bfd:
[deliverable/binutils-gdb.git] / bfd / elf32-arm.c
1 /* 32-bit ELF support for ARM
2 Copyright 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
3 Free Software Foundation, Inc.
4
5 This file is part of BFD, the Binary File Descriptor library.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libiberty.h"
24 #include "libbfd.h"
25 #include "elf-bfd.h"
26 #include "elf-vxworks.h"
27 #include "elf/arm.h"
28
29 #ifndef NUM_ELEM
30 #define NUM_ELEM(a) (sizeof (a) / (sizeof (a)[0]))
31 #endif
32
33 /* Return the relocation section associated with NAME. HTAB is the
34 bfd's elf32_arm_link_hash_entry. */
35 #define RELOC_SECTION(HTAB, NAME) \
36 ((HTAB)->use_rel ? ".rel" NAME : ".rela" NAME)
37
38 /* Return size of a relocation entry. HTAB is the bfd's
39 elf32_arm_link_hash_entry. */
40 #define RELOC_SIZE(HTAB) \
41 ((HTAB)->use_rel \
42 ? sizeof (Elf32_External_Rel) \
43 : sizeof (Elf32_External_Rela))
44
45 /* Return function to swap relocations in. HTAB is the bfd's
46 elf32_arm_link_hash_entry. */
47 #define SWAP_RELOC_IN(HTAB) \
48 ((HTAB)->use_rel \
49 ? bfd_elf32_swap_reloc_in \
50 : bfd_elf32_swap_reloca_in)
51
52 /* Return function to swap relocations out. HTAB is the bfd's
53 elf32_arm_link_hash_entry. */
54 #define SWAP_RELOC_OUT(HTAB) \
55 ((HTAB)->use_rel \
56 ? bfd_elf32_swap_reloc_out \
57 : bfd_elf32_swap_reloca_out)
58
59 #define elf_info_to_howto 0
60 #define elf_info_to_howto_rel elf32_arm_info_to_howto
61
62 #define ARM_ELF_ABI_VERSION 0
63 #define ARM_ELF_OS_ABI_VERSION ELFOSABI_ARM
64
65 static struct elf_backend_data elf32_arm_vxworks_bed;
66
67 /* Note: code such as elf32_arm_reloc_type_lookup expect to use e.g.
68 R_ARM_PC24 as an index into this, and find the R_ARM_PC24 HOWTO
69 in that slot. */
70
71 static reloc_howto_type elf32_arm_howto_table_1[] =
72 {
73 /* No relocation */
74 HOWTO (R_ARM_NONE, /* type */
75 0, /* rightshift */
76 0, /* size (0 = byte, 1 = short, 2 = long) */
77 0, /* bitsize */
78 FALSE, /* pc_relative */
79 0, /* bitpos */
80 complain_overflow_dont,/* complain_on_overflow */
81 bfd_elf_generic_reloc, /* special_function */
82 "R_ARM_NONE", /* name */
83 FALSE, /* partial_inplace */
84 0, /* src_mask */
85 0, /* dst_mask */
86 FALSE), /* pcrel_offset */
87
88 HOWTO (R_ARM_PC24, /* type */
89 2, /* rightshift */
90 2, /* size (0 = byte, 1 = short, 2 = long) */
91 24, /* bitsize */
92 TRUE, /* pc_relative */
93 0, /* bitpos */
94 complain_overflow_signed,/* complain_on_overflow */
95 bfd_elf_generic_reloc, /* special_function */
96 "R_ARM_PC24", /* name */
97 FALSE, /* partial_inplace */
98 0x00ffffff, /* src_mask */
99 0x00ffffff, /* dst_mask */
100 TRUE), /* pcrel_offset */
101
102 /* 32 bit absolute */
103 HOWTO (R_ARM_ABS32, /* type */
104 0, /* rightshift */
105 2, /* size (0 = byte, 1 = short, 2 = long) */
106 32, /* bitsize */
107 FALSE, /* pc_relative */
108 0, /* bitpos */
109 complain_overflow_bitfield,/* complain_on_overflow */
110 bfd_elf_generic_reloc, /* special_function */
111 "R_ARM_ABS32", /* name */
112 FALSE, /* partial_inplace */
113 0xffffffff, /* src_mask */
114 0xffffffff, /* dst_mask */
115 FALSE), /* pcrel_offset */
116
117 /* standard 32bit pc-relative reloc */
118 HOWTO (R_ARM_REL32, /* type */
119 0, /* rightshift */
120 2, /* size (0 = byte, 1 = short, 2 = long) */
121 32, /* bitsize */
122 TRUE, /* pc_relative */
123 0, /* bitpos */
124 complain_overflow_bitfield,/* complain_on_overflow */
125 bfd_elf_generic_reloc, /* special_function */
126 "R_ARM_REL32", /* name */
127 FALSE, /* partial_inplace */
128 0xffffffff, /* src_mask */
129 0xffffffff, /* dst_mask */
130 TRUE), /* pcrel_offset */
131
132 /* 8 bit absolute - R_ARM_LDR_PC_G0 in AAELF */
133 HOWTO (R_ARM_LDR_PC_G0, /* type */
134 0, /* rightshift */
135 0, /* size (0 = byte, 1 = short, 2 = long) */
136 32, /* bitsize */
137 TRUE, /* pc_relative */
138 0, /* bitpos */
139 complain_overflow_dont,/* complain_on_overflow */
140 bfd_elf_generic_reloc, /* special_function */
141 "R_ARM_LDR_PC_G0", /* name */
142 FALSE, /* partial_inplace */
143 0xffffffff, /* src_mask */
144 0xffffffff, /* dst_mask */
145 TRUE), /* pcrel_offset */
146
147 /* 16 bit absolute */
148 HOWTO (R_ARM_ABS16, /* type */
149 0, /* rightshift */
150 1, /* size (0 = byte, 1 = short, 2 = long) */
151 16, /* bitsize */
152 FALSE, /* pc_relative */
153 0, /* bitpos */
154 complain_overflow_bitfield,/* complain_on_overflow */
155 bfd_elf_generic_reloc, /* special_function */
156 "R_ARM_ABS16", /* name */
157 FALSE, /* partial_inplace */
158 0x0000ffff, /* src_mask */
159 0x0000ffff, /* dst_mask */
160 FALSE), /* pcrel_offset */
161
162 /* 12 bit absolute */
163 HOWTO (R_ARM_ABS12, /* type */
164 0, /* rightshift */
165 2, /* size (0 = byte, 1 = short, 2 = long) */
166 12, /* bitsize */
167 FALSE, /* pc_relative */
168 0, /* bitpos */
169 complain_overflow_bitfield,/* complain_on_overflow */
170 bfd_elf_generic_reloc, /* special_function */
171 "R_ARM_ABS12", /* name */
172 FALSE, /* partial_inplace */
173 0x00000fff, /* src_mask */
174 0x00000fff, /* dst_mask */
175 FALSE), /* pcrel_offset */
176
177 HOWTO (R_ARM_THM_ABS5, /* type */
178 6, /* rightshift */
179 1, /* size (0 = byte, 1 = short, 2 = long) */
180 5, /* bitsize */
181 FALSE, /* pc_relative */
182 0, /* bitpos */
183 complain_overflow_bitfield,/* complain_on_overflow */
184 bfd_elf_generic_reloc, /* special_function */
185 "R_ARM_THM_ABS5", /* name */
186 FALSE, /* partial_inplace */
187 0x000007e0, /* src_mask */
188 0x000007e0, /* dst_mask */
189 FALSE), /* pcrel_offset */
190
191 /* 8 bit absolute */
192 HOWTO (R_ARM_ABS8, /* type */
193 0, /* rightshift */
194 0, /* size (0 = byte, 1 = short, 2 = long) */
195 8, /* bitsize */
196 FALSE, /* pc_relative */
197 0, /* bitpos */
198 complain_overflow_bitfield,/* complain_on_overflow */
199 bfd_elf_generic_reloc, /* special_function */
200 "R_ARM_ABS8", /* name */
201 FALSE, /* partial_inplace */
202 0x000000ff, /* src_mask */
203 0x000000ff, /* dst_mask */
204 FALSE), /* pcrel_offset */
205
206 HOWTO (R_ARM_SBREL32, /* type */
207 0, /* rightshift */
208 2, /* size (0 = byte, 1 = short, 2 = long) */
209 32, /* bitsize */
210 FALSE, /* pc_relative */
211 0, /* bitpos */
212 complain_overflow_dont,/* complain_on_overflow */
213 bfd_elf_generic_reloc, /* special_function */
214 "R_ARM_SBREL32", /* name */
215 FALSE, /* partial_inplace */
216 0xffffffff, /* src_mask */
217 0xffffffff, /* dst_mask */
218 FALSE), /* pcrel_offset */
219
220 HOWTO (R_ARM_THM_CALL, /* type */
221 1, /* rightshift */
222 2, /* size (0 = byte, 1 = short, 2 = long) */
223 25, /* bitsize */
224 TRUE, /* pc_relative */
225 0, /* bitpos */
226 complain_overflow_signed,/* complain_on_overflow */
227 bfd_elf_generic_reloc, /* special_function */
228 "R_ARM_THM_CALL", /* name */
229 FALSE, /* partial_inplace */
230 0x07ff07ff, /* src_mask */
231 0x07ff07ff, /* dst_mask */
232 TRUE), /* pcrel_offset */
233
234 HOWTO (R_ARM_THM_PC8, /* type */
235 1, /* rightshift */
236 1, /* size (0 = byte, 1 = short, 2 = long) */
237 8, /* bitsize */
238 TRUE, /* pc_relative */
239 0, /* bitpos */
240 complain_overflow_signed,/* complain_on_overflow */
241 bfd_elf_generic_reloc, /* special_function */
242 "R_ARM_THM_PC8", /* name */
243 FALSE, /* partial_inplace */
244 0x000000ff, /* src_mask */
245 0x000000ff, /* dst_mask */
246 TRUE), /* pcrel_offset */
247
248 HOWTO (R_ARM_BREL_ADJ, /* type */
249 1, /* rightshift */
250 1, /* size (0 = byte, 1 = short, 2 = long) */
251 32, /* bitsize */
252 FALSE, /* pc_relative */
253 0, /* bitpos */
254 complain_overflow_signed,/* complain_on_overflow */
255 bfd_elf_generic_reloc, /* special_function */
256 "R_ARM_BREL_ADJ", /* name */
257 FALSE, /* partial_inplace */
258 0xffffffff, /* src_mask */
259 0xffffffff, /* dst_mask */
260 FALSE), /* pcrel_offset */
261
262 HOWTO (R_ARM_SWI24, /* type */
263 0, /* rightshift */
264 0, /* size (0 = byte, 1 = short, 2 = long) */
265 0, /* bitsize */
266 FALSE, /* pc_relative */
267 0, /* bitpos */
268 complain_overflow_signed,/* complain_on_overflow */
269 bfd_elf_generic_reloc, /* special_function */
270 "R_ARM_SWI24", /* name */
271 FALSE, /* partial_inplace */
272 0x00000000, /* src_mask */
273 0x00000000, /* dst_mask */
274 FALSE), /* pcrel_offset */
275
276 HOWTO (R_ARM_THM_SWI8, /* type */
277 0, /* rightshift */
278 0, /* size (0 = byte, 1 = short, 2 = long) */
279 0, /* bitsize */
280 FALSE, /* pc_relative */
281 0, /* bitpos */
282 complain_overflow_signed,/* complain_on_overflow */
283 bfd_elf_generic_reloc, /* special_function */
284 "R_ARM_SWI8", /* name */
285 FALSE, /* partial_inplace */
286 0x00000000, /* src_mask */
287 0x00000000, /* dst_mask */
288 FALSE), /* pcrel_offset */
289
290 /* BLX instruction for the ARM. */
291 HOWTO (R_ARM_XPC25, /* type */
292 2, /* rightshift */
293 2, /* size (0 = byte, 1 = short, 2 = long) */
294 25, /* bitsize */
295 TRUE, /* pc_relative */
296 0, /* bitpos */
297 complain_overflow_signed,/* complain_on_overflow */
298 bfd_elf_generic_reloc, /* special_function */
299 "R_ARM_XPC25", /* name */
300 FALSE, /* partial_inplace */
301 0x00ffffff, /* src_mask */
302 0x00ffffff, /* dst_mask */
303 TRUE), /* pcrel_offset */
304
305 /* BLX instruction for the Thumb. */
306 HOWTO (R_ARM_THM_XPC22, /* type */
307 2, /* rightshift */
308 2, /* size (0 = byte, 1 = short, 2 = long) */
309 22, /* bitsize */
310 TRUE, /* pc_relative */
311 0, /* bitpos */
312 complain_overflow_signed,/* complain_on_overflow */
313 bfd_elf_generic_reloc, /* special_function */
314 "R_ARM_THM_XPC22", /* name */
315 FALSE, /* partial_inplace */
316 0x07ff07ff, /* src_mask */
317 0x07ff07ff, /* dst_mask */
318 TRUE), /* pcrel_offset */
319
320 /* Dynamic TLS relocations. */
321
322 HOWTO (R_ARM_TLS_DTPMOD32, /* type */
323 0, /* rightshift */
324 2, /* size (0 = byte, 1 = short, 2 = long) */
325 32, /* bitsize */
326 FALSE, /* pc_relative */
327 0, /* bitpos */
328 complain_overflow_bitfield,/* complain_on_overflow */
329 bfd_elf_generic_reloc, /* special_function */
330 "R_ARM_TLS_DTPMOD32", /* name */
331 TRUE, /* partial_inplace */
332 0xffffffff, /* src_mask */
333 0xffffffff, /* dst_mask */
334 FALSE), /* pcrel_offset */
335
336 HOWTO (R_ARM_TLS_DTPOFF32, /* type */
337 0, /* rightshift */
338 2, /* size (0 = byte, 1 = short, 2 = long) */
339 32, /* bitsize */
340 FALSE, /* pc_relative */
341 0, /* bitpos */
342 complain_overflow_bitfield,/* complain_on_overflow */
343 bfd_elf_generic_reloc, /* special_function */
344 "R_ARM_TLS_DTPOFF32", /* name */
345 TRUE, /* partial_inplace */
346 0xffffffff, /* src_mask */
347 0xffffffff, /* dst_mask */
348 FALSE), /* pcrel_offset */
349
350 HOWTO (R_ARM_TLS_TPOFF32, /* type */
351 0, /* rightshift */
352 2, /* size (0 = byte, 1 = short, 2 = long) */
353 32, /* bitsize */
354 FALSE, /* pc_relative */
355 0, /* bitpos */
356 complain_overflow_bitfield,/* complain_on_overflow */
357 bfd_elf_generic_reloc, /* special_function */
358 "R_ARM_TLS_TPOFF32", /* name */
359 TRUE, /* partial_inplace */
360 0xffffffff, /* src_mask */
361 0xffffffff, /* dst_mask */
362 FALSE), /* pcrel_offset */
363
364 /* Relocs used in ARM Linux */
365
366 HOWTO (R_ARM_COPY, /* type */
367 0, /* rightshift */
368 2, /* size (0 = byte, 1 = short, 2 = long) */
369 32, /* bitsize */
370 FALSE, /* pc_relative */
371 0, /* bitpos */
372 complain_overflow_bitfield,/* complain_on_overflow */
373 bfd_elf_generic_reloc, /* special_function */
374 "R_ARM_COPY", /* name */
375 TRUE, /* partial_inplace */
376 0xffffffff, /* src_mask */
377 0xffffffff, /* dst_mask */
378 FALSE), /* pcrel_offset */
379
380 HOWTO (R_ARM_GLOB_DAT, /* type */
381 0, /* rightshift */
382 2, /* size (0 = byte, 1 = short, 2 = long) */
383 32, /* bitsize */
384 FALSE, /* pc_relative */
385 0, /* bitpos */
386 complain_overflow_bitfield,/* complain_on_overflow */
387 bfd_elf_generic_reloc, /* special_function */
388 "R_ARM_GLOB_DAT", /* name */
389 TRUE, /* partial_inplace */
390 0xffffffff, /* src_mask */
391 0xffffffff, /* dst_mask */
392 FALSE), /* pcrel_offset */
393
394 HOWTO (R_ARM_JUMP_SLOT, /* type */
395 0, /* rightshift */
396 2, /* size (0 = byte, 1 = short, 2 = long) */
397 32, /* bitsize */
398 FALSE, /* pc_relative */
399 0, /* bitpos */
400 complain_overflow_bitfield,/* complain_on_overflow */
401 bfd_elf_generic_reloc, /* special_function */
402 "R_ARM_JUMP_SLOT", /* name */
403 TRUE, /* partial_inplace */
404 0xffffffff, /* src_mask */
405 0xffffffff, /* dst_mask */
406 FALSE), /* pcrel_offset */
407
408 HOWTO (R_ARM_RELATIVE, /* type */
409 0, /* rightshift */
410 2, /* size (0 = byte, 1 = short, 2 = long) */
411 32, /* bitsize */
412 FALSE, /* pc_relative */
413 0, /* bitpos */
414 complain_overflow_bitfield,/* complain_on_overflow */
415 bfd_elf_generic_reloc, /* special_function */
416 "R_ARM_RELATIVE", /* name */
417 TRUE, /* partial_inplace */
418 0xffffffff, /* src_mask */
419 0xffffffff, /* dst_mask */
420 FALSE), /* pcrel_offset */
421
422 HOWTO (R_ARM_GOTOFF32, /* type */
423 0, /* rightshift */
424 2, /* size (0 = byte, 1 = short, 2 = long) */
425 32, /* bitsize */
426 FALSE, /* pc_relative */
427 0, /* bitpos */
428 complain_overflow_bitfield,/* complain_on_overflow */
429 bfd_elf_generic_reloc, /* special_function */
430 "R_ARM_GOTOFF32", /* name */
431 TRUE, /* partial_inplace */
432 0xffffffff, /* src_mask */
433 0xffffffff, /* dst_mask */
434 FALSE), /* pcrel_offset */
435
436 HOWTO (R_ARM_GOTPC, /* type */
437 0, /* rightshift */
438 2, /* size (0 = byte, 1 = short, 2 = long) */
439 32, /* bitsize */
440 TRUE, /* pc_relative */
441 0, /* bitpos */
442 complain_overflow_bitfield,/* complain_on_overflow */
443 bfd_elf_generic_reloc, /* special_function */
444 "R_ARM_GOTPC", /* name */
445 TRUE, /* partial_inplace */
446 0xffffffff, /* src_mask */
447 0xffffffff, /* dst_mask */
448 TRUE), /* pcrel_offset */
449
450 HOWTO (R_ARM_GOT32, /* type */
451 0, /* rightshift */
452 2, /* size (0 = byte, 1 = short, 2 = long) */
453 32, /* bitsize */
454 FALSE, /* pc_relative */
455 0, /* bitpos */
456 complain_overflow_bitfield,/* complain_on_overflow */
457 bfd_elf_generic_reloc, /* special_function */
458 "R_ARM_GOT32", /* name */
459 TRUE, /* partial_inplace */
460 0xffffffff, /* src_mask */
461 0xffffffff, /* dst_mask */
462 FALSE), /* pcrel_offset */
463
464 HOWTO (R_ARM_PLT32, /* type */
465 2, /* rightshift */
466 2, /* size (0 = byte, 1 = short, 2 = long) */
467 24, /* bitsize */
468 TRUE, /* pc_relative */
469 0, /* bitpos */
470 complain_overflow_bitfield,/* complain_on_overflow */
471 bfd_elf_generic_reloc, /* special_function */
472 "R_ARM_PLT32", /* name */
473 FALSE, /* partial_inplace */
474 0x00ffffff, /* src_mask */
475 0x00ffffff, /* dst_mask */
476 TRUE), /* pcrel_offset */
477
478 HOWTO (R_ARM_CALL, /* type */
479 2, /* rightshift */
480 2, /* size (0 = byte, 1 = short, 2 = long) */
481 24, /* bitsize */
482 TRUE, /* pc_relative */
483 0, /* bitpos */
484 complain_overflow_signed,/* complain_on_overflow */
485 bfd_elf_generic_reloc, /* special_function */
486 "R_ARM_CALL", /* name */
487 FALSE, /* partial_inplace */
488 0x00ffffff, /* src_mask */
489 0x00ffffff, /* dst_mask */
490 TRUE), /* pcrel_offset */
491
492 HOWTO (R_ARM_JUMP24, /* type */
493 2, /* rightshift */
494 2, /* size (0 = byte, 1 = short, 2 = long) */
495 24, /* bitsize */
496 TRUE, /* pc_relative */
497 0, /* bitpos */
498 complain_overflow_signed,/* complain_on_overflow */
499 bfd_elf_generic_reloc, /* special_function */
500 "R_ARM_JUMP24", /* name */
501 FALSE, /* partial_inplace */
502 0x00ffffff, /* src_mask */
503 0x00ffffff, /* dst_mask */
504 TRUE), /* pcrel_offset */
505
506 HOWTO (R_ARM_THM_JUMP24, /* type */
507 1, /* rightshift */
508 2, /* size (0 = byte, 1 = short, 2 = long) */
509 24, /* bitsize */
510 TRUE, /* pc_relative */
511 0, /* bitpos */
512 complain_overflow_signed,/* complain_on_overflow */
513 bfd_elf_generic_reloc, /* special_function */
514 "R_ARM_THM_JUMP24", /* name */
515 FALSE, /* partial_inplace */
516 0x07ff2fff, /* src_mask */
517 0x07ff2fff, /* dst_mask */
518 TRUE), /* pcrel_offset */
519
520 HOWTO (R_ARM_BASE_ABS, /* type */
521 0, /* rightshift */
522 2, /* size (0 = byte, 1 = short, 2 = long) */
523 32, /* bitsize */
524 FALSE, /* pc_relative */
525 0, /* bitpos */
526 complain_overflow_dont,/* complain_on_overflow */
527 bfd_elf_generic_reloc, /* special_function */
528 "R_ARM_BASE_ABS", /* name */
529 FALSE, /* partial_inplace */
530 0xffffffff, /* src_mask */
531 0xffffffff, /* dst_mask */
532 FALSE), /* pcrel_offset */
533
534 HOWTO (R_ARM_ALU_PCREL7_0, /* type */
535 0, /* rightshift */
536 2, /* size (0 = byte, 1 = short, 2 = long) */
537 12, /* bitsize */
538 TRUE, /* pc_relative */
539 0, /* bitpos */
540 complain_overflow_dont,/* complain_on_overflow */
541 bfd_elf_generic_reloc, /* special_function */
542 "R_ARM_ALU_PCREL_7_0", /* name */
543 FALSE, /* partial_inplace */
544 0x00000fff, /* src_mask */
545 0x00000fff, /* dst_mask */
546 TRUE), /* pcrel_offset */
547
548 HOWTO (R_ARM_ALU_PCREL15_8, /* type */
549 0, /* rightshift */
550 2, /* size (0 = byte, 1 = short, 2 = long) */
551 12, /* bitsize */
552 TRUE, /* pc_relative */
553 8, /* bitpos */
554 complain_overflow_dont,/* complain_on_overflow */
555 bfd_elf_generic_reloc, /* special_function */
556 "R_ARM_ALU_PCREL_15_8",/* name */
557 FALSE, /* partial_inplace */
558 0x00000fff, /* src_mask */
559 0x00000fff, /* dst_mask */
560 TRUE), /* pcrel_offset */
561
562 HOWTO (R_ARM_ALU_PCREL23_15, /* type */
563 0, /* rightshift */
564 2, /* size (0 = byte, 1 = short, 2 = long) */
565 12, /* bitsize */
566 TRUE, /* pc_relative */
567 16, /* bitpos */
568 complain_overflow_dont,/* complain_on_overflow */
569 bfd_elf_generic_reloc, /* special_function */
570 "R_ARM_ALU_PCREL_23_15",/* name */
571 FALSE, /* partial_inplace */
572 0x00000fff, /* src_mask */
573 0x00000fff, /* dst_mask */
574 TRUE), /* pcrel_offset */
575
576 HOWTO (R_ARM_LDR_SBREL_11_0, /* type */
577 0, /* rightshift */
578 2, /* size (0 = byte, 1 = short, 2 = long) */
579 12, /* bitsize */
580 FALSE, /* pc_relative */
581 0, /* bitpos */
582 complain_overflow_dont,/* complain_on_overflow */
583 bfd_elf_generic_reloc, /* special_function */
584 "R_ARM_LDR_SBREL_11_0",/* name */
585 FALSE, /* partial_inplace */
586 0x00000fff, /* src_mask */
587 0x00000fff, /* dst_mask */
588 FALSE), /* pcrel_offset */
589
590 HOWTO (R_ARM_ALU_SBREL_19_12, /* type */
591 0, /* rightshift */
592 2, /* size (0 = byte, 1 = short, 2 = long) */
593 8, /* bitsize */
594 FALSE, /* pc_relative */
595 12, /* bitpos */
596 complain_overflow_dont,/* complain_on_overflow */
597 bfd_elf_generic_reloc, /* special_function */
598 "R_ARM_ALU_SBREL_19_12",/* name */
599 FALSE, /* partial_inplace */
600 0x000ff000, /* src_mask */
601 0x000ff000, /* dst_mask */
602 FALSE), /* pcrel_offset */
603
604 HOWTO (R_ARM_ALU_SBREL_27_20, /* type */
605 0, /* rightshift */
606 2, /* size (0 = byte, 1 = short, 2 = long) */
607 8, /* bitsize */
608 FALSE, /* pc_relative */
609 20, /* bitpos */
610 complain_overflow_dont,/* complain_on_overflow */
611 bfd_elf_generic_reloc, /* special_function */
612 "R_ARM_ALU_SBREL_27_20",/* name */
613 FALSE, /* partial_inplace */
614 0x0ff00000, /* src_mask */
615 0x0ff00000, /* dst_mask */
616 FALSE), /* pcrel_offset */
617
618 HOWTO (R_ARM_TARGET1, /* type */
619 0, /* rightshift */
620 2, /* size (0 = byte, 1 = short, 2 = long) */
621 32, /* bitsize */
622 FALSE, /* pc_relative */
623 0, /* bitpos */
624 complain_overflow_dont,/* complain_on_overflow */
625 bfd_elf_generic_reloc, /* special_function */
626 "R_ARM_TARGET1", /* name */
627 FALSE, /* partial_inplace */
628 0xffffffff, /* src_mask */
629 0xffffffff, /* dst_mask */
630 FALSE), /* pcrel_offset */
631
632 HOWTO (R_ARM_ROSEGREL32, /* type */
633 0, /* rightshift */
634 2, /* size (0 = byte, 1 = short, 2 = long) */
635 32, /* bitsize */
636 FALSE, /* pc_relative */
637 0, /* bitpos */
638 complain_overflow_dont,/* complain_on_overflow */
639 bfd_elf_generic_reloc, /* special_function */
640 "R_ARM_ROSEGREL32", /* name */
641 FALSE, /* partial_inplace */
642 0xffffffff, /* src_mask */
643 0xffffffff, /* dst_mask */
644 FALSE), /* pcrel_offset */
645
646 HOWTO (R_ARM_V4BX, /* type */
647 0, /* rightshift */
648 2, /* size (0 = byte, 1 = short, 2 = long) */
649 32, /* bitsize */
650 FALSE, /* pc_relative */
651 0, /* bitpos */
652 complain_overflow_dont,/* complain_on_overflow */
653 bfd_elf_generic_reloc, /* special_function */
654 "R_ARM_V4BX", /* name */
655 FALSE, /* partial_inplace */
656 0xffffffff, /* src_mask */
657 0xffffffff, /* dst_mask */
658 FALSE), /* pcrel_offset */
659
660 HOWTO (R_ARM_TARGET2, /* type */
661 0, /* rightshift */
662 2, /* size (0 = byte, 1 = short, 2 = long) */
663 32, /* bitsize */
664 FALSE, /* pc_relative */
665 0, /* bitpos */
666 complain_overflow_signed,/* complain_on_overflow */
667 bfd_elf_generic_reloc, /* special_function */
668 "R_ARM_TARGET2", /* name */
669 FALSE, /* partial_inplace */
670 0xffffffff, /* src_mask */
671 0xffffffff, /* dst_mask */
672 TRUE), /* pcrel_offset */
673
674 HOWTO (R_ARM_PREL31, /* type */
675 0, /* rightshift */
676 2, /* size (0 = byte, 1 = short, 2 = long) */
677 31, /* bitsize */
678 TRUE, /* pc_relative */
679 0, /* bitpos */
680 complain_overflow_signed,/* complain_on_overflow */
681 bfd_elf_generic_reloc, /* special_function */
682 "R_ARM_PREL31", /* name */
683 FALSE, /* partial_inplace */
684 0x7fffffff, /* src_mask */
685 0x7fffffff, /* dst_mask */
686 TRUE), /* pcrel_offset */
687
688 HOWTO (R_ARM_MOVW_ABS_NC, /* type */
689 0, /* rightshift */
690 2, /* size (0 = byte, 1 = short, 2 = long) */
691 16, /* bitsize */
692 FALSE, /* pc_relative */
693 0, /* bitpos */
694 complain_overflow_dont,/* complain_on_overflow */
695 bfd_elf_generic_reloc, /* special_function */
696 "R_ARM_MOVW_ABS_NC", /* name */
697 FALSE, /* partial_inplace */
698 0x0000ffff, /* src_mask */
699 0x0000ffff, /* dst_mask */
700 FALSE), /* pcrel_offset */
701
702 HOWTO (R_ARM_MOVT_ABS, /* type */
703 0, /* rightshift */
704 2, /* size (0 = byte, 1 = short, 2 = long) */
705 16, /* bitsize */
706 FALSE, /* pc_relative */
707 0, /* bitpos */
708 complain_overflow_bitfield,/* complain_on_overflow */
709 bfd_elf_generic_reloc, /* special_function */
710 "R_ARM_MOVT_ABS", /* name */
711 FALSE, /* partial_inplace */
712 0x0000ffff, /* src_mask */
713 0x0000ffff, /* dst_mask */
714 FALSE), /* pcrel_offset */
715
716 HOWTO (R_ARM_MOVW_PREL_NC, /* type */
717 0, /* rightshift */
718 2, /* size (0 = byte, 1 = short, 2 = long) */
719 16, /* bitsize */
720 TRUE, /* pc_relative */
721 0, /* bitpos */
722 complain_overflow_dont,/* complain_on_overflow */
723 bfd_elf_generic_reloc, /* special_function */
724 "R_ARM_MOVW_PREL_NC", /* name */
725 FALSE, /* partial_inplace */
726 0x0000ffff, /* src_mask */
727 0x0000ffff, /* dst_mask */
728 TRUE), /* pcrel_offset */
729
730 HOWTO (R_ARM_MOVT_PREL, /* type */
731 0, /* rightshift */
732 2, /* size (0 = byte, 1 = short, 2 = long) */
733 16, /* bitsize */
734 TRUE, /* pc_relative */
735 0, /* bitpos */
736 complain_overflow_bitfield,/* complain_on_overflow */
737 bfd_elf_generic_reloc, /* special_function */
738 "R_ARM_MOVT_PREL", /* name */
739 FALSE, /* partial_inplace */
740 0x0000ffff, /* src_mask */
741 0x0000ffff, /* dst_mask */
742 TRUE), /* pcrel_offset */
743
744 HOWTO (R_ARM_THM_MOVW_ABS_NC, /* type */
745 0, /* rightshift */
746 2, /* size (0 = byte, 1 = short, 2 = long) */
747 16, /* bitsize */
748 FALSE, /* pc_relative */
749 0, /* bitpos */
750 complain_overflow_dont,/* complain_on_overflow */
751 bfd_elf_generic_reloc, /* special_function */
752 "R_ARM_THM_MOVW_ABS_NC",/* name */
753 FALSE, /* partial_inplace */
754 0x040f70ff, /* src_mask */
755 0x040f70ff, /* dst_mask */
756 FALSE), /* pcrel_offset */
757
758 HOWTO (R_ARM_THM_MOVT_ABS, /* type */
759 0, /* rightshift */
760 2, /* size (0 = byte, 1 = short, 2 = long) */
761 16, /* bitsize */
762 FALSE, /* pc_relative */
763 0, /* bitpos */
764 complain_overflow_bitfield,/* complain_on_overflow */
765 bfd_elf_generic_reloc, /* special_function */
766 "R_ARM_THM_MOVT_ABS", /* name */
767 FALSE, /* partial_inplace */
768 0x040f70ff, /* src_mask */
769 0x040f70ff, /* dst_mask */
770 FALSE), /* pcrel_offset */
771
772 HOWTO (R_ARM_THM_MOVW_PREL_NC,/* type */
773 0, /* rightshift */
774 2, /* size (0 = byte, 1 = short, 2 = long) */
775 16, /* bitsize */
776 TRUE, /* pc_relative */
777 0, /* bitpos */
778 complain_overflow_dont,/* complain_on_overflow */
779 bfd_elf_generic_reloc, /* special_function */
780 "R_ARM_THM_MOVW_PREL_NC",/* name */
781 FALSE, /* partial_inplace */
782 0x040f70ff, /* src_mask */
783 0x040f70ff, /* dst_mask */
784 TRUE), /* pcrel_offset */
785
786 HOWTO (R_ARM_THM_MOVT_PREL, /* type */
787 0, /* rightshift */
788 2, /* size (0 = byte, 1 = short, 2 = long) */
789 16, /* bitsize */
790 TRUE, /* pc_relative */
791 0, /* bitpos */
792 complain_overflow_bitfield,/* complain_on_overflow */
793 bfd_elf_generic_reloc, /* special_function */
794 "R_ARM_THM_MOVT_PREL", /* name */
795 FALSE, /* partial_inplace */
796 0x040f70ff, /* src_mask */
797 0x040f70ff, /* dst_mask */
798 TRUE), /* pcrel_offset */
799
800 HOWTO (R_ARM_THM_JUMP19, /* type */
801 1, /* rightshift */
802 2, /* size (0 = byte, 1 = short, 2 = long) */
803 19, /* bitsize */
804 TRUE, /* pc_relative */
805 0, /* bitpos */
806 complain_overflow_signed,/* complain_on_overflow */
807 bfd_elf_generic_reloc, /* special_function */
808 "R_ARM_THM_JUMP19", /* name */
809 FALSE, /* partial_inplace */
810 0x043f2fff, /* src_mask */
811 0x043f2fff, /* dst_mask */
812 TRUE), /* pcrel_offset */
813
814 HOWTO (R_ARM_THM_JUMP6, /* type */
815 1, /* rightshift */
816 1, /* size (0 = byte, 1 = short, 2 = long) */
817 6, /* bitsize */
818 TRUE, /* pc_relative */
819 0, /* bitpos */
820 complain_overflow_unsigned,/* complain_on_overflow */
821 bfd_elf_generic_reloc, /* special_function */
822 "R_ARM_THM_JUMP6", /* name */
823 FALSE, /* partial_inplace */
824 0x02f8, /* src_mask */
825 0x02f8, /* dst_mask */
826 TRUE), /* pcrel_offset */
827
828 /* These are declared as 13-bit signed relocations because we can
829 address -4095 .. 4095(base) by altering ADDW to SUBW or vice
830 versa. */
831 HOWTO (R_ARM_THM_ALU_PREL_11_0,/* type */
832 0, /* rightshift */
833 2, /* size (0 = byte, 1 = short, 2 = long) */
834 13, /* bitsize */
835 TRUE, /* pc_relative */
836 0, /* bitpos */
837 complain_overflow_dont,/* complain_on_overflow */
838 bfd_elf_generic_reloc, /* special_function */
839 "R_ARM_THM_ALU_PREL_11_0",/* name */
840 FALSE, /* partial_inplace */
841 0xffffffff, /* src_mask */
842 0xffffffff, /* dst_mask */
843 TRUE), /* pcrel_offset */
844
845 HOWTO (R_ARM_THM_PC12, /* type */
846 0, /* rightshift */
847 2, /* size (0 = byte, 1 = short, 2 = long) */
848 13, /* bitsize */
849 TRUE, /* pc_relative */
850 0, /* bitpos */
851 complain_overflow_dont,/* complain_on_overflow */
852 bfd_elf_generic_reloc, /* special_function */
853 "R_ARM_THM_PC12", /* name */
854 FALSE, /* partial_inplace */
855 0xffffffff, /* src_mask */
856 0xffffffff, /* dst_mask */
857 TRUE), /* pcrel_offset */
858
859 HOWTO (R_ARM_ABS32_NOI, /* type */
860 0, /* rightshift */
861 2, /* size (0 = byte, 1 = short, 2 = long) */
862 32, /* bitsize */
863 FALSE, /* pc_relative */
864 0, /* bitpos */
865 complain_overflow_dont,/* complain_on_overflow */
866 bfd_elf_generic_reloc, /* special_function */
867 "R_ARM_ABS32_NOI", /* name */
868 FALSE, /* partial_inplace */
869 0xffffffff, /* src_mask */
870 0xffffffff, /* dst_mask */
871 FALSE), /* pcrel_offset */
872
873 HOWTO (R_ARM_REL32_NOI, /* type */
874 0, /* rightshift */
875 2, /* size (0 = byte, 1 = short, 2 = long) */
876 32, /* bitsize */
877 TRUE, /* pc_relative */
878 0, /* bitpos */
879 complain_overflow_dont,/* complain_on_overflow */
880 bfd_elf_generic_reloc, /* special_function */
881 "R_ARM_REL32_NOI", /* name */
882 FALSE, /* partial_inplace */
883 0xffffffff, /* src_mask */
884 0xffffffff, /* dst_mask */
885 FALSE), /* pcrel_offset */
886
887 /* Group relocations. */
888
889 HOWTO (R_ARM_ALU_PC_G0_NC, /* type */
890 0, /* rightshift */
891 2, /* size (0 = byte, 1 = short, 2 = long) */
892 32, /* bitsize */
893 TRUE, /* pc_relative */
894 0, /* bitpos */
895 complain_overflow_dont,/* complain_on_overflow */
896 bfd_elf_generic_reloc, /* special_function */
897 "R_ARM_ALU_PC_G0_NC", /* name */
898 FALSE, /* partial_inplace */
899 0xffffffff, /* src_mask */
900 0xffffffff, /* dst_mask */
901 TRUE), /* pcrel_offset */
902
903 HOWTO (R_ARM_ALU_PC_G0, /* type */
904 0, /* rightshift */
905 2, /* size (0 = byte, 1 = short, 2 = long) */
906 32, /* bitsize */
907 TRUE, /* pc_relative */
908 0, /* bitpos */
909 complain_overflow_dont,/* complain_on_overflow */
910 bfd_elf_generic_reloc, /* special_function */
911 "R_ARM_ALU_PC_G0", /* name */
912 FALSE, /* partial_inplace */
913 0xffffffff, /* src_mask */
914 0xffffffff, /* dst_mask */
915 TRUE), /* pcrel_offset */
916
917 HOWTO (R_ARM_ALU_PC_G1_NC, /* type */
918 0, /* rightshift */
919 2, /* size (0 = byte, 1 = short, 2 = long) */
920 32, /* bitsize */
921 TRUE, /* pc_relative */
922 0, /* bitpos */
923 complain_overflow_dont,/* complain_on_overflow */
924 bfd_elf_generic_reloc, /* special_function */
925 "R_ARM_ALU_PC_G1_NC", /* name */
926 FALSE, /* partial_inplace */
927 0xffffffff, /* src_mask */
928 0xffffffff, /* dst_mask */
929 TRUE), /* pcrel_offset */
930
931 HOWTO (R_ARM_ALU_PC_G1, /* type */
932 0, /* rightshift */
933 2, /* size (0 = byte, 1 = short, 2 = long) */
934 32, /* bitsize */
935 TRUE, /* pc_relative */
936 0, /* bitpos */
937 complain_overflow_dont,/* complain_on_overflow */
938 bfd_elf_generic_reloc, /* special_function */
939 "R_ARM_ALU_PC_G1", /* name */
940 FALSE, /* partial_inplace */
941 0xffffffff, /* src_mask */
942 0xffffffff, /* dst_mask */
943 TRUE), /* pcrel_offset */
944
945 HOWTO (R_ARM_ALU_PC_G2, /* type */
946 0, /* rightshift */
947 2, /* size (0 = byte, 1 = short, 2 = long) */
948 32, /* bitsize */
949 TRUE, /* pc_relative */
950 0, /* bitpos */
951 complain_overflow_dont,/* complain_on_overflow */
952 bfd_elf_generic_reloc, /* special_function */
953 "R_ARM_ALU_PC_G2", /* name */
954 FALSE, /* partial_inplace */
955 0xffffffff, /* src_mask */
956 0xffffffff, /* dst_mask */
957 TRUE), /* pcrel_offset */
958
959 HOWTO (R_ARM_LDR_PC_G1, /* type */
960 0, /* rightshift */
961 2, /* size (0 = byte, 1 = short, 2 = long) */
962 32, /* bitsize */
963 TRUE, /* pc_relative */
964 0, /* bitpos */
965 complain_overflow_dont,/* complain_on_overflow */
966 bfd_elf_generic_reloc, /* special_function */
967 "R_ARM_LDR_PC_G1", /* name */
968 FALSE, /* partial_inplace */
969 0xffffffff, /* src_mask */
970 0xffffffff, /* dst_mask */
971 TRUE), /* pcrel_offset */
972
973 HOWTO (R_ARM_LDR_PC_G2, /* type */
974 0, /* rightshift */
975 2, /* size (0 = byte, 1 = short, 2 = long) */
976 32, /* bitsize */
977 TRUE, /* pc_relative */
978 0, /* bitpos */
979 complain_overflow_dont,/* complain_on_overflow */
980 bfd_elf_generic_reloc, /* special_function */
981 "R_ARM_LDR_PC_G2", /* name */
982 FALSE, /* partial_inplace */
983 0xffffffff, /* src_mask */
984 0xffffffff, /* dst_mask */
985 TRUE), /* pcrel_offset */
986
987 HOWTO (R_ARM_LDRS_PC_G0, /* type */
988 0, /* rightshift */
989 2, /* size (0 = byte, 1 = short, 2 = long) */
990 32, /* bitsize */
991 TRUE, /* pc_relative */
992 0, /* bitpos */
993 complain_overflow_dont,/* complain_on_overflow */
994 bfd_elf_generic_reloc, /* special_function */
995 "R_ARM_LDRS_PC_G0", /* name */
996 FALSE, /* partial_inplace */
997 0xffffffff, /* src_mask */
998 0xffffffff, /* dst_mask */
999 TRUE), /* pcrel_offset */
1000
1001 HOWTO (R_ARM_LDRS_PC_G1, /* type */
1002 0, /* rightshift */
1003 2, /* size (0 = byte, 1 = short, 2 = long) */
1004 32, /* bitsize */
1005 TRUE, /* pc_relative */
1006 0, /* bitpos */
1007 complain_overflow_dont,/* complain_on_overflow */
1008 bfd_elf_generic_reloc, /* special_function */
1009 "R_ARM_LDRS_PC_G1", /* name */
1010 FALSE, /* partial_inplace */
1011 0xffffffff, /* src_mask */
1012 0xffffffff, /* dst_mask */
1013 TRUE), /* pcrel_offset */
1014
1015 HOWTO (R_ARM_LDRS_PC_G2, /* type */
1016 0, /* rightshift */
1017 2, /* size (0 = byte, 1 = short, 2 = long) */
1018 32, /* bitsize */
1019 TRUE, /* pc_relative */
1020 0, /* bitpos */
1021 complain_overflow_dont,/* complain_on_overflow */
1022 bfd_elf_generic_reloc, /* special_function */
1023 "R_ARM_LDRS_PC_G2", /* name */
1024 FALSE, /* partial_inplace */
1025 0xffffffff, /* src_mask */
1026 0xffffffff, /* dst_mask */
1027 TRUE), /* pcrel_offset */
1028
1029 HOWTO (R_ARM_LDC_PC_G0, /* type */
1030 0, /* rightshift */
1031 2, /* size (0 = byte, 1 = short, 2 = long) */
1032 32, /* bitsize */
1033 TRUE, /* pc_relative */
1034 0, /* bitpos */
1035 complain_overflow_dont,/* complain_on_overflow */
1036 bfd_elf_generic_reloc, /* special_function */
1037 "R_ARM_LDC_PC_G0", /* name */
1038 FALSE, /* partial_inplace */
1039 0xffffffff, /* src_mask */
1040 0xffffffff, /* dst_mask */
1041 TRUE), /* pcrel_offset */
1042
1043 HOWTO (R_ARM_LDC_PC_G1, /* type */
1044 0, /* rightshift */
1045 2, /* size (0 = byte, 1 = short, 2 = long) */
1046 32, /* bitsize */
1047 TRUE, /* pc_relative */
1048 0, /* bitpos */
1049 complain_overflow_dont,/* complain_on_overflow */
1050 bfd_elf_generic_reloc, /* special_function */
1051 "R_ARM_LDC_PC_G1", /* name */
1052 FALSE, /* partial_inplace */
1053 0xffffffff, /* src_mask */
1054 0xffffffff, /* dst_mask */
1055 TRUE), /* pcrel_offset */
1056
1057 HOWTO (R_ARM_LDC_PC_G2, /* type */
1058 0, /* rightshift */
1059 2, /* size (0 = byte, 1 = short, 2 = long) */
1060 32, /* bitsize */
1061 TRUE, /* pc_relative */
1062 0, /* bitpos */
1063 complain_overflow_dont,/* complain_on_overflow */
1064 bfd_elf_generic_reloc, /* special_function */
1065 "R_ARM_LDC_PC_G2", /* name */
1066 FALSE, /* partial_inplace */
1067 0xffffffff, /* src_mask */
1068 0xffffffff, /* dst_mask */
1069 TRUE), /* pcrel_offset */
1070
1071 HOWTO (R_ARM_ALU_SB_G0_NC, /* type */
1072 0, /* rightshift */
1073 2, /* size (0 = byte, 1 = short, 2 = long) */
1074 32, /* bitsize */
1075 TRUE, /* pc_relative */
1076 0, /* bitpos */
1077 complain_overflow_dont,/* complain_on_overflow */
1078 bfd_elf_generic_reloc, /* special_function */
1079 "R_ARM_ALU_SB_G0_NC", /* name */
1080 FALSE, /* partial_inplace */
1081 0xffffffff, /* src_mask */
1082 0xffffffff, /* dst_mask */
1083 TRUE), /* pcrel_offset */
1084
1085 HOWTO (R_ARM_ALU_SB_G0, /* type */
1086 0, /* rightshift */
1087 2, /* size (0 = byte, 1 = short, 2 = long) */
1088 32, /* bitsize */
1089 TRUE, /* pc_relative */
1090 0, /* bitpos */
1091 complain_overflow_dont,/* complain_on_overflow */
1092 bfd_elf_generic_reloc, /* special_function */
1093 "R_ARM_ALU_SB_G0", /* name */
1094 FALSE, /* partial_inplace */
1095 0xffffffff, /* src_mask */
1096 0xffffffff, /* dst_mask */
1097 TRUE), /* pcrel_offset */
1098
1099 HOWTO (R_ARM_ALU_SB_G1_NC, /* type */
1100 0, /* rightshift */
1101 2, /* size (0 = byte, 1 = short, 2 = long) */
1102 32, /* bitsize */
1103 TRUE, /* pc_relative */
1104 0, /* bitpos */
1105 complain_overflow_dont,/* complain_on_overflow */
1106 bfd_elf_generic_reloc, /* special_function */
1107 "R_ARM_ALU_SB_G1_NC", /* name */
1108 FALSE, /* partial_inplace */
1109 0xffffffff, /* src_mask */
1110 0xffffffff, /* dst_mask */
1111 TRUE), /* pcrel_offset */
1112
1113 HOWTO (R_ARM_ALU_SB_G1, /* type */
1114 0, /* rightshift */
1115 2, /* size (0 = byte, 1 = short, 2 = long) */
1116 32, /* bitsize */
1117 TRUE, /* pc_relative */
1118 0, /* bitpos */
1119 complain_overflow_dont,/* complain_on_overflow */
1120 bfd_elf_generic_reloc, /* special_function */
1121 "R_ARM_ALU_SB_G1", /* name */
