2009-01-30 Julian Brown <julian@codesourcery.com>
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
20 MA 02110-1301, USA. */
21
22 #include "sysdep.h"
23 #include "bfd.h"
24 #include "libiberty.h"
25 #include "libbfd.h"
26 #include "elf-bfd.h"
27 #include "elf-vxworks.h"
28 #include "elf/arm.h"
29
30 /* Return the relocation section associated with NAME. HTAB is the
31 bfd's elf32_arm_link_hash_entry. */
32 #define RELOC_SECTION(HTAB, NAME) \
33 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
34
35 /* Return size of a relocation entry. HTAB is the bfd's
36 elf32_arm_link_hash_entry. */
37 #define RELOC_SIZE(HTAB) \
38 ((HTAB)->use_rel \
39 ? sizeof (Elf32_External_Rel) \
40 : sizeof (Elf32_External_Rela))
41
42 /* Return function to swap relocations in. HTAB is the bfd's
43 elf32_arm_link_hash_entry. */
44 #define SWAP_RELOC_IN(HTAB) \
45 ((HTAB)->use_rel \
46 ? bfd_elf32_swap_reloc_in \
47 : bfd_elf32_swap_reloca_in)
48
49 /* Return function to swap relocations out. HTAB is the bfd's
50 elf32_arm_link_hash_entry. */
51 #define SWAP_RELOC_OUT(HTAB) \
52 ((HTAB)->use_rel \
53 ? bfd_elf32_swap_reloc_out \
54 : bfd_elf32_swap_reloca_out)
55
56 #define elf_info_to_howto 0
57 #define elf_info_to_howto_rel elf32_arm_info_to_howto
58
59 #define ARM_ELF_ABI_VERSION 0
60 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
61
62 static struct elf_backend_data elf32_arm_vxworks_bed;
63
64 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
65 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
66 in that slot. */
67
68 static reloc_howto_type elf32_arm_howto_table_1[] =
69 {
70 /* No relocation. */
71 HOWTO (R_ARM_NONE, /* type */
72 0, /* rightshift */
73 0, /* size (0 = byte, 1 = short, 2 = long) */
74 0, /* bitsize */
75 FALSE, /* pc_relative */
76 0, /* bitpos */
77 complain_overflow_dont,/* complain_on_overflow */
78 bfd_elf_generic_reloc, /* special_function */
79 "R_ARM_NONE", /* name */
80 FALSE, /* partial_inplace */
81 0, /* src_mask */
82 0, /* dst_mask */
83 FALSE), /* pcrel_offset */
84
85 HOWTO (R_ARM_PC24, /* type */
86 2, /* rightshift */
87 2, /* size (0 = byte, 1 = short, 2 = long) */
88 24, /* bitsize */
89 TRUE, /* pc_relative */
90 0, /* bitpos */
91 complain_overflow_signed,/* complain_on_overflow */
92 bfd_elf_generic_reloc, /* special_function */
93 "R_ARM_PC24", /* name */
94 FALSE, /* partial_inplace */
95 0x00ffffff, /* src_mask */
96 0x00ffffff, /* dst_mask */
97 TRUE), /* pcrel_offset */
98
99 /* 32 bit absolute */
100 HOWTO (R_ARM_ABS32, /* type */
101 0, /* rightshift */
102 2, /* size (0 = byte, 1 = short, 2 = long) */
103 32, /* bitsize */
104 FALSE, /* pc_relative */
105 0, /* bitpos */
106 complain_overflow_bitfield,/* complain_on_overflow */
107 bfd_elf_generic_reloc, /* special_function */
108 "R_ARM_ABS32", /* name */
109 FALSE, /* partial_inplace */
110 0xffffffff, /* src_mask */
111 0xffffffff, /* dst_mask */
112 FALSE), /* pcrel_offset */
113
114 /* standard 32bit pc-relative reloc */
115 HOWTO (R_ARM_REL32, /* type */
116 0, /* rightshift */
117 2, /* size (0 = byte, 1 = short, 2 = long) */
118 32, /* bitsize */
119 TRUE, /* pc_relative */
120 0, /* bitpos */
121 complain_overflow_bitfield,/* complain_on_overflow */
122 bfd_elf_generic_reloc, /* special_function */
123 "R_ARM_REL32", /* name */
124 FALSE, /* partial_inplace */
125 0xffffffff, /* src_mask */
126 0xffffffff, /* dst_mask */
127 TRUE), /* pcrel_offset */
128
129 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
130 HOWTO (R_ARM_LDR_PC_G0, /* type */
131 0, /* rightshift */
132 0, /* size (0 = byte, 1 = short, 2 = long) */
133 32, /* bitsize */
134 TRUE, /* pc_relative */
135 0, /* bitpos */
136 complain_overflow_dont,/* complain_on_overflow */
137 bfd_elf_generic_reloc, /* special_function */
138 "R_ARM_LDR_PC_G0", /* name */
139 FALSE, /* partial_inplace */
140 0xffffffff, /* src_mask */
141 0xffffffff, /* dst_mask */
142 TRUE), /* pcrel_offset */
143
144 /* 16 bit absolute */
145 HOWTO (R_ARM_ABS16, /* type */
146 0, /* rightshift */
147 1, /* size (0 = byte, 1 = short, 2 = long) */
148 16, /* bitsize */
149 FALSE, /* pc_relative */
150 0, /* bitpos */
151 complain_overflow_bitfield,/* complain_on_overflow */
152 bfd_elf_generic_reloc, /* special_function */
153 "R_ARM_ABS16", /* name */
154 FALSE, /* partial_inplace */
155 0x0000ffff, /* src_mask */
156 0x0000ffff, /* dst_mask */
157 FALSE), /* pcrel_offset */
158
159 /* 12 bit absolute */
160 HOWTO (R_ARM_ABS12, /* type */
161 0, /* rightshift */
162 2, /* size (0 = byte, 1 = short, 2 = long) */
163 12, /* bitsize */
164 FALSE, /* pc_relative */
165 0, /* bitpos */
166 complain_overflow_bitfield,/* complain_on_overflow */
167 bfd_elf_generic_reloc, /* special_function */
168 "R_ARM_ABS12", /* name */
169 FALSE, /* partial_inplace */
170 0x00000fff, /* src_mask */
171 0x00000fff, /* dst_mask */
172 FALSE), /* pcrel_offset */
173
174 HOWTO (R_ARM_THM_ABS5, /* type */
175 6, /* rightshift */
176 1, /* size (0 = byte, 1 = short, 2 = long) */
177 5, /* bitsize */
178 FALSE, /* pc_relative */
179 0, /* bitpos */
180 complain_overflow_bitfield,/* complain_on_overflow */
181 bfd_elf_generic_reloc, /* special_function */
182 "R_ARM_THM_ABS5", /* name */
183 FALSE, /* partial_inplace */
184 0x000007e0, /* src_mask */
185 0x000007e0, /* dst_mask */
186 FALSE), /* pcrel_offset */
187
188 /* 8 bit absolute */
189 HOWTO (R_ARM_ABS8, /* type */
190 0, /* rightshift */
191 0, /* size (0 = byte, 1 = short, 2 = long) */
192 8, /* bitsize */
193 FALSE, /* pc_relative */
194 0, /* bitpos */
195 complain_overflow_bitfield,/* complain_on_overflow */
196 bfd_elf_generic_reloc, /* special_function */
197 "R_ARM_ABS8", /* name */
198 FALSE, /* partial_inplace */
199 0x000000ff, /* src_mask */
200 0x000000ff, /* dst_mask */
201 FALSE), /* pcrel_offset */
202
203 HOWTO (R_ARM_SBREL32, /* type */
204 0, /* rightshift */
205 2, /* size (0 = byte, 1 = short, 2 = long) */
206 32, /* bitsize */
207 FALSE, /* pc_relative */
208 0, /* bitpos */
209 complain_overflow_dont,/* complain_on_overflow */
210 bfd_elf_generic_reloc, /* special_function */
211 "R_ARM_SBREL32", /* name */
212 FALSE, /* partial_inplace */
213 0xffffffff, /* src_mask */
214 0xffffffff, /* dst_mask */
215 FALSE), /* pcrel_offset */
216
217 HOWTO (R_ARM_THM_CALL, /* type */
218 1, /* rightshift */
219 2, /* size (0 = byte, 1 = short, 2 = long) */
220 25, /* bitsize */
221 TRUE, /* pc_relative */
222 0, /* bitpos */
223 complain_overflow_signed,/* complain_on_overflow */
224 bfd_elf_generic_reloc, /* special_function */
225 "R_ARM_THM_CALL", /* name */
226 FALSE, /* partial_inplace */
227 0x07ff07ff, /* src_mask */
228 0x07ff07ff, /* dst_mask */
229 TRUE), /* pcrel_offset */
230
231 HOWTO (R_ARM_THM_PC8, /* type */
232 1, /* rightshift */
233 1, /* size (0 = byte, 1 = short, 2 = long) */
234 8, /* bitsize */
235 TRUE, /* pc_relative */
236 0, /* bitpos */
237 complain_overflow_signed,/* complain_on_overflow */
238 bfd_elf_generic_reloc, /* special_function */
239 "R_ARM_THM_PC8", /* name */
240 FALSE, /* partial_inplace */
241 0x000000ff, /* src_mask */
242 0x000000ff, /* dst_mask */
243 TRUE), /* pcrel_offset */
244
245 HOWTO (R_ARM_BREL_ADJ, /* type */
246 1, /* rightshift */
247 1, /* size (0 = byte, 1 = short, 2 = long) */
248 32, /* bitsize */
249 FALSE, /* pc_relative */
250 0, /* bitpos */
251 complain_overflow_signed,/* complain_on_overflow */
252 bfd_elf_generic_reloc, /* special_function */
253 "R_ARM_BREL_ADJ", /* name */
254 FALSE, /* partial_inplace */
255 0xffffffff, /* src_mask */
256 0xffffffff, /* dst_mask */
257 FALSE), /* pcrel_offset */
258
259 HOWTO (R_ARM_SWI24, /* type */
260 0, /* rightshift */
261 0, /* size (0 = byte, 1 = short, 2 = long) */
262 0, /* bitsize */
263 FALSE, /* pc_relative */
264 0, /* bitpos */
265 complain_overflow_signed,/* complain_on_overflow */
266 bfd_elf_generic_reloc, /* special_function */
267 "R_ARM_SWI24", /* name */
268 FALSE, /* partial_inplace */
269 0x00000000, /* src_mask */
270 0x00000000, /* dst_mask */
271 FALSE), /* pcrel_offset */
272
273 HOWTO (R_ARM_THM_SWI8, /* type */
274 0, /* rightshift */
275 0, /* size (0 = byte, 1 = short, 2 = long) */
276 0, /* bitsize */
277 FALSE, /* pc_relative */
278 0, /* bitpos */
279 complain_overflow_signed,/* complain_on_overflow */
280 bfd_elf_generic_reloc, /* special_function */
281 "R_ARM_SWI8", /* name */
282 FALSE, /* partial_inplace */
283 0x00000000, /* src_mask */
284 0x00000000, /* dst_mask */
285 FALSE), /* pcrel_offset */
286
287 /* BLX instruction for the ARM. */
288 HOWTO (R_ARM_XPC25, /* type */
289 2, /* rightshift */
290 2, /* size (0 = byte, 1 = short, 2 = long) */
291 25, /* bitsize */
292 TRUE, /* pc_relative */
293 0, /* bitpos */
294 complain_overflow_signed,/* complain_on_overflow */
295 bfd_elf_generic_reloc, /* special_function */
296 "R_ARM_XPC25", /* name */
297 FALSE, /* partial_inplace */
298 0x00ffffff, /* src_mask */
299 0x00ffffff, /* dst_mask */
300 TRUE), /* pcrel_offset */
301
302 /* BLX instruction for the Thumb. */
303 HOWTO (R_ARM_THM_XPC22, /* type */
304 2, /* rightshift */
305 2, /* size (0 = byte, 1 = short, 2 = long) */
306 22, /* bitsize */
307 TRUE, /* pc_relative */
308 0, /* bitpos */
309 complain_overflow_signed,/* complain_on_overflow */
310 bfd_elf_generic_reloc, /* special_function */
311 "R_ARM_THM_XPC22", /* name */
312 FALSE, /* partial_inplace */
313 0x07ff07ff, /* src_mask */
314 0x07ff07ff, /* dst_mask */
315 TRUE), /* pcrel_offset */
316
317 /* Dynamic TLS relocations. */
318
319 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
320 0, /* rightshift */
321 2, /* size (0 = byte, 1 = short, 2 = long) */
322 32, /* bitsize */
323 FALSE, /* pc_relative */
324 0, /* bitpos */
325 complain_overflow_bitfield,/* complain_on_overflow */
326 bfd_elf_generic_reloc, /* special_function */
327 "R_ARM_TLS_DTPMOD32", /* name */
328 TRUE, /* partial_inplace */
329 0xffffffff, /* src_mask */
330 0xffffffff, /* dst_mask */
331 FALSE), /* pcrel_offset */
332
333 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
334 0, /* rightshift */
335 2, /* size (0 = byte, 1 = short, 2 = long) */
336 32, /* bitsize */
337 FALSE, /* pc_relative */
338 0, /* bitpos */
339 complain_overflow_bitfield,/* complain_on_overflow */
340 bfd_elf_generic_reloc, /* special_function */
341 "R_ARM_TLS_DTPOFF32", /* name */
342 TRUE, /* partial_inplace */
343 0xffffffff, /* src_mask */
344 0xffffffff, /* dst_mask */
345 FALSE), /* pcrel_offset */
346
347 HOWTO (R_ARM_TLS_TPOFF32, /* type */
348 0, /* rightshift */
349 2, /* size (0 = byte, 1 = short, 2 = long) */
350 32, /* bitsize */
351 FALSE, /* pc_relative */
352 0, /* bitpos */
353 complain_overflow_bitfield,/* complain_on_overflow */
354 bfd_elf_generic_reloc, /* special_function */
355 "R_ARM_TLS_TPOFF32", /* name */
356 TRUE, /* partial_inplace */
357 0xffffffff, /* src_mask */
358 0xffffffff, /* dst_mask */
359 FALSE), /* pcrel_offset */
360
361 /* Relocs used in ARM Linux */
362
363 HOWTO (R_ARM_COPY, /* type */
364 0, /* rightshift */
365 2, /* size (0 = byte, 1 = short, 2 = long) */
366 32, /* bitsize */
367 FALSE, /* pc_relative */
368 0, /* bitpos */
369 complain_overflow_bitfield,/* complain_on_overflow */
370 bfd_elf_generic_reloc, /* special_function */
371 "R_ARM_COPY", /* name */
372 TRUE, /* partial_inplace */
373 0xffffffff, /* src_mask */
374 0xffffffff, /* dst_mask */
375 FALSE), /* pcrel_offset */
376
377 HOWTO (R_ARM_GLOB_DAT, /* type */
378 0, /* rightshift */
379 2, /* size (0 = byte, 1 = short, 2 = long) */
380 32, /* bitsize */
381 FALSE, /* pc_relative */
382 0, /* bitpos */
383 complain_overflow_bitfield,/* complain_on_overflow */
384 bfd_elf_generic_reloc, /* special_function */
385 "R_ARM_GLOB_DAT", /* name */
386 TRUE, /* partial_inplace */
387 0xffffffff, /* src_mask */
388 0xffffffff, /* dst_mask */
389 FALSE), /* pcrel_offset */
390
391 HOWTO (R_ARM_JUMP_SLOT, /* type */
392 0, /* rightshift */
393 2, /* size (0 = byte, 1 = short, 2 = long) */
394 32, /* bitsize */
395 FALSE, /* pc_relative */
396 0, /* bitpos */
397 complain_overflow_bitfield,/* complain_on_overflow */
398 bfd_elf_generic_reloc, /* special_function */
399 "R_ARM_JUMP_SLOT", /* name */
400 TRUE, /* partial_inplace */
401 0xffffffff, /* src_mask */
402 0xffffffff, /* dst_mask */
403 FALSE), /* pcrel_offset */
404
405 HOWTO (R_ARM_RELATIVE, /* type */
406 0, /* rightshift */
407 2, /* size (0 = byte, 1 = short, 2 = long) */
408 32, /* bitsize */
409 FALSE, /* pc_relative */
410 0, /* bitpos */
411 complain_overflow_bitfield,/* complain_on_overflow */
412 bfd_elf_generic_reloc, /* special_function */
413 "R_ARM_RELATIVE", /* name */
414 TRUE, /* partial_inplace */
415 0xffffffff, /* src_mask */
416 0xffffffff, /* dst_mask */
417 FALSE), /* pcrel_offset */
418
419 HOWTO (R_ARM_GOTOFF32, /* type */
420 0, /* rightshift */
421 2, /* size (0 = byte, 1 = short, 2 = long) */
422 32, /* bitsize */
423 FALSE, /* pc_relative */
424 0, /* bitpos */
425 complain_overflow_bitfield,/* complain_on_overflow */
426 bfd_elf_generic_reloc, /* special_function */
427 "R_ARM_GOTOFF32", /* name */
428 TRUE, /* partial_inplace */
429 0xffffffff, /* src_mask */
430 0xffffffff, /* dst_mask */
431 FALSE), /* pcrel_offset */
432
433 HOWTO (R_ARM_GOTPC, /* type */
434 0, /* rightshift */
435 2, /* size (0 = byte, 1 = short, 2 = long) */
436 32, /* bitsize */
437 TRUE, /* pc_relative */
438 0, /* bitpos */
439 complain_overflow_bitfield,/* complain_on_overflow */
440 bfd_elf_generic_reloc, /* special_function */
441 "R_ARM_GOTPC", /* name */
442 TRUE, /* partial_inplace */
443 0xffffffff, /* src_mask */
444 0xffffffff, /* dst_mask */
445 TRUE), /* pcrel_offset */
446
447 HOWTO (R_ARM_GOT32, /* type */
448 0, /* rightshift */
449 2, /* size (0 = byte, 1 = short, 2 = long) */
450 32, /* bitsize */
451 FALSE, /* pc_relative */
452 0, /* bitpos */
453 complain_overflow_bitfield,/* complain_on_overflow */
454 bfd_elf_generic_reloc, /* special_function */
455 "R_ARM_GOT32", /* name */
456 TRUE, /* partial_inplace */
457 0xffffffff, /* src_mask */
458 0xffffffff, /* dst_mask */
459 FALSE), /* pcrel_offset */
460
461 HOWTO (R_ARM_PLT32, /* type */
462 2, /* rightshift */
463 2, /* size (0 = byte, 1 = short, 2 = long) */
464 24, /* bitsize */
465 TRUE, /* pc_relative */
466 0, /* bitpos */
467 complain_overflow_bitfield,/* complain_on_overflow */
468 bfd_elf_generic_reloc, /* special_function */
469 "R_ARM_PLT32", /* name */
470 FALSE, /* partial_inplace */
471 0x00ffffff, /* src_mask */
472 0x00ffffff, /* dst_mask */
473 TRUE), /* pcrel_offset */
474
475 HOWTO (R_ARM_CALL, /* type */
476 2, /* rightshift */
477 2, /* size (0 = byte, 1 = short, 2 = long) */
478 24, /* bitsize */
479 TRUE, /* pc_relative */
480 0, /* bitpos */
481 complain_overflow_signed,/* complain_on_overflow */
482 bfd_elf_generic_reloc, /* special_function */
483 "R_ARM_CALL", /* name */
484 FALSE, /* partial_inplace */
485 0x00ffffff, /* src_mask */
486 0x00ffffff, /* dst_mask */
487 TRUE), /* pcrel_offset */
488
489 HOWTO (R_ARM_JUMP24, /* type */
490 2, /* rightshift */
491 2, /* size (0 = byte, 1 = short, 2 = long) */
492 24, /* bitsize */
493 TRUE, /* pc_relative */
494 0, /* bitpos */
495 complain_overflow_signed,/* complain_on_overflow */
496 bfd_elf_generic_reloc, /* special_function */
497 "R_ARM_JUMP24", /* name */
498 FALSE, /* partial_inplace */
499 0x00ffffff, /* src_mask */
500 0x00ffffff, /* dst_mask */
501 TRUE), /* pcrel_offset */
502
503 HOWTO (R_ARM_THM_JUMP24, /* type */
504 1, /* rightshift */
505 2, /* size (0 = byte, 1 = short, 2 = long) */
506 24, /* bitsize */
507 TRUE, /* pc_relative */
508 0, /* bitpos */
509 complain_overflow_signed,/* complain_on_overflow */
510 bfd_elf_generic_reloc, /* special_function */
511 "R_ARM_THM_JUMP24", /* name */
512 FALSE, /* partial_inplace */
513 0x07ff2fff, /* src_mask */
514 0x07ff2fff, /* dst_mask */
515 TRUE), /* pcrel_offset */
516
517 HOWTO (R_ARM_BASE_ABS, /* type */
518 0, /* rightshift */
519 2, /* size (0 = byte, 1 = short, 2 = long) */
520 32, /* bitsize */
521 FALSE, /* pc_relative */
522 0, /* bitpos */
523 complain_overflow_dont,/* complain_on_overflow */
524 bfd_elf_generic_reloc, /* special_function */
525 "R_ARM_BASE_ABS", /* name */
526 FALSE, /* partial_inplace */
527 0xffffffff, /* src_mask */
528 0xffffffff, /* dst_mask */
529 FALSE), /* pcrel_offset */
530
531 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
532 0, /* rightshift */
533 2, /* size (0 = byte, 1 = short, 2 = long) */
534 12, /* bitsize */
535 TRUE, /* pc_relative */
536 0, /* bitpos */
537 complain_overflow_dont,/* complain_on_overflow */
538 bfd_elf_generic_reloc, /* special_function */
539 "R_ARM_ALU_PCREL_7_0", /* name */
540 FALSE, /* partial_inplace */
541 0x00000fff, /* src_mask */
542 0x00000fff, /* dst_mask */
543 TRUE), /* pcrel_offset */
544
545 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
546 0, /* rightshift */
547 2, /* size (0 = byte, 1 = short, 2 = long) */
548 12, /* bitsize */
549 TRUE, /* pc_relative */
550 8, /* bitpos */
551 complain_overflow_dont,/* complain_on_overflow */
552 bfd_elf_generic_reloc, /* special_function */
553 "R_ARM_ALU_PCREL_15_8",/* name */
554 FALSE, /* partial_inplace */
555 0x00000fff, /* src_mask */
556 0x00000fff, /* dst_mask */
557 TRUE), /* pcrel_offset */
558
559 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
560 0, /* rightshift */
561 2, /* size (0 = byte, 1 = short, 2 = long) */
562 12, /* bitsize */
563 TRUE, /* pc_relative */
564 16, /* bitpos */
565 complain_overflow_dont,/* complain_on_overflow */
566 bfd_elf_generic_reloc, /* special_function */
567 "R_ARM_ALU_PCREL_23_15",/* name */
568 FALSE, /* partial_inplace */
569 0x00000fff, /* src_mask */
570 0x00000fff, /* dst_mask */
571 TRUE), /* pcrel_offset */
572
573 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
574 0, /* rightshift */
575 2, /* size (0 = byte, 1 = short, 2 = long) */
576 12, /* bitsize */
577 FALSE, /* pc_relative */
578 0, /* bitpos */
579 complain_overflow_dont,/* complain_on_overflow */
580 bfd_elf_generic_reloc, /* special_function */
581 "R_ARM_LDR_SBREL_11_0",/* name */
582 FALSE, /* partial_inplace */
583 0x00000fff, /* src_mask */
584 0x00000fff, /* dst_mask */
585 FALSE), /* pcrel_offset */
586
587 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
588 0, /* rightshift */
589 2, /* size (0 = byte, 1 = short, 2 = long) */
590 8, /* bitsize */
591 FALSE, /* pc_relative */
592 12, /* bitpos */
593 complain_overflow_dont,/* complain_on_overflow */
594 bfd_elf_generic_reloc, /* special_function */
595 "R_ARM_ALU_SBREL_19_12",/* name */
596 FALSE, /* partial_inplace */
597 0x000ff000, /* src_mask */
598 0x000ff000, /* dst_mask */
599 FALSE), /* pcrel_offset */
600
601 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
602 0, /* rightshift */
603 2, /* size (0 = byte, 1 = short, 2 = long) */
604 8, /* bitsize */
605 FALSE, /* pc_relative */
606 20, /* bitpos */
607 complain_overflow_dont,/* complain_on_overflow */
608 bfd_elf_generic_reloc, /* special_function */
609 "R_ARM_ALU_SBREL_27_20",/* name */
610 FALSE, /* partial_inplace */
611 0x0ff00000, /* src_mask */
612 0x0ff00000, /* dst_mask */
613 FALSE), /* pcrel_offset */
614
615 HOWTO (R_ARM_TARGET1, /* type */
616 0, /* rightshift */
617 2, /* size (0 = byte, 1 = short, 2 = long) */
618 32, /* bitsize */
619 FALSE, /* pc_relative */
620 0, /* bitpos */
621 complain_overflow_dont,/* complain_on_overflow */
622 bfd_elf_generic_reloc, /* special_function */
623 "R_ARM_TARGET1", /* name */
624 FALSE, /* partial_inplace */
625 0xffffffff, /* src_mask */
626 0xffffffff, /* dst_mask */
627 FALSE), /* pcrel_offset */
628
629 HOWTO (R_ARM_ROSEGREL32, /* type */
630 0, /* rightshift */
631 2, /* size (0 = byte, 1 = short, 2 = long) */
632 32, /* bitsize */
633 FALSE, /* pc_relative */
634 0, /* bitpos */
635 complain_overflow_dont,/* complain_on_overflow */
636 bfd_elf_generic_reloc, /* special_function */
637 "R_ARM_ROSEGREL32", /* name */
638 FALSE, /* partial_inplace */
639 0xffffffff, /* src_mask */
640 0xffffffff, /* dst_mask */
641 FALSE), /* pcrel_offset */
642
643 HOWTO (R_ARM_V4BX, /* type */
644 0, /* rightshift */
645 2, /* size (0 = byte, 1 = short, 2 = long) */
646 32, /* bitsize */
647 FALSE, /* pc_relative */
648 0, /* bitpos */
649 complain_overflow_dont,/* complain_on_overflow */
650 bfd_elf_generic_reloc, /* special_function */
651 "R_ARM_V4BX", /* name */
652 FALSE, /* partial_inplace */
653 0xffffffff, /* src_mask */
654 0xffffffff, /* dst_mask */
655 FALSE), /* pcrel_offset */
656
657 HOWTO (R_ARM_TARGET2, /* type */
658 0, /* rightshift */
659 2, /* size (0 = byte, 1 = short, 2 = long) */
660 32, /* bitsize */
661 FALSE, /* pc_relative */
662 0, /* bitpos */
663 complain_overflow_signed,/* complain_on_overflow */
664 bfd_elf_generic_reloc, /* special_function */
665 "R_ARM_TARGET2", /* name */
666 FALSE, /* partial_inplace */
667 0xffffffff, /* src_mask */
668 0xffffffff, /* dst_mask */
669 TRUE), /* pcrel_offset */
670
671 HOWTO (R_ARM_PREL31, /* type */
672 0, /* rightshift */
673 2, /* size (0 = byte, 1 = short, 2 = long) */
674 31, /* bitsize */
675 TRUE, /* pc_relative */
676 0, /* bitpos */
677 complain_overflow_signed,/* complain_on_overflow */
678 bfd_elf_generic_reloc, /* special_function */
679 "R_ARM_PREL31", /* name */
680 FALSE, /* partial_inplace */
681 0x7fffffff, /* src_mask */
682 0x7fffffff, /* dst_mask */
683 TRUE), /* pcrel_offset */
684
685 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
686 0, /* rightshift */
687 2, /* size (0 = byte, 1 = short, 2 = long) */
688 16, /* bitsize */
689 FALSE, /* pc_relative */
690 0, /* bitpos */
691 complain_overflow_dont,/* complain_on_overflow */
692 bfd_elf_generic_reloc, /* special_function */
693 "R_ARM_MOVW_ABS_NC", /* name */
694 FALSE, /* partial_inplace */
695 0x000f0fff, /* src_mask */
696 0x000f0fff, /* dst_mask */
697 FALSE), /* pcrel_offset */
698
699 HOWTO (R_ARM_MOVT_ABS, /* type */
700 0, /* rightshift */
701 2, /* size (0 = byte, 1 = short, 2 = long) */
702 16, /* bitsize */
703 FALSE, /* pc_relative */
704 0, /* bitpos */
705 complain_overflow_bitfield,/* complain_on_overflow */
706 bfd_elf_generic_reloc, /* special_function */
707 "R_ARM_MOVT_ABS", /* name */
708 FALSE, /* partial_inplace */
709 0x000f0fff, /* src_mask */
710 0x000f0fff, /* dst_mask */
711 FALSE), /* pcrel_offset */
712
713 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
714 0, /* rightshift */
715 2, /* size (0 = byte, 1 = short, 2 = long) */
716 16, /* bitsize */
717 TRUE, /* pc_relative */
718 0, /* bitpos */
719 complain_overflow_dont,/* complain_on_overflow */
720 bfd_elf_generic_reloc, /* special_function */
721 "R_ARM_MOVW_PREL_NC", /* name */
722 FALSE, /* partial_inplace */
723 0x000f0fff, /* src_mask */
724 0x000f0fff, /* dst_mask */
725 TRUE), /* pcrel_offset */
726
727 HOWTO (R_ARM_MOVT_PREL, /* type */
728 0, /* rightshift */
729 2, /* size (0 = byte, 1 = short, 2 = long) */
730 16, /* bitsize */
731 TRUE, /* pc_relative */
732 0, /* bitpos */
733 complain_overflow_bitfield,/* complain_on_overflow */
734 bfd_elf_generic_reloc, /* special_function */
735 "R_ARM_MOVT_PREL", /* name */
736 FALSE, /* partial_inplace */
737 0x000f0fff, /* src_mask */
738 0x000f0fff, /* dst_mask */
739 TRUE), /* pcrel_offset */
740
741 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
742 0, /* rightshift */
743 2, /* size (0 = byte, 1 = short, 2 = long) */
744 16, /* bitsize */
745 FALSE, /* pc_relative */
746 0, /* bitpos */
747 complain_overflow_dont,/* complain_on_overflow */
748 bfd_elf_generic_reloc, /* special_function */
749 "R_ARM_THM_MOVW_ABS_NC",/* name */
750 FALSE, /* partial_inplace */
751 0x040f70ff, /* src_mask */
752 0x040f70ff, /* dst_mask */
753 FALSE), /* pcrel_offset */
754
755 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
756 0, /* rightshift */
757 2, /* size (0 = byte, 1 = short, 2 = long) */
758 16, /* bitsize */
759 FALSE, /* pc_relative */
760 0, /* bitpos */
761 complain_overflow_bitfield,/* complain_on_overflow */
762 bfd_elf_generic_reloc, /* special_function */
763 "R_ARM_THM_MOVT_ABS", /* name */
764 FALSE, /* partial_inplace */
765 0x040f70ff, /* src_mask */
766 0x040f70ff, /* dst_mask */
767 FALSE), /* pcrel_offset */
768
769 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
770 0, /* rightshift */
771 2, /* size (0 = byte, 1 = short, 2 = long) */
772 16, /* bitsize */
773 TRUE, /* pc_relative */
774 0, /* bitpos */
775 complain_overflow_dont,/* complain_on_overflow */
776 bfd_elf_generic_reloc, /* special_function */
777 "R_ARM_THM_MOVW_PREL_NC",/* name */
778 FALSE, /* partial_inplace */
779 0x040f70ff, /* src_mask */
780 0x040f70ff, /* dst_mask */
781 TRUE), /* pcrel_offset */
782
783 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
784 0, /* rightshift */
785 2, /* size (0 = byte, 1 = short, 2 = long) */
786 16, /* bitsize */
787 TRUE, /* pc_relative */
788 0, /* bitpos */
789 complain_overflow_bitfield,/* complain_on_overflow */
790 bfd_elf_generic_reloc, /* special_function */
791 "R_ARM_THM_MOVT_PREL", /* name */
792 FALSE, /* partial_inplace */
793 0x040f70ff, /* src_mask */
794 0x040f70ff, /* dst_mask */
795 TRUE), /* pcrel_offset */
796
797 HOWTO (R_ARM_THM_JUMP19, /* type */
798 1, /* rightshift */
799 2, /* size (0 = byte, 1 = short, 2 = long) */
800 19, /* bitsize */
801 TRUE, /* pc_relative */
802 0, /* bitpos */
803 complain_overflow_signed,/* complain_on_overflow */
804 bfd_elf_generic_reloc, /* special_function */
805 "R_ARM_THM_JUMP19", /* name */
806 FALSE, /* partial_inplace */
807 0x043f2fff, /* src_mask */
808 0x043f2fff, /* dst_mask */
809 TRUE), /* pcrel_offset */
810
811 HOWTO (R_ARM_THM_JUMP6, /* type */
812 1, /* rightshift */
813 1, /* size (0 = byte, 1 = short, 2 = long) */
814 6, /* bitsize */
815 TRUE, /* pc_relative */
816 0, /* bitpos */
817 complain_overflow_unsigned,/* complain_on_overflow */
818 bfd_elf_generic_reloc, /* special_function */
819 "R_ARM_THM_JUMP6", /* name */
820 FALSE, /* partial_inplace */
821 0x02f8, /* src_mask */
822 0x02f8, /* dst_mask */
823 TRUE), /* pcrel_offset */
824
825 /* These are declared as 13-bit signed relocations because we can
826 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
827 versa. */
828 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
829 0, /* rightshift */
830 2, /* size (0 = byte, 1 = short, 2 = long) */
831 13, /* bitsize */
832 TRUE, /* pc_relative */
833 0, /* bitpos */
834 complain_overflow_dont,/* complain_on_overflow */
835 bfd_elf_generic_reloc, /* special_function */
836 "R_ARM_THM_ALU_PREL_11_0",/* name */
837 FALSE, /* partial_inplace */
838 0xffffffff, /* src_mask */
839 0xffffffff, /* dst_mask */
840 TRUE), /* pcrel_offset */
841
842 HOWTO (R_ARM_THM_PC12, /* type */
843 0, /* rightshift */
844 2, /* size (0 = byte, 1 = short, 2 = long) */
845 13, /* bitsize */
846 TRUE, /* pc_relative */
847 0, /* bitpos */
848 complain_overflow_dont,/* complain_on_overflow */
849 bfd_elf_generic_reloc, /* special_function */
850 "R_ARM_THM_PC12", /* name */
851 FALSE, /* partial_inplace */
852 0xffffffff, /* src_mask */
853 0xffffffff, /* dst_mask */
854 TRUE), /* pcrel_offset */
855
856 HOWTO (R_ARM_ABS32_NOI, /* type */
857 0, /* rightshift */
858 2, /* size (0 = byte, 1 = short, 2 = long) */
859 32, /* bitsize */
860 FALSE, /* pc_relative */
861 0, /* bitpos */
862 complain_overflow_dont,/* complain_on_overflow */
863 bfd_elf_generic_reloc, /* special_function */
864 "R_ARM_ABS32_NOI", /* name */
865 FALSE, /* partial_inplace */
866 0xffffffff, /* src_mask */
867 0xffffffff, /* dst_mask */
868 FALSE), /* pcrel_offset */
869
870 HOWTO (R_ARM_REL32_NOI, /* type */
871 0, /* rightshift */
872 2, /* size (0 = byte, 1 = short, 2 = long) */
873 32, /* bitsize */
874 TRUE, /* pc_relative */
875 0, /* bitpos */
876 complain_overflow_dont,/* complain_on_overflow */
877 bfd_elf_generic_reloc, /* special_function */
878 "R_ARM_REL32_NOI", /* name */
879 FALSE, /* partial_inplace */
880 0xffffffff, /* src_mask */
881 0xffffffff, /* dst_mask */
882 FALSE), /* pcrel_offset */
883
884 /* Group relocations. */
885
886 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
887 0, /* rightshift */
888 2, /* size (0 = byte, 1 = short, 2 = long) */
889 32, /* bitsize */
890 TRUE, /* pc_relative */
891 0, /* bitpos */
892 complain_overflow_dont,/* complain_on_overflow */
893 bfd_elf_generic_reloc, /* special_function */
894 "R_ARM_ALU_PC_G0_NC", /* name */
895 FALSE, /* partial_inplace */
896 0xffffffff, /* src_mask */
897 0xffffffff, /* dst_mask */
898 TRUE), /* pcrel_offset */
899
900 HOWTO (R_ARM_ALU_PC_G0, /* type */
901 0, /* rightshift */
902 2, /* size (0 = byte, 1 = short, 2 = long) */
903 32, /* bitsize */
904 TRUE, /* pc_relative */
905 0, /* bitpos */
906 complain_overflow_dont,/* complain_on_overflow */
907 bfd_elf_generic_reloc, /* special_function */
908 "R_ARM_ALU_PC_G0", /* name */
909 FALSE, /* partial_inplace */
910 0xffffffff, /* src_mask */
911 0xffffffff, /* dst_mask */
912 TRUE), /* pcrel_offset */
913
914 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
915 0, /* rightshift */
916 2, /* size (0 = byte, 1 = short, 2 = long) */
917 32, /* bitsize */
918 TRUE, /* pc_relative */
919 0, /* bitpos */
920 complain_overflow_dont,/* complain_on_overflow */
921 bfd_elf_generic_reloc, /* special_function */
922 "R_ARM_ALU_PC_G1_NC", /* name */
923 FALSE, /* partial_inplace */
924 0xffffffff, /* src_mask */
925 0xffffffff, /* dst_mask */
926 TRUE), /* pcrel_offset */
927
928 HOWTO (R_ARM_ALU_PC_G1, /* type */
929 0, /* rightshift */
930 2, /* size (0 = byte, 1 = short, 2 = long) */
931 32, /* bitsize */
932 TRUE, /* pc_relative */
933 0, /* bitpos */
934 complain_overflow_dont,/* complain_on_overflow */
935 bfd_elf_generic_reloc, /* special_function */
936 "R_ARM_ALU_PC_G1", /* name */
937 FALSE, /* partial_inplace */
938 0xffffffff, /* src_mask */
939 0xffffffff, /* dst_mask */
940 TRUE), /* pcrel_offset */
941
942 HOWTO (R_ARM_ALU_PC_G2, /* type */
943 0, /* rightshift */
944 2, /* size (0 = byte, 1 = short, 2 = long) */
945 32, /* bitsize */
946 TRUE, /* pc_relative */
947 0, /* bitpos */
948 complain_overflow_dont,/* complain_on_overflow */
949 bfd_elf_generic_reloc, /* special_function */
950 "R_ARM_ALU_PC_G2", /* name */
951 FALSE, /* partial_inplace */
952 0xffffffff, /* src_mask */
953 0xffffffff, /* dst_mask */
954 TRUE), /* pcrel_offset */
955
956 HOWTO (R_ARM_LDR_PC_G1, /* type */
957 0, /* rightshift */
958 2, /* size (0 = byte, 1 = short, 2 = long) */
959 32, /* bitsize */
960 TRUE, /* pc_relative */
961 0, /* bitpos */
962 complain_overflow_dont,/* complain_on_overflow */
963 bfd_elf_generic_reloc, /* special_function */
964 "R_ARM_LDR_PC_G1", /* name */
965 FALSE, /* partial_inplace */
966 0xffffffff, /* src_mask */
967 0xffffffff, /* dst_mask */
968 TRUE), /* pcrel_offset */
969
970 HOWTO (R_ARM_LDR_PC_G2, /* type */
971 0, /* rightshift */
972 2, /* size (0 = byte, 1 = short, 2 = long) */
973 32, /* bitsize */
974 TRUE, /* pc_relative */
975 0, /* bitpos */
976 complain_overflow_dont,/* complain_on_overflow */
977 bfd_elf_generic_reloc, /* special_function */
978 "R_ARM_LDR_PC_G2", /* name */
979 FALSE, /* partial_inplace */
980 0xffffffff, /* src_mask */
981 0xffffffff, /* dst_mask */
982 TRUE), /* pcrel_offset */
983
984 HOWTO (R_ARM_LDRS_PC_G0, /* type */
985 0, /* rightshift */
986 2, /* size (0 = byte, 1 = short, 2 = long) */
987 32, /* bitsize */
988 TRUE, /* pc_relative */
989 0, /* bitpos */
990 complain_overflow_dont,/* complain_on_overflow */
991 bfd_elf_generic_reloc, /* special_function */
992 "R_ARM_LDRS_PC_G0", /* name */
993 FALSE, /* partial_inplace */
994 0xffffffff, /* src_mask */
995 0xffffffff, /* dst_mask */
996 TRUE), /* pcrel_offset */
997
998 HOWTO (R_ARM_LDRS_PC_G1, /* type */
999 0, /* rightshift */
1000 2, /* size (0 = byte, 1 = short, 2 = long) */
1001 32, /* bitsize */
1002 TRUE, /* pc_relative */
1003 0, /* bitpos */
1004 complain_overflow_dont,/* complain_on_overflow */
1005 bfd_elf_generic_reloc, /* special_function */
1006 "R_ARM_LDRS_PC_G1", /* name */
1007 FALSE, /* partial_inplace */
1008 0xffffffff, /* src_mask */
1009 0xffffffff, /* dst_mask */
1010 TRUE), /* pcrel_offset */
1011
1012 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1013 0, /* rightshift */
1014 2, /* size (0 = byte, 1 = short, 2 = long) */
1015 32, /* bitsize */
1016 TRUE, /* pc_relative */
1017 0, /* bitpos */
1018 complain_overflow_dont,/* complain_on_overflow */
1019 bfd_elf_generic_reloc, /* special_function */
1020 "R_ARM_LDRS_PC_G2", /* name */
1021 FALSE, /* partial_inplace */
1022 0xffffffff, /* src_mask */
1023 0xffffffff, /* dst_mask */
1024 TRUE), /* pcrel_offset */
1025
1026 HOWTO (R_ARM_LDC_PC_G0, /* type */
1027 0, /* rightshift */
1028 2, /* size (0 = byte, 1 = short, 2 = long) */
1029 32, /* bitsize */
1030 TRUE, /* pc_relative */
1031 0, /* bitpos */
1032 complain_overflow_dont,/* complain_on_overflow */
1033 bfd_elf_generic_reloc, /* special_function */
1034 "R_ARM_LDC_PC_G0", /* name */
1035 FALSE, /* partial_inplace */
1036 0xffffffff, /* src_mask */
1037 0xffffffff, /* dst_mask */
1038 TRUE), /* pcrel_offset */
1039
1040 HOWTO (R_ARM_LDC_PC_G1, /* type */
1041 0, /* rightshift */
1042 2, /* size (0 = byte, 1 = short, 2 = long) */
1043 32, /* bitsize */
1044 TRUE, /* pc_relative */
1045 0, /* bitpos */
1046 complain_overflow_dont,/* complain_on_overflow */
1047 bfd_elf_generic_reloc, /* special_function */
1048 "R_ARM_LDC_PC_G1", /* name */
1049 FALSE, /* partial_inplace */
1050 0xffffffff, /* src_mask */
1051 0xffffffff, /* dst_mask */
1052 TRUE), /* pcrel_offset */
1053
1054 HOWTO (R_ARM_LDC_PC_G2, /* type */
1055 0, /* rightshift */
1056 2, /* size (0 = byte, 1 = short, 2 = long) */
1057 32, /* bitsize */
1058 TRUE, /* pc_relative */
1059 0, /* bitpos */
1060 complain_overflow_dont,/* complain_on_overflow */
1061 bfd_elf_generic_reloc, /* special_function */
1062 "R_ARM_LDC_PC_G2", /* name */
1063 FALSE, /* partial_inplace */
1064 0xffffffff, /* src_mask */
1065 0xffffffff, /* dst_mask */
1066 TRUE), /* pcrel_offset */
1067
1068 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1069 0, /* rightshift */
1070 2, /* size (0 = byte, 1 = short, 2 = long) */
1071 32, /* bitsize */
1072 TRUE, /* pc_relative */
1073 0, /* bitpos */
1074 complain_overflow_dont,/* complain_on_overflow */
1075 bfd_elf_generic_reloc, /* special_function */
1076 "R_ARM_ALU_SB_G0_NC", /* name */
1077 FALSE, /* partial_inplace */
1078 0xffffffff, /* src_mask */
1079 0xffffffff, /* dst_mask */
1080 TRUE), /* pcrel_offset */
1081
1082 HOWTO (R_ARM_ALU_SB_G0, /* type */
1083 0, /* rightshift */
1084 2, /* size (0 = byte, 1 = short, 2 = long) */
1085 32, /* bitsize */
1086 TRUE, /* pc_relative */
1087 0, /* bitpos */
1088 complain_overflow_dont,/* complain_on_overflow */
1089 bfd_elf_generic_reloc, /* special_function */
1090 "R_ARM_ALU_SB_G0", /* name */
1091 FALSE, /* partial_inplace */
1092 0xffffffff, /* src_mask */
1093 0xffffffff, /* dst_mask */
1094 TRUE), /* pcrel_offset */
1095
1096 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1097 0, /* rightshift */
1098 2, /* size (0 = byte, 1 = short, 2 = long) */
1099 32, /* bitsize */
1100 TRUE, /* pc_relative */
1101 0, /* bitpos */
1102 complain_overflow_dont,/* complain_on_overflow */
1103 bfd_elf_generic_reloc, /* special_function */
1104 "R_ARM_ALU_SB_G1_NC", /* name */
1105 FALSE, /* partial_inplace */
1106 0xffffffff, /* src_mask */
1107 0xffffffff, /* dst_mask */
1108 TRUE), /* pcrel_offset */
1109
1110 HOWTO (R_ARM_ALU_SB_G1, /* type */
1111 0, /* rightshift */
1112 2, /* size (0 = byte, 1 = short, 2 = long) */
1113 32, /* bitsize */
1114 TRUE, /* pc_relative */
1115 0, /* bitpos */
1116 complain_overflow_dont,/* complain_on_overflow */
1117 bfd_elf_generic_reloc, /* special_function */
1118 "R_ARM_ALU_SB_G1", /* name */
1119 FALSE, /* partial_inplace */
1120 0xffffffff, /* src_mask */
1121 0xffffffff, /* dst_mask */
1122 TRUE), /* pcrel_offset */
1123
1124 HOWTO (R_ARM_ALU_SB_G2, /* type */
1125 0, /* rightshift */
1126 2, /* size (0 = byte, 1 = short, 2 = long) */
1127 32, /* bitsize */
1128 TRUE, /* pc_relative */
1129 0, /* bitpos */
1130 complain_overflow_dont,/* complain_on_overflow */
1131 bfd_elf_generic_reloc, /* special_function */
1132 "R_ARM_ALU_SB_G2", /* name */
1133 FALSE, /* partial_inplace */
1134 0xffffffff, /* src_mask */
1135 0xffffffff, /* dst_mask */
1136 TRUE), /* pcrel_offset */
1137
1138 HOWTO (R_ARM_LDR_SB_G0, /* type */
1139 0, /* rightshift */
1140 2, /* size (0 = byte, 1 = short, 2 = long) */
1141 32, /* bitsize */
1142 TRUE, /* pc_relative */
1143 0, /* bitpos */
1144 complain_overflow_dont,/* complain_on_overflow */
1145 bfd_elf_generic_reloc, /* special_function */
1146 "R_ARM_LDR_SB_G0", /* name */
1147 FALSE, /* partial_inplace */
1148 0xffffffff, /* src_mask */
1149 0xffffffff, /* dst_mask */
1150 TRUE), /* pcrel_offset */
1151
1152 HOWTO (R_ARM_LDR_SB_G1, /* type */
1153 0, /* rightshift */
1154 2, /* size (0 = byte, 1 = short, 2 = long) */
1155 32, /* bitsize */
1156 TRUE, /* pc_relative */
1157 0, /* bitpos */
1158 complain_overflow_dont,/* complain_on_overflow */
1159 bfd_elf_generic_reloc, /* special_function */
1160 "R_ARM_LDR_SB_G1", /* name */
1161 FALSE, /* partial_inplace */
1162 0xffffffff, /* src_mask */
1163 0xffffffff, /* dst_mask */
1164 TRUE), /* pcrel_offset */
1165
1166 HOWTO (R_ARM_LDR_SB_G2, /* type */
1167 0, /* rightshift */
1168 2, /* size (0 = byte, 1 = short, 2 = long) */
1169 32, /* bitsize */
1170 TRUE, /* pc_relative */
1171 0, /* bitpos */
1172 complain_overflow_dont,/* complain_on_overflow */
1173 bfd_elf_generic_reloc, /* special_function */
1174 "R_ARM_LDR_SB_G2", /* name */
1175 FALSE, /* partial_inplace */
1176 0xffffffff, /* src_mask */
1177 0xffffffff, /* dst_mask */
1178 TRUE), /* pcrel_offset */
1179
1180 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1181 0, /* rightshift */
1182 2, /* size (0 = byte, 1 = short, 2 = long) */
1183 32, /* bitsize */
1184 TRUE, /* pc_relative */
1185 0, /* bitpos */
1186 complain_overflow_dont,/* complain_on_overflow */
1187 bfd_elf_generic_reloc, /* special_function */
1188 "R_ARM_LDRS_SB_G0", /* name */
1189 FALSE, /* partial_inplace */
1190 0xffffffff, /* src_mask */
1191 0xffffffff, /* dst_mask */
1192 TRUE), /* pcrel_offset */
1193
1194 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1195 0, /* rightshift */
1196 2, /* size (0 = byte, 1 = short, 2 = long) */
1197 32, /* bitsize */
1198 TRUE, /* pc_relative */
1199 0, /* bitpos */
1200 complain_overflow_dont,/* complain_on_overflow */
1201 bfd_elf_generic_reloc, /* special_function */
1202 "R_ARM_LDRS_SB_G1", /* name */
1203 FALSE, /* partial_inplace */
1204 0xffffffff, /* src_mask */
1205 0xffffffff, /* dst_mask */
1206 TRUE), /* pcrel_offset */
1207
1208 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1209 0, /* rightshift */
1210 2, /* size (0 = byte, 1 = short, 2 = long) */
1211 32, /* bitsize */
1212 TRUE, /* pc_relative */
1213 0, /* bitpos */
1214 complain_overflow_dont,/* complain_on_overflow */
1215 bfd_elf_generic_reloc, /* special_function */
1216 "R_ARM_LDRS_SB_G2", /* name */
1217 FALSE, /* partial_inplace */
1218 0xffffffff, /* src_mask */
1219 0xffffffff, /* dst_mask */
1220 TRUE), /* pcrel_offset */
1221
1222 HOWTO (R_ARM_LDC_SB_G0, /* type */
1223 0, /* rightshift */
1224 2, /* size (0 = byte, 1 = short, 2 = long) */
1225 32, /* bitsize */
1226 TRUE, /* pc_relative */
1227 0, /* bitpos */
1228 complain_overflow_dont,/* complain_on_overflow */
1229 bfd_elf_generic_reloc, /* special_function */
1230 "R_ARM_LDC_SB_G0", /* name */
1231 FALSE, /* partial_inplace */
1232 0xffffffff, /* src_mask */
1233 0xffffffff, /* dst_mask */
1234 TRUE), /* pcrel_offset */
1235
1236 HOWTO (R_ARM_LDC_SB_G1, /* type */
1237 0, /* rightshift */
1238 2, /* size (0 = byte, 1 = short, 2 = long) */
1239 32, /* bitsize */
1240 TRUE, /* pc_relative */
1241 0, /* bitpos */
1242 complain_overflow_dont,/* complain_on_overflow */
1243 bfd_elf_generic_reloc, /* special_function */
1244 "R_ARM_LDC_SB_G1", /* name */
1245 FALSE, /* partial_inplace */
1246 0xffffffff, /* src_mask */
1247 0xffffffff, /* dst_mask */
1248 TRUE), /* pcrel_offset */
1249
1250 HOWTO (R_ARM_LDC_SB_G2, /* type */
1251 0, /* rightshift */
1252 2, /* size (0 = byte, 1 = short, 2 = long) */
1253 32, /* bitsize */
1254 TRUE, /* pc_relative */
1255 0, /* bitpos */
1256 complain_overflow_dont,/* complain_on_overflow */
1257 bfd_elf_generic_reloc, /* special_function */
1258 "R_ARM_LDC_SB_G2", /* name */
1259 FALSE, /* partial_inplace */
1260 0xffffffff, /* src_mask */
1261 0xffffffff, /* dst_mask */
1262 TRUE), /* pcrel_offset */
1263
1264 /* End of group relocations. */
1265
1266 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1267 0, /* rightshift */
1268 2, /* size (0 = byte, 1 = short, 2 = long) */
1269 16, /* bitsize */
1270 FALSE, /* pc_relative */
1271 0, /* bitpos */
1272 complain_overflow_dont,/* complain_on_overflow */
1273 bfd_elf_generic_reloc, /* special_function */
1274 "R_ARM_MOVW_BREL_NC", /* name */
1275 FALSE, /* partial_inplace */
1276 0x0000ffff, /* src_mask */
1277 0x0000ffff, /* dst_mask */
1278 FALSE), /* pcrel_offset */
1279
1280 HOWTO (R_ARM_MOVT_BREL, /* type */
1281 0, /* rightshift */
1282 2, /* size (0 = byte, 1 = short, 2 = long) */
1283 16, /* bitsize */
1284 FALSE, /* pc_relative */
1285 0, /* bitpos */
1286 complain_overflow_bitfield,/* complain_on_overflow */
1287 bfd_elf_generic_reloc, /* special_function */
1288 "R_ARM_MOVT_BREL", /* name */
1289 FALSE, /* partial_inplace */
1290 0x0000ffff, /* src_mask */
1291 0x0000ffff, /* dst_mask */
1292 FALSE), /* pcrel_offset */
1293
1294 HOWTO (R_ARM_MOVW_BREL, /* type */
1295 0, /* rightshift */
1296 2, /* size (0 = byte, 1 = short, 2 = long) */
1297 16, /* bitsize */
1298 FALSE, /* pc_relative */
1299 0, /* bitpos */
1300 complain_overflow_dont,/* complain_on_overflow */
1301 bfd_elf_generic_reloc, /* special_function */
1302 "R_ARM_MOVW_BREL", /* name */
1303 FALSE, /* partial_inplace */
1304 0x0000ffff, /* src_mask */
1305 0x0000ffff, /* dst_mask */
1306 FALSE), /* pcrel_offset */
1307
1308 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1309 0, /* rightshift */
1310 2, /* size (0 = byte, 1 = short, 2 = long) */
1311 16, /* bitsize */
1312 FALSE, /* pc_relative */
1313 0, /* bitpos */
1314 complain_overflow_dont,/* complain_on_overflow */
1315 bfd_elf_generic_reloc, /* special_function */
1316 "R_ARM_THM_MOVW_BREL_NC",/* name */
1317 FALSE, /* partial_inplace */
1318 0x040f70ff, /* src_mask */
1319 0x040f70ff, /* dst_mask */
1320 FALSE), /* pcrel_offset */
1321
1322 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1323 0, /* rightshift */
1324 2, /* size (0 = byte, 1 = short, 2 = long) */
1325 16, /* bitsize */
1326 FALSE, /* pc_relative */
1327 0, /* bitpos */
1328 complain_overflow_bitfield,/* complain_on_overflow */
1329 bfd_elf_generic_reloc, /* special_function */
1330 "R_ARM_THM_MOVT_BREL", /* name */
1331 FALSE, /* partial_inplace */
1332 0x040f70ff, /* src_mask */
1333 0x040f70ff, /* dst_mask */
1334 FALSE), /* pcrel_offset */
1335
1336 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1337 0, /* rightshift */
1338 2, /* size (0 = byte, 1 = short, 2 = long) */
1339 16, /* bitsize */
1340 FALSE, /* pc_relative */
1341 0, /* bitpos */
1342 complain_overflow_dont,/* complain_on_overflow */
1343 bfd_elf_generic_reloc, /* special_function */
1344 "R_ARM_THM_MOVW_BREL", /* name */
1345 FALSE, /* partial_inplace */
1346 0x040f70ff, /* src_mask */
1347 0x040f70ff, /* dst_mask */
1348 FALSE), /* pcrel_offset */
1349
1350 EMPTY_HOWTO (90), /* Unallocated. */
1351 EMPTY_HOWTO (91),
1352 EMPTY_HOWTO (92),
1353 EMPTY_HOWTO (93),
1354
1355 HOWTO (R_ARM_PLT32_ABS, /* type */
1356 0, /* rightshift */
1357 2, /* size (0 = byte, 1 = short, 2 = long) */
1358 32, /* bitsize */
1359 FALSE, /* pc_relative */
1360 0, /* bitpos */
1361 complain_overflow_dont,/* complain_on_overflow */
1362 bfd_elf_generic_reloc, /* special_function */
1363 "R_ARM_PLT32_ABS", /* name */
1364 FALSE, /* partial_inplace */
1365 0xffffffff, /* src_mask */
1366 0xffffffff, /* dst_mask */
1367 FALSE), /* pcrel_offset */
1368
1369 HOWTO (R_ARM_GOT_ABS, /* type */
1370 0, /* rightshift */
1371 2, /* size (0 = byte, 1 = short, 2 = long) */
1372 32, /* bitsize */
1373 FALSE, /* pc_relative */
1374 0, /* bitpos */
1375 complain_overflow_dont,/* complain_on_overflow */
1376 bfd_elf_generic_reloc, /* special_function */
1377 "R_ARM_GOT_ABS", /* name */
1378 FALSE, /* partial_inplace */
1379 0xffffffff, /* src_mask */
1380 0xffffffff, /* dst_mask */
1381 FALSE), /* pcrel_offset */
1382
1383 HOWTO (R_ARM_GOT_PREL, /* type */
1384 0, /* rightshift */
1385 2, /* size (0 = byte, 1 = short, 2 = long) */
1386 32, /* bitsize */
1387 TRUE, /* pc_relative */
1388 0, /* bitpos */
1389 complain_overflow_dont, /* complain_on_overflow */
1390 bfd_elf_generic_reloc, /* special_function */
1391 "R_ARM_GOT_PREL", /* name */
1392 FALSE, /* partial_inplace */
1393 0xffffffff, /* src_mask */
1394 0xffffffff, /* dst_mask */
1395 TRUE), /* pcrel_offset */
1396
1397 HOWTO (R_ARM_GOT_BREL12, /* type */
1398 0, /* rightshift */
1399 2, /* size (0 = byte, 1 = short, 2 = long) */
1400 12, /* bitsize */
1401 FALSE, /* pc_relative */
1402 0, /* bitpos */
1403 complain_overflow_bitfield,/* complain_on_overflow */
1404 bfd_elf_generic_reloc, /* special_function */
1405 "R_ARM_GOT_BREL12", /* name */
1406 FALSE, /* partial_inplace */
1407 0x00000fff, /* src_mask */
1408 0x00000fff, /* dst_mask */
1409 FALSE), /* pcrel_offset */
1410
1411 HOWTO (R_ARM_GOTOFF12, /* type */
1412 0, /* rightshift */
1413 2, /* size (0 = byte, 1 = short, 2 = long) */
1414 12, /* bitsize */
1415 FALSE, /* pc_relative */
1416 0, /* bitpos */
1417 complain_overflow_bitfield,/* complain_on_overflow */
1418 bfd_elf_generic_reloc, /* special_function */
1419 "R_ARM_GOTOFF12", /* name */
1420 FALSE, /* partial_inplace */
1421 0x00000fff, /* src_mask */
1422 0x00000fff, /* dst_mask */
1423 FALSE), /* pcrel_offset */
1424
1425 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1426
1427 /* GNU extension to record C++ vtable member usage */
1428 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1429 0, /* rightshift */
1430 2, /* size (0 = byte, 1 = short, 2 = long) */
1431 0, /* bitsize */
1432 FALSE, /* pc_relative */
1433 0, /* bitpos */
1434 complain_overflow_dont, /* complain_on_overflow */
1435 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1436 "R_ARM_GNU_VTENTRY", /* name */
1437 FALSE, /* partial_inplace */
1438 0, /* src_mask */
1439 0, /* dst_mask */
1440 FALSE), /* pcrel_offset */
1441
1442 /* GNU extension to record C++ vtable hierarchy */
1443 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1444 0, /* rightshift */
1445 2, /* size (0 = byte, 1 = short, 2 = long) */
1446 0, /* bitsize */
1447 FALSE, /* pc_relative */
1448 0, /* bitpos */
1449 complain_overflow_dont, /* complain_on_overflow */
1450 NULL, /* special_function */
1451 "R_ARM_GNU_VTINHERIT", /* name */
1452 FALSE, /* partial_inplace */
1453 0, /* src_mask */
1454 0, /* dst_mask */
1455 FALSE), /* pcrel_offset */
1456
1457 HOWTO (R_ARM_THM_JUMP11, /* type */
1458 1, /* rightshift */
1459 1, /* size (0 = byte, 1 = short, 2 = long) */
1460 11, /* bitsize */
1461 TRUE, /* pc_relative */
1462 0, /* bitpos */
1463 complain_overflow_signed, /* complain_on_overflow */
1464 bfd_elf_generic_reloc, /* special_function */
1465 "R_ARM_THM_JUMP11", /* name */
1466 FALSE, /* partial_inplace */
1467 0x000007ff, /* src_mask */
1468 0x000007ff, /* dst_mask */
1469 TRUE), /* pcrel_offset */
1470
1471 HOWTO (R_ARM_THM_JUMP8, /* type */
1472 1, /* rightshift */
1473 1, /* size (0 = byte, 1 = short, 2 = long) */
1474 8, /* bitsize */
1475 TRUE, /* pc_relative */
1476 0, /* bitpos */
1477 complain_overflow_signed, /* complain_on_overflow */
1478 bfd_elf_generic_reloc, /* special_function */
1479 "R_ARM_THM_JUMP8", /* name */
1480 FALSE, /* partial_inplace */
1481 0x000000ff, /* src_mask */
1482 0x000000ff, /* dst_mask */
1483 TRUE), /* pcrel_offset */
1484
1485 /* TLS relocations */
1486 HOWTO (R_ARM_TLS_GD32, /* type */
1487 0, /* rightshift */
1488 2, /* size (0 = byte, 1 = short, 2 = long) */
1489 32, /* bitsize */
1490 FALSE, /* pc_relative */
1491 0, /* bitpos */
1492 complain_overflow_bitfield,/* complain_on_overflow */
1493 NULL, /* special_function */
1494 "R_ARM_TLS_GD32", /* name */
1495 TRUE, /* partial_inplace */
1496 0xffffffff, /* src_mask */
1497 0xffffffff, /* dst_mask */
1498 FALSE), /* pcrel_offset */
1499
1500 HOWTO (R_ARM_TLS_LDM32, /* type */
1501 0, /* rightshift */
1502 2, /* size (0 = byte, 1 = short, 2 = long) */
1503 32, /* bitsize */
1504 FALSE, /* pc_relative */
1505 0, /* bitpos */
1506 complain_overflow_bitfield,/* complain_on_overflow */
1507 bfd_elf_generic_reloc, /* special_function */
1508 "R_ARM_TLS_LDM32", /* name */
1509 TRUE, /* partial_inplace */
1510 0xffffffff, /* src_mask */
1511 0xffffffff, /* dst_mask */
1512 FALSE), /* pcrel_offset */
1513
1514 HOWTO (R_ARM_TLS_LDO32, /* type */
1515 0, /* rightshift */
1516 2, /* size (0 = byte, 1 = short, 2 = long) */
1517 32, /* bitsize */
1518 FALSE, /* pc_relative */
1519 0, /* bitpos */
1520 complain_overflow_bitfield,/* complain_on_overflow */
1521 bfd_elf_generic_reloc, /* special_function */
1522 "R_ARM_TLS_LDO32", /* name */
1523 TRUE, /* partial_inplace */
1524 0xffffffff, /* src_mask */
1525 0xffffffff, /* dst_mask */
1526 FALSE), /* pcrel_offset */
1527
1528 HOWTO (R_ARM_TLS_IE32, /* type */
1529 0, /* rightshift */
1530 2, /* size (0 = byte, 1 = short, 2 = long) */
1531 32, /* bitsize */
1532 FALSE, /* pc_relative */
1533 0, /* bitpos */
1534 complain_overflow_bitfield,/* complain_on_overflow */
1535 NULL, /* special_function */
1536 "R_ARM_TLS_IE32", /* name */
1537 TRUE, /* partial_inplace */
1538 0xffffffff, /* src_mask */
1539 0xffffffff, /* dst_mask */
1540 FALSE), /* pcrel_offset */
1541
1542 HOWTO (R_ARM_TLS_LE32, /* type */
1543 0, /* rightshift */
1544 2, /* size (0 = byte, 1 = short, 2 = long) */
1545 32, /* bitsize */
1546 FALSE, /* pc_relative */
1547 0, /* bitpos */
1548 complain_overflow_bitfield,/* complain_on_overflow */
1549 bfd_elf_generic_reloc, /* special_function */
1550 "R_ARM_TLS_LE32", /* name */
1551 TRUE, /* partial_inplace */
1552 0xffffffff, /* src_mask */
1553 0xffffffff, /* dst_mask */
1554 FALSE), /* pcrel_offset */
1555
1556 HOWTO (R_ARM_TLS_LDO12, /* type */
1557 0, /* rightshift */
1558 2, /* size (0 = byte, 1 = short, 2 = long) */
1559 12, /* bitsize */
1560 FALSE, /* pc_relative */
1561 0, /* bitpos */
1562 complain_overflow_bitfield,/* complain_on_overflow */
1563 bfd_elf_generic_reloc, /* special_function */
1564 "R_ARM_TLS_LDO12", /* name */
1565 FALSE, /* partial_inplace */
1566 0x00000fff, /* src_mask */
1567 0x00000fff, /* dst_mask */
1568 FALSE), /* pcrel_offset */
1569
1570 HOWTO (R_ARM_TLS_LE12, /* type */
1571 0, /* rightshift */
1572 2, /* size (0 = byte, 1 = short, 2 = long) */
1573 12, /* bitsize */
1574 FALSE, /* pc_relative */
1575 0, /* bitpos */
1576 complain_overflow_bitfield,/* complain_on_overflow */
1577 bfd_elf_generic_reloc, /* special_function */
1578 "R_ARM_TLS_LE12", /* name */
1579 FALSE, /* partial_inplace */
1580 0x00000fff, /* src_mask */
1581 0x00000fff, /* dst_mask */
1582 FALSE), /* pcrel_offset */
1583
1584 HOWTO (R_ARM_TLS_IE12GP, /* type */
1585 0, /* rightshift */
1586 2, /* size (0 = byte, 1 = short, 2 = long) */
1587 12, /* bitsize */
1588 FALSE, /* pc_relative */
1589 0, /* bitpos */
1590 complain_overflow_bitfield,/* complain_on_overflow */
1591 bfd_elf_generic_reloc, /* special_function */
1592 "R_ARM_TLS_IE12GP", /* name */
1593 FALSE, /* partial_inplace */
1594 0x00000fff, /* src_mask */
1595 0x00000fff, /* dst_mask */
1596 FALSE), /* pcrel_offset */
1597 };
1598
1599 /* 112-127 private relocations
1600 128 R_ARM_ME_TOO, obsolete
1601 129-255 unallocated in AAELF.
