_arm_section_from_shdr (bfd *abfd,
9650 Elf_Internal_Shdr * hdr,
9651 const char *name,
9652 int shindex)
9653 {
9654 /* There ought to be a place to keep ELF backend specific flags, but
9655 at the moment there isn't one. We just keep track of the
9656 sections by their name, instead. Fortunately, the ABI gives
9657 names for all the ARM specific sections, so we will probably get
9658 away with this. */
9659 switch (hdr->sh_type)
9660 {
9661 case SHT_ARM_EXIDX:
9662 case SHT_ARM_PREEMPTMAP:
9663 case SHT_ARM_ATTRIBUTES:
9664 break;
9665
9666 default:
9667 return FALSE;
9668 }
9669
9670 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
9671 return FALSE;
9672
9673 return TRUE;
9674 }
9675
9676 /* A structure used to record a list of sections, independently
9677 of the next and prev fields in the asection structure. */
9678 typedef struct section_list
9679 {
9680 asection * sec;
9681 struct section_list * next;
9682 struct section_list * prev;
9683 }
9684 section_list;
9685
9686 /* Unfortunately we need to keep a list of sections for which
9687 an _arm_elf_section_data structure has been allocated. This
9688 is because it is possible for functions like elf32_arm_write_section
9689 to be called on a section which has had an elf_data_structure
9690 allocated for it (and so the used_by_bfd field is valid) but
9691 for which the ARM extended version of this structure - the
9692 _arm_elf_section_data structure - has not been allocated. */
9693 static section_list * sections_with_arm_elf_section_data = NULL;
9694
9695 static void
9696 record_section_with_arm_elf_section_data (asection * sec)
9697 {
9698 struct section_list * entry;
9699
9700 entry = bfd_malloc (sizeof (* entry));
9701 if (entry == NULL)
9702 return;
9703 entry->sec = sec;
9704 entry->next = sections_with_arm_elf_section_data;
9705 entry->prev = NULL;
9706 if (entry->next != NULL)
9707 entry->next->prev = entry;
9708 sections_with_arm_elf_section_data = entry;
9709 }
9710
9711 static struct section_list *
9712 find_arm_elf_section_entry (asection * sec)
9713 {
9714 struct section_list * entry;
9715 static struct section_list * last_entry = NULL;
9716
9717 /* This is a short cut for the typical case where the sections are added
9718 to the sections_with_arm_elf_section_data list in forward order and
9719 then looked up here in backwards order. This makes a real difference
9720 to the ld-srec/sec64k.exp linker test. */
9721 entry = sections_with_arm_elf_section_data;
9722 if (last_entry != NULL)
9723 {
9724 if (last_entry->sec == sec)
9725 entry = last_entry;
9726 else if (last_entry->next != NULL
9727 && last_entry->next->sec == sec)
9728 entry = last_entry->next;
9729 }
9730
9731 for (; entry; entry = entry->next)
9732 if (entry->sec == sec)
9733 break;
9734
9735 if (entry)
9736 /* Record the entry prior to this one - it is the entry we are most
9737 likely to want to locate next time. Also this way if we have been
9738 called from unrecord_section_with_arm_elf_section_data() we will not
9739 be caching a pointer that is about to be freed. */
9740 last_entry = entry->prev;
9741
9742 return entry;
9743 }
9744
9745 static _arm_elf_section_data *
9746 get_arm_elf_section_data (asection * sec)
9747 {
9748 struct section_list * entry;
9749
9750 entry = find_arm_elf_section_entry (sec);
9751
9752 if (entry)
9753 return elf32_arm_section_data (entry->sec);
9754 else
9755 return NULL;
9756 }
9757
9758 static void
9759 unrecord_section_with_arm_elf_section_data (asection * sec)
9760 {
9761 struct section_list * entry;
9762
9763 entry = find_arm_elf_section_entry (sec);
9764
9765 if (entry)
9766 {
9767 if (entry->prev != NULL)
9768 entry->prev->next = entry->next;
9769 if (entry->next != NULL)
9770 entry->next->prev = entry->prev;
9771 if (entry == sections_with_arm_elf_section_data)
9772 sections_with_arm_elf_section_data = entry->next;
9773 free (entry);
9774 }
9775 }
9776
9777
9778 typedef struct
9779 {
9780 void *finfo;
9781 struct bfd_link_info *info;
9782 asection *sec;
9783 int sec_shndx;
9784 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
9785 asection *, struct elf_link_hash_entry *);
9786 } output_arch_syminfo;
9787
9788 enum map_symbol_type
9789 {
9790 ARM_MAP_ARM,
9791 ARM_MAP_THUMB,
9792 ARM_MAP_DATA