1122 FALSE, /* partial_inplace */
1123 0xffffffff, /* src_mask */
1124 0xffffffff, /* dst_mask */
1125 TRUE), /* pcrel_offset */
1126
1127 HOWTO (R_ARM_ALU_SB_G2, /* type */
1128 0, /* rightshift */
1129 2, /* size (0 = byte, 1 = short, 2 = long) */
1130 32, /* bitsize */
1131 TRUE, /* pc_relative */
1132 0, /* bitpos */
1133 complain_overflow_dont,/* complain_on_overflow */
1134 bfd_elf_generic_reloc, /* special_function */
1135 "R_ARM_ALU_SB_G2", /* name */
1136 FALSE, /* partial_inplace */
1137 0xffffffff, /* src_mask */
1138 0xffffffff, /* dst_mask */
1139 TRUE), /* pcrel_offset */
1140
1141 HOWTO (R_ARM_LDR_SB_G0, /* type */
1142 0, /* rightshift */
1143 2, /* size (0 = byte, 1 = short, 2 = long) */
1144 32, /* bitsize */
1145 TRUE, /* pc_relative */
1146 0, /* bitpos */
1147 complain_overflow_dont,/* complain_on_overflow */
1148 bfd_elf_generic_reloc, /* special_function */
1149 "R_ARM_LDR_SB_G0", /* name */
1150 FALSE, /* partial_inplace */
1151 0xffffffff, /* src_mask */
1152 0xffffffff, /* dst_mask */
1153 TRUE), /* pcrel_offset */
1154
1155 HOWTO (R_ARM_LDR_SB_G1, /* type */
1156 0, /* rightshift */
1157 2, /* size (0 = byte, 1 = short, 2 = long) */
1158 32, /* bitsize */
1159 TRUE, /* pc_relative */
1160 0, /* bitpos */
1161 complain_overflow_dont,/* complain_on_overflow */
1162 bfd_elf_generic_reloc, /* special_function */
1163 "R_ARM_LDR_SB_G1", /* name */
1164 FALSE, /* partial_inplace */
1165 0xffffffff, /* src_mask */
1166 0xffffffff, /* dst_mask */
1167 TRUE), /* pcrel_offset */
1168
1169 HOWTO (R_ARM_LDR_SB_G2, /* type */
1170 0, /* rightshift */
1171 2, /* size (0 = byte, 1 = short, 2 = long) */
1172 32, /* bitsize */
1173 TRUE, /* pc_relative */
1174 0, /* bitpos */
1175 complain_overflow_dont,/* complain_on_overflow */
1176 bfd_elf_generic_reloc, /* special_function */
1177 "R_ARM_LDR_SB_G2", /* name */
1178 FALSE, /* partial_inplace */
1179 0xffffffff, /* src_mask */
1180 0xffffffff, /* dst_mask */
1181 TRUE), /* pcrel_offset */
1182
1183 HOWTO (R_ARM_LDRS_SB_G0, /* type */
1184 0, /* rightshift */
1185 2, /* size (0 = byte, 1 = short, 2 = long) */
1186 32, /* bitsize */
1187 TRUE, /* pc_relative */
1188 0, /* bitpos */
1189 complain_overflow_dont,/* complain_on_overflow */
1190 bfd_elf_generic_reloc, /* special_function */
1191 "R_ARM_LDRS_SB_G0", /* name */
1192 FALSE, /* partial_inplace */
1193 0xffffffff, /* src_mask */
1194 0xffffffff, /* dst_mask */
1195 TRUE), /* pcrel_offset */
1196
1197 HOWTO (R_ARM_LDRS_SB_G1, /* type */
1198 0, /* rightshift */
1199 2, /* size (0 = byte, 1 = short, 2 = long) */
1200 32, /* bitsize */
1201 TRUE, /* pc_relative */
1202 0, /* bitpos */
1203 complain_overflow_dont,/* complain_on_overflow */
1204 bfd_elf_generic_reloc, /* special_function */
1205 "R_ARM_LDRS_SB_G1", /* name */
1206 FALSE, /* partial_inplace */
1207 0xffffffff, /* src_mask */
1208 0xffffffff, /* dst_mask */
1209 TRUE), /* pcrel_offset */
1210
1211 HOWTO (R_ARM_LDRS_SB_G2, /* type */
1212 0, /* rightshift */
1213 2, /* size (0 = byte, 1 = short, 2 = long) */
1214 32, /* bitsize */
1215 TRUE, /* pc_relative */
1216 0, /* bitpos */
1217 complain_overflow_dont,/* complain_on_overflow */
1218 bfd_elf_generic_reloc, /* special_function */
1219 "R_ARM_LDRS_SB_G2", /* name */
1220 FALSE, /* partial_inplace */
1221 0xffffffff, /* src_mask */
1222 0xffffffff, /* dst_mask */
1223 TRUE), /* pcrel_offset */
1224
1225 HOWTO (R_ARM_LDC_SB_G0, /* type */
1226 0, /* rightshift */
1227 2, /* size (0 = byte, 1 = short, 2 = long) */
1228 32, /* bitsize */
1229 TRUE, /* pc_relative */
1230 0, /* bitpos */
1231 complain_overflow_dont,/* complain_on_overflow */
1232 bfd_elf_generic_reloc, /* special_function */
1233 "R_ARM_LDC_SB_G0", /* name */
1234 FALSE, /* partial_inplace */
1235 0xffffffff, /* src_mask */
1236 0xffffffff, /* dst_mask */
1237 TRUE), /* pcrel_offset */
1238
1239 HOWTO (R_ARM_LDC_SB_G1, /* type */
1240 0, /* rightshift */
1241 2, /* size (0 = byte, 1 = short, 2 = long) */
1242 32, /* bitsize */
1243 TRUE, /* pc_relative */
1244 0, /* bitpos */
1245 complain_overflow_dont,/* complain_on_overflow */
1246 bfd_elf_generic_reloc, /* special_function */
1247 "R_ARM_LDC_SB_G1", /* name */
1248 FALSE, /* partial_inplace */
1249 0xffffffff, /* src_mask */
1250 0xffffffff, /* dst_mask */
1251 TRUE), /* pcrel_offset */
1252
1253 HOWTO (R_ARM_LDC_SB_G2, /* type */
1254 0, /* rightshift */
1255 2, /* size (0 = byte, 1 = short, 2 = long) */
1256 32, /* bitsize */
1257 TRUE, /* pc_relative */
1258 0, /* bitpos */
1259 complain_overflow_dont,/* complain_on_overflow */
1260 bfd_elf_generic_reloc, /* special_function */
1261 "R_ARM_LDC_SB_G2", /* name */
1262 FALSE, /* partial_inplace */
1263 0xffffffff, /* src_mask */
1264 0xffffffff, /* dst_mask */
1265 TRUE), /* pcrel_offset */
1266
1267 /* End of group relocations. */
1268
1269 HOWTO (R_ARM_MOVW_BREL_NC, /* type */
1270 0, /* rightshift */
1271 2, /* size (0 = byte, 1 = short, 2 = long) */
1272 16, /* bitsize */
1273 FALSE, /* pc_relative */
1274 0, /* bitpos */
1275 complain_overflow_dont,/* complain_on_overflow */
1276 bfd_elf_generic_reloc, /* special_function */
1277 "R_ARM_MOVW_BREL_NC", /* name */
1278 FALSE, /* partial_inplace */
1279 0x0000ffff, /* src_mask */
1280 0x0000ffff, /* dst_mask */
1281 FALSE), /* pcrel_offset */
1282
1283 HOWTO (R_ARM_MOVT_BREL, /* type */
1284 0, /* rightshift */
1285 2, /* size (0 = byte, 1 = short, 2 = long) */
1286 16, /* bitsize */
1287 FALSE, /* pc_relative */
1288 0, /* bitpos */
1289 complain_overflow_bitfield,/* complain_on_overflow */
1290 bfd_elf_generic_reloc, /* special_function */
1291 "R_ARM_MOVT_BREL", /* name */
1292 FALSE, /* partial_inplace */
1293 0x0000ffff, /* src_mask */
1294 0x0000ffff, /* dst_mask */
1295 FALSE), /* pcrel_offset */
1296
1297 HOWTO (R_ARM_MOVW_BREL, /* type */
1298 0, /* rightshift */
1299 2, /* size (0 = byte, 1 = short, 2 = long) */
1300 16, /* bitsize */
1301 FALSE, /* pc_relative */
1302 0, /* bitpos */
1303 complain_overflow_dont,/* complain_on_overflow */
1304 bfd_elf_generic_reloc, /* special_function */
1305 "R_ARM_MOVW_BREL", /* name */
1306 FALSE, /* partial_inplace */
1307 0x0000ffff, /* src_mask */
1308 0x0000ffff, /* dst_mask */
1309 FALSE), /* pcrel_offset */
1310
1311 HOWTO (R_ARM_THM_MOVW_BREL_NC,/* type */
1312 0, /* rightshift */
1313 2, /* size (0 = byte, 1 = short, 2 = long) */
1314 16, /* bitsize */
1315 FALSE, /* pc_relative */
1316 0, /* bitpos */
1317 complain_overflow_dont,/* complain_on_overflow */
1318 bfd_elf_generic_reloc, /* special_function */
1319 "R_ARM_THM_MOVW_BREL_NC",/* name */
1320 FALSE, /* partial_inplace */
1321 0x040f70ff, /* src_mask */
1322 0x040f70ff, /* dst_mask */
1323 FALSE), /* pcrel_offset */
1324
1325 HOWTO (R_ARM_THM_MOVT_BREL, /* type */
1326 0, /* rightshift */
1327 2, /* size (0 = byte, 1 = short, 2 = long) */
1328 16, /* bitsize */
1329 FALSE, /* pc_relative */
1330 0, /* bitpos */
1331 complain_overflow_bitfield,/* complain_on_overflow */
1332 bfd_elf_generic_reloc, /* special_function */
1333 "R_ARM_THM_MOVT_BREL", /* name */
1334 FALSE, /* partial_inplace */
1335 0x040f70ff, /* src_mask */
1336 0x040f70ff, /* dst_mask */
1337 FALSE), /* pcrel_offset */
1338
1339 HOWTO (R_ARM_THM_MOVW_BREL, /* type */
1340 0, /* rightshift */
1341 2, /* size (0 = byte, 1 = short, 2 = long) */
1342 16, /* bitsize */
1343 FALSE, /* pc_relative */
1344 0, /* bitpos */
1345 complain_overflow_dont,/* complain_on_overflow */
1346 bfd_elf_generic_reloc, /* special_function */
1347 "R_ARM_THM_MOVW_BREL", /* name */
1348 FALSE, /* partial_inplace */
1349 0x040f70ff, /* src_mask */
1350 0x040f70ff, /* dst_mask */
1351 FALSE), /* pcrel_offset */
1352
1353 EMPTY_HOWTO (90), /* unallocated */
1354 EMPTY_HOWTO (91),
1355 EMPTY_HOWTO (92),
1356 EMPTY_HOWTO (93),
1357
1358 HOWTO (R_ARM_PLT32_ABS, /* type */
1359 0, /* rightshift */
1360 2, /* size (0 = byte, 1 = short, 2 = long) */
1361 32, /* bitsize */
1362 FALSE, /* pc_relative */
1363 0, /* bitpos */
1364 complain_overflow_dont,/* complain_on_overflow */
1365 bfd_elf_generic_reloc, /* special_function */
1366 "R_ARM_PLT32_ABS", /* name */
1367 FALSE, /* partial_inplace */
1368 0xffffffff, /* src_mask */
1369 0xffffffff, /* dst_mask */
1370 FALSE), /* pcrel_offset */
1371
1372 HOWTO (R_ARM_GOT_ABS, /* type */
1373 0, /* rightshift */
1374 2, /* size (0 = byte, 1 = short, 2 = long) */
1375 32, /* bitsize */
1376 FALSE, /* pc_relative */
1377 0, /* bitpos */
1378 complain_overflow_dont,/* complain_on_overflow */
1379 bfd_elf_generic_reloc, /* special_function */
1380 "R_ARM_GOT_ABS", /* name */
1381 FALSE, /* partial_inplace */
1382 0xffffffff, /* src_mask */
1383 0xffffffff, /* dst_mask */
1384 FALSE), /* pcrel_offset */
1385
1386 HOWTO (R_ARM_GOT_PREL, /* type */
1387 0, /* rightshift */
1388 2, /* size (0 = byte, 1 = short, 2 = long) */
1389 32, /* bitsize */
1390 TRUE, /* pc_relative */
1391 0, /* bitpos */
1392 complain_overflow_dont, /* complain_on_overflow */
1393 bfd_elf_generic_reloc, /* special_function */
1394 "R_ARM_GOT_PREL", /* name */
1395 FALSE, /* partial_inplace */
1396 0xffffffff, /* src_mask */
1397 0xffffffff, /* dst_mask */
1398 TRUE), /* pcrel_offset */
1399
1400 HOWTO (R_ARM_GOT_BREL12, /* type */
1401 0, /* rightshift */
1402 2, /* size (0 = byte, 1 = short, 2 = long) */
1403 12, /* bitsize */
1404 FALSE, /* pc_relative */
1405 0, /* bitpos */
1406 complain_overflow_bitfield,/* complain_on_overflow */
1407 bfd_elf_generic_reloc, /* special_function */
1408 "R_ARM_GOT_BREL12", /* name */
1409 FALSE, /* partial_inplace */
1410 0x00000fff, /* src_mask */
1411 0x00000fff, /* dst_mask */
1412 FALSE), /* pcrel_offset */
1413
1414 HOWTO (R_ARM_GOTOFF12, /* type */
1415 0, /* rightshift */
1416 2, /* size (0 = byte, 1 = short, 2 = long) */
1417 12, /* bitsize */
1418 FALSE, /* pc_relative */
1419 0, /* bitpos */
1420 complain_overflow_bitfield,/* complain_on_overflow */
1421 bfd_elf_generic_reloc, /* special_function */
1422 "R_ARM_GOTOFF12", /* name */
1423 FALSE, /* partial_inplace */
1424 0x00000fff, /* src_mask */
1425 0x00000fff, /* dst_mask */
1426 FALSE), /* pcrel_offset */
1427
1428 EMPTY_HOWTO (R_ARM_GOTRELAX), /* reserved for future GOT-load optimizations */
1429
1430 /* GNU extension to record C++ vtable member usage */
1431 HOWTO (R_ARM_GNU_VTENTRY, /* type */
1432 0, /* rightshift */
1433 2, /* size (0 = byte, 1 = short, 2 = long) */
1434 0, /* bitsize */
1435 FALSE, /* pc_relative */
1436 0, /* bitpos */
1437 complain_overflow_dont, /* complain_on_overflow */
1438 _bfd_elf_rel_vtable_reloc_fn, /* special_function */
1439 "R_ARM_GNU_VTENTRY", /* name */
1440 FALSE, /* partial_inplace */
1441 0, /* src_mask */
1442 0, /* dst_mask */
1443 FALSE), /* pcrel_offset */
1444
1445 /* GNU extension to record C++ vtable hierarchy */
1446 HOWTO (R_ARM_GNU_VTINHERIT, /* type */
1447 0, /* rightshift */
1448 2, /* size (0 = byte, 1 = short, 2 = long) */
1449 0, /* bitsize */
1450 FALSE, /* pc_relative */
1451 0, /* bitpos */
1452 complain_overflow_dont, /* complain_on_overflow */
1453 NULL, /* special_function */
1454 "R_ARM_GNU_VTINHERIT", /* name */
1455 FALSE, /* partial_inplace */
1456 0, /* src_mask */
1457 0, /* dst_mask */
1458 FALSE), /* pcrel_offset */
1459
1460 HOWTO (R_ARM_THM_JUMP11, /* type */
1461 1, /* rightshift */
1462 1, /* size (0 = byte, 1 = short, 2 = long) */
1463 11, /* bitsize */
1464 TRUE, /* pc_relative */
1465 0, /* bitpos */
1466 complain_overflow_signed, /* complain_on_overflow */
1467 bfd_elf_generic_reloc, /* special_function */
1468 "R_ARM_THM_JUMP11", /* name */
1469 FALSE, /* partial_inplace */
1470 0x000007ff, /* src_mask */
1471 0x000007ff, /* dst_mask */
1472 TRUE), /* pcrel_offset */
1473
1474 HOWTO (R_ARM_THM_JUMP8, /* type */
1475 1, /* rightshift */
1476 1, /* size (0 = byte, 1 = short, 2 = long) */
1477 8, /* bitsize */
1478 TRUE, /* pc_relative */
1479 0, /* bitpos */
1480 complain_overflow_signed, /* complain_on_overflow */
1481 bfd_elf_generic_reloc, /* special_function */
1482 "R_ARM_THM_JUMP8", /* name */
1483 FALSE, /* partial_inplace */
1484 0x000000ff, /* src_mask */
1485 0x000000ff, /* dst_mask */
1486 TRUE), /* pcrel_offset */
1487
1488 /* TLS relocations */
1489 HOWTO (R_ARM_TLS_GD32, /* type */
1490 0, /* rightshift */
1491 2, /* size (0 = byte, 1 = short, 2 = long) */
1492 32, /* bitsize */
1493 FALSE, /* pc_relative */
1494 0, /* bitpos */
1495 complain_overflow_bitfield,/* complain_on_overflow */
1496 NULL, /* special_function */
1497 "R_ARM_TLS_GD32", /* name */
1498 TRUE, /* partial_inplace */
1499 0xffffffff, /* src_mask */
1500 0xffffffff, /* dst_mask */
1501 FALSE), /* pcrel_offset */
1502
1503 HOWTO (R_ARM_TLS_LDM32, /* type */
1504 0, /* rightshift */
1505 2, /* size (0 = byte, 1 = short, 2 = long) */
1506 32, /* bitsize */
1507 FALSE, /* pc_relative */
1508 0, /* bitpos */
1509 complain_overflow_bitfield,/* complain_on_overflow */
1510 bfd_elf_generic_reloc, /* special_function */
1511 "R_ARM_TLS_LDM32", /* name */
1512 TRUE, /* partial_inplace */
1513 0xffffffff, /* src_mask */
1514 0xffffffff, /* dst_mask */
1515 FALSE), /* pcrel_offset */
1516
1517 HOWTO (R_ARM_TLS_LDO32, /* type */
1518 0, /* rightshift */
1519 2, /* size (0 = byte, 1 = short, 2 = long) */
1520 32, /* bitsize */
1521 FALSE, /* pc_relative */
1522 0, /* bitpos */
1523 complain_overflow_bitfield,/* complain_on_overflow */
1524 bfd_elf_generic_reloc, /* special_function */
1525 "R_ARM_TLS_LDO32", /* name */
1526 TRUE, /* partial_inplace */
1527 0xffffffff, /* src_mask */
1528 0xffffffff, /* dst_mask */
1529 FALSE), /* pcrel_offset */
1530
1531 HOWTO (R_ARM_TLS_IE32, /* type */
1532 0, /* rightshift */
1533 2, /* size (0 = byte, 1 = short, 2 = long) */
1534 32, /* bitsize */
1535 FALSE, /* pc_relative */
1536 0, /* bitpos */
1537 complain_overflow_bitfield,/* complain_on_overflow */
1538 NULL, /* special_function */
1539 "R_ARM_TLS_IE32", /* name */
1540 TRUE, /* partial_inplace */
1541 0xffffffff, /* src_mask */
1542 0xffffffff, /* dst_mask */
1543 FALSE), /* pcrel_offset */
1544
1545 HOWTO (R_ARM_TLS_LE32, /* type */
1546 0, /* rightshift */
1547 2, /* size (0 = byte, 1 = short, 2 = long) */
1548 32, /* bitsize */
1549 FALSE, /* pc_relative */
1550 0, /* bitpos */
1551 complain_overflow_bitfield,/* complain_on_overflow */
1552 bfd_elf_generic_reloc, /* special_function */
1553 "R_ARM_TLS_LE32", /* name */
1554 TRUE, /* partial_inplace */
1555 0xffffffff, /* src_mask */
1556 0xffffffff, /* dst_mask */
1557 FALSE), /* pcrel_offset */
1558
1559 HOWTO (R_ARM_TLS_LDO12, /* type */
1560 0, /* rightshift */
1561 2, /* size (0 = byte, 1 = short, 2 = long) */
1562 12, /* bitsize */
1563 FALSE, /* pc_relative */
1564 0, /* bitpos */
1565 complain_overflow_bitfield,/* complain_on_overflow */
1566 bfd_elf_generic_reloc, /* special_function */
1567 "R_ARM_TLS_LDO12", /* name */
1568 FALSE, /* partial_inplace */
1569 0x00000fff, /* src_mask */
1570 0x00000fff, /* dst_mask */
1571 FALSE), /* pcrel_offset */
1572
1573 HOWTO (R_ARM_TLS_LE12, /* type */
1574 0, /* rightshift */
1575 2, /* size (0 = byte, 1 = short, 2 = long) */
1576 12, /* bitsize */
1577 FALSE, /* pc_relative */
1578 0, /* bitpos */
1579 complain_overflow_bitfield,/* complain_on_overflow */
1580 bfd_elf_generic_reloc, /* special_function */
1581 "R_ARM_TLS_LE12", /* name */
1582 FALSE, /* partial_inplace */
1583 0x00000fff, /* src_mask */
1584 0x00000fff, /* dst_mask */
1585 FALSE), /* pcrel_offset */
1586
1587 HOWTO (R_ARM_TLS_IE12GP, /* type */
1588 0, /* rightshift */
1589 2, /* size (0 = byte, 1 = short, 2 = long) */
1590 12, /* bitsize */
1591 FALSE, /* pc_relative */
1592 0, /* bitpos */
1593 complain_overflow_bitfield,/* complain_on_overflow */
1594 bfd_elf_generic_reloc, /* special_function */
1595 "R_ARM_TLS_IE12GP", /* name */
1596 FALSE, /* partial_inplace */
1597 0x00000fff, /* src_mask */
1598 0x00000fff, /* dst_mask */
1599 FALSE), /* pcrel_offset */
1600 };
1601
1602 /* 112-127 private relocations
1603 128 R_ARM_ME_TOO, obsolete
1604 129-255 unallocated in AAELF.
1605
1606 249-255 extended, currently unused, relocations: */
1607
1608 static reloc_howto_type elf32_arm_howto_table_2[4] =
1609 {
1610 HOWTO (R_ARM_RREL32, /* type */
1611 0, /* rightshift */
1612 0, /* size (0 = byte, 1 = short, 2 = long) */
1613 0, /* bitsize */
1614 FALSE, /* pc_relative */
1615 0, /* bitpos */
1616 complain_overflow_dont,/* complain_on_overflow */
1617 bfd_elf_generic_reloc, /* special_function */
1618 "R_ARM_RREL32", /* name */
1619 FALSE, /* partial_inplace */
1620 0, /* src_mask */
1621 0, /* dst_mask */
1622 FALSE), /* pcrel_offset */
1623
1624 HOWTO (R_ARM_RABS32, /* type */
1625 0, /* rightshift */
1626 0, /* size (0 = byte, 1 = short, 2 = long) */
1627 0, /* bitsize */
1628 FALSE, /* pc_relative */
1629 0, /* bitpos */
1630 complain_overflow_dont,/* complain_on_overflow */
1631 bfd_elf_generic_reloc, /* special_function */
1632 "R_ARM_RABS32", /* name */
1633 FALSE, /* partial_inplace */
1634 0, /* src_mask */
1635 0, /* dst_mask */
1636 FALSE), /* pcrel_offset */
1637
1638 HOWTO (R_ARM_RPC24, /* type */
1639 0, /* rightshift */
1640 0, /* size (0 = byte, 1 = short, 2 = long) */
1641 0, /* bitsize */
1642 FALSE, /* pc_relative */
1643 0, /* bitpos */
1644 complain_overflow_dont,/* complain_on_overflow */
1645 bfd_elf_generic_reloc, /* special_function */
1646 "R_ARM_RPC24", /* name */
1647 FALSE, /* partial_inplace */
1648 0, /* src_mask */
1649 0, /* dst_mask */
1650 FALSE), /* pcrel_offset */
1651
1652 HOWTO (R_ARM_RBASE, /* type */
1653 0, /* rightshift */
1654 0, /* size (0 = byte, 1 = short, 2 = long) */
1655 0, /* bitsize */
1656 FALSE, /* pc_relative */
1657 0, /* bitpos */
1658 complain_overflow_dont,/* complain_on_overflow */
1659 bfd_elf_generic_reloc, /* special_function */
1660 "R_ARM_RBASE", /* name */
1661 FALSE, /* partial_inplace */
1662 0, /* src_mask */
1663 0, /* dst_mask */
1664 FALSE) /* pcrel_offset */
1665 };
1666
1667 static reloc_howto_type *
1668 elf32_arm_howto_from_type (unsigned int r_type)
1669 {
1670 if (r_type < NUM_ELEM (elf32_arm_howto_table_1))
1671 return &elf32_arm_howto_table_1[r_type];
1672
1673 if (r_type >= R_ARM_RREL32
1674 && r_type < R_ARM_RREL32 + NUM_ELEM (elf32_arm_howto_table_2))
1675 return &elf32_arm_howto_table_2[r_type - R_ARM_RREL32];
1676
1677 return NULL;
1678 }
1679
1680 static void
1681 elf32_arm_info_to_howto (bfd * abfd ATTRIBUTE_UNUSED, arelent * bfd_reloc,
1682 Elf_Internal_Rela * elf_reloc)
1683 {
1684 unsigned int r_type;
1685
1686 r_type = ELF32_R_TYPE (elf_reloc->r_info);
1687 bfd_reloc->howto = elf32_arm_howto_from_type (r_type);
1688 }
1689
1690 struct elf32_arm_reloc_map
1691 {
1692 bfd_reloc_code_real_type bfd_reloc_val;
1693 unsigned char elf_reloc_val;
1694 };
1695
1696 /* All entries in this list must also be present in elf32_arm_howto_table. */
1697 static const struct elf32_arm_reloc_map elf32_arm_reloc_map[] =
1698 {
1699 {BFD_RELOC_NONE, R_ARM_NONE},
1700 {BFD_RELOC_ARM_PCREL_BRANCH, R_ARM_PC24},
1701 {BFD_RELOC_ARM_PCREL_CALL, R_ARM_CALL},
1702 {BFD_RELOC_ARM_PCREL_JUMP, R_ARM_JUMP24},
1703 {BFD_RELOC_ARM_PCREL_BLX, R_ARM_XPC25},
1704 {BFD_RELOC_THUMB_PCREL_BLX, R_ARM_THM_XPC22},
1705 {BFD_RELOC_32, R_ARM_ABS32},
1706 {BFD_RELOC_32_PCREL, R_ARM_REL32},
1707 {BFD_RELOC_8, R_ARM_ABS8},
1708 {BFD_RELOC_16, R_ARM_ABS16},
1709 {BFD_RELOC_ARM_OFFSET_IMM, R_ARM_ABS12},
1710 {BFD_RELOC_ARM_THUMB_OFFSET, R_ARM_THM_ABS5},
1711 {BFD_RELOC_THUMB_PCREL_BRANCH25, R_ARM_THM_JUMP24},
1712 {BFD_RELOC_THUMB_PCREL_BRANCH23, R_ARM_THM_CALL},
1713 {BFD_RELOC_THUMB_PCREL_BRANCH12, R_ARM_THM_JUMP11},
1714 {BFD_RELOC_THUMB_PCREL_BRANCH20, R_ARM_THM_JUMP19},
1715 {BFD_RELOC_THUMB_PCREL_BRANCH9, R_ARM_THM_JUMP8},
1716 {BFD_RELOC_THUMB_PCREL_BRANCH7, R_ARM_THM_JUMP6},
1717 {BFD_RELOC_ARM_GLOB_DAT, R_ARM_GLOB_DAT},
1718 {BFD_RELOC_ARM_JUMP_SLOT, R_ARM_JUMP_SLOT},
1719 {BFD_RELOC_ARM_RELATIVE, R_ARM_RELATIVE},
1720 {BFD_RELOC_ARM_GOTOFF, R_ARM_GOTOFF32},
1721 {BFD_RELOC_ARM_GOTPC, R_ARM_GOTPC},
1722 {BFD_RELOC_ARM_GOT32, R_ARM_GOT32},
1723 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1724 {BFD_RELOC_ARM_TARGET1, R_ARM_TARGET1},
1725 {BFD_RELOC_ARM_ROSEGREL32, R_ARM_ROSEGREL32},
1726 {BFD_RELOC_ARM_SBREL32, R_ARM_SBREL32},
1727 {BFD_RELOC_ARM_PREL31, R_ARM_PREL31},
1728 {BFD_RELOC_ARM_TARGET2, R_ARM_TARGET2},
1729 {BFD_RELOC_ARM_PLT32, R_ARM_PLT32},
1730 {BFD_RELOC_ARM_TLS_GD32, R_ARM_TLS_GD32},
1731 {BFD_RELOC_ARM_TLS_LDO32, R_ARM_TLS_LDO32},
1732 {BFD_RELOC_ARM_TLS_LDM32, R_ARM_TLS_LDM32},
1733 {BFD_RELOC_ARM_TLS_DTPMOD32, R_ARM_TLS_DTPMOD32},
1734 {BFD_RELOC_ARM_TLS_DTPOFF32, R_ARM_TLS_DTPOFF32},
1735 {BFD_RELOC_ARM_TLS_TPOFF32, R_ARM_TLS_TPOFF32},
1736 {BFD_RELOC_ARM_TLS_IE32, R_ARM_TLS_IE32},
1737 {BFD_RELOC_ARM_TLS_LE32, R_ARM_TLS_LE32},
1738 {BFD_RELOC_VTABLE_INHERIT, R_ARM_GNU_VTINHERIT},
1739 {BFD_RELOC_VTABLE_ENTRY, R_ARM_GNU_VTENTRY},
1740 {BFD_RELOC_ARM_MOVW, R_ARM_MOVW_ABS_NC},
1741 {BFD_RELOC_ARM_MOVT, R_ARM_MOVT_ABS},
1742 {BFD_RELOC_ARM_MOVW_PCREL, R_ARM_MOVW_PREL_NC},
1743 {BFD_RELOC_ARM_MOVT_PCREL, R_ARM_MOVT_PREL},
1744 {BFD_RELOC_ARM_THUMB_MOVW, R_ARM_THM_MOVW_ABS_NC},
1745 {BFD_RELOC_ARM_THUMB_MOVT, R_ARM_THM_MOVT_ABS},
1746 {BFD_RELOC_ARM_THUMB_MOVW_PCREL, R_ARM_THM_MOVW_PREL_NC},
1747 {BFD_RELOC_ARM_THUMB_MOVT_PCREL, R_ARM_THM_MOVT_PREL},
1748 {BFD_RELOC_ARM_ALU_PC_G0_NC, R_ARM_ALU_PC_G0_NC},
1749 {BFD_RELOC_ARM_ALU_PC_G0, R_ARM_ALU_PC_G0},
1750 {BFD_RELOC_ARM_ALU_PC_G1_NC, R_ARM_ALU_PC_G1_NC},
1751 {BFD_RELOC_ARM_ALU_PC_G1, R_ARM_ALU_PC_G1},
1752 {BFD_RELOC_ARM_ALU_PC_G2, R_ARM_ALU_PC_G2},
1753 {BFD_RELOC_ARM_LDR_PC_G0, R_ARM_LDR_PC_G0},
1754 {BFD_RELOC_ARM_LDR_PC_G1, R_ARM_LDR_PC_G1},
1755 {BFD_RELOC_ARM_LDR_PC_G2, R_ARM_LDR_PC_G2},
1756 {BFD_RELOC_ARM_LDRS_PC_G0, R_ARM_LDRS_PC_G0},
1757 {BFD_RELOC_ARM_LDRS_PC_G1, R_ARM_LDRS_PC_G1},
1758 {BFD_RELOC_ARM_LDRS_PC_G2, R_ARM_LDRS_PC_G2},
1759 {BFD_RELOC_ARM_LDC_PC_G0, R_ARM_LDC_PC_G0},
1760 {BFD_RELOC_ARM_LDC_PC_G1, R_ARM_LDC_PC_G1},
1761 {BFD_RELOC_ARM_LDC_PC_G2, R_ARM_LDC_PC_G2},
1762 {BFD_RELOC_ARM_ALU_SB_G0_NC, R_ARM_ALU_SB_G0_NC},
1763 {BFD_RELOC_ARM_ALU_SB_G0, R_ARM_ALU_SB_G0},
1764 {BFD_RELOC_ARM_ALU_SB_G1_NC, R_ARM_ALU_SB_G1_NC},
1765 {BFD_RELOC_ARM_ALU_SB_G1, R_ARM_ALU_SB_G1},
1766 {BFD_RELOC_ARM_ALU_SB_G2, R_ARM_ALU_SB_G2},
1767 {BFD_RELOC_ARM_LDR_SB_G0, R_ARM_LDR_SB_G0},
1768 {BFD_RELOC_ARM_LDR_SB_G1, R_ARM_LDR_SB_G1},
1769 {BFD_RELOC_ARM_LDR_SB_G2, R_ARM_LDR_SB_G2},
1770 {BFD_RELOC_ARM_LDRS_SB_G0, R_ARM_LDRS_SB_G0},
1771 {BFD_RELOC_ARM_LDRS_SB_G1, R_ARM_LDRS_SB_G1},
1772 {BFD_RELOC_ARM_LDRS_SB_G2, R_ARM_LDRS_SB_G2},
1773 {BFD_RELOC_ARM_LDC_SB_G0, R_ARM_LDC_SB_G0},
1774 {BFD_RELOC_ARM_LDC_SB_G1, R_ARM_LDC_SB_G1},
1775 {BFD_RELOC_ARM_LDC_SB_G2, R_ARM_LDC_SB_G2}
1776 };
1777
1778 static reloc_howto_type *
1779 elf32_arm_reloc_type_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1780 bfd_reloc_code_real_type code)
1781 {
1782 unsigned int i;
1783 for (i = 0; i < NUM_ELEM (elf32_arm_reloc_map); i ++)
1784 if (elf32_arm_reloc_map[i].bfd_reloc_val == code)
1785 return elf32_arm_howto_from_type (elf32_arm_reloc_map[i].elf_reloc_val);
1786
1787 return NULL;
1788 }
1789
1790 static reloc_howto_type *
1791 elf32_arm_reloc_name_lookup (bfd *abfd ATTRIBUTE_UNUSED,
1792 const char *r_name)
1793 {
1794 unsigned int i;
1795
1796 for (i = 0;
1797 i < (sizeof (elf32_arm_howto_table_1)
1798 / sizeof (elf32_arm_howto_table_1[0]));
1799 i++)
1800 if (elf32_arm_howto_table_1[i].name != NULL
1801 && strcasecmp (elf32_arm_howto_table_1[i].name, r_name) == 0)
1802 return &elf32_arm_howto_table_1[i];
1803
1804 for (i = 0;
1805 i < (sizeof (elf32_arm_howto_table_2)
1806 / sizeof (elf32_arm_howto_table_2[0]));
1807 i++)
1808 if (elf32_arm_howto_table_2[i].name != NULL
1809 && strcasecmp (elf32_arm_howto_table_2[i].name, r_name) == 0)
1810 return &elf32_arm_howto_table_2[i];
1811
1812 return NULL;
1813 }
1814
1815 /* Support for core dump NOTE sections */
1816 static bfd_boolean
1817 elf32_arm_nabi_grok_prstatus (bfd *abfd, Elf_Internal_Note *note)
1818 {
1819 int offset;
1820 size_t size;
1821
1822 switch (note->descsz)
1823 {
1824 default:
1825 return FALSE;
1826
1827 case 148: /* Linux/ARM 32-bit*/
1828 /* pr_cursig */
1829 elf_tdata (abfd)->core_signal = bfd_get_16 (abfd, note->descdata + 12);
1830
1831 /* pr_pid */
1832 elf_tdata (abfd)->core_pid = bfd_get_32 (abfd, note->descdata + 24);
1833
1834 /* pr_reg */
1835 offset = 72;
1836 size = 72;
1837
1838 break;
1839 }
1840
1841 /* Make a ".reg/999" section. */
1842 return _bfd_elfcore_make_pseudosection (abfd, ".reg",
1843 size, note->descpos + offset);
1844 }
1845
1846 static bfd_boolean
1847 elf32_arm_nabi_grok_psinfo (bfd *abfd, Elf_Internal_Note *note)
1848 {
1849 switch (note->descsz)
1850 {
1851 default:
1852 return FALSE;
1853
1854 case 124: /* Linux/ARM elf_prpsinfo */
1855 elf_tdata (abfd)->core_program
1856 = _bfd_elfcore_strndup (abfd, note->descdata + 28, 16);
1857 elf_tdata (abfd)->core_command
1858 = _bfd_elfcore_strndup (abfd, note->descdata + 44, 80);
1859 }
1860
1861 /* Note that for some reason, a spurious space is tacked
1862 onto the end of the args in some (at least one anyway)
1863 implementations, so strip it off if it exists. */
1864
1865 {
1866 char *command = elf_tdata (abfd)->core_command;
1867 int n = strlen (command);
1868
1869 if (0 < n && command[n - 1] == ' ')
1870 command[n - 1] = '\0';
1871 }
1872
1873 return TRUE;
1874 }
1875
1876 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vec
1877 #define TARGET_LITTLE_NAME "elf32-littlearm"
1878 #define TARGET_BIG_SYM bfd_elf32_bigarm_vec
1879 #define TARGET_BIG_NAME "elf32-bigarm"
1880
1881 #define elf_backend_grok_prstatus elf32_arm_nabi_grok_prstatus
1882 #define elf_backend_grok_psinfo elf32_arm_nabi_grok_psinfo
1883
1884 typedef unsigned long int insn32;
1885 typedef unsigned short int insn16;
1886
1887 /* In lieu of proper flags, assume all EABIv4 or later objects are
1888 interworkable. */
1889 #define INTERWORK_FLAG(abfd) \
1890 (EF_ARM_EABI_VERSION (elf_elfheader (abfd)->e_flags) >= EF_ARM_EABI_VER4 \
1891 || (elf_elfheader (abfd)->e_flags & EF_ARM_INTERWORK))
1892
1893 /* The linker script knows the section names for placement.
1894 The entry_names are used to do simple name mangling on the stubs.
1895 Given a function name, and its type, the stub can be found. The
1896 name can be changed. The only requirement is the %s be present. */
1897 #define THUMB2ARM_GLUE_SECTION_NAME ".glue_7t"
1898 #define THUMB2ARM_GLUE_ENTRY_NAME "__%s_from_thumb"
1899
1900 #define ARM2THUMB_GLUE_SECTION_NAME ".glue_7"
1901 #define ARM2THUMB_GLUE_ENTRY_NAME "__%s_from_arm"
1902
1903 #define VFP11_ERRATUM_VENEER_SECTION_NAME ".vfp11_veneer"
1904 #define VFP11_ERRATUM_VENEER_ENTRY_NAME "__vfp11_veneer_%x"
1905
1906 /* The name of the dynamic interpreter. This is put in the .interp
1907 section. */
1908 #define ELF_DYNAMIC_INTERPRETER "/usr/lib/ld.so.1"
1909
1910 #ifdef FOUR_WORD_PLT
1911
1912 /* The first entry in a procedure linkage table looks like
1913 this. It is set up so that any shared library function that is
1914 called before the relocation has been set up calls the dynamic
1915 linker first. */
1916 static const bfd_vma elf32_arm_plt0_entry [] =
1917 {
1918 0xe52de004, /* str lr, [sp, #-4]! */
1919 0xe59fe010, /* ldr lr, [pc, #16] */
1920 0xe08fe00e, /* add lr, pc, lr */
1921 0xe5bef008, /* ldr pc, [lr, #8]! */
1922 };
1923
1924 /* Subsequent entries in a procedure linkage table look like
1925 this. */
1926 static const bfd_vma elf32_arm_plt_entry [] =
1927 {
1928 0xe28fc600, /* add ip, pc, #NN */
1929 0xe28cca00, /* add ip, ip, #NN */
1930 0xe5bcf000, /* ldr pc, [ip, #NN]! */
1931 0x00000000, /* unused */
1932 };
1933
1934 #else
1935
1936 /* The first entry in a procedure linkage table looks like
1937 this. It is set up so that any shared library function that is
1938 called before the relocation has been set up calls the dynamic
1939 linker first. */
1940 static const bfd_vma elf32_arm_plt0_entry [] =
1941 {
1942 0xe52de004, /* str lr, [sp, #-4]! */
1943 0xe59fe004, /* ldr lr, [pc, #4] */
1944 0xe08fe00e, /* add lr, pc, lr */
1945 0xe5bef008, /* ldr pc, [lr, #8]! */
1946 0x00000000, /* &GOT[0] - . */
1947 };
1948
1949 /* Subsequent entries in a procedure linkage table look like
1950 this. */
1951 static const bfd_vma elf32_arm_plt_entry [] =
1952 {
1953 0xe28fc600, /* add ip, pc, #0xNN00000 */
1954 0xe28cca00, /* add ip, ip, #0xNN000 */
1955 0xe5bcf000, /* ldr pc, [ip, #0xNNN]! */
1956 };
1957
1958 #endif
1959
1960 /* The format of the first entry in the procedure linkage table
1961 for a VxWorks executable. */
1962 static const bfd_vma elf32_arm_vxworks_exec_plt0_entry[] =
1963 {
1964 0xe52dc008, /* str ip,[sp,#-8]! */
1965 0xe59fc000, /* ldr ip,[pc] */
1966 0xe59cf008, /* ldr pc,[ip,#8] */
1967 0x00000000, /* .long _GLOBAL_OFFSET_TABLE_ */
1968 };
1969
1970 /* The format of subsequent entries in a VxWorks executable. */
1971 static const bfd_vma elf32_arm_vxworks_exec_plt_entry[] =
1972 {
1973 0xe59fc000, /* ldr ip,[pc] */
1974 0xe59cf000, /* ldr pc,[ip] */
1975 0x00000000, /* .long @got */
1976 0xe59fc000, /* ldr ip,[pc] */
1977 0xea000000, /* b _PLT */
1978 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1979 };
1980
1981 /* The format of entries in a VxWorks shared library. */
1982 static const bfd_vma elf32_arm_vxworks_shared_plt_entry[] =
1983 {
1984 0xe59fc000, /* ldr ip,[pc] */
1985 0xe79cf009, /* ldr pc,[ip,r9] */
1986 0x00000000, /* .long @got */
1987 0xe59fc000, /* ldr ip,[pc] */
1988 0xe599f008, /* ldr pc,[r9,#8] */
1989 0x00000000, /* .long @pltindex*sizeof(Elf32_Rela) */
1990 };
1991
1992 /* An initial stub used if the PLT entry is referenced from Thumb code. */
1993 #define PLT_THUMB_STUB_SIZE 4
1994 static const bfd_vma elf32_arm_plt_thumb_stub [] =
1995 {
1996 0x4778, /* bx pc */
1997 0x46c0 /* nop */
1998 };
1999
2000 /* The entries in a PLT when using a DLL-based target with multiple
2001 address spaces. */
2002 static const bfd_vma elf32_arm_symbian_plt_entry [] =
2003 {
2004 0xe51ff004, /* ldr pc, [pc, #-4] */
2005 0x00000000, /* dcd R_ARM_GLOB_DAT(X) */
2006 };
2007
2008 /* Used to build a map of a section. This is required for mixed-endian
2009 code/data. */
2010
2011 typedef struct elf32_elf_section_map
2012 {
2013 bfd_vma vma;
2014 char type;
2015 }
2016 elf32_arm_section_map;
2017
2018 /* Information about a VFP11 erratum veneer, or a branch to such a veneer. */
2019
2020 typedef enum
2021 {
2022 VFP11_ERRATUM_BRANCH_TO_ARM_VENEER,
2023 VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER,
2024 VFP11_ERRATUM_ARM_VENEER,
2025 VFP11_ERRATUM_THUMB_VENEER
2026 }
2027 elf32_vfp11_erratum_type;
2028
2029 typedef struct elf32_vfp11_erratum_list
2030 {
2031 struct elf32_vfp11_erratum_list *next;
2032 bfd_vma vma;
2033 union
2034 {
2035 struct
2036 {
2037 struct elf32_vfp11_erratum_list *veneer;
2038 unsigned int vfp_insn;
2039 } b;
2040 struct
2041 {
2042 struct elf32_vfp11_erratum_list *branch;
2043 unsigned int id;
2044 } v;
2045 } u;
2046 elf32_vfp11_erratum_type type;
2047 }
2048 elf32_vfp11_erratum_list;
2049
2050 typedef struct _arm_elf_section_data
2051 {
2052 struct bfd_elf_section_data elf;
2053 unsigned int mapcount;
2054 unsigned int mapsize;
2055 elf32_arm_section_map *map;
2056 unsigned int erratumcount;
2057 elf32_vfp11_erratum_list *erratumlist;
2058 }
2059 _arm_elf_section_data;
2060
2061 #define elf32_arm_section_data(sec) \
2062 ((_arm_elf_section_data *) elf_section_data (sec))
2063
2064 /* The size of the thread control block. */
2065 #define TCB_SIZE 8
2066
2067 #define NUM_KNOWN_ATTRIBUTES 32
2068
2069 typedef struct aeabi_attribute
2070 {
2071 int type;
2072 unsigned int i;
2073 char *s;
2074 } aeabi_attribute;
2075
2076 typedef struct aeabi_attribute_list
2077 {
2078 struct aeabi_attribute_list *next;
2079 int tag;
2080 aeabi_attribute attr;
2081 } aeabi_attribute_list;
2082
2083 struct elf32_arm_obj_tdata
2084 {
2085 struct elf_obj_tdata root;
2086
2087 /* tls_type for each local got entry. */
2088 char *local_got_tls_type;
2089
2090 aeabi_attribute known_eabi_attributes[NUM_KNOWN_ATTRIBUTES];
2091 aeabi_attribute_list *other_eabi_attributes;
2092
2093 /* Zero to warn when linking objects with incompatible enum sizes. */
2094 int no_enum_size_warning;
2095 };
2096
2097 #define elf32_arm_tdata(abfd) \
2098 ((struct elf32_arm_obj_tdata *) (abfd)->tdata.any)
2099
2100 #define elf32_arm_local_got_tls_type(abfd) \
2101 (elf32_arm_tdata (abfd)->local_got_tls_type)
2102
2103 static bfd_boolean
2104 elf32_arm_mkobject (bfd *abfd)
2105 {
2106 if (abfd->tdata.any == NULL)
2107 {
2108 bfd_size_type amt = sizeof (struct elf32_arm_obj_tdata);
2109 abfd->tdata.any = bfd_zalloc (abfd, amt);
2110 if (abfd->tdata.any == NULL)
2111 return FALSE;
2112 }
2113 return bfd_elf_mkobject (abfd);
2114 }
2115
2116 /* The ARM linker needs to keep track of the number of relocs that it
2117 decides to copy in check_relocs for each symbol. This is so that
2118 it can discard PC relative relocs if it doesn't need them when
2119 linking with -Bsymbolic. We store the information in a field
2120 extending the regular ELF linker hash table. */
2121
2122 /* This structure keeps track of the number of relocs we have copied
2123 for a given symbol. */
2124 struct elf32_arm_relocs_copied
2125 {
2126 /* Next section. */
2127 struct elf32_arm_relocs_copied * next;
2128 /* A section in dynobj. */
2129 asection * section;
2130 /* Number of relocs copied in this section. */
2131 bfd_size_type count;
2132 /* Number of PC-relative relocs copied in this section. */
2133 bfd_size_type pc_count;
2134 };
2135
2136 #define elf32_arm_hash_entry(ent) ((struct elf32_arm_link_hash_entry *)(ent))
2137
2138 /* Arm ELF linker hash entry. */
2139 struct elf32_arm_link_hash_entry
2140 {
2141 struct elf_link_hash_entry root;
2142
2143 /* Number of PC relative relocs copied for this symbol. */
2144 struct elf32_arm_relocs_copied * relocs_copied;
2145
2146 /* We reference count Thumb references to a PLT entry separately,
2147 so that we can emit the Thumb trampoline only if needed. */
2148 bfd_signed_vma plt_thumb_refcount;
2149
2150 /* Since PLT entries have variable size if the Thumb prologue is
2151 used, we need to record the index into .got.plt instead of
2152 recomputing it from the PLT offset. */
2153 bfd_signed_vma plt_got_offset;
2154
2155 #define GOT_UNKNOWN 0
2156 #define GOT_NORMAL 1
2157 #define GOT_TLS_GD 2
2158 #define GOT_TLS_IE 4
2159 unsigned char tls_type;
2160
2161 /* The symbol marking the real symbol location for exported thumb
2162 symbols with Arm stubs. */
2163 struct elf_link_hash_entry *export_glue;
2164 };
2165
2166 /* Traverse an arm ELF linker hash table. */
2167 #define elf32_arm_link_hash_traverse(table, func, info) \
2168 (elf_link_hash_traverse \
2169 (&(table)->root, \
2170 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
2171 (info)))
2172
2173 /* Get the ARM elf linker hash table from a link_info structure. */
2174 #define elf32_arm_hash_table(info) \
2175 ((struct elf32_arm_link_hash_table *) ((info)->hash))
2176
2177 /* ARM ELF linker hash table. */
2178 struct elf32_arm_link_hash_table
2179 {
2180 /* The main hash table. */
2181 struct elf_link_hash_table root;
2182
2183 /* The size in bytes of the section containing the Thumb-to-ARM glue. */
2184 bfd_size_type thumb_glue_size;
2185
2186 /* The size in bytes of the section containing the ARM-to-Thumb glue. */
2187 bfd_size_type arm_glue_size;
2188
2189 /* The size in bytes of the section containing glue for VFP11 erratum
2190 veneers. */
2191 bfd_size_type vfp11_erratum_glue_size;
2192
2193 /* An arbitrary input BFD chosen to hold the glue sections. */
2194 bfd * bfd_of_glue_owner;
2195
2196 /* Nonzero to output a BE8 image. */
2197 int byteswap_code;
2198
2199 /* Zero if R_ARM_TARGET1 means R_ARM_ABS32.