1602
1603 249-255 extended, currently unused, relocations: */
1604
1605 static reloc_howto_type elf32_arm_howto_table_2[4] =
1606 {
1607 HOWTO (R_ARM_RREL32, /* type */
1608 0, /* rightshift */
1609 0, /* size (0 = byte, 1 = short, 2 = long) */
1610 0, /* bitsize */
1611 FALSE, /* pc_relative */
1612 0, /* bitpos */
1613 complain_overflow_dont,/* complain_on_overflow */
1614 bfd_elf_generic_reloc, /* special_function */
1615 "R_ARM_RREL32", /* name */
1616 FALSE, /* partial_inplace */
1617 0, /* src_mask */
1618 0, /* dst_mask */
1619 FALSE), /* pcrel_offset */
1620
1621 HOWTO (R_ARM_RABS32, /* type */
1622 0, /* rightshift */
1623 0, /* size (0 = byte, 1 = short, 2 = long) */
1624 0, /* bitsize */
1625 FALSE, /* pc_relative */
1626 0, /* bitpos */
1627 complain_overflow_dont,/* complain_on_overflow */
1628 bfd_elf_generic_reloc, /* special_function */
1629 "R_ARM_RABS32", /* name */
1630 FALSE, /* partial_inplace */
1631 0, /* src_mask */
1632 0, /* dst_mask */
1633 FALSE), /* pcrel_offset */
1634
1635 HOWTO (R_ARM_RPC24, /* type */
1636 0, /* rightshift */
1637 0, /* size (0 = byte, 1 = short, 2 = long) */
1638 0, /* bitsize */
1639 FALSE, /* pc_relative */
1640 0, /* bitpos */
1641 complain_overflow_dont,/* complain_on_overflow */
1642 bfd_elf_generic_reloc, /* special_function */
1643 "R_ARM_RPC24", /* name */
1644 FALSE, /* partial_inplace */
1645 0, /* src_mask */
1646 0, /* dst_mask */
1647 FALSE), /* pcrel_offset */
1648
1649 HOWTO (R_ARM_RBASE, /* type */
1650 0, /* rightshift */
1651 0, /* size (0 = byte, 1 = short, 2 = long) */
1652 0, /* bitsize */
1653 FALSE, /* pc_relative */
1654 0, /* bitpos */
1655 complain_overflow_dont,/* complain_on_overflow */
1656 bfd_elf_generic_reloc, /* special_function */
1657 "R_ARM_RBASE", /* name */
1658 FALSE, /* partial_inplace */
1659 0, /* src_mask */
1660 0, /* dst_mask */
1661 FALSE) /* pcrel_offset */
1662 };
1663
1664 static reloc_howto_type *
1665 elf32_arm_howto_from_type (unsigned int r_type)
1666 {
1667 if (r_type < ARRAY_SIZE (elf32_arm_howto_table_1))
1668 return &elf32_arm_howto_table_1[r_type];
1669
1670 if (r_type >= R_ARM_RREL32
1671 && r_type < R_ARM_RREL32 + ARRAY_SIZE (elf32_arm_howto_table_2))
1672 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1673
1674 return NULL;
1675 }
1676
1677 static void
1678 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1679 Elf_Internal_Rela * elf_reloc)
1680 {
1681 unsigned int r_type;
1682
1683 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1684 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1685 }
1686
1687 struct elf32_arm_reloc_map
1688 {
1689 bfd_reloc_code_real_type bfd_reloc_val;
1690 unsigned char elf_reloc_val;
1691 };
1692
1693 /* All entries in this list must also be present in elf32_arm_howto_table. */
1694 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1695 {
1696 {BFD_RELOC_NONE, R_ARM_NONE},
1697 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1698 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1699 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1700 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1701 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1702 {BFD_RELOC_32, R_ARM_ABS32},
1703 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1704 {BFD_RELOC_8, R_ARM_ABS8},
1705 {BFD_RELOC_16, R_ARM_ABS16},
1706 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1707 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1708 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1709 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1710 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1714 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1715 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1716 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1717 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1718 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1719 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1720 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1721 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1722 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1723 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1724 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1725 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1726 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1727 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1728 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1729 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1730 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1731 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1732 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1733 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1734 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1735 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1736 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1737 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1738 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1739 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1740 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1741 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1742 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1743 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1744 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1745 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1746 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1747 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1748 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1749 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1750 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1751 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1752 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1753 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1754 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1755 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1756 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1757 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1758 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1759 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1760 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1761 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1762 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1763 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1764 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1765 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1766 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1767 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1768 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1769 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1770 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1771 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1772 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2},
1773 {BFD_RELOC_ARM_V4BX, R_ARM_V4BX}
1774 };
1775
1776 static reloc_howto_type *
1777 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1778 bfd_reloc_code_real_type code)
1779 {
1780 unsigned int i;
1781
1782 for (i = 0; i < ARRAY_SIZE (elf32_arm_reloc_map); i ++)
1783 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1784 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1785
1786 return NULL;
1787 }
1788
1789 static reloc_howto_type *
1790 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1791 const char *r_name)
1792 {
1793 unsigned int i;
1794
1795 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_1); i++)
1796 if (elf32_arm_howto_table_1[i].name != NULL
1797 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1798 return &elf32_arm_howto_table_1[i];
1799
1800 for (i = 0; i < ARRAY_SIZE (elf32_arm_howto_table_2); i++)
1801 if (elf32_arm_howto_table_2[i].name != NULL
1802 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1803 return &elf32_arm_howto_table_2[i];
1804
1805 return NULL;
1806 }
1807
1808 /* Support for core dump NOTE sections. */
1809
1810 static bfd_boolean
1811 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1812 {
1813 int offset;
1814 size_t size;
1815
1816 switch (note->descsz)
1817 {
1818 default:
1819 return FALSE;
1820
1821 case 148: /* Linux/ARM 32-bit. */
1822 /* pr_cursig */
1823 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1824
1825 /* pr_pid */
1826 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1827
1828 /* pr_reg */
1829 offset = 72;
1830 size = 72;
1831
1832 break;
1833 }
1834
1835 /* Make a ".reg/999" section. */
1836 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1837 size, note->descpos + offset);
1838 }
1839
1840 static bfd_boolean
1841 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1842 {
1843 switch (note->descsz)
1844 {
1845 default:
1846 return FALSE;
1847
1848 case 124: /* Linux/ARM elf_prpsinfo. */
1849 elf_tdata (abfd)->core_program
1850 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1851 elf_tdata (abfd)->core_command
1852 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1853 }
1854
1855 /* Note that for some reason, a spurious space is tacked
1856 onto the end of the args in some (at least one anyway)
1857 implementations, so strip it off if it exists. */
1858 {
1859 char *command = elf_tdata (abfd)->core_command;
1860 int n = strlen (command);
1861
1862 if (0 < n && command[n - 1] == ' ')
1863 command[n - 1] = '\0';
1864 }
1865
1866 return TRUE;
1867 }
1868
1869 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1870 #define TARGET_LITTLE_NAME "elf32-littlearm"
1871 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1872 #define TARGET_BIG_NAME "elf32-bigarm"
1873
1874 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1875 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1876
1877 typedef unsigned long int insn32;
1878 typedef unsigned short int insn16;
1879
1880 /* In lieu of proper flags, assume all EABIv4 or later objects are
1881 interworkable. */
1882 #define INTERWORK_FLAG(abfd) \
1883 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1884 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1885
1886 /* The linker script knows the section names for placement.
1887 The entry_names are used to do simple name mangling on the stubs.
1888 Given a function name, and its type, the stub can be found. The
1889 name can be changed. The only requirement is the %s be present. */
1890 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1891 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1892
1893 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1894 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1895
1896 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1897 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1898
1899 #define ARM_BX_GLUE_SECTION_NAME ".v4_bx"
1900 #define ARM_BX_GLUE_ENTRY_NAME "__bx_r%d"
1901
1902 #define STUB_ENTRY_NAME "__%s_veneer"
1903
1904 /* The name of the dynamic interpreter. This is put in the .interp
1905 section. */
1906 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1907
1908 #ifdef FOUR_WORD_PLT
1909
1910 /* The first entry in a procedure linkage table looks like
1911 this. It is set up so that any shared library function that is
1912 called before the relocation has been set up calls the dynamic
1913 linker first. */
1914 static const bfd_vma elf32_arm_plt0_entry [] =
1915 {
1916 0xe52de004, /* str lr, [sp, #-4]! */
1917 0xe59fe010, /* ldr lr, [pc, #16] */
1918 0xe08fe00e, /* add lr, pc, lr */
1919 0xe5bef008, /* ldr pc, [lr, #8]! */
1920 };
1921
1922 /* Subsequent entries in a procedure linkage table look like
1923 this. */
1924 static const bfd_vma elf32_arm_plt_entry [] =
1925 {
1926 0xe28fc600, /* add ip, pc, #NN */
1927 0xe28cca00, /* add ip, ip, #NN */
1928 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1929 0x00000000, /* unused */
1930 };
1931
1932 #else
1933
1934 /* The first entry in a procedure linkage table looks like
1935 this. It is set up so that any shared library function that is
1936 called before the relocation has been set up calls the dynamic
1937 linker first. */
1938 static const bfd_vma elf32_arm_plt0_entry [] =
1939 {
1940 0xe52de004, /* str lr, [sp, #-4]! */
1941 0xe59fe004, /* ldr lr, [pc, #4] */
1942 0xe08fe00e, /* add lr, pc, lr */
1943 0xe5bef008, /* ldr pc, [lr, #8]! */
1944 0x00000000, /* &GOT[0] - . */
1945 };
1946
1947 /* Subsequent entries in a procedure linkage table look like
1948 this. */
1949 static const bfd_vma elf32_arm_plt_entry [] =
1950 {
1951 0xe28fc600, /* add ip, pc, #0xNN00000 */
1952 0xe28cca00, /* add ip, ip, #0xNN000 */
1953 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1954 };
1955
1956 #endif
1957
1958 /* The format of the first entry in the procedure linkage table
1959 for a VxWorks executable. */
1960 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1961 {
1962 0xe52dc008, /* str ip,[sp,#-8]! */
1963 0xe59fc000, /* ldr ip,[pc] */
1964 0xe59cf008, /* ldr pc,[ip,#8] */
1965 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1966 };
1967
1968 /* The format of subsequent entries in a VxWorks executable. */
1969 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1970 {
1971 0xe59fc000, /* ldr ip,[pc] */
1972 0xe59cf000, /* ldr pc,[ip] */
1973 0x00000000, /* .long @got */
1974 0xe59fc000, /* ldr ip,[pc] */
1975 0xea000000, /* b _PLT */
1976 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1977 };
1978
1979 /* The format of entries in a VxWorks shared library. */
1980 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1981 {
1982 0xe59fc000, /* ldr ip,[pc] */
1983 0xe79cf009, /* ldr pc,[ip,r9] */
1984 0x00000000, /* .long @got */
1985 0xe59fc000, /* ldr ip,[pc] */
1986 0xe599f008, /* ldr pc,[r9,#8] */
1987 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1988 };
1989
1990 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1991 #define PLT_THUMB_STUB_SIZE 4
1992 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1993 {
1994 0x4778, /* bx pc */
1995 0x46c0 /* nop */
1996 };
1997
1998 /* The entries in a PLT when using a DLL-based target with multiple
1999 address spaces. */
2000 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2001 {
2002 0xe51ff004, /* ldr pc, [pc, #-4] */
2003 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2004 };
2005
2006 #define ARM_MAX_FWD_BRANCH_OFFSET ((((1 << 23) - 1) << 2) + 8)
2007 #define ARM_MAX_BWD_BRANCH_OFFSET ((-((1 << 23) << 2)) + 8)
2008 #define THM_MAX_FWD_BRANCH_OFFSET ((1 << 22) -2 + 4)
2009 #define THM_MAX_BWD_BRANCH_OFFSET (-(1 << 22) + 4)
2010 #define THM2_MAX_FWD_BRANCH_OFFSET (((1 << 24) - 2) + 4)
2011 #define THM2_MAX_BWD_BRANCH_OFFSET (-(1 << 24) + 4)
2012
2013 static const bfd_vma arm_long_branch_stub[] =
2014 {
2015 0xe51ff004, /* ldr pc, [pc, #-4] */
2016 0x00000000, /* dcd R_ARM_ABS32(X) */
2017 };
2018
2019 static const bfd_vma arm_thumb_v4t_long_branch_stub[] =
2020 {
2021 0xe59fc000, /* ldr ip, [pc, #0] */
2022 0xe12fff1c, /* bx ip */
2023 0x00000000, /* dcd R_ARM_ABS32(X) */
2024 };
2025
2026 static const bfd_vma arm_thumb_thumb_long_branch_stub[] =
2027 {
2028 0x4e02b540, /* push {r6, lr} */
2029 /* ldr r6, [pc, #8] */
2030 0x473046fe, /* mov lr, pc */
2031 /* bx r6 */
2032 0xbf00bd40, /* pop {r6, pc} */
2033 /* nop */
2034 0x00000000, /* dcd R_ARM_ABS32(X) */
2035 };
2036
2037 static const bfd_vma arm_thumb_arm_v4t_long_branch_stub[] =
2038 {
2039 0x4e03b540, /* push {r6, lr} */
2040 /* ldr r6, [pc, #12] */
2041 0x473046fe, /* mov lr, pc */
2042 /* bx r6 */
2043 0xe8bd4040, /* pop {r6, pc} */
2044 0xe12fff1e, /* bx lr */
2045 0x00000000, /* dcd R_ARM_ABS32(X) */
2046 };
2047
2048 static const bfd_vma arm_thumb_arm_v4t_short_branch_stub[] =
2049 {
2050 0x46c04778, /* bx pc */
2051 /* nop */
2052 0xea000000, /* b (X) */
2053 };
2054
2055 static const bfd_vma arm_pic_long_branch_stub[] =
2056 {
2057 0xe59fc000, /* ldr r12, [pc] */
2058 0xe08ff00c, /* add pc, pc, ip */
2059 0x00000000, /* dcd R_ARM_REL32(X) */
2060 };
2061
2062 /* Section name for stubs is the associated section name plus this
2063 string. */
2064 #define STUB_SUFFIX ".stub"
2065
2066 enum elf32_arm_stub_type
2067 {
2068 arm_stub_none,
2069 arm_stub_long_branch,
2070 arm_thumb_v4t_stub_long_branch,
2071 arm_thumb_thumb_stub_long_branch,
2072 arm_thumb_arm_v4t_stub_long_branch,
2073 arm_thumb_arm_v4t_stub_short_branch,
2074 arm_stub_pic_long_branch,
2075 };
2076
2077 struct elf32_arm_stub_hash_entry
2078 {
2079 /* Base hash table entry structure. */
2080 struct bfd_hash_entry root;
2081
2082 /* The stub section. */
2083 asection *stub_sec;
2084
2085 /* Offset within stub_sec of the beginning of this stub. */
2086 bfd_vma stub_offset;
2087
2088 /* Given the symbol's value and its section we can determine its final
2089 value when building the stubs (so the stub knows where to jump). */
2090 bfd_vma target_value;
2091 asection *target_section;
2092
2093 enum elf32_arm_stub_type stub_type;
2094
2095 /* The symbol table entry, if any, that this was derived from. */
2096 struct elf32_arm_link_hash_entry *h;
2097
2098 /* Destination symbol type (STT_ARM_TFUNC, ...) */
2099 unsigned char st_type;
2100
2101 /* Where this stub is being called from, or, in the case of combined
2102 stub sections, the first input section in the group. */
2103 asection *id_sec;
2104
2105 /* The name for the local symbol at the start of this stub. The
2106 stub name in the hash table has to be unique; this does not, so
2107 it can be friendlier. */
2108 char *output_name;
2109 };
2110
2111 /* Used to build a map of a section. This is required for mixed-endian
2112 code/data. */
2113
2114 typedef struct elf32_elf_section_map
2115 {
2116 bfd_vma vma;
2117 char type;
2118 }
2119 elf32_arm_section_map;
2120
2121 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2122
2123 typedef enum
2124 {
2125 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2126 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2127 VFP11_ERRATUM_ARM_VENEER,
2128 VFP11_ERRATUM_THUMB_VENEER
2129 }
2130 elf32_vfp11_erratum_type;
2131
2132 typedef struct elf32_vfp11_erratum_list
2133 {
2134 struct elf32_vfp11_erratum_list *next;
2135 bfd_vma vma;
2136 union
2137 {
2138 struct
2139 {
2140 struct elf32_vfp11_erratum_list *veneer;
2141 unsigned int vfp_insn;
2142 } b;
2143 struct
2144 {
2145 struct elf32_vfp11_erratum_list *branch;
2146 unsigned int id;
2147 } v;
2148 } u;
2149 elf32_vfp11_erratum_type type;
2150 }
2151 elf32_vfp11_erratum_list;
2152
2153 typedef struct _arm_elf_section_data
2154 {
2155 struct bfd_elf_section_data elf;
2156 unsigned int mapcount;
2157 unsigned int mapsize;
2158 elf32_arm_section_map *map;
2159 unsigned int erratumcount;
2160 elf32_vfp11_erratum_list *erratumlist;
2161 }
2162 _arm_elf_section_data;
2163
2164 #define elf32_arm_section_data(sec) \
2165 ((_arm_elf_section_data *) elf_section_data (sec))
2166
2167 /* The size of the thread control block. */
2168 #define TCB_SIZE 8
2169
2170 struct elf_arm_obj_tdata
2171 {
2172 struct elf_obj_tdata root;
2173
2174 /* tls_type for each local got entry. */
2175 char *local_got_tls_type;
2176
2177 /* Zero to warn when linking objects with incompatible enum sizes. */
2178 int no_enum_size_warning;
2179
2180 /* Zero to warn when linking objects with incompatible wchar_t sizes. */
2181 int no_wchar_size_warning;
2182 };
2183
2184 #define elf_arm_tdata(bfd) \
2185 ((struct elf_arm_obj_tdata *) (bfd)->tdata.any)
2186
2187 #define elf32_arm_local_got_tls_type(bfd) \
2188 (elf_arm_tdata (bfd)->local_got_tls_type)
2189
2190 #define is_arm_elf(bfd) \
2191 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
2192 && elf_tdata (bfd) != NULL \
2193 && elf_object_id (bfd) == ARM_ELF_TDATA)
2194
2195 static bfd_boolean
2196 elf32_arm_mkobject (bfd *abfd)
2197 {
2198 return bfd_elf_allocate_object (abfd, sizeof (struct elf_arm_obj_tdata),
2199 ARM_ELF_TDATA);
2200 }
2201
2202 /* The ARM linker needs to keep track of the number of relocs that it
2203 decides to copy in check_relocs for each symbol. This is so that
2204 it can discard PC relative relocs if it doesn't need them when
2205 linking with -Bsymbolic. We store the information in a field
2206 extending the regular ELF linker hash table. */
2207
2208 /* This structure keeps track of the number of relocs we have copied
2209 for a given symbol. */
2210 struct elf32_arm_relocs_copied
2211 {
2212 /* Next section. */
2213 struct elf32_arm_relocs_copied * next;
2214 /* A section in dynobj. */
2215 asection * section;
2216 /* Number of relocs copied in this section. */
2217 bfd_size_type count;
2218 /* Number of PC-relative relocs copied in this section. */
2219 bfd_size_type pc_count;
2220 };
2221
2222 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2223
2224 /* Arm ELF linker hash entry. */
2225 struct elf32_arm_link_hash_entry
2226 {
2227 struct elf_link_hash_entry root;
2228
2229 /* Number of PC relative relocs copied for this symbol. */
2230 struct elf32_arm_relocs_copied * relocs_copied;
2231
2232 /* We reference count Thumb references to a PLT entry separately,
2233 so that we can emit the Thumb trampoline only if needed. */
2234 bfd_signed_vma plt_thumb_refcount;
2235
2236 /* Some references from Thumb code may be eliminated by BL->BLX
2237 conversion, so record them separately. */
2238 bfd_signed_vma plt_maybe_thumb_refcount;
2239
2240 /* Since PLT entries have variable size if the Thumb prologue is
2241 used, we need to record the index into .got.plt instead of
2242 recomputing it from the PLT offset. */
2243 bfd_signed_vma plt_got_offset;
2244
2245 #define GOT_UNKNOWN 0
2246 #define GOT_NORMAL 1
2247 #define GOT_TLS_GD 2
2248 #define GOT_TLS_IE 4
2249 unsigned char tls_type;
2250
2251 /* The symbol marking the real symbol location for exported thumb
2252 symbols with Arm stubs. */
2253 struct elf_link_hash_entry *export_glue;
2254
2255 /* A pointer to the most recently used stub hash entry against this
2256 symbol. */
2257 struct elf32_arm_stub_hash_entry *stub_cache;
2258 };
2259
2260 /* Traverse an arm ELF linker hash table. */
2261 #define elf32_arm_link_hash_traverse(table, func, info) \
2262 (elf_link_hash_traverse \
2263 (&(table)->root, \
2264 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2265 (info)))
2266
2267 /* Get the ARM elf linker hash table from a link_info structure. */
2268 #define elf32_arm_hash_table(info) \
2269 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2270
2271 #define arm_stub_hash_lookup(table, string, create, copy) \
2272 ((struct elf32_arm_stub_hash_entry *) \
2273 bfd_hash_lookup ((table), (string), (create), (copy)))
2274
2275 /* ARM ELF linker hash table. */
2276 struct elf32_arm_link_hash_table
2277 {
2278 /* The main hash table. */
2279 struct elf_link_hash_table root;
2280
2281 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2282 bfd_size_type thumb_glue_size;
2283
2284 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2285 bfd_size_type arm_glue_size;
2286
2287 /* The size in bytes of section containing the ARMv4 BX veneers. */
2288 bfd_size_type bx_glue_size;
2289
2290 /* Offsets of ARMv4 BX veneers. Bit1 set if present, and Bit0 set when
2291 veneer has been populated. */
2292 bfd_vma bx_glue_offset[15];
2293
2294 /* The size in bytes of the section containing glue for VFP11 erratum
2295 veneers. */
2296 bfd_size_type vfp11_erratum_glue_size;
2297
2298 /* An arbitrary input BFD chosen to hold the glue sections. */
2299 bfd * bfd_of_glue_owner;
2300
2301 /* Nonzero to output a BE8 image. */
2302 int byteswap_code;
2303
2304 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2305 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2306 int target1_is_rel;
2307
2308 /* The relocation to use for R_ARM_TARGET2 relocations. */
2309 int target2_reloc;
2310
2311 /* 0 = Ignore R_ARM_V4BX.
2312 1 = Convert BX to MOV PC.
2313 2 = Generate v4 interworing stubs. */
2314 int fix_v4bx;
2315
2316 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2317 int use_blx;
2318
2319 /* What sort of code sequences we should look for which may trigger the
2320 VFP11 denorm erratum. */
2321 bfd_arm_vfp11_fix vfp11_fix;
2322
2323 /* Global counter for the number of fixes we have emitted. */
2324 int num_vfp11_fixes;
2325
2326 /* Nonzero to force PIC branch veneers. */
2327 int pic_veneer;
2328
2329 /* The number of bytes in the initial entry in the PLT. */
2330 bfd_size_type plt_header_size;
2331
2332 /* The number of bytes in the subsequent PLT etries. */
2333 bfd_size_type plt_entry_size;
2334
2335 /* True if the target system is VxWorks. */
2336 int vxworks_p;
2337
2338 /* True if the target system is Symbian OS. */
2339 int symbian_p;
2340
2341 /* True if the target uses REL relocations. */
2342 int use_rel;
2343
2344 /* Short-cuts to get to dynamic linker sections. */
2345 asection *sgot;
2346 asection *sgotplt;
2347 asection *srelgot;
2348 asection *splt;
2349 asection *srelplt;
2350 asection *sdynbss;
2351 asection *srelbss;
2352
2353 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2354 asection *srelplt2;
2355
2356 /* Data for R_ARM_TLS_LDM32 relocations. */
2357 union
2358 {
2359 bfd_signed_vma refcount;
2360 bfd_vma offset;
2361 } tls_ldm_got;
2362
2363 /* Small local sym to section mapping cache. */
2364 struct sym_sec_cache sym_sec;
2365
2366 /* For convenience in allocate_dynrelocs. */
2367 bfd * obfd;
2368
2369 /* The stub hash table. */
2370 struct bfd_hash_table stub_hash_table;
2371
2372 /* Linker stub bfd. */
2373 bfd *stub_bfd;
2374
2375 /* Linker call-backs. */
2376 asection * (*add_stub_section) (const char *, asection *);
2377 void (*layout_sections_again) (void);
2378
2379 /* Array to keep track of which stub sections have been created, and
2380 information on stub grouping. */
2381 struct map_stub
2382 {
2383 /* This is the section to which stubs in the group will be
2384 attached. */
2385 asection *link_sec;
2386 /* The stub section. */
2387 asection *stub_sec;
2388 } *stub_group;
2389
2390 /* Assorted information used by elf32_arm_size_stubs. */
2391 unsigned int bfd_count;
2392 int top_index;
2393 asection **input_list;
2394 };
2395
2396 /* Create an entry in an ARM ELF linker hash table. */
2397
2398 static struct bfd_hash_entry *
2399 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2400 struct bfd_hash_table * table,
2401 const char * string)
2402 {
2403 struct elf32_arm_link_hash_entry * ret =
2404 (struct elf32_arm_link_hash_entry *) entry;
2405
2406 /* Allocate the structure if it has not already been allocated by a
2407 subclass. */
2408 if (ret == NULL)
2409 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2410 if (ret == NULL)
2411 return (struct bfd_hash_entry *) ret;
2412
2413 /* Call the allocation method of the superclass. */
2414 ret = ((struct elf32_arm_link_hash_entry *)
2415 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2416 table, string));
2417 if (ret != NULL)
2418 {
2419 ret->relocs_copied = NULL;
2420 ret->tls_type = GOT_UNKNOWN;
2421 ret->plt_thumb_refcount = 0;
2422 ret->plt_maybe_thumb_refcount = 0;
2423 ret->plt_got_offset = -1;
2424 ret->export_glue = NULL;
2425
2426 ret->stub_cache = NULL;
2427 }
2428
2429 return (struct bfd_hash_entry *) ret;
2430 }
2431
2432 /* Initialize an entry in the stub hash table. */
2433
2434 static struct bfd_hash_entry *
2435 stub_hash_newfunc (struct bfd_hash_entry *entry,
2436 struct bfd_hash_table *table,
2437 const char *string)
2438 {
2439 /* Allocate the structure if it has not already been allocated by a
2440 subclass. */
2441 if (entry == NULL)
2442 {
2443 entry = bfd_hash_allocate (table,
2444 sizeof (struct elf32_arm_stub_hash_entry));
2445 if (entry == NULL)
2446 return entry;
2447 }
2448
2449 /* Call the allocation method of the superclass. */
2450 entry = bfd_hash_newfunc (entry, table, string);
2451 if (entry != NULL)
2452 {
2453 struct elf32_arm_stub_hash_entry *eh;
2454
2455 /* Initialize the local fields. */
2456 eh = (struct elf32_arm_stub_hash_entry *) entry;
2457 eh->stub_sec = NULL;
2458 eh->stub_offset = 0;
2459 eh->target_value = 0;
2460 eh->target_section = NULL;
2461 eh->stub_type = arm_stub_none;
2462 eh->h = NULL;
2463 eh->id_sec = NULL;
2464 }
2465
2466 return entry;
2467 }
2468
2469 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2470 shortcuts to them in our hash table. */
2471
2472 static bfd_boolean
2473 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2474 {
2475 struct elf32_arm_link_hash_table *htab;
2476
2477 htab = elf32_arm_hash_table (info);
2478 /* BPABI objects never have a GOT, or associated sections. */
2479 if (htab->symbian_p)
2480 return TRUE;
2481
2482 if (! _bfd_elf_create_got_section (dynobj, info))
2483 return FALSE;
2484
2485 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2486 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2487 if (!htab->sgot || !htab->sgotplt)
2488 abort ();
2489
2490 htab->srelgot = bfd_make_section_with_flags (dynobj,
2491 RELOC_SECTION (htab, ".got"),
2492 (SEC_ALLOC | SEC_LOAD
2493 | SEC_HAS_CONTENTS
2494 | SEC_IN_MEMORY
2495 | SEC_LINKER_CREATED
2496 | SEC_READONLY));
2497 if (htab->srelgot == NULL
2498 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2499 return FALSE;
2500 return TRUE;
2501 }
2502
2503 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2504 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2505 hash table. */
2506
2507 static bfd_boolean
2508 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2509 {
2510 struct elf32_arm_link_hash_table *htab;
2511
2512 htab = elf32_arm_hash_table (info);
2513 if (!htab->sgot && !create_got_section (dynobj, info))
2514 return FALSE;
2515
2516 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2517 return FALSE;
2518
2519 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2520 htab->srelplt = bfd_get_section_by_name (dynobj,
2521 RELOC_SECTION (htab, ".plt"));
2522 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2523 if (!info->shared)
2524 htab->srelbss = bfd_get_section_by_name (dynobj,
2525 RELOC_SECTION (htab, ".bss"));
2526
2527 if (htab->vxworks_p)
2528 {
2529 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2530 return FALSE;
2531
2532 if (info->shared)
2533 {
2534 htab->plt_header_size = 0;
2535 htab->plt_entry_size
2536 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2537 }
2538 else
2539 {
2540 htab->plt_header_size
2541 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2542 htab->plt_entry_size
2543 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2544 }
2545 }
2546
2547 if (!htab->splt
2548 || !htab->srelplt
2549 || !htab->sdynbss
2550 || (!info->shared && !htab->srelbss))
2551 abort ();
2552
2553 return TRUE;
2554 }
2555
2556 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2557
2558 static void
2559 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2560 struct elf_link_hash_entry *dir,
2561 struct elf_link_hash_entry *ind)
2562 {
2563 struct elf32_arm_link_hash_entry *edir, *eind;
2564
2565 edir = (struct elf32_arm_link_hash_entry *) dir;
2566 eind = (struct elf32_arm_link_hash_entry *) ind;
2567
2568 if (eind->relocs_copied != NULL)
2569 {
2570 if (edir->relocs_copied != NULL)
2571 {
2572 struct elf32_arm_relocs_copied **pp;
2573 struct elf32_arm_relocs_copied *p;
2574
2575 /* Add reloc counts against the indirect sym to the direct sym
2576 list. Merge any entries against the same section. */
2577 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2578 {
2579 struct elf32_arm_relocs_copied *q;
2580
2581 for (q = edir->relocs_copied; q != NULL; q = q->next)
2582 if (q->section == p->section)
2583 {
2584 q->pc_count += p->pc_count;
2585 q->count += p->count;
2586 *pp = p->next;
2587 break;
2588 }
2589 if (q == NULL)
2590 pp = &p->next;
2591 }
2592 *pp = edir->relocs_copied;
2593 }
2594
2595 edir->relocs_copied = eind->relocs_copied;
2596 eind->relocs_copied = NULL;
2597 }
2598
2599 if (ind->root.type == bfd_link_hash_indirect)
2600 {
2601 /* Copy over PLT info. */
2602 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2603 eind->plt_thumb_refcount = 0;
2604 edir->plt_maybe_thumb_refcount += eind->plt_maybe_thumb_refcount;
2605 eind->plt_maybe_thumb_refcount = 0;
2606
2607 if (dir->got.refcount <= 0)
2608 {
2609 edir->tls_type = eind->tls_type;
2610 eind->tls_type = GOT_UNKNOWN;
2611 }
2612 }
2613
2614 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2615 }
2616
2617 /* Create an ARM elf linker hash table. */
2618
2619 static struct bfd_link_hash_table *
2620 elf32_arm_link_hash_table_create (bfd *abfd)
2621 {
2622 struct elf32_arm_link_hash_table *ret;
2623 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2624
2625 ret = bfd_malloc (amt);
2626 if (ret == NULL)
2627 return NULL;
2628
2629 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2630 elf32_arm_link_hash_newfunc,
2631 sizeof (struct elf32_arm_link_hash_entry)))
2632 {
2633 free (ret);
2634 return NULL;
2635 }
2636
2637 ret->sgot = NULL;
2638 ret->sgotplt = NULL;
2639 ret->srelgot = NULL;
2640 ret->splt = NULL;
2641 ret->srelplt = NULL;
2642 ret->sdynbss = NULL;
2643 ret->srelbss = NULL;
2644 ret->srelplt2 = NULL;
2645 ret->thumb_glue_size = 0;
2646 ret->arm_glue_size = 0;
2647 ret->bx_glue_size = 0;
2648 memset (ret->bx_glue_offset, 0, sizeof (ret->bx_glue_offset));
2649 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2650 ret->vfp11_erratum_glue_size = 0;
2651 ret->num_vfp11_fixes = 0;
2652 ret->bfd_of_glue_owner = NULL;
2653 ret->byteswap_code = 0;
2654 ret->target1_is_rel = 0;
2655 ret->target2_reloc = R_ARM_NONE;
2656 #ifdef FOUR_WORD_PLT
2657 ret->plt_header_size = 16;
2658 ret->plt_entry_size = 16;
2659 #else
2660 ret->plt_header_size = 20;
2661 ret->plt_entry_size = 12;
2662 #endif
2663 ret->fix_v4bx = 0;
2664 ret->use_blx = 0;
2665 ret->vxworks_p = 0;
2666 ret->symbian_p = 0;
2667 ret->use_rel = 1;
2668 ret->sym_sec.abfd = NULL;
2669 ret->obfd = abfd;
2670 ret->tls_ldm_got.refcount = 0;
2671 ret->stub_bfd = NULL;
2672 ret->add_stub_section = NULL;
2673 ret->layout_sections_again = NULL;
2674 ret->stub_group = NULL;
2675 ret->bfd_count = 0;
2676 ret->top_index = 0;
2677 ret->input_list = NULL;
2678
2679 if (!bfd_hash_table_init (&ret->stub_hash_table, stub_hash_newfunc,
2680 sizeof (struct elf32_arm_stub_hash_entry)))
2681 {
2682 free (ret);
2683 return NULL;
2684 }
2685
2686 return &ret->root.root;
2687 }
2688
2689 /* Free the derived linker hash table. */
2690
2691 static void
2692 elf32_arm_hash_table_free (struct bfd_link_hash_table *hash)
2693 {
2694 struct elf32_arm_link_hash_table *ret
2695 = (struct elf32_arm_link_hash_table *) hash;
2696
2697 bfd_hash_table_free (&ret->stub_hash_table);
2698 _bfd_generic_link_hash_table_free (hash);
2699 }
2700
2701 /* Determine if we're dealing with a Thumb only architecture. */
2702
2703 static bfd_boolean
2704 using_thumb_only (struct elf32_arm_link_hash_table *globals)
2705 {
2706 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2707 Tag_CPU_arch);
2708 int profile;
2709
2710 if (arch != TAG_CPU_ARCH_V7)
2711 return FALSE;
2712
2713 profile = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2714 Tag_CPU_arch_profile);
2715
2716 return profile == 'M';
2717 }
2718
2719 /* Determine if we're dealing with a Thumb-2 object. */
2720
2721 static bfd_boolean
2722 using_thumb2 (struct elf32_arm_link_hash_table *globals)
2723 {
2724 int arch = bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
2725 Tag_CPU_arch);
2726 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
2727 }
2728
2729 static bfd_boolean
2730 arm_stub_is_thumb (enum elf32_arm_stub_type stub_type)
2731 {
2732 switch (stub_type)
2733 {
2734 case arm_thumb_thumb_stub_long_branch:
2735 case arm_thumb_arm_v4t_stub_long_branch:
2736 case arm_thumb_arm_v4t_stub_short_branch:
2737 return TRUE;
2738 case arm_stub_none:
2739 BFD_FAIL ();
2740 return FALSE;
2741 break;
2742 default:
2743 return FALSE;
2744 }
2745 }
2746
2747 /* Determine the type of stub needed, if any, for a call. */
2748
2749 static enum elf32_arm_stub_type
2750 arm_type_of_stub (struct bfd_link_info *info,
2751 asection *input_sec,
2752 const Elf_Internal_Rela *rel,
2753 unsigned char st_type,
2754 struct elf32_arm_link_hash_entry *hash,
2755 bfd_vma destination,
2756 asection *sym_sec,
2757 bfd *input_bfd,
2758 const char *name)
2759 {
2760 bfd_vma location;
2761 bfd_signed_vma branch_offset;
2762 unsigned int r_type;
2763 struct elf32_arm_link_hash_table * globals;
2764 int thumb2;
2765 int thumb_only;
2766 enum elf32_arm_stub_type stub_type = arm_stub_none;
2767
2768 /* We don't know the actual type of destination in case it is of
2769 type STT_SECTION: give up. */
2770 if (st_type == STT_SECTION)
2771 return stub_type;
2772
2773 globals = elf32_arm_hash_table (info);
2774
2775 thumb_only = using_thumb_only (globals);
2776
2777 thumb2 = using_thumb2 (globals);
2778
2779 /* Determine where the call point is. */
2780 location = (input_sec->output_offset
2781 + input_sec->output_section->vma
2782 + rel->r_offset);
2783
2784 branch_offset = (bfd_signed_vma)(destination - location);
2785
2786 r_type = ELF32_R_TYPE (rel->r_info);
2787
2788 /* If the call will go through a PLT entry then we do not need
2789 glue. */
2790 if (globals->splt != NULL && hash != NULL && hash->root.plt.offset != (bfd_vma) -1)
2791 return stub_type;
2792
2793 if (r_type == R_ARM_THM_CALL)
2794 {
2795 if ((!thumb2
2796 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
2797 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
2798 || (thumb2
2799 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
2800 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
2801 || ((st_type != STT_ARM_TFUNC) && !globals->use_blx))
2802 {
2803 if (st_type == STT_ARM_TFUNC)
2804 {
2805 /* Thumb to thumb. */
2806 if (!thumb_only)
2807 {
2808 stub_type = (info->shared | globals->pic_veneer)
2809 ? ((globals->use_blx)
2810 ? arm_stub_pic_long_branch
2811 : arm_stub_none)
2812 : (globals->use_blx)
2813 ? arm_stub_long_branch
2814 : arm_stub_none;
2815 }
2816 else
2817 {
2818 stub_type = (info->shared | globals->pic_veneer)
2819 ? arm_stub_none
2820 : (globals->use_blx)
2821 ? arm_thumb_thumb_stub_long_branch
2822 : arm_stub_none;
2823 }
2824 }
2825 else
2826 {
2827 /* Thumb to arm. */
2828 if (sym_sec != NULL
2829 && sym_sec->owner != NULL
2830 && !INTERWORK_FLAG (sym_sec->owner))
2831 {
2832 (*_bfd_error_handler)
2833 (_("%B(%s): warning: interworking not enabled.\n"
2834 " first occurrence: %B: Thumb call to ARM"),
2835 sym_sec->owner, input_bfd, name);
2836 }
2837
2838 stub_type = (info->shared | globals->pic_veneer)
2839 ? ((globals->use_blx)
2840 ? arm_stub_pic_long_branch
2841 : arm_stub_none)
2842 : (globals->use_blx)
2843 ? arm_stub_long_branch
2844 : arm_thumb_arm_v4t_stub_long_branch;
2845
2846 /* Handle v4t short branches. */
2847 if ((stub_type == arm_thumb_arm_v4t_stub_long_branch)
2848 && (branch_offset <= THM_MAX_FWD_BRANCH_OFFSET)
2849 && (branch_offset >= THM_MAX_BWD_BRANCH_OFFSET))
2850 stub_type = arm_thumb_arm_v4t_stub_short_branch;
2851 }
2852 }
2853 }
2854 else if (r_type == R_ARM_CALL)
2855 {
2856 if (st_type == STT_ARM_TFUNC)
2857 {
2858 /* Arm to thumb. */
2859
2860 if (sym_sec != NULL
2861 && sym_sec->owner != NULL
2862 && !INTERWORK_FLAG (sym_sec->owner))
2863 {
2864 (*_bfd_error_handler)
2865 (_("%B(%s): warning: interworking not enabled.\n"
2866 " first occurrence: %B: Thumb call to ARM"),
2867 sym_sec->owner, input_bfd, name);
2868 }
2869
2870 /* We have an extra 2-bytes reach because of
2871 the mode change (bit 24 (H) of BLX encoding). */
2872 if (branch_offset > (ARM_MAX_FWD_BRANCH_OFFSET + 2)
2873 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET)
2874 || !globals->use_blx)
2875 {
2876 stub_type = (info->shared | globals->pic_veneer)
2877 ? arm_stub_pic_long_branch
2878 : (globals->use_blx)
2879 ? arm_stub_long_branch
2880 : arm_thumb_v4t_stub_long_branch;
2881 }
2882 }
2883 else
2884 {
2885 /* Arm to arm. */
2886 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
2887 || (branch_offset < ARM_MAX_BWD_BRANCH_OFFSET))
2888 {
2889 stub_type = (info->shared | globals->pic_veneer)
2890 ? arm_stub_pic_long_branch
2891 : arm_stub_long_branch;
2892 }
2893 }
2894 }
2895
2896 return stub_type;
2897 }
2898
2899 /* Build a name for an entry in the stub hash table. */
2900
2901 static char *
2902 elf32_arm_stub_name (const asection *input_section,
2903 const asection *sym_sec,
2904 const struct elf32_arm_link_hash_entry *hash,
2905 const Elf_Internal_Rela *rel)
2906 {
2907 char *stub_name;
2908 bfd_size_type len;
2909
2910 if (hash)
2911 {
2912 len = 8 + 1 + strlen (hash->root.root.root.string) + 1 + 8 + 1;
2913 stub_name = bfd_malloc (len);
2914 if (stub_name != NULL)
2915 sprintf (stub_name, "%08x_%s+%x",
2916 input_section->id & 0xffffffff,
2917 hash->root.root.root.string,
2918 (int) rel->r_addend & 0xffffffff);
2919 }
2920 else
2921 {
2922 len = 8 + 1 + 8 + 1 + 8 + 1 + 8 + 1;
2923 stub_name = bfd_malloc (len);
2924 if (stub_name != NULL)
2925 sprintf (stub_name, "%08x_%x:%x+%x",
2926 input_section->id & 0xffffffff,
2927 sym_sec->id & 0xffffffff,
2928 (int) ELF32_R_SYM (rel->r_info) & 0xffffffff,
2929 (int) rel->r_addend & 0xffffffff);
2930 }
2931
2932 return stub_name;
2933 }
2934
2935 /* Look up an entry in the stub hash. Stub entries are cached because
2936 creating the stub name takes a bit of time. */
2937
2938 static struct elf32_arm_stub_hash_entry *
2939 elf32_arm_get_stub_entry (const asection *input_section,
2940 const asection *sym_sec,
2941 struct elf_link_hash_entry *hash,
2942 const Elf_Internal_Rela *rel,
2943 struct elf32_arm_link_hash_table *htab)
2944 {
2945 struct elf32_arm_stub_hash_entry *stub_entry;
2946 struct elf32_arm_link_hash_entry *h = (struct elf32_arm_link_hash_entry *) hash;
2947 const asection *id_sec;
2948
2949 if ((input_section->flags & SEC_CODE) == 0)
2950 return NULL;
2951
2952 /* If this input section is part of a group of sections sharing one
2953 stub section, then use the id of the first section in the group.