9793 };
9794
9795
9796 /* Output a single PLT mapping symbol. */
9797
9798 static bfd_boolean
9799 elf32_arm_ouput_plt_map_sym (output_arch_syminfo *osi,
9800 enum map_symbol_type type,
9801 bfd_vma offset)
9802 {
9803 static const char *names[3] = {"$a", "$t", "$d"};
9804 struct elf32_arm_link_hash_table *htab;
9805 Elf_Internal_Sym sym;
9806
9807 htab = elf32_arm_hash_table (osi->info);
9808 sym.st_value = osi->sec->output_section->vma
9809 + osi->sec->output_offset
9810 + offset;
9811 sym.st_size = 0;
9812 sym.st_other = 0;
9813 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
9814 sym.st_shndx = osi->sec_shndx;
9815 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
9816 return FALSE;
9817 return TRUE;
9818 }
9819
9820
9821 /* Output mapping symbols for PLT entries associated with H. */
9822
9823 static bfd_boolean
9824 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
9825 {
9826 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
9827 struct elf32_arm_link_hash_table *htab;
9828 struct elf32_arm_link_hash_entry *eh;
9829 bfd_vma addr;
9830
9831 htab = elf32_arm_hash_table (osi->info);
9832
9833 if (h->root.type == bfd_link_hash_indirect)
9834 return TRUE;
9835
9836 if (h->root.type == bfd_link_hash_warning)
9837 /* When warning symbols are created, they **replace** the "real"
9838 entry in the hash table, thus we never get to see the real
9839 symbol in a hash traversal. So look at it now. */
9840 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9841
9842 if (h->plt.offset == (bfd_vma) -1)
9843 return TRUE;
9844
9845 eh = (struct elf32_arm_link_hash_entry *) h;
9846 addr = h->plt.offset;
9847 if (htab->symbian_p)
9848 {
9849 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
9850 return FALSE;
9851 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 4))
9852 return FALSE;
9853 }
9854 else if (htab->vxworks_p)
9855 {
9856 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
9857 return FALSE;
9858 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 8))
9859 return FALSE;
9860 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr + 12))
9861 return FALSE;
9862 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 20))
9863 return FALSE;
9864 }
9865 else
9866 {
9867 bfd_signed_vma thumb_refs;
9868
9869 thumb_refs = eh->plt_thumb_refcount;
9870 if (!htab->use_blx)
9871 thumb_refs += eh->plt_maybe_thumb_refcount;
9872
9873 if (thumb_refs > 0)
9874 {
9875 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_THUMB, addr - 4))
9876 return FALSE;
9877 }
9878 #ifdef FOUR_WORD_PLT
9879 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
9880 return FALSE;
9881 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 12))
9882 return FALSE;
9883 #else
9884 /* A three-word PLT with no Thumb thunk contains only Arm code,
9885 so only need to output a mapping symbol for the first PLT entry and
9886 entries with thumb thunks. */
9887 if (thumb_refs > 0 || addr == 20)
9888 {
9889 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
9890 return FALSE;
9891 }
9892 #endif
9893 }
9894
9895 return TRUE;
9896 }
9897
9898
9899 /* Output mapping symbols for linker generated sections. */
9900
9901 static bfd_boolean
9902 elf32_arm_output_arch_local_syms (bfd *output_bfd,
9903 struct bfd_link_info *info,
9904 void *finfo, bfd_boolean (*func) (void *, const char *,
9905 Elf_Internal_Sym *,
9906 asection *,
9907 struct elf_link_hash_entry *))
9908 {
9909 output_arch_syminfo osi;
9910 struct elf32_arm_link_hash_table *htab;
9911 bfd_vma offset;
9912 bfd_size_type size;
9913
9914 htab = elf32_arm_hash_table (info);
9915 check_use_blx(htab);
9916
9917 osi.finfo = finfo;
9918 osi.info = info;
9919 osi.func = func;
9920
9921 /* ARM->Thumb glue. */
9922 if (htab->arm_glue_size > 0)
9923 {
9924 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
9925 ARM2THUMB_GLUE_SECTION_NAME);
9926
9927 osi.sec_shndx = _bfd_elf_section_from_bfd_section
9928 (output_bfd, osi.sec->output_section);
9929 if (info->shared || htab->root.is_relocatable_executable
9930 || htab->pic_veneer)
9931 size = ARM2THUMB_PIC_GLUE_SIZE;
9932 else if (htab->use_blx)
9933 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
9934 else
9935 size = ARM2THUMB_STATIC_GLUE_SIZE;
9936