2200 Nonzero if R_ARM_TARGET1 means R_ARM_REL32. */
2201 int target1_is_rel;
2202
2203 /* The relocation to use for R_ARM_TARGET2 relocations. */
2204 int target2_reloc;
2205
2206 /* Nonzero to fix BX instructions for ARMv4 targets. */
2207 int fix_v4bx;
2208
2209 /* Nonzero if the ARM/Thumb BLX instructions are available for use. */
2210 int use_blx;
2211
2212 /* What sort of code sequences we should look for which may trigger the
2213 VFP11 denorm erratum. */
2214 bfd_arm_vfp11_fix vfp11_fix;
2215
2216 /* Global counter for the number of fixes we have emitted. */
2217 int num_vfp11_fixes;
2218
2219 /* Nonzero to force PIC branch veneers. */
2220 int pic_veneer;
2221
2222 /* The number of bytes in the initial entry in the PLT. */
2223 bfd_size_type plt_header_size;
2224
2225 /* The number of bytes in the subsequent PLT etries. */
2226 bfd_size_type plt_entry_size;
2227
2228 /* True if the target system is VxWorks. */
2229 int vxworks_p;
2230
2231 /* True if the target system is Symbian OS. */
2232 int symbian_p;
2233
2234 /* True if the target uses REL relocations. */
2235 int use_rel;
2236
2237 /* Short-cuts to get to dynamic linker sections. */
2238 asection *sgot;
2239 asection *sgotplt;
2240 asection *srelgot;
2241 asection *splt;
2242 asection *srelplt;
2243 asection *sdynbss;
2244 asection *srelbss;
2245
2246 /* The (unloaded but important) VxWorks .rela.plt.unloaded section. */
2247 asection *srelplt2;
2248
2249 /* Data for R_ARM_TLS_LDM32 relocations. */
2250 union {
2251 bfd_signed_vma refcount;
2252 bfd_vma offset;
2253 } tls_ldm_got;
2254
2255 /* Small local sym to section mapping cache. */
2256 struct sym_sec_cache sym_sec;
2257
2258 /* For convenience in allocate_dynrelocs. */
2259 bfd * obfd;
2260 };
2261
2262 /* Create an entry in an ARM ELF linker hash table. */
2263
2264 static struct bfd_hash_entry *
2265 elf32_arm_link_hash_newfunc (struct bfd_hash_entry * entry,
2266 struct bfd_hash_table * table,
2267 const char * string)
2268 {
2269 struct elf32_arm_link_hash_entry * ret =
2270 (struct elf32_arm_link_hash_entry *) entry;
2271
2272 /* Allocate the structure if it has not already been allocated by a
2273 subclass. */
2274 if (ret == (struct elf32_arm_link_hash_entry *) NULL)
2275 ret = bfd_hash_allocate (table, sizeof (struct elf32_arm_link_hash_entry));
2276 if (ret == NULL)
2277 return (struct bfd_hash_entry *) ret;
2278
2279 /* Call the allocation method of the superclass. */
2280 ret = ((struct elf32_arm_link_hash_entry *)
2281 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
2282 table, string));
2283 if (ret != NULL)
2284 {
2285 ret->relocs_copied = NULL;
2286 ret->tls_type = GOT_UNKNOWN;
2287 ret->plt_thumb_refcount = 0;
2288 ret->plt_got_offset = -1;
2289 ret->export_glue = NULL;
2290 }
2291
2292 return (struct bfd_hash_entry *) ret;
2293 }
2294
2295 /* Return true if NAME is the name of the relocation section associated
2296 with S. */
2297
2298 static bfd_boolean
2299 reloc_section_p (struct elf32_arm_link_hash_table *htab,
2300 const char *name, asection *s)
2301 {
2302 if (htab->use_rel)
2303 return CONST_STRNEQ (name, ".rel") && strcmp (s->name, name + 4) == 0;
2304 else
2305 return CONST_STRNEQ (name, ".rela") && strcmp (s->name, name + 5) == 0;
2306 }
2307
2308 /* Create .got, .gotplt, and .rel(a).got sections in DYNOBJ, and set up
2309 shortcuts to them in our hash table. */
2310
2311 static bfd_boolean
2312 create_got_section (bfd *dynobj, struct bfd_link_info *info)
2313 {
2314 struct elf32_arm_link_hash_table *htab;
2315
2316 htab = elf32_arm_hash_table (info);
2317 /* BPABI objects never have a GOT, or associated sections. */
2318 if (htab->symbian_p)
2319 return TRUE;
2320
2321 if (! _bfd_elf_create_got_section (dynobj, info))
2322 return FALSE;
2323
2324 htab->sgot = bfd_get_section_by_name (dynobj, ".got");
2325 htab->sgotplt = bfd_get_section_by_name (dynobj, ".got.plt");
2326 if (!htab->sgot || !htab->sgotplt)
2327 abort ();
2328
2329 htab->srelgot = bfd_make_section_with_flags (dynobj,
2330 RELOC_SECTION (htab, ".got"),
2331 (SEC_ALLOC | SEC_LOAD
2332 | SEC_HAS_CONTENTS
2333 | SEC_IN_MEMORY
2334 | SEC_LINKER_CREATED
2335 | SEC_READONLY));
2336 if (htab->srelgot == NULL
2337 || ! bfd_set_section_alignment (dynobj, htab->srelgot, 2))
2338 return FALSE;
2339 return TRUE;
2340 }
2341
2342 /* Create .plt, .rel(a).plt, .got, .got.plt, .rel(a).got, .dynbss, and
2343 .rel(a).bss sections in DYNOBJ, and set up shortcuts to them in our
2344 hash table. */
2345
2346 static bfd_boolean
2347 elf32_arm_create_dynamic_sections (bfd *dynobj, struct bfd_link_info *info)
2348 {
2349 struct elf32_arm_link_hash_table *htab;
2350
2351 htab = elf32_arm_hash_table (info);
2352 if (!htab->sgot && !create_got_section (dynobj, info))
2353 return FALSE;
2354
2355 if (!_bfd_elf_create_dynamic_sections (dynobj, info))
2356 return FALSE;
2357
2358 htab->splt = bfd_get_section_by_name (dynobj, ".plt");
2359 htab->srelplt = bfd_get_section_by_name (dynobj,
2360 RELOC_SECTION (htab, ".plt"));
2361 htab->sdynbss = bfd_get_section_by_name (dynobj, ".dynbss");
2362 if (!info->shared)
2363 htab->srelbss = bfd_get_section_by_name (dynobj,
2364 RELOC_SECTION (htab, ".bss"));
2365
2366 if (htab->vxworks_p)
2367 {
2368 if (!elf_vxworks_create_dynamic_sections (dynobj, info, &htab->srelplt2))
2369 return FALSE;
2370
2371 if (info->shared)
2372 {
2373 htab->plt_header_size = 0;
2374 htab->plt_entry_size
2375 = 4 * ARRAY_SIZE (elf32_arm_vxworks_shared_plt_entry);
2376 }
2377 else
2378 {
2379 htab->plt_header_size
2380 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt0_entry);
2381 htab->plt_entry_size
2382 = 4 * ARRAY_SIZE (elf32_arm_vxworks_exec_plt_entry);
2383 }
2384 }
2385
2386 if (!htab->splt
2387 || !htab->srelplt
2388 || !htab->sdynbss
2389 || (!info->shared && !htab->srelbss))
2390 abort ();
2391
2392 return TRUE;
2393 }
2394
2395 /* Copy the extra info we tack onto an elf_link_hash_entry. */
2396
2397 static void
2398 elf32_arm_copy_indirect_symbol (struct bfd_link_info *info,
2399 struct elf_link_hash_entry *dir,
2400 struct elf_link_hash_entry *ind)
2401 {
2402 struct elf32_arm_link_hash_entry *edir, *eind;
2403
2404 edir = (struct elf32_arm_link_hash_entry *) dir;
2405 eind = (struct elf32_arm_link_hash_entry *) ind;
2406
2407 if (eind->relocs_copied != NULL)
2408 {
2409 if (edir->relocs_copied != NULL)
2410 {
2411 struct elf32_arm_relocs_copied **pp;
2412 struct elf32_arm_relocs_copied *p;
2413
2414 /* Add reloc counts against the indirect sym to the direct sym
2415 list. Merge any entries against the same section. */
2416 for (pp = &eind->relocs_copied; (p = *pp) != NULL; )
2417 {
2418 struct elf32_arm_relocs_copied *q;
2419
2420 for (q = edir->relocs_copied; q != NULL; q = q->next)
2421 if (q->section == p->section)
2422 {
2423 q->pc_count += p->pc_count;
2424 q->count += p->count;
2425 *pp = p->next;
2426 break;
2427 }
2428 if (q == NULL)
2429 pp = &p->next;
2430 }
2431 *pp = edir->relocs_copied;
2432 }
2433
2434 edir->relocs_copied = eind->relocs_copied;
2435 eind->relocs_copied = NULL;
2436 }
2437
2438 if (ind->root.type == bfd_link_hash_indirect)
2439 {
2440 /* Copy over PLT info. */
2441 edir->plt_thumb_refcount += eind->plt_thumb_refcount;
2442 eind->plt_thumb_refcount = 0;
2443
2444 if (dir->got.refcount <= 0)
2445 {
2446 edir->tls_type = eind->tls_type;
2447 eind->tls_type = GOT_UNKNOWN;
2448 }
2449 }
2450
2451 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
2452 }
2453
2454 /* Create an ARM elf linker hash table. */
2455
2456 static struct bfd_link_hash_table *
2457 elf32_arm_link_hash_table_create (bfd *abfd)
2458 {
2459 struct elf32_arm_link_hash_table *ret;
2460 bfd_size_type amt = sizeof (struct elf32_arm_link_hash_table);
2461
2462 ret = bfd_malloc (amt);
2463 if (ret == NULL)
2464 return NULL;
2465
2466 if (!_bfd_elf_link_hash_table_init (& ret->root, abfd,
2467 elf32_arm_link_hash_newfunc,
2468 sizeof (struct elf32_arm_link_hash_entry)))
2469 {
2470 free (ret);
2471 return NULL;
2472 }
2473
2474 ret->sgot = NULL;
2475 ret->sgotplt = NULL;
2476 ret->srelgot = NULL;
2477 ret->splt = NULL;
2478 ret->srelplt = NULL;
2479 ret->sdynbss = NULL;
2480 ret->srelbss = NULL;
2481 ret->srelplt2 = NULL;
2482 ret->thumb_glue_size = 0;
2483 ret->arm_glue_size = 0;
2484 ret->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
2485 ret->vfp11_erratum_glue_size = 0;
2486 ret->num_vfp11_fixes = 0;
2487 ret->bfd_of_glue_owner = NULL;
2488 ret->byteswap_code = 0;
2489 ret->target1_is_rel = 0;
2490 ret->target2_reloc = R_ARM_NONE;
2491 #ifdef FOUR_WORD_PLT
2492 ret->plt_header_size = 16;
2493 ret->plt_entry_size = 16;
2494 #else
2495 ret->plt_header_size = 20;
2496 ret->plt_entry_size = 12;
2497 #endif
2498 ret->fix_v4bx = 0;
2499 ret->use_blx = 0;
2500 ret->vxworks_p = 0;
2501 ret->symbian_p = 0;
2502 ret->use_rel = 1;
2503 ret->sym_sec.abfd = NULL;
2504 ret->obfd = abfd;
2505 ret->tls_ldm_got.refcount = 0;
2506
2507 return &ret->root.root;
2508 }
2509
2510 /* Locate the Thumb encoded calling stub for NAME. */
2511
2512 static struct elf_link_hash_entry *
2513 find_thumb_glue (struct bfd_link_info *link_info,
2514 const char *name,
2515 char **error_message)
2516 {
2517 char *tmp_name;
2518 struct elf_link_hash_entry *hash;
2519 struct elf32_arm_link_hash_table *hash_table;
2520
2521 /* We need a pointer to the armelf specific hash table. */
2522 hash_table = elf32_arm_hash_table (link_info);
2523
2524 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2525 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
2526
2527 BFD_ASSERT (tmp_name);
2528
2529 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
2530
2531 hash = elf_link_hash_lookup
2532 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2533
2534 if (hash == NULL)
2535 asprintf (error_message, _("unable to find THUMB glue '%s' for '%s'"),
2536 tmp_name, name);
2537
2538 free (tmp_name);
2539
2540 return hash;
2541 }
2542
2543 /* Locate the ARM encoded calling stub for NAME. */
2544
2545 static struct elf_link_hash_entry *
2546 find_arm_glue (struct bfd_link_info *link_info,
2547 const char *name,
2548 char **error_message)
2549 {
2550 char *tmp_name;
2551 struct elf_link_hash_entry *myh;
2552 struct elf32_arm_link_hash_table *hash_table;
2553
2554 /* We need a pointer to the elfarm specific hash table. */
2555 hash_table = elf32_arm_hash_table (link_info);
2556
2557 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2558 + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
2559
2560 BFD_ASSERT (tmp_name);
2561
2562 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
2563
2564 myh = elf_link_hash_lookup
2565 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2566
2567 if (myh == NULL)
2568 asprintf (error_message, _("unable to find ARM glue '%s' for '%s'"),
2569 tmp_name, name);
2570
2571 free (tmp_name);
2572
2573 return myh;
2574 }
2575
2576 /* ARM->Thumb glue (static images):
2577
2578 .arm
2579 __func_from_arm:
2580 ldr r12, __func_addr
2581 bx r12
2582 __func_addr:
2583 .word func @ behave as if you saw a ARM_32 reloc.
2584
2585 (v5t static images)
2586 .arm
2587 __func_from_arm:
2588 ldr pc, __func_addr
2589 __func_addr:
2590 .word func @ behave as if you saw a ARM_32 reloc.
2591
2592 (relocatable images)
2593 .arm
2594 __func_from_arm:
2595 ldr r12, __func_offset
2596 add r12, r12, pc
2597 bx r12
2598 __func_offset:
2599 .word func - .
2600 */
2601
2602 #define ARM2THUMB_STATIC_GLUE_SIZE 12
2603 static const insn32 a2t1_ldr_insn = 0xe59fc000;
2604 static const insn32 a2t2_bx_r12_insn = 0xe12fff1c;
2605 static const insn32 a2t3_func_addr_insn = 0x00000001;
2606
2607 #define ARM2THUMB_V5_STATIC_GLUE_SIZE 8
2608 static const insn32 a2t1v5_ldr_insn = 0xe51ff004;
2609 static const insn32 a2t2v5_func_addr_insn = 0x00000001;
2610
2611 #define ARM2THUMB_PIC_GLUE_SIZE 16
2612 static const insn32 a2t1p_ldr_insn = 0xe59fc004;
2613 static const insn32 a2t2p_add_pc_insn = 0xe08cc00f;
2614 static const insn32 a2t3p_bx_r12_insn = 0xe12fff1c;
2615
2616 /* Thumb->ARM: Thumb->(non-interworking aware) ARM
2617
2618 .thumb .thumb
2619 .align 2 .align 2
2620 __func_from_thumb: __func_from_thumb:
2621 bx pc push {r6, lr}
2622 nop ldr r6, __func_addr
2623 .arm mov lr, pc
2624 __func_change_to_arm: bx r6
2625 b func .arm
2626 __func_back_to_thumb:
2627 ldmia r13! {r6, lr}
2628 bx lr
2629 __func_addr:
2630 .word func */
2631
2632 #define THUMB2ARM_GLUE_SIZE 8
2633 static const insn16 t2a1_bx_pc_insn = 0x4778;
2634 static const insn16 t2a2_noop_insn = 0x46c0;
2635 static const insn32 t2a3_b_insn = 0xea000000;
2636
2637 #define VFP11_ERRATUM_VENEER_SIZE 8
2638
2639 #ifndef ELFARM_NABI_C_INCLUDED
2640 bfd_boolean
2641 bfd_elf32_arm_allocate_interworking_sections (struct bfd_link_info * info)
2642 {
2643 asection * s;
2644 bfd_byte * foo;
2645 struct elf32_arm_link_hash_table * globals;
2646
2647 globals = elf32_arm_hash_table (info);
2648
2649 BFD_ASSERT (globals != NULL);
2650
2651 if (globals->arm_glue_size != 0)
2652 {
2653 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2654
2655 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
2656 ARM2THUMB_GLUE_SECTION_NAME);
2657
2658 BFD_ASSERT (s != NULL);
2659
2660 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->arm_glue_size);
2661
2662 BFD_ASSERT (s->size == globals->arm_glue_size);
2663 s->contents = foo;
2664 }
2665
2666 if (globals->thumb_glue_size != 0)
2667 {
2668 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2669
2670 s = bfd_get_section_by_name
2671 (globals->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
2672
2673 BFD_ASSERT (s != NULL);
2674
2675 foo = bfd_alloc (globals->bfd_of_glue_owner, globals->thumb_glue_size);
2676
2677 BFD_ASSERT (s->size == globals->thumb_glue_size);
2678 s->contents = foo;
2679 }
2680
2681 if (globals->vfp11_erratum_glue_size != 0)
2682 {
2683 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2684
2685 s = bfd_get_section_by_name
2686 (globals->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
2687
2688 BFD_ASSERT (s != NULL);
2689
2690 foo = bfd_alloc (globals->bfd_of_glue_owner,
2691 globals->vfp11_erratum_glue_size);
2692
2693 BFD_ASSERT (s->size == globals->vfp11_erratum_glue_size);
2694 s->contents = foo;
2695 }
2696
2697 return TRUE;
2698 }
2699
2700 /* Allocate space and symbols for calling a Thumb function from Arm mode.
2701 returns the symbol identifying teh stub. */
2702 static struct elf_link_hash_entry *
2703 record_arm_to_thumb_glue (struct bfd_link_info * link_info,
2704 struct elf_link_hash_entry * h)
2705 {
2706 const char * name = h->root.root.string;
2707 asection * s;
2708 char * tmp_name;
2709 struct elf_link_hash_entry * myh;
2710 struct bfd_link_hash_entry * bh;
2711 struct elf32_arm_link_hash_table * globals;
2712 bfd_vma val;
2713 bfd_size_type size;
2714
2715 globals = elf32_arm_hash_table (link_info);
2716
2717 BFD_ASSERT (globals != NULL);
2718 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
2719
2720 s = bfd_get_section_by_name
2721 (globals->bfd_of_glue_owner, ARM2THUMB_GLUE_SECTION_NAME);
2722
2723 BFD_ASSERT (s != NULL);
2724
2725 tmp_name = bfd_malloc ((bfd_size_type) strlen (name) + strlen (ARM2THUMB_GLUE_ENTRY_NAME) + 1);
2726
2727 BFD_ASSERT (tmp_name);
2728
2729 sprintf (tmp_name, ARM2THUMB_GLUE_ENTRY_NAME, name);
2730
2731 myh = elf_link_hash_lookup
2732 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
2733
2734 if (myh != NULL)
2735 {
2736 /* We've already seen this guy. */
2737 free (tmp_name);
2738 return myh;
2739 }
2740
2741 /* The only trick here is using hash_table->arm_glue_size as the value.
2742 Even though the section isn't allocated yet, this is where we will be
2743 putting it. */
2744 bh = NULL;
2745 val = globals->arm_glue_size + 1;
2746 _bfd_generic_link_add_one_symbol (link_info, globals->bfd_of_glue_owner,
2747 tmp_name, BSF_GLOBAL, s, val,
2748 NULL, TRUE, FALSE, &bh);
2749
2750 myh = (struct elf_link_hash_entry *) bh;
2751 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
2752 myh->forced_local = 1;
2753
2754 free (tmp_name);
2755
2756 if (link_info->shared || globals->root.is_relocatable_executable
2757 || globals->pic_veneer)
2758 size = ARM2THUMB_PIC_GLUE_SIZE;
2759 else if (globals->use_blx)
2760 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
2761 else
2762 size = ARM2THUMB_STATIC_GLUE_SIZE;
2763
2764 s->size += size;
2765 globals->arm_glue_size += size;
2766
2767 return myh;
2768 }
2769
2770 static void
2771 record_thumb_to_arm_glue (struct bfd_link_info *link_info,
2772 struct elf_link_hash_entry *h)
2773 {
2774 const char *name = h->root.root.string;
2775 asection *s;
2776 char *tmp_name;
2777 struct elf_link_hash_entry *myh;
2778 struct bfd_link_hash_entry *bh;
2779 struct elf32_arm_link_hash_table *hash_table;
2780 bfd_vma val;
2781
2782 hash_table = elf32_arm_hash_table (link_info);
2783
2784 BFD_ASSERT (hash_table != NULL);
2785 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
2786
2787 s = bfd_get_section_by_name
2788 (hash_table->bfd_of_glue_owner, THUMB2ARM_GLUE_SECTION_NAME);
2789
2790 BFD_ASSERT (s != NULL);
2791
2792 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2793 + strlen (THUMB2ARM_GLUE_ENTRY_NAME) + 1);
2794
2795 BFD_ASSERT (tmp_name);
2796
2797 sprintf (tmp_name, THUMB2ARM_GLUE_ENTRY_NAME, name);
2798
2799 myh = elf_link_hash_lookup
2800 (&(hash_table)->root, tmp_name, FALSE, FALSE, TRUE);
2801
2802 if (myh != NULL)
2803 {
2804 /* We've already seen this guy. */
2805 free (tmp_name);
2806 return;
2807 }
2808
2809 bh = NULL;
2810 val = hash_table->thumb_glue_size + 1;
2811 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
2812 tmp_name, BSF_GLOBAL, s, val,
2813 NULL, TRUE, FALSE, &bh);
2814
2815 /* If we mark it 'Thumb', the disassembler will do a better job. */
2816 myh = (struct elf_link_hash_entry *) bh;
2817 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
2818 myh->forced_local = 1;
2819
2820 free (tmp_name);
2821
2822 #define CHANGE_TO_ARM "__%s_change_to_arm"
2823 #define BACK_FROM_ARM "__%s_back_from_arm"
2824
2825 /* Allocate another symbol to mark where we switch to Arm mode. */
2826 tmp_name = bfd_malloc ((bfd_size_type) strlen (name)
2827 + strlen (CHANGE_TO_ARM) + 1);
2828
2829 BFD_ASSERT (tmp_name);
2830
2831 sprintf (tmp_name, CHANGE_TO_ARM, name);
2832
2833 bh = NULL;
2834 val = hash_table->thumb_glue_size + 4,
2835 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
2836 tmp_name, BSF_LOCAL, s, val,
2837 NULL, TRUE, FALSE, &bh);
2838
2839 free (tmp_name);
2840
2841 s->size += THUMB2ARM_GLUE_SIZE;
2842 hash_table->thumb_glue_size += THUMB2ARM_GLUE_SIZE;
2843
2844 return;
2845 }
2846
2847
2848 /* Add an entry to the code/data map for section SEC. */
2849
2850 static void
2851 elf32_arm_section_map_add (asection *sec, char type, bfd_vma vma)
2852 {
2853 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
2854 unsigned int newidx;
2855
2856 if (sec_data->map == NULL)
2857 {
2858 sec_data->map = bfd_malloc (sizeof (elf32_arm_section_map));
2859 sec_data->mapcount = 0;
2860 sec_data->mapsize = 1;
2861 }
2862
2863 newidx = sec_data->mapcount++;
2864
2865 if (sec_data->mapcount > sec_data->mapsize)
2866 {
2867 sec_data->mapsize *= 2;
2868 sec_data->map = bfd_realloc (sec_data->map, sec_data->mapsize
2869 * sizeof (elf32_arm_section_map));
2870 }
2871
2872 sec_data->map[newidx].vma = vma;
2873 sec_data->map[newidx].type = type;
2874 }
2875
2876
2877 /* Record information about a VFP11 denorm-erratum veneer. Only ARM-mode
2878 veneers are handled for now. */
2879
2880 static bfd_vma
2881 record_vfp11_erratum_veneer (struct bfd_link_info *link_info,
2882 elf32_vfp11_erratum_list *branch,
2883 bfd *branch_bfd,
2884 asection *branch_sec,
2885 unsigned int offset)
2886 {
2887 asection *s;
2888 struct elf32_arm_link_hash_table *hash_table;
2889 char *tmp_name;
2890 struct elf_link_hash_entry *myh;
2891 struct bfd_link_hash_entry *bh;
2892 bfd_vma val;
2893 struct _arm_elf_section_data *sec_data;
2894 int errcount;
2895 elf32_vfp11_erratum_list *newerr;
2896
2897 hash_table = elf32_arm_hash_table (link_info);
2898
2899 BFD_ASSERT (hash_table != NULL);
2900 BFD_ASSERT (hash_table->bfd_of_glue_owner != NULL);
2901
2902 s = bfd_get_section_by_name
2903 (hash_table->bfd_of_glue_owner, VFP11_ERRATUM_VENEER_SECTION_NAME);
2904
2905 sec_data = elf32_arm_section_data (s);
2906
2907 BFD_ASSERT (s != NULL);
2908
2909 tmp_name = bfd_malloc ((bfd_size_type) strlen
2910 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
2911
2912 BFD_ASSERT (tmp_name);
2913
2914 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
2915 hash_table->num_vfp11_fixes);
2916
2917 myh = elf_link_hash_lookup
2918 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
2919
2920 BFD_ASSERT (myh == NULL);
2921
2922 bh = NULL;
2923 val = hash_table->vfp11_erratum_glue_size;
2924 _bfd_generic_link_add_one_symbol (link_info, hash_table->bfd_of_glue_owner,
2925 tmp_name, BSF_FUNCTION | BSF_LOCAL, s, val,
2926 NULL, TRUE, FALSE, &bh);
2927
2928 myh = (struct elf_link_hash_entry *) bh;
2929 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
2930 myh->forced_local = 1;
2931
2932 /* Link veneer back to calling location. */
2933 errcount = ++(sec_data->erratumcount);
2934 newerr = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
2935
2936 newerr->type = VFP11_ERRATUM_ARM_VENEER;
2937 newerr->vma = -1;
2938 newerr->u.v.branch = branch;
2939 newerr->u.v.id = hash_table->num_vfp11_fixes;
2940 branch->u.b.veneer = newerr;
2941
2942 newerr->next = sec_data->erratumlist;
2943 sec_data->erratumlist = newerr;
2944
2945 /* A symbol for the return from the veneer. */
2946 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
2947 hash_table->num_vfp11_fixes);
2948
2949 myh = elf_link_hash_lookup
2950 (&(hash_table)->root, tmp_name, FALSE, FALSE, FALSE);
2951
2952 if (myh != NULL)
2953 abort ();
2954
2955 bh = NULL;
2956 val = offset + 4;
2957 _bfd_generic_link_add_one_symbol (link_info, branch_bfd, tmp_name, BSF_LOCAL,
2958 branch_sec, val, NULL, TRUE, FALSE, &bh);
2959
2960 myh = (struct elf_link_hash_entry *) bh;
2961 myh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
2962 myh->forced_local = 1;
2963
2964 free (tmp_name);
2965
2966 /* Generate a mapping symbol for the veneer section, and explicitly add an
2967 entry for that symbol to the code/data map for the section. */
2968 if (hash_table->vfp11_erratum_glue_size == 0)
2969 {
2970 bh = NULL;
2971 /* FIXME: Creates an ARM symbol. Thumb mode will need attention if it
2972 ever requires this erratum fix. */
2973 _bfd_generic_link_add_one_symbol (link_info,
2974 hash_table->bfd_of_glue_owner, "$a",
2975 BSF_LOCAL, s, 0, NULL,
2976 TRUE, FALSE, &bh);
2977
2978 myh = (struct elf_link_hash_entry *) bh;
2979 myh->type = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
2980 myh->forced_local = 1;
2981
2982 /* The elf32_arm_init_maps function only cares about symbols from input
2983 BFDs. We must make a note of this generated mapping symbol
2984 ourselves so that code byteswapping works properly in
2985 elf32_arm_write_section. */
2986 elf32_arm_section_map_add (s, 'a', 0);
2987 }
2988
2989 s->size += VFP11_ERRATUM_VENEER_SIZE;
2990 hash_table->vfp11_erratum_glue_size += VFP11_ERRATUM_VENEER_SIZE;
2991 hash_table->num_vfp11_fixes++;
2992
2993 /* The offset of the veneer. */
2994 return val;
2995 }
2996
2997 /* Add the glue sections to ABFD. This function is called from the
2998 linker scripts in ld/emultempl/{armelf}.em. */
2999
3000 bfd_boolean
3001 bfd_elf32_arm_add_glue_sections_to_bfd (bfd *abfd,
3002 struct bfd_link_info *info)
3003 {
3004 flagword flags;
3005 asection *sec;
3006
3007 /* If we are only performing a partial
3008 link do not bother adding the glue. */
3009 if (info->relocatable)
3010 return TRUE;
3011
3012 sec = bfd_get_section_by_name (abfd, ARM2THUMB_GLUE_SECTION_NAME);
3013
3014 if (sec == NULL)
3015 {
3016 /* Note: we do not include the flag SEC_LINKER_CREATED, as this
3017 will prevent elf_link_input_bfd() from processing the contents
3018 of this section. */
3019 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3020 | SEC_CODE | SEC_READONLY);
3021
3022 sec = bfd_make_section_with_flags (abfd,
3023 ARM2THUMB_GLUE_SECTION_NAME,
3024 flags);
3025
3026 if (sec == NULL
3027 || !bfd_set_section_alignment (abfd, sec, 2))
3028 return FALSE;
3029
3030 /* Set the gc mark to prevent the section from being removed by garbage
3031 collection, despite the fact that no relocs refer to this section. */
3032 sec->gc_mark = 1;
3033 }
3034
3035 sec = bfd_get_section_by_name (abfd, THUMB2ARM_GLUE_SECTION_NAME);
3036
3037 if (sec == NULL)
3038 {
3039 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3040 | SEC_CODE | SEC_READONLY);
3041
3042 sec = bfd_make_section_with_flags (abfd,
3043 THUMB2ARM_GLUE_SECTION_NAME,
3044 flags);
3045
3046 if (sec == NULL
3047 || !bfd_set_section_alignment (abfd, sec, 2))
3048 return FALSE;
3049
3050 sec->gc_mark = 1;
3051 }
3052
3053 sec = bfd_get_section_by_name (abfd, VFP11_ERRATUM_VENEER_SECTION_NAME);
3054
3055 if (sec == NULL)
3056 {
3057 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
3058 | SEC_CODE | SEC_READONLY);
3059
3060 sec = bfd_make_section_with_flags (abfd,
3061 VFP11_ERRATUM_VENEER_SECTION_NAME,
3062 flags);
3063
3064 if (sec == NULL
3065 || !bfd_set_section_alignment (abfd, sec, 2))
3066 return FALSE;
3067
3068 sec->gc_mark = 1;
3069 }
3070
3071 return TRUE;
3072 }
3073
3074 /* Select a BFD to be used to hold the sections used by the glue code.
3075 This function is called from the linker scripts in ld/emultempl/
3076 {armelf/pe}.em */
3077
3078 bfd_boolean
3079 bfd_elf32_arm_get_bfd_for_interworking (bfd *abfd, struct bfd_link_info *info)
3080 {
3081 struct elf32_arm_link_hash_table *globals;
3082
3083 /* If we are only performing a partial link
3084 do not bother getting a bfd to hold the glue. */
3085 if (info->relocatable)
3086 return TRUE;
3087
3088 /* Make sure we don't attach the glue sections to a dynamic object. */
3089 BFD_ASSERT (!(abfd->flags & DYNAMIC));
3090
3091 globals = elf32_arm_hash_table (info);
3092
3093 BFD_ASSERT (globals != NULL);
3094
3095 if (globals->bfd_of_glue_owner != NULL)
3096 return TRUE;
3097
3098 /* Save the bfd for later use. */
3099 globals->bfd_of_glue_owner = abfd;
3100
3101 return TRUE;
3102 }
3103
3104 static void check_use_blx(struct elf32_arm_link_hash_table *globals)
3105 {
3106 if (elf32_arm_get_eabi_attr_int (globals->obfd, Tag_CPU_arch) > 2)
3107 globals->use_blx = 1;
3108 }
3109
3110 bfd_boolean
3111 bfd_elf32_arm_process_before_allocation (bfd *abfd,
3112 struct bfd_link_info *link_info)
3113 {
3114 Elf_Internal_Shdr *symtab_hdr;
3115 Elf_Internal_Rela *internal_relocs = NULL;
3116 Elf_Internal_Rela *irel, *irelend;
3117 bfd_byte *contents = NULL;
3118
3119 asection *sec;
3120 struct elf32_arm_link_hash_table *globals;
3121
3122 /* If we are only performing a partial link do not bother
3123 to construct any glue. */
3124 if (link_info->relocatable)
3125 return TRUE;
3126
3127 /* Here we have a bfd that is to be included on the link. We have a hook
3128 to do reloc rummaging, before section sizes are nailed down. */
3129 globals = elf32_arm_hash_table (link_info);
3130 check_use_blx (globals);
3131
3132 BFD_ASSERT (globals != NULL);
3133 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
3134
3135 if (globals->byteswap_code && !bfd_big_endian (abfd))
3136 {
3137 _bfd_error_handler (_("%B: BE8 images only valid in big-endian mode."),
3138 abfd);
3139 return FALSE;
3140 }
3141
3142 /* Rummage around all the relocs and map the glue vectors. */
3143 sec = abfd->sections;
3144
3145 if (sec == NULL)
3146 return TRUE;
3147
3148 for (; sec != NULL; sec = sec->next)
3149 {
3150 if (sec->reloc_count == 0)
3151 continue;
3152
3153 if ((sec->flags & SEC_EXCLUDE) != 0)
3154 continue;
3155
3156 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
3157
3158 /* Load the relocs. */
3159 internal_relocs
3160 = _bfd_elf_link_read_relocs (abfd, sec, (void *) NULL,
3161 (Elf_Internal_Rela *) NULL, FALSE);
3162
3163 if (internal_relocs == NULL)
3164 goto error_return;
3165
3166 irelend = internal_relocs + sec->reloc_count;
3167 for (irel = internal_relocs; irel < irelend; irel++)
3168 {
3169 long r_type;
3170 unsigned long r_index;
3171
3172 struct elf_link_hash_entry *h;
3173
3174 r_type = ELF32_R_TYPE (irel->r_info);
3175 r_index = ELF32_R_SYM (irel->r_info);
3176
3177 /* These are the only relocation types we care about. */
3178 if ( r_type != R_ARM_PC24
3179 && r_type != R_ARM_PLT32
3180 && r_type != R_ARM_CALL
3181 && r_type != R_ARM_JUMP24
3182 && r_type != R_ARM_THM_CALL)
3183 continue;
3184
3185 /* Get the section contents if we haven't done so already. */
3186 if (contents == NULL)
3187 {
3188 /* Get cached copy if it exists. */
3189 if (elf_section_data (sec)->this_hdr.contents != NULL)
3190 contents = elf_section_data (sec)->this_hdr.contents;
3191 else
3192 {
3193 /* Go get them off disk. */
3194 if (! bfd_malloc_and_get_section (abfd, sec, &contents))
3195 goto error_return;
3196 }
3197 }
3198
3199 /* If the relocation is not against a symbol it cannot concern us. */
3200 h = NULL;
3201
3202 /* We don't care about local symbols. */
3203 if (r_index < symtab_hdr->sh_info)
3204 continue;
3205
3206 /* This is an external symbol. */
3207 r_index -= symtab_hdr->sh_info;
3208 h = (struct elf_link_hash_entry *)
3209 elf_sym_hashes (abfd)[r_index];
3210
3211 /* If the relocation is against a static symbol it must be within
3212 the current section and so cannot be a cross ARM/Thumb relocation. */
3213 if (h == NULL)
3214 continue;
3215
3216 /* If the call will go through a PLT entry then we do not need
3217 glue. */
3218 if (globals->splt != NULL && h->plt.offset != (bfd_vma) -1)
3219 continue;
3220
3221 switch (r_type)
3222 {
3223 case R_ARM_PC24:
3224 case R_ARM_PLT32:
3225 case R_ARM_CALL:
3226 case R_ARM_JUMP24:
3227 /* This one is a call from arm code. We need to look up
3228 the target of the call. If it is a thumb target, we
3229 insert glue. */
3230 if (ELF_ST_TYPE(h->type) == STT_ARM_TFUNC
3231 && !(r_type == R_ARM_CALL && globals->use_blx))
3232 record_arm_to_thumb_glue (link_info, h);
3233 break;
3234
3235 case R_ARM_THM_CALL:
3236 /* This one is a call from thumb code. We look
3237 up the target of the call. If it is not a thumb
3238 target, we insert glue. */
3239 if (ELF_ST_TYPE (h->type) != STT_ARM_TFUNC && !globals->use_blx)
3240 record_thumb_to_arm_glue (link_info, h);
3241 break;
3242
3243 default:
3244 abort ();
3245 }
3246 }
3247
3248 if (contents != NULL
3249 && elf_section_data (sec)->this_hdr.contents != contents)
3250 free (contents);
3251 contents = NULL;
3252
3253 if (internal_relocs != NULL
3254 && elf_section_data (sec)->relocs != internal_relocs)
3255 free (internal_relocs);
3256 internal_relocs = NULL;
3257 }
3258
3259 return TRUE;
3260
3261 error_return:
3262 if (contents != NULL
3263 && elf_section_data (sec)->this_hdr.contents != contents)
3264 free (contents);
3265 if (internal_relocs != NULL
3266 && elf_section_data (sec)->relocs != internal_relocs)
3267 free (internal_relocs);
3268
3269 return FALSE;
3270 }
3271 #endif
3272
3273
3274 /* Initialise maps of ARM/Thumb/data for input BFDs. */
3275
3276 void
3277 bfd_elf32_arm_init_maps (bfd *abfd)
3278 {
3279 Elf_Internal_Sym *isymbuf;
3280 Elf_Internal_Shdr *hdr;
3281 unsigned int i, localsyms;
3282
3283 if ((abfd->flags & DYNAMIC) != 0)
3284 return;
3285
3286 hdr = &elf_tdata (abfd)->symtab_hdr;
3287 localsyms = hdr->sh_info;
3288
3289 /* Obtain a buffer full of symbols for this BFD. The hdr->sh_info field
3290 should contain the number of local symbols, which should come before any
3291 global symbols. Mapping symbols are always local. */
3292 isymbuf = bfd_elf_get_elf_syms (abfd, hdr, localsyms, 0, NULL, NULL,
3293 NULL);
3294
3295 /* No internal symbols read? Skip this BFD. */
3296 if (isymbuf == NULL)
3297 return;
3298
3299 for (i = 0; i < localsyms; i++)
3300 {
3301 Elf_Internal_Sym *isym = &isymbuf[i];
3302 asection *sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
3303 const char *name;
3304
3305 if (sec != NULL
3306 && ELF_ST_BIND (isym->st_info) == STB_LOCAL)
3307 {
3308 name = bfd_elf_string_from_elf_section (abfd,
3309 hdr->sh_link, isym->st_name);
3310
3311 if (bfd_is_arm_special_symbol_name (name,
3312 BFD_ARM_SPECIAL_SYM_TYPE_MAP))
3313 elf32_arm_section_map_add (sec, name[1], isym->st_value);
3314 }
3315 }
3316 }
3317
3318
3319 void
3320 bfd_elf32_arm_set_vfp11_fix (bfd *obfd, struct bfd_link_info *link_info)
3321 {
3322 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
3323 aeabi_attribute *out_attr = elf32_arm_tdata (obfd)->known_eabi_attributes;
3324
3325 /* We assume that ARMv7+ does not need the VFP11 denorm erratum fix. */
3326 if (out_attr[Tag_CPU_arch].i >= TAG_CPU_ARCH_V7)
3327 {
3328 switch (globals->vfp11_fix)
3329 {
3330 case BFD_ARM_VFP11_FIX_DEFAULT:
3331 case BFD_ARM_VFP11_FIX_NONE:
3332 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3333 break;
3334
3335 default:
3336 /* Give a warning, but do as the user requests anyway. */
3337 (*_bfd_error_handler) (_("%B: warning: selected VFP11 erratum "
3338 "workaround is not necessary for target architecture"), obfd);
3339 }
3340 }
3341 else if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_DEFAULT)
3342 /* For earlier architectures, we might need the workaround, but do not
3343 enable it by default. If users is running with broken hardware, they
3344 must enable the erratum fix explicitly. */
3345 globals->vfp11_fix = BFD_ARM_VFP11_FIX_NONE;
3346 }
3347
3348
3349 enum bfd_arm_vfp11_pipe {
3350 VFP11_FMAC,
3351 VFP11_LS,
3352 VFP11_DS,
3353 VFP11_BAD
3354 };
3355
3356 /* Return a VFP register number. This is encoded as RX:X for single-precision
3357 registers, or X:RX for double-precision registers, where RX is the group of
3358 four bits in the instruction encoding and X is the single extension bit.
3359 RX and X fields are specified using their lowest (starting) bit. The return
3360 value is:
3361
3362 0...31: single-precision registers s0...s31
3363 32...63: double-precision registers d0...d31.
3364
3365 Although X should be zero for VFP11 (encoding d0...d15 only), we might
3366 encounter VFP3 instructions, so we allow the full range for DP registers. */
3367
3368 static unsigned int
3369 bfd_arm_vfp11_regno (unsigned int insn, bfd_boolean is_double, unsigned int rx,
3370 unsigned int x)
3371 {
3372 if (is_double)
3373 return (((insn >> rx) & 0xf) | (((insn >> x) & 1) << 4)) + 32;
3374 else
3375 return (((insn >> rx) & 0xf) << 1) | ((insn >> x) & 1);
3376 }
3377
3378 /* Set bits in *WMASK according to a register number REG as encoded by
3379 bfd_arm_vfp11_regno(). Ignore d16-d31. */
3380
3381 static void
3382 bfd_arm_vfp11_write_mask (unsigned int *wmask, unsigned int reg)
3383 {
3384 if (reg < 32)
3385 *wmask |= 1 << reg;
3386 else if (reg < 48)
3387 *wmask |= 3 << ((reg - 32) * 2);
3388 }
3389
3390 /* Return TRUE if WMASK overwrites anything in REGS. */
3391
3392 static bfd_boolean
3393 bfd_arm_vfp11_antidependency (unsigned int wmask, int *regs, int numregs)
3394 {
3395 int i;
3396
3397 for (i = 0; i < numregs; i++)
3398 {
3399 unsigned int reg = regs[i];
3400
3401 if (reg < 32 && (wmask & (1 << reg)) != 0)
3402 return TRUE;
3403
3404 reg -= 32;
3405
3406 if (reg >= 16)
3407 continue;
3408
3409 if ((wmask & (3 << (reg * 2))) != 0)
3410 return TRUE;
3411 }
3412
3413 return FALSE;
3414 }
3415
3416 /* In this function, we're interested in two things: finding input registers
3417 for VFP data-processing instructions, and finding the set of registers which
3418 arbitrary VFP instructions may write to. We use a 32-bit unsigned int to
3419 hold the written set, so FLDM etc. are easy to deal with (we're only
3420 interested in 32 SP registers or 16 dp registers, due to the VFP version
3421 implemented by the chip in question). DP registers are marked by setting
3422 both SP registers in the write mask). */
3423
3424 static enum bfd_arm_vfp11_pipe
3425 bfd_arm_vfp11_insn_decode (unsigned int insn, unsigned int *destmask, int *regs,
3426 int *numregs)
3427 {
3428 enum bfd_arm_vfp11_pipe pipe = VFP11_BAD;
3429 bfd_boolean is_double = ((insn & 0xf00) == 0xb00) ? 1 : 0;
3430
3431 if ((insn & 0x0f000e10) == 0x0e000a00) /* A data-processing insn. */
3432 {
3433 unsigned int pqrs;
3434 unsigned int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
3435 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
3436
3437 pqrs = ((insn & 0x00800000) >> 20)
3438 | ((insn & 0x00300000) >> 19)
3439 | ((insn & 0x00000040) >> 6);
3440
3441 switch (pqrs)
3442 {
3443 case 0: /* fmac[sd]. */
3444 case 1: /* fnmac[sd]. */
3445 case 2: /* fmsc[sd]. */
3446 case 3: /* fnmsc[sd]. */
3447 pipe = VFP11_FMAC;
3448 bfd_arm_vfp11_write_mask (destmask, fd);
3449 regs[0] = fd;
3450 regs[1] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
3451 regs[2] = fm;
3452 *numregs = 3;
3453 break;
3454
3455 case 4: /* fmul[sd]. */
3456 case 5: /* fnmul[sd]. */
3457 case 6: /* fadd[sd]. */
3458 case 7: /* fsub[sd]. */
3459 pipe = VFP11_FMAC;
3460 goto vfp_binop;
3461
3462 case 8: /* fdiv[sd]. */
3463 pipe = VFP11_DS;
3464 vfp_binop:
3465 bfd_arm_vfp11_write_mask (destmask, fd);
3466 regs[0] = bfd_arm_vfp11_regno (insn, is_double, 16, 7); /* Fn. */
3467 regs[1] = fm;
3468 *numregs = 2;
3469 break;
3470
3471 case 15: /* extended opcode. */
3472 {
3473 unsigned int extn = ((insn >> 15) & 0x1e)
3474 | ((insn >> 7) & 1);
3475
3476 switch (extn)
3477 {
3478 case 0: /* fcpy[sd]. */
3479 case 1: /* fabs[sd]. */
3480 case 2: /* fneg[sd]. */
3481 case 8: /* fcmp[sd]. */
3482 case 9: /* fcmpe[sd]. */
3483 case 10: /* fcmpz[sd]. */
3484 case 11: /* fcmpez[sd]. */
3485 case 16: /* fuito[sd]. */
3486 case 17: /* fsito[sd]. */
3487 case 24: /* ftoui[sd]. */
3488 case 25: /* ftouiz[sd]. */
3489 case 26: /* ftosi[sd]. */
3490 case 27: /* ftosiz[sd]. */
3491 /* These instructions will not bounce due to underflow. */
3492 *numregs = 0;
3493 pipe = VFP11_FMAC;
3494 break;
3495
3496 case 3: /* fsqrt[sd]. */
3497 /* fsqrt cannot underflow, but it can (perhaps) overwrite
3498 registers to cause the erratum in previous instructions. */
3499 bfd_arm_vfp11_write_mask (destmask, fd);
3500 pipe = VFP11_DS;
3501 break;
3502
3503 case 15: /* fcvt{ds,sd}. */
3504 {
3505 int rnum = 0;
3506
3507 bfd_arm_vfp11_write_mask (destmask, fd);
3508
3509 /* Only FCVTSD can underflow. */
3510 if ((insn & 0x100) != 0)
3511 regs[rnum++] = fm;
3512
3513 *numregs = rnum;
3514
3515 pipe = VFP11_FMAC;
3516 }
3517 break;
3518
3519 default:
3520 return VFP11_BAD;
3521 }
3522 }
3523 break;
3524
3525 default:
3526 return VFP11_BAD;
3527 }
3528 }
3529 /* Two-register transfer. */
3530 else if ((insn & 0x0fe00ed0) == 0x0c400a10)
3531 {
3532 unsigned int fm = bfd_arm_vfp11_regno (insn, is_double, 0, 5);
3533
3534 if ((insn & 0x100000) == 0)
3535 {
3536 if (is_double)
3537 bfd_arm_vfp11_write_mask (destmask, fm);
3538 else
3539 {
3540 bfd_arm_vfp11_write_mask (destmask, fm);
3541 bfd_arm_vfp11_write_mask (destmask, fm + 1);
3542 }
3543 }
3544
3545 pipe = VFP11_LS;
3546 }
3547 else if ((insn & 0x0e100e00) == 0x0c100a00) /* A load insn. */
3548 {
3549 int fd = bfd_arm_vfp11_regno (insn, is_double, 12, 22);
3550 unsigned int puw = ((insn >> 21) & 0x1) | (((insn >> 23) & 3) << 1);
3551
3552 switch (puw)
3553 {
3554 case 0: /* Two-reg transfer. We should catch these above. */
3555 abort ();
3556
3557 case 2: /* fldm[sdx]. */
3558 case 3:
3559 case 5:
3560 {
3561 unsigned int i, offset = insn & 0xff;
3562
3563 if (is_double)
3564 offset >>= 1;
3565
3566 for (i = fd; i < fd + offset; i++)
3567 bfd_arm_vfp11_write_mask (destmask, i);
3568 }
3569 break;
3570
3571 case 4: /* fld[sd]. */
3572 case 6:
3573 bfd_arm_vfp11_write_mask (destmask, fd);
3574 break;
3575
3576 default:
3577 return VFP11_BAD;
3578 }
3579
3580 pipe = VFP11_LS;
3581 }
3582 /* Single-register transfer. Note L==0. */
3583 else if ((insn & 0x0f100e10) == 0x0e000a10)
3584 {
3585 unsigned int opcode = (insn >> 21) & 7;
3586 unsigned int fn = bfd_arm_vfp11_regno (insn, is_double, 16, 7);
3587
3588 switch (opcode)
3589 {
3590 case 0: /* fmsr/fmdlr. */
3591 case 1: /* fmdhr. */
3592 /* Mark fmdhr and fmdlr as writing to the whole of the DP
3593 destination register. I don't know if this is exactly right,
3594 but it is the conservative choice. */
3595 bfd_arm_vfp11_write_mask (destmask, fn);
3596 break;
3597
3598 case 7: /* fmxr. */
3599 break;
3600 }
3601
3602 pipe = VFP11_LS;
3603 }
3604
3605 return pipe;
3606 }
3607
3608
3609 static int elf32_arm_compare_mapping (const void * a, const void * b);
3610
3611
3612 /* Look for potentially-troublesome code sequences which might trigger the
3613 VFP11 denormal/antidependency erratum. See, e.g., the ARM1136 errata sheet
3614 (available from ARM) for details of the erratum. A short version is
3615 described in ld.texinfo. */
3616
3617 bfd_boolean
3618 bfd_elf32_arm_vfp11_erratum_scan (bfd *abfd, struct bfd_link_info *link_info)
3619 {
3620 asection *sec;
3621 bfd_byte *contents = NULL;
3622 int state = 0;
3623 int regs[3], numregs = 0;
3624 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
3625 int use_vector = (globals->vfp11_fix == BFD_ARM_VFP11_FIX_VECTOR);
3626
3627 /* We use a simple FSM to match troublesome VFP11 instruction sequences.
3628 The states transition as follows:
3629
3630 0 -> 1 (vector) or 0 -> 2 (scalar)
3631 A VFP FMAC-pipeline instruction has been seen. Fill
3632 regs[0]..regs[numregs-1] with its input operands. Remember this
3633 instruction in 'first_fmac'.
3634
3635 1 -> 2
3636 Any instruction, except for a VFP instruction which overwrites
3637 regs[*].
3638
3639 1 -> 3 [ -> 0 ] or
3640 2 -> 3 [ -> 0 ]
3641 A VFP instruction has been seen which overwrites any of regs[*].
3642 We must make a veneer! Reset state to 0 before examining next
3643 instruction.
3644
3645 2 -> 0
3646 If we fail to match anything in state 2, reset to state 0 and reset
3647 the instruction pointer to the instruction after 'first_fmac'.
3648
3649 If the VFP11 vector mode is in use, there must be at least two unrelated
3650 instructions between anti-dependent VFP11 instructions to properly avoid
3651 triggering the erratum, hence the use of the extra state 1.
3652 */
3653
3654 /* If we are only performing a partial link do not bother
3655 to construct any glue. */
3656 if (link_info->relocatable)
3657 return TRUE;
3658
3659 /* We should have chosen a fix type by the time we get here. */
3660 BFD_ASSERT (globals->vfp11_fix != BFD_ARM_VFP11_FIX_DEFAULT);
3661
3662 if (globals->vfp11_fix == BFD_ARM_VFP11_FIX_NONE)
3663 return TRUE;
3664
3665 /* Skip if this bfd does not correspond to an ELF image. */
3666 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
3667 return TRUE;
3668
3669 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3670 {
3671 unsigned int i, span, first_fmac = 0, veneer_of_insn = 0;
3672 struct _arm_elf_section_data *sec_data;
3673
3674 /* If we don't have executable progbits, we're not interested in this
3675 section. Also skip if section is to be excluded. */
3676 if (elf_section_type (sec) != SHT_PROGBITS
3677 || (elf_section_flags (sec) & SHF_EXECINSTR) == 0
3678 || (sec->flags & SEC_EXCLUDE) != 0
3679 || strcmp (sec->name, VFP11_ERRATUM_VENEER_SECTION_NAME) == 0)
3680 continue;
3681
3682 sec_data = elf32_arm_section_data (sec);
3683
3684 if (sec_data->mapcount == 0)
3685 continue;
3686
3687 if (elf_section_data (sec)->this_hdr.contents != NULL)
3688 contents = elf_section_data (sec)->this_hdr.contents;
3689 else if (! bfd_malloc_and_get_section (abfd, sec, &contents))
3690 goto error_return;
3691
3692 qsort (sec_data->map, sec_data->mapcount, sizeof (elf32_arm_section_map),
3693 elf32_arm_compare_mapping);
3694
3695 for (span = 0; span < sec_data->mapcount; span++)
3696 {
3697 unsigned int span_start = sec_data->map[span].vma;
3698 unsigned int span_end = (span == sec_data->mapcount - 1)
3699 ? sec->size : sec_data->map[span + 1].vma;
3700 char span_type = sec_data->map[span].type;
3701
3702 /* FIXME: Only ARM mode is supported at present. We may need to
3703 support Thumb-2 mode also at some point. */
3704 if (span_type != 'a')
3705 continue;
3706
3707 for (i = span_start; i < span_end;)
3708 {
3709 unsigned int next_i = i + 4;
3710 unsigned int insn = bfd_big_endian (abfd)
3711 ? (contents[i] << 24)
3712 | (contents[i + 1] << 16)
3713 | (contents[i + 2] << 8)
3714 | contents[i + 3]
3715 : (contents[i + 3] << 24)
3716 | (contents[i + 2] << 16)
3717 | (contents[i + 1] << 8)
3718 | contents[i];
3719 unsigned int writemask = 0;
3720 enum bfd_arm_vfp11_pipe pipe;
3721
3722 switch (state)
3723 {
3724 case 0:
3725 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask, regs,
3726 &numregs);
3727 /* I'm assuming the VFP11 erratum can trigger with denorm
3728 operands on either the FMAC or the DS pipeline. This might
3729 lead to slightly overenthusiastic veneer insertion. */
3730 if (pipe == VFP11_FMAC || pipe == VFP11_DS)
3731 {
3732 state = use_vector ? 1 : 2;
3733 first_fmac = i;
3734 veneer_of_insn = insn;
3735 }
3736 break;
3737
3738 case 1:
3739 {
3740 int other_regs[3], other_numregs;
3741 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
3742 other_regs,
3743 &other_numregs);
3744 if (pipe != VFP11_BAD
3745 && bfd_arm_vfp11_antidependency (writemask, regs,
3746 numregs))
3747 state = 3;
3748 else
3749 state = 2;
3750 }
3751 break;
3752
3753 case 2:
3754 {
3755 int other_regs[3], other_numregs;
3756 pipe = bfd_arm_vfp11_insn_decode (insn, &writemask,
3757 other_regs,
3758 &other_numregs);
3759 if (pipe != VFP11_BAD
3760 && bfd_arm_vfp11_antidependency (writemask, regs,
3761 numregs))
3762 state = 3;
3763 else
3764 {
3765 state = 0;
3766 next_i = first_fmac + 4;
3767 }
3768 }
3769 break;
3770
3771 case 3:
3772 abort (); /* Should be unreachable. */
3773 }
3774
3775 if (state == 3)
3776 {
3777 elf32_vfp11_erratum_list *newerr
3778 = bfd_zmalloc (sizeof (elf32_vfp11_erratum_list));
3779 int errcount;
3780
3781 errcount = ++(elf32_arm_section_data (sec)->erratumcount);
3782
3783 newerr->u.b.vfp_insn = veneer_of_insn;
3784
3785 switch (span_type)
3786 {
3787 case 'a':
3788 newerr->type = VFP11_ERRATUM_BRANCH_TO_ARM_VENEER;
3789 break;
3790
3791 default:
3792 abort ();
3793 }
3794
3795 record_vfp11_erratum_veneer (link_info, newerr, abfd, sec,
3796 first_fmac);
3797
3798 newerr->vma = -1;
3799
3800 newerr->next = sec_data->erratumlist;
3801 sec_data->erratumlist = newerr;
3802
3803 state = 0;
3804 }
3805
3806 i = next_i;
3807 }
3808 }
3809
3810 if (contents != NULL
3811 && elf_section_data (sec)->this_hdr.contents != contents)
3812 free (contents);
3813 contents = NULL;
3814 }
3815
3816 return TRUE;
3817
3818 error_return:
3819 if (contents != NULL
3820 && elf_section_data (sec)->this_hdr.contents != contents)
3821 free (contents);
3822
3823 return FALSE;
3824 }
3825
3826 /* Find virtual-memory addresses for VFP11 erratum veneers and return locations
3827 after sections have been laid out, using specially-named symbols. */
3828
3829 void
3830 bfd_elf32_arm_vfp11_fix_veneer_locations (bfd *abfd,
3831 struct bfd_link_info *link_info)
3832 {
3833 asection *sec;
3834 struct elf32_arm_link_hash_table *globals;
3835 char *tmp_name;
3836
3837 if (link_info->relocatable)
3838 return;
3839
3840 /* Skip if this bfd does not correspond to an ELF image. */
3841 if (bfd_get_flavour (abfd) != bfd_target_elf_flavour)
3842 return;
3843
3844 globals = elf32_arm_hash_table (link_info);
3845
3846 tmp_name = bfd_malloc ((bfd_size_type) strlen
3847 (VFP11_ERRATUM_VENEER_ENTRY_NAME) + 10);
3848
3849 for (sec = abfd->sections; sec != NULL; sec = sec->next)
3850 {
3851 struct _arm_elf_section_data *sec_data = elf32_arm_section_data (sec);
3852 elf32_vfp11_erratum_list *errnode = sec_data->erratumlist;
3853
3854 for (; errnode != NULL; errnode = errnode->next)
3855 {
3856 struct elf_link_hash_entry *myh;
3857 bfd_vma vma;
3858
3859 switch (errnode->type)
3860 {
3861 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
3862 case VFP11_ERRATUM_BRANCH_TO_THUMB_VENEER:
3863 /* Find veneer symbol. */
3864 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME,
3865 errnode->u.b.veneer->u.v.id);
3866
3867 myh = elf_link_hash_lookup
3868 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
3869
3870 if (myh == NULL)
3871 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
3872 "`%s'"), abfd, tmp_name);
3873
3874 vma = myh->root.u.def.section->output_section->vma
3875 + myh->root.u.def.section->output_offset
3876 + myh->root.u.def.value;
3877
3878 errnode->u.b.veneer->vma = vma;
3879 break;
3880
3881 case VFP11_ERRATUM_ARM_VENEER:
3882 case VFP11_ERRATUM_THUMB_VENEER:
3883 /* Find return location. */
3884 sprintf (tmp_name, VFP11_ERRATUM_VENEER_ENTRY_NAME "_r",
3885 errnode->u.v.id);
3886
3887 myh = elf_link_hash_lookup
3888 (&(globals)->root, tmp_name, FALSE, FALSE, TRUE);
3889
3890 if (myh == NULL)
3891 (*_bfd_error_handler) (_("%B: unable to find VFP11 veneer "
3892 "`%s'"), abfd, tmp_name);
3893
3894 vma = myh->root.u.def.section->output_section->vma
3895 + myh->root.u.def.section->output_offset
3896 + myh->root.u.def.value;
3897
3898 errnode->u.v.branch->vma = vma;
3899 break;
3900
3901 default:
3902 abort ();
3903 }
3904 }
3905 }
3906
3907 free (tmp_name);
3908 }
3909
3910
3911 /* Set target relocation values needed during linking. */
3912
3913 void
3914 bfd_elf32_arm_set_target_relocs (struct bfd *output_bfd,
3915 struct bfd_link_info *link_info,
3916 int target1_is_rel,
3917 char * target2_type,
3918 int fix_v4bx,
3919 int use_blx,
3920 bfd_arm_vfp11_fix vfp11_fix,
3921 int no_enum_warn, int pic_veneer)
3922 {
3923 struct elf32_arm_link_hash_table *globals;
3924
3925 globals = elf32_arm_hash_table (link_info);
3926
3927 globals->target1_is_rel = target1_is_rel;
3928 if (strcmp (target2_type, "rel") == 0)
3929 globals->target2_reloc = R_ARM_REL32;
3930 else if (strcmp (target2_type, "abs") == 0)
3931 globals->target2_reloc = R_ARM_ABS32;
3932 else if (strcmp (target2_type, "got-rel") == 0)
3933 globals->target2_reloc = R_ARM_GOT_PREL;
3934 else
3935 {
3936 _bfd_error_handler (_("Invalid TARGET2 relocation type '%s'."),
3937 target2_type);
3938 }
3939 globals->fix_v4bx = fix_v4bx;
3940 globals->use_blx |= use_blx;
3941 globals->vfp11_fix = vfp11_fix;
3942 globals->pic_veneer = pic_veneer;
3943
3944 elf32_arm_tdata (output_bfd)->no_enum_size_warning = no_enum_warn;
3945 }
3946
3947 /* The thumb form of a long branch is a bit finicky, because the offset
3948 encoding is split over two fields, each in it's own instruction. They
3949 can occur in any order. So given a thumb form of long branch, and an
3950 offset, insert the offset into the thumb branch and return finished
3951 instruction.