2954 Stub names need to include a section id, as there may well be
2955 more than one stub used to reach say, printf, and we need to
2956 distinguish between them. */
2957 id_sec = htab->stub_group[input_section->id].link_sec;
2958
2959 if (h != NULL && h->stub_cache != NULL
2960 && h->stub_cache->h == h
2961 && h->stub_cache->id_sec == id_sec)
2962 {
2963 stub_entry = h->stub_cache;
2964 }
2965 else
2966 {
2967 char *stub_name;
2968
2969 stub_name = elf32_arm_stub_name (id_sec, sym_sec, h, rel);
2970 if (stub_name == NULL)
2971 return NULL;
2972
2973 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
2974 stub_name, FALSE, FALSE);
2975 if (h != NULL)
2976 h->stub_cache = stub_entry;
2977
2978 free (stub_name);
2979 }
2980
2981 return stub_entry;
2982 }
2983
2984 /* Add a new stub entry to the stub hash. Not all fields of the new
2985 stub entry are initialised. */
2986
2987 static struct elf32_arm_stub_hash_entry *
2988 elf32_arm_add_stub (const char *stub_name,
2989 asection *section,
2990 struct elf32_arm_link_hash_table *htab)
2991 {
2992 asection *link_sec;
2993 asection *stub_sec;
2994 struct elf32_arm_stub_hash_entry *stub_entry;
2995
2996 link_sec = htab->stub_group[section->id].link_sec;
2997 stub_sec = htab->stub_group[section->id].stub_sec;
2998 if (stub_sec == NULL)
2999 {
3000 stub_sec = htab->stub_group[link_sec->id].stub_sec;
3001 if (stub_sec == NULL)
3002 {
3003 size_t namelen;
3004 bfd_size_type len;
3005 char *s_name;
3006
3007 namelen = strlen (link_sec->name);
3008 len = namelen + sizeof (STUB_SUFFIX);
3009 s_name = bfd_alloc (htab->stub_bfd, len);
3010 if (s_name == NULL)
3011 return NULL;
3012
3013 memcpy (s_name, link_sec->name, namelen);
3014 memcpy (s_name + namelen, STUB_SUFFIX, sizeof (STUB_SUFFIX));
3015 stub_sec = (*htab->add_stub_section) (s_name, link_sec);
3016 if (stub_sec == NULL)
3017 return NULL;
3018 htab->stub_group[link_sec->id].stub_sec = stub_sec;
3019 }
3020 htab->stub_group[section->id].stub_sec = stub_sec;
3021 }
3022
3023 /* Enter this entry into the linker stub hash table. */
3024 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table, stub_name,
3025 TRUE, FALSE);
3026 if (stub_entry == NULL)
3027 {
3028 (*_bfd_error_handler) (_("%s: cannot create stub entry %s"),
3029 section->owner,
3030 stub_name);
3031 return NULL;
3032 }
3033
3034 stub_entry->stub_sec = stub_sec;
3035 stub_entry->stub_offset = 0;
3036 stub_entry->id_sec = link_sec;
3037
3038 return stub_entry;
3039 }
3040
3041 /* Store an Arm insn into an output section not processed by
3042 elf32_arm_write_section. */
3043
3044 static void
3045 put_arm_insn (struct elf32_arm_link_hash_table * htab,
3046 bfd * output_bfd, bfd_vma val, void * ptr)
3047 {
3048 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3049 bfd_putl32 (val, ptr);
3050 else
3051 bfd_putb32 (val, ptr);
3052 }
3053
3054 /* Store a 16-bit Thumb insn into an output section not processed by
3055 elf32_arm_write_section. */
3056
3057 static void
3058 put_thumb_insn (struct elf32_arm_link_hash_table * htab,
3059 bfd * output_bfd, bfd_vma val, void * ptr)
3060 {
3061 if (htab->byteswap_code != bfd_little_endian (output_bfd))
3062 bfd_putl16 (val, ptr);
3063 else
3064 bfd_putb16 (val, ptr);
3065 }
3066
3067 static bfd_boolean
3068 arm_build_one_stub (struct bfd_hash_entry *gen_entry,
3069 void * in_arg)
3070 {
3071 struct elf32_arm_stub_hash_entry *stub_entry;
3072 struct bfd_link_info *info;
3073 struct elf32_arm_link_hash_table *htab;
3074 asection *stub_sec;
3075 bfd *stub_bfd;
3076 bfd_vma stub_addr;
3077 bfd_byte *loc;
3078 bfd_vma sym_value;
3079 int template_size;
3080 int size;
3081 const bfd_vma *template;
3082 int i;
3083 struct elf32_arm_link_hash_table * globals;
3084
3085 /* Massage our args to the form they really have. */
3086 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3087 info = (struct bfd_link_info *) in_arg;
3088
3089 globals = elf32_arm_hash_table (info);
3090
3091 htab = elf32_arm_hash_table (info);
3092 stub_sec = stub_entry->stub_sec;
3093
3094 /* Make a note of the offset within the stubs for this entry. */
3095 stub_entry->stub_offset = stub_sec->size;
3096 loc = stub_sec->contents + stub_entry->stub_offset;
3097
3098 stub_bfd = stub_sec->owner;
3099
3100 /* This is the address of the start of the stub. */
3101 stub_addr = stub_sec->output_section->vma + stub_sec->output_offset
3102 + stub_entry->stub_offset;
3103
3104 /* This is the address of the stub destination. */
3105 sym_value = (stub_entry->target_value
3106 + stub_entry->target_section->output_offset
3107 + stub_entry->target_section->output_section->vma);
3108
3109 switch (stub_entry->stub_type)
3110 {
3111 case arm_stub_long_branch:
3112 template = arm_long_branch_stub;
3113 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3114 break;
3115 case arm_thumb_v4t_stub_long_branch:
3116 template = arm_thumb_v4t_long_branch_stub;
3117 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3118 break;
3119 case arm_thumb_thumb_stub_long_branch:
3120 template = arm_thumb_thumb_long_branch_stub;
3121 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3122 break;
3123 case arm_thumb_arm_v4t_stub_long_branch:
3124 template = arm_thumb_arm_v4t_long_branch_stub;
3125 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3126 break;
3127 case arm_thumb_arm_v4t_stub_short_branch:
3128 template = arm_thumb_arm_v4t_short_branch_stub;
3129 template_size = (sizeof(arm_thumb_arm_v4t_short_branch_stub) / sizeof (bfd_vma)) * 4;
3130 break;
3131 case arm_stub_pic_long_branch:
3132 template = arm_pic_long_branch_stub;
3133 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3134 break;
3135 default:
3136 BFD_FAIL ();
3137 return FALSE;
3138 }
3139
3140 size = 0;
3141 for (i = 0; i < (template_size / 4); i++)
3142 {
3143 /* A 0 pattern is a placeholder, every other pattern is an
3144 instruction. */
3145 if (template[i] != 0)
3146 put_arm_insn (globals, stub_bfd, template[i], loc + size);
3147 else
3148 bfd_put_32 (stub_bfd, template[i], loc + size);
3149
3150 size += 4;
3151 }
3152 stub_sec->size += size;
3153
3154 /* Destination is Thumb. Force bit 0 to 1 to reflect this. */
3155 if (stub_entry->st_type == STT_ARM_TFUNC)
3156 sym_value |= 1;
3157
3158 switch (stub_entry->stub_type)
3159 {
3160 case arm_stub_long_branch:
3161 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3162 stub_bfd, stub_sec, stub_sec->contents,
3163 stub_entry->stub_offset + 4, sym_value, 0);
3164 break;
3165 case arm_thumb_v4t_stub_long_branch:
3166 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3167 stub_bfd, stub_sec, stub_sec->contents,
3168 stub_entry->stub_offset + 8, sym_value, 0);
3169 break;
3170 case arm_thumb_thumb_stub_long_branch:
3171 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3172 stub_bfd, stub_sec, stub_sec->contents,
3173 stub_entry->stub_offset + 12, sym_value, 0);
3174 break;
3175 case arm_thumb_arm_v4t_stub_long_branch:
3176 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_ABS32),
3177 stub_bfd, stub_sec, stub_sec->contents,
3178 stub_entry->stub_offset + 16, sym_value, 0);
3179 break;
3180 case arm_thumb_arm_v4t_stub_short_branch:
3181 {
3182 long int rel_offset;
3183 static const insn32 t2a3_b_insn = 0xea000000;
3184
3185 rel_offset = sym_value - (stub_addr + 8 + 4);
3186
3187 put_arm_insn (globals, stub_bfd,
3188 (bfd_vma) t2a3_b_insn | ((rel_offset >> 2) & 0x00FFFFFF),
3189 loc + 4);
3190 }
3191 break;
3192
3193 case arm_stub_pic_long_branch:
3194 /* We want the value relative to the address 8 bytes from the
3195 start of the stub. */
3196 _bfd_final_link_relocate (elf32_arm_howto_from_type (R_ARM_REL32),
3197 stub_bfd, stub_sec, stub_sec->contents,
3198 stub_entry->stub_offset + 8, sym_value, 0);
3199 break;
3200 default:
3201 break;
3202 }
3203
3204 return TRUE;
3205 }
3206
3207 /* As above, but don't actually build the stub. Just bump offset so
3208 we know stub section sizes. */
3209
3210 static bfd_boolean
3211 arm_size_one_stub (struct bfd_hash_entry *gen_entry,
3212 void * in_arg)
3213 {
3214 struct elf32_arm_stub_hash_entry *stub_entry;
3215 struct elf32_arm_link_hash_table *htab;
3216 const bfd_vma *template;
3217 int template_size;
3218 int size;
3219 int i;
3220
3221 /* Massage our args to the form they really have. */
3222 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
3223 htab = (struct elf32_arm_link_hash_table *) in_arg;
3224
3225 switch (stub_entry->stub_type)
3226 {
3227 case arm_stub_long_branch:
3228 template = arm_long_branch_stub;
3229 template_size = (sizeof (arm_long_branch_stub) / sizeof (bfd_vma)) * 4;
3230 break;
3231 case arm_thumb_v4t_stub_long_branch:
3232 template = arm_thumb_v4t_long_branch_stub;
3233 template_size = (sizeof (arm_thumb_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3234 break;
3235 case arm_thumb_thumb_stub_long_branch:
3236 template = arm_thumb_thumb_long_branch_stub;
3237 template_size = (sizeof (arm_thumb_thumb_long_branch_stub) / sizeof (bfd_vma)) * 4;
3238 break;
3239 case arm_thumb_arm_v4t_stub_long_branch:
3240 template = arm_thumb_arm_v4t_long_branch_stub;
3241 template_size = (sizeof (arm_thumb_arm_v4t_long_branch_stub) / sizeof (bfd_vma)) * 4;
3242 break;
3243 case arm_thumb_arm_v4t_stub_short_branch:
3244 template = arm_thumb_arm_v4t_short_branch_stub;
3245 template_size = (sizeof(arm_thumb_arm_v4t_short_branch_stub) / sizeof (bfd_vma)) * 4;
3246 break;
3247 case arm_stub_pic_long_branch:
3248 template = arm_pic_long_branch_stub;
3249 template_size = (sizeof (arm_pic_long_branch_stub) / sizeof (bfd_vma)) * 4;
3250 break;
3251 default:
3252 BFD_FAIL ();
3253 return FALSE;
3254 break;
3255 }
3256
3257 size = 0;
3258 for (i = 0; i < (template_size / 4); i++)
3259 size += 4;
3260 size = (size + 7) & ~7;
3261 stub_entry->stub_sec->size += size;
3262 return TRUE;
3263 }
3264
3265 /* External entry points for sizing and building linker stubs. */
3266
3267 /* Set up various things so that we can make a list of input sections
3268 for each output section included in the link. Returns -1 on error,
3269 0 when no stubs will be needed, and 1 on success. */
3270
3271 int
3272 elf32_arm_setup_section_lists (bfd *output_bfd,
3273 struct bfd_link_info *info)
3274 {
3275 bfd *input_bfd;
3276 unsigned int bfd_count;
3277 int top_id, top_index;
3278 asection *section;
3279 asection **input_list, **list;
3280 bfd_size_type amt;
3281 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3282
3283 if (! is_elf_hash_table (htab))
3284 return 0;
3285
3286 /* Count the number of input BFDs and find the top input section id. */
3287 for (input_bfd = info->input_bfds, bfd_count = 0, top_id = 0;
3288 input_bfd != NULL;
3289 input_bfd = input_bfd->link_next)
3290 {
3291 bfd_count += 1;
3292 for (section = input_bfd->sections;
3293 section != NULL;
3294 section = section->next)
3295 {
3296 if (top_id < section->id)
3297 top_id = section->id;
3298 }
3299 }
3300 htab->bfd_count = bfd_count;
3301
3302 amt = sizeof (struct map_stub) * (top_id + 1);
3303 htab->stub_group = bfd_zmalloc (amt);
3304 if (htab->stub_group == NULL)
3305 return -1;
3306
3307 /* We can't use output_bfd->section_count here to find the top output
3308 section index as some sections may have been removed, and
3309 _bfd_strip_section_from_output doesn't renumber the indices. */
3310 for (section = output_bfd->sections, top_index = 0;
3311 section != NULL;
3312 section = section->next)
3313 {
3314 if (top_index < section->index)
3315 top_index = section->index;
3316 }
3317
3318 htab->top_index = top_index;
3319 amt = sizeof (asection *) * (top_index + 1);
3320 input_list = bfd_malloc (amt);
3321 htab->input_list = input_list;
3322 if (input_list == NULL)
3323 return -1;
3324
3325 /* For sections we aren't interested in, mark their entries with a
3326 value we can check later. */
3327 list = input_list + top_index;
3328 do
3329 *list = bfd_abs_section_ptr;
3330 while (list-- != input_list);
3331
3332 for (section = output_bfd->sections;
3333 section != NULL;
3334 section = section->next)
3335 {
3336 if ((section->flags & SEC_CODE) != 0)
3337 input_list[section->index] = NULL;
3338 }
3339
3340 return 1;
3341 }
3342
3343 /* The linker repeatedly calls this function for each input section,
3344 in the order that input sections are linked into output sections.
3345 Build lists of input sections to determine groupings between which
3346 we may insert linker stubs. */
3347
3348 void
3349 elf32_arm_next_input_section (struct bfd_link_info *info,
3350 asection *isec)
3351 {
3352 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3353
3354 if (isec->output_section->index <= htab->top_index)
3355 {
3356 asection **list = htab->input_list + isec->output_section->index;
3357
3358 if (*list != bfd_abs_section_ptr)
3359 {
3360 /* Steal the link_sec pointer for our list. */
3361 #define PREV_SEC(sec) (htab->stub_group[(sec)->id].link_sec)
3362 /* This happens to make the list in reverse order,
3363 which is what we want. */
3364 PREV_SEC (isec) = *list;
3365 *list = isec;
3366 }
3367 }
3368 }
3369
3370 /* See whether we can group stub sections together. Grouping stub
3371 sections may result in fewer stubs. More importantly, we need to
3372 put all .init* and .fini* stubs at the beginning of the .init or
3373 .fini output sections respectively, because glibc splits the
3374 _init and _fini functions into multiple parts. Putting a stub in
3375 the middle of a function is not a good idea. */
3376
3377 static void
3378 group_sections (struct elf32_arm_link_hash_table *htab,
3379 bfd_size_type stub_group_size,
3380 bfd_boolean stubs_always_before_branch)
3381 {
3382 asection **list = htab->input_list + htab->top_index;
3383
3384 do
3385 {
3386 asection *tail = *list;
3387
3388 if (tail == bfd_abs_section_ptr)
3389 continue;
3390
3391 while (tail != NULL)
3392 {
3393 asection *curr;
3394 asection *prev;
3395 bfd_size_type total;
3396
3397 curr = tail;
3398 total = tail->size;
3399 while ((prev = PREV_SEC (curr)) != NULL
3400 && ((total += curr->output_offset - prev->output_offset)
3401 < stub_group_size))
3402 curr = prev;
3403
3404 /* OK, the size from the start of CURR to the end is less
3405 than stub_group_size and thus can be handled by one stub
3406 section. (Or the tail section is itself larger than
3407 stub_group_size, in which case we may be toast.)
3408 We should really be keeping track of the total size of
3409 stubs added here, as stubs contribute to the final output
3410 section size. */
3411 do
3412 {
3413 prev = PREV_SEC (tail);
3414 /* Set up this stub group. */
3415 htab->stub_group[tail->id].link_sec = curr;
3416 }
3417 while (tail != curr && (tail = prev) != NULL);
3418
3419 /* But wait, there's more! Input sections up to stub_group_size
3420 bytes before the stub section can be handled by it too. */
3421 if (!stubs_always_before_branch)
3422 {
3423 total = 0;
3424 while (prev != NULL
3425 && ((total += tail->output_offset - prev->output_offset)
3426 < stub_group_size))
3427 {
3428 tail = prev;
3429 prev = PREV_SEC (tail);
3430 htab->stub_group[tail->id].link_sec = curr;
3431 }
3432 }
3433 tail = prev;
3434 }
3435 }
3436 while (list-- != htab->input_list);
3437
3438 free (htab->input_list);
3439 #undef PREV_SEC
3440 }
3441
3442 /* Determine and set the size of the stub section for a final link.
3443
3444 The basic idea here is to examine all the relocations looking for
3445 PC-relative calls to a target that is unreachable with a "bl"
3446 instruction. */
3447
3448 bfd_boolean
3449 elf32_arm_size_stubs (bfd *output_bfd,
3450 bfd *stub_bfd,
3451 struct bfd_link_info *info,
3452 bfd_signed_vma group_size,
3453 asection * (*add_stub_section) (const char *, asection *),
3454 void (*layout_sections_again) (void))
3455 {
3456 bfd_size_type stub_group_size;
3457 bfd_boolean stubs_always_before_branch;
3458 bfd_boolean stub_changed = 0;
3459 struct elf32_arm_link_hash_table *htab = elf32_arm_hash_table (info);
3460
3461 /* Propagate mach to stub bfd, because it may not have been
3462 finalized when we created stub_bfd. */
3463 bfd_set_arch_mach (stub_bfd, bfd_get_arch (output_bfd),
3464 bfd_get_mach (output_bfd));
3465
3466 /* Stash our params away. */
3467 htab->stub_bfd = stub_bfd;
3468 htab->add_stub_section = add_stub_section;
3469 htab->layout_sections_again = layout_sections_again;
3470 stubs_always_before_branch = group_size < 0;
3471 if (group_size < 0)
3472 stub_group_size = -group_size;
3473 else
3474 stub_group_size = group_size;
3475
3476 if (stub_group_size == 1)
3477 {
3478 /* Default values. */
3479 /* Thumb branch range is +-4MB has to be used as the default
3480 maximum size (a given section can contain both ARM and Thumb
3481 code, so the worst case has to be taken into account).
3482
3483 This value is 24K less than that, which allows for 2025
3484 12-byte stubs. If we exceed that, then we will fail to link.
3485 The user will have to relink with an explicit group size
3486 option. */
3487 stub_group_size = 4170000;
3488 }
3489
3490 group_sections (htab, stub_group_size, stubs_always_before_branch);
3491
3492 while (1)
3493 {
3494 bfd *input_bfd;
3495 unsigned int bfd_indx;
3496 asection *stub_sec;
3497
3498 for (input_bfd = info->input_bfds, bfd_indx = 0;
3499 input_bfd != NULL;
3500 input_bfd = input_bfd->link_next, bfd_indx++)
3501 {
3502 Elf_Internal_Shdr *symtab_hdr;
3503 asection *section;
3504 Elf_Internal_Sym *local_syms = NULL;
3505
3506 /* We'll need the symbol table in a second. */
3507 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
3508 if (symtab_hdr->sh_info == 0)
3509 continue;
3510
3511 /* Walk over each section attached to the input bfd. */
3512 for (section = input_bfd->sections;
3513 section != NULL;
3514 section = section->next)
3515 {
3516 Elf_Internal_Rela *internal_relocs, *irelaend, *irela;
3517
3518 /* If there aren't any relocs, then there's nothing more
3519 to do. */
3520 if ((section->flags & SEC_RELOC) == 0
3521 || section->reloc_count == 0
3522 || (section->flags & SEC_CODE) == 0)
3523 continue;
3524
3525 /* If this section is a link-once section that will be
3526 discarded, then don't create any stubs. */
3527 if (section->output_section == NULL
3528 || section->output_section->owner != output_bfd)
3529 continue;
3530
3531 /* Get the relocs. */
3532 internal_relocs
3533 = _bfd_elf_link_read_relocs (input_bfd, section, NULL,
3534 NULL, info->keep_memory);
3535 if (internal_relocs == NULL)
3536 goto error_ret_free_local;
3537
3538 /* Now examine each relocation. */
3539 irela = internal_relocs;
3540 irelaend = irela + section->reloc_count;
3541 for (; irela < irelaend; irela++)
3542 {
3543 unsigned int r_type, r_indx;
3544 enum elf32_arm_stub_type stub_type;
3545 struct elf32_arm_stub_hash_entry *stub_entry;
3546 asection *sym_sec;
3547 bfd_vma sym_value;
3548 bfd_vma destination;
3549 struct elf32_arm_link_hash_entry *hash;
3550 const char *sym_name;
3551 char *stub_name;
3552 const asection *id_sec;
3553 unsigned char st_type;
3554
3555 r_type = ELF32_R_TYPE (irela->r_info);
3556 r_indx = ELF32_R_SYM (irela->r_info);
3557
3558 if (r_type >= (unsigned int) R_ARM_max)
3559 {
3560 bfd_set_error (bfd_error_bad_value);
3561 error_ret_free_internal:
3562 if (elf_section_data (section)->relocs == NULL)
3563 free (internal_relocs);
3564 goto error_ret_free_local;
3565 }
3566
3567 /* Only look for stubs on call instructions. */
3568 if ((r_type != (unsigned int) R_ARM_CALL)
3569 && (r_type != (unsigned int) R_ARM_THM_CALL))
3570 continue;
3571
3572 /* Now determine the call target, its name, value,
3573 section. */
3574 sym_sec = NULL;
3575 sym_value = 0;
3576 destination = 0;
3577 hash = NULL;
3578 sym_name = NULL;
3579 if (r_indx < symtab_hdr->sh_info)
3580 {
3581 /* It's a local symbol. */
3582 Elf_Internal_Sym *sym;
3583 Elf_Internal_Shdr *hdr;
3584
3585 if (local_syms == NULL)
3586 {
3587 local_syms
3588 = (Elf_Internal_Sym *) symtab_hdr->contents;
3589 if (local_syms == NULL)
3590 local_syms
3591 = bfd_elf_get_elf_syms (input_bfd, symtab_hdr,
3592 symtab_hdr->sh_info, 0,
3593 NULL, NULL, NULL);
3594 if (local_syms == NULL)
3595 goto error_ret_free_internal;
3596 }
3597
3598 sym = local_syms + r_indx;
3599 hdr = elf_elfsections (input_bfd)[sym->st_shndx];
3600 sym_sec = hdr->bfd_section;
3601 if (ELF_ST_TYPE (sym->st_info) != STT_SECTION)
3602 sym_value = sym->st_value;
3603 destination = (sym_value + irela->r_addend
3604 + sym_sec->output_offset
3605 + sym_sec->output_section->vma);
3606 st_type = ELF_ST_TYPE (sym->st_info);
3607 sym_name
3608 = bfd_elf_string_from_elf_section (input_bfd,
3609 symtab_hdr->sh_link,
3610 sym->st_name);
3611 }
3612 else
3613 {
3614 /* It's an external symbol. */
3615 int e_indx;
3616
3617 e_indx = r_indx - symtab_hdr->sh_info;
3618 hash = ((struct elf32_arm_link_hash_entry *)
3619 elf_sym_hashes (input_bfd)[e_indx]);
3620
3621 while (hash->root.root.type == bfd_link_hash_indirect
3622 || hash->root.root.type == bfd_link_hash_warning)
3623 hash = ((struct elf32_arm_link_hash_entry *)
3624 hash->root.root.u.i.link);
3625
3626 if (hash->root.root.type == bfd_link_hash_defined
3627 || hash->root.root.type == bfd_link_hash_defweak)
3628 {
3629 sym_sec = hash->root.root.u.def.section;
3630 sym_value = hash->root.root.u.def.value;
3631 if (sym_sec->output_section != NULL)
3632 destination = (sym_value + irela->r_addend
3633 + sym_sec->output_offset
3634 + sym_sec->output_section->vma);
3635 }
3636 else if (hash->root.root.type == bfd_link_hash_undefweak
3637 || hash->root.root.type == bfd_link_hash_undefined)
3638 /* For a shared library, these will need a PLT stub,
3639 which is treated separately.
3640 For absolute code, they cannot be handled. */
3641 continue;
3642 else
3643 {
3644 bfd_set_error (bfd_error_bad_value);
3645 goto error_ret_free_internal;
3646 }
3647 st_type = ELF_ST_TYPE (hash->root.type);
3648 sym_name = hash->root.root.root.string;
3649 }
3650
3651 /* Determine what (if any) linker stub is needed. */
3652 stub_type = arm_type_of_stub (info, section, irela, st_type,
3653 hash, destination, sym_sec,
3654 input_bfd, sym_name);
3655 if (stub_type == arm_stub_none)
3656 continue;
3657
3658 /* Support for grouping stub sections. */
3659 id_sec = htab->stub_group[section->id].link_sec;
3660
3661 /* Get the name of this stub. */
3662 stub_name = elf32_arm_stub_name (id_sec, sym_sec, hash, irela);
3663 if (!stub_name)
3664 goto error_ret_free_internal;
3665
3666 stub_entry = arm_stub_hash_lookup (&htab->stub_hash_table,
3667 stub_name,
3668 FALSE, FALSE);
3669 if (stub_entry != NULL)
3670 {
3671 /* The proper stub has already been created. */
3672 free (stub_name);
3673 continue;
3674 }
3675
3676 stub_entry = elf32_arm_add_stub (stub_name, section, htab);
3677 if (stub_entry == NULL)
3678 {
3679 free (stub_name);
3680 goto error_ret_free_internal;
3681 }
3682
3683 stub_entry->target_value = sym_value;
3684 stub_entry->target_section = sym_sec;
3685 stub_entry->stub_type = stub_type;
3686 stub_entry->h = hash;
3687 stub_entry->st_type = st_type;
3688
3689 if (sym_name == NULL)
3690 sym_name = "unnamed";
3691 stub_entry->output_name
3692 = bfd_alloc (htab->stub_bfd,
3693 sizeof (THUMB2ARM_GLUE_ENTRY_NAME)
3694 + strlen (sym_name));
3695 if (stub_entry->output_name == NULL)
3696 {
3697 free (stub_name);
3698 goto error_ret_free_internal;
3699 }
3700
3701 /* For historical reasons, use the existing names for
3702 ARM-to-Thumb and Thumb-to-ARM stubs. */
3703 if (r_type == (unsigned int) R_ARM_THM_CALL
3704 && st_type != STT_ARM_TFUNC)
3705 sprintf (stub_entry->output_name, THUMB2ARM_GLUE_ENTRY_NAME,
3706 sym_name);
3707 else if (r_type == (unsigned int) R_ARM_CALL
3708 && st_type == STT_ARM_TFUNC)
3709 sprintf (stub_entry->output_name, ARM2THUMB_GLUE_ENTRY_NAME,
3710 sym_name);
3711 else
3712 sprintf (stub_entry->output_name, STUB_ENTRY_NAME,
3713 sym_name);
3714
3715 stub_changed = TRUE;
3716 }
3717
3718 /* We're done with the internal relocs, free them. */
3719 if (elf_section_data (section)->relocs == NULL)
3720 free (internal_relocs);
3721 }
3722 }
3723
3724 if (!stub_changed)
3725 break;
3726
3727 /* OK, we've added some stubs. Find out the new size of the
3728 stub sections. */
3729 for (stub_sec = htab->stub_bfd->sections;
3730 stub_sec != NULL;
3731 stub_sec = stub_sec->next)
3732 stub_sec->size = 0;
3733
3734 bfd_hash_traverse (&htab->stub_hash_table, arm_size_one_stub, htab);
3735
3736 /* Ask the linker to do its stuff. */
3737 (*htab->layout_sections_again) ();
3738 stub_changed = FALSE;
3739 }
3740
3741 return TRUE;
3742
3743 error_ret_free_local:
3744 return FALSE;
3745 }
3746
3747 /* Build all the stubs associated with the current output file. The
3748 stubs are kept in a hash table attached to the main linker hash
3749 table. We also set up the .plt entries for statically linked PIC
3750 functions here. This function is called via arm_elf_finish in the
3751 linker. */
3752
3753 bfd_boolean
3754 elf32_arm_build_stubs (struct bfd_link_info *info)
3755 {
3756 asection *stub_sec;
3757 struct bfd_hash_table *table;
3758 struct elf32_arm_link_hash_table *htab;
3759
3760 htab = elf32_arm_hash_table (info);
3761
3762 for (stub_sec = htab->stub_bfd->sections;
3763 stub_sec != NULL;
3764 stub_sec = stub_sec->next)
3765 {
3766 bfd_size_type size;
3767
3768 /* Ignore non-stub sections. */
3769 if (!strstr (stub_sec->name, STUB_SUFFIX))
3770 continue;
3771
3772 /* Allocate memory to hold the linker stubs. */
3773 size = stub_sec->size;
3774 stub_sec->contents = bfd_zalloc (htab->stub_bfd, size);
3775 if (stub_sec->contents == NULL && size != 0)
3776 return FALSE;
3777 stub_sec->size = 0;
3778 }
3779
3780 /* Build the stubs as directed by the stub hash table. */
3781 table = &htab->stub_hash_table;
3782 bfd_hash_traverse (table, arm_build_one_stub, info);
3783
3784 return TRUE;
3785 }
3786
3787 /* Locate the Thumb encoded calling stub for NAME. */
3788
3789 static struct elf_link_hash_entry *
3790 find_thumb_glue (struct bfd_link_info *link_info,
3791 const char *name,
3792 char **error_message)
3793 {
3794 char *tmp_name;
3795 struct elf_link_hash_entry *hash;
3796 struct elf32_arm_link_hash_table *hash_table;
3797
3798 /* We need a pointer to the armelf specific hash table. */
3799 hash_table = elf32_arm_hash_table (link_info);
3800
3801 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3802 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
3803
3804 BFD_ASSERT (tmp_name);
3805
3806 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
3807
3808 hash = elf_link_hash_lookup
3809 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3810
3811 if (hash == NULL
3812 && asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
3813 tmp_name, name) == -1)
3814 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3815
3816 free (tmp_name);
3817
3818 return hash;
3819 }
3820
3821 /* Locate the ARM encoded calling stub for NAME. */
3822
3823 static struct elf_link_hash_entry *
3824 find_arm_glue (struct bfd_link_info *link_info,
3825 const char *name,
3826 char **error_message)
3827 {
3828 char *tmp_name;
3829 struct elf_link_hash_entry *myh;
3830 struct elf32_arm_link_hash_table *hash_table;
3831
3832 /* We need a pointer to the elfarm specific hash table. */
3833 hash_table = elf32_arm_hash_table (link_info);
3834
3835 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
3836 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3837
3838 BFD_ASSERT (tmp_name);
3839
3840 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
3841
3842 myh = elf_link_hash_lookup
3843 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
3844
3845 if (myh == NULL
3846 && asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
3847 tmp_name, name) == -1)
3848 *error_message = (char *) bfd_errmsg (bfd_error_system_call);
3849
3850 free (tmp_name);
3851
3852 return myh;
3853 }
3854
3855 /* ARM->Thumb glue (static images):
3856
3857 .arm
3858 __func_from_arm:
3859 ldr r12, __func_addr
3860 bx r12
3861 __func_addr:
3862 .word func @ behave as if you saw a ARM_32 reloc.
3863
3864 (v5t static images)
3865 .arm
3866 __func_from_arm:
3867 ldr pc, __func_addr
3868 __func_addr:
3869 .word func @ behave as if you saw a ARM_32 reloc.
3870
3871 (relocatable images)
3872 .arm
3873 __func_from_arm:
3874 ldr r12, __func_offset
3875 add r12, r12, pc
3876 bx r12
3877 __func_offset:
3878 .word func - . */
3879
3880 #define ARM2THUMB_STATIC_GLUE_SIZE 12
3881 static const insn32 a2t1_ldr_insn = 0xe59fc000;
3882 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
3883 static const insn32 a2t3_func_addr_insn = 0x00000001;
3884
3885 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
3886 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
3887 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
3888
3889 #define ARM2THUMB_PIC_GLUE_SIZE 16
3890 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
3891 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
3892 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
3893
3894 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
3895
3896 .thumb .thumb
3897 .align 2 .align 2
3898 __func_from_thumb: __func_from_thumb:
3899 bx pc push {r6, lr}
3900 nop ldr r6, __func_addr
3901 .arm mov lr, pc
3902 b func bx r6
3903 .arm
3904 ;; back_to_thumb
3905 ldmia r13! {r6, lr}
3906 bx lr
3907 __func_addr:
3908 .word func */
3909
3910 #define THUMB2ARM_GLUE_SIZE 8
3911 static const insn16 t2a1_bx_pc_insn = 0x4778;
3912 static const insn16 t2a2_noop_insn = 0x46c0;
3913 static const insn32 t2a3_b_insn = 0xea000000;
3914
3915 #define VFP11_ERRATUM_VENEER_SIZE 8
3916
3917 #define ARM_BX_VENEER_SIZE 12
3918 static const insn32 armbx1_tst_insn = 0xe3100001;
3919 static const insn32 armbx2_moveq_insn = 0x01a0f000;
3920 static const insn32 armbx3_bx_insn = 0xe12fff10;
3921
3922 #ifndef ELFARM_NABI_C_INCLUDED
3923 static void
3924 arm_allocate_glue_section_space (bfd * abfd, bfd_size_type size, const char * name)
3925 {
3926 asection * s;
3927 bfd_byte * contents;
3928
3929 if (size == 0)
3930 return;
3931
3932 BFD_ASSERT (abfd != NULL);
3933
3934 s = bfd_get_section_by_name (abfd, name);
3935 BFD_ASSERT (s != NULL);
3936
3937 contents = bfd_alloc (abfd, size);
3938
3939 BFD_ASSERT (s->size == size);
3940 s->contents = contents;
3941 }
3942
3943 bfd_boolean
3944 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
3945 {
3946 struct elf32_arm_link_hash_table * globals;
3947
3948 globals = elf32_arm_hash_table (info);
3949 BFD_ASSERT (globals != NULL);
3950
3951 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3952 globals->arm_glue_size,
3953 ARM2THUMB_GLUE_SECTION_NAME);
3954
3955 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3956 globals->thumb_glue_size,
3957 THUMB2ARM_GLUE_SECTION_NAME);
3958
3959 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3960 globals->vfp11_erratum_glue_size,
3961 VFP11_ERRATUM_VENEER_SECTION_NAME);
3962
3963 arm_allocate_glue_section_space (globals->bfd_of_glue_owner,
3964 globals->bx_glue_size,
3965 ARM_BX_GLUE_SECTION_NAME);
3966
3967 return TRUE;
3968 }
3969
3970 /* Allocate space and symbols for calling a Thumb function from Arm mode.
3971 returns the symbol identifying the stub. */
3972
3973 static struct elf_link_hash_entry *
3974 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
3975 struct elf_link_hash_entry * h)
3976 {
3977 const char * name = h->root.root.string;
3978 asection * s;
3979 char * tmp_name;
3980 struct elf_link_hash_entry * myh;
3981 struct bfd_link_hash_entry * bh;
3982 struct elf32_arm_link_hash_table * globals;
3983 bfd_vma val;
3984 bfd_size_type size;
3985
3986 globals = elf32_arm_hash_table (link_info);
3987
3988 BFD_ASSERT (globals != NULL);
3989 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3990
3991 s = bfd_get_section_by_name
3992 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
3993
3994 BFD_ASSERT (s != NULL);
3995
3996 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
3997
3998 BFD_ASSERT (tmp_name);
3999
4000 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
4001
4002 myh = elf_link_hash_lookup
4003 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
4004
4005 if (myh != NULL)
4006 {
4007 /* We've already seen this guy. */
4008 free (tmp_name);
4009 return myh;
4010 }
4011
4012 /* The only trick here is using hash_table->arm_glue_size as the value.
4013 Even though the section isn't allocated yet, this is where we will be
4014 putting it. The +1 on the value marks that the stub has not been
4015 output yet - not that it is a Thumb function. */
4016 bh = NULL;
4017 val = globals->arm_glue_size + 1;
4018 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4019 tmp_name, BSF_GLOBAL, s, val,
4020 NULL, TRUE, FALSE, &bh);
4021
4022 myh = (struct elf_link_hash_entry *) bh;
4023 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4024 myh->forced_local = 1;
4025
4026 free (tmp_name);
4027
4028 if (link_info->shared || globals->root.is_relocatable_executable
4029 || globals->pic_veneer)
4030 size = ARM2THUMB_PIC_GLUE_SIZE;
4031 else if (globals->use_blx)
4032 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
4033 else
4034 size = ARM2THUMB_STATIC_GLUE_SIZE;
4035
4036 s->size += size;
4037 globals->arm_glue_size += size;
4038
4039 return myh;
4040 }
4041
4042 static void
4043 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
4044 struct elf_link_hash_entry *h)
4045 {
4046 const char *name = h->root.root.string;
4047 asection *s;
4048 char *tmp_name;
4049 struct elf_link_hash_entry *myh;
4050 struct bfd_link_hash_entry *bh;
4051 struct elf32_arm_link_hash_table *hash_table;
4052 bfd_vma val;
4053
4054 hash_table = elf32_arm_hash_table (link_info);
4055
4056 BFD_ASSERT (hash_table != NULL);
4057 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4058
4059 s = bfd_get_section_by_name
4060 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
4061
4062 BFD_ASSERT (s != NULL);
4063
4064 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4065 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
4066
4067 BFD_ASSERT (tmp_name);
4068
4069 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
4070
4071 myh = elf_link_hash_lookup
4072 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
4073
4074 if (myh != NULL)
4075 {
4076 /* We've already seen this guy. */
4077 free (tmp_name);
4078 return;
4079 }
4080
4081 /* The only trick here is using hash_table->thumb_glue_size as the value.
4082 Even though the section isn't allocated yet, this is where we will be
4083 putting it. The +1 on the value marks that the stub has not been
4084 output yet - not that it is a Thumb function. */
4085 bh = NULL;
4086 val = hash_table->thumb_glue_size + 1;
4087 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4088 tmp_name, BSF_GLOBAL, s, val,
4089 NULL, TRUE, FALSE, &bh);
4090
4091 /* If we mark it 'Thumb', the disassembler will do a better job. */
4092 myh = (struct elf_link_hash_entry *) bh;
4093 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
4094 myh->forced_local = 1;
4095
4096 free (tmp_name);
4097
4098 #define CHANGE_TO_ARM "__%s_change_to_arm"
4099 #define BACK_FROM_ARM "__%s_back_from_arm"
4100
4101 /* Allocate another symbol to mark where we switch to Arm mode. */
4102 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
4103 + strlen (CHANGE_TO_ARM) + 1);
4104
4105 BFD_ASSERT (tmp_name);
4106
4107 sprintf (tmp_name, CHANGE_TO_ARM, name);
4108
4109 bh = NULL;
4110 val = hash_table->thumb_glue_size + 4,
4111 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4112 tmp_name, BSF_LOCAL, s, val,
4113 NULL, TRUE, FALSE, &bh);
4114
4115 free (tmp_name);
4116
4117 s->size += THUMB2ARM_GLUE_SIZE;
4118 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
4119 }
4120
4121
4122 /* Allocate space for ARMv4 BX veneers. */
4123
4124 static void
4125 record_arm_bx_glue (struct bfd_link_info * link_info, int reg)
4126 {
4127 asection * s;
4128 struct elf32_arm_link_hash_table *globals;
4129 char *tmp_name;
4130 struct elf_link_hash_entry *myh;
4131 struct bfd_link_hash_entry *bh;
4132 bfd_vma val;
4133
4134 /* BX PC does not need a veneer. */
4135 if (reg == 15)
4136 return;
4137
4138 globals = elf32_arm_hash_table (link_info);
4139
4140 BFD_ASSERT (globals != NULL);
4141 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4142
4143 /* Check if this veneer has already been allocated. */
4144 if (globals->bx_glue_offset[reg])
4145 return;
4146
4147 s = bfd_get_section_by_name
4148 (globals->bfd_of_glue_owner, ARM_BX_GLUE_SECTION_NAME);
4149
4150 BFD_ASSERT (s != NULL);
4151
4152 /* Add symbol for veneer. */
4153 tmp_name = bfd_malloc ((bfd_size_type) strlen (ARM_BX_GLUE_ENTRY_NAME) + 1);
4154
4155 BFD_ASSERT (tmp_name);
4156
4157 sprintf (tmp_name, ARM_BX_GLUE_ENTRY_NAME, reg);
4158
4159 myh = elf_link_hash_lookup
4160 (&(globals)->root, tmp_name, FALSE, FALSE, FALSE);
4161
4162 BFD_ASSERT (myh == NULL);
4163
4164 bh = NULL;
4165 val = globals->bx_glue_size;
4166 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
4167 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4168 NULL, TRUE, FALSE, &bh);
4169
4170 myh = (struct elf_link_hash_entry *) bh;
4171 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4172 myh->forced_local = 1;
4173
4174 s->size += ARM_BX_VENEER_SIZE;
4175 globals->bx_glue_offset[reg] = globals->bx_glue_size | 2;
4176 globals->bx_glue_size += ARM_BX_VENEER_SIZE;
4177 }
4178
4179
4180 /* Add an entry to the code/data map for section SEC. */
4181
4182 static void
4183 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
4184 {
4185 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
4186 unsigned int newidx;
4187
4188 if (sec_data->map == NULL)
4189 {
4190 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
4191 sec_data->mapcount = 0;
4192 sec_data->mapsize = 1;
4193 }
4194
4195 newidx = sec_data->mapcount++;
4196
4197 if (sec_data->mapcount > sec_data->mapsize)
4198 {
4199 sec_data->mapsize *= 2;
4200 sec_data->map = bfd_realloc_or_free (sec_data->map, sec_data->mapsize
4201 * sizeof (elf32_arm_section_map));
4202 }
4203
4204 if (sec_data->map)
4205 {
4206 sec_data->map[newidx].vma = vma;
4207 sec_data->map[newidx].type = type;
4208 }
4209 }
4210
4211
4212 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
4213 veneers are handled for now. */
4214
4215 static bfd_vma
4216 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
4217 elf32_vfp11_erratum_list *branch,
4218 bfd *branch_bfd,
4219 asection *branch_sec,
4220 unsigned int offset)
4221 {
4222 asection *s;
4223 struct elf32_arm_link_hash_table *hash_table;
4224 char *tmp_name;
4225 struct elf_link_hash_entry *myh;
4226 struct bfd_link_hash_entry *bh;
4227 bfd_vma val;
4228 struct _arm_elf_section_data *sec_data;
4229 int errcount;
4230 elf32_vfp11_erratum_list *newerr;
4231
4232 hash_table = elf32_arm_hash_table (link_info);
4233
4234 BFD_ASSERT (hash_table != NULL);
4235 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
4236
4237 s = bfd_get_section_by_name
4238 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
4239
4240 sec_data = elf32_arm_section_data (s);
4241
4242 BFD_ASSERT (s != NULL);
4243
4244 tmp_name = bfd_malloc ((bfd_size_type) strlen
4245 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
4246
4247 BFD_ASSERT (tmp_name);
4248
4249 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
4250 hash_table->num_vfp11_fixes);
4251
4252 myh = elf_link_hash_lookup
4253 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4254
4255 BFD_ASSERT (myh == NULL);
4256
4257 bh = NULL;
4258 val = hash_table->vfp11_erratum_glue_size;
4259 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
4260 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
4261 NULL, TRUE, FALSE, &bh);
4262
4263 myh = (struct elf_link_hash_entry *) bh;
4264 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4265 myh->forced_local = 1;
4266
4267 /* Link veneer back to calling location. */
4268 errcount = ++(sec_data->erratumcount);
4269 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
4270
4271 newerr->type = VFP11_ERRATUM_ARM_VENEER;
4272 newerr->vma = -1;
4273 newerr->u.v.branch = branch;
4274 newerr->u.v.id = hash_table->num_vfp11_fixes;
4275 branch->u.b.veneer = newerr;
4276
4277 newerr->next = sec_data->erratumlist;
4278 sec_data->erratumlist = newerr;
4279
4280 /* A symbol for the return from the veneer. */
4281 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
4282 hash_table->num_vfp11_fixes);
4283
4284 myh = elf_link_hash_lookup
4285 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
4286
4287 if (myh != NULL)
4288 abort ();
4289
4290 bh = NULL;
4291 val = offset + 4;
4292 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
4293 branch_sec, val, NULL, TRUE, FALSE, &bh);
4294
4295 myh = (struct elf_link_hash_entry *) bh;
4296 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
4297 myh->forced_local = 1;
4298
4299 free (tmp_name);
4300
4301 /* Generate a mapping symbol for the veneer section, and explicitly add an
4302 entry for that symbol to the code/data map for the section. */
4303 if (hash_table->vfp11_erratum_glue_size == 0)
4304 {
4305 bh = NULL;
4306 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
4307 ever requires this erratum fix. */
4308 _bfd_generic_link_add_one_symbol (link_info,
4309 hash_table->bfd_of_glue_owner, "$a",
4310 BSF_LOCAL, s, 0, NULL,
4311 TRUE, FALSE, &bh);
4312
4313 myh = (struct elf_link_hash_entry *) bh;
4314 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
4315 myh->forced_local = 1;
4316
4317 /* The elf32_arm_init_maps function only cares about symbols from input
4318 BFDs. We must make a note of this generated mapping symbol
4319 ourselves so that code byteswapping works properly in
4320 elf32_arm_write_section. */
4321 elf32_arm_section_map_add (s, 'a', 0);
4322 }
4323
4324 s->size += VFP11_ERRATUM_VENEER_SIZE;
4325 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
4326 hash_table->num_vfp11_fixes++;
4327
4328 /* The offset of the veneer. */
4329 return val;
4330 }
4331
4332 /* Note: we do not include the flag SEC_LINKER_CREATED, as that
4333 would prevent elf_link_input_bfd() from processing the contents
4334 of the section. */
4335 #define ARM_GLUE_SECTION_FLAGS \
4336 (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_CODE | SEC_READONLY)
4337
4338 /* Create a fake section for use by the ARM backend of the linker. */
4339
4340 static bfd_boolean
4341 arm_make_glue_section (bfd * abfd, const char * name)
4342 {
4343 asection * sec;
4344
4345 sec = bfd_get_section_by_name (abfd, name);
4346 if (sec != NULL)
4347 /* Already made. */
4348 return TRUE;
4349
4350 sec = bfd_make_section_with_flags (abfd, name, ARM_GLUE_SECTION_FLAGS);
4351
4352 if (sec == NULL
4353 || !bfd_set_section_alignment (abfd, sec, 2))
4354 return FALSE;
4355
4356 /* Set the gc mark to prevent the section from being removed by garbage
4357 collection, despite the fact that no relocs refer to this section. */
4358 sec->gc_mark = 1;
4359
4360 return TRUE;
4361 }
4362
4363 /* Add the glue sections to ABFD. This function is called from the
4364 linker scripts in ld/emultempl/{armelf}.em. */
4365
4366 bfd_boolean
4367 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
4368 struct bfd_link_info *info)
4369 {
4370 /* If we are only performing a partial
4371 link do not bother adding the glue. */
4372 if (info->relocatable)
4373 return TRUE;
4374
4375 /* Linker stubs don't need glue. */
4376 if (!strcmp (abfd->filename, "linker stubs"))
4377 return TRUE;
4378
4379 return arm_make_glue_section (abfd, ARM2THUMB_GLUE_SECTION_NAME)
4380 && arm_make_glue_section (abfd, THUMB2ARM_GLUE_SECTION_NAME)
4381 && arm_make_glue_section (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME)
4382 && arm_make_glue_section (abfd, ARM_BX_GLUE_SECTION_NAME);
4383 }
4384
4385 /* Select a BFD to be used to hold the sections used by the glue code.