9937 for (offset = 0; offset < htab->arm_glue_size; offset += size)
9938 {
9939 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset);
9940 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
9941 }
9942 }
9943
9944 /* Thumb->ARM glue. */
9945 if (htab->thumb_glue_size > 0)
9946 {
9947 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
9948 THUMB2ARM_GLUE_SECTION_NAME);
9949
9950 osi.sec_shndx = _bfd_elf_section_from_bfd_section
9951 (output_bfd, osi.sec->output_section);
9952 size = THUMB2ARM_GLUE_SIZE;
9953
9954 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
9955 {
9956 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_THUMB, offset);
9957 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset + 4);
9958 }
9959 }
9960
9961 /* ARMv4 BX veneers. */
9962 if (htab->bx_glue_size > 0)
9963 {
9964 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
9965 ARM_BX_GLUE_SECTION_NAME);
9966
9967 osi.sec_shndx = _bfd_elf_section_from_bfd_section
9968 (output_bfd, osi.sec->output_section);
9969
9970 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0);
9971 }
9972
9973 /* Finally, output mapping symbols for the PLT. */
9974 if (!htab->splt || htab->splt->size == 0)
9975 return TRUE;
9976
9977 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
9978 htab->splt->output_section);
9979 osi.sec = htab->splt;
9980 /* Output mapping symbols for the plt header. SymbianOS does not have a
9981 plt header. */
9982 if (htab->vxworks_p)
9983 {
9984 /* VxWorks shared libraries have no PLT header. */
9985 if (!info->shared)
9986 {
9987 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
9988 return FALSE;
9989 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 12))
9990 return FALSE;
9991 }
9992 }
9993 else if (!htab->symbian_p)
9994 {
9995 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
9996 return FALSE;
9997 #ifndef FOUR_WORD_PLT
9998 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 16))
9999 return FALSE;
10000 #endif
10001 }
10002
10003 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
10004 return TRUE;
10005 }
10006
10007 /* Allocate target specific section data. */
10008
10009 static bfd_boolean
10010 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
10011 {
10012 if (!sec->used_by_bfd)
10013 {
10014 _arm_elf_section_data *sdata;
10015 bfd_size_type amt = sizeof (*sdata);
10016
10017 sdata = bfd_zalloc (abfd, amt);
10018 if (sdata == NULL)
10019 return FALSE;
10020 sec->used_by_bfd = sdata;
10021 }
10022
10023 record_section_with_arm_elf_section_data (sec);
10024
10025 return _bfd_elf_new_section_hook (abfd, sec);
10026 }
10027
10028
10029 /* Used to order a list of mapping symbols by address. */
10030
10031 static int
10032 elf32_arm_compare_mapping (const void * a, const void * b)
10033 {
10034 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
10035 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
10036
10037 if (amap->vma > bmap->vma)
10038 return 1;
10039 else if (amap->vma < bmap->vma)
10040 return -1;
10041 else if (amap->type > bmap->type)
10042 /* Ensure results do not depend on the host qsort for objects with
10043 multiple mapping symbols at the same address by sorting on type
10044 after vma. */
10045 return 1;
10046 else if (amap->type < bmap->type)
10047 return -1;
10048 else
10049 return 0;
10050 }
10051
10052
10053 /* Do code byteswapping. Return FALSE afterwards so that the section is
10054 written out as normal. */
10055
10056 static bfd_boolean
10057 elf32_arm_write_section (bfd *output_bfd,
10058 struct bfd_link_info *link_info, asection *sec,
10059 bfd_byte *contents)
10060 {
10061 int mapcount, errcount;
10062 _arm_elf_section_data *arm_data;
10063 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
10064 elf32_arm_section_map *map;
10065 elf32_vfp11_erratum_list *errnode;
10066 bfd_vma ptr;
10067 bfd_vma end;
10068 bfd_vma offset = sec->output_section->vma + sec->output_offset;
10069 bfd_byte tmp;
10070 int i;
10071
10072 /* If this section has not been allocated an _arm_elf_section_data
10073 structure then we cannot record anything. */
10074 arm_data = get_arm_elf_section_data (sec);
10075 if (arm_data == NULL)
10076 return FALSE;
10077
10078 mapcount = arm_data->mapcount;
10079 map = arm_data->map;
10080 errcount = arm_data->erratumcount;