3952
3953 It takes two thumb instructions to encode the target address. Each has
3954 11 bits to invest. The upper 11 bits are stored in one (identified by
3955 H-0.. see below), the lower 11 bits are stored in the other (identified
3956 by H-1).
3957
3958 Combine together and shifted left by 1 (it's a half word address) and
3959 there you have it.
3960
3961 Op: 1111 = F,
3962 H-0, upper address-0 = 000
3963 Op: 1111 = F,
3964 H-1, lower address-0 = 800
3965
3966 They can be ordered either way, but the arm tools I've seen always put
3967 the lower one first. It probably doesn't matter. krk@cygnus.com
3968
3969 XXX: Actually the order does matter. The second instruction (H-1)
3970 moves the computed address into the PC, so it must be the second one
3971 in the sequence. The problem, however is that whilst little endian code
3972 stores the instructions in HI then LOW order, big endian code does the
3973 reverse. nickc@cygnus.com. */
3974
3975 #define LOW_HI_ORDER 0xF800F000
3976 #define HI_LOW_ORDER 0xF000F800
3977
3978 static insn32
3979 insert_thumb_branch (insn32 br_insn, int rel_off)
3980 {
3981 unsigned int low_bits;
3982 unsigned int high_bits;
3983
3984 BFD_ASSERT ((rel_off & 1) != 1);
3985
3986 rel_off >>= 1; /* Half word aligned address. */
3987 low_bits = rel_off & 0x000007FF; /* The bottom 11 bits. */
3988 high_bits = (rel_off >> 11) & 0x000007FF; /* The top 11 bits. */
3989
3990 if ((br_insn & LOW_HI_ORDER) == LOW_HI_ORDER)
3991 br_insn = LOW_HI_ORDER | (low_bits << 16) | high_bits;
3992 else if ((br_insn & HI_LOW_ORDER) == HI_LOW_ORDER)
3993 br_insn = HI_LOW_ORDER | (high_bits << 16) | low_bits;
3994 else
3995 /* FIXME: abort is probably not the right call. krk@cygnus.com */
3996 abort (); /* Error - not a valid branch instruction form. */
3997
3998 return br_insn;
3999 }
4000
4001
4002 /* Store an Arm insn into an output section not processed by
4003 elf32_arm_write_section. */
4004
4005 static void
4006 put_arm_insn (struct elf32_arm_link_hash_table *htab,
4007 bfd * output_bfd, bfd_vma val, void * ptr)
4008 {
4009 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4010 bfd_putl32 (val, ptr);
4011 else
4012 bfd_putb32 (val, ptr);
4013 }
4014
4015
4016 /* Store a 16-bit Thumb insn into an output section not processed by
4017 elf32_arm_write_section. */
4018
4019 static void
4020 put_thumb_insn (struct elf32_arm_link_hash_table *htab,
4021 bfd * output_bfd, bfd_vma val, void * ptr)
4022 {
4023 if (htab->byteswap_code != bfd_little_endian (output_bfd))
4024 bfd_putl16 (val, ptr);
4025 else
4026 bfd_putb16 (val, ptr);
4027 }
4028
4029
4030 /* Thumb code calling an ARM function. */
4031
4032 static int
4033 elf32_thumb_to_arm_stub (struct bfd_link_info * info,
4034 const char * name,
4035 bfd * input_bfd,
4036 bfd * output_bfd,
4037 asection * input_section,
4038 bfd_byte * hit_data,
4039 asection * sym_sec,
4040 bfd_vma offset,
4041 bfd_signed_vma addend,
4042 bfd_vma val,
4043 char **error_message)
4044 {
4045 asection * s = 0;
4046 bfd_vma my_offset;
4047 unsigned long int tmp;
4048 long int ret_offset;
4049 struct elf_link_hash_entry * myh;
4050 struct elf32_arm_link_hash_table * globals;
4051
4052 myh = find_thumb_glue (info, name, error_message);
4053 if (myh == NULL)
4054 return FALSE;
4055
4056 globals = elf32_arm_hash_table (info);
4057
4058 BFD_ASSERT (globals != NULL);
4059 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4060
4061 my_offset = myh->root.u.def.value;
4062
4063 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4064 THUMB2ARM_GLUE_SECTION_NAME);
4065
4066 BFD_ASSERT (s != NULL);
4067 BFD_ASSERT (s->contents != NULL);
4068 BFD_ASSERT (s->output_section != NULL);
4069
4070 if ((my_offset & 0x01) == 0x01)
4071 {
4072 if (sym_sec != NULL
4073 && sym_sec->owner != NULL
4074 && !INTERWORK_FLAG (sym_sec->owner))
4075 {
4076 (*_bfd_error_handler)
4077 (_("%B(%s): warning: interworking not enabled.\n"
4078 " first occurrence: %B: thumb call to arm"),
4079 sym_sec->owner, input_bfd, name);
4080
4081 return FALSE;
4082 }
4083
4084 --my_offset;
4085 myh->root.u.def.value = my_offset;
4086
4087 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a1_bx_pc_insn,
4088 s->contents + my_offset);
4089
4090 put_thumb_insn (globals, output_bfd, (bfd_vma) t2a2_noop_insn,
4091 s->contents + my_offset + 2);
4092
4093 ret_offset =
4094 /* Address of destination of the stub. */
4095 ((bfd_signed_vma) val)
4096 - ((bfd_signed_vma)
4097 /* Offset from the start of the current section
4098 to the start of the stubs. */
4099 (s->output_offset
4100 /* Offset of the start of this stub from the start of the stubs. */
4101 + my_offset
4102 /* Address of the start of the current section. */
4103 + s->output_section->vma)
4104 /* The branch instruction is 4 bytes into the stub. */
4105 + 4
4106 /* ARM branches work from the pc of the instruction + 8. */
4107 + 8);
4108
4109 put_arm_insn (globals, output_bfd,
4110 (bfd_vma) t2a3_b_insn | ((ret_offset >> 2) & 0x00FFFFFF),
4111 s->contents + my_offset + 4);
4112 }
4113
4114 BFD_ASSERT (my_offset <= globals->thumb_glue_size);
4115
4116 /* Now go back and fix up the original BL insn to point to here. */
4117 ret_offset =
4118 /* Address of where the stub is located. */
4119 (s->output_section->vma + s->output_offset + my_offset)
4120 /* Address of where the BL is located. */
4121 - (input_section->output_section->vma + input_section->output_offset
4122 + offset)
4123 /* Addend in the relocation. */
4124 - addend
4125 /* Biassing for PC-relative addressing. */
4126 - 8;
4127
4128 tmp = bfd_get_32 (input_bfd, hit_data
4129 - input_section->vma);
4130
4131 bfd_put_32 (output_bfd,
4132 (bfd_vma) insert_thumb_branch (tmp, ret_offset),
4133 hit_data - input_section->vma);
4134
4135 return TRUE;
4136 }
4137
4138 /* Populate an Arm to Thumb stub. Returns the stub symbol. */
4139
4140 static struct elf_link_hash_entry *
4141 elf32_arm_create_thumb_stub (struct bfd_link_info * info,
4142 const char * name,
4143 bfd * input_bfd,
4144 bfd * output_bfd,
4145 asection * sym_sec,
4146 bfd_vma val,
4147 asection *s,
4148 char **error_message)
4149 {
4150 bfd_vma my_offset;
4151 long int ret_offset;
4152 struct elf_link_hash_entry * myh;
4153 struct elf32_arm_link_hash_table * globals;
4154
4155 myh = find_arm_glue (info, name, error_message);
4156 if (myh == NULL)
4157 return NULL;
4158
4159 globals = elf32_arm_hash_table (info);
4160
4161 BFD_ASSERT (globals != NULL);
4162 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4163
4164 my_offset = myh->root.u.def.value;
4165
4166 if ((my_offset & 0x01) == 0x01)
4167 {
4168 if (sym_sec != NULL
4169 && sym_sec->owner != NULL
4170 && !INTERWORK_FLAG (sym_sec->owner))
4171 {
4172 (*_bfd_error_handler)
4173 (_("%B(%s): warning: interworking not enabled.\n"
4174 " first occurrence: %B: arm call to thumb"),
4175 sym_sec->owner, input_bfd, name);
4176 }
4177
4178 --my_offset;
4179 myh->root.u.def.value = my_offset;
4180
4181 if (info->shared || globals->root.is_relocatable_executable
4182 || globals->pic_veneer)
4183 {
4184 /* For relocatable objects we can't use absolute addresses,
4185 so construct the address from a relative offset. */
4186 /* TODO: If the offset is small it's probably worth
4187 constructing the address with adds. */
4188 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1p_ldr_insn,
4189 s->contents + my_offset);
4190 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2p_add_pc_insn,
4191 s->contents + my_offset + 4);
4192 put_arm_insn (globals, output_bfd, (bfd_vma) a2t3p_bx_r12_insn,
4193 s->contents + my_offset + 8);
4194 /* Adjust the offset by 4 for the position of the add,
4195 and 8 for the pipeline offset. */
4196 ret_offset = (val - (s->output_offset
4197 + s->output_section->vma
4198 + my_offset + 12))
4199 | 1;
4200 bfd_put_32 (output_bfd, ret_offset,
4201 s->contents + my_offset + 12);
4202 }
4203 else if (globals->use_blx)
4204 {
4205 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1v5_ldr_insn,
4206 s->contents + my_offset);
4207
4208 /* It's a thumb address. Add the low order bit. */
4209 bfd_put_32 (output_bfd, val | a2t2v5_func_addr_insn,
4210 s->contents + my_offset + 4);
4211 }
4212 else
4213 {
4214 put_arm_insn (globals, output_bfd, (bfd_vma) a2t1_ldr_insn,
4215 s->contents + my_offset);
4216
4217 put_arm_insn (globals, output_bfd, (bfd_vma) a2t2_bx_r12_insn,
4218 s->contents + my_offset + 4);
4219
4220 /* It's a thumb address. Add the low order bit. */
4221 bfd_put_32 (output_bfd, val | a2t3_func_addr_insn,
4222 s->contents + my_offset + 8);
4223 }
4224 }
4225
4226 BFD_ASSERT (my_offset <= globals->arm_glue_size);
4227
4228 return myh;
4229 }
4230
4231 /* Arm code calling a Thumb function. */
4232
4233 static int
4234 elf32_arm_to_thumb_stub (struct bfd_link_info * info,
4235 const char * name,
4236 bfd * input_bfd,
4237 bfd * output_bfd,
4238 asection * input_section,
4239 bfd_byte * hit_data,
4240 asection * sym_sec,
4241 bfd_vma offset,
4242 bfd_signed_vma addend,
4243 bfd_vma val,
4244 char **error_message)
4245 {
4246 unsigned long int tmp;
4247 bfd_vma my_offset;
4248 asection * s;
4249 long int ret_offset;
4250 struct elf_link_hash_entry * myh;
4251 struct elf32_arm_link_hash_table * globals;
4252
4253 globals = elf32_arm_hash_table (info);
4254
4255 BFD_ASSERT (globals != NULL);
4256 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4257
4258 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4259 ARM2THUMB_GLUE_SECTION_NAME);
4260 BFD_ASSERT (s != NULL);
4261 BFD_ASSERT (s->contents != NULL);
4262 BFD_ASSERT (s->output_section != NULL);
4263
4264 myh = elf32_arm_create_thumb_stub (info, name, input_bfd, output_bfd,
4265 sym_sec, val, s, error_message);
4266 if (!myh)
4267 return FALSE;
4268
4269 my_offset = myh->root.u.def.value;
4270 tmp = bfd_get_32 (input_bfd, hit_data);
4271 tmp = tmp & 0xFF000000;
4272
4273 /* Somehow these are both 4 too far, so subtract 8. */
4274 ret_offset = (s->output_offset
4275 + my_offset
4276 + s->output_section->vma
4277 - (input_section->output_offset
4278 + input_section->output_section->vma
4279 + offset + addend)
4280 - 8);
4281
4282 tmp = tmp | ((ret_offset >> 2) & 0x00FFFFFF);
4283
4284 bfd_put_32 (output_bfd, (bfd_vma) tmp, hit_data - input_section->vma);
4285
4286 return TRUE;
4287 }
4288
4289 /* Populate Arm stub for an exported Thumb function. */
4290
4291 static bfd_boolean
4292 elf32_arm_to_thumb_export_stub (struct elf_link_hash_entry *h, void * inf)
4293 {
4294 struct bfd_link_info * info = (struct bfd_link_info *) inf;
4295 asection * s;
4296 struct elf_link_hash_entry * myh;
4297 struct elf32_arm_link_hash_entry *eh;
4298 struct elf32_arm_link_hash_table * globals;
4299 asection *sec;
4300 bfd_vma val;
4301 char *error_message;
4302
4303 eh = elf32_arm_hash_entry(h);
4304 /* Allocate stubs for exported Thumb functions on v4t. */
4305 if (eh->export_glue == NULL)
4306 return TRUE;
4307
4308 globals = elf32_arm_hash_table (info);
4309
4310 BFD_ASSERT (globals != NULL);
4311 BFD_ASSERT (globals->bfd_of_glue_owner != NULL);
4312
4313 s = bfd_get_section_by_name (globals->bfd_of_glue_owner,
4314 ARM2THUMB_GLUE_SECTION_NAME);
4315 BFD_ASSERT (s != NULL);
4316 BFD_ASSERT (s->contents != NULL);
4317 BFD_ASSERT (s->output_section != NULL);
4318
4319 sec = eh->export_glue->root.u.def.section;
4320
4321 BFD_ASSERT (sec->output_section != NULL);
4322
4323 val = eh->export_glue->root.u.def.value + sec->output_offset
4324 + sec->output_section->vma;
4325 myh = elf32_arm_create_thumb_stub (info, h->root.root.string,
4326 h->root.u.def.section->owner,
4327 globals->obfd, sec, val, s,
4328 &error_message);
4329 BFD_ASSERT (myh);
4330 return TRUE;
4331 }
4332
4333 /* Generate Arm stubs for exported Thumb symbols. */
4334 static void
4335 elf32_arm_begin_write_processing (bfd *abfd ATTRIBUTE_UNUSED,
4336 struct bfd_link_info *link_info)
4337 {
4338 struct elf32_arm_link_hash_table * globals;
4339
4340 if (!link_info)
4341 return;
4342
4343 globals = elf32_arm_hash_table (link_info);
4344 /* If blx is available then exported Thumb symbols are OK and there is
4345 nothing to do. */
4346 if (globals->use_blx)
4347 return;
4348
4349 elf_link_hash_traverse (&globals->root, elf32_arm_to_thumb_export_stub,
4350 link_info);
4351 }
4352
4353 /* Some relocations map to different relocations depending on the
4354 target. Return the real relocation. */
4355 static int
4356 arm_real_reloc_type (struct elf32_arm_link_hash_table * globals,
4357 int r_type)
4358 {
4359 switch (r_type)
4360 {
4361 case R_ARM_TARGET1:
4362 if (globals->target1_is_rel)
4363 return R_ARM_REL32;
4364 else
4365 return R_ARM_ABS32;
4366
4367 case R_ARM_TARGET2:
4368 return globals->target2_reloc;
4369
4370 default:
4371 return r_type;
4372 }
4373 }
4374
4375 /* Return the base VMA address which should be subtracted from real addresses
4376 when resolving @dtpoff relocation.
4377 This is PT_TLS segment p_vaddr. */
4378
4379 static bfd_vma
4380 dtpoff_base (struct bfd_link_info *info)
4381 {
4382 /* If tls_sec is NULL, we should have signalled an error already. */
4383 if (elf_hash_table (info)->tls_sec == NULL)
4384 return 0;
4385 return elf_hash_table (info)->tls_sec->vma;
4386 }
4387
4388 /* Return the relocation value for @tpoff relocation
4389 if STT_TLS virtual address is ADDRESS. */
4390
4391 static bfd_vma
4392 tpoff (struct bfd_link_info *info, bfd_vma address)
4393 {
4394 struct elf_link_hash_table *htab = elf_hash_table (info);
4395 bfd_vma base;
4396
4397 /* If tls_sec is NULL, we should have signalled an error already. */
4398 if (htab->tls_sec == NULL)
4399 return 0;
4400 base = align_power ((bfd_vma) TCB_SIZE, htab->tls_sec->alignment_power);
4401 return address - htab->tls_sec->vma + base;
4402 }
4403
4404 /* Perform an R_ARM_ABS12 relocation on the field pointed to by DATA.
4405 VALUE is the relocation value. */
4406
4407 static bfd_reloc_status_type
4408 elf32_arm_abs12_reloc (bfd *abfd, void *data, bfd_vma value)
4409 {
4410 if (value > 0xfff)
4411 return bfd_reloc_overflow;
4412
4413 value |= bfd_get_32 (abfd, data) & 0xfffff000;
4414 bfd_put_32 (abfd, value, data);
4415 return bfd_reloc_ok;
4416 }
4417
4418 /* For a given value of n, calculate the value of G_n as required to
4419 deal with group relocations. We return it in the form of an
4420 encoded constant-and-rotation, together with the final residual. If n is
4421 specified as less than zero, then final_residual is filled with the
4422 input value and no further action is performed. */
4423
4424 static bfd_vma
4425 calculate_group_reloc_mask (bfd_vma value, int n, bfd_vma *final_residual)
4426 {
4427 int current_n;
4428 bfd_vma g_n;
4429 bfd_vma encoded_g_n = 0;
4430 bfd_vma residual = value; /* Also known as Y_n. */
4431
4432 for (current_n = 0; current_n <= n; current_n++)
4433 {
4434 int shift;
4435
4436 /* Calculate which part of the value to mask. */
4437 if (residual == 0)
4438 shift = 0;
4439 else
4440 {
4441 int msb;
4442
4443 /* Determine the most significant bit in the residual and
4444 align the resulting value to a 2-bit boundary. */
4445 for (msb = 30; msb >= 0; msb -= 2)
4446 if (residual & (3 << msb))
4447 break;
4448
4449 /* The desired shift is now (msb - 6), or zero, whichever
4450 is the greater. */
4451 shift = msb - 6;
4452 if (shift < 0)
4453 shift = 0;
4454 }
4455
4456 /* Calculate g_n in 32-bit as well as encoded constant+rotation form. */
4457 g_n = residual & (0xff << shift);
4458 encoded_g_n = (g_n >> shift)
4459 | ((g_n <= 0xff ? 0 : (32 - shift) / 2) << 8);
4460
4461 /* Calculate the residual for the next time around. */
4462 residual &= ~g_n;
4463 }
4464
4465 *final_residual = residual;
4466
4467 return encoded_g_n;
4468 }
4469
4470 /* Given an ARM instruction, determine whether it is an ADD or a SUB.
4471 Returns 1 if it is an ADD, -1 if it is a SUB, and 0 otherwise. */
4472 static int
4473 identify_add_or_sub(bfd_vma insn)
4474 {
4475 int opcode = insn & 0x1e00000;
4476
4477 if (opcode == 1 << 23) /* ADD */
4478 return 1;
4479
4480 if (opcode == 1 << 22) /* SUB */
4481 return -1;
4482
4483 return 0;
4484 }
4485
4486 /* Determine if we're dealing with a Thumb-2 object. */
4487
4488 static int using_thumb2 (struct elf32_arm_link_hash_table *globals)
4489 {
4490 int arch = elf32_arm_get_eabi_attr_int (globals->obfd, Tag_CPU_arch);
4491 return arch == TAG_CPU_ARCH_V6T2 || arch >= TAG_CPU_ARCH_V7;
4492 }
4493
4494 /* Perform a relocation as part of a final link. */
4495
4496 static bfd_reloc_status_type
4497 elf32_arm_final_link_relocate (reloc_howto_type * howto,
4498 bfd * input_bfd,
4499 bfd * output_bfd,
4500 asection * input_section,
4501 bfd_byte * contents,
4502 Elf_Internal_Rela * rel,
4503 bfd_vma value,
4504 struct bfd_link_info * info,
4505 asection * sym_sec,
4506 const char * sym_name,
4507 int sym_flags,
4508 struct elf_link_hash_entry * h,
4509 bfd_boolean * unresolved_reloc_p,
4510 char **error_message)
4511 {
4512 unsigned long r_type = howto->type;
4513 unsigned long r_symndx;
4514 bfd_byte * hit_data = contents + rel->r_offset;
4515 bfd * dynobj = NULL;
4516 Elf_Internal_Shdr * symtab_hdr;
4517 struct elf_link_hash_entry ** sym_hashes;
4518 bfd_vma * local_got_offsets;
4519 asection * sgot = NULL;
4520 asection * splt = NULL;
4521 asection * sreloc = NULL;
4522 bfd_vma addend;
4523 bfd_signed_vma signed_addend;
4524 struct elf32_arm_link_hash_table * globals;
4525
4526 globals = elf32_arm_hash_table (info);
4527
4528 /* Some relocation type map to different relocations depending on the
4529 target. We pick the right one here. */
4530 r_type = arm_real_reloc_type (globals, r_type);
4531 if (r_type != howto->type)
4532 howto = elf32_arm_howto_from_type (r_type);
4533
4534 /* If the start address has been set, then set the EF_ARM_HASENTRY
4535 flag. Setting this more than once is redundant, but the cost is
4536 not too high, and it keeps the code simple.
4537
4538 The test is done here, rather than somewhere else, because the
4539 start address is only set just before the final link commences.
4540
4541 Note - if the user deliberately sets a start address of 0, the
4542 flag will not be set. */
4543 if (bfd_get_start_address (output_bfd) != 0)
4544 elf_elfheader (output_bfd)->e_flags |= EF_ARM_HASENTRY;
4545
4546 dynobj = elf_hash_table (info)->dynobj;
4547 if (dynobj)
4548 {
4549 sgot = bfd_get_section_by_name (dynobj, ".got");
4550 splt = bfd_get_section_by_name (dynobj, ".plt");
4551 }
4552 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
4553 sym_hashes = elf_sym_hashes (input_bfd);
4554 local_got_offsets = elf_local_got_offsets (input_bfd);
4555 r_symndx = ELF32_R_SYM (rel->r_info);
4556
4557 if (globals->use_rel)
4558 {
4559 addend = bfd_get_32 (input_bfd, hit_data) & howto->src_mask;
4560
4561 if (addend & ((howto->src_mask + 1) >> 1))
4562 {
4563 signed_addend = -1;
4564 signed_addend &= ~ howto->src_mask;
4565 signed_addend |= addend;
4566 }
4567 else
4568 signed_addend = addend;
4569 }
4570 else
4571 addend = signed_addend = rel->r_addend;
4572
4573 switch (r_type)
4574 {
4575 case R_ARM_NONE:
4576 /* We don't need to find a value for this symbol. It's just a
4577 marker. */
4578 *unresolved_reloc_p = FALSE;
4579 return bfd_reloc_ok;
4580
4581 case R_ARM_ABS12:
4582 if (!globals->vxworks_p)
4583 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
4584
4585 case R_ARM_PC24:
4586 case R_ARM_ABS32:
4587 case R_ARM_ABS32_NOI:
4588 case R_ARM_REL32:
4589 case R_ARM_REL32_NOI:
4590 case R_ARM_CALL:
4591 case R_ARM_JUMP24:
4592 case R_ARM_XPC25:
4593 case R_ARM_PREL31:
4594 case R_ARM_PLT32:
4595 /* Handle relocations which should use the PLT entry. ABS32/REL32
4596 will use the symbol's value, which may point to a PLT entry, but we
4597 don't need to handle that here. If we created a PLT entry, all
4598 branches in this object should go to it. */
4599 if ((r_type != R_ARM_ABS32 && r_type != R_ARM_REL32
4600 && r_type != R_ARM_ABS32_NOI && r_type != R_ARM_REL32_NOI)
4601 && h != NULL
4602 && splt != NULL
4603 && h->plt.offset != (bfd_vma) -1)
4604 {
4605 /* If we've created a .plt section, and assigned a PLT entry to
4606 this function, it should not be known to bind locally. If
4607 it were, we would have cleared the PLT entry. */
4608 BFD_ASSERT (!SYMBOL_CALLS_LOCAL (info, h));
4609
4610 value = (splt->output_section->vma
4611 + splt->output_offset
4612 + h->plt.offset);
4613 *unresolved_reloc_p = FALSE;
4614 return _bfd_final_link_relocate (howto, input_bfd, input_section,
4615 contents, rel->r_offset, value,
4616 rel->r_addend);
4617 }
4618
4619 /* When generating a shared object or relocatable executable, these
4620 relocations are copied into the output file to be resolved at
4621 run time. */
4622 if ((info->shared || globals->root.is_relocatable_executable)
4623 && (input_section->flags & SEC_ALLOC)
4624 && ((r_type != R_ARM_REL32 && r_type != R_ARM_REL32_NOI)
4625 || !SYMBOL_CALLS_LOCAL (info, h))
4626 && (h == NULL
4627 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
4628 || h->root.type != bfd_link_hash_undefweak)
4629 && r_type != R_ARM_PC24
4630 && r_type != R_ARM_CALL
4631 && r_type != R_ARM_JUMP24
4632 && r_type != R_ARM_PREL31
4633 && r_type != R_ARM_PLT32)
4634 {
4635 Elf_Internal_Rela outrel;
4636 bfd_byte *loc;
4637 bfd_boolean skip, relocate;
4638
4639 *unresolved_reloc_p = FALSE;
4640
4641 if (sreloc == NULL)
4642 {
4643 const char * name;
4644
4645 name = (bfd_elf_string_from_elf_section
4646 (input_bfd,
4647 elf_elfheader (input_bfd)->e_shstrndx,
4648 elf_section_data (input_section)->rel_hdr.sh_name));
4649 if (name == NULL)
4650 return bfd_reloc_notsupported;
4651
4652 BFD_ASSERT (reloc_section_p (globals, name, input_section));
4653
4654 sreloc = bfd_get_section_by_name (dynobj, name);
4655 BFD_ASSERT (sreloc != NULL);
4656 }
4657
4658 skip = FALSE;
4659 relocate = FALSE;
4660
4661 outrel.r_addend = addend;
4662 outrel.r_offset =
4663 _bfd_elf_section_offset (output_bfd, info, input_section,
4664 rel->r_offset);
4665 if (outrel.r_offset == (bfd_vma) -1)
4666 skip = TRUE;
4667 else if (outrel.r_offset == (bfd_vma) -2)
4668 skip = TRUE, relocate = TRUE;
4669 outrel.r_offset += (input_section->output_section->vma
4670 + input_section->output_offset);
4671
4672 if (skip)
4673 memset (&outrel, 0, sizeof outrel);
4674 else if (h != NULL
4675 && h->dynindx != -1
4676 && (!info->shared
4677 || !info->symbolic
4678 || !h->def_regular))
4679 outrel.r_info = ELF32_R_INFO (h->dynindx, r_type);
4680 else
4681 {
4682 int symbol;
4683
4684 /* This symbol is local, or marked to become local. */
4685 if (sym_flags == STT_ARM_TFUNC)
4686 value |= 1;
4687 if (globals->symbian_p)
4688 {
4689 asection *osec;
4690
4691 /* On Symbian OS, the data segment and text segement
4692 can be relocated independently. Therefore, we
4693 must indicate the segment to which this
4694 relocation is relative. The BPABI allows us to
4695 use any symbol in the right segment; we just use
4696 the section symbol as it is convenient. (We
4697 cannot use the symbol given by "h" directly as it
4698 will not appear in the dynamic symbol table.)
4699
4700 Note that the dynamic linker ignores the section
4701 symbol value, so we don't subtract osec->vma
4702 from the emitted reloc addend. */
4703 if (sym_sec)
4704 osec = sym_sec->output_section;
4705 else
4706 osec = input_section->output_section;
4707 symbol = elf_section_data (osec)->dynindx;
4708 if (symbol == 0)
4709 {
4710 struct elf_link_hash_table *htab = elf_hash_table (info);
4711
4712 if ((osec->flags & SEC_READONLY) == 0
4713 && htab->data_index_section != NULL)
4714 osec = htab->data_index_section;
4715 else
4716 osec = htab->text_index_section;
4717 symbol = elf_section_data (osec)->dynindx;
4718 }
4719 BFD_ASSERT (symbol != 0);
4720 }
4721 else
4722 /* On SVR4-ish systems, the dynamic loader cannot
4723 relocate the text and data segments independently,
4724 so the symbol does not matter. */
4725 symbol = 0;
4726 outrel.r_info = ELF32_R_INFO (symbol, R_ARM_RELATIVE);
4727 if (globals->use_rel)
4728 relocate = TRUE;
4729 else
4730 outrel.r_addend += value;
4731 }
4732
4733 loc = sreloc->contents;
4734 loc += sreloc->reloc_count++ * RELOC_SIZE (globals);
4735 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
4736
4737 /* If this reloc is against an external symbol, we do not want to
4738 fiddle with the addend. Otherwise, we need to include the symbol
4739 value so that it becomes an addend for the dynamic reloc. */
4740 if (! relocate)
4741 return bfd_reloc_ok;
4742
4743 return _bfd_final_link_relocate (howto, input_bfd, input_section,
4744 contents, rel->r_offset, value,
4745 (bfd_vma) 0);
4746 }
4747 else switch (r_type)
4748 {
4749 case R_ARM_ABS12:
4750 return elf32_arm_abs12_reloc (input_bfd, hit_data, value + addend);
4751
4752 case R_ARM_XPC25: /* Arm BLX instruction. */
4753 case R_ARM_CALL:
4754 case R_ARM_JUMP24:
4755 case R_ARM_PC24: /* Arm B/BL instruction */
4756 case R_ARM_PLT32:
4757 if (r_type == R_ARM_XPC25)
4758 {
4759 /* Check for Arm calling Arm function. */
4760 /* FIXME: Should we translate the instruction into a BL
4761 instruction instead ? */
4762 if (sym_flags != STT_ARM_TFUNC)
4763 (*_bfd_error_handler)
4764 (_("\%B: Warning: Arm BLX instruction targets Arm function '%s'."),
4765 input_bfd,
4766 h ? h->root.root.string : "(local)");
4767 }
4768 else if (r_type != R_ARM_CALL || !globals->use_blx)
4769 {
4770 /* Check for Arm calling Thumb function. */
4771 if (sym_flags == STT_ARM_TFUNC)
4772 {
4773 if (elf32_arm_to_thumb_stub (info, sym_name, input_bfd,
4774 output_bfd, input_section,
4775 hit_data, sym_sec, rel->r_offset,
4776 signed_addend, value,
4777 error_message))
4778 return bfd_reloc_ok;
4779 else
4780 return bfd_reloc_dangerous;
4781 }
4782 }
4783
4784 /* The ARM ELF ABI says that this reloc is computed as: S - P + A
4785 where:
4786 S is the address of the symbol in the relocation.
4787 P is address of the instruction being relocated.
4788 A is the addend (extracted from the instruction) in bytes.
4789
4790 S is held in 'value'.
4791 P is the base address of the section containing the
4792 instruction plus the offset of the reloc into that
4793 section, ie:
4794 (input_section->output_section->vma +
4795 input_section->output_offset +
4796 rel->r_offset).
4797 A is the addend, converted into bytes, ie:
4798 (signed_addend * 4)
4799
4800 Note: None of these operations have knowledge of the pipeline
4801 size of the processor, thus it is up to the assembler to
4802 encode this information into the addend. */
4803 value -= (input_section->output_section->vma
4804 + input_section->output_offset);
4805 value -= rel->r_offset;
4806 if (globals->use_rel)
4807 value += (signed_addend << howto->size);
4808 else
4809 /* RELA addends do not have to be adjusted by howto->size. */
4810 value += signed_addend;
4811
4812 signed_addend = value;
4813 signed_addend >>= howto->rightshift;
4814
4815 /* It is not an error for an undefined weak reference to be
4816 out of range. Any program that branches to such a symbol
4817 is going to crash anyway, so there is no point worrying
4818 about getting the destination exactly right. */
4819 if (! h || h->root.type != bfd_link_hash_undefweak)
4820 {
4821 /* Perform a signed range check. */
4822 if ( signed_addend > ((bfd_signed_vma) (howto->dst_mask >> 1))
4823 || signed_addend < - ((bfd_signed_vma) ((howto->dst_mask + 1) >> 1)))
4824 return bfd_reloc_overflow;
4825 }
4826
4827 addend = (value & 2);
4828
4829 value = (signed_addend & howto->dst_mask)
4830 | (bfd_get_32 (input_bfd, hit_data) & (~ howto->dst_mask));
4831
4832 /* Set the H bit in the BLX instruction. */
4833 if (sym_flags == STT_ARM_TFUNC)
4834 {
4835 if (addend)
4836 value |= (1 << 24);
4837 else
4838 value &= ~(bfd_vma)(1 << 24);
4839 }
4840 if (r_type == R_ARM_CALL)
4841 {
4842 /* Select the correct instruction (BL or BLX). */
4843 if (sym_flags == STT_ARM_TFUNC)
4844 value |= (1 << 28);
4845 else
4846 {
4847 value &= ~(bfd_vma)(1 << 28);
4848 value |= (1 << 24);
4849 }
4850 }
4851 break;
4852
4853 case R_ARM_ABS32:
4854 value += addend;
4855 if (sym_flags == STT_ARM_TFUNC)
4856 value |= 1;
4857 break;
4858
4859 case R_ARM_ABS32_NOI:
4860 value += addend;
4861 break;
4862
4863 case R_ARM_REL32:
4864 value += addend;
4865 if (sym_flags == STT_ARM_TFUNC)
4866 value |= 1;
4867 value -= (input_section->output_section->vma
4868 + input_section->output_offset + rel->r_offset);
4869 break;
4870
4871 case R_ARM_REL32_NOI:
4872 value += addend;
4873 value -= (input_section->output_section->vma
4874 + input_section->output_offset + rel->r_offset);
4875 break;
4876
4877 case R_ARM_PREL31:
4878 value -= (input_section->output_section->vma
4879 + input_section->output_offset + rel->r_offset);
4880 value += signed_addend;
4881 if (! h || h->root.type != bfd_link_hash_undefweak)
4882 {
4883 /* Check for overflow */
4884 if ((value ^ (value >> 1)) & (1 << 30))
4885 return bfd_reloc_overflow;
4886 }
4887 value &= 0x7fffffff;
4888 value |= (bfd_get_32 (input_bfd, hit_data) & 0x80000000);
4889 if (sym_flags == STT_ARM_TFUNC)
4890 value |= 1;
4891 break;
4892 }
4893
4894 bfd_put_32 (input_bfd, value, hit_data);
4895 return bfd_reloc_ok;
4896
4897 case R_ARM_ABS8:
4898 value += addend;
4899 if ((long) value > 0x7f || (long) value < -0x80)
4900 return bfd_reloc_overflow;
4901
4902 bfd_put_8 (input_bfd, value, hit_data);
4903 return bfd_reloc_ok;
4904
4905 case R_ARM_ABS16:
4906 value += addend;
4907
4908 if ((long) value > 0x7fff || (long) value < -0x8000)
4909 return bfd_reloc_overflow;
4910
4911 bfd_put_16 (input_bfd, value, hit_data);
4912 return bfd_reloc_ok;
4913
4914 case R_ARM_THM_ABS5:
4915 /* Support ldr and str instructions for the thumb. */
4916 if (globals->use_rel)
4917 {
4918 /* Need to refetch addend. */
4919 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
4920 /* ??? Need to determine shift amount from operand size. */
4921 addend >>= howto->rightshift;
4922 }
4923 value += addend;
4924
4925 /* ??? Isn't value unsigned? */
4926 if ((long) value > 0x1f || (long) value < -0x10)
4927 return bfd_reloc_overflow;
4928
4929 /* ??? Value needs to be properly shifted into place first. */
4930 value |= bfd_get_16 (input_bfd, hit_data) & 0xf83f;
4931 bfd_put_16 (input_bfd, value, hit_data);
4932 return bfd_reloc_ok;
4933
4934 case R_ARM_THM_ALU_PREL_11_0:
4935 /* Corresponds to: addw.w reg, pc, #offset (and similarly for subw). */
4936 {
4937 bfd_vma insn;
4938 bfd_signed_vma relocation;
4939
4940 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
4941 | bfd_get_16 (input_bfd, hit_data + 2);
4942
4943 if (globals->use_rel)
4944 {
4945 signed_addend = (insn & 0xff) | ((insn & 0x7000) >> 4)
4946 | ((insn & (1 << 26)) >> 15);
4947 if (insn & 0xf00000)
4948 signed_addend = -signed_addend;
4949 }
4950
4951 relocation = value + signed_addend;
4952 relocation -= (input_section->output_section->vma
4953 + input_section->output_offset
4954 + rel->r_offset);
4955
4956 value = abs (relocation);
4957
4958 if (value >= 0x1000)
4959 return bfd_reloc_overflow;
4960
4961 insn = (insn & 0xfb0f8f00) | (value & 0xff)
4962 | ((value & 0x700) << 4)
4963 | ((value & 0x800) << 15);
4964 if (relocation < 0)
4965 insn |= 0xa00000;
4966
4967 bfd_put_16 (input_bfd, insn >> 16, hit_data);
4968 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
4969
4970 return bfd_reloc_ok;
4971 }
4972
4973 case R_ARM_THM_PC12:
4974 /* Corresponds to: ldr.w reg, [pc, #offset]. */
4975 {
4976 bfd_vma insn;
4977 bfd_signed_vma relocation;
4978
4979 insn = (bfd_get_16 (input_bfd, hit_data) << 16)
4980 | bfd_get_16 (input_bfd, hit_data + 2);
4981
4982 if (globals->use_rel)
4983 {
4984 signed_addend = insn & 0xfff;
4985 if (!(insn & (1 << 23)))
4986 signed_addend = -signed_addend;
4987 }
4988
4989 relocation = value + signed_addend;
4990 relocation -= (input_section->output_section->vma
4991 + input_section->output_offset
4992 + rel->r_offset);
4993
4994 value = abs (relocation);
4995
4996 if (value >= 0x1000)
4997 return bfd_reloc_overflow;
4998
4999 insn = (insn & 0xff7ff000) | value;
5000 if (relocation >= 0)
5001 insn |= (1 << 23);
5002
5003 bfd_put_16 (input_bfd, insn >> 16, hit_data);
5004 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
5005
5006 return bfd_reloc_ok;
5007 }
5008
5009 case R_ARM_THM_XPC22:
5010 case R_ARM_THM_CALL:
5011 /* Thumb BL (branch long instruction). */
5012 {
5013 bfd_vma relocation;
5014 bfd_vma reloc_sign;
5015 bfd_boolean overflow = FALSE;
5016 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
5017 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
5018 bfd_signed_vma reloc_signed_max;
5019 bfd_signed_vma reloc_signed_min;
5020 bfd_vma check;
5021 bfd_signed_vma signed_check;
5022 int bitsize;
5023 int thumb2 = using_thumb2 (globals);
5024
5025 /* Fetch the addend. We use the Thumb-2 encoding (backwards compatible
5026 with Thumb-1) involving the J1 and J2 bits. */
5027 if (globals->use_rel)
5028 {
5029 bfd_vma s = (upper_insn & (1 << 10)) >> 10;
5030 bfd_vma upper = upper_insn & 0x3ff;
5031 bfd_vma lower = lower_insn & 0x7ff;
5032 bfd_vma j1 = (lower_insn & (1 << 13)) >> 13;
5033 bfd_vma j2 = (lower_insn & (1 << 11)) >> 11;
5034 bfd_vma i1 = j1 ^ s ? 0 : 1;
5035 bfd_vma i2 = j2 ^ s ? 0 : 1;
5036
5037 addend = (i1 << 23) | (i2 << 22) | (upper << 12) | (lower << 1);
5038 /* Sign extend. */
5039 addend = (addend | ((s ? 0 : 1) << 24)) - (1 << 24);
5040
5041 signed_addend = addend;
5042 }
5043
5044 if (r_type == R_ARM_THM_XPC22)
5045 {
5046 /* Check for Thumb to Thumb call. */
5047 /* FIXME: Should we translate the instruction into a BL
5048 instruction instead ? */
5049 if (sym_flags == STT_ARM_TFUNC)
5050 (*_bfd_error_handler)
5051 (_("%B: Warning: Thumb BLX instruction targets thumb function '%s'."),
5052 input_bfd,
5053 h ? h->root.root.string : "(local)");
5054 }
5055 else
5056 {
5057 /* If it is not a call to Thumb, assume call to Arm.
5058 If it is a call relative to a section name, then it is not a
5059 function call at all, but rather a long jump. Calls through
5060 the PLT do not require stubs. */
5061 if (sym_flags != STT_ARM_TFUNC && sym_flags != STT_SECTION
5062 && (h == NULL || splt == NULL
5063 || h->plt.offset == (bfd_vma) -1))
5064 {
5065 if (globals->use_blx)
5066 {
5067 /* Convert BL to BLX. */
5068 lower_insn = (lower_insn & ~0x1000) | 0x0800;
5069 }
5070 else if (elf32_thumb_to_arm_stub
5071 (info, sym_name, input_bfd, output_bfd, input_section,
5072 hit_data, sym_sec, rel->r_offset, signed_addend, value,
5073 error_message))
5074 return bfd_reloc_ok;
5075 else
5076 return bfd_reloc_dangerous;
5077 }
5078 else if (sym_flags == STT_ARM_TFUNC && globals->use_blx)
5079 {
5080 /* Make sure this is a BL. */
5081 lower_insn |= 0x1800;
5082 }
5083 }
5084
5085 /* Handle calls via the PLT. */
5086 if (h != NULL && splt != NULL && h->plt.offset != (bfd_vma) -1)
5087 {
5088 value = (splt->output_section->vma
5089 + splt->output_offset
5090 + h->plt.offset);
5091 if (globals->use_blx)
5092 {
5093 /* If the Thumb BLX instruction is available, convert the
5094 BL to a BLX instruction to call the ARM-mode PLT entry. */
5095 lower_insn = (lower_insn & ~0x1000) | 0x0800;
5096 }
5097 else
5098 /* Target the Thumb stub before the ARM PLT entry. */
5099 value -= PLT_THUMB_STUB_SIZE;
5100 *unresolved_reloc_p = FALSE;
5101 }
5102
5103 relocation = value + signed_addend;
5104
5105 relocation -= (input_section->output_section->vma
5106 + input_section->output_offset
5107 + rel->r_offset);
5108
5109 check = relocation >> howto->rightshift;
5110
5111 /* If this is a signed value, the rightshift just dropped
5112 leading 1 bits (assuming twos complement). */
5113 if ((bfd_signed_vma) relocation >= 0)
5114 signed_check = check;
5115 else
5116 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
5117
5118 /* Calculate the permissable maximum and minimum values for
5119 this relocation according to whether we're relocating for
5120 Thumb-2 or not. */
5121 bitsize = howto->bitsize;
5122 if (!thumb2)
5123 bitsize -= 2;
5124 reloc_signed_max = ((1 << (bitsize - 1)) - 1) >> howto->rightshift;
5125 reloc_signed_min = ~reloc_signed_max;
5126
5127 /* Assumes two's complement. */
5128 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5129 overflow = TRUE;
5130
5131 if ((lower_insn & 0x1800) == 0x0800)
5132 /* For a BLX instruction, make sure that the relocation is rounded up
5133 to a word boundary. This follows the semantics of the instruction
5134 which specifies that bit 1 of the target address will come from bit
5135 1 of the base address. */
5136 relocation = (relocation + 2) & ~ 3;
5137
5138 /* Put RELOCATION back into the insn. Assumes two's complement.