4386 This function is called from the linker scripts in ld/emultempl/
4387 {armelf/pe}.em. */
4388
4389 bfd_boolean
4390 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
4391 {
4392 struct elf32_arm_link_hash_table *globals;
4393
4394 /* If we are only performing a partial link
4395 do not bother getting a bfd to hold the glue. */
4396 if (info->relocatable)
4397 return TRUE;
4398
4399 /* Make sure we don't attach the glue sections to a dynamic object. */
4400 BFD_ASSERT (!(abfd->flags & DYNAMIC));
4401
4402 globals = elf32_arm_hash_table (info);
4403
4404 BFD_ASSERT (globals != NULL);
4405
4406 if (globals->bfd_of_glue_owner != NULL)
4407 return TRUE;
4408
4409 /* Save the bfd for later use. */
4410 globals->bfd_of_glue_owner = abfd;
4411
4412 return TRUE;
4413 }
4414
4415 static void
4416 check_use_blx (struct elf32_arm_link_hash_table *globals)
4417 {
4418 if (bfd_elf_get_obj_attr_int (globals->obfd, OBJ_ATTR_PROC,
4419 Tag_CPU_arch) > 2)
4420 globals->use_blx = 1;
4421 }
4422
4423 bfd_boolean
4424 bfd_elf32_arm_process_before_allocation (bfd *abfd,
4425 struct bfd_link_info *link_info)
4426 {
4427 Elf_Internal_Shdr *symtab_hdr;
4428 Elf_Internal_Rela *internal_relocs = NULL;
4429 Elf_Internal_Rela *irel, *irelend;
4430 bfd_byte *contents = NULL;
4431
4432 asection *sec;
4433 struct elf32_arm_link_hash_table *globals;
4434
4435 /* If we are only performing a partial link do not bother
4436 to construct any glue. */
4437 if (link_info->relocatable)
4438 return TRUE;
4439
4440 /* Here we have a bfd that is to be included on the link. We have a
4441 hook to do reloc rummaging, before section sizes are nailed down. */
4442 globals = elf32_arm_hash_table (link_info);
4443
4444 BFD_ASSERT (globals != NULL);
4445
4446 check_use_blx (globals);
4447
4448 if (globals->byteswap_code && !bfd_big_endian (abfd))
4449 {
4450 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
4451 abfd);
4452 return FALSE;
4453 }
4454
4455 /* PR 5398: If we have not decided to include any loadable sections in
4456 the output then we will not have a glue owner bfd. This is OK, it
4457 just means that there is nothing else for us to do here. */
4458 if (globals->bfd_of_glue_owner == NULL)
4459 return TRUE;
4460
4461 /* Rummage around all the relocs and map the glue vectors. */
4462 sec = abfd->sections;
4463
4464 if (sec == NULL)
4465 return TRUE;
4466
4467 for (; sec != NULL; sec = sec->next)
4468 {
4469 if (sec->reloc_count == 0)
4470 continue;
4471
4472 if ((sec->flags & SEC_EXCLUDE) != 0)
4473 continue;
4474
4475 symtab_hdr = & elf_symtab_hdr (abfd);
4476
4477 /* Load the relocs. */
4478 internal_relocs
4479 = _bfd_elf_link_read_relocs (abfd, sec, NULL, NULL, FALSE);
4480
4481 if (internal_relocs == NULL)
4482 goto error_return;
4483
4484 irelend = internal_relocs + sec->reloc_count;
4485 for (irel = internal_relocs; irel < irelend; irel++)
4486 {
4487 long r_type;
4488 unsigned long r_index;
4489
4490 struct elf_link_hash_entry *h;
4491
4492 r_type = ELF32_R_TYPE (irel->r_info);
4493 r_index = ELF32_R_SYM (irel->r_info);
4494
4495 /* These are the only relocation types we care about. */
4496 if ( r_type != R_ARM_PC24
4497 && r_type != R_ARM_PLT32
4498 && r_type != R_ARM_JUMP24
4499 && r_type != R_ARM_THM_JUMP24
4500 && (r_type != R_ARM_V4BX || globals->fix_v4bx < 2))
4501 continue;
4502
4503 /* Get the section contents if we haven't done so already. */
4504 if (contents == NULL)
4505 {
4506 /* Get cached copy if it exists. */
4507 if (elf_section_data (sec)->this_hdr.contents != NULL)
4508 contents = elf_section_data (sec)->this_hdr.contents;
4509 else
4510 {
4511 /* Go get them off disk. */
4512 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
4513 goto error_return;
4514 }
4515 }
4516
4517 if (r_type == R_ARM_V4BX)
4518 {
4519 int reg;
4520
4521 reg = bfd_get_32 (abfd, contents + irel->r_offset) & 0xf;
4522 record_arm_bx_glue (link_info, reg);
4523 continue;
4524 }
4525
4526 /* If the relocation is not against a symbol it cannot concern us. */
4527 h = NULL;
4528
4529 /* We don't care about local symbols. */
4530 if (r_index < symtab_hdr->sh_info)
4531 continue;
4532
4533 /* This is an external symbol. */
4534 r_index -= symtab_hdr->sh_info;
4535 h = (struct elf_link_hash_entry *)
4536 elf_sym_hashes (abfd)[r_index];
4537
4538 /* If the relocation is against a static symbol it must be within
4539 the current section and so cannot be a cross ARM/Thumb relocation. */
4540 if (h == NULL)
4541 continue;
4542
4543 /* If the call will go through a PLT entry then we do not need
4544 glue. */
4545 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
4546 continue;
4547
4548 switch (r_type)
4549 {
4550 case R_ARM_PC24:
4551 case R_ARM_PLT32:
4552 case R_ARM_JUMP24:
4553 /* This one is a call from arm code. We need to look up
4554 the target of the call. If it is a thumb target, we
4555 insert glue. */
4556 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
4557 && !(r_type == R_ARM_CALL && globals->use_blx))
4558 record_arm_to_thumb_glue (link_info, h);
4559 break;
4560
4561 case R_ARM_THM_JUMP24:
4562 /* This one is a call from thumb code. We look
4563 up the target of the call. If it is not a thumb
4564 target, we insert glue. */
4565 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC
4566 && !(globals->use_blx && r_type == R_ARM_THM_CALL)
4567 && h->root.type != bfd_link_hash_undefweak)
4568 record_thumb_to_arm_glue (link_info, h);
4569 break;
4570
4571 default:
4572 abort ();
4573 }
4574 }
4575
4576 if (contents != NULL
4577 && elf_section_data (sec)->this_hdr.contents != contents)
4578 free (contents);
4579 contents = NULL;
4580
4581 if (internal_relocs != NULL
4582 && elf_section_data (sec)->relocs != internal_relocs)
4583 free (internal_relocs);
4584 internal_relocs = NULL;
4585 }
4586
4587 return TRUE;
4588
4589 error_return:
4590 if (contents != NULL
4591 && elf_section_data (sec)->this_hdr.contents != contents)
4592 free (contents);
4593 if (internal_relocs != NULL
4594 && elf_section_data (sec)->relocs != internal_relocs)
4595 free (internal_relocs);
4596
4597 return FALSE;
4598 }
4599 #endif
4600
4601
4602 /* Initialise maps of ARM/Thumb/data for input BFDs. */
4603
4604 void
4605 bfd_elf32_arm_init_maps (bfd *abfd)
4606 {
4607 Elf_Internal_Sym *isymbuf;
4608 Elf_Internal_Shdr *hdr;
4609 unsigned int i, localsyms;
4610
4611 /* PR 7093: Make sure that we are dealing with an arm elf binary. */
4612 if (! is_arm_elf (abfd))
4613 return;
4614
4615 if ((abfd->flags & DYNAMIC) != 0)
4616 return;
4617
4618 hdr = & elf_symtab_hdr (abfd);
4619 localsyms = hdr->sh_info;
4620
4621 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
4622 should contain the number of local symbols, which should come before any
4623 global symbols. Mapping symbols are always local. */
4624 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
4625 NULL);
4626
4627 /* No internal symbols read? Skip this BFD. */
4628 if (isymbuf == NULL)
4629 return;
4630
4631 for (i = 0; i < localsyms; i++)
4632 {
4633 Elf_Internal_Sym *isym = &isymbuf[i];
4634 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
4635 const char *name;
4636
4637 if (sec != NULL
4638 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
4639 {
4640 name = bfd_elf_string_from_elf_section (abfd,
4641 hdr->sh_link, isym->st_name);
4642
4643 if (bfd_is_arm_special_symbol_name (name,
4644 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
4645 elf32_arm_section_map_add (sec, name[1], isym->st_value);
4646 }
4647 }
4648 }
4649
4650
4651 void
4652 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
4653 {
4654 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4655 obj_attribute *out_attr = elf_known_obj_attributes_proc (obfd);
4656
4657 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
4658 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
4659 {
4660 switch (globals->vfp11_fix)
4661 {
4662 case BFD_ARM_VFP11_FIX_DEFAULT:
4663 case BFD_ARM_VFP11_FIX_NONE:
4664 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4665 break;
4666
4667 default:
4668 /* Give a warning, but do as the user requests anyway. */
4669 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
4670 "workaround is not necessary for target architecture"), obfd);
4671 }
4672 }
4673 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
4674 /* For earlier architectures, we might need the workaround, but do not
4675 enable it by default. If users is running with broken hardware, they
4676 must enable the erratum fix explicitly. */
4677 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
4678 }
4679
4680
4681 enum bfd_arm_vfp11_pipe
4682 {
4683 VFP11_FMAC,
4684 VFP11_LS,
4685 VFP11_DS,
4686 VFP11_BAD
4687 };
4688
4689 /* Return a VFP register number. This is encoded as RX:X for single-precision
4690 registers, or X:RX for double-precision registers, where RX is the group of
4691 four bits in the instruction encoding and X is the single extension bit.
4692 RX and X fields are specified using their lowest (starting) bit. The return
4693 value is:
4694
4695 0...31: single-precision registers s0...s31
4696 32...63: double-precision registers d0...d31.
4697
4698 Although X should be zero for VFP11 (encoding d0...d15 only), we might
4699 encounter VFP3 instructions, so we allow the full range for DP registers. */
4700
4701 static unsigned int
4702 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
4703 unsigned int x)
4704 {
4705 if (is_double)
4706 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
4707 else
4708 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
4709 }
4710
4711 /* Set bits in *WMASK according to a register number REG as encoded by
4712 bfd_arm_vfp11_regno(). Ignore d16-d31. */
4713
4714 static void
4715 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
4716 {
4717 if (reg < 32)
4718 *wmask |= 1 << reg;
4719 else if (reg < 48)
4720 *wmask |= 3 << ((reg - 32) * 2);
4721 }
4722
4723 /* Return TRUE if WMASK overwrites anything in REGS. */
4724
4725 static bfd_boolean
4726 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
4727 {
4728 int i;
4729
4730 for (i = 0; i < numregs; i++)
4731 {
4732 unsigned int reg = regs[i];
4733
4734 if (reg < 32 && (wmask & (1 << reg)) != 0)
4735 return TRUE;
4736
4737 reg -= 32;
4738
4739 if (reg >= 16)
4740 continue;
4741
4742 if ((wmask & (3 << (reg * 2))) != 0)
4743 return TRUE;
4744 }
4745
4746 return FALSE;
4747 }
4748
4749 /* In this function, we're interested in two things: finding input registers
4750 for VFP data-processing instructions, and finding the set of registers which
4751 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
4752 hold the written set, so FLDM etc. are easy to deal with (we're only
4753 interested in 32 SP registers or 16 dp registers, due to the VFP version
4754 implemented by the chip in question). DP registers are marked by setting
4755 both SP registers in the write mask). */
4756
4757 static enum bfd_arm_vfp11_pipe
4758 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
4759 int *numregs)
4760 {
4761 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
4762 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
4763
4764 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
4765 {
4766 unsigned int pqrs;
4767 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4768 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4769
4770 pqrs = ((insn & 0x00800000) >> 20)
4771 | ((insn & 0x00300000) >> 19)
4772 | ((insn & 0x00000040) >> 6);
4773
4774 switch (pqrs)
4775 {
4776 case 0: /* fmac[sd]. */
4777 case 1: /* fnmac[sd]. */
4778 case 2: /* fmsc[sd]. */
4779 case 3: /* fnmsc[sd]. */
4780 pipe = VFP11_FMAC;
4781 bfd_arm_vfp11_write_mask (destmask, fd);
4782 regs[0] = fd;
4783 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4784 regs[2] = fm;
4785 *numregs = 3;
4786 break;
4787
4788 case 4: /* fmul[sd]. */
4789 case 5: /* fnmul[sd]. */
4790 case 6: /* fadd[sd]. */
4791 case 7: /* fsub[sd]. */
4792 pipe = VFP11_FMAC;
4793 goto vfp_binop;
4794
4795 case 8: /* fdiv[sd]. */
4796 pipe = VFP11_DS;
4797 vfp_binop:
4798 bfd_arm_vfp11_write_mask (destmask, fd);
4799 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
4800 regs[1] = fm;
4801 *numregs = 2;
4802 break;
4803
4804 case 15: /* extended opcode. */
4805 {
4806 unsigned int extn = ((insn >> 15) & 0x1e)
4807 | ((insn >> 7) & 1);
4808
4809 switch (extn)
4810 {
4811 case 0: /* fcpy[sd]. */
4812 case 1: /* fabs[sd]. */
4813 case 2: /* fneg[sd]. */
4814 case 8: /* fcmp[sd]. */
4815 case 9: /* fcmpe[sd]. */
4816 case 10: /* fcmpz[sd]. */
4817 case 11: /* fcmpez[sd]. */
4818 case 16: /* fuito[sd]. */
4819 case 17: /* fsito[sd]. */
4820 case 24: /* ftoui[sd]. */
4821 case 25: /* ftouiz[sd]. */
4822 case 26: /* ftosi[sd]. */
4823 case 27: /* ftosiz[sd]. */
4824 /* These instructions will not bounce due to underflow. */
4825 *numregs = 0;
4826 pipe = VFP11_FMAC;
4827 break;
4828
4829 case 3: /* fsqrt[sd]. */
4830 /* fsqrt cannot underflow, but it can (perhaps) overwrite
4831 registers to cause the erratum in previous instructions. */
4832 bfd_arm_vfp11_write_mask (destmask, fd);
4833 pipe = VFP11_DS;
4834 break;
4835
4836 case 15: /* fcvt{ds,sd}. */
4837 {
4838 int rnum = 0;
4839
4840 bfd_arm_vfp11_write_mask (destmask, fd);
4841
4842 /* Only FCVTSD can underflow. */
4843 if ((insn & 0x100) != 0)
4844 regs[rnum++] = fm;
4845
4846 *numregs = rnum;
4847
4848 pipe = VFP11_FMAC;
4849 }
4850 break;
4851
4852 default:
4853 return VFP11_BAD;
4854 }
4855 }
4856 break;
4857
4858 default:
4859 return VFP11_BAD;
4860 }
4861 }
4862 /* Two-register transfer. */
4863 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
4864 {
4865 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
4866
4867 if ((insn & 0x100000) == 0)
4868 {
4869 if (is_double)
4870 bfd_arm_vfp11_write_mask (destmask, fm);
4871 else
4872 {
4873 bfd_arm_vfp11_write_mask (destmask, fm);
4874 bfd_arm_vfp11_write_mask (destmask, fm + 1);
4875 }
4876 }
4877
4878 pipe = VFP11_LS;
4879 }
4880 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
4881 {
4882 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
4883 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
4884
4885 switch (puw)
4886 {
4887 case 0: /* Two-reg transfer. We should catch these above. */
4888 abort ();
4889
4890 case 2: /* fldm[sdx]. */
4891 case 3:
4892 case 5:
4893 {
4894 unsigned int i, offset = insn & 0xff;
4895
4896 if (is_double)
4897 offset >>= 1;
4898
4899 for (i = fd; i < fd + offset; i++)
4900 bfd_arm_vfp11_write_mask (destmask, i);
4901 }
4902 break;
4903
4904 case 4: /* fld[sd]. */
4905 case 6:
4906 bfd_arm_vfp11_write_mask (destmask, fd);
4907 break;
4908
4909 default:
4910 return VFP11_BAD;
4911 }
4912
4913 pipe = VFP11_LS;
4914 }
4915 /* Single-register transfer. Note L==0. */
4916 else if ((insn & 0x0f100e10) == 0x0e000a10)
4917 {
4918 unsigned int opcode = (insn >> 21) & 7;
4919 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
4920
4921 switch (opcode)
4922 {
4923 case 0: /* fmsr/fmdlr. */
4924 case 1: /* fmdhr. */
4925 /* Mark fmdhr and fmdlr as writing to the whole of the DP
4926 destination register. I don't know if this is exactly right,
4927 but it is the conservative choice. */
4928 bfd_arm_vfp11_write_mask (destmask, fn);
4929 break;
4930
4931 case 7: /* fmxr. */
4932 break;
4933 }
4934
4935 pipe = VFP11_LS;
4936 }
4937
4938 return pipe;
4939 }
4940
4941
4942 static int elf32_arm_compare_mapping (const void * a, const void * b);
4943
4944
4945 /* Look for potentially-troublesome code sequences which might trigger the
4946 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
4947 (available from ARM) for details of the erratum. A short version is
4948 described in ld.texinfo. */
4949
4950 bfd_boolean
4951 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
4952 {
4953 asection *sec;
4954 bfd_byte *contents = NULL;
4955 int state = 0;
4956 int regs[3], numregs = 0;
4957 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
4958 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
4959
4960 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
4961 The states transition as follows:
4962
4963 0 -> 1 (vector) or 0 -> 2 (scalar)
4964 A VFP FMAC-pipeline instruction has been seen. Fill
4965 regs[0]..regs[numregs-1] with its input operands. Remember this
4966 instruction in 'first_fmac'.
4967
4968 1 -> 2
4969 Any instruction, except for a VFP instruction which overwrites
4970 regs[*].
4971
4972 1 -> 3 [ -> 0 ] or
4973 2 -> 3 [ -> 0 ]
4974 A VFP instruction has been seen which overwrites any of regs[*].
4975 We must make a veneer! Reset state to 0 before examining next
4976 instruction.
4977
4978 2 -> 0
4979 If we fail to match anything in state 2, reset to state 0 and reset
4980 the instruction pointer to the instruction after 'first_fmac'.
4981
4982 If the VFP11 vector mode is in use, there must be at least two unrelated
4983 instructions between anti-dependent VFP11 instructions to properly avoid
4984 triggering the erratum, hence the use of the extra state 1. */
4985
4986 /* If we are only performing a partial link do not bother
4987 to construct any glue. */
4988 if (link_info->relocatable)
4989 return TRUE;
4990
4991 /* Skip if this bfd does not correspond to an ELF image. */
4992 if (! is_arm_elf (abfd))
4993 return TRUE;
4994
4995 /* We should have chosen a fix type by the time we get here. */
4996 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
4997
4998 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
4999 return TRUE;
5000
5001 /* Skip this BFD if it corresponds to an executable or dynamic object. */
5002 if ((abfd->flags & (EXEC_P | DYNAMIC)) != 0)
5003 return TRUE;
5004
5005 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5006 {
5007 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
5008 struct _arm_elf_section_data *sec_data;
5009
5010 /* If we don't have executable progbits, we're not interested in this
5011 section. Also skip if section is to be excluded. */
5012 if (elf_section_type (sec) != SHT_PROGBITS
5013 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
5014 || (sec->flags & SEC_EXCLUDE) != 0
5015 || sec->sec_info_type == ELF_INFO_TYPE_JUST_SYMS
5016 || sec->output_section == bfd_abs_section_ptr
5017 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
5018 continue;
5019
5020 sec_data = elf32_arm_section_data (sec);
5021
5022 if (sec_data->mapcount == 0)
5023 continue;
5024
5025 if (elf_section_data (sec)->this_hdr.contents != NULL)
5026 contents = elf_section_data (sec)->this_hdr.contents;
5027 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
5028 goto error_return;
5029
5030 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
5031 elf32_arm_compare_mapping);
5032
5033 for (span = 0; span < sec_data->mapcount; span++)
5034 {
5035 unsigned int span_start = sec_data->map[span].vma;
5036 unsigned int span_end = (span == sec_data->mapcount - 1)
5037 ? sec->size : sec_data->map[span + 1].vma;
5038 char span_type = sec_data->map[span].type;
5039
5040 /* FIXME: Only ARM mode is supported at present. We may need to
5041 support Thumb-2 mode also at some point. */
5042 if (span_type != 'a')
5043 continue;
5044
5045 for (i = span_start; i < span_end;)
5046 {
5047 unsigned int next_i = i + 4;
5048 unsigned int insn = bfd_big_endian (abfd)
5049 ? (contents[i] << 24)
5050 | (contents[i + 1] << 16)
5051 | (contents[i + 2] << 8)
5052 | contents[i + 3]
5053 : (contents[i + 3] << 24)
5054 | (contents[i + 2] << 16)
5055 | (contents[i + 1] << 8)
5056 | contents[i];
5057 unsigned int writemask = 0;
5058 enum bfd_arm_vfp11_pipe pipe;
5059
5060 switch (state)
5061 {
5062 case 0:
5063 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
5064 &numregs);
5065 /* I'm assuming the VFP11 erratum can trigger with denorm
5066 operands on either the FMAC or the DS pipeline. This might
5067 lead to slightly overenthusiastic veneer insertion. */
5068 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
5069 {
5070 state = use_vector ? 1 : 2;
5071 first_fmac = i;
5072 veneer_of_insn = insn;
5073 }
5074 break;
5075
5076 case 1:
5077 {
5078 int other_regs[3], other_numregs;
5079 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5080 other_regs,
5081 &other_numregs);
5082 if (pipe != VFP11_BAD
5083 && bfd_arm_vfp11_antidependency (writemask, regs,
5084 numregs))
5085 state = 3;
5086 else
5087 state = 2;
5088 }
5089 break;
5090
5091 case 2:
5092 {
5093 int other_regs[3], other_numregs;
5094 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
5095 other_regs,
5096 &other_numregs);
5097 if (pipe != VFP11_BAD
5098 && bfd_arm_vfp11_antidependency (writemask, regs,
5099 numregs))
5100 state = 3;
5101 else
5102 {
5103 state = 0;
5104 next_i = first_fmac + 4;
5105 }
5106 }
5107 break;
5108
5109 case 3:
5110 abort (); /* Should be unreachable. */
5111 }
5112
5113 if (state == 3)
5114 {
5115 elf32_vfp11_erratum_list *newerr
5116 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
5117 int errcount;
5118
5119 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
5120
5121 newerr->u.b.vfp_insn = veneer_of_insn;
5122
5123 switch (span_type)
5124 {
5125 case 'a':
5126 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
5127 break;
5128
5129 default:
5130 abort ();
5131 }
5132
5133 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
5134 first_fmac);
5135
5136 newerr->vma = -1;
5137
5138 newerr->next = sec_data->erratumlist;
5139 sec_data->erratumlist = newerr;
5140
5141 state = 0;
5142 }
5143
5144 i = next_i;
5145 }
5146 }
5147
5148 if (contents != NULL
5149 && elf_section_data (sec)->this_hdr.contents != contents)
5150 free (contents);
5151 contents = NULL;
5152 }
5153
5154 return TRUE;
5155
5156 error_return:
5157 if (contents != NULL
5158 && elf_section_data (sec)->this_hdr.contents != contents)
5159 free (contents);
5160
5161 return FALSE;
5162 }
5163
5164 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
5165 after sections have been laid out, using specially-named symbols. */
5166
5167 void
5168 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
5169 struct bfd_link_info *link_info)
5170 {
5171 asection *sec;
5172 struct elf32_arm_link_hash_table *globals;
5173 char *tmp_name;
5174
5175 if (link_info->relocatable)
5176 return;
5177
5178 /* Skip if this bfd does not correspond to an ELF image. */
5179 if (! is_arm_elf (abfd))
5180 return;
5181
5182 globals = elf32_arm_hash_table (link_info);
5183
5184 tmp_name = bfd_malloc ((bfd_size_type) strlen
5185 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
5186
5187 for (sec = abfd->sections; sec != NULL; sec = sec->next)
5188 {
5189 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
5190 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
5191
5192 for (; errnode != NULL; errnode = errnode->next)
5193 {
5194 struct elf_link_hash_entry *myh;
5195 bfd_vma vma;
5196
5197 switch (errnode->type)
5198 {
5199 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
5200 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
5201 /* Find veneer symbol. */
5202 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
5203 errnode->u.b.veneer->u.v.id);
5204
5205 myh = elf_link_hash_lookup
5206 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5207
5208 if (myh == NULL)
5209 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5210 "`%s'"), abfd, tmp_name);
5211
5212 vma = myh->root.u.def.section->output_section->vma
5213 + myh->root.u.def.section->output_offset
5214 + myh->root.u.def.value;
5215
5216 errnode->u.b.veneer->vma = vma;
5217 break;
5218
5219 case VFP11_ERRATUM_ARM_VENEER:
5220 case VFP11_ERRATUM_THUMB_VENEER:
5221 /* Find return location. */
5222 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
5223 errnode->u.v.id);
5224
5225 myh = elf_link_hash_lookup
5226 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
5227
5228 if (myh == NULL)
5229 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
5230 "`%s'"), abfd, tmp_name);
5231
5232 vma = myh->root.u.def.section->output_section->vma
5233 + myh->root.u.def.section->output_offset
5234 + myh->root.u.def.value;
5235
5236 errnode->u.v.branch->vma = vma;
5237 break;
5238
5239 default:
5240 abort ();
5241 }
5242 }
5243 }
5244
5245 free (tmp_name);
5246 }
5247
5248
5249 /* Set target relocation values needed during linking. */
5250
5251 void
5252 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
5253 struct bfd_link_info *link_info,
5254 int target1_is_rel,
5255 char * target2_type,
5256 int fix_v4bx,
5257 int use_blx,
5258 bfd_arm_vfp11_fix vfp11_fix,
5259 int no_enum_warn, int no_wchar_warn,
5260 int pic_veneer)
5261 {
5262 struct elf32_arm_link_hash_table *globals;
5263
5264 globals = elf32_arm_hash_table (link_info);
5265
5266 globals->target1_is_rel = target1_is_rel;
5267 if (strcmp (target2_type, "rel") == 0)
5268 globals->target2_reloc = R_ARM_REL32;
5269 else if (strcmp (target2_type, "abs") == 0)
5270 globals->target2_reloc = R_ARM_ABS32;
5271 else if (strcmp (target2_type, "got-rel") == 0)
5272 globals->target2_reloc = R_ARM_GOT_PREL;
5273 else
5274 {
5275 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
5276 target2_type);
5277 }
5278 globals->fix_v4bx = fix_v4bx;
5279 globals->use_blx |= use_blx;
5280 globals->vfp11_fix = vfp11_fix;
5281 globals->pic_veneer = pic_veneer;
5282
5283 BFD_ASSERT (is_arm_elf (output_bfd));
5284 elf_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
5285 elf_arm_tdata (output_bfd)->no_wchar_size_warning = no_wchar_warn;
5286 }
5287
5288 /* Replace the target offset of a Thumb bl or b.w instruction. */
5289
5290 static void
5291 insert_thumb_branch (bfd *abfd, long int offset, bfd_byte *insn)
5292 {
5293 bfd_vma upper;
5294 bfd_vma lower;
5295 int reloc_sign;
5296
5297 BFD_ASSERT ((offset & 1) == 0);
5298
5299 upper = bfd_get_16 (abfd, insn);
5300 lower = bfd_get_16 (abfd, insn + 2);
5301 reloc_sign = (offset < 0) ? 1 : 0;
5302 upper = (upper & ~(bfd_vma) 0x7ff)
5303 | ((offset >> 12) & 0x3ff)
5304 | (reloc_sign << 10);
5305 lower = (lower & ~(bfd_vma) 0x2fff)
5306 | (((!((offset >> 23) & 1)) ^ reloc_sign) << 13)
5307 | (((!((offset >> 22) & 1)) ^ reloc_sign) << 11)
5308 | ((offset >> 1) & 0x7ff);
5309 bfd_put_16 (abfd, upper, insn);
5310 bfd_put_16 (abfd, lower, insn + 2);
5311 }
5312
5313 /* Thumb code calling an ARM function. */
5314
5315 static int
5316 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
5317 const char * name,
5318 bfd * input_bfd,
5319 bfd * output_bfd,
5320 asection * input_section,
5321 bfd_byte * hit_data,
5322 asection * sym_sec,
5323 bfd_vma offset,
5324 bfd_signed_vma addend,
5325 bfd_vma val,
5326 char **error_message)
5327 {
5328 asection * s = 0;
5329 bfd_vma my_offset;
5330 long int ret_offset;
5331 struct elf_link_hash_entry * myh;
5332 struct elf32_arm_link_hash_table * globals;
5333
5334 myh = find_thumb_glue (info, name, error_message);
5335 if (myh == NULL)
5336 return FALSE;
5337
5338 globals = elf32_arm_hash_table (info);
5339
5340 BFD_ASSERT (globals != NULL);
5341 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5342
5343 my_offset = myh->root.u.def.value;
5344
5345 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5346 THUMB2ARM_GLUE_SECTION_NAME);
5347
5348 BFD_ASSERT (s != NULL);
5349 BFD_ASSERT (s->contents != NULL);
5350 BFD_ASSERT (s->output_section != NULL);
5351
5352 if ((my_offset & 0x01) == 0x01)
5353 {
5354 if (sym_sec != NULL
5355 && sym_sec->owner != NULL
5356 && !INTERWORK_FLAG (sym_sec->owner))
5357 {
5358 (*_bfd_error_handler)
5359 (_("%B(%s): warning: interworking not enabled.\n"
5360 " first occurrence: %B: thumb call to arm"),
5361 sym_sec->owner, input_bfd, name);
5362
5363 return FALSE;
5364 }
5365
5366 --my_offset;
5367 myh->root.u.def.value = my_offset;
5368
5369 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
5370 s->contents + my_offset);
5371
5372 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
5373 s->contents + my_offset + 2);
5374
5375 ret_offset =
5376 /* Address of destination of the stub. */
5377 ((bfd_signed_vma) val)
5378 - ((bfd_signed_vma)
5379 /* Offset from the start of the current section
5380 to the start of the stubs. */
5381 (s->output_offset
5382 /* Offset of the start of this stub from the start of the stubs. */
5383 + my_offset
5384 /* Address of the start of the current section. */
5385 + s->output_section->vma)
5386 /* The branch instruction is 4 bytes into the stub. */
5387 + 4
5388 /* ARM branches work from the pc of the instruction + 8. */
5389 + 8);
5390
5391 put_arm_insn (globals, output_bfd,
5392 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
5393 s->contents + my_offset + 4);
5394 }
5395
5396 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
5397
5398 /* Now go back and fix up the original BL insn to point to here. */
5399 ret_offset =
5400 /* Address of where the stub is located. */
5401 (s->output_section->vma + s->output_offset + my_offset)
5402 /* Address of where the BL is located. */
5403 - (input_section->output_section->vma + input_section->output_offset
5404 + offset)
5405 /* Addend in the relocation. */
5406 - addend
5407 /* Biassing for PC-relative addressing. */
5408 - 8;
5409
5410 insert_thumb_branch (input_bfd, ret_offset, hit_data - input_section->vma);
5411
5412 return TRUE;
5413 }
5414
5415 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
5416
5417 static struct elf_link_hash_entry *
5418 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
5419 const char * name,
5420 bfd * input_bfd,
5421 bfd * output_bfd,
5422 asection * sym_sec,
5423 bfd_vma val,
5424 asection * s,
5425 char ** error_message)
5426 {
5427 bfd_vma my_offset;
5428 long int ret_offset;
5429 struct elf_link_hash_entry * myh;
5430 struct elf32_arm_link_hash_table * globals;
5431
5432 myh = find_arm_glue (info, name, error_message);
5433 if (myh == NULL)
5434 return NULL;
5435
5436 globals = elf32_arm_hash_table (info);
5437
5438 BFD_ASSERT (globals != NULL);
5439 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5440
5441 my_offset = myh->root.u.def.value;
5442
5443 if ((my_offset & 0x01) == 0x01)
5444 {
5445 if (sym_sec != NULL
5446 && sym_sec->owner != NULL
5447 && !INTERWORK_FLAG (sym_sec->owner))
5448 {
5449 (*_bfd_error_handler)
5450 (_("%B(%s): warning: interworking not enabled.\n"
5451 " first occurrence: %B: arm call to thumb"),
5452 sym_sec->owner, input_bfd, name);
5453 }
5454
5455 --my_offset;
5456 myh->root.u.def.value = my_offset;
5457
5458 if (info->shared || globals->root.is_relocatable_executable
5459 || globals->pic_veneer)
5460 {
5461 /* For relocatable objects we can't use absolute addresses,
5462 so construct the address from a relative offset. */
5463 /* TODO: If the offset is small it's probably worth
5464 constructing the address with adds. */
5465 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
5466 s->contents + my_offset);
5467 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
5468 s->contents + my_offset + 4);
5469 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
5470 s->contents + my_offset + 8);
5471 /* Adjust the offset by 4 for the position of the add,
5472 and 8 for the pipeline offset. */
5473 ret_offset = (val - (s->output_offset
5474 + s->output_section->vma
5475 + my_offset + 12))
5476 | 1;
5477 bfd_put_32 (output_bfd, ret_offset,
5478 s->contents + my_offset + 12);
5479 }
5480 else if (globals->use_blx)
5481 {
5482 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
5483 s->contents + my_offset);
5484
5485 /* It's a thumb address. Add the low order bit. */
5486 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
5487 s->contents + my_offset + 4);
5488 }
5489 else
5490 {
5491 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
5492 s->contents + my_offset);
5493
5494 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
5495 s->contents + my_offset + 4);
5496
5497 /* It's a thumb address. Add the low order bit. */
5498 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
5499 s->contents + my_offset + 8);
5500
5501 my_offset += 12;
5502 }
5503 }
5504
5505 BFD_ASSERT (my_offset <= globals->arm_glue_size);
5506
5507 return myh;
5508 }
5509
5510 /* Arm code calling a Thumb function. */
5511
5512 static int
5513 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
5514 const char * name,
5515 bfd * input_bfd,
5516 bfd * output_bfd,
5517 asection * input_section,
5518 bfd_byte * hit_data,
5519 asection * sym_sec,
5520 bfd_vma offset,
5521 bfd_signed_vma addend,
5522 bfd_vma val,
5523 char **error_message)
5524 {
5525 unsigned long int tmp;
5526 bfd_vma my_offset;
5527 asection * s;
5528 long int ret_offset;
5529 struct elf_link_hash_entry * myh;
5530 struct elf32_arm_link_hash_table * globals;
5531
5532 globals = elf32_arm_hash_table (info);
5533
5534 BFD_ASSERT (globals != NULL);
5535 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5536
5537 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5538 ARM2THUMB_GLUE_SECTION_NAME);
5539 BFD_ASSERT (s != NULL);
5540 BFD_ASSERT (s->contents != NULL);
5541 BFD_ASSERT (s->output_section != NULL);
5542
5543 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
5544 sym_sec, val, s, error_message);
5545 if (!myh)
5546 return FALSE;
5547
5548 my_offset = myh->root.u.def.value;
5549 tmp = bfd_get_32 (input_bfd, hit_data);
5550 tmp = tmp & 0xFF000000;
5551
5552 /* Somehow these are both 4 too far, so subtract 8. */
5553 ret_offset = (s->output_offset
5554 + my_offset
5555 + s->output_section->vma
5556 - (input_section->output_offset
5557 + input_section->output_section->vma
5558 + offset + addend)
5559 - 8);
5560
5561 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
5562
5563 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
5564
5565 return TRUE;
5566 }
5567
5568 /* Populate Arm stub for an exported Thumb function. */
5569
5570 static bfd_boolean
5571 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
5572 {
5573 struct bfd_link_info * info = (struct bfd_link_info *) inf;
5574 asection * s;
5575 struct elf_link_hash_entry * myh;
5576 struct elf32_arm_link_hash_entry *eh;
5577 struct elf32_arm_link_hash_table * globals;
5578 asection *sec;
5579 bfd_vma val;
5580 char *error_message;
5581
5582 eh = elf32_arm_hash_entry (h);
5583 /* Allocate stubs for exported Thumb functions on v4t. */
5584 if (eh->export_glue == NULL)
5585 return TRUE;
5586
5587 globals = elf32_arm_hash_table (info);
5588
5589 BFD_ASSERT (globals != NULL);
5590 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5591
5592 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5593 ARM2THUMB_GLUE_SECTION_NAME);
5594 BFD_ASSERT (s != NULL);
5595 BFD_ASSERT (s->contents != NULL);
5596 BFD_ASSERT (s->output_section != NULL);
5597
5598 sec = eh->export_glue->root.u.def.section;
5599
5600 BFD_ASSERT (sec->output_section != NULL);
5601
5602 val = eh->export_glue->root.u.def.value + sec->output_offset
5603 + sec->output_section->vma;
5604
5605 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
5606 h->root.u.def.section->owner,
5607 globals->obfd, sec, val, s,
5608 &error_message);
5609 BFD_ASSERT (myh);
5610 return TRUE;
5611 }
5612
5613 /* Populate ARMv4 BX veneers. Returns the absolute adress of the veneer. */
5614
5615 static bfd_vma
5616 elf32_arm_bx_glue (struct bfd_link_info * info, int reg)
5617 {
5618 bfd_byte *p;
5619 bfd_vma glue_addr;
5620 asection *s;
5621 struct elf32_arm_link_hash_table *globals;
5622
5623 globals = elf32_arm_hash_table (info);
5624
5625 BFD_ASSERT (globals != NULL);
5626 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
5627
5628 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
5629 ARM_BX_GLUE_SECTION_NAME);
5630 BFD_ASSERT (s != NULL);
5631 BFD_ASSERT (s->contents != NULL);
5632 BFD_ASSERT (s->output_section != NULL);
5633
5634 BFD_ASSERT (globals->bx_glue_offset[reg] & 2);
5635
5636 glue_addr = globals->bx_glue_offset[reg] & ~(bfd_vma)3;
5637
5638 if ((globals->bx_glue_offset[reg] & 1) == 0)
5639 {
5640 p = s->contents + glue_addr;
5641 bfd_put_32 (globals->obfd, armbx1_tst_insn + (reg << 16), p);
5642 bfd_put_32 (globals->obfd, armbx2_moveq_insn + reg, p + 4);
5643 bfd_put_32 (globals->obfd, armbx3_bx_insn + reg, p + 8);
5644 globals->bx_glue_offset[reg] |= 1;
5645 }
5646
5647 return glue_addr + s->output_section->vma + s->output_offset;
5648 }
5649
5650 /* Generate Arm stubs for exported Thumb symbols. */
5651 static void
5652 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
5653 struct bfd_link_info *link_info)
5654 {
5655 struct elf32_arm_link_hash_table * globals;
5656
5657 if (link_info == NULL)
5658 /* Ignore this if we are not called by the ELF backend linker. */
5659 return;
5660
5661 globals = elf32_arm_hash_table (link_info);
5662 /* If blx is available then exported Thumb symbols are OK and there is
5663 nothing to do. */
5664 if (globals->use_blx)
5665 return;
5666
5667 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
5668 link_info);
5669 }
5670
5671 /* Some relocations map to different relocations depending on the
5672 target. Return the real relocation. */
5673
5674 static int
5675 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
5676 int r_type)
5677 {
5678 switch (r_type)
5679 {
5680 case R_ARM_TARGET1:
5681 if (globals->target1_is_rel)
5682 return R_ARM_REL32;
5683 else
5684 return R_ARM_ABS32;
5685
5686 case R_ARM_TARGET2:
5687 return globals->target2_reloc;
5688
5689 default:
5690 return r_type;
5691 }
5692 }
5693
5694 /* Return the base VMA address which should be subtracted from real addresses
5695 when resolving @dtpoff relocation.
5696 This is PT_TLS segment p_vaddr. */
5697
5698 static bfd_vma
5699 dtpoff_base (struct bfd_link_info *info)
5700 {
5701 /* If tls_sec is NULL, we should have signalled an error already. */
5702 if (elf_hash_table (info)->tls_sec == NULL)
5703 return 0;
5704 return elf_hash_table (info)->tls_sec->vma;
5705 }
5706
5707 /* Return the relocation value for @tpoff relocation
5708 if STT_TLS virtual address is ADDRESS. */
5709
5710 static bfd_vma
5711 tpoff (struct bfd_link_info *info, bfd_vma address)
5712 {
5713 struct elf_link_hash_table *htab = elf_hash_table (info);
5714 bfd_vma base;
5715
5716 /* If tls_sec is NULL, we should have signalled an error already. */
5717 if (htab->tls_sec == NULL)
5718 return 0;
5719 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
5720 return address - htab->tls_sec->vma + base;
5721 }
5722
5723 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
5724 VALUE is the relocation value. */
5725
5726 static bfd_reloc_status_type
5727 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
5728 {
5729 if (value > 0xfff)
5730 return bfd_reloc_overflow;
5731
5732 value |= bfd_get_32 (abfd, data) & 0xfffff000;
5733 bfd_put_32 (abfd, value, data);
5734 return bfd_reloc_ok;
5735 }
5736
5737 /* For a given value of n, calculate the value of G_n as required to
5738 deal with group relocations. We return it in the form of an
5739 encoded constant-and-rotation, together with the final residual. If n is
5740 specified as less than zero, then final_residual is filled with the
5741 input value and no further action is performed. */
5742
5743 static bfd_vma
5744 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
5745 {
5746 int current_n;
5747 bfd_vma g_n;
5748 bfd_vma encoded_g_n = 0;
5749 bfd_vma residual = value; /* Also known as Y_n. */
5750
5751 for (current_n = 0; current_n <= n; current_n++)
5752 {
5753 int shift;
5754
5755 /* Calculate which part of the value to mask. */
5756 if (residual == 0)
5757 shift = 0;
5758 else
5759 {
5760 int msb;
5761
5762 /* Determine the most significant bit in the residual and
5763 align the resulting value to a 2-bit boundary. */
5764 for (msb = 30; msb >= 0; msb -= 2)
5765 if (residual & (3 << msb))
5766 break;
5767
5768 /* The desired shift is now (msb - 6), or zero, whichever
5769 is the greater. */
5770 shift = msb - 6;
5771 if (shift < 0)
5772 shift = 0;
5773 }
5774
5775 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
5776 g_n = residual & (0xff << shift);
5777 encoded_g_n = (g_n >> shift)
5778 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
5779
5780 /* Calculate the residual for the next time around. */
5781 residual &= ~g_n;
5782 }
5783
5784 *final_residual = residual;
5785
5786 return encoded_g_n;
5787 }
5788
5789 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
5790 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
5791
5792 static int
5793 identify_add_or_sub (bfd_vma insn)
5794 {
5795 int opcode = insn & 0x1e00000;
5796
5797 if (opcode == 1 << 23) /* ADD */
5798 return 1;
5799
5800 if (opcode == 1 << 22) /* SUB */
5801 return -1;
5802
5803 return 0;
5804 }
5805
5806 /* Perform a relocation as part of a final link. */
5807
5808 static bfd_reloc_status_type
5809 elf32_arm_final_link_relocate (reloc_howto_type * howto,
5810 bfd * input_bfd,
5811 bfd * output_bfd,
5812 asection * input_section,
5813 bfd_byte * contents,
5814 Elf_Internal_Rela * rel,
5815 bfd_vma value,
5816 struct bfd_link_info * info,
5817 asection * sym_sec,
5818 const char * sym_name,
5819 int sym_flags,
5820 struct elf_link_hash_entry * h,
5821 bfd_boolean * unresolved_reloc_p,
5822 char ** error_message)
5823 {
5824 unsigned long r_type = howto->type;
5825 unsigned long r_symndx;
5826 bfd_byte * hit_data = contents + rel->r_offset;
5827 bfd * dynobj = NULL;
5828 Elf_Internal_Shdr * symtab_hdr;
5829 struct elf_link_hash_entry ** sym_hashes;
5830 bfd_vma * local_got_offsets;
5831 asection * sgot = NULL;
5832 asection * splt = NULL;
5833 asection * sreloc = NULL;
5834 bfd_vma addend;
5835 bfd_signed_vma signed_addend;
5836 struct elf32_arm_link_hash_table * globals;
5837
5838 globals = elf32_arm_hash_table (info);
5839
5840 BFD_ASSERT (is_arm_elf (input_bfd));
5841
5842 /* Some relocation types map to different relocations depending on the
5843 target. We pick the right one here. */
5844 r_type = arm_real_reloc_type (globals, r_type);
5845 if (r_type != howto->type)
5846 howto = elf32_arm_howto_from_type (r_type);
5847
5848 /* If the start address has been set, then set the EF_ARM_HASENTRY
5849 flag. Setting this more than once is redundant, but the cost is
5850 not too high, and it keeps the code simple.
5851
5852 The test is done here, rather than somewhere else, because the
5853 start address is only set just before the final link commences.
5854
5855 Note - if the user deliberately sets a start address of 0, the
5856 flag will not be set. */
5857 if (bfd_get_start_address (output_bfd) != 0)
5858 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
5859
5860 dynobj = elf_hash_table (info)->dynobj;
5861 if (dynobj)
5862 {
5863 sgot = bfd_get_section_by_name (dynobj, ".got");
5864 splt = bfd_get_section_by_name (dynobj, ".plt");
5865 }
5866 symtab_hdr = & elf_symtab_hdr (input_bfd);
5867 sym_hashes = elf_sym_hashes (input_bfd);
5868 local_got_offsets = elf_local_got_offsets (input_bfd);
5869 r_symndx = ELF32_R_SYM (rel->r_info);
5870
5871 if (globals->use_rel)
5872 {
5873 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
5874
5875 if (addend & ((howto->src_mask + 1) >> 1))
5876 {
5877 signed_addend = -1;
5878 signed_addend &= ~ howto->src_mask;
5879 signed_addend |= addend;
5880 }
5881 else
5882 signed_addend = addend;
5883 }
5884 else
5885 addend = signed_addend = rel->r_addend;
5886
5887 switch (r_type)
5888 {
5889 case R_ARM_NONE:
5890 /* We don't need to find a value for this symbol. It's just a
5891 marker. */
5892 *unresolved_reloc_p = FALSE;
5893 return bfd_reloc_ok;
5894
5895 case R_ARM_ABS12:
5896 if (!globals->vxworks_p)
5897 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
5898
5899 case R_ARM_PC24:
5900 case R_ARM_ABS32:
5901 case R_ARM_ABS32_NOI:
5902 case R_ARM_REL32:
5903 case R_ARM_REL32_NOI:
5904 case R_ARM_CALL:
5905 case R_ARM_JUMP24:
5906 case R_ARM_XPC25:
5907 case R_ARM_PREL31:
5908 case R_ARM_PLT32:
5909 /* Handle relocations which should use the PLT entry. ABS32/REL32
5910 will use the symbol's value, which may point to a PLT entry, but we
5911 don't need to handle that here. If we created a PLT entry, all
5912 branches in this object should go to it. */
5913 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
5914 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
5915 && h != NULL
5916 && splt != NULL
5917 && h->plt.offset != (bfd_vma) -1)
5918 {
5919 /* If we've created a .plt section, and assigned a PLT entry to
5920 this function, it should not be known to bind locally. If
5921 it were, we would have cleared the PLT entry. */
5922 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
5923
5924 value = (splt->output_section->vma
5925 + splt->output_offset
5926 + h->plt.offset);
5927 *unresolved_reloc_p = FALSE;
5928 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5929 contents, rel->r_offset, value,
5930 rel->r_addend);
5931 }
5932
5933 /* When generating a shared object or relocatable executable, these
5934 relocations are copied into the output file to be resolved at
5935 run time. */
5936 if ((info->shared || globals->root.is_relocatable_executable)
5937 && (input_section->flags & SEC_ALLOC)
5938 && !(elf32_arm_hash_table (info)->vxworks_p
5939 && strcmp (input_section->output_section->name,
5940 ".tls_vars") == 0)
5941 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
5942 || !SYMBOL_CALLS_LOCAL (info, h))
5943 && (h == NULL
5944 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5945 || h->root.type != bfd_link_hash_undefweak)
5946 && r_type != R_ARM_PC24
5947 && r_type != R_ARM_CALL
5948 && r_type != R_ARM_JUMP24
5949 && r_type != R_ARM_PREL31
5950 && r_type != R_ARM_PLT32)
5951 {
5952 Elf_Internal_Rela outrel;
5953 bfd_byte *loc;
5954 bfd_boolean skip, relocate;
5955
5956 *unresolved_reloc_p = FALSE;
5957
5958 if (sreloc == NULL)
5959 {
5960 sreloc = _bfd_elf_get_dynamic_reloc_section (input_bfd, input_section,
5961 ! globals->use_rel);
5962
5963 if (sreloc == NULL)
5964 return bfd_reloc_notsupported;
5965 }
5966
5967 skip = FALSE;
5968 relocate = FALSE;
5969
5970 outrel.r_addend = addend;
5971 outrel.r_offset =
5972 _bfd_elf_section_offset (output_bfd, info, input_section,
5973 rel->r_offset);
5974 if (outrel.r_offset == (bfd_vma) -1)
5975 skip = TRUE;
5976 else if (outrel.r_offset == (bfd_vma) -2)
5977 skip = TRUE, relocate = TRUE;
5978 outrel.r_offset += (input_section->output_section->vma
5979 + input_section->output_offset);
5980
5981 if (skip)
5982 memset (&outrel, 0, sizeof outrel);
5983 else if (h != NULL
5984 && h->dynindx != -1
5985 && (!info->shared
5986 || !info->symbolic
5987 || !h->def_regular))
5988 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
5989 else
5990 {
5991 int symbol;
5992
5993 /* This symbol is local, or marked to become local. */
5994 if (sym_flags == STT_ARM_TFUNC)
5995 value |= 1;
5996 if (globals->symbian_p)
5997 {
5998 asection *osec;
5999
6000 /* On Symbian OS, the data segment and text segement
6001 can be relocated independently. Therefore, we
6002 must indicate the segment to which this
6003 relocation is relative. The BPABI allows us to
6004 use any symbol in the right segment; we just use
6005 the section symbol as it is convenient. (We
6006 cannot use the symbol given by "h" directly as it
6007 will not appear in the dynamic symbol table.)
6008
6009 Note that the dynamic linker ignores the section
6010 symbol value, so we don't subtract osec->vma
6011 from the emitted reloc addend. */
6012 if (sym_sec)
6013 osec = sym_sec->output_section;
6014 else
6015 osec = input_section->output_section;
6016 symbol = elf_section_data (osec)->dynindx;
6017 if (symbol == 0)
6018 {
6019 struct elf_link_hash_table *htab = elf_hash_table (info);
6020
6021 if ((osec->flags & SEC_READONLY) == 0
6022 && htab->data_index_section != NULL)
6023 osec = htab->data_index_section;
6024 else
6025 osec = htab->text_index_section;
6026 symbol = elf_section_data (osec)->dynindx;
6027 }
6028 BFD_ASSERT (symbol != 0);
6029 }
6030 else
6031 /* On SVR4-ish systems, the dynamic loader cannot
6032 relocate the text and data segments independently,
6033 so the symbol does not matter. */
6034 symbol = 0;
6035 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
6036 if (globals->use_rel)
6037 relocate = TRUE;
6038 else
6039 outrel.r_addend += value;
6040 }
6041
6042 loc = sreloc->contents;
6043 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
6044 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6045
6046 /* If this reloc is against an external symbol, we do not want to
6047 fiddle with the addend. Otherwise, we need to include the symbol
6048 value so that it becomes an addend for the dynamic reloc. */
6049 if (! relocate)
6050 return bfd_reloc_ok;
6051
6052 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6053 contents, rel->r_offset, value,
6054 (bfd_vma) 0);
6055 }
6056 else switch (r_type)
6057 {
6058 case R_ARM_ABS12:
6059 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
6060
6061 case R_ARM_XPC25: /* Arm BLX instruction. */
6062 case R_ARM_CALL:
6063 case R_ARM_JUMP24:
6064 case R_ARM_PC24: /* Arm B/BL instruction. */
6065 case R_ARM_PLT32:
6066 {
6067 bfd_vma from;
6068 bfd_signed_vma branch_offset;
6069 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6070
6071 from = (input_section->output_section->vma
6072 + input_section->output_offset
6073 + rel->r_offset);
6074 branch_offset = (bfd_signed_vma)(value - from);
6075
6076 if (r_type == R_ARM_XPC25)
6077 {
6078 /* Check for Arm calling Arm function. */
6079 /* FIXME: Should we translate the instruction into a BL
6080 instruction instead ? */
6081 if (sym_flags != STT_ARM_TFUNC)
6082 (*_bfd_error_handler)
6083 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
6084 input_bfd,
6085 h ? h->root.root.string : "(local)");
6086 }
6087 else if (r_type != R_ARM_CALL)
6088 {
6089 /* Check for Arm calling Thumb function. */
6090 if (sym_flags == STT_ARM_TFUNC)
6091 {
6092 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
6093 output_bfd, input_section,
6094 hit_data, sym_sec, rel->r_offset,
6095 signed_addend, value,
6096 error_message))
6097 return bfd_reloc_ok;
6098 else
6099 return bfd_reloc_dangerous;
6100 }
6101 }
6102
6103 /* Check if a stub has to be inserted because the
6104 destination is too far or we are changing mode. */
6105 if (r_type == R_ARM_CALL)
6106 {
6107 if (branch_offset > ARM_MAX_FWD_BRANCH_OFFSET
6108 || branch_offset < ARM_MAX_BWD_BRANCH_OFFSET
6109 || sym_flags == STT_ARM_TFUNC)
6110 {
6111 /* The target is out of reach, so redirect the
6112 branch to the local stub for this function. */
6113
6114 stub_entry = elf32_arm_get_stub_entry (input_section,
6115 sym_sec, h,
6116 rel, globals);
6117 if (stub_entry != NULL)
6118 value = (stub_entry->stub_offset
6119 + stub_entry->stub_sec->output_offset
6120 + stub_entry->stub_sec->output_section->vma);
6121 }
6122 }
6123
6124 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
6125 where:
6126 S is the address of the symbol in the relocation.
6127 P is address of the instruction being relocated.
6128 A is the addend (extracted from the instruction) in bytes.
6129
6130 S is held in 'value'.
6131 P is the base address of the section containing the
6132 instruction plus the offset of the reloc into that
6133 section, ie:
6134 (input_section->output_section->vma +
6135 input_section->output_offset +
6136 rel->r_offset).