10081
10082 if (errcount != 0)
10083 {
10084 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
10085
10086 for (errnode = arm_data->erratumlist; errnode != 0;
10087 errnode = errnode->next)
10088 {
10089 bfd_vma index = errnode->vma - offset;
10090
10091 switch (errnode->type)
10092 {
10093 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
10094 {
10095 bfd_vma branch_to_veneer;
10096 /* Original condition code of instruction, plus bit mask for
10097 ARM B instruction. */
10098 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
10099 | 0x0a000000;
10100
10101 /* The instruction is before the label. */
10102 index -= 4;
10103
10104 /* Above offset included in -4 below. */
10105 branch_to_veneer = errnode->u.b.veneer->vma
10106 - errnode->vma - 4;
10107
10108 if ((signed) branch_to_veneer < -(1 << 25)
10109 || (signed) branch_to_veneer >= (1 << 25))
10110 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
10111 "range"), output_bfd);
10112
10113 insn |= (branch_to_veneer >> 2) & 0xffffff;
10114 contents[endianflip ^ index] = insn & 0xff;
10115 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
10116 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
10117 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
10118 }
10119 break;
10120
10121 case VFP11_ERRATUM_ARM_VENEER:
10122 {
10123 bfd_vma branch_from_veneer;
10124 unsigned int insn;
10125
10126 /* Take size of veneer into account. */
10127 branch_from_veneer = errnode->u.v.branch->vma
10128 - errnode->vma - 12;
10129
10130 if ((signed) branch_from_veneer < -(1 << 25)
10131 || (signed) branch_from_veneer >= (1 << 25))
10132 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
10133 "range"), output_bfd);
10134
10135 /* Original instruction. */
10136 insn = errnode->u.v.branch->u.b.vfp_insn;
10137 contents[endianflip ^ index] = insn & 0xff;
10138 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
10139 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
10140 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
10141
10142 /* Branch back to insn after original insn. */
10143 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
10144 contents[endianflip ^ (index + 4)] = insn & 0xff;
10145 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
10146 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
10147 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
10148 }
10149 break;
10150
10151 default:
10152 abort ();
10153 }
10154 }
10155 }
10156
10157 if (mapcount == 0)
10158 return FALSE;
10159
10160 if (globals->byteswap_code)
10161 {
10162 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
10163
10164 ptr = map[0].vma;
10165 for (i = 0; i < mapcount; i++)
10166 {
10167 if (i == mapcount - 1)
10168 end = sec->size;
10169 else
10170 end = map[i + 1].vma;
10171
10172 switch (map[i].type)
10173 {
10174 case 'a':
10175 /* Byte swap code words. */
10176 while (ptr + 3 < end)
10177 {
10178 tmp = contents[ptr];
10179 contents[ptr] = contents[ptr + 3];
10180 contents[ptr + 3] = tmp;
10181 tmp = contents[ptr + 1];
10182 contents[ptr + 1] = contents[ptr + 2];
10183 contents[ptr + 2] = tmp;
10184 ptr += 4;
10185 }
10186 break;
10187
10188 case 't':
10189 /* Byte swap code halfwords. */
10190 while (ptr + 1 < end)
10191 {
10192 tmp = contents[ptr];
10193 contents[ptr] = contents[ptr + 1];
10194 contents[ptr + 1] = tmp;
10195 ptr += 2;
10196 }
10197 break;
10198
10199 case 'd':
10200 /* Leave data alone. */
10201 break;
10202 }
10203 ptr = end;
10204 }
10205 }
10206
10207 free (map);
10208 arm_data->mapcount = 0;
10209 arm_data->mapsize = 0;
10210 arm_data->map = NULL;
10211 unrecord_section_with_arm_elf_section_data (sec);
10212
10213 return FALSE;
10214 }
10215
10216 static void
10217 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
10218 asection * sec,
10219 void * ignore ATTRIBUTE_UNUSED)
10220 {
10221 unrecord_section_with_arm_elf_section_data (sec);
10222 }
10223
10224 static bfd_boolean
10225 elf32_arm_close_and_cleanup (bfd * abfd)
10226 {
10227 if (abfd->sections)
10228 bfd_map_over_sections (abfd,
10229 unrecord_section_via_map_over_sections,
10230 NULL);
10231
10232 return _bfd_elf_close_and_cleanup (abfd);
10233 }
10234
10235 static bfd_boolean
10236 elf32_arm_bfd_free_cached_info (bfd * abfd)