5139 We use the Thumb-2 encoding, which is safe even if dealing with
5140 a Thumb-1 instruction by virtue of our overflow check above. */
5141 reloc_sign = (signed_check < 0) ? 1 : 0;
5142 upper_insn = (upper_insn & ~(bfd_vma) 0x7ff)
5143 | ((relocation >> 12) & 0x3ff)
5144 | (reloc_sign << 10);
5145 lower_insn = (lower_insn & ~(bfd_vma) 0x2fff)
5146 | (((!((relocation >> 23) & 1)) ^ reloc_sign) << 13)
5147 | (((!((relocation >> 22) & 1)) ^ reloc_sign) << 11)
5148 | ((relocation >> 1) & 0x7ff);
5149
5150 /* Put the relocated value back in the object file: */
5151 bfd_put_16 (input_bfd, upper_insn, hit_data);
5152 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
5153
5154 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
5155 }
5156 break;
5157
5158 case R_ARM_THM_JUMP24:
5159 /* Thumb32 unconditional branch instruction. */
5160 {
5161 bfd_vma relocation;
5162 bfd_boolean overflow = FALSE;
5163 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
5164 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
5165 bfd_signed_vma reloc_signed_max = ((1 << (howto->bitsize - 1)) - 1) >> howto->rightshift;
5166 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
5167 bfd_vma check;
5168 bfd_signed_vma signed_check;
5169
5170 /* Need to refetch the addend, reconstruct the top three bits, and glue the
5171 two pieces together. */
5172 if (globals->use_rel)
5173 {
5174 bfd_vma S = (upper_insn & 0x0400) >> 10;
5175 bfd_vma hi = (upper_insn & 0x03ff);
5176 bfd_vma I1 = (lower_insn & 0x2000) >> 13;
5177 bfd_vma I2 = (lower_insn & 0x0800) >> 11;
5178 bfd_vma lo = (lower_insn & 0x07ff);
5179
5180 I1 = !(I1 ^ S);
5181 I2 = !(I2 ^ S);
5182 S = !S;
5183
5184 signed_addend = (S << 24) | (I1 << 23) | (I2 << 22) | (hi << 12) | (lo << 1);
5185 signed_addend -= (1 << 24); /* Sign extend. */
5186 }
5187
5188 /* ??? Should handle interworking? GCC might someday try to
5189 use this for tail calls. */
5190
5191 relocation = value + signed_addend;
5192 relocation -= (input_section->output_section->vma
5193 + input_section->output_offset
5194 + rel->r_offset);
5195
5196 check = relocation >> howto->rightshift;
5197
5198 /* If this is a signed value, the rightshift just dropped
5199 leading 1 bits (assuming twos complement). */
5200 if ((bfd_signed_vma) relocation >= 0)
5201 signed_check = check;
5202 else
5203 signed_check = check | ~((bfd_vma) -1 >> howto->rightshift);
5204
5205 /* Assumes two's complement. */
5206 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5207 overflow = TRUE;
5208
5209 /* Put RELOCATION back into the insn. */
5210 {
5211 bfd_vma S = (relocation & 0x01000000) >> 24;
5212 bfd_vma I1 = (relocation & 0x00800000) >> 23;
5213 bfd_vma I2 = (relocation & 0x00400000) >> 22;
5214 bfd_vma hi = (relocation & 0x003ff000) >> 12;
5215 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
5216
5217 I1 = !(I1 ^ S);
5218 I2 = !(I2 ^ S);
5219
5220 upper_insn = (upper_insn & (bfd_vma) 0xf800) | (S << 10) | hi;
5221 lower_insn = (lower_insn & (bfd_vma) 0xd000) | (I1 << 13) | (I2 << 11) | lo;
5222 }
5223
5224 /* Put the relocated value back in the object file: */
5225 bfd_put_16 (input_bfd, upper_insn, hit_data);
5226 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
5227
5228 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
5229 }
5230
5231 case R_ARM_THM_JUMP19:
5232 /* Thumb32 conditional branch instruction. */
5233 {
5234 bfd_vma relocation;
5235 bfd_boolean overflow = FALSE;
5236 bfd_vma upper_insn = bfd_get_16 (input_bfd, hit_data);
5237 bfd_vma lower_insn = bfd_get_16 (input_bfd, hit_data + 2);
5238 bfd_signed_vma reloc_signed_max = 0xffffe;
5239 bfd_signed_vma reloc_signed_min = -0x100000;
5240 bfd_signed_vma signed_check;
5241
5242 /* Need to refetch the addend, reconstruct the top three bits,
5243 and squish the two 11 bit pieces together. */
5244 if (globals->use_rel)
5245 {
5246 bfd_vma S = (upper_insn & 0x0400) >> 10;
5247 bfd_vma upper = (upper_insn & 0x003f);
5248 bfd_vma J1 = (lower_insn & 0x2000) >> 13;
5249 bfd_vma J2 = (lower_insn & 0x0800) >> 11;
5250 bfd_vma lower = (lower_insn & 0x07ff);
5251
5252 upper |= J1 << 6;
5253 upper |= J2 << 7;
5254 upper |= (!S) << 8;
5255 upper -= 0x0100; /* Sign extend. */
5256
5257 addend = (upper << 12) | (lower << 1);
5258 signed_addend = addend;
5259 }
5260
5261 /* ??? Should handle interworking? GCC might someday try to
5262 use this for tail calls. */
5263
5264 relocation = value + signed_addend;
5265 relocation -= (input_section->output_section->vma
5266 + input_section->output_offset
5267 + rel->r_offset);
5268 signed_check = (bfd_signed_vma) relocation;
5269
5270 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5271 overflow = TRUE;
5272
5273 /* Put RELOCATION back into the insn. */
5274 {
5275 bfd_vma S = (relocation & 0x00100000) >> 20;
5276 bfd_vma J2 = (relocation & 0x00080000) >> 19;
5277 bfd_vma J1 = (relocation & 0x00040000) >> 18;
5278 bfd_vma hi = (relocation & 0x0003f000) >> 12;
5279 bfd_vma lo = (relocation & 0x00000ffe) >> 1;
5280
5281 upper_insn = (upper_insn & 0xfbc0) | (S << 10) | hi;
5282 lower_insn = (lower_insn & 0xd000) | (J1 << 13) | (J2 << 11) | lo;
5283 }
5284
5285 /* Put the relocated value back in the object file: */
5286 bfd_put_16 (input_bfd, upper_insn, hit_data);
5287 bfd_put_16 (input_bfd, lower_insn, hit_data + 2);
5288
5289 return (overflow ? bfd_reloc_overflow : bfd_reloc_ok);
5290 }
5291
5292 case R_ARM_THM_JUMP11:
5293 case R_ARM_THM_JUMP8:
5294 case R_ARM_THM_JUMP6:
5295 /* Thumb B (branch) instruction). */
5296 {
5297 bfd_signed_vma relocation;
5298 bfd_signed_vma reloc_signed_max = (1 << (howto->bitsize - 1)) - 1;
5299 bfd_signed_vma reloc_signed_min = ~ reloc_signed_max;
5300 bfd_signed_vma signed_check;
5301
5302 /* CZB cannot jump backward. */
5303 if (r_type == R_ARM_THM_JUMP6)
5304 reloc_signed_min = 0;
5305
5306 if (globals->use_rel)
5307 {
5308 /* Need to refetch addend. */
5309 addend = bfd_get_16 (input_bfd, hit_data) & howto->src_mask;
5310 if (addend & ((howto->src_mask + 1) >> 1))
5311 {
5312 signed_addend = -1;
5313 signed_addend &= ~ howto->src_mask;
5314 signed_addend |= addend;
5315 }
5316 else
5317 signed_addend = addend;
5318 /* The value in the insn has been right shifted. We need to
5319 undo this, so that we can perform the address calculation
5320 in terms of bytes. */
5321 signed_addend <<= howto->rightshift;
5322 }
5323 relocation = value + signed_addend;
5324
5325 relocation -= (input_section->output_section->vma
5326 + input_section->output_offset
5327 + rel->r_offset);
5328
5329 relocation >>= howto->rightshift;
5330 signed_check = relocation;
5331
5332 if (r_type == R_ARM_THM_JUMP6)
5333 relocation = ((relocation & 0x0020) << 4) | ((relocation & 0x001f) << 3);
5334 else
5335 relocation &= howto->dst_mask;
5336 relocation |= (bfd_get_16 (input_bfd, hit_data) & (~ howto->dst_mask));
5337
5338 bfd_put_16 (input_bfd, relocation, hit_data);
5339
5340 /* Assumes two's complement. */
5341 if (signed_check > reloc_signed_max || signed_check < reloc_signed_min)
5342 return bfd_reloc_overflow;
5343
5344 return bfd_reloc_ok;
5345 }
5346
5347 case R_ARM_ALU_PCREL7_0:
5348 case R_ARM_ALU_PCREL15_8:
5349 case R_ARM_ALU_PCREL23_15:
5350 {
5351 bfd_vma insn;
5352 bfd_vma relocation;
5353
5354 insn = bfd_get_32 (input_bfd, hit_data);
5355 if (globals->use_rel)
5356 {
5357 /* Extract the addend. */
5358 addend = (insn & 0xff) << ((insn & 0xf00) >> 7);
5359 signed_addend = addend;
5360 }
5361 relocation = value + signed_addend;
5362
5363 relocation -= (input_section->output_section->vma
5364 + input_section->output_offset
5365 + rel->r_offset);
5366 insn = (insn & ~0xfff)
5367 | ((howto->bitpos << 7) & 0xf00)
5368 | ((relocation >> howto->bitpos) & 0xff);
5369 bfd_put_32 (input_bfd, value, hit_data);
5370 }
5371 return bfd_reloc_ok;
5372
5373 case R_ARM_GNU_VTINHERIT:
5374 case R_ARM_GNU_VTENTRY:
5375 return bfd_reloc_ok;
5376
5377 case R_ARM_GOTOFF32:
5378 /* Relocation is relative to the start of the
5379 global offset table. */
5380
5381 BFD_ASSERT (sgot != NULL);
5382 if (sgot == NULL)
5383 return bfd_reloc_notsupported;
5384
5385 /* If we are addressing a Thumb function, we need to adjust the
5386 address by one, so that attempts to call the function pointer will
5387 correctly interpret it as Thumb code. */
5388 if (sym_flags == STT_ARM_TFUNC)
5389 value += 1;
5390
5391 /* Note that sgot->output_offset is not involved in this
5392 calculation. We always want the start of .got. If we
5393 define _GLOBAL_OFFSET_TABLE in a different way, as is
5394 permitted by the ABI, we might have to change this
5395 calculation. */
5396 value -= sgot->output_section->vma;
5397 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5398 contents, rel->r_offset, value,
5399 rel->r_addend);
5400
5401 case R_ARM_GOTPC:
5402 /* Use global offset table as symbol value. */
5403 BFD_ASSERT (sgot != NULL);
5404
5405 if (sgot == NULL)
5406 return bfd_reloc_notsupported;
5407
5408 *unresolved_reloc_p = FALSE;
5409 value = sgot->output_section->vma;
5410 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5411 contents, rel->r_offset, value,
5412 rel->r_addend);
5413
5414 case R_ARM_GOT32:
5415 case R_ARM_GOT_PREL:
5416 /* Relocation is to the entry for this symbol in the
5417 global offset table. */
5418 if (sgot == NULL)
5419 return bfd_reloc_notsupported;
5420
5421 if (h != NULL)
5422 {
5423 bfd_vma off;
5424 bfd_boolean dyn;
5425
5426 off = h->got.offset;
5427 BFD_ASSERT (off != (bfd_vma) -1);
5428 dyn = globals->root.dynamic_sections_created;
5429
5430 if (! WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
5431 || (info->shared
5432 && SYMBOL_REFERENCES_LOCAL (info, h))
5433 || (ELF_ST_VISIBILITY (h->other)
5434 && h->root.type == bfd_link_hash_undefweak))
5435 {
5436 /* This is actually a static link, or it is a -Bsymbolic link
5437 and the symbol is defined locally. We must initialize this
5438 entry in the global offset table. Since the offset must
5439 always be a multiple of 4, we use the least significant bit
5440 to record whether we have initialized it already.
5441
5442 When doing a dynamic link, we create a .rel(a).got relocation
5443 entry to initialize the value. This is done in the
5444 finish_dynamic_symbol routine. */
5445 if ((off & 1) != 0)
5446 off &= ~1;
5447 else
5448 {
5449 /* If we are addressing a Thumb function, we need to
5450 adjust the address by one, so that attempts to
5451 call the function pointer will correctly
5452 interpret it as Thumb code. */
5453 if (sym_flags == STT_ARM_TFUNC)
5454 value |= 1;
5455
5456 bfd_put_32 (output_bfd, value, sgot->contents + off);
5457 h->got.offset |= 1;
5458 }
5459 }
5460 else
5461 *unresolved_reloc_p = FALSE;
5462
5463 value = sgot->output_offset + off;
5464 }
5465 else
5466 {
5467 bfd_vma off;
5468
5469 BFD_ASSERT (local_got_offsets != NULL &&
5470 local_got_offsets[r_symndx] != (bfd_vma) -1);
5471
5472 off = local_got_offsets[r_symndx];
5473
5474 /* The offset must always be a multiple of 4. We use the
5475 least significant bit to record whether we have already
5476 generated the necessary reloc. */
5477 if ((off & 1) != 0)
5478 off &= ~1;
5479 else
5480 {
5481 /* If we are addressing a Thumb function, we need to
5482 adjust the address by one, so that attempts to
5483 call the function pointer will correctly
5484 interpret it as Thumb code. */
5485 if (sym_flags == STT_ARM_TFUNC)
5486 value |= 1;
5487
5488 if (globals->use_rel)
5489 bfd_put_32 (output_bfd, value, sgot->contents + off);
5490
5491 if (info->shared)
5492 {
5493 asection * srelgot;
5494 Elf_Internal_Rela outrel;
5495 bfd_byte *loc;
5496
5497 srelgot = (bfd_get_section_by_name
5498 (dynobj, RELOC_SECTION (globals, ".got")));
5499 BFD_ASSERT (srelgot != NULL);
5500
5501 outrel.r_addend = addend + value;
5502 outrel.r_offset = (sgot->output_section->vma
5503 + sgot->output_offset
5504 + off);
5505 outrel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
5506 loc = srelgot->contents;
5507 loc += srelgot->reloc_count++ * RELOC_SIZE (globals);
5508 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5509 }
5510
5511 local_got_offsets[r_symndx] |= 1;
5512 }
5513
5514 value = sgot->output_offset + off;
5515 }
5516 if (r_type != R_ARM_GOT32)
5517 value += sgot->output_section->vma;
5518
5519 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5520 contents, rel->r_offset, value,
5521 rel->r_addend);
5522
5523 case R_ARM_TLS_LDO32:
5524 value = value - dtpoff_base (info);
5525
5526 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5527 contents, rel->r_offset, value,
5528 rel->r_addend);
5529
5530 case R_ARM_TLS_LDM32:
5531 {
5532 bfd_vma off;
5533
5534 if (globals->sgot == NULL)
5535 abort ();
5536
5537 off = globals->tls_ldm_got.offset;
5538
5539 if ((off & 1) != 0)
5540 off &= ~1;
5541 else
5542 {
5543 /* If we don't know the module number, create a relocation
5544 for it. */
5545 if (info->shared)
5546 {
5547 Elf_Internal_Rela outrel;
5548 bfd_byte *loc;
5549
5550 if (globals->srelgot == NULL)
5551 abort ();
5552
5553 outrel.r_addend = 0;
5554 outrel.r_offset = (globals->sgot->output_section->vma
5555 + globals->sgot->output_offset + off);
5556 outrel.r_info = ELF32_R_INFO (0, R_ARM_TLS_DTPMOD32);
5557
5558 if (globals->use_rel)
5559 bfd_put_32 (output_bfd, outrel.r_addend,
5560 globals->sgot->contents + off);
5561
5562 loc = globals->srelgot->contents;
5563 loc += globals->srelgot->reloc_count++ * RELOC_SIZE (globals);
5564 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5565 }
5566 else
5567 bfd_put_32 (output_bfd, 1, globals->sgot->contents + off);
5568
5569 globals->tls_ldm_got.offset |= 1;
5570 }
5571
5572 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
5573 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
5574
5575 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5576 contents, rel->r_offset, value,
5577 rel->r_addend);
5578 }
5579
5580 case R_ARM_TLS_GD32:
5581 case R_ARM_TLS_IE32:
5582 {
5583 bfd_vma off;
5584 int indx;
5585 char tls_type;
5586
5587 if (globals->sgot == NULL)
5588 abort ();
5589
5590 indx = 0;
5591 if (h != NULL)
5592 {
5593 bfd_boolean dyn;
5594 dyn = globals->root.dynamic_sections_created;
5595 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
5596 && (!info->shared
5597 || !SYMBOL_REFERENCES_LOCAL (info, h)))
5598 {
5599 *unresolved_reloc_p = FALSE;
5600 indx = h->dynindx;
5601 }
5602 off = h->got.offset;
5603 tls_type = ((struct elf32_arm_link_hash_entry *) h)->tls_type;
5604 }
5605 else
5606 {
5607 if (local_got_offsets == NULL)
5608 abort ();
5609 off = local_got_offsets[r_symndx];
5610 tls_type = elf32_arm_local_got_tls_type (input_bfd)[r_symndx];
5611 }
5612
5613 if (tls_type == GOT_UNKNOWN)
5614 abort ();
5615
5616 if ((off & 1) != 0)
5617 off &= ~1;
5618 else
5619 {
5620 bfd_boolean need_relocs = FALSE;
5621 Elf_Internal_Rela outrel;
5622 bfd_byte *loc = NULL;
5623 int cur_off = off;
5624
5625 /* The GOT entries have not been initialized yet. Do it
5626 now, and emit any relocations. If both an IE GOT and a
5627 GD GOT are necessary, we emit the GD first. */
5628
5629 if ((info->shared || indx != 0)
5630 && (h == NULL
5631 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
5632 || h->root.type != bfd_link_hash_undefweak))
5633 {
5634 need_relocs = TRUE;
5635 if (globals->srelgot == NULL)
5636 abort ();
5637 loc = globals->srelgot->contents;
5638 loc += globals->srelgot->reloc_count * RELOC_SIZE (globals);
5639 }
5640
5641 if (tls_type & GOT_TLS_GD)
5642 {
5643 if (need_relocs)
5644 {
5645 outrel.r_addend = 0;
5646 outrel.r_offset = (globals->sgot->output_section->vma
5647 + globals->sgot->output_offset
5648 + cur_off);
5649 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_DTPMOD32);
5650
5651 if (globals->use_rel)
5652 bfd_put_32 (output_bfd, outrel.r_addend,
5653 globals->sgot->contents + cur_off);
5654
5655 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5656 globals->srelgot->reloc_count++;
5657 loc += RELOC_SIZE (globals);
5658
5659 if (indx == 0)
5660 bfd_put_32 (output_bfd, value - dtpoff_base (info),
5661 globals->sgot->contents + cur_off + 4);
5662 else
5663 {
5664 outrel.r_addend = 0;
5665 outrel.r_info = ELF32_R_INFO (indx,
5666 R_ARM_TLS_DTPOFF32);
5667 outrel.r_offset += 4;
5668
5669 if (globals->use_rel)
5670 bfd_put_32 (output_bfd, outrel.r_addend,
5671 globals->sgot->contents + cur_off + 4);
5672
5673
5674 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5675 globals->srelgot->reloc_count++;
5676 loc += RELOC_SIZE (globals);
5677 }
5678 }
5679 else
5680 {
5681 /* If we are not emitting relocations for a
5682 general dynamic reference, then we must be in a
5683 static link or an executable link with the
5684 symbol binding locally. Mark it as belonging
5685 to module 1, the executable. */
5686 bfd_put_32 (output_bfd, 1,
5687 globals->sgot->contents + cur_off);
5688 bfd_put_32 (output_bfd, value - dtpoff_base (info),
5689 globals->sgot->contents + cur_off + 4);
5690 }
5691
5692 cur_off += 8;
5693 }
5694
5695 if (tls_type & GOT_TLS_IE)
5696 {
5697 if (need_relocs)
5698 {
5699 if (indx == 0)
5700 outrel.r_addend = value - dtpoff_base (info);
5701 else
5702 outrel.r_addend = 0;
5703 outrel.r_offset = (globals->sgot->output_section->vma
5704 + globals->sgot->output_offset
5705 + cur_off);
5706 outrel.r_info = ELF32_R_INFO (indx, R_ARM_TLS_TPOFF32);
5707
5708 if (globals->use_rel)
5709 bfd_put_32 (output_bfd, outrel.r_addend,
5710 globals->sgot->contents + cur_off);
5711
5712 SWAP_RELOC_OUT (globals) (output_bfd, &outrel, loc);
5713 globals->srelgot->reloc_count++;
5714 loc += RELOC_SIZE (globals);
5715 }
5716 else
5717 bfd_put_32 (output_bfd, tpoff (info, value),
5718 globals->sgot->contents + cur_off);
5719 cur_off += 4;
5720 }
5721
5722 if (h != NULL)
5723 h->got.offset |= 1;
5724 else
5725 local_got_offsets[r_symndx] |= 1;
5726 }
5727
5728 if ((tls_type & GOT_TLS_GD) && r_type != R_ARM_TLS_GD32)
5729 off += 8;
5730 value = globals->sgot->output_section->vma + globals->sgot->output_offset + off
5731 - (input_section->output_section->vma + input_section->output_offset + rel->r_offset);
5732
5733 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5734 contents, rel->r_offset, value,
5735 rel->r_addend);
5736 }
5737
5738 case R_ARM_TLS_LE32:
5739 if (info->shared)
5740 {
5741 (*_bfd_error_handler)
5742 (_("%B(%A+0x%lx): R_ARM_TLS_LE32 relocation not permitted in shared object"),
5743 input_bfd, input_section,
5744 (long) rel->r_offset, howto->name);
5745 return FALSE;
5746 }
5747 else
5748 value = tpoff (info, value);
5749
5750 return _bfd_final_link_relocate (howto, input_bfd, input_section,
5751 contents, rel->r_offset, value,
5752 rel->r_addend);
5753
5754 case R_ARM_V4BX:
5755 if (globals->fix_v4bx)
5756 {
5757 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
5758
5759 /* Ensure that we have a BX instruction. */
5760 BFD_ASSERT ((insn & 0x0ffffff0) == 0x012fff10);
5761
5762 /* Preserve Rm (lowest four bits) and the condition code
5763 (highest four bits). Other bits encode MOV PC,Rm. */
5764 insn = (insn & 0xf000000f) | 0x01a0f000;
5765
5766 bfd_put_32 (input_bfd, insn, hit_data);
5767 }
5768 return bfd_reloc_ok;
5769
5770 case R_ARM_MOVW_ABS_NC:
5771 case R_ARM_MOVT_ABS:
5772 case R_ARM_MOVW_PREL_NC:
5773 case R_ARM_MOVT_PREL:
5774 /* Until we properly support segment-base-relative addressing then
5775 we assume the segment base to be zero, as for the group relocations.
5776 Thus R_ARM_MOVW_BREL_NC has the same semantics as R_ARM_MOVW_ABS_NC
5777 and R_ARM_MOVT_BREL has the same semantics as R_ARM_MOVT_ABS. */
5778 case R_ARM_MOVW_BREL_NC:
5779 case R_ARM_MOVW_BREL:
5780 case R_ARM_MOVT_BREL:
5781 {
5782 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
5783
5784 if (globals->use_rel)
5785 {
5786 addend = ((insn >> 4) & 0xf000) | (insn & 0xfff);
5787 signed_addend = (addend ^ 0x10000) - 0x10000;
5788 }
5789
5790 value += signed_addend;
5791
5792 if (r_type == R_ARM_MOVW_PREL_NC || r_type == R_ARM_MOVT_PREL)
5793 value -= (input_section->output_section->vma
5794 + input_section->output_offset + rel->r_offset);
5795
5796 if (r_type == R_ARM_MOVW_BREL && value >= 0x10000)
5797 return bfd_reloc_overflow;
5798
5799 if (sym_flags == STT_ARM_TFUNC)
5800 value |= 1;
5801
5802 if (r_type == R_ARM_MOVT_ABS || r_type == R_ARM_MOVT_PREL
5803 || r_type == R_ARM_MOVT_BREL)
5804 value >>= 16;
5805
5806 insn &= 0xfff0f000;
5807 insn |= value & 0xfff;
5808 insn |= (value & 0xf000) << 4;
5809 bfd_put_32 (input_bfd, insn, hit_data);
5810 }
5811 return bfd_reloc_ok;
5812
5813 case R_ARM_THM_MOVW_ABS_NC:
5814 case R_ARM_THM_MOVT_ABS:
5815 case R_ARM_THM_MOVW_PREL_NC:
5816 case R_ARM_THM_MOVT_PREL:
5817 /* Until we properly support segment-base-relative addressing then
5818 we assume the segment base to be zero, as for the above relocations.
5819 Thus R_ARM_THM_MOVW_BREL_NC has the same semantics as
5820 R_ARM_THM_MOVW_ABS_NC and R_ARM_THM_MOVT_BREL has the same semantics
5821 as R_ARM_THM_MOVT_ABS. */
5822 case R_ARM_THM_MOVW_BREL_NC:
5823 case R_ARM_THM_MOVW_BREL:
5824 case R_ARM_THM_MOVT_BREL:
5825 {
5826 bfd_vma insn;
5827
5828 insn = bfd_get_16 (input_bfd, hit_data) << 16;
5829 insn |= bfd_get_16 (input_bfd, hit_data + 2);
5830
5831 if (globals->use_rel)
5832 {
5833 addend = ((insn >> 4) & 0xf000)
5834 | ((insn >> 15) & 0x0800)
5835 | ((insn >> 4) & 0x0700)
5836 | (insn & 0x00ff);
5837 signed_addend = (addend ^ 0x10000) - 0x10000;
5838 }
5839
5840 value += signed_addend;
5841
5842 if (r_type == R_ARM_THM_MOVW_PREL_NC || r_type == R_ARM_THM_MOVT_PREL)
5843 value -= (input_section->output_section->vma
5844 + input_section->output_offset + rel->r_offset);
5845
5846 if (r_type == R_ARM_THM_MOVW_BREL && value >= 0x10000)
5847 return bfd_reloc_overflow;
5848
5849 if (sym_flags == STT_ARM_TFUNC)
5850 value |= 1;
5851
5852 if (r_type == R_ARM_THM_MOVT_ABS || r_type == R_ARM_THM_MOVT_PREL
5853 || r_type == R_ARM_THM_MOVT_BREL)
5854 value >>= 16;
5855
5856 insn &= 0xfbf08f00;
5857 insn |= (value & 0xf000) << 4;
5858 insn |= (value & 0x0800) << 15;
5859 insn |= (value & 0x0700) << 4;
5860 insn |= (value & 0x00ff);
5861
5862 bfd_put_16 (input_bfd, insn >> 16, hit_data);
5863 bfd_put_16 (input_bfd, insn & 0xffff, hit_data + 2);
5864 }
5865 return bfd_reloc_ok;
5866
5867 case R_ARM_ALU_PC_G0_NC:
5868 case R_ARM_ALU_PC_G1_NC:
5869 case R_ARM_ALU_PC_G0:
5870 case R_ARM_ALU_PC_G1:
5871 case R_ARM_ALU_PC_G2:
5872 case R_ARM_ALU_SB_G0_NC:
5873 case R_ARM_ALU_SB_G1_NC:
5874 case R_ARM_ALU_SB_G0:
5875 case R_ARM_ALU_SB_G1:
5876 case R_ARM_ALU_SB_G2:
5877 {
5878 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
5879 bfd_vma pc = input_section->output_section->vma
5880 + input_section->output_offset + rel->r_offset;
5881 /* sb should be the origin of the *segment* containing the symbol.
5882 It is not clear how to obtain this OS-dependent value, so we
5883 make an arbitrary choice of zero. */
5884 bfd_vma sb = 0;
5885 bfd_vma residual;
5886 bfd_vma g_n;
5887 bfd_signed_vma signed_value;
5888 int group = 0;
5889
5890 /* Determine which group of bits to select. */
5891 switch (r_type)
5892 {
5893 case R_ARM_ALU_PC_G0_NC:
5894 case R_ARM_ALU_PC_G0:
5895 case R_ARM_ALU_SB_G0_NC:
5896 case R_ARM_ALU_SB_G0:
5897 group = 0;
5898 break;
5899
5900 case R_ARM_ALU_PC_G1_NC:
5901 case R_ARM_ALU_PC_G1:
5902 case R_ARM_ALU_SB_G1_NC:
5903 case R_ARM_ALU_SB_G1:
5904 group = 1;
5905 break;
5906
5907 case R_ARM_ALU_PC_G2:
5908 case R_ARM_ALU_SB_G2:
5909 group = 2;
5910 break;
5911
5912 default:
5913 abort();
5914 }
5915
5916 /* If REL, extract the addend from the insn. If RELA, it will
5917 have already been fetched for us. */
5918 if (globals->use_rel)
5919 {
5920 int negative;
5921 bfd_vma constant = insn & 0xff;
5922 bfd_vma rotation = (insn & 0xf00) >> 8;
5923
5924 if (rotation == 0)
5925 signed_addend = constant;
5926 else
5927 {
5928 /* Compensate for the fact that in the instruction, the
5929 rotation is stored in multiples of 2 bits. */
5930 rotation *= 2;
5931
5932 /* Rotate "constant" right by "rotation" bits. */
5933 signed_addend = (constant >> rotation) |
5934 (constant << (8 * sizeof (bfd_vma) - rotation));
5935 }
5936
5937 /* Determine if the instruction is an ADD or a SUB.
5938 (For REL, this determines the sign of the addend.) */
5939 negative = identify_add_or_sub (insn);
5940 if (negative == 0)
5941 {
5942 (*_bfd_error_handler)
5943 (_("%B(%A+0x%lx): Only ADD or SUB instructions are allowed for ALU group relocations"),
5944 input_bfd, input_section,
5945 (long) rel->r_offset, howto->name);
5946 return bfd_reloc_overflow;
5947 }
5948
5949 signed_addend *= negative;
5950 }
5951
5952 /* Compute the value (X) to go in the place. */
5953 if (r_type == R_ARM_ALU_PC_G0_NC
5954 || r_type == R_ARM_ALU_PC_G1_NC
5955 || r_type == R_ARM_ALU_PC_G0
5956 || r_type == R_ARM_ALU_PC_G1
5957 || r_type == R_ARM_ALU_PC_G2)
5958 /* PC relative. */
5959 signed_value = value - pc + signed_addend;
5960 else
5961 /* Section base relative. */
5962 signed_value = value - sb + signed_addend;
5963
5964 /* If the target symbol is a Thumb function, then set the
5965 Thumb bit in the address. */
5966 if (sym_flags == STT_ARM_TFUNC)
5967 signed_value |= 1;
5968
5969 /* Calculate the value of the relevant G_n, in encoded
5970 constant-with-rotation format. */
5971 g_n = calculate_group_reloc_mask (abs (signed_value), group,
5972 &residual);
5973
5974 /* Check for overflow if required. */
5975 if ((r_type == R_ARM_ALU_PC_G0
5976 || r_type == R_ARM_ALU_PC_G1
5977 || r_type == R_ARM_ALU_PC_G2
5978 || r_type == R_ARM_ALU_SB_G0
5979 || r_type == R_ARM_ALU_SB_G1
5980 || r_type == R_ARM_ALU_SB_G2) && residual != 0)
5981 {
5982 (*_bfd_error_handler)
5983 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
5984 input_bfd, input_section,
5985 (long) rel->r_offset, abs (signed_value), howto->name);
5986 return bfd_reloc_overflow;
5987 }
5988
5989 /* Mask out the value and the ADD/SUB part of the opcode; take care
5990 not to destroy the S bit. */
5991 insn &= 0xff1ff000;
5992
5993 /* Set the opcode according to whether the value to go in the
5994 place is negative. */
5995 if (signed_value < 0)
5996 insn |= 1 << 22;
5997 else
5998 insn |= 1 << 23;
5999
6000 /* Encode the offset. */
6001 insn |= g_n;
6002
6003 bfd_put_32 (input_bfd, insn, hit_data);
6004 }
6005 return bfd_reloc_ok;
6006
6007 case R_ARM_LDR_PC_G0:
6008 case R_ARM_LDR_PC_G1:
6009 case R_ARM_LDR_PC_G2:
6010 case R_ARM_LDR_SB_G0:
6011 case R_ARM_LDR_SB_G1:
6012 case R_ARM_LDR_SB_G2:
6013 {
6014 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6015 bfd_vma pc = input_section->output_section->vma
6016 + input_section->output_offset + rel->r_offset;
6017 bfd_vma sb = 0; /* See note above. */
6018 bfd_vma residual;
6019 bfd_signed_vma signed_value;
6020 int group = 0;
6021
6022 /* Determine which groups of bits to calculate. */
6023 switch (r_type)
6024 {
6025 case R_ARM_LDR_PC_G0:
6026 case R_ARM_LDR_SB_G0:
6027 group = 0;
6028 break;
6029
6030 case R_ARM_LDR_PC_G1:
6031 case R_ARM_LDR_SB_G1:
6032 group = 1;
6033 break;
6034
6035 case R_ARM_LDR_PC_G2:
6036 case R_ARM_LDR_SB_G2:
6037 group = 2;
6038 break;
6039
6040 default:
6041 abort();
6042 }
6043
6044 /* If REL, extract the addend from the insn. If RELA, it will
6045 have already been fetched for us. */
6046 if (globals->use_rel)
6047 {
6048 int negative = (insn & (1 << 23)) ? 1 : -1;
6049 signed_addend = negative * (insn & 0xfff);
6050 }
6051
6052 /* Compute the value (X) to go in the place. */
6053 if (r_type == R_ARM_LDR_PC_G0
6054 || r_type == R_ARM_LDR_PC_G1
6055 || r_type == R_ARM_LDR_PC_G2)
6056 /* PC relative. */
6057 signed_value = value - pc + signed_addend;
6058 else
6059 /* Section base relative. */
6060 signed_value = value - sb + signed_addend;
6061
6062 /* Calculate the value of the relevant G_{n-1} to obtain
6063 the residual at that stage. */
6064 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6065
6066 /* Check for overflow. */
6067 if (residual >= 0x1000)
6068 {
6069 (*_bfd_error_handler)
6070 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6071 input_bfd, input_section,
6072 (long) rel->r_offset, abs (signed_value), howto->name);
6073 return bfd_reloc_overflow;
6074 }
6075
6076 /* Mask out the value and U bit. */
6077 insn &= 0xff7ff000;
6078
6079 /* Set the U bit if the value to go in the place is non-negative. */
6080 if (signed_value >= 0)
6081 insn |= 1 << 23;
6082
6083 /* Encode the offset. */
6084 insn |= residual;
6085
6086 bfd_put_32 (input_bfd, insn, hit_data);
6087 }
6088 return bfd_reloc_ok;
6089
6090 case R_ARM_LDRS_PC_G0:
6091 case R_ARM_LDRS_PC_G1:
6092 case R_ARM_LDRS_PC_G2:
6093 case R_ARM_LDRS_SB_G0:
6094 case R_ARM_LDRS_SB_G1:
6095 case R_ARM_LDRS_SB_G2:
6096 {
6097 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6098 bfd_vma pc = input_section->output_section->vma
6099 + input_section->output_offset + rel->r_offset;
6100 bfd_vma sb = 0; /* See note above. */
6101 bfd_vma residual;
6102 bfd_signed_vma signed_value;
6103 int group = 0;
6104
6105 /* Determine which groups of bits to calculate. */
6106 switch (r_type)
6107 {
6108 case R_ARM_LDRS_PC_G0:
6109 case R_ARM_LDRS_SB_G0:
6110 group = 0;
6111 break;
6112
6113 case R_ARM_LDRS_PC_G1:
6114 case R_ARM_LDRS_SB_G1:
6115 group = 1;
6116 break;
6117
6118 case R_ARM_LDRS_PC_G2:
6119 case R_ARM_LDRS_SB_G2:
6120 group = 2;
6121 break;
6122
6123 default:
6124 abort();
6125 }
6126
6127 /* If REL, extract the addend from the insn. If RELA, it will
6128 have already been fetched for us. */
6129 if (globals->use_rel)
6130 {
6131 int negative = (insn & (1 << 23)) ? 1 : -1;
6132 signed_addend = negative * (((insn & 0xf00) >> 4) + (insn & 0xf));
6133 }
6134
6135 /* Compute the value (X) to go in the place. */
6136 if (r_type == R_ARM_LDRS_PC_G0
6137 || r_type == R_ARM_LDRS_PC_G1
6138 || r_type == R_ARM_LDRS_PC_G2)
6139 /* PC relative. */
6140 signed_value = value - pc + signed_addend;
6141 else
6142 /* Section base relative. */
6143 signed_value = value - sb + signed_addend;
6144
6145 /* Calculate the value of the relevant G_{n-1} to obtain
6146 the residual at that stage. */
6147 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6148
6149 /* Check for overflow. */
6150 if (residual >= 0x100)
6151 {
6152 (*_bfd_error_handler)
6153 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6154 input_bfd, input_section,
6155 (long) rel->r_offset, abs (signed_value), howto->name);
6156 return bfd_reloc_overflow;
6157 }
6158
6159 /* Mask out the value and U bit. */
6160 insn &= 0xff7ff0f0;
6161
6162 /* Set the U bit if the value to go in the place is non-negative. */
6163 if (signed_value >= 0)
6164 insn |= 1 << 23;
6165
6166 /* Encode the offset. */
6167 insn |= ((residual & 0xf0) << 4) | (residual & 0xf);
6168
6169 bfd_put_32 (input_bfd, insn, hit_data);
6170 }
6171 return bfd_reloc_ok;
6172
6173 case R_ARM_LDC_PC_G0:
6174 case R_ARM_LDC_PC_G1:
6175 case R_ARM_LDC_PC_G2:
6176 case R_ARM_LDC_SB_G0:
6177 case R_ARM_LDC_SB_G1:
6178 case R_ARM_LDC_SB_G2:
6179 {
6180 bfd_vma insn = bfd_get_32 (input_bfd, hit_data);
6181 bfd_vma pc = input_section->output_section->vma
6182 + input_section->output_offset + rel->r_offset;
6183 bfd_vma sb = 0; /* See note above. */
6184 bfd_vma residual;
6185 bfd_signed_vma signed_value;
6186 int group = 0;
6187
6188 /* Determine which groups of bits to calculate. */
6189 switch (r_type)
6190 {
6191 case R_ARM_LDC_PC_G0:
6192 case R_ARM_LDC_SB_G0:
6193 group = 0;
6194 break;
6195
6196 case R_ARM_LDC_PC_G1:
6197 case R_ARM_LDC_SB_G1:
6198 group = 1;
6199 break;
6200
6201 case R_ARM_LDC_PC_G2:
6202 case R_ARM_LDC_SB_G2:
6203 group = 2;
6204 break;
6205
6206 default:
6207 abort();
6208 }
6209
6210 /* If REL, extract the addend from the insn. If RELA, it will
6211 have already been fetched for us. */
6212 if (globals->use_rel)
6213 {
6214 int negative = (insn & (1 << 23)) ? 1 : -1;
6215 signed_addend = negative * ((insn & 0xff) << 2);
6216 }
6217
6218 /* Compute the value (X) to go in the place. */
6219 if (r_type == R_ARM_LDC_PC_G0
6220 || r_type == R_ARM_LDC_PC_G1
6221 || r_type == R_ARM_LDC_PC_G2)
6222 /* PC relative. */
6223 signed_value = value - pc + signed_addend;
6224 else
6225 /* Section base relative. */
6226 signed_value = value - sb + signed_addend;
6227
6228 /* Calculate the value of the relevant G_{n-1} to obtain
6229 the residual at that stage. */
6230 calculate_group_reloc_mask (abs (signed_value), group - 1, &residual);
6231
6232 /* Check for overflow. (The absolute value to go in the place must be
6233 divisible by four and, after having been divided by four, must
6234 fit in eight bits.) */
6235 if ((residual & 0x3) != 0 || residual >= 0x400)
6236 {
6237 (*_bfd_error_handler)
6238 (_("%B(%A+0x%lx): Overflow whilst splitting 0x%lx for group relocation %s"),
6239 input_bfd, input_section,
6240 (long) rel->r_offset, abs (signed_value), howto->name);
6241 return bfd_reloc_overflow;
6242 }
6243
6244 /* Mask out the value and U bit. */
6245 insn &= 0xff7fff00;
6246
6247 /* Set the U bit if the value to go in the place is non-negative. */
6248 if (signed_value >= 0)
6249 insn |= 1 << 23;
6250
6251 /* Encode the offset. */
6252 insn |= residual >> 2;
6253
6254 bfd_put_32 (input_bfd, insn, hit_data);
6255 }
6256 return bfd_reloc_ok;
6257
6258 default:
6259 return bfd_reloc_notsupported;
6260 }
6261 }
6262
6263
6264 static int
6265 uleb128_size (unsigned int i)
6266 {
6267 int size;
6268 size = 1;
6269 while (i >= 0x80)
6270 {
6271 i >>= 7;
6272 size++;
6273 }
6274 return size;
6275 }
6276
6277 /* Return TRUE if the attribute has the default value (0/""). */
6278 static bfd_boolean
6279 is_default_attr (aeabi_attribute *attr)
6280 {
6281 if ((attr->type & 1) && attr->i != 0)
6282 return FALSE;
6283 if ((attr->type & 2) && attr->s && *attr->s)
6284 return FALSE;
6285
6286 return TRUE;
6287 }
6288
6289 /* Return the size of a single attribute. */
6290 static bfd_vma
6291 eabi_attr_size(int tag, aeabi_attribute *attr)
6292 {
6293 bfd_vma size;
6294
6295 if (is_default_attr (attr))
6296 return 0;
6297
6298 size = uleb128_size (tag);
6299 if (attr->type & 1)
6300 size += uleb128_size (attr->i);
6301 if (attr->type & 2)
6302 size += strlen ((char *)attr->s) + 1;
6303 return size;
6304 }
6305
6306 /* Returns the size of the eabi object attributess section. */
6307 bfd_vma
6308 elf32_arm_eabi_attr_size (bfd *abfd)
6309 {
6310 bfd_vma size;
6311 aeabi_attribute *attr;
6312 aeabi_attribute_list *list;
6313 int i;
6314
6315 attr = elf32_arm_tdata (abfd)->known_eabi_attributes;
6316 size = 16; /* 'A' <size> "aeabi" 0x1 <size>. */
6317 for (i = 4; i < NUM_KNOWN_ATTRIBUTES; i++)
6318 size += eabi_attr_size (i, &attr[i]);
6319
6320 for (list = elf32_arm_tdata (abfd)->other_eabi_attributes;
6321 list;
6322 list = list->next)
6323 size += eabi_attr_size (list->tag, &list->attr);
6324
6325 return size;
6326 }
6327
6328 static bfd_byte *
6329 write_uleb128 (bfd_byte *p, unsigned int val)
6330 {
6331 bfd_byte c;
6332 do
6333 {
6334 c = val & 0x7f;
6335 val >>= 7;
6336 if (val)
6337 c |= 0x80;
6338 *(p++) = c;
6339 }
6340 while (val);
6341 return p;
6342 }
6343
6344 /* Write attribute ATTR to butter P, and return a pointer to the following
6345 byte. */
6346 static bfd_byte *
6347 write_eabi_attribute (bfd_byte *p, int tag, aeabi_attribute *attr)
6348 {
6349 /* Suppress default entries. */
6350 if (is_default_attr(attr))
6351 return p;
6352
6353 p = write_uleb128 (p, tag);
6354 if (attr->type & 1)
6355 p = write_uleb128 (p, attr->i);
6356 if (attr->type & 2)
6357 {
6358 int len;
6359
6360 len = strlen (attr->s) + 1;
6361 memcpy (p, attr->s, len);
6362 p += len;
6363 }
6364
6365 return p;
6366 }
6367
6368 /* Write the contents of the eabi attributes section to p. */
6369 void
6370 elf32_arm_set_eabi_attr_contents (bfd *abfd, bfd_byte *contents, bfd_vma size)
6371 {
6372 bfd_byte *p;
6373 aeabi_attribute *attr;
6374 aeabi_attribute_list *list;
6375 int i;
6376
6377 p = contents;
6378 *(p++) = 'A';
6379 bfd_put_32 (abfd, size - 1, p);
6380 p += 4;
6381 memcpy (p, "aeabi", 6);
6382 p += 6;
6383 *(p++) = Tag_File;
6384 bfd_put_32 (abfd, size - 11, p);
6385 p += 4;
6386
6387 attr = elf32_arm_tdata (abfd)->known_eabi_attributes;
6388 for (i = 4; i < NUM_KNOWN_ATTRIBUTES; i++)
6389 p = write_eabi_attribute (p, i, &attr[i]);
6390
6391 for (list = elf32_arm_tdata (abfd)->other_eabi_attributes;
6392 list;
6393 list = list->next)
6394 p = write_eabi_attribute (p, list->tag, &list->attr);
6395 }
6396
6397 /* Override final_link to handle EABI object attribute sections. */
6398
6399 static bfd_boolean
6400 elf32_arm_bfd_final_link (bfd *abfd, struct bfd_link_info *info)
6401 {
6402 asection *o;
6403 struct bfd_link_order *p;
6404 asection *attr_section = NULL;
6405 bfd_byte *contents;
6406 bfd_vma size = 0;
6407
6408 /* elf32_arm_merge_private_bfd_data will already have merged the
6409 object attributes. Remove the input sections from the link, and set
6410 the contents of the output secton. */
6411 for (o = abfd->sections; o != NULL; o = o->next)
6412 {
6413 if (strcmp (o->name, ".ARM.attributes") == 0)
6414 {
6415 for (p = o->map_head.link_order; p != NULL; p = p->next)
6416 {
6417 asection *input_section;
6418
6419 if (p->type != bfd_indirect_link_order)
6420 continue;
6421 input_section = p->u.indirect.section;
6422 /* Hack: reset the SEC_HAS_CONTENTS flag so that
6423 elf_link_input_bfd ignores this section. */
6424 input_section->flags &= ~SEC_HAS_CONTENTS;
6425 }
6426
6427 size = elf32_arm_eabi_attr_size (abfd);
6428 bfd_set_section_size (abfd, o, size);
6429 attr_section = o;
6430 /* Skip this section later on. */
6431 o->map_head.link_order = NULL;
6432 }
6433 }
6434 /* Invoke the ELF linker to do all the work. */
6435 if (!bfd_elf_final_link (abfd, info))
6436 return FALSE;
6437
6438 if (attr_section)
6439 {
6440 contents = bfd_malloc(size);
6441 if (contents == NULL)
6442 return FALSE;
6443 elf32_arm_set_eabi_attr_contents (abfd, contents, size);
6444 bfd_set_section_contents (abfd, attr_section, contents, 0, size);
6445 free (contents);
6446 }
6447 return TRUE;
6448 }
6449
6450
6451 /* Add INCREMENT to the reloc (of type HOWTO) at ADDRESS. */
6452 static void
6453 arm_add_to_rel (bfd * abfd,
6454 bfd_byte * address,
6455 reloc_howto_type * howto,
6456 bfd_signed_vma increment)
6457 {
6458 bfd_signed_vma addend;
6459
6460 if (howto->type == R_ARM_THM_CALL)
6461 {
6462 int upper_insn, lower_insn;
6463 int upper, lower;
6464
6465 upper_insn = bfd_get_16 (abfd, address);
6466 lower_insn = bfd_get_16 (abfd, address + 2);
6467 upper = upper_insn & 0x7ff;
6468 lower = lower_insn & 0x7ff;
6469
6470 addend = (upper << 12) | (lower << 1);
6471 addend += increment;
6472 addend >>= 1;
6473
6474 upper_insn = (upper_insn & 0xf800) | ((addend >> 11) & 0x7ff);
6475 lower_insn = (lower_insn & 0xf800) | (addend & 0x7ff);
6476
6477 bfd_put_16 (abfd, (bfd_vma) upper_insn, address);
6478 bfd_put_16 (abfd, (bfd_vma) lower_insn, address + 2);
6479 }
6480 else
6481 {
6482 bfd_vma contents;
6483
6484 contents = bfd_get_32 (abfd, address);
6485
6486 /* Get the (signed) value from the instruction. */
6487 addend = contents & howto->src_mask;
6488 if (addend & ((howto->src_mask + 1) >> 1))
6489 {
6490 bfd_signed_vma mask;
6491
6492 mask = -1;
6493 mask &= ~ howto->src_mask;
6494 addend |= mask;
6495 }
6496
6497 /* Add in the increment, (which is a byte value). */
6498 switch (howto->type)
6499 {
6500 default:
6501 addend += increment;
6502 break;
6503
6504 case R_ARM_PC24:
6505 case R_ARM_PLT32:
6506 case R_ARM_CALL:
6507 case R_ARM_JUMP24:
6508 addend <<= howto->size;
6509 addend += increment;
6510
6511 /* Should we check for overflow here ? */
6512
6513 /* Drop any undesired bits. */
6514 addend >>= howto->rightshift;
6515 break;
6516 }
6517
6518 contents = (contents & ~ howto->dst_mask) | (addend & howto->dst_mask);
6519
6520 bfd_put_32 (abfd, contents, address);
6521 }
6522 }
6523
6524 #define IS_ARM_TLS_RELOC(R_TYPE) \
6525 ((R_TYPE) == R_ARM_TLS_GD32 \
6526 || (R_TYPE) == R_ARM_TLS_LDO32 \
6527 || (R_TYPE) == R_ARM_TLS_LDM32 \
6528 || (R_TYPE) == R_ARM_TLS_DTPOFF32 \
6529 || (R_TYPE) == R_ARM_TLS_DTPMOD32 \
6530 || (R_TYPE) == R_ARM_TLS_TPOFF32 \
6531 || (R_TYPE) == R_ARM_TLS_LE32 \
6532 || (R_TYPE) == R_ARM_TLS_IE32)
6533
6534 /* Relocate an ARM ELF section. */
6535 static bfd_boolean
6536 elf32_arm_relocate_section (bfd * output_bfd,
6537 struct bfd_link_info * info,
6538 bfd * input_bfd,
6539 asection * input_section,
6540 bfd_byte * contents,
6541 Elf_Internal_Rela * relocs,
6542 Elf_Internal_Sym * local_syms,
6543 asection ** local_sections)
6544 {
6545 Elf_Internal_Shdr *symtab_hdr;
6546 struct elf_link_hash_entry **sym_hashes;
6547 Elf_Internal_Rela *rel;
6548 Elf_Internal_Rela *relend;
6549 const char *name;
6550 struct elf32_arm_link_hash_table * globals;
6551
6552 globals = elf32_arm_hash_table (info);
6553
6554 symtab_hdr = & elf_tdata (input_bfd)->symtab_hdr;
6555 sym_hashes = elf_sym_hashes (input_bfd);
6556
6557 rel = relocs;
6558 relend = relocs + input_section->reloc_count;
6559 for (; rel < relend; rel++)
6560 {
6561 int r_type;
6562 reloc_howto_type * howto;
6563 unsigned long r_symndx;
6564 Elf_Internal_Sym * sym;
6565 asection * sec;
6566 struct elf_link_hash_entry * h;
6567 bfd_vma relocation;
6568 bfd_reloc_status_type r;
6569 arelent bfd_reloc;
6570 char sym_type;
6571 bfd_boolean unresolved_reloc = FALSE;
6572 char *error_message = NULL;
6573
6574 r_symndx = ELF32_R_SYM (rel->r_info);
6575 r_type = ELF32_R_TYPE (rel->r_info);
6576 r_type = arm_real_reloc_type (globals, r_type);
6577
6578 if ( r_type == R_ARM_GNU_VTENTRY
6579 || r_type == R_ARM_GNU_VTINHERIT)
6580 continue;
6581
6582 bfd_reloc.howto = elf32_arm_howto_from_type (r_type);
6583 howto = bfd_reloc.howto;
6584
6585 h = NULL;
6586 sym = NULL;
6587 sec = NULL;
6588
6589 if (r_symndx < symtab_hdr->sh_info)
6590 {
6591 sym = local_syms + r_symndx;
6592 sym_type = ELF32_ST_TYPE (sym->st_info);
6593 sec = local_sections[r_symndx];
6594 if (globals->use_rel)
6595 {
6596 relocation = (sec->output_section->vma
6597 + sec->output_offset
6598 + sym->st_value);
6599 if (!info->relocatable
6600 && (sec->flags & SEC_MERGE)
6601 && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6602 {
6603 asection *msec;
6604 bfd_vma addend, value;
6605
6606 if (howto->rightshift)
6607 {
6608 (*_bfd_error_handler)
6609 (_("%B(%A+0x%lx): %s relocation against SEC_MERGE section"),
6610 input_bfd, input_section,
6611 (long) rel->r_offset, howto->name);
6612 return FALSE;
6613 }
6614
6615 value = bfd_get_32 (input_bfd, contents + rel->r_offset);
6616
6617 /* Get the (signed) value from the instruction. */
6618 addend = value & howto->src_mask;
6619 if (addend & ((howto->src_mask + 1) >> 1))
6620 {
6621 bfd_signed_vma mask;
6622
6623 mask = -1;
6624 mask &= ~ howto->src_mask;
6625 addend |= mask;
6626 }
6627 msec = sec;
6628 addend =
6629 _bfd_elf_rel_local_sym (output_bfd, sym, &msec, addend)
6630 - relocation;
6631 addend += msec->output_section->vma + msec->output_offset;
6632 value = (value & ~ howto->dst_mask) | (addend & howto->dst_mask);
6633 bfd_put_32 (input_bfd, value, contents + rel->r_offset);
6634 }
6635 }
6636 else
6637 relocation = _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
6638 }
6639 else
6640 {
6641 bfd_boolean warned;
6642
6643 RELOC_FOR_GLOBAL_SYMBOL (info, input_bfd, input_section, rel,
6644 r_symndx, symtab_hdr, sym_hashes,
6645 h, sec, relocation,
6646 unresolved_reloc, warned);
6647
6648 sym_type = h->type;
6649 }
6650
6651 if (sec != NULL && elf_discarded_section (sec))
6652 {
6653 /* For relocs against symbols from removed linkonce sections,
6654 or sections discarded by a linker script, we just want the
6655 section contents zeroed. Avoid any special processing. */
6656 _bfd_clear_contents (howto, input_bfd, contents + rel->r_offset);
6657 rel->r_info = 0;
6658 rel->r_addend = 0;
6659 continue;
6660 }
6661
6662 if (info->relocatable)