6137 A is the addend, converted into bytes, ie:
6138 (signed_addend * 4)
6139
6140 Note: None of these operations have knowledge of the pipeline
6141 size of the processor, thus it is up to the assembler to
6142 encode this information into the addend. */
6143 value -= (input_section->output_section->vma
6144 + input_section->output_offset);
6145 value -= rel->r_offset;
6146 if (globals->use_rel)
6147 value += (signed_addend << howto->size);
6148 else
6149 /* RELA addends do not have to be adjusted by howto->size. */
6150 value += signed_addend;
6151
6152 signed_addend = value;
6153 signed_addend >>= howto->rightshift;
6154
6155 /* A branch to an undefined weak symbol is turned into a jump to
6156 the next instruction. */
6157 if (h && h->root.type == bfd_link_hash_undefweak)
6158 {
6159 value = (bfd_get_32 (input_bfd, hit_data) & 0xf0000000)
6160 | 0x0affffff;
6161 }
6162 else
6163 {
6164 /* Perform a signed range check. */
6165 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
6166 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
6167 return bfd_reloc_overflow;
6168
6169 addend = (value & 2);
6170
6171 value = (signed_addend & howto->dst_mask)
6172 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
6173
6174 /* Set the H bit in the BLX instruction. */
6175 if (sym_flags == STT_ARM_TFUNC)
6176 {
6177 if (addend)
6178 value |= (1 << 24);
6179 else
6180 value &= ~(bfd_vma)(1 << 24);
6181 }
6182 if (r_type == R_ARM_CALL)
6183 {
6184 /* Select the correct instruction (BL or BLX). */
6185 /* Only if we are not handling a BL to a stub. In this
6186 case, mode switching is performed by the stub. */
6187 if (sym_flags == STT_ARM_TFUNC && !stub_entry)
6188 value |= (1 << 28);
6189 else
6190 {
6191 value &= ~(bfd_vma)(1 << 28);
6192 value |= (1 << 24);
6193 }
6194 }
6195 }
6196 }
6197 break;
6198
6199 case R_ARM_ABS32:
6200 value += addend;
6201 if (sym_flags == STT_ARM_TFUNC)
6202 value |= 1;
6203 break;
6204
6205 case R_ARM_ABS32_NOI:
6206 value += addend;
6207 break;
6208
6209 case R_ARM_REL32:
6210 value += addend;
6211 if (sym_flags == STT_ARM_TFUNC)
6212 value |= 1;
6213 value -= (input_section->output_section->vma
6214 + input_section->output_offset + rel->r_offset);
6215 break;
6216
6217 case R_ARM_REL32_NOI:
6218 value += addend;
6219 value -= (input_section->output_section->vma
6220 + input_section->output_offset + rel->r_offset);
6221 break;
6222
6223 case R_ARM_PREL31:
6224 value -= (input_section->output_section->vma
6225 + input_section->output_offset + rel->r_offset);
6226 value += signed_addend;
6227 if (! h || h->root.type != bfd_link_hash_undefweak)
6228 {
6229 /* Check for overflow. */
6230 if ((value ^ (value >> 1)) & (1 << 30))
6231 return bfd_reloc_overflow;
6232 }
6233 value &= 0x7fffffff;
6234 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
6235 if (sym_flags == STT_ARM_TFUNC)
6236 value |= 1;
6237 break;
6238 }
6239
6240 bfd_put_32 (input_bfd, value, hit_data);
6241 return bfd_reloc_ok;
6242
6243 case R_ARM_ABS8:
6244 value += addend;
6245 if ((long) value > 0x7f || (long) value < -0x80)
6246 return bfd_reloc_overflow;
6247
6248 bfd_put_8 (input_bfd, value, hit_data);
6249 return bfd_reloc_ok;
6250
6251 case R_ARM_ABS16:
6252 value += addend;
6253
6254 if ((long) value > 0x7fff || (long) value < -0x8000)
6255 return bfd_reloc_overflow;
6256
6257 bfd_put_16 (input_bfd, value, hit_data);
6258 return bfd_reloc_ok;
6259
6260 case R_ARM_THM_ABS5:
6261 /* Support ldr and str instructions for the thumb. */
6262 if (globals->use_rel)
6263 {
6264 /* Need to refetch addend. */
6265 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6266 /* ??? Need to determine shift amount from operand size. */
6267 addend >>= howto->rightshift;
6268 }
6269 value += addend;
6270
6271 /* ??? Isn't value unsigned? */
6272 if ((long) value > 0x1f || (long) value < -0x10)
6273 return bfd_reloc_overflow;
6274
6275 /* ??? Value needs to be properly shifted into place first. */
6276 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
6277 bfd_put_16 (input_bfd, value, hit_data);
6278 return bfd_reloc_ok;
6279
6280 case R_ARM_THM_ALU_PREL_11_0:
6281 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
6282 {
6283 bfd_vma insn;
6284 bfd_signed_vma relocation;
6285
6286 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6287 | bfd_get_16 (input_bfd, hit_data + 2);
6288
6289 if (globals->use_rel)
6290 {
6291 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
6292 | ((insn & (1 << 26)) >> 15);
6293 if (insn & 0xf00000)
6294 signed_addend = -signed_addend;
6295 }
6296
6297 relocation = value + signed_addend;
6298 relocation -= (input_section->output_section->vma
6299 + input_section->output_offset
6300 + rel->r_offset);
6301
6302 value = abs (relocation);
6303
6304 if (value >= 0x1000)
6305 return bfd_reloc_overflow;
6306
6307 insn = (insn & 0xfb0f8f00) | (value & 0xff)
6308 | ((value & 0x700) << 4)
6309 | ((value & 0x800) << 15);
6310 if (relocation < 0)
6311 insn |= 0xa00000;
6312
6313 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6314 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6315
6316 return bfd_reloc_ok;
6317 }
6318
6319 case R_ARM_THM_PC12:
6320 /* Corresponds to: ldr.w reg, [pc, #offset]. */
6321 {
6322 bfd_vma insn;
6323 bfd_signed_vma relocation;
6324
6325 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
6326 | bfd_get_16 (input_bfd, hit_data + 2);
6327
6328 if (globals->use_rel)
6329 {
6330 signed_addend = insn & 0xfff;
6331 if (!(insn & (1 << 23)))
6332 signed_addend = -signed_addend;
6333 }
6334
6335 relocation = value + signed_addend;
6336 relocation -= (input_section->output_section->vma
6337 + input_section->output_offset
6338 + rel->r_offset);
6339
6340 value = abs (relocation);
6341
6342 if (value >= 0x1000)
6343 return bfd_reloc_overflow;
6344
6345 insn = (insn & 0xff7ff000) | value;
6346 if (relocation >= 0)
6347 insn |= (1 << 23);
6348
6349 bfd_put_16 (input_bfd, insn >> 16, hit_data);
6350 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
6351
6352 return bfd_reloc_ok;
6353 }
6354
6355 case R_ARM_THM_XPC22:
6356 case R_ARM_THM_CALL:
6357 case R_ARM_THM_JUMP24:
6358 /* Thumb BL (branch long instruction). */
6359 {
6360 bfd_vma relocation;
6361 bfd_vma reloc_sign;
6362 bfd_boolean overflow = FALSE;
6363 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6364 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6365 bfd_signed_vma reloc_signed_max;
6366 bfd_signed_vma reloc_signed_min;
6367 bfd_vma check;
6368 bfd_signed_vma signed_check;
6369 int bitsize;
6370 int thumb2 = using_thumb2 (globals);
6371
6372 /* A branch to an undefined weak symbol is turned into a jump to
6373 the next instruction unless a PLT entry will be created. */
6374 if (h && h->root.type == bfd_link_hash_undefweak
6375 && !(splt != NULL && h->plt.offset != (bfd_vma) -1))
6376 {
6377 bfd_put_16 (input_bfd, 0xe000, hit_data);
6378 bfd_put_16 (input_bfd, 0xbf00, hit_data + 2);
6379 return bfd_reloc_ok;
6380 }
6381
6382 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
6383 with Thumb-1) involving the J1 and J2 bits. */
6384 if (globals->use_rel)
6385 {
6386 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
6387 bfd_vma upper = upper_insn & 0x3ff;
6388 bfd_vma lower = lower_insn & 0x7ff;
6389 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
6390 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
6391 bfd_vma i1 = j1 ^ s ? 0 : 1;
6392 bfd_vma i2 = j2 ^ s ? 0 : 1;
6393
6394 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
6395 /* Sign extend. */
6396 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
6397
6398 signed_addend = addend;
6399 }
6400
6401 if (r_type == R_ARM_THM_XPC22)
6402 {
6403 /* Check for Thumb to Thumb call. */
6404 /* FIXME: Should we translate the instruction into a BL
6405 instruction instead ? */
6406 if (sym_flags == STT_ARM_TFUNC)
6407 (*_bfd_error_handler)
6408 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
6409 input_bfd,
6410 h ? h->root.root.string : "(local)");
6411 }
6412 else
6413 {
6414 /* If it is not a call to Thumb, assume call to Arm.
6415 If it is a call relative to a section name, then it is not a
6416 function call at all, but rather a long jump. Calls through
6417 the PLT do not require stubs. */
6418 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
6419 && (h == NULL || splt == NULL
6420 || h->plt.offset == (bfd_vma) -1))
6421 {
6422 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6423 {
6424 /* Convert BL to BLX. */
6425 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6426 }
6427 else if (r_type != R_ARM_THM_CALL)
6428 {
6429 if (elf32_thumb_to_arm_stub
6430 (info, sym_name, input_bfd, output_bfd, input_section,
6431 hit_data, sym_sec, rel->r_offset, signed_addend, value,
6432 error_message))
6433 return bfd_reloc_ok;
6434 else
6435 return bfd_reloc_dangerous;
6436 }
6437 }
6438 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx
6439 && r_type == R_ARM_THM_CALL)
6440 {
6441 /* Make sure this is a BL. */
6442 lower_insn |= 0x1800;
6443 }
6444 }
6445
6446 /* Handle calls via the PLT. */
6447 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6448 {
6449 value = (splt->output_section->vma
6450 + splt->output_offset
6451 + h->plt.offset);
6452 if (globals->use_blx && r_type == R_ARM_THM_CALL)
6453 {
6454 /* If the Thumb BLX instruction is available, convert the
6455 BL to a BLX instruction to call the ARM-mode PLT entry. */
6456 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6457 }
6458 else
6459 /* Target the Thumb stub before the ARM PLT entry. */
6460 value -= PLT_THUMB_STUB_SIZE;
6461 *unresolved_reloc_p = FALSE;
6462 }
6463
6464 if (r_type == R_ARM_THM_CALL)
6465 {
6466 /* Check if a stub has to be inserted because the destination
6467 is too far. */
6468 bfd_vma from;
6469 bfd_signed_vma branch_offset;
6470 struct elf32_arm_stub_hash_entry *stub_entry = NULL;
6471
6472 from = (input_section->output_section->vma
6473 + input_section->output_offset
6474 + rel->r_offset);
6475 branch_offset = (bfd_signed_vma)(value - from);
6476
6477 if ((!thumb2
6478 && (branch_offset > THM_MAX_FWD_BRANCH_OFFSET
6479 || (branch_offset < THM_MAX_BWD_BRANCH_OFFSET)))
6480 ||
6481 (thumb2
6482 && (branch_offset > THM2_MAX_FWD_BRANCH_OFFSET
6483 || (branch_offset < THM2_MAX_BWD_BRANCH_OFFSET)))
6484 || ((sym_flags != STT_ARM_TFUNC) && !globals->use_blx))
6485 {
6486 /* The target is out of reach or we are changing modes, so
6487 redirect the branch to the local stub for this
6488 function. */
6489 stub_entry = elf32_arm_get_stub_entry (input_section,
6490 sym_sec, h,
6491 rel, globals);
6492 if (stub_entry != NULL)
6493 value = (stub_entry->stub_offset
6494 + stub_entry->stub_sec->output_offset
6495 + stub_entry->stub_sec->output_section->vma);
6496
6497 /* If this call becomes a call to Arm, force BLX. */
6498 if (globals->use_blx)
6499 {
6500 if ((stub_entry
6501 && !arm_stub_is_thumb (stub_entry->stub_type))
6502 || (sym_flags != STT_ARM_TFUNC))
6503 lower_insn = (lower_insn & ~0x1000) | 0x0800;
6504 }
6505 }
6506 }
6507
6508 relocation = value + signed_addend;
6509
6510 relocation -= (input_section->output_section->vma
6511 + input_section->output_offset
6512 + rel->r_offset);
6513
6514 check = relocation >> howto->rightshift;
6515
6516 /* If this is a signed value, the rightshift just dropped
6517 leading 1 bits (assuming twos complement). */
6518 if ((bfd_signed_vma) relocation >= 0)
6519 signed_check = check;
6520 else
6521 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
6522
6523 /* Calculate the permissable maximum and minimum values for
6524 this relocation according to whether we're relocating for
6525 Thumb-2 or not. */
6526 bitsize = howto->bitsize;
6527 if (!thumb2)
6528 bitsize -= 2;
6529 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
6530 reloc_signed_min = ~reloc_signed_max;
6531
6532 /* Assumes two's complement. */
6533 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6534 overflow = TRUE;
6535
6536 if ((lower_insn & 0x5000) == 0x4000)
6537 /* For a BLX instruction, make sure that the relocation is rounded up
6538 to a word boundary. This follows the semantics of the instruction
6539 which specifies that bit 1 of the target address will come from bit
6540 1 of the base address. */
6541 relocation = (relocation + 2) & ~ 3;
6542
6543 /* Put RELOCATION back into the insn. Assumes two's complement.
6544 We use the Thumb-2 encoding, which is safe even if dealing with
6545 a Thumb-1 instruction by virtue of our overflow check above. */
6546 reloc_sign = (signed_check < 0) ? 1 : 0;
6547 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
6548 | ((relocation >> 12) & 0x3ff)
6549 | (reloc_sign << 10);
6550 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
6551 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
6552 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
6553 | ((relocation >> 1) & 0x7ff);
6554
6555 /* Put the relocated value back in the object file: */
6556 bfd_put_16 (input_bfd, upper_insn, hit_data);
6557 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6558
6559 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6560 }
6561 break;
6562
6563 case R_ARM_THM_JUMP19:
6564 /* Thumb32 conditional branch instruction. */
6565 {
6566 bfd_vma relocation;
6567 bfd_boolean overflow = FALSE;
6568 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
6569 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
6570 bfd_signed_vma reloc_signed_max = 0xffffe;
6571 bfd_signed_vma reloc_signed_min = -0x100000;
6572 bfd_signed_vma signed_check;
6573
6574 /* Need to refetch the addend, reconstruct the top three bits,
6575 and squish the two 11 bit pieces together. */
6576 if (globals->use_rel)
6577 {
6578 bfd_vma S = (upper_insn & 0x0400) >> 10;
6579 bfd_vma upper = (upper_insn & 0x003f);
6580 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
6581 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
6582 bfd_vma lower = (lower_insn & 0x07ff);
6583
6584 upper |= J1 << 6;
6585 upper |= J2 << 7;
6586 upper |= (!S) << 8;
6587 upper -= 0x0100; /* Sign extend. */
6588
6589 addend = (upper << 12) | (lower << 1);
6590 signed_addend = addend;
6591 }
6592
6593 /* Handle calls via the PLT. */
6594 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
6595 {
6596 value = (splt->output_section->vma
6597 + splt->output_offset
6598 + h->plt.offset);
6599 /* Target the Thumb stub before the ARM PLT entry. */
6600 value -= PLT_THUMB_STUB_SIZE;
6601 *unresolved_reloc_p = FALSE;
6602 }
6603
6604 /* ??? Should handle interworking? GCC might someday try to
6605 use this for tail calls. */
6606
6607 relocation = value + signed_addend;
6608 relocation -= (input_section->output_section->vma
6609 + input_section->output_offset
6610 + rel->r_offset);
6611 signed_check = (bfd_signed_vma) relocation;
6612
6613 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6614 overflow = TRUE;
6615
6616 /* Put RELOCATION back into the insn. */
6617 {
6618 bfd_vma S = (relocation & 0x00100000) >> 20;
6619 bfd_vma J2 = (relocation & 0x00080000) >> 19;
6620 bfd_vma J1 = (relocation & 0x00040000) >> 18;
6621 bfd_vma hi = (relocation & 0x0003f000) >> 12;
6622 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
6623
6624 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
6625 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
6626 }
6627
6628 /* Put the relocated value back in the object file: */
6629 bfd_put_16 (input_bfd, upper_insn, hit_data);
6630 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
6631
6632 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
6633 }
6634
6635 case R_ARM_THM_JUMP11:
6636 case R_ARM_THM_JUMP8:
6637 case R_ARM_THM_JUMP6:
6638 /* Thumb B (branch) instruction). */
6639 {
6640 bfd_signed_vma relocation;
6641 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
6642 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
6643 bfd_signed_vma signed_check;
6644
6645 /* CZB cannot jump backward. */
6646 if (r_type == R_ARM_THM_JUMP6)
6647 reloc_signed_min = 0;
6648
6649 if (globals->use_rel)
6650 {
6651 /* Need to refetch addend. */
6652 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
6653 if (addend & ((howto->src_mask + 1) >> 1))
6654 {
6655 signed_addend = -1;
6656 signed_addend &= ~ howto->src_mask;
6657 signed_addend |= addend;
6658 }
6659 else
6660 signed_addend = addend;
6661 /* The value in the insn has been right shifted. We need to
6662 undo this, so that we can perform the address calculation
6663 in terms of bytes. */
6664 signed_addend <<= howto->rightshift;
6665 }
6666 relocation = value + signed_addend;
6667
6668 relocation -= (input_section->output_section->vma
6669 + input_section->output_offset
6670 + rel->r_offset);
6671
6672 relocation >>= howto->rightshift;
6673 signed_check = relocation;
6674
6675 if (r_type == R_ARM_THM_JUMP6)
6676 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
6677 else
6678 relocation &= howto->dst_mask;
6679 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
6680
6681 bfd_put_16 (input_bfd, relocation, hit_data);
6682
6683 /* Assumes two's complement. */
6684 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
6685 return bfd_reloc_overflow;
6686
6687 return bfd_reloc_ok;
6688 }
6689
6690 case R_ARM_ALU_PCREL7_0:
6691 case R_ARM_ALU_PCREL15_8:
6692 case R_ARM_ALU_PCREL23_15:
6693 {
6694 bfd_vma insn;
6695 bfd_vma relocation;
6696
6697 insn = bfd_get_32 (input_bfd, hit_data);
6698 if (globals->use_rel)
6699 {
6700 /* Extract the addend. */
6701 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
6702 signed_addend = addend;
6703 }
6704 relocation = value + signed_addend;
6705
6706 relocation -= (input_section->output_section->vma
6707 + input_section->output_offset
6708 + rel->r_offset);
6709 insn = (insn & ~0xfff)
6710 | ((howto->bitpos << 7) & 0xf00)
6711 | ((relocation >> howto->bitpos) & 0xff);
6712 bfd_put_32 (input_bfd, value, hit_data);
6713 }
6714 return bfd_reloc_ok;
6715
6716 case R_ARM_GNU_VTINHERIT:
6717 case R_ARM_GNU_VTENTRY:
6718 return bfd_reloc_ok;
6719
6720 case R_ARM_GOTOFF32:
6721 /* Relocation is relative to the start of the
6722 global offset table. */
6723
6724 BFD_ASSERT (sgot != NULL);
6725 if (sgot == NULL)
6726 return bfd_reloc_notsupported;
6727
6728 /* If we are addressing a Thumb function, we need to adjust the
6729 address by one, so that attempts to call the function pointer will
6730 correctly interpret it as Thumb code. */
6731 if (sym_flags == STT_ARM_TFUNC)
6732 value += 1;
6733
6734 /* Note that sgot->output_offset is not involved in this
6735 calculation. We always want the start of .got. If we
6736 define _GLOBAL_OFFSET_TABLE in a different way, as is
6737 permitted by the ABI, we might have to change this
6738 calculation. */
6739 value -= sgot->output_section->vma;
6740 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6741 contents, rel->r_offset, value,
6742 rel->r_addend);
6743
6744 case R_ARM_GOTPC:
6745 /* Use global offset table as symbol value. */
6746 BFD_ASSERT (sgot != NULL);
6747
6748 if (sgot == NULL)
6749 return bfd_reloc_notsupported;
6750
6751 *unresolved_reloc_p = FALSE;
6752 value = sgot->output_section->vma;
6753 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6754 contents, rel->r_offset, value,
6755 rel->r_addend);
6756
6757 case R_ARM_GOT32:
6758 case R_ARM_GOT_PREL:
6759 /* Relocation is to the entry for this symbol in the
6760 global offset table. */
6761 if (sgot == NULL)
6762 return bfd_reloc_notsupported;
6763
6764 if (h != NULL)
6765 {
6766 bfd_vma off;
6767 bfd_boolean dyn;
6768
6769 off = h->got.offset;
6770 BFD_ASSERT (off != (bfd_vma) -1);
6771 dyn = globals->root.dynamic_sections_created;
6772
6773 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6774 || (info->shared
6775 && SYMBOL_REFERENCES_LOCAL (info, h))
6776 || (ELF_ST_VISIBILITY (h->other)
6777 && h->root.type == bfd_link_hash_undefweak))
6778 {
6779 /* This is actually a static link, or it is a -Bsymbolic link
6780 and the symbol is defined locally. We must initialize this
6781 entry in the global offset table. Since the offset must
6782 always be a multiple of 4, we use the least significant bit
6783 to record whether we have initialized it already.
6784
6785 When doing a dynamic link, we create a .rel(a).got relocation
6786 entry to initialize the value. This is done in the
6787 finish_dynamic_symbol routine. */
6788 if ((off & 1) != 0)
6789 off &= ~1;
6790 else
6791 {
6792 /* If we are addressing a Thumb function, we need to
6793 adjust the address by one, so that attempts to
6794 call the function pointer will correctly
6795 interpret it as Thumb code. */
6796 if (sym_flags == STT_ARM_TFUNC)
6797 value |= 1;
6798
6799 bfd_put_32 (output_bfd, value, sgot->contents + off);
6800 h->got.offset |= 1;
6801 }
6802 }
6803 else
6804 *unresolved_reloc_p = FALSE;
6805
6806 value = sgot->output_offset + off;
6807 }
6808 else
6809 {
6810 bfd_vma off;
6811
6812 BFD_ASSERT (local_got_offsets != NULL &&
6813 local_got_offsets[r_symndx] != (bfd_vma) -1);
6814
6815 off = local_got_offsets[r_symndx];
6816
6817 /* The offset must always be a multiple of 4. We use the
6818 least significant bit to record whether we have already
6819 generated the necessary reloc. */
6820 if ((off & 1) != 0)
6821 off &= ~1;
6822 else
6823 {
6824 /* If we are addressing a Thumb function, we need to
6825 adjust the address by one, so that attempts to
6826 call the function pointer will correctly
6827 interpret it as Thumb code. */
6828 if (sym_flags == STT_ARM_TFUNC)
6829 value |= 1;
6830
6831 if (globals->use_rel)
6832 bfd_put_32 (output_bfd, value, sgot->contents + off);
6833
6834 if (info->shared)
6835 {
6836 asection * srelgot;
6837 Elf_Internal_Rela outrel;
6838 bfd_byte *loc;
6839
6840 srelgot = (bfd_get_section_by_name
6841 (dynobj, RELOC_SECTION (globals, ".got")));
6842 BFD_ASSERT (srelgot != NULL);
6843
6844 outrel.r_addend = addend + value;
6845 outrel.r_offset = (sgot->output_section->vma
6846 + sgot->output_offset
6847 + off);
6848 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
6849 loc = srelgot->contents;
6850 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
6851 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6852 }
6853
6854 local_got_offsets[r_symndx] |= 1;
6855 }
6856
6857 value = sgot->output_offset + off;
6858 }
6859 if (r_type != R_ARM_GOT32)
6860 value += sgot->output_section->vma;
6861
6862 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6863 contents, rel->r_offset, value,
6864 rel->r_addend);
6865
6866 case R_ARM_TLS_LDO32:
6867 value = value - dtpoff_base (info);
6868
6869 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6870 contents, rel->r_offset, value,
6871 rel->r_addend);
6872
6873 case R_ARM_TLS_LDM32:
6874 {
6875 bfd_vma off;
6876
6877 if (globals->sgot == NULL)
6878 abort ();
6879
6880 off = globals->tls_ldm_got.offset;
6881
6882 if ((off & 1) != 0)
6883 off &= ~1;
6884 else
6885 {
6886 /* If we don't know the module number, create a relocation
6887 for it. */
6888 if (info->shared)
6889 {
6890 Elf_Internal_Rela outrel;
6891 bfd_byte *loc;
6892
6893 if (globals->srelgot == NULL)
6894 abort ();
6895
6896 outrel.r_addend = 0;
6897 outrel.r_offset = (globals->sgot->output_section->vma
6898 + globals->sgot->output_offset + off);
6899 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
6900
6901 if (globals->use_rel)
6902 bfd_put_32 (output_bfd, outrel.r_addend,
6903 globals->sgot->contents + off);
6904
6905 loc = globals->srelgot->contents;
6906 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
6907 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6908 }
6909 else
6910 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
6911
6912 globals->tls_ldm_got.offset |= 1;
6913 }
6914
6915 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
6916 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
6917
6918 return _bfd_final_link_relocate (howto, input_bfd, input_section,
6919 contents, rel->r_offset, value,
6920 rel->r_addend);
6921 }
6922
6923 case R_ARM_TLS_GD32:
6924 case R_ARM_TLS_IE32:
6925 {
6926 bfd_vma off;
6927 int indx;
6928 char tls_type;
6929
6930 if (globals->sgot == NULL)
6931 abort ();
6932
6933 indx = 0;
6934 if (h != NULL)
6935 {
6936 bfd_boolean dyn;
6937 dyn = globals->root.dynamic_sections_created;
6938 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
6939 && (!info->shared
6940 || !SYMBOL_REFERENCES_LOCAL (info, h)))
6941 {
6942 *unresolved_reloc_p = FALSE;
6943 indx = h->dynindx;
6944 }
6945 off = h->got.offset;
6946 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
6947 }
6948 else
6949 {
6950 if (local_got_offsets == NULL)
6951 abort ();
6952 off = local_got_offsets[r_symndx];
6953 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
6954 }
6955
6956 if (tls_type == GOT_UNKNOWN)
6957 abort ();
6958
6959 if ((off & 1) != 0)
6960 off &= ~1;
6961 else
6962 {
6963 bfd_boolean need_relocs = FALSE;
6964 Elf_Internal_Rela outrel;
6965 bfd_byte *loc = NULL;
6966 int cur_off = off;
6967
6968 /* The GOT entries have not been initialized yet. Do it
6969 now, and emit any relocations. If both an IE GOT and a
6970 GD GOT are necessary, we emit the GD first. */
6971
6972 if ((info->shared || indx != 0)
6973 && (h == NULL
6974 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
6975 || h->root.type != bfd_link_hash_undefweak))
6976 {
6977 need_relocs = TRUE;
6978 if (globals->srelgot == NULL)
6979 abort ();
6980 loc = globals->srelgot->contents;
6981 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
6982 }
6983
6984 if (tls_type & GOT_TLS_GD)
6985 {
6986 if (need_relocs)
6987 {
6988 outrel.r_addend = 0;
6989 outrel.r_offset = (globals->sgot->output_section->vma
6990 + globals->sgot->output_offset
6991 + cur_off);
6992 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
6993
6994 if (globals->use_rel)
6995 bfd_put_32 (output_bfd, outrel.r_addend,
6996 globals->sgot->contents + cur_off);
6997
6998 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
6999 globals->srelgot->reloc_count++;
7000 loc += RELOC_SIZE (globals);
7001
7002 if (indx == 0)
7003 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7004 globals->sgot->contents + cur_off + 4);
7005 else
7006 {
7007 outrel.r_addend = 0;
7008 outrel.r_info = ELF32_R_INFO (indx,
7009 R_ARM_TLS_DTPOFF32);
7010 outrel.r_offset += 4;
7011
7012 if (globals->use_rel)
7013 bfd_put_32 (output_bfd, outrel.r_addend,
7014 globals->sgot->contents + cur_off + 4);
7015
7016
7017 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7018 globals->srelgot->reloc_count++;
7019 loc += RELOC_SIZE (globals);
7020 }
7021 }
7022 else
7023 {
7024 /* If we are not emitting relocations for a
7025 general dynamic reference, then we must be in a
7026 static link or an executable link with the
7027 symbol binding locally. Mark it as belonging
7028 to module 1, the executable. */
7029 bfd_put_32 (output_bfd, 1,
7030 globals->sgot->contents + cur_off);
7031 bfd_put_32 (output_bfd, value - dtpoff_base (info),
7032 globals->sgot->contents + cur_off + 4);
7033 }
7034
7035 cur_off += 8;
7036 }
7037
7038 if (tls_type & GOT_TLS_IE)
7039 {
7040 if (need_relocs)
7041 {
7042 if (indx == 0)
7043 outrel.r_addend = value - dtpoff_base (info);
7044 else
7045 outrel.r_addend = 0;
7046 outrel.r_offset = (globals->sgot->output_section->vma
7047 + globals->sgot->output_offset
7048 + cur_off);
7049 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
7050
7051 if (globals->use_rel)
7052 bfd_put_32 (output_bfd, outrel.r_addend,
7053 globals->sgot->contents + cur_off);
7054
7055 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
7056 globals->srelgot->reloc_count++;
7057 loc += RELOC_SIZE (globals);
7058 }
7059 else
7060 bfd_put_32 (output_bfd, tpoff (info, value),
7061 globals->sgot->contents + cur_off);
7062 cur_off += 4;
7063 }
7064
7065 if (h != NULL)
7066 h->got.offset |= 1;
7067 else
7068 local_got_offsets[r_symndx] |= 1;
7069 }
7070
7071 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
7072 off += 8;
7073 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
7074 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
7075
7076 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7077 contents, rel->r_offset, value,
7078 rel->r_addend);
7079 }
7080
7081 case R_ARM_TLS_LE32:
7082 if (info->shared)
7083 {
7084 (*_bfd_error_handler)
7085 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
7086 input_bfd, input_section,
7087 (long) rel->r_offset, howto->name);
7088 return FALSE;
7089 }
7090 else
7091 value = tpoff (info, value);
7092
7093 return _bfd_final_link_relocate (howto, input_bfd, input_section,
7094 contents, rel->r_offset, value,
7095 rel->r_addend);
7096
7097 case R_ARM_V4BX:
7098 if (globals->fix_v4bx)
7099 {
7100 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7101
7102 /* Ensure that we have a BX instruction. */
7103 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
7104
7105 if (globals->fix_v4bx == 2 && (insn & 0xf) != 0xf)
7106 {
7107 /* Branch to veneer. */
7108 bfd_vma glue_addr;
7109 glue_addr = elf32_arm_bx_glue (info, insn & 0xf);
7110 glue_addr -= input_section->output_section->vma
7111 + input_section->output_offset
7112 + rel->r_offset + 8;
7113 insn = (insn & 0xf0000000) | 0x0a000000
7114 | ((glue_addr >> 2) & 0x00ffffff);
7115 }
7116 else
7117 {
7118 /* Preserve Rm (lowest four bits) and the condition code
7119 (highest four bits). Other bits encode MOV PC,Rm. */
7120 insn = (insn & 0xf000000f) | 0x01a0f000;
7121 }
7122
7123 bfd_put_32 (input_bfd, insn, hit_data);
7124 }
7125 return bfd_reloc_ok;
7126
7127 case R_ARM_MOVW_ABS_NC:
7128 case R_ARM_MOVT_ABS:
7129 case R_ARM_MOVW_PREL_NC:
7130 case R_ARM_MOVT_PREL:
7131 /* Until we properly support segment-base-relative addressing then
7132 we assume the segment base to be zero, as for the group relocations.
7133 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
7134 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
7135 case R_ARM_MOVW_BREL_NC:
7136 case R_ARM_MOVW_BREL:
7137 case R_ARM_MOVT_BREL:
7138 {
7139 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7140
7141 if (globals->use_rel)
7142 {
7143 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
7144 signed_addend = (addend ^ 0x8000) - 0x8000;
7145 }
7146
7147 value += signed_addend;
7148
7149 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
7150 value -= (input_section->output_section->vma
7151 + input_section->output_offset + rel->r_offset);
7152
7153 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
7154 return bfd_reloc_overflow;
7155
7156 if (sym_flags == STT_ARM_TFUNC)
7157 value |= 1;
7158
7159 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
7160 || r_type == R_ARM_MOVT_BREL)
7161 value >>= 16;
7162
7163 insn &= 0xfff0f000;
7164 insn |= value & 0xfff;
7165 insn |= (value & 0xf000) << 4;
7166 bfd_put_32 (input_bfd, insn, hit_data);
7167 }
7168 return bfd_reloc_ok;
7169
7170 case R_ARM_THM_MOVW_ABS_NC:
7171 case R_ARM_THM_MOVT_ABS:
7172 case R_ARM_THM_MOVW_PREL_NC:
7173 case R_ARM_THM_MOVT_PREL:
7174 /* Until we properly support segment-base-relative addressing then
7175 we assume the segment base to be zero, as for the above relocations.
7176 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
7177 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
7178 as R_ARM_THM_MOVT_ABS. */
7179 case R_ARM_THM_MOVW_BREL_NC:
7180 case R_ARM_THM_MOVW_BREL:
7181 case R_ARM_THM_MOVT_BREL:
7182 {
7183 bfd_vma insn;
7184
7185 insn = bfd_get_16 (input_bfd, hit_data) << 16;
7186 insn |= bfd_get_16 (input_bfd, hit_data + 2);
7187
7188 if (globals->use_rel)
7189 {
7190 addend = ((insn >> 4) & 0xf000)
7191 | ((insn >> 15) & 0x0800)
7192 | ((insn >> 4) & 0x0700)
7193 | (insn & 0x00ff);
7194 signed_addend = (addend ^ 0x8000) - 0x8000;
7195 }
7196
7197 value += signed_addend;
7198
7199 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
7200 value -= (input_section->output_section->vma
7201 + input_section->output_offset + rel->r_offset);
7202
7203 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
7204 return bfd_reloc_overflow;
7205
7206 if (sym_flags == STT_ARM_TFUNC)
7207 value |= 1;
7208
7209 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
7210 || r_type == R_ARM_THM_MOVT_BREL)
7211 value >>= 16;
7212
7213 insn &= 0xfbf08f00;
7214 insn |= (value & 0xf000) << 4;
7215 insn |= (value & 0x0800) << 15;
7216 insn |= (value & 0x0700) << 4;
7217 insn |= (value & 0x00ff);
7218
7219 bfd_put_16 (input_bfd, insn >> 16, hit_data);
7220 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
7221 }
7222 return bfd_reloc_ok;
7223
7224 case R_ARM_ALU_PC_G0_NC:
7225 case R_ARM_ALU_PC_G1_NC:
7226 case R_ARM_ALU_PC_G0:
7227 case R_ARM_ALU_PC_G1:
7228 case R_ARM_ALU_PC_G2:
7229 case R_ARM_ALU_SB_G0_NC:
7230 case R_ARM_ALU_SB_G1_NC:
7231 case R_ARM_ALU_SB_G0:
7232 case R_ARM_ALU_SB_G1:
7233 case R_ARM_ALU_SB_G2:
7234 {
7235 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7236 bfd_vma pc = input_section->output_section->vma
7237 + input_section->output_offset + rel->r_offset;
7238 /* sb should be the origin of the *segment* containing the symbol.
7239 It is not clear how to obtain this OS-dependent value, so we
7240 make an arbitrary choice of zero. */
7241 bfd_vma sb = 0;
7242 bfd_vma residual;
7243 bfd_vma g_n;
7244 bfd_signed_vma signed_value;
7245 int group = 0;
7246
7247 /* Determine which group of bits to select. */
7248 switch (r_type)
7249 {
7250 case R_ARM_ALU_PC_G0_NC:
7251 case R_ARM_ALU_PC_G0:
7252 case R_ARM_ALU_SB_G0_NC:
7253 case R_ARM_ALU_SB_G0:
7254 group = 0;
7255 break;
7256
7257 case R_ARM_ALU_PC_G1_NC:
7258 case R_ARM_ALU_PC_G1:
7259 case R_ARM_ALU_SB_G1_NC:
7260 case R_ARM_ALU_SB_G1:
7261 group = 1;
7262 break;
7263
7264 case R_ARM_ALU_PC_G2:
7265 case R_ARM_ALU_SB_G2:
7266 group = 2;
7267 break;
7268
7269 default:
7270 abort ();
7271 }
7272
7273 /* If REL, extract the addend from the insn. If RELA, it will
7274 have already been fetched for us. */
7275 if (globals->use_rel)
7276 {
7277 int negative;
7278 bfd_vma constant = insn & 0xff;
7279 bfd_vma rotation = (insn & 0xf00) >> 8;
7280
7281 if (rotation == 0)
7282 signed_addend = constant;
7283 else
7284 {
7285 /* Compensate for the fact that in the instruction, the
7286 rotation is stored in multiples of 2 bits. */
7287 rotation *= 2;
7288
7289 /* Rotate "constant" right by "rotation" bits. */
7290 signed_addend = (constant >> rotation) |
7291 (constant << (8 * sizeof (bfd_vma) - rotation));
7292 }
7293
7294 /* Determine if the instruction is an ADD or a SUB.