10237 {
10238 if (abfd->sections)
10239 bfd_map_over_sections (abfd,
10240 unrecord_section_via_map_over_sections,
10241 NULL);
10242
10243 return _bfd_free_cached_info (abfd);
10244 }
10245
10246 /* Display STT_ARM_TFUNC symbols as functions. */
10247
10248 static void
10249 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
10250 asymbol *asym)
10251 {
10252 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
10253
10254 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
10255 elfsym->symbol.flags |= BSF_FUNCTION;
10256 }
10257
10258
10259 /* Mangle thumb function symbols as we read them in. */
10260
10261 static bfd_boolean
10262 elf32_arm_swap_symbol_in (bfd * abfd,
10263 const void *psrc,
10264 const void *pshn,
10265 Elf_Internal_Sym *dst)
10266 {
10267 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
10268 return FALSE;
10269
10270 /* New EABI objects mark thumb function symbols by setting the low bit of
10271 the address. Turn these into STT_ARM_TFUNC. */
10272 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
10273 && (dst->st_value & 1))
10274 {
10275 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
10276 dst->st_value &= ~(bfd_vma) 1;
10277 }
10278 return TRUE;
10279 }
10280
10281
10282 /* Mangle thumb function symbols as we write them out. */
10283
10284 static void
10285 elf32_arm_swap_symbol_out (bfd *abfd,
10286 const Elf_Internal_Sym *src,
10287 void *cdst,
10288 void *shndx)
10289 {
10290 Elf_Internal_Sym newsym;
10291
10292 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
10293 of the address set, as per the new EABI. We do this unconditionally
10294 because objcopy does not set the elf header flags until after
10295 it writes out the symbol table. */
10296 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
10297 {
10298 newsym = *src;
10299 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
10300 if (newsym.st_shndx != SHN_UNDEF)
10301 {
10302 /* Do this only for defined symbols. At link type, the static
10303 linker will simulate the work of dynamic linker of resolving
10304 symbols and will carry over the thumbness of found symbols to
10305 the output symbol table. It's not clear how it happens, but
10306 the thumbness of undefined symbols can well be different at
10307 runtime, and writing '1' for them will be confusing for users
10308 and possibly for dynamic linker itself.
10309 */
10310 newsym.st_value |= 1;
10311 }
10312
10313 src = &newsym;
10314 }
10315 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
10316 }
10317
10318 /* Add the PT_ARM_EXIDX program header. */
10319
10320 static bfd_boolean
10321 elf32_arm_modify_segment_map (bfd *abfd,
10322 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10323 {
10324 struct elf_segment_map *m;
10325 asection *sec;
10326
10327 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
10328 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
10329 {
10330 /* If there is already a PT_ARM_EXIDX header, then we do not
10331 want to add another one. This situation arises when running
10332 "strip"; the input binary already has the header. */
10333 m = elf_tdata (abfd)->segment_map;
10334 while (m && m->p_type != PT_ARM_EXIDX)
10335 m = m->next;
10336 if (!m)
10337 {
10338 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
10339 if (m == NULL)
10340 return FALSE;
10341 m->p_type = PT_ARM_EXIDX;
10342 m->count = 1;
10343 m->sections[0] = sec;
10344
10345 m->next = elf_tdata (abfd)->segment_map;
10346 elf_tdata (abfd)->segment_map = m;
10347 }
10348 }
10349
10350 return TRUE;
10351 }
10352
10353 /* We may add a PT_ARM_EXIDX program header. */
10354
10355 static int
10356 elf32_arm_additional_program_headers (bfd *abfd,
10357 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10358 {
10359 asection *sec;
10360
10361 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
10362 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
10363 return 1;
10364 else
10365 return 0;
10366 }
10367
10368 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
10369 static bfd_boolean
10370 elf32_arm_is_function_type (unsigned int type)
10371 {
10372 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
10373 }
10374
10375 /* We use this to override swap_symbol_in and swap_symbol_out. */