6663 {
6664 /* This is a relocatable link. We don't have to change
6665 anything, unless the reloc is against a section symbol,
6666 in which case we have to adjust according to where the
6667 section symbol winds up in the output section. */
6668 if (sym != NULL && ELF_ST_TYPE (sym->st_info) == STT_SECTION)
6669 {
6670 if (globals->use_rel)
6671 arm_add_to_rel (input_bfd, contents + rel->r_offset,
6672 howto, (bfd_signed_vma) sec->output_offset);
6673 else
6674 rel->r_addend += sec->output_offset;
6675 }
6676 continue;
6677 }
6678
6679 if (h != NULL)
6680 name = h->root.root.string;
6681 else
6682 {
6683 name = (bfd_elf_string_from_elf_section
6684 (input_bfd, symtab_hdr->sh_link, sym->st_name));
6685 if (name == NULL || *name == '\0')
6686 name = bfd_section_name (input_bfd, sec);
6687 }
6688
6689 if (r_symndx != 0
6690 && r_type != R_ARM_NONE
6691 && (h == NULL
6692 || h->root.type == bfd_link_hash_defined
6693 || h->root.type == bfd_link_hash_defweak)
6694 && IS_ARM_TLS_RELOC (r_type) != (sym_type == STT_TLS))
6695 {
6696 (*_bfd_error_handler)
6697 ((sym_type == STT_TLS
6698 ? _("%B(%A+0x%lx): %s used with TLS symbol %s")
6699 : _("%B(%A+0x%lx): %s used with non-TLS symbol %s")),
6700 input_bfd,
6701 input_section,
6702 (long) rel->r_offset,
6703 howto->name,
6704 name);
6705 }
6706
6707 r = elf32_arm_final_link_relocate (howto, input_bfd, output_bfd,
6708 input_section, contents, rel,
6709 relocation, info, sec, name,
6710 (h ? ELF_ST_TYPE (h->type) :
6711 ELF_ST_TYPE (sym->st_info)), h,
6712 &unresolved_reloc, &error_message);
6713
6714 /* Dynamic relocs are not propagated for SEC_DEBUGGING sections
6715 because such sections are not SEC_ALLOC and thus ld.so will
6716 not process them. */
6717 if (unresolved_reloc
6718 && !((input_section->flags & SEC_DEBUGGING) != 0
6719 && h->def_dynamic))
6720 {
6721 (*_bfd_error_handler)
6722 (_("%B(%A+0x%lx): unresolvable %s relocation against symbol `%s'"),
6723 input_bfd,
6724 input_section,
6725 (long) rel->r_offset,
6726 howto->name,
6727 h->root.root.string);
6728 return FALSE;
6729 }
6730
6731 if (r != bfd_reloc_ok)
6732 {
6733 switch (r)
6734 {
6735 case bfd_reloc_overflow:
6736 /* If the overflowing reloc was to an undefined symbol,
6737 we have already printed one error message and there
6738 is no point complaining again. */
6739 if ((! h ||
6740 h->root.type != bfd_link_hash_undefined)
6741 && (!((*info->callbacks->reloc_overflow)
6742 (info, (h ? &h->root : NULL), name, howto->name,
6743 (bfd_vma) 0, input_bfd, input_section,
6744 rel->r_offset))))
6745 return FALSE;
6746 break;
6747
6748 case bfd_reloc_undefined:
6749 if (!((*info->callbacks->undefined_symbol)
6750 (info, name, input_bfd, input_section,
6751 rel->r_offset, TRUE)))
6752 return FALSE;
6753 break;
6754
6755 case bfd_reloc_outofrange:
6756 error_message = _("out of range");
6757 goto common_error;
6758
6759 case bfd_reloc_notsupported:
6760 error_message = _("unsupported relocation");
6761 goto common_error;
6762
6763 case bfd_reloc_dangerous:
6764 /* error_message should already be set. */
6765 goto common_error;
6766
6767 default:
6768 error_message = _("unknown error");
6769 /* fall through */
6770
6771 common_error:
6772 BFD_ASSERT (error_message != NULL);
6773 if (!((*info->callbacks->reloc_dangerous)
6774 (info, error_message, input_bfd, input_section,
6775 rel->r_offset)))
6776 return FALSE;
6777 break;
6778 }
6779 }
6780 }
6781
6782 return TRUE;
6783 }
6784
6785 /* Allocate/find an object attribute. */
6786 static aeabi_attribute *
6787 elf32_arm_new_eabi_attr (bfd *abfd, int tag)
6788 {
6789 aeabi_attribute *attr;
6790 aeabi_attribute_list *list;
6791 aeabi_attribute_list *p;
6792 aeabi_attribute_list **lastp;
6793
6794
6795 if (tag < NUM_KNOWN_ATTRIBUTES)
6796 {
6797 /* Knwon tags are preallocated. */
6798 attr = &elf32_arm_tdata (abfd)->known_eabi_attributes[tag];
6799 }
6800 else
6801 {
6802 /* Create a new tag. */
6803 list = (aeabi_attribute_list *)
6804 bfd_alloc (abfd, sizeof (aeabi_attribute_list));
6805 memset (list, 0, sizeof (aeabi_attribute_list));
6806 list->tag = tag;
6807 /* Keep the tag list in order. */
6808 lastp = &elf32_arm_tdata (abfd)->other_eabi_attributes;
6809 for (p = *lastp; p; p = p->next)
6810 {
6811 if (tag < p->tag)
6812 break;
6813 lastp = &p->next;
6814 }
6815 list->next = *lastp;
6816 *lastp = list;
6817 attr = &list->attr;
6818 }
6819
6820 return attr;
6821 }
6822
6823 int
6824 elf32_arm_get_eabi_attr_int (bfd *abfd, int tag)
6825 {
6826 aeabi_attribute_list *p;
6827
6828 if (tag < NUM_KNOWN_ATTRIBUTES)
6829 {
6830 /* Knwon tags are preallocated. */
6831 return elf32_arm_tdata (abfd)->known_eabi_attributes[tag].i;
6832 }
6833 else
6834 {
6835 for (p = elf32_arm_tdata (abfd)->other_eabi_attributes;
6836 p;
6837 p = p->next)
6838 {
6839 if (tag == p->tag)
6840 return p->attr.i;
6841 if (tag < p->tag)
6842 break;
6843 }
6844 return 0;
6845 }
6846 }
6847
6848 void
6849 elf32_arm_add_eabi_attr_int (bfd *abfd, int tag, unsigned int i)
6850 {
6851 aeabi_attribute *attr;
6852
6853 attr = elf32_arm_new_eabi_attr (abfd, tag);
6854 attr->type = 1;
6855 attr->i = i;
6856 }
6857
6858 static char *
6859 attr_strdup (bfd *abfd, const char * s)
6860 {
6861 char * p;
6862 int len;
6863
6864 len = strlen (s) + 1;
6865 p = (char *)bfd_alloc(abfd, len);
6866 return memcpy (p, s, len);
6867 }
6868
6869 void
6870 elf32_arm_add_eabi_attr_string (bfd *abfd, int tag, const char *s)
6871 {
6872 aeabi_attribute *attr;
6873
6874 attr = elf32_arm_new_eabi_attr (abfd, tag);
6875 attr->type = 2;
6876 attr->s = attr_strdup (abfd, s);
6877 }
6878
6879 void
6880 elf32_arm_add_eabi_attr_compat (bfd *abfd, unsigned int i, const char *s)
6881 {
6882 aeabi_attribute_list *list;
6883 aeabi_attribute_list *p;
6884 aeabi_attribute_list **lastp;
6885
6886 list = (aeabi_attribute_list *)
6887 bfd_alloc (abfd, sizeof (aeabi_attribute_list));
6888 memset (list, 0, sizeof (aeabi_attribute_list));
6889 list->tag = Tag_compatibility;
6890 list->attr.type = 3;
6891 list->attr.i = i;
6892 list->attr.s = attr_strdup (abfd, s);
6893
6894 lastp = &elf32_arm_tdata (abfd)->other_eabi_attributes;
6895 for (p = *lastp; p; p = p->next)
6896 {
6897 int cmp;
6898 if (p->tag != Tag_compatibility)
6899 break;
6900 cmp = strcmp(s, p->attr.s);
6901 if (cmp < 0 || (cmp == 0 && i < p->attr.i))
6902 break;
6903 lastp = &p->next;
6904 }
6905 list->next = *lastp;
6906 *lastp = list;
6907 }
6908
6909 /* Set the right machine number. */
6910
6911 static bfd_boolean
6912 elf32_arm_object_p (bfd *abfd)
6913 {
6914 unsigned int mach;
6915
6916 mach = bfd_arm_get_mach_from_notes (abfd, ARM_NOTE_SECTION);
6917
6918 if (mach != bfd_mach_arm_unknown)
6919 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
6920
6921 else if (elf_elfheader (abfd)->e_flags & EF_ARM_MAVERICK_FLOAT)
6922 bfd_default_set_arch_mach (abfd, bfd_arch_arm, bfd_mach_arm_ep9312);
6923
6924 else
6925 bfd_default_set_arch_mach (abfd, bfd_arch_arm, mach);
6926
6927 return TRUE;
6928 }
6929
6930 /* Function to keep ARM specific flags in the ELF header. */
6931
6932 static bfd_boolean
6933 elf32_arm_set_private_flags (bfd *abfd, flagword flags)
6934 {
6935 if (elf_flags_init (abfd)
6936 && elf_elfheader (abfd)->e_flags != flags)
6937 {
6938 if (EF_ARM_EABI_VERSION (flags) == EF_ARM_EABI_UNKNOWN)
6939 {
6940 if (flags & EF_ARM_INTERWORK)
6941 (*_bfd_error_handler)
6942 (_("Warning: Not setting interworking flag of %B since it has already been specified as non-interworking"),
6943 abfd);
6944 else
6945 _bfd_error_handler
6946 (_("Warning: Clearing the interworking flag of %B due to outside request"),
6947 abfd);
6948 }
6949 }
6950 else
6951 {
6952 elf_elfheader (abfd)->e_flags = flags;
6953 elf_flags_init (abfd) = TRUE;
6954 }
6955
6956 return TRUE;
6957 }
6958
6959 /* Copy the eabi object attribute from IBFD to OBFD. */
6960 static void
6961 copy_eabi_attributes (bfd *ibfd, bfd *obfd)
6962 {
6963 aeabi_attribute *in_attr;
6964 aeabi_attribute *out_attr;
6965 aeabi_attribute_list *list;
6966 int i;
6967
6968 in_attr = &elf32_arm_tdata (ibfd)->known_eabi_attributes[4];
6969 out_attr = &elf32_arm_tdata (obfd)->known_eabi_attributes[4];
6970 for (i = 4; i < NUM_KNOWN_ATTRIBUTES; i++)
6971 {
6972 out_attr->type = in_attr->type;
6973 out_attr->i = in_attr->i;
6974 if (in_attr->s && *in_attr->s)
6975 out_attr->s = attr_strdup (obfd, in_attr->s);
6976 in_attr++;
6977 out_attr++;
6978 }
6979
6980 for (list = elf32_arm_tdata (ibfd)->other_eabi_attributes;
6981 list;
6982 list = list->next)
6983 {
6984 in_attr = &list->attr;
6985 switch (in_attr->type)
6986 {
6987 case 1:
6988 elf32_arm_add_eabi_attr_int (obfd, list->tag, in_attr->i);
6989 break;
6990 case 2:
6991 elf32_arm_add_eabi_attr_string (obfd, list->tag, in_attr->s);
6992 break;
6993 case 3:
6994 elf32_arm_add_eabi_attr_compat (obfd, in_attr->i, in_attr->s);
6995 break;
6996 default:
6997 abort();
6998 }
6999 }
7000 }
7001
7002
7003 /* Copy backend specific data from one object module to another. */
7004
7005 static bfd_boolean
7006 elf32_arm_copy_private_bfd_data (bfd *ibfd, bfd *obfd)
7007 {
7008 flagword in_flags;
7009 flagword out_flags;
7010
7011 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7012 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7013 return TRUE;
7014
7015 in_flags = elf_elfheader (ibfd)->e_flags;
7016 out_flags = elf_elfheader (obfd)->e_flags;
7017
7018 if (elf_flags_init (obfd)
7019 && EF_ARM_EABI_VERSION (out_flags) == EF_ARM_EABI_UNKNOWN
7020 && in_flags != out_flags)
7021 {
7022 /* Cannot mix APCS26 and APCS32 code. */
7023 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
7024 return FALSE;
7025
7026 /* Cannot mix float APCS and non-float APCS code. */
7027 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
7028 return FALSE;
7029
7030 /* If the src and dest have different interworking flags
7031 then turn off the interworking bit. */
7032 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
7033 {
7034 if (out_flags & EF_ARM_INTERWORK)
7035 _bfd_error_handler
7036 (_("Warning: Clearing the interworking flag of %B because non-interworking code in %B has been linked with it"),
7037 obfd, ibfd);
7038
7039 in_flags &= ~EF_ARM_INTERWORK;
7040 }
7041
7042 /* Likewise for PIC, though don't warn for this case. */
7043 if ((in_flags & EF_ARM_PIC) != (out_flags & EF_ARM_PIC))
7044 in_flags &= ~EF_ARM_PIC;
7045 }
7046
7047 elf_elfheader (obfd)->e_flags = in_flags;
7048 elf_flags_init (obfd) = TRUE;
7049
7050 /* Also copy the EI_OSABI field. */
7051 elf_elfheader (obfd)->e_ident[EI_OSABI] =
7052 elf_elfheader (ibfd)->e_ident[EI_OSABI];
7053
7054 /* Copy EABI object attributes. */
7055 copy_eabi_attributes (ibfd, obfd);
7056
7057 return TRUE;
7058 }
7059
7060 /* Values for Tag_ABI_PCS_R9_use. */
7061 enum
7062 {
7063 AEABI_R9_V6,
7064 AEABI_R9_SB,
7065 AEABI_R9_TLS,
7066 AEABI_R9_unused
7067 };
7068
7069 /* Values for Tag_ABI_PCS_RW_data. */
7070 enum
7071 {
7072 AEABI_PCS_RW_data_absolute,
7073 AEABI_PCS_RW_data_PCrel,
7074 AEABI_PCS_RW_data_SBrel,
7075 AEABI_PCS_RW_data_unused
7076 };
7077
7078 /* Values for Tag_ABI_enum_size. */
7079 enum
7080 {
7081 AEABI_enum_unused,
7082 AEABI_enum_short,
7083 AEABI_enum_wide,
7084 AEABI_enum_forced_wide
7085 };
7086
7087 /* Merge EABI object attributes from IBFD into OBFD. Raise an error if there
7088 are conflicting attributes. */
7089 static bfd_boolean
7090 elf32_arm_merge_eabi_attributes (bfd *ibfd, bfd *obfd)
7091 {
7092 aeabi_attribute *in_attr;
7093 aeabi_attribute *out_attr;
7094 aeabi_attribute_list *in_list;
7095 aeabi_attribute_list *out_list;
7096 /* Some tags have 0 = don't care, 1 = strong requirement,
7097 2 = weak requirement. */
7098 static const int order_312[3] = {3, 1, 2};
7099 int i;
7100
7101 if (!elf32_arm_tdata (obfd)->known_eabi_attributes[0].i)
7102 {
7103 /* This is the first object. Copy the attributes. */
7104 copy_eabi_attributes (ibfd, obfd);
7105
7106 /* Use the Tag_null value to indicate the attributes have been
7107 initialized. */
7108 elf32_arm_tdata (obfd)->known_eabi_attributes[0].i = 1;
7109
7110 return TRUE;
7111 }
7112
7113 in_attr = elf32_arm_tdata (ibfd)->known_eabi_attributes;
7114 out_attr = elf32_arm_tdata (obfd)->known_eabi_attributes;
7115 /* This needs to happen before Tag_ABI_FP_number_model is merged. */
7116 if (in_attr[Tag_ABI_VFP_args].i != out_attr[Tag_ABI_VFP_args].i)
7117 {
7118 /* Ignore mismatches if teh object doesn't use floating point. */
7119 if (out_attr[Tag_ABI_FP_number_model].i == 0)
7120 out_attr[Tag_ABI_VFP_args].i = in_attr[Tag_ABI_VFP_args].i;
7121 else if (in_attr[Tag_ABI_FP_number_model].i != 0)
7122 {
7123 _bfd_error_handler
7124 (_("ERROR: %B uses VFP register arguments, %B does not"),
7125 ibfd, obfd);
7126 return FALSE;
7127 }
7128 }
7129
7130 for (i = 4; i < NUM_KNOWN_ATTRIBUTES; i++)
7131 {
7132 /* Merge this attribute with existing attributes. */
7133 switch (i)
7134 {
7135 case Tag_CPU_raw_name:
7136 case Tag_CPU_name:
7137 /* Use whichever has the greatest architecture requirements. We
7138 won't necessarily have both the above tags, so make sure input
7139 name is non-NULL. */
7140 if (in_attr[Tag_CPU_arch].i > out_attr[Tag_CPU_arch].i
7141 && in_attr[i].s)
7142 out_attr[i].s = attr_strdup(obfd, in_attr[i].s);
7143 break;
7144
7145 case Tag_ABI_optimization_goals:
7146 case Tag_ABI_FP_optimization_goals:
7147 /* Use the first value seen. */
7148 break;
7149
7150 case Tag_CPU_arch:
7151 case Tag_ARM_ISA_use:
7152 case Tag_THUMB_ISA_use:
7153 case Tag_VFP_arch:
7154 case Tag_WMMX_arch:
7155 case Tag_NEON_arch:
7156 /* ??? Do NEON and WMMX conflict? */
7157 case Tag_ABI_FP_rounding:
7158 case Tag_ABI_FP_denormal:
7159 case Tag_ABI_FP_exceptions:
7160 case Tag_ABI_FP_user_exceptions:
7161 case Tag_ABI_FP_number_model:
7162 case Tag_ABI_align8_preserved:
7163 case Tag_ABI_HardFP_use:
7164 /* Use the largest value specified. */
7165 if (in_attr[i].i > out_attr[i].i)
7166 out_attr[i].i = in_attr[i].i;
7167 break;
7168
7169 case Tag_CPU_arch_profile:
7170 /* Warn if conflicting architecture profiles used. */
7171 if (out_attr[i].i && in_attr[i].i && in_attr[i].i != out_attr[i].i)
7172 {
7173 _bfd_error_handler
7174 (_("ERROR: %B: Conflicting architecture profiles %c/%c"),
7175 ibfd, in_attr[i].i, out_attr[i].i);
7176 return FALSE;
7177 }
7178 if (in_attr[i].i)
7179 out_attr[i].i = in_attr[i].i;
7180 break;
7181 case Tag_PCS_config:
7182 if (out_attr[i].i == 0)
7183 out_attr[i].i = in_attr[i].i;
7184 else if (in_attr[i].i != 0 && out_attr[i].i != 0)
7185 {
7186 /* It's sometimes ok to mix different configs, so this is only
7187 a warning. */
7188 _bfd_error_handler
7189 (_("Warning: %B: Conflicting platform configuration"), ibfd);
7190 }
7191 break;
7192 case Tag_ABI_PCS_R9_use:
7193 if (in_attr[i].i != out_attr[i].i
7194 && out_attr[i].i != AEABI_R9_unused
7195 && in_attr[i].i != AEABI_R9_unused)
7196 {
7197 _bfd_error_handler
7198 (_("ERROR: %B: Conflicting use of R9"), ibfd);
7199 return FALSE;
7200 }
7201 if (out_attr[i].i == AEABI_R9_unused)
7202 out_attr[i].i = in_attr[i].i;
7203 break;
7204 case Tag_ABI_PCS_RW_data:
7205 if (in_attr[i].i == AEABI_PCS_RW_data_SBrel
7206 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_SB
7207 && out_attr[Tag_ABI_PCS_R9_use].i != AEABI_R9_unused)
7208 {
7209 _bfd_error_handler
7210 (_("ERROR: %B: SB relative addressing conflicts with use of R9"),
7211 ibfd);
7212 return FALSE;
7213 }
7214 /* Use the smallest value specified. */
7215 if (in_attr[i].i < out_attr[i].i)
7216 out_attr[i].i = in_attr[i].i;
7217 break;
7218 case Tag_ABI_PCS_RO_data:
7219 /* Use the smallest value specified. */
7220 if (in_attr[i].i < out_attr[i].i)
7221 out_attr[i].i = in_attr[i].i;
7222 break;
7223 case Tag_ABI_PCS_GOT_use:
7224 if (in_attr[i].i > 2 || out_attr[i].i > 2
7225 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
7226 out_attr[i].i = in_attr[i].i;
7227 break;
7228 case Tag_ABI_PCS_wchar_t:
7229 if (out_attr[i].i && in_attr[i].i && out_attr[i].i != in_attr[i].i)
7230 {
7231 _bfd_error_handler
7232 (_("ERROR: %B: Conflicting definitions of wchar_t"), ibfd);
7233 return FALSE;
7234 }
7235 if (in_attr[i].i)
7236 out_attr[i].i = in_attr[i].i;
7237 break;
7238 case Tag_ABI_align8_needed:
7239 /* ??? Check against Tag_ABI_align8_preserved. */
7240 if (in_attr[i].i > 2 || out_attr[i].i > 2
7241 || order_312[in_attr[i].i] < order_312[out_attr[i].i])
7242 out_attr[i].i = in_attr[i].i;
7243 break;
7244 case Tag_ABI_enum_size:
7245 if (in_attr[i].i != AEABI_enum_unused)
7246 {
7247 if (out_attr[i].i == AEABI_enum_unused
7248 || out_attr[i].i == AEABI_enum_forced_wide)
7249 {
7250 /* The existing object is compatible with anything.
7251 Use whatever requirements the new object has. */
7252 out_attr[i].i = in_attr[i].i;
7253 }
7254 else if (in_attr[i].i != AEABI_enum_forced_wide
7255 && out_attr[i].i != in_attr[i].i
7256 && !elf32_arm_tdata (obfd)->no_enum_size_warning)
7257 {
7258 const char *aeabi_enum_names[] =
7259 { "", "variable-size", "32-bit", "" };
7260 _bfd_error_handler
7261 (_("warning: %B uses %s enums yet the output is to use %s enums; use of enum values across objects may fail"),
7262 ibfd, aeabi_enum_names[in_attr[i].i],
7263 aeabi_enum_names[out_attr[i].i]);
7264 }
7265 }
7266 break;
7267 case Tag_ABI_VFP_args:
7268 /* Aready done. */
7269 break;
7270 case Tag_ABI_WMMX_args:
7271 if (in_attr[i].i != out_attr[i].i)
7272 {
7273 _bfd_error_handler
7274 (_("ERROR: %B uses iWMMXt register arguments, %B does not"),
7275 ibfd, obfd);
7276 return FALSE;
7277 }
7278 break;
7279 default: /* All known attributes should be explicitly covered. */
7280 abort ();
7281 }
7282 }
7283
7284 in_list = elf32_arm_tdata (ibfd)->other_eabi_attributes;
7285 out_list = elf32_arm_tdata (ibfd)->other_eabi_attributes;
7286 while (in_list && in_list->tag == Tag_compatibility)
7287 {
7288 in_attr = &in_list->attr;
7289 if (in_attr->i == 0)
7290 continue;
7291 if (in_attr->i == 1)
7292 {
7293 _bfd_error_handler
7294 (_("ERROR: %B: Must be processed by '%s' toolchain"),
7295 ibfd, in_attr->s);
7296 return FALSE;
7297 }
7298 if (!out_list || out_list->tag != Tag_compatibility
7299 || strcmp (in_attr->s, out_list->attr.s) != 0)
7300 {
7301 /* Add this compatibility tag to the output. */
7302 elf32_arm_add_eabi_attr_compat (obfd, in_attr->i, in_attr->s);
7303 continue;
7304 }
7305 out_attr = &out_list->attr;
7306 /* Check all the input tags with the same identifier. */
7307 for (;;)
7308 {
7309 if (out_list->tag != Tag_compatibility
7310 || in_attr->i != out_attr->i
7311 || strcmp (in_attr->s, out_attr->s) != 0)
7312 {
7313 _bfd_error_handler
7314 (_("ERROR: %B: Incompatible object tag '%s':%d"),
7315 ibfd, in_attr->s, in_attr->i);
7316 return FALSE;
7317 }
7318 in_list = in_list->next;
7319 if (in_list->tag != Tag_compatibility
7320 || strcmp (in_attr->s, in_list->attr.s) != 0)
7321 break;
7322 in_attr = &in_list->attr;
7323 out_list = out_list->next;
7324 if (out_list)
7325 out_attr = &out_list->attr;
7326 }
7327
7328 /* Check the output doesn't have extra tags with this identifier. */
7329 if (out_list && out_list->tag == Tag_compatibility
7330 && strcmp (in_attr->s, out_list->attr.s) == 0)
7331 {
7332 _bfd_error_handler
7333 (_("ERROR: %B: Incompatible object tag '%s':%d"),
7334 ibfd, in_attr->s, out_list->attr.i);
7335 return FALSE;
7336 }
7337 }
7338
7339 for (; in_list; in_list = in_list->next)
7340 {
7341 if ((in_list->tag & 128) < 64)
7342 {
7343 _bfd_error_handler
7344 (_("Warning: %B: Unknown EABI object attribute %d"),
7345 ibfd, in_list->tag);
7346 break;
7347 }
7348 }
7349 return TRUE;
7350 }
7351
7352
7353 /* Return TRUE if the two EABI versions are incompatible. */
7354
7355 static bfd_boolean
7356 elf32_arm_versions_compatible (unsigned iver, unsigned over)
7357 {
7358 /* v4 and v5 are the same spec before and after it was released,
7359 so allow mixing them. */
7360 if ((iver == EF_ARM_EABI_VER4 && over == EF_ARM_EABI_VER5)
7361 || (iver == EF_ARM_EABI_VER5 && over == EF_ARM_EABI_VER4))
7362 return TRUE;
7363
7364 return (iver == over);
7365 }
7366
7367 /* Merge backend specific data from an object file to the output
7368 object file when linking. */
7369
7370 static bfd_boolean
7371 elf32_arm_merge_private_bfd_data (bfd * ibfd, bfd * obfd)
7372 {
7373 flagword out_flags;
7374 flagword in_flags;
7375 bfd_boolean flags_compatible = TRUE;
7376 asection *sec;
7377
7378 /* Check if we have the same endianess. */
7379 if (! _bfd_generic_verify_endian_match (ibfd, obfd))
7380 return FALSE;
7381
7382 if ( bfd_get_flavour (ibfd) != bfd_target_elf_flavour
7383 || bfd_get_flavour (obfd) != bfd_target_elf_flavour)
7384 return TRUE;
7385
7386 if (!elf32_arm_merge_eabi_attributes (ibfd, obfd))
7387 return FALSE;
7388
7389 /* The input BFD must have had its flags initialised. */
7390 /* The following seems bogus to me -- The flags are initialized in
7391 the assembler but I don't think an elf_flags_init field is
7392 written into the object. */
7393 /* BFD_ASSERT (elf_flags_init (ibfd)); */
7394
7395 in_flags = elf_elfheader (ibfd)->e_flags;
7396 out_flags = elf_elfheader (obfd)->e_flags;
7397
7398 if (!elf_flags_init (obfd))
7399 {
7400 /* If the input is the default architecture and had the default
7401 flags then do not bother setting the flags for the output
7402 architecture, instead allow future merges to do this. If no
7403 future merges ever set these flags then they will retain their
7404 uninitialised values, which surprise surprise, correspond
7405 to the default values. */
7406 if (bfd_get_arch_info (ibfd)->the_default
7407 && elf_elfheader (ibfd)->e_flags == 0)
7408 return TRUE;
7409
7410 elf_flags_init (obfd) = TRUE;
7411 elf_elfheader (obfd)->e_flags = in_flags;
7412
7413 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
7414 && bfd_get_arch_info (obfd)->the_default)
7415 return bfd_set_arch_mach (obfd, bfd_get_arch (ibfd), bfd_get_mach (ibfd));
7416
7417 return TRUE;
7418 }
7419
7420 /* Determine what should happen if the input ARM architecture
7421 does not match the output ARM architecture. */
7422 if (! bfd_arm_merge_machines (ibfd, obfd))
7423 return FALSE;
7424
7425 /* Identical flags must be compatible. */
7426 if (in_flags == out_flags)
7427 return TRUE;
7428
7429 /* Check to see if the input BFD actually contains any sections. If
7430 not, its flags may not have been initialised either, but it
7431 cannot actually cause any incompatiblity. Do not short-circuit
7432 dynamic objects; their section list may be emptied by
7433 elf_link_add_object_symbols.
7434
7435 Also check to see if there are no code sections in the input.
7436 In this case there is no need to check for code specific flags.
7437 XXX - do we need to worry about floating-point format compatability
7438 in data sections ? */
7439 if (!(ibfd->flags & DYNAMIC))
7440 {
7441 bfd_boolean null_input_bfd = TRUE;
7442 bfd_boolean only_data_sections = TRUE;
7443
7444 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
7445 {
7446 /* Ignore synthetic glue sections. */
7447 if (strcmp (sec->name, ".glue_7")
7448 && strcmp (sec->name, ".glue_7t"))
7449 {
7450 if ((bfd_get_section_flags (ibfd, sec)
7451 & (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7452 == (SEC_LOAD | SEC_CODE | SEC_HAS_CONTENTS))
7453 only_data_sections = FALSE;
7454
7455 null_input_bfd = FALSE;
7456 break;
7457 }
7458 }
7459
7460 if (null_input_bfd || only_data_sections)
7461 return TRUE;
7462 }
7463
7464 /* Complain about various flag mismatches. */
7465 if (!elf32_arm_versions_compatible (EF_ARM_EABI_VERSION (in_flags),
7466 EF_ARM_EABI_VERSION (out_flags)))
7467 {
7468 _bfd_error_handler
7469 (_("ERROR: Source object %B has EABI version %d, but target %B has EABI version %d"),
7470 ibfd, obfd,
7471 (in_flags & EF_ARM_EABIMASK) >> 24,
7472 (out_flags & EF_ARM_EABIMASK) >> 24);
7473 return FALSE;
7474 }
7475
7476 /* Not sure what needs to be checked for EABI versions >= 1. */
7477 /* VxWorks libraries do not use these flags. */
7478 if (get_elf_backend_data (obfd) != &elf32_arm_vxworks_bed
7479 && get_elf_backend_data (ibfd) != &elf32_arm_vxworks_bed
7480 && EF_ARM_EABI_VERSION (in_flags) == EF_ARM_EABI_UNKNOWN)
7481 {
7482 if ((in_flags & EF_ARM_APCS_26) != (out_flags & EF_ARM_APCS_26))
7483 {
7484 _bfd_error_handler
7485 (_("ERROR: %B is compiled for APCS-%d, whereas target %B uses APCS-%d"),
7486 ibfd, obfd,
7487 in_flags & EF_ARM_APCS_26 ? 26 : 32,
7488 out_flags & EF_ARM_APCS_26 ? 26 : 32);
7489 flags_compatible = FALSE;
7490 }
7491
7492 if ((in_flags & EF_ARM_APCS_FLOAT) != (out_flags & EF_ARM_APCS_FLOAT))
7493 {
7494 if (in_flags & EF_ARM_APCS_FLOAT)
7495 _bfd_error_handler
7496 (_("ERROR: %B passes floats in float registers, whereas %B passes them in integer registers"),
7497 ibfd, obfd);
7498 else
7499 _bfd_error_handler
7500 (_("ERROR: %B passes floats in integer registers, whereas %B passes them in float registers"),
7501 ibfd, obfd);
7502
7503 flags_compatible = FALSE;
7504 }
7505
7506 if ((in_flags & EF_ARM_VFP_FLOAT) != (out_flags & EF_ARM_VFP_FLOAT))
7507 {
7508 if (in_flags & EF_ARM_VFP_FLOAT)
7509 _bfd_error_handler
7510 (_("ERROR: %B uses VFP instructions, whereas %B does not"),
7511 ibfd, obfd);
7512 else
7513 _bfd_error_handler
7514 (_("ERROR: %B uses FPA instructions, whereas %B does not"),
7515 ibfd, obfd);
7516
7517 flags_compatible = FALSE;
7518 }
7519
7520 if ((in_flags & EF_ARM_MAVERICK_FLOAT) != (out_flags & EF_ARM_MAVERICK_FLOAT))
7521 {
7522 if (in_flags & EF_ARM_MAVERICK_FLOAT)
7523 _bfd_error_handler
7524 (_("ERROR: %B uses Maverick instructions, whereas %B does not"),
7525 ibfd, obfd);
7526 else
7527 _bfd_error_handler
7528 (_("ERROR: %B does not use Maverick instructions, whereas %B does"),
7529 ibfd, obfd);
7530
7531 flags_compatible = FALSE;
7532 }
7533
7534 #ifdef EF_ARM_SOFT_FLOAT
7535 if ((in_flags & EF_ARM_SOFT_FLOAT) != (out_flags & EF_ARM_SOFT_FLOAT))
7536 {
7537 /* We can allow interworking between code that is VFP format
7538 layout, and uses either soft float or integer regs for
7539 passing floating point arguments and results. We already
7540 know that the APCS_FLOAT flags match; similarly for VFP
7541 flags. */
7542 if ((in_flags & EF_ARM_APCS_FLOAT) != 0
7543 || (in_flags & EF_ARM_VFP_FLOAT) == 0)
7544 {
7545 if (in_flags & EF_ARM_SOFT_FLOAT)
7546 _bfd_error_handler
7547 (_("ERROR: %B uses software FP, whereas %B uses hardware FP"),
7548 ibfd, obfd);
7549 else
7550 _bfd_error_handler
7551 (_("ERROR: %B uses hardware FP, whereas %B uses software FP"),
7552 ibfd, obfd);
7553
7554 flags_compatible = FALSE;
7555 }
7556 }
7557 #endif
7558
7559 /* Interworking mismatch is only a warning. */
7560 if ((in_flags & EF_ARM_INTERWORK) != (out_flags & EF_ARM_INTERWORK))
7561 {
7562 if (in_flags & EF_ARM_INTERWORK)
7563 {
7564 _bfd_error_handler
7565 (_("Warning: %B supports interworking, whereas %B does not"),
7566 ibfd, obfd);
7567 }
7568 else
7569 {
7570 _bfd_error_handler
7571 (_("Warning: %B does not support interworking, whereas %B does"),
7572 ibfd, obfd);
7573 }
7574 }
7575 }
7576
7577 return flags_compatible;
7578 }
7579
7580 /* Display the flags field. */
7581
7582 static bfd_boolean
7583 elf32_arm_print_private_bfd_data (bfd *abfd, void * ptr)
7584 {
7585 FILE * file = (FILE *) ptr;
7586 unsigned long flags;
7587
7588 BFD_ASSERT (abfd != NULL && ptr != NULL);
7589
7590 /* Print normal ELF private data. */
7591 _bfd_elf_print_private_bfd_data (abfd, ptr);
7592
7593 flags = elf_elfheader (abfd)->e_flags;
7594 /* Ignore init flag - it may not be set, despite the flags field
7595 containing valid data. */
7596
7597 /* xgettext:c-format */
7598 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
7599
7600 switch (EF_ARM_EABI_VERSION (flags))
7601 {
7602 case EF_ARM_EABI_UNKNOWN:
7603 /* The following flag bits are GNU extensions and not part of the
7604 official ARM ELF extended ABI. Hence they are only decoded if
7605 the EABI version is not set. */
7606 if (flags & EF_ARM_INTERWORK)
7607 fprintf (file, _(" [interworking enabled]"));
7608
7609 if (flags & EF_ARM_APCS_26)
7610 fprintf (file, " [APCS-26]");
7611 else
7612 fprintf (file, " [APCS-32]");
7613
7614 if (flags & EF_ARM_VFP_FLOAT)
7615 fprintf (file, _(" [VFP float format]"));
7616 else if (flags & EF_ARM_MAVERICK_FLOAT)
7617 fprintf (file, _(" [Maverick float format]"));
7618 else
7619 fprintf (file, _(" [FPA float format]"));
7620
7621 if (flags & EF_ARM_APCS_FLOAT)
7622 fprintf (file, _(" [floats passed in float registers]"));
7623
7624 if (flags & EF_ARM_PIC)
7625 fprintf (file, _(" [position independent]"));
7626
7627 if (flags & EF_ARM_NEW_ABI)
7628 fprintf (file, _(" [new ABI]"));
7629
7630 if (flags & EF_ARM_OLD_ABI)
7631 fprintf (file, _(" [old ABI]"));
7632
7633 if (flags & EF_ARM_SOFT_FLOAT)
7634 fprintf (file, _(" [software FP]"));
7635
7636 flags &= ~(EF_ARM_INTERWORK | EF_ARM_APCS_26 | EF_ARM_APCS_FLOAT
7637 | EF_ARM_PIC | EF_ARM_NEW_ABI | EF_ARM_OLD_ABI
7638 | EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT
7639 | EF_ARM_MAVERICK_FLOAT);
7640 break;
7641
7642 case EF_ARM_EABI_VER1:
7643 fprintf (file, _(" [Version1 EABI]"));
7644
7645 if (flags & EF_ARM_SYMSARESORTED)
7646 fprintf (file, _(" [sorted symbol table]"));
7647 else
7648 fprintf (file, _(" [unsorted symbol table]"));
7649
7650 flags &= ~ EF_ARM_SYMSARESORTED;
7651 break;
7652
7653 case EF_ARM_EABI_VER2:
7654 fprintf (file, _(" [Version2 EABI]"));
7655
7656 if (flags & EF_ARM_SYMSARESORTED)
7657 fprintf (file, _(" [sorted symbol table]"));
7658 else
7659 fprintf (file, _(" [unsorted symbol table]"));
7660
7661 if (flags & EF_ARM_DYNSYMSUSESEGIDX)
7662 fprintf (file, _(" [dynamic symbols use segment index]"));
7663
7664 if (flags & EF_ARM_MAPSYMSFIRST)
7665 fprintf (file, _(" [mapping symbols precede others]"));
7666
7667 flags &= ~(EF_ARM_SYMSARESORTED | EF_ARM_DYNSYMSUSESEGIDX
7668 | EF_ARM_MAPSYMSFIRST);
7669 break;
7670
7671 case EF_ARM_EABI_VER3:
7672 fprintf (file, _(" [Version3 EABI]"));
7673 break;
7674
7675 case EF_ARM_EABI_VER4:
7676 fprintf (file, _(" [Version4 EABI]"));
7677 goto eabi;
7678
7679 case EF_ARM_EABI_VER5:
7680 fprintf (file, _(" [Version5 EABI]"));
7681 eabi:
7682 if (flags & EF_ARM_BE8)
7683 fprintf (file, _(" [BE8]"));
7684
7685 if (flags & EF_ARM_LE8)
7686 fprintf (file, _(" [LE8]"));
7687
7688 flags &= ~(EF_ARM_LE8 | EF_ARM_BE8);
7689 break;
7690
7691 default:
7692 fprintf (file, _(" <EABI version unrecognised>"));
7693 break;
7694 }
7695
7696 flags &= ~ EF_ARM_EABIMASK;
7697
7698 if (flags & EF_ARM_RELEXEC)
7699 fprintf (file, _(" [relocatable executable]"));
7700
7701 if (flags & EF_ARM_HASENTRY)
7702 fprintf (file, _(" [has entry point]"));
7703
7704 flags &= ~ (EF_ARM_RELEXEC | EF_ARM_HASENTRY);
7705
7706 if (flags)
7707 fprintf (file, _("<Unrecognised flag bits set>"));
7708
7709 fputc ('\n', file);
7710
7711 return TRUE;
7712 }
7713
7714 static int
7715 elf32_arm_get_symbol_type (Elf_Internal_Sym * elf_sym, int type)
7716 {
7717 switch (ELF_ST_TYPE (elf_sym->st_info))
7718 {
7719 case STT_ARM_TFUNC:
7720 return ELF_ST_TYPE (elf_sym->st_info);
7721
7722 case STT_ARM_16BIT:
7723 /* If the symbol is not an object, return the STT_ARM_16BIT flag.
7724 This allows us to distinguish between data used by Thumb instructions
7725 and non-data (which is probably code) inside Thumb regions of an
7726 executable. */
7727 if (type != STT_OBJECT && type != STT_TLS)
7728 return ELF_ST_TYPE (elf_sym->st_info);
7729 break;
7730
7731 default:
7732 break;
7733 }
7734
7735 return type;
7736 }
7737
7738 static asection *
7739 elf32_arm_gc_mark_hook (asection *sec,
7740 struct bfd_link_info *info,
7741 Elf_Internal_Rela *rel,
7742 struct elf_link_hash_entry *h,
7743 Elf_Internal_Sym *sym)
7744 {
7745 if (h != NULL)
7746 switch (ELF32_R_TYPE (rel->r_info))
7747 {
7748 case R_ARM_GNU_VTINHERIT:
7749 case R_ARM_GNU_VTENTRY:
7750 return NULL;
7751 }
7752
7753 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
7754 }
7755
7756 /* Update the got entry reference counts for the section being removed. */
7757
7758 static bfd_boolean
7759 elf32_arm_gc_sweep_hook (bfd * abfd,
7760 struct bfd_link_info * info,
7761 asection * sec,
7762 const Elf_Internal_Rela * relocs)
7763 {
7764 Elf_Internal_Shdr *symtab_hdr;
7765 struct elf_link_hash_entry **sym_hashes;
7766 bfd_signed_vma *local_got_refcounts;
7767 const Elf_Internal_Rela *rel, *relend;
7768 struct elf32_arm_link_hash_table * globals;
7769
7770 globals = elf32_arm_hash_table (info);
7771
7772 elf_section_data (sec)->local_dynrel = NULL;
7773
7774 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7775 sym_hashes = elf_sym_hashes (abfd);
7776 local_got_refcounts = elf_local_got_refcounts (abfd);
7777
7778 relend = relocs + sec->reloc_count;
7779 for (rel = relocs; rel < relend; rel++)
7780 {
7781 unsigned long r_symndx;
7782 struct elf_link_hash_entry *h = NULL;
7783 int r_type;
7784
7785 r_symndx = ELF32_R_SYM (rel->r_info);
7786 if (r_symndx >= symtab_hdr->sh_info)
7787 {
7788 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7789 while (h->root.type == bfd_link_hash_indirect
7790 || h->root.type == bfd_link_hash_warning)
7791 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7792 }
7793
7794 r_type = ELF32_R_TYPE (rel->r_info);
7795 r_type = arm_real_reloc_type (globals, r_type);
7796 switch (r_type)
7797 {
7798 case R_ARM_GOT32:
7799 case R_ARM_GOT_PREL:
7800 case R_ARM_TLS_GD32:
7801 case R_ARM_TLS_IE32:
7802 if (h != NULL)
7803 {
7804 if (h->got.refcount > 0)
7805 h->got.refcount -= 1;
7806 }
7807 else if (local_got_refcounts != NULL)
7808 {
7809 if (local_got_refcounts[r_symndx] > 0)
7810 local_got_refcounts[r_symndx] -= 1;
7811 }
7812 break;
7813
7814 case R_ARM_TLS_LDM32:
7815 elf32_arm_hash_table (info)->tls_ldm_got.refcount -= 1;
7816 break;
7817
7818 case R_ARM_ABS32:
7819 case R_ARM_ABS32_NOI:
7820 case R_ARM_REL32:
7821 case R_ARM_REL32_NOI:
7822 case R_ARM_PC24:
7823 case R_ARM_PLT32:
7824 case R_ARM_CALL:
7825 case R_ARM_JUMP24:
7826 case R_ARM_PREL31:
7827 case R_ARM_THM_CALL:
7828 case R_ARM_MOVW_ABS_NC:
7829 case R_ARM_MOVT_ABS:
7830 case R_ARM_MOVW_PREL_NC:
7831 case R_ARM_MOVT_PREL:
7832 case R_ARM_THM_MOVW_ABS_NC:
7833 case R_ARM_THM_MOVT_ABS:
7834 case R_ARM_THM_MOVW_PREL_NC:
7835 case R_ARM_THM_MOVT_PREL:
7836 /* Should the interworking branches be here also? */
7837
7838 if (h != NULL)
7839 {
7840 struct elf32_arm_link_hash_entry *eh;
7841 struct elf32_arm_relocs_copied **pp;
7842 struct elf32_arm_relocs_copied *p;
7843
7844 eh = (struct elf32_arm_link_hash_entry *) h;
7845
7846 if (h->plt.refcount > 0)
7847 {
7848 h->plt.refcount -= 1;
7849 if (ELF32_R_TYPE (rel->r_info) == R_ARM_THM_CALL)
7850 eh->plt_thumb_refcount--;
7851 }
7852
7853 if (r_type == R_ARM_ABS32
7854 || r_type == R_ARM_REL32
7855 || r_type == R_ARM_ABS32_NOI
7856 || r_type == R_ARM_REL32_NOI)
7857 {
7858 for (pp = &eh->relocs_copied; (p = *pp) != NULL;
7859 pp = &p->next)
7860 if (p->section == sec)
7861 {
7862 p->count -= 1;
7863 if (ELF32_R_TYPE (rel->r_info) == R_ARM_REL32
7864 || ELF32_R_TYPE (rel->r_info) == R_ARM_REL32_NOI)
7865 p->pc_count -= 1;
7866 if (p->count == 0)
7867 *pp = p->next;
7868 break;
7869 }
7870 }
7871 }
7872 break;
7873
7874 default:
7875 break;
7876 }
7877 }
7878
7879 return TRUE;
7880 }
7881
7882 /* Look through the relocs for a section during the first phase. */
7883
7884 static bfd_boolean
7885 elf32_arm_check_relocs (bfd *abfd, struct bfd_link_info *info,
7886 asection *sec, const Elf_Internal_Rela *relocs)
7887 {
7888 Elf_Internal_Shdr *symtab_hdr;
7889 struct elf_link_hash_entry **sym_hashes;
7890 struct elf_link_hash_entry **sym_hashes_end;
7891 const Elf_Internal_Rela *rel;
7892 const Elf_Internal_Rela *rel_end;
7893 bfd *dynobj;
7894 asection *sreloc;
7895 bfd_vma *local_got_offsets;
7896 struct elf32_arm_link_hash_table *htab;
7897
7898 if (info->relocatable)
7899 return TRUE;
7900
7901 htab = elf32_arm_hash_table (info);
7902 sreloc = NULL;
7903
7904 /* Create dynamic sections for relocatable executables so that we can
7905 copy relocations. */
7906 if (htab->root.is_relocatable_executable
7907 && ! htab->root.dynamic_sections_created)
7908 {
7909 if (! _bfd_elf_link_create_dynamic_sections (abfd, info))
7910 return FALSE;
7911 }
7912
7913 dynobj = elf_hash_table (info)->dynobj;
7914 local_got_offsets = elf_local_got_offsets (abfd);
7915
7916 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
7917 sym_hashes = elf_sym_hashes (abfd);
7918 sym_hashes_end = sym_hashes
7919 + symtab_hdr->sh_size / sizeof (Elf32_External_Sym);
7920
7921 if (!elf_bad_symtab (abfd))
7922 sym_hashes_end -= symtab_hdr->sh_info;
7923
7924 rel_end = relocs + sec->reloc_count;
7925 for (rel = relocs; rel < rel_end; rel++)
7926 {
7927 struct elf_link_hash_entry *h;
7928 struct elf32_arm_link_hash_entry *eh;
7929 unsigned long r_symndx;
7930 int r_type;
7931
7932 r_symndx = ELF32_R_SYM (rel->r_info);
7933 r_type = ELF32_R_TYPE (rel->r_info);
7934 r_type = arm_real_reloc_type (htab, r_type);
7935
7936 if (r_symndx >= NUM_SHDR_ENTRIES (symtab_hdr))
7937 {
7938 (*_bfd_error_handler) (_("%B: bad symbol index: %d"), abfd,
7939 r_symndx);
7940 return FALSE;
7941 }
7942
7943 if (r_symndx < symtab_hdr->sh_info)
7944 h = NULL;
7945 else
7946 {
7947 h = sym_hashes[r_symndx - symtab_hdr->sh_info];
7948 while (h->root.type == bfd_link_hash_indirect
7949 || h->root.type == bfd_link_hash_warning)
7950 h = (struct elf_link_hash_entry *) h->root.u.i.link;
7951 }
7952
7953 eh = (struct elf32_arm_link_hash_entry *) h;
7954
7955 switch (r_type)
7956 {
7957 case R_ARM_GOT32:
7958 case R_ARM_GOT_PREL:
7959 case R_ARM_TLS_GD32:
7960 case R_ARM_TLS_IE32:
7961 /* This symbol requires a global offset table entry. */
7962 {
7963 int tls_type, old_tls_type;
7964
7965 switch (r_type)
7966 {
7967 case R_ARM_TLS_GD32: tls_type = GOT_TLS_GD; break;
7968 case R_ARM_TLS_IE32: tls_type = GOT_TLS_IE; break;
7969 default: tls_type = GOT_NORMAL; break;
7970 }
7971
7972 if (h != NULL)
7973 {
7974 h->got.refcount++;
7975 old_tls_type = elf32_arm_hash_entry (h)->tls_type;
7976 }
7977 else
7978 {
7979 bfd_signed_vma *local_got_refcounts;
7980
7981 /* This is a global offset table entry for a local symbol. */
7982 local_got_refcounts = elf_local_got_refcounts (abfd);
7983 if (local_got_refcounts == NULL)
7984 {
7985 bfd_size_type size;
7986
7987 size = symtab_hdr->sh_info;
7988 size *= (sizeof (bfd_signed_vma) + sizeof(char));
7989 local_got_refcounts = bfd_zalloc (abfd, size);
7990 if (local_got_refcounts == NULL)
7991 return FALSE;
7992 elf_local_got_refcounts (abfd) = local_got_refcounts;
7993 elf32_arm_local_got_tls_type (abfd)
7994 = (char *) (local_got_refcounts + symtab_hdr->sh_info);
7995 }
7996 local_got_refcounts[r_symndx] += 1;
7997 old_tls_type = elf32_arm_local_got_tls_type (abfd) [r_symndx];
7998 }
7999
8000 /* We will already have issued an error message if there is a
8001 TLS / non-TLS mismatch, based on the symbol type. We don't
8002 support any linker relaxations. So just combine any TLS
8003 types needed. */
8004 if (old_tls_type != GOT_UNKNOWN && old_tls_type != GOT_NORMAL
8005 && tls_type != GOT_NORMAL)
8006 tls_type |= old_tls_type;
8007
8008 if (old_tls_type != tls_type)
8009 {
8010 if (h != NULL)
8011 elf32_arm_hash_entry (h)->tls_type = tls_type;
8012 else
8013 elf32_arm_local_got_tls_type (abfd) [r_symndx] = tls_type;
8014 }
8015 }
8016 /* Fall through */
8017
8018 case R_ARM_TLS_LDM32:
8019 if (r_type == R_ARM_TLS_LDM32)
8020 htab->tls_ldm_got.refcount++;
8021 /* Fall through */
8022
8023 case R_ARM_GOTOFF32:
8024 case R_ARM_GOTPC:
8025 if (htab->sgot == NULL)
8026 {
8027 if (htab->root.dynobj == NULL)
8028 htab->root.dynobj = abfd;
8029 if (!create_got_section (htab->root.dynobj, info))
8030 return FALSE;
8031 }
8032 break;
8033
8034 case R_ARM_ABS12:
8035 /* VxWorks uses dynamic R_ARM_ABS12 relocations for
8036 ldr __GOTT_INDEX__ offsets. */
8037 if (!htab->vxworks_p)
8038 break;
8039 /* Fall through */
8040
8041 case R_ARM_ABS32:
8042 case R_ARM_ABS32_NOI:
8043 case R_ARM_REL32:
8044 case R_ARM_REL32_NOI:
8045 case R_ARM_PC24:
8046 case R_ARM_PLT32:
8047 case R_ARM_CALL:
8048 case R_ARM_JUMP24:
8049 case R_ARM_PREL31:
8050 case R_ARM_THM_CALL:
8051 case R_ARM_MOVW_ABS_NC:
8052 case R_ARM_MOVT_ABS:
8053 case R_ARM_MOVW_PREL_NC:
8054 case R_ARM_MOVT_PREL:
8055 case R_ARM_THM_MOVW_ABS_NC:
8056 case R_ARM_THM_MOVT_ABS:
8057 case R_ARM_THM_MOVW_PREL_NC:
8058 case R_ARM_THM_MOVT_PREL:
8059 /* Should the interworking branches be listed here? */
8060 if (h != NULL)
8061 {
8062 /* If this reloc is in a read-only section, we might
8063 need a copy reloc. We can't check reliably at this
8064 stage whether the section is read-only, as input
8065 sections have not yet been mapped to output sections.
8066 Tentatively set the flag for now, and correct in
8067 adjust_dynamic_symbol. */
8068 if (!info->shared)
8069 h->non_got_ref = 1;
8070
8071 /* We may need a .plt entry if the function this reloc
8072 refers to is in a different object. We can't tell for
8073 sure yet, because something later might force the
8074 symbol local. */
8075 if (r_type != R_ARM_ABS32
8076 && r_type != R_ARM_REL32
8077 && r_type != R_ARM_ABS32_NOI
8078 && r_type != R_ARM_REL32_NOI
8079 && r_type != R_ARM_ABS12)
8080 h->needs_plt = 1;
8081
8082 /* If we create a PLT entry, this relocation will reference
8083 it, even if it's an ABS32 relocation. */
8084 h->plt.refcount += 1;
8085
8086 if (r_type == R_ARM_THM_CALL)
8087 eh->plt_thumb_refcount += 1;
8088 }
8089
8090 /* If we are creating a shared library or relocatable executable,
8091 and this is a reloc against a global symbol, or a non PC
8092 relative reloc against a local symbol, then we need to copy
8093 the reloc into the shared library. However, if we are linking
8094 with -Bsymbolic, we do not need to copy a reloc against a
8095 global symbol which is defined in an object we are
8096 including in the link (i.e., DEF_REGULAR is set). At
8097 this point we have not seen all the input files, so it is
8098 possible that DEF_REGULAR is not set now but will be set
8099 later (it is never cleared). We account for that
8100 possibility below by storing information in the
8101 relocs_copied field of the hash table entry. */
8102 if ((info->shared || htab->root.is_relocatable_executable)
8103 && (sec->flags & SEC_ALLOC) != 0
8104 && ((r_type == R_ARM_ABS32 || r_type == R_ARM_ABS32_NOI)
8105 || (h != NULL && ! h->needs_plt
8106 && (! info->symbolic || ! h->def_regular))))
8107 {
8108 struct elf32_arm_relocs_copied *p, **head;
8109
8110 /* When creating a shared object, we must copy these
8111 reloc types into the output file. We create a reloc
8112 section in dynobj and make room for this reloc. */
8113 if (sreloc == NULL)
8114 {
8115 const char * name;
8116
8117 name = (bfd_elf_string_from_elf_section
8118 (abfd,
8119 elf_elfheader (abfd)->e_shstrndx,
8120 elf_section_data (sec)->rel_hdr.sh_name));
8121 if (name == NULL)
8122 return FALSE;
8123
8124 BFD_ASSERT (reloc_section_p (htab, name, sec));
8125
8126 sreloc = bfd_get_section_by_name (dynobj, name);
8127 if (sreloc == NULL)
8128 {
8129 flagword flags;
8130
8131 flags = (SEC_HAS_CONTENTS | SEC_READONLY
8132 | SEC_IN_MEMORY | SEC_LINKER_CREATED);
8133 if ((sec->flags & SEC_ALLOC) != 0
8134 /* BPABI objects never have dynamic
8135 relocations mapped. */
8136 && !htab->symbian_p)
8137 flags |= SEC_ALLOC | SEC_LOAD;
8138 sreloc = bfd_make_section_with_flags (dynobj,
8139 name,
8140 flags);
8141 if (sreloc == NULL
8142 || ! bfd_set_section_alignment (dynobj, sreloc, 2))
8143 return FALSE;
8144 }
8145
8146 elf_section_data (sec)->sreloc = sreloc;
8147 }
8148
8149 /* If this is a global symbol, we count the number of
8150 relocations we need for this symbol. */
8151 if (h != NULL)
8152 {
8153 head = &((struct elf32_arm_link_hash_entry *) h)->relocs_copied;
8154 }
8155 else
8156 {
8157 /* Track dynamic relocs needed for local syms too.