7295 (For REL, this determines the sign of the addend.) */
7296 negative = identify_add_or_sub (insn);
7297 if (negative == 0)
7298 {
7299 (*_bfd_error_handler)
7300 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
7301 input_bfd, input_section,
7302 (long) rel->r_offset, howto->name);
7303 return bfd_reloc_overflow;
7304 }
7305
7306 signed_addend *= negative;
7307 }
7308
7309 /* Compute the value (X) to go in the place. */
7310 if (r_type == R_ARM_ALU_PC_G0_NC
7311 || r_type == R_ARM_ALU_PC_G1_NC
7312 || r_type == R_ARM_ALU_PC_G0
7313 || r_type == R_ARM_ALU_PC_G1
7314 || r_type == R_ARM_ALU_PC_G2)
7315 /* PC relative. */
7316 signed_value = value - pc + signed_addend;
7317 else
7318 /* Section base relative. */
7319 signed_value = value - sb + signed_addend;
7320
7321 /* If the target symbol is a Thumb function, then set the
7322 Thumb bit in the address. */
7323 if (sym_flags == STT_ARM_TFUNC)
7324 signed_value |= 1;
7325
7326 /* Calculate the value of the relevant G_n, in encoded
7327 constant-with-rotation format. */
7328 g_n = calculate_group_reloc_mask (abs (signed_value), group,
7329 &residual);
7330
7331 /* Check for overflow if required. */
7332 if ((r_type == R_ARM_ALU_PC_G0
7333 || r_type == R_ARM_ALU_PC_G1
7334 || r_type == R_ARM_ALU_PC_G2
7335 || r_type == R_ARM_ALU_SB_G0
7336 || r_type == R_ARM_ALU_SB_G1
7337 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
7338 {
7339 (*_bfd_error_handler)
7340 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7341 input_bfd, input_section,
7342 (long) rel->r_offset, abs (signed_value), howto->name);
7343 return bfd_reloc_overflow;
7344 }
7345
7346 /* Mask out the value and the ADD/SUB part of the opcode; take care
7347 not to destroy the S bit. */
7348 insn &= 0xff1ff000;
7349
7350 /* Set the opcode according to whether the value to go in the
7351 place is negative. */
7352 if (signed_value < 0)
7353 insn |= 1 << 22;
7354 else
7355 insn |= 1 << 23;
7356
7357 /* Encode the offset. */
7358 insn |= g_n;
7359
7360 bfd_put_32 (input_bfd, insn, hit_data);
7361 }
7362 return bfd_reloc_ok;
7363
7364 case R_ARM_LDR_PC_G0:
7365 case R_ARM_LDR_PC_G1:
7366 case R_ARM_LDR_PC_G2:
7367 case R_ARM_LDR_SB_G0:
7368 case R_ARM_LDR_SB_G1:
7369 case R_ARM_LDR_SB_G2:
7370 {
7371 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7372 bfd_vma pc = input_section->output_section->vma
7373 + input_section->output_offset + rel->r_offset;
7374 bfd_vma sb = 0; /* See note above. */
7375 bfd_vma residual;
7376 bfd_signed_vma signed_value;
7377 int group = 0;
7378
7379 /* Determine which groups of bits to calculate. */
7380 switch (r_type)
7381 {
7382 case R_ARM_LDR_PC_G0:
7383 case R_ARM_LDR_SB_G0:
7384 group = 0;
7385 break;
7386
7387 case R_ARM_LDR_PC_G1:
7388 case R_ARM_LDR_SB_G1:
7389 group = 1;
7390 break;
7391
7392 case R_ARM_LDR_PC_G2:
7393 case R_ARM_LDR_SB_G2:
7394 group = 2;
7395 break;
7396
7397 default:
7398 abort ();
7399 }
7400
7401 /* If REL, extract the addend from the insn. If RELA, it will
7402 have already been fetched for us. */
7403 if (globals->use_rel)
7404 {
7405 int negative = (insn & (1 << 23)) ? 1 : -1;
7406 signed_addend = negative * (insn & 0xfff);
7407 }
7408
7409 /* Compute the value (X) to go in the place. */
7410 if (r_type == R_ARM_LDR_PC_G0
7411 || r_type == R_ARM_LDR_PC_G1
7412 || r_type == R_ARM_LDR_PC_G2)
7413 /* PC relative. */
7414 signed_value = value - pc + signed_addend;
7415 else
7416 /* Section base relative. */
7417 signed_value = value - sb + signed_addend;
7418
7419 /* Calculate the value of the relevant G_{n-1} to obtain
7420 the residual at that stage. */
7421 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7422
7423 /* Check for overflow. */
7424 if (residual >= 0x1000)
7425 {
7426 (*_bfd_error_handler)
7427 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7428 input_bfd, input_section,
7429 (long) rel->r_offset, abs (signed_value), howto->name);
7430 return bfd_reloc_overflow;
7431 }
7432
7433 /* Mask out the value and U bit. */
7434 insn &= 0xff7ff000;
7435
7436 /* Set the U bit if the value to go in the place is non-negative. */
7437 if (signed_value >= 0)
7438 insn |= 1 << 23;
7439
7440 /* Encode the offset. */
7441 insn |= residual;
7442
7443 bfd_put_32 (input_bfd, insn, hit_data);
7444 }
7445 return bfd_reloc_ok;
7446
7447 case R_ARM_LDRS_PC_G0:
7448 case R_ARM_LDRS_PC_G1:
7449 case R_ARM_LDRS_PC_G2:
7450 case R_ARM_LDRS_SB_G0:
7451 case R_ARM_LDRS_SB_G1:
7452 case R_ARM_LDRS_SB_G2:
7453 {
7454 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7455 bfd_vma pc = input_section->output_section->vma
7456 + input_section->output_offset + rel->r_offset;
7457 bfd_vma sb = 0; /* See note above. */
7458 bfd_vma residual;
7459 bfd_signed_vma signed_value;
7460 int group = 0;
7461
7462 /* Determine which groups of bits to calculate. */
7463 switch (r_type)
7464 {
7465 case R_ARM_LDRS_PC_G0:
7466 case R_ARM_LDRS_SB_G0:
7467 group = 0;
7468 break;
7469
7470 case R_ARM_LDRS_PC_G1:
7471 case R_ARM_LDRS_SB_G1:
7472 group = 1;
7473 break;
7474
7475 case R_ARM_LDRS_PC_G2:
7476 case R_ARM_LDRS_SB_G2:
7477 group = 2;
7478 break;
7479
7480 default:
7481 abort ();
7482 }
7483
7484 /* If REL, extract the addend from the insn. If RELA, it will
7485 have already been fetched for us. */
7486 if (globals->use_rel)
7487 {
7488 int negative = (insn & (1 << 23)) ? 1 : -1;
7489 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
7490 }
7491
7492 /* Compute the value (X) to go in the place. */
7493 if (r_type == R_ARM_LDRS_PC_G0
7494 || r_type == R_ARM_LDRS_PC_G1
7495 || r_type == R_ARM_LDRS_PC_G2)
7496 /* PC relative. */
7497 signed_value = value - pc + signed_addend;
7498 else
7499 /* Section base relative. */
7500 signed_value = value - sb + signed_addend;
7501
7502 /* Calculate the value of the relevant G_{n-1} to obtain
7503 the residual at that stage. */
7504 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7505
7506 /* Check for overflow. */
7507 if (residual >= 0x100)
7508 {
7509 (*_bfd_error_handler)
7510 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7511 input_bfd, input_section,
7512 (long) rel->r_offset, abs (signed_value), howto->name);
7513 return bfd_reloc_overflow;
7514 }
7515
7516 /* Mask out the value and U bit. */
7517 insn &= 0xff7ff0f0;
7518
7519 /* Set the U bit if the value to go in the place is non-negative. */
7520 if (signed_value >= 0)
7521 insn |= 1 << 23;
7522
7523 /* Encode the offset. */
7524 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
7525
7526 bfd_put_32 (input_bfd, insn, hit_data);
7527 }
7528 return bfd_reloc_ok;
7529
7530 case R_ARM_LDC_PC_G0:
7531 case R_ARM_LDC_PC_G1:
7532 case R_ARM_LDC_PC_G2:
7533 case R_ARM_LDC_SB_G0:
7534 case R_ARM_LDC_SB_G1:
7535 case R_ARM_LDC_SB_G2:
7536 {
7537 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
7538 bfd_vma pc = input_section->output_section->vma
7539 + input_section->output_offset + rel->r_offset;
7540 bfd_vma sb = 0; /* See note above. */
7541 bfd_vma residual;
7542 bfd_signed_vma signed_value;
7543 int group = 0;
7544
7545 /* Determine which groups of bits to calculate. */
7546 switch (r_type)
7547 {
7548 case R_ARM_LDC_PC_G0:
7549 case R_ARM_LDC_SB_G0:
7550 group = 0;
7551 break;
7552
7553 case R_ARM_LDC_PC_G1:
7554 case R_ARM_LDC_SB_G1:
7555 group = 1;
7556 break;
7557
7558 case R_ARM_LDC_PC_G2:
7559 case R_ARM_LDC_SB_G2:
7560 group = 2;
7561 break;
7562
7563 default:
7564 abort ();
7565 }
7566
7567 /* If REL, extract the addend from the insn. If RELA, it will
7568 have already been fetched for us. */
7569 if (globals->use_rel)
7570 {
7571 int negative = (insn & (1 << 23)) ? 1 : -1;
7572 signed_addend = negative * ((insn & 0xff) << 2);
7573 }
7574
7575 /* Compute the value (X) to go in the place. */
7576 if (r_type == R_ARM_LDC_PC_G0
7577 || r_type == R_ARM_LDC_PC_G1
7578 || r_type == R_ARM_LDC_PC_G2)
7579 /* PC relative. */
7580 signed_value = value - pc + signed_addend;
7581 else
7582 /* Section base relative. */
7583 signed_value = value - sb + signed_addend;
7584
7585 /* Calculate the value of the relevant G_{n-1} to obtain
7586 the residual at that stage. */
7587 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
7588
7589 /* Check for overflow. (The absolute value to go in the place must be
7590 divisible by four and, after having been divided by four, must
7591 fit in eight bits.) */
7592 if ((residual & 0x3) != 0 || residual >= 0x400)
7593 {
7594 (*_bfd_error_handler)
7595 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
7596 input_bfd, input_section,
7597 (long) rel->r_offset, abs (signed_value), howto->name);
7598 return bfd_reloc_overflow;
7599 }
7600
7601 /* Mask out the value and U bit. */
7602 insn &= 0xff7fff00;
7603
7604 /* Set the U bit if the value to go in the place is non-negative. */
7605 if (signed_value >= 0)
7606 insn |= 1 << 23;
7607
7608 /* Encode the offset. */
7609 insn |= residual >> 2;
7610
7611 bfd_put_32 (input_bfd, insn, hit_data);
7612 }
7613 return bfd_reloc_ok;
7614
7615 default:
7616 return bfd_reloc_notsupported;
7617 }
7618 }
7619
7620 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
7621 static void
7622 arm_add_to_rel (bfd * abfd,
7623 bfd_byte * address,
7624 reloc_howto_type * howto,
7625 bfd_signed_vma increment)
7626 {
7627 bfd_signed_vma addend;
7628
7629 if (howto->type == R_ARM_THM_CALL
7630 || howto->type == R_ARM_THM_JUMP24)
7631 {
7632 int upper_insn, lower_insn;
7633 int upper, lower;
7634
7635 upper_insn = bfd_get_16 (abfd, address);
7636 lower_insn = bfd_get_16 (abfd, address + 2);
7637 upper = upper_insn & 0x7ff;
7638 lower = lower_insn & 0x7ff;
7639
7640 addend = (upper << 12) | (lower << 1);
7641 addend += increment;
7642 addend >>= 1;
7643
7644 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
7645 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
7646
7647 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
7648 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
7649 }
7650 else
7651 {
7652 bfd_vma contents;
7653
7654 contents = bfd_get_32 (abfd, address);
7655
7656 /* Get the (signed) value from the instruction. */
7657 addend = contents & howto->src_mask;
7658 if (addend & ((howto->src_mask + 1) >> 1))
7659 {
7660 bfd_signed_vma mask;
7661
7662 mask = -1;
7663 mask &= ~ howto->src_mask;
7664 addend |= mask;
7665 }
7666
7667 /* Add in the increment, (which is a byte value). */
7668 switch (howto->type)
7669 {
7670 default:
7671 addend += increment;
7672 break;
7673
7674 case R_ARM_PC24:
7675 case R_ARM_PLT32:
7676 case R_ARM_CALL:
7677 case R_ARM_JUMP24:
7678 addend <<= howto->size;
7679 addend += increment;
7680
7681 /* Should we check for overflow here ? */
7682
7683 /* Drop any undesired bits. */
7684 addend >>= howto->rightshift;
7685 break;
7686 }
7687
7688 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
7689
7690 bfd_put_32 (abfd, contents, address);
7691 }
7692 }
7693
7694 #define IS_ARM_TLS_RELOC(R_TYPE) \
7695 ((R_TYPE) == R_ARM_TLS_GD32 \
7696 || (R_TYPE) == R_ARM_TLS_LDO32 \
7697 || (R_TYPE) == R_ARM_TLS_LDM32 \
7698 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
7699 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
7700 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
7701 || (R_TYPE) == R_ARM_TLS_LE32 \
7702 || (R_TYPE) == R_ARM_TLS_IE32)
7703
7704 /* Relocate an ARM ELF section. */
7705
7706 static bfd_boolean
7707 elf32_arm_relocate_section (bfd * output_bfd,
7708 struct bfd_link_info * info,
7709 bfd * input_bfd,
7710 asection * input_section,
7711 bfd_byte * contents,
7712 Elf_Internal_Rela * relocs,
7713 Elf_Internal_Sym * local_syms,
7714 asection ** local_sections)
7715 {
7716 Elf_Internal_Shdr *symtab_hdr;
7717 struct elf_link_hash_entry **sym_hashes;
7718 Elf_Internal_Rela *rel;
7719 Elf_Internal_Rela *relend;
7720 const char *name;
7721 struct elf32_arm_link_hash_table * globals;
7722
7723 globals = elf32_arm_hash_table (info);
7724
7725 symtab_hdr = & elf_symtab_hdr (input_bfd);
7726 sym_hashes = elf_sym_hashes (input_bfd);
7727
7728 rel = relocs;
7729 relend = relocs + input_section->reloc_count;
7730 for (; rel < relend; rel++)
7731 {
7732 int r_type;
7733 reloc_howto_type * howto;
7734 unsigned long r_symndx;
7735 Elf_Internal_Sym * sym;
7736 asection * sec;
7737 struct elf_link_hash_entry * h;
7738 bfd_vma relocation;
7739 bfd_reloc_status_type r;
7740 arelent bfd_reloc;
7741 char sym_type;
7742 bfd_boolean unresolved_reloc = FALSE;
7743 char *error_message = NULL;
7744
7745 r_symndx = ELF32_R_SYM (rel->r_info);
7746 r_type = ELF32_R_TYPE (rel->r_info);
7747 r_type = arm_real_reloc_type (globals, r_type);
7748
7749 if ( r_type == R_ARM_GNU_VTENTRY
7750 || r_type == R_ARM_GNU_VTINHERIT)
7751 continue;
7752
7753 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
7754 howto = bfd_reloc.howto;
7755
7756 h = NULL;
7757 sym = NULL;
7758 sec = NULL;
7759
7760 if (r_symndx < symtab_hdr->sh_info)
7761 {
7762 sym = local_syms + r_symndx;
7763 sym_type = ELF32_ST_TYPE (sym->st_info);
7764 sec = local_sections[r_symndx];
7765 if (globals->use_rel)
7766 {
7767 relocation = (sec->output_section->vma
7768 + sec->output_offset
7769 + sym->st_value);
7770 if (!info->relocatable
7771 && (sec->flags & SEC_MERGE)
7772 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7773 {
7774 asection *msec;
7775 bfd_vma addend, value;
7776
7777 switch (r_type)
7778 {
7779 case R_ARM_MOVW_ABS_NC:
7780 case R_ARM_MOVT_ABS:
7781 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7782 addend = ((value & 0xf0000) >> 4) | (value & 0xfff);
7783 addend = (addend ^ 0x8000) - 0x8000;
7784 break;
7785
7786 case R_ARM_THM_MOVW_ABS_NC:
7787 case R_ARM_THM_MOVT_ABS:
7788 value = bfd_get_16 (input_bfd, contents + rel->r_offset)
7789 << 16;
7790 value |= bfd_get_16 (input_bfd,
7791 contents + rel->r_offset + 2);
7792 addend = ((value & 0xf7000) >> 4) | (value & 0xff)
7793 | ((value & 0x04000000) >> 15);
7794 addend = (addend ^ 0x8000) - 0x8000;
7795 break;
7796
7797 default:
7798 if (howto->rightshift
7799 || (howto->src_mask & (howto->src_mask + 1)))
7800 {
7801 (*_bfd_error_handler)
7802 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
7803 input_bfd, input_section,
7804 (long) rel->r_offset, howto->name);
7805 return FALSE;
7806 }
7807
7808 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
7809
7810 /* Get the (signed) value from the instruction. */
7811 addend = value & howto->src_mask;
7812 if (addend & ((howto->src_mask + 1) >> 1))
7813 {
7814 bfd_signed_vma mask;
7815
7816 mask = -1;
7817 mask &= ~ howto->src_mask;
7818 addend |= mask;
7819 }
7820 break;
7821 }
7822
7823 msec = sec;
7824 addend =
7825 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
7826 - relocation;
7827 addend += msec->output_section->vma + msec->output_offset;
7828
7829 /* Cases here must match those in the preceeding
7830 switch statement. */
7831 switch (r_type)
7832 {
7833 case R_ARM_MOVW_ABS_NC:
7834 case R_ARM_MOVT_ABS:
7835 value = (value & 0xfff0f000) | ((addend & 0xf000) << 4)
7836 | (addend & 0xfff);
7837 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7838 break;
7839
7840 case R_ARM_THM_MOVW_ABS_NC:
7841 case R_ARM_THM_MOVT_ABS:
7842 value = (value & 0xfbf08f00) | ((addend & 0xf700) << 4)
7843 | (addend & 0xff) | ((addend & 0x0800) << 15);
7844 bfd_put_16 (input_bfd, value >> 16,
7845 contents + rel->r_offset);
7846 bfd_put_16 (input_bfd, value,
7847 contents + rel->r_offset + 2);
7848 break;
7849
7850 default:
7851 value = (value & ~ howto->dst_mask)
7852 | (addend & howto->dst_mask);
7853 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
7854 break;
7855 }
7856 }
7857 }
7858 else
7859 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
7860 }
7861 else
7862 {
7863 bfd_boolean warned;
7864
7865 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
7866 r_symndx, symtab_hdr, sym_hashes,
7867 h, sec, relocation,
7868 unresolved_reloc, warned);
7869
7870 sym_type = h->type;
7871 }
7872
7873 if (sec != NULL && elf_discarded_section (sec))
7874 {
7875 /* For relocs against symbols from removed linkonce sections,
7876 or sections discarded by a linker script, we just want the
7877 section contents zeroed. Avoid any special processing. */
7878 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
7879 rel->r_info = 0;
7880 rel->r_addend = 0;
7881 continue;
7882 }
7883
7884 if (info->relocatable)
7885 {
7886 /* This is a relocatable link. We don't have to change
7887 anything, unless the reloc is against a section symbol,
7888 in which case we have to adjust according to where the
7889 section symbol winds up in the output section. */
7890 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
7891 {
7892 if (globals->use_rel)
7893 arm_add_to_rel (input_bfd, contents + rel->r_offset,
7894 howto, (bfd_signed_vma) sec->output_offset);
7895 else
7896 rel->r_addend += sec->output_offset;
7897 }
7898 continue;
7899 }
7900
7901 if (h != NULL)
7902 name = h->root.root.string;
7903 else
7904 {
7905 name = (bfd_elf_string_from_elf_section
7906 (input_bfd, symtab_hdr->sh_link, sym->st_name));
7907 if (name == NULL || *name == '\0')
7908 name = bfd_section_name (input_bfd, sec);
7909 }
7910
7911 if (r_symndx != 0
7912 && r_type != R_ARM_NONE
7913 && (h == NULL
7914 || h->root.type == bfd_link_hash_defined
7915 || h->root.type == bfd_link_hash_defweak)
7916 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
7917 {
7918 (*_bfd_error_handler)
7919 ((sym_type == STT_TLS
7920 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
7921 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
7922 input_bfd,
7923 input_section,
7924 (long) rel->r_offset,
7925 howto->name,
7926 name);
7927 }
7928
7929 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
7930 input_section, contents, rel,
7931 relocation, info, sec, name,
7932 (h ? ELF_ST_TYPE (h->type) :
7933 ELF_ST_TYPE (sym->st_info)), h,
7934 &unresolved_reloc, &error_message);
7935
7936 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
7937 because such sections are not SEC_ALLOC and thus ld.so will
7938 not process them. */
7939 if (unresolved_reloc
7940 && !((input_section->flags & SEC_DEBUGGING) != 0
7941 && h->def_dynamic))
7942 {
7943 (*_bfd_error_handler)
7944 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
7945 input_bfd,
7946 input_section,
7947 (long) rel->r_offset,
7948 howto->name,
7949 h->root.root.string);
7950 return FALSE;
7951 }
7952
7953 if (r != bfd_reloc_ok)
7954 {
7955 switch (r)
7956 {
7957 case bfd_reloc_overflow:
7958 /* If the overflowing reloc was to an undefined symbol,
7959 we have already printed one error message and there
7960 is no point complaining again. */
7961 if ((! h ||
7962 h->root.type != bfd_link_hash_undefined)
7963 && (!((*info->callbacks->reloc_overflow)
7964 (info, (h ? &h->root : NULL), name, howto->name,
7965 (bfd_vma) 0, input_bfd, input_section,
7966 rel->r_offset))))
7967 return FALSE;
7968 break;
7969
7970 case bfd_reloc_undefined:
7971 if (!((*info->callbacks->undefined_symbol)
7972 (info, name, input_bfd, input_section,
7973 rel->r_offset, TRUE)))
7974 return FALSE;
7975 break;
7976
7977 case bfd_reloc_outofrange:
7978 error_message = _("out of range");
7979 goto common_error;
7980
7981 case bfd_reloc_notsupported:
7982 error_message = _("unsupported relocation");
7983 goto common_error;
7984
7985 case bfd_reloc_dangerous:
7986 /* error_message should already be set. */
7987 goto common_error;
7988
7989 default:
7990 error_message = _("unknown error");
7991 /* Fall through. */
7992
7993 common_error:
7994 BFD_ASSERT (error_message != NULL);
7995 if (!((*info->callbacks->reloc_dangerous)
7996 (info, error_message, input_bfd, input_section,
7997 rel->r_offset)))
7998 return FALSE;
7999 break;
8000 }
8001 }
8002 }
8003
8004 return TRUE;
8005 }
8006
8007 /* Set the right machine number. */
8008
8009 static bfd_boolean
8010 elf32_arm_object_p (bfd *abfd)
8011 {
8012 unsigned int mach;
8013
8014 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
8015
8016 if (mach != bfd_mach_arm_unknown)
8017 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8018
8019 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
8020 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
8021
8022 else
8023 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
8024
8025 return TRUE;
8026 }
8027
8028 /* Function to keep ARM specific flags in the ELF header. */
8029
8030 static bfd_boolean
8031 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
8032 {
8033 if (elf_flags_init (abfd)
8034 && elf_elfheader (abfd)->e_flags != flags)
8035 {
8036 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
8037 {
8038 if (flags & EF_ARM_INTERWORK)
8039 (*_bfd_error_handler)
8040 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
8041 abfd);
8042 else
8043 _bfd_error_handler
8044 (_("Warning: Clearing the interworking flag of %B due to outside request"),
8045 abfd);
8046 }
8047 }
8048 else
8049 {
8050 elf_elfheader (abfd)->e_flags = flags;
8051 elf_flags_init (abfd) = TRUE;
8052 }
8053
8054 return TRUE;
8055 }
8056
8057 /* Copy backend specific data from one object module to another. */
8058
8059 static bfd_boolean
8060 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
8061 {
8062 flagword in_flags;
8063 flagword out_flags;
8064
8065 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8066 return TRUE;
8067
8068 in_flags = elf_elfheader (ibfd)->e_flags;
8069 out_flags = elf_elfheader (obfd)->e_flags;
8070
8071 if (elf_flags_init (obfd)
8072 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
8073 && in_flags != out_flags)
8074 {
8075 /* Cannot mix APCS26 and APCS32 code. */
8076 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8077 return FALSE;
8078
8079 /* Cannot mix float APCS and non-float APCS code. */
8080 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8081 return FALSE;
8082
8083 /* If the src and dest have different interworking flags
8084 then turn off the interworking bit. */
8085 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
8086 {
8087 if (out_flags & EF_ARM_INTERWORK)
8088 _bfd_error_handler
8089 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
8090 obfd, ibfd);
8091
8092 in_flags &= ~EF_ARM_INTERWORK;
8093 }
8094
8095 /* Likewise for PIC, though don't warn for this case. */
8096 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
8097 in_flags &= ~EF_ARM_PIC;
8098 }
8099
8100 elf_elfheader (obfd)->e_flags = in_flags;
8101 elf_flags_init (obfd) = TRUE;
8102
8103 /* Also copy the EI_OSABI field. */
8104 elf_elfheader (obfd)->e_ident[EI_OSABI] =
8105 elf_elfheader (ibfd)->e_ident[EI_OSABI];
8106
8107 /* Copy object attributes. */
8108 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8109
8110 return TRUE;
8111 }
8112
8113 /* Values for Tag_ABI_PCS_R9_use. */
8114 enum
8115 {
8116 AEABI_R9_V6,
8117 AEABI_R9_SB,
8118 AEABI_R9_TLS,
8119 AEABI_R9_unused
8120 };
8121
8122 /* Values for Tag_ABI_PCS_RW_data. */
8123 enum
8124 {
8125 AEABI_PCS_RW_data_absolute,
8126 AEABI_PCS_RW_data_PCrel,
8127 AEABI_PCS_RW_data_SBrel,
8128 AEABI_PCS_RW_data_unused
8129 };
8130
8131 /* Values for Tag_ABI_enum_size. */
8132 enum
8133 {
8134 AEABI_enum_unused,
8135 AEABI_enum_short,
8136 AEABI_enum_wide,
8137 AEABI_enum_forced_wide
8138 };
8139
8140 /* Determine whether an object attribute tag takes an integer, a
8141 string or both. */
8142
8143 static int
8144 elf32_arm_obj_attrs_arg_type (int tag)
8145 {
8146 if (tag == Tag_compatibility)
8147 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_STR_VAL;
8148 else if (tag == Tag_nodefaults)
8149 return ATTR_TYPE_FLAG_INT_VAL | ATTR_TYPE_FLAG_NO_DEFAULT;
8150 else if (tag == Tag_CPU_raw_name || tag == Tag_CPU_name)
8151 return ATTR_TYPE_FLAG_STR_VAL;
8152 else if (tag < 32)
8153 return ATTR_TYPE_FLAG_INT_VAL;
8154 else
8155 return (tag & 1) != 0 ? ATTR_TYPE_FLAG_STR_VAL : ATTR_TYPE_FLAG_INT_VAL;
8156 }
8157
8158 /* The ABI defines that Tag_conformance should be emitted first, and that
8159 Tag_nodefaults should be second (if either is defined). This sets those
8160 two positions, and bumps up the position of all the remaining tags to
8161 compensate. */
8162 static int
8163 elf32_arm_obj_attrs_order (int num)
8164 {
8165 if (num == 4)
8166 return Tag_conformance;
8167 if (num == 5)
8168 return Tag_nodefaults;
8169 if ((num - 2) < Tag_nodefaults)
8170 return num - 2;
8171 if ((num - 1) < Tag_conformance)
8172 return num - 1;
8173 return num;
8174 }
8175
8176 /* Read the architecture from the Tag_also_compatible_with attribute, if any.
8177 Returns -1 if no architecture could be read. */
8178
8179 static int
8180 get_secondary_compatible_arch (bfd *abfd)
8181 {
8182 obj_attribute *attr =
8183 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8184
8185 /* Note: the tag and its argument below are uleb128 values, though
8186 currently-defined values fit in one byte for each. */
8187 if (attr->s
8188 && attr->s[0] == Tag_CPU_arch
8189 && (attr->s[1] & 128) != 128
8190 && attr->s[2] == 0)
8191 return attr->s[1];
8192
8193 /* This tag is "safely ignorable", so don't complain if it looks funny. */
8194 return -1;
8195 }
8196
8197 /* Set, or unset, the architecture of the Tag_also_compatible_with attribute.
8198 The tag is removed if ARCH is -1. */
8199
8200 static void
8201 set_secondary_compatible_arch (bfd *abfd, int arch)
8202 {
8203 obj_attribute *attr =
8204 &elf_known_obj_attributes_proc (abfd)[Tag_also_compatible_with];
8205
8206 if (arch == -1)
8207 {
8208 attr->s = NULL;
8209 return;
8210 }
8211
8212 /* Note: the tag and its argument below are uleb128 values, though
8213 currently-defined values fit in one byte for each. */
8214 if (!attr->s)
8215 attr->s = bfd_alloc (abfd, 3);
8216 attr->s[0] = Tag_CPU_arch;
8217 attr->s[1] = arch;
8218 attr->s[2] = '\0';
8219 }
8220
8221 /* Combine two values for Tag_CPU_arch, taking secondary compatibility tags
8222 into account. */
8223
8224 static int
8225 tag_cpu_arch_combine (bfd *ibfd, int oldtag, int *secondary_compat_out,
8226 int newtag, int secondary_compat)
8227 {
8228 #define T(X) TAG_CPU_ARCH_##X
8229 int tagl, tagh, result;
8230 const int v6t2[] =
8231 {
8232 T(V6T2), /* PRE_V4. */
8233 T(V6T2), /* V4. */
8234 T(V6T2), /* V4T. */
8235 T(V6T2), /* V5T. */
8236 T(V6T2), /* V5TE. */
8237 T(V6T2), /* V5TEJ. */
8238 T(V6T2), /* V6. */
8239 T(V7), /* V6KZ. */
8240 T(V6T2) /* V6T2. */
8241 };
8242 const int v6k[] =
8243 {
8244 T(V6K), /* PRE_V4. */
8245 T(V6K), /* V4. */
8246 T(V6K), /* V4T. */
8247 T(V6K), /* V5T. */
8248 T(V6K), /* V5TE. */
8249 T(V6K), /* V5TEJ. */
8250 T(V6K), /* V6. */
8251 T(V6KZ), /* V6KZ. */
8252 T(V7), /* V6T2. */
8253 T(V6K) /* V6K. */
8254 };
8255 const int v7[] =
8256 {
8257 T(V7), /* PRE_V4. */
8258 T(V7), /* V4. */
8259 T(V7), /* V4T. */
8260 T(V7), /* V5T. */
8261 T(V7), /* V5TE. */
8262 T(V7), /* V5TEJ. */
8263 T(V7), /* V6. */
8264 T(V7), /* V6KZ. */
8265 T(V7), /* V6T2. */
8266 T(V7), /* V6K. */
8267 T(V7) /* V7. */
8268 };
8269 const int v6_m[] =
8270 {
8271 -1, /* PRE_V4. */
8272 -1, /* V4. */
8273 T(V6K), /* V4T. */
8274 T(V6K), /* V5T. */
8275 T(V6K), /* V5TE. */
8276 T(V6K), /* V5TEJ. */
8277 T(V6K), /* V6. */
8278 T(V6KZ), /* V6KZ. */
8279 T(V7), /* V6T2. */
8280 T(V6K), /* V6K. */
8281 T(V7), /* V7. */
8282 T(V6_M) /* V6_M. */
8283 };
8284 const int v6s_m[] =
8285 {
8286 -1, /* PRE_V4. */
8287 -1, /* V4. */
8288 T(V6K), /* V4T. */
8289 T(V6K), /* V5T. */
8290 T(V6K), /* V5TE. */
8291 T(V6K), /* V5TEJ. */
8292 T(V6K), /* V6. */
8293 T(V6KZ), /* V6KZ. */
8294 T(V7), /* V6T2. */
8295 T(V6K), /* V6K. */
8296 T(V7), /* V7. */
8297 T(V6S_M), /* V6_M. */
8298 T(V6S_M) /* V6S_M. */
8299 };
8300 const int v4t_plus_v6_m[] =
8301 {
8302 -1, /* PRE_V4. */
8303 -1, /* V4. */
8304 T(V4T), /* V4T. */
8305 T(V5T), /* V5T. */
8306 T(V5TE), /* V5TE. */
8307 T(V5TEJ), /* V5TEJ. */
8308 T(V6), /* V6. */
8309 T(V6KZ), /* V6KZ. */
8310 T(V6T2), /* V6T2. */
8311 T(V6K), /* V6K. */
8312 T(V7), /* V7. */
8313 T(V6_M), /* V6_M. */
8314 T(V6S_M), /* V6S_M. */
8315 T(V4T_PLUS_V6_M) /* V4T plus V6_M. */
8316 };
8317 const int *comb[] =
8318 {
8319 v6t2,
8320 v6k,
8321 v7,
8322 v6_m,
8323 v6s_m,
8324 /* Pseudo-architecture. */
8325 v4t_plus_v6_m
8326 };
8327
8328 /* Check we've not got a higher architecture than we know about. */
8329
8330 if (oldtag >= MAX_TAG_CPU_ARCH || newtag >= MAX_TAG_CPU_ARCH)
8331 {
8332 _bfd_error_handler (_("ERROR: %B: Unknown CPU architecture"), ibfd);
8333 return -1;
8334 }
8335
8336 /* Override old tag if we have a Tag_also_compatible_with on the output. */
8337
8338 if ((oldtag == T(V6_M) && *secondary_compat_out == T(V4T))
8339 || (oldtag == T(V4T) && *secondary_compat_out == T(V6_M)))
8340 oldtag = T(V4T_PLUS_V6_M);
8341
8342 /* And override the new tag if we have a Tag_also_compatible_with on the
8343 input. */
8344
8345 if ((newtag == T(V6_M) && secondary_compat == T(V4T))
8346 || (newtag == T(V4T) && secondary_compat == T(V6_M)))
8347 newtag = T(V4T_PLUS_V6_M);
8348
8349 tagl = (oldtag < newtag) ? oldtag : newtag;
8350 result = tagh = (oldtag > newtag) ? oldtag : newtag;
8351
8352 /* Architectures before V6KZ add features monotonically. */
8353 if (tagh <= TAG_CPU_ARCH_V6KZ)
8354 return result;
8355
8356 result = comb[tagh - T(V6T2)][tagl];
8357
8358 /* Use Tag_CPU_arch == V4T and Tag_also_compatible_with (Tag_CPU_arch V6_M)
8359 as the canonical version. */
8360 if (result == T(V4T_PLUS_V6_M))
8361 {
8362 result = T(V4T);
8363 *secondary_compat_out = T(V6_M);
8364 }
8365 else
8366 *secondary_compat_out = -1;
8367
8368 if (result == -1)
8369 {
8370 _bfd_error_handler (_("ERROR: %B: Conflicting CPU architectures %d/%d"),
8371 ibfd, oldtag, newtag);
8372 return -1;
8373 }
8374
8375 return result;
8376 #undef T
8377 }
8378
8379 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
8380 are conflicting attributes. */
8381
8382 static bfd_boolean
8383 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
8384 {
8385 obj_attribute *in_attr;
8386 obj_attribute *out_attr;
8387 obj_attribute_list *in_list;
8388 obj_attribute_list *out_list;
8389 obj_attribute_list **out_listp;
8390 /* Some tags have 0 = don't care, 1 = strong requirement,
8391 2 = weak requirement. */
8392 static const int order_021[3] = {0, 2, 1};
8393 /* For use with Tag_VFP_arch. */
8394 static const int order_01243[5] = {0, 1, 2, 4, 3};
8395 int i;
8396 bfd_boolean result = TRUE;
8397
8398 if (!elf_known_obj_attributes_proc (obfd)[0].i)
8399 {
8400 /* This is the first object. Copy the attributes. */
8401 _bfd_elf_copy_obj_attributes (ibfd, obfd);
8402
8403 /* Use the Tag_null value to indicate the attributes have been
8404 initialized. */
8405 elf_known_obj_attributes_proc (obfd)[0].i = 1;
8406
8407 return TRUE;
8408 }
8409
8410 in_attr = elf_known_obj_attributes_proc (ibfd);
8411 out_attr = elf_known_obj_attributes_proc (obfd);
8412 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
8413 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
8414 {
8415 /* Ignore mismatches if the object doesn't use floating point. */
8416 if (out_attr[Tag_ABI_FP_number_model].i == 0)
8417 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
8418 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
8419 {
8420 _bfd_error_handler
8421 (_("ERROR: %B uses VFP register arguments, %B does not"),
8422 ibfd, obfd);
8423 result = FALSE;
8424 }
8425 }
8426
8427 for (i = 4; i < NUM_KNOWN_OBJ_ATTRIBUTES; i++)
8428 {
8429 /* Merge this attribute with existing attributes. */
8430 switch (i)
8431 {
8432 case Tag_CPU_raw_name:
8433 case Tag_CPU_name:
8434 /* These are merged after Tag_CPU_arch. */
8435 break;
8436
8437 case Tag_ABI_optimization_goals:
8438 case Tag_ABI_FP_optimization_goals:
8439 /* Use the first value seen. */
8440 break;
8441
8442 case Tag_CPU_arch:
8443 {
8444 int secondary_compat = -1, secondary_compat_out = -1;
8445 unsigned int saved_out_attr = out_attr[i].i;
8446 static const char *name_table[] = {
8447 /* These aren't real CPU names, but we can't guess
8448 that from the architecture version alone. */
8449 "Pre v4",
8450 "ARM v4",
8451 "ARM v4T",
8452 "ARM v5T",
8453 "ARM v5TE",
8454 "ARM v5TEJ",
8455 "ARM v6",
8456 "ARM v6KZ",
8457 "ARM v6T2",
8458 "ARM v6K",
8459 "ARM v7",
8460 "ARM v6-M",
8461 "ARM v6S-M"
8462 };
8463
8464 /* Merge Tag_CPU_arch and Tag_also_compatible_with. */
8465 secondary_compat = get_secondary_compatible_arch (ibfd);
8466 secondary_compat_out = get_secondary_compatible_arch (obfd);
8467 out_attr[i].i = tag_cpu_arch_combine (ibfd, out_attr[i].i,
8468 &secondary_compat_out,
8469 in_attr[i].i,
8470 secondary_compat);
8471 set_secondary_compatible_arch (obfd, secondary_compat_out);
8472
8473 /* Merge Tag_CPU_name and Tag_CPU_raw_name. */
8474 if (out_attr[i].i == saved_out_attr)
8475 ; /* Leave the names alone. */
8476 else if (out_attr[i].i == in_attr[i].i)
8477 {
8478 /* The output architecture has been changed to match the
8479 input architecture. Use the input names. */
8480 out_attr[Tag_CPU_name].s = in_attr[Tag_CPU_name].s
8481 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_name].s)
8482 : NULL;
8483 out_attr[Tag_CPU_raw_name].s = in_attr[Tag_CPU_raw_name].s
8484 ? _bfd_elf_attr_strdup (obfd, in_attr[Tag_CPU_raw_name].s)
8485 : NULL;
8486 }
8487 else
8488 {
8489 out_attr[Tag_CPU_name].s = NULL;
8490 out_attr[Tag_CPU_raw_name].s = NULL;
8491 }
8492
8493 /* If we still don't have a value for Tag_CPU_name,
8494 make one up now. Tag_CPU_raw_name remains blank. */
8495 if (out_attr[Tag_CPU_name].s == NULL
8496 && out_attr[i].i < ARRAY_SIZE (name_table))
8497 out_attr[Tag_CPU_name].s =
8498 _bfd_elf_attr_strdup (obfd, name_table[out_attr[i].i]);
8499 }
8500 break;
8501
8502 case Tag_ARM_ISA_use:
8503 case Tag_THUMB_ISA_use:
8504 case Tag_WMMX_arch:
8505 case Tag_Advanced_SIMD_arch:
8506 /* ??? Do Advanced_SIMD (NEON) and WMMX conflict? */
8507 case Tag_ABI_FP_rounding:
8508 case Tag_ABI_FP_exceptions:
8509 case Tag_ABI_FP_user_exceptions:
8510 case Tag_ABI_FP_number_model:
8511 case Tag_VFP_HP_extension:
8512 case Tag_CPU_unaligned_access:
8513 case Tag_T2EE_use:
8514 case Tag_Virtualization_use:
8515 case Tag_MPextension_use:
8516 /* Use the largest value specified. */
8517 if (in_attr[i].i > out_attr[i].i)
8518 out_attr[i].i = in_attr[i].i;
8519 break;
8520
8521 case Tag_ABI_align8_preserved:
8522 case Tag_ABI_PCS_RO_data:
8523 /* Use the smallest value specified. */
8524 if (in_attr[i].i < out_attr[i].i)
8525 out_attr[i].i = in_attr[i].i;
8526 break;
8527
8528 case Tag_ABI_align8_needed:
8529 if ((in_attr[i].i > 0 || out_attr[i].i > 0)
8530 && (in_attr[Tag_ABI_align8_preserved].i == 0
8531 || out_attr[Tag_ABI_align8_preserved].i == 0))
8532 {
8533 /* This error message should be enabled once all non-conformant
8534 binaries in the toolchain have had the attributes set
8535 properly.
8536 _bfd_error_handler
8537 (_("ERROR: %B: 8-byte data alignment conflicts with %B"),
8538 obfd, ibfd);
8539 result = FALSE; */
8540 }
8541 /* Fall through. */
8542 case Tag_ABI_FP_denormal:
8543 case Tag_ABI_PCS_GOT_use:
8544 /* Use the "greatest" from the sequence 0, 2, 1, or the largest
8545 value if greater than 2 (for future-proofing). */
8546 if ((in_attr[i].i > 2 && in_attr[i].i > out_attr[i].i)
8547 || (in_attr[i].i <= 2 && out_attr[i].i <= 2
8548 && order_021[in_attr[i].i] > order_021[out_attr[i].i]))
8549 out_attr[i].i = in_attr[i].i;
8550 break;
8551
8552
8553 case Tag_CPU_arch_profile:
8554 if (out_attr[i].i != in_attr[i].i)
8555 {
8556 /* 0 will merge with anything.
8557 'A' and 'S' merge to 'A'.
8558 'R' and 'S' merge to 'R'.
8559 'M' and 'A|R|S' is an error. */
8560 if (out_attr[i].i == 0
8561 || (out_attr[i].i == 'S'
8562 && (in_attr[i].i == 'A' || in_attr[i].i == 'R')))
8563 out_attr[i].i = in_attr[i].i;
8564 else if (in_attr[i].i == 0
8565 || (in_attr[i].i == 'S'
8566 && (out_attr[i].i == 'A' || out_attr[i].i == 'R')))
8567 ; /* Do nothing. */
8568 else
8569 {
8570 _bfd_error_handler
8571 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
8572 ibfd,
8573 in_attr[i].i ? in_attr[i].i : '0',
8574 out_attr[i].i ? out_attr[i].i : '0');
8575 result = FALSE;
8576 }
8577 }
8578 break;
8579 case Tag_VFP_arch:
8580 /* Use the "greatest" from the sequence 0, 1, 2, 4, 3, or the
8581 largest value if greater than 4 (for future-proofing). */
8582 if ((in_attr[i].i > 4 && in_attr[i].i > out_attr[i].i)
8583 || (in_attr[i].i <= 4 && out_attr[i].i <= 4
8584 && order_01243[in_attr[i].i] > order_01243[out_attr[i].i]))
8585 out_attr[i].i = in_attr[i].i;
8586 break;
8587 case Tag_PCS_config:
8588 if (out_attr[i].i == 0)
8589 out_attr[i].i = in_attr[i].i;
8590 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
8591 {
8592 /* It's sometimes ok to mix different configs, so this is only
8593 a warning. */
8594 _bfd_error_handler
8595 (_("Warning: %B: Conflicting platform configuration"), ibfd);
8596 }
8597 break;
8598 case Tag_ABI_PCS_R9_use:
8599 if (in_attr[i].i != out_attr[i].i
8600 && out_attr[i].i != AEABI_R9_unused
8601 && in_attr[i].i != AEABI_R9_unused)
8602 {
8603 _bfd_error_handler
8604 (_("ERROR: %B: Conflicting use of R9"), ibfd);
8605 result = FALSE;
8606 }
8607 if (out_attr[i].i == AEABI_R9_unused)
8608 out_attr[i].i = in_attr[i].i;
8609 break;
8610 case Tag_ABI_PCS_RW_data:
8611 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
8612 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
8613 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
8614 {
8615 _bfd_error_handler
8616 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
8617 ibfd);
8618 result = FALSE;
8619 }
8620 /* Use the smallest value specified. */
8621 if (in_attr[i].i < out_attr[i].i)
8622 out_attr[i].i = in_attr[i].i;
8623 break;
8624 case Tag_ABI_PCS_wchar_t:
8625 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i
8626 && !elf_arm_tdata (obfd)->no_wchar_size_warning)
8627 {
8628 _bfd_error_handler
8629 (_("warning: %B uses %u-byte wchar_t yet the output is to use %u-byte wchar_t; use of wchar_t values across objects may fail"),
8630 ibfd, in_attr[i].i, out_attr[i].i);
8631 }
8632 else if (in_attr[i].i && !out_attr[i].i)
8633 out_attr[i].i = in_attr[i].i;
8634 break;
8635 case Tag_ABI_enum_size:
8636 if (in_attr[i].i != AEABI_enum_unused)
8637 {
8638 if (out_attr[i].i == AEABI_enum_unused
8639 || out_attr[i].i == AEABI_enum_forced_wide)
8640 {
8641 /* The existing object is compatible with anything.
8642 Use whatever requirements the new object has. */
8643 out_attr[i].i = in_attr[i].i;
8644 }
8645 else if (in_attr[i].i != AEABI_enum_forced_wide
8646 && out_attr[i].i != in_attr[i].i
8647 && !elf_arm_tdata (obfd)->no_enum_size_warning)
8648 {
8649 static const char *aeabi_enum_names[] =
8650 { "", "variable-size", "32-bit", "" };
8651 const char *in_name =
8652 in_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
8653 ? aeabi_enum_names[in_attr[i].i]
8654 : "<unknown>";
8655 const char *out_name =
8656 out_attr[i].i < ARRAY_SIZE(aeabi_enum_names)
8657 ? aeabi_enum_names[out_attr[i].i]
8658 : "<unknown>";
8659 _bfd_error_handler
8660 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
8661 ibfd, in_name, out_name);
8662 }
8663 }
8664 break;
8665 case Tag_ABI_VFP_args:
8666 /* Aready done. */
8667 break;
8668 case Tag_ABI_WMMX_args:
8669 if (in_attr[i].i != out_attr[i].i)
8670 {
8671 _bfd_error_handler
8672 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
8673 ibfd, obfd);
8674 result = FALSE;
8675 }
8676 break;
8677 case Tag_compatibility:
8678 /* Merged in target-independent code. */
8679 break;
8680 case Tag_ABI_HardFP_use:
8681 /* 1 (SP) and 2 (DP) conflict, so combine to 3 (SP & DP). */
8682 if ((in_attr[i].i == 1 && out_attr[i].i == 2)
8683 || (in_attr[i].i == 2 && out_attr[i].i == 1))
8684 out_attr[i].i = 3;
8685 else if (in_attr[i].i > out_attr[i].i)
8686 out_attr[i].i = in_attr[i].i;
8687 break;
8688 case Tag_ABI_FP_16bit_format:
8689 if (in_attr[i].i != 0 && out_attr[i].i != 0)
8690 {
8691 if (in_attr[i].i != out_attr[i].i)
8692 {
8693 _bfd_error_handler
8694 (_("ERROR: fp16 format mismatch between %B and %B"),
8695 ibfd, obfd);
8696 result = FALSE;
8697 }
8698 }
8699 if (in_attr[i].i != 0)
8700 out_attr[i].i = in_attr[i].i;
8701 break;
8702
8703 case Tag_nodefaults:
8704 /* This tag is set if it exists, but the value is unused (and is
8705 typically zero). We don't actually need to do anything here -
8706 the merge happens automatically when the type flags are merged
8707 below. */
8708 break;
8709 case Tag_also_compatible_with:
8710 /* Already done in Tag_CPU_arch. */
8711 break;
8712 case Tag_conformance:
8713 /* Keep the attribute if it matches. Throw it away otherwise.
8714 No attribute means no claim to conform. */
8715 if (!in_attr[i].s || !out_attr[i].s
8716 || strcmp (in_attr[i].s, out_attr[i].s) != 0)
8717 out_attr[i].s = NULL;
8718 break;
8719
8720 default:
8721 {
8722 bfd *err_bfd = NULL;
8723
8724 /* The "known_obj_attributes" table does contain some undefined
8725 attributes. Ensure that there are unused. */
8726 if (out_attr[i].i != 0 || out_attr[i].s != NULL)
8727 err_bfd = obfd;
8728 else if (in_attr[i].i != 0 || in_attr[i].s != NULL)
8729 err_bfd = ibfd;
8730
8731 if (err_bfd != NULL)
8732 {
8733 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
8734 if ((i & 127) < 64)
8735 {
8736 _bfd_error_handler
8737 (_("%B: Unknown mandatory EABI object attribute %d"),
8738 err_bfd, i);
8739 bfd_set_error (bfd_error_bad_value);
8740 result = FALSE;
8741 }
8742 else
8743 {
8744 _bfd_error_handler
8745 (_("Warning: %B: Unknown EABI object attribute %d"),
8746 err_bfd, i);
8747 }
8748 }
8749
8750 /* Only pass on attributes that match in both inputs. */
8751 if (in_attr[i].i != out_attr[i].i
8752 || in_attr[i].s != out_attr[i].s
8753 || (in_attr[i].s != NULL && out_attr[i].s != NULL
8754 && strcmp (in_attr[i].s, out_attr[i].s) != 0))
8755 {
8756 out_attr[i].i = 0;
8757 out_attr[i].s = NULL;
8758 }
8759 }
8760 }
8761
8762 /* If out_attr was copied from in_attr then it won't have a type yet. */
8763 if (in_attr[i].type && !out_attr[i].type)
8764 out_attr[i].type = in_attr[i].type;
8765 }
8766
8767 /* Merge Tag_compatibility attributes and any common GNU ones. */
8768 _bfd_elf_merge_object_attributes (ibfd, obfd);
8769
8770 /* Check for any attributes not known on ARM. */
8771 in_list = elf_other_obj_attributes_proc (ibfd);
8772 out_listp = &elf_other_obj_attributes_proc (obfd);
8773 out_list = *out_listp;
8774
8775 for (; in_list || out_list; )
8776 {
8777 bfd *err_bfd = NULL;
8778 int err_tag = 0;
8779
8780 /* The tags for each list are in numerical order. */
8781 /* If the tags are equal, then merge. */
8782 if (out_list && (!in_list || in_list->tag > out_list->tag))
8783 {
8784 /* This attribute only exists in obfd. We can't merge, and we don't
8785 know what the tag means, so delete it. */
8786 err_bfd = obfd;
8787 err_tag = out_list->tag;
8788 *out_listp = out_list->next;
8789 out_list = *out_listp;
8790 }
8791 else if (in_list && (!out_list || in_list->tag < out_list->tag))
8792 {
8793 /* This attribute only exists in ibfd. We can't merge, and we don't
8794 know what the tag means, so ignore it. */
8795 err_bfd = ibfd;
8796 err_tag = in_list->tag;
8797 in_list = in_list->next;
8798 }
8799 else /* The tags are equal. */
8800 {
8801 /* As present, all attributes in the list are unknown, and
8802 therefore can't be merged meaningfully. */
8803 err_bfd = obfd;
8804 err_tag = out_list->tag;
8805
8806 /* Only pass on attributes that match in both inputs. */
8807 if (in_list->attr.i != out_list->attr.i
8808 || in_list->attr.s != out_list->attr.s
8809 || (in_list->attr.s && out_list->attr.s
8810 && strcmp (in_list->attr.s, out_list->attr.s) != 0))
8811 {
8812 /* No match. Delete the attribute. */
8813 *out_listp = out_list->next;
8814 out_list = *out_listp;
8815 }
8816 else
8817 {
8818 /* Matched. Keep the attribute and move to the next. */
8819 out_list = out_list->next;
8820 in_list = in_list->next;
8821 }
8822 }
8823
8824 if (err_bfd)
8825 {
8826 /* Attribute numbers >=64 (mod 128) can be safely ignored. */
8827 if ((err_tag & 127) < 64)
8828 {
8829 _bfd_error_handler
8830 (_("%B: Unknown mandatory EABI object attribute %d"),
8831 err_bfd, err_tag);
8832 bfd_set_error (bfd_error_bad_value);
8833 result = FALSE;
8834 }
8835 else
8836 {
8837 _bfd_error_handler
8838 (_("Warning: %B: Unknown EABI object attribute %d"),
8839 err_bfd, err_tag);
8840 }
8841 }
8842 }
8843 return result;
8844 }
8845
8846
8847 /* Return TRUE if the two EABI versions are incompatible. */
8848
8849 static bfd_boolean
8850 elf32_arm_versions_compatible (unsigned iver, unsigned over)
8851 {
8852 /* v4 and v5 are the same spec before and after it was released,
8853 so allow mixing them. */
8854 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
8855 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
8856 return TRUE;
8857
8858 return (iver == over);
8859 }
8860
8861 /* Merge backend specific data from an object file to the output
8862 object file when linking. */
8863
8864 static bfd_boolean
8865 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
8866 {
8867 flagword out_flags;
8868 flagword in_flags;
8869 bfd_boolean flags_compatible = TRUE;
8870 asection *sec;
8871
8872 /* Check if we have the same endianess. */
8873 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
8874 return FALSE;
8875
8876 if (! is_arm_elf (ibfd) || ! is_arm_elf (obfd))
8877 return TRUE;
8878
8879 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
8880 return FALSE;
8881
8882 /* The input BFD must have had its flags initialised. */
8883 /* The following seems bogus to me -- The flags are initialized in
8884 the assembler but I don't think an elf_flags_init field is
8885 written into the object. */
8886 /* BFD_ASSERT (elf_flags_init (ibfd)); */
8887
8888 in_flags = elf_elfheader (ibfd)->e_flags;
8889 out_flags = elf_elfheader (obfd)->e_flags;
8890
8891 /* In theory there is no reason why we couldn't handle this. However
8892 in practice it isn't even close to working and there is no real
8893 reason to want it. */
8894 if (EF_ARM_EABI_VERSION (in_flags) >= EF_ARM_EABI_VER4
8895 && !(ibfd->flags & DYNAMIC)
8896 && (in_flags & EF_ARM_BE8))
8897 {
8898 _bfd_error_handler (_("ERROR: %B is already in final BE8 format"),
8899 ibfd);
8900 return FALSE;
8901 }
8902
8903 if (!elf_flags_init (obfd))
8904 {
8905 /* If the input is the default architecture and had the default
8906 flags then do not bother setting the flags for the output
8907 architecture, instead allow future merges to do this. If no
8908 future merges ever set these flags then they will retain their
8909 uninitialised values, which surprise surprise, correspond
8910 to the default values. */
8911 if (bfd_get_arch_info (ibfd)->the_default
8912 && elf_elfheader (ibfd)->e_flags == 0)
8913 return TRUE;
8914
8915 elf_flags_init (obfd) = TRUE;
8916 elf_elfheader (obfd)->e_flags = in_flags;
8917
8918 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
8919 && bfd_get_arch_info (obfd)->the_default)
8920 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
8921
8922 return TRUE;
8923 }
8924
8925 /* Determine what should happen if the input ARM architecture
8926 does not match the output ARM architecture. */
8927 if (! bfd_arm_merge_machines (ibfd, obfd))
8928 return FALSE;
8929
8930 /* Identical flags must be compatible. */
8931 if (in_flags == out_flags)
8932 return TRUE;
8933
8934 /* Check to see if the input BFD actually contains any sections. If
8935 not, its flags may not have been initialised either, but it
8936 cannot actually cause any incompatiblity. Do not short-circuit
8937 dynamic objects; their section list may be emptied by
8938 elf_link_add_object_symbols.