10376 const struct elf_size_info elf32_arm_size_info = {
10377 sizeof (Elf32_External_Ehdr),
10378 sizeof (Elf32_External_Phdr),
10379 sizeof (Elf32_External_Shdr),
10380 sizeof (Elf32_External_Rel),
10381 sizeof (Elf32_External_Rela),
10382 sizeof (Elf32_External_Sym),
10383 sizeof (Elf32_External_Dyn),
10384 sizeof (Elf_External_Note),
10385 4,
10386 1,
10387 32, 2,
10388 ELFCLASS32, EV_CURRENT,
10389 bfd_elf32_write_out_phdrs,
10390 bfd_elf32_write_shdrs_and_ehdr,
10391 bfd_elf32_checksum_contents,
10392 bfd_elf32_write_relocs,
10393 elf32_arm_swap_symbol_in,
10394 elf32_arm_swap_symbol_out,
10395 bfd_elf32_slurp_reloc_table,
10396 bfd_elf32_slurp_symbol_table,
10397 bfd_elf32_swap_dyn_in,
10398 bfd_elf32_swap_dyn_out,
10399 bfd_elf32_swap_reloc_in,
10400 bfd_elf32_swap_reloc_out,
10401 bfd_elf32_swap_reloca_in,
10402 bfd_elf32_swap_reloca_out
10403 };
10404
10405 #define ELF_ARCH bfd_arch_arm
10406 #define ELF_MACHINE_CODE EM_ARM
10407 #ifdef __QNXTARGET__
10408 #define ELF_MAXPAGESIZE 0x1000
10409 #else
10410 #define ELF_MAXPAGESIZE 0x8000
10411 #endif
10412 #define ELF_MINPAGESIZE 0x1000
10413 #define ELF_COMMONPAGESIZE 0x1000
10414
10415 #define bfd_elf32_mkobject elf32_arm_mkobject
10416
10417 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
10418 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
10419 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
10420 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
10421 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
10422 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
10423 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
10424 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
10425 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
10426 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
10427 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
10428 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
10429 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
10430
10431 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
10432 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
10433 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
10434 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
10435 #define elf_backend_check_relocs elf32_arm_check_relocs
10436 #define elf_backend_relocate_section elf32_arm_relocate_section
10437 #define elf_backend_write_section elf32_arm_write_section
10438 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
10439 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
10440 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
10441 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
10442 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
10443 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
10444 #define elf_backend_post_process_headers elf32_arm_post_process_headers
10445 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
10446 #define elf_backend_object_p elf32_arm_object_p
10447 #define elf_backend_section_flags elf32_arm_section_flags
10448 #define elf_backend_fake_sections elf32_arm_fake_sections
10449 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
10450 #define elf_backend_final_write_processing elf32_arm_final_write_processing
10451 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
10452 #define elf_backend_symbol_processing elf32_arm_symbol_processing
10453 #define elf_backend_size_info elf32_arm_size_info
10454 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
10455 #define elf_backend_additional_program_headers \
10456 elf32_arm_additional_program_headers
10457 #define elf_backend_output_arch_local_syms \
10458 elf32_arm_output_arch_local_syms
10459 #define elf_backend_begin_write_processing \
10460 elf32_arm_begin_write_processing
10461 #define elf_backend_is_function_type elf32_arm_is_function_type
10462
10463 #define elf_backend_can_refcount 1
10464 #define elf_backend_can_gc_sections 1
10465 #define elf_backend_plt_readonly 1
10466 #define elf_backend_want_got_plt 1
10467 #define elf_backend_want_plt_sym 0
10468 #define elf_backend_may_use_rel_p 1
10469 #define elf_backend_may_use_rela_p 0
10470 #define elf_backend_default_use_rela_p 0
10471
10472 #define elf_backend_got_header_size 12