8158 We really need local syms available to do this
8159 easily. Oh well. */
8160
8161 asection *s;
8162 void *vpp;
8163
8164 s = bfd_section_from_r_symndx (abfd, &htab->sym_sec,
8165 sec, r_symndx);
8166 if (s == NULL)
8167 return FALSE;
8168
8169 vpp = &elf_section_data (s)->local_dynrel;
8170 head = (struct elf32_arm_relocs_copied **) vpp;
8171 }
8172
8173 p = *head;
8174 if (p == NULL || p->section != sec)
8175 {
8176 bfd_size_type amt = sizeof *p;
8177
8178 p = bfd_alloc (htab->root.dynobj, amt);
8179 if (p == NULL)
8180 return FALSE;
8181 p->next = *head;
8182 *head = p;
8183 p->section = sec;
8184 p->count = 0;
8185 p->pc_count = 0;
8186 }
8187
8188 if (r_type == R_ARM_REL32 || r_type == R_ARM_REL32_NOI)
8189 p->pc_count += 1;
8190 p->count += 1;
8191 }
8192 break;
8193
8194 /* This relocation describes the C++ object vtable hierarchy.
8195 Reconstruct it for later use during GC. */
8196 case R_ARM_GNU_VTINHERIT:
8197 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
8198 return FALSE;
8199 break;
8200
8201 /* This relocation describes which C++ vtable entries are actually
8202 used. Record for later use during GC. */
8203 case R_ARM_GNU_VTENTRY:
8204 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
8205 return FALSE;
8206 break;
8207 }
8208 }
8209
8210 return TRUE;
8211 }
8212
8213 /* Unwinding tables are not referenced directly. This pass marks them as
8214 required if the corresponding code section is marked. */
8215
8216 static bfd_boolean
8217 elf32_arm_gc_mark_extra_sections(struct bfd_link_info *info,
8218 elf_gc_mark_hook_fn gc_mark_hook)
8219 {
8220 bfd *sub;
8221 Elf_Internal_Shdr **elf_shdrp;
8222 bfd_boolean again;
8223
8224 /* Marking EH data may cause additional code sections to be marked,
8225 requiring multiple passes. */
8226 again = TRUE;
8227 while (again)
8228 {
8229 again = FALSE;
8230 for (sub = info->input_bfds; sub != NULL; sub = sub->link_next)
8231 {
8232 asection *o;
8233
8234 if (bfd_get_flavour (sub) != bfd_target_elf_flavour)
8235 continue;
8236
8237 elf_shdrp = elf_elfsections (sub);
8238 for (o = sub->sections; o != NULL; o = o->next)
8239 {
8240 Elf_Internal_Shdr *hdr;
8241 hdr = &elf_section_data (o)->this_hdr;
8242 if (hdr->sh_type == SHT_ARM_EXIDX && hdr->sh_link
8243 && !o->gc_mark
8244 && elf_shdrp[hdr->sh_link]->bfd_section->gc_mark)
8245 {
8246 again = TRUE;
8247 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
8248 return FALSE;
8249 }
8250 }
8251 }
8252 }
8253
8254 return TRUE;
8255 }
8256
8257 /* Treat mapping symbols as special target symbols. */
8258
8259 static bfd_boolean
8260 elf32_arm_is_target_special_symbol (bfd * abfd ATTRIBUTE_UNUSED, asymbol * sym)
8261 {
8262 return bfd_is_arm_special_symbol_name (sym->name,
8263 BFD_ARM_SPECIAL_SYM_TYPE_ANY);
8264 }
8265
8266 /* This is a copy of elf_find_function() from elf.c except that
8267 ARM mapping symbols are ignored when looking for function names
8268 and STT_ARM_TFUNC is considered to a function type. */
8269
8270 static bfd_boolean
8271 arm_elf_find_function (bfd * abfd ATTRIBUTE_UNUSED,
8272 asection * section,
8273 asymbol ** symbols,
8274 bfd_vma offset,
8275 const char ** filename_ptr,
8276 const char ** functionname_ptr)
8277 {
8278 const char * filename = NULL;
8279 asymbol * func = NULL;
8280 bfd_vma low_func = 0;
8281 asymbol ** p;
8282
8283 for (p = symbols; *p != NULL; p++)
8284 {
8285 elf_symbol_type *q;
8286
8287 q = (elf_symbol_type *) *p;
8288
8289 switch (ELF_ST_TYPE (q->internal_elf_sym.st_info))
8290 {
8291 default:
8292 break;
8293 case STT_FILE:
8294 filename = bfd_asymbol_name (&q->symbol);
8295 break;
8296 case STT_FUNC:
8297 case STT_ARM_TFUNC:
8298 case STT_NOTYPE:
8299 /* Skip mapping symbols. */
8300 if ((q->symbol.flags & BSF_LOCAL)
8301 && bfd_is_arm_special_symbol_name (q->symbol.name,
8302 BFD_ARM_SPECIAL_SYM_TYPE_ANY))
8303 continue;
8304 /* Fall through. */
8305 if (bfd_get_section (&q->symbol) == section
8306 && q->symbol.value >= low_func
8307 && q->symbol.value <= offset)
8308 {
8309 func = (asymbol *) q;
8310 low_func = q->symbol.value;
8311 }
8312 break;
8313 }
8314 }
8315
8316 if (func == NULL)
8317 return FALSE;
8318
8319 if (filename_ptr)
8320 *filename_ptr = filename;
8321 if (functionname_ptr)
8322 *functionname_ptr = bfd_asymbol_name (func);
8323
8324 return TRUE;
8325 }
8326
8327
8328 /* Find the nearest line to a particular section and offset, for error
8329 reporting. This code is a duplicate of the code in elf.c, except
8330 that it uses arm_elf_find_function. */
8331
8332 static bfd_boolean
8333 elf32_arm_find_nearest_line (bfd * abfd,
8334 asection * section,
8335 asymbol ** symbols,
8336 bfd_vma offset,
8337 const char ** filename_ptr,
8338 const char ** functionname_ptr,
8339 unsigned int * line_ptr)
8340 {
8341 bfd_boolean found = FALSE;
8342
8343 /* We skip _bfd_dwarf1_find_nearest_line since no known ARM toolchain uses it. */
8344
8345 if (_bfd_dwarf2_find_nearest_line (abfd, section, symbols, offset,
8346 filename_ptr, functionname_ptr,
8347 line_ptr, 0,
8348 & elf_tdata (abfd)->dwarf2_find_line_info))
8349 {
8350 if (!*functionname_ptr)
8351 arm_elf_find_function (abfd, section, symbols, offset,
8352 *filename_ptr ? NULL : filename_ptr,
8353 functionname_ptr);
8354
8355 return TRUE;
8356 }
8357
8358 if (! _bfd_stab_section_find_nearest_line (abfd, symbols, section, offset,
8359 & found, filename_ptr,
8360 functionname_ptr, line_ptr,
8361 & elf_tdata (abfd)->line_info))
8362 return FALSE;
8363
8364 if (found && (*functionname_ptr || *line_ptr))
8365 return TRUE;
8366
8367 if (symbols == NULL)
8368 return FALSE;
8369
8370 if (! arm_elf_find_function (abfd, section, symbols, offset,
8371 filename_ptr, functionname_ptr))
8372 return FALSE;
8373
8374 *line_ptr = 0;
8375 return TRUE;
8376 }
8377
8378 static bfd_boolean
8379 elf32_arm_find_inliner_info (bfd * abfd,
8380 const char ** filename_ptr,
8381 const char ** functionname_ptr,
8382 unsigned int * line_ptr)
8383 {
8384 bfd_boolean found;
8385 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
8386 functionname_ptr, line_ptr,
8387 & elf_tdata (abfd)->dwarf2_find_line_info);
8388 return found;
8389 }
8390
8391 /* Adjust a symbol defined by a dynamic object and referenced by a
8392 regular object. The current definition is in some section of the
8393 dynamic object, but we're not including those sections. We have to
8394 change the definition to something the rest of the link can
8395 understand. */
8396
8397 static bfd_boolean
8398 elf32_arm_adjust_dynamic_symbol (struct bfd_link_info * info,
8399 struct elf_link_hash_entry * h)
8400 {
8401 bfd * dynobj;
8402 asection * s;
8403 struct elf32_arm_link_hash_entry * eh;
8404 struct elf32_arm_link_hash_table *globals;
8405
8406 globals = elf32_arm_hash_table (info);
8407 dynobj = elf_hash_table (info)->dynobj;
8408
8409 /* Make sure we know what is going on here. */
8410 BFD_ASSERT (dynobj != NULL
8411 && (h->needs_plt
8412 || h->u.weakdef != NULL
8413 || (h->def_dynamic
8414 && h->ref_regular
8415 && !h->def_regular)));
8416
8417 eh = (struct elf32_arm_link_hash_entry *) h;
8418
8419 /* If this is a function, put it in the procedure linkage table. We
8420 will fill in the contents of the procedure linkage table later,
8421 when we know the address of the .got section. */
8422 if (h->type == STT_FUNC || h->type == STT_ARM_TFUNC
8423 || h->needs_plt)
8424 {
8425 if (h->plt.refcount <= 0
8426 || SYMBOL_CALLS_LOCAL (info, h)
8427 || (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
8428 && h->root.type == bfd_link_hash_undefweak))
8429 {
8430 /* This case can occur if we saw a PLT32 reloc in an input
8431 file, but the symbol was never referred to by a dynamic
8432 object, or if all references were garbage collected. In
8433 such a case, we don't actually need to build a procedure
8434 linkage table, and we can just do a PC24 reloc instead. */
8435 h->plt.offset = (bfd_vma) -1;
8436 eh->plt_thumb_refcount = 0;
8437 h->needs_plt = 0;
8438 }
8439
8440 return TRUE;
8441 }
8442 else
8443 {
8444 /* It's possible that we incorrectly decided a .plt reloc was
8445 needed for an R_ARM_PC24 or similar reloc to a non-function sym
8446 in check_relocs. We can't decide accurately between function
8447 and non-function syms in check-relocs; Objects loaded later in
8448 the link may change h->type. So fix it now. */
8449 h->plt.offset = (bfd_vma) -1;
8450 eh->plt_thumb_refcount = 0;
8451 }
8452
8453 /* If this is a weak symbol, and there is a real definition, the
8454 processor independent code will have arranged for us to see the
8455 real definition first, and we can just use the same value. */
8456 if (h->u.weakdef != NULL)
8457 {
8458 BFD_ASSERT (h->u.weakdef->root.type == bfd_link_hash_defined
8459 || h->u.weakdef->root.type == bfd_link_hash_defweak);
8460 h->root.u.def.section = h->u.weakdef->root.u.def.section;
8461 h->root.u.def.value = h->u.weakdef->root.u.def.value;
8462 return TRUE;
8463 }
8464
8465 /* If there are no non-GOT references, we do not need a copy
8466 relocation. */
8467 if (!h->non_got_ref)
8468 return TRUE;
8469
8470 /* This is a reference to a symbol defined by a dynamic object which
8471 is not a function. */
8472
8473 /* If we are creating a shared library, we must presume that the
8474 only references to the symbol are via the global offset table.
8475 For such cases we need not do anything here; the relocations will
8476 be handled correctly by relocate_section. Relocatable executables
8477 can reference data in shared objects directly, so we don't need to
8478 do anything here. */
8479 if (info->shared || globals->root.is_relocatable_executable)
8480 return TRUE;
8481
8482 if (h->size == 0)
8483 {
8484 (*_bfd_error_handler) (_("dynamic variable `%s' is zero size"),
8485 h->root.root.string);
8486 return TRUE;
8487 }
8488
8489 /* We must allocate the symbol in our .dynbss section, which will
8490 become part of the .bss section of the executable. There will be
8491 an entry for this symbol in the .dynsym section. The dynamic
8492 object will contain position independent code, so all references
8493 from the dynamic object to this symbol will go through the global
8494 offset table. The dynamic linker will use the .dynsym entry to
8495 determine the address it must put in the global offset table, so
8496 both the dynamic object and the regular object will refer to the
8497 same memory location for the variable. */
8498 s = bfd_get_section_by_name (dynobj, ".dynbss");
8499 BFD_ASSERT (s != NULL);
8500
8501 /* We must generate a R_ARM_COPY reloc to tell the dynamic linker to
8502 copy the initial value out of the dynamic object and into the
8503 runtime process image. We need to remember the offset into the
8504 .rel(a).bss section we are going to use. */
8505 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
8506 {
8507 asection *srel;
8508
8509 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (globals, ".bss"));
8510 BFD_ASSERT (srel != NULL);
8511 srel->size += RELOC_SIZE (globals);
8512 h->needs_copy = 1;
8513 }
8514
8515 return _bfd_elf_adjust_dynamic_copy (h, s);
8516 }
8517
8518 /* Allocate space in .plt, .got and associated reloc sections for
8519 dynamic relocs. */
8520
8521 static bfd_boolean
8522 allocate_dynrelocs (struct elf_link_hash_entry *h, void * inf)
8523 {
8524 struct bfd_link_info *info;
8525 struct elf32_arm_link_hash_table *htab;
8526 struct elf32_arm_link_hash_entry *eh;
8527 struct elf32_arm_relocs_copied *p;
8528
8529 eh = (struct elf32_arm_link_hash_entry *) h;
8530
8531 if (h->root.type == bfd_link_hash_indirect)
8532 return TRUE;
8533
8534 if (h->root.type == bfd_link_hash_warning)
8535 /* When warning symbols are created, they **replace** the "real"
8536 entry in the hash table, thus we never get to see the real
8537 symbol in a hash traversal. So look at it now. */
8538 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8539
8540 info = (struct bfd_link_info *) inf;
8541 htab = elf32_arm_hash_table (info);
8542
8543 if (htab->root.dynamic_sections_created
8544 && h->plt.refcount > 0)
8545 {
8546 /* Make sure this symbol is output as a dynamic symbol.
8547 Undefined weak syms won't yet be marked as dynamic. */
8548 if (h->dynindx == -1
8549 && !h->forced_local)
8550 {
8551 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8552 return FALSE;
8553 }
8554
8555 if (info->shared
8556 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (1, 0, h))
8557 {
8558 asection *s = htab->splt;
8559
8560 /* If this is the first .plt entry, make room for the special
8561 first entry. */
8562 if (s->size == 0)
8563 s->size += htab->plt_header_size;
8564
8565 h->plt.offset = s->size;
8566
8567 /* If we will insert a Thumb trampoline before this PLT, leave room
8568 for it. */
8569 if (!htab->use_blx && eh->plt_thumb_refcount > 0)
8570 {
8571 h->plt.offset += PLT_THUMB_STUB_SIZE;
8572 s->size += PLT_THUMB_STUB_SIZE;
8573 }
8574
8575 /* If this symbol is not defined in a regular file, and we are
8576 not generating a shared library, then set the symbol to this
8577 location in the .plt. This is required to make function
8578 pointers compare as equal between the normal executable and
8579 the shared library. */
8580 if (! info->shared
8581 && !h->def_regular)
8582 {
8583 h->root.u.def.section = s;
8584 h->root.u.def.value = h->plt.offset;
8585
8586 /* Make sure the function is not marked as Thumb, in case
8587 it is the target of an ABS32 relocation, which will
8588 point to the PLT entry. */
8589 if (ELF_ST_TYPE (h->type) == STT_ARM_TFUNC)
8590 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
8591 }
8592
8593 /* Make room for this entry. */
8594 s->size += htab->plt_entry_size;
8595
8596 if (!htab->symbian_p)
8597 {
8598 /* We also need to make an entry in the .got.plt section, which
8599 will be placed in the .got section by the linker script. */
8600 eh->plt_got_offset = htab->sgotplt->size;
8601 htab->sgotplt->size += 4;
8602 }
8603
8604 /* We also need to make an entry in the .rel(a).plt section. */
8605 htab->srelplt->size += RELOC_SIZE (htab);
8606
8607 /* VxWorks executables have a second set of relocations for
8608 each PLT entry. They go in a separate relocation section,
8609 which is processed by the kernel loader. */
8610 if (htab->vxworks_p && !info->shared)
8611 {
8612 /* There is a relocation for the initial PLT entry:
8613 an R_ARM_32 relocation for _GLOBAL_OFFSET_TABLE_. */
8614 if (h->plt.offset == htab->plt_header_size)
8615 htab->srelplt2->size += RELOC_SIZE (htab);
8616
8617 /* There are two extra relocations for each subsequent
8618 PLT entry: an R_ARM_32 relocation for the GOT entry,
8619 and an R_ARM_32 relocation for the PLT entry. */
8620 htab->srelplt2->size += RELOC_SIZE (htab) * 2;
8621 }
8622 }
8623 else
8624 {
8625 h->plt.offset = (bfd_vma) -1;
8626 h->needs_plt = 0;
8627 }
8628 }
8629 else
8630 {
8631 h->plt.offset = (bfd_vma) -1;
8632 h->needs_plt = 0;
8633 }
8634
8635 if (h->got.refcount > 0)
8636 {
8637 asection *s;
8638 bfd_boolean dyn;
8639 int tls_type = elf32_arm_hash_entry (h)->tls_type;
8640 int indx;
8641
8642 /* Make sure this symbol is output as a dynamic symbol.
8643 Undefined weak syms won't yet be marked as dynamic. */
8644 if (h->dynindx == -1
8645 && !h->forced_local)
8646 {
8647 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8648 return FALSE;
8649 }
8650
8651 if (!htab->symbian_p)
8652 {
8653 s = htab->sgot;
8654 h->got.offset = s->size;
8655
8656 if (tls_type == GOT_UNKNOWN)
8657 abort ();
8658
8659 if (tls_type == GOT_NORMAL)
8660 /* Non-TLS symbols need one GOT slot. */
8661 s->size += 4;
8662 else
8663 {
8664 if (tls_type & GOT_TLS_GD)
8665 /* R_ARM_TLS_GD32 needs 2 consecutive GOT slots. */
8666 s->size += 8;
8667 if (tls_type & GOT_TLS_IE)
8668 /* R_ARM_TLS_IE32 needs one GOT slot. */
8669 s->size += 4;
8670 }
8671
8672 dyn = htab->root.dynamic_sections_created;
8673
8674 indx = 0;
8675 if (WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, info->shared, h)
8676 && (!info->shared
8677 || !SYMBOL_REFERENCES_LOCAL (info, h)))
8678 indx = h->dynindx;
8679
8680 if (tls_type != GOT_NORMAL
8681 && (info->shared || indx != 0)
8682 && (ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8683 || h->root.type != bfd_link_hash_undefweak))
8684 {
8685 if (tls_type & GOT_TLS_IE)
8686 htab->srelgot->size += RELOC_SIZE (htab);
8687
8688 if (tls_type & GOT_TLS_GD)
8689 htab->srelgot->size += RELOC_SIZE (htab);
8690
8691 if ((tls_type & GOT_TLS_GD) && indx != 0)
8692 htab->srelgot->size += RELOC_SIZE (htab);
8693 }
8694 else if ((ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
8695 || h->root.type != bfd_link_hash_undefweak)
8696 && (info->shared
8697 || WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, 0, h)))
8698 htab->srelgot->size += RELOC_SIZE (htab);
8699 }
8700 }
8701 else
8702 h->got.offset = (bfd_vma) -1;
8703
8704 /* Allocate stubs for exported Thumb functions on v4t. */
8705 if (!htab->use_blx && h->dynindx != -1
8706 && h->def_regular
8707 && ELF_ST_TYPE (h->type) == STT_ARM_TFUNC
8708 && ELF_ST_VISIBILITY (h->other) == STV_DEFAULT)
8709 {
8710 struct elf_link_hash_entry * th;
8711 struct bfd_link_hash_entry * bh;
8712 struct elf_link_hash_entry * myh;
8713 char name[1024];
8714 asection *s;
8715 bh = NULL;
8716 /* Create a new symbol to regist the real location of the function. */
8717 s = h->root.u.def.section;
8718 sprintf(name, "__real_%s", h->root.root.string);
8719 _bfd_generic_link_add_one_symbol (info, s->owner,
8720 name, BSF_GLOBAL, s,
8721 h->root.u.def.value,
8722 NULL, TRUE, FALSE, &bh);
8723
8724 myh = (struct elf_link_hash_entry *) bh;
8725 myh->type = ELF_ST_INFO (STB_LOCAL, STT_ARM_TFUNC);
8726 myh->forced_local = 1;
8727 eh->export_glue = myh;
8728 th = record_arm_to_thumb_glue (info, h);
8729 /* Point the symbol at the stub. */
8730 h->type = ELF_ST_INFO (ELF_ST_BIND (h->type), STT_FUNC);
8731 h->root.u.def.section = th->root.u.def.section;
8732 h->root.u.def.value = th->root.u.def.value & ~1;
8733 }
8734
8735 if (eh->relocs_copied == NULL)
8736 return TRUE;
8737
8738 /* In the shared -Bsymbolic case, discard space allocated for
8739 dynamic pc-relative relocs against symbols which turn out to be
8740 defined in regular objects. For the normal shared case, discard
8741 space for pc-relative relocs that have become local due to symbol
8742 visibility changes. */
8743
8744 if (info->shared || htab->root.is_relocatable_executable)
8745 {
8746 /* The only relocs that use pc_count are R_ARM_REL32 and
8747 R_ARM_REL32_NOI, which will appear on something like
8748 ".long foo - .". We want calls to protected symbols to resolve
8749 directly to the function rather than going via the plt. If people
8750 want function pointer comparisons to work as expected then they
8751 should avoid writing assembly like ".long foo - .". */
8752 if (SYMBOL_CALLS_LOCAL (info, h))
8753 {
8754 struct elf32_arm_relocs_copied **pp;
8755
8756 for (pp = &eh->relocs_copied; (p = *pp) != NULL; )
8757 {
8758 p->count -= p->pc_count;
8759 p->pc_count = 0;
8760 if (p->count == 0)
8761 *pp = p->next;
8762 else
8763 pp = &p->next;
8764 }
8765 }
8766
8767 /* Also discard relocs on undefined weak syms with non-default
8768 visibility. */
8769 if (eh->relocs_copied != NULL
8770 && h->root.type == bfd_link_hash_undefweak)
8771 {
8772 if (ELF_ST_VISIBILITY (h->other) != STV_DEFAULT)
8773 eh->relocs_copied = NULL;
8774
8775 /* Make sure undefined weak symbols are output as a dynamic
8776 symbol in PIEs. */
8777 else if (h->dynindx == -1
8778 && !h->forced_local)
8779 {
8780 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8781 return FALSE;
8782 }
8783 }
8784
8785 else if (htab->root.is_relocatable_executable && h->dynindx == -1
8786 && h->root.type == bfd_link_hash_new)
8787 {
8788 /* Output absolute symbols so that we can create relocations
8789 against them. For normal symbols we output a relocation
8790 against the section that contains them. */
8791 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8792 return FALSE;
8793 }
8794
8795 }
8796 else
8797 {
8798 /* For the non-shared case, discard space for relocs against
8799 symbols which turn out to need copy relocs or are not
8800 dynamic. */
8801
8802 if (!h->non_got_ref
8803 && ((h->def_dynamic
8804 && !h->def_regular)
8805 || (htab->root.dynamic_sections_created
8806 && (h->root.type == bfd_link_hash_undefweak
8807 || h->root.type == bfd_link_hash_undefined))))
8808 {
8809 /* Make sure this symbol is output as a dynamic symbol.
8810 Undefined weak syms won't yet be marked as dynamic. */
8811 if (h->dynindx == -1
8812 && !h->forced_local)
8813 {
8814 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8815 return FALSE;
8816 }
8817
8818 /* If that succeeded, we know we'll be keeping all the
8819 relocs. */
8820 if (h->dynindx != -1)
8821 goto keep;
8822 }
8823
8824 eh->relocs_copied = NULL;
8825
8826 keep: ;
8827 }
8828
8829 /* Finally, allocate space. */
8830 for (p = eh->relocs_copied; p != NULL; p = p->next)
8831 {
8832 asection *sreloc = elf_section_data (p->section)->sreloc;
8833 sreloc->size += p->count * RELOC_SIZE (htab);
8834 }
8835
8836 return TRUE;
8837 }
8838
8839 /* Find any dynamic relocs that apply to read-only sections. */
8840
8841 static bfd_boolean
8842 elf32_arm_readonly_dynrelocs (struct elf_link_hash_entry *h, PTR inf)
8843 {
8844 struct elf32_arm_link_hash_entry *eh;
8845 struct elf32_arm_relocs_copied *p;
8846
8847 if (h->root.type == bfd_link_hash_warning)
8848 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8849
8850 eh = (struct elf32_arm_link_hash_entry *) h;
8851 for (p = eh->relocs_copied; p != NULL; p = p->next)
8852 {
8853 asection *s = p->section;
8854
8855 if (s != NULL && (s->flags & SEC_READONLY) != 0)
8856 {
8857 struct bfd_link_info *info = (struct bfd_link_info *) inf;
8858
8859 info->flags |= DF_TEXTREL;
8860
8861 /* Not an error, just cut short the traversal. */
8862 return FALSE;
8863 }
8864 }
8865 return TRUE;
8866 }
8867
8868 void
8869 bfd_elf32_arm_set_byteswap_code (struct bfd_link_info *info,
8870 int byteswap_code)
8871 {
8872 struct elf32_arm_link_hash_table *globals;
8873
8874 globals = elf32_arm_hash_table (info);
8875 globals->byteswap_code = byteswap_code;
8876 }
8877
8878 /* Set the sizes of the dynamic sections. */
8879
8880 static bfd_boolean
8881 elf32_arm_size_dynamic_sections (bfd * output_bfd ATTRIBUTE_UNUSED,
8882 struct bfd_link_info * info)
8883 {
8884 bfd * dynobj;
8885 asection * s;
8886 bfd_boolean plt;
8887 bfd_boolean relocs;
8888 bfd *ibfd;
8889 struct elf32_arm_link_hash_table *htab;
8890
8891 htab = elf32_arm_hash_table (info);
8892 dynobj = elf_hash_table (info)->dynobj;
8893 BFD_ASSERT (dynobj != NULL);
8894 check_use_blx (htab);
8895
8896 if (elf_hash_table (info)->dynamic_sections_created)
8897 {
8898 /* Set the contents of the .interp section to the interpreter. */
8899 if (info->executable)
8900 {
8901 s = bfd_get_section_by_name (dynobj, ".interp");
8902 BFD_ASSERT (s != NULL);
8903 s->size = sizeof ELF_DYNAMIC_INTERPRETER;
8904 s->contents = (unsigned char *) ELF_DYNAMIC_INTERPRETER;
8905 }
8906 }
8907
8908 /* Set up .got offsets for local syms, and space for local dynamic
8909 relocs. */
8910 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8911 {
8912 bfd_signed_vma *local_got;
8913 bfd_signed_vma *end_local_got;
8914 char *local_tls_type;
8915 bfd_size_type locsymcount;
8916 Elf_Internal_Shdr *symtab_hdr;
8917 asection *srel;
8918
8919 if (bfd_get_flavour (ibfd) != bfd_target_elf_flavour)
8920 continue;
8921
8922 for (s = ibfd->sections; s != NULL; s = s->next)
8923 {
8924 struct elf32_arm_relocs_copied *p;
8925
8926 for (p = elf_section_data (s)->local_dynrel; p != NULL; p = p->next)
8927 {
8928 if (!bfd_is_abs_section (p->section)
8929 && bfd_is_abs_section (p->section->output_section))
8930 {
8931 /* Input section has been discarded, either because
8932 it is a copy of a linkonce section or due to
8933 linker script /DISCARD/, so we'll be discarding
8934 the relocs too. */
8935 }
8936 else if (p->count != 0)
8937 {
8938 srel = elf_section_data (p->section)->sreloc;
8939 srel->size += p->count * RELOC_SIZE (htab);
8940 if ((p->section->output_section->flags & SEC_READONLY) != 0)
8941 info->flags |= DF_TEXTREL;
8942 }
8943 }
8944 }
8945
8946 local_got = elf_local_got_refcounts (ibfd);
8947 if (!local_got)
8948 continue;
8949
8950 symtab_hdr = &elf_tdata (ibfd)->symtab_hdr;
8951 locsymcount = symtab_hdr->sh_info;
8952 end_local_got = local_got + locsymcount;
8953 local_tls_type = elf32_arm_local_got_tls_type (ibfd);
8954 s = htab->sgot;
8955 srel = htab->srelgot;
8956 for (; local_got < end_local_got; ++local_got, ++local_tls_type)
8957 {
8958 if (*local_got > 0)
8959 {
8960 *local_got = s->size;
8961 if (*local_tls_type & GOT_TLS_GD)
8962 /* TLS_GD relocs need an 8-byte structure in the GOT. */
8963 s->size += 8;
8964 if (*local_tls_type & GOT_TLS_IE)
8965 s->size += 4;
8966 if (*local_tls_type == GOT_NORMAL)
8967 s->size += 4;
8968
8969 if (info->shared || *local_tls_type == GOT_TLS_GD)
8970 srel->size += RELOC_SIZE (htab);
8971 }
8972 else
8973 *local_got = (bfd_vma) -1;
8974 }
8975 }
8976
8977 if (htab->tls_ldm_got.refcount > 0)
8978 {
8979 /* Allocate two GOT entries and one dynamic relocation (if necessary)
8980 for R_ARM_TLS_LDM32 relocations. */
8981 htab->tls_ldm_got.offset = htab->sgot->size;
8982 htab->sgot->size += 8;
8983 if (info->shared)
8984 htab->srelgot->size += RELOC_SIZE (htab);
8985 }
8986 else
8987 htab->tls_ldm_got.offset = -1;
8988
8989 /* Allocate global sym .plt and .got entries, and space for global
8990 sym dynamic relocs. */
8991 elf_link_hash_traverse (& htab->root, allocate_dynrelocs, info);
8992
8993 /* Here we rummage through the found bfds to collect glue information. */
8994 for (ibfd = info->input_bfds; ibfd != NULL; ibfd = ibfd->link_next)
8995 {
8996 /* Initialise mapping tables for code/data. */
8997 bfd_elf32_arm_init_maps (ibfd);
8998
8999 if (!bfd_elf32_arm_process_before_allocation (ibfd, info)
9000 || !bfd_elf32_arm_vfp11_erratum_scan (ibfd, info))
9001 /* xgettext:c-format */
9002 _bfd_error_handler (_("Errors encountered processing file %s"),
9003 ibfd->filename);
9004 }
9005
9006 /* The check_relocs and adjust_dynamic_symbol entry points have
9007 determined the sizes of the various dynamic sections. Allocate
9008 memory for them. */
9009 plt = FALSE;
9010 relocs = FALSE;
9011 for (s = dynobj->sections; s != NULL; s = s->next)
9012 {
9013 const char * name;
9014
9015 if ((s->flags & SEC_LINKER_CREATED) == 0)
9016 continue;
9017
9018 /* It's OK to base decisions on the section name, because none
9019 of the dynobj section names depend upon the input files. */
9020 name = bfd_get_section_name (dynobj, s);
9021
9022 if (strcmp (name, ".plt") == 0)
9023 {
9024 /* Remember whether there is a PLT. */
9025 plt = s->size != 0;
9026 }
9027 else if (CONST_STRNEQ (name, ".rel"))
9028 {
9029 if (s->size != 0)
9030 {
9031 /* Remember whether there are any reloc sections other
9032 than .rel(a).plt and .rela.plt.unloaded. */
9033 if (s != htab->srelplt && s != htab->srelplt2)
9034 relocs = TRUE;
9035
9036 /* We use the reloc_count field as a counter if we need
9037 to copy relocs into the output file. */
9038 s->reloc_count = 0;
9039 }
9040 }
9041 else if (! CONST_STRNEQ (name, ".got")
9042 && strcmp (name, ".dynbss") != 0)
9043 {
9044 /* It's not one of our sections, so don't allocate space. */
9045 continue;
9046 }
9047
9048 if (s->size == 0)
9049 {
9050 /* If we don't need this section, strip it from the
9051 output file. This is mostly to handle .rel(a).bss and
9052 .rel(a).plt. We must create both sections in
9053 create_dynamic_sections, because they must be created
9054 before the linker maps input sections to output
9055 sections. The linker does that before
9056 adjust_dynamic_symbol is called, and it is that
9057 function which decides whether anything needs to go
9058 into these sections. */
9059 s->flags |= SEC_EXCLUDE;
9060 continue;
9061 }
9062
9063 if ((s->flags & SEC_HAS_CONTENTS) == 0)
9064 continue;
9065
9066 /* Allocate memory for the section contents. */
9067 s->contents = (bfd_byte *) bfd_zalloc (dynobj, s->size);
9068 if (s->contents == NULL)
9069 return FALSE;
9070 }
9071
9072 if (elf_hash_table (info)->dynamic_sections_created)
9073 {
9074 /* Add some entries to the .dynamic section. We fill in the
9075 values later, in elf32_arm_finish_dynamic_sections, but we
9076 must add the entries now so that we get the correct size for
9077 the .dynamic section. The DT_DEBUG entry is filled in by the
9078 dynamic linker and used by the debugger. */
9079 #define add_dynamic_entry(TAG, VAL) \
9080 _bfd_elf_add_dynamic_entry (info, TAG, VAL)
9081
9082 if (info->executable)
9083 {
9084 if (!add_dynamic_entry (DT_DEBUG, 0))
9085 return FALSE;
9086 }
9087
9088 if (plt)
9089 {
9090 if ( !add_dynamic_entry (DT_PLTGOT, 0)
9091 || !add_dynamic_entry (DT_PLTRELSZ, 0)
9092 || !add_dynamic_entry (DT_PLTREL,
9093 htab->use_rel ? DT_REL : DT_RELA)
9094 || !add_dynamic_entry (DT_JMPREL, 0))
9095 return FALSE;
9096 }
9097
9098 if (relocs)
9099 {
9100 if (htab->use_rel)
9101 {
9102 if (!add_dynamic_entry (DT_REL, 0)
9103 || !add_dynamic_entry (DT_RELSZ, 0)
9104 || !add_dynamic_entry (DT_RELENT, RELOC_SIZE (htab)))
9105 return FALSE;
9106 }
9107 else
9108 {
9109 if (!add_dynamic_entry (DT_RELA, 0)
9110 || !add_dynamic_entry (DT_RELASZ, 0)
9111 || !add_dynamic_entry (DT_RELAENT, RELOC_SIZE (htab)))
9112 return FALSE;
9113 }
9114 }
9115
9116 /* If any dynamic relocs apply to a read-only section,
9117 then we need a DT_TEXTREL entry. */
9118 if ((info->flags & DF_TEXTREL) == 0)
9119 elf_link_hash_traverse (&htab->root, elf32_arm_readonly_dynrelocs,
9120 (PTR) info);
9121
9122 if ((info->flags & DF_TEXTREL) != 0)
9123 {
9124 if (!add_dynamic_entry (DT_TEXTREL, 0))
9125 return FALSE;
9126 }
9127 }
9128 #undef add_dynamic_entry
9129
9130 return TRUE;
9131 }
9132
9133 /* Finish up dynamic symbol handling. We set the contents of various
9134 dynamic sections here. */
9135
9136 static bfd_boolean
9137 elf32_arm_finish_dynamic_symbol (bfd * output_bfd, struct bfd_link_info * info,
9138 struct elf_link_hash_entry * h, Elf_Internal_Sym * sym)
9139 {
9140 bfd * dynobj;
9141 struct elf32_arm_link_hash_table *htab;
9142 struct elf32_arm_link_hash_entry *eh;
9143
9144 dynobj = elf_hash_table (info)->dynobj;
9145 htab = elf32_arm_hash_table (info);
9146 eh = (struct elf32_arm_link_hash_entry *) h;
9147
9148 if (h->plt.offset != (bfd_vma) -1)
9149 {
9150 asection * splt;
9151 asection * srel;
9152 bfd_byte *loc;
9153 bfd_vma plt_index;
9154 Elf_Internal_Rela rel;
9155
9156 /* This symbol has an entry in the procedure linkage table. Set
9157 it up. */
9158
9159 BFD_ASSERT (h->dynindx != -1);
9160
9161 splt = bfd_get_section_by_name (dynobj, ".plt");
9162 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".plt"));
9163 BFD_ASSERT (splt != NULL && srel != NULL);
9164
9165 /* Fill in the entry in the procedure linkage table. */
9166 if (htab->symbian_p)
9167 {
9168 put_arm_insn (htab, output_bfd,
9169 elf32_arm_symbian_plt_entry[0],
9170 splt->contents + h->plt.offset);
9171 bfd_put_32 (output_bfd,
9172 elf32_arm_symbian_plt_entry[1],
9173 splt->contents + h->plt.offset + 4);
9174
9175 /* Fill in the entry in the .rel.plt section. */
9176 rel.r_offset = (splt->output_section->vma
9177 + splt->output_offset
9178 + h->plt.offset + 4);
9179 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9180
9181 /* Get the index in the procedure linkage table which
9182 corresponds to this symbol. This is the index of this symbol
9183 in all the symbols for which we are making plt entries. The
9184 first entry in the procedure linkage table is reserved. */
9185 plt_index = ((h->plt.offset - htab->plt_header_size)
9186 / htab->plt_entry_size);
9187 }
9188 else
9189 {
9190 bfd_vma got_offset, got_address, plt_address;
9191 bfd_vma got_displacement;
9192 asection * sgot;
9193 bfd_byte * ptr;
9194
9195 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
9196 BFD_ASSERT (sgot != NULL);
9197
9198 /* Get the offset into the .got.plt table of the entry that
9199 corresponds to this function. */
9200 got_offset = eh->plt_got_offset;
9201
9202 /* Get the index in the procedure linkage table which
9203 corresponds to this symbol. This is the index of this symbol
9204 in all the symbols for which we are making plt entries. The
9205 first three entries in .got.plt are reserved; after that
9206 symbols appear in the same order as in .plt. */
9207 plt_index = (got_offset - 12) / 4;
9208
9209 /* Calculate the address of the GOT entry. */
9210 got_address = (sgot->output_section->vma
9211 + sgot->output_offset
9212 + got_offset);
9213
9214 /* ...and the address of the PLT entry. */
9215 plt_address = (splt->output_section->vma
9216 + splt->output_offset
9217 + h->plt.offset);
9218
9219 ptr = htab->splt->contents + h->plt.offset;
9220 if (htab->vxworks_p && info->shared)
9221 {
9222 unsigned int i;
9223 bfd_vma val;
9224
9225 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9226 {
9227 val = elf32_arm_vxworks_shared_plt_entry[i];
9228 if (i == 2)
9229 val |= got_address - sgot->output_section->vma;
9230 if (i == 5)
9231 val |= plt_index * RELOC_SIZE (htab);
9232 if (i == 2 || i == 5)
9233 bfd_put_32 (output_bfd, val, ptr);
9234 else
9235 put_arm_insn (htab, output_bfd, val, ptr);
9236 }
9237 }
9238 else if (htab->vxworks_p)
9239 {
9240 unsigned int i;
9241 bfd_vma val;
9242
9243 for (i = 0; i != htab->plt_entry_size / 4; i++, ptr += 4)
9244 {
9245 val = elf32_arm_vxworks_exec_plt_entry[i];
9246 if (i == 2)
9247 val |= got_address;
9248 if (i == 4)
9249 val |= 0xffffff & -((h->plt.offset + i * 4 + 8) >> 2);
9250 if (i == 5)
9251 val |= plt_index * RELOC_SIZE (htab);
9252 if (i == 2 || i == 5)
9253 bfd_put_32 (output_bfd, val, ptr);
9254 else
9255 put_arm_insn (htab, output_bfd, val, ptr);
9256 }
9257
9258 loc = (htab->srelplt2->contents
9259 + (plt_index * 2 + 1) * RELOC_SIZE (htab));
9260
9261 /* Create the .rela.plt.unloaded R_ARM_ABS32 relocation
9262 referencing the GOT for this PLT entry. */
9263 rel.r_offset = plt_address + 8;
9264 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9265 rel.r_addend = got_offset;
9266 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9267 loc += RELOC_SIZE (htab);
9268
9269 /* Create the R_ARM_ABS32 relocation referencing the
9270 beginning of the PLT for this GOT entry. */
9271 rel.r_offset = got_address;
9272 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9273 rel.r_addend = 0;
9274 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9275 }
9276 else
9277 {
9278 /* Calculate the displacement between the PLT slot and the
9279 entry in the GOT. The eight-byte offset accounts for the
9280 value produced by adding to pc in the first instruction
9281 of the PLT stub. */
9282 got_displacement = got_address - (plt_address + 8);
9283
9284 BFD_ASSERT ((got_displacement & 0xf0000000) == 0);
9285
9286 if (!htab->use_blx && eh->plt_thumb_refcount > 0)
9287 {
9288 put_thumb_insn (htab, output_bfd,
9289 elf32_arm_plt_thumb_stub[0], ptr - 4);
9290 put_thumb_insn (htab, output_bfd,
9291 elf32_arm_plt_thumb_stub[1], ptr - 2);
9292 }
9293
9294 put_arm_insn (htab, output_bfd,
9295 elf32_arm_plt_entry[0]
9296 | ((got_displacement & 0x0ff00000) >> 20),
9297 ptr + 0);
9298 put_arm_insn (htab, output_bfd,
9299 elf32_arm_plt_entry[1]
9300 | ((got_displacement & 0x000ff000) >> 12),
9301 ptr+ 4);
9302 put_arm_insn (htab, output_bfd,
9303 elf32_arm_plt_entry[2]
9304 | (got_displacement & 0x00000fff),
9305 ptr + 8);
9306 #ifdef FOUR_WORD_PLT
9307 bfd_put_32 (output_bfd, elf32_arm_plt_entry[3], ptr + 12);
9308 #endif
9309 }
9310
9311 /* Fill in the entry in the global offset table. */
9312 bfd_put_32 (output_bfd,
9313 (splt->output_section->vma
9314 + splt->output_offset),
9315 sgot->contents + got_offset);
9316
9317 /* Fill in the entry in the .rel(a).plt section. */
9318 rel.r_addend = 0;
9319 rel.r_offset = got_address;
9320 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_JUMP_SLOT);
9321 }
9322
9323 loc = srel->contents + plt_index * RELOC_SIZE (htab);
9324 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9325
9326 if (!h->def_regular)
9327 {
9328 /* Mark the symbol as undefined, rather than as defined in
9329 the .plt section. Leave the value alone. */
9330 sym->st_shndx = SHN_UNDEF;
9331 /* If the symbol is weak, we do need to clear the value.
9332 Otherwise, the PLT entry would provide a definition for
9333 the symbol even if the symbol wasn't defined anywhere,
9334 and so the symbol would never be NULL. */
9335 if (!h->ref_regular_nonweak)
9336 sym->st_value = 0;
9337 }
9338 }
9339
9340 if (h->got.offset != (bfd_vma) -1
9341 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_GD) == 0
9342 && (elf32_arm_hash_entry (h)->tls_type & GOT_TLS_IE) == 0)
9343 {
9344 asection * sgot;
9345 asection * srel;
9346 Elf_Internal_Rela rel;
9347 bfd_byte *loc;
9348 bfd_vma offset;
9349
9350 /* This symbol has an entry in the global offset table. Set it
9351 up. */
9352 sgot = bfd_get_section_by_name (dynobj, ".got");
9353 srel = bfd_get_section_by_name (dynobj, RELOC_SECTION (htab, ".got"));
9354 BFD_ASSERT (sgot != NULL && srel != NULL);
9355
9356 offset = (h->got.offset & ~(bfd_vma) 1);
9357 rel.r_addend = 0;
9358 rel.r_offset = (sgot->output_section->vma
9359 + sgot->output_offset
9360 + offset);
9361
9362 /* If this is a static link, or it is a -Bsymbolic link and the
9363 symbol is defined locally or was forced to be local because
9364 of a version file, we just want to emit a RELATIVE reloc.
9365 The entry in the global offset table will already have been
9366 initialized in the relocate_section function. */
9367 if (info->shared
9368 && SYMBOL_REFERENCES_LOCAL (info, h))
9369 {
9370 BFD_ASSERT((h->got.offset & 1) != 0);
9371 rel.r_info = ELF32_R_INFO (0, R_ARM_RELATIVE);
9372 if (!htab->use_rel)
9373 {
9374 rel.r_addend = bfd_get_32 (output_bfd, sgot->contents + offset);
9375 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
9376 }
9377 }
9378 else
9379 {
9380 BFD_ASSERT((h->got.offset & 1) == 0);
9381 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + offset);
9382 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_GLOB_DAT);
9383 }
9384
9385 loc = srel->contents + srel->reloc_count++ * RELOC_SIZE (htab);
9386 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9387 }
9388
9389 if (h->needs_copy)
9390 {
9391 asection * s;
9392 Elf_Internal_Rela rel;
9393 bfd_byte *loc;
9394
9395 /* This symbol needs a copy reloc. Set it up. */
9396 BFD_ASSERT (h->dynindx != -1
9397 && (h->root.type == bfd_link_hash_defined
9398 || h->root.type == bfd_link_hash_defweak));
9399
9400 s = bfd_get_section_by_name (h->root.u.def.section->owner,
9401 RELOC_SECTION (htab, ".bss"));
9402 BFD_ASSERT (s != NULL);
9403
9404 rel.r_addend = 0;
9405 rel.r_offset = (h->root.u.def.value
9406 + h->root.u.def.section->output_section->vma
9407 + h->root.u.def.section->output_offset);
9408 rel.r_info = ELF32_R_INFO (h->dynindx, R_ARM_COPY);
9409 loc = s->contents + s->reloc_count++ * RELOC_SIZE (htab);
9410 SWAP_RELOC_OUT (htab) (output_bfd, &rel, loc);
9411 }
9412
9413 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. On VxWorks,
9414 the _GLOBAL_OFFSET_TABLE_ symbol is not absolute: it is relative
9415 to the ".got" section. */
9416 if (strcmp (h->root.root.string, "_DYNAMIC") == 0
9417 || (!htab->vxworks_p && h == htab->root.hgot))
9418 sym->st_shndx = SHN_ABS;
9419
9420 return TRUE;
9421 }
9422
9423 /* Finish up the dynamic sections. */
9424
9425 static bfd_boolean
9426 elf32_arm_finish_dynamic_sections (bfd * output_bfd, struct bfd_link_info * info)
9427 {
9428 bfd * dynobj;
9429 asection * sgot;
9430 asection * sdyn;
9431
9432 dynobj = elf_hash_table (info)->dynobj;
9433
9434 sgot = bfd_get_section_by_name (dynobj, ".got.plt");
9435 BFD_ASSERT (elf32_arm_hash_table (info)->symbian_p || sgot != NULL);
9436 sdyn = bfd_get_section_by_name (dynobj, ".dynamic");
9437
9438 if (elf_hash_table (info)->dynamic_sections_created)
9439 {
9440 asection *splt;
9441 Elf32_External_Dyn *dyncon, *dynconend;
9442 struct elf32_arm_link_hash_table *htab;
9443
9444 htab = elf32_arm_hash_table (info);
9445 splt = bfd_get_section_by_name (dynobj, ".plt");
9446 BFD_ASSERT (splt != NULL && sdyn != NULL);
9447
9448 dyncon = (Elf32_External_Dyn *) sdyn->contents;
9449 dynconend = (Elf32_External_Dyn *) (sdyn->contents + sdyn->size);
9450
9451 for (; dyncon < dynconend; dyncon++)
9452 {
9453 Elf_Internal_Dyn dyn;
9454 const char * name;
9455 asection * s;
9456
9457 bfd_elf32_swap_dyn_in (dynobj, dyncon, &dyn);
9458
9459 switch (dyn.d_tag)
9460 {
9461 unsigned int type;
9462
9463 default:
9464 break;
9465
9466 case DT_HASH:
9467 name = ".hash";
9468 goto get_vma_if_bpabi;
9469 case DT_STRTAB:
9470 name = ".dynstr";
9471 goto get_vma_if_bpabi;
9472 case DT_SYMTAB:
9473 name = ".dynsym";
9474 goto get_vma_if_bpabi;
9475 case DT_VERSYM:
9476 name = ".gnu.version";
9477 goto get_vma_if_bpabi;
9478 case DT_VERDEF:
9479 name = ".gnu.version_d";
9480 goto get_vma_if_bpabi;
9481 case DT_VERNEED:
9482 name = ".gnu.version_r";
9483 goto get_vma_if_bpabi;
9484
9485 case DT_PLTGOT:
9486 name = ".got";
9487 goto get_vma;
9488 case DT_JMPREL:
9489 name = RELOC_SECTION (htab, ".plt");
9490 get_vma:
9491 s = bfd_get_section_by_name (output_bfd, name);
9492 BFD_ASSERT (s != NULL);
9493 if (!htab->symbian_p)
9494 dyn.d_un.d_ptr = s->vma;
9495 else
9496 /* In the BPABI, tags in the PT_DYNAMIC section point
9497 at the file offset, not the memory address, for the
9498 convenience of the post linker. */
9499 dyn.d_un.d_ptr = s->filepos;
9500 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9501 break;
9502
9503 get_vma_if_bpabi:
9504 if (htab->symbian_p)
9505 goto get_vma;
9506 break;
9507
9508 case DT_PLTRELSZ:
9509 s = bfd_get_section_by_name (output_bfd,
9510 RELOC_SECTION (htab, ".plt"));
9511 BFD_ASSERT (s != NULL);
9512 dyn.d_un.d_val = s->size;
9513 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9514 break;
9515
9516 case DT_RELSZ:
9517 case DT_RELASZ:
9518 if (!htab->symbian_p)
9519 {
9520 /* My reading of the SVR4 ABI indicates that the
9521 procedure linkage table relocs (DT_JMPREL) should be
9522 included in the overall relocs (DT_REL). This is
9523 what Solaris does. However, UnixWare can not handle
9524 that case. Therefore, we override the DT_RELSZ entry
9525 here to make it not include the JMPREL relocs. Since
9526 the linker script arranges for .rel(a).plt to follow all
9527 other relocation sections, we don't have to worry
9528 about changing the DT_REL entry. */
9529 s = bfd_get_section_by_name (output_bfd,
9530 RELOC_SECTION (htab, ".plt"));
9531 if (s != NULL)
9532 dyn.d_un.d_val -= s->size;
9533 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9534 break;
9535 }
9536 /* Fall through */
9537
9538 case DT_REL:
9539 case DT_RELA:
9540 /* In the BPABI, the DT_REL tag must point at the file
9541 offset, not the VMA, of the first relocation
9542 section. So, we use code similar to that in
9543 elflink.c, but do not check for SHF_ALLOC on the
9544 relcoation section, since relocations sections are
9545 never allocated under the BPABI. The comments above
9546 about Unixware notwithstanding, we include all of the
9547 relocations here. */
9548 if (htab->symbian_p)
9549 {
9550 unsigned int i;
9551 type = ((dyn.d_tag == DT_REL || dyn.d_tag == DT_RELSZ)
9552 ? SHT_REL : SHT_RELA);
9553 dyn.d_un.d_val = 0;
9554 for (i = 1; i < elf_numsections (output_bfd); i++)
9555 {
9556 Elf_Internal_Shdr *hdr
9557 = elf_elfsections (output_bfd)[i];
9558 if (hdr->sh_type == type)
9559 {
9560 if (dyn.d_tag == DT_RELSZ
9561 || dyn.d_tag == DT_RELASZ)
9562 dyn.d_un.d_val += hdr->sh_size;
9563 else if ((ufile_ptr) hdr->sh_offset
9564 <= dyn.d_un.d_val - 1)
9565 dyn.d_un.d_val = hdr->sh_offset;
9566 }
9567 }
9568 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9569 }
9570 break;
9571
9572 /* Set the bottom bit of DT_INIT/FINI if the
9573 corresponding function is Thumb. */
9574 case DT_INIT:
9575 name = info->init_function;
9576 goto get_sym;
9577 case DT_FINI:
9578 name = info->fini_function;
9579 get_sym:
9580 /* If it wasn't set by elf_bfd_final_link
9581 then there is nothing to adjust. */
9582 if (dyn.d_un.d_val != 0)
9583 {
9584 struct elf_link_hash_entry * eh;
9585
9586 eh = elf_link_hash_lookup (elf_hash_table (info), name,
9587 FALSE, FALSE, TRUE);
9588 if (eh != (struct elf_link_hash_entry *) NULL
9589 && ELF_ST_TYPE (eh->type) == STT_ARM_TFUNC)
9590 {
9591 dyn.d_un.d_val |= 1;
9592 bfd_elf32_swap_dyn_out (output_bfd, &dyn, dyncon);
9593 }
9594 }
9595 break;
9596 }
9597 }
9598
9599 /* Fill in the first entry in the procedure linkage table. */
9600 if (splt->size > 0 && elf32_arm_hash_table (info)->plt_header_size)
9601 {
9602 const bfd_vma *plt0_entry;
9603 bfd_vma got_address, plt_address, got_displacement;
9604
9605 /* Calculate the addresses of the GOT and PLT. */
9606 got_address = sgot->output_section->vma + sgot->output_offset;
9607 plt_address = splt->output_section->vma + splt->output_offset;
9608
9609 if (htab->vxworks_p)
9610 {
9611 /* The VxWorks GOT is relocated by the dynamic linker.