8939
8940 Also check to see if there are no code sections in the input.
8941 In this case there is no need to check for code specific flags.
8942 XXX - do we need to worry about floating-point format compatability
8943 in data sections ? */
8944 if (!(ibfd->flags & DYNAMIC))
8945 {
8946 bfd_boolean null_input_bfd = TRUE;
8947 bfd_boolean only_data_sections = TRUE;
8948
8949 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
8950 {
8951 /* Ignore synthetic glue sections. */
8952 if (strcmp (sec->name, ".glue_7")
8953 && strcmp (sec->name, ".glue_7t"))
8954 {
8955 if ((bfd_get_section_flags (ibfd, sec)
8956 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8957 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
8958 only_data_sections = FALSE;
8959
8960 null_input_bfd = FALSE;
8961 break;
8962 }
8963 }
8964
8965 if (null_input_bfd || only_data_sections)
8966 return TRUE;
8967 }
8968
8969 /* Complain about various flag mismatches. */
8970 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
8971 EF_ARM_EABI_VERSION (out_flags)))
8972 {
8973 _bfd_error_handler
8974 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
8975 ibfd, obfd,
8976 (in_flags & EF_ARM_EABIMASK) >> 24,
8977 (out_flags & EF_ARM_EABIMASK) >> 24);
8978 return FALSE;
8979 }
8980
8981 /* Not sure what needs to be checked for EABI versions >= 1. */
8982 /* VxWorks libraries do not use these flags. */
8983 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
8984 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
8985 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
8986 {
8987 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
8988 {
8989 _bfd_error_handler
8990 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
8991 ibfd, obfd,
8992 in_flags & EF_ARM_APCS_26 ? 26 : 32,
8993 out_flags & EF_ARM_APCS_26 ? 26 : 32);
8994 flags_compatible = FALSE;
8995 }
8996
8997 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
8998 {
8999 if (in_flags & EF_ARM_APCS_FLOAT)
9000 _bfd_error_handler
9001 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
9002 ibfd, obfd);
9003 else
9004 _bfd_error_handler
9005 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
9006 ibfd, obfd);
9007
9008 flags_compatible = FALSE;
9009 }
9010
9011 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
9012 {
9013 if (in_flags & EF_ARM_VFP_FLOAT)
9014 _bfd_error_handler
9015 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
9016 ibfd, obfd);
9017 else
9018 _bfd_error_handler
9019 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
9020 ibfd, obfd);
9021
9022 flags_compatible = FALSE;
9023 }
9024
9025 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
9026 {
9027 if (in_flags & EF_ARM_MAVERICK_FLOAT)
9028 _bfd_error_handler
9029 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
9030 ibfd, obfd);
9031 else
9032 _bfd_error_handler
9033 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
9034 ibfd, obfd);
9035
9036 flags_compatible = FALSE;
9037 }
9038
9039 #ifdef EF_ARM_SOFT_FLOAT
9040 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
9041 {
9042 /* We can allow interworking between code that is VFP format
9043 layout, and uses either soft float or integer regs for
9044 passing floating point arguments and results. We already
9045 know that the APCS_FLOAT flags match; similarly for VFP
9046 flags. */
9047 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
9048 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
9049 {
9050 if (in_flags & EF_ARM_SOFT_FLOAT)
9051 _bfd_error_handler
9052 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
9053 ibfd, obfd);
9054 else
9055 _bfd_error_handler
9056 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
9057 ibfd, obfd);
9058
9059 flags_compatible = FALSE;
9060 }
9061 }
9062 #endif
9063
9064 /* Interworking mismatch is only a warning. */
9065 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
9066 {
9067 if (in_flags & EF_ARM_INTERWORK)
9068 {
9069 _bfd_error_handler
9070 (_("Warning: %B supports interworking, whereas %B does not"),
9071 ibfd, obfd);
9072 }
9073 else
9074 {
9075 _bfd_error_handler
9076 (_("Warning: %B does not support interworking, whereas %B does"),
9077 ibfd, obfd);
9078 }
9079 }
9080 }
9081
9082 return flags_compatible;
9083 }
9084
9085 /* Display the flags field. */
9086
9087 static bfd_boolean
9088 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
9089 {
9090 FILE * file = (FILE *) ptr;
9091 unsigned long flags;
9092
9093 BFD_ASSERT (abfd != NULL && ptr != NULL);
9094
9095 /* Print normal ELF private data. */
9096 _bfd_elf_print_private_bfd_data (abfd, ptr);
9097
9098 flags = elf_elfheader (abfd)->e_flags;
9099 /* Ignore init flag - it may not be set, despite the flags field
9100 containing valid data. */
9101
9102 /* xgettext:c-format */
9103 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
9104
9105 switch (EF_ARM_EABI_VERSION (flags))
9106 {
9107 case EF_ARM_EABI_UNKNOWN:
9108 /* The following flag bits are GNU extensions and not part of the
9109 official ARM ELF extended ABI. Hence they are only decoded if
9110 the EABI version is not set. */
9111 if (flags & EF_ARM_INTERWORK)
9112 fprintf (file, _(" [interworking enabled]"));
9113
9114 if (flags & EF_ARM_APCS_26)
9115 fprintf (file, " [APCS-26]");
9116 else
9117 fprintf (file, " [APCS-32]");
9118
9119 if (flags & EF_ARM_VFP_FLOAT)
9120 fprintf (file, _(" [VFP float format]"));
9121 else if (flags & EF_ARM_MAVERICK_FLOAT)
9122 fprintf (file, _(" [Maverick float format]"));
9123 else
9124 fprintf (file, _(" [FPA float format]"));
9125
9126 if (flags & EF_ARM_APCS_FLOAT)
9127 fprintf (file, _(" [floats passed in float registers]"));
9128
9129 if (flags & EF_ARM_PIC)
9130 fprintf (file, _(" [position independent]"));
9131
9132 if (flags & EF_ARM_NEW_ABI)
9133 fprintf (file, _(" [new ABI]"));
9134
9135 if (flags & EF_ARM_OLD_ABI)
9136 fprintf (file, _(" [old ABI]"));
9137
9138 if (flags & EF_ARM_SOFT_FLOAT)
9139 fprintf (file, _(" [software FP]"));
9140
9141 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
9142 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
9143 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
9144 | EF_ARM_MAVERICK_FLOAT);
9145 break;
9146
9147 case EF_ARM_EABI_VER1:
9148 fprintf (file, _(" [Version1 EABI]"));
9149
9150 if (flags & EF_ARM_SYMSARESORTED)
9151 fprintf (file, _(" [sorted symbol table]"));
9152 else
9153 fprintf (file, _(" [unsorted symbol table]"));
9154
9155 flags &= ~ EF_ARM_SYMSARESORTED;
9156 break;
9157
9158 case EF_ARM_EABI_VER2:
9159 fprintf (file, _(" [Version2 EABI]"));
9160
9161 if (flags & EF_ARM_SYMSARESORTED)
9162 fprintf (file, _(" [sorted symbol table]"));
9163 else
9164 fprintf (file, _(" [unsorted symbol table]"));
9165
9166 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
9167 fprintf (file, _(" [dynamic symbols use segment index]"));
9168
9169 if (flags & EF_ARM_MAPSYMSFIRST)
9170 fprintf (file, _(" [mapping symbols precede others]"));
9171
9172 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
9173 | EF_ARM_MAPSYMSFIRST);
9174 break;
9175
9176 case EF_ARM_EABI_VER3:
9177 fprintf (file, _(" [Version3 EABI]"));
9178 break;
9179
9180 case EF_ARM_EABI_VER4:
9181 fprintf (file, _(" [Version4 EABI]"));
9182 goto eabi;
9183
9184 case EF_ARM_EABI_VER5:
9185 fprintf (file, _(" [Version5 EABI]"));
9186 eabi:
9187 if (flags & EF_ARM_BE8)
9188 fprintf (file, _(" [BE8]"));
9189
9190 if (flags & EF_ARM_LE8)
9191 fprintf (file, _(" [LE8]"));
9192
9193 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
9194 break;
9195
9196 default:
9197 fprintf (file, _(" <EABI version unrecognised>"));
9198 break;
9199 }
9200
9201 flags &= ~ EF_ARM_EABIMASK;
9202
9203 if (flags & EF_ARM_RELEXEC)
9204 fprintf (file, _(" [relocatable executable]"));
9205
9206 if (flags & EF_ARM_HASENTRY)
9207 fprintf (file, _(" [has entry point]"));
9208
9209 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
9210
9211 if (flags)
9212 fprintf (file, _("<Unrecognised flag bits set>"));
9213
9214 fputc ('\n', file);
9215
9216 return TRUE;
9217 }
9218
9219 static int
9220 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
9221 {
9222 switch (ELF_ST_TYPE (elf_sym->st_info))
9223 {
9224 case STT_ARM_TFUNC:
9225 return ELF_ST_TYPE (elf_sym->st_info);
9226
9227 case STT_ARM_16BIT:
9228 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
9229 This allows us to distinguish between data used by Thumb instructions
9230 and non-data (which is probably code) inside Thumb regions of an
9231 executable. */
9232 if (type != STT_OBJECT && type != STT_TLS)
9233 return ELF_ST_TYPE (elf_sym->st_info);
9234 break;
9235
9236 default:
9237 break;
9238 }
9239
9240 return type;
9241 }
9242
9243 static asection *
9244 elf32_arm_gc_mark_hook (asection *sec,
9245 struct bfd_link_info *info,
9246 Elf_Internal_Rela *rel,
9247 struct elf_link_hash_entry *h,
9248 Elf_Internal_Sym *sym)
9249 {
9250 if (h != NULL)
9251 switch (ELF32_R_TYPE (rel->r_info))
9252 {
9253 case R_ARM_GNU_VTINHERIT:
9254 case R_ARM_GNU_VTENTRY:
9255 return NULL;
9256 }
9257
9258 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
9259 }
9260
9261 /* Update the got entry reference counts for the section being removed. */
9262
9263 static bfd_boolean
9264 elf32_arm_gc_sweep_hook (bfd * abfd,
9265 struct bfd_link_info * info,
9266 asection * sec,
9267 const Elf_Internal_Rela * relocs)
9268 {
9269 Elf_Internal_Shdr *symtab_hdr;
9270 struct elf_link_hash_entry **sym_hashes;
9271 bfd_signed_vma *local_got_refcounts;
9272 const Elf_Internal_Rela *rel, *relend;
9273 struct elf32_arm_link_hash_table * globals;
9274
9275 if (info->relocatable)
9276 return TRUE;
9277
9278 globals = elf32_arm_hash_table (info);
9279
9280 elf_section_data (sec)->local_dynrel = NULL;
9281
9282 symtab_hdr = & elf_symtab_hdr (abfd);
9283 sym_hashes = elf_sym_hashes (abfd);
9284 local_got_refcounts = elf_local_got_refcounts (abfd);
9285
9286 check_use_blx (globals);
9287
9288 relend = relocs + sec->reloc_count;
9289 for (rel = relocs; rel < relend; rel++)
9290 {
9291 unsigned long r_symndx;
9292 struct elf_link_hash_entry *h = NULL;
9293 int r_type;
9294
9295 r_symndx = ELF32_R_SYM (rel->r_info);
9296 if (r_symndx >= symtab_hdr->sh_info)
9297 {
9298 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9299 while (h->root.type == bfd_link_hash_indirect
9300 || h->root.type == bfd_link_hash_warning)
9301 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9302 }
9303
9304 r_type = ELF32_R_TYPE (rel->r_info);
9305 r_type = arm_real_reloc_type (globals, r_type);
9306 switch (r_type)
9307 {
9308 case R_ARM_GOT32:
9309 case R_ARM_GOT_PREL:
9310 case R_ARM_TLS_GD32:
9311 case R_ARM_TLS_IE32:
9312 if (h != NULL)
9313 {
9314 if (h->got.refcount > 0)
9315 h->got.refcount -= 1;
9316 }
9317 else if (local_got_refcounts != NULL)
9318 {
9319 if (local_got_refcounts[r_symndx] > 0)
9320 local_got_refcounts[r_symndx] -= 1;
9321 }
9322 break;
9323
9324 case R_ARM_TLS_LDM32:
9325 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
9326 break;
9327
9328 case R_ARM_ABS32:
9329 case R_ARM_ABS32_NOI:
9330 case R_ARM_REL32:
9331 case R_ARM_REL32_NOI:
9332 case R_ARM_PC24:
9333 case R_ARM_PLT32:
9334 case R_ARM_CALL:
9335 case R_ARM_JUMP24:
9336 case R_ARM_PREL31:
9337 case R_ARM_THM_CALL:
9338 case R_ARM_THM_JUMP24:
9339 case R_ARM_THM_JUMP19:
9340 case R_ARM_MOVW_ABS_NC:
9341 case R_ARM_MOVT_ABS:
9342 case R_ARM_MOVW_PREL_NC:
9343 case R_ARM_MOVT_PREL:
9344 case R_ARM_THM_MOVW_ABS_NC:
9345 case R_ARM_THM_MOVT_ABS:
9346 case R_ARM_THM_MOVW_PREL_NC:
9347 case R_ARM_THM_MOVT_PREL:
9348 /* Should the interworking branches be here also? */
9349
9350 if (h != NULL)
9351 {
9352 struct elf32_arm_link_hash_entry *eh;
9353 struct elf32_arm_relocs_copied **pp;
9354 struct elf32_arm_relocs_copied *p;
9355
9356 eh = (struct elf32_arm_link_hash_entry *) h;
9357
9358 if (h->plt.refcount > 0)
9359 {
9360 h->plt.refcount -= 1;
9361 if (r_type == R_ARM_THM_CALL)
9362 eh->plt_maybe_thumb_refcount--;
9363
9364 if (r_type == R_ARM_THM_JUMP24
9365 || r_type == R_ARM_THM_JUMP19)
9366 eh->plt_thumb_refcount--;
9367 }
9368
9369 if (r_type == R_ARM_ABS32
9370 || r_type == R_ARM_REL32
9371 || r_type == R_ARM_ABS32_NOI
9372 || r_type == R_ARM_REL32_NOI)
9373 {
9374 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
9375 pp = &p->next)
9376 if (p->section == sec)
9377 {
9378 p->count -= 1;
9379 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
9380 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
9381 p->pc_count -= 1;
9382 if (p->count == 0)
9383 *pp = p->next;
9384 break;
9385 }
9386 }
9387 }
9388 break;
9389
9390 default:
9391 break;
9392 }
9393 }
9394
9395 return TRUE;
9396 }
9397
9398 /* Look through the relocs for a section during the first phase. */
9399
9400 static bfd_boolean
9401 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
9402 asection *sec, const Elf_Internal_Rela *relocs)
9403 {
9404 Elf_Internal_Shdr *symtab_hdr;
9405 struct elf_link_hash_entry **sym_hashes;
9406 const Elf_Internal_Rela *rel;
9407 const Elf_Internal_Rela *rel_end;
9408 bfd *dynobj;
9409 asection *sreloc;
9410 bfd_vma *local_got_offsets;
9411 struct elf32_arm_link_hash_table *htab;
9412 bfd_boolean needs_plt;
9413
9414 if (info->relocatable)
9415 return TRUE;
9416
9417 BFD_ASSERT (is_arm_elf (abfd));
9418
9419 htab = elf32_arm_hash_table (info);
9420 sreloc = NULL;
9421
9422 /* Create dynamic sections for relocatable executables so that we can
9423 copy relocations. */
9424 if (htab->root.is_relocatable_executable
9425 && ! htab->root.dynamic_sections_created)
9426 {
9427 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
9428 return FALSE;
9429 }
9430
9431 dynobj = elf_hash_table (info)->dynobj;
9432 local_got_offsets = elf_local_got_offsets (abfd);
9433
9434 symtab_hdr = & elf_symtab_hdr (abfd);
9435 sym_hashes = elf_sym_hashes (abfd);
9436
9437 rel_end = relocs + sec->reloc_count;
9438 for (rel = relocs; rel < rel_end; rel++)
9439 {
9440 struct elf_link_hash_entry *h;
9441 struct elf32_arm_link_hash_entry *eh;
9442 unsigned long r_symndx;
9443 int r_type;
9444
9445 r_symndx = ELF32_R_SYM (rel->r_info);
9446 r_type = ELF32_R_TYPE (rel->r_info);
9447 r_type = arm_real_reloc_type (htab, r_type);
9448
9449 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
9450 {
9451 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
9452 r_symndx);
9453 return FALSE;
9454 }
9455
9456 if (r_symndx < symtab_hdr->sh_info)
9457 h = NULL;
9458 else
9459 {
9460 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
9461 while (h->root.type == bfd_link_hash_indirect
9462 || h->root.type == bfd_link_hash_warning)
9463 h = (struct elf_link_hash_entry *) h->root.u.i.link;
9464 }
9465
9466 eh = (struct elf32_arm_link_hash_entry *) h;
9467
9468 switch (r_type)
9469 {
9470 case R_ARM_GOT32:
9471 case R_ARM_GOT_PREL:
9472 case R_ARM_TLS_GD32:
9473 case R_ARM_TLS_IE32:
9474 /* This symbol requires a global offset table entry. */
9475 {
9476 int tls_type, old_tls_type;
9477
9478 switch (r_type)
9479 {
9480 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
9481 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
9482 default: tls_type = GOT_NORMAL; break;
9483 }
9484
9485 if (h != NULL)
9486 {
9487 h->got.refcount++;
9488 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
9489 }
9490 else
9491 {
9492 bfd_signed_vma *local_got_refcounts;
9493
9494 /* This is a global offset table entry for a local symbol. */
9495 local_got_refcounts = elf_local_got_refcounts (abfd);
9496 if (local_got_refcounts == NULL)
9497 {
9498 bfd_size_type size;
9499
9500 size = symtab_hdr->sh_info;
9501 size *= (sizeof (bfd_signed_vma) + sizeof (char));
9502 local_got_refcounts = bfd_zalloc (abfd, size);
9503 if (local_got_refcounts == NULL)
9504 return FALSE;
9505 elf_local_got_refcounts (abfd) = local_got_refcounts;
9506 elf32_arm_local_got_tls_type (abfd)
9507 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
9508 }
9509 local_got_refcounts[r_symndx] += 1;
9510 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
9511 }
9512
9513 /* We will already have issued an error message if there is a
9514 TLS / non-TLS mismatch, based on the symbol type. We don't
9515 support any linker relaxations. So just combine any TLS
9516 types needed. */
9517 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
9518 && tls_type != GOT_NORMAL)
9519 tls_type |= old_tls_type;
9520
9521 if (old_tls_type != tls_type)
9522 {
9523 if (h != NULL)
9524 elf32_arm_hash_entry (h)->tls_type = tls_type;
9525 else
9526 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
9527 }
9528 }
9529 /* Fall through. */
9530
9531 case R_ARM_TLS_LDM32:
9532 if (r_type == R_ARM_TLS_LDM32)
9533 htab->tls_ldm_got.refcount++;
9534 /* Fall through. */
9535
9536 case R_ARM_GOTOFF32:
9537 case R_ARM_GOTPC:
9538 if (htab->sgot == NULL)
9539 {
9540 if (htab->root.dynobj == NULL)
9541 htab->root.dynobj = abfd;
9542 if (!create_got_section (htab->root.dynobj, info))
9543 return FALSE;
9544 }
9545 break;
9546
9547 case R_ARM_ABS12:
9548 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
9549 ldr __GOTT_INDEX__ offsets. */
9550 if (!htab->vxworks_p)
9551 break;
9552 /* Fall through. */
9553
9554 case R_ARM_PC24:
9555 case R_ARM_PLT32:
9556 case R_ARM_CALL:
9557 case R_ARM_JUMP24:
9558 case R_ARM_PREL31:
9559 case R_ARM_THM_CALL:
9560 case R_ARM_THM_JUMP24:
9561 case R_ARM_THM_JUMP19:
9562 needs_plt = 1;
9563 goto normal_reloc;
9564
9565 case R_ARM_ABS32:
9566 case R_ARM_ABS32_NOI:
9567 case R_ARM_REL32:
9568 case R_ARM_REL32_NOI:
9569 case R_ARM_MOVW_ABS_NC:
9570 case R_ARM_MOVT_ABS:
9571 case R_ARM_MOVW_PREL_NC:
9572 case R_ARM_MOVT_PREL:
9573 case R_ARM_THM_MOVW_ABS_NC:
9574 case R_ARM_THM_MOVT_ABS:
9575 case R_ARM_THM_MOVW_PREL_NC:
9576 case R_ARM_THM_MOVT_PREL:
9577 needs_plt = 0;
9578 normal_reloc:
9579
9580 /* Should the interworking branches be listed here? */
9581 if (h != NULL)
9582 {
9583 /* If this reloc is in a read-only section, we might
9584 need a copy reloc. We can't check reliably at this
9585 stage whether the section is read-only, as input
9586 sections have not yet been mapped to output sections.
9587 Tentatively set the flag for now, and correct in
9588 adjust_dynamic_symbol. */
9589 if (!info->shared)
9590 h->non_got_ref = 1;
9591
9592 /* We may need a .plt entry if the function this reloc
9593 refers to is in a different object. We can't tell for
9594 sure yet, because something later might force the
9595 symbol local. */
9596 if (needs_plt)
9597 h->needs_plt = 1;
9598
9599 /* If we create a PLT entry, this relocation will reference
9600 it, even if it's an ABS32 relocation. */
9601 h->plt.refcount += 1;
9602
9603 /* It's too early to use htab->use_blx here, so we have to
9604 record possible blx references separately from
9605 relocs that definitely need a thumb stub. */
9606
9607 if (r_type == R_ARM_THM_CALL)
9608 eh->plt_maybe_thumb_refcount += 1;
9609
9610 if (r_type == R_ARM_THM_JUMP24
9611 || r_type == R_ARM_THM_JUMP19)
9612 eh->plt_thumb_refcount += 1;
9613 }
9614
9615 /* If we are creating a shared library or relocatable executable,
9616 and this is a reloc against a global symbol, or a non PC
9617 relative reloc against a local symbol, then we need to copy
9618 the reloc into the shared library. However, if we are linking
9619 with -Bsymbolic, we do not need to copy a reloc against a
9620 global symbol which is defined in an object we are
9621 including in the link (i.e., DEF_REGULAR is set). At
9622 this point we have not seen all the input files, so it is
9623 possible that DEF_REGULAR is not set now but will be set
9624 later (it is never cleared). We account for that
9625 possibility below by storing information in the
9626 relocs_copied field of the hash table entry. */
9627 if ((info->shared || htab->root.is_relocatable_executable)
9628 && (sec->flags & SEC_ALLOC) != 0
9629 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
9630 || (h != NULL && ! h->needs_plt
9631 && (! info->symbolic || ! h->def_regular))))
9632 {
9633 struct elf32_arm_relocs_copied *p, **head;
9634
9635 /* When creating a shared object, we must copy these
9636 reloc types into the output file. We create a reloc
9637 section in dynobj and make room for this reloc. */
9638 if (sreloc == NULL)
9639 {
9640 sreloc = _bfd_elf_make_dynamic_reloc_section
9641 (sec, dynobj, 2, abfd, ! htab->use_rel);
9642
9643 if (sreloc == NULL)
9644 return FALSE;
9645
9646 /* BPABI objects never have dynamic relocations mapped. */
9647 if (! htab->symbian_p)
9648 {
9649 flagword flags;
9650
9651 flags = bfd_get_section_flags (dynobj, sreloc);
9652 flags |= (SEC_LOAD | SEC_ALLOC);
9653 bfd_set_section_flags (dynobj, sreloc, flags);
9654 }
9655 }
9656
9657 /* If this is a global symbol, we count the number of
9658 relocations we need for this symbol. */
9659 if (h != NULL)
9660 {
9661 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
9662 }
9663 else
9664 {
9665 /* Track dynamic relocs needed for local syms too.
9666 We really need local syms available to do this
9667 easily. Oh well. */
9668
9669 asection *s;
9670 void *vpp;
9671
9672 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
9673 sec, r_symndx);
9674 if (s == NULL)
9675 return FALSE;
9676
9677 vpp = &elf_section_data (s)->local_dynrel;
9678 head = (struct elf32_arm_relocs_copied **) vpp;
9679 }
9680
9681 p = *head;
9682 if (p == NULL || p->section != sec)
9683 {
9684 bfd_size_type amt = sizeof *p;
9685
9686 p = bfd_alloc (htab->root.dynobj, amt);
9687 if (p == NULL)
9688 return FALSE;
9689 p->next = *head;
9690 *head = p;
9691 p->section = sec;
9692 p->count = 0;
9693 p->pc_count = 0;
9694 }
9695
9696 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
9697 p->pc_count += 1;
9698 p->count += 1;
9699 }
9700 break;
9701
9702 /* This relocation describes the C++ object vtable hierarchy.
9703 Reconstruct it for later use during GC. */
9704 case R_ARM_GNU_VTINHERIT:
9705 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9706 return FALSE;
9707 break;
9708
9709 /* This relocation describes which C++ vtable entries are actually
9710 used. Record for later use during GC. */
9711 case R_ARM_GNU_VTENTRY:
9712 BFD_ASSERT (h != NULL);
9713 if (h != NULL
9714 && !bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9715 return FALSE;
9716 break;
9717 }
9718 }
9719
9720 return TRUE;
9721 }
9722
9723 /* Unwinding tables are not referenced directly. This pass marks them as
9724 required if the corresponding code section is marked. */
9725
9726 static bfd_boolean
9727 elf32_arm_gc_mark_extra_sections (struct bfd_link_info *info,
9728 elf_gc_mark_hook_fn gc_mark_hook)
9729 {
9730 bfd *sub;
9731 Elf_Internal_Shdr **elf_shdrp;
9732 bfd_boolean again;
9733
9734 /* Marking EH data may cause additional code sections to be marked,
9735 requiring multiple passes. */
9736 again = TRUE;
9737 while (again)
9738 {
9739 again = FALSE;
9740 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
9741 {
9742 asection *o;
9743
9744 if (! is_arm_elf (sub))
9745 continue;
9746
9747 elf_shdrp = elf_elfsections (sub);
9748 for (o = sub->sections; o != NULL; o = o->next)
9749 {
9750 Elf_Internal_Shdr *hdr;
9751
9752 hdr = &elf_section_data (o)->this_hdr;
9753 if (hdr->sh_type == SHT_ARM_EXIDX
9754 && hdr->sh_link
9755 && hdr->sh_link < elf_numsections (sub)
9756 && !o->gc_mark
9757 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
9758 {
9759 again = TRUE;
9760 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
9761 return FALSE;
9762 }
9763 }
9764 }
9765 }
9766
9767 return TRUE;
9768 }
9769
9770 /* Treat mapping symbols as special target symbols. */
9771
9772 static bfd_boolean
9773 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
9774 {
9775 return bfd_is_arm_special_symbol_name (sym->name,
9776 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
9777 }
9778
9779 /* This is a copy of elf_find_function() from elf.c except that
9780 ARM mapping symbols are ignored when looking for function names
9781 and STT_ARM_TFUNC is considered to a function type. */
9782
9783 static bfd_boolean
9784 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
9785 asection * section,
9786 asymbol ** symbols,
9787 bfd_vma offset,
9788 const char ** filename_ptr,
9789 const char ** functionname_ptr)
9790 {
9791 const char * filename = NULL;
9792 asymbol * func = NULL;
9793 bfd_vma low_func = 0;
9794 asymbol ** p;
9795
9796 for (p = symbols; *p != NULL; p++)
9797 {
9798 elf_symbol_type *q;
9799
9800 q = (elf_symbol_type *) *p;
9801
9802 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
9803 {
9804 default:
9805 break;
9806 case STT_FILE:
9807 filename = bfd_asymbol_name (&q->symbol);
9808 break;
9809 case STT_FUNC:
9810 case STT_ARM_TFUNC:
9811 case STT_NOTYPE:
9812 /* Skip mapping symbols. */
9813 if ((q->symbol.flags & BSF_LOCAL)
9814 && bfd_is_arm_special_symbol_name (q->symbol.name,
9815 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
9816 continue;
9817 /* Fall through. */
9818 if (bfd_get_section (&q->symbol) == section
9819 && q->symbol.value >= low_func
9820 && q->symbol.value <= offset)
9821 {
9822 func = (asymbol *) q;
9823 low_func = q->symbol.value;
9824 }
9825 break;
9826 }
9827 }
9828
9829 if (func == NULL)
9830 return FALSE;
9831
9832 if (filename_ptr)
9833 *filename_ptr = filename;
9834 if (functionname_ptr)
9835 *functionname_ptr = bfd_asymbol_name (func);
9836
9837 return TRUE;
9838 }
9839
9840
9841 /* Find the nearest line to a particular section and offset, for error
9842 reporting. This code is a duplicate of the code in elf.c, except
9843 that it uses arm_elf_find_function. */
9844
9845 static bfd_boolean
9846 elf32_arm_find_nearest_line (bfd * abfd,
9847 asection * section,
9848 asymbol ** symbols,
9849 bfd_vma offset,
9850 const char ** filename_ptr,
9851 const char ** functionname_ptr,
9852 unsigned int * line_ptr)
9853 {
9854 bfd_boolean found = FALSE;
9855
9856 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
9857
9858 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
9859 filename_ptr, functionname_ptr,
9860 line_ptr, 0,
9861 & elf_tdata (abfd)->dwarf2_find_line_info))
9862 {
9863 if (!*functionname_ptr)
9864 arm_elf_find_function (abfd, section, symbols, offset,
9865 *filename_ptr ? NULL : filename_ptr,
9866 functionname_ptr);
9867
9868 return TRUE;
9869 }
9870
9871 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
9872 & found, filename_ptr,
9873 functionname_ptr, line_ptr,
9874 & elf_tdata (abfd)->line_info))
9875 return FALSE;
9876
9877 if (found && (*functionname_ptr || *line_ptr))
9878 return TRUE;
9879
9880 if (symbols == NULL)
9881 return FALSE;
9882
9883 if (! arm_elf_find_function (abfd, section, symbols, offset,
9884 filename_ptr, functionname_ptr))
9885 return FALSE;
9886
9887 *line_ptr = 0;
9888 return TRUE;
9889 }
9890
9891 static bfd_boolean
9892 elf32_arm_find_inliner_info (bfd * abfd,
9893 const char ** filename_ptr,
9894 const char ** functionname_ptr,
9895 unsigned int * line_ptr)
9896 {
9897 bfd_boolean found;
9898 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
9899 functionname_ptr, line_ptr,
9900 & elf_tdata (abfd)->dwarf2_find_line_info);
9901 return found;
9902 }
9903
9904 /* Adjust a symbol defined by a dynamic object and referenced by a
9905 regular object. The current definition is in some section of the
9906 dynamic object, but we're not including those sections. We have to
9907 change the definition to something the rest of the link can
9908 understand. */
9909
9910 static bfd_boolean
9911 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
9912 struct elf_link_hash_entry * h)
9913 {
9914 bfd * dynobj;
9915 asection * s;
9916 struct elf32_arm_link_hash_entry * eh;
9917 struct elf32_arm_link_hash_table *globals;
9918
9919 globals = elf32_arm_hash_table (info);
9920 dynobj = elf_hash_table (info)->dynobj;
9921
9922 /* Make sure we know what is going on here. */
9923 BFD_ASSERT (dynobj != NULL
9924 && (h->needs_plt
9925 || h->u.weakdef != NULL
9926 || (h->def_dynamic
9927 && h->ref_regular
9928 && !h->def_regular)));
9929
9930 eh = (struct elf32_arm_link_hash_entry *) h;
9931
9932 /* If this is a function, put it in the procedure linkage table. We
9933 will fill in the contents of the procedure linkage table later,
9934 when we know the address of the .got section. */
9935 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
9936 || h->needs_plt)
9937 {
9938 if (h->plt.refcount <= 0
9939 || SYMBOL_CALLS_LOCAL (info, h)
9940 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9941 && h->root.type == bfd_link_hash_undefweak))
9942 {
9943 /* This case can occur if we saw a PLT32 reloc in an input
9944 file, but the symbol was never referred to by a dynamic
9945 object, or if all references were garbage collected. In
9946 such a case, we don't actually need to build a procedure
9947 linkage table, and we can just do a PC24 reloc instead. */
9948 h->plt.offset = (bfd_vma) -1;
9949 eh->plt_thumb_refcount = 0;
9950 eh->plt_maybe_thumb_refcount = 0;
9951 h->needs_plt = 0;
9952 }
9953
9954 return TRUE;
9955 }
9956 else
9957 {
9958 /* It's possible that we incorrectly decided a .plt reloc was
9959 needed for an R_ARM_PC24 or similar reloc to a non-function sym
9960 in check_relocs. We can't decide accurately between function
9961 and non-function syms in check-relocs; Objects loaded later in
9962 the link may change h->type. So fix it now. */
9963 h->plt.offset = (bfd_vma) -1;
9964 eh->plt_thumb_refcount = 0;
9965 eh->plt_maybe_thumb_refcount = 0;
9966 }
9967
9968 /* If this is a weak symbol, and there is a real definition, the
9969 processor independent code will have arranged for us to see the
9970 real definition first, and we can just use the same value. */
9971 if (h->u.weakdef != NULL)
9972 {
9973 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
9974 || h->u.weakdef->root.type == bfd_link_hash_defweak);
9975 h->root.u.def.section = h->u.weakdef->root.u.def.section;
9976 h->root.u.def.value = h->u.weakdef->root.u.def.value;
9977 return TRUE;
9978 }
9979
9980 /* If there are no non-GOT references, we do not need a copy
9981 relocation. */
9982 if (!h->non_got_ref)
9983 return TRUE;
9984
9985 /* This is a reference to a symbol defined by a dynamic object which
9986 is not a function. */
9987
9988 /* If we are creating a shared library, we must presume that the
9989 only references to the symbol are via the global offset table.
9990 For such cases we need not do anything here; the relocations will
9991 be handled correctly by relocate_section. Relocatable executables
9992 can reference data in shared objects directly, so we don't need to
9993 do anything here. */
9994 if (info->shared || globals->root.is_relocatable_executable)
9995 return TRUE;
9996
9997 if (h->size == 0)
9998 {
9999 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
10000 h->root.root.string);
10001 return TRUE;
10002 }
10003
10004 /* We must allocate the symbol in our .dynbss section, which will
10005 become part of the .bss section of the executable. There will be
10006 an entry for this symbol in the .dynsym section. The dynamic
10007 object will contain position independent code, so all references
10008 from the dynamic object to this symbol will go through the global
10009 offset table. The dynamic linker will use the .dynsym entry to
10010 determine the address it must put in the global offset table, so
10011 both the dynamic object and the regular object will refer to the
10012 same memory location for the variable. */
10013 s = bfd_get_section_by_name (dynobj, ".dynbss");
10014 BFD_ASSERT (s != NULL);
10015
10016 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
10017 copy the initial value out of the dynamic object and into the
10018 runtime process image. We need to remember the offset into the
10019 .rel(a).bss section we are going to use. */
10020 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
10021 {
10022 asection *srel;
10023
10024 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
10025 BFD_ASSERT (srel != NULL);
10026 srel->size += RELOC_SIZE (globals);
10027 h->needs_copy = 1;
10028 }
10029
10030 return _bfd_elf_adjust_dynamic_copy (h, s);
10031 }
10032
10033 /* Allocate space in .plt, .got and associated reloc sections for
10034 dynamic relocs. */
10035
10036 static bfd_boolean
10037 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
10038 {
10039 struct bfd_link_info *info;
10040 struct elf32_arm_link_hash_table *htab;
10041 struct elf32_arm_link_hash_entry *eh;
10042 struct elf32_arm_relocs_copied *p;
10043 bfd_signed_vma thumb_refs;
10044
10045 eh = (struct elf32_arm_link_hash_entry *) h;
10046
10047 if (h->root.type == bfd_link_hash_indirect)
10048 return TRUE;
10049
10050 if (h->root.type == bfd_link_hash_warning)
10051 /* When warning symbols are created, they **replace** the "real"
10052 entry in the hash table, thus we never get to see the real
10053 symbol in a hash traversal. So look at it now. */
10054 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10055
10056 info = (struct bfd_link_info *) inf;
10057 htab = elf32_arm_hash_table (info);
10058
10059 if (htab->root.dynamic_sections_created
10060 && h->plt.refcount > 0)
10061 {
10062 /* Make sure this symbol is output as a dynamic symbol.
10063 Undefined weak syms won't yet be marked as dynamic. */
10064 if (h->dynindx == -1
10065 && !h->forced_local)
10066 {
10067 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10068 return FALSE;
10069 }
10070
10071 if (info->shared
10072 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
10073 {
10074 asection *s = htab->splt;
10075
10076 /* If this is the first .plt entry, make room for the special
10077 first entry. */
10078 if (s->size == 0)
10079 s->size += htab->plt_header_size;
10080
10081 h->plt.offset = s->size;
10082
10083 /* If we will insert a Thumb trampoline before this PLT, leave room
10084 for it. */
10085 thumb_refs = eh->plt_thumb_refcount;
10086 if (!htab->use_blx)
10087 thumb_refs += eh->plt_maybe_thumb_refcount;
10088
10089 if (thumb_refs > 0)
10090 {
10091 h->plt.offset += PLT_THUMB_STUB_SIZE;
10092 s->size += PLT_THUMB_STUB_SIZE;
10093 }
10094
10095 /* If this symbol is not defined in a regular file, and we are
10096 not generating a shared library, then set the symbol to this
10097 location in the .plt. This is required to make function
10098 pointers compare as equal between the normal executable and
10099 the shared library. */
10100 if (! info->shared
10101 && !h->def_regular)
10102 {
10103 h->root.u.def.section = s;
10104 h->root.u.def.value = h->plt.offset;
10105
10106 /* Make sure the function is not marked as Thumb, in case
10107 it is the target of an ABS32 relocation, which will
10108 point to the PLT entry. */
10109 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
10110 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
10111 }
10112
10113 /* Make room for this entry. */
10114 s->size += htab->plt_entry_size;
10115
10116 if (!htab->symbian_p)
10117 {
10118 /* We also need to make an entry in the .got.plt section, which
10119 will be placed in the .got section by the linker script. */
10120 eh->plt_got_offset = htab->sgotplt->size;
10121 htab->sgotplt->size += 4;
10122 }
10123
10124 /* We also need to make an entry in the .rel(a).plt section. */
10125 htab->srelplt->size += RELOC_SIZE (htab);
10126
10127 /* VxWorks executables have a second set of relocations for
10128 each PLT entry. They go in a separate relocation section,
10129 which is processed by the kernel loader. */
10130 if (htab->vxworks_p && !info->shared)
10131 {
10132 /* There is a relocation for the initial PLT entry:
10133 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
10134 if (h->plt.offset == htab->plt_header_size)
10135 htab->srelplt2->size += RELOC_SIZE (htab);
10136
10137 /* There are two extra relocations for each subsequent
10138 PLT entry: an R_ARM_32 relocation for the GOT entry,
10139 and an R_ARM_32 relocation for the PLT entry. */
10140 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
10141 }
10142 }
10143 else
10144 {
10145 h->plt.offset = (bfd_vma) -1;
10146 h->needs_plt = 0;
10147 }
10148 }
10149 else
10150 {
10151 h->plt.offset = (bfd_vma) -1;
10152 h->needs_plt = 0;
10153 }
10154
10155 if (h->got.refcount > 0)
10156 {
10157 asection *s;
10158 bfd_boolean dyn;
10159 int tls_type = elf32_arm_hash_entry (h)->tls_type;
10160 int indx;
10161
10162 /* Make sure this symbol is output as a dynamic symbol.
10163 Undefined weak syms won't yet be marked as dynamic. */
10164 if (h->dynindx == -1
10165 && !h->forced_local)
10166 {
10167 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10168 return FALSE;
10169 }
10170
10171 if (!htab->symbian_p)
10172 {
10173 s = htab->sgot;
10174 h->got.offset = s->size;
10175
10176 if (tls_type == GOT_UNKNOWN)
10177 abort ();
10178
10179 if (tls_type == GOT_NORMAL)
10180 /* Non-TLS symbols need one GOT slot. */
10181 s->size += 4;
10182 else
10183 {
10184 if (tls_type & GOT_TLS_GD)
10185 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
10186 s->size += 8;
10187 if (tls_type & GOT_TLS_IE)
10188 /* R_ARM_TLS_IE32 needs one GOT slot. */
10189 s->size += 4;
10190 }
10191
10192 dyn = htab->root.dynamic_sections_created;
10193
10194 indx = 0;
10195 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
10196 && (!info->shared
10197 || !SYMBOL_REFERENCES_LOCAL (info, h)))
10198 indx = h->dynindx;
10199
10200 if (tls_type != GOT_NORMAL
10201 && (info->shared || indx != 0)
10202 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10203 || h->root.type != bfd_link_hash_undefweak))
10204 {
10205 if (tls_type & GOT_TLS_IE)
10206 htab->srelgot->size += RELOC_SIZE (htab);
10207
10208 if (tls_type & GOT_TLS_GD)
10209 htab->srelgot->size += RELOC_SIZE (htab);
10210
10211 if ((tls_type & GOT_TLS_GD) && indx != 0)
10212 htab->srelgot->size += RELOC_SIZE (htab);
10213 }
10214 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
10215 || h->root.type != bfd_link_hash_undefweak)
10216 && (info->shared
10217 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
10218 htab->srelgot->size += RELOC_SIZE (htab);
10219 }
10220 }
10221 else
10222 h->got.offset = (bfd_vma) -1;
10223
10224 /* Allocate stubs for exported Thumb functions on v4t. */
10225 if (!htab->use_blx && h->dynindx != -1
10226 && h->def_regular
10227 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
10228 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
10229 {
10230 struct elf_link_hash_entry * th;
10231 struct bfd_link_hash_entry * bh;
10232 struct elf_link_hash_entry * myh;
10233 char name[1024];
10234 asection *s;
10235 bh = NULL;
10236 /* Create a new symbol to regist the real location of the function. */
10237 s = h->root.u.def.section;
10238 sprintf (name, "__real_%s", h->root.root.string);
10239 _bfd_generic_link_add_one_symbol (info, s->owner,
10240 name, BSF_GLOBAL, s,
10241 h->root.u.def.value,
10242 NULL, TRUE, FALSE, &bh);
10243
10244 myh = (struct elf_link_hash_entry *) bh;
10245 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
10246 myh->forced_local = 1;
10247 eh->export_glue = myh;
10248 th = record_arm_to_thumb_glue (info, h);
10249 /* Point the symbol at the stub. */
10250 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
10251 h->root.u.def.section = th->root.u.def.section;
10252 h->root.u.def.value = th->root.u.def.value & ~1;
10253 }
10254
10255 if (eh->relocs_copied == NULL)
10256 return TRUE;
10257
10258 /* In the shared -Bsymbolic case, discard space allocated for
10259 dynamic pc-relative relocs against symbols which turn out to be
10260 defined in regular objects. For the normal shared case, discard
10261 space for pc-relative relocs that have become local due to symbol
10262 visibility changes. */
10263
10264 if (info->shared || htab->root.is_relocatable_executable)
10265 {
10266 /* The only relocs that use pc_count are R_ARM_REL32 and
10267 R_ARM_REL32_NOI, which will appear on something like
10268 ".long foo - .". We want calls to protected symbols to resolve
10269 directly to the function rather than going via the plt. If people
10270 want function pointer comparisons to work as expected then they
10271 should avoid writing assembly like ".long foo - .". */
10272 if (SYMBOL_CALLS_LOCAL (info, h))
10273 {
10274 struct elf32_arm_relocs_copied **pp;
10275
10276 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10277 {
10278 p->count -= p->pc_count;
10279 p->pc_count = 0;
10280 if (p->count == 0)
10281 *pp = p->next;
10282 else
10283 pp = &p->next;
10284 }
10285 }
10286
10287 if (elf32_arm_hash_table (info)->vxworks_p)
10288 {
10289 struct elf32_arm_relocs_copied **pp;
10290
10291 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
10292 {
10293 if (strcmp (p->section->output_section->name, ".tls_vars") == 0)
10294 *pp = p->next;
10295 else
10296 pp = &p->next;
10297 }
10298 }
10299
10300 /* Also discard relocs on undefined weak syms with non-default
10301 visibility. */
10302 if (eh->relocs_copied != NULL
10303 && h->root.type == bfd_link_hash_undefweak)
10304 {
10305 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
10306 eh->relocs_copied = NULL;
10307
10308 /* Make sure undefined weak symbols are output as a dynamic
10309 symbol in PIEs. */
10310 else if (h->dynindx == -1
10311 && !h->forced_local)
10312 {
10313 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10314 return FALSE;
10315 }
10316 }
10317
10318 else if (htab->root.is_relocatable_executable && h->dynindx == -1
10319 && h->root.type == bfd_link_hash_new)
10320 {
10321 /* Output absolute symbols so that we can create relocations
10322 against them. For normal symbols we output a relocation
10323 against the section that contains them. */
10324 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10325 return FALSE;
10326 }
10327
10328 }
10329 else
10330 {
10331 /* For the non-shared case, discard space for relocs against
10332 symbols which turn out to need copy relocs or are not
10333 dynamic. */
10334
10335 if (!h->non_got_ref
10336 && ((h->def_dynamic
10337 && !h->def_regular)
10338 || (htab->root.dynamic_sections_created
10339 && (h->root.type == bfd_link_hash_undefweak
10340 || h->root.type == bfd_link_hash_undefined))))
10341 {
10342 /* Make sure this symbol is output as a dynamic symbol.
10343 Undefined weak syms won't yet be marked as dynamic. */
10344 if (h->dynindx == -1
10345 && !h->forced_local)
10346 {
10347 if (! bfd_elf_link_record_dynamic_symbol (info, h))
10348 return FALSE;
10349 }
10350
10351 /* If that succeeded, we know we'll be keeping all the
10352 relocs. */
10353 if (h->dynindx != -1)
10354 goto keep;
10355 }
10356
10357 eh->relocs_copied = NULL;
10358
10359 keep: ;
10360 }
10361
10362 /* Finally, allocate space. */
10363 for (p = eh->relocs_copied; p != NULL; p = p->next)
10364 {
10365 asection *sreloc = elf_section_data (p->section)->sreloc;
10366 sreloc->size += p->count * RELOC_SIZE (htab);
10367 }
10368
10369 return TRUE;
10370 }
10371
10372 /* Find any dynamic relocs that apply to read-only sections. */
10373
10374 static bfd_boolean
10375 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry * h, void * inf)
10376 {
10377 struct elf32_arm_link_hash_entry * eh;
10378 struct elf32_arm_relocs_copied * p;
10379
10380 if (h->root.type == bfd_link_hash_warning)
10381 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10382
10383 eh = (struct elf32_arm_link_hash_entry *) h;
10384 for (p = eh->relocs_copied; p != NULL; p = p->next)
10385 {
10386 asection *s = p->section;
10387
10388 if (s != NULL && (s->flags & SEC_READONLY) != 0)
10389 {
10390 struct bfd_link_info *info = (struct bfd_link_info *) inf;
10391
10392 info->flags |= DF_TEXTREL;
10393
10394 /* Not an error, just cut short the traversal. */
10395 return FALSE;
10396 }
10397 }
10398 return TRUE;
10399 }
10400
10401 void
10402 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
10403 int byteswap_code)
10404 {
10405 struct elf32_arm_link_hash_table *globals;
10406
10407 globals = elf32_arm_hash_table (info);
10408 globals->byteswap_code = byteswap_code;
10409 }
10410
10411 /* Set the sizes of the dynamic sections. */
10412
10413 static bfd_boolean
10414 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
10415 struct bfd_link_info * info)
10416 {
10417 bfd * dynobj;
10418 asection * s;
10419 bfd_boolean plt;
10420 bfd_boolean relocs;
10421 bfd *ibfd;
10422 struct elf32_arm_link_hash_table *htab;
10423
10424 htab = elf32_arm_hash_table (info);
10425 dynobj = elf_hash_table (info)->dynobj;
10426 BFD_ASSERT (dynobj != NULL);
10427 check_use_blx (htab);
10428
10429 if (elf_hash_table (info)->dynamic_sections_created)
10430 {
10431 /* Set the contents of the .interp section to the interpreter. */
10432 if (info->executable)
10433 {
10434 s = bfd_get_section_by_name (dynobj, ".interp");
10435 BFD_ASSERT (s != NULL);
10436 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
10437 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
10438 }
10439 }
10440
10441 /* Set up .got offsets for local syms, and space for local dynamic
10442 relocs. */
10443 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10444 {
10445 bfd_signed_vma *local_got;
10446 bfd_signed_vma *end_local_got;
10447 char *local_tls_type;
10448 bfd_size_type locsymcount;
10449 Elf_Internal_Shdr *symtab_hdr;
10450 asection *srel;
10451 bfd_boolean is_vxworks = elf32_arm_hash_table (info)->vxworks_p;
10452
10453 if (! is_arm_elf (ibfd))
10454 continue;
10455
10456 for (s = ibfd->sections; s != NULL; s = s->next)
10457 {
10458 struct elf32_arm_relocs_copied *p;
10459
10460 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
10461 {
10462 if (!bfd_is_abs_section (p->section)
10463 && bfd_is_abs_section (p->section->output_section))
10464 {
10465 /* Input section has been discarded, either because
10466 it is a copy of a linkonce section or due to
10467 linker script /DISCARD/, so we'll be discarding
10468 the relocs too. */
10469 }
10470 else if (is_vxworks
10471 && strcmp (p->section->output_section->name,
10472 ".tls_vars") == 0)
10473 {
10474 /* Relocations in vxworks .tls_vars sections are
10475 handled specially by the loader. */
10476 }
10477 else if (p->count != 0)
10478 {
10479 srel = elf_section_data (p->section)->sreloc;
10480 srel->size += p->count * RELOC_SIZE (htab);
10481 if ((p->section->output_section->flags & SEC_READONLY) != 0)
10482 info->flags |= DF_TEXTREL;
10483 }
10484 }
10485 }
10486
10487 local_got = elf_local_got_refcounts (ibfd);
10488 if (!local_got)
10489 continue;
10490
10491 symtab_hdr = & elf_symtab_hdr (ibfd);
10492 locsymcount = symtab_hdr->sh_info;
10493 end_local_got = local_got + locsymcount;
10494 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
10495 s = htab->sgot;
10496 srel = htab->srelgot;
10497 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
10498 {
10499 if (*local_got > 0)
10500 {
10501 *local_got = s->size;
10502 if (*local_tls_type & GOT_TLS_GD)
10503 /* TLS_GD relocs need an 8-byte structure in the GOT. */
10504 s->size += 8;
10505 if (*local_tls_type & GOT_TLS_IE)
10506 s->size += 4;
10507 if (*local_tls_type == GOT_NORMAL)
10508 s->size += 4;
10509
10510 if (info->shared || *local_tls_type == GOT_TLS_GD)
10511 srel->size += RELOC_SIZE (htab);
10512 }
10513 else
10514 *local_got = (bfd_vma) -1;
10515 }
10516 }
10517
10518 if (htab->tls_ldm_got.refcount > 0)
10519 {
10520 /* Allocate two GOT entries and one dynamic relocation (if necessary)
10521 for R_ARM_TLS_LDM32 relocations. */
10522 htab->tls_ldm_got.offset = htab->sgot->size;
10523 htab->sgot->size += 8;
10524 if (info->shared)
10525 htab->srelgot->size += RELOC_SIZE (htab);
10526 }
10527 else
10528 htab->tls_ldm_got.offset = -1;
10529
10530 /* Allocate global sym .plt and .got entries, and space for global
10531 sym dynamic relocs. */
10532 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
10533
10534 /* Here we rummage through the found bfds to collect glue information. */
10535 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
10536 {
10537 if (! is_arm_elf (ibfd))
10538 continue;
10539
10540 /* Initialise mapping tables for code/data. */
10541 bfd_elf32_arm_init_maps (ibfd);
10542
10543 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
10544 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
10545 /* xgettext:c-format */
10546 _bfd_error_handler (_("Errors encountered processing file %s"),
10547 ibfd->filename);
10548 }
10549
10550 /* The check_relocs and adjust_dynamic_symbol entry points have
10551 determined the sizes of the various dynamic sections. Allocate
10552 memory for them. */
10553 plt = FALSE;
10554 relocs = FALSE;
10555 for (s = dynobj->sections; s != NULL; s = s->next)
10556 {
10557 const char * name;
10558
10559 if ((s->flags & SEC_LINKER_CREATED) == 0)
10560 continue;
10561
10562 /* It's OK to base decisions on the section name, because none
10563 of the dynobj section names depend upon the input files. */
10564 name = bfd_get_section_name (dynobj, s);
10565
10566 if (strcmp (name, ".plt") == 0)
10567 {
10568 /* Remember whether there is a PLT. */
10569 plt = s->size != 0;
10570 }
10571 else if (CONST_STRNEQ (name, ".rel"))
10572 {
10573 if (s->size != 0)
10574 {
10575 /* Remember whether there are any reloc sections other
10576 than .rel(a).plt and .rela.plt.unloaded. */
10577 if (s != htab->srelplt && s != htab->srelplt2)
10578 relocs = TRUE;
10579
10580 /* We use the reloc_count field as a counter if we need
10581 to copy relocs into the output file. */
10582 s->reloc_count = 0;
10583 }
10584 }
10585 else if (! CONST_STRNEQ (name, ".got")
10586 && strcmp (name, ".dynbss") != 0)
10587 {
10588 /* It's not one of our sections, so don't allocate space. */
10589 continue;
10590 }
10591
10592 if (s->size == 0)
10593 {
10594 /* If we don't need this section, strip it from the
10595 output file. This is mostly to handle .rel(a).bss and
10596 .rel(a).plt. We must create both sections in
10597 create_dynamic_sections, because they must be created
10598 before the linker maps input sections to output
10599 sections. The linker does that before
10600 adjust_dynamic_symbol is called, and it is that
10601 function which decides whether anything needs to go
10602 into these sections. */
10603 s->flags |= SEC_EXCLUDE;
10604 continue;
10605 }
10606
10607 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10608 continue;
10609
10610 /* Allocate memory for the section contents. */
10611 s->contents = bfd_zalloc (dynobj, s->size);
10612 if (s->contents == NULL)
10613 return FALSE;
10614 }
10615
10616 if (elf_hash_table (info)->dynamic_sections_created)
10617 {
10618 /* Add some entries to the .dynamic section. We fill in the
10619 values later, in elf32_arm_finish_dynamic_sections, but we
10620 must add the entries now so that we get the correct size for
10621 the .dynamic section. The DT_DEBUG entry is filled in by the
10622 dynamic linker and used by the debugger. */
10623 #define add_dynamic_entry(TAG, VAL) \
10624 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
10625
10626 if (info->executable)
10627 {
10628 if (!add_dynamic_entry (DT_DEBUG, 0))
10629 return FALSE;
10630 }
10631
10632 if (plt)
10633 {
10634 if ( !add_dynamic_entry (DT_PLTGOT, 0)
10635 || !add_dynamic_entry (DT_PLTRELSZ, 0)
10636 || !add_dynamic_entry (DT_PLTREL,
10637 htab->use_rel ? DT_REL : DT_RELA)
10638 || !add_dynamic_entry (DT_JMPREL, 0))
10639 return FALSE;
10640 }
10641
10642 if (relocs)
10643 {
10644 if (htab->use_rel)
10645 {
10646 if (!add_dynamic_entry (DT_REL, 0)
10647 || !add_dynamic_entry (DT_RELSZ, 0)
10648 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
10649 return FALSE;
10650 }
10651 else
10652 {
10653 if (!add_dynamic_entry (DT_RELA, 0)
10654 || !add_dynamic_entry (DT_RELASZ, 0)
10655 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
10656 return FALSE;
10657 }
10658 }
10659
10660 /* If any dynamic relocs apply to a read-only section,
10661 then we need a DT_TEXTREL entry. */
10662 if ((info->flags & DF_TEXTREL) == 0)
10663 elf_link_hash_traverse (& htab->root, elf32_arm_readonly_dynrelocs,
10664 info);
10665
10666 if ((info->flags & DF_TEXTREL) != 0)
10667 {
10668 if (!add_dynamic_entry (DT_TEXTREL, 0))
10669 return FALSE;
10670 }
10671 if (htab->vxworks_p
10672 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10673 return FALSE;
10674 }
10675 #undef add_dynamic_entry
10676
10677 return TRUE;
10678 }
10679
10680 /* Finish up dynamic symbol handling. We set the contents of various
10681 dynamic sections here. */
10682
10683 static bfd_boolean
10684 elf32_arm_finish_dynamic_symbol (bfd * output_bfd,
10685 struct bfd_link_info * info,
10686 struct elf_link_hash_entry * h,
10687 Elf_Internal_Sym * sym)
10688 {
10689 bfd * dynobj;
10690 struct elf32_arm_link_hash_table *htab;
10691 struct elf32_arm_link_hash_entry *eh;
10692
10693 dynobj = elf_hash_table (info)->dynobj;
10694 htab = elf32_arm_hash_table (info);
10695 eh = (struct elf32_arm_link_hash_entry *) h;
10696
10697 if (h->plt.offset != (bfd_vma) -1)
10698 {
10699 asection * splt;
10700 asection * srel;
10701 bfd_byte *loc;
10702 bfd_vma plt_index;
10703 Elf_Internal_Rela rel;
10704
10705 /* This symbol has an entry in the procedure linkage table. Set
10706 it up. */
10707
10708 BFD_ASSERT (h->dynindx != -1);
10709
10710 splt = bfd_get_section_by_name (dynobj, ".plt");
10711 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
10712 BFD_ASSERT (splt != NULL && srel != NULL);
10713
10714 /* Fill in the entry in the procedure linkage table. */
10715 if (htab->symbian_p)
10716 {
10717 put_arm_insn (htab, output_bfd,
10718 elf32_arm_symbian_plt_entry[0],
10719 splt->contents + h->plt.offset);
10720 bfd_put_32 (output_bfd,
10721 elf32_arm_symbian_plt_entry[1],
10722 splt->contents + h->plt.offset + 4);
10723
10724 /* Fill in the entry in the .rel.plt section. */
10725 rel.r_offset = (splt->output_section->vma
10726 + splt->output_offset
10727 + h->plt.offset + 4);
10728 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10729
10730 /* Get the index in the procedure linkage table which
10731 corresponds to this symbol. This is the index of this symbol
10732 in all the symbols for which we are making plt entries. The
10733 first entry in the procedure linkage table is reserved. */
10734 plt_index = ((h->plt.offset - htab->plt_header_size)
10735 / htab->plt_entry_size);
10736 }
10737 else
10738 {
10739 bfd_vma got_offset, got_address, plt_address;
10740 bfd_vma got_displacement;
10741 asection * sgot;
10742 bfd_byte * ptr;
10743
10744 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10745 BFD_ASSERT (sgot != NULL);
10746
10747 /* Get the offset into the .got.plt table of the entry that
10748 corresponds to this function. */
10749 got_offset = eh->plt_got_offset;
10750
10751 /* Get the index in the procedure linkage table which
10752 corresponds to this symbol. This is the index of this symbol
10753 in all the symbols for which we are making plt entries. The
10754 first three entries in .got.plt are reserved; after that
10755 symbols appear in the same order as in .plt. */
10756 plt_index = (got_offset - 12) / 4;
10757
10758 /* Calculate the address of the GOT entry. */
10759 got_address = (sgot->output_section->vma
10760 + sgot->output_offset
10761 + got_offset);
10762
10763 /* ...and the address of the PLT entry. */
10764 plt_address = (splt->output_section->vma
10765 + splt->output_offset
10766 + h->plt.offset);
10767
10768 ptr = htab->splt->contents + h->plt.offset;
10769 if (htab->vxworks_p && info->shared)
10770 {
10771 unsigned int i;
10772 bfd_vma val;
10773
10774 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10775 {
10776 val = elf32_arm_vxworks_shared_plt_entry[i];
10777 if (i == 2)
10778 val |= got_address - sgot->output_section->vma;
10779 if (i == 5)
10780 val |= plt_index * RELOC_SIZE (htab);
10781 if (i == 2 || i == 5)
10782 bfd_put_32 (output_bfd, val, ptr);
10783 else
10784 put_arm_insn (htab, output_bfd, val, ptr);
10785 }
10786 }
10787 else if (htab->vxworks_p)
10788 {
10789 unsigned int i;
10790 bfd_vma val;
10791
10792 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
10793 {
10794 val = elf32_arm_vxworks_exec_plt_entry[i];
10795 if (i == 2)
10796 val |= got_address;
10797 if (i == 4)
10798 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
10799 if (i == 5)
10800 val |= plt_index * RELOC_SIZE (htab);
10801 if (i == 2 || i == 5)
10802 bfd_put_32 (output_bfd, val, ptr);
10803 else
10804 put_arm_insn (htab, output_bfd, val, ptr);
10805 }
10806
10807 loc = (htab->srelplt2->contents
10808 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
10809
10810 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
10811 referencing the GOT for this PLT entry. */
10812 rel.r_offset = plt_address + 8;
10813 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
10814 rel.r_addend = got_offset;
10815 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10816 loc += RELOC_SIZE (htab);
10817
10818 /* Create the R_ARM_ABS32 relocation referencing the
10819 beginning of the PLT for this GOT entry. */
10820 rel.r_offset = got_address;
10821 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
10822 rel.r_addend = 0;
10823 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10824 }
10825 else
10826 {
10827 bfd_signed_vma thumb_refs;
10828 /* Calculate the displacement between the PLT slot and the
10829 entry in the GOT. The eight-byte offset accounts for the
10830 value produced by adding to pc in the first instruction
10831 of the PLT stub. */
10832 got_displacement = got_address - (plt_address + 8);
10833
10834 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
10835
10836 thumb_refs = eh->plt_thumb_refcount;
10837 if (!htab->use_blx)
10838 thumb_refs += eh->plt_maybe_thumb_refcount;
10839
10840 if (thumb_refs > 0)
10841 {
10842 put_thumb_insn (htab, output_bfd,
10843 elf32_arm_plt_thumb_stub[0], ptr - 4);
10844 put_thumb_insn (htab, output_bfd,
10845 elf32_arm_plt_thumb_stub[1], ptr - 2);
10846 }
10847
10848 put_arm_insn (htab, output_bfd,
10849 elf32_arm_plt_entry[0]
10850 | ((got_displacement & 0x0ff00000) >> 20),
10851 ptr + 0);
10852 put_arm_insn (htab, output_bfd,
10853 elf32_arm_plt_entry[1]
10854 | ((got_displacement & 0x000ff000) >> 12),
10855 ptr+ 4);
10856 put_arm_insn (htab, output_bfd,
10857 elf32_arm_plt_entry[2]
10858 | (got_displacement & 0x00000fff),
10859 ptr + 8);
10860 #ifdef FOUR_WORD_PLT
10861 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
10862 #endif
10863 }
10864
10865 /* Fill in the entry in the global offset table. */
10866 bfd_put_32 (output_bfd,
10867 (splt->output_section->vma
10868 + splt->output_offset),
10869 sgot->contents + got_offset);
10870
10871 /* Fill in the entry in the .rel(a).plt section. */
10872 rel.r_addend = 0;
10873 rel.r_offset = got_address;
10874 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
10875 }
10876
10877 loc = srel->contents + plt_index * RELOC_SIZE (htab);
10878 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10879
10880 if (!h->def_regular)
10881 {
10882 /* Mark the symbol as undefined, rather than as defined in
10883 the .plt section. Leave the value alone. */
10884 sym->st_shndx = SHN_UNDEF;
10885 /* If the symbol is weak, we do need to clear the value.