10473
10474 #undef elf_backend_obj_attrs_vendor
10475 #define elf_backend_obj_attrs_vendor "aeabi"
10476 #undef elf_backend_obj_attrs_section
10477 #define elf_backend_obj_attrs_section ".ARM.attributes"
10478 #undef elf_backend_obj_attrs_arg_type
10479 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
10480 #undef elf_backend_obj_attrs_section_type
10481 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
10482
10483 #include "elf32-target.h"
10484
10485 /* VxWorks Targets */
10486
10487 #undef TARGET_LITTLE_SYM
10488 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
10489 #undef TARGET_LITTLE_NAME
10490 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
10491 #undef TARGET_BIG_SYM
10492 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
10493 #undef TARGET_BIG_NAME
10494 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
10495
10496 /* Like elf32_arm_link_hash_table_create -- but overrides
10497 appropriately for VxWorks. */
10498 static struct bfd_link_hash_table *
10499 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
10500 {
10501 struct bfd_link_hash_table *ret;
10502
10503 ret = elf32_arm_link_hash_table_create (abfd);
10504 if (ret)
10505 {
10506 struct elf32_arm_link_hash_table *htab
10507 = (struct elf32_arm_link_hash_table *) ret;
10508 htab->use_rel = 0;
10509 htab->vxworks_p = 1;
10510 }
10511 return ret;
10512 }
10513
10514 static void
10515 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
10516 {
10517 elf32_arm_final_write_processing (abfd, linker);
10518 elf_vxworks_final_write_processing (abfd, linker);
10519 }
10520
10521 #undef elf32_bed
10522 #define elf32_bed elf32_arm_vxworks_bed
10523
10524 #undef bfd_elf32_bfd_link_hash_table_create
10525 #define bfd_elf32_bfd_link_hash_table_create \
10526 elf32_arm_vxworks_link_hash_table_create
10527 #undef elf_backend_add_symbol_hook
10528 #define elf_backend_add_symbol_hook \
10529 elf_vxworks_add_symbol_hook
10530 #undef elf_backend_final_write_processing
10531 #define elf_backend_final_write_processing \
10532 elf32_arm_vxworks_final_write_processing
10533 #undef elf_backend_emit_relocs
10534 #define elf_backend_emit_relocs \
10535 elf_vxworks_emit_relocs
10536
10537 #undef elf_backend_may_use_rel_p
10538 #define elf_backend_may_use_rel_p 0
10539 #undef elf_backend_may_use_rela_p
10540 #define elf_backend_may_use_rela_p 1
10541 #undef elf_backend_default_use_rela_p
10542 #define elf_backend_default_use_rela_p 1
10543 #undef elf_backend_want_plt_sym
10544 #define elf_backend_want_plt_sym 1
10545 #undef ELF_MAXPAGESIZE
10546 #define ELF_MAXPAGESIZE 0x1000
10547
10548 #include "elf32-target.h"
10549
10550
10551 /* Symbian OS Targets */
10552
10553 #undef TARGET_LITTLE_SYM
10554 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
10555 #undef TARGET_LITTLE_NAME
10556 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
10557 #undef TARGET_BIG_SYM
10558 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
10559 #undef TARGET_BIG_NAME
10560 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
10561
10562 /* Like elf32_arm_link_hash_table_create -- but overrides
10563 appropriately for Symbian OS. */
10564 static struct bfd_link_hash_table *
10565 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
10566 {
10567 struct bfd_link_hash_table *ret;
10568
10569 ret = elf32_arm_link_hash_table_create (abfd);
10570 if (ret)
10571 {
10572 struct elf32_arm_link_hash_table *htab
10573 = (struct elf32_arm_link_hash_table *)ret;
10574 /* There is no PLT header for Symbian OS. */
10575 htab->plt_header_size = 0;
10576 /* The PLT entries are each three instructions. */
10577 htab->plt_entry_size = 4 * NUM_ELEM (elf32_arm_symbian_plt_entry);
10578 htab->symbian_p = 1;
10579 /* Symbian uses armv5t or above, so use_blx is always true. */
10580 htab->use_blx = 1;
10581 htab->root.is_relocatable_executable = 1;
10582 }
10583 return ret;
10584 }
10585
10586 static const struct bfd_elf_special_section
10587 elf32_arm_symbian_special_sections[] =
10588 {
10589 /* In a BPABI executable, the dynamic linking sections do not go in
10590 the loadable read-only segment. The post-linker may wish to
10591 refer to these sections, but they are not part of the final
10592 program image. */