9612 Therefore, we must emit relocations rather than simply
9613 computing the values now. */
9614 Elf_Internal_Rela rel;
9615
9616 plt0_entry = elf32_arm_vxworks_exec_plt0_entry;
9617 put_arm_insn (htab, output_bfd, plt0_entry[0],
9618 splt->contents + 0);
9619 put_arm_insn (htab, output_bfd, plt0_entry[1],
9620 splt->contents + 4);
9621 put_arm_insn (htab, output_bfd, plt0_entry[2],
9622 splt->contents + 8);
9623 bfd_put_32 (output_bfd, got_address, splt->contents + 12);
9624
9625 /* Generate a relocation for _GLOBAL_OFFSET_TABLE_. */
9626 rel.r_offset = plt_address + 12;
9627 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9628 rel.r_addend = 0;
9629 SWAP_RELOC_OUT (htab) (output_bfd, &rel,
9630 htab->srelplt2->contents);
9631 }
9632 else
9633 {
9634 got_displacement = got_address - (plt_address + 16);
9635
9636 plt0_entry = elf32_arm_plt0_entry;
9637 put_arm_insn (htab, output_bfd, plt0_entry[0],
9638 splt->contents + 0);
9639 put_arm_insn (htab, output_bfd, plt0_entry[1],
9640 splt->contents + 4);
9641 put_arm_insn (htab, output_bfd, plt0_entry[2],
9642 splt->contents + 8);
9643 put_arm_insn (htab, output_bfd, plt0_entry[3],
9644 splt->contents + 12);
9645
9646 #ifdef FOUR_WORD_PLT
9647 /* The displacement value goes in the otherwise-unused
9648 last word of the second entry. */
9649 bfd_put_32 (output_bfd, got_displacement, splt->contents + 28);
9650 #else
9651 bfd_put_32 (output_bfd, got_displacement, splt->contents + 16);
9652 #endif
9653 }
9654 }
9655
9656 /* UnixWare sets the entsize of .plt to 4, although that doesn't
9657 really seem like the right value. */
9658 if (splt->output_section->owner == output_bfd)
9659 elf_section_data (splt->output_section)->this_hdr.sh_entsize = 4;
9660
9661 if (htab->vxworks_p && !info->shared && htab->splt->size > 0)
9662 {
9663 /* Correct the .rel(a).plt.unloaded relocations. They will have
9664 incorrect symbol indexes. */
9665 int num_plts;
9666 unsigned char *p;
9667
9668 num_plts = ((htab->splt->size - htab->plt_header_size)
9669 / htab->plt_entry_size);
9670 p = htab->srelplt2->contents + RELOC_SIZE (htab);
9671
9672 for (; num_plts; num_plts--)
9673 {
9674 Elf_Internal_Rela rel;
9675
9676 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
9677 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_ARM_ABS32);
9678 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
9679 p += RELOC_SIZE (htab);
9680
9681 SWAP_RELOC_IN (htab) (output_bfd, p, &rel);
9682 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_ARM_ABS32);
9683 SWAP_RELOC_OUT (htab) (output_bfd, &rel, p);
9684 p += RELOC_SIZE (htab);
9685 }
9686 }
9687 }
9688
9689 /* Fill in the first three entries in the global offset table. */
9690 if (sgot)
9691 {
9692 if (sgot->size > 0)
9693 {
9694 if (sdyn == NULL)
9695 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents);
9696 else
9697 bfd_put_32 (output_bfd,
9698 sdyn->output_section->vma + sdyn->output_offset,
9699 sgot->contents);
9700 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 4);
9701 bfd_put_32 (output_bfd, (bfd_vma) 0, sgot->contents + 8);
9702 }
9703
9704 elf_section_data (sgot->output_section)->this_hdr.sh_entsize = 4;
9705 }
9706
9707 return TRUE;
9708 }
9709
9710 static void
9711 elf32_arm_post_process_headers (bfd * abfd, struct bfd_link_info * link_info ATTRIBUTE_UNUSED)
9712 {
9713 Elf_Internal_Ehdr * i_ehdrp; /* ELF file header, internal form. */
9714 struct elf32_arm_link_hash_table *globals;
9715
9716 i_ehdrp = elf_elfheader (abfd);
9717
9718 if (EF_ARM_EABI_VERSION (i_ehdrp->e_flags) == EF_ARM_EABI_UNKNOWN)
9719 i_ehdrp->e_ident[EI_OSABI] = ELFOSABI_ARM;
9720 else
9721 i_ehdrp->e_ident[EI_OSABI] = 0;
9722 i_ehdrp->e_ident[EI_ABIVERSION] = ARM_ELF_ABI_VERSION;
9723
9724 if (link_info)
9725 {
9726 globals = elf32_arm_hash_table (link_info);
9727 if (globals->byteswap_code)
9728 i_ehdrp->e_flags |= EF_ARM_BE8;
9729 }
9730 }
9731
9732 static enum elf_reloc_type_class
9733 elf32_arm_reloc_type_class (const Elf_Internal_Rela *rela)
9734 {
9735 switch ((int) ELF32_R_TYPE (rela->r_info))
9736 {
9737 case R_ARM_RELATIVE:
9738 return reloc_class_relative;
9739 case R_ARM_JUMP_SLOT:
9740 return reloc_class_plt;
9741 case R_ARM_COPY:
9742 return reloc_class_copy;
9743 default:
9744 return reloc_class_normal;
9745 }
9746 }
9747
9748 /* Set the right machine number for an Arm ELF file. */
9749
9750 static bfd_boolean
9751 elf32_arm_section_flags (flagword *flags, const Elf_Internal_Shdr *hdr)
9752 {
9753 if (hdr->sh_type == SHT_NOTE)
9754 *flags |= SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_CONTENTS;
9755
9756 return TRUE;
9757 }
9758
9759 static void
9760 elf32_arm_final_write_processing (bfd *abfd, bfd_boolean linker ATTRIBUTE_UNUSED)
9761 {
9762 bfd_arm_update_notes (abfd, ARM_NOTE_SECTION);
9763 }
9764
9765 /* Return TRUE if this is an unwinding table entry. */
9766
9767 static bfd_boolean
9768 is_arm_elf_unwind_section_name (bfd * abfd ATTRIBUTE_UNUSED, const char * name)
9769 {
9770 return (CONST_STRNEQ (name, ELF_STRING_ARM_unwind)
9771 || CONST_STRNEQ (name, ELF_STRING_ARM_unwind_once));
9772 }
9773
9774
9775 /* Set the type and flags for an ARM section. We do this by
9776 the section name, which is a hack, but ought to work. */
9777
9778 static bfd_boolean
9779 elf32_arm_fake_sections (bfd * abfd, Elf_Internal_Shdr * hdr, asection * sec)
9780 {
9781 const char * name;
9782
9783 name = bfd_get_section_name (abfd, sec);
9784
9785 if (is_arm_elf_unwind_section_name (abfd, name))
9786 {
9787 hdr->sh_type = SHT_ARM_EXIDX;
9788 hdr->sh_flags |= SHF_LINK_ORDER;
9789 }
9790 else if (strcmp(name, ".ARM.attributes") == 0)
9791 {
9792 hdr->sh_type = SHT_ARM_ATTRIBUTES;
9793 }
9794 return TRUE;
9795 }
9796
9797 /* Parse an Arm EABI attributes section. */
9798 static void
9799 elf32_arm_parse_attributes (bfd *abfd, Elf_Internal_Shdr * hdr)
9800 {
9801 bfd_byte *contents;
9802 bfd_byte *p;
9803 bfd_vma len;
9804
9805 contents = bfd_malloc (hdr->sh_size);
9806 if (!contents)
9807 return;
9808 if (!bfd_get_section_contents (abfd, hdr->bfd_section, contents, 0,
9809 hdr->sh_size))
9810 {
9811 free (contents);
9812 return;
9813 }
9814 p = contents;
9815 if (*(p++) == 'A')
9816 {
9817 len = hdr->sh_size - 1;
9818 while (len > 0)
9819 {
9820 int namelen;
9821 bfd_vma section_len;
9822
9823 section_len = bfd_get_32 (abfd, p);
9824 p += 4;
9825 if (section_len > len)
9826 section_len = len;
9827 len -= section_len;
9828 namelen = strlen ((char *)p) + 1;
9829 section_len -= namelen + 4;
9830 if (strcmp((char *)p, "aeabi") != 0)
9831 {
9832 /* Vendor section. Ignore it. */
9833 p += namelen + section_len;
9834 }
9835 else
9836 {
9837 p += namelen;
9838 while (section_len > 0)
9839 {
9840 int tag;
9841 unsigned int n;
9842 unsigned int val;
9843 bfd_vma subsection_len;
9844 bfd_byte *end;
9845
9846 tag = read_unsigned_leb128 (abfd, p, &n);
9847 p += n;
9848 subsection_len = bfd_get_32 (abfd, p);
9849 p += 4;
9850 if (subsection_len > section_len)
9851 subsection_len = section_len;
9852 section_len -= subsection_len;
9853 subsection_len -= n + 4;
9854 end = p + subsection_len;
9855 switch (tag)
9856 {
9857 case Tag_File:
9858 while (p < end)
9859 {
9860 bfd_boolean is_string;
9861
9862 tag = read_unsigned_leb128 (abfd, p, &n);
9863 p += n;
9864 if (tag == 4 || tag == 5)
9865 is_string = 1;
9866 else if (tag < 32)
9867 is_string = 0;
9868 else
9869 is_string = (tag & 1) != 0;
9870 if (tag == Tag_compatibility)
9871 {
9872 val = read_unsigned_leb128 (abfd, p, &n);
9873 p += n;
9874 elf32_arm_add_eabi_attr_compat (abfd, val,
9875 (char *)p);
9876 p += strlen ((char *)p) + 1;
9877 }
9878 else if (is_string)
9879 {
9880 elf32_arm_add_eabi_attr_string (abfd, tag,
9881 (char *)p);
9882 p += strlen ((char *)p) + 1;
9883 }
9884 else
9885 {
9886 val = read_unsigned_leb128 (abfd, p, &n);
9887 p += n;
9888 elf32_arm_add_eabi_attr_int (abfd, tag, val);
9889 }
9890 }
9891 break;
9892 case Tag_Section:
9893 case Tag_Symbol:
9894 /* Don't have anywhere convenient to attach these.
9895 Fall through for now. */
9896 default:
9897 /* Ignore things we don't kow about. */
9898 p += subsection_len;
9899 subsection_len = 0;
9900 break;
9901 }
9902 }
9903 }
9904 }
9905 }
9906 free (contents);
9907 }
9908
9909 /* Handle an ARM specific section when reading an object file. This is
9910 called when bfd_section_from_shdr finds a section with an unknown
9911 type. */
9912
9913 static bfd_boolean
9914 elf32_arm_section_from_shdr (bfd *abfd,
9915 Elf_Internal_Shdr * hdr,
9916 const char *name,
9917 int shindex)
9918 {
9919 /* There ought to be a place to keep ELF backend specific flags, but
9920 at the moment there isn't one. We just keep track of the
9921 sections by their name, instead. Fortunately, the ABI gives
9922 names for all the ARM specific sections, so we will probably get
9923 away with this. */
9924 switch (hdr->sh_type)
9925 {
9926 case SHT_ARM_EXIDX:
9927 case SHT_ARM_PREEMPTMAP:
9928 case SHT_ARM_ATTRIBUTES:
9929 break;
9930
9931 default:
9932 return FALSE;
9933 }
9934
9935 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
9936 return FALSE;
9937
9938 if (hdr->sh_type == SHT_ARM_ATTRIBUTES)
9939 elf32_arm_parse_attributes(abfd, hdr);
9940 return TRUE;
9941 }
9942
9943 /* A structure used to record a list of sections, independently
9944 of the next and prev fields in the asection structure. */
9945 typedef struct section_list
9946 {
9947 asection * sec;
9948 struct section_list * next;
9949 struct section_list * prev;
9950 }
9951 section_list;
9952
9953 /* Unfortunately we need to keep a list of sections for which
9954 an _arm_elf_section_data structure has been allocated. This
9955 is because it is possible for functions like elf32_arm_write_section
9956 to be called on a section which has had an elf_data_structure
9957 allocated for it (and so the used_by_bfd field is valid) but
9958 for which the ARM extended version of this structure - the
9959 _arm_elf_section_data structure - has not been allocated. */
9960 static section_list * sections_with_arm_elf_section_data = NULL;
9961
9962 static void
9963 record_section_with_arm_elf_section_data (asection * sec)
9964 {
9965 struct section_list * entry;
9966
9967 entry = bfd_malloc (sizeof (* entry));
9968 if (entry == NULL)
9969 return;
9970 entry->sec = sec;
9971 entry->next = sections_with_arm_elf_section_data;
9972 entry->prev = NULL;
9973 if (entry->next != NULL)
9974 entry->next->prev = entry;
9975 sections_with_arm_elf_section_data = entry;
9976 }
9977
9978 static struct section_list *
9979 find_arm_elf_section_entry (asection * sec)
9980 {
9981 struct section_list * entry;
9982 static struct section_list * last_entry = NULL;
9983
9984 /* This is a short cut for the typical case where the sections are added
9985 to the sections_with_arm_elf_section_data list in forward order and
9986 then looked up here in backwards order. This makes a real difference
9987 to the ld-srec/sec64k.exp linker test. */
9988 entry = sections_with_arm_elf_section_data;
9989 if (last_entry != NULL)
9990 {
9991 if (last_entry->sec == sec)
9992 entry = last_entry;
9993 else if (last_entry->next != NULL
9994 && last_entry->next->sec == sec)
9995 entry = last_entry->next;
9996 }
9997
9998 for (; entry; entry = entry->next)
9999 if (entry->sec == sec)
10000 break;
10001
10002 if (entry)
10003 /* Record the entry prior to this one - it is the entry we are most
10004 likely to want to locate next time. Also this way if we have been
10005 called from unrecord_section_with_arm_elf_section_data() we will not
10006 be caching a pointer that is about to be freed. */
10007 last_entry = entry->prev;
10008
10009 return entry;
10010 }
10011
10012 static _arm_elf_section_data *
10013 get_arm_elf_section_data (asection * sec)
10014 {
10015 struct section_list * entry;
10016
10017 entry = find_arm_elf_section_entry (sec);
10018
10019 if (entry)
10020 return elf32_arm_section_data (entry->sec);
10021 else
10022 return NULL;
10023 }
10024
10025 static void
10026 unrecord_section_with_arm_elf_section_data (asection * sec)
10027 {
10028 struct section_list * entry;
10029
10030 entry = find_arm_elf_section_entry (sec);
10031
10032 if (entry)
10033 {
10034 if (entry->prev != NULL)
10035 entry->prev->next = entry->next;
10036 if (entry->next != NULL)
10037 entry->next->prev = entry->prev;
10038 if (entry == sections_with_arm_elf_section_data)
10039 sections_with_arm_elf_section_data = entry->next;
10040 free (entry);
10041 }
10042 }
10043
10044
10045 typedef struct
10046 {
10047 void *finfo;
10048 struct bfd_link_info *info;
10049 asection *sec;
10050 int sec_shndx;
10051 bfd_boolean (*func) (void *, const char *, Elf_Internal_Sym *,
10052 asection *, struct elf_link_hash_entry *);
10053 } output_arch_syminfo;
10054
10055 enum map_symbol_type
10056 {
10057 ARM_MAP_ARM,
10058 ARM_MAP_THUMB,
10059 ARM_MAP_DATA
10060 };
10061
10062
10063 /* Output a single PLT mapping symbol. */
10064
10065 static bfd_boolean
10066 elf32_arm_ouput_plt_map_sym (output_arch_syminfo *osi,
10067 enum map_symbol_type type,
10068 bfd_vma offset)
10069 {
10070 static const char *names[3] = {"$a", "$t", "$d"};
10071 struct elf32_arm_link_hash_table *htab;
10072 Elf_Internal_Sym sym;
10073
10074 htab = elf32_arm_hash_table (osi->info);
10075 sym.st_value = osi->sec->output_section->vma
10076 + osi->sec->output_offset
10077 + offset;
10078 sym.st_size = 0;
10079 sym.st_other = 0;
10080 sym.st_info = ELF_ST_INFO (STB_LOCAL, STT_NOTYPE);
10081 sym.st_shndx = osi->sec_shndx;
10082 if (!osi->func (osi->finfo, names[type], &sym, osi->sec, NULL))
10083 return FALSE;
10084 return TRUE;
10085 }
10086
10087
10088 /* Output mapping symbols for PLT entries associated with H. */
10089
10090 static bfd_boolean
10091 elf32_arm_output_plt_map (struct elf_link_hash_entry *h, void *inf)
10092 {
10093 output_arch_syminfo *osi = (output_arch_syminfo *) inf;
10094 struct elf32_arm_link_hash_table *htab;
10095 struct elf32_arm_link_hash_entry *eh;
10096 bfd_vma addr;
10097
10098 htab = elf32_arm_hash_table (osi->info);
10099
10100 if (h->root.type == bfd_link_hash_indirect)
10101 return TRUE;
10102
10103 if (h->root.type == bfd_link_hash_warning)
10104 /* When warning symbols are created, they **replace** the "real"
10105 entry in the hash table, thus we never get to see the real
10106 symbol in a hash traversal. So look at it now. */
10107 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10108
10109 if (h->plt.offset == (bfd_vma) -1)
10110 return TRUE;
10111
10112 eh = (struct elf32_arm_link_hash_entry *) h;
10113 addr = h->plt.offset;
10114 if (htab->symbian_p)
10115 {
10116 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
10117 return FALSE;
10118 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 4))
10119 return FALSE;
10120 }
10121 else if (htab->vxworks_p)
10122 {
10123 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
10124 return FALSE;
10125 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 8))
10126 return FALSE;
10127 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr + 12))
10128 return FALSE;
10129 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 20))
10130 return FALSE;
10131 }
10132 else
10133 {
10134 bfd_boolean thumb_stub;
10135
10136 thumb_stub = eh->plt_thumb_refcount > 0 && !htab->use_blx;
10137 if (thumb_stub)
10138 {
10139 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_THUMB, addr - 4))
10140 return FALSE;
10141 }
10142 #ifdef FOUR_WORD_PLT
10143 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
10144 return FALSE;
10145 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_DATA, addr + 12))
10146 return FALSE;
10147 #else
10148 /* A three-word PLT with no Thumb thunk contains only Arm code,
10149 so only need to output a mapping symbol for the first PLT entry and
10150 entries with thumb thunks. */
10151 if (thumb_stub || addr == 20)
10152 {
10153 if (!elf32_arm_ouput_plt_map_sym (osi, ARM_MAP_ARM, addr))
10154 return FALSE;
10155 }
10156 #endif
10157 }
10158
10159 return TRUE;
10160 }
10161
10162
10163 /* Output mapping symbols for linker generated sections. */
10164
10165 static bfd_boolean
10166 elf32_arm_output_arch_local_syms (bfd *output_bfd,
10167 struct bfd_link_info *info,
10168 void *finfo, bfd_boolean (*func) (void *, const char *,
10169 Elf_Internal_Sym *,
10170 asection *,
10171 struct elf_link_hash_entry *))
10172 {
10173 output_arch_syminfo osi;
10174 struct elf32_arm_link_hash_table *htab;
10175 bfd_vma offset;
10176 bfd_size_type size;
10177
10178 htab = elf32_arm_hash_table (info);
10179 check_use_blx(htab);
10180
10181 osi.finfo = finfo;
10182 osi.info = info;
10183 osi.func = func;
10184
10185 /* ARM->Thumb glue. */
10186 if (htab->arm_glue_size > 0)
10187 {
10188 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
10189 ARM2THUMB_GLUE_SECTION_NAME);
10190
10191 osi.sec_shndx = _bfd_elf_section_from_bfd_section
10192 (output_bfd, osi.sec->output_section);
10193 if (info->shared || htab->root.is_relocatable_executable
10194 || htab->pic_veneer)
10195 size = ARM2THUMB_PIC_GLUE_SIZE;
10196 else if (htab->use_blx)
10197 size = ARM2THUMB_V5_STATIC_GLUE_SIZE;
10198 else
10199 size = ARM2THUMB_STATIC_GLUE_SIZE;
10200
10201 for (offset = 0; offset < htab->arm_glue_size; offset += size)
10202 {
10203 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset);
10204 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, offset + size - 4);
10205 }
10206 }
10207
10208 /* Thumb->ARM glue. */
10209 if (htab->thumb_glue_size > 0)
10210 {
10211 osi.sec = bfd_get_section_by_name (htab->bfd_of_glue_owner,
10212 THUMB2ARM_GLUE_SECTION_NAME);
10213
10214 osi.sec_shndx = _bfd_elf_section_from_bfd_section
10215 (output_bfd, osi.sec->output_section);
10216 size = THUMB2ARM_GLUE_SIZE;
10217
10218 for (offset = 0; offset < htab->thumb_glue_size; offset += size)
10219 {
10220 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_THUMB, offset);
10221 elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, offset + 4);
10222 }
10223 }
10224
10225 /* Finally, output mapping symbols for the PLT. */
10226 if (!htab->splt || htab->splt->size == 0)
10227 return TRUE;
10228
10229 osi.sec_shndx = _bfd_elf_section_from_bfd_section (output_bfd,
10230 htab->splt->output_section);
10231 osi.sec = htab->splt;
10232 /* Output mapping symbols for the plt header. SymbianOS does not have a
10233 plt header. */
10234 if (htab->vxworks_p)
10235 {
10236 /* VxWorks shared libraries have no PLT header. */
10237 if (!info->shared)
10238 {
10239 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
10240 return FALSE;
10241 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 12))
10242 return FALSE;
10243 }
10244 }
10245 else if (!htab->symbian_p)
10246 {
10247 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_ARM, 0))
10248 return FALSE;
10249 #ifndef FOUR_WORD_PLT
10250 if (!elf32_arm_ouput_plt_map_sym (&osi, ARM_MAP_DATA, 16))
10251 return FALSE;
10252 #endif
10253 }
10254
10255 elf_link_hash_traverse (&htab->root, elf32_arm_output_plt_map, (void *) &osi);
10256 return TRUE;
10257 }
10258
10259 /* Allocate target specific section data. */
10260
10261 static bfd_boolean
10262 elf32_arm_new_section_hook (bfd *abfd, asection *sec)
10263 {
10264 if (!sec->used_by_bfd)
10265 {
10266 _arm_elf_section_data *sdata;
10267 bfd_size_type amt = sizeof (*sdata);
10268
10269 sdata = bfd_zalloc (abfd, amt);
10270 if (sdata == NULL)
10271 return FALSE;
10272 sec->used_by_bfd = sdata;
10273 }
10274
10275 record_section_with_arm_elf_section_data (sec);
10276
10277 return _bfd_elf_new_section_hook (abfd, sec);
10278 }
10279
10280
10281 /* Used to order a list of mapping symbols by address. */
10282
10283 static int
10284 elf32_arm_compare_mapping (const void * a, const void * b)
10285 {
10286 return ((const elf32_arm_section_map *) a)->vma
10287 > ((const elf32_arm_section_map *) b)->vma;
10288 }
10289
10290
10291 /* Do code byteswapping. Return FALSE afterwards so that the section is
10292 written out as normal. */
10293
10294 static bfd_boolean
10295 elf32_arm_write_section (bfd *output_bfd,
10296 struct bfd_link_info *link_info, asection *sec,
10297 bfd_byte *contents)
10298 {
10299 int mapcount, errcount;
10300 _arm_elf_section_data *arm_data;
10301 struct elf32_arm_link_hash_table *globals = elf32_arm_hash_table (link_info);
10302 elf32_arm_section_map *map;
10303 elf32_vfp11_erratum_list *errnode;
10304 bfd_vma ptr;
10305 bfd_vma end;
10306 bfd_vma offset = sec->output_section->vma + sec->output_offset;
10307 bfd_byte tmp;
10308 int i;
10309
10310 /* If this section has not been allocated an _arm_elf_section_data
10311 structure then we cannot record anything. */
10312 arm_data = get_arm_elf_section_data (sec);
10313 if (arm_data == NULL)
10314 return FALSE;
10315
10316 mapcount = arm_data->mapcount;
10317 map = arm_data->map;
10318 errcount = arm_data->erratumcount;
10319
10320 if (errcount != 0)
10321 {
10322 unsigned int endianflip = bfd_big_endian (output_bfd) ? 3 : 0;
10323
10324 for (errnode = arm_data->erratumlist; errnode != 0;
10325 errnode = errnode->next)
10326 {
10327 bfd_vma index = errnode->vma - offset;
10328
10329 switch (errnode->type)
10330 {
10331 case VFP11_ERRATUM_BRANCH_TO_ARM_VENEER:
10332 {
10333 bfd_vma branch_to_veneer;
10334 /* Original condition code of instruction, plus bit mask for
10335 ARM B instruction. */
10336 unsigned int insn = (errnode->u.b.vfp_insn & 0xf0000000)
10337 | 0x0a000000;
10338
10339 /* The instruction is before the label. */
10340 index -= 4;
10341
10342 /* Above offset included in -4 below. */
10343 branch_to_veneer = errnode->u.b.veneer->vma
10344 - errnode->vma - 4;
10345
10346 if ((signed) branch_to_veneer < -(1 << 25)
10347 || (signed) branch_to_veneer >= (1 << 25))
10348 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
10349 "range"), output_bfd);
10350
10351 insn |= (branch_to_veneer >> 2) & 0xffffff;
10352 contents[endianflip ^ index] = insn & 0xff;
10353 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
10354 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
10355 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
10356 }
10357 break;
10358
10359 case VFP11_ERRATUM_ARM_VENEER:
10360 {
10361 bfd_vma branch_from_veneer;
10362 unsigned int insn;
10363
10364 /* Take size of veneer into account. */
10365 branch_from_veneer = errnode->u.v.branch->vma
10366 - errnode->vma - 12;
10367
10368 if ((signed) branch_from_veneer < -(1 << 25)
10369 || (signed) branch_from_veneer >= (1 << 25))
10370 (*_bfd_error_handler) (_("%B: error: VFP11 veneer out of "
10371 "range"), output_bfd);
10372
10373 /* Original instruction. */
10374 insn = errnode->u.v.branch->u.b.vfp_insn;
10375 contents[endianflip ^ index] = insn & 0xff;
10376 contents[endianflip ^ (index + 1)] = (insn >> 8) & 0xff;
10377 contents[endianflip ^ (index + 2)] = (insn >> 16) & 0xff;
10378 contents[endianflip ^ (index + 3)] = (insn >> 24) & 0xff;
10379
10380 /* Branch back to insn after original insn. */
10381 insn = 0xea000000 | ((branch_from_veneer >> 2) & 0xffffff);
10382 contents[endianflip ^ (index + 4)] = insn & 0xff;
10383 contents[endianflip ^ (index + 5)] = (insn >> 8) & 0xff;
10384 contents[endianflip ^ (index + 6)] = (insn >> 16) & 0xff;
10385 contents[endianflip ^ (index + 7)] = (insn >> 24) & 0xff;
10386 }
10387 break;
10388
10389 default:
10390 abort ();
10391 }
10392 }
10393 }
10394
10395 if (mapcount == 0)
10396 return FALSE;
10397
10398 if (globals->byteswap_code)
10399 {
10400 qsort (map, mapcount, sizeof (* map), elf32_arm_compare_mapping);
10401
10402 ptr = map[0].vma;
10403 for (i = 0; i < mapcount; i++)
10404 {
10405 if (i == mapcount - 1)
10406 end = sec->size;
10407 else
10408 end = map[i + 1].vma;
10409
10410 switch (map[i].type)
10411 {
10412 case 'a':
10413 /* Byte swap code words. */
10414 while (ptr + 3 < end)
10415 {
10416 tmp = contents[ptr];
10417 contents[ptr] = contents[ptr + 3];
10418 contents[ptr + 3] = tmp;
10419 tmp = contents[ptr + 1];
10420 contents[ptr + 1] = contents[ptr + 2];
10421 contents[ptr + 2] = tmp;
10422 ptr += 4;
10423 }
10424 break;
10425
10426 case 't':
10427 /* Byte swap code halfwords. */
10428 while (ptr + 1 < end)
10429 {
10430 tmp = contents[ptr];
10431 contents[ptr] = contents[ptr + 1];
10432 contents[ptr + 1] = tmp;
10433 ptr += 2;
10434 }
10435 break;
10436
10437 case 'd':
10438 /* Leave data alone. */
10439 break;
10440 }
10441 ptr = end;
10442 }
10443 }
10444
10445 free (map);
10446 arm_data->mapcount = 0;
10447 arm_data->mapsize = 0;
10448 arm_data->map = NULL;
10449 unrecord_section_with_arm_elf_section_data (sec);
10450
10451 return FALSE;
10452 }
10453
10454 static void
10455 unrecord_section_via_map_over_sections (bfd * abfd ATTRIBUTE_UNUSED,
10456 asection * sec,
10457 void * ignore ATTRIBUTE_UNUSED)
10458 {
10459 unrecord_section_with_arm_elf_section_data (sec);
10460 }
10461
10462 static bfd_boolean
10463 elf32_arm_close_and_cleanup (bfd * abfd)
10464 {
10465 if (abfd->sections)
10466 bfd_map_over_sections (abfd,
10467 unrecord_section_via_map_over_sections,
10468 NULL);
10469
10470 return _bfd_elf_close_and_cleanup (abfd);
10471 }
10472
10473 static bfd_boolean
10474 elf32_arm_bfd_free_cached_info (bfd * abfd)
10475 {
10476 if (abfd->sections)
10477 bfd_map_over_sections (abfd,
10478 unrecord_section_via_map_over_sections,
10479 NULL);
10480
10481 return _bfd_free_cached_info (abfd);
10482 }
10483
10484 /* Display STT_ARM_TFUNC symbols as functions. */
10485
10486 static void
10487 elf32_arm_symbol_processing (bfd *abfd ATTRIBUTE_UNUSED,
10488 asymbol *asym)
10489 {
10490 elf_symbol_type *elfsym = (elf_symbol_type *) asym;
10491
10492 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_ARM_TFUNC)
10493 elfsym->symbol.flags |= BSF_FUNCTION;
10494 }
10495
10496
10497 /* Mangle thumb function symbols as we read them in. */
10498
10499 static bfd_boolean
10500 elf32_arm_swap_symbol_in (bfd * abfd,
10501 const void *psrc,
10502 const void *pshn,
10503 Elf_Internal_Sym *dst)
10504 {
10505 if (!bfd_elf32_swap_symbol_in (abfd, psrc, pshn, dst))
10506 return FALSE;
10507
10508 /* New EABI objects mark thumb function symbols by setting the low bit of
10509 the address. Turn these into STT_ARM_TFUNC. */
10510 if (ELF_ST_TYPE (dst->st_info) == STT_FUNC
10511 && (dst->st_value & 1))
10512 {
10513 dst->st_info = ELF_ST_INFO (ELF_ST_BIND (dst->st_info), STT_ARM_TFUNC);
10514 dst->st_value &= ~(bfd_vma) 1;
10515 }
10516 return TRUE;
10517 }
10518
10519
10520 /* Mangle thumb function symbols as we write them out. */
10521
10522 static void
10523 elf32_arm_swap_symbol_out (bfd *abfd,
10524 const Elf_Internal_Sym *src,
10525 void *cdst,
10526 void *shndx)
10527 {
10528 Elf_Internal_Sym newsym;
10529
10530 /* We convert STT_ARM_TFUNC symbols into STT_FUNC with the low bit
10531 of the address set, as per the new EABI. We do this unconditionally
10532 because objcopy does not set the elf header flags until after
10533 it writes out the symbol table. */
10534 if (ELF_ST_TYPE (src->st_info) == STT_ARM_TFUNC)
10535 {
10536 newsym = *src;
10537 newsym.st_info = ELF_ST_INFO (ELF_ST_BIND (src->st_info), STT_FUNC);
10538 if (newsym.st_shndx != SHN_UNDEF)
10539 {
10540 /* Do this only for defined symbols. At link type, the static
10541 linker will simulate the work of dynamic linker of resolving
10542 symbols and will carry over the thumbness of found symbols to
10543 the output symbol table. It's not clear how it happens, but
10544 the thumbness of undefined symbols can well be different at
10545 runtime, and writing '1' for them will be confusing for users
10546 and possibly for dynamic linker itself.
10547 */
10548 newsym.st_value |= 1;
10549 }
10550
10551 src = &newsym;
10552 }
10553 bfd_elf32_swap_symbol_out (abfd, src, cdst, shndx);
10554 }
10555
10556 /* Add the PT_ARM_EXIDX program header. */
10557
10558 static bfd_boolean
10559 elf32_arm_modify_segment_map (bfd *abfd,
10560 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10561 {
10562 struct elf_segment_map *m;
10563 asection *sec;
10564
10565 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
10566 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
10567 {
10568 /* If there is already a PT_ARM_EXIDX header, then we do not
10569 want to add another one. This situation arises when running
10570 "strip"; the input binary already has the header. */
10571 m = elf_tdata (abfd)->segment_map;
10572 while (m && m->p_type != PT_ARM_EXIDX)
10573 m = m->next;
10574 if (!m)
10575 {
10576 m = bfd_zalloc (abfd, sizeof (struct elf_segment_map));
10577 if (m == NULL)
10578 return FALSE;
10579 m->p_type = PT_ARM_EXIDX;
10580 m->count = 1;
10581 m->sections[0] = sec;
10582
10583 m->next = elf_tdata (abfd)->segment_map;
10584 elf_tdata (abfd)->segment_map = m;
10585 }
10586 }
10587
10588 return TRUE;
10589 }
10590
10591 /* We may add a PT_ARM_EXIDX program header. */
10592
10593 static int
10594 elf32_arm_additional_program_headers (bfd *abfd,
10595 struct bfd_link_info *info ATTRIBUTE_UNUSED)
10596 {
10597 asection *sec;
10598
10599 sec = bfd_get_section_by_name (abfd, ".ARM.exidx");
10600 if (sec != NULL && (sec->flags & SEC_LOAD) != 0)
10601 return 1;
10602 else
10603 return 0;
10604 }
10605
10606 /* We have two function types: STT_FUNC and STT_ARM_TFUNC. */
10607 static bfd_boolean
10608 elf32_arm_is_function_type (unsigned int type)
10609 {
10610 return (type == STT_FUNC) || (type == STT_ARM_TFUNC);
10611 }
10612
10613 /* We use this to override swap_symbol_in and swap_symbol_out. */
10614 const struct elf_size_info elf32_arm_size_info = {
10615 sizeof (Elf32_External_Ehdr),
10616 sizeof (Elf32_External_Phdr),
10617 sizeof (Elf32_External_Shdr),
10618 sizeof (Elf32_External_Rel),
10619 sizeof (Elf32_External_Rela),
10620 sizeof (Elf32_External_Sym),
10621 sizeof (Elf32_External_Dyn),
10622 sizeof (Elf_External_Note),
10623 4,
10624 1,
10625 32, 2,
10626 ELFCLASS32, EV_CURRENT,
10627 bfd_elf32_write_out_phdrs,
10628 bfd_elf32_write_shdrs_and_ehdr,
10629 bfd_elf32_write_relocs,
10630 elf32_arm_swap_symbol_in,
10631 elf32_arm_swap_symbol_out,
10632 bfd_elf32_slurp_reloc_table,
10633 bfd_elf32_slurp_symbol_table,
10634 bfd_elf32_swap_dyn_in,
10635 bfd_elf32_swap_dyn_out,
10636 bfd_elf32_swap_reloc_in,
10637 bfd_elf32_swap_reloc_out,
10638 bfd_elf32_swap_reloca_in,
10639 bfd_elf32_swap_reloca_out
10640 };
10641
10642 #define ELF_ARCH bfd_arch_arm
10643 #define ELF_MACHINE_CODE EM_ARM
10644 #ifdef __QNXTARGET__
10645 #define ELF_MAXPAGESIZE 0x1000
10646 #else
10647 #define ELF_MAXPAGESIZE 0x8000
10648 #endif
10649 #define ELF_MINPAGESIZE 0x1000
10650 #define ELF_COMMONPAGESIZE 0x1000
10651
10652 #define bfd_elf32_mkobject elf32_arm_mkobject
10653
10654 #define bfd_elf32_bfd_copy_private_bfd_data elf32_arm_copy_private_bfd_data
10655 #define bfd_elf32_bfd_merge_private_bfd_data elf32_arm_merge_private_bfd_data
10656 #define bfd_elf32_bfd_set_private_flags elf32_arm_set_private_flags
10657 #define bfd_elf32_bfd_print_private_bfd_data elf32_arm_print_private_bfd_data
10658 #define bfd_elf32_bfd_link_hash_table_create elf32_arm_link_hash_table_create
10659 #define bfd_elf32_bfd_reloc_type_lookup elf32_arm_reloc_type_lookup
10660 #define bfd_elf32_bfd_reloc_name_lookup elf32_arm_reloc_name_lookup
10661 #define bfd_elf32_find_nearest_line elf32_arm_find_nearest_line
10662 #define bfd_elf32_find_inliner_info elf32_arm_find_inliner_info
10663 #define bfd_elf32_new_section_hook elf32_arm_new_section_hook
10664 #define bfd_elf32_bfd_is_target_special_symbol elf32_arm_is_target_special_symbol
10665 #define bfd_elf32_close_and_cleanup elf32_arm_close_and_cleanup
10666 #define bfd_elf32_bfd_free_cached_info elf32_arm_bfd_free_cached_info
10667 #define bfd_elf32_bfd_final_link elf32_arm_bfd_final_link
10668
10669 #define elf_backend_get_symbol_type elf32_arm_get_symbol_type
10670 #define elf_backend_gc_mark_hook elf32_arm_gc_mark_hook
10671 #define elf_backend_gc_mark_extra_sections elf32_arm_gc_mark_extra_sections
10672 #define elf_backend_gc_sweep_hook elf32_arm_gc_sweep_hook
10673 #define elf_backend_check_relocs elf32_arm_check_relocs
10674 #define elf_backend_relocate_section elf32_arm_relocate_section
10675 #define elf_backend_write_section elf32_arm_write_section
10676 #define elf_backend_adjust_dynamic_symbol elf32_arm_adjust_dynamic_symbol
10677 #define elf_backend_create_dynamic_sections elf32_arm_create_dynamic_sections
10678 #define elf_backend_finish_dynamic_symbol elf32_arm_finish_dynamic_symbol
10679 #define elf_backend_finish_dynamic_sections elf32_arm_finish_dynamic_sections
10680 #define elf_backend_size_dynamic_sections elf32_arm_size_dynamic_sections
10681 #define elf_backend_init_index_section _bfd_elf_init_2_index_sections
10682 #define elf_backend_post_process_headers elf32_arm_post_process_headers
10683 #define elf_backend_reloc_type_class elf32_arm_reloc_type_class
10684 #define elf_backend_object_p elf32_arm_object_p
10685 #define elf_backend_section_flags elf32_arm_section_flags
10686 #define elf_backend_fake_sections elf32_arm_fake_sections
10687 #define elf_backend_section_from_shdr elf32_arm_section_from_shdr
10688 #define elf_backend_final_write_processing elf32_arm_final_write_processing
10689 #define elf_backend_copy_indirect_symbol elf32_arm_copy_indirect_symbol
10690 #define elf_backend_symbol_processing elf32_arm_symbol_processing
10691 #define elf_backend_size_info elf32_arm_size_info
10692 #define elf_backend_modify_segment_map elf32_arm_modify_segment_map
10693 #define elf_backend_additional_program_headers \
10694 elf32_arm_additional_program_headers
10695 #define elf_backend_output_arch_local_syms \
10696 elf32_arm_output_arch_local_syms
10697 #define elf_backend_begin_write_processing \
10698 elf32_arm_begin_write_processing
10699 #define elf_backend_is_function_type elf32_arm_is_function_type
10700
10701 #define elf_backend_can_refcount 1
10702 #define elf_backend_can_gc_sections 1
10703 #define elf_backend_plt_readonly 1
10704 #define elf_backend_want_got_plt 1
10705 #define elf_backend_want_plt_sym 0
10706 #define elf_backend_may_use_rel_p 1
10707 #define elf_backend_may_use_rela_p 0
10708 #define elf_backend_default_use_rela_p 0
10709
10710 #define elf_backend_got_header_size 12
10711
10712 #include "elf32-target.h"
10713
10714 /* VxWorks Targets */
10715
10716 #undef TARGET_LITTLE_SYM
10717 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_vxworks_vec
10718 #undef TARGET_LITTLE_NAME
10719 #define TARGET_LITTLE_NAME "elf32-littlearm-vxworks"
10720 #undef TARGET_BIG_SYM
10721 #define TARGET_BIG_SYM bfd_elf32_bigarm_vxworks_vec
10722 #undef TARGET_BIG_NAME
10723 #define TARGET_BIG_NAME "elf32-bigarm-vxworks"
10724
10725 /* Like elf32_arm_link_hash_table_create -- but overrides
10726 appropriately for VxWorks. */
10727 static struct bfd_link_hash_table *
10728 elf32_arm_vxworks_link_hash_table_create (bfd *abfd)
10729 {
10730 struct bfd_link_hash_table *ret;
10731
10732 ret = elf32_arm_link_hash_table_create (abfd);
10733 if (ret)
10734 {
10735 struct elf32_arm_link_hash_table *htab
10736 = (struct elf32_arm_link_hash_table *) ret;
10737 htab->use_rel = 0;
10738 htab->vxworks_p = 1;
10739 }
10740 return ret;
10741 }
10742
10743 static void
10744 elf32_arm_vxworks_final_write_processing (bfd *abfd, bfd_boolean linker)
10745 {
10746 elf32_arm_final_write_processing (abfd, linker);
10747 elf_vxworks_final_write_processing (abfd, linker);
10748 }
10749
10750 #undef elf32_bed
10751 #define elf32_bed elf32_arm_vxworks_bed
10752
10753 #undef bfd_elf32_bfd_link_hash_table_create
10754 #define bfd_elf32_bfd_link_hash_table_create \
10755 elf32_arm_vxworks_link_hash_table_create
10756 #undef elf_backend_add_symbol_hook
10757 #define elf_backend_add_symbol_hook \
10758 elf_vxworks_add_symbol_hook
10759 #undef elf_backend_final_write_processing
10760 #define elf_backend_final_write_processing \
10761 elf32_arm_vxworks_final_write_processing
10762 #undef elf_backend_emit_relocs
10763 #define elf_backend_emit_relocs \
10764 elf_vxworks_emit_relocs
10765
10766 #undef elf_backend_may_use_rel_p
10767 #define elf_backend_may_use_rel_p 0
10768 #undef elf_backend_may_use_rela_p
10769 #define elf_backend_may_use_rela_p 1
10770 #undef elf_backend_default_use_rela_p
10771 #define elf_backend_default_use_rela_p 1
10772 #undef elf_backend_want_plt_sym
10773 #define elf_backend_want_plt_sym 1
10774 #undef ELF_MAXPAGESIZE
10775 #define ELF_MAXPAGESIZE 0x1000
10776
10777 #include "elf32-target.h"
10778
10779
10780 /* Symbian OS Targets */
10781
10782 #undef TARGET_LITTLE_SYM
10783 #define TARGET_LITTLE_SYM bfd_elf32_littlearm_symbian_vec
10784 #undef TARGET_LITTLE_NAME
10785 #define TARGET_LITTLE_NAME "elf32-littlearm-symbian"
10786 #undef TARGET_BIG_SYM
10787 #define TARGET_BIG_SYM bfd_elf32_bigarm_symbian_vec
10788 #undef TARGET_BIG_NAME
10789 #define TARGET_BIG_NAME "elf32-bigarm-symbian"
10790
10791 /* Like elf32_arm_link_hash_table_create -- but overrides
10792 appropriately for Symbian OS. */
10793 static struct bfd_link_hash_table *
10794 elf32_arm_symbian_link_hash_table_create (bfd *abfd)
10795 {
10796 struct bfd_link_hash_table *ret;
10797
10798 ret = elf32_arm_link_hash_table_create (abfd);
10799 if (ret)
10800 {
10801 struct elf32_arm_link_hash_table *htab
10802 = (struct elf32_arm_link_hash_table *)ret;
10803 /* There is no PLT header for Symbian OS. */
10804 htab->plt_header_size = 0;
10805 /* The PLT entries are each three instructions. */
10806 htab->plt_entry_size = 4 * NUM_ELEM (elf32_arm_symbian_plt_entry);
10807 htab->symbian_p = 1;
10808 /* Symbian uses armv5t or above, so use_blx is always true. */
10809 htab->use_blx = 1;
10810 htab->root.is_relocatable_executable = 1;
10811 }
10812 return ret;
10813 }
10814
10815 static const struct bfd_elf_special_section
10816 elf32_arm_symbian_special_sections[] =
10817 {
10818 /* In a BPABI executable, the dynamic linking sections do not go in
10819 the loadable read-only segment. The post-linker may wish to
10820 refer to these sections, but they are not part of the final
10821 program image. */
10822 { STRING_COMMA_LEN (".dynamic"), 0, SHT_DYNAMIC, 0 },
10823 { STRING_COMMA_LEN (".dynstr"), 0, SHT_STRTAB, 0 },
10824 { STRING_COMMA_LEN (".dynsym"), 0, SHT_DYNSYM, 0 },
10825 { STRING_COMMA_LEN (".got"), 0, SHT_PROGBITS, 0 },
10826 { STRING_COMMA_LEN (".hash"), 0, SHT_HASH, 0 },
10827 /* These sections do not need to be writable as the SymbianOS
10828 postlinker will arrange things so that no dynamic relocation is
10829 required. */
10830 { STRING_COMMA_LEN (".init_array"), 0, SHT_INIT_ARRAY, SHF_ALLOC },
10831 { STRING_COMMA_LEN (".fini_array"), 0, SHT_FINI_ARRAY, SHF_ALLOC },
10832 { STRING_COMMA_LEN (".preinit_array"), 0, SHT_PREINIT_ARRAY, SHF_ALLOC },
10833 { NULL, 0, 0, 0, 0 }
10834 };
10835
10836 static void
10837 elf32_arm_symbian_begin_write_processing (bfd *abfd,
10838 struct bfd_link_info *link_info)
10839 {
10840 /* BPABI objects are never loaded directly by an OS kernel; they are
10841 processed by a postlinker first, into an OS-specific format. If
10842 the D_PAGED bit is set on the file, BFD will align segments on
10843 page boundaries, so that an OS can directly map the file. With
10844 BPABI objects, that just results in wasted space. In addition,
10845 because we clear the D_PAGED bit, map_sections_to_segments will
10846 recognize that the program headers should not be mapped into any
10847 loadable segment. */
10848 abfd->flags &= ~D_PAGED;
10849 elf32_arm_begin_write_processing(abfd, link_info);
10850 }
10851
10852 static bfd_boolean
10853 elf32_arm_symbian_modify_segment_map (bfd *abfd,
10854 struct bfd_link_info *info)
10855 {
10856 struct elf_segment_map *m;
10857 asection *dynsec;
10858
10859 /* BPABI shared libraries and executables should have a PT_DYNAMIC
10860 segment. However, because the .dynamic section is not marked
10861 with SEC_LOAD, the generic ELF code will not create such a
10862 segment. */
10863 dynsec = bfd_get_section_by_name (abfd, ".dynamic");
10864 if (dynsec)
10865 {
10866 for (m = elf_tdata (abfd)->segment_map; m != NULL; m = m->next)
10867 if (m->p_type == PT_DYNAMIC)
10868 break;
10869
10870 if (m == NULL)
10871 {
10872 m = _bfd_elf_make_dynamic_segment (abfd, dynsec);
10873 m->next = elf_tdata (abfd)->segment_map;
10874 elf_tdata (abfd)->segment_map = m;
10875 }
10876 }
10877
10878 /* Also call the generic arm routine. */
10879 return elf32_arm_modify_segment_map (abfd, info);
10880 }
10881
10882 #undef elf32_bed
10883 #define elf32_bed elf32_arm_symbian_bed
10884
10885 /* The dynamic sections are not allocated on SymbianOS; the postlinker
10886 will process them and then discard them. */
10887 #undef ELF_DYNAMIC_SEC_FLAGS
10888 #define ELF_DYNAMIC_SEC_FLAGS \
10889 (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED)
10890
10891 #undef bfd_elf32_bfd_link_hash_table_create
10892 #define bfd_elf32_bfd_link_hash_table_create \
10893 elf32_arm_symbian_link_hash_table_create
10894 #undef elf_backend_add_symbol_hook
10895
10896 #undef elf_backend_special_sections
10897 #define elf_backend_special_sections elf32_arm_symbian_special_sections
10898
10899 #undef elf_backend_begin_write_processing
10900 #define elf_backend_begin_write_processing \
10901 elf32_arm_symbian_begin_write_processing
10902 #undef elf_backend_final_write_processing
10903 #define elf_backend_final_write_processing \
10904 elf32_arm_final_write_processing
10905 #undef elf_backend_emit_relocs
10906
10907 #undef elf_backend_modify_segment_map
10908 #define elf_backend_modify_segment_map elf32_arm_symbian_modify_segment_map
10909
10910 /* There is no .got section for BPABI objects, and hence no header. */
10911 #undef elf_backend_got_header_size
10912 #define elf_backend_got_header_size 0
10913
10914 /* Similarly, there is no .got.plt section. */
10915 #undef elf_backend_want_got_plt
10916 #define elf_backend_want_got_plt 0
10917
10918 #undef elf_backend_may_use_rel_p
10919 #define elf_backend_may_use_rel_p 1
10920 #undef elf_backend_may_use_rela_p
10921 #define elf_backend_may_use_rela_p 0
10922 #undef elf_backend_default_use_rela_p
10923 #define elf_backend_default_use_rela_p 0
10924 #undef elf_backend_want_plt_sym
10925 #define elf_backend_want_plt_sym 0
10926 #undef ELF_MAXPAGESIZE
10927 #define ELF_MAXPAGESIZE 0x8000
10928
10929 #include "elf32-target.h"
This page took 0.253936 seconds and 5 git commands to generate.