10886 Otherwise, the PLT entry would provide a definition for
10887 the symbol even if the symbol wasn't defined anywhere,
10888 and so the symbol would never be NULL. */
10889 if (!h->ref_regular_nonweak)
10890 sym->st_value = 0;
10891 }
10892 }
10893
10894 if (h->got.offset != (bfd_vma) -1
10895 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
10896 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
10897 {
10898 asection * sgot;
10899 asection * srel;
10900 Elf_Internal_Rela rel;
10901 bfd_byte *loc;
10902 bfd_vma offset;
10903
10904 /* This symbol has an entry in the global offset table. Set it
10905 up. */
10906 sgot = bfd_get_section_by_name (dynobj, ".got");
10907 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
10908 BFD_ASSERT (sgot != NULL && srel != NULL);
10909
10910 offset = (h->got.offset & ~(bfd_vma) 1);
10911 rel.r_addend = 0;
10912 rel.r_offset = (sgot->output_section->vma
10913 + sgot->output_offset
10914 + offset);
10915
10916 /* If this is a static link, or it is a -Bsymbolic link and the
10917 symbol is defined locally or was forced to be local because
10918 of a version file, we just want to emit a RELATIVE reloc.
10919 The entry in the global offset table will already have been
10920 initialized in the relocate_section function. */
10921 if (info->shared
10922 && SYMBOL_REFERENCES_LOCAL (info, h))
10923 {
10924 BFD_ASSERT ((h->got.offset & 1) != 0);
10925 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
10926 if (!htab->use_rel)
10927 {
10928 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
10929 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10930 }
10931 }
10932 else
10933 {
10934 BFD_ASSERT ((h->got.offset & 1) == 0);
10935 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
10936 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
10937 }
10938
10939 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
10940 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10941 }
10942
10943 if (h->needs_copy)
10944 {
10945 asection * s;
10946 Elf_Internal_Rela rel;
10947 bfd_byte *loc;
10948
10949 /* This symbol needs a copy reloc. Set it up. */
10950 BFD_ASSERT (h->dynindx != -1
10951 && (h->root.type == bfd_link_hash_defined
10952 || h->root.type == bfd_link_hash_defweak));
10953
10954 s = bfd_get_section_by_name (h->root.u.def.section->owner,
10955 RELOC_SECTION (htab, ".bss"));
10956 BFD_ASSERT (s != NULL);
10957
10958 rel.r_addend = 0;
10959 rel.r_offset = (h->root.u.def.value
10960 + h->root.u.def.section->output_section->vma
10961 + h->root.u.def.section->output_offset);
10962 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
10963 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
10964 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
10965 }
10966
10967 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
10968 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
10969 to the ".got" section. */
10970 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
10971 || (!htab->vxworks_p && h == htab->root.hgot))
10972 sym->st_shndx = SHN_ABS;
10973
10974 return TRUE;
10975 }
10976
10977 /* Finish up the dynamic sections. */
10978
10979 static bfd_boolean
10980 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
10981 {
10982 bfd * dynobj;
10983 asection * sgot;
10984 asection * sdyn;
10985
10986 dynobj = elf_hash_table (info)->dynobj;
10987
10988 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
10989 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
10990 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
10991
10992 if (elf_hash_table (info)->dynamic_sections_created)
10993 {
10994 asection *splt;
10995 Elf32_External_Dyn *dyncon, *dynconend;
10996 struct elf32_arm_link_hash_table *htab;
10997
10998 htab = elf32_arm_hash_table (info);
10999 splt = bfd_get_section_by_name (dynobj, ".plt");
11000 BFD_ASSERT (splt != NULL && sdyn != NULL);
11001
11002 dyncon = (Elf32_External_Dyn *) sdyn->contents;
11003 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
11004
11005 for (; dyncon < dynconend; dyncon++)
11006 {
11007 Elf_Internal_Dyn dyn;
11008 const char * name;
11009 asection * s;
11010
11011 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
11012
11013 switch (dyn.d_tag)
11014 {
11015 unsigned int type;
11016
11017 default:
11018 if (htab->vxworks_p
11019 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
11020 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11021 break;
11022
11023 case DT_HASH:
11024 name = ".hash";
11025 goto get_vma_if_bpabi;
11026 case DT_STRTAB:
11027 name = ".dynstr";
11028 goto get_vma_if_bpabi;
11029 case DT_SYMTAB:
11030 name = ".dynsym";
11031 goto get_vma_if_bpabi;
11032 case DT_VERSYM:
11033 name = ".gnu.version";
11034 goto get_vma_if_bpabi;
11035 case DT_VERDEF:
11036 name = ".gnu.version_d";
11037 goto get_vma_if_bpabi;
11038 case DT_VERNEED:
11039 name = ".gnu.version_r";
11040 goto get_vma_if_bpabi;
11041
11042 case DT_PLTGOT:
11043 name = ".got";
11044 goto get_vma;
11045 case DT_JMPREL:
11046 name = RELOC_SECTION (htab, ".plt");
11047 get_vma:
11048 s = bfd_get_section_by_name (output_bfd, name);
11049 BFD_ASSERT (s != NULL);
11050 if (!htab->symbian_p)
11051 dyn.d_un.d_ptr = s->vma;
11052 else
11053 /* In the BPABI, tags in the PT_DYNAMIC section point
11054 at the file offset, not the memory address, for the
11055 convenience of the post linker. */
11056 dyn.d_un.d_ptr = s->filepos;
11057 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11058 break;
11059
11060 get_vma_if_bpabi:
11061 if (htab->symbian_p)
11062 goto get_vma;
11063 break;
11064
11065 case DT_PLTRELSZ:
11066 s = bfd_get_section_by_name (output_bfd,
11067 RELOC_SECTION (htab, ".plt"));
11068 BFD_ASSERT (s != NULL);
11069 dyn.d_un.d_val = s->size;
11070 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11071 break;
11072
11073 case DT_RELSZ:
11074 case DT_RELASZ:
11075 if (!htab->symbian_p)
11076 {
11077 /* My reading of the SVR4 ABI indicates that the
11078 procedure linkage table relocs (DT_JMPREL) should be
11079 included in the overall relocs (DT_REL). This is
11080 what Solaris does. However, UnixWare can not handle
11081 that case. Therefore, we override the DT_RELSZ entry
11082 here to make it not include the JMPREL relocs. Since
11083 the linker script arranges for .rel(a).plt to follow all
11084 other relocation sections, we don't have to worry
11085 about changing the DT_REL entry. */
11086 s = bfd_get_section_by_name (output_bfd,
11087 RELOC_SECTION (htab, ".plt"));
11088 if (s != NULL)
11089 dyn.d_un.d_val -= s->size;
11090 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11091 break;
11092 }
11093 /* Fall through. */
11094
11095 case DT_REL:
11096 case DT_RELA:
11097 /* In the BPABI, the DT_REL tag must point at the file
11098 offset, not the VMA, of the first relocation
11099 section. So, we use code similar to that in
11100 elflink.c, but do not check for SHF_ALLOC on the
11101 relcoation section, since relocations sections are
11102 never allocated under the BPABI. The comments above
11103 about Unixware notwithstanding, we include all of the
11104 relocations here. */
11105 if (htab->symbian_p)
11106 {
11107 unsigned int i;
11108 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
11109 ? SHT_REL : SHT_RELA);
11110 dyn.d_un.d_val = 0;
11111 for (i = 1; i < elf_numsections (output_bfd); i++)
11112 {
11113 Elf_Internal_Shdr *hdr
11114 = elf_elfsections (output_bfd)[i];
11115 if (hdr->sh_type == type)
11116 {
11117 if (dyn.d_tag == DT_RELSZ
11118 || dyn.d_tag == DT_RELASZ)
11119 dyn.d_un.d_val += hdr->sh_size;
11120 else if ((ufile_ptr) hdr->sh_offset
11121 <= dyn.d_un.d_val - 1)
11122 dyn.d_un.d_val = hdr->sh_offset;
11123 }
11124 }
11125 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11126 }
11127 break;
11128
11129 /* Set the bottom bit of DT_INIT/FINI if the
11130 corresponding function is Thumb. */
11131 case DT_INIT:
11132 name = info->init_function;
11133 goto get_sym;
11134 case DT_FINI:
11135 name = info->fini_function;
11136 get_sym:
11137 /* If it wasn't set by elf_bfd_final_link
11138 then there is nothing to adjust. */
11139 if (dyn.d_un.d_val != 0)
11140 {
11141 struct elf_link_hash_entry * eh;
11142
11143 eh = elf_link_hash_lookup (elf_hash_table (info), name,
11144 FALSE, FALSE, TRUE);
11145 if (eh != NULL
11146 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
11147 {
11148 dyn.d_un.d_val |= 1;
11149 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
11150 }
11151 }
11152 break;
11153 }
11154 }
11155
11156 /* Fill in the first entry in the procedure linkage table. */
11157 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
11158 {
11159 const bfd_vma *plt0_entry;
11160 bfd_vma got_address, plt_address, got_displacement;
11161
11162 /* Calculate the addresses of the GOT and PLT. */
11163 got_address = sgot->output_section->vma + sgot->output_offset;
11164 plt_address = splt->output_section->vma + splt->output_offset;
11165
11166 if (htab->vxworks_p)
11167 {
11168 /* The VxWorks GOT is relocated by the dynamic linker.
11169 Therefore, we must emit relocations rather than simply
11170 computing the values now. */
11171 Elf_Internal_Rela rel;
11172
11173 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
11174 put_arm_insn (htab, output_bfd, plt0_entry[0],
11175 splt->contents + 0);
11176 put_arm_insn (htab, output_bfd, plt0_entry[1],
11177 splt->contents + 4);
11178 put_arm_insn (htab, output_bfd, plt0_entry[2],
11179 splt->contents + 8);
11180 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
11181
11182 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
11183 rel.r_offset = plt_address + 12;
11184 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11185 rel.r_addend = 0;
11186 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
11187 htab->srelplt2->contents);
11188 }
11189 else
11190 {
11191 got_displacement = got_address - (plt_address + 16);
11192
11193 plt0_entry = elf32_arm_plt0_entry;
11194 put_arm_insn (htab, output_bfd, plt0_entry[0],
11195 splt->contents + 0);
11196 put_arm_insn (htab, output_bfd, plt0_entry[1],
11197 splt->contents + 4);
11198 put_arm_insn (htab, output_bfd, plt0_entry[2],
11199 splt->contents + 8);
11200 put_arm_insn (htab, output_bfd, plt0_entry[3],
11201 splt->contents + 12);
11202
11203 #ifdef FOUR_WORD_PLT
11204 /* The displacement value goes in the otherwise-unused
11205 last word of the second entry. */
11206 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
11207 #else
11208 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
11209 #endif
11210 }
11211 }
11212
11213 /* UnixWare sets the entsize of .plt to 4, although that doesn't
11214 really seem like the right value. */
11215 if (splt->output_section->owner == output_bfd)
11216 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
11217
11218 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
11219 {
11220 /* Correct the .rel(a).plt.unloaded relocations. They will have
11221 incorrect symbol indexes. */
11222 int num_plts;
11223 unsigned char *p;
11224
11225 num_plts = ((htab->splt->size - htab->plt_header_size)
11226 / htab->plt_entry_size);
11227 p = htab->srelplt2->contents + RELOC_SIZE (htab);
11228
11229 for (; num_plts; num_plts--)
11230 {
11231 Elf_Internal_Rela rel;
11232
11233 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11234 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
11235 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11236 p += RELOC_SIZE (htab);
11237
11238 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
11239 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
11240 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
11241 p += RELOC_SIZE (htab);
11242 }
11243 }
11244 }
11245
11246 /* Fill in the first three entries in the global offset table. */
11247 if (sgot)
11248 {
11249 if (sgot->size > 0)
11250 {
11251 if (sdyn == NULL)
11252 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
11253 else
11254 bfd_put_32 (output_bfd,
11255 sdyn->output_section->vma + sdyn->output_offset,
11256 sgot->contents);
11257 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
11258 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
11259 }
11260
11261 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
11262 }
11263
11264 return TRUE;
11265 }
11266
11267 static void
11268 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
11269 {
11270 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
11271 struct elf32_arm_link_hash_table *globals;
11272
11273 i_ehdrp = elf_elfheader (abfd);
11274
11275 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
11276 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
11277 else
11278 i_ehdrp->e_ident[EI_OSABI] = 0;
11279 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
11280
11281 if (link_info)
11282 {
11283 globals = elf32_arm_hash_table (link_info);
11284 if (globals->byteswap_code)
11285 i_ehdrp->e_flags |= EF_ARM_BE8;
11286 }
11287 }
11288
11289 static enum elf_reloc_type_class
11290 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
11291 {
11292 switch ((int) ELF32_R_TYPE (rela->r_info))
11293 {
11294 case R_ARM_RELATIVE:
11295 return reloc_class_relative;
11296 case R_ARM_JUMP_SLOT:
11297 return reloc_class_plt;
11298 case R_ARM_COPY:
11299 return reloc_class_copy;
11300 default:
11301 return reloc_class_normal;
11302 }
11303 }
11304
11305 /* Set the right machine number for an Arm ELF file. */
11306
11307 static bfd_boolean
11308 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
11309 {
11310 if (hdr->sh_type == SHT_NOTE)
11311 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
11312
11313 return TRUE;
11314 }
11315
11316 static void
11317 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
11318 {
11319 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
11320 }
11321
11322 /* Return TRUE if this is an unwinding table entry. */
11323
11324 static bfd_boolean
11325 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
11326 {
11327 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
11328 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
11329 }
11330
11331
11332 /* Set the type and flags for an ARM section. We do this by
11333 the section name, which is a hack, but ought to work. */
11334
11335 static bfd_boolean
11336 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
11337 {
11338 const char * name;
11339
11340 name = bfd_get_section_name (abfd, sec);
11341
11342 if (is_arm_elf_unwind_section_name (abfd, name))
11343 {
11344 hdr->sh_type = SHT_ARM_EXIDX;
11345 hdr->sh_flags |= SHF_LINK_ORDER;
11346 }
11347 return TRUE;
11348 }
11349
11350 /* Handle an ARM specific section when reading an object file. This is
11351 called when bfd_section_from_shdr finds a section with an unknown
11352 type. */
11353
11354 static bfd_boolean
11355 elf32_arm_section_from_shdr (bfd *abfd,
11356 Elf_Internal_Shdr * hdr,
11357 const char *name,
11358 int shindex)
11359 {
11360 /* There ought to be a place to keep ELF backend specific flags, but
11361 at the moment there isn't one. We just keep track of the
11362 sections by their name, instead. Fortunately, the ABI gives
11363 names for all the ARM specific sections, so we will probably get
11364 away with this. */
11365 switch (hdr->sh_type)
11366 {
11367 case SHT_ARM_EXIDX:
11368 case SHT_ARM_PREEMPTMAP:
11369 case SHT_ARM_ATTRIBUTES:
11370 break;
11371
11372 default:
11373 return FALSE;
11374 }
11375
11376 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
11377 return FALSE;
11378
11379 return TRUE;
11380 }
11381
11382 /* A structure used to record a list of sections, independently
11383 of the next and prev fields in the asection structure. */
11384 typedef struct section_list
11385 {
11386 asection * sec;
11387 struct section_list * next;
11388 struct section_list * prev;
11389 }
11390 section_list;
11391
11392 /* Unfortunately we need to keep a list of sections for which
11393 an _arm_elf_section_data structure has been allocated. This
11394 is because it is possible for functions like elf32_arm_write_section
11395 to be called on a section which has had an elf_data_structure
11396 allocated for it (and so the used_by_bfd field is valid) but
11397 for which the ARM extended version of this structure - the
11398 _arm_elf_section_data structure - has not been allocated. */
11399 static section_list * sections_with_arm_elf_section_data = NULL;
11400
11401 static void
11402 record_section_with_arm_elf_section_data (asection * sec)
11403 {
11404 struct section_list * entry;
11405
11406 entry = bfd_malloc (sizeof (* entry));
11407 if (entry == NULL)
11408 return;
11409 entry->sec = sec;
11410 entry->next = sections_with_arm_elf_section_data;
11411 entry->prev = NULL;
11412 if (entry->next != NULL)
11413 entry->next->prev = entry;
11414 sections_with_arm_elf_section_data = entry;
11415 }
11416
11417 static struct section_list *
11418 find_arm_elf_section_entry (asection * sec)
11419 {
11420 struct section_list * entry;
11421 static struct section_list * last_entry = NULL;
11422
11423 /* This is a short cut for the typical case where the sections are added
11424 to the sections_with_arm_elf_section_data list in forward order and
11425 then looked up here in backwards order. This makes a real difference
11426 to the ld-srec/sec64k.exp linker test. */
11427 entry = sections_with_arm_elf_section_data;
11428 if (last_entry != NULL)
11429 {
11430 if (last_entry->sec == sec)
11431 entry = last_entry;
11432 else if (last_entry->next != NULL
11433 && last_entry->next->sec == sec)
11434 entry = last_entry->next;
11435 }
11436
11437 for (; entry; entry = entry->next)
11438 if (entry->sec == sec)
11439 break;
11440
11441 if (entry)
11442 /* Record the entry prior to this one - it is the entry we are most
11443 likely to want to locate next time. Also this way if we have been
11444 called from unrecord_section_with_arm_elf_section_data() we will not
11445 be caching a pointer that is about to be freed. */
11446 last_entry = entry->prev;
11447
11448 return entry;
11449 }
11450
11451 static _arm_elf_section_data *
11452 get_arm_elf_section_data (asection * sec)
11453 {
11454 struct section_list * entry;
11455
11456 entry = find_arm_elf_section_entry (sec);
11457
11458 if (entry)
11459 return elf32_arm_section_data (entry->sec);
11460 else
11461 return NULL;
11462 }
11463
11464 static void
11465 unrecord_section_with_arm_elf_section_data (asection * sec)
11466 {
11467 struct section_list * entry;
11468
11469 entry = find_arm_elf_section_entry (sec);
11470
11471 if (entry)
11472 {
11473 if (entry->prev != NULL)
11474 entry->prev->next = entry->next;
11475 if (entry->next != NULL)
11476 entry->next->prev = entry->prev;
11477 if (entry == sections_with_arm_elf_section_data)
11478 sections_with_arm_elf_section_data = entry->next;
11479 free (entry);
11480 }
11481 }
11482
11483
11484 typedef struct
11485 {
11486 void *finfo;
11487 struct bfd_link_info *info;
11488 asection *sec;
11489 int sec_shndx;
11490 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
11491 asection *, struct elf_link_hash_entry *);
11492 } output_arch_syminfo;
11493
11494 enum map_symbol_type
11495 {
11496 ARM_MAP_ARM,
11497 ARM_MAP_THUMB,
11498 ARM_MAP_DATA
11499 };
11500
11501
11502 /* Output a single mapping symbol. */
11503
11504 static bfd_boolean
11505 elf32_arm_output_map_sym (output_arch_syminfo *osi,
11506 enum map_symbol_type type,
11507 bfd_vma offset)
11508 {
11509 static const char *names[3] = {"$a", "$t", "$d"};
11510 struct elf32_arm_link_hash_table *htab;
11511 Elf_Internal_Sym sym;
11512
11513 htab = elf32_arm_hash_table (osi->info);
11514 sym.st_value = osi->sec->output_section->vma
11515 + osi->sec->output_offset
11516 + offset;
11517 sym.st_size = 0;
11518 sym.st_other = 0;
11519 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
11520 sym.st_shndx = osi->sec_shndx;
11521 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
11522 return FALSE;
11523 return TRUE;
11524 }
11525
11526
11527 /* Output mapping symbols for PLT entries associated with H. */
11528
11529 static bfd_boolean
11530 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
11531 {
11532 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
11533 struct elf32_arm_link_hash_table *htab;
11534 struct elf32_arm_link_hash_entry *eh;
11535 bfd_vma addr;
11536
11537 htab = elf32_arm_hash_table (osi->info);
11538
11539 if (h->root.type == bfd_link_hash_indirect)
11540 return TRUE;
11541
11542 if (h->root.type == bfd_link_hash_warning)
11543 /* When warning symbols are created, they **replace** the "real"
11544 entry in the hash table, thus we never get to see the real
11545 symbol in a hash traversal. So look at it now. */
11546 h = (struct elf_link_hash_entry *) h->root.u.i.link;
11547
11548 if (h->plt.offset == (bfd_vma) -1)
11549 return TRUE;
11550
11551 eh = (struct elf32_arm_link_hash_entry *) h;
11552 addr = h->plt.offset;
11553 if (htab->symbian_p)
11554 {
11555 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11556 return FALSE;
11557 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11558 return FALSE;
11559 }
11560 else if (htab->vxworks_p)
11561 {
11562 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11563 return FALSE;
11564 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11565 return FALSE;
11566 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 12))
11567 return FALSE;
11568 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 20))
11569 return FALSE;
11570 }
11571 else
11572 {
11573 bfd_signed_vma thumb_refs;
11574
11575 thumb_refs = eh->plt_thumb_refcount;
11576 if (!htab->use_blx)
11577 thumb_refs += eh->plt_maybe_thumb_refcount;
11578
11579 if (thumb_refs > 0)
11580 {
11581 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr - 4))
11582 return FALSE;
11583 }
11584 #ifdef FOUR_WORD_PLT
11585 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11586 return FALSE;
11587 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11588 return FALSE;
11589 #else
11590 /* A three-word PLT with no Thumb thunk contains only Arm code,
11591 so only need to output a mapping symbol for the first PLT entry and
11592 entries with thumb thunks. */
11593 if (thumb_refs > 0 || addr == 20)
11594 {
11595 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11596 return FALSE;
11597 }
11598 #endif
11599 }
11600
11601 return TRUE;
11602 }
11603
11604 /* Output a single local symbol for a generated stub. */
11605
11606 static bfd_boolean
11607 elf32_arm_output_stub_sym (output_arch_syminfo *osi, const char *name,
11608 bfd_vma offset, bfd_vma size)
11609 {
11610 struct elf32_arm_link_hash_table *htab;
11611 Elf_Internal_Sym sym;
11612
11613 htab = elf32_arm_hash_table (osi->info);
11614 sym.st_value = osi->sec->output_section->vma
11615 + osi->sec->output_offset
11616 + offset;
11617 sym.st_size = size;
11618 sym.st_other = 0;
11619 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
11620 sym.st_shndx = osi->sec_shndx;
11621 if (!osi->func (osi->finfo, name, &sym, osi->sec, NULL))
11622 return FALSE;
11623 return TRUE;
11624 }
11625
11626 static bfd_boolean
11627 arm_map_one_stub (struct bfd_hash_entry * gen_entry,
11628 void * in_arg)
11629 {
11630 struct elf32_arm_stub_hash_entry *stub_entry;
11631 struct bfd_link_info *info;
11632 struct elf32_arm_link_hash_table *htab;
11633 asection *stub_sec;
11634 bfd_vma addr;
11635 char *stub_name;
11636 output_arch_syminfo *osi;
11637
11638 /* Massage our args to the form they really have. */
11639 stub_entry = (struct elf32_arm_stub_hash_entry *) gen_entry;
11640 osi = (output_arch_syminfo *) in_arg;
11641
11642 info = osi->info;
11643
11644 htab = elf32_arm_hash_table (info);
11645 stub_sec = stub_entry->stub_sec;
11646
11647 /* Ensure this stub is attached to the current section being
11648 processed. */
11649 if (stub_sec != osi->sec)
11650 return TRUE;
11651
11652 addr = (bfd_vma) stub_entry->stub_offset;
11653 stub_name = stub_entry->output_name;
11654
11655 switch (stub_entry->stub_type)
11656 {
11657 case arm_stub_long_branch:
11658 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 8))
11659 return FALSE;
11660 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11661 return FALSE;
11662 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 4))
11663 return FALSE;
11664 break;
11665 case arm_thumb_v4t_stub_long_branch:
11666 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 12))
11667 return FALSE;
11668 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11669 return FALSE;
11670 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11671 return FALSE;
11672 break;
11673 case arm_thumb_thumb_stub_long_branch:
11674 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 16))
11675 return FALSE;
11676 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
11677 return FALSE;
11678 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 12))
11679 return FALSE;
11680 break;
11681 case arm_thumb_arm_v4t_stub_long_branch:
11682 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 20))
11683 return FALSE;
11684 if (!elf32_arm_output_map_sym (osi, ARM_MAP_THUMB, addr))
11685 return FALSE;
11686 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 8))
11687 return FALSE;
11688 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 16))
11689 return FALSE;
11690 break;
11691 case arm_thumb_arm_v4t_stub_short_branch:
11692 if (!elf32_arm_output_stub_sym (osi, stub_name, addr | 1, 8))
11693 return FALSE;
11694 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr + 4))
11695 return FALSE;
11696 break;
11697 case arm_stub_pic_long_branch:
11698 if (!elf32_arm_output_stub_sym (osi, stub_name, addr, 12))
11699 return FALSE;
11700 if (!elf32_arm_output_map_sym (osi, ARM_MAP_ARM, addr))
11701 return FALSE;
11702 if (!elf32_arm_output_map_sym (osi, ARM_MAP_DATA, addr + 8))
11703 return FALSE;
11704 break;
11705 default:
11706 BFD_FAIL ();
11707 }
11708
11709 return TRUE;
11710 }
11711
11712 /* Output mapping symbols for linker generated sections. */
11713
11714 static bfd_boolean
11715 elf32_arm_output_arch_local_syms (bfd *output_bfd,
11716 struct bfd_link_info *info,
11717 void *finfo,
11718 bfd_boolean (*func) (void *, const char *,
11719 Elf_Internal_Sym *,
11720 asection *,
11721 struct elf_link_hash_entry *))
11722 {
11723 output_arch_syminfo osi;
11724 struct elf32_arm_link_hash_table *htab;
11725 bfd_vma offset;
11726 bfd_size_type size;
11727
11728 htab = elf32_arm_hash_table (info);
11729 check_use_blx (htab);
11730
11731 osi.finfo = finfo;
11732 osi.info = info;
11733 osi.func = func;
11734
11735 /* ARM->Thumb glue. */
11736 if (htab->arm_glue_size > 0)
11737 {
11738 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11739 ARM2THUMB_GLUE_SECTION_NAME);
11740
11741 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11742 (output_bfd, osi.sec->output_section);
11743 if (info->shared || htab->root.is_relocatable_executable
11744 || htab->pic_veneer)
11745 size = ARM2THUMB_PIC_GLUE_SIZE;
11746 else if (htab->use_blx)
11747 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
11748 else
11749 size = ARM2THUMB_STATIC_GLUE_SIZE;
11750
11751 for (offset = 0; offset < htab->arm_glue_size; offset += size)
11752 {
11753 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset);
11754 elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
11755 }
11756 }
11757
11758 /* Thumb->ARM glue. */
11759 if (htab->thumb_glue_size > 0)
11760 {
11761 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11762 THUMB2ARM_GLUE_SECTION_NAME);
11763
11764 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11765 (output_bfd, osi.sec->output_section);
11766 size = THUMB2ARM_GLUE_SIZE;
11767
11768 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
11769 {
11770 elf32_arm_output_map_sym (&osi, ARM_MAP_THUMB, offset);
11771 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, offset + 4);
11772 }
11773 }
11774
11775 /* ARMv4 BX veneers. */
11776 if (htab->bx_glue_size > 0)
11777 {
11778 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
11779 ARM_BX_GLUE_SECTION_NAME);
11780
11781 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11782 (output_bfd, osi.sec->output_section);
11783
11784 elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0);
11785 }
11786
11787 /* Long calls stubs. */
11788 if (htab->stub_bfd && htab->stub_bfd->sections)
11789 {
11790 asection* stub_sec;
11791
11792 for (stub_sec = htab->stub_bfd->sections;
11793 stub_sec != NULL;
11794 stub_sec = stub_sec->next)
11795 {
11796 /* Ignore non-stub sections. */
11797 if (!strstr (stub_sec->name, STUB_SUFFIX))
11798 continue;
11799
11800 osi.sec = stub_sec;
11801
11802 osi.sec_shndx = _bfd_elf_section_from_bfd_section
11803 (output_bfd, osi.sec->output_section);
11804
11805 bfd_hash_traverse (&htab->stub_hash_table, arm_map_one_stub, &osi);
11806 }
11807 }
11808
11809 /* Finally, output mapping symbols for the PLT. */
11810 if (!htab->splt || htab->splt->size == 0)
11811 return TRUE;
11812
11813 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
11814 htab->splt->output_section);
11815 osi.sec = htab->splt;
11816 /* Output mapping symbols for the plt header. SymbianOS does not have a
11817 plt header. */
11818 if (htab->vxworks_p)
11819 {
11820 /* VxWorks shared libraries have no PLT header. */
11821 if (!info->shared)
11822 {
11823 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11824 return FALSE;
11825 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 12))
11826 return FALSE;
11827 }
11828 }
11829 else if (!htab->symbian_p)
11830 {
11831 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_ARM, 0))
11832 return FALSE;
11833 #ifndef FOUR_WORD_PLT
11834 if (!elf32_arm_output_map_sym (&osi, ARM_MAP_DATA, 16))
11835 return FALSE;
11836 #endif
11837 }
11838
11839 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
11840 return TRUE;
11841 }
11842
11843 /* Allocate target specific section data. */
11844
11845 static bfd_boolean
11846 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
11847 {
11848 if (!sec->used_by_bfd)
11849 {
11850 _arm_elf_section_data *sdata;
11851 bfd_size_type amt = sizeof (*sdata);
11852
11853 sdata = bfd_zalloc (abfd, amt);
11854 if (sdata == NULL)
11855 return FALSE;
11856 sec->used_by_bfd = sdata;
11857 }
11858
11859 record_section_with_arm_elf_section_data (sec);
11860
11861 return _bfd_elf_new_section_hook (abfd, sec);
11862 }
11863
11864
11865 /* Used to order a list of mapping symbols by address. */
11866
11867 static int
11868 elf32_arm_compare_mapping (const void * a, const void * b)
11869 {
11870 const elf32_arm_section_map *amap = (const elf32_arm_section_map *) a;
11871 const elf32_arm_section_map *bmap = (const elf32_arm_section_map *) b;
11872
11873 if (amap->vma > bmap->vma)
11874 return 1;
11875 else if (amap->vma < bmap->vma)
11876 return -1;
11877 else if (amap->type > bmap->type)
11878 /* Ensure results do not depend on the host qsort for objects with
11879 multiple mapping symbols at the same address by sorting on type
11880 after vma. */
11881 return 1;
11882 else if (amap->type < bmap->type)
11883 return -1;
11884 else
11885 return 0;
11886 }
11887
11888
11889 /* Do code byteswapping. Return FALSE afterwards so that the section is
11890 written out as normal. */
11891
11892 static bfd_boolean
11893 elf32_arm_write_section (bfd *output_bfd,
11894 struct bfd_link_info *link_info,
11895 asection *sec,
11896 bfd_byte *contents)
11897 {
11898 int mapcount, errcount;
11899 _arm_elf_section_data *arm_data;
11900 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
11901 elf32_arm_section_map *map;
11902 elf32_vfp11_erratum_list *errnode;
11903 bfd_vma ptr;
11904 bfd_vma end;
11905 bfd_vma offset = sec->output_section->vma + sec->output_offset;
11906 bfd_byte tmp;
11907 int i;
11908
11909 /* If this section has not been allocated an _arm_elf_section_data
11910 structure then we cannot record anything. */
11911 arm_data = get_arm_elf_section_data (sec);
11912 if (arm_data == NULL)
11913 return FALSE;
11914
11915 mapcount = arm_data->mapcount;
11916 map = arm_data->map;
11917 errcount = arm_data->erratumcount;
11918
11919 if (errcount != 0)
11920 {
11921 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
11922
11923 for (errnode = arm_data->erratumlist; errnode != 0;
11924 errnode = errnode->next)
11925 {
11926 bfd_vma index = errnode->vma - offset;
11927
11928 switch (errnode->type)
11929 {
11930 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
11931 {
11932 bfd_vma branch_to_veneer;
11933 /* Original condition code of instruction, plus bit mask for
11934 ARM B instruction. */
11935 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
11936 | 0x0a000000;
11937
11938 /* The instruction is before the label. */
11939 index -= 4;
11940
11941 /* Above offset included in -4 below. */
11942 branch_to_veneer = errnode->u.b.veneer->vma
11943 - errnode->vma - 4;
11944
11945 if ((signed) branch_to_veneer < -(1 << 25)
11946 || (signed) branch_to_veneer >= (1 << 25))
11947 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11948 "range"), output_bfd);
11949
11950 insn |= (branch_to_veneer >> 2) & 0xffffff;
11951 contents[endianflip ^ index] = insn & 0xff;
11952 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11953 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11954 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11955 }
11956 break;
11957
11958 case VFP11_ERRATUM_ARM_VENEER:
11959 {
11960 bfd_vma branch_from_veneer;
11961 unsigned int insn;
11962
11963 /* Take size of veneer into account. */
11964 branch_from_veneer = errnode->u.v.branch->vma
11965 - errnode->vma - 12;
11966
11967 if ((signed) branch_from_veneer < -(1 << 25)
11968 || (signed) branch_from_veneer >= (1 << 25))
11969 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
11970 "range"), output_bfd);
11971
11972 /* Original instruction. */
11973 insn = errnode->u.v.branch->u.b.vfp_insn;
11974 contents[endianflip ^ index] = insn & 0xff;
11975 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
11976 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
11977 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
11978
11979 /* Branch back to insn after original insn. */
11980 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
11981 contents[endianflip ^ (index + 4)] = insn & 0xff;
11982 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
11983 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
11984 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
11985 }
11986 break;
11987
11988 default:
11989 abort ();
11990 }
11991 }
11992 }
11993
11994 if (mapcount == 0)
11995 return FALSE;
11996
11997 if (globals->byteswap_code)
11998 {
11999 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
12000
12001 ptr = map[0].vma;
12002 for (i = 0; i < mapcount; i++)
12003 {
12004 if (i == mapcount - 1)
12005 end = sec->size;
12006 else
12007 end = map[i + 1].vma;
12008
12009 switch (map[i].type)
12010 {
12011 case 'a':
12012 /* Byte swap code words. */
12013 while (ptr + 3 < end)
12014 {
12015 tmp = contents[ptr];
12016 contents[ptr] = contents[ptr + 3];
12017 contents[ptr + 3] = tmp;
12018 tmp = contents[ptr + 1];
12019 contents[ptr + 1] = contents[ptr + 2];
12020 contents[ptr + 2] = tmp;
12021 ptr += 4;
12022 }
12023 break;
12024
12025 case 't':
12026 /* Byte swap code halfwords. */
12027 while (ptr + 1 < end)
12028 {
12029 tmp = contents[ptr];
12030 contents[ptr] = contents[ptr + 1];
12031 contents[ptr + 1] = tmp;
12032 ptr += 2;
12033 }
12034 break;
12035
12036 case 'd':
12037 /* Leave data alone. */
12038 break;
12039 }
12040 ptr = end;
12041 }
12042 }
12043
12044 free (map);
12045 arm_data->mapcount = 0;
12046 arm_data->mapsize = 0;
12047 arm_data->map = NULL;
12048 unrecord_section_with_arm_elf_section_data (sec);
12049
12050 return FALSE;
12051 }
12052
12053 static void
12054 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
12055 asection * sec,
12056 void * ignore ATTRIBUTE_UNUSED)
12057 {
12058 unrecord_section_with_arm_elf_section_data (sec);
12059 }
12060
12061 static bfd_boolean
12062 elf32_arm_close_and_cleanup (bfd * abfd)
12063 {
12064 if (abfd->sections)
12065 bfd_map_over_sections (abfd,
12066 unrecord_section_via_map_over_sections,
12067 NULL);
12068
12069 return _bfd_elf_close_and_cleanup (abfd);
12070 }
12071
12072 static bfd_boolean
12073 elf32_arm_bfd_free_cached_info (bfd * abfd)
12074 {
12075 if (abfd->sections)
12076 bfd_map_over_sections (abfd,
12077 unrecord_section_via_map_over_sections,
12078 NULL);
12079
12080 return _bfd_free_cached_info (abfd);
12081 }
12082
12083 /* Display STT_ARM_TFUNC symbols as functions. */
12084
12085 static void
12086 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
12087 asymbol *asym)
12088 {
12089 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
12090
12091 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
12092 elfsym->symbol.flags |= BSF_FUNCTION;
12093 }
12094
12095
12096 /* Mangle thumb function symbols as we read them in. */
12097
12098 static bfd_boolean
12099 elf32_arm_swap_symbol_in (bfd * abfd,
12100 const void *psrc,
12101 const void *pshn,
12102 Elf_Internal_Sym *dst)
12103 {
12104 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
12105 return FALSE;
12106
12107 /* New EABI objects mark thumb function symbols by setting the low bit of
12108 the address. Turn these into STT_ARM_TFUNC. */
12109 if ((ELF_ST_TYPE (dst->st_info) == STT_FUNC)
12110 && (dst->st_value & 1))
12111 {
12112 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
12113 dst->st_value &= ~(bfd_vma) 1;
12114 }
12115 return TRUE;
12116 }
12117
12118
12119 /* Mangle thumb function symbols as we write them out. */
12120
12121 static void
12122 elf32_arm_swap_symbol_out (bfd *abfd,
12123 const Elf_Internal_Sym *src,
12124 void *cdst,
12125 void *shndx)
12126 {
12127 Elf_Internal_Sym newsym;
12128
12129 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
12130 of the address set, as per the new EABI. We do this unconditionally
12131 because objcopy does not set the elf header flags until after
12132 it writes out the symbol table. */
12133 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
12134 {
12135 newsym = *src;
12136 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
12137 if (newsym.st_shndx != SHN_UNDEF)
12138 {
12139 /* Do this only for defined symbols. At link type, the static
12140 linker will simulate the work of dynamic linker of resolving
12141 symbols and will carry over the thumbness of found symbols to
12142 the output symbol table. It's not clear how it happens, but
12143 the thumbness of undefined symbols can well be different at
12144 runtime, and writing '1' for them will be confusing for users
12145 and possibly for dynamic linker itself.
12146 */
12147 newsym.st_value |= 1;
12148 }
12149
12150 src = &newsym;
12151 }
12152 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
12153 }
12154
12155 /* Add the PT_ARM_EXIDX program header. */
12156
12157 static bfd_boolean
12158 elf32_arm_modify_segment_map (bfd *abfd,
12159 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12160 {
12161 struct elf_segment_map *m;
12162 asection *sec;
12163
12164 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12165 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12166 {
12167 /* If there is already a PT_ARM_EXIDX header, then we do not
12168 want to add another one. This situation arises when running
12169 "strip"; the input binary already has the header. */
12170 m = elf_tdata (abfd)->segment_map;
12171 while (m && m->p_type != PT_ARM_EXIDX)
12172 m = m->next;
12173 if (!m)
12174 {
12175 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
12176 if (m == NULL)
12177 return FALSE;
12178 m->p_type = PT_ARM_EXIDX;
12179 m->count = 1;
12180 m->sections[0] = sec;
12181
12182 m->next = elf_tdata (abfd)->segment_map;
12183 elf_tdata (abfd)->segment_map = m;
12184 }
12185 }
12186
12187 return TRUE;
12188 }
12189
12190 /* We may add a PT_ARM_EXIDX program header. */
12191
12192 static int
12193 elf32_arm_additional_program_headers (bfd *abfd,
12194 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12195 {
12196 asection *sec;
12197
12198 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
12199 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
12200 return 1;
12201 else
12202 return 0;
12203 }
12204
12205 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
12206
12207 static bfd_boolean
12208 elf32_arm_is_function_type (unsigned int type)
12209 {
12210 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
12211 }
12212
12213 /* We use this to override swap_symbol_in and swap_symbol_out. */
12214 const struct elf_size_info elf32_arm_size_info =
12215 {
12216 sizeof (Elf32_External_Ehdr),
12217 sizeof (Elf32_External_Phdr),
12218 sizeof (Elf32_External_Shdr),
12219 sizeof (Elf32_External_Rel),
12220 sizeof (Elf32_External_Rela),
12221 sizeof (Elf32_External_Sym),
12222 sizeof (Elf32_External_Dyn),
12223 sizeof (Elf_External_Note),
12224 4,
12225 1,
12226 32, 2,
12227 ELFCLASS32, EV_CURRENT,
12228 bfd_elf32_write_out_phdrs,
12229 bfd_elf32_write_shdrs_and_ehdr,
12230 bfd_elf32_checksum_contents,
12231 bfd_elf32_write_relocs,
12232 elf32_arm_swap_symbol_in,
12233 elf32_arm_swap_symbol_out,
12234 bfd_elf32_slurp_reloc_table,
12235 bfd_elf32_slurp_symbol_table,
12236 bfd_elf32_swap_dyn_in,
12237 bfd_elf32_swap_dyn_out,
12238 bfd_elf32_swap_reloc_in,
12239 bfd_elf32_swap_reloc_out,
12240 bfd_elf32_swap_reloca_in,
12241 bfd_elf32_swap_reloca_out
12242 };
12243
12244 #define ELF_ARCH bfd_arch_arm
12245 #define ELF_MACHINE_CODE EM_ARM
12246 #ifdef __QNXTARGET__
12247 #define ELF_MAXPAGESIZE 0x1000
12248 #else
12249 #define ELF_MAXPAGESIZE 0x8000
12250 #endif
12251 #define ELF_MINPAGESIZE 0x1000
12252 #define ELF_COMMONPAGESIZE 0x1000
12253
12254 #define bfd_elf32_mkobject elf32_arm_mkobject
12255
12256 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
12257 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
12258 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
12259 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
12260 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
12261 #define bfd_elf32_bfd_link_hash_table_free elf32_arm_hash_table_free
12262 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
12263 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
12264 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
12265 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
12266 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
12267 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
12268 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
12269 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
12270
12271 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
12272 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
12273 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
12274 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
12275 #define elf_backend_check_relocs elf32_arm_check_relocs
12276 #define elf_backend_relocate_section elf32_arm_relocate_section
12277 #define elf_backend_write_section elf32_arm_write_section
12278 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
12279 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
12280 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
12281 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
12282 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
12283 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
12284 #define elf_backend_post_process_headers elf32_arm_post_process_headers
12285 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
12286 #define elf_backend_object_p elf32_arm_object_p
12287 #define elf_backend_section_flags elf32_arm_section_flags
12288 #define elf_backend_fake_sections elf32_arm_fake_sections
12289 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
12290 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12291 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
12292 #define elf_backend_symbol_processing elf32_arm_symbol_processing
12293 #define elf_backend_size_info elf32_arm_size_info
12294 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
12295 #define elf_backend_additional_program_headers elf32_arm_additional_program_headers
12296 #define elf_backend_output_arch_local_syms elf32_arm_output_arch_local_syms
12297 #define elf_backend_begin_write_processing elf32_arm_begin_write_processing
12298 #define elf_backend_is_function_type elf32_arm_is_function_type
12299
12300 #define elf_backend_can_refcount 1
12301 #define elf_backend_can_gc_sections 1
12302 #define elf_backend_plt_readonly 1
12303 #define elf_backend_want_got_plt 1
12304 #define elf_backend_want_plt_sym 0
12305 #define elf_backend_may_use_rel_p 1
12306 #define elf_backend_may_use_rela_p 0
12307 #define elf_backend_default_use_rela_p 0
12308
12309 #define elf_backend_got_header_size 12
12310
12311 #undef elf_backend_obj_attrs_vendor
12312 #define elf_backend_obj_attrs_vendor "aeabi"
12313 #undef elf_backend_obj_attrs_section
12314 #define elf_backend_obj_attrs_section ".ARM.attributes"
12315 #undef elf_backend_obj_attrs_arg_type
12316 #define elf_backend_obj_attrs_arg_type elf32_arm_obj_attrs_arg_type
12317 #undef elf_backend_obj_attrs_section_type
12318 #define elf_backend_obj_attrs_section_type SHT_ARM_ATTRIBUTES
12319 #define elf_backend_obj_attrs_order elf32_arm_obj_attrs_order
12320
12321 #include "elf32-target.h"
12322
12323 /* VxWorks Targets. */
12324
12325 #undef TARGET_LITTLE_SYM
12326 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
12327 #undef TARGET_LITTLE_NAME
12328 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
12329 #undef TARGET_BIG_SYM
12330 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
12331 #undef TARGET_BIG_NAME
12332 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
12333
12334 /* Like elf32_arm_link_hash_table_create -- but overrides
12335 appropriately for VxWorks. */
12336
12337 static struct bfd_link_hash_table *
12338 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
12339 {
12340 struct bfd_link_hash_table *ret;
12341
12342 ret = elf32_arm_link_hash_table_create (abfd);
12343 if (ret)
12344 {
12345 struct elf32_arm_link_hash_table *htab
12346 = (struct elf32_arm_link_hash_table *) ret;
12347 htab->use_rel = 0;
12348 htab->vxworks_p = 1;
12349 }
12350 return ret;
12351 }
12352
12353 static void
12354 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
12355 {
12356 elf32_arm_final_write_processing (abfd, linker);
12357 elf_vxworks_final_write_processing (abfd, linker);
12358 }
12359
12360 #undef elf32_bed
12361 #define elf32_bed elf32_arm_vxworks_bed
12362
12363 #undef bfd_elf32_bfd_link_hash_table_create
12364 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_vxworks_link_hash_table_create
12365 #undef elf_backend_add_symbol_hook
12366 #define elf_backend_add_symbol_hook elf_vxworks_add_symbol_hook
12367 #undef elf_backend_final_write_processing
12368 #define elf_backend_final_write_processing elf32_arm_vxworks_final_write_processing
12369 #undef elf_backend_emit_relocs
12370 #define elf_backend_emit_relocs elf_vxworks_emit_relocs
12371
12372 #undef elf_backend_may_use_rel_p
12373 #define elf_backend_may_use_rel_p 0
12374 #undef elf_backend_may_use_rela_p
12375 #define elf_backend_may_use_rela_p 1
12376 #undef elf_backend_default_use_rela_p
12377 #define elf_backend_default_use_rela_p 1
12378 #undef elf_backend_want_plt_sym
12379 #define elf_backend_want_plt_sym 1
12380 #undef ELF_MAXPAGESIZE
12381 #define ELF_MAXPAGESIZE 0x1000
12382
12383 #include "elf32-target.h"
12384
12385
12386 /* Symbian OS Targets. */
12387
12388 #undef TARGET_LITTLE_SYM
12389 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
12390 #undef TARGET_LITTLE_NAME
12391 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
12392 #undef TARGET_BIG_SYM
12393 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
12394 #undef TARGET_BIG_NAME
12395 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
12396
12397 /* Like elf32_arm_link_hash_table_create -- but overrides
12398 appropriately for Symbian OS. */
12399
12400 static struct bfd_link_hash_table *
12401 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
12402 {
12403 struct bfd_link_hash_table *ret;
12404
12405 ret = elf32_arm_link_hash_table_create (abfd);
12406 if (ret)
12407 {
12408 struct elf32_arm_link_hash_table *htab
12409 = (struct elf32_arm_link_hash_table *)ret;
12410 /* There is no PLT header for Symbian OS. */
12411 htab->plt_header_size = 0;
12412 /* The PLT entries are each one instruction and one word. */
12413 htab->plt_entry_size = 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry);
12414 htab->symbian_p = 1;
12415 /* Symbian uses armv5t or above, so use_blx is always true. */
12416 htab->use_blx = 1;
12417 htab->root.is_relocatable_executable = 1;
12418 }
12419 return ret;
12420 }
12421
12422 static const struct bfd_elf_special_section
12423 elf32_arm_symbian_special_sections[] =
12424 {
12425 /* In a BPABI executable, the dynamic linking sections do not go in
12426 the loadable read-only segment. The post-linker may wish to
12427 refer to these sections, but they are not part of the final
12428 program image. */
12429 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
12430 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
12431 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
12432 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
12433 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
12434 /* These sections do not need to be writable as the SymbianOS
12435 postlinker will arrange things so that no dynamic relocation is
12436 required. */
12437 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
12438 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
12439 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
12440 { NULL, 0, 0, 0, 0 }
12441 };
12442
12443 static void
12444 elf32_arm_symbian_begin_write_processing (bfd *abfd,
12445 struct bfd_link_info *link_info)
12446 {
12447 /* BPABI objects are never loaded directly by an OS kernel; they are
12448 processed by a postlinker first, into an OS-specific format. If
12449 the D_PAGED bit is set on the file, BFD will align segments on
12450 page boundaries, so that an OS can directly map the file. With
12451 BPABI objects, that just results in wasted space. In addition,
12452 because we clear the D_PAGED bit, map_sections_to_segments will
12453 recognize that the program headers should not be mapped into any
12454 loadable segment. */
12455 abfd->flags &= ~D_PAGED;
12456 elf32_arm_begin_write_processing (abfd, link_info);
12457 }
12458
12459 static bfd_boolean
12460 elf32_arm_symbian_modify_segment_map (bfd *abfd,
12461 struct bfd_link_info *info)
12462 {
12463 struct elf_segment_map *m;
12464 asection *dynsec;
12465
12466 /* BPABI shared libraries and executables should have a PT_DYNAMIC
12467 segment. However, because the .dynamic section is not marked
12468 with SEC_LOAD, the generic ELF code will not create such a
12469 segment. */
12470 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
12471 if (dynsec)
12472 {
12473 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
12474 if (m->p_type == PT_DYNAMIC)
12475 break;
12476
12477 if (m == NULL)
12478 {
12479 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
12480 m->next = elf_tdata (abfd)->segment_map;
12481 elf_tdata (abfd)->segment_map = m;
12482 }
12483 }
12484
12485 /* Also call the generic arm routine. */
12486 return elf32_arm_modify_segment_map (abfd, info);
12487 }
12488
12489 /* Return address for Ith PLT stub in section PLT, for relocation REL
12490 or (bfd_vma) -1 if it should not be included. */
12491
12492 static bfd_vma
12493 elf32_arm_symbian_plt_sym_val (bfd_vma i, const asection *plt,
12494 const arelent *rel ATTRIBUTE_UNUSED)
12495 {
12496 return plt->vma + 4 * ARRAY_SIZE (elf32_arm_symbian_plt_entry) * i;
12497 }
12498
12499
12500 #undef elf32_bed
12501 #define elf32_bed elf32_arm_symbian_bed
12502
12503 /* The dynamic sections are not allocated on SymbianOS; the postlinker
12504 will process them and then discard them. */
12505 #undef ELF_DYNAMIC_SEC_FLAGS
12506 #define ELF_DYNAMIC_SEC_FLAGS \
12507 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
12508
12509 #undef elf_backend_add_symbol_hook
12510 #undef elf_backend_emit_relocs
12511
12512 #undef bfd_elf32_bfd_link_hash_table_create
12513 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_symbian_link_hash_table_create
12514 #undef elf_backend_special_sections
12515 #define elf_backend_special_sections elf32_arm_symbian_special_sections
12516 #undef elf_backend_begin_write_processing
12517 #define elf_backend_begin_write_processing elf32_arm_symbian_begin_write_processing
12518 #undef elf_backend_final_write_processing
12519 #define elf_backend_final_write_processing elf32_arm_final_write_processing
12520
12521 #undef elf_backend_modify_segment_map
12522 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
12523
12524 /* There is no .got section for BPABI objects, and hence no header. */
12525 #undef elf_backend_got_header_size
12526 #define elf_backend_got_header_size 0
12527
12528 /* Similarly, there is no .got.plt section. */
12529 #undef elf_backend_want_got_plt
12530 #define elf_backend_want_got_plt 0
12531
12532 #undef elf_backend_plt_sym_val
12533 #define elf_backend_plt_sym_val elf32_arm_symbian_plt_sym_val
12534
12535 #undef elf_backend_may_use_rel_p
12536 #define elf_backend_may_use_rel_p 1
12537 #undef elf_backend_may_use_rela_p
12538 #define elf_backend_may_use_rela_p 0
12539 #undef elf_backend_default_use_rela_p
12540 #define elf_backend_default_use_rela_p 0
12541 #undef elf_backend_want_plt_sym
12542 #define elf_backend_want_plt_sym 0
12543 #undef ELF_MAXPAGESIZE
12544 #define ELF_MAXPAGESIZE 0x8000
12545
12546 #include "elf32-target.h"
This page took 0.501332 seconds and 5 git commands to generate.