10593 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
10594 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
10595 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
10596 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
10597 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
10598 /* These sections do not need to be writable as the SymbianOS
10599 postlinker will arrange things so that no dynamic relocation is
10600 required. */
10601 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
10602 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
10603 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
10604 { NULL, 0, 0, 0, 0 }
10605 };
10606
10607 static void
10608 elf32_arm_symbian_begin_write_processing (bfd *abfd,
10609 struct bfd_link_info *link_info)
10610 {
10611 /* BPABI objects are never loaded directly by an OS kernel; they are
10612 processed by a postlinker first, into an OS-specific format. If
10613 the D_PAGED bit is set on the file, BFD will align segments on
10614 page boundaries, so that an OS can directly map the file. With
10615 BPABI objects, that just results in wasted space. In addition,
10616 because we clear the D_PAGED bit, map_sections_to_segments will
10617 recognize that the program headers should not be mapped into any
10618 loadable segment. */
10619 abfd->flags &= ~D_PAGED;
10620 elf32_arm_begin_write_processing(abfd, link_info);
10621 }
10622
10623 static bfd_boolean
10624 elf32_arm_symbian_modify_segment_map (bfd *abfd,
10625 struct bfd_link_info *info)
10626 {
10627 struct elf_segment_map *m;
10628 asection *dynsec;
10629
10630 /* BPABI shared libraries and executables should have a PT_DYNAMIC
10631 segment. However, because the .dynamic section is not marked
10632 with SEC_LOAD, the generic ELF code will not create such a
10633 segment. */
10634 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
10635 if (dynsec)
10636 {
10637 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10638 if (m->p_type == PT_DYNAMIC)
10639 break;
10640
10641 if (m == NULL)
10642 {
10643 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
10644 m->next = elf_tdata (abfd)->segment_map;
10645 elf_tdata (abfd)->segment_map = m;
10646 }
10647 }
10648
10649 /* Also call the generic arm routine. */
10650 return elf32_arm_modify_segment_map (abfd, info);
10651 }
10652
10653 #undef elf32_bed
10654 #define elf32_bed elf32_arm_symbian_bed
10655
10656 /* The dynamic sections are not allocated on SymbianOS; the postlinker
10657 will process them and then discard them. */
10658 #undef ELF_DYNAMIC_SEC_FLAGS
10659 #define ELF_DYNAMIC_SEC_FLAGS \
10660 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
10661
10662 #undef bfd_elf32_bfd_link_hash_table_create
10663 #define bfd_elf32_bfd_link_hash_table_create \
10664 elf32_arm_symbian_link_hash_table_create
10665 #undef elf_backend_add_symbol_hook
10666
10667 #undef elf_backend_special_sections
10668 #define elf_backend_special_sections elf32_arm_symbian_special_sections
10669
10670 #undef elf_backend_begin_write_processing
10671 #define elf_backend_begin_write_processing \
10672 elf32_arm_symbian_begin_write_processing
10673 #undef elf_backend_final_write_processing
10674 #define elf_backend_final_write_processing \
10675 elf32_arm_final_write_processing
10676 #undef elf_backend_emit_relocs
10677
10678 #undef elf_backend_modify_segment_map
10679 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
10680
10681 /* There is no .got section for BPABI objects, and hence no header. */
10682 #undef elf_backend_got_header_size
10683 #define elf_backend_got_header_size 0
10684
10685 /* Similarly, there is no .got.plt section. */
10686 #undef elf_backend_want_got_plt
10687 #define elf_backend_want_got_plt 0
10688
10689 #undef elf_backend_may_use_rel_p
10690 #define elf_backend_may_use_rel_p 1
10691 #undef elf_backend_may_use_rela_p
10692 #define elf_backend_may_use_rela_p 0
10693 #undef elf_backend_default_use_rela_p
10694 #define elf_backend_default_use_rela_p 0
10695 #undef elf_backend_want_plt_sym
10696 #define elf_backend_want_plt_sym 0
10697 #undef ELF_MAXPAGESIZE
10698 #define ELF_MAXPAGESIZE 0x8000
10699
10700 #include "elf32-target.h"
This page took 0.256262 seconds and 5 git commands to generate.